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Introduction

This book is intended for readers who are familiar with the basics of elementary
complex function theory, i.e. the topics that are usually covered in an intro-
ductory course on the theory of complex functions. Additionally, it would be
useful for the reader to be familiar with the theory of elliptic functions and the
theory of elliptic modular functions. These theories were treated in detail in
the textbook Complex Analysis by Rolf Busam and the present author ([FB]
in the reference list of the present book). There will be many cross-references
to that book.

The goal of this book is to outline the new epoch of classical complex analy-
sis, which was shaped decisively by Riemann. More than a half of this volume,
Chaps. I–IV, is devoted to the theory of Riemann surfaces.

The theory of Riemann surfaces provides a new foundation for complex
analysis on a higher level. As in elementary complex analysis, the subject
matter is analytic functions. But the notion of an analytic function will have
now a broader meaning. The domains of definition are not exclusively open
parts of the complex plane or the Riemann sphere, but more general surfaces.
Such functions automatically come up when one wants to describe an a priori
multivalued function such as f(z) =

√
z4 + 1 completely by a single-valued

function. The natural domain of definition of this function f will turn out to
be a twofold covering of the sphere which has the shape of a torus.

This example shows in outline that, in the theory of Riemann surfaces, we
have to struggle with topological problems. The notion of “topology” here has
a double meaning.

First, in the present-day mathematical world, topology is a universal lin-
guistic tool for addressing questions of convergence in a context that is as broad
as possible. This purpose is served by the notion of a topological space and de-
rived notions such as “open set”, “closed set”, “neighborhood”, “continuity”,
“convergence”, and “compactness”, just to give a few important examples,
similarly to set theory , which is also a universally valid linguistic tool in math-
ematics. Readers of the first volume of our book have probably gained more
mathematical experience in the meantime, so we can assume that they are fa-
miliar with the language of topological spaces. For the sake of completeness,
we nevertheless introduce the fundamental terms of this language in an intro-
ductory section (I.0). This contains, very briefly, all of what we need. Most of
the simple proofs will be skipped.
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A second aspect of topology is that it is a mathematical discipline for in-
vestigating nontrivial geometric problems . For example, it is an important
geometric fact that every compact, orientable surface is homeomorphic to a
sphere with p handles. The number p is a topological invariant of the sur-
face which determines its topological type. Topological theorems of significant
mathematical substance will be derived completely in this book. Besides the
topological classification of compact oriented surfaces, we shall also give an
outline of covering theory. In particular, the universal covering and its relation
to the fundamental group will be treated.

By the way, the development of topology was related to the fact that it is
advantageous in the theory of Riemann surfaces, as well as providing a linguistic
tool and means to attack serious geometric problems in the theory.

One of the main achievements of the theory of Riemann surfaces was that it
enabled a proof of the Jacobi inversion theorem and, moreover, opened a deep
understanding of it. We shall give a complete proof of the inversion theorem
in this volume.

In a similar way to that in which meromorphic functions with two indepen-
dent periods, called elliptic functions, arise in the inversion of elliptic integrals,
we shall be led to meromorphic functions of several complex variables z1, . . . zp
with 2p independent periods. Such functions are called abelian functions.

The inversion theorem is the prelude to a new mathematical development.
It is necessary now to fix the notion of a meromorphic function of several
complex variables. So, we are forced to establish a theory of complex functions
of several variables. We can then introduce the notion of an abelian function
and develop a theory of them which generalizes the theory of elliptic functions.
One of the main results of this theory is that the field of abelian functions
is finitely generated. It is an algebraic function field of transcendental degree
m ≤ p. Unlike the case p = 1, we can have m = p in the case p > 1 only under
very restrictive conditions. The Riemann period relations must hold. These
relations are satisfied for the abelian functions which arise from the inversion
of abelian integrals. It is not only for this reason that the case m = p is the
most interesting one.

By studying the manifold of all lattices L ⊂ C, we are led to the elliptic
modular functions. In the same manner, abelian functions lead us to a theory
of modular functions of several complex variables. In the last chapter of this
book, we give an introduction to this theory, which has been kept as simple as
possible but nevertheless leads to quite deep results.

Therefore this book is a continuation of [FB] on a higher level. The usual
Cauchy–Weierstrass theory of complex functions corresponds to the theory of
Riemann surfaces and to the foundation of some basics of the theory of com-
plex functions of several complex variables. The theory of elliptic functions is
replaced by the theory of abelian functions, and the theory of elliptic modular
functions by the theory of Siegel’s modular functions.

XII



Introduction

We have tried to proceed in as elementary a way as possible, to give com-
plete proofs and to develop all that is needed. Even small excursions into
algebra to develop the necessary algebraic tools are included.

It is a great pleasure for me to thank the co-author of the first volume, Rolf
Busam, for his help with the figures and with the general foundations of the
theory.

XIII





I. Riemann Surfaces

The first four chapters are devoted to the theory of Riemann surfaces. It can be
assumed that readers are already acquainted with several Riemann surfaces even if
they are not familiar with the notion of a Riemann surface. In the book Complex
Analysis [FB], the following examples occurred:

1) The torus C/L, L ⊂ C a lattice ([FB], Chap.V).

2) Modular spaces H/Γ, Γ ⊂ SL(2, Z) a congruence subgroup ([FB], Chap. VI).

3) Some plane affine or projective algebraic curves ([FB] Appendix to Sect. V.3).

A central aim of our description of the theory of Riemann surfaces is to treat these
examples from a higher point of view and to deepen them. We shall be led to new
insights. For example, we shall obtain dimension formulae for spaces of elliptic mod-
ular forms, which cannot be obtained by means of the elementary methods of [FB].
But the theory of Riemann surfaces is not at all exhausted by these examples.

In Chap. I, we shall treat the elementary theory of Riemann surfaces. This con-
tains the basic definitions, i.e. the language of Riemann surfaces will be developed
and important examples will be treated.

The second chapter is devoted to central constructive problems. It turns out to
be useful to consider harmonic functions instead of analytic ones. The real parts of
analytic functions are harmonic, and each harmonic function is at least locally the
real part of an analytic function. We have to investigate boundary value problems and
singularity problems for harmonic functions. Our main tool for their construction will
be the alternating method of Schwarz.

The subject of Chap. III is the theory of uniformization. At its center stands
the uniformization theorem, which states that a simply connected Riemann surface is
conformally equivalent to the Riemann sphere, the complex plane, or the unit disk.

The big Chap. IV is devoted the theory of compact Riemann surfaces. It turns
out that this theory is equivalent to the theory of algebraic functions of one variable.
Historically, it was a big problem to generalize the theory of elliptic integrals to the
theory of integrals of arbitrary algebraic functions. Riemann surfaces turned out to
be a suitable instrument for solving this problem. At the center of the theory there
are prominent theorems such as the Riemann–Roch theorem, Abel’s theorem, and
Jacobi’s inversion theorem.

We shall now give a more detailed description of the present chapter. We start
(Sect. 0) with a collection of some basic notions in topology. This concerns only topol-
ogy as a linguistic device, as nowadays it is used in most mathematical disciplines.
We can assume that the reader is more or less acquainted with these notions. To have
a safe foundation we have collected together the necessary definitions and properties,
but the mostly simple proofs have been skipped.

1
Higher Modular Functions, Universitext, DOI 10.1007/978-3-642-20554-5_1, 
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2 I. Riemann Surfaces

In Sect. 1, we introduce as quickly as possible the notion of a Riemann surface
and the notion of an analytic map between Riemann surfaces. The simplest examples
of Riemann surfaces are the Riemann sphere and tori.

In Sect. 2 we introduce an example of great historical significance, the analytisches
Gebilde. Gebilde means something like “shaped object”. This is a Riemann surface
which arises in a natural way if an analytic function is analytically continued along
paths. The point is that the continuation may depend on the choice of the path.
When one considers all possible analytic continuations one obtains something like a
multivalued function, such as

√
z, which can be considered as a two-valued function.

For such a multivalued function a Riemann surface can be constructed, which covers
the complex plane and is such that the originally multivalued function appears as
a single-valued function on this covering. The analytisches Gebilde is an example
of an abstract topological construction. The language of topological spaces finds a
justification here. Nevertheless, one should not overrate this example. We shall make
no use of it in the following theory and its applications. Hence it can be skipped by
any reader who wants to proceed as quickly as possible.

In Sect. 3, an example of fundamental importance occurs, the Riemann surface of
an algebraic function. More precisely, we shall associate a compact connected Riemann
surface with an algebraic function of one variable. In Chap. IV we shall see that one
can obtain all compact connected Riemann surfaces in this way. A priori, algebraic
functions are multivalued. Hence it is natural to use the analytisches Gebilde for the
construction of the surface. This is possible, and we describe this approach in Sect. 3.
Independently, one can use a different approach, where we consider the algebraic
curve which is associated with the algebraic function. To our mind, this a more
elegant way. In both cases, in the first instance we obtain a surface which is not yet
compact. It is more difficult to compactify it. In the literature, the compactification
usually is managed by adding so-called Puiseux elements. This approach is concrete
and explicit. But the pure topological background remains hidden. It rests on a pure
topological proposition, a special case of covering theory:

Let f : X → E
.

be a proper and locally topological map of a nonempty connected
Hausdorff space X into the punctured disk. Then there exist a topological map σ :
X → E

.
and a natural number n such that f corresponds to

E
. −→ E

.
, q �−→ qn,

i.e. f(x) = σ(x)n.

Hence the abstract space X has a hole. It is natural to extend the space X by adding
an additional point, X̃ = X∪{a}, and to extend the maps f and σ to maps f̃ : X̃ → E

and σ̃ : X̃ → E by f̃(a) = 0 and σ̃(a) = 0. One can topologize X̃ in such a way that σ̃
gets a topological map. The map f̃ is still proper but is no longer locally topological.

It seemed worthwhile to us to work out this special case of covering theory in
connection with the construction of the compact Riemann surface of an algebraic
function. Covering theory will not be treated in full generality until Chap. III.
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0. Basic Topological Notions

A topology T on a set X is a system of subsets with the following properties:

1) ∅ , X ∈ T .
2) The intersection of finitely many sets from T belongs to T .
3) The union of arbitrarily many sets from T belongs to T .
A topological space is a pair (X, T ) consisting of a set X and a topology T on
X . Since it is usually clear from the context which topology is being considered
on the given set X at any moment, one usually writes X instead of (X, T ),

“X = (X , T )”.

The elements of T are called the open sets of X.

We now describe some important construction principles for a topology.

I Metric Spaces and Their Topology

A metric d on a set X is a map

d : X ×X −→ R≥0

with the properties
a) d(a, b) = 0⇐⇒ a = b;
b) d(a, b) = d(b, a);
c) d(a, c) ≤ d(a, b) + d(b, c) (a, b, c ∈ X).
We associate the metric space (X, d) with the “usual topology”. A subset
U ⊂ X is called open if for every a ∈ U there exists ε > 0 such that

Uε(a) ⊂ U (Uε(a) := {x ∈ X; d(a, x) < ε}).

Example. The real line, the complex plane C, or, more generally, R
n can be

equipped with the Euclidean metric and henceforth with a structure in the
form of a topological space.

II The Induced Topology

Let Y be a subset of a topological space X = (X,T ). Then Y can be equipped
with a topology T |Y , which is called the induced topology or subspace topology.
A subset V ⊂ Y belongs to T |Y iff there exists a subset U ⊂ X , U ∈ T , such
that

V = U ∩ Y.

If Y already is an open subset of X, this simply means V ∈ T .
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Y = R × {0}

open in X = R
2

open in Y

III The Quotient Topology

Let X be a topological space and let f : X → Y be a map onto a set Y . Then
Y is equipped with the quotient topology . A subset V ⊂ Y is called open if its
preimage U := f−1(V ) is open in X .
Special case. Let “∼” be an equivalence relation on X and Y , the set of all
equivalence classes, and let f : X → Y be the canonical projection. Then Y is
called the quotient space of X with respect to the given equivalence relation.
Examples.
a) The torus X = C/L (L ⊂ C a lattice).
b) The “modular space” H/ SL(2, Z).

IV The Product Topology

Let X1, . . . , Xn be finitely many topological spaces. The Cartesian product

X = X1 × · · · ×Xn

carries the product topology .

A subset U ⊂ X is called open if, for every point a ∈ U , there exist open
subsets U1 ⊂ X1, . . . , Un ⊂ Xn such that a ∈ U1 × · · · × Un ⊂ U :

X1

X2

U2

U1

.
a U
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When R
n is equipped with the topology which

comes from the Euclidean metric, then one gets the
product topology of n copies of the real line. This
follows from the well-known fact that the Euclidean
metric and the maximum metric on R

n are equiva-
lent (see Exercise 1).

Derived Topological Notions

a) For subsets of a topological space X , we can say the following:

1) A subset A ⊂ X is called closed if its complement X −A is open.

2) A subset M ⊂ X is called a neighborhood of a
point a ∈ X if there exists an open subset U ⊂ X
with a ∈ U ⊂M .

..
M

.
3) A point a ∈ X is called a boundary point of M ⊂

X if, in any neighborhood of a, one can find points
of M and points in the complement X −M .

Notation.
∂M := set of boundary points,
M̄ := M ∪ ∂M.

We can show that M̄ is the smallest closed subset of X which contains M , i.e.

M̄ =
⋂

M⊂A⊂X,
A closed

A.

Furthermore, we have
M closed ⇐⇒M = M̄ .

We call M̄ the closure of M .

b) For mappings f : X → Y between topological spaces, the map f is called
continuous at a point a ∈ X if the preimage f−1(V (b)) of any neighborhood
of b := f(a) is a neighborhood of a (in X). We call f continuous when f is
continuous at all points.
The following properties are equivalent:
1) f is continuous,
2) the preimage of an arbitrary open set in Y is open (in X),
3) the preimage of an arbitrary closed set in Y is closed (in X).
The composition of two continuous maps

X
f→ Y

g→ Z

is continuous.
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Universal Properties of the Constructed Topologies

The Induced Topology

Let Y be a subset of a topological space X which has been equipped with the
induced topology. A map f : Z → Y from a third topological space Z into Y
is continuous iff its composition with the natural inclusion i,

i ◦ f : Z −→ X (i : Y ↪→ X , i(y) = y),

is continuous. In particular, i is continuous:

Z
f ��

i◦f ���
��

��
��

Y

i

��
X

The Quotient Topology

Let f : X → Y be a surjective map of topological spaces where Y carries
the quotient topology. A map h : Y → Z into a third topological space Z is
continuous if and only if the composition

h ◦ f : X −→ Z

is continuous:

X
f ��

h◦f ���
��

��
��

Y

h

��
Z

(In particular, f is continuous.)
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The Product Topology

Let X1, . . . , Xn be topological spaces and let

f : Y −→ X1 × · · · ×Xn

be a map from another topological space Y into the Cartesian product, which
has been equipped with the product topology. The map f is continuous iff all
its components

fj = pj ◦ f : Y −→ Xj ,

pj : X1 × · · · ×Xn −→ Xj j th projection,

are continuous:

Y
f ��

pν◦f �������������� X1 × · · · ×Xn

pν

��
Xν

(In particular, the projections pj are continuous.)

Topological Mappings

A map f : X → Y of topological spaces is called topological if it is bijective
and if f and f−1 are both continuous. Two topological spaces X,Y are called
topologically equivalent (or homeomorphic) if there exists a topological map
f : X → Y .

Examples
(The following two examples will be treated in more detail in Sect. 1.)

1) The 2-sphere

S2 = {x ∈ R
3; x2

1 + x2
2 + x2

3 = 1}

and the Riemann sphere are homeomorphic,

S2 
 C̄ = C ∪ {∞}.

This can be shown, for example, by means of the stereographic projection (see
[FB], Chap. III, in the appendix to Sects. 4 and 5 after Theorem A.8):
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→∞north pole×

2) When L ⊂ C is a lattice, the torus C/L is homeomorphic to the Cartesian
product of two circles,

C/L = torus 
 S1 × S1.

Some Properties of Topological Spaces

1) A topological space X is called a Hausdorff space if for any two distinct
points a, b ∈ X there exist disjoint neighborhoods U(a) and U(b) (such that
U(a) ∩ U(b) = ∅).
2) A topological space X is called compact if it is Hausdorff and if it possesses
the Heine–Borel covering property: when

X =
⋃

j∈I
Uj

is an arbitrary covering of X by open subsets, there exists a finite subset J ⊂ I
such that

X =
⋃

j∈J
Uj .

A subset Y of a topological space X is called compact if it is a compact topo-
logical space after it has equipped with the induced topology.
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Some Properties of Compact Spaces

a) Compact subsets are closed.
b) A closed subset of a compact space is compact.
c) When f : X → Y is a continuous map between Hausdorff spaces, the image

f(K) of a compact subset K ⊂ X is compact.
d) Let X be compact, let Y a Hausdorff space, and let f : X → Y be bijective

and continuous. Then f is topological.
e) A Cartesian product X1 × · · · ×Xn of compact spaces is compact.

Locally Compact Spaces and Proper Mappings

A topological space X is called locally compact if it is Hausdorff and if each
point admits a compact neighborhood.

A continuous map
f : X −→ Y

of locally compact spaces X and Y is called proper if the preimage f−1(K) of
a compact set K ⊂ Y is compact.

We now formulate two important facts for proper maps.

0.1 Remark. Let f : X → Y be a proper map. Then the image f(A) of a
closed subset A ⊂ X is closed.

Proof . In a locally compact space, a set is closed iff its intersection with any
compact subset is compact. So, let K ⊂ Y be compact. Obviously, K ∩ f(A)
is the image of the compact set A ∩ f−1(K) and hence is compact. ��

0.2 Remark. Let f : X → Y be a proper map. Let K ⊂ Y be a compact set
and let U ⊂ X be an open subset which contains the preimage of K,

U ⊃ f−1(K).

Then there exists an open subset

V ⊂ Y, K ⊂ V,

with the property
f−1(V ) ⊂ U.

Proof. The set X − U is closed. Since f is proper, f(X − U) is closed in Y .
We can take V = Y − f(X − U). ��
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Convergent Sequences

A sequence (an) in a Hausdorff space X converges to a ∈ X if for each neigh-
borhood U(a) there exists a number N ∈ N with

an ∈ U for n ≥ N.

We write, for brevity,
an −→ a for n −→∞.

The limit a is uniquely determined (because of the Hausdorff property).
A map f : X → Y between Hausdorff spaces is called sequence continuous

if
an −→ a =⇒ f(an) −→ f(a).

A subset A ⊂ X of a topological Hausdorff space is called sequence closed if
for every sequence

[an −→ a, an ∈ A for all n] =⇒ a ∈ A,

and it is called sequence compact if any sequence in A admits a cumulation
point in A. (A point a is called a cumulation point of a sequence (an) if there
exists a subsequence, which converges to a.)

We can show that

continuous =⇒ sequence continuous,
closed =⇒ sequence closed,

compact =⇒ sequence compact.

The inverse direction is true for Hausdorff spaces with a countable basis of the
topology .

This means the following.
There exists a sequence U1, U2, U3, . . . of open subsets such that every open
subset U can be written as the union of certain sets Un. Every subset of X
then has a countable basis of the topology as well.
Example. The spaces R

n. Take Euclidean balls with a rational radius around
centers which have a rational radius.

Connectedness

A topological space X is called arcwise connected if any two points of X can be
joined by a curve in X . (A curve in X is a continuous map from a real interval
into X.)

A topological space X is called connected if one the following two equivalent
conditions is satisfied:
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1) Every locally constant map f : X → M into any set M is constant. It is
sufficient to take for M any fixed set which contains at least two elements.

2) When X = U ∪ V is the union of two disjoint open subsets U, V , then U or
V is empty (hence V = X or U = X).

By the mean value theorem, every real interval is connected. As a consequence,
every arcwise connected space is connected. Usually, the reverse direction is
false. But for manifolds, and in particular for surfaces, see below.

Arc Components

Two points of a topological space X are called equivalent iff they can be joined
by a curve. The equivalence classes with respect to this equivalence relation
are called arc components of X. They are arcwise connected.

A (topological) manifoldX is a Hausdorff space such that every point admits
an open neighborhood which is homeomorphic to an open subset of some R

n.
A nontrivial result states that n is unique, but we shall not make use of this.
We obviously have the following result.

Let X be a manifold. Then the arc components are open in X.

Hence the arc components are manifolds themselves. The arc components of a
manifold are called connected components.

As a special case, we can see that a manifold is connected if and only it is
arcwise connected. In the theory of manifolds, it is usually sufficient to restrict
ourselves to connected manifolds.

Exercises for Sect. I.0

1. Two metrics d, d′ on a set X are called (strictly) equivalent if there exist constants
c, c′ with the property

cd(x, y) ≤ d′(x, y) ≤ c′d(x, y) (x, y ∈ X).

Show that equivalent metrics define the same topology.

Example. The maximum metric and the Euclidean metric of R
n are equivalent;

more precisely,

max
1≤ν≤n

|xν − yν | ≤

√√√√
n∑

ν=1

(xν − yν)2 ≤
√
n max

1≤ν≤n
|xν − yν |.
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2. Let T and T ′ be two topologies on a set X. We say that T is finer than T ′ or
T ′ is coarser than T if T ′ ⊂ T , i.e. every open subset with respect to T ′ is open
with respect to T . Show that the following statements are true:

a) Let X = (X, T ) be a topological space Y ⊂ X which has been equipped with
the induced topology T |Y , and let

j : Y −→ X, y �−→ y,

be the canonical injection. Then T |Y is the coarsest topology on Y such that
the canonical injection is continuous.

b) The product topology on a product X = X1 × . . .×Xn of topological spaces
Xj is the coarsest topology on X such that the projections

pj : X −→ Xj , (x1, . . . , xn) �−→ xj ,

are continuous.

c) Let f : X → Y be a surjective mapping of a topological space onto a set Y .
The quotient topology on Y is the finest topology for which f is continuous.

3. Show that

a) every proper injective map R → R is surjective;

b) every proper analytic map C → C is surjective.

4. Let X be a Hausdorff space with a countable basis of the topology and such that
the projection

X × C̄ −→ C̄

is closed. Show that X is compact.

Hint. Argue indirectly and assume that there exists a sequence (an) without
a cumulation point. Then the set {(an, n); n ∈ N} is closed. By assumption, its
image in C̄ is closed.

5. From the previous exercise, deduce that the following is true.

Let X,Y be locally compact spaces with a countable basis of the topology. A
continuous map f : X → Y is proper if and only if it is universally closed. This
means that the map

X × Z −→ Y × Z; (x, z) �−→ (f(x), z),

is closed for every Hausdorff space Z.
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1. The Notion of a Riemann Surface

Riemann surfaces are surfaces in the sense of topology with an additional struc-
ture. Surfaces are special manifolds (Sect. 0). For the sake of completeness,
we introduce again the notion of a (topological) surface. In the following, X
denotes a topological Hausdorff space.

1.1 Definition. A (two-dimensional topological) chart ϕ on X is a topolog-
ical map

ϕ : U −→ V

of an open subset U ⊂ X onto an open subset V ⊂ C of the complex plane.

Let

ϕ : U −→ V, ψ : U ′ −→ V ′

be two charts on X . Then we can consider the maps

ϕ0 : U ∩ U ′ −→ ϕ(U ∩ U ′),
ψ0 : U ∩ U ′ −→ ψ(U ∩ U ′),

ϕ0(a) = ϕ(a),
ψ0(a) = ψ(a).

In contrast to the severe set-theoretic convention, we denote the map ψ0 ◦ϕ−1
0

simply by ψ ◦ ϕ−1:

ψ ◦ ϕ−1 : ϕ(U ∩ U ′) −→ ψ(U ∩ U ′).

Obviously, ϕ(U ∩ U ′) , ψ(U ∩ U ′) are open subsets of the complex plane. The
map ψ ◦ ϕ−1 is called the chart transformation. It is only of interest when the
intersection U ∩U ′ is not empty (but can be considered also in this case, since
the empty set is very patient).

By definition, a (topological) surface is a Hausdorff space such that every
point a ∈ X admits a chart, such that a is contained in its domain of definition.
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U

U ′

ψ
ϕ−1

ψ ◦ ϕ−1

V ′
V

1.2 Definition. A (two-dimensional) atlas A on a topological space X is
a set of (two-dimensional) charts ϕ : Uϕ → Vϕ such that their domains of
definition cover X:

X =
⋃

ϕ∈A
Uϕ.

When there exists a two-dimensional atlas on the topological space X, then X
looks locally like the complex plane C 
 R

2.

So a (topological) surface is a Hausdorff space which admits a (two-
dimensional) atlas.

1.3 Definition. Two charts ϕ,ψ on a surface are called analytically com-
patible if the chart transformation

ψ ◦ ϕ−1 : ϕ(U ∩ U ′) −→ ψ(U ∩ U ′)

is biholomorphic (= conformal).

1.4 Definition. An atlas A on a surface X is called analytic if any two
charts from A are analytically compatible.

Of course, a given topological surface may admit many atlases if there exists
one. When A and B are analytic atlases on X , then it may happen that A∪B
is also an analytic atlas. This means that every chart of A is analytically
equivalent to any chart of B. Such atlases will do the same job. Therefore we
shall call them “essentially equal”.
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1.5 Definition. Two analytic atlases A, B are called essentially equal if
A ∪ B is analytic as well.

Obviously, the relation “essentially equal” is an equivalence relation. We denote
the class of all atlases which are essentially equal to A by [A].

1.6 Definition. A Riemann surface is a pair (X, [A]) which consists of a
topological surface X and a full class of essentially equal analytic atlases.

Hence Riemann surfaces are topological surfaces with a distinguished analytic
atlas. Two analytic atlases define the same Riemann surface if they are essen-
tially equal. We shall see that on a given topological surface there can exist
many analytic atlases which are essentially different and hence define different
structures as a Riemann surface.

We allow the notation (X,A) instead of (X, [A]). But we must bear in mind
that (X,A) and (X,B) are equal when A and B are analytically equivalent. As
a rule, it will be clear from the context which analytic atlas is being considered
at any moment. In this case we simply write X = (X, [A]).

The definition of analytic compatibility has been devised such that notions
from complex analysis of the complex plane, which are invariant under confor-
mal transformation, can be transferred to Riemann surfaces. A fundamental
example of this is the notion of an analytic map, which we shall give our at-
tention to now.

Let f : X −→ Y be a continuous map between Riemann surfaces X =
(X,A) and Y = (Y,B). We consider two charts

ϕ : Uϕ −→ Vϕ from A,
ψ : Uψ −→ Vψ from B.

Using somewhat sloppy notation, we can consider the function

fϕ,ψ = ψ ◦ f ◦ ϕ−1.

Its domain of definition is an open part of the complex plane, namely

ϕ(f−1(Uψ) ∩ Uϕ) ⊂ Vϕ.

It takes values in Vψ:

fϕ,ψ : ϕ(f−1(Uψ) ∩ Uϕ) −→ Vψ, fϕ,ψ(z) = ψfϕ−1(z).
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ψϕ−1

f

ψ ◦ f ◦ ϕ−1

Uψ

Vψ

Vϕ

Uϕ
f−1Uψ

ϕ(Uϕ ∩ f−1(Uψ))

1.7 Lemma. Let f : X −→ Y be a continuous map between topological
surfaces. Assume that analytic atlases A on X and B on Y have been distin-
guished. The following two statements are equivalent.

a) There exists a pair of charts ϕ ∈ A such that a ∈ Uϕ and ψ ∈ B such that
b ∈ Uψ. The function fϕ,ψ (which is defined on an open neighborhood of
ϕ(a)) is analytic in an open neighborhood of ϕ(a).

b) Condition a) holds analogously for every pair of charts ϕ ∈ A such that
a ∈ Uϕ and ψ ∈ B such that b ∈ Uψ.

Additional remark. Conditions a) and b) carry over from A and B to any
pair of essentially equivalent atlases A′, B′.

The proof is an immediate consequence of the definition of analytic compati-
bility. ��

1.8 Definition. A continuous map f : X → Y of Riemann surfaces X =
(X,A), Y = (Y,B) is called analytic at a point a ∈ X if the conditions a) and
b) in Lemma 1.7 are satisfied.

It is obvious that Lemma 1.7 is unavoidable for a meaningful definition of the
notion of an “analytic map”. The notion of analytic compatibility has been
devised in such a way that Lemma 1.7 holds:
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The notion of a Riemann surface has been molded in such a
way that one can define analytic mappings between Riemann
surfaces in a meaningful way .

A map f : X → Y between Riemann surfaces is called analytic (or holomorphic)
if it is continuous and if it is analytic at any point.

Some Simple Permanence Properties

1) The identity map
idX : X −→ X

is analytic.

2) The composition of analytic maps between Riemann surfaces

X
f−→ Y

g−→ Z

is analytic.

1.9 Definition. A map
f : X −→ Y

between Riemann surfaces is called biholomorphic or conformal if it is topo-
logical and if f and f−1 are both analytic.

As in the case of open subsets of the complex plane, the map f−1 is automat-
ically analytic when f is bijective and analytic. This is a statement of a local
nature, and can be reduced to the case of open subsets of C by means of charts
(see [FB], Sect. IV.4.2). See also Exercise 4 in this section.

Two Riemann surfaces X,Y are called biholomorphically equivalent or con-
formally equivalent if there exists a biholomorphic map f : X → Y . They are
then also topologically equivalent. The reverse statement is false.

Simple Examples of Riemann Surfaces

To define a Riemann surface, one has to find an analytic atlasA on a topological
surface X.

Let U ⊂ X be an open subset of a Riemann surface X = (X,A) and let
ϕ : Uϕ → Vφ be a chart on X . We can then consider the restricted chart

ϕ|U : U ∩ Uϕ ∼−→ ϕ(U ∩ Uϕ).
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Obviously, the set
A|U := {ϕ|U ; ϕ ∈ A}

is an analytic atlas on U and thus provides U with a structure in the form of
a Riemann surface. Of course, the class [A|U ] depends only on the class [A].
We shall always equip an open subset with this structure.

A map f : Y → U is analytic if and only if its composition with the natural
inclusion i : U ↪→ X is analytic.

We have, furthermore, the following result. Let f : X → Y be a map
between Riemann surfaces and let

X =
⋃

i∈I
Ui

be a covering of X by open subsets. Then f is analytic iff all restrictions

f |Ui : Ui −→ Y

are analytic.

The Complex Plane as a Riemann Surface

We can consider the “identical chart”

idC : C −→ C.

This forms an obviously analytic atlas and as such establishes C with a struc-
ture in the form of a Riemann surface. As a consequence, every open part
D ⊂ C is equipped with such a structure. The identity idD : D → D gives an
analytic atlas.

Let X = (X,A) be an arbitrary Riemann surface. An analytic map

f : X −→ C

is called an analytic function. This means that for any chart ϕ ∈ A, the
function

fϕ := f ◦ ϕ−1 : Vϕ −→ C

is analytic in the usual sense. In the special case of an open subset X ⊂ C, we
of course obtain the usual notion of an analytic function.

We denote by O(X) the set of all analytic functions on X. Obviously, the
following are true:

1) f, g ∈ O(X) =⇒ f + g , f · g ∈ O(X).
2) The constant functions are in O(X).
In particular, O(X) is a C-algebra.
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The Riemann Sphere as Riemann Surface

Recall ([FB], Appendix to Sects. III.4 and III.5) that a subset U ⊂ C̄ = C∪{∞}
is called open iff U ∩C is open and if, in the case∞ ∈ U , there exists a number
C > 0 with the property

z ∈ C, |z| > C =⇒ z ∈ U.

Obviously, this defines a topology which equips C̄ with a structure in the form
of a Hausdorff space. When this topology is induced on the (open) subset C,
we obtain the usual topology of the complex plane.

We define two charts on C̄:

C̄ − {∞} = C
idC−→ C.1)

C̄ − {0} −→ C. z �−→ 1/z (1/∞ = 0).2)

The chart transformation is

C − {0} −→ C − {0}, z �−→ 1/z.

This is a conformal map. Hence the two charts define an analytic atlas. In this
way, we obtain a structure in the form of a Riemann surface on C̄.

Now we can consider holomorphic maps f : X → C̄ from an arbitrary
Riemann surface into the Riemann sphere. Such maps have already been con-
sidered in [FB] in the appendices to Sects. III.4 and III.5, where we introduced
meromorphic functions. We reformulate Definition A1 given there.

1.10 Remark. Let U ⊂ C be an open subset of the complex plane. For a
map f : U → C̄ from U into the Riemann sphere, the following two statements
are equivalent:

1) f is a meromorphic function.
2) f is an analytic map of Riemann surfaces and the set of points f−1({∞})

which map to ∞ is discrete (in U).

This simple observation leads us to the following definition.

1.11 Definition. A meromorphic function f on a Riemann surface X is an
analytic map

f : X −→ C̄

such that the set of points which map to ∞, f−1({∞}), is a discrete subset of
X.
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Of course, the constant function f(z) =∞ is an analytic map but not a mero-
morphic function when X is not empty.

We denote by M(X) the set of all meromorphic functions on X. If f, g ∈
M(X) are two meromorphic functions, then we can define in an obvious way
(compare [FB], Chap. III, Appendix A) their sum and product

f + g, f · g ∈M(X).

In particular, M(X) is a ring. If f is a meromorphic function whose set of
zeros is discrete, one can define the meromorphic function 1/f . The set of all
holomorphic functions O(X) can be embedded into M(X):

O(X) ↪→M(X),
f �→ i ◦ f (i : C ↪→ C̄ canonical inclusion).

The image consists of all meromorphic functions which do not have the value
∞. Usually, we identify f and i ◦ f . Hence analytic functions are meromorphic
functions which do not take the value ∞.

We want to show thatM(X) is a field when X is connected and nonempty.
For this, we need a generalization of the identity theorem (see [FB], Proposition
III.3.1).

1.12 Lemma. Let
f, g : X −→ Y

be two analytic maps of a connected Riemann surface into another Riemann
surface Y . Assume that there exists a subset S ⊂ X which has a cumulation
point*) in X and is such that f and g coincide on S. Then f = g.

Corollary. Let f : X → Y (X connected) be a nonconstant analytic map.
Then the set f−1(b) is discrete in X for all b ∈ Y .

Corollary. Let f : X → C̄ (X connected) be an analytic map which is not
constant ∞. Then f is a meromorphic function.

Corollary. The set M(X) of all meromorphic functions on a connected
nonempty Riemann surface is a field.

For the proof of Lemma 1.12, we consider the set of all cumulation points of
the set coincidence set {x ∈ X; f(x) = g(x)}. We have to show that this
set is open and closed. Since this statement is of local nature, we reduce it
by taking charts to open subsets of the plane. Then we can apply the usual
identity theorem ([FB], Theorem III.3.2).

*) This is a point a ∈ X such that every neighborhood of a contains infinitely many
elements of S.
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The Torus as a Riemann Surface

Let L be a lattice in the projective plane C. We equip the torus

X = C/L := C/∼ (a ∼ b⇐⇒ a− b ∈ L)

with the quotient topology to obtain a compact connected topological space:

p
V

U

An open subset V ⊂ C is called “small” if two different points from V
modulo L are never equivalent. For example, V is small when it is contained
in the interior of a fundamental parallelogram.

We denote by U ⊂ X the image of V under the canonical projection

p : C −→ X, a �−→ [a] (= {b ∈ C , b− a ∈ L}).
The restriction of p defines a bijective map

V
∼−→ U.

It is easy to see that this map is topological. Its inverse,

ϕV : U ∼−→ V,

is a chart on X. The set of all these charts is an atlas A on X .
Claim. The atlas A is analytic.
Proof . Let V and Ṽ be two small open subsets of C. We have to show that
the chart transformation is analytic. For this, we can assume (possibly after
shrinking V and Ṽ ) that the images U and Ũ in X are equal. We can also
assume that V and Ṽ are connected. Then the chart transformation γ is a
topological map

γ : V ∼−→ Ṽ .

For every a ∈ V , there has to exist an ω(a) ∈ L such that

γ(a) = a+ ω(a).

Since ϕ is continuous and L is discrete, the function ω(a) = γ(a)− a has to be
locally constant. Since V is connected, ω must be constant. Hence the chart
transformation is a translation; in particular, it is analytic. ��

Hence the torus C/L has been equipped with a structure in the form of a
Riemann surface.

Obviously, we can make the following statement.
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1.13 Remark. Let U be an open subset of the torus. A map

f : U −→ Y

into a Riemann surface Y is analytic if and only if the composition with the
projection

f ◦ p : p−1(U) −→ Y

is analytic.
Corollary. (Special case Y = C̄). The meromorphic functions on the torus
X are in one-to-one correspondence with the elliptic functions with respect to
L (by means of F �→ f = F ◦ p).
Any two R-bases can be transformed into each other by means of an R-linear
map. Hence two tori are always topologically equivalent:

C/L ≈ (R × R)/(Z × Z) ≈ R/Z × R/Z

↑
topologically

(≈S1 × S1).
↑

circle

As a rule, R-linear maps are usually not C-linear. Hence tori need not be
conformally equivalent. Actually, the following is true.

1.14 Proposition. Two tori C/L , C/L′ are conformally equivalent iff
L and L′ can be transformed into each other by rotation and scaling (i.e. by
multiplying by a complex number).

This also shows that topologically equivalent Riemann surfaces need not be
biholomorphic. On a given topological surface, there may exist essentially
different structures in the form of a Riemann surface.

A proof of Proposition 1.14 follows easily from the covering theory of Rie-
mann surfaces. However, since the tools for a proof are already available at
this point (even if they are not so easily used), we shall sketch a proof here.
Proof of Proposition 1.14. Let

f : C/L −→ C/L′

be biholomorphic. Step by step, one shows the following:

1) There exists a continuous map F : C → C such that the diagram

C
F ��

��

C

��
C/L

f �� C/L′
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commutes.
2) F is analytic.
3) dF/dz is an elliptic function with respect to L and hence is constant. This

implies
F (z) = az + b (a �= 0).

4) We have
aL = L′.

It follows inversely that the associated tori are conformally equivalent.

Only the statement 1) is not obvious.

Proof of 1). We denote by p : C → C/L and p′ : C → C/L′ the natural
projections. First, we prove the following uniqueness statement.

Let M ⊂ C be an arcwise connected subset of C and let a ∈ M , b ∈ C

be points with the property f(p(a)) = p(b). Then there exists at most one
continuous map F : M → C with the properties F (a) = b, f(p(z)) = p′(F (z))
for all z ∈ M . This is trivial if there exists a small open (with respect to L′)
subset U ⊂ C, b ∈ U with the property f(p(M)) ⊂ p′(U), since for reasons
of connectedness F (M ) must be contained in U . For the general proof of the
uniqueness statement, we can assume that M is the image of a curve. By
dividing the parameter interval into small pieces, we reduce the statement to
the first case. We call F a lifting of f .

Now, the following statement follows from the statement of uniqueness. Let
M and N be two subsets of C whose intersection is arcwise connected, and let
F : M → C, G : N → C be two lifts of f which agree in at least one point of
the intersection M ∩N . Then they agree on the whole intersection and glue to
a continuous function on the union.

By the way, if F,G are two lifts, we may choose a lattice element ω′ such
that F (z) and G(z) + ω′ agree in a point of the intersection.

After this preparation, we prove the existence of a (continuous) lift. Because
of the uniqueness statement, we can restrict ourselves to constructing the lift
F for a compact rectangle M . We decompose the rectangle into four congruent
subrectangles by halving its edges. Because of the second step, it is enough
to construct lifts for each of the four subrectangles. We can divide the four
subrectangles in the same way. We continue this procedure until each rectangle
R is so small that f(p(R)) is contained in p′(U) for a small open set U ⊂ C.
Now the existence of a lift F : R → C is trivial. A simple compactness
argument, which we leave to the reader, shows that after finitely many steps
we obtain a subdivision with the desired property.

The Maximal Atlas of a Riemann Surface

Since open subsets (using the induced structure) of Riemann surfaces are Rie-
mann surfaces as well, the following definition is possible.
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1.15 Definition. Let (X,A) be a Riemann surface. An analytic chart on
X is a biholomorphic map ϕ : U → V of an open subset U ⊂ X onto an open
subset V of the plane.

Of course, elements of the defining atlas A are analytic charts, and the elements
of an essentially equal atlas are also analytic charts. It is also clear that two
analytic charts are analytically compatible. This means nothing more than
that the set of all analytic charts is the biggest atlas which is essentially equal
to A. For this reason, we denote the set of all analytic charts by Amax. Two
analytic atlases A and B on X are essentially equal iff the associated maximal
atlases coincide. We can express this also as follows: in any class of essentially
equal analytic atlases there exists a unique maximal atlas, and this is the set
of all analytic charts in the sense of Definition 1.15.

During the introduction of the notion of a Riemann surface, we equipped topolog-
ical surfaces with an equivalence class of essentially equal analytic atlases. Alterna-
tively, we could have equipped the surface with a maximal analytic atlas and called
this a Riemann surface. It is only a question of taste how to start. We feel that the
notion of a maximal analytic atlas (before it is recognized as the set of all analytic
charts) is somewhat artificial and unesthetic.

Usually, the maximal atlas is much bigger than the atlas A with which we started.
For example, we have equipped C with the tautological atlas {id

C
}. In this case Amax

consists of all conformal mappings ϕ : U → V between open sets U, V from the plane.

The defining atlas A should be considered just as a vehicle to define arbitrary
analytic charts. In the literature, Riemann surfaces are usually introduced as surfaces
which are equipped with a maximal analytic atlas. But this requires formal effort
before one can introduce even the simplest examples of Riemann surfaces, such as the
complex plane.

Some Elementary Properties of Riemann Surfaces

We now formulate some results which may be deduced without any effort from
the usual type of complex analysis, as can be found for example in [FB].

1.16 Remark.

1) A nonconstant analytic map between connected Riemann surfaces is open.
2) An analytic function on a connected Riemann surface whose absolute values

attain a maximum is constant.
3) Let f : X → Y be a continuous map between Riemann surfaces which is

analytic outside a discrete subset S ⊂ X. Then f is analytic everywhere.
4) Let f : X → Y be an injective analytic map. Then f(X) is open and the

induced map X → f(X) is biholomorphic.

We skip the simple proofs (see the Exercises).
In the usual complex analysis, the local mapping behavior of analytic func-

tions is described as follows (see the proof of Remark I.3.3 in [FB]):
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An analytic function f such that f(0) = 0 is, in a small neighborhood of 0,
either constant or the composition of a conformal map with an nth power.
Here n is a natural number.
We want to formulate this result for Riemann surfaces. First, we notice that
for every point a ∈ X of a Riemann surface there exists an analytic chart
ϕ : U → E, a ∈ U , whose image is the unit disk. We choose an arbitrary
analytic chart ψ : U ′ → V ′, a ∈ U ′, and then replace U ′ by the inverse image
of a small disk around ψ(a). Now ϕ is obtained by restricting ψ to this inverse
image and composing it with a conformal map from the small disk onto the
unit disk. This construction gives an arbitrarily small U in the sense that, for
a given neighborhood W of a, we can find U such that a ∈ U ⊂W .

1.17 Remark. Let f : X → Y be a nonconstant analytic map of a connected
Riemann surface X into a Riemann surface Y . Let a ∈ X be a point and let
b = f(a) be its image. There exist analytic charts

ϕ : U −→ E, a ∈ U ⊂ X, ψ : V −→ E, b ∈ V ⊂ Y, f(U) = V,

and a natural number n such that the diagram

U
ϕ ��

f

��

E

��

q�

�

�

�
V

ψ �� E qn

commutes (ψ(f(x)) = ϕ(x)n).

For the proof, we can assume that X and Y are open subsets of C and that
a = b = 0. Then we can use the local mapping property of the usual type of
analytic functions. (see [FB], Theorem III.3.3). ��

Exercises for Sect. I.1

1. Let a be a point on a Riemann surface X. Show that any analytic function
f : X − {a} → E extends to an analytic function X → E.

2. Let f : X → Y be a nonconstant analytic map of a connected Riemann surface
into a Riemann surface V . Show that f is open, which means that open sets are
mapped onto open sets. In particular, f(X) is open.
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3. Any nonconstant analytic map f : X → Y of a compact Riemann surface into
a connected Riemann surface is surjective. As polynomials can be considered as
holomorphic mappings from the Riemann sphere into itself, show that one can
obtain a new proof of the “fundamental theorem of algebra”.

4. Let f : X → Y be a bijective and analytic map of Riemann surfaces. Show that
f is biholomorphic.

5. Let f : X → Y be an injective analytic map of Riemann surfaces. Show that f
induces a biholomorphic map from X onto the open (!) subset f(X) ⊂ Y .

6. Show that when ϕ : X → Y is an analytic map of Riemann surfaces, then

ϕ∗ : O(Y ) −→ O(X), f �−→ f ◦ ϕ

defines a ring homomorphism. This is injective when X and Y are connected and
ϕ is not constant. It is an isomorphism if ϕ is biholomorphic.

The purpose of the following exercises is to show another way in which Riemann
surfaces can be introduced. In this approach, the analytic functions themselves
are introduced in an axiomatic way. The advantage is that we do not need the
chart transformations. This new approach is important because it admits broad
generalizations.

7. Let X be a topological space. A sheaf of continuous functions is a map which
assigns to any open subset U ⊂ a subring OX(U) of the ring of all continuous
functions f : U → C such that the following conditions are satisfied:

a) If f ∈ OX(U) and V ⊂ U is a further open subset, then f |V ∈ OX(V ).

b) Let U =
⋃

i
Ui be an open covering of an open subset U of X and let f be

a continuous function on U such that its restrictions to Ui are contained in
OX(Ui). Then f ∈ OX(U).

A ringed space is a pair (X,OX) consisting of a topological space X and a sheaf
OX of continuous functions.

Let X be a Riemann surface. Show that the assignment

U �−→ OX(U) = set of all analytic functions

defines a structure of a ringed space.

8. A morphism f : (X,OX) → (Y,OY ) of ringed spaces is a continuous map between
the underlying topological spaces such that the following condition is satisfied:

If V ⊂ Y is an open subset and g ∈ OY (V ), then g ◦f ∈ OX(U), U = f−1(V ).

Let X,Y be two Riemann surfaces which have been equipped with the sheafs
of analytic functions. Show that a map f : X → Y is analytic in the sense of
Riemann surfaces if and only if it defines a morphism of ringed spaces.
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9. An isomorphism f : (X,OX) → (Y,OY ) of ringed spaces is a bijective map be-
tween the underlying topological spaces such that f and f−1 are morphisms of
ringed spaces.

Let U ⊂ X be an open subset of U . Then we can define the restricted sheaf
OX |U . For open subsets V ⊂ U , we can define (OX |U)(V ) := OX(V ).

Let (X,OX) be a ringed space, X Haussdorff. Assume that every point a ∈ X
admits an open neighborhood U ⊂ X and an open subset V ⊂ C of the complex
plane such that the ringed spaces (U,OX |U) and (V,OV ) are isomorphic. Here
OV means the sheaf of analytic functions in the usual sense. Show that there
exists a unique structure of a Riemann surface on X such that OX is the sheaf of
analytic functions.

2. The Analytisches Gebilde

Important examples of Riemann surfaces can be obtained by use of the analyti-
sches Gebilde. The analytisches Gebilde of a power series is obtained by gluing
all of its analytic continuations to a surface. On this surface, all analytic con-
tinuations appear as a unique single-valued analytic function. The analytisches
Gebilde is one of the historical motivations for the notion of a Riemann surface.
An important example is the analytisches Gebilde of an algebraic function. In
Sect. 3, we shall give another construction of this. Hence we recommend that
readers who are interested in this basic example should skip the analytische
Gebilde and proceed directly to Sect. 3.

One of the simplest examples of a “multivalued function” is the square root.
By choosing, for example, the principal branch

√
z, we can obtain uniqueness,

but we obtain only an analytic function on the slit plane C−. Other branches
such as −√z on C− have equal validity. We would like to glue all possible
branches together into a unique function. This is possible, but the domain
of definition cannot then be a domain in the complex plane, but instead is
a surface which lies over it. The following construction of the analytisches
Gebilde leads to this surface.

2.1 Definition. A function element is a pair (a, P ) consisting of a complex
number a and power series with center a,

P (z) =
∞∑

n=0

an(z − a)n,

which has a positive radius of convergence.

In particular, this function element defines an analytic function on a small disk
around a.
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2.2 Definition (Weierstrass). Let

α0 : I −→ C

be a curve in the complex plane. A regular allocation of α0 is a map which
assigns to any t ∈ I a function element

(α0(t), Pt)

with center α0(t). The following conditions have to be satisfied. Every t0 ∈ I
admits an ε = ε(t0) > 0 with the following property: if

t ∈ I, |t− t0| < ε,

then α0(t) is in the interior of the disk of convergence of Pt0 , and Pt can be
obtained by rearranging Pt0 according to powers of z − α0(t).

This means that the function elements arise by successive analytic continuation.

2.3 Definition. Let (a, P ) and (b,Q) be two function elements. We say
that (b,Q) can be obtained by analytic continuation from (a, P ) when both are
members of a regular allocation.

We then call the two function elements equivalent and write (a, P ) ∼ (b,Q).
Obviously, this is an equivalence relation.

2.4 Definition. An analytisches Gebilde in the sense of Weierstrass is a
full equivalence class of function elements.

Hence the analytisches Gebilde collects together all function elements which
can be obtained by analytic continuation from a single function element.

The essential point of this notion is that equivalent function elements (a, P ),
(b,Q) can be different even if their centers are equal, i.a. a = b. Take, for
example, a = b = 1. For P , we take the power series of the principal branch of
the square root around 1, and for Q we take −P . The function element (1, Q)
can be obtained from (1, P ) by means of analytic continuation along a circle
around 0.

In general, the result of an analytic continuation will depend on the choice of
the path. This simple but fundamental fact can be considered as part of the idea
of the Riemann surface.

In the following, R denotes a fixed analytisches Gebilde. There is a natural
projection

p : R −→ C, p((a, P )) = a

into the complex plane. As we have pointed out, this need not be injective.
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We now introduce a topology on R . Let (a, P ) ∈ R. We want to define,
for some ε > 0, the notion of an “ε-neighborhood”

Uε(a, P ) ⊂ R

of (a, P ) in R. We assume that ε is not greater than the radius of convergence
of P . In this case P defines an analytic function on the usual ε-neighborhood
Uε(a) of a. For every b ∈ Uε(a), we can expand this function into a power
series Pb around b, for example by rearranging it according to powers of z − b.
Notation. Let (a, P ) be a function element and let ε > 0 be a number which is
not greater than the radius of convergence of P . The ε-neighborhood Uε(a, P )
of (a, P ) in R consists of all function elements (b, Pb), b ∈ Uε(a), where Pb is
obtained from P by expanding around b.
Remark . The natural projection

Uε(a, P ) −→ Uε(a)

is bijective.
When (a, P ) is contained in R, then of course Uε(a, P ) is contained in R.

2.5 Definition. A subset U ⊂ R is called open if any function element
(a, P ) ∈ U admits an ε-neighborhood (where ε is not greater than the radius of
convergence of P ) such that

Uε(a, P ) ⊂ U.

Let (b,Q) ∈ Uε(a, P ). For small enough δ, we have

Uδ(b,Q) ⊂ Uε(a, P ).

This implies the following statement.

2.6 Proposition. We obtain a topology on R, by means of Definition 2.5.
The ε-neighborhoods Uε(a, P ) are open. The natural projection p : R → C

gives a topological map
Uε(a, P ) −→ Uε(a).

Corollary. The natural projection

p : R −→ C

is locally topological.

(A continuous map f : X → Y is called locally topological if any point a ∈ X
admits an open neighborhood U(a) such that the restriction of f defines a
topological map from U(a) onto an open neighborhood V (b) of b = f(a).)
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2.7 Remark (Additional Remark on Proposition 2.6). The space R is
Hausdorff.

Proof. Let (a, P ), (b,Q) be function elements.
First case. a �= b. We choose ε > 0 smaller than |a− b| and smaller than the
radii of convergence of P and Q. Then, trivially, Uε(a, P ) ∩ Uε(b,Q) = ∅.
Second case. a = b but P �= Q. We choose ε smaller than the radii of con-
vergence of P and Q and again obtain disjoint neighborhoods. (Otherwise, we
would find a point c in an open disk where P and Q converge such that the
expansions of P and Q around c agree. But then P and Q coincide.) ��

Now we are going to construct an analytic atlas on R.

The Analytisches Gebilde as a Riemann Surface

The construction rests on the following general fact.

2.8 Lemma. Let
f : X −→ Y

be a locally topological map of Hausdorff spaces. Assume that Y carries a
structure in the form of a Riemann surface. Then X carries a unique structure
in the form of a Riemann surface such that f becomes locally biholomorphic.

Proof. An open subset U ⊂ X is called “small” if f maps U topologically onto
an open set f(U) and if there exists an analytic chart on Y ,

f(U) ∼−→ V (⊂ C open).

The composition
U −→ f(U) −→ V

is a chart on X . Obviously, these charts are analytically compatible. Hence
they define a structure in the form Riemann surface on X .

To prove uniqueness, we describe the elements ϕ : U → V of the maximal
atlas. We can restrict ourselves to ϕ such that U is small in the sense that
it is mapped biholomorphically onto the open set f(U). Obviously, ϕ is bi-
holomorphic (i.e. contained in the maximal atlas) if ϕ ◦ f−1 : f(U) → V is
biholomorphic. ��

By applying this lemma to p : R → C, we obtain the announced structure
of a Riemann surface on R.

Curves on the Analytisches Gebilde

A curve on a topological space X is a continuous map

α : I −→ X

of an interval I ⊂ R into X. We are interested mainly in the case where
I = [a, b] (a < b) is a compact interval. Then α(a) is called the starting point
and α(b) the endpoint of α. When both agree, α is said to be closed.
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2.9 Lemma. Let

α : I −→ R (I ⊂ R an interval)

be a curve in R. The composition with the natural projection p : R→ C defines
a curve

α0 : I −→ C.

The family
α(t) =: (α0(t), Pt)

is a regular allocation of α0. Conversely, if (α0(t), Pt) is a regular allocation
of a curve α0 : I → C, then

α(t) = (α0(t), Pt)

is a curve in R.

In other words:

Regular allocations in the sense of Weierstrass and curves in R
are the same.

Obviously, the definition of the topology on R has been devised in such a way
that Lemma 2.9 is true.

2.10 Lemma. Let
f : X −→ Y

be a locally topological map of topological spaces, let

α0 : [a, b] −→ Y (a < b)

be a curve in Y , and let x0 ∈ X be a point over α0(a) (i.e. f(x0) = α0(a)).
There is at most one curve

α : [a, b] −→ X

with the properties

f ◦ α = α0,a)
α(a) = x0.b)

We call α a lifting of α0.
Proof of Lemma 2.10 . Let β be a second lift of α0 (f ◦ β = α0 , β(a) = x0).
We consider

t0 := sup{t ∈ [a, b]; α(t) = β(t)}
and make use of the fact that f maps a neighborhood of the point α(t0) topo-
logically onto a neighborhood of α0(t0). ��

The next statement follows from this topological fact.
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2.11 Lemma. Let
α0 : [a, b] −→ C (a < b)

be a curve in the complex plane and let (α0(a), P ) be a function element whose
center is the starting point α0(a) of α0. When there exists a regular allocation

(α0(t), Pt)

of α0 which starts with
Pa = P,

then this allocation is uniquely determined.

In particular, the end Pb of the allocation is uniquely determined (by α0 and
Pa = P ). We can also say that the function element (α0(b), Pb) arises by
analytic continuation of (α0(a), Pa) along the path α0. Hence this analytic
continuation is determined by the curve and the starting element if such a
continuation exists at all.

The Analytisches Gebilde of an Analytic Function

Let
f : D −→ C, D ⊂ C a domain

be an analytic function on a (connected) domain. Let

α0 : [a, b] −→ D (a < b)

be a curve in D.
We denote the power expansion of f around a point a ∈ D by fa. This

gives us a regular allocation

α(t) := (α0(t), fα0(t)).

In particular, all elements (a, fa) are equivalent and hence are contained in one
analytisches Gebilde R(f).
We call R(f) the concrete Riemann surface which belongs to f .
In simple language, this means thatR(f) consists of all function elements (a, P )
which can be obtained somehow (i.e. along a suitable path) from f by analytic
continuation.

The map
D −→ R(f), a �−→ (a, fa),

is then an open embedding , i.e. a biholomorphic map of D into some open part
of R.

Recall that there is a natural projection

p : R(f) −→ C, (a, P ) �−→ a.
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The image of p is a domain in C which contains D. It is called the domain
of definition of R(f). Besides the projection p, we can consider the obviously
holomorphic map

F : R(f) −→ C, F (a, P ) = f(a).

The diagram
D

� � �

f ���
��

��
��

� R(f)

F
����

��
��

��

C

commutes. We can say that F “includes” the function f , but not only f . It
includes all possible analytic continuations of f .

This can be expressed roughly as follows. All analytic continuations of f :
D → C are multivalued (because of the path dependence). But one can make
them single-valued if one extends their domain of definition to a surface R(f)
lying over the plane.

A Simple Example

We take for D a plane which is slit along the negative real half-line, and for f(z)
we take the principal value of the square root of z. We denote the corresponding
concrete Riemann surface by R(

√
). This consists of all function elements

(a, P ) such that a ∈ C
.

and P (z)2 = z. Every point admits exactly two such
elements (a, P (z)). Therefore R(

√
) is a connected Riemann surface together

with a holomorphic map

p : R(
√

) −→ C
.

(a, P ) �−→ a,

and is such that every point in C
.

has two inverse points. The same property
is shared by the map C

. −→ C
.
, z �−→ z2. It is not difficult to show the

following.

There exists a biholomorphic map

R(
√

) ∼−→ C
.

such that the diagram

R(
√

)
∼ ��

p
���������� C

.

z �→z2����
��

��
��

C
.

commutes.
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By the way, this shows that R(
√

) is biholomorphically equivalent to the
Riemann surface which is obtained when one removes two points from the
Riemann sphere (0 and∞). In the next section, we shall see that this is a very
general phenomenon. The Riemann surface of any algebraic function can be
obtained from a compact Riemann surface by removing a finite set of points.

We can picture this construction as follows. Consider two copies of the punctured

plane. One of them is equipped with the principal branch
√
z, and the other with its

negative. To get continuous functions, we slit both planes along their negative real

half-axes. But we leave an exemplar of the negative real line on both sides of the

negative real line. We call these two half-lines the upper and the lower side. Now we

glue the lower side of each of the two planes to the upper side of the other plane. It

should be clear how the resulting shape can be identified with R(
√

).

Exercises for Sect. I.2

1. Show that the set of all function elements (a, P ), a ∈ C
.
, exp(P (z)) = z builds an

analytisches Gebilde. We denote it by R(log) and call it the Riemann surface of
the logarithm. It can be shown that this surface is biholomorphically equivalent
to the plane, and that the map

R(log) −→ C, (a, P ) �−→ P (a),

is biholomorphic.

This can be expressed as follows. Two analytic maps of Riemann surfaces

X −→ Y, X ′ −→ Y ′

are called isomorphic if there exist biholomorphic maps X → X ′ and Y → Y ′

such that the diagram
X −→ Y⏐⏐	

⏐⏐	
X ′ −→ Y ′

commutes. In this sense, the maps

R(log) −→ C
.
,

(a, P ) �−→ a,

C −→ C
.
,

z �−→ exp(z),

are isomorphic.

2. The observation in Exercise 1 is part of a more general phenomenon.

Let f : D → D′ be an analytic map from one domain D ⊂ C onto another
D′. Assume that the derivative of f has no zeros in D. Consider the set of all
function elements (b, P ) with the properties
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a) b ∈ D′;
b) P (b) ∈ D, P (f(z)) = z in a neighborhood of P (b).

Show that the set of all these function elements – we denote it by R(f−1) – is an
analytisches Gebilde. The maps

f : D −→ D′ and R(f−1) −→ D′ ((a, P ) �−→ P (a))

are isomorphic.

3. A special case of a connectedness theorem, which we shall obtain in the next
section, states that the set of all function elements (a, P ) with the property

P (z)4 + z4 = 1

is an analytisches Gebilde R. Show that this is true.

3. Show that every analytisches Gebilde has countable basis of its topology.

Hint. Use the fact that C has a countable dense subset.

3. The Riemann Surface of an Algebraic Function

The simplest example of a “multivalued” function is the square root. It is a special
example of an algebraic function. An analytic function

f : D −→ C , D ⊂ C a domain,

is called algebraic if there exists a polynomial of two variables

P (z, w) =
∑

0≤µ,ν≤N

aµνz
µwν

which is not identically zero and is such that

P (z, f(z)) = 0 (for all z ∈ D).

Example. Let

D := C − {x ∈ R, x ≤ 0} and f(z) :=
√
z (for example, the principal branch)

(P (z, w) = w2 − z).

In this section, we shall construct a compact Riemann surface from f . This will be
done in two steps.

First step. We shall construct a finite subset S ⊂ C and a Riemann surface X0

together with a holomorphic map

p : X0 −→ C − S,

such that the following properties are satisfied:

a) p is locally biholomorphic;
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b) p is proper in the topological sense, i.e. the inverse image of an arbitrary compact
set from C − S is compact.

For example, we can take the analytisches Gebilde R(f) for X0 and take the natural
projection for p. But it is also possible to obtain X0 in a different way, namely as an
algebraic curve. This is the approach which we prefer here. Hence the analytisches
Gebilde described in section 2 can be avoided. Nevertheless, we give a sketch of how
it can be used here.

Second step. Using the properties a) and b) singly, we construct a compact Riemann
surface X and a holomorphic map p̄ : X → C̄ such that the following properties are
satisfied:

1) X0 is an open subset of X, and the complement X −X0 is a finite set.

2) The diagram

X0

p

��

⊂ X

p̄

��
C − S ⊂ C̄

commutes.

This second step rests on a special case of covering theory , which we shall treat
independently of general covering theory in this context. The statement is:

If

f : X −→ E
.

= {q ∈ C; 0 < |q| < 1}
is a locally biholomorphic proper map of a connected Riemann surface into the punc-
tured unit disk, then there exists a biholomorphic map

σ : X
∼−→ E

.

and a natural number e such that the diagram

X
σ ��

f ���
��

��
��

� E
.

��		
		

		
		

q�

	












�

	













E
. qe

commutes.

As mentioned, this is a special case of general covering theory, which will be
developed in full generality in Chap. III. Because of the great importance of algebraic
functions, we shall treat the special case already here with a proof as simple as
possible. This will be done in Appendix A of this section. In Appendix B, we shall
formulate and prove a theorem on implicit functions for analytic functions of two
variables.

A polynomial P ∈ C[z, w], P �= 0,

P (z, w) =
∑

0≤µ,ν≤N
aµνz

µwν ,
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of two complex variables is called irreducible if it cannot be written as a product
of two nonconstant polynomials. Every polynomial can be written as a product
of finitely many irreducible ones:

P = P1 · · · · · Pm, Pj irreducible.

If
f : D −→ C (D ⊂ C a domain)

is an analytic function with the property P (z, f(z)) ≡ 0, then

Pj(z, f(z)) ≡ 0 for some j (1 ≤ j ≤ m).

For this reason, we may assume in what follows that P itself is irreducible.

We associate with P a plane affine algebraic curve

N = N (P ) = {(z, w) ∈ C × C; P (z, w) = 0}.

3.1 Remark. Let P be an irreducible polynomial which truly depends on w.
For every point a ∈ C, there exist only finitely many b ∈ C with the property
(a, b) ∈ N . In other words, the fibers of the natural projection

p : N −→ C, p(z, w) = z,

are finite.

Proof. We argue indirectly and assume that there exists a point a ∈ C such that
the polynomial w �→ P (a,w) has infinitely many zeros b. Then this polynomial
must vanish. Reordering according to powers of z − a, we see that

P (z, w) = (z − a)Q(z, w).

Since P is irreducible, Q has to be constant. But then P would be independent
of w. ��

Our next goal is to show that the map p is locally topological outside a finite
set of points (called branch points). For this, we need the following proposition.

3.2 Proposition. Let P ∈ C[z, w] be an irreducible polynomial which truly
depends on w. There are only finitely many solutions (a, b) of the equations

P (a, b) = 0 =
∂P

∂w
(a, b).
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For the proof, we make use of the discriminant dP (z) of the polynomial w �→
P (z, w) for arbitrary z ∈ C. For the definition of the discriminant and its
basic properties, we refer to the algebraic appendix at the end of this book
(Sect. VIII.3.1).

The discriminant is a polynomial in z which, because of the irreducibility
of P , does not vanish identically. If (a, b) is a solution of the given equations,
then the polynomial w �→ P (a,w) has a multiple zero. This means that its
discriminant vanishes, i.e. dP (a) = 0. Since dP has only finitely many zeros,
there exist only finitely many a. Because of Remark 3.1, there exist only finitely
many (a, b). ��

It is often useful for our purposes to reorder a polynomial P (z, w) according
to powers of w:

P (z, w) = an(z)wn + · · ·+ a0(z).

The polynomials ai are called the coefficients of P (with respect to the variable
w). When P is different from 0, one can achieve an �= 0. Then we call an(z)
the highest coefficient of P . The next statement follows immediately from
Proposition 3.2.

3.3 Theorem. Let P ∈ C[z, w] be an irreducible polynomial depending truly
on w. There exists a finite set S ⊂ C with the following properties:
a) The zeros of the highest coefficient of P are contained in S.
b) Let (a, b) ∈ C × C be such that

P (a, b) = 0 and
∂P

∂w
(a, b) = 0;

then a ∈ S.

In the following, P ∈ C[z, w] always means an irreducible polynomial which
depends truly on w, and S ⊂ C is a finite subset with the properties described
in Theorem 3.3.

We define

X := {(a, b) ∈ (C − S)× C; P (a, b) = 0}.
This point set is obtained from the original affine algebraic curve by removing
finitely many points. We equip X with the topology induced from C × C.

3.4 Proposition. The projection

p : X −→ C − S, p(a, b) = a,

is locally topological and proper.
Corollary. The space X admits a unique structure as its Riemann surface
such that p is locally biholomorphic (Lemma 2.8).
Additional remark. The second projection

q : X −→ C, q(a, b) = b,

is analytic as well.



3. The Riemann Surface of an Algebraic Function 39

Proof, first part. p is locally topological.
The proof follows immediately from a complex variant of a theorem of implicit
functions which is well known in real analysis; see Appendix B. A proof of the
additional remark can be obtained from that theorem too.
Second Part. p is proper.
The inverse image A = p−1(B) of a compact subset B ⊂ C − S is closed in
C × C, since B is closed in C. Therefore it is sufficient to show that A is
bounded.

For (a, b) ∈ A, we have P (a, b) = 0. By the definition of the exceptional set
S, the highest coefficient of P has no zeros in C−S. Hence it is bounded from
below on the compact set B by a positive number. All coefficients are bounded
from above on the compact set B. Now the claim follows from the following
simple lemma.

3.5 Lemma. Let n be a natural number and let C > 0 be a positive real
number. There exists a positive real number C ′ = C ′(C, n) with the following
property:
Let

P (z) = anz
n + · · ·+ a0

be a polynomial (in C[z]) whose coefficients satisfy

|ai| ≤ C (0 ≤ i ≤ n), |an| ≥ C−1.

Then any zero a of P satisfies the inequality

|a| ≤ C ′.

Proof. From ana
n + · · ·+ a0 = 0, it follows that

ana = −
(
an−1 + · · ·+ a0

an−1

)
.

In the case |a| ≥ 1, we obtain

|ana| ≤ nC or |a| ≤ nC2. ��

Alternative Construction of the Riemann Surface by Means of the Ana-
lytisches Gebilde (Sketch)

Let R0 be the set (a,Q) of function elements with the property

a /∈ S, P (z,Q(z)) ≡ 0.

Remark. R0 is an open part of the (disjoint) union of several analytische Gebilde and
hence is a Riemann surface.
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The proof follows easily from the fact that, by the principle of analytic continua-
tion, the equation

P (z,Q(z)) ≡ 0

carries over to all function elements which are obtained from Q by analytic continu-
ation.

On R0, we have two analytic functions

p0 : R0 −→ C − S,

q0 : R0 −→ C,

p0(a,Q) = a,

q0(a,Q) = Q(a).

For (a,Q) ∈ R0, the point (a,Q(a)) is contained in the algebraic curve. In this way,
we get a map

h : R0 −→ X, (a,Q) �−→ (a,Q(a)).

The next result follows from the theorem of implicit functions.

3.6 Proposition. The canonical map

h : R0

∼−→ X

is biholomorphic.

Additional remark. The diagrams

R0
∼ ��

p0
���������� X

p


��

��
��

��
�

C − S

R0
∼ ��

q0
���������� X

q


��

��
��

��
�

C − S

commute. 
�

It is our goal to extend the Riemann surface X to a compact Riemann
surface by adding finitely many points.

3.7 Proposition. Let X, Ȳ be Riemann surfaces, let S ⊂ Ȳ be a finite set of
points, let

Y := Ȳ − S,

and let
f : X −→ Y

be a locally biholomorphic proper map. Then there exists a Riemann surface X̄
which contains X as an open Riemann subsurface, and a holomorphic map

f̄ : X̄ −→ Ȳ

with the following properties:
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1) The complement T = X̄ −X is finite.
2) The map f̄ is proper.
3) The diagram

X̄
f̄−→ Ȳ

∪ ∪
X

f−→ Y

is commutative.
We call (X̄, f̄) a completion of (X, f, Y ⊂ Ȳ ). If Ȳ is compact, then X̄ is
compact as well.

Proof. For each exceptional point s ∈ S, we choose an open neighborhood U(s)
which is biholomorphically equivalent to the unit disk E and such that

U(s) ∩ U(t) = ∅ for s �= t (both contained in S).

