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Preface

These are the lecture notes of the fifth European summer school on Orthog-
onal Polynomials and Special Functions, which was held at the Universidad
Carlos III de Madrid, Leganés, Spain from July 8 to July 18, 2004. Previous
summer schools were in Laredo, Spain (2000) [1], Inzell, Germany (2001) [2],
Leuven, Belgium (2002) [3] and Coimbra, Portugal (2003) [4]. These summer
schools are intended for young researchers preparing a doctorate or Ph.D. and
postdocs working in the area of special functions.

For this edition we were happy to have eight invited speakers who gave
a series of lectures on a subject for which they are internationally known
experts. Seven of these lectures are collected in this volume. The lecture of
J. S. Geronimo on WKB and turning point theory for second order difference
equations has been published elsewhere [5].

The lectures fall into two categories: on one hand we have lectures on com-
putational aspects of orthogonal polynomials and special functions and on the
other hand we have some modern applications. The computational aspects
deal with algorithms for computing quantities related to orthogonal polyno-
mials and quadrature (Walter Gautschi’s contribution), but recently it was
also found that computational aspects of numerical linear algebra are closely
related to the asymptotic behavior of (discrete) orthogonal polynomials. The
contributions of Andrei Mart́ınez and Bernhard Beckermann deal with this in-
teraction between numerical linear algebra, logarithmic potential theory and
asymptotics of discrete orthogonal polynomials. The contribution of Adhe-
mar Bultheel makes the transition between applications (linear prediction of
discrete stationary time series) and computational aspects of orthogonal ratio-
nal functions on the unit circle and their matrix analogues. Other applications
in this volume are quantum integrability and separation of variables (Vadim
Kuznetsov), the classification of orthogonal polynomials in terms of two lin-
ear transformations each tridiagonal with respect to an eigenbasis of the other
(Paul Terwilliger), and the theory of nonlinear special functions arising from
the Painlevé equations (Peter Clarkson).
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Walter Gautschi gave a lecture about Computational methods and software
for orthogonal polynomials, in particular related to quadrature and approxi-
mation. His lecture describes many algorithms which can be used in Matlab.
The lecture of Andrei Mart́ınez-Finkelshtein is about Equilibrium problems
of potential theory in the complex plane and gives a brief introduction to the
logarithmic potential in the complex plane and the corresponding equilibrium
problems. Minimizing logarithmic energy is very close to best polynomial ap-
proximation. In his lecture the equilibrium problem is described in the classical
sense, but also the extensions with external fields and with constraints, which
are more recent, are considered. The lecture of Bernhard Beckermann on Dis-
crete orthogonal polynomials and superlinear convergence of Krylov subspace
methods in numerical linear algebra makes heavy use of the equilibrium prob-
lem with constraint and external field, which is a necessary ingredient for
describing the asymptotics for discrete orthogonal polynomials. This asymp-
totic behavior gives important insight in the convergence behavior of several
numerical methods in linear algebra, such as the conjugate gradient method,
the Lanczos method, and in general many Krylov subspace methods.

The contribution of Adhemar Bultheel and his co-authors on Orthogonal
rational functions on the unit circle: from the scalar to the matrix case extends
on one hand the notion of orthogonal polynomials to orthogonal rational func-
tions and on the other hand the typical situation with scalar coefficients to
matrix coefficients. The motivation for using orthogonality on the unit circle
lies in linear prediction for a discrete stationary time series. The motivation
for using rational functions is the rational Krylov method (with shifts) and
numerical quadrature of functions with singularities, thereby making the link
with the lectures of Gautschi and Beckermann.

Vadim Kuznetsov’s lecture on Orthogonal polynomials and separation of
variables first deals with Chebyshev polynomials and Gegenbauer polynomi-
als, which are important orthogonal polynomials of one variable for which he
gives several well known properties. Then he considers polynomials in several
variables and shows how they can be factorized and how this is relevant for
quantum integrability and separability.

Paul Terwilliger describes An algebraic approach to the Askey scheme
of orthogonal polynomials. The fundamental object in his contribution is a
Leonard pair and a correspondence between Leonard pairs and a class of or-
thogonal polynomials is given. Even though the description is elementary and
uses only linear algebra, it is sufficient to show how the three term recurrence
relation, the difference equation, Askey-Wilson duality, and orthogonality can
be expressed in a uniform and attractive way using Leonard pairs.

Finally, Peter Clarkson brings us to a very exciting topic: Painlevé equa-
tions — Nonlinear special functions. The six Painlevé equations, which are
nonlinear second-order differential equations, are presented and many impor-
tant mathematical properties are given: Bäcklund transformations, rational
solutions, special function solutions, asymptotic expansions and connection
formulae. Several applications of these Painlevé equations are described, such
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as partial differential equations, combinatorics, and orthogonal polynomials,
which brings us back to the central notion in these lecture notes.

We believe that these lecture notes will be useful for all researchers in the
field of special functions and orthogonal polynomials since all the contribu-
tions contain recent work of the invited speakers, most of which is not available
in books or not easily accessible in the scientific literature. All contributions
contain exercises so that the reader is encouraged to participate actively. To-
gether with open problems and pointers to the available literature, young
researchers looking for a topic for their Ph.D. or recent postdocs looking for
new challenges have a useful source for contemporary research problems.

We would like to thank Guillermo López Lagomasino, Jorge Arvesú Car-
ballo, Jorge Sánchez Ruiz, Maŕıa Isabel Bueno Cachadiña and Roberto Costas
Santos for their work in the local organizing committee of the summer school
and for their help in hosting 50 participants from Austria, Belarus, Belgium,
Denmark, England, France, Poland, Portugal, South Africa, Spain, Tunisia,
and the U.S.A. This summer school and these lecture notes and some of the
lecturers and participants were supported by INTAS Research Network on
Constructive Complex Approximation (03-51-6637) and by the SIAM activ-
ity group on Orthogonal Polynomials and Special Functions.
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VIII Preface

During the processing of this volume we received sad news of the sudden
death on December 16, 2005 of Vadim Kuznetsov, one of the contributors.
Vadim Kuznetsov enjoyed a very strong international reputation in the field
of integrable systems and was responsible for a number of fundamental contri-
butions to the development of separation of variables techniques by exploiting
the methods of integrability, a topic on which he lectured during the summer
school and which is the subject in his present contribution Orthogonal poly-
nomials and separation of variables. We dedicate this volume in memory of
Vadim Kuznetsov.

Vadim Kuznetsov 1963–2005

Leganés (Madrid) and Leuven, Francisco Marcellán
Walter Van Assche
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Painlevé Equations — Nonlinear Special Functions
Peter A. Clarkson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
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Orthogonal Polynomials, Quadrature, and
Approximation: Computational Methods and
Software (in Matlab)

Walter Gautschi

Department of Computer Sciences, Purdue University,
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e-mail: wxg@cs.purdue.edu

Summary. One of the main problems in the constructive theory of orthogonal
polynomials is the computation of the coefficients, if not known explicitly, in the
three-term recurrence relation satisfied by orthogonal polynomials. Two classes of
methods are discussed: those based on moment information, and those using dis-
cretization of the underlying inner product. Other computational problems consid-
ered are the computation of Cauchy integrals of orthogonal polynomials, and the
problem of modification, i.e., of ascertaining the effect on the recurrence coefficients
of multiplying the weight function by a (positive) rational function. Moment-based
methods and discretization algorithms are also available for generating Sobolev or-
thogonal polynomials, i.e., polynomials orthogonal with respect to an inner product
involving derivatives. Of particular interest here is the computation of their zeros.

Important applications of orthogonal polynomials are to the development of
quadrature rules of maximum algebraic degree of exactness, most notably Gauss-
type quadrature rules, but also Gauss-Kronrod and Gauss-Turán quadratures. Mod-
ification algorithms and discretization methods find application to constructing
quadrature rules exact not only for polynomials, but also for rational functions
with prescribed poles. Gauss-type quadrature rules are applicable also for comput-
ing Cauchy principal value integrals. Gaussian quadrature sums are expressible in
terms of the related Jacobi matrix, which has interesting applications to generating
orthogonal polynomials on several intervals and to the estimation of matrix func-
tionals.

In the realm of approximation, the classical use of orthogonal polynomials, in-
cluding Sobolev orthogonal polynomials, is to least squares approximation to which
interpolatory constraints may be added. Among other uses considered are moment-
preserving spline approximation and the summation of slowly convergent series.

All computational methods and applications considered are supported by a soft-
ware package, called OPQ, of Matlab routines which are downloadable individually
from the internet. Their use is illustrated throughout.
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1 Introduction

Orthogonal polynomials, unless they are classical, require special techniques
for their computation. One of the central problems is to generate the coeffi-
cients in the basic three-term recurrence relation they are known to satisfy.
There are two general approaches for doing this: methods based on moment
information, and discretization methods. In the former, one develops algo-
rithms that take as input given moments, or modified moments, of the un-
derlying measure and produce as output the desired recurrence coefficients.
In theory, these algorithms yield exact answers. In practice, owing to round-
ing errors, the results are potentially inaccurate depending on the numerical
condition of the mapping from the given moments (or modified moments) to
the recurrence coefficients. A study of related condition numbers is therefore
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of practical interest. In contrast to moment-based algorithms, discretization
methods are basically approximate methods: one approximates the underlying
inner product by a discrete inner product and takes the recurrence coefficients
of the corresponding discrete orthogonal polynomials to approximate those of
the desired orthogonal polynomials. Finding discretizations that yield satis-
factory rates of convergence requires a certain amount of skill and creativity
on the part of the user, although general-purpose discretizations are available
if all else fails.

Other interesting problems have as objective the computation of new or-
thogonal polynomials out of old ones. If the measure of the new orthogonal
polynomials is the measure of the old ones multiplied by a rational function,
one talks about modification of orthogonal polynomials and modification algo-
rithms that carry out the transition from the old to the new orthogonal poly-
nomials. This enters into a circle of ideas already investigated by Christoffel
in the 1850s, but effective algorithms have been obtained only very recently.
They require the computation of Cauchy integrals of orthogonal polynomials
— another interesting computational problem.

In the 1960s, a new type of orthogonal polynomials emerged — the so-
called Sobolev orthogonal polynomials — which are based on inner products
involving derivatives. Although they present their own computational chal-
lenges, moment-based algorithms and discretization methods are still two of
the main working tools. The computation of zeros of Sobolev orthogonal poly-
nomials is of particular interest in practice.

An important application of orthogonal polynomials is to quadrature,
specifically quadrature rules of the highest algebraic degree of exactness. Fore-
most among them is the Gaussian quadrature rule and its close relatives, the
Gauss–Radau and Gauss–Lobatto rules. More recent extensions are due to
Kronrod, who inserts n + 1 new nodes into a given n-point Gauss formula,
again optimally with respect to degree of exactness, and to Turán, who al-
lows derivative terms to appear in the quadrature sum. When integrating
functions having poles outside the interval of integration, quadrature rules of
polynomial/rational degree of exactness are of interest. Poles inside the in-
terval of integration give rise to Cauchy principal value integrals, which pose
computational problems of their own. Interpreting Gaussian quadrature sums
in terms of matrices allows interesting applications to orthogonal polynomials
on several intervals, and to the computation of matrix functionals.

In the realm of approximation, orthogonal polynomials, especially discrete
ones, find use in curve fitting, e.g. in the least squares approximation of dis-
crete data. This indeed is the problem in which orthogonal polynomials (in
substance if not in name) first appeared in the 1850s in work of Chebyshev.
The presence of interpolatory constraints can be handled by a modification
algorithm relative to special quadratic factors. Sobolev orthogonal polynomi-
als also had their origin in least squares approximation, when one tries to
fit simultaneously functions together with some of their derivatives. Physi-
cally motivated are approximations by spline functions that preserve as many
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moments as possible. Interestingly, these also are related to orthogonal poly-
nomials via Gauss and generalized Gauss-type quadrature formulae. Slowly
convergent series whose sum can be expressed as a definite integral naturally
invite the application of Gauss-type quadratures to speed up their conver-
gence. An example are series whose general term is expressible in terms of
the Laplace transform or its derivative of a known function. Such series occur
prominently in plate contact problems.

A comprehensive package, called OPQ, of Matlab routines is available that
can be used to work with orthogonal polynomials. It resides at the web site

http://www.cs.purdue.edu/archives/2002/wxg/codes/
and all its routines are downloadable individually.

2 Orthogonal Polynomials

2.1 Recurrence Coefficients

Background and Notation

Orthogonality is defined with respect to an inner product, which in turn in-
volves a measure of integration, dλ. An absolutely continuous measure has the
form

dλ(t) = w(t)dt on [a, b], −∞ ≤ a < b ≤ ∞,

where w is referred to as a weight function. Usually, w is positive on (a, b), in
which case dλ is said to be a positive measure and [a, b] is called the support
of dλ. A discrete measure has the form

dλN (t) =
N∑

k=1

wkδ(t− xk)dt, x1 < x2 < · · · < xN ,

where δ is the Dirac delta function, and usually wk > 0. The support of
dλN consists of its N support points x1, x2, . . . , xN . For absolutely continuous
measures, we make the standing assumption that all moments

μr =
∫

R

trdλ(t), r = 0, 1, 2, . . . ,

exist and are finite. The inner product of two polynomials p and q relative to
the measure dλ is then well defined by

(p, q)dλ =
∫

R

p(t)q(t)dλ(t),

and the norm of a polynomial p by

‖p‖dλ =
√

(p, p)dλ.
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Orthogonal polynomials relative to the (positive) measure dλ are defined by

πk( · ) = πk( · ; dλ) a polynomial of exact degree k, k = 0, 1, 2, . . . ,

(πk, π�)dλ

{
= 0, k �= �,
> 0, k = �.

There are infinitely many, if dλ is absolutely continuous, and they are uniquely
defined up to the leading coefficient. If all leading coefficients are equal to 1,
they are said to be monic. For a discrete measure dλN , there are exactly N or-
thogonal polynomials π0, π1, . . . , πN−1. Orthonormal polynomials are defined
and denoted by

π̃k( · ; dλ) =
πk( · ; dλ)
‖πk‖dλ

, k = 0, 1, 2, . . . .

They satisfy

(π̃k, π̃�)dλ = δk,� =
{

0, k �= �,
1, k = �.

Examples of measures resp. weight functions are shown in Tables 1 and 2. The
former displays the most important “classical” weight functions, the latter the
best-known discrete measures.

Three-Term Recurrence Relation

For any n (< N−1 if dλ = dλN ), the first n+1 monic orthogonal polynomials
satisfy a three-term recurrence relation

πk+1(t) = (t− αk)πk(t) − βkπk−1(t), k = 0, 1, . . . , n− 1,

π−1(t) = 0, π0(t) = 1,
(2.1)

where the recurrence coefficients αk = αk(dλ), βk = βk(dλ) are real and
positive, respectively. The coefficient β0 in (2.1) multiplies π−1 = 0, and hence
can be arbitrary. For later use, it is convenient to define

Table 1. “Classical” weight functions dλ(t) = w(t)dt

name w(t) support comment

Jacobi (1 − t)α(1 + t)β [−1, 1] α > −1,
β > −1

Laguerre tαe−t [0,∞] α > −1

Hermite |t|2αe−t2 [−∞,∞] α > − 1
2

Meixner- 1
2π

e(2φ−π)t|Γ (λ + it)|2 [−∞,∞] λ > 0,
Pollaczek 0 < φ < π
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Table 2. “Classical” discrete measures dλ(t) =
∑M

k=0
wkδ(t − k)dt

name M wk comment

discrete N − 1 1
Chebyshev

Krawtchouk N
(

N
k

)
pk(1 − p)N−k 0 < p < 1

Charlier ∞ e−aak/k! a > 0

Meixner ∞ ck

Γ (β)
Γ (k+β)

k!
0 < c < 1, β > 0

Hahn N
(

α+k
k

)(
β+N−k

N−k

)
α > −1, β > −1

β0 = β0(dλ) =
∫

R

dλ(t). (2.2)

The proof of (2.1) is rather simple if one expands πk+1(t) − tπk(t) ∈ Pk

in orthogonal polynomials π0, π1, . . . , πk and observes orthogonality and the
obvious, but important, property (tp, q)dλ = (p, tq)dλ of the inner product.
As a by-product of the proof, one finds the formulae of Darboux,

αk(dλ) =
(tπk, πk)dλ

(πk, πk)dλ
, k = 0, 1, 2, . . . ,

βk(dλ) =
(πk, πk)dλ

(πk−1, πk−1)dλ
, k = 1, 2, . . . .

(2.3)

The second yields
‖πk‖2

dλ = β0β1 · · ·βk. (2.4)

Placing the coefficients αk on the diagonal, and
√
βk on the two side diagonals

of a matrix produces what is called the Jacobi matrix of the measure dλ,

J(dλ) =

⎡⎢⎢⎢⎢⎢⎢⎣

α0

√
β1 0√

β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

0

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.5)

It is a real, symmetric, tridiagonal matrix of infinite order, in general. Its
principal minor matrix of order n will be denoted by

Jn(dλ) = J(dλ)[1:n,1:n]. (2.6)

Noting that the three-term recurrence relation for the orthonormal poly-
nomials is
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βk+1π̃k+1(t) = (t− αk)π̃k(t) −√

βkπ̃k−1(t), k = 0, 1, 2, . . . ,

π̃−1(t) = 0, π̃0(t) = 1/
√
β0,

(2.7)

or, in matrix form, with π̃(t) = [π̃0(t), π̃1(t), . . . , π̃n−1(t)]T,

tπ̃(t) = Jn(dλ)π̃(t) +
√
βnπ̃n(t)en, (2.8)

one sees that the zeros τν of π̃n( · ; dλ) are precisely the eigenvalues of Jn(dλ),
and π̃(τν) corresponding eigenvectors. This is only one of many reasons why
knowledge of the Jacobi matrix, i.e. of the recurrence coefficients, is of great
practical interest. For classical measures as the ones in Tables 1 and 2, all
recurrence coefficients are explicitly known (cf. [10, Tables 1.1 and 1.2]). In
most other cases, they must be computed numerically.

In the OPQ package, routines generating recurrence coefficients have the
syntax ab=r name(N), where name identifies the name of the orthogonal poly-
nomial and N is an input parameter specifying the number of αk and of βk

desired. There may be additional input parameters. The αs and βs are stored
in the N×2 array ab:

α0 β0

α1 β1

...
...

αN−1 βN−1

N ∈ N.

For example, ab=r jacobi(N,a,b) generates the first N recurrence coefficients
of the (monic) Jacobi polynomials with parameters α=a, β=b.

Demo#1 The first ten recurrence coefficients for the Jacobi polynomials
with parameters α = − 1

2 , β = 3
2 .

The Matlab command, followed by the output, is shown in the box below.

>> ab=r jacobi(10,-.5,1.5)
ab =

6.666666666666666e-01 4.712388980384690e+00
1.333333333333333e-01 1.388888888888889e-01
5.714285714285714e-02 2.100000000000000e-01
3.174603174603174e-02 2.295918367346939e-01
2.020202020202020e-02 2.376543209876543e-01
1.398601398601399e-02 2.417355371900826e-01
1.025641025641026e-02 2.440828402366864e-01
7.843137254901961e-03 2.455555555555556e-01
6.191950464396285e-03 2.465397923875433e-01
5.012531328320802e-03 2.472299168975069e-01
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2.2 Modified Chebyshev Algorithm

The first 2n moments μ0, μ1, . . . , μ2n−1 of a measure dλ uniquely determine
the first n recurrence coefficients αk(dλ) and βk(dλ), k = 0, 1, . . . , n−1. How-
ever, the corresponding moment map R2n �→ R2n : [μk]2n−1

k=0 �→ [αk, βk]n−1
k=0 is

severely ill-conditioned when n is large. Therefore, other moment maps must
be sought that are better conditioned. One that has been studied extensively
in the literature is based on modified moments

mk =
∫

R

pk(t)dλ(t), k = 0, 1, 2, . . . , (2.9)

where {pk}, pk ∈ Pk, is a given system of polynomials chosen to be close
in some sense to the desired polynomials {πk}. We assume that pk, like πk,
satisfies a three-term recurrence relation

pk+1(t) = (t− ak)pk(t) − bkπk−1(t), k = 0, 1, 2, . . . ,

p−1(t) = 0, p0(t) = 1,
(2.10)

but with coefficients ak ∈ R, bk ≥ 0, that are known. The case ak = bk = 0
yields powers pk(t) = tk, hence ordinary moments μk, which however, as
already mentioned, is not recommended.

The modified moment map

R2n �→ R2n : [mk]2n−1
k=0 �→ [αk, βk]n−1

k=0 (2.11)

and related maps have been well studied from the point of view of conditioning
(cf. [10, §2.1.5 and 2.1.6]). The maps are often remarkably well-conditioned,
especially for measures supported on a finite interval, but can still be ill-
conditioned otherwise.

An algorithm that implements the map (2.11) is the modified Chebyshev
algorithm (cf. [10, §2.1.7]), which improves on Chebyshev’s original algorithm
based on ordinary moments. To describe it, we need the mixed moments

σk� =
∫

R

πk(t; dλ)p�(t)dλ(t), k, � ≥ −1, (2.12)

which by orthogonality are clearly zero if � < k.
Algorithm 1 Modified Chebyshev algorithm

initialization:
α0 = a0 + m1/m0, β0 = m0,
σ−1,� = 0, � = 1, 2, . . . , 2n− 2,
σ0,� = m�, � = 0, 1, . . . , 2n− 1

continuation (if n > 1): for k = 1, 2, . . . , n− 1 do
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l

k

sk,l

s-1,l=0

s0,l=ml

Computing stencil

0

0 0 0 0 0 0 0 0

n-1

2n-1

Fig. 1. Modified Chebyshev algorithm, schematically

σk� = σk−1,�+1 − (αk−1 − a�)σk−1,� − βk−1σk−2,�

+ b�σk−1,k−1, � = k, k + 1, . . . , 2n− k − 1,

αk = ak +
σk,k+1

σkk
− σk−1,k

σk−1,k−1
, βk =

σkk

σk−1,k−1
.

If ak = bk = 0, Algorithm 1 reduces to Chebyshev’s original algorithm.
Fig. 1 depicts the trapezoidal array of the mixed moments and the com-

puting stencil indicating that the circled entry is computed in terms of the
four entries below. The entries in boxes are used to compute the αs and βs.

The OPQ Matlab command that implements the modified Chebyshev algo-
rithm has the form ab=chebyshev(N,mom,abm), where mom is the 1×2N array
of the modified moments, and abm the (2N−1)×2 array of the recurrence co-
efficients ak, bk from (2.10) needed in Algorithm 1:

m0 m1 m2 · · · m2N−1

mom

a0 b0
a1 b1
...

...
a2N−2 b2N−2

abm
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If the input parameter abm is omitted, the routine assumes ak = bk = 0 and
implements Chebyshev’s original algorithm.

Demo#2 “Elliptic” orthogonal polynomials.
These are orthogonal relative to the measure

dλ(t) = [(1 − ω2t2)(1 − t2)]−1/2dt on [−1, 1], 0 ≤ ω < 1.

To apply the modified Chebyshev algorithm, it seems natural to employ
Chebyshev moments (i.e. pk = the monic Chebyshev polynomial of degree
k)

m0 =
∫ 1

−1

dλ(t), mk =
1

2k−1

∫ 1

−1

Tk(t)dλ(t), k ≥ 1.

Their computation is not entirely trivial (cf. [10, Example 2.29]), but a stable
algorithm is available as OPQ routine mm ell.m, which for given N generates
the first 2N modified moments of dλ with ω2 being input via the parameter
om2. The complete Matlab routine is as follows:

function ab=r elliptic(N,om2)
abm=r jacobi(2*N-1,-1/2);
mom=mm ell(N,om2);
ab=chebyshev(N,mom,abm)

For om2=.999 and N=40, results produced by the routine are partially shown
in the box below.

ab =
0 9.682265121100620e+00
0 7.937821421385184e-01
0 1.198676724605757e-01
0 2.270401183698990e-01
0 2.410608787266061e-01
0 2.454285325203698e-01
0 2.473016530297635e-01
0 2.482587060199245e-01
...

...
0 2.499915376529289e-01
0 2.499924312667191e-01
0 2.499932210069769e-01

Clearly, βk → 1
4 as k → ∞, which is consistent with the fact that dλ belongs

to the Szegő class (cf. [10, p. 12]). Convergence, in fact, is monotone for k ≥ 2.

2.3 Discrete Stieltjes and Lanczos Algorithm

Computing the recurrence coefficients of a discrete measure is a prerequisite
for discretization methods to be discussed in the next section. Given the mea-
sure
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dλN (t) =
N∑

k=1

wkδ(t− xk)dt, (2.13)

the problem is to compute αν,N = αν(dλN ), βν,N = βν(dλN ) for all ν ≤ n−1,
n ≤ N , which will provide access to the discrete orthogonal polynomials of
degrees up to n, or else, to determine the Jacobi matrix JN (dλN ), which will
provide access to all discrete orthogonal polynomials. There are two methods
in use, a discrete Stieltjes procedure and a Lanczos-type algorithm.

Discrete Stieltjes Procedure

Since the inner product for the measure (2.13) is a finite sum,

(p, q)dλN
=

N∑
k=1

wkp(xk)q(xk), (2.14)

Darboux’s formulae (2.3) seem to offer attractive means of computing the
desired recurrence coefficients, since all inner products appearing in these
formulae are finite sums. The only problem is that we do not yet know the
orthogonal polynomials πk = πk,N involved. For this, however, we can make
use of an idea already expressed by Stieltjes in 1884: combine Darboux’s
formulae with the basic three-term recurrence relation. Indeed, when k = 0
we know that π0,N = 1, so that Darboux’s formula for α0(dλN ) can be applied,
and β0(dλN ) is simply the sum of the weights wk. Now that we know α0(dλN ),
we can apply the recurrence relation (2.1) for k = 0 to compute π1,N (t) for
t = xk, k = 1, 2, . . . , N . We then have all the information at hand to reapply
Darboux’s formulae for α1,N and β1,N , which in turn allows us to compute
π2,N (t) for all t = xk from (2.1). In this manner we proceed until all αν,N ,
βν,N , ν ≤ n − 1, are determined. If n = N , this will yield the Jacobi matrix
JN (dλN ).

The procedure is quite effective, at least when n � N . As n approaches
N , instabilities may develop, particularly if the support points xk of dλN are
equally, or nearly equally, spaced.

The OPQ routine implementing Stieltjes’s procedure is called by ab=
stieltjes(n,xw), where n ≤ N , and xw is an N × 2 array containing the
support points and weights of the inner product,

x1 w1
x2 w2
...

...
xN wN

xw

As usual, the recurrence coefficients αν,N , βν,N , 0 ≤ ν ≤ n− 1, are stored in
the n×2 array ab.
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Lanczos-type Algorithm

Lanczos’s algorithm is a general procedure to orthogonally tridiagonalize a
given symmetric matrix A. Thus, it finds an orthogonal matrix Q and a
symmetric tridiagonal matrix T such that QTAQ = T . Both Q and T are
uniquely determined by the first column of Q.

Given the measure (2.13), it is known that an orthogonal matrix Q ∈
R(N+1)×(N+1) exists, with the first column being e1 = [1, 0, . . . , 0]T ∈ RN+1,
such that (see [10, Corollary to Theorem 3.1])

QT

⎡⎢⎢⎢⎢⎣
1

√
w1

√
w2 · · · √wN√

w1 x1 0 · · · 0√
w2 0 x2 · · · 0
...

...
...

. . .
...√

wN 0 0 · · · xN

⎤⎥⎥⎥⎥⎦Q =

⎡⎢⎢⎢⎢⎣
1

√
β0 0 · · · 0√

β0 α0

√
β1 · · · 0

0
√
β1 α1 · · · 0

...
...

...
. . .

...
0 0 0 · · · αN−1

⎤⎥⎥⎥⎥⎦ , (2.15)

where αk = αk,N , βk = βk,N . We are thus in the situation described above,
where A is the matrix displayed on the left and T the matrix on the right,
the desired Jacobi matrix JN (dλN ) bordered by a first column and a first
row containing β0. The computation can be arranged so that only the leading
principal minor matrix of order n + 1 is obtained.

Lanczos’s algorithm in its original form (published in 1950) is numerically
unstable, but can be stabilized using ideas of Rutishauser (1963). An algorithm
and pseudocode of Gragg and Harrod [14], using a sequence of Givens rotations
to construct the matrix Q in (2.15), forms the basis for the OPQ Matlab code
ab=lanczos(n,xw), where the input and output parameters have the same
meaning as in the routine stieltjes.m.

This routine enjoys good stability properties but may be considerably
slower than Stieltjes’s procedure.

2.4 Discretization Methods

The basic idea is to discretize the given measure dλ, i.e. approximate it by a
discrete measure

dλ(t) ≈ dλN (t), (2.16)

and then use the recurrence coefficients αk(dλN ), βk(dλN ) of the discrete
measure to approximate αk(dλ), βk(dλ). The former are computed by either
Stieltjes’s procedure or a Lanczos-type algorithm. The effectiveness of the
method is crucially tied to the quality of the discretization. We illustrate this
by a simple, yet instructive, example.
Example 1. Chebyshev weight function plus a constant,

w(t) = (1 − t2)−1/2 + c on [−1, 1], c > 0.

It suffices to approximate the inner product for the weight function w. This
can always be done by using appropriate quadrature formulae. In the case at
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hand, it is natural to treat the two parts of the weight function separately,
indeed to use Gauss–Chebyshev quadrature for the first part and Gauss–
Legendre quadrature for the second,

(p, q)w =
∫ 1

−1

p(t)q(t)(1 − t2)−1/2dt + c

∫ 1

−1

p(t)q(t)dt

≈
M∑

k=1

wCh
k p(xCh

k )q(xCh
k ) + c

M∑
k=1

wL
kp(x

L
k )q(xL

k ). (2.17)

Here, xCh
k , wCh

k are the nodes and weights of the M -point Gauss–Chebyshev
quadrature rule, and xL

k , wL
k those of the Gauss–Legendre quadrature rule.

The discrete measure implied by (2.17) is dλN with N = 2M and

dλN (t) =
M∑

k=1

wCh
k δ(t− xCh

k ) + c

M∑
k=1

wL
k δ(t− xL

k ). (2.18)

What is attractive about this choice is the fact that the approximation in
(2.17) is actually an equality whenever the product p · q is a polynomial of
degree ≤ 2M − 1. Now if we are interested in computing αk(w), βk(w) for
k ≤ n− 1, then the products p · q that occur in Darboux’s formulae are all of
degree ≤ 2n− 1. Therefore, we have equality in (2.17) if n ≤ M . It therefore
suffices to take M = n in (2.17) to obtain the first n recurrence coefficients
exactly.

In general, the quadrature rules will not produce exact results, and M will
have to be increased through a sequence of integers until convergence occurs.

Example 1 illustrates the case of a 2-component discretization. In a general
multiple-component discretization, the support [a, b] of dλ is decomposed into
s intervals,

[a, b] =
s⋃

j=1

[aj , bj ], (2.19)

where the intervals [aj , bj ] may or may not be disjoint. The measure dλ is
then discretized on each interval [aj , bj ] using either a tailor-made M -point
quadrature (as in Example 1), or a general-purpose quadrature. For the latter,
a Fejér quadrature rule on [−1, 1], suitably transformed to [aj , bj ], has been
found useful. (The Fejér rule is the interpolatory quadrature formula based
on Chebyshev points.) If the original measure dλ has also a discrete compo-
nent, this component is simply added on. Rather than go into details (which
are discussed in [10, §2.2.4]), we present the Matlab implementation, another
illustrative example, and a demo.

The OPQ routine for the multiple-component discretization is ab=mcdis
(N,eps0,quad,Mmax), where in addition to the variables ab and n, which
have the usual meaning, there are three other parameters, eps0: a prescribed
accuracy tolerance, quad: the name of a quadrature routine carrying out
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the discretization on each subinterval if tailor-made (otherwise, quadgp.m,
a general-purpose quadrature routine can be used), Mmax: a maximal allow-
able value for the discretization parameter M . The decomposition (2.19) is
input via the mc×2 array

AB=

a1 b1
a2 b2
...

...
amc bmc

where mc is the number of components (the s in (2.19)). A discrete component
which may possibly be present in dλ is input via the array

DM=

x1 y1

x2 y2

...
...

xmp ymp

with the first column containing the support points, and the second column
the associated weights. The number of support points is mp. Both mc and mp,
as well as AB and DM, are global variables. Another global variable is iq, which
has to be set equal to 1 if the user provides his or her own quadrature routine,
and equal to 0 otherwise.
Example 2. The normalized Jacobi weight function plus a discrete measure.

This is the measure

dλ(t) = (βJ
0)−1(1 − t)α(1 + t)βdt +

p∑
j=1

wjδ(t− xj)dt on [−1, 1],

where

βJ
0 =

∫ 1

−1

(1 − t)α(1 + t)βdt, α > −1, β > −1.

Here, one single component suffices to do the discretization, and the obvious
choice of quadrature rule is the Gauss–Jacobi M -point quadrature formula to
which the discrete component is added on. Similarly as in Example 1, taking
M = n yields the first n recurrence coefficients αk(dλ), βk(dλ), k ≤ n − 1,
exactly. The global parameters in Matlab are here mc=1, mp=p, iq=1, and

AB= −1 1 DM=

x1 w1

x2 w2

...
...

xp wp

Demo#3 Logistic density function,



Computational Methods 15

dλ(t) =
e−t

(1 + e−t)2
dt, t ∈ R.

The discretization is conveniently effected by the quadrature rule∫
R

p(t)dλ(t) =
∫ ∞

0

p(−t)
(1 + e−t)2

e−tdt +
∫ ∞

0

p(t)
(1 + e−t)2

e−tdt

≈
M∑

k=1

λL
k

p(−τL
k ) + p(τL

k )
(1 + e−τL

k )2
,

where τL
k , λL

k are the nodes and weights of the M -point Gauss–Laguerre
quadrature formula. This no longer produces exact results for M = n, but
converges rapidly as M → ∞. The exact answers happen to be known,

αk(dλ) = 0 by symmetry,

β0(dλ) = 1, βk(dλ) =
k4π2

4k2 − 1
, k ≥ 1.

Numerical results produced by mcdis.m with N=40, eps0=103×eps, along
with errors (absolute errors for αk, relative errors for βk) are shown in the
box below. The two entries in the bottom row are the maximum errors taken
over 0 ≤ n ≤ 39.

n βn errα errβ
0 1.0000000000(0) 7.18(–17) 3.33(–16)
1 3.2898681337(0) 1.29(–16) 2.70(–16)
6 8.9447603523(1) 4.52(–16) 1.43(–15)
15 5.5578278399(2) 2.14(–14) 0.00(+00)
39 3.7535340252(3) 6.24(–14) 4.48(–15)

6.24(–14) 8.75(–15)

2.5 Cauchy Integrals of Orthogonal Polynomials

The Jacobi Continued Fraction

The Jacobi continued fraction associated with the measure dλ is

J = J (t; dλ) =
β0

t− α0 −
β1

t− α1 −
β2

t− α2 −
· · · , (2.20)

where αk = αk(dλ), βk = βk(dλ). From the theory of continued fractions it
is readily seen that the nth convergent of J is

β0

z − α0 −
β1

z − α1 −
· · · βn−1

z − αn−1
=

σn(z; dλ)
πn(z; dλ)

, n = 1, 2, 3, . . . , (2.21)

where πn is the monic orthogonal polynomial of degree n, and σn a polynomial
of degree n−1 satisfying the same basic three-term recurrence relation as πn,
but with different starting values,
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σk+1(z) = (z − αk)σk(z) − βkσk−1(z), k = 1, 2, 3, . . . ,

σ0(z) = 0, σ1(z) = β0.
(2.22)

Recall that β0 =
∫

R
dλ(t). If we define σ−1 = −1, then (2.22) holds also for

k = 0. We have, moreover,

σn(z) =
∫

R

πn(z) − πn(t)
z − t

dλ(t), n = 0, 1, 2, . . . , (2.23)

as can be seen by showing that the integral on the right also satisfies (2.22).
If we define

F (z) = F (z; dλ) =
∫

R

dλ(t)
z − t

(2.24)

to be the Cauchy transform of the measure dλ, and more generally consider

ρn(z) = ρn(z; dλ) =
∫

R

πn(t)
z − t

dλ(t), (2.25)

the Cauchy integral of the orthogonal polynomial πn, we can give (2.23) the
form

σn(z) = πn(z)F (z) − ρn(z), (2.26)

and hence
σn(z)
πn(z)

= F (z) − ρn(z)
πn(z)

. (2.27)

An important result from the theory of the moment problem tells us that,
whenever the moment problem for dλ is determined, then

lim
n→∞

σn(z)
πn(z)

= F (z) for z ∈ C\[a, b], (2.28)

where [a, b] is the support of the measure dλ. If [a, b] is a finite interval, then
the moment problem is always determined, and (2.28) is known as Markov’s
theorem.

Note from (2.26) that, since σ−1 = −1, we have

ρ−1(z) = 1, (2.29)

and the sequence {ρn}∞n=−1 satisfies the same three-term recurrence relation
as {πn}∞n=−1. As a consequence of (2.27) and (2.28), however, it behaves quite
differently at infinity,

lim
n→∞

ρn(z)
πn(z)

= 0, (2.30)

which implies that {ρn(z)} is the minimal solution of the three-term recur-
rence relation having the initial value (2.29). It is well known that a minimal
solution of a three-term recurrence relation is uniquely determined by its
starting value, and, moreover, that
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ρn(z)
ρn−1(z)

=
βn

z − αn−
βn+1

z − αn+1−
βn+2

z − αn+2−
· · · , (2.31)

i.e. the successive ratios of the minimal solution are the successive tails of the
Jacobi continued fraction (Pincherle’s theorem). In particular, by (2.31) for
n = 0, and (2.21), (2.28) and (2.29),

ρ0(z) = F (z), (2.32)

i.e., ρ0 is the Cauchy transform of the measure.
We remark that (2.25) is meaningful also for real z = x in (a, b), if the

integral is interpreted as a Cauchy principal value integral (cf. (4.36))

ρn(x) =
∫

R

− πn(t; dλ)
x− t

dλ(t), x ∈ (a, b), (2.33)

and the sequence {ρn(x)} satisfies the basic three-term recurrence relation
with initial values

ρ−1(x) = 1, ρ0(x) =
∫

R

− dλ(t)
x− t

, (2.34)

but is no longer minimal.

Continued Fraction Algorithm

This is an algorithm for computing the minimal solution ρn(z), z ∈ C\[a, b],
of the basic three-term recurrence relation. Denote the ratio in (2.31) by

rn−1 =
ρn(z)
ρn−1(z)

. (2.35)

Then, clearly,

rn−1 =
βn

z − αn − rn
. (2.36)

If, for some ν ≥ N , we knew rν , we could apply (2.36) for r = ν, ν − 1, . . . , 0,
and then obtain

ρn(z) = rn−1ρn−1(z), n = 0, 1, . . . , N. (2.37)

The continued fraction algorithm is precisely this algorithm, except that rν is
replaced by 0. All quantities generated then depend on ν, which is indicated
by a superscript.

Algorithm 2 Continued fraction algorithm
backward phase; ν ≥ N :

r[ν]
ν = 0, r

[ν]
n−1 =

βn

z − αn − r
[ν]
n

, n = ν, ν − 1, . . . , 0.



18 Walter Gautschi

forward phase:

ρ
[ν]
−1(z) = 1, ρ[ν]

n (z) = r
[ν]
n−1ρ

[ν]
n−1(z), n = 0, 1, . . . , N.

It can be shown that, as a consequence of the minimality of {ρn(z)} (cf. [10,
pp. 114–115]),

lim
ν→∞ ρ[ν]

n (z) = ρn(z), n = 0, 1, . . . , N, if z ∈ C\[a, b]. (2.38)

Convergence is faster the larger dist(z, [a, b]). To compute ρn(z), it suffices to
apply Algorithm 2 for a sequence of increasing values of ν until convergence
is achieved to within the desired accuracy.

The OPQ command implementing this algorithm is

[rho,r,nu]=cauchy(N,ab,z,eps0,nu0,numax)

where the meanings of the output variables rho, r and input variable ab are
as shown below.

ρ0(z)
ρ1(z)

...
ρN (z)

r0(z)
r1(z)

...
rN (z)

α0 β0

α1 β1

...
...

αnumax βnumax

rho r ab
The input variable eps0 is an error tolerance, the variable nu0 a suitable
starting value of ν in Algorithm 2, which is incremented in steps of, say 5,
until the algorithm converges to the accuracy eps0. If convergence does not
occur within ν ≤ numax, an error message is issued, otherwise the value of ν
yielding convergence is output as nu.

2.6 Modification Algorithms

By “modification” of a measure dλ, we mean here multiplication of dλ by a
rational function r which is positive on the support [a, b] of dλ. The modified
measure thus is

dλ̂(t) = r(t)dλ(t), r rational and r > 0 on [a, b]. (2.39)

We are interested in determining the recurrence coefficients α̂k, β̂k for dλ̂ in
terms of the recurrence coefficients αk, βk of dλ. An algorithm that carries out
the transition from αk, βk to α̂k, β̂k is called a modification algorithm. While
the passage from the orthogonal polynomials relative to dλ to those relative
to dλ̂ is classical (at least in the case when r is a polynomial), the transition
in terms of recurrence coefficients is more recent. It was first treated for linear
factors in 1971 by Galant.
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Example 3. Linear factor r(t) = s(t− c), c ∈ R\[a, b], s = ±1.
Here, s is a sign factor to make r(t) > 0 on (a, b). Galant’s approach

is to determine the Jacobi matrix of dλ̂ from the Jacobi matrix of dλ by
means of one step of the symmetric, shifted LR algorithm: by the choice of
s, the matrix s[Jn+1(dλ)− cI] is symmetric positive definite, hence admits a
Cholesky decomposition

s[Jn+1(dλ) − cI] = LLT,

where L is lower triangular. The Jacobi matrix Jn(dλ̂) is now obtained by
reversing the order of the product on the right, adding back the shift c, and
then discarding the last row and column,1

Jn(dλ̂) =
(
LTL + cI

)
[1:n,1:n]

.

Since the matrices involved are tridiagonal, the procedure can be implemented
by simple nonlinear recurrence relations. These can also be obtained more
systematically via Christoffel’s theorem and its generalizations.

Generalized Christoffel’s Theorem

We write

dλ̂(t) =
u(t)
v(t)

dλ(t), u(t) = ±
�∏

λ=1

(t− uλ), v(t) =
m∏

μ=1

(t− vμ), (2.40)

where uλ and vμ are real numbers outside the support of dλ. The sign of u(t)
is chosen so that dλ̂ is a positive measure. Christoffel’s original theorem (1858)
relates to the case v(t) = 1, i.e. m = 0. The generalization to arbitrary v is
due to Uvarov (1969). It has a different form depending on whether m ≤ n or
m > n. In the first case, it states that

u(t)πn(t; dλ̂) = const ×∣∣∣∣∣∣∣∣∣∣∣∣∣∣

πn−m(t) · · · πn−1(t) πn(t) · · · πn+�(t)
πn−m(u1) · · · πn−1(u1) πn(u1) · · · πn+�(u1)

· · · · · · · · · · · · · · · · · ·
πn−m(u�) · · · πn−1(u�) πn(u�) · · · πn+�(u�)
ρn−m(v1) · · · ρn−1(v1) ρn(v1) · · · ρn+�(v1)

· · · · · · · · · · · · · · · · · ·
ρn−m(vm) · · · ρn−1(vm) ρn(vm) · · · ρn+�(vm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.41)

where

ρk(z) =
∫

R

πk(t; dλ)
z − t

dλ(t), k = 0, 1, 2, . . . ,

1 See, e.g. [9], where it is also shown how a quadratic factor (t− c1)(t− c2) can be
dealt with by one step of the QR algorithm; see in particular §3.2 and 3.3
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are the Cauchy integrals of the orthogonal polynomials πk. They occur only
if m > 0. To get monic polynomials, the constant in (2.41) must be taken to
be the reciprocal of the (signed) cofactor of the element πn+�(t).

If m > n, the generalized Christoffel theorem has the form

u(t)πn(t; dλ̂) = const ×∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 π0(t) · · · πn+�(t)
0 0 · · · 0 π0(u1) · · · πn+�(u1)
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 π0(u�) · · · πn+�(u�)
1 v1 · · · vm−n−1

1 ρ0(v1) · · · ρn+�(v1)
· · · · · · · · · · · · · · · · · · · · ·
1 vm · · · vm−n−1

m ρ0(vm) · · · ρn+�(vm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.42)

Both versions of the theorem remain valid for complex uλ, vμ if orthogo-
nality is understood in the sense of formal orthogonality.

Linear Factor

Generalizing Example 3 to arbitrary complex shifts, we let

dλ̂(t) = (t− z)dλ(t), z ∈ C\[a, b]. (2.43)

Using Christoffel’s theorem, letting π̂n( · ) = πn( · ; dλ̂), we have

(t− z)π̂n(t) =

∣∣∣∣πn(t) πn+1(t)
πn(z) πn+1(z)

∣∣∣∣
−πn(z)

= πn+1(t) − rnπn(t), (2.44)

where

rn =
πn+1(z)
πn(z)

. (2.45)

Following Verlinden [17], we write (t − z)tπ̂k(t) in two different ways: in the
first, we use the three-term recurrence relation for πk to obtain

(t− z)tπ̂k(t) = tπk+1(t) − rk · tπk(t)

= πk+2(t) + (αk+1 − rk)πk+1(t) + (βk+1 − rkαk)πk(t) − rkβkπk−1(t);

in the second, we use the three-term recurrence relation directly on π̂k, and
then apply (2.44), to write

(t− z)tπ̂k(t) = (t− z)[π̂k+1 + α̂kπ̂k(t) + β̂kπ̂k−1(t)]

= πk+2(t) + (α̂k − rk+1)πk+1(t) + (β̂k − rkα̂k)πk(t) − rk−1β̂kπk−1(t).
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Since orthogonal polynomials are linearly independent, the coefficients in the
two expressions obtained must be the same. This yields

α̂k − rk+1 = αk+1 − rk, rk−1β̂k = rkβk,

hence the following algorithm.
Algorithm 3 Modification by a linear factor t− z

initialization:

r0 = z − α0, r1 = z − α1 − β1/r0,

α̂0 = α1 + r1 − r0, β̂0 = −r0 β0.

continuation (if n > 1): for k = 1, 2, . . . , n− 1 do

rk+1 = z − αk+1 − βk+1/rk,

α̂k = αk+1 + rk+1 − rk,

β̂k = βkrk/rk−1.

Note that this requires αn, βn in addition to the usual n recurrence coefficients
αk, βk for k ≤ n− 1. Algorithm 3 has been found to be numerically stable.

The OPQ Matlab command implementing Algorithm 3 is

ab=chri1(N,ab0,z)

where ab0 is an (N+1)×2 array containing the recurrence coefficients αk, βk,
k = 0, 1, . . . , N.

Quadratic Factor

We consider (real) quadratic factors (t− x)2 + y2 = (t− z)(t− z), z = x+ iy,
y > 0. Christoffel’s theorem is now applied with u1 = z, u2 = z to express
(t− z)(t− z)π̂n(t) as a linear combination of πn, πn+1, and πn+2,

(t− z)(t− z)π̂n(t) = πn+2(t) + snπn+1(t) + tnπn(t), (2.46)

where

sn = −
(
r′n+1 +

r′′n+1

r′′n
r′n

)
, tn =

r′′n+1

r′′n
|rn|2. (2.47)

Here we use the notation

r′n = Re rn(z), r′′n = Im rn(z), |rn|2 = |rn(z)|2, n = 0, 1, 2, . . . , (2.48)

where rn(z) continues to be the quantity defined in (2.45). The same tech-
nique used before can be applied to (2.46): express (t− z)(t− z)tπ̂k(t) in two
different ways as a linear combination of πk+3, πk+2, . . . , πk−1 and compare
the respective coefficients. The result gives rise to the following algorithm.
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Algorithm 4 Modification by a quadratic factor (t− z)(t− z), z = x + iy
initialization:

r0 = z − α0, r1 = z − α1 − β1/r0, r2 = z − α2 − β2/r1,

α̂0 = α2 + r′2 +
r′′2
r′′1

r′1 −
(
r′1 +

r′′1
r′′0

r′0

)
,

β̂0 = β0(β1 + |r0|2).

continuation (if n > 1): for k = 1, 2, . . . , n− 1 do

rk+2 = z − αk+2 − βk+2/rk+1,

α̂k = αk+2 + r′k+2 +
r′′k+2

r′′k+1

r′k+1 −
(
r′k+1 +

r′′k+1

r′′k
r′k

)
,

β̂k = βk

r′′k+1r
′′
k−1

[r′′k ]2

∣∣∣∣ rk

rk−1

∣∣∣∣2.
Note that this requires αk, βk for k up to n + 1. Algorithm 4 is also quite
stable, numerically.

The OPQ routine for Algorithm 4 is

ab=chri2(N,ab0,x,y)

with obvious meanings of the variables involved.
Since any real polynomial can be factored into a product of real linear and

quadratic factors of the type considered, Algorithms 3 and 4 can be applied
repeatedly to deal with modification by an arbitrary polynomial which is
positive on the support [a, b].

Linear Divisor

In analogy to (2.43), we consider

dλ̂(t) =
dλ(t)
t− z

, z ∈ C\[a, b]. (2.49)

Now the generalized Christoffel theorem (with � = 0, m = 1) comes into play,
giving

π̂n(t) =

∣∣∣∣ πn−1(t) πn(t)
ρn−1(z) ρn(z)

∣∣∣∣
−ρn−1(z)

= πn(t) − rn−1πn−1(t), (2.50)

where now

rn =
ρn+1(z)
ρn(z)

. (2.51)
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Similarly as before, we express tπ̂k(t) in two different ways as a linear combi-
nation of πk+1, πk, . . . , πk−2 and compare coefficients. By convention,

β̂0 =
∫

R

dλ̂(t) =
∫

R

dλ(t)
t− z

= −ρ0(z).

The result is:

Algorithm 5 Modification by a linear divisor
initialization:

α̂0 = α0 + r0, β̂0 = −ρ0(z).

continuation (if n > 1): for k = 1, 2, . . . , n− 1 do

α̂k = αk + rk − rk−1,

β̂k = βk−1rk−1/rk−2.

Note that here no coefficient αk, βk beyond k ≤ n − 1 is needed, not even
βn−1.

The ratios rk of Cauchy integrals that appear in Algorithm 5 can be pre-
computed by Algorithm 2, where only the backward phase is relevant, conver-
gence being tested on the r

[ν]
k . Once converged, the algorithm also provides

ρ0(z) = r
[∞]
−1 .

As z approaches the support interval [a, b], the strength of minimality of
the Cauchy integrals {ρk(z)} weakens and ceases altogether when z = x ∈
[a, b]. For z very close to [a, b], Algorithm 2 therefore converges very slowly.
On the other hand, since minimality is very weak, one can generate ρk with
impunity, if n is not too large, by forward application of the basic three-term
recurrence relation, using the initial values ρ−1(z) = 1 and ρ0(z).

All of this is implemented in the OPQ routine

[ab,nu]=chri4(N,ab0,z,eps0,nu0,numax,rho0,iopt)

where all variables except rho and iopt have the same meaning as before. The
parameter rho is ρ0(z), whereas iopt controls the method of computation for
rk: Algorithm 2 if iopt=1, and forward recursion otherwise.

Quadratic Divisor

We now consider

dλ̂(t) =
dλ(t)

(t− z)(t− z)
=

dλ(t)
(t− x)2 + y2

, z = x + iy, x ∈ R, y > 0. (2.52)

Here we have
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α̂0 =

∫
R

tdλ(t)/|t− z|2∫
R

dλ(t)/|t− z|2
= x + y

Re ρ0(z)
Im ρ0(z)

, β̂0 = −1
y

Im ρ0(z). (2.53)

We are in the case � = 0, m = 2 of the generalized Christoffel theorems (2.41)
and (2.42), which give respectively

π̂n(t) =

∣∣∣∣∣∣
πn−2(t) πn−1(t) πn(t)
ρn−2(z) ρn−1(z) ρn(z)
ρn−2(z) ρn−1(z) ρn(z)

∣∣∣∣∣∣∣∣∣∣ρn−2(z) ρn−1(z)
ρn−2(z) ρn−1(z)

∣∣∣∣ , n ≥ 2; π̂1(t) =

∣∣∣∣∣∣
0 π0(t) π1(t)
1 ρ0(z) ρ1(z)
1 ρ0(z) ρ1(z)

∣∣∣∣∣∣∣∣∣∣ 1 ρ0(z)
1 ρ0(z)

∣∣∣∣ . (2.54)

This becomes

π̂n(t) = πn(t) + snπn−1(t) + tnπn−2(t), n ≥ 1, (2.55)

where

sn = −
(
r′n−1 +

r′′n−1

r′′n−2

r′n−2

)
, n ≥ 1; tn =

r′′n−1

r′′n−2

|rn−2|2, n ≥ 2, (2.56)

with rn as defined in (2.51) and notation as in (2.48). Exactly the same pro-
cedure used to obtain Algorithm 5 yields

Algorithm 6 Modification by a quadratic divisor
initialization:

α̂0 = x + ρ′0y/ρ
′′
0 , β̂0 = −ρ′′0/y,

α̂1 = α1 − s2 + s1, β̂1 = β1 + s1(α0 − α̂1) − t2,

α̂2 = α2 − s3 + s2, β̂2 = β2 + s2(α1 − α̂2) − t3 + t2.

continuation (if n > 3): for k = 3, 4, . . . , n− 1 do

α̂k = αk − sk+1 + sk, β̂k = βk−2 tk/tk−1.

The OPQ routine for Algorithm 6 is

[ab,nu]=chri5(N,ab0,z,eps0,nu0,numax,rho0,iopt)

where the input and output variables have the same meaning as in the routine
chri4.m.

Just like Algorithms 3 and 4, also Algorithms 5 and 6 can be applied
repeatedly to deal with more general polynomial divisors.
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Exercises to §2 (Stars indicate more advanced exercises.)

1. Explain why, under the assumptions made about the measure dλ, the
inner product (p, q)dλ of two polynomials p, q is well defined.

2. Show that monic orthogonal polynomials relative to an absolutely con-
tinuous measure are uniquely defined. {Hint: Use Gram-Schmidt orthog-
onalization.} Discuss the uniqueness in the case of discrete measures.

3. Supply the details of the proof of (2.1). In particular, derive (2.3) and
(2.4).

4. Derive the three-term recurrence relation (2.7) for the orthonormal poly-
nomials.

5. (a) With π̃k denoting the orthonormal polynomials relative to a measure
dλ, show that

∫
R

tπ̃k(t)π̃�(t)dλ(t) =

⎧⎨⎩
0 if |k − �| > 1,√
βk+1 if |k − �| = 1,
αk if k = �,

where αk = αk(dλ), βk = βk(dλ).
(b) Use (a) to prove

J = Jn(dλ) =
∫

R

tp(t)pT(t)dλ(t),

where pT(t) = [π̃0(t), π̃1(t), . . . , π̃n−1(t)].
(c) With notation as in (b), prove

tp(t) = Jp(t) +
√
βnπ̃n(t)en,

where en = [0, 0, . . . , 1]T ∈ Rn.
6. Let dλ(t) = w(t)dt be symmetric on [−a, a], a > 0, that is, w(−t) = w(t)

on [−a, a]. Show that αk(dλ) = 0, all k ≥ 0.
7∗. Symmetry of orthogonal polynomials.

Let dλ(t) = w(t)dt be symmetric in the sense of Exercise 6.
(a) Show that

π2k(t; dλ) = π+
k (t2), π2k+1(t; dλ) = tπ−k (t2),

where π±k are the monic polynomials orthogonal on [0, a2] with respect
to dλ±(t) = t∓1/2w(t1/2)dt.

(b) Let (cf. Exercise 6)

πk+1(t) = tπk(t) − βkπk−1(t), k = 0, 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1

be the recurrence relation for {πk( · ; dλ)}, and let α±
k , β±k be the

recurrence coefficients for {π±k }. Show that
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β1 = α+
0

β2k = β+
k /β2k−1

β2k+1 = α+
k − β2k

⎫⎬⎭ k = 1, 2, 3, . . . .

(c) Derive relations similar to those in (b) which involve α+
0 and α−

k , β−k .
(d) Write a Matlab program that checks the numerical stability of the

nonlinear recursions in (b) and (c) when {πk} are the monic Legendre
polynomials.

8. The recurrence relation, in Matlab, of the Chebyshev polynomials of the
second kind.
(a) Using Matlab, compute Uk(x) for 1 ≤ k ≤ N either by means of

the three-term recurrence relation Un+1(x) = 2xUn(x) − Un−1(x) for
n = 0, 1, . . . , N − 1 (where U−1(x) = 0, U0(x) = 1), or else by putting
n = 1 : N in the explicit formula Un(cos θ) = sin(n+1)θ/ sin θ, where
x = cos θ. For selected values of x and N , determine which of the two
methods, by timing each, is more efficient.

(b) Using Matlab, compute the single value UN (x) either by use of the
three-term recurrence relation, or by direct computation based on the
trigonometric formula for UN (cos θ). For selected values of x and N ,
determine which of the two methods, by timing each, is more efficient.

9∗. Orthogonality on two separate (symmetric) intervals.
Let 0 < ξ < 1 and consider orthogonal polynomials πk relative to the
weight function

w(t) =

⎧⎨⎩ |t|γ(1 − t2)α(t2 − ξ2)β , t ∈ [−1, ξ] ∪ [ξ, 1],

0, otherwise.

Here, γ ∈ R and α > −1, β > −1. Evidently, w is a symmetric weight
function (in the sense of Exercise 6). Define π±k as in Exercise 7(a).
(a) Transform the polynomials π±k orthogonal on [ξ2, 1] to orthogonal

polynomials π̊±k on the interval [−1, 1] and obtain the respective weight
function ẘ±.

(b) Express β2k and β2k+1 in terms of γ̊±r , the leading coefficient of the
orthonormal polynomial of degree r relative to the weight function
ẘ± on [−1, 1]. {Hint: Use βr = ‖πr‖2/‖πr−1‖2 (cf. eqn (2.4)) and
relate this to the leading coefficients γk, γ±k , and γ̊±k , with obvious
notations.}

(c) Prove that

lim
k→∞

β2k =
1
4
(1 − ξ)2, lim

k→∞
β2k+1 =

1
4
(1 + ξ)2.

{Hint: Use the result of (b) in combination with the asymptotic equiv-
alence
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γ̊±k ∼ 2kγ̊±, γ̊± = π−1/2 exp
{
− 1

2π

∫ 1

−1

ln ẘ±(x)(1 − x2)−1/2dx
}
,

as k → ∞

(cf. [16, eqn (12.7.2)]). You may also want to use∫ 1

0

ln(1 − a2x2)(1 − x2)−1/2dx = π ln
1 + (1 − a2)1/2

2
, a2 < 1

(see [13, eqn 4.295.29]).}
(d) Prove that

lim
k→∞

α±
k =

1 + ξ2

2
, lim

k→∞
β±k =

(
1 − ξ2

4

)2

.

{Hint: Express α±
k , β±k in terms of α̊±

k , β̊±k , and use the fact that the
weight function ẘ± is in the Szegő class.}

(e) The recurrence coefficients {βk} must satisfy the two nonlinear recur-
sions of Exercise 7(b),(c). Each of them can be interpreted as a pair
of fixed-point iterations for the even-indexed and for the odd-indexed
subsequence, the fixed points being respectively the limits in (c). Show
that, asymptotically, both fixed points are “attractive” for the recur-
sion in 7(b), and “repelling” for the one in 7(c). Also show that in the
latter, the fixed points become attractive if they are switched. What
are the numerical implications of all this?

(f) Consider the special case γ = ±1 and α = β = − 1
2 . In the case

γ = 1, use Matlab to run the nonlinear recursion of Exercise 7(b) and
compare the results with the known answers

β2k =
1
4

(1 − ξ)2
1 + η2k−2

1 + η2k
, k = 1, 2, 3, . . . , 0 ≤ t ≤ 1

and

β1 =
1
2
(1 + ξ2), β2k+1 =

1
4

(1 + ξ)2
1 + η2k+2

1 + η2k
, k = 1, 2, 3, . . . ,

where η = (1 − ξ)/(1 + ξ) (see [10, Example 2.30]). Likewise, in the
case γ = −1, run the nonlinear recursion of Exercise 7(c) and compare
the results with the exact answers

β2 = 1
2 (1 − ξ)2, β2k = 1

4 (1 − ξ)2, k = 2, 3, . . . ,

and
β1 = ξ, β2k+1 = 1

4 (1 + ξ)2, k = 1, 2, 3, . . . .

Comment on what you observe.
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10. Prove the validity of Algorithm 1.
(a) Verify the initialization part.
(b) Combine σk+1,k−1 = 0 with the three-term recurrence relation for πk

to prove the formula for βk in the continuation part.
(c) Combine σk+1,k = 0 with the three-term recurrence relation for both,

πk and pk, and use the result of (b), to prove the formula for αk in
the continuation part.

11∗. Orthogonal polynomials {πk( · ;w)} relative to the weight function (“hat
function”)

w(t) =

⎧⎨⎩
1 + t if − 1 ≤ t ≤ 0,
1 − t if 0 ≤ t ≤ 1,

0 otherwise.

(a) Develop a modified Chebyshev algorithm for generating the first n
recurrence coefficients βk(w), k = 0, 1, . . . , n−1 (all αk(w) = 0; why?).
Define modified moments with respect to a suitable system of (monic)
orthogonal polynomials.

(b) What changes in the routine are required if one wants {πk( · ; 1−w)},
or {πk( · ;w(1 − w))}, or {πk( · ;wp)} where p > −1?

(c) Download from OPQ the routine chebyshev.m, write a routine mom.m
for the modified moments to be used in conjunction with chebyshev.m
to implement (a), and write a Matlab driver to produce results for
selected values of n.

(d) Devise a 2-component discretization scheme for computing the first
n recurrence coefficients βk(w), k = 0, 1, 2, . . . , n − 1, which uses an
n-point discretization of the inner product on each component interval
and is to yield exact answers (in the absence of rounding errors).

(e) Same as (b).
(f) Download from OPQ the routine mcdis.m, write a quadrature rou-

tine qhatf.m necessary to implement (d), and append a script to the
driver of (c) that produces results of the discretization procedure for
selected values of n. Download whatever additional routines you need.
Run the procedure with irout = 1 and irout �= 1 and observe the re-
spective timings and the maximum discrepancy between the two sets
of answers. Verify that the routine “converges” after one iteration if
idelta is properly set. Compare the results with those of (a).

(g) Use the routines acondG.m and rcondG.m to print the absolute and
relative condition numbers of the relevant map Gn. Do any of these
correlate well with the numerical results obtained in (c)? If not, why
not?

12∗. Orthogonal polynomials {πk( · ;w)} relative to the weight function (“ex-
ponential integral”)

w(t) = E1(t), E1(t) =
∫ ∞

1

e−ts

s
ds on [0,∞].

These are of interest in the theory of radiative transfer (Chandrasekhar
[2, Chapter II, §23]).
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(a) Develop and run a multiple-component discretization routine for
generating the first n recurrence coefficients αk(w), βk(w), k =
0, 1, . . . , n − 1. Check your results for n = 20 against [3, Table 3].
{Hint: Decompose the interval [0,∞] into two subintervals [0, 2] and
[2,∞] (additional subdivisions may be necessary to implement the
developments that follow) and incorporate the behavior of E1(t) near
t = 0 and t = ∞ to come up with appropriate discretizations. For
0 ≤ t ≤ 2, use the power series

E1(t) − ln(1/t) = −γ −
∞∑

k=1

(−1)ktk

kk!
,

where γ = .57721566490153286 . . . is Euler’s constant, and for t > 2
the continued fraction (cf. [1, eqn 5.1.22])

tetE1(t) =
1

1 +
a1

1 +
a2

1 +
a3

1 +
a4

1 +
· · · , ak = �k/2�/t.

Evaluate the continued fraction recursively by (cf. [7, §2])

1
1 +

a1

1 +
a2

1 +
· · · =

∞∑
k=0

tk,

where

t0 = 1, tk = ρ1ρ2 · · · ρk, k = 1, 2, 3, . . . ,

ρ0 = 0, ρk =
−ak(1 + ρk−1)

1 + ak(1 + ρk−1)
, k = 1, 2, 3, . . . .

Download the array abjaclog(101:200,:) to obtain the recurrence
coefficients ab for the logarithmic weight function ln(1/t).}

(b) Do the same for

w(t) = E2(t), E2(t) =
∫ ∞

1

e−ts

s2
ds on [0,∞].

Check your results against the respective two- and three-point Gauss
quadrature formulae in Chandrasekhar [2, Table VI].

(c) Do the same for

w(t) = Em(t) on [0, c], 0 < c < ∞, m = 1, 2.

Check your results against the respective two-point Gauss quadrature
formulae in Chandrasekhar [2, Table VII].
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13. Let C = b0 + a1
b1+

a2
b2+

a3
b3+

· · · be an infinite continued fraction, and Cn =
b0 + a1

b1+
· · · an

bn
= An

Bn
its nth convergent. From the theory of continued

fractions, it is known that

An = bnAn−1 + anAn−2

Bn = bnBn−1 + anBn−2

⎫⎬⎭ n = 1, 2, 3, . . . ,

where
A−1 = 1, A0 = b0; B−1 = 0, B0 = 1.

Use this to prove (2.21) and (2.22).
14. Prove (2.23).
15. Show that (2.30) implies limn→∞ ρn

yn
= 0, where yn is any solution of the

three-term recurrence relation (satisfied by ρn and πn) which is linearly
independent of ρn. Thus, {ρn} is indeed a minimal solution.

16. Show that the minimal solutions of a three-term recurrence relation form
a one-dimensional manifold.

17. (a) Derive (2.47).
(b) Supply the details for deriving Algorithm 4.

18. Supply the details for deriving Algorithm 5.
19. (a) Prove (2.53).

(b) Prove (2.55), (2.56).
(c) Supply the details for deriving Algorithm 6.

3 Sobolev Orthogonal Polynomials

3.1 Sobolev Inner Product and Recurrence Relation

In contrast to the orthogonal polynomials considered so far, the inner product
here involves not only function values, but also successive derivative values,
all being endowed with their own measures. Thus,

(p, q)S =
∫

R

p(t)q(t)dλ0(t) +
∫

R

p′(t)q′(t)dλ1(t)

+ · · · +
∫

R

p(s)(t)q(s)(t)dλs(t), s ≥ 1.
(3.1)

If all the measures dλσ are positive, the inner product (3.1) has associated
with it a sequence of (monic) polynomials πk( · ;S), k = 0, 1, 2, . . . , orthogonal
in the sense

(πk, π�)S

{
= 0, k �= �,
> 0, k = �.

(3.2)

These are called Sobolev orthogonal polynomials. We cannot expect them to
satisfy a three-term recurrence relation, since the inner product no longer
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has the shift property (tp, q) = (p, tq). However, like any sequence of monic
polynomials of degrees 0, 1, 2, . . . , orthogonal or not, they must satisfy an
extended recurrence relation of the type

πk+1(t) = tπk(t) −
k∑

j=0

βk
j πk−j(t), k = 0, 1, 2, . . . . (3.3)

Associated with it is the upper Hessenberg matrix of recurrence coefficients

Hn =

⎡⎢⎢⎢⎢⎢⎢⎣

β0
0 β1

1 β2
2 · · · βn−2

n−2 βn−1
n−1

1 β1
0 β2

1 · · · βn−2
n−3 βn−1

n−2

0 1 β2
0 · · · βn−2

n−4 βn−1
n−3

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · βn−2

0 βn−1
1

0 0 0 · · · 1 βn−1
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.4)

In the case s = 0 (of ordinary orthogonal polynomials) there holds βk
j = 0 for

j > 1, and the matrix Hn is tridiagonal. If symmetrized by a (real) diagonal
similarity transformation, it becomes the Jacobi matrix Jn(dλ0). When s > 0,
however, symmetrization of Hn is no longer possible, since Hn may well have
complex eigenvalues (see Example 6).

3.2 Moment-Based Algorithm

There are now s+ 1 sets of modified moments, one set for each measure dλσ,

m
(σ)
k =

∫
R

pk(t)dλσ, k = 0, 1, 2, . . . ; σ = 0, 1, . . . , s. (3.5)

The first 2n modified moments of all the sets will uniquely determine the
matrix Hn in (3.4), i.e. there is a well-determined map

[m(σ)
k ]2n−1

k=0 , σ = 0, 1, . . . , s �→ Hn, (3.6)

called modified moment map for Sobolev orthogonal polynomials. In the case
where the polynomials pk in (3.5) satisfy a three-term recurrence relation
with known coefficients, and for s = 1, an algorithm has been developed that
implements the map (3.6). It very much resembles the modified Chebyshev
algorithm for ordinary orthogonal polynomials, but is technically much more
elaborate (see [12]). The algorithm, however, is implemented in the OPQ routine

B=chebyshev sob(N,mom,abm)

which produces the N×N upper triangular matrix B of recurrence coefficients,
with βk

j , 0 ≤ j ≤ k, 0 ≤ k ≤N–1, occupying the position (j + 1, k + 1) in the
matrix. The input parameter mom is the 2 × (2N) array of modified moments
m

(σ)
k , k = 0, 1, . . . , 2N–1; σ = 0, 1, of the two measures dλ0 and dλ1, and abm
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the (2N−1) × 2 array of coefficients ak, bk, k = 0, 1, . . . , 2N–2, defining the
polynomials pk.
Example 4. Althammer’s polynomials (1962).
These are the Sobolev polynomials relative to the measures dλ0(t) = dt,
dλ1(t) = γdt on [−1, 1], γ > 0.

A natural choice of modified moments are the Legendre moments, i.e.
pk(t) is the monic Legendre polynomial of degree k. By orthogonality of the
Legendre polynomials, all modified moments m(0)

k and m
(1)
k are zero for k > 0,

while m
(0)
0 = 2 and m

(1)
0 = 2γ. The following Matlab routine, therefore, can

be used to generate the Althammer polynomials.

mom=zeros(2,2*N);
mom(1,1)=2; mom(2,1)=2*g;
abm=r jacobi(2*N-1);
B=chebyshev sob(N,mom,abm);

3.3 Discretization Algorithm

Taking the inner product of both sides of (3.3) with πk−j gives

0 = (πk+1, πk−j)S = (tπk, πk−j)S − βk
j (πk−j , πk−j)S , j = 0, 1, . . . , k,

hence

βk
j =

(tπk, πk−j)S

(πk−j , πk−j)S
, j = 0, 1, . . . , k; k = 0, 1, . . . , n− 1. (3.7)

These are the analogues of Darboux’s formulae for ordinary orthogonal poly-
nomials, and like these, can be combined with the recurrence relation (3.3) to
successively build up the recurrence coefficients βk

j in the manner of Stieltjes’s
procedure. The technical details, of course, are more involved, since we must
generate not only the polynomials πk, but also their derivatives, in order to be
able to compute the Sobolev inner products in (3.7). This all is implemented,
for arbitrary s ≥ 1, in the Matlab routine stieltjes sob.m. The basic as-
sumption in the design of this routine is the availability, for each measure dλσ,
of an nσ-point quadrature rule∫

R

p(t) dλσ(t) =
nσ∑

k=1

w
(σ)
k p(x(σ)

k ), p ∈ P2(n−σ)−1, σ = 0, 1, . . . , s, (3.8)

that is exact for polynomials p of degree ≤ 2(n− σ) − 1. These are typically
Gaussian quadrature rules, possibly with discrete components (present in dλσ)
added on. The information is supplied to the routine via the 1× (s+ 1) array

nd= [n0, n1, . . . , ns]
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and the md×(2s + 2) array

xw=

x
(0)
1 · · · x

(s)
1 w

(0)
1 · · · w

(s)
1

x
(0)
2 · · · x

(s)
2 w

(0)
2 · · · w

(s)
2

...
...

...
...

x
(0)
md · · · x(s)

md w
(0)
md · · · w(s)

md

where md=max(nd). In each column of xw the entries after x
(σ)
nσ resp. w(σ)

nσ (if
any) are not used by the routine. Two more input parameters are needed; the
first is a0, the coefficient α0(dλ0), which allows us to initialize the matrix of
recurrence coefficients,

β0
0 =

(t, 1)S

(1, 1)S
=

(t, 1)dλ0

(1, 1)dλ0

= α0(dλ0).

The other, same, is a logical variable set equal to 1 if all quadrature rules have
the same set of nodes, and equal to 0 otherwise. The role of this parameter is
to switch to a simplified, and thus faster, procedure if same=1. A call to the
routine, therefore, has the form

B=stieltjes sob(N,s,nd,xw,a0,same)

Example 5. Althammer’s polynomials, revisited.
Here, the obvious choice of the quadrature rule for dλ0 and dλ1 is the

n-point Gauss–Legendre rule. This gives rise to the following routine:

s=1; nd=[N N];
a0=0; same=1;
ab=r jacobi(N);
zw=gauss(N,ab);
xw=[zw(:,1) zw(:,1) ...

zw(:,2) g*zw(:,2)];
B=stieltjes sob(N,s,nd,xw,a0,same);

The results are identical with those obtained in Example 4.

3.4 Zeros

If we let πT(t) = [π0(t), π1(t), . . . , πn−1(t)], where πk are the Sobolev orthog-
onal polynomials, then the recurrence relation (3.3) can be written in matrix
form as

tπT(t) = πT(t)Hn + πn(t)eT
n (3.9)

in terms of the matrix Hn in (3.4). This immediately shows that the zeros τν

of πn are the eigenvalues of Hn and πT(τν) corresponding left eigenvectors.
Naturally, there is no guarantee that the eigenvalues are real; some may well be
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complex. Also, if n is large, there is a good chance that some of the eigenvalues
are ill-conditioned.

The OPQ routine for the zeros of πn is

z=sobzeros(n,N,B)

where B is the N×N matrix returned by chebyshev sob.m or stieltjes sob.m,
and z the n-vector of the zeros of πn, 1 ≤ n ≤ N .
Example 6. Sobolev orthogonal polynomials with only a few real zeros
(Meijer, 1994).

The Sobolev inner product in question is

(u, v)S =
∫ 3

−1

u(t)v(t) dt + γ

∫ 1

−1

u′(t)v′(t) dt +
∫ 3

1

u′(t)v′(t) dt, γ > 0.

(3.10)
Meijer proved that for n(even)≥ 2 and γ sufficiently large, the polynomial
πn( · ;S) has exactly two real zeros, one in [−3,−1] and the other in [1, 3]. If
n(odd)≥ 3, there is exactly one real zero, located in [1, 3], if γ is sufficiently
large. We use the routine stieltjes sob.m and sobzeros.m to illustrate this
for n = 6 and γ = 44, 000. (The critical value of γ above which Meijer’s
theorem takes hold is about γ = 43, 646.2; see [10, Table 2.30].)

The inner product corresponds to the case s = 1 and

dλ0(t) = dt on [−1, 3], dλ1(t) =
{
γdt if t ∈ [−1, 1],
dt if t ∈ (1, 3].

Thus, we can write, with suitable transformations of variables,∫ 3

−1

p(t) dλ0(t) = 2
∫ 1

−1

p(2x + 1) dx,∫ 3

−1

p(t) dλ1(t) =
∫ 1

−1

[γp(x) + p(x + 2)] dx

and apply n-point Gauss–Legendre quadrature to the integrals on the right.
This will produce the matrix Hn exactly. The parameters in the routine
stieltjes sob.m have to be chosen as follows:

nd = [n, 2n], xw =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2τG
1 + 1 τG

1 2λG
1 γλG

1

...
...

...
...

2τG
n + 1 τG

n 2λG
n γλG

n

τG
1 + 2 λG

1

...
...

τG
n + 2 λG

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R2n×4,
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where τG
ν , λG

ν are the nodes and weight of the n-point Gauss–Legendre quadra-
ture rule. Furthermore, a0=1 and same=0. The complete program, therefore,
is as follows:

N=6; s=1; a0=1; same=0; g=44000; nd=[N 2*N];
ab=r jacobi(N); zw=gauss(N,ab);
xw=zeros(2*N,2*(s+1));
xw(1:N,1)=2*zw(:,1)+1; xw(1:N,2)=zw(:,1);
xw(1:N,3)=2*zw(:,2); xw(1:N,4)=g*zw(:,2);
xw(N+1:2*N,2)=zw(:,1)+2; xw(N+1:2*N,4)=zw(:,2);
B=stieltjes sob(N,s,nd,xw,a0,same);
z=sobzeros(N,N,B)

It produces the output

z =

-4.176763898909848e-01 - 1.703657992747233e-01i
-4.176763898909848e-01 + 1.703657992747233e-01i
8.453761089539369e-01 - 1.538233952529940e-01i
8.453761089539369e-01 + 1.538233952529940e-01i

-1.070135059563751e+00
2.598402134930250e+00

confirming Meijer’s theorem for n = 6. A more detailed numerical study, also
in the case of odd values of n, has been made in [10, Table 2.30].

Exercises to §3
1. Show that a Sobolev inner product does not satisfy the shift property

(tp, q) = (p, tq).
2. Prove (3.3).
3. The Sobolev inner product (3.1) is called symmetric if each measure dλσ

is symmetric in the sense of Problem 6, §2. For symmetric Sobolev inner
products,
(a) show that πk(−t;S) = (−1)kπk(t;S);
(b) show that βk

2r = 0 for r = 0, 1, . . . , �k/2�.
4. Consider a Sobolev inner product with s = 1 and

dλ0 = dλ, dλ1 = γdλ (γ > 0),

and dλ a symmetric measure. Use the routines chebyshev sob.m and
sobzeros.m to check numerically whether or not the positive zeros of
the Sobolev orthogonal polynomials are monotonically increasing with γ.
Experiment in turn with dλ(t) = dt on [−1, 1] (Althammer polynomials),
dλ(t) = (1− t2)α on [−1, 1], α > −1, and dλ(t) = exp(−t2) on R. Identify
any computational problems and how to deal with them.

5. Special Sobolev orthogonal polynomials.
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(a) Consider the special Sobolev orthogonal polynomials that have an
absolutely continuous (or, possibly, discrete) ground measure dλ0 and
all dλσ, 1 ≤ σ ≤ s, identically zero except for dλrk

, k = 1, 2, . . . ,K,
where 1 ≤ r1 < r2 < · · · < rK ≤ s, which are atomic measures located
at the points ck and having masses mk. Assuming that the ground
measure is given by the array ab of recurrence coefficients, write a
Matlab routine specsob.m that uses the OPQ routine stieltjes sob.m
to compute the recurrence matrix B of the special Sobolev orthogonal
polynomials.

(b) Use your routine together with the OPQ routine sobzeros.m to check
Tables 2–4 in [8], relating to the Hermite measure dλ0(t) = exp(−t2)dt
and a single atomic measure involving the rth derivative. In the cited
reference, the results were obtained by a different method.

(c) In the case of the Laguerre measure dλ0(t) = exp(−t)dt on R+ and
rk = k, ck = 0, mk = 1, it may be conjectured that any complex zero
that occurs has negative real part. Use your routine and sobzeros.m
to check out this conjecture.

(d) For dλ0, rk, ck, mk as in (c), determine the pattern of occurrence of
complex zeros. Cover the range 1 ≤ s ≤ 10, 1 ≤ n ≤ 40.

(e) Repeat (c) and (d) with dλ0 the Laguerre measure plus an atomic
measure with mass 1 at the origin.

4 Quadrature

4.1 Gauss-Type Quadrature Formulae

Gauss Formula

Given a positive measure dλ, the n-point Gaussian quadrature formula asso-
ciated with the measure dλ is∫

R

f(t)dλ(t) =
n∑

ν=1

λG
ν f(τG

ν ) + RG
n (f), (4.1)

which has maximum algebraic degree of exactness 2n− 1,

RG
n (f) = 0 if f ∈ P2n−1. (4.2)

It is well known that the nodes τG
ν are the zeros of πn( · ; dλ), and hence the

eigenvalues of the Jacobi matrix Jn(dλ); cf. §2.1. Interestingly, the weights
λG

ν , too, can be expressed in terms of spectral data of Jn(dλ); indeed, they
are (Golub and Welsch, 1969)

λG
ν = β0v

2
ν,1, (4.3)
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where vν,1 is the first component of the normalized eigenvector vν correspond-
ing to the eigenvalue τG

ν ,

Jn(dλ)vν = τG
ν vν , vT

ν vν = 1, (4.4)

and, as usual, β0 =
∫

R
dλ(t). This is implemented in the OPQ Matlab routine

xw=gauss(N,ab)

where ab, as in all previous routines, is the N×2 array of recurrence coefficients
for dλ, and xw the N×2 array containing the nodes τG

ν in the first column, and
the weights λG

ν in the second.
We remark, for later purposes, that the Gauss quadrature sum, for f suf-

ficiently regular, can be expressed in matrix form as
n∑

ν=1

λG
ν f(τG

ν ) = β0e
T
1 f(Jn(dλ))e1, e1 = [1, 0, . . . , 0]T. (4.5)

This is an easy consequence of (4.3) and the spectral decomposition of Jn,

Jn(dλ)V = V Dτ , Dτ = diag(τG
1 , τG

2 , . . . , τG
n ),

where V = [v1,v2, . . . ,vn].
Example 7. Zeros of Sobolev orthogonal polynomials of Gegenbauer type
(Groenevelt, 2002).

The polynomials in question are those orthogonal with respect to the
Sobolev inner product

(u, v)S =
∫ 1

−1

u(t)v(t)(1 − t2)α−1dt + γ

∫ 1

−1

u′(t)v′(t)
(1 − t2)α

t2 + y2
dt.

Groenevelt proved that in the case γ → ∞ the Sobolev orthogonal polyno-
mials of even degrees n ≥ 4 have complex zeros if y is sufficiently small. By
symmetry, they must in fact be purely imaginary, and by the reality of the
Sobolev polynomials, must occur in conjugate complex pairs. As we illustrate
this theorem, we have an opportunity to apply not only the routine gauss.m,
but also a number of other routines, specifically the modification algorithm
embodied in the routine chri6.m, dealing with the special quadratic divisor
t2 + y2 in the second integral, and the routine stieltjes sob.m generating
the recurrence matrix of the Sobolev orthogonal polynomials:

s=1; same=0; eps0=1e-14; numax=250; nd=[N N];
ab0=r jacobi(numax,alpha);
z=complex(0,y);
nu0=nu0jac(N,z,eps0); rho0=0; iopt=1;
ab1=chri6(N,ab0,y,eps0,nu0,numax,rho0,iopt);
zw1=gauss(N,ab1);
ab=r jacobi(N,alpha-1); zw=gauss(N,ab);
xw=[zw(:,1) zw1(:,1) zw(:,2) gamma*zw1(:,2)];
a0=ab(1,1); B=stieltjes sob(N,s,nd,xw,a0,same);
z=sobzeros(N,N,B)
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Demo#4 The case N=12, α = 1
2 , and γ = 1 of Example 7.

Applying the above routine for y = .1 and y = .09 yields the following
zeros (with positive imaginary parts; the other six zeros are the same with
opposite signs):

y zeros y zeros
.1 .027543282225 .09 .011086169153 i

.284410786673 .281480077515

.541878443180 .540697645595

.756375307278 .755863108617

.909868274113 .909697039063

.989848649239 .989830182743

The numerical results (and additional tests) suggest that Groenevelt’s theo-
rem also holds for finite, not necessarily large, values of γ, and, when γ = 1,
that the critical value of y below which there are complex zeros must be
betweeen .09 and .1.

Gauss–Radau Formula

If there is an interval [a,∞], −∞ < a, containing the support of dλ, it may
be desirable to have an (n + 1)-point quadrature rule of maximum degree of
exactness that has a as a prescribed node,∫

R

f(t)dλ(t) = λa
0f(a) +

n∑
ν=1

λa
νf(τa

ν ) + Ra
n(f). (4.6)

Here, Ra
n(f) = 0 for all f ∈ P2n, and τa

ν are the zeros of πn( · ; dλa),
dλa(t) = (t−a)dλ(t). This is called the Gauss–Radau formula. There is again
a symmetric, tridiagonal matrix, the Jacobi–Radau matrix

JR,a
n+1(dλ) =

⎡⎣Jn(dλ)
√
βnen

√
βneT

n αR
n

⎤⎦ , αR
n = a− βn

πn−1(a)
πn(a)

, (4.7)

where en = [0, 0, . . . , 1]T ∈ Rn, βn = βn(dλ), and πk( · ) = πk( · ; dλ), which
allows the Gauss–Radau formula to be characterized in terms of eigenvalues
and eigenvectors: all nodes of (4.6), including the node a, are the eigenvalues of
(4.7), and the weights λa

ν expressible as in (4.3) in terms of the corresponding
normalized eigenvectors vν of (4.7),

λa
ν = β0v

2
ν,1, ν = 0, 1, 2, . . . , n. (4.8)

As in (4.5), this implies that the Gauss–Radau quadrature sum, for smooth
f , can be expressed as β0e

T
1 f(JR,a

n+1)e1, where e1 = [1, 0, . . . , 0] ∈ Rn+1.
Naturally, if the support of dλ is contained in an interval [−∞, b], b < ∞,

there is a companion formula to (4.6) which has the prescribed node b,
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R

f(t) dλ(t) =
n∑

ν=1

λb
νf(τ b

ν) + λb
n+1f(b) + Rb

n(f). (4.9)

The eigenvalue/vector characterization also holds for (4.9) if in the formula
for αR

n in (4.7), the variable a, at every occurrence, is replaced by b.
The remainder terms of (4.6) and (4.9), if f ∈ C2n+1[a, b], have the useful

property

Ra
n(f) > 0, Rb

n(f) < 0 if sgn f (2n+1) = 1 on [a, b], (4.10)

with the inequalities reversed if sgn f (2n+1) = −1.
For Jacobi resp. generalized Laguerre measures with parameters α, β resp.

α, the quantity αR
n is explicitly known (cf. [10, Examples 3.4 and 3.5]). For

example, if a = −1 (in the case of Jacobi measures),

αR
n = −1 +

2n(n + α)
(2n + α + β)(2n + α + β + 1)

, αR
n = n, (4.11)

whereas for a = 1, the sign of αR
n must be changed and α and β interchanged.

The respective OPQ Matlab routines are

xw=radau(N,ab,end0)
xw=radau jacobi(N,iopt,a,b)
xw=radau laguerre(N,a)

In the first, ab is the (N+1)×2 array of recurrence coefficients for dλ, and
end0 either a (for (4.6)) or b (for (4.9)). The last two routines make use of the
explicit formulae for αR

n in the case of Jacobi resp. Laguerre measures, the
parameters being α=a, β=b. The parameter iopt chooses between the two
Gauss–Radau formulae: the left-handed, if iopt=1, the right-handed other-
wise.

Gauss–Lobatto Formula

If the support of dλ is contained in the finite interval [a, b], we may wish to
prescribe two nodes, the points a and b. Maximizing the degree of exactness
subject to these constraints yields the Gauss–Lobatto formula∫ b

a

f(t)dλ(t) = λL
0 f(a) +

n∑
ν=1

λL
ν f(τL

ν ) + λL
n+1f(b) + Ra,b

n (f), (4.12)

which we write as an (n + 2)-point formula; we have Ra,b
n (f) = 0 for f ∈

P2n+1. The internal nodes τL
ν are the zeros of the polynomial πn( · ; dλa,b),

dλa,b(t) = (t−a)(b− t)dλ(t). All nodes and weights can be expressed in terms
of eigenvalues and eigenvectors exactly as in the two preceding subsections,
except that the matrix involved is the Jacobi–Lobatto matrix
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JL
n+2(dλ) =

⎡⎣ Jn+1(dλ)
√
βL

n+1en+1√
βL

n+1e
T
n+1 αL

n+1

⎤⎦ , (4.13)

where αL
n+1 and βL

n+1 are the solution of the 2×2 system of linear equations⎡⎣πn+1(a) πn(a)

πn+1(b) πn(b)

⎤⎦ ⎡⎣αL
n+1

βL
n+1

⎤⎦ =

⎡⎣aπn+1(a)

bπn+1(b)

⎤⎦ . (4.14)

For smooth f , the quadrature sum is expressible as β0e
T
1 f(JL

n+2)e1. For
f ∈ C2n+2[a, b] with constant sign on [a, b], the remainder Ra,b

n (f) satisfies

Ra,b
n (f) < 0 if sgn f (2n+2) = 1 on [a, b], (4.15)

with the inequality reversed if sgn f (2n+2) = −1.
The quantities αL

n+1, β
L
n+1 for Jacobi measures on [−1, 1] with parameters

α, β and a = −b = −1 are explicitly known (cf. [10, Example 3.8]),

αL
n+1 =

α− β

2n + α + β + 2
,

βL
n+1 = 4

(n + α + 1)(n + β + 1)(n + α + β + 1)
(2n + α + β + 1)(2n + α + β + 2)

.

(4.16)

The OPQ Matlab routines are

xw=lobatto(N,ab,endl,endr)
xw=lobatto jacobi(N,a,b)

with the meaning of ab, a, b the same as in the Gauss–Radau routines, and
endl=a, endr=b.

We remark that both Gauss–Radau and Gauss–Lobatto formulae can be
generalized to include boundary points of multiplicity r > 1. The internal
(simple) nodes and weights are still related to orthogonal polynomials, but the
boundary weights require new techniques for their computation; see Exercises
12–13.

4.2 Gauss–Kronrod Quadrature

In an attempt to estimate the error of the n-point Gauss quadrature rule,
Kronrod in 1964 had the idea of inserting n+1 additional nodes and choosing
them, along with all 2n + 1 weights, in such a way as to achieve maximum
degree of exactness. The resulting quadrature rule can be expected to yield
much higher accuracy than the Gauss formula, so that the difference of the
two provides an estimate of the error in the Gauss formula. The extended
formula thus can be written in the form
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R

f(t)dλ(t) =
n∑

ν=1

λK
ν f(τG

ν ) +
n+1∑
μ=1

λ∗K
μ f(τK

μ ) + RGK
n (f), (4.17)

and having 3n + 2 free parameters λK
ν , λ∗K

μ , τK
μ at disposal, one ought to be

able to achieve degree of exactness 3n + 1,

RGK
n (f) = 0 for f ∈ P3n+1. (4.18)

A quadrature formula (4.17) that satisfies (4.18) is called a Gauss–Kronrod
formula. The nodes τK

μ , called Kronrod nodes, are the zeros of the polynomial
πK

n+1 of degree n+1 which is orthogonal to all polynomials of lower degree in
the sense ∫

R

πK
n+1(t)p(t)πn(t; dλ) dλ(t) = 0 for all p ∈ Pn. (4.19)

Note that the measure of orthogonality here is πn(t; dλ)dλ(t) and thus oscil-
lates on the support of dλ. Stieltjes (1894) was the first to consider polynomials
πK

n+1 of this kind (for dλ(t) = dt); a polynomial πK
n+1 satisfying (4.19) is there-

fore called a Stieltjes polynomial. Stieltjes conjectured (in the case dλ(t) = dt)
that all zeros of πK

n+1 are real and interlace with the n Gauss nodes— a highly
desirable configuration! This has been proved only later by Szegő (1935) not
only for Legendre measures, but also for a class of Gegenbauer measures. The
study of the reality of the zeros for more general measures is an interesting
and ongoing activity.

The computation of Gauss–Kronrod formulae is a challenging problem. An
elegant solution has been given recently by Laurie (1997), at least in the case
when a Gauss–Kronrod formula exists with real nodes and positive weights. It
can be computed again in terms of eigenvalues and eigenvectors of a symmetric
tridiagonal matrix, just like the previous Gauss-type formulae. The relevant
matrix, however, is the Jacobi–Kronrod matrix

JK
2n+1(dλ) =

⎡⎢⎢⎢⎣
Jn(dλ)

√
βnen 0

√
βneT

n αn

√
βn+1e

T
1

0
√
βn+1e1 J∗

n

⎤⎥⎥⎥⎦ . (4.20)

Here, αn = αn(dλ), βn = βn(dλ), etc, and J∗
n (which is partially known)

can be computed by Laurie’s algorithm (cf. [10, §3.1.2.2]). Should some of the
eigenvalues of (4.20) turn out to be complex, this would be an indication that
a Gauss–Kronrod formula (with real nodes) does not exist.

There are two routines in OPQ,

ab=r kronrod(N,ab0)
xw=kronrod(n,ab)

that serve to compute Gauss–Kronrod formulae. The first generates the
Jacobi-Kronrod matrix of order 2N+1, the other the nodes and weights of
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the quadrature formula, stored respectively in the first and second column of
the (2N+1)×2 array xw. The recurrence coefficients of the given measure dλ
are input via the �3N/2+1�×2 array ab0.

4.3 Gauss–Turán Quadrature

The idea of allowing derivatives to appear in a Gauss-type quadrature formula
is due to Turán (1950). He considered the case where each node has the same
multiplicity r ≥ 1, that is,∫

R

f(t) dλ(t) =
n∑

ν=1

[λνf(τν) + λ′νf
′(τν) + · · · + λ(r−1)

ν f (r−1)(τν)] + Rn(f).

(4.21)
This is clearly related to Hermite interpolation. Indeed, if all nodes were pre-
scribed and distinct, one could use Hermite interpolation to obtain a formula
with degree of exactness rn− 1 (there are rn free parameters). Turán asked,
like Gauss before him, whether one can do better by choosing the nodes τν

judiciously. The answer is yes; more precisely, we can get degree of exactness
rn− 1 + k, k > 0, if and only if∫

R

ωr
n(t)p(t) dλ(t) = 0 for all p ∈ Pk−1, (4.22)

where ωn(t) =
∏n

ν=1(t− τν) is the node polynomial of (4.21). We have here a
new type of orthogonality: the rth power of ωn, not ωn, must be orthogonal to
all polynomials of degree k− 1. This is called power orthogonality. It is easily
seen that r must be odd,

r = 2s + 1, s ≥ 0, (4.23)

so that (4.21) becomes∫
R

f(t) dλ(t) =
n∑

ν=1

2s∑
σ=0

λ(σ)
ν f (σ)(τν) + Rn,s(f). (4.24)

Then in (4.22), necessarily k ≤ n, and k = n is optimal. The maximum
possible degree of exactness, therefore, is (2s + 2)n− 1, and is achieved if∫

R

[ωn(t)]2s+1p(t) dλ(t) = 0 for all p ∈ Pn−1. (4.25)

The polynomial ωn = πn,s satisfying (4.25) is called s-orthogonal. It exists
uniquely and has distinct simple zeros contained in the support interval of
dλ. The formula (4.24) is the Gauss-Turán formula if its node polynomial ωn

satisfies (4.25) and the weights λ(σ)
ν are obtained by Hermite interpolation.
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The computation of Gauss-Turán formulae is not as simple as in the case of
ordinary Gauss-type formulae. The basic idea, however, is to consider the posi-
tive measure dλn,s(t) = [πn,s(t)]2sdλ(t) and to note that πn,s is the nth-degree
polynomial orthogonal relative to dλn,s. The difficulty is that this defines πn,s

implicitly, since πn,s already occurs in the measure dλn,s. Nevertheless, the
difficulty can be surmounted, but at the expense of having to solve a system of
nonlinear equations; for details, see [10, §3.1.3.2]. The procedure is embodied
in the OPQ routine

xw=turan(n,s,eps0,ab0,hom)

where the nodes are stored in the first column of the n×(2s+2) array xw, and
the successive weights in the remaining 2s+1 columns. The input parameter
eps0 is an error tolerance used in the iterative solution of the nonliner sys-
tem of equations, and the measure dλ is specified by the ((s+1)n)×2 input
array ab0 of its recurrence coefficients. Finally, hom=1 or hom�=1 depending
on whether or not a certain homotopy in the variable s is used to facilitate
convergence of Newton’s method for solving the system of nonlinear equations.

4.4 Quadrature Formulae Based on Rational Functions

All quadrature formulae considered so far were based on polynomial degree
of exactness. This is meaningful if the integrand is indeed polynomial-like.
Not infrequently, however, it happens that the integrand has poles outside
the interval of integration. In this case, exactness for appropriate rational
functions, in addition to polynomials, is more natural. We discuss this for the
simplest type of quadrature rule,∫

R

g(t)dλ(t) =
n∑

ν=1

λνg(τν) + Rn(g). (4.26)

The problem, more precisely, is to determine λν , τν such that Rn(g) = 0 if
g ∈ S2n, where S2n is a space of dimension 2n consisting of rational functions
and polynomials,

S2n = Qm ⊕ P2n−m−1, 0 ≤ m ≤ 2n,

P2n−m−1 = polynomials of degree ≤ 2n−m− 1,

Qm = rational functions with prescribed poles.

(4.27)

Here, m is an integer of our choosing, and

Qm = span
{
r(t) =

1
1 + ζμt

, μ = 1, 2, . . . ,m
}
, (4.28)

where
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ζμ ∈ C, ζμ �= 0, 1 + ζμt �= 0 on supp(dλ). (4.29)

The idea is to select the poles −1/ζμ of the rational functions in Qm to match
the pole(s) of g closest to the support interval of dλ.

In principle, the solution of the problem is rather simple: put ωm(t) =∏m
μ=1(1 + ζμt) and construct, if possible, the n-point (poynomial) Gauss for-

mula ∫
R

g(t)
dλ(t)
ωm(t)

=
n∑

ν=1

λG
ν g(τ

G
ν ), g ∈ P2n−1, (4.30)

for the modified measure dλ̂(t) = dλ(t)/ωm(t). Then

τν = τG
ν , λν = ωm(τG

ν )λG
ν , ν = 1, 2, . . . , n, (4.31)

are the desired nodes and weights in (4.26).
We said “if possible”, since in general ωm is complex-valued, and the ex-

istence of a Gauss formula for dλ̂ is not guaranteed. There is no problem,
however, if ωm ≥ 0 on the support of dλ. Fortunately, in many instances of
practical interest, this is indeed the case.

There are a number of ways the formula (4.30) can be constructed: a
discretization method using Gauss quadrature relative to dλ to do the dis-
cretization; repeated application of modification algorithms involving linear
or quadratic divisors; special techniques to handle “difficult” poles, that is,
poles very close to the support interval of dλ. Rather than going into details
(which can be found in [10, §3.1.4]), we present an example taken from solid
state physics.
Example 8. Generalized Fermi–Dirac integral.

This is the integral

Fk(η, θ) =
∫ ∞

0

tk
√

1 + θt/2
e−η+t + 1

dt,

where η ∈ R, θ ≥ 0, and k is the Boltzmann constant (=1
2 , 3

2 , or 5
2 ). The

ordinary Fermi–Dirac integral corresponds to θ = 0.
The integral is conveniently rewritten as

Fk(η, θ) =
∫ ∞

0

√
1 + θt/2

e−η + e−t
dλ[k](t), dλ[k](t) = tke−tdt, (4.32)

which is of the form (4.26) with g(t) =
√

1 + θt/2/(e−η +e−t) and dλ = dλ[k]

a generalized Laguerre measure. The poles of g evidently are η + μiπ, μ =
±1,±3,±5, . . . , and all are “easy”, that is, at a comfortable distance from the
interval [0,∞]. It is natural to take m even, and to incorporate the first m/2
pairs of conjugate complex poles. An easy computation then yields

ωm(t) =
m/2∏
ν=1

[(1 + ξνt)2 + ηνt
2], 2 ≤ m(even) ≤ 2n, (4.33)
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where

ξν =
−η

η2 + (2ν − 1)2π2
, ην =

(2ν − 1)π
η2 + (2ν − 1)2π2

. (4.34)

Once the nodes and weights τν , λν have been obtained according to (4.31),
the rational/polynomial quadrature approximation is given by

Fk(η, θ) ≈
N∑

n=1

λn

√
1 + θτn/2

e−η + e−τn
. (4.35)

It is computed in the OPQ routine

xw=fermi dirac(N,m,eta,theta,k,eps0,Nmax)

where eps0 is an error tolerance, Nmax a limit on the discretization parameter,
and the other variables having obvious meanings.

4.5 Cauchy Principal Value Integrals

When there is a (simple) pole inside the support interval [a, b] of the measure
dλ, the integral must be taken in the sense of a Cauchy principal value integral

(Cf)(x; dλ) :=
∫ b

a

− f(t)
x− t

dλ(t) = lim
ε↓0

(∫ x−ε

a

+
∫ b

x+ε

)
f(t)
x− t

dλ(t), x ∈ (a, b).

(4.36)
There are two types of quadrature rules for Cauchy principal value integrals:
one in which x occurs as a node, and one in which it does not. They have
essentially different character and will be considered separately.

Modified Quadrature Rule

This is a quadrature rule of the form

(Cf)(x; dλ) = c0(x)f(x) +
n∑

ν=1

cν(x)f(τν) + Rn(f ;x). (4.37)

It can be made “Gaussian”, that is, Rn(f ;x) = 0 for f ∈ P2n, by rewriting
the integral in (4.36) as

(Cf)(x; dλ) = f(x)
∫

R

− dλ(t)
x− t

−
∫

R

f(x) − f(t)
x− t

dλ(t) (4.38)

and applying the n-point Gauss formula for dλ to the second integral. The
result is

(Cf)(x; dλ) =
ρn(x)
πn(x)

f(x) +
n∑

ν=1

λG
ν

f(τG
ν )

x− τG
ν

+ Rn(f ;x), (4.39)
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where ρn(x) is the Cauchy principal value integral (2.33) and τG
ν , λG

ν are the
Gauss nodes and weights for dλ.

Formula (4.39) is not without numerical difficulties. The major one occurs
when x approaches one of the Gauss nodes τG

ν , in which case two terms on
the right go to infinity, but with opposite signs. In effect, this means that for
x near a Gaussian node severe cancellation must occur.

The problem can be avoided by expanding the integral (4.36) in Cauchy
integrals ρk(x). Let pn(f ; · ) be the polynomial of degree n interpolating f at
the n Gauss nodes τG

ν and at x. The quadrature sum in (4.39) is then precisely
the Cauchy integral of pn,

(Cf)(x; dλ) =
∫ b

a

− pn(f ; t)
x− t

dλ(t) + Rn(f ;x). (4.40)

Expanding pn in the orthogonal polynomials πk,

pn(f ; t) =
n∑

k=0

akπk(t), ak =
1

‖πk‖2

∫ b

a

pn(f ; t)πk(t)dλ(t), (4.41)

and integrating, one finds

(Cf)(x; dλ) =
n∑

k=0

akρk(x) + Rn(f ;x), (4.42)

where

ak =
1

‖πk‖2

n∑
ν=1

λG
ν f(τG

ν )πk(τG
ν ), k < n; an =

n∑
ν=1

f(x) − f(τG
ν )

(x− τG
ν )π′n(τG

ν )
.

(4.43)
The Cauchy integrals ρk(x) in (4.42) can be computed in a stable manner
by forward recursion; cf. the paragraph surrounding (2.33) and (2.34). This
requires ρ0(x), which is either explicitly known or can be computed by the
continued fraction algorithm. Some care must be exercised in computing the
divided difference of f in the formula for an.

The procedure is inplemented in the OPQ routine

cpvi=cauchyPVI(N,x,f,ddf,iopt,ab,rho0)

with iopt�=1, which produces the (N+1)-term approximation (4.42) where
Rn(f ;x) is neglected. The input parameter ddf is a routine for computing
the divided difference of f in a stable manner. It is used only if iopt�=1. The
meaning of the other parameters is obvious.

Quadrature Rule in the Strict Sense

This rule, in which the node t = x is absent, is obtained by interpolating f at
the n Gauss nodes τG

ν by a polynomial pn−1(f ; · ) of degree n− 1,
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f(t) = pn−1(f ; t) + En−1(f ; t), pn−1(f ; t) =
n∑

ν=1

πn(t)
(t− τG

ν )π′n(τG
ν )

f(τG
ν ),

where En−1 is the interpolation error, which vanishes identically if f ∈ Pn−1.
The formula to be derived, therefore, will have degree of exactness n − 1
(which can be shown to be maximum possible). Integrating in the sense of
(4.36) yields

(Cf)(x; dλ) =
n∑

ν=1

ρn(x) − ρn(τG
ν )

(x− τG
ν )π′n(τG

ν )
f(τG

ν ) + R∗
n(f ;x), (4.44)

where R∗
n(f ;x) =

∫ b

a
− En−1(f ; t)dλ(t)/(x− t).

This formula, too, suffers from severe cancellation errors when x is near a
Gauss node. The resolution of this problem is similar (in fact, simpler) as in
the previous subsection: expand pn−1(f ; · ) in the orthogonal polynomials πk

to obtain

(Cf)(x; dλ) =
n−1∑
k=0

a′kρk(x) + R∗
n(f ;x),

a′k =
1

‖πk‖2

∫ b

a

pn−1(f ; t)πk(t)dλ(t).

(4.45)

It turns out that
a′k = ak, k = 0, 1, . . . , n− 1, (4.46)

where ak, k < n, is given by (4.43). This is implemented in the OPQ routine
cauchyPVI.m with iopt=1.

