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Preface

Russian mathematics (later Soviet mathematics, and Russian mathematics once

again) occupies a special place in twentieth-century mathematics. In addition

to its well-known achievements, Russian mathematics established a unique style

of research based on the existence of prominent mathematical schools. These

schools were headed by recognized leaders, who became famous due to their

talents and outstanding contributions to science.

The present collection is intended primarily to gather in one book the tes-

timonies of the participants in the development of mathematics over the past

century. In their articles the authors have expressed their own points of view on

the events that took place. The editors have not felt that they had a right to make

any changes, other than stylistic ones, or to add any of their own commentary

to the text. Naturally, the points of view of the authors should not be construed

as those of the editors.

The list of mathematicians invited to participate in the present edition was

quite long. Unfortunately, some of the authors for various reasons did not

accept our invitation, and regretfully a number of areas of research are not fully

represented here. Nevertheless, the material that has been assembled is of great

value not only in the scientific sense, but also in its historical context. We wish

to express our gratitude to all the authors who contributed.

We hope that this collection will induce other authors to write their memoirs

of mathematical events of the twentieth century which they witnessed and par-

ticipated in. This will open a possibility for a continuation of the present edition.

We are very glad to thank Owen de Lange for his help in the preparation of

the English edition of this book.

The Editors

P. S. A. A. Bolibruch played a very important role in preparing this book. His

untimely death was a great shock and unrepairable loss for all people who were

fortunate to work with him.

Heidelberg, 2005 Moscow, 2005
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D. V. Anosov

Dynamical Systems in the 1960s:

The Hyperbolic Revolution

Translated by R. Cooke

Probably everyone would agree that the theory of dynamical systems underwent

a profound change during the 1960s, that its general features as then formed

have been retained to the present time despite significant changes in content,

and that this theory turned into a separate discipline at that time, having been

up to that point a branch of the theory of ordinary differential equations. Here

I intend to discuss certain events of this period, after which I shall say a few

words about what came after.

The theory of dynamical systems consists of three branches, corresponding

to the general character of the objects and questions it considers: differential

dynamics — the theory of smooth dynamical systems, the ergodic theory — the

theory of metric dynamical systems (in the sense of measure theory), and topo-

logical dynamics — the theory of topological (continuous but not differentiable)

dynamical systems. 1

1 These explanations of the subject matter of each of these three parts, being rather general and

brief, are not entirely accurate. Thus, in reality the first part also encompasses one-dimensional

dynamics, including real dynamics, while the mappings considered in the last part are nonsmooth

and even have discontinuities. Such failure of the subject matter of real one-dimensional dynamics

to comply with the norms of the theory of smooth dynamical systems is compensated by their

conceptual proximity. The picture is different for symplectic systems. They have not lost their
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The rise of dynamical systems as a separate discipline was due mostly to

two events in differential dynamics: the development of KAM theory (its seeds

were planted earlier, but did not immediately receive wide development) and the

“hyperbolic revolution.” The chronology of all this is framed by the penetration

of ideas of probabilistic origin into ergodic theory: the entropic theory arose (and

immediately began to develop vigorously) in the mid-1950s. The Ornstein 2

theory (which within the limits of its applicability sometimes establishes an

even closer connection of dynamical systems with the most ordinary random

processes such as coin tossing than does the entropic theory, while at other

times it points up subtle differences between them) arose in the 1970s.

It should be mentioned that two topics vary with particular vigor in the

theory of dynamical systems. 3 In their “purest” form they occur in differential

dynamics as quasi-periodicity, for which a certain regularity is characteristic,

and as hyperbolicity, which is connected with those phenomena that are descrip-

tively named “quasi-randomness,” “stochasticity,” or “chaos” (see the article of

Yoccoz [1]). The use of spectral concepts and methods in ergodic theory, which

began as early as the 1930s, can be regarded as a sort of implementation (in a

suitable context) of the first topic. 4 The second topic found an adequate expres-

sion in ergodic theory just in the 1950s and 1970s, when the entropic theory and

the Ornstein theory arose. Kolmogorov, whose name provided the first letter in

the acronym KAM, was the only one at that time who made an equally large

contribution to the study of both regular and chaotic motions (but in different

parts of the theory of dynamical systems — the differential and the ergodic).

His colleagues in the acronym exhibited a lively interest in chaos and of course

interest on the part of scholars of such stature was bound to have consequences;

but these consequences pale noticeably in comparison with their contributions to

the study of regular motions. The same people who succeeded in distinguishing

former smoothness at all, but specifically “symplectic” considerations, questions, and so on, have

increased to such an extent and have acquired such great importance both within the theory of

dynamical systems and (mainly) outside it that symplectic dynamics, which previously belonged

to the differential theory, now appears to have attained the status of a separate, fourth branch of

the theory of dynamical systems.
2 More precisely, the first papers by Ornstein on this topic appeared at the end of the 1960s.
3 And not only in that theory. Kolmogorov was guided by similar considerations in a broader

context when he allocated a significant portion of his papers into the first two volumes of his

collected works.
4 This by no means goes all the way back to the original source. A continuous spectrum, and

even more, a Lebesgue spectrum is more characteristic of a dynamical system of “chaotic” type.

But, because of its very origin in the analysis of sufficiently regular motions, the spectral approach

does not suppress certain essential specific features of “chaos” (which, of course, does not make

it superfluous or even unimportant).
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themselves in “chaos” left no marks at all at that time in matters connected with

regular motions. Only later was this “tradition” violated by Ornstein [2], [3] and

Sinai [4], [5], but again, despite the importance of these papers, the authors do

not owe their fame to them. All this goes to show that the differences between

regularity and chaos do not simply lie on the surface, but are buried deep within,

so that it is difficult for even the best specialists to switch from one to the other.

Only in recent times have the contributions of a few brilliant representatives of

French mathematics (Yoccoz, and Perez-Marco) in the two areas become more

equally balanced.

The question arises: Is there some other “sufficiently substantial” class of

motions that could occupy an intermediate position between the quasi-periodic

and the hyperbolic motions (or, perhaps, lie somewhere to the side of both)?

Could horocyclic flows and (or) nilflows (or, perhaps something of the sort that

we do not yet know about) play this role? In any case, one would like to

investigate what takes place in perturbations of these flows. Passing to discrete

time, one could pose the same question in relation to pursuit mappings for

nilflows. In the simplest case this involves perturbations of a mapping of the

two-dimensional torus

(x,y) �→ (x+α ,x+ y) (x,y mod 1; α irrational).

For a start it would be good to develop at least a formal theory of pertur-

bations (like the formal series in celestial mechanics, which may be divergent,

but nevertheless contain significant information, being, in particular, asymptotic

expansions of real solutions). As far as I remember, such questions were posed

in the early 1960s by Arnold.

I was a witness to all these events from the late 1950s on and a direct

participant in the “hyperbolic revolution.” The memories of a participant, of

course, are more complete than those of a witness; and I hope that their value

is higher.

But first I must relate something of my life before the “hyperbolic revo-

lution” began. I was a student, and later a graduate student, of Pontryagin,

who had switched entirely from topology to ordinary differential equations and

associated questions (variational problems of automatic control theory, and later

to the theory of differential games, which was created by him, to a significant

degree). It seems to me that Pontryagin’s greatest achievements are nevertheless

in topology, and that he was past his prime when I met him. But the beginning

of the decline was very gradual, and the level was still very high. The only

critical remark about this period of his activity, in particular, is not connected

with his activity itself, but with a certain frame of mind that came over him:
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he used to say that he was studying real problems, which he sometimes naively

called “physical” problems. (What kind of physics is it in which no knowledge

of any physical law is needed?) He made quite clear, although it wasn’t said ex-

plicitly, that the others . . . Those like Petrovskii, Bogolyubov, or Gel’fand, who

really had come into contact with applied problems of great importance could

not, or almost could not, talk about it at the time, but what did they think? Still,

outwardly all seemed to be well. I remember only one critical remark about

Pontryagin’s attitude. It was made by Kolmogorov, who had also worked with

physics and certain applied problems (not the same ones that the three named

above had dealt with). He said that for ordinary differential equations there

is an excellent intuitive picture — the geometric picture of the behavior of the

trajectories in phase space (Andronov, as is known, had given it the expressive

name of the “phase portrait”), which holds so much information that nothing

else is needed; but for partial differential equations and the like, one really must

understand the physics that they are connected with.

I was far away from these exalted spheres, but I formed the impression that

Petrovskii was not overjoyed by Pontryagin’s new research. I cannot judge to

what extent he resented the appearance of a new competitor in this area, where

he had reigned alone previously (besides, he had no more time for research,

having become rector of Moscow University; the best he could do was to keep

up with what was happening in mathematics), and to what extent he sensed

Pontryagin’s shortcomings, which had so far only slipped out innocently in

conversations, but were later to manifest themselves more seriously. But I

will nevertheless venture to suggest that the former was the main factor at that

time. Pontryagin himself, after giving a revised mandatory course of ordinary

differential equations and writing the textbook for it, 5 ceased to apply great

efforts to overcome Petrovskii’s cautious attitude. But he got most of what he

wanted: any presentation of that course anywhere in the world on a serious level

is now done in the spirit of Pontyragin. 6

5 As it happened, this course was given for the first time when I was a student, and we received a

mimeographed edition of the textbook (slightly edited later, of course) at the end of the academic

year — it was a sort of gift for us. Things were not then what they are now, when you can

write everything you want on a computer and publish it on a printer. The process then was

incomparably more drawn-out and required more work, along with the necessary administrative

approval. I too made notes for my lectures, but by the time the course was over all I had left

(even in the present computer-printer age!) was a few fragments. A more systematic presentation

was worked out (if at all) only later, sometimes much later. For that reason I can only express

my amazement at Pontryagin’s capacity for work and his sense of responsibility.
6 In the USA the textbooks of Lefschetz and Hurewicz, which have a closely similar approach,

had appeared earlier, but for some reason had not become so universally used. Lefschetz later

rewrote his textbook and made it into a voluminous graduate-level text.
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At Pontryagin’s direction, I became familiar with the mathematical sections

of the first edition of the Theory of Oscillations by Andronov and Khaikin while

still in my second year. (I learned only later that the book had a third author,

Vitt, and the reason why his name was not mentioned in the first edition.) They

made an extraordinarily strong impression on me — I would say that no book

that I have read since has made such an impression on me. I think there were

two reasons for that. First, it was the first time I (being a student!) was reading

not a textbook, but a monograph written by scholars, one of whom was a leader

in his field and the other of whom possessed unquestionable pedagogical talent.

(The talents of the third author did not get a chance to develop, but judging

from what he managed to do, they also were considerable.) Second, the two-

dimensional qualitative theory produces a strong impression all by itself, even

at first acquaintance. 7 The mathematical sections of the Theory of Oscillations

could no longer make such an impression on the new generation of students,

because the elements of the two-dimensional qualitative theory soon found their

way into many textbooks and lecture courses, after which the Theory of Oscil-

lations became for the students merely a more complete exposition of a subject

whose main parts were already familiar to them.

At that time a group of (relatively) young mathematicians formed in

Moscow — Boltyanskii, Gamkrelidze, Onishchik, Postnikov, Shafarevich, and

Shvarts (at one time Dynkin also belonged to the group) — who were familiar

with the new French algebraic topology. (The application of auxiliary fiber

spaces to solve homotopy problems, which became possible thanks to the spec-

tral sequence, was much admired at the time.) When I was a third-year student,

this group organized special-topics courses and seminars on the new topology. 8

7 Before Pontryagin this theory was barely mentioned in the mandatory course of ordinary

differential equations. One could have learned about it from the collection of Poincaré’s papers

“On curves defined by differential equations” (published on the initiative of Andronov), which

contained detailed commentaries, and from The Qualitative Theory of Differential Equations by

Nemytskii and Stepanov. I naturally became acquainted with the first only some years later, due

to its overly specialized nature. The second, despite its unquestionable wealth of content (for that

time), has always bored me quite as much as the Theory of Oscillations has interested me.
8 In the advertisement for students (written by Shvarts?) it was said, in particular, that one could

study either the simple properties of spaces of complicated structure or the complicated properties

of spaces of simple structure. This phrase annoyed Aleksandrov, who by that time had switched

over completely to general topology. However, he did not resist the new trends so much as he

simply did not cooperate with them, striving to preserve a place for general topology. Several

years later he said at an all-Union conference on topology in Tashkent that in the opinion of

Kolmogorov, a scholar with great breadth of insight, algebraic and differential topology despite

their remarkable achievements, had not yet attained a general-mathematical significance as wide

as that of general topology. In a certain sense Kolmogorov was right — you encounter continuity

much more frequently than, say, any bordisms. But of course in real life you encounter addition

of positive integers even more often.
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I was one of those who responded enthusiastically to the invitation of B-G-O-P-

Sh-Sh. It must be admitted that our teachers had thought out and executed the

organization of our education splendidly. 9 Not all of us remained in science,

and of those who did remain, not all went on to work in the area of algebraic

and differential topology or in the associated algebraic geometry. 10 But I think

that the culture acquired did no harm to any of those who remained.

Smooth manifolds played no particular role at first in our education. But

in 1955 (that is, simultaneous with the beginning of our topological educa-

tion) Pontryagin’s book Smooth Manifolds and Their Application in Homotopy

Theory, the first chapter of which was the first textbook treatment of smooth

manifolds 11 anywhere in the world, was published; and when I was in the fourth

year, Gamkrelidze organized a seminar with a “smooth” orientation. Familiarity

with the material to which Serge Lang later gave the happy name of “the no-

man’s-land between the three great differential theories” (differential topology,

differential geometry and differential equations) was to be of special importance

for me. I learned rather quickly how to think in invariant terms (that stand for

the corresponding concepts) and “bring into general position using small dis-

placements” (based on Sard’s theorem 12 ) I would add that later on (when I was

a graduate student) Novikov and I read the monograph of M. Morse Calculus

of Variations in the Large. Each of us, in his own way, found the knowledge

thereby acquired to be of great use later on. At the time, the most important

thing to me was not calculus of variations in the large, but the fact that I saw

how a far-reaching mixed analytic-geometric theory on manifolds was being

developed.

I now return to dynamical systems. Having learned about structurally stable

flows in a planar domain from the Theory of Oscillations, and having some idea

of smooth closed manifolds, I naturally began to reflect on structurally stable

systems on n-dimensional smooth closed manifolds. These reflections were

naive. I thought my way through to the same two conjectures which many others

have undoubtedly reached, but only Smale dared to publish. They amounted to

9 A large role was also played by the collection of translations Fiber Spaces, which was published

somewhat later, in 1958.
10 This last is also true of our teachers of the time.
11 The book Differentiable Manifolds by G. de Rham, which was written in 1953 and translated

into Russian in 1956, could not play that role. It led the reader to its main object — homology

theory on the basis of differential forms and currents — too quickly, so that the reader did not

have time to become familiar with manifolds in particular. De Rham seems not to have had any

particular “educational” goal, but Pontryagin did, to a certain degree.
12 Sard’s work was published during World War II and was not known in Moscow for a long

time. His theorem was soon after rediscovered by Dubovnitskii, and we called it by his name.
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the conjecture that structurally stable systems are everywhere dense in the space

of all dynamical systems of class Cn (n � 1) and that structurally stable systems

are what were later called Morse–Smale systems. These conjectures were a

direct generalization of the Andronov–Pontryagin theorem on structurally stable

systems in a bounded planar domain and the theorem of Peixoto on structurally

stable flows on closed surfaces, 13 which appeared around 1960 and has a similar

statement. I note that Smale proved something very significant for Morse–Smale

systems, which was obtained by highly nonobvious reasoning — the Morse–

Smale inequalities. I myself (like many others, I believe) had proved nothing

about these systems, and that was what saved me (us) from publicly stating false

conjectures.

In attempting to prove that Morse–Smale systems are generic, I proved what

is now called the Kupka–Smale theorem. But maybe it only seemed to me

that I proved it. The proof was based on the “technique of bringing into general

position by small displacements,” which I had mastered by that time, and I found

it simple. Later, in a 1964 conversation with Peixoto, I expressed myself in this

way, but was met with incomprehension on his part, which is not surprising:

Peixoto had just published a simplified proof of this theorem and seems to have

known that there were dangerous rocks just below the surface of those waters.

Thus he was partly correct, and I am no longer sure that there was a complete

proof in my sketchy arguments. But I also was partly right: if I had been

ordered under pain of death (or even expulsion from graduate study) to write

a complete proof of the Kupka–Smale theorem, I would still have been able

to cope with the assignment by finding and going around all those rocks. My

preliminary work later came in handy in the proof of Abraham’s theorem on

bumpy metrics, which hung in the air for 15 years [6]. There was again no

great deed of mine, but somehow over those 15 years an incorrect proof was

published, and not by some inexperienced novices, but by well-known authors

(Klingenberg and Takens 14 ).

I must confess one of my own lapses of thought. In 1959 I thought up the

following example of a noninvertible and nonsmooth mapping f of the closed

interval [0,1] into itself:

f (x) =

⎧⎪⎨⎪⎩
3x, 0 � x �

1
3 ;

2−3x, 1
3 � x �

2
3 ;

3x−2, 2
3 � x � 1.

13 This theorem was published in 1962, but it seems to me that the result had somehow become

known earlier.
14 To be fair, it should be noted that the theorem about bumpy metrics is only a part of their

paper. If that theorem is proved, all the rest is correct.
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I reasoned that the cascade { f n} is topologically transitive, has a countable set

of periodic trajectories, and that it was doubtful it could be approximated by

something which resembles a Morse–Smale cascade. But I ascribed all this to

the fact that the mapping f is nonsmooth and noninvertible. What would it

have cost me (“thinking in manifolds”) to reason my way to the dilation of the

circle R/Z into itself, mapping x to 3x mod Z? The nonsmoothness would have

disappeared, and probably the role of instability would have become obvious. It

would then have been possible to think about the role of noninvertibility. In one

dimension you can’t construct such an example without it, but what about the

multi-dimensional case? In general, what would it have meant to me to become

Smale for a few hours? Well, this is too much to ask, but I might have thought

of an expanding mapping of the circle and its connection with the one-sided

Bernoulli shift, and even to the favorite number-theoretic mapping x �→ {3x},
where {·} denotes the fractional part of a number. However, I didn’t.

To console myself, I can say that I am not the only one who didn’t think

things through (although in my case the lapse was greater — after all, I was

“right next door to it”). Indeed, the mapping x �→ {ax}, where a > 1 is an

integer, was being studied in number theory as early as the beginning of the

twentieth century; its connection with n-ary expansions is obvious, and that

might have become a source of a symbolic dynamics more widely accessible

than geodesic flows, where a certain “technical minimum” is still necessary. But

Émile Borel understood its connection with a sequence of independent random

trials. The mapping undoubtedly played a role in the construction of the now

generally accepted Kolmogorov interpretation of the theory of probability on the

basis of measure theory; and when ergodic theory formed into an independent

area, Bernoulli shifts became an important example in it. But in the theory of

smooth dynamical systems, expanding mappings attracted attention only after

the role of hyperbolicity had been recognized and these mappings could no

longer play the role they might have done earlier. 15

All this is about thoughts that remained “reflections for the soul.” But in

parallel with them I was studying the theory of differential equations — without

15 The book [7] contains a section in which it is shown that there are small perturbations of

a hyperbolic automorphism of the two-dimensional torus under which area remains an invariant

measure but the metric entropy varies. (This leads to the “scandalous” conclusion that the

homeomorphism linking the perturbed system to the unperturbed one maps some set of full

measure to a set of measure zero.) Before I discovered that fact, I had realized that a similar

phenomenon occurs for an expanding mapping of the circle. Thus, I got a small “hint” from these

mappings even so. As usually happens with hints, I didn’t say anything about it at the time.

I recall that Shub, who was then a young student of Smale, spoke about expanding mappings

in the theory of dynamical systems (starting from the general case, and not only for the circle).
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any brilliant results, but not entirely without success. I owe these successes — to

what extent I am not sure (somewhere between 50% and 99%) — to the fact that

Pontryagin and Mishchenko had fortunately assigned some independent-study

problems to me, gradually increasing their difficulty and leaving an ever greater

scope for my independent initiative. 16 And I myself picked up something from

the creative atmosphere surrounding Pontryagin at the time.

By 1961 I had become thoroughly familiar with a number of questions of

the classical theory of differential equations. I used some of it in my own

papers, but normally studied not only what “worked” for me but a great deal of

surrounding material as well. In particular, I knew the work of Lyapunov and

Perron on stability and conditional stability, not only the part of it that involves

equilibrium positions and periodic trajectories (which would have been sufficient

for my needs) but in full generality. I also new Bogolyubov’s work on averaging

and integral manifolds, which had no direct relation to what I was doing, but

which influenced me, as I have already had occasion to write [9].

Outside the sphere of the new topology and differential equations, I was

somehow attracted to Riemannian geometry and I read (at least in first approxi-

mation) the book of É. Cartan [10] (normally other books were read).

16 Postnikov has written that Pontryagin assigned problems to graduate students to which he

already knew the answer, and this guaranteed that the student would finish his dissertation before

the deadline [8]. Postnikov himself rebelled when he discovered that Pontryagin knew everything

in advance, and wrote his dissertation on a different topic, close to the interests of Pontryagin, of

course, but containing results that Pontryagin had not known. I also turned out to be something

of an exception to the usual practice. When I was a graduate student, it was proposed that I think

about multi-frequency averaging in the presence of a reactive effect of slow motions on rapid ones.

The problem was general and indefinite — my teachers had no explicit picture of convergence

with respect to the measure of the initial values. But I succeeded in justifying the confidence

shown. As for the defense deadlines, mine took place some months before my graduate study

period had expired, and to my dismay I had to leave graduate school. The graduate program

at the Mathematical Institute of the Academy of Sciences (in the second and third years, when

philosophy and foreign languages are finished) is so pleasant! (There is no fixed schedule.) Now

I had to go to work regularly for a while, and in the morning at that! I am a night owl and work

best in the evening. For a while I arrived alone in the morning and napped on the sofa. However,

the administration at the Mathematical Institute was never zealous about labor discipline and did

its best to hinder orders arriving from above. In that way, during the winter of 1961–1962 I was

again allowed to work according to a schedule that was better suited for my body — at home at

night (where, by Soviet standards, conditions were good — I had my own room). It was at home

at night that my first paper on hyperbolicity and structural stability was conceived. Before and

since, a few good ideas have come to me at other times of the day and when I was not at home;

but while I was on the job at the Mathematics Institute, nothing at all came. On the other hand,

at the Institute one can do other things that are also useful and even necessary. The main one

is to discuss various technical questions with colleagues. One can even edit texts, write reviews,

and make a preliminary examination of the literature in the library, so as to get a general idea

about it and decide whether it should be taken home for detailed examination.
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That is approximately the state I lived in up to September 1961, when there

was an international symposium on nonlinear oscillations in Kiev. I hesitated at

first, wondering whether it was worth going there. I had spoken on my most

recent work (on averaging in multi-frequency systems) in spring of the same year

at the fourth (and last) all-Union mathematical congress in Leningrad, and had

defended my kandidat dissertation on the same topic. I was reluctant to repeat

myself and speak about the same thing again. But Smale, who was already

famous in topology by then, but not yet in dynamical systems (his works in this

area did not yet rival those in topology), had written to Novikov that he would

be in Kiev and then wanted to go to Moscow and meet with Novikov (and

perhaps with other young Moscow mathematicians, but not with me — he knew

nothing about me, and indeed there was nothing to know, since I had written a

few papers, but not on topics of interest to Smale and not on a level that would

attract his attention, despite their distance from his own interests). I went to

Kiev mainly to assure Smale that Novikov and other advanced young people

would be in Moscow.

Before the conference started, the Kievans had published abstracts of a

number of the talks as separate brochures (which required considerable effort at

the time), and the abstracts of the foreigners were translated into Russian. So,

while standing in line to register as a participant and looking over the shoulders

of the people in front of me, I began to examine the stacks of these brochures.

I read the title of one of them: S. Smale. “A structurally stable differentiable

homeomorphism with an infinite number of periodic points.” At that moment

the world turned upside down for me, and a new life began.

In addition to his scheduled talk at the conference, Smale kindly spoke

about his discovery (I mean, of course, the “Smale horseshoe”) in more detail to

a group of interested people. Several of the Gor’kii mathematicians were there,

but from Moscow I recall only myself and Postnikov. Afterward Smale came to

Moscow and met with us (Novikov, Arnold, Sinai and I; I don’t recall if anyone

else was there) at the Steklov Institute, where he spoke in even more detail. 17

Moreover, he noted that a hyperbolic automorphism of the two-dimensional torus

also refuted his naive conjecture that Morse–Smale systems were dense, and

stated two conjectures: (1) that this automorphism was structurally stable, and

(2) that a geodesic flow on a closed surface (or on an n-dimensional manifold) of

(constant or variable?) negative curvature was structurally stable. We now know

that the Smale horseshoe, a hyperbolic automorphism of the (n-dimensional)

17 Of course, he must have discussed topological questions as well with Novikov, and he may

have spoken to all of us on some topological topic on a popular level, but I don’t remember if

he did.
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torus, and the geodesic flow just mentioned are all hyperbolic sets, but of course

Smale did not know this at the time. (Even in 1966, after he had introduced

that general concept, he was somewhat doubtful, or rather, cautious, as to the

claim that invariant stable and unstable manifolds exist in all trajectories of

a hyperbolic set, and not just in the periodic ones.) But I am sure that he

intuitively sensed something common in these three examples.

I cannot help telling about the route that led Smale to the horseshoe. As he

explained later, when he stated his unsuccessful conjectures, a few people wrote

to him that these conjectures were wrong. He mentioned two of these people by

name, who gave different arguments: Thom and Levinson.

Thom called Smale’s attention to a hyperbolic automorphism f of the torus.

It is trivial to prove that the Lefschetz number |L( f n
)| tends to infinity as n →∞,

and consequently that must also be the case for all mappings g close to f . This

gives grounds for expecting that the number of periodic points of a mapping

g with minimal period � n also tends to infinity as n → ∞. Here, however,

one must exclude the possibility that there is only a finite number of periodic

points whereas the local indices of f n at these points (the Kronecker–Poincaré

indices) increase without bound. Such a possibility disappears for Morse–Smale

diffeomorphisms: it is easy to show that it disappears for all g that are close to

f in the C1 metric; this reasoning was obvious to Smale. (I remark that a more

refined argument, developed later by Shub and Sullivan, excludes this possibility

for all smooth g homotopic to f , and the long-known Nielsen theory, which was

seemingly forgotten for a while, excludes it for all continuous g homotopic

to f . 18 ) Anyway, f cannot be approximated by Morse–Smale diffeomorphisms.

The letter from Levinson forced Smale to think seriously. Levinson men-

tioned the papers of Cartwright and Littlewood, and also his own papers, in

which for certain second-order differential equations with a periodic perturbing

force (which leads to a flow in three-dimensional space) he established the ex-

istence of an infinite number of periodic solutions. Moreover, such solutions

(and in general all the basic properties of the “phase portrait”), as Levinson

emphasized, are preserved under small perturbations. In his words, this is more

or less clear from the reasoning of Cartwright and Littlewood, and in Levinson’s

work it is even directly proved (for a slightly different equation).

18 These words sound somewhat ironic when applied to Shub, and especially to the professional

topologist Sullivan. But, on the other hand, having forgotten about Nielsen, they traveled a

different path. They investigated what could be said about the local indices of f n at a fixed point

that is isolated for all n and obtained nontrivial results (see [11], Part II, Chapter 2, § 2). Other

people also studied these questions and related ones. The definitive results on the behavior of the

local index as n varies were obtained for continuous mappings in [12] (Chapter 3, § 3) (where

the infinite-dimensional case is discussed, but the results are new even in the finite-dimensional

case), and for smooth mappings in [13] and more fully in [14].
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How would any other mathematician than Smale have proceeded if he be-

came interested in what Levinson had written? Probably he would have looked

up the papers in question and started to read them. This is not easy to do, es-

pecially in regard to the work of Cartwright and Littlewood. If one is interested

only in the existence of a certain example, one could limit the search to the less

cumbersome paper of Levinson, but it too is far from easy reading.

Smale proceeded differently. He felt like a god who is to create a universe

in which certain phenomena would occur. How was this to be done? From

the articles of the three authors (or perhaps from Levinson’s letter alone) he

deduced only that in relevant examples a strong friction and a large perturbing

force combine, while the trajectories remain in some bounded domain of the

phase space. The first of these could be modeled geometrically by imagining

that in one direction the trajectories converge rapidly, while in the other they

diverge rapidly. If one is talking about iterations of a mapping instead of a

continuous motion, one can imagine that a long narrow rectangle is obtained

from a square. But since the trajectories remain in some bounded domain of

phase space, this rectangle must be bent to keep it from leaving the region.

Experimentation with drawings quickly led to the horseshoe. Reflecting on the

preservation of the fundamental properties of the phase portrait (as pointed out

by Levinson) led to the conclusion that the horseshoe was structurally stable.

Smale, as far as I know, has not described the details of his thought process.

But it seems to me that in this case they can be reconstructed as related above.

But how he guessed that the other two dynamical systems are structurally sta-

ble — that, I repeat, is a mystery to me.

Subsequently, events developed as follows. Arnold and Sinai discovered

a proof, unfortunately incorrect, that a hyperbolic automorphism of the two-

dimensional torus is structurally stable. Without noticing their mistake and

accepting their theorem as valid (after all, the theorem is true), I could not help

thinking about a certain resemblance to the Grobman–Hartman theorem, which

had appeared shortly before and which asserts that a multidimensional saddle

point is structurally stable. In the end my thoughts turned to the following: Let

the diffeomorphism g of the torus be C1-near to a hyperbolic automorphism f ,
and assume that the latter is structurally stable; then for any point x, somewhere

near the trajectory { f nx} there must be a trajectory {gny}. Can we be sure that

such a trajectory exists if we do not assume in advance that f is structurally

stable? And how many such trajectories {gny} are there? As soon as I thought

about this, everything became obvious.

Obvious to me, but it may be that I was the only one to whom it was

obvious at the time. I have heard it said that British Conservatives claim that
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good laws and institutions are not after all so important — that what is important

is to have a suitable person in the requisite place (the British version of the

formula “everything depends on the personnel”). Of course, in the case of the

Conservatives, it involves the political and economic sphere. In my case this

formula worked in the sphere of science. My entire preparation had made me

the most suitable person for this particular question — for I “handled myself well

in manifolds” (inside “no-man’s-land”) and I knew the classical things about dif-

ferential equations. Finally, the hyperbolicity of geodesics in spaces of constant

negative curvature (if only in the two-dimensional case) was well known to any

educated mathematician by then. That this hyperbolicity continues to hold with

variable negative curvature, was known to me from Appendix III of [10].

So began my studies of dynamical systems having a closed phase manifold

and all of whose trajectories behave hyperbolically (in fact as hyperbolically as

it is possible to do). With time, ergodicity and stronger statistical properties were

added to structural stability. All this comprised my doctoral dissertation [7].

I was not allowed to attend the International Congress of Mathematicians

in Stockholm in 1962, although in general young people at that time aroused

less suspicion in the security institutions than was to be the case later, and

some of my contemporaries were there. I think the question of my trip arose

too late; in any case I had no invitation, and it was too late to get one. But

Arnold and Sinai tried to bring my work to general notice. Still, I was able to

travel to the USA in the autumn of 1964, in the company of Pontryagin and

his wife. But they spent part of the time with Gamkrelidze and Mishchenko,

who had been sent there earlier for a longer business trip. Thus, Pontryagin and

his wife did not need my help, and I was able to fly to California for a while.

In Berkeley I of course met with Smale and made the acquaintance of Pugh,

who had just proved his “closing lemma.” Smale very kindly named dynamical

systems whose phase space is a hyperbolic set (as we would now say) after me,

and thereby advanced me to a leading position among citations in Mathematical

Reviews. 19 At the time Pugh was finishing the proof of the closing lemma, but

he later undertook a serious study of hyperbolicity and was one of the pioneers

of “stable ergodicity.” 20

19 Subsequently, William Thurston reinforced this trend with his “pseudo-Anosov maps.” Smale

and Thurston thereby set up a collision with the “scientifically based” Citation or Impact Index,

which in my case, as I understand it, is not terribly high. Well then, am I famous in the

mathematical world or not?
20 Ergodic smooth dynamical systems with a “good” invariant measure (one that has a positive

density in terms of local coordinates) and such that all dynamical systems sufficiently close to

them (in the sense of Cr for a suitable r) with the same invariant metric are also ergodic, are

called stably ergodic. Anosov dynamical systems are of this type. But it turns out that there exist

other stably ergodic dynamical systems. For references, see [15].
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I repeat that, from all my impressions, Smale was unable for a time to

express in well-articulated concepts what he could feel intuitively. For that

reason, it became my best known achievement in mathematics that I explained

to Smale what his achievement amounted to.

The following year, Smale stated the general concept of a hyperbolic set,

which immediately became one of the basic concepts of the theory of dynamical

systems. Together with the long-known hyperbolic equilibrium positions and

closed trajectories, 21 locally maximal hyperbolic sets began to play the role of

the basic structural elements, to which the most attention must be paid when de-

scribing the phase portrait. Smale at first hoped that, with such an enlargement

of the stock of structural elements, suitable modifications of his earlier conjec-

tures would turn out to be true. But as soon as he and his colleagues began

to analyze more attentively how these elements combine among themselves by

means of trajectories going from one element to another, the conjectures were

refuted once again, as were new, hasty attempts to modify them. At present

hardly anyone except Palis would venture to advance conjectures on the struc-

ture of “generic” dynamical systems. 22 Thus the grandiose hopes of the 1960s

were not confirmed, just as the earlier naive conjectures were not confirmed. 23

But the scope has been enlarged beyond belief, even though by no means all

dynamical systems fall into the enlarged “field of vision.” A shining memorial

to that era is the article of Smale [16], devoted largely to the hyperbolic theory,

which for a time became almost the basic source of inspiration for many people

working in the theory of dynamical systems.

That is essentially all I am going to say about the rise of the general con-

cept of hyperbolicity, as it took place in pure mathematics. I have said nothing

here about the long prehistory that begins with the discovery of homocyclic

points in Poincaré’s memoir “On the three-body problem and the equations of

21 This means equilibrium positions for which the linear position spectrum lies outside the

imaginary axis and also closed trajectories whose multipliers, except for the unavoidable unit, do

not lie on the unit circle. (I am speaking of flows; the changes needed to talk about cascades

are obvious.) From Smale’s new point of view these equilibrium positions and closed trajectories

arose as merely the most trivial examples of hyperbolic sets. For that reason, he began to call

such equilibrium positions and closed trajectories hyperbolic, although in the earlier qualitative

theory a saddle point was called hyperbolic, but a node and a focus were not.
22 For Palis’ concepts see [1]. (However, these have changed over time.) Here hyperbolicity still

plays a major role, but weakened in comparison with the version from the 1960s. (The latter is

now spoken of as “complete and uniform hyperbolicity” when it must be distinguished from the

later versions.)
23 The only conjecture that was confirmed was the one on the structure of structurally stable

systems stated by Smale and Palis. For citations, see the literature below.
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dynamics,” 24 and Hadamard’s paper on surfaces of negative curvature. Enough

is said about that in the literature. But in the literature connected (at least ver-

bally) with applications the history is told differently. The discovery of homo-

cyclic points by Poincaré (and sometimes the “Papal memoir” of G. D. Birkhoff)

is still mentioned, but there is usually not one word about geodesic flows. The

basic action begins with the paper of E. Lorenz “Deterministic nonperiodic flow”

published in 1963 in the Journal of Atmospheric Sciences — not the most pop-

ular outlet among pure mathematicians. This article, and a number of others

connected with it, can be found in the collection [17]. As a result of numerical

experiment with a particular system of third order, interest in which was moti-

vated by hydrodynamic considerations, Lorenz discovered a number of interest-

ing phenomena. But his discovery attracted attention only a decade or so later

(by which time hyperbolicity and the phenomena connected with it were already

well known to theoreticians). Moreover, it interested applied mathematicians and

theoretical mathematicians for different reasons. It convinced the applied mathe-

maticians that there exist strange (or chaotic) attractors. (The hyperbolic strange

attractors discovered by mathematicians were unknown to the majority of them,

since no examples of such objects had been encountered in problems having their

origin in natural science. 25 ) But the pure mathematicians were interested in the

Lorenz attractor not as one more demonstration of the possibilities for behavior

of trajectories, but conversely, as an object that, although close to hyperbolic

attractors in a number of its properties (and, as it happens, precisely those that

made a particular impression on the applied mathematicians), was at the same

time different from them in other properties. (For the mathematicians it was

these subtleties that were of interest; see [15] and the literature it contains.) 26

For information on hyperbolic sets, see [19]. The survey [20] is devoted

specifically to structurally stable systems, but it is now slightly out of date.

More recent information can be found in [15]. In the same place there is a

discussion of stable ergodicity and much else that has appeared since the 1960s.

Peixoto [21] and Smale [22] have written their reminiscences, which partly

intersect with my own.

24 And if we were to tell the whole story, we should begin with their “nondiscovery” in the first

version of that memoir (which was withdrawn).
25 Neither then nor now. One gets the impression that the Lord God would prefer to weaken

hyperbolicity a bit rather than deal with the restrictions on the topology of an attractor that arise

when it really is (completely and uniformly) “1960s-model” hyperbolic.
26 I take the opportunity to correct a mistake there. “A strange strange attractor” is not the

name of the article of Ruelle and Takens, who were the first of the pure mathematicians to

notice the work of Lorenz (and whose article is in [17]), but the name of the followup article of

Guckenheimer, found in [18].
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In conclusion, I should remark that since the time period discussed here

different weakened variants of hyperbolicity have arisen (the stable ergodicity

mentioned above is connected with some of them), but the role of hyperbolicity

has nevertheless decreased. Hyperbolicity (when it occurs) is now an important

component of the description of the phase portrait of a dynamical system, but

hyperbolicity itself is now the subject of much less research. The position that

hyperbolicity occupied in the theory of dynamical systems has now passed by

legal inheritance to the theory of nonlocal bifurcations. But there still remain

unsolved problems in the hyperbolic theory, some of which are better known

than others. Here is one question that is comparatively little known, although I

posed it about 30 years ago: Is it true that in an arbitrarily small neighborhood

of every hyperbolic set there is a locally maximal hyperbolic set (a “basis”

set in the terminology of R. Bowen)? Since a great deal is known about lo-

cally maximal hyperbolic sets, a positive answer would give information about

all hyperbolic sets. A negative answer would reveal hyperbolic sets of some

fundamentally new type.
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V. I. Arnold

From Hilbert’s Superposition Problem

to Dynamical Systems

Presented by the author

Some people, even though they study,

but without enough zeal, and therefore live long.

Archibishop Gennady of Novgorod
in a letter to Metropolitan Simon, ca 1500

Here I shall try to explain the diversity of subjects I have worked on. In fact, I

followed one line from the very beginning and there was essentially one problem

I was working on all my life. This fact seems strange even to me, but I shall

try to explain it.

When you are collecting mushrooms, you only see the mushroom itself.

But if you are a mycologist, you know that the real mushroom is in the earth.

There’s an enormous thing down there, and you just see the fruit, the body

that you eat. In mathematics, the upper part of the mushroom corresponds to

theorems that you see. But you don’t see the things which are below, namely

problems, conjectures, mistakes, ideas, and so on.

You might have several apparently unrelated mushrooms and are unable to

see what their connection is unless you know what is behind. And that’s what

I am now trying to describe. This is difficult, because to study the visible part

of the mathematical mushroom you use the left half of the brain (which deals
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theorems

problems

conjectures

mistakes

ideas

Fig. 1. The mathematical mushroom

with logic), while for the other part the left brain has no role at all, because that

part is extremely illogical. It is therefore difficult to communicate it to others.

But here I shall try to do it.

First, I shall mostly discuss some history, and then I’ll turn to the hidden

part of the mushroom, namely to ideas, providing the main motivation for the

research. And then some theorems will appear in the end.

The first serious mathematical problem which I considered was formulated

by Hilbert. It is a problem on superpositions emerging from one of the main

mathematical problems: the solution of algebraic equations.

The roots of a quadratic equation

z2
+ pz+ q = 0

can be expressed by a simple formula in terms of p and q. Similar formulas

are also available in degrees 3 and 4. If the degree is 5, then you know from

Abel’s theorem (or in other terms from the monodromy of the corresponding

algebraic function and the fact that the alternating group in five variables, that

is, the group of even permutations of 5 elements, is not solvable) that there is

no such formula. 1 However, there is a classical result that if you know how to

1 I have lectured on this topological version of Abel’s theorem to Moscow high-school children.

This course, together with exercises, was later published by one of the students, V. B. Alekseev,

in the form of a nice book Abel’s theorem in problems and solutions (Moscow: Nauka, 1976).

In these lectures, I started from the geometry of complex numbers, then passed to Riemannian

surfaces, coverings, fundamental group, monodromy, homomorphisms, normal factors, and solv-

able groups. Abel’s theorem is proved topologically as a demonstration how the monodromy

group of a superposition of functions is expressed via monodromy groups of the functions under
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solve one very special equation, namely

z5
+ az+ 1 = 0,

i. e., if you know one particular algebraic function z(a), then you can solve

all the equations of degree 5. For quadratic equations you need square roots;

for cubic equations — both square and cube roots (which can be considered as

simple special functions); for quartic equations — also the fourth root; but for

degree 5 you need a more complicated special function, and this function z(a)

suffices. This was classically known.

And then people (for example, Hermite) tried to solve the equation of de-

gree 6 using a function of one variable. But no one succeeded. How was

this supposed to be done? You kill the terms of the equation one-by-one using

some substitutions, and to find these substitutions you solve auxiliary equations.

In degrees 2, 3 and 4 all the auxiliary equations can be solved and thus all the

terms can be killed.

But in degree 5 there remains one coefficient you cannot kill (the coefficient

a above). And in degree 6 two coefficients remain and you get the following

normal equation which is sufficient to solve all the equations of degree 6:

z6
+ az2

+ bz+ 1 = 0.

Thus, there is a special function of two variables z(a,b) which solves all the

equations of degree 6. By the way, no one has ever proved that you really

need two variables here — the conjecture is that there is no such function of one

variable which would suffice, but no one has ever proved this.

For degree 7 the same procedure leaves you with 3 coefficients

z7
+ az3

+ bz2
+ cz+ 1 = 0,

superposition (these groups are commutative if the functions are radicals). This book prepares

the reader for proving Abel’s theorem by solving topological problems. Unfortunately, it was not

translated into English till 2004. My student A. G. Khovanskii extended these topological ideas to

differential algebra in his thesis. He proved by topological arguments the nonsolvability of some

differential equations in terms of combinations of elementary functions and of arbitrary single-

valued (holomorphic) functions in any number of variables. The idea was that the monodromy of

the complex solution is too complicated to be the monodromy of such a combination.

Here it is worth mentioning the topological theorem of Abel that Abelian integrals along

nonspherical algebraic curves (tori for elliptic integrals, etc.) are nonelementary. G. Hardy wrote

(in A Mathematician’s Apology) that “no harm to mathematics would happen if it were without

Abel, Riemann, and Poincaré.” He was apparently unaware of this theorem.
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which defines an algebraic function of 3 variables z(a,b,c). 2 Hilbert asked

whether such functions of three variables really do exist.

If you have a function in two variables z(a,b) and you substitute, say instead

of a, a function in two variables a(u,v) and continue in this way, then you can

get a function in any number of variables. You cannot do a similar thing

with one variable, but using only functions in two variables, you can construct

functions with an arbitrary number of variables. Hilbert asked whether you really

need functions in three variables to solve the universal equation of degree 7
written above and, more generally, whether you can represent any function in

three variables as a superposition of functions in two variables — i. e., whether

functions in three variables really do exist.

It is easy to see that, using discontinuous functions, it is always possible

to find an expression in functions of just two variables representing any given

function of three variables. Hilbert asked whether you can get any continuous

function in three variables by combinations of continuous functions in two vari-

ables. It is strange, by the way, that Hilbert formulated this problem of algebraic

geometry in terms of functions of real variables — but he did.

In 1956 I was an undergraduate student and A. N. Kolmogorov, my supervi-

sor, was working on this problem. He proved that “functions in 4 variables do

not exist”: any continuous function in 4 variables or more can be reduced to

continuous functions in 3 variables. But he was not able to reduce the number

of variables from 3 to 2 and gave this problem to me.

Kolmogorov had proved that it is sufficient
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Fig. 2. The simplest tree

to represent any function on a tree in Euclidean

space — actually, to find a universal tree such that

any continuous function on this tree can be rep-

resented as a sum of three continuous functions,

each depending on one coordinate. If you can

do this, then “there are no functions of three vari-

ables” and you can reduce any continuous function

to the continuous functions of two variables — and

the function z(a,b,c) is reducible too. This was

a problem I managed to solve. It was essentially

simple — I shall show you the idea because I will need it for dynamical sys-

tems. For the simplest example shown in Fig. 2, the claim is that on this tree

any function can be represented as f (x)+ g(y). How to do this? You choose

any point A on the tree, you take the value of the function at this point and

2 Starting from degree 9, one can kill one more coefficient. The known possibilities to kill more

coefficients occur along a rather strange infinite sequence of degrees.
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decompose it arbitrarily. Then, at point B lying on the same horizontal level as

A, the second function is known, and the sum is known, and you get the value

of the first function. And at point C lying on the same vertical line as A, the

first function is known, and the sum is known, and you get the value of the

second function. That’s all. If the tree is more complicated, you will have more

branches, or even an infinite number of branches. Then you will have to work

more, and in fact to make the infinite process converge you need 3 variables,

not 2. But the above is the principal idea — that’s how it worked.

Now I shall discuss this problem returning to polynomials, and I shall re-

formulate the Hilbert problem in the way I would like it to be formulated. The

function z(a,b,c) that satisfies z7
+az3

+bz2
+cz+1 = 0 is an algebraic function

in three variables. You can construct algebraic functions in three variables from

algebraic functions in two variables by superpositions. The problem is whether

this particular algebraic function z(a,b,c) can be represented as a combination

of algebraic functions in two variables. 3 I would say that this was the genuine

Hilbert problem. Unfortunately, he did not formulate it in this way and probably

because of that this problem is still open: no one knows whether there is such

a representation. I think this is a very nice problem, and many times I have

attempted to do something in this direction.

Of course, you also have other types of functions: for instance, you have

continuous functions, but you also have smooth functions. For smooth functions

this problem has been attacked by A. G. Vitushkin in the beginning of the 1950s.

He has proved that you have to lose some number of derivatives. For example,

if you have a C3 function in three variables, you cannot, generally speaking,

represent it by C3 functions in two variables. The best you may hope to do

is to express it by C2 functions in two variables. The proof was based on a

technology which he called the theory of multidimensional variations and which

is, in fact, a version of integral geometry of the Chern classes describing the

integrals over cycles in Grassmann varieties.

Vitushkin’s technology was based on some evaluations of topological com-

plexity in real algebraic geometry. This is also one of the main problems in

mathematics. In the simplest case, for the curves you have a polynomial equa-

tion, say, of degree n, in 2 variables, and you want to know the topology of

the variety defined by this equation (in higher dimensions, by a system of such

equations in the affine or projective space). This question was also formulated

by Hilbert as a part of his 16th problem. For many years people have been

3 If the given function is an entire algebraic function (without poles), then it is natural to consider

the representations using only entire algebraic functions. Thus one should distinguish two repre-

sentation problems: that admitting only entire, and that admitting arbitrary algebraic functions.



24 V. I. Arnold

working on this problem: Hilbert himself obtained some results, while Harnack

found the number of ovals for the curves. For higher-dimensional varieties,

the problem was studied by I. G. Petrovskii and his student O. A. Oleinik. They

found the bounds for the Betti numbers of algebraic varieties defined by (sys-

tems of) polynomial equations in terms of their degrees and dimensions. This

was the crucial part of Vitushkin’s proof of his statement about smooth func-

tions. Of course, the fact that for generic functions in 3 variables you need some

not very smooth functions in 2 variables does not imply anything for algebraic

functions. Algebraic functions are such a small portion of all functions that you

still can have such a representation for them.

By the way, this theory by Oleinik and Petrovskii (dating from the 1940s

and 1950s) was later rediscovered in the West by J. Milnor and by R. Thom.

Although they did quote Petrovskii and Oleinik, the results are mostly attributed

to Milnor and Thom, who introduced the modern terminology related to the

Smith theory 4 and to the interaction between the homology of real and complex

manifolds. But stronger results were already present in the papers by Petrovskii

and Oleinik, and these were heavily used by Vitushkin. I studied this as an

undergraduate student because of its relation to the Hilbert problem.

I tried to do something on this problem later, and this was the motivation

for me to study the algebraic function z(a1, . . . ,an) defined by the equation

zn
+ a1zn−l

+ · · ·+ an = 0. This function has a complicated discriminant hyper-

surface in the base space of coefficients C
n
= {(a1, . . . ,an)}. The discriminant

hypersurface is the set of all points where the function z is not “nice,” in par-

ticular, not smooth. In about 1967, I started to think about how to use the

topology of this object to deduce from it an obstacle to the representation of

algebraic functions in terms of algebraic functions of a smaller number of vari-

ables. I thought that the topology of our algebraic function for higher n is

complicated and, if there were an expression in terms of functions of fewer

variables, then it should be simpler.

So I studied the topology of this space — the complement to the discrim-

inant — which is in fact the configuration space of sets of n points in C and

the Eilenberg–MacLane space K(π,1) of the braid group. In one of the first

4 It follows from the Smith theory that the sum of Betti numbers of a real algebraic variety is

no greater than the sum of Betti numbers of the complex variety specified by the same equations

(all Betti numbers being Z2-homologies ranks). For example, for a real algebraic curve with

b components, the sum of Betti numbers equals 2b, and for a Riemannian surface of genus g
(a sphere with g handles) it equals 2g + 2. Therefore, the Smith theory implies the Harnack

inequality b � g+1. The Riemannian surface of a plane curve of degree 3 (an “elliptic curve”)

has genus g = 1 and hence at most g+1 = 2 real connected components on the projective plane

RP2. Examples are given by equations of phase curves for cubic potential y2
= x3 − x + c with

various values of the total energy constant c.



From Hilbert’s Superposition Problem to Dynamical Systems 25

papers on this subject — “On cohomology classes of algebraic functions which

are preserved by the Tchirnhausen transformation” (1970) — I mentioned an

interesting analogy between the theory of fiber bundles and that of algebraic

functions. The complement to the discriminant is the counterpart of the Grass-

mannian. The analogy (existing both in the complex and the real case) goes

very far, for instance, to the Pontryagin–Thom cobordism theory. These ideas

were later used by many people, and recently have even been formalized (by

A. Szűcs and R. Rimányi, 1996).

This was the beginning of my work in singularity theory. And in fact all

those works on A, D, E singularities, Coxeter groups and so on are a byproduct

of the study of this special function z(a1, . . . ,an), and the question of how

complicated is the topology of the discriminant.

Thinking about this, I decided to find the cohomology ring of the braid

group. I have computed the first dozen of these groups (mostly torsion) and

obtained a lot of information. Then D. B. Fuchs computed all those groups

modulo 2. Later came the theorem of May–Segal on the relation of all these

groups to the second space of loops of the 3-sphere Ω2
(S3

) which has the same

homology as the braid group. In fact, the space Ω2
(S3

) is the Quillenization

of the complement to the discriminant. All this was done in an attempt to find

some higher dimensional properties of the braids which could prevent algebraic

functions being representable as combinations of the algebraic functions of fewer

variables.

It is interesting that perhaps the most useful mushroom coming from this

root is the application of my results by S. Smale in his theory of complexity

of computations. In his topological complexity theory, Smale discovered (us-

ing a theory which was essentially developed by Albert Schwarz years before)

that my structure of the cohomology ring of the complementary space of the

discriminant is an obstacle to numerical computation of the roots of a complex

polynomial with few branchings (operators IF, THEN, ELSE) in the algorithm.

For polynomials of degree n Smale proved (using essentially my computations

of the cohomology) that the complexity is at least (log n)
2/3 (you really need this

number of branchings). One can obtain stronger results using the information

about braids found in the marvellous paper by D. B. Fuchs “Cohomology of the

braid group modulo 2” published in Funktsional’nyi Analiz i ego Prilozheniya,

1970, 4(2), 63–72. By the way, the English translation of this paper was titled

“Cohomologies of the group COS mod 2,” and the term ‘the braid group’ was

translated as ‘the group COS’ in the whole paper. 5 So, many people were

5 In Russian, ‘the braid group’ is gruppa kos, and the cosine function is referred to either by its

international notation or by the word kosinus. — Eds.
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interested in what were the cohomologies of the group SIN. Perhaps due to this

misunderstanding, Fuchs’ paper was not properly appreciated at that time. But

later it was understood, and now V. A. Vassiliev (using the results of Fuchs) has

increased the number of topologically necessary branchings to n− log2(n + 1),

which means that the topological complexity is almost n. (Smale had developed

algorithms with n branchings.)

But the origin of all this is in Hilbert’s thirteenth problem! Later, inspired

by the analogy between algebraic functions and fiber bundles, I constructed a

theory of characteristic classes of entire algebraic functions and found a class

which is invariant under the substitutions; so I was able to prove some theorems

on the impossibility of representations, using this cohomology. Later these

works have been continued by V. Lin who proved the strongest result in this

direction, also providing a correct basis for N. G. Chebotarev’s ideas (dating

back to the 1940s) on the topology of ramification of algebraic functions of

several variables. Unfortunately, what we were able to do was just to prove that

there is no formula representing the function we need, z(a1, . . . ,an).

Let me explain the difficulty that arises for cubic equations. The Cardano–

Tartaglia formula gives you the roots you wish, but it also gives you some other,

parasitic roots, because you have some signs in the formula, some multivalued-

ness. The difficulty is how to understand such functions; for example,
√

z−√
2z.

What is the number of values of this function? There are several theories. For

me, this function has four different values. If we understand the algebraic

functions and their combinations in this way, then we can prove, using this

cohomology theory, that there are functions which cannot be represented in the

desired way. But then the cubic equation is not solvable too, which is not nice.

I think, however, that more work on this problem might bring some invari-

ants of algebraic varieties and mappings of these varieties into each other which

correspond to the superposition in such a way that one gets in this topological

structure (in these algebraic invariants) some memory of the number of variables

one had in the functions participating in the superposition. Perhaps there is some

kind of a mixed Hodge structure whose weight filtration provides the informa-

tion on the dimension of the smooth algebraic variety from which a given cycle

was born. Unfortunately, I cannot formulate this as an exact theorem, but I hope

that such a theorem might exist. 6 My conjecture is that our special function

6 First steps in this direction were made recently by my Paris student F. Napolitano (“Pseudo-

homology of complex hypersurfaces,” C. R. Acad. Sci. Paris, Sér. I Math., 1999, 328, 1025–1030)

who constructed generalizations of the braid group, which are based on the sequence of dis-

criminants obtained from an algebraic hypersurface in the complex affine space by consecutive

projections onto hyperplanes of decreasing dimension (and providing generators and relations of

the fundamental groups of the complements to these discriminants).



From Hilbert’s Superposition Problem to Dynamical Systems 27

z(a,b,c) cannot be represented as a combination of algebraic functions in two

variables for some essentially topological reasons. I also think that the repre-

sentation remains impossible even if we replace all the algebraic functions in

the superposition by nonholomorphic complex functions which are topologically

equivalent to algebraic ones.

Now I come to mechanics. As I have mentioned, my supervisor was Kol-

mogorov. He formulated the problem at a seminar and went to Paris for a

semester. When he returned, I explained what I had invented. He told me

that I had solved the Hilbert problem and added, “Well, now it would be very

dangerous for you to ask me for the next problem, I think this will be harmful

for you. I would be glad to discuss with you any kind of mathematics, but do

not ask me for the next problem. Choose it yourself, this will be much better

for you.”

Perhaps I should explain one more thing here. Kolmogorov took my first

article (for the Doklady — the Soviet analog of Comptes Rendus) and he told

me that the supervisor must write the first article of a student, the student

being never able to write correctly, because it’s a very different art from the

art of solving problems and proving theorems. “I shall show you once,” he

said. “A good student never needs a second experience of this kind.” And

indeed my first article was completely, word by word, rewritten by Kolmogorov.

I wonder whether Kolmogorov had been involved in the writing of the first paper

of I. M. Gel’fand, who was also his student. This is one of the few papers

signed by Gel’fand alone, with no collaborators. Gel’fand, whose brilliant

papers and highly influential seminar I always admired very much, mastered

a special and enviable art of day-to-day collaboration with extremely gifted

mathematicians (mostly his former students), resulting in important and beautiful

joint publications. I dare to guess that these papers were actually written in most

cases by the collaborators.

I have never collaborated with Gel’fand. Recently, at the Zürich Congress,

he asked me what was the reason for this. My answer was that I preferred to

preserve good personal relations with him. However, in the third volume of

collected works of Gel’fand there is a paper which is not by Gel’fand and where

he is not even a coauthor. It’s my paper signed Arnold. I shall now explain

what it is about and how it is related to my story.

When Kolmogorov advised me to choose a problem myself, I wanted to

choose something completely orthogonal to all the works of Kolmogorov. This

was difficult, because he was working on so many subjects, but still I tried to

invent my own problem. I had the list of Hilbert problems, written down one by

one in my notebook. (Gel’fand once saw it and laughed a lot.) I was completely
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ignorant of the existence of anything else in mathematics at that time and so it

was difficult for me to imagine a problem. You can see this from the problem

I did choose.

For a tree in Euclidean space, I was able to represent any continuous function

as the sum of continuous functions depending on one coordinate each. I decided

to study other curves: what would happen if the curve was not a tree? 7 So

I started to study curves with cycles. We choose a point (Fig. 3, point 1), and
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Fig. 3. Dynamics on the oval

at this point we can decompose the function into

the sum of functions of x and of y in an arbitrary

way. We go upwards and in the new point of the

curve (Fig. 3, point 2) we know the function of x.

Since we know the sum, we can find the function

of y at that point. We draw a horizontal line and

find the decomposition at its other end (Fig. 3,

point 3), and so we continue. We thus get a

dynamical system on this curve. We have two

involutions of the curve: a vertical involution

A and a horizontal involution B, and hence we

have a mapping T = AB, a diffeomorphism of

the circle preserving the orientation.

After some experiments I was able to find that for these diffeomorphisms

the rotation number exists, and there might be resonances, periodic orbits and

so on. Then I found that Poincaré had already studied diffeomorphisms of the

circle onto itself which preserve the orientation, and had created a theory for

this. Then I read Poincaré and observed that for the ellipse, for instance, this

transformation is equivalent to a rotation through an angle which depends on

the ellipse. This angle is, in general, incommensurable with 2π and hence the

mapping T represents an ergodic dynamical system.

In the resonance case, when there is a periodic orbit, 8 the periodic points are

obstacles to the solution of the initial problem, because the alternating sum of

7 This problem has recently been re-examined by A. B. Skopenkov (1996) who listed all the

obstacles to the representation of any continuous function on a plane curve in the form of the sum

of two continuous functions of the coordinates. The same problem reappeared in singularity theory

of the late 1970s in the works of J.-P. Dufour and S. M. Voronin. They studied the representations

of functions on the germs of curves with cusps as the sums of smooth and holomorphic functions

of coordinates.
8 The question how many such orbits can be in the algebraic case is far from being solved and

is probably related to the question on limit cycles from Hilbert’s 16th problem (being its version

for dynamical systems with discrete time). For example, consider an algebraic correspondence of

bidegree (a,b) and genus g on an algebraic curve K of genus h (an algebraic curve of genus g in
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values of the function over a period must be 0, otherwise you cannot decompose

it. If there are no periodic orbits, like in this “irrational elliptic case,” then you

can formally continue decomposition, but you will have a convergence problem.

For one orbit you can calculate everything, but then it is a question whether you

get a continuous function. If you write the Fourier series for the mapping of a

circle equivalent to a rotation, you immediately get the problem of resonances

and the small denominator problem for the rotation number.

Just at this time, Kolmogorov was giving at Moscow University a course on

his work, on small denominators, on Hamiltonian systems, and on what is now

called KAM theory. And so my attempt to invent something independent was

completely unsuccessful!

Here I would like to talk about the history of Kolmogorov’s discovery of

his famous theorem on invariant tori. In 1954 he proved the theorem on con-

servation of invariant tori under a small analytic perturbation of a completely

integrable Hamiltonian system. Later Kolmogorov said that he had been thinking

about this problem for decades, starting from his childhood, when he read the

book Astronomy by Flammarion; but success came only in 1953 after Stalin’s

death when a new epoch began in Russian life. Hopes which were aroused by

this death made a strong influence on Kolmogorov, and the period 1953–1963

was one of the most productive in his life.

The initial point of the 1954 work on invariant tori was the mathematical

practicum for second year students of the Department of Mechanics and Math-

ematics of Moscow University introduced by Kolmogorov as compulsory at a

time when computers were practically unavailable in the USSR. 9 One of the of-

fered problems was an investigation of integrable dynamical systems (geodesics

of surfaces of rotations, motion of a heavy particle on a horizontal torus, and so

on). To his surprise, conditionally periodic motion along invariant tori in phase

space was observed in all these integrable systems.

the product K×K which intersects the factors a and b times respectively); let the real part of this

correspondence be a diffeomorphism of the circle. How many periodic points of period n can it

have (of course, provided that their number is finite, which need not be the case)?
9 As a problem for this practicum, Kolmogorov gave each of several hundred students a system

of differential equations from Hilbert’s 16th problem: dx/dt = P(x,y), dy/dt = Q(x,y), where P
and Q were quadratic polynomials with random integer coefficients. The task was to draw a

phase portrait (and, in particular, to find the number of limit cycles). By this random sampling,

Kolmogorov intended to find an example of a system with many cycles. But surprisingly it

turned out that there was no one limit cycle in any of these randomly chosen systems. At the

time, examples with three cycles were known, later Chinese mathematicians found examples with

four cycles, but, up to now, even the boundedness of the number of cycles (uniform with respect

to the coefficients of the polynomials P and Q) conjectured by Hilbert has not been proved.
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In trying to understand this phenomenon, Kolmogorov investigated its ab-

stract variant: a dynamical system on a torus given by a divergence-free field

with respect to a volume element. In 1953, in a short paper published in

Doklady, Kolmogorov proved that such a generic vector field (which satisfies

some Diophantine conditions on mean frequencies that are valid almost always)

is equivalent to a standard (translationally invariant) field on the torus. 10 Such a

field determines quasi-periodic motion (“conditionally periodic,” as Kolmogorov

said using old-fashioned terminology). The system is ergodic (does not have

nontrivial measurable invariant sets), but it does not mix up the particles of

phase space (torus) which are carried over by the field flow with preserving

their shape.

However, Kolmogorov discovered intermixing motions, not quasi-periodic

ones, even in the case of analytic fields at some “exceptional” mean frequencies

of revolution along the torus. This intermixing is explained by nonuniformity

of motion along orbits filling the torus in a quasi-periodic way as parallel lines.

Immediately a question arises: do such exceptional intermixing systems on tori

have real importance for investigation of Hamiltonian dynamical systems?

Motion along tori is quasi-periodic (or periodic) in integrable systems. So, in

order to find real applications of the abstract theory of vector fields on a torus, it

is necessary to find invariant tori in nonintegrable systems. The simplest way to

find them is to employ a variant of the perturbation theory of integrable systems.

This was the method which Kolmogorov used in his research, and it is in this

way that in 1954 he arrived at the theorem on conservation of invariant tori.

But the initial goal was not achieved. Motion along the invariant tori ob-

tained by Kolmogorov is quasi-periodic. Are there invariant tori which carry

over them intermixing flows in the phase space of a typical Hamiltonian sys-

tem close to an integrable one? Up to now the answer has remained unknown.

Kolmogorov supposed their existence, so that the effect (discovered in the short

paper of 1953) is observed in generic Hamiltonian systems, close to integrable

ones. It is interesting to note that the “partial” success of the paper of 1954 is

of much greater importance than the technical matter on intermixing to which

Kolmogorov tried to get an answer. Kolmogorov’s achievement is similar to that

of Colombus, whose attempt to find a Western route to India failed.

I came to Kolmogorov with my theorems. “Well,” he said, “here is my paper

of 1954 in Doklady. I think it will be good if you continue with this problem,

try to think of applications to celestial mechanics and rigid body rotation. I am

10 This theorem of Kolmogorov has a natural multidimensional generalization in the theory of

polyintegrable systems (St. Petersburg Math. J., 1992, 4(6), 1103–1110).



From Hilbert’s Superposition Problem to Dynamical Systems 31

very glad that you have chosen a good problem.” But I was completely upset by

this outcome, because it was just the opposite to my plan of complete indepen-

dence. However, it was an interesting problem. A few days later I learned from

N. N. Vakhania’s thesis (which was defended at the Department of Mechanics

and Mathematics of Moscow University) that this problem had been considered

before me by S. L. Sobolev in a classified work of 1942 on oscillations of fluid

in rotating missiles. Resonances are dangerous there, since they can destroy the

tank. This theory is also related to Sobolev’s equation (which was, in fact, first

obtained by Poincaré in 1910). 11

In this way I started to learn some mathematics. I read some other peo-

ple’s works and finally I discovered some papers by C. L. Siegel, who met

Kolmogorov at Göttingen in the 1930s. Kolmogorov was not aware that Siegel

had later worked on the small denominators problem. Siegel’s paper was pub-

lished in 1941, but was unknown to Kolmogorov. He knew about the works of

Poincaré, of Denjoy and of Birkhoff, but not about Siegel. So he told me that

we were in a very good company: “Siegel is really serious,” he said.

I discovered a theorem of Siegel (which is related to the normal forms for

circle rotations) due to the system of education in Moscow University, which

was different from that in America. I think the Moscow system followed the

German tradition that when you have a result and you wish to publish it, you

have first to check the literature to see whether someone else had ever studied

it. We were told this at our first introductory course in library work where they

taught us how to find, starting from zero information, everything you need. Of

course, there was no Internet at that time, but still we were able to find the

references, and this is how I discovered Siegel’s work.

The circle diffeomorphisms problem is related to many other problems, and

I shall give you some examples. One of them is a problem which was also stud-

ied in classified works on the stability of missile and rocket shells. This stability

problem is very important, because a shell must be very thin if it is to travel far.

But you cannot, by the architecture of the system, avoid nonconvexity. In the

convex part, you have good theorems by Cauchy that the metric determines the

shape and thus the shell is inflexible. But, in the parts of hyperbolic curvature

no one knows the answer. Even for the idealized problem of isometry — if you

have, say, a torus in 3-space (this is one of the problems I like in mathematics) —

no one knows whether it is flexible; that is, whether you can deform it without

deforming the metrics. Only in some particular cases has the inflexibility re-

cently been proved. (I have been told of the example of a rotationally symmetric

11 Applications of the modern KAM theory to hydrodynamical problems have been discovered

recently by A. Babin, A. Makhalov and V. Nikolaenko.
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torus lying between two parallel planes.) But the general case is still open. By

the way, some polyhedra are flexible, and there is a theorem that the flexion of

a polyhedron homeomorphic to the sphere does not change its volume. 12

Problems of the interior geometry of surfaces in Euclidean space are, in

fact, closely related to the theory we are now discussing. Many years ago I

conjectured that any germ of a function vanishing at the origin and having there

a critical point of finite multiplicity is diffeomorphic to the Gaussian curvature

of the graph of a smooth function z = f (x,y). This conjecture was proved by

the present author in January 1998 (see Topol. Methods Nonlinear Anal., 1998,

11(2), 199–206).

Let us return to the question of stability of missile shells. People who

constructed these shells have observed that the geometry of the characteristics,

which are the asymptotic lines of the shell surface, can present obstacles to in-

flexibility. The asymptotic lines define a dynamical system similar to that which

leads us to the diffeomorphisms of the circle. Consider a hyperbolic cylinder

between two horizontal circles (like a section of the Moscow TV tower designed

by Shukhov). Moving upward from the lower circle along the asymptotic line

(“element” of a hyperboloid of one sheet), we will arrive at a point on the upper

circle. From this point, we can move downward along the other asymptotic line

emanating from it. This line will come to a point on the lower circle, which we

consider as the image of the initial point of the lower circle under the action of

the dynamical system just constructed (which is a diffeomorphism of the lower

circle onto itself).

This dynamical system is, in fact, related to the characteristics of wave

equation for oscillations of a string, when it is wtitten in the form ∂ 2 f/∂x∂y = 0.

To represent a function as a sum of a function of x and a function of y means

to solve this string equation. Our representability problem is thus the Dirichlet

problem for the string equation. In the case of shells having the shape of a piece

of a hyperboloid of one-sheet, you have the Dirichlet problem for a hyperbolic

equation.

Professor Goldenweiser discovered that the resonances of the dynamical

system on the boundary circle which depend on the shape of the hyperboloid,

are responsible for the flexibility. As far as I know, this is not a theorem —

there are some formal obstacles to inflexibility, but no mathematical proof of

flexibility. People who studied these problems were doing real work, they were

actually constructing shells. I have seen those shells: they are really flexible,

but no one can prove that they are. It depends on the resonances. If you have

12 Recently, the volume invariance at flexion was proved for all polyhedra (R. Connelly,

I. Sabitov, A. Walz, 1997).
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resonances, then they are flexible in your hands — but I have not seen any

mathematical proof of the existence of resonances.

I have written a paper on this subject, applying the technology of small de-

nominators that Kolmogorov had invented in 1954 and adding some new results.

Working on the circle analytic diffeomorphisms, I came to some conjectures in

what is now called holomorphic dynamics, which I was unable to prove. One

of them (claiming that an analytic circle diffeomorphism with a good rotation

number is analytically conjugate to a rotation, the bad numbers forming a set

of measure zero) was proved by M. Herman some twenty years later. One of

the others still remains a challenge and I shall formulate it here once more.

It is a part of a general project on “resonance materialization,” providing the

topological reasons for series divergence in perturbation theory.

Consider an analytic diffeomorphism of a circle onto itself (defined by a

holomorphic mapping of the neighboring annulus onto another neighboring an-

nulus). Suppose that the mapping is analytically conjugate to an irrational

rotation and that the closure of the maximal annulus where the conjugating

holomorphic diffeomorphism is defined lies strictly inside the annulus where the

initial holomorphic mapping is defined. The conjecture is that there exist peri-

odic orbits of the initial holomorphic mapping in arbitrarily thin neighborhoods

of the boundary of the maximal annulus. One is even tempted to conjecture that

the points of such orbits exist in any neighborhood of any point of the boundary

of the maximal annulus.

As far as I know, these conjectures are neither proved nor disproved, even

for the standard circle mappings x �→ x + a + bsin x (mod2π) (for which the

conjectures were first formulated in 1958) or for the generic mappings. In

the special case of rational mappings, similar conjectures were proved recently

by J.-C. Yoccoz and R. Perez-Marco. Counterexamples to the initial conjecture

were also constructed, but only for exceptional rotation numbers (forming a set

of measure zero). In 1958 I also formulated similar conjectures for the boundary

of the Siegel disk (centered at a fixed point).

In the case where there exists no analytic conjugation to a rotation (and

where the maximal annulus is reduced to a circle and the Siegel disk to the

fixed point) I have conjectured at least the generic presence of close periodic

orbits. To be more precise, fix a bad rotation number. Then, for generic analytic

mappings with this rotation number, one should expect the presence of periodic

orbits in any neighborhood of the invariant circle (of the fixed point). This

conjecture has not been proved so far.

Dealing with these problems, I observed that to define what should and what

should not be called generic in dynamical systems theory is highly nontrivial.
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Indeed, both the topological and the probabilistic approaches provide patholog-

ical answers (studied by P. Halmos, V. A. Rokhlin and others). So the notion

of “physical genericity” should be different from what mathematicians have

suggested.

The topological definitions (using the “Baire second category sets,” etc.)

have the following defect. A phenomenon happening with positive probability

(in the sense of the measure of the set of corresponding parameter values) might

be negligible from the point of view of topological genericity (for instance, if

this set of parameter values has an everywhere dense open complement). This

happens, for example, in the very natural families of circle diffeomorphisms

(like x �→ x + a + bsinx). Such a diffeomorphism is close to a rotation if b is

small. From the topological point of view they are “generically” structurally

stable. The structurally stable circle diffeomorphisms have attracting and re-

pelling periodic orbits. They correspond to the resonances and have rational

rotation numbers. The complementary set of the nonresonant ergodic diffeomor-

phisms is “topologically negligible.” But the ergodicity of the diffeomorphism

happens with probability 99% if b is small, while the “generic” behavior is

highly improbable!

The alternative probabilistic approach has a different defect — the corre-

sponding measure is always concentrated on sets of functions with some speci-

fied smoothness. All the sets of functions which are smoother than this are then

negligible (have zero probability).

To overcome these difficulties, I have proposed to call generic those events

which happen when the parameter of the topologically generic finite-dimensional

family of systems belongs to a set of positive measure in the finite-dimensional

parameter space. For years I have been thinking that this definition of “phys-

ical genericity” was introduced by Kolmogorov in his Amsterdam talk (1954).

However, recently Yu. S. Il’yashenko has explained to me that Kolmogorov used

rather a dual definition and that I was perhaps the first one to introduce (in 1959)

the notion of physical genericity described above (and now called “prevalence”).

I tried to apply this philosophy to many problems; for instance, to the

study of chaotic dynamics of the area-preserving mapping in the neighborhood

of a hyperbolic fixed point whose separatrices have a homoclinical transversal

intersection. My guess was that the positiveness of the measure of a Cantor set

of the “Smale’s horseshoe” 13 type (on which the dynamics is chaotic) should

be a physically generic event. As far as I know, this conjecture is still neither

13 Some decades before Smale, this horseshoe had been discovered and investigated by

J. Littlewood and his student M. Cartwright in their (for some reason forgotten and rarely cited)

works on nonautonomous second-order differential equations with periodic coefficients.
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proved nor disproved. Its topological version (not referring to measure) was

proved by V. M. Alekseev in a very general situation.

I was still an undergraduate student while I was doing this work. Once

Gel’fand invited me to talk on the circle rotations, and when I explained my

theorems to him, he said that they could be applied to what he was working on.

He was working with M. L. Tsetlin on a mathematical model of the heart beat.

In the heart, you have resonance between the ventricles and the atria. There is

an atria-ventricular node and then there is an electric system synchronizing the

ventricles and the atria. In the model of Gel’fand and Tsetlin this system was

described by a mapping of the circle into itself.

My theorems were applicable, and I added several pages to my paper of

1959 on applications to the heart beat problem of the theory of resonances and

structural stability of the mappings of a circle into itself and of the theory of

small denominators. The paper was sent for publication to the journal Izvestiya

Akademii Nauk SSSR (mathematical series), where I. M. Vinogradov was editor-

in-chief, but it was rejected. Kolmogorov told me: “You should delete the

part related to the Gel’fand theory.” I was puzzled because I liked it, but

Kolmogorov’s reaction was that the heart beat theory, although very interesting,

is not of the kind mathematicians should work on. “You should concentrate on

the three body problem,” he told me. This was the only mathematical advice I

ever got from Kolmogorov. 14 When I deleted the part on the Gel’fand theory

from the paper, it was accepted by Vinogradov and the shortened text appeared

in the Izvestiya in 1961. Together with the heart beat theory, I also deleted

a paragraph about the influence of small noise on the circle diffeomorphism

invariant measure. Today these problems are included in the general Morse–

Witten theory (but the discrete time case, which I studied, seems to remain still

unsettled in the modern theory). Kolmogorov did not approve my naı̈ve approach

to the theory of asymptotics of solutions to the (discrete time) Fokker–Planck

equation in the small diffusion limit — which was, of course, his kingdom.

My observation is that the influence of a small noise on the dynamics of

a circle diffeomorphism results in that some attractors capture nearby points

rapidly, generating Gaussian maxima of the phase mass density. Later, larger

14 Later, when I was his graduate student (in 1961), Kolmogorov learned about the existence of

differential topology from Milnor’s talk in Leningrad. He immediately suggested that I should

include it in my graduate curriculum (having in mind connection with the superposition prob-

lem). As a result, I started studying differential topology from S. P. Novikov, D. B. Fuchs and

V. A. Rokhlin — and even served as an opponent for the kandidat thesis of Novikov (an ingenious

topologist and the glory of Russian mathematics) on the differential structures on the products of

spheres.
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maxima are formed by attractors with larger attraction basins. However, even-

tually it is not the apparent candidate that wins, but “general attractor” — the

winner of the tunneling race, determined by the greatest eigenvalue of the matrix

corresponding to tunnel transitions from one attractor to another (I called this

attractor “general” because it was just as difficult to predict it at the beginning as

it was to guess who will be the next General Secretary of the USSR Communist

Party).

Later I had to discuss C. Zeeman’s results on the influence of small noise

on a dynamical system. He rediscovered some results of A. A. Andronov,

L. S. Pontryagin, and A. A. Vitt on this topic published in the 1930s. Although

their paper was in English, Zeeman did not refer to it according to the Western

tradition of discrimination against Russian contributions.

The deleted heart beat part of the paper lay on my shelf for 25 years. Then

two events happened. The Canadian physiologist Leon Glass discovered that

the mathematical theorems on resonances proved in my published paper have

applications to heart beat. He published them in a paper and later in a book

titled From Clocks to Chaos. About the same time Gel’fand told me that he

was preparing his collected works. “My congratulations,” I said, “I am very

glad.” “Yes,” he answered, “but I want your paper to be published in it.” I was

puzzled, but since this was not the dangerous genuine collaboration, I gave him

the old paper. And the paper was published almost simultaneously with the

paper by Glass. The results were practically identical! Glass only added that his

clinical tests of the patients at a hospital had substantiated my theory.

This was the story of how my work in what is now called KAM theory was

started. Later I worked on the many body problem, following Kolmogorov’s sug-

gestion. Reading the Méthodes nouvelles de la mécanique celeste of Poincaré

and having discussions with V. M. Alekseev during our weekly common “win-

dows” (breaks between two classes) at Moscow University, I realized that the

problem of celestial mechanics has several difficulties which one might tackle

separately. The first difficulty (“the limit degeneration”) is already present in

the simplest problem on the plane area-preserving diffeomorphisms near a fixed

point, the so-called Birkhoff problem. Suppose that the mapping linearized at

a fixed point is a plane rotation. A rotation is resonant if the rotation angle

is commensurable with 2π . If the linearized mapping is a nonresonant rota-

tion, Birkhoff was able to reduce the mapping to a rotation (through a variable

angle) using some symplectic (area-preserving) formal coordinate change. The

celebrated problem, formulated by Birkhoff, was to decide whether the fixed

point was stable in this case. The difficulty is that Birkhoff’s series (reducing

the mapping to the Birkhoff normal form, which is a rotation through an angle
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depending on the distance to the fixed point) is generically divergent, due to the

isolated periodic orbits born at the places where the rotation angle is commensu-

rable with 2π — these periodic orbits form the “materialization of resonances” in

this problem. I had solved this Birkhoff’s problem and the paper was presented

to Doklady by Kolmogorov in 1960.

At the Stockholm Congress of 1962, Moser, speaking about his recent results

on the Birkhoff problem, explained how to replace the analyticity assumption

by continuity of the 333rd derivative. His method was not too far from Kol-

mogorov’s 1954 paper, but the details were different. His result was even better

than the solution of Birkhoff’s problem: he had proved the stability provided

that the rotation angles of the linearized mappings were not of the form kπ/2 or

kπ/3. Rational numbers with denominators higher than 4 behave in this problem

like irrational numbers! The resonances of order smaller than 5 are now called

strong resonances, those of higher order are called weak resonances. Moser

discovered that the stability holds even in the presence of resonances, provided

that they are weak.

Listening to Moser, I immediately understood that my 1960 stability proof

was applicable (for analytic mappings) to the case of weak resonances, while I

had formulated the result only in the nonresonant case. Instead of studying the

phenomenon, I was trying to solve a celebrated problem and was hypnotized by

Birkhoff’s formulation, which forbade all resonances. This was a good lesson:

one should never be hypnotized by the authority of predecessors.

My first trip abroad was to the Stockholm Congress in 1962. My report

was devoted to the stability problem of planetary systems, but the Panel (the

Committee which chooses speakers) and the Program Committee did not con-

sider planetary systems worthy of an invited lecture at a Mathematical Congress.

Fortunately, at that time there were special sessions where uninvited speakers

made 15-minutes talks. So I presented a short talk.

Organizing Committees of International Mathematical Congresses made a

lot of effort to exclude uninvited reports. The question whether it is good or

not causes arguments. The best lecture (and the most important for me) I have

ever heard at an International Congress is the lecture by F. Hirzebruch at the

Moscow Congress in 1966. He made a survey of E. Brieskorn’s works about

connection of the singularity theory with Milnor’s spheres, 15 and he was not an

15 Brieskorn’s works suggest, for example, equations in C5 such as

xa
+y3

+ z2
+u2

+ v2
= 0, |x|2 + |y|2 + |z|2 + |u|2 + |v|2 = 1

(a = 6k−1, k = 1, . . . ,28) for smooth 7-dimensional Milnor spheres which are all homeomorphic

to the standard sphere S7 but not diffeomorphic to each other.
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invited speaker. I think that the harm from uninteresting talks made by uninvited

speakers is less than the loss made by rejection of important and interesting lec-

tures. It is unlikely that Galois would have been invited to a Congress. In 1992

V. A. Vassiliev was not invited to the First European Mathematical Congress in

Paris, though four invited speakers talked about his works. 16

The second main difficulty of the planetary motion problem was the so-called

“proper degeneration.” The terminology was introduced, I guess, by M. Born.

I found it in his remarkable Atomic Mechanics (published in Khar’kov in 1934)

where three-dimensional Lagrangian manifolds were present. The point is that

some of the frequencies of the quasi-periodic motion of the perturbed system

might be small together with the perturbation parameter. The simplest cast

is the theory of adiabatic invariants. Consider, for instance, the motion of a

charged particle along a surface under the influence of a strong magnetic field

which is orthogonal to the surface. Mathematically, this involves the problem

of the description of the curves of prescribed large geodesic curvature on the

surface. In the first approximation, such a curve is a circle of small radius, the

so-called Larmor circle. But in the next approximation (provided by the theory

of adiabatic invariants), the center of the Larmor circle starts to move along the

surface. The drift of the Larmor circle is described by the averaged system.

In the adiabatic approximation, the center moves along the level line of the

prescribed geodesic curvature (that is, the line where the intensity of the given

magnetic field is constant). In the case of a constant magnetic field intensity

the drift occurs in a higher order approximation. In this case the center of the

Larmor circle follows the level line of the Gaussian curvature of the surface.

On a compact surface, a typical approximate trajectory of the Larmor center

is a closed curve, and one may ask whether the genuine orbits of the charged

particle remain close to these closed trajectories. The theory of the proper

degeneration that I had constructed (the paper was presented to Doklady by

Kolmogorov in 1961) gave a positive answer to this question, also providing

many other physically important results on the infinite time behavior of adiabatic

invariants.

Just at that time these physical problems were formulated at Kolmogorov’s

seminar on dynamical systems by two well-known physicists, M. A. Leontovich

and L. A. Artsimovich, who related them to the plasma confinement problem im-

portant for the controlled thermonuclear reaction project. Kolmogorov suggested

16 Knot invariants discovered by Vassiliev are in the same position among all invariants as are

polynomials among all functions. Vassiliev’s theory of invariants (later linked with quantum field

theory by Kontsevich) is one of the major accomplishments in the twentieth century mathematics

that connected singularity theory and topology with combinatorics and Feynman integrals.
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that I send the resulting paper to JETP — Zhurnal Eksperimental’noi i Teoreti-

cheskoi Fiziki, the main physical journal in the USSR. A few weeks later,

Leontovich (who was, as far as I remember, the vice-chairman of the editor-

ial board) invited me to his home, near the Atomic Energy (now Kurchatov)

Institute to discuss the paper. Leontovich, who headed the theoretical physics

division of the thermonuclear controlled reaction project, was a friend of Kol-

mogorov and also of my father (he helped our family to survive when my father

died and I was 11 years old). Treating me, as usual, with buckwheat porridge

and calling me, as usual, “Dimka” (he used this nickname until his death some

20 years later), Leontovich explained to me the reasons why the paper cannot

be published in JETP:

i) the paper uses the forbidden words “theorem” and “proof”;

ii) the paper claims “A implies B” while every physicist knows examples

showing that B does not imply A;

iii) the paper uses nonphysical notions like “Lebesgue measure,” “invariant

tori,” “Diophantine conditions.”

He proposed that I should rewrite the article. Now I understand how right

he was trying to defend a physical journal from the Bourbakist mathematical

style. 17

An author, claiming that A implies B, must say whether the inverse holds,

otherwise the reader who is not spoiled by the mathematical slang would under-

stand the claim as “A is equivalent to B.” If mathematicians do not follow this

rule, they are wrong. Nowadays, every physicist studying Hamiltonian chaos

or using KAM theory in plasma confinement or accelerator control problems,

freely uses the Lebesgue measure, the invariant tori and the Diophantine condi-

tions. But in 1961 one of the first papers on what is now called KAM theory

was, as we see, rejected by a leading physical journal for the use of these words

(and also words “theorem” and “proof”).

I took the paper back from JETP and it appeared a year later in Doklady. By

that time I had already combined the study of degenerations of both kinds and

applied them to the planetary motion problem. The results were first presented

at a conference on theoretical astronomy held in Moscow on 20–25 November

1961. The main topic of the conference was the motion of artificial satellites.

I was delighted to meet there and make friends with M. L. Lidov, whose students

17 Rumors later reached me that the paper had been reviewed by L. D. Landau, but I do not know

if this was indeed the fact.
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A. I. Neishtadt and S. L. Ziglin later made profound contributions to perturbation

theory, averaging, adiabatic invariants, Hamiltonian chaos and the materializa-

tion of resonances. The resulting theories are well known.

Of Lidov’s results, I would point out the study of evolution of an Earth’s

satellite orbit which is initially a circle of the same radius as the Moon’s orbit but

inclined significantly to the ecliptic (say, forms an angle of 80◦ with the Earth’s

orbit). It turns out that, in case of so large inclination, the Moon would fall

onto the Earth within only four years! The “Laplace theorem” on the stability

of planetary orbits that I have proved assumes that the mutual inclinations of

unperturbed orbits are small.

Now you have almost the whole picture of all my mathematical subjects.

They all start from this problem of superpositions, and you now see how they are

connected. There is one more topic, namely hydrodynamics and hydrodynamical

stability, but this is also related to the same origin. Such mysterious correlations

between various fields of mathematics, which at first sight are not connected at

all, have remained a puzzle to me. Discoveries of such correlations is the greatest

pleasure provided by mathematics; and I am very lucky to have experienced it

several times in various fields.

When I finished the works on celestial mechanics and on other applica-

tions of what is called KAM, I tried to find some applications of the theory of

dynamical systems to continuous systems, in particular, to hydrodynamics. Kol-

mogorov, of course, was also a classic hydrodynamicist and he had a seminar at

that time (1958–1959) called “Seminar on dynamical systems and hydrodynam-

ics,” where the celebrated work by L. D. Meshalkin and Ya. G. Sinai was done on

Kolmogorov flows instability and continuous fractions, where the Kolmogorov–

Sinai entropy was invented, and so on.

In 1961 S. Smale came to Moscow. He was the first foreigner I met in

my life. We discussed a lot of interesting projects on the roof of Moscow

University (he speaks of “the steps of Moscow University” in his reminiscences).

Among other things we discussed structural stability and he formulated the

conjectures that torus diffeomorphisms and geodesic flows on negatively curved

surfaces should be structurally stable. I have even written a paper with my

friend Sinai, proving the first conjecture. While describing this proof at my

seminar on dynamical systems, I suggested that one might prove the second

Smale’s conjecture, identifying the perturbed geodesic with the nonperturbed

one, connecting the same two points at the absolute. The following week,

D. V. Anosov reported his proof of this conjecture, but my proofs were wrong,

since I was using too many derivatives of the invariant foliation whereas Anosov

had shown that they might not exist.
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And this is why I have never tried again to prove collective theorems. This

happened in 1961–63, and since that time I have been trying to find applications

of this philosophy of structural stability. My first idea was to think of the model

of hard spheres in statistical mechanics. I speculated that such systems might be

considered as the limiting case of geodesic flows on negatively curved manifolds

(the curvature being concentrated on the collisions hypersurface).

The simplest model of this kind is a system of two elastically colliding

disks on the surface of a two-dimensional torus. Alternatively, one can consider

the motion of a particle along a torus with a hole that elastically repels this

particle. The latter system can be regarded as a motion along a two-sided torus,

each repulse entailing transit to the other side, and also as a geodesic flow

on a pretzel whose surface is homeomorphic to a two-sided torus with a hole

and whose curvature is concentrated along the hole’s edge taking large negative

values there.

I had never proved anything in this direction, 18 but I explained this idea to

the greatest expert on dynamical systems and ergodic theory that I knew (Sinai)

and he started a long series of works continued by many people (let me mention

only the recent works by D. Szász and N. Simányi — the project is still alive and

not exhausted). My second project was to apply the new theories of dynamical

systems to hydrodynamics. I started to discuss this work already in 1961–1962

with V. Yudovich and O. Ladyzhenskaya.

During that period, most of the mathematicians working in this area (includ-

ing Leray and Ladyzhenskaya) thought that the turbulence may be explained

only by the fact that the equations of three-dimensional hydrodynamics do not

have unique solutions (their attempts to prove the uniqueness had lasted many

years without success). Both Leray and Ladyzhenskaya strongly opposed my

idea that the observed phenomena are due not to nonuniqueness but to insta-

bility, that is, to a fast increase of originally small perturbations of the initial

conditions. Mathematically, such increase means that the Lyapunov exponents

of the dynamical system are positive.

The idea was that because of the high sensitivity of the flows on a surface

of negative curvature, the positive Lyapunov exponents are stable. The Euler

and Navier–Stokes equations contain many “parameters”: the domains and the

exterior forces. I conjectured that one might find somewhere, at least numer-

ically, an attractor of the Navier–Stokes equation on which the geodesic flow

of a negatively curved surface is realized. It was of course very naı̈ve, but in

18 “To approach formulas of chaos and Brownian motion of capricious particles with the lucid

light of logic and intellect is the same as eating a jelly with a needle.” — Tatiana Tolstaya, “The

Russian World”; page 402 in: The Day. Moscow: Podkova [The Horseshoe], 2001 (Russian).
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1964 I made some numerical experiments (with the help of N. Vvedenskaya) on

a model with six Fourier modes. Unfortunately, I was unable to find the positive

Lyapunov exponent numerically. At that time, computers produced very, very

long tapes with numbers, kilometers of numbers. We were trying to imagine

the orbit in 6-dimensional phase space looking at those numbers. I think that

probably the Reynolds number was not sufficiently high, so what we observed

was a 3-dimensional torus in 6-dimensional phase space — a scenario predicted

by Landau. But I was sure that with more work one might find the positive Lya-

punov exponents, and perhaps even the geodesic flow on a surface of negative

curvature. This was the reason for my 1966 paper on the differential geometry

of infinite dimensional Lie groups, on the diffeomorphism groups which are the

configuration space in hydrodynamics. I have calculated the curvature of this

group 19 and I even used it to show that weather prediction is impossible for

periods longer than 2 weeks. In a month you lose 3 digits in the prediction, just

because of the negative curvature calculated by me. This instability is not the

Euler instability, it’s not describing a chaotic attractor of the Euler equations —

but it comes from the same line of ideas. Thus all my hydrodynamical works

were the byproduct of the works on dynamical systems, which in turn were the

byproduct of the works on the Hilbert problem.

In trying to study the slow mixing in Hamiltonian dynamics, I have intro-

duced the “interval exchange” model (as the simplest discrete time description of

the event in the pseudo-periodic system whose Hamilton equations are defined

by a closed, but not exact, 1-form on a surface of genus 2), being interesting al-

ready in the case of three intervals of integer lengths, (a,b,c)→ (c,b,a). 20 This

model is so natural that I am always amazed not to find it in works on ergodic

theory prior to my 1963 paper, where it was introduced. 21 I have returned to

pseudo-periodic topology many times since 1963. Pseudo-periodic functions are

19 A few years earlier I had translated Milnor’s wonderful Morse theory into Russian. My calcu-

lations in the 1966 paper were based on his short description of the Riemannian geometry. Milnor

later (in 1972) proved the formulas for the curvature of a left invariant metric on a Lie group,

which are essentially equivalent to my coordinate-free formulas in the hydrodynamics paper.
20 The exchange of intervals of integer lengths (a,b,c) can be regarded as a permutation of

n = a+b+ c elements. This permutation splits into permutations consisting of several cycles of

equal length (like a rotation of a regular n-gon). It is interesting to study the statistics of lengths of

the cycles of the resulting permutation and its limit for large n, assuming that all decompositions

of n into three summands are equiprobable. For example, how often do all the cycles have the

same length?
21 My colleagues told me that the first research on this problem about interval exchange, posed

by me as early as 1950s, had been published by the participants of Sinai’s seminar before my

publication of the problem and with a reference to me (which, however, disappeared in further

publications on this subject).
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sums of linear functions and periodic functions, like f = ax + by + sin(x + y).
Pseudo-periodic manifolds are those defined by pseudo-periodic equations, like

the plane curve f = 0 (think of the Pacific coast of California and try to under-

stand whether such a curve may have many unbounded components — a typical

problem of the young pseudo-periodic topology, to which the interval exchange

model also belongs).

The present state of research in pseudo-periodic topology is presented in the

book Pseudo-periodic Topology (edited by V. I. Arnold, M. L. Kontsevich, and

A. V. Zorich; Providence, RI: Amer. Math. Soc., 1999; AMS Transl., Ser. 2,

197; Adv. Math. Sci., 46). While studying the interval exchange model, Zorich

discovered (by computer experimentation) astonishing new laws of correlation

decay in such systems. In a recent work, Zorich and Kontsevich were able

to explain most of these observations, relating them to the ergodic theory of

geodesic flows on the Teichmüller spaces. The study of the interval exchange

model has thus returned to the nonexact Hamiltonian pseudo-periodic topology

on higher genus surfaces, which was the initial motivation for the publication of

this model in 1963.

My recent paper (Funct. Anal. Appl., 2002, 36(3), 165–171) also applies

to pseudo-periodic (or quasi-crystallic) topology. The paper is devoted to Har-

nack’s quasi-crystallic theorem providing ergodic mean values of various topo-

logical and geometric invariants of pseudo-periodic functions and manifolds

(like the numbers of critical points or maxima, Betti numbers, or the numbers of

manifolds’ components, etc.) via powers or Newton polyhedra of Fourier series

giving periodic parts of pseudo-periodic functions. The existence of mean values

(almost everywhere) has been proved by S. M. Gusein-Zade.

In the late 1960s I also explored some other areas related to dynamical

systems with my undergraduate students:

— G. Margulis (in his first and unpublished paper he started the theory of

Diophantine approximations on submanifolds of Euclidean space, later

continued by A. Pyartli, A. Neishtadt, V. Bakhtin and used by M. Sevryuk);

— D. Kazhdan (who studied the ergodic properties of the Euclidean actions

of free groups, continued later by R. Grigorchuk); 22

— N. Nekhoroshev (whom I have persuaded to apply the Diophantine net

geometry to the problem of the action’s drift);

22 Now I would like to carry over these studies to the orbits of the modular group SL(2,Z)

on the de Sitter world (which is an analytic continuation of the Klein model of Lobachevskian

geometry from the interior of the unit circle to its complement in RP2, that is the Möbius band,

or to the hyperboloid of one sheet doubly covering this Möbius band).
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— A. Kushnirenko (slow mixing, structural stability of analytic actions of

semi-simple groups — later, Newton polyhedra and fewnomials conjec-

ture);

— A. Khovanskii (nonsolvability of differential equations, later — Newton

polyhedra and fewnomials theory).

I turn now to the KAM (Kolmogorov–Arnold–Moser) theory. People say

that there is even a KAM theorem, but I have never understood what theorem

it is. In 1954 Kolmogorov proved his marvellous theorem on the preservation

of the tori in Hamiltonian systems, when the Hamiltonian is almost integrable

and all functions are analytic. What I have contributed was the study of some

degenerate cases — when one of the frequencies vanishes in the nonperturbed

system, or when one considers vicinities of the fixed points, or periodic points,

or tori of a smaller dimension — and then applications to celestial mechanics.

All these facts are separate theorems. My main contribution was the discovery

(in 1964) of the universal mechanism of instability in systems which have many

degrees of freedom, and are almost integrable, — later called “Arnold diffusion”

by the physicists. This “diffusion” contradicted Kolmogorov’s intuition. He

thought that stability can be preserved in generic multidimensional systems in

spite of the fact that in these cases stability is not provided by the existence of

the invariant tori.

In systems with the phase space of small dimension, invariant tori close

areas between them and in this way ensure stability (for example, in Birkhoff’s

problem). In my 1964 paper, I constructed an example of instability in a situation

where Kolmogorov tori are preserved. I supposed then (and I suppose now) that

the diffusion mechanism described there works in generic systems. So, there

exist trajectories connecting a vicinity of any invariant n-dimensional torus,

close to an integrable Hamiltonian system, with a vicinity of another torus on

the same hypersurface of an energy level (if the dimension of this hypersurface

2n−1 � 5, that is, if n > 2. However, this has not been proved.

In 1962 Moser extended Kolmogorov’s theorem to the case of smooth func-

tions. 23 In the first papers of Moser the number of derivatives was enormous.

23 It is interesting to note that when Moser’s papers appeared, some American mathematicians

began to publish papers that “extended the Moser theorem to the case of analytic functions.”

Moser himself has never supported these attempts to attribute Kolmogorov’s results to him.

I permanently failed to comprehend some details of Moser’s proof, but eventually managed to

write down my own version after he had explained his basic ideas to me. Each proof is based

on a composition of Kolmogorov’s method and smoothing suggested by Nash. The smoothing

technique relies on inequalities proved by Kolmogorov, that estimate every derivative of a function
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Now we know that in the simplest case of plane rotation you only need 3 deriv-

atives, and this is just the limit, the critical number of derivatives. But in the

beginning the number was 333. Kolmogorov told me that this was like a com-

plete change of philosophy, because he was expecting (and even claiming in his

Amsterdam talk) that the result should be wrong even in C∞ and that one needs

analyticity or something close to it, like the Gervais condition.

Moser regretted that a proof of the theorem in the case of analytic Hamil-

tonians was never published by Kolmogorov. I think that Kolmogorov was

reluctant to write the proof, because he had other things to do in his remaining

years of active work — which is a challenge, when you are 60. According to

Moser, the first proof was published by Arnold. My opinion, however, is that

Kolmogorov’s theorem was proved by Kolmogorov.

Thank you for your attention.

Question (J. Milnor): You have often told us about important mathematical

work done in Russia which we did not know about, and you gave another

example today. I wonder if you can explain to us how to locate something

interesting in the literature starting with zero information.

Answer: First of all (it is especially important for the Americans), do not

forget that some mathematical results appear in Russian, in French, in German,

in Japanese . . . To learn the state-of-the-art in a domain which is new to me,

I usually start with the German Encyclopædia of Mathematical Sciences, edited

by Felix Klein and published around 1925. It contains an enormous amount

of information. Then there are papers in the Jahrbuch which was published

before the Mathematical Reviews and Zentralblatt have been organized — it is

full of information. Then, I usually consult the collected works of Klein and

Poincaré. In Klein’s Vorlesungen über die Entwicklung der Mathematik im

19. Jahrhundert there’s a lot of information on what happened in the nineteenth

century and before.

Other books by Klein are also extremely informative. For instance, there you

can find the articles by Emil Artin on continued fractions and on braid groups,

and I think you can find there the 1918 article by Radon, which has never been

published and which contains the first draft of the Berry phase theory. It is the

theory of the adiabatic pendulum, slowly moving along a surface. According

on a cube via the function itself and its higher derivatives. The simplest of them (such as

| f ′|2 � C| f | | f ′′|) had been proved earlier by Hadamard and Littlewood, and Kolmogorov’s work

on these inequalities contained fundamental ideas of what is now called the “theory of optimal

control,” in which investigation of these inequalities is naturally included as a particular (in fact

crucial) case.
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to Radon, the Levi-Civita connection can be defined by the theory of adiabatic

invariants. You have the fast phase oscillations in a system, like a pendulum,

located at a point of the surface. You slowly move the point along the surface,

and the direction of the pendulum’s oscillations is parallel transported according

to the Levi-Civita connection. I think this is the most physical way to define the

Levi-Civita connection which otherwise is mathematically a rather complicated

thing in higher dimensions. The adiabatic transportation defines it as a physically

natural object. I think this can’t be found in any textbook, I only found it in

Klein’s book.

To one’s regret, all these books are now thrown out of student libraries

of Parisian universities (they told me there that viruses contained in these old

editions were mortally dangerous for Bourbaki’s books). Klein was thrown out

together with L’Hôpital and Goursat, Darboux and Picard.

It is therefore not surprising when “modern mathematicians” keep on ascrib-

ing all discoveries to the person of their last acquaintance. I would mention, for

example, the “WKBJ method” (which was systematically used by Kelvin and

Green a century ago and published some more decades before that by Jacobi

with a reference to Carlini’s book of 1816).

Then, from the 1940s start the Mathematical Reviews and the Zentralblatt,

and later the Russian Referativnyi Zhurnal “Matematika”. After that it’s more

or less satisfactory. Of course, the MR and Zbl are not sufficient, because if you

are trying to find a Russian paper and if in the Russian paper it was written that

A implies B, then in the translation and hence in the MR you will usually find

that A is implied by B. However, if you understand the topic you can reconstruct

the author’s correct statements.

Also, in Russia mathematics has never been completely separated from

physics, and especially mechanics. There were the same people doing math-

ematics, mechanics and physics. For example, in Kolmogorov’s selected works

there is a paper by Kolmogorov and Leontovich (who was a famous physicist) on

the neighborhood of a Brownian trajectory. This is a paper by a mathematician

and a physicist which consists of two parts; the mathematical part contain-

ing evaluations of integrals, asymptotics, Riemannian surfaces, monodromies,

Picard–Lefschetz theorem etc., and the physical part containing the background

equations and so on. And, of course, the mathematical part was written by

Leontovich, and the physical part by Kolmogorov. This is very typical for

Russia.

Another useful rule is that you can usually learn a lot about the state-of-

the-art in some domain from your neighbors. Many times I have used the

opportunity to pose silly questions to D. B. Fuchs, S. P. Novikov, Ya. G. Sinai,
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D. V. Anosov, V. M. Alekseev, V. A. Rokhlin, and later to my own students. Once

I asked the greatest number theorist I knew, whose works in many domains of

mathematics I always admired, a question in number theory. His answer was,

“Sorry, I have forgotten all of it, I am no longer a number theorist: several

months ago, I have turned to another domain, logic.” “Well,” I said, “can you

recommend to me a graduate student of yours still interested in number theory,

to explain to me what is known?” “How naı̈ve you are,” he replied, “to think

that my students may continue to be interested in number theory while I have

turned to logic already three months ago!”

To facilitate the search for mathematical information, Russian mathemati-

cians have tried to cover most of present day mathematics in the more than one

hundred volumes of the series Sovremennye Problemy Matematiki (published

by VINITI), several dozens of which have already been translated into English

as Encyclopædia of Mathematical Sciences. The idea of this collection was to

represent living mathematics as an experimental science, as a part of physics

rather than the systematic study of corollaries of arbitrary sets of axioms, as

Hilbert and Bourbaki had proposed. I hope that this Encyclopædia is useful as

the source describing the real origins of mathematical ideas and methods (see,

for instance, my paper on catastrophe theory in Volume 5). Unfortunately, in

the Library of Congress, and hence in all libraries in the USA, the volumes

of the Encyclopædia of Mathematical Sciences are scattered according to the

author/subject alphabetical order, which makes its use as an encyclopedia ex-

tremely difficult. I have seen, however, the entire collection arranged on one

shelf in certain European universities, for example, some in France.

Of course, in spite of all these precautions, you may discover too late that

your result was known many years ago. It has happened to me to rediscover

the results of many mathematicians. And I am especially grateful to Profes-

sor Milnor who explained to me the relation between the works of G. Tyurina

and my paper of 1972 on the classification of A, D, E singularities, which is

dedicated to her memory.

The present article is based on the first of three lectures delivered by the author at the conference

held on the occasion of his 60th birthday at the Fields Institute (Toronto) in June 1997: “From

Hilbert’s superposition problem to dynamical systems.” In: The Arnoldfest (eds. E. Bierstone,

B. A. Khesin, A. G. Khovanskii and J. E. Marsden). Providence, RI: Amer. Math. Soc., 1999, 1–18

(Fields Inst. Commun., 24). Some material has been added from the article “From superposi-

tions to the KAM theory” originally published at the same time in: Vladimir Igorevich Arnold.

Selecta–60. Moscow: PHASIS, 1997, 727–740 (Russian).
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Inverse Monodromy Problems of the Analytic

Theory of Differential Equations

Translated by R. Cooke

1. Introduction

The foundations of the analytic theory of differential equations were laid in the

work of nineteenth-century mathematicians: Cauchy, Briot and Bouquet, Fuchs,

Picard, Painlevé, and others.

By the end of the first quarter of the twentieth century the main problems

of this theory involving linear equations, such as Hilbert’s 21st problem (the

Riemann–Hilbert problem) or the problem on the Birkhoff standard form were

considered to have been (positively) solved. In a certain sense, this mathematical

discipline found itself on the periphery of the development of mathematics for

a while.

However, after the discovery of the method of isomonodromic deformations

in the early 1970s, the analytic theory of differential equations received a new

powerful impetus for its development. It turned out that many famous nonlin-

ear equations of mathematical physics can be interpreted as the equations of

isomonodromic deformations of systems of linear differential equations. Here

one can obtain important information on the behavior of solutions of these equa-

tions by studying suitable isomonodromic deformations of linear systems. But,

to construct an isomonodromic family one must first solve the inverse problem
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of monodromy theory, the Riemann–Hilbert problem. Thus, this problem again

wound up at the center of attention of many mathematicians.

In its most general formulation, the inverse monodromy problem can be

stated as follows. The system

dy
dz

= B(z)y (1)

of differential equations with meromorphic coefficients and a set of singular

points D = {a1, . . . ,an} on the extended complex plane C defines generalized

monodromy data, among which are:

• the monodromy matrices G1, . . . ,Gn of the system (the matrices that char-

acterize the branching of solutions at singular points);

• the formal monodromy matrices and the exponential parts of formal so-

lutions at singular points (that is, of “solutions” which are written in the

form containing power series with zero radius of convergence, but which

turn the equation into a true equality when substituted formally into it);

• the Stokes matrices at singular points (the matrices that show how the

exponential asymptotics of the solutions of the system varies from one

sector to another when encircling a singular point);

• the transition matrices between distinguished local bases at singular points;

• the orders Ri of the poles of the coefficient matrix of the system at singular

points.

The generalized inverse monodromy problem is to construct a system of

linear differential equations (1) with given singular points and given generalized

monodromy data.

In this general formulation the inverse monodromy problem began to be

studied intensively only in comparatively recent years (since the 1970s in con-

nection with the appearance of the abovementioned method of isomonodromic

deformations). The advantage of an approach like this is that the classical

Riemann–Hilbert problem (Hilbert’s 21st problem for linear Fuchsian systems)

and the problem of reduction to standard Birkhoff form become special cases of

this generalized problem and can be studied from a unified algebraic-geometric

point of view.

In what follows we shall describe the tangled history of the study of these

problems and the interesting applications that arose as a result of the study.
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2. Hilbert’s 21st Problem

Hilbert’s 21st problem can be stated for a special class of linear differential

equations in the complex plane, the so-called Fuchsian equations.

We recall that a linear differential equation

y(p)

+ q1(z)y
(p−1)

+ · · ·+ qp(z)y = 0 (2)

with meromorphic coefficients is called Fuchsian at a point ai if the order of

the pole of the coefficient qi(z) at this point is i. The system (1) of linear

differential equations is called Fuchsian at ai if B(z) has a simple pole at that

point. An equation is called Fuchsian if it has only Fuchsian singular points in

the extended complex plane C. Informally speaking, a Fuchsian equation is an

equation having the most elementary kind of singularities at its singular points.

Fuchsian equations possess the following remarkable property: All of their

solutions have at most power growth at singular points. (Since the solutions in

this case are in general multi-valued functions, when we talk about power growth

we must restrict ourselves to the case when the argument z tends to the singular

point without “wiggling,” always remaining in some sectorial neighborhood of

the point.) In such a case we say that the corresponding singular points are

regular singular points for the equation. Otherwise the singular points are

called irregular.

A classical result of Fuchs says that, for a scalar differential equation (2),

being Fuchsian is equivalent to being regular (see [Ha]). As for the system (1),

the situation is different — the class of systems with regular singular points

contains the class of Fuchsian systems, but does not coincide with it.

An important characteristic of the equation on the extended complex plane

C is its monodromy, which describes the character of the branching of solutions

at singular points.

We choose a basis in the solution space X of Eq. (2) (resp. system (1)) in

a neighborhood of a nonsingular point z0 and continue it along some loop en-

closing singular points. After such an extension the chosen basis becomes some

(generally different) basis of the same space X . The transition matrix between

these bases is called the monodromy matrix corresponding to the chosen loop.

It turns out that this matrix depends only on the homotopy class of the loop

(that is, the loop can be continuously deformed, avoiding singular points, with-

out changing the monodromy matrix), and the monodromy matrices G1, . . . ,Gn

corresponding to continuations along simple loops enclosing the singular points

a1, . . . ,an, satisfy a priori the single relation G1 · · ·Gn = I, where I denotes the

unit matrix.
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When a different basis is chosen, all the monodromy matrices simultaneously

conjugate by some nonsingular matrix S; that is, the monodromy equation is

unique up to conjugation.

In 1857 Riemann [Ri] studied the problem of recovering a Fuchsian equation

from its singular points and monodromy matrices. At the International Mathe-

matical Congress in Paris in 1900, Hilbert included this problem as number 21

in his list of famous problems, stating it as follows (see [Hi]):

Show that there always exists a linear Fuchsian differential equation

with prescribed singular points and a prescribed monodromy group.

We should note the rather rigid categorical formulation of the 21st problem:

Hilbert is not asking whether there exists such an equation (for example, does

there or does there not exist . . . , but simply states the corresponding existence

theorem.

What is the motivation for this problem? Why is it of interest? What

brought it up? Hilbert himself writes very little about it. He merely notes that the

solution of this problem would finish off the analytic theory of linear differential

equations. That is, he advances a purely intramathematical motivation. But,

as often happens with the Hilbert problems, even when formulated in such a

narrowly specialized sense, they have subsequently turned out to be important

both for mathematics as a whole and for its applications. We shall return to this

question a little later. Right now, let us tell a little of the history of the study of

this problem.

Historically speaking, the following three versions of Hilbert’s 21st problem

have been studied:

• for Fuchsian scalar equations;

• for systems of linear differential equations with regular singular points;

• for Fuchsian systems of linear differential equations.

It followed from the papers of Poincaré, published before the statement of

Hilbert’s 21st problem, that for scalar differential equations this problem has

a negative solution, as follows from counting the number Ne of parameters

in Eq. (2) and the number Nm of parameters in the set of monodromy con-

jugacy classes. For Eq. (2) with n singular points the difference Nm −Ne is

Nd = (n− 2)p(p− 1)/2− p + 1 (see [Poi]), and therefore the construction of a

scalar Fuchsian equation from a given monodromy, in the case when the number

n of singular points is larger than 3 or when the order p of the equation is larger
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than 2, requires the introduction of Nd additional singular points, called “false”

points; that is, points at which the coefficients of the equation have poles, but

the solutions are holomorphic. The statement of the Riemann–Hilbert problem,

however, does not admit the appearance of any new singular points.

The most difficult version of the 21st problem, and the most important for

applications, was the one involving the construction of a Fuchsian system of

differential equations, which is often traditionally called the Riemann–Hilbert

problem. That is the problem we shall discuss from now on.

We begin by remarking that, as noted in the introduction, the Riemann–

Hilbert problem is a special case of the generalized inverse monodromy problem:

in this case all the orders Ri of poles are equal to 1, and there are no formal

monodromy matrices, Stokes matrices, or exponential parts of formal solutions.

(Every formal solution of a Fuchsian equation is a genuine solution — see [Wa]

or [Ha].)

For a long time it was believed that the Riemann–Hilbert problem had been

solved completely by J. Plemelj in the 1908 paper [Pl]. Plemelj’s elegant paper,

which relied on the use of the theory of Fredholm integral equations, was a pure

existence theorem and gave a complete solution of the problem that had been

posed.

However, in the early 1980s, gaps were found in his proof ([AI] and [Koh]).

The method of solution proposed by Plemelj amounted to reducing the Riemann–

Hilbert problem to the so-called homogeneous Hilbert boundary-value problem

of the theory of singular integral equations. Using the theory of Fredholm

integral equations, Plemelj constructed a system with regular singular points

having the given singular points and a prescribed monodromy.

Plemelj went on to apply a certain procedure that made it possible to pass

from the constructed system to a different one with the same monodromy and

the same singular points, and which was now a Fuchsian system at all points

with at most one exception. This part of Plemelj’s proof evoked no objections.

As for his assertion that the system could also be brought into Fuchsian form at

this last point, there was no rigorous proof in his paper. However, Plemelj’s rea-

soning can be completed if one of the monodromy matrices Gi is diagonalizable

(see [AI]).

Thus the solvability of the Riemann–Hilbert problem was proved in Plemelj’s

paper for the case when one of the monodromy matrices Gi corresponding to a

circuit of a point ai around a “small” loop is diagonalizable. Plemelj was also

the first to solve this problem in the larger class of systems with regular singular

points.
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After the publication of Plemelj’s paper, the content of papers involving the

Riemann–Hilbert problem shifted mainly into the area of effective construction

of the matrices of a Fuchsian system from prescribed monodromy matrices

G1, . . . ,Gn. In the late 1920s I. A. Lappo-Danilevskii [LD] used the method of

analytic functions of matrices that he had developed to represent the solutions

of a Fuchsian system and the monodromy matrices G1, . . . ,Gn as convergent

series of matrices in the coefficients of this system. The effective solution of the

Riemann–Hilbert problem reduced in this case to inversion of the resulting series

and the study of the question of convergence, which was solved positively in his

paper for matrices G1, . . . ,Gn near the identity. Lappo-Danilevskii had thereby

proved the solvability of the Riemann–Hilbert problem for monodromy matrices

G1, . . . ,Gn near the identity.

In 1956, the solvability of the Riemann–Hilbert problem for 2× 2 mon-

odromy matrices (p = 2) was proved in the case of three singular points by

B. L. Krylov [Kr], who constructed an effective solution of the problem. The

analogous problem for four singular points was studied by N. P. Erugin [Er].

A new stage in the study of the Riemann–Hilbert problem was opened by

the 1957 paper of H. Röhrl [Ro], who was the first to apply the methods of the

theory of fiber bundles to it. Actually, considerations of this type go back to

George Birkhoff [Bi1], who proved Plemelj’s result over again in [Bi2] (and

made the same mistake as Plemelj in the part involving Fuchsian systems).

But at the time there was no adequate geometric language for a corresponding

description.

From the monodromy matrices and singular points, Röhrl constructed the

principal fiber bundle F on C \D with structure group GL(p;C). This fiber

bundle turns out to be holomorphically trivial, so that the system of equations

constructed from the holomorphic trivialization of this fiber bundle defines a

system (1) with the prescribed singular points and monodromy. Röhrl then

extended the fiber bundle F to the entire Riemann sphere C. The extended fiber

bundle always has a meromorphic section, holomorphically invertible except

at points of D. The system (1) constructed from this section has the given

monodromy, and the points a1, . . . ,an are regular singular points for it.

Thus Röhrl had proved Plemelj’s results over again, and also shown the

solvability of the Riemann–Hilbert problem for a noncompact Riemann sur-

face (see [Fo]). Moreover, Röhrl had proved that a problem analogous to the

Riemann–Hilbert problem for an arbitrary Riemann surface was solvable in the

class of systems with regular singular points. (Here, it is true, additional “false”

singularities making no contribution to the monodromy arise in the system

constructed.)
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In 1979 a paper of W. Dekkers appeared [Dek], from whose results it follows

that the Riemann–Hilbert problem is solvable for any set of points a1, . . . ,an and

any 2×2 monodromy matrices.

In general, after Plemelj’s paper, studies in the area of Hilbert’s 21st problem

continued, but not very intensively. A new impetus to the study of this problem

was given, as already noted in the introduction, by the discovery of the method

of isomonodromic deformations in the papers of the American mathematicians

Flaschka and Newell [FN] in the 1970s, and in the papers of the Japanese

mathematicians Jimbo and Miwa [JM].

A new and powerful motive for the study of this problem had appeared, and

many interesting new papers were written on these problems. In the late 1970s

a seminar of the French mathematicians B. Malgrange, A. Douady, L. Boutet

de Monvel (who is also well known as a mathematician who works in the area

of theoretical physics) began in Paris, at which an intensive study was made

of circle of problems just described: the Hilbert problem, and isomonodromic

deformations.

Simultaneously, the seminar of Arnold and Il’yashenko was going on in

Moscow and studying a similar set of topics. And at almost exactly the same

time, in the early 1980s, both discovered the gaps in the proof of Plemelj (see

[AI], [Koh]) mentioned at the beginning of this section. Numerous attempts

were undertaken to recover the lost portion of the proof. However, it turned

out to be not so easy to do this, despite the fact that, without exception, every

mathematician working in this area had the distinct impression that this problem

must have a positive solution, as stated by Hilbert.

It was therefore all the more surprising when a counterexample to Hilbert’s

21st problem, discovered by the author, appeared in late 1989 [Bo4]. It turned

out that the assertion in the problem is in general false, and that in fact not all

given monodromies can be realized by a system of Fuchsian equations.

This event was preceded by the active work between 1973 and 1977 of

the Moscow seminar on the analytic theory of differential equations on com-

plex manifolds, whose participants included A. V. Chernavskii, V. A. Golubeva,

V. P. Leksin, A. A. Bolibruch, and others, and at whose sessions we studied the

papers of Röhrl [Ro], Gérard [Ge], Deligne [Del], and Katz [Ka], and gener-

alizations of the Riemann–Hilbert problem to manifolds of higher dimension.

The organizers of the seminar were V. A. Golubeva and A. V. Chernavskii, who

got Leksin and me involved in this area and became our academic advisors

(together with M. M. Postnikov, who taught us the basics of algebraic topology

in his famous seminar at Moscow University).
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The participants in the seminar discovered that there was no proof in Röhrl’s

paper for the case of Fuchsian systems, but did not find the gap in Plemelj’s

paper; that was not done until several years later in the papers [AI] and [Koh] al-

ready mentioned. After these papers appeared, starting in early 1988 I attempted

to give a proof of the positive solvability of the Riemann–Hilbert problem for

the case of 3×3 monodromy matrices (the smallest dimension monodromy ma-

trices that had not yet been studied), which I succeeded in doing quite quickly

for an irreducible monodromy. However, the reducible case turned out to be

more complicated to study. As a result, and to my surprise (like other mathe-

maticians, I originally had no doubt that the problem could be given a positive

solution), I succeeded in obtaining a counterexample [Bo4].

The counterexample involves the case of four singular points and 3 × 3
monodromy matrices. This is the first dimension and the minimal number

of singular points for which such an example is theoretically possible. The

example itself is rather complicated to discuss: the required monodromy is

defined implicitly in it, as the monodromy of a certain system of equations with

regular singular points; it is then proved that this system of equations cannot be

reduced to a Fuchsian system.

In addition it turns out that this counterexample is unstable in the following

sense. For almost every small variation in the position of the singular points

(preserving the monodromy matrices — that is, under an isomonodromic defor-

mation of the non-Fuchsian system constructed) the new given monodromies

(which differ from the original ones only in the location of the singular points)

can be realized as the monodromy data of some Fuchsian system.

I am all the more grateful to D. V. Anosov, who took on himself the difficult

task of checking this counterexample and even simplified its exposition some-

what [AB]. My close mathematical association with Anosov and other members

of the Department of Ordinary Differential Equations at the Steklov Mathemat-

ics Institute of the Russian Academy of Sciences, where I was hired in 1990,

has meant — and still means — a great deal to me.

The corresponding counterexample in dimension four [AB], [Bo7], which I

obtained later, has a much simpler appearance. Here one can get by with three

singular points and three monodromy matrices. Let us consider a special type

of monodromy, which from now on we shall call a B-monodromy (the term is

due to Il’yashenko [Il1]). A monodromy group is a B-monodromy if the set

of monodromy matrices is reducible, and if the Jordan normal form of each

monodromy matrix Gi consists of exactly one Jordan cell. We recall that a set

of matrices is called reducible if the matrices have a common invariant subspace

different from the zero subspace and the entire space C
p.
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The following proposition turns out to be true (see [Bo13]):

If a B-monodromy can be realized as the monodromy group of

some Fuchsian system, then the product of the eigenvalues of the

monodromy matrices G1, . . . ,Gn must equal 1.

Consider the matrices

G1 =

⎛⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎠ , G2 =

⎛⎜⎜⎝
3 1 1 −1

−4 −1 1 2
0 0 3 1
0 0 −4 −1

⎞⎟⎟⎠ ,

G3 =

⎛⎜⎜⎝
−1 0 2 −1

4 −1 0 1
0 0 −1 0
0 0 4 −1

⎞⎟⎟⎠
and an arbitrary set of points a1, a2, a3.

We remark that G1 ·G2 ·G3 = I, that G2 can be transformed into G1, and that

G3 can be transformed into a Jordan cell with eigenvalue −1. Indeed, for G2

we have

S−1
2 G2S2 =

⎛⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎞⎟⎟⎠ , S2 =

1
3

⎛⎜⎜⎝
3 0 0 0

−6 3 −3 4
0 0 1 −1
0 0 −2 3

⎞⎟⎟⎠ ,

while for G3 we obtain

S−1
3 G3S3 =

⎛⎜⎜⎝
−1 1 0 0

0 −1 1 0
0 0 −1 1
0 0 0 −1

⎞⎟⎟⎠ , S3 =

1
64

⎛⎜⎜⎝
0 16 4 3

64 0 0 0
0 0 0 −4
0 0 −16 −12

⎞⎟⎟⎠ .

The matrices G1, G2, and G3 have a common invariant subspace of dimen-

sion 2. Therefore the set of matrices under consideration satisfies the definition

of a B-monodromy. But the product of the eigenvalues of these matrices is −1,

and not 1. Hence, according to the above proposition, the set of these matrices

cannot be the monodromy of any Fuchsian system. That is, these monodromy

data provide a counterexample to Hilbert’s 21st problem.

The method that succeeded in solving Hilbert’s 21st problem came partly

from algebraic geometry and was begun by the papers of Röhrl [Ro], Lev-

elt [Le], Deligne [Del], and other excellent mathematicians working in this area.
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It consists of the following. We first construct all possible holomorphic vector

bundles on the Riemann sphere with a logarithmic connection having prescribed

monodromy and given singular points. Thus the original problem reduces to the

question whether at least one of the series of bundles constructed is trivial; for

in a trivial bundle a logarithmic connection defines a Fuchsian system of differ-

ential equations. We then study the question of the triviality of the bundles con-

structed and obtain conditions for solvability of the Riemann–Hilbert problem.