Obviously, the restriction f−1(U(s)−{s})→ U(s)−{s} is proper, as is f . For
any s ∈ S, the set f−1(U(s)− {s}) decays into its connected components. Let
Z ⊂ f−1(U(s)−{s}) be such a connected component. It is open and closed in
f−1(U(s) − {s}). Since it is closed, the restriction Z → U(s) − {s} is proper
as well. Hence it is surjective. From this and the fact that f is proper, we now
obtain the result that there are only finitely many connected components.

From Proposition 3.17, we obtain a commutative diagram with biholomor-
phic rows:

Z
ϕZ ��

f

��

E
.

��

q�

�

�

�
U(s)− {s} ��

E
. qn (n = n(Z)).

For any Z, we choose a symbol a(Z) which is not contained in X and is such
that

Z �= Z ′ =⇒ a(Z) �= a(Z ′).

Now we consider the set
Z̄ := Z ∪ {a(Z)}.

We extend the map ϕZ to a bijective map

ϕZ̄ : Z̄ −→ E

by means of
ϕZ̄(a(Z)) := 0.

The topology of E can be carried over to Z̄ (such that ϕZ̄ becomes topological).
Now we set

X̄ := X ∪ {a(Z), Z conncted component of f−1(U(s)− {s}), s ∈ S}
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and define a topology on X̄. A subset U ⊂ X̄ is said to be open if

a) U ∩X is open;
b) U ∩ Z̄ is open for every Z.

Obviously, X̄ becomes a Hausdorff space and X becomes an open subspace
(such that its topology agrees with the induced topology of X̄).

Next we extend the analytic atlas A of X to an analytic atlas Ā of X̄ :

Ā := A ∪ {ϕ̄Z}

(Obviously, the charts ϕ̄Z are analytically compatible with the analytic charts
of X.)

Hence X̄ = (X̄, Ā) is a Riemann surface. By use of

f̄(Z) = s (Z ⊂ f−1(s)),

we obtain an extension
f̄ : X̄ −→ Ȳ ,

which is obviously analytic. It is easy to see that it is proper. (We use the fact
that f itself and E → E, q �→ qn are proper.) ��

We are particularly interested in the case where Ȳ is compact. Then X̄
is a compactification of X by finitely many points. Now we show that such
compactifications are unique.

3.8 Lemma. Let X be a surface, let S ⊂ X a finite subset, let X0 = X − S,
and let

X̄ ⊃ X0

be a compact space which contains X0 as an open subspace. Assume also that
the complement X̄ −X0 is finite. Then there exists a continuous continuation

f : X −→ X̄

of the identity idX0 .

Corollary. Let X0 be a Riemann surface and let X̄, X̃ be two compact Rie-
mann surfaces which contain X0 as an open Riemann subsurface. The comple-
ments X̄ − X0, X̃ − X0 are assumed to be finite. Then there exists a biholo-
morphic map

ϕ : X̄ −→ X̃, ϕ|X0 = idX0 .



3. The Riemann Surface of an Algebraic Function 43

Proof. We denote by

b1, . . . , bn (bi �= bj for i �= j)

the points of the complement X̄−X0. Then, for each i ∈ {1, . . . , n}, we choose
an open neighborhood

U(bi) ⊂ X̄ (1 ≤ i ≤ n)

such that
U(bi) ∩ U(bj) = ∅ for i �= j.

Now, let a be a point in X −X0. We want to construct its image point b in X̄.
Claim. There exists a neighborhood U(a) ⊂ X of a which, besides a, does not
contain another point of S, and is such that

U(a)− {a} ⊂ U(b1) ∪ · · · ∪ U(bn).

Proof of the claim. We argue indirectly: if the claim is false, then there exists
a sequence

an ∈ X0, an −→ a,

such that an is not contained in any U(bi). Since X̄ is compact, we can assume
(taking a subsequence) that (an) converges in X̄ . The limit must necessarily
be one of the bi, since (an) does not converge in X0. But then almost all an
would lie in U(bi). This proves the claim.

We may assume that U(a) is open and connected. Since X is a surface,
U(a)− {a} is connected as well and hence is contained in precisely one U(bi):

U(a)− {a} ⊂ U(bj) for one j.

Since the neighborhoods U(bj) can be taken arbitrarily small, the extension of
the identity defined by

ϕ(a) := bj

is continuous at a.
The proof of the corollary is a consequence of the Riemann extension theo-

rem: a continuous map between Riemann surfaces which is analytic outside a
finite set of points is analytic everywhere. ��

3.9 Theorem. Let P ∈ C[z, w] be an irreducible polynomial which truly
depends on w. There exists a compact Riemann surface X̄ which contains the
Riemann surface

X = {(a, b) ∈ (C − S)× C, P (a, b) = 0}
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as an open Riemann subsurface. The complement X̄ −X is finite. Both of the
projections

p : X −→ C,

q : X −→ C,

p (a, b) = a,

q (a, b) = b,

admit (uniquely determined, of course) holomorphic extensions

p̄ : X̄ −→ C̄ (Riemann sphere),
q̄ : X̄ −→ C̄.

The triple (X̄, p̄, q̄) is essentially unique.

Proof. All that remains to be proved is that q can be extended. (For this, we can
assume that P truly depends on z. Otherwise, we would have P (z) = C(z−a)
and q would be constant.) Now we can interchange the roles of p and q.

There exists a finite subset T ⊂ C such that the canonical projection

q : X0 −→ C − T, X0 := {(a, b) ∈ C × (C − T ), P (a, b) = 0},

is locally topological and proper.
One can choose T large enough such that X0 is a subset of X. The comple-

ment X −X0 is a finite set. Because of the uniqueness of the compactification
(Lemma 3.8, Corollary), it is sufficient to extend q to some compactification
of X0. Such a compactification is given by Proposition 3.7 (with q instead of
p). ��

3.10 Proposition. The compact Riemann surface which is associated (by
Theorem 3.9) with an irreducible polynomial is connected.

Proof. The degree n of the polynomial w �→ P (z, w), for z ∈ C − S, is inde-
pendent of z. We denote the zeros of this polynomial, in an arbitrary ordering,
by t1(z), . . . , tn(z). We have

P (z, w) = an(z)
n∏

ν=1

(w − tν(z)).

The highest coefficient an(z) is a polynomial in z. The points x := (z, tν(z)) lie
on the curve X. They are precisely those points which are mapped to z under
p. Because q(x) = tν(z), we can write

P (z, w) = an(z) =
∏

x∈X, p(x)=z

(w − q(x)).

We now give an indirect argument, where we assume that X is the union
of two open nonempty subsurfaces, i.e. X = X1 ∪ X2. Correspondingly, we
decompose P as a product:

P (z, w) = P1(z, w)P2(z, w), Pν(z, w) =
∏

x∈Xν , p(x)=z

(w − q(x)), z ∈ C − S.
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For fixed w, the functions Pν(z, w) are analytic on C − S, since p admits
holomorphic local inversions here.

We want to show that the singularities s ∈ S ∪ {∞} are inessential for
any fixed w. Then Pν(z, w) is, for any fixed w, a meromorphic function on
C̄ and hence a rational function. Now we obtain the result that the Pν ∈
C(z)[w] are polynomials in w over the field of rational functions in z. This
gives a contradiction to the irreducibility of P , since “Gauss’s Lemma” states
that if P ∈ C[z, w] is an irreducible polynomial in two variables, then P is
also irreducible as a polynomial in the variable w over the field of rational
functions C(z). (A proof will be given in the algebraic appendix of the book,
Sect. VIII.2.8.)

It remains to prove that the singularities are inessential. This follows from
the next statement.

3.11 Remark. Let p : Y → E be a proper analytic map of a Riemann
surface Y onto the unit disk which is locally biholomorphic outside p−1(0).
Furthermore, let q : Y → C̄ be a meromorphic function whose values outside
p−1(0) are different from ∞. Then the function

z �−→ Q(z, w) =
∏

x∈X, p(x)=z

(w − q(x)) (z �= 0),

for every w ∈ C, has an inessential singularity at the origin.

Proof. If we decompose Y into its connected components, then Q decomposes
into a product. Hence we can assume that X is connected. Hence we can
assume that X = E and q(z) = zn. Now the statement is trivial. ��

Proposition 3.10 has a corollary, which is of elementary nature:

3.12 Corollary. Let (a,Q) and (ã, Q̃) be two function elements with the
property

P (z,Q(z)) ≡ 0 P (z, Q̃(z)) ≡ 0 (a, ã /∈ S).

Then there exists a curve which connects a and ã such that Q̃ is obtained from
Q by analytic continuation of Q along this curve.
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Appendix A. A Special Case of Covering Theory

3.13 Lemma. Let f : X → Y a locally topological and proper map of
Hausdorff spaces. Each point b ∈ Y has only finitely many preimages

f−1(b) = {a1, . . . , an} (ai �= aj for i �= j).

There are open neighborhoods

b ∈ V ⊂ Y and ai ∈ Ui ⊂ X (1 ≤ i ≤ n)

with the following property:
1) f−1(V ) = U1

.
∪ · · ·

.
∪Un (disjoint union, i.e. Ui ∩ Uj = ∅ for i �= j).

2) The restriction of f gives a topological map

Ui

f
∼−→ V (1 ≤ i ≤ n).

Proof. Since f is locally topological, f−1(b) is a discrete subset. Since f is
proper, it is also compact. These two facts together show the finiteness.

Now we choose pairwise disjoint open neighborhoods ai ∈ U ′
i ⊂ X. After a

possible diminishment, we have the result that the restriction of f to U ′
i gives a

topological map from U ′
i onto an open subset V ′. Since f is proper, there exists

an open neighborhood a ∈ V ⊂ V ′ with the property f−1(V ) ⊂ U ′
1 ∪ · · · ∪ U ′

n

(see Remark 0.2). We define Ui = U ′
i ∩ f−1(V ). (Then U1 ∪ · · · ∪Un is the full

inverse image of V .) ��
The following definition arises from Lemma 3.13.

3.14 Definition. A continuous map

f : X −→ Y

of topological spaces is called a covering*) if every point b ∈ Y admits an open
neighborhood V , b ∈ V ⊂ Y , and any preimage a ∈ X (f(a) = b) admits an
open neighborhood U(a), such that the followings conditions are satisfied:

1) f−1(V ) =
.⋃

f(a)=b

U(a) (disjoint union).

2) The restriction of f induces, for each a ∈ f−1(b), a topological map

U(a) ∼−→ V.

*) In the literature, the term “covering” is not always used in this strict sense.

Our notion of a covering agrees with what sometimes is called an “unlimited and

unramified covering”.
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Proper and locally topological maps are examples of coverings. An example of
a nonproper covering is given by

C −→ C
.
, z �−→ ez.

The key to the study of coverings is the so-called path lifting, as described
below.

3.15 Proposition. Let f : X → Y be a covering. For each point x0 ∈ X and
for each curve

α : [a, b] −→ Y, α(a) = f(x0) (a < b),

which starts at f(x0), there exists a unique curve

β : [a, b] −→ X

with the properties
a) f ◦ β = α;
b) β(0) = x0.

The curve β is called the lifting of α with starting point x0 (over α(a)).

Proof. The uniqueness of the lifting was proved in Lemma 2.10.

Existence of a lifting. A simple compactness argument shows that there exists
a finite partition

a = a0 < a1 < · · · < am = b

and, for each i, 0 ≤ i ≤ m, an open neighborhood

α(ai) ∈ Vi ⊂ Y

such that:
1) Vi has the property mentioned in Definition 3.14 (p−1(Vi) decomposes into

pairwise disjoint sets, which are mapped topologically onto Vi under f).
2) α[ai, ai+1] ⊂ Vi.
Now we can lift

αi := α|[ai, ai+1]

inductively in such a way that the starting point of the lift βi+1 equals the
endpoint of βi. The composition of the curves βi gives the desired lift β.

��
The same proof shows a little more, namely the following.
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3.16 Theorem. Let f : X → Y be a covering, let

Q = I × J, I, J ⊂ R intervals,

be a (not necessarily compact) rectangle, let

H : Q −→ Y

be a continuous map, and let q0 ∈ Q, x0 ∈ X be points with the property
H(q0) = f(x0). Then there exists a continuous map

H̃ : Q −→ X

with the properties

a) f ◦ H̃ = H,
b) H̃(q0) = x0.

For the proof we can assume that Q is compact, since every rectangle can
be written as the union of an ascending chain of compact rectangles. After
division into four pieces, we can assume that q0 is a vertex of Q. Now the proof
is similar to that in the case of curve lifting. Instead of a partition, we use a
decomposition into small subrectangles.

3.17 Proposition. Let X be a connected Riemann surface and let

f : X −→ E
.

= {q ∈ C; 0 < |q| < 1}

be a locally biholomorphic and proper map of X into the punctured disk. Then
there exists a natural number n and a biholomorphic map

ϕ : X ∼−→ E
.

such that the diagram

X
ϕ
∼ ��

f ���
��

��
��

� E
.

��		
		

		
		

q�

	












�

	













E
. qn

commutes.
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Proof. We consider the upper half-plane H and the map

ex : H −→ E
.
, z �−→ q := e2πiz.

It is clear that this map is a (nonproper) covering. By Theorem 3.16, there
exists a continuous lift

Ex : H −→ X (f ◦ Ex = ex).

In fact, this lift is analytic, since both of the maps ex : H → E
.

and f : X → E
.

are locally biholomorphic. From the fact that both are coverings, we can easily
deduce the following:
The map

Ex : H −→ E
.

is a covering.
The point now is that we have to know when two points a, b ∈ H have the
same image in X (i.e. Ex(a) = Ex(b)). A necessary condition for this is

ex(a) = ex(b), i.e. a = b+ n, n ∈ Z.

3.18 Claim. Let n be an integer. The set of all points z ∈ H for which

Ex(z) = Ex(z + n)

is open in H.
Corollary. Since this set is also closed, for trivial reasons, the equation
Ex(z) = Ex(z + n) holds either for all z ∈ H or for none of them.

Proof of the claim. Assume Ex(a) = Ex(a + n). We consider open neighbor-
hoods U(a) of a and U(a+ n) of a+ n, which are mapped topologically under
Ex onto an open neighborhood V of Ex(a) and are such that V is mapped topo-
logically under f : X → E

.
onto an open neighborhood W of ex(a). Consider

z ∈ U(a) and z + n ∈ U(a+ n). Because of the periodicity of the exponential
function, we have ex(z) = ex(z+n) ∈W . The points Ex(z) and Ex(z+n) are
contained in the neighborhood V , which is mapped injectively under f . Since
their images under f agree, we obtain Ex(z) = Ex(z + n). Hence there exists
a full neighborhood of a in which we have Ex(z) = Ex(z + n). ��

Now we consider the set L ⊂ Z of all integers with the following property:
there exists a ∈ H such that

Ex(a) = Ex(a+ n).

Because of the remark above, we then have

Ex(z) = Ex(z + n) for all z ∈ H.
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Hence L is a subgroup of Z. Every subgroup of Z is cyclic:

L = nZ, n ≥ 0, n ∈ Z.

Hence we obtain the following result.

There exists an integer n ≥ 0 such that two points a, b from H have the same
image iff

a ≡ bmodn (i.e. a− b ∈ nZ).

Clearly, n �= 0. (Otherwise the map H
ex→ E

.
would be proper, as f : X → E.)

Using the natural number n, we consider the surjective map

g : H −→ E
.
, z �−→ e2πiz/n.

We know that
g(a) = g(b)⇐⇒ Ex(a) = Ex(b).

Hence there exists a map
ϕ : E

. −→ X

such that the diagram

H

g

��











 Ex

���
��

��
��

�

E
. ϕ ��

q �→qn ���
��

��
��

� X

f����
��

��
��

E
.

commutes.

Both of the maps f and f ◦ ϕ (q �→ qn) are proper and locally topological.
From this, we obtain the result that ϕ is proper and locally topological as well.
Obviously,

ϕ proper =⇒ ϕ(E
.
) closed,

ϕ locally topological =⇒ ϕ open =⇒ ϕ(E
.
) open.

Since X by assumption is connected, we obtain ϕ(E
.
) = X . Hence the map

ϕ is bijective. Since it is continuous and open, it is topological. Since f and
f ◦ ϕ are locally biholomorphic, it is biholomorphic. This proves Proposition
3.17. ��



3. The Riemann Surface of an Algebraic Function 51

Appendix B. A Theorem of Implicit Functions

Let D ⊂ C × C be an open subset. A function

f : D −→ C

is called analytic if it satisfies the following two conditions:

1) f is continuously differentiable in the sense of real analysis. (Here, one has
to identify C with R

2 and C
2 with R

4.)
2) f is analytic in both variables, fixing the other variable.
We can then take the complex partial derivatives

z �−→ ∂f

∂z
and w �−→ ∂f

∂w

in an obvious way. (We denote the coordinates of C × C by (z, w).)
The theorem of implicit functions can be stated as follows:

Let (a, b) ∈ D be a point with the properties

f(a, b) = 0,
∂f

∂w
(a, b) �= 0.

There exist open neighborhoods

a ∈ U ⊂ C, b ∈ V ⊂ C

with the following properties:

1) U × V ⊂ D.
2) For each point z ∈ U , there exists a unique point ϕ(z) ∈ V such that

f(z, ϕ(z)) = 0.

3) The function
ϕ : V −→ C

is analytic.
As in the proof of the theorem of invertible functions ([FB], Theorem I.5.7),
we reduce the proof to the analogous real case.

First of all, we have to verify that the assumptions of the real theorem of
implicit functions are satisfied. This means that we have to show that the rank
of the real Jacobi matrix (this is a real 4 × 2 matrix) is 2. But this is clear
because this matrix contains the 2× 2 matrix
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⎛

⎜⎝

∂ Re f
∂x

∂ Re f
∂y

∂ Im f

∂x

∂ Im f

∂y

⎞

⎟⎠

∣∣∣∣∣∣∣
(a,b)

(z = x+ iy)

as a submatrix and the determinant of this submatrix |∂f/∂z|2 is different from
zero by our assumption.

Now the claims 1) and 2) follow immediately from the real theorem of
implicit functions. Instead of 3), so far we know only that ϕ is differentiable in
the sense of real analysis. But from the formulae for the partial derivatives of
ϕ (they follow from f(z, ϕ(z)) = 0 by means of the chain rule), we obtain the
Cauchy-Riemann equations for ϕ. ��

Exercises for Sect. I.3

1. Let be P (z) = 5
√

1 + z4 the branch of the fifth root in a disk around z = 0 which is
defined by the principal branch of the logarithm. Construct a closed curve starting
and ending at 0 such that analytic continuation along this curve transforms the
function element (0, P ) into (0, ζP ), with ζ = e2πi/5.

2. Show that the compact Riemann surface belonging to P (z, w) = w2 − z is biholo-
morphically equivalent to the Riemann sphere.

3. Show that the set of zeros of an irreducible polynomial P ∈ C[z, w] in C × C is
connected.

4. Let Q be a polynomial of degree 3 or 4 without multiple zeros and let X be the
Riemann surface which is associated with P (z, w) = w2 − Q(z), together with
the projection p : X → C̄. Then p has precisely four branch points, i.e. there
are exactly four points with one preimage. The other points have two preimages.
Compare this behavior with the mapping behavior of the Weierstrass ℘-function.

(This gives a hint that X might be biholomorphically equivalent to a torus.)

5. Consider the Riemann surface associated with the polynomial

P (z, w) = w4 − 2w2 + 1 − z

together with the projection p : X → C̄. Show that all points z ∈ C̄ besides
0, 1, and ∞ have four preimages in X. Describe the mapping behavior for the
exceptional points.
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6. In [FB], in the appendix to Sect. V.3, we introduced the projective space Pn(C)
as the quotient space of C

n+1−{0}. Show that this is a compact space (equipped
with the quotient topology). We also introduced there the projective closure Ñ
of an affine algebraic curve N . Show that there exists a natural continuous map
of the associated Riemann surface onto Ñ .

7. Let L ⊂ C be a lattice. Show that the projection C → C/L is a covering.

8. Show that Proposition 3.17 remains true if E is replaced by C.

9. Give an example of a locally topological map which is not a covering.

10. Is sin : C → C a covering?



II. Harmonic Functions on Riemann Surfaces

In contrast to a domain D ⊂ C , where rational functions already provide a big class of
meromorphic functions, on a Riemann surface it is not possible without further effort
to construct meromorphic functions, for example with a given finite set of poles.
Constructive problems of this kind are central problems in the theory of Riemann
surfaces. It turns out that it is easier to construct harmonic instead of analytic
functions. So we are led to pick up a thread which we dropped very early on in the
first volume [FB] (Chap. I, Sect. 5). Our treatment is very much based on that in
the classic book by Nevanlinna [Ne].

We recall some basic facts about harmonic functions:

1) The real part of an analytic function is harmonic.

2) An analytic function on a domain D ⊂ C is determined up to an additive (pure
imaginary) constant by its real part.

3) On an elementary domain (= simply connected domain), every harmonic function
is the real part of some analytic function. As a consequence, harmonic functions
locally are real parts of analytic functions.

4) The function
C
.

:= C − {0} −→ C , z �−→ log |z|,
is harmonic. But on the whole C

.
, it is not the real part of an analytic function.

In the first six sections, we shall deal with the Dirichlet boundary value problem. The
question is whether, on a relatively compact domain U ⊂ X of a Riemann surface, one
can construct a harmonic function which takes given boundary values f : ∂U → R

when one approaches the boundary. In the case where X is the complex plane and U
the unit disk, such a solution can be written down explicitly by means of the Poisson
integral. The solution for other domains U in the plane or, even more generally, on
a Riemann surface is more involved. It is not necessary for the theory of Riemann
surfaces to solve the boundary value problem for arbitrary U . We need only a big
enough class of such domains. What we need is the following:

Every Riemann surface X with a countable basis of the topology admits a sequence
of open relatively compact open subsets U1 ⊂ U2 ⊂ · · ·, for which the boundary value
problem is solvable and such that X =

⋃
Un.

There are several methods for solving this problem. Probably the most powerful
method is the Dirichlet principle. Here, the function in question is provided as the
solution of an extremal problem. The Dirichlet principle is a powerful tool in other
branches of analysis also. Hence it is treated in its own right textbooks about Riemann
surfaces, [Fo1, Pf]. Techniques from functional analysis are needed for its use.

Another approach is that due to Perron. Perron’s method uses families of “subhar-
monic functions” which are associated with a boundary value problem. The solution
is obtained as the supremum of such a family.

Maybe the most elementary approach is given by the Schwarz alternating method,
which we shall use in our approach. By this method, we obtain the result that the
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boundary value problem is solvable for the union of two domains if it is solvable for
both of them and if the two domains have only finitely many boundary points in
common. Every Riemann surface is the union of countably many “disks”. Thus it is
very easy to construct an exhaustion of the Riemann surface in the above sense.

The alternating method makes it necessary to admit boundary value distributions
which are not continuous at a finite set of points. Thanks to a generalization of
the maximum principle, which is treated in Nevanlinna’s important book [Ne], it is
sufficient to admit a finite set of exceptional points at which, besides a boundedness
condition, nothing has to be demanded. When one takes the union of two domains,
one usually gets kinks at the intersection points of the two boundaries of the original
domains. These intersection points can be included in the set of exceptional points. So
we only have to take care that they are finitely many. This means that no problems of
topological nature will arise during the exhaustion of the surface . So the alternating
method is very simple in this regard also.

This relatively simple solution of the boundary value problem is not the end of
construction problems for harmonic functions, since we need harmonic functions on
the whole domain and not only on open relatively compact subdomains. Even more
importantly, on a compact connected Riemann surface every harmonic function turns
out to be constant. Hence we have to modify our original task and admit singulari-
ties. So, we have to construct harmonic functions with prescribed singularities. The
following problem arises.

Let U ⊂ X be an open relatively compact subset of a Riemann surface, let S ⊂ U be
a finite subset, and let u0 : U − S → R be a harmonic function. Does there exist a
harmonic function u : X − S → R such that u − u0 can be extended to a harmonic
function on the whole X and such that u remains bounded in the complement of U?

The function u would then have the same singular behavior as u0 but be harmonic
on the whole of X − S. The function u0 should be considered as a description of
the desired singularity behavior of u. Hence we call u a solution of the singularity
problem. Usually this function will not be unique; the boundedness condition only
restricts the class of solutions if there is one. The singularity problem is not always
solvable. For example, we shall derive from the residue theorem that for compact
Riemann surfaces and for subsets U which are biholomorphically equivalent to a disk,
a solution can exist only if u0 is the real part of an analytic function. On the other
hand, the singularity problem is trivially solvable for domains in the plane. For this
reason, we divide the class of all Riemann surfaces into two subclasses:

A Riemann surface is called positively bounded if the singularity problem is always
solvable. Otherwise, it is called zero-bounded.

Our central existence theorem states that a residue condition is sufficient even in the
zero-bounded case to solve the singularity problem.

The solution of the singularity problem by means of the Schwarz alternating
method is given in Sects. 8–11.

The various methods for the solution of singularity problems should not be valued
differently. Each of them has its advantages and justifications. We shall come back
to this in connection with the proof of the uniformization theorem in Chap. III.

For the solution of the singularity problem in the zero-bounded case, we need
a quite general version of Stokes’s theorem for rather general differentiable oriented

II.Harmonic Functions on Riemann Surfaces
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surfaces. In the appendix to this chapter (Sect. 13), we shall introduce the necessary
calculus of differential forms and include a proof of the Stokes formula.

A by-product of the alternating method is a proof of the nontrivial fact, due to
T.Radó (1925), that connected Riemann surfaces always have a countable basis of
their topology. Despite the fact that the practical use of the theorem is not very high
– one simply could assume the countability –, we give a sketch of this result in an
appendix to Sect. 6.

1. The Poisson Integral Formula

A function
u : D→ R , D ⊂ C open,

is called harmonic if it is two times continuously differentiable (in the sense of
real analysis) and if

∆u =
(
∂2

∂x2
+

∂2

∂y2

)
u = 0

holds.

We shall derive from Cauchy’s integral formula for analytic functions the
Poisson integral formula for harmonic functions and perform some simple ma-
nipulations of Cauchy’s integral formula.

Let D be an open subset of the complex plane which contains the closed
unit disk

Ē = {z ∈ C; |z| ≤ 1}.

Cauchy’s integral formula states, for an analytic function f : D → C, that

f(z) =
1

2πi

∮

|ζ|=1

f(ζ)
ζ − z dζ (z ∈ E).

In particular, for z = 0 it follows that

f(0) =
1
2π

2π∫

0

f(ζ(t)) dt , ζ(t) = eit.

Taking the complex conjugate in the above formula, we get

f(0) =
1

2πi

∮

|ζ|=1

(f(ζ)/ζ) dζ.
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This gives

f(z) + f(0) =
1

2πi

∮

|ζ|=1

[
f(ζ)
ζ − z +

f(ζ)
ζ

]
dζ

=
1

2πi

∮

|ζ|=1

f(ζ) + f(ζ)
ζ − z dζ − z

2πi

∮

|ζ|=1

f(ζ)
ζ(ζ − z) dζ.

Claim. ∮
f(ζ)

ζ(ζ − z) dζ = 0.

Proof . The function f(z) admits, in Ē, an expansion into a uniformly conver-
gent power series. The claim hence has to be proved for

f(z) = zn , n ≥ 0.

On the integration path, we have

f(ζ) = ζ−n (since ζζ̄ = 1).

Hence we have to show, for R = 1, that
∮

|ζ|=R

dζ

ζn+1(ζ − z) = 0 (|z| < 1 , n ≥ 0).

By Cauchy’s theorem, the integral does not change if R is enlarged. The claim
follows from taking the limit R→∞. ��

We have obtained the modified Cauchy integral formula.

1.1 Lemma. Assume that the function f is analytic in an open neighborhood
of the closed unit disk. Then

f(z) + f(0) =
2

2πi

∮

|ζ|=1

Re f(ζ)
ζ − z dζ.

Variant. In the special case z = 0, we get

Re f(0) =
1

2πi

∮

|ζ|=1

Re f(ζ)
ζ

dζ,

and hence

f(z)− i Im f(0) =
1

2πi

∮

|ζ|=1

Re f(ζ)
ζ

ζ + z

ζ − z dζ.
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The modified Cauchy integral formula states that the values of f(z), z ∈ E,
can be computed up to an imaginary constant from the values of the real part
of f on the boundary of the unit disk. This formula is due to H. A. Schwarz
(1870) and is called the Schwarz integral formula.

By assumption, D is an open set which contains the closed unit disk. Hence
there exists R > 1 such that

UR(0) ⊂ D.

Every harmonic function on UR(0) is the real part of an analytic function f .
Taking the real part in the last formula of Lemma 1.1, we obtain the Poisson
integral formula.

Poisson Integral Formula

1.2 Proposition (S. Poisson, 1810). Let

u : D −→ R, D ⊂ C open, Ē ⊂ D,

be a harmonic function on an open neighborhood of the closed unit disk. Then,
for z ∈ E, we have

u(z) =
1
2π

2π∫

0

u(ζ(t))K(ζ(t), z) dt

where
ζ(t) = eit

and

K(w, z) = Re
(
w + z

w − z

)
.

In the special case z = 0, we get the so-called midpoint property of harmonic
functions,

u(0) =
1
2π

2π∫

0

u(ζ(t)) dt.

We call

K(w, z) = Re
(
w + z

w − z

)
=
|w|2 − |z|2

|w − z|2
> 0

the Poisson kernel of the unit disk.
The Poisson integral formula for harmonic functions is a similar tool to the

Cauchy integral formula for analytic functions. An example of this is provided
by the maximum principle.
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The Maximum Principle

1.3 Lemma. A harmonic function u on a domain D which attains a maxi-
mum, i.e. there exists a point

a ∈ D such that u(z) ≤ u(a) for all z ∈ D,

is constant.

Proof. Let a ∈ D be a point at which u attains its maximum (u(z) ≤ u(a) for
z ∈ D). The function

U(z) = u(a+ rz), r sufficiently small,

is harmonic in an open neighborhood of the closed unit disk. It follows from
the midpoint property that

u(a) = U(0) =
1
2π

2π∫

0

u(a+ rζ(t)) dt ≤ 1
2π

2π∫

0

u(a) dt.

Since equality must hold, we get u(a + reit) = u(a). Hence the function is
constant in a full neighborhood of a. The set of all points z ∈ D in which u
has the maximal value u(a), is open. Since it is closed for trivial reasons, we
get u(z) = u(a) for z ∈ D. ��

Exercises for Sect. II.1

1. Show that the product of two harmonic functions on an open subset of the plane is
harmonic iff their gradients are orthogonal at any point of the domain of definition.

2. Let ϕ : D → D′ be a conformal map between open subsets of the plane. Show that
the harmonic functions on D′ are in one-to-one correspondence with the harmonic
functions on D (with respect to u �→ u ◦ ϕ).

3. Show that every harmonic function on the whole plane C which is bounded from
above (or from below) is constant.

One can reduce this to Liouville’s theorem or prove it directly by means of the
Poisson integral formula.

4. Show that

Re
1 + reiϕ

1 − reiϕ
=

1 − r2

1 − 2r cosϕ+ r2.
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The Poisson integral formula can be written in the form

u(reiϕ) =
1

2π

2π∫

0

u(eit)
1 − r2

1 − 2r cos(t− ϕ) + r2
dt.

5. Assume that u : D → R is a nonconstant harmonic function on a domain D ⊂ C.
Show that the image u(D) is open in R . Use this for a proof of the maximum
principle.

2. Stability of Harmonic Functions on Taking Limits

Harmonic functions have very good stability properties under limits. These
properties rest on the Poisson integral formula (Sect. 1).

2.1 Remark. The Poisson kernel

K(w, z) = Re
w + z

w − z (|w| = 1 , |z| < 1)

is harmonic for every fixed w.

The proof is trivial since (w + z)/(w − z) is analytic. ��
.

2.2 Corollary. Let
f : [a, b] −→ R (a < b)

be a continuous function on a compact interval. The function

u(z) =

b∫

a

f(t)K(eit, z) dt

is harmonic (on the unit disk E).

The proof follows immediately from Remark 2.1 and the Leibniz criterion.
��

Since proper integrals are stable with respect to locally uniform convergence,
we obtain the following theorem from Corollary 2.2 and the Poisson integral
formula.

2.3 Theorem. Let (un) be a sequence of harmonic functions

un : D −→ R , D ⊂ C open,

which converges uniformly. Then the limit function is harmonic as well.
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The Harnack Inequality (A. Harnack, 1887)

2.4 Proposition. Let u be a harmonic function on an open neighborhood of
the compact disk UR(a). Assume that

u(z) ≥ 0 for |z − a| ≤ R.

For any number r such that 0 < r < R and for all z such that |z − a| = r, the
Harnack equality

R− r
R+ r

u(a) ≤ u(z) ≤ R+ r

R− ru(a).

holds.

The proof follows from the Poisson formula applied to

U(z) = u(a+Rz),

together with the trivial inequality

|w| − |z|
|w|+ |z| ≤ K(w, z) ≤ |w|+ |z||w| − |z| (|z| < |w|). ��

2.5 Corollary. Let u be a harmonic function on an open neighborhood of the
compact disk UR(a) such that
a) u(a) = 0;
b) m ≤ u(z) ≤M for z ∈ UR(a) (where m,M are real constants).
Then

m
2r

R+ r
≤ u(z) ≤M 2r

R+ r
for |z − a| = r < R.

Proof . We apply Harnack’s inequality (Proposition 2.4) to the functions u(z)−
m and M − u(z). ��

By the way, because of the maximum principle, it is enough to know that
the inequality b) holds on the boundary of the disk. The most important
application of Harnack’s inequality is the following statement.

Harnack’s Principle

2.6 Proposition. Let (un) be a monotonically increasing sequence of har-
monic functions

un : D −→ R , D ⊂ C open,
u1(z) ≤ u2(z) ≤ · · · for z ∈ D.

The set of all points z ∈ D for which the sequence (un(z)) remains bounded is
open and closed in D.
Corollary. Let D be a (connected) domain. When the sequence (un(z0)) con-
verges for some z0 ∈ D, then it converges for all z ∈ D and the convergence
is locally uniform. In particular, the limit function is harmonic.
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Proof . Since un(z) can be replaced by un(z)− u1(z), we may assume that

un(z) ≥ 0 for all z ∈ D.

Now let a ∈ D be a point such that (un(a)) is bounded, i.e.

un(a) ≤ C.

It follows from Harnack’s inequality that

un(z) ≤ C
R+ r

R− r (r = |z − a|)

for all z in a full neighborhood of a. Hence the set of all z ∈ D on which (un)
remains bounded is open in D. By means of an estimation of u(z) from below
using Proposition 2.4, it can be shown analogously that the set of all points
z ∈ D on which (un) is unbounded is open as well.

It remains to prove the locally uniform convergence as stated in the corollary.
Again this follows from Harnack’s inequality, applied to the functions

um(z)− un(z) , m ≥ n.

Namely, let a ∈ D be a given point; it then follows from Harnack’s inequality
that there exists a neighborhood U (say U = U 1

2R
(a)) such that each ε > 0

admits an N ∈ N with

0 ≤ um(z)− un(z) ≤ ε for m ≥ n ≥ N and z ∈ U.

Hence the sequence (un) is a locally convergent Cauchy sequence. ��

Exercises for Sect. II.2

1. Show from Harnack’s inequality that any harmonic function on the whole of C

which is bounded from above or below is constant.

2. Let H be a nonempty set of harmonic functions on a domain D ⊂ C. Assume
that for two functions u1, u2 ∈ H there exists a function u ∈ H with the property

u ≥ max(u1, u2).

Assume also that there exists at least one point a ∈ D such that the function
values u(a), u ∈ H, remain bounded from above. Show that there exists a unique
harmonic function ũ with the property

ũ(z) = sup{u(z); u ∈ H}.
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Hint. First, construct a sequence un ∈ H such that un(a) converges increas-
ingly to sup{u(a); u ∈ H}. The limit function of this sequence is harmonic, by
Harnack’s principle. One can deduce from the maximum principle that the limit
function has the desired properties.

3. Let M > 0 and ε > 0 be positive numbers. Show that there exists a positive
number δ > 0 such that for any harmonic function

u : E −→ R with |u(z)| ≤M for all z,

one has

|u(z1) − u(z2)| ≤ ε for |z1|, |z2| ≤ 1/2 and |z1 − z2| ≤ δ.

4. Prove the following variant of Montel’s theorem:

Any bounded sequence of harmonic functions has a locally uniform convergent
subsequence.

3. The Boundary Value Problem for Disks

Let
f : (a, b) −→ R , a < b,

be a bounded and continuous function on an open bounded interval. Then the
improper integral

b∫

a

f(t) dt

converges absolutely, since there exists a constant C > 0 with the property

d∫

c

|f(t)| dt ≤ C for a < c < d < b.

Since the Poisson kernel K(eit, z) is bounded for z ∈ E as a function of t, the
integral

u(z) =

b∫

a

f(t)K(eit, z) dt

exists.
We choose sequences

a < an < bn < b , lim an = a , lim bn = b.
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Obviously, the sequence

un(z) =

bn∫

an

f(t)K(eit, z) dt

converges uniformly to u(z). Because of Corollary 2.2 and Theorem 2.3, the
function u(z) is harmonic.

More generally, let
f : (a, b)→ R

be a bounded function which is continuous with finitely many exceptions

a = a1 < · · · < an = b.

We then define
b∫

a

f(t) dt =
n−1∑

ν=1

aν+1∫

aν

f(t) dt.

The function

u(z) =

b∫

a

f(t)K(eit, z) dt

is harmonic in the unit disk. Now we assume that the length of the integration
interval is 2π. We are interested in the behavior of u when we approach a
boundary point

z0 = eit0 , t0 ∈ (a, a+ 2π).

3.1 Lemma. Let
f : (a, a+ 2π) −→ R

be a bounded function which is continuous outside a finite set of points. Then
the function

u(z) =
1
2π

a+2π∫

a

f(t)K(eit, z) dt

is harmonic in the unit disk. Let t0 ∈ (a, a + 2π) be a point at which f is
continuous, and let z0 = eit0 . Then

lim
z→z0, |z|<1

u(z) = f(t0).
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Proof . The Poisson integral formula states, for u ≡ 1, that

a+2π∫

a

K(eit, z) dt =

2π∫

0

K(eit, z) dt = 2π.

Hence, for constant f , the statement in Lemma 3.1 is true. For this reason, we
may assume that f(t0) = 0. We then have to show, for given ε > 0, that

|u(z)| < ε

in a full neighborhood of z0. To prove this, we choose a small δ > 0 such that

|f(t)| < ε/2 for |t− t0| < δ, t ∈ (a, a+ 2π).

We can assume that
(t0 − δ, t0 + δ) ⊂ (a, a+ 2π).

When t is not contained in (t0 − δ, t0 + δ), we have

lim
z→z0

K(eit, z) = 0,

where the convergence is uniform in t. It follows that

|u(z)| ≤ ε

2
+

1
2π

t0+δ∫

t0−δ
|f(t)|K(eit, z) dt

≤ ε

2

(
1 +

1
2π

t0+δ∫

t0−δ
K(eit, z) dt

)

if z is sufficiently close to z0. Now we have

t0+δ∫

t0−δ
K(eit, z) dt ≤

t0+π∫

t0−π
K(eit, z) dt =

2π∫

0

K(eit, z) dt = 2π.

So we obtain
|u(z)| ≤ ε, z close enough to z0,

as desired. ��
The solution of the boundary value problem for disks follows from Lemma

3.1.
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3.2 Proposition (H.A. Schwarz, 1872). Let

f : ∂E → R

be a bounded function on the boundary of the unit disk which is continuous
outside a finite set of points. Then the Poisson integral

u(z) = uf (z) =
1
2π

2π∫

0

f(eit)K(eit, z) dt

defines a harmonic function with the following property: if z0 ∈ ∂E is a bound-
ary point at which f is continuous, then

lim
z→z0,z∈E

u(z) = f(z0).

Additional remark.

1) In the case f ≡ 1, we have u ≡ 1.
2) It follows from f ≤ g that uf ≤ ug.
In particular, an estimate

m ≤ f ≤M (m,M ∈ R)

implies a corresponding estimate for u,

m ≤ u ≤M.

As a consequence, the harmonic functions constructed in Proposition 3.2 are
bounded.

Let D ⊂ C be a bounded open subset and let f : ∂D → R be a continuous
function on its boundary. The Dirichlet boundary value problem is to find
a continuous function on the closure D̄ which is harmonic in D and agrees
with f on the boundary. Proposition 3.2 provides a solution to this boundary
problem in case of the unit disk. In the following sections, we shall formulate
the boundary value problem more generally on Riemann surfaces and prove
several general existence and uniqueness results.

Exercises for Sect. II.3

1. The Poisson integral formula has been proved for functions which are harmonic in
an open neighborhood of the closed unit disk. Show that it is true more generally
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for functions which are continuous on the closed unit disk and harmonic in the
interior.

2. Let D ⊂ C be a domain. Assume that there exists a conformal map from D onto
the unit disk which extends to a topological map D̄ → Ē. Show that the Dirichlet
boundary value problem for D is solvable.

3. Let u be a continuous function on the closure of the upper half-plane H in the
Riemann sphere which is in harmonic in H. Prove the following “Poisson integral
formula” for the upper half-plane:

u(z) =
y

π

∞∫

−∞

u(t)

(x− t)2 + y2
dt (z = x+ iy ∈ H).

4. Let ϕ : R → R be a bounded continuous function. Show that

u(z) =
y

π

∞∫

−∞

ϕ(t)

(x− t)2 + y2
dt

defines a harmonic function on H which converges to ϕ as one approaches the real
axis.

5. Solve the boundary value problem for the unit disk and the boundary values

f(z) =

{
1 if |z| = 1 and Im z > 0,
0 if |z| = 1 and Im z < 0.

Result:

u(z) = 1 − 1

π
Arg

(
1

i

z − 1

z + 1

)
.

6. Let D be an open bounded subset of the plane C, and let u, v be two continuous
functions on the closure D̄ which are harmonic in D and which agree on the
boundary ∂D. Show that they agree on D.

7. Let D ⊂ C be an open subset. A continuous function h : D → R has the midpoint
property if, for any closed disk Ūr(a) ⊂ D, the equation

h(a) =
1

2π

2π∫

0

h(a+ reit)dt

is satisfied. So, harmonic functions have the midpoint property. Show the con-
verse: continuous functions with the midpoint property are harmonic.

Hint. First show that functions with the midpoint property obey the maximum
principle (Lemma 1.3). Then solve the boundary value problem for a disk Ur(a)
whose closure is contained in D and where the boundary values are given by h.
Then show that this solution and h coincide in Ur(a).
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4. The Formulation of the Boundary Value Problem on
Riemann Surfaces and the Uniqueness of the Solution

Let
u : U −→ R (U ⊂ C open )

be a harmonic function and let

ϕ : D −→ U (D ⊂ C open )

be an analytic function. Then the function

ũ(z) = u(ϕ(z))

is harmonic too.

This is a statement of local nature. Hence we may assume, for the proof,
that u is the real part of an analytic function f . Then

ũ(z) = Re(f(ϕ(z))).

This simple observation allows us to extend the notion of a harmonic function
to arbitrary Riemann surfaces.

4.1 Definition. A function u : X → R on a Riemann surface is called
harmonic at a point a ∈ X if there exists an analytic chart

ϕ : U −→ V , a ∈ U,
∩ ∩
X C

such that the function
uϕ = u ◦ ϕ−1 : V −→ R

is harmonic in an open neighborhood of ϕ(a).

The initial remark in this section then shows that this is true for all analytic
charts ϕ. Examples of harmonic functions are provided by the real parts of
analytic functions.

4.2 Remark. Let u be a harmonic function on a connected Riemann surface
which vanishes in a nonempty open subset of X. Then u vanishes everywhere.

The simple proof of the identity theorem is left to the reader. We note only
that the zero set of a harmonic function is usually not discrete, as the example
log |z| shows.
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Formulation of the Boundary Value Problem

A subset U of a topological space is called relatively compact if its closure is
compact. A subset of R

n is relatively compact iff it is bounded.

4.3 Definition. Let U ⊂ X be an open relatively compact subset of a Riemann
surface. We assume that each connected component of U has infinitely many
boundary points. Let

f : ∂U −→ R

be a bounded function on the boundary of U which is continuous outside a finite
set of points.

A solution of the boundary value problem “(U, f)” is a bounded harmonic
function

u : U −→ R

such that
lim

x→a, x∈U
u(x) = f(a)

for all a ∈ ∂U outside a finite set of points.

Remark . There then exists a finite set M⊂ ∂U such that the extension

u : Ū −M −→ R,

u(x) =
{
u(x) for x ∈ U ,
f(x) for x ∈ ∂U −M

of u is continuous.
We want to show that the solution, if it exists, is uniquely determined. For

this, we need certain generalizations of the maximum principle (Lemma 1.3).
An obvious generalization states the following.

4.4 Lemma. A harmonic function u : X → R on a connected Riemann
surface which attains its maximum is constant.

This implies the following statement.

Variant of the Maximum Principle

4.5 Lemma. Let
u : U −→ R

be a harmonic function on an open relatively compact subset U of a Riemann
surface X. We assume that no connected component of U is compact. We also
assume that every boundary point a ∈ ∂U admits a neighborhood U(a) ⊂ X
with the property

u(x) ≥ 0 for all x ∈ U(a) ∩ U.
Then

u ≥ 0.
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Proof. We may assume that U is connected and nonempty, since the assump-
tions of Lemma 4.5 carry over to each connected component. Let

m := inf
x∈U

u(x) ≥ −∞ (−∞ is allowed).

Since Ū is compact, there exists a sequence

xn ∈ U, u(xn) −→ m for n −→∞

that converges in Ū . We can assume that u is not constant. Here we make use
of the assumption that ∂U is not empty. The maximum principle shows that
the limit a = limxn is contained in the boundary of U . But then

u(xn) ≥ 0 for almost all n,

and hence m ≥ 0. ��
The following variant of the maximum principle allows finitely many excep-

tional points on the boundary. As a consequence, we do not have to take care
of finitely many “bad points” such as vertices and isolated boundary points.
Hence we shall never be confronted with difficulties of topological nature.

4.6 Proposition. Let
u : U −→ R

be a harmonic function on an open relatively compact subset of a Riemann
surface which is bounded from below. Assume that each boundary component of
U has infinitely many boundary points. Furthermore, assume that each point
a ∈ ∂U up to finitely many exceptions admits a neighborhood U(a) ⊂ X with
the property

u(x) ≥ 0 for all x ∈ U(a) ∩ U.

Then
u ≥ 0.

Corollary 1. The solution of the boundary value problem, if it exists, is
uniquely determined.

Corollary 2. Let “(U, f)” and “(U, g)” be two boundary value problems on the
same U . Then

f ≤ g =⇒ uf ≤ ug.

In particular, an estimate

m ≤ f ≤M (on ∂U) (m,M ∈ R)
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carries over to an estimate for uf :

m ≤ uf ≤M (on U).

Proof of Proposition 4.6. We can assume that U is connected and that u is
not constant, since ∂U contains infinitely many boundary points. Since u is
bounded from below, we have

m := inf
x∈U

u(x) > −∞.

We want to give an indirect argument, and hence assume

m < 0.

Since Ū is compact, there exists a convergent sequence (xn), xn ∈ U , with the
property

lim
n→∞u(xn) = m.

The maximum principle shows that

a = lim
n→∞ xn ∈ ∂U

(and a is one of the finitely many exceptional points which are allowed by
Proposition 4.6).

Now we choose an open neighborhood U(a) such that there are no exceptional
points in U(a) ∩ ∂U besides a. We can achieve the result that there exists an
analytic chart

ϕ : U(a) −→ E , ϕ(a) = 0.

To improve the boundary, we diminish U(a):

U ′(a) := {x ∈ U(a), |ϕ(x)| < 1/2}.

We now modify u on U ′(a)∩U in such a way that the assumptions of Proposition
4.6 are fulfilled for all boundary points (including a). We consider

uε(x) = u(x)− ε log |ϕ(x)|, x ∈ U ′(a) ∩ U.

This function is harmonic. We are interested in its boundary behavior.

1) Obviously, for arbitrary ε > 0,

lim
x→a

uε(x) = +∞.
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2) Let b ∈ ∂(U ∩U ′(a)), b 
= a. A simple topological consideration shows that
either

a) b ∈ U ′(a) ∩ ∂U, b 
= a,

or

b) b ∈ K := Ū ∩ ∂(U ′(a)).

In the case a) we have, for positive ε,

uε(x) ≥ u(x) ≥ 0

in a sufficiently small neighborhood of b. Now we consider

µ = inf
x∈U∩∂U ′(a)

u(x).

Claim. µ > m.
Proof of the claim. In the case where µ is not negative, we are already done
because m < 0. Hence we assume µ < 0. Then u has a minimum in U∩∂U ′(a).
The claim now follows from the maximum principle, since by assumption u is
not constant.

We can choose ε > 0 such that

uε(x) ≥M for x ∈ U ∩ ∂U ′(a), 0 > M > m suitable.

Now we can apply Lemma 4.5 to the function

uε(x)−M on U ′(a) ∩ U

and obtain
uε(x) ≥M for x ∈ U ′(a) ∩ U.

This inequality can be applied to the sequence (xn). Taking the limit, we
obtain

m ≥M,

which contradicts the choice of M . ��
Proof of the corollaries. Let u and v be two solutions of the boundary value
problem. Then, for each ε > 0, the functions u− v+ ε and v−u+ ε satisfy the
assumptions of Proposition 4.6. Hence both are nonnegative on U . Since this
is true for arbitrary ε > 0, we obtain u = v. The second corollary is proved
similarly.

The assumption that any connected component of U has infinitely many
boundary points is harmless, because of the following fact.
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4.7 Remark. Let X be a connected Riemann surface and let U be an
open nonempty relatively compact subset which has only finitely many boundary
points. Then X is compact and X − U is a finite set.

Proof. Let S be the set of boundary points of U . The set U is open and closed
in X − S. By assumption, S is finite. Hence X − S remains connected. We
obtain U = X − S and Ū = X. ��

Exercises for Sect. II.4

1. Prove the identity theorem (Theorem 4.2) for harmonic functions.

2. Prove the following variant of Riemann’s extension theorem:

Let D ⊂ C be an open subset, let a ∈ D be a given point, and let u : D−{a} → R

be a bounded harmonic function. Then the singularity a is removable, i.e. u is the
restriction of a harmonic function on the whole of D.

Hint. It can be assumed that D is the unit disk and that u extends as a
continuous function to the closed disk. Consider u as the solution of a boundary
problem, where a can be considered as an exceptional boundary point.

A further proof of the Riemann extension theorem for harmonic functions
comes from the following exercise.

3. Show that any harmonic function u in the punctured disk E
.

has the form

u(z) = A log |z| + Re f(z)

with a constant A and an analytic function in E
.
.

Hint. Take the residue of the analytic function (∂1 − i∂2)(u) for A.

4. Prove the following variant of the Schwarz reflection principle.

Let D be the intersection of the unit disk with the upper half-plane and let u
be a harmonic function on D which tends to 0 when the real axis is approached.
Show that the function

U(z) =

{
u(z) for Im z > 0,
0 for Im z = 0,
−u(z̄) for Im z < 0

is harmonic in the full unit disk.

Hint. It can be assumed that u has a continuous extension to the closure of
D. We know what U has to look like at the boundary of the unit disk. Define
U as the solution of the corresponding boundary problem. Show that U vanishes
on the real axis, and make use of the uniqueness of the solution of the boundary
problem for D to show that U and u agree in D.



74 II. Harmonic Functions on Riemann Surfaces

5. Solution of the Boundary Value Problem by Means
of the Schwarz Alternating Method

Since it is tedious to repeatedly point out the finitely many exceptional points of
a solution of a boundary value problem and the boundedness property included
in it, we shall adopt the following convention from this point onwards.

5.1 Notation. Let U ⊂ X be an open subset of a Riemann surface, let

u : U −→ R

be a harmonic function, let ∆ ⊂ ∂U be a subset of the boundary (usually the
whole boundary), and let f be a function which is defined on ∆.

The notation
u ≥ f on ∆

means the following. Let ε be a positive number. Every point a ∈ ∆ admits an
open neighborhood U(a) with the following two properties:
a) u is bounded from below on U ∩ U(a).
b) With the exception of finitely many a, we have

u(x) ≥ f(a)− ε for x ∈ U ∩ U(a).

In the cases u ≥ f and u ≤ f (i.e. −u ≥ −f) on ∆, we write

u = f on ∆.

If we are familiar with the notion of a limit superior, we can formulate a) and
b) as follows:
a′) lim supx→a u(x) > −∞ for all a ∈ ∆;
b′) lim supx→a u(x) ≥ f(a) for almost all a ∈ ∆.

The condition “u = f on ∆” means the following. If we approach an
arbitrary boundary point, then u remains bounded. For almost all a on the
boundary, the following holds:

lim
x→a

u(x) = f(a).

When U ⊂ X is an open relatively compact subset and

f : ∂U −→ R

is a bounded function on the boundary which is continuous outside a finite set,
then the solution of the boundary value problem “(U, f)” means a harmonic
function u : U → R such that

u = f on ∂U.

We say that the boundary value problem on U is solvable if a solution exists
for every f .
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5.2 Theorem. Let U, V be two open relatively compact subsets of a Riemann
surface X. Assume that every connected component of U ∪ V has infinitely
many boundary points.
Assumption.
a) ∂U ∩ ∂V is a finite set.
b) The boundary value problems for U and V are solvable.
Claim. Then the boundary value problem for U ∪ V is solvable.

Proof. It follows from Remark 4.7 that each of the sets U , V , U ∩ V has
infinitely many boundary points. We may assume that U ∩ V is not empty.

We decompose the boundaries

∂U = ∂′U ∪ ∂′′U,
∂′′U = ∂U ∩ V, ∂′U = ∂U − ∂′′U

and, analogously,

∂V = ∂′V ∪ ∂′′V,
∂′′V = ∂V ∩ U, ∂′V = ∂V − ∂′′V.

We have
∂(U ∪ V ) = ∂′U ∪ ∂′V.

This decomposition is nearly disjoint, i.e. ∂′U and ∂′V have only finitely many
points (from the set ∂U ∩ ∂V ) in common. We also have the fact that the sets
∂(U ∩ V ) and ∂′′U ∪ ∂′′V are equal up to finitely many points (also from the
set ∂U ∩ ∂V ):

∂′′V ∂′′U

∂′U ∂′V

U V

Now we construct, for a given boundary value distribution

f : ∂(U ∪ V ) −→ R,

two sequences of harmonic functions

un : U −→ R,

vn : V −→ R (n = 0, 1, 2, . . .).
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The construction is done inductively in the order

u0, v0, u1, v1, . . .

(always alternating in U and V ). We start with

u0 ≡ 0

and then define v0, u1, . . . as solutions of the following boundary conditions:

vn =
{
f on ∂′V ,
un on ∂′′V, n ≥ 0,

un =
{
f on ∂′U ,
vn−1 on ∂′′U, n > 0.

Now we show, step by step, the following:

1) The limits
u = limun, v = lim vn

exist and are harmonic.
2) u|U ∩ V = v|U ∩ V.
3) The harmonic function

(u, v) : U −→ R,

which arises from gluing u and v, gives the solution of the boundary value
problem “(U ∪ V, f)”.

1) By assumption, the function f is bounded. Since f can be modified by an
additive constant, we may assume that

0 ≤ f ≤ C (C ∈ R).

The corollary of Proposition 4.6 shows inductively that

0 ≤ u0 ≤ u1 ≤ · · · ≤ C,
0 ≤ v0 ≤ v1 ≤ · · · ≤ C.

By Harnack’s principle, the limits

u = limun, v = lim vn,

exist and are harmonic.
This proves 1).
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2) Again using Proposition 4.6, we show that on U ∩ V the inequality

un ≥ vn−1 (n ≥ 1)

holds. Here we have to use the fact that the boundary of U ∩ V coincides
with ∂′′U ∪ ∂′′V up to finitely many points. It follows from the above
inequality that

u ≥ v on U ∩ V
by taking limits, and then u = v by symmetry.

3) We show (using Notation 5.1) that

u = f on ∂′U

and analogously,
v = f on ∂′V

and hence
(u, v) = f on ∂(U ∪ V ).

For the proof, we consider the harmonic function

ω : U −→ C

which solves the boundary value problem

ω =
{

0 on ∂′U ,
C on ∂′′U .

From Proposition 4.6 we get

u1 ≤ u ≤ u1 + ω on U

and hence
u = u1 = f on ∂′U. ��

Some simple examples for which the boundary value problem can be solved
are described below.

5.3 Remark. Let U ⊂ X be an open relatively compact subset of a Riemann
surface. Assume that there exists a biholomorphic map onto the unit disk

f : U −→ E

which, outside a finite set of points, extends to a topological map of the bound-
ary.
(This means that there exist finite subsetsM⊂ ∂U , N ⊂ ∂E and a topological
extension

Ū −M −→ Ē −N
of f). Then the boundary value problem is solvable on U .

The proof is trivial. ��
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5.4 Corollary. The boundary value problem is solvable on a disk two-gon,

(A disk two-gon is the intersection of the interior of a disk with the interior or
exterior of another disk such that neither of the disks is inside the other one.)

For the proof, we construct a conformal map from the disk two-gon onto
the unit disk such that this map extends topologically to the closures. This is
done in three steps; the details are left to the reader.

First step. Let a be a vertex of the two-gon. By means of the conformal map

z �−→ 1
z − a,

the two-gon is mapped onto an angle area:

Second step. We can assume that the negative real axis is not contained in the
angle area. We can then use

zα := eα log z (log = principal branch of the logarithm)

for a suitable α to get a conformal map onto a half-plane.

Third step . We can assume that the half-plane is the upper half-plane and then
use the standard map z → (z − i)/(z + i) from the upper half-plane onto the
unit disk. It is easy to see how these maps behave on the boundaries. ��

Now we prove a proposition by means of the alternating method (Theorem
5.2).

5.5 Proposition. The boundary value problem is solvable for annuli

r < |z| < R (0 < r < R <∞).

Proof. Obviously, the annulus can be covered by annuli in such a way that
Theorem 5.2 can be applied iteratively.
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Covering of a part of an
annulus by three disk two-
gons and two disks. The
boundaries of any two of
them have only finitely
many points in common.

��

The Exceptional Points of the Boundary Value Problem
Let U ⊂ X be an open relatively compact subset of a Riemann surface for
which the boundary value problem is solvable.

A boundary point a ∈ ∂U is called an exceptional point (with respect to the
boundary value problem) if there is a boundary value problem “(U, f)” such
that f is continuous at a, but the equality

lim
x→a

u(x) = f(a) (u is the solution of the boundary value problem)

is not true.
The proof of Theorem 5.2 immediately shows the following.

5.6 Remark. We use the same notation as in Theorem 5.2. Let a be an
exceptional point of U ∪ V . Then

either a is an exceptional point of U ,
or a is an exceptional point of V ,
or a ∈ ∂U ∩ ∂V .

It is in the nature of the alternating method that points from ∂U ∩ ∂V can
produce new exceptional points.

The boundary value problem for U is called strictly solvable if U has no
exceptional points. Then the solution extends continuously to the whole closure
Ū . The next statement follows from Proposition 3.2.
The boundary value problem is strictly solvable for the unit disk.

We have shown that the boundary value problem is solvable for disk two-
gons. It is clear that the only possible exceptional points are the vertices.
(Looking a little closely, we shall see that they are not exceptional points, but
we shall not need this.)

The solution of the boundary value problem for an annulus was obtained
by covering the annulus with disks and disk two-gons and application of the
alternating method (Proposition 5.5). Since the disks and two-gons can be
changed a little, we can obtain an improvement using Remark 5.6.
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5.7 Remark. Improvement of Remark 5.5. The boundary value problem
is strictly solvable (without exceptional points) for annuli.

Exercises for Sect. II.5

1. Let D be an open square and let K be a compact square contained in D with
edges parallel to the axes. Show that the boundary value problem for (D−K, C)
is solvable.

2. Show that the boundary value problem is solvable for (C̄ − [−1, 1], C̄).

3. Show that any conformal map of a disk two-gon onto the unit disk extends con-
tinuously to the closures.

4. Show that there is a nonconstant continuous function on the Riemann sphere
which is harmonic in the complement of the unit circle.

6. The Normalized Solution of the External Space Prob-
lem

In the following constructions, we make use of an exhaustion of the Riemann
surface. For this we need the following assumption.

6.1 Assumption. The Riemann surface X considered below has a countable
basis of the topology.

Actually, we shall see in the appendix to this section that every connected
Riemann surface has a countable basis of the topology.

6.2 Definition. A disk on a Riemann surface X is an analytic chart whose
domain of values is the unit disk:

ϕ : U ∼−→ E.

We shall use the notation

U(r) = {x ∈ U ; |ϕ(x)| < r} (0 < r < 1),
∂(r) = ∂(U(r)) = {x ∈ U ; |ϕ(x)| = r}.
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Let
f : ∂(1/2) −→ R

be a continuous function. A solution of the external space problem is a
function

u : X − U(1/2) −→ R

with the properties

1) u is continuous;
2) u|∂(1/2) = f ;
3) u is harmonic in the interior (X − U(1/2)).

Usually, the solution u of the external space problem is not unique. Clearly,
∂(1/2) is the boundary of X − U(1/2), but this set needs not to be compact.
So, at the moment, we know neither existence nor uniqueness.

In the following, we shall construct a distinguished, so-called normalized
solution of the external space problem.

6.3 Proposition. Let X be a Riemann surface with a countable basis of the
topology and let ϕ : U → E be a disk on X. There exists a unique map which
assigns to each continuous function f : ∂(1/2) → R a normalized solution
of the external space problem which has the following minimality property:

Assume f ≥ 0 and let u be an arbitrary solution of the external space
problem defined by f such that u ≥ 0. Then u(f) ≤ u.

Moreover:

1) The assignment f �→ u(f) is R-linear.

2) f ≤ g =⇒ u(f) ≤ u(g).
Special case. In the case f = 1, the normalized solution has a special meaning.
This solution is denoted by ω. We have

ω = 1 on ∂(1/2) and 0 ≤ ω ≤ 1.

The uniqueness of the map is obvious. For the proof of its existence, we con-
struct an exhaustion. Since X has a a countable basis of the topology and
since it is locally compact, it is countable at infinity. This means that X can
be written as a countable union of compact sets,

X = K1 ∪K2 ∪ . . . , Kn compact.

We use this for the construction of the exhaustion of X . (Actually, the solution
is independent of the choice of the exhaustion because of its uniqueness.)
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6.4 Proposition. Let X be a Riemann surface with a countable basis of the
topology, and let

ϕ : U −→ E

be a disk on X. There exists a sequence

U(3/4) ⊂ A1 ⊂ A2 ⊂ A3 ⊂ . . .

of relatively compact open subsets with the following properties:

1) X =
⋃∞
n=1An.

2) The boundary value problem for

An − U(1/2), n = 1, 2, . . . ,

is solvable.

6.5 Remark. We have

∂(An − U(1/2)) = ∂(An) ∪ ∂(1/2).

We call ∂(An) the exterior boundary and ∂(1/2) the interior boundary of
An − U(1/2). The two are disjoint because of the assumption U(3/4) ⊂ An.
Proof. Let

X ′ := X − U(1/2).

Like X , X ′ also has a countable basis of the topology. For each point a′ ∈ X ′,
we choose a disk

ϕ′ : U ′ −→ E; U ′ ⊂ X ′, ϕ′(a′) = 0.

Each compact subset can be covered by finitely many of the U ′(1/2).
Hence there exists a sequence

ϕn : Un −→ E

of disks in X ′ with the property

X ′ =
∞⋃

n=1

Un(1/2).

With a suitable choice of a sequence of numbers

1/2 < rn < 1
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that will be fixed later, we define

An := U(3/4) ∪ U1(r1) ∪ . . . ∪ Un(rn).

These sets are relatively compact and they exhaust X. We have to investigate
whether the boundary value problem is solvable for An − U(1/2). We have

An − U(1/2) = R∪ U1(r1) ∪ . . . ∪ Un(rn),

where R denotes the annulus

R = {x ∈ U ; 1/2 < |ϕ(x)| < 3/4}.

Since the boundary value problem has been solved for disks and annuli, it is
sufficient – by the alternating method – to choose the numbers rn ∈ (1/2, 1) in
such a way that

Un+1(rn+1) and R∪ U1(r1) ∪ . . . ∪ Un(rn)

share only finitely many boundary points. The following lemma gives an in-
ductive construction for a sequence rn with these properties.

6.6 Lemma. Let
ϕ : U −→ E, ψ : V −→ E

be two disks on the Riemann surface X. If the two domains U(r) and V (r)
have infinitely many boundary points in common, then their boundaries agree
(∂U(r) = ∂V (r)).

Proof. We assume that there are infinitely many boundary points, and show
that

∂V (r) ⊂ ∂U(r).

(Equality then follows from symmetry.) Since ∂V (r) is compact, the intersec-
tion ∂V (r) ∩ ∂U(r) contains an accumulation point in ∂V (r). We denote by
M ⊂ ∂V (r) the set of all such accumulation points. This set is closed, for
trivial reasons. If we can show that M is also open in ∂V (r) we are done,
because then, for reasons of connectedness, we have

∂V (r) =M (⊂ ∂U(r) ∩ ∂V (r)).

It follows directly from the following simple remark that M is open.
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6.7 Remark. Let f be an analytic function on an open neighborhood of
1 ∈ C. Assume that there exists a sequence (an) of complex numbers with the
following properties:
a) an 
= 1 , lim an = 1;
b) |an| = 1;
c) |f(an)| = 1.
Then there exists a neighborhood U of 1 such that

a ∈ U, |a| = 1 =⇒ |f(a)| = 1.

For the proof, we consider the analytic function

g(z) = f(z̄),

and
h(ϕ) = f(eiϕ)g(e−iϕ)− 1.

This function is analytic in a small (complex!) disk around ϕ = 0. For real ϕ,
we have

h(ϕ) = |f(eiϕ)|2 − 1.

By assumption, the zeros of h have 0 as an accumulation point. From the
identity theorem for holomorphic functions, we get

h ≡ 0.

This proves the remark and hence Lemma 6.6. ��

Construction of the Solution of the Normalized External Space Prob-
lem

We now come to the proof of 6.3.
Proof of Proposition 6.3. We construct, for a given continuous boundary allo-
cation

f : ∂(U(1/2)) −→ R

‖
“|z| = 1/2”,

a solution of the external space problem, i.e. a harmonic function

u = u(f) : X − U(1/2) −→ R

with boundary values f .
First of all, we consider the (uniquely determined) harmonic function

un : An − U(1/2) −→ R
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with boundary values

un = f on the interior boundary (∂U(1/2)),
un = 0 on the exteriour boundary (∂An).

We notice that by Remarks 5.6 and 5.7, there will be no exceptional points
on the interior boundary ∂(1/2). Since f , by assumption, is continuous every-
where, we have

lim
x→a

un(x) = f(a) for all a ∈ ∂(1/2).

6.8 Lemma. The sequence of solutions

un = un(f) : An − U(1/2) −→ R

of the boundary value problem

un = f on the interior boundary (∂U(1/2)),
un = 0 on the exteriour boundary (∂An)

converges*) locally uniformly to a bounded harmonic function

u : X − U(1/2) −→ R.

We have
u = f on ∂U(1/2).

Proof. First, assume f ≥ 0. By the maximum principle, all un are nonnegative,
since this is true on the boundary. In particular, un+1 is greater or equal to
un on the open set An − U(1/2) since this true on the boundary. Hence the
sequence of functions un is increasing. Now the statement about convergence
in Lemma 6.8 follows from Harnack’s principle. In the general case, we use the
decomposition

f =
1
2
(f + |f |)− 1

2
(|f | − f).

It remains to study the behavior of u = u(f) at the boundary. (The obvious
argument

lim
x→a

u(x) = lim
x→a

lim
n→∞ un(x) = lim

n→∞ lim
x→a

un(x) = f(a)

*) Actually, we have never introduced the notion of a convergent sequence of func-

tions f : Un → C for a varying sequence of domains of definition Un. In our case,

this sequence is increasing. Hence, for an arbitrary point a of the union of the Un,

we have a ∈ Un for almost all n. Thus it is clear what the limit means.
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is not correct, since it is usually not allowed to interchange limits.) In the first
step, we consider the special case

f ≡ 1.

In this case we write

ωn := un(1), ω := limωn.

We have
0 ≤ ωn(x) ≤ ω(x) ≤ 1.

The claim about the behavior at the boundary of ω becomes clear if we take
for fixed n (for example n = 1) the limit x→ a, where a is a boundary point.
Since ω1(x) then converges to 1, we get the same result for ω(x).
General case. It is sufficient to prove that

u(f) ≥ f on ∂U(1/2).

Equality is then obtained by replacing f by −f .
For the proof of the inequality, we choose a constant C > 0 with the property

f + C ≥ 0.

In this case (un) is an increasing sequence, and from

un(f + C) = f + C on ∂(U(1/2))

we obtain at least

u(f + C) ≥ f + C on ∂(U(1/2)).

On the other hand, we have

u(f + C) = u(f) + Cω.

Both of these together give

u(f) ≥ f on ∂(U(1/2)),

as stated. The properties 1) and 2) in Proposition 6.3 are clearly satisfied.
��

Examples.
1) Let X = C, ϕ = idE : E → E, boundary value distribution f ≡ 1.
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We choose the exhaustion

An = {z; |z| < n}

and obtain

un(z) =
log |z/n|
log(1/2n)

=
log |z| − logn
− log(2n)

.

Taking the limit n→∞, we obtain

u ≡ 1.

2) X = {z ∈ C; |z| < 2}, ϕ = idE : E → E, boundary value distribution
f ≡ 1.

We take the exhaustion

An = {z; |z| < 2− 1/n}

and obtain in this case

un(z) =
log |z/(2− 1/n)|

log(1/(2(2− 1/n)))
.

Taking the limit n→∞, we get

u(z) =
log |z/2|
log(1/4)

.

The normalized solution of the boundary value problem with respect to a con-
stant boundary value distribution can, but need not, be constant.