4.6 Polynomials Orthogonal on Several Intervals

We are given a finite set of intervals [cj , dj ], which may be disjoint or not, and
on each interval a positive measure dλj . Let dλ be the “composite” measure

dλ(t) =
∑

j

χ[cj ,dj ](t)dλj(t), (4.47)

where χ[cj ,dj ] is the characteristic function of the interval [cj , dj ]. Assuming
known the Jacobi matrices J (j) = Jn(dλj) of the component measures dλj ,
we now consider the problem of determining the Jacobi matrix J = Jn(dλ) of
the composite measure dλ. We provide two solutions, one based on Stieltjes’s
procedure, and one based on the modified Chebyshev algorithm.

Solution by Stieltjes’s Procedure

The main problem in applying Stieltjes’s procedure is to compute the inner
products (tπk, πk)dλ and (πk, πk)dλ for k = 0, 1, 2, . . . , n−1. This can be done
by using n-point Gaussian quadrature on each component interval,
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cj

p(t)dλj(t) =
n∑

ν=1

λ(j)
ν p(τ (j)

ν ), p ∈ P2n−1. (4.48)

Here we use (4.5) to express the quadrature sum in terms of the Jacobi matrix
J (j), ∫ dj

cj

p(t)dλj(t) = β
(j)
0 eT

1 p(J
(j))e1, β

(j)
0 =

∫ dj

cj

dλj(t). (4.49)

Then, for the inner products (tπk, πk)dλ, k ≤ n− 1, we get

(tπk, πk)dλ =
∫

R

tπ2
k(t)dλ(t) =

∑
j

∫ dj

cj

tπ2
k(t)dλj(t)

=
∑

j

β
(j)
0 eT

1 J (j)[πk(J (j))]2e1

=
∑

j

β
(j)
0 eT

1 [πk(J (j))]TJ (j)πk(J (j))e1

and for (πk, πk)dλ similarly (in fact, simpler)

(πk, πk)dλ =
∑

j

β
(j)
0 eT

1 [πk(J (j))]Tπk(J (j))e1.

This can be conveniently expressed in terms of the vectors

ζ
(j)
k := πk(J (j))e1, e1 = [1, 0, . . . , 0]T ,

which, as required in Stieltjes’s procedure, can be updated by means of the
basic three-term recurrence relation. This leads to the following algorithm.

Algorithm 7 Stieltjes procedure for polynomials orthogonal on several inter-
vals

initialization:

ζ
(j)
0 = e1, ζ

(j)
−1 = 0 (all j),

α0 =

∑
j β

(j)
0 eT

1 J (j)e1∑
j β

(j)
0

, β0 =
∑

j

β
(j)
0 .

continuation (if n > 1): for k = 0, 1, . . . , n− 2 do

ζ
(j)
k+1 = (J (j) − αkI)ζ(j)

k − βkζ
(j)
k−1 (all j),

αk+1 =

∑
j β

(j)
0 ζ

(j)T
k+1 J (j)ζ

(j)
k+1∑

j β
(j)
0 ζ

(j)T
k+1 ζ

(j)
k+1

, βk+1 =

∑
j β

(j)
0 ζ

(j)T
k+1 ζ

(j)
k+1∑

j β
(j)
0 ζ

(j)T
k ζ

(j)
k

.

In Matlab, this is implemented in the OPQ routine
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ab=r multidomain sti(N,abmd)

where abmd is the array containing the (α, β)-coefficients of the measures dλ(j).

Example 9. Example 1, revisited.
This is the case of two identical intervals [−1, 1] and two measures dλ(j)

on [−1, 1], one a multiple c of the Legendre measure, the other the Cheby-
shev measure. This was solved in Example 1 by a 2-component discretization
method. The solution by the 2-domain algorithm of this subsection, in Matlab,
looks as follows:

ab1=r jacobi(N); ab1(1,2)=2*c;
ab2=r jacobi(N,-.5);
abmd=[ab1 ab2];
ab=r multidomain sti(N,abmd)

It produces results identical with those produced by the method of Example
1.

Solution by the Modified Chebyshev Algorithm

The quadrature procedure used in the previous subsection to compute inner
products can equally be applied to compute the first 2n modified moments of
dλ,

mk =
∑

j

∫ dj

cj

pk(t)dλj(t) =
∑

j

β
(j)
0 eT

1 pk(J (j))e1. (4.50)

The relevant vectors are now

z
(j)
k := pk(J (j))e1, e1 = [1, 0, . . . , 0]T,

and the computation proceeds as in

Algorithm 8 Modified moments for polynomials orthogonal on several inter-
vals

initialization

z
(j)
0 = e1, z

(j)
−1 = 0 (all j), m0 =

∑
j

β
(j)
0 .

continuation: for k = 0, 1, . . . , 2n− 2 do

z
(j)
k+1 = (J (j) − akI)z(j)

k − bkz
(j)
k−1 (all j),

mk+1 =
∑

j

β
(j)
0 z

(j)T
k+1 e1.

With these moments at hand, we can apply Algorithm 1 to obtain the
desired recurrence coefficients. This is done in the OPQ routine
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ab=r multidomain cheb(N,abmd,abmm)

The array abmd has the same meaning as in the routine r multidomain sti.m,
and abmm is a ((2N−1)×2) array of the recurrence coefficients ak, bk generating
the polynomials pk.

Applied to Example 9, the Matlab program, using Legendre moments (pk

the monic Legendre polynomials), is as follows:

abm=r jacobi(2*N-1);
ab1=abm(1:N,:); ab1(1,2)=2*c;
ab2=r jacobi(N,-.5);
abmd=[ab1 ab2];
ab=r multidomain cheb(N,abmd,abm)

It produces results identical with those obtained previously, but takes about
three times as long to run.

4.7 Quadrature Estimates of Matrix Functionals

The problem to be considered here is to find lower and upper bounds for the
quadratic form

uTf(A)u, u ∈ RN , ‖u‖ = 1, (4.51)

where A ∈ RN×N is a symmetric, positive definite matrix, f a smooth function
(for which f(A) makes sense), and u a given vector. While this looks more
like a linear algebra problem, it can actually be solved, for functions f with
derivatives of constant sign, by applying Gauss-type quadrature rules. The
connecting link is provided by the spectral resolution of A,

AV = V Λ, Λ = diag(λ1, λ2, . . . , λN ), V = [v1,v2, . . . ,vN ], (4.52)

where λk are the eigenvalues of A (which for simplicity are assumed distinct),
and vk the normalized eigenvectors of A. If we put

u =
N∑

k=1

ρkvk = V ρ, ρ = [ρ1, ρ2, . . . , ρN ]T, (4.53)

and again for simplicity assume ρk �= 0, all k, then

uTf(A)u = ρTV TV f(Λ)V TV ρ = ρTf(Λ)ρ,

=
N∑

k=1

ρ2
kf(λk) =:

∫
R+

f(t)dρN (t).
(4.54)

This shows how the matrix functional is related to an integral relative to a
discrete positive measure. Now we know from (4.10) and (4.15) how Gauss–
Radau or Gauss–Lobatto rules (and for that matter also ordinary Gauss rules,
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in view of RG
n = [f (2n)(τ)/(2n)!]

∫ b

a
[πn(t; dλ)]2dλ(t), a < τ < b) can be applied

to obtain two-sided bounds for (4.54) when some derivative of f has constant
sign. To generate these quadrature rules, we need the orthogonal polynomials
for the measure dρN , and for these the Jacobi matrix JN (dρN ). The latter, in
principle, could be computed by the Lanczos-type algorithm of §2.3. However,
in the present application this would require knowledge of the eigenvalues λk

and expansion coefficients ρk, which are too expensive to compute. Fortu-
nately, there is an alternative way to implement Lanczos’s algorithm that
works directly with the matrix A and requires only multiplications of A into
vectors and the computation of inner products.

Lanczos Algorithm

Let ρk be as in (4.54) and h0 =
∑N

k=1 ρkvk (= u), ‖h0‖ = 1, as in (4.53).

Algorithm 9 Lanczos algorithm
initialization:

h0 prescribed with ‖h0‖ = 1, h−1 = 0.

continuation: for j = 0, 1, . . . , N − 1 do

αj = hT
j Ahj ,

h̃j+1 = (A − αjI)hj − γjhj−1,

γj+1 = ‖h̃j+1‖,
hj+1 = h̃j+1/γj+1.

While γ0 in Algorithm 9 can be arbitrary (it multiplies h−1 = 0), it is conve-
nient to define γ0 = 1. The vectors h0,h1, . . . ,hN generated by Algorithm 9
are called Lanczos vectors. It can be shown that αk generated by the Lanczos
algorithm is precisely αk(dρN ), and γk =

√
βk(dρN ), for k = 0, 1, 2, . . . , N−1.

This provides us with the Jacobi matrix JN (dρN ). It is true that the algo-
rithm becomes unstable as j approaches N , but in the applications of interest
here, only small values of j are needed.

Examples

Example 10. Error bounds for linear algebraic systems.
Consider the system

Ax = b, A symmetric, positive definite. (4.55)

Given an approximation x∗ ≈ x = A−1b to the exact solution x, and the
residual vector r = b−Ax∗, we have x−x∗ = A−1b + A−1(r − b) = A−1r,
thus
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‖x − x∗‖2 = (A−1r)TA−1r = rTA−2r,

and therefore
‖x − x∗‖2 = ‖r‖2 · uTf(A)u, (4.56)

where u = r/‖r‖ and f(t) = t−2. All derivatives of f are here of constant
sign on R+,

f (2n)(t) > 0, f (2n+1)(t) < 0 for t ∈ R+. (4.57)

By (4.54), we now have

‖x − x∗‖ = ‖r‖2

∫
R+

t−2dρN (t). (4.58)

The n-point Gauss quadrature rule applied to the integral on the right of
(4.58), by the first inequality in (4.57), yields a lower bound of ‖x − x∗‖,
without having to know the exact support interval of dρN . If, on the other
hand, we know that the support of dρN is contained in some interval [a, b],
0 < a < b, we can get a lower bound also from the right-handed (n + 1)-
point Gauss–Radau formula, and upper bounds from the left-handed (n + 1)-
point Gauss–Radau formula on [a, b], or from the (n+2)-point Gauss–Lobatto
formula on [a, b].
Example 11. Diagonal elements of A−1.

Here, trivially
uTf(A)u = eT

i A−1ei, (4.59)

where f(t) = t−1 and ei is the ith coordinate vector. Using n-point Gauss
quadrature in (4.54), with n < N , yields

(A−1)ii =
∫

R+

t−1 dρN (t) > eT
1 J−1

n e1, eT
1 = [1, 0, . . . , 0] ∈ Rn. (4.60)

Suppose we take n = 2 steps of Algorithm 9 to compute

J2 =

⎡⎣α0 γ1

γ1 α1

⎤⎦ .
We get

α0 = aii,

h̃1 = (A − α0I)ei = [a1i, . . . , ai−1,i, 0, ai+1,i, . . . , aNi]T,

γ1 =
√∑

k 	=i

a2
ki =: si,

h1 = h̃1/si,

α1 =
1
s2

i

h̃
T

1 Ah̃1 =
1
s2

i

∑
k 	=i

∑
� 	=i

ak�akia�i.

(4.61)
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But

J−1
2 =

1
α0α1 − γ2

1

⎡⎣ α1 −γ1

−γ1 α0

⎤⎦ , eT
1 J−1

2 e1 =
α1

α0α1 − γ2
1

,

so that by (4.60) with n = 2, and (4.61),

(A−1)ii >

∑
k 	=i

∑
� 	=i ak�akia�i

aii

∑
k 	=i

∑
� 	=i ak�akia�i −

(∑
k 	=i a

2
ki

)2 . (4.62)

Simpler bounds, both lower and upper, can be obtained by the 2-point Gauss-
Radau and Gauss-Lobatto formulae, which however require knowledge of an
interval [a, b], 0 < a < b, containing the spectrum of A.

Exercises to §4 (Stars indicate more advanced exercises.)

1. Prove (4.5).
2. Prove that complex zeros of the Sobolev orthogonal polynomials of Ex-

ample 7 must be purely imaginary.
3∗. Circle theorems for quadrature weights (cf. [4]).

(a) Gauss–Jacobi quadrature
Let w(t) = (1− t)α(1 + t)β be the Jacobi weight function. It is known
[16, eqn (15.3.10)] that the nodes τν and weights λν of the n-point
Gauss–Jacobi quadrature formula satisfy

λν ∼ π

n
w(τν)

√
1 − τ2

ν , n → ∞,

for τν on any compact interval contained in (−1, 1). Thus, suitably
normalized weights, plotted against the nodes, lie asymptotically on
the unit circle. Use Matlab to demonstrate this graphically.

(b) Gauss quadrature for the logarithmic weight w(t) = tα ln(1/t) on
[0, 1] (cf. [10, Example 2.27]).
Try, numerically, to find a circle theorem in this case also, and ex-
periment with different values of the parameter α > −1. (Use the
OPQ routine r jaclog.m to generate the recurrence coefficients of the
orthogonal polynomials for the weight function w.)

(c) Gauss–Kronrod quadrature.
With w as in (a), the analogous result for the 2n + 1 nodes τν and
weights λν of the (2n + 1)-point Gauss–Kronrod formula is expected
to be

λν ∼ π

2n
w(τν)

√
1 − τ2

ν , n → ∞.

That this indeed is the case, when α, β ∈ [0, 5
2 ), follows from Theorem

2 in [15]. Use Matlab to illustrate this graphically.
(d) Experiment with the Gauss–Kronrod formula for the logarithmic

weight function of (b), when α = 0.
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4. Discrete orthogonality.
Let πk( · ; dλ), k = 0, 1, 2, . . . , be the orthogonal polynomials relative to
an absolutely continuous measure. Show that for each N ≥ 2, the first N
of them are orthogonal with respect to the discrete inner product

(p, q)N =
N∑

ν=1

λG
ν p(τ

G
ν )q(τG

ν ),

where τG
ν , λG

ν are the nodes and weights of the N -point Gauss formula
for dλ. Moreover, ‖πk‖2

N = ‖πk‖2
dλ for k ≤ N − 1.

5. (a) Consider the Cauchy integral

ρn(z) = ρn(z; dλ) =
∫ b

a

πn(t; dλ)
z − t

dλ(t),

where [a, b] is the support of dλ. Show that

ρn(z) = O(z−n−1) as z → ∞.

{Hint: Expand the integral defining ρn(z) in descending powers of z.}
(b) Show that∫ b

a

dλ(t)
z − t

− σn(z)
πn(z)

=
ρn(z)
πn(z)

= O(z−2n−1) as z → ∞.

{Hint: Use (2.27).}
(c) Consider the partial fraction decomposition

σn(z)
πn(z)

=
n∑

ν=1

λν

z − τG
ν

of σn(z)/πn(z) in (2.27). Use (b) to show that λν = λG
ν are the weights

of the n-point Gaussian quadrature formula for dλ. In particular, show
that

λG
ν =

σn(τG
ν )

π′n(τG
ν )

.

(d) Discuss what happens if z → x, x ∈ (a, b).
6. Characterize the nodes τ b

ν in (4.9) as zeros of an orthogonal polynomial
of degree n, and identify the appropriate Jacobi–Radau matrix for (4.9).

7. Prove (4.10). {Hint: Use the fact that both formulae (4.6) and (4.9) are
interpolatory.}

8. (a) Prove the first formula in (4.11). {Hint: Use the relation between the
Jacobi polynomials Pk = P

(α,β)
k customarily defined and the monic Ja-

cobi polynomials πk = π
(α,β)
k , expressed by Pk(t) = 2−k

(
2k+α+β

k

)
πk(t).

You also need Pk(−1) = (−1)k
(
k+β

k

)
and the β-coefficient for Jacobi

polynomials, βJ
n = 4n(n + α)(n + β)(n + α + β)/(2n + α + β)2(2n +

α + β + 1)(2n + α + β − 1).}
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(b) Prove the second formula in (4.11). {Hint: With π
(α)
k and L

(α)
k de-

noting the monic resp. conventional generalized Laguerre polynomials,
use L

(α)
k (t) =

(
(−1)k/k!

)
π

(α)
k (t). You also need L

(α)
k (0) =

(
k+α

k

)
, and

βL
n = n(n + α).}

9. Prove (4.16). {Hint: With notation as in the hint to Exercise 8(a), use
Pk(1) =

(
k+α

k

)
in addition to the information provided there.}

10. The (left-handed) generalized Gauss–Radau formula is∫ ∞

a

f(t) dλ(t) =
r−1∑
ρ=0

λ
(ρ)
0 f (ρ)(a) +

n∑
ν=1

λR
ν f(τR

ν ) + RR
n,r(f),

where r > 1 is the multiplicity of the end point τ0 = a, and RR
n,r(f) = 0

for f ∈ P2n−1+r. Let dλ[r](t) = (t−a)rdλ(t) and τ
[r]
ν , λ[r]

ν , ν = 1, 2, . . . , n,
be the nodes and weights of the n-point Gauss formula for dλ[r].
(a) Show that

τR
ν = τ [r]

ν , λR
ν =

λ
[r]
ν

(τR
ν − a)r

, ν = 1, 2, . . . , n.

(b) Show that not only the internal weights λR
ν are all positive (why?),

but also the boundary weights λ0, λ′0 if r = 2.
11. The generalized Gauss–Lobatto formula is∫ b

a

f(t) dλ(t) =
r−1∑
ρ=0

λ
(ρ)
0 f (ρ)(a) +

n∑
ν=1

λL
ν f(τL

ν )

+
r−1∑
ρ=0

(−1)ρλ
(ρ)
n+1f

(ρ)(b) + RL
n,r(f),

where r > 1 is the multiplicity of the end points τ0 = a, τn+1 = b, and
RL

n,r(f) = 0 for f ∈ P2n−1+2r. Let dλ[r](t) = [(t − a)(b − t)]rdλ(t) and

τ
[r]
ν , λ[r]

ν , ν = 1, 2, . . . , n, be the nodes and weights of the n-point Gauss
formula for dλ[r].
(a) Show that

τL
ν = τ [r]

ν , λL
ν =

λ
[r]
ν

[(τL
ν − a)(b− τL

ν )]r
, ν = 1, 2, . . . , n.

(b) Show that not only the internal weights λL
ν are all positive (why?),

but also the boundary weights λ0, λ′0 and λn+1, λ′n+1 if r = 2.
(c) Show that λ

(ρ)
0 = λ

(ρ)
n+1, ρ = 0, 1, . . . , r − 1, if the measure dλ is

symmetric.
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12∗. Generalized Gauss-Radau quadrature.
(a) Write a Matlab routine gradau.m for generating the generalized

Gauss-Radau quadrature rule of Exercise 10 for a measure dλ on
[a,∞], having a fixed node a of multiplicity r, r > 1. {Hint: To
compute the boundary weights, set up an (upper triangular) sys-
tem of linear equations by applying the formula in turn with π2

n(t),
(t− a)π2

n(t), . . . , (t− a)r−1π2
n(t), where πn(t) =

∏n
ν=1(t− τR

ν ).}
(b) Check your routine against the known formulae with r = 2 for the

Legendre and Chebyshev measures (see [10, Examples 3.10 and 3.11]).
Devise and implement a check that works for arbitrary r ≥ 1 and
another, in particular, for r = 1.

(c) Use your routine to explore positivity of the boundary weights and
see whether you can come up with any conjectures.

13∗. Generalized Gauss-Lobatto quadrature.
(a) Write a Matlab routine globatto.m for generating the generalized

Gauss-Lobatto rule of Exercise 11 for a measure dλ on [a, b], having
fixed nodes at a and b of multiplicity r, r > 1. For simplicity, start
with the case r ≥ 2 even; then indicate the changes necessary to deal
with odd values of r. {Hint: Similar to the hint in Exercise 12(a).}

(b) Check your routine against the known formulae with r = 2 for the
Legendre and Chebyshev measures (see [10, Examples 3.13 and 3.14]).
Devise and implement a check that works for arbitrary r ≥ 1 and
another, in particular, for r = 1.

(c) Explore the positivity of the boundary weights λ(ρ)
0 and the quantities

λ
(ρ)
n+1 in the quadrature formula.

14. Show that the monic Stieltjes polynomial πK
n+1 in (4.19) exists uniquely.

15. (a) Let dλ be a positive measure. Use approximation theory to show that
the minimum of

∫
R
|π(t)|pdλ(t), 1 < p < ∞, extended over all monic

polynomials π of degree n is uniquely determined.
(b) Show that the minimizer of the extremal problem in (a), when p =

2s + 2, s ≥ 0 an integer, is the s-orthogonal polynomial π = πn,s.
{Hint: Differentiate the integral partially with respect to the variable
coefficients of π.}

16. (a) Show that r in (4.22) has to be odd.
(b) Show that in (4.22) with r as in (4.23), one cannot have k > n.

17. Derive (4.33) and (4.34).
18. Derive (4.39) from (4.38) and explain the meaning of Rn(f ;x). {Hint: Use

Exercise 5(c) and (2.27).}
19. Show that pn(f ; t) in (4.40) is

pn(f ; t) =
πn(t)
πn(x)

f(x) +
n∑

ν=1

(t− x)πn(t)
(t− τG

ν )(τG
ν − x)π′n(τG

ν )
f(τG

ν ),

and thus prove (4.40). {Hint: Use Exercise 5(c).}
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20. Derive (4.42) and (4.43). {Hint: For k < n, use Gauss quadrature, and
for k = n insert the expression for pn(f ; t) from Exercise 19 into the
formula for an in (4.41). Also use the fact that the elementary Lagrange
interpolation polynomials sum up to 1.}

21. Derive (4.44).
22. Prove (4.46). {Hint: Use Exercise 4.}
23. (a) Prove that the Lanczos vectors are mutually orthonormal.

(b) Show that the vectors {hj}n
j=0, n < N , form an orthonormal basis

of the Krylov space

Kn(A,h0) = span(h0,Ah0, . . . ,A
nh0).

(c) Prove that
hj = pj(A)h0, j = 0, 1, . . . , N,

where pj is a polynomial of degree j satisfying the three-term recur-
rence relation

γj+1pj+1(λ) = (λ− αj)pj(λ) − γjpj−1(λ),

j = 0, 1, . . . , N − 1,

p0(λ) = 1, p−1(λ) = 0.

{Hint: Use mathematical induction.}
24. Prove that the polynomial pk of Exercise 23(c) is equal to the orthonor-

mal polynomial π̃k( · ; dρN ). {Hint: Use the spectral resolution of A and
Exercises 23(a) and (c).}

25. Derive the bounds for (A−1)ii hinted at in the last sentence of Example
11.

5 Approximation

5.1 Polynomial Least Squares Approximation

Classical Least Squares Problem

We are given N data points (tk, fk), k = 1, 2, . . . , N , and wish to find a
polynomial p̂n of degree ≤ n, n < N , such that a weighted average of the
squared errors [p(tk)− fk]2 is as small as possible among all polynomials p of
degree n,

N∑
k=1

wk[p̂n(tk) − fk]2 ≤
N∑

k=1

wk[p(tk) − fk]2 for all p ∈ Pn. (5.1)

Here, wk > 0 are positive weights, which allow placing more emphasis on data
points that are reliable, and less emphasis on others, by choosing them larger
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resp. smaller. If the quality of the data is uniformly the same, then equal
weights, say wk = 1, are appropriate.

The problem as formulated suggests a discrete N -point measure

dλN (t) =
N∑

k=1

wkδ(t− tk), δ = Dirac delta function, (5.2)

in terms of which the problem can be written in the compact form

‖p̂n − f‖2
dλN

≤ ‖p− f‖2
dλN

for all p ∈ Pn. (5.3)

The polynomials πk( · ) = πk( · ; dλN ) orthogonal (not necessarily monic) with
respect to the discrete measure (5.2) provide an easy solution: one writes

p(t) =
n∑

i=0

ciπi(t), n < N, (5.4)

and obtains for the squared error, using the orthogonality of πk,

E2
n =

⎛⎝ n∑
i=0

ciπi − f,

n∑
j=0

cjπj − f

⎞⎠ =
n∑

i,j=0

cicj(πi, πj) − 2
n∑

i=0

ci(f, πi) + ‖f‖2

=
n∑

i=0

(
‖πi‖ci −

(f, πi)
‖πi‖

)2

+ ‖f‖2 −
n∑

i=0

(f, πi)2

‖πi‖2
.

(5.5)
(All norms and inner products are understood to be relative to the measure
dλN .) Evidently, the minimum is attained for ci = ĉi(f), where

ĉi(f) =
(f, πi)
‖πi‖2

, i = 0, 1, . . . , n, (5.6)

are the “Fourier coefficients” of f relative to the orthogonal system π0, π1,
. . . , πN−1. Thus,

p̂n(t) =
n∑

i=0

ĉi(f)πi(t; dλN ). (5.7)

In Matlab, the procedure is implemented in the OPQ routine

[phat,c]=least squares(n,f,xw,ab,d)

The given function values fk are input through the N×1 array f, the abscissae
tk and weights wk through the N×2 array xw, and the measure dλN through
the (N+1)×2 array ab of recurrence coefficients (the routine determines N au-
tomatically from the size of xw). The 1×(n+1) array d is the vector of leading
coefficients of the orthogonal polynomials. The procedure returns as output
the N×(n+1) array phat of the values p̂ν(tk), 0 ≤ ν ≤ n, 1 ≤ k ≤ N , and the
(n+1)×1 array c of the Fourier coefficients.
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Example 12. Equally weighted least squares approximation on N = 10 equally
spaced points on [−1, 1].

Matlab program:

N=10; k=(1:N)’; d=ones(1,N);
xw(k,1)=-1+2*(k-1)/(N-1); xw(:,2)=2/N;
ab=r hahn(N-1); ab(:,1)=-1+2*ab(:,1)/(N-1);
ab(:,2)=(2/(N-1))^2*ab(:,2); ab(1,2)=2;
[phat,c]=least squares(N-1,f,xw,ab,d);

Demo#5 The program is applied to the function f(t) = ln(2+t) on [−1, 1],

and selected least squares errors Ên are compared in the table below with
maximum errors E∞

n (taken over 100 equally spaced points on [−1, 1]).

n Ên E∞
n

0 4.88(–01) 6.37(–01)
3 2.96(–03) 3.49(–03)
6 2.07(–05) 7.06(–05)
9 1.74(–16) 3.44(–06)

If n = N−1, the least squares error ÊN−1 is zero, since the N data points can
be interpolated exactly by a polynomial of degree ≤ N − 1. This is confirmed
in the first tabular entry for n = 9. The infinity errors are only slightly larger
than the least squares errors, except for n = 9.

Constrained Least Squares Approximation

It is sometimes desirable to impose constraints on the least squares approx-
imation, for example to insist that at certain points sj the error should be
exactly zero. Thus, the polynomial p ∈ Pn is subject to the constraints

p(sj) = fj , j = 1, 2, . . . ,m; m ≤ n, (5.8)

but otherwise is freely variable. For simplicity we assume that none of the sj

equals one of the support points tk. (Otherwise, the procedure to be described
requires some simple modifications.)

In order to solve the constrained least squares problem, let

pm(f ; t) = pm(f ; s1, . . . , sm; t), σm(t) =
m∏

j=1

(t− sj), (5.9)

be respectively the polynomial of degree m − 1 interpolating f at the points
sj and the constraint polynomial of degree m. We then write

p(t) = pm(f ; t) + σm(t)q(t). (5.10)

This clearly satisfies the constraints (5.8), and q is a polynomial of degree
n−m that can be freely varied. The problem is to minimize the squared error
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‖f − pm(f ; · ) − σmq ‖2
dλN

=
∫

R

[
f(t) − pm(f ; t)

σm(t)
− q(t)

]2
σ2

m(t)dλN (t)

over all polynomials q of degree n−m. This is an unconstrained least squares
problem, but for a new function f∗ and a new measure dλ∗N ,

minimize : ‖f∗ − q ‖dλ∗
N
, q ∈ Pn−m, (5.11)

where

f∗(t) =
f(t) − pm(f ; t)

σm(t)
, dλ∗N (t) = σ2

m(t)dλN (t). (5.12)

If q̂n−m is the solution of (5.11), then

p̂n(t) = pm(f ; t) + σm(t)q̂n−m(t) (5.13)

is the solution of the constrained least squares problem. The function f∗,
incidentally, can be given the form of a divided difference,

f∗(t) = [s1, s2, . . . , sm, t ]f, t ∈ supp dλ∗N ,

as follows from the theory of interpolation. Note also that the discrete or-
thogonal polynomials πk( · ; dλ∗N ) needed to solve (5.11) can be obtained from
the polynomials πk( · ; dλN ) by m modifications of the measure dλN (t) by
quadratic factors (t− sj)2.
Example 13. Bessel function J0(t) for 0 ≤ t ≤ j0,3.

Here, j0,3 is the third positive zero of J0. A natural constraint is to repro-
duce the first three zeros of J0 exactly, that is, m = 3 and

s1 = j0,1, s2 = j0,2, s3 = j0.3.

Demo#6 The constrained least squares approximations of degrees n = 3, 4, 5
(that is, n − m = 0, 1, 2) using N = 51 equally spaced points on [0, j0,3]
(end points included) are shown in Fig. 2. The solid curve represents the
exact function, the dashdotted, dashed, an dotted curves the approximants
for n = 3, 4, and 5, respectively. The approximations are not particularly
satisfactory and show spurious behavior near t = 0.
Example 14. Same as Example 13, but with two additional constraints

p(0) = 1, p′(0) = 0.

Demo#7 Derivative constraints, as the one in Example 14, can be incorpo-
rated similarly as before. In this example, the added constraints are designed
to remove the spurious behavior near t = 0; they also improve considerably
the overall accuracy, as is shown in Fig. 3. For further details on Matlab
implementation, see [10, Examples 3.51 and 3.52].
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Fig. 2. Constrained least square approximation of the Bessel function

0 1 2 3 4 5 6 7 8 9
0.5

0

0.5

1

x

B
es

se
l

Fig. 3. Derivative-constrained least squares approximation of the Bessel function

Least Squares Approximation in Sobolev Spaces

The task now is to approximate simultaneously functions and some of their
first derivatives. More precisely, we want to minimize

s∑
σ=0

N∑
k=1

w
(σ)
k [p(σ)(tk) − f

(σ)
k ]2

over all polynomials p ∈ Pn, where f
(σ)
k , σ = 0, 1, . . . , s, are given function

and derivative values, and w
(σ)
k > 0 appropriate weights for each derivative.
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These are often chosen such that

w
(σ)
k = γσwk, γσ > 0, k = 1, 2, . . . , N,

in terms of one set of positive weights wk. Evidently,, the problem, analogously
to (5.3), can be written in terms of the Sobolev inner product and norm

(u, v)S =
s∑

σ=0

N∑
k=1

w
(σ)
k u(σ)(tk)v(σ)(tk), ‖u‖S =

√
(u, u)S (5.14)

in the compact form

minimize : ‖p− f‖2
S for all p ∈ Pn. (5.15)

The solution is entirely analogous to the one provided earlier,

p̂n(t) =
n∑

i=0

ĉi(f)πi(t), ĉi(f) =
(f, πi)S

‖πi‖2
S

, (5.16)

where {πi} are the orthogonal polynomials of Sobolev type. In Matlab, the
procedure is

[phat,c]=least squares sob(n,f,xw,B)

The input parameter f is now an N × (s + 1) array containing the N values
of the given function and its first s derivatives at the points tk. The abscissae
tk and the s + 1 weights w

(σ)
k of the Sobolev inner product are input via the

N × (s+ 2) array xw (the routine determines N and s automatically from the
size of the array xw). The user also has to provide the N ×N upper triangular
array B of the recurrence coefficients for the Sobolev orthogonal polynomials,
which for s = 1 can be generated by the routine chebyshev sob.m and for
arbitrary s by the routine stieltjes sob.m. The output phat is an array of
dimension (n+1)×(N∗(s+1)) containing the N values of the derivative of order
σ of the νth-degree approximant p̂ν , ν ≤ n, in positions (ν+1, σ+1 : s+1 : N ∗
(s+1)) of the array phat. The Fourier coefficients ĉi are output in the (n+1)×1
vector c.
Example 15. The complementary error function on [0, 2].

This is the function

f(t) = et2erfc t =
2√
π
et2
∫ ∞

t

e−u2
du, 0 ≤ t ≤ 2,

whose derivatives are easily calculated.

Demo#8 The routine least squares sob.m is applied to the function
f of Example 15 with s = 2 and N=5 equally spaced points tk on [0, 2]. All
weights are chosen to be equal, w(σ)

k = 1/N for σ = 0, 1, 2. The table below,
in the top half, shows selected results for the Sobolev least squares error Ên
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s n Ên E∞
n,0 E∞

n,1 E∞
n,2

2 0 1.153(+00) 4.759(–01) 1.128(+00) 2.000(+00)
2 7.356(–01) 8.812(–02) 2.860(–01) 1.411(+00)
4 1.196(–01) 1.810(–02) 5.434(–02) 1.960(–01)
9 2.178(–05) 4.710(–06) 3.011(–05) 3.159(–04)
14 3.653(–16) 1.130(–09) 1.111(–08) 1.966(–07)

0 0 2.674(–01) 4.759(–01) 1.128(+00) 2.000(+00)
2 2.245(–02) 3.865(–02) 3.612(–01) 1.590(+00)
4 1.053(–16) 3.516(–03) 5.160(–02) 4.956(–01)

and the maximum errors E∞
n,0, E

∞
n,1, E

∞
n,2 (over 100 equally spaced points on

[0, 2]) for the function and its first two derivatives. In the bottom half are
shown the analogous results for ordinary least squares approximation (s = 0)
when n ≤ N − 1. (It makes no sense to consider n > N − 1.) Note that the
Sobolev least squares error Ê3N−1 is essentially zero, reflecting the fact that
the Hermite interpolation polynomial of degree 3N − 1 interpolates the data
exactly. In contrast, Ên = 0 for n ≥ N−1 in the case of ordinary least squares.

As expected, the table shows rather convincingly that Sobolev least squares
approximation approximates the derivatives decidedly better than ordinary
least squares approximation, when applicable, and even the function itself,
when n is sufficiently large.

5.2 Moment-Preserving Spline Approximation

There are various types of approximation: those that control the maximum
pointwise error; those that control some average error (like least squares error);
and those, often motivated by physical considerations, that try to preserve the
moments of the given function, or at least as many of the first moments as
possible. It is this last type of approximation that we now wish to study.
We begin with piecewise constant approximation on the whole positive real
line R+, then proceed to spline approximation on R+, and end with spline
approximation on a compact interval.

Piecewise Constant Approximation on R+

The piecewise constant approximants to be considered are

sn(t) =
n∑

ν=1

aνH(tν − t), t ∈ R+, (5.17)

where aν ∈ R, 0 < t1 < t2 < · · · < tn, and H is the Heaviside function

H(u) =

⎧⎨⎩1 if u ≥ 0,

0 otherwise.



64 Walter Gautschi

The problem is, for given f ∈ C1(R+), to find, if possible, the aν and tν such
that ∫ ∞

0

sn(t)tjdt = μj , j = 0, 1, . . . , 2n− 1, (5.18)

where
μj =

∫ ∞

0

f(t)tjdt, j = 0, 1, . . . , 2n− 1, (5.19)

are the moments of f , assumed to exist.
The solution can be formulated in terms of Gauss quadrature relative to

the measure
dλ(t) = −tf ′(t)dt on R+. (5.20)

Indeed, if f(t) = o(t−2n) as t → ∞, then the problem has a unique solution if
and only if dλ in (5.20) admits an n-point Gauss quadrature formula∫ ∞

0

g(t)dλ(t) =
n∑

ν=1

λG
ν g(τ

G
ν ), g ∈ P2n−1, (5.21)

satisfying 0 < τG
1 < τG

2 < · · · < τG
n . If that is the case, then the desired knots

tν and coefficients aν are given by

tν = τG
ν , aν =

λG
ν

τG
ν

, ν = 1, 2, . . . , n. (5.22)

A Gauss formula (5.21) always exists if f ′ < 0 on R+, that is, dλ(t) ≥ 0.
For the proof, we use integration by parts,

∫ T

0

f(t)tjdt =
1

j + 1
tj+1f(t)

∣∣∣∣∣
T

0

− 1
j + 1

∫ T

0

f ′(t)tj+1dt, j ≤ 2n− 1,

and let T → ∞. The integrated part on the right goes to zero by assumption
on f , and the left-hand side converges to the jth moment of f , again by
assumption. Therefore, the last term on the right also converges, and since
−tf ′(t) = dλ(t), one finds

μj =
1

j + 1

∫ ∞

0

tjdλ(t), j = 0, 1, . . . , 2n− 1.

This shows in particular that the first 2n moments of dλ exist, and therefore,
if dλ ≥ 0, also the Gauss formula (5.21).

On the other hand, the approximant sn has moments∫ ∞

0

sn(t)tjdt =
n∑

ν=1

aν

∫ tν

0

tjdt =
1

j + 1

n∑
ν=1

aνt
j+1
ν ,

so that the first 2n moments μj of f are preserved if and only if
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n∑
ν=1

(aνtν)tjν =
∫ ∞

0

tjdλ(t), j = 0, 1, . . . , 2n− 1.

This is equivalent to saying that the knots tν are the Gauss nodes in (5.21),
and aνtν the corresponding weights.
Example 16. Maxwell distribution f(t) = e−t2 on R+.

Here,
dλ(t) = 2t2e−t2dt on R+,

which is a positive measure obtained (up to the factor 2) by twice modifying
the half-range Hermite measure by a linear factor t. The first n + 2 recur-
rence coefficients of the half-range Hermite measure can be computed by a
discretization method. Applying to these recurrence coefficients twice the rou-
tine chri1.m, with zero shift, then yields the recurrence coefficients αk(dλ),
βk(dλ), k ≤ n − 1, and hence the required n-point Gauss quadrature rule
(5.21) for dλ. The result for n = 5 is depicted in Fig. 4.

Spline Approximation on R+

The approximant sn in (5.17) can be interpreted as a spline function of degree
0. We now consider spline functions sn,m of degree m > 0,

sn,m(t) =
n∑

ν=1

aν(tν − t)m
+ , t ∈ R+, (5.23)

where um
+ is the truncated power um

+ = um if u ≥ 0, and um
+ = 0 if u < 0.

Given the first 2n moments (5.19) of f , the problem again is to determine
aν ∈ R and 0 < t1 < t2 < · · · < tn such that

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

t1 t2 t3 t4 t5

Fig. 4. Piecewise constant approximation of the Maxwell distribution
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0

sn,m(t)tjdt = μj , j = 0, 1, . . . , 2n− 1. (5.24)

By a reasoning similar to the one in the previous subsection, but more com-
plicated, involving m integrations by part, one proves that for f ∈ Cm+1(R+)
and satisfying f (μ)(t) = o(t−2n−μ) as t → ∞, μ = 0, 1, . . . ,m, the problem
has a unique solution if and only if the measure

dλ[m](t) =
(−1)m+1

m!
tm+1f (m+1)(t)dt on R+ (5.25)

admits an n-point Gauss quadrature formula∫ ∞

0

g(t) dλ[m](t) =
n∑

ν=1

λG
ν g(τ

G
ν ) for all g ∈ P2n−1 (5.26)

satisfying 0 < τG
1 < τG

2 < · · · < τG
n . If that is the case, the knots tν and

coefficients aν are given by

tν = τG
ν , aν =

λG
ν

[τG
ν ]m+1

, ν = 1, 2, . . . , n. (5.27)

Note that dλ[m] in (5.25) is a positive measure, for each m ≥ 0, and hence
(5.26) exists, if f is completely monotonic on R+, that is, (−1)μf (μ)(t) > 0,
t ∈ R+, for μ = 0, 1, 2, . . . .

Example 17. Maxwell distribution f(t) = e−t2 on R+, revisited.
We now have

dλ[m](t) =
1
m!

tm+1Hm+1(t)e−t2 dt on R+,

where Hm+1 is the Hermite polynomial of degree m+ 1. Here, dλ[m] if m > 0
is no longer of constant sign on R+, and hence the existence of the Gauss rule
(5.26) is in doubt. Numerical exploration, using discretization methods, yields
the situation shown in the table below, where a dash indicates the presence
of a negative Gauss node τG

ν , and an asterisk the presence of a pair

n m = 1 m = 2 m = 3 n m = 1 m = 2 m = 3
1 6.9(–2) 1.8(–1) 2.6(–1) 11 — 1.1(–3) 1.1(–4)
2 8.2(–2) — 2.3(–1) 12 — — *
3 — 1.1(–2) 2.5(–3) 13 7.8(–3) 6.7(–4) *
4 3.5(–2) 6.7(–3) 2.2(–3) 14 8.3(–3) 5.6(–4) 8.1(–5)
5 2.6(–2) — 1.6(–3) 15 7.7(–3) — 7.1(–5)
6 2.2(–2) 3.1(–3) * 16 — 4.9(–4) 7.8(–5)
7 — 2.4(–3) * 17 — 3.8(–4) 3.8(–5)
8 1.4(–2) — 3.4(–4) 18 5.5(–3) 3.8(–4) *
9 1.1(–2) 1.7(–3) 2.5(–4) 19 5.3(–3) — *
10 9.0(–3) 1.1(–3) — 20 5.4(–3) 3.1(–4) *
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of conjugate complex Gauss nodes. In all cases computed, there were never
more than one negative Gauss node, or more than one pair of complex nodes.
The numbers in the table represent the maximum errors ‖sn,m − f‖∞, the
maximum being taken over 100 equally spaced points on [0, τG

n ].

Spline Approximation on a Compact Interval

The problem on a compact interval, say [0, 1], is a bit more involved than
the problem on R+. For one, the spline function sn,m may now include a
polynomial p of degree m, which was absent before since no moment of p
exists on R+ unless p ≡ 0. Thus, the spline approximant has now the form

sn,m(t) = p(t) +
n∑

ν=1

aν(tν − t)m
+ , p ∈ Pm, 0 ≤ t ≤ 1, (5.28)

where aν ∈ R and 0 < t1 < t2 < · · · < tn < 1. There are two problems of
interest:

Problem I. Find sn,m such that∫ 1

0

sn,m(t)tjdt = μj , j = 0, 1, . . . , 2n + m. (5.29)

Since we have m+ 1 additional parameters at our disposal (the coefficients of
p), we can impose m + 1 additional moment conditions.

Problem II. Rather than matching more moments, we use the added degree
of freedom to impose m + 1 “boundary conditions” at the end point t = 1.
More precisely, we want to find sn,m such that∫ 1

0

sn,m(t)tjdt = μj , j = 0, 1, . . . , 2n− 1 (5.30)

and
s(μ)

n,m(1) = f (μ)(1), μ = 0, 1, . . . ,m. (5.31)

It is still true that a solution can be given in terms of quadrature formu-
lae, but they are now respectively generalized Gauss–Lobatto and generalized
Gauss–Radau formulae relative to the measure (see [5, 6])

dλ[m](t) =
(−1)m+1

m!
f (m+1)(t)dt on [0, 1]. (5.32)

Problem I, in fact, has a unique solution if and only if the generalized Gauss–
Lobatto formula∫ 1

0

g(t)dλ[m](t) =
m∑

μ=0

[λ(μ)
0 g(μ)(0) + (−1)μλ

(μ)
n+1g

(μ)(1)]

+
n∑

ν=1

λL
ν g(τ

L
ν ), g ∈ P2n+2m+1,

(5.33)
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exists with 0 < τL
1 < · · · < τL

n < 1. In this case,

tν = τL
ν , aν = λL

ν , ν = 1, 2, . . . .n, (5.34)

and p is uniquely determined by

p(μ)(1) = f (μ)(1) + (−1)mm!λ(m−μ)
n+1 , μ = 0, 1, . . . ,m. (5.35)

Similarly, Problem II has a unique solution if and only if the generalized
Gauss–Radau formula∫ 1

0

g(t)dλ[m](t) =
m∑

μ=0

λ
(μ)
0 g(μ)(0) +

n∑
ν=1

λR
ν g(τ

R
ν ), g ∈ P2n+m, (5.36)

exists with 0 < τR
1 < · · · < τR

n < 1. Then

tν = τR
ν , aν = λR

ν , ν = 1, 2, . . . .n, (5.37)

and (trivially)

p(t) =
m∑

μ=0

f (μ)(1)
μ!

(t− 1)μ. (5.38)

In both cases, complete monotonicity of f implies dλ ≥ 0 and the existence of
the respective quadrature formulae. For their construction, see Exercises 12
and 13 of §4.

5.3 Slowly Convergent Series

Standard techniques of accelerating the convergence of slowly convergent se-
ries are based on linear or nonlinear sequence transformations: the sequence
of partial sums is transformed somehow into a new sequence that converges
to the same limit, but a lot faster. Here we follow another approach, more
in the spirit of these lectures: the sum of the series is represented as a defi-
nite integral; a sequence of quadrature rules is then applied to this integral
which, when properly chosen, will produce a sequence of approximations that
converges quickly to the desired sum.

An easy way (and certainly not the only one) to obtain an integral repre-
sentation presents itself when the general term of the series, or part thereof,
is expressible in terms of the Laplace transform (or some other integral trans-
form) of a known function. Several instances of this will now be described.

Series Generated by a Laplace Transform

The series

S =
∞∑

k=1

ak (5.39)
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to be considered first has terms ak that are the Laplace transform

(Lf)(s) =
∫ ∞

0

e−stf(t)dt

of some known function f evaluated at s = k,

ak = (Lf)(k), k = 1, 2, 3, . . . . (5.40)

In this case,

S =
∞∑

k=1

∫ ∞

0

e−ktf(t)dt

=
∫ ∞

0

∞∑
k=1

e−(k−1)t · e−tf(t)dt

=
∫ ∞

0

1
1 − e−t

e−tf(t)dt

that is,

S =
∫ ∞

0

t

1 − e−t

f(t)
t

e−tdt. (5.41)

There are at least three different approaches to evaluate this integral nu-
merically: one is Gauss–Laguerre quadrature of (t/(1 − e−t))f(t)/t with
dλ(t) = e−tdt on R+; another is rational/polynomial Gauss–Laguerre quadra-
ture of the same function; and a third Gauss–Einstein quadrature of the func-
tion f(t)/t with dλ(t) = tdt/(et − 1) on R+. In the last method, the weight
function t/(et−1) is widely used in solid state physics, where it is named after
Einstein (coming from the Einstein-Bose distribution). It is also, incidentally,
the generating function of the Bernoulli polynomials.
Example 18. The Theodorus constant

S =
∞∑

k=1

1
k3/2 + k1/2

= 1.860025 . . . .

This is a universal constant introduced by P.J. Davis (1993) in connection
with a spiral attributed to the ancient mathematician Theodorus of Cyrene.

Here we note that

1
s3/2 + s1/2

= s−1/2 1
s + 1

=
(
L 1√

πt
∗ e−t

)
(s),

where the star stands for convolution. A simple computation yields (5.40)
with

f(t) =
2√
π
F (

√
t),
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where
F (x) = e−x2

∫ x

0

et2dt

is Dawson’s integral.

Demo#9 To make f(t) regular at t = 0, we divide by
√
t and write

S =
2√
π

∫ ∞

0

t

1 − e−t

F (
√
t)√
t

t−1/2e−tdt

=
2√
π

∫ ∞

0

F (
√
t)√
t

t−1/2 t

et − 1
dt.

To the first integral we apply Gauss–Laguerre quadrature with dλ(t) =
t−1/2e−tdt on R+, or rational Gauss–Laguerre with the same dλ, and to the
second integral Gauss–Einstein quadrature (modified by the factor t−1/2). The
errors committed in these quadrature methods are shown in the table below.

n Gauss-Laguerre rational Gauss-Laguerre Gauss-Einstein
1 9.6799(–03) 1.5635(–02) 1.3610(–01)
4 5.5952(–06) 1.1893(–08) 2.1735(–04)
7 4.0004(–08) 5.9689(–16) 3.3459(–07)
10 5.9256(–10) 5.0254(–10)
15 8.2683(–12) 9.4308(–15)
20 8.9175(–14) 4.7751(–16)

timing: 10.8 timing: 8.78 timing: 10.4

The clear winner is rational Gauss–Laguerre, both in terms of accuracy and
run time.
Example 19. The Hardy–Littlewood function

H(x) =
∞∑

k=1

1
k

sin
x

k
, x > 0.

It can be shown that

ak :=
1
k

sin
x

k
= (Lf(t;x))(k),

where
f(t;x) =

1
2i

[I0(2
√

ixt) − I0(2
√
−ixt)]

and I0 is the modified Bessel function. This gives rise to the two integral
representations

H(x) =
∫ ∞

0

t

1 − e−t

f(t;x)
t

e−tdt =
∫ ∞

0

f(t;x)
t

t

et − 1
dt.
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Among the three quadrature methods, Gauss–Einstein performs best, but all
suffer from internal cancellation of terms in the quadrature sum. The problem
becomes more prominent as the number n of terms increases. In this case,
other methods can be applied, using the Euler-Maclaurin formula [11].

Fig. 5 shows the behavior of H(x) in the range 0 ≤ x ≤ 100.

“Alternating” Series Generated by a Laplace Transform

These are series in which the general terms are Laplace transforms with al-
ternating signs of some function f , that is, series (5.39) with

ak = (−1)k−1(L f)(k), k = 1, 2, 3, . . . . (5.42)

An elementary computation similar to the one carried out in the previous
subsection will show that

S =
∫ ∞

0

1
1 + e−t

f(t)e−tdt =
∫ ∞

0

f(t)
1

et + 1
dt. (5.43)

We can again choose between three quadrature methods: Gauss–Laguerre
quadrature of the function f(t)/(1 + e−t) with dλ(t) = e−tdt, rational/poly-
nomial Gauss–Laguerre of the same function, and Gauss-Fermi quadrature of
f(t) with dλ(t) = dt/(et + 1) involving the Fermi function 1/(et + 1) (also
used in solid state physics).

Example 20. The series
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Fig. 5. The Hardy-Littlewood function
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S =
∞∑

k=1

(−1)k−1

k
e−1/k.

One can show that the function f in question here is f(t) = J0(2
√
t), with

J0 the Bessel function of order zero. Errors obtained by the three quadrature
methods are displayed in the table below, showing the clear superiority of
Gauss–Fermi quadrature.

n Gauss-Laguerre rational Gauss-Laguerre Gauss-Fermi
1 1.6961(–01) 1.0310(–01) 5.6994(–01)
4 4.4754(–03) 4.6605(–05) 9.6454(–07)
7 1.7468(–04) 1.8274(–09) 9.1529(–15)
10 3.7891(–06) 1.5729(–13) 2.8163(–16)
15 2.6569(–07) 1.5490(–15)
20 8.6155(–09)
40 1.8066(–13)

timing: 12.7 timing: 19.5 timing: 4.95

Series Generated by the Derivative of a Laplace Transform

These are series (5.39) in which

ak = − d
ds

(Lf)(s)
∣∣∣∣
s=k

, k = 1, 2, 3, . . . . (5.44)

In this case one finds

S =
∫ ∞

0

t

1 − e−t
f(t)e−tdt =

∫ ∞

0

f(t)
t

et − 1
dt, (5.45)

and Gauss–Laguerre, rational/polynomial Gauss–Laguerre, and Gauss–Ein-
stein quadrature are again options as in Examples 18 and 19.

Example 21. The series

S =
∞∑

k=1

( 3
2k + 1)k−2(k + 1)−3/2.

The relevant function f is calculated to be

f(t) =
erf

√
t√

t
· t1/2,

where erf is the error function erf x = (2/
√
π)
∫ x

0
e−t2dt. Numerical results

analogous to those in the two previous tables are shown below.
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n Gauss-Laguerre rational Gauss-Laguerre Gauss-Einstein
1 4.0125(–03) 5.1071(–02) 8.1715(–02)
4 1.5108(–05) 4.5309(–08) 1.6872(–04)
7 4.6576(–08) 1.3226(–13) 3.1571(–07)
10 3.0433(–09) 1.2087(–15) 5.4661(–10)
15 4.3126(–11) 1.2605(–14)
20 7.6664(–14)
30 3.4533(–16)

timing: 6.50 timing: 10.8 timing: 1.58

The run time is best for Gauss–Einstein quadrature, though the error is worse
than for the closest competitor, rational Gauss–Laguerre.

Series Occurring in Plate Contact Problems

The series of interest here is

Rp(z) =
∞∑

k=0

z2k+1

(2k + 1)p
, z ∈ C, |z| ≤ 1, p = 2 or 3. (5.46)

Rather than expressing the whole general term of the series as a Laplace
transform, we do this only for the coefficient,

1
(k + 1

2 )p
= (Lf)(k), f(t) =

1
(p− 1)!

tp−1e−t/2. (5.47)

Then

Rp(z) =
z

2p

∞∑
k=0

z2k

(k + 1
2 )p

=
z

2p

∞∑
k=0

z2k

∫ ∞

0

e−kt · t
p−1e−t/2

(p− 1)!
dt

=
z

2p(p− 1)!

∫ ∞

0

∞∑
k=0

(z2e−t)k · tp−1e−t/2dt

=
z

2p(p− 1)!

∫ ∞

0

1
1 − z2e−t

tp−1e−t/2dt,

that is,

Rp(z) =
z

2p(p− 1)!

∫ ∞

0

tp−1et/2

et − z2
dt, z−2 ∈ C\[0, 1]. (5.48)

The case z = 1 can be treated directly by using the connection with the zeta
function, Rp(1) = (1− 2−p)ζ(p). Assume therefore z �= 1. When |z| is close to
1, the integrand in (5.48) is rather ill-behaved near t = 0, exhibiting a steep
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boundary layer. We try to circumvent this by making the change of variables
e−t �→ t to obtain

Rp(z) =
1

2p(p− 1)!z

∫ 1

0

t−1/2[ln(1/t)]p−1

z−2 − t
dt.

This expresses Rp(z) as a Cauchy integral of the measure

dλ[p](t) = t−1/2[ln(1/t)]p−1dt.

Since by assumption, z−2 lies outside the interval [0, 1], the integral can be
evaluated by the continued fraction algorithm, once sufficiently many recur-
rence coefficients for dλ[p] have been precomputed. For the latter, the modified
Chebyshev algorithm is quite effective. The first 100 coefficients are available
for p = 2 and p = 3 in the OPQ files absqm1log1 and absqm1log2 to 25 resp.
20 decimal digits.

Example 22.

Rp(x), p = 2 and 3, x = .8, .9, .95, .99, .999 and 1.0.

Numerical results are shown in he table below and are accurate to all digits

x R2(x) R3(x)
.8 0.87728809392147 0.82248858052014
.9 1.02593895111111 0.93414857586540
.95 1.11409957792905 0.99191543992243
.99 1.20207566477686 1.03957223187364
.999 1.22939819733 1.05056774973
1.000 1.233625 1.051795

shown. Full acuracy cannot be achieved for x ≥ .999 using only 100 recurrence
coefficients of dλ[p].
Example 23.

Rp(eiα), p = 2 and 3, α = ωπ/2, ω = .2, .1, .05, .01, .001 and 0.0.

Numerical results are shown in the table below.
p ω Re(Rp(z)) Im(Rp(z))
2 .2 0.98696044010894 0.44740227008596
3 0.96915102126252 0.34882061265337
2 0.1 1.11033049512255 0.27830297928558
3 1.02685555765937 0.18409976778928
2 0.05 1.17201552262936 0.16639152396897
3 1.04449441539672 0.09447224926029
2 0.01 1.22136354463481 0.04592009281744
3 1.05140829197388 0.01928202831056
2 0.001 1.232466849 0.006400460
3 1.051794454 0.001936923
2 0.000 1.2336 0.0000
3 1.0518 0.0000
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Here, too, full accuracy is not attainable for ω ≤ 0.001 with only 100 re-
currence coefficients. Curiously, the continued fraction algorithm seems to
converge also when z = 1, albeit slowly.

Series Involving Ratios of Hyperbolic Functions

More of a challenge are series of the type

Tp(x; b) =
∞∑

k=0

1
(2k + 1)p

cosh(2k + 1)x
cosh(2k + 1)b

, 0 ≤ x ≤ b, b > 0, p = 2, 3, (5.49)

which also occur in plate contact problems. Here, we first expand the ratio of
hyperbolic cosines into an infinite series,

cosh(2k + 1)x
cosh(2k + 1)b

=
∞∑

n=0

(−1)n
{

e−(2k+1)[(2n+1)b−x] + e−(2k+1)[(2n+1)b+x]
}
,

(5.50)

insert this in (5.49) and apply the Laplace transform technique of the previous
subsection. This yields, after an elementary computation (using an interchange
of the summations over k and n),

Tp(x, b) =
1

2p(p− 1)!

∞∑
n=0

(−1)ne(2n+1)b[ϕn(−x) + ϕn(x)], (5.51)

where

ϕn(s) = es

∫ 1

0

dλ[p](t)
e2[(2n+1)b+s] − t

, −b ≤ s ≤ b. (5.52)

The integral on the right is again amenable to the continued fraction algorithm
for dλ[p], which for large n converges almost instantaneously. Convergence of
the series (5.51) is geometric with ratio e−b.

Exercises to §5 (Stars indicate more advanced exercises.)

1. With π0, π1, . . . , πN−1 denoting the discrete orthogonal polynomials rel-
ative to the measure dλN , and ĉi(f) the Fourier coefficients of f with
respect to these orthogonal polynomials, show that

n∑
i=0

|ĉi(f)|2‖πi‖2 ≤ ‖f‖2, n < N,

with equality holding for n = N − 1.
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2. Prove the following alternative form for the Fourier coefficients,

ĉi(f) =
1

‖πi‖2

⎛⎝f −
i−1∑
j=0

ĉj(f)πj , πi

⎞⎠ , i = 0, 1, . . . , n,

and discuss its possible advantages over the original form.
3. Discuss the modifications required in the constrained least squares ap-

proximation when ν (0 ≤ ν ≤ m) of the points sj are equal to one of the
support points tk.

4. What are pm(f ; · ), f∗, and σm in Example 13?
5. Calculate the first and second derivative of the complementary error func-

tion of Example 15.
6∗. Prove the unique solvability of the problem (5.24) under the conditions

stated in (5.25)–(5.26), and, in the affirmative case, derive (5.27).
7. Derive the measure dλ[m] for the Maxwell distribution of Example 17.
8. Derive the formula for f in Example 18.
9. Derive the formula for f in Example 19.

10. Derive (5.43).
11. Derive the formula for f in Example 20.
12. Derive (5.45).
13. Derive the formula for f in Example 21.
14. Supply the details for deriving (5.51).
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Instituto Carlos I de Fisica Teórica y Computacional, Universidad de Granada,
Spain
e-mail: andrei@ual.es

Summary. This is a short introduction to the theory of the logarithmic potential
in the complex plane. The central ideas are the concepts of energy and equilibrium.
We prove some classical results characterizing the equilibrium distribution and dis-
cuss the extension of these notions to more general settings when an external field
or constraints on the distribution are present. The tools provided by potential the-
ory have a profound impact on different branches of analysis. We illustrate these
applications with two examples from approximation theory and complex dynamics.
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1 Background

1.1 Introduction

This is a very brief introduction to the logarithmic potential in the complex
plane, and to the very core of the theory: equilibrium problems. The ambitious
goal is to cover some relevant aspects in a 10 hours mini-course.

There are different possible starting points for the development of this
theory, such as:

• Partial differential equations;
• Complex analysis: harmonic and subharmonic functions, exceptional sets;
• Variational methods;
• Approximation theory, analytic properties of polynomials and rational

functions,

and more. These points of view are obviously related and in a certain sense,
equivalent, but bias the aspects you consider more or less relevant. At any
rate, this will not affect the exposition here, since this introduction will touch
only the core of the theory. Only some of the results will be proved. For a
more detailed account we recommend the following literature (the list is far
from being exhaustive):

• The books [6], [13] are classical and contain all the facts about the standard
theory of logarithmic potential.

• The book [10] is a modern exposition of the same theory; highly recom-
mended!

• The book [11] has an appendix containing the main facts from the theory,
beside many applications in approximation.

• There is a chapter in [8] with a concise survey of the potential theory in C.
It is also a nice introduction to the applications in modern approximation
theory.

• The book [12] is the first full account of the potential theory with an
external field; also highly recommended!

1.2 Background or What You Should Bring to Class

• Borel Measures. A positive measure on C is called a Borel measure if
it is defined and finite on every compact subset of C. The support of a
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measure μ, denoted by supp(μ), is the complement of the largest open set
of measure zero. If K ⊂ C is a compact subset of the complex plane, then
by M(K) we denote the set of all finite (positive) Borel measures μ with
supp(μ) ⊂ K. The Dirac delta δa supported at a ∈ C is the unit measure
defined by

δa(K) =

⎧⎨⎩1, if a ∈ K,

0, otherwise
for any Borel set K ⊂ C.

If f is a continuous function in C,∫
f(z) dδa(z) = f(a) .

• Weak-* Topology. In what follows Cm(K) denotes the set of all contin-
uous functions with at least m continuous derivatives on a compact set
K ⊂ C and C(K) = C0(K). A sequence {μn} ⊂ M(K) converges to a
measure μ ∈ M(K) in a weak-* sense (denoted by μn

∗−→ μ) if

lim
n

∫
f(z) dμn(z) =

∫
f(z) dμ(z) , ∀f ∈ C(K) .

According to the Riesz representation theorem, M(K) with the weak-*
topology is the dual space of C(K). We will use the fact that every weakly
bounded set in M(K) is compact, known also as Helly’s selection the-
orem (cf. [12, p. 3]): every sequence {μn} ⊂ K with a uniformly bounded
mass (supn μn(K) < +∞) has a weak-* convergent subsequence.

• Harmonic Functions. A real valued function u(z), z = x + iy, defined
in a domain D ⊂ C is called harmonic in D if u ∈ C2(D) and

Δu(z) def= uxx(z) + uyy(z) = 0 , z ∈ D . (1.1)

If D is simply connected, this is equivalent to the existence of a holomor-
phic function f in D such that u = Re f .
One of the features of harmonic functions is the mean-value property
(cf. [12, p. 7]): if u is harmonic in an open disk |z−a| < r and continuous
on |z − a| ≤ r, then

u(a) =
1
2π

∫ 2π

0

u(a + reiθ) dθ . (1.2)

One of the consequences is the maximum (or minimum) principle (cf.
[12, p. 8]): if u is harmonic in a domain D and attains there either its
minimum or its maximum value, then u is constant in D.
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• Green’s Formula. Given a domain D, we denote by ∂D its boundary. If
∂D is a C1 curve and u, v ∈ C2(D), then∫∫

D

(vΔu− uΔv) dxdy = −
∮

∂D

(
v
∂u

∂n
− u

∂v

∂n

)
ds ,

where ∂/∂n is differentiation in the direction of the inner normal of D.
Let us highlight some straightforward consequences:
– If u is harmonic in D, then∫∫

D

uΔv dxdy =
∮

∂D

(
v
∂u

∂n
− u

∂v

∂n

)
ds . (1.3)

– If both u and v are harmonic in D, this formula takes the form∮
∂D

v
∂u

∂n
ds =

∮
∂D

u
∂v

∂n
ds . (1.4)

– If the support of v is a compact set in D, then∫∫
D

vΔu dxdy =
∫∫

D

uΔv dxdy . (1.5)

• Sokhotsky-Plemelj’s Theorem. Suppose that γ is an oriented analytic
curve or arc in C. The orientation induces a +side (on the left) and a −side
on γ. We denote also by

γo = γ \ {points of self intersection and end points} .

If Ω is a domain, γ ⊂ Ω, then for f analytic in Ω \ γ we define

f+(t) = lim
z→t

z on the +side

f(z) , f−(t) = lim
z→t

z on the −side

f(z) .

Let v be a function defined and Hölder continuous on γ. Then the Cauchy-
type integral

f(z) def=
1

2πi

∮
γ

v(t)
t− z

dt , z ∈ C \ γ ,

defines an analytic function in C \ γ, and the following relation holds:

f+(t) − f−(t) = v(t) , t ∈ γo. (1.6)

2 Logarithmic Potentials: Definition and Properties

2.1 Superharmonic Functions

A function u : K → R ∪ {+∞} is called lower semi-continuous (l.s.c.) at a
point z ∈ C if
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lim
t→z, t∈K

u(t) ≥ u(z) ,

(in other words, for any {tn} ⊂ K such that tn → z and limn u(tn) exists, we
have limn u(tn) ≥ u(z)). Furthermore, u is l.s.c. in a set K ⊂ C if it is l.s.c.
at every z ∈ K. It is possible to prove that equivalently u is l.s.c. in C if and
only if the set

{z ∈ C : u(z) > α}
is open for every α ∈ R.

Exercise 1. Prove the equivalence above.

Example 2.1. The function

f(z) =

{
0, if |z| ≤ 1,
1, if |z| > 1,

is lower semi-continuous.

Exercise 2. A function u is upper semi-continuous if u is lower semi-
continuous. Prove that

upper semi-continuous + lower semi-continuous = continuous

Finally, the third equivalent definition is the following (cf. [12, p. 1]): u is
lower semi-continuous on a compact set K if and only if it is the pointwise
limit of an increasing sequence of continuous functions.

Definition 2.1. A function u : D → R ∪ {+∞} on a domain D is called
superharmonic on D if u �≡ +∞, is lower semi-continuous on D, and for
every open disk |z − a| < r contained in D,

u(a) ≥ 1
2π

∫ 2π

0

u(a + reiθ) dθ (2.1)

(compare with (1.2)).
A function u is called subharmonic if −u is superharmonic.

Exercise 3. Prove that if f is a holomorphic function in a domain D, then
− log |f | is superharmonic (and harmonic where f �= 0).

There are other equivalent definitions of a superharmonic function. For
instance, we can replace (2.1) by the existence of a “harmonic minorant” (har-
monic function v, bounded from above by u on the boundary and preserving
the same property in the whole domain). Another important characterization
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is valid for smooth functions u ∈ C2(D): u is superharmonic in D if and only
if

Δu(z) ≤ 0 , z ∈ D (2.2)

(compare with (1.1)). We will discuss this property again soon.
Superharmonic functions inherit part of the properties of the harmonic

functions. For instance:

Theorem 2.1 (Minimum Principle). Let D be a bounded domain and v a
superharmonic function in D such that

lim
t→z, t∈D

v(t) ≥ M ,

for every z ∈ ∂D. Then v(z) > M for z ∈ D unless v is constant.

In other words, a non-constant superharmonic function cannot achieve its
minimum inside a domain.

2.2 Definition of the Logarithmic Potential

Superharmonic functions are closely related to logarithmic potentials of pos-
itive measures. Let μ be a finite positive Borel measure of compact support.
Its logarithmic potential is defined by

V μ(z) =
∫

log
1

|z − t| dμ(t) . (2.3)

Remark 2.1. This definition makes sense also for signed measures or charges
on C, represented in general as a difference of two positive measures.

Theorem 2.2. The potential V μ(z) of a positive measure is superharmonic
in C, harmonic in C \ supp(μ), and

V μ(z) = μ(C) log
1
|z| + O

(
1
z

)
as z → ∞ .

The proof, which consists of a verification of the properties defining a super-
harmonic and a harmonic function, can be found in [12, pp. 21–22]. For the
last part, observe that for z �= 0,

V μ(z) = μ(C) log
1
|z| +

∫
log

1
|1 − t/z| dμ(t) .

Example 2.2. If a ∈ C then

V δa(z) = log
1

|z − a| .

Analogously, if a1, . . . , an ∈ C and
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μ =
n∑

k=1

δak
,

then

V μ(z) = − log |p(z)| , p(z) = (z − a1)(z − a2) . . . (z − an) . (2.4)

This example is a key to the tight connection of logarithmic potentials with
polynomials.

Exercise 4. Prove that for each r > 0,

1
2π

∫
log

1
|z − reiθ| dθ =

{
log 1/r, if |z| ≤ r,

log 1/|z|, if |z| > r .

Observe that the logarithmic potential of the unit Lebesgue measure on a
circle |z| = r is constant in the disc |z| ≤ r.

By Theorem 2.2, we see that every potential of a positive measure is a
superharmonic function. Furthermore, obviously the sum of a potential with
a harmonic function is still superharmonic. Surprisingly enough, these are the
only superharmonic functions that exist. This is the content of the Riesz
decomposition theorem (see [12, p. 100]): if u is superharmonic in a do-
main D, then there exists a positive measure μ ∈ M(D) such that in every
subdomain D′ (D′ ⊂ D),

u(z) = g(z) + V μ(z) ,

where g is a harmonic function (depending on D′).

2.3 Some Principles for Potentials

We will mention also two useful properties satisfied by logarithmic potentials
of positive measures.

Theorem 2.3 (Continuity Principle). Let μ be a finite Borel measure on
C with compact support K def= supp(μ). If z0 ∈ K, then

lim
z→z0

V μ(z) = lim
z→z0, z∈K

V μ(z) .

Furthermore,

lim
z→z0, z∈K

V μ(z) = V μ(z0) ⇒ lim
z→z0

V μ(z) = V μ(z0) .

In other words, V μ
∣∣
K

is continuous at z = z0 if and only if V μ is continuous
at this point.
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Proof. See Theorem 3.1.3, p. 54 in [10] or Theorem II.3.5 in [12]. ��

Theorem 2.4 (Maximum Principle). Let μ be a finite Borel measure on
C with compact support K def= supp(μ). Then

V μ(z) ≤ M for z ∈ K ⇒ V μ(z) ≤ M for z ∈ C .

Proof. See Theorem 3.1.4, p. 55 in [10] or Corollary II.3.3 in [12]. ��

2.4 Recovering a Measure from its Potential

Let D be a domain in C. In (2.2) we have seen that if u is superharmonic
(in particular, if it is a potential of a positive measure), then Δu ≤ 0. Using
Green’s theorem we can find a more precise statement, for which we need to
generalize the concept of the laplacian.

Let C∞0 be the set of functions v : D → R from C∞ whose support is a
compact set in D. We have seen in (1.5) that∫∫

D

vΔu dxdy =
∫∫

D

uΔv dxdy .

This formula is valid under the assumption that u ∈ C2. But if u is a general
superharmonic function, it is still locally integrable ([10, Theorem 2.5.1]), and
we may use the identity above as the definition of the generalized laplacian2

Δu of u; namely, as long as f verifies∫∫
D

vf dxdy =
∫∫

D

uΔv dxdy, ∀v ∈ C∞0 ,

we say that f = Δu. This definition is consistent. Moreover, we have the
following remarkable theorem:

Theorem 2.5. Let μ be a finite positive Borel measure on C with compact
support. Then

ΔV μ = −2πμ.

Proof. We just need to prove that for any v ∈ C∞
0 ,∫

C

V μΔv dxdy = −
∫

C

2πv dμ .

But ∫
C

V μΔv dxdy =
∫

C

(∫
C

log
1

|z − t| dμ(t)
)

Δv dxdy

= −
∫

C

(∫
C

log |z − t|Δv dxdy

)
dμ(t)

2 More formally, the generalized laplacian is the Radon measure Δu on D.
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(for a justification of the use of Fubini’s theorem here, see e.g., [10, p. 74]).
Now, using formula (1.3), we have with u(z) = log |z − t|,∫

C

log |z − t|Δv dxdy = lim
ε→0

∫
|z−t|>ε

log |z − t|Δv dxdy

= lim
ε→0

∮
|z−t|=ε

(
v
∂u

∂n
− u

∂v

∂n

)
ds .

Changing the variables to polar, z = t+ reiθ, so that on the circle |z − t| = r
we have ds = |dz| = r and ∂/∂n = −d/dr, we get∫

C

log |z − t|Δv dxdy = lim
ε→0

∫ 2π

0

(
v(t + reiθ) − r log r

∂v

∂r
(t + reiθ)

) ∣∣∣∣
r=ε

dθ

= 2πv(t) ,

and the statement follows. ��
An immediate corollary of this theorem is that V μ is harmonic in C \

supp(μ). Then, there exists an analytic (possibly, multivalued) function V in
C \ supp(μ) such that ReV = V μ in this domain. However, the derivative V ′

of V is single-valued, and given by

V ′(z) =
∫

1
t− z

dμ(t) .

By analogy with the standard integrals in complex analysis, this is called the
Cauchy transform of the measure μ.

Assume now that the support supp(μ) is a compact analytic curve or arc
in C. If μ is absolutely continuous, we may recover μ′ using the Sokhotski-
Plemelj formula (1.6):

μ′(z) =
1

2πi
(
V ′

+(z) − V ′
−(z)

)
. (2.5)

Example 2.3. By Exercise 4 the logarithmic potential of dν = 1
2π dθ on {|z| =

r} satisfies

V ν(z) =

{
log 1/r, if |z| < r,

log 1/|z|, if |z| > r.

(observe that this information is sufficient to obtain that supp(ν) ⊂ {|z| = r}
using Theorem 2.5). We may define

V(z) def=

{
log 1/r, if |z| < r,

log 1/z, if |z| > r ,
⇒ V ′(z) =

{
0, if |z| < r,

−1/z, if |z| > r .

In consequence, with the counter clockwise orientation of the circle,

ν′(z) =
1

2πi
(
V ′

+(z) − V ′
−(z)

)
=

1
2πiz

⇒ dν(z) =
dz

2πiz
.

With the parametrization z = reiθ, dz = zidθ, so that dν = 1
2π dθ, recovering

the normalized Lebesgue measure on {|z| = r}.
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3 Energy and Equilibrium

3.1 Logarithmic Energy

Let us assume that K ⊂ C is a compact subset of the complex plane. The
logarithmic energy I(μ) of a Borel measure μ ∈ M(K) is defined as

I(μ) def=
∫∫

log
1

|z − t| dμ(z)dμ(t) . (3.1)

By Fubini’s theorem, we can write also

I(μ) =
∫

V μ(z) dμ(z) . (3.2)

This definition (that again can be extended to signed measures on C) has
the following physical sense: think of μ as being a charge distribution on C.
Then V μ(z) represents the potential energy at z due to μ, and so the right
hand side in (3.2) is just the (doubled) total energy of μ.

Obviously, I(·) is a functional on the space M(K) equipped with the
weak-* topology. Unfortunately it is not continuous; however, it has several
sufficiently nice properties.

Proposition 3.1. If μ ∈ M(K) then

−∞ < I(μ) ≤ +∞ .

Proof. It follows from the representation (3.2). ��

Proposition 3.2. The functional I : M(K) → (−∞,+∞] is lower semicon-
tinuous. In other words, if a sequence {μn} ⊂ M(K) converges to a measure
μ ∈ M(K) in a weak-* sense, then

I(μ) ≤ lim
n

I(μn) .

For the proof of this proposition we will use the technique of the truncated
logarithmic kernel.

We define the truncated logarithmic kernel as

k(η)(z) def=

{
log 1/|z|, if |z| ≥ η,

log 1/η, if |z| < η .
(3.3)

It has the following properties: for η > 0,

(P.1) k(η) ∈ C(C);
(P.2) For z ∈ C,

k(η)(z) ≤ log
1
|z| ; (3.4)



Potential Theory in the Complex Plane 89

(P.3) For z ∈ C,

k(η)(z) ↗ log
1
|z| as η ↓ 0 . (3.5)

Proof (of Proposition 3.2). Let us use the truncated kernel (3.3) with η > 0.
If μn

∗−→ μ, by (P.1),

lim
n

∫∫
k(η)(z − t) dμn(z)dμn(t) =

∫∫
k(η)(z − t) dμ(z)dμ(t) .

Using property (P.2) we have that

lim
n

∫∫
log

1
|z − t| dμn(z)dμn(t) ≥

∫∫
k(η)(z − t) dμ(z)dμ(t) .

Since the left hand side does not depend on η, we may take limits as η ↓ 0. The
statement of the proposition follows from property (P.3) and the monotone
convergence theorem. ��

Let us denote by M∗(K) ⊂ M(K) the subset of all positive measures in
M(K) with finite energy. Obviously, any measure concentrated at a single
point (Dirac delta) has an infinite energy, so that M∗(K) � M(K). An
immediate consequence of Proposition 3.2 is that M∗(K) is closed in the
weak-* topology.

As it was mentioned, formula (3.1) makes sense for signed measures or
charges on C. The following lemma, whose proof is technical, can be found
for instance in [12, Lemma 1.8, p. 29]:

Proposition 3.3. Let μ, ν ∈ M∗(K) be such that μ(K) = ν(K). Then

I(μ− ν) ≥ 0

and it is zero if and only if μ = ν.

A positive Borel measure μ ∈ M(K) is called unit (or probability) measure
on K if μ(K) = 1. In what follows we denote by M1(K) ⊂ M(K) the set of
unit measures on K, and let M∗

1(K) = M1(K)∩M∗(K). Obviously, M1(K)
and M∗

1(K) are convex subsets of M(K). The next result shows that I is a
convex functional on M∗

1(K).

Proposition 3.4. If μ, ν ∈ M∗
1(K), then

I(μ− ν) = 2I(μ) + 2I(ν) − 4I
(
μ + ν

2

)
, (3.6)

and

I

(
μ + ν

2

)
≤ I(μ) + I(ν)

2
, (3.7)
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Proof. Identity (3.6) is proved by direct computation. Furthermore, we may
rewrite it as

I

(
μ + ν

2

)
=

1
2
I(μ) +

1
2
I(ν) − 1

4
I (μ− ν) ,

and (3.7) follows from Proposition 3.3. ��

Exercise 5. Is d(μ, ν) def=
√
I(μ− ν) a distance in M∗

1(K)?

3.2 Extremal Problem, Equilibrium Measure and Capacity

Let us consider the following value:

ρ = inf
μ∈M1(K)

I(μ) . (3.8)

Obviously ρ ∈ (−∞,+∞]; if ρ = +∞ we say that K is a polar set. For instance,
K = {0} is a polar set in C. The constant ρ is called the Robin constant of
K. Furthermore, the (logarithmic) capacity of the set K is defined as

cap(K) =

{
e−ρ, if ρ < +∞,

0, if ρ = +∞.

For a non-closed set U ⊂ C we may define its capacity as

cap(U) def= sup{cap(K) : K ⊂ U, K compact} .

This definition is consistent (i.e., does not depend on the compact subsets K
exhausting U).

The capacity will play a role of a fine measure of the sets on the plane.
We will see soon that it is not a measure in the sense of Lebesgue theory, but
it is more natural from the point of view of analytic functions. If a certain
property holds at every point of the set K except in its polar subset (or subset
of capacity zero), we say that this property holds “quasi everywhere” (or q.e.).

How “small” is a set of zero capacity (or a polar set)?

Proposition 3.5. Let μ be a Borel measure on C with compact support and
finite energy. Then

E is a Borel polar set ⇒ μ(E) = 0 .

In particular, every Borel polar set has (plane) Lebesgue measure zero. In
other words,

quasi everywhere ⇒ almost everywhere

with respect to plane Lebesgue measure.
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This theorem shows that in a certain sense the capacity is a “finer” way of
measuring a size of a set than the Borel measures. We will see soon that in
general

quasi everywhere �⇐ almost everywhere

Proof. The key fact about Borel measures is that they are regular in the
following sense: for every Borel set E, and for every ε > 0, there exist an open
set U and a compact set F such that F ⊂ E ⊂ F , and μ (F \ U) < ε. In other
words, μ(E) can be approximated arbitrarily well by measures of compact
subsets from inside, and open sets from outside. Any (finite) Borel measure
is regular (see e.g. [10, Theorem A.2.2]).

In our setting assume that E is a Borel set such that μ(E) > 0. To establish
the first assertion it is sufficient to show that E is not polar. Regularity of
μ implies immediately that we can find a compact subset K ⊂ E such that
μ(K) > 0. To finish our proof it is sufficient to build a measure living on
K with a finite energy. We achieve it by taking the restriction of μ to K,
μ̃ = μ

∣∣
K

. Indeed, μ̃ is not identically zero, and we can estimate its energy. Let
us denote by d the diameter of supp(μ); then we have

I(μ̃) =
∫∫

K×K

log
1

|z − t| dμ(z)dμ(t)

=
∫∫

K×K

log
d

|z − t| dμ(z)dμ(t) − log(d)
∫∫

K×K

dμ(z)dμ(t)

=
∫∫

K×K

log
d

|z − t| dμ(z)dμ(t) − log(d)μ(K)2 .

Since for z, t ∈ supp(μ) we have |z−t| ≤ d, the integrand above is non-negative
on supp(μ) × supp(μ), and we can continue the identities with an inequality:

I(μ̃) ≤
∫∫

C×C

log
d

|z − t| dμ(z)dμ(t) − log(d)μ(K)2

=
∫∫

C×C

log
1

|z − t| dμ(z)dμ(t) + log(d)μ(C)2 − log(d)μ(K)2

= I(μ) + log(d)μ(C)2 − log(d)μ(K)2 < +∞ .

This proves the first part. In order to establish the assertion for the plane
Lebesgue measure, dA, it is sufficient to prove that for any disk Dr = {z ∈
C : |z| ≤ r} and for dμ = dA

∣∣
Dr

we have I(μ) < +∞. This is a consequence
of the following bound:

Exercise 6. Let Dr = {z ∈ C : |z| ≤ r}, r > 0, and dμ = dA
∣∣
Dr

. Then for
z ∈ Dr,

V μ(z) ≤ 2πr2 − πr2 log(r2) .

Suggestion: use polar coordinates.

This concludes the proof. ��
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Corollary 3.1. A countable union of Borel polar sets is polar. In particular,
every countable subset of C is polar.

Proof. Suppose that E = ∪nEn, and cap(En) = 0. Let μ ∈ M(E) be com-
pactly supported. By Proposition 3.5, if I(μ) < +∞, then μ(En) = 0 for each
n. Using the σ-additivity of μ, we get that μ(E) = 0. This shows that E is
polar.

The second part is a direct consequence of the fact that {z} is a polar set
for every z ∈ C. ��

But not every polar set is countable, as the following example shows.

Example 3.1. Let s = (s1, s2, . . . ) be a sequence of numbers such that 0 <
sn < 1 for all n ∈ N. We construct a (generalized) Cantor set as follows.
Define C(s1) = [0, 1]\ (a, b), where (a, b) is symmetric with respect to 1/2 and
b − a = s1. Recursively, we obtain C(s1, s2, . . . , sn) from C(s1, s2, . . . , sn−1)
by removing from the middle of each interval of C(s1, s2, . . . , sn−1) equal
symmetric intervals, in such a way that

total length of C(s1, s2, . . . , sn)
total length of C(s1, s2, . . . , sn−1)

= 1 − sn . (3.9)

Then {C(s1, s2, . . . , sn)} is a decreasing sequence of compact subsets of [0, 1],
and we may define

C(s) def=
⋂
n≥1

C(s1, s2, . . . , sn) .

It is known that, independently of the sequence s, this set is compact, perfect
(coincides with the set of its accumulation points), and uncountable. For the
capacity of this set we have the following estimate (see [10, Theorem 5.3.7]):

cap (C(s)) ≤ 1
2

∞∏
j=1

(1 − sn)1/2n

.

Thus, taking for instance sn = 1 − 2−2n

, we get cap (C(s)) = 0, as promised.

If K is a non-polar set (cap(K) = 0), it is natural to ask whether “inf”
in (3.8) may be replaced by “min”, and whether the minimizing measure is
unique (for a polar set every measure from M1(K) is minimizing). We will
see that the answer is yes. Remember that in physics any equilibrium state
is related to a minimum of the energy of the system. Following the physical
analogy, we will call the minimizing measure the equilibrium measure of K,
and the corresponding potential, the equilibrium potential. Furthermore, if we
recall that the force in a potential field is given by the difference of potentials,
it is natural to expect that the equilibrium potential will be constant in K.
Again this is almost true, or better to say, true q.e. Let us summarize the
main properties of the equilibrium measure.



Potential Theory in the Complex Plane 93

Let K be a non-polar compact set. There exists a unique measure λK ∈
M1(K), called the equilibrium measure (Robin measure) of K, such that

ρ = inf
μ∈M1(K)

I(μ)
(

def= log
1

cap(K)

)
= I(λK) .

Furthermore, λK is the unique measure in M∗
1(K) such that∫

V λK (z) d(ν − λK)(z) ≥ 0 , for all ν ∈ M∗
1(K) . (3.10)

Finally,
V λK (z) ≥ ρ quasi everywhere on K , (3.11)

and
V λK (z) ≤ ρ on supp(λK) . (3.12)

Consequently, (3.12) holds everywhere in C, and

V λK (z) = ρ quasi everywhere on K . (3.13)

The statement, contained in (3.11)–(3.13), is known as Frostman’s theorem.
In what follows, we will reserve the notation of λK for the equilibrium measure
of the set K.

Let us prove the facts listed above in several steps.

Proof (of the existence). By definition of “inf”, there exists a sequence {μn} ⊂
M1(K) such that

lim
n

I(μn) = ρ = log
1

cap(K)
.

By weak compactness of the unit ball in M(K), there exist a measure μ ∈
M1(K) and a subsequence μnk

such that μnk

∗−→ μ. By Proposition 3.2,

I(μ) ≤ lim
n

I(μnk
) = ρ ,

and by definition of the Robin constant, I(μ) = ρ. ��

Proof (of uniqueness). Assume that μ and ν are two (unit) equilibrium mea-
sures of K, so that

I(μ) = I(ν) = ρ .

Then by (3.7), (μ + ν)/2 is also an equilibrium measure of K. But by (3.6),
I(μ− ν) = 0. Now it remains to use Proposition 3.3 to get that μ = ν. ��

Proof (of (3.10)). Since K is non-polar, I(λK) < +∞, and λK ∈ M∗
1(K).

For ε ∈ [0, 1], μ, ν ∈ M∗
1(K),

I(εν + (1 − ε)μ) − I(μ) = 2ε
∫

V μ(z) d(ν − μ)(z) + ε2I(ν − μ) , (3.14)
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which can be checked by a direct computation. Taking μ = λK we have the
inequality I(εν + (1 − ε)μ) − I(μ) ≥ 0, valid for ε ↓ 0, and (3.10) follows. On
the other hand, taking ε = 1 in (3.14) we get

I(ν) − I(μ) = 2
∫

V μ(z) d(ν − μ)(z) + I(ν − μ) ≥ 2
∫

V μ(z) d(ν − μ)(z) ,

where we have used Proposition 3.3. Hence, (3.10) implies that I(ν)−I(μ) ≥ 0,
so that by uniqueness, μ = λK . ��

Proof (of Frostman’s theorem). Assume that (3.11) is not true, so that there
exists a subset e ⊂ K such that cap(e) > 0 and

V λK (z) < ρ , z ∈ e .

Since cap(e) > 0, by the definition of capacity, there exists a positive Borel
measure ν ∈ M∗

1(e) ⊂ M∗
1(K). Integrating the inequality above with respect

to ν, we get∫
V λK (z) dν(z) < ρ =

∫
V λK (z) dλK(z) ⇔

∫
V λK (z) d(ν−λK)(z) < 0 ,

which contradicts (3.10).
In order to prove (3.12) we need to use the fact that a potential is lower

semi-continuous, according to which the set {V λK (z) > ρ} is relatively open.
Hence, if we assume that e def= {V λK (z) > ρ}∩ supp(λK) �= ∅, then λK(e) > 0.
But then, taking into account (3.10), we have

I(λK) =
∫

V λK (z) dλK(z)

=
∫

e

V λK (z) dλK(z) +
∫

supp(λK)\e

V λK (z) dλK(z) > ρ ,

which contradicts the definition of λK . Hence, V λK (z) ≤ ρ on supp(λK).
Finally, the validity of this inequality in C follows from the maximum principle
for potentials, Theorem 2.4. ��

Remark 3.1. In a certain sense, (3.11)–(3.13) are just Euler-Lagrange equa-
tions corresponding to the minimization of the functional I(·).

Proposition 3.6. Let ν ∈ M1(C) have a compact support, and K be a com-
pact subset of C. Then

inf
z∈K

V ν(z) ≤ I(λK) .

Furthermore, if ν ∈ M1(K), then also

sup
z∈K

V ν(z) ≥ I(λK) .
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Proof. In what follows, we denote by C def= C ∪ {∞} the extended complex
plane. The first inequality is a consequence of the minimum principle for
superharmonic functions. Indeed, V ν − V λK is superharmonic in C \K, and

(V ν − V λK )(z) ≥ V ν(z) − I(λK) on K .

Hence, if V ν(z) > I(μ) on K, then according to the minimum principle (The-
orem 2.1), (V ν −V λK )(z) > 0 should hold in C\K. But this is a contradiction
with the fact that (V ν − V λK )(∞) = 0.

The second inequality is a direct consequence of (3.10). ��

Remark 3.2. We see that for ν ∈ M1(K),

inf
z∈K

V ν(z) ≤ I(λK) ≤ sup
z∈K

V ν(z) ,

i.e., in general, the potential “oscillates” around the Robin constant.

Let us give two more properties of the equilibrium measure, whose proof
is beyond the framework of this mini-course.

Proposition 3.7 (Characterization of λK). Properties (3.11) and (3.13)
uniquely characterize the equilibrium measure λK in the following sense: if
σ ∈ M∗

1(K) and V σ coincides with a constant c quasi-everywhere on supp(σ)
and is ≥ c quasi-everywhere on K, then σ = λK and c = ρ.

The proof uses another important property of the logarithmic potential, called
principle of domination, and can be found in [12, Section I.3].

Example 3.2. In Exercise 4 we have found that for r > 0, the potential of the
unit Lebesgue measure supported on the circle {z ∈ C : |z| = r} is constant
on the whole closed disk {z ∈ C : |z| ≤ r}. By the previous proposition, this
means that we are dealing with the equilibrium measure of the closed disk
{z ∈ C : |z| ≤ r}. By the way, it is also the equilibrium measure of the circle
{z ∈ C : |z| = r}.

Observe that in the previous example the extremal measure is concentrated
on the boundary of the disk, something that is in accordance with our intuition
of the electrostatic equilibrium. This is not fortuitous. In order to describe the
support of λK in a general situation we need the following definition.

Definition 3.1. Let K be a connected and non-polar compact set, and let
Ω∞ be the outer domain, that is, the connected component of its complement
containing ∞. Then Pc(K) def= C \ Ω∞ is the polynomial convex hull3 of K.
The boundary ∂ Pc(K) = ∂Ω∞ of the polynomial convex hull of K is a subset
of ∂K, and is called the outer boundary of K.
3 In other words, Pc(K) is the union of K and its “holes”.
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Proposition 3.8 (Support of λK). The equilibrium measure λK is sup-
ported on the outer boundary ∂ Pc(K) of K. In particular,

λK = λ∂Ω∞ and cap(K) = cap (∂Ω∞) .

Proof. A proof can be found in [12, p. 52]. ��

3.3 Link with Conformal Mapping and Green Function

Given a compact set K with cap(K) > 0, the Green function of K with pole
at infinity is the unique function gK(z;∞) defined in the outer domain Ω∞
with the following properties4:

a) gK is nonnegative and harmonic in Ω∞,
b) gK(z,∞) − log |z| is harmonic in a neighborhood of z = ∞, and
c) lim

z→z0, z∈Ω
gK(z,∞) = 0 for q.e. z0 ∈ ∂Ω∞.

One can extend gΩ to the whole C by stipulation

gK(z,∞) def=

{
0, if z ∈ interior of Pc(K),

lim
t→z, t∈Ω

gK(t,∞), if z ∈ ∂ Pc(K).

Then gK(·,∞) becomes a non-negative subharmonic function (see for instance
[12, Section II.4] for more details).

There is a tight connection between the Green function and the equilibrium
potential. Indeed, let us consider

V λK (z) + gK(z,∞) ,

defined in the whole plane C. This function is harmonic in C \K, and taking
into account that λK is a unit measure, by Theorem 2.2, it is harmonic also in
a neighborhood of z = ∞. Moreover, V λK (z)+gK(z,∞) = log(1/ cap(K)) q.e.
on K. Hence, we may apply the (generalized) minimum principle for harmonic
functions to obtain the following important relations:

V λK (z) + gK(z,∞) = log
1

cap(K)
, z ∈ C . (3.15)

In particular,

lim
z→∞(g(z,∞) − log |z|) = log

1
cap(K)

. (3.16)

Exercise 7. Prove that formula (3.16) follows from (3.15).

4 In the literature, this function is sometimes called the Green function of Ω∞ and
denoted by gΩ∞(z,∞). The Green’s function is a fundamental solution of the
Laplace operator, but this is another story.
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Corollary 3.2 (Monotonicity of the Capacity). If K1 ⊂ K2 are of posi-
tive capacity, then cap(K1) ≤ cap(K2).

Proof. Consider
v(z) def= gK1(z,∞) − gK2(z,∞) .

It is a harmonic and non-negative function in C \ K2 (why?), and by the
maximum principle, v(∞) ≥ 0. Using (3.16), the statement follows. ��

Hence, if we know how to compute the Green function, we have a way to
find the capacity. In turn, the Green function can be obtained from the Rie-
mann conformal mapping. Remember that since Pc(K) is simply connected,
according to the Riemann theorem, there exists a conformal mapping Φ of
Ω∞ onto the exterior of the unit disc |w| > 1 such that in a neighborhood of
infinity,

w = Φ(z) = c1z + c0 +
c−1

z
+ . . . , c1 > 0 . (3.17)

Then it is immediate to check that

gK(z,∞) =

{
log |Φ(z)| , z ∈ Ω∞,

0, otherwise.

In particular, in the representation (3.17) above,

c1 =
1

cap(K)
.

Exercise 8. Prove that if K = {z ∈ C : |z| = r}, then cap(K) = r.

Remark 3.3. Combining Proposition 3.8 and Corollary 3.2 we can show that
the capacity lacks the main property of a measure: additivity. Indeed, if we
take D = {|z| < 1}, then

cap(D) = sup{cap({|z| ≤ r}) : r < 1} = 1,

so that if C = {|z| = 1}, then C∩D = ∅, but cap(D) = cap(C) = cap(C∪D) =
1.

Example 3.3. Let K = [−1, 1]. It is well known that

Φ(z) = z +
√
z2 − 1

(the inverse of the Zhoukowski function), where the branch of the square root
in C \ [−1, 1] is fixed by the condition

√
x2 − 1 > 0 for x > 1. In particular,

Φ(z) = 2z + O(1), z → ∞,

and by (3.16),

cap([−1, 1]) =
1
2

=
length of [−1, 1]

4
.
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Exercise 9. Prove, using the idea above, that

cap([a, b]) =
b− a

4
.

From (3.15) it follows that for the interval K = [−1, 1],

V λK (z) = −gK(z,∞) + log 2 = − log

∣∣∣∣∣z +
√
z2 − 1
2

∣∣∣∣∣
= −Re

(
log

z +
√
z2 − 1
2

)
, z /∈ K .

Let us try to compute the equilibrium measure of the interval K = [−1, 1]
using the connection with the Cauchy type integrals. Using the notation of
(2.5), we have

V(z) = − log
z +

√
z2 − 1
2

⇒ V ′(z) = − 1√
z2 − 1

.

As expected, V ′ is holomorphic in C \ K; observe also that since V λK ∼
− log |z| as z → ∞, we have that

V ′(z) ∼ −1
z
, z → ∞, ⇔

√
z2 − 1 > 0 for z > 1 , (3.18)

which selects the branch of V ′ in C \K.
Assume that λK is absolutely continuous with respect to the Lebesgue

measure, and denote by v(x) = λ′K(x). Then, with the standard orientation
of the interval, by (2.5),

v(x) =
1

2πi
(
V ′

+(x) − V ′
−(x)

)
= − 1

2πi

(
1

+

√
x2 − 1

− 1

−
√
x2 − 1

)
= − 1

πi

1

+

√
x2 − 1

.

In order to find out what are the boundary values on the upper side of the
interval we use (3.18) and obtain on (−1, 1),

1

+

√
x2 − 1

=
1

+

√
x− 1

1

+

√
x + 1

∈ −iR+,

and finally,

v(x) =
1
π

1√
1 − x2

> 0 , x ∈ (−1, 1) .
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There are explicit formulas for the capacity of many “standard” sets, as
well as some bounds in terms of a measure (Lebesgue or other) of the set. An
interested reader is referred to [10, Chapter 5].

Let us finally make an observation that will be used later. Obviously,
capacity is invariant by translation of K (why?). Furthermore, if K → cK,
c > 0, is a homotopy, then an analogous transformation, μ(z) → c μ(z/c),
builds the equilibrium measure of cK, which allows to find cap(cK). In fact,
let us prove that the capacity of a set (but, obviously, not its measure) can be
computed relatively simply after a polynomial transformation of the plane.
This result will be used later, in Section 4.2.

Theorem 3.1. Let K be a compact set, and let

q(z) =
d∑

j=0

ajz
j , with ad �= 0 . (3.19)

Then

cap(q−1(K)) =
(

cap(K)
|ad|

)1/d

. (3.20)

Here we use the standard notation of q−1(K) for the pre-image of K by q,
that is, q−1(K) def= {z ∈ C : q(z) ∈ K}.

Proof. Denote K̃
def= q−1(K). Let Ω∞ be the outer domain for K, and Ω̃∞

the outer domain for K̃. It is not difficult to check that q(Ω̃∞) = Ω∞ and
q(∂Ω̃∞) = ∂Ω∞. The key fact of the proof is the following formula relating
the Green’s functions of K and K̃:

gK(q(z),∞) = d g
K̃

(z,∞). (3.21)

Exercise 10. Prove this formula, using the uniqueness of the Green function
(or equivalently, the maximum principle for harmonic functions).

We can use this in order to relate the capacities; indeed, by (3.21),

gK(q(z),∞) − d log |z| = d(g
K̃

(z,∞) − log |z|) .

We may rewrite the left hand side as

(gK(q(z),∞) − log |q(z)|) + log |q(z)/zd| .

Taking limits on both sides as z → ∞, and using that q(z) → ∞ also, by
(3.16) we get the identity

log
1

cap(K)
+ log |ad| = d log

1

cap(K̃)

and (3.20) follows. ��
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Exercise 11. If 0 ≤ a < b and K = [−b,−a] ∪ [a, b], prove that cap(K) =√
b2 − a2/2. (Suggestion: use q(z) = z2).

Exercise 12. Show that for q(z) = z2 − 2, q([−2, 2]) = [−2, 2]. Give an
alternative proof of the fact that cap([−2, 2]) = 1.

Exercise 13. Find the logarithmic capacity of a lemniscate {z ∈ C :
|q(z)| = r}, r > 0, for q given in (3.19).

3.4 Equilibrium in an External Field

The classical theory of equilibrium exposed so far has several generalizations,
motivated by a growing number of applications of the potential theory tech-
niques in mathematics. We will mention only one of them, as an illustration.

We have seen that the extremal measure λK , defined in Section 3.2, models
to a certain extent the equilibrium state of a unit positive charge on a con-
ductor K. A natural question is how all this changes if in addition there is an
external electrostatic field present. Beside of “pure” interest, these problems
found (starting from the mid 80’s of the 20th century) many applications in
approximation theory.

Let us describe briefly the mathematical model corresponding to the exis-
tence of an external field. We restrict our attention to the case of a bounded
set K. The best reference for this part is [12].

Definition 3.2. A weight function w on K is admissible if it is upper semi-
continuous on K and the set K0

def= {z ∈ K : w(z) > 0} has positive capacity5.
The corresponding external field Q is defined by

w(z) def= exp(−Q(z)) .

For a Borel measure μ ∈ M(K) we define the weighted energy Iw(μ) by

Iw(μ) def= I(μ) + 2
∫

Qdμ ,

where I(μ) is the (standard) energy of μ.

The equilibrium measure in the external field is obtained again by mini-
mizing the energy functional Iw(·) in the class of probability measures M1(K)
supported on K. Let us summarize the main properties of the resulting mea-
sure (cf. Section 3.2):

Theorem 3.2. (see [12, Section I.1]). Let w be an admissible weight on a
compact set K, and let

τw
def= inf

μ∈M1(K)
Iw(μ) .

Then the following properties hold:
5 In particular, cap(K) > 0.
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a) τw is finite.
b) There exists a unique measure λK,w ∈ M∗

1(K) such that

Iw(λK,w) = τw .

c) The support SK,w
def= supp(λK,w) is compact, contained in K0 (defined

above) and cap(SK,w) > 0.
d) Setting

ρw
def= τw −

∫
QdλK,w ,

the inequality
V λK,w(z) + Q(z) ≥ ρw

holds quasi everywhere on K, and the inequality

V λK,w(z) + Q(z) ≤ ρw

holds for all z ∈ SK,w.

The constant ρw is called the modified Robin constant of K in the external
field w.

The result (and the proof) is very similar to what we have seen for Q ≡
0. The main feature here is the fact that the support SK,w is not known
in advance, and due to the external field Q, is not necessarily in the outer
boundary of K anymore. This is, in a certain sense, a problem with free
boundaries, widely studied for PDE’s, and it is known to be difficult.

In consequence, the support SK,w is usually the key for the determina-
tion of the equilibrium measure λK,w and other constants. There are several
techniques that allow us to locate the support; perhaps the better known is
the F-functional introduced by Mhaskar and Saff in [7]. It is one of the most
powerful tools to find the polynomial convex hull Pc(SK,w) of the support
(cf., Definition 3.1).

Definition 3.3. Let K be a compact set, cap(K) > 0. The F-functional is
defined on K as follows: for every compact subset U ⊂ K of positive capacity,

F (U) def= log cap(U) −
∫

QdλU ,

where λU is the (Robin) equilibrium measure of U .

Since cap(U) = cap(Pc(U)) and supp(λU ) ⊂ Pc(U), we have that F (U) =
F (Pc(U)).

Theorem 3.3. (see Theorem IV.1.5 in [12]). Let w be an admissible weight
on a compact set K. Then the following hold.

a) For every compact subset U ⊂ K of positive capacity, F (U) ≤ F (SK,w).
b) F (SK,w) = F (Pc(SK,w)) = −ρw, where ρw is the modified Robin constant.
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c) Pc(SK,w) is the smallest polynomially convex set maximizing the F-
functional.

In particular, if K has an empty interior and connected complement (e.g.
K ⊂ R), then SK,w is the smallest compact set of positive capacity maximizing
the F-functional. In many applications a simple convexity argument shows
that SK,w is convex; hence, if K ⊂ R, we have that SK,w = [a, b] and the end
points a, b are the main parameters of the problems.

Proof (Scheme of the proof of Theorem 3.3). Let U ⊂ K be of positive capac-
ity. Then by d) in Theorem 3.2,

V λK,w(z) ≥ −Q(z) + ρw

holds q.e. on U . Since λU ∈ M∗(K), by Proposition 3.5, page 90, this in-
equality holds also λU -almost everywhere. Integrating it with respect to λU

we get ∫∫
log

1
|z − t| dλK,w(t)dλU (z) ≥ −

∫
QdλU (z) + ρw .

Changing the order of integration and recalling that V λU ≤ log(1/ cap(U))
(cf. (3.12)), we get

log
1

cap(U)
=
∫

log
1

cap(U)
dλK,w(t) ≥ −

∫
QdλU (z) + ρw

so that
F (U) ≤ −ρw .

Furthermore, if U = SK,w, we can replace the inequalities above by “=”, and
b) follows. Finally, if for some U , F (U) = −ρw, then by the arguments above
we must have

V λU (z) = log(1/ cap(U)) λK,w-almost everywhere,

which will imply that Pc(SK,w) = Pc(U). ��
Let us show with one example how Theorem 3.3 can be used to determine

the extremal support in some cases.
Assume that K = [−1, 1] and w is an admissible weight on K such that Q

is convex on (−1, 1).

Exercise 14. Prove that for every positive measure μ ∈ M(K), with
K = [−1, 1], the potential V μ is strictly convex in K \ supp(μ).

With this result in hand, we can reason as follows: by assumption, V λK,w +Q
is a strictly convex function in K \ SK,w. Assume that there are two points
p1, p2 ∈ SK,w, −1 < p1 < p2 < 1, such that between them there is no further
point of SK,w. Since V λK,w +Q is strictly convex in (p1, p2), and at p1, p2 the
inequality
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V λK,w(z) + Q(z) ≤ ρw

holds, we get that on (p1, p2) we have

V λK,w(z) + Q(z) < ρw ,

which contradicts the inequality on K. Thus, SK,w must be an interval, say
SK,w = [a, b]. Now the determination of the extremal support becomes a
simple maximization problem of a function on K ×K:

F (SK,w) = F ([a, b]) = max
α,β∈K

F ([α, β]) .

Since
cap([α, β]) =

β − α

4
, dλ[α,β](x) =

1
π

1√
(β − x)(x− α)

,

we obtain that

F ([α, β]) = log
(
β − α

4

)
− 1

π

∫ β

α

Q(x)√
(β − x)(x− α)

dx .

Exercise 15. Prove that if in the situation above, −1 < a < b < 1, then
the end points of the support SK,w satisfy the following integral equations:

1
π

∫ β

α

Q′(x)
√

x− a

b− x
dx = 1 ,

1
π

∫ β

α

Q′(x)

√
b− x

x− a
dx = −1 .

Remember finally that formulas (3.15) and (3.16) turned out to be very
useful for the computation of the equilibrium measure and equilibrium po-
tential without external field. In order to find an analogue of these relations
we must recall the definition of the Dirichlet problem. In a simplified form
(and suited for our needs) it is like follows: assume we have a compact set
K on a complex plane, cap(K) > 0, and let f be l.s.c. function defined on
∂ Pc(K) = ∂Ω∞. We need to find a function u, harmonic in Ω∞, and such
that

lim
z→t, z∈Ω∞

u(z) = f(t) , for t q.e. in ∂Ω∞ . (3.22)

A solution to this problem is given by the so-called Perron function

HK(f ; z) = inf

{
v superharmonic in Ω∞ : lim

z→t, z∈Ω∞
v(z) ≥ f(t), t ∈ ∂Ω∞

}
.