The key point in this study is the fact that one can connect the asymptotics of

the solutions of a Fuchsian system at singular points and the invariants of a cer-

tain holomorphic vector bundle (the so-called canonical extension) constructed

from the original monodromy. This makes it possible to obtain necessary and

sufficient conditions for realizability of the B-bundles noted above by a Fuchsian

system in terms of these invariants.

The negative solution of the problem that was obtained did not mean that

studies in this area were completely finished. This result rather posed a large

number of new and interesting questions that were important for applications.

For example, how can one describe the class of monodromy groups that are

nevertheless realizable by Fuchsian systems? An answer (though incomplete) to

that question was also obtained: thus, for example, the author and V. P. Kostov

(independently) were able to prove that any monodromy data with an irreducible

set of matrices can be realized as the monodromy data of some Fuchsian system

(see [Bo5], [Ko1]). In [AB] and [Ko2] the codimension of the set of monodromy

data not realizable by Fuchsian systems in the space of all monodromy data was

found. It equals (2n− 1)(p− 1), where n is the number of singular points and

p× p is the dimension of the monodromy matrices.

At present, a whole series of sufficient conditions for realizability of a

monodromy has been obtained, but in general none of these conditions can be

“stretched” into necessary conditions (see [Bo7], [Bo10], [Bo15]).

The negative solution of the Riemann–Hilbert problem means that the gen-

eralized inverse monodromy problem also has a negative solution in general.

3. The Birkhoff Standard Form

Speaking informally, the Birkhoff standard form of a system of linear differential

equations in a neighborhood of a singular point is the simplest form to which

one can reduce the system by using a suitable change in the unknown function.

This change is assumed to be either holomorphically invertible at a singular

point, in which case one speaks of an analytic transformation, or meromorphic

at a singular point, in which case one speaks of a meromorphic transformation.
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Let us consider a system of linear differential equations in a neighborhood

of infinity

z
dy
dz

= C(z)y, (3)

with coefficient matrix C(z) of dimension p× p and of the form

C(z) = zr
∞

∑
n=0

Cnz−n, C0 �= 0, r � 0, (4)

where the series converges in some neighborhood O∞ = {z ∈ C : |z| > R} of

infinity. If r > 0, this singularity is, in general, an irregular singular point.

The series (4) can be separated into two parts:

C(z) = Ds + Dg, where Ds = zr
r

∑
n=0

Cnz−n,

and Dg is the part consisting of negative powers of z.
If the term Ds were missing, the point ∞ would be a nonsingular point of

the system, which is easy to verify using the change of coordinates z = 1/t and

checking that the coefficient matrix of the transformed system is holomorphic at

t = 0. By the same procedure, one can easily verify that the presence of any term

of the polynomial Ds leads to a pole in the transformed coefficient matrix. In

other words, the polynomial Ds is responsible for the singularity at infinity, and

the term Dg is, at first sight, not responsible. A natural question arises: Can the

nonsingular term Dg be removed by an analytic change of the unknown function,

making the system (3) into a system with a polynomial coefficient matrix?

In 1913 Birkhoff gave a positive answer to this question [Bi3]. Since that

time, the transformed system (3) with polynomial coefficient matrix has been

called the Birkhoff standard form of the original system.

However, Birkhoff’s proof turned out to have an error, and in the early 1950s

Gantmacher [Ga] produced a counterexample to Birkhoff’s proposition. As it

turned out, Birkhoff’s proof goes through only for the case when the monodromy

matrix of the system (3) can be diagonalized at infinity. It was later established

that the obstacle to the analytic reduction of a system to Birkhoff standard form

is its reducibility.

A system (3) is reducible if it can be transformed analytically into a system

(3) with coefficient matrix C having block upper-triangular form

C(z) =

(
C′ ∗
0 C′′

)
. (5)

Otherwise the system is irreducible.
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Jurkat, Lutz, and Peyerimhoff [JLP] proved in 1976 that every irreducible

system of two equations can be analytically transformed to Birkhoff standard

form. In 1990, Balser [Ba2] obtained an analogous result for an arbitrary ir-

reducible system of three equations. The present author succeeded in proving

[Bo6] that

every irreducible system (3) can be transformed to Birkhoff standard

form using an analytic transformation.

The method of proof is really the same as in the proof of the realizability

of every irreducible monodromy by a Fuchsian system. This depends on the

fact that the problem of Birkhoff standard form, which at first sight appears to

be a local problem (both the original system and the required transformation

are defined only locally in a neighborhood of infinity), is actually global in

character, since the resulting system is now defined on the entire Riemann

sphere. For that reason, it is natural to restate it in terms of fiber bundles and

connections, after which the entire scheme of reasoning used in the case of an

irreducible monodromy in the Riemann–Hilbert problem carries over (with some

simplifications) to this case.

At present, numerous sufficient conditions have been obtained for reducible

systems, under which they can be reduced to systems in Birkhoff standard form

by an analytic transformation (see [Bo8], [Sa]).

A natural generalization of the preceding problem to a larger class of trans-

formations is the question whether it is possible to reduce a system of linear

differential equations to Birkhoff standard form using a meromorphic transfor-

mation not exceeding the order of the pole of the system at a singular point.

(While an analytic transformation automatically preserves the order of a pole of

a coefficient, a meromorphic transformation may change it, and a system with a

higher-order pole at a singular point is in some sense “more complicated” than

the original system, so that it would not make sense to do the transformation.)

This problem is of a great interest in connection with the fact that meromor-

phic transformations change neither the Stokes matrices, nor the monodromy of

the system, nor the structure of the formal solution. The question, whether it is

possible to reduce a system to Birkhoff standard form meromorphically, arises

in the study of the inversion problem in differential Galois theory; in comput-

ing Stokes matrices; in the proof of the Painlevé properties for isomonodromic

deformations of linear systems with irregular singular points; and the like.

In 1963, Turrittin [Tu] proved that if the eigenvalues of the matrix C0 in (4)

are pairwise distinct, the system (3) can be reduced to Birkhoff standard form

by a meromorphic transformation without increasing the order of the pole at a

singular point.
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In 1976, Jurkat, Lutz, and Peyerimhoff proved [JLP] that the problem of

reducing a system of equations to Birkhoff standard form by a meromorphic

transformation always has a positive solution in the case of a system of two

equations. In 1989, Balser [Ba2] proved an analogous result for a system

of three equations, and Bryuno [Br] showed in 2000 that such a reduction is

possible for every upper-triangular system.

For systems of four or five equations it has been proved that if the system

(3), (5) consists of two irreducible blocks C′, C′′, then this problem also has

a positive solution [Bo9]. However, in general, despite its being a problem of

current interest and the simplicity of its statement, the problem of meromorphic

transformation to Birkhoff standard form has not yet been solved.

It turns out that this problem is a special case of the generalized inverse mon-

odromy problem. Indeed, consider the monodromy matrix G of the system (3);

the formal monodromy; the Stokes matrices; the exponential part of the formal

solution; and the order r + 1 of a pole of the coefficient matrix of the system

at infinity. To these generalized monodromy data, let us add a singular point

at zero, and a monodromy matrix equal to G−1 at zero, and let us set R0 = 1.

It turns out that the original system can be brought into Birkhoff standard form

if and only if the generalized inverse monodromy problem with these data has a

positive solution. This follows from the result of Sibuya [Si], who proved that

any two systems with the same generalized monodromy data at a singular point

are locally locally meromorphically equivalent (in a neighborhood of the point).

4. Applications

Before passing to the applications of the result discussed in the preceding two

sections, let us return for a while to the generalized inverse monodromy problem

stated in the introduction. The method of studying this problem consists of the

following.

For each singular point we realize the generalized monodromy data involving

that point by a local system of differential equations (which can always be done

according to a theorem of Sibuya [Si]). From the resulting family of local

differential equations and the monodromy G1, . . . ,Gn one can construct a vector

bundle on the extended complex plane with a meromorphic connection having

the same generalized monodromy data as the original problem. If the bundle

so constructed is holomorphically trivial, this connection defines a system of

equations that provides the solution of the problem.

The local system constructed from monodromy data is not unique. If we

consider different local realizations of the generalized monodromy data, we
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will obtain a different nonequivalent bundle. Thus, one can construct a whole

series of bundles with meromorphic connections having prescribed generalized

monodromy data. Just as in the case of the classical Riemann–Hilbert problem,

we obtain the following proposition:

The generalized inverse monodromy problem has a positive solution

if and only if at least one of the bundles constructed is holomor-

phically trivial.

Every vector bundle of rank p on the extended complex plane can be ex-

panded as the direct sum of one-dimensional bundles, each of which in turn is

a tensor degree of a bundle associated with the Hopf bundle [OSS]. Thus the

holomorphic type of every vector bundle is determined completely by a set of

p integers (tensor degrees) c1, . . . ,cp arranged in increasing order. This set is

called the splitting type of the bundle. The bundle is holomorphically trivial if

and only if all the numbers ci are zero. The sum of the numbers ci equals the

degree of the bundle, and it is zero if and only if the bundle is topologically

trivial. It is clear that holomorphically trivial bundles should be sought among

the subset of constructed bundles of degree zero.

In algebraic geometry there is a concept of stability of a bundle with a

connection (regarded as a pair), which turns out to be extremely useful in the

study of inverse monodromy problems. For a bundle of degree zero this concept

is defined as follows.

A fiber bundle F of degree zero with a connection ∇ is called

stable (as a pair) if the degree of every subbundle F ′
of this bundle,

stabilized by the connection, is negative.

We recall that a subbundle F ′ is stabilized by a connection if all the covariant

derivatives, constructed using the connection, map local sections of F ′ into local

sections of the same subbundle F ′.
One of the strongest sufficient conditions for a positive solvability of the

generalized inverse monodromy problem is a direct generalization of the cor-

responding sufficient condition for the classical Riemann–Hilbert problem of

[Bo15], and can be stated as follows.

Suppose that for at least one singular point the corresponding expo-

nential part of a formal solution has no roots of z in an exponent. If

there is at least one stable pair in the series of bundles with connec-

tions constructed from the monodromy data, then the corresponding

inverse monodromy problem has a positive solution.
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It is interesting to trace how sufficient conditions for an irreducible mon-

odromy in the case of the Riemann–Hilbert problem and sufficient conditions

for an irreducible system in the case of Birkhoff standard form follow from this

condition.

Both the irreducibility of the monodromy and the irreducibility of the system

mean that every bundle constructed from the initial data (from the monodromy in

the first case and from the system in the second) have no subbundles stabilized

by a connection; that is, every bundle with connection constructed from these

data is automatically stable (as a pair). Since in both cases there are points at

which there are no formal solutions at all (in the first case all points have this

property, in the second, the point 0 has it), we find ourselves in possession of

the hypotheses of the proposition above, from which follow the abovementioned

sufficient conditions in the Riemann–Hilbert problem and in the problem of

Birkhoff standard form.

We remark here that if, in the generalized inverse monodromy problem, one

of the conditions is weakened so that the required system has a pole of higher

order at one of its singular points, such a problem will always have a positive

solution. This proposition is related to the positive solvability of the classical

Hilbert problem in the class of systems with regular singular points and follows

from the fact that every holomorphic vector bundle on the extended complex

plane has a meromorphic trivialization that is holomorphic except at any pre-

assigned point ai. The connection constructed along with the bundle from the

original monodromy data will define in that trivialization a system of linear

differential equations with all the required properties except one: the order of

the pole of this system at ai will, in general, be higher than the prescribed order.

However, in many important applications the orders of the poles are rigidly

fixed.

Let us now turn to the applications of the results presented above. The

methods developed in solving the Riemann–Hilbert problem make it possible

to prove the following proposition on the connection of Fuchsian systems and

Fuchsian scalar differential equations [Bo7]:

From every Fuchsian equation on the Riemann sphere one can

construct a Fuchsian system (1) with the same singular points and

the same monodromy.

The converse, of course, is not true. As already noted in Section 2, in the con-

struction of a scalar equation from a prescribed monodromy, additional singular

points unavoidably arise in general. How can one estimate the number of such

points?
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Let us consider, as was done in the study of the Riemann–Hilbert problem,

the set F of bundles with logarithmic connections, constructed from a given

irreducible monodromy. For an arbitrary bundle F ∈ F consider the number

γ(F) = pc1 −deg(F) = pc1 −
p

∑
i=1

ci,

where the numbers c1, . . . ,cp determine the type of splitting of the bundle F .

Let us call the number

γm = sup
F∈F

γ(F)

the maximal Fuchsian weight of the given irreducible monodromy. According to

[Bo7], this number does not exceed (n−2)p(p−1)/2. It turns out to be closely

connected with the asymptotics of the solutions of Fuchsian systems with the

given monodromy.

In terms of the maximal Fuchsian weight of a monodromy, one can express

the minimum possible number of additional false singular points m0 (counted

according to multiplicities, which equal the orders of the zeros of the Wronskian

of the corresponding “minimal” Fuchsian equation) that arise in constructing a

scalar Fuchsian differential equation with irreducible monodromy [Bo7]:

The minimum possible number m0
of additional false singular points

that arise in the construction of a scalar Fuchsian differential equa-

tion with irreducible monodromy is

m0
=

(n−2)p(p−1)

2
− γm.

Hence it follows that an irreducible monodromy can be realized by a scalar

Fuchsian differential equation without any additional singular points if and only

if the maximal Fuchsian weight assumes the largest possible value, equal to

(n−2)p(p−1)/2.

Let us return to the counterexample to the Riemann–Hilbert problem given

in Section 2. This counterexample is independent of the location of the singular

points and works for any a1, a2, a3. However, for the theory of isomonodromic

deformations the “unstable counterexamples” (of the sort mentioned in Section 2

just before the detailed counterexample given there) are of particular interest be-

cause the locations of the singular points for which the given monodromy cannot

be realized by a Fuchsian system are movable singularities for the Schlesinger

equation of isomonodromic deformations.
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We recall that a family of systems of equations

dy
dz

= B(z,a)y, (6)

depending analytically on a parameter a is isomonodromic if for all fixed values

of the parameter the corresponding systems of equations all have the same

monodromy. The property of isomonodromicity imposes certain requirements on

the coefficients of the family (6), which are called isomonodromic deformation

equations.

The best-known isomonodromic deformation equation is the Schlesinger

equation. It is a compatibility (integrability) condition for the Fuchsian isomon-

odromic family

dy
dz

=

( n

∑
i=1

Bi(a)

z−ai

)
y, (7)

where the locations of the singular points a1, . . . ,an are the parameters and where

we use the notation a = (a1, . . . ,an) for points of C
n.

The Schlesinger equation has the following form:

dBi(a) = −
n

∑
j=1, j �=i

[Bi(a),B j(a)]

ai −aj
d(ai −aj). (8)

Together with the initial conditions

Bi(a
0
1, . . . ,a

0
n) = B0

i , i = 1, . . . ,n,

which can be regarded as the coefficient matrices of the original Fuchsian system

subject to deformation, Schlesinger’s equation defines an integrable system of

nonlinear differential equations.

The Schlesinger equation has been studied by Schlesinger himself [SH],

Jimbo and Miwa [JM], Malgrange [Ma1], Its and Novokshenov [IN], Sibuya

[Si], and other mathematicians, from various points of view.

It turns out [Ma1] that for all initial data in some neighborhood of the point

a0
= (a0

1, . . . ,a
0
n) there exists a unique solution B1(a), . . . ,Bn(a) of this equation,

and that solution is holomorphic in the given neighborhood.

The solutions B1(a), . . . ,Bn(a) possess the following remarkable prop-

erty: they can be extended over the entire universal covering of the space

C
n \⋃i�= j{ai − aj = 0} as meromorphic functions of the argument a; that is,

these extensions have elementary singularities, namely poles at the singular

points ([JM], [Ma1]). In that case, we say that the solutions of the Schlesinger
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equation have the Painlevé property. The singular points of these extended

functions are called movable singularities, since their location changes when the

initial conditions are changed.

Miwa’s theorem [JM] gives a description of the set Θ of movable points of

the Schlesinger equation. It turns out that this set is defined by the zeros of a

function τ such that

dτ =

1
2 ∑

i, j, i�= j

tr
(
Bi(a)B j(a)

)
d(ai −aj)

ai −aj
.

The singular set Θ can be also described as follows. As already noted,

the initial data of the Schlesinger equation give a Fuchsian system with singular

points a0
1, . . . ,a

0
n and coefficient matrices B0

1, . . . ,B
0
n. This system can be regarded

as a connection on the trivial bundle on the extended complex plane. Consider an

isomonodromic deformation of this bundle with connection, where the singular

points a1, . . . ,an once again occur as the parameters of the deformation. Under

small deformations the bundle remains trivial, and consequently the connection

defines a family of Fuchsian systems whose coefficients are solutions of the

Schlesinger equation. The set of singular points Θ can be interpreted as the set

at whose points the deformed bundle becomes holomorphically nontrivial.

Consider a point a∗ of Θ and splitting type c1, . . . ,cn of the deformed bundle

at this point. It turns out that there is a remarkable connection between the

numbers c1, . . . ,cn and the orders of the poles of solutions of the Schlesinger

equation at the point a∗. Thus, for example, for a system of two equations the

orders of such poles do not exceed c1 − c2, which in turn is bounded by n−2
(see [Bo12], [Bo14]).

An isomonodromic deformation preserves not only monodromy, but also the

asymptotics of the solutions at singular points. Therefore (see [Ma1], [Bo14]),

the movable singular points of the Schlesinger equation can be

interpreted as the points for which the generalized Riemann–Hilbert

problem, which consists of constructing a Fuchsian system with

given monodromy and given asymptotics of the solution, has a

negative solution.

Everything that has been said about isomonodromic deformations of Fuch-

sian systems and the Schlesinger equation can be carried over to the case of

isomonodromic deformations of linear systems of differential equations with ir-

regular singular points (see [JM], [Ma2], [Pa]). Only here one must interpret

monodromy data to mean generalized data, including formal monodromy matri-

ces, Stokes matrices, and transition matrices between local solutions at singular
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points, along with ordinary monodromy matrices. The locations of the singu-

lar points and/or the exponents in the exponential parts of formal solutions at

singular points enter here as the parameters of the deformation. In this case

the movable singular points of equations of isomonodromic deformations are

connected not with counterexamples to the classical Riemann–Hilbert problem,

but with negative solutions of the corresponding generalized inverse monodromy

problem, in which the exponential parts of formal solutions have been removed

from the monodromy data.

Interest in isomonodromic deformations of linear systems is largely due to

the circumstance that the famous Painlevé equations (six nonlinear ordinary

second-order differential equations having the property that movable singular

points of their solutions are poles) can be interpreted as isomonodromic de-

formation equations of linear systems of two equations. For that reason, the

singular points of these equations and the orders of the poles of their solutions

can be studied by the same procedure used to study the Schlesinger equation.

The second Painlevé equation turns out to be closely connected with the

problem of Birkhoff standard form (as a special case of the generalized inverse

monodromy problem), and the sixth Painlevé equation is connected with the

classical Riemann–Hilbert problem with four singular points. For more details

on the connection of the Painlevé equations with isomonodromic deformations,

see [IN], [Iw], [Bo14]. For the connection of this problem with the theory of

Feynman integrals, see [Go1].

5. Conclusion

The Riemann–Hilbert problem admits the following generalizations.

Instead of the extended complex plane, one can consider a compact Riemann

surface of genus g. In this case, it follows from dimensional considerations that,

in the construction of a Fuchsian system with prescribed monodromy, additional

singular points necessarily arise in general. Estimating the number of such points

is an interesting question.

Another way of generalizing the Riemann–Hilbert problem to a compact

Riemann surface (proposed in [EV]) is to replace the Fuchsian system by a semi-

stable bundle of degree zero with a logarithmic connection having prescribed

singular points and prescribed monodromy. We recall that a vector bundle of

degree zero is semi-stable if the degree of each of its subbundles is at most zero.

This concept was introduced by Mumford in the 1960s and is more general than

the later concept of stability for a bundle–connection pair, which was discussed

in the preceding section.
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On the extended complex plane every semi-stable bundle of degree zero

has zero splitting type, that is, it is holomorphically trivial, and therefore a

logarithmic connection in such a bundle defines a Fuchsian system with given

monodromy data. Consequently one can indeed regard the problem of construct-

ing a semi-stable bundle of degree zero, with a logarithmic connection having

prescribed singular points and monodromy on a compact Riemann surface, as

a generalization of the classical Riemann–Hilbert problem. Practically all the

results on the Riemann–Hilbert problem carry over to this case, including the

counterexamples presented in Section 2 above (see [EV], [EH], [Bo15]).

The papers of Röhrl [Ro] and Deligne [Del] gave an impetus to the for-

mulation and study of the multi-dimensional Riemann–Hilbert problem, which

consists of studying the question whether there exists a completely integrable

Pfaffian system of Fuchsian type on a complex analytic manifold Mn, having a

prescribed divisor of singularities D and a prescribed monodromy.

The first results obtained in this direction involved the investigation of trivial

cases: a contractible Stein manifold (Gérard [Ge] proved the solvability of the

Riemann–Hilbert problem in this case) and n-dimensional complex projective

space with commutative monodromy (see [Bo3], [Go2], [Lek1]). In [Bo3]

and [Lek2] the first examples of a negative solution of the multi-dimensional

Riemann–Hilbert problem were obtained.

The positive solvability of the multi-dimensional Riemann–Hilbert problem

was proved on a projective manifold and on a Stein manifold in the class of sys-

tems with additional false singularities [Su], and on a connected Stein manifold

of complex dimension 2 with the condition H2
(Mn,Z) = 0 [Ki]. Necessary con-

ditions for solvability of the Riemann–Hilbert problem in terms of the structure

of the fundamental group were obtained in [Hai]. One of the obstacles on the

way to the study of the multi-dimensional Riemann–Hilbert problem is that the

problem of describing the local solution space of a Pfaffian system of Fuchsian

type has not yet been solved. (The structure of this space for a divisor D with

normal intersections was studied in [YT], [Bo1], [Bo2].)

The nonlinear Riemann–Hilbert problem (which is nontrivial even in the

case of a scalar nonlinear equation of first order) on the extended complex plane

was investigated in [Il2].

In conclusion we state several unsolved problems that are of interest both for

the analytic theory of differential equations and for its numerous applications:

• The problem of meromorphic transformation to Birkhoff standard form.

• The problem of determining whether it is possible to construct a system

with regular singular points on a compact Riemann surface with prescribed
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singular points and monodromy (and estimating the number of additional

singular points that arise).

• The following problem is of great interest for the theory of isomonodromic

deformations. Is it possible to construct, from an irreducible monodromy,

a Fuchsian system with a given monodromy and preassigned given ad-

missible values of the asymptotics of solutions at singular points? The

answer to this question is negative in general [Bo11]. In this connec-

tion the following important question remains open: For which irreducible

monodromy data is the number of such “forbidden” asymptotics finite?

(Here sets of asymptotics are considered only up to the equivalence de-

fined by simultaneously adding the same integer to all asymptotics at the

same point, and subtracting that same integer from all asymptotics at some

other point.)

• The following natural problem is also not yet solved. If the monodromy

matrices of some Fuchsian system have block-diagonal form, is it true

that this Fuchsian system is meromorphically equivalent to a direct sum

of Fuchsian systems (that is, a system whose coefficient matrix has the

same block-diagonal form)?

We remark that a problem close to the last has recently been solved by

S. Malek [Ml], who proved that if a reducible monodromy can be realized by a

Fuchsian system, then it can also be realized by a Fuchsian system with block-

diagonal coefficient matrix. (The dimensions of the subblocks of the system

need not coincide with the character of reducibility of the monodromy, and this

prevents the direct application of this result to the solution of the problem stated

above.)
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[Del] P. Deligne. Équations différentielles à points singuliers réguliers. Berlin – New

York: Springer, 1970 (Lecture Notes in Math., 163).

[Do] V. A. Dobrovol’skii. Essays on the Development of the Analytic Theory of Dif-

ferential Equations. Kiev: Vyshcha Shkola, 1974 (Russian).

[EH] H. Esnault, C. Herling. Semistable bundles on curves and reducible represen-

tations of the fundamental group. Internat. J. Math., 2001, 12(7), 847–855;

http://www.arXiv.org/abs/math.AG/0101194

[Er] N. P. Erugin. The Riemann Problem. Minsk: Nauka i Tekhnika, 1982 (Russian).

[EV] H. Esnault, E. Viehweg. Semistable bundles on curves and irreducible repre-

sentations of the fundamental group. In: Algebraic Geometry: Hirzebruch 70

(Warsaw, 1998). Providence, RI: Amer. Math. Soc., 1999, 129–138 (Contemp.

Math., 241).

[Fo] O. Forster. Lectures on Riemann Surfaces, 2nd edition. Berlin: Springer, 1981.

[FN] H. Flaschka, A. C. Newell. Monodromy and spectrum preserving deformations.

Commun. Math. Phys., 1980, 76, 67.

[Ga] F. R. Gantmacher. Theory of Matrices (transl. K. A. Hirsch). New York: Chelsea,

1959.

[Ge] R. Gérard. Le problème de Riemann–Hilbert sur une variété analytique com-
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häuser, 1982.

[Hai] R. M. Hain. On a generalization of Hilbert’s 21st problem. Ann. Sci. École Norm.
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[Ma2] B. Malgrange. Sur les déformations isomonodromiques. II. Singularités irrégul-

ières. In: Mathematics and Physics (Paris, 1979–1982). Boston, MA: Birk-
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L. D. Faddeev

What Modern Mathematical Physics

Is Supposed to Be

Translated by R. Cooke

When someone wants to know what my area of research is, I call myself a

specialist in mathematical physics. Since I have been studying science for more

than 40 years, I have formed a certain interpretation of the phrase mathematical

physics. Cynics or purists sometimes claim that it is neither mathematics nor

physics, and add comments of varying degrees of acerbity. Naturally, these com-

ments demand a response, and in this short article I hope to expound briefly on

my understanding of the question, thereby adding something to the discussion.

The situation is complicated by the fact that the term mathematical physics

(which we shall frequently abbreviate to MPh below) is used in very different

senses and may have several completely different meanings. This meaning

changes over time and depends on the location and personal interests of the

person using the phrase.

I have not studied the history of science very thoroughly but, to my knowl-

edge, early in the twentieth century the term MPh was practically equivalent to

the concept of theoretical physics. Both Henri Poincaré and Albert Einstein were

called mathematical physicists. The newly created departments of theoretical

physics in Britain and Germany were being called departments of mathematical

physics. It is apparent from documents in the archives of the Nobel Committee

that MPh had the right to participate fully in the text of the nominations and
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evaluations of candidates for the Nobel Prize in physics [1]. Roughly speaking,

theoretical papers using mathematical formulas were regarded as MPh.

However, in the course of the unprecedented blossoming of theoretical

physics in the 1920s and 1930s, an essential separation of the terms theoret-

ical and mathematical physics occurred. For many MPh came to be reduced to

the important but ancillary course “Methods of Mathematical Physics,” with a

collection of useful mathematical techniques. The classical example is the text

of P. Morse and H. Feshbach [2], which was aimed at a wide circle of physicists

and engineers.

In the meantime, mathematical physics began to be understood in the math-

ematical sense as the theory of partial differential equations and calculus of

variations. The monographs of R. Courant and D. Hilbert [3] or S. L. Sobolev

[4] are outstanding examples of such an interpretation of MPh. Existence and

uniqueness theorems based on variational principles, a priori estimates and em-

bedding theorems for function spaces comprise the main content of this area.

Being a student of O. A. Ladyzhenskaya, I was immersed in this environment

from the third year on in the Department of Physics at Leningrad University.

My classmate N. N. Ural’tseva now heads the Chair of Mathematical Physics at

the university with precisely that understanding of its meaning.

The sources of problems for MPh in the sense just described are mainly

geometry and branches of classical continuum mechanics such as fluid dynam-

ics and elasticity theory. Closely related in spirit, but not in methods, is that part

of MPh generated by problems of quantum theory, which has been developed

actively and independently since the 1960s. Here the principal machinery is

functional analysis, including the spectral theory of operators in Hilbert space

and the mathematical theory of scattering, as well as Lie groups and their rep-

resentations. The main object of investigation is the Schrödinger operator. And

although the specific content of this part of mathematical physics differs strongly

from the content of the classical version, the methodological aspects remain the

same. We see searches for rigorous mathematical theorems concerning results

that physicists often understand already in their own language.

I was born as a scholar in just such an environment, having been educated

in the Chair of Mathematical Physics at Leningrad University. This unique chair

was founded in the 1930s by V. I. Smirnov with the active support of V. A. Fock,

who had a wide circle of mathematical interests. Originally the chair (possibly

the first of its kind in the world) played an auxiliary role in the department,

providing all the mathematical courses. In 1955 it received permission to offer a

major, and I was in the first group of students majoring in mathematical physics.

As I mentioned above, O. A. Ladyzhenskaya was our main professor. Although

her own interests concerned mainly the theory of nonlinear partial differential
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equations and fluid dynamics, she ventured to point me toward quantum theory.

I was charged with reading the book Mathematical Aspects of Quantum Field

Theory by Kurt Friedrichs and reporting on it to a special seminar of our group,

which consisted of five people. At that time my colleagues (the students of the

chair of theoretical physics) were avidly reading the first monograph on quantum

electrodynamics by A. Akhiezer and V. Berestetskii. The difference in language

and priorities was obvious, but it gave me the chance to learn two approaches

to quantum theory at once.

Ladyzhenskaya, who remained my advisor when I was a graduate student,

gave me complete freedom in the choice of topics and reading matter. As a

result, I read mathematical papers on the direct and inverse scattering prob-

lem by I. M. Gel’fand and B. M. Levitan, V. A. Marchenko, M. G. Krein, and

A. Ya. Povzner and also physics papers on the formal theory of scattering by

M. Gell-Mann, M. Goldberger, J. Schwinger, and H. Eckstein. The papers of

I. Segal, L. van Hove, and R. Haag complemented the early impressions of quan-

tum field theory that I had acquired from the book of Friedrichs. In the course

of all this self-education my understanding of the nature and goals of mathemat-

ical physics gradually diverged from the prevailing views in Smirnov’s chair.

I acquired the conviction that instead of proving existence theorems it would

be more worthwhile to do something that my colleagues in theoretical physics

didn’t know about. My first paper on uniqueness of the inverse scattering prob-

lem for the multi-dimensional Schrödinger operator was duplicated in the USA

a couple of years later. Later on, I worked on two aspects of scattering theory —

the multi-dimensional inverse problem and the three-particle problem — starting

practically in a void.

This attitude to mathematical physics was only strengthened when I began

to work on quantum field theory in the mid-1960s. As a result, the following

understanding of the essence of mathematical physics formed in my mind: its

main purpose is to use mathematical intuition to derive genuinely new results

in basic physics. In that sense, mathematical physics and theoretical physics are

rivals. Their striving to discover structural laws of matter coincide. However,

the methods and even the comparative estimate of importance of the results may

be significantly different.

Here it is appropriate to explain in what sense I am using the term basic

physics. The adjective basic, when applied to classical science, has a large

number of interpretations. In its broadest sense it is used to characterize research

into new regularities in the world around us. In the narrow sense it applies only

to the search for fundamental laws to which these regularities can be reduced.

For example, all chemical regularities are theoretically derivable from the

Schrödinger equation for a system of electrons and nuclei. In other words,



78 L. D. Faddeev

the fundamental basis of chemistry has already been discovered, in the narrow

sense. This, of course, does not deprive chemistry of the right to call itself a

basic science in the broader meaning of the term. The same can be said about

mechanics and the modern physics of condensed matter. Although the majority

of physical research is concentrated in the latter area at present, it is clear that

all of its successes, including the theory of superfluidity and superconductivity,

the theory of Bose–Einstein condensation, and the quantum Hall effect, have as

a basis nonrelativistic multi-particle quantum theory.

Elementary particle physics remains an unfinished basic problem in the nar-

row sense. This places that area of physics in a special position. And it is here

that modern MPh has the greatest chance for a breakthrough.

Up to the present, all of physics has developed in accordance with a tra-

ditional cycle: experiment – theoretical interpretation – new experiment. This is

true also of elementary particle physics.

Traditionally, theory came after experiment. That fact alone imposed severe

restrictions on theoretical work. Even the most brilliant idea, if it received no

support from the then-current level of experiment, was immediately declared

false and rejected. It is typical that the role of censor was often played by the

theoreticians themselves; and, as far as I can judge, the great L. D. Landau and

W. Pauli were the strictest among them. There were, of course, weighty grounds

for all this.

On the other hand, the development of mathematics, on which applications

indisputably exerted a strong influence, has always had its own internal logic.

Ideas were esteemed not in connection with their practical importance, but on the

basis of aesthetic criteria. In that sense we can speak of totalitarianism in physics

and democracy in mathematics and its inherent intuition. And it is precisely this

freedom that may turn out to be useful for elementary particle physics, which

up to now has been based on progress in accelerator technology. The high cost

and limited potential of the latter will soon become an insuperable obstacle to

further development. And here mathematical intuition may become an adequate

substitute. Famous theoretical physicists with mathematical inclinations have

spoken of this many times.

Here, for example, is what P. Dirac wrote in the early 1930s [5]:

There are at present fundamental problems in theoretical physics

awaiting solution, e.g., the relativistic formulation of quantum me-

chanics and the nature of atomic nuclei (to be followed by more

difficult problems such as the problem of life), the solution of which

problems will presumably require a more drastic revision of our fun-

damental concepts than any that have gone before. Quite likely it
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will be beyond the power of human intelligence to get the neces-

sary new ideas by direct attempts to formulate expermental data in

mathematical terms. The theorist in the future will therefore have

to proceed in a more indirect way. The most powerful method

of advance that can be suggested at present is to employ all the re-

sources of pure mathematics in attempts to perfect and generalise the

mathematical formalism that forms the existing basis of theoretical

physics, and after each success in this direction, to try to interpret

the new mathematical features in terms of physical entities . . .

Similar views have been expressed more recently by C. N. Yang. I have not

found a suitably compact quotation, but the spirit of his commentaries on his

work, included in the collection [6], undoubtedly expresses this attitude. It has

permeated all the private discussions that I have had with him since the early

1970s.

I believe that the dramatic story of the confirmation of gauge fields, as

the basic means of describing interactions in quantum field theory, is a good

illustration of the influence of mathematical intuition on the development of

basic physics. Gauge fields, or Yang–Mills fields, were introduced in 1954

in a brief paper of Yang and Mills [7] devoted to the principle of gauge

invariance for a generalized electromagnetic field. Geometrically, the mean-

ing of this principle for an electromagnetic field was explained back in the

1920s in papers of V. A. Fock and H. Weyl ([8], [9]). They established an

analogy between the gauge invariance (gradient invariance in the language of

Fock) of electrodynamics and the principle of equivalence in the Einstein the-

ory of gravitation. The gauge group in electrodynamics is commutative; it

corresponds to multiplication of the complex field of a charged particle by

a phase factor depending on the space-time coordinates. The Einstein the-

ory of gravitation provides an example of a much more complicated gauge

group, namely a group of diffeomorphisms. Then, describing spinors in the

theory of gravity, Fock [8] and Weyl [9] independently used the formal-

ism of a moving frame, in which the spin connection associated with local

Lorentz rotations appeared. Thus the Lorentz group became an example of

the first noncommutative gauge Lie group. In [8] one can, in fact, see all

the important formulas of the theory of non-Abelian gauge fields. How-

ever, in contrast to the electromagnetic field, the spin connection is associ-

ated with space-time, not with the intrinsic space corresponding to an elec-

tric charge. It was the idea of such an intrinsic space that was first stated

clearly by Weyl [9], who called electrodynamics the general theory of relativity

in a charge space.
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An alternative line of geometrization was based on the idea of T. Kaluza

and O. Klein of a space-time of more than four dimensions. In the late 1930s,

in connection with the appearance of the meson theory of nuclear interactions,

Klein put forth a theory containing many elements of non-Abelian gauge fields

[10]. By the 1950s this idea had been extended by W. Pauli. However, the

prediction of the existence of charged vector fields with massless excitations

contradicted experiment, and Pauli, faithful to his role as a censor, did not

attempt to publish his results.

Thus, there is nothing surprising in the fact that Yang was sharply criticized

by Pauli when he presented his paper at a seminar in Princeton. The dramatic

description of this event can be found in the commentaries in [6]. Pauli was

in the audience and immediately raised the question of the mass of quanta of

the charged components of a multiplet of gauge fields. As explained above,

Pauli was well acquainted with the differential geometry of non-Abelian vector

fields, but did not permit himself to speak of them. And we now know well that

Yang’s boldness and his aesthetic sensitivity were rewarded. One now has good

grounds for saying that Yang was acting in accord with mathematical intuition.

In 1954 the paper of Yang and Mills had not yet reached the forefront of

high-energy theoretical physics. However, the idea of a charged space with a

noncommutative symmetry group was becoming more and more popular in con-

nection with the appearance of a steadily increasing number of new elementary

particles and searches for a universal scheme of classifying them. It was at this

stage that mathematical intuition and aesthetic considerations played the decisive

role in promoting Yang–Mills fields.

In the early 1960s, R. Feynman was studying how to carry over his scheme

of quantization of electrodynamics to the Einstein theory of gravitation. A purely

technical obstacle — the large number of tensor indices — was delaying the work.

On the advice of Gell-Mann he used the simpler case of Yang–Mills fields to

work out the technical side of the quantization and noticed its fundamental

difference from the case of electrodynamics with a commutative gauge group.

Indeed, the naive generalization of the diagrammatic technique of perturbation

theory, which had been developed for quantum electrodynamics, failed in the

case of Yang–Mills fields. The unitarity of the S-matrix was violated. The

result depended nontrivially on the longitudinal part of the propagator. Feynman

restored unitarity in the single-loop approximation, by reconstructing the full

scattering amplitude from its imaginary part. The result differed from the one

obtained in the naive scheme and admitted an interpretation as the subtraction

of the contribution from a certain fictitious particle. However, the extension

of the scheme to the leading loops encountered combinatorial complications,

and Feynman decided not to struggle with them (see [11]). His scheme was
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gradually developed by B. DeWitt in a very complicated paper [12]. For us it

is important to emphasize that the apparent meaninglessness of the Yang–Mills

field did not discourage Feynman from working with it. This also can be laid

down to the influence of mathematical intuition.

Feynman’s paper [11] became one of the points of departure for my

work in quantum field theory, which I began in the mid-1960s together with

Viktor Popov. Another, no less important, stimulus was the monograph of

A. Lichnerowitz [13], which is devoted to the theory of connections in vector

bundles. It could be seen from the book of Lichnerowitz that the Yang–Mills

field has a clear geometric meaning: it defines a connection in a bundle whose

base is space-time and whose fiber is the linear space of representations of a

charge group. Thus the Yang–Mills field took its natural place among the fields

having geometric origins, between the electromagnetic field, which is a special

case of it with a one-dimensional charge, and the Einstein gravitational field,

which deals with bundles associated with the tangent bundle to the Riemannian

manifold of space-time.

It became clear to me that the problem discovered by Feynman presented an

opportunity not to be missed; and, despite the unsolved problem of the mass of

quanta of a Yang–Mills field, it should be actively studied.

The geometric nature of the Yang–Mills fields indicated a natural route

to overcome the difficulties with the diagrammatic rules. The formulation of

quantum field theory in terms of the continuous Feynman integral turned out to

be the most suitable from the technical point of view.

Indeed, to take into account the principle of gauge equivalence one has

only to integrate over classes of equivalent fields rather than over all field

configurations. Once this idea is recognized, the technical implementation of

it presents no difficulty. As a result, in late 1966 Popov and I stated modified

diagrammatic rules adapted for all orders of perturbation theory. The field of

fictitious particles arose as an auxiliary variable in the integral representation

of a nontrivial functional determinant that belonged to a measure on the set of

gauge orbits.

Our results, which were published in mid-1967 ([14], [15]), did not im-

mediately attract the attention of physicists. Besides, the time when our paper

was written was not favorable. Quantum field theory was effectively forbidden,

especially in the Soviet Union, as the result of the influence of Landau. The

phrase “Hamiltonian methods are dead,” from his paper devoted to Pauli’s 60th

birthday, illustrates very well his extreme views. The grounds for this attitude

were quite solid. The theory was not based on experiment, but on the study of

the effects of renormalization, which led Landau and his colleagues to the con-

viction that the renormalized physical charge equals zero for all types of local
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interactions. Thus Popov and I had no chance of publishing a detailed article in

the leading Soviet journals. We were able to take advantage of the possibility

of printing a brief communication [14] in the European journal Physics Letters

(such possibility was a new thing at the time) and were favored by another new

occasion to publish our detailed exposition as a preprint [15] of the recently or-

ganized Institute of Theoretical Physics in Kiev. Subsequently, after Yang–Mills

fields had become solidly established in the world of physics, this preprint was

translated into English (as a preprint of the Fermi Laboratory in the USA). From

the preface to this publication written by B. Li, it follows that our preprint was

known in the West as early as 1968.

The decisive role in establishing our diagrammatic rules in physics was

played by papers of G. ’t Hooft [16] (who has recently been awarded a Nobel

Prize in physics), devoted to models that contain the scalar field of Higgs along

with Yang–Mills fields, and the discovery of dimensional transmutation (a term

due to S. Coleman [17]). The problem of mass in the first case was solved

by spontaneous symmetry breaking. The second concept was based on the

discovery of asymptotic freedom. A considerable literature has been devoted to

the dramatic story of this development. I cite the recent papers of ’t Hooft [18]

and Gross [19], in which the participants in the story share their reminiscences

of all these developments. We note that it was the Yang–Mills theory that seems

to have been the only counterexample to Landau’s claim about the null-charge.

The result of this development was the standard model of elementary par-

ticle interaction, which from the mid-1970s to the present has been the basic

foundation of high-energy physics. What is important for our discussion is that

the paper [14], based on mathematical intuition, preceded the papers made in

the traditions of theoretical physics.

The standard model did not complete the fundamental basis of high-energy

physics. Gravitational interaction (having, as noted above, a different geometric

interpretation) does not fit into it. The unification of quantum principles, rela-

tivity, and gravitation, has still not been accomplished. We have every reason to

believe that modern mathematical physics and its intuition will play a leading

role here. Indeed, the new generation of theoretical physicists has received an

incomparably higher mathematical education and has not been subjected to the

pressure of authorities defending the purity of physical thought and/or termi-

nology. Moreover, many professional mathematicians, enchanted by the beauty

of physical problems and the methods applied, have come over to the side of

mathematical physics.

Let us present here a quotation from a manifesto issued by Robert MacPher-

son while preparing the “Year of Quantum Field Theory” of the Mathematics

School at the Institute for Advanced Study in Princeton. After enumerating the
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divisions of mathematics and physics that do not form part of the program of

the School, MacPherson writes: “Rather, the goal is to develop the sort of in-

tuition common among physicists for those who are used to thought processes

stemming from geometry and algebra.” I believe that this type of intuition can

legitimately be called the intuition of modern mathematical physics.

The combination of the new generation of theoretical physicists and math-

ematicians attracted by physical problems is an unusual intellectual force. In

the new century we shall learn whether its activity can replace the traditional

experimental basis of the development of physics, and its inherent intuition.
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R. V. Gamkrelidze

Discovery of the Maximum Principle

Presented by the author

1. Initial Formulation of the Maximum Principle

In mid-fifties Lev Semenovich Pontryagin abandoned topology, never to return

back to it, and completely devoted himself to purely engineering problems of

mathematics. He organized at the Steklov Mathematical Institute a seminar in

applied problems of mathematics, often inviting theoretical engineers as speak-

ers, since he considered a professional command over the purely engineering

part of the problem under investigation to be mandatory for its adequate mathe-

matical development.

The activity in the seminar culminated very soon in the formulation of two

major mathematical problems. One of them developed into the general theory

of singularly perturbed systems of ordinary differential equations. The second

problem brought us to the discovery of the Maximum Principle and to the

emergence of optimal control theory.

L. S. was led to the formulation of the general time-optimal problem by an

attempt to solve a concrete fifth-order system of ordinary differential equations

with three control parameters related to optimal maneuvers of an aircraft, which

was proposed to him by two Air Force colonels during their visit to the Steklov

Institute in the early spring of 1955. Two of the control parameters entered

the equations linearly and were bounded, hence from the beginning it was clear
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that they could not be found by classical methods, as solutions of the Euler

equations. The problem was highly specific, and very soon L. S. realized that

some general guidelines were needed in order to tackle the problem. I remember

he even said half-jokingly, “we must invent a new calculus of variations.” As a

result, the following general time-optimal problem was formulated.

Consider a controlled object represented in the n-dimensional state space of

points

x =

⎛⎜⎝x1

...

xn

⎞⎟⎠ ∈ R
n

by a system of n autonomous differential equations with r control parameters

u1, . . . ,ur:

ẋi
= f i

(x1, . . . ,xn;u1, . . . ,ur
) = f i

(x,u), i = 1, . . . ,n. (1)

Initially it was supposed that the control vector

u =

⎛⎜⎝u1

...

ur

⎞⎟⎠
attains its values from an open set U ⊂ R

r. The most interesting case for

control problems, that of a closed set U , was considered later. To denote control

parameters, the letter “u” was chosen, as the first letter of the Russian word for

“control” — upravlenie.

Formulation of the problem:

Given initial and terminal states x0,x1 ∈ R
n
, find a control function

u(t) ∈ U ∀t ∈ [t0, t1], such that it minimizes the transition time of the state

point x, moving from x0 to x1 according to the non–autonomous system

ẋi
= f i

(x(t),u(t)), i = 1, . . . ,n.

Thus, we come to the time-optimal control u(t) and the corresponding time-

optimal trajectory x(t), t0 � t � t1, which satisfies the boundary value problem

ẋi
(t) = f i

(x(t),u(t)), x(t0) = x0, x(t1) = x1,

and minimizes the transition time,

t1 − t0 = min .
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It should be noticed that the general optimal problem with an arbitrary integral-

type functional is easily reduced to the formulated time-optimal problem, so that

by solving the time-optimal problem with fixed boundary conditions we actually

overcome all essential difficulties inherent in the general case.

The first and the most important step toward the final solution was made by

L. S. right after the formulation of the problem, during three days, or better to

say, during three consecutive sleepless nights. He suffered from severe insomnia

and very often used to do math all night long in bed. As a result, he completely

disrupted his sleep in his later years and systematically took sleeping pills in

great quantities.

Thanks to his wonderful geometric insight, he derived, from very sim-

ple duality considerations about the first order variational equation, the ini-

tial version of necessary conditions, introducing an auxiliary covector-function

ψ(t) = (ψ1(t), . . . , ψn(t)) subject to the adjoint system of differential equations,

dψi

dt
= −

n

∑
α=1

ψα
∂ f α

∂xi (x,u), i = 1, . . . ,n. (2)

This was the first appearance in optimal control theory of the adjoint system,

which turned out to be of crucial importance for the whole subject. Actually,

L. S. constructed for the first time, for the needs of optimization, what is usually

called the Hamiltonian lift of the initial family of vector fields on the state space

of the problem into its cotangent bundle, the phase space of the problem, see

Section 5.

The initial formulation of necessary conditions reported by L. S. at the sem-

inar right after they were derived, is expressed in formulas

dxi
(t)

dt
= f i

(x(t),u(t)), x(t0) = x0, x(t1) = x1, (3.1)

dψi(t)
dt

= −
n

∑
α=1

ψα(t)
∂ f α

∂xi (x(t),u(t)) = −ψ(t)
∂ f
∂xi (x(t),u(t)), (3.2)

n

∑
α=1

ψα(t)
∂ f α

∂uj (x(t),u(t)) = ψ(t)
∂ f
∂uj (x(t),u(t)) = 0, (3.3)

u(t) ∈U, ∀t ∈ [t0, t1], i = 1, . . . ,n; j = 1, . . . ,r.

They assert that if x(t),u(t), t0 � t � t1, is an optimal solution, then there

exists a nonzero covector-function ψ(t) such that ψ(t),x(t),u(t), t0 � t � t1, is

a solution of the system of differential equations (3.1)–(3.2), and along the

solution, for every t, r “finite” equations (3.3) are satisfied.



88 R. V. Gamkrelidze

This formulation supposes that the set U of admissible values of control is

open, though, as I already mentioned above, from the very beginning it was

clear to L. S. that the ultimate result should be applicable to closed sets as well.

I shall describe now Pontryagin’s very simple and straightforward geometric

arguments which directly led to the equations (3).

Consider an arbitrary admissible variation of the optimal control u(t),

δu(t) =

⎛⎜⎝δu1
(t)

...

δur
(t)

⎞⎟⎠ , u(t)+δu(t) ∈U, t0 � t � t1,

and the corresponding perturbation ∆x(t), t0 � t � t1, of the optimal trajectory

x(t),

d
dt
∆xi

(t) = f i
(x(t)+∆x(t),u(t)+δu(t))− f i

(x(t),u(t))

=

n

∑
α=1

∂ f i

∂xα
(x(t),u(t))∆xα (t)+

r

∑
β=1

∂ f i

∂uβ
(x(t),u(t))δuβ (t)+ · · · ,

∆x(t0) = 0, i = 1, . . . ,n.

If we ignore quadratic and higher order terms in the right–hand side, we obtain

the first (linear) variation

δx(t) =

⎛⎜⎝δx1
(t)

...

δxn
(t)

⎞⎟⎠ , t0 � t � t1,

of the optimal trajectory, which satisfies the standard linear variational system

d
dt
δxi

(t) =

n

∑
α=1

∂ f i

∂xα
(x(t),u(t))δxα +

r

∑
β=1

∂ f i

∂uβ
(x(t),u(t))δuβ , (4)

δx(t0) = 0, i = 1, . . . ,n.

The mapping {δu(t), t0 � t � t1} �→ δx(t1) is a linear operator from the space of

variations δu(t), t0 � t � t1 into the state space R
n. Since the set of admissible

values of u is supposed to be open, the admissible variations δu(t) are arbitrary

(piecewise continuous) functions. Hence the set

L = x(t1)+{δx(t1) | δx(t0) = 0} = x(t1)+Γ (5)
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is a plane through x(t1) in R
n, Γ is the corresponding subspace of R

n. Since

x(t), t0 � t � t1, is optimal, we obtain the relation

dimL = dimΓ� n−1,

which is easily derived from the implicit function theorem. Hence, there exists

a (nonzero) covector χ = (χ1, . . . ,χn) orthogonal to Γ,

n

∑
α=1

χαδxα(t1) = χδx(t1) = 0 ∀δx(t1) ∈ Γ.

To express δx(t1) through δu(t), we must integrate the variational equations (4).

For this purpose we introduce the fundamental matrix Φ(t) of the corresponding

homogeneous system,

d
dt
δxi

=

n

∑
α=1

∂ f i

∂xα
(x(t),u(t))δxα , i = 1, . . . ,n,

and the inverse Ψ(t) =Φ−1
(t). They satisfy matrix differential equations

d
dt
Φ=

∥∥∥∥∂ f i

∂x j (x(t),u(t))

∥∥∥∥Φ,
d
dt
Ψ= −Ψ

∥∥∥∥∂ f i

∂x j (x(t),u(t))

∥∥∥∥ . (6)

The solution of (4) with the initial condition δx(t0) = 0 is represented as

δx(t) =Φ(t)
∫ t

t0
Ψ(τ)

∥∥∥∥∂ f i

∂uj (x(τ),u(τ))

∥∥∥∥
⎛⎜⎝δu1

(τ)
...

δur
(τ)

⎞⎟⎠ dτ , t ∈ [t0, t1],

hence

χδx(t1) = χΦ(t1)
∫ t1

t0
Ψ(τ)

∥∥∥∥∂ f i

∂uj (x(τ),u(τ))

∥∥∥∥
⎛⎜⎝δu1

(τ)
...

δur
(τ)

⎞⎟⎠ dτ = 0

∀δu(τ) =

⎛⎜⎝δu1
(τ)
...

δur
(τ)

⎞⎟⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7)
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The n-dimensional covector

ψ(t) = (ψ1(t), . . . ,ψn(t)) = χΦ(t1)Ψ(t), t0 � t � t1,

is nonzero and satisfies, according to (6), the vector differential equation

d
dt
ψ(t) = −ψ(t)

∥∥∥∥∂ f i

∂x j (x(t),u(t))

∥∥∥∥ ,

which coincides with the adjoint system (3.2). Finally, the equation (7) attains

the form ∫ t1

t0
ψ(τ)

∥∥∥∥∂ f i

∂uj (x(τ),u(τ))

∥∥∥∥δu(τ)dτ = 0,

or ∫ t1

t0

r

∑
β=1

n

∑
α=1

ψα(τ)
∂ f α

∂uβ
(x(τ),u(τ))δuβ (τ)dτ = 0.

Since the control variations δuβ (τ), t0 � t � t1, are arbitrary functions, we obtain

the equations (3.3) and come to the optimality conditions (3) formulated above.

They easily imply the Euler–Lagrange equations for the Lagrange problem of

the classical calculus of variations.

2. The Second Variation

As soon as the equations (3) were obtained, L. S. recognized the decisive role

of the covector-function ψ(t) and the adjoint system (2) for the whole problem.

He considered, in the generic case, r finite equations (3.3) as conditions, which

eliminate r control parameters u1, . . . ,ur from system (3), thus making it possible

to solve uniquely the 2n-th order system of differential equations (3.1)–(3.2) with

a given initial condition x(t0) = x0 and an arbitrary (nonzero) initial condition

for ψ . All such solutions were declared as extremals of the problem, from which

the optimal solutions were to be derived.

Pontryagin’s idea about a universal procedure of elimination of control para-

meters, which reduces the problem of determining extremals to solving ordinary

differential equations with given boundary conditions, found its ultimate realiza-

tion in the maximum principle, which was formulated by him several months

later after his first report at the seminar, and was supported by the subsequent

advancements obtained meanwhile at the seminar.

After his talk in the seminar, Pontryagin suggested to V. Boltyanskii and

me, his former students and close collaborators at that time, to join him in

his investigations of the problem. V. Boltyanskii held a formal position at the
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Steklov Institute as Pontryagin’s assistant, helping him in everyday computations

and manuscript editing; I was a young member of the department of the Steklov

Institute headed by Pontryagin.

Pontryagin’s vision of the problem at this early stage of development could

be described as follows.

Instead of considering the boundary value problem with fixed endpoints for

the controlled system (3.1), we should only fix the initial point x0, take an ar-

bitrary initial value ψ(t0) = ψ0 �= 0, and solve the system of 2n + r equations

(3.1)–(3.3) with 2n + r unknowns xi, ψ j, uk, proceeding along an arbitrary ex-

tremal emanating from the point x0. This should be possible, since the r control

parameters uk are, “in general,” successfully eliminated by r conditions (3.3),

hence, 2n unknown parameters are left, xi, ψ j, subject to the system of 2n dif-

ferential equations (3.1)–(3.2) and the initial conditions x(t0) = x0, ψ(t0) = ψ0.

Since the adjoint system (3.2) is linear in ψ , the function ψ(t) is defined up to a

nonzero constant factor. Hence we can normalize the initial value ψ(t0), obtain-

ing thus the (n−1)-dimensional sphere of the initial values of ψ , which should

generate an (n− 1)-parameter family of extremal trajectories of the problem,

emanating from the point x0.

According to the given picture, the final goal of the program, as initially

formulated by Pontryagin, supposed to express in a reasonable way extremals

ψ(t),x(t), x(t0) = x0, as solutions of the system (3.1)–(3.3), through the initial

value ψ0. Today we recognize in the given formulation the problem of con-

trollability in its simplest setting. Certainly at that stage, before the maximum

principle was not even formulated, it was practically impossible to obtain in this

direction any nontrivial results.

I was fascinated by Pontryagin’s geometric approach and got an idea how

to apply this picture to investigate the problem up to the second order approxi-

mation. So, we decided to split the investigation in two directions, Pontryagin,

together with Boltyanskii, pursued the problem in the controllability direction, I

started to investigate the second variation of the problem. As it turned out, this

latter direction led to the formulation of the maximum principle.

Necessary conditions of optimality, expressed by equations (3), are derived

from purely first–order approximation. They are independent of “general po-

sition” considerations, which were used by L. S. only to support his view on

“finite equations” (3.3) as a regular elimination procedure.

My second order considerations required, from the very beginning, gen-

eral position assumptions, which were overcome only in the final version of

Boltyanskii’s proof. The set of admissible values of the control parameters was

still supposed open.
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Take an arbitrary “generic” solution of the optimal problem, x(t),u(t),
t0 � t � t1, which means that the plane L in (5) is of maximal dimension,

dimL = dimΓ= n−1,

and the trajectory x(t) intersects L at x(t1) transversally (is not tangent to L).

Hence, L divides R
n in distinguishable half-spaces, R

n− before x(t) intersects L,

R
n
+

after the intersection. Every variation δu(t) displaces the endpoint x(t1) in

the first order into the hyperplane L, x(t1)+ δx(t1) ∈ L. The real displacement

∆x(t1) is certainly nonlinear in δu and, generally, stays off the hyperplane Γ,

x(t1)+∆x(t1) ∈ R
n
− or x(t1)+∆x(t1) ∈ R

n
+
.

Denote from now on the first variation δx(t) by δ1x(t), and let K be the kernel

of the linear operator from the space of control variations into the space of first

variations of x(t) for t = t1, given by

{δu(t), t0 � t � t1} �→ δ1x(t1) =Φ(t1)

t1∫
t0

Ψ(τ)

∥∥∥∥∂ f i

∂uj (x(τ),u(τ))

∥∥∥∥δu(τ)dτ .

Define the second variation δ2x(t), t0 � t � t1, of x(t) as the solution of the

linear nonhomogeneous equation

d
dt
δ2x(t) =

∥∥∥∥∂ f α

∂xβ
(x(t),u(t))

∥∥∥∥δ2x+δu(t)∗
∥∥∥∥ ∂ 2 f

∂uα∂uβ
(x(t),u(t))

∥∥∥∥δu(t)

+δ1x(t)∗
∥∥∥∥ ∂ 2 f

∂xα∂uβ
(x(t),u(t))

∥∥∥∥δu(t)+δ1x(t)∗
∥∥∥∥ ∂ 2 f

∂xα∂xβ
(x(t),u(t))

∥∥∥∥δ1x(t),

δ2x(t0) = 0, δu(t)∗ = (δu1
(t), . . . ,δur

(t)), δ1x(t)∗ = (δ1x1
(t), . . . ,δ1xn

(t)),

which differs from (4) only by the nonhomogeneous part, quadratic in δu. The

displacement of the endpoint x(t1) up to the second order is given by the vector

δ1x(t1)+δ2x(t1).
The key geometric fact for a generic optimal trajectory x(t), t0 � t � t1,

consists in the assertion that the second order displacement of its endpoint,

considered on the kernel K, belongs to the half-space R
n−,

x(t1)+δ1x(t1)+δ2x(t1) ∈ R
n
− ⇐⇒ x(t1)+δ2x(t1) ∈ R

n
− ∀δu ∈ K.

Hence, we come to the conclusion that, additionally to the system (3.1)–(3.3), as

a necessary condition of the second order, the following integral quadratic form
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in δu is nonpositive, provided the covector ψ(t1), which is transversal to L, is

correctly normalized (directed toward the half-space R
n
+

),

ψ(t1)δ2x(t1) =

n

∑
i=1

∫ t1

t0
ψi(τ)

{
δu(τ)∗

∥∥∥∥ ∂ 2 f i

∂uα∂uβ
(x(τ),u(τ))

∥∥∥∥δu(τ)

+δ1x(τ)∗
∥∥∥∥ ∂ 2 f i

∂xα∂uβ
(x(τ),u(τ))

∥∥∥∥δu(τ)

+ δ1x(τ)∗
∥∥∥∥ ∂ 2 f i

∂xα∂xβ
(x(τ),u(τ))

∥∥∥∥δ1x(τ)

}
dτ � 0 ∀δu ∈ K.

After some elaborate investigation of this integral quadratic form, I came to

the conclusion that its nonpositivity on K implies the nonpositivity of its singu-

lar part on K, hence the pointwise nonpositivity of the following r× r matrix

∀t ∈ [t0, t1]:

n

∑
i=1

ψi(t)

∥∥∥∥ ∂ 2 f i

∂uα∂uβ
(x(t),u(t))

∥∥∥∥ =

∥∥∥∥ n

∑
i=1

ψi(t)
∂ 2 f i

∂uα∂uβ
(x(t),u(t))

∥∥∥∥.

Thus, we come to the final form of the second order optimality condition,

which is satisfied, together with the first order conditions (3), by every generic

optimal solution,

v∗
∥∥∥∥ n

∑
i=1

ψi(t)
∂ 2 f i

∂uα∂uβ
(x(t),u(t))

∥∥∥∥v � 0, ∀v ∈ R
r, ∀t ∈ [t0, t1]. (8)

3. Formulation of the Maximum Principle in its Final Form

Collecting all necessary conditions (3.1)–(3.3), (8) together, we immediately

recognize that a certain stable combination of symbols reappears in all of them,

the scalar function of three arguments ψ , x, u,

H(ψ ,x,u) =

n

∑
α=1

ψα f α(x,u) = ψ f (x,u). (9)

It enables us two rewrite the system (3.1)–(3.2) as a Hamiltonian system (10.1)

with the Hamiltonian function (9), together with additional conditions (3.3), (8),
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written as (10.2)–(10.3):

dxi
(t)

dt
=

∂H
∂ψi

(ψ(t),x(t),u(t)),

dψi(t)
dt

= −∂H
∂xi (ψ(t),x(t),u(t)),

i = 1, . . . ,n,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(10.1)

∂H
∂uj

(ψ(t),x(t),u(t)) = 0, ∀t ∈ [t0, t1], j = 1, . . . ,r, (10.2)

δu∗
∥∥∥∥ ∂ 2H

∂uα∂uβ
(ψ(t),x(t),u(t))

∥∥∥∥ δu � 0 ∀δu ∈ R
r. (10.3)

They assert that generic extremals are solutions of the Hamiltonian system

(10.1), and, according to (10.2), their points are stationary points of the Hamil-

tonian (9) with respect to the control parameters ui
. Furthermore, according

to (10.3), along regular extremals, for which the form (10.3) is definite, the

function H attains its local maximum with respect to u.

We can combine two independent conditions (10.2)–(10.3) into one condition

and write

H(ψ(t),x(t),u(t)) = max
u∈Ot

H(ψ(t),x(t),u), (10.4)

where Ot is a neighborhood of u(t). Furthermore, the equations (10.1)–(10.2)

imply,

dH
dt

(ψ(t),x(t),u(t)) =

n

∑
α=1

(
∂H
∂ψα

dψα
dt

+

∂H
∂xα

dxα

dt

)
+

r

∑
β=1

∂H

∂uβ
duβ

dt
≡ 0.

It is also easy to show that H(ψ(t),x(t),u(t)), as a function of t, is continuous,

even if the control function u(t) has jumps. Hence, taking into account the

generic character of the solution — the trajectory x(t) is transversal to L at x(t1),
we obtain

H(ψ(t),x(t),u(t)) ≡ const = ψ(t1) f (x(t1),u(t1)) > 0. (11)

After the equations (10.1)–(10.3) were written, L. S. realized that the uni-

versal elimination method of the control parameters, he was searching for, was

found. He replaced the local maximum condition (10.4) by the global maximum

over the whole set U , the “Pontryagin maximum condition” (12), which made

any restrictive assumptions about the admissible set U superfluous,

H(ψ(t),x(t),u(t)) = max
u∈U

H(ψ(t),x(t),u) ≡ const � 0 (12)
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Thus, he came to the final formulation of the maximum principle, combining the

Hamiltonian system (10.1) with the maximum condition (12) and dropping off

any assumptions about genericity of the solutions or the nature of the admissible

set U .

The Maximum Principle. Suppose a controlled equation is given,

ẋ = f (x,u), x =

⎛⎜⎝x1

.

.

.

xn

⎞⎟⎠ ∈ R
n, u =

⎛⎜⎝u1

.

.

.

ur

⎞⎟⎠ ∈U ⊂ R
r,

where the admissible set U is arbitrary. We introduce the Hamiltonian function

of the problem,

H(ψ ,x,u) = ψ f (x,u) =

n

∑
α=1

ψα f α(x,u), (13.1)

which depends on three arguments — the covector ψ = (ψ1, . . . ,ψn) and the

vectors x, u. If u(t), t0 � t � t1, is a time-optimal control, x(t), t0 � t � t1, is

the corresponding time-optimal trajectory,

d
dt

x(t) = f (x(t),u(t)), t0 � t � t1; t1 − t0 = min,

then there exists a nonzero covector function ψ(t) such that the triple

ψ(t),x(t),u(t), t0 � t � t1,

is a solution of the Hamiltonian system (13.2), and the maximum condition

(13.3) holds,

dx(t)
dt

=

∂H
∂ψ

(ψ(t),x(t),u(t))

dψ(t)
dt

= −∂H
∂x

(ψ(t),x(t),u(t))

⎫⎪⎪⎬⎪⎪⎭ (13.2)

H(ψ(t),x(t),u(t)) = max
u∈U

H(ψ(t),x(t),u) ≡ const � 0, ∀t ∈ [t0, t1]. (13.3)

In this formulation, the maximum condition (13.3) could be viewed not only

as a universal elimination method, but also as a generalization of the Legendre

transformation from the state-space variables (x,u) to the phase-space variables

(ψ ,x).



96 R. V. Gamkrelidze

4. Proof of the Maximum Principle

It took approximately a year before a full proof of the maximum principle

was found. The final formulation of the maximum principle given above was

published as a short notice in [1], long before its complete proof, though the

plausibility of the conjecture was strongly supported by all further developments

in the field.

Meanwhile, I developed in [2], [3], the theory of linear time-optimal systems

of the form
dx
dt

= Ax+ Bu, u ∈U, (14)

U is a compact polyhedron, A and B are constant matrices. For arbitrary systems

(14) the maximum principle was proved and the existence theorem of optimal

solutions established. The notion of nondegenerate linear systems (14) was in-

troduced, an effective criterion for nondegeneracy established, and a complete

investigation of attainable sets given. Several years later, under the name of

controllability condition, this criterion was exploited by R. Kalman in his inves-

tigations on linear control systems.

For nondegenerate linear systems (14) the equivalence of the global max-

imum principle to the local maximum condition was established. Every local

maximum in u of the expression

H(ψ ,x,u) = ψAx+ψBu, u ∈U,

is attained in the vertices of U and at the same time it is the global maximum.

Hence, the solution u(t) of the equation

H(ψ(t),x(t),u(t)) = ψ(t)Ax(t)+max
u∈U

ψ(t)Bu

is locally constant, coinciding with the vertices of U and having jumps from

one vertex into another. The time moments of jumps, as well as the destination

vertices, are uniquely indicated by the maximum condition.

Despite all these advances, there was no real progress in proving the max-

imum principle in the general nonlinear case, until Boltyanskii introduced the

“needle variations” of the control function. Such variations are zero everywhere

on the time-interval, except on several segments with a small total length, where

they can attain arbitrary admissible values. And they have an important prop-

erty of admitting an operation of convex combination, regardless of the shape

of U . These variations made possible to prove the maximum principle in full
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generality, as formulated above. This was Boltyanskii’s major contribution to

the subject. He made the first publication of the proof separately, in [4].

In the initial version of Boltyanskii’s proof both types of variations were

used simultaneously, the needle variations and usual variations, which are small

on the whole time interval under consideration.

After Boltyanskii’s first report, Pontryagin immediately recognized the power

of the needle variations and nonnecessity for the proof of the usual variations. In

this final form the whole subject was published in our joint paper [5], and later,

in Pontryagin’s talk at the International Mathematical Congress in Edinburgh,

[6]. Since then, the needle variations and their generalizations are used as a

standard tool for proving the maximum principle and the higher order necessary

conditions of optimality.

Several years later after the first proof, I discovered a new proof of the

maximum principle, based not on needle variations, but rather on a completely

different idea of the chattering control state, [7]. A detailed exposition of this

proof is given in my textbook on optimal control, [8].

5. Some Final Remarks about the Maximum Principle

Though formulated in 1955, the maximum principle was never changed, nor

slightly improved, since then. All (first order) advancements were directed

toward generalizations of the optimal problem itself, especially toward develop-

ing nonsmooth optimization, with corresponding first-order necessary conditions

shaped after the maximum principle.

This could be explained, as I understand it, by the very nature of the max-

imum principle. Despite its seemingly purely analytic nature, it is deeply geo-

metric and completely symplectic invariant already in its initial formulation. It

prescribes a canonical transition from the initial problem to its reformulation on

the cotangent bundle, mathematically much more flexible. Thus, the maximum

principle could be viewed as kind of a “symplectization functor” from the initial

optimal problem, defined on the state space, to its symplectic reformulation on

the phase space, which is much richer by its mathematical implications.

To support this viewpoint, let me rewrite the initial control system in the

“state-invariant” form (15) on a smooth manifold M,

dx
dt

= f (x,u),

fu : x �→ f (x,u) ∈ T M, x ∈ M, u ∈U,

⎫⎬⎭ (15)
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and consider the family of vector fields fu as a family of scalar-valued functions

Hu on the cotangent bundle T ∗M, which are linear on fibers,

fu ≈ Hu = Hu(ξ ) ∈C∞
(T ∗M), ξ ∈ T ∗M, Hu is linear on fibers. (16)

In the Pontryagin formulation, the family Hu is given by (13.1).

We obtain on T ∗M a family of Hamiltonian vector fields �Hu, (17), or the

Hamiltonian system (13.2) of the maximum principle. The field �Hu is the

canonical lift into the cotangent bundle T ∗M of the field fu, defined on the base

manifold M,

�Hu ∈ VectT ∗M, u ∈U, is the Hamiltonian lift of fu;

π : T ∗M −→ M, π∗�Hu = fu.

}
(17)

The maximum principle asserts that if x(t),u(t), t0 � t � t1, is an optimal solu-

tion, then there exists a trajectory ξ (t), t0 � t � t1, of the nonstationary Hamil-

tonian vector field �Hu(t), covering the trajectory x(t), (18.1), such that the

maximum condition (18.2) holds:

u(t),x(t), t0 � t � t1, is an optimal pair =⇒∃ξ (t) ∈ T ∗
x(t)M, t0 � t � t1,

dξ (t)
dt

=
�Hu(t)(ξ (t)), πξ (t) = x(t), (18.1)

Hu(t)(ξ (t)) = max
u∈U

Hu(ξ (t)) = const � 0, t0 � t � t1. (18.2)

If the maximum condition

Hu(ξ ) = max
v∈U

Hv(ξ ), ξ ∈ T ∗M,

eliminates the parameter u from the family of Hamiltonians Hu, and as a result of

this elimination, we obtain a smooth scalar-valued function (without parameters)

H on T ∗M, the master-Hamiltonian of the problem, then the whole optimal

problem is reduced to studying trajectories of a fixed Hamiltonian vector field �H:

dξ (t)
dt

=
�H(ξ (t)), π ξ (t) = x(t); H(ξ (t)) = const � 0.

Regular problems of the calculus of variations are typical examples of this

situation. Actually, this picture was envisaged by Pontryagin in his initial attempt

to solve the problem.

It is remarkable that the Pontryagin functor, if we may call so the procedure

prescribed by the maximum principle, permits us, practically in all interesting

cases, including nonregular cases, to construct canonically a uniquely defined
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nonlinear connection on T ∗M, which produces new important infinitesimal in-

variants of the optimal problem that are nontrivial already in the regular case. In

particular, we can obtain the curvature tensor of the optimal problem, (see [9]).

If we try to derive from here global invariants of the state manifold M, for

example, try to express its Euler characteristic through the curvature of the opti-

mal problem (a possible generalization of the Gauss–Bonnet–Chern formula), we

should inevitably come to generalizations of some classical relations concerning

characteristic classes due to Pontryagin and Chern in case, where the usual Rie-

mannian length on the manifold M is minimized. Thus, two major achievements

of L. S. Pontryagin, based on completely different ideas and obtained in different

periods of his activity, might be intimately related.
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Yu. S. Il’yashenko

The Qualitative Theory

of Differential Equations in the Plane

Translated by R. Cooke

Poincaré invented the qualitative theory as an approach to the study of differ-

ential equations not through formulas for their solutions — such formulas do

not exist, as a rule — but directly through their right-hand sides. As a result,

a new discipline arose on the border between geometry and analysis. Poincaré

gave the qualitative study of the three-body problem as motivation for his work.

However, the natural geometric questions turned out to be nontrivial even for

equations in the plane. He began his investigation with them.

At present the geometric theory of differential equations consists of many

branches. From it have arisen Hamiltonian mechanics, along with a new branch

known as KAM theory; the multi-dimensional theory of dynamical systems,

also called differential dynamics; bifurcation theory; holomorphic dynamics,

which studies iterations of rational mappings of the Riemann sphere onto itself;

equations on surfaces; the theory of relaxation oscillations; and the qualitative

theory of differential equations in the plane, both real and complex.

These theories study principally similar questions:

— What is the local behavior of solutions (near a singular point)?

— What are the global properties of solutions (in the whole phase space and

over an infinite time)?
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— How do these properties get modified (bifurcate) in systems that depend

on a parameter when the parameter varies?

These questions have been much better studied in the theory of differential

equations in the real plane than in other divisions of the subject; some of them

have been studied to nearly exhaustive completeness.

The main unsolved question remains the second part of Hilbert’s 16th

problem:

What can be said about the number and location of limit cycles of a

polynomial vector field of degree n on the plane?

We shall describe the development of the qualitative theory from the point

of view of its connections with this problem. In reality, only a small part of

this development was motivated by the 16th problem. A significant part of

the theory arose from applications. This holds in particular for the research

of A. Andronov and his school [AVKh]. However, looking at the qualita-

tive theory from a single point of view makes it possible to see a unified

picture where the actual development took place over independent research

areas.

We begin our survey with the theory of normal forms of vector fields near

singular points; local studies, as usual, precede global. In agreement with the

general idea of Poincaré, one is not to solve a differential equation, but to

make changes of variables that bring the equation into a simple form. For el-

ementary singularities the normalizing series (series that lead to an integrable

normal form) converge. This part of the theory is discussed in the first sec-

tion. To study more complicated singular points we apply the method of

resolution of singularities. Resonance saddles and saddle nodes occupy an

intermediate position: they cannot be simplified using resolution of singular-

ities, but the normalizing series for them diverge. In the analytic classifica-

tion of such singular points, functional moduli (which were discovered only

recently) arise. All these areas combine in the research devoted to Hilbert’s

16th problem. This research, in turn, motivated one of the central problems

of the theory of nonlocal bifurcations — the Hilbert–Arnold problem. It also

motivated the development of the theory of foliations on analytic curves of

the complex projective plane, and the so-called infinitesimal Hilbert 16th prob-

lem, which lies on the boundary between differential equations and algebraic

geometry.

The present survey is devoted to this research — its basic results and open

problems.
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Normal Forms

The local structure of a vector field in a neighborhood of a nonsingular point

is always standard: by a smooth local change of coordinates the field becomes

a constant. The study of the structure of a vector field near a singular point

in multi-dimensional space is an inexhaustible problem. Only in the two-

dimensional case has it been studied almost to completion.

Poincaré began the study of singular points with a natural question:

How do the phase portrait of a vector field and its linearization resemble

each other at a singular point?

It is natural to begin with nondegenerate singular points — those for which

zero is not an eigenvalue of the linearization. Poincaré divided the phase por-

traits of nondegenerate linear systems into saddles, nodes, foci, and centers.

Despite its simplicity, or perhaps precisely because of it, these portraits became

the symbol of the new theory; they are even displayed on the cover of the book

Poincaré in the series Lives of Remarkable People. 1

The preceding question can now be stated as follows:

Does there exist a change of coordinates that transforms the original vector

field into its linear part at a singular point?

Depending on the class of the change of variable being sought — homeo-

morphism, diffeomorphism, or analytic diffeomorphism — three branches of the

theory arise: topological, smooth, and analytic. Here and below, unless the

contrary is stated, smoothness means infinite smoothness.

The first theory developed was the analytic. Poincaré proved that in the ab-

sence of so-called resonances (integer linear relations between the eigenvalues)

a focus and a node are analytically equivalent to their linear parts [P].

The attainment of an analogous result for a nonresonance saddle (for which

the ratio of the eigenvalues of the linearization is irrational) was hampered by the

so-called small denominators. The difficulty associated with this was overcome

only 60 years later by Siegel [Si]. He proved that saddles with Diophantine

eigenvalues (whose ratios are badly approximated by rational numbers) are an-

alytically equivalent to their linear parts. Siegel’s theorem was strengthened by

Bryuno [B71], who exhibited two conditions very close to each other, one of

which is necessary and the other, slightly stronger, is also sufficient for a saddle

to be equivalent to its linear part. As above, these conditions are imposed on

the ratio of the eigenvalues of the linear part.

1 A. A. Tyapkin, A. S. Shibanov. Poincaré, 2nd edition. Moscow: Molodaya Gvardiya, 1982

(Russian). — Eds.
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Yoccoz [Y] proved the necessity of Bryuno’s sufficient conditions and

thereby closed the problem of analytic linearization of a saddle. We remark that

nonlinearizable analytic saddles are sometimes called wild.

The papers of Siegel, Bryuno, and Yoccoz constitute one of the high points

in the qualitative theory of differential equations. The Fields Medal was awarded

to Yoccoz in 1994 essentially for this work.

Commenting on Bryuno’s paper, Arnold (1969) assumed that for singular

points whose linear part is pathologically close to a countable number of res-

onances, there is a topological reason for the divergence of the normalizing

series. However, the difficulties are hidden from a researcher looking at the real

picture, and become visible only when one comes out onto the complex domain.

Under a small perturbation of a resonance saddle from the coordinate cross in

the complex plane, a complex phase curve (Riemann surface) separates off that

is homeomorphic to a cylinder. Such phase curves do not exist for nonresonance

linear saddles. Arnold called the generation of this cylinder the materialization

of resonance. For a saddle that is pathologically near to a countable number of

resonances, the cylinders, generated when they are materialized, accumulate at

the singular point and prevent the normalizing series from converging.

Sufficient conditions for divergence of the normalizing series evoked by

materialization of resonances have been studied by Pyartli [Pya72], [Pya78].

They turned out to be significantly stronger than the Bryuno–Yoccoz conditions;

that is, they required a more rapid convergence of the rational approximations

to the ratio of the eigenvalues. Subsequently, R. Perez-Marco [P-M] proved

that there exists a gap between the conditions for divergence of the normalizing

series and the condition for materialization of resonance. Thus, there remain

nonresonance saddles that are analytically nonnequivalent to their linear parts,

for which this nonequivalence is not explained by geometric reasons.

Let us return to Poincaré’s research on “Curves defined by differential equa-

tions” (see [P1]). After discussing nodes and foci, Poincaré turned to centers.

A center is an atypical singularity. Its linearization is determined by a condition

involving equality of eigenvalues: their real parts must be equal to zero (but not

their imaginary parts). Poincaré considered the question:

Can one determine from the linear parts whether all phase curves of a

planar vector field having a center are closed?

He exhibited an algorithm that reduced to arithmetic operations on the Taylor

coefficients of the field being studied. In the case when the algorithm terminates,

the answer to the preceding question is negative: the singularity is a focus. If

the algorithm does not terminate, the answer is positive — it is a center. For
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polynomial vector fields of degree n there exists a point N(n) beyond which

the Poincaré algorithm cannot terminate. This follows from the Hilbert basis

theorem. Thus, the necessary and sufficient condition for the presence of a

center at the point 0 in a polynomial vector field is a finite set of polynomial

equations for the coefficients of the polynomials. For quadratic vector fields

(polynomials of degree 2) these conditions were obtained by Dulac [D08]. For

vector fields of degree 3 conditions for a center have still not been obtained,

due primarily to the cumbersome nature of the computations involved.

Quadratic vector fields play a special role: they are the simplest (though

still very complicated) class of polynomial vector fields which may possibly

be studied completely (that is, down to a complete listing of all possible phase

portraits). We shall return to this point more than once.

Let us consider a vector field with a nondegenerate singular point of center

or focus type. By a linear change of variable, this field can be brought into the

form

ẋ = y+αx+ p, ẏ = −x+αy+ q, (1)

where p and q are nonzero polynomials of degree 2. By means of dilations one

can arrange that the set λ of six coefficients of the polynomials p and q belong

to the unit sphere. Dulac exhibited polynomials V1, V2, V3 in λ such that Eq. (1)

has a center if and only if

α = 0, V1 = V2 = V3 = 0. (2)

The precise form of the polynomials Vk is not important for our present purposes.

Resolution of Singularities

The study of complicated singularities of planar vector fields reduces (partly)

to the study of elementary singularities using the procedure of resolution of

singularities. (A singularity is elementary if at least one of the eigenvalues of

its linearization is nonzero.)

By means of a homeomorphic change of coordinates and, if necessary, time

reversal, an elementary singular point can be reduced to a normal form from the

following list: a saddle, a node, a focus, a center, or a standard saddle-node:

ẋ = x2, ẏ = −y. This topological description of the singular points goes back to

Bendixson [B]. A lucid exposition can be found in [I85].

The simplest description of one step in the resolution of singularities (one

inflation) can be given using plane polar coordinates (r,ϕ).
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Consider an analytic vector field v with an isolated singular point. Let us

move this point to the origin and map a deleted neighborhood of it onto an

annulus:

(r,ϕ) �→ (r+1,ϕ),
{
(r,ϕ)

∣∣ r ∈ (0,ε), ϕ ∈ S1}→ {
(r,ϕ)

∣∣ r ∈ (1,1+ε), ϕ ∈ S1}.

The original vector field transforms to a new field ṽ, which can be analytically

continued across the glued-on circle r = 1 to the annulus r ∈ (1− ε ,1 + ε),
ϕ ∈ S1. In general, ṽ = 0 at all points of the pasted circle. Dividing the field ṽ
by a suitable power of the difference r−1, we obtain a new vector field having

only a finite number of singular points on S1. It is this field that is the result of

inflating the field v at 0. If the resulting singular points remain nonelementary,

the process can be repeated.

Theorem 1 (Resolution of singularities). Suppose the complexification of a

real-analytic vector field has an isolated singularity. Then by a finite number

of inflations this singular point can be decomposed into a finite number of

elementary singular points.

The hypothesis of the theorem is not burdensome: if it does not hold, the

vector field can be divided by a real function such that the quotient will satisfy

the hypothesis of the theorem. The composition of inflations mentioned in the

theorem is called a good inflation.

The proof of this theorem has a long history. Bendixson [B] stated the

theorem, but did not propose any proof. Complete proofs for the analytic case

were given by Seidenberg [Se] and Lefschetz [Lef]; the generalization to the

smooth case was obtained by Dumortier [Dum]. The first transparent proof was

given by van den Essen and expounded in [MM] and [Kl]. The theorem has not

yet appeared in any textbook.

A simple proof of the theorem on resolution of singularities can be obtained

once an integer invariant is associated with the singular point, that is, an integer

that decreases with each step in the resolution of singularities. This invariant will

also majorize the number of steps within which the good inflation is obtained.

The multiplicity of the singular point — the maximal number of singular points

into which the original point may decay under a small perturbation, if one

counts the singular points thereby generated not only in the real plane but also

in the complex plane — turned out to be such an invariant. The multiplicity

decreases when a singular point with a zero linear part is inflated. The case

of a nonzero linear part can be studied by direct computation: the multiplicity

of a nonelementary singular point of such a type decreases after at most three

inflations. Van den Essen’s proof is constructed following this route.
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In the late 1960s, Arnold and Thom formulated the concept of algebraically

solvable local problems of analysis. A local problem is algebraically solvable

if the answer to the question can always be obtained in a finite number of

arithmetic operations on the Taylor coefficients of the original data, except for

the degenerate cases of codimension infinity.

The simplest examples of local problems are the following: Does a given

function have a maximum at zero? Is the singular point 0 of a vector field

Lyapunov stable? Does a vector field have a phase curve that enters a singular

point along a given direction? And so forth.

The theorem on resolution of singularities sometimes makes it possible to

do a complete study of the topology of the phase portrait near a complicated

singular point of a planar vector field [Dum], [An].

More specifically, a singular point of a planar vector field is characteristic if

it has a phase curve that enters it along a certain direction in direct or reversed

time. A singular point is monodromic if the orbits revolve around it and the

Poincaré mapping is defined in some half-interval with vertex at the point.

An elementary theorem [AI, 5.3.1] asserts that every nonplanar germ of a

smooth vector field at a singular point in the plane is either characteristic or

monodromic.

It follows from [Dum] that the following problems are algebraically solvable:

— distinguish monodromic and characteristic singular points;

— describe the topology of the phase portrait of a vector field near a

characteristic singular point.

Dumortier has proved that there exists a topologically sufficient jet of a

vector field at a characteristic point, except for cases of infinite codimension

[Dum]. We recall that the n-jet of a vector field at a point is the class of vector

fields (representatives of the jet) that coincide up to a term that decreases faster

than the nth power of the distance from the point. The number n is called the

order of the jet. A jet is topologically sufficient if all its representatives are

orbitally topologically equivalent near the singular point.

The order of a topologically sufficient jet at a characteristic singular point

is at most two larger than the double of the multiplicity of this point [Kl].

In regard to monodromic singular points, we note that a center is a degener-

acy of infinite codimension. Moreover, except for cases of infinite codimension,

a monodromic singular point has a very simple phase portrait: it is either a

stable focus or an unstable focus. But the problem of stability for monodromic

singular points is algebraically unsolvable [I72]. Nevertheless, there is hope that
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the problem of stability of singular points of planar vector fields is analytically

solvable. (Analytic solvability is defined like algebraic solvability, except that

the phrase “arithmetic operations” in the definition needs to be replaced by “an-

alytic functions.”) An approach to the study of this problem based on Dulac’s

theorem stated below can be found in [MMa].

The proof of analytic solvability of the problem of stability of monodromic

singular points in the plane completely closes the local theory of differential

equations in the plane (in a certain sense).

The global topological study of phase portraits of vector fields in the plane

was performed by Andronov and his students [ALGM66]. This study, and

especially the concept of structural stability introduced by Andronov and Pon-

tryagin [AP] formed the point of departure for the rapid development of the

multi-dimensional theory of dynamical systems that occurred in the 1960s.

Elementary Singularities.

The Écalle–Voronin and Martinet–Ramis Moduli

The theorem on resolution of singularities shows that elementary singular points

deserve detailed investigation. The topological classification of these points is

simple and was described above. The smooth orbital classification is also simple.

Except for the cases of infinite codimension, elementary singular points can be

brought into a polynomial normal form that is integrable in terms of elementary

functions by a smooth change of coordinates and multiplication by a nonzero

function. This result summarizes the research of many authors: Sternberg, Chen,

Bryuno, Takens, and others. The main contribution was made by Bogdanov, who

was the first to write a complete list of normal forms, and who discovered that

they are integrable [Bo]; complete proofs and references can be found in [I85].

The finite-smoothness classification of deformations of elementary singular-

ities was given in [IYa]. The normal forms of the corresponding local families

also turned out to be integrable; they are used in the theory of nonlocal bifurca-

tions, in particular in the studies described below of the Hilbert–Arnold problem.

This classification is compounded from the papers of Takens, Belitskii, Samo-

vol, Kostov, Roussarie, and also Il’yashenko and Yakovenko [IYa], where the

necessary references are given.

The analytic classification of elementary singular points turned out to be

surprising; it has functional moduli and is connected with the nonlinear Stokes

phenomenon discovered by Voronin [Vo] and Malgrange [Ma]. This phenom-

enon arises in the problem of analytic classification of the germs of conformal
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mappings (C,0) → (C,0) with the identity as linear part:

f : z �→ z+αzk+1
+ · · · , α �= 0. (3)

Such germs are called parabolic. The problem is the following: When are two

parabolic germs analytically conjugate, that is, when does there exist a germ of

a biholomorphic mapping h : (C,0) → (C,0) such that h◦ f = g◦h?

The germ (3) is formally equivalent to a shift in unit time along trajectories

of the equation

ż = zk+1
+β z2k+1,

where the complex number β is an invariant of the formal classification. It

turns out that the formal series that conjugate the germs f and g diverge, as a

rule. However, there is a geometric object associated with them — the so-called

Fatou coordinate or normalizing coordinate. This coordinate is defined not in

an entire neighborhood of the fixed point, but in some sector with vertex at

that point and, in general, cannot be extended to a sector of opening larger than

2π/k. The sectors corresponding to different Fatou coordinates form a covering

of the deleted neighborhood of zero. The existence of such coordinates is the

subject of the sectorial normalization theorem.

The normalizing charts defined in these neighborhoods, taken together, form

a normalizing atlas. Particular charts of this atlas were known as early as the

nineteenth century [Le]; however, the transition functions for it were studied only

comparatively recently. These functions determine a complete set of invariants

of the analytic classification of parabolic germs called Écalle–Voronin moduli.

These moduli range over an infinite-dimensional functional space [Vo], [Ma].

In the general case, the resonance germs of mappings on the complex line

(the multiplier is a root of unity) and also the resonance singularities — centers,

saddle nodes, and resonance saddles — generate a normalizing atlas in a deleted

neighborhood of the equilibrium position. The transition functions of this atlas

also range over a rich functional space. It is this effect that is called the nonlinear

Stokes phenomenon. A detailed discussion of it can be found in [I93a].

The functional moduli of the analytic classification of complex saddle nodes

and resonance saddles were discovered by J. Martinet and J.-P. Ramis [MR82],

[MR83]. We note that in the complex plane a center in the linear terms is a

particular case of a resonance saddle. Thus, the analytic classification of all

elementary singular points, except for “wild” saddles, is complete.

The epithet in the name elementary singular points now assumes a double

sense. On the one hand, all arbitrarily complicated singular points are con-

structed out of these points, just as molecules are made up of atoms. This

follows from the theorem on resolution of singularities. On the other hand, the
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elementary singular points are indeed “elementary”: the smooth and analytic

classifications of them have been studied in detail.

Significantly earlier Bryuno ([B71], [B72]) discovered necessary and suffi-

cient conditions for formal equivalence of the germs of resonance vector fields at

a singular point to imply analytic equivalence. For resonance saddles, Bryuno’s

condition requires the absense of nonlinear terms in the formal orbital normal

form. For saddle nodes this condition implies that the singular point be of infi-

nite multiplicity: The formal orbital normal form must be ẋ = 0, ẏ = −y. Thus,

except for the cases of infinite codimension described above, the analytic classi-

fication of resonance saddles and saddle nodes is immeasurably richer than the

formal classification; and it is the Martinet–Ramis functional moduli that give

this classification.

The sectorial normalization theorem for parabolic germs describes a new

class of local objects of one-dimensional complex analysis, the so-called func-

tional cochains. Roughly speaking, a functional cochain is a set consisting of a

finite number of holomorphic functions defined in sectors that form a covering

of a deleted neighborhood of zero; in the intersection of adjacent sectors the

difference of the two functions decreases exponentially. All functions of the

set have a common asymptotic Taylor series. The exact definition connects the

angle of opening of the sectors with the rate of exponential decrease.

Functional cochains should be regarded not as a “disconnected” set consist-

ing of a finite number of holomorphic functions, but as a unified object. Like

a holomorphic germ, such a cochain is uniquely determined by a specific (as-

ymptotic) Taylor series [IKh]. Functional cochains can be added and multiplied,

and under certain restrictions one can consider their composition. There arises

a functional cochain calculus of which essential use is made in the nonlocal

investigations described below. Functional cochains as the sums of divergent

series arose earlier in the work of Ramis and Sibuya [RS].

The analytic classification of parabolic germs was obtained independently

by Écalle using a completely new analytic approach. He developed the theory

of resurgent functions, which was then applied to the proof that the number of

limit cycles is finite [E81a], [E81b], [E85], [E92].

The Hundred-Year History of Hilbert’s Sixteenth Problem

As is characteristic of the Hilbert problems, the study of the question posed

in the second part of the 16th problem required results from many divisions of

mathematics: complex analysis, algebraic geometry, and topology. The problem,
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in turn, generated new areas and problems: the theory of foliations on analytic

curves, the problem of zeros of Abelian integrals, the problem of cyclicity of

separatrix polygons, and many others. This research and these problems will be

discussed below.

Hilbert’s 16th problem can be divided into three problems; a positive solution

of each would imply a solution of its predecessor.

Problem 1 (The finiteness problem). Does a polynomial vector field in the

plane have only a finite number of limit cycles?

Problem 2. Is the number of limit cycles of a polynomial vector field bounded

above by a constant depending only on the degree of the polynomials?

The upper bound in Problem 2 is usually called the Hilbert number and

denoted H(n) (where n is the degree of the polynomial). Linear vector fields do

not have limit cycles, so that H(1) = 0. It is not yet known whether there exists

a number H(2).

Problem 3. Give an explicit upper bound for H(n).

Only the first of these three problems has been solved (positively) by

Il’yashenko [I91] and Écalle [E92]. Problems 1 and 2 have analytic analogs:

Problem 4. Does an analytic vector field on the two-dimensional sphere have

only a finite number of limit cycles?

An analytic family of vector fields is a finite-parameter family of analytic

vector fields that depends analytically on the parameters.

Problem 5. Is it true that for every analytic family of vector fields on the

two-dimensional sphere with a compact base (parameter space) the number of

limit cycles of the equations of the family is uniformly bounded?

Problem 4 was solved by the same authors that solved Problem 1. Actually,

both proofs are for the case of analytic vector fields; the polynomial case is

obtained as a corollary of the analytic case.

A positive answer in Problem 5 would imply an analogous answer in Prob-

lems 1, 2, and 4. This is obvious for Problem 4 and can be proved using

the Poincaré compactification for Problems 1 and 2. Problems 3 and 5 are

independent.

The question whether there exists a uniform estimate of the number of limit

cycles is closely connected with bifurcation theory. Indeed, the function “number
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of limit cycles,” which is defined on the space of coefficients of polynomial

vector fields, has a discontinuity at the points corresponding to structurally

unstable equations. Limit cycles may arise when these equations bifurcate.

They are generated out of polycycles — the separatrix polygons, defined as the

connected union of a finite number of singular points and the phase curves

joining them. The cyclicity of a polycycle in a family of equations is defined as

the maximal number of limit cycles generated from a polycycle in the family.

Problem 6. Is it true that a polycycle arising in an analytic family of vector

fields on the plane always has finite cyclicity in that family?

A positive answer to this question would imply a positive solution of Prob-

lem 5.

The second part of Hilbert’s 16th problem has a dramatic history, which is far

from over. In 1923 Dulac published a positive solution of the finiteness problem;

more precisely, of Problems 1 and 4 [D23]. This paper was not understood for

nearly 60 years. In 1980, a Russian translation of it was published as a separate

book, in the preface of which it was stated that it was the best paper on the

qualitative theory of differential equations during the preceding 50 years.

In 1955 and 1957 Petrovskii and Landis published a complete solution of

Problem 3: H(2) = 3, H(n) � P3(n) (a polynomial of degree 3 in n) [PL55],

[PL57]. This paper was based on passing to the complex domain — the method

by which Petrovskii had already obtained a number of excellent results. Among

them was a significant advance in the first part of Hilbert’s 16th problem and

the answer to one of the questions posed in it.

The strategy proposed by Petrovskii consisted of the following. All typical

polynomial differential equations in the complex plane have the same structure in

a certain sense. Atypical equations correspond to a set of complex codimension

one in the parameter space. Therefore the set of typical equations is arcwise

connected. Consequently, to estimate the number of limit cycles of an arbitrary

polynomial vector field of degree n, it suffices to perform three steps:

— determine an invariant of the complex polynomial differential equations

of degree n that majorizes the number of limit cycles in real equations of this

class (Petrovskii and Landis called it the genre);

— prove that homotopies preserve genre;

— study the genre of equations that are nearly integrable.

Afterward, the number of limit cycles can be estimated as follows. A typical

equation is joined by a path consisting of typical equations with an equation that

is nearly integrable. The genre of the equation at the end of the path is estimated
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at Step 3. Its preservation along the path is proved at Step 2. Consequently, the

genre is also estimated for the initial point of the path. Step 1 gives an estimate

of the number of limit cycles at the beginning of the path. Typical equations

are dense; therefore a uniform estimate of the number of limit cycles for typical

equations implies an analogous estimate for all equations.

∗ ∗ ∗
In 1960 Kronrod, Landis, and Gerver organized a seminar “for the young.”

The participants were first-year students (I recall Anatolii Katok and Aleksandr

Chetaev) and high-school students (Sergei Gel’fand, Osip Bernshtein, Dima

Kazhdan, and Grigorii Margulis). The seminar was structured according to

a system of instruction described by Landis when he recalled his first steps:

“They give you an exercise — you solve it — then they give you a problem.”

The seminar began with problems involving permutations of a countable set

that may change the sum of a conditionally convergent series. Depending on the

effectiveness of such permutations, Kronrod called them powerful or harmful.

I later learned that these very permutations had formed the content of his first

student paper, written at the suggestion of A. O. Gel’fond. (The terminology in

the paper was not so vivid.) Thus Kronrod was attempting to rear his students on

the same problems that he himself grew up on. The seminar did the participants

a lot of good, but they did not solve the problems in the theory of functions

of a real variable and they went into other areas. But the seminar had a quite

surprising continuation.

The next year it was renewed as a seminar on differential equations. Its ulti-

mate aim was to extend the ideas of Petrovskii–Landis from the two-dimensional

case to the multi-dimensional. Along the way it would involve reconstructing the

Petrovskii–Landis paper “in exercises.” A year later only three persons remained

in the seminar: Landis, Gerver, and I. In the spring of 1963, while trying to

solve the problems that make up Step 2 (the theorem of conservation of genre),

I encountered difficulties that made me doubt the effectiveness of the proposed

methods. I asked Landis some questions which he thought about for a long time

and couldn’t answer. In a manuscript that was proposed to be published as a

book containing the solution of the 16th problem, Landis included a new proof

of the theorem on conservation of genre, in which I also found a gap.

In the autumn of 1963, S. P. Novikov gave a series of talks devoted to

the Petrovskii–Landis paper in Gel’fand’s seminar. Just before the third talk,

in which he was to discuss the conservation of genre, a student came up to

Novikov, whom Novikov may have known by sight, but whose name he clearly

did not know. “Serezha,” said the student, “there is a mistake in the theorem that
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you are about to discuss.” “What is it?” It took Novikov a minute to understand

what the mistake was. After that, the seminar began as follows.

“Well, now,” said Novikov, pacing back and forth in front of the blackboard,

“we’ve looked over the theorem and seen a mistake in the paper.” “Who is

this we?” asked Gel’fand. “Us,” said Novikov, making a wide gesture with his

arm at the large room full of people. “Who is we?” repeated Gel’fand. Same

answer, same gesture. “Who is we?” asked Gel’fand, beginning to get annoyed,

and finally turning to the audience. Then the student (that the author of these

lines was then — some fourty years ago), shyly got up and stood there. The talk

was canceled.

After that I spent two years looking for ways to repair the gap and refuted

every one of them myself. I discussed some of the routes with Novikov on

the way to the metro after Gel’fand’s seminar. Novikov met with Landis and

refuted his new attempts to prove conservation of genre. In the autumn of 1965

Landis said to me, “You and I are stuck at the starting gate.” And in 1967

there appeared a letter in Matematicheskii Sbornik from Petrovskii and Landis

in which they retracted their proof.

Although the paper of Petrovskii and Landis did not achieve the desired

goal, it had a great influence on the subsequent development of the theory

of differential equations in the complex domain. It laid out the fundamental

concepts of the theory — complex limit cycle, complex Poincaré mapping — and

described their basic properties. This part was further developed in the theory

of foliations on analytic curves, which is discussed below.

The third part led to the problem of the zeros of Abelian integrals. The

integrable equation studied by Petrovskii and Landis at Step 3 had a rational

first integral with rational level curves — Riemann spheres with a finite number

of punctures. The appearance of limit cycles under perturbations was due to

the zeros of the integrals of rational 1-forms over uncontractible loops on these

level curves. These integrals were calculated using the residues at the punctures.

However, by 1965 it became clear that to obtain a realistic picture one would

have to study so-called Abelian integrals — integrals of polynomial 1-forms

over cycles on algebraic curves of arbitrarily high genus. This realization was

featured in the papers [I69a] and [I69b], in which new results on the number

and location of limit cycles were obtained as a corollary of the Riemann–Roch

theorem and the Picard–Lefschetz theorem. After that, the connection of the

problem of perturbation of integrable equations with algebraic geometry and

topology was used constantly.

In 1981, at the suggestion of Arnold, I wrote a commentary on the papers

of Petrovskii and Landis for a posthumous two-volume edition of the works
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of Petrovskii. At Arnold’s insistence, I included in this survey a modern ex-

position of the famous memoir of Dulac. With the use of the modern theory

of normal forms and the theorem on resolution of singularities, this exposition

appeared very simple. I enthusiastically told this proof to one of my students

(A. A. Shcherbakov). Then next day I woke up in horror: the proof I had talked

about the day before was good for infinitely smooth fields, for which the theorem

on finiteness of the number of limit cycles was demonstrably false! After that, I

easily found the mistake in my own proof and in the more difficult ones of Du-

lac. The basic correct result of Dulac’s memoir (the so-called Dulac’s theorem)

consisted of a description of the asymptotic series for the Poincaré mapping cor-

responding to a polycycle (separatrix polygon) of an analytic vector field. This

theorem had been waiting to be recognized for a long time, and a transparent

proof of it was published only 60 years after Dulac’s work [I82], [I85]. The

proof of this theorem occupied practically the entire volume of Dulac’s sizeable

memoir. The finiteness theorem was derived from Dulac’s theorem on a single

page. And there was the mistake: Dulac had treated asymptotic series as if they

were convergent.

Thus in 1981 somewhat less was known about Hilbert’s 16th problem than

had been known 81 years earlier, when it was posed. In the same year I

gave a talk at a session of the Moscow Mathematical Society devoted to two

different topics: Dulac’s memoir and Écalle–Voronin moduli. To motivate the

combination of such different themes in a single talk, I attempted to think up

a connecting phrase on the fly. “We have seen what the real theory of normal

forms can contribute to the study of singularities; let us now see what the

complex theory can contribute.” Even before I finished speaking, I realized that

this was not merely an elegant connection between the two parts — it was a

research program.

Later J.-P. Ramis told me that when he and Martinet undertook the study of

moduli of the analytic classification of complex saddle nodes (which are now

called Martinet–Ramis moduli), they understood clearly that they were creating

the machinery for storming the finiteness problem.

The finiteness theorem was proved by Écalle [E92] and the author [I91]

using completely different methods. As indicated above, Écalle used the theory

of resurgent functions. The proof given in [I91] is based on the computation

of functional cochains and superexact asymptotic series. These series make it

possible to take account simultaneously of the power terms and the exponentially

small terms of the asymptotics, paradoxical though that sounds.

∗ ∗ ∗
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The second part of Hilbert’s 16th problem remains one of the most inacces-

sible in the famous Hilbert list, second only to the Riemann Hypothesis on the

zeros of the ζ -function. Smale included both problems in his list of “problems

for the next century” [S].

In regard to the 16th problem, he noted that it would be natural first to solve

a simplified version of it, replacing the class of all polynomial vector fields by a

more comprehensible family, for example Liénard equations with a polynomial

of odd degree n. In that form the problem is also not solvable. Other “simplified

versions” — problems involving the number of limit cycles of Abel’s equation,

or of quadratic (polynomial of degree 2) vector fields — also remain unsolved.

However, if additional restrictions are imposed on the equations (for example,

bounding the coefficients in Liénard’s equation), the number of limit cycles

can be estimated. The estimate is expressed not only in terms of the degree

of the polynomials on the right-hand side, but also in terms of a constant that

determines the additional restrictions.

Theorem 2 [I00]. Consider Abel’s equation

dy
dx

= en
+

n−1

∑
j=0

aj(x)y
j, y ∈ R

1, x ∈ S1, (4)

with continuous coefficients aj. Let

|aj| < C. (5)

Then the number A of limit cycles of Eqs. (4) and (5) is bounded above as

follows:

A < eeC3n

.

Theorem 3 [IP]. Consider the Liénard equation

ẋ = y−Fn(x), ẏ = −x, Fn(x) = xn
+

n−1

∑
j=1

ajx
j, n odd. (6)

Suppose

|aj| < C, C � 4. (7)

Then the number L of limit cycles of Eqs. (6) and (7) is bounded above as

follows:

L � eeC14n

.
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Consider the set of quadratic vector fields (1). Suppose the scale in the plane

R
2 is chosen so that |λ | = 1. (We recall that λ is the set of coefficients in the

quadratic terms of Eq. (1).) Denote by ∆(δ ) the set of fields (1) that are δ -far

away from the set of centers in the following sense:

|α |+
3

∑
k=1

|Vk(λ )| � δ ,

where Vk are the polynomials (2). Denote by H(2,δ ) the least upper bound of

the number of limit cycles of equations of class ∆(δ ) that are at least δ -far away

from all singular points of the equation lying in the disk x2
+ y2 � δ−1.

Theorem 4 [ILl*].

H(2,δ ) � ee100δ−1

.

This theorem shows that the main difficulties in the Hilbert problem for

quadratic vector fields are connected with the limit cycles that pass close to the

singular points, either finite or infinitely distant.

Local and Nonlocal Bifurcations in the Plane.

The Hilbert–Arnold problem

The theory of local and nonlocal bifurcation was created by Andronov and his

students in the 1930s. They studied the bifurcation of the generation of a cycle

when the singular point loses stability (obstinately called the Hopf bifurcation

in the West), and the generation of a cycle from a loop of a separatrix and from

a homoclinic curve of a saddle node. The first of these bifurcations takes place

in the neighborhood of a singular point and is local. The other two occur in a

neighborhood of a polycycle (the separatrix polygon consisting of the singular

points and the phase curves joining them) and are nonlocal. The polycycle may

also consist of one singular point or a closed phase curve. The list given above

is an exhaustive list of the most interesting bifurcations of polycycles occurring

in typical one-parameter families of planar vector fields. This research was

summarized in the monograph [ALGM67].

Over the next thirty years, bifurcations in families with two or more pa-

rameters were hardly studied at all. We note only a remarkable result of

E. A. Leontovich:

The cyclicity of a separatrix loop of a hyperbolic saddle arising in a typical

finite-parameter family does not exceed the number of parameters of the family.
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A sketch of the proof of this theorem is given in [L]; the complete proof

can be found in [R].

The systematic development of the multi-parameter theory of local bifur-

cations was begun by Arnold in 1972. It is based on the concept of general

position in the Thom transversality theorem. Arnold revamped the very vocab-

ulary of bifurcation theory. He brought into use the terms versal families (a sort

of topological normal form for deformations of the germ of a vector field with

fixed type of degeneracy) and bifurcation diagrams (sets in the parameter space

corresponding to structurally unstable equations of a versal family).

The first of the nontrivial two-parameter local families — a perturbation of

a singular point with zero nilpotent linear part — was studied by Bogdanov

in his student paper carried out under Arnold’s direction. This paper became

a sort of standard for subsequent research. Three effects were revealed in it

that are typical of almost all problems of the multi-parametric local theory of

bifurcations:

— renormalization (change of scale in the space of variables and parameters

accompanied by a change of time) reduces the problem of bifurcation theory to

the study of a perturbation of an integrable system;

— the basic difficulty is the study of the limit cycles generated under this

perturbation; it reduces to estimating the number of zeros of a special integral

over trajectories of an integrable system;

— local bifurcations in typical k-parameter families are accompanied by

nonlocal bifurcations occurring in (k−1)-parameter families.

Bifurcations in two-parameter families of vector fields in a phase space of

dimension larger than 2 sometimes reduce to bifurcations in special families in

the plane. Using some procedure of averaging and factorization, this reduction

can be carried out for the following classes:

— bifurcations of singular points with two pairs of purely imaginary eigen-

values;

— bifurcations of limit cycles with multipliers (1,1); (−1,−1); (e±2πi/3
);

(e±πi/2
) (the cases just enumerated are called strong resonances).

The corresponding families in the plane were studied by Arnold [A77] and

his students — Khorozov [Khor] and Żołądek [Z83], [Z87], and also in later

papers of Berezovskaya, Khibnik, Rousseau, Krauskopf, and others; references

can be found in the survey [AAISh], and also in the book [CLW], which sum-

marizes the preceding 20-year period in the development of the local theory of

bifurcation.
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Local bifurcations in three-parameter families of vector fields on the plane

are studied almost completely in [DRS] and [DRSZ]. An equally detailed study

of four-parameter families seems hopeless. The local theory of bifurcation of

planar vector fields seems to be finished to a large degree.

In 1986, Arnold outlined a program for the development of a theory of non-

local bifurcations on the plane in families of more than one parameter [AAISh,

§ 3.2]. The first part of the program included the study of typical families with a

small number of parameters k � 3. A complete list of polycycles arising in such

families was compiled by A. Yu. Kotova [KS] — the so-called Kotova zoo. The

bifurcations of these polycycles have been studied by many authors: Dumortier,

Mourtada, Roussarie, Rousseau, Stanzo, Trifonov, and others. However, these

studies are far from complete.

The second part involved multi-parameter families and consisted of a number

of questions. We shall exhibit here just one of them.

The finiteness problem for bifurcation diagrams. Is it true that for every k
there exists only a finite number of topologically distinct germs of bifurcation

diagrams corresponding to typical k-parameter families of planar vector fields?

An affirmative answer would immediately imply a positive solution of the

following problem:

The Hilbert–Arnold problem [I93b]. Is it true that for every k the cyclicity of

the polycycle that arises in a typical k-parameter family does not exceed some

constant depending only on k (it is denoted B(k))?

Indeed, polycycles of different cyclicity correspond to topologically different

germs of bifurcation diagrams. If the cyclicity were unbounded, the number of

distinct germs would be infinite, which is a contradiction.

However, the answer to the finiteness problem for bifurcation diagrams

turned out to be negative. To be specific, a polycycle was discovered in the

Kotova zoo that belongs to a continuous family of polycycles — the so-called

“lip” ensemble. The polycycle consists of two saddle nodes with a common

separatrix of two hyperbolic sectors (this part is common to all polycycles of

the ensemble) and the phase curve going from a parabolic sector of one saddle

node to a parabolic sector of the other. This phase curve belongs to a continuous

family of trajectories, which also go from one saddle node to another. Together

these “parabolic ties” resemble lips; hence the name. For every L a field with

the “lip” ensemble can be constructed so that when it bifurcates in a typical

three-parameter family, more than L cycles are generated. Moreover, more than
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L polycycles of the family generate at least one limit cycle apiece. Each poly-

cycle of the ensemble has cyclicity no larger than 3; therefore this example does

not give a negative answer to the Hilbert–Arnold problem.

The Hilbert–Arnold problem is a natural analog of Problem 6 of the pre-

ceding section and is now the central problem of the multi-parametric theory

of bifurcations on the plane. In the study of this problem the following results

have been obtained. We call a polycycle elementary if all its singular points are

elementary. We denote by E(k) the maximal cyclicity of an elementary polycy-

cle that can occur in a typical k-parameter family of smooth vector fields on the

plane.

Theorem [IYa95]. For every k, the quantity E(k) exists.

Theorem [K]. For every k, the inequality E(k) � 225k2
holds.

The proof of both theorems uses the normal forms of local families [IYa]

and the theory of Khovanskii fewnomials [Kh91]. The proof of the last theorem

also uses the theory of stratifications perfected by Kaloshin.

Another application of the theory of nonlocal bifurcations is the attempt

undertaken by Dumortier, Roussarie, and Rousseau to prove the existence of

the Hilbert number H(2) by solving the problem of finite cyclicity for quadratic

vector fields. In [DRR] there is a list of 121 polycycles that can arise in a

family of quadratic vector fields. At present, the finite cyclicity of 82 of these

polycycles has been proved (see [I02], Section 5.2, and the literature there).

There is reason to hope that the existence of H(2) will be proved following this

route. However, an analogous proof of existence for H(3) appears completely

unrealistic.

In conclusion, we note a famous result of Bautin from the local theory of

bifurcations of quadratic vector fields.

Theorem [Ba]. The cyclicity of a center singularity in the space of quadratic

planar vector fields is at most 3.

The circumstance that the number of conditions for a center given in (2)

exceeds its cyclicity by 1, does not seem to be coincidental.

Problem. Is it true that the cyclicity of a center singularity in a family of

polynomial vector fields of fixed degree is 1 less than the number of independent

conditions for a center in that family?
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Foliations on Analytic Curves

Hilbert’s 16th problem involves the equations

dy
dx

=

Pn(x,y)
Qn(x,y)

, (x,y) ∈ R
2, (8)

where Pn and Qn are real polynomials of degree at most n. Restricted versions of

Hilbert’s problem for the equations of Abel and Liénard, and for quadratic vector

fields (see Theorems 2–4) have been solved by passing to the complex domain.

These solutions use concepts introduced by Petrovskii and Landis; among them

are complex cycle, complex limit cycle, and complex Poincaré mapping.

Let us complexify Eq. (8):

dw

dz
=

Pn(z,w)

Qn(z,w)

, (z,w) ∈ C
2. (9)

Polynomials Pn and Qn will be considered with not just real coefficients, but

also complex ones. Equation (9) defines a field of complex lines (real two-

dimensional planes). The integral surfaces of this field are holomorphic curves

(Riemann surfaces). The topology of the integral curves of the real equation (8)

is simple: they are either straight lines or circles. The topology of the complex

integral curves of Eq. (9) is much more complicated: they may be Riemann

surfaces of arbitrarily high genus. A complex cycle is a nontrivial class of freely

homotopic loops on the (real two-dimensional) integral curves of Eq. (9). At

each nonsingular point of Eq. (9) (where the numerator and denominator do not

vanish simultaneously) there exists a neighborhood in which the integral curves

of the equation can be rectified. This means that there exists a mapping of

the neighborhood onto a bidisk (Cartesian product of two disks) that maps the

intersections of a pre-image neighborhood with integral curves of the equation

into disks parallel to the first factor. Such a locally rectifiable partition of the

domain into pairwise disjoint holomorphic curves is called a foliation on analytic

curves.

The partition into integral curves of a neighborhood of a loop γ lying on

an integral curve can be described as follows. Cover γ by neighborhoods Uj,

j = 1, . . . ,m, in which the direction field (9) can be rectified and number them

cyclically, so that each neighborhood has a nonempty intersection with its suc-

cessor and the last coincides with the first. Choose a transversal section Γ j in

each neighborhood Uj lying on a complex line intersecting the loop γ in a point

O j. The transition functions from one rectifying chart to another generate germs
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of biholomorphic mappings f j : (Γ j,O j) → (Γ j+1,O j+1). The composition of m
such germs is the germ of a mapping of the first transversal onto itself:

∆γ : (Γ1,O1) → (Γ1,O1), ∆γ = fm ◦ · · · ◦ f1.

This germ is called the complex Poincaré mapping or holonomy transformation

of the loop γ . This mapping either has an isolated fixed point O1 or is the identity

mapping. (This follows from the uniqueness theorem for analytic functions.)

The Poincaré mappings of freely homotopic loops are analytically conjugate; for

that reason either they all simultaneously have an isolated singular point, or they

are all the identity mapping. In the first case the corresponding complex cycle

is called a limit cycle, in the second it is called an identity cycle. A natural

question arises:

What are the global properties of the phase portraits of holomorphic differ-

ential equations on the complex projective plane?

It turns out that the properties of typical complex equations are strikingly

unlike the analogous properties of real equations. Instead of a finite number of

limit cycles, there is a countable number; instead of structural stability, there

is absolute structural instability (a property opposite to structural stability and

defined below).

An equation α is called absolutely structurally unstable if there exists a

neighborhood of α in the class (9) and a neighborhood of the identity mapping

in the space of homeomorphism of the complex plane onto itself having the

following property: every equation of the first neighborhood that is topologi-

cally equivalent to α and conjugate to α via a homeomorphism of the second

neighborhood is affinely equivalent to α .

Theorem 5. For each n � 2 in the class of equations (9) with fixed n there

exists a real algebraic subset of codimension 1 outside which every equation

has the following properties:

— denseness, which in another terminology is minimality (all the integral

curves except the line at infinity are dense in C
2);

— absolute structural instability;

— the presence of a countable number of complex limit cycles.

This theorem sums up forty years of development of the theory. The property

of denseness for typical equations (9) was discovered by M. G. Khudai-Verenov

in 1962 [Kh-V]. Absolute structural instability and the countable number of cy-

cles for typical equations were revealed in [I78]. In all these theorems “typical-

ity” means “outside an exceptional set of Lebesgue measure 0 in the parameter
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space.” This “bad” exceptional set was replaced by a Zariski-closed set as a

result of papers of A. A. Shcherbakov, I. Nakai, L. Ortiz, and E. Rosales ([Shch],

[N], [SRO]).

It is possible to prove Theorem 5 because the typical equation (9) has a

solution with a rich fundamental group: the line at infinity with points at infinity

removed. The Poincaré mappings corresponding to loops that enclose these

points form the monodromy group at infinity, which is generated by a finite

number of germs of conformal mappings. For such groups it is possible to

prove the analogs of the properties of denseness, absolute structural instability,

and countability of the number of cycles, after which these properties are carried

over to Eq. (9).

In conclusion, we present a number of problems.

One may consider a special subset of equations on the projective plane that

belong to the class (9), which in a certain sense is more natural than that class.

This subset consists of equations of the form (9) for which the line at infinity

is not an integral curve. For such equations there does not exist a distinguished

affine neighborhood. They are connected with the famous problem of minimal

sets posed by Camacho [Ca].

A minimal set of a foliation with singularities on the complex projective

plane is a closed, invariant, nonempty subset of the plane not containing any

proper subset having the same three properties. Invariance means that the set

either consists of one singular point (and in this case it is called trivial) or

contains no singular points at all, and together with each its point the set also

contains the entire integral curve passing through that point.

Problem 7 ([Ca], on minimal sets). Do there exist foliations with singularities

on CP2
having a nontrivial minimal set?

The following problem goes back to the paper of Petrovskii and Landis.

Problem 8 (Conservation of a cycle). Consider a complex limit cycle of Eq. (9).

Can it be continuously extended to a family of complex limit cycles over a

typical curve in the parameter space?

A related problem:

Problem 9. To what limits can one extend a monodromy transformation of a

complex limit cycle of Eq. (9)?

This problem is closely connected with simplified versions of Hilbert’s 16th

problem for the equations of Abel and Liénard.
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The Infinitesimal 16th Hilbert Problem

The problem in the title of this section involves the zeros of Abelian integrals

depending on parameters, and arises in the theory of perturbations of integrable

polynomial differential equations.

Consider a real polynomial H of degree n+1 in two variables. A connected

component of the level curve H = t diffeomorphic to the circle is denoted γ(t)
and called an oval of the polynomial H . These ovals form a family parameter-

ized by the value of the polynomial. Let ω be a real 1-form whose coefficients

are polynomials of degree at most m. Set

I(t) =

∫
γ(t)

ω . (10)

Problem 10. Find an upper bound V (m,n) for the number of real zeros of

the integral (10). The estimate must be uniform relative to the choice of the

polynomial H , the family of ovals {γ(t)}, and the form ω . It is to depend only

on the degrees m and n.

Theorem 6 ([V], [Kh84]). For any m and n, the upper bound V (m,n) in the

infinitesimal 16th Hilbert problem exists.

The proof of this theorem is based on a theorem of Hironaka on resolution

of singularities and on Khovanskii’s theory of fewnomials.

The connection between this problem and differential equations is given by

the Pontryagin criterion [Po]. Consider a perturbation of the integrable system

dH + εω = 0. (11)

We will say that an oval of the polynomial H generates a limit cycle under the

perturbation (11) if for all sufficiently small ε there exists a family of closed

curves depending continuously on ε and having the following property: For

ε �= 0 the curve of the family is a limit cycle of Eq. (11) and for ε = 0 it

coincides with the oval γ(t).

The Pontryagin Criterion. If an oval γ(t) of the polynomial H generates a

limit cycle under the perturbation (11), then I(t) = 0. On the other hand, if

I(t) = 0 and I′(t) �= 0, then the oval γ(t) generates a limit cycle of Eq. (11).

The study of Abelian integrals as branching functions of a complex variable

t made it possible to obtain purely real results on the location of limit cycles

of planar polynomial vector fields and to give a lower bound on the number of
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them. To be specific, suppose the polynomial H of degree n+1 satisfies certain

typicality requirements. Take N arbitrary ovals γ1, . . . ,γN of this polynomial,

where N =
1
2n(n+1)−1. These ovals may belong to different families of ovals

of the polynomial H .

Theorem ([I69a], [Push]). For the polynomial H , the number N, and the ovals

γ1, . . . ,γN described above, there exists a perturbation (11) having N limit cycles

located near these ovals.

“Near” means that the Hausdorff distance between the limit cycle and the

oval corresponding to it is small.

A number of precise results on the zeros of an Abelian integral over ovals on

elliptic curves (Riemann surfaces diffeomorphic to a torus) have been obtained

by G. S. Petrov [Pe] and applied in bifurcation theory [Mar]. Several theorems

on the growth of the number V (m,n) as a function of m are proved in the

papers of Il’yashenko and Yakovenko, D. I. Novikov and Yakovenko, and also

in an unpublished paper of Petrov–Khovanskii. In this last paper it is asserted

that V (m,n) increases linearly with respect to m: V (m,n) � A(n)m + B(n). The

number A(n) has a polynomial upper bound. The existence of B(n) can be

derived from the theorem of Varchenko–Khovanskii; this derivation is a pure

existence theorem. On the other hand, it is the estimate of B(n) that is of

interest for application to Hilbert’s 16th problem.

For quadratic equations (11) the problem has been solved (see [Ga], [CLY]):

V (2,2) = 2.

The bounded version of the infinitesimal 16th problem is to make a uniform

estimate of the number of zeros of the integral (10) uniformly, not over all poly-

nomials H but only over those belonging to a compact set described below. In

the space of all polynomials H of degree N +1, we distinguish the discriminant

set consisting of polynomials H for which a certain explicitly stated require-

ment of typicality is violated. A parameter δ is determined that characterizes

the distance from the polynomial H to the discriminant set. The compact set

mentioned above consists of all polynomials H lying at distance at least δ from

the discriminant set. The estimate for the number of real zeros of the integral

(10) can then be expressed as a function of n and δ .

Novikov and Yakovenko [NYa01] have obtained an estimate of the number

of zeros of the integral (10) as a tower of four exponentials of n and δ . This

estimate is based on a theory developed by the authors that makes it possible,

in particular, to estimate the “wiggling” of phase curves of a polynomial vector
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field [NYa99]. In a paper of A. A. Glutsyuk and Yu. S. Il’yashenko, the analogous

number of zeros is bounded above by an exponential of a polynomial.

Results and Problems

Let us briefly summarize the results of the development of the qualitative theory

of differential equations and give a list of the main unsolved problems. Detailed

statements for these can be found above. It goes without saying that this résumé

is subjective.

Main Results

— The theory of normal forms of elementary singular points.

— Resolution of singularities and the study of complex singular points.

— The global topological classification of vector fields on the plane and the

two-sphere.

— Functional moduli of the analytic classification of resonance singularities.

— The theory of local and nonlocal bifurcations of planar vector fields.

— The finiteness theorem for limit cycles.