Exercises for Sect. II.6

1. Let D be a bounded domain of the plane. Show that the normalized solution of
the external space problem with respect to a boundary value distribution equal
to constant 1 is not constant.

2. Let X be a compact Riemann surface and let S be a finite subset. Show that the
normalized solution of the external space problem for a constant boundary value
distribution is constant.

3. Choose a concrete disk in the upper half-plane and determine the explicit solution
of the external space problem for the boundary value distribution f ≡ 1.

4. Show that the normalized solution of the external space problem for the boundary
value distribution f ≡ 1 on the slit plane C − {x ∈ R; x ≤ 0} is not constant.
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Appendix to 6. Countability of Riemann Surfaces

6.9 Theorem. Every connected Riemann surface has a countable basis of the
topology. As a consequence, it is countable at infinity, i.e. it can be written as
the union of an ascending chain of a sequence of compact sets.

In the usual constructions of Riemann surfaces, the countability is immediately
clear. Hence, in practise, this relatively deep result is not necessary. We shall
be brief with the proof. First of all, we recall the definition of countability:

A topological space X has a countable basis of the topology if there exists a se-
quence of open subsets U1, U2, U3, . . . such that each open subset can be written
as a union of members of this sequence.

Example. A metric space (X, d) which admits a countable dense subset S ⊂ X
has a countable basis of the topology. For the proof, we consider the (countable)
system of balls around points from S with rational radii.

First of all, we assume that on the connected Riemann surface X there
exists a nonconstant analytic function f . Then we prove that X is metrizable.

Metrization of X

Let
α : [0, 1] −→ X

be a piecewise smooth curve. We denote the Euclidean length of its image
under f by

L(α) := l(f ◦ α) (= Euclidean length).

Now, let a, b be from X. We define

d(a, b) := inf
α
L(α),

where α runs over all curves with starting point a and endpoint b. It is not dif-
ficult to show that this defines a metric on X which induces the given topology
on X.

Construction of a Countable Dense Subset

For this purpose, we can remove a discrete subset from X , for example the set
of all points where f is not locally topological. Hence we assume that

f : X −→ C

is locally topological. We choose some point a ∈ X and can assume that
f(a) = 0.
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6.10 Definition. A point b ∈ X is called rational if there exists a curve

α : [0, 1] −→ X, α(0) = a, α(1) = b,

whose image curve f ◦ α is a piecewise linear function with rational vertices.

The set of all of these piecewise linear curves is countable. Because of the
uniqueness of the curve lifting, we obtain the result that the set of all curves
α and hence the set of all rational points b ∈ X is countable. We can also see
easily that the set of rational points is dense in X . This proves the countability
of (the topology of) X (if the function f exists).

We want to weaken this condition. So, we now assume only that on the
connected Riemann surface there exists a nonconstant harmonic function

u : X −→ R.

Then we construct a holomorphic map

p : X̃ −→ X

of a connected Riemann surface X̃ onto X such that

ũ := u ◦ p

is the real part of an analytic function. (Then X̃ and, as a consequence, X are
countable.) It is possible to take the universal covering for X̃ (see the appendix
to Chap. III). If we want to avoid using its existence, we can use the following
construction.

Fix a point a ∈ X. In a small open neighborhood U(a) the function u is
the real part of an analytic function. It is easy to show the following.

If α : [0, 1] → X is a curve with starting point a = α(0), then f admits
an analytic continuation along α. (It should be clear what this means.) In
analogy to the analytisches Gebilde, we construct from all these continuations
a “covering” X̃ → X, on which f becomes single-valued.

The essential point of the proof of the countability turns out to be the
existence of a harmonic function.

Existence of a Harmonic Function

We choose a disk
ϕ : U ∼−→ E

on our connected Riemann surface, and claim the following:
There exists a nonconstant harmonic function

u : X − U(1/2) −→ R.
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Then X − U(1/2) and, as a consequence, also X have a countable basis of the
topology. For the construction of u, we choose some continuous boundary value
distribution

f : ∂U(1/2) −→ R, 0 ≤ f ≤ 1,

which is different from 0. We want to construct u such that

u = f on ∂U(1/2).

The problem is that we do not know that X has a countable basis of the
topology. Therefore we consider open connected subsurfaces Y ⊂ X such that
U ⊂ Y ⊂ X with a countable basis of the topology. We call them “countable
subsurfaces” for short. Clearly, X is the union of all the countable Y :

X =
⋃

U⊂Y⊂X
Y “countable”

Y.

For each Y (and the given disk ϕ), we denote by

uY : Y − U(1/2) −→ R

the normalized solution of the external space problem

uY |∂(1/2) = f.

It is easy to see that

Y ⊂ Y ′ =⇒ uY ≤ uY ′ (on Y ).

All uY are bounded by 1. Hence the function

u := sup
Y
uY

is well defined on the whole of X − U(1/2).
Claim. u is continuous on X − U(1/2).
Proof . First we show that, for any a ∈ X − U(1/2), there exists a countable
Y with u(a) = uY (a). Since the supremum of a set of real numbers can be
obtained as the limit of a sequence of real numbers in this set, there exists for
each a ∈ S a sequence of countable surfaces a ∈ Y1 ⊂ Y2 ⊂ . . . such that

u(a) = limun(a), un := uYn .

The union Y = Y1 ∪ Y2 ∪ · · · is countable too. Because un ≤ uY ≤ u, we have
u(a) = uY (a) for this Y .
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Now let S be a countable subset of X. For each a ∈ S, there exists a
countable Y (a) such that uY (a)(a) = u(a). We now denote the union of these
Y (a) by Y . Then we have a countable Y such that u(a) = uY (a) for all a ∈ S.

This shows that the restriction of u|S to any countable subset is continuous
on S. As a consequence, u is sequence continuous. Continuity is a local prop-
erty and, locally, X looks like an open subset of the plane. Hence sequence
continuity implies continuity.
Claim. u is harmonic on X − U(1/2).
Proof of the claim. We consider open subsets U ⊂ X− (U(1/2)) which admit a
countable dense subset S. We know that there exists a countable Y ⊃ S such
that u = uY on S. Since u is continuous, we get u = uY on U . This shows that
u is harmonic on U . Since the sets U cover X − (U(1/2)), we obtain the result
that u is harmonic there. This completes the proof of the countability. ��

7. Construction of Harmonic Functions with Prescribed
Singularities: The Bordered Case

Let X be a Riemann surface and let A ⊂ X be an open relatively compact
subset. We assume that each boundary component of A has infinitely many
boundary points. (For example, this excludes the case where X is compact and
X = A.)

We assume that a disk ϕ is given in A. Recall that this is an analytic chart
which maps an open subset U ⊂ A onto the unit disk:

ϕ : U → E.

For a number r ∈ (0, 1), we introduce the notation

U(r) = {x ∈ U ; |ϕ(x)| < r},
U(r) = {x ∈ U ; |ϕ(x)| ≤ r}.

We then consider the “annulus”

R = U(3/4)− U(1/2) (1/2 < |z| < 3/4),

R̄ = U(3/4)− U(1/2) (1/2 ≤ |z| ≤ 3/4)

and, finally, make the following assumption.

7.1 Assumption. The boundary value problem is solvable for the domain

A− U(1/2).

Under this assumption (and the assumption that each boundary component of
A has infinitely many boundary points), we prove the following proposition.
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7.2 Proposition. Let
u0 : R̄ → R

be a continuous function on the closed annulus R̄ which is harmonic in the
interior R. There exists a unique bounded harmonic function

u : A− U(1/2)→ R

with the following properties:
a) The harmonic function u−u0 (a priori defined on R) extends to U(3/4) as

a harmonic function.
b) u = 0 on ∂A.

Condition a) can be expressed roughly as follows: the harmonic function u has
the same singular behavior in the “hole” U(1/2) as u0.
Proof. The uniqueness of the solution is clear, since the difference of two
solutions is harmonic on A and vanishes along ∂A.
Existence. (Compare with the proof of Proposition 3.2.) We construct a se-
quence of harmonic functions which are defined alternatingly on the two do-
mains

A− U(1/2) and U(3/4).

We define
α := ∂A

and
∂(r) := {x ∈ U ; |ϕ(x)| = r}.

We then have
∂(A− U(1/2)) = α ∪ ∂(1/2),

∂(U(3/4)) = ∂(3/4).

We now define sequences of harmonic functions

un : A− U(1/2) −→ R , n ≥ 1,
vn : U(3/4) −→ R , n ≥ 0,

in the ordering
v0, u1, v1, u2, v2, . . . ,

by the conditions

v0 = 0,

un =
{
vn−1 + u0 on ∂(1/2),
0 on α,

vn = un − u0 on ∂(3/4) (n ≥ 1).
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We have to show that both sequences converge. For this, we estimate the
difference un+1 − un on the line ∂(3/4). We claim the following:
There exist constants

C ≥ 0 and 0 ≤ q < 1

with the property

|un+1 − un| ≤ Cqn on ∂(3/4) (n ≥ 0).

Proof. The function u1 − u0 is continuous on ∂(3/4). Hence we find C ≥ 0
such that

|u1 − u0| ≤ C on ∂(3/4).

To construct q, we consider the harmonic function ω on A − U(1/2) which
solves the boundary value problem

ω =
{

0 on α = ∂A,
1 on ∂(1/2).

7.3 Claim. There exists a constant q < 1 such that

ω(x) ≤ q for x ∈ ∂(3/4).

Because of the maximum principle (and the compactness of ∂(3/4)), we have
to show that ω is not constant 1 on the connected component of A − U(1/2)
which contains ∂(3/4). This follows from the boundary behavior (ω = 0 on
∂A) and the assumption that each connected component has infinitely many
boundary points.

The numbers C and q having been defined, we prove the inequality

|un+1 − un| ≤ Cqn on ∂(3/4)

by induction on n. By construction of the sequences (un), (vn), we have

vn − vn−1 = un − un−1 on ∂(3/4).

This shows that
|vn − vn−1| ≤ Cqn−1 on ∂(3/4).

Since the functions vn are harmonic on the whole of U(3/4), this inequality
must be true on the whole of U(3/4), and, in particular, on ∂(1/2). From the
construction of the two sequences, it again follows that

un+1 − un = vn − vn−1 on ∂(1/2)
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and hence
|un+1 − un| ≤ Cqn−1 on ∂(1/2).

Hence the inequality
|un+1 − un| ≤ Cqn−1ω

is true on the boundary of A− U(1/2). By the maximum principle, it is true
in the interior too. We obtain

|un+1 − un| ≤ Cqn−1q = Cqn on ∂(3/4),

as has been stated.
It now follows from the maximum principle that

|vn+1 − vn| (= |un+1 − un| on ∂(3/4)) ≤ Cqn on the whole of U(3/4).

Since vn extends continuously to the boundary of U(3/4), the inequality holds
on U(3/4). We apply this inequality on ∂(1/2) and obtain

|un+1 − un| ≤ Cqn−1 on ∂(1/2).

Again we apply the maximum principle, and obtain the result that the last
inequality is true on A − U(1/2). Since un has a continuous extension to
the boundary ∂(1/2), it is true on the set A − U(1/2). It follows from the
Weierstrass majorization theorem that the series

u :=
∑

(un+1 − un) (on A− U(1/2)),

v :=
∑

(vn+1 − vn) (on U(3/4))

converge uniformly and the limit functions

u− u0 = limun, v = lim vn

are continuous and harmonic in the interiors.
To prove Proposition 7.2, it remains to show that u− u0 and v coincide in

the intersection R of the two domains, i.e.

lim
n→∞ un = lim

n→∞ vn.

As we have seen, the two limits are uniform on the closure R̄. Hence they rep-
resent continuous functions there. It is sufficient to show that u and v coincide
on the boundary of R, and hence on ∂(1/2) and ∂(3/4). This immediately
follows from the boundary behavior of the un and vn.

It remains to show that u vanishes on the exterior boundary α. For this,
we consider the harmonic function ω on A−U(1/2) which solves the boundary
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value problem ω = 1 on ∂(1/2) and ω = 0 on α. If we take an upper bound of
u0 for C, then it follows from the maximum principle that

−Cω ≤ un, vn ≤ Cω.

This inequality carries over to the limits and shows that they are 0 on α.
��

Exercises for Sect. II.7

1. Consider the disk
A = {z; |z| < 2} ⊂ C.

Determine a harmonic function u on A− {0} which extends continuously to zero
at the boundary of A and is such that u(z)+ log |z| extends harmonically to zero.
Interpret this as a solution in the sense Proposition 7.2.

2. Consider an arbitrary finite subset S of the upper half-plane and construct a
harmonic function u on H − S which cannot be extended continuously to any
point of S and is such that u can be extended as a continuous function to the
closure of H in the Riemann sphere.

3. In the proof of Proposition 7.2, we showed that

lim
n→∞

un = lim
n→∞

vn.

Another proof runs as follows. It is enough to treat the case u0 ≥ 0. But then

v0 ≤ u1 ≤ v1 ≤ u2,≤ v2 ≤ . . .

This gives 0 ≤ vn − un ≤ un+1 − un and hence the claim. Provide the details of
this proof.

8. Construction of Harmonic Functions with a
Logarithmic singularity: The Green’s Function

A harmonic function on a connected compact Riemann surface is constant. Hence we
are led to allow singularities for harmonic functions. In Sect. 7 we performed such
a construction for relatively open subsets U ⊂ X with a true boundary. We are led
to exhaust X by a sequence of such domains and to take a limit. In this section, we
describe such an exhaustion and apply it to the simplest case where the limit works.
By definition, this case is the hyperbolic case. The function which we shall obtain, is
called the Green’s function.



96 II. Harmonic Functions on Riemann Surfaces

It is our goal to construct, on a punctured Riemann surface (X, a), a har-
monic function u : X − {a} → R with a singularity at a that is as simple as
possible. We describe what may be simplest the type of singularity.

8.1 Definition. A harmonic function

u : U
.

= U − {0} −→ R , 0 ∈ U ⊂ C open,

is called logarithmically singular (at 0) if

u(z) + log |z|

extends as a harmonic function to U .

We want to extend this notion to Riemann surfaces. For this, we have to check
its conformal invariance.

8.2 Remark. Let

ϕ : U −→ V , U, V ⊂ C open,
0 �−→ 0,

be a biholomorphic map between open neighborhoods of the origin in the complex
plane. The harmonic function

log |z| − log |ϕ(z)| (z ∈ U − {0})

has a removable singularity at 0 (i.e. it extends to a harmonic function on U).

Proof. We use the formula

log |ϕ(z)| − log |z| = Re log
ϕ(z)
z

.

(The function ϕ(z)/z has a removable singularity at z = 0 and is different from
0 there. Hence it admits a holomorphic logarithm in a small neighborhood of
0.) ��

8.3 Definition. Let X be a Riemann surface and let a ∈ X be a point. A
harmonic function

u : X − {a} −→ R

is called logarithmically singular at a if there exists an analytic chart

ϕ : U ∼−→ V
∪ ∪
a �−→ 0

such that the transported function uϕ on V is logarithmically singular at 0 in
the sense of Definition 8.1.

Because of Remark 8.2, this condition is independent of the choice of ϕ.
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Green’s Function

For the rest of this section, we make the following assumption.

8.4 Assumption. The Riemann surface X is connected but not compact.

From Remark 4.7, we know that each open relatively compact subset of X has
infinitely many boundary points.

For a given point a ∈ X, we consider an exhaustion

a ∈ A1 ⊂ A2 ⊂ · · ·

as described in Proposition 6.4. By Proposition 7.2, there exist harmonic func-
tions

un : An − {a} −→ R

with the following properties:
a) un is logarithmically singular at a;
b) un = 0 on ∂An.
We want to try to take the limit n→∞, and for this purpose we point out the
following:

1) The function un is positive in a small neighborhood of a. Since it is zero on
the “exterior” boundary ∂An, we get

un ≥ 0 on the whole of An − {a}.

2) For m > n, the function um − un is harmonic in the whole of An (and also
in a) and not negative on the boundary ∂An (because of 1)). It follows that

um ≥ un for m ≥ n.

3) Now we assume that the sequence un(x) remains bounded at at least one
point x ∈ X (it is defined at the given point for almost all n). By Harnack’s
principle, the limit

u(x) = lim
n→∞

(n≥n(x))

un(x)

then exists for all x ∈ X − {a} and defines a harmonic function

u : X − {a} −→ R

with the following properties:
a) u ≥ 0;
b) u is logarithmically singular at a.

The property b) results if we apply Harnack’s principle to un−u1 in the domain
A1.
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8.5 Notation. The set
Ma =Ma(X)

consists of all harmonic functions v : X − {a} −→ R with the following prop-
erties:
a) v ≥ 0;
b) v is logarithmically singular at a.

If the above limit works, the set Ma is not empty. The converse statement is
also true! For if v ∈Ma, then

v − un ≥ 0 on ∂An

and, by the maximum principle, on the whole of An. Hence the sequence
(un(x))n≥n(x) remains bounded for each x ∈ X.

We also obtain
u := limun ≤ v.

This is true for arbitrary v ∈Ma. Hence the function u is minimal in Ma.
So, we obtain the following result.

8.6 Proposition. If the set Ma (as defined in Notation 8.5) is not empty,
then it contains a unique minimal element u, i.e.

u ≤ v for all v ∈Ma.

8.7 Definition. The minimal element of Ma – in the case where Ma is not
empty – is called the Green’s function of X with respect to a. We denote the
Green’s function (when it exists) by

Ga : X − {a} −→ R.

Example. The Green’s function on the unit disk E with respect to a = 0 exists,
since the function − log |z| is contained in Ma.

The minimality property of the Green’s function admits a refinement.

8.8 Remark. Let S be a discrete subset of X which contains a. Let u be a
nowhere negative harmonic function on X−S which is logarithmically singular
at a. Then

Ga ≤ u.

The same proof as in Proposition 8.6 works if one takes into consideration the
fact that the maximum principle admits finitely many exceptional points.
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8.9 Definition. The Riemann surface X is called hyperbolic, if the Green’s
function exists for every point a ∈ X.

For example, the unit disk is hyperbolic, since the Green’s function exists
for one point and the group of biholomorphic transformations E → E acts
transitively.

The plane C is not hyperbolic, as the example 2) at the end of Sect. 6 shows.

Exercises for Sect. II.8

1. Show that the function − log |z| is the Green’s function of the unit disk with
respect to the origin.

2. Let S ⊂ C be a finite set. Show that the Riemann surface C−S is not hyperbolic.

3. Show that every bounded domain of the plane is hyperbolic.

4. Show that the slit plane C− is hyperbolic.

9. Construction of Harmonic Functions with a Prescribed
Singularity: The Case of a Positive Boundary

Again we assume that X is a connected Riemann surface with a countable basis
of the topology and that

ϕ : U −→ E (U ⊂ X open),
a �−→ 0,

is a disk.

In this section, we shall use the normalized solution

u = u(f) : X − U(1/2) −→ R

of an external space problem (see Proposition 6.3)

f : ∂(1/2) −→ R.
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The case

f ≡ 1

is of special importance. In this case, the solution is denoted by

ω (0 ≤ ω ≤ 1).

9.1 Definition. The Riemann surface X has a zero boundary with respect
to the disk ϕ : U → E if the normalized solution ω of the boundary value
problem f ≡ 1 on ∂(1/2) is constant:

ω ≡ 1.

Otherwise, we say that X has a positive boundary (with respect to ϕ).

It is clear that compact surfaces have a zero boundary. Later (Proposition
11.5) we shall see that the notions of a zero boundary and a positive boundary
are independent of the choice of the disk ϕ.

Motivation for the Notion of a “Zero Boundary”

The function ω was constructed as the limit of a sequence of functions ωn which
have value 1 on an interior boundary ∂(1/2) and vanish on an exterior boundary
∂(An). When the sequence ωn converges to 1, we may imagine that the exterior
boundary ∂(An) loses its power with increasing n. So ω becomes constant 1.
We may imagine that the sequence ∂(An) tends to an “ideal boundary” which
has no ability to influence ω. (The ideal boundary is often spoken about in the
old literature. The function 1−ω is sometimes called the “harmonic measure”.
There is no need for us to make these notions precise.)

As in Sect. 7, we consider a continuous function

u0 : R̄ = {x ∈ U ; 1/2 ≤ |ϕ(x)| ≤ 3/4}

on a closed annulus R̄ which is harmonic in the interior. We look for a harmonic
function

u : X − U(1/2) −→ R

such that u − u0 extends to a harmonic function on U(3/4). There are two
obvious ways to do this:
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1) We exhaust X by domains An and try to obtain u as the limit un of the
solution in the bounded case (see Sect. 7, un = 0 on the exterior boundary
∂(An).)

This way leads us to the construction of the Green’s function.

2) We try to apply directly the alternating method which we used for the proof
of Proposition 7.2. We just replace the functions un by the normalized
solutions of the exterior boundary problem.

This is the way in which we shall now go. Let

un : X − U(1/2) −→ R, n ≥ 1,
vn : U(3/4) −→ R, n ≥ 0,

be the following inductively defined sequences of functions:

a) v0 = 0;

b) un, vn are the solutions of the boundary value problems

un = vn−1 + u0 on ∂(1/2) (external space problem; see Proposition 6.3),
vn = un − u0 on ∂(3/4).

Now we assume that X has a positive boundary with respect to the given disk.
Then

ω(x) < 1 on X − U(1/2).

Hence there exists a number 0 < q < 1 with the property

ω(x) ≤ q for x ∈ ∂(3/4).

This inequality is precisely what we need to transfer the proof of Proposition 7.2
to the present case. It replaces Lemma 7.3, which we had to use there.

This gives the following statement.
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9.2 Proposition. Assume that the Riemann surface X has a positive bound-
ary. Then, for every continous function that is harmonic in the interior,

u0 : R̄ −→ R,

there exists a harmonic function

u : X − U(1/2) −→ R

with the following properties:

a) u− u0 extends to a harmonic function on U(3/4);
b) u is bounded on X − U(3/4).

The construction also shows that in the case u0 ≥ 0, we can obtain u ≥ 0.

Corollary. When the Riemann surface has a positive boundary, the Green’s
function Ga exists.

In the case of a zero boundary (ω = 1), this proof of convergence fails. However,
under suitable assumptions, it may be possible that the sequence converges
nevertheless. We shall see later, by means of a more subtle proof of convergence,
that the sequence converges if u0 is the real part of an analytic function in the
annulus (Proposition 11.9). Under this additional assumption, the analogue of
Proposition 9.2 is true in the case of a zero boundary also. Moreover, we shall
see that in the case of a zero boundary, this condition is necessary.

Exercises for Sect. II.9

1. Show that every compact Riemann surface has a zero boundary (with respect to
any disk).

2. Let be S ⊂ X be a finite subset of a Riemann surface. Show that X − S has a
zero boundary (with respect to any disk).

3. Let S be a countable and closed subset of a compact Riemann surface. Show that
X − S has a zero boundary.

4. Give an example of an infinite S in Exercise 3.
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10. A Lemma of Nevanlinna

Let
u : D −→ R, D ⊂ C open,

be a harmonic function. It follows from the Cauchy-Riemann differential equa-
tions that the function

f(z) =
∂u

∂x
− i

∂u

∂y

is analytic. The following two conditions are equivalent:
1) u is the real part of an analytic function F .
2) f admits a primitive.

The simple proof is left to the reader (see Exercises 1–3). (The relation between
f and F is given by F ′ = f .)

Now, let
D = {z ∈ C; r < |z| < R} (r < R)

be an annulus. An analytic function f on D admits a primitive if the (−1)th
coefficient of the Laurent expansion is zero. (The primitive is then obtained by
differentiating the Laurent series term by term.) This condition is equivalent
to ∮

|ζ|=	

f(ζ) dζ = 0,

where 
 is a number between r and R. (It is sufficient that this condition is
true for one 
; it is then true for all 
.) We obtain the following result.

10.1 Remark. Let

u : D −→ C, D = {z ∈ C; r < |z| < R} (r < R),

be a harmonic function on an annulus. The following conditions are equivalent:
a) u is the real part of an analytic function F .
b) The analytic function

f =
∂u

∂x
− i

∂u

∂y

admits a primitive.
c) For one (all) 
 ∈ (r,R), we have

∮

|ζ|=	

f(ζ) dζ = 0.
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Supplement. If the conditions a)–c) are satisfied, then the integral

2π∫

0

u(
eiϕ) dϕ (r < 
 < R)

is independent of 
.

It remains to prove the supplement. The integral in the supplement equals the
real part of the line integral

1
i

∮

|ζ|=	

F (ζ) dζ
ζ

,

and this independent of 
 by Cauchy’s theorem. ��
Recall that a disk on a Riemann surface X is a biholomorphic map

ϕ : U −→ E (unit disk)

of an open subset U ⊂ X onto the unit disk. We define

E(r) = {q ∈ E; |q| < r},
U(r) = ϕ−1(E(r)) (0 < r < 1).

10.2 Proposition. Let X be a compact Riemann surface and let

ϕ : U −→ E

be a disk in X. Furthermore, let

u : X − U(1/2) −→ R

be a harmonic function.
Claim. The restriction of u to the “annulus” U −U(1/2) (“1/2 < |z| < 1”) is
the real part of an analytic function.
Corollary. Consider

uϕ(z) = u(ϕ−1(z)) (1/2 < |z| < 1).

The integral
2π∫

0

uϕ(
eiϕ) dϕ (1/2 < 
 < 1)

is independent of 
.
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As a special case, we obtain the following result.
There is no harmonic function

u : X − {a} −→ R (X compact!)

with a logarithmic singularity at a.
Proof of Proposition 10.2. We need Stokes’s theorem, as formulated and proved
in the appendix to this chapter. There, we also introduce the differential calcu-
lus that we use below. The important fact is that a differential form (a 1-form)
can be associated with a harmonic function u : X → R on a Riemann surface
in the following way. Since, locally, every harmonic function can be written as
the real part of an analytic function, there exists an open covering

X0 =
⋃
Ui

and holomorphic functions

Fi : Ui −→ C such that u|Ui = Re(Fi).

The difference Fi−Fj is locally constant in the intersection Ui ∩Uj . Therefore
the differentials

ωi := dFi (on Ui)

agree in the intersections. For this reason, there exists a differential ω on the
whole X which coincides with ωi in Ui. Because d ◦ d = 0, we obtain

dω = 0.

It is easy to describe ω in local coordinates. Let

ϕ : U −→ V

be an analytic chart; then

ωϕ =
(∂uϕ
∂x
− i

∂uϕ
∂y

)
dz (dz = dx+ idy).

Because of the importance of this construction, we fix it as follows.

10.3 Remark. Let u : X → R be a harmonic function on a Riemann surface.
There exists a differential ω which, on charts, ϕ is given by

ωϕ =
(∂uϕ
∂x
− i

∂uϕ
∂y

)
dz.

We have dω = 0.
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After this preparation, we come to the proof of Proposition 10.2.
Proof of Proposition 10.2. We consider the differential ω which belongs to u.
By the definition of a line integral (Remark 13.4), we have

∮
ω =

∮
f(ζ)dζ (notation as in Remark 10.1).

Hence Proposition 10.2 states that
∮
ω = 0,

where the integral is taken along the inverse image (with respect to ψ) of the
circle


eiϕ (0 ≤ ϕ ≤ 2π)

for some 
 ∈ (1/2, 1). This circle is the boundary of the domain

M = X − U(
),

and the integral in question equals the negative of the boundary integral (Re-
mark 13.20), ∫

∂M

ω
(
= −

∮

“|ζ|=	”

ω
)
.

By assumption, X is compact. Hence M is open and relatively compact.
Stokes’s theorem (Theorem 13.19) applies and we obtain

∫

∂M

ω =
∫

M

dω = 0,

since dω = 0. ��
For the proof of the uniformization theorem, we need a variant of Proposi-

tion 10.2 for certain noncompact Riemann surfaces.
Readers who are interested mainly in the theory of compact Riemann sur-

faces can skip the rest of this section, since we shall not use uniformization
theory for the theory of compact Riemann surfaces.

10.4 Lemma (Nevanlinna’s Lemma)*). Let X be a (not necessarily
compact) Riemann surface and let Y ⊂ X be an open relatively compact subset
of X. Furthermore, a disk Y such that

ϕ : U ∼−→ E , U ⊂ Y open,

*) This lemma is implicitly contained in [Ne], Chap. VI, in the proof of Lemma 6.22.

The application of Stokes’s theorem to the function um there is problematic, since

in the solution of the boundary value problem a finite number of exceptional points

are allowed. It is difficult to control the derivatives of um there. Hence the proof of

Nevanlinna’s lemma becomes somewhat longer in our presentation.
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and a harmonic function

u : Y − U(1/2) −→ R

with the following properties are given:

a) u ≥ 0;
b) u = 0 on ∂Y .

Claim. If we set

f =
∂uϕ
∂x
− i

∂uϕ
∂y

,

then

i
∮

|ζ|=	

f(ζ)dζ ≥ 0 (1/2 < 
 < 1).

(In particular, this expression is real.)

Note. Proposition 10.2 is a special case of Nevanlinna’s lemma: We can apply Lemma
10.4 to Y = X (compact), and the assumption b) is then trivially true. We can also
assume that u is bounded, since the inner annulus can be enlarged a little. Since the
integral does not change if u is replaced by u + C (C ∈ R), we can also assume a).
Now we get

i

∫

|ζ|=�

f(ζ) dζ ≥ 0.

Since we can replace u by −u, equality must hold, and we can apply Remark 10.1.
	


The rest of this section will be taken up by the proof of Lemma 10.4.

Proof of Lemma 10.4. We may assume that u does not vanish identically in
the annulus “1/2 < |z| < 1”.

Again we consider the associated differential ω (see Remark 10.3). The
claim states that

i
∫

α

ω ≥ 0, α(t) = ϕ−1(
eit) , 0 ≤ t ≤ 2π.

First of all, we show that the integral is real. For this we use

ω′ := −i(ω − du).

In local coordinates, this is computed as

ω′
ϕ = −∂uϕ

∂y
dx+

∂uϕ
∂x

dy.
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Obviously, the integral of ω′ is real. The integral of du along a closed curve
vanishes (Theorem 13.18). Hence we have

i
∮
ω = −

∮
ω′ ∈ R.

We want to apply Stokes’s Theorem to the Riemann surface Y0 := Y −U(1/2).
For this, we need suitable open and relatively compact subsets B ⊂ Y0. Since
Y0 is relatively compact, we have only to take care that the boundary of B
(taken in X) is disjoint with the boundary of Y0 The boundary of Y0 is the
union of the interior boundary ∂(1/2) and the exterior boundary ∂Y .

To avoid the interior boundary, we choose a fixed 
 and consider

Y ′ = Y − U(
).

By assumption, u vanishes on the exterior boundary ∂Y . We choose ε > 0 and
consider

B(ε) :=
{
x ∈ Y ′; u(x) > ε

}
.

We would like to have that the boundary B(ε) is relatively compact in Y0.
This would be the case if u were continuous (and hence identically zero) on the
whole exterior boundary ∂Y . But our convention (Notation 5.1) allows finitely
many exceptional points on the boundary. This fact requires a modification
similar to that we used in the proof of the maximum principle (Lemma 4.5).

By Propositions 6.3 and 9.2, there exists for a given point a ∈ Ȳ an open
neighborhood

Ȳ ⊂ A ⊂ X
↑

open

and a harmonic function h0 : A − {a} → R, h0 ≤ 0, which is logarithmically
singular at a. Summing up, we obtain for each finite set M ⊂ Ȳ a harmonic
function

h : A−M −→ R (Ȳ ⊂ A ⊂ X open)

with the properties
a) h(x) ≤ 0 for x ∈ A−M;
b) limx→a h(x) = −∞ for a ∈M.
We apply this to the finite set of exceptional points on the boundary of Y (into
which u cannot be extended continuously).

Now we consider instead of B(ε) the modified domain

B(ε, h) :=
{
x ∈ Y ′; u(x) + h(x) > ε

}
.

The domain B(ε, h) is relatively compact in Y0. The boundary points satisfy
|ϕ(x)| = 
 or u(x) + h(x) = ε. We want to keep these two sets disjoint. By
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the maximum principle, u has no zeros on the circular line |ϕ(x)| = 
. We
can choose ε so small that u(x) > ε on the circular line. The function h can
be multiplied by an arbitrary positive number. Hence we can arrange that
u(x) + h(x) > ε on the circular line. Now it is clear that the boundary of
B(ε, h) is the union of two distinct parts, the “interior” and the “exterior”:

a) |ϕ(x)| = 
 (interior boundary);
b) u(x) + h(x) = ε (exterior boundary).

We want to apply Stokes’s theorem on B(ε, h). For this, we require that the
exterior boundary of B(ε, h) is smooth.

The theorem of implicit functions of real analysis shows the following.

10.5 Remark. Let

f : U −→ R , 0 ∈ U ⊂ C open,

be a C
∞ function with the properties

a) f(0) = 0;

b)
(
∂f

∂x
(0),

∂f

∂y
(0)
)

= (0, 0).

Then the origin is a smooth boundary point of

U+ := {x ∈ U ; f(x) > 0}.

We also have the following fact.

10.6 Remark. Let

f : U −→ R , U ⊂ C a domain,

be a nonconstant harmonic function. The set of all points in which both
derivatives of f vanish is discrete in U .

This is clearly true, since
∂f

∂x
− i

∂f

∂y

is an analytic function. The two remarks above show that the boundary of
B(ε, h) is smooth outside a countable set of ε. We can avoid such ε and such
find domains to which Stokes’s theorem applies. We want to apply it to the
differential

ω′
h = −∂(u+ h)

∂y
dx+

∂(u+ h)
∂x

dy.
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Recall that our claim in Lemma 10.4 means that
∮
ω′ ≥ 0

(
ω′ = −∂u

∂y
dx+

∂u

∂x
dy
)
.

Obviously, the differentials ω′
h are closed, dω′

h = 0. It follows from Stokes’s
theorem that

0 =
∫

Y (ε)

dω′
h =

∫

∂Y (ε)

ω′
h =

∫

exterior boundary

ω′
h +

∫

interior boundary

ω′
h.

10.7 Claim. We have
∫

exterior boundary

ω′
h ≥ 0.

It follows from this that

−
∫

interior boundary

ω′
h ≥ 0.

The interior boundary is parametrized by α. The boundary integral is the
negative of the curve integral (see Remark 13.20). Replacing h by h/n and
taking the limit n→∞, we obtain

∫

α

ω′ ≥ 0.

That is precisely what we have to prove.
Proof of Claim 10.7 (and hence of Nevanlinna’s lemma, Lemma 10.4).
We use the following notation.

10.8 Notation. Let U ⊂ X be an open subset, let a be a smooth boundary
point of U , and let ω be a differential which is defined in an open neighborhood
of a. The differential ω is called nonnegative along the boundary at a if
there exists an oriented differentiable chart

ϕ :U(a) −→ V
∪ ∪
a �−→ 0

with the property
ϕ(U(a) ∩ U) = V ∩ H,

ϕ(∂U(a) ∩ U) = V ∩ R,

such that the following condition is satisfied:

f(0) ≥ 0 for ωϕ = f dx+ g dy.
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This condition is independent of the choice of ϕ: if ϕ is replaced by another
chart, then f(0) is multiplied by a nonnegative number. Now we assume that
the conditions for integrability are fulfilled, i.e. that Support(ω)∩∂U is compact
and is contained in the smooth part of the boundary.

We obtain the following result immediately from the definition of the bound-
ary integral.

10.9 Remark. When ω is nonnegative along the boundary (i.e. at each
smooth point of the boundary), then

∫

∂U

ω ≥ 0.

Hence our claim is proved, if ω′
h is not negative along the exterior boundary.

This statement follows from the following simple local criterion.

10.10 Criterion. Let U ⊂ C be an open subset, let a be a smooth boundary
point of U , and let u be a C∞ function, defined in an open neighborhood of
U(a).
Assumption.
a) u ≡ C (= constant) on (∂U) ∩ U(a);
b) u ≥ C on U ∩ U(a).
Then the differential

ω = −∂u
∂y

dx+
∂u

∂x
dy

is nonnegative along the boundary of U .

Proof. After shrinking of U(a), we can choose an orientation-preserving diffeo-
morphism

ϕ :U(a) −→ V ⊂ C open
∪ ∪
a �−→ 0

with the property
ϕ(U(a) ∩ U) = V ∩ H,

ϕ(U(a) ∩ ∂U) = V ∩ R.

We would like to have that the Jacobi map

J(ϕ, α) : R
2 −→ R

2 (= C)

is a similarity transformation, i.e. multiplication by a complex number. To
enforce this, we may replace ϕ by its composition with an R-linear map of the
form

(x, y) �−→ (αx+ βy, γy) = B(x, y) , α > 0, γ > 0.
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Such maps transform the upper half-plane into itself. Now we use the following
simple fact:

If
A : R

2 −→ R
2

is any linear map with a positive determinant, then there exist real numbers
α > 0, β, γ such that B · A is a similarity transformation.

Now a simple computation shows that taking the differential

u �−→ ω = ω(u)

is compatible with similarity transformations

mb : C −→ C (b ∈ C
.
),

z �−→ bz,

i.e.
ω(u ◦mb) = m∗

b(ω).

Therefore we can assume that the Jacobi matrix J(ϕ, a) is the unit matrix.
Now the differential

ω = −∂u
∂y

dx+
∂u

∂x
dy

can be transformed into V very easily. Let

ũ = uϕ (= u ◦ ϕ−1)

and
ω̃ = ωϕ = f dx+ g dy.

From the definition of the transformation of a differential, we get simply

f(0) = −∂ũ
∂y

(0).

Now the function ũ is constant C on the real axis (close to 0) but not greater
than C in the upper half-plane. Taking the differential quotient, we see that

∂ũ

∂y
(0) ≤ 0 and hence f(0) ≥ 0,

which was to be proved. ��
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Exercises for Sect. II.10

1. Let u be a harmonic function on an open subset of the plane. Show that f(z) =
∂u/∂x− i∂u/∂y is an analytic function.

2. Let u be the real part of an analytic function F on an open subset of the plane.
Show that

F ′ =
∂u

∂x
− i

∂u

∂y
.

3. Let u be a harmonic function on an open subset of the plane such that f =
∂u/∂x − i∂u/∂y has a primitive F . Show that, up to an additive constant, u is
the real part of F .

4. Let u be a harmonic function on a Riemann surface. Check directly the compat-
ibility of the family

ωϕ =
(∂uϕ

∂x
− i

∂uϕ

∂y

)
dz

and prove in this way that it defines a differential.

11. Construction of Harmonic Functions with a
Prescribed Singularity: The Case of a Zero Boundary

Again we assume that X is a connected Riemann surface and that

ϕ : U −→ E (U ⊂ X open),
a �−→ 0,

is a disk. In this section, we assume that (X,ϕ) is has a zero boundary, which
means that the normalized solution

ω : X − U(1/2) −→ R

of the boundary problem
ω = 1 on ∂(1/2)

with respect to this disk is constant 1. For example, this is the case if X is
compact.
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The Extended Maximum Principle for Surfaces with a Zero Bound-
ary

11.1 Lemma. Assume that X has a zero boundary (with respect to ϕ).
Furthermore, let

u : X − U(1/2) −→ R

be a harmonic function bounded from below which extends continuously to the
boundary ∂U(1/2) and is such that

u ≥ 0 on ∂U(1/2).
Then

u ≥ 0 everywhere.

Proof. We consider an exhaustion
U(3/4) ⊂ A1 ⊂ A2 ⊂ . . .

as in Sect. 6. By definition, ω is the limit of a sequence ωn. By assumption,
u ≥ −C

for a suitable constant C ≥ 0. The inequality
u ≥ −C(1− ωn)

holds on the boundary of An−U(1/2) and hence also in the interior. The claim
follows from the assumption that ωn → 1 by taking the limit n→∞. ��

11.2 Corollary. If u is bounded, then u is the normalized solution of a
boundary value on ∂U(1/2).

We now generalize Proposition 10.2 from the compact to the zero-bounded
case.

11.3 Lemma. Assume that X has a zero boundary and that u = u(f) is the
normalized solution of a (continuous) boundary value problem f on ∂U(1/2).
Then u is the real part of an analytic function in the annulus R (“1/2 < |z| <
3/4”).

Proof. Consider the differential ω which is associated with u

(locally, ω =
∂u

∂x
dx− i

∂u

∂y
dy).

The statement in Lemma 11.3 is equivalent to∫

∂U(	)

ω = 0 (1/2 < 
 < 3/4).

Nevanlinna’s lemma (Sect. 10) and the construction of the normalized solution
u show that

i
∫

∂U(	)

ω ≥ 0.

Equality must hold, since we can replace u by −u. ��
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11.4 Proposition. The Riemann surface X has a positive boundary (with
respect to ϕ) if and only if the Green’s function Ga (ϕ(a) = 0) exists.

Proof. We already know that the Green’s function exists in the case of a positive
boundary. So assume that X has a zero boundary. We argue indirectly and
assume that the Green’s function exists. We have

Ga(x) ≥ δ > 0 for x ∈ U(1/2)− {a}.
This equality follows everywhere from the extended maximum principle. Now
consider the sequence of functions (un) which approximate Ga via the exhaus-
tion (An). We know that Ga(x)− δ− un ≥ 0, first on the boundary of An and
then on An. Taking the limit n → ∞, we get −δ ≥ 0, in contradiction to the
construction of δ. ��

For the construction of the Green’s function, it is not necessary to take the
center of the given disk for a. Any other point can be taken as the center.
It follows from Proposition 11.4 that the set of all points in X that admit a
Green’s function is open. The same argument shows that the set of all points
which do not admit a Green’s function is open as well. This shows the following
fact.

11.5 Proposition. If a Riemann surface has a positive boundary with respect
to one disk ϕ, then this is the case for all disks. In particular, a Green’s function
exists for all points if it exists for one.

So we see that the properties “zero-bounded” and “positive bounded” are in-
trinsic properties of the Riemann surface and we can omit the “with respect
to”. Even more, from Proposition 11.4 we obtain the following result.

11.6 Proposition. For a connected Riemann surface, the following two
conditions are equivalent:
1) The surface has a positive boundary.
2) The surface is hyperbolic.

Riemann surfaces a with zero boundary admit the following variant of Liou-
ville’s theorem.

11.7 Proposition. Any bounded harmonic function on a Riemann surface
with a zero boundary is constant.

Proof. Let u be bounded and harmonic on X . We can assume that u(a) = 0.
In a small disk around a, we have

−ε ≤ u ≤ ε (ε > 0 given).

The extended maximum principle shows that

−ε ≤ u ≤ ε. ��
11.8 Corollary. Any bounded analytic function on a Riemann surface with
a zero boundary is constant.
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We have now collected together the means to extend the decisive existence
theorem, under more restrictive conditions, to the case of surfaces with a zero
boundary. In general, we have the following statement.

11.9 Proposition. Let X be a connected Riemann surface with a distin-
guished disk. Assume that in a closed annulus (defined by 1/2 ≤ |z| ≤ 3/4), a
continuous function u0, which is harmonic in the interior, is given.
Assumption. u0 is, in R, the real part of an analytic function.
Claim. There exists a harmonic function

u : X − U(1/2) −→ R

with the following properties:
a) u− u0 extends to a harmonic function on U(3/4).
b) u is bounded in X − U(1/2).

Proof. If X has a positive boundary, this already has been proved (Proposition
9.2). So we assume that X has a zero boundary. As in the proof of Proposition
9.2, we consider the functions

un : X − U(1/2) −→ R n ≥ 1,
vn : U(3/4) −→ R , n ≥ 0,

that are defined by v0 ≡ 0 and the boundary value conditions

un = vn−1 + u0 on ∂(1/2) (normalized solution),
vn = un − u0 on ∂(3/4),

inductively (alternating). Since we do not have the number q (0 < q < 1) which
arises from ω in the case of a positive boundary, we now need a completely
different proof for the convergence. This is based on the following fact:

vn+1(0) = vn(0).

Proof. For simplicity, we denote the function

v ◦ ϕ−1 : E(3/4) −→ R

by v again. The difference will be made clear by the notation for the variables:
In X we use a, x, . . ., and in E we use ζ, z, . . . .

The midpoint property of harmonic functions states that

vn+1(0) =
1
2π

2π∫

0

vn+1

(3
4
eit
)
dt
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(we first shrink R and then take a limit). It follows from the boundary behavior

vn = un − u0 on ∂(3/4)

that

vn+1(0) =

2π∫

0

un+1

(3
4
eit
)
dt−

2π∫

0

u0

(3
4
eit
)
dt.

We have assumed that u0 is the real part of an analytic function on R . From
Nevanlinna’s lemma (Lemma 10.4), we obtain the same property for un+1.
Hence we obtain

vn+1(0) =

2π∫

0

un+1

(1
2
eit
)
dt−

2π∫

0

u0

(1
2
eit
)
dt.

Now, from the boundary behavior

un+1 = vn + u0 on ∂(1/2),

we get

vn+1(0) =

2π∫

0

vn

(1
2
eit
)
dt = vn(0) (midpoint property).

This finishes the proof of the fact. ��
We also have to use the following simple fact.

11.10 Fact. There is a constant 0 < q < 1 such that every harmonic function

v : E(3/4) −→ R

with the properties
a) v(0) = 0,
b) |v(z)| ≤ C,
satisfies the inequality

|v(z)| ≤ qC for |z| = 1/2.

The proof follows from Harnack’s inequality (Proposition 2.4).
Now we choose a constant C with the property

|u2 − u1| ≤ C on ∂(1/2).
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By the maximum principle, this inequality remains true everywhere, in partic-
ular on ∂(3/4). We get

|v2 − v1| ≤ C on ∂(3/4)

and hence in U(3/4). Fact 11.10 shows that

|u3 − u2| = |v2 − v1| ≤ Cq on ∂(1/2).

By induction on n, we get

|un+1 − un| ≤ qnC on X − U(1/2)),
|vn − vn−1| ≤ qnC on U(3/4).

Now we have proved the decisive inequality, which allows us to imitate the
proof of Proposition 7.2 that un, vn converge locally uniformly to harmonic
functions u and v, such that u− u0 and v agree on R. ��

Exercises for Sect. II.11

1. Let U be a nonempty open relatively compact subset of a Riemann surface X.
Show that X − Ū is hyperbolic.

2. Show that any open and connected subset of a hyperbolic Riemann surface is
hyperbolic.

3. Let f : X → Y be a nonconstant analytic map between Riemann surfaces. Show
that if Y is hyperbolic, then so is X .

12. The Most Important Cases of the Existence Theo-
rems

In this section, we collect together the existence theorems for harmonic func-
tions which will be used in the following treatment.

The function (z − 1)/(z + 1) takes values on the negative real axis only if z
is contained in [−1, 1]. Hence the principal branch of the logarithm

C − [−1, 1] −→ C, z �−→ Log
z − 1
z + 1

,

is an analytic function. Both its real and its imaginary part are interesting
harmonic functions. Taking the real part, we obtain the following result.
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12.1 Remark. The function

Log |z − 1| − Log |z + 1|
is the real part of an analytic function in C − [−1, 1].

Using this function, we are lead to the following fundamental existence theorem
for harmonic functions with logarithmic singularities.

12.2 Theorem. Let a, b be two distinct points on a connected Riemann
surface. There exists a harmonic function

u := ua,b : X − {a, b} −→ C

with the following properties:
a) u is logarithmically singular at a;
b) −u is logarithmically singular at b;
c) u is bounded “at infinity”, i.e. bounded in X − [U(a) ∪ U(b)], where U(a)

and U(b) are neighborhoods of a, b.

Proof. When the two points a, b are sufficiently close (such that they correspond
to the points ±1 with respect to a suitable disk “|z| < 2”), then the claim
follows from the fundamental existence theorem (Proposition 11.9). But the
assumption that “a and b are close” is not necessary. By joining a and b with a
curve, we obtain by means of a simple compactness argument a chain of points

a = a0, a1, . . . , an = b,

where any two consecutive points are close. We then define

ua,b(x) :=
n∑

i=1

uai−1,ai

and obtain a function with the properties a)–c). ��
A different existence theorem is obtained if we take instead of the real part of

Log ((z − 1)/(z + 1)) its imaginary part (the real part of the analytic function
−i Log ((z − 1)/(z + 1)). The imaginary part of the principal branch of the
logarithm is the principal branch of the argument. This makes a jump of 2π
when the negative real axis is crossed. Analogously, Arg((z+1)/(z−1)) makes
a jump by 2π when (−1, 1) is crossed (see Exercise 1). Hence we have the
following result.

12.3 Remark. The function

Arg
(
z + 1
z − 1

)
(principal value of the argument)

is the real part of an analytic function in C − [−1, 1]. It cannot be extended
continuously to any point of [−1, 1].

From the fundamental existence theorem (Proposition 11.9) we obtain the fol-
lowing result.
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12.4 Theorem. Let X be a connected Riemann surface and let ϕ : U →
{z; |z| < 2} be a “disk of radius 2”. We denote by C the inverse image of
[−1, 1] in X. There exists a bounded harmonic function u : X − C → R such
that

uϕ(z)−Arg
(z + 1
z − 1

)

extends to the whole disk as a harmonic function. The function u cannot be
extended as a continuous function to any point of C.

Exercises for Sect. II.12

1. Give a mathematically rigorous formulation of the statement that Arg((z+1)/(z−
1)) makes a jump of 2π when (−1, 1) is passed through, and prove this statement.

2. Let S ⊂ X be a finite subset of a Riemann surface which contains at least two
elements. Show that there exists a harmonic function u on X − S such that
for suitable constants Cs, the functions Csu have logarithmic singularities at the
points of S.

3. Is there a harmonic function on C which is logarithmically singular at ∞?

13. Appendix to Chapter II. Stokes’s Theorem

Stokes’s theorem was an important tool in the proof of the central existence
theorems in the case of a Riemann surface with a zero boundary. We shall also
use this theorem in the following treatment. The Cauchy integral theorem can
be considered as special case of Stokes’s theorem. For this reason, it seems to
be appropriate to include a complete proof, even though it needs some technical
effort even in the two-dimensional case.

I Local Theory of Differential Forms

We start with the notion of a differential in the complex plane.

13.1 Definition. Let D be an open subset of the complex plane.
1) A 0-form is a continuous function f : D → C.
2) A 1-form is a pair of continuous functions f, g : D → C.
3) A 2-form is a continuous function f : D → C.
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(Hence 0- and 2-forms are the same in the local theory. The situation is different
on surfaces.)

“ν-forms” are also called “differential forms of degree ν”. Sometimes 1-forms
are simply called differentials .

We can add ν-forms in an obvious way (componentwise) and multiply them
by complex-valued functions.

Let 1D and 0D be the functions “constant 1” and “constant 0”, respectively
on D. We define

a) the 1-forms

dx := (1D, 0D), dy := (0D, 1D)

b) and the 2-form

dx ∧ dy := 1D,

and obtain in this way the usual notation for differential forms

(f, g) = f dx+ g dy for 1-forms,
f = f dx ∧ dy for 2-forms.

The symbol dx ∧ dy can be generalized to the alternating product of two diffe-
rentials as follows.

13.2 Definition. The alternating product of two differentials is defined by

(f1dx+ g1dy) ∧ (f2dx+ g2dy) := (f1g2 − f2g1)dx ∧ dy.

We can also define

dz := dx+ i dy

and obtain

(f, if) = f(z) dz.

A ν-form is called differentiable if it is continuously partially differentiable
infinitely often in the sense of real analysis.

Notation.

Aν(D) = set of all differentiable ν-forms on D.
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The Exterior Derivative, Local Case

We define
d : A0(D) −→ A1(D),

d(f) =
(
∂f

∂x
,
∂f

∂y

)
=
∂f

∂x
dx+

∂f

∂y
dy

and
d : A1(D) −→ A2(D),

d(f dx+ g dy) =
(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy.

Then, obviously,
d(df) = 0 for f ∈ A0(D).

For an analytic function f , we obtain from the Cauchy–Riemann equations

a) d(f) = f ′ · dz;
b) d(f · dz) = 0.

Transformation of Differential Forms: The Local Case

Let
ϕ : D −→ D′, D,D′ ⊂ C open,

be an (infinitely often) differentiable map. We want to define the pulled-back
differential form ϕ∗ω on D′ for a differential form ω on D. This should be a
map

ϕ∗ : Aν(D′) −→ Aν(D).

We denote the coordinates of D by z = x+iy and those of D′ by w = u+iv.

1) 0-forms. Let f be a 0-form (= function) on D′. We define

ϕ∗(f) = f ◦ ϕ (and hence ϕ∗(f)(z) = f(ϕ(z))).

2) 1-forms. Let ω = f du+ g dv be a 1-form on D′. We define

ϕ∗ω = ϕ∗(f)ϕ∗(du) + ϕ∗(g)ϕ∗(dv),

where
ϕ∗(du) = dϕ1, ϕ∗(dv) = dϕ2 (ϕ = ϕ1 + iϕ2).

Using the notation
ϕ∗(ω) = f̃ dx+ g̃ dy,

this means (
f̃(z)
g̃(z)

)
= J(ϕ, z)t

(
f(ϕ(z))
g(ϕ(z))

)
.
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Here J is the real Jacobi matrix and J t its transpose, i.e.

J(ϕ, z)t =

⎛

⎜⎝

∂ϕ1

∂x

∂ϕ2

∂x
∂ϕ1

∂y

∂ϕ2

∂y

⎞

⎟⎠ .

Special case. Assume that the map ϕ is analytic. It follows from the Cauchy–
Riemann differential equations that

ϕ∗(dw) = ϕ′dz

or, in general,
ϕ∗(f dw) = ϕ∗(f)ϕ′dz.

3) 2-forms. Let ω = f du ∧ dv be a 2-form on D′. We define

ϕ∗(ω) = ϕ∗(f)ϕ∗(du ∧ dv)

and
ϕ∗(du ∧ dv) := ϕ∗(du) ∧ ϕ∗(dv).

A simple calculation shows that

ϕ∗(du ∧ dv) = detJ(ϕ, ·)dx ∧ dy.

(Here det J(ϕ, ·) denotes the function z �→ detJ(ϕ, z)). By means of the chain
rule, it is easy to prove the following statement.

13.3 Remark (The pullback is natural).
1) We have

ϕ∗(ω ∧ ω′) = ϕ∗(ω) ∧ ϕ∗(ω′).

2) Let

D
ϕ−→ D′ ψ−→ D′′, D,D′, D′′ ⊂ C open,

be differentiable maps and let ω be a differential form on D′′. Then

(ψ ◦ ϕ)∗ω = ϕ∗(ψ∗ω).

Evaluation of Differential Forms: Local Case

1) A 0-form f is evaluated at a point a ∈ D. The result is the function value
f(a).
2) A 1-form f dx+ g dy has to be evaluated on a piecewise smooth curve

α : [a, b] −→ D (a < b)
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The result is the line integral

∫

α

(f, g) :=

b∫

a

[f(α(t))α̇1(t) + g(α(t))α̇2(t)] dt.

Here
α1 = Reα, α2 = Imα

are the components of α.

(To be precise, the integrand is not defined at points where α is not smooth.
We get around this difficulty by cutting the curve into pieces or by using the
more general notion of an integral from Sect. 3, where finitely many points are
allowed at which the integrand is not continuous.)

13.4 Remark. For differentials of the special form ω = fdz = f(dx + i dy),
we have

∫

α

ω =
∫

α

f(ζ) dζ =

b∫

a

f(α(t))α̇(t)dt.

This is the usual line integral in complex analysis, as described for example in
[FB], Chap. I.

By means of the chain rule, we can easily prove the following statement.

13.5 Remark. Let

ϕ : D −→ D′ (D,D′ ⊂ C open)

be a differentiable map, let

α : [a, b] −→ D (a < b)

be a piecewise smooth curve, and let ω be a 1-form on D′. Using the notation

ω = f du+ g dv,

ϕ∗ω = f̃ dx+ g̃ dy,

α̃ = ϕ ◦ α (= image of α in D′),

we obtain the relation

f̃(α(t))α̇1(t) + g̃(α(t))α̇2(t) = f(α̃(t)) ˙̃α1(t) + g(α̃(t)) ˙̃α2(t).
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Corollary. ∫

α

ϕ∗ω =
∫

ϕ◦α
ω.

For the proof, we one simply express the derivative of ϕ(α(t)) by means of
the chain rule in terms of the derivative of α and then partial derivatives of
ϕ. ��

We can formulate this simple remark in a somewhat sloppy way as follows:

The pullback of 1-forms is compatible with taking the line integral.

3) A 2-form f is evaluated on an open subset U ⊂ D as a surface integral. For
the existence of the surface integral, we assume that

K = Ū ∩ support(f)

is compact. Here
support(f) = {a ∈ D , f(a) 
= 0}.

(The topological closure has to be taken in D.) Under this assumption, the
integral

∫

U

f(z) dx ∧ dy
(

:=
∫

U

(Re f)(z) dx dy + i
∫

U

(Im f)(z) dx dy
)

exists as Lebesgue integral. (If we prefer to work with the Riemann integral,
which is sufficient for our purposes, we need sharper assumptions, for example
that K is Jordan measurable.) From the transformation formula for surface
integrals, we obtain the following result.

13.6 Remark. Let

ϕ : D ∼−→ D′ (D,D′ ⊂ C)

be an orientation-preserving diffeomorphism (i.e. a bijective map which is dif-
ferentiable in both directions and whose functional determinant is positive ev-
erywhere). Then ∫

U

ϕ∗(ω) =
∫

ϕ(U)

ω

for any 2-form ω on D′ and any open subset U ⊂ D such that the condition
for integrability is fulfilled.

Hence the pullback of a 2-form is compatible with the surface integral in the
case of an orientation-preserving diffeomorphism.
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13.7 Example. A biholomorphic map ϕ is orientation-preserving, since it
follows from the Cauchy–Riemann differential equation that

|ϕ′(z)|2 = det J(ϕ, z).

Here J denotes the real functional determinant.

II Differential Forms on Differentiable Surfaces

Let X be a topological surface and let D be an atlas on X . We call D differ-
entiable if the chart transformation

ψ ◦ ϕ−1 : ϕ(Uϕ ∩ Uψ) −→ ψ(Uϕ ∩ Uψ)
∩ ∩
C C

is a diffeomorphism (in the sense of real analysis) for any two charts ϕ,ψ from
D. Two differentiable atlases are said to be differentiably compatible if their
union is a differentiable atlas too. A differentiable surface is a pair consisting
of a topological surface X and a full class of equivalent differentiable atlases.
Hence each differentiable atlas D onX defines a differentiable surface, which we
denote by (X,D) for simplicity. Any Riemann surface can also be considered
to be a differentiable surface.

Some basic notions about differentiable surfaces are analogous to the case
of Riemann surfaces. For example:

1) If U ⊂ X is an open subset of a differentiable surface X = (X,D), then U –
equipped with the restricted structure D|U – is a differentiable surface too.

2) A map f : (X,DX) → (Y,DY ) between differentiable surfaces is called
differentiable if, for each of two charts ϕ ∈ DX and ψ ∈ DY , the function

ψ ◦ f ◦ ϕ−1 : ϕ
(
Uϕ ∩ f−1(Uψ)

)
−→ C

is continuously differentiable infinitely often in the sense of real analysis.
(Of course, this depends only on the equivalence classes of the atlases.)

3) If f is bijective and f and f−1 are both differentiable, then f is called a
diffeomorphism.

4) A differentiable chart ϕ on a differentiable manifold (X,D) is a diffeomor-
phism

ϕ :Uϕ −→ Vϕ
∩ ∩
X C

from an open subset of X onto an open subset of C. The set of all differ-
entiable charts is a differentiable atlas which contains D. It is the largest
atlas which is equivalent to D.
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The Notion of a Differential Form on a Differentiable Surface

13.8 Definition. A differential form of degree (ν ∈ {0, 1, 2}) on a differen-
tiable atlas D is a family ω = (ωϕ)ϕ∈D of ν-forms

ωϕ on Vϕ (ϕ :Uϕ −→ Vϕ
∩ ∩
X C)

such that for any two charts ϕ,ψ ∈ D, the compatibility condition

(ψ ◦ ϕ−1)∗ωψ = ωϕ

is satisfied.

It is possible to extend differential forms to the maximal atlas in a unique way.

13.9 Remark. Any differential form on a differentiable atlas extends uniquely
to the maximal atlas (= atlas of all differentiable charts).

Proof. The proof follows from the transitivity formula (Remark 13.3). We shall
merely sketch the proof. Let (ωϕ) be a differential form on D and let ψ : U → V
be an arbitrary differentiable chart. We have to define a function fψ on V . Let a
be an arbitrary point from U and let b = ϕ(a). We choose a chart ϕ : Uϕ → Vϕ
in D whose domain of definition contains a. The compatibility formula dictates
how fψ has to be defined on the part ψ(U ∩ Vϕ). This defines fψ(b). It follows
from Remark 13.3 that this value is independent of the choice of ϕ. So fψ is
defined. The rest is simple. ��

13.10 Definition. A differential form of degree ν on a differentiable surface
is a differential form on the atlas of all differentiable charts.

Because of Remark 13.9, it is enough to define the differential form on a sub-
atlas.

We also have the notion of a differential form on an open subset of a differ-
entiable surface, since it carries the natural structure of a differentiable surface.

A ν-form (ωϕ) is called differentiable if all components ωϕ are differentiable
(ϕ ∈ D is enough).

Notation.
Aν(X) = set of all differentiable ν-forms on X.
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Pullback of Differential Forms: The Global Case

Let
f : (X,DX) −→ (Y,DY )

be a differentiable map of differentiable surfaces. For a ν-form ω on Y , we want
to define the pulled-back ν-form f∗ω on X . In this way, we get maps

f∗ : Aν(X) −→ Aν(Y ) (ν = 0, 1, 2).

To do this, we consider

ϕ : Uϕ −→ Vϕ a chart from DX .

We assume that this chart is “small” in the sense that there exists a chart

ψ : Uψ −→ Vψ from DY

such that Vϕ ⊂ Uψ. This is sufficient for our purpose, since the small charts
define an atlas. We can then consider the differentiable map

f ◦ ϕ−1 : Vϕ −→ Vψ

and obtain a differential form on Vϕ by pulling back. The compatibility condi-
tion can easily be verified. ��

In the case of a diffeomorphism f , the map ω �→ f∗ω defines an isomorphism

f∗ : Aν(Y ) ∼−→ Aν(X).

The naturalness of the alternating product allows us to generalize it to surfaces,
as follows.

13.11 Definition and Remark. By

(ω ∧ ω′)ϕ := ωϕ ∧ ω′
ϕ,

a map
A1(X)×A1(X) −→ A2(X), (ω, ω′) �−→ ω ∧ ω′,

is defined. It is compatible with a pullback,

f∗(ω ∧ ω′) = f∗(ω) ∧ f∗(ω′),

for differentiable maps f : X → Y and differentials ω, ω′ ∈ A1(Y ).
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Evaluation of Differential Forms: The Global Case

1) Let (fϕ)ϕ∈D be a 0-form. We assign a function

f : X −→ C.

The value of this function at a ∈ X is defined by

f(a) := fϕ(ϕ(a)),

where ϕ is a chart in D whose domain of definition contains a. The compatibil-
ity relation states that this definition is independent of the choice of the chart
ϕ. The assignment

(fϕ)ϕ∈D �−→ f

gives a bijection between the set of 0-forms and the set of continuous functions
on X.

In the following, we shall identify a 0-form with the corresponding function.

In particular, we have

A0(X) “=” C
∞(X)

: = set of differentiable maps f : X −→ C.

2) Line integrals. Let

ω = (ωϕ) , ωϕ = fϕ dx+ gϕ dy,

be a 1-form on X and let

α : [a, b] −→ X (a < b)

be a piecewise smooth curve. (It is clear how this notion has to be defined “via
charts.”) We define the function

h : [a, b] −→ C.

Let t0 ∈ [a, b]. We choose a differentiable chart ϕ : Uϕ → Vϕ from D such that
its domain of definition contains α(t0). We transport α into Vϕ, i.e.

β(t) = ϕ(α(t)) (t varies in a small neighborhood of t0),

and then we define

h(t0) := fϕ(β(t))β̇1(t) + gϕ(β(t))β̇2(t).
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It follows from Remark 13.5 that this definition is independent of the choice of
the chart ϕ. Now the line integral

∫

α

ω :=

b∫

a

h(t) dt

is well defined.

3) Surface integrals. Surface integrals can be defined only on oriented differen-
tiable surfaces.

A differentiable atlas D is called oriented if the chart transformation

ψ ◦ ϕ−1 : ϕ(Uϕ ∩ Uψ) −→ ψ(Uϕ ∩ Uψ)

is orientation-preserving for any two charts ψ,ϕ ∈ D, which means that it has
a positive functional determinant. Two oriented atlases are called orientation-
equivalent if their union is oriented. An oriented differentiable surface is a
topological surface together with a full class of orientation-equivalent atlases.

For an analytic function, the real functional determinant is the square of the
modulus of its complex derivative. Hence analytic atlases are oriented. Hence
Riemann surfaces can be considered as oriented differentiable surfaces.

Riemann surfaces are oriented differentiable surfaces!

Any open subset of an oriented differentiable surface (X,D) is oriented as well
(by means of the restricted atlas).

A diffeomorphism
f : (X,DX) −→ (Y,DY )

between oriented differentiable surfaces is called orientation-preserving if, for
each of two charts ϕ ∈ DX and ψ ∈ DY ,

ψ ◦ f ◦ ϕ−1

is orientation-preserving (i.e. has a positive functional determinant).

By an orientation-preserving differentiable chart ϕ on an oriented differen-
tiable surface (X,D), we understand an orientation-preserving diffeomorphism

ϕ : U −→ V

from an open subset U ⊂ X onto an open subset V of the plane C. The set
of all orientation-preserving differentiable charts is the largest atlas which is
orientation-equivalent to D.
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III Surface Integrals on Differentiable Surfaces

Let ω be a differential form on a differentiable surface. We say that ω vanishes
at a point a ∈ X if, for some differentiable chart

ϕ : U −→ V, a ∈ U,
∩ ∩
X C,

ωϕ vanishes at ϕ(a). Clearly, this condition is independent of the choice of the
chart. Hence the support of ω,

support(ω) = {a ∈ X , ω does not vanish at a},

is well defined.

Now we assume that X is oriented and that ω is a 2-form (on the whole of
X). We want to define the surface integral

∫

U

ω

of ω along an open subset U ⊂ X. For this, we need a condition for integrability:
the intersection

K := Ū ∩ support(ω)

is compact.

First we treat a special case, in which there exists an orientation-preserving
chart

ϕ : Uϕ −→ Vϕ
∩ ∩
X C

such that the compact set K is contained in Uϕ. In this case it seems natural
to define ∫

U

ω :=
∫

Vϕ

ωϕ.

We have to show that this definition is independent of the choice of ϕ. This
follows immediately from the transformation formula (Remark 13.6) for surface
integrals and the compatibility condition (Definition 13.8) for the family (ωϕ).

In general, we have to break U into pieces which are contained in charts
and then to piece together the integral of ω over U . The easiest way to manage
this is to use the technique of partition of unity.
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13.12 Definition. Let K be a compact subset of the differentiable surface X
and let

K ⊂ U1 ∩ · · · ∩ Un ⊂ X

be a covering of K by finitely many open subsets of X. A partition of unity (of
K with respect to the given covering) is an n-tuple of differentiable functions

ϕν : X −→ C (1 ≤ ν ≤ n)

with the following properties:
a) 0 ≤ ϕν ≤ 1.
b) The support of ϕν is compact and contained in Uν .

c)
n∑

ν=1

ϕν(a) = 1 for all a ∈ K.

We shall now prove the existence of partitions of unity for suitable coverings.
By a (differentiable) disk on an oriented surface X, we understand an

orientation-preserving diffeomorphism

ϕ : Uϕ −→ E (unit disk)

of an open relatively compact subset Uϕ ⊂ X onto the unit disk E. We use
the notation

U ′
ϕ := {a ∈ U , |ϕ(a)| < 1/2}.

A simple compactness argument shows the following.

13.13 Remark. For any compact subset K ⊂ X of a differentiable surface,
there exist finitely many disks

ϕν : Uν −→ E

with the property

K ⊂ U ′
1 ∪ · · · ∪ U ′

n (⊂ U1 ∪ · · · ∪ Un).

If X is oriented, one can achieve the result that all ϕν are orientation-
preserving.

Now we shall prove the following proposition.

13.14 Proposition. The covering (by disks)

K ⊂ U1 ∪ · · · ∪ Un,

as described in Remark 13.13, admits a partition of unity.
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Proof. For the construction, we still need a covering of the boundary of U ′
1 ∪

· · · ∪ U ′
n. For this, we choose disks

ϕν : Uν −→ E, ν = n+ 1, . . . , N,

with the following properties:
a) Uν ∩K = ∅ (n < ν ≤ N);
b) Ū ′

1 ∪ · · · ∪ Ū ′
n ⊂ U ′

1 ∪ · · · ∪ U ′
N .

Now we use, without proof, the existence of a differentiable function

h : R −→ R

with the properties

a) h(t) = 0 for t ≥ 3/2,
b) h(t) = 1 for t ≤ 1/2,
c) 0 ≤ h ≤ 1.

(For our purpose, a twice continuously differentiable function is sufficient.)
We then define the differentiable function

Hν : X −→ C (1 ≤ ν ≤ N), Hν(a) =
{
h(|ϕν(a)|) for a ∈ Uν ,
0 else

and, for ν ∈ {1, . . . , n},

hν(a) =

⎧
⎨

⎩

Hν(a)
H1(a) + · · ·+HN (a)

if Hν(a) 
= 0,

0 else.