In many cases it is important to know when we can drop “quasi-everywhere”
in the formulation (3.22). An important tool for that is the extended Green
function, introduced in Section 3.3:
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gK(z,∞) def=

{
0, if z ∈ interior of Pc(K),

lim
t→z, t∈Ω

gK(t,∞), if z ∈ ∂ Pc(K) = ∂Ω∞.

Definition 3.4. A point t ∈ ∂Ω∞ is called regular (with respect to the Dirich-
let problem) if the extended Green function gK(z,∞), defined above, is con-
tinuous at z = t. A compact K is called regular if every t ∈ ∂Ω∞ is regular.

Alternatively, we can say that t ∈ ∂Ω∞ is regular if gK(t,∞) = 0.
Characterizations of the regular points of a compact is a very important

topic in potential theory (see e.g. [10, Section 4.2]). For our purpose it will be
sufficient to keep in mind that if ∂Ω∞ is a Jordan curve, K is regular.

The following result can be found, for instance, in [10, Section 4.1]:

Proposition 3.9. If K is a regular compact, then for every function f con-
tinuous on ∂Ω∞ there exists a unique solution u of the Dirichlet problem; it
is given by u = HK(f ; ·) and satisfies

lim
z→t, z∈Ω∞

u(z) = f(t) , ∀t ∈ ∂Ω∞ .

It is well known that if K is the unit circle, the solution to the Dirichlet
problem can be given in terms of the Poisson integral,

u(z) =
1
2π

∫ 2π

0

Re
(
zeiθ + 1
zeiθ − 1

)
f
(
eiθ
)
dθ .

For a general K we can use the Riemann mapping Φ(z) of Ω∞ onto |w| > 1,
taking into account that the Dirichlet problem is invariant under the conformal
mapping:

HK(f ; z) = HΦ(K)(Φ ◦ f ;Φ(z)) .

Example 3.4. Let K = [−1, b] ⊂ R, c > b. Then

Φ(z) =
2z + 1 − b + 2

√
(z + 1)(z − b)

b + 1
, (3.23)

with
√

(x + 1)(x− b) > 0 for x > b. Let f(x) = log(c−x) = log |c−x|, x ∈ K.
Then

HK(f ; z) = log |z − c| − log
∣∣∣∣ Φ(z) − Φ(c)
Φ(z)Φ(c) − 1

∣∣∣∣− gK(z,∞) . (3.24)

Exercise 16. Prove that function HK(f ; z) defined in (3.24) solves the
Dirichlet problem stated above.

Now we are ready to obtain an analogue of formulas (3.15) and (3.16) for
the equilibrium potential with an external field:
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Theorem 3.4. Let cap(K) > 0 and w be an admissible weight. Then

V λK,w(z) + HSK,w
(Q; z) + gSK,w

(z,∞) = ρw , z ∈ Ω∞ . (3.25)

The proof is analogous to that of formula (3.15).

Finally, let us consider the following example:

Example 3.5. Assume that there is an external field acting on K = [−1, 1],
created by a unit positive charge at c > 1. We want to find the corresponding
equilibrium measure.

In our notation,

Q(x) = V δc(x) = − log |c− x| , w(x) = |c− x| .

Observe that Q is convex, so that SK,w is an interval. Physical intuition tells
us that −1 ∈ SK,w, so that SK,w = [−1, b], −1 < b ≤ 1. The F-functional now
has the form

F ([−1, b]) = log
b + 1

4
− 1

π

∫ b

−1

log
1

c− x

1√
(x + 1)(b− x)

dx .

But equation

d

db
F ([−1, b]) =

1
b + 1

(
1 − 1

π

∫ b

−1

1
c− x

√
x + 1
b− x

dx

)

=
1

b + 1

(
2 −

√
c + 1
c− b

)
= 0

has a unique solution in (−1, 1),

b0 =
3c− 1

4
,

as long as 1 < c < 5/3; hence, SK,w = [−1, b], with b = min{b0, 1} . In other
words,

SK,w =

{
[−1, 1], if c ≥ 5/3,
[−1, b0], if 1 < c < 5/3 .

(3.26)

Once we have found the support of λK,w, we can find its potential using
formulas (3.24)–(3.25): for z /∈ [−1, 1],

V λK,w(z) = −HK(Q; z) − gK(z,∞) + ρw

= log |z − c| − log
∣∣∣∣ Φ(z) − Φ(c)
Φ(z)Φ(c) − 1

∣∣∣∣− 2gK(z,∞) + ρw ,

with Φ given in (3.23). Taking into account that gK(z,∞) = log |Φ(z)|, we see
that
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V λK,w(z) = Re
(

log(z − c) − log
(

Φ(z) − Φ(c)
Φ(z)Φ(c) − 1

)
− 2 log(Φ(z))

)
+ const .

Hence, we may take

V(z) = log(z − c) − log
(

Φ(z) − Φ(c)
Φ(z)Φ(c) − 1

)
− 2 log(Φ(z))

and use formula (2.5):

λ′K,w(z) =
1

2πi
(
V ′

+(z) − V ′
−(z)

)
.

Exercise 17. Complete the computation and prove that the equilibrium
measure λK,w for K = [−1, 1] and w(t) = |c− t|, c > 1, is

dλK,w(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
π

1√
1 − x2

[
2 +

√
c2 − 1
x− c

]
, x ∈ (−1, 1), 5/3 < c ,

2
π(c− x)

√
b− x

x + 1
, x ∈ (−1, b), 1 < c ≤ 5/3 ,

where b = (3c− 1)/4.

Exercise 18. Assume now that w(t) = |c− t| with c ∈ (−1, 1); analyze for
which values of c the support of λK,w is still connected (an interval).

3.5 Other Equilibrium Problems. Equilibrium with Constraints

Let us try to summarize what we have seen so far, from a point of view of the
electrostatics.

• A positive charge on a plane conductor K (assuming that the interaction
is inversely proportional to the distance) reaches an equilibrium, modelled
by the equilibrium measure λK , characterized by the minimum energy ρ
in this class. Furthermore, on the conductor the charge is free to move, so
necessarily the potential (whose gradient is the force) is constant at least
where the charge “lives” (support).

• If an external field Q acts on the conductor K, the situation changes,
the equilibrium is modelled by the equilibrium measure λK,w. K being a
conductor, the charge is still free to move, hence the potential plus the
external field (whose gradient is again the force) is constant where the
charge “lives” (support).

It is not too difficult to imagine further generalizations of these models:
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• We have a set of conductors Kj (“plates”), each equipped with a corre-
sponding positive (or even signed) charge. The potential on a certain Kj

now receives the contribution from the charge on the plate (which is free
to move within the conductor) plus the action of the remaining charges
(bounded to their corresponding plates). The equilibrium now (which by
physical considerations must exist) is modelled by the vector equilibrium,
introduced by Gonchar and Rakhmanov in [5]. It is applied in the analy-
sis of so-called Hermite-Padé approximants, which are a valuable tool in
analytic number theory (see e.g. [8]).

• In each of the situations described above the interaction between charges
may obey a different law. From the analytic point of view it would mean
that we must use a different (not necessarily logarithmic) kernel in the de-
finition of the potential (2.3). For instance, we may use the Green function
as a kernel, which leads to the Green potential, connected with the vector
equilibrium and applied in rational approximation. If the interaction de-
cays with the square of the distance, we get the Coulomb or gravitational
potential, etcetera.

Finally, we may consider the case when K is not totally conducting. Indeed,
if the conductivity of K is limited from above by a given charge distribution
σ then in order to find the equilibrium we must minimize the total energy in
the class of unit measures μ satisfying an additional constraint: μ ≤ σ, in any
reasonable sense (for instance, that σ−μ is a positive measure on K). This is
the equilibrium with constraints, studied for instance in [4]. We may guess now
that there are qualitatively new features in this situation. For instance, where
the constraint is not saturated (σ − μ > 0), everything should resemble the
unconstrained case; in particular, the potential (plus eventually the external
field) are constant on the support of the equilibrium measure. However, when
the constraint is saturated (σ = μ), we might have less measure than necessary
to level the potential to its equilibrium constant.

In order to be more specific, we say that, given an admissible weight w
on K (in a sense of Definition 3.2), a measure σ ∈ M∗(K) is an admissible
constraint if supp(σ) = K and σ(K0) > 1, where K0

def= {z ∈ K : w(z) > 0}.
Next we define the class of measures

Mσ
1 (K) def= {μ ∈ M1(K) : 0 ≤ μ ≤ σ} ,

where by μ ≤ σ we mean that σ−μ is a positive Borel measure. The analogue
of the Robin’s constant for this problem is given by

τσ
w

def= inf
μ∈Mσ

1 (K)
Iw(μ) .

As before, we can prove that there exists a unique measure λσ
K,w such that

τσ
w = Iw(λσ

K,w); it is called a σ- constrained extremal measure for the weight
w. Furthermore, there exists a constant ρσ

w such that
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V λσ
K,w(z) + Q(z) ≥ ρσ

w holds (σ − λσ
K,w)- a.e ,

V λσ
K,w(z) + Q(z) ≤ ρσ

w holds for all supp(λσ
K,w) .

In other words, K splits into two regions:

• Non-saturated regions, where λσ
K,w < σ. Here the measure behaves like an

unconstrained equilibrium measure, and in particular,

V λσ
K,w(z) + Q(z)

{
= ρσ

w q.e. on supp(λσ
K,w) ,

≥ ρσ
w in K \ supp(λσ

K,w) .

• Saturated regions, subsets of supp(λσ
K,w) where λσ

K,w = σ. Here we have
not enough measure to level up the potential and we expect

V λσ
K,w(z) + Q(z) < ρσ

w .

Notice that if σ ≥ λσ
K,w, then the extremal measure will not depend on the

constraint and will coincide with λK,w. In this sense, the constrained energy
problem generalizes the weighted energy problem.

4 Two Applications

4.1 Analytic Properties of Polynomials

Let us start with a very classical lemma about the growth of a polynomial
of a given degree. It is a mere illustration of the power of the properties of
superharmonic functions.

Lemma 4.1 (Bernstein-Walsh). Let K be a compact in C, and pn a poly-
nomial of degree n ∈ N. If

‖pn‖K
def= max

z∈K
|pn(z)| ≤ M ,

then
|pn(z)| ≤ M engK(z,∞), z ∈ C .

Taking into account (3.15), we can rewrite the last inequality as

|pn(z)| ≤ M

(cap(K))n
e−nV λK (z) .

Proof. It is a direct consequence of the minimum principle for superharmonic
functions, Theorem 2.1. Indeed, by Exercise 3 we know that − log |pn| is su-
perharmonic in C. Let us consider

v(z) def= − log |pn(z)| + n gK(z,∞) (4.1)
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in the outer domain Ω∞. It is superharmonic in Ω∞ and harmonic in a neigh-
borhood of z = ∞. Furthermore, it satisfies

lim
t→z, t∈Ω∞

v(t) ≥ − logM .

By Theorem 2.1, v(z) > − logM in z ∈ Ω∞. The rest follows from the maxi-
mum principle for holomorphic functions. ��

Corollary 4.1. If Pn(z) = zn + . . . is a monic polynomial of degree n and K
is a non-polar compact set, then

‖Pn‖K ≥ (cap(K))n
.

Proof. Let us again use the function v defined in (4.1). With the assumptions
of the corollary, v is harmonic in a neighborhood of z = ∞, and by (3.16),
v(∞) = −n log cap(K). By the minimum principle,

min
z∈∂Ω∞

v(z) ≤ n log
1

cap(K)
,

which concludes the proof. ��

In relation with this corollary, it is natural to study the monic polynomi-
als that achieve the least possible norm. This is a natural generalization of
the Chebyshev polynomials. Assume that cap(K) > 0. The nth Chebyshev
polynomial Tn is the monic polynomial Tn(z) = zn + . . . such that

‖Tn‖K = inf
Pn(z)=zn+...

‖Pn‖K . (4.2)

What are the features of the zero distribution of the Chebyshev polyno-
mials? We can guess that the answer will be given in terms of the equilibrium
measure. Indeed, using the normalized zero counting measures of Tn and Pn,
μ and ν respectively, we can rewrite the defining property (4.2) as

min
z∈K

V μ(z) ≥ min
z∈K

V ν(z) .

In other words, the minimum of the potential is maximized in the class of
measures. This reminds us of the property of the equilibrium measure λK

given in Proposition 3.6. All these arguments can be made rigorous:

Theorem 4.1. Let K be a non-polar compact set with empty interior. Denote
by νn the normalized zero counting measure of the Chebyshev polynomial Tn.
Then

νn
∗−→ λK as n → ∞ .
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See the proof in [12, Section III.4].

In many applications it is important to consider sequences of weighted
polynomials, of the form

pn(z)wn(z) ,

where w is an admissible weight on a compact K in the sense of the pre-
vious chapter. The supremum norm behavior of these weighted polynomials
is roughly as follows: the supremum norm “lives” on a subset of K that is
independent of n and pn, and the behavior outside this subset is typically
exponentially small. More precisely, we have the following generalization of
the Bernstein-Walsh lemma:

Theorem 4.2. Let w : K → [0,+∞) be an admissible weight. If pn is a
polynomial of degree n and

|wn(z)pn(z)| ≤ M for z ∈ SK,w . (4.3)

Then
|pn(z)| ≤ M exp

(
n(−V λK,w(z) + ρw)

)
for z ∈ C . (4.4)

Furthermore, the inequality in (4.3) holds on K.

Exercise 19. Prove the theorem above. Use the proof of the Bernstein-
Walsh lemma as an inspiration.

Observe that from (4.4) it follows that

|wn(z)pn(z)| ≤ M exp
(
n(−V λK,w(z) −Q(z) + ρw)

)
for z ∈ K .

Remember that by part d) of Theorem 3.2 we have that the inequality

V λK,w(z) + Q(z) ≥ ρw

holds quasi everywhere on K, and hence

|wn(z)pn(z)| ≤ M q.e. on K .

In other words, if we neglect the (possible) polar set where this is not true, the
(essential) norm is reached on the set SK,w. We can make it formal defining
the essential norm as

‖f‖∗K
def= inf{L > 0 : |f(z)| ≤ L q.e. on K} .

Then a direct consequence of the previous theorem is the following fact:

deg(pn) ≤ n ⇒ ‖wnpn‖∗K = ‖wnpn‖∗SK,w

which can be phrased as “the essential norm of the weighted polynomial lives
on the support SK,w”.
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Exercise 20. What is the lower bound for infPn(z)=zn+... ‖wnPn‖K? Can
you guess what is the limit zero distribution of the monic polynomials Tn of
the minimum weighted norm on K (weighted Chebyshev polynomials)?

Example 4.1. Assume that K = [−1, 1] and we want to study the asymptotic
behavior of the sequence of monic polynomials Pn of degree 2n, with half
(n) of the zeros fixed at z = 1, and providing a minimal uniform norm on K
within its class. This is a generalization of Chebyshev polynomials, known also
as incomplete polynomials. It can be written as a weighted extremal problem:
writing Pn(z) = (z − 1)npn(z), pn(z) = zn + . . . , we need to find

inf
pn(z)=zn+...

‖(z − 1)npn(z)‖[−1,1] .

If we recall now the results obtained in the Example 3.5, we can say several
things about the analytic properties of these polynomials. For instance, from
(3.26) with c = 1 it follows that always

‖(z − 1)npn(z)‖[−1,1] = ‖(z − 1)npn(z)‖[−1,1/2] .

Let me finally mention very briefly the role of the equilibrium in the as-
ymptotics of orthogonal polynomials. Remember that the link between both
theories is given by formula (2.4): for p(z) = (z − a1)(z − a2) . . . (z − an),

V ν(p)(z) = − log |p(z)| , ν(p) =
n∑

k=1

δak
= zero counting measure of p .

Now we can establish the following “Ansatz”:

• Orthogonality of a monic polynomial Pn with respect to a weight w on K
⇒ extremality of the L2 norm of Pn ⇒ asymptotic extremality of the L∞

norm of Pn (under certain conditions on w) ⇒ max-min property of |Pn|
⇒ max-min property of V ν(Pn) ⇒ ν(Pn) ∼ λK .

• Orthogonality of a monic polynomial Pn with respect to a varying weight
wn on K ⇒ extremality of the weighted L2 norm of Pn ⇒ asymptotic
extremality of the weighted L∞ norm of Pn (under certain conditions on
the measure) ⇒ max-min property of |wnPn| ⇒ max-min property of
V ν(Pn) + Q ⇒ ν(Pn) ∼ λK,w.

• Orthogonality of a monic polynomial Pn with respect to a discrete varying
“weight” wn(x)dμ(x) on K ⇒ extremality of the weighted L2 norm of Pn

⇒ asymptotic extremality of the weighted L∞ norm of Pn (under certain
conditions on the measure).
But attention! We have an additional restriction: between two consecutive
mass points of the orthogonality measure we can find at most one zero of
Pn.
So, our problem ⇒ max-min property of |wnPn| assuming ν(Pn) �
wn(x)dμ ⇒ max-min property of V ν(Pn) + Q assuming ν(Pn) � wn(x)dμ
⇒ ν(Pn) ∼ λσ

K,w, if wn(x)dμ ∼ σ.
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Almost all these “guesses” can be converted into rigorous theorems. Many
of these results have been obtained in the eighties. However, very recently the
equilibrium potential started to play a fundamental role also for the pointwise
or “strong” asymptotics of orthogonal polynomials, obtained in the framework
of the matrix Riemann-Hilbert approach to their analysis; for instance, it is
used in the construction of the so-called g-functions.

It was Rakhmanov in his pioneering work [9] who realized that the equi-
librium with constraints is decisive in the study of the polynomials of discrete
orthogonality, used for instance in numerical analysis (see e.g., [2] or [1]). A
more detailed discussion of this topic will be carried out in the lecture notes
of Beckermann [3] in this volume.

4.2 Complex Dynamics

Let q(z) =
∑d

j=0 ajz
j be a polynomial of degree d. We are interested in the

dynamics of q, namely the behavior of the iterates q◦n def= q ◦ q ◦ · · · ◦ q as
n → ∞.

Definition 4.1. The attracting basin of ∞ of q is the set

Ω∞
def= {z ∈ C : q◦n(z) → ∞ as n → ∞}

(where C is the extended complex plane).

Example 4.2. For q(z) = z, we have Ω∞ = {z ∈ C : |z| > 1}.

To consider the non-trivial cases, we assume d ≥ 2. Then it is easy to
see that there exists an R > 0 such that |q(z)| ≥ 2|z| for |z| > R. Put
U0 = {z ∈ C : |z| > R}. If z ∈ U0, then |q(z)| ≥ 2|z| > R, so that q(z) ∈ U0,
which means that z ∈ q−1(U0). In other words, U0 ⊂ q−1(U0). For n ∈ N,
define

Un = q−1(Un−1) .

Lemma 4.2. With the definition above,

U0 ⊂ U1 ⊂ · · · ⊂ Un , (4.5)

and
Ω∞ =

⋃
n

Un . (4.6)

Proof. (4.5) is verified by direct computation. For (4.6) the main observation
is that z ∈ Ω∞ if and only if q◦n(z) ∈ U0 for a certain n ∈ N. ��

Corollary 4.2. Ω∞ is a connected open set that is completely invariant:
q−1(Ω∞) = Ω∞.
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Definition 4.2. The Julia set of q is

J
def= ∂Ω∞.

In other words, Ω∞ is the outer domain of the Julia set, explaining the reason
for keeping the notation. The set C \ Ω∞ is sometimes called the “filled-in”
Julia set.

The Julia set J can also be defined (informally) as the set of points for
which nearby points do not exhibit similar behavior under repeated iterations
of q. It is a compact subset of the plane, being also completely invariant:
q−1(J) = J . The Julia set plays a fundamental role in the dynamics of q.

Exercise 21. Prove that J is completely invariant.

Let us consider some examples for the classical situation, studied by G. Julia
himself, q(z) = z2 − c:

• If c = 0, then q◦n(z) = z2n

, and so

Ω∞ = {z : |z| > 1} and J = {z : |z| = 1} .

• If c = 2, then it is possible to show that q◦n(w + 1/w) = w2n

+ 1/w2n

,
from which it follows that

Ω∞ = C \ [−2, 2] and J = [−2, 2]

(cf. Exercise 12).
• If c = 0.12−0.74i or c = 0.76+0.24i, the Julia sets are the boundary of the

black regions in Figure 1. The set J on the right is totally disconnected;
Julia sets with this property are referred to as Fatou dust.

As we can appreciate from the last example, in general Julia sets have a
very complicated structure, a fact that explains their popularity (and beauty).
Although there are several approaches in studying these sets, let us explore
briefly the connection with potential theory.

The first result is that a Julia set has always positive capacity. In fact, its
capacity is surprisingly simple to compute; however, little is known about its
area (plane Lebesgue) measure.

Theorem 4.3. If q(z) =
∑d

j=0 ajz
j, with d ≥ 2 and ad �= 0, then for its Julia

set,

cap(J) =
1

|ad|1/(d−1)
.

Proof. Let us start with the following technical trick. If m(z) = αz + β is a
polynomial of degree 1, let us call the conjugate polynomial of q the following
polynomial,

q̃ = m ◦ q ◦m−1 ,
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Fig. 1. Julia sets for c = 0.12 − 0.74i (left) and c = 0.76 + 0.24i (right)

which is again a polynomial of degree d. It is easy to see that q̃◦n = m ◦ q◦n ◦
m−1, so that both q and q̃ have essentially the same dynamics. Furthermore,
if we denote by Ω̃∞ and J̃ the attracting basin of ∞ and the Julia set for q̃,
respectively, then

Ω̃∞ = m(Ω∞) and J̃ = m(J) .

By taking α = a
1/(d−1)
d and β = ad−1/d we obtain q̃(z) = zd + O(zd−2). So,

in what follows and without loss of generality we assume that

q(z) = zd +
d−2∑
j=0

ajz
j . (4.7)

For this q we must prove that cap(J) = 1. The main tool will be formula
(3.20).

Let us use the construction of the sets Un of Lemma 4.2, and define Kn =
C \Un. On one hand, we have that Un ↑ Ω∞, so that6 cap(C \Un) → cap(C \
Ω∞). On the other hand, Kn = q−1(Kn−1), and by (3.20),

cap(Kn) = cap(Kn−1)1/d = · · · = cap(K0)1/dn

.

6 Here we use implicitly the following property of the capacity: if Kn are compact
sets, K1 ⊃ K2 ⊃ . . . , and K = ∩nKn, then cap(Kn) → cap(K) (see [10, Theorem
5.1.3]).
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Hence, cap(Kn) → 1 as n → ∞, proving that cap(Ω∞) = 1. ��

Since cap(J) > 0, the Green function gJ(z,∞) exists. Formula (3.21) and
the invariance of the Julia set allow to establish also the following relation for
this Green function:

gJ (q(z),∞) = d gJ (z,∞) . (4.8)

A nice consequence of this is that the Green function has a purely dynamical
interpretation:

Proposition 4.1. With the notation above,

gJ(z,∞) = lim
n→∞ d−n log |q◦n(z)| , z ∈ Ω∞ ,

the convergence being locally uniform in Ω∞.

Proof. By the definition of the Green function,

gJ(z,∞) = log |z| + O(1), as z → ∞ .

In particular, for z ∈ Ω∞,

gJ(q◦n(z),∞) = log |q◦n(z)| + O(1), as n → ∞ .

But by formula (4.8),

gJ(z,∞) = d−ngJ(q◦n(z),∞) = d−n log |q◦n(z)| + O(d−n), as n → ∞ .

This ends the proof. ��

Finally, since cap(J) > 0, we may consider the (Robin) equilibrium measure
λJ of J . By uniqueness, it is also q-invariant, and has the following dynamical
interpretation:

Theorem 4.4. Let a ∈ J , and {νn} be the normalized counting measures of
the a-values of the polynomials {q◦n}:

νn
def=

1
dn

∑
q◦n(ζ)=a

δζ ,

where the sum takes into account the multiplicity of the zeros of q◦n−a. Then

νn
∗−→ λJ as n → ∞ ,

where λJ is the equilibrium measure of the Julia set J .

A proof can be found in [10, p. 196].
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5 Conclusions, or What You Should Take Home

We have seen many formulas and have proved some theorems. This is a tip of
the iceberg, of a beautiful and powerful theory of the logarithmic potential in
the complex plane. What is essential here? Any summary risks to omit some
important facts and to overestimate others. But here I dare to highlight the
following ones:

• Superharmonic functions and logarithmic potentials of a positive measure
are two sides of the same class of functions (Riesz decomposition theorem,
page 85). This is a connection of the theory with complex analysis.

• There exists a unique equilibrium measure of a compact set, minimizing
the energy. It “lives” on its outer boundary and makes the corresponding
potential constant inside.

• The minimal energy of a unit measure gives the definition of capacity of
a set, which is a natural way of measuring plane sets in many problems.

• Green functions, conformal mapping, equilibrium potential and capacity
are very related concepts.

• An introduction of an external field in the equilibrium problem produces
a new important feature: now the support of the extremal measure is a
priori unknown and is the main parameter of the problem.

• The natural connection of the potential theory on C with polynomials (and
approximation theory) is via the formula connecting the logarithm of the
absolute value of the polynomial with the potential of its zero counting
measure.

• Many extremal problems in approximation theory, complex dynamics, nu-
merical analysis, mathematical physics, etc., can be solved in terms of some
related extremal problems for energy-type functionals acting on measures
on the plane, which at the end of the day lead us to consider equilibrium
problems (in a classical or generalized sense) for logarithmic (or other)
potentials.
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Summary. We give a theoretical explanation for the superlinear convergence be-
havior observed while solving large symmetric systems of equations using the Con-
jugate Gradient (CG) method or other Krylov subspace methods. We present a new
bound on the relative error after n iterations. This bound is valid in an asymptotic
sense, when the size N of the system grows together with the number n of iter-
ations. This bound depends on the asymptotic eigenvalue distribution and on the
ratio n/N . Similar bounds are given for the task of approaching eigenvalues of large
symmetric matrices via Ritz values.

Our findings are related to some recent results concerning asymptotics of discrete
orthogonal polynomials due to Rakhmanov and Dragnev & Saff, followed by many
other authors. An important tool in these investigations is a constrained energy
problem in logarithmic potential theory.

The present notes are intended to be self contained (even if the proofs are some-
times incomplete and we refer to the original literature for details): the first part
about Krylov subspace methods should be accessible for people from the orthogonal
polynomial community and also for those who do not know much about numerical
linear algebra. In the second part we gather the necessary tools from logarithmic
potential theory and recall the basic results on the nth root asymptotics of discrete
orthogonal polynomials. Finally, in the third part we discuss the fruitful relationship
between these two fields and give several illustrating examples.
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1 Background in Numerical Linear Algebra

1.1 Introduction

The Conjugate Gradient (CG) method is widely used for solving systems of
linear equations Ax = b with a positive definite symmetric matrix A. The CG
method is popular as an iterative method for large systems, stemming, e.g.,
from the discretisation of boundary value problems for elliptic PDEs. The rate
of convergence of CG depends on the distribution of the eigenvalues of A. A
well-known upper bound for the error en in the A-norm after n steps is

‖en‖A

‖e0‖A
≤ 2

(√
κ− 1√
κ + 1

)n

(1.1)

where e0 is the initial error and the condition number κ = λmax/λmin is the
ratio of the two extreme eigenvalues of A. In practical situations, this bound
is too pessimistic, and one observes an increase in the convergence rate as n
increases. This phenomenon is known as superlinear convergence of the CG
method. It is the purpose of this work to give an explanation for this behavior
in an asymptotic sense, following [39, 10, 11, 12].

As we will see in Section 1.4 below, the CG convergence behavior is deter-
mined by asymptotics of discrete orthogonal polynomials, and can be bounded
above in terms of asymptotics of discrete L∞ extremal polynomials. More gen-
erally, consider the extremal polynomials Tn,p(z) = zn + lower powers with
regard to some discrete Lp–norm

||wn · Tn,p||Lp(En) = min{||wn · P ||Lp(En) : P (z) = zn + lower powers}, (1.2)
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where

||f ||L∞(En) := sup
z∈En

|f(z)|, ||f ||Lp(En) :=

[∑
z∈En

|f(z)|p
]1/p

, (1.3)

0 < p < ∞, with En being suitable finite or countable subsets of the complex
plane, #En ≥ n + 1, and wn(z), z ∈ En, being (sufficiently fast decreasing)
positive numbers.

For the case p = 2 of monic discrete orthogonal polynomials, examples
include the discrete Chebyshev polynomials [58] (choose wn = 1, En =
{0, 1, ..., n}) or other classical families like Krawtchouk or Meixner polyno-
mials [22, 24, 45], see for instance the review in [43]. A study of asymptotics
of such polynomials has some important applications, e.g., in coding theory,
in random matrix theory [37], or in the study of the continuum limit of the
Toda lattice [23].

It was Rakhmanov [58] who first observed that a particular constrained
(weighted) energy problem in complex potential theory (see Section 2.2) may
furnish a method for calculating the nth root asymptotics of extremal polyno-
mials with respect to so–called ray sequences obtained by a suitable renormal-
ization of the sets En. Further progress has been made by Dragnev and Saff
for real sets En being uniformly bounded [24]; they also obtained asymptotics
for discrete Lp–norms with 0 < p ≤ ∞. Generalizations for unbounded real
sets En and exponentially decreasing weights have been discussed by Kuijlaars
and Van Assche [45] (0 < p ≤ ∞) and Kuijlaars and Rakhmanov [43] (p = 2).
Damelin and Saff [22] studied the case p = ∞ for more general classes of
weights. Complex possibly unbounded sets En and even more general weights
have been discussed in [5], where it is also shown that two conjectures of
Rakhmanov [43] are true concerning some separation assumption for the sets
En.

We will explain in Section 2.3 below how some energy problem with con-
straint and external field will enable us to describe the nth root asymptotics
of the polynomials Tn,p and the norms ||wN · Tn,p||Lp(EN ). What makes the
asymptotic analysis difficult is the fact that a polynomial can be small on a
discrete set without being uniformly small in the convex hull of this discrete
set. To illustrate this observation, we have chosen E = {j/20 : j = 1, ..., 20}
and the trivial weight w = 1, and have drawn the normalized extremal polyno-
mials Tn,∞/||Tn,∞||L∞(E) for n = 5, 10, 18 in Figure 1. We see that, for n = 5,
the polynomial is uniformly small on [1/20, 20/20], but this is no longer true
for n = 10 or n = 18.

For the same reason, the classical CG error bound (1.1) gives satisfactory
results for small iterations, but can be a crude overestimation in a later stage.
Indeed, for small n, a polynomial p ∈ Pn with p(0) = 1 that is small on the
spectrum of A has to be uniformly small on the full interval [λmin, λmax] as
well. When n gets larger, however, a better strategy for p is to have some of its
zeros very close to some of the eigenvalues of A, thereby annihilating the value
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Fig. 1. The polynomials Tn,∞ (after normalization) for n = 5, 10, 18 for E consisting
of 20 equidistant points and trivial weight w = 1

of p at those eigenvalues, while being uniformly small on a subcontinuum of
[λmin, λmax] only.

As an illustration we look at the case of a matrix A with 100 equally
spaced eigenvalues 1, 2, . . . , 100. The error curve computed for this example
is the solid line in Figure 2. See also [25, page 560]. The classical error bound
given by (1.1) with κ = 100 is the straight line in Figure 2. For smaller values
of n, the classical error bound gives an excellent approximation to the actual
error. The other curve (the one with the dots) is the asymptotic bound for
the error proposed in [10, Corollary 3.2]. This curve follows the actual error
especially well for n ≥ 40, the region of superlinear convergence.

The observations made above have been well known in the numerical linear
algebra community, see for instance the monographs [27, 32, 54, 59, 70] or
the original articles [3, 4, 31, 63, 64]. Eigenvalues far away from the rest
of the spectrum (so-called outliers) have been treated in a separate manner
improving (1.1) [3, 4]. The strategy described above to get a polynomial being
small on the (discrete) spectrum was known as convergence of some Ritz
values [31, 63, 64]. In addition, the researchers have been aware of the fact
that logarithmic potential theory helps in describing or bounding the rate
of convergence [25]. There was also a vague idea about what is a “favorable
eigenvalue distribution” in order to get a pronounced superlinear convergence
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Fig. 2. The CG error curve versus the two upper bounds for the system Ax = b
with A = diag (1, 2, . . . , 100), random solution x, and initial residual r0 = (1, ..., 1)T

[25, 70]. However, precise analytic formulas seemed to occur for the first time
only in [39, 10, 11, 12].

Properly speaking, the concept of superlinear convergence for the CG
method applied to a single linear system does not make sense. Indeed, in
the absence of roundoff errors, the iteration will terminate at the latest after
N steps if N is the size of the system. Also the notion that the eigenvalues
are distributed according to some continuous distribution is problematic when
considering a single matrix. Therefore we are not going to consider a single
matrix A, but instead a sequence (AN )N of positive definite symmetric matri-
ces. The matrix AN has size N ×N , and we are interested in asymptotics for
large N . These matrices need to have an asymptotic eigenvalue distribution.

The rest of this manuscript is organized as follows: In §1.2 we present sev-
eral Krylov subspace methods and fix the notation. Subsequently, we intro-
duce polynomial language for explaining the link between convergence theory
for Krylov subspace methods, and classical extremal problems in the theory
of orthogonal polynomials. We shortly describe the general case in §1.3, and
then analyze in more detail the case of hermitian matrices in §1.4.

Following [39, 10, 11, 12, 6], we describe in §2 and §3 how logarithmic
potential theory may help to analyze the convergence of Krylov subspace
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methods. Some facts about the weighted energy problem are recalled in §2.1,
but here some additional reading would be helpful, see for instance the contri-
bution by Andrei Mart́ınez Finkelshtein [47] in this volume. The constrained
weighted energy problem is discussed in some more detail in §2.2, and used in
§2.3 in order to describe nth root asymptotics of discrete Lp extremal poly-
nomials.

The link to the convergence of Krylov subspace methods for hermitian
matrices is presented in §3.1 and §3.2, where also several illustrating numerical
examples are given. The aim of §3.3 and §3.4 is to show that many classes
of structured matrices have an asymptotic eigenvalue distribution. We will
consider in particular matrices coming from the discretization of (elliptic)
partial differential equations in R2. A generalization to higher dimension is
possible, but for the sake of simplicity we omit details.

1.2 Conjugate Gradients, Lanczos, and Ritz Values

For solving Ax = b with A being a sparse large matrix of size N × N , one
often makes use of Krylov subspace methods which only require to compute
matrix vector products with A, the latter can be often implemented in a very
efficient manner. In this section we do not attempt to give a complete ac-
count of Krylov subspace methods, the interested reader should consult the
monographs [27, 32, 54, 59, 70]. We just recall the basic definitions and
some elementary properties on the rate of convergence. Here, very much in
the spirit of the Lille research group and in particular of Claude Brezinski (see
also [27]), we will use polynomial language, which should make the theory also
more accessible for people coming from orthogonal polynomials.

In what follows we will always suppose exact arithmetic and ignore errors
due to floating point operations. In particular, we will find that several Krylov
subspace methods are mathematically equivalent for symmetric A. However,
their implementation differs quite a lot, and thus the results may change in
a floating point environment. The link between convergence of Krylov space
methods and loss of precision is subject of actual research, see for instance
the recent work of Strakos or Meurant, e.g., [51, 67, 66].

A Krylov subspace method consists of computing a sequence x0, x1, x2, ...
of approximate solutions of Ax = b, with residual

rn = r(xn) = b−Axn.

The philosophy behind these methods is that (xn) “converges quickly” to the
solution A−1b, i.e., xn is a “good” approximation already for n � N . The
iterates satisfy

xn ∈ x0 + Kn(A, r0)

with the Krylov space

Kn(A, c) = span{c, Ac,A2c, ..., An−1c}
= {p(A)c : p a polynomial of degree ≤ n− 1}.
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Notice that rn ∈ r0 + AKn(A, r0), and thus

rn =
qn(A)r0
qn(0)

(1.4)

for a certain polynomial qn of degree n. The Krylov subspace method in
question is now defined by imposing on the residual either some minimization
property (Minimal Residual MinRES, Generalized Minimal Residual GMRES,
Conjugate Gradient CG) or some orthogonality property (projection methods,
Full Orthogonalization Method FOM, Lanczos, Conjugate Residual CR).

Definition 1.1. The nth iterate xGMRES
n of GMRES is the unique argument

realizing
min{||r(x)|| : x ∈ x0 + Kn(A, r0)}.

The nth iterate xFOM
n of FOM is defined by

rFOM
n ⊥ Kn(A, r0).

For some vector y, the nth iterate xL
n of the Lanczos method is defined by

rL
n ⊥ Kn(A∗, y)

(in case of y = r0 we speak of the symmetric Lanczos method).
For real symmetric positive definite A, the nth iterate xCG

n of the method
of conjugate gradients CG is the unique argument realizing

min{||r(x)||A−1 : x ∈ x0 + Kn(A, r0)}, ||c||A−1 =
√
c∗A−1c.

If A is invertible, and symmetric positive definite, respectively, the func-
tions x �→ ||r(x)||2, and x �→ ||r(x)||2A−1 , respectively, are strictly convex, and
thus the iterates of CG and GMRES exist and are unique. In contrast, it may
happen that the nth iterate of FOM does not exist, see Corollary 1.2.

Exercise 1. Show that there exists N ′ = N ′(A, r0) such that, for all n ≥ 0,

dim Kn(A, r0) = min{n,N ′}.

Hint: first try diagonal A, and use the fact the matrix (r0, Ar0, ..., An−1r0)
is some diagonal matrix times some Vandermonde matrix. Then try diago-
nalisable A.

Exercise 2. If x0 = 0, and A is invertible, show that A−1b ∈ KN ′(A, r0).

It follows from the preceding two exercises that, for x0 = 0 and n = N ′,
the iterates xFOM

n , xGMRES
n and xCG

n give the exact solution of Ax = b, but of
course we hope that we have a good approximation already much earlier.

There is a link between the size of the residuals of FOM and GMRES given
by the following result. A proof is immediate once we have the representation
(1.4) in terms of orthogonal polynomials, see Section 1.3.
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Exercise 3. Show that

1
||rGMRES

n ||2 =
n∑

j=0

1
||rFOM

j ||2 .

Definition 1.2. The Arnoldi basis v1, v2, ..., vN ′ is such that, for all n =
1, ..., N ′, the vectors v1, ..., vn form an orthonormal basis of Kn(A, r0) (ob-
tained by the Arnoldi method: orthogonalize Avn against v1, ..., vn, and divide
the resulting vector by its norm). We also define the matrices

Vn := (v1, v2, ..., vn) ∈ CN×n,

Jn := V ∗
nAVn ∈ Cn×n, Ĵn = V ∗

n+1AVn ∈ C(n+1)×n.

Finally, the eigenvalues of the projected matrix Jn are called nth Ritz values
of A.

Exercise 4. Show that Jn and Ĵn are upper Hessenberg (all elements at
position (j, k) with k < j − 1 are equal to zero). Furthermore, show that

n < N ′ : Vn+1Ĵn = AVn. (1.5)

Finally, in the case of hermitian A, show that Jn is symmetric (and tridiag-
onal).

Remark 1.1. By construction we have for n = N ′ that VN ′JN ′ = AVN ′ . As a
consequence, denoting by Λ(B) the spectrum of some matrix B, we have that
the columns of VN ′ span an A-invariant subspace, and Λ(JN ′) ⊂ Λ(A).

Remark 1.2. In case of real symmetric A, it follows from Definition 1.1 that
the symmetric Lanczos method and FOM are mathematically equivalent, i.e.,
xFOM

n = xL
n = xCR

n , the latter denoting the iterates of the conjugate residual
method. Also, in this case the GMRES method reduces to the so-called method
MinRES (minimal residuals). Finally, we will show in Corollary 1.5 below
that, in case of symmetric positive definite A, the CG iterates coincide with
the symmetric Lanczos iterates.

1.3 Krylov Subspace Methods and Discrete Orthogonal
Polynomials: Non Symmetric Data

One may show that the nth residual polynomial qn of (1.4) of the Lanczos
method is given by the denominator of the nth Padé approximant at infinity
of the rational function
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πN (z) = y∗(zI −A)−1r0 =
∞∑

j=0

z−j−1y∗Ajr0, (1.6)

see for instance [15, §3.6] or for the symmetric case [29]. Hence there is a link
between Lanczos method and formal orthogonal polynomials (polynomials
being orthogonal with respect to some linear form).

In this Section we will concentrate on FOM/GMRES for non symmetric
A. Denote by P the set of polynomials with complex coefficients, and by Pn

the set of polynomials of degree at most n with complex coefficients. For two
polynomials P,Q, we consider the sesquilinear form

≺ P,Q % = (P (A)r0)∗Q(A)r0.

The following exercise shows that we have a scalar product

Exercise 5. Let N ′ = N ′(A, r0) as in Exercise 1. Show that for all P ∈
PN ′−1 \ {0} we have ≺ P, P % > 0, and that there exists a unique monic
polynomial Q of degree N ′ with ≺ Q,Q % = 0.

As a consequence, we can define uniquely orthonormal polynomials pn,
n = 0, 1, ..., N ′, satisfying

j = 0, ..., N ′ − 1 : pj(z) = kjz
j + lower powers, kj > 0,

j, k = 0, ..., N ′ − 1 : ≺ pj , pk % = δj,k,

for all P ∈ P : ≺ P, pN ′ % = 0, pN ′(z) = zN ′
+ lower powers

(we put kN ′ = 1). These orthonormal polynomials are known to satisfy a (full)
recurrence: there exists an upper Hessenberg matrix JN ′ such that

z(p0, p1, ..., pN ′−1)(z) = (p0, p1, ..., pN ′−1)(z)JN ′

+
kN ′−1

kN ′
pN ′(z)(0, ..., 0, 1). (1.7)

The Hessenberg matrix Jn occurred already earlier in Definition 1.2. Indeed,
this is not an inconsistency in notation, as it becomes clear from the following

Exercise 6. The Arnoldi basis is given by the vectors

vj := pj−1(A)r0, j = 1, ..., N ′,

and pN ′(A)r0 = 0. In particular, the matrices JN ′ in Definition 1.2 and in
(1.7) coincide, and the matrix Jn in Definition 1.2 is just the nth principal
submatrix of JN ′ . Finally, for 1 ≤ n ≤ N ′ we have

z(p0, p1, ..., pn−1)(z) = (p0, p1, ..., pn−1)(z)Jn +
kn−1

kn
pn(z)(0, ..., 0, 1). (1.8)
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As a (more or less immediate) consequence of Exercise 6, we have the
following two interpretations in terms of orthogonal polynomials. A proof is
left to the reader.

Corollary 1.1. The nth Ritz values of A are given by the zeros of the ortho-
normal polynomial pn.

As we will see below, ≺ ·, · % can be a discrete Sobolev inner product, its
support being a subset of the spectrum of A. Approaching the spectrum of A
by Ritz values means that we approach the support of some scalar product
by the zeros of the underlying orthogonal polynomials, something familiar for
people from the OP community (at least if the support is real, see Section 1.4).

Corollary 1.2. The nth iterate of FOM exists if and only if pn(0) �= 0. In
this case

rFOM
n =

pn(A)r0
pn(0)

,
1

||rFOM
n || = |pn(0)|.

We may also describe the residuals of GMRES in terms of orthonormal
polynomials. For this we need some preliminary remarks.

Definition 1.3. The nth Szegő kernel of the scalar product ≺ ·, · % is defined
by

Kn,2(x, y) =
n∑

j=0

pj(x)pj(y).

It is a well-known fact (see for instance the “bible” of Szegő [68]) that

min
P∈Pn

≺ P, P %
|P (0)|2 =

1
Kn,2(0, 0)

, (1.9)

is attained for the polynomial P (z) = Kn,2(0, z). By construction of the scalar
product ≺ ·, · % and by (1.4) we have for n < N ′

min
P∈Pn

≺ P, P %
|P (0)|2 = min{||r(x)||2 : x ∈ x0 + Kn(A, r0)},

leading to the following characterization

Corollary 1.3. For the nth iterate of GMRES, n = 0, 1, ..., N ′ − 1 we have

rGMRES
n =

Kn,2(0, A)r0
Kn,2(0, 0)

,
1

||rGMRES
n ||2 = Kn,2(0, 0).
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Exercise 7. Let μj,k := (Ajr0)∗Akr0. Show that

||rGMRES
1 ||2

||rGMRES
0 ||2 =

μ0,0μ1,1 − |μ0,1|2
μ0,0μ1,1

.

Conclude that the following algorithm (called GMRES(1))

choose any y0

for k = 0, 1, ... until ”convergence” do
compute yk+1 by one iteration of GMRES with starting vector x0 = yk

converges (yk → A−1b for k → ∞) for all b and y0 if and only if for all y �= 0
we have y∗Ay �= 0.
Hint: if you do not find a direct proof, look in [32].

We end this section by showing that the scalar product can be (but does
not need to be) a Sobolev inner product with finite support, possibly in the
complex plane. Finally, we show that in case of a normal matrix A we have
an important simplification, leading to discrete orthogonal polynomials with
possibly complex support.

Example 1.1. For some parameter ρ > 0, consider the matrix

A = XBX−1, B =

⎡⎢⎢⎣
1 0 0 0
1 1 0 0
0 0 −1 0
0 0 1 −1

⎤⎥⎥⎦ , X =

⎡⎢⎢⎣
1 0 0 0
ρ 1 0 0
0 0 1 0
ρ 0 0 1

⎤⎥⎥⎦ ,
and r0 = Xc, c = (1, 0, 1, 0)t. Notice that B is in Jordan form, and hence
Λ(A) = {−1, 1}. It is not difficult to show that, for any polynomial Q,

Q(A)r0 = XQ(B)c = X

⎡⎢⎢⎣
Q(1)
Q′(1)
Q(−1)
Q′(−1)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Q(1)

ρQ(1) + Q′(1)
Q(−1)

ρQ(1) + Q′(−1)

⎤⎥⎥⎦ .
Thus we obtain the following simplification for the scalar product

≺ P,Q % = P (1)Q(1) + ρP (1) + P ′(1)(ρQ(1) + Q′(1))
+P (−1)Q(−1) + ρP (1) + P ′(−1)(ρQ(1) + Q′(−1)),

which reduces to a (discrete) Sobolev inner product in the case ρ = 0.

One may indeed show that the scalar product always can be represented
in terms of a linear combination of the values and the derivatives of P,Q at
the points of the spectrum of JN ′ . Let us have a closer look at a case where
the derivatives do not occur.
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Theorem 1.1. If A is normal (i.e., A∗A = AA∗), with matrix of right
eigenvectors given by XN and its spectrum by Λ(A) = {λ1, ...λN} then with
X−1

N r0 = (βj)j,

P,Q ∈ P : ≺ P,Q % =
N∑

j=1

|βj |2P (λj)Q(λj). (1.10)

Conversely, if the scalar product has such a representation then at least the
projected matrix JN ′ is normal, and Λ(JN ′) = {λj : βj �= 0} ⊂ Λ(A).

Proof. If A is normal then its matrix of eigenvectors XN is unitary, that is,

X∗
NXN = I, X∗

NAXN = Λ = diag (λ1, ..., λN ).

Observing that for some polynomial P we have

P (A) = XNP (Λ)X∗
n, with P (Λ) = diag (P (λ1), ..., P (λN )),

we obtain by writing β = X∗
nr0 = X−1

n r0

P,Q ∈ Pn : ≺ P,Q % = β∗P (Λ)∗Q(Λ)β =
N∑

j=1

|βj |2P (λj)Q(λj).

In order to show the converse result, suppose that there are N∗ distinct λj

with βj �= 0, say, the terms corresponding to λ1, ..., λN∗ . Then we may rewrite
the sum in (1.10) as

P,Q ∈ P : ≺ P,Q % =
N∗∑
j=1

|β∗j |2P (λj)Q(λj)

for suitable coefficients β∗j and distinct λ1, ..., λN∗ . From Exercise 5 together
with (1.7) we learn that N∗ = N ′, and pN ′(z) = (z−λ1)...(z−λN ′). It follows
from Corollary 1.1 that JN ′ has the distinct eigenvalues λ1, ..., λN ′ , and the
relation Λ(JN ′) ⊂ Λ(A) was established in Remark 1.1. Consider the matrix

Y := (pk(λj))j=1,...,N ′,k=0,...,N ′−1,

then from (1.7) we know that Y JN ′ = DY , D = diag (λ1, ..., λN ′), and from
the representation of the scalar product together with (1.7) we learn that

Y ∗ diag (|β∗1 |2, ..., |β∗N ′ |2)Y = I.

Hence, up to a certain normalization of the rows, the left eigenvector matrix
of JN ′ is unitary, implying that JN ′ is normal. ��

Analyzing in more detail the preceding proof we obtain the following
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Corollary 1.4. If A is normal then also JN ′ is normal, with Λ(JN ′) ⊂ Λ(A).
Furthermore, JN ′ has N ′ distinct eigenvalues, and

P,Q ∈ P : ≺ P,Q % =
∑

λ∈Λ(JN′ )

w(λ)2P (λ)Q(λ),

(1.11)

w(λ)2 =
1

KN ′,2(λ, λ)
> 0,

∑
λ∈Λ(JN′ )

w(λ)2 = ||r0||2.

1.4 Krylov Subspace Methods and Discrete Orthogonal
Polynomials: Symmetric Data

From now on we will always suppose (except for Remark 1.3) that our matrix
of coefficients A is hermitian, i.e., A = A∗, with spectrum λ1 ≤ · · · ≤ λN .
From Exercise 4 it follows that JN ′ with N ′ = N ′(A, r0) as in Exercise 1 is
an hermitian upper Hessenberg matrix with positive entries kn/kn+1 > 0 on
the first subdiagonal. However, such a matrix is necessarily tridiagonal, of the
form

Jn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 a0 0 · · · · · · 0
a0 b1 a1 0 · · · 0

0 a1 b2 a2
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 an−3 bn−2 an−2

0 · · · · · · 0 an−2 bn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, bn ∈ R, an =

kn

kn+1
> 0. (1.12)

Thus (1.7) becomes a three term recurrence: for n = 0, ..., N ′ − 1

zpn = anpn+1 + bnpn +an−1pn−1, p0(z) =
1

||r0||
, p−1(z) = 0. (1.13)

In particular it follows that the orthonormal polynomials pn have real coeffi-
cients, and are orthonormal with respect to the linear functional c acting on
the space of polynomials via

c(P ) =≺ 1, P % = r∗0P (A)r0, (1.14)

i.e., c(pjpk) = δj,k. Also, since hermitian matrices are in particular normal,
we have the representation (1.11) for the scalar product (and thus for the
linear functional), showing that there is classical orthogonality on the real
line (Favard’s theorem) with respect to a positive measure with finite support
Λ(JN ′) (or a positive linear functional).

In the following theorem we put together some elementary properties of
such orthogonal polynomials. If you do not remember them, please try to
prove them (not necessarily in the indicated order) or look them up in any
standard book about OP.
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Theorem 1.2. (a) For 1 ≤ n ≤ N ′, the zeros of pn are simple and real, say,

x1,n < x2,n < ... < xn,n.

(b) Interlacing property: The zeros of pn and pn+1 interlace

1 ≤ j ≤ n < N ′ : xj,n+1 < xj,n < xj,n+1.

(c) Separation property: If 1 ≤ j < n < n′ ≤ N ′ then there exists j′ such that

xj,n ≤ xj′,n′ < xj+1,n.

(d) Christoffel-Darboux: For n < N ′ and x, y ∈ C

Kn,2(x, y) =
n∑

j=0

pj(x)pj(y) = an
pn+1(x)pn(y) − pn+1(y)pn(x)

x− y

and for x ∈ R

Kn,2(x, x) =
n∑

j=0

pj(x)pj(x) = an(p′n+1(x)pn(x) − pn+1(x)p′n(x)) > 0.

(e) Associated linear functionals: For γ ∈ R\Λ(JN ′), consider the linear func-
tional c̃(P ) = c(P̃ ), P̃ (z) = (z−γ)P (z). Then Kn,2(γ, ·) is an nth orthog-
onal polynomial with respect to c̃.

(f) Gaussian quadrature: For any 0 < n < N ′ and any polynomial of degree
not exceeding 2n− 1

c(P ) =
n∑

j=1

P (xj,n)
Kn−1,2(xj,n, xj,n)

.

(g) Stieltjes functions and Padé approximation: The rational function

πn(z) = ||r0||2
n∑

j=1

1
Kn−1,2(xj,n, xj,n)

1
z − xj,n

= ||r0||2(e0, (zIn − Jn)−1e0)

with e0 being the first canonical vector of suitable size is of denominator
degree n, of numerator degree n − 1, has real simple poles and positive
residuals, and

πn+1(z) − πn(z) =
1

anpn(z)pn+1(z)
= O(z−2n−1)z→∞.

In particular, πn is the nth Padé approximant at infinity of the Stiel-
tjes function z �→ r∗0(zI − A)−1r0, and πN ′ coincides with this function.
Finally, pn is an nth Padé denominator. ��
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Theorem 1.2(g) gives a link between Padé and Krylov subspace methods,
compare with the remarks around (1.6). More precisely, we have the following
link between CG, FOM (symmetric Lanczos) and Padé.

Corollary 1.5. For symmetric positive definite A, the methods CG, FOM
and the symmetric Lanczos method are mathematically equivalent, more pre-
cisely,

||rCG
n || =

1
|pn(0)| , ||rCG

n ||2A−1 = πn(0) − πN ′(0).

Proof. Define the scalar product ≺ ·, · %∗ by replacing in (1.11) the term
w(λ)2 by w∗(λ)2 = w(λ)2/λ. According to Definition 1.1 the residual polyno-
mial qn of CG in (1.4) is the (up to scaling) unique solution of the extremal
problem

min
P∈Pn

≺ P, P %∗

|P (0)|2 =
1

K∗
n,2(0, 0)

(1.15)

with the Szegő function K∗
n,2 of the new scalar product. By (1.9) the minimum

is attained by qn(z) = K∗
n,2(0, z), the latter being proportional to pn by

Theorem 1.2(e). Hence, from (1.4) and Corollary 1.2 we may conclude that
xCG

n = xFOM
n , implying in particular our claim for ||rCG

n ||.
In order to show the link between CG and Padé, recall that (zI−A)VN ′ =

VN ′(zI − JN ′), and hence

(rFOM
j )∗(zI −A)−1rFOM

k =
v∗j+1(zI −A)−1vk+1

pj(0)pk(0)

=
[(zI − JN ′)−1]j+1,k+1

pj(0)pk(0)
.

It is a well-known fact that the inverse of a Jacobi matrix can be expressed
in terms of Padé approximants

[(zI − JN ′)−1]j+1,k+1 = pj(z)pk(z)[πN ′(z) − πmax{j,k}(z)],

see for instance [73, §60] or the survey paper [49]. Combining these two findings
for z = 0 leads to our claim. ��

The representation of the CG error as Padé error has been applied success-
fully by Golub, Meurant, Strakos and others [28, 29, 50] to estimate/bound
from below the nth CG error after having computed the (n+ p)th iterate for
p > 1

||rCG
n ||2A−1 ≥ πn(0) − πn+p(0) =

n+p−1∑
j=n

| 1
ajpj(0)pj+1(0)

|.

In particular, the authors show that these a posteriori bounds are reliable even
in finite precision arithmetic. A similar result has already been mentioned
implicitly in the original paper of Hestenes and Stiefel [36].
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We should mention that Theorem 1.2(a),(b),(c) provides already a quite
precise idea about how Ritz values do approach the real spectrum Λ(JN ′) ⊂
Λ(A), or, equivalently, how poles of Padé approximants approach the poles
of a rational function with positive residuals. However, up to now there is no
information about the rate of convergence. For this rate of convergence of Ritz
values we have the following result which roughly says that, provided that a
certain polynomial extremal problem depending on λk gives a “small” value,
there is at least one Ritz value “close” to λk. We do not claim that there is
an eigenvalue “close” to each Ritz value. Indeed there exist examples with
Λ(A) = Λ(−A) where 0 is a Ritz value for each odd n which might be far
from Λ(A).

Theorem 1.3. [6] If λk ≤ x1,n then

x1,n−λk = min
{ ∑

λ∈Λ(JN′ )\{λk}
w(λ)2(λ− x1,n)|q(λ)|2

w(λk)2|q(λk)|2 : deg q < n, q(λk) �= 0
}
.

Here the minimum is attained by the polynomial q(x) = pn(x)/(x− x1,n).
If λk ∈ [x1,n, xn,n], say, xκ−1,n ≤ λk ≤ xκ,n, then

(λk − xκ−1,n)(xκ,n − λk) =

min
{ ∑

λ∈Λ(JN′ )\{λk}
w(λ)2(λ− xκ−1,n)(λ− xκ,n)|q(λ)|2

w(λk)2|q(λk)|2

: deg q < n− 1, |q(λk)| �= 0
}
.

Here the minimum is attained by q(x) = pn(x)/[(x− xκ−1,n)(x− xκ,n)].

Proof. We will show here the first part of the assertion; similar arguments
may be applied to establish the second part. If q is a polynomial of degree
less than n with q(λk,N ) �= 0 and p(x) = (x− x1,n) · q(x) · q(x), then c(p) ≥ 0
by the Gaussian quadrature formula of Theorem 1.2(f). Hence the right hand
side of (1.11) is ≥ 0, and thus

x1,n − λk ≤

∑
λ∈Λ(JN′ )\{λk}

w(λ)2(λ− x1,n)|q(λ)|2

w(λk)2|q(λk)|2 .

Finally, notice that for the choice q(x) = pn,N (x)/(x−x1,n,N ) we have c(p) = 0
again by Theorem 1.2(f), and thus there is equality in the above estimate. ��

There are several possibilities to relate the result of Theorem 1.3 to more
classical extremal problems. The term |λ− xj,n| could be bounded by 2 ||A||,
and taking into account (1.11) and (1.9), we obtain for instance



Discrete Orthogonal Polynomials 135

(λk − xκ−1,n)(xκ,n − λk) ≤ 4 ||A||2
( KN ′,2(λk, λk)
Kn−2,2(λk, λk)

− 1
)
,

if xκ−1,n ≤ λk ≤ xκ,n.

It follows that the distance to at least one of the Ritz values become small if
all |pj(λk)|2 for j ≥ n− 1 are small compared to 1/||r0||2 = K0,2(λk, λk).

Another possibility could be to relate (1.9) to some extremal problem with
respect to the maximum norm: for some integer n ≥ 0, some z ∈ C and some
compact set S ⊂ C, consider the quantity

En(z, S) = min
p∈Pn

max
λ∈S

|p(λ)|
|p(z)| . (1.16)

Clearly, En(z, S) is decreasing in n and increasing in S, and E0(z, S) = 1.
Also, for any a, b �= 0 there holds En(a, a + bS) = En(0, S). The motivation
for studying this extremal problem comes from the following observation

Exercise 8. For the inner product (1.11), show the following link between
En and the Szegő function

z ∈ C :
1

Kn,2(z, z)
≤ ||r0||2 En(z, Λ(JN ′))2.

If in addition Λ(A) ⊂ (0,+∞), show that

1
|pn(0)| ≤ ||r0||A−1 En(0, Λ(JN ′)).

Also, by dropping the negative terms in the sums occurring in Theorem 1.3
we obtain the following upper bound for the rate of convergence of Ritz values.

Corollary 1.6. We have the following upper bounds: if λk ≤ x1,n then

x1,n − λk ≤ 2 ||A|| ||r0||2
w(λk)2

En−1(λk, Λ(JN ′) \ (−∞, x1,n])2,

If xκ−1,n ≤ λk ≤ xκ,n then

(λk − xκ−1,n)(xκ,n − λk) ≤ 4 ||A||2 ||r0||2
w(λk)2

En−2(λk, Λ(JN ′) \ [xκ−1,n, xκ,n])2

The preceding Theorem gives the idea that eigenvalues λk sufficiently away
from the rest of the spectrum of Λ(A) (so-called outliers) and having a suf-
ficiently large eigencomponent w(λk) should be well approximated by Ritz
values. However, as we will see later, for convergence it will be sufficient that
there are not “too many” eigenvalues close to λk.
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Let us further discuss the extremal problem (1.16). In the case S ⊂ R
and real z not lying in the convex hull of S, it is known that the polynomial
Tn,∞ of (1.2) (put wn = 1) is extremal for (1.16), see for instance [27]. The
latter is uniquely characterized by a so-called alternant, that is, the extremal
polynomial attains its maximum on S at least n + 1 times, with alternating
sign. For the sake of completeness, let us discuss in more detail the case of an
interval.

Lemma 1.1. If 0 < a < b, the value En(0, [a, b]) is attained (up to a linear
transformation) for the Chebyshev polynomial of the first kind Tn(cos(φ)) =
cos(nφ), and

En(0, [a, b]) =
2

yn + y−n
≤ 2yn, y =

√
b/a− 1√
b/a + 1

< 1.

Proof. We first notice that En(0, [a, b]) = En(z, [−1, 1]) with z = (b+ a)/(b−
a) > 1. If Tn would not be extremal, then there is a polynomial P of degree
n with

P (z) = Tn(z), and M := ||P ||L∞([−1,1] < ||Tn||L∞([−1,1] = 1.

If follows that the polynomial R := Tn − P satisfies R(z) = 0, and for j =
0, 1, ..., n

(−1)j R(cos(
πj

n
)) = (−1)j Tn(

πj

n
)) − (−1)j P (cos(

πj

n
))

= 1 − (−1)j P (cos(
πj

n
)) ≥ 1 −M > 0.

Hence R must have n+1 roots, but is a polynomial of degree n, a contradiction.
Thus Tn is indeed extremal. It remains to compute its value at z, where we
use the recurrence

Tn+1(z) = (y + y−1)Tn(z) − Tn−1(z), T0 = 1, T1(z) = z =
y + 1/y

2
.

��

In [27] one also finds a discussion of the case of S being a union of two
intervals. Here the solution may be estimated in terms of Weierstass elliptic
functions, see also [1]. A simple upper bound is discussed in the following
exercise.

Exercise 9. Using the preceding result, show that, for 0 < a < b,

E2n(0, [−b,−a] ∪ [a, b]) ≤ 2
(b/a− 1
b/a + 1

)n

.

Derive from this relation an explicit bound for (λk − xκ−1,n)(xκ,n − λk) in
terms of the distance of λk to the rest of the spectrum of A.
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A combination of Exercise 8 with Remark 1.2, Corollary 1.3 and Corol-
lary 1.5 (and its proof) leads to the following estimates.

Corollary 1.7. For hermitian A,

||rGMRES
n ||

||rGMRES
0 || =

||rMinRES
n ||

||rMinRES
0 || ≤ En(0, Λ(JN ′)) ≤ En(0, Λ(A)).

Moreover, for symmetric positive definite A

||rCG
n ||A−1

||rCG
0 ||A−1

=
||rFOM

n ||A−1

||rFOM
0 ||A−1

≤ En(0, Λ(JN ′)) ≤ En(0, Λ(A)).

The bounds of Corollary 1.7 should be considered as worst case bounds
since they do not take into account the particular choice of the starting resid-
ual. However, it is known [31] that they cannot be sharpened in the following
sense: one may give Ã, r̃0 with En(0, Λ(A)) = En(0, Λ(Ã)) such that there is
equality in Corollary 1.7 for these new data.

Notice also that we obtain a proof of (1.1) by replacing Λ(A) by its convex
hull in Corollary 1.7, and by applying Lemma 1.1. However, following this
approach we forget completely about the fine structure of the spectrum. It is
the aim of the following sections to analyze more pecisely in terms of loga-
rithmic potential theory how the actual distribution of eigenvalues helps us
to improve (1.1).

Remark 1.3. Let us finish this section by commenting briefly on different ap-
proaches for bounding the residual of Krylov subspace methods in case of not
necessarily normal A. We start from the observation that

||rGMRES
n ||

||rGMRES
0 || ≤ min{ ||P (A)||

|P (0)| : P is a polynomial of degree ≤ n}. (1.17)

For diagonalizable A, the right hand side may be bounded from above by
En(0, Λ(A)) times the condition number of the matrix of eigenvectors of A, see
for instance [59]. However, for matrices far from being normal, this condition
number might be quite large. There are mainly two attempts to overcome this
difficulty (see for instance [32] and the references therein), the first is based
on the so-called ε-pseudo-spectrum

Λε(A) := {z ∈ C : ||(zI −A)−1|| ≥ 1
ε
}

in terms of En(0, Λε(A)), the second one on the field of values

W (A) = {y
∗Ay
y∗y

: y ∈ CN , y �= 0},

which by Hausdorff’s theorem is a compact and convex set. For a convex set
S it can be shown that



138 Bernhard Beckermann

exp(−ngS(0)) ≤ En(0, S) ≤ 3 exp(−ngS(0)), (1.18)

where gS denotes the Green function of some compact subset of the complex
plane, see Section 2.1. Here the left hand inequality is just the Bernstein-
Walsh inequality (see for instance [47] in this volume), and the right hand
bound can be shown with help of the corresponding Faber polynomials. A
recent and quite deep result of M. Crouzeix [21] (found after the publication
of [32]) says that there is a universal constant C < 34 such that, for any
square matrix A and any polynomial P ,

||P (A)|| ≤ C max
z∈W (A)

|P (z)|. (1.19)

Hence combining (1.17), (1.18), and (1.19) we obtain

||rGMRES
n ||

||rGMRES
0 || ≤ 3C exp(−ngW (A)(0)),

compare with [9]. The constant C can be made smaller by replacing W (A) in
(1.19) by some larger convex set, see [9, 8]. A different approach, via estimating
directly ||P (A)|| for a suitable Faber polynomial P , allows even to establish
the sharper bound [7]

||rGMRES
n ||

||rGMRES
0 || ≤ 3 exp(−ngW (A)(0).

Notice however that such bounds are typically only interesting for small n
since they do not allow to describe a superlinear rate of convergence.

2 Extremal Problems in Complex Potential Theory and
nth Root Asymptotics of OP

2.1 Energy Problems with External Field

The energy problem with external field has been successfully applied in order
to describe asymptotics of orthogonal polynomials on unbounded sets such as
Hermite or Freud polynomials. Since this subject has already been discussed
in detail in this volume [47], we recall here without proof the basic concepts.
Also, for the sake of a simplified presentation, we will restrict ourselves to
compact regular real sets and continuous external fields.

Given some compact Σ ⊂ R, we denote by Mt(Σ) the set of Borel mea-
sures μ with support supp(μ) ⊂ Σ and mass ||μ|| := μ(Σ) = t. The logarith-
mic potential and the energy of a measure μ ∈ Mt(Σ) are given by

Uμ(z) =
∫

log(
1

|x− z| ) dμ(x), I(μ) =
∫∫

log(
1

|x− y| ) dμ(x) dμ(y).
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Notice that, for a monic polynomial P of degree n, the expression − log(|P |1/n)
coincides with the logarithmic potential of some discrete probability measure,
which in case of distinct roots has mass 1/n at each root of P . On the other
hand, such discrete measures are dense in the set of Borel measures, explaining
why the tool of logarithmic potential theory is suitable for studying nth root
asymptotics.

We define more generally for μ, ν ∈ Mt(Σ) the mutual energy by the
expression

I(μ, ν) =
∫∫

log(
1

|x− y| ) dμ(x) dν(y) ∈ (−∞,+∞].

The mutual energy is lower semi-continuous, that is, given two sequences
(μn), (νn) ⊂ Mt(Σ), which converge in weak star topology to μ, and ν, re-
spectively (written by μn →∗ μ), we have

lim inf
n→∞ I(μn, νn) ≥ I(μ, ν). (2.1)

From this one can deduce as an exercise the principle of descent

lim inf
n→∞ Uμn(zn) ≥ Uμ(z), if μn →∗ μ, zn → z for n → ∞. (2.2)

As explained for instance in [47], the capacity of a compact set E is defined
by the minimization problem

cap(E) := exp(−min{I(μ) : μ ∈ M1(E)}).

If cap(E) > 0, or, equivalently, if there is an μ ∈ M1(E) with finite energy,
then one may prove using the strict convexity of μ �→ I(μ) on measures with
finite energy and Helly’s theorem (weak compactness of Mx(E)) that there
is a unique measure ωE called Robin measure realizing the minimum in the
definition of the capacity. The Green function of a compact set E is defined
by

gE(z) = log(
1

cap(E)
) − UωE (z),

behaving at infinity like log(|z|)− log(cap(E)) + o(1)z→∞, being harmonic in
C \ E, subharmonic and ≥ 0 in C, and equal to zero quasi everywhere on E,
i.e., in E \ E0, with cap(E0) = 0. Conversely, the Green function can be also
uniquely characterized by these properties. For instance, for an interval we
have (see, e.g., [47])

g[a,b](z) = log

∣∣∣∣∣2z − b− a

b− a
+

√
(
2z − b− a

b− a
)2 − 1

∣∣∣∣∣ ,
(2.3)

dω[a,b]

dx
(x) =

1
π
√

(x− a)(b− x)
.
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A compact set E is called regular (with respect to the Dirichlet problem)
if gE is identically zero on E (and hence gE is continuous in C by the prin-
ciple of continuity [60, Theorem II.3.5]). The link with the so-called Wiener
condition and the regularity with respect to the Dirichlet problem is a nice
piece of harmonic analysis, we refer the interested reader for instance to [60,
Appendix A], where it is also shown that regularity is a local property

E regular, x ∈ E, r > 0 =⇒ E ∩ {y ∈ C : |y − x| ≤ r} is regular. (2.4)

Here we only mention a sufficient condition in the following (a little bit diffi-
cult) exercise, the interested reader should compare with [55, § 5.4.3].

Exercise 10. Let E ⊂ C be compact, and suppose that for each x ∈ E
there exists C(x),K(x) > 0 such that, for all r > 0 sufficiently small,

cap({y ∈ E : |y − x| ≤ r}) ≥ C(x) rK(x).

Show that, for any x ∈ E, there exists (μn) ∈ M1(E) with μn →∗ δx (the
Dirac measure), and logarithmic potential V μn being bounded uniformly in
n by some integrable function (use the maximum principle for logarithmic
potentials). Also, show that I(μn, ωE) → UωE (x), and deduce that E is
regular.

Exercise 11. Using the fact that cap([a, b]) = (b− a)/4, show that a finite
union of compact non degenerate intervals is regular. Does it remain regular
if one adds an additional point?

Logarithmic potential theory has a nice electrostatic interpretation in R2

(or for cylinder symmetric configurations in R3, that is, a mass point in R2

corresponds to an infinite wire in R3 with uniform charge). Given a positive
unit charge at zero, its electric potential is given by U δ0 . Under this point of
view, μ ∈ M1(E) represents a (static) distribution of a positive unit charge
on some set E, with electric potential Uμ and electric energy I(μ). In physics,
the equilibrium state is always described as the one having minimal energy.
Thus, ωE may be considered as the equilibrium distribution of a positive unit
charge on a conducting material E, which by physical reasons should have a
constant electric potential on E. Also, the fact that supp(ωE) is subset of the
outer boundary of E (see for instance [47]) is known in physics as the Faraday
principle.

One may wonder about what kind of equilibrium distribution is obtained
if there is some additional fixed external field, induced for instance by some
negative charge on some isolator outside of E. This problem has already been
considered a long time ago by Gauss. Mathematically speaking, we have to
solve the following problem:

Definition 2.1. Let Σ ⊂ R be a regular compact set, t > 0, and Q ∈ C(Σ).
For μ ∈ Mt(Σ), consider the weighted energy
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IQ(μ) = I(μ) + 2
∫

Qdμ.

We consider the problem of finding

Wt,Q,Σ := inf{IQ(μ) : μ ∈ Mt(Σ)},

and, if possible, an extremal measure μt,Q,Σ with IQ(μt,Q,Σ) = Wt,Q,Σ.

If the external field Q is repelling or attracting positive charges, it may
happen that the support of some extremal measure is a proper subset of Σ.
By physical arguments, it should happen that there is a unique equilibrium,
and that the corresponding potential is constant on the part of Σ which is
charged by the equilibrium measure, and larger than this constant elsewhere
on Σ. Indeed, one may give a mathematical proof of this statement.

Theorem 2.1. Let Σ ⊂ R be a regular compact set, t > 0, and Q ∈ C(Σ).
The extremal measure μt,Q,Σ of Definition 2.1 exists and is unique.

Moreover, with w = wt,Q,Σ := Wt,Q,Σ −
∫
Qdμt,Q,Σ and μ = μt,Q,Σ there

holds

Uμ(z) + Q(z) ≥ w for z ∈ Σ, and (2.5)
Uμ(z) + Q(z) ≤ w for z ∈ supp(μ). (2.6)

Conversely, if there is a measure μ ∈ Mt(Σ) and a constant w such that (2.5)
and (2.6) hold, then μ = μt,Q,Σ and w = wt,Q,Σ.

Remark 2.1. It follows from (2.5) and (2.6) that the potential of μt,Q,Σ equals
wt,W,Σ−Q on supp(μt,Q,Σ), the latter being continuous. Thus, by the principle
of continuity [60, Theorem II.3.5], the potential of μt,Q,Σ is continuous.

The main ideas for the proof of Theorem 2.1 are discussed in the following
exercise.

Exercise 12. Let N be some closed convex subset of Mt(Σ), containing
at least one element μ with I(μ) < ∞.

(a) Show that IQ is strictly convex.
(b) Using Helly’s theorem, show that WN = min{IQ(μ) : μ ∈ N} is attained

for some μN ∈ N . Why must such a measure be unique?
(c) By discussing ν = sμ+(1− s)μN for s → 0+, show that μN is uniquely

characterized by the property

μ ∈ N : wN := I(μN ) +
∫

QdμN ≤ I(μ, μN ) +
∫

Qdμ.

The only property of Theorem 2.1 not being an immediate consequence
of the preceding exercise is the fact that the equilibrium measure satisfies the
equilibrium conditions (2.5) and (2.6). For showing this property, one applies
a principle known as principle of domination for logarithmic potentials.
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Theorem 2.2. If μ, ν ∈ M(Σ) with finite energy, if ||ν|| ≤ ||μ||, and if, for
some constant C, the relation Uμ ≤ Uν + C holds μ-almost everywhere, then
this relation holds for all z ∈ C.

Proof. See [60, Theorem II.3.2]. ��

Theorem 2.1 together with Theorem 2.2 allow us to derive the following
result known as the weighted Bernstein-Walsh inequality.

Corollary 2.1. With the assumptions of Theorem 2.1, we consider the weight
w(x) = exp(−Q(x)). Then for any polynomial of degree at most n and for all
z ∈ C

|P (z)|
||wnP ||L∞(E)

≤ exp(nw1,Q,Σ − nUμ1,Q,Σ (z)).

Exercise 13. Prove this corollary.

Remark 2.2. For a trivial weight w = 1, Corollary 2.1 reduces to the classical
Bernstein-Walsh inequality, which in terms of the function En of (1.16) can be
rewritten as En(z, S) ≥ exp(−ngS(z)). However, for applications in numerical
linear algebra we need not lower but upper bounds for En. Depending on the
“smoothness” of the set S, the Bernstein-Walsh inequality is more or less
sharp, for instance, from Lemma 1.1 and the explicit formula of (2.3) we learn
that En(z, [a, b]) ≤ 2 exp(−ng[a,b](z)). For general sets S of positive capacity
and z �∈ S ony may show (see, e.g., [55, Section V.5.3]) that En(z, S)1/n tends
to exp(−gS(z)) for n → ∞.

We learn from Corollary 2.1 that the weighted maximum norm of a
polynomial P lives on a possibly proper compact subset of Σ, that is,
||wnP ||L∞(E) = ||wnP ||L∞(S∗(1,Q,Σ)) with

S∗(t,Q,Σ) := {z ∈ E : Uμt,Q,Σ (z) + Q(z) ≤ wt,Q,Σ}. (2.7)

The link between S∗(t,Q,Σ) and the support of the equilibrium measure
is studied in [60, Theorem IV.4.1], and in more detail by Buyarov and
Rakhmanov [16]. We state parts of their findings without proof.

Theorem 2.3. [16] Let Σ,Q be as in Theorem 2.1, and define the sets

S(t) := supp(μt,Q,Σ), t ≥ 0.

The sets S(t) are increasing in t, with ∩τ>tS(τ) = S∗(t,Q,Σ) for all t, and
S(t) = S∗(t,Q,Σ) for almost all t. Furthermore, for all t > 0 and z ∈ C,

μt,Q,Σ =
∫ t

0

ωS(τ) dτ, wt,Q,Σ − Uμ1,Q,Σ (z) =
∫ t

0

gS(τ)(z) dτ.
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Theorem 2.3 tells us that all extremal quantities are completely determined
once one knows S(t) for all t > 0. Notice that S(t) may consist of several
intervals, or even have a Cantor-like structure. The determination of S(t)
for particular classes of external fields Q is facilitated by tools like the F -
functional of Rakhmanov-Maskhar-Saff, see [47] or [60, Section IV.1.11], but
remains in general a quite difficult task.

A quite interesting example for the preceding findings is the case of an ex-
ponential weight w(x) = exp(−x2), described below, or more generally Freud
weights. This example can be considered as the starting point for the research
on weighted energy problems in the last twenty years.

Example 2.1. Given α > 0, let w(x) = exp(−γα|x|α) (i.e., Q(x) = γα|x|α),
with

γ(α) =
∫ 1

0

uα−1

√
1 − u2

du =
Γ(α/2)Γ(1/2)
2Γ((α + 1)/2)

(γ2 = 1), and define the probability measure μ with supp(μ) = [−1, 1] by the
weight function

dμ

dλ
(λ) = s(α, λ) =

α

π

∫ 1

|λ|

uα−1

√
u2 − λ2

du.

On shows [60, Theorem IV.5.1] that

Uμ(x) + Q(x)
{

= w := log(2) + 1/α for x ∈ [−1, 1],
> w = log(2) + 1/α for x ∈ R \ [−1, 1].

Hence, by Theorem 2.1, for any compact Σ containing [−1, 1] we have
μ1,Q,Σ = μ, and S∗(1, Q,Σ) = [−1, 1]. In particular, for any polynomial P of
degree at most n we get from Corollary 2.1 that

||wnP ||L∞(Σ) = ||wnP ||L∞(R) = ||wnP ||L∞([−1,1]).

Using the linear transformation y = x · (nγα)1/α, it follows that

||e−|y|αP (y)||L∞(R) = ||e−|y|αP (y)||L∞([−(nγα)1/α,(nγα)1/α]).

Exercise 14. Relate the findings of Example 2.1 to those of Theorem 2.3.

Remark 2.3. Using the results mentioned in Example 2.1 one may show for
instance that the zeros of the Hermite orthogonal polynomials, after division
by

√
n, have an asymptotic distribution given by the weight function s(2, λ) =

(2/π)
√

1 − λ2 on [−1, 1]. We refer the reader to [60, Section III.6] for more
precise results on nth root asymptotics for Lp-extremal polynomials (including
the case p = 2 of orthogonal polynomials) with respect to varying weights wn.

We finish this section by discussing two particular examples of external
fields given by the negative potential of a measure.
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Exercise 15. If Q(z) = −Uσ(z) for some σ ∈ M(Σ) with continuous
potential, show that μt,Q,Σ = σ + (t− ||σ||)ωΣ for every t ≥ ||σ||.

Things are becoming more exciting if the external field is a negative poten-
tial of some measure σ with compact support outside of Σ. Here the extremal
measure μ||σ||,−Uσ,Σ can be considered as a sort of projection of σ onto Σ,
more precisely, we obtain the “problem of balayage” [60, Section II.4] studied
already by H. Poincaré and Ch. de la Vallée-Poussin: find a measure of the
same mass as σ supported on Σ with potential coinciding (up to some con-
stant) with Uσ on Σ. In terms of electrostatics, we look for a positive unit
charge on some conductor being in equilibrium with some fixed negative unit
charge (on some isolator).

Exercise 16. Let Σ ⊂ R be compact and regular, t > 0, Q(z) = −Uσ(z)
for some measure σ with compact support supp(σ) �⊂ Σ, finite energy, and
potential continuous on Σ (the latter being true for instance if supp(σ)∩Σ
is empty), and write shorter S(t) = supp(μt,Q,Σ).

(a) Show that cap(S(t)) > 0. Use the maximum principle for subharmonic
functions for showing that gS(t)(z) > 0 for all z �∈ S(t).

(b) Let Δ ⊂ Σ some Borel set with cap(Δ) = 0, and ν ∈ M(Σ) with finite
energy. Show that ν(Δ) = 0.

(c) By applying Theorem 2.2, show that

z ∈ C : Uμt,Q,Σ (z) + Q(z) ≤ wt,Q,Σ + (||σ|| − t) gS(t)(z).

(d) Using the maximum principle for subharmonic functions and (c), show
that S(t) = Σ for all t ≥ ||σ||. Deduce that the balayage problem onto
Σ has a unique solution given by μ||σ||,−Uσ,Σ .

(e) In the case t < ||σ||, show that μt,Q,Σ + (||σ|| − t)ωS(t) is the balayage
of σ onto S(t).

Exercise 17. Let Σ � Σ′ ⊂ R be compact and regular. What is the
balayage measure of ωΣ′ onto Σ?

For a regular compact Σ ⊂ R, we may define the Green function with pole
at a ∈ C \Σ by the (balayage) formula of a Dirac measure

gΣ(z, a) = w1,Q,Σ − Uμ1,Q,Σ (z) −Q(z), Q(z) = −Uδa(z),

compare with [60, Section II.4]. One may show [60, Eqn. (II.4.31)] that it is
possible to integrate the preceding formula with respect to a: provided that
Q(z) = −Uσ(z), we have

w||σ||,Q,Σ − Uμ||σ||,Q,Σ (z) −Q(z) =
∫

gΣ(z, a) dσ(a). (2.8)
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Provided that explicit formulas for gΣ(·, ·) are available, this formula can be
exploited to derive explicit formulas for the density of the balayage measure,
by recovering the measure from its potential [60, Chapter II.1]. E.g., for x ∈
Σ = [a, b], an interval, and σ(Σ) = 0, corresponding formulas are given in [60,
Corollary IV.4.12]

dμ||σ||,−Uσ,[a,b]

dx
(x) =

1
π

∫ √
|y − a| |y − b|

|y − x|
√

(x− a)(b− x)
dσ(y). (2.9)

2.2 Energy Problems with Constraint and External Field

Discrete Chebyshev polynomials are orthonormal with respect to the scalar
product

≺ P,Q % =
∑

z∈EN

wN (z)2 P (z)Q(z)

with EN = {0, 1, ..., N} and wN (z) = 1. Further systems of “classical” discrete
orthogonal polynomials contain

Meixner polynomials : EN = {0, 1, 2, ...}, wN (k)2 =
ck(b)k

k!

Charlier polynomials : EN = {0, 1, 2, ...}, wN (k)2 =
cke−c

k!

Krawtchouk polynomials, discrete Freud polynomials, discrete Hahn polyno-
mials, see for instance [20, 24, 22, 45, 43] and the references therein.

It was Rakhmanov [58] who first observed that the nth root of the nth
discrete Chebyshev polynomial (and other discrete orthogonal polynomials)
for so-called ray sequences, that is, n,N → ∞ in such a manner that
n/N → t ∈ (0, 1), can be described in terms of a constrained weighted
equilibrium problem in logarithmic potential theory. Recall from Chapter 1.3
that asymptotics of discrete Chebyshev polynomials are closely related to the
convergence behavior of Krylov subspace methods applied to a matrix with
equally spaced eigenvalues, and to the convergence of its Ritz values. Other
domains of applications for asymptotics of discrete orthogonal polynomials
include coding theory and discrete dynamical systems.

Similar to the approach for Hermite polynomials (c.f., Remark 2.3), for
obtaining nth root asymptotics it is first required to scale the set EN by some
appropriate power of N . The resulting supports will then have an asymptotic
distribution for N → ∞ which can be described by some Borel measure σ.
Furthermore, after scaling, the weights wN will behave like w(z)N for some
appropriate weight which can be written as w = exp(−Q). The constrained
energy problem considered by Rakhmanov [58] consists in minimizing the
logarithmic energy I(μ), where μ is some probability measure satisfying in
addition the constraint that σ − μ is some nonnegative measure. The set of
such measures will be denoted by
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Mσ
t := {μ ≥ 0 : ||μ|| = t, σ − μ ≥ 0}

where 0 < t ≤ ||σ||. In our context it will be useful to introduce a weighted
analogue of this problem. Its unique solution has been characterized by Drag-
nev and Saff [24, Theorem 2.1 and Remark 2.3], and further investigated by
several other authors. We summarize some of their findings in Theorem 2.4
below, here additional regularity assumptions on σ and Q enable us to obtain
a simplified statement.

Theorem 2.4 (see [24]). Let Q be a continuous real–valued function on some
closed set Σ ⊂ C, w := exp(−Q), and, if Σ is unbounded, suppose that
Q(z) − log |z| → +∞ for |z| → ∞. Furthermore, let σ be a positive measure
with supp(σ) ⊂ Σ, such that, for any compact K ⊂ supp(σ), the restriction
σ|K of σ to K has a continuous potential. Finally, let 0 < t < ||σ||.

Then for the extremal problem

Wt,Q,σ := inf{IQ(μ) : μ ∈ Mσ
t }

there exists a unique measure μt,Q,σ ∈ Mσ
t with Wt,Q,σ = IQ(μt,Q,σ), and this

extremal measure has compact support. Furthermore, there exists a constant
w = wt,Q,σ such that for μ = μt,Q,σ we have the equilibrium conditions

Uμ(z) + Q(z) ≥ w for z ∈ supp(σ − μ), and (2.10)
Uμ(z) + Q(z) ≤ w for z ∈ supp(μ). (2.11)

Conversely, if μ ∈ Mσ
t has compact support and satisfies the equlibrium con-

ditions (2.10), (2.11), for some constant w then μ = μt,Q,σ.

In terms of electrostatics, we may consider μt,Q,σ as the equilibrium distri-
bution on supp(σ) of a positive charge of mass t in the presence of an external
field Q, but here supp(σ) is no longer conducting: indeed μ ≤ σ imposes a con-
straint on the maximum charge per unit. As a consequence, the corresponding
weighted potential is no longer constant on the whole part of supp(σ) charged
by our extremal measure: we may have a strictly smaller weighted potential
at the part supp(σ)\supp(σ−μt,Q,σ) where the constraint is active. However,
in the free part supp(σ − μt,Q,σ) ∩ supp(μt,Q,σ) the weighted potential is still
constant.

We should comment on the proof of Theorem 2.4. For showing existence
and uniqueness of the extremal measure, we can follow the reasoning of Ex-
ercise 12, at least for compact Σ (the growth condition on Q can be shown
to imply that it is sufficient to consider compact Σ). A proof of the equiv-
alent characterization by the equilibrium conditions (2.10) and (2.11) uses
Exercise 12(c) and Theorem 2.2, as well as the following observation.

Exercise 18. Let ν be a measure with compact support and continuous
potential. Use twice the principle of descent for showing that any measure
μ ≥ 0 with μ ≤ ν also has a continuous potential (c.f., [58]). Show also that
μ has no mass points.
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Remark 2.4. The extremal constant wt,Q,σ is not necessarily unique [24, Ex-
ample 2.4], but will be unique if supp(σ) is connected, or, more generally, if
supp(μt,Q,σ) and supp(σ − μt,Q,σ) have a non-empty intersection.

Example 2.2. For the constraint dσ
dx (x) = αxα−1 on supp(σ) = [0,+∞), α >

1/2, and the external field Q(x) = γ ·xα, it is shown in [45, Theorem 2.1] that

μt,Q,σ =
∫ t

0

ω[a(τ),b(τ)] dτ, (2.12)

wt,Q,σ − Uμt,Q,σ (z) =
∫ t

0

g[a(τ),b(τ)](z) dτ, (2.13)

and supp(μt,Q,σ) = [0, b(t)], supp(μt,Q,σ) ∩ supp(σ − μt,Q,σ) = [a(t), b(t)],
where 0 ≤ a(t) = tαa0 < b(t) = tαb0 are solutions of the system

0 =
1
π

∫ b(t)

a(t)

Q′(x) dx√
(b(t) − x)(x− a(t))

−
∫

x≤a(t)

dσ(x)√
(β(t) − x)(α(t) − x)

, (2.14)

t =
1
π

∫ b(t)

a(t)

xQ′(x) dx√
(b(t) − x)(x− b(t))

−
∫

x≤a(t)

x dσ(x)√
(b(t) − x)(a(t) − x)

. (2.15)

Exercise 19. In case of compact supp(σ), show the following property of
duality

μt,Q,σ + μ||σ||−t,Q̃,σ = σ, where Q̃ := −Q− Uσ.

Let us compare our extremal problem to the unconstrained one of Defini-
tion 2.1. In case of a “sufficiently large” constraint we clearly see by comparing
Theorem 2.4 with Theorem 2.1 that the following implication holds

σ ≥ μt,Q,Σ =⇒ μt,Q,σ = μt,Q,Σ . (2.16)

Of course, the same conclusion is true if supp(σ−μt,Q,σ) = Σ. In what follows
we will consider sometimes the case of a trivial external field Q = 0 (and
hence compact supp(σ)). Here the following result will be helpful relating the
constrained energy problem with trivial weight to an unconstrained weighted
extremal problem and more precisely to a balayage problem.

Lemma 2.1. Under the assumptions of Theorem 2.4, if Q = 0 then

σ − μt,0,σ = μ||σ||−t,Q̃,Σ̃ , where Q̃ := −Uσ and Σ̃ := supp(σ),

and moreover
supp(μt,0,σ) = supp(σ).
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Proof. Write shorter S := supp(μt,0,σ). Recall that gS equals zero on S up
to some set of capacity zero. From (2.11) with Q = 0 and Exercise 16(b) we
conclude that

Uμt,0,σ (z) + gS(z) ≤ w := wt,0,σ

holds μt,0,σ–everywhere on S, and the principle of domination of Theorem 2.2
tells us that the above inequality is true for all z ∈ C. In particular, for z �∈ S
we have Uμt,0,σ (z) < w by Exercise 16(a). Comparing with (2.10) shows that
z �∈ supp(σ − μt,0,σ) ⊃ supp(σ) \ S. Hence S = supp(σ), as claimed in the
assertion. Moreover, from (2.10) and (2.11) we see that σ − μt,0,σ satisfies
the equilibrium conditions (2.5), (2.6) corresponding to the external field Q̃
on Σ̃ with the normalization ||σ|| − t, and hence is equal to μ||σ||−t,Q̃,Σ̃ by
Theorem 2.1. ��

Exercise 20. Suppose that (0, T ) ' t �→ S(t) ⊂ C with S(t) compact
and regular decreasing sets, i.e., S(t′) ⊂ S(t) for t′ > t, and consider the
constraint

σ(x) =
∫ T

0

ωS(t)(x) dt, T = ||σ||. (2.17)

Show that

wt,0,σ − Uμt,0,σ (z) =
∫ t

0

gS(τ)(z) dτ. (2.18)

Hint: verify equilibrium conditions.

Remark 2.5. As shown in [10, Theorem 2.1], it follows from Theorem 2.3 and
Lemma 2.1 that the following more general statement is valid:

In case of a trivial external field Q = 0, the compact sets S(t) := supp(σ−
μt,0,σ) are decreasing in t, any constraint σ has the integral representation
(2.17), and formula (2.18) is true.

Remark 2.6. It is an open problem of establishing integral formulas of Buyarov-
Rakhmanov type in the case of the constrained weighted extremal problem
for general external fields Q. However, besides the preceding remark, there
is another case where such formulas may be established (compare with [42,
Lemma 3.1, Theorem 3.3, Proof of Lemma 6.2], [23, Chapter 4], [40, Proposi-
tion 4.1] and [12]):

Let supp(σ) = [A,B], Q(A) = 0, and suppose that the functions Q and Q̃
defined by

Q̃(x) = −Q(x) − Uσ(x)

are continuous in [A,B] and have a continuous derivative in (A,B). Suppose
in addition that the functions x �→ (x − A)Q′(x) and x �→ (B − x)Q̃′(x) are
increasing functions on [A,B]. Then (2.12) and (2.13) hold, with A ≤ a(t) <
b(t) ≤ B defined by (2.14), (2.15).
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Some other results on the interval case for the constrained unweighted en-
ergy problem are given in [41, Theorem 2], [39, Theorem 5.1], [10, Lemma 3.1],
in particular one may find (systems of) integral equations for determining the
endpoints of S(t), and links with the technique of balayage since, by Exer-
cise 16 and Lemma 2.1, the measure σ − μt,0,σ + tωS(t) coincides with the
balayage of σ onto S(t).

2.3 Asymptotics for Discrete Orthogonal Polynomials

Let Tn,p be the extremal polynomials of (1.2). In this section we describe how
the nth root asymptotic of the extremal constants ||wN · Tn,p||Lp(EN ) for ray
sequences n,N → ∞, n/N → t, as well as the asymptotic distribution of zeros
of Tn,p may be expressed in terms of the solution of the constrained weighted
energy problem of Section 2.2.

For some discrete set EN we define the corresponding counting measure

νN (EN ) =
1
N

∑
z∈EN

δz,

a discrete measure where each element of EN is charged by the mass 1/N .
Similarly, given a polynomial P with set of zeros Z, we write νN (P ) := νN (Z)
for the corresponding normalized zero counting measure (where we count zeros
according to their multiplicities). As usual, for a sequence of discrete sets
(EN )N we write νN (EN ) →∗ σ if for any continuous function f with compact
support there holds

lim
N→∞

∫
f(z)dνN (z) =

∫
f(z) dσ(z), where

∫
f(z)dνN (z) =

1
N

∑
z∈EN

f(z).

Finally, for discrete sets EN , FN we define the discrete mutual energy

IN (EN , FN ) =
1
N2

∑
x∈EN

∑
y∈FN ,y 	=x

log(
1

|x− y| ),

the mutual energy between two systems EN and FN of positive masspoints.

Exercise 21. Suppose that νN (EN ) →∗ μ, νN (FN ) →∗ ν. Show the lower
semi-continuity

lim inf
N→∞

IN (EN , FN ) ≥ I(μ, ν).

Hint: consider the regularized kernel (x, y) �→ min{η, log( 1
|x−y| )} for R '

η → +∞.

Weak asymptotics of discrete Lp-extremal polynomials have been a subject
of a number of publications, see [24, Theorem 3.3] (for real compact Σ), [22,
Theorem 2.5] (for p = ∞ and real Σ), [45, Theorem 7.4 and Lemma 8.3] (for
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0 < p ≤ ∞ and real Σ), [43, Theorem 7.1] (for p = 2 and real Σ, see also
[44]), and finally [5, Theorem 1.3] (for 0 < p ≤ ∞ and complex supports). We
summarize these findings in the following (a bit technical) theorem.

Theorem 2.5. [5] Let 0 < p ≤ ∞. Furthermore, let Σ, σ, Q, w = exp(−Q) be
as in Theorem 2.4, and t ∈ (0, ||σ||) with supp(μt,Q,σ)∩ supp(σ−μt,Q,σ) �= ∅.

Suppose that the sets EN ⊂ Σ and the weights wN (z) ≥ 0, z ∈ EN , N ≥ 0,
satisfy the conditions

νN (EN ) →∗ σ, (2.19)

lim sup
N→∞

sup
z∈EN

wN (z)1/N

w̃(z)
≤ 1, (2.20)

for some w̃ ∈ C(Σ) with |z|w̃(z) → 0 for |z| → ∞ and if for any compact K
there holds

lim sup
N→∞

sup
z∈EN∩K

wN (z)1/N

w(z)
≤ 1, (2.21)

then
lim sup

n,N→∞,n/N→t

||wN · Tn,p||1/N
Lp(EN ) ≤ exp(−wt,Q,σ), (2.22)

and for any z ∈ C satisfying

lim
N→∞

UνN (V (z)∩EN )(z) = Uσ|V (z)(z) (2.23)

for some open neighborhood V (z) of z with σ(∂V (z)) = 0 there holds

lim sup
n,N→∞,n/N→t

[
min

deg P≤n

||wN · P ||Lp(EN )

|P (z)|
]1/N

≤ exp(Uμt,Q,σ (z) − wt,Q,σ),

(2.24)
If moreover there exists some bounded open neigborhood V of supp(μt,Q,σ)
with

lim
N→∞

IN (V ∩ EN , V ∩ EN ) = I(σ|V ), (2.25)

if for any compact K there holds

lim
N→∞

sup
z∈EN∩K

|wN (z)1/N − w(z)| = 0, (2.26)

and if in the case p < ∞ there exists a p′ ∈ (0, p) with

lim sup
N→∞

[
||[z w]N ||Lp′ (EN )

]1/N
< ∞, (2.27)

then (2.22) and (2.24) are sharp, more precisely, we have

lim
n,N→∞,n/N→t

||wN · Tn,p||1/N
Lp(EN ) = exp(−wt,Q,σ), (2.28)
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lim
n,N→∞,n/N→t

[
min

deg P≤n

||wN · P ||Lp(EN )

|P (z)|
]1/N

= exp(Uμt,Q,σ (z) − wt,Q,σ), (2.29)

with z as in (2.23), and finally, if the two-dimensional Lebesgue measure of
Σ is zero, there holds

νN (Tn,p) →∗ μt,Q,σ for n,N → ∞, n/N → t. (2.30)

The statement of this theorem simplifies considerably for compact Σ
(why?). Since EN then has O(N) elements, we can use classical inequali-
ties between Hölder norms showing that Lp(EN )–norms for two different p
are equivalent up to a factor being some power of N (which of course will
vanish once we take Nth roots). Therefore it is evident that the right hand
side of (2.22), (2.24), (2.28), (2.29), and (2.30) do not depend on p.

We will comment in Remark 2.7 below on the different assumptions and
variations proposed by different authors and subsequently give the main ideas
of the proof of Theorem 2.5 for compact Σ (for a proof for general Σ we refer
the reader to [5, Theorem 1.3 and Theorem 1.4(c)]). Let us first have a look
at the examples mentioned in the introduction of Section 2.2.

Example 2.3. [Discrete Chebyshev Polynomials] After scaling (dividing
the support by N) we obtain assumption (2.19) with σ being the Lebesgue
measure on [0, 1], having a continuous potential. Here conditions (2.20), (2.21),
(2.26) and (2.27) are trivially true with Q = 0. The interested reader may
check that also condition (2.25) holds, and that, by (2.3),

σ(x) =
∫ 1

0

ωS(t)(x) dt, S(t) = [
1
2
−

√
1 − t2

2
,
1
2

+
√

1 − t2

2
].

Thus explicit formulas for μt,0,σ are given in Exercise 20, in particular one
obtains from (2.29) for p = +∞ (compare with [10, Corollary 3.2])

lim
n,N→∞,n/N→t

log(En(0, {1/N, 2/N, ..., N/N})1/N )

= wt,0,σ − Uμt,0,σ (0) = − (1 + t) log(1 + t) + (1 − t) log(1 − t)
2

. (2.31)

Example 2.4. [Meixner Polynomials] Here, again after division of the sup-
port by N , we obtain for σ the Lebesgue measure on [0,+∞). By Stirling’s
formula, we have for x = k/N and w(x) = exp(x log(c)/2)

wN (x)1/N

w(x)
= c−x/2[

cNxΓ(Nx + b)
Γ(Nx + 1)

]1/(2N) = 1 + o(1)N→∞

uniformly for x in some compact. Hence (2.20), (2.21), (2.26) and (2.27) are
true with Q(x) = x log(1/c)/2. The corresponding equilibrium measure μt,Q,σ

has been given in Example 2.2. Here we may explicitly solve the system (2.14),
(2.15), of integral equations, and a0 = (1 −√

c)/(1 +
√
c) = 1/b0.
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Remark 2.7. Let us shortly comment on the different assumptions of Theo-
rem 2.5 and relate them with related conditions proposed by other authors.
Conditions (2.19), (2.21) and (2.26) allow to relate our discrete Lp norm to
the extremal problem with data σ and Q.

Conditions (2.20) and (2.27) ensure the finiteness of ||wnP ||Lp(En) for a
polynomial of degree at most n, at least for sufficiently large n. Such an ad-
ditional condition is required for p < ∞ for controlling the contribution to
the Lp norm of in modulus large elements of En. Stronger sufficient condi-
tions for (2.27) in case of unbounded Σ have been discussed in [45] and [5,
Lemma 2.7].

Finally, by considering the example EN = FN ∪ (e−N + FN ), FN =
{0, 1/N, 2/N, ..., N/N} it becomes clear that our asymptotic bounds (2.22),
(2.24) cannot be sharp since they do not take into account the clustering
of points of the support, compare also the discussion in [43, Section 8].
Rakhmanov [58] considered the additional separation condition

lim inf
N→∞

inf
x,y∈EN∩K,x 	=y

N · |x− y| > 0

for all compact sets K. The weaker condition

lim
N→∞

max
y∈K∩EN

∣∣∣ ∏
x∈EN∩K,x 	=y

|y − x|1/N − exp(−Uσ|K (y))
∣∣∣ = 0

for any compact K was proposed in [24] (see also [22, 45, 43] for some general-
izations). It may be shown [24, Lemma 3.2] that, e.g., sets of zeros of suitable
orthogonal polynomials satisfy this condition. One may show that any of these
two conditions imply (2.25). This latter separation condition (2.25) was con-
jectured to be sufficient by Rakhmanov at the Sevilla OPSF conference [43,
Conjectures 2 and 3], and proved to be sufficient later in [5].

We end this section by giving the main ideas of the proof of Theorem 2.5
for compact Σ, compare also with [10, Theorem 2.1 and Theorem 2.2] for
Q = 0 and [12, Theorem 2.2] for general Q. For general Σ the reader may
consult the statements [5, Theorem 1.3 and Theorem 1.4(c)] and their proofs.

Proof. (of (2.22), (2.24)). Given ε > 0, it is sufficient to construct a sequence
of monic polynomials pN of degree n = n(N) with n(N)/N → t for N → ∞,
such that

lim sup
N→∞

||wNpN ||1/N
L∞(EN ) ≤ eε−wt,Q,σ , lim

N→∞
|pN (0)|1/N = e−Uμt,Q,σ (0),

(2.32)
where we suppose that (2.23) holds for z = 0 and some V (0) (notice that
(2.23) is true for any z �∈ Σ by assumption (2.19) since then x �→ log(|x− z|)
is continuous in Σ). We will choose the zeros of pN in EN .

First notice that, by assumption (2.21), it is sufficient to show (2.32) for
wN = wN . The main idea of the proof is that one is able to discretize μt,Q,σ

with help of points in EN : there exist sets E∗
N with



Discrete Orthogonal Polynomials 153

card(E∗
N ) = n(N), E∗

N ⊂ EN , νN (E∗
N ) →∗ μt,Q,σ, (2.33)

for N → ∞ (see [10, Lemma A.1] for real Σ and [5, Lemma 2.1(d)]). Consider
the polynomial pN with simple zeros given by the elements of E∗

N , and the
compact set

Kε = {λ ∈ Σ : Uμt,Q,σ (λ) + Q(z) ≤ wt,Q,σ − ε}, (2.34)

then from Theorem 2.4 and from the uniqueness of the extremal constant
w,Q,σ we know that μt,Q,σ(Kε) = σ(Kε) < t. Hence only o(N) elements of
EN∩Kε are not in E∗

N∩Kε, but more than o(N) elements lie in E∗
N\Kε. Hence,

by possibly exchanging o(N) elements we may add to (2.33) the additional
requirement that

EN ∩Kε = E∗
N ∩Kε,

implying that

||wNpN ||1/N
L∞(EN ) = ||wNpN ||1/N

L∞(EN\Kε)
=: exp(−Q(ζN ) − UνN (E∗

N )(ζN ))

for some ζN ∈ EN \Kε. By going to subsequences if necessary, we may suppose
that ζN → ζ ∈ Σ, and hence by the principle of descent (2.2) and by continuity
of Q

lim sup
N→∞

||wNpN ||1/N
L∞(EN ) ≤ sup

ζ∈Σ\Kε

exp(−Q(ζ) − Uμt,Q,σ (ζ)) ≤ eε−wt,Q,σ

the last inequality following from the definition of Kε. We also have from the
principle of descent and from (2.33) that

lim sup
N→∞

|pN (0)|1/N = lim sup
N→∞

exp(−UνN (E∗
N )(0)) ≤ e−Uμt,Q,σ (0).