— The existence of a uniform estimate of the number of zeros of Abelian inte-

grals.

The Main Unsolved Problems

— Hilbert’s 16th problem.

This problem is central for the future development of the theory.

— The Hilbert–Arnold problem.

— The infinitesimal 16th Hilbert problem.

— The creation of a program for development of a multi-parametric theory of

nonlocal bifurcations on the plane.

— Analytic solvability of the problem of stability of singular points in the plane.

For equations in the complex domain we note the following two problems.

— The problem of conservation of complex limit cycles.

— The minimal-set problem.
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[E92] J. Écalle. Introduction aux fonctions analysables et preuve constructive de

la conjecture de Dulac. Paris: Hermann, 1992.

[Ga] L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case.

Invent. Math., 2001, 143(3), 449–497.

[I69a] Yu. S. Il’yashenko. The origin of limit cycles under perturbation of the equa-

tion dw/dz = −Rz/Rw, where R(z,w) is a polynomial. Math. USSR, Sb.,

1969, 7, 353–364.

[I69b] Yu. S. Il’yashenko. An example of equations dw/dz = Pn(z,w)/Qn(z,w)

having a countable number of limit cycles and arbitrarily large Petrovskii–

Landis genus. Math. USSR, Sb., 1969, 9, 365–378.

[I72] Yu. S. Il’yashenko. Algebraic nonsolvability and almost algebraic solvability

of the center–focus problem. Funct. Anal. Appl., 1972, 6(3), 197–202.



The Qualitative Theory of Differential Equations in the Plane 129

[I78] Yu. S. Il’yashenko. Topology of phase portraits of analytic differential equa-

tions on the complex projective plane. Trudy Semin. im. I. G. Petrovskogo,

1978, 4, 83–136 (Russian).

[I82] Yu. S. Il’yashenko. Singular points and limit cycles of differential equations

in the real and complex plane. Preprint No. 38, Research Computing Center

of the USSR Academy of Sciences. Pushchino, 1982 (Russian).

[I85] Yu. S. Il’yashenko. Dulac’s memoir ‘On limit cycles’ and related questions

of the local theory of differential equations. Uspekhi Mat. Nauk, 1985,

40(6), 41–78 (Russian).

[I91] Yu. S. Il’yashenko. Finiteness Theorems for Limit Cycles. Providence, RI:

Amer. Math. Soc., 1991.

[I93a] Yu. S. Il’yashenko, ed. Nonlinear Stokes Phenomena. Providence, RI: Amer.

Math. Soc., 1993.

[I93b] Yu. S. Il’yashenko. Local dynamics and nonlocal bifurcations. In: Bifurca-

tions and Periodic Orbits of Vector Fields (Montreal, 1992). Dordrecht:

Kluwer Acad. Publ., 1993, 279–319.

[I00] Yu. S. Il’yashenko. Hilbert-type numbers for Abel equations, growth and

zeros of holomorphic functions. Nonlinearity, 2000, 13(4), 1337–1342.

[I02] Yu. S. Il’yashenko. Centennial history of Hilbert’s 16th problem. Bull. Amer.

Math. Soc., 2002, 39(3), 301–354.

[IKh] Yu. S. Il’yashenko, A. G. Khovanskii. Galois groups, Stokes operators, and

a theorem of Ramis. Funct. Anal. Appl., 1990, 24(4), 286–296.

[ILl*] Yu. S. Il’yashenko, J. Llibre. Restricted Hilbert problem for quadratic vector

fields, to appear.

[IP] Yu. S. Il’yashenko, A. Panov. Some upper estimates of the number of limit

cycles of planar vector fields with applications to the Liénard equation.

Moscow Math. J., 2001, 1(4), 583–599.

[IYa] Yu. S. Il’yashenko, S. Yu. Yakovenko. Finitely-smooth normal forms of local

families of diffeomorphisms and vector fields. Russ. Math. Surveys, 1991,

46(1), 1–43.

[IYa95] Yu. S. Il’yashenko, S. Yu. Yakovenko. Finite cyclicity of elementary polycy-

cles in generic families. In: Concerning the Hilbert 16th Problem. Provi-

dence, RI: Amer. Math. Soc., 1995, 21–95 (AMS Transl., Ser. 2, 165).

[K] V. Yu. Kaloshin. The existential Hilbert 16th problem and an estimate for

cyclicity of elementary polycycles. Invent. Math., 2003, 151(3), 451–512.

[Kh84] A. G. Khovanskii. Real analytic varieties with the finiteness property and

complex Abelian integrals. Funct. Anal. Appl., 1984, 18(2), 119–127.



130 Yu. S. Il’yashenko

[Kh91] A. G. Khovanskii. Fewnomials. Providence, RI: Amer. Math. Soc., 1991

(Transl. Math. Monographs, 88).

[Kh-V] M. G. Khudai-Verenov. On a property of the solutions of a differential equa-

tion. Matem. Sb., 1962, 56, 301–308 (Russian).

[Khor] E. I. Khorozov. Versal deformations of equivariant vector fields in the case

of symmetries of order 2 and 3. Trudy Semin. im. I. G. Petrovskogo, 1979,

5, 163–192 (Russian).

[Kl] O. Kleban. On the order of topologically sufficient jets of the germ of a

characteristic vector field in the plane. In: Concerning the Hilbert 16th

Problem. Providence, RI: Amer. Math. Soc., 1995, 125–153 (AMS Transl.,

Ser. 2, 165).

[KS] A. Yu. Kotova, V. V. Stanzo. On few-parameter generic families of vector

fields on the two-dimensional sphere. In: Concerning the Hilbert 16th

Problem. Providence, RI: Amer. Math. Soc., 1995, 155–201 (AMS Transl.,

Ser. 2, 165).

[L] E. A. Leontovich. On the appearance of limit cycles of the loop of a sepa-

ratrix. Dokl. Akad. Nauk SSSR, 1951, 78, 641–644 (Russian).
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[Z83] H. Żołądek. Versality of a family of symmetric vector fields on the plane.

Matem. Sb., 1983, 120(4), 473–499 (Russian).
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P. S. Krasnoshchekov

Computerization . . . Let’s Be Careful

Translated by R. Cooke

I believe that computing is changing the world more than any other factor today . . .

The impact will be so profound that no industry will stay unchanged.

Bill Gates

“On the present and future of computer technology”

Moscow, the Kremlin, 10 October 1997

One has only to open one’s eyes to see that the triumphs of industry,

which have enriched so many practical men, would never have seen the light

if only these practical men had existed, and if they had not been preceded

by disinterested fools who died poor, who never thought of the useful,

and yet had a guide that was not their own caprice.

Henri Poincaré

Science and Method, 1908

And you shall know the truth, and the truth shall set you free.

Jesus Christ

The Gospel According to John 8 : 32

Bill Gates is not the first person to rhapsodize over the triumphs of technological

progress, the blessings it brings to the world, and the radical changes to which

it subjects this world. It is indeed difficult to deny all these triumphs, blessings,
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and changes. Even so, let us hearken to those who see behind the glittering

façade the other, negative side of this process.

In Russia, one of the first to openly cast doubt on blind faith in technological

progress was Lev Nikolaevich Tolstoy: “I implore the reader . . . to remember

these simple facts: that an army once increased can never be reduced; that

ancient forests once destroyed cannot be renewed; that a population once cor-

rupted by comfort and convenience can never be brought back to its primitive

simplicity and moderation.” He says further: “Those who believe in progress

are sincere because their faith is profitable for them, and therefore they preach

their faith with ferocity and cruelty. I cannot help remembering the Chinese war,

in which three great powers, in complete sincerity, naively introduced the faith

in progress into China by means of gunpowder and cannonballs” (“Progress and

the definition of education,” a response to Mr. Markov, Russkii Vestnik, 1862,

No. 5).

I am not an opponent of technological progress. My life has turned out

in such a way that it was necessary to apply my knowledge and talents in

various large technological projects, and even in military affairs. I gave many

years to the creation of automated design systems, which, one can say without

exaggeration, was the model for the new computer information technology. In

the creation of these systems it was necessary to solve problems whose existence

Bill Gates may not even suspect. Solving these problems gave me a balanced

and sober view of hasty computerization, and brought me to an understanding

of an eternal truth: In order to go further, one must make the necessary stops.

The computer found its first effective application, as one would expect, in

science. It gave impetus to the rapid development of many areas of applied

science (such as, for example, automata theory), and it breathed life into the de-

velopment of computational methods (computational mathematics is now recog-

nized as an independent area of research in mathematics). Cybernetics, which

is the study of control, has displayed its own indisputable achievements. A new

profession has arisen — that of programmer; a new branch of mathematics —

programming; and a new area of research — programming languages.

However, the first wave of euphoria has passed. It was suddenly noticed that

the fascination with computation had begun to retard purely theoretical research.

In scientific seminars computational results were being discussed more and more,

and their interpretation was made difficult by the absence of a critical analysis

of the theoretical models on which the computations were based.

A dangerous tendency has been noted in the classical “model–algorithm–

program” triad. The effort to introduce computer technology into all spheres of

life as quickly as possible has led to a decline in the quality of the theoretical

models being used.
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Many scholars, who believe in information as an absolute good, have in-

vaded different areas of human activity with computers in order to process

information and assist in reaching rational decisions. But mathematical methods

and theoretical models have followed the computer at a much slower pace. And

inadequate software generates an illusory knowledge in the user, based on an

entrenched error, as a rule. What is taken for truth is actually a transformation of

it, a plausible illusion. It is particularly dangerous when this happens in making

crucial decisions in the socio-economic sphere.

However, the danger is as yet not very great. There is no euphoria among

the devotees. The computer has taken its proper place, the place of an in-

telligent, disciplined assistant and even, in a certain sense, a colleague. The

computer has remained a great help in the intellectual activity of humankind,

but has not become an artificial intelligence, although it sometimes happens that

chess programs win matches against world champions. Fortunately, the laws of

intellectual activity are hidden from us under seven seals. This applies especially

to the highest form of intellectual activity — creativity. This property of Man is

a gift of God (in his image and likeness) or, if you prefer, the result of millions

of years of evolution; in the final analysis, the two are the same. However, the

human capacity for creative thought has been given to us in potential only — it

can manifest itself and develop successfully only in an intellectual environment,

in living contact with our own kind, that is, in human society. It is known that

the so-called Mowglis raised by animals nearly always lose their intelligence.

But the computer will never acquire such an environment, whatever may be said

about self-teaching systems and the like. That is why the principles on which

computer intelligence (or rather, pseudo-intelligence) is organized are completely

different.

The opinion is widespread at present that the main reason the Russian Fed-

eration is behind the USA in many areas was the undervaluation of computer

technology. That is not exactly the case. Let us recall that the Soviet Union

rapidly overtook the USA in the creation of nuclear weapons, surpassed it in

delivery systems, and was first into space. No one would dare claim that So-

viet computers were better than American computers. The race was won by

living human intelligence, which succeeded in effectively organizing problems

for solution.

For that reason I would like to warn against computer fundamentalism.

Every powerful new technology, whether automobilization or computerization,

brings along with its obvious blessings a highly nonobvious threat to the har-

monious and stable existence of the noosphere. Computerization is dangerous

primarily because it acts on the most fragile and vulnerable component of the
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noosphere — the living intellectual environment. Bill Gates has spoken pro-

fessionally and with inspiration of the usefulness of computerization. But it is

worthwhile to think of the possible irreversible negative consequences that it

may introduce into life.

Let me begin, if I may, with what is in my opinion the most important

problem: the role of education, which, in the words of Gates “will sound

entirely different.” Education is a capacious and multilevel concept. To give

an exhaustive definition of this concept is most likely impossible. Therefore,

when Gates asserts that “in the future the most interesting question to ask of

somebody, in order to understand their job opportunities, will be: ‘What is your

education?’,” it is far from clear how to frame a response. Indeed, what could

one do for the present author, whose specialty is described on his undergraduate

diploma as mechanical engineering; on his docent diploma as mathematics; on

his doctoral degree as cybernetics; on his professorial license as operations

research, and on his certificate of election to the Academy as information and

automata theory? How is he to answer the question posed above? After all,

each of these qualifications of the author can be regarded as an education, but

at the same time they are also education when taken all together. Moreover, this

education is not merely a collection of professions having little connection with

one another. They all complement each other harmoniously. Acting in concert,

they form something qualitatively new and give the author immeasurably greater

capability for scientific research than each would do if taken alone. And in

Russia this is more commonplace than exceptional.

Unfortunately, computer technology is now being tried on the sacred

millennium-old “teacher–student” interaction. In many technological institutes

the computer provides examinations; more precisely, it tests. Such an examina-

tion is devoid of the principal and most important element — the dialog between

teacher and student. An “averaging” is conducted over all the students who take

the test. The computer takes no account of their irreproducible individuality;

it cannot follow the logical reasoning of the person taking the test, and cannot

afford him a chance to defend his point of view in a dialog. But testing is only

a half-victory. It is being proposed that computer technology can be used to

unify the lecturing process. But it is no good at all. A lecturer does not merely

enunciate theoretical material; he interprets it. There are as many interpretations

as there are lecturers. Even the same lecturer giving the same lecture does not

repeat it word for word from one time to the next. Lecturing is a creative

process. Lecturers are like orchestra conductors, each of whom gives his own

interpretation of the same musical composition. Although it may seem that the

orchestra has the score and that is all that is needed, there is a reason why
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great conductors and favorite lecturers exist. It is in the living interaction of

students with the teacher, or of scholars in seminars and conferences that the

aura, the environment, arises without which the living intellect cannot exist and

develop.

Computer technology, by its very nature, introduces into the educational

sphere those attributes of uniformity and standardization so loved by Americans.

Although useful to a degree, unless it is stopped in time, it will lead to the

bureaucratization of education — and education, as the ritual of making a person

acquainted with knowledge and truth, will cease to exist. The system will begin

to place its stamp of approval on those educatees (as Solzhenitsyn has accurately

remarked) who cope with routine work but are utterly devoid of the culture of

creative thought. The decline of scientific schools will begin — a phenomenon

whose first signs are already visible. And this is dangerous, since there are, in

any event, not very many people capable of creative thought in human society.

“ . . . the majority of people do not like to think, and that may be for the best,

for they are guided by instinct . . . But instinct is a routine, and if not fructified

by thought it would not progress any further even in man than in the bee or the

ant. Consequently, it is necessary that someone think on behalf of those who

don’t like to think . . . ” (H. Poincaré, Science and Method; Book 1, The Scholar

and Science, 1908).

It is important that as many people as possible learn to think. Let us heed

the words of Pascal: “ . . . all our dignity consists of thought. We should exalt

ourselves in that respect, not in relation to space and time, which we could never

fill. Let us try instead to learn to think well: that is the principle of morality.”

In this connection we cannot avoid mentioning the Internet — another computer

technology that is now much in fashion. It is possible that the Internet may

enable us to fill time and space (there is a reason why it is also called the Web),

but it is very doubtful that it can help us learn to think well.

Thus we must constantly take care to assure that computer technology brings

us not only comfort and entertainment, but that it liberates the potential of our

intelligence for creative thought. This is very important, since in our world

technological progress is being implemented and directed by the efforts of, and

in the interest of, business.

And modern business, despite all its indisputable good features, has one

inherent defect: its main concern is to make a profit, preferably as quickly as

possible. For that reason, to put the matter mildly, it is neutral with respect

to morality. Business is in a hurry, it has no time to make the necessary

stops — it simply doesn’t notice the necessity. Thinking well is not a principle

of business; its principle is thinking effectively. For that reason, in the larger
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scheme, business does not care if certain computer technologies that it advertises

produce computer addicts who retreat from real life into the illusory world of

virtual reality. The situation is arising in which life will have to adapt to the

laws of business, rather than the reverse. The world is being turned upside

down: business is becoming the only objective reality, which humankind will

have to deal with and accept. Anything that does not yield a profit will lose

the right to exist. The voluntary study of business is turning into its opposite —

a compulsory study. That is why the computer technologies that are being

developed most successfully are those in demand by businessmen and in the

sphere of entertainment.

For people, “whose dignity consists of thought” and whose freedom resides

in the knowledge of the truth, such an order of things is unacceptable. The

disappearance of the “disinterested fools” from the arena of life will cause the

instinctive striving of “practical men” for profit to cease being “fructified by

thought,” and practice will become ineffective. There will simply be nothing

to sell.

I am deliberately painting a lurid picture. Of course, the situation is not so

tragic as all that. But you must agree that the tendency is noticeable. Never-

theless, the way out of this situation is known: computer technologies need to

be perfected. They must become more knowledgeable, thereby expanding their

sphere of application. One must not forget what the computer was originally

invented for. Its inventors intended that it should promote not so much technical

progress as the progress of humanity in its eternal quest to know the truth. On

that path, as history shows, everything will turn out well even with technical

progress. It is not a coincidence that Pascal, who called us first of all to learn

“to think well,” was simultaneously the inventor of an adding machine — the

first prototype, one may say, of the modern computer.

So then, what must be done in order to make computer technologies more

and more knowledgeable? I shall try to state here a number of problems which,

it seems to me, must be solved. I came to understand them during the twenty

years I spent creating automated design systems, but the problems themselves

are sufficiently general in nature that one can speak of computer technologies in

general.

In the earliest automated design systems the creators attempted to make

maximal use of the possibilities presented by the computer: rapid execution

of a large number of computations; storage and retrieval of a large volume

of information; visualization of results by means of computer graphics; human

interaction with the computer in dialog mode. Over time, this approach spilled

over into the computer technology that is now called an expert system. Such
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a system is based on the picture of the user as a specialist in a particular area

of knowledge (physician, economist, engineer, executive, and so on) who is to

be assisted in applying his knowledge to a specific job. These systems are used

today in various spheres of activity. For example, they turned out to be very

successful in coping with specific diagnostic problems, in which knowledge can

be presented in the form of rather rigid instructions acting in the strict framework

of formal logic. However, those who attempted to use the ideas of expert systems

for automated design of such complex objects as an airplane, a ship, a factory,

or a system for controlling these things, were unable to overcome the theoretical

problems. In exactly the same way, the automobile did not take the problem

of transportation off the agenda. The ubiquitous automobilization generated

new problems: accidents and traffic jams, environmental pollution, parking and

storage difficulties. And when the modern design offices were equipped with

so-called personal work stations (certain analogs of expert systems) and linked

in a network intended to carry out the functions of an automated design system,

problems arose that were no less acute. One of them is that enormous volumes

of information began to be processed in the system. And it is known from

theory that this leads to an increase in entropy of the system, that is, information

on the current state of the project is distorted, and the more executing elements

it has, whether a program or a live designer at his personal work station, the

greater the distortion. The increase of entropy can be combatted in complex

systems only by using aggregation (enlargement, generalization) of information

and distributing it over levels of detail; that is, by constructing a hierarchical

system of information processing. Such, in essence, is the situation in any large

design office, only such a hierarchy arises spontaneously under the pressure

of circumstances and depends largely on the design practice that has been set

up in the given office. That is why it will not be possible to get by with a

simple “integration of these programs with all the other elements,” as Bill Gates

claims. It will be necessary to delve into the “specialized” problems of the areas

in question. It is also obvious that not all hierarchical design systems in various

design offices are equivalent. One office may be more productive, another less.

Thus the hierarchy must not be arbitrary, but one that flows naturally from

the functional nature of the object being designed and its degree of structural

complexity. Designing a screw requires no hierarchy.

Contrary to expectation, the problem of making engineering decisions has

grown more complicated, not simpler. Complaints have arisen that one can-

not make a unique choice, that it simply doesn’t exist. Attempts to improve

some features of a structure have led to a worsening of others and conversely.

The hopelessness of the situation has forced us to resort to an arbitrary device:
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trying not to notice “superfluous” information. The traditional method of de-

signing “from a prototype” has not undergone any essential changes. However,

practically the first result of the introduction of the computer into the sphere of

design was to pose to the engineer the problem of choice in all its unpleasant

ambiguity. It was time to make one of the necessary stops.

But now let us forget about design. The point is that the problems just dis-

cussed are inherent not only in design. They are encountered wherever decisions

(or choices) have to be made in a complicated informational environment. In-

terpreting design in its broadest sense, we may define any purposeful activity as

design; but the concept of synthesis characterizes more accurately the problem of

decision making. Science has traditionally studied reality as a given. Its method

was analysis. But the time came when people began to transform the world (this

is what Bill Gates is talking about). These transformations of the world are the

result of purposeful activity of people in various manifestations of their lives.

That is why the problem of the purposeful synthesis of systems and processes

of diverse nature and complexity is on the agenda. Computer technologies must

enable us to solve this problem in the way that is least upsetting to us and the

environment, and that is possible only if the technologies themselves help us to

“think well.” But to think well, one must first learn to think correctly. For that

we need to apply the achievements of basic science.

Let us return to the problems of synthesis. Among them the central problem

is unquestionably the problem of choice. But choice becomes possible only

when there is something to choose between, that is, a set of alternatives of the

system, object, or process being synthesized. In this situation, it is known from

theory that the larger the set of alternatives, the better the choice will be. And

here we encounter a situation that seems paradoxical at first sight: in order to

construct the optimal synthesis one must be able to synthesize the entire set

of possible alternatives. This problem is very complicated, but fundamental

achievements in optimization theory, game theory, and mathematical modeling

(these are components of the general theory of decision making), and the perfec-

tion of modern computers, strengthen our faith that it will be solved successfully.

However, there are more than enough problems to be solved on this path. And

the next one is to set up a system of tests (estimates) on the basis of which an

optimal synthesis can be constructed. This system of tests is none other than the

formalization of our desires and requirements for the qualitites of the object or

process being synthesized. An optimal synthesis cannot be constructed without

it. But the trouble is that, as a rule, our desires and requirements are in conflict

with one another and cannot be formalized as a single test.

Well then, what is the way out of this situation? The theory of multi-test

optimization answers that question: One must abandon categorical forms of
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requirements, and then a solution exists. But it turns out that the solution is

not at all what we expected. It is not unique. An optimal synthesis is a set of

alternatives that cannot be improved on in terms of our requirements; and, what

is very important, in general it contains fewer elements than the original set.

So, there is not a unique answer. However, if you think about it, this is not

so bad, since it leaves us with the possibility of further choice. This choice may

be determined by considerations on a higher level that cannot be discussed here,

or the choice may be made on the basis of a compromise, that is, by reconciling

requirements. And it may happen in such a way that necessity forces us to

realize all the results of a nonunique synthesis. For example, in the production

of automobiles, it is necessary to manufacture both cars and trucks. The optimal

synthesis in this case seems to suggest that we cannot satisfy our requirements

with the production of cars alone or trucks alone. Both are needed.

However, let us return to the problem of synthesis of the original set of

alternatives. This is usually done with a structural-parametric model of the object

or process being synthesized. A structural-parametric model is a description that

makes it possible to obtain the complete set of alternatives by varying the

structure and parameters within prescribed limits. Moreover, each particular

variation distinguishes a particular alternative of the set. To a more complicated

object or process there corresponds a more complicated structural-parametric

model. Unfortunately, science does not yet know how to solve optimization

problems in which the space of variables is of very large dimension. For that

reason the model must be simplified in order to decrease the number of variables

to the minimum possible. Thus it is necessary to decompose the problem, that

is, to break it into steps — to introduce a hierarchy of the structural-parametric

description over the levels of detail (top-down planning). We recall that we

have already spoken of such a hierarchy when we were discussing the problem

of the increase in entropy in an information environment. Now this is the same

hierarchy, and it is implemented by using the procedure of sequential aggregation

of the structural-parametric model. Finally, we need a model of the functioning

object, since without it we cannot compute the values of the test criteria and

reject some versions (that is, construct an optimal synthesis). Such models

should include all conceivable modes of functioning, and in technical areas it

is known how to construct them in practice. The situation is not so good with

the functioning of socio-economic systems. But let us assume that we do have

a model of the functioning object. Obviously, it is not less complex than the

structural-parametric model and consequently it is also subject to decomposition.

Moreover, the decomposition of one model or another should be coordinated so

that all the parts can be fitted into the same hierarchy.
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It now remains only to describe the general features of the process of op-

timal synthesis itself, from top to bottom along the hierarchy. It is assumed

that the topmost level is the most aggregated, that is, the most simplified in the

informational and descriptive sense. On this level one is dealing with macropa-

rameters, and accordingly it is called the macrolevel. It is here that the problem

of optimal synthesis is solved in essence; that is, demonstrably ineffective al-

ternatives are rejected. This is a very important level. The possible external

features (macrocharacteristics) of the future object or process are determined on

this level. They have the property that it is now impossible to improve them

using the set of original requirements. We cannot give preference to any of

the alternatives, since they are not comparable with one another in terms of the

chosen system of tests. The results of the preliminary synthesis then pass to

the second, more detailed level. On this level one first solves the problem of

disaggregation of the information received. This is a very difficult problem: It

is necessary to find all the preimages of the object or process being synthe-

sized by the given detailing that correspond to the macroimage arriving from

the first level. Then, on the set of alternatives obtained in this way the problem

of optimal synthesis is solved again, using the system of tests for the second

level. Solving it is now easier than it would have been if we had begun the

synthesizing process at the second level, since many alternatives were rejected

in advance at the first level. And so we go, down the levels, until the complete

optimal synthesis is constructed — a description of the object or process at all

levels of the hierarchy is thereby obtained.

At this point, by the traditional methods of analysis — using checking calcu-

lations on exact models or in an experiment if experimental models have been

prepared — we must ascertain whether the synthesis constructed is satisfactory.

If it is, the problem can be considered solved; if not, the synthesizing process

starts over, taking account of all corrections. And so it goes until the iteration

process reaches the desired result.

This is by no means all, but I should probably stop at this point. After

all, I promised to speak only about “what Bill Gates didn’t say,” and nothing

more. There are many things that neither Bill Gates nor I have spoken of; but

what we did say suffices for understanding the complexity of the problems that

must be solved using computer technology, and the heavy demands they will

make on that technology. For the time being I shall simply remark that the

implementation of portions of this scheme in one of the design offices of the

Russian Air Force contributed to the creation of one of the most manoeuvrable

airplanes in the world.

I am not a prophet. That is why it is difficult for me to judge whether com-

puter technology is developing along the lines I have indicated here, whether it
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is to be computer technology as Bill Gates understands it or turn into something

for which there is not yet a name, and whether it will liberate human intelli-

gence from the concerns of everyday routine and open the path to truth. In any

case, as long as there exist “disinterested fools,” hope is not lost. Everyone will

gain, including business, whose profits will only increase, and business itself

will become incomparably more moral . . . Only one thought troubles me: that

my children, grandchildren, and great-grandchildren may lose that intellectual-

emotional tension whose successful resolution provides a truly incomparable

pleasure.

The present article is a version of the paper “What Bill Gates didn’t talk about” published in

Vestnik Rossiiskoi Akademii Nauk, 1998, 68(11), 980–985.



V. A. Marchenko

The Generalized Shift, Transformation

Operators, and Inverse Problems

Translated by R. Cooke

One might title this article “The way it was,” using the language of television. In

it I shall tell how the main inverse problems for one-dimensional second-order

differential operators were solved in the period 1950–1955. More precisely: how

the necessary machinery arose and where the main ideas came from.

Shift operators Uy
x , which are defined on functions f (x) of a real variable x

by the equality

Uy
x [ f ] = f (x+ y) (x,y ∈ R

1
),

play an important role in classical harmonic analysis. For example, the following

definitions are connected with them.

1) The definition of almost-periodic functions. A function f (x) is almost

periodic if the family Uy
x [ f ] (where y is a parameter) is compact with respect to

uniform convergence on the entire real line −∞< x < ∞.

2) The definition of positive definite functions. A function f (x) is positive

definite if the inequality∫ ∞

−∞

∫ ∞

−∞
U−y

x [ f ]ϕ(x)ϕ(y)dxdy � 0

holds for all functions ϕ(x) of compact support.
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3) The definition of convolution. We define the convolution f ∗ g by the

equality

f ∗g(x) =

∫ ∞

−∞
U−y

x [ f ]g(y)dy,

which transforms the space L1
(−∞,∞) into a Banach algebra.

Between 1938 and 1940 Jean Delsarte and B. M. Levitan developed the the-

ory of generalized shift operators T y
x [ f ], which map functions f (x) into functions

of two variables T y
x [ f ] and satisfy four axioms that generalized the properties of

ordinary shift. Among these axioms the associative law is nontrivial:

T s
r T r

x [ f ] = T r
x T s

x [ f ].

(Here, and below, the subscript on the operator T β
α means that it acts on a

function of the variable α ; if the function also depends on other variables, they

are held fixed.)

The formal replacement of the ordinary shift by the generalized shift in clas-

sical harmonic analysis leads to theories of generalized almost-periodic func-

tions, generalized positive definite functions, and a generalized convolution.

The rigorous justification and development of these generalizations demanded

the development of adequate analytic machinery. Intensive work in this area

was conducted throughout World War II by Levitan and A. Ya. Povzner.

The operators that transform functions f (x) into solutions u(x,y) of the

Cauchy problem

∂ 2u
∂x2 − r(x)u =

∂ 2u
∂y2 −q(y)u, (1)

u(x,0) = f (x), u′y(x,0) = h f (x) (2)

(where the functions r(x), q(y), and the number h are fixed) satisfy all the

axioms for generalized shift operators except the associative law, which also

holds if r(t) ≡ q(t).
The operators defined by the relations

T y
x [ f ] = u(x,y) (−∞< x,y < ∞),

Ry
x[ f ] =

{
u(x,y) (0 � y � x < ∞)

u(y,x) (0 � x � y < ∞),

were the first nontrivial examples of generalized shift operators on the entire

line (T y
x ) and the half-line (Ry

x).
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By applying Riemann’s method to solve the Cauchy problem (1)–(2),

Povzner obtained the following representation of the solution:

u(x,y) =

1
2

{
f (x+ y)+ f (x− y)+

∫ x+y

x−y
R(x,y, t) f (t)dt

}
, (3)

where R(x,y, t) is the function obtained from the Riemann function by pass-

ing from the characteristics of Eq. (1) to the old coordinates. It is uniquely

determined by the functions r(x), q(y), and the number h.

The solution of Eq. (1) obtained by separation of variables has the form

u(x,y) = ϕ(µ ,x)ψ(µ ,y),

where ϕ(µ ,x) and ψ(µ ,y) are arbitrary solutions of the equations

d2

dx2ϕ− r(x)ϕ = µϕ ,
d2

dy2ψ−q(y)ψ = µψ ,

and µ is an arbitrary constant. If ψ(µ ,0) = 1 and ψ ′
(µ ,0) = h, the function

u(x,y) obviously satisfies the initial conditions

u(x,0,µ) = ϕ(µ ,x), u′y(x,0,µ) = hϕ(µ ,x);

that is, it is a solution of the Cauchy problem (1)–(2) in which f (x) = ϕ(µ ,x).
Hence, by (3) and the uniqueness of the solution of the Cauchy problem, it

follows that

ϕ(µ ,x)ψ(µ ,y) =

1
2

{
ϕ(µ ,x+ y)+ϕ(µ ,x− y)+

∫ x+y

x−y
R(x,y, t)ϕ(µ , t)dt

}
.

In particular, if r(x) ≡ 0 and ϕ(µ ,x) = cos
√
µx, then

cos
√
µx ψ(µ ,y)

=

1
2

{
cos

√
µ(x+ y)+ cos

√
µ(x− y)+

∫ x+y

x−y
R(x,y, t)cos

√
µt dt

}
,

from which, for x = 0, it follows that

ψ(µ ,y) = cos
√
µy+

∫ y

0
K(y, t)cos

√
µt dt. (4)

Here the continuous kernel

K(y, t) =

1
2

{
R(0,y, t)+R(0,y,−t)

}
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is independent of µ and is uniquely determined by

A. Ya. Povzner

the function q(y) and the number h. Delsarte de-

rived special cases of (4), and the general case was

obtained by Povzner. Formula (4) shows that, for

any function q(x) and any number h, there exists an

operator with an integrable kernel K(x, t)

V [ f ] = f (x)+

∫ x

0
K(x, t) f (t)dt (0 � x < ∞) (5)

defined on all locally integrable functions f (x)
(0 � x < ∞) and mapping the functions cos

√
µx

into solutions of the equations

−ψxx + q(x)ψ = µψ ,

satisfying the initial conditions ψ(µ ,0) = 1, ψ ′
x(µ ,0) = h.

Operators of the form (5) are called Volterra operators, and they form a

group under composition. In particular, they are invertible, and the inverses

have the same form

V−1
[g] = g(x)+

∫ x

0
L(x, t)g(t)dt. (6)

According to (4), there exist Volterra operators Vi (i = 1,2) mapping the

functions cos
√
µx into solutions of the equations

−ψ(i)
xx + q(i)

(x)ψ(i)
= µψ(i), ψ(i)

(µ ,0) = 1, ψ
(i)
x (µ ,0) = hi (i = 1,2).

Hence for any two functions q(1)

(x) and q(2)

(x), 0 � x < ∞, (now called po-

tentials) and any two numbers h1 and h2, there exists a Volterra operator

V = V2(V1)
−1 that maps solutions ψ(1)

(µ ,x) of one equation into solutions

ψ(2)

(µ ,x) of the other. These Volterra operators are called transformation oper-

ators.

The Riemann method applied to the Cauchy problem

∂ 2u
∂x2 =

∂ 2u
∂y2 + q(y)u

with initial conditions

u(0,x) = f (x), u′y(0,x) = f ′(x),

leads in the same way to transformation operators of the form

W [ f ] = f (z)+

∫ x

−x
A(x, t) f (t)dt, (7)
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which transform any solutions of one equation into solutions of the other equa-

tion while conserving the initial conditions at zero.

Of course, it was not accidental that transformation operators arose in the

theory of generalized shift. They served as an important auxiliary device in

the study of the Banach algebras and generalized almost-periodic and positive

definite functions generated by generalized shift operators. The role of transfor-

mation operators is illustrated by the example of the generalized shift operator

Ry
x, which, as one can easily see, can be expressed in terms of the transformation

operator (4) by the formula

Ry
x[ f ] = VxVySy

xV
−1
x [ f ] (x,y � 0),

where Sy
x denotes the usual symmetric shift operator on a half-line:

Sy
x[g] =

1
2

[
g(x+ y)+g

(|x− y|)] (x,y � 0).

Theoretically, this formula makes it possible to reduce the solution of problems

connected with the generalized shift operator Ry
x to problems solved long ago

in connection with the ordinary shift operator. But to do so it is necessary to

estimate the norms of the transformation operator (4) and the operator inverse to

it in the space L∞(0,∞) (or in a subspace of it). This is quite a difficult technical

problem, which was solved in the early post-war years for real coefficients q(x)
satisfying the condition ∫ ∞

0
(1+ x2

)|q(x)|dx < ∞, (8)

making it possible in this case to give a complete description of the structure of

the Banach algebras and almost-periodic functions generated by the generalized

shift operators Ry
x. But the most important thing in these papers was probably

the use of transformation operators, which became a familiar working device.

Shortly after the liberation of Khar’kov on the 23 August 1943, the faculty of

the university returned from the army and evacuation and resumed their research.

In those years the Department of Physics and Mathematics was not divided into

physics and mathematics sections, and constant contact with physicists gener-

ated an interest in physical problems among the mathematicians. Among these

problems, the inverse problems of spectral analysis were particularly attractive.

In these problems one is required to recover a differential operator from some

of its spectral characteristics. Problems of this type had first been stated and

solved by V. A. Ambartsumyan in 1929. Unfortunately, we learned about this pi-

oneering work only much later, from a 1946 article of Göran Borg. Despite the

hardships of the postwar period, the university managed to subscribe to a few
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foreign journals, and in 1948 we received a journal (Acta Math., 78(2), 1–96)

with a long article by Borg. Povzner assigned me to report on this article in the

seminar. Its main result was a uniqueness theorem, according to which the real

potential q(x) in the equation

−y′′ + q(x)y = µy (0 � x � π) (9)

is uniquely determined by the spectra of two boundary-value problems, with the

same boundary conditions at zero (and different conditions at π). But if even

one eigenvalue is removed from the spectra, the remainder of the set does not

determine the potential uniquely.

The proof of this uniqueness theorem can be easily reduced to proving that

products of the eigenfunctions of the boundary-value problems are complete, a

proof that plays a key role in Borg’s paper. I noticed immediately that the mere

fact that Volterra transformation operators exist automatically implies that these

products are complete. Indeed, the existence of transformation operators implies

the formula

ψ(1)

(µ ,x)ψ(2)

(µ ,x)

=

(
cos

√
µx+

∫ x

0
K1(x, t)cos

√
µt dt

)(
cos

√
µx+

∫ x

0
K2(x, t)cos

√
µt dt

)
=

1
2

+

1
2

(
cos2

√
µx+

∫ x

0
Q(x, t)cos 2

√
µt dt

)
for products of solutions of Eqs. (9), and the question of the completeness of

products of the eigenfunctions reduces to the completeness of the sequence of

functions cos2
√
µkx (0 � x � π), where µk ranges over the spectra of the two

boundary-value problems. But the completeness of such a sequence follows

immediately from long-known asymptotic formulas for the eigenvalues. The

simplicity of the proof was an explicit testimony, showing that transformation

operators are a natural and powerful tool for studying the spectral theory of

differential operators. This motivated me to give them a special name (trans-

formation operators), thereby greatly amusing N. I. Akhiezer, who remarked that

the phrase sounded to him like “salted salt.”

It would have been natural to try to generalize Borg’s uniqueness theorem

for Eqs. (9) to an infinite interval. Obviously, in this case one could not restrict

attention to eigenvalues, since, for example, the spectrum of the problem may

be purely continuous. For that reason it was necessary to seek other spectral

characteristics that determine the potential uniquely.
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The spectral theory of the self-adjoint operators generated by differential

operators

L = − d2

dx2 + q(x) (10)

with real-valued potential q(x) on finite and infinite intervals had been developed

back in 1909–1910 by Hermann Weyl. In these papers, in particular, formulas

are obtained for eigenfunction expansions, and Parseval’s equality is proved,

which for the intervals 0 � x � a and a � ∞ have the following form:

f (x) =

∫ ∞

−∞
f̃ (µ)ψ(µ ,x)dρ(µ),

f̃ (µ) =

∫ a

0
f (x)ψ(µ ,x)dx,∫ a

0
| f (x)|2 dx =

∫ ∞

−∞

∣∣ f̃ (µ)

∣∣2 dρ(µ).

(11)

Here f (x) is an arbitrary function in the Hilbert space L2
(0,a); ψ(µ ,x) is the

solution of Eq. (9) with initial data ψ(µ ,0) = 1, ψ ′
(µ ,0) = h (h is real!); ρ(µ)

is a nondecreasing function called the spectral function of the operator; and the

integrals converge in the metrics of L2
(0,a) and L2

(dρ) respectively.

It was discovered that the spectral functions determine the potentials

uniquely. This maximally general uniqueness theorem also turned out to be

a simple consequence of the existence of Volterra transformation operators.

Indeed, suppose the spectral functions ρ(µ) and ρ1(µ) of two operators L
and L1 on the interval 0 � x � a (a � ∞) coincide. Applying to Eq. (11) the

transformation operator V that maps the eigenfunctions ψ(µ ,x) of L into the

eigenfunctions ψ1(µ ,x) of L1, we obtain

V [ f ] = V

[∫ ∞

−∞
F(µ)ψ(µ ,x)dρ(µ)

]
=

∫ ∞

−∞
F(µ)ψ1(µ ,x)dρ(µ) =

∫ ∞

−∞
F(µ)ψ1(µ ,x)dρ1(µ)

and, by Parseval’s equality

‖ f‖2
=

∫ ∞

−∞
|F(µ)|2 dρ(µ) =

∫ ∞

−∞
|F(µ)|2 dρ1(µ) =

∥∥V [ f ]
∥∥2

,

from which it follows that the operator V is unitary: V ∗
= V−1. But the identity

operator is the only Volterra operator that is unitary. Indeed, it follows from (5)

and (6) that

V ∗
= I + A, V−1

= I + B,
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where the integral operators A and B have kernels

A(x, t) =

{
K(t,x), t > x,

0, t < x,
B(x, t) =

{
0, t > x,

L(x, t), t < x,

and if V ∗
= V−1, then A(x, t) = B(x, t) = 0; that is, V = I. Thus equality of

the spectral functions implies that the eigenfunctions ψ(µ ,x) and ψ1(µ ,x) are

equal, and hence so are the potentials: q(x) = q1(x).
This uniqueness theorem made it possible to prove that in various particular

cases the potential is also uniquely determined by other spectral data, in which

the spectral function does not appear explicitly. For example, if the operators

generated by (10) and the boundary conditions at zero have discrete spectra,

then the potential is uniquely determined by the two spectra (in both the case of

a finite interval and the case of an semi-infinite interval).

In the second half of the 1940s, the so-called inverse scattering problem was

of great interest (especially for physicists). This problem involves reconstructing

a potential from quantities obtained in experiments on the scattering of particles

by the required potential. Interest arose in this problem not only because of a

desire to find the potentials in various specific cases, but also to find the answer

to the fundamental question whether the scattering data contain all the physical

information. In the case of a spherically symmetric potential, the phase analysis

of experimental data makes it possible theoretically to find the limiting phases

that describe the asymptotic behavior of radial wave functions as r → ∞. At the

moment equal to zero the radial wave functions can be represented in the form

R(k,r) = r−1ψ(k,r), where ψ(k,r) are solutions of the equation

−ψrr + q(r) = k2ψ (0 � r < ∞) (12)

that are bounded at infinity, with initial data ψ(k,0) = 0, ψ ′
(k,0) = 1. If the

potential q(r) satisfies condition (8), the function ψ(k,r) has the following

asymptotics as r → ∞:

ψ(k,r) = k−1|M(k)|[sin(kr +η(k))+o(1)

]
(0 < k < ∞), (13)

where the function

M(z) = 1+

∫ ∞

0
e−iztq(t)ψ(z, t)dt,

which is holomorphic in the lower half-plane, tends to 1 as |z| → ∞ (ℑz � 0),

and the limiting phase η(k) equals the argument of this function on the real line:

η(k) = −η(−k) = argM(k) (0 < k <∞).
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In this case, the inverse scattering problem is to recover the potential q(r)
from the limiting phase η(k). In 1949, N. Levinson proved that in the absence

of a discrete spectrum the limiting phase does indeed determine the potential

uniquely. But somewhat earlier V. Bargmann had shown that when there is a

discrete spectrum the whole set of eigenvalues together with the limiting phase

still does not determine the potential uniquely.

The general uniqueness theorem clarified this situation. The point is that

the spectral function of an operator with potential satisfying condition (8) is

absolutely continuous on the positive half-line and connected with the function

M(z) by the relation

dρ(µ) =

1
π

√
µ

|M(

√
µ)|2 dµ (µ > 0). (14)

The function M(z) has only a finite number of zeros in the lower half-plane,

and all of them lie on the imaginary half-line, so that their squares are equal to

the negative eigenvalues µl < 0. This makes it possible to recover the function

M(z) uniquely using the Poisson–Schwarz formula

M(z) =∏
l

(
z− ikl

z+ ikl

)
exp

{
1
π

∫ ∞

−∞
η̃(k)
k− z

dk

}
,

where ikl =

√
µl and

η̃(k) = η(k)−∑
l

arg

(
k− ikl

k + ikl

)
.

Consequently, the function M(z) can be recovered on the entire lower half-

plane from the limiting phase η(k) = arg M(k) and the discrete spectrum. But,

according to (14), the spectral function can be recovered from these data only on

the positive half-line. On the negative half-line the spectral function is piecewise

constant and has jumps at the points of the discrete spectrum. For that reason,

to recover the spectral function on the entire real line one needs to know, in

addition to the limiting phase and the discrete spectrum, the size of its jumps

M2
l =

(∫ ∞

0
|ψ(ikl ,x)|2 dx

)−1

at the points of the discrete spectrum.

Thus the potential is uniquely determined by the set of quantities {η(k) : µl ,

Ml (l = 1,2, . . . ,n)}, which determine the asymptotic behavior (as r → +∞) of
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the normalized eigenfunctions of the continuous spectrum and the values of the

derivatives at zero of the normalized eigenvalues of the discrete spectrum.

These uniqueness theorems were obtained by Borg and myself, indepen-

dently of each other; in particular, Borg did not use transformation operators.

I remark that transformation operators also made it possible to answer a ques-

tion of Akhiezer: Can the spectral function be bounded? It turned out that

as µ → −∞ the spectral functions tend to finite limits with superexponential

rapidity, while as µ → +∞ they satisfy the asymptotic equality

ρ(µ) ∼ 1
π

√
µ

(
ρ(µ) ∼ 2

3π

√
µ3

)
,

if the expansion (11) is over solutions normalized by the condition ψ(k,0) = 1,

ψ ′
(k,0) = h (ψ(k,0) = 0, ψ ′

(k,0) = 1).

The main problems in the actual recovery of a potential from some spec-

tral data, and the search for characteristic properties of spectral data, remained

unsolved. However, soon after the publication of the uniqueness theorem,

M. G. Krein solved the problem of recovering a potential from two spectra.

He did not use transformation operators and instead started from the analogy of

this inverse problem with the power moment problem. He described this fruitful

idea as follows:

Just as some power moment problem corresponds

M. G. Krein

to every Jacobi matrix J, and the matrix J itself

is completely determined by any solution of that

problem (a mass distribution function), some gen-

eralized moment problem corresponds to a second-

order differential operator L with a boundary con-

dition at one endpoint, and the operator itself (if

presented in some “canonical” form) can be deter-

mined from any distribution function of the moment

problem, together with the boundary condition. For

operators of “sufficiently regular type” this gener-

alized moment problem is the problem of continu-

ation of Hermitian-positive functions developed by

the author.

Starting from this analogy, and given two alternating sequences of positive

numbers (the spectra of two boundary-value problems), Krein found the spectral
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function ρ(µ) of the corresponding operator and introduced the positive definite

function

F(t) =

∫ ∞

0

cos
√
µt

µ
dρ(µ),

which is a continual analog of the positive definite sequence in the moment

problem. He then defined the central mass M(x) of the function F(t) as the

largest number r for which the function F(t)− r remains positive definite on the

interval (0,x). To compute the central mass one may use the equality

(
M(x)

)−1
=

∞

∑
j=1

ν j

(∫ x

0
χ j(t)dt

)2

,

where ν j and χ j(t) are the eigenvalues and orthonormalized eigenfunctions of

the operator

F̂[ f ] =

∫ x

0
F(y− t) f (t)dt (0 � y � x).

The potential is expressed in terms of the central mass by the formula

q(x) =

ϕ ′′
(x)

ϕ(x)
; ϕ(x) =

(
−dM(2x)

dx

)− 1
2

.

All these operations can be carried out starting from arbitrary alternating se-

quences if the resulting function M(x) happens to be absolutely continuous

along with its first two derivatives, and the first derivative is nonzero. The

question whether these conditions are sufficient, in order for the resulting equa-

tion to generate boundary-value problems whose spectra coincide with the given

sequences, remained open.

Thus, the proposed method made it possible to recover a potential from

two sequences, provided it is known a priori that they are the spectra of two

boundary-value problems generated by the same equation on a finite interval.

Krein’s paper appeared in 1951, and in the same year I. M. Gel’fand and

B. M. Levitan obtained a complete solution of the inverse problem of recover-

ing a potential from the spectral function ρ(µ). They also started from the

analogy with the theory of orthogonal polynomials and made extensive use of

transformation operators, interpreting their action as the continual analog of the

Gram–Schmidt orthogonalization procedure; that is, assuming that the solution

ψ(µ ,x) = cos
√
µx+

∫ x

0
K(x, t)cos

√
µt dt = V [cos

√
µt] (15)

is obtained by orthogonalizing the system of functions cos
√
µt (0 � t � x) with

respect to the measure dρ(µ). The function ψ(µ ,x) is indeed orthogonal (with



156 V. A. Marchenko

I. M. Gel’fand B. M. Levitan

respect to the measure dρ(µ)) to the functions cos
√
µy for all positive y < x, as

follows from the fact that the inverse operator V−1
is a Volterra operator; that

is, it is a consequence of the equality

cos
√
µy = ψ(µ ,y)+

∫ ∞

0
L(y, t)ψ(µ , t)dt,

where L(y, t) = 0 for t > y. It follows from this equality and the expansion

formula (11) that∫ ∞

−∞
ψ(µ ,x)cos

√
µydρ(µ)

=

∫ ∞

−∞
ψ(µ ,x)

{
ψ(µ ,y)+

∫ ∞

0
L(y, t)ψ(µ , t)dt

}
dρ(µ) = δ (x− y)+L(y,x).

Also, since L(y,x) = 0 for y < x, it follows that∫ ∞

−∞
ψ(µ ,x)cos

√
µydρ(µ) = 0 (0 � y < x). (16)

This orthogonality relation plays a key role in the Gel’fand–Levitan method. As

is known, the function

ρ0(µ) =

{
2
π

√
µ , µ � 0,

0, µ < 0

is the spectral function of the operator (10), for which h = q(x) ≡ 0 and the

eigenfunctions are cos
√
µx. Substituting the right-hand side of (15) in place of



The Generalized Shift, Transformation Operators, and Inverse Problems 157

ψ(µ ,x) in the orthogonality relation leads to the equality

0 =

∫ ∞

−∞

(
cos

√
µx+

∫ x

0
K(x, t)cos

√
µt dt

)
cos

√
µy dρ0(µ)

+

∫ ∞

−∞

(
cos

√
µx+

∫ x

0
K(x, t)cos

√
µt dt

)
cos

√
µy d

(
ρ(µ)−ρ0(µ)

)
= δ (x− y)+ K(x,y)+ f (x,y)+

∫ x

0
K(x, t) f (t,y)dt,

where

f (x,y) =

∫ ∞

−∞
cos

√
µx cos

√
µy d

(
ρ(µ)−ρ0(µ)

)
.

Consequently, for each fixed value of x the kernel K(x,y) of the transformation

operator satisfies the integral equation

K(x,y)+

∫ x

0
f (t,y)K(x, t)dt = − f (x, t) (0 � y � x) (17)

with a real symmetric kernel f (t,y) and right-hand side − f (x,y), which can be

expressed explicitly in terms of the spectral function ρ(λ ).

Equation (17) is the famous Gel’fand–Levitan equation which enabled them

to solve the inverse problem of recovering a potential from the spectral function,

and also to find necessary and sufficient conditions (with a small gap) for

a nondecreasing function ρ(µ) in order to be the spectral function of some

operator (10) defined on an infinite or finite half-open interval.

The kernel f (x,y) of the integral operator in the Gel’fand–Levitan equation

can also be expressed in terms of the function

F(t) =

∫ ∞

−∞
1− cos

√
µx

µ
dρ(µ) (18)

by means of the formula

f (x,y) =

1
2

{
F ′′

(x+ y)+F ′′
(|x− y|)}.

The following theorem is the main result of the paper: A necessary and suf-

ficient condition for a nondecreasing function ρ(µ) to be the spectral function

of some operator, generated on the half-interval [0,a) (a �∞) by the differential

operation (10) and the boundary condition y′(0) = hy(0), is that the function

(18) is differentiable three times on the interval (0,2a) and that F(+0) = 0,

F ′
(+0) = 1, and F ′′

(+0) = −h. When these conditions hold, Eqs. (17) have a
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unique solution for every x ∈ [0,a), and the potential is given in terms of the

solution K(x,y) by the formula

q(x) = 2
d
dx

K(x,x).

Here the potential q(x) has as many derivatives as F ′′′
(x) has.

The original, rather lengthy proof of sufficiency was greatly simplified by

Levinson, and the one-derivative gap between the necessary and sufficient con-

ditions was removed by Krein, who had already introduced the function (15) —

which differs only trivially from (18) — in his first paper. The Gel’fand–Levitan

method became a model for solving other inverse problems, and the results that

they obtained contained the answers to a number of fundamental problems. For

example, it follows immediately from their resuts that a Sturm–Liouville opera-

tor defined on a half-line may have a spectrum of any type, and the spectrum of

the classical Sturm–Liouville boundary-value problem with separated boundary

conditions can be any sequence satisfying the well-known asymptotic formulas.

Borg’s problem of recovering a potential from two spectra can be easily re-

duced to recovering a potential from the spectral function, and this fact enabled

Levitan and Gasymov to solve this problem, and find necessary and sufficient

conditions which two sequences must satisfy in order to be the spectra of two

boundary-value problems generated by the same Sturm–Liouville operator.

The Krein and Gel’fand–Levitan methods closely resemble each other, but

they are not identical. In developing his method, Krein constructed a theory

of direct and inverse problems of spectral analysis for a very large class of

operators, which are far-ranging generalizations of the classical Sturm–Liouville

operators. For example, this class contains operators of the form d
dM(x) · d

dx , where

M(x) (0 � x < a, a � ∞) is an arbitrary nondecreasing function, which may, in

particular, have intervals of constancy. The problem of transverse oscillations

of an arbitrary string, supported by an elastic base, reduces to it, and here M(x)
is the mass of the portion of the string in the half-open interval [0,a). For this

class of operators, Krein proved the following most general theorem:

A necessary and sufficient condition for a nondecreasing function ρ(µ) to

be the spectral function of some operator is that it satisfies the inequality∫ ∞

0

dρ(µ)

1+µ
< ∞,

and the operator (that is, the function M(x)) can be recovered uniquely from it.
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The general, rather complicated algorithm for recovering the operator becomes

quite effective in many cases.

Of course, the Gel’fand–Levitan equation also makes it possible to solve the

inverse problem of scattering theory, since one can find the spectral function

from a knowledge of the set {η(k) : µl, Ml}. But in order to do this, one

must use the Poisson–Schwarz formula, which is very sensitive to variations of

the limiting phase. Moreover, the Gel’fand–Levitan equation is poorly adapted

for analyzing the behavior of the resulting potential as x → ∞. I came to a

better realization of the difficulties that arise after becoming acquainted with

the dissertation of Neigauz, when I was appointed to be an official opponent at

her thesis defense. To simplify the problem, I assumed that the potential not

only tends to zero as x → ∞, but that it is actually equal to zero for x > N.

In this case the asymptotic equality (13) becomes exact for x � N, and the

functions on the two sides have the same initial data at the point N. Therefore,

by mentally transferring the origin to N, one can use a transformation operator

of the form (7), which preserves the initial data. As a result, instead of an

asymptotic relation, one obtains the exact equality

k|M(k)|−1ψ(k,x) = sin(kx+η(k))+

∫ 2N−x

x
A(N,x, t)sin(kt +η(k))dt,

in which A(N,x, t) = 0 for x > N. Similarly, for the normalized eigenfunctions

of the discrete spectrum, one obtains the equalities

Mlψ(ikl ,x) = ml

(
e−klx

+

∫ 2N−x

x
A(N,xt)e−klt dt

)
.

Since the functions

u(k,x) = k|M(k)|−1ψ(k,x), u(kl ,x) = Mlψ(ikl ,x)

form a complete set of orthonormalized eigenfunctions, according to the main

idea of Gel’fand and Levitan, these equalities can be connected with the orthog-

onalization procedure for the functions

ϕ(k,x) = sin(kx+η(k)), ϕ(kl,x) = mle
−klx, (19)

and one can prove the analog of the key orthogonality relation (16), namely

1
π

∫ ∞

0
u(k,x)ϕ(k,y)dk +∑

l

u(kl ,x)ϕ(kl ,y) = 0 (0 � x < y < ∞). (20)



160 V. A. Marchenko

Using this orthogonality relation, one can obtain

B. Ya. Levin

a linear equation for the kernel A(N,x, t) analogous

to the Gel’fand–Levitan equation, and then pass to

the limit N → ∞. However, it is not necessary to

pass to this limit: B. Ya. Levin informed me that

under the condition (8) there exist transformation

operators of the form

V [ f ] = f (x)+

∫ ∞

x
A(x, t) f (t)dt,

that transform solutions of the equation −y′′ = k2y,

which are bounded on the half-line (0,∞), into solu-

tions of Eq. (12) while preserving their asymptotic

behavior as x → +∞. By virtue of this theorem of Levin,

u(k,x) = ϕ(k,x)+

∫ ∞

x
A(x, t)ϕ(k, t)dt (0 < k < ∞, k = kl),

and for y > x, according to (20),

0 =

2
π

∫ ∞

0

{
ϕ(k,x)+

∫ ∞

x
A(x, t)ϕ(k, t)dt

}
ϕ(k,y)dk

+∑
l

{
ϕ(kl,x)+

∫ ∞

x
A(x, t)ϕ(kl , t)dt

}
ϕ(kl,y)

= f (x,y)+

∫ ∞

x
A(x, t) f (t,y)dy,

where

f (x,y) =

2
π

∫ ∞

0

{
ϕ(k,x)ϕ(k,y)− sinkxsin ky

}
dk +∑

l

ϕ(kl,x)ϕ(kl ,y),

or, according to (19),

f (x,y) = F(x+ y) =

1
2π

∫ ∞

−∞

(
1− e2iη(k)

)
eik(x+y) dk +∑

l

m2
l ekl(x+y).

Thus, for each value of x � 0 the kernel A(x,y) satisfies the integral equation

A(x,y)+

∫ ∞

x
F(t + y)A(x, t)dt = −F(x+ y), (21)

whose right-hand side and kernel can be expressed in terms of the scattering data

{η(k) = −η(−k) : kl , ml (l = 1,2, . . . ,n)} that determine the asymptotics of the
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normalized eigenfunctions as x → +∞. Analysis of Eq. (21) made it possible to

prove the following theorem.

The necessary and sufficient conditions for the set

{η(k) = −η(−k) : kl, ml (l = 1,2, . . . ,n)}

to be the scattering data by a real potential q(x) which satisfies the inequality∫ ∞

0
x|q(x)|dx < ∞,

are the following:

1. The function

Fs(t) =

1
2π

∫ ∞

−∞

(
1− e2iη(k))eikt dk

belongs to L1
(−∞,∞), is differentiable on the positive half-line, and∫ ∞

0
t|F ′

s (t)|dt < ∞.

2. Levinson’s equality holds:

n =

η(+0)−η(+∞)

π
− sin2

(
η(+0)−η(+∞)

)
2

.

When these conditions hold, Eqs. (21) have a unique solution for all x � 0,

and the potential can be expressed in terms of their solutions by means of the

formula

q(x) = −2
d
dx

A(x,x).

Equations (17) and (21) were soon generalized to operators with matrix-valued

potentials.

At this point, the first stage in the study of inverse problems is finished. The

subsequent development proceeded mainly along the following lines.

The first line involves inverse problems for partial differential operators and

particularly the inverse scattering problem for the three-dimensional Schrödinger

operator with an arbitrary potential which decreases sufficiently rapidly. This

problem was solved by L. D. Faddeev and R. Newton, and the decisive role here

was played by the multidimensional analog of Volterra transformation operators

discovered by Faddeev.
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The second line involves the surprising discovery in 1967 by Gardner,

Greene, Kruskal, and Miura of a connection between the inverse scattering

problem and the Korteweg – de Vries equation, which enabled these authors to

solve the Cauchy problem for this nonlinear equation. This paper laid the foun-

dation for a new area of mathematical physics, making it possible to solve a

number of important nonlinear equations, which are of importance for physics,

by the method now known as the inverse problem method. The many-sided de-

velopment of this area has been the subject of a huge number of papers, leading

to significant progress on inverse problems.

However, certain problems still require solution. For example:

1. How can one tell from the spectral function whether or not a potential is

bounded?

2. What restriction does the condition of orthogonality impose on the local

structure of spectral functions of operators defined on a finite half-open interval

[0,a) (a < ∞)? (According to one of Krein’s theorems, the spectral function

ρ(µ) is orthogonal if and only if the linear span of the functions (sin
√
µt)/

√
µ

(0 < t < a) is dense in L2
(
dρ(µ)

)
.)

3. The spectral functions of operators defined on the entire real line are

matrix valued. Which nondecreasing matrix-valued functions are spectral?
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Mathematics and the Trajectories of Typhoons

Translated by R. Cooke

1. Introduction

Strong discontinuities of solutions and their propagation have formed the basis

of the classification of linear hyperbolic equations that is presented in text-

books of mathematical physics and partial differential equations, for example,

in the classical texts of Courant and Friedrichs, Petrovskii, and others. After

the appearance and development of the theory of distributions and generalized

functions, it became possible to describe discontinuous solutions without using

integral relations (“integral conservation laws”), as had been done earlier, us-

ing instead direct substitution of generalized functions into the original equation

and constructing the “asymptotics with respect to smoothness.” This procedure

makes it possible to reduce the problem of finding a nonsmooth solution to an

integral equation now with smooth corrections to its principal (“nonsmooth”)

part. Such a concept was developed successfully for elliptic and hypoelliptic

equations by L. Hörmander and his school. For hyperbolic equations such an

asymptotics was first proposed by P. Lax. Subsequently, the global asymptot-

ics was obtained using a canonical operator in papers by the present author,

Hörmander, and others.

It was natural to try to apply such methods to quasi-linear hyperbolic equa-

tions also, as the author did in [1], [2]. The well-known Hugoniot conditions in
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the theory of shock waves were obtained directly by assuming sufficient smooth-

ness in the discrepancy that results from substituting a nonsmooth solution into

the original equation, rather than from energy-integral considerations. Such an

approach makes it relatively easy to write down an infinite chain of differential

equations, the first of which coincides with the Hugoniot condition. The possibil-

ity of getting strongly discontinuous solutions — shock waves — for quasi-linear

equations results from the fact that the “smoothness” series of distributions, in

which the first term is the Heaviside theta-function, is an algebra of generalized

functions. This means that the square, cube, and so on, of such functions can

be represented by the same kinds of series. The question naturally arises as

to what other algebras of generalized functions are generated by the “smooth-

ness” asymptotics of solutions of quasi-linear hyperbolic equations and systems

of equations in “general position.” It was discovered [1] that there are a total

of three such algebras when the discontinuity occurs on a hypersurface. One of

them corresponds to shock waves, another to detonation waves, and the third to

“limiting bell-shaped” waves or “narrow solitons,” which result from passing to

the limit in solutions of equations with vanishingly small dispersion. In parallel

and independently, though slightly later, a group of mathematicians headed by

J. Colombeau (see [3], and also [4] and [5]) began to study algebras of general-

ized functions from the point of view of applications to nonlinear equations.

In the case of point singularities, heuristic considerations showed that there

can be only one algebra, corresponding to isolated vortices. Chains of ordinary

differential equations resembling Hugoniot conditions and corrections to them

can be associated with point singularities, just as with shock waves. The au-

thor delegated to his student V. Zhikharev the task of bringing some order into

these heuristic considerations; but unfortunately only under certain additional

S. Yu.Dobrokhotov

hypotheses. A proof free of such hypotheses has

recently been obtained by S. Dobrokhotov and his

students [6]. In the course of the proof it turned

out ([7], [8]) that, in a wonderful and completely

surprising way, very complicated “vortex” chains

have exceptionally simple and beautiful solutions.

The author has ascribed, and continues to as-

cribe, great importance to point (vortex) singular-

ities. I concluded my plenary survey address at

the International Congress of Mathematicians in

Warsaw in 1983 with the following conjecture:

It is precisely the point singularities generated

by this algebra that correspond to such natural
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catastrophic phenomena as typhoons; and the trajectories of singularities de-

fined by chains of equations of Hugoniot condition type and corrections to them

may describe the trajectories of actual typhoons. The fact that the trajectories

of singularities and the trajectories of a number of actual typhoons are in rather

good qualitative agreement [7] is very significant. During a visit to Moscow the

great theoretical physicist Paul Dirac said that a theoretician obtains his highest

pleasure when his results agree with experiment. In this sense Dobrokhotov’s

results exceeded my most optimistic predictions: The elegance and beauty that

resulted in the solution of the chains mentioned above cannot help but be the

result of physical phenomena. I am almost convinced that full confirmation of

my conjecture is no longer beyond the horizon.

The present article is devoted to this conjecture and the remarkable facts

discovered by Dobrokhotov.

2. Singular Solutions of Quasi-Linear Hyperbolic Systems

Infinite chains of differential equations are well known in continuum mechanics

and mathematical physics: for example, the BBGKY (Bogolyubov–Born–Green–

Kirkwood–Yvon) chains in statistical physics, moment chains in statistical hy-

dromechanics, Toda chains in soliton theory, and so on. The diverse problems

connected with them, such as their integration, closure, quantization, and so on,

are also well known. For example, the procedure of forming the closure of

BBGKY chains leads to the Boltzmann kinetic equation.

As noted, more than 20 years ago the author [1] discovered that certain

previously unknown chains of ordinary differential equations arise of necessity

in problems involving the description of singular solutions of quasi-linear hy-

perbolic systems. In accordance with the concept developed in [1], despite the

different physical objects that these chains describe — we repeat, that those in-

clude shock waves, “infinitely narrow” solitons, and isolated vortices — such

solutions and their description have much in common from the mathematical

point of view, including the appearance of chains. Moreover, a large number

of quasi-linear hyperbolic systems admit only singularities of the types listed

above, provided we assume additionally that they preserve structure and are in

“general position.” Such a selection of singularities results from the presence

of nonlinear terms: for linear hyperbolic systems, as is known, the solutions

inherit every type of singularity from the original condition, at least locally. For

shock waves, the first equation of the corresponding chains is the well known

Hugoniot condition. The study of such chains in some detail for shock waves,
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the equations of gas dynamics, and solitons was carried out some time ago

([2], [9]). From the point of view of application to particular problems, how-

ever, such studies cannot be considered finished. For vortex (point) singularities

the analogous chains had hardly been studied at all until recently.

In fluid dynamics, plasma physics, and atmospheric physics, in particular,

in describing the motion (but not the formation and decay) of tropical cyclones

(typhoons and hurricanes 1 — intermediate-scale planetary vortices) a system of

“shallow water” equations is often used as a rather crude, but very important

and universal two-dimensional dispersion-free nonviscous approximation, taking

account of the rotation of the Earth and the dependence of the Coriolis force on

latitude, in the so-called β -plane approximation (see [10] and [11], [12]):

∂η

∂ t
+∇ · (ηu) = 0,

∂u
∂ t

+(u,∇)u−ωT u +∇η = 0. (1)

Here x = (x1,x2) ∈ R
2, u is the two-dimensional velocity vector, η > 0 is

the geopotential, T =

(
0 1
−1 0

)
is the 90◦-rotation matrix, ∇ =

(
∂/∂x1,∂/∂x2

)
,

ω/2 is the Coriolis frequency on the β -plane: ω = ω̃ + βx2, and ω̃ and β
are parameters (physical constants), where β turns out to be very small in

typhoon-trajectory problems.

The study of the chains that describe the propagation of (weak point)

vortex singularities for this system, which was first carried out in papers of

V. Zhikharev, V. Bulatov, Yu. Vladimirov, V. Danilov, and S. Dobrokhotov [13]

and mainly in the subsequent cycle of papers of Dobrokhotov (see [7] and [8]),

led Dobrokhotov to completely surprising, irregular, and exceptionally curious

results of “integrability” type, which in the end yielded the description of suffi-

ciently smooth trajectories of vortices using a family of (linear) Hill equations

and square-integrable second-order systems that nearly coincided with equations

of the physical pendulum type. These results, which were subsequently devel-

oped and made more precise in joint work with E. Semenov, K. Pankrashkin, and

B. Tirozzi (see [6], [14], [15]), turn out to be very important from the practical

as well as theoretical point of view. Indeed, if we assume (following specialists

1 Tropical cyclones are meso-scale planetary vortices having a diameter of the order of 100 km

and a conditional altitude of the order of 10 km. They differ from “ordinary” cyclones in that the

velocity profile does not vary strongly with altitude over a large interval in their interior. This

fact makes it possible to average over the altitude and describe their dynamics using a system

of two-dimensional equations of the type used to describe shallow water. Near the center of

such vortices their velocities are very small; the vicinity of the center is called the “eye.” As a

rule, tropical cyclones in the Pacific region are called typhoons and those in the Atlantic region

hurricanes. We shall use on the term typhoon below, although everything that is said applies to

hurricanes as well.
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in atmospheric physics) that the solutions of (1) can describe the propagation of

typhoons, and if “structurally self-similar and stable” singular solutions of this

system that are nonsmooth at a point correspond to tropical cyclones, then by

the uniqueness of such a singularity of general position, the trajectory of the

typhoon must be close to the trajectory of the center of a point weak singularity.

Thus the equations of “physical pendulum type” so obtained describe approxi-

mately the possible trajectories of typhoons. They can be used to recover and

predict typhoon trajectories from known portions of them, for example, from

satellite observations.

In my opinion, the fact that such familiar mathematical objects as the Hill

equations, an equation of physical pendulum type, and so on, arise unexpectedly

in the chains for isolated vortices is not accidental and goes beyond the “shallow

water” model system. In my view, it raises chains for singular solutions to a new

qualitative level and invites us to look at them more attentively from different

points of view. On the other hand, even if one does not view the results

obtained in [7] and [8] with an eye to generalizing them, they seem to me to be

a combination of nontrivial mathematical constructions and observations having

application to such a practically important problem as the prediction of typhoon

trajectories, which is rather rare for basic research.

All the singular solutions noted above can be described by a formula that

resembles the “nonlinear WKB” or “Witham” solutions or “distorted” simple

Riemannian waves

w = f(x, t)+ g(x, t), g(x, t) = g(x, t)F
(
S(x, t)

)
, (2)

where w is a vector- or scalar-valued function, x ∈ R
n, F(τ) is some scalar-

valued function that is smooth outside the set τ = 0 and has a singularity at

τ = 0, and the phase S(x, t), the vector-valued (or scalar-valued) “background”

f(x, t), and the “amplitude” g(x, t) are smooth functions. A singularity may be

determined, for example, by a discontinuity of first kind (in which case we have

shock waves) or even be a continuous or once-differentiable function, in which

case we have weak discontinuities. It is clear that the singularities of w(x, t)
are determined by the zeros X of S(x, t). For example, for shock waves in

the one-dimensional scalar case (n = 1) we have F = Θ(τ), where Θ(τ) is the

Heaviside 2 function: Θ = 0 for τ < 0 and Θ = 1 for τ � 0, and S = x−X(t).
But for an “infinitely narrow soliton” moving over the background f(x, t) we

still have S = x−X(t), but F = Sol (τ), where Sol = 0 for τ �= 0 and Sol = 1
for τ = 0. From the point of view of the space L2, the generalized solutions of

2 Sometimes called the Dirichlet discontinuous factor or the unit step function. — Transl.
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second kind are generally equal to the background f(x, t); but they turn out to

be completely reasonable if the scalar product and the space of basic functions

are defined correctly; for example, they are the limits of soliton solutions of the

Korteweg – de Vries equation with dispersion ε2 as ε → 0.

Finally, we present another example in the two-dimensional case (x =

(x1,x2) ∈ R
2) that is fundamental for this note and for [7] and [8]. As the

function F we choose τα , where α > 0 is not an integer, and we require

that the function S(x, t) be nonnegative, with the equality S(x, t) = 0 holding

only at the point x = X(t) ≡ (X1(t),X2(t)). The set Γ =

(
x = X(t), t ∈ [0,T ]

)
forms the trajectory of the singular solution (2) on [0,T ]. We also impose the

requirement of “general position”: the (nonnegative-definite) Hessian matrix∥∥∥ ∂ 2S
∂xi∂x j

∥∥∥∣∣∣
Γ

= HessS
∣∣
Γ

is nondegenerate (positive-definite) on the trajectory Γ

and has distinct eigenvalues. Moreover, we assume that the expansions of the

components of the vector g in powers of x−X(t) begin with the minimum-

possible powers. For Eq. (1) it turns out that if there exist solutions of (2) and

the assumptions imposed on S(x, t) hold at time t = t0, then they hold at later

times also. Thus, with respect to x the function S is, up to higher-order terms,

a positive-definite quadratic form with distinct eigenvalues and center at the

points of the trajectory of the singularity. We have a weak “point” singularity:

the function w itself is continuous; moreover, it equals zero at the singularity,

and several of its derivatives are discontinuous. (It is such behavior of w that

provides an argument for applying such singular solutions to model typhoons.) 3

In the more general situation one may assume that F(τ) is continuous for all

τ � 0 and smooth for τ > 0, and moreover that F(0) = 0 and Fτ →∞ as τ→+0.

It is clear that in this case w has a singularity at X(t) on the trajectory Γ for

every t. The solutions of the form (2) are distributions, and so it is clear that

the methods of studying them belong to the circle of questions connected with

the construction of algebras of generalized functions and their use in nonlinear

equations (see [3]–[5]).

The important feature held in common by solutions of the form (2) is the

following. First, they are “structurally self-similar.” This means that if they had

the form (2) with a given F(τ) at a certain time t0, this dependence on τ will

persist for times t > t0, at least on intervals t − t0 that are not too large. Second,

they possess “structural stability.” A small change in the initial conditions for

the functions S(x, t0), f(x, t0), g(x, t0) and the coefficients of the original equation

does not lead to any change in the structure of the singularity of the solution w,

defined by the function F(τ).

3 As we have noted, near the center of a typhoon the wind velocity is relatively small.
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As already stated, for many physically reasonable quasi-linear hyperbolic

equations, nearly all possible singularities having these properties belong to one

of the structures listed above, and in the last example

F =

√
τ.

This does not mean that the corresponding equation has no particular singular

solutions different from those given above, for example, solutions that are ra-

dially symmetric in x−X(t); but these seem to dissipate rapidly under small

perturbations. 4

Singularities of the latter type in system (1) are the object of our discussion.

The corresponding solutions are defined by (2), in which �w = (�u,η), f = (u,ρ);

g = (ũ, ρ̃), and �u, u, and ũ are two-dimensional vector-valued functions, where

in what follows it is convenient to denote the components of u by v and w,

setting u = (v,w). The solution (2) then assumes the form(
u
η

)
=

(
ρ
u

)
+

(
ρ̃
ũ

)
,

(
ρ̃
ũ

)
=

(
Ũ
R̃

)√
S. (2′)

We immediately note two properties of singular solutions of the form (2′) that

are inherent in them, and illustrate, on the one hand, that they are physically

reasonable, and on the other hand, the rather surprising mathematical properties

of the trajectories of singularities. It turns out that they have a vortex structure,

and more: the trajectory X(t) is “frozen into” the velocity field u (and u),

Ẋ(t) = u
(
X(t), t

)≡ u
(
X(t), t

)≡V (t) ⇐⇒ Ẋ1 = V1, Ẋ2 = V2; (3)

and the Cauchy–Riemann equations hold for the complex velocities v(x, t) =

v(x, t)+ iw(x, t) on the trajectory X(t):

∂v

∂x1
=

∂w

∂x2
,

∂v

∂x2
= − ∂w

∂x1
. (4)

This “freezing-in” of the singularity is not surprising — it is well known in

fluid dynamics. The fact that it necessarily takes place for solutions of the form

(2′) indicates that such a vorticial solution does not contradict the laws of fluid

dynamics. (We remark, however, that the structure of the trajectory Γ can be

quite complicated.) The requirement that the Cauchy–Riemann equations (4)

should hold is curious: no analyticity conditions are assumed a priori (the

4 In general, the invocation of “general position” considerations leads to a situation that is rather

paradoxical from the point of view of the accepted approaches in mathematical physics: it would

be natural to begin by studying solutions in a particular simple situation, which the radially

symmetric case seems to be. However, using only crude considerations one can say considerably

less about the trajectories of singularities in this case than in the case of “general position.”
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complex velocity v(x, t) is not even analytic in the variables x1 and x2), and

Eq. (4), like (3), is a corollary of the existence of the singular solution (2).

We remark that the conditions (4) are not invariant for (all) trajectories of the

velocity field; in this elegant manner they describe the effect of the existence of

a vortex
5 on the “smooth background” u(x, t) and the trajectory.

From now on, it will be convenient to denote the derivatives ∂v/∂x1 and

∂w/∂x2 by q(t) and ∂v/∂x2 and −∂w/∂x1 by p(t). We remark that q(t)
is half of the divergence of the field u and p(t) is half of the third compo-

nent of the curl of the field u on the trajectory X(t): q(t) =
1
2 divu

(
x(t), t

)
,

p(t) = − 1
2 curl3 u

(
x(t), t

)
.

3. Chains for the Vortex Singularities of the Shallow-Water

Equations, their Closure and Reduction to Hill’s Equation

As already noted, among the basic observations of [1] was the point that it is

possible to describe solutions of the form (2) using infinite-dimensional systems

of ordinary differential equations for the coefficients of the Taylor-series expan-

sions of a solution in the vicinity of a discontinuity (chains of conditions of

Hugoniot type), which necessarily arise in the construction of the “smoothness”

asymptotics of these solutions. This system is nonclosed, in the sense that the

first n equations contain more than n variables, and hence solving it does not in

general lead to an unambiguous determination of the location of the singularity.

Without explaining the meaning of the unknown functions just now, we give

the first equations of the “vortex” chain corresponding to a solution (2′) with

F =

√
τ (to which Eq. (3) must be adjoined):

V̇1 −ω0V2 +ρ10 = 0,

V̇2 +ω0V1 +ρ01 = 0,

ρ̇0 + 2qρ0 = 0,

ω̇0 −βV2 = 0,

q̇− p2
+ q2

+ω0 p+ 2r +βV1/2 = 0,

ṗ+ 2pq−ω0q−βV2/2 = 0,

ρ̇10 + 3qρ10 − pρ01 +ρ0(w11 + 2v20) = 0,

ρ̇01 + 3qρ01 + pρ10 +ρ0(v11 + 2w02) = 0,

(5)

5 Together with the equality 2p−ω
(
X(t)

)
= cρ

(
X(t)

)
, they follow from the conservation of the

vector field u and the Rossby (or Ertel) invariant (u1x2 −u2x1 +ω)/η along the trajectories.
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ṙ + 4qr +

1
2
ρ10(3v20 + w11 + v02)+

1
2
ρ01(v11 + 3w02 + w20)

= −ρ0(3v30 + 3w03 + w21 + v12),

v̇20 + 3qv20 −ω0w20 − p(v11 −w20) = −3ρ30,

v̇11 + 3qv11 −ω0w11 − p(2v02 −2v20 −w11)+β p = −2ρ21,

v̇02 + 3qv02 −ω0w02 + p(v11 + w02)−βq = −ρ12,

ẇ20 + 3qw20 +ω0v20 − p(w11 + v20) = −ρ21,

ẇ11 + 3qw11 +ω0v11 − p(−2w20 + 2w02 + v11)+βq = −2ρ12,

ẇ02 + 3qw02 +ω0v02 + p(w11 − v02)+β p = −3ρ03.

(6)

In the system of 17 equations consisting of (3), (5) and (6), all 23 subscripted

variables are unknown, so that the system of equations is nonclosed. Neverthe-

less, the idea of using some finite-dimensional closure of such chains to describe

the dynamics of the singularities, on at least some time intervals, is very attrac-

tive. Closure is possible if certain global properties of the solution are known

or some additional assumptions are imposed (for example, that the amplitude of

the discontinuity be small).

For chains like the Hugoniot condition, which arise in describing shock

waves of the very simple nonlinear Hopf equation vt + vvx = 0, P. Prasad and

R. Ravindran [16] used a method of closure (“truncation”) based on setting

the “extra” components of a solution with large indices equal to zero; this

method yielded very good results. A similar closure procedure has been used in

statistical physics and hydromechanics. The same approach was applied in the

papers of Dobrokhotov and co-authors to close the system (3), (5), (6) and to

describe the trajectories of vorticial singular solutions (2′) of Eq. (1).

Naturally, the systems of equations obtained by truncating chains of Hugo-

niot-type conditions cannot describe precisely the motion of singularities (or the

front of singularities) on larger time intervals, since truncating the chains in-

volves the forced localization of the problem and a description of the evolution

of a singularity only over some neighborhood of it. However, if such a descrip-

tion is applied for times that are not too large and if the “truncated” chain has

certain stability characteristics, it seems quite reasonable 6 to use such “trun-

cated” chains. On the other hand, for example, in the problem of the trajectory

of the “eye” of a typhoon it turns out to be rather problematic to obtain data

that describe the velocity u and the geopotential η at the initial time and make

6 An estimate for the difference between the solutions of truncated and nontruncated chains

corresponding to shock waves of Hopf equation type has recently been obtained by V. Danilov

and G. Omel’yanov.
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possible a well-posed Cauchy problem for the system (1). The difficulty comes

from the potentially sharp local variations in the velocity and the impossibility of

arranging a dense enough spatial grid for measuring the wind velocity, pressure,

and so on. But the trajectory of the “eye” of a typhoon can be rather reliably

determined, for example, from satellites, and one may try to predict the future

part of a typhoon trajectory from the part that is known by solving the extrap-

olation problem. To that end, in turn, one may try using the formulas for the

trajectories of vortices obtained by integrating the (truncated) chains. Thus, by

its physical formulation, localizing the problem is a perfectly reasonable thing

to do.

Describing the closure in application to the system (3), (5), (6) means simply

replacing the right-hand sides in (6) by zeros. But even after closure, there still

remains a system of 17 nonlinear equations, and the analytic study of it appears

rather problematic, even when the Coriolis force is constant (that is, β = 0). It

is utterly surprising and remarkable, but clearly not accidental, that in the case

β = 0 these 17 equations reduce (precisely) to a family of second-order linear

equations with periodic coefficients — the system of Hill equations that is well

known in the theory of nonlinear oscillations and celestial mechanics:

d2ψ

dΦ2 +

(
λ +

1
c2ℜ

(
(α1α2 −α0ᾱ2)e

iΦ
+

3
2
α0α1e2iΦ

))
ψ = 0. (7)

Here the parameters — the complex numbers α0, α1, and α2 and the real numbers

c �= 0 and λ — are constants of integration of the “truncated” chain (3), (5), (6),

and the bar denotes complex conjugation. We shall discuss the reduction of the

“truncated” chain to Eq. (7) a little later, but right now we wish to point out one

remarkable fact.

The derivation of (7) involved the introduction of new dependent variables

in which the system (3), (5), (6) assumed a simpler form from the point of view

of qualitative analysis of it. This made it possible to distinguish among the

17-parameter family of its solutions all the solutions that possess the following

properties, which are natural from the point of view of application to the problem

of typhoon trajectories. First, the geopotential η does not vary strongly over the

lifetime of a typhoon; second, the trajectories of singularities (vortices) X(t) are

rather smooth on the same time scale — that is, they do not have large loops.

Such a (mathematical) sorting has led to 6-parameter families of asymptotic

solutions of the system (3), (5), (6), in which the solutions from this family can

be found as the solutions of Hamiltonian systems with one degree of freedom

that are solvable in quadratures (!) and are quantitatively and qualitatively close

to the equation of a physical pendulum. Moreover, although the derivation of
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this system relied on purely mathematical considerations, it was obtained in such

a way that the six parameters that characterize these solutions turned out to be

perfectly reasonable physically.

Thus the study of a mathematical object — solutions of Eq. (1) of the form

(2) with certain mathematical but physically reasonable properties — relying on

absolutely nontrivial computations, unexpectedly led to a wonderfully simple

result which has a clear physical meaning and important potential applications.

We shall discuss all this in somewhat more detail below.

4. The Nonsmooth Part of the Solution

The following proposition describes the nonsmooth part of the solution (2′) of

Eq. (1). (It was first stated by Maslov and Zhikharev in a slightly different form

for the case ω = 0). We use a dot to denote the derivative with respect to time

and

Gm1m2 =

1
m1!m2!

∂ (m1+m2)

∂xm1∂ tm2
G
(
X(t), t

)
to denote the Taylor coefficients of smooth scalar and vector functions G(x, t).
We shall write ρ0(t), ω0(t), and V (t) instead of ρ00, ω00, and u00.

Proposition 1. 1. If the system (1) has a solution of the form (2′) satisfying

the conditions stated above, then in addition to (3) and (4) we have

ρ20 = ρ02 +βV1/2, ρ11 = βV2/2.

The equality(
ũ
ρ̃

)
= A

√
S(2)

+ O(|x−X(t)|3)
(

T∇S(2)

+ O(|x−X(t)|2)
2cρ0S(2)

+ O(|x−X(t)|3)
)

, (8)

holds for the functions ρ̃ = R
√

S and ũ = U
√

S, where

S(2)

=

1
2
ρ0(t)(x−X(t),Π(t)BΠ∗

(t)(x−X(t)), B =

(
b1 0
0 b2

)
,

Π=

(
cosθ sinθ
−sinθ cosθ

)
is the matrix of a rotation through angle

θ(t) = θ0 +

∫ t

0
p(t)dt,

and b1 > 0, b2 > 0, b1 �= b2, θ0, A �= 0, c �= 0 are real constants that characterize

the initial structure of the vortex solution.
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For the derivatives ρl j, vl j, wl j and the functions ω0(t): V1 = v
(
X(t)

)
,

V2 = w
(
X(t)

)
, r = ρ20 −βV1/4 ≡ ρ02 +βV1/4, conditions (5) and (6) hold (the

initial relations from the chain, that is, the analog of the Hugoniot conditions

and the corrections to them for isolated vortices of the “shallow water” system

of equations) in addition to (3) and (4).

2. Conditions (3)–(6) and the representation (8) are necessary and sufficient

conditions for the function (2′) to satisfy the original system of equations up to

O(|x−X(t)|3).

The analysis of the formula (8) presents no difficulty. The function ũ de-

scribes the motion of an isolated vortex along the trajectory Γ of the velocity

field u (or u(x, t)). “In the main,” the “section” of the vortex is an ellipse

with semi-axes determined by the numbers b1 and b2 and initial angle θ0. This

“ellipse of asymmetry” rotates with the motion along the trajectory X(t) (be-

cause of the Cauchy–Riemann conditions) with instantaneous angular velocity

θ̇ = − 1
2 curl3 u

(
X(t), t

)
. The direction of rotation of the vortex itself is deter-

mined by the sign of the constant A: when A > 0, we have counterclockwise

rotation, corresponding to the rotation of cyclones. Since for tropical cyclones

the geopotential has a (local) minimum at the center, the constant c must be

negative. The physical meaning of −c is the value of the potential vortex on the

trajectory. It thus follows from (8) that the value of the potential vortex on the

trajectory of the center of the vortex itself must be positive. It is known from

observations that such is indeed the case.

We remark also that the “vortex” (nonsmooth) part of the (tangential) veloc-

ity increases with sufficiently slow elongation from X(t) — like |x−X(t)|2. This

means, in particular, that the vortex constructed does not behave like a rigid

body. In a rigid body the velocity is proportional to |x−X(t)|. The function

ρ̃ increases even more slowly 7 — like |x−X(t)|3. It is also easy to see that

the curves |ũ| = const (the level curves of the absolute value of the “vorticial”

part of the velocity) get compressed as ρ0 (the values of the geopotential on

the trajectory) increases, at least in some neighborhood of the trajectory X(t).
We shall see below that on smooth trajectories X(t) the function ρ0(t) increases

under south-to-north motion (in the northern hemisphere); it thereby follows

from (8) that vortices must get compressed under south-to-north motion. For

typhoons this fact is also observed. Finally, we note that the dynamics of a

typhoon just described retains the property of asymmetry (“general position”).

In essence, a vortex in first approximation is transformed using a “locally”

7 Such slow increase of the functions (8) is an argument in favor of applying them to typhoons —

it corresponds to the presence of an “eye” in the typhoon.
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conformal transformation. It is rotated, dilated, and compressed identically in

all directions. The dilation factor is determined by the divergence of the velocity

field u(x, t) on the trajectory X(t).

In the system (1) the “compressibility” η plays an important role, both in

the derivation of the chain and in the subsequent study of it. If we consider a

two-dimensional Euler equation instead of the system (1) (for an incompressible

fluid — formally this means that the equation of continuity in the system (1)

is replaced by divu = 0), the vector-valued functions X(t) and V (t) will not

link up with the other equations in u and ρ , and the trajectory Γ can be given

arbitrarily. This fact, which follows from the invariance of the Euler equation in

the whole space under transition to a noninertial coordinate system, seems to be

explainable by the circumstance that the boundary effects in an incompressible

medium affect the trajectory of the singularity even in the zeroth approximation,

while in a compressible medium one can “localize,” in some approximation,

the problem of propagation of a singularity. The “compressibility” condition in

writing down the chain for point singularities is consistent with the fact that for

shock waves the Hugoniot conditions can be written for (compressible) equations

of gas dynamics. Finally, we note that if we assume that the smooth background

in (2′) is given, then the functions (ρ̃, ũ), which define the singular part of the

solution, will satisfy the system (1) linearized on the background (ρ ,u). This

linearized system has three types of characteristics or “modes,” as it is customary

to speak in hydrodynamics. One of them is the so-called “hydrodynamical” or

“slow” mode, and the other two are the “acoustic” or “fast” modes. Here

the “acoustic” or “fast” modes result from the presence of “compressibility”

in the initial system (1): in the linearized Euler equation there are no such

modes. The requirement of “structural self-similarity” of the solution (2′) leads

to a motion of the singularity (vortex) only in a “slow” mode asymptotically,

without transferring any energy to the “rapid modes,” whose presence is due to

compressibility. Thus, although the inclusion of the functions that define the

trajectory in the chain is possible due to the presence of fast modes, the “main

part” of the vortex is transported according to “slow” (hydrodynamical) modes,

rather than “fast” ones.

5. Integrals of a Closed Chain and Reduction to Hill’s Equation

As we have already said, the closure procedure described above involves setting

the terms on the right-hand side of (6) equal to zero; we shall assume from now

on that the right-hand sides are zero. This procedure is based on a proposition
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that follows from the analysis of the equations of the chain that follow (5) and

(6) (and are given in [7] and [8]).

Proposition 2. Suppose the coefficients ρk, vk, and wk satisfy Eqs. (3)–(6)

for |k| � 2, and S and g are defined by (8). Then uk and vk, k = (k1,k2),

k1 + k2 = 3 can be chosen so that the function (2) satisfies the original system

(1) up to O(|x−X(t)|3) for all values of the Taylor coefficients for the functions

u = (v,w) with indices k = (k1,k2), |k| � 4, and for the functions g, S, and ρ
with indices |k| � 3. In particular, setting all these “leading” coefficients equal

to zero, we obtain the approximate solutions (2) modO(|x−X(t)|3) with f, g,

and S depending polynomially on (x−X(t)) (with degree at most 3).

Thus, after truncation of the chain we obtain in a certain sense an asymptotic

solution (in powers of x−X(t)) of the original equation.

There is as yet no rigorous proof that the proposed closure of the chain

leads to the determination of a singularity of the trajectory X(t) that differs

only slightly from the actual trajectory of the vortex over some time intervals.

However, as will be seen below, the closed-chain solutions that interest us must

be (and are chosen to be) stable; for that reason, if we assume that the right-

hand sides in (6) are not zero but very small, one can probably prove (this is

an open problem) that over certain time intervals they will make a very small

contribution to the solution of the system. On the other hand, this proposition

makes it possible to determine completely the “leading” part of the nonsmooth

component of the solution (2′). Therefore, this truncation of the chain is quite

reasonable: truncation at the preceding step (that is, setting the coefficients v20,

w02, v02, and so on equal to zero) does not enable us to describe the leading

nonsmooth part accurately, and taking account of the following equations leads

to a multiple complication of the equations. (Truncating at the third step adds

another 12 equations, at the fourth step 27, and so forth.)

Let us explain how Hill’s equation (7) arises. The reduction of the system

(3)–(6) to this equation entailed [7] the introduction of new variables [15], [17],

in which the “truncated” chain is greatly simplified; this, in turn, makes it

possible both to simplify the reduction procedure itself and to advance a long

way in the solution of the problem of typhoon trajectories, now taking account

of a variable Coriolis force (the “β -effect”). To be specific, we introduce a

complex coordinate z = x1 + ix2 on the (x1,x2)-plane. Together with the complex-

conjugate coordinate z̄ = x1 − ix2, it generates the complex derivatives

∂

∂ z
=

1
2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂ z̄
=

1
2

(
∂

∂x1
+ i

∂

∂x2

)
.
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We then introduce the complex regular component of the velocity v = v(x, t)+

iw(x, t), the complex trajectory Γ of the singularity (vortex) X = X1(t)+ iX2(t)≡
z
∣∣
Γ
, the complex velocity of the singularity V = V1(t) + iV2(t) ≡ v

∣∣
Γ
, and the

following real and complex variables:

ν = |c|ρ0, Y =

1

ν3/2|c|
(

2
∂ 2v
∂ z∂ z̄

− β

3

)∣∣∣∣
Γ

, Z =

1

ν3/2|c|
(
∂ 2v
∂ z2 +

β

3

)∣∣∣∣
Γ

,

U =

1

ν3/2|c|
∂ 2v
∂ z̄2

∣∣∣∣
Γ

, W =

1

2ν3/2|c|
(

c
i
∂ρ

∂ z̄
− ∂ 2v
∂ z̄∂ z

+

∂ 2v̄
∂ z̄2 +β

)∣∣∣∣
Γ

,

λ =

1
4
− 2r
ν2 + |c|ℜ

(
(Z − Ȳ )W +

3
2

Y Z

)
.

In the variables just introduced, the “truncated” chain has the following form:

V̇ + iω0V + iσ(ν)
3/2

(Y +W −2Z̄) = 0, Ẏ = i(p−ω0)Y − iβ (2p+ω0)

3|c|ν3/2
,

Ż = i(3p−ω0)Z +

iω0β

3|c|ν3/2
, U̇ = −i(p+ω0)U, Ẇ = −ipW,

λ̇ = − 2β

ν3/2
ℑ

(
2p
3

W − ω0

2
Y +

2p+ω0

2
Z

)
, ω̇0 = βℑV,

1
2

d
dt

(
1
ν

dν
dt

)
− 1

4

(
1
ν

dν
dt

)2

+ c2Qν2 −b2
= 0 ⇐⇒ d2√ν

dΦ2 + Q
√
ν =

b2

(

√
ν)

3
,

Φ= σ
∫ t

0
ν dt.

Here

b2
=

ω2
0 + 2βℜV

4
, σ = sign c,

Q = λ + cℜ

(
ZW − ȲW +

3
2

Y Z

)
, p =

ω0 +σν3

2
.

From such a representation with β = 0 it is easy to find the integrals of the

“truncated” chain: they are |Y |, |Z|, |U |, |W |, and λ . It is also easy to discover

the reduction to Hill’s equation (7). Indeed, the potential in it coincides with

the potential Q in the equation for
√
ν , which is called Ermakov’s equation and

reduces exactly to that family of Hill’s equations. This fact makes it possible to

express all solutions of the “truncated” chain immediately in terms of solutions
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of Hill’s equation, or at least roughly describe their properties. In particular,

it makes it possible to connect the properties of the trajectory with the zonal

theory. It is also clear that the solutions are oscillatory in nature.

In terms of its physical meaning the geopotential, and consequently also ρ0,

must be bounded above and below by positive constants on the time intervals

under consideration; moreover in the typhoon problem these constants do not

differ from each other greatly (they are within 10% of each other). Using the

known stability properties of Hill’s equation and explicit formulas that express

the functions ρ0(t) and X(t) in terms of solutions of Hill’s equation, one arrives

at the following important facts.

1. The Coriolis frequency must be nonzero.

2. The parameters in Hill’s equation (that is, the constants of integration

of the “truncated” chain) must be such that the equation is stable, or at least

correspond to a rather narrow zone of instability (with small increments and

decrements of instability).

A further consequence is that in the stable case the function ρ0(t) turns

out to be a quasi-periodic function with two frequencies, one of which is equal

to ω0.

Another physically reasonable assumption — of sufficient smoothness of

the trajectories Γ — and a completely elementary study of the equations for

the velocity and the functions Y , Z, and W leads to the requirement that the

oscillating part of the potential in Hill’s equation be small, and that one of the

frequencies p−ω0, 3p−ω0, and p of this system be small. This requirement

must be met both when β = 0 and when β is small. Simple computations show

that such a situation is possible when the parameter λ lies in a neighborhood of

the numbers 1/4 and 9/4; in other words, in a neighborhood of the first and

third gaps in the spectrum of Hill’s equation.

When β = 0, in particular cases, one can construct exact solutions with a

constant value of ρ0 by choosing some of the constants of integration of the trun-

cated chain so that the potential in Hill’s equation is equal to the constant 8 λ .

Very simple formulas for the trajectories correspond to these solutions. For ex-

ample, choosing Y = W = 0, p = const, ω = ω0 = const, c < 0, Dobrokhotov

obtains an exact formula: X = X0
+V 0e−iω0t

+Aei(ω0−3p)t , where X0, V 0, and A
are complex constants of integration. In the (x1,x2)-plane this trajectory is an

epicycloidal curve, and if the frequency 3p−ω0 is small, which corresponds to

a parameter value λ near 9/4 (the “trace” of the third instability zone of Hill’s

8 This is possible due to the “potential well” in Ermakov’s equation for
√
ν under the condition

ω �= 0.
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equation), then the motion along this curve is compounded of a slow motion

along a “great” circle (with this frequency) and a rapid motion with a “proper”

Coriolis frequency ω0. If λ > 9/4, then 3p < ω0, and the motion is clockwise,

while if λ < 9/4, then 3p > ω0, and the motion is counterclockwise. Thus, in

the absence of the “β -effect,” the direction of motion is invariant and is con-

nected with the third and fourth stability zones of Hill’s equation (7). Similar

solutions can be obtained for the situations when Z = W = 0, p−ω0 is small,

and Y = Z = 0, p is small. Here, when p−ω0 is small, the constant c is positive,

so that such a mode, in contrast to the other two, is of no interest from the point

of view of the typhoon problem.

6. The “β -Effect,” Averaging, and the Equation of Physical

Pendulum Type for Typhoon Trajectories

Including the parameter β changes the situation rather strongly if the times

are comparable with 1/β , as is the case in the typhoon problem, and accords

completely with the opinion of specialists as to the influence of the “β -effect”

on trajectories. In the system being studied the parameter β is small, and the

system is a typical adiabatically perturbed problem, in which averaging methods

work: the integrals described above become slowly varying functions. In this

process it turns out that the evolution of the two types of solutions described

above for β = 0 — with a constant geopotential on Γ and either a small frequency

3p−ω0 or a small frequency 3p — is of particular interest from the point of

view of the typhoon problem. Since one of the frequencies of the system (of

the “truncated” chain) is small, we are dealing with a “partial” averaging. We

remark that λ and the other parameters in Hill’s equation now become “slowly

varying functions,” and it is possible to pass from one stability zone to another,

leading to a change in the direction of motion. (In solid-state physics, such an

effect is called a Zener breakdown.)

We have already noted another truly remarkable and surprising fact: the

averaged equations for these modes turn out to be reducible to quadratures.

They can be reduced to a family of Hamiltonian systems consisting of two

equations for the frequency ω0, the angle ψ , the direction of the velocity V , a

certain parameter R, and Ω depending on c (the constants of integration of the

“truncated” chain). They have the same structure for all modes:

ω̇0 = f
∂H
∂ψ

, ψ̇ = − f
∂H
∂ω0

, ω0|t=0 = ω0(0), ψ |t=0 = ψ(0),

H = cosψ M + N,
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but with different functions M, N, and f . For example, for the case when the

frequency 3p−ω0 is “small,”

M = R

√
1+

7
12|c|R2

(
11
4

− 7
4(2η−1)

2 −
1

2η−1
+

1
14

log(2η−1)

)
,

N = −7(ω2)
3/2

4

∫ η7

1

y9
(5y7 −6)√

(y7
+ 3)(2y7 −1)

3
dy,

f = −4
√
ω0(2η−1)

3

7η
√
η+ 3

, η =

ω0

Ω
.

Its phase portraits on the (ω0,ψ)-plane are determined by the integral H of

the system: H = const, and for particular regions nearly coincide with the well

known phase portraits of the trajectories of a physical pendulum. Moreover,

the averaging procedure itself, though carried out on the physical level of rigor,

but confirmed by a computer, makes it possible to distinguish the “essential”

constants among the 17 constants of integration of the “truncated” chain. These

are the ones that have the strongest effect on the behavior of the trajectories and

which are completely determined using the initial characteristics of the typhoon:

the position of its center (eye), the speed of advance of the center, the third

component of the curl of the velocity, and the potential vortex (the Rossby

invariant) c on the trajectory Γ. Reduction to what is “almost the equation”

of a physical pendulum (for different modes) makes it possible to classify the

possible trajectories of typhoons and connect them with the trajectories of a

physical pendulum over a time interval that does not greatly exceed half a period.

For example, to infinite motions below and above the separatrix correspond ⊃-

and ⊂-shaped trajectories, while to finite motions correspond S- and
∫
-shaped

trajectories. Such a correspondence, in turn, enables us to establish a number

of useful properties of trajectories. For example, if the initial position and

velocity of a pendulum are known, one can determine its maximal displacement,

velocity, and so on. The analog of this property is the possibility of determining

from the initial data the leftmost and rightmost longitudes and the lowest and

highest latitudes a trajectory will reach and so on. Of course, the solutions of

the complete “truncated chain” may differ somewhat from those of the averaged

chain. In particular, rapid oscillations may arise in them, which lead to vibration

in the trajectory Γ. (Continuing with the pendulum analogy, one can say that

the pendulum changes its length elastically, the point of suspension is attached

to a spring, and the pendulum is a rotating rigid body, not a point mass.) Such

“theoretical” typhoon trajectories of a complete “truncated” chain and the phase

portraits corresponding to them are shown in Fig. 1a and 1b for one mode. It is
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also clear that both the model itself (the system (1)) and the approximation used

describe the dynamics of typhoons rather roughly; here, clearly, the greatest

defect is the absence of the effect of an energy “drive” from the ocean (the

system (1) is conservative). Nevertheless, even this model and the “truncated”

chain have given a rather good qualitative agreement for a number of actual

typhoons. In particular, the “theoretical” typhoons with realistic parameters

duplicated the S-shaped zigzag trajectories of actual typhoons. One example of

the trajectories of a “theoretical” (smooth line), and a real typhoon (“Deanna,”

June 1997, broken line) and the phase portraits corresponding to them are shown

in Fig. 2a and 2b. The quantitative difference between the “theoretical” typhoon
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and the actual one can be roughly explained by the fact that the model is

conservative. At large times the energy exchange between the ocean and the

atmosphere may have a significant effect on the trajectory.

Naturally, much more research is needed if we are to use the results ob-

tained by Dobrokhotov in problems involving the actual prediction of typhoon

trajectories. In particular, we must include the energy exchange, the sphericity

of the Earth, and so on. In addition, a number of curious mathematical questions

arise here; for example, whether the chains are Hamiltonian, how to exhibit the

mechanism (probably a group mechanism) that induces these reductions, and so

on. But the facts that have been discovered already show with a great degree of

plausibility that they are indeed connected with real typhoons: such surprising

and fantastic mathematical beauty in the exact solution of a very complicated

system of nonlinear differential equations in 17 unknowns could not occur unless

it corresponded to the physical reality.
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Yu. V. Matiyasevich

Hilbert’s Tenth Problem: Diophantine

Equations in the Twentieth Century

Translated by R. Cooke

In August 1900, Paris hosted the second International Congress of Mathemati-

cians. (In those distant days, mathematicians were still able to number their

meetings.) One of the invited speakers was David Hilbert. In what became

a famous address called “Mathematische Probleme” Hilbert decided to indicate

what were, in his opinion, the most important problems bequeathed by the de-

parting nineteenth century to the arriving twentieth century. (We now know that

much of it was to be inherited also by the twenty-first century.)

Traditionally, one speaks about 23 Hilbert’s problems and numbers them as

in the printed text of his address [14]. Actually, many of the Hilbert problems

consist of several interrelated questions. For example, the 8th problem includes,

in particular,

• Goldbach’s Conjecture that every even number from 4 on is the sum of

two prime numbers;

• the Riemann Hypothesis on the location of the complex zeros of the

Riemann zeta-function, which is connected with the distribution of primes

among the natural numbers;

• the conjecture about the existence of infinitely many twin-primes.



186 Yu. V. Matiyasevich

(It is of interest to note that neither “Fermat’s Last Theorem” nor the Four Color

Problem were included in the list by Hilbert.)

So little space was devoted to Problem 10 that the corresponding part of

Hilbert’s address can be reproduced in full here:

10. Entscheidung der Lösbarkeit einer

diophantischen Gleichung. Eine dio-

phantische Gleichung mit irgendwelchen

Unbekannten und mit ganzen rationalen

Zahlkoefficienten sei vorgelegt: man soll

ein Verfahren angeben, nach welchem

sich mittels einer endlichen Anzahl von

Operationen entscheiden läßt, ob die

Gleichung in ganzen rationalen Zahlen

lösbar ist.

10. Determination of the solvability

of a Diophantine equation. Given a

Diophantine equation with any number of

unknown quantities and with rational in-

tegral numerical coefficients: To devise

a process according to which it can be

determined by a finite number of opera-

tions whether the equation is solvable in

rational integers. (Cited from the Eng-

lish translation of [14].)

The equations referred to in the 10th problem are named in honor of the

Greek mathematician Diophantus who, most likely, lived in the third century

A. D. Diophantine equations have the form

D(x1, . . . ,xm) = 0, (1)

where D is a polynomial with integer coefficients.

Hilbert asked about the solvability of Diophantine equations in rational

integers, by which he meant the numbers 0, ±1, ±2, . . . , which form a subset of

the set of algebraic integers; when I speak of integers below, I mean precisely

these numbers 0, ±1, ±2, . . . , unless the opposite is stated explicitly.

The domain of allowable values of the unknowns is sometimes regarded as

the defining characteristic, and Diophantine equations are taken to mean any

equations that are to be solved in integers or natural numbers. On the other

hand, the form (1) is also sometimes taken as the defining characteristic, and

all polynomial equations are called Diophantine, regardless of the ring in which

solutions are sought. Below, Diophantine equations will be understood exactly in

the sense of Hilbert, that is, as equations of the form (1) with integer unknowns.

In the time since Diophantus, specialists in number theory have found solu-

tions of many Diophantine equations and have shown that many others have no

solutions. Why then did Hilbert regard this problem as still open in 1900?

The fact is that, for various classes of Diophantine equations, and sometimes

even for individual specific Diophantine equations, mathematicians were forced

to keep inventing new methods every time. (An illuminating example of this is

the famous Fermat equation, whose unsolvability took more than three centuries

to prove.) In the tenth problem, Hilbert was proposing that a universal method
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be found that would enable mathematicians, at least in principle, to establish the

existence or nonexistence of solutions for an arbitrary Diophantine equation.

In modern terminology, Hilbert’s tenth problem is a decision problem, that

is, a problem consisting of a countable number of individual subproblems, each

of which requires an answer of YES or NO. (In the present case, the individual

subproblems correspond to particular Diophantine equations, about which the

question is posed whether they have solutions.) The solution of a decision

problem must be given in the form of an algorithm that yields the required

answer in finite time for any initial data specifying the particular individual

problem.

The word algorithm, however, does not appear in the statement of the tenth

problem — instead, Hilbert uses a rather vague terminology, proposing that one

should find “a process according to which it can be determined by a finite num-

ber of operations . . . ”. However, even if Hilbert had used the word algorithm in

the statement of the tenth problem, that would not have improved the situation

by much. The fact is that in 1900 the rigorous concept of an algorithm had

not yet been developed. Examples of specific algorithms were known (the most

“venerable” was surely the Euclidean algorithm for finding the greatest common

divisor of two integers), there was an intuitive conception of an “algorithm in

general,” but there was no definition.

Does this mean that the tenth problem was ill-posed by Hilbert? By no

means. Observe that he did not ask whether there exists a process according to

which it can be determined . . . (as a modern mathematician would most likely

do), but stated the problem positively:

man soll ein Verfahren angeben, . . . To devise a process . . .

Hilbert was an optimist in mathematics (the revolutionary results of Gödel ap-

peared more than 30 years after the Hilbert problems) and it appears that he

believed that the tenth problem had a positive solution. But if someone had

found the “process” it required, it would most likely have become clear that

the procedure really does give the required answer after a “finite number of

operations.”

A completely different situation arises if a decision problem has no solution,

as happened in the case of Hilbert’s tenth problem. To prove this, and even just

to state the unsolvability of such a decision problem, one must have a rigorous

definition of an algorithm (or at least a list of essential requirements that the

algorithm must satisfy). The failure of all attempts to find a universal method

of solving Diophantine equations might have been an impetus to develop a

rigorous notion of an algorithm, but I have been unable to discover any direct
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effect of Hilbert’s tenth problem on the development of the general definition of

an algorithm.

That occurred more than thirty years after Hilbert stated his problems, as a

result of investigations of Kurt Gödel, Alan Turing, Emil Post, Alonzo Church,

and other mathematical logicians. Several techniques of various types were pro-

posed for representing algorithms (Turing machines, Post machines, λ -calculus,

partial recursive functions, and others). All these different techniques turned out

to be equivalent to one another. On that basis, Church was the first to assert

that one particular technique could be taken as a formal definition of the general

notion of an algorithm, and it would adequately reflect our intuitive conception

of what an algorithm is. This unprovable assertion is known as Church’s Thesis.

Soon after Church’s Thesis was formulated, algorithmically unsolvable de-

cision problems were found. The first examples of such problems belonged

to mathematical logic, and therefore did not discourage “real” mathematicians

much.

The momentous year was 1947, in which two mathematicians, Andrei An-

dreevich Markov [19] in the USSR and Emil Leon Post [30] in the USA,

independently of each other, published a proof of the algorithmic unsolvability

of the so-called word problem for finitely presented semigroups. This problem is

known also as Thue’s problem, after the Norwegian mathematician Axel Thue,

who had stated it in 1914 [39]. This was the first case in which it was possible

to prove the impossibility of an algorithm for solving a decision problem which

arose in mathematics.

After this success with Thue’s problem on the one hand, and the failure to

find a general method for Diophantine equations on the other, it was natural

to attempt to prove the unsolvability of Hilbert’s tenth problem. Already in

1944, Post [29] wrote that Hilbert’s tenth problem “begs for an unsolvability

proof.”

These words inspired his student Martin Davis to attempt a negative solution

of Hilbert’s tenth problem. In the early 1950s he put forward a conjecture from

which (together with the known fact that there exist algorithmically unsolvable

problems) the impossibility of an algorithm that would determine whether an

arbitrary Diophantine equation has a solution followed immediately.

To state Martin Davis’ conjecture we need to introduce some relevant ter-

minology; before doing so, we will examine an equivalent reformulation of

Hilbert’s tenth problem.

To be specific, Hilbert was asking for the solution of Diophantine equations

in integers. One can consider the analogous decision problem of solvability

of Diophantine equations in the natural numbers. (Following the tradition of
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mathematical logic, we take the natural numbers to consist of all nonnegative

integers; that is, zero counts as a natural number.)

These two decision problems are equivalent to each other in the sense that

each can be reduced to the other. Indeed, Eq. (1) has a solution in integers if

and only if the equation

D(p1 −q1, . . . , pm −qm) = 0 (2)

has a solution in the natural numbers. The reduction in the other direction is

less obvious: Eq. (1) has a solution in the natural numbers if and only if the

equation

D(w2
1 + x2

1 + y2
1 + z2

1, . . . ,w2
m + x2

m + y2
m + z2

m) = 0 (3)

has a solution in the integers; for by a theorem of Lagrange every natural number

is the sum of four squares.

For technical reasons, it is more convenient to work with natural numbers

and throughout the following lower-case italic letters will denote such numbers.

Along with the consideration of equations with numerical coefficients (as

in the statement of Hilbert’s tenth problem), one can also study Diophantine

equations with symbolic coefficients. A family of Diophantine equations has the

form

D(a1, . . . ,an,x1, . . . ,xm) = 0, (4)

where D is a polynomial with integer coefficients whose variables are separated

into two sets:

• the parameters a1, . . . ,an;

• the unknowns x1, . . . ,xm.

Under one choice of values of the parameters a1, . . . ,an Eq. (4) may have a

solution in the unknowns x1, . . . ,xm, while there is no solution under a different

choice of parameters. We can consider the set M consisting of all n-tuples

〈a1, . . . ,an〉 for which our parametric equation has a solution:

〈a1, . . . ,an〉 ∈ M ⇐⇒∃x1 . . .xm
{

D(a1, . . . ,an,x1, . . . ,xm) = 0
}
. (5)

Sets that are representable in this form are called Diophantine, and an equiva-

lence of the form (5) is called a Diophantine representation of the corresponding

set; taking some liberties with language, one may say that the Diophantine equa-

tion itself is a Diophantine representation.

Martin Davis set himself the task of characterizing the entire class of Dio-

phantine sets. The theory of computation imposes one obvious necessary
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condition for a set to be Diophantine, namely, if we are given a parametric

Diophantine equation (4), then we can start listing all sets of n + m numbers

a1, . . . ,an,x1, . . . ,xm in some order, and verify Eq. (4) for each set. If it holds,

we shall put the set 〈a1, . . . ,an〉 into a separate list. This list will contain only

elements of the set M, and each element of this set sooner or later would appear

in our list, possibly with repetitions.

The algorithm just exhibited for listing all the elements of a Diophantine set

had a very special form. Allowing use of an arbitrary algorithm, we arrive at

the following notion: a set M consisting of n-tuples of natural numbers is called

recursively enumerable if there exists an algorithm that, running for a potentially

infinite time, will print out a list of all elements of the set M.

As we have seen, every Diophantine set is recursively enumerable. Martin

Davis [3], [4] proposed that the converse is also true:

Martin Davis’ conjecture. The notions of Diophantine set and recursively

enumerable set coincide; that is, a set is Diophantine if and only if it is

recursively enumerable.

The algorithmic unsolvability of Hilbert’s tenth problem would follow imme-

diately from Martin Davis’ conjecture, since examples of recursively enumerable

sets of natural numbers were known for which there is no algorithm that can

determine whether an arbitrary integer belongs to them.

It is my opinion that Martin Davis’ conjecture was quite daring. The infor-

mal arguments against it were very imposing. For example, it is easy to see that

the set of all prime numbers is recursively enumerable. It followed from Martin

Davis’ conjecture that it is a Diophantine set, that is, there exists a specific

polynomial P such that the equation

P(a,x1, . . . ,xm) = 0 (6)

has a solution if and only if a is a prime. Hilary Putnam [32] remarked that this

equation is equivalent to the following:

a = (x0 + 1)

(
1−P2

(x0,x1, . . . ,xn)
)−1. (7)

Indeed, each solution of (6) can be expanded to a solution of (7) by the choice

x0 = a. (8)

On the other hand, in each solution of (7) with nonnegative a the product on the

right-hand side must be positive, which is possible only when

P(x0, . . . ,xn) = 0.

But then (8) also holds, and consequently also (6).
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Thus it followed from Martin Davis’ conjecture that there existed a remark-

able polynomial, namely the right-hand side of (7), whose values at the natural

numbers were precisely the set of prime numbers. This striking consequence

was regarded by many as an informal argument against the conjecture.

Another implausible consequence was the following. For every fixed n we

can list all Diophantine sets of n-tuples of natural numbers:

M0, M1, . . . ,Mk, . . . (9)

Speaking more formally, there exists a universal recursively enumerable set Un

such that

〈a1, . . . ,an,k〉 ∈ Un ⇐⇒ 〈a1, . . . ,an〉 ∈ Mk. (10)

According to Martin Davis’ conjecture, the set Un has a Diophantine represen-

tation

〈a1, . . . ,an,an+1〉 ∈ Un ⇐⇒
∃y1 . . .yM

{
Un(a1, . . . ,an,an+1,y1, . . . ,yM) = 0

}
. (11)

For any Diophantine equation (4) we can effectively find kD — the index of

the set defined by this equation in the sequence (9); according to (10) and (11),

the same set is also given by the equation

Un(a1, . . . ,an,kD,y1, . . . ,yM) = 0. (12)

Thus, Eqs. (4) and (12) have solutions for the same set of parameter values,

but the new equation (12) has a fixed number of unknowns and a fixed degree,

while the original equation (4) may have arbitrarily many unkowns and may be

of arbitrarily high degree.

Martin Davis [4] took the first step toward the proof of his conjecture when

he obtained an almost Diophantine representation:

Theorem (M. Davis). Every recursively enumerable set has a representation of

the form

〈a1, . . . ,an〉 ∈ M ⇐⇒∃z ∀y � z ∃x1 . . .xm
{

D(a1, . . . ,an,x1, . . . ,xm,y,z) = 0
}
,

where D is a polynomial with integer coefficients.

Representations of this type came to be called the Davis normal form. They

became a quantitative improvement of the classical result of Kurt Gödel [12]

on the existence of such arithmetic representations with an arbitrary number of

universal quantifiers.
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The single universal quantifier that remains in the Davis normal form was

eliminated in a joint paper by Martin Davis, Hilary Putnam, and Julia Robin-

son [9], but a high price was paid for this elimination. To be specific, they

were forced to consider the larger class of so-called exponentially Diophantine

equations. These are equations of the form

EL(x1,x2, . . . ,xm) = ER(x1,x2, . . . ,xm),

where EL and ER are exponential polynomials, that is, expressions constructed

by the traditional rules from specific natural numbers and variables using the

operations of addition, multiplication, and exponentiation. The result was the

exponential Diophantine representation (13) of recursively enumerable sets:

Theorem (M. Davis, H. Putnam, J. Robinson). For every recursively enumer-

able set M consisting of n-tuples of natural numbers there exist exponential

polynomials EL and ER such that

〈a1, . . . ,an〉 ∈ M ⇐⇒∃x1 . . .xm{
EL(a1, . . . ,an,x1,x2, . . . ,xm) = ER(a1, . . . ,an,x1,x2, . . . ,xm)

}
. (13)

The algorithmic unsolvability of the analog of Hilbert’s tenth problem for

exponentially Diophantine equations followed immediately from this theorem,

and this result in the end turned out to be an important link in the proof of

the unsolvability of the tenth problem in its original formulation. This role of

the Davis–Putnam–Robinson theorem was not understood immediately, however.

Here, for example, is what Georg Kreisel wrote in Mathematical Reviews [17]

about the paper [9] of Davis, Putnam, and Robinson:

These results are superficially related to Hilbert’s tenth Problem on

(ordinary, i. e., non-exponential) Diophantine equations. The proof

of the authors’ results, though very elegant, does not use recondite

facts in the theory of numbers nor in the theory of r. e. [recur-

sively enumerable] sets, and so it is likely that the present result

is not closely connected with Hilbert’s tenth Problem. Also it is

not altogether plausible that all (ordinary) Diophantine problems are

uniformly reducible to those in a fixed number of variables of fixed

degree, which would be the case if all r. e. sets were Diophantine.

Kreisel was not alone in such an underestimation of the role of the paper

of Davis, Putnam, and Robinson. When my scientific advisor Sergei Yur’evich
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Maslov [10] suggested to me in late 1965 (when I was a second-year student

in the Department of Mathematics and Mechanics at Leningrad Unversity) that

I should tackle Hilbert’s tenth problem, I asked him what I should read first.

In response I heard that, “there have been several papers of American math-

ematicians on Hilbert’s tenth problem, but there is no need to read them.” —

“Why not?” — “Their approach has not yet led to any success, and is most likely

‘barren’,” answered Maslov. He told me of another approach being promoted

by A. A. Markov. This approach was much less ambitious than Martin Davis’

conjecture. Namely, it was known that to prove the undecidability of Hilbert’s

tenth problem, it sufficed to prove the algorithmic unsolvability of the so-called

word equations (or equations in free semigroups), since they could easily be

reduced to Diophantine equations.

I spent some time trying unsuccessfully to prove the unsolvability of word

equations. Much later it became known that the approach suggested to me by

Maslov could never lead to success — in 1997 Gennadii Semenovich Makanin

[18] found an algorithm for word equations.

Makanin’s theorem explained why I had been unable to prove the undecid-

ability of word equations. This, however, was not the goal, but only a means;

the goal was Hilbert’s tenth problem. In the attempt to attain this goal I es-

tablished that the larger class of systems of equations consisting both of word

equalities and word length equalities could be reduced to Diophantine equations.

A completely different technique was required for such a reduction, based on a

positional system of notations in which the weights of digits are Fibonacci num-

bers. I published this result and two other papers devoted to various approaches

to Hilbert’s tenth problem.

None of my efforts at the time led to success (and the question of solvability

of word-and-length equations remains open to this day), and in the end I read

those “several papers of American mathematicians.” (Sergei Ivanovich Adyan

initiated and edited translations into Russian of the main papers on Hilbert’s

tenth problem; they were published in an issue of the journal Matematika.)

To carry the Davis–Putnam–Robinson result over to the case of “genuine”

Diophantine equations, it sufficed to establish that the set{〈a,b,c〉 : ab
= c

}
(14)

is Diophantine. Indeed, it is not difficult to see that, using a Diophantine

representation of this set,

ab
= c ⇐⇒∃z1 . . .zm

{
A(a,b,c,z1, . . . ,zm) = 0}, (15)



194 Yu. V. Matiyasevich

we could transform an arbitrarily exponentially Diophantine representation into

a Diophantine representation at the cost of introducing additional unknowns. In

other words, to prove Martin Davis’ conjecture in full it would suffice to prove

it for the special case of the set (14).

Julia Robinson began to study the question whether the set (14) is Diophan-

tine as early as 1948, that is, just when Martin Davis stated his conjecture. How-

ever, the original direction of her research was just the opposite: the prominent

mathematical logician Alfred Tarski was wondering whether one could prove,

for example by induction, what seemed to him to be the plausible proposition

that even the simpler set of all powers of 2 is not Diophantine.

After spending some time trying unsucessfully to prove Tarski’s conjecture,

Julia Robinson switched to searching for a Diophantine representation (15) for

exponentiation. She did not succeed in finding it, but she established sufficient

conditions for exponentiation to be Diophantine. To be specific, the representa-

tion (15) can be constructed on the basis of the Diophantine representation

〈u,v〉 ∈ R ⇐⇒∃y1 . . .ym
{

J(u,v,y1, . . . ,ym)

}
= 0 (16)

of any set R having the following two properties:

• if 〈u,v〉 ∈ R, then u < vv;

• for every k there exist u and v such that 〈u,v〉 ∈ R and u > vk.

Julia Robinson called the relation between u and v having these two properties

a relation of exponential growth; in the literature they also began to be called

the Julia Robinson predicates.

It might seem that to prove that exponentiation is Diophantine it remained

to examine the numerous results obtained in number theory since Diophantus,

and to find a two-parameter Diophantine equation that defined a relation of

exponential growth. Amazing though it is, no such equation could be found.

Attempts to construct such an equation “artificially” also were going without

success. When it became known that the existence of Julia Robinson’s predicate

defined by a Diophantine equation implied not only that exponentiation was

Diophantine but also the full Martin Davis conjecture with all its incredible

corollaries, the existence of such predicates began to seem even less plausible,

and losing faith in it, Julia Robinson attempted to prove the opposite for a time.

My first impression of the definition of the exponential growth relation was

“what an unnatural concept,” but I soon began to recognize its naturalness and

its importance.
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I decided to organize a seminar on Hilbert’s tenth problem. At the first

session, where I gave a brief survey of the known results, the audience consisted

of five logicians and five number theorists. The number theorists quickly stopped

attending the seminar and the logicians all abandoned it soon after, so that I was

left face to face with Hilbert’s tenth problem. Much later, after it was solved,

I asked one of the number theorists who had been at the first session of the

seminar why the number theorists had abandoned it so quickly. The answer was,

“We were striving to prove that the set of prime numbers is not Diophantine,

convinced that we could do that in about two weeks.” Although they didn’t

succeed at that, specialists in number theory would no longer come to a seminar

whose purpose was to prove such an implausible assertion.