By the construction of Un+1, . . . , UN , the support of Hν is contained in the
interior of the support of H1 + · · · + HN . Hence the functions h1, . . . , hn are
differentiable. We also have, for a ∈ K,

n∑

ν=1

hν(a) =
∑n

ν=1 Hν(a)∑N
ν=1 Hν(a)

= 1,

since Hn+1, . . . , HN vanish on K by the construction of Un+1, . . . , UN . ��
Now we are close to the announced definition of the integral of a 2-form ω

on an oriented surface X over an open subset U ⊂ X. We assume that the
integrability condition is satisfied, i.e. the set

K = support(ω) ∩ Ū

is assumed to be compact.
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We choose a partition of unity h1, . . . , hn on K, where the support of hν
is contained in the domain of definition Uν of a chart. Then the integral hνω
over U is well defined. So, we can try the definition

∫

U

ω :=
n∑

ν=1

∫

U

hνω.

All that we have to show is that the right-hand side is independent of the choice
of the partition of 1. So let h̃1, . . . , h̃ñ be another partition. It is enough to
show that ∑

ν

∫
hνω =

∑

µ,ν

∫
h̃µhνω,

since the right-hand side is symmetric in h̃µ and hν . Actually, we have, for
each individual ν,

∑

µ

∫

U

h̃µhνω =
∫

U

∑

µ

h̃µhνω =
∫

U

hνω. ��

IV Boundary Integrals (A Variant of Line Integrals)

Let U be an open relatively compact subset of an oriented surface X . If U is
a reasonable domain, then its boundary is the union of the images of finitely
many smooth curves without double points

αν : [0, 1] −→ X, 1 ≤ ν ≤ n,

which can be oriented in such a way that U is “to the left”:

α1

α2α3

If ω is a 1-form on X, we would like to define

∫

∂U

ω :=
n∑

ν=1

∫

αν

ω.

Actually, this concept of a boundary integral is technically complicated. But
there is another approach to the boundary integral which is easier.



Appendix to Chapter II. Stokes’s Theorem 135

So, let X be an oriented differentiable surface and let U ⊂ X be an open
subset. A boundary point a ∈ ∂U is called smooth if there exists an orientation-
preserving chart

ϕ : Uϕ −→ Vϕ
∪ ∪
a �−→ 0

with the following properties:

a) ϕ(Uϕ ∩ U) = Vϕ ∩ H,
b) ϕ((∂Uϕ) ∩ U) = Vϕ ∩ R :

.a ϕ

0
.

By the way, b) follows from a).
The set of all smooth boundary points of U is denoted by

∂0U ⊂ ∂U.
It is an open subset of the whole boundary.

Now let ω be a 1-form on X . We assume that

K := ∂U ∩ support(ω)

is compact and contained in the smooth part of the boundary, i.e.

K ⊂ ∂0U.

Under these assumptions, we want to define∫

∂U

ω.

1) Special case . ω = f dx+ g dy is a 1-form with compact support on X = C

and U is the upper half-plane H. In this case, we define∫

∂H

ω =
∫

R

f(x, 0) dx.

(Actually, the integral on the right-hand size is a proper integral. It can be
understood as the line integral of ω along the segment from −C to C, C > 0
sufficiently large).

This “prototype” of a boundary integral has an important invariance prop-
erty.
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13.15 Lemma. Let ω, ω̃ be two 1-forms on C with compact support and let
U, Ũ ⊂ C be open subsets with the property

support(ω) ⊂ U, support(ω̃) ⊂ Ũ .

Finally, let ϕ : U −→ Ũ be an orientation-preserving diffeomorphism with the
property

ϕ(U ∩ H) = Ũ ∩ H, ϕ(U ∩ R) = Ũ ∩ R,

and with
ϕ∗(ω̃|Ũ) = ω|U.

Claim. ∫

∂H

ω =
∫

∂H

ω̃.

Proof. Because of the condition for the support, we have
∫

∂H

ω =
∫

U∩R

f(x, 0) dx (ω = f dx+ g dy),

∫

∂H

ω̃ =
∫

Ũ∩R

f̃(x, 0) dx (ω̃ = f̃ dx+ g̃ dy).

By restricting ϕ, we obtain a diffeomorphism

ϕ0 : U ∩ R −→ Ũ ∩ R.

The formula ϕ∗ω̃ = ω shows that

f(x, 0) = f̃(ϕ0(x), 0)ϕ′
0(x).

Hence the claimed identity follows from the transformation formula for one-
dimensional integrals if we know that ϕ0 is strictly increasing (ϕ′

0(x) > 0).
All that we need is the following simple result.

13.16 Remark. Let

ϕ : U −→ Ũ (U, Ũ ⊂ C open)

be an orientation-preserving diffeomorphism and let

ϕ(U ∩ H) = Ũ ∩ H,

ϕ(U ∩ R) = Ũ ∩ R.

Then
∂ϕ

∂x
(a) (= ϕ′

0(a)) > 0 for all a ∈ U ∩ R. ��
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2) Another special case. Again we assume that ω is a 1-form on an arbitrary
oriented differentiable surface and that U ⊂ X is an open subset such that
support(ω)∩∂U is compact and contained in the smooth part of the boundary
of U .

In addition, we assume that there is an oriented chart

ϕ : Uϕ −→ Vϕ

with the following properties:

support(ω) ⊂ Uϕ, ϕ(Uϕ ∩ U) = Vϕ ∩ H, ϕ(Uϕ ∩ ∂U) = Vϕ ∩ R.

Then ωϕ extends to a 1-form with compact support on the whole of C. Hence
we can define ∫

∂U

ω :=
∫

∂H

ωϕ.

The above invariance property shows that this definition is independent of the
choice of ϕ.

3) General definition. By means of a partition of unity h1, . . . , hn on ∂U ∩
support(ω), we now define the integral of the 1-form ω along the boundary of
U . The partition has to be chosen in such a way that the support of hν is
contained in the domain of definition of a chart with the properties a) and b)
above. We then define ∫

∂U

ω =
n∑

ν=1

∫

∂U

hνω.

As in the case of the surface integral, we show that this definition os indepen-
dent of the choice of the partition of unity.

V Stokes’s Theorem

In the following, all differential forms are assumed to be differentiable. In the
local theory, we introduced the operators

d : A0(D) −→ A1(D),

A1(D) −→ A2(D) (D ⊂ C open).

The following is a simple consequence of the chain rule.

13.17 Remark. Let

ϕ : D −→ D′ (D,D′ ⊂ C open)

be a differentiable map and let ω be a 0- or 1-form on D′. Then

ϕ∗(dω) = d(ϕ∗ω).
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Corollary. If (X,D) is a differentiable surface, then

d((ωϕ)) = (dωϕ)

defines maps
d : A0(X) −→ A1(X),

d : A1(X) −→ A2(X).

Now we have prepared everything that we need to formulate and prove Stokes’s
theorem for surfaces. We can regard this theorem as a generalization of the
main theorem of differential and integral calculus. It can be formulated as
follows.

13.18 Stokes’s theorem for curves. Let α : [a, b] → X be a piecewise
smooth curve on a differentiable surface X and let f be a differentiable function
on X. Then ∫

α

df = f(α(b))− f(α(a)).

Proof. We can assume that X is the complex plane. We now use the formula

d

dt
f(α(t)) =

∂f

∂x
(α(t))α̇1(t) +

∂f

∂y
(α(t))α̇2(t)

and the main theorem of differential and integral calculus. ��

13.19 Stokes’s theorem for surfaces. Let X be an oriented differentiable
surface and let ω be a differential on X. Let U ⊂ X be an open subset with the
following properties:
1) support(ω) ∩ Ū is compact;
2) support(ω) ∩ ∂U is contained in the smooth part of the boundary.
Then ∫

∂U

ω =
∫

U

dω.

Proof. We choose a partition of unity h1, . . . , hn on support(ω) ∩ Ū with the
following property. Let ν ∈ {1, . . . , n}. Then either support(hν) ∩ ∂U = ∅ or
there exists an orientation-preserving chart ϕ : Uϕ → Vϕ with

ϕ(Uϕ ∩ U) = Vϕ ∩ H, ϕ(Uϕ ∩ ∂U) = Vϕ ∩ R, support(hν) ⊂ Uϕ.

It is sufficient to prove Stokes’s theorem for hνω instead of ω. By the definition
of the surface and boundary integrals, we only have to consider two standard
situations:
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First case. X = C, U = H.
Second case. X = C, U = C (empty boundary).
Since the considered 1-form ω = f dx+g dy on C has compact support, we can
consider the second case as a special case of the first one. It remains to treat
the first case. The formula states that

∞∫

0

∞∫

−∞

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy =

∞∫

−∞
f(x, 0) dx

(f and g are differentiable functions with compact support on C).
It follows from the main theorem of differential and integral calculus that

∞∫

−∞

∂g

∂x
dx = g(x, y)

∣∣∣
x=C

x=−C
= 0

(y fixed, C sufficiently large). For the same reason,

−
∞∫

0

∂f

∂y
dy = f(x, 0).

Since the order of integration can be changed, the claimed formula is again a
trivial consequence of the main theorem of differential and integral calculus.

��

VI Some Variants

Integration Along a Boundary Component
The boundary ∂U (assumptions as in the case of the theorem of Theorem 13.19)
is not necessarily connected. There may exist a disjoint decomposition

∂U = ∂1U ∪ ∂2U

into nonempty closed subsets. Then one can define the integral
∫
∂1U

of ω along
∂1U alone. Formally, this can be reduced to the previous case by replacing X
by X − ∂2U . We have ∫

∂U1

ω +
∫

∂U2

ω =
∫

∂U

ω.

The Connection Between Boundary Integrals and the Usual Type of Line Inte-
grals

We have mentioned that the boundary integral introduced above can also be
seen as a line integral of the usual type. We shall occasionally use this in the
very simple case of a disk.
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13.20 Remark. Let U be an open subset of the complex plane which contains
the unit circle, and let ω be a differential on U . We set

U+ = {z ∈ U , |z| < 1},
U− = {z ∈ U , |z| > 1}.

We then have ∫

∂U+

ω = −
∫

∂U−

ω =
∮

|ζ|=1

ω.

Here
∮
|ζ|=1

ω denotes a line integral of the usual type along the circle eit,
0 ≤ 1 ≤ 2π. The proof is simple and will be skipped.
A Cauchy Integral Theorem
The following special case of Stokes’s theorem is a variant of the Cauchy integral
theorem.
Let U ⊂ C be an open relatively compact subset of the complex plane with a
smooth boundary and let f be a holomorphic function on an open neighborhood
of Ū . We have ∫

∂U

f(z) dz = 0.

In the case of an annulus r < |z| < R, this variant states that
∮

|ζ|=R

f(ζ) dζ =
∮

|ζ|=r

f(ζ) dζ.

Note. Stokes’s theorem admits generalizations which we shall not use. For example,
it is not necessary that ω is defined and differentiable on the whole of X. It is
sufficient to know that ω is differentiable in the interior U , if ω and dω can be
extended continuously to the boundary. Even this can be weakened in terms of
integrability conditions. Finally, it can be allowed that the support of ω contains
finitely many nonsmooth points. Such generalizations can be reduced by means of
smoothing functions to the “smooth case” (Theorem 13.19). We just formulate an
extreme special case which can easily be treated in this way.

13.21 Remark (Stokes’s integral theorem for triangles). Let ∆ be a
triangle in the plane and let ∂∆ be the triangular path which runs through the
boundary of ∆ anticlockwise. Let ω be a differential in the interior of ∆ such
that the components of ω and dω extend continuously to ∆. Then

∫

∆

dω =
∫

∂∆

ω.



III. Uniformization

By a uniformization of a Riemann surface X, we understand an analytic map ϕ : D →
X of a domain D ⊂ C̄ of the Riemann sphere onto X with additional properties*).
If such a map is given, any meromorphic function f : X → C̄ can be pulled back to
a meromorphic function F = f ◦ ϕ : D → C̄ on D, which has the advantage that
the function f is related to the usual type of of function of a complex variable. The
meromorphic functions F on D which one obtains in this way are precisely those
which have the invariance property

ϕ(z1) = ϕ(z2) =⇒ F (z1) = F (z2).

After a Riemann surface has been uniformized, i.e. ϕ : D → X, the meromorphic
functions on X are in one-to-one correspondence with meromorphic functions on the
domain D in the Riemann sphere, with certain invariance properties.

In uniformization theory, it is shown that for any (connected) Riemann surface
there exists a domain D in the Riemann sphere and a surjective holomorphic map
ϕ : D → X. Of course, the pair (D,ϕ) is not unique. In uniformization theory, it
is not only shown that such pairs exist. We can construct a pair with the following
most beautiful properties:

a) The result that ϕ is a covering (Definition I.3.14) can be achieved. In particular,
ϕ is then locally biholomorphic.

b) The result that D is the full Riemann sphere C̄, the full plane C, or the unit disk
E can be achieved.

These strong properties determine (D,ϕ) in an essentially unique way.

In the case of a torus X = C/L, the natural projection ϕ : C → X is such a uni-
formization map. The meromorphic functions on X are in one-to-one correspondence
with the invariant meromorphic functions on X, where invariance in this case just
means periodicity of F with respect to L.

By the way, a torus never admits a biholomorphic map onto a domain in the
Riemann sphere, since such a domain would be the full sphere. But a torus and the
Riemann sphere are not conformally equivalent.

The elegance and simplicity of the theory of elliptic functions ([FB], Chap. V) give
rise to the question of whether arbitrary Riemann surfaces admit a uniformization.
First of all, we should mention that every Riemann surface can be uniformized locally:
each point admits an open neighborhood which can be mapped biholomorphically
onto an open domain of the plane. Such maps have been called “analytic charts”.
Sometimes they are called “local uniformizers”. But uniformization theory deals with
the question of global uniformization.

*) There is another aspect of uniformization theory, closely related its historical
development, which we shall treat at the end of Sect. 2.
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Uniformization theory consists of two parts. In a (comparably easy) purely topo-
logical part, it is shown that for every connected Riemann surface there exists a simply
connected Riemann surface X̃ together with a locally biholomorphic map ϕ : X̃ → X
which is a covering in the topological sense (Definition I.3.14). Such a simply con-
nected covering is essentially unique and has the following important property.

For any two points x, y ∈ X̃ with ϕ(x) = ϕ(y), there exists a unique biholomorphic
map γ : X̃ → X̃ with the properties ϕ ◦ γ = γ and γ(x) = y. The set of all these
biholomorphic maps γ is a group Γ, called the deck transformation group. Two points
x, y ∈ X̃ have the same image inX iff there is a deck transformation with the property
y = γ(x). The surface X can be reconstructed from X̃ and the deck transformation
group, i.e.

X = X̃/Γ.

The pair (X̃,Γ) is essentially uniquely determined by X. The group Γ turns out to
be isomorphic to the fundamental group of X.

For the example of the torus X = C/L, the natural projection ϕ : C → X is the
universal covering. The deck transformations are the translations z �→ z + ω, ω ∈ L.
Hence the deck transformation group is isomorphic to L and hence to Z × Z.

As we mentioned, the existence and uniqueness of the universal covering are purely
topological matters. In an appendix to this chapter, we shall describe the construction
of the universal covering.

The (deeper) function-theoretic part of uniformization theory lies in the proof of
the following theorem:

Uniformization theorem

Every simply connected Riemann surface is conformally equivalent to
exactly one of the following Riemann surfaces:

a) the unit disk E;
b) the complex plane C;
c) the Riemann sphere C̄.

If the two parts of uniformization theory are combined, we obtain the result that
any connected Riemann surface admits a locally biholomorphic covering ϕ : D → X,
where D is one of the three standard domains. We can reconstruct X from D by
identifying two points which can be transformed into each other by an element of the
deck transformation group Γ. The meromorphic functions on X correspond to the
Γ-invariant meromorphic functions on D.

This leads to a rough classification of Riemann surfaces, depending on whether
the unit disk, the complex plane, or the Riemann sphere is the universal covering. For
a complete classification, we need to describe all possible deck transformation groups.
This is easy in the last two cases. The Riemann sphere admits only one deck trans-
formation group; this consists of the identity. So, up to biholomorphy, there exists
only one Riemann surface whose universal covering is the Riemann sphere, namely
the Riemann sphere itself. In the case of the plane, the deck transformation groups
are groups of translations z �→ z + ω, where ω runs over the elements of a discrete
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subgroup L ⊂ C. Examples are the tori. The majority of Riemann surfaces have the
unit disk as their universal covering. Instead of the unit disk, one can take the upper
half-plane, since the two are conformally equivalent. Biholomorphic automorphisms
of the upper half-plane are given by Möbius transformations z �→Mz, M ∈ SL(2,R).
The group of biholomorphic automorphisms is isomorphic to the group SL(2, R)/±E.
The deck transformation groups correspond to certain subgroups; these correspond
uniquely to subgroups of SL(2,R) which contain the negative unit matrix. It turns
out that any such a subgroup corresponds to a deck transformation group iff it is
discrete and if it does not contain elliptic elements. Two such subgroups lead to
biholomorphically equivalent Riemann surfaces if they are conjugated in SL(2,R).
Now the classification problem for Riemann surfaces has been reduced to the clas-
sification of discrete subgroups without elliptic elements of the group SL(2,R), or,
more precisely, to their conjugacy classes. The latter problem is very difficult. Hence
uniformization theory does not mark the end of the theory of Riemann surfaces.

In subsequent chapters, which are concerned particularly with the theory of com-
pact Riemann surfaces, we shall not make use of uniformization theory. Only the
applications to the theory of modular forms are related to uniformization. One might
have the impression that the applications of uniformization theory are not very im-
pressive in comparison with the effort involved. Nevertheless, the central theorems
of uniformization theory are important results of classical complex analysis. And,
in any case, we shall derive Picard’s little and big theorems from the uniformization
theorem.

1. The Uniformization Theorem

To separate the function-theoretic part of uniformization from the topological
part in a clean way, we shall first give a substitute for the notion of simple
connectedness, where we introduce the notion of an elementary Riemann sur-
face. In the topological appendix at the end of this chapter, we shall give an
introduction to covering theory. It will then turn out that elementary surfaces
and simply connected surfaces are the same.

1.1 Definition. A connected Riemann surface is called elementary if the
following condition is satisfied.
Let

X =
⋃

j∈J
Uj , Uj ⊂ X open,

be an open covering and let
fj : Uj −→ C̄

be a family of invertible (i.e. not identically vanishing on some connected com-
ponent of Uj) meromorphic functions. Assume that

|fj/fk| = 1 on Uj ∩ Uk.
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Then there exists a meromorphic function

f : X −→ C

such that
|f/fj | = 1 on Uj for all j ∈ J.

In Appendix C of this chapter, we shall prove, in connection with covering
theory, the monodromy theorem for simply connected Riemann surfaces. This
monodromy theorem immediately implies that simply connected Riemann sur-
faces are elementary in the sense of Definition 1.1.

Conversely, elementary surfaces are simply connected, as our proof of the
uniformization theorem will show. The situation is comparable to the case
of the Riemann mapping theorem, which we treated in [FB]. We refer to the
characterization of elementary domains given there ([FB], Chap. IV, Appendix
C). One of these characterizations states that a domain is simply connected if
and only if any analytic function without zeros admits an analytic square root.
It is easy to show that elementary surfaces in the sense of Definition 1.1 have
this property (see Exercise 1 for this section). So we have already obtained the
equivalence of “elementary” and “simply connected” for domains in the plane.
In particular, the Riemann mapping theorem is true for domains in the plane
which are elementary in the sense of Definition 1.1. In this section, we shall
actually prove the following theorem.

1.2 Theorem. Any elementary Riemann surface is biholomorphically equiv-
alent to the unit disk E, to the plane C, or to the Riemann sphere C̄.

Since each of the three standard domains is simply connected, we see that
any elementary Riemann surface is simply connected. In connection with the
monodromy theorem mentioned above, we obtain the following theorem.

1.3 Theorem (the uniformization theorem, P. Koebe, and H. Poincaré, 1907).
Any simply connected Riemann surface is biholomorphically equivalent to the
unit disk E, to the plane C, or to the Riemann sphere C̄.

Proof of Theorem 1.2 . In the following, X denotes an elementary Riemann
surface. We shall prove that there exists an injective holomorphic map

f : X −→ C̄.

Then X defines a biholomorphic map of X onto the domain f(X), and we can
apply the Riemann mapping theorem if f(X) is different from C̄. Actually,
with some extra work, one can avoid using the Riemann mapping theorem
here (see Exercise 2).

The hyperbolic and the zero-bounded case are treated separately.
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The Positive-Bounded (= Hyperbolic) Case

We shall see later that a biholomorphic map onto the unit disk

f : X → E

exists. We assume that this has already been proved. Then

Ga(x) := − log |f(x)|

is the Green’s function ofX with respect to a := f−1(0) (because of its invariant
characterization; see Definition II.8.7). We obtain

|f(x)| = e−Ga(x).

This gives a hint of how the function f has to be constructed.
For every point, there exists the Green’s function

Ga : X − {a} −→ R.

Claim. There exists a holomorphic function

Fa : X −→ C

with the property
|Fa(x)| = e−Ga(x) for x �= a.

In particular, we have

Fa(a) = 0, |Fa(x)| < 1 for all x.

With regard to Definition 1.1, it is sufficient to construct, for each point b ∈ X,
an open neighborhood U(b) and a holomorphic function

F : U(b) −→ C

with
|F (x)| = e−Ga(x) for x ∈ U(b) (x �= a).

First case. b �= a.
With suitable choice of U(b), the harmonic function Ga is the real part of an
analytic function f in U(b), and we can define

F := e−f .
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Second case. b = a.
Since Ga is logarithmically singular at a, it is sufficient (taking into account
the first case) to consider the special case

X = E, a = 0, Ga(z) = − log |z|.

In this case we take
F (z) = z.

This proves the claim. ��
Now we fix a point a ∈ X. It is our aim to show that the function Fa is

injective. For the proof, we consider for an arbitrary point b �= a the function

Fa,b(x) :=
Fa(x)− Fa(b)
1− Fa(b)Fa(x)

.

Its most important properties are:
a) Fa,b is analytic in X .
b) |Fa,b| < 1.
c) Fa,b has a zero at x = b, let us say of order k ∈ N.
d) Fa,b(a) = −Fa(b).
The function Fa,b (obtained from the Green’s function for a) is related to the
Green’s function for b; namely, we make the following claim.
Claim.

|Fa,b(x)| = |Fb(x)| for all x ∈ X.

(This claim can be directly verified for E.)
For the proof, we observe that the function

u(x) := −1
k

Log |Fa,b(x)|

is nonnegative and harmonic outside some discrete subset. It has a logarithmic
singularity at x = b. The extremal property of the Green’s function (Remark
II.8.8) shows

Gb(x) ≤ u(x).

Exponentiating this inequality, we obtain (because k ≥ 1)

(∗) |Fa,b(x)|
|Fb(x)|

≤ 1 for all x.

If we specialize this inequality to x = a, we obtain from d)

|Fa(b)| ≤ |Fb(a)|.



1. The Uniformization Theorem 147

Since we can exchange the roles of a and b, equality must hold. (By the way,
we have obtained the remarkable symmetry relation Ga(b) = Gb(a).) In the
inequality (∗), the equality holds for at least one x, namely x = a. Then, by the
maximum principle, equality must hold everywhere. This finishes the proof.

��
The claim shows that

Fa,b(x) �= 0 for x �= b,

and hence
Fa(x) �= Fa(b) for x �= b.

Since b was arbitrary, we obtain the claimed injectivity of Fa. ��
The domain Fa(X) is bounded and simply connected. The Riemann map-

ping theorem shows that it is biholomorphically equivalent to the unit disk. It
is possible to avoid the Riemann mapping theorem here and to prove directly
that

Fa(X) = E.

At any rate, we have seen the following:

Up to conformal equivalence, the unit disk is the unique simply connected hy-
perbolic Riemann surface.

The Zero-Bounded Case.

In this case, we have “Liouville’s theorem” (Corollary II.11.8):

Any bounded analytic function on a zero-bounded Riemann surface is constant.

The function f : X → C̄ that we are going to construct now would be, in the
case X = C or X = C̄, the map

f(z) :=
z − 1
z + 1

,

which implies
log |f(z)| = log |z − 1| − log |z + 1|.

An analogue for arbitrary X exists by the existence theorem (Theorem II.12.2):

There exists a harmonic function

u := ua,b : X − {a, b} −→ C

with the following properties:

a) u is logarithmically singular at a;
b) −u is logarithmically singular at b;



148 III. Uniformization

c) u is bounded “at infinity”, i.e. in X − [U(a) ∪ U(b)], where U(a) and U(b)
are arbitrary neighborhoods of a, b.

We now make use of the assumption that X is elementary. Analogously to the
hyperbolic case, we construct by means of Definition 1.1 an analytic function

fa,b : X − {a, b} −→ C

with the property
|fa,b| = eua,b .

From an estimate
|ua,b| ≤ C (away from a, b),

we obtain the estimate
e−C ≤ |fa,b| ≤ eC .

So we have proved the following statement:

Let X be an elementary zero-bounded Riemann surface. For any two distinct
points a, b ∈ X, there exists an analytic function

fa,b : X − {a, b} −→ C

with the following properties:

1) fa,b has a zero of order one at a and a pole of order one at b.
2) For any two neighborhoods U(a), U(b) of a, b, there exists a constant C > 0

with the property

C−1 ≤ |fa,b(x)| ≤ C for x /∈ U(a) ∪ U(b).

In particular, fa,b outside {a, b} has neither poles nor zeros.

Up to a constant factor, the function fa,b is uniquely determined, since the
quotient of two such functions is holomorphic and bounded on X, and hence
constant by Liouville’s theorem.

Now we fix two points and consider f = fa,b as a meromorphic function on
X:

f : X −→ C̄.

Claim. The function f : X → C̄ is injective.

Let c be a third point, different from a and b. We have to show that the
function

f(z)− f(c)

has only one zero, namely z = c.
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For the proof, we consider

g(z) :=
f(z)− f(c)
fc,b(z)

.

Obviously, this function is holomorphic and bounded on X (since it is bounded
“away from a, b, c”). Hence it is constant:

f(z)− f(c) = λfc,b(z) (λ �= 0).

The only zero of the function on the right-hand side is at z = c. This is what
we wanted to prove. ��

The domain f(X) is an elementary domain on the Riemann sphere. If X
is compact, we are done, since f(X) = C̄. Otherwise, there exists a point
p ∈ C̄ such that f(X) is contained in C̄ −{p} ∼= C. By the Riemann mapping
theorem, an elementary domain which is contained properly in C is conformally
equivalent to the unit disk and thus hyperbolic. We obtain f(X) ∼= C. We
shall see in Exercise 2 how one can avoid the use of the Riemann mapping
theorem here.

Historical Comments on the Uniformization Theorem

The first complete proof of the uniformization theorem was given by Koebe
and Poincaré at about the same time in 1907 [Koe, Po]. It was the highlight of
a development which had lasted for more than 50 years. This started with the
Riemann mapping theorem, which had already appeared in Riemann’s doctoral
thesis of 1851, but only under the assumption that the boundary of the given
simply connected, bounded domain D had smoothness properties. Under this
restriction, Riemann proved a finer result, namely that the mapping function
extends to a topological map of the closures. Riemann’s proof used a solution
of the Dirichlet boundary value problem for D. He made use of the Dirichlet
principle, which states that a not necessarily harmonic solution of the boundary
value problem is in fact harmonic if it minimizes the functional

∫

D

((∂f
∂x

)2

+
∂f

∂y

)2
)
dx dy.

His working hypothesis that such a minimum exists was criticized by Weier-
strass, who gave examples of functionals for which such a minimum does not
exist. Around the turn of the century, nearly 50 years after Riemann’s thesis,
Hilbert invalidated this criticism by giving a proof of the Dirichlet principle.

The efforts to prove the Riemann mapping theorem were closely related to
efforts to prove more general mapping theorems for Riemann surfaces. Since the
Dirichlet principle seemed not to be suitable for solving such problems, other
potential-theoretic methods were developed. Many notable mathematicians
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contributed to these developments; it is not possible to give an appreciation
of them all here. The “alternating method” of Neumann and Schwarz, which
we treated in detail in Chap. II, was of decisive importance for uniformization
theory. These developments allowed the solution of many existence problems
for harmonic functions. For example, Osgood, using ideas of Poincaré and
Harnack, succeeded in 1900 in proving the existence of the Green’s function
on bounded domains with smoothness assumptions for the boundary. This
was the essential step in the proof of the Riemann mapping theorem, as we
have seen in the proof of the uniformization theorem in the hyperbolic case.
That the Riemann mapping theorem is a consequence of the existence of the
Green’s function was proved by Koebe. Now the door was open for a proof
of the general uniformization theorem. Koebe proceeded in his paper of 1907
as follows. He exhausted an arbitrary simply connected Riemann surface by
an ascending chain Un of relatively compact, simply connected subsets with a
good boundary. In analogy to the theorem of Osgood mentioned above, there
exists the Green’s function Gn on Un with respect to some point a ∈ Un. This
function can be used to construct a biholomorphic map from Un onto a disk.
The final mapping function is constructed by a limiting procedure. Whether
the unit disk or the full plane is the final image depends on the value of

cn := lim
z→a

(Gn(z) + log |z|).

By the maximum principle, the sequence is monotonically increasing. We ob-
tain the disk if this sequence is bounded; otherwise we obtain the plane.

What is nowadays called the uniformization theorem is only the culmination
of several other theorems. Several investigations have been concerned with the
question of the extension of the uniformization map to the boundary, if there is
indeed a boundary. Other investigations have concerned the uniformization of
surfaces which are not simply connected. Several new proofs of the uniformiza-
tion theorem have been developed. After the great success of the alternating
method, the Dirichlet principle was established again, as we have already men-
tioned. For a proof of the uniformization theorem which rests on this method,
we refer to the classic publication by [We] and to the book by Forster [Fo2].
Another method to attack the boundary value problem, developed by Perron
in 1928, can be used to prove the uniformization theorem, but there is no space
here to explain this.

But it is not only potential-theoretic methods that have been used to prove
the uniformization theorem. In 1917, Bieberbach, using work of Plemelj and
Koebe, succeeded in giving a pure function-theoretic proof in the spirit of
Weierstrass complex analysis, just as we gave a pure function-theoretic proof
of the Riemann mapping theorem in the first volume. We conclude with the
remark that new investigations of the Ricci flow on Riemann manifolds have
led to a new proof of the uniformization theorem.
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Exercises for Sect. III.1

1. Show that any analytic function f without zeros on an elementary Riemann sur-
face in the sense of Definition 1.1 has an analytic square root g.

In the following exercises, we shall see how the Riemann mapping theorem can
be avoided in the proof of the uniformization theorem. It can then considered as
a special case.

2. Prove, without making use of the Riemann mapping theorem, that in the proof
of Theorem 1.3 in the zero-bounded case one has f(X) = C̄ or f(X) = C̄ − {b}.

Hint. Any simply connected domain in the plane can be mapped onto a
bounded domain in the plane and hence is hyperbolic. For the construction of
such a conformal map, see the first two simple steps in the proof of the Riemann
mapping theorem ([FB], Theorem IV.4.5).

3. Let D be a simply connected domain which contains the origin and is contained in
the unit disk but is different from the unit disk. Show that the Green’s functions
of D and E with respect to the origin are different.

Hint. If D and E are different, there exists a boundary point of D which is
contained in E. Consider, for this boundary point, an analytic function

ψ : D −→ E, ψ(0) = 0, lim
z→a

|ψ(z)| = |
√
a|

(see [FB], Lemma IV.4.6). From the extremal property of the Green’s function,
we obtain

G(z) ≤ − log |ψ(z)|.

But this inequality is false for the Green’s function of the unit disk (− log |z|).

4. Prove, without making use of the Riemann mapping theorem, that in the proof
of Theorem 1.2 in the hyperbolic case one has f(X) = E.

Hint. It follows easily from the construction of f that − log |z| is the Green’s
function of the image domain f(X). The rest follows from the previous exercise.
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2. A Rough Classification of Riemann Surfaces

Any Riemann surface is biholomorphic to a quotient X̃/Γ, with respect to a
freely acting group of biholomorphic transformations, of a simply connected
Riemann surface X̃ . This will be shown in the appendix to this chapter on
covering theory on covering theory (Proposition 5.24). By the uniformization
theorem, we can achieve the result that the universal covering X̃ is one of the
standard domains (the sphere, plane or unit disk). So we can divide Riemann
surfaces into three groups, depending on whether the universal covering is the
sphere, the plane, or the unit disk.

The Riemann Sphere as the Universal Covering

Any biholomorphic automorphism of the Riemann sphere is a Möbius trans-
formation ([FB], Chap. III. appendices to Sects. 4 and 5, and Exercise 7)

z 
−→ az + b

cz + d
,

(
a b
c d

)
∈ GL(2,C).

Each Möbius transformation has at least one fixed point. The only group of
biholomorphic transformations of the Riemann sphere which acts freely is the
group consisting of the identity alone. So, we see the following.

2.1 Remark. Up to biholomorphy, there exists only one Riemann surface
with a compact universal covering, namely the Riemann sphere.

The Plane as the Universal Covering

Any biholomorphic automorphism of the plane is affine ([FB], Chap. III. ap-
pendices to Sects. 4 and 5, and Exercise 5):

z 
−→ az + b,

where a is different from zero. If a is different from 1, there is a fixed point.
Hence a freely operating group of biholomorphic transformations consists only
of translations z 
→ z + b. The set of all occurring b is a subgroup L of C. It
is easy to show that such a group acts freely iff L is discrete. Recall that there
are three types of discrete subgroups: either L consists only of 0, L is cyclic,
or L is a lattice (see Lemma VI.1.1).

2.2 Proposition. A Riemann surface which admits C as a universal covering
is conformally equivalent to one of the following three types:
1) The plane C itself (L = {0}).
2) The punctured disk C

.
. (L = Zb, b �= 0. In this case the map z 
→

exp(2πiz/b) gives a biholomorphic map from C/L onto the punctured plane.)
3) The tori C/L, L a lattice.
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Of course, the plane is not conformally equivalent to any other type, since it is
the only simply connected surface in this list. Also, tori cannot be conformally
equivalent to any other surface in the list, since they are the only compact
surface in the list.

But two tori can be conformally equivalent. We recall the following fact.

Two tori are conform equivalent iff their lattices can be transformed into each
other by multiplication by a complex number. This is the case iff the j-
invariants agree. Each complex number occurs as a j-invariant.

So, we have found a complete description of the biholomorphy classes of all
Riemann surfaces whose universal covering is not the unit disk.

We now have to study the Riemann surfaces whose universal covering is the
unit disk. Instead of the unit disk, we can take the upper half-plane, since the
two are conformally equivalent. Recall that the group Bihol(H) of all biholo-
morphic automorphisms of H is SL(2,R)/{±E} ([FB], Sect. V.7, Exercise 6).
A matrix M ∈ SL(2,R) acts on H by means of

z 
−→Mz =
az + b

cz + d
, M =

(
a b
c d

)
.

The matrix is determined by the map up to the sign.

The subgroups of Bihol(H) are in one-to-one correspondence with the sub-
groups of SL(2,R) which contain the negative unit matrix. We have to inves-
tigate two things:

1) Let Γ,Γ′ be two subgroups of SL(2,R) which act freely on H. When are
the Riemann surfaces H/Γ, H/Γ′ biholomorphically equivalent?

2) Which subgroups of SL(2,R) (more precisely, their images in Bihol(H)) act
freely?

The first question is simple to answer. The answer follows immediately from
the universal property of the universal covering (Remark 5.25):

Let Γ,Γ′ be two subgroups of SL(2,R) which act freely on H. Assume that both
contain the negative unit matrix. The Riemann surfaces

H/Γ, H/Γ′

are biholomorphically equivalent iff both groups are conjugated:

Γ′ = L−1ΓL, L ∈ SL(2,R).

The second question is more involved. We need some more notations:
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a) A subset Γ ⊂ SL(2,R) is discrete if the intersection of Γ with each compact
subset of SL(2,R) is finite.

b) A subgroup Γ ⊂ SL(2,R) acts discontinuously if, for two compact sets K1,
K2, the set

{M ∈ Γ; M(K1) ∩K2 �= 0}

is finite. Here we can assume that K1 = K2, since both can be replaced by
K1 ∪K2.

2.3 Lemma. A subgroup Γ ⊂ SL(2,R) is discrete iff it acts discontinuously.

Proof . 1) Assume that the group acts discontinuously. We choose a compact
subset K ⊂ SL(2,R). Its image under the map

p : SL(2,R) −→ H, M 
−→M(i),

is also compact. Obviously,

M ∈ K =⇒M(i) ∈ p(K),

and this set is finite.
2) We need an important property of the map p. As we shall show at the end
of this proof, this map is surjective and proper. Now let K ⊂ H be a compact
subset and let K ⊂ SL(2,R) be its inverse image under p. We have

M (K) ∩K �= 0 =⇒M ∈ KK−1.

The latter set is the image of the compact set K×K under the continuous map
(x, y) 
→ xy−1 and hence is compact too. ��

We still have to prove the announced statement that the map p is surjective
and proper.

2.4 Lemma. The map

p : SL(2,R) −→ H, M 
−→M (i),

is surjective and proper.

Proof . The surjectivity follows from the formula

z =
(

1 x
0 1

)(√
y 0

0
√
y−1

)
(i).

The proof of the properness is based on the fact that the stabilizer of the point
i is the special orthogonal group:

SO(2,R) := {M ∈ SL(2,R); M ′M = E} = {M ∈ SL(2,R); M(i) = i}.
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This can be shown by an easy computation. The special orthogonal group
is bounded, since its rows have Euclidean length one, and is also closed, and
hence compact. Now we can show that p is proper, i.e. that the inverse image
of a compact set is compact. Since our spaces have a countable basis of the
topology, it is sufficient to prove “sequence compactness”. Hence we have to
show the following:
Let Mn ∈ SL(2, Z) be a sequence such that zn = Mn(i) has an accumulation
value in the upper half-plane. Then Mn has an accumulation value.
By assumption, the sequence

Pn =
(

1 xn
0 1

) (√
yn 0
0

√
yn

−1

)

has an accumulation value. We can assume that it converges. We have Mn =
PnNn, with orthogonal matrices Nn. Since the orthogonal group is compact,
the sequence Nn and hence Mn have an accumulation value. ��

It is clear that freely acting groups also act discontinuously. The converse
is false.

2.5 Definition. A subgroup Γ ⊂ SL(2,R) acts in a fixed-point-free way if
there is no element M ∈ Γ, M �= ±E, which has a fixed point in the upper
half-plane.

A simple consideration, which can be left to the reader, gives the following
result.

2.6 Lemma. A subgroup Γ ⊂ SL(2,R) acts freely on the upper half-plane iff
it acts discontinuously and in a fixed-point-free way.

A matrix M ∈ SL(2,R) which is different from ±E has a fixed point in the
upper half-plane if the modulus of its trace is less than or equal to two ([FB],
Proposition VI.1.7). Such matrices are called elliptic.

Putting all of this together, we can say the following.

2.7 Proposition. The biholomorphy classes of Riemann surfaces with
the universal covering E are in one-to-one correspondence with the conjugacy
classes of discrete subgroups of SL(2,R) which contain the negative unit matrix
but no elliptic element.

The theory of these subgroups is very difficult, and its value for the theory of
Riemann surfaces is limited.

We conclude this section by describing some examples of groups. The elliptic
modular group SL(2, Z) is certainly discrete, but it is not fixed-point-free, as we
know ([FB], Chap. VI). Hence we consider the principal congruence subgroup

Γ[q] = Kernel(SL(2, Z) −→ SL(2, Z/qZ)).
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Since this does not always contain the negative unit matrix, we prefer to take

Γ̃[q] = Γ[q] ∪ −Γ[q].

Looking at the classification of elliptic fixed points ([FB], Proposition VI.1.8),
we see that Γ̃[q] contains no elliptic fixed points in the case q > 1. In this way,
we obtain a series of deck transformation groups of Riemann surfaces.

Finally, we treat a historical aspect of uniformization theory. Let D be one the
three standard domains and let Γ be a group of biholomorphic transformations which
acts freely on D. By an automorphic function, we understand a Γ-invariant meromor-
phic function onD here. The automorphic functions are in one-to-one correspondence
with the meromorphic functions on D/Γ. Assume now that an analytic function F
of two complex variables, defined on a domain U ⊂ C × C, is given. Even the case of
a polynomial is of great interest. By a uniformization of F , we understand a pair of
automorphic functions f , g, with respect to a suitable (D,Γ), such that the following
two conditions are satisfied:

1) We have identically
F (f(t), g(t)) = 0,

where t ∈ D runs through all points of D such that f and g have no poles.

2) Every point (z, w) of the zero set

N := {(z, w) ∈ D ×D; F (z, w) = 0},
up to a discrete set, can be written in the form (z, w) = (f(t), g(t)).

So uniformization in this sense means parametrization by means of automorphic func-
tions.

For example,
z2 + w2 = 0 (F (z, w) = z2 + w2 − 1)

can be uniformized in this sense by the functions f(t) = sin t and g(t) = cos t. The
corresponding domain is D = C; the group Γ consists of the translations z �→ z+2πik,
k ∈ Z .

Another example is given by the equation

w2 = 4z3 − g2z − g3, g3
2 − 27g3

2 	= 0.

We know from the theory of elliptic functions that there exists a lattice L ⊂ C such
that this equation is uniformized by f(t) = ℘(t) and g(t) = ℘′(t). Here ℘ denotes the
Weierstrass ℘-function of the lattice L.

In general, one can obtain a uniformization by automorphic functions as follows.
First of all, one can show that there exists a discrete subset S ⊂ N of the zero set
such that the complement X0 = N − S admits a natural structure in the form of
a Riemann surface. “Natural” should imply that the projections f(z, w) = z and
f(z, w) = w are analytic functions. We have proved this here for polynomials; the
general case can be treated in a similar way. We shall skip this, since the case of
polynomials is interesting enough. Sometimes the surface X0 can be extended by
finitely many points, as we have seen in the theory of algebraic functions. Therefore
we assume, in general, that there is a Riemann surface X and a finite subset T ⊂ X,
such that X − T and X0 are biholomorphically equivalent. For simplicity, we assume
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X − T = X0. We also assume that f and g are meromorphic on X. In the choice of
X and T , there may be freedoms such that there may exist different uniformizations
for the same P .

Now we make use of the uniformization theorem which we have developed. The
surfaceX can be represented as the quotientD/Γ of one of the three standard domains
by a freely acting group Γ of biholomorphic transformations. The two functions f
and g now correspond to automorphic functions on D, which, for simplicity, we again
denote by f and g. In this way, we obtain a uniformization of F

F (f(t), g(t)) = 0

by automorphic functions.

Exercises for Sect. III.2

1. Let S be a nonempty finite subset of a torus X = C/L. Show that the universal
covering of the surface X − S is the unit disk.

2. Let U, V be two simply connected open subsets of the plane. Show that each
connected component of U ∩ V is simply connected.

Hint. Use the fact that the condition of being “simply connected” can be
characterized by means of the winding number (see [FB], Chap. IV, Appendix C).

Show that the analogous statement for other surfaces, for example C̄ , instead
of C is false.

3. Let X be a Riemann surface, and let G be a finite group of biholomorphic auto-
morphisms which have a common fixed point a. Show that there exists an analytic
chart

ϕ : U → E , a ∈ U ⊂ X,

such that U is invariant under G. Show that the transformed group Gϕ = ϕGϕ−1

consists of all rotations

z �−→ e2πiνz/n; 0 ≤ ν < n,

where n denotes the order of G.

Hint. Use the result of the previous exercise and the Riemann mapping theo-
rem.

4. The previous exercise admits a very simple solution in the following important
special case. Let X = H be the upper half-plane and assume that G consists of
Möbius transformations z �→ (az + b)(cz + d)−1,

(
a b
c d

)
∈ SL(2,R). Obtain the

solution.

Hint. Replace H by the unit disk and a by the origin. Now use the fact
that every biholomorphic transformation of the unit disk with fixed point 0 is a
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rotation z �→ ζz, |ζ| = 1. Every finite group of roots of unity has the form that
has been described in the previous exercise.

5. Let G be the group of rotations z → ζz, ζn = 1 of the unit disk of order n and
denote the quotient space by E/G. Show that there exists a map ϕ : E/G → E

such that the diagram

E

����
��

��
��

���
��

��
��

� q

���
��

��
��

�

E/G
∼
ϕ

�� E qn

commutes. The map ϕ is topological and defines a structure on E/G in the form
of a Riemann surface.

6. LetX be a Riemann surface and let Γ be a group of biholomorphic transformations
of X with the following properties:

1) X/Γ is a Hausdorff space.

2) The stabilizer Γa is finite for any a ∈ X.

3) Every a ∈ X admits a neighborhood U(a) with the property

γ(U(a)) ∩ U(a) 	= ∅ =⇒ γ ∈ Γa.

Show that U(a) can be chosen such that it is invariant under Γa and such that
the map

U(a)/Γa −→ X/Γ

is an open embedding (= homeomorphism onto an open subset).

Construct a structure in the form of a Riemann surface on the quotient space
X/Γ, such that the natural projectionX → X/Γ is analytic. Show that a structure
with this property is unique.

8. Show that a subgroup of SL(2, R), or more precisely, its image in Bihol H has
the properties 1)–3) of the previous exercise iff it is discrete. For example, all
subgroups of SL(2, Z) are discrete.

7. Show that the j-function defines a biholomorphic map

j : H/ SL(2, Z) −→ C.
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3. Picard’s Theorems

A beautiful application of the theory of Riemann surfaces is provided by Pi-
card’s little and big theorems.

By the Casorati-Weierstrass theorem, the image of a nonconstant function
in the complex plane is dense in C. Picard’s little theorem states further that
all values, with at most one exception, are taken.

3.1 Theorem (Picard’s little theorem) (Picard 1879). Every analytic
function

f : C −→ C − {0, 1}

is constant.

The proof rests on the fact that the universal covering of the twice-punctured
plane C − {0, 1} is biholomorphically equivalent to the unit disk. This follows
from the classification of the Riemann surfaces with universal coverings C and
C̄ in the previous section.

There is only one surface in this list which needs a little consideration, namely
the punctured plane C

.
. Actually, the two surfaces are topologically inequivalent, as

can be seen in an elementary way. The fundamental group of C
.

is cyclic but that
of the twice-punctured disk is not. Even simpler may be the proof that the two are
not biholomorphically equivalent. This can be seen from the groups of biholomorphic
automorphisms. The group of biholomorphic automorphisms of C

.
contains infinitely

many rotations. But the group of biholomorphic automorphisms of C − {0, 1} =
C̄ − {0, 1,∞} is finite. First of all, it is clear that such an automorphism does not
have an essential singularity at the three points 0, 1,∞. Hence it is a restriction of
a Möbius transformation. Such a Möbius transformation has to permute the three
points. Since we know that a Möbius transformation is determined by its values on
three points, we get an embedding into (actually an isomorphism onto) the group of
permutations of three elements. It particular, the group of automorphisms is finite.

The function f can be lifted to an analytic map of the universal coverings,

F : C −→ E.

By Liouville’s theorem, F must be constant. ��
Picard’s big theorem states that any analytic map

f : E − {0} −→ C − {0, 1}

with an essential singularity at 0 is constant. The proof needs a generalization
of Montel’s theorem ([FB], Theorem IV.4.9). Before we can formulate this, we
have to make a comment on the notion of local uniform convergence.
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3.2 Remark. Let D,D′ ⊂ C be open subsets of the plane and let

fn : D −→ D′

be a sequence of continuous functions which converges locally uniformly to a
function

f : D −→ C.

Then, for each point a ∈ D and each neighborhood V (b) ⊂ D′ of the image
point b = f(a), there exists a neighborhood a ∈ U(a) ⊂ D such that U(a) is
mapped by all fn (n ∈ N) and by f into V (b).

This small observation, whose proof can be skipped, allows us to generalize the
notion of locally uniform convergence to Riemann surfaces.

3.3 Definition. Let X, Y be surfaces. A sequence of continuous functions
converges locally uniformly to a continuous function

f : X −→ Y

if each point a ∈ X admits charts

ϕ : Uϕ −→ Vϕ, a ∈ Uϕ ⊂ X,
ψ : Uψ −→ Vψ, b ∈ Uψ ⊂ Y,

such that Uϕ is mapped by all fn and by f into Uψ and such that the sequence

ψ ◦ fn ◦ ϕ−1 : Vϕ −→ Vψ

converges locally uniformly to ψ ◦ f ◦ ϕ−1.

It is clear that for open subsets X,Y of the plane, we obtain the usual notion
of locally uniform convergence.

3.4 Theorem (generalized Montel’s theorem). Let X, Y be two Rie-
mann surfaces. Assume that the universal covering of Y is biholomorphically
equivalent to the unit disk. Let

fn : X −→ Y

be a sequence of analytic functions. We assume that (fn(a)) has a convergent
subsequence in Y for at least one point a ∈ X. Then fn admits a locally
uniform convergent subsequence.
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If X is an open domain in the plane and Y is a disk, then we obtain the usual
Montel’s theorem. (The assumption that (fn(a)) has a convergent subsequence
is inessential, since it is satisfied for any a ∈ X if one replaces the disk by a
slightly larger disk.)
Proof of Theorem 3.4. We may assume that the sequence fn(a) converges to
b ∈ Y . We consider the universal coverings X̃ → X and λ : E → Y . Let ã ∈ X̃
be a preimage of a and b̃ ∈ E be a preimage of b. We lift fn to a sequence

Fn : X̃ −→ E

of analytic functions. This can be done in such a way that Fn(ã) is mapped to
a given preimage of fn(a). Hence we can arrange that Fn(ã) converges to b̃. By
the usual Montel’s theorem, Fn has a locally convergent subsequence. We can
assume that this is the full sequence. The limit function F maps ã into E. By
the maximum principle, X̃ is mapped into E (and not only into the closure).
Now we can compose F with the covering map λ : E → Y . Like λ◦Fn, the map
λ ◦ F is invariant under the deck transformation group of X̃ → X. Hence it is
the lift of a function f : X → Y . Clearly, fn converges to f locally uniformly.

��

3.5 Theorem (Picard’s big theorem) (Picard 1879). Let

f : E
.

= E − {0} −→ C

be an analytic map with an essential singularity at 0. Then f takes all values
of the complex plane with at most one exceptional point.

Before the proof, we make a remark:
Let qn ∈ E

.
be a null sequence and let f : E

. → C be an analytic function.
Assume that fn(q) = f(qnq) converges locally uniformly in the unit disk. Then
f has a removable singularity at 0.
Proof of the remark. Since the sequence converges locally uniformly, it is
bounded on the circle |q| = 1/2:

|f(qnq)| ≤ C, |q| = 1/2.

This means that f is bounded on a sequence of circles whose radii converge to
0. By the maximum principle, f is bounded between each of those circles (by
C). This shows that f is bounded in 0 < |z| ≤ 1/2. By Riemann’s removability
theorem, 0 is a removable singularity. ��

After this preparation, we can give the proof of Picard’s big theorem.
Proof of Theorem 3.5. We have to show that an analytic function

f : E
. −→ C − {0, 1}
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cannot have an essential singularity. We argue indirectly and assume that 0
is an essential singularity. By the Casorati-Weierstrass theorem, there exists a
null sequence qn, 0 < |qn| < 1/2, such that f(qn) converges to an arbitrarily
given point b of the plane. We choose for b an arbitrary point which is different
from 0 and 1. The sequence of functions

fn : E
. −→ C − {0, 1},

fn(q) := f(2qnq),

converges for at least one point (namely 1/2). By the generalized Montel
theorem, it has a locally uniformly convergent subsequence. But then, by our
remark, 0 is a removable singularity. This gives a contradiction. ��

In the proof of Picard’s big theorem, we used uniformization theory: we used the
uniformization theorem to prove that there exists a holomorphic covering map

λ : E −→ C̄ − {0, 1,∞}.

If we have a direct construction for such a function, we can avoid the uniformization
theorem. It is a remarkable fact that the theory of modular functions gives such a
function. The principal congruence subgroup of level two, Γ[2], of the full elliptic
modular group acts on the upper half-plane. There is an explicit construction of a
modular function λ which maps H/Γ[2] conformally onto the three-times-punctured
Riemann sphere. This shows that H is the universal covering of the three-times-
punctured sphere and that Γ[2]/{±E} is the deck transformation group. For the
construction of λ, we refer to the exercises.

Since Γ[2] is a normal subgroup of the elliptic modular group Γ, the factor group
Γ/Γ[2] acts as a group of biholomorphic transformations on H/Γ[2]. This factor group
is isomorphic to the permutation group S3. This is in accordance with the determi-
nation of the automorphism group of the three-times-punctured sphere mentioned
above.

Exercises for Sect. III.3

1. Let S ⊂ C be a finite subset of the plane and let Γ be the fundamental group of
C − S (with respect to some base point). Construct a surjective homomorphism

Γ −→ Z
n, n = #S.

Deduce that the twice-punctured plane and the once-punctured plane are not
homeomorphic.

2. The following exercise contains a proof that the fundamental group of the twice-
punctured plane is not commutative. Show, step by step, the following:
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a) The map
f : C − {0} −→ C, z �−→ z4 + z−4

is proper.

b) Let T be the set of complex numbers which consist of the six roots of unity
of order 6 and the origin, and let S = {−1, 2}. The restriction of f defines a
proper and locally biholomorphic map

f0 : C − T −→ C − S.

c) The transformations

z �−→ iz and z �−→ 1

z
are deck transformations which do not commute.

3. Let S ⊂ C̄ be a finite subset of the sphere. Show that the fundamental group
C̄ − S is commutative iff #S ≤ 2.

4. In [FB], Sect. VI.5, we introduced the Jacobi theta series ϑ, ϑ̃,
˜̃
ϑ. Use the results

proved there to show that the function

λ(z) =
ϑ̃(z)4

˜̃
ϑ(z)4

is invariant under the principal congruence group Γ[2]. It generates the field of
modular functions. It induces a biholomorphic map from H/Γ[2] onto the three-
times-punctured Riemann sphere. Which three points are missing?

(The function λ is Klein’s lambda function.)

4. Appendix A. The Fundamental Group

Let X be an arcwise connected topological space. We want to construct, for
each point a ∈ X , a group, called the fundamental group π(X, a). Its elements
are homotopy classes of closed curves with base point a. The isomorphy type of
this group does not depend on the choice of the base point. Hence one speaks
of the fundamental group of X. The space X is simply connected if and only
if the fundamental group is trivial.

In this section, all curves use the unit interval,

α : [0, 1] −→ X

for the parametrization. So, the composition of two curves

α : [0, 1] −→ X,

β : [0, 1] −→ X,
with α(1) = β(0),
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is defined by

γ : [0, 1] −→ X, γ(t) =
{
α(2t) for 0 ≤ t ≤ 1/2,
β(2t− 1) for 1/2 ≤ t ≤ 1.

Notation. γ = α · β.
The reciprocal, or inverse curve,

α− : [0, 1] −→ X

of α is defined by

α−(t) := α(1− t) for 0 ≤ t ≤ 1.

For α(0) = a and α(1) = b, the curve α− runs from b to a.
There are two important equivalence relations for curves α, β which have

the same starting point and the same endpoint.

1) The parameter equivalence. This means that there exists a topological map

τ : [0, 1] −→ [0, 1], τ (0) = 0, τ(1) = 1,

with
β (τ(t)) = α(t).

Notation. α ∼ β (parameter equivalence).

2) The homotopy (see also [FB], Chap. IV, Definition A3).

4.1 Definition. Let
α, β : [0, 1] −→ X

be two curves with the same starting point and the same endpoint

a = α(0) = β(0), α(1) = β(1) = b.

A homotopy between α and β is a continuous map

H : [0, 1]× [0, 1] −→ X

with the following properties:

a) The curves

αs : [0, 1] −→ X, αs(t) = H(t, s) (s ∈ [0, 1]),

all have the same starting point a and the same endpoint b.
b) α0 = α, α1 = β.

We call α and β homotopic if there exists a homotopy between α and β.
Notation. α –̂β (homotopy).
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Intuitively, a homotopy H is a continuous deformation of α into β such that
the starting points and endpoints are kept fixed:

β

α

4.2 Definition. A closed curve α : [0, 1] → X is called nullhomotopic if
it is homotopic to the constant curve

β(t) = α(0) (= α(1)) , t ∈ [0, 1].

We now formulate some simple facts. The proofs are left to the reader.

1) Parameter equivalence and homotopy equivalence are equivalence relations.

2) Parameter equivalence implies homotopy:

α ∼ β =⇒ α –̂β.

(Consider H(t, s) = α (t(1− s) + sτ(t)).)

3) Let
α, β, γ : [0, 1] −→ X

be three curves with the property

α(1) = β(0), β(1) = γ(0).

Then

(α · β) · γ ∼ α · (β · γ), and hence (α · β) · γ –̂α · (β · γ).

4) Let α, α′ and β, β′ be two pairs of homotopic curves. Assume α(1) = β(0).
Then the curves α · β and α′ · β′ are homotopic.

5) The curve α · α− is nullhomotopic, as the homotopy

H(t, s) =
{
α(2t(1− s)), 0 ≤ t ≤ 1/2,
α(2(1− t)(1− s)), 1/2 ≤ t ≤ 1,

shows.
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α
α−

6) Two curves α, β with the same starting points and endpoints are homotopic
iff α · β− is nullhomotopic:

(α ∼ β ⇐⇒ α · β− ∼ β · β−)

(see the figure above). We choose a point a ∈ X and denote by

S(X, a)

the set of all closed curves with base point a. Homotopy defines an equivalence
relation on S(X, a). The set of equivalence classes is denoted by

π(X, a) := S(X, a)/ –̂ .

We shall sometimes denote the homotopy class of a curve α by [α]. Our obser-
vations so far show the following fact.

4.3 Remark. The definition

[α] · [β] = [α · β] for α, β ∈ S(X, a)

is independent of the choice of the representatives and defines a composition
on π(X, a). In this way, π(X, a) is equipped with the structure of a group. Its
unit element is the homotopy class of the constant curve (with starting point
and endpoint a). The inverse of [α] is [α]−1 = [α−].

We call π(X, a) the fundamental group of X with respect to the base point
a. Other names are the Poincaré-group and the first homotopy group. Since
higher homotopy groups can also be defined, we also use the notation π1(X, a)
for the fundamental group. We now investigate how π(X, a) depends on the
base point a.

Let a, b ∈ X be two points. We connect them by some curve

γ : [0, 1] −→ X, γ(0) = a, γ(1) = b.

We obviously have the following fact.
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4.4 Remark. The map

dγ : π(X, a) −→ π(X, b),
[α] 
−→ [γ− · α · γ]

defines an isomorphism of groups.

Hence, for (arcwise connected) topological spaces X , the fundamental group
π(X, a) is independent of the choice of a up to isomorphism. So, we sometimes
write π(X) instead of π(X, a). But this has to be done with caution, since
there is no distinguished (canonical) isomorphism. (It depends on the choice
of γ.)

4.5 Definition. A topological space X is called simply connected if it
is arcwise connected and if any two curves with the same starting points and
endpoints are homotopic.

The notion of “nullhomotopic” is connected with the following notion of “fill-
able”.

4.6 Definition. A continuous map of the circular line

α : ∂E −→ X

is called fillable if it admits a continuous extension to the closed unit disk

A : Ē −→ X.

The same definition can be used with the square Q = [0, 1] × [0, 1] instead of
the disk Ē. There is no difference, because there exists a topological map of Q
onto Ē which also maps the boundaries topologically.

4.7 Remark. Let X be an arcwise connected space. The following conditions
are equivalent:

1) X is simply connected (in the sense of Definition 4.5).
2) π(X, a) = {e} for some a ∈ X.
3) π(X, a) = {e} for all a ∈ X.
4) Every continuous map

α : ∂E −→ X

is fillable.
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(e denotes the unit element of the fundamental group.)

Proof. The equivalence of 1), 2), and 3) is already clear. Hence it is sufficient
to prove the equivalence of 2) and 4).

2)⇒ 4). Let α : ∂E → X be a continuous map. The curve

β(t) = α
(
e2πit

)

is nullhomotopic. Let H(t, s) = βs(t) be a deformation of β into the point β(0).
Then

A
(
re2πit

)
= β1−r

(
e2πit

)
, 0 ≤ r, t ≤ 1,

defines a filling of α.

4) ⇒ 2). Let α be a closed curve. By assumption, there exists a filling A :
Ē → X with A(e2πit) = α(t). The map

H(t, s) = A
(
s+ (1− s)e2πit

)

is a homotopy which contracts α to a point.

Examples of Fundamental Groups

1) Let D ⊂ R
n be star-shaped with center a ∈ D. Then π(D, a) = {e}, since

H(t, s) = (1− s)α(t) + sa

defines a homotopy between α and the constant curve β(t) = a for t ∈ [0, 1].
Hence every star domain and, in particular, R

n itself is simply connected
for each n ∈ N.

2) In [FB], Chapt. IV, Proposition A10, we showed that the fundamental group
of the punctured disk is isomorphic to Z. The isomorphism is given by

π(C
.
, 1) −→ Z,

[α] 
−→ winding number of α around 0.

But the fundamental group of a topological space is commutative only in
very exceptional cases. For example, the fundamental group of the twice-
punctured plane is not commutative (see Exercise 2 in Sect. III.3). (One
can show more, namely that it is a free group with two generators.) There
are several possibilities to extract a commutative “part” from a group, for
example as follows.
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Let G be any group; then the set of all homomorphisms Hom(G,R) of G
into the additive group of real numbers is a linear subspace of the vector space
of all maps from G into R. The vector space

H1(X, a) = Hom(π(X, a),R)

is called the (first) cohomology group of X (with coefficients in R). In principle,
this group depends on the choice of the base point a. If b is a further base point,
we can consider some curve γ which combines a with b By means of γ, we obtain
an isomorphism (see Remark 4.4)

π(X, a) −→ π(X, b).

This isomorphism usually depends on the choice of γ. But it is easy to show
that the induced isomorphism

H1(X, b) −→ H1(X, a)

is independent of the choice of γ. We call this the canonical isomorphism.
Since we can identify the cohomology groups for different base points by means
of a canonical isomorphism, we simply write

H1(X) = H1(X, a).

Frequently, we write H1(X,R) instead of H1(X) to indicate that we have used
R as the coefficient domain. In principle, one can take any abelian group
instead of R as the domain of coefficients. But then the cohomology group is
only a group and not a vector space.

The dimension of the vector space H1(X,R) (it can be infinite) is an impor-
tant invariant of the topological space X. For topologically equivalent spaces,
the invariants coincide. If X and Y are spaces with different invariants, then
they cannot be homeomorphic. To illustrate this, we now give an example but
without proof.

Let S ⊂ C be a subset consisting of n complex numbers. It can be shown
that

H1(C − S,R) ∼= R
n.

If T is another finite subset, then C−S and C−T can be homeomorphic only
if S and T contain the same number of points. (It can be shown that they are
then homeomorphic.) We shall treat a special case in an exercise for Sect. 6.
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5. Appendix B. The Universal Covering

The following construction of the universal covering is closely related historically to
the theory of Riemann surfaces. In the theory of Riemann surfaces, a surface is first
slit in such a way that a surface which is topologically equivalent to a plane domain
is obtained. Usually, infinitely many copies of this domain are pasted together along
the slit boundaries to obtain the “universal covering”.

This can easily be visualized in the case of a torus. A torus can be obtained by
gluing opposite edges of a rectangle together. The edges define two closed curves
on the torus. If the torus is slit along these curves, the rectangle is obtained. The
universal covering of the torus is a plane, which can be imagined as a space obtained
from infinitely many rectangles, glued together in an obvious way. In a similar way,
in Chap. IV we shall slit a Riemann surface in such a way that a 4p-gon is obtained.

The purely topological background came into being only step by step. The uni-

versal covering, in the sense in which is understood today, was constructed for the

first time in the well-known book [We] by Weyl.

We have already introduced the idea of a covering in connection with the con-
struction of the Riemann surface of an algebraic function, and we have treated
an extreme special case of covering theory. For the sake of completeness, we
repeat the basic facts here.

5.1 Definition. A locally topological map

f : Y −→ X

is called a covering if any point b ∈ Y admits an open neighborhood V (b) with
the following property: any preimage a ∈ Y of b admits an open neighborhood
U(a) such that the full inverse image f−1(V (b)) is the disjoint union of all
U(a), i.e.

f−1(V (b)) =
⋃

f(a)=b

U(a) (a �= a′ =⇒ U(a) ∩ U(a′) = ∅),

and such that each U(a) is mapped topologically by f onto V (b).

The covering property has an immediate consequence. If we assign to each
point a ∈ X the total number of points in the fiber over a (this number can be
infinite), i.e.

a 
−→ #f−1(a) ≤ ∞,

then this map is obviously locally constant (constant on V (b)). This shows the
following.
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5.2 Remark. Let Y → X be a covering of a connected space X; then each
point a ∈ X has the same number of preimages. In particular, the covering is
surjective if Y is not empty.

The common number described above is called the degree or the sheet number
of the covering. The latter term should not be misunderstood in the sense that
Y is a disjoint union of different sheets which can be distinguished.

The typical example of a covering of degree n is C
. → C

.
, q 
→ qn. An

example of a covering of infinite degree is exp : C → C
.
. In both cases we can

take for V (b) a plane which is slit along a half-line not passing through b.
An important tool for the study of coverings is the lifting of curves. We

recall the notion of curve lifting.

5.3 Definition. A continuous map f : Y → X of topological spaces has the
curve-lifting property if, for any curve

α : [0, 1] −→ X

and for any point b ∈ Y over α(0) (i.e. f(b) = α(0)), there exists a lift curve
β with starting point b, i.e.

α = f ◦ β, β(0) = b.

Sometimes one has to lift not only single curves but also homotopies, as below.

5.4 Definition. A continuous map

f : Y −→ X

has the homotopy-lifting property if, for any continuous map

H : [0, 1]× [0, 1] −→ X

and for any point b ∈ Y with f(b) = H(0, 0), there exists a continuous map

H̃ : [0, 1]× [0, 1] −→ Y

with the properties
f ◦ H̃ = H, H̃(0, 0) = b.

We know that for locally topological maps, the lift H̃ is uniquely determined
by H and b. The case where H is a homotopy is of special interest. This means
that both of the maps maps

s 
−→ H(0, s), s 
−→ H(1, s)

are constant.
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5.5 Remark. Let f : Y → X be a locally topological map which possesses the
homotopy-lifting property. Using the notation of Definition 5.4, we have the
result that if H is a homotopy, then H̃ is a homotopy too.

Proof. By
s 
−→ H̃(0, s), s 
−→ H̃(1, s),

we define continuous maps from the unit interval into the inverse images of
the two points H(0, 0) = H(0, s), H(1, 1) = H(1, s). If f is locally topological,
both sets are discrete. Hence both maps are constant. ��

We have already shown the following fact (Proposition I.3.15 and Theorem
I.3.16).

5.6 Proposition. Coverings have the curve-lifting and the homotopy-lifting
property.

For the more advanced properties of coverings, we need conditions on the un-
derlying topological spaces which are satisfied for surfaces for trivial reasons.
One of these properties is the following:
A space X is called locally arcwise connected if any neighborhood U of an
arbitrary point a ∈ X contains an arcwise connected neighborhood a ∈ V ⊂ U .

In the following, we tacitly assume that all spaces occurring are arcwise
connected and locally arcwise connected.

The curve-lifting and the homotopy-lifting properties are special cases of
the following lifting property.

5.7 Proposition. Let
f : Y −→ X

be a covering and let
g : Z −→ X

be a continuous map of a simply connected space Z into X, and let c ∈ Z
and b ∈ Y be two points with the same image point in X, i.e. f(c) = g(b).
Then there exists a unique continuous “lifting”

h : Z −→ Y

with the properties
f ◦ h = g, h(c) = b.

Proof. We connect an arbitrary point z ∈ Z with c by a curve:

α : [0, 1] −→ Z, α(0) = c, α(1) = z.

We then consider the image curve g ◦ α in X and denote its unique lift for the
starting point b by

β : [0, 1] −→ X̃.
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We define
h(z) := β(1).

The homotopy-lifting property together with the simple connectedness shows
that h(z) is independent of the choice of the connecting curve β.

It remains to show that h is continuous. Here we have to make use of the
locally arcwise connectedness. Let us show continuity at a given point z0.

Let x0 = g(z0) and y0 = h(z0). We choose an open neighborhood V (y0)
which is mapped topologically under f onto a neighborhood U(x0) of x0.
After that, we choose an arcwise connected neighborhood W (z0) such that
g(W (z0)) ⊂ U(x0). We claim that h(W (z0)) is contained in V (y0). (This
shows continuity of h at z0, since V (y0) can be chosen arbitrarily small.) Let
z ∈W (z0) be an arbitrary point. The image point y = h(z) can be constructed
as follows: we connect z0 with z in W (z0) and consider the image curve in
U(x0). This curve can be lifted to a curve in Y with starting point y0. Since,
for trivial reasons, it can be lifted to V (y0), this lift is contained in V (y0). In
particular, the endpoint, i.e. h(z), must be contained in V (y0).

5.8 Proposition. Let f : Y → X be a covering of a simply connected space
X. Then f is trivial, i.e. a topological map.

This follows easily from Proposition 5.7. ��
In the proof of Proposition 5.7, the only part of the covering property that

we used was that f is a locally topological map that possesses the curve- and
homotopy-lifting properties. In particular, Proposition 5.8 holds under this
weaker property. Since this will play a role in the proof of the monodromy
theorem, we state this fact specifically here.

5.9 Supplement (to Proposition 5.8). Proposition 5.8 is true for all
locally topological f with the curve- and homotopy-lifting properties.

In the following, we shall construct, under certain assumptions, a very distin-
guished covering, called the universal covering X.

5.10 Definition. A covering of an arcwise connected space X,

f : X̃ −→ X,

is called universal if X̃ is simply connected.

The following proposition justifies this notion.

5.11 Proposition. Let
f : X̃ −→ X

be a universal covering and let

g : Y −→ X
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be an arbitrary covering. Then there exists a covering

h : X̃ −→ Y

such that the diagram

X̃
f ��

h ���
��

��
��

X

g
����

��
��

��

Y

commutes (g ◦ f = h).