The assumption σ(∂V (0)) = 0 and thus μt,Q,σ(∂V (0)) = 0 allows us to con-
clude that

νN (E∗
N \ V (0)) →∗ μt,Q,σ − μt,Q,σ|V (0),

νN (V (0) ∩ (EN \ E∗
N )) →∗ σ|V (0) − μt,Q,σ|V (0),

and hence again by the principle of descent and by (2.23)

lim sup
N→∞

UνN (E∗
N )(0) = lim

N→∞
UνN (E∗

N\V (0))(0) + lim
N→∞

UνN (EN∩V (0))(0)

− lim inf
N→∞

UνN (V (0)∩(EN\E∗
N ))(0)

≥ Uμt,Q,σ−μt,Q,σ|V (0)(0) + Uσ|V (0)(0)
− Uσ|V (0)−μt,Q,σ|V (0)(0)

= Uμt,Q,σ (0),

showing (2.32). ��
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Proof. (of (2.28), (2.29)). It is shown implicitly in [5, Lemma 2.1(c) and
Lemma 2.2] that we may suppose that the set V in (2.25) satisfies σ(∂V ) = 0.
Let FN ⊂ EN with νN (FN ) →∗ μ. We claim that

FN ⊂ EN ∩ V, νN (FN ) →∗ μ =⇒ lim
N→∞

IN (FN , FN ) = I(μ, μ). (2.35)

Indeed, since σ(∂V ) = 0, we have that νN (EN ∩ V ) →∗ σ|V , and hence with
F ′

N := (EN ∩ V ) \ FN , νN (F ′
N ) →∗ σ|V − μ we have

lim sup
N→∞

IN (FN , FN ) = lim sup
N→∞

(
IN (EN ∩ V,EN ∩ V )

− IN (F ′
N , F ′

N ) − 2IN (FN , F ′
N )
)

≤ lim sup
N→∞

(EN ∩ V,EN ∩ V )

− lim inf
N→∞

IN (F ′
N , F ′

N ) − 2 lim inf
N→∞

IN (FN , F ′
N )

≤ I(σ|V ) − I(σ|V − μ) − 2I(μ, σ|V − μ) = I(μ),

where in the last inequality we have applied Exercise 21 and (2.25). From
Exercise 21 it also follows that lim infN IN (FN , FN ) ≥ I(μ), showing that
(2.35) holds.

Let ε > 0, and Kε as in (2.34). According to the equilibrium conditions
in Theorem 2.4 and thanks to continuity we find some open set K with
supp(μt,Q,σ) ⊂ K ⊂ K−ε. By possibly replacing K by some smaller set,
we may also suppose that K ⊂ V , and that σ(∂K) = 0. Finally, notice that
t′ := (σ− μt,Q,σ)(K) > 0 since for any ζ in the by assumption non-empty set
supp(μt,Q,σ)∩ supp(σ−μt,Q,σ) there exists a small neighborhood U of ζ with
U ⊂ V , and thus t′ ≥ (σ − μt,Q,σ)(U) > 0 by definition of the support.

We now consider the weighted Fekete points, a set ΦN of n(N)+1 elements
of EN ∩K which minimize the expression

IN (ΦN , ΦN ) + 2
∫

QdνN (φN ).

By discretizing μt,Q,σ as in the preceding proof with n(N) + 1 elements in
EN ∩ K, we obtain a candidate Φ∗

N with IN (Φ∗
N , Φ∗

N ) + 2
∫
QdνN (φ∗N ) →

IQ(μt,Q,σ) according to (2.35). Hence

IQ(μt,Q,σ) ≥ lim sup
N→∞

IN (ΦN , ΦN ) + 2
∫

QdνN (φN ).

On the other hand, by Exercise 21 and Theorem 2.4,

lim inf
N→∞

IN (ΦN , ΦN ) + 2
∫

QdνN (φN ) ≥ IQ(μt,Q,σ),

which by the uniqueness of the extremal measure shows that νN (φN ) →∗ μt,Q,σ.
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According to (2.22), (2.24) and (2.26), the assertions (2.28) and (2.29) will
follow by showing that

lim inf
N→∞

[
min

deg P≤n(N)

||wN P ||L∞(ΦN )

|P (0)|
]1/N

≥ exp(Uμt,Q,σ (0) − wt,Q,σ),

lim inf
N→∞

min
deg P≤n(N)

||wN P ||1/N
L∞(ΦN ) ≥ exp(−wt,Q,σ),

However, since ΦN has n(N)+1 elements, both expressions on the left can be
written explicitly in terms of Lagrange polynomials, a task which we leave as
an exercise. Then it is not difficult to see that the above two formulas follow
from the principle of descent, and from a fact which we will show now: for
any zN ∈ ΦN with E∗

N := ΦN \ {zN} there holds

lim sup
N→∞

UνN (E∗
n)(zN ) + Q(zN ) ≤ wt,Q,σ + ε. (2.36)

Write FN := (EN ∩K)\E∗
N , with n′(N) elements, and observe that νN (FN ∪

EN ) → σ|K and νN (FN ) → σ|K − μt,Q,σ, where

n′(N)
N

→ t′ = (σ − μt,Q,σ)(K)

with t′ > 0, and, by (2.35),

lim
N→∞

IN (E∗
N , FN )

= lim
N→∞

IN (E∗
N ∪ FN , E∗

N ∪ FN ) − IN (E∗
N , E∗

N ) − IN (FN , FN )
2

= I(μt,Q,σ, σ|K − μt,Q,σ).

It follows from the definition of the Fekete points (replace one element of ΦN

by an element of (EN ∩ V ) \ ΦN ) that

z ∈ FN : UνN (E∗
N )(zN ) + Q(zN ) ≤ UνN (E∗

N )(z) + Q(z).

Therefore, we can bound UνN (E∗
N )(zN ) + Q(zN ) above by

1
n′(N)

∑
z∈FN

[UνN (E∗
N )(z) + Q(z)] =

N

n′(N)
[IN (E∗

N , FN ) +
∫

QdνN (FN )],

the right-hand term tending for N → ∞ to

1
t′
(
I(μt,Q,σ, σ|K − μt,Q,σ) +

∫
Qd(σ|K − μt,Q,σ)

)
=

1
t′

∫ (
Uμt,Q,σ + Q

)
d(σ|K − μt,Q,σ)

which according to supp(σ|K − μt,Q,σ) ⊂ K ⊂ K−ε can be bounded above by
wt,Q,σ + ε, as claimed in (2.36). ��
Proof. (of (2.30)). See [5, Theorem 1.3(b)]. ��
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3 Consequences

3.1 Applications to the Rate of Convergence of CG

As mentioned already in the introduction, we want to provide a better under-
standing of the superlinear convergence of CG iteration, and in particular to
explain the form of the error curve as seen in Figure 2, and in all examples
considered below. Recall from Corollary 1.7 the link between the CG error of
a positive definite matrix A of size N ×N having the spectrum Λ(A), and the
quantity En(0, Λ(A)). We will argue that for large N , the error En(0, Λ(A))
in the polynomial minimization problem (1.16) is approximately

1
N

logEn(Λ(A)) ≈ −
∫ t

0

gS(τ)(0)dτ (3.1)

where t = n/N ∈ (0, 1) and S(τ), τ > 0, is a decreasing family of sets,
depending on the distribution of the eigenvalues of A. The sets S(τ) have the
following interpretation: S(τ) is the subcontinuum of [λmin, λmax] where the
optimal polynomial of degree [τN ] is uniformly small.

From Corollary 1.7 and (3.1) we find the improved approximation

‖rCG
n ‖A−1

‖rCG
0 ‖A−1

� ρn
t (3.2)

with

ρt = exp
(
−1
t

∫ t

0

gS(τ)(0)dτ
)

(3.3)

depending on n, since t = n/N . As the sets S(τ) are decreasing as τ increase,
their Green functions gS(τ)(0), evaluated at 0, increase with τ . Hence the num-
bers ρt decrease with increasing n, and this explains the effect of superlinear
convergence (notice that log(ρn/N ) equals the slope at n of the bound on a
semi-logarithmic plot).

Indeed, we will only show that (3.2) holds in an asymptotic sense after tak-
ing nth roots. However, in order to be able to take limits, we need to consider
sequences of matrices AN having a joint asymptotic eigenvalue distribution.
Such sequences of matrices occur naturally in the context of the discretiza-
tion of elliptic PDEs, by varying the stepsize or some other parameter of
discretization, see Section 3.4. We have the following result [10, Theorem 2.1].

Theorem 3.1. Let (AN )N be a sequence of symmetric invertible matrices,
AN of size N ×N , satisfying the conditions

(i) There exists a compact Σ and a positive Borel measure σ such that
Λ(AN ) ⊂ Σ for all N , and νN (Λ(AN )) →∗ σ for N → ∞;

(ii) σ has a continuous potential;
(iii) UνN (Λ(AN ))(0) → Uσ(0) for N → ∞.
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Define S(t) := supp(σ − μt,0,σ), with the extremal measure μt,0,σ as in Theo-
rem 2.4. Then for t ∈ (0, ‖σ‖), we have

lim sup
n,N→∞
n/N→t

1
n

logEn(0, Λ(AN )) ≤ −1
t

∫ t

0

gS(τ)(0) dτ (3.4)

Proof. Apply Theorem 2.5 for p = ∞, wN = 1, and Q = 0: conditions (i),
and (iii), are corresponding to (2.19), and (2.23) for z = 0, respectively. The
conditions (2.20) and (2.21) are trivially true. Then our claim follows from
(2.24), where according to Remark 2.5 we may replace wt,0,σ − Uμt,0,σ (0) by
our integral formula (2.18). ��

Remark 3.1. According to Theorem 2.5, if we have the additional separation
condition (2.25) on the spacing of eigenvalues, then there is equality in (3.4) in
Theorem 3.1. In particular, if follows from the comments after Corollary 1.7
that the asymptotic CG bound on the right-hand side of (3.4) cannot be
improved.

Remark 3.2. For determining σ, each λ in Λ(AN ) is taken only once, regardless
of its multiplicity. Hence it might happen that ||σ|| < 1. However, Theorem 2.5
remains valid even if one counts multiplicities, since En(·, ·) becomes larger
if one adds points close to multiple eigenvalues to Λ(A). The new conditions
obtained form (i)–(iii) counting multiplicities will be referred to as (i)’, (ii)’,
and (iii)’.

Remark 3.3. The condition (ii) is not very restrictive. For example, if σ is ab-
solutely continuous with respect to Lebesgue measure with a bounded density
then (ii) is satisfied. It is also satisfied if the density has only logarithmic-type
or power-type singularities at a finite number of points. On the other hand,
condition (ii) is not satisfied if σ has point masses.

In case of simple eigenvalues, condition (iii) may be rewritten as

lim
N→∞

|det(AN )|1/N = exp(−Uσ(0)).

Comparing (iii) with the principle of descent (2.2), we see that this condition
prevents too many eigenvalues close to 0. If (iii) would not hold, then the
matrices AN are ill-conditioned and the estimate (3.2) may very well fail.

Remark 3.4. In [11], the following strategy was considered in order to find a
polynomial pn of degree n being small on Λ(AN ) and pn(0) = 1 (and thus to
find an upper bound for En(0, Λ(AN )):

Choose some fixed set S. Each eigenvalue of AN outside the set S is a zero
of pn. This determines a certain fraction of the zeros of pn. Clearly the set S
has to be sufficiently big so that the number of eigenvalues of AN outside S is
less than n. The other zeros of pn are free and they are chosen with the aim
to minimize ‖pn‖L∞(S).
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Though this strategy of imitating the CG polynomial seems to be natural,
it depends very much on a good choice of the set S, see also the discussion
in [31] and [25, Section 6]. Indeed, choosing a large set S means that there
only few outliers, and their influence on the supnorm ‖pn‖S is small. Since
we only need a polynomial which is small on the discrete set Λ(AN ) but
not necessarily in the gaps between the eigenvalues, ‖pn‖L∞(S) may be much
bigger than ‖pn‖Λ(AN ). On the other hand, choosing a small set S means that
we fix a lot of zeros of pn and so we loose a lot of freedom in our choice for
minimizing ‖pn‖L∞(S).

The main result of [11] is that the above strategy cannot produce a better
asymptotic bound on En(0, Λ(AN )) than Theorem 3.1, and that (under some
additional assumptions) S = S(t) leads to the same bound.

Remark 3.5. Provided that the sets S(t) of Theorem 3.1 are intervals, say,
S(t) = [a(t), b(t)], we may give an interpretation of the bound (3.2) in terms
of marginal condition numbers: Since gS(t)(0) is increasing in t, we get from
(3.3) that

log(ρn
t ) = −N

∫ n/N

0

gS(τ)(0) dτ ≤ −
n−1∑
j=0

gS(j/N)(0),

and, by (2.3), estimate (3.2) can be rewritten as

‖eCG
n ‖A

‖eCG
0 ‖A

�
n−1∏
j=0

√
b( j

N )/a( j
N ) − 1√

b( j
N )/a( j

N ) + 1
.

Hence the classical bound (1.1) is obtained for constant b/a, and we see that
the superlinear convergence behavior is obtained if the marginal condition
number b( j

N )/a( j
N ) strictly decreases. Indeed, as we will see in Section 3.2,

some extremal eigenvalues will be matched by Ritz values, and can be disre-
garded for the further convergence behavior.

Remark 3.6. For the moment it is not completely clear how to generalize The-
orem 3.1 to the case of matrices with unbounded spectra and asymptotic
eigenvalue distribution given by σ with unbounded support. In this case, we
certainly have to impose some growth condition on σ around infinity such
that the constraint is active around infinity.

Let us give some examples illustrating Theorem 3.1.

Example 3.1. The case of equidistant eigenvalues

Λ(AN ) = { 1
N
,

2
N
, . . . ,

N

N
},

leading to σ being the Lebesgue measure on [0, 1], has already been discussed
in Example 2.3, see also [10, Section 3]. For CG we obtain the error curve as
well as the bounds (1.1), (3.3) as displayed in Figure 2, see Section 1.1.
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Example 3.2. Consider the “worst case” eigenvalues

Λ(AN ) = {2 + 2 cos(π
j

N + 1
) : j = 1, ..., N},

here conditions (i)–(iii) of Theorem 3.1 hold with σ = ω[0,4]. Comparing with
Exercise 20 we see that S(t) = [0, 4] for 0 < t < 1, and thus the bound (3.3) is
trivial. Indeed, for this example it is known that there are starting residuals
such that CG does not lead to a small residual before reaching n ≈ N .

Example 3.3. For the Toeplitz matrix AN := (γ|j−k|)j,k=1,2...,N , 0 < γ < 1, of
Kac, Murdock and Szegő [38, p. 783] it is shown in [10, Section 4] (see also
Section 3.3 below) that conditions (i)’,(ii)’,(iii)’ hold with

σ(x) =
1
x
ω[a,1/a](x) =

∫ 1

0

ω[a,b(t)](x) dt,

a =
1 − γ

1 + γ
, b(t) =

{
1/a for t ≤ a
a/t2 for t ≥ a.

Numerical experiments for the symmetric positive definite Toeplitz matrix
T200 of order 200 of Kac, Murdock and Szegő are given in Figure 3. The
four different plots correspond to the choices γ ∈ {1/2, 2/3, 5/6, 19/20} of the
parameter. Notice that the CG error curve (solid line) of the last two plots is
clearly affected by rounding errors leading to loss of orthogonality, whereas the
GMRES relative residual curves (dotted line) behave essentially like predicted
by our theory. In particular, the classical bound (1.1) (crosses) does no longer
describe correctly the size of the relative residual of GMRES for n ≥ 20 and
γ ∈ {5/6, 19/20}. Experimentally we observe that the range of superlinear
convergence starts in the different examples approximately at the iteration
indices ≥ 50, 30, 20, and 10, respectively. This has to be compared with the
predicted quantity N · a which for the different choices of γ approximately
takes the values 66, 40, 29, and 5, respectively. Though these numbers differ
slightly, we observe that the new bound (3.3) reflects quite precisely the shape
of the relative residual curve, and in particular allows to detect the ranges of
linear and of superlinear convergence.

Example 3.4. Consider the two dimensional Poisson equation

−∂2u(x, y)
∂x2

− ∂2u(x, y)
∂y2

= f(x, y)

for (x, y) in the unit square 0 < x, y < 1, with Dirichlet boundary condi-
tions on the boundary of the square. The usual five-point finite difference
approximation on the uniform grid

(j/(mx + 1), k/(my + 1)), j = 0, 1, . . . ,mx + 1, k = 0, 1, . . . ,my + 1,
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Fig. 3. The error curve of CG (solid line) and GMRES (dotted line) versus the
classical upper bound (crosses) and our asymptotic upper bound (circles) for the
system T200x = b, with random solution x, and initial residual r0 = (1, ..., 1)T . Here
TN is the Kac, Murdock and Szegő matrix, with parameter γ ∈ {1/2, 2/3, 5/6, 19/20}

leads to a linear system of size N × N where N = mx my. After rescaling,
the coefficient matrix of the system may be written as a sum of Kronecker
products

AN =
(mx + 1)
(my + 1)

Bmx
⊗ Imy

+
(my + 1)
(mx + 1)

Imx
⊗Bmy

(3.5)

where

Bm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . −1

0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
m×m

(3.6)

and Im is the identity matrix of order m. It is well known and easy to verify
that the eigenvalues of Bm are
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μk,m = 2 − 2 cos
πk

m + 1
, k = 1, . . . ,m,

and that the eigenvalues λj,k of AN are connected with the eigenvalues of Bm

via

λj,k =
my + 1
mx + 1

μj,mx
+

mx + 1
my + 1

μk,mx
, j = 1, . . . ,mx, k = 1, . . . ,my. (3.7)

We consider the limit relation

mx,my → ∞,
mx

my
→ δ ≤ 1,

then it is not difficult to see using (3.7) that condition (i)’ holds with∫
f dσ =

∫ 1

0

dφ

∫ 1

0

dψ f(2δ(1 − cos(πφ)) + 2δ−1(1 − cos(πψ)))

=
1
π2

∫ 4δ

0

dx

∫ x+4δ−1

x

dλ
f(λ)√

x(4δ − x)(λ− x)(4δ−1 − λ + x)

=
∫ 4δ+4δ−1

0

σ′(λ)dλ

with

σ′(λ) :=
1
π2

∫ min{4δ,λ}

max{0,λ−4δ−1}

dx√
x(4δ − x)(λ− x)(4δ−1 − λ + x)

.

The substitution x′ = 4δ − x shows that σ′(4δ + 4δ−1 − λ) = σ′(λ), and thus
we only need to consider the case where λ ≥ 2δ + 2δ−1, and hence λ ≥ 4δ.
We now construct a linear fractional transformation y = T (x) with T (0) = 0,
T (4δ) = 1, T (λ) = ∞, and hence

T (x) =
x

λ− x

λ− 4δ
4δ

, γ := T (λ− 4δ−1) =
1
16

(λ− 4δ−1)(λ− 4δ) ≤ 1,

and the substitution y = T (x) leads to

σ′(λ) =
1

4π2

∫ 1

max{γ,0}

dy√
y(1 − y)(y − γ)

=
1
π

∫ 1

0,sin(πt/2)≥γ

dy√
16 sin2(πt/2) − 16γ

.

By substituting γ, we find with Δ := 2δ + 2δ−1

σ =
∫ 1

0

ωS(t) dt, S(t) = [Δ−
√
Δ2 − 16 sin2(

πt

2
),Δ +

√
Δ2 − 16 sin2(

πt

2
)],
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and thus the extremal measures by Exercise 20. One may compare our findings
for δ = 25/40 with numerical experiments presented in Figure 13 of Exam-
ple 3.9 below, where both histograms for mx = 25 and my = 40 and the
density function σ′ of the limiting distribution are drawn. Notice that σ has
the support S(0) = [0, 4δ+ 4δ−1], and that σ′ has logarithmic singularities at
4δ and at 4δ−1.

The sets S(t) have been known before only in the case δ = 1, and thus
Δ = 4 [10, Section 5]. More precisely, we observe that λj,k = λk,j , that is,
most of the eigenvalues have multiplicity at least 2. Also, λj,m+1−j = 4 for
all j = 1, . . . ,m, and the eigenvalue 4 has multiplicity m. We suspect that
N/2 + o(N) eigenvalues have multiplicity 2. In this case, not only condition
(i)’ but also condition (i) holds, with the new constraint being half of the old
constraint. Since

μt,0,σ/2 =
1
2
μ2t,0,σ,

one should therefore replace in the above formula for S(t) the term t by 2t,
in order to obtain a sharper error bound. This is confirmed by our numerical
experiments presented in Figure 4.

For exponentially decreasing eigencomponents, we may give an improve-
ment of Theorem 3.1 based on Theorem 2.5 for p = ∞, compact real Σ and
nontrivial external field, see [12, Theorem 2.2].

Theorem 3.2. Besides the assumptions of Theorem 2.5, suppose that there
is a sequence of starting residuals (r0,N )N and a nonnegative Q ∈ C(Σ),
w(λ) = exp(−Q(λ)), such that

(iv) if the eigenelements of AN are given by (λj,N , vj,N ) with ||vj,N || = 1,
then2

lim sup
N→∞

max
j

exp(Q(λj,N ))
[ |(r0,N , vj,N )|

||r0,N ||
]1/N

≤ 1.

Then, for every t ∈ (0, ||σ||),

lim sup
n,N→∞
n/N→t

1
N

log

(
‖eCG

n,N‖AN

‖eCG
0,N‖AN

)
≤ Uμt,Q,σ (0) − wt,Q,σ, (3.8)

where μt,Q,σ and wt,Q,σ are as in Theorem 2.4. A similar bound is valid for
the nth relative residual of MINRES.

Proof. See (1.15) and Corollary 1.3, and use the fact that from condition (iii)
it follows that [minj |λj,N |]1/N → 1. ��
2 In case of distinct eigenvalues, the quantity |(r0,N , vj,N )| was called before βj,N .
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Fig. 4. The CG error curve versus the two upper bounds for the system ANx = b
resulting from discretizing the 2D Poisson equation on a uniform grid with mx =
my = 150. We have chosen a random solution x, and initial residual r0 = (1, ..., 1)T ,
and obtain superlinear convergence from the beginning. Notice that the classical
upper bound for CG is far too pessimistic for larger iteration indices. For the new
bound we have added a factor 1/2 in front of σ since λj,k = λk,j , and we suspect
that most of the eigenvalues are of multiplicity 2

Example 3.5. As a motivating model problem for Theorem 3.2, we consider
the one dimensional Poisson equation −u′′(x) = f(x), x ∈ [0, 1], with homoge-
neous Dirichlet boundary conditions u(0) = u(1) = 0. The usual central finite
difference approximation on the uniform grid j/(N + 1), j = 0, 1, . . . , N + 1,
leads to a linear system ANx = bN with N equations and unknowns, where
AN = BN of (3.6), and

bN = (N + 1)2 ·
[
f(1/(N + 1)) f(2/(N + 1)) · · · f(N/(N + 1))

]T
.

Both the one dimensional Poisson problem and the system ANx = bN are
easy to solve; however, this toy problem can serve to explain convergence
behavior observed also in less trivial situations. From Example 3.2 we know
that conditions (i)–(iii) are satisfied with σ = ω[0,4], and that, for general
starting residual, one obtains poor CG convergence, as confirmed by Figure 5.
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Fig. 5. The one dimensional Poisson problem discretized on a uniform grid (N =

500) for f(x) =
∑N

j=1
rj sin(jπx), r = 0.1, 0.3, 0.5, 0.8. We find the error curve of

CG (solid blue line) and the classical bound (1.1) (black line with crosses), and our
new asymptotic bound (red line with circles). For comparison we give the MINRES
relative residual curve in (dashed green line). Notice that, for r = 0.8, there is hardly
any superlinear convergence and one has to reach approximately the dimension of
the system in order to achieve full precision

Here we will be interested in what happens for the CG starting vector 0
(i.e., r0,N = bN ) and particularly smooth functions f , namely

f(x) =
∞∑

j=1

fj sin(πjx), x ∈ [0, 1], where r := lim sup
j→∞

|fj |1/j ∈ (0, 1).

It is shown in [12, Lemma 3.1] that here condition (iv) holds with

Q(x) =
log(1/r)

π
arccos(

2 − λ

2
).

Also, the reader may verify that the assumptions of Remark 2.6 hold. As shown
in [12, Section 3], here the integral equations (2.14),(2.15) can be solved in
terms of the complete elliptic integral K(·) and the Jacobi elliptic functions:
if k = k(r) is defined by
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log(1/r)
π

K(k) = K(
√

1 − k2),

then

a(t) = 4cn2((1 − t)K(k); k), b(t) = α(t)/dn2((1 − t)K(k); k),

and we obtain the asymptotic CG error bound of (2.12).

3.2 Applications to the Rate of Convergence of Ritz Values

In order to approximate eigenvalues of large real symmetric matrices A of
order N via the Lanczos method with starting vector r0 ∈ RN , one computes
the so-called Ritz values, namely, the eigenvalues x1,n < ... < xn,n of the
(tridiagonal) matrix Jacobi matrix Jn, see Definition 1.2 and Corollary 1.1.
Depending on the eigenvector components β1, .., βN of the starting vector r0,
some of the eigenvalues λ1 ≤ ... ≤ λN of A are well approximated by Ritz
values even if n is much smaller than the dimension N . Classical results on
convergence and on technical details of the Lanczos method may be found in
many textbooks. Let us cite here the well-known Kaniel-Page-Saad estimate
for extremal eigenvalues [30, 56, 59, 70] which is a consequence of Corollary 1.6
and Lemma 1.1 ∣∣∣∣x1,n − λ1

λN − λ1

∣∣∣∣ ≤ 1
Tn−1(1 + 2 λ2−λ1

λN−λ2
)2

1
β2

1

n∑
j=2

β2
j , (3.9)

with Tn the nth Chebyshev polynomial of the first kind. Thus one may expect
geometric convergence of the smallest (largest) Ritz value to the smallest
(largest) eigenvalue for a fixed matrix A, but the rate of convergence will
depend on the size of the eigenvector component β1, and on the (relative)
distance of λ1 to the other eigenvalues. For an “inner” eigenvalue λk lying in
the convex hull of the Ritz values, say, xκ−1,n < λk ≤ xκ,n for some κ = κ(k),
we get by combining Corollary 1.6 and Exercise 9

min
�

|λk − x�,n|2 ≤ |(λk − xκ−1,n)(λk − xκ,n)|

≤ 2 b2
[b/a− 1
b/a + 1

][n/2]−1 1
β2

k

n∑
j=1,j 	=k

β2
j , (3.10)

where a = min{λk+1−λk, λk −λk−1}, and b = max{λN −λk, λk −λ1}. Notice
again that we may only expect an interesting rate of convergence if λk is well
separated from the rest of the spectrum, and if |βk|/||r0|| is sufficiently large.

There exist (worst case) examples A, r0 with eigenvalue and eigenvector
component distribution such that the bounds (3.9) or (3.10) are (approxi-
mately) sharp. However, for matrices occurring in applications one observes
quite often that the above bounds greatly overestimate the actual error, even



166 Bernhard Beckermann

for a judicious choice of the set in Corollary 1.6 (for instance a finite union
of intervals representing the parts of the real axis where the spectrum of A is
relatively dense).

Trefethen and Bau [70, p. 279] observed a relationship with electric charge
distributions, and claimed that the Lanczos iteration tends to converge to
eigenvalues in regions of “too little charge” for an equilibrium distribution.
This has been made more precise by Kuijlaars [39] who considered, as in the
preceding section, a sequence of symmetric matrices AN which are supposed
to have an asymptotic eigenvalue distribution

νN (Λ(AN )) →∗ σ for N → ∞. (3.11)

Then, following Trefethen and Bau, Kuijlaars compared ωsupp(σ) and σ, and
considered more precisely the constrained energy problem with external field
Q = 0 of Section 2.2.

In the remainder of this section we will suppose that AN has N distinct
eigenvalues λ1,N < ... < λN,N contained all in some compact set Σ. Also, we
suppose that the Lanczos method is applied to matrix AN with starting vector
r0,N having eigenvector components β1,N , ..., βN,N , and we are interested in
measuring the distance of an eigenvalue λj,N to the set of Ritz values x1,n,N <
... < xn,n,N obtained in the nth iteration of the Lanczos process. We then have
the following result

Theorem 3.3. Suppose that the asymptotic distribution of the spectra of
(AN )N is given by σ, which has a continuous potential. Let kN be a sequence
of indices such that

lim
N→∞

λkN ,N = λ (3.12)

and suppose that

lim
N→∞

1
N

∑
j 	=kN

log |λkN ,N − λj,N | =
∫

log |λ− λ′| dσ(λ′), (3.13)

lim inf
N→∞

[ |βkN ,N |
||r0,N ||

]1/N

=: ρ ∈ (0, 1]. (3.14)

Then

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − xj,n,N |1/N ≤ 1
ρ

exp
(
Uμt,0,σ (λ) − wt,0,σ

)
. (3.15)

If moreover there exists a nonnegative function Q ∈ C(Σ) with

lim sup
N→∞

sup
j

exp(Q(λj,N ))
[ |βkN ,N |
||r0,N ||

]1/N

≤ 1,

then
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lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − xj,n,N |1/N ≤ 1
ρ

exp
(
Uμt,Q,σ (λ) − wt,Q,σ

)
. (3.16)

Proof. We may suppose without loss of generality that λ = 0. Using the
estimate of Corollary 1.6, we apply Theorem 2.5 for p = ∞ to the sets EN :=
{λj,N − λkN ,N : j �= kN}. ��
Remark 3.7. Recall from Remark 2.5 that we may replace wt,0,σ − Uμt,0,σ (λ)
in (3.15) by some mean of the Green functions gS(t)(λ), see (2.18). Hence, for
ρ = 1, the right-hand side of (3.15) is strictly negative for λ �∈ ⋂τ<t supp(σ−
μτ,0,σ), in correspondence with the heuristic observation of Trefethen and Bau.

Remark 3.8. In case of (3.16) one may observe a further phenomenon which
for the data of Example 3.5 is shown in Figure 6 and which is not fully covered
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Fig. 6. Convergence of Ritz values for our 1D Poisson model problem with particular
smooth right hand side. Here N = 100, x0,N = 0, and f(x) =

∑N

j=1
rj sin(jπx),

r ∈ {1/4, 1/10}. The two black curves indicate the graphs of a, b. We draw in the
nth column, 1 ≤ n ≤ N , the position of the nth Ritz values within the interval
[0, 4]. Here the color/symbol indicates the distance of the Ritz value to the set of
eigenvalues of AN , compare with (3.17). Notice that nearly all Ritz values are red
in the range [0, a(t)], t = n/N , that there are no Ritz values in [b(t), 4], and that
in the range [a(t), b(t)] hardly any Ritz value converged (up to some exceptions by
“accident”)



168 Bernhard Beckermann

by Theorem 3.3: all eigenvalues in supp(μt,Q,σ) \ supp(σ − μt,Q,σ) are fit by
Ritz values (the constraint is active), and there is hardly any Ritz value in
supp(σ − μt,Q,σ) \ supp(μt,Q,σ).

Remark 3.9. The first condition (3.13) will be true if the eigenvalues λkN+j,N

for j �= 0 do not approach “too fast” λkN ,N when N → ∞. This separation
condition has been suggested by Dragnev and Saff [24, Definition 3.1] as a
sufficient condition for ensuring nth root asymptotics for discrete orthogonal
polynomials. It holds if the distance |λkN+j,N − λkN ,N | is bounded below by
a constant times |j|/N [58] or by some positive power of this quantity; how-
ever, it is excluded that two neighboring eigenvalues approach exponentially.
Condition (3.14) means that the starting vector r0,N has a sufficiently large
eigencomponent for the eigenvalue λkN ,N .

Remark 3.10. The statement of (3.15) can be found in [6, Theorem 2.1(a)].
Before, Kuijlaars [39] had established a related inequality with ρ = 1, and the
right-hand side of (3.15) replaced by its square root. As assumption, Kuijlaars
imposed that (3.13) and (3.14) for ρ = 1 hold for any set of indices verifying
(3.12).

Remark 3.11. According to the first part of Corollary 1.6, we learn from the
proof of Theorem 3.3 that the right-hand side of (3.15) can be replaced by its
square for extremal eigenvalues kN = 1 or kN = N .

Indeed, this is also true for more general situations: suppose that Σ =
[A,B], and B′ ∈ Σ such that wt,0,σ − Uμt,0,σ (λ) > 0 for λ ∈ [A,B′]. Fur-
thermore suppose that (3.13) and (3.14) for ρ = 1 hold for any set of indices
verifying (3.12) and limit λ ∈ [A,B′]. Then it is not difficult to show that
|λk,N − λk+1,N |1/N → 1 for eigenvalues in [A,B′]. Taking into account (3.15)
and the separation property of Theorem 1.2(c), a little bit of combinatorics
shows that xj,n,N approaches λj,N exponentially for sufficiently small j. This
implies that one of the factors on the left-hand side of the second estimate of
Corollary 1.6 can be dropped, and we have that

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − xj,n,N |1/N = lim sup
n,N→∞
n/N→t

|λkN ,N − xkN ,n,N |1/N

≤ exp
(
2Uμt,0,σ (λ) − 2wt,0,σ

)
provided that λ ∈ [A,B′].

In the same spirit, one can show that for all but at most one exceptional
eigenvalue in any closed sub-interval of Σ with strictly positive wt,0,σ−Uμt,0,σ

we have this improved rate of convergence. Finally, there are examples where
the rate of convergence for the exceptional eigenvalue is given by (3.15). A
detailed discussion of these exceptional indices is given in [6].
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Fig. 7. Convergence of Ritz values for 400 equidistant eigenvalues in [−1, 1]. We
draw in the nth column, 1 ≤ n ≤ N , the position of the nth Ritz values within the
interval [0, 4]. Here the color/symbol indicates the distance of the Ritz value to the
set of eigenvalues of AN , compare with (3.17)

Example 3.6. If AN has equidistant eigenvalues in [−1, 1], we found in Exam-
ple 3.1 that S(t) = [−

√
1 − t2,

√
1 − t2]. Indeed, as shown in Figure 7, the

eigenvalues outside the disk are found by the Lanczos method.
The numerical results displayed in Figure 7 as well as in subsequent ex-

periments have been obtained by the Lanczos method with full reorthogo-
nalization, in order to prevent loss of orthogonality, due to finite precision
arithmetic. The following symbols/colors are used to indicate the distance of
a given Ritz value to the set of eigenvalues

color symbol distance between Ritz value and set of eigenvalues
red + less than 0.5 10−14

yellow ) between 0.5 10−14 and 0.5 10−8

green � between 0.5 10−8 and 0.5 10−3

blue * larger than 0.5 10−3

(3.17)

Example 3.7. For the Poisson problem of Example 3.4 and mx = 9, my = 13,
the Ritz values are displayed in Figure 8. As in the preceding example, the
color/symbol is chosen depending on the distance of Ritz values to the set of
eigenvalues, as a function of the iteration index n = 1, 2, . . . , N = 9∗13 = 117.
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Fig. 8. Convergence of Ritz values for the Poisson problem with mx = 9 and
my = 13. Notice that, even for large n ≈ N , hardly any eigenvalue in S(1) =
[4δ, 4δ−1] = [2.77, 5.78] is found by Ritz values

Observe that eigenvalues outside of the set S(n/N) described in Example 3.4
are well approximated by Ritz values, but not those in S(n/N). Notice also
that, even for large n ≈ N , hardly any eigenvalue in S(1) = [4δ, 4δ−1] =
[2.77, 5.78] is well approximated by Ritz values.

Example 3.8. Consider the eigenvalues

λj,N = cos(π
2j − 1
2N

) · | cos(π
2j − 1
2N

)|α−1, α > 0,

and eigencomponents βj,N = 1, having clearly an asymptotic eigenvalue dis-
tribution σ with continuous potential. As mentioned already in Example 3.2,
no convergence of Ritz values can be expected if α = 1. Things become more
interesting for α = 2 (more eigenvalues close to zero) or for α = 1/2 (more
eigenvalues close to the endpoints ±1). This behavior is displayed in Figure 9.

In the case α = 2 one may show that for 0 < t ≤ 1/
√

2 we obtain S(t) =
[−1, 1], and there is no geometric convergence of Ritz values. For t ∈ (1/

√
2, 1),

the sets are strictly decreasing and of the form S(t) = [−b(t), b(t)], but the
resulting formulas for b(t) are complicated, we omit details. The convergence
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Fig. 9. Bar chart for the eigenvalue distribution of 400 eigenvalues in the case α = 1
(equilibrium distribution), α = 2, and α = 1/2 (from the left to the right)

behavior of the corresponding Ritz values can be found in Figure 10, indeed,
for n ≤ N/

√
2 hardly any eigenvalue is well approximated by a Ritz value.

For the case α = 1/2 it is shown in [6] that

S(t) = [−1,−r(t)] ∪ [r(t), 1], r(t) =
1 − cos(πt/2)
1 + cos(πt/2)

.

Notice that the eigenvalues (and the eigenvector components) are symmetric
with respect to the origin. Thus p2n−1,N is odd, and p2n,N is even. Moreover,
λN+1,2N+1 = xn+1,2n+1,2N+1 = 0, and thus here is a perfect rate of conver-
gence. However, the eigenvalue λN+1,2N+1 is approached by the Ritz values
xn+1,2n,2N+1 = −xn,2n,2N+1. Comparing with Remark 3.11 we get an “excep-
tional” eigenvalue with a smaller rate of convergence. In contrast, for even N
no exceptional eigenvalue occurs, even if the Ritz value xn+1,2n+1,2N = 0 is
not close to the spectrum. This last example contradicts the widely believed
fact that first extremal eigenvalues are found by Ritz values.

3.3 Circulants, Toeplitz Matrices and their Cousins

A circulant matrix of order N generated by some exponential polynomial
φ(θ) := φ0 + φ1e

iθ + ... + φN−1e
(N−1)iθ is defined by
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Fig. 10. Convergence of Ritz values for “squares” of 100 Chebyshev eigenvalues in
[−1, 1] (α = 2)

CN (φ) =

⎡⎢⎢⎢⎣
φ0 φ1 · · · φN−1

φN−1 φ0 · · · φN−2

...
...

...
φ1 φ2 · · · φ0

⎤⎥⎥⎥⎦ , (3.18)

i.e., CN (φ) is constant along diagonals. It is easily seen that CN (φ) is diago-
nalized by the unitary FFT matrix of eigenvectors

ΩN =
1√
N

[
exp(

2πijk
N

)
]

j,k=0,1,...,N−1
,

with corresponding eigenvalues given by φ( 2πi(k−1)
N ), k = 1, ..., N . Notice also

that CN (φ) is normal, and in addition hermitian if and only if all eigenvalues
are real. One easily checks using the explicit knowledge of the eigenvalues
that, if φ(N) is the partial sum of a exponential power series φ being absolutely
convergent (such symbols φ are called of Wiener class), then for N → ∞

νN (CN (φ(N))) →∗ σφ, where
∫

f dσφ =
1
2π

∫ 2π

0

f(φ(eis)) ds, (3.19)

where here and in what follows we count eigenvalues according to their multi-
plicities. We speak of a circulant matrix of level two (and by iteration of level t)
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Fig. 11. Convergence of Ritz values for “square roots” of N ∈ {100, 101} Cheby-
shev eigenvalues in [−1, 1] (α = 1/2). In the top plot (N = 100) the Ritz val-
ues xn+1,2n+1,N = 0 for odd n are not close to the spectrum. In the bottom plot
(N = 101) one observes the phenomena of exceptional eigenvalues

or a circulant-circulant matrix of order mx my if there is a block structure with
m2

x blocks as in (3.18), with each block being itself a circulant matrix. Thus
such matrices are induced by a bivariate exponential polynomial φ with de-
gree in x being equal to mx − 1 and degree in y being equal to my − 1, and
we write Cmx,my

(φ). With the Kronecker product

A⊗B = (Aj,kB)j,k,

we see that the matrix of eigenvectors is given by the unitary matrix Ωmx
⊗

Ωmy
and the eigenvalues by the expressions φ(exp(2πi(j−1)

mx
), exp(2πi(k−1)

my
)),

j = 1, ...,mx, k = 1, ...,my. Thus, as in (3.19), if φ(mx,my) is the truncation of
a bivariate exponential power series φ being absolutely convergent, then for
mx → ∞, my → ∞,
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νmxmy
(Cmx,my

(φ(mx,my))) →∗ σφ, (3.20)

with ∫
f dσφ =

1
(2π)2

∫∫
[0,2π]2

f(φ(θ)) dθ.

Toeplitz matrices are generated by Fourier series

TN (φ) =

⎡⎢⎢⎢⎣
φ0 φ1 · · · φN−1

φ−1 φ0 · · · φN−2

...
...

...
φ1−N φ2N

· · · φ0

⎤⎥⎥⎥⎦ , φ(θ) =
∞∑

j=−∞
φje

ijθ, (3.21)

which are again constant along diagonals, and hermitian if φ is real-valued.
Hence any circulant is Toeplitz, but not conversely. We also define Toeplitz-
Toeplitz matrices (or level 2 Toeplitz matrices) Tmx,my

(φ) induced by some
bivariate Fourier series φ as a matrix with Toeplitz block structure, each
individual block being also of Toeplitz structure. Similarly, we speak of
Toeplitz-circulant matrices (Toeplitz block structure with circulant blocks)
or circulant-Toeplitz matrices.

It is well-known that these matrices occur in the discretization by finite
differences using the five point stencil of the Poisson PDE on [0, 1]2, more
precisely we have a (banded) Toeplitz-Toeplitz matrix in case of Dirichlet
boundary conditions (compare with Example 3.4), and a (banded) circulant-
circulant matrix in case of homogeneous Neumann boundary conditions.
Toeplitz systems arise also in a variety of other applications, such as signal
processing and time series analysis, see [19] and the references cited therein.

For Toeplitz matrices and their level 2 counterparts, it is in general impos-
sible to give explicit formulas for eigenvalues. However, we may find formulas
for the asymptotic eigenvalue distribution, compare for instance with [34,
pp. 63-65], [14, Theorem 5.10 and Corollary 5.11].

Theorem 3.4. Let φ be a univariate absolutely convergent Fourier series (we
say that φ is of Wiener class) and real-valued. Then νN (TN (φ)) → σφ for
N → ∞, with σφ as in (3.19).

If φ be a bivariate absolutely convergent and real-valued Fourier series then
for mx,my → ∞ we have that νmx my

(Tmx,my
(φ)) → σφ, with σφ as in (3.20).

In the proof of Theorem 3.4 we will require the following perturbation
result of Tyrtyshnikov [71] in a form given by Serra Capizzano [61, Proposition
2.3]. See also Tilli [69].

Theorem 3.5. [61, Proposition 2.3] Let (AN ) be a sequence of Hermitian
matrices where AN has size N ×N . Suppose for every ε > 0 there exists Nε

such that for every N ≥ Nε a splitting

AN = BN (ε) + RN (ε) + ΔN (ε)
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where BN (ε), RN (ε) and ΔN (ε) are Hermitian matrices so that for N ≥ Nε,

rank RN (ε) ≤ C1(ε)N, and ‖ΔN (ε)‖ ≤ C2(ε)

where C1(ε) and C2(ε) are positive constants independent of N with

lim
ε→0

C1(ε) = lim
ε→0

C2(ε) = 0.

Suppose that, for every ε > 0, the limit νN (Λ(BN (ε))) →∗ σε for N → ∞
exists, and that the limit σε →∗ σ for ε → 0 exists, then νN (Λ(AN )) →∗ σ for
N → ∞.

Proof. Apply the Courant minimax principle and the theorem of Bauer and
Fike [30] telling us that if A,B are two hermitian matrices with “small” ||A−
B||, then for each eigenvalue of A there exists an eigenvalue of B which is
“close”. ��
Proof. (of Theorem 3.4) We will give the main idea of proof for the case of
a Toeplitz matrix, the arguments for a level 2 Toeplitz matrix are similar.
Denote by φ(N) the Fourier sum obtained from φ by taking the [N1/3]th
partial sum. Since for the p-matrix norm || · ||p of a matrix we have

(||A||2)2 ≤ ||A||∞ ||A||1,
and since φ is of Wiener class, we find that, for ε > 0 and sufficiently large
N , we have

||φ− φ(N)||L∞([−π,π]) < ε, ||TN (φ) − TN (φ(N))|| < ε.

Then TN (φ(N)) is banded, of bandwidth ≤ N1/3, and we need to modify at
most N2/3 entries in order to transform it to a hermitian circular matrix BN .
Since the eigenvalues of this hermitian circular matrix are explicitly known,
we obtain the assumptions Theorem 3.5 with σε = σφ, and our claim follows
from Theorem 3.5. ��

As seen from the above proof, results similar to Theorem 3.4 are true for
Toeplitz-circulant or circulant-Toeplitz matrices.

By Theorem 3.4 we see that condition (i)’ of Section 3.1 holds for sequences
of hermitian (level 2) Toeplitz matrices. Also, condition (ii)’ will be true for
instance for continuous symbols. Let us shortly comment of condition (iii)’ for
the case of hermitian positive definite Toeplitz matrices (and hence φ ≥ 0). A
result of Szegő (see [34, p. 44 and p. 66]) is that

lim
N→∞

det(TN (φ))
det(TN−1(φ))

= exp
(

1
2π

∫ π

−π

log φ(θ) dθ
)

(3.22)

provided that φ satisfies the Szegő condition∫ π

−π

log φ(θ) dθ > −∞.

Notice that this condition can be rewritten as Uσφ(0) < +∞. Also recall
the link to strong asymptotics of orthogonal polynomials on the unit circle
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(the ratio of determinants in (3.22) is linked to the leading coefficient of such
orthonormal polynomials).

It follows from (3.22) that

lim
N→∞

log(|det |TN (φ)|1/N ) =
1
2π

∫ π

−π

log φ(θ) dθ =
∫

log λ dσ(λ) ∈ R,

and the condition (iii’) is satisfied.

3.4 Discretization of Elliptic PDE’s

The asymptotic eigenvalue distribution of matrices obtained by a finite differ-
ence discretization of elliptic partial differential equations has been discussed
in detail by Serra-Cappizano [62]. Here we will not look for the greatest gener-
ality, but just have a look at the particular example of a 2D diffusion equation
on some polyhedral domain in R2, discretized by the classical five point stencil.

Let Ω ⊂ [0, 1]2 be some open polyhedron, and b : Ω → [0,+∞) piecewise
continuous. We solve the diffusion problem

div(b∇u) = f on Ω

plus Dirichlet (Neumann) boundary conditions via central finite differences,
with stepsizes

Δx =
1

mx + 1
, Δy =

1
my + 1

,

This gives a system of linear equations for the unknowns uj,k ≈ u(jΔx, kΔy)
with

(j, k) ∈ {(j, k) ∈ Z2 | (jΔx, kΔy) ∈ Ω},
given by

mx + 1
my + 1

[
−bj−1/2,kuj−1,k − bj+1/2,kuj+1,k + (bj−1/2,k + bj+1/2,k)uj,k

]
+

mx + 1
my + 1

[
−bj,k−1/2uj,k−1 − bj,k+1/2uj,k+1 + (bj,k−1/2 + bj,k+1/2)uj,k

]
=

fj,k

(mx + 1)(my + 1)

where bj−1/2,k = c((j−1/2)h, kh), etc. Supposing that there are N gridpoints
in Ω, we can write this system as ANx = bN , where it is known that (at
least for b strictly positive) cond(AN ) grows like O(N). Notice that for b = 1
and Ω = (0, 1)2 and Dirichlet boundary conditions we recover the Toeplitz-
Toeplitz matrix of Example 3.4. In what follows we will not specify further the
(discretisation of the) boundary conditions, since in all cases this only leads
to a small rank pertubation of order O(

√
N), and hence by Theorem 3.5 does

not affect the asymptotic eigenvalue distribution.
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As in Example 3.4 we consider the limit relation

mx,my → ∞,
mx

my
→ δ < 1,

Again, for b = 1 and Ω = (0, 1)2, the asymptotic eigenvalue distribution
has been determined in Example 3.4, compare also with Theorem 3.4 for the
symbol

φ(s1, s2) = 2δ(1 − cos(s1)) + 2δ−1(1 − cos(s2)). (3.23)

In the general case we find the following result, which is a consequence of
a more general result of Serra-Cappizano [62].

Theorem 3.6. Under the above assumptions on Ω and b, we have that, for
any continuous function f with compact support,

lim
N→∞

∫
f dνN (AN ) =

1
m(Ω)

∫
Ω

dx
1

(2π)2

∫∫
[0,2π]2

ds f(b(x) · φ(s))

with φ as in (3.23) and m(·) the two-dimensional Lebesgue measure.

Proof. By covering Ω by “small” squares Sj,N of equal size tending to zero
for N → ∞, we may replace AN by some block diagonal matrix CN where
entries with row/column index corresponding to points in squares Sj,N (for
the row) and Sk,N (for the column) will be replaced by zero if Sj,N �= Sk,N or
if Sj,N ∪Sk,N is not a subset of Ω or if b is not continuous on Sj,N ∪Sk,N . By
choosing a correct size of the square, we see that the rank of AN −CN is o(N).
Denote by BN the matrix obtained from CN by replacing all b–values of a
diagonal block corresponding to the square Sj,N by some constant b(ξj,N ) with
ξj,N ∈ Sj,N . Then ||BN − CN || is small by continuity. Applying Theorem 3.4
for each square and summing up all squares we then find that

lim
N→∞

∫
f dνN (BN ) =

1
m(Ω)

∫
Ω

dx
1

(2π)2

∫∫
[0,2π]2

ds f(b(x) · φ(s)),

and our claim follows from Theorem 3.5. ��

Remark 3.12. It is interesting to observe that for b = 1 we find the same
asymptotic eigenvalue distribution as in Example 3.4 independently on the
domain Ω.

Remark 3.13. Let M := supΩ b, then from Theorem 3.6 it becomes clear that
the asymptotic eigenvalue distribution is described by some measure σ with
supp(σ) = [0, (4δ+4δ−1)M ] =: Σ. One may also prove that all eigenvalues of
AN lie in Σ. Finally, defining the measure τ by

τ((−∞, r]) :=
m({x ∈ Ω : b(x) ≤ r})

m(Ω)
,
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with support given by the essential range of b, and denoting the extremal
measure of Example 3.4 by σ0, we find that σ is obtained by taking the
Mellin convolution of τ and σ0. More precisely, if τ, σ0 have densities τ ′, σ′0
then also σ has a density σ′, given by

σ′(y) =
∫ 4δ+4δ−1

y/M

σ′0(x)τ ′(
y

x
)
dx

x
.

If m := infΩ b > 0, we deduce that

σ′(y) =
1

4πm(Ω)

∫
Ω

dx

b(x)
+ y

δ + δ−1

32πm(Ω)

∫
Ω

dx

b(x)2
+ O(y2)y→0.

It is interesting to compare this formula with the Weyl formula for the asymp-
totic distribution of eigenvalues of the corresponding differential operator.

Example 3.9. We consider the Poisson problem, i.e., b = 1, on four different
domains Ω ⊂ [0, 1]2 displayed in Figure 12. On the bottom of Figure 13 one
may find histograms for the eigenvalue distribution in the case mx = 15,
my = 40, and hence δ = 15/40 = 0.375. In blue we have drawn the density
of the asymptotic eigenvalue distribution, which according to Remark 3.12 is
the same for the four domains. In the upper part of Figure 13 we find the
convergence history of CG for random starting vector. In all four cases, the
actual CG convergence looks quite similar (notice the different scales for the
iteration index, since the number of unknowns differs depending on how many
grid points are lying in Ω. In all cases we find that the classical and our new
asymptotic bound lie above the actual CG error curve, the latter describing
quite well the slope of the convergence curve.
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Fig. 12. The four different domains, referred to as b-square, b-triangle-1, b-lshape
and b-triangle2 (from the left to the right)
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Here and also in the next example we proceeded as follows to compute
numerically the asymptotic convergence bound (3.3): first the quite compli-
cated density of the asymptotic eigenvalue distribution σ of Theorem 3.6 was
replaced around both endpoints by the first two nontrivial terms in the Taylor
expansion around the endpoints (see the red curves). For this new constraint
σ̃, we expect that S(t) is an interval. The endpoints of this interval were ob-
tained by solving numerically the corresponding system of integral equations.
One finds as yellow curve the density of the extremal measure μ

t,0,σ̃
, with t

being the ratio of the last iteration index, divided by the number of unknowns.

Example 3.10. As a second example we consider the diffusion problem with
b(x, y) = 1 + y on the same four different domains Ω ⊂ [0, 1]2 displayed
in Figure 12. On the bottom of Figure 14 one may find histograms for the
eigenvalue distribution in the case mx = my = 40, and hence δ = 1. In
blue we have drawn the density of the asymptotic eigenvalue distribution,
which has a shape depending on the domain, especially in a neighborhood of
the right end point of supp(σ). In the upper part of Figure 14 we find the
convergence history of CG for random starting vector. Notice that the final
iteration index divided by the number of unknowns is 0.138, 0.186, 0.158,
0.198, and thus depends on the domain. Again our new asymptotic bound lies
above the actual CG error curve, and describes well its slope.

3.5 Conclusions

We have seen that there is a fruitful relationship between convergence behav-
ior of Krylov subspace methods in numerical linear algebra and logarithmic
potential theory, the link being given by asymptotics of discrete orthogonal
polynomials. Thus, in a certain sense, this manuscript contains the next 2-4
steps of the nice introduction paper [25] of Driscoll, Toh and Trefethen entitled
From potential theory to matrix iteration in six steps.

The linear algebra theory described here can be found in much more de-
tail in the textbooks [27, 30, 32, 54, 59, 70], see also the original articles on
superlinear convergence [3, 4, 31, 52, 53, 56, 63, 64, 74]. The potential theo-
retic tools are from [58, 24, 16, 22, 41, 45, 5, 40, 42], see also the textbooks
[47, 60, 57, 55, 46]. Finally, the link between these two domains is described
in [39, 10, 11, 12, 6].

There are at least two directions of current research: first it would be nice
to have a similar theory as in Section 3.4 for finite element discretization
of elliptic PDEs, including techniques of grid refinements. For P1 elements,
some work of Serra-Capizzano and the author is in progress. What is so at-
tractive about the finite element method is that one proceeds by projection,
and therefore there are inequalities between the eigenvalues of AN and of the
continuous differential operator. Thus for instance the Weyl formula should
tell us much about superlinear convergence for CG.
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In order to make CG perform better, one uses in practice the technique of
preconditioning. A quite involved research project is to find asymptotic eigen-
value distributions for such preconditioned matrices. For instance, there is a
whole theory about how one should precondition Toeplitz matrices with the
help of circulant matrices, see for instance [19]. However, for level 2 Toeplitz
matrices the theory is much less developed. What may happen is that there
is a clustering of many eigenvalues around some point, and we should zoom
into this clustering in order to obtain more precise information about the
eigenvalue distribution.

A different popular class of preconditioning techniques include the incom-
plete Choleski factorization and its relaxed generalizations, see for instance
[59] or the original articles [2, 18, 17, 26, 48, 72]. In [18, 17], the (complicated)
triangular matrices in the incomplete Choleski factorization were replaced by
circulants, which made it possible to make a more precise analysis for the
Poisson problem with periodic boundary conditions. For the model problem
of Section 3.4, the asymptotic eigenvalue distribution is determined in some
work in progress of Kuijlaars and the author.
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Summary. The purpose of these lecture notes is to give a short introduction to the
theory of orthogonal rational functions (ORF) on the unit circle. We start with the
classical problem of linear prediction of a stochastic process to give a motivation for
the study of Szegő’s problem and to show that in this context it will turn out that
not as much the ORF but rather the reproducing kernels will play a central role.
Another example of rational Krylov iteration shows that it might also be interesting
to consider ORF on the real line, which we shall not discuss in these lectures.

In a second part we will show that most of the results of the scalar case translate
easily to the case of matrix valued orthogonal rational functions (MORF).

There are however many aspects that are intimately related to these ideas that
we do not touch upon, like continued fractions, Nevanlinna-Pick interpolation, mo-
ment problems, and many other aspects of what is generally known as Schur analysis.

1 Motivation: Why Orthogonal Rational Functions? . . . . . . . . . 188

1.1 Linear Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
1.2 Krylov Subspace Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.3 Numerical Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

2 Orthogonal Rational Functions on the Unit Circle . . . . . . . . . 191

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
2.2 The Fundamental Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
2.3 Reproducing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
2.4 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



188 Adhemar Bultheel et al.

3 Quadrature and Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

3.1 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
3.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
3.3 Interpolation and Quadrature Using the Kernels . . . . . . . . . . . . 205

4 Density and the Proof of Favard’s Theorem . . . . . . . . . . . . . . . 206

4.1 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
4.2 Proof of Favard’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.1 Orthogonal Polynomials w.r.t. Varying Measures . . . . . . . . . . . 207
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1 Motivation: Why Orthogonal Rational Functions?

We want to give a summary of known results about orthogonal rational func-
tions (ORF) with respect to some measure whose support is contained in the
unit circle of the complex plane. But before we start, we want to give some
motivation of why it may be interesting to generalize orthogonal polynomials
to ORF for which the poles of the successive rational functions of increasing
degree are taken from a preselected sequence of complex numbers.
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1.1 Linear Prediction

Consider a discrete time stationary stochastic process {yn}n∈Z. The index
n denotes a time instance. Stationarity means that μk = E{ynyn−k} is
independent of n. We suppose that all the yn are zero mean, identically dis-
tributed. A problem considered already by Wiener is to predict yn at in-
stant n from observation of the preceding yn−k, k ≥ 1. Thus we want to
find coefficients ak such that yn is predicted by ŷn = −∑∞

k=1 akyn−k such
that we minimize the energy of the prediction error or innovation process
en =

∑∞
k=0 akyn−k where a0 = 1. That is we want to minimize the expected

value E{|en|2}.
Because in the space spanned by {yn}n∈Z, we can consider E{xy} as an

inner product of x and y, we can formulate the previous problem by saying
that we look for the orthogonal projection of the present onto its past. Modulo
some technical details, it can be shown that this problem can be reformulated
in an L2 setting as an infinite dimensional least squares problem, i.e., finding
the projection of 1 onto the space H−

2 spanned by {z−1, z−2, . . .} in the Hilbert
space L2(μ) of the unit circle where the orthogonality measure is the spectral
measure of the process (the trigonometric moments of this measure are the
μk introduced above). The result is that the optimal predictor is given by the
spectral factor of the spectral measure. Suppose for simplicity that the spectral
measure is absolutely continuous with weight w(eiω), then the spectral factor
is the function σ(z) which is the outer spectral factor of w (σ and 1/σ are
analytic outside the unit disk, and satisfy |σ(t)|2 = w(t) for |t| = 1).

There are two ways one can think of to solve this problem. Either we
project 1 onto subspaces L−

n of H−
2 of dimension n = 1, 2, . . . and let n tend

to ∞, or we can solve the trigonometric moment problem to find the spectral
measure and subsequently or simultaneously do a spectral factorization.

If we assume that the value of yn is mostly defined by the near past
and much less by a past that is longer ago, then a natural choice is to take
L−

n = span{z−1, . . . , z−n}. So the optimal predictor of this finite dimensional
problem is to find the polynomial ϕ̂n(z) =

∑n
k=0 akz

−k with a0 = 1 that
has minimal norm in L2(μ). This is known to be the reciprocal of the monic
nth orthogonal polynomial. From the classical Szegő theory, it is known that
(under appropriate conditions on the measure) these orthogonal polynomials
converge (up to a constant) to the outer spectral factor of the orthogonality
measure (whose inverse is often called Christoffel function in this context).
Thus solving the projection problem leads asymptotically to a spectral factor
of the measure. For practical applications though we do not want n to be
very large, since that would need long and expensive filters. So we stop this
process with a finite n, and hope to have a good approximation. It is not
difficult however to find a simple example that requires a very long filter to
get a reasonable approximation.

Suppose yn = −∑∞
k=1 a

kyn−k. Thus the predictor is 1 + a/z + a2/z2 +
· · · = 1/(1 − a/z). If |a| is close to 1, then the sequence ak will decay very
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slowly, and we shall need a high degree polynomial ϕ̂n to obtain a good
approximation. If however, we know an estimate â of a from observing the
FFT of the observations, then a filter expanded in terms of powers of (1− â/z)
might need only a couple of terms to give a good approximation. For a more
complicated behaviour of the spectral density of the process, one might need
more poles to get an accurate model and in such a case a rational approximant
from span{1, 1/(1−α1/z), 1/[(1−α1/z)(1−α2/z)], . . .} will be a better option
to model the system.

1.2 Krylov Subspace Methods

If A is a linear operator on a Hilbert space H (e.g., a large N × N matrix
operating on RN ) and v ∈ H, then the space Kn+1(A, v) = span{v0, . . . , vn}
with vk = Akv, is called a Krylov subspace. To solve a linear equation Ax =
b or an eigenvalue problem for A, the problem is projected onto a Krylov
subspace of finite (i.e., low) dimension (n � N in the matrix example) and
this low dimensional problem is solved to give an approximation to the original
problem. To compute the projection, an orthogonal basis is constructed for
the Krylov subspace. Clearly, the (k + 1)st orthogonal vector qk has to be a
combination of the the first k + 1 vectors in the Krylov subspace. Hence it is
of the form qk = ϕk(A)v with ϕk(z) a polynomial of degree k.

Exercise 1. Suppose that A is real self adjoint and positive definite, then
prove that the orthonormality qT

k ql = δk,l is equivalent with the orthogo-
nality of the polynomials 〈ϕk, ϕk〉 = δkl with respect to the inner product
defined by 〈ϕk, ϕl〉 = L(ϕkϕl) where the linear functional L is defined on the
space of polynomials by its moments mk = L(zk) = vTAkv. Note that the
metric for the standard basis {1, z, z2, . . .} is a Hankel matrix whose rank
can not be larger than N , the size of A.

Thus in the classical Lanczos method for symmetric matrices, the three-
term recurrence relation for the orthogonal polynomials leads to a short re-
currence between the successive vectors qk, meaning that qn can be computed
from qn−1 and qn−2, which does not need a full Gram-Schmidt orthogonaliza-
tion.

However, computing the vk is like an application of the power method and
therefore, the vk will quickly converge to an eigenvector corresponding to a
dominant eigenvalue. Thus, if we want an eigenvalue in the neighborhood of
α, then we should not iterate with A, but with B = (A−αI)−1. The rational
Krylov method (RKS) of A. Ruhe [26, 27, 28] allows for a different shift α
in every iteration step. Thus vk = (A − αkI)−1vk−1, or even more generally
vk = (A − σkI)(A − αkI)−1vk−1, where αk is used to enforce the influence
of the eigenspaces of the eigenvalues in the neighborhood of αk, while σk

is used to suppress the influence of the eigenspaces of the eigenvalues in the
neighborhood of σk. Anyway, this construction of vk means that we may write
vk as vk = rk(A)v with rk a rational function of the form pk(z)/[(z − α1) · · ·
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(z−αk)] with pk a polynomial of degree at most k, so that after orthogonalizing
vk with respect to the previous vectors, we obtain a vector qk = ϕk(A)v
where ϕk(z) is again a rational function of the same form as rk. Since the
classical moment matrix has a Hankel structure, this theory will be related to
orthogonality on the real line.

Skipping all the technical details, it will be obvious that orthogonality of
the qk will lead to some orthogonality of the rational functions ϕk. Again, a
simple recurrence of the ORF will lead to an efficient implementation of the
RKS.

1.3 Numerical Quadrature

One more example, before we dive into the general theory of ORF. To compute
an integral

∫ b

a
f(x)w(x)dx, it is well known that a quadrature formula of the

form
∑n

k=1 λkf(ξk) will be exact for all polynomials of degree up to 2n− 1 if
the nodes of this quadrature formula are the zeros of the polynomial ϕn which
is the nth orthogonal polynomial orthogonal with respect to the inner product
〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx, and if the weights are given by the corresponding

Christoffel numbers λk = 1/
∑n−1

j=0 |ϕk(ξk)|2.
However, if the integrand f does not behave much like a polynomial, some

other quadrature formula can be better. For example if we want to integrate
f(x) = sin(x)/pn(x) over the interval [0, π/2] with w = 1. If pn(x) is a real
polynomial with complex conjugate pairs of zeros that are close to the interval
of integration, then it would be much better to have a quadrature formula that
is exact for all rational functions of degree n that have poles close to the zeros
of the polynomial pn. Using ORF for the interval [a, b] with respect to the
weight w, with prescribed poles, it is possible to derive formulas that are
similar to the Gaussian formulas, i.e., taking for the nodes the zeros of the
ORF ϕn and as weights λk = 1/

∑n−1
j=0 |ϕk(ξk)|2. These quadrature formulas

will be exact in a certain space of dimension 2n−1. It is clear that this should
lead to much more accurate results in examples like we described above.

2 Orthogonal Rational Functions on the Unit Circle

We give in Sections 2–6 an introduction to the theory of ORF for a measure
that is supported on the unit circle of the complex plane. All the results of
this part (and more) can be found in the monograph [3].

2.1 Preliminaries

We denote

D = {z ∈ C : |z| < 1}, T = {z ∈ C : |z| = 1}, E = {z ∈ C : |z| > 1}.
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For any function f we introduce the parahermitian conjugate f∗, defined by
f∗(z) = f(1/z). Note that for t ∈ T, f∗(t) = f(t).

Let μ be a probability measure on T with infinite support and L2(μ) the
Hilbert space with inner product 〈f, g〉μ =

∫
f(t)g(t)dμ(t). If dμ = dλ is the

normalized Lebesgue measure dλ = dt/(2π) we drop μ from the notation. The
trigonometric moments are denoted by ck =

∫
t−kdμ(t), k ∈ Z.

Introducing the Riesz-Herglotz kernel

D(t, z) =
t + z

t− z

we can associate with μ its Riesz-Herglotz transform

Ωμ(z) = ic +
∫

D(t, z)dμ(t)

with Ωμ(0) = 1+ic. This Ωμ belongs to the class C of Carathéodory functions

C = {f ∈ H(D) : Re f(D) > 0}

where H(D) denotes the functions analytic in D.

Exercise 2. Prove that

ReΩμ(z) =
∫

P (t, z)dμ(t)

with Poisson kernel

P (t, z) =
1
2
[D(t, z) + D(1/t, z)] =

t(1 − |z|2)
(t− z)(1 − zt)

, (2.1)

which can be simplified for t ∈ T as follows

P (t, z) = ReD(t, z) =
1 − |z|2
|t− z|2 , t ∈ T, z ∈ D.

Moreover with ck =
∫
t−kdμ(t)

Ωμ(z) = c0 + 2
∞∑

k=1

ckz
k, (c0 = 1)

and the nontangential limit of ReΩμ(z) when |z| → 1 is a.e. (dλ) equal to
μ′ which is the density function of the absolute continuous part of μ.

Let H2(D) be the classical Hardy space of functions analytic in D that have
a boundary value on T that is square integrable. Every function f ∈ H2(D)
has a canonical inner-outer factorization. This means that it can be written
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as f = UF with U inner and F outer. An inner function belongs to the class
of bounded analytic functions

B(D) = {f ∈ H(D) : f(D) ⊂ D}

and |f(t)| = 1 a.e. on T. A Blaschke product is an example of an inner
function. It is defined as B(z) =

∏
n ζn(z) with

ζn(z) = zn
z − αn

1 − αnz
, zn = −|αn|

αn
, αn ∈ D \ {0}

and zn = 1 if αn = 0. It is well known that a Blaschke product converges (to
a finite function not identically zero) if and only if∑

n

(1 − |αn|) < ∞,

which means that the |αn| should approach 1 fast enough. Any inner function
is of the form

U(z) = eiγB(z)S(z), γ ∈ R, S(z) = exp
{
−
∫

D(t, z)dν(t)
}

with ν a bounded positive singular (ν′ = 0 a.e.) measure and B a Blaschke
product that catches all the zeros of U .

An outer function in H2(D) is a function of the form

F (z) = eiγ exp
{∫

D(t, z) logψ(t)dλ(t)
}
, γ ∈ R

where logψ ∈ L1 and ψ ∈ L2.
If logμ′ ∈ L1 (Szegő’s condition), then we may define the spectral factor

of μ

σ(z) = c exp
{

1
2

∫
D(t, z) log μ′(t)dλ(t)

}
, c ∈ T, z ∈ D.

It is an outer function, uniquely defined up to a constant c ∈ T. It has a
nontangential limit to the boundary T that satisfies |σ(t)|2 = μ′(t), a.e., t ∈ T.
The constant c can be fixed by requiring for example that σ(0) > 0.

Exercise 3. Prove that

|σ(z)|2 = exp
{∫

P (t, z) logμ′(t)dλ
}
.

More about the material in this section can be found in many textbooks
a.o. [8, 16, 15, 14, 25, 30].
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2.2 The Fundamental Spaces

We select a sequence {αk}∞k=0 ⊂ D with α0 = 0 and define the partial Blaschke
products

B0 = 1, Bn(z) = Bn−1(z)ζn(z) =
n∏

k=1

zk
z − αk

1 − αkz
, n ≥ 1.

The functions {B0, B1, . . . , Bn} span the space

Ln =

{
pn

πn
: πn(z) =

n∏
k=1

(1 − αkz), pn ∈ Pn

}
(2.2)

where Pn is the space of polynomials of degree at most n.
If we set all αk = 0, then Ln = Pn. In that case the Gram matrix of Ln

for the standard basis is a Toeplitz matrix with entries
〈
zi, zj

〉
μ

= cj−i where
i, j = 0, . . . , n. If all the αk are mutually distinct, then the Gram matrix for
the basis {1, 1/(1 − α1z), . . . , 1/(1 − αnz)} has entries〈

1
1 − αiz

,
1

1 − αjz

〉
μ

=
1

2(1 − αiαj)

∫ [
D(t, αi) + D(t, αj)

]
dμ(t)

=
1
2
Ωμ(αi) + Ωμ(αj)

1 − αjαi
.

Such a matrix is called a Pick matrix.

Exercise 4. If ∂k
w denotes the kth derivative with respect to the variable

w, prove that

Ω(k)
μ (w) := ∂k

wΩμ(w) =
∫

∂k
wD(t, w)dμ(t) = 2(k!)

∫
tdμ(t)

(t− w)k+1

and
Ω

(k)
μ (w) =

∫
∂k

wD(t, w)dμ(t).

In the more general situation where we want to construct a Gram matrix
for the space Ln for fixed n and where some of the of the αk are repeated,
we can rearrange them so that equal αk are grouped. We can then take the
basis consisting of functions of the form 1/(1 − αkz), . . . , 1/(1 − αkz)νk if αk

is repeated νk times, and similarly for the other αi. Technically, it is rather
difficult to write a general expression of an entry in the Gram matrix for such
a basis, but with the help op the previous exercise, one can show the following.

Exercise 5. Suppose there are m + 1 different α0, . . . , αm (recall α0 = 0)
which appear with multiplicity ν0, . . . , νm respectively with

∑m
i=0 νi = n+1,

then the Gram matrix for the basis of Ln that we just mentioned will only
depend on Ω

(k)
μ (αi), k = 0, . . . , νi − 1, i = 0, . . . ,m. We could call this a

generalized Pick matrix.
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Whatever the basis is that we choose for Ln, it will always be similar to a
Toeplitz matrix.

Theorem 2.1. If W = [w0, . . . , wn]T is a basis for Ln, with Gram matrix
Gn(W ) = 〈W,W 〉μ = [〈wk, wl〉μ]nk,l=0, then there is a Toeplitz matrix T and
an invertible matrix V such that V Gn(W )V H = T .

Proof. Note that we may always choose the basis {�k(z) = zk/πn(z) : k =
0, . . . , n} with πn(z) as in (2.2). Note that the Gram matrix for this ba-
sis is Toeplitz, whose entries are trigonometric moments for the measure
dμ(t)/|πn(t)|2. Since every basis transformation is represented by an invertible
matrix, the theorem follows. ��

2.3 Reproducing Kernels

Suppose {e0, . . . , en} is a basis for Ln, orthonormal with respect to μ.
Then kn(z, w) =

∑n
k=0 ek(z)ek(w) is a reproducing kernel for Ln, i.e.,

〈f(·), kn(·, w)〉μ = f(w) for all f ∈ Ln and w ∈ D. If f ∈ Lm with m > n,
then 〈f(·), kn(·, w)〉μ gives the orthogonal projection of f onto Ln. Both ob-
servations follow immediately by writing f as a linear combination of the ek

and using the orthonormality. Note that the reproducing kernel is unique. The
previous expression does not depend on a particular choice of the orthonormal
basis. For example, it is immediately seen that if {ek} is an orthonormal basis
for Ln, then {Bnek∗} is also an orthonormal basis because Bnek∗ ∈ Ln for
k = 0, . . . , n and

〈Bnek∗, Bnel∗〉μ =
∫

|Bn(t)|2ek(t)el(t)dμ(t) = 〈el, ek〉 = δk,l.

Therefore, by using Bn(z)ek∗(z) = Bn(z)ek(1/z) as orthonormal basis:

kn(z, w) = Bn(z)Bn(w)
n∑

k=0

ek(1/z)ek(1/w) = Bn(z)Bn(w)kn(1/w, 1/z).

By using a basis transformation, one may express kn(z, w) in terms of any
basis for Ln as follows.

Theorem 2.2. If En(z) = [e0(z), . . . , en(z)]T represents any basis for Ln,
then the reproducing kernel is given by

kn(z, w) =
−1

detGn
det
[

Gn En(z)
En(w)H 0

]
where Gn = 〈En, En〉μ is the Gram matrix of En. The superscript H refers to
the complex conjugate (Hermitian) transpose.
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Proof. Let Fn = V En with V invertible be a column of orthonormal basis
functions. Then I = 〈Fn, Fn〉μ = V 〈En, En〉μ V H = V GnV

H , so that G−1
n =

V HV and thus

kn(z, w) = Fn(w)HFn(z) = En(w)HV HV En(z) = En(w)HG−1
n En(z),

which proves the theorem. ��

From now on, we shall use the notation φk for the orthonormal basis for
Ln that is ordered such that φ0 = 1 and φk ∈ Lk \ Lk−1 for k = 1, 2, . . .
Using the partial Blaschke products Bk, which also form a basis, we can write
φn = an,nBn + an,n−1Bn−1 + · · ·+ an,1B1 + an,0. We shall denote the leading
coefficient an,n (with respect to the basis Bk) by κn. Since φn is uniquely
defined up to a constant of modulus 1, we can fix φn uniquely, for example by
assuming that κn > 0, which we shall do throughout this lecture. Note that the
trailing coefficient an,0 (with respect to the basis Bk) is given by φn(α1). To
derive a similar notation for the leading coefficient, we need a generalization of
the reciprocal function. We shall denote this generalization by a superscript ∗.
In general we set for any function f ∈ Ln: f∗(z) = Bn(z)f∗(z). Note that the
superstar notation is ambiguous since it depends on the n that is considered.
So a notation like f [n] instead of f∗ would be more appropriate. However, in
order not to overload the notation, if not explicitly mentioned, it should be
clear from the context which n is intended. Note that with this notation we
have φ∗n(αn) = κn > 0. We can now immediately write down as a consequence
of the previous theorem:

Corollary 2.1. If the φn = κnBn + · · · with κn > 0 are the orthonormal basis
functions for Ln as introduced above and kn(z, w) is the reproducing kernel,
then kn(z, αn) = κnφ

∗
n(z) and kn(αn, αn) = κ2

n.

Exercise 6. Prove this corollary.

The following Christoffel-Darboux relations hold:

Theorem 2.3. With the notation just introduced we have

kn(z, w) =
φ∗n+1(z)φ∗n+1(w) − φn+1(z)φn+1(w)

1 − ζn+1(z)ζn+1(w)

=
φ∗n(z)φ∗n(w) − ζn(z)ζn(w)φn(z)φn(w)

1 − ζn(z)ζn(w)
.

If z = w = t ∈ T, then one may pass to the limit which will introduce deriva-
tives:

P (t, αn+1)kn(t, t) = t[φ′n+1(t)φn+1(t) − φ∗
′

n+1(t)φ∗n+1(t)],

with P (t, z) the Poisson kernel (2.1).
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Proof. Because the numerators and denominators of the expressions on the
right hand side vanish for z = 1/w, this zero cancels out and the right hand
sides are in Ln as a function of z. Using

kn(z, w) = Bn(z)Bn(w)
n∑

k=0

φk∗(z)φk∗(w)

(which follows from Theorem 2.2) we may write

kn+1(z, w)
Bn+1(z)Bn+1(w)

− kn(z, w)
Bn(z)Bn(w)

= φ(n+1)∗(z)φ(n+1)∗(w).

Multiplying by the denominator gives

[kn(z, w) + φn+1(z)φn+1(w)] − ζn+1(z)ζn+1(w)kn(z, w) = φ∗n+1(z)φ∗n+1(w),

which gives the first formula when z and w do not coincide on T. The other
formula is obtained when in the previous formula we replace n by n − 1 so
that

kn(z, w) + ζn(z)ζn(w)[φn(z)φn(w) − kn(z, w)] = φ∗n(z)φ∗n(w)

from which the proof follows. ��

Exercise 7. Prove the confluent case.

It can be seen that this relation does not depend on the fact that all
αk ∈ D.

Note that if we set φk = pk/πk with πk(z) =
∏k

i=0(1 − αiz), then the
pk do not form an orthogonal polynomial sequence w.r.t. a positive measure,
so that the theory of ORF is not quite the same as the theory of orthogonal
polynomials w.r.t. a varying measure. With the Christoffel-Darboux formula,
setting z = w, it is not difficult to derive the following property.

Theorem 2.4. For all n ≥ 0, φ∗n(z) �= 0 for z ∈ D (hence, φn(z) �= 0 for
z ∈ E) and |φn+1(z)/φ∗n+1(z)| < 1, (= 1, > 1) for z ∈ D, (T,E).

Exercise 8. Prove this theorem.

2.4 Recurrence Relations

The kernels satisfy a fundamental recurrence relation

Theorem 2.5. The kernels satisfy (superstar w.r.t. z)[
k∗n(z, w)
kn(z, w)

]
= tn(z, w)

[
k∗n−1(z, w)
kn−1(z, w)

]
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with

tn(z, w) = cn

[
1 ρn

ρn 1

] [
ζn(z) 0

0 1

] [
1 γn

γn 1

]
where

cn = (1 − |ρn|2)−1

ρn = ρn(w) = φn(w)/φ∗n(w)
γn = γn(w) = −ζn(w)ρn(w).

Proof. The Christoffel-Darboux relation implies

kn(z, w) = φ∗n(z)φ∗n(w) + ζn(z)ζn(w)kn−1(z, w).

Multiply this with ρn(w) and substitute (superstar w.r.t. z)

φ∗n(z)φ∗n(w)ρn(w) = k∗n(z, w) − ζn(z)k∗n−1(z, w)

to get

kn(z, w)ρn(w) = ζn(z)ζn(w)kn−1(z, w)ρn(w) + k∗n(z, w) − ζn(z)k∗n−1(z, w).

Take the superstar conjugate of this relation and solve for k∗n(z, w) and
kn(z, w) and the result follows. ��
The Christoffel-Darboux relation also implies a recurrence relation for the φn.

Theorem 2.6. The orthonormal functions satisfy[
φn(z)
φ∗n(z)

]
= t̃n(z)

[
φn−1(z)
φ∗n−1(z)

]
where

t̃n(z) =
κn

κn−1

[
1 0
0 zn

] [
εn δn

δn εn

] [ z−αn−1
1−αnz 0

0 1−αn−1z
1−αnz

]

=
κn

κn−1

1 − αn−1z

1 − αnz

[
zn−1εn 0

0 znεn

] [
1 λn

λn 1

] [
ζn−1(z) 0

0 1

]

=

√
1 − |αn|2

1 − |αn−1|2
1√

1 − |λn|2
1 − αn−1z

1 − αnz

[
η1

n 0
0 η2

n

] [
1 λn

λn 1

] [
ζn−1(z) 0

0 1

]
,

with

εn = zn
1 − αn−1αn

1 − |αn−1|2
φ∗n(αn−1)

κn
, δn =

1 − αnαn−1

1 − |αn−1|2
φn(αn−1)

κn
,

λn = zn−1
δn

εn
= η1

n

φn(αn−1)
φ∗n(αn−1)

∈ D, η1
n = znzn−1

1 − αn−1αn

1 − αnαn−1
∈ T,

η2
n = zn−1znη

1
n =

1 − αnαn−1

|1 − αnαn−1|
φ∗n(αn−1)
|φ∗n(αn−1)|

∈ T.
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Proof. (sketch) From the superstar conjugate (w.r.t. z) of the Christoffel-
Darboux relation we find

φ∗n(z)φn(αn−1) − φn(z)φ∗n(αn−1)
ζn(αn−1) − ζn(z)

= φn−1(z)κn−1.

The superstar conjugate of this relation is

φ∗n(z)φ∗n(αn−1) − φn(z)φn(αn−1)
1 − ζn(z)ζn(αn−1)

= φ∗n−1(z)κn−1.

Eliminate φ∗n(z) between these two relations and the first form of the recur-
rence for φn(z) is obtained. The second one follows immediately from this
because the Christoffel-Darboux relations imply (|φ∗n(z)|2 − |φn(z)|2)/(1 −
|ζn(z)|2) > 0 so that φ∗n(αn−1) �= 0 and λn ∈ D. For the third one, recall that
κn = φ∗n(αn), and use again the Christoffel-Darboux relation with z = w = αn

to obtain the appropriate factor in front. ��
Note that if all the αk are zero, then we recover the polynomial case. The
recurrence relation is just the Szegő recurrence and the λn being then equal
to φn(0)/κn, are the Szegő parameters (and are sometimes called Schur or
reflection coefficients).

Since this is derived from the Christoffel-Darboux relation, the first re-
currence does not depend on the αk being in D. However, we can not allow
αnαn−1 = 1, in which case λn is not defined. In such a case we call the system
degenerate. If φn(αn−1) = 0, then we call the system exceptional. If all the αk

are in D or all in E, then the system is non-degenerate and λn ∈ D.
The vector [φn, φ

∗
n]T is a solution of the recurrence with initial condition

[φ0, φ
∗
0]

T = [1, 1]T . This is not the only solution. With the initial condition
[1,−1]T we get another, independent solution. It will be formulated in terms
of some functions ψn ∈ Ln which we shall call the ORF of the second kind.
We introduce them as follows.

ψ0 = 1, ψn(z) =
∫

D(t, z)[φn(t) − φn(z)]dμ(t), n ≥ 1.

Exercise 9. Let f be such that f∗ ∈ Ln−1, then prove by orthogonality
that ∫

D(t, z)[f(t)/f(z) − 1]φn(t)dμ(t) = 0.

From this derive that for such an f

ψn(z) =
∫

D(t, z)[φn(t)f(t)/f(z) − φn(z)]dμ(t), n ≥ 1. (2.3)

Similarly derive that for an f �= 0 such that f ∈ Ln and f(αn) = 0 it holds
that

ψ∗
n(z) =

∫
D(t, z) [φ∗n(t)f(t)/f(z) − φ∗n(z)] dμ(t), n ≥ 1. (2.4)
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We can now prove that [ψn,−ψ∗
n]T is another solution of the recurrence

relation for [φn, φ
∗
n]T , which corresponds to the initial condition [1,−1]T . In

other words [ψn, ψ
∗
n]T satisfies the same recurrence relation as [φn, φ

∗
n]T , but

with λn replaced by −λn.

Theorem 2.7. With the notation of Theorem 2.6 we have[
φn(z) ψn(z)
φ∗n(z) −ψ∗

n(z)

]
= t̃n(z)

[
φn−1(z) ψn−1(z)
φ∗n−1(z) −ψ∗

n−1(z)

]
. (2.5)

Proof. We only have to prove the relation for the ψn. From the definition and
the previous exercise we have for n > 1[

ψn−1(z)
−ψ∗

n−1(z)

]
= −Ωμ(z)

[
φn−1(z)
φ∗n−1(z)

]
+
∫

D(t, z)

[
φn−1(t)

ζn−1(z)
ζn−1(t)

φ∗n−1(t)

]
dμ(t).

Multiply from the left by t̃n(z) and the right hand side becomes

−Ωμ(z)
[
φn(z)
φ∗n(z)

]
+
∫

D(t, z)Q(t, z)
[
φn(t)
φ∗n(t)

]
dμ(t)

with

Q(t, z) =
(z − αn−1)(1 − αnt)
(1 − αnz)(t− αn−1)

.

Using a technique like in the previous exercise, it can be shown that the
integral equals ∫

D(t, z)

[
φn(t)

ζn(z)
ζn(t)φ

∗
n(t)

]
dμ(t)

so that on the right hand side we get again the same expression as in the
starting relation but with n − 1 replaced by n. This proves the theorem for
n > 1. ��

Exercise 10. Check the theorem for n = 1.

Far reaching generalizations of the Christoffel-Darboux relations can be
obtained for any couple of solutions (xn, x

+
n ) and (yn, y

+
n ) of this recurrence.

We give them without proof.

Theorem 2.8. Given two solutions (xn, x
+
n ) and (yn, y

+
n ) of this recurrence,

we can define
Fn(z, w) = x+

n (z)yn(w) − xn(z)y+
n (w),

and then we have a Liouville-Ostrogradskii formula

Fn(z, w)
1 − ζn(z)/ζn(w)

−Bn(w)
F0(z, w)

1 − ζ0(z)/ζ0(w)
= −

n−1∑
k=0

xk(z)y+
k (w)

Bn(w)
Bk(w)
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and with the definition

Gn(z, w) = x+
n (z)y+

n (w) − xn(z)yn(w),

we have a Green formula

Gn(z, w)
1 − ζn(z)ζn(w)

− G0(z, w)
1 − ζ0(z)ζ0(w)

=
n−1∑
k=0

xk(z)yk(w).

Choosing (xn, x
+
n ) and/or (yn, y

+
n ) equal to (φn, φ

∗
n) or (ψn, ψ

∗
n) gives several

identities which we leave for the reader to discover. We just give one example:

ψn(z)φ∗n(z) + ψ∗
n(z)φn(z) = 2Bn(z)P (z, αn) (2.6)

with P (z, w) the Poisson kernel (2.1). It is obtained by taking z = w and
(x, x+) = (φ, φ∗) and (y, y+) = (ψ,−ψ∗) in the Liouville-Ostrogradskii for-
mula. It can also be obtained by taking determinants in (2.5). Therefore we
refer to it as the determinant formula.

Note that the Christoffel-Darboux relation was crucial in our development
so far. From this, we derived the recurrence relation for the kernels, and for
the ORF which gave rise to the introduction of the second kind functions.

This can be inverted: if we have a recurrence relation for φn as given above,
then they will be ORF with respect to some positive measure on T. This is a
Favard type theorem which reads as follows:

Theorem 2.9 (Favard). Given a sequence {α0 = 0, α1, α2, . . .} ⊂ D and
suppose that with initial condition φ0 = 1, the φn are generated by a recur-
rence relation of the 3rd form given in Theorem 2.6 with all λn ∈ D, and
the unimodular constants such that φ∗n(αn) > 0, then these φn will form a
sequence of ORF with respect to a probability measure on T.

We formulate the theorem here as a motivation for the introduction of quadra-
ture formulas and will give its proof later in Section 4.

Because the functions of the second kind satisfy a recurrence relation of this
form (the λn have to be replaced by −λn), it follows by the Favard theorem
that they also are a system of ORF, with respect to a positive measure on
T. Thus we can attribute to ψn the same properties as we can attribute to
the φn (location of the zeros, Christoffel-Darboux relations, etc.). If Ωμ ∈ C is
the Riesz-Herglotz transform of μ, then clearly 1/Ωμ is also in C. So it can be
written as the Riesz-Herglotz transform of some measure ν. It can be shown
that if the φn are orthogonal w.r.t. μ, then the associated functions of the
second kind ψn, will be orthogonal w.r.t. the associated ν.

Obtaining a constructive proof for this theorem is closely related to the
applications we mentioned in the beginning: we construct a measure that will
generate an inner product that entails orthogonality in Ln and then let n tend
to infinity. The first part is related to numerical quadrature and interpolation
which we shall consider in the next section.
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3 Quadrature and Interpolation

3.1 Quadrature

One way to obtain a quadrature formula for the integral Iμ{f} =
∫
f(t)dμ(t)

is to interpolate f by a function fn in a number of points {ξni}n
i=1 ⊂ T, and

to approximate Iμ{f} by In{f} = Iμ{fn}.

Exercise 11. Consider the function fn ∈ Lp,q = {fg : f ∈ Lp∗, g ∈ Lq},
p, q ≥ 0, p + q = n− 1, where Lp∗ = {f : f∗ ∈ Lp}. Show that this fn shall
interpolate f in the points {ξni}n

i=1 ⊂ T if

fn(t) =
n∑

k=1

Ln,k(t)f(ξnk), Ln,k(t) = �n,k(t)

(
q∏

i=1

1 − αiξnk

1 − αit

)
p∏

i=1

ξnk − αi

t− αi
,

where �n,k are the classical Lagrange polynomials, i.e., �n,k(ξnj) = δk,j . Note
that the Ln,k ∈ Lp,q are rational generalizations for which also Ln,k(ξnj) =
δk,j .

Thus the quadrature formula is In{f} =
∑n

k=1 λn,kf(ξnk), λn,k = Iμ{Ln,k}.
This is called an interpolating quadrature formula, which is obviously exact
for all f ∈ Lp,q.

To obtain the largest possible domain in which we get an exact quadrature
formula, we have to choose the nodes ξnk in a particular way. Like in Gaussian
quadrature formulas, we could try to choose them as the zeros of φn, but that
is impossible because the ORF φn have all their zeros inside D, and not on T.
However the following result holds.

Theorem 3.1. The function Qn(z) = φn(z) + τφ∗n(z), τ ∈ T has n simple
zeros on T and it is para-orthogonal which means that it is orthogonal to
Ln−1 ∩ Ln(αn) where Ln(αn) = {f ∈ Ln : f(αn) = 0}. Moreover 〈1, Qn〉μ �=
0 �= 〈Bn, Qn〉μ.

Proof. By the Christoffel-Darboux relations we know that |φ∗n|2 > |φn|2 in D
and the opposite inequality holds in E. Thus Qn can only have zeros in T.
These zeros are simple, otherwise, we would have Qn(ξ) = Q′

n(ξ) = 0, which
implies that in ξ we have φn/φ

∗
n = −τ = −1/τ = φ∗n/φn or φ′nφn − (φ∗n)′φ∗n =

0. But letting z and w approach ξ ∈ T in the Christoffel-Darboux formula
leads to (1−αnξ)(ξ−αn)

1−|αn|2 [φ′n(ξ)φn(ξ)− (φ∗n)′(ξ)φ∗n(ξ)] = kn−1(ξ, ξ) > 0, which is
a contradiction.

Concerning the para-orthogonality we note that 〈f, φn〉μ = 0 if f ∈ Ln−1

while if f ∈ Ln(αn), then it can be written as Bng∗ with g ∈ Ln−1, and thus
〈f, φ∗n〉μ = 〈Bng∗, Bnφn∗〉μ = 〈φn, g〉μ = 0. On the other hand 〈1, Qn〉μ =
τ 〈1, φ∗n〉μ = τ 〈φn, Bn〉μ �= 0, and similarly for the other inequality. ��
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Now take an arbitrary function R ∈ Ln−1,n−1, suppose we interpolate it with
a function Rn ∈ L0,n−1 = Ln−1, using the zeros {ξn1, . . . ξnn} of Qn. Then
simply writing it out shows that the interpolation error can be written as

En(z) = R(z) −Rn(z) = Qn(z)S(z), S ∈ Ln−1 ∩ Ln(αn).

Thus, because of the para-orthogonality of Qn, we get an integration error
Iμ{En} = 0, so that the quadrature formula is exact in Ln−1,n−1. This is the
highest possible degree of exactness that can be obtained with n nodes in the
sense that with n nodes on T, it is impossible to integrate exactly all functions
in Ln,n−1 or Ln−1,n. In this sense the quadrature formula is optimal and we
shall refer to it as the rational (or R-) Szegő quadrature formula. We denote
the (discrete) measure having masses λnk at the points ξnk by μn so that by
definition In{f} = Iμn

{f}.

3.2 Interpolation

We have used interpolation to construct a quadrature formula and found
that integration with respect to μ and μn is the same in Ln−1,n−1. This
happens if and only if their Riesz-Herglotz transforms take the same values at
the points {α0, . . . , αn} (taking multiplicity into account) since the respective
Gram matrices depend only on their (derivative) values in the poles {αk}n−1

k=0

(see exercise 5). So let us first find out what the Riesz-Herglotz transform of
μn is.

Theorem 3.2. Set Ωn(z) =
∫
D(t, z)dμn(t) = − Pn(z)

Qn(z) . Then for n ≥ 1

Pn(z) =
∫

D(t, z)[Qn(t)f(t)/f(z) −Qn(z)]dμ(t) = ψn(z) − τψ∗
n(z)

for any f such that f∗ ∈ Ln−1 ∩ Ln(αn).

Proof. If we write the terms explicitly, then it becomes clear that the previous
integrand is in Ln−1,n−1 for n ≥ 2, and thus we can replace the integral by the
R-Szegő quadrature formula with nodes the zeros of Qn, giving Pn(z)f(z) =
−f(z)Qn(z)In{D(·, z)} = −f(z)Qn(z)Ωn(z). The case n = 1 is left as an
exercise. The expression with ψk follows from (2.3) and its superstar. ��

Because of this result we could call Pn a para-orthogonal function of the
second kind. It is para-orthogonal with respect to the same measure as for
which the ψn are orthogonal.

The previous theorem has an interesting corollary.

Corollary 3.1. The weights of the R-Szegő formula are given by

λnk =
1

2ξnk

Pn(ξnk)
Q′

n(ξnk)
=

1∑n−1
i=0 |φi(ξnk)|2

> 0.
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Proof. Recall Ωn(z) = −Pn(z)/Qn(z) = In{D(·, z)} =
∑n

k=1 λnkD(ξnk, z)
and Qn(ξnk) = 0. Thus after multiplying by (z − ξnk) we have

(z − ξnk)Ωn(z) =
∑
j 	=k

λnjD(ξnj , z)(z − ξnk) + λnkD(ξnk, z)(z − ξnk).

Taking the limit for z → ξnk gives the first formula. For the expression with
the kernel, use the fact that Qn(ξnk) = 0, thus τ = 1/τ = −φn(ξnk)/φ∗n(ξnk),
and the confluent Christoffel-Darboux formula to get

Q′
n(ξnk) =

P (ξnk, αn)
ξnkφn(ξnk)

kn−1(ξnk, ξnk)

with P (t, z) the Poisson kernel (2.1), while the determinant formula leads to
Pn(ξnk) = 2P (ξnk, αn)/φn(ξnk), so the corollary is proved. ��

We can now derive interpolation properties for Ωn = −Pn/Qn:

Theorem 3.3. Let Ωn and Ωμ be the Riesz-Herglotz transforms of μn and μ
respectively, then Ωμ(z) − Ωn(z) = zBn−1(z)h(z), for n ≥ 1 with h analytic
in D.

Proof. This follows because of exercise 5. ��

Since we assumed τ ∈ T, we cannot set τ = 0, but we do have the same type
of interpolation with an extra interpolation in αn.

Theorem 3.4. For the ORF and the ORF of the second kind we have

Ωμ(z)φn(z) + ψn(z) = zBn−1(z)h(z), Ωμ(z)φ∗n(z) − ψ∗
n(z) = zBn(z)g(z)

with h and g analytic in D.

Proof. Since [φnΩμ + ψn]/Bn−1 =
∫
D(t, z)φn(t)/Bn−1(t)dμ(t), we find a

function analytic in D because it is a Cauchy-Stieltjes integral and setting
z = 0, so that D(t, 0) = 1, the integral becomes 〈φn, Bn−1〉μ = 0. The second
relation is similarly proved since now for z = 0 we find 〈φ∗n, Bn〉μ = 0. ��

Note that by the determinant formula, we have for Rn(z) = ψ∗
n/φ

∗
n that for

t ∈ T: wn(t) = ReRn(t) = 1
2 [Rn(t) + Rn∗(t)] = P (t, αn)/|φn(t)|2. Because of

the extra interpolation at αn, one might expect that the absolute continuous
measure wn(t)dλ(t) gives the same integrals in Ln,n, and it does indeed.

Theorem 3.5. The inner product in Ln is the same for the measure μ and
for the absolute continuous measure with weight wn = P (·, αn)/|φn|2.
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Proof. Since
∫
|φn(t)|2wn(t)dλ(t) =

∫
P (t, αn)dλ(t) = 1 = ‖φn‖2

μ, the norm
is maintained. Moreover

〈φn, φk〉wn
=
∫

P (t, αn)
φk∗(t)
φn∗(t)

dλ(t)

=
∫

P (t, αn)
{
φ∗k(t)Bn(t)/Bk(t)

φ∗n(t)

}
dλ(t) = 0,

which follows because the factor in curly brackets is analytic in D ∪ T, so
that we may apply Poisson’s formula to find zero because Bn(z)/Bk(z) is
zero in αn. Thus φn has norm 1 and is orthogonal to Ln−1 for the weight wn,
and because the recurrence relation then defines all the previous φk uniquely
(provided they have the proper normalization of positive leading coefficient),
the theorem follows. ��

We note that the para-orthogonality conditions alone do not define the func-
tions Qn completely. The para-orthogonal functions that we proposed are also
τ -invariant, which means that Q∗

n = τQn. The latter is essential to guaran-
tee that they have n simple zeros on T. It can be shown that this invariance
property and the para-orthogonality completely defines the Qn up to the pa-
rameter τ ∈ T and a normalizing constant factor.

3.3 Interpolation and Quadrature Using the Kernels

After we formulated the recurrence relation for the kernels in Theorem 2.4,
we gave the recurrence for the ORF in Theorem 2.6, but from there on, the
kernels were neglected. However, what has been developed for the ORF, can be
repeated and generalized to the kernels. Since the methodology is completely
analogous, we leave the proofs in this section as a major exercise.

First of all, we note that the kernels are produced by their recurrence
relation when we give the initial conditions (k∗0 , k0) = (1, 1). As in the case
of the ORF, we obtain another independent solution when we start with
(l∗0,−l0) = (1,−1). The resulting kernels could be called kernels of the second
kind. They satisfy [

l∗n(z, w)
−ln(z, w)

]
= tn(z, w)

[
l∗n−1(z, w)
−ln−1(z, w)

]
with tn(z, w) as in Theorem 2.4. By our remark after Theorem 2.9, it should
be clear that ln(z, w) =

∑n
k=0 ψn(z)ψk(w) is a reproducing kernel for the

space Ln w.r.t. the same measure as for which the ψk are the ORF. The
interpolation properties are a bit harder to obtain because they require a
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parameterized (in w) Riesz-Herglotz transform:

Ωμ(z, w) =
∫

D(t, z)
P (t, w)

dμ(t) + c,

with

c =
w
∫
tdμ(t) − w

∫
t−1dμ(t)

1 − |w|2 ∈ iR, (z, w) ∈ D × D,

D(t, z) the Dirichlet and P (t, w) the Poisson kernel. The c is chosen to make
Ωμ(w,w) real (and hence it equals 1). Then it is possible to formulate an
interpolation property saying that ln(z, w) − kn(z, w)Ωμ(z, w) vanishes for
all z ∈ {w,α1, . . . , αn}. Thus the special role of α0 = 0 has been removed
and is played by an arbitrary w ∈ D. Since kn(z, w) does not vanish for any
z ∈ D ∪ T if w ∈ D, we may consider Ωn(z, w) = ln(z, w)/kn(z, w), which
is the parameterized Riesz-Herglotz transform of the absolutely continuous
measure P (t, w)kn(w,w)/|kn(t, w)|2dλ(t). The inner product in Ln w.r.t. the
latter will not depend on w and will give the same results as the inner product
w.r.t. dμ(t).

4 Density and the Proof of Favard’s Theorem

4.1 Density

For the density of the Blaschke products in Lp(T), one can easily adapt a
result of [1, p.244] to find the following.

Theorem 4.1. Define the Blachke products as before for n ≥ 0 and B−n =
1/Bn for n ≥ 1. Then the system {Bn}n∈Z is complete in Lp(T), for any
p ≥ 1 as well as in the space C(T) of continuous functions on T if and only
if
∑

(1 − |αk|) = ∞ (the Blaschke product diverges).
Also the system {Bn}∞n=0 is complete in Hp for any p ≥ 1 if and only if∑

(1 − |αk|) = ∞ (the Blaschke product diverges).

Walsh [31, p.305-306] states

Theorem 4.2. If the Blaschke product diverges and f ∈ H2, then fn ∈ Ln

which interpolates f in {w,α1, . . . , αn} ⊂ D (w is an arbitrary but fixed num-
ber in D) will converge to f uniformly on compact subsets of D, and if f is
continuous up to T, we also have uniform convergence on T.

For a general probability measure, Szegő’s condition logμ′ ∈ L1 plays a role.
For example, from Walsh [31, p.116,186,50,92,144] we may conclude that the
polynomials are dense in Lp(μ) if and only if logμ′ �∈ L1. For the rational
case, the situation seems to be less simple.
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Theorem 4.3.

1. If
∑

k(1 − |αk|) = ∞ then log μ′ �∈ L1 ⇔ {Bn}n≥0 is complete in L2(μ)
2. If logμ′ ∈ L1 then

∑
k(1 − |αk|) = ∞ ⇔ {Bn}n≥0 is complete in H2(μ)

3. If
∑

k(1 − |αk|) = ∞ then {Bn}n∈Z is complete in L2(μ).

Note that we have no equivalence anymore. The divergence of the Blaschke
product implies completeness of {Bn}∞n=0 in H2(μ) and of {Bn}n∈Z in L2(μ),
but the converse need not be true. We leave it to the reader to look up the
proofs of the above theorems. The precise characterization of completeness of
the Blaschke products in not totally cleared out.

4.2 Proof of Favard’s Theorem

It is easily proved by induction that the φ∗n generated by the recursion are
indeed superstar conjugates of the φn that it generates and the parameters λn

are given by their expressions of Theorem 2.6. Moreover, the {φk}n
k=0 are a

set of ORF with respect to the weight wn(t) = P (t, αn)/|φn|2. This is shown
as follows. Note that for 0 ≤ m ≤ n

〈φn, φm〉wn
=
∫

φm∗(t)
φn∗(t)

P (t, αn)dλ(t) =
Bn(z)
Bm(z)

φ∗m(z)
φ∗n(z)

∣∣∣∣
z=αn

= δnm.

Thus φn ⊥wn
Ln−1, and because an inverse recurrence (obtained by multi-

plying (2.5) from the left with the inverse of the matrix t̃n(z)), defines all the
previous ORF uniquely, the orthonormality with respect to wn is proved.

Now for n → ∞, we have a sequence of weights wn, uniformly bounded
(
∫
wndλ = 1), so that there is a subsequence wnk

which converges weakly.
Thus there is some μ such that limn→∞

∫
f(t)wnk

(t)dλ(t) =
∫
f(t)dμ(t) for all

functions f continuous on T. If
∑

(1−|αk|) = ∞, then a previous completeness
result shows that the measure μ is unique because the Riesz representation of
a linear functional on C(T) is unique.

5 Convergence

5.1 Orthogonal Polynomials w.r.t. Varying Measures

For the convergence of the ORF we shall rely on convergence results of orthog-
onal polynomials with respect to varying measures (OPVM). Let Pm we the
space of polynomials of at most degree m and construct a sequence of OPVM
for the measure dμ(t)/|πn(t)|2 with πn(t) =

∏n
k=1(1 − αkz). We denote the

orthonormal ones by φn,k(z) = vn,kz
k + · · · , vn,k > 0. By our general the-

ory they satisfy the recurrence φn,m(z) = en,m[zφn,m−1(z) + λn,mφ∗̄n,m−1(z)]
with λn,m = φn,m(0)/vn,m and en,m = (1−|λn,m|2)−1/2 = vn,m/vn,m−1. Here
φ∗̄n,m(z) = znφn,m(1/z). From these OP we can construct a set of ORF for
Ln, but as n increases, the whole set of ORF will change.
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Exercise 12. Denote fn,m(z) = tn,mφn,m(z)/πn(z) with tn,m ∈ T for an
appropriate normalization. Prove that the {fn,m : m = 0, . . . , n} is a set of
orthonormal rational functions for Ln with respect to μ. They are obtained
by orthonormalizing the basis {zk/πn(z) : k = 0, . . . , n}. Show also that

hn(z) =
zφn,n(z) − φn,n(αn)

φ∗̄
n,n(αn)αnφ

∗̄
n,n(z)

(z − αn)πn(z)
∈ Ln \ Ln−1 (5.1)

and that 〈hn, g〉μ = 0 for all g ∈ Ln−1, so that there is some constant cn

with |cn| = |φ∗n(0)| such that hn = cnφn.

We need the following conditions for the probability measure μ and the
point set A = {α1, α2, . . .}:
1. μ′ > 0 a.e. (λ) (Erdős-Turán condition)
2.
∑∞

n=1(1 − |αn|) = ∞ (BD = Blaschke divergence condition)

The first condition is denoted as μ ∈ ET. If it satisfies the stronger Szegő
condition logμ′ ∈ L1, we denote it by μ ∈ SZ. The second condition is denoted
as A ∈ BD, while if it is replaced by the stronger condition that A is compactly
contained in D (i.e., the αk stay away from the boundary), we denote it as
A ∈ CC. The following results are borrowed from the work of Guillermo López
[20, 21, 22].

Theorem 5.1. If μ ∈ ET and A ∈ BD then with our previous notation

1. limn→∞ λn,n+k+1 = 0.
2. limn→∞ vn,n+k+1/vn,n+k = 1.
3. limn→∞ φn,n+k+1(z)/φn,n+k(z) = z locally uniformly in E.
4. limn→∞ φ∗̄n,n+k+1(z)/φ

∗̄
n,n+k(z) = 1 locally uniformly in D.