I was now devoting almost all my free time to the search for a Diophantine

relation of exponential growth. There was nothing wrong with a second-year

student attempting to solve a famous problem, but it looked silly when I contin-

ued my attempts unsuccessfully for several years. One professor began to laugh

at me. Every time he met me he would ask, “Have you proved the unsolvability

of Hilbert’s tenth problem? Not yet? Then you won’t be able to defend your

senior thesis!”

Nevertheless, in 1969 I graduated and became a graduate student at the

Leningrad Department of the Mathematical Institute of the USSR Academy of

Sciences (LOMI). Naturally, Hilbert’s tenth problem was an “undissertationable”

topic and could not be the subject of my efforts, at least not for the three years

while I was a graduate student.

Once in the autumn of 1969 one of my new colleagues said to me, “Drop into

the library. In the latest issue of the Proceedings of the American Mathematical

Society there is a new article of Julia Robinson on Hilbert’s tenth problem.”

However, I was firm in my resolution to abandon that problem. I said to myself,

“It’s very nice that Julia Robinson is continuing to study Hilbert’s tenth problem,

but I myself can’t afford to spend any more time on it.” And I didn’t go to the

library.

Somewhere in Mathematical Heaven there must be a God or Goddess of

mathematics who would not let me avoid becoming acquainted with Julia Robin-

son’s new paper. Because of my undergraduate publications I was regarded as a

specialist in Hilbert’s tenth problem, and for that reason the journal Referativnyi

zhurnal “Matematika” (the Russian counterpart of Mathematical Reviews) sent

me a copy of Julia Robinson’s article [36] to review.

Hilbert’s tenth problem once again took hold of me. I saw that Julia Robin-

son had a new, very promising idea. It was connected with the special form of

the Pell equation

x2 − (a2 −1)y2
= 1. (17)
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The solutions 〈χ0,ψ0〉, 〈χ1,ψ1〉, . . . , 〈χn,ψn〉, . . . of this equation, listed in

increasing order, satisfy the recurrent relations

χn+1 = 2aχn − χn−1, (18)

ψn+1 = 2aψn −ψn−1. (19)

It is easy to see from this that for every m both sequences χ0,χ1, . . . and

ψ0,ψ1, . . . are purely periodic modulo m, and consequently their linear combi-

nations are also periodic. Then it is easy to verify by induction that the period

of the sequence

ψ0, ψ1, . . . , ψn, . . . (mod (a−1)) (20)

consists of the numbers

0, 1, 2, . . . , a−2, (21)

and the period of the sequence

χ0 − (a−2)ψ0, χ1 − (a−2)ψ1, . . . , χn − (a−2)ψn, . . . (mod (4a−5)) (22)

begins with

20, 21, 22, . . . (23)

The main new idea of Julia Robinson was to “synchronize” the sequences

(20) and (22) by imposing some condition G(a) to guarantee that

the length of the period of the sequence (22)

is divisible by the length of the period of the sequence (20).
(24)

Julia Robinson showed that if such a condition G(a) is Diophantine and holds

for an infinite number of values of a, then the set (14) is Diophantine. However,

she did not succeed in finding a suitable Diophantine condition G, and even

today we do not know any methods for giving a direct Diophantine definition

of it.

I liked the idea of synchronization very much and tried to apply it in a

slightly different situation. As mentioned above, I was using Fibonacci numbers

to reduce word-and-length equations to Diophantine equations. In doing this I

discovered (for myself) the equation

x2 − xy− y2
= ±1. (25)

For the Fibonacci numbers this equation plays a role analogous to the role of

the Pell equation, namely that the Fibonacci numbers φn, and only they, satisfy

Eq. (25).
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The fact that successive Fibonacci numbers give the solution of Eq. (25) was

presented by Jean-Dominique Cassini to the Académie Royale des Sciences as

long ago as 1680. It can be proved by a trivial induction. At the same time the

stronger fact that Eq. (25) is characteristic of the Fibonacci numbers is somehow

not given in standard textbooks. The induction required to prove the converse is

less obvious, and that fact seems to be the reason for the inclusion of the problem

of inverting Cassini’s identity as Exercise 6.44 in Concrete Mathematics by

Ronald Graham, Donald Knuth, and Oren Patashnik [13]. As the original source

of this problem the authors cite my paper [21], but I have always suspected

that such a simple and fundamental fact must have been discovered long before

me. This suspicion turned out to be justified: I have recently found a paper of

M. Wasteels [41] published in 1902 in the obscure journal Mathesis.

The arithmetical properties of the sequences ψn and φn are very similar. In

particular, the sequence

0, 1, 3, 8, 21, . . . (26)

of even-indexed Fibonacci numbers satisfies the recurrence

φ2(n+1)
= 3φ2n −φ2(n−1)

, (27)

which is analogous to (18) and (19). This sequence increases like [(3+

√
5)/2]

n

and can be used in place of (23) to construct a relation of exponential growth.

The role of (22) can be played by the sequence

ψ0, ψ1, . . . , ψn, . . . (mod (a−3)), (28)

since it begins like (26). Moreover, for particular values of a the period can be

determined exactly. Namely, if

a = φ2k +φ2k+2, (29)

then the period of the sequence (28) consists of the numbers

0, 1, 3, . . . , φ2k, −φ2k, . . . , −3, 1. (30)

Such a simple form for the period looked very promising.

I thought intensively along these lines, even on New Year’s Eve of 1970,

and made my own contribution to the stories of absent-minded mathematicians,

leaving my uncle’s house in the morning wearing his overcoat. On the morning

of 3 January it seemed to me that I had found the polynomial J required in (16);

however, by evening I had found a mistake in my reasoning. But the next

morning I was able to correct my construction.
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What else needed to be done? As a student I had already had a sad expe-

rience, when I once announced that I had proved the unsolvability of Hilbert’s

tenth problem but found a mistake while presenting my proof. I would not have

wanted to be once again in such a position disgraceful for a mathematician,

and certain places in my new proof seemed rather suspicious to me. At first

I supposed that all I had done was to apply Julia Robinson’s idea for another

recurrrent sequence. However, in her construction a vital role was played by a

special equation that guaranteed that one variable was exponentially larger than

another. In my supposed proof there was no need at all to use such an equation,

and that was the strange part. Later on I realized that my construction was

actually dual to Julia Robinson’s construction. In fact, I had found a certain

Diophantine condition H(a) guaranteeing that

the length of the period of the sequence (20)

is divisible by the length of the period of the sequence (28).
(31)

Such a condition H , however, could not play the role of Julia Robinson’s G,

and the construction as a whole was obtained in a completely different way.

My transition from (24) to the dual (31) redistributed the difficulties. The

route from a Diophantine representation of H to a Diophantine representation

of relation of exponential growth is not as straightforward as the route proposed

by Julia Robinson starting from a hypothetical Diophantine representation for G.

On the other hand, constructing a Diophantine representation for my H turned

out to be much simpler than for the condition G that Julia Robinson had been

working with.

To do this, I used, in particular, the following lemma:

φ2
n

∣∣φm ⇒ φn
∣∣m. (32)

It is not difficult to prove this remarkable property of the Fibonacci numbers

once it has been stated, but this beautiful fact seems not to have been known

until 1969. My proof of the implication (32) was based on a theorem proved by

the Soviet mathematician Nikolai Nikolaevich Vorob’ev in 1942, but published

only in the third, augmented edition of his book [40]. (The translator of my

article [21] misled the reader by changing the year of publication of [40] from

1969 to 1964, which was the year when the second edition appeared.)

Using (32) and other properties of the Fibonacci numbers, I proved the

following theorem, on the basis of which it is easy to construct a Diophantine

representation for the Fibonacci numbers with even indices:
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A necessary and sufficient condition for the equality v = φ2u is that there

exist numbers g, h, l, m, x, y, and z such that

u � v < l,

l2 − lz− z2
= 1,

g2 −2gh−4h2
= 1,

l2
∣∣g,

m = 3+(4h+ g),

x2 −myx+ y2
= 1,

u = rem(x, l),

u = rem(x,4h+ g).

I wrote a detailed proof, not finding any errors while doing so, and asked

Sergei Yur’evich Maslov and Vladimir Aleksandrovich Lifshits to check it, but

not say anything to anyone for the time being. I had long planned to spend the

winter holidays with my fiancée at a ski resort, and I left Leningrad without

getting any response from Maslov or Lifshits. For two weeks I was skiing,

simplifying the proof, and writing [21]. In that paper I attempted to express the

influence of Julia Robinson’s paper [36] on my work by the word naveyano, for

which there seems to be no exact English equivalent, 1 and the translator later

used the banal suggested.

After returning to Leningrad, I received confirmation from Maslov and Lif-

shits that my proof was correct, and it ceased to be a secret. Several other

mathematicians also verified the proof, among them Dmitrii Konstantinovich

Faddeev and Andrei Andreevich Markov, who were both known for their ability

to find errors.

On 29 January 1970 my first public address on the solution of Hilbert’s

tenth problem took place at LOMI. Among the audience was Grigorii Samui-

lovich Tseitin, who soon afterward participated in a conference in Novosibirsk.

He took a copy of my manuscript and asked my permission to give there a

talk about my proof. (That may be why the Siberian rather than the Leningrad

Department of the Mathematical Institute is erroneously indicated in the English

translation of my article [21].) Among those who heard Tseitin in Novosibirsk

was John McCarthy. When he returned to the USA, he sent his notes to Julia

Robinson, and she passed them on to Martin Davis. Later, at my request, Julia

sent a copy of these notes to me also. (The first page of them is reproduced in

[34], p. 70.)

1 The word means literally wafted; a better translation would be inspired or evoked. — Transl.
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McCarthy’s notes consisted of only a few basic equations and lemmas,

and I imagine that only such specialists as Julia Robinson and Martin Davis,

who had already spent a great deal of time intensively working in this area,

were able to reproduce the proof from these notes. Martin Davis did not

stop at that, and constructed a similar proof using the Pell equation instead

of Eq. (25). This construction was communicated by him on 10 March 1970 at

a seminar at Rockefeller University and published in [5]. Similar constructions

based on the Pell equation were also published by N. K. Kosovskii [16] and

G. V. Chudnovskii [2].

The example of a Diophantine relation with exponential growth, which I

constructed, became the last link in the proof of Martin Davis’ conjecture and

thereby completed the “negative” solution of Hilbert’s tenth problem — the

algorithm required by the problem does not exist. A complete proof can now be

found in many books, including my own [24]. The undecidability of Diophantine

equations turned out to be a convenient tool for proving the undecidability of

other decision problems. A revised bibliography (containing now over 300

references) of papers expounding the proof of the unsolvability of Hilbert’s

tenth problem or an application of that result can be found in [43].

One may pose the following question: Would Hilbert have recognized the

proof of the algorithmic unsolvability of Diophantine equations as a solution of

his tenth problem? I think he would. To justify this opinion, I quote from his

address [14], in which the problems were posed:

Mitunter kommt es vor, daß wir die Beant-

wortung unter ungenügenden Voraussetz-

ungen oder in unrichtigem Sinne erstreben

und infolgedessen nicht zum Ziele gelang-

en. Es entsteht dann die Aufgabe, die Un-

möglichkeit der Lösung des Problems unter

den gegebenen Voraussetzungen und in dem

verlangten Sinne nachzuweisen. Solche Un-

möglichkeitsbeweise wurden schon von den

Alten geführt, indem sie z. B. zeigten, daß
die Hypotenuse eines gleichschenkligen

rechtwinkligen Dreiecks zur Kathete in

einem irrationalen Verhältnisse steht. In

der neueren Mathematik spielt die Frage

nach der Unmöglichkeit gewisser Lösungen

eine hervorragende Rolle, und wir nehmen

so gewahr, daß alte schwierige Probleme

wie der Beweis des Parallelenaxioms,

At the same time it may be that we are

trying to get an answer under unsat-

isfactory assumptions or in the wrong

sense, and consequently have not

reached the goal. The task then arises

of proving the impossibility of the so-

lution of the problem under the given

assumptions and in the required sense.

Such impossibility proofs were given

even by the ancients when, for exam-

ple, they showed that the hypotenuse

of an isosceles right triangle is incom-

mensurable with its leg. In modern

mathematics the question of the im-

possibility of certain solutions plays

a prominent role, and we take it for

granted that such old difficult problems

as the proof of the parallel postulate,
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die Quadratur des Kreises oder die Auf-

lösung der Gleichungen 5. Grades durch

Wurzelziehen, wenn auch in anderem

als dem ursprünglich gemeinten Sinne,

dennoch eine völlig befriedigende und

strenge Lösung gefunden haben.

Diese merkwürdige Tatsache neben

anderen philosophischen Gründen ist es

wohl, welche in uns eine Überzeugung

entstehen läßt, die jeder Mathematiker

gewiß teilt, die aber bis jetzt wenigstens

niemand durch Beweise gestützt hat —

ich meine die Überzeugung, daß ein jedes

bestimmte mathematische Problem einer

strengen Erledigung notwendig fähig sein

müsse, sei es, daß es gelingt, die Beant-

wortung der gestellten Frage zu geben,

sei es, daß die Unmöglichkeit seiner Lös-

ung und damit die Notwendigkeit des

Mißlingens aller Versuche dargetan wird.

the quadrature of the circle, or the so-

lution of equations of degree 5 through

root extractions have been satisfacto-

rily and rigorously solved, although in

a sense that is not the one originally

intended.

It is probably this remarkable fact,

along with other philosophical grounds,

that produces in us a conviction that

every Mathematician certainly shares

but no one to date has confirmed with a

proof — I mean the conviction that ev-

ery clearly stated mathematical problem

must necessarily be capable of having a

rigorous solution, whether one manages

to find a solution to the question posed

or to establish that the solution is impos-

sible and thereby the inevitable failure

of all attempts to solve it. (Cited from

the English translation of [14].)

Having agreed that Hilbert would most likely be satisfied by the answer

obtained, one may also pose a different question: Would Hilbert have posed the

problem as he did if he had foreseen its “negative” solution? I think not.

As already mentioned at the beginning of this essay, less space was devoted

to the tenth problem than to any other. This problem is stated in a very rigid way,

while other Hilbert problems consist of a series of interrelated questions. We

have seen that the solvability of Diophantine equations in integers that Hilbert

was asking about is equivalent, as a decision problem, to the solvability of

Diophantine equations in natural numbers. However, Diophantus himself sought

solutions neither in integers nor in natural numbers, but in (positive) rational

numbers. Why then did Hilbert not pose solvability in rational numbers as a

separate question? The following explanation appears plausible.

One can show that the decision problem of solvability of polynomial equa-

tions in rational numbers is equivalent to the decision problem of solvability

of homogeneous Diophantine equations in integers. Consequently, by proposing

explicitly only to find “a process” for solving Diophantine equations in integers,

Hilbert was implicitly proposing to find “a process” for solving equations in

rational numbers as well.

Thus, the positive solution of the tenth problem that Hilbert expected would

have given us also a procedure for determining the existence or nonexistence of

solutions in rational numbers. What does the negative solution of this problem
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that we have obtained give us for the case of rational unknowns? Nothing.

Homogeneous Diophantine equations are a very special subclass of Diophantine

equations, and it is very possible that the “process,” that Hilbert was asking to

devise for all equations, does exist for this class.

By speaking of solutions in integers, Hilbert posed, among a number of

related problems, the one most difficult case for the positive solution which

he expected. If he had foreseen its negative solution, Hilbert would most likely

have stated the problem for solvability in rational numbers as a separate question.

Based on these considerations, we can now interpret the tenth problem in two

senses:

• in the narrow sense, that is, word for word as Hilbert stated it;

• in the broader sense, including here all the problems whose solution would

have followed easily from the positive solution of the tenth problem in the

narrow sense that Hilbert expected.

In the narrow sense, Hilbert’s tenth problem has been solved, but in the

broader sense it remains a rich field for research. In particular, the solvability

of polynomial equations in rational numbers can be regarded as Hilbert’s tenth

problem in the broader sense. Progress in this important area has not been great

so far.

Another example of Hilbert’s tenth problem in the broader sense is the

solution of polynomial equations in the Gaussian integers, that is, numbers of

the form a+ bi. It is easy to see that the equation

D(χ1, . . . ,χm) = 0 (33)

has a solution in Gaussian integers if and only if the equation

D(x1 + y1i, . . . ,xm + ymi) = 0 (34)

has a solution in integers. We can separate the real and imaginary parts:

D(x1 + y1i, . . . ,xm + ymi) = DR(x1, . . . ,xm,y1, . . . ,ym)+DI(x1, . . . ,xm,y1, . . . ,ym)i

and transform (34) into a standard Diophantine equation

D2
R(x1, . . . ,xm,y1, . . . ,ym)+ D2

I (x1, . . . ,xm,y1, . . . ,ym) = 0. (35)

Thus the decision problem of solving polynomial equations in Gaussian integers

can easily be reduced to solving Diophantine equations in integers, and therefore

can be regarded as a part of Hilbert’s tenth problem in the broader sense.
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The opposite reduction is less obvious. It was obtained by Jan Denef [11],

who thereby proved the undecidability of the analog of Hilbert’s tenth problem

for the Gaussian integers.

The Gaussian integers are the algebraic integers of the field Q(

√−1). It

is not difficult to see that, in analogy with the transition from (33) to (35),

solving equations in the ring of algebraic integers of any field which is a finite-

degree extension of the rational numbers can also be reduced to solving a certain

Diophantine equation in integers. The converse reductions are known at present

only for particular classes of fields (see, for example, the survey [28]), and for

the corresponding classes of rings of algebraic integers, the analogs of Hilbert’s

tenth problem are undecidable.

It is curious to reflect that if we do not restrict the degree of an extension, but

are interested in solutions in arbitrary algebraic integers, then, as shown in [38],

the corresponding decision problem turns out to be algorithmically solvable;

however, we cannot regard this problem as the tenth problem in the broader

sense, since there is no obvious reduction of solving an equation in arbitrary

algebraic integers to solving a Diophantine equation in rational integers.

In the “definition” of the broader interpretation of Hilbert’s tenth problem

just given, we spoke of problems whose solution would follow easily from a

positive solution of the tenth problem in the narrow sense. Thus, this interpre-

tation depends on what we consider “following easily.” In this situation it is

natural to compare the difficulty of the solution of the given problem on the

basis of a hypothetical positive solution of the tenth problem with its difficulty

in the absense of such a solution. It turns out that under this view many well-

known problems can be regarded as special cases of Hilbert’s tenth problem in

the broader sense.

The Fermat equation

xn
+ yn

= zn

does not fall formally under the individual subproblems of Hilbert’s tenth prob-

lem in the narrow sense, since n occurs in an exponent. Having now at our

disposal the Diophantine representation (15), we can restate “Fermat’s Last The-

orem” as the assertion that there are no solutions in natural numbers of the

Diophantine equation

A2
(x+ 1,n+ 3, p,u1, . . . ,um)+A2

(y+ 1,n+ 3,q,v1, . . . ,vm)

+ A2
(z,n+ 3, p+ q,w1, . . . ,wm) = 0, (36)

where A is the polynomial of (15). Thus a positive solution of the tenth problem

in the narrow sense would have enabled us, at least theoretically, to prove or
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refute “Fermat’s Last Theorem.” In other words, although Hilbert did not include

this “theorem” explicitly among his problems, it is present implicitly in the tenth

problem.

Although such a reduction of “Fermat’s Last Theorem” to the unsolvability

of the “genuine” Diophantine equation (36) was not known before 1970, it is

not very surprising, since the original statement of this theorem deals with an

exponentially Diophantine equation. As a less obvious example, let us consider

Goldbach’s Conjecture, which, as mentioned above, was included by Hilbert

in his eighth problem. It is easy to see that the set G of counterexamples to

this conjecture, that is, the set of even positive integers different from two that

are not representable as the sum of two prime numbers, is recursively enumer-

able and therefore Diophantine. Accordingly, we can construct a Diophantine

representation of it

a ∈ G ⇐⇒∃x1 . . .xm
{

G(a,x1, . . . ,xm) = 0
}
.

In this notation, Goldbach’s Conjecture asserts that the set G is empty, that is,

that the Diophantine equation

G(x0,x1, . . . ,xm) = 0

has no solutions in natural numbers x0,x1, . . . ,xm. Thus a positive solution

of the tenth problem would have enabled us to determine whether Goldbach’s

Conjecture is true.

The reduction of Goldbach’s Conjecture to the unsolvability of a particular

Diophantine equation, which was also unknown until 1970, is less obvious and

technically more complicated than the reduction of “Fermat’s Last Theorem,”

since we have to deal with prime numbers. The reduction of the Riemann

Hypothesis, which also formed part of the eighth problem, is even more com-

plicated. This conjecture tells about the location of the complex zeros of the

Riemann zeta-function, which is defined for ℜ(z) > 1 by the series

ζ (z) =

∞

∑
n=1

1
nz .

Using the fact that recursively enumerable sets are Diophantine, we can

construct a specific Diophantine equation

R(x1, . . . ,xm) = 0,

which has no solutions if and only if the Riemann Hypothesis is true. This

reduction can be based either on analytic function theory or on the known
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reformulation of the Riemann Hypothesis in terms of the distribution of prime

numbers among the natural numbers (for details see, for example, [8] or [24]).

Thus we see that another prominent mathematical problem can be restated as

an individual subproblem of Hilbert’s tenth problem in its original formulation.

The three famous problems considered above — “Fermat’s Last Theorem,”

Goldbach’s Conjecture, and the Riemann Hypothesis — involve numbers. The

technique of arithmetization, which was developed in mathematical logic and

goes back to the paper [12] of Kurt Gödel, makes it also possible to reduce to

Diophantine equations problems connected with more complex structures. As

yet another example, we consider the Four Color Conjecture, which has been

a theorem of Kenneth Appel and Wolfgang Haken [1] since 1976. This is a

theorem about the coloring of planar graphs, but without using it we can again

construct a specific Diophantine equation

C(x1, . . . ,xm) = 0,

which has no solutions if and only if the Four Color Conjecture is true. Thus

yet another problem not included in the list by Hilbert, is contained in disguised

form in Hilbert’s tenth problem.

One should not think that every problem can easily be reduced to Diophan-

tine equations. For example, this is not possible with the twin-primes conjecture,

which also forms a part of Hilbert’s eighth problem.

We have seen that four famous problems:

• “Fermat’s Last Theorem,”

• Goldbach’s Conjecture,

• the Riemann Hypothesis,

• the Four Color Problem,

can be restated as Diophantine equations. What good could these reductions do?

It does not make sense to hope to prove Goldbach’s Conjecture or the Rie-

mann Hypothesis or to give new proofs of “Fermat’s Last Theorem” or the Four

Color Theorem by studying the corresponding very complicated Diophantine

equations. Rather, these reductions may serve as a “psychological explanation”

of the unsolvability of Hilbert’s tenth problem. It would be extremely amazing if

a uniform “process” could be found that made it possible to obtain the solution

of so large a number of problems of this difficulty coming from different areas

of mathematics.
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On the other hand, two of the four problems just discussed are still open,

while the other two have been solved. This means that we can regard the meth-

ods developed to solve them as methods for analyzing particular complicated

Diophantine equations and try to generalize these methods to other equations.

The algorithmic unsolvability of Hilbert’s tenth problem tells us that solving

Diophantine equations is going to require more and more new methods.

Martin Davis’ conjecture is nowadays often called the DPRM theorem, from

the last names of the four researchers who made their contributions to its proof.

However, the four of them never met together. Julia Robinson’s work on the

tenth problem is described in her “Autobiography” [33], written by her sister

Constance Reid. Martin Davis has shared his reminiscences of his joint work

with Hilary Putnam and Julia Robinson in [6] and [7]. I have told of my

collaboration with Julia Robinson in the article [23]. I would like to take

this opportunity to speak briefly about my meetings with Martin Davis, Hilary

Putnam, and Julia Robinson.

I first met Martin in 1970 during the regular International Congress of Math-

ematicians taking place that year in Nice. On the first day of the Congress he

walked up to me and said simply, “I am Martin Davis.” This was a pleasant sur-

prise for me, since Martin was not among the registered participants. In contrast,

my first meeting with Julia Robinson during the Fourth International Congress

on Logic, Methodology, and Philosophy of Science in Bucharest in 1971 was

planned in advance, and Julia and her husband Raphael Robinson then came to

my native Leningrad for several days.

In the list of participants of the Bucharest Congress I caught sight of the

name of Hilary Putnam and asked Julia if she could introduce us. “I can if I

recognize him,” was her answer. Several days later she pointed him out: “Over

there, in the red shirt, is Hilary Putnam.” By that time I already knew that he

was a proponent of Maoist ideas and it was “recommended” to me to have no

contacts with him. Our brief encounter took place many years later, when I first

came to the USA in 1989.

My collaboration with Julia had begun even before we met. The proof of

Martin Davis’ conjecture was constructive and made it possible, for example,

to write out explicitly a polynomial representing prime numbers and only them

(see, for example, [15] and [22]). Julia and Raphael Robinson were interested

in another corollary (the one that the reviewer for Mathematical Reviews found

improbable): the possibility of fixing M — the number of unknowns in the

Diophantine representation (11) of a universal set and thereby also in the Dio-

phantine representation of an arbitrary Diophantine set (12). (It can be shown

that the value of M is independent of n.)
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In my talk at Nice I reported that this M can be taken equal to 200. That es-

timate was very rough. Julia wrote to me that she and Raphael had obtained the

value M = 35. This became the point of departure for our collaboration, which

led to the value M = 13, published in a joint article [26] in Acta Arithmetica.

The choice of the place of publication was not accidental: that volume of

the Acta was dedicated to the memory of the prominent Soviet mathematician

Yurii Vladimirovich Linnik, whom Julia and I had known personally. I was

presented to him shortly after I had proved the unsolvability of Hilbert’s tenth

problem. Someone had told Linnik this news, starting with one of its corollaries:

“Matiyasevich can construct a polynomial with integer coefficients such that the

set of positive values of the polynomial on the positive natural numbers is

precisely the set of prime numbers.” “That is wonderful,” said Linnik. “It

appears that we shall soon know many new things about the prime numbers.”

It was then explained to him that the main result was much more general: such

a polynomial can be constructed for every recursively enumerable set. “That’s

too bad,” said Linnik. “Now it seems that we won’t learn anything new about

the prime numbers from this.”

Before our joint publication in the Acta Arithmetica, we had published a

brief note [25], containing some auxiliary applications of the technique we

had developed for reducing the number of unknowns in Diophantine equations.

The choice of the place to publish that note was also not random. In 1973

A. A. Markov reached his 70th birthday. His colleagues at the Computing Center

of the USSR Academy of Sciences decided to publish a collection of articles in

his honor. I was invited to participate in this collection and proposed that an

article should be written with Julia Robinson. She was enthusiastic about having

her first publication in Russian, but she asked that her name be printed in full.

She had weighty reasons for wanting this. I was the translator of one

of the fundamental papers [35] on automatic theorem proving that had been

written by John A. Robinson. My translation appeared in 1970 in a collection of

translations of major papers on this topic, in which the readers saw the following

names: Дж. Робинсон, author of the article translated by Ю. В. Матиясевич;

М. Девис, author of another fundamental paper on automatic theorem proving.

In the minds of many these three names were associated with the recently

solved tenth problem of Hilbert, and some of them thought that the author of

the resolution principle — the primary tool in [35] — was Julia Robinson. To

add to the confusion, in his article John Robinson thanked George Robinson,

whose name, like those of Julia and John Robinson, was abbreviated in Russian

as Дж. Робинсон.

For a long time I thought that only Soviet readers of this collection of

translations fell into this error. To my amazement, the person who translated the
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monograph [27] from Russian into English made the same mistake, ascribing

the authorship of the resolution principle to Julia Robinson.

When I was a student, I made an “error of the second kind”: I did not

identify J. Robinson, the author of a theorem in game theory, which we were

being taught in the university, with J. Robinson who studied Hilbert’s tenth

problem.

My collaboration with Julia Robinson was conducted almost entirely by

correspondence. It was the time when e-mail did not exist, and a letter took

about three weeks to cross the ocean. One of my letters went astray, and I had

to rewrite 11 pages — there were copying machines, but none accessible to me.

To send every letter to the USA I had to obtain the permission, just as for a

publication abroad. Nearly all of Julia’s letters to me and my letters to her have

been preserved and were given after her death to the University Archives at the

Bancroft Library, University of California at Berkeley.

In 1974, the American Mathematical Society organized a symposium on the

Hilbert problems. I was invited to give an address on the tenth problem, but the

Standing: Patrick Browne; Seated, left to right: Richard Guy, Martin Davis,

Julia Robinson, Yuri V. Matiyasevich and Louise Guy (Calgary, 1982)
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participation of Soviet mathematicians in the meeting did not receive approval

in my country. The speaker on the tenth problem was Julia Robinson, but she

proposed that the publication [8] in the Proceedings of the conference be a joint

publication with Martin Davis and me. We first discussed by telephone what

each of us would write. The final paper — the union of our three parts into a

coherent exposition — was done by Martin. I think this paper turned out as Julia

had long expected: an exposition of numerous results obtained by logicians in

connection with Hilbert’s tenth problem, not overburdened with technical details.

My second meeting with Julia took place in 1975 in Canada during the reg-

ular International Congress on Logic, Methodology, and Philosophy of Science.

The above photograph was made in Calgary in late 1982, when I spent three

months in Canada on an exchange program between the Steklov Mathematical

Institute and Queen’s University in Kingston, Ontario. At the time, Julia was

the President of the American Mathematical Society. This work took a lot of

her time, and she withdrew from research. She had traveled to Calgary on the

way to a meeting of the American Mathematical Society in order to meet me

again. Martin also came to Calgary for several days to meet me and Julia.

Julia and Martin had always expressed a willingness to host me in the USA.

When perestroika came to the USSR, such a trip became possible, and in 1989

Yuri V. Matiyasevich and Martin Davis (Saint Petersburg, 1999)
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I visited the Courant Institute at Martin’s invitation. I reiterated the desire I had

expressed at our very first meeting in Nice to see him in my native Leningrad. In

the long run, Martin came in 1999 (but it was now Saint Petersburg) before our

journey to the first international conference devoted to Hilbert’s tenth problem,

which was taking place in Belgium.
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V. D. Milman

Observations on the Movement of People

and Ideas in Twentieth-Century Mathematics

Translated by R. Cooke

The title of this article reflects my interpretation of the purpose of this collection.

As I understand it, the articles are to be partly historical and partly mathematical.

As a result, this article consists of three parts.

The first part contains the words mathematics and mathematicians, but not

mathematics itself; it describes the relocation of Russian (Soviet) mathematics

to the West, more precisely, to Israel. I use the word relocation rather than

emigration because of the size and scope of the process. As it happened, I

found myself at the center of that event.

The second part is a short historical remark on the ancestry of Banach and

the origin of the term Banach spaces, so that this part is closer to mathematics.

In the third part I present a little mathematics, including some of my re-

cent observations on functional analysis, a field that played a large role in the

mathematics of the mid-twentieth century and then blossomed into a large num-

ber of new areas. Here I shall sketch a picture of an area that is just now

in the process of separating from functional analysis. Provisionally, we call

it asymptotic geometric analysis, although I am not sure that this name will

stick.
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1. From Russian to Israeli Mathematics

The emigration of mathematicians from the Soviet Union to Israel began in

the early 1970s, and as a result the so-called “Russian” mathematics began to

relocate to the West. This emigration of mathematicians had a significant effect

on both the West and Russia as early as the 1970s, and it became an avalanche

in the 1990s. Every mathematical center in the West was touched and enriched

by this movement. But only a few people understood that, while beneficial for

these individual centers, it bore elements of tragedy for mathematics as a whole.

At one stage, the Russian mathematical school looked as if it might disap-

pear altogether, but today it can be said that the reality turned out to be less

dramatic. Despite a hundredfold difference in salary, many first-class mathe-

maticians remained in Russia. It is particularly gratifying to observe a very

young generation of outstanding students graduating from Russian universities

(as well as Ukrainian and other universities). The best universities of the West

(and Israel) are striving to get them as graduate students.

The concept of the “Russian mathematical school” is distinct from the con-

cept of “the Luzin school,” “the Kolmogorov school,” or “the Gel’fand school,”

although it includes these schools and many others. This concept, which is ex-

tremely difficult to explain to a Westerner, encompasses traditions that prescribe

ways of studying mathematics and a code of behavior for mathematicians. It is

more an intellectual necessity (and a game) than it is work. Scholars raised in the

traditions of the Russian mathematical school do not study mathematics for the

sake of a salary. That is why the “chats” in the corridors of mathematics depart-

ments go on for hours at a time; and that is the most effective forum for studying

and exchanging the latest mathematical news. That is why seminars have a be-

ginning but no definite end, and a seminar lasting less than two hours is incon-

ceivable. A “Russian” mathematician wants to know everything. In the Russian

school the need to know is a drug; it replaces vodka (and goes with vodka).

But, to return to the West, where Russian scholars streamed: there have been,

and there are, Western mathematicians who understood the tragedy of the decline

of the Russian school and what it meant for the development of worldwide

mathematics and made titanic efforts in an attempt to halt the process — to help

their colleagues in Russia.

I shall give just one example — Pierre Deligne. In his letter to the presi-

dent of the American Mathematical Society, a copy of which he sent to me, he

called attention to the decline of high schools with a mathematical bent (meaning

schools that nurture children in intellectual, scientific, and especially mathemat-

ical traditions). He regarded the decline of such schools, and the movement en

masse of their teachers to the West, as a tragedy for the future of mathematics.
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I wrote back to him that in Israel we were making an effort to support

specialists in mathematics education and to found, if not schools, at least classes

for specialized education, in order to transfer the Russian mathematical school

to Israel and preseve that tradition. I think some enthusiasts succeeded in getting

such classes going and even possibly whole schools. Time will tell . . .

But my short narrative is about the relocation of large numbers of mature

mathematicians to Israel. I happened to be at the center of all the events con-

nected with their reception and absorption, from the very time I arrived in Israel

in July of 1973 up to the late 1990s. I shall describe some events connected

with this relocation of science, tell some interesting and even “unbelievable”

stories, present some impressive numbers about the migration, and explain how

we succeeded in finding places for so many researchers and how the face of

mathematics in Israel changed after their arrival.

The emigration of the mid-1970s had already brought mathematicians of the

highest caliber and of all ages to Israel: Mikhail Lifshits and David Milman,

Israel Gohberg and Il’ya Pyatetskii-Shapiro, Shoshana Kamin, Boris Moishezon,

Yurii Gurevich and I (I include myself in this group). It also brought some very

young ones: Yosef Yomdin, Il’ya Rips, Yurii Kifer, Grigorii Sivashinskii, and

others. The overwhelming majority of these were hired by Tel Aviv University,

which was quite young at the time, but also the Hebrew University of Jerusalem

and the University of Beersheva. Later on, the Technion and Haifa University,

which had just been founded at that time, also began to notice the Russian

emigrés. Still later, in the early 1980s, they were joined by the Weizmann

Institute in Rehovot and Bar-Ilan University. By that time the interest of the

Hebrew University of Jerusalem in the Russian mathematical emigration had

grown noticeably cold. At the same time, the Weizmann Institute had been

strongly interested; Bar-Ilan and the University of Beersheva and to some extent

the Technion were developing on the basis of the Soviet mathematicians arriving

in Israel. But that was in the 1990s.

Fortunately for the scholars arriving from Russia in the 1970s, Professor

Yuval Ne’eman, who was the president of Tel Aviv University at the time,

understood what a unique opportunity the Soviet emigration was opening for

scientific development in Israel. Books have been written about Ne’eman, who

was both a general and a famous theoretical physicist; what is important for

our story is that in those days he was a councillor and the main strategist of

the scientific development of the country for the political elite of Israel. After

becoming the president of a peripheral university in Tel Aviv, which had just

separated from the Hebrew University of Jerusalem and had been promoted

from the status of a dependent college to that of a new university, Ne’eman

succeeded over a period of several years in turning it into the largest institute



218 V. D. Milman

in the country. To this day, the establishment at the Hebrew University of

Jerusalem has not forgiven him for that. For example, I heard the following

amusing statement, made by a prominent Israeli mathematician: “Well, of course

he [Yuval] borrowed hundreds of millions of lire [about 20 million dollars] from

the banks to develop the university, and then the government had to cover the

debts!” Not a word, not a hint of gratitude for creating a powerful new scientific

base in Israel!

Thus, Ne’eman had a fine understanding of the importance of the Russian

emigration for the development of science and the opening of new scientific

research areas in Israel. Science in Israel, and mathematics in particular, had

been confined to a few areas. (As an example, logic was begun by Fraenkel in

the 1930s.) With the arrival of Furstenberg and Weiss from the USA ergodic

theory began to develop in Jerusalem. But until the arrival of Pyatetskii-Shapiro,

Israel had no specialists in representation theory; until Moishezon came, there

was no one in algebraic geometry. These are now highly developed fields

in Israel.

With the wave of emigrés of the 1990s the number of research areas rep-

resented by Israeli mathematicians became so extensive that diversity of areas

is no longer an issue. Freud used to say that when your head doesn’t ache,

you don’t think about it. It suffices to say that at the International Congress of

Mathematicians in Berlin in 1998 the Israeli invited speakers were represented

in eight sections, that is, nearly half of all sections! Moreover, six of the nine

invited speakers were Russian emigrés.

I arrived in Tel Aviv with my family on 25 July 1973. By the 28th of July

the president of the university had already scheduled an appointment with me.

Naturally, I remember this meeting. The sense of a substantive conversation has

been preserved in my memory, even though I did not know a single word of

Hebrew and hardly knew a word of English. On the other side only Ne’eman’s

secretary understood a few Russian words, but very badly. But somehow I

understood a great deal, and he understood a great deal, including the steps nec-

essary to increase the emigration of Jews from Russia — Yuval understood what

was happening in Russia as if he had lived there. And mainly, he understood

what needed to be done for me personally. I was invited then to work as a

professor at the University starting from the first of August.

Much of what I succeeded in doing subsequently for the reception and

settling of mathematical imigration in Israel was due to the support of Yuval

Ne’eman. And it was all set up during that meeting on the third day after I

arrived in the country.

We later became very close, and I think I remained his main advisor on

all questions involving the resettlement of mathematical emigrés. This became
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especially important during the 1990s, which were years when a huge human

wave was breaking on Israel (some 200,000 emigrés in 1990, and almost as

many in 1991, while the Jewish population of Israel at the end of the 1980s had

been less than 4 million). By 1993 the number of emigrés with an advanced

degree in mathematics exceeded one thousand! All these people had to be

settled (more precisely, fitted in) according to specialty and knowledge so as to

use their scientific potential.

I can hardly convey the intenseness of those days and explain how it was

done. The plain fact is that there are now essentially no unsettled mathematicians

in Israel. (Unfortunately, there are unsettled physicists.)

Yuval Ne’eman was the minister of science in those critical years, and later

minister of energy. I had his permission to phone him at any time and to

meet him in any emergency; this enabled me to deal with the problem of the

hundreds of arriving scientists. However, while in the 1970s and again in the

1980s (which were virtually devoid of emigrés) Professor Ne’eman was almost

the only representative of the establishment who understood the importance of

the scientific emigration, by the beginning of the 1990s we were “standing” on

several “pillars.”

By the early 1990s a mathematician had entered the Israeli establishment,

Professor Dan Amir, who became the assistant rector and then the rector of Tel

Aviv University. We became friends during my first months in Israel. He worked

in the same areas that I worked in, and we wrote some joint papers. Over the

entire 27 years that I have lived in Israel, the mildness of his personality has

not opposed, but rather complemented, a certain harshness of my own. We have

been, and remain, a good team. His photographic memory retained the names

and details of thousands of arriving scholars. With his help, hundreds of them

found at least a temporary respite at Tel Aviv University. Moreover, he was very

close (a friend from school years) to the then head of the Council on Higher

Education, who is also a mathematician, Professor Ammon Pazy. Together they

constitute the second “pillar.” I must emphasize that the role of Dan Amir has

been much more important than his mere connection with the Council: he had

many other contacts in various spheres that were needed for success.

Finally, the president of the Israeli Academy of Sciences in those days, Pro-

fessor Yehoshuah Jortner (an outstanding chemist who, in particular, received the

Wolf Prize in chemistry), was interested in increasing the “weight” of Israeli sci-

ence by using the Soviet emigration. He managed to bring significant resources

to absorb the scientific elite among the emigrés. For example, the Barecha

project was his program, aimed at the highest level. Through this program each

participant received 80,000 dollars of support to purchase accomodation and

40,000 dollars for scholarly activity and setting up a laboratory.
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The program arose, like many others, as a necessity to settle particular

people. Namely, Grigorii Margulis, Vladimir Drinfeld, and Gennadii Henkin

asked me to send them a written invitation. Something had to be done for them,

and Jortner did it. And all three eventually went elsewhere. Unfortunately we,

in Israel, were often — too often — merely a backstop. However, the program

worked and 16 scholars were settled in Israel, perhaps not all of the level that

we aimed at.

Let me give another example of Jortner’s activity. On behalf of the Israel

Academy of Sciences he sent me to Moscow and Leningrad in September of

1990. In order to do so I had to cut short my participation in the Mathematical

Congress in Kyoto. My wife and I then returned to Israel for only 12 hours and

immediately flew to Vienna, where our visas to Russia did not arrive until late

at night. By early morning we were flying to Moscow, together with the family

of Professor Shalom Abarbanel,an applied mathematician and (in the 1970s) the

rector of our university. (One of the many piquant details of this trip: Shalom

Abarbaneland his wife had dual citizenship and were traveling with us on Amer-

ican passports with a single purpose — to make sure that nothing unforeseen

happened to my wife and myself in Russia. We weren’t entirely joking when

we called them our bodyguards.) The purpose of our trip was to estimate the

size of the expected scientific emigration and its “swath” in levels and areas of

research, so that the country could prepare itself to receive the scholars.

Thus, by the early 1990s the leaders of Israeli science were prepared to give

active support to the stream of emigrés from Russia. Yuval Ne’eman was the

minister of science; Dan Amir was the assistant rector and later the rector, who

also represented the Council on Higher Education. Yehoshuah Jortner was the

president of the Academy of Sciences. All three were professors at Tel Aviv

University in the Faculty of Exact Sciences (physics, mathematics, chemistry).

All of them regarded me as their advisor on questions of scientific emigration

to Israel. (Perhaps I was the only one with this status.) Of course, many other

influential people in the scientific and political establishments of Israel were

willing to render some help on occasion. And many scholars from the stream

of the 1970s donated their time to help the newly arriving people in the years

from 1990 to 1994.

With such a distribution of forces, the financing of the short-term settlement

of the scholars was the least of the problems: the necessary funds were obtained

from the government (for example, Yuval Ne’eman created several hundred

grants through the budget of his ministry) and by means of large donations (not

very fast, and not without the heavy work of many people, but that is another

story). However, the main problem — long-term settlement — remained. And it

was, unfortunately, not the only problem.
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In the university system the appointment of a scholar begins with the cor-

responding department announcing its desire to make the appointment. The

question of financing is dealt with later. I shall give just one example from the

past to show how nontrivial this problem is.

Issai Schur and Otto Toeplitz fled from Germany to Israel in 1939. They

were not yet 70 years old, but they could not find work either at the Hebrew

University of Jerusalem, which was the only one at the time, or anywhere else.

(It is true that Israel did not have Tel Aviv University at the time.) They both

died about a year and a half after they arrived, both from heart attacks, as I

recall. I leave it to the reader to decide: Were there mathematicians in Israel of

the stature of Schur?

As early as the late 1970s the mathematics department at Tel Aviv University

was eager to appoint Russian mathematical emigrés, perhaps because it had been

established on that basis. Between 1973 and 1978 alone, the following people

were hired there (in chronological order): Boris Moishezon, Vitali and David

Milman, Israel Gohberg, Boris Korenblyum, Il’ya Pyatetskii-Shapiro. The active

search for appointments in the department had begun back in Russia.

Here is an interesting example. In 1981 the president of Tel Aviv Univer-

sity, Professor of Economics Ben-Shahar, negotiated with the multimillionaire

Armand Hammer. (Background information: the duties of the president are

different from those of the rector. The president is elected by the Board of

Trustees and deals with the problems of financing the university, while the rec-

tor is elected by the Senate, that is, all the full professors of the University, and

is responsible for the scholarly and pedagogical activity.) This was the same

Hammer who in his youth had dealt with Lenin and then supported business

contacts with all the governments of the Soviet Union. Hammer did not seem

willing to make a donation to the University, but he was willing to do some-

thing. Then the idea arose that he might “ransom” some refusee scholars for us.

And Hammer agreed.

As always, I had to prepare a list and documentation. Naturally, repre-

sentatives of all university professions would have to be considered; but, also

naturally, the majority were mathematicians. (And not only because I was the

one who made up the list, but also because our department was prepared to hire

them; although I had been unable to discuss the question at departmental meet-

ings, no doubt of their willingness arose.) I recall three names of those who were

chosen after discussion: Yakov Eliashberg, Abram Kagan, and Mark Freidlin.

I leave aside the piquant details of the negotiations. For example, we were

supposed to be sure that they would all come to Israel, if Hammer “ransomed”

them. At the time that was not clear in regard to Eliashberg. (I got Gromov

involved in this matter, and he made a telephone call to Yasha to get his OK.)
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Hammer seems to have agreed with Brezhnev on the deal, since he got ready

to fly to Moscow — on his own plane, naturally — and bring them all to us.

However . . . Brezhnev died, and the deal fell through. Hammer wrote to us that

he needed some time to get in contact with the succeeding Soviet leaders, but,

as we know, they changed too frequently at that period.

As I mentioned above, in the 1990s there was no lack of desire to hire math-

ematicians arriving from Moscow at the universities of Bar-Ilan and Beersheva,

at the Technion, at Tel Aviv, and later at the Weizmann Institute (Rehovot). But

large sums of money were needed. These were sought through various channels.

For example, the RAShI Foundation established the Guastella program, for

about 25 positions per year all over Israel for scholars at most 48 years old who

had reached at most the rank of haver professor — approximately that of an

opper echelon of associate professor in American terms. Later we abolished this

restriction. Then we raised the age of eligibility for participants till 58, first only

for a year and then for another year. As always, this was done for a particular

person, Genrikh Belitskii in this case. But many others were then appointed

by means of this loophole. When the stream of emigrés abated, the Foundation

reduced its participation to 3–5 positions per year and only continued it at all

thanks to the personal influence of Dan Amir. Foundations are interested in only

grandiose projects. And they are right: the universities should solve problems

of a small number of people. But how can they be solved when all the funds are

exhausted? Hence comes the paradoxical but understandable principle that it is

easier to find work for many people arriving with a large stream of emigration,

than for those who arrive with a small trickle.

And here is an example of a failure that is also instructive. In the attempt to

procure funds for support of scholars of both pre-retirement and retirement age,

I wrote a letter to the superbillionaire Leslie Wexner. By chance, while I was at

a meeting in Columbus, Ohio, where he was speaking about Jewish emigration,

I sensed a “kindred spirit” in his arguments and the form in which he presented

them. Of course, the university bureaucracy participated in every step. The rec-

tor at the time, Professor of History Itamar Rabinovich (later Israel’s ambassador

to the United States), found a way to get my letter onto Wexner’s desk.

It was a modest request, about two million dollars. Then came January

1991, and the war broke out in the Persian Gulf. In an interval between SCUD

attacks, when it seemed that Saddam Hussein had run out of them and that there

would be no more attacks, I flew to Columbus to meet with Wexner.

To the surprise of all, he gave me a 45-minute appointment. That is a lot of

time for such a man. It was explained to me that if the interview ended ahead

of time, that meant everything had fallen through, but if it went overtime, that

meant he liked me and everything would be all right.
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When the time of the appointment was set, I was already in Columbus, and

there was no one to instruct me on the details of how to behave. I found a

videotape of his speech in order to shorten the time required to get acquainted

at the interview. After all, you have only a few minutes to get to know the man

and get into the rhythm of the conversation.

It was explained to me that he gets involved only in large projects and is not

interested in minor ones. So I changed plans on the fly — I prepared a proposal

to establish an Institute for Advanced Studies with an investment of 25 million

dollars. Was that a mistake? I really don’t know. But I didn’t have papers with

details yet. (He was to ask me for them at the end of the conversation.)

It was the time for the appointment. I arrived at the headquarters of his

company too early — a mistake, but I was afraid I’d have trouble finding it and

be late. It was a vast territory with many buildings inside and security at the

entrance. I was told that it was too early, but that I could go to the administration

building. I then waited in the vestibule of the building for another ten minutes,

getting nervous. I had arrived early on purpose, thinking that I would wait in

his reception room and would be able to talk with his secretary so as to get a

feeling for the atmosphere. At last I was invited to go up to the first floor. He

was waiting for me on the stairs. It was a good thing that I knew him by sight

from the videotape. Wexner ushered me into his office, through a room where

two secretaries were sitting.

Here I must digress. Everything that we know about such people has been

picked up from serials like Dallas. I had figured that I would be sitting in a

huge reception room (it turned out to be a small, ordinary office with cabinets

full of files, divided in two for the two secretaries), that I would walk about in

a large office, trying to appear nonchalant while they looked me over.

At that point I entered . . . the office of my dreams. It was a room of average

size (who needs anything bigger?), there was a continuous table along the walls

with a computer, a telephone, a chair, and a small sheaf of papers every couple

of meters. (I had always dreamed of having a separate desk for each problem

and project I am working on.) In the center of the room was an oval table (for

meetings?) — not small, but not for showing off. The chairs were comfortable

but not luxurious. They were for sitting on, not to impress people.

We sat side by side and I had the feeling that I knew and understood this

man: he is something of another “I,” who had studied business rather than math-

ematics, not a nouveau riche from Dallas (or one of those millionerchiks
1 — as

I call them since meeting Wexner — with whom I have to deal in my university).

The conversation flowed easily and simply, but it lasted an hour! Fifteen minutes

1 This is the word millioner with Russian diminutival chik. — Eds.
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longer than planned. In parting he said, “I know everything about you, but you

don’t know anything about me.” Turning to his secretary, he said, “Bring the

materials on me.” And he gave them to me.

However, just as we don’t understand people from the world of big busi-

ness, they don’t understand us either. At the end of the conversation Wexner

telephoned some physicist in New York — his assistant, as he explained it (sci-

ence advisor, I thought). “He understands your language (meaning science) and

you can discuss the details.”

A day later I was to be in New York and fly out at night from there to Israel.

More SCUDs had fallen, and I did not want to leave my family alone. To find

out who I would be discussing the details with, I telephoned Dima Kazhdan

at Harvard. He made an exhaustive search, but couldn’t find such a physicist.

Only through my own university did I learn that the person in question had

only a bachelor’s degree in physics from Stanford University. Actually, he had

completed only three years of study — an incomplete higher education, as we

would say in Russia — and then gone into business. He had many hundreds of

millions of dollars and worked for Wexner.

Just as we cannot tell the difference between people who have tens of

millions of dollars (“incomplete higher education”) from those who have several

billion, they cannot tell the difference between a professor and a person who

does not even have a master’s degree!

I think I didn’t understand this “assistant.” Everything was just like in

Dallas: A long black limousine that picked me up and took me to Madison

Avenue, a secretary who met the limousine and accompanied me to a large

headquarters — a floor with a separate elevator, with Renoirs on the walls

(which, however, turned out to be copies), and so forth.

After my meeting with Wexner I conducted myself with confidence and

made myself right at home, whereas, it appears, I should have presented myself

as weak and humble. Still, they spent some seven hours on me and asked me to

send a detailed proposal (to which I never received either a “yes” or a “no”).

This was the first very serious project that I participated in — there had

been smaller successful ones earlier — and it was no wonder that it fell through,

although it came very near to success. Raising donations is also a science, and

one must be an expert to succeed in it. I later learned many important things

needed for success in such matters, but even that might not have been enough

for such a grandiose project as I was pursuing at that time.

As things turned out, we solved the problem of settling the older generation

of arriving scholars with our own resources. The Council on Higher Education

established a special program for famous scholars aged 59 and above, which
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dealt with the most acute problem, the issue of pensions. Once again, a program

was established for the sake of a particular person (Yurii Lubich), but during

two or three years we got 22 such positions and six more have been added

recently (again because of the need to hire another mathematician, this time

Viktor Palamodov).

Through this program, in addition to the mathematicians, some very well

known physicists were accepted, such as Isaak Khalatnikov, the former director

of the Landau Institute of Theoretical Physics and Yuzik Levinson, who was

awarded the State prize. Other beneficiaries include the very well known bio-

chemist and corresponding member of the USSR Academy of Sciences, Lev

Bergel’son; the neurophysiologist Professor Mark Shik; and the specialist in art

history Mikhail Libman.

Looking through these notes, I saw that I have devoted the largest amount

of space to describing our failures (with Hammer and Wexner). Actually, these

were the only failures that I can think of, not counting the fact that Margulis and

Drinfeld did not come to Israel. (But I don’t think there was anything we could

have done to change that.) For that reason, I shall now balance my narration by

telling two successful stories.

It was May 1991. The University decided to give me a special award during

the week of meetings of the Board of Trustees for my efforts to absorb scholars.

The award was only a pretext. The real purpose was to take advantage of the

ceremony as a suitable occasion to make a speech with a call for support.

I spoke for about ten minutes in very solemn surroundings. On the presidium

were the heads of the societies of Friends of Tel Aviv University from many

different countries. My wife later told me, “They had tears in their eyes when

you were speaking; then they took out their calculators and did some computa-

tions.” But my own voice was also breaking. The president of the University

(Professor of Medicine, Moshe Mani) came up to me during the reception and

said in my ear: “We’ve already gotten a million dollars!” I was told that later

the videotape of that affair went the rounds of various Jewish organizations and

invariably brought in donations for the absorption of scientists.

Here is another prosaic story that enabled us to settle some 50 mathemati-

cians for several years. In 1992 there was a change of administration in Israel.

Rabin and his party, the Avoda, replaced Shamir and the Likud. Such situations

are usually accompanied by large budgetary changes — a rearrangement of pri-

orities takes place. The new authorities may slow or even halt expenditures;

but in fact they did not even get time to plan what to spend the money on. As

a result, on a certain day in late December a report of unexpended budgetary

allocations lay on the desk of the minister of finance. The minister was free to
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dispose of these any way he chose. But the new minister still didn’t know what

he wanted, and for that he may be assisted.

In early December representatives of the majority of mathematics depart-

ments, charged with settling the new emigrés, assembled in my office in Tel

Aviv. (There was no one from Jerusalem; no one there was responsible for

the almost nonexistent emigrés.) We calculated that some 35 to 40 mathemati-

cians had been appointed to universities throughout Israel for either tenured or

tenure-track positions. Another 100 to 110 were connected to the universities

or newly founded institutes of mathematics, such as the Institute of Industrial

Mathematics in Beersheva, which continues to develop even now; the Institute

of Mathematics in Afula, which was a branch of Haifa University, but no longer

exists; and the mathematical centers in the colleges, in particular in Ariel under

the auspices of Bar-Ilan University. However, the financial support of about 50

positions was coming to an end, and the situation of the scholars was tragic.

They were being supported by a special program, the so-called maagarot

(reservoirs). We had established it back at the beginning of 1990 when Yuval

Ne’eman was the minister of science, but with financial support from other

ministries as well. A budgetary request for a “reservoir” was supposed to come

from a department interested in it, and be awarded to this department. The

request was supposed to describe the number of people, but not mention them

by name, so that people could be put into the “reservoir” immediately, without

unnecessary bureaucracy; and we could even negotiate with them in advance,

while they were still in Russia. The reader will perhaps no longer be surprised

when I say that nearly all of the maagarot were used for mathematicians. The

“reservoirs” could theoretically have been 5 to 10 times more, so that we were

not taking them away from other areas.

The condition of the newly arrived physicists was much worse: the physics

department at our university showed no initiative or active interest. Many of

newly arriving physicists worked in areas close to mathematical physics. For

that reason the mathematics department was able to take them under its wing.

A “reservoir” was not particularly needed by the mathematics department for

hiring mathematicians — we knew how to do it without “temporary” solutions.

But once, just a week before I left for the USA, I decided that we had to take

the initiative and establish a “reservoir” to help physicists. Usually a request for

a maagara was considered for several months and signed by the minister, the

general director of the ministry, and so on. I realized that my request would get

through faster, but I had no idea that we would get official confirmation of our

maagara even before my departure. In the rush of paperwork, no indication had

been made of the number of people in the “reservoir,” that is, we had received

carte blanche. However, we used it very sparingly.



Observations on the Movement of People and Ideas 227

But let us return to the meeting in my office. There was a problem with the

budget for 1993: There were no funds for the maagarot, and the new ministers

didn’t know what they were. A catastrophe was looming.

Therefore at our meeting we drafted a “politically astute” letter to the min-

ister of finance, signed formally in our name by the head of the Israeli Mathe-

matical Union, the representative from Beersheva University, Professor Miriam

Cohen. It was also vital to get the letter onto the desk of the minister on just

the right day. (In political circles, that is called “influence”.) This was done,

and our maagarot–reservoirs were extended with full financing.

I have described only a few of the numerous programs and methods estab-

lished since the early 1990s for the reception and “fitting-in” of Soviet/Russian

scientists in Israel. In addition to the “reservoirs” there were also “hothouses” —

called hamamot — for applied areas (and again applied mathematicians passed

through them in large numbers). In addition to the elite Guastella and Barecha

programs, programs for aged scholars, there were and are the so-called Shapiro

fellowship, the Giladi and Kamea programs, which alternate with one another.

A “fellowship” is intended for the first appointment of all scholars in general;

a selection of the better researchers among them is made for the Giladi, and an

even higher level for the Kamea, participation in which essentially amounts to a

tenured position in the universities, colleges and scientific centers. To date some

500 positions (!) have been planned and almost 300 already assigned. And in

each of these programs a large portion of the positions have been occupied by

mathematicians.

Today about 20 to 25 percent of the professors of mathematics in Israel

came from Soviet schools. Some 40 percent of the invited talks by Israelis at

International Congresses of Mathematicians were presented by Russian emigrés.

All three of the Israelis who were awarded the European Prize for Young Mathe-

maticians (Leonid Polterovich at the Budapest Congress in 1996, Semen Alesker

and Denis Gaitsgori at the Barcelona Congress in 2000) were Russian emigrés.

On the other hand, they all received the Ph. D. at Tel Aviv University, even

though Polterovich arrived in Israel as a mature mathematician.

As a result of this explosion of talent, the worldwide status of Israeli mathe-

matics has changed: Israel has passed from the next-to-last group in representa-

tion at the International Mathematical Union (IMU), which it belonged to until

1990, to the highest league. At the sessions of the General Assembly of the

IMU in August 1998 Israel was represented by five votes, just like Russia, the

USA, Britain, France, Germany, Italy, Canada, China, and Japan.

The rise was rapid. By 1990 the representation of Israel had already in-

creased from two to three votes. Then at the first opportunity, at a session of the
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General Assembly in 1994, it rose to four, and in 1998 to the maximum possi-

ble — five! Naturally, the increase in number of active mathematicians in Israel

and the mathematical activity as a whole was the leading factor in this process.

The influence of Russian mathematical traditions is enormous. It shows up

not only in the development of new areas of research in Israeli science, but also

in the style of the seminars, in the conversations in the university corridors, in

the number of students interested in mathematics and in their level.

I think we can now say confidently that the Russian mathematical school

and its traditions will be preserved; they will take root in a new country and a

new environment.

2. The Ancestry of Banach and the Origin of the Term

Banach Space

Let me begin with a small remark on the origin of the term Banach space. I

heard it from my father, David Milman, co-author of the Krein–Milman theorem

and the founder of the geometric study of infinite-dimensional normed spaces.

In his book A Course in Functional Analysis
2 Banach denoted operators by

the letter A. These were the initial objects of study, and the complete normed

spaces on which they operated were denoted by the Latin letter B. That was

natural, and there is no indication that he was “hinting” at his own name by

using that letter.

Functional analysis had only just begun (this was in the mid-1930s), and two

young scholars, Vitold Shmul’yan and David Milman, started writing “Banach

space” in their papers instead of “B-space,” as others did. Soon everyone

switched to the new language.

Now let us speak of the origin of Stefan Banach. It is known that he grew

up in an adopted family, but my story will be about his biological family. In

Polish biographies of Banach it is written that the details of his childhood are

not known, that he never knew his mother or father and therefore (?) he earned

his living by tutoring from the age of 15. It was believed (“everyone believed,”

as Steinhaus wrote) that he somehow wound up in the family of a laundress

named Banach shortly after he was born, and that she took care of him.

In contrast to such sparse information, it is pointed out that his father was a

man named Greczek, who worked in the administration of the Krakow railroad.

According to information from Steinhaus — one of the closest people to Banach

2 This book was translated into Ukrainian in 1948 from the 1931 Polish edition of the book

Theory of Operators; no Russian translation was ever published.
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in the mathematical world, who knew him in the

Stefan Banach

(1892–1945)

1910s — his father had no contacts with Stefan at all.

If so, the fact that his father’s name is indicated,

while nothing at all is known about the mother or

childhood of Banach is puzzling. I note, however,

that according to the book of the Polish reporter

R. Kaluza (Through a Reporter’s Eyes: The Life

of Stefan Banach, English translation, Birkhäuser,

1996), which was written for the hundredth anniver-

sary of his birth, Banach had a warm relationship

with his father, who always took care of him (but

for some reason didn’t give him his name?).

Through a fortuitous concatenation of circum-

stances, I know a different story. The reader may

regard it as an unfounded legend, although I personally have no doubt of its

complete veracity. Judge for yourself.

The facts. For the entire 27 years that I have lived in Israel I have worked

in the mathematics department of Tel Aviv University with Professor of Applied

Mathematics Bernie Schiff. He died prematurely in December 1999 at the age of

68. All those years I knew that the maiden name of his wife Miriam was Banach,

and that she had heard a legend about her grandmother’s younger brother, who

abandoned his Orthodox Jewish family at an early age and was baptized and

renamed by the church as an adopted son in some family.

After Bernie’s death several professors in our department decided to meet

with Miriam Banach-Schiff in order to get the details. She knew very lit-

tle: nearly the entire family perished in the Holocaust. Her father left for the

Netherlands in 1930 and thereby survived. But I shall relate what she knew.

Her grandfather and grandmother — Moishe and Netl — were second cousins,

as was often the case in traditional religious Jewish families in the late nineteenth

and early twentieth centuries, and both bore the name Banach. Miriam did not

know the exact year of her grandmother’s birth, but Miriam’s father was born

in 1907, which may give some idea of her grandmother’s age. I recall that the

official date of birth of Stefan Banach was 1892.

Her grandmother’s younger brother left the family at an early age and be-

came a Catholic. One must realize that for a deeply religious family this was a

great tragedy. (Miriam and her entire family belong to the extreme orthodox re-

ligious movement even today.) Therefore all relations with the younger brother

were broken off, and it was considered bad taste even to show interest in news

about him. Nevertheless, certain information penetrated to the family; possibly

the older sister Netl wanted to know what her younger brother was doing.
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Miriam’s uncle — that is, Netl’s son — told her that this brother, whose first

name Miriam did not know, had studied at a polytechnic institute, and that one

of the mathematics professors had recognized the capable student and helped

him to develop his talent. Later on, as they heard, he became a professor.

When they were shown a picture of Stefan Banach, all the members of the

family confirmed that he bore an uncanny resemblance to one of Netl’s sons —

Joseph Banach.

Miriam told me that many years ago her husband Bernie showed her an old

photograph — a group picture of the participants in a conference where there

were about 50 people — and asked her if she could find Banach in the picture.

She did not know what the mathematician Stefan Banach looked like, since

she had never seen his portrait, but she unerringly picked him out in the group

photograph on the basis of his resemblance to her uncle.

Miriam’s grandfather Moishe Banach was born in the hamlet of Tarnovskie

Gory (Galicia), a large railroad hub near Krakow. Miriam was not sure that her

grandmother and her younger brother (Stefan?) were born in that exact place,

but it was probably not far from there.

I would like to end this story with a speculative remark of my own. It was

the late 1930s. A vicious war was looming (or already going on), in which a

person of Jewish descent could not survive. To have “holes” in your biography

or your ancestry puts you in mortal danger. If one believes the story above

(and I do), Banach’s ethnicity could have been determined by pulling down his

trousers. For that reason, in order to “patch” the holes a story was concocted

of an unknown father and mother, that he was perhaps the illegitimate son of

a white-collar worker. And the choice of the “father’s” name might not have

been random: his godfather (Greczek?) may have “turned into” his father. As it

happens, Greczek’s first name was also Stefan. It was necessary that everyone

believed the story and that no questions arose. And everyone believed it.

The war was coming to an end. Exhausted by the war, Banach died soon

after the liberation of Poland, but the legend lived on and has now been em-

bellished with details.

3. From Functional Analysis to Asymptotic Geometric Analysis

3.1. Classical (Infinite-Dimensional) Functional Analysis

Functional analysis arose in the early twentieth century and assumed the form

familiar to us due to the almost unmatchable strength and scope of the Polish

mathematical school at that time. A dozen names of first-class mathematicians,
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in addition to Banach, are embedded in the names of the classical theorems and

need not be recalled here. Undoubtedly, functional analysis was a major force

in the development of analysis throughout most of the twentieth century. Many

problems and areas of research in classical analysis were recast and got their

second wind in the framework of functional analysis. The various kinds of con-

vergence and classes of infinite-dimensional spaces that arise so naturally in the

context of classical analysis led to the development of topology and the concepts

of normed and topological spaces, along with the concepts of completeness and

Banach spaces. Linear algebra and the Fredholm theory of integral operators

led to the development of operator theory. Existence (and uniqueness) theorems

for various kinds of equations, including integral and ordinary and partial dif-

ferential equations, crystallized the concept of compactness and led to numerous

fixed-point theorems, the Sobolev embedding theorems, and interpolation the-

ory. The requirements of physics (and, once again, classical analysis and partial

differential equations) led to the theory of (unbounded) self-adjoint operators

and Schwartz distributions.

Next comes the development of algebraic analysis, which began with the

papers of Gel’fand in the late 1930s and during the 1940s and 1950s on normed

rings (Banach algebras, as we now call them), and was continued also by

Gel’fand and his school in a panoply of specialties and problems that was

awe-inspiring in its breadth and included, for example, “infinite-dimensional”

representation theory. The theory of von Neumann factors, which developed in

parallel with it, and the theory of C∗-algebras, which grew under the influence of

A. Connes into the amazingly beautiful and profound noncommutative geometry,

are still on the ascent, and, I think, far from the summit. Even in a very com-

pressed list one must add to these the influence of the forces that grew up within

functional analysis in the development of applied areas such as approximation

and optimization theory, game theory and partial differential equations, and also

the development of computer science.

However, all the areas I have named (and some I have not named) soon

grew into independent areas of research. Possibly that was precisely because

of their rapid success. Naturally, for a certain period of time after the actual

separation of these areas, many specialists who worked in them continued to

think that they were studying functional analysis. I think that, as they look back

on it, they would not say this today.

As a result, by the mid-1960s functional analysis had been “stripped down”

to the problems that we provisionally called (and still call) geometric. The so-

called geometric functional analysis turned out to be functional analysis proper.

Over an extended period of time, geometric functional analysis was reduced

rather simplistically to two classes of problems.



232 V. D. Milman

On the one hand there is the study of the geometry of infinite-dimensional

convex bodies, which seems to have been begun in the papers of D. P. Milman

in the late 1930s. The first (1938) obviously geometric theorem asserts that a

uniformly convex space is reflexive, that is, the local geometry of the unit sphere

implies the global topological property of reflexivity. There followed a stream of

results with various co-authors from the famous Odessa school of M. G. Krein.

For example, the Krein–Milman theorem on extreme points (1940), which con-

nects geometry and topology with the linear structure; or the concept of a normal

structure and the associated fixed-point theorems introduced by M. S. Brodskii

and Milman (1948), and so on. This line of research was continued from the

1950s on by R. James in the USA, M. I. Kadets in Ukraine, A. Dvoretzky and

his school in Israel, and A. Pełczyński and his school in Poland. It carried on

successfully into the 1960s and 1970s. For example, the amazingly beautiful

and surprising papers of James on nonreflexivity, or the remarkable theorem of

Dvoretzky (1960), which at the time was interpreted as an extension of this

circle of ideas. (I do not think of it that way today.) The concepts of the

spectrum of a function and spectrum distortion, which arose next, connected

geometry of the sort found in Dvoretzky’s theorem with the linear structure of

an infinite-dimensional space. (The state of this field in the late 1960s can be

sensed from the survey [16]; for a modern view and its subsequent development,

see the survey [22].) Remarkable particular results appeared still later, such as

Maurey’s interpretation of the normal structure and fixed-point theorems, or the

concept of stable norms close to that of a spectrum which was introduced by

J.-L. Krivine and B. Maurey, and the related theorems about lp-spaces. But on

the whole our understanding of geometric problems has changed, and I shall

discuss them below.

Another area of geometric functional analysis, which arose in the time of

Banach and as a result of his initiative, studied the linear structure of an infinite-

dimensional Banach space. But what do we mean by “linear structure”?

There is a classical interpretation that was developed as early as the 1930s:

the search for subspaces with a large symmetry group (naturally, symmetry is

understood in the sense of isomorphism up to constants, that is, as bounded

operators) and subspaces with various “good” properties. The Polish school

of functional analysis grouped around Pełczyński continued to play a significant

role in this development. Its ideal purpose was to show how an arbitrary Banach

space can be constructed from blocks that are maximally simple, that is, have

a large symmetry group. For example, does every infinite-dimensional Banach

space contain a subspace isomorphic to some lp (1 � p < ∞) or to c0 or to

a subspace with an unconditional basis? And other similar questions. Many

remarkable results in this area are expounded in the books [5] and [6], and in

the surveys [15] and [16].
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However, recent advances (Gowers and Maurey [26] and the subsequent

series of papers of Gowers, for example, [25]) have shown how simplistic was

such an understanding of the possibilities inherent in the concept of a norm

and a Banach space. It is important to note that the first breakthrough in the

direction of a completely new construction of a norm was the extremely original

(and nontrivial) paper of Tsirelson [32]. He constructed, what is in my opinion,

the first “nonclassical” normed space. The norm in this space is defined not

by a formula, but by an “equation.” (In the brief survey [19] I describe this

development.) By now Tsirelson’s construction has been studied “inside and

out.” Many surprises (and advances) turned out to be connected with it. The

surveys [22] and [14] will introduce the interested reader to some of these

advances. It should be noted that the breakthroughs of the 1990s — and that is

not just a few remarkable counterexamples to open problems of the past, but

also the construction of a new infinite-dimensional geometry of convex bodies —

were directly inspired by Tsirelson’s paper (1974) and the problems of spectrum

distortion introduced in the 1960s. (Two papers are relevant here — [27] and

[16].) Thus, in the activity connected with the theory of infinite-dimensional

Banach spaces, the 20-year period from the early 1970s to the early 1990s turned

out to be unnecessary for obtaining the results at which the main efforts of this

theory had been directed. Still, during this period several remarkable results

were obtained. For example, Enflo’s solution of two problems that had been

open since Banach’s time: the example of a Banach space without a basis and

the construction of an operator having no nontrivial invariant subspace. But two

new areas deserve special mention. One of these — geometric operator theory —

goes back to Grothendieck (in the late 1950s), but was “explained” to specialists

in functional analysis in a 1968 paper of Lindenstrauss and Pełczyński.

Subsequently extended by A. Pietsch, this theory quickly turned into one of

the major tools of geometric functional analysis (see, for example, [8] or [10]).

The other area (type-cotype theory) was initiated and developed by Maurey and

G. Pisier in the mid-1970s. It brought into abstract functional analysis the ideas

and methods of probability theory and harmonic analysis, and had a dominant

influence up to the mid-1980s (see [7]). However, these new areas were looking

mainly “in a different direction” and turned out to be important in the asymptotic

theory, to which we now turn.

3.2. Another View of the Concept of a “Linear Structure”

In this section we shall exhibit an interpretation of “linear structure” that is

completely different from the classical structure discussed above. In fact, there

now exist two different interpretations, two opposite (in a certain sense) routes
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to the study of structures that replace the classical interpretation of a linear

structure. However, both routes study certain asymptotics of the behavior of

finite-dimensional subspaces of a given normed space.

3.2.1. In the first of these approaches we investigate certain families of finite-

dimensional spaces containing subspaces of arbitrarily large dimension. For

example, we might study the family of all finite-dimensional spaces or all finite-

dimensional subspaces of a given normed (infinite-dimensional) space. It turns

out that when the dimension of the space increases to infinity, remarkable and

unexpected regularities are revealed, which had been hidden behind the apparent

and expected diversity that increases with the dimension. Indeed, I see in this

approach another way of looking at the concept of an “infinite-dimensional”

space. In this view, it is not a single space but a family of spaces, each of

which is finite-dimensional. However, their dimensions are not collectively

bounded, and their asymptotic behavior exhibits infinite-dimensional phenom-

ena that are not characteristic of either the individual finite-dimensional spaces

or infinite-dimensional spaces. It is this theory that I call asymptotic geomet-

ric analysis. In its early stages it was often called the local theory. Its rapid

development from the mid-1970s to the mid-1980s led to the idea that we are

dealing with an area different from the problems and aims of classical functional

analysis, although closely connected with it (see the books [7], [9], and [10]).

At first (in the mid-1980s) we called it geometric analysis, since it studied

geometric objects using the concepts of analysis. (I emphasize: concepts, not

techniques.) A particular geometric object (for example, a convex body in a

fixed space) turns into a family of objects, for example, a family of convex

bodies in different spaces of increasing dimension. The asymptotic properties

of such families reflect isomorphic geometric properties of the family. This

is the crux of the theoretical difference between our approach and the stan-

dard geometric vision, in which isometric (or “almost” isometric) properties are

studied (see [18]). In the next subsection I shall give several precisely stated

propositions, and we shall see examples of models of the behavior of such

families.

However, the phrase geometric analysis turned out to be irresistibly attractive

for a large number of scholars studying very different kinds of mathematics, and

using it ceased to make sense. (This is one form of “pollution” in mathematics.)

For that reason, we now use the term asymptotic geometric analysis but also

convex geometric analysis, first of all because we are studying mainly the

asymptotic behavior of convex bodies, and second because the name nicely

emphasizes the merger of this area with classical convexity theory and the

theory of geometric inequalities that is occurring.
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3.2.2. I would now like to say a few words about a very recent approach to

purely infinite-dimensional phenomena that have no finite-dimensional analogs

but can be studied using families of finite-dimensional subspaces of a fixed

space, specially chosen for the purpose. This is the so-called asymptotic infinite-

dimensional theory (see [29] and [22]). In this approach we sweep away the

information of finite-dimensional character and study the space “at infinity.”

The fundamental concept in this theory is that of an asymptotic (finite-

dimensional) space of a given infinite-dimensional Banach space X . The basic

idea behind it is the stabilization at infinity of finite-dimensional subspaces of

a fixed (but arbitrary) dimension, which occur in X “everywhere sufficiently

far out”. I realize how murky this sounds, and I shall attempt to make the

construction more precise immediately. Fix an integer k. For a subspace E ⊂ X
of finite codimension (say codimE = n) we denote by Tk(E) the closure in the

Banach–Mazur metric of the set of k-dimensional subspaces of E . We denote by

{X}k the family of k-dimensional spaces (regarded as a subset of the compact

Banach–Mazur set of all k-dimensional normed subspaces) that is the limit (or,

what is the same, the intersection) of Tk(E) over the filtration of subspaces of

finite codimension as the codimension n tends to infinity. It follows from simple

compactness considerations that {X}k is not empty. These are the asymptotic

k-dimensional spaces of the original space X . A more “working” approach to

describing this set uses the language of game theory, introduced for closely

related purposes by Gowers (see [29]).

The set of all asymptotic spaces, {X}k, k = 2,3, . . . , is the asymptotic linear

structure of X . (It is constructed over the filtration of all subspaces of finite

defect; however, the filtrations may be chosen in other ways.) I would rather

refer the reader to the original papers and the only survey that has yet appeared,

on a closely related topic [22].

3.3. Asymptotic Geometric Analysis: Some Examples

In this section I intend to show by several examples that the asymptotic point

of view on spaces of high dimension opens a new intuition, and that the results

obtained were not (and could not have been) predicted on the basis of experience

and intuition in the study of infinite-dimensional spaces or spaces of fixed

dimension. The examples have deliberately been chosen so that all the objects

and concepts used are classical, even elementary. In that way, it is easier to

compare a result with one’s own intuition. For better acquaintance with this

theory I have already recommended three monographs above. Let us add to that

several surveys that emphasize different aspects of the theory and different ideas

that arise in it: [13], [11], [18], [20], and [21].



236 V. D. Milman

3.3.1. Consider a set K in R
n. How does the diameter of a set change under

a “random” orthogonal projection of rank k (that is, under projection onto a

“random” subspace of dimension k)? It turns out that the answer is almost

independent of the set K. To be precise, I introduce some notation: d(T )

denotes the diameter of the set T in the standard Euclidean norm on R
n; PEK

is the orthogonal projection of K on the subspace E; and Dk(K) denotes the

average (mathematical expectation) E
(
d(PEK)

∣∣dimE = k
)

of the diameter of

the set PEK over all k-dimensional subspaces E . The width w(K;u) of the set K
in the direction u ∈ Sn−1, where Sn−1 is the unit Euclidean sphere, is defined as

w(K;u) = sup{(u,x) | x ∈ K}− inf{(u,x) | x ∈ K}.

Finally, the average width w(K) of the set K is

w(K) =

∫
u∈Sn−1

w(k;u)dσ(u),

where the integration is taken with respect to the normalized (that is, probabal-

istic) Lebesgue measure on the sphere Sn−1.

Proposition. There exist constants c > 0 and C such that, for every n and every

K ⊂ R
n
,

c

√
k
n

d(K) � Dk(K) � C

√
k
n

d(K)

for n � k � k∗ = n
(

w(K)/d(K)

)2
. For k less than the critical value k∗ the

average diameter Dk(K) stabilizes:

cw(K) � Dk(K) � Cw(K)

for 1 � k � k∗.

Moreover, the only reason for the stabilization is that a random projection of

K on a subspace of dimension ≈ [θk∗] approaches the Euclidean ball of radius

1/2w(K) up to
√
θ . (This last statement needs some additional clarification, but

we refer the reader to [21] for a precise discussion and references.)

Thus, up to stabilization, the rate of decrease of the diameter of a random

projection is generally independent of the set K: the closed interval [0,d] behaves

just like an extremely complicated set! However, stabilization settles for them

at different dimensions k∗ and means that a random projection on a dimension

proportional to k∗ approximates a Euclidean ball in a certain sense. As it turns

out, for the closed interval k∗ ∼ 1 (as one would expect).



Observations on the Movement of People and Ideas 237

On the other hand, such regularity of behavior is possible due to the “iso-

morphic” form of the answer. I am referring to the universal constants (c and C)

that accompany the “formula” for the behavior. The answer actually depends

on the set K, but on a more refined scale. The proposition describes a zone in

which it is “fuzzy.” This is a typical phenomenon of the isomorphic geometry

to which the (dimensionally) asymptotic view of geometric problems leads. Of

course, the isomorphic point of view in geometry makes no sense in a fixed

dimension, but it arises naturally in asymptotic problems. We have accumulated

a large number of surprising facts of such an isomorphic geometry (see the

surveys [11], [18], [20]).

3.3.2. Let us denote by N(K,T) the covering number of two convex sets K
and T in R

n:

N(K,T) = min

{
N

∣∣∣∣∃xi ∈ R
n

∣∣∣∣ N⋃
i=1

(xi + T) ⊃ K

}

(the number log N(K,T) is often called the entropy of the covering).

It is clear that the order of growth of N(K,T ) ·N(T,K) is exponential in

the dimension of even similar sets K and T of the same volume. On the other

hand, this quantity may be arbitrarily large, not because of different geometries

of the sets themselves, but due to “incorrect positioning” of one set relative to

the other. For that reason we introduce a second quantity

M(K,T) = inf
{

N(K,uT ) ·N(uT,K)

∣∣u ∈ SLn
}
.

However, the geometry of the sets K and T may be very different and the

Banach–Mazur distance d(K,T ) may be of order n, even for centrally symmetric

sets. (This is a nontrivial result of Gluskin, but order
√

n is trivial.) Thus, the

order of growth of M(K,T ) with respect to the dimension n might conceivably

reach ecn log n. But the result is much better: there exists a number C such that

M(K,T ) � eCn

for every dimension n and every two convex sets K and T of the same volume

(see [21] for discussion and references). Thus, from the point of view of

coverings, the geometry of two arbitrary convex sets is much the same. A large

list of similar results and the reason behind them is described in the surveys [18]

and [20].

This discovery of the “resemblance” of arbitrary convex bodies in spaces of

very high dimension manifests itself in a great variety of situations. I think it
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indicates the existence of probabilistic structures accompanying spaces of high

dimension. By that I mean something more than the mere fact that we use prob-

abilistic methods in the proofs. A space of high dimension (or, more precisely,

a family of spaces whose dimensions increase to infinity) in its very essence

contains elements of randomness and is in some sense a random medium. Nat-

urally, I should have to present dozens of well-known results to confirm that

intuition, but also naturally, I am stopping here in this brief essay.

3.3.3. As a last example, let us discuss approximation problems. For sets K
and T the Minkowski sum K + T is the set K + T = {x + y

∣∣x ∈ K, y ∈ T}. Let

I = [−x,x], x ∈ Sn−1, that is, I is an interval of length 2x.

Consider

KN = K(N;u) =

1
N

N

∑
i=1

uiI,

where ui ∈O(n) are orthogonal operators. Thus KN is an average of N intervals.

The question is: How many intervals suffice to obtain a good approximation of

the Euclidean ball?

We remark that, for any distribution of points {xi}N
1 on the sphere Sn−1 there

exists a layer between two parallel hyperplanes that contains all these points and

whose width is of the order ∼√
log N/N. It is possible that this circumstance

is responsible for the feeling that N must be of order exp(cn). However, there

actually exist N ∼ n/ε2 points {xi}N
1 on the sphere such that

K(ε) =

1
N

N

∑
i=1

[−xi,xi]

approximates the Euclidean ball D (of radius r ∼ 1/
√

N) within ε ; that is,

D/(1+ ε) ⊂ K(ε) ⊂ D(1+ ε). Moreover, for any λ > 1 there exists a constant

c(λ ) and intervals Ii = [−xi,xi], which need not number more than N = λn, such

that for some Euclidean ball D

D ⊂ KN =

1
N

N

∑
i=1

Ii ⊂ c(λ )D.

This last result follows from a result of Kashin (1976); however, the entire

picture is described in more detail, for example, in the survey [18], which also

contains references to the original papers.

As it happens, the closed interval can be replaced by any set and the answer

is still valid. Many other problems of approximation and different symmetriza-

tions have been studied and lead to similar answers. Usually, the final answer
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turns out to be a logarithmic function of the “likely answer” suggested to us by

the intuition we were trained in. This discrepancy is amazing and needs to be

clarified.

I think that our intuition on the level of the variety and forms of behavior

of a multidimensional space is mainly connected with the exponential growth

(with respect to dimension) of coverings (entropy) and with the calculations of

volumes. Still, there is a compensating factor, the so-called concentration of

measure that is always observed in uniform distributions on multidimensional

manifolds (the concentration phenomenon). The first example of this phenom-

enon seems to have been described by Paul Lévy in his 1919 lectures. (The

second edition [4] of his work is well known.) However, a realization of the

extent to which this phenomenon is general and the fact that it compensates

for the exponential enlargement of volumes was a consequence of applying this

technique in problems of asymptotic geometry. (The first, and perhaps still the

leading, example of such an application was published in the USSR [28].) Here

I shall simply refer the reader to the numerous surveys that describe both the

development of the technique and its applications: [17], [3], [18], [7], [23],

[24]. Moreover, many other books and papers discuss the concentration phe-

nomenon in discrete mathematics ([1]), geometry ([2], [12]), and ergodic theory

([30], [31]).
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E. F. Mishchenko

About Aleksandrov, Pontryagin

and Their Scientific Schools

Translated by R. Cooke

The topological schools of Aleksandrov and Pontryagin, and Pontryagin’s school

of differential equations and the mathematical theory of optimal processes, were

undisputably significant phenomena in the mathematical life of the twentieth

century.

I had the good fortune to be a close student of both Aleksandrov and Pon-

tryagin at different times. I think that is why I received a proposal from the

editors of this volume to write an article on these schools and their founders.

Not without hesitation did I agree to this proposal — to make a survey as inter-

esting as complete would be beyond my powers. For that reason I shall briefly

talk about just a few of the main papers of Aleksandrov and Pontryagin, using

as a source not just my own personal perception of these papers, but also several

survey articles written by other authors (but some of my own also). In addition,

I will share my recollections of my great teachers, and the atmosphere in and

around their schools, not omitting some episodes that are perhaps recalled only

by myself. These episodes often surface in my memory, and I hope they will be

interesting to others — if only as a few fragments of the multifeatured history of

the research schools of Aleksandrov and Pontryagin.
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1.

PAVEL SERGEEVICH ALEKSANDROV (1896–1982) is

well known to all the mathematicians of the world

as the founder of the Moscow school of topology

and as the permanent (1932–1964) president of the

Moscow Mathematical Society. His personal con-

tribution to general topology had a decisive effect

on the entire development of this branch of mathe-

matics.

After beginning his research activity brilliantly

at the age of 18 with the proof of a fundamental

theorem on the cardinality of B-sets (every uncount-

able Borel set contains a perfect subset) and the

construction of the well-known A-operation, and then suffering a failure in solv-

ing the continuum problem, which he began at the suggestion of his university

teacher Luzin, Aleksandrov left off studying mathematics for two years — fortu-

nately, not forever — left Moscow and successfully tried several other professions

(reader of a provincial committee on education, director of a dramatic theater,

and others). However, in the end he returned to mathematics, taught at Smolensk

University, and from 1921 on was a teacher and professor of Moscow Univer-

sity, for a long time serving simultaneously as head of the division of topology

in the Steklov Mathematical Institute.

In 1921, Aleksandrov made the acquaintance of Pavel Samoilovich Uryson,

and they soon began to carry out joint research in the field of topology — a

subject that was completely unknown in Russia at the time. Their joint work

did not last long — in the summer of 1924 Uryson died tragically at the age

of 26. But during these three years they laid the foundations of what is now

called general topology — the comprehensive study of topological spaces. Al-

though the concept of a topological space had been introduced into mathematics

by Fréchet (1906) and Hausdorff (1914), their versions were only a general

abstract framework. To fill that framework with geometric content was the ob-

ject of the early papers of Aleksandrov and Uryson on the dimension of sets,

which goes back conceptually to the papers of H. Poincaré, L. E. J. Brouwer, and

H. Lebesgue. Next followed the theorems of Aleksandrov and Uryson on metriz-

ability of topological spaces. At the same time Aleksandrov began to construct

the theory of compact spaces, introducing the term bicompact into mathematics.

This concept, which has not been associated with its creator for a long time, be-

came firmly fixed in all textbooks of topology and still today is used constantly

in various fields of mathematics. (To be sure, I have heard that the Bourbaki
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group interprets the word bicompact as compact and vice versa.) There were

many such brilliant and, at the same time, simple concepts and discoveries in the

school of Aleksandrov during its initial period. It suffices, for example, to recall

the Tikhonov topology on the Cartesian product of any number of topological

spaces, or the theorem that any n-dimensional compact set can be embedded

in a Euclidean space of dimension 2n + 1, proved by Pontryagin in 1931 and

given by him, as he himself writes in his memoirs, to one of his students. True,

as it turned out, this theorem was proved independently, and in the same year,

by two well-known mathematicians — Solomon Lefschetz and Georg Nöbeling.

But that is a quite common occurrence in mathematics. In the present situation,

it attests to the naturalness of this topic at the time.

Aleksandrov’s most significant discovery in the early years of his topologi-

cal activity seems to have been the introduction of the nerve of a covering of a

topological space, and the concept of the projection spectrum of simplicial map-

pings. This discovery brought about a revolution in the entire development of

set-theoretic topology, shifting it into the geometric and combinatorial-algebraic

channel. I shall give here only the definition of the nerve, so that the attentive

reader may surmise that what I have said is not an exaggeration.

The nerve of a covering of a space X is a simplicial complex Nω whose

vertices are in one-to-one correspondence with the elements of the covering ω ,

and set of vertices e1,e2, . . . ,ek of the complex Nω forms a simplex in Nω if and

only if the elements of the covering ω corresponding to these vertices have a

nonempty intersection. If the covering ω ′ is inscribed in the covering ω (it is

said to be a refinement of it), then a simplicial mapping πω
′

ω is naturally defined

(the “projection” of the nerve Nω ′ onto the nerve Nω ). Therefore, if, for example,

X is bicompact and ω ranges over the directed family of all open coverings of

it, then the so-called spectrum S of the bicompact space X is defined. It consists

of the directed family of complexes Nω and the projections πω
′

ω that connect

these complexes. The spectrum defines a limiting space in a certain natural way,

which turns out to be homeomorphic to the space X . Thus, it becomes possible

to interpret all topological properties of the bicompact space X as properties of

its projection spectrum S, that is, reduce them to properties of the complexes Nω

and their simplicial mappings. This means that it becomes possible to use the

whole arsenal of machinery of combinatorial topology as one of the main tools

for studying set-theoretic topology.

One of Aleksandrov’s most outstanding results in topology was his creation

of homological dimension theory. We recall that the homological dimension

of a compact set X with respect to a coefficient group is the largest integer

n such that the compact space X contains an (n− 1)-dimensional cycle Zn−1
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homologous to zero in X , but not homologous to zero on some support of it. In

creating this theory Aleksandrov proved his famous theorems on the so-called

essential mapping and obstructions, and a number of other theorems. This entire

thematics drew an enthusiastic response from Pontryagin and influenced many of

his interests in topology. And even Kolmogorov, who discovered cohomology

(actually simultaneously with J. Alexander), although he made this discovery

from physical considerations — from hydrodynamics and electromagnetism —

would nevertheless hardly have been able to carry it out in the form of his

famous four notes in the Comptes Rendus without the influence of numerous

conversations on topological topics with Aleksandrov. And it is only to be

expected that this discovery was followed almost immediately by the rise of

cohomological dimension theory and different versions of duality laws.

Among the outstanding papers of Aleksandrov, I would like to say a little

about two others: “Homological properties of the position of complexes and

closed sets,” and “The basic duality relations for nonclosed sets of an n-dimen-

sional space.”

The first of these papers was devoted to the study of the shape and position

of a complex (and a closed set) in an ambient space (and in a closed set) using

homological methods. This paper was written in Kazan’ in 1941–1942, where

the USSR Academy of Sciences had been evacuated when World War II began,

and it was published immediately in the Izvestiya Akademii Nauk SSSR, (math-

ematics series, 1942, 6) and soon afterward in the USA. This was an abstract

mathematical paper having no applications in engineering or agriculture. Nev-

ertheless, its author was soon awarded the Stalin Prize, the highest government

award for science at the time. And that was at the most difficult time in the

whole history of the USSR . . . It furnishes a curious and edifying example of

the relation of the government to science.

The second paper was written in 1946–1947 and published in Matematiches-

kii Sbornik (1947, 21). Until this paper appeared, all homological methods in the

topology of an n-dimensional space had been developed only for polyhedra and

closed sets. Even the famous duality theorems had not been extended to such

elementary objects as skinned polyhedra, for example, sets in n-dimensional

space that are the union of a finite number of pairwise disjoint open simplexes

of generally different dimensions. Aleksandrov set himself the task of creating

a general theory of duality for the largest possible class of nonclosed sets; that

is, to solve in a rather general case the problem of expressing the homologi-

cal invariants of a nonclosed set A in terms of the homological invariants of

its complement B. The first thing to be done was to define the corresponding

homology groups for the sets A and B in a suitable way. He did this using
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projection cycles and unlinked cycles, which he introduced, and proved the first

general law of duality for homology groups based on these cycles. A little later

his student K. A. Sitnikov proved a more general theorem. However, the ho-

mology groups that occur in the duality laws of Aleksandrov and Sitnikov have

a rather complicated definition. Hence, from the very beginning, Aleksandrov

posed the problem of finding a large and natural class of nonclosed sets for

which Pontryagin’s elementary duality law holds; that is, duality in the sense

of the characters ∆p
(A,A)

∣∣∆q
(B,B), where ∆ is the quotient group of all true

cycles (of a given dimension) over the group of bounding cycles. Here a true

cycle of a given set E is defined as a (convergent) cycle contained in some

compact subset Φ ⊆ E . A true cycle is a bounding cycle (homologous to zero)

in E if it is homologous to zero in some compact set Φ′ ⊂ E; A is an arbitrary

discrete group of coefficients, B is a bicompact group, A |B, and p+q = n−1.

This problem was solved for the so-called homological retracts, which of course

include all skinned polyhedra. I made a contribution of my own to the solution

of this problem while still an undergraduate in the Department of Mechanics and

Mathematics at Moscow University, and later defended my kandidat dissertation

on this topic. After that, I no longer studied topology.

In his memoirs, Pontryagin wrote that Mishchenko ceased to study topology,

since he realized that this subject was outside the mainstream of mathematics of

the time. I must say that this is not quite what happened. In my undergraduate

years I wasn’t thinking about any mainstream. I studied all of Aleksandrov’s

papers with great interest and began to study his approach to topology with great

enthusiasm. These activities gave me the joy of my first scientific discovery,

my first publication in Matematicheskii Sbornik, and the start of my close and

constant scholarly association with my advisor. I think that on the emotional

and psychological levels I felt just as comfortable as my friends Gamkrelidze,

Boltyanskii, and Postnikov, who were studying Pontryagin topology at the time.

And I must have been imbued with a sense of the importance and necessity

of my studies, just like the young mathematicians of today who are happily

studying a new set of topics that is in fashion in their near surroundings.

The only reason I stopped studying topology at the time was that I came

under the influence of Pontryagin, who had begun to study ideas connected with

applications by then, and I followed him into that interesting world. But I will

discuss that later.

So far as I know, the paper “Fundamental duality relations for nonclosed

sets of an n-dimensional space” was Aleksandrov’s last paper in combinatorial

(homological) topology. From that point on he concentrated his efforts on

various questions of set-theoretic topology and included a large group of young
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students in active research work. I shall not list all of the results of this time.

The reader can find a number of essays, for example, in the special issue

of Uspekhi Matematicheskikh Nauk dedicated to the 80th birthday of Pavel

Sergeevich (1976, 21(5)), or in the volume of the Proceedings of the Steklov

Institute published in honor of the centennial of his birth (1996, 212). I would

like just to say a few words about Aleksandrov’s research seminars.

Pavel Sergeevich was an extraordinary teacher. In his seminars there was

always a kind of force field holding all the participants in tension and, I would

say, joyous excitation. These seminars took place in the classrooms at the Uni-

versity, in the student dormitories, and at his “dacha” (a countryside house) in

Komarovka, which he owned jointly with Kolmogorov. In Komarovka there

was always classical music in the intervals between mathematical conversations.

There was rowing in the summer and skiing in the winter. The seminars in

the University and at the Steklov Institute were attended by both students and

famous mathematicians working in related areas. I recall, for example, several

seminars at which Lyudmila Vsevolodovna Keldysh spoke on open mappings

that increase dimension. When she described the details of her example of a

monotonic open mapping of a three-dimensional cube onto a four-dimensional

cube, Pavel Sergeevich, who had previously studied the problem himself, con-

gratulated her vehemently and said that now Peano’s whole subject could be

considered closed. (I remark that this area had been much in fashion almost

since the very beginning of the twentieth century.)

Research and teaching were undoubtedly the fundamental components of the

entire life of Pavel Sergeevich Aleksandrov. However, this life also contained

bitter periods. I was an observer of one of these periods. In the mid-1960s three

students of Aleksandrov underwent serious criticism at the defense of their doc-

toral dissertations, all at the same time. I was present at one of these defenses.

The effort to reject the dissertation failed, but those who were there remem-

ber the scandal to this day. The unpleasantness came from several young (and

not so young) mathematicians, and was motivated by the insufficient general

mathematical literacy of the candidate. It may have been so. However, Pavel

Sergeevich perceived this as a rejection of his entire set-theoretic research area

of the time and was depressed, to say the least, for many weeks. I also had the

impression that he had good reason for his perception.

Later on, I often recalled this story in connection with a more significant

event. In the second half of the 1970s there arose a large debate over the

problems of elementary mathematical education, which went on for several

years. Many prominent mathematicians participated in this debate, and some of

them made the accusation that Kolmogorov, if not directly introducing elements
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of set theory into the elementary school curriculum, was at least providing

ideological support for its introduction. Here it was assumed a priori that

the “Cantorian virus” 1 was one of the main reasons leading to the ruin of

elementary mathematical education, and some of the articles contained even

more ominous accusations. All this evoked a worried reaction in Kolmogorov

and seriously clouded the last years of his life, which I know and not by hearsay.

I shall not undertake to judge this whole debate, since I have never taught

in high schools and have never written any textbooks. However, I cannot

help agreeing that the accusations were too emotional and not entirely justified.

Kolmogorov really did have great achievements in the cause of mathematical

education of elementary-school pupils, since it was through his efforts that many

talented people were discovered, who later grew into great mathematicians. A

significant portion of them would most likely have remained unknown if not for

the boarding schools of Kolmogorov (or of Kolmogorov type). But the “bad”

textbooks and methodological developments did not spread and disappeared of

their own accord over time, along with the shades of Cantor and Bourbaki. It is

likely that in the near future they will seem to be mild scarecrows in comparison

with the educational reforms beginning in Russia just now.

As for Aleksandrov’s students in the area of set-theoretic topology, many

of them continued to work actively, became famous scientists, and achieved

international recognition in the circles of general topologists. The majority of

these students work as professors in Russian and foreign universities. Some

remained in “Cantor’s paradise,” and others changed direction and switched to

other areas — each in accordance with one’s taste and talent.

In his large autobiography, published in two issues of Uspekhi Matemati-

cheskikh Nauk (1979, 34(6) and 1980, 35(3)), Pavel Sergeevich wrote a page

or so about me. I shall present a few excerpts from that page and then tell

what really happened, so that the reader can get at least a partial impression of

Aleksandrov’s relation to his students.

In 1939 the 17-year-old high school student Zhenya Mishchenko

arrived in Komarovka. He was soon drafted into the army and

went to the front, taking with him some mathematical books given

to him at Komarovka. At war’s end Mishchenko was demobi-

lized only after some trouble, in which I was compelled to play a

part. Immediately after demobilization he entered the Department

of Mechanics and Mathematics at Moscow University and began to

1 Not my term. — Author’s remark.
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study mathematics eagerly. After graduating from the University he

became a graduate student under my direction . . .

Back in his undergraduate years Mishchenko became acquainted

with Pontryagin and fell more and more under his mathematical

influence. But even though he eventually became Lev Semenovich’s

student, he continued to be perceived by me as my student — in

accordance with my firm conviction that the relations between a

student and a teacher are irreversible; once they arise, they cannot

be abrogated except at the cost of a catastrophe, any more than

the relation between a father and a son. It always seemed to me

that Mishchenko shared this point of view. Accordingly relations

between us have never faltered, but have always been and remain

very cordial . . .

But here is how it really happened. I was born and grew up in a remote

tiny village three hundred kilometers from Moscow in a very poor family. After

my elementary education was finished, I entered high school at my mother’s

insistence in a worker settlement not far from our village. I was a good stu-

dent, but I didn’t have enough mathematics textbooks; and when I found two

mathematics books, Differential Calculus by Granville and Luzin and Theory of

Functions of a Real Variable by Aleksandrov and Kolmogorov, in the library

of the workers’ club — God only knows how they came to be there — I read

them and then I couldn’t imagine any other future career for myself except as a

mathematics teacher. By that time (I was in my ninth year) a graduate student

of Andronov, the physicist Aleksandr Ivanovich Egorov, 2 arrived at our school

from Gor’kii. He advised me to write a letter to Professor P. S. Aleksandrov in

Moscow and ask him to give me some problems to think about independently. I

sent the letter off and soon there arrived from Moscow an envelope containing

three notes of Aleksandrov. One was to my mother, with a request to allow

me to come to Moscow and a promise to send her money immediately for my

railroad ticket; the second was to the director of the school, with a request to

allow me to miss two or three days of school; the third was to me, with a

detailed hand-drawn map from which I would be able to get from the Kursk

railroad station to Yaroslavl’ railroad station and then to Komarovka. A couple

of weeks later I set off on my journey, which, as it turned out, determined the

rest of my life.

Pavel Sergeevich greeted me very cordially. He said that, unfortunately

Kolmogorov was seriously ill and was lying in his room, and that I might be

2 He died in the war in 1943.
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able to make his acquaintance later. He then had dinner with me and set me

a large examination on the theory of functions. We then walked along the

river, and I remember a long conversation on literature and a short examination

on the German language. The next morning he himself wrote on a piece of

paper for me, what he said was a difficult unsolved problem in topology, and

asked me to send him the answer by post when I either solved it or was unable

to solve it. After that, we went to Moscow together, and Pavel Sergeevich

arranged a tour of the Department of Mechanics and Mathematics at Moscow

University for me. Toward evening we walked around Moscow a little, stopped

in at bookshops, where I received a gift from Pavel Sergeevich consisting of

several good books (I recall the book of Schreier and Sperner Linear Algebra in

Geometric Exposition in German and the book Differential and Integral Calculus

by Courant. Late at night I went alone to the Kursk station.

I didn’t get a complete solution of Pavel Sergeevich’s problem, but I did

think of something and wrote him a long letter to which I almost immediately

received an encouraging reply, then another letter, and just before I left for the

Army I again paid a visit to Komarovka.

I was already in the Army when the war broke out. I wound up at the front

and it wasn’t until 1943 that I was able to send my soldier triangle-letter to Pavel

P. S. Aleksandrov

and E. F. Mishchenko

at Gelendzhik (1952)

Sergeevich. His reply found me, and our correspon-

dence, though irregular, continued until the end of

the war. For me every letter of Pavel Sergeevich

(Kolmogorov also wrote to me once) was the source

of great joy and support in those difficult years. By

the time the war ended, I was a lieutenant. An effort

was made to send me to the Military Academy, and

my demobilization was refused. If not for the inter-

vention of Pavel Sergeevich — his repeated requests

to the highest military command — I do not know

how my via dolorosa
3 would have ended.

My friendship with Pavel Sergeevich continued

after I entered the University. He encouraged me in

all my work, sometimes correcting it, and sometimes

directly participating in it. In those lean years, like

many other students of his, I received a gift from him nearly every summer in

the form of a pass to a spa or sanatorium. And once when I fell seriously ill he

and Pontryagin saw to my treatment and recovery.

3 Literally, Journeys through Pain, the title of a long novel on the Russian Revolution and Civil

War by Aleksei N. Tolstoy. — Transl.
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All this rings out in my memory when I read his sparse words: “In 1939

a seventeen-year-old student came to Komarovka . . . was demobilized, . . . , be-

came a graduate student under my direction . . . ”.

I especially remember the lessons that Pavel Sergeevich gave in our musical

education. At the beginning of each musical season he would purchase a large

number of subscriptions at the Conservatory for concerts of classical music and

pass them out to his students; and he himself always came to the concerts. He

knew that even if some of us were coming at first only for fear that he would

notice their empty seats nearby; later on they would come of their own accord

to hear the music.

I still sometimes go to the Conservatory and once in a while I see someone

I know there who began by counting the pipes in the large organ at their first

concerts and later became active visitors to the Large Hall.

In the afterword to his autobiography Pavel Sergeevich wrote:

To my students:

I have already mentioned that I entered the University so that I

could devote myself to teaching in a high school after I graduated,

become a teacher of mathematics in a gymnasium. As things turned

out for me, I almost never taught in a high school but at a higher

level, at Moscow University. I worked practically my whole life,

combining teaching as far as I was able with research. As time

passed, the first of these components (teaching and research) ac-

quired ever greater relative weight and in the end, approximately

when the third generation of my students came (and even a little

earlier) it filled my life completely. My research was always nour-

ished by the emotional content of my life, and the latter began to

consist almost entirely of my students. And so now I thank them all

for everything that they brought into my life, most of all for simply

being there and continuing to be there.

Pavel Sergeevich Aleksandrov died on 16 November 1982 in the arms of his

students A. A. Mal’tsev and F. Gadzhiev. His ashes are buried in a small rural

cemetery in the grave of his mother, not far from the city of Pushkino near

Moscow. His students still sometimes go to the grave and recall that unforget-

table time when they studied with him. And almost all of them believes secretly

that he personally was the center of concern and attention of his extraordinary

teacher. I also will not part with that illusion.
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2.

LEV SEMENOVICH PONTRYAGIN (1908–1988) began

his scientific career as a second-year student in the

Department of Physics and Mathematics at Moscow

University under the direction of P. S. Aleksandrov.

His interests in this early period were concentrated

around two central problems of algebraic (combi-

natorial) topology of the time — topological duality

theorems and dimension theory. His very first math-

ematical papers proclaimed the birth of a new school

of research within the school of Aleksandrov — the

topological school of Pontryagin, which was to be-

come famous worldwide and indisputably exerted a

direct or indirect influence on the development of many central areas of mathe-

matics.

A complete survey of the topological papers of Pontryagin would require

an entire book, but possibly such a book is not needed now, since we have the

three-volume Russian edition L. S. Pontryagin. Selected Works (Moscow: Nauka,

1986) and the four-volume English version L. S. Pontryagin. Selected Works

(New York etc.: Gordon and Breach, 1986). These selections of his works,

assembled by Gamkrelidze, together constitute nearly a complete collection of

the works of Pontryagin and are accessible to all. Nevertheless, I shall write a

brief essay using the survey written by four of Pontryagin’s students — Anosov,

Gamkrelidze, Mishchenko, and Postnikov — and published in the first volume

of the abovementioned Russian edition of the selected works.

Let me begin with a few words about Pontryagin’s early papers in duality

theory and topological algebra. To gain a full appreciation of the work, it is

proper to recall that when his career began the concept of a homology group

in topology was virtually unused — it had been replaced by the Betti numbers

modulo different bases and the torsion coefficients, and the Alexander duality

law was stated as the fact that for a polyhedron K ⊂ R
n the Betti numbers mod

2 of dimension n− r−1 are equal to the numbers for its complement R
n \K of

dimension r. Thus, pr
(R

n \K) = pn−r−1
(K).

Pontryagin made this law deeper, extending Alexander duality to a duality

between the r-dimensional and (n− r−1)-dimensional homology groups mod2
of the polyhedra R

n \K and K. This extension, which he achieved using linking

numbers, led to the isomorphism of the corresponding groups.

Pontryagin then went further, extending these considerations, still mod2, but

for polyhedra K embedded not in R
n, but in an arbitrary closed n-dimensional
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manifold Mn. The solution of this problem required (apparently for the first

time in the history of topology) the consideration of the topological properties

of continuous mappings, which was to become one of the main sources of

homological algebra.

One of Pontryagin’s significant results was the cycle removing theorem,

which asserts that if an r-dimensional cycle Zr of Mn has zero intersection

index with every (n− r)-dimensional cycle in K, then Zr can be homologically

“removed” from the polyhedron K; that is, there exists an r-dimensional cycle

homologous to Zr in Mn and located entirely within Mn \K. This theorem later

found application in the topological theory of variational problems. It is clear

from what has been said just how far one of the central problems of algebraic

topology in the late 1920s had been advanced by a 19-year-old second-year

student.

Among the early topological papers of Pontryagin are his papers on di-

mension theory. Here he constructed examples of compact metric spaces hav-

ing different dimension over different moduli, which were then used to con-

struct dimensionally defective continua, refuting the conjecture that when the

Cartesian product of topological spaces is taken, their dimensions add. The

abovementioned theorem that every n-dimensional compact space can be home-

omorphically embedded in R
2n+1 should also be classified among Pontryagin’s

dimension-theory papers.

But let us return to duality theory. After the early papers strengthening

Alexander’s law of duality mod2, Pontryagin made a long and difficult route to

establish duality relations modulo an arbitrary m, and then also for the complete

homology groups with integer coefficients. The solution of this last problem re-

quired the introduction of a new homological invariant of a compact space F —

its homology group with a compact, rather than discrete, coefficient group —

which made it possible to dispense with the view of duality as an isomorphism

and define it as duality in the sense of Pontryagin. This radical step, which

gave a complete solution to all the duality problems in the area and also the

long-standing problem of a satisfactory definition of the homology groups of

compact metric spaces, was taken by Pontryagin in 1931–1932 and consisted of

the following.

The coefficients used in constructing the homology group H p
(F) are taken

not from the discrete group of residues mod 2, but from the compact topolog-

ical group of rotations of a circle. The group H p
(F) itself is also a compact

topological group in this case. It turns out that the group H p
(F) and the integer

group Hn−p−1
(R

n \F) are dual in the sense of Pontryagin, that is, each is the

character group of the other.
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Pontryagin’s research in topological duality theorems was essentially per-

fected with this theorem. This research gave a complete solution of the central

problem of algebraic topology during the 1930s, and was simultaneously a pow-

erful method of studying general homological problems of topology.

An immediate and logical extension of the papers on duality theory was the

creation by Pontryagin of the general theory of characters of locally compact

commutative groups. Its central result was the theorem that every compact

commutative topological group is the character group of some discrete group.

The proof of the theorem was based on the construction by Haar of an invariant

measure (1933), which played an essential role in the development of topological

algebra.

The general theory of characters enabled Pontryagin to elucidate the struc-

ture of compact and locally compact groups, obtaining definitive results in the

compact and commutative cases. From these results, there followed in particu-

lar the positive solution of Hilbert’s fifth problem for the case of compact and

commutative locally compact groups.

The outcome of all this activity was the famous monograph of Pontryagin

Continuous Groups, which was first published in 1938 and then reprinted many

times in the USSR, as well as in many other countries in all the major European

languages. This book is a classic, which formed the scientific worldview of

many mathematicians, and is still of interest today!

Another paper on topological algebra contains the remarkable theorem of

Pontryagin that asserts that every locally compact connected division algebra is

isomorphic to one of the classical division algebras — the field of real numbers,

the field of complex numbers, or, in the noncommutative case, the division alge-

bra of quaternions. This theorem was proposed by Kolmogorov as an important

element in the axiomatization of spaces of constant curvature (in particular, pro-

jective spaces), and he “ordered” Pontryagin to prove it. The full proof took a

lot of time, although Pontryagin got the commutative case almost immediately,

in the course of one week. Near the end of his life Lev Semenovich wrote that

he regarded that theorem as one of his best papers in topology. But I wonder

which of his papers is not “one of the best.”

I have already mentioned the early papers of Pontryagin on dimension the-

ory, in particular, homological dimension theory, which dovetails with some

outstanding papers of Aleksandrov. These papers gave Lev Semenovich an

impetus to study homotopic problems of topology in the mid-1930s.

The central problem of the initial period of development of homotopy theory

was the problem of homotopic classification of mappings of spheres onto spheres

of lower dimension. Pontryagin arrived at this problem while carrying out

an order of Aleksandrov to give a local characterization of the dimension of
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a compact set lying in R
n in terms of the homological characteristics of its

complement.

Lev Semenovich at first tried without success to solve the problem of ho-

motopic classification of Sn+k on Sn by homological methods, but then, after

learning of a paper by Heinz Hopf on classes of mappings of S3 onto S2,

switched over entirely to homotopic methods.

He first proved that the classification of the mappings of S3 onto S2 obtained

by Hopf was complete, that is, gave all the classes of mappings, and then he

obtained a surprising result — the number of classes of mappings of Sn+1 onto

Sn for n � 3 is 2 (1937). He obtained this same result for the classification of

mappings of Sn+2 onto Sn, at first, however, with an erroneous proposition that

he corrected only in 1950.

However, the central problem — the problem of classification of mappings

of Sn+k onto Sn for k � 3 did not yield. It led Pontryagin to the method of

framed manifolds, the discovery of new invariants of smooth manifolds — the

Pontryagin characteristic classes, and the theory of fiber spaces. This meant the

appearance of a new and very important division of contemporary mathematics —

differential topology, in which there immediately appeared alongside Hopf other

bright names — Stiefel, Whitney, Chern.

Using the method of framed manifolds, mathematicians had succeeded by

the early 1950s in classifying the mappings of Sn+k onto Sn only for k = 1 and 2
(by Pontryagin himself), and k = 3 (by V. A. Rokhlin). For k > 3 the method

required information on smooth manifolds of dimension greater than 3, which

was not available at the time. Since that time, the most profound results in

the theory of smooth manifolds have been obtained by a combination of the

differential-geometric method of Pontryagin and Thom, and Leray’s algebraic

method of spectral sequences.

At present, characteristic classes are the central object, not only of differ-

ential topology, but of all modern differential geometry, and the theory of fiber

spaces long ago became an important method of study in various divisions of

mathematics.

For a long time the problem of topological invariance of the characteristic

classes was one of the central problems in the topology of manifolds. Pontryagin

himself studied it, but it was solved only in the mid-1960s by S. P. Novikov,

using methods developed since the 1950s. It turned out that if the rational

numbers are chosen as the coefficient field, the characteristic classes are indeed

topological invariants of the manifold.

Of the nonhomotopic papers of Pontryagin, I would like to point out another

remarkable paper from 1935. That paper gives the solution of a problem of

É. Cartan on the computation of the homology groups of compact group man-

ifolds of the four basic series of compact Lie groups. The main idea of the
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A visit with Marston Morse in Princeton (1964). Seated: Solomon Lefschetz,

L. S. Pontryagin; Standing: Mrs. Lefschetz, E. F. Mishchenko, Miss Morse, Marston

Morse, A. I. Pontryagina, R. V. Gamkrelidze

solution of this problem was based on Morse’s method of defining a smooth

function on a manifold with isolated critical points, and on constructing the

trajectories orthogonal to the level surfaces of the function.

In 1955, Pontryagin published his last paper on topology, “Smooth manifolds

and their application in homotopy theory” (Proceedings of the Steklov Institute,

95). By that time he had switched over completely to research in applied areas.

In this he was followed by two of his outstanding students — V. G. Boltyanskii

and R. V. Gamkrelidze.

Boltyanskii was already the author of papers in dimension theory and ho-

motopy theory, which formed part of his doctoral dissertation. Gamkrelidze

also had written a doctoral dissertation, after writing several papers in alge-

braic geometry — on Chern cycles of algebraic manifolds. Subsequently, they

both became leading figures in the mathematical theory of optimal control and

enjoyed worldwide fame.
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Two other outstanding students of Pontryagin — Rokhlin and Postnikov —

had set out on their own voyage somewhat earlier. Many now consider Rokhlin

the “best mathematician of his generation, who also strongly influenced the en-

tire development of mathematics in Russia” (V. I. Arnold, “On V. A. Rokhlin,” in:

Selected Works of V. A. Rokhlin, Moscow Center for Continuous Mathematical

Education, 1999).

Formally, Pontryagin was not Rokhlin’s academic advisor, but Rokhlin can

be considered his student without stretching the truth. In any case, at the begin-

ning of his career Rokhlin was in constant contact only with Pontryagin, and this

contact had a decisive influence on his choice of the topic for his research. In

developing Pontryagin’s method of framed manifolds, Rokhlin obtained the first

brilliant results in the smooth topology of three-dimensional manifolds, which

essentially led to the later creation of bordism theory. Nearly all of Rokhlin’s

topological papers in the early period are sprinkled with phrases such as: “the

construction of mappings according to Pontryagin”; “the Pontryagin method of

reducing homotopic problems to problems of fields of frames”; “Pontryagin’s

conjecture that a closed three-dimensional manifold is the boundary of . . . ”;

“Pontryagin’s vector problem”; “the combinatorial invariance of the Pontryagin

classes”; “the Hirzebruch–Pontryagin classes”; and so forth.

Lev Semenovich once told me an interesting story connected with Rokhlin,

and I think it would be in order to repeat it here. The story, in my opinion, is

not a bad indication of the characteristic relations between Pontryagin and his

student when the latter had fallen into extreme difficulty.

Shortly before the outbreak of World War II, Lev Semenovich already knew

Rokhlin as the best student attending his lectures and seminars in topology.

During the war Rokhlin found himself at the front, was taken prisoner by the

Germans, liberated by the Americans, and then found himself in a Soviet filtra-

tion camp, like the majority of the surviving prisoners. When Pontryagin learned

of this, he risked his own safety, with some assistance from Aleksandrov and

Kolmogorov, and took extreme measures to get Rokhlin freed. He appealed

twice to Beria, who was the head of the KGB at the time. After getting Rokhlin

freed, he provided him with a permit to live in Moscow and hired him at the

Steklov Institute as his own assistant.

Pontryagin appreciated Postnikov’s talent from their first acquaintance, but

did not pay sufficient attention to his major papers. It was the British topologist

Peter Hilton who first called attention to these papers in Mathematical Re-

views. The first to do so in the USSR was Shafarevich. In 1960 he nominated

Postnikov’s papers on homotopic topology for the Lenin Prize, which Postnikov

received in 1961.
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Here is a summary of Postnikov’s major result. The simplest homotopic in-

variants of a (connected) space X are its homotopy groups πnX . However, they

do not characterize the homotopy type: there exist homotopically inequivalent

spaces having the same groups. Such spaces necessarily have nonzero homotopy

groups in at least two dimensions, while spaces, whose homotopy groups are all

trivial with only one exception π = πn0 X , have the same homotopy type (which

is denoted K(π,n0)). Postnikov’s main theorem asserts that, up to homotopy

type, every space X can be uniquely decomposed into a sequence of fiber-

ing Xn+1 → Sn (now called the Postnikov tower) whose fibers are the spaces

K(πn+1X ,n+1). Each such fibering is characterized by some cohomology class

kn ∈ Hn+2
(Xn,πn+1X), now called the Postnikov invariant, and the homotopy

type of the space X can be unambiguously recovered from its homotopy groups

and Postnikov invariants.

However, let us return to the beginning of the second period in Pontryagin’s

career — his switch from topology to applied mathematics. This transition was

abrupt, and surprised many people. Actually, it was natural and in complete

accord with the whole nature of Lev Semenovich. The fact that new methods in

topology, different from those of Pontryagin, had appeared in the West (and, in

particular, had enabled J. Leray to classify the mappings of the sphere Sn+k onto

Sn for any k) was not the main reason, or even a secondary reason for changing

areas. The main reason lay deeper. Here is what Pontryagin himself said at the

sunset of his life:

Despite the fact that I had successfully, perhaps even brilliantly,

conducted research work just after graduating from the university,

worry began to gnaw at me. I could not answer the question of

what it was all needed for, the things that I was doing.

The most vivid imagination could not lead me to believe that

homological dimension theory would ever be of any practical use.

But it was of practical uses, that is, practical applications of mathe-

matics, that I dreamed . . . At that time — it must have been around

1932 — Andronov suddenly came to me, a young, talented, ener-

getic, brilliant physicist, with a proposal to do some joint research.

He told me about Poincaré limit cycles, periodic trajectories and

things of that sort . . . Under his influence I held a joint appoint-

ment for a year as a member of the staff of the Institute of Physics

and wrote a paper on dynamical systems that are nearly Hamiltonian.

[The Life of Lev Semenovich Pontryagin, Mathematician, Written by

Himself, Moscow: “Prima V” Private Publisher, 1998]
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Further,

The question of what should be studied is more acute for math-

ematicians perhaps than for specialists in other areas of knowledge.

Mathematics, which arises as a purely applied science, still has, as

its main task at present, to study the material world around us in

order to use it for the needs of humanity.

At the same time, it has its own internal logic of development,

in accordance with which mathematicians create concepts and even

whole divisions of their subject that are the product of purely mental

activity, in no way connected with the material world around us and

having no applications at present. These divisions often fit together

wonderfully and have a certain kind of beauty, but that kind of

beauty is not a justification for their existence. Mathematics is

not music, whose beauty is accessible to the great mass of people.

Mathematical beauty can be understood only by a few specialists . . .

In this situation, the question of the choice of topics for research

becomes very anxiety-producing for mathematicians. I believe that

if not all, then at least many mathematicians should turn to the origi-

nal sources in their work, that is, to the applications of mathematics.

This is necessary both to justify its existence and to inject a fresh

stream into research.

Thus the thought that, even if one does not invent new engineering machin-

ery, one may at least glean the statement of new mathematical problems from

the needs of natural science and technology, had been latent in Pontryagin’s

consciousness for many years. And in the early 1950s he made a firm decision.

From that point on everything happened naturally — a new research school of

Pontryagin arose and began to develop rapidly, soon bringing him worldwide

glory, not only in different circles of mathematicians, but in the wider society of

scholars in other specialties, including engineers studying what was then called

the new technology. A central event in the activity of this school was undoubt-

edly Pontryagin’s discovery of a maximum principle, which has entered the

history of mathematics as the Pontryagin maximum principle. A separate article

by Gamkrelidze devoted to this famous mathematical theorem is published in

the present volume.

In recent years an innumerable collection of books and articles on the mathe-

matical theory of optimal processes has appeared both in Russia and in the West.

The point of departure for these books is the Pontryagin maximum principle.
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This current is immense and is spreading in different directions. Here I would

like to note just one side of the maximum principle, whose significance has been

clarified comparatively recently. The question is that its original Hamiltonian

form is invariant both relative to smooth changes of variable in the state space

and relative to feedback transformations, which in geometry correspond to gauge

transformations.

For that reason, the maximum principle immediately became a very impor-

tant tool of geometric control theory, which arose at the turn of the 1970s in

the USA, and starting in the mid-1970s has also been actively developed in

Russia, France, and other countries. This theory studies first of all smooth non-

linear systems on manifolds, and by coordinate-free methods. Originally, the

main successes of the geometric theory were connected with the penetration of

control into the problem and with higher-order optimality conditions, as well

as with the characterization of controllable systems equivalent to linear systems

with respect to some transformation group.

Much later, in the 1980s, a way was found to construct the fundamental

invariants of the nonlinear systems responsible for the structure of an optimal

synthesis. In particular, people succeeded in constructing a canonical, gener-

ally speaking nonlinear, connection associated with a controllable system and

providing a great generalization of the Levi-Civita connection from Riemannian

geometry, and for defining the “curvature” of optimal control problems. The

linearization of the maximum principle, which was in a certain sense artificial,

is a basis of these constructions.

It is interesting that by following this route one can express the characteristic

Pontryagin classes in terms of the curvature of an optimal control problem. In

other words, one is generalizing the famous relations once obtained by Pontrya-

gin and Chern in the context of Riemannian geometry — that is, for problems of

minimizing Riemannian length. Thus it is suddenly revealed that Pontryagin’s

research areas, which he himself regarded as completely independent of each

other, actually have a deep internal connection. Work in this new area is being

carried on at present by Gamkrelidze and Agrachev.