5.12 Supplement. Let a ∈ X̃ and b ∈ Y be points with the same image in
X, then the map can be constructed in such a way that

h(a) = b.

The map is uniquely determined by this property.

Proof. The existence of a continuous map h with the claimed properties follows
from Proposition 5.7. It is easy to show that h is a covering if both f and g
are coverings. ��

5.13 Definition. Let
f : Y −→ X

be a covering. A deck transformation is a topological map

γ : Y −→ Y

such that
γ ◦ f = f.

The truth of the following remark is immediately clear.

5.14 Remark. The set of all deck transformations of a covering is a group
(with respect to composition of maps).

The group of all deck transformations f : Y → X is the deck transformation
group.

5.15 Definition. A covering f : Y → X is called a Galois covering if for
any two points a, b ∈ Y with the same trace point f(a) = f(b) there exists a
deck transformation γ : Y → Y with γ(a) = b.

In the case where Y is simply connected, there exists by Proposition 5.11 a
unique covering map γ : Y → Y with γ(a) = b and γ ◦ f = f . Since the roles
of a and b can be exchanged, we see that γ is a topological map and hence a
deck transformation. We obtain the following fact.
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5.16 Remark. Universal coverings are Galois coverings.

We now collect together the basic properties of deck transformation groups.

5.17 Definition. Let Γ be a group of topological self-maps of a topological
space X. The group acts freely on X if the following conditions are satisfied:

1) For any two points a, b ∈ X, there exist neighborhoods U(a), U(b) with the
property

γ(U(a)) ∩ U(b) �= ∅ =⇒ γ(a) = b.

2) If an element γ ∈ Γ has a fixed point a ∈ X, γ(a) = a, then γ is the identity.

5.18 Remark. The deck transformation group of a covering f : Y → X acts
freely.

Proof. It is sufficient to prove 1), since 2) is contained in the statement about
uniqueness in Proposition 5.7. Let us first assume that the points a and b have
different trace points. Since f is locally topological, we can choose disjoint
neighborhoods U(a) and U(b) in Y such that their images in X remain disjoint.
Then, obviously, γ(U(a)) ∩ U(b) = ∅. In the case where the trace points are
equal, c = f(a) = f(b), we choose a small connected neighborhood V (c) in X
whose inverse image is the union of pairwise disjoint neighborhoods U(y) of the
preimages y ∈ Y , f(y) = c, which are mapped topologically under f onto V (c).
If γ is a deck transformation, then γ(V (a)) is contained in the union of all V (y),
f(y) = c. If γ(U(a))∩U(b) is not empty, then for reasons of connectedness we
must have γ(U(a)) = U(b). It follows from γ ◦ f = f that γ(a) = b. ��

Now let Γ be a group of topological self-maps of a topological space X. Two
points a, b ∈ X are said to be equivalent with respect to Γ if there exists an
element

γ ∈ Γ, γ(a) = b.

The quotient space by this equivalence relation is denoted by X/Γ.

5.19 Remark. Let Γ be a group of topological self-maps of X which acts
freely. Then the natural projection

p : X −→ X/Γ

is a Galois covering with deck transformation group Γ.

Proof. For an arbitrary given point a ∈ X , we choose an open neighborhood
U(a) such that γ(U(a)) ∩ U(a) = ∅ for γ �= e. Then the image V (b) = p(U(a))
is an open neighborhood of b = p(a) with the property

p−1(V (b)) =
⋃

γ∈Γ

γ(U(a)).
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The decomposition on the right-hand side is disjoint and each individual
γ(U(a)) is mapped topologically onto V (b). The rest is clear. ��

There is a close relation between the universal covering and the fundamen-
tal group. This connection leads to a proof of the existence of the universal
covering.

Let f : X̃ → X be a universal covering. We take a point ã ∈ X̃ and denote
its image point by a = f(ã). We want to assign to an element γ of the deck
transformation group Γ an element of the fundamental group π(X, a). For this,
we connect the points ã and γ(ã) by a curve α,

α : [0, 1] −→ X̃, α(0) = ã, α(1) = γ(ã).

Because of the simple connectedness, the homotopy class of this curve is
uniquely determined. Hence its image in X defines a well-determined ele-
ment of the fundamental group π(X, a). The constructed map Γ → π(X, a)
is surjective because of the curve-lifting property and because of Proposition
5.7. Because of Proposition 5.6, it is also injective. So we obtain the following
result.

5.20 Remark. Let X̃ → X be a universal covering, let ã be a distinguished
point in X̃, and let a be its image point in X. The constructed map

Γ −→ π(X, b)

is an isomorphism.

The fundamental group of a space and the deck transforma-
tion group of its universal covering are isomorphic.

This observation suggests a construction of the universal covering. Its realiza-
tion demands certain conditions on the space X , which are satisfied in the case
of our interest, connected surfaces. What we need is the following:

A space X is called sufficiently connected if it is arcwise connected and if
each neighborhood U of an arbitrary point a ∈ X contains a simply connected
open neighborhood V ⊂ U .

We shall assume this property for the rest of this section.

5.21 Proposition. Every sufficiently connected space admits a universal
covering.
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Proof. We fix a point a ∈ X. For an arbitrary point x of X , we denote by 〈a, x〉
the set of all homotopy classes of curves with starting point a and endpoint x.
Then we consider the set X̃ of all pairs

(x,A), x ∈ X, A ∈ 〈a, x〉.
a

x

We call the homotopy class A a marking of the point x. So, the elements of
X̃ are points from X which are equipped with a marking. There is a natural
projection (if we ignore the marking)

f : X̃ −→X,
(x,A) 
−→x.

It is our aim to equip X̃ with a topology in such a way that f : X̃ → X is a
universal covering.

Let U ⊂ X be a simply connected subset and let A be a marking of some
point x0 ∈ U . Then every other point x ∈ U can be marked in a unique way
as follows. We choose a curve β inside U with starting point x0 and endpoint
x. The homotopy class B of α · β is unique, since U is simply connected. We
equip x with the marking B. The set of all (x,B) ∈ X̃ that is obtained in this
way is a subset W = W (U, (x0, A)). The natural projection maps this subset
bijectively onto U .

It seems natural to topologize X̃ in such a way that the sets W are open
and the map f defines a topological map W → U . This leads to the following
definition:
A subset Ũ ⊂ X̃ is called open iff the following condition is satisfied:
Let (x0, A) be a point in Ũ . There exists a simply connected neighborhood
x0 ∈ U ⊂ X such that W (U, (x0, A)) is contained in Ũ .

The following three properties are obvious:

1) This condition defines a topology on X̃ .
2) The space X̃ is connected and Hausdorff.
3) The projection f is locally topological (in particular, it is continuous).
It remains to be proved that:

4) The map f : X̃ → X is a covering.
5) X̃ is simply connected.
Proof of 4). Let x0 ∈ X be an arbitrary point. We choose a simply connected
open neighborhood U of x0. We obtain the decomposition

f−1(U) =
⋃

A

W (U, (x0, A)) (disjoint union),

where A runs over all markings of x0. In this way, we can verify the covering
property.
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Proof of 5). First of all, we must show that X̃ is connected. This is the case
and can easily be proved. We shall skip the proof, since it is sufficient for the
proof of the present proposition to replace X̃ by a connected component. It
remains to show that any closed curve α̃ in X̃ is nullhomotopic. For this, we
can assume that the base point of α̃ is a, marked with the homotopy class of
the constant curve β(t) = a. The image of α̃ is a closed curve α = f ◦ α̃ in X.
Then α̃(t) = (α(t), At), where At is the homotopy class of a curve which joins
a to α(t):

α(0) = a

α(t)

βt

At

There is a distinguished curve from a to α(t), namely the “restriction” βt,

βt(s) = α(st),

which runs from a to α(t) inside α. The proof rests on the following claim.

The curve βt is contained in the homotopy class of At.
Proof of the claim. The claim is true for t = 0. Making use of the continuity of
α̃ and the definition of the topology on X̃, we can see that βt is in the homotopy
class of At for sufficiently small t. Now we can use a standard argument which
works in such situations: we consider the supremum of all t with the claimed
property. The above argument shows that this supremum is equal to 1.

Since we have assumed that the curve α̃ is closed, the starting and end
markings must agree. This means that α is nullhomotopic. Therefore there
exists a family of closed curves αs (0 ≤ s ≤ 1), all with starting point and
endpoint a, which deform α into a constant curve α0 = α, α1(t) = a. Let s be
fixed. We mark each point αs(t) as above, considering the restriction αs|[0, t]
and reparametrizing it to [0, 1]). This gives a lifting of αs to a curve α̃s on X̃.
Obviously, this is a homotopy which contracts α̃ to a point. ��

An important consequence of the existence of a universal covering is the
following.

5.22 Proposition. A sufficiently connected topological space is simply con-
nected if and only if each connected covering is trivial (i.e. a topological map-
ping).

We get a new characterization of the notion of a “covering”:
A map f : Y → X of a topological space Y into a sufficiently connected space
X is a covering if and only if, for each simply connected open neighborhood
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U ⊂ X, each connected component of the inverse image f−1(U) is mapped
topologically by f onto U .
We conclude this section with some special aspects of coverings of Riemann
surfaces. There are no additional difficulties.

We recall the following trivial result (Lemma I.2.8):
Let f : Y → X be a locally topological map of a surface Y into a Riemann
surface X. Then the surface Y carries a unique structure in the form of a
Riemann surface such that f is locally biholomorphic.
In particular, the universal covering of a Riemann surface is a Riemann surface
as well. For trivial reasons, the deck transformations are biholomorphic.

Let Y → X be a locally topological map of Riemann surfaces. An analytic
structure of Y will not usually induce an analytic structure in X. But in the
following special situation this is the case.

5.23 Remark. Let Γ be a group of biholomorphic self-maps of a Riemann
surface X which acts freely. Then the quotient space X/Γ carries a unique
structure in the form of a Riemann surface such that the natural projection
p : X → X/Γ is locally biholomorphic.

We have proved this for the complex plane X = C and a group of translations
z 
→ z + ω, where ω runs over a lattice. The generalization brings no new
difficulties with it, and so we shall state it only briefly:

An open subset U ⊂ X is said to be small if the projection p maps it
topologically onto an open set U ′ ⊂ X/Γ, and if it is the domain of definition
of an analytic chart U → V . By inverting p, we obtain a topological chart
U ′ → V . The set of all these charts defines an analytic atlas. ��

From the topological covering theory, we obtain the following proposition.

5.24 Proposition. For every Riemann surface X, there exists a simply
connected Riemann surface X̃ and a freely acting group Γ of biholomorphic
automorphisms of X̃ such that X and X̃/Γ are biholomorphic equivalent. The
pair (X̃,Γ) is essentially unique.

The latter statement means that if (X̃ ′,Γ′) is another pair with this property,
then there exists a biholomorphic map ϕ : X̃ ′ → X̃ with the property Γ′ =
ϕ−1γϕ.

It is worthwhile to formulate a special case of the uniqueness property, as
below.

5.25 Remark. Let X be a simply connected Riemann surfaces and let Γ, Γ′ be
two freely acting groups of biholomorphic transformations of X. The Riemann
surfaces X/Γ, X/Γ′ are biholomorphic iff the groups Γ, Γ′ are conjugated in
the group of all biholomorphic transformations of X.
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6. Appendix C. The Monodromy Theorem

The monodromy theorem is a classical result of complex analysis which has a
purely topological background. For this reason, we treat it in this topological
appendix. The topological background is the following proposition.

6.1 Proposition. A locally topological map f : Y → X between sufficiently
connected spaces is a covering if and only if has the curve-lifting property.

Proof. The decisive step is to show that f has the homotopy-lifting property.
So, let H : [0, 1]× [0, 1]→ X be a continuous map and let b ∈ Y be a point over
a = H(0, 0). We have to lift H to a continuous map H̃ → Y with the property
H̃(0, 0) = b. Using the curve-lifting property, we first define H̃(0, y). Next, we
define H̃(x, y) for fixed y by lifting the curve x 
→ H(x, y) with respect to the
starting point H̃(0, y). In this way, a map H̃ : [0, 1]× [0, 1]→ Y is defined. It
remains to prove its continuity. By construction, it is continuous on the left
edge and on horizontal lines. In the case where the image of H̃ is contained
in an open subset of Y which is mapped topologically onto its image, the map
H̃ coincides with the lift which results from inverting f . This consideration
shows that H̃ is continuous in some neighborhood of the left edge and then,
by a compactness argument, on a rectangle [0, 1]× [0, ε), 0 < ε ≤ 1. Moreover,
it then follows that H̃ is continuous on the closure [0, 1] × [0, ε]. We simply
consider an open neighborhood of (x, ε) which is mapped topologically under
f . After that, we consider the supremum of all ε and show that ε = 1 as usual.

Now the rest of the proof of Proposition 6.1 runs as follows. Consider a
lifting f̃ : Ỹ → Ỹ onto the universal covering (using Proposition 5.7). By
Supplement 5.9, it is topological. Now it easily follows that f is a covering.

��
The monodromy theorem is a uniqueness statement about the analytic con-

tinuation of function elements. We introduced the notion of a function element
in connection with the analytisches Gebilde. Here we want to use this notion
in a slightly more general form:

1) We want to consider meromorphic function elements, i.e. we admit poles.
2) The base space for the function elements is not the complex plane but, more

generally, a Riemann surface.
This generalization is harmless and brings no new problems with it.

By a function element on a Riemann surface X we understand a pair (a, f)
consisting of a point a ∈ X and a meromorphic function

f : U(a) −→ C̄

on some open neighborhood of a. Two function elements (a, f) and (b, g) are
considered to be equal if a = b and if f and g agree in a small neighborhood
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of a = b. More precisely, this means that we have to consider an equivalence
relation. When we want to emphasize this, we write [a, f ] instead of (a, f) to
denote the equivalence class.

Let
α : I −→ X, I ⊂ R interval,

be a curve in X. Assume that we have fixed a function element (α(t), ft) for
each t ∈ I. The family of these function elements is called a regular allocation
of I if, for each t0 ∈ I , there exists an open neighborhood U = U (α(t0)) of
α(t0) and a meromorphic function

f : U −→ C̄

such that
[α(t), f ] = [α(t), ft]

for all t from a sufficiently small neighborhood of t0 ∈ I. Two function elements
(a, f) and (b, g) are said to be equivalent if there exist a curve α connecting a
and b and a regular allocation (α(t), ft) with the property f0 = f and f1 = g.

Let R be a full equivalence class of function elements on X. As in the case
X = C (where we considered only holomorphic function elements, which makes
no difference to the argument), we can equip R with a structure in the form of
a Riemann surface with the following properties:

1) The map
p : R −→ X, (a, f) 
−→ a,

is locally biholomorphic.
2) The function

R −→ C̄, (a, f) 
−→ f(a),

is meromorphic.
3) The curves in R are in one-to-one correspondence with the regular alloca-

tions in X.

We obtain:

4) A regular allocation (α(t), ft) of a curve

α : [0, 1] −→ X

is uniquely determined by the starting element (α(0), f0).

(One says that (α(1), f1) arises by analytic continuation from (α(0), f0) along
α.)
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5) Assumption. Let (a, fa) be a function element that can be analytically
continued along each curve which starts from a. Then the map

p : R −→ X

has the curve-lifting property. By Proposition 6.1, it is covering. By Propo-
sition 5.22, this covering is trivial if X is simply connected.

These topological considerations contain the following “old-fashioned” mon-
odromy theorem which is contained in the lectures of Weierstrass.

6.2 Theorem (the monodromy theorem). Let (a, fa) be a function
element on a simply connected Riemann surface X which can be analytically
continued along any curve starting from a. Then there exists a meromorphic
function

f : X −→ C̄

with
[a, fa] = [a, f ].

As an application of the monodromy theorem, we shall now show that simply
connected Riemann surfaces are elementary in the sense of Definition 1.1:

So, let
X =

⋃
Ui

be an open covering of X and let

fi : Ui −→ C̄

be a family of invertible meromorphic functions with the property

|fi/fj | = 1 on Ui ∩ Uj .

Let a be a point which is contained in the intersection of two sets of the covering,
i.e. a ∈ Ui ∩Uj . If U ⊂ Ui ∩Uj is a connected open neighborhood of a, then fi
and fj agree in U up to a constant factor of absolute value 1.

It follows easily from this property that one of the function elements (a, fi),
for some fixed chosen i and a ∈ Ui, can be analytically continued along every
curve starting from a. By the monodromy theorem, there exists a meromorphic
function f on X with [a, f ] = [a, fi]. The principle of analytic continuation
implies that |f/fj | = 1 for all j.

6.3 Proposition. A simply connected Riemann surface is elementary in the
sense of Definition 1.1.
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Conversely, the uniformization theorem (Theorem 1.2) shows that elementary
surfaces are simply connected.

Exercises for the Appendices to Chap. III

1. Let S ⊂ C be a finite subset. Show that every biholomorphic self-map of C − S
is the restriction of a Möbius transformation.

2. Let P (z) be a nonconstant polynomial and let M a Möbius transformation with
the property P (M(z)) = P (z) for all z. Show that M is affine, i.e. M(z) = az+ b.

3. Construct a polynomial P of degree > 1 such that every Möbius transformationM
with the property P (M(z)) = P (z) is the identity. (This means that the matrix
M is a scalar multiple of the unit matrix.) Show that such a polynomial is of
degree at least three.

4. Let P be a nonconstant polynomial. Suppose that we choose a finite set S ⊂ C

such that its inverse image T = P−1(S) under P contains all points at which the
derivative of P vanishes. Show that P : C − T −→ C − S is a covering.

5. Construct, by means of the results of Exercises 1–4, a non-Galois covering.

6. Let X̃ → X be a universal covering with deck transformation group Γ. Let
Y → X be an arbitrary covering. Suppose that we choose a covering X̃ → Y as
in Proposition 5.11.

Show that the covering X̃ → Y is Galois, and that its deck transformation
group Γ0 is a subgroup of Γ. Show that the degree of Y → X is finite iff the index
of Γ0 in Γ is finite, and then that the index and the degree agree. Show that the
covering Y → X is Galois iff Γ0 is a normal subgroup of Γ. Show that in this
case, the factor group Γ/Γ0 is canonically isomorphic to the deck transformation
group of Y → X.

7. Show that any subgroup of index 2 is a normal subgroup.

8. Show, by means of the results of Exercises 6 and 7, that every covering of degree
2 is Galois.

9. An analytic function f on a simply connected Riemann surface has an analytic
logarithm.

Give two proofs:
a) Use the monodromy theorem.
b) Integrate the differential df/f .



IV. Compact Riemann Surfaces

This big chapter is devoted to the theory of compact Riemann surfaces. Tori are

examples of compact Riemann surfaces. This means that we generalize the theory

of elliptic functions here. A compact Riemann surface can be associated with any

algebraic function, and in this way we obtain all compact Riemann surfaces. The

compact Riemann surfaces achieve the same result for the integration of algebraic

functions as does the theory of elliptic functions for the elliptic integrals. The triumph

of the theory of Riemann surfaces was that it made the “integrals of the first kind”

understandable and solved the so-called Jacobi inversion problem. We have to go a

long way to achieve this aim. At the end, we shall arrive at the best-known theorems

of the theory of Riemann surfaces, such as the the Riemann–Roch theorem, Abel’s

theorem, and the Jacobi inversion theorem. On the way, we must also understand the

topology of compact Riemann surfaces. We shall treat the topological classification

completely here.

1. Meromorphic Differentials

Here, we will reformulate the central existence theorem for Riemann surfaces
and, in this connection use the language of meromorphic differentials instead
of harmonic functions with singularities. (After this reformulation, potential-
theoretic methods can be dispensed with.)

1.1 Definition. A holomorphic differential ω on an open subset U ⊂ C is
a differential of the special form ω = f(z) dz with a holomorphic function
f : U → C.

So, holomorphic differentials are special differentials as introduced in the ap-
pendix of Chap. II (Sect. II.13). They are of the form fdz = fdx+ ifdy, with
a holomorphic function f . The rules which we developed there for differentials
of the form f dx+ g dy become much simpler for holomorphic differentials and
holomorphic transformations. Once more, we collect together the basic rules
for calculations with holomorphic differentials:

1) The holomorphic differentials on an open domain D ⊂ C are in one-to-one
correspondence with the holomorphic functions on D.

The transformation formula for holomorphic differentials under holomorphic
transformations is very simple:

2) If ϕ : U −→ V , U, V ⊂ C open, is a holomorphic map, and ω = g(w) dw is
184
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a holomorphic differential on V , then

ϕ∗ω := g (ϕ(z)) · ϕ′(z) dz.

This “pullback” is transitive.

3) The total derivative of a holomorphic function is

df := f ′(z) dz.

4) Holomorphic differentials are closed, i.e. their total derivative is 0.
This follows, for example, from the fact that holomorphic functions locally
admit primitives.
5) Let (X,A) be a Riemann surface. Since X can then be considered as a

differentiable surface, the notion of a differential form and, in particular, of
differentials (Definition II.13.10) can be used. Because of Remark II.13.9,
the components ωϕ have to be defined only for a subatlas, for example the
atlas of all analytic charts or a subatlas A of it. A differential (ωϕ) is called
holomorphic if ωϕ is holomorphic for all analytic charts. It is sufficient to
demand this for all ϕ in the subatlas A. This leads us to the following very
simple direct description of holomorphic differentials on Riemann surfaces.

1.2 Remark. A holomorphic differential ω = (ωϕ) on a Riemann surface
(X,A) is a map which assigns to each analytic chart ϕ : Uϕ → Vϕ a holomor-
phic differential

ωϕ = fϕ dz

such that for any two analytic charts ϕ,ψ the formula

(ψ ◦ ϕ−1)∗ωϕ = ωψ

holds.

6) If
f : (X,A) −→ (Y,B)

is an analytic map of Riemann surfaces, then for every holomorphic diffe-
rential ω on Y , the pulled-back differential f∗ω on X is holomorphic too.

Notation. Ω(X) is the set of all holomorphic differentials on X . This is a C-
vector space, and also a module over the ring O(X) of holomorphic functions
on X.

Meromorphic Differentials
Let X be a Riemann surface, let S ⊂ C a be discrete subset, and let ω be a
holomorphic differential on X − S. For each s ∈ S, we can choose an analytic
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map ϕ : U → V , s �→ 0 with U ∩ S = {s}. Then U − {s} → V − {0} is
an analytic chart on X − S, and, with respect to this chart, ω is of the form
f(z)dz with a holomorphic function on V − {0}. It may happen that f has an
inessential singularity at 0, i.e. f defines a meromorphic function on V . The
compatibility condition for the ωϕ implies that this condition is independent
of the choice of ϕ. The same is true for

Ord(ω, s) := Ord(f, 0).

If this number is negative, we call s a pole of ω of order −Ord(ω, s).

1.3 Definition. A meromorphic differential ω on a Riemann surface X
is a holomorphic differential

ω ∈ Ω(X − S),

where S ⊂ X is a discrete subset of X. The points of S are assumed to be poles
of ω.

For an analytic chart ϕ : Uϕ → Vϕ, we define in an obvious way the local
component

ωϕ = fϕ(z) dz,

with a function fϕ that is meromorphic on Vϕ. So, the meromorphic differential
can be considered as a family of meromorphic functions fϕ : Vϕ → C̄ with the
usual compatibility relations.
Notation.

K(X) = set of all meromorphic differentials onX.

We define algebraic operations on K(X) similarly to the case of meromorphic
functions.

1.4 Remark. Meromorphic functions can be added to and multiplied by
meromorphic functions, i.e.
K(X) is a module over the ring M(X) of meromorphic functions.

There is a map (the “total differential”)

d :M(X) −→ K(X), f �−→ d(f).

(In “local coordinates”, d(f) = f ′(z) dz.)

Now let ω0 be a meromorphic differential on the Riemann surface X which
does not vanish identically on any nonempty open subset. Let ω be another
meromorphic differential, let

ϕ : Uϕ −→ Vϕ
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be an analytic chart on X , and let

ωϕ = gϕ dz, ω0,ϕ = hϕ dz.

Then

fϕ(x) :=
gϕ (ϕ(x))
hϕ (ϕ(x))

, x ∈ Uϕ,

is a meromorphic function on Uϕ. The functions fϕ coincide on the intersection
of two charts, since the transformation factors cancel. Hence they define a
meromorphic function on the whole X. This shows the following.

1.5 Lemma. Let ω0 be a meromorphic differential on the Riemann surface X
which does not vanish identically on any open subset. Then each meromorphic
differential is of the form

ω = fω0,

with a meromorphic function f .

In other words, the map

M(X) ∼−→K(X), f �−→ fω0,

is bijective.

Notation. f :=
ω

ω0
.

In analogy to meromorphic functions, we can make the following remark.

1.6 Remark. A meromorphic differential on a connected Riemann surface
vanishes identically if it vanishes on some open nonempty subset.

The Residue

The residue of an analytic function satisfies certain transformation formulae
(see [FB], Sect. III.6, Exercise 10).
Let ϕ : U → V be a biholomorphic map between open subsets of the plane and
let f be a meromorphic function on V . For any a ∈ U , the transformation
formula

Res(f(w);ϕ(a)) = Res(ϕ′(z)f(ϕ(z)); a)

holds.
This follows easlily from the representation

Resa ω =
1

2πi

∮
f(z) dz,
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where the integral is taken along a small circle around a, and the transformation
formula for line integrals. Another proof can be given by means of the series
expansions of f and ϕ′.

The factor ϕ′(z) that occurs in this transformation formula prohibits a
meaningful definition of the residue of a meromorphic function. But since this
factor appears in the compatibility property of a meromorphic differential, it
is possible to give a meaningful definition of the residue of a meromorphic
differential.

1.7 Remark and Definition. Let ω = (ωϕ) be a meromorphic differential
on a Riemann surface X and let a be a point in X. We choose some analytic
chart ϕ whose domain of definition contains a. The expression

Res(ω; a) := Res(fϕ;ϕ(a)) (ωϕ = fϕ dz)

is independent of the choice of the chart. It is called the residue of the
differential ω at a.

Now we come to the construction of meromorphic differentials. We have to
make use of the existence theorems for harmonic functions given in Chap. II.
At the beginning of Sect. II.10, we mentioned that one can attach to a harmonic
function u on an open subset of the plane a holomorphic function

f :=
∂u

∂x
− i

∂u

∂y
.

If u is the real part of an analytic function F (which is always locally the case),
then ω = dF = f(z) dz. From this we can easily deduce the following (compare
Remark II.10.3).

1.8 Remark. Let u be a harmonic function on a Riemann surface X. If we
assign to an analytic chart ϕ : U → V the differential

ωϕ :=
(
∂uϕ
∂x
− i

∂uϕ
∂y

)
dz (uϕ = u ◦ ϕ−1),

we obtain a holomorphic differential.

We call ω the differential which is associated with u.

Now we shall discuss the question of how far the poles of a meromorphic
differential on a compact Riemann surface can be prescribed. On a compact
surface, of course, only finitely many poles are possible.

1.9 Proposition (residue theorem). Let ω be a meromorphic differential
on a compact Riemann surface X. Then the sum of all residues of ω is 0.
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Proof . For each pole a ∈ X, we choose a disk

ϕa : Ua −→ E, a �−→ 0.

We can assume that these disks are pairwise disjoint. The open subset

U = X −
⋃

a pole

Ua(1/2)

is relatively compact (since X is compact) and has a smooth boundary. The
general Stokes’s theorem gives, because dω = 0,

0 =
∫

∂U

ω = −
∑

a

∫

∂Ua(1/2)

ω = −2πi
∑

a

Resa ω. ��

Actually, the residue theorem is the only restriction on the existence of a
meromorphic differential. A central existence theorem states the following.

1.10 Theorem. Let S ⊂ X be a finite subset of the Riemann surface X.
Assume that for each point a ∈ S an open neighborhood U(a) and a meromor-
phic differential ωa on U(a) are given. We assume that the neighborhoods are
pairwise disjoint and that ωa is holomorphic on U(a) − {a}. We also assume
that ∑

a∈S
Resa ωa = 0.

Then there exists a meromorphic differential ω on X which, outside S, has no
poles and is such that ω − ωa extends holomorphically to U(a).

Proof .
First case. All residues are zero.
Let

f : E
. −→ C

be an analytic function on the punctured unit disk whose residue at 0 vanishes.
Then f admits a holomorphic primitive F (by termwise integration of the
Laurent series). If u is the real part of F , then the differential associated with
u is f(z) dz, since we have

∂u

∂x
− i

∂u

∂y
= f.

The central existence theorem (Theorem II.12.2) shows that if the residue of
ωa vanishes at a, then there exists a harmonic function

h : X − {a} −→ C
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such that the associated differential ω(h) ∈ Ω(X − {a}) has the property that

ω(h)− ωa (on U(a)− {a})

has a removable singularity at a.

This proves Theorem 1.10 if all residues of ωa vanish at a.

Second case. Let S ⊂ X be a finite subset. Assume that for each s ∈ S there
is given a complex number as such that

∑

s∈S
as = 0.

Claim. There exists in X a meromorphic differential ω ∈ Ω(X − S) such that

Ress ω = as for s ∈ S

and such that all poles are of order one.

Proof . It is sufficient to treat the case in which S consists of two points s, s′

and where
as = −as′ = 1.

The general existence theorem (Theorem II.12.2) gives the existence of a har-
monic function

u : X − {s, s′} −→ C

such that u is logarithmically singular at s and −u is logarithmically singular
at s′. The associated differential has the desired property because, in the case
u(z) = −Log(z), we have

∂u

∂x
− i

∂u

∂y
= −1

z
.

This completes the proof of Theorem 1.10. ��
By division of two meromorphic differentials with different poles, we can

now construct nontrivial meromorphic functions. In this way, we see that our
existence theorems about harmonic functions imply the following fundamental
existence theorem for meromorphic functions.

1.11 Theorem. On any Riemann surface, there exists a nonconstant mero-
morphic function.

For a nonconstant meromorphic function f on a connected Riemann surface,
we can consider the meromorphic differential df . Any other meromorphic dif-
ferential can be written in the form g df , with a further meromorphic function.
Hence meromorphic functions and differentials are closely tied together.
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Exercises for Sect. IV.1

1. Let L ⊂ C be a lattice and let X = C/L be the associated torus. The meromor-
phic differentials on X are in one-to-one correspondence with differentials of the
form f(z) dz, where f is an elliptic function.

From this, deduce:

1) The residue theorem (Proposition 1.9) implies the third Liouville theorem.

2) The vector space of holomorphic differentials is one-dimensional.

2. Let f(z) be a holomorphic function in |z| > r (r > 0). The differential f(z) dz
has a removable singularity at ∞ ∈ C̄ iff

f
(
−1

z

)
z−2

has a removable singularity at the origin. Deduce from this that on the Riemann
sphere, there exists no nonvanishing holomorphic differential.

3. Let X be a Riemann surface and let Γ be a group of biholomorphic automorphisms
of X which acts freely. We denote the natural projection by p : X → X/Γ. Show
that the map

ω �−→ ω̃ = p∗ω

gives a bijection between the set of all holomorphic (or meromorphic) differentials
on X/Γ and the set of all Γ-invariant holomorphic (or meromorphic) differentials
on X. (“Γ-invariant” means that γ∗ω̃ = ω̃ for all γ ∈ Γ.)

4. Let D ⊂ C be a domain and let M ∈ SL(2,C) be a Möbius transformation which
leaves D invariant. Show that a meromorphic differential f(z) dz on D is invariant
under M iff

f(Mz) = (cz + d)2f(z).

5. Let X be a compact Riemann surface.

A differential of the first kind is a differential which is holomorphic on X .
An elementary differential of the second kind is a meromorphic differential with
precisely one pole. An elementary differential of the third kind is a meromorphic
differential which has two simple poles and no other poles.

Show that any meromorphic differential is the sum of finitely many elementary
differentials and a differential of the first kind. How far is this decomposition
unique?
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2. Compact Riemann Surfaces and Algebraic Functions

In the following, X is a connected and compact Riemann surface. From the
existence theorem of the last section, we deduce the following.

2.1 Proposition. Let S ⊂ X be a finite subset. Assume that for each s ∈ S
a complex number bs ∈ C is given. There exists a meromorphic function

f : X −→ C̄ such that f(s) = bs for s ∈ S.

Proof . Let
g(z) = α z−2 + higher terms,

h(z) = β z−2 + higher terms

be two Laurent series which converge in a punctured disk around the origin.
Assume that β 	= 0. Then the function g(z)/h(z) has a removable singularity
at the origin, and its value there is α/β. This little observation together with
Theorem 1.10 shows that Proposition 2.1 can be proved by dividing two suitable
meromorphic differentials. ��

Ramification Points

Let f : X → Y be a nonconstant holomorphic map between connected Riemann
surfaces. A point a ∈ X is called a ramification point if there is no open
neighborhood which is mapped biholomorphically onto its image. (Sometimes
the image b = f(a) in Y is also called a ramification point; a is a ramification
point “upstairs” and b a ramification point “downstairs”.) We know from
Remark I.1.17 that any analytic map f is locally of the form q �→ qn. We
call n the ramification order. Hence a ramification point is present if and only
if n > 1. If the map f : X → Y is proper, there is a better description of
ramification points. The case Y = E is of special importance. We assume that
a is the only possible ramification point and that it lies over 0 ∈ E. Then
X − {a} → E

.
is a locally biholomorphic and proper map. We can apply the

result of covering theory stated in Proposition I.3.17. A slight variant states
the following.

2.2 Proposition. Let f : X → E be a proper, holomorphic map between
connected Riemann surfaces, with the only possible ramification point being a,
which lies over the origin. Then there exists a biholomorphic map

ϕ : X ∼−→ E
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such that the diagram

X
ϕ
∼ ��

f ���
��

��
��

� E

����
��

��
��

q�

���
��

��
��
�

���
��

��
��

E qn

commutes.

Proof. It follows from covering theory (Proposition I.3.17) that there exists
a biholomorphic map X − {a} → E

.
with the corresponding property. The

extension a �→ 0 gives an obviously continuous map X → E. The Riemann
removability theorem of standard complex analysis shows that it is analytic.
But, as in standard complex analysis, we can show that bijective holomorphic
maps between Riemann surfaces are biholomorphic. ��

Now we treat the important special case where f : X → Y is a nonconstant
map of compact Riemann surfaces. Let b be some point of Y . It has only
finitely many preimages a1, . . . an. We denote by k1, . . . , kn the ramification
orders of each of these points.
Notation. The point b has

k1a1 + · · · knan

preimages, if we count them with multiplicities.

2.3 Proposition. Let f : X → Y be a nonconstant proper, analytic map
between connected compact Riemann surfaces. Each point has the same number
of preimages if one counts with multiplicities.

Proof. We assign to each b the number of preimages, counted with multiplicity.
It is sufficient to show that this map is locally constant. For this, we can
assume that Y is the unit disk. Now we apply Proposition 2.2 to each connected
component of f−1(V ). We have to note that the restrictions to the connected
components remain proper (since they are closed). ��

2.4 Definition. The degree of a nonconstant analytic, proper map f : X →
Y between connected compact Riemann surfaces is the number of preimages
(counted with multiplicity) of a point of Y .

Another way to define the degree is as follows. We denote by T0 the set of
ramification points, by S = f(T0) its image under f , and by T = f−1(S) its
inverse image. These are finite sets. The map X − T → Y − S is proper and
locally biholomorphic and hence is a covering. We can consider the covering
degree in the sense of Remark III.5.2. This coincides with the degree in the
sense of Definition 2.4, since all multiplicities are one.
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At any rate, our discussion of the degree rests ultimately on a purely topo-
logical result, namely the classification of coverings of E

.
. Because of the great

importance of this result, we shall mention for the special case Y = C̄ a com-
pletely different, purely function-theoretic proof. So, let f : X → C̄ be a
meromorphic function. It is sufficient to show that f has the same number
of poles and zeros, since we can then apply this result to f − C. First of all,
we notice that the order Ord(f, a) of f at a zero agrees with the ramification
order. For a pole, the ramification order is −Ord(f, a). Hence the claim is

∑

a∈X
Ord(f, a) = 0.

But we have the formula

Ord(f, a) = Res
(df
f

; a
)
,

and so the claim follows from the residue theorem (Proposition 1.9).

2.5 Lemma. Let

f : X −→ C̄ (X compact, connected)

be a nonconstant meromorphic function of degree d. Any other meromorphic
function g : X → C̄ satisfies a relation

d∑

ν=0

Rν(f)gν = 0.

Here Rν : C̄ −→ C̄ are rational functions.
Supplement. Assume that there exists a point b ∈ C̄ − S which is not the
image of a ramification point and is such that the restriction of g is injective
on the fiber f−1(b). Then Rd is different from zero.

Proof . We choose some finite subset S ⊂ C̄ which contains the images of
the ramification points and is such that the set of poles of g is contained in
T := f−1(S). Then we define the function

F (z, w) :=
∏

f(b)=z

(w − g(b)) =
d∑

ν=o

Rν(z)wν , w ∈ C, z ∈ C − S.

From the fact that the restriction of f ,

f : X − T −→ C̄ − S
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is a covering, we can show easily that the functions

Rν : C̄ − S −→ C

are holomorphic.
Claim. The functions Rν are meromorphic on the whole of C̄.
(This proves Lemma 2.5, because for trivial reasons we have

∑
Rν (f(z)) g(z)ν = F (f(z), g(z)) = 0.)

The proof of the claim is a consequence of the following statement.

2.6 Remark. Let f : X → Y be a proper surjective holomorphic map of
Riemann surfaces and let

S ⊂ Y, T := f−1(S) ⊂ X

be a discrete subset. We denote the covering degree of

X − T −→ Y − S

by d. We then have:
1) A function R : Y → C̄ is meromorphic if and only if its composition with

f R ◦ f : X → C̄ is meromorphic.
2) Let g be a meromorphic function whose poles are contained in T . Addi-

tionally, let S(z1, . . . , zd) be a symmetric polynomial in d variables (i.e.
invariant under permutations of the variables). Then the function

G(x) := S (g(x1), . . . , g(xd)) , x ∈ X − T, f−1(f(x)) = {x1, . . . , xd},

extends to a meromorphic function on X.

The second part of the remark is trivial if the map f : X → Y is “Galois”.
This means:
There exists a finite group Γ of holomorphic automorphisms of X such that

f−1 (f(x)) = {γ(x); γ ∈ Γ} for x ∈ X.

Namely, in this case, the function G is a polynomial in the meromorphic func-
tions g ◦ γ, γ ∈ Γ. An example of a Galois map is the “ramification element”

E −→ E, z �−→ zd.

Here the elements of Γ are multiplication by roots of unity of order d. The
proof of the remark (and also of the first part) follows from the classification
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of the ramification points, because f is locally equivalent to the ramification
element.
Proof of the supplement to Lemma 2.5 . We apply part 2) of the above remark
to the symmetric polynomial

S(z1, . . . , zd) =
∏

1≤i<j≤d
(zi − zj)2

and obtain the following result.
When the restriction of g on one fiber f−1(b) (b ∈ C̄−S) is injective, then this
is true for all fibers with finitely many exceptions.
We can express the property described in the supplement briefly but meaning-
fully as follows.
Notation. (Assumptions as in the supplement.) The function g is injective
on the generic fiber of f .
Now the proof of the supplement is clear too. We choose a point x ∈ X that is
general enough. Then the polynomial

P (z) :=
d∑

ν=0

Rν (f(z)) zν

is different from zero and has d distinct roots (namely, the values of g on
f−1 (f(z)). This implies that Rd (f(x)) 	= 0. ��

The Field of Meromorphic Functions

The field of meromorphic functionsM(X) contains the field of constant func-
tions. For simplicity, we identify a complex number with the corresponding
constant function. So,M(X) can be considered as an extension field of

C ⊂M(X).

The simplest case is the Riemann sphere X = C̄. In this case M(X) is the
field of rational functions

M(C̄) = C(z).

Let C ⊂ K, where K is an arbitrary field extension of C. Then any element
f ∈ K, f /∈ C, is transcendental over C. This means that for any polynomial
P ∈ C[z] which is different from 0, P (f) is different from zero too. This follows
from the fundamental theorem of algebra, since P already has all its possible
roots on C. In particular, for an arbitrary rational function

R =
P

Q
; P,Q ∈ C[z], Q 	= 0,
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the expression

R(f) =
P (f)
Q(f)

is well defined. The map f → R(f) defines an isomorphism of fields

C(z) ∼−→C(f) ⊂ K
onto the subfield of K which is generated by f . A field extension is called finite
(or, sometimes, finite algebraic) if L is a finite-dimensional K-vector space.

2.7 Definition. A field K ⊃ C is called an algebraic function field of
one variable if there exists an element f ∈ K, f /∈ C, such that the extension

K ⊃ C(f)

is finite.

We use the following theorem from elementary algebra.

2.8 Theorem (theorem of the primitive element). Let K be a field of
characteristic zero, and let L ⊃ K be a finite extension of degree d. Then there
exists an element f ∈ L such that the powers

1, f, . . . , fd−1 (d := dimK L)

form a basis of L over K.

This theorem implies the following statement.
Let K be a field of characteristic zero and let L ⊃ K be some field extension.
Assume that there exists a natural number d > 0 such that any element f ∈ L
satisfies an algebraic equation

fd + ad−1f
d−1 + . . .+ a1f + a0 = 0 with aj ∈ K (0 ≤ j ≤ d).

Then the extension is finite.
Otherwise, one could construct an increasing chain of finite extensions of K,

K ⊂
�= K1

⊂
�= K2

⊂
�= . . . ⊂

�= L.

The degrees
dj := dimK Kj

become arbitrarily large. On the other hand, the assumption together with the
theorem of the primitive element shows that

dj ≤ d. ��
2.9 Proposition. The field of meromorphic functions on a compact connected
Riemann surface is an algebraic function field of one variable. More precisely,
we can say that if f ∈M(X) is an arbitrary nonconstant meromorphic function
of degree d and g ∈M(X) is a meromorphic function which is injective on the
generic fiber of f , then

M(X) = C(f)⊕ C(f)g ⊕ . . .⊕ C(f)gd−1.

The existence of f and g is ensured by the existence theorem (Proposition 2.1).
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The proof is clear. One the one hand, we have

dimC(f)M(X) ≤ d

(by Lemma 2.5 and the theorem of the primitive element, Theorem 2.8). On
the other hand, the elements 1, g, . . . , gd−1 are linearly independent because of
the supplement to Lemma 2.5. Hence they must be a basis. ��
Examples.
1) Let L ⊂ C be a lattice and let X := C/L be the corresponding torus.

The Weierstrass ℘-function has a degree (= order) of two. Its derivative is
injective on the generic fiber (otherwise ℘′ would be even). We obtain

M(X) = C(℘)⊕ ℘′
C(℘),

in accordance with the theory of elliptic functions ([FB], Theorem V.3.3).

2) Let X be the Riemann surface of an algebraic function. The field of mero-
morphic functions is generated by “the two projections” p and q; more
precisely,

M(X) =
d−1⊕

ν=0

C(p)qν .

Now we have collected together all of the tools that we need to show that each
compact Riemann surface is the Riemann surface of an algebraic function.

With the notation of Lemma 2.5, we have

gd =
d−1∑

ν=0

Rν(f)gν

with suitable rational functions Rν . Multiplication by a common denominator
shows that there exists a polynomial P (z, w) ∈ C[z, w] with the following
properties:
a) P (f, g) = 0.
b) For almost all z, the degree of P as a polynomial in z is d.

Additionally, we can achieve the following result.
c) The coefficients aν(z) of the polynomial

P (z, w) =
d∑

ν=0

aν(z)wν

do not have a common divisor in C[z].
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The the polynomial P is then irreducible. We denote by

X(P ) := { (z, w) ∈ C × C; P (z, w) = 0 }

the algebraic curve which is associated with this curve. We choose a finite set
S ⊂ C̄ large enough that the poles of f and g are contained in T := F−1(S),
to obtain a map

X − T −→ X(P ),

x �−→ (f(x), g(x)) .

If S is taken large enough, then this map will be injective. We denote its image
by X0(P ). The complement of X0(P ) in X(P ) consists of finitely many points.
The two maps f and g in the following commutative diagram,

X − T
ϕ
∼ ��

f ����������� X0(P )

g
�����������

C̄ − S

are locally biholomorphic. In particular, ϕ is holomorphic and hence biholo-
morphic.
Making use of the uniqueness of the compactification of a Riemann surface
(Lemma I.3.8), we obtain the following result.

2.10 Proposition. Every connected compact Riemann surface is biholomor-
phically equivalent to the Riemann surface which is associated with an irre-
ducible polynomial P (z, w) ∈ C[z, w].

As we have shown in Propostion 2.9, the field of meromorphic functions of a
compact Riemann surface is an algebraic function field of one variable. Con-
versely, we can show that each algebraic function field of one variable is iso-
morphic to the field of meromorphic functions of a suitable compact Riemann
surface. Here we say that two algebraic function fields of one variable are iso-
morphic if there exists a field isomorphism σ : K ∼→L which is the identity on
C.

2.11 Proposition. Any algebraic function field of one variable is isomorphic
to the field of meromorphic functions of a suitable Riemann surface.

Proof . Let K ⊃ C be an algebraic function field of one variable, let f ∈ K
be a nonconstant element such that K is algebraic over C(f), and let g be an
associated primitive element, i.e.

K =
d−1⊕

ν=0

C(f)gν .
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As we have seen in the proof of Proposition 2.9, there then exists a polynomial
P (z, w) with the property

P (f, g) = 0.

The associated Riemann surface has the desired property. ��

Homomorphisms of Function Fields

Let C ⊂ K, C ⊂ L be two algebraic function fields of one variable. By a
homomorphism

ϕ : K −→ L,

we understand a map with the properties
a) ϕ(C) = C for C ∈ C;
b) ϕ(f + g) = ϕ(f) + ϕ(g), ϕ(f · g) = ϕ(f) · ϕ(g).

Such a homomorphism is automatically injective. If ϕ is also surjective, then
ϕ is an isomorphism. Let Y be another connected compact Riemann surface.
Every nonconstant holomorphic map

f : X −→ Y

induces a homomorphism

ϕ = f∗ :M(Y ) −→M(X), g �−→ g ◦ f,

of the function fields. Every homomorphism is of this form.

2.12 Proposition. Let X,Y be two connected compact Riemann surfaces.
Every homomorphism of function fields of one variable

ϕ :M(Y ) −→M(X)

is induced by a unique holomorphic nonconstant map

h : X −→ Y,

which means that ϕ = h∗.
Corollary. Two connected compact Riemann surfaces are biholomorphically
equivalent iff their function fields are isomorphic.

Proof . We choose a nonconstant element f ∈ M(Y ) and denote its image in
M(X) by f̃ = ϕ(f). We choose primitive elements g, g̃;

M(Y ) =
d∑

ν=0

C(f)gν , M(X) =
d̃∑

ν=0

C(f̃)g̃ν .
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We have

ϕ(g) =
d̃∑

ν=0

Rν(f̃)g̃ν ,

with certain rational functions Rν . We can achieve the result that they are
polynomials (since g̃ can be multiplied by a polynomial in f̃). Finally, we
consider irreducible polynomials P, P̃ in two variables such that

P (f, g) = 0, P̃ (f̃ , g̃) = 0.

The assignment

(z, w) �−→
(
z,

d∑

ν=0

Rν(z)wν
)

defines a map Ñ → N between the algebraic curves which are associated with
P̃ and P . The diagram

Ñ

(z,w)�→z ���
��

��
��

h �� N

(z,w′)�→z����
��

��
��

C

is commutative. We obtain the following result:
There exist finite point sets T1 ⊂ X, T2 ⊂ Y , S ⊂ C̄ and a holomorphic map

h : X − T1 −→ Y − T2

such that the diagram

X − T1
h ��

f̃

����������� Y − T2

f

�����������

C̄ − S

commutes, and such that f, f̃ are proper.
It remains to show that h extends holomorphically to the whole of X. By

means of the classification of ramification points, this can be reduced to the
following local situation.

Let h : E
. −→ E

.
be a holomorphic function such that the diagram

E
. h ��

q �→qm ��	
		

		
		

	 E
.

q �→qn		













E
.
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commutes. Then h has a removable singularity at q = 0 and we have h(0) = 0.
This can easily be shown by means of the Riemann removability theorem or by
simple calculation with the Laurent series of h. ��

Propositions 2.11 and 2.12 mean roughly the following:
The theory of compact Riemann surfaces and the theory of function fields of
one variable are equivalent.

Nonalgebraic Construction of Compact Riemann Surfaces

Let X be a Riemann surface and let U ⊂ X, V ⊂ X be two open disjoint
subsets together with a biholomorphic map

ϕ : U ∼−→ V.

We want to glue the two sets together inside X “via” ϕ. For this purpose, we
introduce the following equivalence relation:
Two points x, y ∈ X are called equivalent iff

either x = y

or x ∈ U and y = ϕ(x)
or y ∈ U and x = ϕ(y).

We denote the quotient space by this equivalence relation by

Y := X/ ∼ .

Obviously, the natural map
X −→ Y

is locally topological.
We make the assumption that Y is Hausdorff. Then Y carries a structure in the
form of a Riemann surface, such that the map X → Y is locally biholomorphic.
The proof is trivial.

(By the way, this claim shows the importance of the Hausdorff property for
the theory of Riemann surfaces. If we where to abandon this requirement, we
would be able to construct very badly behaved objects. For example, we could
take for X the disjoint union of two copies of the complex plane and glue them
together along the punctured planes. The result would be a complex plane
with a doubled origin.)
Example. We consider, on the Riemann surface X, two disjoint analytic charts

ψ : U −→ V, ψ′ : U ′ −→ V ′, U, U ′ ⊂ X,

where V and V ′ are assumed to contain disks of radius 2 around 0. Then we
punch two holes in the surface X :

X ′ = X − {x ∈ U ; |ψ(x)| > 1/2} − {y ∈ U ′; |ψ′(y)| ≤ 1/2}.
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Now we consider the ”annuli“ in V and V ′

1
2
< |z| < 2.

We denote the complements of their inverse images under ψ, ψ′ by

R ⊂ U, R′ ⊂ U ′.

Now we want to glue R and R′. In a first approach, we might think of taking
ψ−1 ◦ ψ′ as the gluing function which is induced by the identity on E. But
the result would not be Hausdorff. The situation changes if we interchange the
roles of the inner and outer boundaries of R and R′. This happens if we take
as the gluing function

ϕ : R ∼−→ R′,

ϕ(x) = ψ′−1
(
ψ(x)−1

)
.

This is a biholomorphic map, and the quotient space Y is now Hausdorff, as
the reader may show.

Intuitively, we have punched two holes in X and connected them by a han-
dle:

For example, we could take the Riemann sphere for X. The result is then a
sphere with a handle, and therefore an object which is topologically equivalent
to a torus. We might conjecture that Y is biholomorphically equivalent to a
torus C/L. As we shall see later, this is actually true. (One also could use the
uniformization theorem to obtain a less obvious proof of this.)

One could ask the question of how the j-invariant could be computed. The
answer to this obvious question is unknown.

Anyhow, these nonalgebraic constructions show that the theorem that any
compact Riemann surface comes from an algebraic function is highly nontriv-
ial. So, we should not be surprised that its proof uses fundamental potential-
theoretic existence theorems.
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Exercises for Sect. IV.2

1. Let f be a holomorphic function on the punctured unit disk E − {0}. Assume
that the function zn−1f(zn) has a removable singularity at the origin for some
natural number n. Show that f also has a removable singularity at the origin.

2. Consider, for a natural number n, the map

f : E −→ E, z �−→ w := zn.

Show that the pullback of a differential g(w) dw under f equals

nzn−1g(zn) dz (= f∗(g(w) dw).

3. Let f : X → Y be a surjective and proper analytic map of Riemann surfaces
and let ω be a meromorphic differential on Y . Show that ω is holomorphic iff its
pullback f∗ω is holomorphic (on X).

4. Let f : X → C̄ be a nonconstant meromorphic function on a connected Riemann
surface. Determine the poles and zeros of the differential df .

Answer. Poles of df occur only at the poles of f . If a is a pole of order n of
f , then a is a pole of order n+ 1 of df .

Zeros are located at the ramification points of f . The zero order of df equals
the ramification order minus one.

3. The Triangulation of a Compact Riemann Surface

A well-known result of topology states that any surface with a countable basis of its
topology can be triangulated. The proof of this theorem is not simple. For Riemann
surfaces, it is simpler but still difficult enough. In Sect. 2 we have shown that compact
Riemann surfaces can be represented as ramified coverings of the sphere. Using this
fact, we shall derive a very simple proof of the existence of a triangulation of a compact
Riemann surface.

Re

Im

i

10

Polyhedra

We choose a standard triangle in the plane;
to be concrete, we take the convex hull of the
points 0, 1, i,

∆ = {z ∈ C; y ≥ 0, x ≥ 0; x+ y ≤ 1}.

In this section, we denote the segment between two complex numbers a, b by

[a, b] := {z; z = a+ t(b− a), 0 ≤ t ≤ 1}.
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The three points 0, 1, i are called the vertices, and the segments

[0, 1], [1, i] and [i, 0]

are called the edges of the standard triangle ∆.

3.1 Definition. A triangle ϕ in a topological space X is a topological map
ϕ from ∆ onto a (compact) subset ∆ϕ ⊂ X,

ϕ : ∆ ∼−→ ∆ϕ ⊂ X.

1) We call ∆ϕ the triangular area which underlies ϕ.

2) The images of the edges of ∆ are called the edges of ϕ.

3) The images of the vertices of ∆ are called the vertices of ϕ.

So triangular areas, edges, and vertices are point sets, but the triangle itself is
a map.

3.2 Definition. A (finite) polyhedron is a pair (X,M) consisting of a
topological space X and a finite set M of triangles in X with the following
properties:

1) We have

X =
⋃

ϕ∈M
∆ϕ.

2) Let ϕ 	= ψ be two different triangles inM. Then there are three possibilities
for the intersection ∆ϕ ∩∆ψ:

a) It is empty.
b) It consists of one joint vertex.
c) It consists of one joint edge.

3) Three pairwise different triangles cannot share a joint edge.

A simple example of a polyhedron is obtained from a
closed disk by dividing it into k ≥ 3 regular sectors.

3.3 Definition. Let (X,M) be a polyhedron. We call M a triangulation
of X if each vertex of M belongs to two triangles of M.

It is not very difficult to show that a topological space which admits a trian-
gulation is a (compact) surface. We do not need this; our aim is to show the
converse, namely that any compact Riemann surface admits a triangulation.
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3.4 Proposition. Any compact Riemann surface X can be triangulated.

Supplement. Let S ⊂ X be a finite subset. It is possible to construct a
triangulation with the following properties:
1) Each point of S is a vertex of the triangulation.
2) For each point s ∈ S, there exists a disk U ∼→ E such that the triangular areas

with vertex s are in one-to-one correspondence with the k sectors (k ≥ 3 is
suitable) of the disk of radius 1/2 in E (compare the above example).

First of all, it is rather clear that the proposition is true for the sphere. For
example, we can start with a regular tetrahedron decomposition:

The edges of the triangles involved can be assumed to be segments of large
circles. In the first step, we arrange a tetrahedron triangulation such that
the points of S are contained in the interiors of the triangles (i.e. they are not
contained in an edge). Then we take a small “disk-like” regular triangle around
each point of S which is completely contained in the interior of the tetrahedron
triangle containing s. Then we integrate this small triangle into the tetrahedron
triangulation in some way, for example as indicated in the figure below. (So,
we can get k = 3 in the case of the sphere.)

s

Now we come to the case of a general Riemann surface. Let f : Y → X
be a nonconstant holomorphic map between compact Riemann surfaces. We
assume that the proposition has been proved for X . We then prove it for
Y . We choose a triangulation of X with the properties of the supplement to
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Proposition 3.4, where S is the set of the downstairs ramification points. Now,
on each edge, we choose an inner point (not necessarily the midpoint) and
refine the triangulation as indicated in the following figure:

By applying this refinement construction several times, we obtain the result
that the disk described in Proposition 3.4 is so small that its inverse image is
a disjoint union of disks and f in each of these disks is of the form q �→ qd. We
can also assume that each triangle of the triangulation is contained in a disk
which is small in this sense.

Now we can lift the triangulation of X to Y in an obvious way. A triangle

ϕ : ∆ −→ Y

belongs to the triangulation which has to be constructed iff the composition

f ◦ ϕ : ∆ −→ X

belongs to the given triangulation of X .
It should be rather clear that this gives a triangulation of Y . We call this the

“lifted triangulation”. The proof needs only the following small consideration
for the “ramification elements”

f : E −→ E, q �−→ qd.

Assume that the unit disk E downstairs has been decomposed into k sectors
∆1, . . . ,∆k by means of the roots of unity of order k. If, correspondingly, the
unit disk upstairs is divided into kd sectors, then f maps each of these sectors
topologically onto one of the sectors downstairs:

q �−→ q2

3. The Triangulation of a Compact Riemann Surface
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Appendix to 3. The Riemann–Hurwitz Ramification For-
mula
Let (X,M) be a triangulated surface, let E be the number of vertices, let K
be the number of edges, and let D be the number of triangles. The alternating
sum

e := E −K +D

is called the Euler number of the triangulation. The topological genus p is
defined by

e = 2p− 2.

We shall see later that p is a nonnegative integer for triangulated Riemann
surfaces. A well-known theorem of topology states that the Euler number
(and hence the genus) is a topological invariant. Different triangulations of a
given surface lead to the same Euler number (and the same genus). Later we
shall see by means of the Riemann–Roch theorem that homeomorphic compact
Riemann surfaces always have the same Euler number, which is independent
of the chosen triangulations. We will see also the converse:
Two compact Riemann surfaces are homeomorphic if and only if their Euler
numbers agree.
For this reason, it is important to have simple methods for the computation
of the Euler number. For this purpose we establish the Riemann–Hurwitz
ramification formula.

Let f : X → Y be a holomorphic nonconstant map between (connected)
compact Riemann surfaces. Of particular interest is the case Y = C̄. Let
S ⊂ Y be the set of downstairs ramification points of f and let T := f−1(S) be
its inverse image in X . We recall that the map f is given in terms of suitable
analytic charts around t ∈ T and f(t) ∈ S by the formula z �→ zn, with a
suitable number n = nt. This number nt is called the ramification order of f
at t. In our normalization, it is 1 iff f is unramified at t.

3.5 Theorem. The Riemann–Hurwitz ramification formula. Let
f : X → Y be a holomorphic map of degree n between connected compact
Riemann surfaces, let S ⊂ Y be the set of downstairs ramification points of
f , and let T := f−1(S) be the set of their preimages in X. We have (at least
for suitable triangulations*) the result that the genera p(X), p(Y ) satisfy the
relation

p(X) = n (p(Y )− 1) + 1 +
1
2

∑

t∈T
(nt − 1).

*) The condition in parantheses “at least for suitable triangulations”, which occurs

several times in what follows, can be deleted as soon as we have proved the invariance

of the genus of the choice of a triangulation.
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In the special case of the sphere Y = C̄, we can start with a triangulation with
p(Y ) = 0.
Corollary. The number

∑
t∈T (nt − 1) is even if p(X) and p(Y ) are integral

(which is always true).

Proof. We start with a triangulation as in the proof of Proposition 3.4 and lift
it, as described there, to a triangulation of X . If the triangulation of Y has

E vertices, K edges, and D triangles,
then the lifted triangulation obviously has nK edges and nD triangles, but the
number of vertices is not nE; owing to the ramification, this number decreases
to

nE −
∑

t∈T
(nt − 1).

We obtain
2− 2p(Y ) = E −K +D,

2− 2p(X) = nE − nK + nD −
∑

t∈T
(nt − 1).

This shows the ramification formula.
In the case Y = C̄, the tetrahedron triangulation leads to e = 2, and hence

p(Y ) = 0. The refinements which we have used obviously do not change p(Y ).
Hence it is clear that we can start with a triangulation with p(Y ) = 0. ��

Again we point out that, by Euler’s polyhedron theorem, p(C̄) = 0 holds
for every triangulation.
Example. Let

P (z) = anz
n + . . .+ a0

be a polynomial without multiple zeros. We consider the Riemann surface of
the algebraic function

w2 = P (z).

From the construction of the associated compact Riemann surface X → C̄, we
can deduce:

1) The zero set S of the polynomial P is the set of finite ramification points.
2) ∞ is a ramification point iff m is odd. (This would follow also from the

corollary to Theorem 3.5, since the ramification order can only be one or
two.)

Every ramification point has exactly one preimage, and the ramification order
is two in each case. The total degree is two. Since the genus of the sphere is 0
(at least for suitable triangulations), we obtain for the genus p of X (at least
for suitable triangulations)

p = 2(0− 1) + 1 +
{
n/2, if n even
(n+ 1)/2 if n odd.

So we obtain the following result.
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3.6 Theorem. The genus p of the compact Riemann surface associated with
the algebraic function

w2 = P (z),

where P (z) is a polynomial of degree n without multiple zeros, is (at least for
suitable triangulations)

p =
{

(n− 2)/2 if n is even,
(n− 1)/2 if n is odd.

For example, if the degree of P is 3 or 4, we obtain p = 1. As we shall see later,
this means that the surface is topologically a torus. This fits the theory of
elliptic functions in [FB], Chap. V, where we have shown that the Weierstrass
℘-function defines a bijective map from a torus onto a certain projective curve
which is related to a polynomial of degree 3.

Exercises for Sect. IV.3

1. Show that for every integer p ≥ 0 there exists a (triangulated) compact Riemann
surface of genus p.

2. Construct, for a torus X = C/L, triangulations with p = 1 in two different ways:

a) Construct the triangulation directly geometrically, starting with a fundamental
parallelogram.

b) Consider the Weierstrass ℘-function ℘ : X → C̄ and study its ramification
behavior.

3. A Riemann surface X is called hyperelliptic if there exists a meromorphic function
f : X → C̄ of degree 2. Show that the following statements are equivalent:

a) X is hyperelliptic.

b) The field K of meromorphic functions on X can be written as an extension of
degree 2 of a rational function field, K ⊃ C(z).

c) There exists a polynomial without multiple roots, such that X is biholomor-
phically equivalent to the Riemann surface of w2 = P (z).

4. Show that the genus of the compact Riemann surface associated with wn +zn = 1
is (n− 1)(n− 2)/2. (These surfaces are called “Fermat curves”.)



4. Combinatorial Schemes 211

4. Combinatorial Schemes

The topological nature of the space underlying a polyhedron is given by finitely
many items of combinatorial data which describe how the triangles are located
with respect to each other. We want to give a formal description of this.

Let P be a finite set. We introduce the following terminology:
1) A vertex in P is an element a ∈ P.
2) An edge K in P is a subset of two elements from P.
3) A triangle D in P is a subset consisting of three elements from P.
Let D be a triangle in P. Then every subset consisting of two elements is called
a vertex of D. So each triangle has three edges. If a is an element of a triangle
D or of a vertex K, then we call a a vertex of D or of K. So each triangle has
three vertices and each edge has two vertices.

4.1 Definition. A combinatorial scheme S is a pair

S = (P,D)

consisting of a finite set P and a set of triangles D in P, such that the following
conditions are satisfied:
1) Each point P ∈ P is a vertex of at least one triangle in D:

P =
⋃

D∈D
D.

2) There are at most two triangles in D which share a given edge.

Orientation

Let I be a finite set which contains at least two elements. An ordering of I is
a bijective map

α : {1, . . . , n} ∼−→ I.

Two orderings
α, β : {1, . . . , n} ∼−→ I

are said to be orientation-equal if the permutation

β−1 ◦ α : {1, . . . , n} −→ {1, . . . , n}

is even.
An orientation of I is a full class of orientation equal orderings.
Since the group of even permutations (the alternating group) has index

2 in the full group of permutations (n ≥ 2), I admits exactly two different



212 IV. Compact Riemann Surfaces

orientations. Here we need the concept of orientation only for sets of two or
three elements. In these cases we can avoid permutation groups and take the
following as the definition:
1) An orientation of a set of two elements is an ordering of this set as an

ordered pair.
2) A set {a, b, c} of three elements has the following two orientations:

[a, b, c] := { (a, b, c); (b, c, a); (c, a, b) } ,
[b, a, c] := { (b, a, c); (a, c, b); (c, b, a) } .

Let J ⊂ I be a subset which is obtained by removing one element of I . So, we
have #J = n− 1. Now we assume n ≥ 3. It is possible to restrict an ordering
of I to J in an obvious way. Since we need this only in the case n = 3, we
define it in this case directly as follows. We consider the orientation [a, b, c] on
the three-element set {a, b, c}. The orientations on the two-element subsets are
given by the ordered pairs (a, b), (b, c), (c, a).

In the following, we shall consider orientations on the set
of three vertices of a triangle. Intuitively, we think of this
as a direction running around the triangle.

4.2 Definition. An orientation of a combinatorial scheme (P,D) is a
map that assigns to each triangle D ∈ D an orientation such that the following
condition is satisfied:

If K is an edge in P which belongs to two different triangles
D,D′, then D and D′ induce the two different orientations
on K.

Example. Let n ≥ 3 be a natural number. Consider n+ 1 points

0, P1, . . . , Pn.

The n subsets {0, Pν , Pν+1} (1 ≤ ν ≤ n) (Pn+1 := P1) are assumed to be the
triangles. We obtain a combinatorial scheme, called the n-gon.

If we equip each of the n triangles of the n-gon with
the orientation

[0, Pν , Pν+1] (1 ≤ ν ≤ n; Pn+1 := P1),

we get an orientation of the n-gon.
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With each polyhedron (X,M) there is associated a combinatorial scheme

S = S(X,M) = (P,D)

in a natural way. The points in S are the vertices of triangles from M. Each
triangle ϕ ∈M induces a (combinatorial) triangle D = D(ϕ) in P, namely the
set of the three vertices of ϕ. By definition, D is the set of triangles which are
obtained in this way. So, we have a surjective map

M−→ D, ϕ �−→ D(ϕ).

Since two different triangles in M cannot share three vertices, this map is
injective, and hence bijective.

4.3 Definition. An orientation of a polyhedron is an orientation of the
associated combinatorial scheme.

Intuitively, this means that each triangle obtains a direction that indicates how
it has to be surrounded. In particular, each edge gets a direction. Triangles
with a joint edge induce the two different directions on the edge.

4.4 Proposition. Any compact Riemann surface admits an oriented trian-
gulation.

Proof. The tetrahedron triangulation of the sphere is orientable. The refine-
ment and lifting constructions which we used to construct a triangulation all
preserve orientations. ��

By the way, a better result is true: if a surface admits one orientable trian-
gulation, then all triangulations are orientable (compare Exercise 4).

In what follows, we shall consider only oriented combinatorial scheme and
oriented polyhedra. For combinatorial schemes, there is a natural notion of
isomorphism.

4.5 Definition. An isomorphism between (oriented) combinatorial
schemes

f : (P,D) ∼−→ (P ′,D′)

is a bijective map f : P −→ P ′ such that f and f−1 map triangles onto
triangles, such that their orientation is preserved..

Similarly, there is a notion of isomorphism of polyhedra.
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4.6 Definition. An isomorphism

F : (X,M) −→ (X ′,M′)

of (oriented) polyhedra is a topological map

F : X −→ X ′

such that F and F−1 map triangular areas onto triangular areas, edges onto
edges, and vertices to vertices. The orientation of the three vertices of a triangle
has to be preserved.

An isomorphism
F : (X,M) −→ (X ′,M′)

of oriented polyhedra induces in a natural way an isomorphism of the associated
combinatorial schemes,

f : S(X,M) −→ S(X ′,M′).

We need a reverse result.

4.7 Proposition. Let (X,M), (X ′,M′) be two oriented polyhedra and let
(P,D), (P ′,D′) be the associated combinatorial schemes. Each isomorphism

f : (P,D) −→ (P ′,D′)

is induced by an isomorphism of the polyhedra

F : (X,M) −→ (X ′,M′).

In particular, X and X ′ are homeomorphic when the “combinatorial data
agree” (in the sense that the associated combinatorial schemes are isomor-
phic).

Proof . We take the triangular surfaces of the polyhedron (X,M) in an ar-
bitrary order ∆1, . . . ,∆n, and denote the corresponding triangular surfaces
(X ′,M′) by ∆′

1, . . . ,∆
′
n.

Claim. There exist topological maps

Fj : ∆j −→ ∆′
j , 1 ≤ i ≤ n,

with the following two properties:
1) Vertices and edges of ∆j are mapped under f onto the corresponding ver-

tices and edges of ∆′
j . The orientation of the three vertices is preserved.

2) If ∆j and a “precursor” ∆i, i < j, have a nonempty intersection, then Fj
and Fi agree on this intersection.
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Proof of the claim. The maps F1, . . . , Fn are constructed inductively. We
assume that F1, . . . , Fi, i < j, have already been constructed, such that the
properties 1) and 2) are correspondingly satisfied. We then have to construct
a topological map Fj : ∆j → ∆′

j , such that it coincides on certain vertices
and edges with given topological maps. (In the worst case, all triangular areas
which have a nonempty intersection with ∆j are precursors.) The existence
of the map Fj follows easily from the following statement about the standard
triangle.
Let h be a topological map of the boundary of the standard triangle onto itself
which permutes the vertices. Then h extends to a topological map from the
whole standard triangle onto itself.
Proof . First of all, it is easy to see that there exists a homeomorphism of ∆
which maps the boundary onto itself and induces a prescribed permutation of
the vertices. For example, a reflection along the diagonal permutes the vertices
1 and i. Hence we can assume, without loss of generality, that the three vertices
are fixed. We can also assume that the map h is the identity on two of the
three edges, since we can compose h with three maps of this type. Now we are
in the following situation:
Let ∆ be the standard triangle with vertices 0, 1, i and let h : [0, 1] → [0, 1] be
a topological map which fixes 0 and 1. Then h can be extended to a topological
map H : ∆→ ∆ which is the identity on the two remaining edges.
The proof is simple. We construct h in such a way that it defines an affine map
from the segment [i, t] for t ∈ [0, 1] onto the segment [i, h(t)]. ��
Proof of Proposition 4.7. Now the maps Fi can be glued together to form a
map F : X → X ′. It is easy to show that this map is topological (compare
Exercise 5). ��

Our next goal is to show that each combinatorial scheme can be realized by
a polyhedron. This polyhedron will be constructed by gluing several triangular
areas together.