5. limn→∞ φ∗̄n,n+k(z)/φn,n+k(z) = 0 locally uniformly in E.

If μ ∈ SZ, A ∈ CC and σ is the outer spectral factor of μ, then

6. limn→∞ φ∗̄n,n+k(z)/πn(z) = 1/σ(z) locally uniformly in D.

5.2 Szegő’s Condition and Convergence

We can now show that the following holds.

Theorem 5.2. If μ ∈ SZ and A ∈ BD, then we have the following (l.u. means
locally uniformly)

lim
n→∞ kn(z, w) =

1
σ(w)(1 − wz)σ(z)

, l.u. (z, w) ∈ D × D,

lim
n→∞(1 − αnz)

φ∗n(z)
φ∗n(0)

=
σ(0)
σ(z)

, l.u. z ∈ D,
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lim
n→∞φn(z) = lim

n→∞
φn(z)φ∗n(0)

φ∗n(z)
= lim

n→∞
φn(z)
φ∗n(z)

= 0, l.u. z ∈ D.

If μ ∈ SZ, σ(0) > 0, and A ∈ CC then

lim
n→∞ ηnφ

∗
n(z)

1 − αnz√
1 − |αn|2

=
1

σ(z)
, ηn =

|φ∗n(0)|
φ∗n(0)

∈ T, l.u. z ∈ D.

Proof. For the first relation, note that since the fn,k form an orthonormal
basis for Ln, we have

kn(z, w) =
n∑

k=0

fn,k(z)fn,k(w) =
∑n

k=0 φn,k(z)φn,k(w)

πn(z)πn(w)
.

Then use Christoffel-Darboux for the φnk and divide by f∗n,n(z)f∗n,n(w):

kn(z, w)
f∗n,n(z)f∗n,n(w)

=
1

1 − wz
− zw

1 − wz

(
φn,n(z)
φ∗̄n,n(z)

)(
φn,n(w)
φ∗̄n,n(w)

)
. (5.2)

The last two factors go to 0, while for some ηn ∈ T, limn→∞ ηnf
∗
n,n(z) =

1/σ(z), which proves the first result.
Since hn = cnφn, we have by our expression for hn

(1 − αnz)φ∗n(z) =
1
cn

φ∗̄n,n(z)
πn(z)

[
1 − ηnαnz

φn,n(z)
φ∗̄n,n(z)

]
, ηn =

φn,n(αn)
φ∗̄n,n(αn)

. (5.3)

Recall that φn,n(z)/φ∗̄n,n(z) → 0 l.u. in D, and being a Blaschke product it
is bounded by 1 in D ∪ T so that |ηn| ≤ 1. Hence the term between square
brackets goes to 1 as n → ∞. On the other hand, φ∗̄n,n(z)/πn(z) converges
to 1/σ(z) l.u. in D, up to some normalizing constant. But this constant will
cancel against the same constant in the denominator which is obtained by
setting z = 0. This proves the second result.

Taking z = w in the first relation implies
∑n

k=1 |φk(z)|2 converges for
n → ∞. Thus limn φn(z) = 0. When multiplying the inverse of the second
relation of this theorem with φn(z), and noting that (1−αnz)−1 is uniformly
bounded if z is in a compact subset of D, we also get the second limit.

For the third one, we note that |φ∗n(0)| is uniformly bounded away from
0, because the Christoffel-Darboux relation implies |φ∗n(0)|2 ≥ 1.

For the last limit, note that ηn is used to normalize φ∗n to make it positive
in z = 0. By the Christoffel-Darboux relation for z = w = 0

|φ∗n(0)|2
1 − |αn|2

= kn−1(0, 0) +
|φn(0)|2
1 − |αn|2

.
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Because φn(0) → 0, and the αk stay away from the circle, the last term goes
to 0, and we know that the second one goes to |σ(0)|−2. Therefore we see that
|φ∗n(0)|/

√
1 − |αn|2 → 1/σ(0). In combination with the second limit of this

theorem, the result follows. ��

When μ �∈ SZ, then σ need not be defined, and the previous relations can not
be obtained. A way to avoid the σ is to consider ratio asymptotics, so that the
σ cancel out. These are weaker results in the sense that if μ ∈ SZ, then the ratio
asymptotics are almost immediately obtained from the stronger asymptotics
that were previously obtained. We use again the OPVM with measure μ/|πn|2.
Denoting the reproducing kernel for Pn w.r.t. this measure as kn,n(z, w), it is
easily seen that kn,n(z, 0) = vnφ

∗̄
n,n(z). Also the usual rational kernel for Ln

satisfies kn(z, 0) = kn,n(z, 0)/πn(z).

Exercise 13. Applying Theorem 3.5 to the OPVM, prove that the inner
product in Ln w.r.t. dμ(t) and w.r.t. v2

n/|kn(t, 0)|2dλ(t) is the same. Of
course, this is also a direct consequence of the results in Section 3.3.

Theorem 5.3. If μ ∈ ET and A ∈ BD, then

lim
n→∞

kn(z, 0)
kn+1(z, 0)

= 1, l.u. z ∈ D.

and with the superstar referring to z,

lim
n→∞ k∗n(z, 0)/kn(z, 0) = 0, l.u. z ∈ D.

Proof. Set gn(z) = kn(z, 0)/kn+1(z, 0) − vn/vn+1, then by the previous exer-
cise we see that ∫

|gn(t)|2dλ(t) = 2
v2

n

v2
n+1

(
1 − vn

vn+1

)
. (5.4)

On the other hand, because gn is analytic in D ∪ T, we have by the Poisson
formula gn(z) =

∫
P (t, z)gn(t)dλ(t). For t ∈ T, |P (t, z)| ≤ M holds uniformly

for z in a compact subset of D. Thus we also have |gn(z)| ≤ M
∫
|gn(t)|dλ(t)

and also |gn(z)|2 ≤ M2
∫
|gn(t)|2dλ(t) so that

|gn(z)|2 ≤ 2M2 v2
n

v2
n+1

(
1 − vn

vn+1

)
. (5.5)

Thus kn(z,0)
kn+1(z,0) → 1 iff vn

vn+1
→ 1. Obviously kn−1(0, 0)/kn(0, 0) ≤ 1, but using

the Christoffel-Darboux relation we also have

kn−1(0, 0)
kn(0, 0)

=
|φ∗n(0)|2 − |φn(0)|2

|φ∗n(0)|2 − |αn|2|φn(0)|2 ≥ |φ∗n(0)|2 − |φn(0)|2
|φ∗n(0)|2 − |φn(0)|2 = 1.

So that limn→∞ v2
n/v

2
n+1 = 1, which proves the first part.
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For the second relation, note that kn(z, 0) = φ∗̄n,n(z)vnηn/πn(z) and
hence k∗n(z, 0) = φn,n(z)vnηn/πn(z) with ηn ∈ T. Take the ratio and use
φn,n(z)/φ∗̄n,n(z) → 0 l.u. in D, to conclude the proof. ��

Theorem 5.4. If μ ∈ ET and A ∈ CC, then

lim
n→∞

ζn(z)φn(z)
φ∗n(z)

= lim
n→∞

φn(z)
φ∗n(z)

= lim
n→∞λn = 0, l.u. in D.

Denote Φ∗
n(z) = φ∗n(z)/φ∗n(0), then under the previous conditions

lim
n→∞

Φ∗
n+1(z)(1 − αn+1z)
Φ∗

n(z)(1 − αnz)
= 1, l.u. in D.

Proof. Repeat the proof of the second part in Theorem 5.2, i.e., use exer-
cise 12 giving φn = cnhn and its superstar conjugate, to find expressions
for (z − αn)φn(z) and (1 − αnz)φ∗n(z) and take their ratio. Then using
φn,n(z)/φ∗̄n,n(z) → 0 from Theorem 5.1 leads to the first conclusion. Note
that we need φn,n(αn)/φ∗̄n,n(αn) to go to zero, which can only be guaranteed
when A ∈ CC. It is also needed for the convergence of φn(0)/φ∗n(0) because
this will follow form Theorem 5.3 or the previous exercise if A is in a compact
subset of D. For the last equality note that |λn| = |φn(αn−1)/φ∗n(αn−1)|.

For the second formula, write the second Christoffel-Darboux formula for
kn(z, 0) and its superstar conjugate and eliminate φn(z) to obtain

Φ∗
n(z)(1 − αnz) =

φ∗n(z)(1 − αnz)
φ∗n(0)

=
kn(z, 0)

v2
n

[
1 − αnz

φn(0)
φ∗n(0)

k∗n(z, 0)
kn(z, 0)

]
.

Note that the term in square brackets goes to 1 l.u. in D as n → ∞. Rewrite
this for n replaced by n + 1 and take their ratio. Because kn+1(z, 0)/kn(z, 0)
and vn+1/vn go to 1 as n → ∞, the second result follows. ��

6 Szegő’s Problem

This problem is essentially the problem of linear prediction. Recall that the
linear prediction problem can be formulated as finding f ∈ H2(μ) such that
‖f‖2

μ is minimal with the side condition that f(0) = 1. This f represented
the prediction error. Note that we have replaced the z of the first section by
1/z to be in line with our discussion of ORF, which is obviously a matter of
convention. We consider a slightly more general situation where we replace
the constraint by f(w) = 1 for some w ∈ D. This is a problem that can be
solved in any reproducing kernel Hilbert space.

Theorem 6.1. Let H be a reproducing kernel Hilbert space with kernel k(z, w).
Then the minimum of ‖f‖2

μ with f(w) = 1 is obtained for f(z) = K(z) ≡
k(z, w)/k(w,w) and the minimum is 1/k(w,w).
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Proof. Obviously ‖K(z)‖2
μ = 1/k(w,w). For any other f satisfying f(w) = 1

for which ‖f‖2
μ = m we have 0 ≤ ‖f−K‖2

μ = ‖f‖2
μ+1/k(w,w)−2Re 〈f,K〉μ =

m− 1/k(w,w). Thus m ≥ 1/k(w,w). ��

From the polynomial case, it is known that the reproducing kernel for H2(μ) is
given by the Szegő kernel s(z, w) = [(1−wz)σ(z)σ(w)]−1 where σ is the outer
spectral factor of μ, which we suppose to be normalized by σ(0) > 0. Thus
we have a completely predictable sequence if the minimum |σ(0)|2 of ‖f‖2

μ,
with constraint f(0) = 1, is zero, i.e., since |σ(0)|2 = exp{

∫
logμ′(t)dλ(t)},

if
∫

logμ′dλ = −∞, and thus logμ′ �∈ L1. If we do not have complete pre-
dictability, it is still a valuable objective to find the best possible predictor by
minimizing the prediction error.

Instead of minimizing over the complete past (i.e., all of H2(μ)), we may
be less ambitious and start by minimizing over a finite dimensional subspace,
e.g., Ln. There the minimum of the general problem is kn(z, w)/kn(w,w).

The advantage of computing these approximants using ORF over the com-
putation with OPVM is that they are easily computed recursively. If the ap-
proximation is not good enough for a certain n, then increasing n by 1 requires
just one more step of the recurrence relation. For the OPVM, increasing n by
1, would mean that we have to start the computations all over again. Note
also that we have at every step an estimate of the prediction error which
is 1/kn(0, 0) or 1/kn(w,w) for the general problem. Thus if the |φn(w)| do
not go to zero fast enough, then kn(w,w) will go to ∞ and the error will
go to zero, but under the conditions of our theorems, the kn(w,w) will con-
verge, so that the error will not go to zero. It will be bounded from below by
(1 − |w|2)|σ(w)|2.

We also note the following result:

Theorem 6.2. Let μ ∈ SZ, w ∈ D a fixed number, and let sw(z) = s(z, w) be
the Szegő kernel. Consider the problem min ‖f − sw‖2

μ over all f ∈ Ln, then
the solution is kn(z, w) and the minimum is sw(w) − kn(w,w). If A ∈ BD
then limn→∞ ‖kn(t, w) − sw(t)‖μ = 0.

Proof. Suppose f(w) = a, then ‖sw − f‖2
μ = ‖sw‖2

μ + ‖f‖2
μ − 2Ref(w). Thus

we have to minimize ‖f‖2
μ − 2Re a over f ∈ Ln with f(w) = a and minimize

the result over all possible a. In other words, we have to find the infimum
over a of |a|2/kn(w,w)−2Re a and this is given by a = kn(w,w). This proves
the first part. If A ∈ BD then as n → ∞, Ln becomes dense in H2(μ), which
means that the error in H2(μ) tends to 0. ��

7 Hilbert Modules and Hardy Spaces

The results on the matrix case (Sections 7–11) can be found in [2, 5, 17,
19, 10, 13, 12, 11, 18]. For the polynomial case and Hilbert modules see also
[32, 33, 23, 7, 4, 9, 24].
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7.1 Inner Products and Norms

We now consider matrix valued functions: f : C → CN×N . The space of these
functions is a left and a right module over CN×N (the product is noncommu-
tative). We write A ≥ 0 to mean that A is nonnegative definite and A > 0
means that A is positive definite, while A ≥ B is the same as A−B ≥ 0. By
AH we mean the Hermitian conjugate and tr(A) is the normalized trace of A,
i.e., tr(A) =

∑N
k=1 akk. By S = A1/2 we denote the Hermitian square root of

A ≥ 0, thus A = S2 while L = AL/2, resp. R = AR/2 denote a left resp. right
square root, meaning A = LLH resp. A = RHR. Note that L is unique up to
a right unitary factor and R up to a left unitary factor.

We introduce a matrix valued and a scalar valued inner product which will
define L2 of square integrable functions that will be both a Hilbert module
and a Hilbert space. Let μ be a nonnegative Hermitian measure on T. This
means that it is a square matrix whose entries are complex valued measures
such that the whole matrix takes values that are nonegative definite. Because
0 ≤ M ≤ tr(M)I holds for any nonnegative definite matrix, it holds for the
scalar trace-measure τ = tr(μ) that τ(E) = 0 implies μ(E) = 0. This means
that μ is absolutely continuous with respect to τ and we may define the
trace-derivative μ′τ as the matrix whose entries are dμi,j/dτ and it holds that
μ(E) =

∫
E
μ′τdτ . Furthermore it can be shown that 0 ≤ μ′τ ≤ I a.e. τ and also

(μ′τ )1/2 is measurable. More generally, we define
∫
fdμgH as

∫
fμ′τg

Hdτ , thus
as a matrix whose entries are

∫
[fμ′τg

H ]ijdτ . We denote this matrix valued
“inner product” as 〈〈f, g〉〉�,μ where the � stands for “left” since it is possible
to define in a completely analogous way 〈〈f, g〉〉r,μ =

∫
fHdμg. In the sequel

we treat only the left version and leave the right version to the reader. For
many results however, left and right elements will be interacting. We shall
always assume that

∫
dμ = I.

The class of matrix valued functions for which 〈〈f, f〉〉�,μ exists forms a left
module over CN×N that has some pre-Hilbert space-like properties. Indeed,
for any constant square matrix a it holds that

• 〈〈f + g, h〉〉�,μ = 〈〈f, h〉〉�,μ + 〈〈g, h〉〉�,μ and 〈〈af, g〉〉�,μ = a 〈〈f, g〉〉�,μ (linear-
ity)

• 〈〈f, g〉〉�,μ = [〈〈g, f〉〉�,μ]H (symmetry)
• 〈〈f, f〉〉�,μ ≥ 0 with tr 〈〈f, f〉〉�,μ = 0 ⇔ f = 0 (positive definite)

To equip this class of functions with some topology for which it has to
be complete, we also need a genuine scalar valued norm. This norm will
be implied by a scalar valued inner product, which we define as follows:
〈f, g〉�,μ = tr 〈〈f, g〉〉�,μ =

∫
tr(fμ′τg

H)dτ . The corresponding scalar norm is
|f |�,μ = [〈f, f〉�,μ]1/2. So we can now define the Hilbert space L2(μ) of square
integrable matrix valued functions with respect to the scalar valued 〈·, ·〉�,μ,
that is complete with respect to the norm |f |�,μ. It is also a Hilbert module
with respect to the matrix valued 〈〈·, ·〉〉�,μ as we explained above.
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Occasionally we also use a Euclidean inner product, namely (f, g)E =
tr(fgH) = tr(gHf) and a Euclidean norm |f |E = (f, f)1/2

E = |f |F /
√
N where

|f |F is the Frobenius norm and N the size of the matrix.
If μ = λI, we drop μ from the notation. For example L2 means L2(λI)

and 〈〈f, g〉〉� means 〈〈f, g〉〉�,λ etc. We can define matrix valued Hardy spaces
Hp as the matrix valued functions f , analytic in D and such that

|f |p = sup
0≤r<1

[
∫

|f(rt)|pEdλ(t)]1/p < ∞, 0 < p < ∞

and for p = ∞, |f |∞ = sup0≤r<1,t∈T |f(rt)|E < ∞. As in the scalar case, any
f ∈ Hp has a nontangential limit to the circle that belongs to Lp (which has
an obvious definition viz., f ∈ Lp ⇔ |f |E ∈ Lp).

7.2 Carathéodory Function and Spectral Factor

Carathéodory functions are functions analytic in D with positive real part.
Thus with ReΩ(z) = 1

2 [Ω(z) + Ω(z)H ] ≥ 0. There is an essentially unique
relationship between positive measures and Carathéodory functions, which we
represent as Ωμ(z) =

∫
D(t, z)dμ(t)+ iImΩμ(0). We shall assume that Ωμ(0)

is real so that according to
∫
dμ = I we get Ωμ(0) = I. Just like in the scalar

case we have ReΩμ(z) =
∫
P (t, z)dμ(t) and this has a nontangential limit to

the circle T which equals μ′ = dμ/dλ a.e. (λ) and its Fourier series is Ωμ(z) =
c0 + 2

∑∞
k=1 ckz

k where the coefficients are the moments ck =
∫
t−kdμ(t).

For the spectral factor, we need to assume that log detμ′ ∈ L1 (Szegő’s
condition). If that condition holds then there exist left and right outer spectral
factors σL and σR such that μ′ = σLσL

∗ = σR
∗ σ

R on T. The substar for a
matrix function is defined as f∗(z) = f(1/z)H . These σL and σR are outer
in H2 in the sense that their determinant is scalar outer in H2/N . They are
analytic in D and their determinant does not vanish in D, so that their inverses
are also outer in H2. These σL, resp. σR are uniquely defined up to a right,
resp. left unitary constant factor.

8 MORF and Reproducing Kernels

8.1 Orthogonal Rational Functions

Matrix valued orthogonal rational functions (MORF) can now be obtained in
much the same way as in the scalar case. Given a sequence of αk ∈ D, we keep
the notation of Blaschke factors ζk(z) and Blaschke products Bn(z) from the
scalar case and define Ln as the linear span over CN×N of {BkI}n

k=0. The
block Gram matrix consists of the blocks 〈〈Bk, Bl〉〉�,μ = 〈〈Bk, Bl〉〉r,μ and it
depends only on Ωμ(αk) and its derivatives at these points up to an order
depending on the multiplicity of αk in the sequence.
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By a block Gram-Schmidt algorithm we can orthormalize the previous
basis as follows: assuming

∫
dμ = I, set φL

0 = I, and for n = 1, 2, . . . we
set φ̃L

n = BnI −∑n−1
k=0

〈〈
BnI, φ

L
k

〉〉
�,μ

φL
k and φL

n = m−1
n φ̃L

n where mn is a

left square root of 〈〈φ̃L
n , φ̃

L
n〉〉�,μ. Note that the left square root need not be

invertible in general if φ̃L
n is not zero. Then the algorithm will break down, and

we say that μ is degenerate. It can be shown that if log detμ′ ∈ L1, then this
degeneracy will not occur and all the ORF can be constructed. The basis φn

for the Hilbert module is orthonormal in the sense that
〈〈
φL

k , φ
L
j

〉〉
�,μ

= δk,jI.
The φn are defined up to a constant unitary factor from the left. To fix this,
we shall assume that the leading coefficient κL

n of φL
n with respect to the

basis {BkI} is Hermitian positive definite (every invertible matrix A can be
written as A = ULBL with UL unitary and BL positive definite [6, p. 22]).
The leading coefficient is κL

n = [φL∗
n (αn)]H where the superstar for f ∈ Ln

is defined as in the scalar case: f∗ = Bnf∗. Note that for f, g ∈ Ln we have
〈〈f, g〉〉�,μ = 〈〈f∗, g∗〉〉r,μ.

8.2 Reproducing Kernels

Given a left orthonormal system φL
k for Ln, we can define a left repro-

ducing kernel kL
n (z, w) =

∑n
k=0 φ

L
k (w)HφL

k (z) which reproduces because〈〈
f, kL

n (·, w)
〉〉

�,μ
= f(w) for all f ∈ Ln. The right reproducing kernel is

given by kR
n (w, z) =

∑n
k=0 φ

R
k (z)[φR

k (w)]H and for any f ∈ Ln we have〈〈
kR

n (w, ·), f
〉〉

r,μ
= f(w).

Exercise 14. Mimic the scalar proof to derive the following Christoffel-
Darboux relations:

kL
n (z, w) =

[φR∗
n+1(w)]HφR∗

n+1(z) − [φL
n+1(w)]HφL

n+1(z)

1 − ζn+1(z)ζn+1(w)

and

kL
n (z, w) =

[φR∗
n (w)]HφR∗

n (z) − ζn(z)ζn(w)[φL
n(w)]HφL

n(z)
1 − ζn(z)ζn(w)

.

Consequently kL
n (z, αn) = κR

nφ
R∗
n (z) and kL

n (αn, αn) = κR
n [κR

n ]H .
The right versions are obtained by symmetry.

kR
n (w, z) =

φL∗
n+1(z)[φ

L∗
n+1(w)]H − φR

n+1(z)[φ
R
n+1(w)]H

1 − ζn+1(z)ζn+1(w)

and

kR
n (w, z) =

φL∗
n (z)[φL∗

n (w)]H − ζn(z)ζn(w)φR
n (z)[φR

n (w)]H

1 − ζn(z)ζn(w)
.

From this right variant we have kR
n (αn, z) = φL∗

n (z)κL
n and kR

n (αn, αn) =
[κL

n ]HκL
n .
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Theorem 8.1. The reproducing kernels satisfy the following recurrence rela-
tions

sn(w)
[
kR∗

n (w, z)
kL

n (z, w)

]
= tn(z, w)

[
kR∗

n−1(w, z)
kL

n−1(z, w)

]
where

sn(w) =
[
I − [ρR

n (w)]HρL
n(w) 0

0 I − ρL
n(w)[ρR

n (w)]H

]
,

tn(z, w) =
[

I [ρR
n (w)]H

ρL
n(w) I

] [
ζn(z)I 0

0 I

] [
I [γR

n (w)]H

γL
n (w) I

]
,

with

ρL
n(w) = [φL

n(w)]H [φL∗
n (w)]−1, ρR

n (w) = [φR∗
n (w)]−1[φR

n (w)]H ,

and [γR
n (w) γL

n (w)] = −ζn(w)[ρR
n (w) ρL

n(w)].

Proof. The proof is along the same lines as in the scalar case. One needs the
relation kL

n (z, w) = Bn(z)Bn(w)kR
n (1/z, 1/w). We leave it as an exercise to

the reader. ��

Note that it follows from the Christoffel-Darboux relations that

{I − ρL
n(w)[ρR

n (w)]H}[φR∗
n (w)]HφR∗

n (w)

= [φR∗
n (w)]HφR∗

n (w) − [φL
n(w)]HφL

n(w) > 0.

Thus I − ρL
n(w)[ρR

n (w)]H can not be singular for w ∈ D. Note that this im-
plies also that [φR∗

n (w)]HφR∗
n (w) is not singular and hence positive definite,

thus detφR∗
n (w) �= 0 for all w ∈ D and thus it is invertible in D. A similar

observation holds for I − ρL
n(w)[ρR

n (w)]H and for φL∗
n (w).

Exercise 15. From this recurrence derive that(
I − γL

n (w)[γR
n (w)]H

)
kL

n−1(w,w) =
(
I − ρL

n(w)[ρR
n (w)]H

)
kL

n (w,w)

and symmetrically(
I − [γR

n (w)]HγL
n (w)

)
kR

n−1(w,w) =
(
I − [ρR

n (w)]HρL
n(w)

)
kR

n (w,w).

We can bring a bit more symmetry into the recurrence for the kernels by con-
sidering normalized versions of the kernels. Suppose Ln(w) = [kL

n (w,w)]L/2 is
a left square root and Rn(w) = [kR

n (w,w)]R/2 is a right square root, then we
call KL

n (z, w) = [Ln(w)]−1kn(z, w) and KR
n (w, z) = kR

n (w, z)[Rn(w)]−1 the
normalized kernels.
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Exercise 16. Use the Christoffel-Darboux relations to show that

ρL
n(w)kR

n−1(w,w) = kL
n−1(w,w)ρR

n (w).

With the left square root Ln(w) and the right square roots Rn(w) that we
just introduced, use this result to prove that

[Ln−1(w)]−1ρL
n(w)[Rn−1(w)]H = [Ln−1(w)]HρR

n (w)[Rn−1(w)]−1.

Thus we succeeded in symmetrizing the ρR
n and ρL

n and call the result ρn(w)
the symmetrized recursion parameters from now on. The Christoffel-Darboux
relations also imply that ρn(w) is strictly contractive in D, i.e., ρH

n ρn < I and
hence also ρnρ

H
n < I. Similar observations can be made when ρ is replaced by

γ.
We need one more lemma before we can state our symmetrized recurrence

relation for the normalized kernels.

Lemma 8.1. Define F (ρ) = I − ρρH and G(ρ) = I − ρHρ, then it is always
possible to choose the square roots Ln(w) and Rn(w) in the definition of ρn(w)
such that (recall that A1/2 denotes the Hermitian square root and A−1/2 is its
inverse)

[Ln−1(w)]−1Ln(w) = F (ρn(w))−1/2F (γn(w))1/2

and
Rn(w)[Rn−1(w)]−1 = G(ρn(w))−1/2G(γn(w))1/2.

Proof. First note that F (γn) = L−1
n−1(I − |ζn|2ρL

n [ρR
n ]H)Ln−1. Hence

Ln−1F (γn)LH
n−1 = (I − |ζn|2ρL

n [ρR
n ]H)kL

n−1(w,w),

which by the previous exercise 15 equals (I − ρL
n [ρR

n ]H)kL
n (w,w) while I −

ρL
n [ρR

n ]H = Ln−1F (ρn)L−1
n−1. Thus we may conclude that F (γn)LH

n−1L
−H
n =

F (ρn)L−1
n−1Ln. Multiply by the inverse of F (γn) to get [F (ρn)]−1F (γn) =

L−1
n−1LnL

H
n L−H

n−1. This is obviously positive definite, so we can take its Her-
mitian square root Qn = L−1

n−1LnUn with Un some unitary matrix. This Un

can be included in the left square root Ln. This proves the first relation. The
second one follows by symmetry. ��

We have now a simplified recursion for the normalized kernels which follows
immediately from the previous results.

Theorem 8.2. Define F (ρ) = I − ρρH and G(ρ) = I − ρHρ and the Halmos
extension

H(ρ) =
[
G(ρ)−1/2 0

0 F (ρ)−1/2

] [
I ρH

ρ I

]
=
[
I ρH

ρ I

] [
G(ρ)−1/2 0

0 F (ρ)−1/2

]
,

the following recurrence holds
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KR∗

n (w, z)
KL

n (z, w)

]
= θn(z, w)

[
KR∗

n−1(w, z)
KL

n−1(z, w)

]
,

with

θn(z, w) = H(ρn(w))Zn(z)H(γn(w)), Zn(z) =
[
ζn(z)I 0

0 I

]
,

where ρn(w) is as defined in the previous lemma and γn(w) = −ζn(w)ρn(w).

We can, like in the scalar case, define associated kernels LL
n(z, w) and LR(w, z),

which start from the initial conditions LR∗
0 = I = LL

0 and then obey the
recursion [

LR∗
n (w, z)

−LL
n(z, w)

]
= θn(z, w)

[
LR∗

n−1(w, z)
−LL

n−1(z, w)

]
,

with θn(z, w) like in the previous theorem.
The matrices θn have some special properties. For example, it is clear that

they are para-J-unitary, i.e., they satisfy

θ∗nJθn = θnJθ
∗
n = J, J =

[
I 0
0 −I

]
.

This immediately implies:

Corollary 8.1. For the normalized kernels KL
n , KR

n , LL
n and LR

n , the follow-
ing relations hold

• KL
n (z, w)LL∗

n (z, w) + LL
n(z, w)KL∗

n (z, w) = 2Bn(z)I,
• KR∗

n (w, z)LR
n (w, z) + LR∗

n (w, z)KR
n (w, z) = 2Bn(z)I,

• KL∗
n (z, w)KL

n (z, w) = KR
n (w, z)KR∗

n (w, z),
• LL∗

n (z, w)LL
n(z, w) = LR

n (w, z)LR∗
n (w, z).

Proof. This follows from the fact that[
KR∗

n LR∗
n

KL
n −LL

n

]
= Θn

[
I I
I −I

]
⇔ Θn =

1
2

[
KR∗

n + LR∗
n KR∗

n − LR∗
n

KL
n − LL

n KL
n + LL

n

]
where Θn = θnθn−1 · · · θ1. Because all the θk are *-J-unitary, the same holds
for the product Θn. Writing explicitly ΘnJΘ

∗
n = J gives the previous results.

��
The matrices θn, and therefore also the product Θn, are also J-lossless, which
means that as a function of z, its entries are functions in the Nevanlinna class
(ratios of H∞ functions), it is J-contractive in D and J-unitary on T, thus
θnJθ

H
n ≤ J for z ∈ D while θnJθ

H
n = J for z ∈ T.

Among other things, it is shown in [5] that this induces the following
properties.

• KL
n (z, w), LL

n(w, z), KR
n (w, z), and LR

n (w, z) are invertible for w ∈ D and
z ∈ D ∪ T. Hence also φR∗

n and φL∗
n are invertible in D ∪ T.

• [KL
n (z, w)]−1LL

n(z, w) and LR
n (w, z)[KR

n (w, z)]−1 are Carathéodory func-
tions for w ∈ D.

• [KL
n (z, w)]−1 and [KR

n (w, z)]−1 are in H2.
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9 Recurrence for the MORF

9.1 The Recursion

The proof of the recurrence relation for the MORF is given in different steps
which we formulate as lemmas. Note that in these lemmas the φL

n and φR
n are

temporarily just orthogonal functions. They are not necessarily normalized in
the particular way we agreed upon before. In the ultimate Theorem 9.1 we
will be back to the usual situation.

Lemma 9.1. Starting with arbitrary invertible constant matrices φL
0 and φR

0

from CN×N , define for k = 1, . . . , n

fL
k (z) =

z − αk−1

1 − αkz
φL

k−1(z), fR
k (z) =

z − αk−1

1 − αkz
φR

k−1(z),

DL
k = −CL

k

〈〈
fR∗

k , φL
0

〉〉
�,μ

〈〈
fL

k , φL
0

〉〉−1

�,μ
,

DR
k = −

〈〈
φR

0 , f
R
k

〉〉−1

r,μ

〈〈
φR

0 , f
L∗
k

〉〉
r,μ

CR
k ,

φL
k (z) = DL

k f
L
k (z) + CL

k f
R∗
k (z), φR

k (z) = fR
k (z)DR

k + fL∗
k (z)CR

k ,

then {φL
k }n

k=0 and {φR
k }n

k=0 form a left, resp. right orthogonal basis for Ln.
Moreover

DL
k = −CL

k

〈〈
fR∗

k , φL
p

〉〉
�,μ

〈〈
fL

k , φL
p

〉〉−1

�,μ
,

DR
k = −

〈〈
φR

p , f
R
k

〉〉−1

r,μ

〈〈
φR

p , f
L∗
k

〉〉
r,μ

for any p = 0, . . . , k − 1 and

CL
k =

1 − αkαk−1

1 − |αk−1|2
φL

k (αk−1)[φR∗
k−1(αk−1)]−1,

CR
k =

1 − αkαk−1

1 − |αk−1|2
[φL∗

k−1(αk−1)]−1φR
k (αk−1),

DL
k = −zk

1 − αk−1αk

1 − |αk−1|2
[
[φL∗

k−1(αk−1)]−1φL∗
k (αk−1)

]H

and

DR
k = −zk

1 − αk−1αk

1 − |αk−1|2
[
φR∗

k (αk−1)[φR∗
k−1(αk−1)]−1

]H

.

Proof. This is by induction on n. The matrix DL
1 is chosen in such a way

that φL
1 is left orthogonal to φL

0 and similarly for φR
1 . Suppose now that the

theorem holds up to n − 1. Then it is clear that φL
n ∈ Ln \ Ln−1. Using

〈〈f, g〉〉�,μ = 〈〈f∗, g∗〉〉r,μ, it is not difficult to show that it is left orthogonal to
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z−αn

1−αn−1zLn−2 ⊂ Ln−1, while DL
n is chosen such that φL

n is left orthogonal to
φL

0 . Because for any f ∈ Ln−1 clearly f(z) − f(αn) ∈ z−αn

1−αn−1zLn−2, the left
orthogonality to Ln−1 follows.
The relation between C’s and D’s follows because〈〈

φL
k , φ

L
p

〉〉
�,μ

=
〈〈
φR

p , φ
R
k

〉〉
r,μ

= 0

for all p = 0, . . . , k − 1. ��

Lemma 9.2. The following recursion also gives left and right MORF (we use
the notation of the previous lemma)[

φL
n(z)

φR∗
n (z)

]
=

1 − αn−1z

1 − αnz

[
I [λL

n ]H

λR
n I

] [
ζn−1(z)I 0

0 I

] [
φL

n−1(z)
φR∗

n−1(z)

]
,

with

λL
n = −zn−1

〈〈
φL

n−1, φ
R∗
n

〉〉−1

�,μ

〈〈
φL

n−1, φ
L
n

〉〉
�,μ

,

λR
n = −zn−1

〈〈
φR

n , φ
R
n−1

〉〉
r,μ

〈〈
φL∗

n , φR
n−1

〉〉−1

r,μ
.

Proof. Setting

λL
n = −zn−1

[
[DL

n ]−1CL
n

]H
, λR

n = −zn−1

[
CR

n [DR
n ]−1

]H
,

it readily follows from the previous relations that the right hand side of this
theorem results in [

−zn−1[DL
n ]−1φL

n(z)
−zn−1[DR

n ]−1φR∗
n (z)

]
.

and because the φL
n are left orthogonal, so are the −zn−1[DL

n ]−1φL
n(z) and a

similar observation holds for the right versions. ��

Lemma 9.3. If we work with orthonormal MORF, then

λL
n = λR

n = zn−1zn
1 − αn−1αn

1 − αnαn−1
ρn(αn−1)

with ρn(w) the symmetrized recursion parameter.

Proof. Recall κR
n = φR∗

n (αn) and κL
n = φL∗

n (αn) and the expressions for the
λ’s, the C’s and the D’s to find that

λL
n = zn−1zn

1 − αn−1αn

1 − αnαn−1
[κR

n−1]
−1[φL

n(αn−1)]H [φL∗
n (αn−1)]−1[κL

n−1]
H

and

λR
n = zn−1zn

1 − αn−1αn

1 − αnαn−1
[κR

n−1]
H [φR∗

n (αn−1)]−1[φR
n (αn−1)]H [κL

n−1]
−1.
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We may now define matrices

NL
n =

〈〈
φL

n , φ
L
n

〉〉L/2

�,μ
, NR

n =
〈〈
φR

n , φ
R
n

〉〉R/2

r,μ
,

and multiply φL
n from the left by [NL

n ]−1 and multiply φR
n from the right by

[NR
n ]−1, then we obtain orthonormal bases which we shall again denote by φL

n

and φR
n . Note that the left and right square roots can be chosen such that the

leading coefficients are positive definite. Furthermore, from the expression for
λL

n and for ρL
n , we see that

λL
n = zn−1zn

1 − αn−1αn

1 − αnαn−1
[κR

n−1]
−1ρL

n(αn−1)[κL
n−1]

H .

Finally use ρn(w) = [KL
n−1(w,w)]L/2ρL

n(w)
[
[KR

n−1(w,w)]R/2
]H and

KL
n (αn, αn) = κR

n [κR
n ]H , KR

n (αn, αn) = [κL
n ]HκL

n

to find the expression for λn. ��

Theorem 9.1. The MORF have initial conditions φL
0 = φR

0 = I and satisfy
the recurrence [

φL
n(z)

φR∗
n (z)

]
= tn(z)

[
φL

n−1(z)
φR∗

n−1(z)

]
,

with

tn(z) =

√
1 − |αn|2√

1 − |αn−1|2
1 − αn−1z

1 − αnz
H(λn)Zn−1(z)

where H(λn) and Zn(z) are as defined before and

λn = ηnρn(αn−1), ηn = znzn−1
1 − αn−1αn

1 − αnαn−1
∈ T

with ρn(w) the symmetrized recursion parameter,

Proof. First note that[
φ̂L

n(z)
φ̂R∗

n (z)

]
=

1 − αn−1z

1 − αnz

[
I λH

n

λn I

]
Zn−1(z)

[
φL

n−1(z)
φR∗

n−1(z)

]
gives orthogonal functions, so that it remains to define the normalizing factors

Nn =
[〈〈

φ̂L
n , φ̂

L
n

〉〉L/2

�,μ

]−1

and Mn =
[〈〈

φ̂R∗
n , φ̂R∗

n

〉〉L/2

�,μ

]−1

.

From the Christoffel-Darboux relation it follows that[
φL

n(αn−1)
φR∗

n (αn−1)

]H

J

[
φL

n(αn−1)
φR∗

n (αn−1)

]
= −(1 − |ζn(αn−1)|2)κR

n−1[κ
R
n−1]

H .
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On the other hand, the recursion gives[
φL

n(αn−1)
φR∗

n (αn−1)

]
=

1 − αn−1z

1 − αnz

[
Nn 0
0 Mn

] [
λH

n [κR
n−1]

H

[κR
n−1]

H

]
.

Plug this into the previous relation then one gets (we set γj =
√

1 − |αj |2)

λnN
H
n Nnλ

H
n −MH

n Mn = − γ2
n

γ2
n−1

I.

For arbitrary unitary matrices Un and Vn,

Nn =
γn

γn−1
Un(I − λH

n λn)−1/2, Mn =
γn

γn−1
Vn(I − λnλ

H
n )−1/2

are solutions. The Un and Vn can be used to normalize the leading coefficients
of φL

n and φR
n . ��

Again it can be noted that for all αk = 0, the matrix versions of Szegő
polynomials appear as a special case. The λn which are in this case given by
ρn(0) and are the block Szegő parameters.

9.2 Functions of the Second Kind

We can define functions of the second kind by setting φL
0 = ψR

0 = I as initial
conditions for the recursion[

ψL
n (z)

−ψR∗
n (z)

]
= tn(z)

[
ψL

n−1(z)
−ψR∗

n−1(z)

]
,

with tn as in the previous theorem. Along the same lines as in the scalar case,
it can be proved that for n ≥ 1

ψL
n (z) =

∫
D(t, z)[φL

n(t) − φL
n(z)]dμ(t),

ψR
n (z) =

∫
D(t, z)dμ(t)[φR

n (t) − φR
n (z)].

Because

Tn(z) = tn(z) · · · t1(z) =
1
2

[
φL

n(z) + ψL
n (z) φL

n(z) − ψL
n (z)

φR∗
n (z) − ψR∗

n (z) φR∗
n (z) + ψR∗

n (z)

]
and (1 − αnz)Tn(z)/γn is again a lossless and *-J-unitary matrix, we may
conclude as in the case of the kernels that

• φR∗
n and ψR∗

n have no zeros in D ∪ T (a zero of a matrix means a zero of
its determinant).

• [φR∗
n ]−1ψR∗

n and ψR∗
n [φR∗

n ]−1 are Carathéodory functions.
• [φL∗

n ]−1 and ψR∗
n ]−1 are in H2.

• φR
n∗(t)ψ

R
n (t) + ψR

n∗(t)φ
R
n = 2P (t, αn)I for t ∈ T.

• φL
n(t)ψL

n∗(t) + ψL
n (t)φL

n∗ = 2P (t, αn)I for t ∈ T.
• φR

nφ
R∗
n = φL∗

n φL
n and ψR

n ψ
R∗
n = ψL∗

n ψL
n .



Orthogonal Rational Functions 223

10 Interpolation and Quadrature

10.1 The Kernels

We can obtain interpolation properties for the (normalized) kernels like we did
in the scalar case. This is related to polynomial kernels for varying measures
in the sense that if kL

n (z, w) is a left reproducing kernel for the left inner
product w.r.t. μ, then it can be written as kL

n (z, w) = kL
n,n(z, w)/|πn(z)|2

where kL
n,n(z, w) is the left polynomial reproducing kernel for the left inner

product with respect to the measure μ/|πn|2. We have

Theorem 10.1. If KL
n (z, w) is the left normalized reproducing kernel for Ln

with respect to μ, then for dμL
n(t) = [KL

n∗(t, 0)KL
n (t, 0)]−1dλ(t), we 〈〈f, g〉〉�,μ =

〈〈f, g〉〉�,μL
n

for all f and g in Ln.

Proof. It suffices to prove that
〈〈
f, kL

n (·, w)
〉〉

�,μ
=
〈〈
f, kL

n (·, w)
〉〉

�,μL
n

for all

f ∈ Ln because for a set of n+1 mutually different ξk ∈ D, the kL
n (z, ξk) from

a basis for Ln. Therefore, it is sufficient to prove that for any polynomial p we
have

〈〈
p/πn, k

L
n (·, w)

〉〉
�,μL

n
= p(w)/πn(w). If φR

k,n is a set of right MOPVM for
ν = μ/|πn|2, it follows that by using the polynomial Christoffel-Darboux rela-
tion that KL

n (z, 0) = φR∗
nn(z)/πn(z), and thus, dμL

n = |πn|2[φR∗
nn]∗φR∗

nn. There-
fore

〈〈
p/πn, k

L
n (·, w)

〉〉
�,μL

n
= I1 − I2 with

I1 =
1

πn(w)

[∫
p(t)

[
(φR∗

n,n(t))∗φR∗
n,n(t)

]−1(φR∗
n,n(t))∗

t

t− w
dλ(t)

]
φR∗

n,n(w)

and

I2 =
1

πn(w)

[∫
p(t)

[
(φR∗

n,n(t))∗φR∗
n,n(t)

]−1(φL
n,n(t))∗

1
t− w

dλ(t)
]
φL

n,n(w).

Clearly I1 == p(w)
πn(w) because the integral is by Cauchy’s theorem equal to

p(w)[φR∗
n,n(w)]−1. The quantity I2 is zero because (φR∗

n,n)∗φR∗
n,n = φL∗

n,n(φL∗
n,n)∗

which reduces the integral to the Hermitian conjugate of∫
[φL∗

n,n(t)]−1p∗(t)
t

1 − wt
dλ(t),

and this is zero by Cauchy’s theorem. This concludes the proof. ��

Theorem 10.2. With Ωμ(z) =
∫
D(t, z)dμ(t) and ΩL

n (z) =
∫
D(t, z)dμL

n(t)
we have ΩL

n (z) = [KL
n (z, 0)]−1LL

n(z, 0) and the left outer spectral factor of μL
n

is σL
n (z) = [KL

n (z, 0)]−1. Moreover we have the interpolation property

Ωμ(z) −ΩL
n (z) = zBn(z)h(z)

with h analytic in D.
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Proof. We know that [KL
n (z, 0)]−1LL

n(z, 0) is a Carathéodory function and
because 1

2 [ΩL
n (t) + ΩL

n∗(t)] = [KL
n∗(t, 0)KL

n (t, 0)]−1, it is the Riesz-Herglotz
transform of μL

n . Also, it is obvious that σL
n is a spectral factor. It is outer

in H2 because KL
n (z, 0) is a rational function in H2 and it does not vanish in

D ∪ T. For the interpolation property, note that with ν = μ− μL
n

Ωμ(z) −ΩL
n (z)

Bn(z)
=
∫ [

1
Bn(z)

− 1
Bn(t)

]
D(t, z)dν(t) +

∫
1

Bn(t)
D(t, z)dν(t).

The first integral is zero because the term in square brackets is of the form f∗
with f = p/πn where p is a scalar polynomial in t of degree less than n + 1.
Thus it equals 〈〈I, fI〉〉�,ν . Because fI ∈ Ln, this integral is 0. The integrand
for the second term is analytic in D because

∫
f(t)D(t, z)dμ(t) is analytic in

D for any f ∈ L1(ν) and any measure ν. Because 〈〈I, I〉〉�,μ = 〈〈I, I〉〉�,μL
n

we
get the interpolation at the origin. ��

Corollary 10.1.

ΩL
n (z) = [KL

n (z, 0)]−1LL
n(z, 0) = LR

n (0, z)[KR
n (0, z)]−1 = ΩR

n (z).

Proof. Because [KL
n∗(t, 0)KL

n (t, 0)]−1 = [KR
n (0, t)KR

n∗(0, t)]
−1, we have by the

Riesz-Herglotz theorem that ΩL
n = ΩR

n in D, but because these are just ratio-
nal functions, equality also holds on C.

10.2 The MORF

Similar properties can be derived for the MORF. Recall that P (t, z) =
ReD(t, z) is the Poisson kernel. We have

Theorem 10.3. Consider the measure

dμ̂L
n(t) = P (t, αn)[φL

n∗(t)φ
L
n(t)]−1dλ(t),

then in Ln, the inner products 〈〈·, ·〉〉�,μ and 〈〈·, ·〉〉�,μ̂n
are the same.

Proof. A proof will be given if it can be shown that the φL
n , which is a left

orthonormal basis for μ, is also a left orthonormal basis for μ̂L
n . This can

be shown by a backward recursion. Obviously
〈〈
φL

n , φ
L
n

〉〉
�,μ̂L

n
= I. Also for

k = 0, . . . , n− 1:〈〈
φL

n , φ
L
k

〉〉
�,μ̂L

n
=
∫

[φL∗
n (t)]−1φL∗

k (t)P (t, αn)Bn(t)/Bk(t)dλ(t),

which is zero by the Poisson formula. ��

Theorem 10.4. With Ωμ(z) =
∫
D(t, z)dμ(t) and Ω̂L

n (z) =
∫
D(t, z)dμ̂L

n(t)
where μ̂L

n is as in the previous theorem, then Ω̂L
n (z) = ψL∗

n (z)[φL∗
n (z)]−1, and
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σ̂R
n (z) =

√
1−|αk|2
1−αnz [φL∗

n (z)]−1 is a right outer spectral factor of μ̂L
n . Further-

more we have the interpolation property

Ωμ(z) − Ω̂L
n (z) = zBn(z)h(z)

with h analytic in D.

Proof. The proof is completely parallel to the proof of Theorem 10.2. ��

Corollary 10.2.

Ω̂L
n (z) = ψL∗

n (z)[φL∗
n (z)]−1 = [φR∗

n (z)]−1ψR∗
n (z) = Ω̂R

n (z).

With these results, it is not difficult to derive a Favard type theorem.

Theorem 10.5. Let φL
n and φR

n be generated by the recursion of Theorem 9.1.
Then there is a positive definite measure on T for which they form a left, resp.
a right MORF sequence.

Proof. This is along the same lines as the scalar proof of Theorem 2.6. ��

This measure will be unique if A ∈ BD and log detμ′ ∈ L1 which follows from
the completeness of the basis of Blaschke products in H2 with respect to the
norm | · |�,μ.

11 Minimalisation and Szegő’s Problem

If Φ(s) is a function with Hermitian nonnegative definite values, then the
problems infs Φ(s) and infs trΦ(s) have the same solutions. By a solution we
mean an s such that Φ(s) ≤ Φ(t) for all t. We have the following.

Theorem 11.1. The minimum of 〈〈f, f〉〉�,μ for all f ∈ Ln with f(w) = I is
given by [kL

n (w.w)]−1 and it is obtained for f = [kL
n (w,w)]−1kL

n (·, w), provided
that det kL

n (w,w) �= 0.

Proof. Similar to the proof of Theorem 6.1. ��

We have formulated this theorem for Ln but it actually holds for any Hilbert
module with reproducing kernel.

Define the left Szegő kernel sL(z, w) = [(1 − wz)σL(z)(σL(w))H ]−1 with
σL(0) > 0 with w ∈ D, then it is left reproducing in H2. We can conclude that,
as in the scalar case, some vector valued stochastic process will be completely
predictable if exp{

∫
log detμ′(t)dλ(t)} = 0, i.e., log detμ′ �∈ L1. If we assume

that the Blaschke products diverge (A ∈ BD) and that log detμ′ ∈ L1 (μ ∈
SZ), then the set {Bn}n≥0 is complete in the Banach space H2(μ) (thus with
respect to the trace norm | · |�,μ). So the analog of Theorem 6.2 is
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Theorem 11.2. Let μ ∈ SZ, w ∈ D a fixed number, and let sL
w(z) = sL(z, w)

be the left Szegő kernel. Consider the problem min ‖f−sL
w‖2

�,μ over all f ∈ Ln,
then the solution is kL

n (z, w) and the minimum is sL
w(w)−kL

n (w,w). If A ∈ BD
then limn→∞ |kL

n (t, w) − sL
w(t)|�,μ = 0.

Proof. Clearly〈〈
sL

w − f, sL
w − f

〉〉
�,μ

=
〈〈
sL

w, s
L
w

〉〉
�,μ

+ 〈〈f, f〉〉�,μ − 2Re
〈〈
f, sL

w

〉〉
�,μ

By Cauchy’s theorem
〈〈
sL

w, s
L
w

〉〉
�,μ

= sL
w(w) and

〈〈
f, sL

w

〉〉
�,μ

= f(w), so that
we have to minimize sL

w(w) + 〈〈f, f〉〉�,μ − 2Re f(w). Like in the scalar case it
can be seen that this minimum is obtained for f as claimed. Because A ∈ BD
implies completeness in the Banach space H2, we have convergence in the
norm of this space. ��

This problem is immediately related to the prediction of vector valued stochas-
tic processes, but it can also be interpreted in the context of inverse scattering
theory or network synthesis.

12 What We did not Discuss

There are many things that were not discussed in this introduction.
First of all there is the scalar case with many things to be explored like

further convergence results, characterization of the properties of the ORF in
terms of the recurrence coefficients, moment problems, Nevanlinna-Pick and
other classical interpolation problems. Some of these are included to some
extend in [3].

There is a completely similar theory of ORF on the real line when all the
poles are outside the real line. Interesting special cases are measures whose
support is an interval or a half line. In the latter case results in the vein of
what has been developped here can be obtained [29].

A slightly different theory emerges when poles are allowed to fall inside
the support of the measure (see e.g. [3]).

In all those cases there is practically no result about an operator theoretical
approach that generalizes the Jacobi matrices of classical polynomials.

For the matrix case, there is a huge literature on so-called Schur analysis.
This involves matricial Nevanlinna-Pick interpolation problems and tangential
or directional versions. A lot of energy is also spent on discussing generaliza-
tions of the Blaschke factors. Indeed instead of just using BkI as a basis
function, one could consider products of factors of the form ζjUj where Uj

represents a rank one matrix. The recursion, which is in our treatment con-
nected with J-lossless matrices, can be considerably generalized by replacing
J by much more general matrices with a finer structure. And all this could be
extended to the non-square matrix case.
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3. A. Bultheel, P. González-Vera, E. Hendriksen, and O. Nj̊astad, Orthogonal Ra-
tional Functions, Cambridge Monographs on Applied and Computational Math-
ematics vol. 5, Cambridge University Press, 1999.

4. Ph. Delsarte, Y. Genin, and Y. Kamp, Orthogonal polynomial matrices on the
unit circle, IEEE Trans. Circuits and Systems 25 (1978), 149–160.

5. P. Dewilde and H. Dym, Lossless chain scattering matrices and optimum linear
prediction: the vector case, Internat. J. Circuit Th. Appl. 9 (1981), 135–175.

6. R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press,
New York, 1972.

7. V.K. Dubovoj, B. Fritzsche, and B. Kirstein, Matricial Version of the Classical
Schur Problem, Teubner-Texte zur Mathematik, vol. 129, Teubner Verlagsge-
sellschaft, Stuttgart, Leipzig, 1992.

8. P.L. Duren, The Theory of Hp Spaces, Pure and Applied Mathematics, vol. 38,
Academic Press, New York, 1970.

9. H. Dym, J-Contractive Matrix functions, Reproducing Kernel Hilbert Spaces
and Interpolation, CBMS Regional Conf. Ser. in Math., vol. 37, Amer. Math.
Soc., Providence, Rhode Island, 1989.

10. B. Fritzsche and B. Kirstein and A. Lasarow, Orthogonal rational matrix-valued
functions on the unit circle, Math. Nachr. 278, no. 5 (2005), 525–553.

11. B. Fritzsche and B. Kirstein and A. Lasarow, Further aspects of the theory of
orthogonal rational matrix-valued functions on the unit circle, Math. Nachr. (to
appear).

12. B. Fritzsche and B. Kirstein and A. Lasarow, On a moment problem for rational
matrix-valued functions, Linear Algebra Appl. 372 (2003), 1–31.

13. B. Fritzsche and B. Kirstein and A. Lasarow, On rank invariance of moment
matrices of nonnegative Hermitian-valued Borel measures on the unit circle,
Math. Nachr. 263–264 (2004), 103–132.

14. J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.



228 Adhemar Bultheel et al.

15. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood
Cliffs, 1962.

16. P. Koosis, Introduction to Hp Spaces, Cambridge Tracts in Mathematics,
vol. 115, Cambridge University Press, 2nd edition, 1998.
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Summary. These are the notes for an introductory course into the theory of quan-
tum integrability and separability, a rather incomplete status of which dictates a
special way of presentation. Therefore, I have chosen to work out a few very basic
examples which shall help to exemplify the most important notions and the general
methodology of the separation approach to solving quantum integrable systems. All
bases considered (and factorized) in these notes appear to be special cases of the
celebrated Jack polynomials which were the object of our study in the work [15],
joint with Vladimir Mangazeev and Evgeny Sklyanin. These notes are designed to
be a good preparation for a more dedicated reading into the subject.
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1 Chebyshev Polynomials

1.1 Pafnuty Lvovich Chebyshev

Born: 16 May 1821 in Okatovo, Russia; died: 8 December 1894 in St. Peters-
burg, Russia (see, e.g., [2]).

“Chebyshev was probably the first mathematician to recognize the general
concept of orthogonal polynomials. A few particular orthogonal polynomials
were known before his work. Legendre and Laplace had encountered the Legen-
dre polynomials in their work on celestial mechanics in the late eighteenth
century. Laplace had found and studied the Hermite polynomials in the course
of his discoveries in probability theory during the early nineteenth century. It
was Chebyshev who saw the possibility of a general theory and its applications.
His work arose out of the theory of least squares approximation and probabil-
ity; he applied his results to interpolation, approximate quadrature and other
areas. He discovered the discrete analogue of the Jacobi polynomials but their
importance was not recognized until this century. They were rediscovered by
Hahn and named after him upon their rediscovery. Geronimus has pointed out
that in his first paper on orthogonal polynomials, Chebyshev already had the
Christoffel-Darboux formula.” [23]

1.2 Notation and Standard Formulae

We need a few basic facts from the theory of hypergeometric series, i.e.,
series

∑∞
n=0 cn with cn+1

cn
a rational function of n. First, define the Pochham-

mer symbol (a)n, for any a ∈ C, n = 0, 1, 2, . . ., as follows:

(a)0 = 1, (a)n = a(a + 1) · · · (a + n− 1) =
Γ(a + n)

Γ(a)
. (1.1)

Exercise 1. Check the following formulae:

(1)n = n!, (2n)! = 22nn!(1
2 )n, (a + n)k−n =

(a)k

(a)n
, (1.2)

(a)n+k = (a)n(a + n)k, (a− n)n = (−1)n(1 − a)n. (1.3)

A non-trivial (but still elementary function) example of a hypergeometric
series is given by the binomial theorem:

(1 − x)−a =
∞∑

n=0

(a)n

n!
xn, |x| < 1, (1.4)
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which can be recognized as the Maclaurin expansion of the function on the
left.

Let us expand the obvious identity (1−x)−a(1−x)−b = (1−x)−a−b using
(1.4) and get

∞∑
n=0

∞∑
m=0

(a)n

n!
(b)m

m!
xn+m =

∞∑
k=0

(a + b)k

k!
xk. (1.5)

Comparing the coefficients of the powers of x on both sides we have

k∑
n=0

(a)n

n!
(b)k−n

(k − n)!
=

(a + b)k

k!
, k = 0, 1, 2, . . . . (1.6)

The Pochhammer symbol satisfies a number of useful identities, one of them
is as follows:

(b)k−n =
(b)k

(b + k − n) · · · (b + k − 1)
=

(b)k

(−1)k(1 − b− k)n
. (1.7)

Using this, we rewrite the equation (1.6) in the form

k∑
n=0

(a)n

n!
(−k)n

(1 − b− k)n
=

(a + b)k

(b)k
, (1.8)

and, putting b = 1 − c− k, in an alternative form

k∑
n=0

(−k)n(a)n

(c)nn!
=

(c− a)k

(c)k
, (1.9)

since (1− c− k)k = (1− c− k) · · · (−c) = (−1)k(c)k. The terminating Gauss
hypergeometric series

2F 1

(
−k, a
c

;x
)

=
k∑

n=0

(−k)n(a)n

(c)nn!
xn, k = 0, 1, . . . . (1.10)

is well defined when c �= 0,−1, . . . ,−k+ 1. As follows from (1.9), it takes the
following factorized value at x = 1:

2F 1

(
−k, a
c

; 1
)

=
(c− a)k

(c)k
. (1.11)

The above is called the Chu-Vandermonde formula. It can be put into a
simpler (binomial) form

(a + b)k =
k∑

n=0

(
k

n

)
(a)n(b)k−n, (1.12)

which is the same as (1.6).
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1.3 Polynomials Tn(x) and Un(x)

Chebyshev polynomials were introduced in 1854 (see [3]). The Chebyshev
polynomials of the first kind, Tn(x), and of the second kind, Un(x), can be
obtained by specifying the Jacobi polynomials P (α,β)

n (x) [9]:

Tn(x) =
P

(− 1
2 ,− 1

2 )
n (x)

P
(− 1

2 ,− 1
2 )

n (1)
= 2F 1

(
−n, n

1
2

;
1 − x

2

)
, (1.13)

Un(x) = (n + 1)
P

( 1
2 , 1

2 )
n (x)

P
( 1
2 , 1

2 )
n (1)

= (n + 1) 2F 1

(
−n, n + 2

3
2

;
1 − x

2

)
. (1.14)

Although, in themselves, they are much simpler:

Tn(x) = cosnθ, Un(x) =
sin(n + 1)θ

sin θ
, x = cos θ. (1.15)

Now, of course, we assume that −1 ≤ x ≤ 1. Using the identity

einθ = cosnθ + i sinnθ = (cos θ + i sin θ)n

=
n∑

k=0

(
n

k

)
cosn−k θ (i sin θ)k

, (1.16)

we see that both sets are, indeed, polynomials of degree n in x and that they
can be explicitly written as the following sums:

Tn(x) =
[n/2]∑
k=0

(
n

2k

)
xn−2k(x2 − 1)k, (1.17a)

Un(x) =
[n/2]∑
k=0

(
n + 1
2k + 1

)
xn−2k(x2 − 1)k. (1.17b)

If instead of (1.16) we use a similar identity

einθ = cosnθ + i sinnθ =
(
cos θ

2 + i sin θ
2

)2n

=
2n∑

k=0

(
2n
k

)
cos2n−k θ

2

(
i sin θ

2

)k
, (1.18)

then we obtain alternative expressions for the Chebyshev polynomials

cosnθ =
n∑

k=0

(
2n
2k

)(
1 − sin2 θ

2

)n−k (− sin2 θ
2

)k
, (1.19a)

sin(n + 1)θ
sin θ

=
1
2

n∑
k=0

(
2n + 2
2k + 1

)(
1 − sin2 θ

2

)n−k (− sin2 θ
2

)k
. (1.19b)
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Exercise 2. The last two formulae convert to the expressions (1.13)–(1.14)
if one expands the binomial

(
1 − sin2 θ

2

)n−k
and then evaluates one of the

sums by the Chu-Vandermonde formula (1.11).

One can similarly convert the formulae (1.17b) into the following explicit
expressions:

Tn(x) =
n

2

[n/2]∑
k=0

(−1)k(n− k − 1)!
k!(n− 2k)!

(2x)n−2k, (1.20a)

Un(x) =
[n/2]∑
k=0

(−1)k(n− k)!
k!(n− 2k)!

(2x)n−2k, (1.20b)

which give expansions in terms of powers of x as opposed to the expansions
(1.13)–(1.14) as powers of 1 − x.

All orthogonal polynomials satisfy a three-term recurrence relation.
The polynomials Tn(x) and Un(x) are generated by the same recurrence rela-
tion with different initial values:

Tn(x) = 2xTn−1(x) − Tn−2(x), T0(x) = 1, T1(x) = x, (1.21a)
Un(x) = 2xUn−1(x) − Un−2(x), U0(x) = 1, U1(x) = 2x. (1.21b)

Exercise 3. Check these recurrence relations for the Chebyshev polynomi-
als.

The first few T -polynomials are:

T0(x) = 1,
T1(x) = x,

T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x,
T4(x) = 8x4 − 8x2 + 1,
T5(x) = 16x5 − 20x3 + 5x,
T6(x) = 32x6 − 48x4 + 18x2 − 1.

The first few U -polynomials are:

U0(x) = 1,
U1(x) = 2x,
U2(x) = 4x2 − 1,
U3(x) = 8x3 − 4x,
U4(x) = 16x4 − 12x2 + 1,
U5(x) = 32x5 − 32x3 + 6x,
U6(x) = 64x6 − 80x4 + 24x2 − 1.
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1.4 Orthogonality

The orthogonality relations for Tn(x) and Un(x),∫ 1

−1

Tm(x)Tn(x)(1 − x2)−
1
2 dx =

{
π
2 δmn, n �= 0
πδmn, n = 0

(1.22a)

∫ 1

−1

Um(x)Un(x)(1 − x2)
1
2 dx =

π

2
δmn, (1.22b)

are the direct consequence of the well-known orthogonalities of the sine and
cosine functions for integer m and n:

∫ π

−π

cosmx cosnx dx =

⎧⎪⎨⎪⎩
0, m �= n,

π, m = n �= 0,
2π, m = n = 0,

(1.23a)

∫ π

−π

sinmx sinnx dx =

⎧⎪⎨⎪⎩
0, m �= n,

π, m = n �= 0,
0, m = n = 0,

(1.23b)

which in turn are easily proved using the linearization formulae:

cos a cos b = 1
2 (cos(a + b) + cos(a− b)), (1.24a)

sin a sin b = 1
2 (cos(a− b) − cos(a + b)). (1.24b)

1.5 Other Results

Orthogonality relations such as (1.22a)–(1.22b), which are given by the weight
function, the interval and the normalization, define the corresponding orthog-
onal polynomials uniquely, up to signs1 (cf., e.g., [25]). Many other properties
of the orthogonal polynomials, notably those for the classical ones, can be
derived directly from the definition, including explicit forms, recurrence re-
lation, differential equation, differentiation formula and generating
functions. We cite here only the differential equations, differentiation formu-
lae and simplest generating functions:

(1 − x2)T ′′
n (x) − xT ′

n(x) + n2Tn(x) = 0, (1.25a)
(1 − x2)U ′′

n (x) − 3xU ′
n(x) + n(n + 2)Un(x) = 0, (1.25b)

(
(1 − x2) d

dx + nx
)
Tn(x) = nTn−1(x), (1.26a)(

(1 − x2) d
dx + nx

)
Un(x) = (n + 1)Un−1(x), (1.26b)

1 which are usually fixed by choosing the coefficients with the highest powers to be
positive
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1 − xt

1 − 2xt + t2
=

∞∑
n=0

Tn(x)tn,
1

1 − 2xt + t2
=

∞∑
n=0

Un(x)tn. (1.27)

Exercise 4. Prove (1.25)–(1.27).

Notice that the existence of differentiation (or shift) formulae such as (1.26)
or second order differential equations such as (1.25) is characteristic for the
so-called ‘very-classical’ orthogonal polynomials [11].

1.6 Least Possible Deviation from Zero

Let us introduce the coefficients

Ln =

{
1, n = 0
21−n, n = 1, 2, . . . .

(1.28)

Then the polynomials T̃n(x) := LnTn(x) are monic

T̃n(x) := LnTn(x) = xn + . . . . (1.29)

The polynomials T̃n(x) have the following extremal and completely charac-
terising property: they have the least possible deviation from zero on
the interval [−1, 1] among all monic polynomials Fn(x) of degree n, i.e.,

max
x∈[−1,1]

|Fn(x)| ≥ max
x∈[−1,1]

|T̃n(x)| = Ln. (1.30)

To prove this property, let Pn(x) = xn + . . . be a monic polynomial whose
deviation from zero in the interval [−1, 1] is ≤ Ln. Then, the polynomial
Q(x) := LnTn(x) − Pn(x) is of degree ≤ n− 1 and, at the points

xk = cos (n−k)π
n , k = 0, 1, . . . , n, (1.31)

has the following values

Q(xk) = (−1)n−kLn − Pn(xk) = (−1)n−k[Ln ± |Pn(xk)|]. (1.32)

The expression in the square bracket is not negative, meaning that the poly-
nomial Q(x) has at least n roots in the interval [−1, 1], and hence Q(x) ≡ 0.

2 Gegenbauer Polynomials

2.1 Leopold Bernhard Gegenbauer

Born: 2 February 1849 in Asperhofen (E of Herzogenburg), Austria, died: 3
June 1903 in Vienna, Austria.
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“Leopold Gegenbauer studied at the University of Vienna from 1869 until
1873. He then went to Berlin where he studied from 1873 to 1875 working un-
der Weierstrass and Kronecker. After graduating from Berlin, Gegenbauer was
appointed to a position at the University of Czernowitz (then in the Austrian
Empire but now Chernovtsy, Ukraine) in 1875. He remained in Czernowitz
for three years before moving to the University of Innsbruck where he worked
with Stolz. After three years teaching in Innsbruck Gegenbauer was appointed
full professor in 1881, then he was appointed full professor at the University
of Vienna in 1893. He remained there until his death. Gegenbauer had many
mathematical interests but was chiefly an algebraist. He is remembered for the
Gegenbauer polynomials.” [6]

2.2 Polynomials C(g)
n (x)

The Gegenbauer polynomials C(g)
n (x) can be thought of as a g-deformation

of the Chebyshev polynomials:

C(g)
n (cos θ) =

2g
n

(cosnθ + O(g)) , n = 1, 2, . . . . (2.1)

We shall derive their most important properties using the method of shift
operators (cf [10, §4], [11, §2]).

The orthogonality relations with the standard normalization are ([9])∫ 1

−1

(1 − x2)g− 1
2C(g)

m (x)C(g)
n (x)dx =

πΓ(n + 2g)21−2g

Γ2(g)(n + g)n!
δmn,

g > −1
2
, g �= 0. (2.2)

Let us also introduce the corresponding monic polynomials pn(x) ∝ C
(g)
n (x),∫ 1

−1

(1 − x2)g− 1
2 pm(x)pn(x)dx = hn(g) δmn, pn(x) = xn + . . . , (2.3)

and the other set, qn(x) ∝ C
(g+1)
n (x), corresponding to the shifted parameter,

g → g + 1,∫ 1

−1

(1 − x2)g+ 1
2 qm(x)qn(x)dx = hn(g + 1) δmn, qn(x) = xn + . . . , (2.4)

with some normalization constants hn(g) to be determined later. Integration
by parts gives∫ 1

−1

p′n(x)qm−1(x)(1 − x2)g+ 1
2 dx

= −
∫ 1

−1

pn(x)(1 − x2)
1
2−g d

dx

(
(1 − x2)g+ 1

2 qm−1(x)
)

(1 − x2)g− 1
2 dx. (2.5)
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Notice that
p′n(x) = nqn−1(x) + (lower degree qk’s) , (2.6)

(1 − x2)
1
2−g d

dx

(
(1 − x2)g+ 1

2 qm−1(x)
)

= (−m− 2g)pm(x) + (lower degree pk’s) . (2.7)

Now, putting first m = 1, . . . , n − 1 and then n = 0, . . . ,m − 1 in (2.5) and
using the orthogonality, we conclude that there are no lower terms in the
above equations, resulting in two shift formulae for the action of two shift
operators D± on the monic Gegenbauer polynomials:

[D−p(g)
n ](x) = d

dx p(g)
n (x) = np

(g+1)
n−1 (x), (2.8)

[D(g)
+ p

(g+1)
n−1 ](x) =

(
(1 − x2) d

dx − (2g + 1)x
)
p
(g+1)
n−1 (x)

= (−n− 2g)p(g)
n (x). (2.9)

Since both operators act in opposite directions, composing them produces the
second order differential equation for the Gegenbauer polynomials, [(D(g)

+ ◦
D−)p(g)

n ](x) = −n(n + 2g)p(g)
n (x):(

(1 − x2) d2

dx2 − (2g + 1)x d
dx + n(n + 2g)

)
p(g)

n (x) = 0. (2.10)

Substituting n = m into (2.5) yields the recurrence∫ 1

−1

(
p(g)

n (x)
)2

(1 − x2)g− 1
2 dx

=
n

n + 2g

∫ 1

−1

(
p
(g+1)
n−1 (x)

)2

(1 − x2)g+ 1
2 dx, (2.11)

iterating which one gets

hn(g) =
∫ 1

−1

(
p(g)

n (x)
)2

(1 − x2)g− 1
2 dx =

22g+2nΓ2(g + n + 1
2 )n!

Γ(2g + 2n + 1)(n + 2g)n
, (2.12)

where at the last step we have used a variant of the beta integral:∫ 1

−1

(1 − x)α(1 + x)βdx =
2α+β+1Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
. (2.13)

Finally, using Legendre’s duplication formula

Γ(2a)Γ
(

1
2

)
= 22a−1Γ(a)Γ

(
a + 1

2

)
(2.14)

and the value Γ
(

1
2

)
=

√
π we obtain

hn(g) =
πΓ(2g + n)n!

22g+2n−1(g + n)Γ2(g + n)
. (2.15)

Exercise 5. Check this.
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2.3 Beta Integral and Elliptic Coordinates

Let us start from a “better” form of the beta integral (2.13):∫ ∞

0

dξ1

∫ ∞

0

dξ2 δ(ξ1 + ξ2 − 1)ξα1−1
1 ξα2−1

2 =
Γ(α1)Γ(α2)
Γ(α1 + α2)

(2.16)

=
∫ 1

0

dξ1 ξα1−1
1 (1 − ξ1)α2−1 .

Here, of course, we must assume that Reαi > 0.

Theorem 2.1. Let y1 and y2 be a fixed pair of real positive parameters such
that

0 < y1 < y2 < ∞. (2.17)

Then for Reαi > 0 and z > 1,∫ ∞

y2

dx2

∫ y2

y1

dx1δ(x1x2 − zy1y2)(x2 − x1)ξα1−1
1 ξα2−1

2

= (z − 1)α1+α2−1(y2 − y1)
yα1−1
1 yα2−1

2 Γ(α1)Γ(α2)
Γ(α1 + α2)

, (2.18)

where

ξ1 =
(x1 − y1)(x2 − y1)

y2 − y1
, ξ2 =

(x1 − y2)(x2 − y2)
y1 − y2

. (2.19)

Proof. The first step is to rescale the variables ξk �→ ξk

yk(z−1) in the beta
integral (2.16) and therefore rewrite it in the form∫ ∞

0

dξ1

∫ ∞

0

dξ2 δ

(
ξ1
y1

+
ξ2
y2

− (z − 1)
)
ξα1−1
1 ξα2−1

2

= (z − 1)α1+α2−1 y
α1
1 yα2

2 Γ(α1)Γ(α2)
Γ(α1 + α2)

(2.20)

We consider (2.19) as the defining relations for the change of variables
from (ξ1, ξ2) to (x1, x2), with (y1, y2) being the parameters, and perform this
change of integration variables in the integral (2.20).

Notice first that the integration variables x1 and x2 in (2.18) satisfy the
inequalities

y1 < x1 < y2 < x2 < ∞, (2.21)

which guarantee the positivity of the functions ξ1 and ξ2, defined by (2.19).
Conversely, every pair of the positive variables ξ1, ξ2 leads to a pair of variables
x1, x2 satisfying (2.21). Indeed, the defining relations (2.19) can be rewritten
in the equivalent form
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1 − ξ1
t− y1

− ξ2
t− y2

=
(t− x1)(t− x2)
(t− y1)(t− y2)

, t ∈ C, (2.22)

with the former formulae following by comparing the residues of both sides at
t = yk. When ξk > 0, the rational function on the left of (2.22) takes opposite
signs near the ends of the intervals (y1+, y2−) and (y2+,∞), meaning that it
has two zeros xk interspersed with the poles yk, as in (2.21).

Finally, calculating the Jacobian of the transformation and setting t = 0
in (2.22), we obtain

dξ1dξ2 =
x2 − x1

y2 − y1
dx1dx2, 1 +

ξ1
y1

+
ξ2
y2

=
x1x2

y1y2
, (2.23)

which obviously imply the statement. ��

Remark 2.1. When putting ξk = z2
k, the change of variables (z1, z2) �→

(x1, x2), defined by the relation (2.22), becomes the well-known transforma-
tion from the rectangular Cartesian coordinates in the plane, zk, to the ellip-
tic coordinates, xk. The latter constitute a system of curvilinear orthogonal
coordinates generated by the coordinate lines consisting of confocal ellipses
and hyperbolas ([21, 4]). The value

√
y2 − y1 gives the distance of the foci

from the coordinate origin.

2.4 Q-Operator

We use the results of the previous section to define an important integral
operator, called a Q-operator, which depends on a positive parameter g > 0
and another parameter z > 1 and acts on any symmetric polynomial
p(x1, x2) of two variables as follows:

[Qzp](y1, y2) =
Γ(2g)
Γ2(g)

(z − 1)1−2g

(y2 − y1)y
g−1
1 yg−1

2

×
∫ ∞

y2

dx2

∫ y2

y1

dx1δ(x1x2 − zy1y2)(x2 − x1)ξα1−1
1 ξα2−1

2 p(x1, x2). (2.24)

Notice that one should substitute into the above the values of the functions
ξ1 and ξ2:

ξ1 =
(x1 − y1)(x2 − y1)

y2 − y1
, ξ2 =

(x1 − y2)(x2 − y2)
y1 − y2

. (2.25)

Taking into account Theorem 2.1, the above definition of the operator Qz

implies that it transforms the unit function into itself and provides a simple
action on the monomials in ξj ’s:

Qz[1] = 1, Qz : ξk1
1 ξk2

2 �→ yk1
1 yk2

2

(z − 1)k1+k2(g)k1(g)k2

(2g)k1+k2

, (2.26)
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for kj = 0, 1, 2, . . .
Introduce new variables ηj :

ξj = ηjyj , j = 1, 2. (2.27)

One can check that the x-, y- and η-variables are related by the following
equalities (cf. (2.22)):

x1 + x2 = (1 + η1)y1 + (1 + η2)y2, (2.28)
x1x2 = (1 + η1 + η2)y1y2. (2.29)

The operator Qz acts on the monomials in ηj ’s as follows

Qz : ηk1
1 ηk2

2 �→ (z − 1)k1+k2(g)k1(g)k2

(2g)k1+k2

, kj = 0, 1, 2, . . . . (2.30)

Formulae (2.28)–(2.29) and (2.30) determine how Qz acts on any symmetric
polynomial p(x1, x2). This must be performed according to the algorithm:

• expand p(x1, x2) in terms of elementary symmetric functions e1 = x1 +x2

and e2 = x1x2,
• use substitution (2.28)–(2.29),
• replace all monomials in ηj ’s by numbers making use of (2.30).

The result clearly is

• a polynomial in y1, y2 and z,
• a rational function in g,
• a symmetric polynomial in y1, y2.

In what follows we adopt the following approach to the action of the op-
erator Qz, which seems natural because of the above: we shall look at it as a
certain coordinate transformation (cf. (2.28)–(2.29)) from the variables x to
the variables y, which depends on some parameters, the variables η, which in
their turn are being specialized according to (2.30). The most interesting fact
is that, recalling the analogy with the elliptic coordinates (cf. Remark 1), we
are looking at the map sending the ‘elliptic coordinates’, xj ’s, to the ‘elliptic
parameters’, yj ’s, while specializing the ‘Cartesian variables’, ηj ’s.

Regardless what viewpoint one chooses, this operator possesses many neat
properties and, as a result, plays a fundamental role in the area of symmetric
functions. The main motivation from now on will be to understand whether
Qz self-commutes,

Qz1Qz2 = Qz2Qz1 , ∀z1, z2 ∈ C, (2.31)

and therefore defines a quantum integrable map, that is whether there is
a basis of good functions invariant under its action. The answer is yes and
the basis is given by the Jack polynomials, which in fact can be uniquely
characterized by this property.
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3 Monomial and Elementary Symmetric Functions

3.1 Definitions

Let λ = (λ1, λ2, . . . , λn) ∈ Nn, λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, be a partition of a
weight |λ|,

|λ| =
n∑

i=1

λi. (3.1)

Hereafter, we shall use the weight notation | . | as in (3.1) for any finite sum of
indexed variables. The dominance partial ordering / for two partitions μ
and λ is defined as follows:

μ / λ ⇐⇒
{
|μ| = |λ| ;

k∑
j=1

μj ≤
k∑

j=1

λj , k = 1, . . . , n− 1
}
. (3.2)

Usually (cf. [22]), the length l(λ) of a partition λ is the number of non-
zero parts λi. We shall consider the partitions λ = (λ1, λ2, . . . , λn) that are
finite sequences of exact length n, including any zero parts. For instance,
(6, 6, 2, 0) and (6, 0, 0, 0) are both partitions of the length 4, while (6, 6, 2) and
(6) have lengths 3 and 1, respectively. For any partition λ = (λ1, . . . , λn) of
the length n, we shall often use the notation λi,j = λi − λj , in particular
λi,i+1 = λi − λi+1, i = 1, . . . , n, λn+1 ≡ 0.

Let C(a, b, c, . . .) be the field of rational functions in indeterminates
a, b, c, . . . over the field C of complex numbers, C(a, b, c, . . .)[x, y, z, . . .] be
the ring of polynomials in the variables x, y, z, . . . with coefficients from
C(a, b, c, . . .), and C[x1, . . . , xn]sym be the subring of symmetric polyno-
mials.

We need two standard bases in the linear space of symmetric polynomials
of n variables, C[x]sym, labelled by partitions λ. For each a = (a1, . . . , an) ∈
Nn let us denote by xa the monomial

xa = xa1
1 · · ·xan

n . (3.3)

The monomial symmetric functions mλ(x) are defined by

mλ(x) =
∑

xν , (3.4)

where the sum is taken over all distinct permutations ν of λ. The mλ(x) form
a basis in C[x]sym.

For each r = 0, . . . , n the rth elementary symmetric function er(x) is
the sum of all products of r distinct variables xi, so that e0(x) = 1 and

er(x) =
∑

1≤i1<...<ir≤n

xi1xi2 · · ·xir
= m(1r0n−r)(x) (3.5)

for r = 1, . . . , n. Their generating function and explicit forms are
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n∏
j=1

(x + xj) =
n∑

k=0

ek(x)xn−k, (3.6)

e1 = x1 + . . . , e2 = x1x2 + . . . , e3 = x1x2x3 + . . . , (3.7)

where ‘+ . . .’ means adding corresponding permutations.
For each partition λ = (λ1, . . . , λn) define the polynomials Eλ(x) as

Eλ(x) = eλ1−λ2
1 (x)eλ2−λ3

2 (x) · · · eλn
n (x). (3.8)

The polynomials Eλ(x) also form a basis in C[x]sym and the transition ma-
trix between Eλ and mλ is triangular with respect to the dominance partial
ordering (see [22, Chapter 1, Section 2]):

Eλ(x) =
∑
μ�λ

aλμmμ(x), (3.9)

where aλμ ∈ N and aλλ = 1. For instance:

E000 = m000, E100 = m100, E110 = m110, E200 = m200 + 2m110,

E111 = m111, E210 = m210 + 3m111, E300 = m300 + 3m210 + 6m111,

E211 = m211, E220 = m220 + 2m211, E221 = m221, E222 = m222.

3.2 Factorizing Symmetric Polynomials Eλ1,λ2(x1, x2)

By definition
Eλ1,λ2(x1, x2) = (x1 + x2)λ1,2(x1x2)λ2 . (3.10)

Consider the limit g → ∞ in the construction of the Q-operator Qz in Section
2.4, notably take this limit in the explicit action on the monomials in ηj ’s
(2.30):

Qz : ηk1
1 ηk2

2 �→
(

z−1
2

)k1+k2
. (3.11)

It means that one can put η1 = η2 = z−1
2 , so that in this case the action of the

integral operator Qz turns into a pure change of coordinates (x) → (y)
defined by the equations:

x1 + x2 = z+1
2 (y1 + y2), (3.12)

x1x2 = zy1y2. (3.13)

Obviously, the action of the Q-operator on the basis Eλ1,λ2(x1, x2) is

Qz : Eλ1,λ2(x1, x2) �→
Eλ1,λ2(z, 1)
Eλ1,λ2(1, 1)

Eλ1,λ2(y1, y2). (3.14)

This formula defines the operator Qz for all z ∈ C on the space C[x1, x2]sym.
Moreover, the polynomials Eλ are its eigenfunctions with the eigenvalues
qλ(z):
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QzEλ = qλ(z)Eλ, qλ(z) =
Eλ1,λ2(z, 1)
Eλ1,λ2(1, 1)

=
(
z + 1

2

)λ1,2

zλ2 . (3.15)

The symmetric polynomials Eλ1,λ2(x1, x2) can be defined as being the
eigenfunctions,

D1Eλ = λ1,2Eλ, D2Eλ = λ2Eλ, (3.16)

of the commuting differential operators D1 and D2:

D1 =
x1 + x2

x1 − x2

(
x1

∂

∂x1
− x2

∂

∂x2

)
, D2 = − x1x2

x1 − x2

(
∂

∂x1
− ∂

∂x2

)
,

(3.17)
[D1, D2] = 0 (3.18)

Exercise 6. Check (3.16) and (3.18)

Therefore, the Q-operator commutes with the operators D1 and D2 as well
as self-commutes:

[Qz, Dj ] = 0, [Qz1 , Qz2 ] = 0, j = 1, 2, z, z1, z2 ∈ C. (3.19)

Setting y2 = 1 and renaming y1 and z into z1 and z2 one observes from
(3.12)–(3.14) that the transform S2 : (x1, x2) → (z1, z2):

x1 + x2 = 1
2 (z1 + 1) (z2 + 1), (3.20)

x1x2 = z1z2, (3.21)

factorizes the basis functions into a symmetric product of two polynomials
each in one variable:

S2 : Eλ(x1, x2) �→ Eλ(1, 1)
Eλ1,λ2(z1, 1)
Eλ1,λ2(1, 1)

Eλ(z2, 1)
Eλ(1, 1)

. (3.22)

The inverse transform, S−1
2 : (z1, z2) → (x1, x2):

z1 + z2 = 2(x1 + x2) − x1x2 − 1, (3.23)

z1z2 = x1x2, (3.24)

provides a representation for the basis functions in terms of the polynomials
of one variable:

S−1
2 : Eλ(1, 1)

Eλ1,λ2(z1, 1)
Eλ1,λ2(1, 1)

Eλ(z2, 1)
Eλ(1, 1)

�→ Eλ(x1, x2). (3.25)

Such maps, S2 and S−1
2 , we call the separating and inverse separating

maps, respectively.
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3.3 Factorizing the Basis Eλ(x1, . . . , xn)

Let us study the change of coordinates (x) ↔ (e), defined by the elementary
symmetric functions:

n∏
j=1

(x + xj) = xn +
n∑

k=1

ekx
n−k, x ∈ C. (3.26)

Taking the differential of the both sides and then dividing by the product one
obtains

n∑
j=1

dxj

x + xj
=

n∑
k=1

xn−k∏n
m=1(x + xm)

dek. (3.27)

Comparing the residues at the poles one gets

dxj =
n∑

k=1

(−xj)n−k∏n
m 	=j(xm − xj)

dek, j = 1, . . . , n, (3.28)

and therefore

∂

∂ek
=

n∑
j=1

(−xj)n−k∏n
m 	=j(xm − xj)

∂

∂xj
, k = 1, . . . , n. (3.29)

Clearly, the operators ek
∂

∂ek
are diagonal on Eλ =

∏n
j=1 e

λj,j+1
j :

ek
∂

∂ek
Eλ = λk,k+1Eλ, k = 1, . . . , n. (3.30)

Hence, the operators

Dk = ek(x)
n∑

j=1

(−xj)n−k∏n
m 	=j(xm − xj)

∂

∂xj
, k = 1, . . . , n, (3.31)

mutually commute and have the functions Eλ(x) as their eigenfunctions:

[Dj , Dk] = 0, DkEλ(x) = λk,k+1Eλ(x), k = 1, . . . , n. (3.32)

The change of coordinates S(0)
n : (x) �→ (e) is, by the above, a separating map

for a quantum integrable system indexquantum integrable systemdefined
by the complete set of commuting operators Dk

2. It factorizes the cor-
responding eigenfunctions:

2 completeness is understood here in the sense that the corresponding eigenfunc-
tions form a basis in a Hilbert space, so that the set of commuting operators
provides enough quantum numbers (parts λj) to label every eigenstate
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S(0)
n : Eλ(x) �→

n∏
j=1

e
λj,j+1
j . (3.33)

Under S(0)
n the operators Dk are mapped into simpler operators

S(0)
n Dk = ek

∂

∂ek
S(0)

n , k = 1, . . . , n, (3.34)

and the initial multivariable spectral problem (3.32) is mapped into a set of
one-variable separation equations for the factorized functions:

ek
∂

∂ek
e

λk,k+1
k = λk,k+1e

λk,k+1
k , k = 1, . . . , n. (3.35)

The main problem for any quantum integrable system given by a complete
set of commuting operators {Dj}n

j=1 is to explicitly construct the correspond-
ing separating map which would factorize the multivariable eigenfunctions
into functions of one variable. This is generally a rather complicated prob-
lem, but there are various approaches to tackle it, e.g., by making use of the
Q-operator.

We shall now describe another purely coordinate separating map Sn for the
basis Eλ(x) which is similar to the map S2 from the previous subsection and
which intrinsically comes from a n-variable generalization of the Q-operator.

The n-variable operator Qz is defined as the following change of coordi-
nates (x) → (y) (cf (3.12)–(3.13)):

ek(x) = qk(z)ek(y),

qk(z) ≡ ek(z, 1, . . . , 1)
ek(1, . . . , 1)

= 1 +
(z − 1)k

n
, k = 1, . . . , n. (3.36)

Exercise 7. Show that

ek(1, . . . , 1) =
(
n

k

)
, qk(z) = 1 +

(z − 1)k
n

, k = 1, . . . , n. (3.37)

Obviously, Qz has the diagonal action

Qz : Eλ(x) �→ qλ(z)Eλ(y),

qλ(z) =
n∏

k=1

q
λk,k+1
k =

n∏
k=1

(
1 + (z−1)k

n

)λk,k+1

. (3.38)

Iterate Qz n times and restrict the out-variables by the evaluation homomor-
phism  0 : f(y1, . . . , yn) �→ f(1, . . . , 1). In this way one obtains the separating
operator Sn =  0Qz1 · · ·Qzn

as the following change of coordinates (x) → (z):
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ek(x) =
(
n

k

) n∏
j=1

qk(zj), k = 1, . . . , n. (3.39)

Its action on the basis Eλ(x) is as follows:

Sn : Eλ(x) �→ cλ

n∏
j=1

qλ(zj), cλ =
n∏

k=1

(
n

k

)λk,k+1

. (3.40)

The transform Sn (3.39) can be rewritten in the form

ek(x) =
(
n

k

) (
k

n

)n n∑
m=0

em(z)
(
n− k

k

)n−m

, k = 1, . . . , n. (3.41)

The inverse form of this change is complicated in general, e.g. for n = 3 one
has

e1(z) = e3(x) − 3
2 e2(x) + 3e1(x) − 5

2 , (3.42)
e2(z) = − 5

2 e3(x) + 3e2(x) − 3
2 e1(x) + 1, (3.43)

e3(z) = e3(x). (3.44)

The transform Sn (3.39) maps the differential operators Dk (3.31) in x-
variables into the corresponding differential operators Dsep

k in the separation
variables {zj}n

j=1:
SnDk(x) = Dsep

k (z)Sn. (3.45)

The operators Dsep
k (z) are in a special separated form, that is they admit

the separation of variables. At the same time, the separating transform Sn

(3.39), which factorizes their common eigenfunctions (3.40), sends the origi-
nal n-variable spectral problem for the commuting operators Dk(x),

Dk(x)Eλ(x) = λk,k+1Eλ(x), k = 1, . . . , n, (3.46)

into a multi-parameter spectral problem [1, 24, 26] for the separated
polynomials qλ(zk):

dqλ(zk)
dzk

=
n∑

j=1

λj,j+1

zk + n−j
j

qλ(zk), k = 1, . . . , n. (3.47)

Let us derive the explicit form for the operators Dsep
k . Apply logarithmic

differential to both sides of the defining equations (3.39) for the change of
variables (x) → (z) and get

dej

ej
=

n∑
k=1

dzk

zk + n−j
j

, j = 1, . . . , n. (3.48)

Therefore,
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∂

∂zk
=

n∑
j=1

1
zk + n−j

j

Dsep
j (z), k = 1, . . . , n, (3.49)

which is just the operator form of the separation equations (3.47). In order
to derive the operators Dsep

j (z), one must invert the above system of linear
simultaneous equations.

Let us solve a more general problem formulated as follows. Suppose one
has two sequences of distinct variables, (z1, . . . , zn) and (w1, . . . , wn), and the
n× n Cauchy matrix A:

Ajk =
1

zj − wk
, j, k = 1, . . . , n. (3.50)

What is the inverse matrix A−1?
Write down the following equality coming from the partial fraction decom-

position of the left hand side:∏n
l=1(z − zl)

(z − zp)
∏n

l=1(z − wl)
=

n∑
j=1

1
z − wj

∏
l 	=p(wj − zl)∏
l 	=j(wj − wl)

, p = 1, . . . , n. (3.51)

Substituting u = zq, q = 1, . . . , n, one derives

δqp =
n∑

j=1

1
zq − wj

∏n
l=1(zp − wl)∏
l 	=j(wj − wl)

∏
l 	=p

wj − zl

zp − zl
. (3.52)

Hence, the matrix elements of the inverse of the Cauchy matrix are:(
A−1

)
jk

=
∏n

l=1(zk − wl)∏
l 	=j(wj − wl)

∏
l 	=k

wj − zl

zk − zl
j, k = 1, . . . , n. (3.53)

Applying this result to invert the problem (3.49) one derives the explicit
representation for the n commuting operators Dsep

j (z):

Dsep
j (z) =

n∑
k=1

nn

j
∏

l 	=j(l − j)

(
n∏

l=1

ql(zk)

)⎛⎝∏
l 	=k

qj(zl)
zk − zl

⎞⎠ ∂

∂zk
. (3.54)

Exercise 8. For n = 2, start from the two commuting operators Dsep
j (z1, z2)

(3.54) and separate the variables, thereby deriving the separation equations
(3.47).

3.4 Liouville Integrable Systems

The quantum integrable system we have studied has a quasi-classical limit in
which it turns into a Liouville integrable system, defined by the n func-
tionally independent and Poisson-commuting integrals of motion:
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dk = ek(x)
n∑

j=1

(−xj)n−k∏n
m 	=j(xm − xj)

pxk
, {dj , dk} = 0, j, k = 1, . . . , n,

(3.55)
where the canonical coordinates, xj , and the conjugated momenta, pj , have
the standard Poisson brackets of the Darboux variables:

{xj , xk} = {pxj
, pxk

} = 0, {pxj
, xk} = δjk, j, k = 1, . . . , n. (3.56)

The same separating transform Sn defines now a separating canonical trans-
formation (px1 , . . . , pxn

; x) → (pz1 , . . . , pzn
; z) such that the new (separation)

variables satisfy the separation equations:

pzk
=

n∑
j=1

dj

zk + n−j
j

, k = 1, . . . , n. (3.57)

For the problem in question there is very little difference between separat-
ing the quantum or the classical system. In both cases it is the same purely
coordinate3 change of variables. In the classical case it amounts to a special
canonical transformation which brings the system into a separated form when
each new conjugated momentum depends only on its own coordinate. In the
quantum case the map factorizes the eigenfunctions into some (separated)
functions of one variable, thereby again reducing the n-variable problem to
a set of one-variable problems, connected by the common eigenvalues of the
commuting integrals.

Exercise 9. For n = 2 separate variables for the Liouville integrable system
with the integrals d1 and d2 (3.55) and derive the corresponding separation
equations (3.57).

3.5 Separation of Variables

The interested reader is guided to the book [7] and the papers [12, 13, 8, 5] for
more information on separation of variables in the Hamilton-Jacobi equation
and in the Laplace operator on Riemannian spaces of constant curvature. The
last paper explains how to add separating potentials.

All these references though are about separation in curvilinear orthogo-
nal coordinate systems. There are only few classification results about sep-
arability in non-orthogonal coordinate systems. Both separations, S(0)

n

and Sn, we have considered are non-orthogonal. Moreover, in the next sec-
tions we encounter separations which are given by specific local operators and
even by integral operators and corresponding canonical transformations (cf
[17, 18, 19, 20, 15, 16]).

3 it does not depend on the conjugated momenta



Separation of Variables 249

3.6 Factorizing Symmetric Monomials mλ1,λ2(x1, x2)

Let us now come back to the Q-operator of Section 2.4 whose action on any
symmetric polynomial in the variables x1 and x2 is defined by the following
rules:

x1 + x2 = (1 + η1)y1 + (1 + η2)y2, (3.58)
x1x2 = (1 + η1 + η2)y1y2. (3.59)

Qz : ηk1
1 ηk2

2 �→ (z − 1)k1+k2(g)k1(g)k2

(2g)k1+k2

, kj = 0, 1, 2, . . . . (3.60)

Consider the case of g = 0. One immediately notices that the Q-operator
annihilates most of the η-monomials:

Qz[1] = 1, Qz : ηk
j �→ (z−1)k

2 , j = 1, 2, k = 1, 2, . . . , (3.61)

Qz : ηk1
1 ηk2

2 �→ 0 if k1k2 �= 0. (3.62)

Because of this property, the second substitution (3.59) can be replaced by
x1x2 = (1 + η1) y1(1 + η2)y2, thereby the whole change of variables involved
in the action of the Q-operator becomes as simple as this

x1 = (1 + η1)y1, x2 = (1 + η2)y2. (3.63)

A straightforward calculation gives

Qz : (1 + η1)k1(1 + η2)k2 �→ 1
2

(
zk1 + zk2

)
, k1, k2 = 0, 1, 2, . . . . (3.64)

Therefore, if one identifies the out-variables, y1,2, with the in-variables, x1,2,
one can realize the operator Qz as the following (local) shift operator:

Qz : f(x1, x2) �→ 1
2 (f(zx1, x2) + f(x1, zx2)) , ∀f ∈ C[x1, x2]sym. (3.65)

The monomial symmetric functions mλ1,λ2(x1, x2) are defined as follows:

mλ1,λ2(x1, x2) =

{
xλ1

1 xλ2
2 + xλ1

2 xλ2
1 , λ1 �= λ2,

xλ1
1 xλ1

2 , λ1 = λ2.
(3.66)

It is easy to check that the action of the Q-operator Qz (3.65) on this basis
is diagonal

Qz : mλ(x1, x2) �→ qλ(z)mλ(x1, x2), qλ(z) = 1
2

(
zλ1 + zλ2

)
. (3.67)

Exercise 10. Prove that

qλ(z) =
mλ1,λ2(z, 1)
mλ1,λ2(1, 1)

. (3.68)
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As before, the separating operator S2 is constructed as the restriction, by
the evaluation homomorphism  0, of the product of two Q-operators:

S2 =  0Qz1Qz2 , S2 : mλ(x1, x2) �→ mλ(1, 1)qλ(x1)qλ(x2), (3.69)

where we have again identified the out- with the in-variables. The local oper-
ator S2 has the following explicit action:

(S2f)(x1, x2) = 1
2 (f(x1, x2) + f(x1x2, 1)) , ∀f ∈ C[x1, x2]sym, (3.70)

which we prefer to rewrite in terms of the operator P12,

S2 = 1
2 (1 + P12) , (P12f)(x1, x2) = f(x1x2, 1), f ∈ C[x1, x2]sym.

(3.71)
Now the inverse separating map reads

S−1
2 = 2 − P12 : mλ(1, 1)qλ(x1)qλ(x2) �→ mλ(x1, x2). (3.72)

Exercise 11. Prove that the operator P12 is a projector, P 2
12 = P12, and

then prove (3.72).

3.7 Factorizing the Basis mλ(x1, . . . , xn)

Let us recall that the basis mλ(x1, . . . , xn) is defined as the sum over all
distinct permutations ν = (ν1, . . . , νn) of the partition λ = (λ1, . . . , λn)

mλ(x) =
∑

xν1
1 · · ·xνn

n . (3.73)

It can be characterized as the eigenbasis of the complete set of symmetric
differential operators:

Dj(x) = ej

(
x1

∂

∂x1
, . . . , xn

∂

∂xn

)
, [Dj , Dk] = 0, j, k = 1, . . . , n, (3.74)

Djmλ = ej(λ)mλ. (3.75)

The Q-operator is defined as follows:

(Qzf)(x) =
1
n

n∑
j=1

f(x1, . . . , xj−1, zxj , xj+1, . . . , xn), f ∈ C[x]sym. (3.76)

This clearly gives a symmetric operator which can be simply represented in the
operator form with the diagonal action on the monomial symmetric functions:

Qz =
1
n

n∑
j=1

z
xj

∂
∂xj , Qzmλ = qλ(z)mλ, qλ(z) =

1
n

n∑
j=1

zλj . (3.77)
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Exercise 12. Prove that

qλ(z) =
mλ(z, 1, . . . , 1)
mλ(1, . . . , 1)

. (3.78)

The separating operator Sn is, by construction, given by the formula

Sn =  0Qz1 · · ·Qzn
, (3.79)

where  0 is the evaluation homomorphism,  0 : f(x1, . . . , xn) �→ f(1, . . . , 1).
Introduce a string of similar homomorphisms:

 j : f(x1, . . . , xn) �→ f(x1, . . . , xj , 1, . . . , 1), j = 0, . . . , n, (3.80)

with  n ≡ 1. It is easy to check that the separating operator (3.79) can be
factorized into a product of simpler operators Ak, k = 1, . . . , n:

Sn = A1 · · · An, Ak =
1
n

⎛⎝n− k + 1 +
k−1∑
j=1

Pjk

⎞⎠ , An ≡ 1, (3.81)

where the operators Pjk, j < k, are similar to the operator P12 from the
previous section:

(Pjkf)(x1, . . . , xn) = f(. . . ,
jth
xjxk, . . . ,

kth
1 , . . .). (3.82)

Indeed, the required factorization follows from the easily verified identities
which arise from pulling  0 through the string of Q’s in the definition (3.79):

 k−1Qzk
= Ak k, k = 1, . . . , n. (3.83)

Notice that in the formula (3.81) above we have identified the out, z-variables,
with the corresponding in, x-variables, to obtain local operators.

For instance, for n = 3 the separating operator S3 = A2A3 is the following
operator:

(S3f)(x1, x2, x3) = 1
9 (2f(x1, x2, x3) + 2f(x1x3, x2, 1) + 2f(x1x2, 1, x3)
+ 2f(x1, x2x3, 1) + f(x1x2x3, 1, 1)) , (3.84)

for f ∈ C[x]sym. As an example, its factors move the polynomial m300 as
follows:

A3 : x3
1 + x3

2 + x3
3 �→ 1

3

(
2 + x3

3

) (
x3

1 + x3
2 + 1

)
, (3.85)

A2 : 1
3

(
2 + x3

3

) (
x3

1 + x3
2 + 1

)
�→ 1

9

(
2 + x3

1

) (
2 + x3

2

) (
2 + x3

3

)
. (3.86)

The general map Sn, by construction, factorizes the basis mλ,

Sn = A2 · · · An : mλ(x) �→ mλ(1, . . . , 1)
n∏

k=1

qλ(xk) . (3.87)
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Exercise 13. Show that

Ak : mλ(x1, . . . , xk, 1, . . . , 1) �→ mλ(x1, . . . , xk−1, 1, 1, . . . , 1)qλ(xk). (3.88)

The above action means that the operators Ak possess the dimension
reduction property. They successively factorize out separation variables one-
by-one and each time those with a smaller index act on a smaller number of
variables.

Exercise 14. Show that

PjkPlk = Pjk, j, l = 1, . . . , k − 1, (3.89)

and use it to prove the formula for the inverse operators,

A−1
k =

1
n− k + 1

⎛⎝n−
k−1∑
j=1

Pjk

⎞⎠ , k = 1, . . . , n. (3.90)

As a result, one derives an explicit representation for the symmetric mono-
mial functions in terms of the separated polynomials qλ(x):

S−1
n = A−1

n · · · A−1
2 : mλ(1, . . . , 1)

n∏
k=1

qλ(xk) �→ mλ(x) . (3.91)

The observed factorization of the separating and inverse separating maps
and the corresponding structure of the dimension reduction action of the
factor-operators has a general name factorized separation chain. It was
introduced in [14] for a wide class of integrable systems with a 2 × 2 Lax
matrix.
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25. G. Szegő, Orthogonal Polynomials, AMS, Colloquium Publications 23, Provi-
dence RI, 4th ed., 1975.

26. H. Volkmer, Multiparameter Eigenvalue Problems and Expansion Theorems,
Springer Lecture Notes in Mathematics 1356 (1988).



An Algebraic Approach to the Askey Scheme
of Orthogonal Polynomials

Paul Terwilliger

Department of Mathematics, University of Wisconsin,
Madison, Wisconsin 53706, USA
e-mail: terwilli@math.wisc.edu

Summary. Let K denote a field, and let V denote a vector space over K with finite
positive dimension. We consider a pair of linear transformations A : V → V and
A∗ : V → V that satisfy the following two conditions:

1. There exists a basis for V with respect to which the matrix representing A is
irreducible tridiagonal and the matrix representing A∗ is diagonal.

2. There exists a basis for V with respect to which the matrix representing A∗ is
irreducible tridiagonal and the matrix representing A is diagonal.

We call such a pair a Leonard pair on V . We give a correspondence between Leonard
pairs and a class of orthogonal polynomials. This class coincides with the terminat-
ing branch of the Askey scheme and consists of the q-Racah, q-Hahn, dual q-Hahn,
q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk,
Racah, Hahn, dual Hahn, Krawtchouk, Bannai/Ito, and orphan polynomials. We
describe the above correspondence in detail. We show how, for the listed polynomi-
als, the 3-term recurrence, difference equation, Askey-Wilson duality, and orthogo-
nality can be expressed in a uniform and attractive manner using the corresponding
Leonard pair. We give some examples that indicate how Leonard pairs arise in rep-
resentation theory and algebraic combinatorics. We discuss a mild generalization of
a Leonard pair called a tridiagonal pair. At the end we list some open problems.
Throughout these notes our argument is elementary and uses only linear algebra.
No prior exposure to the topic is assumed.
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1 Leonard Pairs and Leonard Systems

1.1 Leonard Pairs

These notes are based on the papers [45], [46], [47], [79], [80], [81], [82], [83],
[84], [85], [86], [87], [88]. We begin by recalling the notion of a Leonard pair.
We will use the following terms. Let X denote a square matrix. Then X is
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called tridiagonal whenever each nonzero entry lies on either the diagonal, the
subdiagonal, or the superdiagonal. Assume X is tridiagonal. Then X is called
irreducible whenever each entry on the subdiagonal is nonzero and each entry
on the superdiagonal is nonzero.

We now define a Leonard pair. For the rest of this paper K will denote a field.

Definition 1.1. [79] Let V denote a vector space over K with finite positive
dimension. By a Leonard pair on V , we mean an ordered pair of linear trans-
formations A : V → V and A∗ : V → V that satisfy both (i), (ii) below.

(i) There exists a basis for V with respect to which the matrix representing A
is irreducible tridiagonal and the matrix representing A∗ is diagonal.

(ii) There exists a basis for V with respect to which the matrix representing
A∗ is irreducible tridiagonal and the matrix representing A is diagonal.

Note 1.1. According to a common notational convention A∗ denotes the
conjugate-transpose of A. We are not using this convention. In a Leonard
pair A,A∗ the linear transformations A and A∗ are arbitrary subject to (i),
(ii) above.

Note 1.2. Our use of the name “Leonard pair” is motivated by a connection
to a theorem of Doug Leonard [62], [11, p. 260] that involves the q-Racah and
related polynomials of the Askey scheme.