Another student of Pontryagin — M. I. Zelikin — made fundamental advances

in the solution of the problem of constructing an optimal synthesis for multi-

dimensional nonlinear problems, especially in the presence of an infinite number

of switchings in a finite time interval, which does not admit a direct application

of the maximum principle. In his papers he makes use of both the classical

machinery of optimal control theory and the modern geometric methods such as

the geometry of Lie groups and homogeneous spaces, the theory of foliations,

the resolution of singularities of degenerate mappings, and others.
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I note finally that this work is being continued in Moscow by the students

of Pontryagin’s students — A. V. Arutyunov, S. M. Aseev, the late V. I. Blagodat-

skikh, and M. S. Nikol’skii. In the area of nonsmooth analysis, whose devel-

opment was stimulated to a significant degree by mathematical control theory,

successful work is being done by Yu. S. Ledyaev, in close collaboration with the

famous French mathematician F. Clarke — one of the founders of nonsmooth

analysis.

However, it seems to me that the summit of the development of the

Pontryagin–Gamkrelidze–Boltyanskii 4 mathematical theory of optimal control,

as originally interpreted by its founders, has already been reached and interest is

now shifting to more abstract areas. How significant this progress will be, only

time will tell. But the very first papers of Gamkrelidze and Agrachev promise

many interesting things.

Let us now examine in more detail another significant area in Pontrya-

gin’s school of research — the theory of singular perturbations in differential

equations. Pontryagin became acquainted with Poincaré’s theory of small per-

turbations from Andronov. He very much enjoyed telling beginners about the

phase plane of a second-order differential equation, about regular — smooth or

analytic — perturbations of this plane by a small quantity ε , how the solution

of the perturbed system can be expanded in integer powers of ε , about bifurca-

tions of equilibrium positions, about the concept of a structurally stable system,

introduced into mathematics jointly with Andronov, and the like.

In 1952, Lev Semenovich and I studied the book Theory of Oscillations

by Andronov, Vitt, and Khaikin, and learned about radiotechnological devices

in which periodic motions occur that are not of limit-cycle type, but the so-

called relaxation oscillations — periodic motions containing alternating portions

of slow phase variations and rapid, almost instantaneous ones. We succeeded in

describing the work of a few such systems in a purely mathematical way, without

introducing any physical hypotheses, using differential equations containing a

small parameter ε on the higher-order derivatives.

Thus we arrived at the general problem of studying systems of differential

equations of the form

ε ẋ = f (x,y),

ẏ = g(x,y),

4 At this point I prefer to list the founders of the mathematical theory of optimal control in the

chronological order of the early stages, rather than alphabetical order: 1) Pontryagin — discovery

of the maximum principle; 2) Gamkrelidze — proof of the maximum principle for linear systems

and studies of the second variation; 3) Boltyanskii — proof of the maximum principle in the

nonlinear case.
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where x and y are vectors in R
k and R

l respectively. Here, in the beginning, we

were interested mostly in relaxation oscillations: the conditions for them to arise,

how to compute them approximately, the study of bifurcations in neighborhoods

of points where there is a jump, and the like. We studied these problems for three

or four years, and in 1955 published our note “Periodic solutions of systems of

differential equations near to discontinuous ones” in the Doklady Akademii Nauk

SSSR (102(5), 889–891).

Kolmogorov, who at first did not approve my work with the “vacuum tube

generator” and the like, after reading this note, immediately formed a high

opinion of it and, as Aleksandrov told me, even said that several doctoral dis-

sertations would grow out of this note. Much later, when the monograph Math-

ematical Theory of Optimal Processes by Pontryagin, Boltyanskii, Gamkrelidze,

and Mishchenko was nominated for the Lenin Prize, Kolmogorov proposed that

our note be attached to the nomination, and this was done.

Now let me tell a bit about our joint work. In

the winter of 1951, Lev Semenovich, after one of

L. S. Pontryagin and

P. S. Aleksandrov

at a seminar

the seminars led by him together with Aleksandrov,

invited me to go skating at the rink in the cen-

ter of Moscow on Petrovka Street. I was still an

undergraduate, but I had already read Continuous

Groups and was very nervous, foreseeing a high-

level conversation. However, it turned out to be very

simple and friendly, unusually quiet, and we skated

placidly for an hour or two holding hands. Having a

great deal of experience in cross-country skiing (ac-

quired in the North during the war) I somewhat hes-

itantly proposed to Lev Semenovich that he come

skiing with me. Without a second’s hesitation he

agreed, and I was utterly amazed at the ease with

which he ignored his great physical handicap — total

blindness.

Several days later the project got under way, and everything went surpris-

ingly well both for him and for me. After that, we roamed around various places

in the Moscow suburbs two or three times a week every winter for seven or eight

years, with me leading the way, sometimes breaking a fresh cross-country trail,

sometimes over an established one, and Pontryagin behind me. And nearly al-

ways during these skiing trips we were constantly calculating, proving lemmas

and theorems, only occasionally interrupting these activities for conversations

about literature and other topics or to get across ravines. I remember one oc-

casion when we got lost in the woods and ravines on the way from the Uzkoe
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Sanatorium to the place where the new University was being built on the Lenin

Hills, and that trip lasted six or seven hours.

In the end, all of our conversations while on skis reduced to singularly

perturbed systems. We tried different versions of gluing trajectories together,

computed in our heads the asymptotics of several special solutions of the Riccati

equation (although, as I learned much later, we could have used ready-made

formulas from the theory of Bessel functions) and the like. I never took a pencil

and paper with me, and we sometimes had to stop and write out computations

in the snow.

I must say that in the first winter of our research it was unbelievably difficult

for me, and I was close to despair. I had studied differential equations using

the university textbooks of Stepanov and Petrovskii (which, by the way, do

not cause me to wax nostalgic even today), and Lev Semenovich was forced

to finish teaching me and teach me all over again, since for him a differential

equation meant primarily a dynamical system and Poincaré had been his favorite

mathematician for a long time. I submitted to the re-education with difficulty,

but Lev Semenovich never scolded me for being slow and was finally satisfied

with me. Despite the fact that all our research at first was dominated by him,

he put my name first on our note in the Doklady.

After our research on the cross-country ski tracks, Pontryagin almost never

returned to the theory of singular perturbations. There were only two or three

sporadic exceptions in his work with his graduate students. However, this whole

area owes its conceptual summit to Pontryagin, and we note that there were

many people working in this area: Van der Pol (Netherlands); Dorodnitsyn;

Haag (France); Tikhonov with his students A. B. Vasil’eva, V. M. Volosov, and

V. F. Butuzov; M. Cartwright (Britain); Stoker (USA). Although in later years I

myself and my students (N. Kh. Rozov and A. Yu. Kolesov) wrote many papers

that greatly enlarged the sphere of research (in particular, by extending it to

hyperbolic and parabolic equations, and studying many new phenomena), our

first achievements still seem particularly important to me. To be sure, even my

later research and the efforts of my students Rozov and Kolesov were not easy.

To get an idea how the method of analytic study of the behavior of trajectories

of singularly perturbed systems differs from Poincaré’s method, I give as an

example the asymptotic formula for the period of a relaxation oscillation:

T = T0 +

∞

∑
n=2

ε
n
3

π(n−2)

∑
ν=0

Tn,ν ln
1
ε
,

where π(q) is a certain special integer-valued function of its integer argument q
and Tn,ν are numerical coefficients for whose computation a recursive procedure
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is indicated. This formula, of course, is not for practical applications, but it

shows how peculiar and complicated the departure of a perturbed cycle from the

unperturbed may be.

Differential equations with a small parameter were also studied by Anosov,

a student of Pontryagin and partly a student of mine. His inclination to study

any mathematical problem that he took up with microscopic attention to de-

tail revealed itself in his early student investigations. Even in his second year,

Anosov began to participate actively in Pontryagin’s research seminar and wrote,

seemingly under my direction, his first small research paper. When I praised

him for the result, he announced solemnly that he would do his doctoral disser-

tation (note: he did not say senior thesis or kandidat dissertation, but doctoral

dissertation) on structurally stable systems. I was secretly delighted with such

self-confidence, and after a year or two I realized that he would fulfill his plan

and even more. In the late 1950s he wrote two good papers on the theory

of singularly perturbed systems, one of which — on averaging in systems with

rapidly oscillating solutions — later received significant extensions in the papers

of A. I. Neishtadt, which also became widely known.

After entering the elite group of mathematicians of his generation at a very

early age, immediately after writing the monograph Geodesic Flows on Sur-

faces of Negative Curvature, Anosov remains in this group of — alas, no longer

young — mathematicians to this day. Having fallen into the sphere of those

enchanted with the hyperbolic revolution in dynamical systems, he continues

to regard the Smale horseshoe as one of his idols. Sometimes he makes an

excursion into other areas. Thus, I think, it was not without his influence and

participation that the results of Bolibruch on Hilbert’s 21st problem became

known rapidly.

Pontryagin tried many times to attract Anosov into the mathematical theory

of control, but he firmly and consistently refused, although he always came to

Pontryagin’s seminar and once in passing even thought up a simple example of

a differential game called “the boy and the crocodile,” the study of which was

later undertaken by many in their kandidat dissertations (although, despite its

outward simplicity, the problem has not yet been solved completely).

Game-theory problems, strictly speaking are not optimization problems, even

though each of them contains an objective control realized either through human

will or by mechanisms. However, their mathematical formulation also arises

naturally from the needs of applications, just like the statement of problems

in the mathematical theory of optimal processes. Thus, the practical problem

of one airplane pursuing another (or evading another) can be formulated as a
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differential pursuit–evasion game
5 of two points of a phase space whose laws

of motion in R
n are given by two systems of differential equations

ẋ = f (x,u), (a)

ẏ = g(y,v), (b)

where u and v are control parameters.

In the school of Pontryagin interest in differential games of this kind arose

in the early 1950s. However, the obvious difficulties of the problem, and

the concentration of effort at the time on developing the maximum principle

somewhat dampened this interest. It was only in 1956 that Lev Semenovich

made several new attempts that did not at first lead to any clear success.

Lev Semenovich and I made one of those attempts jointly, after simplifying,

as we thought, the statement of the problem. To be specific, we replaced

the object (b) with a random Markov point ξ with a given transition density

wandering in the same space R
n, and posed the problem as follows: What can

be said about the control u(t) of the motion x(t) that maximizes the probability

that the random point ξ will enter a small neighborhood Vx(t) of the controlled

point x(t) during some time interval t1 � t � t2?
Since this probability is obviously a functional of the control, it appeared that

the problem could be solved using the maximum principle. We computed this

functional, in the process passing through many stages of an approximate solu-

tion of a boundary-value problem for the parabolic Fokker–Planck–Kolmogorov

equation, and the answer turned out to be horribly cumbersome.

Kolmogorov, after reading our note in the Doklady, proposed (in a letter to

me) a simpler formula, which he had obtained from intuitive physical consider-

ations, but without a rigorous proof. A delicate situation arose, and Pontryagin

asked me to find a mistake either in our work or in the work of Kolmogorov.

Fortunately, there were no mistakes, and the one reduced to the other by means

of a small lemma.

After that, as the result of some “shuttle” talks with both Pontryagin and

Kolmogorov, I was told to write a note of the three authors for the Doklady.

I did it, thereby becoming not only the intermediary between two great mathe-

maticians, but also a participant in a small adventure in their joint research.

Unfortunately, our formulas, which were perhaps of some interest for the

theory of probability, did nothing for the theory of differential games, since the

maximum principle is far from providing a complete answer to the question

5 This term seems to have been introduced almost simultaneously by Isaacs in the USA and

Pontryagin in the USSR.
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of the nature of the control that minimizes a given functional. That is why

Pontryagin continued his search for a genuine result. This result appeared in

1966 in the form of a very complicated theorem in whose proof Lev Semenovich

made use of the methods of optimal control theory. However, the application

of that theorem even to a linear differential pursuit game turned out to be

complicated.

Here is what Lev Semenovich himself wrote on this point:

In the late 1970s Mishchenko and I applied the theory I had

constructed to a linear differential game. The result we obtained at

first suggested a condition that would be sufficient for the pursuit

game to terminate.

By such a long roundabout route we had arrived at a solution of

a linear differential pursuit game.

On this long and difficult route there were no flashes of insight,

that is, sudden guesses. Everything yielded with extreme difficulty.

Even more difficult was the route to the solution of the evasion

problem even for a linear differential game. Mishchenko and I

traveled this route almost to the end. All our attempts to connect

the evasion game and the pursuit game were fruitless. The two

problems had to be studied completely independently of each other.

[Proceedings of the Steklov Institute, 1985, 169]

It is possible that the reason these attempts were fruitless lay in the Pon-

tryagin formalization of the game itself and, in particular, in the concept of a

strategy.

Simultaneously with the Pontryagin formalization there appeared other for-

malizations. The most successful, it seems to me, although not as simple, was

the formalization of N. N. Krasovskii. He and his students managed to avoid

contact with the unsolvability of the pursuit–evasion problem and succeeded in

getting the solution to many applied problems.

Nikolai Nikolaevich Krasovskii is the founder and leader of the Sverdlovsk

(Ekaterinburg) school of research, in which the mathematical theory of control

processes was the main area of research.

At an early stage the research in this school was stimulated to a significant

degree by the Pontryagin maximum principle, whose statement Nikolai Niko-

laevich seems to have learned at one of Pontryagin’s seminars in Moscow, even

before it appeared in print. He immediately realized that he was dealing with a

great discovery and, when he got back to Sverdlovsk after his trip to Moscow,
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he switched the attention of his students into the area of control theory, which,

however, coincided with specific requests from many engineers and designers

working in the Sverdlovsk region at the time to create the new technology. Soon

he himself and his students published the first articles and monographs on the

mathematical theory of control, going far beyond the confines of the circle of

problems that Pontryagin’s school was working on.

At present the Ekaterinburg school of mathematicians, which is headed by

Nikolai Nikolaevich Krasovskii and has produced such well known scholars as

Yu. S. Osipov, A. B. Kurzhanskii, A. I. Subbotin, A. V. Kryazhimskii, A. G. Chen-

tsov, and others, is deservedly regarded as one of the most significant in Russia.

The influence of Pontryagin’s scientific ideas on its activity is admitted, I be-

lieve, by the entire group of that school.

∗ ∗ ∗
Pontryagin lived a long and extraordinary life. He described it in two autobi-

ographical works: A Brief Description of the Life of L. S. Pontryagin, Compiled

by Himself (Uspekhi Matematicheskikh Nauk, 1978, 33(6)) and The Life of Lev

Semenovich Pontryagin, Mathematician, Written by Himself (Moscow: “Prima

V” Private Publisher, 1998). From them the reader may obtain a rather complete

picture of the personality of Pontryagin.

Some parts of these autobiographies have evoked gossip in various mathe-

matical circles. Pontryagin’s social activity has been discussed with particular

vigor (and by no means in calm tones), as has his work on the executive com-

mittee of the International Mathematical Union, of which he was a member from

1970 to 1978. Such discussions have even appeared on the pages of certain in-

ternational nonmathematical publications from time to time. However, all this,

even if it is of interest for historical metamathematical research, has nevertheless

only a remote relation to the history of mathematics as a science.

I think it is now generally recognized that, by virtue of the results of his pa-

pers and his scientific influence, Lev Semenovich Pontryagin occupies a secure

place among the great mathematicians of the twentieth century.
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Hilbert’s Seventh Problem

Translated by L. P. Kotova

To Alan Baker on his sixtieth birthday

In Paris on 8 August 1900, at a joint session of the sections of history and

bibliography, pedagogy and methodology of the Second International Congress

of Mathematicians, D. Hilbert gave a lecture entitled “Mathematical Problems.”

It is generally recognized that this event, which occurred at the very beginning

of the twentieth century, exerted a tremendous influence on the subsequent de-

velopment of mathematics. In this article we shall talk about the consequences

of only one problem posed by Hilbert in his lecture, namely the seventh one:

“Irrationality and transcendence of certain numbers.”

It should be noted that by the end of the nineteenth century C. Hermite and

F. Lindemann had solved completely the question of transcendental values of the

function ez at algebraic points:

Theorem 1. For each algebraic number α �= 0 a value of the exponential

function eα is transcendental.

This statement contains transcendence of the numbers e and π , as particular

cases, and transcendence of natural logarithms of algebraic numbers as well.

Moreover, Lindemann claimed, and in 1885 K. Weierstrass published the proof

of a more general fact:
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Theorem 2. If algebraic numbers α1, . . . ,αm are linearly independent over the

field of rational numbers, then there are no algebraic relations with rational

coefficients among the values eα1 , . . . ,eαm . In other words, the values of the

exponential function are algebraically independent over the field of rational

numbers Q .

Many mathematicians, and Hilbert was among them, simplified and per-

fected proofs of these results. The next principal step was to study the values of

the exponential function at transcendental points. It is this problem which was

formulated by Hilbert.

Hilbert’s seventh problem. Prove that ab
, where an algebraic base a differs

from 0 and 1, and b is an algebraic irrational number, is a transcendental

number. For example, the numbers 2
√

2 and eπ = i−2i are transcendental.

It is easy to see that this statement can be formulated differently:

A logarithm logα β , where α , β are algebraic numbers and α �= 0,1, is

either a rational or a transcendental number.

In 1929 A. O. Gel’fond proved the required

A. O. Gel’fond

statement for an imaginary quadratic b. In par-

ticular, it has been proved that eπ is transcendental.

In 1930 R. O. Kuz’min extended Gel’fond’s idea for

the case of a real quadratic b. The final solution of

the problem was obtained in 1934 by Gel’fond and

independently by T. Schneider.

Hilbert’s seventh problem gave rise to two di-

rections of research in the framework of modern

theory of transcendental numbers corresponding to

the two formulations given above. We shall start

from the results which generalize the statement that

logarithms of algebraic numbers with an algebraic

base are transcendental.

1. Bounds of Linear Forms Containing Logarithms

of Algebraic Numbers

In 1969 A. Baker proved the following theorem.

Theorem 3. Let lnα1, . . . , lnαm be fixed natural logarithms of algebraic num-

bers α1, . . . ,αm. If these logarithms are linearly independent over Q , then the
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numbers

1, lnα1, . . . , lnαm

are linearly independent over the field of algebraic numbers.

It is clear that this result generalizes the second formulation of Hilbert’s

seventh problem. This gives rise to some corollaries which are given below.

Corollary 3.1. If α1, . . . ,αm,β1, . . . ,βm are algebraic numbers and

γ = β1 lnα1 + · · ·+βm lnαm �= 0,

then γ is a transcendental number.

This means, the number∫ 1

0

dx
x3

+ 1
=

1
3

ln2+

π

3
√

3
,

is transcendental, and in general any integral∫ b

a

A(x)
B(x)

dx,

is transcendental. (Here a, b are real algebraic numbers, the polynomials

A(x), B(x) are non-negative on the interval [a;b] with degA < degB, and the

polynomial B(x) does not have multiple roots.)

Corollary 3.2. If α1, . . . ,αm,β0,β1, . . . ,βm are algebraic numbers and β0 �= 0,

then

eβ0α
β1
1 · · ·αβm

m

is a transcendental number.

Corollary 3.3. Let α1, . . . ,αm be algebraic numbers different from 0 and 1, and

let β1, . . . ,βm also be algebraic numbers with 1,β1, . . . ,βm linearly independent

over Q . Then

α
β1
1 · · ·αβm

m

is a transcendental number.

The quantitative variant of Theorem 3 has even more interesting and impor-

tant consequences.

Perhaps it seems verisimilar, that the terms of two sequences 2r and 3k cannot

be sufficiently close to each other at large degrees r and k. More generally, one
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may pose a question about the distance between products of powers of the fixed

numbers α1, . . . ,αn−1. Or how close to 1 are the numbers α
β1
1 · · ·αβn−1

n−1 , if the βi

are negative or even arbitrary algebraic numbers? And, lastly, how small can a

nonzero linear combination β1 lnα1 + · · ·+βn lnαn be? In the above case αn = 1
and lnαn = 2πi.

When Gel’fond obtained the solution of Hilbert’s seventh problem, he im-

mediately posed a question about lower bounds of the modulus of a nonzero

linear form

Λ= β0 +β1 lnα1 + · · ·+βn lnαn (1)

The point is that one has to obtain the bounds of |Λ| in dependence of the

arithmetic characteristics of the algebraic numbers αk,βk, that is, in dependence

of their degrees and heights. In the following, the degree and height of an

algebraic number α are denoted by degα and H(α) respectively.

During 1935–1952, Gel’fond published several bounds in the case n = 2,

β0 = 0 which were gradually improved. Many times he emphasized the im-

portance of the general case for various applications. For example, in 1948 in

a paper written together with Yu. Linnik, it was shown how a similar result in

the case n = 3, β0 = 0 could lead to obtaining all imaginary quadratic fields

belonging with the class number (a problem going back to Gauss).

In the 1960s, A. Baker developed Gel’fond’s

A. Baker

ideas, and obtained the first results for bounds in

the general case. The beautiful Theorem 3 men-

tioned above, and its corollaries, were just a by-

product of this activity. Later on many articles

were published, in which bounds were perfected

in dependence of various parameters important for

different applications. A. Baker himself, and also

N. I. Feldman, H. Stark, M. Waldschmidt, and other

mathematicians, made essential technical improve-

ments in the proofs, which helped to perfect the

initial results. The best bound among those pub-

lished so far was obtained in 1993 by Baker and

Wüstholz. 1 Below we shall give a special case of

this result where the form (1) is homogeneous, that is, β0 = 0 and the coefficients

β j are rational.

Theorem 4. Let α1, . . . ,αn be algebraic numbers, and let lnα1, . . . , lnαn be

principal branches of their logarithms with D = degQ(α1, . . . ,αn). Then for any

1 Recently the bound has been improved by E. Matveev.
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integers b1, . . . ,bn which satisfy the condition Λ= b1 lnα1 + · · ·+bn lnαn �= 0 the

inequality

ln |Λ| � −(16nD)
2n+4 lnA1 · · · lnAn lnH

is valid, where A j = max(H(α j),e) and H = max(|b1|, . . . , |bn|,e).
Such bounds were first applied for an effective solution of Diophantine

equations. In some cases the bounds of linear forms containing logarithms of

algebraic numbers allowed one to find bounds for these solutions. For example,

this applies to the Thue equation F(x,y) = A, where F(x,y) is a homogeneous

polynomial with integer coefficients and A is a fixed integer; or to equations of

the form ym
= f (x), where m � 2 and the polynomial f (x) has integer coeffi-

cients. As a rule, these bounds are very large when solutions are obtained by a

brute-force search. For example, it has been proved (A. Baker) that all integer

solutions of the equation

x2 − y3
= k, k ∈ Z, k �= 0,

satisfy the inequality

|x|+ |y| < exp
(
10105 |k|104)

.

Nevertheless, it is possible sometimes to find all solutions by employing various

accompanying circumstances. For example, the following result was proved by

A. Baker and H. Davenport in 1968.

Theorem 5. All solutions of the system of Diophantine equations

3x2 −2 = y2, 8x2 −7 = z2

in natural numbers are the following triples

(1,1,1), (11,19,31).

Another example is connected with the so-called Catalan problem. In 1844

E. Catalan assumed that there are no two sequential integers which are degrees

of natural numbers except (8,9). In other words, that the equation

xm − yn
= 1, x, y, m, n > 1,

has only one solution expressed in integers: x = 3, y = 2, m = 2, n = 3. In 1976

R. Tijdeman, using the bounds of linear forms containing logarithms of algebraic

numbers, proved that the collection of solutions to Catalan’s equation is finite.
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He obtained effective bounds of these solutions. Later on many mathematicians

improved the bounds. To date the best result is the following

16 ·106
� min(m,n) � 8 ·1011.

Perfecting the upper bounds in this problem is connected with the theory of

linear forms containing logarithms of algebraic numbers; and the progress in

obtaining lower bounds requires usage of a specific character of an equation

and involves laborious computer calculations. It is quite probable that Catalan’s

problem will be solved in the near future. 2

The next fundamental problem, known as the abc-conjecture, links additive

and multiplicative properties of integers. It was formulated by J. Oesterlé (in a

less strong form) and D. Masser, and seems to be very difficult.

The abc-conjecture. For any ε > 0 and any positive coprime integers a,b,c,

which satisfy the condition a+ b = c, the inequality

c < γ0G1+ε ,

is valid, where G is a product of all prime divisors of the number abc and γ0

depends only on ε .

Effective bounds for solutions to Fermat’s equation, and even for the more

general equation

ax�
+ bym

+ czn
= 0,

where a, b, c are fixed nonzero coefficients, and x, y, z, �, m, n are posi-

tive variables satisfying the condition (1/�)+ (1/m)+ (1/n) < 1, follow from

abc-conjecture with an effective dependence γ0 on ε . Besides, this conjecture

allows one to get other proofs of Mordell’s conjecture and Roth’s theorem on

approximation of algebraic numbers by rational numbers.

In 1991 C. Stewart and Yu Kun-rui proved the inequality

c < exp(G2/3
+ γ/ ln lnG),

where γ is an effective positive constant, by using bounds of linear forms in

logarithms of algebraic numbers.

The theory of linear forms containing logarithms is transferred to elliptic

and Abelian functions. Corresponding results also have interesting applications

for the investigation of Diophantine equations, and also for matters concerning

transcendence of elliptic and Abelian integrals.

2 In 2002 the problem was completely solved by P. Mihăilescu.
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In 1983 G. Wüstholz generalized Theorem 3. He proved that an analytic

subgroup of a commutative algebraic group contains a non-trivial algebraic point

if and only if it contains a nontrivial algebraic subgroup (all groups are defined

on the field of algebraic numbers).

2. Generalizations to Other Classes of Functions

In 1934 Gel’fond and Schneider suggested a method to solve Hilbert’s seventh

problem, which allowed various generalizations. Later on Schneider published

several such theorems. Here we give only one of them in a formulation due to

S. Lang.

Theorem 6. Let K be an algebraic number field of degree D and let

f1(z), . . . , fm(z) be functions meromorphic on the complex plane of order not

higher ρ . Assume that the transcendence degree of the field C( f1(z), . . . , fm(z))
is not less than 2, and the ring K[ f1(z), . . . , fm(z)] is closed with respect to dif-

ferentiation. If ξ1, . . . ,ξn are different complex numbers satisfying the condition

fi(ξ j) ∈ K, 1 � i � m, 1 � j � n,

then

n � 10ρD.

The choice f1(z) = z, f2(z) = ez, ξk = kα leads to Lindemann’s theorem, and

the choice f1(z) = ez, f2(z) = ebz, ξk = k lna leads to the solution of Hilbert’s

seventh problem.

In 1970 E. Bombieri transferred Theorem 6 to functions of many complex

variables. The points at which such functions take values belonging to a fixed

field of a finite degree over Q , are contained in an algebraic manifold whose

degree is bounded by some explicit constant.

The most interesting corollaries of Theorem 6 are connected with elliptic

functions. In 1937 Schneider proved elliptic analogs of Hermite–Lindemann

theorem and Hilbert’s seventh problem. One more statement proved by Schnei-

der is related to the values of a modular function j(τ), τ ∈ C, ℑτ > 0. He also

proved the following theorem.

Theorem 7. The function j(τ) takes the transcendental values at algebraic

points of the upper complex half-plane which are different from the imaginary

quadratic numbers.
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In fact, the only proof of this statement known

T. Schneider

up to now is related to elliptic functions and The-

orem 6. About 50 years ago Schneider posed a

problem concerning a purely “modular” proof —

that is, a proof without elliptic functions, which

employs only modular forms and a modular vari-

able τ . This matter has remained open since that

time. In 1995, while trying to find such a proof,

the French mathematicians K. Barré, F. Gramain,

G. Diaz, and G. Philibert solved another problem,

on the values of a modular function, which was

posed by K. Mahler (1969) in the complex case

and by Yu. Manin (1971) in p-adic case. The cor-

responding statement is:

Theorem 8. For any complex number τ with ℑτ > 0, at least one of the

numbers eπiτ
and j(τ) is transcendental.

The proof of this statement is based on modular arguments and Gel’fond’s

and Schneider’s ideas used in solving Hilbert’s seventh problem.

3. Algebraic Independence

It is said that the complex numbers ω1, . . . ,ωm, m � 1, are algebraically depen-

dent over the field of rational numbers Q , if there is a nontrivial polynomial

P ∈ Q[x1, . . . ,xm] such that P(ω1, . . . ,ωm) = 0. If there is no such a polyno-

mial, it is said that the numbers ω1, . . . ,ωm are algebraically independent. In

the case m = 1 the terms algebraic or transcendental numbers are used re-

spectively. For example, the numbers sin1 and cos1 are algebraically depen-

dent because sin2 1 + cos2 1− 1 = 0, but each of them is transcendental. The

Lindemann–Weierstrass theorem on the values of the exponential function at al-

gebraic points, formulated above, gives an example of algebraically independent

numbers. If ω1, . . . ,ωm are algebraically independent numbers then for each

polynomial P ∈ Q[x1, . . . ,xm], P �= 0, the value P(ω1, . . . ,ωm) is transcendental.

Gel’fond was the first to investigate the matter of algebraic independence of

the values of the exponential function at points which are not necessarily alge-

braic numbers. In relation to this topic, he made the following two conjectures.

Conjecture 1. Let α be an algebraic number different from 0 and 1, and let

β1, . . . ,βm be algebraic numbers linearly independent with 1 over Q . Then the



Hilbert’s Seventh Problem 277

numbers

αβ1 , . . . , αβm

are algebraically independent over Q .

Conjecture 2. Suppose that α1, . . . ,αm are non-zero algebraic numbers and

log α1, . . . , log αm (2)

are fixed values of their logarithms which are linearly independent over Q .

Then the numbers (2) are algebraically independent over Q .

In the case m = 1 the first conjecture coincides with Hilbert’s seventh prob-

lem, and this is a natural analog of the Lindemann–Weierstrass theorem. The

second conjecture generalizes the Hermite–Lindemann theorem. These two con-

jectures have not been proved for any m � 2.

In 1949 Gel’fond proved the first conjecture in the case m = 2, β1 = β ,

β2 = β 2 where β is a cubic irrational number. The best result in this direction

belongs to G. Diaz (1989):

Theorem 9. Let α be an algebraic number different from 0 and 1, and let β
be an algebraic number for which degβ = d � 2. Then

trdegQ
(
αβ ,αβ 2

, . . . ,αβ d−1)
�

[
d + 1

2

]
.

Here [x] denotes the largest integer � x.

The theorem crowns a long chain of results obtained by A. A. Shmelev,

R. Tijdeman, D. Brownawell, M. Waldschmidt, S. Lang, G. V. Chudnovskii,

E. Reyssat, R. Endell, Yu. V. Nesterenko, and P. Philippon by successive per-

fection of Gel’fond’s ideas.

As for the second conjecture, one should note that there are no results in

this direction except to the aforementioned Theorem 3 proved by Baker.

The results on algebraic independence can be transferred to the values of

elliptic functions. For example, in 1983 G. Wüstholz and P. Philippon proved

an analog of the Lindemann–Weierstrass theorem in this case. There are also

results specific to elliptic functions. The following theorem was published by

G. Chudnovskii.

Theorem 10. Let P(z) be an elliptic Weierstrass function with invariants g2, g3.

Let ω be a nonzero period of P(z) and η the corresponding quasi-period. Then

there are at least two algebraically independent numbers over Q among the

numbers

g2, g3,
ω

π
,
η

π
.
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In particular, this theorem says that for algebraic invariants g2, g3 the num-

bers ω/π , η/π are algebraically independent, and if complex multiplication is

defined in P(z) then the numbers π and ω are algebraically independent as well.

Let γ be a closed path on the Riemannian surface of an elliptic curve

y2
= 4x3 −g2x−g3, ∆= g3

2 −27g2
3 �= 0, g2,g3 ∈ Q. (3)

Then the numbers

ω =

∫
γ

dx√
4x3 −g2x−g3

, η =

∫
γ

xdx√
4x3 −g2x−g3

(4)

are the period and quasi-period respectively of the corresponding elliptic func-

tion P(z). According to Theorem 10, for the curve y2
= 4x3 − 4x the numbers

π and Γ(1/4) are algebraically independent. In particular, the number Γ(1/4)

is transcendental. Similarly, applying Theorem 10 to the curve y2
= 4x3 −4 we

obtain that π and Γ(1/3) are algebraically independent, and Γ(1/3) is transcen-

dental.

Eisenstein’s series of weight 2k (k � 1) is defined by the sum

E2k(τ) =

1
2ζ (2k) ∑m∈Z

∑
n∈Z

(m,n) �=(0,0)

1
(mτ+ n)

2k , k � 1, τ ∈ C, ℑτ > 0.

If k � 2 this function is a modular form of weight 2k with respect to the

group SL(2,Z). The following statement, proved by Nesterenko in 1996, is a

generalization of Theorem 10.

Theorem 11. Let τ ∈C with ℑτ > 0. Then there are at least three algebraically

independent numbers over Q among four numbers

eπiτ , E2(τ), E4(τ), E6(τ).

One of the consequences of this theorem is algebraic independence of the

numbers {
π,eπ

√
3,Γ

(
1
3

)}
and

{
π,eπ ,Γ

(
1
4

)}
,

and also of the numbers π and eπ
√

d for any natural number d.

Denote D =
1

2πi
∂
∂τ . The next statement (D. Bertrand) also follows from

Theorem 11.
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Corollary 11.1. Let f (τ) be a nonconstant meromorphic modular form with

respect to some congruence subgroup Γ ⊂ SL2(Z), defined over Q. For any

number α ∈ C, ℑα > 0, different from the poles of f (τ), such that e2πiα ∈ Q,

the numbers f (α), D f (α), and D2 f (α) are algebraically independent over Q.

Special cases of this statement and some examples were found by Bertrand

himself, and also by D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa.

Because ∆(τ) = 1728−1
(
E4(τ)

3 −E6(τ)
2
)

is a modular form of weight

12 with respect to SL(2,Z), Corollary 11.1 is valid for ∆(τ) and Dedekind’s

η-function

η(τ) = ∆(τ)1/24
= eπiτ/12

∞

∏
n=1

(
1− e2πinτ) .

The values of the Rogers–Ramanujian continued fraction

RR(α) = 1+

α

1+

α2

1+

α3

1+ . . .

can be expressed in terms of the above η-function. So we can state that the

number RR(α) is transcendental for any algebraic α , 0 < |α | < 1.

Another example is related to θ -function

θ3 = 1+ 2
∞

∑
n=0

eπin2τ .

A function f (τ) = θ2
3 is a modular form of weight 1 with respect to the congru-

ence subgroup Γ(4). Hence the following statement holds:

Corollary 11.2. For any algebraic number α , 0 < |α | < 1, the numbers

∑
n�0

αn2
, ∑

n�1

n2αn2
, ∑

n�1

n4αn2

are algebraically independent. Specifically, the sum

∑
n�0

αn2
(5)

is a transcendental number.
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As long ago as 1851, while constructing examples of transcendental num-

bers, J. Liouville used the series (5) with α = �−1, � ∈ Z, � > 1 as an example,

for which his method allowed only proof of irrationality.

The following corollary of Theorem 11 generalizes the Mahler–Manin

problem.

Corollary 11.3. For any τ ∈ C with ℑτ > 0 which is not equivalent to i and

e2πi/3
with respect to SL(2,Z), there are at least three algebraically independent

numbers over Q among the numbers

eπiτ , j(τ), D j(τ), D2 j(τ).

4. Hypergeometric Functions

There are only a few cases for which it is possible to prove algebraic inde-

pendence of the values of Gauss’ hypergeometric function F(a,b,c;z) and its

derivative defined in the unit circle by the series

F(a,b,c;z) =

∞

∑
n=0

(a)n(b)n

(c)nn!
zn. (6)

For example, if we apply Theorem 10 to the elliptic curve

y2
= 4x(1− x)(λ−1 − x), λ ∈ Q, λ �= 0,1, (7)

we obtain that the numbers

1
π

∫
γ

x−1/2
(1− x)−1/2

(1−λx)−1/2 dx,
1
π

∫
γ

x1/2
(1− x)−1/2

(1−λx)−1/2 dx (8)

are algebraically independent over Q . Here γ is a closed path on a Riemannian

surface of the elliptic curve (7) which is not homologous to zero.

It is well known that one can choose paths of integration γ1, γ2 such that

1
π

∫
γ1

x−1/2
(1− x)−1/2

(1−λx)−1/2 dx = F

(
1
2
,
1
2
,1;λ

)
and

1
π

∫
γ2

x−1/2
(1− x)−1/2

(1−λx)−1/2 dx = iF

(
1
2
,

1
2
,1;1−λ

)
,

where |argλ | < π , |arg(1−λ )| < π . From this follows:
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Theorem 12. For any α ∈Q, α �= 0,1 and for any branch of the hypergeometric

function the numbers

F

(
1
2
,

1
2
,1;α

)
, and F ′

(
1
2
,
1
2
,1;α

)
are algebraically independent.

The function F
(

1
12 , 5

12 ,z
)

possesses the same property. It is a solution of the

differential equation

z(1− z)y′′ +
(

1− 3
2

z

)
y′ − 5

144
y = 0, (9)

which has another solution F
(

1
12 , 5

12 , 1
2 ;1− z

)
. These two solutions can be uni-

formized by Eisenstein’s series.

Theorem 13. The identities

F

(
1

12
,

5
12

,1;
1728
j(τ)

)
= E4(τ)

1/4, (10)

F

(
1

12
,

5
12

,
1
2

;
E2

6

E3
4

(τ)

)
=

τ+ i
2i

(
E4(τ)

E4(i)

)1/4

(11)

hold in the upper complex half-plane τ ∈ C, ℑτ > 0.

Here we use the branch E4(τ)
1/4 which is real and positive on the imag-

inary axis τ = it, t > 0. For these values of the variable τ the quantities

1728/ j(τ) = ∆(τ)/E4(τ)
3 and E2

6/E3
4 = 1− 1728/ j(τ) are real, positive, and

less than unity. One should take branches of Gauss’ functions (6) at τ = it, t > 0
in the identities (10) and (11).

The identity (10) and Theorem 11 provide another proof of algebraic inde-

pendence of the values of the function F(1/12,5/12,1;z) and its derivative at

algebraic points α different from 0 and 1.

The identity (11) explains another phenomenon, first noticed by F. Beukers

and J. Wolfart.

Theorem 14. There is an infinite set of algebraic points α at which the tran-

scendental function F(1/12,5/12,1/2;z) takes algebraic values.

This statement holds because for any natural n the values E4(ni)/E4(i) and

j(ni) are algebraic numbers. For example, at τ = 2i one obtains from (11)

F

(
1

12
,

5
12

,
1
2

;
1323
1331

)
=

3
4

4
√

11.
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In a more general situation, uniformization of hypergeometric functions is

related to functions which are automorphic with respect to the monodromy

group of a corresponding differential equation. In this connection it seems very

interesting to investigate transcendence and algebraic independence of the values

of automorphic functions.

References and more detailed information concerning the above matters are

given in the two books cited below.

Bibliography

[1] N. I. Feldman, Yu. V. Nesterenko. Transcendental numbers. In: Number Theory IV

(eds. A. N. Parshin and I. R. Shafarevich). Berlin: Springer, 1998 (Encyclopædia

Math. Sci., 44).

[2] Introduction to Algebraic Independence Theory (eds. Yu.V. Nesterenko and

P. Philippon). Berlin: Springer, 2001 (Lecture Notes in Math., 1752).



S. M. Nikol’skii

The Great Kolmogorov

Translated by R. Cooke

A remarkable phenomenon in the twentieth century mathematics, in my opinion,

is the great Nikolai Andreevich Kolmogorov, one of the greatest mathematicians

on a world wide scale.

Much has already been written about the greatness of Kolmogorov, and I

myself have written some of it. Several years ago the large book Kolmogorov

in Reminiscences [1] went out of print. Its authors — mostly his students —

are now prominent scholars, each of whom describes this great man from his

own perspective. One can only regret that this book was published in a rather

small print run, and therefore many libraries do not have it. Among the articles

in the book, one substantial systematic survey of the life and creative activity

of Kolmogorov stands out. It was written by his student Albert Nikolaevich

Shiryaev, a corresponding member of the Russian Academy of Sciences. It

would be worthwhile to reprint this survey, together with the bibliographical

data, in a larger publication.

Kolmogorov made fundamental contributions to all areas of mathematics

and founded entire areas himself, which are now being investigated by many

mathematical schools, both in Russia and abroad. His role in probability theory

is especially large. Due to Kolmogorov’s research, probability theory was turned

into an independent mathematical subject.

These Reminiscences also contain an article of mine. Here I shall confine

myself to some particular remarks on the life and work of Andrei Nikolaevich.
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I mention that I was a student of his, and I am apparently the oldest of his

students still living. I was a peculiar student, because Andrei Nikolaevich was

only two years older than I. How that came about I won’t describe here, since I

have written about it in the aforementioned article in the Reminiscences and in

articles in the Uspekhi Matematicheskikh Nauk [2], [3].

I have said that Kolmogorov made a contribution to all areas of mathematics.

Formally, he has no papers in number theory. But this lack is more than made

up by the earliest research of Andrei Nikolaevich, when he was five years old.

All by himself he discovered the following remarkable table:

1 = 12

1+ 3 = 22

1+ 3+ 5 = 32

· · ·

I personally cannot imagine a five-year-old penetrating so deeply into the essence

of the natural numbers. But here you see that there was such a child — it was

Andrei Kolmogorov.

Andrei Nikolaevich got into mathematics through the theory of functions of

a real variable during his undergraduate years. He was a student of Nikolai

Nikolaevich Luzin. Luzin always respected and valued him for his great sci-

entific abilities. And if, later on, Luzin was able to dislike Kolmogorov, that

was only because Kolmogorov had digressed from the problems of real func-

tion theory proper (Luzin’s ideas) for the sake of developing other mathematical

subjects that Luzin regarded as inferior.

Andrei Nikolaevich did not obey Nikolai Nikolaevich, although he respected

him as a scholar and was grateful to him as a student is grateful to a teacher,

to the end of his life. Even when he was young, Andrei Nikolaevich felt that

mathematics is much more than merely the ideas of Luzin, even though these

ideas were quite important. Those who wish might develop only them, and

Andrei Nikolaevich was willing to help with the strength of his powerful mind.

Nevertheless, Andrei Nikolaevich could not help returning to the problems

of real function theory from time to time. The main problem that Kolmogorov

solved while he was in the school of Luzin was to construct an example of

a Lebesgue-integrable periodic function whose Fourier series diverges at every

point. In 1922, when he was still a student, Kolmogorov had found a function

and proved divergence of its Fourier series almost everywhere [4]. Then, in

1926 (as a graduate student), he modified his reasoning, obtaining a Lebesgue-

integrable function whose Fourier series diverges everywhere [5].
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With this result Kolmogorov had obtained a negative answer to a question

posed by Luzin. Nina Karlovna Bari, a famous member of Luzin’s school, notes

in her treatise that “all of us (in Luzin’s school) were impressed by this result

of Kolmogorov.” Later I happened to be at a meeting at Moscow University

in honor of Andrei Nikolaevich’s fiftieth birthday. During this meeting, there

were storms of applause for the honoree, who by that time had made fundamen-

tal contributions to many areas of mathematics. In his closing speech Andrei

Nikolaevich stressed that he regarded his result on the divergent Fourier series

as the most difficult result he had achieved during thirty years, the one that

demanded the greatest mental concentration and the creation of a complicated

mathematical construction. I would point out that in our time S. V. Bochkarev

has obtained a further essential development of this Kolmogorov’s result by

solving the corresponding problem for general orthogonal series.

However, only a few years after his fiftieth birthday, Andrei Nikolaevich

obtained another result [6] in the theory of functions of a real variable, which

he called his most difficult result in the sense of the technical difficulties to be

overcome. Here is that result. Every function f of n variables that is continuous

on the cube [0,1]
n can be represented in the form

f (x1, . . . ,xn) =

2n+1

∑
k=0

Xk

( n

∑
l=0

ϕkl(xl)

)
,

where Xk and ϕkl are continuous functions of one variable. Moreover, the

functions ϕkl are given in advance and are independent of f .
This is indeed a very difficult and unexpected result, giving rise to a new

picture of the possibilities of continuous functions of several variables. It turns

out that computing any continuous function of several variables can be reduced

to computing functions of one variable interconnected by function compositions.

We note that this result was preceded by certain other results, obtained by

Kolmogorov and his student V. I. Arnold, which were essential at a certain stage.

∗ ∗ ∗
Several years ago I learned that in 1991 the Proceedings of the Royal Society

(London) published a special collection of articles under the title Kolmogorov’s

Ideas 50 Years On [7]. The title referred to the ideas of Kolmogorov on

turbulence in fluids and gases, which he published in the Doklady Akademii

Nauk SSSR in 1941 [8]–[10]. It was pointed out in the very first article in this

collection (I am writing from memory) that Kolmogorov’s results obtained in

the articles mentioned above are among the most important ones in the modern

theory of turbulence.
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There recently appeared a book with the title Turbulence: The Legacy of

A. N. Kolmogorov [11] by a prominent specialist in turbulence, U. Frisch, who is

a corresponding member of the French Academy of Sciences. This book is a

high-level textbook for both students — of mathematics, physics, astrophysics,

and geophysics — and professionals — scholars and engineers.

Kolmogorov figures in these books on the one hand as a mathematician

who preferred the probability-theoretic approach to the difficult problems of

turbulence, and on the other hand as a physicist, since this approach is based on

certain physical assumptions formulated by Kolmogorov.

It is known that this theory encountered criticism in its time from the fa-

mous theoretical physicist Lev Davidovich Landau. But, after the lapse of half

a century, here is what Frisch has to say on that score: “The central figure in

this book on turbulence is the great Russian scholar Andrei Nikolaevich Kol-

mogorov.” Thus time has been on the side of Kolmogorov.

∗ ∗ ∗
Frisch calls the period 1941–1942 the “Kazan’ period” of Kolmogorov’s

activity in the theory of turbulence. Let me relate a few facts about this period.

Andrei Nikolaevich was indeed associated with Kazan’ from the the second half

of 1941, when the Mathematical Institute of the USSR Academy of Sciences,

where he worked, was in wartime evacuation. At that time Kolmogorov had

an administrative position as Secretary of the Physics and Mathematics Division

of the USSR Academy of Sciences. In that capacity he made the rounds of all

the institutes of the Division — mathematical and physical. During this time

Kolmogorov, travelling frequently between Moscow and Kazan’, still managed

to give lectures in the non-evacuated branch of Moscow University. But even

then he found time for research, which, as we see, was quite productive. In

addition he had students. Thus in 1941 he directed the doctoral dissertations of

three students: A. I. Mal’tsev in algebra and logic, A. M. Obukhov in turbulence,

and me in approximation theory.

Anatolii Ivanovich Mal’tsev and I may not have burdened him excessively

at the time. Our topics had been formed earlier, and all Andrei Nikolaevich had

to do was to check over our results — it should be said, however, that he did

this with careful attention and interest. It was different with Obukhov. He was

working on a topic that Kolmogorov himself was working on intensively at the

time, and he later became Andrei Nikolaevich’s main assistant on turbulence in

meteorology. I recall Obukhov at the beginning of the “Kazan’ period” (autumn

1941), when he lived in a dormitory room at Kazan’ University in which there

was only one bed. There was a blackboard on the wall, on which for some reason
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he carried out intensive calculations at night. Anatolii Ivanovich Mal’tsev and

I also lived at close quarters in a small room, which we furnished from the

shelves of Kazan’ University.

Incidentally, Andrei Nikolaevich Kolmogorov made his discoveries during

the day and slept at night.

∗ ∗ ∗
I would like to call attention to another fact. Soon after the war began, in

August of 1941, I was sent out of Moscow to the west of Maloyaroslavets to

dig tank traps — a structure extending for hundreds of kilometers from north

to south. Just before leaving, not knowing what fate was in store for me, I

decided to submit some material on my future doctoral dissertation to Andrei

Nikolaevich through the secretary of the Institute. But in a twist of fate the

Germans breached our tank traps in early October, work on them was halted,

and I wound up in Moscow, where I found some members of the Mathematical

Institute who had not yet managed to get themselves evacuated. Kolmogorov

was also in Moscow at this time. But panic broke out on 16 October: it was

believed that the Germans were already invading the city. Even so, I went

to the Institute that day and learned that Andrei Nikolaevich and our director,

Academician Sobolev, had left Moscow hurriedly the evening before. They had

received a telephone call on the evening of 15 October informing them that they

must go immediately to Pavelets Station and bring only carry-on luggage — a

special train was waiting to take them from Moscow to Kazan’. In late October

Anatolii Ivanovich and I also arrived in Kazan’.

At our first meeting in Kazan’, Andrei Nikolaevich invited me to tea at his

home in the evening. He was living in a crowded location with his friend Pavel

Sergeevich Aleksandrov, his aunt Vera Yakovlevna and Pavel Sergeevich’s sister,

Varvara Sergeevna. A corner of the room had been marked off for research

by two bookshelves. It was in this nook behind the bookshelves that those

discoveries were born that have now been immortalized in special collections of

foreign academies.

After tea Andrei Nikolaevich went behind the bookshelf and returned with —

what do you know! — my manuscript. He said that the material in this man-

uscript was completely sufficient for a doctoral dissertation and advised me to

break off my doctoral studies (which were intended to last another two years)

and defend the dissertation — it was wartime and it would not be reasonable

to draw out this affair. As it happened, Andrei Nikolaevich said approximately

the same to Anatolii Ivanovich. Two months later we defended our doctoral

dissertations.
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But here is the remarkable thing in all this. On that tragic evening of

15 October, hastily leaving his house in Moscow, Andrei Nikolaevich had put

my manuscript into his suitcase. He could have put an extra pair of trousers

there — many would have done so. This is only one example of the deep

humanitarian concern that Andrei Nikolaevich exhibited toward his students.

All of us, and we are many, keep in our hearts the memory of our Teacher, and

will do so to the end of our lives.

∗ ∗ ∗
In Kazan’ I was mostly occupied with my mathematical concerns. But

Andrei Nikolaevich nevertheless occasionally entrusted me with approximate

investigations of certain differential equations which I understood were of an

exploratory nature. It seems to me that, in any case, during his “Kazan’ period”

Andrei Nikolaevich was trying very hard to obtain a theory of turbulence having,

to the extent possible, a purely mathematical character, free of special physical

assumptions. But it didn’t work out, and those physical assumptions turned out

to be fundamental and they are still important today.

Andrei Nikolaevich studied carefully the numerical experimental results

available in the literature, including those of Prandtl. He himself did not set up

any physical experiments, in fact, that was impossible at the time. But later on he

spent an extended period sailing the oceans on a special research ship and over-

saw directly the experiments of young scholars on turbulence in the oceans. 1

∗ ∗ ∗
After the war, starting in 1947 I lectured in the Moscow Institute of Physics

and Technology alongside Academician Landau. Thus it happened that for

nearly two years we shared a car ride from Dolgoprudnyi into Moscow. Lev

Davidovich sat in the back seat and I alongside him. He was a very pleasant

and engaging conversationalist. We often spoke about our teaching duties. In

particular, Lev Davidovich stressed his firm conviction that the subject of “Me-

chanics” in physics departments should be a part of “Physics”; that is, lectures

on mechanics for physicists should be given by physicists. He had no such

words for mathematics, although in a number of cases he criticized the way

mathematicians lecture on their subject to physicists. But there was an excep-

tion — probability theory. Lev Davidovich believed that mathematicians should

not lecture on probability theory to physicists — they always lecture to physicists

in the wrong way; physicists themselves should lecture on the probability theory

that they need.

1 Reminiscences and documents on these expeditions of Andrei Nikolaevich have recently been

published in Extraordinary Phenomenon: A Book About Kolmogorov [12]. — Eds.
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Lev Davidovich also talked about Kolmogorov. He expressed great respect

for the mathematical work of Kolmogorov, including his work in probability.

However, he added that Kolmogorov had no business meddling in physics with

his probability theory.

But life goes on and introduces its own corrections.

∗ ∗ ∗
For a long time International Congresses of Mathematicians have been tak-

ing place in the even years not divisible by 4. There was an interruption during

World War II, and the first post-war congress took place in 1950. Soviet math-

ematicians did not participate in it (Stalin wouldn’t allow it). But at the next

congress in 1954 in Amsterdam a small delegation from the Soviet Union nev-

ertheless appeared. It consisted of only three mathematicians: P. S. Aleksandrov,

A. N. Kolmogorov, and I. Pavel Sergeevich and I gave sectional addresses, and

Andrei Nikolaevich a plenary address. There were only two plenary addresses

at this congress: John von Neumann spoke at the opening of the congress and

Kolmogorov at the closing session.

Kolmogorov spoke on the theory of dynamical systems. In the main he

presented his own results on these questions, which were published in two notes

([13] and [14]) in the Doklady Akademii Nauk SSSR during 1953 and 1954,

and were to become famous. They assert that the majority of quasi-periodic

motions of Hamiltonian systems are stable. In his talk Kolmogorov noted that

this research had arisen mainly due to the influence of the classical results of

N. N. Bogolyubov and N. M. Krylov (1937).

This result of Kolmogorov was to be developed in his own work and in the

work of V. I. Arnold and Jürgen Moser. The totality of this research has now

been given the eccentric name KAM (Kolmogorov–Arnold–Moser).

I note that the research of Bogolyubov and Krylov just mentioned is also

being continued along these lines in work headed by Yu. A. Mitropol’skii and

A. M. Samoilenko.

At the congress I had the opportunity to notice the immense respect for

Andrei Nikolaevich and Pavel Sergeevich shown by the organizing committee

of the congress and, in general, from leading mathematicians of the world. For

the most part, this was a renewal of contacts established during the 1920s and

early 1930s, when the two of them were abroad for an extended period.

We traveled to Amsterdam by train, with long stops at a time when our

country had not yet had time to heal its wounds after the war. In Brest the stop

lasted so long that we had time for a swim in the Bug river and even to go for

a boat ride.
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Whenever they found themselves near water, Andrei Nikolaevich and Pavel

Sergeevich could not resist taking a dip. The temperature of the water made no

difference to them, as long as it wasn’t frozen. Of course, to everything there is

a season. It was a time of robust good health and vigorous creative activity.

∗ ∗ ∗
From the Reminiscences [1] I learned details about Kolmogorov’s early

childhood, some of which I hadn’t known at all and others I had only guessed.

The earliest childhood of Andrei Nikolaevich was, of course, tragic: he lost

his mother immediately after being born, and his father died young somewhere

far away. His compensation was the love of his grandmother and grandfather,

and the absolutely devoted and selfless care he received from two aunts, who

were quite young girls. One of them, Vera Yakovlevna, adopted the young

Andrei and devoted her life to him; she had no family of her own. His childhood

was also brightened by living in the rich noble house of his grandfather; a

landowner, a nobleman, and Marshal of the Nobility for the Uglich region of

Yaroslavl’ Province.

From Andrei Nikolaevich himself I learned the following facts about his

early childhood.

• On holidays a district police officer would arrive at the kitchen, evidently

the head of the local police. He would come to give his good wishes to

Kolmogorov’s grandfather. The servants would notify the grandfather, who

would then take out a 25-ruble note and ask them to give it to the officer. The

officer would take the 25-ruble note from the maid, ask her to convey his thanks

to the grandfather, and leave.

• Gendarmes burst into the house and carried out a search that was espe-

cially diligent in the room of the aunts where little Andrei was lying in his

cradle. They didn’t find anything, but they forgot to look in the cradle under-

neath the bottom of the future great mathematician. Forbidden literature was

hidden there.

• When he was 80 years old, Andrei Nikolaevich asked me, “Have you ever

ridden a horse?”

“Yes,” I answered, “but not since I was nine years old.” My father (a

woodsman) had a pair of special horses. When they needed to drink, they

would set me on them, and I would ride to the river.

“And you, Andrei Nikolaevich,” I asked, “have you ever ridden a horse?”

“My grandfather bought me a pony,” was the answer. (I didn’t ask whether

one pony or two. 2 )

2 The word poni is indeclinable; and since Russian has no articles, Kolmogorov’s reply could be

interpreted as “My grandfather bought me ponies.” — Transl.
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But still, some questions remained.

In the Reminiscences you can read that aunt Vera Yakovlevna adopted little

Andrei and he received the family name of his adopted mother and grandfather —

Kolmogorov.

Evidently, this was before the Revolution. So, did Andrei also receive

noble status? Please keep in mind that this was not merely a provincial title,

but a title of ancient noble lineage. It would have been natural in such a

case for the grandfather to enroll young Andrei in a “suitable” school, perhaps

even in the Page Corps or the Lyceum. But instead Andrei was sent to the

private gymnasium of Madame Repman, which was the cheapest gymnasium in

Moscow — despite such wealth.

In general we know hardly anything about the grandfather. When did he

die? Before the revolution or after? If after, under what circumstances?

However, I have excerpted from the Reminiscences the following words of

Andrei Nikolaevich: “If there existed a better world, in which people were

reunited with the dead for eternal life, of course I would most of all like to meet

my grandfather and grandmother who raised me, whose love and kindness have

been more than sufficient for my entire life.” “And, of course, I would like

to make an appointment with by beloved teacher” (but that is another topic —

Kolmogorov and education — see below).

∗ ∗ ∗
The great mathematicians Euler, Chebyshev, and Lobachevskii have had, and

continue to have, professional biographers. It is time that Kolmogorov acquired

his own professional biographers. They will have to dig into the archives, for

Andrei Nikolaevich was also a man of affairs — he conducted secret research,

gave important consultations, carried out government assignments, and held

government office. For example, the period when he was Secretary of the

Physics and Mathematics Division of the Academy deserves more detailed study.

Kolmogorov was elected an Academician in 1939. He was never a corre-

sponding member, despite having long since earned that title. But here is the

curious thing: immediately after he was made a member of the Academy, he

was elected Secretary of the Physics and Mathematics Division, even though

there were deserving older academicians in the Division. These matters were

not debated during Soviet times; they were preliminarily discussed by the state

authorities. It looks very much as if Stalin himself took part in this. Thus, by

digging into documents one might find something for History. However, these

documents may all have been shredded long ago. This could have happened,

and it would not contradict Kolmogorov’s own surmises on that question.
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At some point (it seems as if it was in 1943) Andrei Nikolaevich said, in

my presence, “After twenty years no one will know what actually happened in

our country.” I, of course, tried to argue the point, but Andrei Nikolaevich said

to me, “You are not writing your memoirs.”

∗ ∗ ∗
Education and popular mathematics always occupied a prominent place in

the life of Kolmogorov.

When Andrei was very young, it would have been natural for his grandfather

to hire a French or German tutor for his grandson. But it didn’t happen that way.

On their own initiative the young aunts took over the education of little Andrei,

guided, however, by the very latest pedagogical achievements. The education

was democratic — children of neighbors were taught at the same time. It is

certain that the grandfather participated in this process. One way or another, he

was an honorary patron of the schools and all seems to have turned out well.

The gymnasium of Madame Repman also turned out well — better than the

state gymnasia, where the instruction was at a measured pace, but very dry.

Here there was a wide range of general studies in a living liberal context, and as

it happens, there was an opportunity to create the conditions for the accelerated

advancement of Andrei Kolmogorov in mathematics.

The Revolution broke out during Kolmogorov’s last years in the gymnasium.

We do not know specifically what happened to the Kolmogorov family at that

time.

In his student years (1922–1925) young Kolmogorov earned his living (and

most likely, not only his own living) by teaching mathematics and physics in

school (in Potylikha). It was, of course, easy for him to teach in the sense of

knowledge, but he was also interested in pedagogy. The boys and girls first

shied away from him, but nevertheless elected him their class advisor. In the

end, they visited the Crimea and other places, led by Kolmogorov.

Note especially that all this “pedagogical” activity of Kolmogorov occurred

just when he had obtained his famous result on a divergent Fourier series. This

burst of pedagogical activity occurred simultaneously with a powerful burst in

science. Or is it perhaps that in the Crimea he finally realized why the Fourier

series of an integrable function may diverge almost everywhere?

The span of more than 40 years, from the 1920s to the late 1960s, was a pe-

riod of vigorous research by Kolmogorov. But in the 1930s he managed to write

(jointly with Pavel Sergeevich Aleksandrov and by request of Narkompros
3 )

the textbook Algebra. It would be a good idea to reprint this book.

3 People’s Commissariat for Education. — Transl.
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In addition, in the 1930s (and also at the end of his life) besides his scien-

tific discoveries, Andrei Nikolaevich was seriously engaged in the organization

of the Large Soviet Encyclopedia as the editor-in-chief for mathematics. He

wrote fundamental articles for the Encyclopedia of Mathematics — “Mathemati-

cal statistics” and so forth.

The majority of his articles have been automatically reprinted up to now,

not only in new editions of the Large Soviet Encyclopedia but also in other

encyclopedias (mathematical, educational, and so forth).

The 1950s were also years of great scientific triumphs for him. But in

addition to this, Kolmogorov — the dean of Mechanics and Mathematics at

Moscow University — made crucial changes in the curricula, which became

firmly established, not only at Moscow University but in all the universities of

the Soviet Union. Kolmogorov wrote (jointly with Fomin) his famous textbooks

on analysis, which became universally used in Soviet universities, and also in

many foreign universities.

Thus we see that Andrei Nikolaevich has great achievements in the cause

of higher education of mathematicians, which fortunately were fully recognized

during his lifetime. One could list these achievements in detail — one could

tell how he made a point of introducing statistics, logic, information theory and

so forth into the education of students in the Department of Mechanics and

Mathematics; one could talk about the curriculum changes that he proposed for

this department and its counterparts at other Soviet universities; one could talk

about the measures he proposed for recruiting not only senior students but also

first- and second-year students into science, and so forth.

After the mid-1960s Andrei Nikolaevich shifted the center of gravity of

his activity into high school education. He organized an All-Union Physico-

Mathematical School for gifted children at Moscow University. He was in this

school for an extended period almost daily, having turned into a village teacher,

educator, and field-trip leader. Among the former pupils of that school are

thousands holding the degree of kandidat and dozens holding doctorates in the

physico-mathematical sciences. At this point, one can only encourage School

No. 18 in Moscow, which bears the name of Kolmogorov, to uphold the standards

established during his lifetime. It will not be easy without Kolmogorov.

Yet another great contribution of Kolmogorov to school education is pro-

vided by his numerous articles and popular booklets, written especially for sec-

ondary and high school students, teachers, and all who desire to elevate their

general physico-mathematical education or obtain some necessary information.

More than 300 such articles and booklets are listed in the Reminiscences

[1]. In each of these articles you will find profound and original thoughts. One
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cannot help thinking that it would be very worthwhile to gather these articles

and booklets into a single collection and publish them.

At the end of his life Andrei Nikolaevich was working for school education

as the chairman of the commission on the reform of school teaching; first a

commission of the USSR Academy of Sciences, and later of the USSR Ministry

of Education. Here, unfortunately, he did not succeed in implementing his

ideas fully. The textbooks developed as the foundation of the reform were

unsuccessful, and in the end were replaced by new ones, but now under different

leadership.

It was Andrei Nikolaevich’s misfortune that the defects just mentioned were

blamed on him at the highest levels of authority. But this was completely

unjust. The major links in the chain of reform at the time were actually beyond

the influence of Kolmogorov. Take, for example, the algebra textbook for years

6–8. It encountered what may have been the most severe attacks, and they

were justified. In these textbooks, the fascination with set theory is carried to

ridiculous extremes. Such a simple concept as a function received a definition

that was absolutely beyond the grasp of students, and even teachers. But the

principal author of these textbooks was a respected professor of mathematics at

Moscow University, who occupied in addition a very high rung on the ladder

of the educational bureaucracy. He, of course, was completely independent of

Kolmogorov. It may be that Andrei Nikolaevich, as chairman of the commission,

was forced to endorse this textbook. But that, of course, was a mere formality,

without substance.

The time had passed when Kolmogorov could read 35 books by Kiselev in

two days. (And, I claim, he really did read them, from the first page to the

last.) Parkinson’s disease and glaucoma were now beginning to take their toll

on Kolmogorov. And that, of course, was preceded by a long period of physical

decline. In that state, a person will not read anyone else’s textbook.

I note that it was under Kolmogorov’s influence that the elements of mathe-

matical analysis were definitively introduced into high-school mathematics. No

one has yet encroached upon this innovation by Kolmogorov. Along with his

younger colleagues (B. M. Ivlev, A. M. Abramov, and others) Kolmogorov wrote

a textbook for years 9–10 on a new subject in secondary-school mathematics,

which came to be called “algebra and the elements of analysis.” This textbook,

so far as I know, was not attacked. It could not have been attacked, because

it was written by knowledgeable mathematicians, good school-level pedagogues

without any ambitions.

I would like once more to call attention to the legacy that Kolmogorov

left to school students, teachers, and lovers of mathematics in general. They
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are simple, profound judgments that expand a person’s vision and lead to true

science. Our task is to promote the popularization of this legacy.

The matter is simpler in regard to Kolmogorov’s own scientific achieve-

ments — schools of mathematics preserve, and are often based on, the discoveries

of Kolmogorov. In this sense he will occupy a leading position in mathematics

for many years to come — like our great mathematicians Euler, Chebyshev, and

Lobachevskii. And, most likely, in no way inferior to them.
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A. N. Parshin

Numbers as Functions:

The Development of an Idea in the Moscow

School of Algebraic Geometry

Translated by R. Cooke

Where numbers come from nobody knows. Ethnographers have traveled through

all the countries of the world, up and down, backward and forward, and have

found people for whom the concepts “one,” “two,” and “many” are sufficient.

And yet, these people have refined arts, subtle mythology, and nontrivial crafts.

They are people quite as much as we are, but without that “one, two, three,”

and so on to infinity. Prometheus did not bring them “the science of number,

the most important of all sciences.”

However, there is no need to travel the world to see the sharp difference

between the first numbers and those that followed. Language has retained

enough evidence of that. Thus, in many linguistic families the etymology and

grammatical forms of the first three or four cardinal numbers are fundamentally

different from those of all other numbers. Moreover, among all the peoples of

the world the “first” numbers are burdened with a rich symbolism and have

their own individual character. In the sterile series of natural numbers all this

disappears completely.

That there are infinitely many numbers seems to have been recognized for

the first time in ancient Greece. Euclid’s Elements even contain a proof that
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the series of prime numbers is infinite. Here “infinite” is understood as a

potential infinity, a non-finiteness. To the modern person the origin of numbers

is completely comprehensible — they arose from counting “things” or “objects”

(but where does counting come from?). It also seems obvious to modern people

that, once having begun to count, they are unable to stop. To imagine a finite

closed universe of numbers in real life is, after all, not easy. Still, in mathematics

there are, for example, finite fields.

Whatever the situation with numbers, they are originally a discrete, countable

object. All those irrationalities and continua that the Greeks struggled with

arose later in history. But the concept of a function seems to have arisen as the

incarnation of something continuous, the trajectory of a stone that is thrown, or

a line drawn in the sand with a finger. Functions are connected with motion.

However, the subsequent evolution of algebra and many functions turned

into something discrete, amenable to algorithmization by means of some sort

of Maple V or PARI. Many have speculated on the relation of the discrete and

the continuous in mathematics. Hermann Weyl wrote about these two modes

of understanding. And André Weil related the following “argument” between

Claude Chevalley and Oscar Zariski. What is a curve? They went to the board

and wrote the following:

Chevalley f (x,y) = 0

Zariski

We can see both answers. Both are generated by a sweep of the hand, but the

formula can also be read aloud. Thus we are faced with the ancient quarrel

between the ear and the eye, the world of language and the world of vision. 1

The analogy between numbers and functions that forms the subject of this

article is an even greater leap . . . In this article the continuous and the discrete

enter on both sides — into numbers and into functions. Algebra and analysis

work hand in hand here.

The basis of our discussion is a lecture delivered by the author at the confer-

ence “Matériaux pour l’histoire des mathématiques au XX-ième siècle,” which

took place at L’Université de Nice Sophia-Antipolis in Nice in January 1996.

My task was to describe one area in the development of arithmetical algebraic

geometry in Moscow during the 1950s and 1960s. I made no attempt to present

1 The current generation adds here the computer keyboard and the mouse.



Numbers as Functions 299

any complete historical study of the development of algebraic geometry during

this “golden age of the Moscow mathematical school.”

We shall begin by explaining the meaning of the analogy between numbers

and functions, starting with the simplest concepts. In the second part we study

a nontrivial example: the explicit formula for the law of reciprocity. In the third

part we shall become acquainted with certain aspects of the “social” life of the

Moscow school, in particular, with certain seminars, lectures, and books. In

the final part we shall examine another example of this analogy: arithmetical

surfaces, an example that is indisputably the summit of this area. As for the

time frame, I shall hardly pass beyond the early 1970s.

The fact is that the smooth development of this idea — the analogy between

numbers and functions — which began in the last third of the nineteenth century,

underwent a sharp jump in the 1960s. It was recognized that the preceding

development had occurred in the framework of a one-dimensional world. It

became clear that one could and should pass to other dimensions. How exactly

this jump took place we wish to relate here.

The interested reader may consult [1], [54], [45], and [46] to get acquainted

with the subsequent development of these ideas, which tended to be broad rather

than deep. These same articles contain some results that we have omitted.

1. The Analogy

To understand the origin of the analogy between numbers and functions, let us

look at the following table:

f ∈ Z ⊂ Q F ∈ Fp[t] ⊂ Fp(t) F ∈ C[t] ⊂ C(t)

f = (±)pν1
1 · · · pνn

n F = aPν1
1 · · ·Pνn

n F = a(t − t1)ν1 · · ·(t − tn)νn

f �= 0 F �= 0, a ∈ F
∗
p F �= 0, a ∈ C

∗

Here we are comparing the ring Z of integers and the rings of polynomials Fp[t]
and C[t] in one variable t (with coefficients, of course, in the finite field Fp

consisting of p elements and the field C of complex numbers). 2 The nonzero

elements of these rings (the numbers f and functions F) can be expanded as the

product of prime numbers p and irreducible polynomials respectively. Over the

field Fp the latter correspond to conjugate elements of the algebraic closure of

2 Here and below k∗ is the set of nonzero elements of the field k, that is, its multiplicative group.
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the field Fp. Over the field C they are linear polynomials t − t0, where t0 is an

arbitrary point on the complex line C.

The integers νk that occur in the given expansion have the following funda-

mental property: they are valuations
3 in the sense that

• ν( f g) = ν( f )+ν(g),

• ν( f + g) � min
(
ν( f ),ν(g)

)
.

For our rings the valuations ν assume nonnegative values, and they can be

uniquely extended to the quotient fields (the field Q of rational numbers and the

fields Fp(t) and C(t) of rational functions) as homomorphisms onto the group Z.

Accordingly, in these fields we have expansions of their elements into products

that generalize the expansions considered above. This is the first observation

showing that number rings and rings of functions have certain properties in

common.

We now call attention to the fact that in the case of C the set of valuations

coincides completely with the set of points of the complex affine line. The same

is true for the affine line over the finite field Fp if such points are taken as the

maximal ideals of the ring Fp[t]. Each such ideal is a principal ideal, that is,

consists of the multiples of some irreducible polynomial P. In this case, the base

field is not algebraically closed, and the correct definition of the points differs

from the rectilinear definition: a point is characterized by its coordinate, that is,

an element of the algebraic closure of the field Fp.

We may also attempt to use our geometric intuition and introduce a geometric

object in the case of the ring Z. We denote it by Spec(Z), and we shall at first

regard it as the set of prime numbers p = 2,3,5, . . . or prime ideals (p) ⊂ Z. In

this way our table expands to the following:

νp νP νP

p ∈ Spec(Z) P ∈ Spec(Fp[t]) P = (t − t0) ∈ SpecC[t])

affine line affine line

over Fp over C

3 Such valuations are usually called non-Archimedean. Corresponding to them are the multiplica-

tive (non-Archimedean) norms | f | = p−ν( f ) for which | f g| = | f | · |g| and | f +g| � max
(| f |, |g|).

If this last condition is weakened to | f +g| � | f |+ |g|, we obtain the well-known definition of a

norm.
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For any point P on the affine line over C we have the power-series expansion

of a rational function F:

F =

∞

∑
i0

ai(t − t0)
i, where i0 = νP(F), ai ∈ C.

There is also an expansion of this type in the case of the line over Fp. The

analogous construction for the field Q is the p-adic representation of rational

numbers:

f =

∞

∑
i0

ai p
i, where i0 = νp( f ) and ai ∈ 0,1, . . . , p−1.

Both expansions are connected with field embeddings: Q into the field Qp

of p-adic numbers, and Fp(t) and C(t) into the fields of power series Fp
(
(t)

)
and C

(
(t)

)
. These embeddings are the completions of the fields relative to the

metrics defined by the valuations (see [5], [10]):

ρ(x,y) = p−ν(x−y)

in the case of the fields Qp or Fp
(
(t)

)
, and

ρ(x,y) = c−ν(x−y)

in the case of C
(
(t)

)
. (Here c �= 0 is an arbitrary fixed constant.)

As numerical variants of power series the p-adic numbers were introduced

by Kurt Hensel [21]. The analogy between power series and the expansions of

rational numbers in powers of p (for p = 10) had been considered earlier by

Isaac Newton [34].

A more profound manifestation of this analogy is the global property of

valuations known in number theory as the product formula. To obtain it we

must enlarge our objects in order to make them “compact” or “complete.” In

the case of the affine line it is necessary to embed it in the projective line P
1 by

adding a point at “infinity.” It corresponds to the valuation

ν∞( f ) = deg( f ).

The point at “infinity” has no meaning as an ideal of the ring of polynomials

in t. (The set of such ideals is exhausted by the points of the affine line.)

However, our projective line P
1 contains another affine line (the complement of

the point t = 0), which corresponds to the subring Fp[t−1
] or C[t−1

] of the field

of rational functions. And the “infinite” point corresponds to the ideal (t−1
) of
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this ring. Thus, in the case of a field of functions all points are arranged “in

the same way”: they correspond to non-Archimedean valuations of the field of

rational functions, and in this way we obtain all valuations of the field.

In the case of the field Q our geometric object Spec(Z) is also not “com-

pact.” The prime numbers correspond to all non-Archimedean valuations of the

field Q. But there is also an Archimedean valuation: 4

ν∞( f ) = − log | f |, f ∈ Q
∗,

and by a theorem of Ostrovskii we now have all valuations of the field Q. The

fundamental difference with the geometric case is that in the numerical situation

the point at “infinity” has no meaning as an ideal of some subring of the field Q.

The product formula for the field Q has the form(
∏

p∈Spec(Z)

p−ν( f )
)
×| f | = 1, f ∈ Q

∗.

To compare it with the corresponding formula for the projective line, we pass

from the product to the sum

∑
p∈Spec(Z)

νp( f ) log p+ν∞( f ) = 0.

For the projective line X over Fp we have

∑
P∈X

νP( f )deg P+ν∞( f ) = 0,

and for the projective line over C

∑
P

νP( f )+ν∞( f ) = 0.

This means that the polynomial f has a number of zeros equal to its degree.

The projective line is a special case of an algebraic curve, and the ring Z is a

special case of rings of integers in fields of algebraic numbers (finite extensions

of the field Q). These two concepts combine in the language of the theory of

schemes as schemes of dimension 1.

A scheme is a space with a sheaf of rings — the structure sheaf OX of

regular functions on the scheme X . For each open set U ⊂ X we know the set

4 If K is any field, we shall take the (Archimedean) valuation to be log | f |, where | f | is a norm

on K.
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of functions that are regular on U (namely OX(U)). In algebraic geometry, the

fiber of the sheaf OX ,x at the point x ∈ X consists of the rational functions that

do not have a pole at that point. In the example X = Spec(Z) that we have

considered above, one may set

OX ,p =

{
f ∈ Q : f = m/n with m,n ∈ Z and (n, p) = 1

}
.

In general, schemes X (of finite type) over the ring Spec(Z) are the basic object

of arithmetical algebraic geometry. There are two types of schemes. Roughly

speaking, they are “sets” defined by equations with finite coefficients and sets

defined by equations with integer coefficients. We shall denote these two cases

below as geometric (or functional) and arithmetical respectively.

Our basic examples Spec(Fp(t)) and Spec(Z) happen to be the simplest

representatives of these two types. The original classification of schemes is

done according to dimension. By that we mean the absolute dimension over

the ring Z. For affine schemes it coincides with the Krull dimension of the

corresponding ring (that is, the length of a maximal chain of prime ideals). 5

The examples with which we began our exposition happen to be schemes of

dimension 1. Ordered chains of prime ideals in Z, Fp[t], and C[t] have length 1.

For example, in Z we have 0 ⊂ (p), and in C[t] we have (0) ⊂ (t − t0).
From the point of view of arithmetic, the ring C[t] is not of arithmetic type.

However, we have included it in our picture as the example of a geometric

object closest to our intuition.

One of the routes in arithmetic consists of a transition from varieties over

the field C to varieties over Fq, and then to schemes over Spec(Z). Such

an approach suggests the correct statements of theorems that are valid in both

situations, and sometimes also the methods of proving them.

The terminology of schemes arose only in the mid-twentieth century, but

attempts to unify number theory and algebraic geometry into a single subject had

been made much earlier. Probably the first person to recognize the importance

of the concept of dimension for arithmetic was Kronecker. As early as in the

nineteenth century he attempted to develop arithmetic not only for dimension 1

but also for arbitrary dimensions. This program was neglected for a long time

and was resurrected only in the mid-twentieth century.

We can point to two ground-breaking lectures at International Congresses

of Mathematicians in which this problem was discussed. The first was by

A. Weil at the 1950 Congress in Cambridge, Massachusetts [52]. Weil described

5 We recall that an ideal ℘ of a ring A is prime if the quotient ring A/℘ has no zero divisors

and is not the zero ring {0}. That is, the ring A itself is not an ideal.
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Kronecker’s goals as follows: “He was, in fact, attempting to describe and

to initiate a new branch of mathematics, which would contain both number

theory and algebraic geometry as special cases.” The second lecture was by

I. R. Shafarevich and was given at the Stockholm Congress in 1962 [41].

Between these two events, A. Grothendieck created the theory of schemes

([20] and [14]). I think that Weil’s lecture had some influence on Grothendieck.

As for Shafarevich’s lecture, he was now able to use the language of schemes

as the foundation for the further development of arithmetic.

Using the concept of a scheme, we can describe our analogy by the following

table, where we compare schemes X of the same dimension from both parts of

the table:

dim(X) geometric case arithmetical case

. . . . . . . . .

2 algebraic arithmetical

surfaces/Fq surfaces

1 algebraic arithmetical curves =

curves/Fq finite coverings of Spec(Z)

0 Spec(Fq) Spec(F1)

Here F1 is the “field” of one element (see below).

This table is the result (or starting point) of a completely new way of looking

at the analogy between numbers and functions. Over a period of almost 80 years

only the row of the table relating to dimension 1 was known and studied.

The leading role in this development belonged to D. Hilbert ([22], [23]).

This analogy was one of his favorite ideas, and it was thanks to Hilbert that

it achieved fame and became one of the central ideas in the development of

number theory during the twentieth century.

In this section, and those that follow, we shall discuss this Hilbert period,

and then pass to the description of the jump to other dimensions that occurred

in the 1960s.

Let us now repeat the constructions given above in the more general situation

of arbitrary curves (or schemes) of dimension 1. Let X be an algebraic curve

over a finite field Fq, let K = Fq(X) be the field of rational functions on X , and

let νx : K� → Z be the valuations corresponding to closed points x ∈ X . If we
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assume that X is a projective curve, we have the “sum formula”

∑
x∈X

νx( f ) log #k(x) = 0, f ∈ K�,

or the product formula

∏
x∈X

| f |x = 1,

where

| f |x = #k(x)−νx( f ).

Here k(x) = OX ,x/mx is the field of residues of the local ring OX ,x at the point

x ∈ X , mx is a maximal ideal, and k(x) is a finite extension of the field Fq. In

the geometric case we can use either the curve X itself (the point of view of

algebraic geometry) or the field K of rational functions on X (the point of view

of algebra). According to a well known result, these are two descriptions of the

same object. (Every field of algebraic functions of one variable has a unique

projective nonsingular curve X as a model.)

If we turn to arithmetic, we can observe that the algebraic point of view

was dominant for a long time. The object of study was a field K of algebraic

numbers, that is, a finite extension of the field Q of rational numbers. But now

we can also use the geometric point of view, that is, the point of view of the

theory of schemes. This has the following appearance.

Let X be the set of prime ideals ℘ of the ring ΛK of integers in the field K.

To each ℘∈ X there corresponds a valuation ν℘, namely

ν℘( f ) = log | f |℘, f ∈ Q
∗,

where

| f |℘= #(ΛK/℘)

is the corresponding norm. It is easy to see that for K = Q this definition

coincides with the previous definition.

As before, the product of | f |℘ over all ℘, is again not equal to 1. But now

we must adjoin a finite number of “infinite” points ∞, where ∞ is a certain

embedding of the field K in the field C of complex numbers. The number

of such embeddings equals the degree [K : Q] of the field K over Q. If the

embedding ∞ is real, that is, has the form K ⊂ R ⊂ C, then the norm equals

| f |∞ = | f |R = | f |.
Otherwise we have

| f |∞ = | f |C = | f |2.
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We then have the product formula

∏
x∈X ′∪∞

| f |x = 1.

Of course, all these evaluations have a simple interpretation. They correspond

to all possible completions of the field K, namely, ℘-adic fields K℘, real fields

R, and complex fields C. For the field Q we have a unique embedding Q ⊂ R.

A scheme structure on X is defined by the sheaf OX whose fibers are

OX ,℘= { f ∈ K : ν℘( f ) � 0}.
The rings OX ,℘ contain a maximal ideal mx = { f ∈ K : ν℘( f ) � 0}, and com-

pleting with respect to it, we obtain a complete local ring ÔX ,℘. Its field of

fractions will be the completion of K with respect to the valuation ν℘. For

“infinite” points there is no such construction; there are only the fields R and C,

but no subrings in them. For that same reason we cannot introduce the structure

of a scheme on the entire set X ∪{∞} of “points” of the field K.

A field extension K ⊃ Q gives a mapping of degree [K : Q]

X ∪{∞}→ Spec(Z)∪∞,

and above an infinite point of the scheme Spec(Z)∪∞ lie exactly [K : Q] infinite

points of the scheme X ∪{∞}.
But we want to move in the opposite direction, from geometry to arithmetic.

And the theory of schemes makes it possible for us to apply the language of

geometry in the situation of number theory. If X = Spec(Z), the closed points x
of the scheme X are the primes p, and we have a canonical isomorphism:

k(x) ∼= Fp.

Here k(x) = Ox/mx, where mx is the maximal ideal of Ox.

We can speak of rational numbers f ∈Q as rational functions on the “curve”

X with values f (x) ∈ k(x). The fundamental difference from real curves is that

the values f (x) of our function belong to different fields Fq, as x ranges over the

“curve” X . The fields Fq are different from each other. They are not extensions

of the same finite field Fp, as was the case with curves. They contain as a

common subfield only the “field” F1 consisting of one element. We included it

in our table under dimension 0 as the final object in the category of schemes of

arithmetical type. 6

6 Surprisingly, this is not a vacuous concept. It has a rich structure. For example, the higher

K-groups K∗(F1) are defined, and they coincide with the stable homotopy groups of spheres [47].
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2. The Reciprocity Law

Up to now we have spoken only about the simplest aspects of the analogy

between numbers and functions. A much more profound fact is the product

formula for the normed residue symbol(
λ ,µ

℘

)
,

discovered by Hilbert. In [22] he wrote, “The reciprocity law

∏
℘

(
λ ,µ

℘

)
= 1

reminds one of the Cauchy integral theorem, according to which the integral

of a function over a path enclosing all of its singularities always yields the

value 0. One of the known proofs of the ordinary quadratic reciprocity law

suggests an intrinsic connection between this number-theoretic law and Cauchy’s

fundamental function-theoretic theorem.” 7

This idea was realized by Shafarevich in his purely local construction of the

Hilbert symbol. The proof of reciprocity given by him was a far-reaching ex-

tension of the corresponding result for residues [40]. This result is an important

contribution to the solution of Hilbert’s ninth problem. (See the statement of it

in [24] and [17]; and see commentaries on it in the Russian edition of [24].)

Shafarevich was probably the first in the Soviet Union to take this analogy

seriously.

He used it in a highly non-trivial manner, since it was necessary to compare

p-adic number fields whose multiplicative groups had a complex structure with

the much simpler fields of power series. Shafarevich’s paper begins with the

quotation from Hilbert given above. He then corrects Hilbert, showing that the

analog of the product formula must be a formula for the sum of the residues

rather than the Cauchy integral theorem.

7 “Das Reziprozitätsgesetz in der Fassung[
∏
w

(ν,µ

w

)
= [ν,µ][ν ′,µ ′

] · · · [ν(n−1),µ(n−1)

]

]
erinnert an den Cauchyschen Integralsatz in der Funktionentheorie, demzufolge ein complexes

Integral, um alle einzelnen Singularitäten einer Funktion geführt, insgesamt stets den Wert 0 gibt.

Einer der bekannten Beweise des gewöhnlichen quadratischen Reziprozitätsgesetzes weist auf

einen inneren Zusammenhang zwischen jenem zahlentheoretischen Gesetz und Cauchys funktio-

nentheoretischen Fundamentalsatz hin.” (David Hilbert. Gesammelte Abhandlungen. Erster Band.

Zahlentheorie. New York: Chelsea, 1965 (reprint), pp. 367–368.) — Transl.
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We first recall the well known constructions from class-field theory. This

theory is a method of describing Abelian extensions of a field K of arithmetic

type, such as Q or Fp(t) (that is, extensions L/K with a commutative Galois

group Gal(L/K)). In this case it is called global class-field theory.

If K is a number field, it can be embedded in the completion K℘ for all

prime ideals ℘, as we saw above. In this section we shall be dealing only with

the fields K℘. The field K℘ is called a local field, and describing its Abelian

extensions is a local class-field theory problem. To this end, let us consider a

maximal Abelian extension Kab
℘ as the union of all finite Abelian extensions. The

problem is to describe its Galois group over K℘ using a construction intrinsically

connected with the field K℘ rather than with its extensions.

The main result of local class-field theory is the existence of a canonical

homomorphism

ϕ : K∗
℘→ Gal(Kab

℘ /K℘),

which has trivial kernel and dense image. Global class-field theory for the field

K then reduces in a natural way to the local theories for all the fields K℘ (see,

for example, [10]).

We shall show how the mapping ϕ defines the Hilbert symbol. Let us assume

that a pn-th root of unity ζ belongs to our field. Here p is the characteristic of

the field of residues. We take two numbers λ and µ from K℘. In this situation

we have an Abelian extension K(x)/K, where xpn
= λ . Its Galois group G is

the cyclic group of order pn, and for every σ ∈ G we have

σ(x) = (some power of the root ζ )x.

From class-field theory we obtain a mapping

K∗
℘→ Gal(Kab

℘ /K℘) → G,

which we also denote ϕ . We can now define the Hilbert symbol by the condition( pn√
λ
)ϕ(µ)

=

(
λ ,µ

℘

)
pn√
λ ,

where
pn√
λ = x, and the result is independent of the choice of x. Thus, to define

this symbol, we must leave our local field and work with its extensions. The

problem posed by Hilbert was to obtain an explicit expression entirely within

the field K℘, and then use it to reverse this process by constructing the mapping

ϕ and developing class-field theory.

Further, if we take λ and µ from the original global field K rather than

the local field, we obtain symbols for all prime ideals ℘. To obtain a global
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reciprocity law, one must also define a symbol for infinite points ∞. If we

also define a symbol for them (which is much simpler to do), we obtain the

reciprocity law described by Hilbert (see above).

In particular, let K = Q, p = 2, n = 1, and take as λ and µ two odd primes

a and b. The only factors that remain in the infinite product of the general

reciprocity law are those corresponding to ℘= (a), (b), and ∞. Hilbert’s law

then reduces precisely to the quadratic reciprocity law of Gauss(
a
b

)(
b
a

)
= (−1)

a−1
2 · b−1

2 ,

where
(

a
b

)
is the Legendre symbol. I now pass to the explanation of Shafare-

vich’s construction and the way in which it is connected with the residues of

differential forms on Riemann surfaces. Shafarevich considered the case n = 1.

The general case, just like the application to the construction of class-field theory

starting with the local definition of the symbols, was considered by A. I. Lapin

([29], [30]). 8

For brevity, we shall denote our local field by K. It is the field of fractions of

a discrete valuation ring O with maximal ideal ℘ and with the field of residues

O/℘= Fq. We denote the generator of the ideal ℘ by π .

The multiplicative group K∗ has the following structure:

K∗
= {πm}O∗

= {πm}RU,

where the set R consists of multiplicative representatives of the field of residues

Fq, and U = 1+℘ is called the group of principal units.

The Hilbert symbol has two important properties that are useful for its

computation, namely (
λ ·λ ′,µ
℘

)
=

(
λ ,µ

℘

)(
λ ′,µ
℘

)
and (

(λ )
pn

,µ

℘

)
=

(
λ ,µ

℘

)pn

= 1.

The same is true for the second argument µ .

8 His first paper was written in 1950, when he was in detention. The question of the possibility of

publishing it was discussed in the Central Committee of the Communist Party of the USSR at the

request of the Academy of Sciences and the Ministry of Internal Affairs. After the question had

been considered by three members of the Politburo, one of whom was L. P. Beria, permission was

given to publish it under a pseudonym. However, by then Lapin had been freed, and the paper

was published in the usual way. The materials of this correspondence were recently discovered

in the archives of the Central Committee. (See Voprosy Istorii Estestvoznaniya i Tekhniki, 2001,

No. 2, 116–128.)
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These properties show that to compute this symbol we must find some

system of generators for the group U/U pn
. (For the group R we have R = Rpn

.)

For this purpose, Shafarevich used the Artin–Hasse exponentials E(α ,x) and the

variant of them E(α). They are defined for elements α of a maximal unramified

subring Onr ⊂ O and x ∈℘. These functions are homomorphisms from the ring

Onr into the group of units U . We shall see that they are the analogs of the

exponential functions. We shall find the following abbreviation useful:

λ ≈ µ ⇐⇒ λµ−1 ∈ K pn
.

We have the following fundamental expansions:

λ ≈ πaE(α) ∏
1�i<pe/p−1

p� | i

E(αi,π
i
),

µ ≈ πbE(β ) ∏
1�i<pe/p−1

p� | i

E(βi,π
i
).

The integers a and b are defined modulo pn, and the values of all E-functions

are defined modulo pn-powers. If we introduce the homomorphism δ : U/U pn →
U/U pn

with δ (λ ) = E(α) and δ (µ) = E(β ), the required local expression will

have the following appearance:(
λ ,µ

℘

)
= E(β )

aE(α)
−bE(γ),

where

E(γ) ≈ δ

(
∏
i, j

E(iαiβ j,π
i+ j

)

)
.

The main thing is to show that the result is independent of the choice of

the prime element π . This is true, but the proof is complicated and rather long.

Even so, it remained unclear how to find the value of γ explicitly. This was

done later by two mathematicians independently of each other, H. Brückner in

Germany and S. V. Vostokov in Leningrad ([7], [8], [51]).

To understand the analogy with Riemann surfaces, let us consider a point P
on such a surface, a local coordinate t, and the corresponding field K = C((t))
of Laurent series. For the multiplicative group of the field K we have:

K∗
= {tm}C∗U,



Numbers as Functions 311

and all elements λ ,µ ∈U have an expansion

λ = exp(A) =∏
i�1

exp(αit
i
), αi ∈ C,

µ = exp(B) =∏
j�1

exp(β jt
j
), β j ∈ C.

In the field K there are two simple operations: taking the derivative ∂ = d/dt,
and the residue res(∑αiti

) = α−1. The analogy with the residue of a differential

form at the point P can now be seen from the following table:

exp(αit
i
) ∼ E(αi,π

i
),

exp(β jt
j
) ∼ E(β j,π

j
),

exp(B∂A) ∼∏
i, j

E(iαiβ j,π
i+ j

),

res
(

exp(B∂A)

)∼ δ

(
∏
i, j

E(iαkβ j,π
i+ j

)

)
.

To compare the left-hand side and the right-hand side in the last row, one must

note that

A∂B =∑
i, j

jαiβ jt
i+ j−1 and res(A∂B) = ∑

i+ j=0

jαiβ j.

We see that both methods are completely parallel. To be specific, the

operation δ plays the role of the residue. But the second construction in the

number field K is, of course, much more complicated. In particular, the numbers

E(α) and E(β ) have disappeared from our table. It is natural to compare their

role in the definition of the Hilbert symbols with the so-called tame symbol in

the field C((t)) rather than with the residue at the point P.

3. The General Situation in the 1950s and 1960s

The 1950s were a period of reawakened interest in algebraic geometry in the

Soviet Union (although it may not be quite accurate to speak of a “reawakening,”

since up to the 1950s few people in the USSR were interested in algebraic

geometry). 9

9 One can mention only N. G. Chebotarev and, in particular, his book [11], and the papers of

I. G. Petrovskii and O. A. Oleinik on the topology of real algebraic varieties, written just after

World War II. See their survey in [35].
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Nevertheless, after World War II there were several people seriously inter-

ested in algebraic geometry, first among them I. R. Shafarevich, who tried to

study the available literature. To show how difficult this was to do, say, in the

late 1940s, there was a seminar at Moscow University in which several math-

ematicians, Shafarevich among them, attempted to understand the proof of the

Mordell–Weil theorem, but were unable to do so.

One cause of this situation is understandable — the strict isolation from the

rest of the world. For example, when mathematicians from the whole world

met in the International Congress at Cambridge, Massachusetts, for the first

time after the war, there was no one there from the USSR. There was only a

telegram communicating that “Soviet mathematicians, who are extremely busy

with their current research, cannot participate in the Congress” [38]. This was

the very Congress at which A. Weil gave the lecture we mentioned above. In the

late 1950s the situation improved somewhat, but, of course, strong restrictions

remained.

The few visits of Western mathematicians, among whom one must mention

Erich Kähler, exerted a great influence on the development of ideas during

the 1950s. Because of the rarity of direct contacts, the study of the literature

was very important. So far as I know, the notes of the Cartan seminar [9]

were difficult to find in Moscow, but they were studied very thoroughly. The

book of Hodge on harmonic integrals [25] and the lecture notes of Siegel on

automorphic functions of several complex variables [43] were also very popular.

The latter were translated into Russian in 1954 by I. I. Pyatetskii-Shapiro [44],

and in the mid-1950s Shafarevich and Pyatetskii-Shapiro conducted a seminar

on this book, which, from the point of view of understanding the proofs of

the theorems in the book, turned out to be much more successful. Perhaps the

work of Pyatetskii-Shapiro on bounded domains and his solution of Cartan’s

problem on the existence of nonsymmetric bounded domains were the result of

this activity. (See his reminiscences of this time in the collection [55].) In 1960

and 1961 a large seminar on the theory of deformations of complex structures,

which had recently been created by K. Kodaira and D. Spencer, was organized

in Moscow University by E. B. Dynkin, M. M. Postnikov, and I. R. Shafarevich.

But the most important aspect for our history is the interest in the classical

theory of algebraic surfaces. This is understandable from the point of view of

the analogy discussed above. The constructions described in Section 1 belong

to classical algebraic number theory, and thus belong to dimension 1 according

to our classification. Shafarevich later began to study Diophantine equations, in

particular, elliptic curves of algebraic number fields, and realized the necessity

of moving on to higher dimensions. After all, schemes of dimension 2 must
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correspond to curves over such fields. Fortunately, the concept of a scheme itself

had only just arisen. This program was concisely formulated in his Stockholm

lecture, to which we referred earlier. To understand arithmetic in dimension 2,

one must first have a clear picture for algebraic surfaces. That is, we must have

a theory of the corresponding geometric objects — algebraic surfaces, primarily

over the field of complex numbers, and then over other fields.

Such a theory already existed in the work of Italian mathematicians who

studied algebraic geometry — G. Castelnuovo, F. Enriques, F. Severi, and others.

But the main definitions and proofs of the Italian geometers were not sufficiently

rigorous and were sometimes simply incomprehensible. In fact, this subject was

a rather isolated area of mathematics, having its own rules and laws, which were

rejected by the greater part of the mathematical community. The rise of the

theory of sheaves, which came out of complex-analytic geometry (the paper of

J.-P. Serre [39]) and the analytic methods in the papers of Kodaira and Spencer,

made it possible to give new, rigorous proofs of many results of the Italian

school. It suffices to compare the lecture of B. Segre at the 1954 International

Congress in Amsterdam, which belongs entirely to the earlier epoch, with the

lecture of Grothendieck at the 1958 Congress in Edinburgh, to get a sense of

the revolution that had taken place.

In the early 1960s Shafarevich organized a seminar at Moscow University, in

which the classical works of the Italian mathematicians on the theory of algebraic

surfaces were studied. The main source was the book of Enriques [16]. This

seminar was conducted in two stages, during the 1961–62 and 1962–63 academic

years. It is interesting that about the same time (more precisely, in the late 1950s)

interest in the results of the Italians in the area of algebraic surfaces also arose

in the USA, in the schools of O. Zariski and K. Kodaira.

The result of the two-year study was the publication of the book Algebraic

Surfaces [2], which appeared in 1965 in the Trudy Matem. Inst. im. Steklova.

This volume contained the following chapters:

1. Birational transformations (A. B. Zhizhchenko);

2. Minimal models (A. B. Zhizhchenko);

3. Rationality criteria (A. B. Zhizhchenko);

4. Ruled surfaces (I. R. Shafarevich);

5. Minimal models of ruled and rational surfaces (Yu. I. Manin, A. N. Tyurin,

Yu. R. Vainberg);

6. Surfaces of general type (B. G. Moishezon);
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7. Surfaces with a pencil of elliptic curves (I. R. Shafarevich);

8. Algebraic surfaces with κ = 0 (B. G. Averbukh);

9. The space of moduli of complex surfaces with q = 0 and K = 0 (G. N. Tyu-

rina);

10. Enriques surfaces (B. G. Averbukh).

The book gave a complete exposition of the classification of algebraic sur-

faces, as it had been done by the Italians, with results proved in the language of

sheaves. In some places the classical propositions were corrected or extended.

Remarkably, this seminar and the book served as the main impetus for the fur-

ther development of algebraic geometry in Moscow. We give here just a short

list of the further research that grew out of it:

• rational surfaces and multidimensional varieties (with the solution of

Lüroth’s problem 10 and the classification of Fano varieties) (Yu. I. Manin

and V. A. Iskovskikh);

• the theory of vector bundles on algebraic curves and surfaces (A. N. Tyu-

rin, F. A. Bogomolov);

• K3 surfaces (G. N. Tyurina, I. R. Shafarevich, I. I. Pyatetskii-Shapiro,

V. V. Nikulin, A. N. Rudakov, V. S. Kulikov, and others);

• elliptic sheaves and the main homogeneous spaces (I. R. Shafarevich,

O. N. Vvedenskii);

• multidimensional birational and analytic geometry (including criteria for

ampleness) (B. G. Moishezon);

• minimal models for arithmetical surfaces (I. R. Shafarevich).

10 Shafarevich heard the statement of this problem from Chebotarev, who had been interested

in it for some time. In particular, Chebotarev had discussed the problem in his lecture at the

Zürich Congress in 1932. The problem is to explain how a subfield of the field of rational

functions k(x1, . . . ,xn) in n variables can again be a field of the same type. This is true for

n = 1 and for n = 2, k = C. The proof of this last fact was given by the Italians and used

the full power of the theory of surfaces. Manin and Iskovskikh constructed counterexamples

in dimension 3. Independently, the problem was solved by P. A. Griffiths and H. C. Clemens,

M. Artin and D. Mumford.
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The majority of papers in this list were written after the seminar and under its

influence. The papers of Shafarevich on the theory of the principal homogeneous

spaces, which preceded the seminar, are an exception. They arose out of his

interest in Diophantine equations, primarily the theory of elliptic curves. As

early as 1956, in a lecture given at the third All-Union Mathematical Congress,

Shafarevich pointed out the analogy between embedding problems in the Galois

theory of algebraic number fields and the classification problem for elliptic

curves defined over such fields. What these problems had in common was

their statement in the languages of Galois cohomology and the presence of local

invariants connected with the completions of the base number field. (For more

details, see [15].) It was natural to pass from these arithmetical problems to the

study of elliptic curves over a field of algebraic functions, and that is what the

surfaces with a pencil of elliptic curves in the preceding list amount to.

A more detailed exposition of the subsequent development of algebraic

geometry in Moscow can be found in [1], [15], [26]. The general atmosphere of

this era is well described in [55].

4. Arithmetical Surfaces

The development of the last area in our list was

I. R. Shafarevich

of great significance for number theory. In his 1966

lectures in Bombay (now Mumbai) Shafarevich [42]

gave a systematic development of the fundamental

concepts and results from the theory of algebraic

surfaces for the case of arithmetical surfaces. In

these lectures, using the language of schemes, he

constructed a theory of intersections, and defined

and studied birational transformations and minimal

models. 11

As an illustration, we give the simplest example

of an arithmetical surface arising from the affine

line over the field Q. Let X = SpecZ[t]. This is

a scheme of dimension 2, and it is mapped onto B = SpecZ. The fibers of

this mapping over points p ∈ B are affine lines over the finite fields Fp. In

Fig. 1 we represent the points of the fibers (which are simultaneously points of

the scheme X ) with coordinates in finite fields (that is, residues mod p). The

11 Some of these results were obtained independently by S. Lichtenbaum [32] in the USA and

P. Deligne [12] in France.
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Fig. 1

“surface” X contains “curves” defined by equations of the form f = const, where

f ∈ Z[t].
The curves t = 0 and t = 2 intersect at a point Q of the fiber over p = 2 and

have first-order tangency there; that is, they are transversal. The curves t = 1/5
and t = 2 intersect at a point P of the fiber over p = 3 and have second-order

tangency. Indeed,

2 ≡ 0 mod 2, 2 �≡ 0 mod 22,

5 ·2 ≡ 1 mod 3, 5 ·2 ≡ 1 mod 32, 5 ·2 �≡ 1 mod 33.

In the last case, in a neighborhood of the fiber over p = 3 we have the 3-adic

series expansions

2 = 2+ 0 ·3+ 0 ·3+ · · · ,
1/5 = 2+ 0 ·3+ 1 ·32

+ · · · .

The general definition of the index of intersection of two curves C = ( f = 0)

and D = (g = 0) at a point x looks as follows:

(C ·D)x = log#k(x) · length Z[t]/( f ,g), (1)

where log#k(x) is introduced in analogy with the one-dimensional case (see

Section 1). Of course, this definition makes sense only if the curves C and

D intersect in a finite set of points, that is, have no common components. To

give the definition in the general case in algebraic geometry one normally uses
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the shift method, thereby bringing the curves into general position. As a shift

one uses the adjunction of the divisor of a rational function, since the index of

intersection of any curve with a divisor of a function on a complete surface is

zero. This last property is a generalization of a property of divisors of functions

on curves to the case of a surface: their degree is zero (see Section 1). As we

have seen, for this last property to hold one must have a complete or compact

curve.

Accordingly, in the two-dimensional situation one must have something like

a complete surface. However, only incomplete schemes defined over an affine

base — the spectrum of the ring of integers of the field of algebraic numbers —

were considered in Shafarevich’s lectures. It was clear from the very beginning

that such an approach is only a partial analog of the situation with algebraic

surfaces. At the end of the lectures the problem was posed: to find a complete

analog of an algebraic surface and construct a theory of intersections for it. Let

us consider this problem in more detail.

Comparing the geometric and arithmetical cases in dimension 1, we saw

that the complete analog of a projective curve X is the set X = X ′ ∪∞, and the

structure of a scheme is present only on the subset X ′. The point ∞ is adjoined

to X ′ “by hand,” so to speak. It is unknown what structure must be on the entire

set X . It seems that the theory of schemes is unsuitable for this purpose.

This is also true for higher dimensions. The complete object in the right-hand

column of the table above, which corresponds to projective algebraic surfaces,

consists of the arithmetical surfaces introduced by S. Yu. Arakelov [3], [4] in the

early 1970s. It is not very convenient to compare them directly with algebraic

surfaces. For such a comparison an algebraic surface X is usually endowed

with the structure of a pencil of algebraic curves parameterized by a projective

nonsingular curve B. Thus we have a mapping

f : X → B,

whose fibers are projective curves and almost all them are nonsingular curves

of the same genus g.

Let us now compare this mapping with the structure mapping

f : X ′ → Spec(Z)

for an arithmetical surface. Since the basis “curve” Spec(Z) is not complete, this

means that the two-dimensional scheme X ′ is also incomplete, and thus cannot

be regarded as a precise analog of the algebraic surface X . In exactly the same

way as in the case of dimension 1, we need to adjoin something.
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To understand Arakelov’s idea, let us return to the case of an algebraic

surface X with the mapping f and divide the basis curve B into two distinct

parts B′ and S, where B′ is an open subset and S is a finite subset. We wish

to regard B′ as the analog of Spec(Z) and f−1
(B′

) as the analog of X ′. We

now seek the missing part of the arithmetical surface that corresponds to the

part of X lying over S. To solve this problem we need to study this piece of the

algebraic surface X more attentively.

With the mapping f one can connect an algebraic curve Y defined over the

field K of rational functions of the curve B. (In the theory of schemes this

construction, which was known earlier in classical algebraic geometry, is called

the transition to the generic fiber, and it admits a simple and rigorous definition.)

If b ∈ B, we have the curve Y
(b)

obtained by replacing the base field K by the

local field Kb,

Y ⊗K Kb,

and the two-dimensional scheme X
(b)

,

X ⊗B Spec(Ob),

obtained by replacing the base curve B by an “infinitesimal” neighborhood

Spec(Ob) of the point b.

Now let b ∈ S. We can then compare the field Kb with the fields that are the

completions of the field of algebraic numbers at “infinity.” In the arithmetical

case we have no analogs for the schemes X
(b)

, but we can define the curves Y
(b)

by the same formula as above. For the field Q this has the following appearance

Y∞ = Y ⊗Q R ⊂ Y ⊗Q C.

Thus we obtain Riemann surfaces over the field C. Arakelov assumed

that the choice of some Hermitian metric on the Riemann surfaces Y∞ can be

regarded as replacing the nonexistent model X
(∞)

. Such an approach can be

explained as follows. In the geometric case for the curves Y
(b)

, there is a

bijective correspondence{
sections of the projection X

(b)
→ Spec(Ob)

}←→Y
(b)

(Kb)

between sections of the mapping f and rational points of the curve Y
(b)

(see

Fig. 2 below). For any two distinct sections C and D their index of intersection

is defined (see Eq. (1)) and can be used as a metric on the curve Y
(b)

. The

choice of a different model X
(b)

gives another metric on Y
(b)

. Thus, one can

try to regard the set of models X
(b)

as a certain set of metrics on Y
(b)

. Such an
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approach to the interpretation of Arakelov’s theory arose much later [13]. The

description of an exact correspondence between models and metrics was given

only in [56] and [48].

We now give a table that will be more precise than the general picture given

above.

geometric case arithmetical case

projective nonsingular curve B spectrum of the ring Λ of integers

with finite subset S ⊂ B and embeddings of number field K

projective algebraic surfaces arithmetical surfaces

X over Fq with mapping

f : X → B onto B

surface X ′
= f−1

(X −S) two-dimensional scheme X ′

with mapping f |X ′ onto X −S over Spec(Λ)

algebraic curve Y
(b)

with b ∈ S compact Riemann surfaces Y
(∞)

corresponding to embeddings

of K into C

schemes X
(b)

with b ∈ S Hermitian metrics on surfaces Y
(∞)

Arakelov then defined such concepts as divisor, divisor of a function and dif-

ferential form, linear equivalence, index of intersection, and canonical class. He

proved an analog of the adjunction formula and also stated an analog of the

Riemann–Roch theorem in [4].

Arakelov’s construction lay undisturbed for nearly ten years, and only in

the early 1980s did it serve as the point of departure for further development

in the papers of G. Faltings. We refer to [54], [18], [19], [45], [46], [49],

and [37], where these later events are related. This line exerted a powerful

influence on the development of number theory and also on the development of

elementary-particle physics [6], demonstrating again the notorious “unreasonable

effectiveness of mathematics in the natural sciences.”

5. Height and Arakelov’s Theory

In this section we shall explain the origins of Arakelov’s theory, starting from

the concept of height — a basic tool of the theory of Diophantine equations.

Let X be a projective algebraic variety defined over a global field K of

dimension 1 (in other words, K is either the field of algebraic numbers or the



320 A. N. Parshin

field K = k(B) of algebraic functions on some curve B defined over the field of

constants). And let D be a divisor on X (that is, an integer linear combination

of subvarieties of codimension 1).

A height is a function

hX ,D : X(K)→ R

on the set of rational points X(K) depending on the choice of the divisor D on

X . Actually, the height is not uniquely determined by these data. We shall write

f ≈ g for two numerical functions if f − g is a bounded function. The height

is defined as an equivalence class of functions relative to such an equivalence

relation. (For details, see [27].)

Here is a simple but important example: Let X ⊂ P
n, K = Q, and let D be

a hyperplane section. Then the point P ∈ X(K) is (x0 : · · · : xn) ∈ P
n
(Q), where

the xi are relatively prime integers. We have

hX ,D = max
i

log |xi|.
From this one can see that the number of points of a bounded height is finite —

a very important property, which makes it possible to obtain various kinds of

finiteness theorems for Diophantine equations.

More generally, for a global field K with a set of valuations ν (in which we

include infinite points in the numerical case) and norms | · |ν corresponding to

them, the height of a point in projective space is defined as the product

h(P) =∏
ν

max
i

log |xi|ν ,

and the product formula (see Section 1)

∏
ν

|x|ν = 1, x ∈ K∗

shows that this expression is well defined (but depends, for example, on the

choice of the system of projective coordinates).

The height has the following properties.

i) INVARIANCE UNDER LINEAR EQUIVALENCE: if D′
= D+( f ), where ( f ) is

the divisor of the function f , then

hX ,D′ ≈ hX ,D.

ii) FUNCTORIALITY: if f : X →Y is a morphism of algebraic varieties and D
is a divisor on Y , then

hX , f ∗D ≈ f ∗hX ,D,

where f ∗ is the inverse image of the divisors or functions respectively.
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iii) FINITENESS: if the divisor D is a hyperplane section, then for every h ∈ R

the set {
P ∈ X(K) : hx,D(P) � h

}
is finite.

Using these properties A. Weil proved that the group A(K) of rational points

on an Abelian variety A over a global field K is finitely generated 12 (the

Mordell–Weil theorem).

If we are in the geometric situation (according to the preceding classifica-

tion), the base field K has the form k(B), and there exist a projective variety Y
and a morphism f : Y → B with a general fiber X . Under reasonable hypotheses

on X and Y (irreducibility and flatness of the morphism f ) there is a bijective

correspondence {
section of the mapping f : Y → B

}←→ X(K)

between sections C and rational points P on X . The divisor D also defines a

certain divisor D̄ on Y (Fig. 2).

Fig. 2

Under these conditions we have

iv) hX ,D ≈ (C,D)Y .

(For this equality to make sense it is, of course, necessary to have a theory of

intersections on the variety Y , for example, to assume that Y is a nonsingular

variety.)

12 Modulo the K/k-trace in the geometric case. See [27].
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Thus, in essence, the height is the index of intersection and this circumstance

can be used in different areas. If X is an algebraic curve, then Y is a surface,

its model from the preceding section. This connection suggests that the height

may serve as a starting point for a construction of a theory of intersections on

arithmetical surfaces.

An obvious defect of the height is the approximateness of its definition and

its functoriality, only up to the equivalence relation indicated above. J. Tate in-

vented a definition of height on Abelian varieties A: this is a canonical function

ĥA,D on the set of rational points that behaves functorially relative to homomor-

phisms of Abelian varieties and is such that ĥA,D ≈ hA,D.

For the index of intersection in the geometric case we have the obvious

expansion

C·Y D = ∑
b∈B

C·bD

over the indices of intersection in all the fibers of the mapping f . A. Néron [33]

found a new approach to the construction of Tate’s height on Abelian varieties,

which simultaneously gave a local expansion for it over points of the base B (or

valuations ν of the base field K):

ĥ(P) =∑
ν

hν(P)+∑
∞

h∞(P), P ∈ A(K).

We remark that in contrast to the global function ĥ(P) the local components are

not defined for all P ∈ A(K) but only for P ∈ (A−D)(K), becoming infinite on

the divisor D.

In the numerical case the definition of local components is quite varied,

depending on the nature of the point (non-Archimedean ν or Archimedean in-

finity ∞). For ĥν(P) one uses the index of intersection on a special nonsingular

model of an Abelian variety A over the ring of integers of the base field K
(Néron’s minimal model).

Analysis first enters the game at infinity. Let A be an Abelian variety

over the field of complex numbers C, and let D be a positive divisor on A
(that is, C = ∑i niDi, where ni ∈ Z, ni � 0, and Di is an irreducible subvariety

of codimension 1). Then A is a complex torus C
n/Γ, where Γ is a discrete

subgroup of rank 2n in C
n.

On A itself the divisor D is not the divisor of poles of any holomorphic

function, but one can find such a function on the universal covering C
n. And,

what is important, this function can be constructed in a canonical manner.

The divisor D is an algebraic cohomology class, that is, an element of the

space H1,1 ⊂ H2
(A,C) according to the Hodge decomposition in cohomologies
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of the variety A. On an Abelian variety the space H1,1 consists of Hermitian

matrices. If H is the matrix corresponding to the divisor D, there exists a unique

(suitably normalized) theta-function θ(z) = θD(z) on C
n having the following

properties:

(i) the divisor of the poles of (θD) is D;

(ii) θ(z + γ) = θ(z)exp
(
πH(γ ,z)+ π/2H(γ ,γ)

) · χ(γ), where z ∈ C
n, γ ∈ Γ,

and |χ(γ)| = 1. (For details, see [53].)

The local component of the height ĥ∞(P) can now be defined as follows [33]:

ĥ∞(z) = − log |θD(z)|+πH(z,z).

It follows from property (ii) of the theta-function that this function is invariant

relative to Γ, that is, it is a function of the point P ∈ A(C). Moreover, locally

on A, in a neighborhood of each point of the divisor D we have

ĥ∞(P) ≈ log |holomorphic equation for D|. (2)

One can now look at Néron’s construction from a different point of view. How

can the function ĥ∞ be distinguished among all the smooth real-valued functions

on (A−D)(C) satisfying (2)? We remark that all functions having the prop-

erty (2) differ from one another by a function that is bounded and smooth on all

of A.

It is not difficult to see that the condition that distinguishes ĥ∞ is the Poisson

equation

∆ĥ∞ = const outside D, or ∆ĥ∞ = δD on all of A. (3)

Here

∆=∑
i, j

∂ 2

∂ zi∂ z̄ j

is the Laplacian corresponding to the flat metric on C
n, which, being Γ-invariant,

can be lowered to A; δD is the delta-function corresponding to the subvariety D.

This observation suggests that the definition of the local components ĥ∞(P)

can be given for any algebraic variety X if one fixes some Hermitian metric on

it. Then, for every divisor D there exists a function ĥ∞,D satisfying conditions

(2) and (3) that is unique (up to a constant). Such a definition was introduced

in [36] and served as the point of departure for the development of Arakelov’s

theory.
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We can now describe Arakelov’s theory as follows. An arithmetical surface

X̃ consists of a nonsingular two-dimensional scheme X and a mapping of it

f : X → B onto the one-dimensional scheme B = Spec(ΛK), where ΛK is the ring

of integers of the field K of algebraic numbers. We denote the set of infinite

points of the field K by B∞, and for each v ∈ B∞ we choose a Hermitian metric

µv on the Riemann surface Xv = X ⊗v C.

An Arakelov divisor C̃ on X̃ is a linear combination of an ordinary divisor

C on X and the “infinite” fibers Xv, and the latter occur with real coefficients.

Let

C̃ = C + ∑
v∈B∞

avXv, D̃ = D + ∑
v∈B∞

bvXv

be two Arakelov divisors. Assume that C and D intersect in a finite set of

points. Then

C̃ · D̃ = C·X D + ∑
v∈B∞

(C ·D)v + ∑
v∈B∞

av degD/B + ∑
v∈B∞

bv degC/B,

where C·X D is the index of intersection on the scheme X , and the archimedean

indices (C ·D)v are defined using the Green’s functions G(P,Q) ( = Gv(P,Q))

constructed with respect to the metric µv.

We recall that a Green’s function on a Riemann surface X = Xv is determined

uniquely by the following conditions:

1) G is a smooth real-valued positive function on X ×X minus its diagonal;

2) if z is a local holomorphic coordinate near the point P0 on X , then the

function G(P,Q) near (P0,P0) has the form

|z(P)− z(Q)| · (smooth nonvanishing function);

3) ∆Q logG(P,Q) = dµ/dz∧ dz̄, where ∆Q = (1/πi)(∂ 2/∂ z∂ z̄) is the Lapla-

cian and dµ is the volume element that arises from the metric µv.

Let us set

(C ·D)v =∑
P,Q

nPmQ logGv(P,Q),

if C = ∑nPP and D = ∑mQQ are the expansions of the divisors into (finite)

sums of points on Xv(C).

If F is a rational function on X we define its Arakelov divisor as

(F̃) = (F)X +∑
v

Xv, av = −
∫

log |F|dµv.

Here (F)X is the usual divisor of the function F in the scheme X .
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We can now define linear equivalence of divisors on X̃ :

C̃ ≈ D̃, if C̃− D̃ = (F̃).

The main property of the index of intersection is its invariance relative to linear

equivalence

C̃ · D̃ = C̃ · (D̃+(F̃)).

This makes it possible to define the index of intersection for any two Arakelov

divisors by the usual method of algebraic geometry.

Among the classes of divisors relative to linear equivalence there is, just as in

ordinary geometry, a canonical class. The divisors in that class are constructed

from a rational differential form ω of degree 1 on X (more precisely, it is a

section of the relative cotangent bundle of X over B). We set

(ω̃) = (ω)X +∑
v

avXv, a0 = −
∫

Xv

log

∣∣∣∣ω ∧ ω̃
dµv

∣∣∣∣dµv,

where (ω)X is the divisor of the form ω in the scheme X .

The adjunction formula for the divisor C̃ = C, which represents a section of

C on an arithmetical surface (that is, a surface having degree 1 over the base B),

has the form

C̃ · (ω̃)+C̃ ·C̃ = 0.

In ordinary algebraic geometry the adjunction formula for a curve C on a surface

X is the following

C · (ΩX)+C ·C = 2g−2,

where ΩX is the class of differential forms of degree 2 on X and g is the genus

of the (nonsingular) curve C. If the surface X is fibered over the curve B and

C is a section of this fiber bundle, then 2g− 2 = C · f ∗(ΩB) (here ΩB is the

canonical class of the curve B), and the adjunction formula has the form

C · ((ΩX)− f ∗(ΩB)

)
+C ·C = C · ((ΩX/B)

)
+C ·C = 0,

where (ΩX/B) is the class of divisors corresponding to the relative cotangent

bundle of the surface X over B.

It is this equality that carries over to the arithmetical surfaces of Arakelov.

For a more detailed exposition of Arakelov’s theory and its subsequent develop-

ment for varieties of any dimension see [18], [19], [28], and [45].

In our brief exposition we have examined only one twig on the enormous

tree of the analogy between numbers and functions. Some idea of the tree as a

whole can be gained from the following list:
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• class-field theory (a parallel description of Abelian extensions of numerical

and function fields);

• the zeta- and L-functions of schemes of dimension 1 (the problem of

meromorphic continuation and the proof of the functional equation);

• the theory of height of rational points in Diophantine geometry;

• the Arakelov theory of arithmetical varieties;

• the classification of semi-simple algebraic groups over local fields;

• the theory of Bruhat–Tits buildings and symmetric spaces;

• arithmetical subgroups of algebraic groups, in particular the theory of

reduction;

• the Langlands program of describing representations of Galois groups of

local and global fields;

• the analogy between explicit formulas in number theory and the Lefschetz

trace formula (A. Weil, C. Deninger, A. Connes).

This list is surely incomplete, 13 and the whole story is still far from over.
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[6] J. B. Bost. Fibrés déterminants, déterminants régularisés et mesures sur les espaces

de modules des courbes complexes. In: Séminaire Bourbaki, février 1987, exposé
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[22] D. Hilbert. Über die Theorie der relativquadratischer Zahlkörper. Jahresber.

Deutsch. Math.-Verein., 1899, 6; Gesammelte Abhandlungen [23], Bd. 1, 364–369.

[23] D. Hilbert. Gesammelte Abhandlungen, Bd. 1–3. Berlin: Springer, 1932–1935; New

York: Chelsea, 1965 (reprint); Russian translation: D. Hilbert. Selected Works,

V. 1–2. Moscow: Factorial, 1998.

[24] D. Hilbert. Mathematische Probleme. In: Gesammelte Abhandlungen [23], Bd. 2,

401–436.

[25] W. V. D. Hodge. The Theory and Applications of Harmonic Integrals. Cambridge

University Press, 1941.

[26] A. I. Kostrikin et al. Vasilii Alekseevich Iskovskikh (on his 60th birthday). Russ.

Math. Surveys, 1999, 54(4), 863–868.

[27] S. Lang. Fundamentals of Diophantine Geometry. New York: Springer, 1983.

[28] S. Lang. Introduction to Arakelov Theory. New York: Springer, 1988.

[29] A. I. Lapin. The theory of the Shafarevich symbol. Izv. Akad. Nauk SSSR, Ser.

Mat., 1953, 17, 31–50 (Russian).

[30] A. I. Lapin. On the theory of the Shafarevich symbol. Izv. Akad. Nauk SSSR, Ser.

Mat., 1954, 18, 145–158 (Russian).

[31] A. I. Lapin. The general reciprocity law and a new foundation of class-field theory.

Izv. Akad. Nauk SSSR, Ser. Mat., 1954, 18, 335–378 (Russian).

[32] S. Lichtenbaum. Curves over discrete valuation rings. Amer. J. Math., 1968, 15,

380–405.
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A. A. Razborov

The P ?
=NP-Problem: A View from the 1990s

Translated by R. Cooke

1. Introduction

The P ?
=NP-problem (or, as it is sometimes informally called, 1 the brute-force

search problem) was first stated in 1971–1972; that is, about 30 years ago. Over

this comparatively short period of time it has managed to become one of the

central open problems of modern mathematics, comparable in significance with

the Riemann and Poincaré conjectures (see [Sma98]).

The present brief essay is devoted mainly to the history of the brute-force

search problem — more precisely, to the development of various kinds of ideas

leading in the end to its precise statement. For the reader who is interested in the

influence that the P ?
=NP-problem has had on the subsequent development of

mathematics and information theory, and in the history of the numerous attempts

to solve it (including papers of the present author), we note the survey article

[Sip92]. Curious historical remarks on relevant research in the USSR during

the period preceding the precise statement of the brute-force search problem can

also be found in [Tra84] and [Sli99].

1 For the etymology of this term see Section 3.3.
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2. Pre-prehistory: The Theory of Algorithms

and Computable Functions

Without any doubt, the most important concept at the base of the P ?
=NP-

problem (as one of the most important concepts developed in the twentieth

century) is the fundamental definition of an algorithm in the strict mathematical

sense of the word. Not having space here to recall the history of this discovery,

we confine ourselves to a rapid elucidation of the state of the theory of algo-

rithms (or, as it is sometimes called, the theory of computable functions) in the

early 1960s, when our history actually began.