Gluing of Spaces

The gluing of spaces is based on the “quotient topology”. LetX be a topological
space and ∼ an equivalence relation; we can then define the quotient space
(Sect. I.0.3).

We now consider a slightly more general case, where R is an arbitrary
relation. This means only that R is a subset of X × X . Then xRy just
mean that (x, y) ∈ R. We can then consider the equivalence relation which is
generated by R. This is the smallest equivalence relation which contains R,
and can be defined as the intersection of all equivalence relations containing R.
In the following, we denote by X/R the quotient space of X with respect to
this equivalence relation. As a rule, X/R will not be Hausdorff even if X is. In
our applications, the Hausdorff property of X/R will will always be clear, and
we shall tacitly assume that it has been proved.
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Now let X and Y be two Hausdorff spaces with two subsets A ⊂ X and
B ⊂ Y . We also assume that a topological map f : A→ B is given: we assume
that X and Y are disjoint, and define the topology on X ∪ Y in such a way
that X and Y are open (and closed) subsets. Now we consider the relation

R := {(a, f(a); a ∈ A}.

We can consider the quotient space Z = (X ∪ Y )/R. We say that Z arises by
gluing X and Y along A and B by means of f . We have natural maps X → Z,
Y → Z, which are injective and continuous. If A and B are closed, then these
maps are also closed (the images of closed sets are closed). We then obtain the
result that the maps

X −→ Z, Y −→ Z, A −→ Z, B −→ Z

are topological onto their images.

4.8 Proposition. Any oriented combinatorial scheme is isomorphic to a
combinatorial scheme which is associated with a polyhedron.
Corollary. The isomorphy classes of oriented combinatorial schemes and ori-
ented polyhedra are in one-to-one correspondence.

Proof . We equip the (finite) setD of triangles of the given combinatorial scheme
with the discrete topology (every subset is open). The Cartesian product of D
and the standard triangle ∆,

X := D ×∆,

is a compact space. It is the disjoint union of ∆D := {D} ×∆. One can think
of ∆D as a copy of the standard triangle ∆, so that X is the disjoint union of
finitely many copies of the standard triangle. The three vertices of the standard
triangle are oriented counterclockwise, i.e. [0, 1, i]. For each D ∈ D, we choose
a bijective orientation-preserving map from D onto the vertices of ∆. Using
the natural bijective map ∆ ∼→∆D, we can look at it also as a bijective map
from D onto the three vertices of ∆D (the points which correspond to 0, 1, i).
We define in X a certain relation R, whose purpose is to glue certain vertices
and edges.
1) Let D,D′ be two different triangles in D which share precisely one vertex. If

a ∈ ∆D and b ∈ ∆′
D are the corresponding vertices, we want to glue them.

Hence we define aRb.
2) Let D,D′ be two distinct triangles from D which share an edge. We choose

a topological (for example an affine) map f : K → K ′ of the corresponding
edges of ∆D and ∆′

D such that the starting point and endpoint of K are
mapped to the endpoint and starting point, respectively, of K ′. We then
also define aRf(a) for a ∈ K.
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It is easy to check that the quotient space

X := X /R

is Hausdorff. Since it is the image of a compact space, it is compact. For each
triangle D ∈ D, we get a triangle

ϕ : ∆ −→ X,

namely the composition of the natural maps

∆ −→ ∆D −→ X −→ X/R.

It should be clear that this construction gives a polyhedron with the desired
properties. ��

Exercises for Sect. IV.4

1. let (X,M) be a polyhedron. Show that if X is connected, then (X,M) has either
no or precisely two “opposite” orientations.

2. Let ϕ : V −→ V ′ be a biholomorphic map between two simply connected domains
of the plane, let α be a closed curve in V , and let a ∈ V be a point which is
surrounded by the curve with winding number one. Show that the image curve
ϕ ◦ α also surrounds ϕ(a) with winding number +1.

3. Let ϕ : Ē → C be an injective continuous map of the closed unit disk into the
complex plane. The winding number of the curve

α(t) = ϕ(exp(2πit)) (0 ≤ t ≤ 1)

around a point b = ϕ(a), a ∈ E is ±1 independent of a. Formulate an analogous
statement for the standard triangle instead of Ē.

Hint. The fundamental group of (Ē, b) is generated by α. Therefore the
winding number of α divides the winding number of any other curve around b.

4. Show that any triangulation of a compact Riemann surface is orientable.

Hint. Since one can take suitable refinements, there is no loss of generality
in assuming that the union of two triangles with a joint edge is contained in the
domain of definition of an analytic chart. Define the orientation of a triangle in
such a way that the winding numbers with respect to the analytic chart around
inner points are +1. This possible because of the result of Exercise 3. It follows
from the result of Exercise 2 that this orientation is independent of the choice of

4. Combinatorial Schemes
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the analytic chart. Applying the result of Exercise 2 once more, we can see that
an orientation of the triangulation is obtained.

5. Let X = A1 ∪ . . . ∪ An be a finite closed covering of a topological space and let
f : X → Y be a map into another topological space Y . Show that f is continuous
iff all restrictions fi = f |Ai are continuous.

5. Gluing of Boundary Edges

A topological model of the torus can be obtained by gluing opposite sides
of a tetragon together. In a similar way, we shall construct for any connected
compact surface with an oriented triangulation a topological model which arises
from an n-gon by gluing boundary edges in a suitable way.

We start with an arbitrary oriented combinatorial scheme S = (P,D).
Those edges which belong to only one triangle are called boundary edges. Ver-
tices which belong to a boundary edge are called exterior vertices.

5.1 Definition. A boundary gluing Σ of an oriented combinatorial scheme
S consists of an even number 2n of boundary edges, which are divided into n
unordered pairs {K,L}.

A boundary gluing of a polyhedron is a boundary gluing of the underlying
combinatorial scheme.

Each of the 2n edges K has exactly one complementary edge L. We want to
glue complementary edges in a combinatorial scheme to obtain a combinatorial
counterpart of the gluing of vertices of polyhedra in the geometrical sense,
which is what we are interested in. We start with the latter construction.

So, let (X,M) be a polyhedron with a boundary gluing. For each edge from
K with a complementary edge L, we choose a topological map K

∼→L which
reverses the direction. Then we consider the generated equivalence relation ∼
and take the quotient space X ′ = X/ ∼. As in the case of Proposition 4.7, we
can show the following.

5.2 Remark. The topological space X ′ = X/ ∼ which is associated with
the polyhedron (X,M) with a boundary gluing, up to homeomorphism, does
not depend on the choice of the gluing map K ∼→L. In particular, a topological
space which is determined up to homeomorphism can be associated with each
combinatorial scheme with a boundary gluing (using Proposition 4.8).

The space X ′ does not inherit a structure from X in the form of a polyhedron
in any case, since the composition of a triangle ϕ ∈M with X → X ′ need not
to be injective. To get a better understanding of this phenomenon, we consider
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the gluing on the level of combinatorial schemes. For this, we define a relation
∼ on the set of vertices. The relation a ∼ b means that a and b are both
exterior vertices and that there exist complementary edges K and L such that
a is the starting point (or endpoint) of K and b is the endpoint (or starting
point, respectively) of L.

Example. We consider the “torus gluing” of a rectangle (gluing of opposite
vertices).

a b

d c

Here, {a, b} has to be glued to {c, d} and
{b, c} to {a, d}. So we have

a ∼ b, c ∼ d, a ∼ d, b ∼ c,

but not a ∼ c. The relation ∼ is not an
equivalence relation.

Hence we have to consider the equivalence relation which is generated by
∼. We denote the quotient set with respect to this equivalence relation by
P ′ = P/Σ. There is a natural projection P → P ′. This means that we have
identified certain exterior vertices in the set P.

There is the obvious idea of equipping P ′ with a structure in the form of a
combinatorial scheme. By definition, a triangle D′ ⊂ P ′ should be the image
of a triangle D ⊂ P. But this does not always define a structure in the form
of a combinatorial scheme, as the example of the torus gluing has shown, since
here all four exterior vertices are identified. So, in this case, P ′ consists of one
point only. The images of triangles are not triangles.

5.3 Definition. A boundary gluing Σ of S = (P,D) is called polyhedral if
the following conditions are satisfied:
1) If D ∈ D is a triangle in P, then its image D′ ⊂ P ′ = P/Σ is a set of three

elements.
2) If we denote the set of all these triangles by D′, then the pair S ′ = (P ′,D′)

is a combinatorial scheme.

A boundary gluing of a polyhedron is called polyhedral if this is the case for the
underlying combinatorial scheme.

The map
D −→ D′, D �−→ D′

is then bijective. The images of the triangles ϕ ∈ M, which means that
their compositions with the canonical projection X → X ′ define a polyhe-
dron (X ′,M′). Obviously, its associated combinatorial scheme is isomorphic
to (P ′,M′).
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In this way, we can describe polyhedra and the gluing of boundary vertices by
purely combinatorial data. This gives us the possibility of rigorous mathematical
proofs of facts which, initially, are clear only intuitively. Nevertheless, for the
purpose of visualization by figures, we prefer to draw polyhedra instead of finite
sets. But one should bear in mind that only combinatorics plays a role.

As we have seen, boundary gluings need not be polyhedral. But this is not
an essential restriction if we allow certain refinements which do not change the
topological nature of the polyhedron and its quotient space. To be more precise,
we allow two types of “elementary” refinements of a combinatorial scheme with
a boundary gluing (P,D,Σ). The case without any gluing is included (Σ = ∅).

The first type is that in which two adjacent refinements can be changed into
four triangles as indicated in the following figure:

In the second type, there must be a boundary edge, drawn in bold in the
following figure:

If this boundary edge belongs to Σ, the same construction has to be performed
for the complementary edge.

Such an elementary refinement converts a combinatorial scheme with a
boundary gluing (P1,D1,Σ1) into another combinatorial scheme (P2,D2),
which is well defined up to isomorphism. It should be clear how the gluing
Σ1 induces a gluing Σ2. This has to be done in such a way that the quotient
spaces X ′

1, X
′
2 in the sense of Remark 5.2 are homeomorphic. More generally,

(P̃, D̃, Σ̃) is called a refinement of (P,D,Σ) if there is a chain of elementary
refinements

(P,D,Σ) ∼= (P1,D1,Σ1) �−→ . . . �−→ (Pn,Dn,Σn) ∼= (P̃, D̃, Σ̃).

A simple consideration shows that the following is true.

5.4 Remark. Any combinatorial scheme with a boundary gluing admits a
polyhedral refinement.

The same is true for polyhedra with a boundary gluing. As a consequence, the
quotient space in the sense of Remark 5.2 can be equipped with a structure
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in the form of a polyhedron. We now illustrate by an example how boundary
gluings can be described on the combinatorial level. We consider the gluing of
adjacent edges in a tetragon:

Since this is not polyhedral, we consider a modified tetragon:

Modified tetragon Tetrahedron from above

It is easy to see that the two tetragons have a common refinement. The bound-
ary gluing of the second version is polyhedral. Its gluing is isomorphic to the
tetrahedron triangulation of the sphere. Using Proposition 4.7, we see that
they are homeomorphic. Hence we have obtained – just from inspection of
combinatorial data – a rigorous proof of the following statement.

5.5 Remark. If adjacent edges of a tetragon are glued together, then a space
which is homeomorphic to the sphere is obtained.

Following this pattern, we can obtain a topological classification of compact
Riemann surfaces. This will be done in the next section.
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6. The Normal Form of Compact Riemann Surfaces

All of the surfaces are assumed to be connected. In the middle of this section
we shall describe a very simple combinatorial scheme, namely the n-gon, n ≥ 3,
with external vertices P1, P2, . . . , Pn and an inner vertex P0 at the center. The
triangles are [P0, Pi, Pi+1], 1 ≤ i ≤ n, where we set Pn+1 := P1. We have
already seen that a sphere can be obtained from a tetragon by gluing adjacent
edges, and a torus can be obtained by gluing opposite edges. Now we shall
show a more general result.

6.1 Lemma. Any compact surface with an oriented triangulation, in par-
ticular any compact Riemann surface, is homeomorphic to the quotient of an
n-gon by a boundary gluing, such that all exterior edges belong to this gluing.
As a consequence, n has to be even.

Proof. We consider an oriented triangulation of the given surfaceX. First of all,
we make use of the connectedness of X. It is easy to see that the triangles can
be ordered in such a way that each triangle shares an edge with its precursor.
This leads us to construct a combinatorial scheme Xn inductively:
a) X1 is a single triangle.
b) Xi arises from Xi−1 by gluing a triangle to the corresponding edge.
To obtain the original combinatorial scheme, of course, more pairs of boundary
edges in Xn have to be glued.

It easy to show by induction on n that Xn can be transformed by elementary
transformations into a standard n-gon. For example, the following figure shows
how a pentagon arises from a tetragon by gluing on a triangle.

Now it is clear that the following is true:
If X is a surface with an oriented triangulation, then there exists an even
natural number n and a boundary gluing Σ of a standard n-gon such that all
exterior edges participate, and such that the quotient space X(Σ) and X are
homeomorphic.
We make the following assumption.
Assumption. The number n has been chosen to be minimal for this property.
We also exclude the case of a tetragon (n = 4) in which two adjacent vertices
are glued. (This case leads to the sphere, as in Remark 5.5).
Claim. Under this assumption, it cannot happen that two adjacent exterior
edges are glued.
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Proof. We assume that two adjacent edges in the n-gon have to be glued. We
then have n ≥ 6. We can show that X is then homeomorphic to a quotient of
an (n− 2)-gon. It is sufficient to illustrate this for a hexagon. In the following
figure, the adjacent vertices which have to be glued together are drawn in bold.

The two auxiliary dashed lines produce a refinement of the standard hexagon
such that the gluing of the adjacent edges becomes polyhedral. The following
figure shows the deformed hexagon, which indicates that the quotient becomes
a tetragon.

Hexagon (refined, 10 triangles) Tetragon

A simple transitivity property states that the total boundary gluing can be
performed in two steps. We first glue two adjacent edges and then the rest.
The gluing of the remaining edges of the hexagon induces a boundary gluing
of the tetragon. The proof of the claim should be clear now. ��

A boundary gluing Σ of the n-gon Pn induces an equivalence relation on
the set of the n exterior vertices. Two vertices are equivalent iff they define
the same point in the quotient space X . For example, for the torus gluing of a
tetragon, all four exterior vertices are equivalent.

Usually, the exterior vertices decompose into several equivalence classes. It
is our next goal to construct a new boundary gluing Σ′ of Pn such that the
quotient spacesX(Σ) onX(Σ′) are homeomorphic and that, for the new gluing,
all exterior vertices become equivalent. For this, we assume that all exterior
vertices are not yet equivalent. We choose an equivalence class of vertices with
a maximal number m of elements. By assumption, m < n. The following
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construction will increase m. So, iterative application leads to a boundary
gluing where all exterior vertices are equivalent.

In the maximal equivalence class A, there exists a vertex a such that at
least one of its two neighboring vertices is not contained in A. Otherwise, all
exterior vertices would be equivalent. So, there exists a boundary edgeK which
contains a but its other vertex b is not contained in A. The vertex b belongs
to another boundary edge L, which has, besides b, a vertex c. The edge L′

which is complementary to L is different from K, since adjacent edges are not
allowed to be glued. We cut the triangle with vertices a, b, c from the n-gon to
obtain an (n− 1)-gon as indicated in the following figure:

b

c

a

L
K

L−

b

c

a

L
K

L−

Now we glue the cut-off triangle to the (n − 1)-gon by identifying L and L−,
as indicated in the next figure:

Again we obtain an n-gon with an obvious boundary gluing Σ′ such that X(Σn)
and X(Σ′

n) are homeomorphic. (One can argue on a topological and combina-
torial level.) The equivalence class of a contains m+ 1 elements.

Our considerations so far show:
Every compact surface with an oriented triangulation which is not homeomor-
phic to a sphere is homeomorphic to the quotient space of an n-gon with respect
to a boundary gluing Σ, such that adjacent edges are never glued together and
such that all exterior vertices are glued to one point.
In the following constructions, these properties will be preserved.

Let K and K− be two complementary edges.
Claim. There is a second pair L, L− of complementary edges such that the
edges K, L, K−, L− are oriented counterclockwise.



6. The Normal Form of Compact Riemann Surfaces 225

Proof of the claim. We consider one boundary edge L such that K, L, K ′ are
oriented counterclockwise. Since K and K− are not adjacent, such an edge
exists. If, for all such L, the complementary edges L− were such that K, L−,
K− were also oriented counterclockwise, then the number of equivalence classes
of exterior vertices would be greater than one. But this is not the case. ��

For the rest of the presentation, we need two types of constructions which
will not change the topological nature of the quotient space. These can be de-
scribed in the language of combinatorial schemes. We are satisfied to illustrate
them with figures.

First construction. We want to arrange that there exists a counterclockwise
ordered quadruple K,L,K−, L− such that K,L,K− are then adjacent.

For this, we cut the polyhedron along a segment which lies between the end-
point of L and the starting point of L−. We obtain two cut boundaries K1,K

−
1

(drawn in bold in the figure below). Now we glue K and K− together. In-
stead of K,L,K−, L−, we now have the four boundary vertices L,K1, L

−,K−
1 .

These are oriented counterclockwise and the three K,L,K− are adjacent. This
is what we wanted to have.

K

LL−

K−

K

LL−

K−

LL−

K1

LL−

K−
1

Second construction. We want to produce a quadruple K,L,K−, L− which
is oriented counterclockwise and is such that all four K,L,K−, L− are then
adjacent.

For this we start with two pairs of complementary edges such that K,L,
K−, L− are oriented counterclockwise and that K, L, K− are adjacent. Then
we cut the polyhedron along the segment between the endpoint of L− and the
starting point of L. After that, we glue K and K− together. If we denote
the new cut edges by S and S− in the correct ordering, then the edges L−, S,
L, S− are oriented counterclockwise and they are adjacent. This is what we
wanted to have.
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L

L−

KK− K−

L−

S

K
L

S−

The two constructions together show that there exist two pairs of comple-
mentary edges K, L, K−, L− which are oriented counterclockwise and are
adjacent. If there are still boundary edges in the complement (n > 4), then we
can find, by the same construction, a second quadruple of the prescribed type.
By repeating this construction, we finally obtain a situation where the set of
all boundary edges is the disjoint union of such quadruples. These quadruples
can be ordered counterclockwise, and we are led to the so-called normal form.

��

The Normal Form

6.2 Definition. Let n = 4p, p ∈ N. We order the exterior vertices of the
4p-gon P4p in their natural order (counterclockwise),

P1, . . . , P4p,

and define P4p+1 := P1. We then divide the 4p boundary edges into groups of
four as follows:

K1 = (P1, P2), L1 = (P2, P3), K−
1 = (P3, P4), L−

1 = (P4, P5),

etc.; in general,

Ki = (P4i−3, P4i−2), Li = (P4i−2, P4i−1),

K−
i = (P4i−1, P4i), L−

i = (P4i, P4i+1).

We consider the boundary gluing

Ki ↔ K−
i , Li ↔ L−

i .

The 4p-gon, together with this boundary gluing, is called the normal form.
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L1L2

K−
1

K1

L−
2

L−
1

K−
2

K2

In the case p = 1 we obtain a torus. In general, we should think of a surface with
handles, where each block Ki, Li,K

−
i , L

−
i produces one handle. We illustrate

this below for an octagon, which we draw in a modified form. The figure
visualizes that the quotient space consists of two tori which have been linked
by a tunnel.

Octagon Quotient space

In this way, we obtain the topological classification of compact Riemann
surfaces (more generally a classification of compact topological surfaces which
admit an oriented triangulation).

6.3 Theorem. A compact Riemann surface is homeomorphic either to a
sphere or to the quotient space of a 4p-gon (p > 0) with respect to the normal
form (Definition 6.2).

We shall see later (Appendix to Sect. 7) that the number p is uniquely de-
termined. It is called the topological genus of the surface. In the case of the
sphere, we additionally set p = 0.
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The Canonical Curves

We denote by X (p) the regular 4p-gon in the plane. Our Riemann surface
is homeomorphic to the quotient of X (p) by the standard gluing (the normal
form). We have a natural projection

π : X (p) −→ X.

The edges Ki of X (p) are segments, which we parametrize in their natural
orientation (counterclockwise) by the unit interval. To be concrete, we take
the affine parametrization. The image curves in X are closed curves,

αi : [0, 1] −→ X,

and, correspondingly, the image curves of the edges Li are closed curves,

βi : [0, 1] −→ X.

All of these 2p curves have the same starting point and endpoint q, namely the
point which arises from gluing the 4p vertices together. Two different curves of
the system α1, . . . , αp, β1, . . . , βp have no common point other than this single
point. We call this system of curves the canonical system (with respect to the
representation of X in the normal form).

Let R ⊂ X be the union of the images of these 2p curves. This is a com-
pact subset. The interior of X (p) is mapped topologically under π onto the
complement X0 = X −R. As a consequence, X0 is simply connected.

6.4 Proposition. The fundamental group π(X, q) is generated by the 2p
curves of the canonical system

α1, . . . , αp, β1, . . . , βp.

Proof . Let α be a closed curve in X which starts and ends at q.
Every point x ∈ X has a suitable small simply connected neighborhood

U which can be obtained – depending on its three possible positions – as the
image of the shaded areas in the following figure:

x /∈ R x ∈ R, x 	= q x = q
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The union of these shaded areas is, in each of the three cases, the full inverse
image of U ⊂ X . The topological nature of U is described in the following
figure. (This could be performed in a mathematically rigorous way using the
language of combinatorial schemes.)

The segments drawn here describe U ∩ R in each of the three cases. This
figure makes it clear that any two points in U can be combined inside U by a
curve which meets R only for finitely many parameter values. Now the proof
of Proposition 6.4 can be given in two steps:

First step. There exists a curve β which is homotopic to α and is such that
β(t) is contained in R only for finitely many t.

We choose a partition

0 ≤ a0 < a1 < . . . < an = 1

such that each piece α[ai−1, ai] (1 ≤ i ≤ n) is contained in a small neighborhood
of the kind described. Now the desired deformation is easy to perform.

Second step. From the first step, we can assume that α is the composition of
finitely many curves α(ν) : [aν , bν ] → X such that α(ν)(t) is contained in R
exactly for the boundary values t = aν and t = bν . Hence, with the exception
of these two points, the curve α(ν) runs in the interior, X0. This part is
topologically equivalent to the interior of the 4p-gon. Hence the restriction
α(ν)|(aν , bν) can be lifted to a curve α̃(ν) : (aν , bµ) → X (p) which runs in
the interior of the 4p-gon. For a sufficiently small ε > 0, the starting piece
α(ν)|[aν , aν + ε] (and analogously, the end piece) runs in a small neighborhood
of the nature described. For reasons of connectedness, α̃(ν)|(aν , aν + ε) must
then run in one of the shaded segments of circles in the figure at the start of
the proof. This shows that α̃(ν) extends continuously to the closed interval.
We denote this extension by α̃(ν) : [aν , bµ] → X (p) again. The starting point
and endpoint of the curve are on the boundary of the 4p-gon. This is simply
connected and the boundary is connected. Therefore α̃(ν) is homotopic to a
curve whose image is contained in the boundary of the 4p-gon. Hence α(ν) and,
as a consequence, α are homotopic to a curve whose image is contained in R.

Third step. Now we can assume that:
1) The image of α is contained in R.
2) α passes through q only finitely often.
So, α is the composition of finitely many closed curves which, except at the
starting point and endpoint, do not meet q. We can assume that α(t) equals
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the base point q only for t = 0 and t = 1. Obviously, R − {q} consists of
2p connected components, namely the images of the members of the canonical
system without q. Now it is clear that α runs in the image of one αν or βν .
These images are homeomorphic to circles. Now the claim follows from the fact
that the fundamental group of a circle is cyclic. ��

We still must clarify how the curves of the canonical system meet in the
base point q. At this point, it is useful to use the notion of free homotopy,
which is meaningful only for closed curves.

6.5 Definition. Two closed curves α, β : [0, 1] −→ X in a topological space
X are called freely homotopic if there exists a family of closed curves

αs : [0, 1] −→ X, 0 ≤ s ≤ 1,

such that the map

H : [0, 1]× [0, 1] −→ X, H(s, t) = αs(t),

is continuous.

In contrast to the usual bounded homotopy, we do not demand that the base
points of the curves are fixed. The notion of free homotopy is correlated with
the notion of “fillable” (Definition III.4.6).

The curves of the canonical system exist in pairs (αν , βν). We call αν the
partner of βν , and conversely.

6.6 Proposition. Any curve of the canonical system is freely homotopic to
a curve whose image is disjoint with all images of the curves of the canonical
system with one exception, namely the partner.

Proof. As shown in the figure, we shift the
boundary edge K in the 4p-gon a little.

��

The statement Proposition 6.6 is enough for our purposes. Nevertheless, it is
helpful to have in mind the following more precise statement about the position of
the curves. This can also be seen from the 4p-gon.

Two partners cross over in q:

In the other case, they bang together:

(In the above figures, one of the two curves is drawn dashed, and the other not.)
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Exercises for Sect. IV.6

1. Study all possible boundary gluings of the octagon and determine p in each case.

2. Give an example of a boundary gluing of a hexagon such that the quotient space
is a sphere.

7. Differentials of the First Kind

Let X be a (connected) compact Riemann surface. We fix a homeomorphism
from X onto the quotient space of the 4p-gon with respect to the standard
boundary gluing and denote by

π : X (p) −→ X

the canonical map. The canonical system α1, . . . , βp is a system of closed curves
on X, all with the same base point q.

We denote by Ω(X) the vector space of everywhere holomorphic differenti-
als. (These are called “differentials of the first kind”.)

In this section, we want to prove a precursor to the Riemann–Roch theorem,
namely the following important theorem.

7.1 Theorem. The set Ω(X) of holomorphic differentials is a complex vector
space of dimension p:

dimC Ω(X) = p.

Corollary 1. The number p is determined by X.

We call p the genus of X.

Corollary 2. Topologically equivalent compact Riemann surfaces have the
same genus.

For the proof of Theorem 7.1, we have to consider line integrals of differentials.
The notion of a differential ω ∈ A1(X) was introduced in the appendix to
Chap. II (Sect. 13). The line integral

∫
α
ω along a piecewise smooth curve was

also defined there. We recall that the total differential df ∈ A1(X) was defined
for a C∞-function f : X → C. We saw Stokes’s theorem for curves (Theorem
II.13.18), ∫

α

df = f(α(1))− f(α(0)).
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We are interested mainly in the case of holomorphic differentials ω. We recall
the definition of the line integral in this special case. If ϕ : U → V is an analytic
chart and α a smooth curve which runs in this chart, i.e. α : [a, b]→ U , then

∫

α

ω =
∫

ϕ◦α
f(ζ) dζ (ωϕ = f(z)dz).

In the general case, we cut α into finitely many pieces which run inside analytic
charts, and sum the individual integrals.

We need a homotopic version of the Cauchy integral theorem. In this
connection, it is useful to define the line integral for holomorphic differentials
along arbitrary continuous, not necessarily piecewise smooth, curves.

7.2 Lemma (homotopic version of the Cauchy integral theorem). Let
ω be a holomorphic differential on a Riemann surface X. Then the integral of
ω along an arbitrary continuous curve can be defined in such a way that for
piecewise smooth curves we obtain the old definition and that integration along
homotopic curves leads to the same result.
Supplement. If α, β are two freely homotopic closed curves in X, then

∫

α

ω =
∫

β

ω.

The simple proof is completely analogous to the case of the plane. We refer
to [FB], Chap. IV, Proposition A2, for details. For the sake of completeness,
we sketch the proof here. First of all, we define the integral along an arbitrary
continuous curve by approximating by a piecewise smooth curve. For this, we
decompose the parameter interval by means of a partition 0 = a0 < · · · an = 1
into finitely many subintervals such that each piece of the curve is contained
in a disk. Inside each disk, we replace the piece of the curve by a smooth curve
(drawn in bold in the figure below). Using the Cauchy integral theorem for
disks, it is easy to show that the integral along the approximating curve does
not depend on the approximation.

For the proof of Lemma 7.2, the following has to be shown. Let H : Q→ X be
a continuous map of a rectangle into X . The image of the boundary of Q can
be considered, in an obvious way, as a closed curve α in X . We have to show∫
α ω = 0. This is clear if the image of Q is contained in a disk. In general, we
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decompose Q as in the following figure into sufficiently small rectangles, and
sum the corresponding integrals.

There is no need to take the rectangles so that they are of equal size. Hence
we can avoid a finite number of points, and we obtain in this way the following
generalization of Lemma 7.2.

7.3 Remark. The homotopic version of the Cauchy integral theorem, Lemma
7.2, holds also for meromorphic differentials if the following conditions are
satisfied:
a) The integration contour does not contain any poles.
b) The residues of all poles vanish.

After these preparations, we come to the important notion of a period of a
holomorphic differential. By definition, the set of periods is empty in the case
p = 0. In the case p > 0, we define the periods as follows.

7.4 Definition. Let ω ∈ Ω(X) be an everywhere holomorphic differential.
The numbers

Ai =
∫

αi

ω and Bi =
∫

βi

ω

are called the periods of ω.

Of course, the periods depend on the choice of the normal form. We shall se
later how they transform if the normal form is changed.

7.5 Lemma. An everywhere holomorphic differential ω ∈ Ω(X) is determined
by the real part of periods. In other words, the period map

Ω(X) −→ R
2p, ω �−→ Re(A1, . . . , Ap, B1, . . . , Bp),

is injective.

Corollary 1. Ω(X) is a real vector space of dimension ≤ 2p.

Corollary 2. Ω(X) is a finite-dimensional complex vector space of dimension
≤ p.
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Proof of the lemma. Let ω be an element of the kernel of the period map.
The determination of the fundamental group and the homotopic version of the
Cauchy integral theorem show the following.
If we join the base point q to an arbitrary point x ∈ X, then the integral

u(x) := Re

x∫

q

ω

does not depend on the choice of the curve.
The well-defined function u is locally the real part of an analytic function
and hence harmonic. By the maximum principle for harmonic functions, u is
constant. We obtain ω = 0. ��

7.6 Proposition. Let A1, . . . , Ap, B1, . . . , Bp be a 2p-tuple of real numbers.
There exists an everywhere holomorphic differential ω ∈ Ω(X) whose periods
have the following real parts:

Ai = Re
∫

αi

ω and Bi = Re
∫

βi

ω (1 ≤ i ≤ p).

Theorem 7.1 then follows from Lemma 7.5 and Proposition 7.6. For the proof
of Proposition 7.6, we have to use the central existence theorem for harmonic
functions (Theorem II.12.2). (Again we point out that we need this existence
theorem only for compact, and not for arbitrary zero-bounded Riemann sur-
faces. In this case, the proof is simpler. We do not need the tedious Nevan-
linna’s lemma, (Lemma II.10.4), but only the simpler variant in Proposition
II.10.2.)

We recall that by Proposition 6.6, all curves αi, βi with the single exception
α1 (but including β1) are freely homotopic to curves α̃i, β̃i which are disjoint
with β1. We want to replace the curve β1 by a homotopic “polygonal path”
β∗

1 . This means the following in this connection: there exists a partition of the
parameter interval 0 = a0 < a1 < . . . < an = 1 such that there exist disks

ϕi : Ui
∼−→ U2(0) = {z ∈ C; |z| < 2} with γ([ai−1, ai]) ⊂ Ui,

such that the pieces β∗
i = β∗|[ai−1, ai] correspond in the disk U2(0) to the

segment from −1 to +1. It is clear that this construction can be done in such a
way that β∗

1 like β1, is in the complement of the curves α̃2, . . . , α̃p, β̃1, . . . , β̃p.
After these preparations, we come to the following proof.
Proof of Proposition 7.6 . We can assume that all real parts except for one
vanish:

A1 = 1; A2 = . . . = Ap = B1 = . . . = Bp = 0.
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Now we use the existence theorem (Theorem II.12.4). In the complement of
the image of β∗

i there exists a harmonic function ui with the property that the
function

uϕii (z)−Arg
(
z + 1
z − 1

)

extends to the full disk U2(0) as a harmonic function. It cannot be extended
continuously to any point of (−1, 1).

We define u to be the sum of the u1, . . . , un. Then u is continuous in the
complement of the image of β∗.

Now we consider the differentials associated with ui and u in the sense of
Remark 1.8 and denote them by ωi, 1 ≤ i ≤ n, and ω (= ω1 + · · ·ωn). Locally,
a harmonic function is the real part of an analytic function. The associated
differential is the total differential of this function. The differential associ-
ated with the harmonic function Arg((z + 1)/(z − 1)) is the analytic function
−i/(z + 1) + i/(z − 1). Hence ωi extends to a meromorphic differential on X.
It has only two poles, and these are of order one with opposite residues. When
these are summed, they cancel. Hence the differential ω which is associated
with u is holomorphic on the whole of X. (We can think about this in the
following way. The function u jumps when crossing β. But this disappears
after differentiation.)

We know that each curve from the canonical system, with one exception
α1, is freely homotopic to one of the curves α̃i, β̃i which run completely in the
complement of β∗

1 . This implies that

Re
∫

αi

ω = Re
∫

α̃i

ω =
∫

α̃i

du = 0 (i > 1),

and correspondingly for all β̃i. For the proof of Proposition 7.6, it is sufficient
to show that the integral of ω along α1 does not vanish. We argue indirectly
and assume that the integral is zero. By Lemma 7.5, ω is then identically zero,
and hence the function u is constant. This contradicts the fact that u does not
extend as a continuous function to the whole of X. This completes the proof
of Proposition 7.6. ��

We shall now illustrate Theorem 7.1 with an example which was of great
importance during the historical development of the subject. We study the case
of a hyperelliptic Riemann surface X . This is the surface which is attached to
the algebraic function “

√
P (z)”. Here P is a polynomial of degree 2p + 1 or

2p + 2 without multiple zeros. Recall that X is a compact Riemann surface
with two distinguished meromorphic functions

f “ = z ”,

g “ =
√
P (z) ”.
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By means of f , the surface X is of degree 2 over the sphere. On this surface,√
P (z) appears as a (single-valued) meromorphic function g. The genus of X

is p (Theorem 3.6). We can consider on X the meromorphic differentials

fmdp

g
“ =

zmdz√
P (z)

”.

It can be shown (Exercise 3) that these are holomorphic on the whole of X as
long as m < p. Since these differentials are linearly independent, they have to
generate Ω(X).

7.7 Remark. Let X be the Riemann surface for “
√
P (z)”, where P is a

polynomial of degree 2p+ 1 or 2p+ 2 without multiple zeros. The differentials

“
zmdz√
P (z)

”, 0 ≤ m < p,

define a basis of Ω(X).

Exercises for Sect. IV.7

1. Show that the homotopic version of the Cauchy integral theorem holds for all
differentials ω ∈ A1(X) with the property dω = 0.

2. A C∞-function is called a primitive of a differential ω ∈ A1(X) if df = ω. Show
that ω admits a primitive if the integral of ω along every closed curve vanishes.
Show that we obtain such a primitive if we integrate ω along a curve which starts
at a fixed base point and ends at a variable point. Show that if ω is holomorphic,
then this primitive is holomorphic too.

3. Let X be the Riemann surface with respect to “
√
P (z)”, where P is a polynomial

of degree 2p+ 1 or 2p+ 2 without multiple zeros. Show that

“
zmdz√
P (z)

”, 0 ≤ m < p,

is holomorphic on the whole of X.
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Appendix to Sect. 7. The Polyhedron Theorem

Let (P ,D) be a combinatorial scheme together with a boundary gluing Σ,
such that all boundary edges are included. As a consequence, the number of
boundary edges is even. We define the following notation:

2R := number of boundary edges;
K := number of “interior” vertices;
A := number of equivalence clasess of exterior vertices;
E := number of interior vertices;
D := number of triangles.

We call
e := D − (K + R) +E +A

the Euler number of (P,D,Σ).

First example. Let X be a compact surface with an oriented triangulationM.
The associated combinatorial scheme (P,D) has no boundary edges. In this
case,

e(P,D) = D −K + E

= #triangles−#edges + #vertices

is the Euler number, which we have considered already.

Second example. Let (P,D) be the standard 4p-gon with the normal gluing.
In this case,

2R = 4p, K = 4p, A = 1,

E = 1, and D = 4p.

Hence
e = 4p− (4p+ 2p) + 2 = 2− 2p.

7.8 Remark. If, from some oriented triangulation of a compact surface,
we produce a normal form that is a 4p-gon, then the Euler number e does not
change in any of the constructions defined in Sects. 5 and 6.

Corollary. If a compact surface admits an oriented triangulation (for example
if it admits a structure in the form of a Riemann surface), then the Euler
number is independent of the choice of the oriented triangulation.

Corollary ( Euler, c. 1750; Legendre, 1794). The Euler number of any
triangulation of the sphere is 2.

Corollary. Let f : X → C̄ be a nonconstant meromorphic function on a
compact Riemann surface. Then the topological genus p can be computed by
means of the Riemann–Hurwitz ramification formula (Theorem 3.5).
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Now the question arises of which compact topological surfaces admit a struc-
ture in the form of a Riemann surface. Actually, it can be shown that every
orientable surface with a countable basis of topology admits such a structure.
(Here, the notion of the orientability of a topological surface still has to be
defined.) We shall prove only the following proposition.

7.9 Proposition. Every compact surface with an oriented triangulation
admits a structure in the form of a Riemann surface.

For the proof, it is enough to show that for each p ≥ 0 there exists a compact
Riemann surface. Take, for example, the hyperelliptic Riemann surface for

w2 = z2p+1 − 1. ��

Exercises for Sect. IV.7

1. Describe a boundary gluing of a 12-gon which leads to p = 1.

2. Compute all boundary gluings of a decagon for p = 0.

8. Some Period Relations

Again we start with a compact Riemann surface X which is realized by a
standard 4p-gon X (p) in the normal form. We have described the canonical
system αi, βi and defined the periods of a differential ω with respect to this
system as

Ai =
∫

αi

ω, Bi =
∫

βi

ω (1 ≤ i ≤ p).

For a basis ω1, . . . , ωp of the C-vector space of all holomorphic differentials, we
can consider the period matrix

P :=

⎛

⎜⎝
A

(1)
1 · · · A

(p)
1 B

(1)
1 · · · B

(p)
1

...
...

...
...

A
(p)
1 · · · A

(p)
p B

(1)
p · · · B

(p)
p

⎞

⎟⎠ .

For an arbitrary holomorphic differential ω, the period vectors of ω are linear
combinations, with integral coefficients, of the rows of P . Since a holomorphic
differential vanishes if all its periods are zero, we have the following result.
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8.1 Remark. The period matrix P (with respect to the given canonical system
and the given basis of Ω(X)) has rank p.

The periods underlie certain strong restrictions which are called “period rela-
tions”. In this section, we shall prove only those period relations which are
needed for the proof of the Riemann–Roch theorem. Further period relations
will be derived in connection with Abel’s theorem (Sect. 11).

We denote the canonical projection of the 4p-gon onto X by

π : X (p) −→ X.

Let ω be a differential which is holomorphic on the whole of X. We want to
associate with this differential a continuous function

f : X (p) −→ C.

For this, we choose an arbitrary point a in the 4p-gon. For every other point x
of the 4p-gon, we choose a curve α in X (p) from a to x. For example, we can
take a straight segment. We then define

f(x) :=
∫

π◦α
ω.

By the homotopic version of the Cauchy integral theorem, the integral does
not depend on the choice of α. For two arbitrary points x, y from X (p), we can
consider the straight line β from x to y. We have

f(y)− f(x) =
∫

π◦β
ω.

We apply this in the special case where x lies on an edge Ki and y is the
complementary point on the edge K−

i . The image of the segment from x to y
is a closed curve in X which is freely homotopic to βi (the image of Li in the
correct orientation). We obtain

f(y)− f(x) =
∫

βi

ω

and a corresponding equation for the edges Li, L−
i .

8.2 Lemma. Let ω be a holomorphic differential on X. The associated
(continuous) function

f : X (p) −→ C

has the following property:
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Let x be a point on Ki and let x− be the complementary point on K−
i ; then

f(x−)− f(x) =
∫

βi

ω.

Correspondingly, if y is a point from Li and if y− is its complementary point
on L−

i , then

f(y−)− f(y) = −
∫

αi

ω.

The proof of the Riemann period relations becomes transparent if we assume
that the map π is smooth in the following sense: a function on X (p) or, more
generally, on an open subset (with respect to the induced topology) U ⊂ X (p)
is called smooth if its restriction to the intersection of U with the interior of
X (p) is (infinitely often) differentiable and if if all partial derivatives of f extend
continuously to U . By means of charts, we then define the notion of a smooth
map into an arbitrary differentiable surface.

For the following proof, we want to assume in an initial approach that π :
X (p)→ X is smooth in this sense.

This is not really what we need; actually, it is sufficient to know that π is
piecewise smooth. In the appendix to this section, we shall explain what this
means and show that piecewise smooth normal forms π : X (p) → X exist.
We recommend the reader not to worry about this and to ignore this problem.
After reading the appendix, it will become clear that the proof works in the
piecewise smooth case.

By a smooth differential ω = f dx + g dy on X (p), we understand a pair
of smooth functions f, g : X (p) → C. For such smooth differentials, Stokes’s
theorem*) holds: ∮

∂X (p)

ω =
∫

X (p)

dω.

If ω is a C∞-differential on X , then, as usual, we define the pulled-back diffe-
rential π∗ω as a smooth differential on X (p).

8.3 Lemma. Let ω be a holomorphic differential and let ω′ be a differential
with dω′ = 0. Then

∫

X

ω ∧ ω′ =
p∑

i=1

[∫

αi

ω

∫

βi

ω′ −
∫

αi

ω′
∫

βi

ω
]
.

*) Stokes’s theorem was formulated for triangles in Remark II.13.21. For the n-gon,

it follows by summing over the triangles.
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Proof. We consider the function f : X (p)→ C which is obtained by integrating
ω. Clearly f is smooth. We also consider the pulled-back differentials ω̃ = π∗ω
and ω̃′ = π∗ω′. Because dω′ = 0, we have d(fω̃′) = ω̃ ∧ ω̃′. We apply Stokes’s
theorem and obtain ∫

X

ω ∧ ω′ =
∫

∂X (p)

fω̃′.

The contribution of the pair of edges Ki,K
−
i in the integral is

∫

Ki

fω̃′ −
∫

K−
i

fω̃′.

Here we have oriented Ki counterclockwise but K−
i clockwise (which produces

the sign). By Lemma 8.2, the values of f differ at corresponding points of the
two edges only by an additive constant

∫
βi
ω. Hence the contribution of the

pair of edges is ∫

βi

ω

∫

Ki

ω̃′ =
∫

βi

ω

∫

αi

ω′.

Correspondingly, we obtain for the contribution of the pair Li, L−
i the expres-

sion
−
∫

αi

ω

∫

βi

ω′.

By summing, we obtain the claim. ��

Period Relations of the Fist Kind

Now let ω, ω′ be two holomorphic differentials on X. Then ω ∧ω′ = 0, and we
obtain the following proposition from Lemma 8.3.

8.4 Proposition. Let ω and ω′ be two holomorphic differentials on X. Then
we have the period relation

p∑

i=1

∫

αi

ω

∫

βi

ω′ =
p∑

i=1

∫

βi

ω

∫

αi

ω′.

For the proof of the Riemann–Roch theorem, we need a slight generalization
of Lemma 8.2 and Proposition 8.4. This corresponds to the fact that ω is
allowed to be meromorphic, i.e. poles are allowed. These should be contained
in the complement of the canonical system. We also require that all residues
of ω vanish. Then we can apply the homotopic version of Cauchy’s theorem
(Remark 7.3) to produce, by integration, a meromorphic function f0 on X −R
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with the property df0 = ω. We pull it back by means of π to obtain a function f
which is continuous in the interior of the 4p-gon up to finitely many exceptional
points. If α is a curve which runs inside the interior of the 4p-gon and does not
meet an exceptional point, then

f(α(1))− f(α(0)) =
∫

π◦α
ω.

By means of this integral representation, we can extend f to a continuous
function on the closed 4p-gon,

f : X (p)− S −→ C.

8.5 Lemma (variant of Lemma 8.2). Let ω be a meromorphic function
on X whose poles are contained in the complement R of the canonical system
and such that all residues vanish. The associated continuous function

f : X (p)− S −→ C

has the same behavior on the boundary as that described in Lemma 8.2.

The proof is the same as that of Lemma 8.2. ��

8.6 Proposition (variant of Proposition 8.4). As in Proposition 8.4, ω′

is assumed to be a holomorphic differential, but the differential ω is assumed
only to be meromorphic, where the possible poles are in the complement of
the canonical system. The residues are assumed to be zero. Furthermore, we
assume that for every pole a of order m(a) of ω, the differential ω′ has a zero at
a of order at least m(a)−1. Then the period relation formulated in Proposition
8.4 remains true.

It follows from the above assumption that the differential f0ω′ is holomorphic
in the complement of the canonical system. This suffices to imitate the proof
of Proposition 8.4. ��



8. Some Period Relations 243

Exercises for Sect. IV.8

1. How does the period matrix change if the basis of Ω(X) is changed?

2. Let X = C/L be a torus. Give a basis of Ω(X) and a concrete canonical system,
and compute the corresponding period matrix.

Appendix to Sect. 8. Piecewise Smoothness

Let ∆ ⊂ C be a closed triangular area. For our purposes, we need a notion of
a piecewise smooth map

f : ∆ −→ X

from ∆ into a Riemann surface X which corresponds in some sense to the
notion of a piecewise smooth curve

α : [0, 1] −→ X.

We consider a point in the interior of each of the three edges
of ∆ and divide ∆ by means of the segments between these
points into four triangles. We call this a subdivision of level
one of ∆.

By dividing each of the four triangles in the same way into four subtriangles,
we obtain a subdivision of level two and so on.

8.7 Definition. A map
f : ∆ −→ X

from a triangular area into a Riemann surface X is called piecewise smooth
if there exists a subdivision of some level such that the restriction to each of
the 4n subtriangles is smooth.

8.8 Proposition. The normal form of a Riemann surface can be realized in
such a way that the canonical projection

X (p) −→ X

(more precisely, its restriction to each of the 4p triangles) is piecewise smooth.
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For the proof, we simply have to observe that all of the constructions which
we performed during the construction of the normal form can be formulated in
the piecewise smooth world.

The advantage of a piecewise smooth realization

p : X (p) −→ X

is that differentials ω on X can be pulled back to X (p) and that one can apply
the Stokes’s theorem to the pullback p∗ω. We now explain this briefly.

Let ω be a smooth differential on a triangular area ∆ ⊂ C. The integral
along a piecewise smooth curve α : [0, 1]→ ∆ is given by

∫

α

ω =

1∫

0

h(t) dt,

h(t) = f(α(t))α·
1(t) + g(α(t))α·

2(t).(∗)

Now we consider a piecewise smooth realization of the Riemann surface X by
a 4p-gon,

π : X (p) −→ X.

Let ω be a smooth differential on X . We want to define the pulled-back dif-
ferential p∗ω on X (p). We have a triangulation of X (p) which arises from a
standard decomposition of the 4p triangles, such that the restriction of f to
each triangle of the triangulation is smooth. Then f∗ω can be defined as a
smooth differential on each of these triangles. We obtain a differential which
is piecewise smooth in the following sense.

8.9 Definition. A piecewise smooth differential ω on the 4p-gon X (p) is a pair
consisting of a triangulation of X (p) arising from standard decompositions of
the 4p triangles and a map which assigns to each triangle ∆ of the triangulation
a smooth differential ω∆ on this triangle. These differentials have to fit together
in the following sense.

Assume that ∆, ∆′ are two triangles of the triangulation with a joint edge
K and that α : [0, 1] → K is a smooth parametrization of the edge. Then the
integrands of the line integrals of ω∆ and ω′

∆ (see (*) above) agree.

In particular, we have ∫

K

ω∆ =
∫

K

ω′
∆,

where the integral has been taken in the same direction in both cases.
So, piecewise differentials can jump if we pass from one triangle to a neigh-

boring one. But these jumps are not visible by integration along edges.
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For piecewise smooth differentials ω on X (p), the surface integral

∫

X (p)

dω

and the boundary integral ∮

∂X (p)

ω

can be defined in an obvious way. The following version of Stokes’s theorem
follows immediately from Stokes’s theorem for triangles by summing.

8.10 Theorem (Stoke’s theorem). Let ω be a piecewise smooth differential
on the 4p-gon; then ∮

∂X (p)

ω =
∫

X (p)

dω.

In the following, we tacitly assume that π : X (p)→ X is piecewise smooth.

9. The Riemann–Roch Theorem

Let X be a set. We consider the free abelian group D(X) generated by X . The
elements of D(X) are maps

D : X −→ Z

such that
D(a) = 0 for almost all a ∈ X

(i.e. for all up to finitely many). Obviously, D(X) is an abelian group by means
of the usual addition of maps.

Special case. For X = {1, . . . , n}, we have D(X) = Z
n.

We call the elements of D(X) divisors. With each point a ∈ X we can
associate a divisor

(a) ∈ D(X),

namely

(a)(x) =
{

1 for x = a,
0 else.

This defines an injective map

X −→ D(X), a �−→ (a).
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Sometimes we identify X with its image in D(X).

Caution. If X already carries a structure in the form of an abelian group, then
(a+ b) and (a) + (b) may be different.

Each divisor D ∈ D(X) can be written in the form

D =
∑

a∈X
D(a)(a) (finite sum).

So, each divisor can also be written in the form

D = (a1) + . . .+ (an)− (b1)− . . .− (bm),

where the { a1, . . . , an } and { b1, . . . , bm } are disjoint. Finally, we define the
degree of a divisor by

deg(D) =
∑

a∈X
D(a).

Obviously,
deg : D(X) −→ Z

is a group homomorphism. And obviously,

deg ((a1) + · · ·+ (an)− (b1)− · · · − (bm)) = n−m.

Now letX be a (connected) compact Riemann surface. With each meromorphic
function

f : X −→ C̄

which is different from zero, we can associate a divisor (f) by

D(a) = Ord(f ; a)

So we have
D(a) > 0 ⇐⇒ a is a zero of f,

D(a) < 0 ⇐⇒ a is a pole of f.

If we denote the zeros by a1, . . . , an (each written as often as the multiplicity
prescribes) and, correspondingly, the set of poles by b1, . . . , bm, then

(f) = (a1) + · · ·+ (an)− (b1)− · · · − (bm).

As we know, meromorphic functions have the same numbers of zeros and poles.
Hence we have the following result:

The degree of the divisor (f) of a nonvanishing meromorphic function is 0.
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9.1 Remark. Let f, g ∈ M(X) − {0} be two meromorphic functions which
are different from 0. Then

(f) + (g) = (f · g).

The divisor of a constant function is the zero element in D(X).

9.2 Definition. A divisor D ∈ D(X) is called a principal divisor if there
exists a meromorphic function with

D = (f).

As we know that f is determined by D up to a constant factor, then because
of Remark 9.1, the set of principal divisors

H(X) = {D ∈ D(X); D = (f); f ∈M(X) }

is a subgroup of D(X). The factor group

Pic(X) := D(X)/H(X)

is called the divisor class group of X . Since the degree of a principal divisor is
zero, the degree

deg : Pic(X) −→ Z, [D] �−→ deg(D),

is well defined on the divisor class group.

The Riemann–Roch Space

Let D,D′ be two divisors on X. We define

D ≥ D′ ⇐⇒ D(a) ≥ D′(a) for all a ∈ X.

The Riemann–Roch space of a divisor D is the set of all meromorphic functions
f ∈M(X) with the property

(f) ≥ −D,

together with the zero function. This means, symbolically, that the inequality

(0) ≥ −D

is always assumed to be true, so we can write

L(D) = { f ∈M(X); (f) ≥ −D }.

9.3 Remark. The set L(D) is a C-vector space.
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The proof is trivial. ��
We shall see that L(D) is of finite dimension. The space L(D) essentially

depends only on the divisor class of D. More precisely, we have the following:
The map

L(D) −→ L (D + (f)) , g �−→ g · f,
is an isomorphism.
The Riemann–Roch problem is the determination of the dimension

l(D) := dimC L(D).

The Riemann–Roch theorem is a partial answer to this question.

Remark. Assume that
D := n · (a); n ∈ N.

Then L(D) consists of all meromorphic functions which have a possible pole
only at a and are such that its order is ≤ n.
Exercise. Let X = C/L be a torus. Show that

l (n(a)) =
{

1 for n = 1,
2 for n = 2.

9.4 Theorem (Riemann–Roch inequality, B. Riemann, 1857). We
have

l(D) ≥ degD − p+ 1, p = genus of X.

This is an existence theorem for meromorphic functions. To make this clear,
we consider again the case D = n(a), and obtain the following corollary.

Corollary. For each point a ∈ X, there exists a meromorphic function f which
is holomorphic outside a and has a pole of order ≤ p+ 1 at a.
The Riemann–Roch theorem is stronger than the inequality in Theorem 9.4.
It also gives information about the “defect”

h(D) := l(D)− deg(D) + p− 1.

To formulate this, we need the canonical class, which is an element of Pic(X)
of fundamental importance.

Let ω be a meromorphic differential which is different from zero. We have
seen that it makes sense to speak of zeros and poles and of their orders. This
means that we can attach to ω a divisor

K := (ω) ∈ D(X).

Such a divisor K is called a canonical divisor. Let f be meromorphic function
which is different from zero; then

(f · ω) = (f) + (ω).

As we know, f · ω runs through all meromorphic differentials for fixed ω and
variable f . We obtain the following result.
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9.5 Remark. All canonical divisors belong to one divisor class.

9.6 Definition. The divisor class of a meromorphic differential is called the
canonical class of X.

A fundamental refinement of the inequality h(D) ≥ 0 is the equation

h(D) = l(K −D),

which means the following.

9.7 Theorem (Riemann–Roch theorem, G. Roch 1876). We have

dimL(D)− dimL(K −D) = deg(D)− p+ 1.

Corollary. degK = 2p− 2.
Remark . In the case of a torus X = C/L, we can consider the holomorphic
differential “dz”. The associated divisor is the zero divisor. It has degree 0
in accordance with Theorem 9.7. But on the Riemann sphere C̄ (p = 0), the
differential dz has a pole of second order at ∞ (because d(−1/z) = −z2dz); so
we have deg(dz) = −2, again in accordance with Theorem 9.7.
Corollary. In the case deg(D) ≥ 2p − 2, the Riemann–Roch inequality is an
equality,

dimL(D) = deg(D)− p+ 1.

The space L(D) is different from zero only if deg(D) ≥ 0. This means that
there are finitely many “exceptional numbers”

0 ≤ deg(D) ≤ 2p− 2,

for which the Riemann–Roch theorem gives “only” an inequality.

The proof of the Riemann–Roch Theorem

In addition to
L(D) = {f ; (f) ≥ −D},

we introduce the “complementary” space

K(D) := {ω meromorphic differential; (ω) ≥ D}.

Obviously,
dimK(D) = dimL(K −D).
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Hence the Riemann–Roch theorem can be written as follows:

dimL(D)− dimK(D) = deg(D)− p+ 1.

One special case of the Riemann–Roch theorem is obvious.
First step. Special case: D < 0.

In this case, we have L(D) = 0. The space K(D) consists of all meromorphic
differentials which, for all points a ∈ X with D(a) < 0, have poles of order at
most −D(a) and are holomorphic elsewhere. We know that the principal parts
of a meromorphic differential (with respect to some analytic chart), up to the
necessary condition on the residues (their sum must vanish), can be freely
prescribed. On the other hand, a meromorphic differential is determined by its
principal parts up to an everywhere holomorphic differential. This gives us

dimK(D) = −(deg(D) + 1) + p,

and this is the Riemann–Roch theorem.
Second step. Special case: D = 0.

In this case, we have

dimL(D) = 1, dimK(D) = dim Ω(D) = p,

and hence the Riemann–Roch theorem is true again.
Third step. Let D be an arbitrary divisor and let a ∈ X be a given point.
We do not exclude the case in which a occurs in D. We want to compare the
divisors

D and D′ = D + (a).

Clearly, we have D ≤ D′ and hence

L(D) ⊂ L(D′).

We claim that
dim (L(D′)/L(D)) ≤ 1.

For the proof, we consider a linear map

L(D′) −→ C,

whose kernel is L(D). For the construction, we consider a disk around a,

ϕ : U ∼−→ E, a �−→ 0,

and consider the Laurent expansion of f with respect to this disk,

fϕ(z) =
∞∑

n=−∞
anz

n.
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Let e := −D(a). If f occurs in L(D′), then

an 	= 0 =⇒ n ≥ e− 1.

A function f ∈ L(D′) is contained in L(D) iff

an 	= 0 ⇒ n ≥ e.

The map
L(D′) −→ C, f �−→ ae,

has the desired property.
Corollary. The spaces L(D) (and hence K(D)) are finite-dimensional.
An analogous consideration shows that

K(D′) ⊂ K(D) and dim (K(D)/K(D′)) ≤ 1.

Fourth step. We introduce the defect

δ(D) = dimL(D)− dimK(D)− deg(D) + p− 1.

The Riemann–Roch theorem states that

δ(D) = 0.

In this step of the proof, we show that

δ(D′) ≤ δ(D) (D′ = D + (a)) .

We have

δ(D)− δ(D′) = 1− dim (L(D′)/L(D))− dim (K(D)/K(D′)) .

If the claimed inequality is false, we must have, by the third step,

dim (L(D′)/L(D)) = dim (K(D)/K(D′)) = 1.

Therefore there exist elements

f ∈ L(D′), f /∈ L(D),
ω ∈ K(D), ω /∈ K(D′).

It is easy to show that:

a) f · ω is holomorphic outside of a;
b) f · ω has a simple pole at a.
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But this is incompatible with the residue theorem (the sum of residues of f · ω
is 0).

By induction, we now obtain the more general result

D ≥ D′ =⇒ δ(D) ≤ δ(D′).

For an arbitrary divisor D, we find divisors

D1 > 0, D2 < 0

with the property
D2 ≤ D ≤ D1.

We obtain
0 = δ(D2) ≥ δ(D) ≥ δ(D1).

So, for the proof of the Riemann–Roch theorem, it is sufficient to show that

δ(D1) ≥ 0 for D1 > 0.

Fifth and last step. We have to show that

dimL(D)− dimK(D) ≥ deg(D)− p+ 1 for D > 0.

For the proof, we construct a suitable vector space I(D) of meromorphic dif-
ferentials, in which the two spaces L(D) and K(D) are hidden.
Definition. The vector space I(D) consists of all meromorphic differentials ω
with the following two properties:
a) Let a ∈ X, D(a) > 0. The pole order of ω at a is at most D(a) + 1.
b) All residues of ω vanish.
From the existence theorem for meromorphic differentials and from our knowl-
edge of the dimension of the space of all holomorphic differentials, we immedi-
ately obtain

dim I(D) = deg(D) + p.

With every f ∈ L(D) there is associated an element of I(D), namely df . The
map

L(D) −→ I(D), f �−→ df,

is C-linear; its kernel consists of constant functions. We want to construct the
image of L(D) as the kernel of a suitable map. For this, we have to assume
that none of the points a, D(a) > 0, lies on the canonical system (i.e. on the
union of the images of the curves α1, . . . , αp, β1, . . . , βp). This is possible by a
slight modification of the canonical system. Now we can consider the map

I(D) −→ C
2p, ω �−→ (A1, . . . , Ap, B1, . . . , Bp),
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where
Aj :=

∫

αj

ω; Bj :=
∫

βj

ω (1 ≤ j ≤ p).

The kernel of this map consists of all ω ∈ I with vanishing periods A1, . . . , Bp.
By the homotopic version of Cauchy’s integral theorem (Remark 7.3), the inte-
gral of ω along each closed curve vanishes. Therefore ω admits a meromorphic
primitive f . It lies in L(D):
The kernel of the map above is precisely the image of L(D).
Readers who are familiar with the idea of exact sequences can reformulate this
as the exactness of

0 −→ C −→ L(D) −→ I(D) −→ C
2p.

For the central argument, we now have to make use of the period relations
of Proposition 8.4 in the version stated in Proposition 8.6. They imply the
following result.
Let ω′ ∈ K(D) be a differential with the periods

A′
j =
∫

αj

ω, B′
j =
∫

βj

ω.

Then, for all ω ∈ I(D),

A1A
′
1 + . . .+ApA

′
p +B1B

′
1 + . . .+BpB

′
p = 0.

So, for each element ω′ ∈ K(D), we have obtained a linear equation which all
elements of the image

I(D) −→ C
2p

satisfy. If ω′
1, . . . , ω

′
d is a basis of K(D), then we obtain d such equations. The

matrix of this system of linear equations is the period matrix
⎛

⎜⎝
A

(1)′

1 . . . A
(1)′
p B

(1)′

1 . . . B
(1)′
p

...
...

A
(d)′

1 . . . A
(d)′
p B

(d)′

1 . . . B
(d)′
p

⎞

⎟⎠ .

By Remark 8.1, this matrix has the rank d. We obtain the result that the
dimension of the image of I(D) under the period map cannot exceed

2p− dimK(D).

From the equation

dim I(D) = dim Kernel + dim Image,
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follows that

deg(D) + p ≤ dimL(D)− 1 + 2p− dimK(D).

This is the claimed inequality

δ(D) ≥ 0.

This completes the proof of the Riemann–Roch theorem. ��

Exercises for Sect. IV.9

1. Consider, for an element f ∈ L(D), the Laurent expansions in all a with D(a) > 0
with respect to arbitrarily chosen charts. Since f is determined by finitely many
Laurent coefficients, obtain an easy proof of the finiteness of the dimension of
L(D).

2. Give a direct proof of the Riemann–Roch theorem for the Riemann sphere.

3. Prove the Riemann–Roch theorem for a torus X = C/L by means of Abel’s
theorem for elliptic functions.

10. More Period Relations

We now apply the formula of Lemma 8.3 to the complex conjugate differential
ω′ = ω̄. In local coordinates, this is defined by

h(z)dz := h(z) dz with dz = dx− i dy.

From the definition of the line integral along a curve α, we immediately obtain
the formula ∫

α

ω̄′ =
∫

α

ω′.

In local coordinates, ω ∧ ω̄ is calculated as

−2i|h(z)|2dx dy.

The next statement follows from Lemma 8.3.
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10.1 Proposition. Let ω be a holomorphic differential on X. Then

Im
p∑

i=1

∫

αi

ω

∫

βi

ω ≥ 0.

The equality sign holds iff ω = 0.

As an important consequence of the inequality in Proposition 10.1, we prove a
variant of the existence and uniqueness theorem for holomorphic differentials.

10.2 Theorem. The map

Ω(X) −→ C
p, ω �−→

⎛

⎜⎝
∫

α1

ω, . . . ,

∫

αp

ω

⎞

⎟⎠ ,

is an isomorphism.

(One can replace the α-periods by the β-periods analogously.)
Hence a holomorphic differential is determined by:

1) the real parts of all 2p periods, or
2) the p α-periods, or
3) the p β-periods.

10.3 Proposition and Definition. With respect to a given canonical system,
there exists a basis

ω1, . . . , ωp

of Ω(X) with the property
∫

αi

ωj = δij =
{

1 if i = j,
0 if i 	= j.

We call ω1, . . . , ωp the canonical basis of Ω(X) which belongs to this canonical
system.

The period relations in Proposition 8.4 and 10.1 can be rewritten in the fol-
lowing form.

10.4 Proposition. Let ω1, . . . , ωp be a canonical basis (with respect to a
given canonical system). We consider the “period matrix”

Z = (zij)1≤i,j≤p, zij :=
∫

βi

ωj .

We then have:
1) The matrix Z is symmetric: Z = Z ′.
2) The imaginary part Y := ImZ is positive definite.
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We recall that a symmetric real matrix Y is called positive definite if the
following two equivalent conditions are satisfied:

1) For every n-tuple of real numbers a1, . . . an which are not all zero, we have

n∑

i=1

yijaiaj > 0.

2) For every n-tuple of complex numbers a1, . . . an which are not all zero, we
have

n∑

i=1

yij āiaj > 0.

Now we want to investigate how the matrix Z changes if the canonical system
is changed. So, assume that a second canonical system

α̃1, . . . , α̃p, β̃1, . . . , β̃p

is given. We consider the associated canonical basis

ω̃1, . . . , ω̃p

and the associated period matrix

Z̃ =
(∫

βi

ω̃j

)

1≤i,j≤p
.

10.5 Definition. A 2p× 2p matrix M is called symplectic if it satisfies the
relation

M ′IM = I with I =
(

0 E
−E 0

)
.

Here E denotes the n× n unit matrix and 0 the zero matrix.

In principle, the coefficients of symplectic matrices could be elements of an ar-
bitrary commutative ring with unity. At the moment, only integral coefficients
are of interest to us.

10.6 Remark. The set of all symplectic matrices is a group Sp(p, Z). It is
called the symplectic modular group. In the case p = 1, it agrees with the
elliptic modular group SL(2, Z):

Sp(1, Z) = SL(2, Z).
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The Intersection Pairing

As a further application of the period relations Proposition 10.1, we construct
the intersection pairing. For this, we choose a base point q on the Riemann
surface. Then we consider the fundamental group π(X, q) with respect to this
base point.

For a holomorphic differential ω, the integral

ω(α) := Re
∫

α

ω

depends only on the homotopy class of α. Hence we obtain a homomorphism
of π(X, q) into the additive group of real numbers. So, we have associated with
each ω an element of

H1(X,R) := Hom(π(X, q),R).

10.7 Proposition. The natural map

Ω(X) −→ H1(X,R)

is an isomorphism.

This proposition is a reformulation of the proved result that a holomorphic
differential is determined by the real part of its periods and that these can be
prescribed arbitrarily.

We obtain the result that H1(X,R) is a real vector space of dimension
2p. An element of H1(X,R) is determined by its values on the curves
α1, . . . , αp;β1, . . . , βp of a canonical system. These values can be prescribed
arbitrarily. Hence we can consider, in H1(X,R), the dual system

α∗
1, . . . , α

∗
p;β

∗
1 , . . . , β

∗
p .

This means that α∗
i takes the value 1 for αi and the value 0 for all other 2p− 1

elements (and similarly for β∗
i ).

Now we use isomorphism of Proposition 10.7 to define the “intersection
pairing” on H1(X,R). First we define it on Ω(X) by

〈ω, ω′〉 = Re
∫

X

ω ∧ ω̄′,

where ω ∧ ω̄′ denotes the alternating product.

By means of Proposition 10.7, we transport this pairing to H1(X,R).
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10.8 Proposition (Frobenius’s theorem). Let

α1, . . . , αp; β1, . . . , βp

be the canonical system with respect to an arbitrary normal form. We have

〈α∗
i , β

∗
i 〉 = −〈β∗

i , α
∗
i 〉 = 1 (1 ≤ i ≤ p).

All other brackets are zero.

Proof. We have to compare two R-bases of H1(X,R), namely

α∗
1, . . . , α

∗
p, β

∗
1 , . . . , β

∗
p

and the images of
ω1, . . . , ωp, iω, . . . , iωp.

The transition matrix can be computed by means of the relations in Lemma
8.3 as (

E 0
X Y

)
(Z = X + iY ).

The matrix of the products of the second matrix is (again by Lemma 8.3)
(

0 Y
−Y 0

)
.

Transformation to the first basis gives Proposition 10.8. ��
Frobenius’s theorem gives a fundamental relation between two canonical

bases. So, let
α′∗

1 , . . . , α
′∗
p ; β′∗

1 , . . . , β
′∗
p

be the dual basis of a second canonical system. To simplify the formulae, we
define

αn+i = βi, α
′∗
n+i = β′∗

i (1 ≤ i ≤ p).
There exists an integral 2p×2p matrix M = (mij) which describes the relation
between the two systems,

α′∗
i =

2p∑

j=1

mijα
∗
j .

From Frobenius’s theorem, we immediately obtain the following result:
The transition matrix M = (mij) is symplectic.

We denote the canonical bases of Ω(X) with respect to the two canonical
systems by

ω1, . . . , ωp; ω′
1, . . . , ω

′
p.

The matrix which describes the change from the first to the second is denoted
by A:

ω′
i =

p∑

j=1

aijωj (1 ≤ i ≤ p).

A direct computation gives the following result.
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10.9 Proposition. There exist
a) a matrix A ∈ GL(n,C) and
b) an integral symplectic matrix M ∈ Sp(2n, Z) such that

A · (E,Z) ·M = (E, Z̃).

As we have seen in connection with the theory of the elliptic modular group
([FB], Chap. V), the equation above means that in the case p = 1, there exists
an elliptic modular substitution

M ∈ SL(2, Z)

which transforms Z into Z̃. In the case p > 1, we shall see that the integral
symplectic group will do the same in general. For the moment, we shall only
define the corresponding equivalence relation.

10.10 Definition. Let

Hp :=
{
Z ∈ C

(p,p); Z = Z′, Y > 0
}

be the set of symmetric complex p × p matrices with positive imaginary part.
Two points Z, Z̃ ∈ Hp are called equivalent if there exist matrices A ∈
GL(n,C), M ∈ Sp(n, Z) with the property

A · (E,Z) ·M = (E, Z̃).

Obviously, this is an equivalence relation (see Exercise 1).
Notation. Let

Ap = Hp/ ∼

be the set of equivalence classes with respect to this equivalence relation.
In the case p = 1, the space Hp is the usual upper half-plane, and

A1 = H1/ SL(2, Z)

is its quotient by the elliptic modular group.
So, we have associated a well-defined point

τ(X) ∈ Ap

with each compact Riemann surface. Biholomorphically equivalent surfaces
lead to the same point.
Notation. LetMp be the set of all biholomorphy classes of compact Riemann
surfaces of genus p.
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10.11 Remark. The assignment X → τ(X) gives a map, called the period
map,

τ :Mp −→ Ap.