1.2 An Example

Here is an example of a Leonard pair. Set V = K4 (column vectors), set

A =

⎛⎜⎜⎝
0 3 0 0
1 0 2 0
0 2 0 1
0 0 3 0

⎞⎟⎟⎠ , A∗ =

⎛⎜⎜⎝
3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞⎟⎟⎠ ,

and view A and A∗ as linear transformations from V to V . We assume the
characteristic of K is not 2 or 3, to ensure A is irreducible. Then A,A∗ is a
Leonard pair on V . Indeed, condition (i) in Definition 1.1 is satisfied by the
basis for V consisting of the columns of the 4 by 4 identity matrix. To verify
condition (ii), we display an invertible matrix P such that P−1AP is diagonal
and P−1A∗P is irreducible tridiagonal. Set

P =

⎛⎜⎜⎝
1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

⎞⎟⎟⎠ .

By matrix multiplication P 2 = 8I, where I denotes the identity, so P−1 exists.
Also by matrix multiplication,
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AP = PA∗. (1.1)

Apparently P−1AP is equal to A∗ and is therefore diagonal. By (1.1) and since
P−1 is a scalar multiple of P , we find P−1A∗P is equal to A and is therefore
irreducible tridiagonal. Now condition (ii) of Definition 1.1 is satisfied by the
basis for V consisting of the columns of P .

The above example is a member of the following infinite family of Leonard
pairs. For any nonnegative integer d the pair

A =

⎛⎜⎜⎜⎜⎝
0 d 0
1 0 d− 1

2
. . . . . .
. . . . . . 1

0 d 0

⎞⎟⎟⎟⎟⎠ , A∗ = diag(d, d− 2, d− 4, . . . ,−d) (1.2)

is a Leonard pair on the vector space Kd+1, provided the characteristic of K
is zero or an odd prime greater than d. This can be proved by modifying the
proof for d = 3 given above. One shows P 2 = 2dI and AP = PA∗, where P
denotes the matrix with ij entry

Pij =
(
d

j

)
2F1

(
−i,−j
−d

∣∣∣∣∣ 2
)

(0 ≤ i, j ≤ d). (1.3)

We follow the standard notation for hypergeometric series [28, p. 3]. The
details of the above calculations are given in Section 6 below.

1.3 Leonard Systems

When working with a Leonard pair, it is often convenient to consider a closely
related and somewhat more abstract object called a Leonard system. In order
to define this we first make an observation about Leonard pairs.

Lemma 1.1. Let V denote a vector space over K with finite positive dimen-
sion and let A,A∗ denote a Leonard pair on V . Then the eigenvalues of A
are mutually distinct and contained in K. Moreover, the eigenvalues of A∗ are
mutually distinct and contained in K.

Proof. Concerning A, recall by Definition 1.1(ii) that there exists a basis for
V consisting of eigenvectors for A. Consequently the eigenvalues of A are all
in K, and the minimal polynomial of A has no repeated roots. To show the
eigenvalues of A are distinct, we show that the minimal polynomial of A has
degree equal to dimV . By Definition 1.1(i), there exists a basis for V with
respect to which the matrix representing A is irreducible tridiagonal. Denote
this matrix by B. On one hand, A and B have the same minimal polynomial.
On the other hand, using the tridiagonal shape of B, we find I,B,B2, . . . , Bd
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are linearly independent, where d = dimV − 1, so the minimal polynomial of
B has degree d + 1 = dimV . We conclude that the mininimal polynomial of
A has degree equal to dimV , so the eigenvalues of A are distinct. We have
now obtained our assertions about A, and the case of A∗ is similar. ��
To prepare for our definition of a Leonard system, we recall a few concepts
from linear algebra. Let d denote a nonnegative integer and let Matd+1(K)
denote the K-algebra consisting of all d+1 by d+1 matrices that have entries
in K. We index the rows and columns by 0, 1, . . . , d. We let Kd+1 denote
the K-vector space consisting of all d + 1 by 1 matrices that have entries
in K. We index the rows by 0, 1, . . . , d. We view Kd+1 as a left module for
Matd+1(K). We observe this module is irreducible. For the rest of this paper
we let A denote a K-algebra isomorphic to Matd+1(K). When we refer to an
A-module we mean a left A-module. Let V denote an irreducible A-module.
We remark that V is unique up to isomorphism of A-modules, and that V
has dimension d + 1. Let v0, v1, . . . , vd denote a basis for V . For X ∈ A and
Y ∈ Matd+1(K), we say Y represents X with respect to v0, v1, . . . , vd whenever
Xvj =

∑d
i=0 Yijvi for 0 ≤ j ≤ d. Let A denote an element of A. We say A is

multiplicity-free whenever it has d+ 1 mutually distinct eigenvalues in K. Let
A denote a multiplicity-free element of A. Let θ0, θ1, . . . , θd denote an ordering
of the eigenvalues of A, and for 0 ≤ i ≤ d put

Ei =
∏

0≤j≤d
j 	=i

A− θjI

θi − θj
, (1.4)

where I denotes the identity of A. We observe

(i) AEi = θiEi (0 ≤ i ≤ d);
(ii) EiEj = δijEi (0 ≤ i, j ≤ d);
(iii)

∑d
i=0 Ei = I;

(iv) A =
∑d

i=0 θiEi.

Let D denote the subalgebra of A generated by A. Using (i)–(iv) we find the
sequence E0, E1, . . . , Ed is a basis for the K-vector space D. We call Ei the
primitive idempotent of A associated with θi. It is helpful to think of these
primitive idempotents as follows. Observe

V = E0V + E1V + · · · + EdV (direct sum). (1.5)

For 0 ≤ i ≤ d, EiV is the (one dimensional) eigenspace of A in V associated
with the eigenvalue θi, and Ei acts on V as the projection onto this eigenspace.
We remark that {Ai|0 ≤ i ≤ d} is a basis for the K-vector space D and
that

∏d
i=0(A − θiI) = 0. By a Leonard pair in A we mean an ordered pair

of elements taken from A that act on V as a Leonard pair in the sense of
Definition 1.1. We call A the ambient algebra of the pair and say the pair is
over K. We refer to d as the diameter of the pair. We now define a Leonard
system.
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Definition 1.2. [79, Definition 1.4] By a Leonard system in A we mean a
sequence Φ := (A;A∗; {Ei}d

i=0; {E∗
i }d

i=0) that satisfies (i)–(v) below.

(i) Each of A,A∗ is a multiplicity-free element in A.
(ii) E0, E1, . . . , Ed is an ordering of the primitive idempotents of A.
(iii) E∗

0 , E
∗
1 , . . . , E

∗
d is an ordering of the primitive idempotents of A∗.

(iv) EiA
∗Ej =

{
0, if |i− j| > 1,
�= 0, if |i− j| = 1,

(0 ≤ i, j ≤ d).

(v) E∗
i AE

∗
j =

{
0, if |i− j| > 1,
�= 0, if |i− j| = 1,

(0 ≤ i, j ≤ d).

We refer to d as the diameter of Φ and say Φ is over K. We call A the ambient
algebra of Φ.

We comment on how Leonard pairs and Leonard systems are related. In the
following discussion V denotes an irreducible A-module. Let (A;A∗; {Ei}d

i=0;
{E∗

i }d
i=0) denote a Leonard system in A. For 0 ≤ i ≤ d let vi denote a

nonzero vector in EiV . Then the sequence v0, v1, . . . , vd is a basis for V that
satisfies Definition 1.1(ii). For 0 ≤ i ≤ d let v∗i denote a nonzero vector in
E∗

i V . Then the sequence v∗0 , v
∗
1 , . . . , v

∗
d is a basis for V that satisfies Definition

1.1(i). By these comments the pair A,A∗ is a Leonard pair in A. Conversely
let A,A∗ denote a Leonard pair in A. Then each of A,A∗ is multiplicity-free
by Lemma 1.1. Let v0, v1, . . . , vd denote a basis for V that satisfies Definition
1.1(ii). For 0 ≤ i ≤ d the vector vi is an eigenvector for A; let Ei denote
the corresponding primitive idempotent. Let v∗0 , v

∗
1 , . . . , v

∗
d denote a basis for

V that satisfies Definition 1.1(i). For 0 ≤ i ≤ d the vector v∗i is an eigen-
vector for A∗; let E∗

i denote the corresponding primitive idempotent. Then
(A;A∗; {Ei}d

i=0; {E∗
i }d

i=0) is a Leonard system in A. In summary we have the
following.

Lemma 1.2. Let A and A∗ denote elements of A. Then the pair A,A∗ is a
Leonard pair in A if and only if the following (i), (ii) hold.

(i) Each of A,A∗ is multiplicity-free.
(ii) There exists an ordering E0, E1, . . . , Ed of the primitive idempotents of A

and there exists an ordering E∗
0 , E

∗
1 , . . . , E

∗
d of the primitive idempotents

of A∗ such that (A;A∗; {Ei}d
i=0; {E∗

i }d
i=0) is a Leonard system in A.

We recall the notion of isomorphism for Leonard pairs and Leonard systems.

Definition 1.3. Let A,A∗ and B,B∗ denote Leonard pairs over K. By an
isomorphism of Leonard pairs from A,A∗ to B,B∗ we mean an isomorphism
of K-algebras from the ambient algebra of A,A∗ to the ambient algebra of
B,B∗ that sends A to B and A∗ to B∗. The Leonard pairs A,A∗ and B,B∗

are said to be isomorphic whenever there exists an isomorphism of Leonard
pairs from A,A∗ to B,B∗.
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Let Φ denote the Leonard system from Definition 1.2 and let σ : A → A′

denote an isomorphism of K-algebras. We write

Φσ := (Aσ;A∗σ; {Eσ
i }d

i=0; {E∗σ
i }d

i=0)

and observe Φσ is a Leonard system in A′.

Definition 1.4. Let Φ and Φ′ denote Leonard systems over K. By an isomor-
phism of Leonard systems from Φ to Φ′ we mean an isomorphism of K-algebras
σ from the ambient algebra of Φ to the ambient algebra of Φ′ such that Φσ = Φ′.
The Leonard systems Φ, Φ′ are said to be isomorphic whenever there exists
an isomorphism of Leonard systems from Φ to Φ′.

We have a remark. Let σ : A → A denote any map. By the Skolem-Noether
theorem [75, Corollary 9.122], σ is an isomorphism of K-algebras if and only
if there exists an invertible S ∈ A such that Xσ = SXS−1 for all X ∈ A.

1.4 The D4 Action

A given Leonard system can be modified in several ways to get a new Leonard
system. For instance, let Φ denote the Leonard system from Definition 1.2,
and let α, α∗, β, β∗ denote scalars in K such that α �= 0, α∗ �= 0. Then the
sequence

(αA + βI;α∗A∗ + β∗I; {Ei}d
i=0; {E∗

i }d
i=0)

is a Leonard system in A. Also, each of the following three sequences is a
Leonard system in A.

Φ∗ := (A∗;A; {E∗
i }d

i=0; {Ei}d
i=0),

Φ↓ := (A;A∗; {Ei}d
i=0; {E∗

d−i}d
i=0),

Φ⇓ := (A;A∗; {Ed−i}d
i=0; {E∗

i }d
i=0).

Viewing ∗, ↓,⇓ as permutations on the set of all Leonard systems,

∗2 = ↓2 = ⇓2 = 1, (1.6)

⇓ ∗ = ∗ ↓, ↓ ∗ = ∗ ⇓, ↓⇓ = ⇓↓ . (1.7)

The group generated by symbols ∗, ↓,⇓ subject to the relations (1.6), (1.7) is
the dihedral group D4. We recall D4 is the group of symmetries of a square,
and has 8 elements. Apparently ∗, ↓,⇓ induce an action of D4 on the set of
all Leonard systems. Two Leonard systems will be called relatives whenever
they are in the same orbit of this D4 action. The relatives of Φ are as follows:
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name relative

Φ (A;A∗; {Ei}d
i=0; {E∗

i }d
i=0)

Φ↓ (A;A∗; {Ei}d
i=0; {E∗

d−i}d
i=0)

Φ⇓ (A;A∗; {Ed−i}d
i=0; {E∗

i }d
i=0)

Φ↓⇓ (A;A∗; {Ed−i}d
i=0; {E∗

d−i}d
i=0)

Φ∗ (A∗;A; {E∗
i }d

i=0; {Ei}d
i=0)

Φ↓∗ (A∗;A; {E∗
d−i}d

i=0; {Ei}d
i=0)

Φ⇓∗ (A∗;A; {E∗
i }d

i=0; {Ed−i}d
i=0)

Φ↓⇓∗ (A∗;A; {E∗
d−i}d

i=0; {Ed−i}d
i=0)

There may be some isomorphisms among the above Leonard systems.

For the rest of this paper we will use the following notational convention.

Definition 1.5. Let Φ denote a Leonard system. For any element g in the
group D4 and for any object f that we associate with Φ, we let fg denote the
corresponding object for the Leonard system Φg−1

. We have been using this
convention all along; an example is E∗

i (Φ) = Ei(Φ∗).

2 The Structure of a Leonard System

In this section we establish a few basic facts concerning Leonard systems. We
begin with a definition and two routine lemmas.

Definition 2.1. Let Φ denote the Leonard system from Definition 1.2. For
0 ≤ i ≤ d, we let θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗) associated
with Ei (resp. E∗

i ). We refer to θ0, θ1, . . . , θd as the eigenvalue sequence of Φ.
We refer to θ∗0 , θ

∗
1 , . . . , θ

∗
d as the dual eigenvalue sequence of Φ. We observe

θ0, θ1, . . . , θd are mutually distinct and contained in K. Similarly θ∗0 , θ
∗
1 , . . . , θ

∗
d

are mutually distinct and contained in K.

Lemma 2.1. Let Φ denote the Leonard system from Definition 1.2 and let V
denote an irreducible A-module. For 0 ≤ i ≤ d let vi denote a nonzero vector
in E∗

i V and observe v0, v1, . . . , vd is a basis for V . Then (i), (ii) hold below.

(i) For 0 ≤ i ≤ d the matrix in Matd+1(K) that represents E∗
i with respect to

v0, v1, . . . , vd has ii entry 1 and all other entries 0.
(ii) The matrix in Matd+1(K) that represents A∗ with respect to v0, v1, . . . , vd

is equal to diag(θ∗0 , θ
∗
1 , . . . , θ

∗
d).

Lemma 2.2. Let A denote an irreducible tridiagonal matrix in Matd+1(K).
Pick any integers i, j (0 ≤ i, j ≤ d). Then (i)–(iii) hold below.

(i) The entry (Ar)ij = 0 if r < |i− j|, (0 ≤ r ≤ d).
(ii) Suppose i ≤ j. Then the entry (Aj−i)ij =

∏j−1
h=i Ah,h+1. Moreover

(Aj−i)ij �= 0.
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(iii) Suppose i ≥ j. Then the entry (Ai−j)ij =
∏i−1

h=j Ah+1,h. Moreover
(Ai−j)ij �= 0.

Theorem 2.1. Let Φ denote the Leonard system from Definition 1.2. Then
the elements

ArE∗
0A

s (0 ≤ r, s ≤ d) (2.1)

form a basis for the K-vector space A.

Proof. The number of elements in (2.1) is equal to (d+ 1)2, and this number
is the dimension of A. Therefore it suffices to show the elements in (2.1)
are linearly independent. To do this, we represent the elements in (2.1) by
matrices. Let V denote an irreducible A-module. For 0 ≤ i ≤ d let vi denote
a nonzero vector in E∗

i V , and observe v0, v1, . . . , vd is a basis for V . For the
purpose of this proof, let us identify each element of A with the matrix in
Matd+1(K) that represents it with respect to the basis v0, v1, . . . , vd. Adopting
this point of view we find A is irreducible tridiagonal and A∗ is diagonal. For
0 ≤ r, s ≤ d we show the entries of ArE∗

0A
s satisfy

(ArE∗
0A

s)ij =

{
0, if i > r or j > s,

�= 0, if i = r and j = s.
(0 ≤ i, j ≤ d). (2.2)

By Lemma 2.1(i) the matrix E∗
0 has 00 entry 1 and all other entries 0. There-

fore
(ArE∗

0A
s)ij = (Ar)i0(As)0j (0 ≤ i, j ≤ d). (2.3)

We mentioned A is irreducible tridiagonal. Applying Lemma 2.2 we find that
for 0 ≤ i ≤ d the entry (Ar)i0 is zero if i > r, and nonzero if i = r. Similarly for
0 ≤ j ≤ d the entry (As)0j is zero if j > s, and nonzero if j = s. Combining
these facts with (2.3) we routinely obtain (2.2) and it follows the elements
(2.1) are linearly independent. Apparently the elements (2.1) form a basis for
A, as desired. ��

Corollary 2.1. Let Φ denote the Leonard system from Definition 1.2. Then
the elements A,E∗

0 together generate A. Moreover the elements A,A∗ together
generate A.

Proof. The first assertion is immediate from Theorem 2.1. The second asser-
tion follows from the first assertion and the observation that E∗

0 is a polyno-
mial in A∗. ��

The following is immediate from Corollary 2.1.

Corollary 2.2. Let A,A∗ denote a Leonard pair in A. Then the elements
A,A∗ together generate A.

We mention a few implications of Theorem 2.1 that will be useful later in the
paper.
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Lemma 2.3. Let Φ denote the Leonard system from Definition 1.2. Let D
denote the subalgebra of A generated by A. Let X0, X1, . . . , Xd denote a basis
for the K-vector space D. Then the elements

XrE
∗
0Xs (0 ≤ r, s ≤ d) (2.4)

form a basis for the K-vector space A.

Proof. The number of elements in (2.4) is equal to (d+ 1)2, and this number
is the dimension of A. Therefore it suffices to show the elements (2.4) span
A. But this is immediate from Theorem 2.1, and since each element in (2.1)
is contained in the span of the elements (2.4). ��
Corollary 2.3. Let Φ denote the Leonard system from Definition 1.2. Then
the elements

ErE
∗
0Es (0 ≤ r, s ≤ d) (2.5)

form a basis for the K-vector space A.

Proof. Immediate from Lemma 2.3, with Xi = Ei for 0 ≤ i ≤ d. ��
Lemma 2.4. Let Φ denote the Leonard system from Definition 1.2. Let D
denote the subalgebra of A generated by A. Let X and Y denote elements in
D and assume XE∗

0Y = 0. Then X = 0 or Y = 0.

Proof. Let X0, X1, . . . , Xd denote a basis for the K-vector space D. Since X ∈
D there exists αi ∈ K (0 ≤ i ≤ d) such that X =

∑d
i=0 αiXi. Similarly there

exists βi ∈ K (0 ≤ i ≤ d) such that Y =
∑d

i=0 βiXi. Evaluating 0 = XE∗
0Y

using these equations we get 0 =
∑d

i=0

∑d
j=0 αiβjXiE

∗
0Xj . From this and

Lemma 2.3 we find αiβj = 0 for 0 ≤ i, j ≤ d. We assume X �= 0 and show
Y = 0. Since X �= 0 there exists an integer i (0 ≤ i ≤ d) such that αi �= 0.
Now for 0 ≤ j ≤ d we have αiβj = 0 so βj = 0. It follows Y = 0. ��
We finish this section with a comment.

Lemma 2.5. Let Φ denote the Leonard system from Definition 1.2. Pick any
integers i, j (0 ≤ i, j ≤ d). Then (i)–(iii) hold below.

(i) E∗
i A

rE∗
j = 0 if r < |i− j|, (0 ≤ r ≤ d).

(ii) Suppose i ≤ j. Then

E∗
i A

j−iE∗
j = E∗

i AE
∗
i+1A · · ·E∗

j−1AE
∗
j . (2.6)

Moreover E∗
i A

j−iE∗
j �= 0.

(iii) Suppose i ≥ j. Then

E∗
i A

i−jE∗
j = E∗

i AE
∗
i−1A · · ·E∗

j+1AE
∗
j . (2.7)

Moreover E∗
i A

i−jE∗
j �= 0.

Proof. Represent the elements of Φ by matrices as in the proof of Theorem
2.1, and use Lemma 2.2. ��
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2.1 The Antiautomorphism †
We recall the notion of an antiautomorphism of A. Let γ : A → A denote any
map. We call γ an antiautomorphism of A whenever γ is an isomorphism of
K-vector spaces and (XY )γ = Y γXγ for all X,Y ∈ A. For example assume
A = Matd+1(K). Then γ is an antiautomorphism of A if and only if there
exists an invertible element R in A such that Xγ = R−1XtR for all X ∈ A,
where t denotes transpose. This follows from the Skolem-Noether theorem [75,
Corollary 9.122].

Theorem 2.2. Let A,A∗ denote a Leonard pair in A. Then there exists a
unique antiautomorphism † of A such that A† = A and A∗† = A∗. Moreover
X†† = X for all X ∈ A.

Proof. Concerning existence, let V denote an irreducible A-module. By De-
finition 1.1(i) there exists a basis for V with respect to which the matrix
representing A is irreducible tridiagonal and the matrix representing A∗ is di-
agonal. Let us denote this basis by v0, v1, . . . , vd. For X ∈ A let Xσ denote the
matrix in Matd+1(K) that represents X with respect to the basis v0, v1, . . . , vd.
We observe σ : A → Matd+1(K) is an isomorphism of K-algebras. We abbrevi-
ate B = Aσ and observe B is irreducible tridiagonal. We abbreviate B∗ = A∗σ

and observe B∗ is diagonal. Let D denote the diagonal matrix in Matd+1(K)
that has ii entry

Dii =
B01B12 · · ·Bi−1,i

B10B21 · · ·Bi,i−1
(0 ≤ i ≤ d).

It is routine to verify D−1BtD = B. Each of D,B∗ is diagonal so DB∗ = B∗D;
also B∗t = B∗ so D−1B∗tD = B∗. Let γ : Matd+1(K) → Matd+1(K) denote
the map that satisfies Xγ = D−1XtD for all X ∈ Matd+1(K). We observe
γ is an antiautomorphism of Matd+1(K) such that Bγ = B and B∗γ = B∗.
We define the map † : A → A to be the composition † = σγσ−1. We observe
† is an antiautomorphism of A such that A† = A and A∗† = A∗. We have
now shown there exists an antiautomorphism † of A such that A† = A and
A∗† = A∗. This antiautomorphism is unique since A,A∗ together generate
A. The map X → X†† is an isomorphism of K-algebras from A to itself.
This isomorphism is the identity since A†† = A, A∗†† = A∗, and since A,A∗

together generate A. ��

Definition 2.2. Let A,A∗ denote a Leonard pair in A. By the antiautomor-
phism which corresponds to A,A∗ we mean the map † : A → A from Theorem
2.2. Let Φ = (A;A∗; {Ei}d

i=0; {E∗
i }d

i=0) denote a Leonard system in A. By the
antiautomorphism which corresponds to Φ we mean the antiautomorphism
which corresponds to the Leonard pair A,A∗.

Lemma 2.6. Let Φ denote the Leonard system from Definition 1.2 and let †
denote the corresponding antiautomorphism. Then the following (i), (ii) hold.
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(i) Let D denote the subalgebra of A generated by A. Then X† = X for all
X ∈ D; in particular E†

i = Ei for 0 ≤ i ≤ d.
(ii) Let D∗ denote the subalgebra of A generated by A∗. Then X† = X for all

X ∈ D∗; in particular E∗†
i = E∗

i for 0 ≤ i ≤ d.

Proof. (i) The sequence Ai (0 ≤ i ≤ d) is a basis for the K-vector space D.
Observe † stabilizes Ai for 0 ≤ i ≤ d. The result follows.
(ii) Similar to the proof of (i) above. ��

2.2 The Scalars ai, xi

In this section we introduce some scalars that will help us describe Leonard
systems.

Definition 2.3. Let Φ denote the Leonard system from Definition 1.2. We
define

ai = tr(E∗
i A) (0 ≤ i ≤ d), (2.8)

xi = tr(E∗
i AE

∗
i−1A) (1 ≤ i ≤ d), (2.9)

where tr denotes trace. For notational convenience we define x0 = 0.

We have a comment.

Lemma 2.7. Let Φ denote the Leonard system from Definition 1.2 and let V
denote an irreducible A-module. For 0 ≤ i ≤ d let vi denote a nonzero vector
in E∗

i V and observe v0, v1, . . . , vd is a basis for V . Let B denote the matrix
in Matd+1(K) that represents A with respect to v0, v1, . . . , vd. We observe B
is irreducible tridiagonal. The following (i)–(iii) hold.

(i) Bii = ai (0 ≤ i ≤ d).
(ii) Bi,i−1Bi−1,i = xi (1 ≤ i ≤ d).
(iii) xi �= 0 (1 ≤ i ≤ d).

Proof. (i), (ii) For 0 ≤ i ≤ d the matrix in Matd+1(K) that represents E∗
i

with respect to v0, v1, . . . , vd has ii entry 1 and all other entries 0. The result
follows in view of Definition 2.3.
(iii) Immediate from (ii) and since B is irreducible. ��

Theorem 2.3. Let Φ denote the Leonard system from Definition 1.2. Let V
denote an irreducible A-module and let v denote a nonzero vector in E∗

0V .
Then for 0 ≤ i ≤ d the vector E∗

i A
iv is nonzero and hence a basis for E∗

i V .
Moreover the sequence

E∗
i A

iv (0 ≤ i ≤ d) (2.10)

is a basis for V .
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Proof. We show E∗
i A

iv �= 0 for 0 ≤ i ≤ d. Let i be given. Setting j = 0 in
Lemma 2.5(iii) we find E∗

i A
iE∗

0 �= 0. Therefore E∗
i A

iE∗
0V �= 0. The space

E∗
0V is spanned by v so E∗

i A
iv �= 0 as desired. The remaining claims follow.

��

Theorem 2.4. Let Φ denote the Leonard system from Definition 1.2 and let
the scalars ai, xi be as in Definition 2.3. Let V denote an irreducible A-module.
With respect to the basis for V given in (2.10) the matrix that represents A
is equal to ⎛⎜⎜⎜⎜⎜⎜⎝

a0 x1 0
1 a1 x2

1 · ·
· · ·
· · xd

0 1 ad

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.11)

Proof. With reference to (2.10) abbreviate vi = E∗
i A

iv for 0 ≤ i ≤ d.
Let B denote the matrix in Matd+1(K) that represents A with respect to
v0, v1, . . . , vd. We show B is equal to (2.11). In view of Lemma 2.7 it suffices to
show Bi,i−1 = 1 for 1 ≤ i ≤ d. For 0 ≤ i ≤ d the matrix Bi represents Ai with
respect to v0, v1, . . . , vd; therefore Aiv0 =

∑d
j=0(B

i)j0vj . Applying E∗
i and us-

ing v0 = v we find vi = (Bi)i0vi so (Bi)i0 = 1, forcing Bi,i−1 · · ·B21B10 = 1 by
Lemma 2.2. We have shown Bi,i−1 · · ·B21B10 = 1 for 1 ≤ i ≤ d so Bi,i−1 = 1
for 1 ≤ i ≤ d. We now see B is equal to (2.11). ��

We finish this section with a few comments.

Lemma 2.8. Let Φ denote the Leonard system from Definition 1.2 and let the
scalars ai, xi be as in Definition 2.3. Then the following (i)–(iii) hold.

(i) E∗
i AE

∗
i = aiE

∗
i (0 ≤ i ≤ d).

(ii) E∗
i AE

∗
i−1AE

∗
i = xiE

∗
i (1 ≤ i ≤ d).

(iii) E∗
i−1AE

∗
i AE

∗
i−1 = xiE

∗
i−1 (1 ≤ i ≤ d).

Proof. (i) Observe E∗
i is a basis for E∗

i AE∗
i . By this and since E∗

i AE
∗
i is

contained in E∗
i AE∗

i we find there exists αi ∈ K such that E∗
i AE

∗
i = αiE

∗
i .

Taking the trace of both sides and using tr(XY ) = tr(Y X), tr(E∗
i ) = 1 we

find ai = αi.
(ii) We mentioned above that E∗

i is a basis for E∗
i AE∗

i . By this and since
E∗

i AE
∗
i−1AE

∗
i is contained in E∗

i AE∗
i we find there exists βi ∈ K such that

E∗
i AE

∗
i−1AE

∗
i = βiE

∗
i . Taking the trace of both sides we find xi = βi.

(iii) Similar to the proof of (ii) above. ��

Lemma 2.9. Let Φ denote the Leonard system from Definition 1.2 and let the
scalars xi be as in Definition 2.3. Then the following (i), (ii) hold.

(i) E∗
jA

j−iE∗
i A

j−iE∗
j = xi+1xi+2 · · ·xjE

∗
j (0 ≤ i ≤ j ≤ d).
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(ii) E∗
i A

j−iE∗
jA

j−iE∗
i = xi+1xi+2 · · ·xjE

∗
i (0 ≤ i ≤ j ≤ d).

Proof. (i) Evaluate the expression on the left using Lemma 2.5(ii), (iii) and
Lemma 2.8(ii).
(ii) Evaluate the expression on the left using Lemma 2.5(ii), (iii) and Lemma
2.8(iii). ��

2.3 The Polynomials pi

In this section we begin our discussion of polynomials. We will use the follow-
ing notation. Let λ denote an indeterminate. We let K[λ] denote the K-algebra
consisting of all polynomials in λ that have coefficients in K. For the rest of
this paper all polynomials that we discuss are assumed to lie in K[λ].

Definition 2.4. Let Φ denote the Leonard system from Definition 1.2 and let
the scalars ai, xi be as in Definition 2.3. We define a sequence of polynomials
p0, p1, . . . , pd+1 by

p0 = 1, (2.12)
λpi = pi+1 + aipi + xipi−1 (0 ≤ i ≤ d), (2.13)

where p−1 = 0. We observe pi is monic with degree exactly i for 0 ≤ i ≤ d+1.

Lemma 2.10. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials pi be as in Definition 2.4. Let V denote an irreducible A-
module and let v denote a nonzero vector in E∗

0V . Then pi(A)v = E∗
i A

iv for
0 ≤ i ≤ d and pd+1(A)v = 0.

Proof. We abbreviate vi = pi(A)v for 0 ≤ i ≤ d + 1. We define v′i = E∗
i A

iv
for 0 ≤ i ≤ d and v′d+1 = 0. We show vi = v′i for 0 ≤ i ≤ d + 1. From the
construction v0 = v and v′0 = v so v0 = v′0. From (2.13) we obtain

Avi = vi+1 + aivi + xivi−1 (0 ≤ i ≤ d) (2.14)

where v−1 = 0. From Theorem 2.4 we find

Av′i = v′i+1 + aiv
′
i + xiv

′
i−1 (0 ≤ i ≤ d) (2.15)

where v′−1 = 0. Comparing (2.14), (2.15) and using v0 = v′0 we find vi = v′i
for 0 ≤ i ≤ d + 1. The result follows. ��

We mention a few consequences of Lemma 2.10.

Theorem 2.5. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials pi be as in Definition 2.4. Let V denote an irreducible A-
module. Then

pi(A)E∗
0V = E∗

i V (0 ≤ i ≤ d).
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Proof. Let v denote a nonzero vector in E∗
0V . Then pi(A)v = E∗

i A
iv by

Lemma 2.10. Observe v is a basis for E∗
0V . By Theorem 2.3 we find E∗

i A
iv is

a basis for E∗
i V . Combining these facts we find pi(A)E∗

0V = E∗
i V . ��

Theorem 2.6. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials pi be as in Definition 2.4. Then

pi(A)E∗
0 = E∗

i A
iE∗

0 (0 ≤ i ≤ d). (2.16)

Proof. Let the integer i be given and abbreviate Δ = pi(A)−E∗
i A

i. We show
ΔE∗

0 = 0. In order to do this we show ΔE∗
0V = 0, where V denotes an

irreducible A-module. Let v denote a nonzero vector in E∗
0V and recall v is a

basis for E∗
0V . By Lemma 2.10 we have Δv = 0 so ΔE∗

0V = 0. Now ΔE∗
0 = 0

so pi(A)E∗
0 = E∗

i A
iE∗

0 . ��
Theorem 2.7. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomial pd+1 be as in Definition 2.4. Then the following (i), (ii) hold.

(i) pd+1 is both the minimal polynomial and the characteristic polynomial of
A.

(ii) pd+1 =
∏d

i=0(λ− θi).

Proof. (i) We first show pd+1 is equal to the minimal polynomial of A. Recall
I,A, . . . , Ad are linearly independent and that pd+1 is monic with degree d+1.
We show pd+1(A) = 0. Let V denote an irreducible A-module. Let v denote a
nonzero vector in E∗

0V and recall v is a basis for E∗
0V . From Lemma 2.10 we

find pd+1(A)v = 0. It follows pd+1(A)E∗
0V = 0 so pd+1(A)E∗

0 = 0. Applying
Lemma 2.4 (with X = pd+1(A) and Y = I) we find pd+1(A) = 0. We have now
shown pd+1 is the minimal polynomial of A. By definition the characteristic
polynomial of A is equal to det(λI−A). This polynomial is monic with degree
d + 1 and has pd+1 as a factor; therefore it is equal to pd+1.
(ii) For 0 ≤ i ≤ d the scalar θi is an eigenvalue of A and therefore a root of
the characteristic polynomial of A. ��
The following result will be useful.

Lemma 2.11. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials pi be as in Definition 2.4. Let the scalars xi be as in Definition
2.3. Then

E∗
i =

pi(A)E∗
0pi(A)

x1x2 · · ·xi
(0 ≤ i ≤ d). (2.17)

Proof. Let † : A → A denote the antiautomorphism which corresponds to Φ.
From Theorem 2.6 we have pi(A)E∗

0 = E∗
i A

iE∗
0 . Applying † we find E∗

0pi(A) =
E∗

0A
iE∗

i . From these comments we find

pi(A)E∗
0pi(A) = E∗

i A
iE∗

0A
iE∗

i

= x1x2 · · ·xiE
∗
i

in view of Lemma 2.9(i). The result follows. ��
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2.4 The scalars ν, mi

In this section we introduce some more scalars that will help us describe
Leonard systems.

Definition 2.5. Let Φ denote the Leonard system from Definition 1.2. We
define

mi = tr(EiE
∗
0 ) (0 ≤ i ≤ d). (2.18)

Lemma 2.12. Let Φ denote the Leonard system from Definition 1.2. Then
(i)–(v) hold below.

(i) EiE
∗
0Ei = miEi (0 ≤ i ≤ d).

(ii) E∗
0EiE

∗
0 = miE

∗
0 (0 ≤ i ≤ d).

(iii) mi �= 0 (0 ≤ i ≤ d).
(iv)

∑d
i=0 mi = 1.

(v) m0 = m∗
0.

Proof. (i) Observe Ei is a basis for EiAEi. By this and since EiE
∗
0Ei is

contained in EiAEi, there exists αi ∈ K such that EiE
∗
0Ei = αiEi. Taking the

trace of both sides in this equation and using tr(XY ) = tr(Y X), tr(Ei) = 1
we find αi = mi.
(ii) Similar to the proof of (i).
(iii) Observe miEi is equal to EiE

∗
0Ei by part (i) above and EiE

∗
0Ei is nonzero

by Corollary 2.3. It follows miEi �= 0 so mi �= 0.
(iv) Multiply each term in the equation

∑d
i=0 Ei = I on the right by E∗

0 , and
then take the trace. Evaluate the result using Definition 2.5.
(v) The elements E0E

∗
0 and E∗

0E0 have the same trace. ��

Definition 2.6. Let Φ denote the Leonard system from Definition 1.2. Recall
m0 = m∗

0 by Lemma 2.12(v); we let ν denote the multiplicative inverse of this
common value. We observe ν = ν∗. We emphasize

tr(E0E
∗
0 ) = ν−1. (2.19)

Lemma 2.13. Let Φ denote the Leonard system from Definition 1.2 and let
the scalar ν be as in Definition 2.6. Then the following (i), (ii) hold.

(i) νE0E
∗
0E0 = E0.

(ii) νE∗
0E0E

∗
0 = E∗

0 .

Proof. (i) Set i = 0 in Lemma 2.12(i) and recall m0 = ν−1.
(ii) Set i = 0 in Lemma 2.12(ii) and recall m0 = ν−1. ��
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3 The Standard Basis

In this section we discuss the notion of a standard basis. We begin with a
comment.

Lemma 3.1. Let Φ denote the Leonard system from Definition 1.2 and let V
denote an irreducible A-module. Then

E∗
i V = E∗

i E0V (0 ≤ i ≤ d). (3.1)

Proof. The space E∗
i V has dimension 1 and contains E∗

i E0V . We show
E∗

i E0V �= 0. Applying Corollary 2.3 to Φ∗ we find E∗
i E0 �= 0. It follows

E∗
i E0V �= 0. We conclude E∗

i V = E∗
i E0V . ��

Lemma 3.2. Let Φ denote the Leonard system from Definition 1.2 and let V
denote an irreducible A-module. Let u denote a nonzero vector in E0V . Then
for 0 ≤ i ≤ d the vector E∗

i u is nonzero and hence a basis for E∗
i V . Moreover

the sequence
E∗

0u,E
∗
1u, . . . , E

∗
du (3.2)

is a basis for V .

Proof. Let the integer i be given. We show E∗
i u �= 0. Recall E0V has dimension

1 and u is a nonzero vector in E0V so u spans E0V . Applying E∗
i we find E∗

i u
spans E∗

i E0V . The space E∗
i E0V is nonzero by Lemma 3.1 so E∗

i u is nonzero.
The remaining assertions are clear. ��

Definition 3.1. Let Φ denote the Leonard system from Definition 1.2 and let
V denote an irreducible A-module. By a Φ-standard basis for V , we mean a
sequence

E∗
0u,E

∗
1u, . . . , E

∗
du,

where u is a nonzero vector in E0V .

We give a few characterizations of the standard basis.

Lemma 3.3. Let Φ denote the Leonard system from Definition 1.2 and let V
denote an irreducible A-module. Let v0, v1, . . . , vd denote a sequence of vectors
in V , not all 0. Then this sequence is a Φ-standard basis for V if and only if
both (i), (ii) hold below.

(i) vi ∈ E∗
i V for 0 ≤ i ≤ d.

(ii)
∑d

i=0 vi ∈ E0V .

Proof. To prove the lemma in one direction, assume v0, v1, . . . , vd is a Φ-
standard basis for V . By Definition 3.1 there exists a nonzero u ∈ E0V such
that vi = E∗

i u for 0 ≤ i ≤ d. Apparently vi ∈ E∗
i V for 0 ≤ i ≤ d so (i) holds.

Let I denote the identity element of A and recall I =
∑d

i=0 E
∗
i . Applying this

to u we find u =
∑d

i=0 vi and (ii) follows. We have now proved the lemma in
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one direction. To prove the lemma in the other direction, assume v0, v1, . . . , vd

satisfy (i), (ii) above. We define u =
∑d

i=0 vi and observe u ∈ E0V . Using (i)
we find E∗

i vj = δijvj for 0 ≤ i, j ≤ d; it follows vi = E∗
i u for 0 ≤ i ≤ d.

Observe u �= 0 since at least one of v0, v1, . . . , vd is nonzero. Now v0, v1, . . . , vd

is a Φ-standard basis for V by Definition 3.1. ��

We recall some notation. Let d denote a nonnegative integer and let B denote
a matrix in Matd+1(K). Let α denote a scalar in K. Then B is said to have
constant row sum α whenever Bi0 + Bi1 + · · · + Bid = α for 0 ≤ i ≤ d.

Lemma 3.4. Let Φ denote the Leonard system from Definition 1.2 and let the
scalars θi, θ

∗
i be as in Definition 2.1. Let V denote an irreducible A-module

and let v0, v1, . . . , vd denote a basis for V . Let B (resp. B∗) denote the matrix
in Matd+1(K) that represents A (resp. A∗) with respect to this basis. Then
v0, v1, . . . , vd is a Φ-standard basis for V if and only if both (i), (ii) hold
below.

(i) B has constant row sum θ0.
(ii) B∗ = diag(θ∗0 , θ

∗
1 , . . . , θ

∗
d).

Proof. Observe A
∑d

j=0 vj =
∑d

i=0 vi(Bi0 + Bi1 + · · ·Bid). Recall E0V is the
eigenspace for A and eigenvalue θ0. Apparently B has constant row sum θ0 if
and only if

∑d
i=0 vi ∈ E0V . Recall that for 0 ≤ i ≤ d, E∗

i V is the eigenspace
for A∗ and eigenvalue θ∗i . Apparently B∗ = diag(θ∗0 , θ

∗
1 , . . . , θ

∗
d) if and only if

vi ∈ E∗
i V for 0 ≤ i ≤ d. The result follows in view of Lemma 3.3. ��

Definition 3.2. Let Φ denote the Leonard system from Definition 1.2. We
define a map ! : A → Matd+1(K) as follows. Let V denote an irreducible
A-module. For all X ∈ A we let X� denote the matrix in Matd+1(K) that
represents X with respect to a Φ-standard basis for V . We observe ! : A →
Matd+1(K) is an isomorphism of K-algebras.

Lemma 3.5. Let Φ denote the Leonard system from Definition 1.2 and let the
scalars θi, θ

∗
i be as in Definition 2.1. Let the map ! : A → Matd+1(K) be as in

Definition 3.2. Then (i)–(iii) hold below.

(i) A� has constant row sum θ0.
(ii) A∗� = diag(θ∗0 , θ

∗
1 , . . . , θ

∗
d).

(iii) For 0 ≤ i ≤ d the matrix E∗�
i has ii entry 1 and all other entries 0.

Proof. (i), (ii) Combine Lemma 3.4 and Definition 3.2.
(iii) Immediate from Lemma 2.1(i). ��

3.1 The Scalars bi, ci

In this section we consider some scalars that arise naturally in the context of
the standard basis.
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Definition 3.3. Let Φ denote the Leonard system from Definition 1.2 and let
the map ! : A → Matd+1(K) be as in Definition 3.2. For 0 ≤ i ≤ d− 1 we let
bi denote the i, i + 1 entry of A�. For 1 ≤ i ≤ d we let ci denote the i, i − 1
entry of A�. We observe

A� =

⎛⎜⎜⎜⎜⎜⎜⎝
a0 b0 0
c1 a1 b1

c2 · ·
· · ·
· · bd−1

0 cd ad

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.3)

where the ai are from Definition 2.3. For notational convenience we define
bd = 0 and c0 = 0.

Lemma 3.6. Let Φ denote the Leonard system from Definition 1.2 and let the
scalars bi, ci be as in Definition 3.3. Then with reference to Definition 2.1 and
Definition 2.3 the following (i), (ii) hold.

(i) bi−1ci = xi (1 ≤ i ≤ d).
(ii) ci + ai + bi = θ0 (0 ≤ i ≤ d).

Proof. (i) Apply Lemma 2.7(ii) with B = A�.
(ii) Combine (3.3) and Lemma 3.5(i). ��

Lemma 3.7. Let Φ denote the Leonard system from Definition 1.2 and let the
scalars bi, ci be as in Definition 3.3. Let the polynomials pi be as in Definition
2.4 and let the scalar θ0 be as in Definition 2.1. Then the following (i)–(iii)
hold.

(i) bi �= 0 (0 ≤ i ≤ d− 1).
(ii) ci �= 0 (1 ≤ i ≤ d).
(iii) b0b1 · · · bi−1 = pi(θ0) (0 ≤ i ≤ d + 1).

Proof. (i), (ii) Immediate from Lemma 3.6(i) and since each of x1, x2, . . . , xd

is nonzero.
(iii) Assume 0 ≤ i ≤ d; otherwise each side is zero. Let † : A → A denote the
antiautomorphism which corresponds to Φ. Applying † to both sides of (2.16)
we get E∗

0pi(A) = E∗
0A

iE∗
i . Let u denote a nonzero vector in E0V and observe

Au = θ0u. Recall E∗
0u,E

∗
1u, . . . , E

∗
du is a Φ-standard basis for V , and that A�

represents A with respect to this basis. From (3.3) we find b0b1 · · · bi−1 is the
0i entry of Ai�. Now

b0b1 · · · bi−1E
∗
0u = E∗

0A
iE∗

i u

= E∗
0pi(A)u

= pi(θ0)E∗
0u

and it follows b0b1 · · · bi−1 = pi(θ0). ��
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Theorem 3.1. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials pi be as in Definition 2.4. Let the scalar θ0 be as in Definition
2.1. Then pi(θ0) �= 0 for 0 ≤ i ≤ d. Let the scalars bi, ci be as in Definition
3.3. Then

bi =
pi+1(θ0)
pi(θ0)

(0 ≤ i ≤ d) (3.4)

and

ci =
xipi−1(θ0)
pi(θ0)

(1 ≤ i ≤ d). (3.5)

Proof. Observe pi(θ0) �= 0 for 0 ≤ i ≤ d by Lemma 3.7(i), (iii). Line (3.4) is
immediate from Lemma 3.7(iii). To get (3.5) combine (3.4) and Lemma 3.6(i).
��

Theorem 3.2. Let Φ denote the Leonard system from Definition 1.2 and let
the scalars ci be as in Definition 3.3. Let the scalars θi be as in Definition 2.1
and let the scalar ν be as in Definition 2.6. Then

(θ0 − θ1)(θ0 − θ2) · · · (θ0 − θd) = νc1c2 · · · cd. (3.6)

Proof. Let δ denote the expression on the left-hand side of (3.6). Setting i = 0
in (1.4) we find δE0 =

∏d
j=1(A−θjI). We multiply both sides of this equation

on the left by E∗
d and on the right by E∗

0 . We evaluate the resulting equation
using Lemma 2.5(i) to obtain δE∗

dE0E
∗
0 = E∗

dA
dE∗

0 . We multiply both sides
of this equation on the right by E0 and use Lemma 2.13(i) to obtain

δν−1E∗
dE0 = E∗

dA
dE∗

0E0. (3.7)

Let u denote a nonzero vector in E0V and observe that E0u = u. Recall that
E∗

0u,E
∗
1u, . . . , E

∗
du is a Φ-standard basis for V , and that A� represents A with

respect to this basis. From (3.3) we find c1c2 · · · cd is the d0 entry of Ad�. Now

c1c2 · · · cdE
∗
du = E∗

dA
dE∗

0u

= E∗
dA

dE∗
0E0u

= δν−1E∗
du

so c1c2 · · · cd = δν−1. The result follows. ��

3.2 The Scalars ki

In this section we consider some scalars that are closely related to the scalars
from Definition 2.5.
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Definition 3.4. Let Φ denote the Leonard system from Definition 1.2. We
define

ki = m∗
i ν (0 ≤ i ≤ d), (3.8)

where the m∗
i are from Definition 2.5 and ν is from Definition 2.6.

Lemma 3.8. Let Φ denote the Leonard system from Definition 1.2 and let the
scalars ki be as in Definition 3.4. Then

(i) k0 = 1;
(ii) ki �= 0 for 0 ≤ i ≤ d;
(iii)

∑d
i=0 ki = ν.

Proof. (i) Set i = 0 in (3.8) and recall m∗
0 = ν−1.

(ii) Applying Lemma 2.12(iii) to Φ∗ we find m∗
i �= 0 for 0 ≤ i ≤ d. We have

ν �= 0 by Definition 2.6. The result follows in view of (3.8).
(iii) Applying Lemma 2.12(iv) to Φ∗ we find

∑d
i=0 m

∗
i = 1. The result follows

in view of (3.8). ��

Lemma 3.9. Let Φ denote the Leonard system from Definition 1.2 and let
the scalars ki be as in Definition 3.4. Then with reference to Definition 2.1,
Definition 2.3, and Definition 2.4,

ki =
pi(θ0)2

x1x2 · · ·xi
(0 ≤ i ≤ d). (3.9)

Proof. We show that each side of (3.9) is equal to νtr(E∗
i E0). Using (2.18) and

(3.8) we find νtr(E∗
i E0) is equal to the left-hand side of (3.9). Using Lemma

2.11 we find νtr(E∗
i E0) is equal to the right-hand side of (3.9). ��

Theorem 3.3. Let Φ denote the Leonard system from Definition 1.2 and let
the scalars ki be as in Definition 3.4. Let the scalars bi, ci be as in Definition
3.3. Then

ki =
b0b1 · · · bi−1

c1c2 · · · ci
(0 ≤ i ≤ d). (3.10)

Proof. Evaluate the expression on the right in (3.9) using Lemma 3.6(i) and
Lemma 3.7(iii). ��

3.3 The Polynomials vi

Let Φ denote the Leonard system from Definition 1.2 and let the polynomials
pi be as in Definition 2.4. The pi have two normalizations of interest; we call
these the ui and the vi. In this section we discuss the vi. In the next section
we will discuss the ui.
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Definition 3.5. Let Φ denote the Leonard system from Definition 1.2 and
let the polynomials pi be as in Definition 2.4. For 0 ≤ i ≤ d we define the
polynomial vi by

vi =
pi

c1c2 · · · ci
, (3.11)

where the cj are from Definition 3.3. We observe v0 = 1.

Lemma 3.10. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials vi be as in Definition 3.5. Let the scalar θ0 be as in Definition
2.1 and let the scalars ki be as in Definition 3.4. Then

vi(θ0) = ki (0 ≤ i ≤ d). (3.12)

Proof. Use Lemma 3.7(iii), Theorem 3.3, and (3.11). ��

Lemma 3.11. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials vi be as in Definition 3.5. Let the scalars ai, bi, ci be as in
Definition 2.3 and Definition 3.3. Then

λvi = ci+1vi+1 + aivi + bi−1vi−1 (0 ≤ i ≤ d− 1), (3.13)

where b−1 = 0 and v−1 = 0. Moreover

λvd − advd − bd−1vd−1 = (c1c2 · · · cd)−1pd+1. (3.14)

Proof. In (2.13), divide both sides by c1c2 · · · ci. Evaluate the result using
Lemma 3.6(i) and (3.11). ��

Theorem 3.4. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials vi be as in Definition 3.5. Let V denote an irreducible A-
module and let u denote a nonzero vector in E0V . Then

vi(A)E∗
0u = E∗

i u (0 ≤ i ≤ d). (3.15)

Proof. For 0 ≤ i ≤ d we define wi = vi(A)E∗
0u and w′

i = E∗
i u. We show

wi = w′
i. Each of w0, w′

0 is equal to E∗
0u so w0 = w′

0. Using Lemma 3.11 we
obtain

Awi = ci+1wi+1 + aiwi + bi−1wi−1 (0 ≤ i ≤ d− 1) (3.16)

where w−1 = 0 and b−1 = 0. By Definition 3.2, Definition 3.3, and since
w′

0, w
′
1, . . . , w

′
d is a Φ-standard basis,

Aw′
i = ci+1w

′
i+1 + aiw

′
i + bi−1w

′
i−1 (0 ≤ i ≤ d− 1) (3.17)

where w′
−1 = 0. Comparing (3.16), (3.17) and using w0 = w′

0 we find wi = w′
i

for 0 ≤ i ≤ d. The result follows. ��
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3.4 The Polynomials ui

Let Φ denote the Leonard system from Definition 1.2 and let the polynomials
pi be as in Definition 2.4. In the previous section we gave a normalization of
the pi that we called the vi. In this section we give a normalization for the pi

that we call the ui.

Definition 3.6. Let Φ denote the Leonard system from Definition 1.2 and
let the polynomials pi be as in Definition 2.4. For 0 ≤ i ≤ d we define the
polynomial ui by

ui =
pi

pi(θ0)
, (3.18)

where θ0 is from Definition 2.1. We observe u0 = 1. Moreover

ui(θ0) = 1 (0 ≤ i ≤ d). (3.19)

Lemma 3.12. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials ui be as in Definition 3.6. Let the scalars ai, bi, ci be as in
Definition 2.3 and Definition 3.3. Then

λui = biui+1 + aiui + ciui−1 (0 ≤ i ≤ d− 1), (3.20)

where u−1 = 0. Moreover

λud − cdud−1 − adud = pd(θ0)−1pd+1, (3.21)

where θ0 is from Definition 2.1.

Proof. In (2.13), divide both sides by pi(θ0) and evaluate the result using
Lemma 3.6(i), Theorem 3.1, and (3.18). ��
The ui and vi are related as follows.

Lemma 3.13. Let Φ denote the Leonard system from Definition 1.2. Let the
polynomials ui, vi be as in Definition 3.6 and Definition 3.5 respectively. Then

vi = kiui (0 ≤ i ≤ d), (3.22)

where the ki are from Definition 3.4.

Proof. Compare (3.11) and (3.18) in light of Lemma 3.7(iii) and Theorem 3.3.
��

3.5 A Bilinear Form

In this section we associate with each Leonard pair a certain bilinear form.
To prepare for this we recall a few concepts from linear algebra.

Let V denote a finite dimensional vector space over K. By a bilinear form on
V we mean a map 〈·, ·〉 : V ×V → K that satisfies the following four conditions
for all u, v, w ∈ V and for all α ∈ K:
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(i) 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉;
(ii) 〈αu, v〉 = α〈u, v〉;
(iii) 〈u, v + w〉 = 〈u, v〉 + 〈u,w〉;
(iv) 〈u, αv〉 = α〈u, v〉.
We observe that a scalar multiple of a bilinear form on V is a bilinear form
on V . Let 〈·, ·〉 denote a bilinear form on V . This form is said to be symmetric
whenever 〈u, v〉 = 〈v, u〉 for all u, v ∈ V . Also, the following are equivalent:

(i) there exists a nonzero u ∈ V such that 〈u, v〉 = 0 for all v ∈ V ;
(ii) there exists a nonzero v ∈ V such that 〈u, v〉 = 0 for all u ∈ V .

The form 〈·, ·〉 is said to be degenerate whenever (i), (ii) hold and nonde-
generate otherwise. Let γ : A → A denote an antiautomorphism and let V
denote an irreducible A-module. Then there exists a nonzero bilinear form
〈·, ·〉 on V such that 〈Xu, v〉 = 〈u,Xγv〉 for all u, v ∈ V and for all X ∈ A.
The form is unique up to multiplication by a nonzero scalar in K. The form
is nondegenerate. We refer to this form as the bilinear form on V associated
with γ. This form is not symmetric in general.

We now return our attention to Leonard pairs.

Definition 3.7. Let Φ = (A;A∗; {Ei}d
i=0; {E∗

i }d
i=0) denote a Leonard system

in A. Let † : A → A denote the corresponding antiautomorphism from Def-
inition 2.2. Let V denote an irreducible A-module. For the rest of this paper
we let 〈·, ·〉 denote the bilinear form on V associated with †. We abbreviate
‖u‖2 = 〈u, u〉 for all u ∈ V . By the construction, for X ∈ A we have

〈Xu, v〉 = 〈u,X†v〉 (∀u ∈ V,∀v ∈ V ). (3.23)

We make an observation.

Lemma 3.14. With reference to Definition 3.7, let D (resp. D∗) denote the
subalgebra of A generated by A (resp. A∗). Then for X ∈ D ∪ D∗ we have

〈Xu, v〉 = 〈u,Xv〉 (∀u ∈ V,∀v ∈ V ). (3.24)

Proof. Combine (3.23) and Lemma 2.6. ��

Theorem 3.5. With reference to Definition 3.7, let u denote a nonzero vector
in E0V and recall E∗

0u,E
∗
1u, . . . , E

∗
du is a Φ-standard basis for V . We have

〈E∗
i u,E

∗
j u〉 = δijkiν

−1‖u‖2 (0 ≤ i, j ≤ d), (3.25)

where the ki are from Definition 3.4 and ν is from Definition 2.6.

Proof. By (3.24) and since E0u = u we find 〈E∗
i u,E

∗
j u〉 = 〈u,E0E

∗
i E

∗
jE0u〉.

Using Lemma 2.12(ii) and (3.8) we find 〈u,E0E
∗
i E

∗
jE0u〉 = δijkiν

−1‖u‖2. ��
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Corollary 3.1. With reference to Definition 3.7, the bilinear form 〈·, ·〉 is
symmetric.

Proof. Let u denote a nonzero vector in E0V and abbreviate vi = E∗
i u for

0 ≤ i ≤ d. From Theorem 3.5 we find 〈vi, vj〉 = 〈vj , vi〉 for 0 ≤ i, j ≤ d. The
result follows since v0, v1, . . . , vd is a basis for V . ��
We have a comment.

Lemma 3.15. With reference to Definition 3.7, let u denote a nonzero vector
in E0V and let v denote a nonzero vector in E∗

0V . Then the following (i)–(iv)
hold.

(i) Each of ‖u‖2, ‖v‖2, 〈u, v〉 is nonzero.
(ii) E∗

0u = 〈u, v〉‖v‖−2v.
(iii) E0v = 〈u, v〉‖u‖−2u.
(iv) ν〈u, v〉2 = ‖u‖2‖v‖2.

Proof. (i) Observe ‖u‖2 �= 0 by Theorem 3.5 and since 〈·, ·〉 is not 0. Similarly
‖v‖2 �= 0. To see that 〈u, v〉 �= 0, observe that v is a basis for E∗

0V so there
exists α ∈ K such that E∗

0u = αv. Recall E∗
0u �= 0 by Lemma 3.2 so α �= 0.

Using (3.24) and E∗
0v = v we routinely find 〈u, v〉 = α‖v‖2 and it follows

〈u, v〉 �= 0.
(ii) In the proof of part (i) we found E∗

0u = αv where 〈u, v〉 = α‖v‖2. The
result follows.
(iii) Similar to the proof of (ii) above.
(iv) Using u = E0u and νE0E

∗
0E0 = E0 we find ν−1u = E0E

∗
0u. To finish the

proof, evaluate E0E
∗
0u using (ii) above and then (iii) above. ��

4 Askey-Wilson Duality

In this section we show the polynomials ui, vi, pi satisfy a relation known as
Askey-Wilson duality. We begin with a lemma.

Lemma 4.1. With reference to Definition 3.7, let u denote a nonzero vector
in E0V and let v denote a nonzero vector in E∗

0V . Then

〈E∗
i u,Ejv〉 = ν−1kik

∗
jui(θj)〈u, v〉 (0 ≤ i, j ≤ d). (4.1)

Proof. Using Theorem 3.4 we find

〈E∗
i u,Ejv〉 = 〈vi(A)E∗

0u,Ejv〉
= 〈E∗

0u, vi(A)Ejv〉
= vi(θj)〈E∗

0u,Ejv〉
= vi(θj)〈E∗

0u, v
∗
j (A∗)E0v〉

= vi(θj)〈v∗j (A∗)E∗
0u,E0v〉

= vi(θj)v∗j (θ∗0)〈E∗
0u,E0v〉. (4.2)
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Using Lemma 3.15(ii)–(iv) we find 〈E∗
0u,E0v〉 = ν−1〈u, v〉. Observe vi(θj) =

ui(θj)ki by (3.22). Applying Lemma 3.10 to Φ∗ we find v∗j (θ∗0) = k∗j . Evaluat-
ing (4.2) using these comments we obtain (4.1). ��

Theorem 4.1. Let Φ denote the Leonard system from Definition 1.2. Let the
polynomials ui be as in Definition 3.6 and recall the u∗i are the corresponding
polynomials for Φ∗. Let the scalars θi, θ

∗
i be as in Definition 2.1. Then

ui(θj) = u∗j (θ
∗
i ) (0 ≤ i, j ≤ d). (4.3)

Proof. Applying Lemma 4.1 to Φ∗ we find

〈Ejv,E
∗
i u〉 = ν−1k∗j kiu

∗
j (θ

∗
i )〈u, v〉 (0 ≤ i, j ≤ d). (4.4)

To finish the proof, compare (4.1), (4.4), and recall 〈·, ·〉 is symmetric. ��

In the following two theorems we show how (4.3) looks in terms of the poly-
nomials vi and pi.

Theorem 4.2. Let Φ denote the Leonard system from Definition 1.2. With
reference to Definition 1.5, Definition 2.1, and Definition 3.5,

vi(θj)/ki = v∗j (θ∗i )/k∗j (0 ≤ i, j ≤ d). (4.5)

Proof. Evaluate (4.3) using Lemma 3.13. ��

Theorem 4.3. Let Φ denote the Leonard system from Definition 1.2. With
reference to Definition 1.5, Definition 2.1, and Definition 2.4,

pi(θj)
pi(θ0)

=
p∗j (θ

∗
i )

p∗j (θ
∗
0)

(0 ≤ i, j ≤ d). (4.6)

Proof. Evaluate (4.3) using Definition 3.6. ��

The equations (4.3), (4.5), (4.6) are often referred to as Askey-Wilson duality.

4.1 The Three-Term Recurrence and the Difference Equation

In Lemma 3.12 we gave a three-term recurrence for the polynomials ui. This
recurrence is often expressed as follows.

Theorem 4.4. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials ui be as in Definition 3.6. Let the scalars θi be as in Definition
2.1. Then for 0 ≤ i, j ≤ d we have

θjui(θj) = biui+1(θj) + aiui(θj) + ciui−1(θj), (4.7)

where u−1 = 0 and ud+1 = 0.
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Proof. Apply Lemma 3.12 (with λ = θj) and observe pd+1(θj) = 0 by Theo-
rem 2.7(ii). ��

Applying Theorem 4.4 to Φ∗ and using Theorem 4.1 we routinely obtain the
following.

Theorem 4.5. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials ui be as in Definition 3.6. Then for 0 ≤ i, j ≤ d we have

θ∗i ui(θj) = b∗jui(θj+1) + a∗jui(θj) + c∗jui(θj−1), (4.8)

where θ−1, θd+1 denote indeterminates.

We refer to (4.8) as the difference equation satisfied by the ui.

4.2 The Orthogonality Relations

In this section we show that each of the polynomials pi, ui, vi satisfy an or-
thogonality relation. We begin with a lemma.

Lemma 4.2. With reference to Definition 3.7, let u denote a nonzero vector
in E0V and let v denote a nonzero vector in E∗

0V . Then for 0 ≤ i ≤ d, both

E∗
i u =

〈u, v〉
‖v‖2

d∑
j=0

vi(θj)Ejv, (4.9)

Eiv =
〈u, v〉
‖u‖2

d∑
j=0

v∗i (θ∗j )E∗
j u. (4.10)

Proof. We first show (4.9). To do this we show each side of (4.9) is equal
to vi(A)E∗

0u. By Theorem 3.4 we find vi(A)E∗
0u is equal to the left-hand

side of (4.9). To see that vi(A)E∗
0u is equal to the right-hand side of (4.9),

multiply vi(A)E∗
0u on the left by the identity I, expand using I =

∑d
j=0 Ej ,

and simplify the result using EjA = θjEj (0 ≤ j ≤ d) and Lemma 3.15(ii).
We have now proved (4.9). Applying (4.9) to Φ∗ we obtain (4.10). ��

We now display the orthogonality relations for the polynomials vi.

Theorem 4.6. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials vi be as in Definition 3.5. Then both

d∑
r=0

vi(θr)vj(θr)k∗r = δijνki (0 ≤ i, j ≤ d), (4.11)

d∑
i=0

vi(θr)vi(θs)k−1
i = δrsνk

∗−1
r (0 ≤ r, s ≤ d). (4.12)
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Proof. Let V denote an irreducible A-module and let v denote a nonzero vec-
tor in E∗

0V . Applying Theorem 3.5 to Φ∗ we find 〈Erv,Esv〉 = δrsk
∗
rν

−1‖v‖2

for 0 ≤ r, s ≤ d. To obtain (4.11), in equation (3.25), eliminate each of E∗
i u,

E∗
j u using (4.9), and simplify the result using our preliminary comment and

Lemma 3.15. To obtain (4.12), apply (4.11) to Φ∗ and use Askey-Wilson du-
ality. ��

We now turn to the polynomials ui.

Theorem 4.7. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials ui be as in Definition 3.6. Then both

d∑
r=0

ui(θr)uj(θr)k∗r = δijνk
−1
i (0 ≤ i, j ≤ d),

d∑
i=0

ui(θr)ui(θs)ki = δrsνk
∗−1
r (0 ≤ r, s ≤ d).

Proof. Evaluate each of (4.11), (4.12) using Lemma 3.13. ��

We now turn to the polynomials pi.

Theorem 4.8. Let Φ denote the Leonard system from Definition 1.2 and let
the polynomials pi be as in Definition 2.4. Then both

d∑
r=0

pi(θr)pj(θr)mr = δijx1x2 · · ·xi (0 ≤ i, j ≤ d),

d∑
i=0

pi(θr)pi(θs)
x1x2 · · ·xi

= δrsm
−1
r (0 ≤ r, s ≤ d).

Proof. Applying Definition 3.4 to Φ∗ we find k∗r = mrν for 0 ≤ r ≤ d. Evaluate
each of (4.11), (4.12) using this and Definition 3.5, Lemma 3.6(i), (3.10). ��

4.3 The Matrix P

In this section we express Lemma 4.2 in matrix form and consider the conse-
quences.

Definition 4.1. Let Φ denote the Leonard system from Definition 1.2. We
define a matrix P ∈ Matd+1(K) as follows. For 0 ≤ i, j ≤ d the entry Pij =
vj(θi), where θi is from Definition 2.1 and vj is from Definition 3.5.

Theorem 4.9. Let Φ denote the Leonard system from Definition 1.2. Let the
matrix P be as in Definition 4.1 and recall P ∗ is the corresponding matrix for
Φ∗. Then P ∗P = νI, where ν is from Definition 2.6.
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Proof. Compare (4.9), (4.10) and use Lemma 3.15(iv). ��
Theorem 4.10. Let Φ denote the Leonard system from Definition 1.2 and let
the matrix P be as in Definition 4.1. Let the map ! : A → Matd+1(K) be as
in Definition 3.2 and let " : A → Matd+1(K) denote the corresponding map
for Φ∗. Then for all X ∈ A we have

X�P = PX�. (4.13)

Proof. Let V denote an irreducible A-module. Let u denote a nonzero vector
in E0V and recall E∗

0u,E
∗
1u, . . . , E

∗
du is a Φ-standard basis for V . By Def-

inition 3.2, X� is the matrix in Matd+1(K) that represents X with respect
to E∗

0u,E
∗
1u, . . . , E

∗
du. Similarly for a nonzero v ∈ E∗

0V , X� is the matrix in
Matd+1(K) that represents X with respect to E0v,E1v, . . . , Edv. In view of
(4.9), the transition matrix from E0v,E1v, . . . , Edv to E∗

0u,E
∗
1u, . . . , E

∗
du is a

scalar multiple of P . The result follows from these comments and elementary
linear algebra. ��

5 The Split Decomposition

Notation 5.1 Throughout this section we let Φ = (A;A∗; {Ei}d
i=0; {E∗

i }d
i=0)

denote a Leonard system in A, with eigenvalue sequence θ0, θ1, . . . , θd and dual
eigenvalue sequence θ∗0 , θ

∗
1 , . . . , θ

∗
d. We let V denote an irreducible A-module.

With reference to Notation 5.1, by a decomposition of V we mean a sequence
U0, U1, . . . , Ud consisting of 1-dimensional subspaces of V such that

V = U0 + U1 + · · · + Ud (direct sum).

In this section we are concerned with the following type of decomposition.

Definition 5.2. With reference to Notation 5.1, a decomposition U0, . . . , Ud

of V is said to be Φ-split whenever both

(A− θiI)Ui ⊆ Ui+1 (0 ≤ i ≤ d− 1), (A− θdI)Ud = 0, (5.1)
(A∗ − θ∗i I)Ui ⊆ Ui−1 (1 ≤ i ≤ d), (A∗ − θ∗0I)U0 = 0. (5.2)

Our goal in this section is to show there exists a unique Φ-split decomposition
of V . The following definition will be useful.

Definition 5.3. With reference to Notation 5.1, we set

Vij =

(
i∑

h=0

E∗
hV

)
∩
(

d∑
k=j

EkV

)
(5.3)

for all integers i, j. We interpret the sum on the left in (5.3) to be 0 (resp. V )
if i < 0 (resp. i > d). Similarily, we interpret the sum on the right in (5.3) to
be V (resp. 0) if j < 0 (resp. j > d).
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Lemma 5.1. With reference to Notation 5.1 and Definition 5.3, we have

(i) Vi0 = E∗
0V + E∗

1V + · · · + E∗
i V (0 ≤ i ≤ d),

(ii) Vdj = EjV + Ej+1V + · · · + EdV (0 ≤ j ≤ d).

Proof. To get (i), set j = 0 in (5.3), and apply (1.5). Line (ii) is similarily
obtained. ��

Lemma 5.2. With reference to Notation 5.1 and Definition 5.3, the following
(i)–(iv) hold for 0 ≤ i, j ≤ d.

(i) (A− θjI)Vij ⊆ Vi+1,j+1,
(ii) AVij ⊆ Vij + Vi+1,j+1,
(iii) (A∗ − θ∗i I)Vij ⊆ Vi−1,j−1,
(iv) A∗Vij ⊆ Vij + Vi−1,j−1.

Proof. (i) Using Definition 1.2(v) we find

(A− θjI)
i∑

h=0

E∗
hV ⊆

i+1∑
h=0

E∗
hV. (5.4)

Also observe

(A− θjI)
d∑

k=j

EkV =
d∑

k=j+1

EkV. (5.5)

Evaluating (A−θjI)Vij using (5.3), (5.4), (5.5) we routinely find it is contained
in Vi+1,j+1.
(ii) Immediate from (i) above.
(iii) Similar to the proof of (i) above.
(iv) Immediate from (iii) above. ��

Lemma 5.3. With reference to Definition 5.3, we have

Vij = 0 if i < j, (0 ≤ i, j ≤ d). (5.6)

Proof. We show the sum

V0r + V1,r+1 + · · · + Vd−r,d (5.7)

is zero for 0 < r ≤ d. Let r be given, and let W denote the sum in (5.7).
Applying Lemma 5.2(ii),(iv), we find AW ⊆ W and A∗W ⊆ W . Now W = 0
or W = V in view of Corollary 2.2. By Definition 5.3, each term in (5.7) is
contained in

ErV + Er+1V + · · · + EdV, (5.8)

so W is contained in (5.8). The sum (5.8) is properly contained in V by (1.5),
and since r > 0. Apparently W �= V , so W = 0. We have now shown (5.7) is
zero for 0 < r ≤ d, and (5.6) follows. ��
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Theorem 5.1. With reference to Notation 5.1, let U0, U1, . . . , Ud denote sub-
spaces of V . Then the following (i)–(iii) are equivalent.

(i) Ui = (E∗
0V +E∗

1V +· · ·+E∗
i V )∩(EiV +Ei+1V +· · ·+EdV ) (0 ≤ i ≤ d).

(ii) The sequence U0, U1, . . . , Ud is a Φ-split decomposition of V .
(iii) For 0 ≤ i ≤ d, both

Ui + Ui+1 + · · · + Ud = EiV + Ei+1V + · · · + EdV, (5.9)
U0 + U1 + · · · + Ui = E∗

0V + E∗
1V + · · · + E∗

i V. (5.10)

Proof. (i) → (ii) To get (5.1) and (5.2), set j = i in Lemma 5.2(i),(iii), and
observe Ui = Vii. We now show the sequence U0, U1, . . . , Ud is a decomposition
of V . Define W =

∑d
i=0 Ui. Then AW ⊆ W by (5.1) and A∗W ⊆ W by (5.2).

Now W = 0 or W = V in view of Corollary 2.2. However W contains U0, and
U0 = E∗

0V is nonzero, so W �= 0. It follows W = V , and in other words

V = U0 + U1 + · · · + Ud. (5.11)

We show the sum (5.11) is direct. To do this, we show

(U0 + U1 + · · · + Ui−1) ∩ Ui = 0

for 1 ≤ i ≤ d. Let the integer i be given. From the construction

Uj ⊆ E∗
0V + E∗

1V + · · · + E∗
i−1V

for 0 ≤ j ≤ i− 1, and

Ui ⊆ EiV + Ei+1V + · · · + EdV.

It follows

(U0 + U1 + · · · + Ui−1) ∩ Ui

⊆ (E∗
0V + E∗

1V + · · · + E∗
i−1V ) ∩ (EiV + Ei+1V + · · · + EdV )

= Vi−1,i

= 0

in view of Lemma 5.3. We have now shown the sum (5.11) is direct. We now
show Ui has dimension 1 for 0 ≤ i ≤ d. Since the sum (5.11) is direct, this will
follow if we can show Ui �= 0 for 0 ≤ i ≤ d. Suppose there exists an integer i
(0 ≤ i ≤ d) such that Ui = 0. We observe i �= 0, since U0 = E∗

0V is nonzero,
and i �= d, since Ud = EdV is nonzero. Set

U = U0 + U1 + · · · + Ui−1,

and observe U �= 0 and U �= V by our remarks above. By Lemma 5.2(ii) and
since Ui = 0 we find AU ⊆ U . By Lemma 5.2(iv) we find A∗U ⊆ U . Now
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U = 0 or U = V in view of Corollary 2.2, for a contradiction. We conclude
Ui �= 0 for 0 ≤ i ≤ d and it follows U0, U1, . . . , Ud is a decomposition of V .

(ii) → (iii) First consider (5.9). Let i be given, and abbreviate

Z = EiV + Ei+1V + · · · + EdV, W = Ui + Ui+1 + · · · + Ud.

We show Z = W . To obtain Z ⊆ W , set X =
∏i−1

h=0(A − θhI), and observe
Z = XV . Using (5.1) we find XUj ⊆ W for 0 ≤ j ≤ d. By this and since
U0, U1, . . . , Ud is a decomposition of V we find XV ⊆ W . We now have Z ⊆ W .
Each of Z,W has dimension d − i + 1 so Z = W . We now have (5.9). Line
(5.10) is similarily obtained.

(iii) → (i) We first show the sum U0 + · · ·+Ud is direct. To do this, we show

(U0 + U1 + · · · + Ui−1) ∩ Ui (5.12)

is zero for 1 ≤ i ≤ d. Let i be given. From (5.9), (5.10), we find (5.12) is
contained in

(E∗
0V + E∗

1V + · · · + E∗
i−1V ) ∩ (EiV + Ei+1V + · · · + EdV ). (5.13)

The expression (5.13) equals Vi−1,i, and is hence zero by Lemma 5.3. It fol-
lows (5.12) is zero, and we have now shown the sum U0 + · · · + Ud is direct.
Combining this with (5.9), (5.10), we find

Ui = (U0 + U1 + · · · + Ui) ∩ (Ui + Ui+1 + · · · + Ud)
= (E∗

0V + E∗
1V + · · · + E∗

i V ) ∩ (EiV + Ei+1V + · · · + EdV ),

as desired. ��

Corollary 5.1. With reference to Notation 5.1, there exists a unique Φ-split
decomposition of V .

Proof. Immediate from Theorem 5.1(i),(ii). ��

We finish this section with a comment.

Lemma 5.4. With reference to Notation 5.1, let U0, U1, . . . , Ud denote the
Φ-split decomposition of V . Then the following (i), (ii) hold.

(i) (A− θiI)Ui = Ui+1 (0 ≤ i ≤ d− 1).
(ii) (A∗ − θ∗i I)Ui = Ui−1 (1 ≤ i ≤ d).

Proof. (i) Let i be given. Recall (A− θiI)Ui is contained in Ui+1 by (5.1) and
Ui+1 has dimension 1, so it suffices to show

(A− θiI)Ui �= 0. (5.14)

Assume (A − θiI)Ui = 0, and set W =
∑i

h=0 Uh. Since U0, U1, . . . , Ud is a
decomposition of V , and since 0 ≤ i ≤ d − 1 we find W �= 0 and W �= V .
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Observe AUi ⊆ Ui by our above assumption; combining this with (5.1) we
find AW ⊆ W . By (5.2) we find A∗W ⊆ W . Now W = 0 or W = V in view
of Corollary 2.2, for a contradiction. We conclude (5.14) holds and the result
follows.
(ii) Similar to the proof of (i) above. ��

5.1 The Split Basis

Let Φ = (A;A∗; {Ei}d
i=0; {E∗

i }d
i=0) denote a Leonard system in A, with eigen-

value sequence θ0, θ1, . . . , θd and dual eigenvalue sequence θ∗0 , θ
∗
1 , . . . , θ

∗
d. Let

V denote an irreducible A-module and let U0, U1, . . . , Ud denote the Φ-split
decomposition of V from Definition 5.2. Pick any integer i (1 ≤ i ≤ d). By
Lemma 5.4 we have (A∗ − θ∗i I)Ui = Ui−1 and (A− θi−1I)Ui−1 = Ui. Appar-
ently Ui is an eigenspace for (A − θi−1I)(A∗ − θ∗i I), and the corresponding
eigenvalue is a nonzero scalar in K. We denote this eigenvalue by ϕi. We dis-
play a basis for V that illuminates the significance of ϕi. Setting i = 0 in
Theorem 5.1(i) we find U0 = E∗

0V . Combining this with Lemma 5.4(i) we find

Ui = (A− θi−1I) · · · (A− θ1I)(A− θ0I)E∗
0V (0 ≤ i ≤ d). (5.15)

Let v denote a nonzero vector in E∗
0V . From (5.15) we find that for 0 ≤ i ≤ d

the vector (A − θi−1I) · · · (A − θ0I)v is a basis for Ui. By this and since
U0, U1, . . . , Ud is a decomposition of V we find the sequence

(A− θi−1I) · · · (A− θ1I)(A− θ0I)v (0 ≤ i ≤ d) (5.16)

is a basis for V . With respect to this basis the matrices representing A and
A∗ are ⎛⎜⎜⎜⎜⎜⎜⎝

θ0 0
1 θ1

1 θ2

· ·
· ·

0 1 θd

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
θ∗0 ϕ1 0

θ∗1 ϕ2

θ∗2 ·
· ·
· ϕd

0 θ∗d

⎞⎟⎟⎟⎟⎟⎟⎠ (5.17)

respectively. By a Φ-split basis for V we mean a sequence of the form (5.16),
where v is a nonzero vector in E∗

0V . We call ϕ1, ϕ2, . . . , ϕd the first split
sequence of Φ. We let φ1, φ2, . . . , φd denote the first split sequence of Φ⇓ and
call this the second split sequence of Φ. For notational convenience we define
ϕ0 = 0, ϕd+1 = 0, φ0 = 0, φd+1 = 0.

5.2 The Parameter Array and the Classifying Space

Our next goal is to describe the relationship between the eigenvalue sequence,
the dual eigenvalue sequence, the first split sequence, and the second split
sequence. We will use the following concept.
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Definition 5.4. Let d denote a nonnegative integer. By a parameter array
over K of diameter d we mean a sequence of scalars (θi, θ

∗
i , i = 0, . . . , d;

ϕj , φj , j = 1, . . . , d) taken from K that satisfy the following conditions (PA1)–
(PA5).

(PA1) θi �= θj , θ∗i �= θ∗j if i �= j, (0 ≤ i, j ≤ d).

(PA2) ϕi �= 0, φi �= 0 (1 ≤ i ≤ d).

(PA3) ϕi = φ1

∑i−1
h=0

θh−θd−h

θ0−θd
+ (θ∗i − θ∗0)(θi−1 − θd) (1 ≤ i ≤ d).

(PA4) φi = ϕ1

∑i−1
h=0

θh−θd−h

θ0−θd
+ (θ∗i − θ∗0)(θd−i+1 − θ0) (1 ≤ i ≤ d).

(PA5) The expressions

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
(5.18)

are equal and independent of i for 2 ≤ i ≤ d− 1.

Theorem 5.2. [79, Theorem 1.9] Let d denote a nonnegative integer and let
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote a sequence of scalars taken

from K. Then the following (i), (ii) are equivalent.

(i) The sequence (θi, θ
∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) is a parameter array

over K.
(ii) There exists a Leonard system Φ over K that has eigenvalue sequence

θ0, θ1, . . . , θd, dual eigenvalue sequence θ∗0 , θ
∗
1 , . . . , θ

∗
d, first split sequence

ϕ1, ϕ2, . . . , ϕd and second split sequence φ1, φ2, . . . , φd.

Suppose (i), (ii) hold. Then Φ is unique up to isomorphism of Leonard systems.

Our proof of Theorem 5.2 is too long to be included in these notes. A complete
proof can be found in [79].

Definition 5.5. Let Φ denote the Leonard system from Definition 1.2. By the
parameter array of Φ we mean the sequence (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j =

1, . . . , d), where θ0, θ1, . . . , θd (resp. θ∗0 , θ
∗
1 , . . . , θ

∗
d) is the eigenvalue sequence

(resp. dual eigenvalue sequence) of Φ and ϕ1, ϕ2, . . . , ϕd (resp. φ1, φ2, . . . , φd)
is the first split sequence (resp. second split sequence) of Φ.

By Theorem 5.2 the map which sends a given Leonard system to its parame-
ter array induces a bijection from the set of isomorphism classes of Leonard
systems over K to the set of parameter arrays over K. Consequently we view
the set of parameter arrays over K as a “classifying space” for the Leonard
systems over K.

In the appendix to these notes we display all the parameter arrays over K.

We now cite a result that shows how the parameter arrays behave with respect
to the D4 action given in Section 4.
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Theorem 5.3. [79, Theorem 1.11] Let Φ denote a Leonard system with pa-
rameter array (θi, θ

∗
i , i = 0, . . . , d; ϕj , φj , j = 1, . . . , d). Then (i)–(iii) hold

below.

(i) The parameter array of Φ∗ is (θ∗i , θi, i = 0, . . . , d;ϕj , φd−j+1, j = 1, . . . , d).
(ii) The parameter array of Φ↓ is (θi, θ

∗
d−i, i = 0, . . . , d;φd−j+1, ϕd−j+1, j =

1, . . . , d).
(iii) The parameter array of Φ⇓ is (θd−i, θ

∗
i , i = 0, . . . , d;φj , ϕj , j = 1, . . . , d).

5.3 Everything in Terms of the Parameter Array

In this section we express all the polynomials and scalars that came up so far
in the paper, in terms the parameter array. We will use the following notation.

Definition 5.6. Suppose we are given an integer d ≥ 0 and two sequences of
scalars

θ0, θ1, . . . , θd; θ∗0 , θ
∗
1 , . . . , θ

∗
d

taken from K. Then for 0 ≤ i ≤ d+1 we let τi, τ∗i , ηi, η∗i denote the following
polynomials in K[λ].

τi =
i−1∏
h=0

(λ− θh), τ∗i =
i−1∏
h=0

(λ− θ∗h), (5.19)

ηi =
i−1∏
h=0

(λ− θd−h), η∗i =
i−1∏
h=0

(λ− θ∗d−h). (5.20)

We observe that each of τi, τ∗i , ηi, η∗i is monic with degree i.

Theorem 5.4. Let Φ denote the Leonard system from Definition 1.2 and let
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parameter

array. Let the polynomials ui be as in Definition 3.6. Then

ui =
i∑

h=0

τ∗h(θ∗i )
ϕ1ϕ2 · · ·ϕh

τh (0 ≤ i ≤ d). (5.21)

We are using the notation (5.19).

Proof. Let the integer i be given. The polynomial ui has degree i so there
exists scalars α0, α1, . . . , αi in K such that

ui =
i∑

h=0

αhτh. (5.22)

We show
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αh =
τ∗h(θ∗i )

ϕ1ϕ2 · · ·ϕh
(0 ≤ h ≤ i). (5.23)

In order to do this we show α0 = 1 and αh+1ϕh+1 = αh(θ∗i − θ∗h) for 0 ≤ h ≤
i − 1. We now show α0 = 1. We evaluate (5.22) at λ = θ0 and find ui(θ0) =∑i

h=0 αhτh(θ0). Recall ui(θ0) = 1 by (3.19). Using (5.19) we find τh(θ0) = 1
for h = 0 and τh(θ0) = 0 for 1 ≤ h ≤ i. From these comments we find α0 = 1.
We now show αh+1ϕh+1 = αh(θ∗i − θ∗h) for 0 ≤ h ≤ i − 1. Let V denote
an irreducible A-module. Let v denote a nonzero vector in E∗

0V and define
ei = τi(A)v for 0 ≤ i ≤ d. Observe that the sequence e0, e1, . . . , ed is the basis
for V from (5.16). Using (5.17) we find (A∗ − θ∗j I)ej = ϕjej−1 for 1 ≤ j ≤ d
and (A∗ − θ∗0I)e0 = 0. By Theorem 2.5 and (3.18) we find ui(A)E∗

0V = E∗
i V .

By this and since v ∈ E∗
0V we find ui(A)v ∈ E∗

i V . Apparently ui(A)v is an
eigenvector for A∗ with eigenvalue θ∗i . We may now argue

0 = (A∗ − θ∗i I)ui(A)v

= (A∗ − θ∗i I)
i∑

h=0

αhτh(A)v

= (A∗ − θ∗i I)
i∑

h=0

αheh

=
i−1∑
h=0

eh(αh+1ϕh+1 − αh(θ∗i − θ∗h)).

By this and since e0, e1, . . . , ed are linearly independent we find αh+1ϕh+1 =
αh(θ∗i − θ∗h) for 0 ≤ h ≤ i− 1. Line (5.23) follows and the theorem is proved.
��

Lemma 5.5. Let Φ denote the Leonard system from Definition 1.2 and let
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parameter

array. Let the polynomials pi be as in Definition 2.4. With reference to Defi-
nition 5.6 we have

pi(θ0) =
ϕ1ϕ2 · · ·ϕi

τ∗i (θ∗i )
(0 ≤ i ≤ d). (5.24)

Proof. In equation (5.21), each side is a polynomial of degree i in λ. For the
polynomial on the left in (5.21) the coefficient of λi is pi(θ0)−1 by (3.18) and
since pi is monic. For the polynomial on the right in (5.21) the coefficient of
λi is τ∗i (θ∗i )(ϕ1ϕ2 · · ·ϕi)−1. Comparing these coefficients we obtain the result.
��

Theorem 5.5. Let Φ denote the Leonard system from Definition 1.2 and let
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parameter

array. Let the polynomials pi be as in Definition 2.4. Then with reference to
Definition 5.6,
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pi =
i∑

h=0

ϕ1ϕ2 · · ·ϕi

ϕ1ϕ2 · · ·ϕh

τ∗h(θ∗i )
τ∗i (θ∗i )

τh (0 ≤ i ≤ d).

Proof. Observe pi = pi(θ0)ui by (3.18). In this equation we evaluate pi(θ0)
using (5.24) and we evaluate ui using (5.21). The result follows. ��

Theorem 5.6. Let Φ denote the Leonard system from Definition 1.2 and let
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parameter

array. Let the scalars bi, ci be as in Definition 3.3. Then with reference to
Definition 5.6 the following (i), (ii) hold.

(i) bi = ϕi+1
τ∗i (θ∗i )

τ∗i+1(θ
∗
i+1)

(0 ≤ i ≤ d− 1).

(ii) ci = φi

η∗d−i(θ
∗
i )

η∗d−i+1(θ
∗
i−1)

(1 ≤ i ≤ d).

Proof. (i) Evaluate (3.4) using Lemma 5.5.
(ii) Using Definition 3.3 we find, with reference to Definition 1.5, that ci =
b↓d−i. Applying part (i) above to Φ↓ and using Theorem 5.3(ii) we routinely
obtain the result. ��

Let Φ denote the Leonard system from Definition 1.2 and let the scalars ai

be as in Definition 2.3. We mention two formulae that give ai in terms of the
parameter array of Φ. The first formula is obtained using Lemma 3.6(ii) and
Theorem 5.6. The second formula is given in the following theorem.

Theorem 5.7. Let Φ denote the Leonard system from Definition 1.2 and let
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parameter

array. Let the scalars ai be as in Definition 2.3. Then

ai = θi +
ϕi

θ∗i − θ∗i−1

+
ϕi+1

θ∗i − θ∗i+1

(0 ≤ i ≤ d), (5.25)

where we recall ϕ0 = 0, ϕd+1 = 0, and where θ∗−1, θ
∗
d+1 denote indeterminates.

Proof. Let the polynomials p0, p1, . . . , pd+1 be as in Definition 2.4 and recall
these polynomials are monic. Let i be given and consider the polynomial

λpi − pi+1. (5.26)

From (2.13) we find the polynomial (5.26) is equal to aipi +xipi−1. Therefore
the polynomial (5.26) has degree i and leading coefficient ai. In order to
compute this leading coefficient, in (5.26) we evaluate each of pi, pi+1 using
Theorem 2.7(ii) and Theorem 5.5. By this method we routinely obtain (5.25).
��
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Theorem 5.8. Let Φ denote the Leonard system from Definition 1.2 and let
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parameter

array. Let the scalars xi be as in Definition 2.3. Then with reference to Defi-
nition 5.6,

xi = ϕiφi

τ∗i−1(θ
∗
i−1)η

∗
d−i(θ

∗
i )

τ∗i (θ∗i )η∗d−i+1(θ
∗
i−1)

(1 ≤ i ≤ d). (5.27)

Proof. Use xi = bi−1ci and Theorem 5.6. ��

Theorem 5.9. Let Φ denote the Leonard system from Definition 1.2 and let
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parameter

array. Let the scalar ν be as in Definition 2.6. Then with reference to Defini-
tion 5.6,

ν =
ηd(θ0)η∗d(θ∗0)
φ1φ2 · · ·φd

. (5.28)

Proof. Evaluate (3.6) using Theorem 5.6(ii). ��

Theorem 5.10. Let Φ denote the Leonard system from Definition 1.2 and
let (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parame-

ter array. Let the scalars ki be as in Definition 3.4. Then with reference to
Definition 5.6,

ki =
ϕ1ϕ2 · · ·ϕi

φ1φ2 · · ·φi

η∗d(θ∗0)
τ∗i (θ∗i )η∗d−i(θ

∗
i )

(0 ≤ i ≤ d). (5.29)

Proof. Evaluate (3.10) using Theorem 5.6. ��

Theorem 5.11. Let Φ denote the Leonard system from Definition 1.2 and
let (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parame-

ter array. Let the scalars mi be as in Definition 2.5. Then with reference to
Definition 5.6,

mi =
ϕ1ϕ2 · · ·ϕiφ1φ2 · · ·φd−i

η∗d(θ∗0)τi(θi)ηd−i(θi)
(0 ≤ i ≤ d). (5.30)

Proof. Applying Definition 3.4 to Φ∗ we find mi = k∗i ν
−1. We compute k∗i

using Theorem 5.10 and Theorem 5.3(i). We compute ν using Theorem 5.9.
The result follows. ��

6 The Terminating Branch of the Askey Scheme

Let Φ denote the Leonard system from Definition 1.2 and let the polynomi-
als ui be as in Definition 3.6. In this section we discuss how the ui fit into
the Askey scheme [53], [11, p. 260]. Our argument is summarized as follows.
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In the appendix to these notes we display all the parameter arrays over K.
These parameter arrays fall into 13 families. In (5.21) the ui are expressed
as a sum involving the parameter array of Φ. For each of the 13 families of
parameter arrays we evaluate this sum. We find the corresponding ui form
a class consisting of the q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual
q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Racah, Hahn,
dual Hahn, Krawtchouk, Bannai/Ito, and orphan polynomials. This class co-
incides with the terminating branch of the Askey scheme. See the appendix
for the details. We remark the Bannai/Ito polynomials can be obtained from
the q-Racah polynomials by letting q tend to −1 [11, p. 260]. The orphan
polynomials exist for diameter d = 3 and Char(K) = 2 only.

In this section we illustrate what is going on with some examples. We will con-
sider two families of parameter arrays. For the first family the corresponding
ui will turn out to be some Krawtchouk polynomials. For the second family
the corresponding ui will turn out to be the q-Racah polynomials.

Our first example is associated with the Leonard pair (1.2). Let d denote a
nonnegative integer and consider the following elements of K.

θi = d− 2i, θ∗i = d− 2i (0 ≤ i ≤ d), (6.1)

ϕi = −2i(d− i + 1), φi = 2i(d− i + 1) (1 ≤ i ≤ d). (6.2)

In order to avoid degenerate situations we assume the characteristic of K is
zero or an odd prime greater than d. It is routine to show (6.1), (6.2) satisfy
the conditions PA1–PA5 of Definition 5.4, so (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j =

1, . . . , d) is a parameter array over K. By Theorem 5.2 there exists a Leonard
system Φ over K with this parameter array. Let the scalars ai for Φ be as in
(2.8). Applying Theorem 5.7 to Φ we find

ai = 0 (0 ≤ i ≤ d). (6.3)

Let the scalars bi, ci for Φ be as in Definition 3.3. Applying Theorem 5.6 to Φ
we find

bi = d− i, ci = i (0 ≤ i ≤ d). (6.4)

Pick any integers i, j (0 ≤ i, j ≤ d). Applying Theorem 5.4 to Φ we find

ui(θj) =
d∑

n=0

(−i)n(−j)n2n

(−d)nn!
, (6.5)

where

(a)n := a(a + 1)(a + 2) · · · (a + n− 1) n = 0, 1, 2, . . .

Hypergeometric series are defined in [28, p. 3]. From this definition we find
the sum on the right in (6.5) is the hypergeometric series
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2F1

(
−i,−j
−d

∣∣∣∣∣ 2
)
. (6.6)

A definition of the Krawtchouk polynomials can be found in [4] or [53]. Com-
paring this definition with (6.5), (6.6) we find the ui are Krawtchouk polyno-
mials but not the most general ones. Let the scalar ν for Φ be as in Definition
2.6. Applying Theorem 5.9 to Φ we find ν = 2d. Let the scalars ki for Φ be as
in Definition 3.4. Applying Theorem 5.10 to Φ we obtain a binomial coefficient

ki =
(
d

i

)
(0 ≤ i ≤ d). (6.7)

Let the scalars mi for Φ be as in Definition 2.5. Applying Theorem 5.11 to Φ
we find

mi =
(
d

i

)
2−d (0 ≤ i ≤ d). (6.8)

We now give our second example. For this example the polynomials ui will
turn out to be the q-Racah polynomials. To begin, let d denote a nonnegative
integer and consider the following elements in K.

θi = θ0 + h(1 − qi)(1 − sqi+1)/qi, (6.9)
θ∗i = θ∗0 + h∗(1 − qi)(1 − s∗qi+1)/qi (6.10)

for 0 ≤ i ≤ d, and

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(1 − r1q
i)(1 − r2q

i), (6.11)
φi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(r1 − s∗qi)(r2 − s∗qi)/s∗ (6.12)

for 1 ≤ i ≤ d. We assume q, h, h∗, s, s∗, r1, r2 are nonzero scalars in the
algebraic closure of K, and that r1r2 = ss∗qd+1. To avoid degenerate sit-
uations we assume none of qi, r1q

i, r2q
i, s∗qi/r1, s

∗qi/r2 is equal to 1 for
1 ≤ i ≤ d and neither of sqi, s∗qi is equal to 1 for 2 ≤ i ≤ 2d. It is rou-
tine to show (6.9)–(6.12) satisfy the conditions PA1–PA5 of Definition 5.4, so
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) is a parameter array over K. By The-

orem 5.2 there exists a Leonard system Φ over K with this parameter array.
Let the scalars bi, ci for Φ be as in Definition 3.3. Applying Theorem 5.6 to Φ
we find

b0 =
h(1 − q−d)(1 − r1q)(1 − r2q)

1 − s∗q2
,

bi =
h(1 − qi−d)(1 − s∗qi+1)(1 − r1q

i+1)(1 − r2q
i+1)

(1 − s∗q2i+1)(1 − s∗q2i+2)
(1 ≤ i ≤ d− 1),

ci =
h(1 − qi)(1 − s∗qi+d+1)(r1 − s∗qi)(r2 − s∗qi)

s∗qd(1 − s∗q2i)(1 − s∗q2i+1)
(1 ≤ i ≤ d− 1),

cd =
h(1 − qd)(r1 − s∗qd)(r2 − s∗qd)

s∗qd(1 − s∗q2d)
.



The Askey Scheme of Orthogonal Polynomials 295

Pick integers i, j (0 ≤ i, j ≤ d). Applying Theorem 5.4 to Φ we find

ui(θj) =
d∑

n=0

(q−i; q)n(s∗qi+1; q)n(q−j ; q)n(sqj+1; q)nq
n

(r1q; q)n(r2q; q)n(q−d; q)n(q; q)n
, (6.13)

where

(a; q)n := (1 − a)(1 − aq)(1 − aq2) · · · (1 − aqn−1) n = 0, 1, 2, . . .

Basic hypergeometric series are defined in [28, p. 4]. From that definition we
find the sum on the right in (6.13) is the basic hypergeometric series

4φ3

(
q−i, s∗qi+1, q−j , sqj+1

r1q, r2q, q−d

∣∣∣∣∣ q, q
)
. (6.14)

A definition of the q-Racah polynomials can be found in [5] or [53]. Comparing
this definition with (6.13), (6.14) and recalling r1r2 = ss∗qd+1, we find the ui

are the q-Racah polynomials. Let the scalar ν for Φ be as in Definition 2.6.
Applying Theorem 5.9 to Φ we find

ν =
(sq2; q)d(s∗q2; q)d

rd
1q

d(sq/r1; q)d(s∗q/r1; q)d
.

Let the scalars ki for Φ be as in Definition 3.4. Applying Theorem 5.10 to Φ
we obtain

ki =
(r1q; q)i(r2q; q)i(q−d; q)i(s∗q; q)i(1 − s∗q2i+1)

siqi(q; q)i(s∗q/r1; q)i(s∗q/r2; q)i(s∗qd+2; q)i(1 − s∗q)
(0 ≤ i ≤ d).

Let the scalars mi for Φ be as in Definition 2.5. Applying Theorem 5.11 to Φ
we find

mi =
(r1q; q)i(r2q; q)i(q−d; q)i(sq; q)i(1 − sq2i+1)

s∗iqi(q; q)i(sq/r1; q)i(sq/r2; q)i(sqd+2; q)i(1 − sq)ν
(0 ≤ i ≤ d).

7 Applications and Related Topics

We are done describing the correspondence between Leonard pairs and the
terminating branch of the Askey scheme. For the remainder of these notes we
discuss applications and related topics. We begin with a characterization of
Leonard systems.

7.1 A Characterization of Leonard Systems

We recall some results from earlier in the paper. Let Φ denote the Leonard
system from Definition 1.2. Let the polynomials p0, p1, . . . , pd+1 be as in Def-
inition 2.4 and recall p∗0, p

∗
1, . . . , p

∗
d+1 are the corresponding polynomials for
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Φ∗. For the purpose of this section, we call p0, p1, . . . , pd+1 the monic polyno-
mial sequence (or MPS) of Φ. We call p∗0, p

∗
1, . . . , p

∗
d+1 the dual MPS of Φ. By

Definition 2.4 we have

p0 = 1, p∗0 = 1, (7.1)
λpi = pi+1 + aipi + xipi−1 (0 ≤ i ≤ d), (7.2)
λp∗i = p∗i+1 + a∗i p

∗
i + x∗i p

∗
i−1 (0 ≤ i ≤ d), (7.3)

where x0, x
∗
0, p−1, p

∗
−1 are all zero, and where

ai = tr(E∗
i A), a∗i = tr(EiA

∗) (0 ≤ i ≤ d),
xi = tr(E∗

i AE
∗
i−1A), x∗i = tr(EiA

∗Ei−1A
∗) (1 ≤ i ≤ d).

By Lemma 2.7(iii) we have

xi �= 0, x∗i �= 0 (1 ≤ i ≤ d). (7.4)

Let θ0, θ1, . . . , θd (resp. θ∗0 , θ
∗
1 , . . . , θ

∗
d) denote the eigenvalue sequence (resp.

dual eigenvalue sequence) of Φ, and recall

θi �= θj , θ∗i �= θ∗j if i �= j, (0 ≤ i, j ≤ d). (7.5)

By Theorem 2.7(ii) we have

pd+1(θi) = 0, p∗d+1(θ
∗
i ) = 0 (0 ≤ i ≤ d). (7.6)

By Theorem 3.1 we have

pi(θ0) �= 0, p∗i (θ
∗
0) �= 0 (0 ≤ i ≤ d). (7.7)

By Theorem 4.3 we have

pi(θj)
pi(θ0)

=
p∗j (θ

∗
i )

p∗j (θ
∗
0)

(0 ≤ i, j ≤ d). (7.8)

In the following theorem we show the equations (7.1)–(7.8) characterize the
Leonard systems.

Theorem 7.1. Let d denote a nonnegative integer. Given polynomials

p0, p1, . . . , pd+1, (7.9)
p∗0, p

∗
1, . . . , p

∗
d+1 (7.10)

in K[λ] satisfying (7.1)–(7.4) and given scalars

θ0, θ1, . . . , θd, (7.11)
θ∗0 , θ

∗
1 , . . . , θ

∗
d (7.12)

in K satisfying (7.5)–(7.8), there exists a Leonard system Φ over K that has
MPS (7.9), dual MPS (7.10), eigenvalue sequence (7.11) and dual eigenvalue
sequence (7.12). The system Φ is unique up to isomorphism of Leonard sys-
tems.
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Proof. We abbreviate V = Kd+1. Let A and A∗ denote the following matrices
in Matd+1(K):

A :=

⎛⎜⎜⎜⎜⎜⎜⎝
a0 x1 0
1 a1 x2

1 · ·
· · ·
· · xd

0 1 ad

⎞⎟⎟⎟⎟⎟⎟⎠ , A∗ := diag(θ∗0 , θ
∗
1 , . . . , θ

∗
d).

We show the pair A,A∗ is a Leonard pair on V . To do this we apply Definition
1.1. Observe that A is irreducible tridiagonal and A∗ is diagonal. Therefore
condition (i) of Definition 1.1 is satisfied by the basis for V consisting of the
columns of I, where I denotes the identity matrix in Matd+1(K). To verify
condition (ii) of Definition 1.1, we display an invertible matrix X such that
X−1AX is diagonal and X−1A∗X is irreducible tridiagonal. Let X denote the
matrix in Matd+1(K) that has entries

Xij =
pi(θj)p∗j (θ

∗
0)

x1x2 · · ·xi
(7.13)

=
p∗j (θ

∗
i )pi(θ0)

x1x2 · · ·xi
(7.14)

0 ≤ i, j ≤ d. The matrix X is invertible since it is essentially Vandermonde.
Using (7.2) and (7.13) we find AX = XH where H = diag(θ0, θ1, . . . , θd).
Apparently X−1AX is equal to H and is therefore diagonal. Using (7.3) and
(7.14) we find A∗X = XH∗ where

H∗ :=

⎛⎜⎜⎜⎜⎜⎜⎝
a∗0 x∗1 0
1 a∗1 x∗2

1 · ·
· · ·
· · x∗d

0 1 a∗d

⎞⎟⎟⎟⎟⎟⎟⎠ .

Apparently X−1A∗X is equal to H∗ and is therefore irreducible tridiagonal.
Now condition (ii) of Definition 1.1 is satisfied by the basis for V consisting
of the columns of X. We have now shown the pair A,A∗ is a Leonard pair
on V . Pick an integer j (0 ≤ j ≤ d). Using X−1AX = H we find θj is
the eigenvalue of A associated with column j of X. From the definition of
A∗ we find θ∗j is the eigenvalue of A∗ associated with column j of I. Let
Ej (resp. E∗

j ) denote the primitive idempotent of A (resp. A∗) for θj (resp.
θ∗j ). From our above comments the sequence Φ := (A;A∗; {Ei}d

i=0; {E∗
i }d

i=0)
is a Leonard system. From the construction Φ is over K. We show (7.9) is
the MPS of Φ. To do this is suffices to show ai = tr(E∗

i A) for 0 ≤ i ≤ d
and xi = tr(E∗

i AE
∗
i−1A) for 1 ≤ i ≤ d. Applying Lemma 2.7(i),(ii) to Φ
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(with vi = column i of I, B = A) we find ai = tr(E∗
i A) for 0 ≤ i ≤ d and

xi = tr(E∗
i AE

∗
i−1A) for 1 ≤ i ≤ d. Therefore (7.9) is the MPS of Φ. We

show (7.10) is the dual MPS of Φ. Applying Lemma 2.7(i),(ii) to Φ∗ (with
vi = column i of X, B = H∗) we find a∗i = tr(EiA

∗) for 0 ≤ i ≤ d and x∗i =
tr(EiA

∗Ei−1A
∗) for 1 ≤ i ≤ d. Therefore (7.10) is the dual MPS of Φ. From

the construction we find (7.11) (resp. (7.12)) is the eigenvalue sequence (resp.
dual eigenvalue sequence) of Φ. We show Φ is uniquely determined by (7.9)–
(7.12) up to isomorphism of Leonard systems. Recall that Φ is determined
up to isomorphism of Leonard systems by its own parameter array. We show
the parameter array of Φ is determined by (7.9)–(7.12). Recall the parameter
array consists of the eigenvalue sequence, the dual eigenvalue sequence, the
first split sequence and the second split sequence. We mentioned earlier that
the eigenvalue sequence of Φ is (7.11) and the dual eigenvalue sequence of Φ
is (7.12). By Lemma 5.5 the first split sequence of Φ is determined by (7.9)–
(7.12). By this and Theorem 5.8 we find the second split sequence of Φ is
determined by (7.9)–(7.12). We have now shown the parameter array of Φ
is determined by (7.9)–(7.12). We now see that Φ is uniquely determined by
(7.9)–(7.12) up to isomorphism of Leonard systems. ��

7.2 Leonard Pairs A, A∗ with A Lower Bidiagonal and A∗ Upper
Bidiagonal

Let A,A∗ denote matrices in Matd+1(K). Let us assume A is lower bidiagonal
and A∗ is upper bidiagonal. We cite a necessary and sufficient condition for
A,A∗ to be a Leonard pair.

Theorem 7.2. [82, Theorem 17.1] Let d denote a nonnegative integer and let
A,A∗ denote matrices in Matd+1(K). Assume A lower bidiagonal and A∗ is
upper bidiagonal. Then the following (i), (ii) are equivalent.