By that time the theory of algorithms and computable functions had turned

into a fully formed, articulated and rapidly developing discipline. One of the

cornerstones of the theory was the so-called Church’s thesis, which asserted that

all “reasonable” computing devices are equivalent. This thesis makes it possible

to fix once and for all one particular type of computing device (which for

historical reasons is usually taken to be a Turing machine). In accordance with

Church’s thesis, 2 results proved for Turing machines are also valid for other

computing models and hence they can be interpreted as the results of algorithms

in general. Among them, in particular, are the brilliant results on the algorithmic

solvability or unsolvability of many natural (algorithmic) problems of algebra

and logic. And although there remain many very important problems for which

the question of algorithmic solvability is still open, on the whole the powerful

general methods created in the late 1960s and the results obtained up to that

time can be regarded as a comparatively successful classification of algorithmic

problems in accordance with their (algorithmic) solvability (see, for example,

the survey [Rab77]).

3. Prehistory: Three Components

Looking back on the period of approximately ten years from the early 1960s to

the early 1970s that immediately preceded the statement of the brute-force search

problem in articles of S. A. Cook [Coo71b], R. M. Karp [Kar72] and L. A. Levin

[Lev73], one can distinguish (although somewhat provisionally) three main areas

of research, which finally merged into one in the abovementioned papers:

• the abstract theory of computational complexity;

• algorithms for specific combinatorial problems;

2 See also the article by Matiyasevich in the present collection.
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• the concept of brute-force search and its elimination.

Until the papers of Cook, Karp, and Levin, these areas had very little in common,

and so we shall discuss them separately.

3.1. The Abstract Theory of Computational Complexity

The development of the theory of computational complexity really began with

the appearance of the first computers. Specialists naturally began to be inter-

ested not only in the question whether an algorithm exists for one algorithmic

problem or another, but also in the extent to which the algorithms constructed

are effective; that is, can be implemented from the practical point of view. It was

in the 1960s that the basis of the general theory of effective algorithms was laid.

At the very beginning of this period, the central concept of a signaling

function
3 TM(x) crystallized out. This function is the number of units of time

(that is, processing time) that a Turing machine (or any other computing device —

see Section 2) spends processing the input data, represented as a binary word x.

In general form it is quite difficult to study this function due to its “looseness”:

for example, the overwhelming majority of problems can be interpreted only by

using a small number of inputs x of a rather special type, and the set of these

“comprehensible” inputs is unique to each problem. For this reason, and others,

it is feasible to make a rational comparison of the signalers TM(x) and TM′(x)
for two distinct algorithms M and M′ only in exceptional cases.

The next very important concept on which the modern theory of compu-

tational complexity is based is the concept of worst-case complexity, which is

defined by the following simple formula:

tM(n)

def
= max

|x|�n
TM(x),

where |x| is the bit length of the binary word x. In other words, worst-case

complexity tM(n) guarantees that the computation will terminate within that

time on every input word x, provided the bit length of the latter does not exceed

n. It turns out that on the level of the functions tM(n) a completely successful

construction of a rational mathematical theory for comparing the complexity of

different algorithms is possible.

The concept of worst-case complexity seems to have been known in the

USSR from the very beginning of the period in question (see, for example,

[Yano59] or the footnote on p. 36 of [Tra64]). Its spread to the West was slightly

3 In this brief essay we are interested only in functions that signal over time.
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retarded by the circumstance that in the English language literature of the first

half of the 1960s the so-called machines with input were encountered much

more frequently (which in turn had arisen as a generalization of the extremely

popular finite automata of the period), for which there does not exist any natural

analog of worst-case complexity. The complexity aspects of computation on

ordinary 4 Turing machines seem to have been considered for the first time in

the English literature in [Hen65]; in that same paper there appeared the modern

definition of worst-case complexity given above.

Now suppose we have an algorithmic problem written as the problem of

computing a mapping f : {0,1}∗ → {0,1}∗ of the set of finite binary words into

itself. If for every function f that is computable by some algorithm there existed

an algorithm M that computes it and is optimal from the point of view of the

asymptotic behavior of the worst-case complexity tM(n), then the further con-

struction of complexity theory could be greatly simplified (namely, by declaring

tM(n) for such an optimal algorithm M to be the complexity of the function f
itself). The speed-up theorem proved in [Blu67] demonstrated convincingly that

these hopes cannot be realized: there exist computable functions f for which

every algorithm that computes them can be accelerated arbitrarily (for example,

by a factor of “logarithm”).

There is an alternative to this naive approach that is central in the theory

of computational complexity, namely the concept of a complexity class. In

general form, complexity classes are defined as follows. A set of algorithms

of a particular form (which, as we shall see below, can be quite varied and

not necessarily correspond to “realistic” computations) satisfying some set of

complexity restrictions is fixed. Then we assign to the same complexity class all

algorithmic problems for which there exists at least one algorithm in the given

set. In this form the concept of a complexity class occurs in the early work

[Rit63], but in that article only restrictions on the memory used by algorithms

of a rather special form are considered.

The most important classes for the construction of complexity theory, namely

TIME
(
t(n)

) def
=

{
f
∣∣ ∃M

(
M computes f & ∀n

(
tM(n) � t(n)

))}
,

first appeared in the ground-breaking paper [HS65] in the context of the ma-

chines with input mentioned above. The hierarchy theorem, which is the corner-

stone of the modern theory of computational complexity, asserts that if t2(n) is

even “slightly larger” than t1(n), then the class TIME
(
t2(n)

)
contains a function

4 That is, machines that calculate functions of finite words and output finite words; nowadays

this model is the generally accepted one.



The P ?
=NP-Problem: A View from the 1990s 335

f that TIME
(
t1(n)

)
does not contain. In other words, the hierarchy of complex-

ity classes TIME
(
t(n)

)
is a proper hierarchy — for example, all the inclusions

in the chain

TIME(n) � TIME(n2
) � TIME(n3

) � · · · � TIME(2n
)

are strict. This theorem was proved in [HS65] for machines with input, and

later extended (and slightly strengthened in the process) to the case of ordinary

machines in [HS66] (see also [Yano59] and the discussion in Subsection 3.3

below).

Finally, the formulation of the complexity class P of problems solvable in

polynomial time:

P def
=

⋃
k�0

TIME(nk
),

and the recognition of its importance, became another remarkable discovery of

complexity theory, made before the NP-era set in. 5 This class was first defined

explicitly by A. Cobham in the paper [Cob64] (which unfortunately remained

somewhat in the shade in its time, at least among specialists in complexity

theory) and appears in the survey of M. Rabin [Rab66] on automata theory

(see also the discussion of the papers of J. Edmonds in Subsection 3.2 below).

Moving slightly ahead, we should note that at present the class P is regarded

as the generally accepted theoretical approximation to the class of problems

that are amenable to solution on existing computers. (An expanded discussion

of this question can be found in the plenary talk of Cook at the International

Congress of Mathematicians in 1990 in Kyoto [Coo90].) However, the direct

interpretation of this thesis became possible only after the abstract theory of

computational complexity merged with the theory of algorithms for specific

combinatorial problems, signaling the onset of the NP-era (see Subsection 4.2

below). In the early papers [Cob64], [Rab66], the suggestion that the classes P

“approximately coincide” with the class of “actually solvable problems” is still

stated very cautiously and with a large number of reservations.

Such, in very general terms, was the state of computational complexity

theory before the papers of Cook, Karp, and Levin. While the theoretical basis

of the classification of algorithmic problems in accordance with their intrinsic

complexity was essentially laid down, a severe lack of interesting problems, to

5 We follow [Tra84] in giving this name to the period that began after the work of Cook, Karp,

and Levin. While distinctly recognizing a certain pathos in this word, we would still like to point

out that these papers brought about a radical change of guidelines and ideology in several very

important related disciplines. That is why the use of this term here seems completely justified

to me.
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which the theory could be applied, began to be felt. As an illustration, we

conclude this subsection with a characteristic quotation from one of the last

papers [Coo71a] immediately preceding the onset of the NP-era.

A final long-standing problem in the field of computational com-

plexity is to prove that some interesting set (or function) must take

a long time to compute on a reasonable general computer model.

More specifically, no one can find any set not in Cobham’s class

L∗, except artificial examples through use of diagonal arguments.

3.2. Algorithms for Combinatorial Problems

As it happens, a large number of interesting problems, to which complexity the-

ory might be applied potentially, were considered simultaneously and essentially

independently in the related area of construction of specific algorithms for spe-

cific combinatorial problems (usually optimization) on graphs, matroids, flow

problems, problems of minimizing Boolean functions, and so forth. The most

important distinguishing characteristic of such problems was that the existence

of some algorithm was obvious for the majority of them, so that these problems

were of no interest for the classical theory of computable functions considered

above (Section 2). This area was also called into existence by the appearance

of the first electronic computers (which stimulated interest precisely in effective

algorithms). In the early stages of its development, people developing combina-

torial algorithms empirically groped for many important concepts that later laid

at the foundation of the general articulated theory.

A fully articulated interpretation of the difference between a “mechanical

procedure” ( = algorithm) and a “mechanical procedure short enough be practi-

cal” can be traced, for example, in the early paper [Qui52], which is devoted

to the minimization of Boolean functions. In the example given in the review

[Nel55] of this article, one can see clearly what lively (and quite personal in the

present case) discussions can be elicited, in the absence of the precise guide-

lines provided by complexity theory, by the question whether some algorithm is

“practical” or “purely mechanical.”

This state of affairs, in which specialists in solving combinatorial problems

were satisfied with intuitive pictures as to what constitutes a “practical” algo-

rithm, lasted until the papers of J. Edmonds [Edm65b], [Edm65a]. However, the

second section of [Edm65b], titled “Digression,” was completely devoted to a

discussion of the concept of a polynomial algorithm and (in the same cautious

form as in the papers [Cob64], [Rab66] mentioned above) it contains the thesis

that algorithms that execute in polynomial time can be identified with “practical”

algorithms, but with certain reservations.
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In any case, the overwhelming majority of problems that researchers en-

countered at the time did not yield to solution using “practical” algorithms in

any reasonable sense of the word. In attempts to understand, if only on the

intuitive level, which of these problems really are more difficult than the others,

another central concept, that of reducibility, was formulated and later became

the basis of a general theory. Suppose we have a pair of algorithmic problems

f1, f2 : {0,1}∗ → {0,1}∗ and a function g that reduces f1 to f2; that is, such

that ∀x
(

f1(x) = f2
(
g(x)

))
. In this way, if the reducing function g is easily

computable (for example, g is in class P, in which case the reducibility is called

polynomial), the problem f1 is demonstrably not more complex than the problem

f2: every effective algorithm for computing f2 can be transformed in an obvious

way into an equally effective algorithm for computing f1.

The general concept of (polynomial) reducibility, which is one of the corner-

stones of modern complexity theory, was first proposed in connection with the

statement of the P ?
=NP-problem in the papers of Cook, Karp, and Levin. In the

period of time under discussion, only the first particular examples of reducibil-

ity were beginning to accumulate in the literature (see, for example, [Dan60],

[Edm62], [Gim65]).

To summarize what has been said above, before the rise of the theory of NP-

completeness in the early 1970s, the area of combinatorial algorithm construction

saw many effective algorithms proposed for several important combinatorial

problems. Also, in parallel with abstract complexity theory, the thesis was

cautiously advanced that polynomial algorithms were practical and practical

algorithms were polynomial. A significantly greater portion of the problems

being studied did not yield to effective solution, and for these problems particular

results on reducing them to one another began to appear. However, the absence

of rigorous complexity conceptions of the “brute-force search” problem and

polynomial reducibility made it impossible to advance in the construction of

a classification of “presumably complex” combinatorial problems beyond some

isolated examples.

3.3. The Concept of Brute-Force Search and its Elimination

The third basic direction of research in the prehistoric period of the P ?
=NP-

problem consists of research carried out mainly in the USSR, and specially fo-

cused on understanding the phenomenon of brute-force search (incidentally, the

term “brute-force search problem” goes back precisely to this period, although it

was understood very informally at the time). The school of S. V. Yablonskii (in

whose organization and work A. A. Lyapunov also took part in the early stages)
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studied primarily the “cybernetic” problems of constructing complex Boolean

functions, minimal circuits of different types, the so-called disjunctive normal

forms of Boolean functions, and others. In the course of this activity a very

important concept, according to which the difficulty of algorithmic problems

is determined precisely by the “quantity” of brute-force searches of versions

embedded in them, was quite distinctly worked out.

The present author began his career much later than the period in question

and has encountered serious difficulties at this point in the preparation of this

essay. Many ideas and even results obtained in the USSR at this time were

communicated only by word of mouth, and were never published. One can form

a reliable judgment as to how remarkable some of these were from one of the

few written sources of that epoch that have come down to us — an abstract of

a talk given by G. S. Tseitin in 1956 at two sessions of the mathematical logic

seminar at Moscow University [Yano59]. According to this source, the concept

of worst-case complexity and the hierarchy theorem were already known in the

USSR at that time, at least in the context of normal Markov algorithms.

However, in the present essay preference is given to papers and ideas whose

continuous and systematic development has led to the rise of the theory of

computational complexity (and, in particular, the theory of NP-completeness) in

its modern form. Unfortunately, the role of brilliant but isolated, unstated, and

unpublished ideas in this context is very limited: as a rule, they live on only as

long as they remain interesting to their immediate creators. For that reason, the

author has tried to overcome the temptation to conduct a systematic investigation

of the question as to exactly which part of modern complexity theory is native

to the USSR, and to limit himself to the facts available in the literature.

An important milestone in this period was marked by the papers of Yablon-

skii [Yabl59a], [Yabl59b], in which it was proved rigorously that there is no

effective algorithm in the rather special class of so-called regular algorithms for

computing a complex Boolean function. In view of the significant disproportion

between the value of these results and the interpretation ascribed to them, these

papers received very mixed reviews (see [Tra84]). On the one hand, Yablonskii

himself regarded the brute-force search problem as closed once his papers had

been published, and made free use of the administrative perquisites available to

him to “convince” the scholarly community of that. On the other hand, de facto,

these papers played an important positive role in attracting the attention of other

researchers to this topic.

Soviet articles of this period were characterized by an interest in particular

classes of algorithms defined in accordance with the specifics of the problem

under consideration. Unfortunately, due to insufficient appreciation of the impor-

tance of the general unifying concepts of computability theory and complexity
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theory (which manifested itself, among other places, in the neglect of the cre-

ation of a systematic theory on the textual level, as noted above) the brute-force

search problem in its modern form could not be stated until the paper of Levin

[Lev73], although all the other necessary components seem to have been recog-

nized much earlier.

4. History: Three Sources

In the preceding section we attempted to convey the ominous feeling that came

over specialists in several neighboring “paracomputer” fields in the late 1960s.

It was clear that something very serious was brewing.

The “thunder rolled” in Cook’s paper [Coo71b], and this thunder immedi-

ately turned into a storm in the article of R. M. Karp [Kar72]. (For obvious

historical reasons, the paper [Lev73], in which many results of [Coo71b] and

[Kar72] were obtained independently, stood somewhat apart.) In discussing

these ground-breaking papers, we shall also try to touch briefly on the fruits that

the ideas embedded in them have provided to the present.

4.1. Cook: The Complexity of Theorem-Proving Procedures

The complexity class NP, which consists of those

Stephen A. Cook

problems that can be solved in polynomial time on

a nondeterministic Turing machine, was first stud-

ied in the paper [Coo71b]. At present, this class

is regarded as the strict mathematical equivalent

of the informal concept of the “brute-force search”

problem.

A nondeterministic Turing machine is a ma-

chine that is specially adapted for recognizing lan-

guages, that is, for solving algorithmic problems

whose answer has the form YES/NO. In the course

of its work the nondeterministic Turing machine

may write “?” in some cell, after which its further

work “divides nondeterministically” into two branches, according as the “?” is

replaced by 0 or 1. As a result, a computation by a nondeterministic Turing

machine is a binary tree generally of exponential size. The computation is re-

garded as successful for an input x (that is, f (x) = YES) if the answer YES is

obtained along at least one branch and unsuccessful ( f (x) = NO) otherwise.

It should be noted that, at the modern level of scientific development, non-

deterministic Turing machines are a purely imaginary computational model, and
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no way is known to model them effectively using an analog model that actually

exists at present. The most promising research in this area seems to come from

the attempts at modeling nondeterministic branching using molecules of DNA

(see, for example, the survey [BF98]). However, even these seem to be quite

far from their logical completion.

Nondeterministic Turing machines were known in the literature even before

the article [Coo71b]. Nevertheless, it was in this article that they first acquired

permanent residence as full-fledged objects of investigation, and not simply a

curious pathology. The very important precedent of considering a complexity

class corresponding to a fictitious computational model that does not exist in

the real world was thereby set. Such an approach turned out to be wonderfully

fruitful for the subsequent development of complexity theory, and many of the

most important achievements of later years were obtained in the context of just

this scheme. To give at least a general idea of precisely what kind of achieve-

ments we are talking about, it suffices to mention interactive proofs (for which

A. Wigderson received the Nevanlinna Prize for 1994), probabilistically checked

proofs, and quantum computation (for which P. Shor received the Nevanlinna

Prize for 1998). We shall return to these models in Subsection 4.2 below.

Another very important concept studied in [Coo71b] is the concept of poly-

nomial reducibility. How this concept matured in the womb of the theory of

combinatorial algorithms over the preceding period was told in Subsection 3.2.

As for today, the modern theory of computational complexity would simply be

unthinkable without the general concept of reducibility. Literally every branch

of this discipline is held together by at least one concept of reducibility specific

to that branch. It is the concept of reducibility that converts the theory of com-

putational complexity from a disconnected collection of empirical facts into a

rigorous and elegant mathematical theory.

As a matter of fact, there is nothing profound or amazing about the concept

of reducibility itself. It is a standard working tool in the theory of computable

functions. (The general methods of proving unsolvability noted in Section 2

for the most part amount precisely to the construction of suitable reducibilities.)

From the mathematical point of view, reducibilities are nothing but morphisms

in some obvious categories, naturally adapted for studying polynomial compu-

tations. The only reason that the concept of reducibility was able to completely

change the face of the entire discipline is the empirical fact that the number of

reducibilities of some important problems to others is enormous and, what is

even more important, there exist standard methods of constructing reducibilities

based on the consideration of imaginary computing models and the resulting

complexity classes (see, for example, [GJ79], Chapters 3 and 7). Again, it was
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in the paper [Coo71b] that the first important step was taken in this direction:

it was shown that every problem of class NP can be polynomially reduced to

the perfectly definite problem of FEASIBILITY (of propositional formulas) of

this class by using some general method based on the analysis of a suitable

nondeterministic computation. In this way, FEASIBILITY is the “most complex”

problem in the class NP. The now generally accepted name for such a prob-

lem is NP-complete. Such a classification scheme turned out to be wonderfully

fruitful: in the overwhelming majority of cases the natural algorithmic problems

turn out to be complete in some natural complexity class.

Finally, [Coo71b] contains the first example of the proof of NP-completeness

for the purely combinatorial problem of ISOMORPHISM TO A SUBGRAPH. This

last result served as the prelude to the next important milestone in the develop-

ment of the subject that we are interested in, namely the paper of Karp [Kar72],

to the discussion of which we now turn.

4.2. Karp: Reducibility of Combinatorial Problems

From my point of view, the most amazing circum-

Richard M. Karp

stance connected with the paper [Kar72] is that

practically all its terminology (and even its nota-

tion!), as well as all the concepts proposed in it,

turned out to be so successful that they have taken

deep root in complexity theory and are still used

today, essentially without alteration. In this sense,

the paper [Kar72] became the first convincing re-

alization of the ideas presented in [Coo71b], in the

form of an articulated theory.

Karp introduced the notation P and NP. He also

proposed his own version of polynomial reducibil-

ity (now known as Karp reducibility). Both this

reducibility and the notation ∝ that he introduced for it soon became generally

used. The abovementioned statement, that the concept of a polynomial algo-

rithm is a satisfactory approximation to the concept of a “practical” algorithm,

was made in the paper [Kar72] in a completely assured and definite form. The

study of the class P of problems solvable by using polynomial algorithms began

in the same paper.

It was in Karp’s paper that the term NP-complete problem was introduced

for the first time, the P ?
=NP-problem was first posed, and the reason for the

importance of complete problems was noted explicitly: “It is obvious that either
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all complete languages belong to P, or none belongs to P. The former is the

case if and only if P = NP.”

Passing from the methodological value of Karp’s paper to the specific re-

sults proved in it, I should first mention in this connection the now generally

adopted term “Karp’s list of 21 complete problems.” We have already said

that the main reason for the success of the modern theory of reducibility of

computations (and, in particular, the scheme of investigations and the well-worn

brute-force search problem) consists of the empirical fact that there exist very

many different reducibilities between natural algorithmic problems. As noted

above in Subsection 3.2, only particular examples of reducibility were encoun-

tered in the previous literature on combinatorial algorithms (and there was no

general definition). In contrast, Cook’s article [Coo71b] is strictly mathemati-

cal. However, it is mostly the problem of FEASIBILITY that is considered in it,

and this problem is of limited interest for those developing practical algorithms.

Starting with the paper [Kar72] these areas were fated to merge. In that paper

the NP-completeness of “a large number (21, to be exact) of classical difficult

computational problems arising in areas such as mathematical programming,

graph theory, combinatorics, computational logic, and switching theory” was

proved. It was thereby shown convincingly that the abstract concepts of the

theory of computational complexity (and, in particular, the concepts proposed

in [Coo71b]) apply remarkably well to completely practical and comprehensible

things, and that this striving for mathematical rigor and elegance may get along

beautifully with the intuitive interpretation that comes from practical considera-

tions, and which specialists in combinatorial algorithms would like to preserve in

any case. Within a few years the list of NP-complete problems numbered in the

thousands; at present the test for NP-completeness is obligatory for any brute-

force search problem in which the earliest attempts to construct an effective

algorithm have not led to success.

Essentially, Karp’s paper laid the groundwork of the methodology that is

the basis of the modern theory of computational complexity and is, at the same

time, its most characteristic distinguishing feature in comparison with other

areas of mathematics. In an amazing way, the most abstract, fictitious models of

“computations” turn out to be directly responsible for the intrinsic complexity of

an enormous number of specific practical problems. Among the most brilliant

recent achievements in this area we may note the following:

• the application of the theory of interactive proof and probabilistic proof

checking to the classification of optimization problems (see, for example,

the survey [Aro94]);
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• the application of quantum computing to the classification of problems ly-

ing at the basis of modern practical cryptography (such as FACTORIZATION

and DISCRETE LOGARITHM [Sho97]).

4.3. Levin: Universal Brute-Force Search Problems

The paper [Lev73] contains (independently of

L. A. Levin

Cook and Karp) in fully explicit form the concept

of a polynomial algorithm — “an algorithm whose

running time is comparable to the length of the in-

put,” in the terminology of [Lev73]), problems of

class NP (a “quasi-brute-force search problem”),

and NP-complete problem (“universal brute-force

search problem”). In addition, [Lev73] contains a

list of six natural NP-complete problems, including

FEASIBILITY and ISOMORPHISM TO A SUBGRAPH,

and the assertion (without proof) that they are

NP-complete. Thus, in Levin’s paper (in the ex-

tremely laconic form characteristic of the author)

many very important discoveries of both [Coo71b] and [Kar72] were made

independently.

In addition, [Lev73] contains an original definition of reducibility now

known as Levin reducibility, whose potential advantages (in comparison with

the more standard reducibilities of Cook and Karp) have only recently begun to

be recognized (see, for example, [Aro95]). Another important result proved in

[Lev73] is the theorem that there exists an optimal (in some sense) algorithm

for every problem of class NP: the expected analog of Blum’s speed-up theorem

[Blu67] for brute-force search problems does not actually hold.

5. Conclusion

One of the central open problems of modern mathematics — the P ?
=NP-

problem — is amazingly multi-faceted, and, from my point of view, the rapid

rise in its popularity over the last few decades is due precisely to that fact. On

the one hand, it has an extremely simple, clearly expressible and quite elegant

rigorous mathematical statement. On the other hand, the problem has a direct re-

lation to a large number of completely realistic problems that arise in practically

every area of human activity in which the methods of mathematics and informa-

tion theory are used. Finally, the particular charm of the P ?
=NP-problem comes
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from the circumstance that this is essentially a rigorous mathematical statement

of the ancient philosophical question whether it is possible to eliminate, or at

least decrease the amount of, brute force used (in searches).

In the present essay we have attempted to tell the history of this amazing

discovery and to explain one of the reasons for its multi-facetedness by tracing

the way in which several areas of research in different (but related) fields, that

had previously been studied by different groups in various countries, merged

into one in the P ?
=NP-problem. Unfortunately, we could only touch briefly on

the effect that the brute-force search problem has had, and continues to have, on

the state of the modern theory of computational complexity.

The attempts to obtain the solution of the brute-force search problem, which

have been unremitting since 1971, are outside the scope of this article. Although,

as is known, no such solution had been obtained at the time the article was

written, the particular results that have been proved in this area, along with the

concepts and methods developed in the process of obtaining them, have already

had an effect on complexity theory, fully comparable with the effect of the

P ?
=NP-problem itself (see, for example, [Sip92]).

It is difficult to say at present whether pivotally new ideas and approaches,

which seem to be necessary for a definitive solution of the brute-force search

problem, will be found in the foreseeable future. However, in any case, either

this problem itself or the profound concepts and ideas, both those already called

to life by it and those which without a doubt will follow in abundance from

its hypothetical solution, is fated to become one of the most brilliant reference

points in the mathematics of the twenty-first century.
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L. P. Shil’nikov

Homoclinic Trajectories:

From Poincaré to the Present

Translated by R. Cooke

In 1885, King Oscar II of Sweden decided to announce an international com-

petition for the best mathematical research on an important scientific problem.

The prize was to be awarded on the King’s 60th birthday — 21 January 1889.

The organization of the competition was entrusted to the editors of the Swedish

mathematical journal Acta Mathematica. The jury was made up of three men:

Mittag-Leffler, who was the editor of the journal, Weierstrass, and Hermite,

the most authoritative European mathematicians. The jury proposed four topics

for the competition. The first topic was a problem in celestial mechanics (the

other three were purely mathematical), and it was Weierstrass who proposed it,

strange as that may seem at first sight. The question involved the possibility of

representing the solutions of the n-body problem, in the absence of collisions,

using series in some known functions of time which converge uniformly on the

entire real line. To this, the following was added: “But if the proposed problem

cannot be solved within the allotted time, the prize may be awarded for a work

in which another problem of mechanics is studied and completely solved in the

indicated manner.”

A total of 11 papers were submitted from different countries to the competi-

tion. For the sake of objectivity, and also in the tradition of the time, the papers

were submitted anonymously, with identifying slogans. Two were declared the
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best: Poincaré’s paper “On the three-body problem and the equations of dynam-

ics” [1] and a paper by Appel “On the integrals of functions with multipliers and

their application in the expansion of Abelian functions in trigonometric series.”

Somewhat later both were published in Vol. 13 of Acta Mathematica (1890),

together with Hermite’s report on Appel’s article. As for Weierstrass’ report on

Poincaré’s paper which was sent to Mittag-Leffler, contemporaries never saw

it in print. 1 In that report, in particular, it was noted that “This paper, it is

true, cannot be regarded as a solution of the problem posed for the competition,

but it is so significant that I am convinced that its publication will mark the

beginning of a new era in the history of celestial mechanics.” We shall not

give a detailed analysis of Weierstrass’ review, in which he notes many merits

of Poincaré’s work. We shall exhibit only the portion of the review involving

doubly asymptotic solutions — the main object of study in the paper:

. . . even when bodies numbering more than 2 and mutually attract-

ing according to Newton’s law or any other law move so that the dis-

tance between any two of them always remains within finite bounds,

there may still exist forms of motion that we had hardly guessed up

to now, and for them we do not know any suitable analytic expres-

sion (valid from t = −∞ to t = +∞); all that can be considered es-

tablished is that they cannot be represented by trigonometric series.

What are these motions? To start with, letẋ

xO O′

Fig. 1

us consider the equation

ẍ− x+ x2
= 0.

It is integrable, and its phase portrait has the

form shown in Fig. 1. At the origin there is

a saddle-point equilibrium position, while the

point O′
(1,0) is a center. One of the separa-

trices of the saddle, emanating from O(0,0),

returns to that same point as t → ∞, thereby

forming a loop. For that reason a separatrix loop is a doubly asymptotic motion.

All this was well known to Weierstrass, since he was essentially the founder 2

of the geometric method of constructing the phase portraits of equations of the

1 The main reason was that the German mathematical community was very dissatisfied that the

prize had been awarded to a French mathematician. A more detailed description of these events

can be found in the remarkable commentary of I. B. Pogrebysskii [2].
2 See L. I. Mandel’shtam, Collected Works, Vol. IV: Lectures on Oscillations, 1955 (Russian).
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form

ẍ+ f (x) = 0.

Analogously one can construct doubly asymptotic solutions to saddle peri-

odic motions. To visualize this, consider the system

ẍ− x+ x2
= 0,

θ̇ = 1,
(1)

where the variable θ is periodic. The phase space of such a system is R
2 ×S1,

where S1 is the circle. Since we identify θ = 0 and θ = 2π , the study of such a

system reduces to the study of the mapping T : θ = 0→ θ = 2π using trajectories

of the system. The phase portrait of this mapping is the same as in Fig. 1, the

only difference being that now O(0,0) is a saddle fixed point with multipliers

e2π and e−2π which has stable one-dimensional manifold W s and an unstable

one-dimensional manifold W u, whose half-spaces coincide. However, in the case

of a mapping the set of doubly asymptotic trajectories to O(0,0) will now have

cardinality of the continuum.

The same situation may also occur for an integrable system with two de-

grees of freedom, when at some level of the first integral there is a saddle

periodic motion for which the stable and unstable manifolds coincide either

completely or halfway. Naturally, such a possibility for the behavior of the

asymptotic trajectories in integrable Hamiltonian systems was well known, even

before Poincaré’s paper. But Poincaré showed that in the nonintegrable cases the

stable and unstable manifolds of saddle periodic motions may intersect without

coinciding.

That is the situation that occurs in the W u
µ

W s
µ

Oµ

Fig. 2

study of the equation

ẍ− x+ x2
= µAsin t,

which can also be represented as the system

ẍ− x+ x2
= µAsinθ ,

θ̇ = 1,

which is a small perturbation of the system

(1) for 0 < µ � 1. The mapping Tµ : θ = 0 →
θ = 2π still has a saddle fixed point Oµ tend-

ing to O(0,0) as µ → 0. In their turn, W s
µ and W u

µ will be near to W s
0 and W u

0
(on any compact piece). But now they will intersect. The phase portrait for

µ �= 0 is illustrated in Fig. 2.
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The possibility of realizing such a behavior of trajectories in the three-body

problem formed one of the sections of Poincaré’s memoir. Later, in the third

volume of his New Methods of Celestial Mechanics (1899) Poincaré exclaimed,

“If one attempts to imagine the figure formed by these two curves and their

infinitely many intersections, each of which corresponds to a doubly asymptotic

solution, these intersections form something like a lattice or fabric or a net with

infinitely tight loops. None of these loops can intersect itself, but it must wind

around itself in a very complicated fashion in order to intersect all the other

loops of the net infinitely many times. One is struck by the complexity of this

figure, which I shall not even attempt to draw. Nothing gives us a better idea of

the complicated nature of the three-body problem and the problems of dynamics

in general, in which there is no unique integral and in which the Bohlin series

diverge.” Poincaré now gave such doubly asymptotic motions the name homo-

clinic. For obvious reasons, he proposed to name trajectories that are asymptotic

to two different periodic motions heteroclinic. The genie was now out of the

bottle. In the second half of the twentieth century practically all specialists in

the qualitative theory of differential equations and nonlinear dynamics were to

speak in the language of these concepts. As a whole, Poincaré’s New Methods

of Celestial Mechanics, which was a fuller exposition of the prize memoir, be-

came the defining object that determined the development of the qualitative and

ergodic theory for many years in the century that followed. This includes the

perturbation method for finding periodic motions in systems close to integrable,

the theory of integral invariants, the theory of trajectories which are stable in the

sense of Poisson, theorems on reversibility, asymptotic series, and much else.

As for our basic subject — homoclinic orbits — Poincaré formally has only

one general result involving them: If a two-dimensional mapping has a homo-

clinic orbit intersected (transversally) by the stable and unstable manifolds of

a saddle fixed point, then there is also a countable set of homoclinic orbits.

Poincaré never returned to the study of systems and mappings with homoclinic

orbits. The question naturally arises as to why. To a certain degree the answer

is that Poincaré, who started from problems of dynamics, assigned particular

value to periodic motions, especially stable ones. Thus, in the first volume of

the New Methods of Celestial Mechanics (1891) he wrote the following about

such solutions: “. . . they are the only breach through which we can penetrate

into the domain that was once considered inaccessible.” Moreover, in connec-

tion with his exposition of the perturbation method, he stated the conjecture that

in a nonintegrable analytic Hamiltonian system the stable periodic motions are

everywhere dense on compact level surfaces of the Hamiltonian. For further

understanding, the following circumstance is very important.
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A year before the publication of the third volume of New Methods of Ce-

lestial Mechanics, that is, in 1898, the article of Hadamard, “On geodesics on

surfaces of negative curvature” [3] appeared in print. The peculiarity of the

geodesics in this case is that they are all unstable. This follows immediately

from the fact that the equation that describes the mutual divergence of geodesics

can be written in linear approximation as

d2y
ds2 + ky = 0,

where k is the curvature of the surface. Since k < 0, all geodesics have a saddle

character. All two-dimensional orientable compact surfaces, except the sphere

and torus, admit a metric such that the curvature is negative and constant. It

follows immediately from the instability of geodesics on such surfaces that their

behavior must have a complicated, tangled character. Hadamard ended his article

with a question: “Does anything similar occur in the problems of dynamics,

and, in particular, in celestial mechanics? If so, then the entire statement of the

question of stability of planetary systems is in need of radical revision.”

In this connection Poincaré offered a curious opinion, which he discussed in

the article “On geodesic curves on convex surfaces” published in 1905 (see [4]).

He noted that Hadamard’s article was extremely interesting, but he believed that

“the trajectories of the three-body problem are comparable not with geodesic

curves on surfaces of negative curvature, but rather with geodesics on convex

surfaces.” The article of Hadamard is indeed remarkable, due to the fact that

in it the method of symbolic description was used for the first time to analyze

a geodesic flow. In particular, it followed from the article that the closed

geodesics are everywhere dense, have homoclinic orbits and, moreover, in every

neighborhood of a periodic orbit and any homoclinic trajectory of it there lies

a countable set of periodic orbits. Naturally, Poincaré could not fail to notice

this. But the fact that in a neighborhood of such a structure all periodic orbits

are unstable was probably the reason why Poincaré was forced to think about

its rather unimportant role for the problems of nonlinear dynamics. 3 Moreover,

as it seems to the present author, Poincaré must have known that even in the

general case (Hamiltonian, of course) the single-round periodic motions near

homoclinic trajectories are of saddle type.

The subsequent development of Poincaré’s ideas on the study of homoclinic

structures is connected with the name of Birkhoff. Here one must first of all

3 We note that by that time it was quite well known that the trajectories of an ideal gas have

an unstable character. Boltzmann essentially used this fact to explain (granted, with insufficient

rigor) the nonreversibility of the laws of macroscopic behavior. The reader is probably well aware

of the polemic that arose in this connection.
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note his 1935 article [5], better known as his “Papal memoir” since it was

presented to a competition in honor of Pope Pius XII. In this article Birkhoff

proves that for a two-dimensional area-preserving analytic diffeomorphism T
having a saddle fixed point O with a homoclinic orbit Γ intersected transver-

sally by the stable and unstable manifolds of O, in every neighborhood of the

closure of a homoclinic orbit there is a countable set of single-round periodic

motions of all periods, from some point on. The basic idea of the proof is

not difficult to reproduce if we assume that in a neighborhood of the saddle the

mapping T admits a first integral H(x,y), whose existence was proved by Moser

O

W s

W u

l MH = C

Fig. 3

in 1956 (see [6]). Let H(x,y) = 0 correspond

to the local stable manifold (W s) and the lo-

cal unstable manifold (W u). Then for small C
the neighborhood of the saddle stratifies into

invariant curves H(x,y) = C in the shape of

hyperbolas. Naturally, integrating them for-

ward and backward using T and T−1, we

can extend these invariant curves along W s

and W u to a larger domain. Since W s and

W u intersect, the nearby invariant curves will

have points of self-intersection, as shown in

Fig. 3.

The geometric locus of the points of intersection of the invariant curves

will be a curve l emanating from the homoclinic point M. The trajectory of

an arbitrary point P on l must remain on the invariant curve determined by

the corresponding value of C. For that reason, if such a trajectory returns to l
after one circuit, it must return to the same point P — that is, this trajectory is

periodic. It is obvious that the number of iterations of the point PC ∈ l needed for

its image once again to hit a neighborhood of M will tend to infinity as C → 0.

It now follows immediately from continuity considerations that there exists a

sequence {Cn}∞n=n0
, where Cn → 0 as n →∞, such that PCn = T nPCn . This means

that in any neighborhood of a homoclinic point M there is a countable set of

periodic points.

In the same memoir Birkhoff expressed the important idea of the possibility

of a complete description of all trajectories in a neighborhood of a homoclinic

orbit in the language of symbolic dynamics. In doing so, he emphasized the

necessity of using an infinite set of symbols, referring to an analogy with the

case of geodesic flow on surfaces of negative curvature.

One must note in this connection the large contribution of Birkhoff’s school,

in particular Morse and Hedlund, to the rise of symbolic dynamics as one of the
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important branches of the theory of dynamical systems. In doing so, we note

that, even so, the main object of the application of symbolic dynamics for them

was still only geodesic flows.

In explicit form, the problems connected with the study of nonconservative

systems were raised by Andronov. One should note especially that in pos-

ing these problems he started from the problems of the theory of nonlinear

oscillations, which at the time were associated mainly with the demands of the-

oretical radiotechnics. It quickly became clear that for those problems which are

amenable to modeling using two-dimensional systems, there essentially already

existed ready-made mathematical machinery in the form of Poincaré’s theory of

limit cycles and Lyapunov’s theory of stability. This enabled Andronov at the

very early stages of his work to draw the important conclusion that an adequate

model of self-induced oscillations was provided by stable limit cycles. The next

decisive step in that direction was taken in the paper “Structurally stable sys-

tems” by Andronov and Pontryagin [7]. This was actually the first paper that

made it possible to speak of the theory of smooth dynamical systems as a full-

fledged representative among the ranks of mathematical disciplines, since in this

paper the object of study was formulated with complete clarity, an equivalence

relation was introduced, a complete invariant was proposed, and so forth. True,

in this paper the specific subject was only two-dimensional planar systems, but

the concept of a structurally stable system fully preserved its meaning for the

multi-dimensional case as well. For that reason, the question naturally arose as

to the construction of a theory of structurally stable systems in general. Thus,

for example, in the preface to the well-known book Theory of Oscillations by

Andronov, Vitt, 4 and Khaikin it is stated that the authors propose to develop

the multi-dimensional theory as well, including the case of distributed systems.

As E. A. Leontovich later told the present author, “We were planning to study

multi-dimensional systems.” Of course, by that they meant primarily questions

of structural stability and basic bifurcations. However, these plans were not fated

to be realized. To a large extent that is because Andronov switched to studying

nonlinear problems of automatic control. Moreover, Andronov got his principal

collaborators N. N. Bautin and A. G. Maier 5 involved in this area. Nevertheless,

somewhat later Maier made an in-depth study of the problem of structural sta-

bility of multi-dimensional systems. However, in this he was not successful.

4 Because of the sad circumstances of the time, Vitt’s name was taken off the list of authors in

the first edition of the book.
5 After the paper on the bifurcation of limit cycles of the separatrix loop of a saddle, Leontovich

concentrated on work on books dealing with the qualitative theory and the theory of bifurcations

of planar dynamical systems.
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Moreover, a general opinion arose that systems with homoclinic orbits are struc-

turally unstable. 6 But systems with a simple dynamics, which were later to be

known as Morse–Smale systems, were believed to be structurally stable. On this

level it is interesting that Smale adhered to this same point of view when he

wrote the paper “Morse inequalities for dynamical systems” [8].

We remark, however, that the unsuccessful, but very substantial, analysis

of systems with homoclinic orbits nevertheless led Maier to the solution of

Birkhoff’s problem on the ordinal number of central trajectories of dynamical

systems, first on compact manifolds [9], and later on R
3 [10]. Here the basic

object in Maier’s construction was a geodesic flow on a surface of negative

curvature. Most likely, Andronov and Maier would have been well aware that

such geodesic flows may be structurally stable. But Maier died in 1951 and

Andronov died a year later.

The question of structural stability of two-dimensional diffeomorphisms and

three-dimensional flows came to us via the address made by E. A. Leontovich at

the Third Mathematical Congress in 1956 [11]:

It should not be thought that the concept of structural stability carries

over trivially to both these cases. Not to mention that in the case

of a nonautonomous second-order system (depending periodically

on time) this question is closely connected with the question of

singular and regular trajectories, in which there is no clarity. Here

there are many theoretical difficulties. Similar difficulties also exist

in the case of an autonomous dynamical system in three-dimensional

space. I cannot dwell on these in any detail. I can only say that the

root of these difficulties is connected with a homoclinic point of a

transformation of the plane into itself.

In the passage just quoted, the topic is essentially the now well-known problem

of Andronov: Can structurally stable diffeomorphisms of the two-dimensional

sphere have a countable set of periodic points?

In summarizing these little-known events, we shall limit ourselves to the

following general remark. If it is not possible to prove the transversality of

the intersection of stable and unstable manifolds of saddle periodic motions,

then there is a high probability that homoclinic tangencies are occurring in

the system under consideration (tangency of W s and W u). It is quite obvious

that if homoclinic tangency occurs, one can always exhibit arbitrarily small

6 In the early 1970s N. F. Otrokov, one of the participants in Andronov’s seminar, expressed this

as follows, in a conversation with the present author: “But we know that such systems are not

structurally stable.”
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increments to the system such that new homoclinic tangencies will appear in

the perturbed system, and so forth. Moreover, this is true for general one-

parameter perturbations. Thus, in this sense, homoclinic tangencies behave in

a way that they cannot be removed. Without a doubt, Poincaré had already

noticed such a picture in constructing his geometric proof of the proposition that

the number of homoclinic trajectories is infinite. Indeed, in a one-parameter

family of two-dimensional diffeomorphisms Tµ containing a diffeomorphism

generated by an integrable two-dimensional system with the separatrix loop of

a saddle, the single-round homoclinic trajectories are structurally stable, even

when µ = 0 (Fig. 4), and there always exist arbitrarily small values of µ at

which the diffeomorphism will have a double-round homoclinic orbit at whose

points W s and W u are tangent (Fig. 5).

Oµ

W u
µ

W s
µ T M1

M2

M1

Fig. 4

M∗

Fig. 5

In the case of nonconservative systems,

M∗

Fig. 6

for example, for the equation

ẍ +µhẋ− x+ x2
= µAsin t,

where µ � 1, even the single-round homo-

clinic orbits may be structurally unstable (that

is, correspond to tangency of the manifolds)

with a suitable connection between the para-

meters h and A (Fig. 6). Here, as h increases the homoclinic orbits disappear,

while as h decreases two transversal orbits arise from the initial tangency. Once

again, under certain relations between h and A there will exist structurally un-

stable double-round orbits, as well as homoclinic orbits making more than two

rounds. For that reason, the desire naturally arises to assume that systems with

homoclinic curves are structurally unstable.
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In the 1950s the main source of information for the Soviet reader on ho-

moclinic orbits and the complicated dynamic structures connected with them

was the book Qualitative Theory of Differential Equations by Nemytskii and

Stepanov [12] originally published in 1949. It presented the theorem of Birkhoff

mentioned above and a number of other propositions of fundamental character

on the structure of a nonwandering set in a neighborhood of a transversal homo-

clinic point. Since the discussion of this material preserved in full the idiosyn-

cratic style of Birkhoff, it was very difficult to absorb. When the present author

resorted to the original source, that is, the “Papal memoir,” it became clear that

the propositions in the book of Nemytskii and Stepanov on homoclinic orbits

were nothing but statements based on the Birkhoff conjecture discussed above.

On the whole, this was the reason why I called the problem of describing the

structure of the set of trajectories lying entirely in a small neighborhood of a

homoclinic orbit the Poincaré–Birkhoff problem.

Interest in homoclinic trajectories, and also in the intersections of the sta-

ble and unstable manifolds of saddle periodic motions, increased noticeably in

physics circles in the late 1950s. The reason was that the structure of magnetic

fields in ring-shaped particle accelerators of “Tokamak” type is generally not

integrable. Taking account of small perturbations shows that, due to the appear-

ance of homoclinic orbits, a charged particle may slip through the crack (formed

by the stable and unstable manifolds of a saddle periodic trajectory) to the inner

wall of the Tokamak. In a paper by Mel’nikov [13], an estimate is given for the

splitting of the manifolds; this result is now called Mel’nikov’s formula.

Progress began to occur in the 1960s. At the Kiev conference on nonlin-

ear oscillations in 1961 Smale [14] gave an example of a diffeomorphism of

the plane (the “Smale horseshoe”) that behaves on a nonwandering set like a

Bernoulli scheme of two symbols. As a corollary, both periodic and homo-

clinic points are dense in a nonwandering set. Although the proof that such a

diffeomorphism is structurally stable (whose main peculiarity was (piecewise)

linearity on a nonwandering set) was not given by Smale, the fact itself raised no

doubts. Very soon afterward, the structural stability of the so-called U-systems

(Anosov systems, in current terminology) was proved explicitly by Anosov.

Among these systems, in particular, are geodesic flows on compact manifolds

of negative curvature, and also hyperbolic diffeomorphisms of a torus.

Smale made the idea of the horseshoe [16] the basis of his theorem on

the complex behavior of a trajectory in a small neighborhood of a transversal

homoclinic point of a multi-dimensional diffeomorphism. Taking as the initial

strip Π a neighborhood of a fixed point O containing a compact piece of a

stable manifold together with a certain homoclinic point M, we find that for

some integer m the m-th iteration T m of the diffeomorphism acts on Π like a



Homoclinic Trajectories: From Poincaré to the Present 357

horseshoe (see Fig. 7). From this it followed

Π

M

T mΠ

Fig. 7

that T m has an invariant set in Π on which

T m is conjugate to a Bernoulli scheme of two

symbols.

Smale obtained this proposition under the

assumption that T is reducible to linear form

in a neighborhood of a hyperbolic point O.

But that meant that the theorem was inap-

plicable in the case of Hamiltonian systems

and symplectic mappings. 7 Moreover, and

this is of fundamental importance, the “horse-

shoe” method did not give a complete description of all the trajectories in a

neighborhood of the closure of a homoclinic trajectory, and as a consequence

did not solve the Poincaré–Birkhoff problem. The present author [17] succeeded

in solving this problem to the extent necessary in 1967. However, this result

was preceded by the discovery of another problem with a complex dynamics.

I began studying multi-dimensional systems in the late 1950s. The first task

on the agenda was the generalization of the global bifurcations of Andronov

and Leontovich from the two-dimensional case to the multi-dimensional case.

In theory, the solution of these problems for the case when only one periodic

motion is generated, this motion being stable, might have been achieved in the

framework of the methods known at the time. After studying these cases, I

immediately turned to the following problem: Suppose that a three-dimensional

system is given, having an equilibrium state O of saddle-focus type, that is, a

state for which two of the roots of the characteristic equation are complex and

lie in the left half-plane, say ρ± iω , where ρ < 0, ω �= 0, and a third root is real

and positive, say λ > 0. Further suppose that one of the trajectories Γ emanating

from O again tends to O as t → +∞ — that is, forms a homoclinic loop (Fig. 8).

The case when the saddle value

σ = ρ+λ

is less than zero led to the problem of the generation of a cycle, which had

already been solved in the general multi-dimensional formulation. However, the

case σ > 0 required special consideration. For both σ < 0 and σ > 0, the image

of the area Π on the secant S under the action of the Poincaré mapping T over

trajectories near Γ is a region of spiral type (Fig. 9). Here Π can be partitioned

into a countable set of strips sk, k = k0,k0 +1, . . . ,∞, the image of each of which

7 As later research showed, the case of a two-dimensional symplectic mapping is an exception.
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O

W s

Γ

Fig. 8

Π

T (Π+

)

Π+

W s

Γ

Fig. 9

T sk

sk

T sk

sk

σ < 0 σ > 0

Fig. 10

is one turn of the spiral, T sk. In the case σ < 0 we have sk ∩T sk = ∅, while for

σ > 0 the mapping T acts on sk like a “Smale horseshoe” (Fig. 10). Therefore, in

the case σ > 0 the Poincaré mapping has a countable set of “Smale horseshoes,”

and consequently also a countable set of saddle-type periodic motions [18].

Naturally, the first person I told about this was E. A. Leontovich. Her reac-

tion was curious, as she said later, “I felt like saying that this could not be.”

Immediately after this there came an understanding of dynamics in the case

of a transversal homoclinic Poincaré orbit as well, and it was most conve-

nient, at least for the author, to consider a system in the form of a flow.

Whereas usually in this case the secant is chosen transversal to the periodic

motion, here the secant S was chosen transversal to a stable manifold in a
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neighborhood of a homoclinic point. In this case, one can also construct the

Poincaré mapping T and its domain of definition is a countable set of pairwise

disjoint strips σk, k = k0,k0 + 1, . . . Here Tσk intersects all strips for every k
(Fig. 11). In essence, this is the picture that gives a complete description iden-

Tσk W u ∩S

σk

M W s ∩S

Fig. 11

tical to what Birkhoff had proposed in his

“Papal memoir.” However, in contrast to the

case of a homoclinic loop of a saddle-focus,

which is structurally unstable, the transver-

sal homoclinic structure of Poincaré is struc-

turally stable and consequently may admit a

symbolic description with a finite number of

symbols. To understand this, let us examine

the possible encodings of the trajectories in a

neighborhood of a homoclinic trajectory of a

smooth flow.

Suppose the system has a periodic motion L of saddle type, that is, the

multipliers do not lie on the unit circle, some of them lying inside it and the rest

outside. Then L will have a stable manifold W s and an unstable manifold W u.

Let us assume that they have a common trajectory Γ different from L (Fig. 12).

Consider a small neighborhood U of the union L∪Γ. It will be a solid torus

with a handle attached (Fig. 12). We shall encode every trajectory lying entirely

in U as follows: To one of its complete circuits in the solid torus we assign the

symbol 0, and to a passage through the handle, the symbol 1̂. Under this coding

the infinite sequence of zeros

(. . . ,0,0,0, . . . )

will be assigned to the periodic motion L and the sequence

(. . . ,0, 1̂,0, . . . )

to the homoclinic trajectory Γ.

Thus, to every trajectory of U there will correspond a sequence

(. . . , i−k, . . . , i0, i1, . . .),

where the symbol im assumes either the value 0 or the value 1̂. Here the

symbol 1̂ must necessarily be followed by a rather long segment of zeros. The

minimum number n of zero symbols following a 1̂ depends on the choice of

neighborhood: The smaller its diameter, the larger n. One can then carry out the
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UL

Γ

Fig. 12

following re-encoding: Set

1 = {1̂,0, . . . ,0︸ ︷︷ ︸
n

}.

Then the trajectories will be coded by sequences

0 1

Fig. 13

(. . . , i−k, . . . , i0, i1, . . .),

in which either 0 or 1 may follow a 1. In

other words, the encoders come from the

Bernoulli scheme of two symbols, whose

graph is shown in Fig. 13.

Since the symbol 1̂ is necessarily followed by zeros, to a trajectory lying in

U and not asymptotic to L one can assign a doubly infinite sequence

(. . . ,n−k, . . . ,n0,n1, . . . ,nk, . . .)
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where nk denotes the number of zeros following the next 1̂; to a trajectory

asymptotic to L in one direction (say, as t → −∞) there corresponds a singly

infinite sequence

(n0,n1, . . . ,nk, . . .),

and to a trajectory homoclinic to L there corresponds a finite sequence

(n0,n1, . . . ,nk)

(and the number of passages through the handle is k + 1). Here nk � n every-

where, where n is an integer depending on the diameter of U . Actually, this

is the codification that appears if one uses the numbers of the strips σn as

symbols.

The assertion that for each such symbolic sequence in U there exists a unique

saddle trajectory with a prescribed coding is the essence of the problem. The

present author succeeded in showing this under the assumption that W s and W u

intersect transversally in a homoclinic trajectory Γ.

Strictly speaking, in the case of flows it is necessary to use the concept

of a suspension. We shall not pay any attention to this point. We note only

that in the restriction to the set of all trajectories lying entirely inside a special

small neighborhood of the set L∪ γ this flow is topologically equivalent to a

suspension over a Bernoulli scheme of two symbols — independently of the

dimension of the system. In the case of a diffeomorphism, however, that is not

the case. In a neighborhood of the trajectory Γ the symbolic description is given

by the Markov chain shown in Fig. 14, where the meaning of n is the same as

above and p is the number of iterations needed for the image of the homoclinic

0
n+ p

. .
.

.

Fig. 14

point M lying in a small neighborhood of the fixed point

O to hit this neighborhood again. However, two chains

with different values of n+ p will not be conjugate since

they have different topological entropies. This means that

in the case of a diffeomorphism the answer depends on

the choice of neighborhood. 8

The consideration of problems connected with the study of the behavior of

multi-dimensional systems in the neighborhood of homoclinic trajectories re-

quired the invention of a new technique. One of its elements was the construc-

tion of local mappings in a neighborhood of periodic motions and equilibrium

states in the so-called entwined form, whose essence reduced to solving not a

8 Naturally the suspensions over such Markov chains are equivalent (see [19]).



362 L. P. Shil’nikov

Cauchy problem, but a special boundary-value problem. 9 Effective criteria were

also given for the existence of nonperiodic trajectories (in terms of theorems on

saddles and stable fixed points of operators on a countable product of Banach

spaces).

In the 1960s this technique enabled the author to solve not only these prob-

lems but also the analog of the Poincaré–Birkhoff problem for the case of a

homoclinic manifold of a saddle invariant torus [20], and also to explain a fun-

damentally new bifurcation problem — the generation of a nontrivial hyperbolic

set from the bouquet of homoclinic loops of a structurally unstable equilibrium

state of saddle-saddle type [21]. Subsequently the technique of entwined maps

was effectively used to solve the Poincaré–Birkhoff problem for mappings in a

Banach space [22] (including, in particular, the case when the unstable manifold

of a saddle fixed point has infinite dimension), and also for nonautonomous

systems with an arbitrary nonperiodic time dependence [23].

The natural evolution of research now led to the need to study homoclinic

tangencies. The systematic study of this problem was begun by N. K. Gavrilov

and the author [24] in the early 1970s. As the object of study we took three-

dimensional flows having a saddle periodic motion L whose stable and unstable

manifolds had quadratic contact along some homoclinic trajectory Γ. Let λ
and γ be multipliers of L and |λ | < 1, |γ | > 1. Assume that the saddle value

σ = |λγ | �= 1; here, without loss of generality, we can assume that |σ | < 1. Let

U be a small neighborhood of the closure Γ∪L of the homoclinic trajectory and

N be the set of all trajectories lying entirely in U . Depending on the signs of the

multipliers and the signs of certain coefficients that characterize the way in which

the stable and unstable manifolds meet Γ, the systems with homoclinic trajecto-

ries were assigned to one of three classes. In the process it was established that

1) for systems of the first class the set N is trivial: N = {L,Γ};
2) for systems of the second class N is a nontrivial subset that admits a com-

plete description in the language of symbolic dynamics of three symbols;

3) for systems of the third class N still contains nontrivial hyperbolic sub-

sets, but the latter do not generally exhaust the set N, and there is an

everywhere-dense structural instability on the bifurcation manifolds of a

system of the third class.

9 The inconvenience of constructing the mapping in direct form by solving a Cauchy problem

is that the derivatives with respect to the initial conditions tend to infinity in this case as the

number of iterations increases, while for a mapping in entwined form all derivatives are uniformly

bounded.
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Specifically, as follows from [24], in any one-parameter family of systems

in which the original homoclinic tangency of the third class does not split and

the quantity

θ = − ln |λ |
ln |γ |

varies monotonically, systems having structurally unstable periodic motions are

dense. Later, it was shown that in such one-parameter families systems with a

countable number of stable periodic motions for σ < 1 are dense and so also are

systems with secondary homoclinic tangencies [25]. (If σ > 1, systems with a

countable number of unstable periodic motions are dense.)

The reason is that for systems of the third

O

W u

W s

Fig. 15

class the structure of N depends crucially on

the quantity θ . For example, if λ > 0 and

γ > 0, then the third class contains tangen-

cies for which the stable and unstable mani-

folds behave as shown in Fig. 15. On a two-

dimensional section S of L, the manifold W u

is tangent to W s near the point O = S∩L from

above, and W s is tangent to W u near O from

the left. Just as in the case of a structurally

stable homoclinic, for each trajectory of N
(except O and Γ) one can construct an encod-

ing: namely, a sequence of integers

(. . . ,n−k, . . . ,n0,n1, . . . ,nk, . . .),

that is infinite for trajectories not lying in W s and W u and finite (from one end

or both) for trajectories that are asymptotic to L. It was shown in [24] that for

every sequence of sufficiently large integers nk for which nk+1 < nkθ
′ for all k

there is a continuum of trajectories in U with the given encoding; and conversely

if nk+1 > nkθ
′′ for at least one k, then there are no trajectories in U with this

encoding. Here θ ′ and θ ′′ are certain numbers such that 1 < θ ′ < θ < θ ′′, and

θ ′ and θ ′′ can be made arbitrarily close to θ at the cost of decreasing the size

of the neighborhood U . A more precise description was obtained in [25], but

it follows immediately from this result that for an arbitrarily small change in θ
the structure of the set N varies continuously.

Later, it was shown explicitly that θ is an invariant of Ω-equivalence (that

is, topological equivalence on the set of nonwandering points) for systems of the

third class [26]–[28]. In other words, systems with different values of θ cannot

be Ω-equivalent and consequently arbitrarily small changes of θ must lead to

bifurcations in a nonwandering set.
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Systems with quadratic homoclinic tangencies form bifurcation surfaces of

codimension 1. Therefore, of course, one must first examine what happens when

the tangency of invariant manifolds splits. Let µ be the bifurcation parameter

responsible for the splitting of a separatrix and Xµ a family of systems in

which µ varies monotonically. Thus Xµ intersects transversally the surface

of the system with homoclinic tangency for µ = 0. The following fact is of

fundamental importance here: In every transversal one-parameter family Xµ

there is a sequence of intervals accumulating at µ = 0 in which the parameter

values corresponding to quadratic homoclinic tangencies are dense (and Xµ is

transversal to each of the corresponding bifurcation surfaces).

This remarkable result was proved by S. Newhouse for nonconservative two-

dimensional diffeomorphisms 10 in [31]. Roughly speaking, it means that al-

Sheldon Newhouse

though each individual homoclinic tangency can be

removed by small motions of the system, they nev-

ertheless do not enable one to get rid of homoclinic

tangencies altogether.

Domains of everywhere dense structural insta-

bility in the space of Cr-smooth dynamical systems

(r � 2) in which systems with homoclinic tangen-

cies are dense are called Newhouse domains (the in-

tervals of parameter values mentioned above along

which the transversal family Xµ intersects a New-

house domain are called Newhouse intervals).

The best known result [32] on the dynamics of

two-dimensional mappings in Newhouse domains is

that if the saddle value σ = |λγ | is less than 1, then in these domains, systems

having infinitely many stable
11

periodic motions are dense. This assertion fol-

lows almost immediately from the density of the parameter values corresponding

to homoclinic tangencies, and the earlier result [25] that in the case σ < 1 the

transversal family contains a sequence (accumulating at µ = 0) of intervals of

values of µ corresponding to a stable periodic motion.

10 It was extended to the multi-dimensional case in [29]; under the condition that the unstable

manifold of a saddle periodic trajectory is one-dimensional, the multi-dimensional case was also

done in [30].
11 If |σ | > 1, we have infinitely many totally unstable periodic motions. For the multi-

dimensional case the common property of systems in Newhouse domains is the coexistence

(in infinite number) of periodic motions with stable manifolds of different dimensions, that is,

with a different number of positive/negative Lyapunov exponents. (See [33] and [34], where cri-

teria are also given for the existence of an infinite set of stable motions in the multi-dimensional

case, a special case of which was studied in [32].)
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But the streak of amazing phenomena in systems with homoclinic tangencies

did not end there, as was shown by another series of papers of S. V. Gonchenko,

D. V. Turaev, and the present author. As we have already noted, it was known

that in systems with homoclinic tangency of the third class one can obtain an-

other trajectory of homoclinic tangency by an arbitrarily small change in θ . (The

original homoclinic tangency does not disappear in this process.) It turned out

that this fact has a far-reaching consequences. To be specific, by an application

of localized small smooth increments one can establish that, in the set of systems

with homoclinic tangencies of the third class, all systems which have infinitely

many saddle-type periodic trajectories, with homoclinic tangencies also of the

third class, are dense.
12 This means that such systems have infinitely many

independent continuous invariants (moduli) of Ω-equivalence. (For each tan-

gency of the third class taken individually the corresponding quantity θ is such

an invariant; we do not assert that the totality of all these quantities is a com-

plete invariant — other invariants are also possible, for example, the quantity τ
of [27].)

The construction of a homoclinic tangency with an infinite set of trajectories

served as the basic element in the proof of the following proposition [35]–[37]:

In the set of systems with quadratic homoclinic tangency of the third class,

systems having homoclinic tangency of every arbitrarily large order and systems

having infinitely many structurally unstable periodic trajectories of every order

of degeneracy are dense.

The latter objects are periodic trajectories with a single multiplier equal

to 1 or −1, and an arbitrarily large number of zero Lyapunov quantities — the

successive coefficients of the nonlinear terms in the normal form of the Poincaré

mapping on a central manifold. Thus, in the case of one multiplier equal to 1,

for a periodic trajectory of degeneracy order k the Poincaré mapping on a central

manifold has the form

x = x+ lk+1xk+1
+ o(xk+1

).

The construction of a complete bifurcation diagram for such a periodic motion

requires exactly k parameters. Since we can obtain structurally unstable peri-

odic trajectories of every degeneracy order k, this means that for systems with

homoclinic tangencies a complete description of the dynamics in the framework

of any finite-parameter family is theoretically impossible.

12 Here, and throughout this article, we mean density in the Cr-topology, for an arbitrary fi-

nite r. If we consider C∞-systems, density in the Cr-topology for an arbitrary finite r means, by

definition, density in the C∞-topology.
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L. P. Shil’nikov, D. V. Turaev, and S. V. Gonchenko

This discouraging result is all the more important because the systems of the

third class are dense in Newhouse domains, that is, we have entire domains in

the space of smooth dynamical systems for which a complete description of the

dynamics (in particular, a complete description of the bifurcations of periodic

motions) is unattainable.

We generalized the results discussed here to the multi-dimensional case

almost immediately [33], [34]; an analogous classification of systems with

quadratic tangency was given, the basic invariants (moduli) of Ω-equivalence

were exhibited (and in the case of complex leading multipliers λeiϕ , γeiψ they

turned out also to be the arguments ϕ and ψ), the results of Newhouse were

generalized, and the density of multi-dimensional systems with infinitely degen-

erate periodic and homoclinic trajectories in Newhouse domains was established.

Thus, the general conclusion of the theoretical impossibility of a complete de-

scription is valid for the multi-dimensional case as well.

All this is relevant to the study of specific dynamical models, since ho-

moclinic tangencies, and consequently also Newhouse domains are being dis-

covered in practically all known families of systems with a complex dynamics,

from the small periodic perturbations of integrable systems discussed above to

such popular models as the Hénon mapping and the Chua circuit, and also in

the transition to chaos through destruction of quasi-periodic motions and after

period doubling.

Popular objects among the systems with the complex dynamics that occur

in very many cases, are the systems with homoclinic loop of saddle-focus type,

discussed above. Such systems in general also form bifurcation sets of codi-

mension 1 and are to a certain degree analogous to systems of the third class
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[38]–[40]. Thus, in these bifurcation sets systems having homoclinic tangency

are also dense. Consequently, nearby systems will have Newhouse domains, and

degeneracies of arbitrarily high order will also occur.

Moreover, as was recently established by Turaev and the author, there can

also exist strange attractors (we called them wild) containing a saddle-focus.

Naturally, for this reason the attractor has a spiral character. All the trajectories

in wild spiral attractors are unstable, as one expects for genuine strange attrac-

tors. Moreover this property is preserved also for small smooth perturbations.

The fact that wild spiral attractors contain equilibrium states relates them to

attractors of Lorenz type. For example, both types of attractors are structurally

unstable: either they have homoclinic loops of an equilibrium state, or that can

be arranged by small perturbations of the system. However, whereas attractors

of Lorenz type have dimension 2, the wild spirals have dimension 3. Wild

spiral attractors have been constructed in one-parameter families of systems on

R
n, where n � 4. When this is done, the domain of variation of the parameters

contains Newhouse intervals, with all the consequences that entails [41]. Nev-

ertheless, such attractors are completely natural objects of nonlinear dynamics.

In his report on Poincaré’s competition paper, Weierstrass wrote that the

results obtained in it destroy many illusions about the dynamics of Hamiltonian

systems. This was the essential reason why qualitative methods became the

basic methods of nonlinear dynamics. We now see that it is also necessary to

get rid of the illusion that it is possible to give a complete qualitative analysis

of dynamic systems. In both the one case and the other, the crisis was caused

by Poincaré’s homoclinic orbits.
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A. N. Shiryaev

From “Disorder” to Nonlinear Filtering

and Martingale Theory

Translated by R. Cooke

At any given time there is only a thin layer

separating what is trivial from what is impossibly difficult.

It is in that layer that mathematical discoveries are made . . .

Diary entry of A.N.Kolmogorov
14 September 1943

1. The “Disorder” Problem — Prehistory

1.1. Sometime near the end of 1958 Andrei Nikolaevich Kolmogorov held

a conversation with Yurii Borisovich Kobzarev (a member of the Academy of

Sciences and the founder of the Soviet school of radiolocation) concerning a

number of theoretical questions involving methods of detecting signals entering

a locator amid strong noise. One of the questions that interested Kobzarev

involved correctly posing the problem of rapid detection of the reflected signal

arriving from a “target” appearing at a “random” time, not known in advance.

At that time the topic of separating signals from a mixture with noise was

both very popular and quite well studied. However, the original assumptions

had, as a rule, the following defect — it was originally assumed that there are at

most two hypotheses.
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• H∞ — only noise N occurs the whole time, that is, the signal appears at

time θ = ∞;

• H0 — from the very beginning, that is, at θ = 0, a mixture S+N of signal

S and noise N arrives.

In other words, the observed process X = (Xt)t�0 has the following structure at

all t � 0:

Xt =

{
Nt under the hypothesis H∞,

Nt + St under the hypothesis H0.
(1)

From the statistical point of view, the question as to which hypothesis is to

be preferred on the basis of the observations X = (Xt)t�T is solved, as a rule,

from the values of the likelihood ratio

LT =

dP0

dP∞
(X ,T ), (2)

defined as the Radon–Nikodým derivative of the probability distribution P0 =

Law(Xt ; t � T
∣∣H0) with respect to the probability distribution P∞ = Law(Xt ;

t � T
∣∣H∞).

Thus, for example, if it is required to minimize the sum α+β of the errors

of first and second kind (α is the probability of adopting the hypothesis H∞

when hypothesis H0 holds and β the probabilty of adopting the hypothesis H0

assuming that H∞ is actually true), then by the Neyman–Pearson test, the optimal

method is to adopt the hypothesis H0 when LT � K and H∞ if LT < K. (Here K
is a certain constant determined from the distributions P0 and P∞.)

The Wald sequential method, which minimizes the average duration of ob-

servations simultaneously for both hypotheses H0 and H∞ under given errors of

first and second kind, has also attained widespread usage. (This optimality prop-

erty of the Wald method, which is based on observing the process LT , T � 0,

holds at least for homogeneous processes with independent increments relative

to the probability distributions of the process X under each of the hypotheses

H0 and H∞.)

These optimality properties of both the Neyman–Pearson method and the

Wald method in the problem of distinguishing the two hypotheses carried over

automatically to the case when the “target” may appear at a certain time θ
different from 0 or ∞. (The time θ = 0 means, as stated above, the presence of

a “target” from the very beginning of the observation, and the value θ = ∞ is

interpreted as the complete absence of a target.)

It is this circumstance that caused the uneasiness of Kobzarev, who wished to

have a precise mathematical statement of the problem of most rapid dectection
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of a randomly appearing “target” and the realization of the sense in which

the traditional methods of detection, based on the Neyman–Pearson and Wald

methods, are close to optimal.

1.2. At that time (from September 1957) I was already working in the Depart-

ment of Probability at the Mathematical Institute of the Academy of Sciences,

directed by Andrei Nikolaevich Kolmogorov, where Viktor Leonov and I were

enthusiastically studying the nonlinear analysis of random processes and, in

particular, the formulas connecting moments and semi-invariants, higher-order

spectral characteristics, and limit theorems for stationary processes under condi-

tions imposed on the behavior of the semi-invariants.

When he invited me to his home in Komarovka, Andrei Nikolaevich said

that one ought to study thoroughly the problems of distinguishing signals from

a mixture with noise, studying as a preliminary the literature on methods of

detection and radio location. He also planned a number of meetings with radio

engineers connected with Yu. B. Kobzarev in order to gain an understanding of

what was realistically expected of us.

Many meetings and consultations were held, in which, unfortunately, the

topic was mostly the technical side of the matter, the spectral characteristics of

signals and noise and the need to take all this into account somehow. However,

we never reached any precise mathematical statements, having gotten tangled up

in new requirements that arose of taking account, for example, of the fact that

after an “alarm” was sounded and the “target” appeared, the observation process

did not terminate, but rather began anew. In other words, it was somehow

assumed that realistic problems of rapid detection are not single-stage (as in the

Neyman–Pearson and Wald schemes) but multi-stage.

As a result of all this preliminary but unquestionably useful work, it became

clear that it was impossible to take account of all the stated desiderata primarily

involving the model that describes the nature of the noise and signal; and that,

in a certain sense, one must concentrate on the more “difficult” model from the

point of view of detection with a description of the statistical properties of the

noise and signal and also the statistics of the appearance of the “target.”

We had many conversations with Andrei Nikolaevich, in which he empha-

sized that success could be attained only by turning to simple, “crude,” but

representative models that “epitomized” in some sense the realistic models we

had heard of in conversations with radio engineers; and then the formulation of

the actual problem of rapid detection began to be sketched. The course of our

reasoning here was as follows.

We would first study the single-stage problem of detecting a “target” that

appeared at a certain time θ ∈ [0,∞].
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What is θ? Is it simply an unknown parameter, or is it a random variable

with some probability distribution?

Here we proceeded along the route of assuming that θ is a random variable

with an exponential distribution, P(θ > t) = e−λt , where λ > 0 is some known

constant to start with.

At first glance the very assumption of the “randomness” of the time of

appearance of the “target,” and even more the assumption of the exponential

nature of the probability distribution of θ may seem highly artificial. However,

the following circumstances justify these assumptions.

First, if we use the notation θt = I(t � θ), we obtain a well-studied homo-

geneous Markov process with a single switch 0 → 1 at time θ .

Second,

P(θ > t + s|θ > s) = P(θ > t) = e−λt .

In other words, if it is known that the “signal” has not appeared up to time s, the

statistics of its appearance will be the same as at the time when the observation

began, and therefore everything virtually starts over again.

Finally, if λ → 0 (and hence Eθ → ∞), the conditional probability is

P
(
θ ∈ (a,b)

∣∣θ ∈ (A,B)

)→ |b−a|
|B−A| ,

where A < a < b < B. In other words, the limiting conditional distribution is

conditionally uniform, that is, if we know that the “signal” may appear during

the interval (A,B), then within that interval it appears uniformly.

Such an assumption seems completely natural if nothing is known about

the time of appearance of the “signal,” while at the same time one can foresee

that the conditionally uniform nature of the distribution of that time is the most

“difficult” case for detection.

Subsequently, the time of appearance of the “target” in our work (see, for

example, [4], [6]) came to be called the time of appearance of the disorder,

partly because in public print it was necessary somehow to “disguise” a certain

applied direction of these radio-location problems. (Thus, the paper [4] was

titled “On the detection of disorder in a manufacturing process.”)

The term “disorder” (razladka in Russian) caught on and is now used in

many papers devoted to sequential methods of detecting randomly appearing

signals. The Western term change point, which has also become firmly en-

trenched in the statistical literature, usually refers to the circle of problems in

which the decision as to the time of change of probability characteristics is

adopted a posteriori, retrospectively, that is, taking account of the entire mass
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of available data at once (without the right to accept new data, as occurs in

sequential methods).

Besides the solution of the problem of the probabilistic-statistical nature of

the time of appearance of the “disorder,” it was also necessary to pay attention

to at least the idealized probablistic-statistical nature of the incoming data up to

the time of “disorder” (that is, when there was only “noise”) and after that time

(interpreted as the state “signal + noise”).

In the early stages we limited ourselves to a model comprehensible to radio

engineers, which, using their language, can be stated as follows:

• the noise is modeled as “white Gaussian noise with mean value zero,”

• signal + noise is described as “white Gaussian noise, but with a nonzero

drift.”

If we use the terminology, which was adopted in the radiotechnical literature

of the 1950s and 1960s, we can say that the incoming signal Ẋ at the entrance

to the locator has the form

Ẋt =

{
δt , t < θ ,

δt + r, t � θ ,
(3)

where δt is “white Gaussian noise with zero mean” and r is some nonzero

constant.

Of course, it is necessary to give a rigorous mathematical meaning to this

notation, and that is achieved by passing to the integral form in (3). To be

specific, we shall assume that the process being observed (that is, the process at

the entrance to the locator) X = (Xt)t�0 has the following structure:

Xt = r
∫ t

0
θs ds+σBt , (4)

where θs = I(s > θ) and B = (Bt)t�0 is a standard Brownian motion (Wiener

process).

It is customary to write relation (4) in differential form as follows:

dXt = rI(t > θ)dt +σ dBt , X0 = 0. (5)

It was this model, together with the assumption of exponential distribution of

the time of appearance of the “disorder” that was adopted in our first papers on

rapid detection ([1]–[4]).
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We must now state the problem of detecting the time of appearance of the

“disorder” itself taking account of the desiderata that the radio engineers had

stated on the descriptive level.

Since the fact of the appearance of the “disorder” was to be incorporated as

the raising of an “alarm” signal, it was natural to introduce into consideration

a certain (random) time — call it τ — which was to be identified with the time

when an “alarm” was declared. Naturally the decision, whether it is worthwhile

to raise an alarm at time τ , was to be based only on the information available

up to that time. We thus arrive at the situation in which the time of the “alarm”

τ was to be a stopping time (Markov time), that is, such that for each t � 0 the

event is

{τ � t} ∈ F
X
t ,

where FX
t is the σ -algebra of events generated by the values Xs, s � t, of the

observed process X .

1.3. Having the times θ and τ , we consider the following two events: {τ < θ}
and {τ � θ}. The first event {τ < θ} is connected with a false alarm, and if the

probability P(τ < θ) is interpreted as the probability of a false alarm, it would

be desirable that this quantity be small.

With the second event {τ � θ}, in which the alarm signal is given “cor-

rectly,” that is, after a “disorder” appears, it is natural to connect the mean time

of delay E(τ−θ)
+ ( = Emax(τ−θ ,0)) or the conditional average time of delay

E(τ−θ
∣∣τ � θ). (It is clear that E(τ−θ)

+

= E(τ−θ
∣∣τ � θ)P(τ � θ).)

One would like to make both the quantity E(τ − θ
∣∣τ � θ) or E(τ − θ)

+

and the quantity P(τ < θ) small simultaneously by choosing a suitable stopping

time τ . It is clear, however, that it is not possible to achieve the simultaneous

minimization of these detection characteristics. For that reason the follow-

ing (conditional-extremal) version of the problem of rapid detection has been

proposed.

Version A. Let α be a constant, α ∈ (0,1), and Mα the class of stopping times

τ for which the probability of a false alarm satisfies the inequality P(τ < θ) � α .

It is required to find the quantity

A(α) = inf
τ∈Mα

E(τ−θ
∣∣τ � θ) (6)

and the (optimal) time τ∗α for which E(τ∗α−θ
∣∣τ∗α � θ) = A(α).

Using Lagrange multipliers, one can obtain the solution of this problem from

the solution of the following “weighted” problem:
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Version B. Find, for each c > 0, the quantity

B(c) = inf
τ∈M

{P(τ < θ)+ cE(τ−θ
∣∣τ � θ)P(τ � θ)} , (7)

where M is the class of all finite stopping times; also find the optimal stopping

time τ∗(c) at which the value B(c) is attained.

In Section 3 below we shall consider other versions of the “disorder” prob-

lem. At this point we turn to the solution of this problem in the stated versions.

2. The “Disorder” Problem — its Solution in Versions A and B

2.1. We begin by making more precise the nature of the distribution of the

time of appearance of the “disorder” θ . It is reasonable to assume that

P(θ = 0) = π with π ∈ [0,1].

In other words, we shall admit the possibility of the presence of a “disorder” at

the initial observation time t = 0. Under this assumption the exponential nature

of the appearance of the “disorder” can be stated as follows:

P(θ > t
∣∣θ > 0) = e−λt . (8)

In the solution of rapid-detection problems in Versions A and B the key role

is played by the a posteriori probability (constructed from the results of the

observations Xs, s � t)

πt = P(θ � t
∣∣FX

t ), (9)

which is the probability that the “disorder” appeared in the interval [0, t].
Indeed, it is not difficult to see that for every stopping time τ

P(τ < θ) = Eπ(1−πτ) (10)

and

E(τ−θ)
+

= E
∫ ∞

0
I(θ � s � τ)ds = E

∫ τ

0
P
(
θ � s

∣∣FX
s

)
ds = Eπ

∫ τ

0
πs ds, (11)

where Eπ is the average with respect to the measure Pπ — the probability

distribution of the process X under the assumption that π0 = π .
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Thus, from (7), (10), and (11) we find that

Bπ(c) = inf
t∈M

Eπ

{
(1−πτ)+ c

∫ τ

0
πs ds

}
, (12)

where the index π on B(c) reminds us that π0 = P(θ = 0) = π .

We see by (12) that the solution of the problem of rapid detection in Ver-

sion B has been reduced to solving the problem of optimal stopping for a process

with a posteriori probability (πt)t�0. The subsequent steps in the solution of

this problem involved primarily clarifying the structure of the process (πt)t�0.

With this purpose, it is convenient to introduce the process ϕt = πt/(1−πt) and

first study its structure, then pass to the process πt .

Let Pθ = Law(X |θ) be the probability distribution of the process X = (Xt)t�0

under the assumption that the parameter θ in the model (5) is simply some

numerical parameter from [0,∞]. We shall use the notation (see (2))

Lt =

dP0

dP∞
(X , t) (13)

for the Radon–Nikodým derivative of the measure P0
∣∣FX

t with respect to the

measure P∞|FX
t , where, as usual, Pθ |FX

t is the restriction of the measure Pθ to

the σ -algebra FX
t .

Setting

P(·) = πP0(·)+ (1−π)

∫ ∞

0
λe−λθPθ (·)dθ ,

we define similarly the derivative
dPθ
dP

(X , t) with respect to the measure P = P(·).
By Bayes’ formula we find that

πt = π
dP0

dP
(X , t)+ (1−π)

∫ t

0

dPθ
dP

λe−λθ dθ

and

1−πt = (1−π)e−λt dPt

dP
(X , t) = (1−π)e−λt dP∞

dP
(X , t).

Therefore

ϕt =

πt

1−πt
=ϕ0eλt Lt +λeλ t

∫ t

0

Lt

Lθ
e−λθ dθ = eλt Lt

(
ϕ0 +λ

∫ t

0

e−λθ

Lθ
dθ

)
. (14)

For the model (5) the likelihood ratio is

Lt = exp

(
r
σ 2 Xt − r2

2σ 2 t

)
. (15)
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Hence by the Itô formula ([11]–[13]) we find that

dLt =

r
σ 2 Lt dXt . (16)

Taking account of this relation and again applying the Itô formula, we find

by (14) that

dϕt = λ (1+ϕt)dt +

r
σ 2ϕt dXt , ϕ0 =

π

1−π
. (17)

From this relation and the fact that πt = ϕt/(1+ϕt), and again applying the Itô

formula, we obtain

dπt =

(
λ − r2

σ 2π
2
t

)
(1−πt)dt +

r
σ 2πt(1−πt)dXt , π0 = π. (18)

Equations (17) and (18) were first published in 1961 in our paper [2] (and then,

in more expanded form in [3] in 1963 — see also [7] and [8]).

Equation (18) must, of course, be understood in the sense that the corre-

sponding integral relation holds:

πt = π0 +

∫ t

0

(
λ − r2

σ 2π
2
s

)
(1−πs)ds+

∫ t

0

r
σ 2πs(1−πs)dXs. (19)

Here, however, a theoretical difficulty arises, involving the interpretation of the

stochastic integral with respect to dXs. Up to the time when this equation (19)

was obtained (1959–1960), stochastic integrals were defined (K. Itô) only for

the case when X is a Brownian motion (Wiener process); and naturally it was

necessary to give a precise interpretation of the stochastic integral in the case

of the process (4) that we were considering. One of the ways of interpreting

the integral
∫ t

0 πs(1−πs)dXs would have been (in accordance with (5)) simply

as the sum of two integrals∫ t

0
πs(1−πs)rI(s > θ)ds+

∫ t

0
σπs(1−πs)dBs,

where this last integral is the Itô stochastic integral with respect to the Brownian

motion B = (Bs)s�0.

However, such a method of interpretation did not clarify, say, such a natural

question as whether the process (πt)t�0 is a Markov process. As it turned out,

such is indeed the case. One can see this and give Eq. (19) a precise meaning

as follows.
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Having the process X = (Xt)t�0 defined by the formula (4), we form the

process

Bt =

1
σ

(
Xt − r

∫ t

0
πs ds

)
=

r
σ

∫ t

0
(θs −πs)ds+ Bt . (20)

It is quite remarkable that relative to the flow (FX
t )t�0 this process is a square-

integrable martingale, that is, E|Bt |2 < ∞, E(Bt |FX
s ) = Bs, and

E|Bt −Bs|2 = t − s, s � t.

Hence it follows by a well-known theorem of Lévy that the process B = (Bt)t�0

is a Brownian motion.

Since by (20) we have

dXt = rπt dt +σ dBt , X0 = 0, (21)

it follows that (18) takes the following form:

dπt = λ (1−πt)dt +

r
σ
πt(1−πt)dBt , π0 = π. (22)

There is now no difficulty in assigning a meaning to this equation — it is the

usual stochastic differential equation of Itô, where the integration with respect to

dBt is understood as stochastic integration with respect to the Brownian motion

B = (Bt)t�0.

The process B = (Bt)t�0 is called a renewal process, since by virtue of (21)

it “renews” the “information” FX
t that was obtained from observation of the

process X over the interval [0, t]. It is also interesting that in the scheme (4) that

we are studying

F
B
t = F

X
t , t > 0.

In other words, the process B not only “renews the information,” it also holds

the same information as the process X .

Thus, to give an exact meaning to all the equations we are considering which

contain the differential dXt , we must first represent that differential in the form

(21) and carry out all further operations with the differential dBt . Thus, if we

look at (15), we find that

Lt = exp

[
r
σ

Bt +
r2

σ 2

∫ t

0

(
πs − 1

2

)
ds

]
,

and hence (see (16)) by the classical formula of Itô we find

dLt =

r2

σ 2 Ltπt dt +

r
σ

Lt dBt .
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2.2. From Eq. (22) we can immediately draw the following important con-

clusion — the process (πt)t�0 (with respect to the flow (FX
t )t�0) is a diffusion

Markov process with phase space [0,1], local drift

a(π) = λ (1−π), (23)

and local variance

b2
(π) =

( r
σ

)2 (
π(1−π)

)2
. (24)

It follows from this that the problem (12) in Version B is the problem of optimal

stopping of the diffusion process (πt)t�0 with the infinitesimal operator

A = a(π)

d
dπ

+

1
2

b2
(π)

d2

dπ2 . (25)

To simplify the notation we set (assuming the constant c > 0 fixed, but on

the other hand emphasizing the dependence on π0 = π)

ρ∗
(π) = Bπ(c).

We also use the notation ρ0(π) = 1−π . This function ρ0(π) can be regarded as

the risk due to stopping immediately (τ = 0), and it is clear that ρ∗
(π) � ρ0(π).

The function ρ∗
(π), as one can easily show, is convex upward and decreases as

π increases from 0 to 1 (see Fig. 1).

0 A∗ 1 π

ρ∗
(π)

ρ0(π)

Fig. 1

It becomes clear from these properties that

there exists a value A∗ ∈ [0,1] such that the

following relations hold:

C∗ ≡ {π : ρ∗
(π) < ρ0(π)} = {π : π < A∗}

and

D∗ ≡ {π : ρ∗
(π) = ρ0(π)} = {π : π � A∗}.

It turns out that in the optimal stopping

problem that we are considering, the optimal

stopping time τ∗ has a rather simple struc-

ture:

τ∗ = inf{t : πt ∈ D∗} (= inf{t : πt � A∗}). (26)

In other words, the alarm signalling the presence of “disorder” should be given

when the process πt first reaches the domain D∗, which it is natural to call the

stopping region. Then the region C∗ is just the region of continued observation.
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How are we to find the risk function ρ∗
(π) and the boundary point A∗

that separates the stopping region from the region of continued observation?

Here it helped to recognize that one could connect the so-called Stefan problem

(a problem with moving boundary) with the optimal stopping problem under

consideration. The solution of the Stefan problem yields both the unknown

function ρ∗
(π) and the unknown boundary point A∗, which according to (26)

determines the stopping time τ∗ (= inf{t : πt � A∗}).
Thus we consider the following Stefan problem:

Find a function ρ = ρ(π), π ∈ [0,1] and a boundary point A such that

ρ(π) = 1−π, π � A, (27)

A ρ(π) = −cπ, π < A. (28)

Condition (27) is completely understandable, since for π � A the re-

quired risk must coincide with the risk from stopping immediately. But

Eq. (28) is merely the backward Kolmogorov equation for the functional

Eπ

(
(1−πt)+ c

∫ τ
0 πs ds

)
, where τ = inf{t : πt � A} and π < A.

Let us write (28) in detailed form

λ (1−π)ρ ′
(π)+

1
2

( r
σ

)2
π2

(1−π)
2ρ ′′

(π) = −cπ. (29)

The general solution of this equation contains two undetermined constants (C1

and C2), which, together with the unknown boundary A yields three unkown

constants, even though up to now we have had only one condition on the

boundary A:

ρ(A) = 1−A. (30)

To solve the problem we introduce two more conditions:

ρ ′
(A−) = −1 (31)

and

ρ ′
(0+) = 0. (32)

Condition (31) is called the smooth-fit condition and is introduced ad hoc. (In

[14] the conditions are given under which smooth-fit holds of necessity for the

risk function on the boundary of the stopping region.) As for (32), its naturalness

is a consequence of the following ([9]).
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We use the notation r(π) = ρ ′
(π). It then follows from (29) that

r′(π) = −cπ+λ (1−π)r(π)

1
2 (

r
σ )

2π2
(1−π)

2
. (33)

If we assume that r(0) �= 0 for the solution we require, then one can see by

(33) that r′(π) ∼ 1/π2 in a neighborhood of zero, and hence ρ(π) ∼ lnπ . But

this contradicts the fact that the solutions we are interested in must satisfy

0 � ρ(π) � 1−π by the meaning of the problem.

But if r(0) = 0, then r′(π) ∼ 1/π in a neighborhood of zero, and Eq. (29)

may have a solution that does not tend to +∞ or −∞ as π ↓ 0. In fact, analysis

of the integral curves of Eq. (29) exhibits the following behavior for them.

We fix some point a in the interval [0,1], and we shall “release” the solution

from the point 1− a, that is, set ρ(a) = 1− a with the additional condition

that ρ ′
(a) = −1. Then one can observe the following.

If a is close to 1, the correspond-

a∗ a π

ρ(π)

separatrix

Fig. 2

ing solutions “tend” to −∞. But if a is

close to zero, they “tend” to +∞. And

there is a unique value a = a∗ at which

the solution is finite at the point π = 0
(see Fig. 2). Speaking in the language of

the qualitative theory of differential equa-

tions, the solutions in question have a

separatrix that, as it happens, is the solu-

tion that yields the solution of the optimal

stopping problem in Version B.

A simple analysis ([2], [10]) shows

that the solution of the Stefan problem

(27), (28) with the additional conditions

(31) and (32) has the following form:

ρ(π) =

⎧⎨⎩(1−A)−
∫ A

π
y(x)dx, π ∈ [0,A],

1−π, π ∈ [A,1],
(34)

where

y(x) = −C
∫ x

0
e−Λ[G(x)−G(u)]

du
u(1−u)

2 ,

G(u) = ln
u

1−u
− 1

u
, Λ=

λ

r2/(2σ 2
)

, C =

c
r2/(2σ 2

)

.
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The constant A is found from the equation

C
∫ A

0
e−Λ[G(A)−G(u)]

du
u(1−u)

2 = 1, (35)

which is Eq. (31).

2.3. We now claim that the solution
(
ρ(π),A

)
found for the Stefan problem

is precisely the pair
(
ρ∗

(π),A∗) that yields the solution of the optimal stopping

problem

ρ∗
(π) = inf

t∈M

Eπ

{
(1−πt)+ c

∫ τ

0
πs ds

}
.

One can verify this by resorting to the so-called verification conditions:

a) for every τ ∈ M

Eπ

{
(1−πt)+ c

∫ τ

0
πs ds

}
� ρ(π) ,

where ρ(π) is the solution defined by formula (34);

b) for the threshold A just found (from Eq. (35)) the corresponding time

τA = inf{t : πt � A} is such that

Eπ

{
(1−πτA)+ c

∫ τA

0
πs ds

}
= ρ(π).

Both of these properties can easily be established by applying the Itô formula

to the process ρ(πt). (For details see, for example, the 1976 monograph [10],

Chapter IV, § 4.)

2.4. Having obtained the solution of the optimal stopping problem in Ver-

sion B, one can now easily obtain the solution in Version A as well.

First of all, it is clear that the usual Lagrange method of solving constrained

extremal problems by reducing them to the study of “weighted” functionals

shows that in the class Mα the optimal stopping time τ∗α exists and has the

following form:

τ∗α = inf{t : πt � A∗
α}, (36)

where A∗
α is a constant. But since

α = Pπ(τ
∗
α � θ) = Eπ(1−πτ∗α ),

we find that

α = (1−A∗
α)I(π � A∗

α)+ (1−π)I(π > A∗
α). (37)
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Thus, considering the case when P(θ = 0) = π = 0, we find that the optimal

threshold satisfies

A∗
α = 1−α . (38)

Let c = c(α) be the value of the constant in (7) at which in Version B the

threshold A∗
= A∗

(c) is exactly equal to A∗
= 1−α . (The existence of such

a value c = cα follows from the continuous dependence of A∗
(c) on c and the

fact that the values A∗
(c) belong to the interval [0,1] when c assumes values in

[0,∞).) Then, on the one hand, for π = 0,

ρ∗
(0) = inf

τ
{P0(τ < θ)+ cαE0(τ−θ)

+}
= P0(τ

∗
α < θ)+ cαE0(τ

∗
α −θ

∣∣τ∗α � θ)P0(τ
∗
α � θ)

= α+ cαE0(τα −θ
∣∣τ∗α � θ)(1−α). (39)

On the other hand, by (34)

ρ∗
(0) = (1−A∗

α)+

cα
ν

∫ A∗
α

0

[∫ x

0
e−(λ/ν)[G(x)−G(u)]

du
u(1−u)

2

]
dx (40)

with ν = r2/(2σ 2
). Since 1−A∗

α = α , we find by comparing (39) and (40) that

in the class Mα the delay time

R(α ;λ ) = E0(τ
∗
α −θ

∣∣τ∗α � 0)

is determined by the formula

R(α ;λ ) =

1
ν(1−α)

∫ 1−α

0

[∫ x

0
e−(λ/ν)[G(x)−G(u)]

du
u(1−u)

2

]
dx. (41)

2.5. Let us analyze formula (41) under the assumption that λ → 0, that is, let

Eθ → ∞. Then one can see that under this assumption it is natural to assume in

addition that α → 1.

Let λ → 0 and α → 1, but in such a way that (1−α)/λ → T , where T
is some positive constant. Analysis of formula (41) shows that under such a

limiting passage

R(α ;λ ) → R(T ), (42)

where

R(T ) =

1
ν

{
eb

(−Ei(−b))−1+ b
∫ ∞

0
e−bu ln(1+ u)

u
du

}
, (43)

−Ei(−b) =

∫ ∞

b

e−z

z
dz is the exponential integral function and b =

1
νT

.
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Assuming for simplicity that ν = 1, we find

R(T ) =

{
lnT −1−C+ O(1/T), T → ∞,

T/2+ O(T 2
), T → 0,

(44)

where C = 0.577 . . . is Euler’s constant.

Setting ϕt = πt/(1−πt), we see that

τ∗α = inf{t : πt � 1−α} = inf

{
t :

ϕt

λ
�

1−α

αλ

}
.

Let π0 = 0 and ψt = lim
λ↓0

ϕt/λ , where ϕt of course depends on λ (see (14)).

Then, since

dϕt = λ (1+ϕt)dt +

r
σ 2ϕt dXt , ϕ0 = 0, (45)

we find

dψt = dt +

r
σ 2ψt dXt , (46)

or, in the integral form

ψt = t +

r
σ 2

∫ t

0
ψs dXs. (47)

If we assume that θ = ∞, that is, that “disorder” does not arise, then

dXs = σ dBs, and so (P∞-almost surely)

ψt = t +
r
σ

∫ t

0
ψs dBs. (48)

Under the limiting passages λ → 0 and α → 1 such that (1−α)/λ → T we

find

τ∗α = inf

{
t :

ϕt

λ
�

1−α

αλ

}
→ τ∗(T ) = inf{t : ψt � T}. (49)

Consequently, by (48)

ψτ∗(T )
= τ∗(T )+

r
σ

∫ τ∗(T )

0
ψs dBs (50)

and

T = E∞ψτ∗(T )
= E∞τ

∗
(T ).

In other words, the constant T has a very clear meaning — it is the average

time elapsed before the (false) alarm is raised when the process (ψt)t�0 subject

to Eq. (48) is observed.
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It follows from formula (14) that the process ψt = limλ↓0
ϕt
λ can be repre-

sented in the form

ψt =

∫ t

0

Lt

Lθ
dθ . (51)

The statistic ψ = (ψt)t�0, which first appeared in [2] and [3], later came to be

known in the literature as the Shiryaev–Roberts statistic. (S. Roberts studied the

analog of this statistic for the case of discrete time in [15].) Many papers (see,

for example, [23]) show that this statistic is often endowed with the properties

of optimality or almost optimality under various tests applied to the delay time.

3. The Change-Point Problem — Versions C, D, and E

3.1. It was assumed in Versions A and B that θ is a random variable (with

exponential distribution). In many respects it is precisely because a success-

ful statement of the rapid detection problem was found (in the papers [1]–[3])

admitting an exact solution, that other (parametric) formulations were soon pro-

posed (see the collection of articles [23]), in which it was assumed that θ is

simply a parameter taking a value in [0,∞).

In this case, for example, the following formulations of rapid-detection prob-

lems are known, in which M(T ) = {τ : E∞τ � T}.
Version C. Find the quantity

C(T ) = inf
τ∈M(T)

sup
θ

esssup
ω

Eθ

(
(τ−θ)

+

∣∣Fθ

)
(ω). (52)

Version D. Find the quantity

D(T ) = inf
τ∈M(T )

sup
θ

Eθ (t −θ
∣∣τ � θ). (53)

Version E. Find the quantity

E(T ) = inf
τ∈M(T)

1
T

∫ ∞

0
Eθ (τ−θ)

+ dθ . (54)

Naturally, in each of these problems it is required to find also the optimal or

asymptotically optimal (at least as T → ∞) stopping times. (The criterion (52)

was proposed in the paper of Lorden [17]).

It is appropriate to note at this point that the problem of rapid detection (in

Versions A, B, C, D, E, and others) is considered in the statistical literature not

only for the model (4) that we are interested in, but also for many others, mostly

for the case of discrete time (see, for example, [15]–[21]). Here we note only

the results obtained for Versions C, D, and E in the case of the model (4).
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3.2. Together with the statistic

ψt =

∫ t

0

Lt

Lθ
dθ

we also introduce the very useful statistic

γt = sup
θ�t

Lt

Lθ
. (55)

In the author’s paper [22] it was shown that this statistic is optimal in the

problem of rapid detection in Version C: for every T > 0 the time

τ∗(T ) = inf{t � 0 : γt � C∗
(T )} (56)

is optimal in the class M(T ). Here C∗
(T ) is a root of the equation

C−1− lnC = T, (57)

The key point in the proof is the following inequality, which is valid for

every stopping time τ ∈ M(T ):

sup
θ

esssup
ω

Eθ

(
(τ−θ)

+

∣∣Fθ

)
(ω) �

E∞

∫ τ
0 γt dt

E∞γτ
. (58)

The magnitude of the delay

C(T ) = inf
τ∈M(T )

sup
θ

esssup
ω

Eθ

(
(τ−θ)

+

∣∣Fθ

)
(ω)

is defined by the formula (ν = 1):

C(T ) = lnC∗
(T )+

1
C∗

(T )

−1 ∼
{

lnT −1+ O(1/T), T → ∞,

T/2+ O(T 2
), T → 0.

We remark that in the case of the model (4)

γt = exp
(

Ht −min
θ�t

Hθ

)
, where Ht =

r
σ 2 Xt − r2

2σ 2 t.

The processes Ht −min
θ�t

Hθ and max
θ�t

Hθ −Ht are called CUSUM (cumulative-

sum) processes in the literature. Procedures for detecting changes in the prob-

ability charcteristics based on CUSUM processes were introduced in the papers

of E. Page [24], [25], and have become widely known in practical work on
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the qualitative analysis of production processes (see, for example, the mono-

graph [26]).

In Version D, both statistics γ = (γt)t�0 and ψ = (ψt)t�0 are asymptotically

optimal (at T → ∞, see [16], [27]). Moreover

D(T ) = inf
τ∈M(T )

sup
θ

Eθ (τ−θ |τ � θ)

has (for ν = 1) the following asymptotics:

D(T ) ∼ lnT, T → ∞.

In Version E, the optimal statistic (for every T > 0) is ψ = (ψt)t�0 and the

corresponding quantity

E(T ) = inf
τ∈M(T )

1
T

∫ ∞

0
Eθ (τ−θ)

+ dθ

coincides exactly with the R(T ) defined in (43) (for more details, see [3]).

Thereby, according to (44) (with ν = 1)

E(T ) = lnT −1+C+ O(1/T), T → ∞,

where C = 0.577 . . . is Euler’s constant.

4. The Change-Point Problem — Version F

4.1. In Section 1 we noted that in the course of our discussions with radio engi-

neers the problem of most rapid detection of a randomly appearing target, when

the observations were multi-stage, was put forth as almost the basic problem.

The essence of the matter consists of the following.

Assume that some method of observation has been developed that ends (as

happened in all the versions A, B, C, D, and E considered so far) in the raising

of an alarm (say, at time τ1). But the observations do not stop at that point.

Everything essentially starts over again, and so on, many times.

Here is a way of posing the rapid detection problem. Let ψt =ψ(t;Xs;s � t),
t � 0, be some nonnegative functional (statistic) of the observations Xs, s � t, on

the basis of whose values the decision is taken to raise an alarm signaling the

presence of a target. Assume that this happens (at time τ1) when the process ψt ,

t � 0, first exceeds some critical threshold a.
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We shall assume that the detection procedure is so organized that the obser-

vations essentially begin over again, based on the functional

ψτ1+t = ψ(t; Xs −Xτ1, τ1 � s � τ1 + t).

When the process ψτ1+t reaches the threshold a an alarm is sounded (at time

τ1 + τ2) and so on.

Assume that for the method chosen to send the alarm signals

E∞τi = T, i � 1,

where the mathematical expectation is taken under the assumption that the target

(“disorder”) is absent, that is, θ = ∞ and T is some constant which by its

meaning is the mean time between two false alarms.

4.2. The question as to the nature of the statistic, that is the character of

the time when the “target” (“disorder”) appears is far from trivial. Based on

practical common sense it is natural to assume: first, that the appearance of

the target is preceded by a long period of observation; second, that a stationary

regime of observation gets established (in the absence of a target); third, that the

target appears against the background of this established stationary regime.

Under such assumptions the mean delay time (for the given observation

procedure, say δ ) in the detection of “disorder” will be determined by the

formula

F
δ
(T ) =

∫ a

0
(Eψ

0 τa)F
δ
(dψ),

where Fδ
(dψ) is the one-dimensional stationary distribution of the observed

process, Eψ
0 τa is the mathematical expectation of the time τa of emergence to

level a of the process being observed under the assumption that the process was

in the state ψ at the time when the disorder appeared.

We can now state the problem of rapid detection of a stationary regime as

follows.

Version F. Suppose the observation procedure δ belongs to ∆(T ), where ∆(T )

is the class of procedures for which E∞τi = T . It is required to find

F(T ) = inf
δ∈∆(T )

F
δ
(T )

and the optimal observation procedure δ ∗.
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The result obtained in [2] and [3] asserts that the optimal procedure δ ∗

consists of observation of the process ψ = (ψt)t�0 satisfying the stochastic dif-

ferential equation (see (46))

dψt = dt +

r
σ 2ψt dXt , ψ0 = 0.

The first stopping time τ1 is defined as the time when this process first attains

the level a = T . Then the observations are renewed each time according to the

same scheme as in the first stage.

It is interesting that the minimum possible mean delay time F(T ) = E(T ),

that is, coincides with the mean delay time in Version E.

5. Development of the Theory of Optimal Stopping Rules

and the Theory of Nonlinear Filtering

5.1. The rapid-detection problem (7) stated in Version B was reduced, as

shown in Section 2, to the problem of optimal stopping (12) of the diffusion

Markov process (πt)t�0. The fact that this is a diffusion Markov process follows

immediately from the stochastic differential equation (22), which is one of the

first equations of optimal nonlinear filtering.

Indeed, if θt = I(t � 0), then πt = E(θt |FX
t ), which is the optimal estimate

of the value of θt in the mean-square sense using the observations Xs, s � t. In

general the problem of constructing estimates E(θt |FX
t ) for a pair (θt ,Xt)t�0 of

random processes (θt)t�0 and (Xt)t�0 forms the basic subject of the theory of

optimal (nonlinear) filtering.

At practically the same time (the late 1950s and early 1960s) when Eqs. (17)

and (18) were obtained, there appeared papers by Kalman and Bucy on optimal

linear filtering for Gaussian processes subject to the stochastic equations

dθt = a(t)θt dt + b(t)dW ′
t ,

dXt = A(t)θt dt + B(t)dW ′′
t ,

where (W ′,W ′′
) is a pair of Wiener processes, and the conditional distribution

Law(θ0|X0) is Gaussian.

The works of R. L. Stratonovich [28], [29] on conditional Markov processes

belong to the same time period. In these works the interpretation of the stochastic

integrals that arose was different (as became clear later) from the interpretation

in the generally accepted sense proposed by Itô.

All these works initiated a broad program of our research in the context

of the special-topics seminar “Nonlinear filtering, controllable processes, and



392 A. N. Shiryaev

martingale theory,” which ran for a long time in the Steklov Mathematical

Institute with the active participation of undergraduates, graduate students and

scholars of Moscow University and other Moscow organizations.

In 1974, the monograph Statistics of Random Processes [11] (by R. S. Liptser

and A. N. Shiryaev) was published. Its subtitle, “Nonlinear Filtering and Related

Questions,” showed that it was the theory of optimal nonlinear (and linear)

theory that formed the main subject of the book, in which many results, including

those of participants in the special-topics seminar, were included.

5.2. The problem of rapid detection, which we studied in 1961 ([1], [2]),

served as the starting point for many later papers on optimal stopping rules

using Markov methods, stochastic differential equations, and the elements of

martingale theory. In 1963 there appeared a paper of E. B. Dynkin [30] devoted

to problems of optimal choice of the stopping time for a general Markov process,

whose statement was the following.

Let X = (Xt ,Ft ,Px) be a Markov process in the phase space (E,B) with

probability distribution Px corresponding to the initial state x ∈ E . Assume that

by stopping observations at a finite Markov time τ we obtain a gain g(Xτ).
Then the mean gain corresponding to the initial state x ∈ E is the mathematical

expectation Exg(Xτ).
Set

S(x) = sup
τ

Exg(Xτ).

We call the function S(x) the price, and a time τε such that

S(x) � Exg(Xτε )+ ε

for all x ∈ E will be called ε-optimal.

The main questions posed in [30], and widely studied in the monographs

[31], [10], are the following: What is the structure of the function S(x)? How

can it be found? When do there exist ε-optimal and optimal (that is, 0-optimal)

times? What is their structure?

In the case of discrete time, besides the “Markov” approach to the problem of

optimal stopping just discussed, there exists also the so-called “martingale” ap-

proach, initiated in a paper of Snell and developed in papers of Chow, Robbins,

and Siegmund (see their monograph [32]). Although in essence the two ap-

proaches are equivalent (every process can be made Markov by “enlarging” the

state space), nevertheless in solving particular problems (especially for the case

of continuous time) the “Markov” approach is preferable because of the pres-

ence of the powerful analytic machinery provided by the Kolmogorov equations
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for the functionals of a Markov process, as well as the machinery of stochastic

differential equations, which have an intimate connection to the methods of the

theory of partial differential equations.

6. Martingale Theory and Stochastic Calculus

6.1. It became clear at the very beginning (1959–1961) of the study of the

disorder problem in Versions A and B, that the methods of martingale theory

and stochastic calculus play a decisive role both in deriving the equations for the

a posteriori probability πt = P(θ � t|FX
t ) and in the proof that the stopping time

obtained τ∗ = inf{t : πt � A∗} is optimal (applying the “verification conditions”

based on the Itô formula).

For us — the participants in the abovementioned seminar on “Nonlin-

ear filtering, controllable processes, and martingale theory” (the name of the

seminar was sometimes changed depending on the stress placed on the prob-

lems under consideration) — the 1960s and later years were very productive.

This coincided in time with the intensive development of the general the-

ory of random processes, in which a significant contribution was made by the

French probabilists — primarily P.-A. Meyer, C. Dellacherie, C. Doléans, J. Jacod,

M. Yor — and the Japanese scholars K. Itô, S. Watanabe, and H. Kunita. In

the Soviet Union at that time, the theory and applications were developed

by I. V. Girsanov, I. I. Gikhman, B. I. Grigelionis, E. B. Dynkin, M. P. Ershov,

Yu. M. Kabanov, N. V. Krylov, R. S. Liptser, B. L. Rozovskii, A. V. Skorokhod,

A. N. Shiryaev, and their students.

6.2. In the Kolmogorov axioms for probability theory, the main object on

which all studies are carried out is a probability space (Ω,F ,P). The great

fundamental achievement of the modern general theory of random processes

was the recognition that it is useful to endow this probability space with an

additional structure — a flow (filtration) of sub-σ -algebras (Ft)t�0 such that

Fs ⊆ Ft ⊆ F , s � t.
The filtered probability space so formed,

(Ω,F ,(Ft )t�0,P)

was the stochastic basis on which stochastic analysis for random processes

X = (Xt)t�0 with (ordered) time parameter t ∈ R
+

is constructed.

The introduction of filtered probability spaces turned out to be very suc-

cessful; it was due to this additional structure (Ft)t�0 that the usefulness and

effectiveness of such concepts as stopping time (Markov time), martingale, local



394 A. N. Shiryaev

martingale, compatibility (adaptiveness) relative to the flow (Ft)t�0, optionality,

predictability, quadratic characteristic, the triplet of predictable characteristics,

and others were fully revealed.

6.3. The key concept of stochastic calculus in the “general theory of random

processes” became the concept of a semi-martingale — a stochastic process

X = (Xt)t�0 that admits a representation in the form

Xt = X0 + At + Mt, t � 0, (59)

where A = (At)t�0 is a process of bounded variation (a “signal” in the model

(4)), and M = (Mt)t�0 is a local martingale (“noise” in the model (4)). All

the processes under consideration are assumed to be compatible with the flow

(Ft)t�0 (that is, Ft -measurable for each t � 0) and have trajectories that are

right-continuous for t � 0 and with left-hand limits for each t > 0.

For semi-martingales one can give the definition of a stochastic integral

(ϕ ·X)t =

∫ t

0
ϕs dXs, t > 0

(for a large store of predictable processes ϕ = (ϕx)x�0) and derive Itô’s formula

for processes F =

(
F(Xt)

)
t�0 in the case of functions F in the class C2.

In a certain sense, the class of semi-martingales is the maximal class of

processes for which one can define a stochastic integral in the case of bounded

predictable functions ϕ = (ϕx)x�0, with the natural requirement that it is possible

to pass to the limit under the integral sign in the Lebesgue integral (for more

details see [33], [35]).

The class of semi-martingales is quite large — it contains processes (se-

quences) with discrete time, martingales, submartingales, supermartingales, local

martingales, many diffusion Markov processes, Itô processes, Lévy processes,

and others. This class is invariant relative to a change of measure, change of

time, and reduction of the flow of sub-σ -algebras (Ft)t�0. All this triggered

a wide range of papers connected with semi-martingales (see, for example, the

monographs [12] and [13]).

Finally, impressive results have been obtained in recent years on the applica-

tion of the general theory of semi-martingales in the stochastic mathematics of

finance. Thus, one of the fundamental results is stated (with some provisos of

a technical nature) as follows: In a semi-martingale financial market, arbitrage

is absent if and only if there exists an equivalent martingale measure. The

author’s monograph [36] is devoted to a detailed exposition of the current state

of the stochastic mathematics of finance.
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Ya. G. Sinai

How Mathematicians and Physicists Found

Each Other in the Theory of Dynamical

Systems and in Statistical Mechanics

Translated by R. Cooke

Historians of science have yet to explain the sudden convergence of mathe-

maticians and physicists in the late twentieth century, with the mathematicians

remaining mathematicians and the physicists — of course — remaining physi-

cists, while each began to understand the other completely and to work on the

same problems, but in different ways. In my generation, the flow of mathemati-

cians into physics began quite early. As early as my third year at university in

1954, my classmate Tikhomirov brought the news that a special topics course of

Tamm was starting in the Physics Department. This was at the beginning of the

well-known period when the leading theoretical physicists Landau, Leontovich,

Artsimovich, Tamm, and others were invited to teach at Moscow University.

Several people, myself among them, rushed to the Physics Department. I re-

membered Tamm speaking unbelievably rapidly and in great excitement, but my

knowledge of physics was totally insufficient for understanding the gist of what

he was saying. For that reason I soon stopped going. I later took Leontovich’s

course in electrodynamics and began to attend Landau’s lectures on quantum

mechanics. I don’t remember why, but I also didn’t stay there long.

We had heard about the mathematicians of the older generation who stud-

ied physics. In our eyes, Bogolyubov was a pure physicist. The work of
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Kolmogorov on turbulence was also well known to us. Kolmogorov himself

told us, his students, nothing about it. Several years later I had an occasion to

ask him about turbulence. He stated that he had arrived at the hypothesis of

scale invariance by studying the results of particular experiments over several

months. At the time, his apartment was filled with rolls of paper covered with

the numbers he was studying. What struck me was that Kolmogorov spoke of

these topics as pure physicist. He could work fluently with data on the equa-

tions of state of real gases, and such concepts as (thermodynamic) entropy and

the laws of thermodynamics. Gel’fand also demonstrated a mastery of physics

during the talks in his seminar. But there were also other examples. Khinchin,

whom we knew as one of the leading lights of probability theory, wrote two

small books on the foundations of classical and quantum statistical mechanics.

Neither of them was inspiring, although they enjoyed a certain measure of pop-

ularity. I never had the occasion to talk directly with Khinchin. I once attended

a talk by him on queueing servers in the seminar of the Department of Prob-

ability. His talk was exemplary in the precision of the statements and clarity

of the proofs. Late in life Khinchin began to study information theory, even a

bit earlier than Kolmogorov, and published a well-known article in the Uspekhi

Matematicheskikh Nauk on the entropy of a distribution and McMillan’s theo-

rem. There were also stories about Dmitrii Evgen’evich Men’shov, who attended

the physics seminars but never spoke a word at them. My recollection is that

the opposite process, in which physicists took an interest in mathematical results

and became frequent attendees at mathematics seminars, began somewhat later,

after Kolmogorov’s paper on the perturbation theory of integrable Hamiltonian

systems, which laid the foundation of the famous KAM (Kolmogorov–Arnold–

Moser) theory, and another paper on the concept of the entropy of a dynamical

system. One physicist told me that KAM theory is so natural that he couldn’t

understand why physicists themselves didn’t think of it.

In the autumn of 1957, Kolmogorov gave a special-topics course in the

theory of dynamical systems and spent three lectures on the proof of his funda-

mental KAM-theorem. Subsequently, this theorem appeared on the examination

in classical mechanics, which Meshalkin and I took and passed as graduate

students. In a certain sense this theorem is uncharacteristic of Kolmogorov’s

work. It requires delicate analytic estimates and rather complicated inductive

reasoning. Possibly, that is why Kolmogorov never published the complete text

of his proof. This was done later by Arnold.

The following year Kolmogorov conducted a seminar on these topics. In

this seminar the leaders of the Soviet program on controlled nuclear fusion —

Artsimovich and Leontovich — spoke once on the problem of the existence of
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magnetic surfaces. The presenter was Artsimovich, even though he was the

experimentalist and Leontovich the theorist. The problem was subsequently

solved by Arnold, who has written previously about the history of his work on

this topic.

As early as his address at the Amsterdam Congress (1954), and many times

subsequently, Kolmogorov stressed that ergodic theory should be used to analyze

the dynamics of particular dynamical systems. In the West, ergodic theory was

understood in a narrower sense, as the area of mathematics in which one studies

mainly the existence of various averages. For that reason, when the number of

papers investigating classical dynamical systems grew sharply, the need arose

for a new term, and the words “deterministic chaos” appeared. As far as I know,

this phrase was coined by Chirikov, Zaslavskii, and Ford.

Kolmogorov first spoke about the entropy of a dynamical system in one

of the lectures of his special-topics course. The theorem that he proved there

would be stated in modern terms as follows: Any two Bernoulli generators of

an automorphism of a measure space have the same entropy. But in the text

that was written for publication, both the approach itself and the basic theorems

looked different. In the first place, Kolmogorov introduced the concept of a

quasi-regular system, or, as we now say, a K-system. (For a brief time the term

Kolmogorov system was used, but Andrei Nikolaevich himself asked that it be

replaced by the abbreviation K-system.) 1

The concept of a K-system should be regarded as a generalization of the

concept of a regular stationary process in probability theory. Let (Ω,F ,P) be

a probability space and {St} a group of measure-preserving automorphisms of

this space, where t ∈ Z or t ∈ R
1. Then {St} is called a K-system if there exists

a σ -subalgebra F0 ⊂ F such that

1) Ft = StF0 ⊃ F0 for t > 0;

2)
∨

t Ft = F ;

3)
∧

t Ft = N , where N is the trivial σ -subalgebra consisting of the events

having probability 1 or 0.

The subalgebra F0 is called a K-subalgebra. Kolmogorov defined entropy

for K-systems as the conditional entropy H(F1 |F0) and proved that H(F1 |F0)

is independent of the choice of the K-subalgebra F0.

It is now clear that the introduction of entropy was not accidental. Kol-

mogorov had studied information theory for several years. He called the atten-

tion of mathematicians to the importance of the work of Shannon, the creator of

1 This is an example of Kolmogorov’s modesty, since the Russian word quasi-regular is spelled

with a K. — Transl.
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information theory. At the all-union mathematical congress in 1961 Kolmogorov

spoke about his joint work with Gel’fand and Yaglom on the general concept of

information and its properties. Over a period of several years, Kolmogorov and

Tikhomirov studied problems involving the dimension of function spaces and

published a well-known survey of this topic in the Uspekhi Matematicheskikh

Nauk. All this is bound up with entropy in one way or another.

After preparing the text of his article on the entropy of a dynamical system

and submitting it to the Doklady Akademii Nauk, Kolmogorov departed for a

six-month stay in Paris. At that time I was interested in the general fact that the

measure-preserving groups of transformations generate the stationary stochastic

processes of probability theory when generators are chosen. Starting from this

connection, I proposed a definition of the entropy of a dynamical system that

later gained general acceptance. In doing so, I needed a proposition about the

entropy of a generator of a partition. My argument for it was for the most part

like the corresponding proposition in Kolmogorov’s lecture. Equality needs to

be replaced by inequality in only one place. Nowadays, this looks routine, but

at the time it represented a rather non-trivial step. Moreover, it was at first not

at all clear how to use this new definition and what kind of connection it had

with Kolmogorov’s entropy. For that reason, I had no intention of publishing

the definition.

In the spring of 1958 I met Rokhlin and told him about Kolmogorov’s work

and my own approach to entropy. Rokhlin was very interested and proposed

computing the entropy of a group automorphism of the torus. We anticipated

that it would be zero, since we believed at the time that entropy could be used to

distinguish the dynamical systems that arise from probability, while for classical

systems it should be zero.

I sketched numerous diagrams and attempted to obtain zero, but nothing

worked out. At some point I showed my diagrams to Kolmogorov, and he

immediately said that the entropy should be positive. After that, I obtained the

correct answer very quickly. It now became reasonable to publish my definition

and computation for an automorphism of the torus; the paper was written and

soon published in the Doklady Akademii Nauk.

Entropy led to a new point of view on the problem of isomorphism of

dynamical systems, and in particular isomorphism of Bernoulli automorphisms.

It now began to look like a stationary coding problem. Meshalkin constructed

the first beautiful and nontrivial examples of such coding. The final solution of

the problem of isomorphism of Bernoulli automorphisms was obtained by the

American mathematician Ornstein, the author of other remarkable results in this

area.
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Soon afterwards, Rokhlin noticed a gap in Kolmogorov’s proof that

H(F1 |F0) is independent of the choice of the K-subalgebra F0 and gave

an example of two K-subalgebras with a different value for the conditional

entropy. Kolmogorov had to modify his definition slightly, but by that time my

definition had become quite generally accepted.

Kolmogorov’s paper on the entropy of a dynamical system had a marvelous

outcome after it was realized that entropy can also be useful for classical dy-

namical systems (that is, smooth vector fields and diffeomorphisms); it then

became clear that such systems as group automorphisms of the torus, geodesic

flows on manifolds of negative curvature, and the like, have positive entropy.

Chronologically, this actually coincided with the work of Smale and Anosov on

structural stability and the topological classification of systems with hyperbolic

behavior. (See the article of Anosov in the present collection.) I was more

interested in such statistical properties of classical systems as ergodicity, mixing,

and the central limit theorem. The first step in the analysis of such properties

was to prove that the entropy is positive. The work of Oseledets and Pesin on

the theory of Lyapunov exponents played a large role in the development of this

entire area.

Physicists began to show an interest in all this activity quite early. In plasma

physics there appeared numerous examples of nonlinear dynamical systems,

the study of which required both KAM theory and entropy theory. For that

reason constant contacts were established with the well-known specialists in this

area — Zaslavskii and Chirikov. To a certain degree, contacts with them and

their students continue to this day. Chirikov proposed an empirical test for the

presence of stochastic properties in two-dimensional mappings, and Zaslavskii,

in joint work with Sagdeev and Filonenko, studied the width of stochastic layers.

(Incidentally, only in recent years have Lazutkin and Gelfreich succeeded in

justifying the formula derived in their paper.) Later on, Zaslavskii and Chirikov,

together with Ford and Casati, laid the foundations of the theory of quantum

chaos. One of the central points in it is Shnirel’man’s theorem on the uniform

distribution of the squares of the eigenfunctions of quantum systems whose

classical limit is ergodic.

Two circumstances promoted the spread of the ideas of the theory of dy-

namical systems with stochastic behavior. In 1970 Ruelle and Takens published

a paper “On the nature of turbulence,” in which they proposed the concept of

a strange attractor. The Navier–Stokes equations played no part in it, but the

concept itself attracted attention. Strange attractors began to be detected (mostly

numerically) in many systems, their Hausdorff dimension was estimated as a

measure of stochasticity, and so forth. On the other hand, at the same time the
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1963 paper of Lorenz, in which the system later known as a Lorenz system

appeared, gained great popularity. Lorenz himself, one of the leading specialists

in hydrodynamics and especially in meteorology, introduced his system of three

ordinary differential equations containing simple nonlinearities on the right-hand

sides as an approximation to a hydrodynamical system from convection theory.

He studied it numerically and detected stochasticity. We remark that this was

actually done before the papers of Smale and Anosov, although Lorenz already

knew about the stochasticity of one-dimensional expanding mappings and had

constructed the corresponding mapping numerically in his own case. Lorenz’s

paper was published in a journal devoted to atmospheric physics and remained

unknown to mathematicians for a long time. I heard about it from a talk of

Martin at a conference on statistical physics in Budapest in 1976. Soon after-

ward appeared the work of Guckenheimer and Williams on the one hand, and

the papers of Afraimovich, Bykov, and Shil’nikov on the other, in which math-

ematical models of an attractor in a Lorenz system were proposed. In my view,

the Afraimovich–Bykov–Shil’nikov model is the more geometrical of the two.

On the basis of this model Bunimovich and I proved that the Lorenz system

is stochastic. Very recently Tucker has obtained a computer proof of stochas-

ticity in the original system. The ideas of chaos elicited great enthusiasm in

the physicists of Gor’kii (now Nizhnii Novgorod), especially Gaponov-Grekhov,

and Rabinovich. Their surveys in the Uspekhi Fizicheskikh Nauk and other

Academy publications have promoted the spread of the ideas of chaos theory.

Pikovsky and Rabinovich have proposed the “Gor’kii attractor” model. Many

will recall the remarkable winter “nonlinear wave” schools near Gor’kii, where

mathematicians and physicists listened patiently to each other. The majority of

Gor’kii mathematicians studying the theory of dynamical systems belonged to

the school of Andronov, one of the closest students of Mandel’shtam. Shil’nikov,

one of the most active and prominent participants in this group, has been a con-

stant attendee at the Moscow seminars. His article on the theory of dynamical

systems can be found in the present collection.

For more than 40 years the Department of Mechanics and Mathematics at

Moscow University ran a seminar on ergodic theory. For the first two years

this seminar was led by Rokhlin. After he moved to Leningrad, Alekseev and I

began to lead the seminar. Alekseev continued to lead it up to his death in 1980.

Many mathematicians took their first steps in science in this seminar: Gurevich,

Oseledets, Stepin, Katok, Margulis, Ratner, Dinaburg, Yakobson, Bunimovich,

Khanin, Chernov, Zhitomirskaya, and others.