A fundamental theorem of Torelli states that the period map τ is injective. We
shall not prove this theorem in the case p > 1. The case p = 0 is relatively
simple. By the uniformization theorem, every Riemann surface of genus 0 is
biholomorphically equivalent to the Riemann sphere. So, M0 consists of a
single element. The case p = 1 is somewhat more involved. Complex tori C/L
are surfaces of genus 1. From the theory of elliptic functions, we know that the
subset M′

1 ⊂ M1 of all isomorphy classes given by tori is mapped bijectively
to

A1 = H/SL(2, Z).

Hence, in the case p = 1, Torelli’s theorem is equivalent to the following state-
ment:

Every Riemann surface of genus 1 is biholomorphic equivalent to a complex
torus C/L.

We shall prove this result later as an application of Abel’s theorem. (There is
another proof which uses the uniformization theorem.)

Hence, in the case p = 1, the period map is not only injective but also
bijective. The situation for p > 1 is different. One can show that Ap is a
complex space of dimension

dimCAp =
p(p+ 1)

2
(= number of “variables” in Hp)

andMp is a complex subspace of dimension

dimCMp = 3p− 3.

Hence, for p > 2, Mp is a thin subset of Ap.
The so-called Schottky problem asks for a description of Mp inside Ap by

equations and inequalities.

There is another essential difference between the cases p = 1 and p > 1. Let

P = P (p,2p) ∈ C
(p,2p)

be a complex p × 2p matrix whose columns are R-linearly independent. We
can ask whether there exist matrices A ∈ GL(n,C), U ∈ Sp(n, Z) with the
property

A · P · U = (E,Z), Z ∈ Hp.
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For p = 1, this is always case. But in the case p > 1, this is not true, as the
following rough dimensional argument explains. The number of free complex
parameters of P modulo A and U is

p · 2p− p2 = p2,

but the complex dimension of Hp is only p(p+1)/2. For p > 1, the two numbers
are different. More detail will be given in Chap. VI about abelian functions.

Exercises for Sect. IV.10

1. Verify that an equivalence relation has been defined in Definition 10.10, and show
that in the case p = 1 it leads to the usual equivalence mod SL(2, Z).

2. The choice of a lattice basis defines a normal form on X = C/L. Determine the
associated canonical basis of Ω(X).

11. Abel’s Theorem

The Riemann–Roch theorem does not tell us when a divisor of degree 0 is
a principal divisor. The case of a torus C/L here is exceptional. Since the
canonical class is trivial, we have

dimL(D) > 0 for degD > 0.

From this result, it is easy to deduce the difficult direction in Abel’s theorem for
elliptic functions and, conversely, the Riemann–Roch theorem for tori follows
easily from Abel’s theorem for elliptic functions, as we already have pointed
out.

It is more complicated to find an analogue for Abel’s theorem for an arbi-
trary Riemann surface of genus p > 1.

The Jacobi Variety

In this section, we use the notion of a “period” in a slightly modified form. Let
ω1, . . . , ωp be a basis of the space Ω(X) of everywhere holomorphic differentials,
and let α be a closed curve X . The p-tuple

(A1, . . . , Ap) with Aj :=
∫

α

ωj (1 ≤ j ≤ p)

is called a period of X with respect to the given basis.
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11.1 Definition. A subset L of a finite-dimensional real vector space is called
a lattice if there exists a basis e1, . . . , en such that

L = Ze1 + · · ·+ Zen.

By a lattice in a finite-dimensional complex vector space, we understand a
lattice of the underlying real vector space.

11.2 Remark. The set L of all periods

L = L(ω1, . . . , ωp) ⊂ C
p

with respect to a given basis of Ω(X) is a lattice.

Proof. If α runs through all curves of a canonical system, then we obtain 2p
periods, which, as we know, are linearly independent over R. Any period can
be written as an integral linear combination of these 2p periods. ��

We consider the 2p-dimensional torus

Jac(X) := C
p/L,

and call Jac(X) the Jacobi variety of X . The Jacobi variety does not depend
in an essential manner on the choice of the basis. If ω′

1, . . . , ω
′
p is a second basis

and L′ is the associated lattice, then we have

A(L) = L′,

where A is the matrix which transforms ω1, . . . , ωp into ω′
1, . . . , ω

′
p. The iso-

morphism
A : C

p −→ C
p

then induces a bijection of tori

A : C
p/L −→ C

p/L′.

If we prefer, we can describe the Jacobi variety in a basis-invariant form as follows.
Let

Ω(X)∗ := HomC(Ω(X),C)

be the dual space of Ω(X). With each closed curve α in X we associate an element
of this dual space, namely the linear form

ω �−→
∫

α

ω.
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The set of these linear forms is a lattice L ⊂ Ω(X)∗, and the Jacobi variety is

Jac(X) = Ω(X)∗/L.

We choose a point q ∈ X and define a map

λ = λq : X −→ Jac(X)

as follows. First we associate with a point a ∈ X the tuple
⎛

⎝
a∫

q

ω1, . . . ,

a∫

q

ωp

⎞

⎠ ,

where we have chosen a fixed curve from q to a. This tuple is determined up
to a period from L. Hence the coset in Jac(X) is well defined. We call λ the
period map.

We shall make essential use of the fact that, as in the case p = 1, the torus
C
p/L has a structure in the form of an abelian group. This is defined in such

a way that the natural projection

C
p −→ C

p/L

is a homomorphism. This fact gives us the possibility to extend the map λ to
a map

Λ : D(X) −→ Jac(X),

which is defined on the set of all divisors . We simply define this map by

Λ(D) =
∑

a∈X
D(a)λ(a) (finite sum).

The diagram

(a) D(X) Λ �� Jac(X)

a�


����������


���������
X

λ

��












��������

commutes. The map Λ has been constructed in such a way that it is a homo-
morphism of groups.

11.3 Remark. Let D(0)(X) be the set of divisors of degree zero. The restric-
tion of Λ to D(0)(X),

Λ : D(0)(X) −→ Jac(X),

is independent of the choice of the base point q.

The well-known Abel’s theorem states the following.
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11.4 Theorem. A divisor D ∈ D(X) is the divisor of a meromorphic function
if and only if the following two conditions are satisfied:
1) degD = 0, i.e. D ∈ D(0)(X).
2) Λ(D) = 0 (in Jac(X)).

This theorem can be formulated as a theorem about integrals of algebraic
functions without talking about Riemann surfaces. The second condition was
proved in this form by N.A. Abel in 1828. The converse was proved for the
first time by A. Clebsch in 1865.

Before the proof, we formulate some corollaries.

Corollary 1. The map
λ : X −→ Jac(X)

is injective in the case p ≥ 1.

Proof of Corollary 1. Let a, b ∈ X , such that

a 	= b, λ(a) = λ(b).

By Abel’s theorem, there exists a meromorphic function f with

(f) = (a)− (b).

But this would be a function of degree one; it would give a biholomorphic map
from X onto the Riemann sphere. ��

Corollary 2. Let p = 1. The map

λ : X −→ Jac(X) = C/L

is a biholomorphic map of Riemann surfaces. In particular, every Riemann
surface of genus one is biholomorphically equivalent to a torus C/L.

Abel’s theorem for elliptic functions is a consequence of the general theorem
stated in Theorem 11.4. For the proof of the second corollary, we simply
observe that the map λ is holomorphic. It is injective, but also surjective, since
its image is open and compact in C/L. Hence λ is bijective, which implies that
it is biholomorphic.

The Proof of Abel’s Theorem

This proof rests on a certain period relation for the so-called normalized
(abelian) differentials of the third kind,*) which we shall now derive.

*) One subdivides the meromorphic differentials in those of the first kind (everywhere

holomorphic), those of the second kind (the residues of all poles vanish), and those

of the third kind (all poles are simple).
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Consider a normal form with a corresponding projection

π : X (p) −→ X,

and denote by
α1, . . . , αp, β1, . . . , βp

the corresponding canonical system. Let a, b be two different points on X. By
an abelian differential of the third kind with respect to these two points, we
understand a differential ω = ωab with the following properties:
1) ω is holomorphic outside {a, b}.
2) ω has poles of order one at a and b.
3) Resa ω = −Resb ω = 1.
We know that such a differential exists. Of course, ω is determined only up
to an everywhere holomorphic differential. We assume that neither of the two
points is contained in the canonical system. We can then normalize ω in such
a way that ∫

αk

ω = 0 for k = 1, . . . , p.

After this normalization, ω is uniquely determined. We call it the normalized
abelian differential of the third kind. This normalized differential satisfies an
important period relation.

11.5 Lemma. Let
π : X (p) −→ X

be the natural projection with respect to a given normal form, let α1, . . . , αp,
β1, . . . , βp the corresponding canonical system, and let ω1, . . . , ωp be the cor-
responding canonical basis of Ω(X). Let a, b be two points which do not lie
on the canonical system, and let ωab be the corresponding normalized abelian
differential of the third kind. We then have

∫

βk

ωab = 2πi

a∫

b

ωk (1 ≤ k ≤ p),

where, on the right-hand side, the integral is taken along some path from b to
a which does not meet the canonical system.

Note. This integral does not depend on the choice of the curve, since the
complement of the canonical system is simply connected.
Proof . In the complement of the canonical system, ωk admits a (holomorphic)
primitive

fk : X0 −→ C, ωk = dfk.
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We denote the corresponding function in the interior of the 4p-gon by

fk : X (p)◦ −→ C,

and similarly for the pulled-back differential of ωab. We know that fk extends
to X (p) as a continuous function. From the behavior of fk, we obtain

∮

∂X (p)

fkωab =
∫

βk

ωab.

We want to compute the integral on the left-hand
side by means of the residue theorem, and prefer for
this purpose to argue on the Riemann surface and
not on the 4p-gon. For this, we shrink the 4p-gon by
a factor 0 < r < 1, which can be arbitrarily close to
1. The shrunken 4p-gon is denoted by Xr(p). We run
through ∂Xr(p) in the usual orientation and denote
the image curve in X by ∂(r).

���� ba

A simple continuity argument shows that
∮

∂X (p)

fkωab = lim
r−→1

∮

∂(r)

fkωab.

The curve ∂(r) runs in the complement of the canon-
ical system. We draw a small circle around each of
the points a and b and join the circles by a segment.
This gives a closed curve α in X0 − {a, b} which is
freely homotopic to ∂(r). It is easy to prove this in
the 4p-gon.

By the homotopic version of the Cauchy integral theorem for the Riemann
surface X0 − {a, b}, we obtain

∮

∂(r)

fkωab =
∫

α

fkωab.

The integral along α equals the sum over the residues of

fkωab,

so it equals f(a)− f(b). Since fk is a primitive of ωk, we obtain

f(a)− f(b) =

b∫

a

ωk.

This proves the lemma. ��
Besides Lemma 11.5, we need another lemma which generalizes the fact that

the winding number (defined by the index integral) is an integer.
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11.6 Lemma. Let f : X → C
.

be a holomorphic function without zeros on a
Riemann surface X. The integral

1
2πi

∫

α

df

f

is an integer for every closed curve α.

Proof . If f has a holomorphic logarithm F , we have

1
2πi

∫

α

df

f
=

1
2πi

(F (α(1))− F (α(0)))

for an arbitrary (not necessarily closed) curve α.
In general, each point of X admits an open neighborhood in which f admits

a holomorphic logarithm. The construction of the analytisches Gebilde now
shows that there exists a Riemann surface X̃ and a covering

p : X̃ −→ X

such that the pullback f̃ = f ◦ p admits a holomorphic logarithm F̃ . We lift
α to a curve α̃ on X̃ and obtain, by means of the transformation invariance of
the line integral,

1
2πi

∫

α

df

f
=

1
2πi

∫

α̃

df̃

f̃
=

1
2πi

(
F̃ (α̃(1))− F̃ (α̃(0))

)
.

Now F̃ (α̃(1)) and F̃ (α̃(0)) are both logarithms of f(α(0)) = f(α(1)). They
differ by an integral multiple of 2πi. ��

After these preparations, we now prove one direction of Abel’s theorem,
namely that the conditions 1) and 2) are necessary. For the condition 1), this
is already known. It remains to show the following.

Claim. If f is a nonzero meromorphic function, then

Λ((f)) = 0 (in Jac(X)).

Proof . We choose a normal form of X:

X (p) −→ X.

We may assume that none of the poles or zeros of f is contained in the canonical
system. (Even though we have not mentioned it elsewhere, it should be clear
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that the construction of the normal form can be performed in such a way that
finitely many points are outside the canonical system.)

We also choose some base point q in which f has neither a pole nor a zero
and which also avoids the canonical system. We write the divisor of f in the
form

(f) = (a1) + . . .+ (an)− (b1)− . . .− (bn),

where ai are the zeros and bi the poles of f . Then we consider the differential

df

f
−

n∑

k=1

(ωakq − ωbkq).

Here ωab denotes the normalized abelian differential of the third kind. This
differential is holomorphic everywhere. Hence we have

df

f
=

n∑

k=1

(ωakq − ωbkq) +
n∑

k=1

ckωk,

with suitable constants ck. Here (ω1, . . . , ωp) denotes the canonical basis (with
respect to the given canonical system) of Ω(X). Now we compute the image of
the principal divisor (f) in the Jacobi variety Jac(X). For this, we consider

Λj :=
p∑

k=1

⎛

⎝
ak∫

q

ωj −
bk∫

q

ωj

⎞

⎠ ,

where the curve is chosen in the complement of the canonical system. The
tuple

Λ := (Λ1, . . . ,Λp) ∈ C
p

is a well-defined representative of Λ((f)) ∈ Jac(X). Now the period relation
for the abelian differentials of the third kind shows that

Λj =
1

2πi

∫

βj

df

f
− 1

2πi

p∑

k=1

ck

∫

βj

ωk.

Obviously, Λ := (Λ1, . . . ,Λp) is an element of the period lattice if the following
two conditions are satisfied:

a)
1

2πi

∫

βj

df

f
∈ Z,

b)
1

2πi
ck ∈ Z.
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Making use of ∫

αk

df

f
= ck,

then a) and b) follow from Lemma 11.6. ��
It remains to show that the following claim is true.

Claim. The conditions 1) and 2) in Theorem 11.4 are sufficient.
We start with a divisor

D = (a1) + . . .+ (an)− (b1)− . . .− (bn).

We choose a further base point b0 which is different from a1, . . . , an, b1, . . . , bn,
and which is not contained in the canonical system. We consider the differential

ω :=
n∑

k=1

(ωakb0 − ωbkb0) +
n∑

k=1

ckωk,

with constants ck which still have to be determined. Then we consider the
function f , where

f(a) := exp

a∫

b0

ω.

If this expression does not depend on the choice of the curve from b0 to a, then
f is meromorphic on X with a divisor (f) = D. What remains to be shown is
the following:
Let Λ(D) = 0 in Jac(X). Then the constants ck can be chosen in such a way
that

1
2πi

∫

αk

ω,
1

2πi

∫

αk

ω (1 ≤ k ≤ p),

are integral numbers.
We have ∫

αk

ω = ck (1 ≤ k ≤ p)

and, because of the period relations in Lemma 11.5,

∫

βj

ω = 2πi
p∑

k=1

⎛

⎝
ak∫

q

ωj −
bk∫

q

ωj

⎞

⎠+
p∑

k=1

ck

∫

βj

ωk.

Now we use the assumption

Λ(D) = 0 in Jac(X).
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This means that

p∑

k=1

⎛

⎝
ak∫

q

ωj −
bk∫

q

ωj

⎞

⎠ = nj +
p∑

k=1

mk

∫

βk

ωj

with integers nj ,mk. If we define

ck := −2πimk,

everything has been shown and Abel’s theorem is proved. ��

Exercise for Sect. IV.11

1. How does the map Λ : D(X) → Jac(X) change if the base point is changed?

12. The Jacobi Inversion Problem

Let Pic(0)(X) be the group of divisor classes of degree 0. From Abel’s theorem,
it follows that the natural map

Λ : D(0) −→ Jac(X)

induces an injective map

Pic(0)(X) −→ Jac(X).

It is natural to ask whether this map is also surjective. We shall see that the
answers is yes. The map

Pic(0)(X) −→ Jac(X)

will turn out to be an isomorphism. One can interpret this as follows: the
bijection equips Pic(0)(X) with a structure in the form of a complex torus.

Actually, we shall prove more. For this, we introduce the symmetric power
of a set X. The nth Cartesian power is defined by

Xn = X × . . .×X (n times).

The symmetric group (the permutation group of the digits 1, . . . , n) Sn acts on
Xn by

σ(x1, . . . , xn) := (xσ−1(1), . . . , xσ−1(n)).
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If we identify two n-tuples iff they differ by such a permutation, we obtain the
so-called nth symmetric power,

X(n) := Xn/Sn.

12.1 Remark. The assignment

X(n) −→ D(X),
(a1, . . . , an) �−→ (a1) + . . .+ (an),

defines a bijection of the nth symmetric power X(n) with the set of divisors
with the properties

D ≥ 0, degD = n.

Now, let X be a Riemann surface with base point q. We consider the map

Λ = Λn : X(n) −→ Jac(X),

which has been defined by

Λn(a1, . . . , an) =

⎛

⎝
a1∫

q

ωj + . . .+

an∫

q

ωj

⎞

⎠

1≤j≤p

.

The Jacobi inversion theorem*) states the following.

12.2 Theorem. Let X be a compact Riemann surface of genus p.
1) The map

Λp : X(p) −→ Jac(X)

is surjective. Its fibers are connected.
2) There exists an open, dense subset U ⊂ X(p) such that the restriction

of Λp to U defines a topological map from U onto an open, dense subset of
Jac(X).

Of course, X(p) = Xp/Sp has been equipped here with the quotient topology
of the p-fold Cartesian product (equipped with the product topology).

(Why the pth and not another symmetric power? This is explained by a
dimensional consideration: Jac(X) is a torus of complex dimension p.)

Jacobi’s theorem tells us that Λp is “nearly bijective”. But only in the case
p = 1 is it really bijective. The analysis of the “degeneration locus” of Λp is
very interesting but difficult.

Before the proof of the inversion theorem we give an important corollary.

*) This name is not correct historically. In Theorem VI.13.13, we will see that

the map Λp defines a bijection between the meromorphic functions on X(p) and on

Jac(X). This is the true solution of the Jacobi inversion problem. We shall treat

this question and will give more historical background in connection with the proof

of Theorem VI.13.13.
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12.3 Corollary. The map

Λ : Pic(0)(X) ∼−→ Jac(X)

is bijective.

Proof of Theorem 12.2 .
First step. There exists an open, dense subset U of the p-fold Cartesian
product Xp such that the restriction of Λp (more precisely, its composition with
the natural projection Xp → X(p)) is locally topological.
For the proof, we use an argument from calculus. Let U, V ⊂ C

n be open
subsets and let ϕ : U −→ V be a map with the following properties:
1) The functions

zν �−→ ϕµ(z1, . . . , zn) (1 ≤ ν, µ ≤ n)

are holomorphic for fixed z1, . . . , zν−1, zν+1, . . . , zn; the (complex) partial
derivatives are continuous.

2) The matrix of the complex derivatives

JC(ϕ, z) :=
(
∂ϕµ
∂zν

)

1≤µ,ν≤n

is invertible for all z ∈ U .
Claim. Then ϕ is locally topological.
For the proof, we observe that it follows from the existence and continuity of
the complex partial derivatives that ϕ is continuously partially differentiable in
the sense of real analysis. Let JR(ϕ, z) be the real 2n×2n Jacobi matrix. From
the Cauchy–Riemann differential equations, we obtain a formula to compute
JR from JC. We can use this to show that

detJR(ϕ, z) = |detJC(ϕ, z)|2 .

Hence the claim follows from the real theorem of invertible functions. We used
the same method in [FB], Chap. I, to reduce the theorem of invertible functions
to its real analogue, and also used this kind of argument in the appendix B of
Sect. I.6 (“A Theorem of Implicit Functions”).

For the proof of the first step, it is sufficient to construct for each nonempty
open subset U ⊂ Xp a nonempty open subset U0 ⊂ U such that the restriction
of Λp to U0 is locally topological. We can assume that U is of the form U =
U1 × . . .× Up with disks

ϕi : Ui −→ E.

Our holomorphic differentials ων correspond, in these disks, to holomorphic
functions

fν : E −→ C.
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The period map is changed by a translation only if we change the base point
q. Hence we can assume that the base point corresponds to (0, . . . , 0) ∈ E

p. In
these coordinates, the period map is described by

Λp : E
p −→ C

p,

(z1, . . . , zp) �−→ (A1(z1, . . . , zp), . . . , Ap(z1, . . . , zp)) ,

Aν(z1, . . . , zp) :=
p∑

µ=1

zµ∫

0

fν(ζ) dζ.

The complex Jacobian of this map is

(fν(zµ)) .

The functions fν are linearly independent, as are the ων . We have to show
that they are invertible for at least one tuple (z1, . . . , zp) ∈ U . This is an easy
consequence of the linear independence of the functions f1, . . . , fp (see Exercise
1).
Second step. Surjectivity of Λp.
Consider a point

C = (C1, . . . , Cp) ∈ C
p/L = Jac(X).

We have to construct a divisor

D ≥ 0, degD = p,

such that
Λp(D) = C in C

p/L.

For the proof, we consider a tuple (a1, . . . , ap) ∈ Xp such that a full neighbor-
hood of this tuple is mapped topologically onto an open subset of Jac(X) by
Λp (see step 1). Consider

C ′ = Λp(a1, . . . , ap) (= Λp((a1) + · · ·+ (ap))).

For sufficiently large n, the point

C ′ + C/n

is contained in this open subset of Jac(X) and hence in the image of Λp. Hence
there exists a p-tuple

(b1, . . . , bp) ∈ Xp

with
Λp(b1, . . . , bp) = C ′ + C/n = Λp(a1, . . . , ap) + C/n
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or
C = n(Λp((b1) + · · · (bp)− (a1)− · · · − (ap))).

Now we consider the divisor

D := n(b1) + · · ·+ n(bp)− n(a1)− · · · − n(ap) + p(q).

Its degree is p. From the Riemann–Roch theorem, we obtain the existence of
a meromorphic function

f ∈ L(D), f 	= 0.

The divisor

D̃ = (f) +D = (f) + (b1) + · · ·+ (bp)− (a1)− · · · − (ap) + p(q)

is ≥ 0 and has degree p. By Abel’s theorem (the “necessary” part), we have
Λ((f)) = 0 and hence

Λ(D̃) = C.

Remark . We have used the Riemann–Roch theorem for the proof of the surjectivity of

Λp. By using fundamental results of complex analysis for several variables, we could

have avoided the Riemann–Roch theorem. Those who are already familiar with the

following argument will understand it immediately. Λp(Xp) is an analytic subset of

Jac(X) which has dimension p, by the first step. Hence it must agree with Jac(X).

Third Step. The fibers Λ−1
p (C) of the map

Λp : X(p) −→ Jac(X)

are connected.
This will complete the proof of the Jacobi inversion theorem, since by step 1
there exists an open, discrete subset in Xp, and hence also an open, dense
subset in U ⊂ X(p), such that each point a ∈ U is isolated in its fiber

a ∈ Λ−1
p (Λp(a)) .

Since the fiber is connected, it can consist only of the point a. This means that
the restriction of Λp to U is injective. By the first step, we can choose U in
such a way that the map U → Jac(X) is open. Then the image V ⊂ Jac(X) is
open and U → V is topological.
Proof of the third step. Let D ∈ X(p). We consider D as a divisor:

D ≥ 0, degD = p.

Let
f ∈ L(D)− {0}.
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Then D′ = D + (f) also has the property

D′ ≥ 0, degD′ = p.

By Abel’s theorem, D and D′ have the same image in Jac(X). We obtain the
following result:
The map

H : L(D)− {0} −→ X(p), f �−→ D + (f),

defines a surjective map from L(D) − {0} onto the fiber Λ−1
p (Λp(D)) which

contains D.

More precisely, we have the following. If we identify two elements of L(D) − {0}
which differ only by a constant factor, we obtain the associated projective space
P (L(D)). The above map induces a bijection

P (L(D))
∼−→ Λ−1

p

(
Λp(D)

)
.

The space L(D) is a finite-dimensional vector space and hence carries a well-
defined topology. (We choose a basis, identify L(D) with C

d, and transport the
usual topology from C

d. This topology on L(D) is independent of the choice
of the basis.)

For the proof of the connectedness of the fiber, it is sufficient to show the
following:
The map

L(D)− {0} −→ X(p), f �−→ D + (f),

is continuous.
The proof of the continuity rests on the continuity of the roots by variation of
an analytic function.

We want to prove the continuity at a given element f ∈ L(D)−{0}. For this,
we take f as the first element of some basis f = f1, . . . , fd. Now we consider,
on L(D), the maximum norm with respect to this basis. The topology on L(D)
can be defined by this norm. From the assumption, we have

(f) +D = (a1) + · · ·+ (an)

with certain (not necessarily pairwise different) points ai ∈ X . Let U ⊂ X(p)

be a neighborhood of the image point. We have to construct ε > 0 such that

||g − f || < ε =⇒ (g) +D ∈ U.

Since the map Xp → X(p) is open and continuous, we can assume that U is the
image of a set of the form W1×· · ·×Wp with open neighborhoods ai ∈Wi ⊂ X.
Hence we have to show that

||g − f || < ε =⇒ (g) +D = (b1) + · · ·+ (bn) with bi ∈Wi.
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Since we can shrink the neighborhoods Wi, we can realize them in the following
way:

ai = aj =⇒Wi = Wj , ai 	= aj =⇒Wi ∩Wj = ∅.

We can assume that Wi is biholomorphically equivalent to a disk and (after
shrinking this disk) that it has a “good” boundary. A further assumption which
we can make is that f has neither poles nor zeros on the boundary of Wi. A
simple compactness argument now shows that ε > 0 can be chosen so small
that every g with ||g − f || < ε also has no zeros or poles on the boundary of
Wi.

On an open neighborhood W of W̄1 ∪ . . . ∪ W̄n, we find a meromorphic
function h which fits D there. This means Ord(h, a) = D(a) for all a ∈ W .
The functions F := fh and, more generally G := gh for arbitrary g ∈ L(D)
are holomorphic on W . We know the numbers of the zeros of the function in
Ui. These numbers are ni, where ni describes how often ai occurs among the
a1, . . . , an. On the other hand, the number of zeros is given by the integral

1
2πi

∫

∂Ui

dF

F
.

Since the zero-counting integral is always an integer, we obtain by a continuity
argument

1
2πi

∫

∂Ui

dG

G
=

1
2πi

∫

∂Ui

dF

F
= ni.

Hence the function has precisely ni zeros in Ui (counted with multiplicity). If
we use the index j with aj = ai for them, we obtain in total n zeros b1, . . . , bn,
with bi ∈Wi, which represent the divisor of G inside W1 ∪ . . .∪Wn. Hence the
divisor (g) +D inside W1 ∪ . . . ∪Wn agrees with the divisor (b1) + . . .+ (bn).
Since we know (g) +D ≥ 0 everywhere, we obtain generally

(g) +D ≥ (b1) + · · ·+ (bn).

Equality must hold, since the degrees are equal. This proves the claimed con-
tinuity. ��

Functions with Several Periods

Let X be a compact Riemann surface of genus p > 0. We consider a noncon-
stant meromorphic function

f : X −→ C̄.

This is holomorphic on the complement of a finite subset S = f−1(∞),

f0 : X0 −→ C, X0 := X − S.
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The function f0 induces in an obvious way a map

f0 : X(p)
0 −→ C

(p).

In the appendix to this section, we define by means of elementary symmetric
functions a topological map E : C

(n) ∼→C
n. We compose this map with f0 to

obtain a map F : X(p) → C
p. This is nothing but a p-tuple of functions

F1, . . . , Fp : X(p)
0 −→ C.

We compose this with the “inverse map” of

X(p) −→ Jac(X)

to obtain a p-tuple of functions A1, . . . , Ap which are defined on an open, dense
subset of Jac(X) = C

p/L. Pulling them back to C
p, we obtain

a) an open subset U ⊂ C
p with the property

a ∈ U =⇒ a+ g ∈ U for all g ∈ L;

b) a p-tuple of functions

A1, . . . , Ap : U −→ C

with the property

Aν(z + g) = Aν(z) for z ∈ L.

In this way, we obtain functions with 2p periods .

In the case p = 1 it is clear that we are dealing with elliptic functions. So,
for p > 1, we are forced to deal with the following problems:

1) Develop the notion of a meromorphic function of several complex variables.

2) Show that the functions A1, . . . , Ap are meromorphic on C
p.

3) Develop a theory of meromorphic functions on C
p which have L as their

period lattice.

These questions determine the subjects of the rest of this book.
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Appendix to Sect. 12. Continuity of Roots
We denote by

Eν =
∑

k1+...+kn=ν

zk1
1 . . . zknn , 1 ≤ ν ≤ n,

the elementary symmetric polynomials. The induced map

E : C
n −→ C

n, z �−→ (E1(z), . . . , En(z)) ,

factorizes for trivial reasons through the symmetric power

C
(n) = C

n/Sn :

C
n E ��

p
����

��
��

��
C
n

E

��
��

��
��

C
(n)

12.4 Proposition. The map which is induced by the elementary symmetric
functions

C
(n)

E∼−→ C
n

is topological.

Remark . Instead of elementary symmetric functions, we could take the power
sums

Tν(z) =
n∑

j=1

zνj (1 ≤ ν ≤ n)

(since it can be shown by elementary algebra that the Tν can be written as
polynomials in the Eν and conversely).
Proof.
1) The continuity of E follows from the definition of the quotient topology on

C
n/Sn.

2) E : C
(n) → C

n is bijective.
3) We define the inverse map as follows. Let (α0, . . . , αn−1) ∈ C

n. We consider
the normalized polynomial with these coefficients and factorize it:

Xn + αn−1 + · · ·α0 = (X − a1) · . . . · (X − an).

The zeros a1, . . . , an are determined up to their ordering. So, they define a
point in C

(n). It is well known that the coefficients αi up to the sign, are the
elementary symmetric expressions in the zeros. This proves the bijectivity.



13. Multicanonical Forms 279

4) E : C
n → C

n is proper, i.e. the inverse image of a compact subset is
compact. This follows from a version of the continuity of roots, which we
know already (Lemma I.3.5).

A continuous, bijective, and proper map is topological, since the images of
closed subsets are closed (and hence the inverse images of closed subsets under
E−1 are closed, which shows that E−1 is continuous.) ��

Exercise for Sect. IV.12

1. Let
g1, . . . , gn : M −→ C

be n linearly independent functions on some set M. Show that there exists a
finite subset X ⊂ M, consisting of n elements, such that the restrictions

g1|X , . . . , gn|X
are linearly independent.

Appendices to Chapter IV.
Dimension Formulae for Spaces of Modular Forms

13. Multicanonical Forms

Let X = (X,A) be a Riemann surface. We recall the notion of a holomorphic
differential.

By definition, a holomorphic differential is given by a family

ω = (ωϕ)ϕ∈A (ϕ : Uϕ −→ Vϕ)

of holomorphic functions ωϕ : Vϕ → C such that, in the intersection Uϕ ∩ Uψ
of two charts ϕ,ψ ∈ A, the transformation formula

γ∗ωϕ = ωψ with γ := ψ ◦ ϕ−1

is valid. This means that if a ∈ Uϕ ∩ Uψ is a point in the intersection and if
z = ϕ(a), w = ψ(a) are the corresponding chart points, then

ωψ(w) = γ′(z)ωϕ(z).

This notion can be generalized if the derivative γ′(z) is replaced by a power.
In this way, we arrive at the notion of a higher differential or a multicanonical
form. We prefer the latter terminology.
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13.1 Definition. A (holomorphic) multicanonical form of weight m ∈ Z on
an analytic atlas A is a family

ω = (ωϕ)ϕ∈A (ϕ : Uϕ −→ Vϕ)

of holomorphic functions ωϕ : Vϕ → C such that for any two charts ϕ,ψ ∈ A
the transformation formula

ωψ(w) = γ′(z)mωϕ(z)
(z = ϕ(a), w = ψ(a) with a ∈ Uϕ ∩ Vψ)

is valid.

Multi-canonical forms of weight 0 are 0-forms which can be identified with
holomorphic functions onX. Multi-canonical forms of degree 1 are holomorphic
differentials.

13.2 Supplement (supplement to Definition 13.1). We can replace
“holomorphic” by “meromorphic” in the definition and obtain in this way the
notion of a meromorphic multicanonical form.

Some of the rules for differentials immediately carry over to multicanonical
forms. We have to observe that the powers of the derivative satisfy the same
chain rule as the derivative itself. We collect together the most basic rules
below:

1) Every holomorphic (or meromorphic) multicanonical form extends in a
unique manner to a multicanonical form on the maximal atlas. Hence one
can talk about multicanonical forms on a Riemann surface.

2) If U ⊂ X is an open Riemann subsurface, we can define in a natural way
the restriction ω|U of a multicanonical form on X to U . If X =

⋃
i Ui is

an open covering and if, on each Ui, a multicanonical form ωi of some fixed
weight k is given, then we have the following.

There exists a multicanonical form ω on X with ωi = ω|Ui for all i iff

ωi|(Ui ∩ Uj) = ωj |(Ui ∩ Uj) for all i, j

holds.

3) If f : X → Y is a holomorphic map of Riemann surfaces, then for a mul-
ticanonical form ω on Y , we can define a pullback f∗ω on X . This is
a multicanonical form of the same type. This pullback has the following
properties (and can be characterized by these properties):

a) In the case of the canonical inclusion f : U ↪→ X of an open subsurface,
f∗ is the restriction in the sense of 2).



13. Multicanonical Forms 281

b) If f : X → Y and g : Y → Z are two holomorphic maps of Riemann
surfaces, then

f∗ ◦ g∗ = (g ◦ f)∗.

c) Let U ⊂ C be an open subset of the plane, considered as a Riemann sur-
face. Then the holomorphic (or meromomorphic) multicanonical forms
on U correspond to the holomorphic (or meromorphic) functions on U .
If f is a meromorphic function on U , then we may write

ω = f(z)(dz)m

for the corresponding multicanonical form of weight m.
Let ϕ : U → V be an analytic map between open subsets of the complex
plane, let

ω = g(w)(dw)m

be a multicanonical form of weight m on V , and let

ϕ∗ω = f(w)(dw)m

be the pulled-back form; then

f(z) = ϕ′(z)mg(ϕ(z)).

Algebraic Computation Rules for Multicanonical Forms

1) Multicanonical forms ω, ω′ of the same weight can be added:

(ω + ω′)ϕ := ωϕ + ω′
ϕ.

A multicanonical form of the same type is obtained.
2) A holomorphic (or meromorphic) multicanonical form ω can be multiplied

by a holomorphic (or meromorphic) function:

(fω)ϕ := fϕωϕ.

A multicanonical form of the same type is obtained.
The latter operation admits an important generalization:
3) Let ω, ω′ be multicanonical forms of weight m,m′. We can define the prod-

uct ωω′ by
(ωω′)ϕ := ωϕω

′
ϕ,

and we obtain a multicanonical from of weight m+m′.
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Since this product is different form the alternating product of differential forms,
we sometimes write

ω ⊗ ω′ = ωω′

and call ω ⊗ ω′ the tensor product of the two forms. This tensor product is
commutative, associative, and distributive for trivial reasons. So, we can define
the powers

ω⊗n = ωn := ω · · ·ω (n times).

This notation is compatible with the notation f(z)(dz)m already introduced
for open subsets of the plane.

Let X be a connected Riemann surface and let ω be a meromorphic mul-
ticanonical form which is not identically zero. As in the case of functions and
differentials, it can be shown that none of the components ωϕ vanishes. This
observation allows us to define the multicanonical form ω−1 of weight −m by

(
ω−1
)
ϕ

=
(
ωϕ
)−1

.

Invariant Multicanoncal Forms

Let γ : X → X be a biholomorphic self-map of a Riemann surface X and let
ω a multicanonical form on X . We call ω invariant under γ if γ∗ω = ω. More
generally, let Γ be a group of biholomorphic transformations of X; we then call
ω invariant under Γ if it is invariant under all γ ∈ Γ:

γ∗ω = ω for all γ ∈ Γ.

As for functions and differentials, we have the following lemma.

13.3 Lemma. Let Γ be a group of biholomorphic transformations of a
Riemann surface X which acts freely on X, let Y = X/Γ be the quotient
surface, and let π : X → Y be the natural projection. The assignment

ω �−→ π∗ω

defines a one-to-one correspondence between the set of holomorphic (or mero-
morphic) multicanonical forms on Y and the set of Γ-invariant holomorphic
(or meromorphic) multicanonical forms on X.

In the special case X = D ⊂ C of an open subset of the plane, the invariance
property γ∗ω = ω for a multicanonical form ω = f(z)(dz)m means nothing
more than

f(γz)
(
γ′(z)

)m = f(z).
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In particular, if D = H is the upper half-plane and γ is the Möbius transfor-
mation

γ(z) = Mz =
az + b

cz + d
, M =

(
a b
c d

)
∈ SL(2,R),

then the invariance means

f(Mz)(cz + d)−2m = f(z).

Functions with such a transformation property are familiar to us from the
theory of elliptic modular forms.

13.4 Proposition. Let Γ ⊂ SL(2,R) be a subgroup whose image in Bihol H

acts freely. The holomorphic (or meromorphic) forms of weight m on the Rie-
mann surface

X = H/Γ

are in one-to-one correspondence with the holomorphic (or meromorphic) func-
tions on H with the transformation property

f(Mz) = (cz + d)2mf(z) for all M ∈ Γ.

Functions which have a transformation property of this type are called au-
tomorphic forms with respect to Γ. Modular forms are nothing more than
automorphic forms with respect to special groups Γ, namely congruence sub-
groups of the modular group, where, in addition certain conditions usually have
to be required.

The question arises of whether the theory of Riemann surface helps with the
theory of modular forms. In fact, we can determine the dimensions of vector
spaces of modular forms in many cases.

In the first step, we associate a divisor with a multicanonical form. Let
ω be a meromorphic multicanonical form on the Riemann surface X , and let
a ∈ X be a given point. We choose an analytic chart ϕ : Uϕ → Vϕ at a, i.e.
a ∈ Uϕ. We assume that ωϕ does not vanish identically. If X is connected, this
means that ω is not identically zero. The order of the function ωϕ at the point
z := ϕ(a) is independent of the choice of ϕ, since the order of a meromorphic
function does not change if one multiplies it by a holomorphic function without
zeros. Hence we can define the order of ω at a by

Ord(ω; a) := Ord(ωϕ; z).

If X is a connected compact Riemann surface and ω does not vanish identically,
then the order is defined at all points. It is different from zero only on a discrete
subset. Hence it is finite if X is compact. So we can associate with ω a divisor,
which we denote by (ω). We obviously have

(ωω′) = (ω) + (ω′).

The following remark justifies the terminology “multicanonical form”.
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13.5 Remark. Let X be a (connected) compact Riemann surface and let K
be a canonical divisor on X (the divisor of a meromorphic differential). The
divisor of an arbitrary nonzero multicanonical form ω of weight m is equivalent
to mK. As a consequence, we have

deg(ω) = m(2p− 2) (p = genus of X).

Proof. We choose a meromorphic differential ω0 which is different from zero.
Then ω/ωm0 is a multicanonical form of weight 0, which corresponds to a mero-
morphic function which has a degree 0. ��

We can also see that the divisors of two multicanonical forms ω, ω′ of the
same weight which are different from 0 are equivalent, since we have ω′ = fω,
with a meromorphic function f . Then ω′ is holomorphic if and only if

(f) ≥ −(ω′).

Hence the vector space of all multicanonical forms of weightm, which we denote
by Ω⊗m(X), is isomorphic to the Riemann–Roch space L((ω′)) and hence to the
space L(mK), where K is some canonical divisor. This gives us the possibility
to compute the dimension of Ω⊗m(X) by means of the Riemann–Roch theorem.
For the moment we shall restrict ourselves to the case where the degree of a
canonical divisor is positive, i.e. the case p > 1.

13.6 Theorem. Let X be a compact Riemann surface of genus p ≥ 2. The
dimension of the vector space of all holomorphic multicanonical forms of weight
m is

dim Ω⊗m(X) =

⎧
⎨

⎩

0 for m < 0,
p for m = 1,
(p− 1)(2m− 1) for m > 1.

We translate this result into the language of automorphic forms as follows.

13.7 Corollary. Let Γ ⊂ SL(2,R) be a subgroup whose image in Bihol H acts
freely, and is such that H/Γ is compact. The dimension of the vector space of
all automorphic forms of weight k, i.e. of all holomorphic functions f : H → C

with the transformation behavior

f(Mz) = (cz + d)kf(z) for all M ∈ Γ,

equals
(p− 1)(k − 1) (p = genus of H/Γ).

for even k > 2. This dimension is equal to 0 for k < 0, 1 for k = 0, and p for
k = 2.

(Uniformization theory implies p ≥ 2.)
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14. Dimensions of Vector Spaces of Modular Forms

We want to use the Riemann-Roch theorem to compute the dimensions of
spaces of modular forms with respect to congruence subsgroups of the modular
group. All that we need about modular forms can be found in [FB], Chap. VI.
The main difficulty comes from the fact that H/Γ is not compact. To overcome
this difficulty, we compactify this space. Before this, we have to verify that this
space is Hausdorff (compare Sect. III.2, Exercises 6 and 7):

14.1 Remark. Let Γ be a subgroup of the modular group SL(2,Z). The
quotient space H/Γ is Hausdorff.

Proof. Let a, b ∈ H be two points which are inequivalent mod Γ. We have
to show that there are two neighborhoods U(a), U(b) such that no point from
U(a) is equivalent to a point from U(b). (The images of U(a), U(b) are then
disjoint neighborhoods of the images of a, b in the quotient.) We give an indirect
argument and assume the contrary. There then exist sequences an → a, bn → b
such that an and bn are equivalent, i.e. Mnan = bn, Mn ∈ Γ. There exists a
number δ > 0 such that both sequences are contained in the set defined by

|x| ≤ δ−1, y ≥ δ.

Because of [FB], Lemma VI.1.2, the sequence Mn is contained in a finite set.
Taking a subsequence, we can assume that it is a constant M . Taking limits, we
get Ma = b, in contradiction to the assumption that a and b are inequivalent.

��
This proof shows a little more: for every point a in the upper half-plane,

there exists a small neighborhood U(a) such that M(U(a)) ∩U(a) 	= ∅ implies
that M is contained in the stabilizer of a (M(a) = a). This shows the following.

14.2 Lemma. Let Γ be a subgroup of the modular group which, besides
the unit matrix E and possibly −E, does not contain elements of finite order.
Its image in Bihol H acts freely. As a consequence, H/Γ carries a structure
in the form of a Riemann surface. The natural map H → H/Γ is locally
biholomorphic.

We give some examples of such groups below.

14.3 Remark. The so-called principal congruence subgroup of level q ∈ N,

Γ[q] := Kernel
(
SL(2, Z) −→ SL(2, Z/qZ)),

is a subgroup of finite index, which for q ≥ 2 does not contain elements of finite
order which are different from ±E.
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Proof. The kernel of a homomorphism into a finite group always has a finite
index. The elements of finite order of SL(2, Z) are known ([FB], Proposition
VI.1.8). This description proves the remark. ��

By a congruence subgroup, we understand a subgroup of SL(2, Z) which con-
tains Γ[q] for suitable q. Congruence subgroups have a finite index in SL(2, Z).
The space H/Γ is not compact, as the construction of the fundamental domain
of the modular group and its basic properties show. We want to compactify it
by adding a finite number of points. For this, we extend the upper half-plane
by cusps:

H
∗ = H ∪ Q̄, Q̄ = Q ∪ {∞}.

We recall that the modular group also acts on H
∗ by means of the usual

formulae. Hence we can consider, for an arbitrary subgroup Γ of the modular
group, the set

XΓ := H
∗/Γ.

The points which have been added are the cusp classes, i.e. the elements of the
set

SΓ := Q̄/Γ.

We know ([FB], Lemma VI.5.3, Corollary) that this set is finite. In the case
of the full modular group, it consists of one element. We want to introduce a
topology onXΓ. It will be defined as the quotient topology of a certain topology
on H

∗. This topology will have the property that H is an open subset and that
the topology induced by H

∗ is the usual topology on H. We also want to have
that the full modular group acts topologically on H

∗.
The essential part of the construction is to define the neighborhoods of the

cusp i∞. In particular, we must define when a sequence zn ∈ H converges
to i∞. From the theory of modular forms, we can expect that this means
Im zn → ∞ (and not |z|n → ∞; the topology to be constructed will not be
the topology induced by the Riemann sphere, which is also the reason why we
prefer the notation i∞ instead of ∞). So, the sets

U∗
C = UC ∪ {i∞}

with
UC := {z, Im z > C} (C > 0)

should be typical neighborhoods of i∞. Since we want the modular group to act
topologically, the typical neighborhoods of a cusp κ = M (i∞), M ∈ SL(2, Z),
should be the transformed sets M(U∗

C) = M(UC) ∪ {κ}. These sets, called
horocycles, can easily be described.

14.4 Remark. Let M ∈ SL(2, Z), M(i∞) = κ ∈ Q. Each set of the family
M(UC), C > 0, is an open disk in the upper half-plane which touches the real
axis at κ:
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κ

After these preparations, it should be clear how the topology has to be
defined. A set U ⊂ H

∗ is called open if its intersection with H is open in the
usual sense, and, if the cusp κ = M(i∞) is contained in U , a horocycle M(U∗

C)
is contained in U for suitable C. It is easy to prove that this is a topology. We
can also characterize this topology as follows.

14.5 Remark. On H
∗ = H ∪ Q̄, there exists a unique topology with the

following properties:

1) The upper half-plane is an open part; the topology induced by H
∗ gives the

usual topology on H.

2) The modular group acts topolologically on H
∗.

3) A subset U ⊂ H is a neighborhood of i∞ iff it contains a set U∗
C (for suitable

C).

Again we point out that the topology on H
∗ is an unusual one, since it is not

induced by the topology of the Riemann sphere. The set of cusps is discrete in
H

∗. Its importance follows from the following statement.

14.6 Proposition. Let Γ be a subgroup of finite index of the modular group,
for example a congruence subsgroup; then the quotient

XΓ := H
∗/Γ

is compact.

Proof. In the first step, we have to show that XΓ is Hausdorff. For this, we
have to show that two Γ-inequivalent points a, b ∈ H

∗ admit neighborhoods
such that no point of one of the neighborhoods can be equivalent to a point
of the other. We can assume that one of the points is a cusp; without loss of
generality, we assume b = i∞. Again we use an indirect argument and assume
that there exist sequences an → a and bn → b = i∞ such that an and bn are
equivalent, i.e. Mnan = bn, Mn ∈ Γ. We have to distinguish the two cases of
whether a is a cusp or not. We shall treat only the somewhat more difficult
case, where a is a cusp. We choose N ∈ SL(2, Z), with Na = i∞. There exists
δ > 0 such that both of the sequences bn and Nan are contained in the set
defined by y ≥ δ. We can modify the elements an and bn by applying elements
of the stabilizers Γa and Γb, respectively. This shows that it is possible to
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assume that both sequences are contained in the set defined by |x| ≤ δ−1. Now
the same proof as for Remark 14.1 works.

In the next step, we show that XΓ is compact. For Γ = SL(2, Z), this
follows easily from the form of the fundamental domain. If F denotes the
usual fundamental domain of the modular group, then F∗ := F ∪ {i∞} is a
compact subset of H

∗. Its image is the whole of XΓ and hence this is compact.
In the general case, we use the fact that the natural projection

XΓ −→ XSL(2,Z)

is proper. This proves the compactness. ��
We shall show more, namely that XΓ is a compact surface. (The existence

of a mere compactification is not very remarkable, since we always have the
possibility of a one-point compactification.) To prove this, we have to investi-
gate the structure of XΓ close to a cusp class. Here we can restrict ourselves
to the cusp i∞, since an arbitrary modular substitution M ∈ SL(2, Z) induces
a topological map

XΓ −→ XMΓM−1 , [a] �−→ [Ma].

If we choose the constant C large enough, two points of UC are Γ-equivalent if
they can obtained from each other by translation. In other words, the natural
map

UC/Γ∞ −→ H/Γ

is then injective. Here Γ∞ denotes the stabilizer of i∞, i.e. all matrices M ∈ Γ
with the property c = 0. These are of the form

M = ±
(

1 b
0 1

)
.

The closure of UC in H
∗ is

U∗
C := UC ∪ {i∞}.

The natural map
U∗
C/Γ∞ −→ XΓ = H

∗/Γ

is injective too. It follows from the definition of the quotient topology that it
is continuous and open. So, it defines a topological map from U∗

C/Γ∞ onto an
open neighborhood of the cusp class [∞] in XΓ. Let R be the smallest positive
number R such the translation z �→ z + R is contained in the group Γ. We
consider the disk Ur(0) of radius r := exp(−2πi/R) in the complex plane. The
function z → exp(2πiz/R) defines a bijective map

UC/Γ −→ Ur(0)
.
.



14. Dimensions of Vector Spaces of Modular Forms 289

If we associate the origin with the cusp, we obtain an extension to a bijective
map

U∗
C/Γ∞ −→ Ur(0).

Now the topology of H
∗ has been defined in such a way that this map is topo-

logical. By composing it with the embedding into XΓ, we obtain a topological
map of the disk onto a neighborhood of [i∞] in XΓ. Its inverse map is a chart
on XΓ. It is obvious that this chart is analytically equivalent to the charts
which define the analytic structure of H/Γ. The reason is based simply on the
fact that the exponential map is locally biholomorphic. Collecting the above
considerations together, we obtain the following result.

14.7 Proposition. For every congruence group Γ which, besides E and
possibly −E, contains no elements of finite order, there can be constructed a
structure in the form of a compact Riemann surface on XΓ = H

∗/Γ, such that
the following conditions are satisfied:
1) H/Γ is an open Riemann subsurface, and the natural map H → XΓ is

locally biholomorphic.
2) Let C > 0 be large enough that the natural map UC/Γ∞ → H/Γ is in-

jective. Let Ur(0) → U∗
C/Γ∞ be the inverse map of the map induced by

z → exp(2πiz/R). Then the composition

Ur(0) −→ XΓ

defines a biholomorphic map from the disk U(0) onto an open neighborhood
of the cusp class i∞ in XΓ.

3) The map
XΓ −→ XMΓM−1

which is induced by an arbitrary modular substitution M ∈ SL(2, Z) is bi-
holomorphic.

It is clear that the analytic structure of the surfaces XΓ is determined by the
conditions 1)–3).

Let f ∈ {Γ, k} be a meromorphic modular form of even weight k = 2m (in
the sense of [FB], Definition VI.2.1) and let ωf be the associated multicanonical
form on H/Γ. We want to show that ωf extends meromorphically to XΓ. For
this, we investigate ωf at the cusp i∞. We pull back ωf to the chart domain
Ur(0). and obtain a multicanonical form g(q)(dq)m. Here g(q) denotes the
component of ωf with respect to this chart. So, we have to show that g(q)
has an inessential singularity at the origin. We pull g(q)(dq)m back to UC by
means of the function q := exp(2πiz/R). This gives f(z)(dz)m. The rule for
the pullback of a multicanonical form gives

f(z) =
(
dq

dz

)m
g(q) =

(
2πi
R

)m
qmg(q).
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Now we see that g is meromorphic at the origin. The factor qm induces only
a shift of the orders. For example, let m = 1. We see that g has a removable
singularity at the origin iff f vanishes at the cusp i∞.

14.8 Proposition. The vector space Ω(XΓ) of the holomorphic differentials
on XΓ is isomorphic to the space of cusp forms [Γ, 2]0 of weight two. As a
consequence, we have

dim[Γ, 2]0 = p (= genus of XΓ).

Let f be a meromorphic modular form different from zero. In [FB], Sect. VI.2,
we defined the order Ord(f ; a) for an arbitrary point a ∈ H

∗. We recall that if
a is a point in the upper half-plane, then Ord(f ; a) is the usual order. If a is
the cusp i∞, then the order is defined by means of the Fourier expansion. For
this, let us consider the smallest positive number R > 0 such that

(
1 R
0 1

)
or

(
−1 R
0 −1

)

is contained in Γ. Since the weight of f is even, we have f(z + R) = f(z) and
we have an expansion

f(z) =
∞∑

n=−∞
anq

n (q = e2πiz/R).

We define
Ord(f ; i∞) := min{n, an 	= 0}.

If κ = M(i∞), M ∈ SL(2, Z), is an arbitrary cusp, we can replace Γ byMΓM−1

and f by f |M to define

Ord(f ;κ) = Ord(f |M ; i∞).

It is easy to see that this definition is independent of the choice of M . So,
Ord(f ; a) is defined for all a ∈ H

∗. It is trivial to show that this definition
depends only on the Γ-equivalence class of a. So, we can define

Ord(f ;x) := Ord(f ; a), x = [a] ∈ H/Γ.

Only for finitely many x ∈ XΓ is the order different from zero. So, we have
associated with a modular form f 	= 0 a divisor, which we denote by (f). Let
us collect these results together.
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14.9 Remark. With any meromorphic modular form f 	= 0 of even weight
k = 2m we can associate a divisor (f) on the compact Riemann surface XΓ,
such that the following conditions are satisfied:
1) The modular form is entire iff (f) ≥ 0. It is a cusp form iff (f) ≥

∑
s∈SΓ

(s).
2) If ωf is the multicanonical form on XΓ which is associated with f , then

(f) = (ωf ) +m
∑

s∈SΓ

s.

In particular,
deg((f)) = m(2p− 2 + h).

Furthermore, we have
(fg) = (f) + (g).

Now we choose, for each weight k = 2m, a nonzero meromorphic modular
form. We can take, for example, f0 = (G6/G4)

m. Then any other f of the
same weight is of the form f = hf0, with a modular function (= modular form
of weight zero) h. The form f is entire if (h) ≥ −(f0), i.e. f is contained in the
Riemann–Roch space L((f0)). We obtain the following result.

14.10 Proposition. Let K be a canonical divisor on XΓ; then

[Γ, k] ∼= L
(
mK +m

∑

s∈SΓ

s

)

and, correspondingly,

[Γ, k]0 ∼= L
(
mK + (m− 1)

∑

s∈SΓ

s

)
.

From the Riemann–Roch theorem, we obtain the following proposition.

14.11 Proposition. Let Γ be a congruence subgroup of the modular group
which, besides E and possibly −E, does not contain an element of finite order.
For even k > 0, we have

dim[Γ, k] =
k

2
(2p− 2 + h) + 1− p

and

dim[Γ, k]0 =
{

dim[Γ, k]− h for k > 2,
dim[Γ, k]− h+ 1 for k = 2.

Here h denotes the number of cusp classes and p the genus of XΓ.

Next we want to determine, for many groups, the genus p =: p(Γ) and the
number of cusp classes h =: h(Γ).
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The Topological Genus

In the definition of the order of a modular form, a natural number R occurred,
namely the smallest positive number such that the translation z �→ z + R
belongs to Γ. Every other translation is then a multiple of R. If the negative
unit matrix is contained in Γ, then the stabilizer of the cusp i∞ equals

Γ∞ := {M ∈ Γ; M(i∞) = i∞} =
{
±
(

1 xR
0 1

)
; x ∈ Z

}
.

This a subgroup of index R of the stabilizer i∞ in the full modular form. We call
R the width of the cusp ∞. For an arbitrary cusp κ = M(i∞), M ∈ SL(2, Z),
we define the width of κ as the width of i∞ with respect to the conjugate
group MΓM−1. It should be clear that this definition is independent of the
choice of M and, moreover, depends only on the Γ-equivalence class. We use
the notation

R(κ) = RΓ(κ) = width of κ.

It is clear that this definition is independent of the choice of M and that it
depends only on the Γ-equivalence class. If the negative unit matrix is contained
in Γ, then the cusp width R(κ) equals the index of the stabilizers of the cusp,

[SL(2, Z)κ : Γκ].

14.12 Remark. Let κ = M (i∞), M ∈ SL(2, Z), be an arbitrary cusp of
Γ. The width of the cusp ∞ of MΓM−1 depends only on κ and not on the
choice of M . It is called the width of the cusp κ of Γ. It depends only on the
Γ-equivalence class of κ.

The sum of all cusp widths

R(Γ) :=
∑

x∈SΓ

RΓ(x)

is of great importance.

14.13 Remark. Let Γ be a congruence group which contains the negative unit
matrix. The sum of all cusp widths equals the index of Γ in the full modular
group:

R(Γ) = [SL(2, Z) : Γ].

Proof. Let
κ1 = M1(i∞), . . . , κh = Mh(i∞)

be a system of representatives of the cusp classes. For each representative κν ,
we choose a system of representatives Nν,1, . . . Nν,Rν of the cosets of Γκ in
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SL(2, Z)κ. Obviously, MνNν,µ runs through a system of representatives of Γ
in SL(2, Z). ��

We recall that there exists a modular form of weight 12 with respect to the
full modular group which has no zeros in the upper half-plane and vanishes at
the cusp ∞ of first order. We consider it as a modular form with respect to
a congruence subgroup Γ; the vanishing order at the cusp ∞ then equals the
width of the cusp i∞. We obtain the following result.

14.14 Proposition. Let Γ be a congruence subgroup which contains the
negative unit matrix and is such that its image in Bihol H acts freely. Let R(Γ)
be the sum of all cusp widths of Γ. We have

R(Γ) = [SL(2, Z) : Γ] = 6(2p− 2 + h).

14.15 Corollary. For even k > 0, we have

dim[Γ, k] =
k

12
[SL(2, Z) : Γ] + 1− p.

The assumption −E ∈ Γ is harmless, since we can replace Γ by the group
Γ ∪ −Γ. The two groups have the same modular forms of even weight.

The basic numbers p and h can easily be determined for the principal con-
gruence group of level two. This group has index of 6 in the full modular group.
The width of the cusp i∞ is 2. Since Γ[2] is a normal subgroup, all widths are
2. We obtain the result that Γ[2] has three cusp classes. The genus can be
determined using Proposition 14.8 by means of the structure theorem ([FB],
Theorem VI.6.3). It follows that every cusp form of weight two vanishes for
Γ[2]. This result can also be derived in a purely topological manner by means of
the polyhedron theorem, since we can use a fundamental domain to construct
a triangulation. We see the following.

14.16 Lemma. We have

p(Γ[2]) = 0, h(Γ[2]) = 3.

The index and number of cusp classes can be computed if we have a coset
system of Γ in the full modular group. We perform this computation here for
the principal congruence subgroup Γ[q], where we use the fact that

SL(2, Z) −→ SL(2, Z/qZ)

is surjective and that, as a consequence,

[SL(2, Z) : Γ[q]] = # SL(2, Z/qZ) = q3
∏

l prim , l|q

(
1− 1

l2

)
.

This is a special case of a result which will be proved later (Proposition VII.6.5).
We shall use this result here.
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14.17 Proposition. For the principal congruence subgroup of level q > 2,
we have:

[SL(2, Z) : Γ[q]] = q3
∏

l|q

(
1− 1

l2

)
,

h =
1
2
q2
∏

l|q

(
1− 1

l2

)
,

p = 1 +
q − 6
12

h.

The dimension formulae

dim[Γ[q], k] =
1
24
q3
∏

l|q

(
1− 1

l2

)
+ 1− p

hold for even k > 2.

Corollary. In the cases q ≤ 5, the genus is zero.

Proof. It is better to work with the group Γ̃[q] = Γ[q] ∪ −Γ[q]. The number
of cusp classes is the same, but the index has to be divided by two. Since the
cusp widths are all q, the formula for the number of cusp classes follows from
the formula for the index.

For the determination of the genus, we apply the Riemann–Hurwitz ramifi-
cation formula. First we consider, for an even level q, the natural map

XΓ[q] −→ XΓ[2].

We determine its degree. It is easy to see that each point of H/Γ[2] has

[Γ[2] : Γ̃[q]] =
[Γ[1] : Γ̃[q]
[Γ[1] : Γ[2]]

inverse images. So this is the degree of the map. The only ramification points
are the cusps. The ramification order at each cusp is q.

If q is odd, we apply the Riemann–Hurwitz ramification formula to

XΓ[2q] −→ XΓ[q]. ��
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15. Dimensions of Vector Spaces of Modular Forms
with Multiplier Systems

In this section, we want to give up the restriction that the weights of the
modular forms are even. We also want to admit multiplier systems. Let v be a
multiplier system of weight r/2, r ∈ N, with respect to a congruence subgroup
Γ. We use the notation of [FB], Sect. VI.5. Again we have to define a divisor
on XΓ for a meromorphic modular form f ∈ {Γ, r/2, v}. For this, we have
to define the order of f at the cusp i∞. Again let R be the smallest positive
number such that (

1 R
0 1

)
or
(
−1 R
0 −1

)

is contained in Γ. A difficulty arises, since f need not have a period R. We
only have f(z + R) = εf(z), with a certain root of unity ε. This difficulty
arises even for the trivial multiplier system when the weight k is odd and when(
−1 R
0 −1

)
is contained in Γ. We then have

ε =

⎧
⎪⎪⎨

⎪⎪⎩

v

(
1 R
0 1

)
if
(

1 R
0 1

)
∈ Γ,

(−1)kv
(
−1 R
0 1

)
if
(
−1 R
0 −1

)
∈ Γ.

In general, we call the root of unity ε the irregularity of the cusp i∞. It depends
only on the triple (Γ, r/2, v). The occurrence of the irregularity is responsible
for the following extra considerations.

We write the irregularity in the form

ε = e2πia, 0 ≤ a < 1.

The function z �→ exp(2πia) has the same transformation property as f under
the translation z �→ z + R. Hence the function z �→ f(z) exp(−2πiaz) has
period R and admits a Fourier expansion

f(z)e−2πiaz =
∞∑

n=−∞
ane

2πinz/R.

Now we define
Ord(f, i∞) = min{n; an 	= 0}.

We should point out that this definition is artificial in some sense, because it
depends on the representation of ε in the form exp(2πia). Another normalization of
a would lead to another order. One should bear in mind that in our general setting,
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modular forms no longer have an interpretation as multicanonical forms as in the case
of even weight and the trivial multiplier system.

Analogously to the case of even weight and the trivial multiplier system,
we now define Ord(f ; a) for an arbitrary cusp a by transforming it to i∞
and considering a conjugate group and the conjugate form. This definition is
independent of the choice of the substitution which is needed to transform a to
i∞. For a point a in the upper half-plane, we again use the usual order of the
meromorphic function f at a. In this way, we again obtain, for any modular
form f , a divisor (f).

But, in contrast to the case of even weight and the trivial multiplier system,
there is no requirement that the formula (fg) = (f) + (g) remains true. Obvi-
ously, however, this formula is true if one of the two forms has no irregularity.
In particular, we have the following fact.

15.1 Lemma. Let f ∈ {Γ, k, v} be a meromorphic modular form which
is different from 0, and let h ∈ {Γ, 0} be a fully invariant nonzero modular
function. Then

(hf) = (h) + (f).

From this we obtain the following result.

15.2 Lemma. If there exists a nonzero meromorphic modular form f ∈
{Γ, k, v}, then

[Γ, k, v] ∼= L((f)).

We shall not discuss the existence of an (only) meromorphic modular form
here, since this will obvious in all our applications. It remains to determine
the degree of the divisor (f). An obvious idea is to take a natural number N
such that Nk is even and fN has a trivial multiplier system. From the results
of the previous section, we get

deg
(
(fN )

)
=
Nk

2
(2p− 2 + h).

So, we need a relation between Ord(f ; i∞) and Ord(fN , i∞). The expansion
of f is

f(z) = e2πiaz
∑

ane
2πinz/R.

We obtain
f(z)N = e2πiNaz

(∑
ane

2πinz/R
)N

.

The number Na is integral. We see that

Ord(fN ; i∞) = aN +N Ord(f, i∞).

15.3 Remark. Let κ = M(i∞), M ∈ SL(2, Z), be an arbitrary cusp of Γ.
The irregularity at i∞ of (MΓM−1, vM ) is independent of the choice of M . We
call it the irregularity of (Γ, r/2, v) at the cusp κ. Moreover, the irregularity
depends only on the Γ-equivalence class of κ.
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Now we obtain the following result.

15.4 Proposition. Let Γ be a congruence subgroup whose image in Bihol H

acts freely. Let f ∈ {Γ, k, v} be a meromorphic modular form and let N be a
natural number such that Nk is even and such that all occurring cusp widths
divide N . Then

(fN ) = N(f) +
∑

s∈SΓ

Na(s).

In particular,

deg(f) =
k

2
(2p− 2 + h)−

∑

s∈SΓ

a(s).

Here R(s) denotes the cusp width and ε(s) = exp(2πia(s)) the irregularity (in
the standard representation 0 ≤ a(s) < 1).

15.5 Corollary. In the case k ≥ 2, we have

dim[Γ, k, v] =
k

2
(2p− 2 + h) + 1− p−

∑

s∈SΓ

a(s).

Exercises for the appendices to Chap. IV

1. In [FB], at the end of Sect. VI.6, we proved the following formula for r ≥ 2:

dim[Γ[4, 8], r/2, vr
ϑ] = 4r − 2.

Reprove this formula in the case r ≥ 4 by means of Corollary 15.5.

2. Let Γ ⊂ SL(2, Z) be a congruence subgroup whose image in Bihol H does not
necessarily act freely. As we have seen in Exercise 4 for Sect. III.2, the quotient
H/Γ also carries a natural structure as Riemann surface in this case.

Show that XΓ for an arbitrary congruence group admits a unique structure in
the form of a Riemann surface, such the natural projection

H −→ XΓ

is holomorphic.

3. In the case of the full modular group Γ = SL(2, Z), the Riemann surface XΓ is
biholomorphically equivalent to the Riemann sphere.

Give three different proofs:



298 IV. Compact Riemann Surfaces

1) Use the j-function (compare Exercise 7 for Sect. III.2).

2) Using the uniformization theorem, it is sufficient to show that the genus of
XΓ is zero. This can be done by means of Euler’s polyhedron formula, using
a suitable triangulation of the fundamental domain.

3) Apply the ramification formula to XΓ[2] → XΓ[1].

4. Compute the genus p(Γ) of XΓ for an arbitrary congruence subgroup by means of
the Riemann–Hurwitz ramification formula using the natural projection

XΓ −→ XSL(2,Z) = C̄.

If −E is not contained in Γ, then the result is

p(Γ) = 1 +
[SL(2, Z) : Γ]

12
− a

4
− b

3
− h

2
.

Here a = a(Γ) and b = b(Γ) denote the numbers of Γ-equivalence classes of fixed
points of order two and three, respectively. By definition, the order e(a) of a point
a ∈ H is the order of the image of Γa in Bihol H. This is the order of Γa if −E
is not contained in Γ, and half of it otherwise. Of course, it depends only on the
Γ-equivalence class.

5. Show that the formula
dim[Γ, 2]0 = p(Γ)

holds for all congruence subgroups.

6. Show that, for even k, the formula

dim[Γ, k] =

{
dim[Γ, k]0 + h for k > 2,
dim[Γ, k]0 + h− 1 for k = 2

holds for all congruence subgroups.

7. Show that, for even k > 0 and arbitrary congruence groups, we have

dim[Γ, k] = (k − 1)(p− 1) +
kh

2
+
∑

a∈H/Γ

[
k

2

(
1 − 1

e(a)

)]
.

Here [x] means the greatest integer ≤ x. Of course, the sum is finite, since e(a) is
1 almost always.

8. Use the result of the previous exercise to give a new proof of the structure theorem
(Theorem VI.3.4 in [FB]). (This states that the ring of modular forms with respect
to the full modular group is generated by two forms of weight 4 and 6.)

9. To obtain a dimension formula for a arbitrary weight k ∈ 1
2
Z and for an arbitrary

multiplier system v, we have to associate an irregularity with the elliptic fixed
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points a ∈ H in analogy to the case of cusps. Again we assume the existence of a
meromorphic modular form f . The function

g(w) = (w − 1)−kf
(
āw − a

w − 1

)

is defined in the unit circle. If e(a) is the order of an fixed point, then g transforms
as

g(e2πi/e(a)w) = ηg(w),

where
η = e2πiα, 0 ≤ α = α(a) < 1,

is a root of unity, which now plays the role of the irregularity. This depends only
on Γ, v, k, and the Γ-equivivalence class of a.

Show that for k > 2, we have

dim[Γ, k, v] = (k − 1)(p− 1) +
kh

2
+
∑

a∈H/Γ

(
k

2

(
1 − 1

e(a)

)
− α(a)

)
.



V. Analytic Functions of Several Complex Variables

The Jacobi inversion theorem leads to functions of several variables with many peri-
ods. So, we are led to the problem of developing a theory of them which is analogous
to the theory of elliptic functions. First of all, we need to give an introduction to the
theory of functions of several complex variables. In this chapter, we give an elemen-
tary introduction which essentially follows Weierstrass. One of the main topics will
be the proof of the theorem that any meromorphic function on C

n can be written
as a quotient of two entire functions. Weierstrass called this a very difficult problem.
The first proof was given by Poincaré. In the case n = 1, it is not difficult to show this
by means of the theory of Weierstrass products, even for arbitrary domains D ⊂ C

instead of C. The case n > 1 is more involved, since the zero sets and pole sets of
analytic functions of several complex variables are not discrete.