(i) The pair A,A∗ is a Leonard pair.
(ii) There exists a parameter array (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d)

over K such that

Aii = θi, A∗
ii = θ∗i (0 ≤ i ≤ d),

Ai,i−1A
∗
i−1,i = ϕi (1 ≤ i ≤ d).

7.3 Leonard Pairs A, A∗ with A Tridiagonal and A∗ Diagonal

Let A,A∗ denote matrices in Matd+1(K). Let us assume A is tridiagonal and
A∗ is diagonal. We cite a necessary and sufficient condition for A,A∗ to be a
Leonard pair.

Theorem 7.3. [82, Theorem 25.1] Let d denote a nonnegative integer and
let A,A∗ denote matrices in Matd+1(K). Assume A is tridiagonal and A∗ is
diagonal. Then the following (i), (ii) are equivalent.
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(i) The pair A,A∗ is a Leonard pair.
(ii) There exists a parameter array (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d)

over K such that

Aii = θi +
ϕi

θ∗i − θ∗i−1

+
ϕi+1

θ∗i − θ∗i+1

(0 ≤ i ≤ d),

Ai,i−1Ai−1,i = ϕiφi

∏i−2
h=0(θ

∗
i−1 − θ∗h)∏i−1

h=0(θ
∗
i − θ∗h)

∏d
h=i+1(θ

∗
i − θ∗h)∏d

h=i(θ
∗
i−1 − θ∗h)

(1 ≤ i ≤ d),

A∗
ii = θ∗i (0 ≤ i ≤ d).

7.4 Characterizations of the Parameter Arrays

In this section we cite a characterization of the parameter arrays in terms of
bidiagonal matrices. We will refer to the following set-up.

Definition 7.1. Let d denote a nonnegative integer and let (θi, θ
∗
i , i = 0, . . . , d;

ϕj , φj , j = 1, . . . , d) denote a sequence of scalars taken from K. We assume
this sequence satisfies PA1 and PA2.

Theorem 7.4. [86, Theorem 3.2] With reference to Definition 7.1, the fol-
lowing (i), (ii) are equivalent.

(i) The sequence (θi, θ
∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) satisfies PA3–PA5.

(ii) There exists an invertible matrix G ∈ Matd+1(K) such that both

G−1

⎛⎜⎜⎜⎜⎜⎜⎝
θ0 0
1 θ1

1 θ2

· ·
· ·

0 1 θd

⎞⎟⎟⎟⎟⎟⎟⎠G =

⎛⎜⎜⎜⎜⎜⎜⎝
θd 0
1 θd−1

1 θd−2

· ·
· ·

0 1 θ0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

G−1

⎛⎜⎜⎜⎜⎜⎜⎝
θ∗0 ϕ1 0

θ∗1 ϕ2

θ∗2 ·
· ·
· ϕd

0 θ∗d

⎞⎟⎟⎟⎟⎟⎟⎠G =

⎛⎜⎜⎜⎜⎜⎜⎝
θ∗0 φ1 0

θ∗1 φ2

θ∗2 ·
· ·
· φd

0 θ∗d

⎞⎟⎟⎟⎟⎟⎟⎠ .

Next we cite a characterization of the parameter arrays in terms of polyno-
mials.

Theorem 7.5. [86, Theorem 4.1] With reference to Definition 7.1, the fol-
lowing (i), (ii) are equivalent.

(i) The sequence (θi, θ
∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) satisfies PA3–PA5.
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(ii) For 0 ≤ i ≤ d the polynomial

i∑
n=0

(λ− θ0)(λ− θ1) · · · (λ− θn−1)(θ∗i − θ∗0)(θ∗i − θ∗1) · · · (θ∗i − θ∗n−1)
ϕ1ϕ2 · · ·ϕn

(7.15)
is a scalar multiple of the polynomial

i∑
n=0

(λ− θd)(λ− θd−1) · · · (λ− θd−n+1)(θ∗i − θ∗0)(θ∗i − θ∗1) · · · (θ∗i − θ∗n−1)
φ1φ2 · · ·φn

.

8 The Askey-Wilson Relations

We turn our attention to the representation theoretic aspects of Leonard pairs.

Theorem 8.1. [88, Theorem 1.5] Let V denote a vector space over K with
finite positive dimension. Let A,A∗ denote a Leonard pair on V . Then there
exists a sequence of scalars β, γ, γ∗,  ,  ∗, ω, η, η∗ taken from K such that both

A2A∗ − βAA∗A + A∗A2 − γ (AA∗+A∗A) −  A∗ = γ∗A2 + ωA + η I, (8.1)
A∗2A− βA∗AA∗+ AA∗2 − γ∗(A∗A+AA∗) −  ∗A = γA∗2 + ωA∗+ η∗I. (8.2)

The sequence is uniquely determined by the pair A,A∗ provided the diameter
d ≥ 3.

We refer to (8.1), (8.2) as the Askey-Wilson relations. As far as we know these
relations first appeared in [90].

Our next result is a kind of converse to Theorem 8.1.

Theorem 8.2. [88, Theorem 6.2] Given a sequence of scalars β, γ, γ∗,  ,  ∗,
ω, η, η∗ taken from K, we let Aw denote the unital associative K-algebra gen-
erated by two symbols A,A∗ subject to the relations (8.1), (8.2). Let V de-
note a finite dimensional irreducible Aw-module and assume each of A,A∗ is
multiplicity-free on V . Then A,A∗ act on V as a Leonard pair provided q is
not a root of unity, where q + q−1 = β.

The algebra Aw in Theorem 8.2 is called the Askey-Wilson algebra [90].

We finish this section with an open problem.

Problem 8.1. Let Aw denote the Askey-Wilson algebra from Theorem 8.2.
Let V denote an irreducible Aw-module with either finite or countably infi-
nite dimension. We say V has polynomial type whenever there exists a basis
v0, v1, . . . for V with respect to which the matrix representing A is irreducible
tridiagonal and the matrix representing A∗ is diagonal. Determine up to iso-
morphism the irreducible Aw-modules of polynomial type. We expect that the
solutions correspond to the entire Askey scheme of orthogonal polynomials.
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Remark 8.1. The papers [31], [32], [33], [34], [35], [80], [90], [91], [92] contain
some results related to Problem 8.1, but a complete and rigorous treatment
has yet to be carried out. See also the work of Grünbaum and Haine on the
“bispectral problem” [37], [38], [39], [40], [41], [42], [43] as well as [6], [7], [8],
[11, p. 263], [63], [65], [66], [67], [68].

Remark 8.2. Referring to Theorem 8.2, for the special case β = q + q−1, γ =
γ∗ = 0, ω = 0, η = η∗ = 0 the Askey-Wilson algebra is related to the
quantum groups Uq(su2), Uq(so3) [16, Theorem 8.10], [27], [44], [69] as well
as the bipartite 2-homogeneous distance-regular graphs [17, Lemma 3.3], [18],
[30, p. 427].

8.1 Leonard Pairs and the Lie Algebra sl2

In this section we assume the field K is algebraically closed with characteristic
zero.

We recall the Lie algebra sl2 = sl2(K). This algebra has a basis e, f, h satis-
fying

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

where [·, ·] denotes the Lie bracket.

We recall the irreducible finite dimensional modules for sl2.

Lemma 8.1. [49, p. 102] There exists a family

Vd d = 0, 1, 2, . . . (8.3)

of irreducible finite dimensional sl2-modules with the following properties. The
module Vd has a basis v0, v1, . . . , vd satisfying hvi = (d− 2i)vi for 0 ≤ i ≤ d,
fvi = (i + 1)vi+1 for 0 ≤ i ≤ d − 1, fvd = 0, evi = (d − i + 1)vi−1 for 1 ≤
i ≤ d, ev0 = 0. Every irreducible finite dimensional sl2-module is isomorphic
to exactly one of the modules in line (8.3).

Example 8.1. Let A and A∗ denote the following elements of sl2.

A = e + f, A∗ = h.

Let d denote a nonnegative integer and consider the action of A, A∗ on the
module Vd. With respect to the basis v0, v1, . . . , vd from Lemma 8.1, the ma-
trices representing A and A∗ are

A :

⎛⎜⎜⎜⎜⎜⎜⎝
0 d 0
1 0 d− 1

2 · ·
· · ·

· · 1
0 d 0

⎞⎟⎟⎟⎟⎟⎟⎠ , A∗ : diag(d, d− 2, d− 4, . . . ,−d).



302 Paul Terwilliger

The pair A,A∗ acts on Vd as a Leonard pair. The resulting Leonard pair is
isomorphic to the one in (1.2).

The Leonard pairs in Example 8.1 are not the only ones associated with sl2.
To get more Leonard pairs we replace A and A∗ by more general elements in
sl2. Our result is the following.

Theorem 8.3. [45, Ex. 1.5] Let A and A∗ denote semi-simple elements in sl2
and assume sl2 is generated by these elements. Let V denote an irreducible
finite dimensional module for sl2. Then the pair A,A∗ acts on V as a Leonard
pair.

We remark the Leonard pairs in Theorem 8.3 correspond to the Krawtchouk
polynomials [53].

8.2 Leonard Pairs and the Quantum Algebra Uq(sl2)

In this section we assume K is algebraically closed. We fix a nonzero scalar
q ∈ K that is not a root of unity. We recall the quantum algebra Uq(sl2).

Definition 8.1. [49, p. 122] Let Uq(sl2) denote the unital associative K-
algebra with generators e, f, k, k−1 and relations

kk−1 = k−1k = 1,

ke = q2ek, kf = q−2fk,

ef − fe =
k − k−1

q − q−1
.

We recall the irreducible finite dimensional modules for Uq(sl2). We use the
following notation.

[n]q =
qn − q−n

q − q−1
n ∈ Z.

Lemma 8.2. [49, p. 128] With reference to Definition 8.1, there exists a fam-
ily

Vε,d ε ∈ {1,−1}, d = 0, 1, 2, . . . (8.4)

of irreducible finite dimensional Uq(sl2)-modules with the following properties.
The module Vε,d has a basis u0, u1, . . . , ud satisfying kui = εqd−2iui for 0 ≤
i ≤ d, fui = [i + 1]qui+1 for 0 ≤ i ≤ d− 1, fud = 0, eui = ε[d − i + 1]qui−1

for 1 ≤ i ≤ d, eu0 = 0. Every irreducible finite dimensional Uq(sl2)-module is
isomorphic to exactly one of the modules Vε,d. (Referring to line (8.4), if K
has characteristic 2 we interpret the set {1,−1} as having a single element.)
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Theorem 8.4. [56], [57], [84] Referring to Definition 8.1 and Lemma 8.2, let
α, β denote nonzero scalars in K and define A, A∗ as follows.

A = αf +
k

q − q−1
, A∗ = βe +

k−1

q − q−1
.

Let d denote a nonnegative integer and choose ε ∈ {1,−1}. Then the pair
A,A∗ acts on Vε,d as a Leonard pair provided εαβ is not among qd−1, qd−3, . . . ,
q1−d.

We remark the Leonard pairs in Theorem 8.4 correspond to the quantum
q-Krawtchouk polynomials [53], [55].

8.3 Leonard Pairs in Combinatorics

Leonard pairs arise in many branches of combinatorics. For instance they arise
in the theory of partially ordered sets (posets). We illustrate this with a poset
called the subspace lattice Ln(q).

In this section we assume our field K is the field C of complex numbers.

To define the subspace lattice we introduce a second field. Let GF (q) denote
a finite field of order q. Let n denote a positive integer and let W denote an
n-dimensional vector space over GF (q). Let P denote the set consisting of all
subspaces of W . The set P , together with the containment relation, is a poset
called Ln(q).

Using Ln(q) we obtain a family of Leonard pairs as follows. Let CP denote the
vector space over C consisting of all formal C-linear combinations of elements
of P . We observe P is a basis for CP so the dimension of CP is equal to the
cardinality of P .

We define three linear transformations on CP . We call these K, R (for “rais-
ing”), L (for “lowering”).

We begin with K. For all x ∈ P ,

Kx = qn/2−dim xx.

Apparently each element of P is an eigenvector for K.

To define R and L we use the following notation. For x, y ∈ P we say y covers
x whenever (i) x ⊆ y and (ii) dim y = 1 + dimx.

The maps R and L are defined as follows. For all x ∈ P ,

Rx =
∑

y covers x

y.

Similarly
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Lx = q(1−n)/2
∑

x covers y

y.

(The scalar q(1−n)/2 is included for aesthetic reasons.)

We consider the properties of K,R,L. From the construction we find K−1

exists. By combinatorial counting we verify

KL = qLK, KR = q−1RK,

LR−RL =
K −K−1

q1/2 − q−1/2
.

We recognize these equations. They are the defining relations for Uq1/2(sl2).
Apparently K, R, L turn CP into a module for Uq1/2(sl2).

We now see how to get Leonard pairs from Ln(q). Let α, β denote nonzero
complex scalars and define A, A∗ as follows.

A = αR +
K

q1/2 − q−1/2
, A∗ = βL +

K−1

q1/2 − q−1/2
.

To avoid degenerate situations we assume αβ is not among q(n−1)/2, q(n−3)/2,
. . . , q(1−n)/2.

The Uq1/2(sl2)-module CP is completely reducible [49, p. 144]. In other words
CP is a direct sum of irreducible Uq1/2(sl2)-modules. On each irreducible
module in this sum the pair A,A∗ acts as a Leonard pair. This follows from
Theorem 8.4.

We just saw how the subspace lattice gives Leonard pairs. We expect that
some other classical posets, such as the polar spaces and attenuated spaces
[76], give Leonard pairs in a similar fashion. However the details remain to be
worked out. See [76] for more information on this topic.

Another combinatorial object that gives Leonard pairs is a P - and Q-
polynomial association scheme [11], [13], [77]. Leonard pairs have been used
to describe certain irreducible modules for the subconstituent algebra of these
schemes [14], [18], [19], [45], [77].

9 Tridiagonal Pairs

There is a mild generalization of a Leonard pair called a tridiagonal pair [45],
[46], [47], [80]. In order to define this, we use the following terms. Let V denote
a vector space over K with finite positive dimension. Let A : V → V denote
a linear transformation and let W denote a subspace of V . We call W an
eigenspace of A whenever W �= 0 and there exists θ ∈ K such that

W = {v ∈ V | Av = θv}.

We say A is diagonalizable whenever V is spanned by the eigenspaces of A.
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Definition 9.1. [45, Definition 1.1] Let V denote a vector space over K with
finite positive dimension. By a tridiagonal pair on V , we mean an ordered
pair of linear transformations A : V → V and A∗ : V → V that satisfy the
following four conditions.

(i) Each of A,A∗ is diagonalizable.
(ii) There exists an ordering V0, V1, . . . , Vd of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d), (9.1)

where V−1 = 0, Vd+1 = 0.
(iii) There exists an ordering V ∗

0 , V
∗
1 , . . . , V

∗
δ of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ δ), (9.2)

where V ∗
−1 = 0, V ∗

δ+1 = 0.
(iv) There does not exist a subspace W of V such that AW ⊆ W , A∗W ⊆ W ,

W �= 0, W �= V .

The following problem is open.

Problem 9.1. Classify the tridiagonal pairs.

For the rest of this section we discuss what is known about tridiagonal pairs,
and give some conjectures.

Let A,A∗ denote a tridiagonal pair on V and let the integers d, δ be as in
Definition 9.1(ii), (iii) respectively. By [45, Lemma 4.5] we have d = δ; we call
this common value the diameter of the pair. An ordering of the eigenspaces of
A (resp. A∗) will be called standard whenever it satisfies (9.1) (resp. (9.2)). We
comment on the uniqueness of the standard ordering. Let V0, V1, . . . , Vd denote
a standard ordering of the eigenspaces of A. Then the ordering Vd, Vd−1, . . . , V0

is standard and no other ordering is standard. A similar result holds for the
eigenspaces of A∗. Let V0, V1, . . . , Vd (resp. V ∗

0 , V
∗
1 , . . . , V

∗
d ) denote a standard

ordering of the eigenspaces of A (resp. A∗). By [45, Corollary 5.7], for 0 ≤ i ≤ d
the spaces Vi, V ∗

i have the same dimension; we denote this common dimension
by ρi. By the construction ρi �= 0. By [45, Corollary 5.7] and [45, Corollary
6.6], the sequence ρ0, ρ1, . . . , ρd is symmetric and unimodal; that is ρi = ρd−i

for 0 ≤ i ≤ d and ρi−1 ≤ ρi for 1 ≤ i ≤ d/2. We refer to the sequence
(ρ0, ρ1, . . . , ρd) as the shape vector of A,A∗. A Leonard pair is the same thing
as a tridiagonal pair that has shape vector (1, 1, . . . , 1).

Conjecture 9.1. [45, Conjecture 13.5] Referring to Definition 9.1, assume K is
algebraically closed and let (ρ0, ρ1, . . . , ρd) denote the shape vector for A,A∗.
Then the entries in this shape vector are bounded above by binomial coeffi-
cients as follows:

ρi ≤
(
d

i

)
(0 ≤ i ≤ d).
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See [46] for some partial results on Conjecture 9.1. We now give some examples
of tridiagonal pairs.

Example 9.1. [45, Example 1.6] Assume K is algebraically closed with charac-
teristic 0. Let b, b∗ denote nonzero scalars in K. Let O denote the Lie algebra
over K generated by symbols A,A∗ subject to the relations

[A, [A, [A,A∗]]] = b2[A,A∗], (9.3)
[A∗, [A∗, [A∗, A]]] = b∗2[A∗, A]. (9.4)

Let V denote a finite dimensional irreducible O-module. Then A,A∗ act on
V as a tridiagonal pair.

Remark 9.1. The algebra O from Example 9.1 is called the Onsager algebra.
It first appeared in the seminal paper by Onsager [70] in which the free energy
of the two dimensional Ising model was computed exactly. Onsager presented
his algebra by displaying a basis; the above presentation using generators and
relations (9.3), (9.4) was established by Perk [71]. The relations themselves
first appeared in work of Dolan and Grady [26]. A few years later they were
used by von Gehlen and Rittenberg [29] to describe the superintegrable chiral
Potts model. In [72] Roan observed that O is isomorphic to the invariant
subalgebra of the loop algebra K[t, t−1] ⊗ sl2 by an involution. Of course
this last result was not available to Onsager since his discovery predates the
invention of Kac-Moody algebras by some 25 years. See [1], [2], [3], [9], [10],
[12], [23], [25], [64], [89] for recent work involving the Onsager algebra and
integrable lattice models. The equations (9.3), (9.4) are called the Dolan-
Grady relations [22], [24], [50], [51], [52], [61].

Example 9.2. [45, Example 1.7] Assume K is algebraically closed, and let q

denote a nonzero scalar in K that is not a root of unity. Let Uq(ŝl2)>0 denote
the unital associative K-algebra generated by symbols A,A∗ subject to the
relations

0 = A3A∗ − [3]qA2A∗A + [3]qAA∗A2 −A∗A3, (9.5)
0 = A∗3A− [3]qA∗2AA∗ + [3]qA∗AA∗2 −AA∗3. (9.6)

Let V denote a finite dimensional irreducible Uq(ŝl2)>0-module and assume
neither of A,A∗ is nilpotent on V . Then A,A∗ act on V as a tridiagonal pair.

Remark 9.2. The equations (9.5), (9.6) are known as the q-Serre relations,
and are among the defining relations for the quantum affine algebra Uq(ŝl2)
[15], [48]. The algebra Uq(ŝl2)>0 is called the positive part of Uq(ŝl2). The
tridiagonal pairs from Example 9.2 are said to have q-geometric type.

In order to get the most general tridiagonal pairs, we consider a pair of rela-
tions that generalize both the Dolan-Grady relations and the q-Serre relations.
We call these the tridiagonal relations. These relations are given as follows.
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Theorem 9.1. [45, Theorem 10.1] Let V denote a vector space over K with
finite positive dimension and let A,A∗ denote a tridiagonal pair on V . Then
there exists a sequence of scalars β, γ, γ∗,  ,  ∗ taken from K such that both

0 = [A,A2A∗ − βAA∗A + A∗A2 − γ(AA∗ + A∗A) −  A∗] (9.7)

0 = [A∗, A∗2A− βA∗AA∗ + AA∗2 − γ∗(AA∗ + A∗A) −  ∗A], (9.8)

where [r, s] means rs− sr. The sequence is unique if the diameter d ≥ 3.

We call (9.7), (9.8) the tridiagonal relations [80]. As far as we know these
relations first appeared in [78, Lemma 5.4].

Remark 9.3. The Dolan-Grady relations (9.3), (9.4) are the tridiagonal rela-
tions with parameters β = 2, γ = γ∗ = 0,  = b2,  ∗ = b∗2, if we interpret
the bracket in (9.3), (9.4) as [r, s] = rs− sr. The q-Serre relations (9.5), (9.6)
are the tridiagonal relations with parameters β = q2 + q−2, γ = γ∗ = 0,
 =  ∗ = 0.

Our next result is a kind of converse to Theorem 9.1.

Theorem 9.2. [80, Theorem 3.10] Let β, γ, γ∗,  ,  ∗ denote a sequence of
scalars taken from K. Let T denote the unital associative K-algebra gener-
ated by symbols A, A∗ subject to the tridiagonal relations (9.7), (9.8). Let V
denote an irreducible finite dimensional T -module and assume each of A,A∗

is diagonalizable on V . Then A,A∗ act on V as a tridiagonal pair provided q
is not a root of unity, where q + q−1 = β.

Remark 9.4. The algebra T in Theorem 9.2 is called the tridiagonal algebra
[45], [79], [80].

So far in our research on tridiagonal pairs, our strongest result concerns the
case of q-geometric type. In order to describe this result we define one more
algebra.

Definition 9.2. Assume K is algebraically closed. Let q denote a nonzero
scalar in K that is not a root of unity. We let �q denote the unital associative
K-algebra with generators xi, ki (i = 0, 1, 2, 3) and relations

qxiki − q−1kixi

q − q−1
= 1,

qxixi+1 − q−1xi+1xi

q − q−1
= 1,

qki+1xi − q−1xiki+1

q − q−1
= 1, kiki+2 = 1,

x3
ixi+2 − [3]qx2

ixi+2xi + [3]qxixi+2x
2
i − xi+2x

3
i = 0

for 0 ≤ i ≤ 3, where all subscripts are computed modulo 4.
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Remark 9.5. The algebra �q is closely related to the quantum affine algebra
Uq(ŝl2). Indeed there exists a homomorphism of K-algebras from Uq(ŝl2) into
�q [47, Theorem 2.1]. This homomorphism induces on each �q-module the
structure of a Uq(ŝl2)-module. The �q-module structure is irreducible if and
only if the Uq(ŝl2)-module structure is irreducible.

Theorem 9.3. [47, Theorem 3.3] Assume K is algebraically closed. Let q de-
note a nonzero scalar in K that is not a root of unity. Let V denote a vector
space over K with finite positive dimension. Let A,A∗ denote a tridiagonal pair
on V that has q-geometric type. Then there exists an irreducible �q-module
structure on V such that A acts as a scalar multiple of x0 and A∗ acts as
a scalar multiple of x2. Conversely, let V denote a finite dimensional irre-
ducible �q-module. Then the elements x0, x2 act on V as a tridiagonal pair
of q-geometric type.

Problem 9.2. Determine up to isomorphism the tridiagonal pairs of q-
geometric type. This can probably be done by using Remark 9.5 and the
classification of finite dimensional irreducible Uq(ŝl2)-modules [15].

We end this section with a conjecture.

Conjecture 9.2. Assume K is algebraically closed. Let V denote a vector space
over K with finite positive dimension and let A,A∗ denote a tridiagonal pair
on V . To avoid degenerate situations we assume q is not a root of unity, where
β = q2 + q−2, and where β is from Theorem 9.1. Then referring to Definition
9.2, there exists an irreducible �q-module structure on V such that A acts
as a linear combination of x0, x1, I and A∗ acts as a linear combination of
x2, x3, I.

10 Appendix: List of Parameter Arrays

In this section we display all the parameter arrays over K. We will use the
following notation.

Definition 10.1. Let p = (θi, θ
∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote a

parameter array over K. For 0 ≤ i ≤ d we let ui denote the following polyno-
mial in K[λ].

ui =
i∑

n=0

(λ− θ0) · · · (λ− θn−1)(θ∗i − θ∗0) · · · (θ∗i − θ∗n−1)
ϕ1ϕ2 · · ·ϕn

. (10.1)

We call u0, u1, . . . , ud the polynomials that correspond to p.

We now display all the parameter arrays over K. For each displayed array
(θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) we present ui(θj) for 0 ≤ i, j ≤ d,
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where u0, u1, . . . , ud are the corresponding polynomials. Our presentation is
organized as follows. In each of Example 10.1–10.13 below we give a family
of parameter arrays over K. In Theorem 10.1 we show every parameter array
over K is contained in at least one of these families.

In each of Example 10.1–10.13 below the following implicit assumptions apply:
d denotes a nonnegative integer, the scalars (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j =

1, . . . , d) are contained in K, and the scalars q, h, h∗, . . . are contained in the
algebraic closure of K.

Example 10.1. (q-Racah) Assume

θi = θ0 + h(1 − qi)(1 − sqi+1)q−i, (10.2)
θ∗i = θ∗0 + h∗(1 − qi)(1 − s∗qi+1)q−i (10.3)

for 0 ≤ i ≤ d and

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(1 − r1q
i)(1 − r2q

i), (10.4)
φi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(r1 − s∗qi)(r2 − s∗qi)/s∗ (10.5)

for 1 ≤ i ≤ d. Assume h, h∗, q, s, s∗, r1, r2 are nonzero and r1r2 = ss∗qd+1.
Assume none of qi, r1q

i, r2q
i, s∗qi/r1, s

∗qi/r2 is equal to 1 for 1 ≤ i ≤ d
and that neither of sqi, s∗qi is equal to 1 for 2 ≤ i ≤ 2d. Then (θi, θ

∗
i , i =

0, . . . , d;ϕj , φj , j = 1, . . . , d) is a parameter array over K. The corresponding
polynomials ui satisfy

ui(θj) = 4φ3

(
q−i, s∗qi+1, q−j , sqj+1

r1q, r2q, q−d

∣∣∣∣∣ q, q
)

for 0 ≤ i, j ≤ d. These ui are the q-Racah polynomials.

Example 10.2. (q-Hahn) Assume

θi = θ0 + h(1 − qi)q−i,

θ∗i = θ∗0 + h∗(1 − qi)(1 − s∗qi+1)q−i

for 0 ≤ i ≤ d and

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(1 − rqi),
φi = −hh∗q1−i(1 − qi)(1 − qi−d−1)(r − s∗qi)

for 1 ≤ i ≤ d. Assume h, h∗, q, s∗, r are nonzero. Assume none of qi, rqi, s∗qi/r
is equal to 1 for 1 ≤ i ≤ d and that s∗qi �= 1 for 2 ≤ i ≤ 2d. Then the
sequence (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) is a parameter array over K.

The corresponding polynomials ui satisfy

ui(θj) = 3φ2

(
q−i, s∗qi+1, q−j

rq, q−d

∣∣∣∣∣ q, q
)

for 0 ≤ i, j ≤ d. These ui are the q-Hahn polynomials.
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Example 10.3. (Dual q-Hahn) Assume

θi = θ0 + h(1 − qi)(1 − sqi+1)q−i,

θ∗i = θ∗0 + h∗(1 − qi)q−i

for 0 ≤ i ≤ d and

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(1 − rqi),
φi = hh∗qd+2−2i(1 − qi)(1 − qi−d−1)(s− rqi−d−1)

for 1 ≤ i ≤ d. Assume h, h∗, q, r, s are nonzero. Assume none of qi, rqi, sqi/r
is equal to 1 for 1 ≤ i ≤ d and that sqi �= 1 for 2 ≤ i ≤ 2d. Then the
sequence (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) is a parameter array over K.

The corresponding polynomials ui satisfy

ui(θj) = 3φ2

(
q−i, q−j , sqj+1

rq, q−d

∣∣∣∣∣ q, q
)

for 0 ≤ i, j ≤ d. These ui are the dual q-Hahn polynomials.

Example 10.4. (Quantum q-Krawtchouk) Assume

θi = θ0 − sq(1 − qi),
θ∗i = θ∗0 + h∗(1 − qi)q−i

for 0 ≤ i ≤ d and

ϕi = −rh∗q1−i(1 − qi)(1 − qi−d−1),
φi = h∗qd+2−2i(1 − qi)(1 − qi−d−1)(s− rqi−d−1)

for 1 ≤ i ≤ d. Assume h∗, q, r, s are nonzero. Assume neither of qi, sqi/r is
equal to 1 for 1 ≤ i ≤ d. Then the sequence (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j =

1, . . . , d) is a parameter array over K. The corresponding polynomials ui satisfy

ui(θj) = 2φ1

(
q−i, q−j

q−d

∣∣∣∣∣ q, sr−1qj+1

)
for 0 ≤ i, j ≤ d. These ui are the quantum q-Krawtchouk polynomials.

Example 10.5. (q-Krawtchouk) Assume

θi = θ0 + h(1 − qi)q−i,

θ∗i = θ∗0 + h∗(1 − qi)(1 − s∗qi+1)q−i

for 0 ≤ i ≤ d and

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1),
φi = hh∗s∗q(1 − qi)(1 − qi−d−1)



The Askey Scheme of Orthogonal Polynomials 311

for 1 ≤ i ≤ d. Assume h, h∗, q, s∗ are nonzero. Assume qi �= 1 for 1 ≤ i ≤ d and
that s∗qi �= 1 for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j =

1, . . . , d) is a parameter array over K. The corresponding polynomials ui satisfy

ui(θj) = 3φ2

(
q−i, s∗qi+1, q−j

0, q−d

∣∣∣∣∣ q, q
)

for 0 ≤ i, j ≤ d. These ui are the q-Krawtchouk polynomials.

Example 10.6. (Affine q-Krawtchouk) Assume

θi = θ0 + h(1 − qi)q−i,

θ∗i = θ∗0 + h∗(1 − qi)q−i

for 0 ≤ i ≤ d and

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(1 − rqi),
φi = −hh∗rq1−i(1 − qi)(1 − qi−d−1)

for 1 ≤ i ≤ d. Assume h, h∗, q, r are nonzero. Assume neither of qi, rqi is equal
to 1 for 1 ≤ i ≤ d. Then the sequence (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d)

is a parameter array over K. The corresponding polynomials ui satisfy

ui(θj) = 3φ2

(
q−i, 0, q−j

rq, q−d

∣∣∣∣∣ q, q
)

for 0 ≤ i, j ≤ d. These ui are the affine q-Krawtchouk polynomials.

Example 10.7. (Dual q-Krawtchouk) Assume

θi = θ0 + h(1 − qi)(1 − sqi+1)q−i,

θ∗i = θ∗0 + h∗(1 − qi)q−i

for 0 ≤ i ≤ d and

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1),
φi = hh∗sqd+2−2i(1 − qi)(1 − qi−d−1)

for 1 ≤ i ≤ d. Assume h, h∗, q, s are nonzero. Assume qi �= 1 for 1 ≤ i ≤ d
and sqi �= 1 for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j =

1, . . . , d) is a parameter array over K. The corresponding polynomials ui satisfy

ui(θj) = 3φ2

(
q−i, q−j , sqj+1

0, q−d

∣∣∣∣∣ q, q
)

for 0 ≤ i, j ≤ d. These ui are the dual q-Krawtchouk polynomials.
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Example 10.8. (Racah) Assume

θi = θ0 + hi(i + 1 + s), (10.6)
θ∗i = θ∗0 + h∗i(i + 1 + s∗) (10.7)

for 0 ≤ i ≤ d and

ϕi = hh∗i(i− d− 1)(i + r1)(i + r2), (10.8)
φi = hh∗i(i− d− 1)(i + s∗ − r1)(i + s∗ − r2) (10.9)

for 1 ≤ i ≤ d. Assume h, h∗ are nonzero and that r1 + r2 = s + s∗ + d + 1.
Assume the characteristic of K is 0 or a prime greater than d. Assume none
of r1, r2, s∗−r1, s∗−r2 is equal to −i for 1 ≤ i ≤ d and that neither of s, s∗ is
equal to −i for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i = 0, . . . , d;ϕj , φj , j =

1, . . . , d) is a parameter array over K. The corresponding polynomials ui satisfy

ui(θj) = 4F3

(
−i, i + 1 + s∗, −j, j + 1 + s

r1 + 1, r2 + 1, −d

∣∣∣∣∣ 1
)

for 0 ≤ i, j ≤ d. These ui are the Racah polynomials.

Example 10.9. (Hahn) Assume

θi = θ0 + si,

θ∗i = θ∗0 + h∗i(i + 1 + s∗)

for 0 ≤ i ≤ d and

ϕi = h∗si(i− d− 1)(i + r),
φi = −h∗si(i− d− 1)(i + s∗ − r)

for 1 ≤ i ≤ d. Assume h∗, s are nonzero. Assume the characteristic of K is
0 or a prime greater than d. Assume neither of r, s∗ − r is equal to −i for
1 ≤ i ≤ d and that s∗ �= −i for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i =

0, . . . , d;ϕj , φj , j = 1, . . . , d) is a parameter array over K. The corresponding
polynomials ui satisfy

ui(θj) = 3F2

(
−i, i + 1 + s∗, −j

r + 1, −d

∣∣∣∣∣ 1
)

for 0 ≤ i, j ≤ d. These ui are the Hahn polynomials.

Example 10.10. (Dual Hahn) Assume

θi = θ0 + hi(i + 1 + s),
θ∗i = θ∗0 + s∗i
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for 0 ≤ i ≤ d and

ϕi = hs∗i(i− d− 1)(i + r),

φi = hs∗i(i− d− 1)(i + r − s− d− 1)

for 1 ≤ i ≤ d. Assume h, s∗ are nonzero. Assume the characteristic of K is
0 or a prime greater than d. Assume neither of r, s − r is equal to −i for
1 ≤ i ≤ d and that s �= −i for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i =

0, . . . , d;ϕj , φj , j = 1, . . . , d) is a parameter array over K. The corresponding
polynomials ui satisfy

ui(θj) = 3F2

(−i, −j, j + 1 + s

r + 1, −d

∣∣∣∣∣ 1
)

for 0 ≤ i, j ≤ d. These ui are the dual Hahn polynomials.

Example 10.11. (Krawtchouk) Assume

θi = θ0 + si,

θ∗i = θ∗0 + s∗i

for 0 ≤ i ≤ d and

ϕi = ri(i− d− 1)

φi = (r − ss∗)i(i− d− 1)

for 1 ≤ i ≤ d. Assume r, s, s∗ are nonzero. Assume the characteristic of K is
0 or a prime greater than d. Assume r �= ss∗. Then the sequence (θi, θ

∗
i , i =

0, . . . , d;ϕj , φj , j = 1, . . . , d) is a parameter array over K. The corresponding
polynomials ui satisfy

ui(θj) = 2F1

(−i, −j

−d

∣∣∣∣∣ r−1ss∗
)

for 0 ≤ i, j ≤ d. These ui are the Krawtchouk polynomials.

Example 10.12. (Bannai/Ito) Assume

θi = θ0 + h(s− 1 + (1 − s + 2i)(−1)i), (10.10)

θ∗i = θ∗0 + h∗(s∗ − 1 + (1 − s∗ + 2i)(−1)i) (10.11)

for 0 ≤ i ≤ d and



314 Paul Terwilliger

ϕi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4hh∗i(i + r1), if i even, d even,
−4hh∗(i− d− 1)(i + r2), if i odd, d even,
−4hh∗i(i− d− 1), if i even, d odd,
−4hh∗(i + r1)(i + r2), if i odd, d odd,

(10.12)

φi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4hh∗i(i− s∗ − r1), if i even, d even,
4hh∗(i− d− 1)(i− s∗ − r2), if i odd, d even,
−4hh∗i(i− d− 1), if i even, d odd,
−4hh∗(i− s∗ − r1)(i− s∗ − r2), if i odd, d odd,

(10.13)

for 1 ≤ i ≤ d. Assume h, h∗ are nonzero and that r1 + r2 = −s− s∗ + d + 1.
Assume the characteristic of K is either 0 or an odd prime greater than d/2.
Assume neither of r1,−s∗−r1 is equal to −i for 1 ≤ i ≤ d, d− i even. Assume
neither of r2, −s∗−r2 is equal to −i for 1 ≤ i ≤ d, i odd. Assume neither of s, s∗

is equal to 2i for 1 ≤ i ≤ d. Then the sequence (θi, θ
∗
i , i = 0, . . . , d;ϕj , φj , j =

1, . . . , d) is a parameter array over K. We call the corresponding polynomials
from Definition 10.1 the Bannai/Ito polynomials [11, p. 260].

Example 10.13. (Orphan) For this example assume K has characteristic 2. For
notational convenience we define some scalars γ0, γ1, γ2, γ3 in K. We define
γi = 0 for i ∈ {0, 3} and γi = 1 for i ∈ {1, 2}. Assume

θi = θ0 + h(si + γi), (10.14)
θ∗i = θ∗0 + h∗(s∗i + γi) (10.15)

for 0 ≤ i ≤ 3. Assume ϕ1 = hh∗r, ϕ2 = hh∗, ϕ3 = hh∗(r + s + s∗) and
φ1 = hh∗(r + s(1 + s∗)), φ2 = hh∗, φ3 = hh∗(r + s∗(1 + s)). Assume each
of h, h∗, s, s∗, r is nonzero. Assume neither of s, s∗ is equal to 1 and that r is
equal to none of s + s∗, s(1 + s∗), s∗(1 + s). Then the sequence (θi, θ

∗
i , i =

0, . . . , 3;ϕj , φj , j = 1, . . . , 3) is a parameter array over K which has diameter
3. We call the corresponding polynomials from Definition 10.1 the orphan
polynomials.

Theorem 10.1. Every parameter array over K is listed in at least one of the
Examples 10.1–10.13.

Proof. Let p := (θi, θ
∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote a parameter

array over K. We show this array is given in at least one of the Examples
10.1–10.13. We assume d ≥ 1; otherwise the result is trivial. For notational
convenience let K̃ denote the algebraic closure of K. We define a scalar q ∈ K̃
as follows. For d ≥ 3, we let q denote a nonzero scalar in K̃ such that q+q−1+1
is equal to the common value of (5.18). For d < 3 we let q denote a nonzero
scalar in K̃ such that q �= 1 and q �= −1. By PA5, both

θi−2 − ξθi−1 + ξθi − θi+1 = 0, (10.16)
θ∗i−2 − ξθ∗i−1 + ξθ∗i − θ∗i+1 = 0 (10.17)
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for 2 ≤ i ≤ d − 1, where ξ = q + q−1 + 1. We divide the argument into the
following four cases. (I) q �= 1, q �= −1; (II) q = 1 and char(K) �= 2; (III)
q = −1 and char(K) �= 2; (IV) q = 1 and char(K) = 2.

Case I: q �= 1, q �= −1.
By (10.16) there exist scalars η, μ, h in K̃ such that

θi = η + μqi + hq−i (0 ≤ i ≤ d). (10.18)

By (10.17) there exist scalars η∗, μ∗, h∗ in K̃ such that

θ∗i = η∗ + μ∗qi + h∗q−i (0 ≤ i ≤ d). (10.19)

Observe μ, h are not both 0; otherwise θ1 = θ0 by (10.18). Similarly μ∗, h∗

are not both 0. For 1 ≤ i ≤ d we have qi �= 1; otherwise θi = θ0 by (10.18).
Setting i = 0 in (10.18), (10.19) we obtain

θ0 = η + μ + h, (10.20)
θ∗0 = η∗ + μ∗ + h∗. (10.21)

We claim there exists τ ∈ K̃ such that both

ϕi = (qi − 1)(qd−i+1 − 1)(τ − μμ∗qi−1 − hh∗q−i−d), (10.22)
φi = (qi − 1)(qd−i+1 − 1)(τ − hμ∗qi−d−1 − μh∗q−i) (10.23)

for 1 ≤ i ≤ d. Since q �= 1 and qd �= 1 there exists τ ∈ K̃ such that (10.22)
holds for i = 1. In the equation of PA4, we eliminate ϕ1 using (10.22) at i = 1,
and evaluate the result using (10.18), (10.19) in order to obtain (10.23) for
1 ≤ i ≤ d. In the equation of PA3, we eliminate φ1 using (10.23) at i = 1,
and evaluate the result using (10.18), (10.19) in order to obtain (10.22) for
1 ≤ i ≤ d. We have now proved the claim. We now break the argument into
subcases. For each subcase our argument is similar. We will discuss the first
subcase in detail in order to give the idea; for the remaining subcases we give
the essentials only.

Subcase q-Racah: μ �= 0, μ∗ �= 0, h �= 0, h∗ �= 0. We show p is listed in Example
10.1. Define

s := μh−1q−1, s∗ := μ∗h∗−1q−1. (10.24)

Eliminating η in (10.18) using (10.20) and eliminating μ in the result using
the equation on the left in (10.24), we obtain (10.2) for 0 ≤ i ≤ d. Similarly
we obtain (10.3) for 0 ≤ i ≤ d. Since K̃ is algebraically closed it contains
scalars r1, r2 such that both

r1r2 = ss∗qd+1, r1 + r2 = τh−1h∗−1qd. (10.25)

Eliminating μ, μ∗, τ in (10.22), (10.23) using (10.24) and the equation on the
right in (10.25), and evaluating the result using the equation on the left in
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(10.25), we obtain (10.4), (10.5) for 1 ≤ i ≤ d. By the construction each of
h, h∗, q, s, s∗ is nonzero. Each of r1, r2 is nonzero by the equation on the left in
(10.25). The remaining inequalities mentioned below (10.5) follow from PA1,
PA2 and (10.2)–(10.5). We have now shown p is listed in Example 10.1.

We now give the remaining subcases of Case I. We list the essentials only.

Subcase q-Hahn: μ = 0, μ∗ �= 0, h �= 0, h∗ �= 0, τ �= 0. Definitions:

s∗ := μ∗h∗−1q−1, r := τh−1h∗−1qd.

Subcase dual q-Hahn: μ �= 0, μ∗ = 0, h �= 0, h∗ �= 0, τ �= 0. Definitions:

s := μh−1q−1, r := τh−1h∗−1qd.

Subcase quantum q-Krawtchouk: μ �= 0, μ∗ = 0, h = 0, h∗ �= 0, τ �= 0. Defini-
tions:

s := μq−1, r := τh∗−1qd.

Subcase q-Krawtchouk: μ = 0, μ∗ �= 0, h �= 0, h∗ �= 0, τ = 0. Definition:

s∗ := μ∗h∗−1q−1.

Subcase affine q-Krawtchouk: μ = 0, μ∗ = 0, h �= 0, h∗ �= 0, τ �= 0. Definition:

r := τh−1h∗−1qd.

Subcase dual q-Krawtchouk: μ �= 0, μ∗ = 0, h �= 0, h∗ �= 0, τ = 0. Definition:

s := μh−1q−1.

We have a few more comments concerning Case I. Earlier we mentioned that
μ, h are not both 0 and that μ∗, h∗ are not both 0. Suppose one of μ, h is 0
and one of μ∗, h∗ is 0. Then τ �= 0; otherwise ϕ1 = 0 by (10.22) or φ1 = 0
by (10.23). Suppose μ∗ �= 0, h∗ = 0. Replacing q by q−1 we obtain μ∗ = 0,
h∗ �= 0. Suppose μ∗ �= 0, h∗ �= 0, μ �= 0, h = 0. Replacing q by q−1 we obtain
μ∗ �= 0, h∗ �= 0, μ = 0, h �= 0. By these comments we find that after replacing
q by q−1 if necessary, one of the above subcases holds. This completes our
argument for Case I.

Case II: q = 1 and char(K) �= 2.
By (10.16) and since char(K) �= 2, there exist scalars η, μ, h in K̃ such that

θi = η + (μ + h)i + hi2 (0 ≤ i ≤ d). (10.26)

Similarly there exist scalars η∗, μ∗, h∗ in K̃ such that

θ∗i = η∗ + (μ∗ + h∗)i + h∗i2 (0 ≤ i ≤ d). (10.27)
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Observe μ, h are not both 0; otherwise θ1 = θ0. Similarly μ∗, h∗ are not both
0. For any prime i such that i ≤ d we have char(K) �= i; otherwise θi = θ0

by (10.26). Therefore char(K) is 0 or a prime greater than d. Setting i = 0 in
(10.26), (10.27) we obtain

θ0 = η, θ∗0 = η∗. (10.28)

We claim there exists τ ∈ K̃ such that both

ϕi = i(d− i + 1)(τ − (μh∗ + hμ∗)i− hh∗i(i + d + 1)), (10.29)
φi = i(d− i + 1)(τ + μμ∗ + hμ∗(1 + d) + (μh∗ − hμ∗)i

+ hh∗i(d− i + 1)) (10.30)

for 1 ≤ i ≤ d. There exists τ ∈ K̃ such that (10.29) holds for i = 1. In the
equation of PA4, we eliminate ϕ1 using (10.29) at i = 1, and evaluate the
result using (10.26), (10.27) in order to obtain (10.30) for 1 ≤ i ≤ d. In
the equation of PA3, we eliminate φ1 using (10.30) at i = 1, and evaluate the
result using (10.26), (10.27) in order to obtain (10.29) for 1 ≤ i ≤ d. We have
now proved the claim. We now break the argument into subcases.

Subcase Racah: h �= 0, h∗ �= 0. We show p is listed in Example 10.8. Define

s := μh−1, s∗ := μ∗h∗−1. (10.31)

Eliminating η, μ in (10.26) using (10.28), (10.31) we obtain (10.6) for 0 ≤
i ≤ d. Eliminating η∗, μ∗ in (10.27) using (10.28), (10.31) we obtain (10.7) for
0 ≤ i ≤ d. Since K̃ is algebraically closed it contains scalars r1, r2 such that
both

r1r2 = −τh−1h∗−1, r1 + r2 = s + s∗ + d + 1. (10.32)

Eliminating μ, μ∗, τ in (10.29), (10.30) using (10.31) and the equation on the
left in (10.32) we obtain (10.8), (10.9) for 1 ≤ i ≤ d. By the construction each
of h, h∗ is nonzero. The remaining inequalities mentioned below (10.9) follow
from PA1, PA2 and (10.6)–(10.9). We have now shown p is listed in Example
10.8.

We now give the remaining subcases of Case II. We list the essentials only.

Subcase Hahn: h = 0, h∗ �= 0. Definitions:

s = μ, s∗ := μ∗h∗−1, r := −τμ−1h∗−1.

Subcase dual Hahn: h �= 0, h∗ = 0. Definitions:

s := μh−1, s∗ = μ∗, r := −τh−1μ∗−1.

Subcase Krawtchouk: h = 0, h∗ = 0. Definitions:
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s := μ, s∗ := μ∗, r := −τ.

Case III: q = −1 and char(K) �= 2.
We show p is listed in Example 10.12. By (10.16) and since char(K) �= 2, there
exist scalars η, μ, h in K̃ such that

θi = η + μ(−1)i + 2hi(−1)i (0 ≤ i ≤ d). (10.33)

Similarly there exist scalars η∗, μ∗, h∗ in K̃ such that

θ∗i = η∗ + μ∗(−1)i + 2h∗i(−1)i (0 ≤ i ≤ d). (10.34)

Observe h �= 0; otherwise θ2 = θ0 by (10.33). Similarly h∗ �= 0. For any prime
i such that i ≤ d/2 we have char(K) �= i; otherwise θ2i = θ0 by (10.33). By
this and since char(K) �= 2 we find char(K) is either 0 or an odd prime greater
than d/2. Setting i = 0 in (10.33), (10.34) we obtain

θ0 = η + μ, θ∗0 = η∗ + μ∗. (10.35)

We define

s := 1 − μh−1, s∗ = 1 − μ∗h∗−1. (10.36)

Eliminating η in (10.33) using (10.35) and eliminating μ in the result using
(10.36) we find (10.10) holds for 0 ≤ i ≤ d. Similarly we find (10.11) holds for
0 ≤ i ≤ d. We now define r1, r2. First assume d is odd. Since K̃ is algebraically
closed it contains r1, r2 such that

r1 + r2 = −s− s∗ + d + 1 (10.37)

and such that

4hh∗(1 + r1)(1 + r2) = −ϕ1. (10.38)

Next assume d is even. Define

r2 := −1 +
ϕ1

4hh∗d
(10.39)

and define r1 so that (10.37) holds. We have now defined r1, r2 for either
parity of d. In the equation of PA4, we eliminate ϕ1 using (10.38) or (10.39),
and evaluate the result using (10.10), (10.11) in order to obtain (10.13) for
1 ≤ i ≤ d. In the equation of PA3, we eliminate φ1 using (10.13) at i = 1,
and evaluate the result using (10.10), (10.11) in order to obtain (10.12) for
1 ≤ i ≤ d. We mentioned each of h, h∗ is nonzero. The remaining inequalities
mentioned below (10.13) follow from PA1, PA2 and (10.10)–(10.13). We have
now shown p is listed in Example 10.12.

Case IV: q = 1 and char(K) = 2.
We show p is listed in Example 10.13. We first show d = 3. Recall d ≥ 3 since
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q = 1. Suppose d ≥ 4. By (10.16) we have
∑3

j=0 θj = 0 and
∑4

j=1 θj = 0.
Adding these sums we find θ0 = θ4 which contradicts PA1. Therefore d = 3.
We claim there exist nonzero scalars h, s in K such that (10.14) holds for
0 ≤ i ≤ 3. Define h = θ0 + θ2. Observe h �= 0; otherwise θ0 = θ2. Define
s = (θ0 + θ3)h−1. Observe s �= 0; otherwise θ0 = θ3. Using these values for
h, s we find (10.14) holds for i = 0, 2, 3. By this and

∑3
j=0 θj = 0 we find

(10.14) holds for i = 1. We have now proved our claim. Similarly there exist
nonzero scalars h∗, s∗ in K such that (10.15) holds for 0 ≤ i ≤ 3. Define
r := ϕ1h

−1h∗−1. Observe r �= 0 and that ϕ1 = hh∗r. In the equation of PA4,
we eliminate ϕ1 using ϕ1 = hh∗r and evaluate the result using (10.14), (10.15)
in order to obtain φ1 = hh∗(r+ s(1+ s∗)), φ2 = hh∗, φ3 = hh∗(r+ s∗(1+ s)).
In the equation of PA3, we eliminate φ1 using φ1 = hh∗(r + s(1 + s∗)) and
evaluate the result using (10.14), (10.15) in order to obtain ϕ2 = hh∗, ϕ3 =
hh∗(r+s+s∗). We mentioned each of h, h∗, s, s∗, r is nonzero. Observe s �= 1;
otherwise θ1 = θ0. Similarly s∗ �= 1. Observe r �= s + s∗; otherwise ϕ3 = 0.
Observe r �= s(1 + s∗); otherwise φ1 = 0. Observe r �= s∗(1 + s); otherwise
φ3 = 0. We have now shown p is listed in Example 10.13. We are done with
Case IV and the proof is complete. ��

11 Suggestions for Further Research

In this section we give some suggestions for further research.

Problem 11.1. Let Φ = (A;A∗; {Ei}d
i=0; {E∗

i }d
i=0) denote a Leonard system

in A. Let α, α∗, β, β∗ denote scalars in K such that α �= 0 and α∗ �= 0. We men-
tioned in Section 4 that the sequence (αA+βI;α∗A∗+β∗I; {Ei}d

i=0; {E∗
i }d

i=0)
is a Leonard system in A. In some cases this system is isomorphic to a relative
of Φ; determine all the cases where this occurs.

Problem 11.2. Assume K = R. With reference to Definition 3.7, find a nec-
essary and sufficient condition on the parameter array of Φ, for the bilinear
form 〈·, ·〉 to be positive definite. By definition the form 〈·, ·〉 is positive definite
whenever ‖u‖2 > 0 for all nonzero u ∈ V .

Problem 11.3. Assume K = R and let Φ denote the Leonard system from
Definition 1.2. For 0 ≤ i ≤ d we define Ai = vi(A), where the polynomial vi is
from Definition 3.5. Observe there exist real scalars ph

ij (0 ≤ h, i, j ≤ d) such
that

AiAj =
d∑

h=0

ph
ijAh (0 ≤ i, j ≤ d).

Determine those Φ for which ph
ij ≥ 0 for 0 ≤ h, i, j ≤ d.
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Problem 11.4. Assume K = R. Let Φ denote the Leonard system from Defi-
nition 1.2 and let θ0, θ1, . . . , θd denote the corresponding eigenvalue sequence.
Consider the permutation σ of 0, 1, . . . , d such that θσ(0) > θσ(1) > · · · > θσ(d).
What are the possibilities for σ?

Problem 11.5. Assume K = R. Let Φ denote the Leonard system from Defi-
nition 1.2 and let θ0, θ1, . . . , θd denote the corresponding eigenvalue sequence.
Let the polynomials ui be as in Definition 3.6. Find a necessary and sufficient
condition on the parameter array of Φ, so that the absolute value |ui(θj)| ≤ 1
for 0 ≤ i, j ≤ d. See [60, Conjecture 2] for an application.

Conjecture 11.1. Let Φ denote the Leonard system from Definition 1.2 and let
the scalars ai be as in Definition 2.3. Then for 0 ≤ i ≤ d the following are
equivalent:

(i) ah = ad−h for 0 ≤ h ≤ i;
(ii) a∗h = a∗d−h for 0 ≤ h ≤ i.

Problem 11.6. Let Φ denote the Leonard system from Definition 1.2 and let
ϕ1, ϕ2, . . . , ϕd denote the corresponding first split sequence. Let the scalar ν
be as in Definition 2.6. For 0 ≤ i, j ≤ d we consider the expression

ντi(A)E∗
0E0τ

∗
j (A∗)

ϕ1ϕ2 · · ·ϕj
, (11.1)

where the τi, τ
∗
j are from Definition 5.6. Show that with respect to a Φ-split

basis the matrix representing (11.1) has ij entry 1 and all other entries 0.

Problem 11.7. Let Φ denote the Leonard system from Definition 1.2. De-
fine G = ud(A) where the polynomial ud is from Definition 3.6. Show G−1

exists and is equal to G↓. Show that with respect to a Φ-split basis the ma-
trix representing G∗G−1G∗−1G is diagonal. Find the diagonal entries of this
matrix.

Problem 11.8. Let (A;A∗; {Ei}d
i=0; {E∗

i }d
i=0) denote a Leonard system and

let (θi, θ
∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding parame-

ter array. Show that

ϕi = (θ∗0 − θ∗i )
tr(τi(A)E∗

0 )
tr(τi−1(A)E∗

0 )
(1 ≤ i ≤ d),

where tr means trace and the τj are from (5.19).

Problem 11.9. Find a short direct proof of Theorem 7.5. Such a proof is
likely to lead to an improved proof of Theorem 5.2. The current proof of
Theorem 5.2 is in [79].
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Problem 11.10. Let Φ denote the Leonard system from Definition 1.2 and
let V denote an irreducible A-module. Let 〈·, ·〉 denote the bilinear form on V
from Definition 3.7. We recall 〈·, ·〉 is nondegenerate. What is the Witt index
of 〈·, ·〉? The definition of the Witt index is given in [36].

Problem 11.11. Let Aw denote the Askey-Wilson algebra from Theorem 8.2.
An element of Aw is called central whenever it commutes with every element
of Aw. By definition the center of Aw is the K-subalgebra of Aw consisting of
the central elements of Aw. Describe the center of Aw. Find a generating set
for this center. By [32, p. 6] the following element of Aw is central:

AA∗AA∗ − βAA∗2A + A∗AA∗A− γ∗AA∗A− γ(1 + β)A∗AA∗ − β A∗2

−(ω + γγ∗)(AA∗ + A∗A) − (η∗ + γ ∗)A− (η(1 + β) + γ∗ )A∗.

This can be verified using the Askey-Wilson relations. Does this element gen-
erate the center of Aw?

Problem 11.12. Let d denote a nonnegative integer. Find all Leonard pairs
A,A∗ in Matd+1(K) that satisfy the following two conditions:

(i) A is irreducible tridiagonal;
(ii) A∗ is lower bidiagonal with A∗

i,i−1 = 1 for 1 ≤ i ≤ d.

Problem 11.13. Let d denote a nonnegative integer. Find all Leonard pairs
A,A∗ in Matd+1(K) such that each of A,A∗ is irreducible tridiagonal.

Problem 11.14. Let V denote a vector space over K with finite positive
dimension. By a Leonard triple on V , we mean a three-tuple of linear trans-
formations A : V → V , A∗ : V → V , Aε : V → V that satisfy conditions
(i)–(iii) below.

(i) There exists a basis for V with respect to which the matrix representing A
is diagonal and the matrices representing A∗ and Aε are each irreducible
tridiagonal.

(ii) There exists a basis for V with respect to which the matrix representing
A∗ is diagonal and the matrices representing Aε and A are each irreducible
tridiagonal.

(iii) There exists a basis for V with respect to which the matrix representing
Aε is diagonal and the matrices representing A and A∗ are each irreducible
tridiagonal.

Find all the Leonard triples. See [20] for a connection between Leonard triples
and spin models.

Problem 11.15. Let V denote a vector space over K with finite positive
dimension. Let End(V ) denote the K-algebra consisting of all linear transfor-
mations from V to V . Let A,A∗, Aε denote a Leonard triple on V . Each of
the pairs A,A∗; A,Aε; A∗, Aε is a Leonard pair on V ; let r, s, t denote the
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corresponding antiautomorphisms of End(V ) from Definition 2.2. Determine
the subgroup of GL(End(V )) generated by r, s, t. Since r2 = s2 = t2 = 1, it is
conceivable that this subgroup is a Coxeter group. For which Leonard triples
is this the case?

Problem 11.16. Let V denote a vector space over K with finite positive
dimension and let A,A∗, Aε denote a Leonard triple on V . Show that for any
permutation x, y, z of A,A∗, Aε there exists an antiautomorphism σ of End(V )
such that xσ = x and each of [x, y]σ, [x, z]σ is a scalar multiple of the other.
Here [r, s] means rs− sr.

Problem 11.17. Assume K is algebraically closed with characteristic 0. Let
d denote a nonnegative integer and let A,A∗ denote the Leonard pair on Kd+1

given in (1.2). Find all the matrices Aε such that A,A∗, Aε is a Leonard triple
on Kd+1. Given a solution Aε, show that each of

[A,A∗], [A∗, Aε], [Aε, A]

is contained in the K-linear span of I,A,A∗, Aε. Here [r, s] means rs− sr.

Problem 11.18. Let V denote a vector space over K with finite positive
dimension and let A,A∗, Aε denote a Leonard triple on V . Show that there
exists a nonzero scalar q ∈ K such that each of

AA∗ − qA∗A, A∗Aε − qAεA∗, AεA− qAAε

is contained in the K-linear span of I,A,A∗, Aε.

Problem 11.19. Assume K is algebraically closed. Let q denote a nonzero
scalar in K that is not a root of unity. Let B denote the unital associative
K-algebra with generators x, y, z and the following relations. The relations are
that each of

q−1xy − qyx

q2 − q−2
− z,

q−1yz − qzy

q2 − q−2
− x,

q−1zx− qxz

q2 − q−2
− y

is central in B. Let V denote a finite dimensional irreducible B-module on
which each of x, y, z is multiplicity-free. Show that x, y, z act on V as a Leonard
triple. Determine all the B-modules of this type, up to isomorphism.

Problem 11.20. Classify up to isomorphism the finite dimensional irre-
ducible B-modules, where the algebra B is from Problem 11.19. This problem
is closely related to Problem 8.1.

Conjecture 11.2. Let Φ denote the Leonard system from Definition 1.2 and
let I denote the identity element of A. Then for all X ∈ A the following are
equivalent:
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(i) both

EiXEj = 0 if |i− j| > 1, (0 ≤ i, j ≤ d),
E∗

i XE∗
j = 0 if |i− j| > 1, (0 ≤ i, j ≤ d);

(ii) X is a K-linear combination of I,A,A∗, AA∗, A∗A.

Conjecture 11.3. Let Φ denote the Leonard system from Definition 1.2. Then
for 0 ≤ r ≤ d the elements

E∗
0 , E

∗
1 , . . . , E

∗
r , Er, Er+1, . . . , Ed

together generate A.

Remark 11.1. Conjecture 11.3 holds for r = 0 by Corollary 2.1, and since A
is a linear combination of E0, E1, . . . , Ed. Similarly Conjecture 11.3 holds for
r = d.

Problem 11.21. Recall the algebra Uq(ŝl2)>0 from Example 9.2. Describe
the center of Uq(ŝl2)>0. Find a generating set for this center. We remark that
Uq(ŝl2)>0 has infinite dimension as a vector space over K. A basis for this
vector space is given in [46, Theorem 2.29].

Problem 11.22. Assume K is algebraically closed. Let V denote a vector
space over K with finite positive dimension and let A,A∗ denote a tridiagonal
pair on V . Compute the Jordan canonical form for q−1AA∗ − qA∗A, where
q2 + q−2 = β and β is from Theorem 9.1.

Conjecture 11.4. Let Φ = (A;A∗; {Ei}d
i=0; {E∗

i }d
i=0) denote a Leonard system

and let (θi, θ
∗
i , i = 0, . . . , d;ϕj , φj , j = 1, . . . , d) denote the corresponding pa-

rameter array. Assume q �= 1, q �= −1, where q+ q−1 + 1 is the common value
of (5.18). For d odd,

det(AA∗ −A∗A) =
∏

1≤i≤d
i odd

ϕiφi
q − 1
1 − qi

1 − q−1

1 − q−i
.

Remark 11.2. Referring to Conjecture 11.4, for d even we have det(AA∗ −
A∗A) = 0. This is because det(X†) = det(X) and X† = −X, where X =
AA∗ −A∗A and where † is the antiautomorphism from Definition 2.2.

Problem 11.23. Referring to Conjecture 11.4 and Remark 11.2, show that
for d even the null space of AA∗ −A∗A has dimension 1. Find a basis vector
for this null space. Express this basis vector in terms of a Φ-standard basis
and a Φ∗-standard basis.

Problem 11.24. Let V denote a vector space over K with finite positive
dimension. By an inverting pair on V we mean an ordered pair of invertible
linear transformations K : V → V and K∗ : V → V that satisfy both (i), (ii)
below.
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(i) There exists a basis for V with respect to which the matrix representing
K has all entries 0 above the superdiagonal, the matrix representing K−1

has all entries 0 below the subdiagonal, and the matrix representing K∗

is diagonal.
(ii) There exists a basis for V with respect to which the matrix representing

K∗ has all entries 0 above the superdiagonal, the matrix representing
K∗−1 has all entries 0 below the subdiagonal, and the matrix representing
K is diagonal.

Find all the inverting pairs. See [47, Section 11] for a connection between
inverting pairs and Leonard pairs of q-geometric type.

Problem 11.25. For an integer d ≥ 0, find all the invertible matrices K ∈
Matd+1(K) such that

(i) K has all entries 0 above the superdiagonal,
(ii) K−1 has all entries 0 below the subdiagonal.

Problem 11.26. Let d denote a nonnegative integer and let θ0, θ1, . . . , θd de-
note a sequence of mutually distinct scalars in K. Let λ denote an indetermi-
nate and let V denote the vector space over K consisting of all polynomials in
λ that have degree at most d. Define a polynomial τi =

∏i−1
h=0(λ− θh) for 0 ≤

i ≤ d and observe τ0, τ1, . . . , τd is a basis for V . Define ρi =
∏i−1

h=0(λ− θd−h)
for 0 ≤ i ≤ d and observe ρ0, ρ1, . . . , ρd is a basis for V . By a lowering map
on V we mean a linear transformation Ψ : V → V that satisfies both

Ψτi ∈ span(τi−1) (1 ≤ i ≤ d), Ψτ0 = 0,
Ψρi ∈ span(ρi−1) (1 ≤ i ≤ d), Ψρ0 = 0.

Show that there exists a nonzero lowering map on V if and only if (θi−2 −
θi+1)(θi−1 − θi)−1 is independent of i for 2 ≤ i ≤ d− 1.

Problem 11.27. By a generalized Leonard system in A we mean a sequence
(A;A∗; {θi}d

i=0; {θ∗i }d
i=0) that satisifies (i)–(v) below.

(i) A,A∗ ∈ A and θi, θ
∗
i ∈ K for 0 ≤ i ≤ d.

(ii) θ0, θ1, . . . , θd is an ordering of the roots of the characteristic polynomial
of A.

(iii) θ∗0 , θ
∗
1 , . . . , θ

∗
d is an ordering of the roots of the characteristic polynomial

of A∗.
(iv) For 0 ≤ i, j ≤ d,

τi(A)A∗ηd−j(A) =

{
0, if i− j > 1,
�= 0, if i− j = 1,

ηd−i(A)A∗τj(A) =

{
0, if j − i > 1,
�= 0, if j − i = 1.
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(v) For 0 ≤ i, j ≤ d,

τ∗i (A∗)Aη∗d−j(A
∗) =

{
0, if i− j > 1,
�= 0, if i− j = 1,

η∗d−i(A
∗)Aτ∗j (A∗) =

{
0, if j − i > 1,
�= 0, if j − i = 1.

(We are using the notation (5.19), (5.20)). We are not assuming θ0, θ1, . . . , θd

are mutually distinct or that θ∗0 , θ
∗
1 , . . . , θ

∗
d are mutually distinct. Classify the

generalized Leonard systems. Extend the theory of Leonard systems to the
level of generalized Leonard systems.

Problem 11.28. For an integer d ≥ 0 and for X ∈ Matd+1(K), we define X to
be north Vandermonde whenever the entries Xij = X0jfi(θj) for 0 ≤ i, j ≤ d,
where θ0, θ1, . . . , θd are mutually distinct scalars in K and fi ∈ K[λ] has degree
i for 0 ≤ i ≤ d. Let X ′ ∈ Matd+1(K) denote the matrix obtained by rotating
X counterclockwise 90 degrees. We define X to be east Vandermonde (resp.
south Vandermonde) (resp. west Vandermonde) whenever X ′ (resp. X ′′) (resp.
X ′′′) is north Vandermonde. Find all the matrices in Matd+1(K) that are
simultaneously north, south, east, and west Vandermonde.

Problem 11.29. Let V denote a vector space over K with finite positive
dimension n. By a cyclic Leonard pair on V , we mean an ordered pair of
linear transformations A : V → V and A∗ : V → V that satisfy (i)–(iv)
below.

(i) Each of A,A∗ is multiplicity free.
(ii) There exists a bijection i → Vi from the cyclic group Z/nZ to the set of

eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (∀i ∈ Z/nZ).

(iii) There exists a bijection i → V ∗
i from Z/nZ to the set of eigenspaces of

A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (∀i ∈ Z/nZ).

(iv) There does not exist a subspace W of V such that AW ⊆ W , A∗W ⊆ W ,
W �= 0, W �= V .

Classify the cyclic Leonard pairs. Extend the theory of Leonard pairs to the
level of cyclic Leonard pairs.

Problem 11.30. Referring to the tridiagonal pair A,A∗ in Definition 9.1, for
0 ≤ i ≤ d let θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗) associated
with the eigenspace Vi (resp. V ∗

i ). Assume V ∗
0 has dimension 1. Observe that

for 0 ≤ i ≤ d the space V ∗
0 is an eigenspace for
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(A∗ − θ∗1I)(A
∗ − θ∗2I) · · · (A∗ − θ∗i I)(A− θi−1I) · · · (A− θ1I)(A− θ0I);

let ζi denote the corresponding eigenvalue. Show that the tridiagonal pair
A,A∗ is determined up to isomorphism by the array {θi, θ

∗
i , ζi, i = 0, . . . , d}.

Problem 11.31. Classify the tridiagonal pairs that have shape vector (ρ, ρ,
. . . , ρ), where ρ is an integer at least 2. See Section 34 for the definition of the
shape vector.
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Summary. The six Painlevé equations (PI–PVI) were first discovered around the
beginning of the twentieth century by Painlevé, Gambier and their colleagues in
an investigation of nonlinear second-order ordinary differential equations. Recently
there has been considerable interest in the Painlevé equations primarily due to the
fact that they arise as reductions of the soliton equations which are solvable by in-
verse scattering. Consequently the Painlevé equations can be regarded as completely
integrable equations and possess solutions which can be expressed in terms of solu-
tions of linear integral equations, despite being nonlinear equations. Although first
discovered from strictly mathematical considerations, the Painlevé equations have
arisen in a variety of important physical applications including statistical mechanics,
random matrices, plasma physics, nonlinear waves, quantum gravity, quantum field
theory, general relativity, nonlinear optics and fibre optics.

The Painlevé equations may be thought of as nonlinear analogues of the classical
special functions. They possess hierarchies of rational solutions and one-parameter
families of solutions expressible in terms of the classical special functions, for spe-
cial values of the parameters. Furthermore the Painlevé equations admit symmetries
under affine Weyl groups which are related to the associated Bäcklund transforma-
tions.

In this paper many of the remarkable properties which the Painlevé equations
possess are reviewed including connection formulae, Bäcklund transformations asso-
ciated discrete equations, and hierarchies of exact solutions. In particular, the second
Painlevé equation PII is primarily used to illustrate these properties and some of
the applications of PII are also discussed.
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1 Introduction

In this paper our interest is in the six Painlevé equations (PI–PVI)

w′′ = 6w2 + z, (1.1)
w′′ = 2w3 + zw + α, (1.2)
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δz(z − 1)
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, (1.6)

where ′ ≡ d/dz and α, β, γ and δ are arbitrary constants. The solutions of
PI–PVI are called the Painlevé transcendents . The Painlevé equations PI–PVI

were discovered about a hundred years ago by Painlevé, Gambier and their
colleagues whilst studying a problem posed by Picard [190]. Picard asked
which second order ordinary differential equations of the form

w′′ = F (z;w,w′) , (1.7)

where F is rational in w′ and w and analytic in z, have the property that the
solutions have no movable branch points, i.e., the locations of multi-valued
singularities of any of the solutions are independent of the particular solution
chosen and so are dependent only on the equation; this is now known as
the Painlevé property . Painlevé, Gambier et al. showed that there were fifty
canonical equations of the form (1.7) with this property, up to a Möbius
(bilinear rational) transformation

W (ζ) =
a(z)w + b(z)
c(z)w + d(z)

, ζ = φ(z), (1.8)

where a(z), b(z), c(z), d(z) and φ(z) are locally analytic functions. Further
they showed that of these fifty equations, forty-four are either integrable in
terms of previously known functions (such as elliptic functions or are equiv-
alent to linear equations) or reducible to one of six new nonlinear ordinary
differential equations, which define new transcendental functions (cf. [101]).

Although first discovered from mathematical considerations, the Painlevé
equations have subsequently arisen in a variety of applications including statis-
tical mechanics (correlation functions of the XY model and the Ising model),
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random matrix theory, topological field theory, plasma physics, nonlinear
waves (resonant oscillations in shallow water, convective flows with viscous
dissipation, Görtler vortices in boundary layers and Hele-shaw problems),
quantum gravity, quantum field theory, general relativity, nonlinear and fibre
optics, polyelectrolytes, Bose-Einstein condensation and stimulated Raman
scattering. Further the Painlevé equations have attracted much interest since
they arise in many physical situations and as reductions of the soliton equa-
tions which are solvable by inverse scattering, as discussed in §10.1; see, e.g.,
[2, 8], and the references therein.

The Painlevé equations can be thought of as nonlinear analogues of the
classical special functions (cf. [30, 102]). Iwasaki, Kimura, Shimomura and
Yoshida [109] characterize the Painlevé equations as “the most important
nonlinear ordinary differential equations” and also state that “many specialists
believe that during the twenty-first century the Painlevé functions will become
new members of the community of special functions”. Further Umemura [224]
states that “Kazuo Okamoto and his circle predict that in the 21st century a
new chapter on Painlevé equations will be added to Whittaker and Watson’s
book”.

The general solutions of the Painlevé equations are transcendental, i.e.,
irreducible in the sense that they cannot be expressed in terms of previously
known functions, such as rational functions, elliptic functions or the classi-
cal special functions (cf., [224]). Essentially, generic solutions of the PI–PV

are meromorphic functions in the complex plane; solutions of PVI are rather
different since the equation has three singular points (cf., [97]). Hinkkanen
and Laine [94, 95, 96], Shimomura [199, 200, 201, 202, 203] and Steinmetz
[205, 206, 207, 208] have rigorously proved the following theorem.

Theorem 1.1. All local solutions of PI, PII and PIV, and all local solutions
of PIII and PV after making the transformation z = eζ , i.e.,

d2w

dζ2 =
1
w

(
dw
dζ

)2

+ αw2 + βeζ + γw3 +
δe2ζ

w
, (1.9)

d2w

dζ2 =
(

1
2w

+
1

w − 1

)(
dw
dζ

)2

+ (w − 1)2
(
αw +

β

w

)
+ γeζw +

δe2ζw(w + 1)
w − 1

, (1.10)

respectively, can be analytically continued to single-valued meromorphic func-
tions in the complex plane.

The Painlevé equations, like other integrable equations such as soliton
equations, have a plethora of interesting properties. In the following sections
we discuss some of these properties.

• The isomonodromy method has been developed for the study of the
Painlevé equations and in this sense they are said to be integrable.
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• The equations PII–PVI also possess Bäcklund transformations which relate
one solution to another solution either of the same equation, with different
values of the parameters, or another equation which are discussed in §4.

• The equations PII–PVI possess many rational solutions, algebraic solutions
and solutions expressible in terms of special functions for certain values
of the parameters, which we discuss in §§5–7, respectively; these special
solutions are called “classical solutions” [223].

• Other properties include that they can be written in Hirota bilinear form,
which we discuss in §8.1 below) and have a coalescence cascade, which we
discuss in §8.2.

2 Inverse Problems for the Painlevé Equations

In this section we discuss inverse problems associated with the Painlevé equa-
tions. There are two approaches in order to develop inverse problems for
the Painlevé equations, either through a Gel’fand-Levitan-Marchenko inte-
gral equation, or through the isomonodromic deformation method which can
be viewed as the nonlinear analog of Laplace transform method.

The Painlevé equations arise as similarity reductions of partial differential
equations solvable by inverse scattering, the so-called soliton equations, as we
discuss in §10.1. We illustrate this in the following example given by Ablowitz
and Segur [7].

Example 2.1. If we make the scaling reduction

u(x, t) = (3t)−1/3w(z), z = x/(3t)1/3, (2.1)

in the modified Korteweg-de Vries (mKdV) equation

ut − 6u2ux + uxxx = 0, (2.2)

then after integrating once, w(z) satisfies PII with α the arbitrary constant of
integration.

Both the integral equation and isomonodromic deformation method ap-
proaches for the inverse problem for PII can be derived from the inverse scat-
tering method for the mKdV equation (2.2) as we shall illustrate. For details
of the inverse scattering method for the mKdV equation see, for example,
Ablowitz and Clarkson [2, §7.3], Ablowitz, Kaup, Newell and Segur [4].

2.1 Integral Equations

The inverse scattering method for nonlinear partial differential equations ex-
presses the solution in terms of solutions of linear integral equations (cf.
[2, 4, 8]). Hence, due to the relationship between Painlevé and soliton equa-
tions, then certain solutions of the Painlevé equations can be expressed in
terms of solutions of linear integral equations.
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Theorem 2.1. Consider the integral equation

K(z, ζ) = kAi
(
z + ζ

2

)
+ 1

4k
2

∫ ∞

z

∫ ∞

z

K(z, s) Ai
(
s + t

2

)
Ai
(
t + ζ

2

)
dsdt, (2.3)

with Ai(z) the Airy function, then

wk(z) = K(z, z), (2.4)

satisfies (9.16), i.e., PII with α = 0, with the boundary condition

wk(z) ∼ kAi(z), z → ∞. (2.5)

Proof. See Ablowitz, Ramani and Segur [5] and Ablowitz and Segur [7]. ��

The integral equation (2.3) is derived from the Gel’fand-Levitan-Marchenko
integral equation

K(x, y; t) = F
(
x + y

2
; t
)

+ 1
4

∫ ∞

x

∫ ∞

x

K(x, z; t)F
(
z + s

2
; t
)
F
(
z + y

2
; t
)

dz ds, (2.6)

where F(x; t) is expressed in terms of the initial data and satisfies the linear
equation

Ft + Fxxx = 0, (2.7)

and u(x, t) is obtained through

u(x, t) = K(x, x; t), (2.8)

for solving the mKdV equation (2.2) by inverse scattering [4] through the
scaling reduction

K(x, y; t) = (3t)−1/3K(z, ζ), F
(
x + y

2
; t
)

= (3t)−1/3F

(
z + ζ

2

)
, (2.9)

with z = x/(3t)1/3, ζ = y/(3t)1/3; see also [2, 5, 7, 8] for further details.
The construction of the one-parameter transcendental solution of PII with

α = 0 satisfying the boundary condition (2.5) by Ablowitz and Segur [7]
through the linear integral equation (2.3) is the first such construction for
a Painlevé equation. Such integral equations associated with Painlevé equa-
tions have been used to prove properties such as existence and uniqueness of
solutions and connection formulae; see, for example, §9 and [5, 18, 40, 41, 91]).

We remark that the method of studying the Painlevé equations using in-
tegral equations has now been superseded by the isomonodromy method (cf.,
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[49, 53, 55, 60, 103, 104, 105, 106, 107]), which is introduced in §2.2 below.
Indeed, the integral equations discussed here represent a reduction of the
Riemann-Hilbert approach for a specific, quasilinear family of the solutions
of Painlevé equations. For example, Theorem 9.3 was derived in [104] and
proved in [49, 103], using the isomonodromy method; the integral equations
given above do not apply in this case.

2.2 Isomonodromy Problems

Each of the Painlevé equations PI–PVI can be expressed as the compatibility
condition of the linear system

∂Ψ

∂λ
= A(z;λ)Ψ ,

∂Ψ

∂z
= B(z;λ)Ψ , (2.10)

where A and B are matrices whose entries depend on the solution w(z) of
the Painlevé equation. The equation

∂2Ψ

∂z∂λ
=

∂2Ψ

∂λ∂z
,

is satisfied provided that

∂A

∂z
− ∂B

∂λ
+ AB − BA = 0, (2.11)

which is the compatibility condition of (2.10). Matrices A and B for PI–PVI

satisfying (2.12) are given by Jimbo and Miwa [111], see also [107], though
these are not unique as illustrated below.

Theorem 2.2. Consider the matrices A and B given by

A(z;λ) =

(−i(4λ2 + 2w2 + z) 4λw + 2iw′ + α/λ

4λw − 2iw′ + α/λ i(4λ2 + 2w2 + z)

)
,

(2.12)

B(z;λ) =
(
−iλ w
w iλ

)
.

Then these satisfy the compatibility condition (2.11) if and only if w(z) sat-
isfies PII.

Proof. This is easily verified by substituting the matrices (2.12) into (2.11);
see Flaschka and Newell [53], also Fokas and Ablowitz [55], Fokas and Zhou
[60], for further details of the application of the isomonodromy deformation
method to PII. ��
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The matrices A and B given by (2.12) are derived from the Lax pair of
the mKdV equation (2.2)

∂ψ

∂t
=
(

−4ik3 − 2iku2 4k2u + 2ikux − uxx + 2u3

4k2u− 2ikux − uxx + 2u3 4ik3 + 2iku2

)
ψ,

(2.13)
∂ψ

∂x
=
(
−ik u
u ik

)
ψ,

[4] through the scaling reduction

ψ(x, t) = Ψ(z;λ), u(x, t) = (3t)−1/3w(z), (2.14)

where z = x/(3t)1/3 and λ = k(3t)1/3, and using the fact that w(z) satisfies
PII; see Ablowitz and Clarkson [2, §7.3], Flaschka and Newell [53] for further
details.

As remarked above, the isomonodromy problem is not unique. Another
isomonodromy problem for PII given by Jimbo and Miwa [111] arises for the
matrices

AJM(z, λ) =

(
λ2 + v + 1

2z u(λ− w)

−2(λv + θ + wu)
u

−(λ2 + v + 1
2z)

)
,

(2.15)

BJM(z, λ) =
(

1
2λ

1
2u

−v/u − 1
2λ

)
.

Substituting these into (2.11) yields

u′ = −uw, v′ = −2vw − θ, w′ = v + w2 + 1
2z. (2.16)

Eliminating u and v yields PII, with α = 1
2 − θ. Note that eliminating u and

w yields P34

v′′ =
(v′)2

2v
− 2v2 − zv − θ2

2v
, (2.17)

so-called since it is equivalent to equation XXXIV of Chapter 14 in [101],
which itself is equivalent to PII since there is a one-to-one relationship between
solutions of (2.17) and those of PII. The matrices (2.15) are derived from the
Garnier systems of second-order scalar equations.

3 Hamiltonian Structure

The Hamiltonian structure associated with the Painlevé equations PI–PVI is
HJ = (q, p,HJ, z), where HJ, the Hamiltonian function associated with HJ
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a polynomial in q, p and z. Each of the Painlevé equations PI–PVI can be
written as a Hamiltonian system

Dq

Dz
=

∂HJ

∂p
,

Dp

Dz
= −∂HJ

∂q
, (3.1)

where the derivative D/Dz is given by

D
Dz

≡ d
dz

, for J = I, II, V,

D
Dz

≡ z
d
dz

, for J = III, V,

D
Dz

≡ z(z − 1)
d
dz

, for J = VI,

(3.2)

for a suitable Hamiltonian function HJ(q, p, z) (cf. Okamoto [188]). Further
the function σ(z) ≡ HJ(q, p, z) satisfies a second-order, second-degree ordinary
differential equation, whose solution is expressible in terms of the solution of
the associated Painlevé equation.

Example 3.1. The Hamiltonian for PI is

HI(q, p, z) = 1
2p

2 − 2q3 − zq, (3.3)

and so
q′ = p, p′ = 6q2 + z. (3.4)

Then q = w satisfies PI. The function σ = HI(q, p, z), defined by (3.3) satisfies

(σ′′)2 + 4 (σ′)3 + 2zσ′ − 2σ = 0 (3.5)

(Jimbo and Miwa [110], Okamoto [182]). Conversely, if σ is a solution of (3.5),
then

q = −σ′, p = −σ′′, (3.6)

are solutions of (3.4).

Example 3.2. The Hamiltonian for PII is

HII(q, p, z;α) = 1
2p

2 − (q2 + 1
2z)p− (α + 1

2 )q (3.7)

and so
q′ = p− q2 − 1

2z, p′ = 2qp + α + 1
2 (3.8)

(Jimbo and Miwa [110], Okamoto [184]). Eliminating p in (3.8) then q = w
satisfies PII whilst eliminating q yields

pp′′ = 1
2

(
dp
dz

)2

= 1
2 (p′)2 + 2p3 − zp2 − 1

2 (α + 1
2 )2, (3.9)
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which is known as P34, since it is equivalent to equation XXXIV of Chapter
14 in [101]. Further if q satisfies PII then p = q′ + q2 + 1

2z satisfies (3.9) and
conversely if p satisfies (3.9) then q = (p′ − α − 1

2 )/(2p) satisfies PII. Thus
there is a one-to-one correspondence between solutions of PII and those of
P34 (3.9). The function σ(z;α) = HII(q, p, z;α) defined by (3.7) satisfies the
second-order, second-degree equation

(σ′′)2 + 4(σ′)3 + 2σ′(zσ′ − σ) = 1
4 (α + 1

2 )2. (3.10)

Conversely if σ(z;α) is a solution of (3.10), then

q(z;α) =
4σ′′(z;α) + 2α + 1

8σ′(z;α)
, p(z;α) = −2σ′(z;α), (3.11)

are solutions of (3.8).

We remark that equation (3.10) is equation SD-I.d in the classification
of second-order, second-degree equations which have the Painlevé property
by Cosgrove and Scoufis [45], an equation first derived by Chazy [27]. Fur-
ther frequently in applications it is an associated second-order, second-degree
equation such as (3.10) which arises rather than the Painlevé equation.

For Hamiltonian structure for PIII–PVI see Jimbo and Miwa [110], Okamoto
[184, 185, 186, 187]; see also Forrester and Witte [61, 62, 63].

Remarks

1. Each Hamiltonian function σ = HJ satisfies a second-order second-degree
ordinary differential equation whose solutions are in a 1-1 correspondence
with solutions of the associated Painlevé equation through (3.1) since

q = FJ(σ, σ′, σ′′, z), p = GJ(σ, σ′, σ′′, z),

for suitable functions FJ(σ, σ′, σ′′, z) and GJ(σ, σ′, σ′′, z). Thus given q
and p one can determine σ and conversely, given σ one can determine q
and p.

2. The ordinary differential equations which the σ functions satisfy are part
of the classification of second-order, second-degree equations of Painlevé
type by Cosgrove and Scoufis [45]. They were first derived by Chazy [27]
and subsequently rederived by Bureau [25].

3. The Hamiltonian functions σ = HJ frequently arise in applications, e.g,
random matrix theory (Tracy and Widom [214, 215, 216, 217, 218, 219];
see also [61, 62, 63]) and statistical physics (Jimbo, Miwa, Mori and Sato
[112]).

4 Bäcklund Transformations

The Painlevé equations PII–PVI possess Bäcklund transformations which re-
late one solution to another solution either of the same equation, with different
values of the parameters, or another equation, as we illustrate here.
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4.1 Bäcklund Transformations for PII

Bäcklund transformations for PII are given in the following theorem.

Theorem 4.1. Let w ≡ w(z;α) be a solution of PII, then the transformations

S : w(z;−α) = −w, (4.1)

T± : w(z;α± 1) = −w − 2α± 1
2w2 ± 2w′ + z

, (4.2)

give solutions of PII, provided that α �= ∓ 1
2 in (4.2).

Proof. See Gambier [68] and Lukashevich [155]. ��
Gambier [68] also discovered the following special transformation of PII

W (ζ; 1
2ε) =

2−1/3ε

w(z; 0)
dw
dz

(z; 0), (4.3a)

w2(z; 0) = 2−1/3

{
W 2(ζ; 1

2ε) − ε
dW
dζ

(ζ; 1
2ε) + 1

2ζ

}
, (4.3b)

where ζ = −21/3z and ε = ±1; see also [36]. Combined with the Bäcklund
transformation (4.2), the transformation (4.3) provides a relation between
two PII equations whose parameters α are either integers or half odd-integers.
Hence this yields a mapping between the rational solutions of PII, which arise
when α = n for n ∈ Z, see §5.1, and the one-parameter Airy function solutions,
which arise when α = n + 1

2 for n ∈ Z, see §7.1.
The classification of solutions of PII are given in Theorem 5.1. Umemura

[225] discusses geometrical aspects of the Bäcklund transformations of PII in
terms of affine Weyl groups; see also §4.6.

The solutions wα = w(z;α), wα±1 = w(z;α± 1) also satisfy the nonlinear
three-point recurrence relation

α + 1
2

wα+1 + wα
+

α− 1
2

wα + wα−1
+ 2w2

α + z = 0, (4.4)

a difference equation which is known as an alternative form of discrete PI

[56]; see also [39]. The difference equation (4.4) is obtained by eliminating
w′ between the transformations T± given by (4.2). Note that for PII, the
independent variable z varies and the parameter α is fixed, whilst for the
discrete equation (4.4), z is a fixed parameter and α varies. This is analogous
to the situation for classical special functions such as Bessel function Jν(z)
which satisfies both a differential equation

z2J ′′
ν (z) + zJ ′

ν(z) + (z2 − ν2)Jν(z) = 0, (4.5)

in which z varies and ν is fixed, and a difference equation

zJν+1(z) − 2νJν(z) + zJν−1(z) = 0, (4.6)

in which z is fixed and ν varies.
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4.2 Bäcklund Transformations for PIII

The discrete symmetries of PIII give rise to the following theorem.

Theorem 4.2. Let wj = w(z;αj , βj , γj , δj), j = 0, 1, 2, be solutions of PIII

with

(α1, β1, γ1, δ1) = (−α0,−β0, γ0, δ0), (4.7a)

(α2, β2, γ2, δ2) = (−β0,−α0,−δ0,−γ0). (4.7b)

Then
S1 : w1 = −w0, S2 : w2 = 1/w0. (4.8)

Proof. See Fokas and Ablowitz [54]. ��

For the generic case of PIII with γδ �= 0 we may set γ = 1 and δ = −1,
without loss of generality, by rescaling the variables if necessary. The Bäcklund
transformations are given by

Theorem 4.3. Let wj = w(z;αj , βj , 1,−1), j = 0, 1, 2, 3, 4, be solutions of
PIII with

α1 = α3 = α0 + 2, α2 = α4 = α0 − 2,

β1 = β2 = β0 + 2, β3 = β4 = β0 − 2.

Then

T1 : w1 =
zw′

0 + zw2
0 − βw0 − w0 + z

w0(zw′
0 + zw2

0 + αw0 + w0 + z)
, (4.9a)

T2 : w2 = − zw′
0 − zw2

0 − βw0 − w0 + z

w0(zw′
0 − zw2

0 − αw0 + w0 + z)
, (4.9b)

T3 : w3 = − zw′
0 + zw2

0 + βw0 − w0 − z

w0(zw′
0 + zw2

0 + αw0 + w0 − z)
, (4.9c)

T4 : w4 =
zw′

0 − zw2
0 + βw0 − w0 − z

w0(zw′
0 − zw2

0 − αw0 + w0 − z)
. (4.9d)

Proof. See Fokas and Ablowitz [54], Gromak [72]; also Gromak, Laine and
Shimomura [83, §34], Milne, Clarkson and Bassom [169]. ��

The Bäcklund transformations for the special cases of PIII when either (i),
γ = 0 and αδ �= 0, then set α = 1 and δ = −1, without loss of generality, or
(ii), δ = 0 and βγ �= 0, then set β = −1 and γ = 1, without loss of generality,
are given in the following theorem.
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Theorem 4.4. Let wj = w(z; 1, βj , 0,−1), j = 0, 5, 6, be solutions of PIII

with
β5 = β0 + 2, β6 = β0 − 2.

Then

T5 : w5 =
zw′

0 + z − (β0 + 1)w0

w2
0

, (4.10a)

T6 : w6 = − zw′
0 − z + (β0 − 1)w0

w2
0

. (4.10b)

Similar results hold for PIII with δ = 0 and βγ �= 0.

Proof. Gromak [71]; also Gromak, Laine and Shimomura [83, §33], Milne,
Clarkson and Bassom [169]. ��

Discrete Painlevé equations arising from the Bäcklund transformations of
PIII given by (4.9) and (4.10) are discussed in [39, 56, 86].

4.3 Bäcklund Transformations for PIV

Bäcklund transformations for PIV are given in the following theorem.

Theorem 4.5. Let w0 = w(z;α0, β0) and w±
j = w(z;α±

j , β
±
j ), j = 1, 2, 3, 4

be solutions of PIV with

α±
1 = 1

4

(
2 − 2α0 ± 3

√
−2β0

)
, β±1 = − 1

2

(
1 + α0 ± 1

2

√
−2β0

)2

,

α±
2 = − 1

4

(
2 + 2α0 ± 3

√
−2β0

)
, β±2 = − 1

2

(
1 − α0 ± 1

2

√
−2β0

)2

,

α±
3 = 3

2 − 1
2α0 ∓ 3

4

√
−2β0, β±3 = − 1

2

(
1 − α0 ± 1

2

√
−2β0

)2

,

α±
4 = − 3

2 − 1
2α0 ∓ 3

4

√
−2β0, β±4 = − 1

2

(
−1 − α0 ± 1

2

√
−2β0

)2

.

Then

T ±
1 : w±

1 =
w′

0 − w2
0 − 2zw0 ∓

√−2β0

2w0
, (4.11a)

T ±
2 : w±

2 = − w′
0 + w2

0 + 2zw0 ∓
√−2β0

2w0
, (4.11b)

T ±
3 : w±

3 = w0 +
2
(
1 − α0 ∓ 1

2

√−2β0

)
w0

w′
0 ±

√−2β0 + 2zw0 + w2
0

, (4.11c)

T ±
4 : w±

4 = w0 +
2
(
1 + α0 ± 1

2

√−2β0

)
w0

w′
0 ∓

√−2β0 − 2zw0 − w2
0

, (4.11d)

valid when the denominators are non-zero, and where the upper signs or the
lower signs are taken throughout each transformation.
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Proof. See Lukashevich [152], Gromak [74, 76]; also Bassom, Clarkson and
Hicks [17], Gromak, Laine and Shimomura [83, §25]. ��

Discrete Painlevé equations arising from the Bäcklund transformations of
PIV given by (4.11) are discussed in [39, 56, 86].

4.4 Bäcklund Transformations for PV

The discrete symmetries of PV give rise to the following theorem.

Theorem 4.6. Let wj(zj) = w(zj ;αj , βj , γj , δj), j = 0, 1, 2 be solutions of PV

with
z1 = −z0, (α1, β1, γ1, δ1) = (α0, β0,−γ0, δ0),
z2 = z0, (α2, β2, γ2, δ2) = (−β0,−α0,−γ0, δ0).

Then

S1 : w1(z1) = w(z0), S2 : w2(z2) = 1/w(z0). (4.12)

The Bäcklund transformations for the generic case of PV with δ �= 0, when
we may set δ = − 1

2 , without loss of generality, by rescaling the variables if
necessary, are given by

Theorem 4.7. Let w0 = w(z;α0, β0, γ0,− 1
2 ) and wj = W (z;αj , βj , γj ,− 1

2 ),
j = 1, 2, 3, be solutions of PV, where

αj = 1
8

[
γ0 + ε1

(
1 − ε3

√
−2β0 − ε2

√
2α0

)]2
(4.13a)

βj = − 1
8

[
γ0 − ε1

(
1 − ε3

√
−2β0 − ε2

√
2α0

)]2
(4.13b)

γj = ε1

(
ε3

√
−2β0 − ε2

√
2α0

)
(4.13c)

and εj = ±1, independently. Also let

Φ = zw′
0 − ε2

√
2α0 w

2
0 + ε3

√
−2β0 +

(
ε2

√
2α0 − ε3

√
−2β0 + ε1z

)
w0, (4.14)

and assume Φ �= 0. Then

Tj : wj = (Φ− 2ε1zw0)/Φ, (4.15)

provided that the numerator on the right-hand side does not vanish. For j =
1, 2, 3, and εj = ±1, independently, there are eight distinct transformations of
type Tj.

Proof. See Gromak [73]; also Gromak and Filipuk [79, 80, 81], Gromak, Laine
and Shimomura [83, §39]. ��
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4.5 Bäcklund Transformations for PVI

The discrete symmetries of PVI give rise to the following theorem.

Theorem 4.8. Let wj(zj) = wj(zj ;αj , βj , γj , δj), j = 0, 1, 2, 3, be solutions
of PVI with

z1 = 1/z0, z2 = 1 − z0, z3 = 1/z0,

and

(α1, β1, γ1, δ1) = (α0, β0,−δ0 + 1
2 ,−γ0 + 1

2 ),
(α2, β2, γ2, δ2) = (α0,−γ0,−β0, δ0),
(α3, β3, γ3, δ3) = (−β0,−α0, γ0, δ0).

Then

S1 : w1(z1) = w0(z0)/z0, (4.16a)
S2 : w2(z2) = 1 − w0(z0), (4.16b)
S3 : w3(z3) = 1/w0(z0). (4.16c)

Proof. See Okamoto [185]. ��

The transformations Sj , for j = 1, 2, 3, given by (4.16) generate a group
of order 24; see Iwasaki, Kimura, Shimomura and Yoshida [109].

Theorem 4.9. Let w(z;α, β, γ, δ) and W (z;A,B,C,D) be solutions of PVI

with

(α, β, γ, δ) = (1
2 (θ∞ − 1)2,− 1

2θ
2
0,

1
2θ

2
1,

1
2 (1 − θ2

2)), (4.17)

(A,B,C,D) = (1
2 (Θ∞ − 1)2,− 1

2Θ
2
0,

1
2Θ

2
1,

1
2 (1 −Θ2

2)), (4.18)

and
θj = Θj − 1

2σ, (4.19)

for j = 0, 1, z,∞, where

σ = θ0 + θ1 + θz + θ∞ − 1 = 1 − (Θ0 + Θ1 + Θz + Θ∞). (4.20)

Then

σ

w −W
=

z(z − 1)W ′

W (W − 1)(W − z)
+

Θ0

W
+

Θ1

W − 1
+

Θ2 − 1
W − z

=
z(z − 1)w′

w(w − 1)(w − z)
+

θ0

w
+

θ1

w − 1
+

θ2 − 1
w − z

.

Proof. See Okamoto [185]; also Conte and Musette [43, 44], Gromak and Fil-
ipuk [82], Gromak, Laine and Shimomura [83, §42]. ��
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PVI also has quadratic and quartic transformations. Let w = w(z;α, β, γ, δ)
be a solution of PVI. The quadratic transformation

u1(ζ1) =
(1 − w)(w − z)

(1 +
√
z)2w

, ζ1 =
(

1 −√
z

1 +
√
z

)2

, (4.21)

transforms PVI with α = −β and γ = 1
2 − δ to PVI with (α1, β1, γ1, δ1) =

(4α,−4γ, 0, 1
2 ). The quartic transformation

u2(ζ2) =
(w2 − z)2

4w(w − 1)(w − z)
, ζ2 = z, (4.22)

transforms PVI with α = −β = γ = 1
2 − δ to PVI with (α2, β2, γ2, δ2) =

(16α, 0, 0, 1
2 ). Also

u3(ζ3) =
(

1 − z1/4

1 + z1/4

)2(√
w + z1/4

√
w − z1/4

)2

, ζ3 =
(

1 − z1/4

1 + z1/4

)4

,

transforms PVI with α = β = 0 and γ = 1
2 − δ to PVI with α3 = β3 and

γ3 = 1
2 − δ3.

4.6 Affine Weyl Groups

The parameter space of PII–PVI can be identified with the Cartan subalgebra
of a simple Lie algebra and the corresponding affine Weyl groups Ã1, C̃2, Ã2,
Ã3, D̃4, act on PII–PVI, respectively, as a group of Bäcklund transformations
(cf. [174, 176, 184, 185, 186, 187, 225]). An affine Weyl group is essentially a
group of translations and reflections on a lattice. For the Painlevé equations,
this lattice is in the parameter space.

Example 4.1. The Bäcklund transformations of PII given by S (4.1) and T±
(4.2) are affine transformations

S(α) = −α, T±(α) = α± 1, (4.23)

for α ∈ C. Consider the subgroup G of the affine transformation group on C
generated by 〈S, T+, T−〉. Then

S2 = I, T+T− = T−T+ = I, T+ = S T− S, (4.24)

with I the identity transformation, and so 〈S〉 ∼= Z/2Z, the Weyl group of
the root system of type A1, and 〈T+, T−〉 ∼= Z. Therefore G ∼= Z/2Z � Z, the
Weyl group of the affine root system of type Ã1. This transformation group
of the parameter space can be lifted to a transformation group on the set of
solutions through the Bäcklund transformations for the system (3.8)
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S(q, p) =
(
−q,−p + 2q2 + z

)
, (4.25)

T+(q, p) =

⎧⎪⎨⎪⎩
(
−q − α + 1

2

p
,−p + 2

(
q +

α + 1
2

p

)2

+ z

)
, if α �= − 1

2 ,(
−q,−p + 2q2 + z

)
, if α = − 1

2 ,

(4.26)

T−(q, p) =

⎧⎨⎩
(
−q +

α− 1
2

p− 2q2 − z
,−p + 2q2 + z

)
, if α �= 1

2 ,(
−q,−p + 2q2 + z

)
, if α = 1

2

(4.27)

see [184, 225, 227] for further details.

5 Rational Solutions

The Painlevé equations PII–PVI possess sets of rational solutions, often called
hierarchies, for special values of the parameters. These hierarchies can be
generated from “seed solutions”, such as the simple solution w = 0 for PII,
using the Bäcklund transformations discussed in §4 above and frequently are
expressed in the form of determinants.

5.1 Rational Solutions of PII

According to Erugin [52] and Gromak [75], it was once a widely held view
that all solutions of the Painlevé equations were new transcendents and there
have been a few incorrect proofs that PII admits no elementary solutions or
just the three rational solutions w = 0, when α = 0, and w = ±1/z, when
α = ∓1.

Solutions of PII are classified in the following theorem.

Theorem 5.1.

1. For every α = n ∈ Z there exists a unique rational solution of PII.
2. For every α = n + 1

2 , with n ∈ Z, there exists a unique one-parameter
family of classical solutions of PII, each of which is rationally written in
terms of Airy functions.

3. For all other values of α, the solution of PII is nonclassical, i.e. transcen-
dental.

Proof. See Umemura and Watanabe [227]; also [11, 13, 53, 77]. ��

5.2 The Yablonskii-Vorob’ev Polynomials

There are special polynomials associated with the rational solutions of PII

which are defined in the following theorem.
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Theorem 5.2. Rational solutions of PII exist if and only if α = n ∈ Z, which
are unique, and have the form

w(z;n) =
d
dz

{
ln
[
Qn−1(z)
Qn(z)

]}
, (5.1)

for n ≥ 1, where the polynomials Qn(z) satisfy the differential-difference equa-
tion

Qn+1Qn−1 = zQ2
n − 4

[
QnQ

′′
n − (Q′

n)2
]
, (5.2)

with Q0(z) = 1 and Q1(z) = z. The other rational solutions are given by

w(z; 0) = 0, w(z;−n) = −w(z;n). (5.3)

Proof. See Vorob’ev [229] and Yablonskii [232]; also Clarkson and Mansfield
[38], Fukutani, Okamoto and Umemura [66], Taneda [211], Umemura [224],
Umemura and Watanabe [227]. ��

The polynomials Qn(z) are monic polynomials of degree 1
2n(n + 1) with

integer coefficients, and are called the Yablonskii-Vorob’ev polynomials. The
first few of these polynomials are given in Table 1, and the associated rational
solutions w(z;n) of PII are given in Table 2.

Properties of the roots of the Yablonskii-Vorob’ev polynomials are dis-
cussed in the following theorems.

Theorem 5.3. For every positive integer n, the polynomial Qn(z) has simple
roots. Further the polynomials Qn(z) and Qn+1(z) do not have a common
root.

Table 1. Yablonskii-Vorob’ev polynomials

Q0(z) = 1
Q1(z) = z
Q2(z) = z3 + 4
Q3(z) = z6 + 20z3 − 80
Q4(z) = (z9 + 60z6 + 11200)z
Q5(z) = z15 + 140z12 + 2800z9 + 78400z6 − 313600z3 − 6272000
Q6(z) = z21 + 280z18 + 18480z15 + 627200z12 − 17248000z9 +1448832000z6

+19317760000z3 − 38635520000
Q7(z) = (z27 + 504z24 + 75600z21 + 5174400z18 + 62092800z15 + 13039488000z12

−828731904000z9 − 49723914240000z6 − 3093932441600000)z
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Table 2. Rational solutions of PII

w(z; 1) = − 1

z

w(z; 2) =
1

z
− 3z2

z3 + 4

w(z; 3) =
3z2

z3 + 4
− 6z2(z3 + 10)

z6 + 20z3 − 80

w(z; 4) = −1

z
+

6z2(z3 + 10)

z6 + 20z3 − 80
− 9z5(z3 + 40)

z9 + 60z6 + 11200

w(z; 5) =
1

z
+

9z8 + 360z5

z9 + 60z6 + 11200

− 15z14 + 1680z11 + 25200z8 + 470400z5 − 9408000z2

z15 + 140z12 + 2800z9 + 78400z6 − 3136000z3 − 627200

Proof. See Fukutani, Okamoto and Umemura [66], who also give a purely
algebraic proof of Theorem 5.2. ��

Theorem 5.4. The polynomial Qn(z) is divisible by z if and only if n ≡
1 mod 3. Further Qn(z) is a polynomial in z3 if n �≡ 1 mod 3 and Qn(z)/z is
a polynomial in z3 if n ≡ 1 mod 3.

Proof. See Taneda [211]. ��

Remarks

1. The hierarchy of rational solutions for PII given by (5.1) can also be
derived using the Bäcklund transformation T+ (4.2) of PII, with “seed
solution” w0 ≡ w(z; 0) = 0, i.e.,

wn+1 = −wn − 2n + 1
2w2

n + 2w′
n + z

, (5.4)

where wm ≡ w(z;m), with w0 = 0 and w−m = −wm, as is easily verified.
2. It is clear from the recurrence relation (5.2) that the Qn(z) are ratio-

nal functions, though it is not obvious that in fact they are polynomials
since one is dividing by Qn−1(z) at every iteration. Indeed it is somewhat
remarkable that the Qn(z) defined by (5.2) are polynomials.

3. The recurrence relation (5.2) for the polynomials Qn(z) can be rewritten
in the form

(2D2
z − z)Qn •Qn = −Qn+1Qn−1, (5.5)

where Dz is the Hirota operator defined by

DzF (z) •G(z) =
[(

d
dz1

− d
dz2

)
F (z1)G(z2)

]
z1=z2=z

. (5.6)
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4. Letting Qn(z) = cnτn(z) exp(z3/24), with cn = (2i)n(n+1), in (5.2) yields
the Toda equation

τnτ
′′
n − (τ ′n)2 = τn+1τn−1. (5.7)

5. The Yablonskii-Vorob’ev polynomials Qn(z) possess the discrete symme-
try

Qn(ωz) = ωn(n+1)/2Qn(z), (5.8)

where ω3 = 1 and 1
2n(n + 1) is the degree of Qn(z).