In the mid-1960s activity in the mathematical problems of statistical physics

in the Department of Mechanics and Mathematics at Moscow University began
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to develop in parallel with the theory of dynamical systems. The initiative came

from Dobrushin and Minlos. In his early career Dobrushin was one of the most

active probabilists. However, at some point he concluded that there were no

more big problems in probability theory, and even said so in an address at one

of the conferences on probability in Vilnius. He sought out fresh mathematical

problems for himself, in addition to those of information theory, in which he

was already engaged. So far as I can judge, it was Gel’fand who advised Minlos

to study statistical physics. The result was the appearance of the well-known

seminar of Dobrushin and Minlos on statistical physics, in which I also began to

participate. Somewhat later Malyshev joined this seminar. The four of us came

to be regarded as the official leadership of the seminar. We began with a paper

of van Hove on the existence of free energy and general theorems on systems

of correlation equations. At approximately the same time there appeared a

book by Ruelle devoted to rigorous statistical mechanics and covering the topics

being discussed in our seminar. We arrived very quickly at the problem of

phase transitions, and Dobrushin produced his first famous paper, in which he

proved the existence of a phase transition of the first kind in the Ising model.

A little later it was realized that a result of this type had been obtained earlier

in a slightly different form, and on the level of rigor accepted in physics, by the

famous British physicist Peierls. Our research group was soon joined by Berezin,

with whom I wrote a paper containing a generalization of Dobrushin’s result to a

larger class of models. After giving a talk in our seminar on Onsager’s solution

of the two-dimensional Ising model, Berezin advanced the idea that general

two-dimensional ferromagnetic models can be integrated in the same sense as

the Ising model, and for this purpose he attempted to apply the machinery of

integration over Grassmann variables that he had developed. His article on these

topics was published in the Uspekhi Matematicheskikh Nauk and is frequently

cited in the literature to this day, although the ultimate purpose was not achieved.

A new impetus to this area was recently given in a paper of Pinson and Spencer.

As for phase transitions of the first kind, it was soon realized that the central

role in the proofs of Dobrushin and Peierls was played by the concept of the

ground state and the so-called Peierls’ inequality. Pirogov and I succeeded in

giving a more general form to the corresponding constructions, which led to our

theory, now widely known among specialists in mathematical statistical physics.

The analysis of systems of correlation equations for correlation functions

led to the general concept of a limiting Gibbs random field. This was first

done in our seminar by Minlos for lattice systems at high temperature. Do-

brushin then proposed a general definition of a Gibbs random field in terms of

conditional distributions in bounded domains under given boundary conditions.
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At approximately the same time, analogous definitions were given by Lanford

and Ruelle, and the corresponding relations are known in the literature as the

DLR equations. While in Paris, Bogolyubov learned of all this activity from

Ruelle and recalled that as early as 1947 he had published a joint paper with his

student Khatset, in which systems of correlation equations on the entire space

also appeared. Later there appeared a paper of Bogolyugov, Petrina, and Khatset

containing an updated exposition of the earlier paper of Bogolyubov and Khatset.

The general theory of Gibbs random fields was expounded by Dobrushin

in three articles in Functional Analysis, which also contained new examples

of phase transitions of the first kind. I remark in passing that the idea of a

phase transition of the first kind in antiferromagnetic models was stated by

Kolmogorov immediately after Dobrushin’s presentation at a meeting of the

Moscow Mathematical Society. From the general point of view, Gibbs random

fields amount to the natural concept of a Markov field with two-dimensional

time. Gibbs fields immediately began to occupy a central place in probability

theory. Dobrushin himself devoted a great deal of time to developing the condi-

tions for uniqueness of such a field. He is the creator of the general thesis that

all natural random fields are Gibbsian in a sufficiently broad sense of the term.

Dobrushin continued to reflect on this problem to the last years of his life.

It is difficult to say to what extent physicists have mastered the ideas

of a Gibbs random field. Most likely, they have missed the relevant ques-

tions, regarding them as unimportant. Of course, phase transitions were known

in physics in connection with the structure of the set of ground states, but

Dobrushin’s result on the existence of non-translationally-invariant states (the

so-called Dobrushin phases) in three-dimensional lattice models was new even

to physicists.

Minlos and I published two long articles (of 100 pages each) on condensation

in the Ising model. A student of mine remarked to me that one shouldn’t publish

such long articles, since nobody will read them. He turned out to be wrong.

In our article we had to choose a value for a rather small constant, which we

took to be 1/333, writing that it was named in honor of Jürgen Moser. A little

later there appeared an article by Gallavotti, in which he wrote that the Moser

constant in his case was chosen equal to 1/33333. Definitive results in this area

were obtained in papers by Dobrushin, Kotecky, and Shlosman on the Wulff

droplet, that is, the exact shape of the volume occupied by the given phase.

Many young mathematicians who have now become famous matured in our

seminar on statistical physics: Sukhov, Shlosman, Blekher, Pirogov, Gertsik,

Anshelevich, and others. The duration of the individual sessions of the seminar

eventually reached four hours. Frequently, the leaders and participants would
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interrupt the speaker and give their own explanation of what was happening.

Physicists spoke many times in the seminar, and a number of papers by par-

ticipants in the seminar were devoted to the mathematical justification of their

results.

For me the seminar in statistical physics was also important because the ideas

of the Gibbs approach and the thermodynamical formalism found application in

the theory of hyperbolic dynamical systems. (See my paper “Gibbs measures in

ergodic theory.”) In particular, the now well-known concept of an SRB-measure

is permeated with statistical physics. The papers of Ruelle and Bowen played a

large role in the development of this area.

A question which is now frequently discussed is: How should mathemati-

cians study theoretical physics in general? It is not possible to give a single

prescription on this score. Dobrushin once remarked that every mathematician

invents his own physics. This, of course, is an extreme view. Many mathe-

maticians make a distinction between theoretical and mathematical physics. By

theoretical physics they understand mainly quantum field theory and general

relativity. The majority of physicists working in these areas have an excel-

lent mastery of topology, algebraic geometry, and complex analysis, and here

the boundary between mathematicians and theoretical physicists is very arbi-

trary. The leading theoretical physicists in these areas are regular participants in

mathematical congresses and conferences.

Mathematical physics is studied by mathematicians who obtain rigorous

mathematical theorems and physicists who obtain rigorous results. The prob-

lems come from physics, and the choice of a problem requires knowledge of

both physics and mathematical methods. The mathematicians recognize that the

results they are obtaining are not new from the point of view of a physicist.

Nevertheless, the relationship here resembles that between pop music and classi-

cal music. Pop music has many fans, but classical music lasts through the ages.

Another hidden danger of mathematical physics is the level of achievement.

Some years ago I proved a theorem in the theory of phase transitions. One

Thursday, arriving at Landau’s seminar in the Institute, I chanced upon a talk

about a paper by a Western physicist, in which the same result was obtained,

but without precise expansions, estimates, and the like. A complicated question

arises: Was it necessary to prove that theorem? Since then, in this situation and

others like it, I have always answered this question affirmatively for myself, for

one simple reason: the pleasure of a well-proved theorem is the highest possible.

Still, there is a virtual boundary, highly individual, separating the problems

where rigor is needed and those where it is superfluous. Each person chooses

that boundary in his own way.
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Introduction

One of the fundamental problems of approximation theory is the quantitative

and qualitative estimation of the devices that transform infinite information into

finite information, a problem that is inherent in the concepts of number, set, and

mapping. In principle, approximation theory is meant to form the theoretical

underpinning of computational mathematics.

As a separate chapter in analysis, approximation theory was born approx-

imately 150 years ago. At its inception the research of Chebyshev, Weier-

strass, Lebesgue, Landau, and Vallée Poussin played the leading role. In

the twentieth century this theory was developed primarily in Russia and the

former Soviet Union. A fundamental role in its rise was played by out-

standing Russian/Soviet mathematicians — P. L. Chebyshev, S. N. Bernshtein, and

A. N. Kolmogorov. They and their students formed several active schools in

Saint Petersburg/Leningrad, Moscow, Sverdlovsk/Ekaterinburg, Ukraine (Khar’-

kov, Dnepropetrovsk, Kiev), and a number of other republics of the USSR.

One can distinguish three periods in approximation theory — the Cheby-

shev period, the Bernshtein period, and the Kolmogorov period. Among the

ideas of Chebyshev and his successors were problems of best approximation of
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particular elementary functions by fixed approximation methods (mostly alge-

braic polynomials), and exact solution of certain extremal problems of analysis

theoretically connected with approximation problems. The time frame of the

Chebyshev period is the second half of the nineteenth century, but the task

of finding exact solutions to various kinds of extremal problems imbued with

approximative content was discussed actively in the twentieth century as well,

right down to the present.

In the early twentieth century, Bernshtein began to develop a broad pro-

gram of research on the connection between the smoothness of a function and

the rate of its approximation by algebraic and trigonometric polynomials. In

this program approximations by certain particular methods were studied, but the

emphasis was now on approximation of collections of functions rather than in-

dividual functions, on functional spaces and subsets (function classes) contained

in them. Bernshtein gave a name to this new branch of approximation theory:

constructive function theory. This theory was being developed intensively still

in the 1970s.

In the mid-1950s, the theory received a new impetus from Kolmogorov.

He significantly enlarged the scope of approximation theory, posing problems

involving optimal means and methods of approximation, coding, and recovery

of functions. These problems were discussed actively right up to the 1990s.

At present the search is on for new topics, but it is too early to speak of a new

period.

Our purpose here is to discuss several selected fundamental themes of ap-

proximation theory (mostly developed in the twentieth century) from the modern

point of view and to outline certain plans for the future.

The article consists of four sections. In the first three the subject will

be the above three periods of approximation theory, and the fourth contains

supplementary material and a summary.

1. Extremal Problems of Approximation Theory

(The Circle of Chebyshev’s Ideas)

Approximation theory began in memoirs of Chebyshev in 1854 and 1859 [8, pp.

23–51, 152–236].

In this section we shall mostly tell about the exact solutions of extremal

problems connected with approximation theory. We shall state four types of

problems that served as the source of numerous investigations. (The original

problems were stated by Chebyshev.)
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Statements of the problems. 1) In his first

P. L. Chebyshev

(1821–1894)

memoir on approximation theory “The theory of

mechanisms known as parallelograms” (1854) [8,

pp. 23–51] Chebyshev posed the problem of best

uniform approximation of a continuous function

defined on a closed interval using algebraic poly-

nomials of a given degree. Here is a statement of

that problem in modern notation:

‖y(·)− x(·)‖C([a,b])
→ min, x(·) ∈ Pn, (1.1)

where Pn is the space of algebraic polynomials

of degree not greater than n and y(·) is a given

continuous function on [a,b].

Chebyshev gave a double motivation for the problem (1.1): On the one hand,

the connection of this problem with the construction of special mechanisms of

the type of Watt’s parallelogram; on the other hand, the needs of computational

mathematics.

Particular results on exact solutions of the problem (1.1) were obtained by

Chebyshev, Andrei Markov, Zolotarev, and others (see [11]).

In the 1930s problems involving the approximation of individual functions

by fixed means of approximation were translated into geometric language and the

language of functional analysis. Bernshtein, Kolmogorov, Nikol’skii, Stechkin,

and many others devoted papers to the study of various aspects of this general

problem (see the survey [10]).

2) In his article “On a problem posed by Mendeleev” (1889) [23, pp. 51–75]

Markov called the attention of mathematicians to a new circle of extremal prob-

lems closely connected with approximation theory — inequalities for the deriv-

atives of polynomials.

Here are two typical problems on extremal properties of polynomials:

x(k)
(τ) → max, ‖x(·)‖C([−1,1])

� δ , x(·) ∈ Pn. (1.2a)

‖x(k)
(·)‖C([−1,1])

→ max, ‖x(·)‖C([−1,1])
� δ , x(·) ∈ Pn. (1.2b)

The problems (1.2a) and (1.2b) were posed for k = 1 and n = 2 by Mendeleev,

who encountered them in solving the problem of optimal dilution of alcohol in

the preparation of vodka (so that these problems also arose “in practice”).
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The problems (1.2a) and (1.2b) were studied for

A. A. Markov

(1856–1922)

k = 1 and any n by Andrei Andreevich Markov (in

the abovementioned paper) and for arbitrary k and n
by his brother Vladimir Andreevich Markov [24]. It

should be noted, however, that Chebyshev had stud-

ied the problem (1.2a) with k = 0, τ ∈ R \ [−1,1]

earlier (1883). We shall call this problem Cheby-

shev’s polynomial extrapolation problem. (Extra-

polation problems, in which a prediction of the be-

havior of a function outside the set, on which some

information about it exists, remains a current prob-

lem in applications.) Extremal problems in spaces

of polynomials were studied by Bernshtein’s suc-

cessors in Leningrad. Similar problems in spaces of

splines were studied actively in Ukraine by the school of N. P. Korneichuk (see

[16]–[17]).

3) In 1913 Edmund Landau proved the following sharp inequality:

‖ẋ(·)‖Cb
(R

+
)
� 2‖x(·)‖1/2

Cb
(R

+
)

‖ẍ(·)‖1/2
L∞(R

+
)

. (1.3)

Here Cb
(R

+
) is the Banach space of bounded continuous functions on R

+
with

the sup-norm.

One of the most remarkable inequalities similar to (1.3) was proved by

Kolmogorov [14, pp. 252–263], and for that reason inequalities of the form

‖x(k)
(·)‖Lq(T )

� K‖x(·)‖αLp(T )
‖x(n)

(·)‖βLr(T )

(1.3′)

(where 0 � k < n are integers, 1 � p,q,r � ∞, α ,β � 0, T = R or R
+

) are

called Landau–Kolmogorov inequalities. (Kolmogorov found a sharp constant

for p = q = r = ∞, T = R.) For a fixed T the inequalities (1.3′) depend on five

parameters — n, k, p, q, r. (The quantities α and β are uniquely determined by

the other five: α =

(
n− k− 1

r +
1
q

)/(
n− 1

r +
1
p

)
, β = 1−α .) A great deal of

research has been devoted to inequalities of Landau–Kolmogorov type, and this

is because, in particular, they play an important role in approximation theory, for

example, in Stechkin’s problem of the approximation of unbounded operators by

bounded operators (for that reason, many papers devoted to Landau–Kolmogorov

inequalities were written in the Sverdlovsk school of Stechkin — see [2]), and

in problems involving optimal recovery. However, the love that mathematicians

have for the proof of sharp inequalities cannot be explained only by pragmatic

purposes; in many respects it has aesthetic roots.
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4) In the mid-1930s Favard (1936) solved the following problem (generaliz-

ing results of Harald Bohr and Bernshtein):

‖x(·)‖C(T)
→ max, x(·) ∈W r

∞(T),∫
T

x(t)cos kt dt =

∫
T

x(t)sin kt dt = 0, 0 � k � n−1.
(1.4)

Here T is a circle realized as the closed interval [−π,π] with endpoints identi-

fied, W r
∞(T) is the class of functions x(·) ∈ Cr−1

(T) whose derivative x(r−1)

(·)
satisfies a Lipschitz inequality with constant equal to 1. The value of the maxi-

mum turned out to be Kr/nr, where Kr are known constants. The inequality that

follows from (1.4) is called the Bohr–Favard inequality.

Favard’s research received a lot of development by the efforts of Akhiezer,

Krein, Szőkefalvi-Nagy, Nikol’skii, Stechkin, Boyanov, and many others. This

topic is partly expounded in the monograph [1].

Together with the extremal problems for smooth functions like (1.4), prob-

lems of a similar type were solved for analytic functions, such as:

| f (ζ )| → max, f (·) ∈ H∞(D), f (k)
(0) = 0, 0 � k � n−1, (1.4′)

where H∞(D) is the Hardy class of functions that are analytic in the unit disk D
and bounded by 1 on the disk. Problems of the type (1.4) and (1.4′) turned out

to be closely connected with problems of optimal approximation and recovery

of smooth and analytic functions. This will be discussed below.

Discussion of the solutions. The problems (1.1)–(1.4) and various gen-

eralizations of them form a significant portion of the extremal problems that

have been studied throughout the whole history of approximation theory. In

the overwhelming majority of cases these problems were solved individually, by

methods created specially for a given particular problem. It is natural to try to

survey the whole collection of these problems from the unified point of view of

extremum theory. The set of exactly solved problems of analysis and geometry

(in particular, approximation-theory problems) is a natural testing ground for

extremum theory, and I seem to see in it one of the essential motives for finding

exact solutions. Extremum theory gives general approaches to the solution of

optimization problems of various nature. Let us examine how it applies to the

problems described above.

To almost all the problems discussed above, the Lagrange principle for

necessary conditions can be applied. This principle says that if a problem can

be formalized as the problem of minimizing a functional with equality constraints

(and smooth convex structures are present in the problem), one should form the
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Lagrangian for the problem, and then a necessary condition for an extremum

will be a certain analog of Fermat’s theorem. The essence of the principle is

that the tangent space, or hyperplane of support in the convex case, drawn to the

region above the graph of the Lagrangian at an extremum must be horizontal.

In convex problems the necessary conditions (in nondegenerate cases) coincide

with the sufficient conditions: there exist Lagrange multipliers at which the

Lagrangian attains a minimum (in a problem without constraints, if all the

constraints were included in the definition of this function, or with respect to

those constraints that were not included in the function) at an element that is

a solution of the problem. (One can read more about the Lagrange principle

in [22].)

This fundamental and simple idea is applicable to the problems (1.1)–(1.4).

We can illustrate it in sufficient detail using the problems (1.1) and (1.2). The

problem (1.1) admits the following formalization:

f (x) → min, x ∈ R
n+1, f (x) = max

t∈[a,b]

F(t,x),

where F(t,x) =

∣∣y(t)−∑n+1
k=1 xktk−1

∣∣ and x = (x1, . . . ,xn+1). This is a convex

problem without constraints. An element x̂ is a solution of it if and only if

there exists a horizontal hyperplane that supports the region above the graph of

f at the point
(
x̂, f (x̂)

)
. (This is the analog of Fermat’s theorem for convex

problems without constraints.) The function f is a maximum of the family of

affine functions x �→ ±(y(t)−∑n+1
k=1 xktk−1

)
. It is not difficult to see that if x̂

minimizes the function f , then the normal vector to the horizontal hyperplane

of support is the convex hull of at most n + 2 normals to functions of the

family
{

F(t, ·)}t∈[a,b]

. (This is the content of Carathéodory’s theorem in convex

geometry.) As a result, we find that there exist an integer r � n+2 and r points

τi ∈ [a,b] such that

r

∑
i=1

αiFx(τi, x̂) = 0 ⇐⇒
r

∑
i=1

µi
(
y(τi)− x̂(τi)

)
x(τi) = 0 ∀x(·) ∈Pn, µi > 0, (i)

and here |y(τi)− x̂(τi)| = ‖y(·)− x̂(·)‖C([a,b])
. This is the test for a minimum

in (1.1). From it we deduce a second test, known as the Chebyshev alternance

theorem. According to this theorem the test for a solution in the problem (1.1) is

the existence of n+2 points {τk}n+2
k=1 at which the function y(·)− x̂(·), alternating

its signs, assumes its maximal and minimal value. (In this case we say that the

difference y(·)− x̂(·) has (n+ 2)-alternance.)

If we assume that r � n+ 1 in formula (i), then by inserting the polynomial

x1(t) =∏r
i=2(t − τi) into the identity (i), we find that µ1 = 0, which contradicts
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the inequality µ1 > 0. Thus r = n + 2. And the assumption that alternance

does not occur — that is, there exists an index j, 1 � j � n + 1, such that(
y(τ j)− x̂(τ j)

)(
y(τ j+1)− x̂(τ j+1)

)
> 0 — also leads to a contradiction, since if

we then substitute the polynomial x2(t) =∏n+2
i−1,i�= j, j+1(t − τi) into (i), we obtain

0 �= 0. This proves the necessity in the alternance theorem. The sufficiency fol-

lows from the fact that in convex problems nondegenerate necessary conditions

are also sufficient. In a similar manner one can obtain the tests for polynomi-

als of best approximation proved in the papers of Bernshtein, Kolmogorov, and

others mentioned above.

An immediate corollary of the alternance theorem is an explicit expression

(found by Chebyshev) for the polynomial of degree n with leading coefficient

equal to 1 that is closest to zero in the uniform metric on [−1,1]. The expression

is 2−(n−1)Tn(t), where Tn(t) = cos(narccos t) is the Chebyshev polynomial of

degree n. It is not difficult to show that a polynomial of degree n with (n+ 1)-

alternance (and indeed, any polynomial that attains its sup-norm at n+1 points)

is proportional to Tn. Zolotarev found explicit expressions in terms of elliptic

functions for the polynomials closest to zero having the first two coefficients

fixed. They are called the Zolotarev polynomials and are characterized by having

n-alternance. Explicit expressions for polynomials and rational functions of best

approximation to several particular functions were found by Chebyshev, Markov,

and Zolotarev.

In discussing explicit solutions obtained in Chebyshev’s school, we recall the

words of Hadamard: “The shortest path between two real truths passes through

the complex plane.” Indeed, in practically all the cases studied in Chebyshev’s

school, the difference ξ (·) = y(·)− x̂(·) (between the function being approxi-

mated and the polynomial of best approximation) can be represented in para-

metric form: ξ = f (w), t = g(w) in such a way that the function t �→ ξ (t) has the

alternance required by the Chebyshev test on [−1,1]. For example, the polyno-

mial Tn(·) is representable in the form Tn(t) = 2−n
(wn

+w−n
), t = 2−1

(w+w−1
).

Here the expressions for the best approximations are dictated more or less ex-

plicitly by the statement of the problem.

Let us now pass to our second topic — inequalities for the derivatives of

polynomials. We shall slightly generalize the problem (1.2a) by considering an

arbitrary linear functional l
(
x(·)), x(·) ∈ Pn instead of the value of the k-th

derivative at a point. This problem admits the following formalization:

l(x) → max, f1(x) � δ , x = (x1, . . . ,xn+1), x(t) =

n+1

∑
j=1

xktk−1, x(·) ⇔ x,

where f1(x) = maxt∈[−1,1]

∣∣∑n+1
j=1 xktk−1

∣∣.
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This is a convex problem with constraints. According to Lagrange’s principle

for such problems (which we apply heuristically), if x̂ is a solution of the

problem, then there exists a Lagrange multiplier λ > 0 such that the Lagrangian

L (x,λ ,−1) = −l(x)+ λ f1(x) attains an absolute minimum at x̂, that is, once

again, the hyperplane of support to the region above the graph of the Lagrangian

at the point x̂ must be horizontal. Using the fact that a polynomial of degree

n cannot attain its extreme values on an interval at more than n + 1 points (or

again using Carathéodory’s theorem), we arrive at an identity analogous to (i):

l
(
x(·)) =

r

∑
i=1

µix̂(τi)x(τi) = 0, x(·) ∈ Pn, r � n+ 1, (ii)

and moreover |x̂(τi)
∣∣
= δ , 1 � i � r.

If we return to the functional x(k)
(τ), one can easily deduce from (ii) that

the only solutions of the problem are the Chebyshev and Zolotarev polynomials.

We shall show how to do this in the problem of extrapolating polynomials. (The

solution in this case will be the Chebyshev polynomials.) If we assume that

r � n, we must substitute into (ii) (with l
(
x(·)) = x(τ), |τ | > 1) the polynomial

x3(t) =

r

∏
k=1

(t − τk), (iii)

and we arrive at a contradiction immediately: 0
(iii)
�= x3(τ)

(ii)
= 0. Thus the extremal

polynomial attains its norm at n+1 points and so must be equal either to δTn(·)
or − δTn(·). One can easily describe all linear functionals whose solutions

are polynomials proportional to the Chebyshev polynomials. Just as simply as

one solves the problem of extrapolating polynomials, one can solve the prob-

lem (1.2a) for trigonometric polynomials Tn of degree n, and thereby prove the

well-known inequality of Bernshtein
(‖ẋ(·)‖C(T)

� n‖x(·)‖C(T)

)
for trigonometric

polynomials of degree n. In a similar way one can prove many other inequalities

for trigonometric polynomials, for example, the Bernshtein–Stechkin inequality,

in which the derivatives are replaced by difference quotients and the like.

The analog of Bernshtein’s inequality for algebraic polynomials of degree n
is the inequality of Vladimir Markov

‖x(k)
(·)‖C([−1,1])

� T (k)
n (1)‖x(·)‖C([−1,1])

(for k = 1 this inequality was proved by Andrei Markov), which solves the

problem (1.2b) and can also be obtained by applying Lagrange’s principle. But

since the problem (1.2b) is not convex, one is forced to apply second-order

extremum conditions.
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We note a difference in the exact constants in the inequalities of Bernshtein

and A. Markov (n and Ṫn(1) = n2). The explanation of this phenomenon also

“passes through the complex plane.” (This fact was established by Szegő.)

We cannot discuss in detail how problems involving inequalities of Landau–

Kolmogorov type are solved using Lagrange’s principle. In this topic there are

two branches: the so-called general solutions (when inequality (1.3′) is being

solved for all n and k with fixed p, q, and r) and particular solutions (obtained

for fixed n and k for certain domains in the parameter set (p,q,r)). There are

altogether six general solutions. The article [21] is devoted to them and their

generalizations. Certain particular solutions (the most fundamental from our

point of view) were discussed in [22]. Actually, all solutions can be obtained by

applying Lagrange’s principle. We shall discuss the problem (1.4) in Section 3

below.

A fundamental idea, which in my opinion belongs to the present section, can

be stated as follows: The majority of extremal problems, considered by classi-

cists and their successors in approximation theory, are solvable by use of the

Lagrange principle (and that principle makes it possible to enlarge considerably

the circle of solvable problems). But a number of problems, in particular, prob-

lems solved in the Ukrainian school of Korneichuk (see [16]–[17] and [4]), have

not been given an adequate expression in general extremum theory, although

one may hope that this will yet happen.

2. Smoothness and Approximation

(The Circle of Ideas of S. N. Bernshtein)

The source of development of the second branch

S. N. Bernshtein

(1880–1968)

of approximation theory was the dissertation of

Jackson [12] (directed by Landau) and the memoir

of Bernshtein (1912) [6, pp. 11–104] “On best ap-

proximation of continuous functions by polynomi-

als of a given degree” (written under the influence

of ideas of Vallée Poussin — see [30]). This mem-

oir was awarded a prize by the Belgian Academy

of Sciences.

The present section is devoted mainly to this

particular problem — The connection between the

smoothness of functions and their rate of approxi-

mation by various methods. A brief summary here
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goes as follows: Smoothness generates a certain corresponding rate of optimal

approximation, and conversely; moreover the optimal approximation is, as a

rule, based on different methods of smoothing and/or summation of series.

The Weierstrass theorems and their development. In 1885 two funda-

mental results were proved [32]:

A function that is continuous on a finite closed

Karl Weierstrass

(1815–1897)

interval can be uniformly approximated with arbi-

trary precision on that interval by algebraic polyno-

mials (Weierstrass’ first theorem), and a continuous

periodic function can be uniformly approximated

with arbitrary precision by trigonometric polynomi-

als (Weierstrass’ second theorem).

Algebraic and trigonometric polynomials were

the principal means of approximation in the early

stages of development of the theory. Bernshtein

began to develop a new technique for approxi-

mation — entire functions of finite degree, that

is, entire functions x(·) satisfying an inequality

|x(z)| � C
(
x(·))eσ |ℑz|. The space of these func-

tions is denoted Bσ (R). The following theorem of Weierstrass type is due to

Bernshtein: A necessary and sufficient condition for a function defined on R to

be approximable by entire functions of exponential type is that it be bounded

and uniformly continuous.

The original methods of approximation theory were developed in proofs

of the Weierstrass theorems. The main one was the smoothing method. The

function being approximated (or some extension of it) was convoluted with some

approximate identity, usually with a family of functions ϕλ (·), λ ∈Λ= N or R
+

such that ϕλ (t) � 0 ∀ t,
∫

T ϕλ (t)dt = 1, T = R or T, and for all ε > 0, δ > 0,

there exists Λ0 such that
∫
|t|>δ ϕλ (t)dt < ε for all λ ∈ Λ\Λ0. It is then easy to

show that if x(·) ∈ C(T) (or x(·) ∈ Cb
(R) and x(·) is uniformly continuous on

R, then the following convergence holds: xλ (·) = x∗ϕλ (·) → x(·) (uniformly as

λ →∞ in the case Λ= N, or λ → 0 in the case Λ= R
+

). Weierstrass convoluted

a continuous function x(·) on a finite closed interval (extending it to a function of

compact support) with Gauss–Poisson kernels ϕλ (t) = (2πλ )
−1/2 exp(−t2/2λ ).

(These kernels are entire functions of t, and consequently xλ (·) is also an entire

function. The function xλ (·) was then approximated by a partial sum of its

Taylor series. In this way Weierstrass proved his first theorem.) Landau and

Vallée Poussin proved the Weierstrass theorems by convoluting functions with

polynomial kernels.
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Two known proofs stand a bit apart from all the rest, although the essence

of them is the same (smoothing). Bernshtein’s 1912 proof [6, pp. 105–106]

of the first theorem (which made a great impression on contemporaries) was

based on probability theory. A function defined on [0,1] was approximated by

Bernshtein using the polynomials Bnx(t) = ∑n
k=0

(n
k

)
x
(

k
n

)
tk

(1− t)n−k, which are

called Bernshtein polynomials, and the proof of convergence was based on the

law of large numbers.

Lebesgue’s 1899 proof was based on the fact that (a) a continuous function

on a closed interval can be uniformly approximated by a broken line (a piecewise

linear function); (b) a broken line is a linear combination of shifts of the function

t �→ N(t) = |t|, t ∈ [0,1]; (c) the function N(t) =

√
t2

= |t| = (
1− (1− t)

)1/2
=

1− (1/2)(1− t2
)+ · · · can be uniformly approximated on [−1,1] by a series of

polynomials (obtained from the binomial expansion).

Simultaneously with Weierstrass’ theorems (in the same year 1885), their

complex analogs were found (Runge’s theorem).

The theorems just discussed were further developed. We give two finished

results. The first encompasses approximation by algebraic polynomials in the

multi-dimensional case; the second still awaits a multi-dimensional generaliza-

tion.

Let T be a compact space and A an algebra of real-valued functions contain-

ing the constants and separating points of the compact space (for all t1, t2 ∈ T
there exists x(·) ∈ A such that x(t1) �= x(t2)). Then any continuous function

on T can be uniformly approximated by elements of A (the Stone–Weierstrass

theorem).

A function x(·) defined on a compact subset T ⊂ C, continuous on T , and

holomorphic in intT can be uniformly approximated by polynomials if and only

if C\T is connected and contains the point at infinity (Mergelyan’s theorem).

Bernshtein emphasized repeatedly that constructive function theory arose

“on the basis of a synthesis of the ideas of two great mathematicians of the past

century — Weierstrass and Chebyshev.” His ulterior motive for developing this

theory was the hope of reconstructing all of classical analysis. Inspired by his

early successes in the development of a new branch of approximation theory, he

wrote that from the moment Weierstrass proved his theorem on approximation

of continuous functions by polynomials, “the theory of functions of a complex

variable, which had by then reached the summit of its development, gradually

receded into the background, moving forward the study of functions of a real

variable.” Fortunately, these hopes were not fated to be realized, but the impact

of constructive function theory in analysis turned out to be quite significant.
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We shall now take up one of the fundamental topics of constructive function

theory — the interconnections between the smoothness of a function and the rate

of approximation of it. Let us briefly touch on the contents of the main terms:

smoothness and means of approximation.

Smoothness. There exist two main approaches to smoothness. One is

based on the local behavior of functions and is defined in terms of the mod-

uli of continuity, moduli of smoothness, and the like. The other is based on

global characteristics of functions, defined mainly using the methods of har-

monic analysis. The evolution of the concept of smoothness along the first path

(which began with the research of Jackson and Bernshtein) led to the defini-

tion of the Besov spaces Bα
pθ , characterized by three parameters. Subsequently,

Lizorkin and Triebel constructed another three-parameter family that contained

the majority of spaces of smooth functions defined in other ways. But we shall

describe in detail an intermediate stage and define two two-parameter families

of spaces of smooth functions on the one-dimensional manifolds T and R.

On the basis of the first approach, one constructs the Hölder–Nikol’skii

spaces H α
p (T ), where T = T or R. They consist of functions x(·) ∈ Lp(T )

such that ωr
(
t,x(·,Lp(T )

)� tα , where r > α and ωr
(
t,x(·),Lp(T )

)
is the mod-

ulus of smoothness of order r (equal to sup|h|�t

∥∥∑n
k=0(−1)

k
(n

k

)
x(·+ kh)

∥∥
Lp(T )

).

In the second approach, the Sobolev spaces W α
p (T ) were defined. Here is

one possible definition of them: W α
p (T ) consists of generalized functions on

T for which Dαx(·) ∈ Lp(T ), where Dα is a fractional-derivative operator in

some sense. For example, on the circle the most widely known method is Weyl

differentiation, which assigns to the generalized function x(·) = ∑k∈Z xkeik the

function Dαx(·) = ∑k∈Z\{0}(ik)αxkeik, α ∈ R, (ik)α = |k|αe
πi
2 sgnα .

Means of approximation. Up to now only two such means — algebraic

and trigonometric polynomials — have been considered, and we have mentioned

spaces of entire functions of finite degree.

As a means of approximation, trigonometric polynomials arose simultane-

ously with the birth of classical analysis; the spaces Bσ (R) as a means of ap-

proximating functions defined on the entire line were introduced by Bernshtein

in the second decade of the twentieth century. Bernshtein laid out an extensive

program of research into approximation by this new machinery. He wrote, “The

theory of optimal approximation using functions of finite degree is an essential

complement and development of the theory of optimal approximation by means

of polynomials.”

We would like to convince the reader that the theory of approximation of pe-

riodic functions by trigonometric polynomials and the theory of approximation of
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functions on the line by entire functions of finite degree are essentially the same.

This unity is based primarily on the very definition of these spaces. The trigono-

metric polynomials Tn are defined on the circle T, and the spaces Bσ (R) on the

line R. Both of these manifolds are Abelian groups (compact and locally com-

pact respectively). The means of approximation similar to Tn and Bσ (R) can

be defined on any locally compact Abelian group G as span{ch(·,g∗), g∗ ∈ K},
where ch : G × G∗ → C is a character of the groups G and G∗ and K is a

certain compact set contained in the dual group G∗. In the case G = T, the

compact set K consists of integers {k ∈ Z : −n � k � n}; for G = R, we have

K = [−σ ,σ ].

The algebraic polynomials and the methods of harmonic analysis (especially

trigonometric polynomials and entire functions of finite degree) should be clas-

sified among the classical means of approximation. In comparatively recent

years they have been supplemented by two new means of approximation —

splines and wavelets. Splines are piecewise-polynomial figures; they can be

introduced on a rather wide class of manifolds. Wavelets are special orthogonal

and/or spline systems. Up to now, they have been defined on a rather narrow

class of manifolds: again the most advanced theory of wavelets exists for T
n

and R
n.

The overwhelming majority of results on the approximation of periodic func-

tions by trigonometric polynomials and functions on the line by entire functions

of finite degree can be arranged in parallel rows. One reason why it is pos-

sible to extract from theorems on the line a parallel result on the circle is the

possibility of periodization, under which the line is, so to speak, wound onto a

cylinder and a function becomes periodic in the process. The opposite transition

from the circle to the line is often based on “deperiodization,” when the closed

interval with identified endpoints expands to fill the entire line. We shall have

occasion to demonstrate how this is done in practice.

Direct and inverse approximation theorems. It turned out to be possible

to characterize the Hölder–Nikol’skii spaces by the rate of approximation of

functions in these spaces by trigonometric polynomials and entire functions. To

be specific, the following result holds:

A function x(·) belongs to H α
p (T) (resp. H α

p (R)) if and only if

d
(
x(·),Tn,Lp(T)

)� n−α (resp. d
(
x(·),Bσ (R),Lp(R)

)� σ−α )

(the Jackson – Bernshtein – Vallée Poussin – Zygmund – Stechkin theorem). Then,

if (X ,d) is a metric space and A a subset of it, d(x,A,X) denotes the distance

from x to A, that is, inf{d(x,ξ )|ξ ∈ A}.
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COMMENT. For a long time the smoothness of a function (of one variable)

was characterized by a single integer n ∈ N, namely the number of derivatives

it possessed. Jackson, Bernshtein, and Vallée Poussin (1911–1919) (see [31])

defined a continuous scale of smoothness in C-spaces. (By their definition a

function x(·) has smoothness α > 0 if α = n+β , n∈Z
+

, 0 < β � 1, x(·)∈Cn
(T),

and x(n)

(·) satisfies a Hölder condition of order β .) For noninteger α they

succeeded in proving the direct and inverse theorems. After F. Riesz (1909)

defined the spaces Lp, it became possible to characterize the spaces by a pair of

numbers (1/p,α) (and represent them by a point in a plane). The spaces H α
p

were actually defined by Zygmund (1945), but their final definition seems to

have been given first by Stechkin (see [26], pp. 18–39). As a result, the direct

theorems could be inverted for all α .

The methods of proving a direct theorem are also based on smoothing.

Here it is even a little easier to prove a direct theorem on R. It suffices

to convolute the function x(·) with an approximate identity of Jackson type:

Jσr(t) = crσ (sinσ t/t)r, for sufficiently large r. A simple computation proves

the direct theorem. In the periodic case the goal is reached by convolut-

ing with the kernel J̃σr(·), which is the periodization of the kernel Jσr(·).
(J̃σr(t) = ∑k∈Z Jσr(t + k); this function is a trigonometric polynomial of degree

[σ ].) Thus the parallelism of T and R is realized in this case.

Inverse theorems can be proved by decomposing the function into “blocks

of harmonics.” Bernshtein proceeded as follows (we consider the periodic case

below; the case of the line is similar). For each k ∈ N there exists, by the

hypothesis of the theorem, a trigonometric polynomial yk(·) that approximates

x(·) up to � 2−kα . Then

x(·) = ∑
k∈N

xk(·), x1(·) = y1(·), xk(·) = yk(·)− yk−1(·),

xk(·) ∈ T2k , ‖xk(·)‖Lp(T)
� 2−kα .

At this point one must use the Bernshtein–Stechkin inequality (the analog of the

Bernshtein–Zygmund inequality for difference operators), and we then arrive at

the proof of the inverse theorem:

‖∆r
τx(·)‖Lp(T)

�
[log1/τ ]

∑
k=1

‖∆r
τxk(·)‖Lp(T)

+ ∑
k>[log1/τ ]

‖xk(·)‖Lp(T)

� τ r
(

[log 1/τ ]

∑
k=1

2−kα+kr
)

+ τ−α � τ−α .
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We note that the theorem just proved has been extended to approximations by al-

gebraic polynomials on a closed interval. (Here one must name S. M. Nikol’skii,

V. K. Dzyadyk, A. F. Timan, P. M. Tamrazov, and others.) In this case also it

makes sense to recall Hadamard’s words about real truths, which always pass

through the complex plane. The form of direct and inverse theorems for approx-

imations by algebraic polynomials on a closed interval is slightly different —

there the quality of the approximation depends on the position of the point in

the interval. This fact has a complex explanation similar to the interpretation of

V. Markov’s inequality by Szegő.

Embeddings of functional spaces. In the 1950s

S. M. Nikol’skii

(born 1905)

Nikol’skii applied the methods of constructive func-

tion theory to the theory of embeddings of functional

spaces.

One of the topics studied in embedding theory is

the following. Suppose a function x(·) is known to

have smoothness (1/p,α) in the sense of Sobolev

or Hölder–Nikol’skii. It is required to describe all

the smoothnesses (1/q,β ) that it possesses. Let us

give precise definitions.

Let X and Y be normed spaces (or semi-normed

spaces; that is, spaces in which the norm of a

nonzero element may be zero). We say that X
is continuously embedded in Y if X (as a set) is a

subset of Y and the embedding operator is continuous. 1 The following result

holds: A necessary and sufficient condition for the space W α
p (T) (resp. H α

p (T))

to be embedded in W
β

q (T) (resp. H
β

p (T)) is that α − (1/p− 1/q)
+

� β (the

embedding theorem for Hölder–Nikol’skii and Sobolev spaces).

Thus the set of smoothnesses generated by a point (1/p,α) consists of the

points (1/q,β ) located below a horizontal line at height α if 1/q � 1/p, and

under a line inclined at 45◦ to the horizontal axis and passing through the point

(1/p,α) if 0 � 1/q � 1/p.

COMMENT. Two fundamental investigations generated embedding theory:

the 1928 paper of Hardy and Littlewood, where the Sobolev and Hölder–

Nikol’skii spaces were in essence introduced in the one-dimensional case and

results close to the theorem just stated were proved; and the 1936 paper of

Sobolev, which turned out to be a milestone in the history of mathematics, in

1 That is, there exists a constant C > 0 such that ‖x‖Y � C‖x‖X .
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which the foundations of the theory of generalized functions were laid and the

need for embedding theory in existence problems for solutions of variational

problems was revealed (see [7]).

The proof of the theorem for Sobolev spaces is based on the Hardy–

Littlewood inequality for fractional-derivative operators as transformations from

Lp into Lq (which is equivalent to embedding W α
p (T) into W

α−(1/p−1/q)

p (T)).

The proof of the theorem for Hölder–Nikol’skii spaces is based on ideas

and methods of constructive function theory (this was the fundamental idea of

Nikol’skii). Functions x(·) from the Hölder–Nikol’skii space are expanded in a

sum of the form x(·) = ∑k∈N xk(·) (over harmonics, splines, or wavelets). Here

xk(·) belongs to a space Ldk of dimension dk: xk(·) = ∑
dk
j=1 x jkξ jk. The functions

xk(·) have the following properties:

(a) ‖xk(·)‖Lp(T)
� 2−kα ,

(b) ‖x(r)
k (·)‖Lp(T)

� 2−kr‖xk(·)‖Lp(T)
,

(c) ‖xk(·)‖Lp(T)
� 2−1/p‖xk‖l

dk
p

,xk = (x1k, . . . ,xdkk).

The relations (a) are called the Jackson inequalities, (b) are called the Bern-

shtein inequalities, and (c) is called the Marcinkiewicz–Zygmund property. These

relations lead not only to the proof of the embedding theorem, but also to a

description (in the sense of weak asymptotics) of the optimal approximation

methods for the Sobolev and Hölder–Nikol’skii classes. We shall discuss this in

the next section.

Estimates for methods of approximation on classes of functions. In

1935 Kolmogorov published his first paper on approximation theory — [14,

pp. 179–185]. In that paper he posed the problem of finding sharp estimates

of the approximation methods on classes of functions. In the process, Kol-

mogorov computed the strong asymptotics of the precision of approximation

by the Fourier method on the class W r
∞(T). The following year, based on his

1936 paper, Favard (and after him, Akhiezer and Krein) computed the deviation

of this Sobolev class from the space Tn of trigonometric polynomials. After

that time “approximation on classes” occupied the main place in approximation

theory. The first papers of Nikol’skii on approximation theory were devoted

to this topic, and it exerted a strong influence on the formation of the schools

of approximation theory in Moscow and Dnepropetrovsk. Bernshtein was at

first indifferent to this area, expressing the view that it did not form a part of

approximation theory. But later he participated in the development of the topic

and obtained one of fundamental results.
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Classes of analytic functions were later adjoined

S. B. Stechkin

(1920–1995)

to the Sobolev classes of smooth functions. Wish-

ing to emphasize the unity of approximation the-

ory for smooth and analytic functions, from now on

we shall consider together the Sobolev class W r
∞(T)

and the Hardy–Sobolev class W rH∞(D), which con-

sists of functions f (·) that are analytic in the unit

disk
{

z ∈ C : |z| < 1
}

for which | f (r)
(z)| � 1 for

all z ∈ D. The analog of Kolmogorov’s theorem for

the Hardy–Sobolev class was obtained by Stechkin

(1953).

We now present the result of Kolmogorov and

Stechkin. The following formulas hold:

(A) sup
x(·)∈W r

∞(T)

‖x(·)−Snx(·)‖C(T)
=

4
π2

lnn
nr + O(n−r

),

(B) sup
f (·)∈W rH∞(T)

‖ f (·)−Tayn f (·)‖C(ρD)
=

1
π

lnn
nr + O(n−r

).

Here Sn denotes the Fourier operator that assigns to a function the n-th partial

sum of its Fourier series, and Tayn denotes the operator that assigns to a function

the n-th partial sum of its Taylor series about 0. For r = 0 the result (A) is due to

Lebesgue, and for r > 1 it is due to Kolmogorov (1935). For r = 0 the result (B)

is due to Landau and for r > 1 to Stechkin (1953).

The proofs of (A) and (B) are similar. The differences between the func-

tions and their Fourier and Taylor series are represented as integral operators

on the r-th derivative in the smooth case, and on the boundary values of the

r-th derivative in the analytic case. Then, by a double application of Abel’s

transformation, the principal term is determined (henceforth Dn(·) denotes the

Dirichlet kernel):

‖y(·)−Sny(·)‖C(T)

=

1
π(n+ 1)

r sup
x(·)∈W r

∞(T)

∣∣∣∣∫
T

Dn(τ)x
(r)

(τ)dτ

∣∣∣∣+ O(n−r
) =

1
π(n+ 1)

r λn + O(n−r
),

‖ f (·)−Tayn f (·)‖C(ρD)

=

ρn

π
sup

f (·)∈W rH∞(D)

∣∣∣∣∫
T

Dn(e
iτ
) f (r)

(eiτ
)dτ

∣∣∣∣+ O(n−r
) =

ρnαnr

π
ln + O(n−r

),

and it remains only to invoke the results of Lebesgue (λn/π = 4/π2 logn+O(1))

and Landau (ln = logn+ O(1)).
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Deviations of the function classes from spaces of polynomials. Precise

results on the deviations of the Sobolev and Hardy–Sobolev classes from the

spaces of trigonometric and algebraic polynomials were obtained by Favard and

Babenko, respectively. Here is a statement of their result:

Let r ∈ N. Then the following inequalities hold (Dρ = {z : |z| � ρ}):
(A) d

(
W r
∞(T),Tn−1,C(T)

)
=

Kr

nr
,

(B) d
(
W rH∞(D),Pn−1,C(Dρ)

)
= ρnαnr,

where

Kr =

4
π ∑k∈N

(−1)
k(r+1)

(2k−1)
r+1 , αnr = (n(n−1) · · · (n− r + 1))

−1.

The proof of this theorem and many others like it (a considerable portion

of the monograph [1] is devoted to such results) is closely connected with the

solutions of problems of type (1.4) and (1.4′), discussed in Section 1 above

(see [22]).

Let us now pass to the discussion of optimal methods of approximation and

recovery.

3. Optimal Methods of Approximation and Recovery of Functions

(The Circle of Ideas of Kolmogorov)

As mentioned in the introduction to this article, one of the main purposes of

approximation theory is “finitization” (transformation to the finite) of the infinite

information contained in the concept of a function.

To get a clearer understanding of what has just been said, one can give an

example inspired by the ideas of information theory. Imagine that we receive

certain information (the graph of a function, a photograph, some drawing, or the

like) and are required to pass this information on by telegraph in such a way that

a specialist receiving the signal on a receiving device can recover the original

information with the required precision. The purpose is to achieve all this in the

most economic way possible. To give a precise meaning to what has just been

said, we need to explain a bit and answer some questions.

How is finitization accomplished? Usually as follows. The function is first

“encoded” using a finite number of elements or a finite set of numbers (say,

computing n values of the function at different points or n Fourier or Taylor
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coefficients, or forming a table of 2n spaces of elements, and the like). Next,

some “decoding” operator is formed using this code, leading to the recovery

of the function with a certain precision. This may be an interpolation formula

(where interpolation is carried out using polynomials, splines, and the like), or

it may be Fourier, Fejér, or Jackson sums, or a segment of the Taylor series, and

many other things. Sometimes this finite information is already given to us, and

then the desire arises to find the best-possible algorithm for decoding a function

from its code; but usually we have a choice of both the code itself (from some

family of codes) and a certain family of decodings of the given codes. And

we are required to choose an optimal coding-decoding pair. Here the question

arises: How is this to be done?

One approach is as follows. It is natural to assume that we have at our

disposal certain “global (a priori) information” about the functions we may

encounter. This information combines all the admissible functions into a certain

functional class. But for the recovery we use certain “individual” information

that yields a method of recovering an element with prescribed precision by

decoding it.

It is possible to pose the problem of the optimal approximation method

when we seek the best subspace among all subspaces of a given dimension as

the means of approximation of the given class, or the problem of the optimal

linear operator as the optimal method of approximating a given class.

In 1936 Kolmogorov published a paper [14,

A. N. Kolmogorov

(1903–1987)

pp. 186–189] in approximation theory in which in

essence he posed the problem of the optimal method

of approximation in a class of functions when the

approximating machinery consists of all possible

n-dimensional subspaces. In the process, he in-

troduced a quantity that came to be known as the

Kolmogorov n-width.

In 1956, starting from the ideas of Shannon’s in-

formation theory, Kolmogorov introduced the con-

cept of the ε-entropy of a class of elements, posing

the problem of optimal coding of functions of the

class. The concept of ε-entropy turned out to be

closely connected with the concept of a width.

The Kolmogorov width of a class C contained in a normed space X is

dn(C,X) = inf
Ln

d(C,Ln,X) = inf
Ln

sup
x∈C

inf
ξ∈Ln

‖x−ξ‖,
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where the infimum extends over all n-dimensional subspaces Ln. The quantity

inverse to the ε-entropy of a class C (called the entropic width) is the number

en(C,X) = inf
Mn

d(C,Mn,X) = inf
Mn

sup
x∈C

inf
ξ∈Mn

‖x−ξ‖,

where the infimum extends over all 2n-point subsets of X .

The first concept of a width was introduced by Uryson (1922) for the needs

of dimension theory and then modified by Aleksandrov (1933). Kolmogorov

(1936) gave the definition of width as a geometric characteristic of a set, but

applied it in approximation theory. Nowadays several other asymptotic charac-

teristics of pairs (C,X), called widths, are considered.

Let X be a normed space, let C ⊂ X be a subspace (usually a class of

functions), and let F = { f : C → X} be a set of “approximation methods,” that

is, mappings of C into X . We introduce the following quantities

pF (C,X) := inf
f∈F

sup
x∈C

‖x− f (x)‖.

The quantities pF characterize the possibilities of these approximation methods.

If X is a normed space and the set F = Fn consists of linear n-dimensional

operators, the corresponding width is called linear and denoted λn(A,X). If X
is a normed space and there exists a Hilbert space H in which C is embedded,

and if Fn consists of orthogonal projections x �→ (〈x,e1〉e1, . . . ,〈x,en〉en
)
, where

〈·, ·〉 is the inner product in H , and if in addition Fn consists of compositions

of this orthogonal projection and mappings (z1, . . . ,zn) �→ ∑n
j=1 z je j, then the

corresponding width is called the Fourier (or orthogonal-projection) width of

C and denoted ϕn(C,X). The Kolmogorov width and the entropic width can

also be easily inserted into this scheme: one has only to consider the set of

all mappings from C into n-dimensional subspaces or 2n-point sets. Finally,

let K n be a universal n-dimensional compact space. Then if Fn consists of

compositions of continuous mappings from C into K n and from K n into X ,

the corresponding width is called the Aleksandrov width and denoted an(A,X).

Quantities like widths make it possible to pose and solve questions of the

following type: Which Fourier method is optimal as a mechanism for approxi-

mating a given class of functions? Which linear n-dimensional operator has the

same optimal property? Which n-dimensional subspace approximates a given

class best? Which continuous operator with n-dimensional image has the best

approximating characteristics? The answers to these questions on the asymp-

totic level for the Hölder–Nikol’skii and Sobolev classes are given in the next

section. (The monographs [27] and [25] are devoted to widths.)
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Asymptotics of widths of classes of smooth functions. To state our result

we must partition the square I2 into regions where the asymptotics differ from

one another. The square (1/p,1/q) ∈ I2, I = [0,1], can be partitioned into five

regions. I — the “upper triangle” formed by the points 1/q � 1/p; II — the

“Ismagilov triangle” (so-called because Ismagilov (1968) computed the asymp-

totics of the Kolmogorov width in this triangle) formed by the points where

1/p � 1/q � 1/2. The remaining portion of the square is called the “Kashin

trapezoid.” Kashin (1975) computed the asymptotics of the Kolmogorov width

in this trapezoid. The Kashin trapezoid is subdivided into three triangles: III —

1/q � min(1/p,1/2),1/p+1/q � 1; IV — 1/q � min(1/p,1/2),1/p+1/q � 1;

V — 1/q � 1/p � 1/2.

Let pn be one of the widths ϕn, λn, dn, or an, and let p = p(x,y) : I2 → R be

one of the quantities ϕ , λ , d, a : I2 → R.

ϕ(x,y) = (x− y)
+

in I–V, a(x,y) = 0 in I–V,

d(x,y) = (x− y)
+

in I∪ II, (1/p−1/2) in III∪ IV, (x− y) in V,

λ (x,y) = (x− y)
+

in I∪ II, (x−1/2) in III, (1/q−1/2) in IV, 0 in V.

The following theorem on the asymptotics of widths of one-dimensional

Sobolev and Hölder–Nikol’skii classes holds:

Let 1 � p,q � ∞. Then for α � α0 the following formulas hold:

pn
(
Wα

p (T),Lq(T)

)� pn
(
Hα

p (T),Lq(T)

)� n−α+p(1/p,1/q), (3.1)

where the numbers pn are connected with p(1/p,1/q), as explained above.

The proof of this theorem is based on the expansions in harmonics, splines,

or wavelets described in the preceding section. The optimal methods (from

the point of view of the weak asymptotics of the widths) of approximating

the classes Hα
p (T) or Wα

p (T) in Lq(T) differ depending on the location of the

point (1/p,1/q) in the unit square. In the union of the “upper triangle” (when

1/q � 1/p) and the “Ismagilov triangle” (when 1/p � 1/q � 1/2) the optimal

method is linear and completely classical: the function must be expanded in a

series and approximated by the leading terms of the series. In the rest of the

square the optimal methods are nonlinear. For the Aleksandrov width we apply a

device that we call the standard nonlinear method, in which the most significant

coefficients are selected and they are the ones approximated (of course, to assure

continuity in this process it is necessary to carry out some smoothing). The

optimal approximation methods for the linear and Kolmogorov width are based

on subtle geometric estimates of the widths of finite-dimensional sets.
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Many mathematicians took part in the proof of the theorem just stated and its

multi-dimensional generalizations: Kolmogorov, Rudin, Stechkin, Tikhomirov,

Babenko, Mityagin, Makovoz, Solomyak, Ismagilov, Kashin, Gluskin, Dinh

Ðung, Maiorov, Höllig, Stesin, Galeev, Temlyakov, and others.

Exact values of the widths. The first exact values of widths were obtained

by Kolmogorov in 1936, in his first paper on widths. He proved the following

equalities:

d2n−1
(
W r

2 (T),L2(T)

)
= d2n =

1
nr

, n � 1.

The class W r
2 (T) in L2(T) is an elliptic cylinder, and its widths are the axes of

this elliptic cylinder. Hence the optimal subspaces are the spaces Tn.

In a 1960 paper, I proved the equalities d2n−1
(
W r
∞(T),C(T)

)
= Kr/nr and

dn
(
W rH∞(D),C(Dρ)

)
=αnrρ

n. Getting the lower bound involved applying topo-

logical considerations (the Borsuk antipodal theorem, which was later applied

countless times in similar situations) for the first time in approximation theory.

Comparison with the theorem on deviation of the Sobolev class from the space

of trigonometric polynomials (see the preceding section) shows that the sub-

spaces Tn−1 and Pn (respectively) yield the best approximation of the classes

W r
∞(T) and W rH∞(D). But in the smooth case, in addition to the space of

trigonometric polynomials, the space of splines of order r−1 with 2n uniformly

distributed nodes is also an optimal space. (I pointed out this fact in 1969.)

Subsequently, A. A. Ligun showed that the extremal spaces for the class W r
∞(T)

are the spaces of splines of every order m � r−1.

No fundamentally new optimal methods of approximation have so far been

discovered. The optimal methods are either the Fourier method (as in the case of

elliptic cylinders and generalized octahedra in Hilbert space) or certain interpo-

lation methods connected with special splines. Such are the extremal subspaces

for approximating the Sobolev classes W r
∞([−1,1]) in the spaces Lq([−1,1]) for

q � p. Here special functions xnrpq(·) arise, which are the eigenfunctions of a

nonlinear differential equation of Sturm–Liouville type. (In, say, the case r = 1,

p = 2, q = 4, these equations have the form ẍ(·)+λx3
= 0.) The family xnrpq(·)

contains a large number of known special functions (the Legendre polynomials,

the Chebyshev polynomials, and the like). For this, see the monograph [20].

Methods of recovery. In conclusion we shall discuss optimal methods of

recovery.

The general statement of the problem is as follows. Suppose a class C
and a mapping f from C into a metric space (Z,d) are given. It is as-

sumed that for each element of C we have at our disposal certain information.
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Analytically, this condition is expressed by saying that a certain mapping F
from C into a certain set Y is given. We also consider the case when the

information is given imprecisely: in this case F is a multi-valued mapping.

The problem is to recover the function f in the class C from the informa-

tion F . This has the following meaning. Every function ϕ : Y → Z is called a

recovery method, and the error in such a method is estimated by the quantity

e( f ,C,F,Z,ϕ) := supx∈C, y∈F(x) d
(

f (x),ϕ(y)
)
. We are interested in optimal re-

covery error, that is, the quantity E( f ,C,F,Z) = infϕ e( f ,C,F,Z,ϕ), where the

infimum extends over all functions (methods) ϕ : Y → Z, and also in the opti-

mal recovery method, that is, the method at which this lower bound is attained.

This approach is quite broad and theoretically encompasses other methods of

approximation theory that we considered above.

Problems of this type were considered starting in the 1940s. The case when

C is a convex, centrally-symmetric subset of a real vector space X , Y is a finite-

dimensional subspace, f (x) = 〈x′,x〉 is a linear functional, and F : X → Y is a

linear operator was first considered by S. A. Smolyak. One can exhibit a unified

approach to the solution of problems of this type. The extremal problem

〈x′,x〉 → max, x ∈ F−1
(0), x ∈C, (i)

is connected with the problem of recovering x′ on a centrally-symmetric subset

C of the vector space X using the operator F : X →Y . This is a convex problem,

to which Lagrange’s principle applies, according to which the minimal principle

holds:

min
x∈C, y∈F(x)

L
(
(x,y)λ̂ ,−1

)
= L

(
(x̂,0)λ̂ ,−1

)
,

where

L
(
(x,y)λ̂ ,−1

)
= −〈x′,x〉+ 〈λ ,y〉.

Here λ̂ is the optimal recovery method.

Suppose we have the graph of a function y(·) on the interval [−1,1], about

which it is known that the norm in C([−1,1]) between the graphs of a certain

polynomial and the given function is δ . And suppose our task is to recover

optimally the value of the polynomial at a point τ > 1. It is not difficult to see

that the dual to this problem is the Chebyshev extrapolation problem, which we

considered in Section 1 above. If we use the results obtained there, we obtain

the following formula for optimal recovery:

x(τ) ≈
n

∑
j=0

x
(
ζ j(τ)

)
y

(
cos

jπ
n

)
,
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where ζ j(·) are polynomials in Pn such that ζ j
(

cos kπ
n

)
= δ jk. We see that for

optimal recovery one must take the values of the function y(·) at certain points.

To return to the first sentence of this article, we can summarize what we

have done as follows: The optimal methods of transforming information about

a function consist, as a rule, of recovering the function from its values or from

the coefficients of some series (naturally connected with the information that we

know about the function).

Conclusion

Our purpose in this article has not been to give a survey of papers on approx-

imation theory but to describe the original statements of the problems that the

masters of our subject posed and to note certain pivotal concepts, ideas, and

methods of the theory. There was no possibility of naming all the mathemati-

cians whose works have a direct relation to the concepts, ideas, methods, and

results discussed above. The names of over 150 mathematicians are implicitly

involved in this article, and the list of papers would have had to consist of over

300 works. These lists provide the possibility of stating some conjectures as to

the number of mathematicians who have written on approximation theory. There

seem to be no fewer than 500 of them (it would not be a bad idea to compile

an atlas of specialists in approximation theory, as has been done in topology).

Let us take a brief tour of the literature devoted to approximation theory.

A fairly complete bibliography can be found in [28].

The majority of the Russian and Soviet masters in the area of approximation

theory are represented by the collections [8], [6], [23], [14], [26].

A large number of monographs have been devoted to approximation theory.

Among those in Russian we note [1], [5], [9], [16]–[19], [29], and [27]. Of the

books not published in Russian we note the monographs [25] and [20].

It is natural to attempt to encompass everything that has been done in ap-

proximation theory from a unified point of view, and in order to see the extent

to which the purposes ascribed to approximation theory have been realized. It

is also natural to outline plans for the future.

Undoubtedly, approximation theory has brought a considerable amount of

new, brilliant, and fundamental material into mathematical analysis. Analysis

has been enriched by many special functions such as Chebyshev polynomials of

first and second kind, Zolotarev polynomials, special orthogonal polynomials,

and the like. New chapters in the theory of elliptic functions have been devel-

oped. New means of approximation have been discovered — entire functions
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of exponential type, splines, and wavelets. The theory of representation series

for smooth and analytic functions has been greatly advanced. The solution of

many extremal problems of approximation theory has furnished the groundwork

for a general extremum theory. The general concept of optimization of methods

of approximation and recovery has been developed. Much has been done in

the area of nonlinear analysis; in particular, in the spectral theory of linear and

nonlinear differential equations, and the like.

In the process, many of the original priorities have remained unchanged.

The theory of mechanisms, which for Chebyshev provided the basis of approxi-

mation theory itself, has long been obsolete; no one now computes the values of

special functions using the polynomial and rational-function approximations that

Chebyshev and his cohorts obtained. But naturally new motives have arisen,

which we shall now discuss.

Approximation theory, it seems, should have realized its aim more com-

pletely and become the theoretical base of numerical analysis. Moreover, it

should do so at the new stage of development of computer technology. The con-

cepts of optimality with respect to precision of approximation, which have been

dominant in the theory up to the present, should combine with the concepts of

complexity and greediness. It is necessary to create a general theory of greedy

algorithms, which react adequately to the smoothness of the data of a problem

(K. I. Babenko insisted repeatedly on this — see, for example, his book [3]).

There is also no doubt that approximation theory must enlarge the class of man-

ifolds on which the theory is constructed (these have mainly been T
n and R

n)

and pass to general homogeneous spaces and special functions on them.

In the theory of extremal problems (to which Section 1 above was devoted)

the jump from one variable to several must be completed. It is necessary

to know the forms that Lagrange’s principle assumes for functions of several

variables. For the long-term productive development of the theory the experience

of solving specific problems of approximation theory (of Landau–Kolmogorov

type for several variables) will be invaluable. The development of the Lagrange

principle for problems on noncompact manifolds (say, the line and the half-

line), and the creation of a general theory of extrema for solving problems with

analytic functions, is also on the agenda.

In the topics touched on in Section 2 there remain many unfinished problems.

The generalization of Mergelyan’s theorem to the multi-dimensional case seems

to be a serious problem. Several natural questions arise in connection with the

Weierstrass–Bernshtein theorem.

The theory of embedding and widths for intersections of spaces is not yet

perfected.



434 V. M. Tikhomirov

Of the problems treated in Section 3, the central ones are again multi-

dimensional problems: in the one-dimensional case exact solutions were con-

nected with nonoscillation, which theoretically do not exist in the multi-

dimensional case (there are no T -spaces on the plane!). It is necessary to

create a modified theory that will make it possible to create special functions

and special methods of approximation for smooth and analytic functions of

several variables.

The creation of synthetic theories, that combine approximation of smooth

and analytic functions, as well as approximations on T
n and R

n, also seems

inevitable.
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A. M. Vershik

The Life and Fate of Functional Analysis

in the Twentieth Century

Translated by R. Cooke

Two tendencies in mathematics are in constant competition with each other, and

from time to time one of them displaces the other: the first is the striving to

construct general theories and concepts, a new world view and a new vocabulary;

the second is to study particular basic examples.

It is curious that in the history of mathematics over the last three centuries

the first tendency has predominated, more or less, during the first half of each

century, while in the second half its momentum slackens and dies down, and

the second tendency comes to the fore. A surge of interest arises in the solution

of classical problems on the basis of the concepts developed during the first

half of the century, and mathematics returns in a certain sense to older topics.

This periodicity was not strongly expressed in the eighteenth century, since

the giants who founded analysis were universal men; but it is more explicit

in the nineteenth and twentieth centuries. (Of course, the time frames do not

completely coincide with the beginning and end of centuries.) Such a conclusion

is easy to confirm by examples of the mathematical biographies of the nineteenth

century — it suffices to consider the well-known book of Felix Klein from this

point of view. As for the twentieth-century mathematics, the change of fashion —

more precisely, the change in interest from general and conceptual problems to

more particular ones — occurred before our very eyes.
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Of course, this tendency was promoted by perfectly definite mathematical

discoveries connecting the classical examples with modern concepts; but un-

doubtedly, these discoveries themselves should properly be perceived as a man-

ifestation of this regularity. An example is the discovery of new mechanisms of

integrability during the 1960s and the consequent revolution, which led in par-

ticular to a new way of looking at classical integrable systems, connections with

algebraic geometry, the inversion problem, and many other questions. Another

example comes from the theory of dynamical systems: after the construction

of a general theory of dynamical systems (topological, metric, symbolic, and

others) in the first half of the twentieth century, interest shifted toward the study

of more specific problems — KAM theory, standard mappings, arithmetical sys-

tems, and so on. However, the following discussion is not simply about a change

in emphasis and interest within a given area, as in these examples, but about a

crucial change in the relationship to the subject.

The history of functional analysis (its birth, flourishing and present fate), its

role and the evolution of the relationship to it, is perhaps the clearest and best

articulated example of this kind, and this note is about that subject. Whether the

cause of all this is the aforementioned hundred-year regularity of mathematical

fashion or whether some deeper cause exists, is not of great importance.

Functional analysis arose in the early twentieth century and gradually, con-

quering one stronghold after another, became a nearly universal mathematical

doctrine, not merely a new area of mathematics, but a new mathematical world

view. Its appearance was the inevitable consequence of the evolution of all of

nineteenth-century mathematics, in particular classical analysis and mathemati-

cal physics. Its original basis was formed by Cantor’s theory of sets and linear

algebra. Its existence answered the question of how to state general principles of

a broadly interpreted analysis in a way suitable for the most diverse situations.

We shall speak of this in somewhat more detail below.

By mid-century, functional analysis had become almost the strongest center

of attraction of general interest. The general spectral theory of operators was

perfected and applied to the theory of differential equations. The theory of

representations arose and developed significantly. The theory of C∗-algebras

and W ∗-algebras was created. The theory of distributions arose and embedding

theorems were formulated. The basic theory of infinite-dimensional integration

was developed, as was Banach geometry. Finally, a little later, index theory

was discovered, with its fundamental connections to topology, K-theory and

mathematical physics, and other areas.

But, as early as the 1950s and 1960s, there arose a sense that functional

analysis had ceased to be the general platform for those areas that owed their
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origin to it, that it united them only in an artificial way. By now each of them

was an autonomous area based on its own theories, sometimes more traditional,

and sometimes new, but usually special and more profound. A new era was

coming, and in accordance with the tradition of the second halves of centuries

mentioned above, interest was shifting from general concepts to classical facts.

Functional analysis was not only ceasing to be the center of attention and yield-

ing its place to others (as sometimes happens with a transient fashion), but was

simply dissolving and disappearing as an integral area. It was remaining as a

language, as vocabulary, but losing its own subject matter. Many subjects may

flower and then decline. For example, topology, after undergoing the loftiest

flight in the 1950s and 1960s, quieted down for a while, but has recently been

heard from again through its connections with quantum field theory; classical

complex analysis of one variable was in the main perfected long ago, but later

transformed itself into the theory of complex manifolds, and so on. But the

present case is different: By the end of the twentieth century, functional analysis

was losing its subject matter, giving up everything it had created, most of all

its language, to neighboring and daughter subjects.

Skeptics, who have been around almost since the beginning of functional

analysis — and they were many — will say, “There is nothing left,” and will add,

“This was plain from the outset.” And, of course, they will be wrong. Other,

more cautious critics will express a more carefully weighed judgment: “Func-

tional analysis has played its role and has dispersed into various theories where

its concepts, notation, and theorems have been adapted and are being actively

used.” Finally, its enthusiasts, who still exist, will enumerate its indisputable

achievements and on that basis, argue that it continues a full-blooded existence.

This last claim is particularly characteristic of those who study the most tra-

ditional topics of functional analysis and therefore live a rather cloistered life.

Since I do not share either of the extreme opinions on this subject, I believe that

it is useful to analyze objectively the dramatic changes that have occurred in this

branch of mathematics — a phenomenon that has been encountered previously

in the history of our subject, but not on such a scale.

The present article makes no claim to even relative completeness in its histor-

ical references or any complete listing of important theories and results, names,

and ideas. Its only purpose is to fix an impression (perhaps quite superficial)

that has formed after reflecting on the fate of one of the most popular mathe-

matical concepts of the early and mid-twentieth century — functional analysis.

The history of twentieth-century mathematics has not yet begun to be created

(judging from the topics known to me). Actually, only Felix Klein knew how to

package all that was essential of what was created during the nineteenth century
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in a single book. It will be much more difficult for a new Klein; such a feat is

hardly even possible in the twentieth century.

Strictly speaking, the history of functional analysis should be counted from

1696 — the time when the calculus of variations appeared in the form of Johann

Bernoulli’s brachistochrone problem. It is in the calculus of variations that

natural infinite-dimensional spaces, manifolds, variational derivatives, and other

concepts arise of necessity. It remains a mystery why it was necessary to

wait 200 years for the definitions and concepts of differentials (of Fréchet and

others) of functions of an infinite number of variables or functions of curves,

when essentially all of this was implicitly contained in the work of Euler and his

successors. Moreover, because of this delay functional analysis remained largely

a linear theory for too long, and the so-called global analysis (the need for which

was felt long before its appearance) arose only much later, mainly in connection

with infinite-dimensional topological problems and calculus of variations in the

large. Symplecticity, embedded in variational problems, also manifested itself

only much later.

The point of departure for functional analysis is, of course, the idea of re-

placing a mathematical object by a suitable space of functions on it; it is this,

not just the transition to infinite dimensions and function spaces, that forms the

essence of the subject and made it into a new philosophy. This idea now seems

so natural and even banal (why functions and not sections of a fiber bundle?),

that we nowadays find it difficult to appreciate its novelty and the enthusiasm

it evoked. The rise of linear functional analysis at precisely the start of the

twentieth century was, of course, not a random event, and the explanation lies

on the surface — the theories of integral equations of Fredholm and Hilbert, mo-

tivated by mathematical physics, had shown that many facts of linear algebra

can be carried over with suitable caution from ordinary matrices to infinite ma-

trices, that is, to operators. Fredholm determinants and the spectral theorem for

bounded self-adjoint operators were the first facts in the new theory. Undoubt-

edly, this made a strong impression on contemporaries: infinite dimensionality

had become geometrically palpable and, most importantly, was in demand.

To be sure, Hilbert (according to an apocryphal story) was not particularly

interested in this aspect of the matter. (“What are these Hilbert spaces you

keep talking about?” he is said to have asked one of his students, according to

Constance Reid.)

The rise of functional analysis came at the same time as another funda-

mental event in science (and not only in science) — the discovery of quantum

mechanics. To this day, some historians of science (see, for example, Bourbaki’s

“Historical Essay”) regard this coincidence as the proof of an almost mystical
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interrelationship between mathematics and the natural sciences. Indeed, the the-

ory of operators on a Hilbert space and the geometric theory of these spaces

arose, as noted above, as a logical consequence of the development of mathe-

matics itself. But on the other hand, as von Neumann and others showed, the

Schrödinger equation (whose formulation owes something to Hermann Weyl)

and all quantum-mechanical formalism, including the Fock second quantization,

can be precisely described only in terms of Hilbert spaces, operators on them,

algebras of operators, and the like. One might even conjecture that if the func-

tional analysis of Hilbert spaces had not yet existed at the time when quantum

mechanics arose, it would have been created out of necessity. For that reason, it

is no exaggeration to say that the extremely close connection between the latest

physics of the first half of the twentieth century and functional analysis gave the

latter even greater authority.

Linear algebra and the geometry of vector spaces became the basis of func-

tional analysis for a long time. Point-set topology, the related analysis of spaces

of continuous functions on topological spaces, and the theory of the Lebesgue

integral and the related study of various spaces of measurable functions and op-

erators on them, gave the next impetus in the development of linear functional

analysis. They led to the appearance of Banach spaces in the early 1920s, which

were called Wiener–Banach spaces for a while, since Wiener had also introduced

complete normed spaces, independently of Banach. Later, in his autobiography,

Wiener noted acerbically how, shortly afterwards, he realized that this area would

be the source of endless dissertations and decided as a consequence to get out

of it.

By the early 1930s the young functional analysis consisted mainly of the

spectral theory of operators in Hilbert spaces and the theory of particular Ba-

nach spaces. This covered the spectral theory of linear differential equations,

a large part of the theory of functions of a real variable and approximation

theory (constructive function theory), elementary linear integral equations, parts

of harmonic analysis on locally compact groups, and the theory of functions of

complex variables, the latter only to a very modest extent (up to the 1950s).

The focus on linearity that we have emphasized concealed a great danger for the

future: the new algebraic theories that developed during the 1930s and 1940s —

homological algebra and combinatorial topology — had no overlap at all with

functional analysis.

However, the 1930s saw a rapid development of this subject. By that time

three main schools had formed in the USSR — in Moscow, Leningrad, and

Ukraine. The Moscow school of the early years consisted of Kolmogorov,

Lyusternik, Gel’fand and their students, as well as Plessner, who (according
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to the testimony of Gel’fand, Rokhlin, and other witnesses) brought functional

analysis to Moscow from Europe, and taught a course on functional analysis

for professors and students at Moscow University. In Leningrad it consisted

of Smirnov and (later) his student Sobolev, who were interested in the the-

ory of operators in applications to mathematical physics. Fikhtengol’ts and

his student, the Wunderkind Kantorovich, also belonged to this school; they

began to study functional analysis in connection with measure theory and ap-

proximation theory, and later founded their own school and developed a num-

ber of specialized areas of functional analysis. A large school also formed

in Ukraine (Odessa and Khar’kov), headed by Krein and Akhiezer. These

schools worked energetically from the 1930s to the 1960s. Somewhat later,

a new center arose in Novosibirsk. It may be that in no other country was

such intense work on functional analysis being carried on as in the USSR

at that time.

One of the first mathematical conferences after the beginning of the “thaw”

(when all-union conferences became possible at all) took place in January 1956

in Moscow; it rather resembled a mathematical congress. Later these conferences

became traditional: Odessa (1958), Baku (1960), the Voronezh schools, the

Siberian (Sobolev) conferences, and so on.

Since that time, courses in functional analysis have been part of the core

curriculum (sometimes under the heading of “Analysis–N”) for the majority

of mathematics departments in Russian universities. Moreover, the functional-

analytic approach has penetrated almost all of mathematical education and be-

come a compulsory course for mathematicians, and (as a technique) has entered

courses on differential equations, calculus of variations, mathematical and the-

oretical physics, computational methods, and so on. This constitutes the indis-

putable success of functional analysis — it has become the working language of

mathematics.

It is not part of my purpose, and it would not make sense, to list here

the results of the “Sturm und Drang” period and the subsequent achievements

of functional analysis of those years. Large surveys have been written on

this: in Mathematics in the USSR after 30 Years; the section on “Functional

analysis” in Mathematics in the USSR after 40 Years (the most voluminous);

a number of surveys in the Uspekhi Matematicheskikh Nauk; and other places.

The section “Functional analysis” in the Referativnyi Zhurnal “Matematika” and

the corresponding issues of Itogi Nauki give some idea of the scale of research

on this subject in the USSR and the rest of the world during this period.

However, it is useful to give some details on the fundamental role of func-

tional analysis and examine what has happened to it.
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1. In the 1920s and 1930s three pillars (to use an expression of Dunford

and Schwartz) of Banach functional analysis were stated, in the form of three

theorems: the Hahn–Banach theorem on extension of functionals; the Banach–

Steinhaus theorem on convergence of operators; and the inverse mapping theo-

rem of Banach. The first of these is a fact of convex geometry, which contains

a significant portion of linear and geometric functional analysis, in particular,

the Krein–Milman theorem, Choquet’s theorem, and almost all of duality theory.

The Kantorovich – von Neumann theory of linear programming and the theory of

linear inequalities are also a portion of convex geometry or, as it later came to be

called, convex analysis. Incidentally, this point of view is noticeable in the fifth

volume of Bourbaki (topological vector spaces). Convex geometry and convex

analysis (without any topology, but including duality) have subsumed this sig-

nificant portion of the old functional analysis. The Banach–Steinhaus theorem

does indeed cover a variety of theorems of the theory of (mainly real) functions,

but on closer inspection it is merely a useful abstract form of these theorems.

These branches have long since become classical and have been perfected.

From that point on, the role of functional analysis in the theory of functions

showed up only in approximation theory, where geometric concepts (diameters,

ε-entropy, and so on) in function spaces became the language of approximations.

2. The general theory of operators (including non-self-adjoint operators) on

Hilbert space, or the theory of operators on other spaces, turned out to be im-

mense, and the more substantive part of it returned to (complex or real) analysis,

where functional analysis serves only as a language, not as a method of inves-

tigation. Classical spectral theory, which is one of the principal achievements

of the early period, was perfected in its abstract form before World War II.

It served as the foundation for the impressive later progress of the spectral

theory of differential and other operators. Despite that, the functional-analytic

frameworks were mostly background, while the method was classical analysis.

Individual particular cases, connected as a rule with applied and physical prob-

lems, received a profound development and were quickly isolated. Such are the

subtheories of Krein–Gohberg, Foiaş–Nagy, and so on.

On the other hand, the general questions that interested everyone in the early

years of development of functional analysis — the invariant-subspace problem

and the basis problem — very soon became marginalized and ended (or will

end), as a rule, in the construction of counterexamples. Such a thing happened

with a cycle of questions about bases: the fantastic example of Enflo brought

about a revolution in the understanding of the situation as a whole, and showed

how naive the pictures of general Banach spaces had been up to that time.
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3. Laurent Schwartz, and before him in some special cases Kantorovich,

Fock, Sobolev, Gel’fand, and others, created the important theory of distribu-

tions (which the Russians called generalized functions), which was to become

generally accepted machinery in the theory of generalized solutions of differen-

tial equations, generalized stochastic processes, and other areas. The history of

Schwartz’s theory of distributions characteristically repeats (on a smaller scale)

the history of all of functional analysis — it really did provide a convenient and

flexible language for the theory of linear differential operators, but any serious

achievement in the latter required the application of “genuine” analysis, complex

or other. The theory of Sobolev (and other) classes of functions and embedding

theorems turned out to be more fruitful than the general theory of distributions.

In any case, it is this that is regarded as an application of functional analysis in

the theory of partial differential equations.

4. The theory of locally convex topological spaces and nuclear spaces,

which was initiated by the theory of distributions, promoted by Dieudonné in

the 1940s, and developed in particular by his student Grothendieck, began to

develop rapidly in the 1950s and in its first decade engendered hopes for a

renewal of the machinery and stock of examples of spaces in functional analysis

(nuclear, countably normed, and other new classes of spaces and operators on

them, tensor products, a freer topological theory, duality, and other things).

Indeed, some beautiful theorems were proved, for example, that nuclear spaces

are more convenient than Banach spaces in a number of questions (the Minlos–

Sazonov theorem, the Gel’fand–Kostyuchenko theorem). But the above hopes

were not realized. Moreover, Banach analysis turned out to immeasurably more

viable than it seemed at the time of the nuclear and locally-convex euphoria.

The general theory of locally convex spaces is now almost totally forgotten.

5. The geometry of Banach spaces, which was long based on the examples

of a few classical spaces (of the type of C(X), Lp, and so on), gained new

momentum during the 1950s and 1960s after the theorem of Dvoretzky and the

example of Enflo mentioned above. It became clear how varied this geometry

could be. Completely new Banach spaces, pathological at first sight, were

discovered. But, unfortunately, these latest examples of spaces have not yet

found their place in analysis, although there is no doubt (in my mind) that the

basic ideas involved will be useful in other situations.

Dvoretzky’s theorem was an especially important discovery. It formed the

beginning of a true asymptotic geometric analysis; that is, the study of the geo-

metric properties of spaces of high dimension. Asymptotic geometric analysis

is an area that is certainly far from being perfected; it is a current topic to-

day because of its connections with statistical physics, asymptotic representation
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theory, and other asymptotic problems. But amazingly, here also it turned out

that functional analysis had by no means gotten an immediate grasp on a theme

that seemingly ought to have preceded the study of actually infinite-dimensional

analysis. Von Neumann, in a little-known paper from the 1930s on the asymp-

totic properties of matrices, called attention (in connection with factor theory)

to the absence of research in this area, and indeed such research was very late

in appearing.

6. The situation in the noncommutative theory was entirely different. It

may be that, in terms of its consequences, this is one of the main results of

the development of functional analysis. We remark first of all that, just as

vector analysis arose out of linear algebra, the W ∗-algebras discovered by von

Neumann and the C∗-algebras discovered by Gel’fand and Naimark became

a natural infinite-dimensional generalization of semi-simple finite-dimensional

algebras. And, just as in the case of linear analysis, the transition to the infinite-

dimensional case required entirely new ideas. Of course, the theory of algebras

and modules over them is much deeper than the theory of vector spaces and

operators on them. It is to the latter that the lion’s share of publications on

functional analysis in the 1940s and 1950s was devoted.

The discovery of factors and the theory of W ∗-algebras by von Neumann,

and the parallel theory of C∗-algebras begun by Gel’fand and continued in hun-

dreds of papers, undoubtedly exerted a very strong influence on representation

theory, the theory of dynamical systems (cross products), statistical physics, and

quantum field theory. But here also it has turned out (at least up to now) that

the language created in the framework of this theory plays a much greater role

than the theories themselves.

7. Perhaps the most impressive success of pre-war functional analysis was

its multiplicative (ring/algebra) version, developed by Gel’fand and his school.

It began with a note of Kolmogorov and Gel’fand on what we would now

call the functorial relation between compact spaces and rings of functions on

them. The theory of normed commutative rings (commutative Banach algebras)

gave an extraordinarily beautiful and efficient approach to many problems of

complex and harmonic analysis (in particular, the Gel’fand transform). But, as

it happens, the beauty of this approach could not overshadow the fact, which

became apparent somewhat later, that no new theorems in commutative harmonic

analysis had been obtained using this theory. It played a unifying role and

corresponded perfectly to the spirit and tradition of all of functional analysis. At

the same time, the Gel’fand theory of maximal ideals was a fruitful and timely

borrowing from the arsenal of algebraic concepts.
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8. The duality theory of Abelian groups, the general theory of unitary rep-

resentations of locally compact groups and Lie groups (like harmonic analysis

and the theory of integration on groups) were formed originally under the un-

mistakable influence of functional analysis and operator theory. The theory

of representations of semi-simple Lie groups, which was begun before World

War II mainly by Gel’fand in the USSR and Bargmann in the USA, has nowa-

days become an enormous area having connections with practically every part

of mathematics. But the whole subsequent development of the theory of rep-

resentations took it far from the original concepts of functional analysis, and

it is now connected to a much greater degree with algebraic geometry, num-

ber theory, the differential topology of manifolds, singularity theory, complex

analysis, partial differential equations, and so on. The same applies to the more

recent theories — representations of infinite-dimensional algebras, Kac–Moody

algebras, and quantum groups.

9. The interaction of probability theory and functional analysis seemingly

ought to have begun simultaneously with the creation of the general theory of

stochastic processes, that is, with the theory of measure and integration in func-

tion spaces. But this interaction was greatly retarded, even though Kolmogorov

had formulated the basic concepts of measure theory in infinite-dimensional

spaces as early as the 1930s (immediately after his famous monograph), and

Wiener had given his abstract definition of measure already in the early 1920s.

The recognition that the general theory of measure in function spaces is a special

case of general measure theory (Lebesgue–Rokhlin spaces), and that the theory

of stationary processes is a special case of the theory of dynamical systems

with an invariant measure, came only much later, in the late 1950s. This point

of view became especially important when physical applications required the

development of a theory of integration in function spaces. It was not so much

probability theory, which has always stood somewhat apart, or functional analy-

sis itself, that stimulated this development; rather it was the needs of physics

(the continuous integral, the Feynman–Kac formula, quasi-invariant measures,

and other concepts). From that point on the theory of dynamical systems and, in

particular, the entropic theory, developed completely independently of functional

analysis.

10. The relationship of functional analysis with applied areas, mostly com-

putational mathematics, is peculiar. Perhaps it was here that the influence of

functional analysis was especially important. Beautiful examples of this are the

Newton–Kantorovich method of solving equations in function spaces and the

general theory of approximate methods. The explanation of this special role lies
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in the fact that it is especially important in the applications of mathematics to

have an organizing concept, which functional analysis provided in this instance.

11. The most recent mighty achievements under the canopy of functional

analysis are, of course, the index theory of elliptic operators and the related

questions of topology, K-theory, and other areas. Here it is not just that the

question of the connection between the topology of manifolds and the index

of pseudo-differential operators was itself posed by one of the leading lights

in functional analysis, but rather that this was the deepest connection between

the theory of linear differential operators — such a familiar topic of functional

analysis — and the theory of characteristic classes of manifolds. Perhaps it was

this period of greatest triumph that began the final dissolution of the concepts

of functional analysis in a gigantic unification of topics and ideas, to list which

would be equivalent to listing nearly all the rubrics of the review journals.

Even from the rapid and superficial survey that I have given above, one can

see how the development of functional analysis itself proceeded and how areas

in which it was either a progenitor or a reformer gradually separated from it.

No one can diminish the prominent role of functional analysis and the role of

the papers written by its leading lights, but one can hardly deny that for some

time now it has not existed as an integral area of mathematics.

There is a certain useful inertia in the development of mathematics, which

does not allow sudden jumps, and thanks to which some researchers continue

to study calcifying topics — this should not, and need not, be neglected. There

is a monument to this vanishing subject — it is the journals that bear its name,

the departments, majors, and even specialties. For many (myself, for example)

it is difficult to state briefly what their specialty is otherwise than as “functional

analysis.”

It is clear that this name will be preserved for some time to come and will be

adequately understood. However, it will soon be necessary to explain to young

people what functional analysis is and what, exactly, the people who call it their

specialty are specializing in.

The fate of subjects is capricious and cruel. In contrast to people, they never

die completely, and one cannot safely wager that functional analysis as a general

concept will not appear again in some other form and under some other name.

But indisputably, some very interesting pages of the history of mathematics of

the twentieth century, which went out along with it, are connected with its name.
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Half a Century As One Day

Presented by the author

An abyss opened, stars there spread;

And neither count nor bound is laid.

M.V.Lomonosov

1. How to Study Mathematics?

In my first year at Moscow State University (1949) I was fortunate to attend

an unusual seminar. It was an optional beginners seminar on function the-

ory — “Circle of Freshmen,” managed by Aleksandr Semenovich Kronrod, then

a young Doctor of Science, witty and friendly. He at once became our favorite

and we called him simply Sasha as he requested.

We knew that in 1941, when the war broke out, he had volunteered for

the front line. He was then a fourth year student. In the army, Sasha was

awarded with several medals: the order of the Red Star, the order of the Patriotic

War and others. Severely wounded, after a year in hospital he was discharged

from the army in 1944. During the following five years Sasha completed his

undergraduate and post-graduate studies at the university. Simultaneously, he

was working at the Kurchatov Institute. His Ph. D. thesis was recognized by the

academic council as outstanding, and instead of a Ph. D., Kronrod received the

degree of Doctor of Science. His advisor was Nikolai Nikolaevich Luzin.
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At that time, seminars for younger students

A. S. Kronrod, the founder

of a scientific school

were supplementary to the curriculum: students

were reporting on the topics of basic courses.

Kronrod’s seminar had a different style. It was a

training seminar: during the first year no reports

were presented, instead all material was offered

in the form of exercises — we had to prove even

the principal theorems ourselves. We met once a

week, but the preparations required several hours

every day. Therefore, the number of participants

soon reduced very significantly. However, the

seminar turned out to be very helpful for those

who participated in it. After a year the circle

grew into a full scale research seminar.

The first original result was presented by the end of the first seminar year.

Its author was Robert Minlos. Kolmogorov recommended Robert’s paper for

publication in Doklady Akademii Nauk. A freshman’s article in a leading jour-

nal — this was an event that did not occur frequently. I obtained my first result

in the second year and gave a talk on it at the Moscow Mathematical Society

meeting a year later.

These examples show that the seminar had been working successfully. To

our regret, however, Kronrod did not hold a formal position at the university

(his formal position was at the Institute for Problems of Physics). Because

of that he had to ask someone else to sign up as our advisor every time we

presented our yearly course papers. That did not encourage the enrollment of

new participants. Alas, in 1954, after five years of activity, Kronrod’s seminar

disintegrated, reducing our relations to friendly meetings.

Once I happened to be a tutor in a freshmen class. I had to train backward,

that is, lazy students. After one or two weeks they stopped coming to the

tutorials for unknown reasons. Instead, the most active students came. This is

how my first circle of freshmen appeared (1953).

Later on such circles and other training seminars for younger students were

announced by my colleagues and myself every two or three years. Among

the students who attended these seminars are Valya Arkharova, Slava Erokhin

and Vitya Pan, Dima Arnold and Sasha Kirillov, Marik Mel’nikov and Gena

Henkin, Buma Fridman and Shura Tumanov, Valera Beloshapka and Serezha

Bychkov, Serezha Ivashkovich and Shura Loboda, Petya Paramonov and Kolya

Shcherbina, Kolya Kruzhilin and Stepa Orevkov, Volodya Ezhov and Sanya

Isaev, Misha Mishchenko and Misha Smirnov, Andrei Domrin and Stefan
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Nemirovskii, Aleksei Bystrikov and Egor Egorov . . . Many of them, each

in his time, came later to our main research seminar.

Perestroika dispersed a good portion of the seminar over various countries.

However, the seminar is still active and is periodically replenished with new

participants. Many seminar members often travel to international mathematical

centers. On the other hand, many former participants working abroad occasion-

ally come to Moscow and attend the seminar, or invite their friends to their

home institutes.

I entered the university after graduating from the Tula Suvorov Military

School. Such military schools were established during the war, in 1943, in order

to revive the old traditions of the former Russian Cadet Corps. A cadet, training

to be an army officer in future, was supposed to get a thorough education and a

proper up-bringing. In addition to the usual high school curriculum, the Suvorov

School offered such subjects as the history of diplomacy, dancing, and higher

mathematics.

Here is an example of how we studied higher mathematics. Lieutenant

Georgii Ivanovich Bobylev taught mathematics to our platoon. I see now that

he was an excellent teacher. His lessons were fascinating and joyful. Once

we were not able to differentiate an intricate expression. Calling us slackers,

he started explaining the rules of differentiation once again. While he was

writing on the blackboard and we were listening to him quietly, our platoon

joker, Gena Emel’yanov, purposely whispered so that everyone in the class was

able to hear: “Engels said that even a monkey can be trained to differentiate.”

“But I also can integrate,” replied the teacher, thus accepting the joke. By the

end of the semester, announcing the grades, he recalled this monkey. While

reading out Gena’s grades he said: “Emel’yanov — four, four, four,” then with a

smile he counted the grades: “One, two, three, hence Emel’yanov gets ‘three’.”

Of course, the genuine grade was “four.”

At the beginning of my first year at the university I became acquainted with

Lev Semenovich Pontryagin. I had learned about him from the tales by Georgii

Ivanovich who had attended the university during the same years as Pontryagin

and knew him well. Lev Semenovich was an interesting interlocutor. Once I

asked him how to study mathematics. He answered that it was very easy, one

should just study it (mathematics) incessantly, while the choice of the particular

subject was not of much importance to start with. This supported my decision to

attend Kronrod’s seminar. Such reassurance was necessary because the seminar

was leaving little time for other studies, and there was a certain risk of failing

the semester exams.
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In the fifth year at the university, having listened to Pontryagin’s course on

continuous groups, I was attracted to topology. For a year I attended the Seminar

of Pavel Sergeevich Aleksandrov. Then, on graduation from the university, I

became a post-graduate student of Andrei Nikolaevich Kolmogorov.

2. Complexity Estimates for Algorithms

Kronrod’s main studies were connected with heat engineering and computational

mathematics. For this research he was awarded the Stalin Prize. His contribu-

tion to fundamental mathematics is the notion of set variations. The evolution

of this concept has been treated in two books, namely my M. Sc. thesis On

Multidimensional Variations (1955) and a book by Leonid Dmitrievich Ivanov

Variations of Sets and Functions (1975).

For a subset of an n-dimensional space, one can define its variations of or-

ders k = 0, . . . ,n. The k-th variation is the integral over the space of (n− k)-di-

mensional planes of the number of connected components in the intersection of

this subset with each plane.

Let us consider a set in R
3 looking like a rope, for instance like a clothes-

line. Four variations are defined in this case. The zero variation of the rope is

the number of its pieces. The first variation is equal to its length in the everyday

sense, rather than in the sense of Hausdorff. The second variation is equal to

the Hausdorff area of the surface of this rope. The last variation is equal to its

volume.

Variations are rather convenient because they characterize the “breadth” of

the set in all dimensions simultaneously. This can be used to estimate the com-

plexity of various mathematical objects. In particular, this property of variations

was successfully applied to the study of compact sets in function spaces. Such

expressions as “estimate of the complexity of a problem” and “estimate of the

complexity of an algorithm,” which are quite common now, were first adopted

in this context.

A complexity estimate for a compact set of functions can be obtained in

the following way. We project this set onto R
n by restricting all functions to

a sufficiently dense net, and approximate the image of the projection by an

algebraic surface. The variations of the image set can be estimated in terms of

the degree and dimension of this surface. Both parameters can be calculated

for the classes of smooth or analytic functions, and this approach yields some

interesting results.
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It has been shown that if the complexity of a function is measured by the

ratio of the number of variables to the order of smoothness, then almost every

function of a given complexity cannot be represented as a superposition of

functions of lower complexity.

In particular, for all positive integers n and s, there exists an s times differen-

tiable function of n variables that is not a superposition of s times differentiable

functions of fewer variables. This was proved in 1953.

Superpositions of functions constituted the subject of my talk at the Interna-

tional Congress of Mathematicians held in Moscow in 1966. In 1977, I gave a

series of lectures on this topic at the University of California at Los Angeles,

where I was invited as a Lecturer of the International Mathematical Union (such

a lecturer is appointed on application by a leading university, and the lectures

are published in a separate volume).

My first results on superpositions gave

P. S. Aleksandrov

and A. N. Kolmogorov

me an opportunity to become acquainted with

Kolmogorov. I asked him to recommend

my two communications on this work to

Doklady. Having listened to the formulation

of the result Kolmogorov uttered his usual

long “er . . . ” and added: “Yes, it is correct,

and I see how it can be done.” I was a bit

discouraged. Pavel Sergeevich Aleksandrov,

who took part in the conversation, comforted

me: “Don’t get upset, Tolya. Andrei Nikolae-

vich understands everything.” A week later I

came to learn Kolmogorov’s decision and had

another surprise. He had written both com-

munications anew and even typed them up,

explaining in this unusual way how an article

should be prepared for publication.

Andrei Nikolaevich advised me to take a post-graduate course at the Steklov

Mathematical Institute so that later on I would be able to get a research position

there. On Kolmogorov’s recommendation, Ivan Matveevich Vinogradov invited

me for an interview. The interview was going smoothly until Vinogradov learned

that I was Kronrod’s student. The conversation then took an undesirable turn.

Sergei Mikhailovich Nikol’skii, who was also present there, tried to support me.

However, Ivan Matveevich cut short my visit, giving his toothache as an excuse.

When I left the room he said to Nikolskii: “Never mind. He has nowhere else to

go if not to us.” As the landowner Lasukov (a character from Autumnal Bore by
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N. A. Nekrasov) used to say, it did turn out his

I. M. Vinogradov, Director

of the Mathematical Institute

way. I became a post-graduate at the university

and got a position at the institute only eleven

years later. This example shows that Vino-

gradov’s position towards Jews left much to be

desired. In other aspects he was an adequate

head of the institute and much respected, es-

pecially for his straightforwardness and consis-

tency. When a group of leading academicians

was asked to sign an open letter condemning

Sakharov for his dissident activities, only two

of them refused to add their signatures, and

these were Kapitsa and Vinogradov.

Complexity estimates for algorithms com-

puting smooth and analytic functions were ob-

tained by the same method that had been used

to study superpositions (1957). Under suitable

assumptions on the functional compact set F , it was proved that: if an algorithm

achieves an ε-approximation of every function in F , if p is the number of para-

meters determining a function, and if the total degree of the formula computing

the function does not exceed k, then p log2(k + 1) � cHε . Here, c is a constant

depending on the compact set F , and Hε denotes the ε-entropy of F , i. e., log2
of the number of elements of a minimal ε-net for F . From the point of view of

such complexity estimates the well-known approximation schemes for smooth

and analytic functions are close to being optimal. This can be understood in the

following way: there does not exist a significantly

A. A. Lyapunov

lecturing on cybernetics

better approximation method for these classes of

functions.

This result was obtained when I was a post-

graduate student and working at the same time at

the institute now known as the Keldysh Institute of

Applied Mathematics. I joined this institute with a

group of engineers. We were constructing a reading

device, and during intervals in this work I turned to

mathematics.

The head of the Cybernetics Department at the

institute was Aleksei Andreevich Lyapunov, gentle

and amiable in communication, engaged and zealous

in research. In those days (the 1950s) newspapers
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and even our textbooks did not call cybernetics (as well as genetics and some

other sciences) anything other than a “bourgeois pseudo-science.” Lyapunov did

not spare himself in organizing this department and editing the journal Osnovy

Kibernetiki (Principles of Cybernetics).

Mstislav Vsevolodovich Kel-

S. P. Korolev and M. V. Keldysh

are discussing the Space Project (1961)

dysh was the chairman of the

Special Committee of the Pre-

sidium of the Academy of Sci-

ences on man-made satellites, and

together with Sergei Pavlovich

Korolev he supervised the Outer

Space Project. The Keldysh Insti-

tute performed the mathematical

part of the Project. The insti-

tute carried out research in many

other applications as well. At

the same time, studies in pure

mathematics were given due at-

tention, and the institute was a

good place to work. Keldysh and

Lyapunov paid attention to my re-

sults. However, there was a great

drawback, and that was the secrecy conditions. Everyone on the staff had one

or another form of access to secret work, even if one had nothing to do with

it. Such conditions limited severely professional contacts and I transferred to

Mergelyan’s Department at the Steklov Institute.

The interest in superpositions is motivated by their applications. Let me

give an example of how superpositions are used in computational mathematics.

Suppose that an algorithm for computing a function of n variables is given, and it

is necessary to produce another algorithm computing this function together with

its gradient. This problem arises, for instance, when looking for the extremum

of a function. The question is: By how much does the number of arithmetic

operations increase? The usual guess is that the number of operations increases

at least by a factor of n, but this is wrong.

Klim Vladimirovich Kim observed that this problem could be solved so

that the number of operations increased only by 3 or 4 times (asymptotically

for large n). The idea is as follows. Every formula corresponding to a se-

quence of arithmetic operations is a superposition of functions of 2 variables.

Therefore, the formula computing a partial derivative of the initial function is a
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K. V. Kim and V. V. Voevodin are mastering agriculture (the 1990s)

superposition of partial derivatives of representing functions. The complexity of

computing a function and its derivative is approximately the same. Hence, com-

puting the function together with its gradient increases the number of operations

much less than by n times. In 1984 Kim designed a computer program based

on this idea. This is the best result on superpositions.

Here is one more question of this type with an unexpected answer. How

many arithmetic operations are needed to evaluate a polynomial of degree n in

one variable? The classical Horner method requires n additions and n multipli-

cations. Viktor Pan found a more efficient method using n additions and only

[n/2]+1 multiplications, and proved that there is no algorithm containing fewer

operations (1960).

3. Digital System of Sound Recording

An All-Union Congress on Communication Reconstruction and Low-Current

Industry Development was to be held in 1933. Vladimir Aleksandrovich
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Kotel’nikov prepared a talk “On Carrying Capacity of ‘Air’ and Wire in Elec-

tric Communication.” The congress was not held but the proceedings were

published.

The main thesis of Kotel’nikov’s contribution was that the amount of infor-

mation received through a communication channel is proportional to the band

width of the channel.

In textbooks, a more rigorous formulation of this assertion is now called

Kotel’nikov’s theorem: An entire function of type σ , square-summable on the

real axis, can be represented in the form

f (t) =

∞

∑
k=−∞

f (tk)qk(t), where tk =

kπ
σ

and qk(t) =

sin(σ(t − tk))
σ(t − tk)

.

Indeed, it follows from this formula that the “amount of information,” i. e., the

number of independent numbers, carried by a signal of spectrum σ per unit

time is equal to σ/π . Such formulas had been known before Kotel’nikov.

His discovery consisted in a reasonable choice of the function class and the

understanding of potential applications.

This was the first time that the informational

V. A. Kotel’nikov

aspect of communication problems was discussed,

and his idea forms the basis for the current theory of

information. Kotel’nikov’s work has been awarded

many prizes, including the Lomonosov Medal (the

USSR, 1981) and the Bell Medal (the USA, 2000).

Kotel’nikov’s 1933 paper dealt with an impor-

tant problem of radio communication which was

quite complicated in those days. If a radio sig-

nal uses a narrow band width, the signal received

does not have the quality needed owing to the lack

of higher frequencies. When a wide band width

is used, noise from various disturbances increases.

Moreover, there had always existed the problem of signal compression on the

air. Efforts to overcome these difficulties by a transformation of the emitted

signal had been attempted. Kotel’nikov explained that such attempts had no

prospect of success and thus he stopped the useless activity of inventors of an

informational “perpetuum mobile.”

Kotel’nikov’s principle can be made more precise by using entropy estimates

of the relevant function class. Kolmogorov and Tikhomirov showed (1959) that

the ε-entropy (in the uniform norm) of the compact set of functions obtained as

restrictions of entire functions of type σ to the interval [−T,T ] is asymptotically
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equal to 2Tσ
π log2

1
ε (for small ε and large T ). It follows that if every function

(from the specified class) transmitted through a communication channel can be

recovered with accuracy ε , then the amount of information (i. e., the number

of binary digits) that can be transmitted through this channel per unit time is

asymptotically equal to σ
π log2

1
ε .

Kotel’nikov’s formula found various applications in the late 1970s when it

became possible to replace the analog recording system with a digital one. The

formula has become the main means of recording in all the instances when the

signal spectrum is known. In particular, all digital devices for sound recording

use this formula. This is due to the fact that the manufacturing of formula-based

devices is low-cost, while the quality of the playback signal on a CD is almost

perfect. But there always remains the problem of minimizing the algorithmic

complexity. For instance, nowadays on the Internet the flow of the sound and

video recordings is so large that it becomes necessary to save memory and time

consumption. Thus, the quality of recovery we enjoy is not the best.

It is great to listen to music not only in concert halls, but at home as well.

However, bad room acoustics change the frequency characteristics of the whole

reproducing system, thus constraining significantly the playback quality. If a

powerful computer is available, Kotel’nikov’s formula gives the possibility of

smoothing out these characteristics. This can be achieved by replacing the func-

tion f (t) received from the record-player with another function f ∗(t) determined

by the collection of values

f ∗(tk) =

N

∑
n=−N

εn f (tk−n), tk =

kπ
σ

,

with sufficiently large N ∈ N and appropriate {εn ∈ R}. It is important that no

preliminary processing of the function f (t) is needed.

In sound recording the quality of the equipment is characterized by three

parameters, namely: frequency response range, nonlinear signal distortion (cal-

culated as a percentage of the mean square signal norm), and the device dynamic

range (defined as the norm ratio of the maximum and the minimum signals with

guaranteed small nonlinear distortions).

Sufficiently “good” values of the last two parameters may be obtained by

improving the accuracy of approximation. If one uses Kotel’nikov’s formula,

taking the numbers f (tk) as the code, then the code length increases significantly.

It is more efficient to employ the Weierstrass formula that restores a function

from its zeroes, taking the code in this case to be the coordinates of the zeroes.

Quite unexpectedly, it turns out that there exists a coding system that pro-

vides an arbitrarily wide dynamic range for a communication channel or a
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device, while the code length is independent of the

dynamic range. This fact explains the mechanism

Viktor Ivanovich is pleased

with the communication

quality

of noise-suppression systems which are used both

in analog and in digital sound recording. This work

was done by Viktor Ivanovich Buslaev and myself

in 1972. Coding of signals and sound recording

problems were the subject of my plenary talk at the

International Congress in Vancouver (1974).

Similar estimates for the dependence of code

length on the dynamic range of a communication

channel for video signal have not been obtained as

yet. Such a result would help to assess how close

to optimal are the coding methods used in video-

devices.

4. On Hilbert’s Thirteenth Problem

The general algebraic equation can be simplified by the Tschirnhausen transfor-

mation, which is written in terms of radicals. In particular, the general equation

of degree 7 can be reduced to the form f 7
+ x f 3

+ y f 2
+ z f + 1 = 0. Hence,

the solution of the general equation of degree 7 is a superposition of arithmetic

operations, radicals, and a function f of the three variables x, y, and z. Further

simplification of this equation by means of algebraic transformations does not

seem to be possible. In the famous list of Hilbert’s problems (1900) this con-

jecture is stated under No. 13 in the following form: A solution of the general

equation of degree 7 cannot be represented as a superposition of continuous

functions of 2 variables. Here and below, in talking about a solution of an

algebraic equation, we mean a univalent branch of the general solution. By the

way, Hilbert’s conjecture is no less exciting if one is interested in the general

solution and multivalued continuous functions of two variables.

Many mathematicians found this problem appealing. The result on super-

positions of smooth functions, mentioned above (see section “Complexity Esti-

mates for Algorithms”), came about in relation with this problem. We tackled

some problems on this subject in a freshmen circle (1954–1955). Dima Arnold

and Sasha Kirillov were the best in that seminar. By the way, they were pas-

sionate hikers and often took other members of the circle with them. They did

not forget me and I sometimes took part in their hiking or canoeing trips. Some

of the girls of their class (their future wives included) attended the seminar as
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spectators. The presence of beautiful girls heated up their rivalry, and helped

make the seminar so successful. At the same time I became interested in radio

engineering. That took all my time, and to my regret I had to close this seminar

after a year. Kirillov went to Gel’fand, while Arnold joined Kolmogorov.

Kolmogorov said that Hilbert’s thirteenth problem was very good material

for students. With time, it turned out that it was good not only for students

but for Kolmogorov himself. Two years of collaboration between Kolmogorov

and Arnold resulted in the proof that Hilbert’s original conjecture was wrong.

The breakthrough was Kolmogorov’s result that a continuous function of several

variables could be represented as a superposition of functions of three variables

(1956).

Kolmogorov used to say that the idea of this construction originated while

looking through outdated journals, as was his habit. He came across an article

by Kronrod which treated, among other things, functional trees. The tree of a

function is the space of its level components. A tree is one-dimensional and

acyclic and hence can be homeomorphically embedded into the plane. The

values of the function are naturally carried forward to its tree and, in this sense,

a function of several variables depends on two variables only. Constructing

superpositions required an additional variable, which resulted in superpositions

of functions of three variables.

Kolmogorov was an excellent academic supervisor. When he worked with

students he always created an opportunity for a gifted student to play a solo

part, so to say. This was the case with Dima Arnold who in his third year at the

Dima Arnold is dreaming of

solving Hilbert’s 13th problem

university improved the Kolmogorov construc-

tion and showed that any continuous function

of three variables is representable as a superpo-

sition of continuous functions of two variables,

thus proving that Hilbert’s conjecture was in-

correct (1957). Then Kolmogorov found a new

construction and proved the possibility of rep-

resenting every continuous function of several

variables as a superposition of continuous func-

tions of one variable and the operation of addi-

tion (1957).

This cycle of works by Kolmogorov and

Arnold was a sensation. Soon after that, how-

ever, it was proved that the functions in their

constructions could not be smooth even if the

superposition represented an analytic function
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(1959). Therefore, having in mind that almost every smooth function is not

representable as a superposition of smooth functions of fewer variables, an af-

firmative answer to the problem may still be expected, i. e., it is still possible

that the solution of the equation of degree 7 cannot be represented as a super-

position of functions of 2 variables if these functions, of course, are assumed to

be smooth or analytic. On the other hand, it is not excluded that every algebraic

function is a superposition of algebraic functions of one variable and arithmetic

operations. Thus, the problem remains open and the range of issues is, in fact,

as wide as it was at the beginning of the century.

By the end of his post-graduate course Arnold submitted his work on

Hilbert’s thirteenth problem as his Ph. D. thesis. I was the official opponent dur-

ing the thesis defence. Kolmogorov made an interesting remark about Arnold:

“Vladimir Igorevich never eats, nor sleeps . . . well, of course, he eats and sleeps,

but even then he is thinking of mathematics.” Izrail Moiseevich Gel’fand sug-

gested that Arnold should be given the degree of Doctor of Science for the

solution of Hilbert’s problem. Such pulling of the blanket was doing injustice

to Kolmogorov. I said that to disprove a conjecture was not to solve the actual

problem, however the Doctor of Science degree may be given to Academician

Kolmogorov rather than to Arnold. The discussion was lively, but it did not hurt

Arnold’s reputation, only adding to his popularity. Very soon he received the

Doctor of Science degree for his work on dynamical systems, while I have been

reminded of my opposition more than once.

In the 1950s, the curriculum of the mathematics department at the university

included a course of pedagogics followed by teaching practice at a school.

Some pupils of the school to which I was assigned had no difficulties with

mathematics. A few boys (Dima Arnold among them) were eager to solve

problems from the university calculus course, which I was giving them during

the breaks. However, my test lesson was a failure. I had to examine four pupils

and to explain new material. The first boy got a “five” quickly. But I had

no luck with another boy. He did not understand the simplest things and, being

inexperienced, I decided to explain to him everything on the spot. When the

bell for the break rang he was still struggling at the blackboard unable to solve

a simple equation, while I, fully conscious of my mistake, was wondering if this

nice guy should be tortured with mathematics . . . One could not help thinking

of Mephistopheles:

Dear friend, all theory is grey,

And green the golden tree of life.

(Goethe)
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5. Analytic Capacity and Approximation of Functions

Sergei Nikitovich Mergelyan is another bright star in the constellation of Russian

mathematicians. A child prodigy and the one chosen by fortune, he got the

degree of Doctor of Science when he was 20, while at the age of 24 he was

awarded a Stalin Prize and elected a Corresponding Member of the USSR Acad-

S. N. Mergelyan

emy of Sciences (1952). His theorem on approxima-

tion of functions by polynomials is a classical one,

along with the theorems of Weierstrass and Runge.

His lectures attracted great attention, though female

students were more interested in the lecturer him-

self, a young blue-eyed professor.

The Mergelyan theorem answers a question

about the possibility of polynomial approximation of

functions of one complex variable. Every function

continuous on a compact set K ⊂ C and holomor-

phic in its interior can be represented in K by a

uniformly converging series of polynomials if, and

only if, the complement C\K is connected (1952).

This result concludes a long series of studies on polynomial approximation

of functions of one complex variable (Walsh, Hartogs and Rosenthal, Lavrent’ev,

Keldysh). In all these papers a function continuous on a compact set and holo-

morphic in its interior is approximated by a function holomorphic on the entire

compact set (i. e., in a neighbourhood of this set). Polynomial approximation is

then obtained by the Runge theorem (1885) that every function holomorphic on

a compact set whose complement is connected can be represented in this set by

a uniformly converging series of complex polynomials. Schemes of approxima-

tions had been improved, step-by-step completing the list of sets on which holo-

morphic approximations are possible. However, the criterion for holomorphic

approximations was obtained only fifteen years later after Mergelyan’s work.

Contrary to the case of polynomial approximation, there is no simple geo-

metric criterion for approximation by rational functions or, equivalently, by

functions holomorphic on a compact set, and we shall see that such a simple

criterion cannot exist. To describe the compact sets on which holomorphic ap-

proximation is possible, a notion was introduced in 1958, which was called

the analytic capacity of a set, following Slava Erokhin. The analytic capacity

of a subset E ⊂ C is defined by the formula α(E) = sup
∣∣limz→∞ z f (z)

∣∣. The

supremum is taken over the class of functions continuous in the complex plane,

bounded by 1, holomorphic on the complement of E , and vanishing at infinity.
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Approximation by holomorphic functions on a compact set is possible if

there is enough room in its complement near the boundary to “push” the bound-

ary off the compact set. The approximation criterion is formulated as fol-

lows (1966): every continuous function holomorphic in the interior E0 of a

compact set E ⊂ C can be uniformly approximated by functions holomorphic

in a neighbourhood of E if, and only if, α(D \E) = α(D \E0) for every open

disc D ⊂ C. This condition is satisfied if, for instance, the interior boundary of

the compact set is empty, i. e., if every boundary point of E lies in the boundary

of some component of its complement. In particular, this holds if the comple-

ment is connected, and therefore the Mergelyan theorem can be regarded as a

corollary of this criterion and the Runge theorem.

The result did not go unnoticed. I was invited to the International Congress

held in Nice in 1970, but I was not permitted to go there for the “signing” (see

the last section).

Let us mention some properties of the analytic capacity α(E). The analytic

capacity of a set of finite length is zero. The capacity of a disc is equal to its

radius. Furthermore, the only set of fixed area providing the minimum value of

capacity is a disc. The capacity of a domain is at least one fourth of its diameter.

A fairly unexpected and equally useful property is the “instability of capacity”

(1958): if a set E ⊂ C is such that

limsup
r→0

r−2α(E ∩D(z,r)) > 0 for every point z ∈ C

(where D(z,r) denotes the open disc of radius r

Marik Mel’nikov,

the USSR bridge champion

centered at z), then α(E∩D(z,r)) = r for all z and r.
A notable event was the following theorem, due

to Mel’nikov (1966), providing an important esti-

mate of the Cauchy integral. If a function f (z) is

continuous on the disc {|z|� 1} and the set E where

this function is not holomorphic stays off the bound-

ary of the disc, then
∣∣∫|z|=1 f (z)dz

∣∣ � cα(E), where

c is an absolute constant.

This subject still remains popular. From the

point of view of possible applications, the most

attractive unsolved problem is the following con-

jecture: Analytic capacity is semi-additive, i. e.,

α(A ∪ B) � α(A) + α(B) for every two compact

sets A,B ⊂ C. This conjecture is more than forty years old, but the question

remains open even if we multiply the sum on the right-hand side by an absolute
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constant. New hope that the problem might be solved in the affirmative was

raised in 1998 when a young Spanish student of Mel’nikov, Xavier Tolsa,

established the semi-additivity property for the so-called positive analytic capac-

ity γ+. This capacity is defined in the same way as above but the supremum is

taken over the class of functions bounded by 1 and representable by the Cauchy

potential of a positive measure supported on the given set.

6. Removable Singularities of Holomorphic Functions

The formulation of the problem about sets of removable singularities of holo-

morphic functions and early results on this subject are due to Painlevé (1888).

A subset of the complex plane is said to be removable (for the class of bounded

holomorphic functions) if every bounded holomorphic function defined in a

deleted neighbourhood of this set can be extended holomorphically over this

set. Guy David showed in 1999 that a compact set of finite Hausdorff length

is removable if, and only if, its linear variation is zero — in other words, if

the projection of this compact set to almost every line has measure zero. This

statement came up as a conjecture in our seminar about four decades ago after

an example of a removable set of nonzero length had been constructed. It was

Evgenii Prokof’evich in the country

noticed that the linear variation of

this exotic set is zero, and this sug-

gested the formulation of the con-

jecture. Now the Painlevé problem

may be regarded as solved, because

he himself considered only sets of

finite length and did not have any

definite conjecture at all.

An attractive variant of the

problem on removable sets was in-

troduced by Evgenii Prokof’evich

Dolzhenko. In 1963 he proved that

a compact set is removable for the

class of holomorphic functions sat-

isfying a Lipschitz condition with exponent 0 < s < 1 if, and only if, it has

(1 + s)-dimensional Hausdorff measure zero. A Vietnamese mathematician

Nguen Xuan Uy (then a young student of John Garnett) showed in 1977 that the

analogous statement is true for s = 1. The estimates of the Cauchy potential ob-

tained in this work have found many applications and were used in approaching

the original Painlevé problem.
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David’s theorem concludes a large series of works, some of which had been

presented at International Congresses (Calderón (1978), Murai (1990), Mattila

(1998)). Lately, the direction of research in this area has been determined by the

work of Mel’nikov on the curvature of measure (1994). This notion suggests

new problems, and further interesting developments can be expected, particularly

in connection with the semi-additivity conjecture for analytic capacity.

7. Integral Representations of Functions

In 1964 the Ukrainian Academy of Sciences held a School on Complex Analysis

and Topology in Uzhgorod. Discussions about the problems of complex analysis

in several variables started there and continued at our seminar in Moscow.

Boris Vladimirovich Shabat gave several introductory survey lectures on the

theory of functions of several complex variables. Later on, he and his students

V. A. Zorich, E. M. Chirka, S. I. Pinchuk, A. Sadullaev and others determined in

many respects the subject of the seminar. At that time Vasilii Sergeevich

B. V. Shabat

Vladimirov gave several survey talks on various as-

pects of complex analysis related to mathematical

physics. At present, A. G. Sergeev and A. V. Domrin

are in charge of this field at the seminar.

Vladimirov and Shabat were both former front-

line soldiers during the war. This fact could be

omitted because almost everyone of their genera-

tion took part in the war, but there is a story worth

telling. Shabat had badly hurt his foot in an acci-

dent. But he was so dextrous with a prosthesis that

he could walk well and even run. He went to the

army as a volunteer and therefore no medical exam-

ination was required. The prosthesis was not noticed

and he was sent to the artillery corps. Many years later Boris Vladimirovich

applied to a military registration office for a war participant certificate. This

time the prosthesis was discovered and no certificate was given because, as he

was told, a person in such a state could not have been drafted to the army and

sent to the front line, especially not to the artillery corps.

Approximation problems for holomorphic functions of several variables were

a principal subject of our seminar. The intricacy of these problems lies in the

fact that, contrary to the case of one variable, it is very hard to obtain a con-

venient integral representation of functions of several variables. There is the
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Runge theorem analogue for polynomial polyhedra

Gena Henkin

in the village of Laptevo

in C
n, which is a consequence of the integral for-

mula discovered by A. Weil in 1931. There were

also formulas for some other particular classes of

domains, but a general formula was still missing. In

1956 Leray found such a general formula by em-

bedding the domain into higher-dimensional spaces

and obtaining the integral kernel as the restriction of

a special differential form common to all domains.

This explained diversity in notation and, in some

cases, helped to choose a kernel appropriate for do-

mains of a given type.

The integral representation of functions on

strictly pseudoconvex domains with a sufficiently

smooth boundary obtained by G. M. Henkin (1968) was an important accom-

plishment of the seminar. For domains of this type he established the analogue of

the Mergelyan theorem. Henkin was an invited speaker at the Warsaw Congress

in 1983. However, many well-known old problems still remain open. In order

to characterize the state of the art, let us mention two unsolved problems.

Bishop’s conjecture: The union of finitely many pairwise disjoint closed

balls in C
n is polynomially convex, i. e., for every point in the complement of

the set, there is a polynomial equal to 1 at that point and less in modulus than 1
on the set. Even Eva Kallin, who is a great master of this art, can prove it only

if the number of balls is less than four (1964).

Wermer’s conjecture: If an arc in C
n is polynomially convex, then every

continuous function on this arc can be uniformly approximated by polynomials.

Chirka proved this for arcs of Hausdorff 2-measure zero (1966).

8. Continuation of Analytic Elements

In 1907, while working on the classification problem for domains in C
n and

trying to reduce it to the classification of real hypersurfaces, Poincaré proved

the following model assertion. If a holomorphic map defined in a neighbourhood

of a point on the (2n−1)-dimensional sphere maps the points of this sphere into

a sphere of the same dimension, then this map extends holomorphically onto the

entire sphere and then onto the ball bounded by it, and so is fractional-linear.

Much later, in 1974, Alexander proved this statement anew, without knowing

about the work of Poincaré. This result was noticed, and the papers of Poincaré,
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É. Cartan (1935), Tanaka (1962), and others on this subject were recalled from

oblivion. Chern and Moser published their influential work on the invariants

and normal forms of real-analytic hypersurfaces (1974).

This set of problems came to our seminar in due time. A remarkable result

was obtained by Sergei Pinchuk in 1978. Every holomorphic map defined

S. I. Pinchuk

in a neighbourhood of a point on a compact

strictly pseudoconvex nonspherical real-analytic

hypersurface in C
n, and mapping this hypersur-

face into another hypersurface of this type, ex-

tends holomorphically along every path in the

first hypersurface (a hypersurface is called non-

spherical if it is nowhere locally biholomorphic

to the quadric). The proof used Fefferman’s met-

ric adapted to hypersurfaces in C
n, and therefore

worked only in this case.

The proof of the analogous statement for real

hypersurfaces in general complex manifolds re-

quired other methods. This “mapping germ the-

orem” was established in 1985.

It was obtained after a series of preliminary studies on nonspherical hyper-

surfaces with nondegenerate Levi form. For such hypersurfaces, Beloshapka

and Loboda proved that every automorphism fixing a point is completely deter-

mined by the restriction of its linear part onto the complex tangent plane at this

point (1981). Kruzhilin and Loboda showed that the local automorphism group

of a hypersurface with positive-definite Levi form is linearizable, i. e., all the

Huckleberry and Kruzhilin

(Moscow, 1998)

automorphisms can be simultaneously made linear

by a special choice of coordinates (1983). For the

same class of hypersurfaces, Beloshapka obtained

an estimate for the convergence radius of the power

series defining a local automorphism (1985).

These works have resulted in many invitations.

Talks have been given at the seminars of Lelong

and Dolbeault (Institute Henri Poincaré), Carleson

(Mittag-Leffler Institute), Grauert (Göttingen Uni-

versity), Huckleberry (Ruhr University of Bochum),

Manin (Max-Planck Institute, Bonn) and, of course,

at seminars of several Russian universities. Kruzhi-

lin was an invited speaker on this subject at the

International Congress in Berkeley (1986).
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On this day of 1994 Ivashkovich and Paramonov became Doctors of Science

(Ivashkovich, Paramonov, the Beloshapkas, Sergeev)

This subject found further evolution in the work of Sergei Ivashkovich on

analytic continuation of holomorphic mappings of complex spaces. In particular,

he proved the conjecture of Griffiths that a meromorphic mapping from a domain

in a Stein manifold to a Kähler manifold extends meromorphically onto the

envelope of holomorphy of this domain (1992).

9. The Jacobian Conjecture

This is the following assertion: If the Jacobian of a pair of polynomials P, Q
in two variables x,y is a nonzero constant, then for all a and b the system

P(x,y) = a, Q(x,y) = b has a unique solution. More often this is stated in a

different way: If a polynomial endomorphism of C
2 is locally invertible, then

it is globally invertible (and hence it is an automorphism). This problem was

posed by Keller in 1939.