6. From Theorems 5.3 and 5.4, since each polynomial Qn(z) has only simple
roots then it can be written as

Qn(z) =
n(n+1)/2∏

k=1

(z − an,k), (5.9)

where an,k, for k = 1, . . . , 1
2n(n + 1), are the roots and thus

Q′
n(z)

Qn(z)
=

n(n+1)/2∑
k=1

1
z − an,k

. (5.10)

Therefore the rational solution can be written as

w(z;n) =
Q′

n−1(z)
Qn−1(z)

− Q′
n(z)

Qn(z)

=
n(n−1)/2∑

k=1

1
z − an−1,k

−
n(n+1)/2∑

k=1

1
z − an,k

, (5.11)

and so w(z;n) has n roots, 1
2n(n−1) with residue +1 and 1

2n(n+1) with
residue −1; see also [78].

7. The roots an,k of the polynomial Qn(z) satisfy

n(n+1)/2∑
k=1,k 	=j

1
(an,j − an,k)3

= 0, j = 1, 2, . . . , 1
2n(n + 1), (5.12a)

n(n+1)/2∑
j=1

n(n+1)/2∑
k=j+1

1
(an,j − an,k)2

= 0. (5.12b)

These follow from the study of rational solutions of the Korteweg-de Vries
(KdV) equation

ut + 6uux + uxxx = 0, (5.13)

and a related many-body problem by Airault, McKean and Moser [12];
see also [6, 10, 11, 29].
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8. The Yablonskii-Vorob’ev polynomials also satisfy the bilinear equations

DzQn+1 •Qn−1 = (2n + 1)Q2
n, (5.14a)

D2
zQn+1 •Qn = 0. (5.14b)

(D3
z − zDz + n + 1)Qn+1 •Qn = 0, (5.14c)

where Dz is the Hirota operator (5.6). Equations (5.14) can be derived
by taking scaling reductions of bilinear equations in [6, 10] associated
with rational solutions of the KdV equation (5.13); see also [11]. Equation
(5.14a) is proved in [66, 211]; see also [130].

9. The Yablonskii-Vorob’ev polynomials are closely related with Schur func-
tions [124, 226] and so it can be proved using (5.14) that the rational
solution of PII can be expressed using determinants as shown in §5.3.

10. Kametaka [126] has obtained a sharp estimate for the maximum modulus
of the poles of the Yablonskii-Vorob’ev polynomials. It is shown that if
An = max1≤k≤n(n+1)/2{|an,k|} then n2/3 ≤ An+2 ≤ 4n2/3, for n ≥ 0.
In [128] Kametaka studies the irreducibility of the Yablonskii-Vorob’ev
polynomials.

11. Kaneko and Ochiai [130] derive formulae for the coefficients of the lowest
degree term of the Yablonskii-Vorob’ev polynomials; the other coefficients
remain to be determined, which is an interesting problem.

Clarkson and Mansfield [38] investigated the locations of the roots of the
Yablonskii-Vorob’ev polynomials in the complex plane and showed that these
roots have a very regular, approximately triangular structure. An earlier study
of the distribution of the roots of the Yablonskii-Vorob’ev polynomials is given
by Kametaka, Noda, Fukui and Hirano [129]; see also [109]. A plot of the roots
of Q25(z) is given in Figure 1; see [38] for plots of other Yablonskii-Vorob’ev
polynomials. From these plots we make the following observations

1. The roots of the Yablonskii-Vorob’ev polynomials form approximately
equilateral triangles, in fact approximate “Pascal triangles”. The values
of the roots given in [38] show that they actually lie on curves rather than
straight lines.

2. The plots are invariant under rotations through 2
3π and reflections in the

real z-axis and the lines arg(z) = nπ/3, for n = ±1,±2. This is because
PII admits the finite group of order 6 of scalings and reflections

w → εμ2w, z → μz, α → εα, (5.15)

where μ3 = 1 and ε2 = 1.
3. The roots of Qn(z) = 0 lie on circles with centre the origin. If we define

qn(ζ) =

{
Qn(ζ1/3), if n �≡ 1 mod 3,
Qn(ζ1/3)/ζ1/3, if n ≡ 1 mod 3.
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Fig. 1. Roots of the Yablonskii–Vorob’ev polynomial Q25(z)

Then the radii of the circles are given by the third roots of the absolute
values of the non-zero roots of qn(ζ) = 0, with three equally spaced roots
of Qn(z) = 0 on circles for the real roots of qn(ζ) = 0 and six roots, three
complex conjugate pairs, of Qn(z) = 0 on a circles for the complex roots
of qn(ζ) = 0.

Using the Hamiltonian formalism for PII described in §3, it can be shown
that the Yablonskii-Vorob’ev polynomials Qn(z) satisfy a fourth order bilinear
ordinary differential equation and a fourth order, second degree, hexa-linear
(i.e., homogeneous of degree six) difference equation. It is shown in [33] that
rational solutions of (3.10) have the form

σn = − 1
8z

2 +
d
dz

lnQn. (5.16)

Differentiating (3.10) with respect to z yields

σ′′′ + 6 (σ′)2 + 2zσ′ − σ = 0, (5.17)

and then substituting (5.16) into (5.17) yields the fourth order, bilinear equa-
tion

QnQ
′′′′
n − 4Q′

nQ
′′′
n + 3 (Q′′

n)2 − z
[
QnQ

′′
n − (Q′

n)2
]
−QnQ

′
n = 0. (5.18)

We remark that substituting (5.16) into (3.10) yields the third order, second
degree, quad-linear (i.e., homogeneous of degree four) equation
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Q2
n (Q′′′

n )2 + Q′′′
n

[
4 (Q′

n)3 − 6QnQ
′
nQ

′′
n − 1

2Q
3
n

]
+ 4Qn (Q′′

n)3

− (Q′′
n)2
[
3 (Q′

n)2 + zQ2
n

]
+ 1

2QnQ
′
nQ

′′
n(4zQ′

n −Qn)

− (Q′
n)3 (zQ′

n −Qn) + 1
2zQ

3
nQ

′
n − 1

4n(n + 1)Q4
n = 0. (5.19)

Additionally Qn satisfies the fourth order, second degree, hexa-linear differ-
ence equation

16(2n + 1)4Q6
n − 8(2n + 1)2(Qn+2Q

3
nQ

2
n−1 + 2Q3

n+1Q
3
n−1 + Qn−2Q

3
nQ

2
n+1

− 4zQ2
n+1Q

2
nQ

2
n−1) + (Qn+2Q

2
n−1 −Q2

n+1Qn−2)2 = 0, (5.20)

(see [33] for details). Hence the Yablonskii-Vorob’ev polynomials Qn satisfy
nonlinear ordinary differential equations (5.18) and (5.19), the difference equa-
tion (5.20) as well as the differential-difference equation (5.2); see [33] for
further differential-difference equations satisfied by the Yablonskii-Vorob’ev
polynomials. This is analogous to classical orthogonal polynomials, such as
Hermite, Laguerre and Jacobi polynomials, which satisfy linear ordinary dif-
ferential, difference and differential-difference equations (cf. [9, 15, 213]).

It seems reasonable to expect that the ordinary differential equations
(5.18) and (5.19) will be useful for proving properties of the Yablonskii-
Vorob’ev polynomials since there are more techniques for studying properties
of solutions of ordinary differential equations than for difference equations or
differential-difference equations. For example, suppose we seek a monic poly-
nomial solution of (5.19) with α = n in the form

Qn(z) = zr + a1z
r−1 + · · · + ar−1z + ar.

Since (5.18) is homogeneous then we can assume, without loss of generality,
that the coefficient of zr is unity. Then it is easy to show that necessarily
r = 1

2n(n + 1), which is a simple proof of the degree of Qn. Similarly it is
straightforward to show using (5.18) that a3j−1 = 0 and a3j−2 = 0 and to
derive recurrence relations for the coefficients a3j .

An important, well-known property of classical orthogonal polynomials,
such as the Hermite, Laguerre or Legendre polynomials whose roots all lie
on the real line (cf. [9, 15, 213]), is that the roots of successive polynomials
interlace. Thus for a set of orthogonal polynomials ϕn(z), for n = 0, 1, 2, . . .,
if zn,m and zn,m+1 are two successive roots of ϕn(z), i.e., ϕn(zn,m) = 0 and
ϕn(zn,m+1) = 0, then ϕn−1(ζn−1) = 0 and ϕn+1(ζn+1) = 0 for some ζn−1 and
ζn+1 such that zn,m < ζn−1, ζn+1 < zn,m+1. Further the derivatives ϕ′

n(z)
and ϕ′

n+1(z) also have roots in the interval (zn,m, zn,m+1), that is ϕ′
n(ξn) = 0

and ϕ′
n+1(ξn+1) = 0 for some ξn and ξn+1 such that zn,m < ξn, ξn+1 <

zn,m+1. An interesting question is whether there are analogous results for the
Yablonskii-Vorob’ev polynomials Qn(z). Clearly there are notable differences
since the Yablonskii-Vorob’ev polynomials Qn(z) are polynomials of degree
1
2n(n+1) with complex roots whereas classical orthogonal polynomials ϕn(z),
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have n real roots. The triangular pattern of the roots of Qn(z) = 0 is highly
symmetric and structured, suggesting that they have interesting properties.
The roots of Qn+1(z) = 0 form a pattern of n2 triangles formed by joining
the nearest neighbours. Some preliminary investigations of the “interlacing of
roots”, the locations of the roots for two successive Yablonskii-Vorob’ev poly-
nomials, Qn(z) = 0 and Qn+1(z) = 0, are given in [38]. This “interlacing of
roots” clearly warrants further analytical study as does an investigation of the
relative locations of the roots for Yablonskii-Vorob’ev polynomials Qn(z) = 0
and its derivative Q′

n(z) = 0.

5.3 Determinantal Representation of Rational Solutions of PII

Kajiwara and Ohta [124], see also [122], proved Theorem 5.5 on the repre-
sentation of rational solutions of PII using determinants. Their results have
been scaled so that they are for the standard version of PII, rather than the
equation in [124] which is equivalent to PII through a scaling of the variables.
We remark that Flaschka and Newell [53], following the earlier work of Airault
[11], expressed the rational solutions of PII given by (5.1) as the logarithmic
derivatives of determinants.

Theorem 5.5. Let pk(z) be the polynomial defined by
∞∑

k=0

pk(z)λk = exp
(
zλ− 4

3λ
3
)
, (5.21)

and τn(z) be the n× n determinant

τn(z) = W (p1(z), p3(z), . . . , p2n−1(z))

≡

∣∣∣∣∣∣∣∣∣
p1(z) p3(z) · · · p2n−1(z)
p′1(z) p′3(z) · · · p′2n−1(z)

...
...

. . .
...

p
(n−1)
1 (z) p(n−1)

3 (z) · · · p(n−1)
2n−1 (z)

∣∣∣∣∣∣∣∣∣ , (5.22)

for n ≥ 1. Then

w(z;n) =
d
dz

{
ln
[
τn−1(z)
τn(z)

]}
, (5.23)

satisfies PII with α = n, for n ≥ 1.

We remark that Kajiwara and Ohta [124] wrote the determinantal repre-
sentation of τn(z) in the form

τn(z) =

∣∣∣∣∣∣∣∣∣
pn(z) pn+1(z) . . . p2n−1(z)
pn−2(z) pn−1(z) . . . p2n−3(z)

...
...

. . .
...

p−n+2(z) p−n+3(z) . . . p1(z)

∣∣∣∣∣∣∣∣∣ , (5.24)

with pk(z) = 0 for k < 0, which is equivalent to (5.22).
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Table 3. The polynomials pn(z) given by (5.21)

p0(z) = 1

p1(z) = z

p2(z) = z2/2

p3(z) = (z3 − 8)/3!

p4(z) = (z3 − 32)z/4!

p5(z) = (z3 − 80)z2/5!

p6(z) = (z6 − 160z3 + 640)/6!

p7(z) = (z6 − 280z3 + 4480)z/7!

p8(z) = (z6 − 448z3 + 17920)z2/8!

p9(z) = (z9 − 672z6 + 53760z3 − 143360)/9!

p10(z) = (z9 − 960z6 + 134400z3 − 1433600)z/10!

The first few of the polynomials pn(z) are given in Table 3. The polyno-
mials pk(z) defined by (5.21) satisfy third-order linear recursion relations and
differential equations as follows.

Lemma 5.1. The polynomials pk(z) defined by (5.21) satisfy the third-order
recursion relation

(n + 3)pn+3 = zpn+2 − 4pn, n ≥ 0, (5.25)

where p0 = 1, p1 = z and p2 = 1
2z

2 and the third-order differential equation

4p′′′n − zp′n + npn = 0, n ≥ 1, (5.26)

Proof. First note that Φ(z, λ) = exp
(
zλ− 4

3λ
3
)

satisfies

Φλ = (z − 4λ2)Φ.

Then substituting Φ(z, λ) =
∑∞

n=0 pnλ
n into this yields

∞∑
n=1

npn−1λ
n = (z − 4λ2)

∞∑
n=0

pnλ
n,

which can be rewritten as
∞∑

n=0

[(n + 3)pn+3 − zpn+2 + 4pn]λn = 0,
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and so we obtain (5.25) since the coefficient of every power of λ is zero; see
also [130]. Also Φ satisfies

Φz = λΦ.

Substituting Φ(z, λ) =
∑∞

n=0 pnλ
n into this yields

∞∑
n=1

(p′n − pn−1)λn = 0,

and so p′n(z) = pn−1(z), for n ≥ 1. Substituting this into (5.25) yields (5.26).
��

We remark that the general solution of the third-order equation

4p′′′ − zp′ + np = 0, (5.27)

is

p(z) = c1 1F2(− 1
3n; 1

3 ,
2
3 ; ζ) + c2z1F2( 1

3 (1 − n); 2
3 ,

4
3 ; ζ)

+ c3z
2
1F2( 1

3 (2 − n); 4
3 ,

5
3 ; ζ), (5.28)

where 1F2(a; b1, b2; ζ) is a generalized hypergeometric function, with ζ =
z3/36, and c1, c2, c3 arbitrary constants. The generalized hypergeometric
function 1F2(a; b1, b2; ζ), with a, b1, b2 arbitrary constants is defined by

1F2(a; b1, b2; ζ) =
∞∑

k=0

(a)k

(b1)k(b2)k

ζk

k!
,

where

(a)k = a(a + 1) . . . (a + k − 1) =
Γ(a + k)

Γ(a)
,

with Γ(a) the Gamma function (cf. [9]). If n ∈ Z+ then one of the functions
1F2(− 1

3n; 1
3 ,

2
3 ; z3/36), 1F2( 1

3 (1− n); 2
3 ,

4
3 ; z3/36) or 1F2( 1

3 (2− n); 4
3 ,

5
3 ; z3/36)

is a polynomial in z, in fact a multiple of pn(z), since 1F2(−m; b1, b2; ζ) is a
polynomial for m ∈ Z+.

These “tau-functions” τn(z) are related to the Yablonskii-Vorob’ev poly-
nomials Qn(z) through

τn(z) = cnQn(z), cn =
n∏

j=1

(2j + 1)j−n, (5.29)

and satisfy the differential-difference equation

(2n + 1)τn−1τn+1 + (2D2
z − z)τn • τn = 0, (5.30)

where Dz is the Hirota operator (5.6).
An alternative representation of rational solutions of PII in terms of de-

terminants is given in the following theorem.
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Theorem 5.6. Let qk(z) be the polynomial defined by

qn+1(z) = 2
dqn

dz
− 1

2

n−1∑
k=0

qk(z)qn−k−1(z), n ≥ 1, (5.31)

with q0(z) = z and q1(z) = 2, and σn(z) be the n× n Hankel determinant

σn(z) =

∣∣∣∣∣∣∣∣∣
q0(z) q1(z) · · · qn−1(z)
q1(z) q2(z) · · · qn(z)

...
...

. . .
...

qn−1(z) qn(z) · · · q2n−2(z)

∣∣∣∣∣∣∣∣∣ , n ≥ 0. (5.32)

Then

w(z;n) =
d
dz

{
ln
[
σn−1(z)
σn(z)

]}
=

σ′n−1(z)
σn−1(z)

− σ′n(z)
σn(z)

, n ≥ 1, (5.33)

satisfies PII with α = n.

Proof. See Kajiwara and Ohta [124]; also Kajiwara and Masuda [122]. ��

The generating function associated with the coefficients qn(z) in Theorem
5.6 is discussed in the following theorem.

Theorem 5.7. Let θ(z, t) be an entire function of two variables defined by

θ(z, t) = exp(2
3 t

3)Ai(t2 − 1
2z), (5.34)

where Ai(ξ) is the Airy function. Then there exists an asymptotic expansion

∂

∂t
ln θ(z, t) ∼ −1

2

∞∑
n=0

qn(z)(−2t)n, t → ∞, (5.35)

in any proper subsector of the sector |arg t| < 1
2π.

Proof. See Imasaki, Kajiwara and Nakamura [108]; also Joshi, Kajiwara and
Mazzocco [116] who show that the coefficients qn(z) are related to the asymp-
totic solution at infinity of the linear problem of which the PII describes the
isomonodromic deformations. ��

Additionally Imasaki, Kajiwara and Nakamura [108] show that the gener-
ating function

Q(z, t) =
∞∑

n=0

qn(z)(−2t)n, (5.36)

satisfies the Riccati equation

tQt − 1
2 tQ

2 − (4t3 + 1)Q = 4t2(zt− 1). (5.37)
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Making the transformation

Q(z, t) = −4t2 − 4t2
d
dζ

lnu(ζ), ζ = t2 − 1
2z, (5.38)

in (5.37) yields the Airy equation

d2u

dζ2 − ζu = 0. (5.39)

It is well-known that the Airy equation (5.39) has the formal solutions

U±(ζ) = 1
2z

−1/4 π−1/2 exp(± 2
3z

3/2)
∞∑

n=0

( 1
6 )n( 5

6 )n

n!

(
± 4

3z
3/2
)−n

, (5.40)

and that the Airy function Ai(ζ) has the asymptotic representation Ai(z) ∼
U−(ζ), as ζ → ∞, in any proper subsector of the sector |arg z| < π.

Making the transformation

Q(z, t) = −4t2 − 2t
∂

∂t
lnP (z, t), (5.41)

in (5.37) yields the linear equation

tPtt − Pt + 2t3(z − 2t2)P = 0, (5.42)

which has formal solution

P (z, t) =
1

2
√
tπ

exp
(
− 2

3 t
3 + 1

2zt
)
exp

{
−

∞∑
n=1

qn+1(z)
4n

(−2t)n

}
, (5.43)

and so P (z, t) = U−(ζ).

5.4 Rational Solutions of PIII

Consider the generic case of PIII when γδ �= 0, then we set γ = 1 and δ = −1,
without loss of generality (by rescaling w and z if necessary), and so

w′′ =
(w′)2

w
− w′

z
+

αw2 + β

z
+ w3 − 1

w
. (5.44)

Rational solutions of this equation are classified in the following theorem.

Theorem 5.8. Equation (5.44) has rational solutions if and only if

ε1α + ε2β = 4n, (5.45)

with n ∈ Z and ε1 = ±1, ε2 = ±1, independently. Generically (except when α
and β are both integers), these rational solutions have the form

w(z) = Pn2(z)/Qn2(z),

where Pn2(z) and Qn2(z) are polynomials of degree n2 with no common roots.
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Proof. See Lukashevich [153]; also Milne, Clarkson and Bassom [169] and
Murata [172]. ��

We remark that rational solutions of (5.44) lie on the lines α + εβ = 4n
in the α-β plane. For examples and plots see Milne, Clarkson and Bassom
[169]. Determinantal representations, with entries expressed in terms of asso-
ciated Laguerre polynomials Lm

k (z), of rational solutions of PIII are given by
Kajiwara and Masuda [123].

Umemura [226], see also [123, 233], derived special polynomials associated
with rational solutions of PIII; though these are actually polynomials in 1/z
rather than polynomials in z. However it is straightforward to determine spe-
cial polynomials associated with rational solutions of PIII that are polynomials
in z which are given in the following theorem.

Theorem 5.9. Suppose that Sn(z;μ) satisfies the recursion relation

Sn+1Sn−1 = −z

[
Sn

d2Sn

dz2 −
(

dSn

dz

)2
]
− Sn

dSn

dz
+ (z + μ)S2

n, (5.46)

with S−1(z;μ) = S0(z;μ) = 1. Then

wn = w(z;αn, βn, 1,−1) = 1 +
d
dz

{
ln
[
Sn−1(z;μ− 1)

Sn(z;μ)

]}
≡ Sn(z;μ− 1)Sn−1(z;μ)

Sn(z;μ)Sn−1(z;μ− 1)
, (5.47)

satisfies PIII with αn = 2n + 2μ− 1 and βn = 2n− 2μ + 1 and

ŵn = w(z; α̂n, β̂n, 1,−1) = 1 +
d
dz

{
ln
[
Sn−1(z;μ)
Sn(z;μ− 1)

]}
≡ Sn(z;μ)Sn−1(z;μ− 1)

Sn(z;μ− 1)Sn−1(z;μ)
, (5.48)

satisfies PIII with α̂n = −2n + 2μ− 1 and β̂n = −2n− 2μ + 1.

Proof. See Clarkson [31], which generalizes the work of Kajiwara and Masuda
[123]. ��

The rational solutions of PIII defined by (5.47) and (5.48) can be gener-
alized using the Bäcklund transformation (4.8) to include all those described
in Theorem 5.8 satisfying the condition α + β = 4n. Rational solutions of
PIII satisfying the condition α − β = 4n are obtained by letting w → iw
and z → iz in (5.47) and (5.48), and then using the Bäcklund transformation
(4.8). Plots of the roots of the polynomials Sn(z;μ) for various μ are given in
[31]. Initially for μ sufficiently large and negative, the 1

2n(n + 1) roots form
an approximate triangle with n roots on each side. Then as μ increases, the
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roots in turn coalesce and eventually for μ sufficiently large and positive they
form another approximate triangle, similar to the original triangle, though
with its orientation reversed. It is straightforward to determine when the
roots of Sn(z;μ) coalesce using discriminants of polynomials. Suppose that
f(z) = zm + am−1z

m−1 + . . . + a1z + a0 is a monic polynomial of degree m
with roots α1, α2, . . . , αm, so f(z) =

∏m
j=1(z − αj). Then the discriminant of

f(z) is
Dis(f) =

∏
1≤j<k≤m

(αj − αk)2.

Hence the polynomial f has a multiple root when Disc(f) = 0. It is straight-
forward to show that

Dis(S3(z;μ)) = 31255μ6(μ2 − 1)2

Dis(S4(z;μ)) = 32752077μ14(μ2 − 1)6(μ2 − 4)2

Dis(S5(z;μ)) = 366545728μ26(μ2 − 1)14(μ2 − 4)6(μ2 − 9)2

Thus S3(z;μ) has multiple roots when μ = 0,±1, S4(z;μ) has multiple roots
when μ = 0,±1,±2, and S5(z;μ) has multiple roots when μ = 0,±1,±2,±3.
Further the multiple roots occur at z = 0. Hence it is natural to conjecture
that Sn(z;μ) has multiple roots at z = 0 when μ = 0,±1,±2, . . . ,±(n− 2).

Using the Hamiltonian formalism for PIII, see §3, it is shown in [31] that
the polynomials Sn(z;μ) satisfy an fourth order bilinear equation and a sixth
order, hexa-linear (homogeneous of degree six) difference equation.

5.5 Rational Solutions of PIV

Simple rational solutions of PIV are

w1(z,±2,−2) = ±1/z, w2(z, 0,−2) = −2z, w3(z, 0,−2
9 ) = − 2

3z. (5.49)

There are three sets of rational solutions

w1(z;α1, β1) = P1,n−1(z)/Q1,n(z), (5.50a)
w2(z;α2, β2) = −2z + P2,n−1(z)/Q2,n(z), (5.50b)
w3(z;α3, β3) = − 2

3z + P3,n−1(z)/Q3,n(z), (5.50c)

where Pj,n−1(z) and Qj,n(z) are polynomials of degrees n− 1 and n, respec-
tively, with no common roots, which have the solutions (5.49) as the simplest
members. These sets are known as the “−1/z hierarchy”, the “−2z hierarchy”
and the “−2

3z hierarchy”, respectively (cf. [17]).

Theorem 5.10. In general, PIV has rational solutions if and only if either

α = m, β = −2(2n−m + 1)2, (5.51)

or
α = m, β = −2(2n−m + 1

3 )2, (5.52)

with m,n ∈ Z.
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Proof. See Lukashevich [152], Gromak [76], Murata [171]; also Gromak, Laine
and Shimomura [83, §26]. ��

We remark that the rational solutions when the parameters satisfy (5.51)
are special cases of special function solutions given in Theorem 7.5.

The “−1/z hierarchy” and the “−2z hierarchy” form the set of rational
solutions of PIV with parameters given by (5.51) and the “− 2

3z hierarchy”
forms the set with parameters given by (5.52). The rational solutions of PIV

with parameters given by (5.51) lie at the vertices of the “Weyl chambers” and
those with parameters given by (5.52) lie at the centres of the “Weyl chamber”
[227]. These are summarized in Figure 2 which depicts the (α,

√−2β) plane,
where α and β are the parameters in PIV. The dots at the vertices denote the
rational solutions of PIV with parameter values given by (5.51) and the dots
in the triangles denote the rational solutions with parameter values given by
(5.52). On the horizontal and diagonal lines, PIV possesses special function
solutions which are expressible in terms of Whittaker functions Mκ,μ(ξ) and
Wκ,μ(ξ), or equivalently parabolic cylinder functions Dν(ξ); see §7.3.

For examples and plots see Bassom, Clarkson and Hicks [17]; also Clarkson
[32]. Determinantal representations, with entries expressed in terms of Hermite
polynomials Hn(z), of rational solutions of PIV are given by Forrester and
Witte [61], Kajiwara and Ohta [125] and Noumi and Yamada [176].

Fig. 2. Rational solutions of PIV with parameters (5.51) at the vertices and (5.52)
in the triangles. The lines denote special function solutions
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In a comprehensive study of PIV, Okamoto [184] defined two sets of poly-
nomials associated with rational solutions of PIV, analogous to the Yablonskii-
Vorob’ev polynomials. Noumi and Yamada [176] generalized Okamoto’s
results and introduced the generalized Hermite polynomials Hm,n(z), defined
in Theorem 5.11, and the generalized Okamoto polynomials Qm,n(z), defined
in Theorem 5.12; see also [32].

Theorem 5.11. Suppose Hm,n(z) satisfies the recurrence relations

2mHm+1,nHm−1,n = Hm,nH
′′
m,n −

(
H ′

m,n

)2 + 2mH2
m,n, (5.53a)

2nHm,n+1Hm,n−1 = −Hm,nH
′′
m,n +

(
H ′

m,n

)2 + 2nH2
m,n, (5.53b)

with H0,0 = H1,0 = H0,1 = 1 and H1,1 = 2z, then

w(i)
m,n =

d
dz

{
ln
(
Hm+1,n

Hm,n

)}
, (5.54a)

w(ii)
m,n =

d
dz

{
ln
(

Hm,n

Hm,n+1

)}
, (5.54b)

w(iii)
m,n = −2z +

d
dz

{
ln
(
Hm,n+1

Hm+1,n

)}
, (5.54c)

where w
(j)
m,n = w(z;α(j)

m,n, β
(j)
m,n), for j = i, ii, iii, are solutions of PIV, res-

pectively, for the parameters (α(i)
m,n, β

(i)
m,n) = (2m+n+1,−2n2), (α(ii)

m,n, β
(ii)
m,n) =

(−(m + 2n + 1),−2m2), and (α(iii)
m,n , β

(iii)
m,n ) = (n−m,−2(m + n + 1)2).

Proof. See Clarkson [31, 121], which generalizes the work of Kajiwara and
Masuda [123]. ��

The rational solutions of PIV defined by (5.54) include all solutions in the
“−1/z” and “−2z” hierarchies, i.e. the set of rational solutions of PIV with
parameters given by (5.51), and can be expressed in terms of determinants
whose entries are Hermite polynomials [125, 176]. These rational solutions of
PIV are special cases of the special function solutions which are expressible in
terms of parabolic cylinder functions Dν(ξ) (cf. [32]). Examples of generalized
Hermite polynomials and plots of the locations of their roots are given in [32].
A plot of the roots of the generalized Hermite polynomial H7,7 is given in
Figure 3.

Next we consider the generalized Okamoto polynomials.

Theorem 5.12. Suppose Qm,n(z) satisfies the recurrence relations

Qm+1,nQm−1,n = 9
2

[
Qm,nQ

′′
m,n −

(
Q′

m,n

)2]
+
[
2z2 + 3(2m + n− 1)

]
Q2

m,n, (5.55a)

Qm,n+1Qm,n−1 = 9
2

[
Qm,nQ

′′
m,n −

(
Q′

m,n

)2]
+
[
2z2 + 3(1 −m− 2n)

]
Q2

m,n, (5.55b)
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Fig. 3. Roots of the generalized Hermite polynomial H7,7(z)

with Q0,0 = Q1,0 = Q0,1 = 1 and Q1,1 =
√

2 z, then

w̃(i)
m,n = − 2

3z +
d
dz

{
ln
(
Qm+1,n

Qm,n

)}
, (5.56a)

w̃(ii)
m,n = − 2

3z +
d
dz

{
ln
(

Qm,n

Qm,n+1

)}
, (5.56b)

w̃(iii)
m,n = − 2

3z +
d
dz

{
ln
(
Qm,n+1

Qm+1,n

)}
, (5.56c)

where w̃
(j)
m,n = w(z; α̃(j)

m,n, β̃
(j)
m,n), for j = i, ii, iii, are solutions of PIV, re-

spectively, for the parameters (α(i)
m,n, β

(i)
m,n) = (−(m + 2n),−2(m − 1

3 )2),
(α(ii)

m,n, β
(ii)
m,n) = (2m + n,−2(n − 1

3 )2), and (α(iii)
m,n , β

(iii)
m,n ) = (n − m,−2(m +

n + 1
3 )2).

Proof. See Noumi and Yamada [176]; also Clarkson [32]. ��
The rational solutions of PIV defined by (5.56) include all solutions in the

“− 2
3z” hierarchy, i.e., the set of rational solutions of PIV with parameters given

by (5.52), which also can be expressed in the form of determinants [125, 176].
Examples of generalized Okamoto polynomials and plots of the locations of
their roots are given in [32]. A plot of the roots of the generalized Okamoto
polynomial Q7,7 is given in Figure 4.

Using the Hamiltonian formalism for PIV, see §3, it is shown in [35] that
the generalized Hermite polynomials Hm,n(z) and generalized Okamoto poly-
nomials Qm,n(z), satisfy fourth order bilinear equations and homogeneous
difference equations.
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Fig. 4. Roots of the generalized Okamoto polynomial Q7,7(z)

5.6 Rational Solutions of PV

Some simple rational solutions of PV are

w(z; 1
2 ,− 1

2μ
2, κ(2 − μ),− 1

2κ
2) = κz + μ,

w(z; 1
2 , κ

2μ, 2κμ, μ) =
κ

z + κ
,

w(z; 1
8 ,− 1

8 ,−κμ, μ) =
κ + z

κ− z
,

with κ and μ arbitrary constants.
Rational solutions of PV, with δ �= 0 when we set δ = − 1

2 without loss of
generality, are classified in the following theorem.

Theorem 5.13. PV, with δ = − 1
2 ,

w′′ =
(

1
2w

+
1

w − 1

)
(w′)2 − w′

z
+

(w − 1)2

z2

(
αw +

β

w

)
+

γw

z
− w(w + 1)

2(w − 1)
, (5.57)

has a rational solution if and only if one of the following holds with m,n ∈ Z
and ε = ±1.

(i) α = 1
2 (m + ε)2 and β = − 1

2n
2, where n > 0, m + n is odd, and α �= 0

when |m| < n,
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(ii) α = 1
2n

2 and β = − 1
2 (m + ε)2, where n > 0, m + n is odd, and β �= 0

when |m| < n,

(iii) α = 1
2a

2, β = − 1
2 (a+n)2 and γ = m, where m+n is even and a arbitrary,

(iv) α = 1
2 (b+n)2, β = − 1

2b
2 and γ = m, where m+n is even and b arbitrary,

(v) α = 1
8 (2m + 1)2 and β = − 1

8 (2n + 1)2.

These rational solutions have the form

w(z) = λz + μ + Pn−1(z)/Qn(z), (5.58)

where λ and μ are constants, and Pn−1(z) and Qn(z) are polynomials of degree
n− 1 and n, respectively, with no common roots.

Proof. See Kitaev, Law and McLeod [142]; also Gromak and Lukashevich [84],
Gromak, Laine and Shimomura [83, §40]. ��

Remarks

1. The rational solutions in cases (i) and (ii) are the special cases of the
solutions of PV expressible in terms of confluent hypergeometric functions
1F1(a; c; z), when the confluent hypergeometric function reduces to the
associated Laguerre polynomial Lm

k (ζ) discussed in Theorem 7.6; see also
Masuda [162].

2. The rational solutions in cases (i) and (ii) and those in cases (iii) and (iv)
are related by the symmetry S2 (4.12).

3. Kitaev, Law & McLeod [142] did not explicitly give case (iv), though it is
obvious by applying the symmetry S2 to case (iii).

4. Kitaev, Law & McLeod [142] also require that γ �∈ Z in case (v), though
this appears not to be necessary.

5. If δ = 0 and γ �= 0 in PV then it is equivalent to the generic case if PIII

[72]; see Theorem 6.3. Hence one obtains algebraic solutions of this special
case of PV in terms rational solutions of PIII, as shown in §6.2.

Determinantal representations, with entries expressed in terms of associ-
ated Laguerre polynomials Lm

k (z), of rational solutions of PV are given by
Masuda, Ohta and Kajiwara [164]. Umemura [226] derived special polynomi-
als associated with rational solutions of (5.57); see also [175, 233]. Masuda,
Ohta and Kajiwara [164] generalized Umemura’s result and derived special
polynomials associated with all rational solutions in cases (iii), (iv), and (v)
in Kitaev, Law and McLeod’s classification described in Theorem 5.13 which
are given in the following theorem.

Theorem 5.14. Suppose that Um,n(z;μ) satisfies the recursion relations
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Um+1,nUm−1,n = 8z
[
Um,nU

′′
m,n −

(
U ′

m,n

)2]
+ 8Um,nU

′
m,n + (z + 2μ− 2 − 6m + 2n)U2

m,n, (5.59a)

Um,n+1Um,n−1 = 8z
[
Um,nU

′′
m,n −

(
U ′

m,n

)2]
+ 8Um,nU

′
m,n + (z − 2μ− 2 + 2m− 6n)U2

m,n, (5.59b)

with

U−1,−1(z;μ) = U−1,0(z;μ) = U0,−1(z;μ) = U0,0(z;μ) = 1. (5.59c)

Then

w(z;α(iii)
m,n, β

(iii)
m,n, γ

(iii)
m,n, δ

(iii)
m,n) = − Um,n−1(z;μ)Um−1,n(z;μ)

Um−1,n(z;μ− 2)Um,n−1(z;μ + 2)
, (5.60a)

is a rational solution of PV for the parameters(
α(iii)

m,n, β
(iii)
m,n, γ

(iii)
m,n, δ

(iii)
m,n

)
=
(

1
8μ

2,− 1
8 (μ− 2m + 2n)2,−m− n,− 1

2

)
, (5.60b)

and

w(z;α(v)
m,n, β

(v)
m,n, γ

(v)
m,n, δ

(v)
m,n) = −Um,n−1(z;μ + 1)Um,n+1(z;μ− 1)

Um−1,n(z;μ− 1)Um+1,n(z;μ + 1)
, (5.61a)

is a rational solution of PV for the parameters(
α(v)

m,n, β
(v)
m,n, γ

(v)
m,n, δ

(v)
m,n

)
=
(

1
8 (2m + 1)2,− 1

8 (2n + 1)2,m− n− μ,− 1
2

)
.

(5.61b)

Proof. See Masuda, Ohta and Kajiwara [164]; also Clarkson [34]. ��

Plots of the roots of these special polynomials are given by Clarkson
[34]. These numerical simulations show that for μ sufficiently large and
negative, the roots of Um,n(z;μ) form two approximate triangles, one with
1
2m(m + 1) roots and the other with 1

2n(n + 1) roots, which are well sep-
arated. The discriminant of Um,n(z;μ), i.e., Dis(Um,n(z;μ)), is zero when
μ = 2m− 1, 2m− 3, . . . , 3, 1,−1,−3, . . . , 3 − 2n, 1 − 2n. As μ increases, some
roots of Um,n(z;μ) coalesce at z = 0 when μ is a root of Dis(Um,n(z;μ)) = 0.
Finally for μ sufficiently large and positive, the roots of Um,n(z;μ) again form
two approximate triangles, one with 1

2m(m + 1) roots and the other with
1
2n(n + 1) roots, similar to those for μ negative, except that their positions
are interchanged. The motion of the roots as μ varies is symmetric about
μ = m− n and always there is symmetry about the real axis.
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5.7 Rational Solutions of PVI

Rational solutions of PVI are summarized in the following theorem.

Theorem 5.15. In the general case, PVI has rational solutions if and only if

a + b + c + d = 2n + 1, (5.62)

where n ∈ Z, a = ε1

√
2α, b = ε2

√−2β, c = ε3

√
2γ and d = ε4

√
1 − 2δ, with

εj = ±1, j = 1, 2, 3, 4, independently, and at least one of a, b, c or d is an
integer.

Proof. See Mazzocco [165]. These are special cases of the special function solu-
tions which are expressed in terms of hypergeometric functions F (a, b; c; z) ≡
2F1(a, b; c; z) when they reduce to the Jacobi polynomials P (α,β)

n (z). ��

6 Other Elementary Solutions

6.1 Elementary Solutions of PIII

It is straightforward to show that PIII possesses the algebraic solution w = z1/3

provided that α + δ = 0 and β = γ = 0 and the solution w = z−1/3 provided
that α = δ = 0 and β + γ = 0.

Consider the special case of PIII when either (i), γ = 0 and αδ �= 0, or (ii),
δ = 0 and βγ �= 0. In case (i), we make the transformation

w(z) = (2
3 )1/2u(ζ), z = (2

3 )3/2ζ3,

and set α = 1, β = 2μ and δ = −1, with μ an arbitrary constant, without loss
of generality, which yields P(7)

III

d2u

dζ2
=

1
u

(
du
dζ

)2

− 1
ζ

du
dζ

+ 4ζu2 + 12μζ − 4ζ4

u
, (6.1)

In case (ii), we make the transformation w(z) = (3
2 )1/2/u(ζ), with z = (2

3 )3/2ζ3

and set α = 2μ, β = −1 and γ = 1, with μ an arbitrary constant, without
loss of generality, which again yields P(7)

III .
Equation P(7)

III (6.1) is so named since it is of type D7 in the terminology
of Sakai [197]. Rational solutions of P(7)

III correspond to algebraic solutions of
PIII with γ = 0 and αδ �= 0, or δ = 0 and βγ �= 0. Lukashevich [151] and
Gromak [71] obtained algebraic solutions of P(7)

III , which are classified in the
following theorem; see also [169].
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Theorem 6.1. Equation P(7)
III (6.1) has rational solutions if and only if μ = n,

with n ∈ Z, which have the form

un(ζ) = Pn2+1(ζ)/Qn2(ζ),

where Pn2+1(ζ) and Qn2(ζ) are monic polynomials of degrees n2 + 1 and n2,
respectively, with integer coefficients and no common roots.

A straightforward method for generating rational solutions of (6.1) is
through the Bäcklund transformation

uμ±1 =
ζ3

u2
μ

± ζ

2u2
μ

duμ

dζ
− 3(2μ± 1)

2uμ
, (6.2)

where uμ is the solution of (6.1) for parameter μ, using the “seed solution”
u0(ζ) = ζ for μ = 0, for details see Gromak, Laine and Shimomura [83, p164];
also [71, 169, 172].

Ohyama [181] derived special polynomials associated with the rational
solutions of (6.1). These are essentially described in Theorem 6.2, though here
the variables have been scaled and the expression of the rational solutions of
(6.1) in terms of these special polynomials is explicitly given.

Theorem 6.2. Suppose that Rn(ζ) satisfies the recursion relation

2ζRn+1Rn−1 = −Rn
d2Rn

dζ2 +
(

dRn

dζ

)2

− Rn

ζ

dRn

dζ
+ 2(ζ2 − n)R2

n, (6.3)

with R0(ζ) = 1 and R1(ζ) = ζ2. Then

un(ζ) =
Rn+1(ζ)Rn−1(ζ)

R2
n(ζ)

≡ ζ2 − n

ζ
− 1

2ζ2

d
dζ

{
ζ

d
dζ

lnRn(ζ)
}
, (6.4)

satisfies (6.1) with μ = n. Additionally u−n(ζ) = −iun(iζ).

Plots of the locations of the roots of the polynomials Rn(ζ) are given
in [31]. These plots show that the locations of the poles also have a very
symmetric, regular structure and take the form of two “triangles” in a “bow-
tie” shape. A plot of the roots of R20(ζ) is given in Figure 5.

Other non-rational solutions of PIII include

w(z; 0,−2κ, 0, 4κμ− λ2) = z(κ ln2 z + λ ln z + μ),

w(z;−ν2λ, 0, ν2(λ2 − 4κμ), 0) =
zν−1

κz2ν + λzν + μ
,

with κ, λ, μ and ν arbitrary constants [151, 153].
If β = δ = 0, then PIII has the first integral

z2(w′)2 + 2zww′ = (C + 2αzw + γz2w2)w2,

where C is an arbitrary constant, which is solvable by quadrature. A similar
result holds when α = γ = 0. Also if α = β = γ = δ = 0, then PIII has general
solution w(z) = Czμ, with C and μ arbitrary constants.
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Fig. 5. Roots of the polynomial R20(ζ)

6.2 Elementary Solutions of PV

Elementary non-rational solutions of PV include

w(z;μ,− 1
8 ,−μκ2, 0) = 1 + κ

√
z, w(z; 0, 0, μ,− 1

2μ
2) = κ exp(μz),

with κ and μ arbitrary constants [151].
If δ = 0 and γ �= 0, then PV is equivalent to the generic case if PIII, which

is summarized in the following theorem.

Theorem 6.3. Suppose that v = v(ζ; a, b, 1,−1) is a solution of PIII and

η(ζ) =
dv
dζ

− εv2 +
(1 − εa)v

ζ
, (6.5)

with ε2 = 1. Then

w(z;α, β, γ, δ) =
η(ζ) − 1
η(ζ) + 1

, z = 1
2ζ

2, (6.6)

satisfies PV with

(α, β, γ, δ) = ((b− εa + 2)2/32,−(b + εa− 2)2/32,−ε, 0). (6.7)

Proof. See Airault [11], Gromak [72] and Lukashevich [154]. ��
Making the change of variables w(z) = u(ζ), with z = 1

2ζ
2, in PV with

δ = 0 yields

d2u

dζ2 =
(

1
2u

+
1

u− 1

)(
du
dζ

)2

− 1
ζ

du
dζ

+
4(u− 1)2

ζ2

(
αu +

β

u

)
+ 2γu. (6.8)

Algebraic solutions of PV with δ = 0 and γ �= 0 are equivalent to rational
solutions of (6.8) and so henceforth we shall only discuss rational solutions of
(6.8). These are obtained by substituting the rational solutions of PIII, which
are classified in Theorem 5.8, into (6.5) and (6.6). Consequently we have the
following classification of rational solutions for equation (6.8).



370 Peter A. Clarkson

Theorem 6.4. Necessary and sufficient conditions for the existence of ratio-
nal solutions of (6.8) are either

(α, β, γ) = (1
2μ

2,− 1
8 (2n− 1)2,−1), (6.9)

or
(α, β, γ) = (1

8 (2n− 1)2,− 1
2μ

2, 1), (6.10)

where n ∈ Z and μ is arbitrary.

Proof. See Milne, Clarkson and Bassom [169] and Murata [172]; also Gromak,
Laine and Shimomura [83, §38]. ��

We remark that the solutions of (6.8) satisfying (6.9) are related to those
satisfying (6.10) by the transformation S2 given in (4.12). Thus we shall be
concerned only with rational solutions of (6.8) satisfying (6.9). As shown
above, there are special polynomials associated with the rational solutions of
PIII given in Theorem 5.8. Therefore rational solutions of (6.8) are obtained
by substituting the rational solutions of PIII given by (5.47) into (6.5,6.6).
Hence, when ε = 1, rational solutions of (6.8) have the form

un(ζ;μ) =
ζv′n(ζ;μ) − ζv2

n(ζ;μ) − 2(n + μ)vn(ζ;μ) − ζ

ζv′n(ζ;μ) − ζv2
n(ζ;μ) − 2(n + μ)vn(ζ;μ) + ζ

,

with vn(ζ;μ) given by (5.47). Consequently we obtain the following result.

Theorem 6.5. Suppose that Sn(ζ;μ) satisfies the recursion relation (5.46)
with S−1(ζ;μ) = S0(ζ;μ) = 1. Then, for n ≥ 1, the rational solution

un(ζ;μ) =
Sn(ζ;μ)Sn−2(ζ;μ)

μSn−1(ζ;μ + 1)Sn−1(ζ;μ− 1)
, (6.11)

satisfies (6.8) with parameters given by (6.9).

It is straightforward to any specific value of n that (6.11) satisfies (6.8)
with parameters given by (6.9). However, at present, Theorem 6.5 should be
regarded as a conjecture rather than a theorem since there is no proof.

If γ = δ = 0, then PV has the first integral

z2(w′)2 = (w − 1)2(2αw2 + Cw − 2β),

where C is an arbitrary constant, which is solvable by quadrature.

6.3 Elementary Solutions of PVI

An elementary algebraic solution of PVI is

w(z; 1
2κ

2,− 1
2κ

2, 1
2μ

2, 1
2 (1 − μ2)) = z1/2, (6.12)
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with κ and μ arbitrary constants, which was given by Hitchin [98].
Dubrovin and Mazzocco [51] classify all algebraic solutions for the special

case of PVI with β = γ = 0, δ = 1
2 ; this classification procedure can be

generalized for any PVI equation (see [165]). For further examples of algebraic
solutions of PVI see Andreev and Kitaev [14], Boalch [20, 21], Gromak, Laine
and Shimomura [83, §48], Hitchin [99], Masuda [162], Mazzocco [166].

Let Λ(u, z) be the elliptic function defined by

u =
∫ Λ

0

dt√
t(t− 1)(t− z)

, (6.13)

where the fundamental periods 2v1 and 2v2 are linearly independent solutions
of the hypergeometric equation

z(1 − z)v′′ + (1 − 2z)v′ − 1
4v = 0, (6.14)

Then PVI with α = β = γ = 0 and δ = 1
2 , i.e.,

w′′ =
(

1
w

+
1

w − 1
+

1
w − z

)
(w′)2

2
−
(

1
z

+
1

z − 1
+

1
w − z

)
w′

+
w(w − 1)

2z(z − 1)(w − z)
, (6.15)

has general solution

w(z; 0, 0, 0, 1
2 ) = Λ(C1v1 + C2v2, z),

with C1 and C2 arbitrary constants, for details see Painlevé [189], Fuchs [64],
Manin [159]. This solution is an essentially transcendental function of both
constants of integration since PVI with α = β = γ = 0 and δ = 1

2 does not
admit a one-parameter algebraic first integral of the form F (z, w,w′,K) = 0,
with K a constant.

7 Special Function Solutions

The Painlevé equations PII–PVI possess hierarchies of solutions expressible
in terms of classical special functions, for special values of the parameters
through an associated Riccati equation,

w′ = p2(z)w2 + p1(z)w + p0(z), (7.1)

where p2(z), p1(z) and p0(z) are rational functions. Hierarchies of solutions,
which are often referred to as “one-parameter solutions” (since they have one
arbitrary constant), are generated from “seed solutions” derived from the Ric-
cati equation using the Bäcklund transformations given in §4. Furthermore, as
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for the rational solutions, these special function solutions are often expressed
in the form of determinants.

We illustrate the procedure for deriving the Riccati equation associated
with special function solutions of PII, which are solved in terms of Airy func-
tions, in next subsection. See, for example, Sachdev [196] for details of the
derivation of the Riccati equations for PIII–PVI; the results are summarized
in Table 4.

Brief details of special function solutions for PIII–PVI are given in §§7.2–
7.5, respectively. Special function solutions of PIII are expressed in terms
of Bessel functions Jν(z) and Yν(z) [153, 160, 169, 172, 187, 228], of PIV

in terms of Weber-Hermite (parabolic cylinder) functions Dν(z) [17, 76, 152,
171, 184, 227], of PV in terms of Whittaker functions Mκ,μ(z) and Wκ,μ(z), or
equivalently confluent hypergeometric functions 1F1(a; c; z) [154, 73, 186, 230],
and of PVI in terms of hypergeometric functions F (a, b; c; z) [59, 156, 185];
see also [2, 74, 77, 107, 210]. Some classical orthogonal polynomials arise as
particular cases of these special function solutions and thus yield rational
solutions of the associated Painlevé equations. For PIII and PV these are in
terms of associated Laguerre polynomials Lm

k (z) [26, 123, 164, 175], for PIV

in terms of Hermite polynomials Hn(z) [17, 125, 171, 184], and for for PVI in
terms of Jacobi polynomials P (α,β)

n (z) [162, 212]. In fact all rational solutions
of PVI arise as particular cases of the special solutions given in terms of
hypergeometric functions [165].

Table 4. Special function solutions of PII–PVI

p2(z) p1(z) p0(z) Condition on
parameters

Special Function

PII ε1 0 1
2
ε1z α = 1

2
ε1 Airy function

Ai(z), Bi(z)

PIII ε1
ε1α − 1

z
ε2 ε1α + ε2β = 2,

γ = 1, δ = −1
Bessel function

Jν(z), Yν(z)

PIV ε1 2ε1z −2(1 + ε1α) β = −2(1 + ε1α)2 Weber-Hermite
(parabolic cylinder)

function Dν(z)

PV
a

z
ε3 +

b − a

z
− b

z
a + b + ε3γ = 1,

δ = − 1
2
,

a = ε1

√
2α,

b = ε2

√−2β

Whittaker function
Mκ,μ(z), Wκ,μ(z)

PVI
a

z(z − 1)
b + c − a + c

z
− b

z − 1
a + b + c + d = 0
a = ε1

√
2α,

b = ε2

√−2β,
c = ε3

√
2γ,

d = ε4

√
1 − 2δ

hypergeometric
function F (a, b; c; z)
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7.1 Special Function Solutions of PII

To obtain a special function solution of a Painlevé equation, one supposes
that w(z) satisfies the Riccati equation (7.1) for some functions p2(z), p1(z)
and p0(z). Differentiating (7.1) yields

w′′ = p′2w
2 + 2p2ww

′ + p′1w + p1w
′ + p′0

= p′2w
2 + p′1w + p′1 + (2p2w + p1)

(
p2w

2 + p1w + p0

)
= 2p2

2w
3 + (p′2 + 3p1p2)w2 +

(
p′1 + 2p0p2 + p2

1

)
w + p′1 + p1p0, (7.2)

and substituting this into PII yields

2p2w
3 + (p′2 + 3p1p2)w2 +

(
p′1 + 2p0p2 + p2

1

)
w + p′1 + p1p0

= 2w3 + zw + α. (7.3)

Equating coefficients of powers of w to zero, which are necessarily independent
since w is any solution of PII, yields

w3 : p2
2(z) = 1,

w2 : p′2(z) + 3p1(z)p2(z) = 0,
w : p′1(z) + 2p0(z)p2(z) + p2

1(z) = z,

w0 : p′0(z) + p1(z)p0(z) = α,

and therefore

p2(z) = ε, p1(z) = 0, p0(z) = 1
2εz, α = 1

2ε, ε2 = 1. (7.4)

Thus we obtain the Riccati equation

εw′ = w2 + 1
2z. (7.5)

Any solution of this equation is also a solution of PII, provided that α = 1
2ε.

Note that PII can be written as

ε(εw′ − w2 − 1
2z)

′ = −2w(εw′ − w2 − 1
2z) + α− 1

2ε, ε2 = 1.

Hence if α = 1
2ε, then special solutions of PII can be obtained in terms of

solutions of the Riccati equation (7.5). Setting w = −εϕ′/ϕ in (7.5) yields

ϕ′′ + 1
2zϕ = 0, (7.6)

which is equivalent to the Airy equation and has general solution

ϕ(z) = C1 Ai(ξ) + C2 Bi(ξ), ξ = −2−1/3 z, (7.7)

where Ai(ξ) and Bi(ξ) are the Airy functions and C1 and C2 are arbitrary
constants.
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Theorem 7.1. The second Painlevé equation PII has a one-parameter family
of solutions expressible in terms of Airy functions given by (7.7) if and only
if α = n + 1

2 , with n ∈ Z.

Proof. See Gambier [68]. ��

Theorem 7.2. Let ϕ(z) be the solution of (7.6) and τn(z) be the n×n deter-
minant

τn(z) =

∣∣∣∣∣∣∣∣∣
ϕ(z) ϕ′(z) · · · ϕ(n−1)(z)

ϕ′(z) ϕ′′(z) · · · ϕ(n)(z)

...
...

. . .
...

ϕ(n−1)(z) ϕ(n)(z) · · · ϕ(2n−2)(z)

∣∣∣∣∣∣∣∣∣ , n ≥ 1, (7.8)

where ϕ(m)(z) = dmϕ/dzm, then

w(z;n− 1
2 ) =

d
dz

{
ln
[
τn−1(z)
τn(z)

]}
=

τ ′n−1(z)
τn−1(z)

− τ ′n(z)
τn(z)

, n ≥ 1, (7.9)

satisfies PII with α = n− 1
2 .

Proof. Airault [11], Flaschka and Newell [53], Okamoto [184]. ��

Theorem 7.3. Suppose that Ψn(z) satisfies the Toda equation

Ψn+1Ψn−1 = −Ψn
d2Ψn

dz2
+
(

dΨn

dz

)2

, (7.10)

with Ψ0(z) = 1 and Ψ1(z) = −ϕ(z) where ϕ(z) satisfies the Airy equation
(7.6), then

w(z;n− 1
2 ) =

d
dz

{
ln
[
Ψn−1(z)
Ψn(z)

]}
=

Ψ ′
n−1(z)

Ψn−1(z)
− Ψ ′

n(z)
Ψn(z)

, n ≥ 1, (7.11)

satisfies PII with α = n− 1
2 for n ∈ Z+.

If we set Φ(z) ≡ ϕ′(z)/ϕ(z), where ϕ(z) is given by (7.7), then the first few
solutions in the Airy function solution hierarchy for PII are given in Table 6.

Table 5. Solutions Ψn(z) of the Toda equation (7.10)

Ψ1(z) = −ϕ,

Ψ2(z) = (ϕ′)2 + 1
2
zϕ2,

Ψ3(z) = (ϕ′)3 + 1
2
zϕ′ϕ2 − 1

4
ϕ3

Ψ4(z) = 1
2
z(ϕ′)4 + ϕ(ϕ′)3 + 1

2
z2ϕ2(ϕ′)2 + 1

2
zϕ′ϕ3 + 1

8
(z3 − 1

2
)ϕ4
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Table 6. Airy function solutions of PII

w(z; 1
2
) = −Φ

w(z; 3
2
) = Φ − 1

2Φ2 + z

w(z; 5
2
) =

2zΦ2 + Φ + z2

4Φ3 + 2zΦ − 1
+

1

2Φ2 + z

w(z; 7
2
) = −3

z
− 2zΦ2 + Φ + z2

4Φ3 + 2zΦ − 1
+

48Φ3 + 8z2Φ2 + 28zΦ + 4z3 − 9

z(8zΦ4 + 16Φ3 + 8z2Φ2 + 8zΦ + 2z3 − 3)

These “Airy functions solutions”, wn ≡ w(z;n/2) for n = 1, 3, 5, . . . , of PII

are also the general solutions of a Fuchsian equation of the form

(w′
n)n +

n−1∑
j=0

Pj(wn, z)(w′
n)j = 0, (7.12)

where Pj(wn, z) are polynomials in wn and z. For example, w3 ≡ w(z; 3
2 )

satisfies the first-order, third-degree equation

(w′
3)

3 −
(
w2

3 + 1
2z
)
(w′

3)
2 −

(
w4

3 + zw2
3 + 4w3 + 1

4z
2
)
w′

3

+ w6
3 + 3

2zw
4
3 + 4w3

3 + 3
4z

2w2
3 + 2zw3 + 1

8z
3 + 2 = 0. (7.13)

7.2 Special Function Solutions of PIII

Special function solutions of PIII are expressed in terms of Bessel functions as
given in the following theorem.

Theorem 7.4. If γδ �= 0 then we set γ = 1 and δ = −1, without loss of
generality. PIII with γ = −δ = 1, has solutions expressible in terms of Bessel
functions if and only if

ε1α + ε2β = 4n + 2, (7.14)

with n ∈ Z and ε1 = ±1, ε2 = ±1 independently.

Proof. See Gromak [74], Lukashevich [151, 153], Umemura and Watanabe
[228]; also Gromak, Laine and Shimomura [83, §35]. ��

In the case ε1α + ε2β = 2, the Riccati equation is

zw′ = ε1zw
2 + (αε1 − 1)w + ε2z. (7.15)

If α �= ε1 then (7.15) has the solution

w(z) = −ε1 ϕ
′(z)/ϕ(z), (7.16)
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where
ϕ(z) = zν {C1Jν(ζ) + C2Yν(ζ)} , (7.17)

with ζ =
√
ε1ε2 z, ν = 1

2αε2, and C1, C2 arbitrary constants. For examples and
plots see Milne, Clarkson and Bassom [169]. Determinantal representations of
special function solutions of PIII are given by Okamoto [187]; see also Forrester
and Witte [62].

We remark that rational solutions of PIII, with γ = 1 and δ = −1, occur
then ε1α+ ε2β = 4 and Bessel solutions of PIII occur then ε1α+ ε2β = 4 + 2.
A question is what happens when these lines intersect? This is illustrated in
the following example.

Example 7.1. If α + β = 4 and α − β = 2 then α = 3 and β = 1. Hence the
Riccati equation becomes

zw′ = zw2 + 2w − z,

then letting w = −ϕ′/ϕ yields

zϕ′′ − 2ϕ′ − zϕ = 0,

which has general solution

ϕ(z) = C1(z − 1)ez + C2(z + 1)e−z,

with C1, C2 arbitrary constants, and so

w(z) = − C1zez − C2ze−z

C1(z − 1)ez + C2(z + 1)e−z
.

Note that setting C1 = 0 yields the rational solution w = z/(z + 1), whilst
setting C2 = 0 yields the rational solution w = z/(1 − z).

We remark that this example shows that rational solutions of PIII for
specific parameters are not unique since, PIII with parameters α = 3 and
β = 1, γ = 3 and δ = −1 has the rational solutions z/(z + 1) and z/(1 − z).

7.3 Special Function Solutions of PIV

Special function solutions of PIV are expressed in in terms of parabolic cylinder
functions as given in the following theorem.

Theorem 7.5. PIV has solutions expressible in terms of parabolic cylinder
functions if and only if either

β = −2(2n + 1 + εα)2, (7.18)

or
β = −2n2, (7.19)

with n ∈ Z and ε = ±1.
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Proof. See Gambier [68], Gromak [76], Gromak and Lukashevich [84], Luka-
shevich [151, 152]; also Gromak, Laine and Shimomura [83, Chapter 6]. ��

In the case when n = 0 in (7.18), then the associated Riccati equation is

w′ = ε(w2 + 2zw) − 2(1 + εα), (7.20)

and yields the Weber-Hermite equation

ϕ′′ − 2εzϕ′ − 2(α + ε)ϕ = 0, (7.21)

which has solution
w(z) = −εϕ′(z)/ϕ(z), (7.22)

where
ϕ(z) =

{
C1Dν

(√
2 z
)

+ C2D−ν

(√
2 z
)}

exp
(

1
2εz

2
)

(7.23)

with ν = − 1
2 (1 + ε + 2α), C1 and C2 arbitrary constants, and Dν

(√
2 z
)

the
parabolic cylinder function, provided that ν �∈ Z.

When ν is a positive integer the parabolic cylinder functions reduce to
Hermite polynomials times an exponential function; thus

w(z;−n,−2(n− 1)2) = −H ′
n−1(z)

Hn−1(z)
, n = 1, 2, 3, . . . , (7.24)

and

w(z;−n,−2(n + 1)2) = −2z +
H ′

n(z)
Hn(z)

, n = 0, 1, 2, . . . . (7.25)

For examples and plots see Bassom, Clarkson and Hicks [17]. Determinantal
representations of special function solutions of PIV are given by Okamoto
[184]; see also Forrester and Witte [61].

If α = − 1
2ε then β = − 1

2 , with ε = ±1, and so the Weber-Hermite equation
(7.21) has solution

ϕ(z) = exp
(

1
2εz

2
) [

C1D−1/2

(√
2 z
)

+ C2D−1/2

(
−
√

2 z
)]

, (7.26)

and so

w(z; 1
2 ,− 1

2 ) = −
√

2
[
C1D1/2

(√
2 z
)
− C2D1/2

(
−
√

2 z
)]

C1D−1/2

(√
2 z
)

+ C2D−1/2

(
−
√

2 z
)

w(z;− 1
2 ,− 1

2 ) = −2z +

√
2
[
C1D1/2

(√
2 z
)
− C2D1/2

(
−
√

2 z
)]

C1D−1/2

(√
2 z
)

+ C2D−1/2

(
−
√

2 z
) .

Using these solutions as seed solutions one generates a hierarchy of solutions
of PIV expressed in terms of D±1/2(ζ). The special solutions of PIV when
α = 1

2n and β = − 1
2n

2 arise in quantum gravity; see Fokas, Its and Kitaev
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[57, 58]. This hierarchy, the “half-integer” hierarchy, is discussed by Bassom,
Clarkson and Hicks [17].

If 1 + εα = 0, then (7.20) has solutions

w(z) =

⎧⎪⎪⎨⎪⎪⎩
2 exp(z2)√

π [C + i erfc(iz)]
, if ε = 1,

2 exp(−z2)√
π [C + erfc(z)]

, if ε = −1,
(7.27)

where C is an arbitrary constant and erfc(z) is the complementary error func-
tion; see Gromak and Lukashevich [84], also Bassom, Clarkson and Hicks [17]
who generate a hierarchy of solutions with (7.27) as the seed solution. These
solutions have some rational solutions as special cases. Further a special case
of this hierarchy occurs when α = 2n + 1 and β = 0 which gives bound state
solutions that have exponential decay as z → ±∞ and so are nonlinear ana-
logues of bound states for the linear harmonic oscillator; for further details
see [17, 18].

7.4 Special Function Solutions of PV

Special function solutions of PV are expressed in in terms of Whittaker func-
tions as given in the following theorem.

Theorem 7.6. If δ �= 0, then we may set δ = − 1
2 . PV then has solutions

expressible in terms of Whittaker functions if and only if

a + b + ε3γ = 2n + 1, (7.28)

or
(a− n)(b− n) = 0, (7.29)

where n ∈ Z, a = ε1

√
2α and b = ε2

√−2β, with εj = ±1, j = 1, 2, 3,
independently.

Proof. See Gromak and Lukashevich [84], Lukashevich [154], Watanabe [230];
also Gromak, Laine and Shimomura [83, §40]. ��

In the case when n = 0 in (7.28), then the associated Riccati equation is

zw′ = aw2 + (b− a + ε3z)w − b. (7.30)

If a �= 0, then (7.30) has the solution

w(z) = −zϕ′(z)
aϕ(z)

, (7.31)

where
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ϕ(z) = {C1Mκ,μ(ζ) + C2Wκ,μ(ζ)} ζ−(a−b+1)/2 exp(1
2ζ), (7.32)

with ζ = ε3z, κ = 1
2 (a− b + 1), μ = 1

2 (a + b), C1 and C2 arbitrary constants
and Mκ,μ(ζ), Wκ,μ(ζ) Whittaker functions. Determinantal representations of
special function solutions of PV are given by Okamoto [186]; see also Forrester
and Witte [62] and Masuda [163].

7.5 Special Function Solutions of PVI

Special function solutions of PVI are expressed in in terms of hypergeometric
functions as given in the following theorem.

Theorem 7.7. PVI has solutions expressible in terms of hypergeometric func-
tions if and only if

a + b + c + d = 2n + 1, (7.33)

where n ∈ Z, a = ε1

√
2α, b = ε1

√−2β, c = ε3

√
2γ, and d = ε4

√
1 − 2δ, with

εj = ±1, j = 1, 2, 3, 4, independently.

Proof. See Fokas and Yortsos [59], Lukashevich and Yablonskii [156], Okamoto
[185]; also Gromak, Laine and Shimomura [83, §44]. ��

If n = 1, then the associated Riccati equation is

w′ =
aw2

z(z − 1)
+

(b + c)z − a− c

z(z − 1)
w − b

z − 1
. (7.34)

If a �= 0 then (7.34) has the solution

w(z) =
ζ − 1
aϕ(ζ)

dϕ
dζ

, ζ =
1

1 − z
, (7.35)

where

ϕ(ζ) = C1F (b,−a; b + c; ζ)

+ C2ζ
−b+1−cF (−a− b− c + 1,−c + 1; 2 − b− c; ζ), (7.36)

with C1, C2 arbitrary constants and F (a, b; c; ζ) is the hypergeometric func-
tion. Determinantal representations of special function solutions of PVI are
given by Okamoto [185]; see also Forrester and Witte [63] and Masuda [163].

There also is a family of solutions of PVI with α = 2n2, for n ∈ Z with n �=
0, β = γ = 0 and δ = 1

2 , expressible in terms of solutions of the hypergeometric
equation

z(1 − z)v′′ + (1 − 2z)v′ − 1
4v = 0, (7.37)

for further details see Mazzocco [166]. For example, if n = 1, then the solution
is

w(z; 2, 0, 0, 1
2 ) =

[
v2 + 4zvv′ + 4z(z − 1)(v′)2

]2
8vv′[v + (2z − 1)v′](v + 2zv′)

,

where v(z) is any solution of (7.37).
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8 Other Mathematical Properties

8.1 Hirota Bilinear Forms

Each of the Painlevé equations PI–PVI can be written in Hirota bilinear form,
using the Hirota operator Dz defined by

Dz (F •G) =
(

d
dz1

− d
dz2

)
[F (z1)G(z2)]

∣∣∣∣∣
z1=z2=z

=
dF
dz

G− F
dG
dz

, (8.1)

see Hietarinta [93]. We illustrate this in the following example for PII.

Example 8.1. Letting

w(z) =
d
dz

{
ln
[
F (z)
G(z)

]}
=

F ′(z)
F (z)

− G′(z)
G(z)

, (8.2)

in PII yields

F ′′′G− 3F ′′G′ + 3F ′G′′ − FG′′′ − z(F ′G− FG′) − αFG,

= 3
F ′G− FG′

FG
(F ′′G− 2F ′G′ + FG′′) ,

which has the “decoupling”

F ′′G− 2F ′G′ + FG′′ + λ(z)FG = 0, (8.3a)
F ′′′G− 3F ′′G′ + 3F ′G′′ − FG′′′ = [z − 3λ(z)](F ′G− FG′) + αFG, (8.3b)

where λ(z) is the separating function. Thus we obtain the bilinear represen-
tation of PII given by{

D2
z + λ(z)

}
(F •G) = 0, (8.4a){

D3
z − [z − 3λ(z)]Dz − α

}
(F •G) = 0, (8.4b)

where Dz is the Hirota operator defined in (8.1) above. Fukutani [65] discusses
PII using this bilinear representation.

8.2 Coalescence Cascade

The Painlevé equations have the coalescence cascade

PVI −→ PV −→ PIV⏐E ⏐E
PIII −→ PII −→ PI

(8.5)

see, for example, [101, 109] for further details. This is illustrated in the fol-
lowing example.
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Example 8.2. If in PII we make the transformation

w(z;α) = εW (ζ) + ε−5, z = ε2ζ − 6ε−10, α = 4ε−15, (8.6)

then
d2W

dζ2 = 6W 2 + ζ + ε6(2W 3 + ζW ), (8.7)

and so in the limit as ε → 0, W (ζ) satisfies PI.

These other coalescences are given as follows:

1. If in PVI we let

w(z;α, β, γ, δ) = y(x; a, b, c, d),

z = 1 + εx, γ =
c

ε
− d

ε2
, δ =

d

ε2
,

(8.8)

then as ε → 0, PVI coalescences to PV.
2. If in PV we let

w(z;α, β, γ, δ) = 1 + εy(x; a, b, c, d),

α =
a

ε
+

b

ε2
, β = − b

ε2
, γ = εc, δ = εd,

(8.9)

then as ε → 0, PV coalescences to PIII.
3. If in PV we let

w(z;α, β, γ, δ) = 1
2

√
2 εy(x; a, b), z = 1 +

√
2 εx,

α =
1

2ε4
, β =

b

4
, γ = − 1

ε4
, δ =

a

ε2
− 1

2ε4
,

(8.10)

then as ε → 0, PV coalescences to PIV.
4. If in PIV we let

w(z;α, β) = 22/3

ε y(x; a) + 1
ε3 ,

z =
εx

22/3
− 1

ε3
, α = − a

2ε6
, β = − 1

2ε12
,

(8.11)

then as ε → 0, PIV coalescences to PII.
5. If in PIII we let

w(z;α, β, γ, δ) = 1 + 2εy(x; a), z = 1 + ε2x,

α = − 1
2ε6

, β =
1

2ε6
+

2a
ε3

, γ = −δ =
1

4ε6
,

(8.12)

then as ε → 0, PIII coalescences to PII.
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8.3 The PII Hierarchy

The Korteweg-de Vries (KdV) hierarchy can be written as

ut2n+1 + ∂xLn+1[u] = 0, n = 0, 1, 2, . . . , (8.13)

with ∂x = ∂/∂x, where the sequence Ln satisfies the Lenard recursion relation
[148]

∂xLn+1 =
(
∂3

x + 4u∂x + 2ux

)
Ln.

Beginning with L0[u] = 1
2 , this then gives

L1[u] = u,

L2[u] = uxx + 3u2,

L3[u] = uxxxx + 10uuxx + 5u2
x + 10u3,

L4[u] = uxxxxxx + 14uuxxxx + 28uxuxxx + 21u2
xx + 70u2uxx + 70uu2

x + 35u4.

and so on. The first four members of the KdV hierarchy are

ut1 + ux = 0,
ut2 + uxxx + 6uux = 0,
ut3 + uxxxxx + 10uuxxx + 20uxuxx + 30u2ux = 0,
ut4 + uxxxxxxx + 14uuxxxxx + 42uxuxxxx + 70uxxuxxx

+ 70u2uxxx + 280uuxuxx + 70u3
x + 140u3ux = 0.

The modified KdV (mKdV) hierarchy is obtained from the KdV hierarchy
via the Miura transformation u = vx − v2, and can be written as

vt2n+1 + ∂x (∂x + 2v)Ln

[
vx − v2

]
= 0, n = 0, 1, 2, . . . (8.16)

The first three members of the mKdV hierarchy are

vt1 + vxxx − 6v2vx = 0,
vt2 + vxxxxx − 10v2vxxx − 40vxvxx − 10v3

x + 30v4vx = 0,
vt3 + vxxxxxxx − 14v2vxxxxx − 84vvxvxxxx − 140vvxxvxxx − 126v2

xvxxx

− 182vxv
2
xx + 70v4vxxx + 560v3vxvxx + 420v2v3

x − 140v6vx = 0.

A PII hierarchy is obtained from equation (8.16) through the scaling re-
duction

v(x, t2n+1) = w(z)/[(2n + 1)t2n+1]1/(2n+1), z = x/[(2n + 1)t2n+1]1/(2n+1),

which gives

P[n]
II [w,αn] ≡

(
d
dz

+ 2w
)
Ln[w′ − w2] − zw − αn = 0, n = 1, 2, 3, . . .

(8.18)
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with αn an arbitrary constant, for n = 1, 2, 3, . . ., where the case n = 0 has
been excluded; see [11, 36, 53, 143] for further details. Since L1[u] = u then
the first member of this hierarchy is PII. Since L2[u] = uxx + 3u2, the second
member of this hierarchy is the fourth order equation P[2]

II

w′′′′ = 10w2w′′ + 10w (w′)2 − 6w5 + zw + α2. (8.19)

Since L3[u] = uxxxx +10uuxx +5u2
x +10u3, the third member of this hierarchy

is the sixth order equation P[3]
II

w′′′′′′ = 14w2w′′′′ + 56ww′w′′′ + 42 (w′′)2 − 70
[
w4 − (w′)2

]
w′′

− 140w3 (w′)2 + 20w7 + zw + α3. (8.20)

Theorem 8.1. Let w ≡ w(z;α) be a solution of P[N ]
II , the N th equation in the

PII hierarchy, then the transformations

S [N ] : w(z;−α) = −w, (8.21)

T [N ]
± : ww(z;αN ± 1) = −w(z;αN )

+
2αN ± 1

2LN [∓w′(z;αN ) − w2(z;αN )] − z
, (8.22)

give solutions of P[N ]
II , provided that α �= ∓ 1

2 in (8.22).

Proof. See Airault [11] and Clarkson, Joshi and Pickering [36]. ��

All rational solutions of P[N ]
II (8.18) can be generated using (8.22), (8.22)

and the “seed solution” w0 = w(z; 0) = 0. Rational solutions for P[N ]
II are

classified in the following theorem.

Theorem 8.2. The equation P[N ]
II has a unique rational solution if and only

if αN = n ∈ Z, which has the form

w(z) = Pn2−1(z)/Qn2(z) (8.23)

where Pn2−1(z) and Qn2(z) are polynomials of degree n2 − 1 and n2 respec-
tively, with no common roots.

Proof. See Gromak [78]; also Clarkson and Mansfield [38] who derive associ-
ated special polynomials and study their properties including the distribution
of their roots in the complex plane. ��

Other studies of equations in the PII hierarchy include Gromak, Laine
and Shimomura [83, §22], Gromak and Zenchenko [87], Joshi and Mazzocco
[119], Kudryashov [144, 145], Kudryashov and Pickering [146], Kudryashov
and Soukharev [147].
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9 Asymptotic Expansions and Connection Formulae

9.1 First Painlevé Equation

The first type of asymptotic solution of PI is given by

w(z) = z1/2
{
℘( 4

5z
5/4 − a;−2, C) + o(1)

}
, |z| → ∞, (9.1)

where a and C are arbitrary constants and ℘(ζ; g2, g3) is the Weierstrass
elliptic function. There are five possible sectors of validity Sj , j = 0,±1,±2,
given by

| arg(ze2jiπ/5)| ≤ 1
5π − δ(< 1

5π), (9.2)

and for given values of a, C, and j the solution (9.1) is unique.
A second type of asymptotic solution of PI is given by

w(z) ∼ ± iz1/2

√
6

∞∑
n=0

an

z5n/2
, |z| → ∞, (9.3)

where a0 = 1, and for n ≥ 0

an+1 =
(1 − 25n2)i

8
√

6
an − 1

2

n∑
m=1

aman+1−m. (9.4)

There are no free parameters in the coefficients of the divergent asymptotic
series (9.3), but solutions having this expression have a free complex parameter
hidden in exponentially small terms. There are five sectors of validity for (9.3),
given by

| arg(ze(2j+1)iπ/5)| ≤ 2
5π − δ(< 2

5π), (9.5)

for j = 0,±1,±2. For any sector given by (9.5), there exists a solution of
PI, a tronquée solution, whose asymptotic behavior as |z| → ∞ in this sector
is given by (9.3). There also exists a unique solution of PI, the tritronquée
solution, whose asymptotic expansion is given by (9.3) in the sector

| arg(zeiπ)| ≤ 4
5π − δ(< 4

5π). (9.6)

There is a solution of PI such that

w(z) = −
√

1
6 |z| + d|z|−1/8 sin {φ(z) − θ0} + o(|z|−1/8) z → −∞, (9.7)

where
φ(z) = (24)1/4

(
4
5 |z|

5/4 + 1
8d

2 ln |z|
)
, (9.8)

and d and θ0 are constants.
There is also a solution of (1.1) such that

w(z) ∼
√

1
6 |z| z → −∞. (9.9)

This solution is not unique.
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Fig. 6. k = 0.5 (red), 0.75 (green), 1 (blue), 1.25 (magenta)
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w(z)

–14 –12 –10 –8 –6 –4 –2 2
z

Fig. 7. k = −0.5 (red), −0.25 (green), 0 (gold), 1 (blue), 2 (magenta)

Next, for given initial conditions, w(0) = 0, w′(0) = k, with k real, w(z)
has at least one pole on the real axis. There are two special values of k, k1 and
k2, with the properties −0.451428 < k1 < −0.451427 and 1.851853 < k2 <
1.851855, such that: (a) if k < k1, then w(z) > 0 for z0 < z < 0, where z0

is the first pole on negative real axis; (b) if k1 < k < k2, then w(z) oscillates

about and is asymptotic to −
√

1
6 |z|; (c) if k2 < k, then w(z) changes sign once,

from positive to negative as z passes from z0 to 0. Plots of solutions of PI with
w(0) = 0 and w′(0) = k for various values of k, and the parabola 6w2 +z = 0,



386 Peter A. Clarkson

which is shown in black, are given in Figures 6–9. The two graphs in Figure
8 are indistinguishable when z exceeds −5.2, approximately. The two graphs
in Figure 9 are indistinguishable when z exceeds −4.8, approximately.

For further information about the asymptotic behaviour of solutions of
PI see Joshi and Kruskal [118], Kapaev [131, 135], Kapaev and Kitaev [137],
Kitaev [141].
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z

Fig. 8. k = 1.851853 (blue), 1.851855 (red)
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–14 –12 –10 –8 –6 –4 –2 2
z

Fig. 9. k = −0.451427 (blue), −0.451428 (red)
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9.2 Second Painlevé Equation

Generic PII functions are meromorphic functions, which have an infinity of
simple poles accumulating at the essential singularity at z = ∞. Making the
transformation

w(z) = z1/2u(ζ), ζ = 2
3z

3/2, (9.10)

in PII gives
d2u

dζ2 = 2u3 + u− 1
ζ

du
dζ

+
u

9ζ2
+

2α
3ζ

. (9.11)

Thus, in three sectors of angle 2
3π, the generic PII function has the asymptotics

w(z) ∼ z1/2u(ζ), ζ = 2
3z

3/2, (9.12)

where u(ζ) satisfies the Jacobian elliptic function equation(
du
dζ

)2

= u4 + u2 + K, (9.13)

with K an arbitrary constant. The parameters in the elliptic function u(ζ)
change across the Stokes lines at 0 and ± 2

3π from the positive real axis of the
complex z-plane.

There is a family of solutions of PII with the asymptotic behaviour

w(z) ∼ ± iz1/2

√
2

∞∑
n=0

an

z3n/2
, |z| → ∞, (9.14)

with a0 = 1, a1 = ∓ 1
2

√
2 iα and for n ≥ 0

an+2 = − 1
8 (9n2 − 1)an − 1

2

{
n+1∑
k=1

akan+2−k +
n+1∑
k=1

k∑
m=0

amak−man+2−k

}
.

The first few coefficients in (9.14) are

a2 = 1
8 (6α2 + 1), a3 = ±

√
2 i

α(16α2 + 11)
16

,

a4 = −410α4 + 708α2 + 73
128

, a5 = ∓
√

2 i
α(768α4 + 2504α2 + 1021)

128
.

Note that the asymptotic series (9.14) is a divergent series. There is a second
family of solutions of PII with the asymptotic behaviour

w(z) ∼ −α

z

∞∑
n=0

bn

z3n
, |z| → ∞, (9.15)

where b0 = 1 and
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bn+1 = (3n + 2)(3n + 1)bn − 2α2
n∑

k=0

k∑
m=0

bmbk−mbn−k, n ≥ 0.

The first few coefficients in (9.15) are

b1 = −2(α2 − 1),

b2 = 4(α2 − 1)(3α2 − 10),

b3 = −8(α2 − 1)(12α4 − 117α2 + 280),

b4 = 16(α2 − 1)(55α6 − 1091α4 + 7336α2 − 15400).

Again the asymptotic series (9.15) is a divergent series, unless α = ±1.
As in the case of (9.3), there are no free parameters in (9.14) and (9.15), but

solutions having these asymptotic expressions have a free complex parameter
hidden in exponentially small terms. For further details see Its and Kapaev
[106], Kapaev [136].

9.3 Connection Formulae for PII

Here we consider the special case of PII with α = 0, i.e.,

w′′ = 2w3 + zw, (9.16)

with boundary condition

w(z) → 0, z → +∞. (9.17)

The “classic connection problem” for PII concerning solutions of (9.16) satis-
fying (9.17) is given in the following theorem.

Theorem 9.1. Any solution of (9.16), satisfying (9.17), is asymptotic to
kAi(x), for some k, with Ai(z) the Airy function. Conversely, for any k,
there is a unique solution wk(z) of (9.16) which is asymptotic to kAi(z) as
z → +∞, for some k. If |k| < 1, then this solution exists for all real z as
z → −∞, and as z → −∞

wk(z) = d|z|−1/4 sin
{

2
3 |z|

3/2 − 3
4d

2 log |z| − θ0

}
+ o(|z|−1/4), (9.18)

for some constants d and θ0 which depend on k. If |k| = 1 then

wk(z) ∼ sgn(k)
√

− 1
2z, z → −∞. (9.19)

If |k| > 1 then wk(z) has a pole at a finite z0, dependent on k,

wk(z) ∼ sgn(k)(z − z0)−1 z ↓ z0. (9.20)
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Proof. See Hastings and McLeod [91]. ��

The specific dependent of the constants d and θ0 in (9.18) on the parameter
k is given as follows.

Theorem 9.2. The connection formulae d and θ0 in the asymptotic expansion
(9.18) are given by

d2(k) = −π−1 ln(1 − k2), (9.21)
θ0(k) = 3

2d
2 ln 2 + arg[Γ(1 − 1

2 id2)] − 1
4π. (9.22)

with Γ(z) the Gamma function.

The amplitude connection formula (9.21) and the phase connection for-
mula (9.22) were first conjectured, derived heuristically and subsequently ver-
ified numerically by Ablowitz and Segur [7, 198]. Some years later Clarkson
and McLeod [40] gave a rigorous proof of (9.21), using the Gel’fand-Levitan-
Marchenko integral equation (2.3) in §2.1. Suleimanov [209] derived (9.21) and
(9.22) using the isomonodromy problem (2.12) in §2.2; see also [103, 104, 149].
Deift and Zhou [48, 49] rigorously proved that these connection formulae us-
ing a nonlinear version of the classical steepest descent method for oscillating
Riemann-Hilbert problems. Subsequently Bassom, Clarkson, Law and McLeod
[19] developed a uniform approximation method, which is rigorous, removes
the need to match solutions and can leads to a simpler solution of this connec-
tion problem for the special case of PII given by (9.16). As discussed in §10.2,
the solution of (9.16) satisfying the boundary conditions (9.17) and (9.19)
arises in a number of mathematical and physical problems.

Numerical studies of the solutions of (9.16) satisfying the boundary condi-
tion (9.17) are discussed by Miles [167, 168] and Rosales [193]. In Figure 10,
wk(z) with k = 0.5 and 0.5Ai(z) are plotted and the two graphs are indistin-
guishable when z exceeds −0.4, approximately. In Figures 11 and 12 wk(z) is
plotted with k = 1 ± 0.001 and k = 1 ± 10−10, respectively. These illustrate
that when 0 < k < 1 then wk(z) exists for all z whilst for k > 1 then wk(z)
has a pole at a finite z0, however the dependence of z0 on k is currently un-
known. In Figure 13, wk(z) with k = 0.9 and the asymptotic expansion (9.18)
for k = 0.9 are plotted.

Letting w �→ iw in equation (9.16) gives

w′′ + 2w3 − zw = 0, (9.23)

which is considered in [103, 104]. Any real solution of (9.23) for real z ∈ R is
smooth for all z, and satisfies the asymptotic condition,

w(z) = d(−z)−1/4 sin
(

2
3 |z|

3/2 + 3
4d

2 ln |z| − θ0

)
+ O

(
|z|−5/4 ln |z|

)
, z → −∞, (9.24)
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Fig. 11. wk(z) with k = 0.999 (blue), k = 1.001 (red)

with d and θ0 arbitrary real constants, which determines the solution w(z)
uniquely. If the parameters d and θ0 are related by

θ0 = 3
2d

2 ln 2 − 1
4π − arg

[
Γ
(

1
2 id2

)]
+ nπ, n ∈ Z, (9.25)

then the solution w(z) decreases exponentially as z → +∞. More precisely,

w(z) ∼ kAi(z), z → +∞, (9.26)

where the connection formula for k is given by (cf., (9.18))
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Fig. 13. wk(z) with k = 0.9 (blue) and the asymptotic expansion (9.18) for k = 0.9
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d2 = π−1 ln(1 + k2), sgn(k) = (−1)n. (9.27)

For generic values of the parameters d and θ0, i.e., if

θ0 − 3
2d

2 ln 2 + 1
4π + arg

[
Γ
(

1
2 id2

)]
/∈ πZ, (9.28)

then the solution w(z) oscillates and w(z) → ±
√

1
2z, as z → +∞. The corre-

sponding asymptotics is given by
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w(z) = σ
√

1
2z + σ(2z)−1/4ρ cos

(
2
3z

3/2 − 3
2ρ

2 ln z + Θ
)

+ o
(
z−1/2

)
, z → +∞. (9.29)

Theorem 9.3. The connection formulae for σ, ρ and Θ are given by

σ = −sgn(Im(μ)), (9.30)

ρ2 =
1√
2π

ln
(

1 + |μ|2
2| Im(μ)|

)
, ρ > 0, (9.31)

Θ = − 3
4π − 7

2ρ
2 ln 2 + arg[Γ(iρ2)] + arg(1 + μ2), (9.32)

where the complex number μ is given in terms of the parameters d and θ0 by

|μ|2 = exp(πd2) − 1, (9.33)
arg(μ) = 3

2d
2 ln 2 − 1

4π − arg
[
Γ
(

1
2 id2

)]
+ θ0. (9.34)

We remark that each of the equations (9.26) and (9.29) determines the solution
w(z) uniquely (see Its and Kapaev [104], Its, Fokas and Kapaev [103], Deift
and Zhou [49]; also Its and Novokshënov [107]). For more on asymptotics and
connection formulae for PII see Abdullaev [1], Joshi and Kruskal [117, 118],
Kapaev [132, 133, 134], Kapaev and Novokshënov [138], Novokshënov [177,
178, 179].

10 Applications of Painlevé Equations

10.1 Reductions of Partial Differential Equations

Ablowitz and Segur [7] demonstrated a close connection between completely
integrable partial differential equations solvable by inverse scattering, so-called
the soliton equations, and the Painlevé equations PI–PVI. This paper was the
catalyst for much of the current interest in the Painlevé equations. The inverse
scattering method was originally developed by Gardner, Greene, Kruskal and
Miura [69] to solve the Cauchy problem for the Korteweg-de Vries (KdV)
equation

ut + 6uux + uxxx = 0. (10.1)

Example 10.1. The mKdV equation (2.2) is solvable by inverse scattering [4]
and has the scaling reduction

u(x, t) = (3t)−1/3w(z), z = x/(3t)1/3, (10.2)

where w(z) satisfies PII with α a constant of integration. Ablowitz and Segur
[7] noted that since the Miura transformation u = −v2 − vx, relates solutions
of the mKdV equation (2.2) to solutions of the KdV equation (10.1) then
solutions of the scaling reduction of the KdV equation given by



Painlevé Equations — Nonlinear Special Functions 393

u(x, t) = (3t)−2/3v(z), z = x/(3t)1/3, (10.3)

where v(z) satisfies
v′′′ + 6vv′ − (2v + zv′) = 0, (10.4)

whose solutions are also expressible in terms of solutions of PII. There exists
a one-to-one correspondence between solutions of equation (10.4) and those
of PII, given by

v = −w′ − w2, w =
v′ + α

2v − z
(10.5)

see [54] for further details. The KdV equation (10.1) also has the similarity
reduction

u(x, t) = w(z) − λt, z = x + 3λt2, (10.6)

with λ an arbitrary constant and where w(z) satisfies

w′′ + 3w2 = λz + A, (10.7)

with A a constant of integration, which is equivalent to PI through a scaling
of the variables; see [54] for further details.

Example 10.2. The sine-Gordon equation

uxt = sinu, (10.8)

is solvable by inverse scattering [4]. It has a scaling reduction

u(x, t) = v(z), z = xt. (10.9)

After making the transformation w = exp(iv), to put the equation in rational
form, then w(z) satisfies

w′′ =
(w′)2

w
− w′

z
+

w2 − 1
z

, (10.10)

which is the special case of PIII with α = −β = 1 and γ = δ = 0; see [7] for
further details.

Example 10.3. The Boussinesq equation

utt = uxx − 6(u2)xx + uxxxx, (10.11)

is solvable by inverse scattering [3, 235]. It has the travelling wave solution

u(x, t) = v(ζ), ζ = x− ct, (10.12)

with c an arbitrary constant and where v(ζ) satisfies

d2v

dζ2 = 6v2 + (c2 − 1)v + Aζ + B, (10.13)
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with A and B constants of integration. Depending upon whether A = 0 or
A �= 0, then the solution v(ζ) of (10.13) is expressible in terms of either elliptic
functions or solutions of PI, respectively [7]. The Boussinesq equation (10.11)
also has the scaling reduction

u(x, t) = t−1v(ζ) + 1
6 , ζ = x/t1/2, (10.14)

where v(ζ) satisfies

d4v

dζ4 = 6v
d2v

dζ2 + 6
(

dv
dζ

)2

+ 1
4ζ

2 d2v

dζ2 + 7
4ζ

dv
dζ

+ 2v. (10.15)

This equation is solvable in terms of solutions of PIV since the solution of
(10.15) is given by

v(ζ) = 1
4k

2
[
w′ + w2 + 2zw + 2

3z
2 + 2

3 (α− 1)
]
, z = 1

2k ζ, (10.16)

where w(z) satisfies PIV and k4 + 3 = 0; see [37] for further details. Further
the Boussinesq equation (10.11) has the “accelerating wave reduction”

u(x, t) = v(ζ) − 2
3μ

2t2, ζ = x + μt2, (10.17)

with μ an arbitrary constant and where v(ζ) satisfies

d3v

dζ3 = 6v
dv
dζ

− dv
dζ

+ 2μv − 4
3μ

2ζ + A, (10.18)

with A a constant of integration. This equation is equivalent to (10.4) since
setting

v(ζ) = −k2v(z) + 1
6 (k2z + 1), z = kζ,

with k3 = 2μ and A = 1
3μ, in (10.18) yields (10.4) Thus (10.4) is solvable in

terms of solutions of PII; see [37] for further details. We remark that Clarkson
and Kruskal [37] show that there are six classes of symmetry reductions of the
Boussinesq equation (10.11) which reduce it to ordinary differential equations
that are solvable either in terms of solutions of PI, PII, PIV or elliptic functions,
depending upon the reduction.

Example 10.4. The nonlinear Schrödinger equation

iut = uxx − 2σ|u|2u, σ = ±1, (10.19)

was the second soliton equation to be solved by the inverse scattering method
[234]. It has the scaling reduction

u(x, t) = t−1/2U(ζ) exp
(

1
2 iμ ln t

)
, ζ = x/t1/2, (10.20)

with μ an arbitrary constant and U(ζ) satisfies
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d2U

dζ2 = 1
2 (i − μ)U + 1

2 iζ
dU
dζ

+ 2σ|U |2U. (10.21)

Setting U(ζ) = R(ζ) exp{iθ(ζ)} and equating real and imaginary parts yields

d2R

dζ2 −R

(
dθ
dζ

)2

= 1
2Rζ

dθ
dζ

− 1
2μR + 2σR3, (10.22a)

2
dR
dζ

dθ
dζ

+ R
d2θ

dζ2 + 1
2ζ

dR
dζ

+ 1
2R = 0. (10.22b)

Multiplying equation (10.22b) by R and integrating yields

dθ
dζ

= − 1
4ζ +

C

R2(ζ)
− 1

4R2(ζ)

∫ ζ

R2(s) ds, (10.23)

with C an arbitrary constant. Substituting this into equation (10.22a) and
setting W (ζ) =

∫ ζ
R2(s) ds− 4C yields the third-order equation

2
dW
dζ

d3W

dζ3 =
(

d2W

dζ2

)2

−( 1
4ζ

2 +2μ)
(

dW
dζ

)2

+ 1
4W

2 +8σ
(

dW
dζ

)3

, (10.24)

which has first integral(
d2W

dζ2

)2

= − 1
4

(
W − ζ

dW
dζ

)2

−2μ
(

dW
dζ

)2

+4σ
(

dW
dζ

)3

+K
dW
dζ

, (10.25)

with K an arbitrary constant. This is equation SD-I.c in the classification of
second-order, second-degree ordinary differential equations with the Painlevé
property due to Cosgrove and Scoufis [45], an equation first derived and solved
by Chazy [27] and rederived by Bureau [25]. Equation (10.25) is solvable in
terms of PIV since the solution of (10.25) is given by

W (ζ) = −σk

2

{
1

4w

(
dw
dz

)2

− 1
4w

3 − zw2 + (1 + α− z2)w

+
β

2w
+ 2

3 (α + 1)z + 4
3 iμz

}
, z = k ζ, (10.26)

where w(z) satisfies PIV and 16k4 + 1 = 0, provided that

K = 1
9

[
2μ2 + iμ(α + 1) + (α + 1)2

]
, β = − 2

9 (α + 2iμ + 1)2

see [24, 45, 67] for further details.
The nonlinear Schrödinger equation (10.19) also has the accelerating wave

reduction
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u(x, t) = U(ζ) exp
{
iμ
(
ζt + 1

3μt
3
)}

, ζ = x− μt2, (10.27)

with μ an arbitrary constant and U(ζ) satisfies

d2U

dζ2 = μζU + 2σ|U |2U. (10.28)

Setting U(ζ) = R(ζ) exp{iθ(ζ)} and equating real and imaginary parts yields

d2R

dζ2 −R

(
dθ
dζ

)2

= 2σR3 + μζR, (10.29a)

2
dR
dζ

dθ
dζ

+ R
d2θ

dζ2 = 0. (10.29b)

Multiplying equation (10.29b) by R and integrating yields

dθ
dζ

=
C

R2(ζ)
(10.30)

with C an arbitrary constant. Substituting this into equation (10.29a) and
setting R(ζ) = W 1/2(ζ) yields

d2W

dζ2 =
1

2W

(
dW
dζ

)2

+ 4W 2 + 2μζW +
2C2

W
. (10.31)

After rescaling W and ζ, if necessary, this equation is equation XXXIV in
Chapter 14 of Ince [101] which is solvable in terms of solutions of PII. The
solution of (10.31) is

W (ζ) = 1
2σk

2

(
dw
dz

+ w2 + 1
2z

)
, z = −k ζ, (10.32)

where w(z) satisfies PII, k3 = 2μ and

μ2(α + 1
2 )2 + 4C2 = 0,

see [67] for further details.

10.2 Combinatorics

Let SN be the group of permutations π of the numbers 1, 2, . . . , N . For 1 ≤
i1 < . . . < ik ≤ N , then π(i1),π(i2), . . . ,π(iN ) is an increasing subsequence
of π of length k if

π(i1) < π(i2) < · · · < π(iN ).

Let �N (π) be the length of the longest increasing subsequence of π and define
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qN (n) ≡ Prob(�N (π) ≤ n). (10.33)

The problem is to determine the asymptotics of qN (n) as N → ∞, which
Baik, Deift and Johansson [16] expressed in terms of solutions of PII — see
Theorem 10.1. Define the distribution function F2(s) by

F2(s) = exp
{
−
∫ ∞

s

(z − s)w2(z) dz
}

(10.34)

which is known as the Tracy-Widom distribution first introduced in [214],
and w(z) satisfies (9.16), the special case of PII with α = 0, and the boundary
conditions

w(z) ∼
{

Ai(z), as z → ∞,√
− 1

2z, as z → −∞.
(10.35)

where Ai(z) is the Airy function. Recall from Theorem 9.1 that Hastings
and McLeod [91] proved there is a unique solution of (9.16) with boundary
conditions (10.35), which is uniquely characterized by its asymptotics as z →
∞. Baik, Deift and Johansson [16] proved the following theorem.

Theorem 10.1. Let SN be the group of all permutations of N numbers with
uniform distribution and let �N (π) be the length of the longest increasing
subsequence of π ∈ SN . Let χ be a random variable whose distribution function
is the distribution function F2(t). Then, as N → ∞,

χN :=
�N (π) − 2

√
N

N1/6
→ χ,

in distribution, i.e.,

lim
N→∞

Prob

(
�N − 2

√
N

N1/6
≤ s

)
= F2(s),

for all s ∈ R.

The Tracy-Widom distribution function F2(s) given by (10.34) arose in
random matrix theory were it gives the limiting distribution for the normalised
largest eigenvalue in the Gaussian Unitary Ensemble (GUE) of N × N Her-
mitian matrices [214]. Specifically for the GUE

lim
N→∞

Prob
((

λmax −
√

2N
)√

2 N1/6 ≤ s
)

= F2(s), (10.36)

where F2(s) is given by (10.34). See, for example, [47, 61, 220, 221] and the
references therein, for discussions of the application of Painlevé equations in
combinatorics and random matrices.

We remark that work by Montgomery [170], followed by extensive numeri-
cal calculations by Odlyzko [180], on zeros of the Riemann zeta function have
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given convincing numerical evidence that the normalized consecutive spac-
ings follow the GUE distribution; this is often referred to as the Montgomery-
Odlyzko law. Rudnick and Sarnak [194, 195] have proved a restricted form
of this hypothesis. These results of Rudnick and Sarnak [194, 195] are also
compatible with the belief that the distribution of the spacings between zeros,
not only of the Riemann zeta function, but also of quite general automorphic
L-functions over Q, are all given by this Montgomery-Odlyzko law. Subse-
quently Katz and Sarnak [139, 140] established the Montgomery-Odlyzko law
for wide classes of zeta and L-functions over finite fields.

We further remark that the solution of PII with α = 0 (9.16) satis-
fying the boundary conditions (10.35) also arises in several other mathe-
matical and physical applications including: spherical electric probe in a
continuum plasma [22, 91], Görtler vortices in boundary layers [88, 89, 90],
nonlinear optics [70], Bose-Einstein condensation [46, 157, 161, 222], super-
heating fields of superconductors [50, 92], universality of the edge scaling for
nongaussian Wigner matrices [204], shape fluctuations in polynuclear growth
models [114, 191, 192], and the distribution of eigenvalues for covariance ma-
trices and Wishart distributions [115].

10.3 Orthogonal Polynomials

Suppose {pn(x)}∞n=0 are a set of orthonormal polynomials with respect to the
weight function w(x; z) on the interval (α, β), with −∞ ≤ α < β ≤ ∞, i.e.,∫ β

α

pm(x) pn(x)w(x; z) dx = δnm, (10.37)

for n,m = 1, 2, . . ., then the pn(x)’s also satisfy the three-point recurrence
relation

an+1(z)pn+1(x) = [x− bn(z)]pn(x) − an(z)pn−1(x), (10.38)

for n = 1, 2, . . . (cf. [158]). If w(−x) = w(x) for all real x, then bn ≡ 0 and so
(10.38) reduces to

an+1(z)pn+1(x) = xpn(x) − an(z)pn−1(x). (10.39)

Example 10.5. Consider the orthogonal polynomials pn(x) with respect to the
weight function w(x; z) = exp(1

3x
3 + zx), then the orthogonal polynomials

pn(x) satisfy ∫ 0

−∞
pm(x) pn(x) exp(1

3x
3 + zx) dx = δnm. (10.40)

Here an and bn satisfy the difference equations

a2
n + a2

n+1 + b2n + z = 0, n + a2
n(bn + bn−1) = 0, (10.41)
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and the differential-difference equations

an
dan

dz
= a2

nbn + 1
2n,

dbn

dz
= −b2n − 2a2

n − z. (10.42)

Eliminating an in (10.41) yields

n + 1
bn+1 + bn

+
n

bn + bn−1
= b2n + z, (10.43)

which is an alternative form of discrete PI [56], whilst eliminating an in (10.42)

d2bn

dz2 = 2b3n + 2zbn − 2n− 1, (10.44)

which is equivalent to PII.

Example 10.6. Consider the orthogonal polynomials pn(x) with respect to the
weight function w(x; z) = exp(− 1

4x
4 − zx2), then the orthogonal polynomials

pn(x) satisfy ∫ ∞

−∞
pm(x) pn(x) exp(− 1

4x
4 − zx2) dx = δnm. (10.45)

Here bn = 0 and un = a2
n satisfy the differential-difference equation

dun

dz
= un(un−1 − un+1), (10.46)

which is the Kac-van Moerbeke equation [120], and the difference equation

(un+1 + un + un−1)un = n− 2zun, (10.47)

which is discrete PI equation (dPI) [57, 58]. From (10.46) and (10.47) we
obtain

2un+1 =
n

un
− 1

un

dun

dz
− 2z − un, (10.48a)

2un−1 =
n

un
+

1
un

dun

dz
− 2z − un. (10.48b)

Letting n → n+1 in (10.48b) and then eliminating un+1 in (10.48a) yields PIV

with (α, β) = (− 1
2n,− 1

2n
2). We remark that Fokas, Its and Kitaev [57, 58]

demonstrated a relationship between solutions of PIV and dPI (10.47) in the
context of two-dimensional quantum gravity.

Recently a link between orthogonal polynomials with discontinuous weights
and the Painlevé equations has been given by Chen and Pruessner [28].
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11 Discussion

This paper gives an introduction to some of the fascinating properties which
the Painlevé equations possess including connection formulae, Bäcklund trans-
formations, associated discrete equations, and hierarchies of exact solutions.
I feel that these properties show that the Painlevé equations may be thought
of as nonlinear analogues of the classical special functions.

There are still several very important open problems relating to the fol-
lowing three major areas of modern theory of Painlevé equations.

(i) Asymptotics and connection formulae for the Painlevé equations using the
isomonodromy method, for example the construction of uniform asymp-
totics around a nonlinear Stokes ray (cf., [106, 135, 136]).

(ii) Bäcklund transformations and exact solutions of Painlevé equations; a
summary of many of the currently known results is given in [83].

(iii) The relationship between affine Weyl groups, Painlevé equations, Bäcklund
transformations and discrete equations; see, for example, [173], for an in-
troduction to this topic.

The ultimate objective is to provide a complete classification and unified struc-
ture for the exact solutions and Bäcklund transformations for the Painlevé
equations (and the discrete Painlevé equations) — the presently known re-
sults are rather fragmentary and non-systematic.
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64. R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit
drei im endlich gelegene wesentlich singulären Stellen, Math. Ann. 63 (1907),
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68. B. Gambier, Sur les équations différentielles du second ordre et du premier
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73. V.I. Gromak, Solutions of Painlevé’s fifth equation, Differential Equations 12
(1976), 519–521.

74. V.I. Gromak, One–parameter systems of solutions of Painlevé’s equations, Dif-
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plications, in “The Painlevé Property, One Century Later” [R. Conte, Edi-
tor], CRM series in Mathematical Physics, Springer-Verlag, Berlin, pp. 687–734
(1999).
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the Complex Plane”, Studies in Math., vol. 28, de Gruyter, Berlin, New York
(2002).

84. V.I. Gromak and N.A. Lukashevich, Special classes of solutions of Painlevé’s
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second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rat.
Mech. Anal. 73 (1980), 31–51.

92. B. Helffer and F.B. Weissler, On a family of solutions of the second Painlevé
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are meromorphic, J. Anal. Math. 79 (1999), 345–377.

95. A. Hinkkanen and I. Laine, Solutions of a modified third Painlevé equation are
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Painlevé Equations — Nonlinear Special Functions 409

171. Y. Murata, Rational solutions of the second and the fourth Painlevé equations,
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178. V.Yu. Novokshënov, A modulated elliptic function as a solution of the second
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Painlevé equation in different directions towards infinity, Diff. Eqns. 23 (1987),
569–576.

210. T. Tamizhmani, B. Grammaticos, A. Ramani and K.M. Tamizhmani, On a
class of special solutions of the Painlevé equations, Physica A295 (2001),
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224. H. Umemura, Painlevé equations and classical functions, Sugaku Expositions
11 (1998), 77–100.

225. H. Umemura, On the transformation group of the second Painlevé equation,
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Nagoya Math. J. 151 (1998), 1–24.

229. A.P. Vorob’ev, On rational solutions of the second Painlevé equation, Differ-
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Akad. Nauk. BSSR Ser. Fiz. Tkh. Nauk. 3 (1959), 30–35 [in Russian].

233. Y. Yamada, Special polynomials and generalized Painlevé equations, in “Com-
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Painlevé equations, 333, 334

discrete, 343, 344, 399
Hamiltonian structure, 338
rational solutions, 347
transcendental solutions, 347
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Szegő kernel, 128, 212

left, 225
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