The polynomiality assumption is necessary. For instance, the holomorphic

map x′ = ex, y′ = ye−x is not invertible, although its Jacobian is identically unity.

There exists a more subtle example (Fatou, 1922) of a strict holomorphic embed-

ding of C
2 into itself with constant Jacobian. This map is not an automorphism

because its image does not cover the entire plane.

The group of polynomial automorphisms of C
2 is characterized by Jung’s

theorem (1942): every polynomial automorphism of C
2 is a composition of

affine maps and triangular transformations, i. e., automorphisms of the form

x′ = x+ cyn, y′ = y (c ∈ C, n ∈ N).
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The invertibility question for polynomial endomorphisms of R
2 can be for-

mulated in another way. Let us weaken the assumption that the Jacobian is

constant and assume only that the map is locally invertible. The answer in this

case turns out to be negative. In 1994, Sergei Pinchuk constructed an example

of a polynomial map of R
2 into itself that is invertible locally but not globally.

(Pinchuk was an invited speaker at the International Congress in Berlin, 1998.)

Nonetheless, there is not much hope that there exists a counterexample to the

classical variant of the conjecture. Furthermore, it is known that the Jaco-

bian conjecture holds true for polynomial maps of C
2 of algebraic degree less

than 100 (Moh, 1983).

Let f be a polynomial endomorphism of C
2. The following procedure is

helpful for the understanding of the geometry of f . Consider C
2 as part of the

projective plane CP2. In a neighbourhood of the projective line at infinity, the

map f is given by rational functions which have a finite number of ambiguous

points. Let us blow up each of these points by replacing it with a Riemann

sphere via a coordinate change of the form x → xy, y → y. For instance, this

coordinate change transforms the rational function x/y into the linear function x.

In general, new ambiguous points may appear on the exceptional spheres of

blow-ups so that we must blow up these as well. However, after a finite number

of blow-ups we obtain a compact complex manifold consisting of C
2 and a tree

of spheres, together with a holomorphic map of this manifold into CP1 ×CP1

that coincides with f on C
2. Deleting some of these spheres, we can get a

manifold M consisting of C
2 and a finite union of pairwise disjoint complex

lines {L j}. This can be done so that for every j, each of the two components

of the map is identically equal to infinity on L j, or does not attain the value

infinity on L j at all. We delete the minimal number of spheres and in this sense

obtain a complete set of exceptional lines.

For example, a triangular automorphism of C
2 corresponds to the so-called

triangular chain of blow-ups. The tree of spheres γ0,γ ,γ1,γ2, . . . ,γ2n in this case

possesses a very simple structure. The sphere γ is obtained by blowing up a point

in the projective line γ0 = CP2 \C
2. The sphere γk (k = 1, . . . ,n) is obtained by

blowing up a point pk = γ ∩ γk−1. For k = n+1, . . . ,2n, the sphere γk is obtained

by blowing up a point that lies only in the previous sphere γk−1. A characteristic

property of triangular chains is that, by blowing down the spheres γ0, . . . ,γ2n−1,

we retrieve the projective plane CP2
= C

2 ∪ γ2n. So we obtain the map from

CP2 onto itself. Its restriction to C
2 is the original triangular automorphism.

The first homology group of the manifold M mentioned above is trivial,

whereas the second homology group is nontrivial. Each complex line L j defines

a nontrivial cycle represented by a smoothly immersed two-sphere in M having
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intersection index 1 with this line. This sphere can be obtained, for instance, by

gluing a disc contained in C
2 ⊂ M to the boundary of a small disc transversal

to that line. In our seminar we are used to call such a surface a test sphere.

This terminology is justified by the fact that the topological characteristics of

test spheres determine, to a great extent, the properties of the manifold M. For

instance, sometimes the invertibility of the corresponding map can be examined

using such characteristics.

If the Jacobian conjecture is false, then there exists a locally invertible

polynomial endomorphism f : C
2 → C

2 that is not globally invertible. Let us

remove from the corresponding manifold M all the lines L j on which at least one

of the components of our map equals infinity. This gives us another manifold

M∗ consisting of C
2 and a finite number of complex lines. The extended map

f ∗ sends M∗ holomorphically onto C
2. This map is proper and locally invertible

outside of the remaining lines L j — and, since it is not invertible globally, it has

a ramification along some of these lines. In this way we obtain a rather exotic

holomorphic ramified covering f ∗ : M∗ → C
2, and the problem is to show that

this cannot exist.

It turned out, however, that removing the holomorphicity assumption al-

lowed one to construct such a covering (1970). Namely, there exists a ramified

covering of three sheets over C
2
, glued together of R

4
and R

2
, and such that

the projection is locally invertible on R
4

and has two sheets near R
2
.

Unfortunately, no counterexample to the Ja-

Stepa Orevkov is meditating

on the Jacobian conjecture

cobian conjecture came out of it. In 1986 Stepa

Orevkov showed that there exists no such rami-

fied covering of three sheets over C
2 with holo-

morphic structure. Nevertheless this example

still works in those instances when one more

“proof” of the conjecture has to be checked for

a mistake. For over 15 years (1955–1970) the

conjecture had been considered proved, and the

disproving arguments were found only with the

construction of this example.

An important success of our seminar was

the work of Stefan Nemirovskii (1998). He an-

swered several questions about the envelopes of

holomorphy of test spheres raised in our seminar

in the 1980s. In particular, using the Seiberg–Witten invariants of smooth four-

manifolds, he proved that if a real two-surface smoothly embedded into CP2 is

not homologically trivial and its envelope of holomorphy is also not trivial (i. e.,
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there exists a nonconstant function holomorphic in a neighbourhood of the sur-

face), then the genus of this surface is at least 3, and this estimate is sharp. This

implies that there are no nonconstant holomorphic functions on a homologically

nontrivial smoothly embedded two-sphere in CP2 and, in particular, on a test

sphere.

His other result is that if a domain in C
2 is biholomorphically equivalent to

the ball, then there is no analytic disc in its complement such that the boundary

of the disc is contained in the boundary of the domain. If a similar statement

were true not only in C
2 but on algebraic ramified coverings over C

2, it would

give a proof of the Jacobian conjecture. For these works Nemirovskii was

awarded the European Mathematical Society Prize for young mathematicians

(Barcelona, 2000).

Let M be a complex manifold consisting of C
2 and a complex line, obtained

from CP2 by performing a chain of blow-ups and then removing all the spheres

(including the line at infinity in CP2) except the last one. We assume that the

tree of blow-ups is minimal, that is to say no blow-up can be omitted from

the construction of M. How are the topological properties of the test sphere

S of M related to the structure of the chain of blow-ups? In some cases, to

answer this question it is useful to apply the following criterion of triangularity

(1999): a chain of blow-ups defining the manifold M is a composition of tri-

angular chains if and only if the intersection index S2
= 1 and the value of the

canonical class KM · S = −3. Let us note that, since a triangular chain defines

an automorphism, we may not take such chains into account in invertibility

problems.

Suppose that S2
= −3 and KM ·S = 1. (Notice that these values are attained

by the test sphere of the exotic example discussed above.) It follows from

the criterion (although not so easily) that the chain of blow-ups generating the

manifold M should consist of a composition of triangular chains and a simple

chain of four blow-ups (a chain is called simple if the point blown up at each

step belongs only to the sphere obtained at the previous step). This example is

interesting because it prompts the simplest partial case of the Jacobian conjecture

that still remains unsolved.

Exercise: Is it true that if a pair of polynomials P, Q is such that the

functions P(xy3
+ y2, 1

y ) and Q(xy3
+ y2, 1

y ) are also polynomial in x,y, then the

Jacobian of P,Q vanishes somewhere in C
2? (The change of variables used here

is obtained by passing to a coordinate chart at infinity and then performing a

simple chain of four blow-ups. If the number of blow-ups is less than four, the

analogous statement is known to be true.)
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10. On Migration

The Jacobian conjecture was the subject of my talk at the conference

“Manifolds-73” held in Tokyo. It was a major conference where I made

several acquaintances that were followed by visits to other countries. Thus,

having been introduced to Sh. Kobayashi and H. Hironaka in Tokyo, three years

later I visited them in the USA (at Berkeley and Harvard). The conference in

Tokyo was especially memorable because it was my first trip abroad. Since

then I have been to many countries and lectured at about fifty universities.

In the 1970s we seldom traveled abroad. The reasons are known. Here is a

typical example. Our colleague, the mathematician Esenin-Vol’pin, had been put

in a mental institution for his too emotional response to political events. A letter

signed by over a hundred mathematicians was sent to the authorities, insisting

on his release, and he was freed. A few years later he emigrated to the USA,

whereas those who signed this letter were not permitted to take trips abroad for

a long time.

The participants in these events have handled their destinies in different

ways. The signatories may remain proud: our Bright Future has arrived thanks to

their activities. Many of them have left the country, but not everyone, of course.

Tatiana Velikanova, an excellent teacher of mathematics, who was imprisoned

and exiled for intensive dissident activity, is now doing what she likes most of

all. She teaches Moscow children and finds in it, in her own words, a great plea-

sure and satisfaction. On graduation from the university in 1954, she was rec-

Tatiana Mikhailovna Velikanova

and future mathematicians

ommended to take a post-graduate

course. She refused, because she

wanted to work in schools. How-

ever, for various reasons her dream

of becoming a school teacher came

true only in the late 1980s.

Besides limitations on our trips

abroad there were other difficul-

ties that interfered with communi-

cation, such as the language bar-

rier. Let me give as an example

a story about the meeting of Kol-

mogorov and Shannon in Moscow.

Kolmogorov was fluent in French

and German, and read English well,

though his spoken English was not
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as good. During their conversation Shannon said with some sympathy that he

wished they had understood each other better. Kolmogorov replied that there

are five international languages, and he knew three of them, and had his in-

terlocutor also known three languages they would not have had problems in

communicating.

Perestroika has brought a lot of changes: one can go anywhere, those who

work in state-controlled institutes earn ridiculously small salaries . . . If you are

Nemirovskii and Domrin in Brussels:

Time to go home? (1999)

clever, why are you poor? Many math-

ematicians have left for other countries:

Manin is in Bonn, Arnold and Henkin

in Paris, . . . , Nemirovskii is to leave for

Bochum. Some of them have left appar-

ently for good, others work half a year

here, half a year there. And their semi-

nars now are not the same as they used

to be. Before Perestroika, Soviet mathe-

maticians had 30 to 50 out of 150–170

section talks and 2 to 4 plenary talks

out of 15–17 at several international con-

gresses. But at the Berlin Congress, Rus-

sia was given only one section talk and

no plenary talks at all. At this congress

the Russians that had left the country re-

ceived more talks, but much fewer than

we had before. They appear to lose shape

from hunting for jobs. Not all of them,

certainly. Manin is always Manin, and

Arnold as well . . .

They say, emigration will save our science. Allegedly, many scientists will

come back when the economy improves. Who knows? Maybe they really

believe it . . .

∗ ∗ ∗
An acute reader will have certainly perceived that our objective was to

discuss three fascinating problems of the twenty-first century, the solutions to

which one can now only dream to find . . .
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Nikolai Nikolaevich Bogolyubov —

Mathematician by the Grace of God

Translated by R. Cooke

Il libro della natura è scritto in lingua mathematica. 1

Galileo Galilei

When discussing twentieth-century mathematics one cannot avoid mentioning

the mathematical legacy of N. N. Bogolyubov, his influence on the development

of modern theoretical and mathematical physics, his career, his personality, and

his powerful intellect, which bore the stamp of genius. Nikolai Nikolaevich

Bogolyubov — mathematician by the grace of God 2 — belongs rightfully among

the Pleiad of great Russian scholars whose works enriched the boisterous blos-

soming of mathematics in the twentieth century. Bogolyubov was the founder

of schools in mathematics, theoretical and mathematical physics, and mechanics

in Kiev, Moscow, and Dubna. His students in turn have founded schools of

their own in Moscow, Kiev, Dubna, Protvino, Novosibirsk, Tbilisi, Kishinev,

and Erevan.

1 The book of nature is written in mathematical language.
2 The name Bogolyubov consists of two Russian words: Bog — God, and lyubov — love. —

Transl.
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N. N. Bogolyubov was born on 21 Au-

N. N. Bogolyubov

gust 1909 (8 August on the Julian calendar)

in Nizhnii Novgorod. His father, Nikolai

Mikhailovich Bogolyubov, was a prominent

clergyman, famous for his work on theology,

philosophy, and history of religion. The Bo-

golyubovs soon moved to Kiev. Soon after

World War II, N. N. Bogolyubov moved to

Moscow. From that time on he was closely

connected with the Steklov Mathematical In-

stitute and the Moscow State University.

Year by year we find ourselves more dis-

tant from that day (13 February 1992) when

Nikolai Nikolaevich Bogolyubov, the great

Laborer and Master of science, passed away. But it remains just as difficult to

reconcile the fact of his death with the magnanimity that was characteristic of

him, with those brilliant and lively impressions that we had of his whole life,

which was so rich in ideas and deeds. And it appears that Nikolai Nikolaevich

did not leave us forever, that he left us the most valuable and enduring part of

himself — ideas, methods, and results — over which death has no dominion.

1. The Kiev Period

Bogolyubov began his career in Kiev under the guidance of N. M. Krylov. At

the age of 15 he published his first mathematical work. This early (Kiev)

period of his work was devoted to both purely theoretical and applied mathe-

matical problems — direct methods of the calculus of variations, the theory of

almost-periodic functions, approximation theory, approximate solution methods

for differential equations, dynamical systems, ergodic theory, asymptotic meth-

ods, nonlinear mechanics, statistical mechanics, and kinetic equations. He was

the first to prove the existence of an invariant measure in dynamical systems; he

introduced the important concept of an ergodic set, and established theorems on

the decomposition of an invariant measure into “irreducible” invariant measures

that are “localized” in ergodic sets. He gave a new construction of the theory

of almost-periodic functions and proved the necessary artihmetical theorems. In

response to the current needs of technology and construction he wrote important

applied papers, many of them jointly with Krylov.

The outstanding research of the young Bogolyubov soon gained him wide

recognition. The paper he wrote as a graduate student, “On some new methods
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in the calculus of variations” ([1]; see also [2]), which was devoted to direct

methods of variational calculus for nonregular functionals∫ b

a
f (x,y,y′)dx,

contained a number of original approaches developing the ideas of the Italian

mathematician L. Tonelli. This paper was awarded a prize by the Bologna

Academy of Sciences in 1930; it was presented by Tonelli, and the author was

awarded the degree of doctor of mathematics honoris causa.

2. Nonlinear Mechanics

From 1932 on, while developing the research of their famous predecessors

Rayleigh, Poincaré, Lyapunov, and Van der Pol, Bogolyubov jointly with Krylov

created a completely new branch of mathematical physics — the theory of nonlin-

ear oscillations, which they called nonlinear mechanics. In nonlinear mechanics

we should mention first the fundamental areas that they created and developed:

asymptotic methods, the method of integral manifolds, and the method of aver-

aging. 3

Asymptotic methods of integrating nonlinear differential equations con-

taining a “small” or “large” parameter. The idea of the method will become

clear from the example of the equation

d2x
dt2 +ω2x = ε f

(
x,

dx
dt

,ε

)
, (1)

which describes the oscillations in a system having one degree of freedom.

When ε = 0, the oscillations will obviously be harmonic:

x0(t) = acosθ , where
da
dt

= 0,
dθ
dt

= ω . (2)

In the case ε �= 0 the solution of Eq. (1) is sought in the form of a power series

in the small parameter ε ,

x(t,ε) = acosθ + εu1(a,θ)+ ε2u2(a,θ)+ · · · , (3)

3 The principal papers from this period, selected by Nikolai Nikolaevich himself, have been

translated into English and formed part of Volume III of the prestigious edition of his selected

works [3]; see also Volume I of [4].
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where u1(a,θ), u2(a,θ), . . . are periodic functions of θ , and a and θ are

determined from the equations

da
dt

= εA1(a)+ ε2A2(a)+ · · · ,
dθ
dt

= ω+ εB1(a)+ ε2B2(a)+ · · · .

This method admits different versions and can be extended to more gen-

eral systems [5]. Nowadays it is known as the Krylov–Bogolyubov method.

Yu. A. Mitropol’skii made a substantial contribution to its development.

The method of integral manifolds. The idea of this method is due to

Bogolyubov (1945). Suppose that for an n-dimensional system of differential

equations

dx
dt

= X(t,x), x = (x1,x2, . . . ,xn), X = (X1,X2, . . . ,Xn), (4)

there exists, for each t ∈ R, some manifold (s-dimensional hypersurface)

St =

[
x : x = f (t,c1,c2, . . . ,cs)

]
,

where the function f (t,c1,c2, . . . ,cs) satisfies a Lipschitz condition with respect

to variables (c1,c2, . . . ,cs), s � n. The surface St is an s-dimensional integral

manifold for Eq. (4) if for every solution x = x(t) of the equation the validity of

the relation

x(t0) ∈ St0

for some t0 implies its validity for all t.
In problems of nonlinear mechanics one is interested not only in finding

stable integral manifolds, but also in studying integral curves on those manifolds.

The method proposed by Bogolyubov for studying one-frequency oscillations is

a brilliant example of a way to study the behavior of solutions on an integral

manifold, and it finds application in constructing the solutions of a large variety

of oscillatory systems with many degrees of freedom, and also in providing

rigorous foundations for them.

The method of averaging. The essence of the method of averaging pro-

posed and developed by Bogolyubov is as follows. Consider a system of differ-

ential equations in standard form

dx
dt

= εX(t,x,ε) (5)
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and the corresponding averaged system

dx̄
dt

= εX̄(x̄). (6)

Here ε is a small parameter, and

X̄(x̄) = lim
T→∞

1
T

∫ T

0
X(t, x̄,0)dt. (7)

Under rather general hypotheses concerning the right-hand side of (5), one can

establish an estimate for the norm

‖x(·,ε)− x̄(·,ε)‖

on a time interval of length L/ε , where L → ∞ as ε → 0.

In later papers on the method of averaging, Bogolyubov presented a solution

of (5) under the assumption (7) in the form of a power series in ε ,

x = ξ + εx1(t,ξ )+ ε2x2(t,ξ )+ · · · , (8)

in which the variable ξ is determined from the equation

dξ
dt

= εP1(ξ )+ ε2P2(ξ )+ · · · ≡ εP(ξ ,ε). (9)

The question of reducing (5) to the “integrable” system (9) is connected with

the convergence of the series (8). However, (8) diverges even for elementary

systems due to the appearance of “small denominators.” To overcome this dif-

ficulty, Bogolyubov, after familiarizing himself with the papers of Kolmogorov

and Arnold on accelerated convergence, combined their ideas with the method

of integral manifolds and proposed a new method in nonlinear mechanics — his

own method of accelerated convergence.

By using these results, Bogolyubov succeeded in significantly extending the

range of application of asymptotic methods of nonlinear mechanics and at the

same time solving the problem of the existence of quasi-periodic solutions for

the case n > 2. He expounded these results in his 1963 lectures at the Summer

Mathematical School in Kanev [6].

Bogolyubov’s groundbreaking ideas and fundamental results in nonlinear

mechanics form the foundation of many modern investigations in general me-

chanics, continuum mechanics, celestial mechanics, solid state mechanics and
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gyroscopic systems, stability of motion, control theory, regulation and stabi-

lization, space flight mechanics, mathematical ecology, and other branches of

science and technology. A detailed discussion of Bogolyubov’s papers in non-

linear mechanics can be found in the survey of Mitropol’skii [7].

Asymptotic methods and the theory of dynamical systems were further de-

veloped in the work of many mathematicians, both here in Russia and abroad

(A. N. Kolmogorov, S. Lefschetz, L. S. Pontryagin, A. N. Tikhonov, Yu. A. Mitro-

pol’skii, V. I. Arnold, J. Moser, D. V. Anosov, V. V. Kozlov, and others).

3. Bogolyubov and Mathematical Physics

Some remarkable papers of Bogolyubov on modern mathematics appeared in the

postwar period, in connection with the creation of the mathematical machinery

for solving new problems of theoretical physics and atomic energy. Bogolyubov

never proved theorems simply for their own sake. Every theorem that he proved

had some purpose and immediately “went to work.” It is an impressive fact that,

not having any systematic mathematical education, Nikolai Nikolaevich could

nevertheless quickly grasp the mathematical essence of a physical problem,

thanks to his talent and intuition, rediscovering where necessary the facts and

formulas that he did not know, introducing new and surprising ideas, creating a

powerful new method with a large supply of “robustness,” leaving the further

generalizations and perfecting to be done by his students . . . We, his students,

observed such a surge of creativity many times and were enchanted by the work

of the Master. We saw in practice how physics affects mathematics. On the

other hand, he did not regard mathematics as a mere tool of computation, but

rather as a method of obtaining new knowledge — as a way of deriving new

regularities 4 from obvious propositions (axioms) “at the tip of a pen,” as they

say, using mathematics.

Bogolyubov’s contribution to physics was not limited to just theorems

that rigorously confirmed results that were already basically known or un-

derstood by physicists (see [9]). He obtained a number of new outstanding

results in fundamental physics, such as the theory of a nonideal Bose gas, a

chain of kinetic equations, a new method in the theory of superconductivity,

and others.

4 In essence, this was the difference between the schools of Bogolyubov and L. D. Landau in the

1940s and 1950s. For more details see, for example, [8]. Time has adjudicated this dispute —

theoretical physicists have been using the most abstract branches of mathematics, from the Turing

machine to p-adic numbers, for a long time now.
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Here is what Nikolai Nikolaevich’s students said of him on the occasion of

his eightieth birthday [10]: “The principal feature of Bogolyubov’s style lies in

knowing how to estimate the key character of a problem and then, undeterred

by difficulties, creating an adequate method of solving the problem (this is a

manifestation of Hilbert’s ‘Wir müssen wissen, wir werden wissen’), 5 in which

the influence of mathematics and physics forces everyone who studies the works

of Bogolyubov to recall the times when the representatives of the exact sciences

were simply called natural philosophers.”

Oral tradition has even preserved a question posed by the “father of cyber-

netics” Norbert Wiener: “Is it possible that there are several Bogolyubovs, each

the greatest specialist in his field?”

The organic fusion of mathematics and physics in the work of Bogolyubov

enabled him to make a decisive contribution to the development of theoretical

physics, and in fact to lay the foundations of modern mathematical physics,

continuing the tradition of Hilbert, Poincaré, and Einstein.

By 1963 Bogolyubov had solid grounds for proclaiming: “The fundamental

concepts and methods of quantum field theory are becoming ever more mathe-

matical” [11]. One can now say more: “Theoretical physics is more and more

becoming mathematical physics.” A genuine need for a new journal in theo-

retical and modern mathematical physics 6 had arisen, and such a journal was

founded in 1969 on Bogolyubov’s initiative. That journal is Teoreticheskaya i

Matematicheskaya Fizika, and is now known worldwide. A need soon arose for

regular international conferences on current problems of theoretical and math-

ematical physics, 7 and the first such conference was held on Bogolyubov’s

initiative in Moscow in December 1972. Later conferences were held in War-

saw (1974), Kyoto (1975), Rome (1977), Lausanne (1979), West Berlin (1981),

Boulder (1983), Marseille (1986), Swansea (1988), Leipzig (1991), Paris (1994),

Brisbane (1997), London (2000), and Lisbon (2003). These last two were called

the Thirteenth and Fourteenth International Congress on Mathematical Physics

(ICMP 2000 and ICMP 2003 respectively).

5 We must know; we will know.
6 There had been cases in which the Journal of Experimental and Theoretical Physics rejected

papers by members of Bogolyubov’s school on the grounds that they were too “mathematical,”

and contained such “controversial” words as “theorem,” “proof,” “necessary and sufficient,” and

others.
7 For example, at the Rochester conference on high-energy physics (held in Chicago in September

1972) some papers on mathematical physics were not accepted on the grounds that they were too

“mathematized.”
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In accordance with the original principles of the Bogolyubov school, both

the journal and the congress now bear the generally recognized emblem

M∩Φ,

which symbolizes what is in common between mathematicians and physicists

and between mathematics and physics.

In an invited address at the opening of the international conference on prob-

lems of quantum field theory (Alushta, May 1981), Bogolyubov gave the fol-

lowing assessment of the situation in modern mathematical physics [12]:

A completely new branch of science has taken shape before our

very eyes in recent years, a branch that should properly be called

modern mathematical physics.

It has the same genetic origins as classical mathematical physics.

But whereas the theory of partial differential equations was gener-

ated by problems of classical physics (potential theory, theory of

propagation of electromagnetic waves and such), it turns out that

modern theoretical physics — quantum field theory with an infinite

number of degrees of freedom — requires different, more abstract

and modern mathematical methods. These methods consist primar-

ily of the theory of distributions, functional analysis and operator

theory, the representation theory of groups and algebras, topological

algebra, and the like.

The solution of the new physical problems of quantum field

theory was first sought through perfecting the usual methods of

quantum mechanics. At that time physicists managed to realize that

in order to obtain reasonable answers to their questions they needed

a deeper understanding of the mathematical nature of the objects

they were studying, such as distributions or unbounded operators,

and they needed to raise the standard of proof in their arguments.

Subsequently, to liberate themselves from excessive and some-

times meaningless details, they began to seek out axiomatic routes

for constructing theories. It then became obvious that modern math-

ematical methods sometimes make it possible to obtain very strong

results. In this connection we might mention the theory of functions

of several complex variables or the concept of weak equivalence of

representations.

We note, finally, that several specific quantum phenomena pro-

vide a direct physical illustration of von Neumann’s famous theorem
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on the existence of inequivalent representations in the case of an in-

finite number of degrees of freedom.

The examples just mentioned come from quantum electrodynam-

ics, the theory of strong interactions at high energies, and problems

of statistical physics. In particular, in the physics of strong inter-

actions, due to the complexity of the dynamical picture, dispersion

methods based on the general analytic properties of the amplitude

of the process turned out to be especially useful. They now have

immediate applications to the needs of experimental research.

We are at the very beginning of the route. It suffices to recall

that as not a single nontrivial example of quantum field theory has

so far been constructed outside of perturbation theory that is in any

way close to the real physical world of four dimensions.

The attention of physicists to the methods of modern mathemat-

ics and the interest of mathematicians in the problems of quantum

physics are mutually productive. 8

4. Statistical Physics

The methods that Bogolyubov developed for studying dynamical systems and

nonlinear mechanics enabled him to approach the problems of statistical physics

(and mechanics) of systems consisting of a large (or infinite) number of particles

in a fundamentally new way. He was the first to introduce the concept of a

hierarchy of times in nonequilibrium statistical physics, which turned out to be

decisive in the subsequent development of the statistical theory of irreversible

processes.

As early as in his 1945 paper [13], we find the first applications of asymp-

totic methods to problems of statistical mechanics; in particular, he considered

problems involving the effect of a random force on a harmonic oscillator and the

establishment of statistical equilibrium in a system connected to a thermostat.

Bogolyubov’s greatest contribution to the statistical mechanics of nonideal

classical systems is his well-known monograph [14], in which he developed the

method of Bogolyubov chains of equations for equilibrium and nonequilibrium

8 It is not coincidental that Bogolyubov actively opposed the innovations in the teaching of math-

ematics at the high-school level that were based on intensive use of set theory and mathematical

logic, which had the effect that neither the teachers nor the pupils nor the pupils’ parents could

make any sense out of the proposed textbooks [2].
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multi-particle distribution functions

F(t) =

(
Fs(t,(x)s)

)
, s = 1,2, . . . , (x)s = (x1,x2, . . . ,xs),

where xi = (pi,qi) is a point of the phase space R
6. The state function F(t)

is defined as the solution of the Cauchy problem for the Bogolyubov chain of

equations

∂Fs(t,(x)s)

∂ t
=

{
Hs,Fs(t,(x)s)

}
+

∫ { s

∑
i=1

|Φ(qi −qs+1)|,Fs+1(t,(x)s,xs+1)

}
dxs+1,

s = 1,2, . . . , (10)

with the initial conditions

Fs(t,(x)s)
∣∣
t=0 = Fs(0,(x)s), s = 1,2, . . . (11)

Here Φ is the interaction potential,

Hs =

s

∑
i=1

p2
i

2m
+∑

i< j

Φ(qi −qj)

is the Hamiltonian of an s-particle subsystem, and {a,b} is the Poisson bracket.

In studying the Cauchy problem (10)–(11), Bogolyubov made extensive use

of the methods of nonlinear mechanics he had developed previously and the

fundamental physical concept he had established — the existence of different

time scales. In 1948 he was awarded a Stalin Prize for the paper [14].

In his lectures on quantum statistics [15] Bogolyubov extended these results

to systems of quantum statistical mechanics.

Bogolyubov’s address at the 1946 meeting of the Physics and Mathematics

Division of the USSR Academy of Sciences and his subsequent 1947 paper [16]

were devoted to the construction of the microscopic theory of superfluidity. In

these papers he applied the canonical transformation now widely known as the

Bogolyubov transformation to diagonalize the quantum part of the Hamiltonian.

For Bose systems this transformation has the form

bk = ukξk − vkξ
+

−k,

b+

k = ukξ
+

k + vkξ−k,
(12)

where b+

k and bk are the creation and annihilation operators of the particles,

ξ+

k and ξk are the creation and annihilation operators of new quasi-particles,

and uk and vk are real-valued functions of the momentum k connected by the

relation u2
k − v2

k = 1.
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In 1957, using a canonical transformation of the type (12) for Fermi systems,

Bogolyubov independently of Bardeen, Cooper, and Schrieffer constructed a

microscopic theory of superconductivity [17]. For this outstanding work and

works on quantum field theory he was awarded the Lenin Prize in 1958.

The development of the concept of superconductivity as superfluidity of

Fermi systems led Bogolyubov in 1958 to the discovery of a new fundamental

effect — superfluidity of nuclear matter. This discovery became the foundation

of the modern theory of the nucleus.

It is difficult to enumerate all of Bogolyubov’s outstanding achievements in

statistical physics. We note in addition the widely known method of Bogolyubov

quasi-means [18]. The main achievement of this method is the fundamental

Bogolyubov theorem on the singularity of 1/q2 [18] for Bose and Fermi systems

with gauge-invariant interaction between particles. The gist of this theorem is

that the Fourier components of the Green’s functions corresponding to energy

E = 0 satisfy the inequality∣∣〈〈aq,a
+

q 〉
〉

E=0

∣∣ �
const

q2 as q2 → 0.

We thus see that Bogolyubov made a number of fundamental discoveries in

statistical physics as well.

These directions in statistical physics were further developed by Bogolyu-

bov’s students: S. V. Tyablikov, D. N. Zubarev, Yu. A. Tserkovnikov, N. N. Bogo-

lyubov junior, E. E. Tareeva, D. Ya. Petrina, N. M. Plakida, V. A. Moskalenko, and

others.

5. The Bogolyubov Axioms for Quantum Field Theory

A brilliant example of the creation and application of new mathematical methods

in physics was the development of an axiomatic approach to quantum field

theory, undertaken by Bogolyubov in the 1950s. He always strove to work on

the latest and hottest topics of theoretical physics. At that time, the ultraviolet

divergence was an important problem in quantum field theory when using the

Hamiltonian formalism.

Bogolyubov proposed a new approach to this problem. First of all, he aban-

doned the Hamiltonian formalism and took as a basis of the theory the scattering

matrix S introduced by Heisenberg. For the Lagrangian of the interaction

L (x) ≡ L

(
uα ,

∂uα
∂xβ

)
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he regarded the S-matrix as an operator-valued functional

S[g] = I +

∞

∑
n=1

1
n!

∫
Sn(x1, . . . ,xn)g(x1) · · ·g(xn)dx1 · · ·dxn (13)

on “good” functions g(x) (the “inclusions” of the interaction), where

S[g] → I as g → 0 (a free field),

S[g] → S as g → 1 (a physical S-matrix).

In the representation (13) the functions Sn(x1, . . . ,xn), n = 1,2, . . . , are

operator-valued tempered (slowly increasing) distributions (in the sense of

Sobolev–Schwartz) depending on the fields uα and their derivatives ∂uα/∂xβ
at the points (x1, . . . ,xn). It is required that the S-matrix satisfies the following

fundamental physical postulates (axioms) [19], [20]: it must be relativistically

covariant, unitary, causal (local), and spectral.

The greatest difficulty arises in formulating the condition of causality. The

problem is that in the theory of the S-matrix the local operators are initially

absent, and for that reason the formulation of the space-time relations — in

particular, the requirement of causality — is not obvious. So Bogolyubov intro-

duced local Heisenberg operators as the variational derivatives of the S-matrix

with respect to the interaction inclusion functions g(x):

i
δS[g]

δg(x)
S+

[g], (14)

and stated the condition of causality, nowadays well-known as Bogolyubov’s

microcausality condition, in the form

δ

δg(x)

{
δS[g]

δg(y)
S+

[g]

}
= 0 for y− x ∈V +, (15)

where V + is the future light cone.

It follows from the above axioms, that Sn are symmetric in all arguments

and commute when all the xi are space-like to all y j,[
Sn(x1, . . . ,xn),Sm(y1, . . . ,ym)

]
for (xi − y j)

2 < 0, ∀ i, j, (16)

where [a,b] = ab−ba is the commutator of the operators a and b.

In the proposed approach one can represent the physical scattering matrix S
in terms of the T -exponent

S[u] = T

(
exp i

∫
L (x)dx

)
,
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and the Bogolyubov microcausality condition can be rewritten in a manner

similar to (15) as

δ

δuα(x)

{
δS[u]

δuβ (y)
S+

[u]

}
= 0 for y− x ∈V +.

The axiom system proposed by Bogolyubov was the first attempt at a non-

trivial application of the axiomatic method in physics. 9

In mathematics (especially in geometry and set theory) the axiomatic method

had long been known. Like every axiom system, Bogolyubov’s axioms had to

satisfy the requirements of consistency, independence, realizability, and com-

pleteness.

To this day, the deep question remains whether there exists a nontrivial

(non-identity) S-matrix in the context of these axioms in 4-dimensional space-

time and outside the framework of perturbation theory. 10 In any case, under the

assumption that the coefficient functions Sn in the S-matrix are ordinary locally

integrable functions, this system leads only to the trivial S-matrix. Extension of

the class of objects to distributions, on which the axiom system can be realized —

the decisive qualitative requirement at the time — was far out of the ordinary

for physicists. It led to a change in the very style of physical thought and an

elevation in the requirements on the demonstrative power of arguments.

What has been said cries out for the conclusion that Bogolyubov actu-

ally made the first steps toward the solution of the sixth problem on Hilbert’s

1900 list: “Axiomatize those physical sciences in which mathematics plays an

important role” [21]. It should be noted that somewhat later other axiom sys-

tems for quantum field theory were constructed, connected with the names of

A. Wightman, H. Lehmann, K. Symanzik, W. Zimmermann, R. Haag, H. Araki,

D. Kastler, and others.

6. Bogolyubov’s “Edge of the Wedge” Theorem

In proving the dispersion relations in the context of axiomatic quantum field

theory, Bogolyubov encountered a number of new purely mathematical problems

lying on the cusp between the theory of functions of several complex variables

and the theory of distributions — questions of the theory of analytic continuation

9 Here we have in mind systems of axioms that cannot be reduced to boundary-value problems

for differential equations, as happens, for example, in the case of electrodynamics (the Maxwell

equations).
10 For the 2- and 3-dimensional theories the existence of such an S-matrix has been proved.
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of distributions. The first thing he discovered and proved was the very important

theorem now known as

Bogolyubov’s “edge of the wedge” theorem. Suppose two functions f
+

and

f− of n complex variables z = x + iy = (z0,z1, . . . ,zn−1) are the Laplace trans-

forms of tempered distributions with supports in the closed future light cone V̄ +

and the past light cone V̄− (where V−
=−V +) respectively (and therefore holo-

morphic in the future tube T +

= R
n
+ iV +

and in the past tube T−
= R

n
+ iV−

respectively), and that their boundary values

f±(x± i0) as y → 0, y ∈V±,

which exist as distributions, coincide in some domain D ⊂ R
n:

f +

(x+ i0) = f−(x− i0), x ∈ D. (17)

Then there exists a function f (z) holomorphic in the domain

T +∪T− ∪ D̃ (18)

that coinsides with f± in the domains T±
respectively, where

D̃ =

⋃
x∈D

[
z ∈ C

n : |z− x| < θ∆D(x)
]

is a complex neighborhood of D, the constant θ (0 < θ < 1) is independent of

f±, and ∆D(x) is the distance from a point x of D to the boundary of D.

It was at first difficult to verify that this theorem is true for all n � 2. After

all, the “wedge-shaped” 2n-dimensional domains T + and T− meet each other

only along the n-dimensional “edge” R
n, and the agreement of the boundary

values (17) on a part of the “edge” D seemed to be an insufficient condition for

the function f (z) to be holomorphic in an entire 2n-dimensional neighborhood

D̃ of this “wedge” when n � 2. But Nikolai Nikolaevich’s powerful intuition

overcame this doubt, and he constructed the first proof of this theorem in 1956

(see [20]). It was communicated at an international conference in Seattle that

year.

Here is how Abdus Salam remembers Bogolyubov’s presentation [22]:

“I first saw Professor N. N. Bogolyubov at the Seattle Conference where he

gave lectures on complex variables in more than one dimension and displayed

the proofs of the dispersion relations . . . It was quite clear that the man was

fully in charge of the complex variable theory at that time.”
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Unfortunately, Nikolai Nikolaevich did not take the trouble to publish his

proof of the “edge of the wedge” theorem immediately in English; this omission

gave rise to the ambiguous priority assessments connected with this theorem

(see, for example, [23] and [24]).

Here is what the authors of the famous book Introduction to Quantum Field

Theory — Bogolyubov and Shirkov — have to say on this score (second edition,

Nauka, 1973, p. 391):

This technique was first developed by Bogolyubov in the mid-

1950s. The most general and classical result in this area is the

theorem that it is possible to define the advanced and retarded func-

tions as a single analytic function (see the 1958 monograph of Bo-

golyubov, Medvedev, and Polivanov, Appendix A, Theorem 1). This

theorem later came to be known as the “edge of the wedge” theo-

rem. One can prove the dispersion relations for different cases with

reasoning on the basis of this theorem . . .

These methods received further development in papers of Bo-

golyubov and Vladimirov (1958), Bremermann, Oehme and Taylor

(1958), Lehmann (1959), Vladimirov and Logunov (1959), Oehme

and Taylor (1959), Todorov (1960), and others.

The next stage in this topic was the construction of the envelope of holo-

morphy (or lower bounds for them) in C
n for domains of the form (18),

H(T+∪T−∪ D̃), (19)

and the corresponding integral representations. This construction forms the con-

tent of Bogolyubov’s global “edge of the wedge” theorem. This research was

developed by Bogolyubov and his students. It was remarked that under the

hypotheses of the “edge of the wedge” theorem the envelope of holomorphy

(19) contains the convex hull V (D) (V = V + ∪V−) of the domain D rela-

tive to time-like curves — the “V -convex hull” theorem (Vladimirov, 1961;

see [25]).

Bogolyubov’s “edge of the wedge” theorem and its corollaries have now

become an established part of mathematics; they have profound generalizations

and many applications, and comprise a new chapter in the theory of functions of

several complex variables [25]–[27]. The significance of the theorem goes far

beyond the requirements of physics. This is a salient example of the influence

of physics on mathematics!
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7. Dispersion Relations and Related Questions

The Bogolyubov axioms, the “edge of the wedge” theorem, and the “V -convex

hull” theorem have many corollaries (theorems) that contain new physical

knowledge hidden in the axioms. This applies primarily to the dispersion

relations in quantum field theory. From the mathematical point of view the

dispersion relations are simply Cauchy’s formula connecting (on the real axis)

the real and imaginary parts of a function T (s) that is holomorphic in the plane

of the complex variable s cut along [0,∞). The simplest formula (without

subtractions) has the form

ℜT (s) =

1
π

P

∫ ∞

0

ℑT (s′)
s′ − s

ds′. (20)

For physical (scattering) amplitudes a relation of the type (20) can be verified

experimentally.

The matrix elements, for which the dispersion relations are derived, reduce

to the vacuum means of the radiation operators

H(x1, . . . ,xn) =

δ nS[u]

δu1(x1) · · ·δun(xn)
S+

[u]. (21)

A very profound, virtuoso proof of the dispersion relations for the scattering of

π-mesons at nucleons (p+ k = p′ + k′) on the energy square s = (p+ k)2 with a

fixed momentum transfer −t = −(p− p′)2 (here s and t are the Mandel’shtam

variables) was constructed and communicated (to great acclaim) by Bogolyubov

at the International Conference in Seattle in 1956. Plenary addresses were

devoted to these same questions at the International Congress of Mathematicians

in Edinburgh in 1958 [28] and at the Rochester Conference on high-energy

physics in Kiev in 1959 [29].

At the time this area — the method of dispersion relations — was undergoing

a period of vigorous development and for that reason a rigorous proof of the

relations elicited great interest. The proof of the formula (20) is reduced to the

analytic properties of the scattering amplitude

Tp,p′(q) =

∫
θ(x0)gp,p′(x)exp i(qx)dx, q =

k + k′

2
= (q0,�q), (22)

where the commutator

gp,p′(x) =

〈
p′
∣∣∣[A

(x
2

)
,B

(
− x

2

)]∣∣∣p〉 (23)
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vanishes for x2 < 0 and its Fourier transform g̃p,p′(q) = 0 in the domain

D =

[
q ∈ R

4 : a−
√
|�q|2 + b2 < q0 < −a+

√
|�q|2 + c2

]
.

Here a, b, and c (a � 0, 0 � b � c) are certain numbers determined by the masses

of the interacting particles. In (23), A and B are field operators and 〈p′| and |p〉
are single-particle states with momenta p′ and p respectively.

To prove dispersion relations of the type (20) using Bogolyubov’s “edge

of the wedge” theorem, it remained only to construct the envelope of holo-

morphy (19) of the domain (18). Bogolyubov did so without using the famous

Jost–Lehmann–Dyson representation, which was not discovered until 1957–1958

(see [25]).

The dispersion relation approach to quantum field theory opened a new

phase in the theory of strong interactions. It was not merely a matter of con-

structing a systematic mathematical machinery unconnected with the assumption

that the interaction of the elementary particles is weak. Rather, the circle of

ideas introduced into physics in the proof of the dispersion relations became the

basis of a new language of strong interactions. Physicists got a picture of the

scattering amplitude as a unified analytic function of the momentum variables,

and this became decisive for the later development of the theory of strong inter-

actions. This result, which seems purely mathematical at first glance, reflected

the deep connections that exist between seemingly different physical processes.

It became clear that even if one could not find the amplitude of a given process,

one could find its connection with the amplitudes of other processes. The idea

of a connection between different reaction channels became the point of de-

parture for numerous heuristic considerations on the structure of the scattering

amplitude. The subsequent development of these ideas, together with duality

considerations, led to the creation of the modern theory of strings and super-

strings (I. Ya. Aref’eva, I. V. Volovich).

Many other applications of the axiomatic method in quantum field theory,

both inside and outside the context of perturbation theory, were developed in

the papers of Bogolyubov and his students. Bogolyubov proved that the scat-

tering matrix can be determined sequentially from the axioms (up to quasi-local

singular operators) in all orders of perturbation theory. This analysis of the

singularities led to the construction of a sequential recipe for removing the ultra-

violet divergences in the S-matrix, which came to be known as the Bogolyubov–

Parasyuk R-operation [19]. Later this approach was developed in works of

O. I. Zav’yalov, K. Hepp, W. Zimmermann, K. Nakanishi, and others.

Another important achievement of Bogolyubov and his students Shirkov and

Logunov in perturbation theory is the development of the method of renormal-

ization groups [19].
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Asymptotic estimates at high energies were established, a description of

the low-energy regions was given by invoking the unitary condition, and the

problem of scale invariance was studied. Study of the self-similar behavior of

the form-factors of deeply nonelastic hadron-nucleon scattering processes at high

energies and large momentum transfer (and the connection with the behavior of

their Fourier images in a neighborhood of the light cone) [30] were intended

to prove that such experimentally observable behavior does not contradict the

Bogolyubov axioms for quantum field theory. This research laid the foundation

for a new developing branch of modern mathematics — Tauberian theory for

distributions of several variables [31].

Bogolyubov and Vladimirov established the “finite covariance” theorem

([32], [33]), which asserts that translation invariance, spectrality (at the Jost

points), and causality imply finite relativistic covariance. This result, which

indicates a partial interdependence of the Bogolyubov axioms, was obtained un-

der the additional assumption that the N-point extended tube τN is a domain of

holomorphy in C
4N . (For N = 1 and N = 2 this was well known; for N � 3 this

difficult problem was solved only in 1997 by the Chinese mathematician Zhou —

who received his doctorate from the Mathematical Institute of the Russian Acad-

emy of Sciences under the direction of A. G. Sergeev, see [34].)

D. Ya. Petrina (1961), using the “V -convex hull” theorem, established that

it is impossible to construct nonlocal field theories with an energy-momentum

operator having a positive spectrum and elementary length l > 0 under the

assumption of translation invariance (see [25]).

These examples show how mathematics helps physics to obtain new knowl-

edge which is hidden in the axioms!

8. Bogolyubov in Arzamas-16

The picture of Bogolyubov’s mathematical activity would be far from complete

if we omitted his work and life in Arzamas-16 (now known as the All-Russian

Nuclear Center and All-Russian Scientific Research Institute of Experimental

Physics). Early in 1950, by decree of the Soviet government, Bogolyubov was

drafted to work on a supersecret project in Privolzskaya kontora Glavgorstroya

SSSR, KB-11 (Design Bureau No. 11) 11 to provide the mathematical support

for a group of theoretical physicists headed by I. E. Tamm and A. D. Sakharov.

11 Located in Sarov monastery — one of the holiest places of the Russian Orthodox Church. The

Sarov monastery was known for its miraculous springs, where Saint Serafim of Sarov spent his

life in prayers, silence, and asceticism.
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At the time they were working on the first version of a hydrogen bomb, the

so-called “puff” bomb of Sakharov (RDS-6). 12

In 1950 Bogolyubov organized a mathematical division in KB-11, whose

core originally consisted of D. N. Zubarev, V. N. Klimov, D. V. Shirkov, V. S. Vla-

dimirov, E. V. Malinovskaya, and Yu. A. Tserkovnikov. Most of the staff in the

division, about 50 people, were young women calculators, brought in to work on

the project mainly from institutions of geodesy. They used electro-mechanical

calculators of Mercedes type. They were our “live” computer — the basis of

the pre-computer period of computations for the project. At the time there

were no high-speed computers in our country, and the technical institutes were

not producing the necessary computing specialists, technicians, and engineers.

Everything had to be done from scratch, in a hurry, under the watchful eye of

the security forces. In the beginning of this work, Bogolyubov placed me in

charge of this computation group.

The main attention was paid to computing versions of Sakharov’s “puff.”

However, in the process it was necessary to carry out a great deal of routine

computational work on almost all versions of new models of atomic weaponry.

Here is where the enormous erudition and talent of Nikolai Nikolaevich were

of use! Sensing his intellectual prowess, the research staff — mathematicians and

physicists — took every opportunity of discussing their problems with him and

making use of his extensive knowledge, wide experience, and advice. 13

Bogolyubov wrote a number of brilliant papers on peaceful (magnetically

confined) thermonuclear synthesis. Together with his colleagues he worked on

the problems of stability of a plasma in a magnetic field and the interaction of

the plasma with the walls of the container.

He devoted a great deal of attention to the development of approximate

methods of solving the problems of nuclear and neutron kinetics on both the

theoretical and applied levels. For more precise computations on the “puff,”

I created, under his direction, a new method for numerical solution of the

kinetic equation for multi-layer spherically symmetric systems — the method

of characteristics (1950–1951), which was adapted for hand computation (see

[36]–[40]).

Mathematically, the problem reduces (in the simplest cases) to a boundary-

value problem for an integro-differential equation (the linearized Boltzmann

12 The atomic and hydrogen bombs were given sequential ordinal numbers RDS-1, RDS-2, and

so-forth. The abbreviation RDS at the time was decoded as the Russian phrase “Stalin’s Jet

Engine.”
13 In his memoirs [35] Sakharov, the “father of the Soviet hydrogen bomb,” used the epithets

“unusually talented” and “passing out ideas right and left” in speaking of Bogolyubov.
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equation)

µ
∂ϕ

∂ r
+

1−µ2

r
∂ϕ

∂µ
+α(r)ϕ = β (r)

1
2

∫ 1

−1
ϕ(r,µ ′

)dµ ′
+ f (r), (24)

ϕ(R,µ) = 0, −1 � µ � 0 (25)

for the density of neutrons ϕ(r,µ) in the phase domain of the variables (r,µ)

given by |x| = r < R, µ = cosθ , |µ | < 1. The quantity

1
2

∫ 1

−1
ϕ(r,µ ′

)dµ ′
= n(r) (26)

in Eq. (24) is the average density of neutrons at the point r.
Two variants of the problem (24)–(25) are distinguished: (i) the problem

with a source f �= 0 under the assumption that the system is in a subcritical state

(the smallest eigenvalue λ0 of the homogeneous problem is less than 1), and

(ii) the problem of critical parameters and the computation of the corresponding

eigenfunction (λ0 = 1).

The idea of the method is that on the characteristic of Eq. (24)

y = r
√

1−µ2
= const, |x| <

√
R2 − y2,

the boundary-value problem (24)–(25) reduces to the Cauchy problem

dψ
dx

+α
(√

x2
+ y2

)
= Q

(√
x2

+ y2
)
, Q = βn+ f , (27)

ψ
(−√

R2 − y2,y
)

= 0, 0 � y � R (28)

for the function

ψ(x,y) = ϕ

(√
x2

+ y2,
x√

x2
+ y2

)
≡ ϕ(r,µ).

For the approximate solution of the problem (27)– (28) we take the grid (see the

figure below)

{yi = ri, i = 0,1, . . . ,n}, where 0 = r0 < r1 < · · · < rn = R;

{±xki, k = i, i+ 1, . . . ,n}, where xki =

√
r2

k − r2
i .

From the values that are found

ψ(±xki,yi) = ϕ(rk,±µki), k = 0,1, . . . ,n, i = 0,1, . . . ,k,

where µki = xki/rk, one can compute n(rk) for k = 0,1, . . . ,n, using formula (26).
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r1
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rn = R

r0 = 0 r1 r2 r3 r4 rn−1 rn = R−r1−r2−r3−r4−rn−1−rn

�

�

y

x�� ��−x23 x23

This method is easy to program on an electronic computer and can be

carried over without difficulty to multi-group and multi-dimensional problems

of neutron and radiation transport. Nowadays the method of characteristics,

being the most stable and accurate, is also used in nuclear power engineering

([36], [37]).

In addition to current physical and computational problems, purely theoreti-

cal questions of modern and prospective mathematics and physics were discussed

with Nikolai Nikolaevich — the axiomatization of quantum field theory [19], the

ideas of cybernetics, distributions, Monte Carlo methods [41], functional integra-

tion, quadrature formulas (including functional integrals) [42], the Wiener–Hopf

method [43], variational principles for differential and integral equations and

kinetic equations [44], factorization methods [45], and many others. The pub-

lished papers of the Los Alamos physicists and mathematicians were also stud-

ied: those of R. E. Marshak, R. Peierls, H. A. Bethe, K. Fuchs, R. P. Feynman,

B. Davison, G. Wick, G. Placzek, C. Mark, J. LeCaine, H. Hurwitz, and others.

The successful test of RDS-6 took place on 12 August 1953. Nikolai Niko-

laevich was sent to the Kazakhstan steppe to participate personally in the tests.

He returned in an elated mood. Bogolyubov’s work was highly appreciated by

his country. For his active participation in the construction of the first hydrogen

bomb he was awarded a Stalin Prize in 1953. In the autumn of that same year

he was elected an academician of the USSR Academy of Sciences.

In the preface to the book In the Intermissions . . . [36] Yu. B. Khariton,

the head of the project at the time, called Nikolai Nikolaevich one of the

“superstars” of Soviet physics and mathematics: “The establishment of the
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Arzamas school of theoretical physics and its creative style owe their origins to

the ‘superstars’ of Soviet physics and mathematics, such as N. N. Bogolyubov,

N. A. Dmitriev, D. A. Frank-Kamenetskii, M. A. Lavrent’ev, L. V. Ovsyannikov,

I. Ya. Pomeranchuk, A. D. Sakharov (Nobel Prize winner, 1975), I. E. Tamm

(Nobel Prize winner, 1958), V. S. Vladimirov, Ya. B. Zel’dovich.”

Nikolai Nikolaevich worked at the project for three and a half years; at

the time he was a little over 40 years old. The last preliminary report, ap-

proved by him in October 1953, was on RDS-41, a small size atomic bomb.

M. A. Lavrent’ev was in charge of this project.

This was a heroic and quite productive period in the life of Nikolai Nikolae-

vich; on the one hand, it was life behind barbed wire in holy places with all the

confusion and disorder of the time and harsh discipline. 14 On the other hand,

it was an enormous responsibility to the country and its people for the cause

entrusted to him.

One can now say with satisfaction that the intense labor that Bogolyubov

performed together with the whole Soviet people in that period was not in

vain: the country obtained a new and awesome weapon; nuclear restraint was

established, and a third world war was avoided. This restraint continues to be

effective right down to the present.

∗ ∗ ∗
Nikolai Nikolaevich examined with great interest and a certain sadness a

photograph of Sarov that I brought to him in May 1991, and asked detailed

questions about the colleagues with whom he had worked or whom he had

encountered there nearly 40 years earlier. As a religious man, he showed special

interest in the parts of Sarov monastery that had been preserved, the famous

70-meter bell tower, the cathedrals of the Diveev Monastery, the relics of Serafim

of Sarov . . . Unfortunately, he was no longer able to revisit these holy places.
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V. I. Yudovich

Global Solvability Versus Collapse

in the Dynamics of an Incompressible Fluid

Translated by R. Cooke

This mathematical event has still not happened, even though the scientific

world has been waiting impatiently for it throughout the twentieth century.

The question involves the problem of global solvability of the fundamental

initial/boundary-value problems of the dynamics of an incompressible fluid,

both ideal and viscous. The unceasing efforts of many mathematicians have

given a considerable number of first-rate results and stimulated the development

and improvement of a number of mathematical theories, but the main problems

remain inaccessible. A large prize has been offered for the proof of global regu-

larity of the solutions of the Navier–Stokes system (Clay Mathematics Institute,

http://www.claymath.org). The danger even arises that the Fermatists will

now fasten onto this problem. To be sure, it is a comfort that its statement is

much more difficult to understand than the statement of the Fermat theorem.

In this article I shall discuss my (unavoidably subjective) views and ideas

about the state of this field, achievements in it, and the prospects for further

advance. This article is not a survey. Detailed references (as usual, far from

being just on the score of priority) can be found in the articles and books [1]–[4]

cited below.

In 1956, when I was in my fourth year at Rostov State University, my ad-

visor I. I. Vorovich, who was at the time kandidat in engineering and is now



502 V. I. Yudovich

a member of the Russian Academy of Sciences, once said to me, “Look at

the article of Kiselev and Ladyzhenskaya in the Doklady. They are applying

finite differences to obtain ‘local’ existence theorems either for small t or for

small initial velocities. But if you apply Galerkin’s method, you’ll probably

get ‘global’ existence.” Vorovich also directed my attention to an article of

S. N. Bernshtein, in which a global existence theorem was proved for the solu-

tion of an initial/boundary-value problem for a second-order nonlinear parabolic

equation. It was then that my long reflections on this problem began.

During these years the theory of nonlinear differential equations was under-

going rapid development brought about by the new ideas of functional analysis,

topology, and modern calculus of variations. This solid rock — the problem of

global solvability in fluid dynamics — seemed to be yielding to the pressure

of researchers, and significant chunks of it were flaking off. Ultimate success

seemed not too distant. How could anyone have thought at the time that it

would remain an unsolved and burning question nearly half a century later?

From Bernshtein’s article alone it was not difficult to discern a “general

formula”:

global existence theorem

= local existence theorem +a priori estimate of the solution.

Of course, this formula is also well-known in the theory of ordinary differential

equations, in which the alternative to global continuation of the solution turns

out to be collapse: A solution of the Cauchy problem

ẋ = f (x, t), x(0) = x0

for a smooth differential equation in R
n is either defined for all t > 0 or such

that |x(t)| → ∞ as t → t∗ for some t∗ > 0. For infinite-dimensional systems — in

particular, for systems that are described by partial differential equations — this

result can be guaranteed, but not by just any a priori estimates of the unknown

functions, only by rather strong ones; say, not just estimates in Lp but estimates

with sufficiently large p, and it may not be possible to get by without estimates

on the derivatives. Here is where the drama of mathematical fluid dynamics

begins. However, the same is true of many other problems in the physics of

continuous media.

Global Solvability as a Problem of Physics

Many physicists regard existence proofs as bureaucratic formalities and have

a hostile attitude toward them, finding even the words themselves odious. In
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this attitude they seem to be imitating L. D. Landau — who is difficult to imi-

tate in other respects. Landau once wrote that existence theorems occupy too

much space in the course of differential equations and criticized lecturers for

first making a separate study of scalar equations, then repeating the proofs in

great detail for equations of higher order, then for systems of equations, and

so on. The correct conclusion from this criticism would seem to be that after

the scalar case one should briefly discuss the vector-valued existence theorem,

after explaining that all the ideas also work beautifully in this general case. But

that is not what happened. Many drew the conclusion that existence theorems

should be removed entirely from courses in mathematics for physicists. When-

ever I was invited to lecture to physicists, the invitation was always followed by

a request: “Just remember, we don’t need any existence theorems.” In reply I

tried to explain the physical significance of existence and uniqueness theorems.

Sometimes that even seemed to work. The point was that in contrast to the local

existence theorems for the Cauchy problem, which are very general in nature

and rest on just the general idea of Picard’s method of successive approxima-

tions, global existence theorems may apply only to certain exceptional classes

of equations. The possibility of continuing a solution of the Cauchy problem

to all times is an essentially physical property — the absence of breaks in the

system. A proof of it can be based on fundamental physical laws and properties

of the system alone, such as the law of increasing entropy, the laws of energy

and momentum conservation, the presence of symmetry and co-symmetry, and

so on.

On the other hand, the violation of global existence of a solution due to

the appearance of discontinuities (which is interpreted as being the result of

the solution tending to infinity within a finite time in a suitable Banach space),

indicates as a rule that the model is incomplete and that it is necessary to take

account of some additional factors.

In mathematical physics the following principle applies, usually implicitly:

of the possible solutions, the correct one is deemed to be the one that has the

greatest smoothness, or in general is the most regular in some sense. Only the

nonexistence of a smooth solution compels us to pass to discontinuous solu-

tions. The situation in the dynamics of an ideal gas is exactly that: even with

C∞-smooth initial and other data, the flow generally has discontinuities — shock

waves arise (which are now unfortunately so well known to everyone). After

this happens the subsequent evolution can be studied only by taking account of

additional information. One must take account of viscosity and thermal con-

ductivity properties, at least in asymptotic form, and that leads to the Hugoniot

conditions at a jump.
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As it happens, analogous questions also arise in celestial mechanics, which

has a marvelous ability to describe the motions of large and small planets, but

only under the assumption that they do not collide. If a collision occurs, obvi-

ously the original model fails, and for subsequent predictions one needs informa-

tion as to the nature of the collision. And in the mechanics of continuous media

the collision of particles is one of the main reasons for the appearance of dis-

continuities. The particles of an ideal compressible gas may indeed collide, but

the answer is unknown in the case of an ideal incompressible fluid. Somewhat

roughly, one may say that a proof that collisions cannot occur would yield global

existence of the main initial/boundary-value problem for the Euler equations.

In physical explanations of phenomena, conservation laws are the final word.

The question as to why the law of energy conservation holds has no answer.

(R. Feynman: “One interesting question is whether there is a deeper basis for

these conservation laws, or whether we have to take them as they are.”) To be

sure, for dynamical systems subject to Hamilton’s principle this law follows from

the invariance of the Lagrangian under a time shift. But first of all, Hamilton’s

principle by no means holds in all systems, and second, “Our problem is to

explain where symmetry comes from. Why is nature so nearly symmetrical? No

one has any idea why” (Feynman).

However, the most fundamental property of physical objects is that they ex-

ist. The requirement of global existence of a solution (for all time, or at least for

all positive times) for all values of the parameters of the problem, for arbitrary

forces, and so on, would obviously be a useful thing to take into account even

at the stage of deriving the fundamental evolution equations. I venture to guess

that many physical equations, or at least the basic conservation and dissipation

laws to which they are subject, can be defined by the requirement of global

solvability. Only the underdeveloped state of the corresponding mathematical

theory can explain the fact that at present solvability questions arise only post

factum, after the model has been constructed.

Perhaps it is now time to take up the investigation of a fundamental question:

What can be said about a universe, given that it exists and can be described

by differential equations, and that human beings live in it? In physics the

“anthropic principle” has already led to some achievements. The somewhat

fantastic thought arises that if we take an “arbitrary” system of differential

equations as a beginning, say a polynomial system, then “after everything that

can blow up has blown up” there remains a system in which conservation laws

hold and which has symmetries and other good properties.

How strong the requirement of global solvability is can be seen from just the

example of a scalar equation ẋ = p(x), where p(x) = ∑n
k=1 ckxk is a polynomial
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with constant coefficients. For this equation the Cauchy problem with initial

condition x(0) = x0 has a solution defined for all t if and only if the polynomial

p is linear: p(x) = c1x. All solutions are defined for all t > 0 only “for one

quarter of the equations”: when p is a polynomial of odd degree with negative

leading coefficient. It would be interesting to study the condition of global

solvability (for all t) of polynomial differential equations of degree k in R
n.

One may conjecture that they lie on a submanifold of positive codimension in

the space of all such equations. (For homogeneous fields of even degree the

analogous result is not difficult to prove.)

The Basic Initial/Boundary-Value Problems

Ideal incompressible fluid. Leonhard Euler [1755] derived the equations that

describe the evolution of the velocity vector field v(x, t) of a fluid and the scalar

pressure field p(x, t) and density field ρ(x, t). He neglected viscosity. If we also

neglect compressibility and assume density constant (ρ = 1), these equations

assume the form

∂v

∂ t
+(v,∇)v = −∇p, (1)

div v = 0. (2)

Here t is time, x = (x1, . . . ,xn) is a point in R
n, and v = (v1, . . . ,vn). Only

the cases n = 2 and n = 3 have an immediate physical interpretation. The first

equation here is obtained by applying Newton’s second law to an element of

volume of the fluid. If a force is acting on the fluid, the right-hand side of

(1) will also contain the force density F(x, t). The left-hand side of (1), which

is also denoted dv/dt, is the acceleration of the particle of fluid that is at the

point x ∈ R
n at time t. In general, the left-hand side of (1) should contain

ρ dv/dt, where ρ = ρ(x, t) is the density of the fluid. Equation (2) expresses the

conservation of volume as the fluid moves.

When we consider a fluid located in a domain D ⊂ R
n with a boundary that

is rigid (or, more precisely, impermeable to the fluid), the following boundary

condition is also required:

vn

∣∣
∂D = 0, (3)

where vn is the normal component of the velocity. It would be of theoretical

interest to study the more general case of a container Dt that deforms over

time. Then, instead of (3) we would have to assume the condition vn = qn on

Dt , where qn is the naturally defined normal component of the velocity of the
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boundary. I shall not say any more about the case when the entire boundary or

some part of it is free: a boundary condition then arises for the pressure.

If we further add the initial condition

v
∣∣
t=0 = v0(x), x ∈ D, (4)

we arrive at the basic initial/boundary-value problem in the dynamics of an ideal

fluid. The field v0 is assumed known, and it is required to satisfy the conditions

div v0 = 0 and v0n

∣∣
∂D = 0.

Of course, even to write down relations (1)–(4) it is necessary to impose

certain restrictions on the smoothness (regularity) of v and p as well as on the

domain D. At first sight it seems natural to consider classical solutions, that is,

to assume that v and p are continuously differentiable with respect to x and t
in the cylinder D×R, and that for each t the field v is continuous up to the

boundary ∂D, which should be assumed either C1-smooth or piecewise-smooth,

so that a unit normal vector n = n(x) is defined on it everywhere or at least

almost everywhere.

The first formulation of the problem of global unique solvability for the

problem (1)–(4) now arises: Does there exist a classical solution v, p defined

for all t ∈ R under the hypothesis that the boundary ∂D and the initial field v0

are smooth, and is that solution unique?

The Euler equations (1)–(2) are invariant under the simultaneous substitu-

tions t �→ −t, v �→ −v, p �→ p. This reversibility property indicates that it is

reasonable to seek solutions for both t > 0 and t < 0.

In fluid dynamics a fluid is regarded as a continuous collection of fluid

particles. That is why, in order to get a complete description of a flow, one must

also solve the Cauchy problem

ẋ = v(x, t), x(0) = a (5)

for all points a ∈ D. We will then know the position x(t) = x(t,a) at time t of

the fluid particle that was at the point a ∈ D at time t = 0. In the Lagrangian

description of the motion of the fluid the equations are written for the unknown

x(a, t). When this is done, the condition of incompressibility has the form

det
∂x
∂a

= 1. (6)

From the point of view of mechanics, Eq. (6) is an ideal holonomic constraint.

Being an ideal constraint means that the reaction corresponding to it is orthog-

onal to the corresponding “hypersurface,” which accounts for its form (−∇p)

in (1).
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If D is an unbounded domain, some conditions are required at infinity. An in-

teresting case is the problem of the motion of a fluid filling all of space when the

velocity field is spatially periodic and given by the period vector � = (�1, . . . , �n).

Then D can be taken to be the period parallelepiped (a fundamental domain for

the corresponding discrete subgroup of the translational group of R
n). If the

pressure p is also assumed spatially periodic, we arrive at an initial-value prob-

lem for the Euler equations (1)–(2) on the torus T n with initial condition (4). (In

general, only ∇p is spatially periodic, but the pressure p itself consists of a lin-

ear function plus a periodic function: p(x, t) = ci(t)xi + p̃(x, t). New unknowns

ci arise, and the statement of the problem must be correspondingly generalized.)

Viscous fluid. By generalizing suitably the law of viscous friction discov-

ered by Newton for elementary translational flows, Louis-Marie Henri Navier

[1822] and George Stokes [1845] obtained the general laws of motion of a vis-

cous fluid. Many scholars were so carried away by this achievement that began

to call them the equations of motion of a real fluid, even though it is not given

to us to reflect all the manifold properties of real water, air, or alcohol in a

single set of equations. In the simplest case of an incompressible homogeneous

fluid and for the law of friction that is (or seems to be?) the simplest, the

Navier–Stokes equations can be written as follows:

∂v

∂ t
+(v,∇)v = −∇p+ν ∆v, (7)

div v = 0, (8)

where ν > 0 is the kinematic viscosity coefficient. In rectangular Cartesian

coordinates the Laplacian ∆ can be applied componentwise to the vector field v.

The invariant definition of the Laplacian suitable for arbitrary smooth manifolds

is somewhat more complicated: ∆= graddiv−curl curl. For general information

on the dynamics of a fluid on a smooth manifold see [4].

It was not an easy task for fluid dynamicists to obtain the correct boundary

condition at a rigid boundary of the domain occupied by a fluid. Naturally,

one must retain the impermeability condition (3). It would seem natural to

add to it a condition on the tangential component of the velocity by assuming

that the fluid slides along a rigid boundary and that an external frictional force

proportional to this velocity develops in the process. (More precisely, the force

is proportional to the difference between the tangential velocities of the fluid and

the rigid body at the given point.) However, since the time of Stokes it has been

customary in fluid dynamics to assume that these two tangential velocities are

the same. Doubts arose about this adhesion (or no-slip) condition from time to
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time, even in the 1960s. For example, experiments were performed to verify the

adhesion condition in cases when the fluid does not wet the rigid surface, just as

mercury does not wet glass. Experiments, however, showed that the coefficient

of external friction must be regarded as infinitely large, and that the adhesion

condition holds in every case up to cosmic velocities of mercury flow, of the

order of several kilometers per second. In the case of a motionless rigid wall

the adhesion boundary condition has the form

v
∣∣
∂D = 0. (9)

The inhomogeneous condition v
∣∣
∂D = w is also frequently encountered. If we

integrate Eq. (8) over the domain D, we arrive at a necessary condition that the

field w must satisfy: ∫
∂D

wn ds = 0. (10)

If we add the initial condition, which has the same form (4), we arrive at the ba-

sic initial/boundary-value problem of the dynamics of a viscous incompressible

fluid. The presence of the diffusion term ν ∆v makes the problem irreversible,

and we now have the right to ask only about the future flow of the fluid.

Demonstrating the local solvability of this problem involves proving that

there exists a unique solution (v, p) satisfying conditions (7)–(9) and (4) for x and

t belonging to a finite cylinder D× [0,T ] for some T > 0. Correspondingly, the

problem of global solvability consists of proving that T can be taken arbitrarily

or immediately set equal to +∞.

Of course, there are other versions of the boundary conditions. It is interest-

ing to consider the motion of a fluid on the torus T n (which has no boundaries,

so that there are no boundary conditions). Of especial importance is the case

when part of the boundary of the domain of flow remains unknown. This may

mean a free boundary, on which one must prescribe the tension or, for example,

an elastic membrane. In the latter case the role of the boundary condition, to-

gether with the adhesion condition, is played by the equation of motion of the

membrane.

There are other formulations that are not always justified physically, but

are useful as auxiliaries or “models.” Such, for example, are conditions on

an undeformable but free boundary (in which the normal velocity is zero and

the tangential tensions are prescribed). The planar problem with zero normal

component of velocity and a prescribed vorticity on the boundary has proved

“technically” useful. (In this case it was possible to pass to the limit as ν → 0.)

The problem of passing to the limit as the viscosity disappears (ν → 0),

which must be regarded as a central problem of fluid dynamics, arises along
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with the problem of solvability of boundary and initial/boundary-value problems

for the Navier–Stokes system. The reason is that in the overwhelming majority

of interesting cases the quantity ν is very small. (More precisely, one ought to

speak of the corresponding dimensionless quantity 1/Re as being small, where

the Reynolds number Re = V d/ν , V is a characteristic velocity of the flow, say

max |w|, and d is a characteristic length, say the diameter of the domain D.)

Despite the significant successes achieved by the Prandtl boundary-layer

theory (especially in application to the computation of the forces acting on flying

machines), this theory is by no means a theory of asymptotic integration of the

Navier–Stokes equations as ν → 0. Here it is not a question of mathematical

formalities, but of the fact that up to now no one has any idea what v(x, t) tends

to as ν → 0. It is not even clear how regular this limit is, to say nothing of the

fact that the existence of the limit is also not proved. Although we believe that

the limit does exist (in some sense) and satisfies the Euler equation (also in a

sense not yet determined) inside the domain D.

It is clear that even in the best-possible case this convergence can be uniform

only on compact subdomains of D. That can be seen immediately by comparing

the boundary conditions (3) and (9): If, for example, w = 0, then for every ν > 0
the tangential component of the velocity on ∂D is zero, while for ν = 0 it is not

at all necessary that it be zero; and, as a rule, it isn’t. In fact, in general one

cannot expect even that convergence — it is quite possible that surfaces or lines

of discontinuity may form inside the domain of flow D.

This circumstance greatly complicates the understanding of the physical

essence of the model of an ideal fluid. After all, fluid mechanicists believe

fervently that ideal fluid flows have meaning only because they are good ap-

proximations to the flow of a viscous fluid for small ν . But there is no guarantee

at all that these ideal flows satisfy the smoothness conditions usually assumed.

Moreover, it may happen that in some subdomains the convergence as ν → 0 is

only weak convergence. An interesting study of effects of this type was carried

out by Peter Lax for the Korteweg – de Vries equation and the equations of gas

dynamics. In such cases, as ν → 0 the flow oscillates strongly over space (as

for, say, the equation νy′′ + y = 0) and it may well happen that the weak limit

does not satisfy the Euler equations in pure form, but instead the Euler equations

with an additional “vibrogenic” force that arises due to the nonlinear interaction

of the oscillations, such as occurs when the function sin2 x/ε is averaged over x
to yield not 0 but 1/2.

One cannot even exclude the possibility that singular solutions of the Euler

equation result in the limit as ν → 0, for example, with a vorticity that is a

measure. For the two-dimensional case an existence theorem has been proved

in the class of such solutions by J.-M. Delort [1990–1991].
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Local Existence Theorems

Local existence and uniqueness theorems for both the Euler and Navier–Stokes

equations were proved as early as the 1920–1930s. The case of a viscous fluid is

conceptually simpler. Here existence theorems are based on results for the linear

problem (with the term (v,∇)v discarded). This was also not a simple matter,

since it required the development of potential-theory methods. This work was

to a certain extent carried out by Lichtenstein, Oseen, and Odqvist. But then

the passage to the nonlinear equation did not involve any essentially new ideas

and depended only to a very small degree on the specifics of the fluid-dynamic

nonlinearity. The essential thing was only that the nonlinearity was subordinate

to the linear viscous term ∆v, was in some sense of lower order in comparison

with it. The classical solutions were studied, revealing that for both stationary

and nonstationary problems Ck,λ -smooth functions and fields (having kth partial

derivatives with respect to x that satisfy a Hölder condition with exponent λ ,

0 < λ < 1) were better adapted than Ck-smooth functions. As a matter of fact, for

the convergence of the standard method of successive approximations, starting

from the linear problem, it was essential here that the nonlinearity be smooth

(for example, polynomial, although exponential functions can also be admitted —

the rate of increase for large values of the arguments is of no consequence) and

depend only on the field v itself and its first partial derivatives with respect to x.

(One can also allow dependence on the second derivatives, but only very weak

dependence.) I note that it is these existence theorems that physicists especially

disdain. Here one can understand their point of view, and it is not worthwhile

recommending that physicists study the details of such proofs.

As Poincaré used to say, no mathematical problem is ever solved com-

pletely, so it is not surprising that Jean Leray [1933] and O. A. Ladyzhenskaya,

K. K. Golovkin, and V. A. Solonnikov in the 1960s had to continue the difficult

technical work on the study of fluid dynamic potentials.

Even the proof of local existence theorems for an ideal fluid, carried out in

large cycles of papers by N. M. Gyunter and L. Lichtenstein in the 1920s required

a deeper penetration into the fluid-dynamical essence of the problem. Judging

from the dates, these two authors worked in parallel. A number of results (for

example, on deformable containers) can be found only in the work of Gyunter,

while others (for example, the theory of thin vortex rings) occur only in the

work of Lichtenstein. And some of the papers repeat each other almost word

for word. This may be because there is only one truth on earth — at least in

mathematics.

At the basis of the approach of Gyunter and Lichtenstein lies a method of

successive approximations that they developed, based on the intermediate use of
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Lagrangian variables and the so-called Cauchy formulas, according to which the

vorticity ω = curl v is carried along by the current as a passive vector admixture.

Let us discuss this in more detail.

The basic law of motion of an ideal incompressible fluid was discovered by

Helmholtz and Thomson. Helmholtz established that the flow of vorticity across

any liquid surface does not change over time. Thomson realized that this result

is a consequence of Thomson’s theorem, which says that the circulation of the

velocity along any fluid contour is conserved over time.

If we assume that a smooth solution v(x, t) of the Euler equations exists, then

by solving the Cauchy problem (5) we find a smooth family of diffeomorphisms

of the closed domain D, a �→ X(a, t), and x(t) = X(a, t) is a solution of the

problem (5).

From the Euler equations one can derive what are probably the most beauti-

ful relations in fluid dynamics, the Cauchy formulas for the vorticity ω = curl v

ωi = ω0k
∂xi

∂ak
. (11)

In fact these formulas can be obtained by applying exterior differentiation to

Weber’s formula
vi dxi = v0k dak −dX ,

X (a, t) =

∫ t

0

(
p− v2

2

)
dτ .

(12)

Let us take some closed contour γ0 at the initial time t = 0 and follow the

motion of the fluid particles that make up the contour. At time t they form

a fluid contour γt = X(γ0, t). Integrating Eq. (12) over the fluid contour gives

Thomson’s theorem on the conservation of circulation:∫
γt

v ·ds =

∫
γ0

v0 ·ds0. (13)

If we analogously define a fluid area St with boundary ∂St = γt , then by ap-

plying Stokes’ theorem or by directly integrating Eq. (11) we obtain Helmholtz’

theorem on the conservation of the flux of vorticity∫
St

curl v ·ndS =

∫
St0

curl v0 ·n0 dS0. (14)

It is obvious that conservation of circulation (13) can be obtained from (14)

only in the case when the contour γt is the boundary of some area St , so that

Helmholtz’ theorem can be regarded as a special case of Thomson’s theorem.
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The Gyunter–Lichtenstein method of successive approximations is based on

a certain combination of the Lagrange and Euler approaches. If we know the

m-th approximation v(m)

(x, t) for the velocity field (m = 0,1, . . . — usually one

sets v(0)

(x, t) = v0(x)), then by solving the Cauchy problem

ẋ = v(m)

(x, t), x
∣∣
t=0 = a, (15)

we obtain x(t) = X (m)

(a, t). Then from Cauchy’s formula (11) we can find

ω(m)

(x, t):

ω
(m)

i (x, t) = ω0k(a)

∂X (m−1)

(a, t)
∂ak

, a = X (m−1)
−1

.

Here
(
X (m)

)−1
: D → D is the diffeomorphism inverse to X (m). The next approx-

imation v(m+1) of the velocity field can now be determined by solving the basic

boundary-value problem of vector analysis:

div v(m+1)

= 0, (16)

curl v(m+1)

= ω(m), (17)

v(m+1) ·n∣∣
∂D = 0, (18)∮

γk

v(m+1) ·ds = Γk :=
∮
γk

v0 ·ds. (19)

The equality (19) expresses the conservation of circulation over each of the one-

dimensional homology basis contours γ1, γ2, . . . , γr in the case of an (r− 1)-

connected domain. For a simply-connected domain these conditions drop out.

For the two-dimensional problem one can take γk to be “internal contours” —

the boundaries of holes in the domain D.

It was proved in the papers of Gyunter and Lichtenstein that for smooth data

(the domain D and the initial field v0) it is possible to construct the fields v(m)

and prove that they are Ck,λ -smooth. One can then establish the convergence

as m → ∞ to an exact solution of the Euler equations on some time interval

[−T,T ], where T is determined by the data of the problem, T > 0.

An analogous result was obtained for containers Dt that deform in a pre-

scribed way over time. The same thing was done in the problem of motion of

an unbounded fluid with an initial velocity field that is everywhere continuous

and potential outside some bounded region whose boundary is the surface of

discontinuity of the curl of the velocity (the so-called weak discontinuity). The

planar problem of the same type, especially in the particular case of a constant

vorticity in the domain D0, has in recent years been the subject of rather numer-

ous theoretical and computational studies. We shall give a separate discussion

below of the dramatic events connected with this vortex patch problem.
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Generalized Solutions

Let me repeat: the global solvability of the initial/boundary-value problems

of fluid dynamics is a physical problem. And the characteristic feature of a

problem of physics, even a problem of mathematical physics, is that it cannot

be regarded as properly posed until it is solved. Hilbert seems to have been the

first to recognize clearly that, no matter how nontrivial the concept of a solution

of a partial differential equation or the problem of minimizing a functional may

be, “Every problem in the calculus of variations has a solution, provided the

word solution is properly interpreted.” Various kinds of generalized solutions of

boundary-value or initial/boundary-value problems now play a multifaceted role

in mathematical physics, continuum mechanics, and geometry.

In many cases, in particular, for linear and many nonlinear equations of

elliptic and parabolic type, the introduction of generalized solutions is a pow-

erful means of investigation, even when smooth solutions actually do exist. At

the initial stage general existence and uniqueness theorems are proved for gen-

eralized solutions, making it possible to consider strongly discontinuous data

(even generalized functions of distributions) as forces, sources, and physical

parameters: elastic, thermal, and others. One can also consider large classes of

“domains” occupied by a continuous medium, even arbitrary measurable sets.

Under such general conditions there will be no solutions other than generalized

ones. The problem for subsequent investigation is to determine how the differ-

entiability properties of the generalized solution improve when the data become

ever smoother. Let me explain this using the elementary example of the first

boundary-value problem for Poisson’s equation

−∆u = f (x), u
∣∣
∂D = 0 (20)

in a “domain” D of R
m. If the data are sufficiently regular, then if we assume

that there exists a smooth solution, Eq. (20) implies the integral identity∫
D
∇u ·∇ϕ dx =

∫
D

f ·ϕ dx, (21)

which holds for every smooth function ϕ of compact support contained in D. It

is not difficult to prove a “weak converse”: if a C2-smooth function u satisfies

the identity (21), then it is a solution of Poisson’s equation. But the integral

identity remains meaningful for functions of a much larger class. The left-hand

side of (21) defines an inner product on the set of C∞-smooth functions of

compact support in D, and completion with respect to the metric defined by this

inner product leads to a Hilbert space H1 in which it is natural to seek generalized
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solutions. The functions in this space have only generalized first derivatives in

L2(D). Existence and uniqueness theorems can be obtained immediately from

the Riesz representation theorem for the dual of a Hilbert space, and moreover

for all f that define a continuous functional � f : ϕ �→ ∫
D f · ϕ dx on H1. If,

for example, D is a bounded measurable set (with no regularity conditions on

its boundary!) we can establish by using Friedrichs’ theorem and the Sobolev

embedding theorem that it suffices for the power 2m/(m + 2) of the function f
to be integrable when m > 2 and for some power p > 1 when m = 2. One can

also take f to be a generalized function of type ∂g/∂xi, where g ∈ L2(D).

It is paradoxical but true that generalized solutions have an even clearer

physical meaning than classical solutions. The most natural conclusion for the

boundary-value problem just considered is based on the principle of minimum

potential energy

E =

1
2

∫
D
(∇u)

2 dx−
∫

D
f ·udx, (22)

and leads directly to the definition (21) with no extra assumptions at all about

the smoothness of the solution u. What emerges is that, making completely

unrealistic assumptions about smoothness to begin with, we derive the Poisson

equation, then we are compelled to move in the opposite direction. Of course,

for the Poisson equation it is well known that when f and the boundary ∂D are

sufficiently smooth, the solution u is also smooth.

In nonstationary problems of continuum mechanics, generalized solutions

arise most naturally when Hamilton’s principle, or the nonholonomic general-

ization of it taking account of frictional forces, is used. Once the equations of

motion have been written down, one must again return to the integral identity

using the inner product of, say, the Navier–Stokes equations (7) on an arbitrary

smooth vector field Φ(x, t) and integration over the domain D occupied by the

fluid and with respect to time t from t = 0 to an arbitrarily chosen time T > 0.

As required in Hamilton’s principle, the field Φ is subject to the condition

Φ(x,T ) = 0, and also the conditions Φ
∣∣
∂D = 0, divΦ= 0. This last equality is a

restriction on the possible velocities arising from the incompressibility condition

(6). Applying integration by parts, and taking account of the boundary and

initial conditions, we obtain the integral identity in the form

∫
D

v0(x)Φ(x,0)dx+

∫ T

0

∫
D

(
v
∂Φ

∂ t
+(v,∇)Φ · v +ν∇v ·∇Φ

)
dxdt = 0. (23)

The pressure p has again dropped out of this equation, as always happens with

an ideal constraint reaction. Moreover, under the assumption that the field v
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satisfies the identity (23) and is sufficiently smooth, we find that it is a solution

of the Navier–Stokes equation (7) with some pressure function p(x, t).
A generalized solution is a field v satisfying the identity (23) whose behavior

exhibits certain other regularities. These regularity requirements can be varied,

yielding different definitions; one can temporarily forget about the pressure.

In order for all the terms of the identity (23) to have meaning it is necessary

(and sufficient) to assume that the field v and its first-order spatial derivatives

belong to some Lq(QT ), where QT = D×(0,T ). As a minimum, v ∈ L2(QT ) and

∂v/∂x ∈ L1(QT ). Theoretically, one could even transfer all the derivatives from

v onto Φ and introduce a generalized solution having no derivatives at all. (This

is what should be called a weak solution.) In fact, the choice of the definitions

only looks arbitrary. First of all, from the physical meaning of the problem

it is necessary to require that for a solution, even a generalized solution, all

functionals should be defined whose values are measured experimentally, most

of all the kinetic energy Ek of the fluid and the dissipation energy W in time T :

Ek =

∫
D

v2

2
dx, W = ν

∫ T

0

∫
D
(∇v)2 dxdt. (24)

Moreover, the proof of uniqueness requires higher regularity properties of the

solution. Here we find ourselves on the horns of a dilemma — if we require

too much regularity, we cannot prove existence for all T > 0, while for those

generalized solutions whose existence we can prove, we don’t know how to

prove uniqueness.

One of the most fundamental achievements of mathematical fluid dynamics,

for which we are indebted to J. Leray [1933–1934] and E. Hopf [1950–1951],

is the global existence theorem (for any bounded domains D, any T > 0 and

arbitrary initial fields v0 in L2(D)) for a generalized solution (often called a weak

solution) in the sense of the integral identity (23). The regularity assumptions in

this case reduce to the existence of the quantities Ek and W . The initial condition

for these generalized solutions is satisfied in the mean: ‖v(·, t)− v0‖L2(D)
→ 0

as t → 0.

Hopf’s paper is written in the classical style of modern functional analysis.

It is not difficult to understand what a rush of optimism the author must have

experienced when he finished work on such a remarkable result. The article

ends with a promise to prove a uniqueness theorem in a subsequent paper and

to establish the energy equation

d
dt

∫
D

v2

2
dx = −ν

∫
D
(∇v)2 dx. (25)
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Alas, up to the present no one has been able to prove either of these claims. In

the article only an inequality was established:∫
D

v2
(x, t)
2

dx �

∫
D

v2
0(x)

2
dx−ν

∫ t

0

∫
D
(∇v)2 dxdτ . (26)

Any fluid mechanicist would probably say that equality actually holds in (26).

And for smooth solutions this equality is indeed obvious and expresses the fact

that the kinetic energy at time t is less than the initial kinetic energy by the

amount dissipated through viscous forces. But the extraordinary difficulties that

arise in attempts to prove that give us pause. The late Kirill Golovkin seems to

have been the first [1968] to speak of the possibility of a strange mechanism of

energy dissipation not connected with viscosity. The problem remains unsolved.

In infinite-dimensional systems “conservative dissipation” of energy and

other quantities, for example, enstrophy — the integral of the square of the

vorticity — is possible. This phenomenon is connected with the gradual loss

of smoothness of the solution as time passes; energy “goes off into the higher

harmonics,” becomes unobservable, and is actually scattered by other, arbitrarily

small dissipative forces (see [5], [6]).

In the case of an ideal incompressible fluid ν = 0, even the integral identity

(23) no longer contains any derivatives of the velocity. In the three-dimensional

case essentially only one a priori estimate is known — an estimate of the ki-

netic energy (and also an estimate of the time derivative in a very weak sense).

One might try to determine a weak solution with finite kinetic energy assum-

ing nothing additional about regularity. But then it is not possible to prove an

existence theorem even in the two-dimensional case. The reason is that the

strongest known method of proving existence fails: Galerkin’s method. Ac-

cording to this method, the solution is obtained as the limit of approximate

solutions vm
(x, t) =∑m

k=1 ck(t)Ψk(t), where Ψ1,Ψ2, . . . are a basis in some space

of solenoidal vector fields. If we require that the integral identity (23) holds

for Φ = Ψ1, . . . ,Ψm, we obtain a system of ordinary differential equations with

quadratic nonlinearity for the unknown functions ck. It is crucial that the energy

equation (25) holds for this system together with the corresponding a priori

estimate, which is uniform in m. From this estimate, global solvability of the

equations for c1, . . . ,cm (these coefficients depend on m due to the nonlinearity)

follows along with a certain type of weak compactness of the whole family of

approximate solutions in R
n. It remains to be proved that every weak limit point

of the sequence vm is a generalized solution. To do that one must pass to the

limit in the integral identity (23) written for the approximate solutions vm. In

the case of a viscous fluid, Hopf was able to execute this plan. In the case of an



Global Solvability Versus Collapse in the Dynamics of an Incompressible Fluid 517

ideal fluid, weak convergence in L2 is insufficient. Strong convergence would

suffice, but it is not known whether it occurs or not.

Thus there is no global existence theorem for weak solutions in the dynamics

of an ideal fluid, even in the two-dimensional case. For that reason the common

opinion of the favorable situation with two-dimensional flows is perhaps slightly

exaggerated. The global existence theorems known here are based on an estimate

of the vorticity that follows from Cauchy’s formula (11). In the planar case there

is only one non-zero component of the vorticity, namely ω3, and it is preserved

in every fluid particle. It results from this that for each t the function ω3(x, t) is

commensurable with ω3(x,0). In particular, the integral∫
D

F
(
ω3(x, t)

)
dx, (27)

for an arbitrary function F , does not vary over time. This alone leads to a priori

estimates that are fully sufficient to prove existence. The existence of weak

solutions remains an important problem, however, since it may well happen that

they are the ones that occur as the limits when the viscosity vanishes, even in

the case of smooth data.

Smoothness of Generalized Solutions

Following the proof of the existence of a generalized solution (if that can be

achieved) the question arises as to the extent to which its smoothness improves

when the data of the problem become smooth. For an ideal fluid in the best-

possible case one can establish only that at any time t the velocity field has as

many derivatives (in Lp or Hölder-continuous) as the initial field. Actually this

has been done only in two-dimensional problems.

In general, in nonlinear problems of this type one usually discovers a certain

critical condition of initial smoothness such that, if one can reach it, one can trace

the subsequent improvement in the differentiability properties, as the smoothness

of the data increases, without any particular difficulty. In the dynamics of an

ideal fluid having first-order derivatives ∂vi/∂xk in L∞(D) is such a condition.

The reason is that differentiating the Euler or Helmholtz equations for vorticity

gives linear equations for the higher derivatives with coefficients and free term

depending only on lower-order derivatives. Here the leading term contains only

∂vi/∂xk as coefficients.

At the same time, the conclusion that smoothness is conserved in the flow

of an ideal fluid is to a certain extent purely formal. There is no reason why

even the first derivatives of the vorticity should not increase without bound as
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t → ±∞, and in fact they really do increase in many cases. For those special

three-dimensional flows that are defined for all t, the vorticity itself may increase

without bound [6]. A more profound fact is that the Lagrangian distortions

∂xi/∂ak increase without bound.

In the two-dimensional case the known estimates say that the derivatives

∂vi/∂xk increase with time no faster than an iterated exponential exp(k exp�t)
with known constants k, � > 0. (It is fascinating that the recent increase in total

computer power has obeyed an iterated exponential law. Such a law results for

a scalar-valued variable x(t) when it satisfies the differential equation ẋ = u(t)x,

and the exponent of increase u obeys Malthus’ law u̇ = �u, which means that

the “population” is increasing without any environmental resistance.) Probably

this rate of increase really is possible. This makes the computation of the flow

of an ideal fluid a very delicate problem. Various authors from time to time

announce that they have observed collapse in their computations — in a three-

dimensional flow the vorticity becomes infinite in finite time. Such results,

however, do not merit much confidence, since a computer considers the number

1020 infinitely large. Actually, it appears that the true time increase in the

derivatives of the solution has been supplemented by what appears to be an

even faster increase caused by the approximation. This happens because the

numerical schemes violate the law of conservation of circulation and possibly

other laws of fluid dynamics that we do not know about; and as a result they

destroy the mechanisms that can prevent collapse.

Here it is also interesting to note the work of a number of computational

experts on the numerical study of the evolution of a vortex patch — two-

dimensional flow of a fluid without boundaries, with a vorticity that is nonzero

only in a certain bounded region. For this problem there is an existence and

uniqueness theorem in the class of generalized solutions, but the question of con-

servation of smoothness of the boundary of the vorticity region over time arises.

Computations seem to show that strong singularities arise on it over a finite

time and the computation has to be halted. Nevertheless, J.-Y. Chemin [1993],

and after him A. Bertozzi and P. Constantin, established that the smoothness of

the boundary of a vortex patch is conserved forever. A. B. Morgulis generalized

this result to the more difficult case when the vortex patch moves in a bounded

container. Of course it should in no case be thought that the computational work

is wrong. On the contrary, it poses for mathematicians the problem of explaining

how theory can describe the computational results and how one should modify

the statement of the problem (which quantities to compute, which to average),

in order to trace the subsequent evolution on a computer. It may even happen

that the computational results describe experimental data better than the exact
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solutions — approximation errors and rounding mimic external noise. It is quite

possible that the measuring devices may go out of range at exactly the time

predicted in the computations.

Viscosity, like thermal conductivity, has a smoothing effect. For the heat

equation or the linear Navier–Stokes equations (with the term (v,∇)v removed)

with C∞-smooth free terms, it is well known that a generalized solution is

C∞-smooth for any t > 0. In general, the smoothness for t > 0 is determined by

the differentiability properties of the free terms alone.

For the Navier–Stokes equations one may attempt to improve our knowledge

about the smoothness of the solution by remarking that it is a solution (albeit

generalized) of the linear Navier–Stokes equations with external force −(v,∇)v.

Some information about this “external force” is known to us from the existence

theorem for a generalized solution. Thus, in the three-dimensional case for the

Leray–Hopf solutions it turns out that this force belongs to L5/4(QT ), while in

the two-dimensional case it belongs to L4/3(QT ) for every T > 0.

At the same time, it is known (see the references in [2]) that in the case

of an external force F ∈ L�(QT ), � > 1, for sufficiently good initial data and

C2-smooth boundary, a generalized solution has generalized derivatives ∂v/∂ t
and ∂ 2v/∂xi∂xk that also belong to L�(QT ).

It also turns out that a vector-valued function v with these properties is

integrable over the cylinder QT and, in addition, can be regarded as a continuous

vector-valued function of t with values in Lq(D) for some q > 1. Similar

results also exist for the spatial derivative ∂v/∂x. More precisely, in the three-

dimensional case the following propositions hold:

v ∈ 5�

5−2�
(QT ), v ∈ 3�

5−2�
(D),

∂v

∂x
∈ 5�

5− �
(QT ),

∂v

∂x
∈ 3�

5− �
(D). (28)

(I hope that the abbreviated notations are clear.) If the denominator vanishes, the

fraction can be replaced by any positive number. If the denominator is negative,

it means that the corresponding function is continuous and even satisfies a

Hölder condition.

Now using Hölder’s inequality, we can establish that

(v,∇)v ∈ �1(QT ) =

1
5−2�

5�
+

5− �

5�

(QT ) =

5�

10−3�
(QT ). (29)

If it happens that �1 > �, it means that the original assertion about the smoothness

of the vector-valued function v is strengthened (and so it happens if � > 5/3). By

repeating the same procedure, we find that (v,∇)v ∈ �2(QT ), and �2 > �1. After
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a finite number of such iterations both denominators in (28) are negative, and

that will mean that the Hölder continuity of v and ∂v/∂x is established. After

that, one can analogously establish the existence of higher-order derivatives by

applying known results on smooth solutions of the Navier–Stokes system (see

[1], [2]).

I note that the value � = 10/7 would have corresponded to the initial data

on the regularity of a generalized solution, but even for that value of � it is not

possible to establish a result for (v,∇)v. For the critical value � = 5/3 it turns out

that v ∈ 5(QT ), v ∈ 3(D), vx ∈ 3
2(QT ), vx ∈ 5

2(QT ). It is also good to work with

generalized solutions of this class; in particular, theorems of Lyapunov type on

the legality of linearization in the stability problem can be established [2]. Using

more refined methods, one can even establish that the subsequent smoothness of

such generalized solutions is limited only by the smoothness of the data. They

are C∞-smooth if the data are. Alas, no one knows how to obtain a global

existence theorem for such regular generalized solutions.

The “bootstrap” process described above works quite successfully in the

two-dimensional case and also in stationary problems. As a matter of fact,

Ladyzhenskaya [1959] immediately established the existence of generalized so-

lutions so good that the further investigation of their smoothness caused no

difficulty.

Naturally, one can use different scales of functional spaces, but in each of

them one discovers “critical parameters.” I think it unlikely that the choice of

new functional scales can lead to any fundamental advances.

Uniqueness

Let me begin by discussing the question of the uniqueness of the solution of

the Cauchy problem for an ordinary differential equation in finite-dimensional

space. It might appear that the available theorems of Lipschitz and Osgood,

which guarantee uniqueness in the case when the field f (x, t) is continuous with

respect to x and t and satisfies the Lipschitz condition or the slightly weakened

version of it due to Osgood, give a completely satisfactory solution of the

problem. But is smoothness (even weak smoothness) with respect to x really

needed? Would continuity not be enough? According to Peano, for equations

ẋ = f (x, t) in R
n with right-hand side f continuous with respect to x and t, a

local existence theorem for the solution of the Cauchy problem holds. Simple

examples show that, without additional assumptions, nonuniqueness is possible.

Moreover, there exist continuous functions f (x, t) on the (x, t)-plane such that
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the solution of the Cauchy problem is nonunique for every initial point (x0, t0).
But to what extent is this phenomenon typical?

The opinion is widely held that nonuniqueness is typical. This prejudice

appears to be supported by the example of the autonomous scalar differential

equation ẋ = a(x), for which (in the case of initial condition x(t0) = x0 with

a(x0) = 0) Osgood’s conditions are absolutely necessary. At several seminars at

Rostov University and a number of American universities, I have conducted a

poll on the question whether uniqueness or nonuniqueness of the solution of the

Cauchy problem for an equation with continuous right-hand side is typical. Only

in the seminar at the Courant Institute did the correct answer — uniqueness is

typical — receive a majority, though a slim one. Incidentally, W. Orlicz and his

followers already realized that uniqueness is typical in the sense of category. In

particular, Kisielewicz [1975] proved that the set of continuous functions f (x, t)
for which the equation ẋ = f (x, t) has even one (!) point of nonuniqueness

(x0, t0) is a set of first category in the sense of the natural topology of uniform

convergence on compact sets. As a result, the known uniqueness theorems

encompass only a rather small set (of first category!) of all the equations for

which this result holds. As one should expect, in a discussion of this question,

V. I. Arnold posed the question of the measure of the set of equations with

uniqueness in a typical finite-parameter family. I do not know the answer.

Another thought-provoking example is the system ẋ = 0, ẏ = u(x) for which

the unique solution x(t) = x0, y(t) = y0 + tu(x0) with initial data x(0) = x0,

y(0) = y0 is obtained without any regularity restrictions at all.

It emerges from this that the use of smoothness in the proof of uniqueness

is not essential! Incidentally, all proofs of uniqueness in fluid dynamics depend

on some requirements on the smoothness of the velocity field.

In essence, there is only one method of proving uniqueness, which we shall

call energetic. Assuming that there are two solutions v and v′, we form their

difference u = v − v′ for which we obtain a linear equation with coefficients

that contain v and v′. Forming the inner product of this equation with u and

integrating over D, we arrive at the relation

1
2

d
dt

∫
D

u2
(x, t)dx =

∫
D
εikuiuk dx, (30)

where εik = ∂vi/∂xk +∂vk/∂xi are the deformation velocities. The relation (30)

can be obtained immediately for smooth solutions. For generalized solutions the

same is obtained in weakened form, integrated with respect to t with the sign

� instead of equality. In the case of a viscous fluid one obtains an analogous
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relation
1
2

d
dt

∫
D

u2
(x, t)dx =

∫
D
εikuiuk dx−ν

∫
D
(∇u)

2 dx. (31)

If the εik are bounded functions, we obtain a linear differential inequality for the

integral I(t) =

∫
D u2

(x, t)dx:

İ � c(t)I, c(t) = max
x

√
∑
i,k

ε2
ik(x, t). (32)

It follows immediately from it that I(t) � I(0)exp
(∫ t

0 c(τ)dτ
)
. Since I(0) = 0,

it follows that I(t) = 0 for all t � 0. Thus there is no difficulty in proving

uniqueness when the solution is sufficiently regular. As it happens, it is a

peculiarity of such uniqueness theorems that it suffices to require regularity of

one of the solutions. One can then prove that there is no second solution under

much weaker regularity requirements.

As long as it is unknown just which solutions of the Euler equations arise

as the limits of solutions of the Navier–Stokes system as ν → 0, the question

of enlarging the classes of generalized solutions while retaining the property of

uniqueness remains important. In any case, it is necessary to consider flows with

weak discontinuities (that is, continuous velocity and bounded but discontinuous

vorticity). But it does not follow from the boundedness of the vorticity that the

first derivatives ∂vi/∂xk, or even the quantities εik, are bounded. That is why it

is necessary to improve the methods of estimating the integrals on the right-hand

side of Eq. (19). In the papers [7]–[9], for this purpose one applies the estimate∥∥∥∥ ∂vi

∂xk

∥∥∥∥
Lp(D)

� C
p2

p−1
‖curl v‖Lp(D)

, (33)

which is valid for any p (1 < p < ∞) with a constant C that may depend on D,

but not on p. Even when curl v is bounded, the result is a linear increase of

∂v/∂x as p → ∞, and examples show that this estimate is optimal.

Of course, it is not simply a matter of estimating the integral (30) — its

convergence for fields v of class W (1)

p (D), say for p > 3/2, is obvious. The snag

is that this estimate yielded a differential inequality İ � f (I) such that uniqueness

followed from it under the condition I(0) = 0. For that it was necessary that

f (I) tend to zero only a bit worse than linearly as I → 0, so that the integral∫
+0

dI
f (I) diverged. In the work [7] uniquiness was obtained for flows with a

bounded vorticity; this result was extended in [8].

Let us assume that for the curl of the velocity we know an estimate

‖curl v‖Lp(D)
� θ(p) (34)
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for all p � p0 > 1. For sufficiently large a, say for a � 1, we define the function

ψ(a) = inf

{
aε

ε
θ

(
1
ε

)
: 0 < ε <

1
p0

}
. (35)

Then (30) implies the estimate

I(t) �

∫ t

0
β
(
I(s)

)
ds, β (I) = Iψ

(
M
L

)
, (36)

where M = maxu2
(x, t), the maximum being taken over x ∈D, t ∈ [0,τ ]. Unique-

ness, that is, the equality I(t) = 0 for t ∈ [0,τ ], holds if the following integral-

divergence condition holds: ∫
+∞ da

aψ(a)

= ∞. (37)

For example, if θ = const, then ψ(a) = lna, and (37) holds. However, one may

allow the function θ to increase without bound as t → +∞. For example, if

θ(p) = ln ln p, then ψ(a) = lna, and (37) is violated. I note that for the vorticity

itself, the preceding means, in particular, that uniqueness is preserved for initial

fields with a point singularity of type ln lnr, but if the vorticity has a singularity

of type lnr, the question of uniqueness remains open.

It is remarkable that these results on uniqueness are essentially independent

of the dimension n. It is further worthwhile to note the amazing coincidence of

the conditions for uniqueness of the solution with initial data in two seemingly

different problems. The condition (37) leads to a unique solution both for

the Euler equations (uniqueness of the vector field) and for the system (5)

(uniqueness of the motion of a particle).

The condition (37) seems to be the strongest result on uniqueness that can

be obtained by the “force” energetic method. In [8] there are counterexamples

showing that when this condition is violated there may be nonzero fields u for

which relation (30) holds. (I emphasize that these are counterexamples to the

method, not to the Euler equations themselves.)

The conjecture also arises that the solution of an initial/boundary-value

problem for the Euler equations is unique if and only if the problem of particles

for the initial velocity field has a unique solution. I am not particularly confident

that this conjecture is true in its literal formulation, but it seems rather likely that

it may become true after suitable reworking. For example, it may be necessary to

require uniqueness for almost all initial points rather than for all, or to interpret

the solution of this problem in some generalized sense. What is intriguing here is

the possibility of eliminating Banach spaces of functions and fields and passing

to completely unstudied sets of fields for which the uniqueness theorem holds.
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Viscous Fluid

In the case of a viscous fluid again no better route to proving uniqueness has

been found than the application of the energetic method based on Eq. (31), or on

Eq. (31) integrated with respect to t with the equal sign replaced by �. The situa-

tion here is essentially different from the one we face when ν = 0. Of course, un-

der the former regularity conditions for the solution one can prove uniqueness for

the Euler equations, since the viscous term has a “good” sign, and can be elim-

inated. But the drama lies in the fact that no proof of existence of a sufficiently

regular solution is known, so that one cannot avoid using the viscous term. The

main obstacle to be overcome is the derivation of a suitable estimate for the in-

tegral on the right-hand side of (30). I shall not go into the details of all this —

they are well-enough known. I shall say only that the situation is harmonious

only for n = 2, where the result is achieved using Ladyzhenskaya’s inequality∫
R2

u4 dx � 2
∫

R2
u2 dx ·

∫
R2

(∇u)
2 dx. (38)

Here is a curious fact: To obtain the necessary estimate in R
n it suffices to

know how to estimate the norm ‖v‖Ln(D)
, and the kinetic energy, independently

of dimension, is a quadratic form.

That is how mathematical fluid dynamics lives — there is a uniqueness

theorem for regular solutions, but it is not known whether they exist globally,

and there is a global Leray–Hopf existence theorem in the case ν > 0, but it is

not known whether the solution is unique. For an ideal fluid the situation is even

more complex — there is no global existence theorem, even for a weak solution.

But there are (Scheffer [1993], Shnirel’man [1997]) examples of nonuniqueness

of the weak solution. From the point of view of fluid mechanics these last

examples indicate that the definition of a generalized solution itself is incorrect.

It is completely clear that if the fluid is initially at rest, and then begins to move

at some later time (as in these examples) it means that in the standard definition

of a weak solution this force is “invisible,” that its effect on given velocity fields

cannot be represented as a Lebesgue integral, and that it vanishes on all smooth

fields. Functional analysis suggests that such a “force” may be, for example, an

element of the second dual of the space C, which contains functionals that are

differences of the limiting values of functions from the left and right.

Conclusion

Thus, what is the net result: global regularity or collapse? The methods known

today have clearly reached a dead end. Charles Fefferman is right: “Profound



Global Solvability Versus Collapse in the Dynamics of an Incompressible Fluid 525

new ideas are needed.” The search will be extended into the twenty-first century,

and so the problem will no doubt satisfy Smale’s criterion [S. Smale, Mathemat-

ical Intelligencer, 1998, 20(2)]: “A belief that the question, its solution, partial

results or even attempts at its solution are likely to have great importance for

mathematics and its development in the next century.”

At some point all those who work on global solvability recognize the

extraordinary difficulty of the problem and begin to divide their time be-

tween attempts to prove global solvability and attempts to find an exam-

ple of a collapsing flow. And it is here that the effect that can be called

the “resistance” of the equations of fluid dynamics to collapse reveals itself

(of course, in the case of an incompressible fluid). For various kinds of

symmetric modes it is possible to prove that collapse is impossible. Some-

times for flows with special symmetry (and those that demonstrably have a

singularity) it happens that the corresponding quotient-system is simply un-

solvable — the equation possesses symmetry, but has no solutions with that

symmetry. Sometimes the collapse of symmetric flows results from the fact

that the assumptions on the pressure are too strong. The pressure determines

a constraint reaction and is completely determined by the velocity field; no

additional assumptions about it are needed. Such a “collapse” disappears

after a suitable enlargement of the class of functions in which the pressure

is sought.

A brilliant example of resistance to collapse is provided by three-dimension-

al inviscid flows with constant pressure. If we set p = const, and eliminate the

condition of incompressibility, the result is the equation of motion of a dusty

medium. Its solution is expressed by the resolvent (I− tA)
−1 of a certain matrix

A = A(a), where a is the initial position of a particle of fluid. Collapse occurs

whenever the matrix has real eigenvalues. Thus, it follows from incompressibil-

ity that the matrix A is nilpotent, and therefore (I − tA)
−1

= I + tA + t2A2, and

there is no collapse.

Of course, the search for collapsing flows should be continued both because

symmetric flows are interesting in their own right and because the study of them

helps us to get a better feeling for the nature of nonlinear interactions in fluid

dynamics.

The usual course of reasoning “by contradiction” in mathematics has led to

a number of important results on the possible structure of a hypothetical set E
of singularities of the solution in (x, t)-space. In the case of an ideal fluid the

strongest result up to now (Beale–Kato–Majda) is that∫ T

0
‖curl v(·, t)‖L∞ dt = +∞,
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where T is the time at which the singularity appears. For a viscous fluid Caf-

farelli, Kohn, and Nirenberg [1982] established that a certain Hausdorff measure

of the set E equals zero. It seems difficult to improve these results.

It is difficult to say in which direction decisive advances will be made.

It may yet be, although it is very unlikely, that the problem will be solved

“ingloriously” by the simple exhibition of good Lyapunov functionals. Perhaps

a breakthrough will occur along the route of studying the linearized equations

of fluid dynamics with nonsmooth coefficients. It may be that searches in the

domain of “set-theoretic fluid dynamics” (Shnirel’man, Brenier) and the methods

of measure theory will lead to a proof of global existence of a weak solution of

the Euler equations.

Even so, I have no doubt that in this problem the methods of functional

analysis, measure theory, potential theory, and so on, are secondary. They will

probably be developed when we achieve a new understanding of the geometric

properties of fluid flows. This applies especially to an ideal fluid.

When a continuous medium is deprived of its physical properties (elasticity,

thermal and electrical conductivity, and so on) its property of occupying a defi-

nite position in space remains, as do elementary interactions through the mutual

pressure of its parts, due to Aristotle’s principle that it is impossible for two

bodies to occupy the same space. It is amazing that it is these elementary inter-

actions that cause the most complicated effects, including turbulence (viscosity

of course plays an essential role in generating it).

Arnold has exhibited a beautiful example of what Pólya called “general-

ization by consolidation.” He established that the fluid dynamical Euler equa-

tions, like Euler’s equation of motion of a rigid body, are special cases of the

Euler–Arnold equations for geodesics on a Lie group with a one-sided invariant

Riemannian metric. These are equations on a Lie algebra. It turned out (this

is where the consolidation comes in!) that all the fundamental laws of fluid dy-

namics (the Helmholtz–Thomson theorems on vortices, the Bernoulli equation,

and so on) are special cases of the corresponding general relations. On the

other hand, the equations of magnetohydrodynamics without dissipation and a

number of other equations of mathematical physics, as it turned out, have the

same structure, only with a different Lie group.

Arnold’s intuitive constructions were partially complemented with rigorous

mathematical analysis in a paper of Ebin and Marsden [1970]. Further, the

Hamiltonian nature of the Lagrange equations of fluid dynamics is, of course,

always obvious. Arnold [1969], however, discovered that the Euler equations

also possess a particular Hamiltonian structure. The equations of fluid dynamics,

like other fundamental equations of mathematical physics, admit a marvelous
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variety of forms (this impressed Richard Feynman long ago). But it must be

admitted that up to now none of these forms has been able to solve the important

problems of existence, uniqueness, and strong a priori estimates of the solutions.

It may be that new forms of the equations will be discovered that will help to

deal with these problems.

If the existence of weak solutions of the Euler equations is proved in the near

future, it is still completely unclear what it will be possible to say about their

uniqueness, even after suitable improvements in the definitions. Most likely

they will be quite irregular. Optimal control theory and minimal surface theory

seem to have gone farthest in generalizing the concept of a solution. Possibly

the achievements of these areas will be of use in fluid dynamics as well. I hope

that new methods of proving uniqueness of the solution of the Cauchy problem

will be developed, which will also lead to new results for ordinary differential

equations.

Thus, the problem of global unique solvability is not fully posed. Whether

it is proved that collapse is impossible, or whether collapsing flows are found,

in either case the matter must be settled by determining a solution and proving

its uniqueness. If collapse is possible, additional conditions will have to be

imposed.

Doubts are often expressed about the Euler and Navier–Stokes equations

themselves. If these equations are slightly altered, all problems would be im-

mediately solved. For example, it suffices to replace (v,∇)v in (7) by (vh,∇)v
(Leray), where vh is the spatial average of v over a sphere of radius h, or to

add −ε ∆2v or ε |v|kv to the right-hand side of (7). Here ε and h may be taken

arbitrarily small, but the main question remains: What happens as ε → 0 and

h → 0? It would take too much self-confidence on our part to dispense with the

Navier–Stokes equations on the grounds that we do not know how to solve the

problems associated with them. After all, whenever a solution has been found,

it is beautifully confirmed by experiment.

After a talk devoted to weak solutions of the equations of fluid dynam-

ics, N. N. Meiman remarked: “One must be a great optimist to undertake such

pessimistic problems.” Well, let us try to hold onto our optimism.
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Frölich, Albrecht, 327

Fu, Bin, 345

Fuchs, Dmitrii Borisovich, 25, 26, 35, 46

Fuchs, Klaus, 495

Fuchs, Lazarus Immanuel, 49–74, 131

Fuks, Dmitrii Borisovich, see Fuchs, D. B.

Furstenberg, Hillel, 218

G

Gadzhiev, Fuad, 252

Gaitsgori, Denis, 227

Galeev, Elfat Mikhailovich, 430

Galerkin, Boris Grigor’evich, 502, 516

Galilei, Galileo, 475

Gallavotti, Giovanni, 406
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Möbius, August Ferdinand, 43

Moh, T. T., 469

Moishezon, Boris Gershevich, 217, 218,

221, 313, 314

Moody, Robert V., 446

Mordell, Louis Joel, 274, 312, 321, 329

Morgulis, Andrei Borisovich, 518

Morse, Miss, 257

Morse, Harold Calvin Marston, 6–8, 10, 11,

35, 42, 257, 352, 354, 368

Morse, Philip M., 76, 83

Moser, Jürgen, 37, 44, 45, 289, 352, 368,

400, 406, 467, 480

Moskalenko, Vsevolod Anatol’evich, 485

Mourtada, Abderaouf, 119

Moussu, Robert, 130

Moustakides, George V., 396

Müller, Hans-Georg, 396



Name Index 539

Mumford, David Bryant, 67, 314

Murai, Takafumi, 465

N

Nagel, Bengt, 83
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Parseval des Chênes, Marc-Antoine, 151

Parshin, Aleksei Nikolaevich, 282, 328, 329

Pascal, Blaise, 137, 138

Patashnik, Oren, 197, 211

Pauli, Wolfgang, 78, 80, 81

Pazy, Ammon, 219

Peano, Giuseppe, 248, 520

Pearson, Egon Sharpe, 372, 373

Pedlosky, Joseph, 183

Peierls, Rudolph, 405, 495

Peixoto, Mauricio Matos, 7, 15, 17
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Poisson, Siméon Denis, 153, 159, 323, 350,

418, 484, 513, 514

Pol, Balthasar, see Van der Pol

Polivanov, Mikhail Konstantinovich, 489,

497, 498

Pollak, Moshe, 396

Polterovich, Leonid, 227
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Suzuki, Osamu, 74

Symanzik, Kurt, 487

Szász, Domokos, 41

Szegő, Gábor, 417, 423

Szőkefalvi-Nagy, Béla, 413, 443

Szpiro, Lucien, 329

Szűcs, András, 25

T

Takano, Kyoichi, 74

Takens, Floris, 7, 15, 108, 403

Talagrand, Michel, 239, 241

Tamm, Igor’ Evgen’evich, 399, 492, 496

Tamrazov, Promarz Melikovich, 423

Tanaka, Noboru, 467

Tareeva, Elena Evgen’evna, 485

Tarski, Alfred, 194

Tartaglia, Niccolo, 26

Tate, John, 322

Tauber, Alfred, 492, 498

Tavkhelidze, Albert Nikiforovich, 498

Taylor, Brook, 104, 107, 110, 170, 173,

425–427

Taylor, John G., 489, 498

Teichmüller, Oswald, 43

Temam, Roger, 528

Temlyakov, Vladimir Nikolaevich, 430

Thom, René, 11, 24, 25, 107, 118, 256

Thomson, William (Lord Kelvin), 46, 511,

526

Thue, Axel, 188, 212, 213, 273

Thurston, William, 13

Tijdeman, Robert, 273, 277

Tikhomirov, Vladimir Mikhailovich, 295,

399, 402, 430, 435, 457

Tikhonov, Andrei Nikolaevich, 245, 264,

480

Timan, Aleksandr Filippovich, 423, 436

Tirozzi, Brunello, 166, 183

Tits, Jacques, 326

Toda, S., 165

Todorov, Ivan Todorov, 489

Toeplitz, Otto, 221

Tolsa, Xavier, 464

Tolstaya, Tatiana Nikitichna, 41

Tolstoy, Aleksei Nikolaevich, 251

Tolstoy, Lev Nikolaevich, 134

Tomczak-Jaegermann, Nicole, 240, 241

Tonelli, Leonida, 477

Trakhtenbrot, Boris Abramovich, 346

Treibich Kohn, Armando, 72

Triebel, Hans, 420

Trifonov, S. I., 119

Trutnev, Yurii Alekseevich, 499

von Tschirnhaus, Ehrenfried Walther, 25,

459

Tseitin, Grigorii Samuilovich, 199, 338,

346

Tserkovnikov, Yurii Aleksandrovich, 485,

493

Tsetlin, Mikhail L’vovich, 35

Tsirelson, Boris Simonovich, 233, 241

Tucker, Warwick, 404

Tumanov, Aleksandr E., 450

Turaev, Dmitrii Vladimirovich, 365, 367,

369, 370

Turing, Alan Mathison, 188, 332, 333, 339,

340, 345, 346, 480

Turrittin, Hugh L., 60, 74

Tyablikov, Sergei Vladimirovich, 485

Tyapkin, Aleksei Alekseevich, 103

Tychonoff, Andrei Nikolaevich, see

Tikhonov, A. N.

Tyurin, Andrei Nikolaevich, 313, 314

Tyurina, Galina Nikolaevna, 47, 314

Tzafriri, Lior, 239

U

Ueno, Shuichi, 73

Ural’tseva, Nina Nikolaevna, 76

Urysohn, Pavel Samuilovich, see

Uryson, P. S.

Uryson, Pavel Samuilovich, 241, 244, 428

V

Vainberg, Yurii Ruvimovich, 313

Vakhania, Nodari N., 31

de la Vallée Poussin, Charles Jean Gustave

Nicolas, Baron, 409, 417, 418, 421,

422, 436

Van der Pol, Balthasar, 264, 477

Varadarajan, Veeravalli S., 71

Varchenko, Aleksandr Nikolaevich, 125,

132

Vasil’ev, Viktor Anatol’evich, 26, 38
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Vasil’eva, Adelaida Borisovna, 264

Vassiliev, Victor Anatol’evich, see

Vasil’ev, V. A.

Velikanova, Tatiana Mikhailovna, 472

Viana, Marcelo, 369

Viehweg, Eckart, 71

Vinogradov, Ivan Matveevich, 35, 453, 454

Vitt, Aleksandr Adolfovich, 5, 36, 127,

262, 353

Vitushkin, Anatolii Georgievich, 23, 24

Vladimirov, Vasilii Sergeevich, 329, 465,

489, 492, 493, 496–499

Vladimirov, Yurii Vladimirovich, 166, 183

Voevodin, Valentin Vasil’evich, 456

Volosov, V. M., 264

Volovich, Igor’ Vasil’evich, 329, 491, 499

Volterra, Vito, 148, 150, 151, 156, 161

Vorob’ev, Nikolai Nikolaevich, 198, 213

Voronin, Sergei Mikhailovich, 28, 108, 109,

115, 132

Vorovich, Iosif Izrailevich, 501, 502

Vostokov, Sergei Vladimirovich, 310, 329

de Vries, Gustav, 162, 168, 509

Vvedenskaya, Nikita Dmitrievna, 42

Vvedenskii, O. N., 314

Vyalyi, Mikhail Nikolaevich, 344

W

Wada, Hideo, 211

Wald, Abraham, 372, 373

Waldschmidt, Michel, 272, 277

Walsh, Joseph Leonard, 462

Walz, Anke, 32

Wang, Duo, 128

Wasow, Wolfgang, 74

Wasteels, M. J., 197, 213

Watanabe, Shinzo, 393

Watt, James, 411

Weber, Heinrich, 511

Weierstrass, Karl Theodor Wilhelm, 269,

276, 277, 347, 348, 367, 409, 418–420,

433, 436, 458, 462

Weil, André, 298, 303, 304, 312, 321, 326,

329, 466

Weiss, Benjamin, 218

Wermer, John, 466

Wexner, Leslie, 222–225

Weyl, Hermann Klaus Hugo, 79, 83, 151,

298, 420, 441

Whiteside, Derek Thomas, 328

Whitney, Hassler, 256

Wick, Gerald L., 495

Wiener, Norbert, 375, 379, 391, 441, 446,

481

Wiens, Douglas, 211

Wigderson, Avi, 340

Wightman, Arthur S., 487

Williams, David, 295

Williams, Robert F., 404

Wills, Jörg M., 240

Wilson, Robin, 212

Witham, G. B., 167

Witten, Edward, 35, 326, 470

Wolfart, Jürgen, 281

Wroński (Hoene), Józef Maria, 64

Wulff, G., 406

Wüstholz, Gisbert, 272, 275, 277

Y

Yablonskii, Sergei Vsevolodovich, 337,

338, 346

Yaglom, Isaak Moiseevich, 402

Yakir, Benjamin, 396

Yakobson, Mikhail V., 404

Yakovenko, Sergei Yu., 108, 125, 129, 131

Yang, Cheng Ning, 79–84

Yanovskaya, Sof’ya Aleksandrovna, 346

Yi, Yingfei, 128

Yoccoz, Jean-Christophe, 2, 3, 16, 33, 104,

132

Yomdin, Yosef, 217

Yor, Marc, 393

Yorke, James A., 17

Yoshida, Masaaki, 72, 74

Yu, Kun-rui, 274

Yu, Nguen Xuan, 464

Yudovich, Viktor Iosifovich, 41, 527–528

Yushkevich, Aleksandr A., 396

Yvon, Jean-Pierre, 165

Z

Zabreiko, Petr Petrovich, 17

Zahidi, Karim, 212

Zariski, Oscar, 123, 298, 313
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Zarkhin, Yurii Gennad’evich, 329

Zaslavskii, Georgii Moiseevich, 401, 403

Zav’yalov, Boris Ivanovich, 498

Zav’yalov, Oleg Ivanovich, 491

Zdravkovska, Smilka, 329

Zeeman, Erik Christopher, 36

Zel’dovich, Yakov Borisovich, 496

Zelenov, Evgenii Igorevich, 329

Zelikin, Mikhail Il’ich, 261

Zener, Clarence Melvin, 179

Zhang, Shouwu, 329

Zharinov, Viktor Viktorovich, 498

Zhikharev, Viktor Nikolaevich, 164, 166,

173

Zhitomirskaya, Svetlana Vladimirovna, 404

Zhizhchenko, Aleksei Borisovich, 313

Zholondek, Khenrik, see Żołądek, Henryk

Zhou, Xiang-Yu, 492, 499

Ziglin, Sergei L’vovich, 40

Zimmermann, Walter, 487, 491

Żołądek, Henryk, 118, 128, 132

Zolotarev, Egor Ivanovich, 411, 415, 416,

432

Zorich, Anton Vladimirovich, 43

Zorich, Vladimir Antonovich, 465

Zubarev, Dmitrii Nikolaevich, 485, 493

Zygmund, Antoni, 421, 422, 424
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