The investigation of the zero set is related to the division theory of the ring
of convergent power series. This theory is governed by two central theorems, the
Weierstrass preparation theorem and the division theorem. The two theorems are
closely related. They are equivalent in the sense that it is rather easy to derive one
from the other. The Weierstrass preparation theorem appeared in print in 1886, but it
already appeared in 1860 in Weierstrass’s lectures. The division theorem is frequently
called the preparation theorem, but this is historically false. Historical comments and
amendments can be found in Siegel’s paper “Zu den Beweisen des Vorbereitungssatzes
von Weierstrass” (Collected Papers, Vol. IV, No. 83) [Si2]. There, it was pointed out
that the division theorem was proved for the first time in 1887 by Stickelberger and
was rediscovered by Späth in 1929. Siegel gave, in the above paper, a simple proof
of the preparation theorem which rests on a calculation with power series. Here, we
shall present a different proof which uses the Cauchy integral.

At the end of this chapter, we shall also give a short introduction to the lo-

cal calculus of alternating differential forms, which extends the two-dimensional-case

considered in the appendix to Chap. II.

1. Elementary Properties of Analytic Functions
of Several Variables

We are familiar with the notion of an analytic (= holomorphic) function of one
complex variable and now want to use it to develop a notion of an analytic
function of several variables.

300
Higher Modular Functions, Universitext, DOI 10.1007/978-3-642-20554-5_5, 
© Springer-Verlag Berlin Heidelberg 2011 

E. Freitag, Complex Analysis 2: Riemann Surfaces, Several Complex Variables, Abelian Functions,



1. Elementary Properties of Analytic Functions of Several Variables 301

1.1 Definition. A function

f : D → C

on an open subset D ⊂ C
n is called analytic if it is continuous, and if it is

analytic in each of the n variables if the rest of the variables are fixed.

Remark. A nontrivial result of Hartogs states that the assumption of conti-
nuity in Definition 1.1 is superfluous.

The following properties of analytic functions can easily be reduced to the
onevariable case.

1. The sum and product of two analytic functions are analytic. The function
1/f is analytic if f is an analytic function without zeros.

Notation.
O(D) = {f : D → C, f analytic}.

So, O(D) is a C-algebra.

2. Maximum principle. Assume that D is connected. If |f(z)| attains its
maximum in D, then f is constant.

Let a ∈ D be a point at which |f(z)| attains its maximum. For the proof,
we consider the set of all points such that f(z) = f(a). This set is closed, by
a continuity argument. Using the maximum principle of complex analysis for
one variable, we can easily show that this set is also open in D. Since D is
connected, it coincides with D.

3. If fn : D → C is a locally uniformly convergent sequence of analytic func-
tions, then the limit function is analytic too.

4. Identity theorem for analytic functions of several complex variables:

An analytic function f : D → C on a domain D which vanishes on an open
nonempty subset is identically zero.

Proof. There exists a largest open subset U ⊂ D on which f vanishes identically.
If U is different from D, there exists a boundary point a ∈ D of U . For
the proof, we can replace D by a small open neighborhood of a. Hence we
can assume that D = D1 × . . . × Dn, where the Dν are domains in C. By
assumption, there exist nonempty open sets Uν ⊂ Dν such that f vanishes
on U1 × . . .× Un. Now we can apply inductively the identity theorem for the
onevariable case. ��

Another proof will follow from the local expansibility into power series
(Proposition 2.2).

As in the case n = 1, we need the power series expansion of an analytic
function. This will be the subject of the next section.
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Exercises for Sect. V.1

1. Let D ⊂ C
n be a domain which has a nonempty intersection with R

n. Show that
an analytic function on D which vanishes on D ∩ R

n is identically zero.

2. A function f : U → R on an open subset U ⊂ R
n is called a real analytic function

if each point a ∈ U admits an open neighborhood U(a) ⊂ C
n and a complex

analytic function fa : U(a) → C
n with the property

f(x) = fa(x) for x ∈ U(a) ∩ U.

Show that the identity theorem in the form given in Sect. V.1 is true for real
analytic functions. That is, if U is connected and f vanishes on an open nonempty
subset of U , then f is zero on the whole of U .

3. Let f : U → C be a nonconstant analytic function on a domain U ⊂ C and let
P : C × C → C be an analytic function with the property

P (Re f, Im f) ≡ 0.

Show that P vanishes identically.

4. Show that the image f(D) of a nonconstant analytic function which is defined on
a domain D ⊂ C

n is open in C.

2. Power Series in Several Variables

When we are studying power series of several variables, it is useful to separate
the algebraic computational rules from questions of convergence. Many of the
algebraic properties can be formulated for formal power series. These are power
series without any assumption of convergence. The coefficients of power series
are usually complex numbers for us. For the definition of formal power series,
we can take as coefficients elements of arbitrary commutative rings with unity
1 = 1R ∈ R. Sometimes we require that R is an integral domain, i.e.

ab = 0 =⇒ a = 0 or b = 0.

For the moment, R can be an arbitrary commutative ring with unity.
A (formal) power series in n variables over R is a map

P : N
n
0 −→ R, (ν1, . . . , νn) �−→ aν1,...,νn ,

which, owing to its later use, is written in the form

P =
∑

aν1,...,νnX
ν1
1 . . . Xνn

n .
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Here X1, . . . , Xn are merely symbols.

It is useful to make use of the calculus of multi-indices:

ν := (ν1, . . . , νn),
ν! := ν1! . . . νn!,

X := (X1, . . . , Xn),
Xν := Xν1

1 . . . Xνn
n .

The power series is then of the form

P =
∑

ν∈Nn0

aνX
ν .

The summation is taken over all multi-indices ν ∈ N
n
0 .

For two power series

P =
∑

ν∈Nn0

aνX
ν , Q =

∑

ν∈Nn0

bνX
ν ,

we define the sum and product as follows:

P +Q :=
∑

ν∈Nn0

(aν + bν)Xν ,(1)

P ·Q :=
∑

ν∈Nn0

cνX
ν , cν :=

∑

α+β=ν

aαbβ (finite sum!).(2)

It is easy to check that the set of all formal power series with this addition and
multiplication becomes an associative and commutative ring with unity

1 =
∑

ν∈Nn0

aνX
ν , aν =

{
0 for ν �= (0, . . . , 0),
1 for ν = (0, . . . , 0).

This ring is denoted by
R[[X1, . . . , Xn]].

We call this the ring of formal power series over R in n “variables”. This ring
contains the polynomial ring R[X1, . . . , Xn] as a subring. A polynomial is noth-
ing but a formal power series which has only finitely many coefficients which are
different from zero. The ground ring R can be embedded into R[X1, . . . , Xn]
and hence also into R[[X1, . . . , Xn]] in a natural way, r �→ r ·1. We shall usually
identify r and r · 1.
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Other Notations for Power Series

Let P be a power series and let d ≥ 0 be a nonnegative integer. We then define

Pd :=
∑

ν1+···+νn=d

aνX
ν .

This is a polynomial. It collects together all monomials of degree d which occur
in P . If P is a polynomial, we have

P =
∞∑

d=0

Pd,

where the sum is finite in reality. A power series is determined by the totality
of its homogeneous terms Pd. Hence we can use the notation

P =
∞∑

d=0

Pd.

If P and Q are power series, we can immediately verify that

(PQ)d =
∑

d1+d2=d

Pd1Qd2 (finite sum).

By the order of a power series P different from zero*), we understand the
smallest d such that Pd is different from 0. If d1, d2 are the orders of P , Q,
then

(PQ)d1+d2 = Pd1Qd2 .

We assume that it is known that the polynomial ring over an integral domain
is an integral domain too. We obtain the following result.
The ring of power series over an integral domain is an integral domain too.

Power Series as Coefficients of Power Series

Let P be a power series in n variables. We fix one variable, say Xn. For a
nonnegative integer k, we consider the power series P (k) in n− 1 variables

P (k) :=
∑

νn=k

aνX
ν1
1 · · ·X

νn−1
n−1 .

It is easy to check that the map

P �−→
∞∑

k=0

P (k)Xk
n

*) A power series is different from 0 if not all of its coefficients are zero. This means

that it is not the zero element in the ring of power series.
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defines an isomorphism

R[[X1, . . . , Xn]] −→ R[[X1, . . . , Xn−1]] [[Xn]].

We identify the two rings and write

P =
∞∑

k=0

P (k)Xk
n.

Next, we introduce convergent power series. For this, we assume that the
ground ring is the field of complex numbers.

2.1 Definition. A formal power series

P =
∑

ν∈Nn0

aνX
ν

is called convergent if there exists an n-tuple of complex numbers (z1, . . . , zn),
which all are different from zero, such that

P (z1, . . . , zn) =
∑

ν∈Nn0

aν1,...,νnz
ν1
1 · · · zνnn

converges absolutely.

We recall some well-known facts about convergent series.
Let (as)s∈S be a family of complex numbers which is parametrized by a

countable set S. The “series”
∑
s∈S

as is called absolutely convergent if there

exists a number C > 0 such that
∑

s∈S0

|as| ≤ C

for each finite subset S0 ⊂ S. In this case the value of the series can be defined,
for example by ordering the elements of S somehow;

S = {s1, s2, s3, . . .}.

The number ∑

s∈S
as := as1 + as2 + as3 + . . .

is independent of the choice of this ordering.
More generally, we consider a family

fs : X −→ C
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of functions on a topological space. The series
∑

s∈S
fs

is called normally convergent if each point a ∈ X admits a neighborhood U =
U(a), and if there exist constants ms such that

|f(x)| ≤ ms for all x ∈ U and s ∈ S

and such that ∑

s∈S
ms

converges. The series then converges in any ordering, absolutely and locally
uniformly (the Weierstrass majorant criterion).

If the power series P converges absolutely at a point (w1, . . . , wn) with
wk �= 0 for k = 1, . . . , n, then, by the majorant criterion, it also converges at
every point

(z1, . . . , zn), |zk| < |wk|.

An n-tuple r = (r1, . . . , rn) of positive real numbers is called a multiradius of
convergence of P if P converges at all points

(z1, . . . , zn), |zk| < rk for k = 1, . . . , n.

Notation. Let b ∈ C
n, r ∈ R

n
>0. The set

Ur(b) : =
{
z ∈ C

n; |zk − bk| < rk for k = 1, . . . , n
}

= Ur1(b1)× . . .× Urn(bn)

is called the polydisk with center b and multiradius r.

2.2 Proposition. Let b ∈ C
n be a given point and let be r be an n-tuple of

positive real numbers.
1) Let P be a power series and let r be a multiradius of convergence. Then the

series
P (z − b) =

∑

ν∈Nn0

aν(z − b)ν

converges normally in Ur(b) and defines an analytic function there.
2) An analytic function

f : Ur(b) −→ C

can be expanded in the whole of Ur(b) as a power series P which converges
normally there, so that

f(z) = P (z − b) =
∑

ν∈Nn0

aν(z − b)ν ,
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and we have

aν =
f (ν)(b)
ν!

.

Proof. 1) The known proof in the case n = 1 works in the general case. The
validity of the Taylor formula in 2) also follows from the standard stability
theorems in the case n = 1.
2) Since we have seen already the uniqueness of the expansion, we can enlarge
the polydisk slightly: we can assume that f is analytic in an open neighborhood
of the closure of Ur(b). We also can assume b = 0.

The idea is to generalize the well-known proof of the case n = 1 ([FB],
Theorem III.2.2). For this, we need a suitable generalization of the Cauchy
integral formula. Again, we shall reduce it by induction to the case n = 1.

First we apply the usual Cauchy integral formula to the analytic function
in the single variable zn

zn �−→ f(z1, . . . , zn),

keeping z1, . . . , zn−1 fixed. We obtain

f(z1, . . . , zn) =
1

2πi

∮

|ζn|=rn

f(z1, . . . , zn−1, ζn)
ζn − zn

dζn.

Now we apply the Cauchy integral formula step by step for the variables
z1, . . . , zn. We obtain the following formula:

The Cauchy integral formula in several variables.

f(z1, . . . , zn) =
1

(2πi)n

∮

|ζ1|=r1

· · ·
∮

|ζn|=rn

f(ζ1, . . . , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζ1 . . . dζn.

Now the power series expansion of f can be obtained as in the case n = 1. We
expand the integrand into a geometric series and interchanges integration and
summation. The geometric series in several variables can be obtained from the
usual series

1
ζ − z =

1
ζ

1
1− z/ζ =

1
ζ

∞∑

ν=0

(
z

ζ

)ν

by termwise multiplication:

1
ζ1 − z1

· . . . · 1
ζn − zn

=
1

ζ1 · . . . · ζn
∑

ν∈Nn0

(
z1
ζ1

)ν1
· . . . ·

(
zn
ζn

)νn
.

(This holds for |zk| < |ζk| = rk, k = 1, . . . , n.)
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Computation Rules for Power Series

We collect together some rules for computations with convergent power series
here. The proofs are the same as in the case n = 1.

1) Addition and multiplication of convergent power series. We assume that the
power series ∑

aν(z − a)ν ,
∑

bν(z − a)ν

converge in a polydisk U around a. In U , we then have

∑
aν(z − a)ν +

∑
bν(z − a)ν =

∑
(aν + bν)(z − a)ν ,

(∑
aν(z − a)ν

)
·
(∑

bν(z − a))ν
)

=
∑

n

( ∑

ν+µ=n

aνbν

)
(z − a)n.

This can be expressed as follows: the map

O(U) −→ C[[X1, . . . , Xn]],

which associates the formal power series
∑
aνX

ν with a function f with
power series f(z) =

∑
aν(z − a)ν , is a ring homomorphism.

2) Reordering of power series. We assume that the power series

∑
aν(z − a)ν

converges in the polydisk Ur(a). Let

Uρ(b) ⊂ Ur(a)

be another polydisk which is contained in it. The expansion of the ana-
lytic function which is defined by the original power series around b can be
obtained by formal reordering using

(z − a)ν = [(z − b) + (b− a)]ν =
∑(

ν

k

)
(z − b)k(b− a)ν−k,

(
ν

k

)
:=

(
ν1
k1

)
. . .

(
νn
kn

)
.

So, in Uρ(b), we have

∑
aν(z − a)ν =

∑
bν(z − b)ν
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with

bν =
∑

k

aν

(
ν

k

)
(b− a)ν−k.

3) Composition of power series. Let

U
f−→V

g−→C,

U ⊂ C
n , V ⊂ C

m open,

be maps whose components are analytic functions, and let

a ∈ U, b = f(a).

We consider the expansions of the components of f

fj(z) =
∑

ν

a(j)
ν (z − a)ν

in a neighborhood of a, and the components of g in a neighborhood of b,

g(z) =
∑

bµ(z − b)µ.

The power series expansion of g(f(z)) in a small neighborhood of a can be
obtained by formal replacement and reordering.

In contrast to the case n = 1, in the case n > 1 there exists no largest radius of
convergence which could be called the radius of convergence. This is shown by the
following example:

∞∑

n=0

zn
1 z

n
2 .

The domain

{(z1, z2) ∈ C × C ; |z1z2| < 1}
is the largest open set in which this series converges. It is not a polydisk. In Exercise
4, we shall obtain the shape of the precise domains of convergence.
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Exercises for Sect. V.2

1. Show that every , analytic and bounded function in C
n is constant (“Liouville’s

theorem”).

2. Expand the function
1

(z1 − 1)2(z2 − 2)3

into a power series around the origin.

3. Let
∑

s∈S
as be an absolutely convergent series. Show that its limit A can be

characterized without ordering S, as follows:

For any ε > 0, there exists a finite subset S0 ⊂ S such that for any finite inter-
mediate set S0 ⊂ T ⊂ S we have

∣∣∣
∑

s∈T

as −A

∣∣∣ < ε.

4. By a Reinhardt domain D ⊂ C
n, we understand a domain which is invariant

under “rotations” of the kind

(z1, . . . , zn) �−→ (ζ1z1, . . . , ζnzn), |ζν | = 1 (1 ≤ ν ≤ n).

It is called complete if this true for all |ζν | ≤ 1.

Show the following:
a) In the case n = 1, the Reinhardt domains are precisely the annuli with center

0, and the complete Reinhardt domains are the disks.

b) The largest open set in which a convergent power series
∑

aνz
ν is absolutely

convergent is a complete Reinhardt domain. It converges normally there and
defines an analytic function there.

c) Any function which is analytic on a complete Reinhardt domain can be ex-
panded in it into a power series.

Hint. Use the obvious fact that every complete Reinhardt domain is a union
of polydisks with center 0.

5. By a Laurent series of several variables, we understand a series
∑

ν∈Zn

aν1,...νn
zν1
1 · . . . · zνn

n .

The sum is taken over all n-tuples of integers (including the negative integers).

Show the following. We assume that the Laurent series converges absolutely
in at least one point (w1, . . . , wn) with wν �= 0 for 1 ≤ ν ≤ n. The largest open
set in which

∑
aνz

ν converges absolutely is a Reinhardt domain. The expansion
converges normally there and defines an analytic function there. Conversely, any
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analytic function on a Reinhardt domain can be expanded into a Laurent series
in the whole domain.

Hint. Every Reinhardt domain can be written as a union of “polyannuli”
D1 × . . .×Dn. Here the Dν are annuli with center 0 in the complex plane.

3. Analytic Maps

A map
f : U −→ V, U ⊂ C

n, V ⊂ C
m open,

is called analytic (or holomorphic) if its components

fk = pk ◦ f, pk : V −→ C, kth projection (1 ≤ k ≤ m)

are analytic functions.

3.1 Remark. A map

f : U −→ V, U ⊂ C
n, V ⊂ C

m open,

is analytic iff it is totally complex differentiable at each point a ∈ U . This
means that

f(z)− f(a) = A(z − a) + r(z)

with a C-linear map
A : C

n −→ C
m

and a remainder term r with the property

r(z)
‖z − a‖ −→ 0 for z −→ a

(where ‖·‖ means the Euclidean norm).

Proof. It follows from Proposition 2.2 that analytic maps are totally complex
differentiable. Conversely, as in the real case, totally complex differentiable
functions are continuous and partially complex differentiable. ��

The linear map A is described by an m× n matrix,

A(z1, . . . , zn) = (w1, . . . , wm),

wi =
n∑

j=1

aijzj , 1 ≤ i ≤ m.
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This matrix is the complex Jacobian

A = J(f ; a) =

⎛

⎜⎝

∂f1
∂z1

. . . ∂f1
∂zn

,
...

. . .
...

∂fn
∂z1

. . . ∂fn
∂zn

⎞

⎟⎠ (a).

Each C-linear map is R-linear as well. Therefore we can also describe A by a
real 2m× 2n matrix!

From the real chain rule and the fact that a composition of C-linear maps
is again C-linear, we obtain the complex chain rule as below.

3.2 Remark. Let
f : U −→ V, g : V −→W

(U ⊂ C
n, V ⊂ C

m, W ⊂ C
p open subsets)

be analytic maps. Then the composition g ◦ f is analytic too, and we have

J(g ◦ f ; a) = J (g; f(a)) · J(f ; a).

In the same manner, the real theorem of invertible functions implies the com-
plex version. We simply have to observe that the inverse of an invertible C-
linear map is C-linear as well.

3.3 Remark (theorem of invertible functions). Let

f : U −→ V, U, V ⊂ C
n open,

be an analytic map and let a be a point from U . The following statements are
equivalent:
1) f maps a suitable open neighborhood U(a) biholomorphically onto an open

neighborhood V (f(a)).
2) J(f ; a) is invertible.

(A map f is called biholomorphic if it is bijective and if both f and f−1 are
analytic.)
Remark. Let

A : C
n −→ C

n

be a C-linear map. It can be described by a complex n × n matrix. The
determinant of this matrix is denoted by det(A). We can also consider A as an
R-linear map and describe this by a real 2n × 2n matrix. The determinant of
this real matrix is denoted by detR (A). We have (see Exercise 1)

detR (A) = |det (A)|2.

As in real analysis, the theorem of invertible functions implies the theorem of
implicit functions. We formulate a special case as follows.
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3.4 Remark. Let f(w, z1, . . . , zn) be analytic on some open subset of C
n+1.

Let (b, a1, . . . , an) be a point with

f(b, a1, . . . , an) = 0 and
∂f

∂w
(b, a1, . . . , an) �= 0.

Then there exists a holomorphic function ϕ in a small open neighborhood of
(a1, . . . , an) with the properties

b = ϕ(a1, . . . , an), f(ϕ(z1, . . . , zn), z1, . . . , zn) ≡ 0.

We can compare this with the treatment of the case n = 1 in Sect. I.3, Ap-
pendix B.

Zeros of Analytic Functions

In Sect. 1, we formulated the identity theorem for analytic functions and showed
how to reduce it to the case n = 1. Another proof can be obtained by means of
the power series expansion. A reformulation of the identity theorem says the
following.

3.5 Remark. Let f : D → C be an analytic function on a domain D ⊂ C
n

which does not vanish identically. Then the set of zeros contains no inner
points.

Corollary. The ring O(D) of holomorphic functions on a domain D ⊂ C
n is

an integral domain.

In contrast to the case n = 1, in the case n > 1 the set of zeros of an analytic
function is never discrete if it is nonempty. We shall see this in Sect. 4. Here
we consider only a simple example,

f(z1, z2) = z1 · z2.

The zero set of this function is the union of the “axes” C×{0}∪{0}×C. This
is one of the reasons why complex analysis of several variables is much more
difficult than the one-variable case. One has to be careful with the notion of
a meromorphic function. A meaningful definition should imply that rational
functions are meromorphic. For example, z1/z2 should be meromorphic on C

2.
Its zero set (z1 = 0) and its pole set (z2 = 0) (whatever that means) cross at
the origin. Hence there is no meaningful way to assign a value to the origin
and it does not help to allow ∞ as a value. This consideration shows that in
the case of several variables we need a different approach compared with n = 1
for the introduction of the notion of a meromorphic function.
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Meromorphic Functions

3.6 Definition. Let D ⊂ C
n be a domain (a connected and open nonempty

subset of C
n) and let D0 ⊂ D be an open and dense subset of D. An analytic

function
f : D0 −→ C

is called meromorphic on D if the following conditions are satisfied:
For each point a ∈ D there exist an open connected neighborhood U and two

analytic functions g, h : U → C, where h is not identically zero, such that

f(z) =
g(z)
h(z)

for all z ∈ U ∩D0 with the property h(z) �= 0.

In this definition we have to observe two fine points:

1) We did not require that h has no zeros on U ∩ D0. Hence the representation
f(z) = g(z)/h(z) is valid only in the set

{z ∈ U ∩D0; h(z) �= 0}.

By the identity theorem, this set is still open and dense in U ∩ D0. Independently
of this, one can raise the question of whether this local representation of f can be
chosen in such a way that h has no zeros in the whole of U ∩D0. It can be shown
that this is true, but for a proof we need deeper insight into the structure of the zero
set, which is not available at the moment.

2) We required that D is connected, but not that D0 is connected. The reason
for this is as follows. Let g be an analytic function on D which does not vanish
identically. We can then consider D0 := {z ∈ D; g(z) �= 0} and, on D0, the analytic
function f(z) = 1/g(z). The notion of meromorphy should imply that this function
is meromorphic on D. But, at the moment, we do not know that D0 is connected.
Actually, this is true, but the proof will come later. For this reason, we did not require
D0 to be connected. Nevertheless, the principle of analytic continuation also holds
for meromorphic functions, as we now show.

3.7 Lemma. Let D ∈ C
n be a domain and let f : D0 → C be an analytic

function on an open and dense subset of D which is meromorphic on D. If f
vanishes on an open and dense subset of D0, then it is identically zero.

Proof. The problem is that there might be connected components of D0 where
f vanishes identically, and others where this is not the case. We shall give an
indirect proof and assume that this actually happens. So, let A be the union of
all connected components of D0 on which f vanishes, and let B be the union
of the other components. The sets A and B are open, nonempty, and disjoint.
Their union is D0. The function f vanishes identically on A, but its set of zeros
is thin in B. (This means that it contains no inner points.) Since D0 is dense
in D, we have D = Ā ∪ B̄, where Ā and B̄ denote the closure of A and B in
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D. Both of these are closed in D. Since D is connected, the intersection of
Ā and B̄ is not empty. As a consequence, there exists a joint boundary point
a ∈ D, a ∈ ∂A∩∂B. We use the definition of meromorphy at this point; f can
be written in a small connected open neighborhood as a quotient of analytic
functions in the above sense, f = g/h. The function g vanishes on U ∩ A. By
the identity theorem, it vanishes on U and hence on an open nonempty subset
of B. This contradicts the fact that the zero set of f is thin in B. ��

The Field of Meromorphic Functions

When a function f : D0 → C is meromorphic on a larger domain D, it can of
course happen that f extends holomorphically to a larger open set D0 ⊂ D′ ⊂
D. For this reason, one has to be careful with the definition of a “meromorphic
function”.

We consider pairs (Dν , fν), ν = 1, 2,

fν : Dν −→ C analytic,

where the Dν are open and dense in the domain D and the fν are meromorphic
on D. The intersection D1 ∩D2 is again open and dense in D. The two pairs
are said to be equivalent,

(D1 , f1) ∼ (D2 , f2),

if f1 and f2 agree on an open nonempty subset of D1 ∩ D2. By the above
identity theorem (Lemma 3.7), they agree on the whole intersection D1 ∩D2.
It should be clear that this relation is really an equivalence relation.

3.8 Definition. Let D ⊂ C
n be a domain. A meromorphic function on D is a

full equivalence class of analytic functions f : D0 → C which are meromorphic
on D with respect to the equivalence relation described above. We denote the
equivalence class of (D0, f) by [D0, f ]. (Later, we shall write simply f instead
of [D0, f ]).

If (D0, f) represents a meromorphic function onD, we callD0 a domain of holo-
morphy of [D0, f ]. A union of such domains of holomorphy is also a domain of
holomorphy. Hence every meromorphic function has a unique maximal domain
of holomorphy. This maximal domain of holomorphy is called the domain of
holomorphy of the given meromorphic function.

As we have already mentioned, the intersection of two open and dense sub-
sets is open and dense again. If (D1, f1) and (D2, f2) represent two meromor-
phic functions, we can define the sum and product of f1 and f2 as analytic
functions on the intersection D1 ∩ D2. They are meromorphic on D. The
definition

[D1, f1] +. [D2, f2] := [D1 ∩D2, f1 +. f2]

is independent of the choice of the representatives.
So, the set of all meromorphic functions is an associative and commutative

ring with unity. But we can state more, as follows.
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3.9 Proposition. The set M(D) of all meromorphic functions on a domain
D is a field.

Proof. If [D0, f ] is a meromorphic function which does not vanish identically,
then

D′
0 := { a ∈ D0; f(a) �= 0 }

is open and, by the identity theorem of Lemma 3.7, also dense in D0, and hence
dense in D. The function g(z) = 1/f(z) is analytic on D′

0 and meromorphic
on D. We have

[D0, f ]−1 = [D′
0, g]. ��

Every function which is analytic on D is meromorphic on D (f = f/1). If
we associate the meromorphic function [D, f ] with f , we obtain an embedding

O(D) ↪→M(D), f �→ [D , f ].

We shall identify O(D) with its image inM(D). O(D) consists of all meromor-
phic functions whose domain of holomorphy isD. M(D) contains the quotients
of functions from O(D):

M(D) ⊃
{
f

g
; f, g ∈ O(D), g �= 0

}
.

It is an important problem whether M(D) agrees with the quotient field of
O(D). This is true in the case n = 1. In [FB], this was proved – but only for
the case D = C – by means of the Weierstrass product theorem.

The case n > 1 is more involved. It will take us some effort to show that
in the case D = C

n every meromorphic function is the quotient of two entire
functions.

Exercises for Sect. V.3

1. Let A be a complex m × n matrix and let C
m → C

n the associated linear map.
Identify C

m (similarly C
n) with R

2m via

(z1, . . . , zm) �−→ (x1, . . . , xm, y1, . . . , ym)

to obtain a linear map R
2m → R

2n. What is the associated real (2m) × (2n)
matrix? What are the conditions for a real (2m)× (2n) matrix to be derived from
a complex m× n-matrix?

2. Let V a vector space of finite dimension over some field K, and let A : V → V be a
K-linear map. Then the determinant detK A is well-defined. It is the determinant
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of the matrix of A with respect to some basis. Now consider K = C. Since V can
be considered as a vector space over R, and since a C-linear map is R-linear, one
can consider det

C
A and det

R
A. Show that

det
R
A = |det

C
A|2.

Hint. Reduce this to the case where a C-basis exists, such that A can be rep-
resented by a diagonal matrix. Then reduce the statement to the one-dimensional
case V = C.

3. Let D ⊂ C
m be an open set and let f : D → C

n be an analytic map such that
the (complex) Jacobian has rank n at all points. Show that the image f(D) is
open in C

n.

4. The Weierstrass Preparation Theorem

The complex analysis of one variable is distinguished by the fact that the zero sets
of nonvanishing analytic functions are discrete. This is related to the fact that the
divisibility properties of the ring of convergent power series of one variable are very
simple. Every nonzero convergent power series of one variable is the product of a
power of z and a power series Q which does not vanish at the origin. Such power
series are invertible in the ring of power series. Hence, in the ring of power series of
one variable, there is essentially only one prime element, namely z, and P = Q · zn

is the decomposition of P into primes. Hence the ring of power series is simpler than
the the ring of polynomials C [z]. The prime elements of this ring are the nonconstant
linear polynomials, and the decomposition into primes is just the decomposition which
results from the fundamental theorem of algebra,

P (z) = C(z − a1) · · · (z − an).

The polynomials z − a, a �= 0, are prime elements in the polynomial ring, but in the
ring of power series they are units. For example, the inverse of 1 − z is given by the
geometric series.

In the complex analysis of several variables, the situation is much more involved.
This is already visible in the case of the ring of polynomials. In the case n > 1,
this ring is not a Euclidean ring. Nevertheless, the theorem of unique decomposition
into prime elements holds. In the algebraic appendix at the end of this volume, we
shall treat division theory and obtain a proof of this fundamental result of Gauss in
Corollary VIII.2.4.

There are two fundamental theorems for the shape of the zero sets and for the
division theory in the ring of power series of several variables, namely the preparation
theorem of Weierstrass and the division theorem. Both theorems play fundamental
roles in the complex analysis of several variables. For example, we shall deduce from
them that unique prime factorization holds also in the ring of power series.

There is a close relation between the division theory of the ring of convergent
power series and the study of the zero set of a power series, since we have

P |Q =⇒ (P (z) = 0 ⇒ Q(z) = 0 in a neighborhood of z = 0).
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First we notice that every power series P with P (0) = 0 can be written as
a product of finitely many indecomposable elements. For this, we recall from
Sect. 2 the notion of the order

o(P ) := min{ ν1 + ν2 + · · ·+ νn; aν1,...,νn �= 0 }.

Of course, we have to assume that P �≡ 0. Additionally, we define

o(0) :=∞.

If Q, Q(0) = 0, is a second nonunit, then we know that

o(P ·Q) = o(P ) + o(Q).

For the proof, it is convenient to characterize the order in a different manner.
Recall that a power series P can be written in the form

P = P1 + P2 + · · · ,

where Pm is a homogeneous polynomial of degree m (Sect. 2). We have

o(P ) = min{m; Pm �= 0} (P �= 0).

The claimed relation o(PQ) = o(P ) + o(Q) follows.
Now the decomposition into a product of finitely many indecomposable

elements follows by induction on o(P ).

4.1 Definition. A power series P ∈ On := C{z1, . . . , zn} is called zn-
general if

P (0, . . . , 0, zn) �≡ 0.

A power series is zn-general if it contains a monomial which is independent of
z1, . . . zn−1. For example, z1 + z2 is z2-general but z1z2 is not.

Let A = (aµν)1≤µ,ν≤n be an invertible complex n× n matrix. We consider
A as a linear map

A : C
n −→ C

n z �−→ w, wµ =
n∑

ν=1

aµνzν .

For a power series P ∈ On, we obtain, by substitution and reordering, the
power series

PA(z) := P (A−1z).

Obviously, the map
On ∼−→ On, P �−→ PA

is an ring automorphism, i.e.

(P +.Q)A = PA +.QA.

The inverse map is given by A−1.
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4.2 Remark. For every finite set of convergent power series P ∈ On, P �= 0,
there exists an invertible n× n matrix A such that all PA are zn-general.

Proof. There exists a point a �= 0 in a joint convergence polydisk such that
P (a) �= 0 for all P . After a suitable coordinate transformation (a choice of A)
has been chosen, we can assume A(0, . . . , 0, 1) = a. Then all PA are zn-general.

��

Zeros of Power Series

For the local behavior of the zeros of analytic functions, it is sufficient to
investigate the zeros of zn-general power series. The following lemma gives a
rough description.

4.3 Lemma. Let P , P (0) = 0, be a zn-general power series, and let d be the
zero order of P (0, . . . , 0, zn) at zn = 0. Choose the number r > 0 such that P
converges absolutely for |zν | ≤ r and such that P (0, . . . , 0, zn) has no zeros in
the disk |zn| ≤ r besides 0. Then there exists a number ε, 0 < ε < r, with the
following properties:
1. P (z1, . . . , zn−1, zn) �= 0 for |zn| = r and |zν | < ε (1 ≤ ν ≤ n− 1).
2. For fixed (z1, . . . , zn−1) with |zν | < ε, the function zn �→ P (z1, . . . , zn) has

precisely d zeros (counted with multiplicity) for |zn| < r.

Proof. The first statement is clearly true for any fixed chosen zn, by a continuity
argument. For the general case, one has to use a simple compactness argument.

The second statement follows by means of the zero-counting integral of the
usual complex analysis ([FB], Proposition III.7.1). This integral shows that the
number of zeros depends continuously on z1, . . . , zn−1. Since it is an integer, it
must be constant and hence be equal to the value for z1 = . . . = zn−1 = 0.

��
The fact that the parameters z1, . . . , zn−1 can be chosen arbitrarily can be

expressed as follows:
The zero set of an analytic function on a domain D either is empty, the whole
D, or a complex (n− 1)-dimensional set.
We shall not give a precise explanation for this, since we do not want to intro-
duce dimension theory here.

Let P0, . . . , Pm be convergent power series in (n−1) variables, say elements
of On−1 = C{z1, . . . , zn−1}; then

P0 + P1zn + . . .+ Pmz
m
n

can be considered as a convergent power series in On. In other words, the
polynomial ring On−1[zn] in one variable over On−1 is embedded into On:

On−1[zn] ↪→ On.
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4.4 Definition. An element P ∈ On−1[zn] is called a Weierstrass polyno-
mial if the highest coefficient is one and if all other coefficients are nonunits:

P = zdn + Pd−1z
d−1
n + . . .+ P0, d ≥ 1,

Pν ∈ On−1, Pν(0) = 0 for 0 ≤ ν ≤ d− 1.

A normalized polynomial from On−1[zn] is a Weierstrass polynomial if

P (0, . . . , zn) = zdn (d ≥ 1).

Weierstrass polynomials are zn-general.

4.5 Lemma. Let Q ∈ On−1[zn] be aWeierstrass polynomial and let A ∈ On
be a power series with the property

P = AQ ∈ On−1[zn].

Then A ∈ On−1[zn] also.

For arbitrary polynomials Q ∈ On−1[zn] instead of Weierstrass polynomials,
this statement is false, as the example

(1− zn)(1 + zn + z2
n + · · ·) = 1

shows.
Proof of Lemma 4.5. First step. In addition, we assume that the degree of P
(as a polynomial over On−1) is smaller than the degree of Q. In this case, we
show A = 0. We choose r > 0 small enough that all occurring power series
converge for |zν | < r. Then we choose ε > 0 small enough that ε < r and that
each zero

Q(z1, . . . , zn) = 0, |zν | < ε for ν = 1, . . . , n− 1,

automatically has the property |zn| < r. Then the polynomial

zn �−→ P (z1, . . . , zn)

has, for each (n− 1)-tuple (z1, . . . , zn−1), |zν | < ε, at least d = degQ zeros, as
Q has, counted with multiplicity. Because degP < degQ, we get

P (z1, . . . , zn) ≡ 0 for |zν | < ε, ν = 1, . . . , n− 1.

We obtain P = 0 and A = 0.
Second step. We use a simple but basic fact about division with a remainder
in the polynomial ring in one variable over a commutative ring R with unity.
(In our application, R = On−1).
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Let P ∈ R[X ] be an arbitrary polynomial and Q ∈ R[X ] a normalized polyno-
mial, i.e. the highest coefficient of Q is assumed to be one. We then have

P = AQ+B, degB < degQ (or B = 0))

with unique polynomials A,B. (In this context, we define the degree of the zero
polynomial to be −∞.)

We apply this simple fact to R = On−1 and to the two polynomials P and
Q given in Lemma 4.5. Division with a remainder gives

P = CQ+D, degD < degQ.

Using the equation P = AQ, we get

(A− C)Q = D, degD < degQ.

Now it follows from the first step that A = C, and A, like C, is a polynomial
over On−1. ��

We mention already that Weierstrass polynomials are zn-general. Units in
On are zn-general too. So, the product of a Weierstrass polynomial and a
unit is zn-general. The fundamental preparation theorem of Weierstrass states
that every zn-general power series is the product of a unit and a Weierstrass
polynomial. Since zn-generality is not a restrictive property (Remark 4.2), the
preparation theorem gives a link between the rings On−1[zn] and On.

4.6 Theorem (Weierstrass preparation theorem) (Weierstrass, 1886).
Let P ∈ On = C{z1, . . . , zn} be a zn-general power series. Then there exists a
unique decomposition

P = U ·Q,
where Q is a Weierstrass polynomial and U is a unit (U(0) �= 0).

The preparation theorem is related to the division theorem, which is sometimes
incorrectly also called the preparation theorem.

4.7 Theorem (Division theorem) (Stickelberger, 1887).
Let Q be a zn-general power series with Q(0) = 0. Let d be the zero order of
the power series Q(0, . . . , 0, zn) at zn = 0 (0 < d < ∞). Every power series
P ∈ On admits a unique decomposition of the form

P = RQ+ S,

where
a) R ∈ On;
b) S ∈ On−1[zn], degzn(S) < d (or S = 0).

Before the proofs of the two theorems, we treat their basic applications to the
division theory of On.
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Division Theory for the Ring of Power Series

We compare the division theory of the rings On−1[zn] and On here.
An application of Lemma 4.5 and the preparation theorem is the following

lemma.

4.8 Lemma. A Weierstrass polynomial P ∈ On−1[zn] is a prime element in
On if and only if it is a prime element in On−1[zn].

On the other hand, 1− zn is a unit in On but a prime element in On−1[zn].
Proof of Lemma 4.8. 1) If P is a prime element in On, then Lemma 4.5 shows
that P is a prime element in On−1[zn] too.
2) Conversely, let P be a prime element in On−1[zn]. We have to show that P
is prime in On. So, we assume

P |AB, A,B ∈ On.

After a suitable change of coordinates, we can assume that A,B are both zn-
general. By means of the preparation theorem, we obtain

A = A0 · U, B = B0 · V,

where A0, B0 are Weierstrass polynomials and U, V are units. From Lemma
4.5, we get P |A0B0 in On−1[zn] and therefore

P |A0 or P |B0 in On−1[zn],

since P is prime in this ring. So we get

P |A or P |B in On. ��

Now we prove the following proposition as fundamental consequence of the
preparation theorem.

4.9 Proposition. The ring On of convergent power series is a UFD ring.

As we have seen already, every power series P can be written as a product
of finitely many indecomposable elements. So, it remains to show that any
indecomposable element of On is prime.
Proof by induction on n. The beginning of the induction is trivial, so we assume
that the proposition has been proved for (n−1) instead of n. We have to show
that it holds for n. Of course, we can assume that P is zn-general and then,
by the preparation theorem, that it is a Weierstrass polynomial. We show first
that P is indecomposable in On−1[zn]. So, let P = AB be a decomposition
in On−1[zn]. Since P is indecomposable in On, we can assume that A is a
unit in On, i.e. A(0) �= 0. It follows from the equation P (0, . . . , 0, zn) = zdn =
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A(0, . . . , 0, zn)B(0, . . . , 0, zn) that, up to a constant factor, A(0, . . . , 0, zn) is a
power of zn, i.e. A(0, . . . , 0, zn) = Czδn. Since A does not vanish at the origin,
we have δ = 0. We obtain the result that B has a degree of at least d as a
polynomial in zn. But then it has a degree of precisely d and A must have
degree 0. Hence A is contained in On−1 and is a unit there.

Now we make use of the induction hypothesis. The ring On−1 is factorial.
By the theorem of Gauss mentioned earlier (Theorem VIII.2.2), On−1[zn] is
factorial as well. So, P is in On−1[zn] and, because of Lemma 4.8, it is also a
prime element in On. ��

Proof of the Preparation and Division Theorems

First step. We start with a special case of the division theorem: the division
theorem (Theorem 4.7) is true if Q is a Weierstrass polynomial (and not only
a zn-general power series).
For an arbitrary power series P ∈ On, we have to construct a decomposition

P = AQ+B, B ∈ On−1[zn], degB < degQ,

and to show that it is unique.
Uniqueness. From AQ + B = 0, we get A ∈ On−1[zn] because of Lemma 4.5.
Comparing degrees, we get A = B = 0.
Existence. We want to define

A(z1, . . . , zn) :=
1

2πi

∮

|ζ|=r

P (z1, . . . , zn−1, ζ)
Q(z1, . . . , zn−1, ζ)

dζ

ζ − zn
.

For this, we have to explain how r > 0 has to be chosen. It has to be so small
that the power series P and Q converge in

U = {z; ‖z‖ < r}, ‖z‖ := max {|zν |, ν = 1, . . . , n}.
Then there exists a number ε, 0 < ε < r, such that

Q(z1, . . . , zn) �= 0 for |zn| ≥ r, |zν | < ε for 1 ≤ ν ≤ n− 1.

The function A is analytic in ‖z‖ < ε and can be expanded into a power series
there. We denote this power series by A again. What we have to show now is
that

B := P −AQ
is a polynomial in zn, and that its degree is smaller than that of Q. By means
of the Cauchy integral formula for P , we obtain (with z := (z1, . . . , zn−1))

B(z, zn) =
1

2πi

∮

|ζ|=r

P (z, ζ)
ζ − zn

dζ − 1
2πi

∮

|ζ|=r

Q(z, zn)
P (z, ζ)
Q(z, ζ)

dζ

ζ − zn

=
1

2πi

∮

|ζ|=r

P (z, ζ)
Q(z, ζ)

[
Q(z, ζ)−Q(z, zn)

ζ − zn

]
dζ.
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The variable zn occurs only inside the large brackets. For fixed z1, . . . , zn−1, ζ,
we know that Q(z1, . . . , zn−1, ζ)−Q(z1, . . . , zn) is a polynomial of degree d =
degQ in zn. This has a zero at zn = ζ and hence is divisible by zn − ζ, such
that the quotient is a polynomial of degree d− 1. Hence B is a polynomial of
degree < d in zn.
Second step. Now let P ∈ On be an arbitrary zn-general power series and let
Q be a Weierstrass polynomial. Both are assumed to converge in ‖z‖ ≤ r. We
also assume that there exist a number ε, 0 < ε < r, such that for each fixed
(z1, . . . , zn−1) with |zν | < ε for (1 ≤ ν ≤ n− 1) the functions

zn �−→ Q(z1, . . . , zn), zn �−→ P (z1, . . . , zn)

have the same zeros (counted with multiplicity) in the disk |zn| < r. Then

P = UQ,

with a unit U .
Proof. We can choose ε so small that all d zeros of Q are contained in |zn| < r.
By the special case of the division theorem, we have

P = AQ+ B, B ∈ On−1[zn], degB < degQ.

We can assume that A and B both converge in |zn| < r. The polynomial
zn �−→ B(z1, . . . , zn) has, for each (z1, . . . , zn−1), |zν | < ε, 1 ≤ ν ≤ n − 1,
more zeros than its degree predicts. Hence it is identically zero. The same
consideration shows that A is a unit. ��
Third step. Proof of the preparation theorem. Let P be a zn-general power
series, and let d, 0 < d < ∞, be the zero order of P (0, . . . , 0, zn) at zn = 0.
The numbers 0 < ε < r are chosen as in Lemma 4.3. We consider the functions

σk(z1, . . . , zn−1) =
1

2πi

∮

|ζ|=r

ζk
∂P (z, ζ)
∂ζ

dζ

P (z, ζ)
, k = 0, 1, 2, . . . .

These functions are analytic in the domain

z ∈ C
n−1, ‖z‖ < ε.

By the residue theorem of complex analysis (in relation to the zero-counting
integral) in one variable, we know that σ0(z1, . . . , zn−1) is the number of zeros

zn �−→ P (z1, . . . , zn)

in |zn| < r (counted with multiplicity). As a consequence, σ0 is an integer, and
hence constant. We order the d = σ0(z1, . . . , zn−1) zeros arbitrarily,

t1(z), . . . , td(z).
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Of course, we can not expect that the tν(z) will be analytic functions in z. But
a simple generalization of the zero-counting integral gives

σk(z) = t1(z)k + . . .+ td(z)k.

Therefore the symmetric expressions t1(z)k+ . . .+ td(z)k are analytic functions
in z. By a result of elementary algebra, which we shall use without proof, we
have the following result.
The νth elementary symmetric polynomial (1 ≤ ν ≤ d),

Eν(X1, . . . , Xd) = (−1)ν
∑

1≤j1<...<jν≤d
Xj1 . . . Xjν

can be written as a polynomial (with rational coefficients) in the

σk(X1, . . . , Xd) =
d∑

j=1

Xk
j

(1 ≤ k ≤ d is enough).
Example.

E2(X1, X2) = X1X2 =
1
2
[
(X1 +X2)2 − (X2

1 +X2
2 )

]
=

1
2
[σ2

1 − σ2].

In particular, the elementary symmetric functions t1(z), . . . , td(z) are analytic.
We use them to define the Weierstrass polynomial

Q(z1, . . . , zn−1, zn) = zdn+E1 (t1(z), . . . , td(z)) zd−1
n +. . .+Ed (t1(z), . . . , td(z)) .

For fixed ‖z‖ < ε, the zeros of these polynomials are t1(z), . . . , td(z) by the
(trivial) “Vieta theorem”. By the second step, P and Q differ only by a unit.
This proves the preparation theorem. ��
Fourth step. Proof of the division theorem. This now follows immediately from
the special cases proved above (in the first step) together with the preparation
theorem. ��

We now give another application of the preparation theorem which again
shows the close connection between zeros and the divisibility of power series.

4.10 Proposition. Let P,Q be two power series which are different from
zero. Then the following two statements are equivalent:
a) In a small neighborhood of the origin,

P (z) = 0 =⇒ Q(z) = 0.

b) There exists a natural number such that P |Qm.
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Proof. We can assume that P and Q are Weierstrass polynomials. Let d be
the degree of P . We want to show that P |Qd, and perform polynomial division
with a remainder for this purpose:

Qd = AP +B, deg(B) < d.

For any (z1, . . . , zn−1) in a small neighborhood of the origin, B has the same
zeros as P . The multiplicities of the zeros of B are at least as large as those of
P . This gives B = 0. ��

Exercises for Sect. V.4

1. The power series

z2 +

∞∑

ν=1

zν
1

is z2-general. Determine the associated Weierstrass polynomial.

2. Write the elementary symmetric polynomials

z1z2 + z1z3 + z2z3, z1z2z3

explicitly as polynomials in

z1 + z2 + z3, z2
1 + z2

2 + z2
3 , z3

1 + z3
2 + z3

3 .

3. Show that C{z} contains only one nonzero prime ideal

4. Show that an analytic function of more than one variable never has an isolated
zero.

5. Representation of Meromorphic Functions
as Quotients of Analytic Functions

A meromorphic function on a domainD can be represented locally as a quotient
of two analytic functions. Hence there exists a covering

D =
⋃

i∈I
Ui, Ui open and connected,

and analytic functions

fi , gi : Ui −→ C, gi �= 0,



5. Meromorphic Functions as Quotients of Analytic Functions 327

such that
f |Ui =

fi
gi
.

Such a representation is not unique! We can try to enforce some kind of unique-
ness by demanding that fi and gi are coprime. Here, elements σ, 
 of a com-
mutative ring with unity are called coprime if

x|
 and x|σ =⇒ x ∈ R∗.
There arises a difficulty: the ring of analytic functions on a domain is not
factorial (i.e. a UFD domain). Only the ring On = C{z1, . . . , zn} of convergent
power series is factorial. To overcome the difficulty, we need the following
statement.

5.1 Proposition. Let
f, g : D −→ C, D ⊂ C

n open,
be analytic functions and let a ∈ D be a point such that the the power series of
f and g at a are coprime elements of the ring of convergent power series

C{X1, . . . , Xn} (“Xν = zν − aν”).
Then there exists a neighborhood of a such that the power series expansions of
f and g at all points b in this neighborhood are coprime.

We shall now prove another proposition (Proposition 5.2) which will imply
Proposition 5.1. For this, we denote the power series expansion of f (and
analogously that of g) at a point a ∈ D by

[f ]a ∈ C{X1, . . . , Xn} (“Xν = zν − aν”).
Now we factorize [f ]a and [g]a into primes,

[f ]a =
r∏

j=1

[fj ]νja and [g]a =
s∏

j=1

[gj ]νja ,

where [fj ]a (and analogously [gj ]a) are pairwise not associated. Here two ele-
ments 
, σ of a ring R are called associated if they differ by a unit, i.e.

σ = ε
, ε ∈ R∗.

Since we can shrink D, we can assume that the representatives fj , gj are ana-
lytic in D. Now we consider

F := f1 · . . . · fr and G := g1 · . . . · gs
instead of f and g. It is clear that [F ]a and [G]a are coprime if this is the
case for [f ]a and [g]a. The elements [F ]a and [G]a are coprime if and only if
[F ]a · [G]a is a square-free element of the ring of convergent power series. An
element 
 of a ring R is called square-free if

x2|
 =⇒ x ∈ R∗.
Conversely, for an arbitrary element b ∈ D, the power series [F ]b and [G]b will
be coprime if [F ]b · [G]b is square-free. Hence Proposition 5.1 follows from the
next proposition.
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5.2 Proposition. Let

f : D −→ C, D ⊂ C
n open,

be an analytic function. The set of all points a ∈ D for which the power series
expansion [f ]a is a square-free element of the ring of power series is open in
D.

Proof. Let a ∈ D be a point such that the power series expansion [f ]a is
square-free. We have to show that [f ]b is square-free in a full neighborhood of
a. Without loss of generality, we can assume that [f ]a is Xn-general, which
means

f(a1, . . . , an−1, zn − an) �≡ 0.

This condition remains valid in a full neighborhood of a. So, we can assume
that [f ]b is Xn-general (“Xn = zn − bn”) at all points b ∈ D. We want to
prove a criterion for the square-freeness of an Xn-general power series which
implies Proposition 5.2. To exclude trivial cases, we assume that the power
series under consideration neither vanishes identically nor is a unit.

5.3 Criterion (Criterion for the square-freeness of a zn-general power
series). A zn-general power series

P ∈ C{z1, . . . , zn}, P (0) = 0, P �= 0,

is not square-free iff

∏

i<j

[ti(z)− tj(z)]2 = 0 for z ∈ C
n−1, ‖z‖ < ε.

(We use the same notation as in the proof of the preparation theorem.)

Proof of the criterion. The condition of the criterion does not change if P
is multiplied by a unit U (U(0) �= 0). Because of the preparation theorem,
we can assume that P is a Weierstrass polynomial. It follows easily from the
preparation theorem and Lemma 4.5 that a Weierstrass polynomial is square-
free in On iff it is square-free in On−1[zn].

The latter is true (by a criterion which is valid for normalized polynomials
over factorial domains; see Proposition VIII.3.2) if the discriminant ∆ does
not vanish. The discriminant can be computed as follows:

∆ =
∏

µ<ν

(tν − tµ)2 ∈ On−1.

This proves Criterion 5.3. ��
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Now we come back to our problem of representing a meromorphic function
on a domain D globally as a quotient of analytic functions. For each point
a ∈ D, there exist a connected open neighborhood U(a) and analytic functions

ga, ha : U(a) −→ C

such that
f |U(a) =

ga
ha
.

Here we can assume – at least after shrinking of U(a) – that the power series
expansions of ga and ha at a are coprime. By Proposition 5.1, this remains
true in a full neighborhood of a. So, we obtain the following result.

5.4 Proposition. Let f be a meromorphic function on a domain D ⊂ C
n.

Then there exist an open covering

D =
⋃

i∈I
Ui, Ui ⊂ D open and connected,

and a family of analytic functions

gi , hi : Ui −→ C (hi �= 0)

such that the following two conditions are satisfied:

a) f |Ui =
gi
hi
.

b) The power series expansions [gi]a and [hi]a are coprime at all points
a ∈ Ui.

Supplement. In the intersection of two members Ui, Uj of the covering, we
have

gi|Ui∩Uj = ϕij · gj |Ui∩Uj
with a function ϕij ∈ O(Ui ∩ Uj)∗.
The supplement is a consequence of the following simple algebraic considera-
tion.
Remark. Let (
, σ), (
′, σ′) be two pairs of coprime elements of a factorial
domain. From the equation


σ′ = σ
′ (i.e. “
/σ = 
′/σ′ ”),

it follows that

 = ε
′ and σ = εσ′,

with a unit ε ∈ R∗.
It is worthwhile to formulate the condition in the Supplement of Proposition

5.4 in the form of a definition.
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5.5 Definition. A (multiplicative) Cousin distribution on a domain
D ⊂ C

n is a family (Ui , fi)i∈I consisting of
a) an open covering

X =
⋃

i∈I
Ui, Ui ⊂ D open and connected,

b) a family of analytic functions fi : Ui → C with the property

fi = ϕij · fj in Ui ∩ Uj , ϕij ∈ O(Ui ∩ Uj)∗.

We say that an analytic function f : D → C fits the Cousin distribution if for
all i,

f |Ui = ϕi · fi, ϕi ∈ O(Ui)∗.

Then the zero sets of f inside Ui agree with that of fi.
Since the sets of zeros of fi and fj agree in Ui ∩ Uj , we should think of a

Cousin distribution as “prescription of zeros with multiplicities”.
The construction of f will be done along the following lines.
First, we determine a family of invertible analytic functions

gi ∈ O(Ui)∗

with the property
gi = ϕij · gj in Ui ∩ Uj ,

where the ϕij are the transition functions which occur in Definition 5.5. Then
we have, for all i, j,

fi
gi

=
fj
gj

in Ui ∩ Uj ,

As a consequence, there exists an analytic function f with f = f/gi on Ui.
This function solves the problem.

The construction of the invertible functions gi rests on a certain gluing
lemma, which we shall now formulate and prove in a situation which is topo-
logically very simple. We assume that the Ui are rectangles, parallel to the
axes, in a very special position. The rectangles which we consider are Carte-
sian products of open intervals in R. As usual, we identify C

n and R
2n by

means of
(z1, . . . , zn) ←→ (x1, y1, . . . , xn, yn).

Now, let the following be given:

a) an open rectangle Q′ ⊂ R
2n−1;

b) real numbers a < b < c < d.
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a b c d

Then we build
Q1 := (a, c)×Q′ ⊂ C

n

and
Q2 := (b, d)×Q′ ⊂ C

n.

So, we have
Q1 ∩Q2 := (b, c)×Q′.

5.6 Lemma. Let Q1 , Q2 be two open rectangles in C
n (= R

2n) in the special
positions

Q1 := (a, c)×Q′ ⊂ C
n, Q2 := (b, d)×Q′ ⊂ C

n (a < b < c < d).

Furthermore, let f be an analytic function on an open set U which contains the
closure Q1 ∩Q2. We then have the following two lemmas.
1) Additive gluing lemma. There exist analytic functions

fν : Qν −→ C, ν = 1, 2,

with the property

f(z) = f1(z)− f2(z) for z ∈ Q1 ∩Q2.

2) Multiplicative gluing lemma. Assume that f is invertible (f ∈ O(U)∗); then
there exist invertible analytic functions

fν : Qν −→ C, fν ∈ O(U)∗, ν = 1, 2,

such that

f(z) =
f1(z)
f2(z)

.

Proof of the additive gluing lemma.
The proof uses the Cauchy integral formula applied to f as a function of z1. In
the proof, z2, . . . , zn will be kept fixed. The integrals under consideration will
depend analytically on z2, . . . , zn by Leibniz’s criterion. Hence it is sufficient
to restrict ourselves to the case n = 1. The Cauchy integral formula gives

f(z) =
1

2πi

∮

∂(Q1∩Q2)

f(ζ)
ζ − z dζ for z ∈ Q1 ∩Q2.

It is clear that the boundary ∂(Q1 ∩ Q2) is the composition of two paths W1

and W2, where W1 is contained in the boundary of Q1 and W2 in the boundary
of Q2:
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We then have
f(z) = f1(z)− f2(z) for z ∈ Q1 ∩Q2,

with

fν(z) :=
∮

Wν

f(ζ)
ζ − z dζ, ν = 1, 2.

The functions fν , ν = 1, 2, are analytic in the complements of Wν , and hence
in the whole of Qν (and actually in a much bigger domain!). ��
Proof of the multiplicative gluing lemma.

This can be reduced to the additive lemma if f can be written in the form

f(z) = eF (z), F : D −→ C analytic,

since then we have to solve the additive problem for F :

F = F1 − F2, Fν ∈ O(Qν),

to obtain

f =
f1
f2

with fν = eFν .

Hence it remains to verify the existence of holomorphic logarithms on suitable
domains. This can be done similarly to the case n = 1 as follows.

5.7 Lemma. Let

f : D −→ C, D ⊂ C
n open and convex,

be an analytic function without zeros. Then f admits an analytic logarithm F ,
i.e. an analytic function F : D→ C with

eF = f.
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Proof. We choose a point a ∈ D. For arbitrary z ∈ D, the segment between a
and z is contained in D. Hence the function

α(t) := f (a+ t(z − a)) , 0 ≤ t ≤ 1,

is well defined and continuous. We set

F (z) :=

1∫

0

α′(t)
α(t)

dt+ Log f(a).

This function depends (because of the Leibniz rule) analytically on z. We have

eF = f

(
since “

α′(t)
α(t)

=
d

dt
Logα(t)”

)
. ��

Why is Lemma 5.6 called the “gluing lemma”?
Consider analytic functions

gν : Qν −→ C, ν = 1, 2.

Assume that there exists an invertible analytic function

ϕ12 ∈ O(U)∗ (U ⊃ Q1 ∩Q2)

with the property
g1 = ϕ12 · g2 in Q1 ∩Q2

There then exists an analytic function

g : Q1 ∪Q2 −→ C

such that
g = ϕνgν in Qν , ϕν ∈ O(Qν)∗

(g is the “glued function”).
For the proof, we apply the multiplicative gluing lemma and write ϕ12 in

the form
ϕ12 =

f1
f2
, fν ∈ O(Qν)∗.

The functions
g2
f1

and
g1
f2

agree in Q1 ∩Q2 and “glue” to a function defined on Q1 ∪Q2.
Now we are in the position to prove the following important proposition.
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5.8 Proposition (P. Cousin, 1895). Let (Ui , fi) be a Cousin distribution
on C

n
(
=

⋃
i∈I Ui

)
. Then there exists an analytic function

f : C
n −→ C

such that
f |Ui = ϕi · fi, ϕi ∈ O(Ui)∗.

Remark . In the case n = 1, this proposition remains true for arbitrary domains
D ⊂ C

n = C, but not in the case n > 1!
Proof of Proposition 5.8. In the first step, we prove that on an open neighbor-
hood U of the closed unit cube

W :=
{
z ∈ C

n; 0 ≤ xν , yν ≤ 1 for 1 ≤ ν ≤ n
}

there exists an analytic function f : U → C which fits the given Cousin distri-
bution,

f = ϕi · fi in U ∩ Ui, ϕi ∈ O(U ∩ Ui)∗.

To show this, we decompose the cube
W into N2n closed small subcubes by
dividing each edge into N equidistant
pieces, as illustrated in the figure. We
denote the small cubes by Wν1,...,ν2n ,
1 ≤ νj ≤ N (1 ≤ j ≤ 2n).

We choose N large enough that each Wν1,...,ν2n is contained in a Ui, and we
denote such a Ui by Uν1,...,ν2n . Correspondingly, we use the notation fi for
fν1,...,ν2n .

For the rest of the proof, we restrict ourselves to the case n = 1, which
can be presented more easily. But the case n > 1 can be treated in the same
manner.
Claim. In a suitable small neighborhood of W11∪W12, there exists an analytic
function which fits the Cousin distribution.

This is a direct consequence of the gluing lemma. By induction, we obtain
an analytic function in an open neighborhood of W11 ∪ . . . ∪W1N which fits
the Cousin distribution. We denote this function by F1. In the same manner,
we construct functions Fi on an open neighborhood of Wi1 ∪ . . . ∪WiN . Now,
using the gluing lemma again, we can glue the functions F1 and F2 and so on,
to obtain finally a function which fits the Cousin distribution. Now we obtain
the following result.
For each compact subset K ⊂ C

n, there exist an open neighborhood U ⊃ K
and an analytic function f : U → C which fits the Cousin distribution.
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To obtain an analytic function f on the whole of C
n, we use an approximation

argument.
Let

Vk =
{
z ∈ C

n
∣∣ ‖z‖ < k

}
, k = 1, 2, . . . .

We choose an arbitrary analytic function

hk : Vk −→ C

which fits the Cousin distribution. Then we have, for k < l,

hl = hk e
ϕkl in Vk,

with a function ϕkl which is analytic on Vk.

hk+1 = hk e
ϕk in Vk (ϕk := ϕk,k+1).

The sequence (Vk, hk) is again a Cousin distribution. Every analytic function
which fits this Cousin distribution fits the original one. So we have succeeded
(by means of the gluing lemma) in reducing an arbitrary covering (Ui)i∈I to
the ascending chain V1 ⊂ V2 ⊂ . . . .

We still have the freedom to replace hk by h̃k = hk e
ψk , with analytic

functions ψk : Vk → C.
Claim. After a suitable choice of the ψk ∈ O(Vk), we obtain

h̃k+1 = h̃k e
ϕ̃k ,

with
a) ϕ̃k ∈ O(Vk);
b) |ϕ̃k(z)| ≤ 2−k for z ∈ Vk−1.

Proof. We shall see that one can find polynomials ψk with the desired proper-
ties. (They are analytic on the whole of C

n.) It is easy to construct the ψk by
induction on k. We simply use the fact that every analytic function on Vk (in
our case ϕk) can be approximated on the relatively compact subset Ūk−1 ⊂ Uk
arbitrarily closely by polynomials. We use the Taylor expansion on polydisks.

��
Now we can assume

|ϕk(z)| ≤ 2−k for z ∈ Vk−1.

For each z ∈ C
n, there exists k0 with z ∈ Vk0 . The series

∑

k≥k0

ϕk(z)
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converges. As a consequence, the sequence

(hk(z))k≥k0

converges, since we have

hl = hk e
ϕk+...+ϕl−1 for l > k.

We denote the limit by

f(z) := lim
k≥k0

hk(z).

The convergence is clearly locally uniform. Hence f is an analytic function
which obviously fits our Cousin distribution. This proves Proposition 5.4.

��

From Theorems 5.4 and 5.8, we get the main result of this section, stated
below.

5.9 Theorem (Poincaré 1883). Every meromorphic function f on C
n can

be written as a quotient of two analytic functions, i.e.

f =
g

h
, g, h : C

n −→ C analytic functions.

One can achieve the result that the power series expansions of g and h are
coprime for each point.

Supplement. If

f =
g

h
=
g̃

h̃

are two “coprime” representations of this type, then

g̃ = g · eϕ and h̃ = h · eϕ

with an analytic function ϕ : C
n → C.

For the proof of the supplement, we have to use the UFD property of the ring
of power series and the existence of analytic logarithms on C

n (Lemma 5.7).
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Exercises for Sect. V.5

1. Show that the Weierstrass product theorem in the form given in [FB], Theorem
IV.2.1, is a special case of Proposition 5.8.

2. Let P be a prime element of the ring of power series On and let Q be an arbitrary
power series. Assume that P (z) = 0 ⇒ Q(z) = 0 in a small neighborhood of the
origin. Show that P |Q.

3. An analytic function f : U → C on an open domain U ⊂ C
n is called reduced if

its power series expansion at each point is reduced (square-free). Show that if f, g
are two reduced analytic functions with the same zero set, then g = ϕf , where ϕ
is an analytic function without zeros.

4. Show that every nonzero analytic function f : C
n → C can be written in the form

f = f redg.

Here f red is a reduced function with the same zero set as f .

Hint. Use Proposition 5.8 and the result of the previous exercise.

6. Alternating Differential Forms

We developed the calculus of differential forms for the two-dimensional case in
the appendix to Chap. II (on Stokes’s theorem). The local part of this theory
will now be generalized to the case of arbitrary dimensions.

In the following, n denotes a fixed natural number. We denote by

Mp :=M(n)
p := {a ⊂ {1, . . . , n}; #a = p}

the set of all subsets of {1, . . . , n} which contain p elements. Their number is

(
n

p

)
(= 0 if p < 0 or p > n).

6.1 Definition. An (alternating) differential form ω of degree p on an
open subset D ⊂ R

n is a map which assigns to each a ∈ Mp a C∞-function
fa : D → C:

ω = (fa)a∈Mp .
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We denote by Ap(D) the set of all differential forms of degree p on D, and call
them p-forms for short.

The set M(n)
0 consists of one element only (namely the empty set). Hence

a zero form has only one component. So, we can identify zero forms and
functions:

A0(D) = C∞(D).

Calculus of Differential Forms

I. Algebraic Computation Rules

Since p-forms can be added componentwise and multiplied by functions, Ap(D)
is a module over C∞(D):

(fa) + (ga) = (fa + ga),

f · (fa) = (f · fa).

By the way,
Ap(D) = 0 for p < 0 or p > n,

sinceMp is empty in these cases.

II. The Total Differential of a Function

Since we can identify the one-element subsets of {1, . . . , n} with the elements
of {1, . . . , n}, a 1-form can be considered as an n-tuple of functions

A1(D) = A0(D)× . . .×A0(D),

A1(D) = C∞(D)× . . .× C∞(D)︸ ︷︷ ︸
n−times

.

The total differential of a C∞-function f is defined by

df :=
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

One can verify the rules

a) d(f + g) = df + dg;
b) d(f · g) = f · dg + g · df ;
c) df = 0 ⇐⇒ f is locally constant.
If we denote by

pν : D → C, pν(x) = xν ,
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the projection to the νth coordinate, we have

dpν = (0, . . . , 0, 1, 0, . . . , 0)
↑

νth component

.

Notation: dxν := dpν .

So, we can write a 1-form (f1, . . . , fn) also as

(f1, . . . , fn) =
n∑

ν=1

fν dxν .

Now the total differential can be written as

df =
n∑

ν=1

∂f

∂xν
dxν .

III. The Alternating Product

Analogously to the case p = 1, we define for a p-element subset a ⊂ {1, . . . , n}
the p-form

( dxa)b =
{

1 for a = b,
0 for a �= b.

Each p-form ω = (fa)a∈Mp
can be written in the form

ω =
∑

a∈Mp

fa dxa.

Let
a, b ⊂ {1, . . . , n}, #a = p, #b = q.

We define a “sign factor” ε(a, b).
First case. We set

ε(a, b) = 0 if a ∩ b �= ∅.

Second case . Let a ∩ b = ∅.
We order the elements of a naturally:

a = {a1, . . . , ap}, a1 < a2 < . . . < ap,

and correspondingly

b = {b1, . . . , bq}, b1 < b2 < . . . < bq.
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We then have

a ∪ b = {a1, . . . , ap, b1, . . . , bq}, #(a ∪ b) = p+ q.

But the elements in the brackets are not in their natural order, since there is
no need for ap < b1.

We denote by ε(a, b) the sign of the permutation (of p+ q elements) which
is used to bring (a1, . . . , ap, b1, . . . , bq) into their natural order.
Example.

a = {1, 2}, b = {2, 3}, ε(a, b) = 0;

a = {1, 3}, b = {2, 4}, ε(a, b) = −1;

a = {2, 4}, b = {3, 5}, ε(a, b) = −1.

Now we define the alternating product

Ap(D) × Aq(D) −→ Ap+q(D),

ω , ω′ �−→ ω ∧ ω′,

by the formulae

⎛

⎝
∑

a∈Mp

fa dxa

⎞

⎠ ∧

⎛

⎝
∑

b∈Mq

gb dxb

⎞

⎠ :=

⎛

⎜⎝
∑

a∈Mp
b∈Mq

fagb dxa ∧ dxb

⎞

⎟⎠

dxa ∧ dxb := ε(a, b) dxa∪b.

It is a simple exercise to verify the following formulae.

1) In the case p = 0, the alternating product agrees with the usual (compo-
nentwise) product:

f ∧ ω = f · ω for f ∈ A0(D).

2) The alternating product is skew commutative:

ω ∧ ω′ = (−1)pq ω′ ∧ ω for ω ∈ Ap(D), ω′ ∈ Aq(D).

In particular,
ω ∧ ω = 0
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if p is odd. The alternating product is associative:

(ω ∧ ω′) ∧ ω′′ = ω ∧ (ω′ ∧ ω′′),

ω ∈ Ap(D), ω′ ∈ Aq(D), ω′′ ∈ Ar(D).

3) The alternating product is bilinear:

(ω1 + ω2) ∧ ω = ω1 ∧ ω + ω2 ∧ ω,
ω1, ω2 ∈ Ap(D), ω ∈ Aq(D).

Because of the associativity, we can define the alternating product

ω1 ∧ . . . ∧ ωm

of several alternating differential forms.
It is easy to show, by induction with respect to p, that for a p-element subset

a = {a1, . . . , ap} of {1, . . . n} in its natural order, the formula

dxa = dxa1 ∧ . . . ∧ dxap

holds. If we write fa1,...,ap instead of fa, we obtain the standard representation
of a p-form ω,

ω =
∑

a∈Mp

fa dxa

=
∑

1≤a1<...<ap≤n
fa1,...,ap dxa1 ∧ . . . ∧ dxap .

As an example, we can compute the alternating product of two 1-forms. Using

dxν ∧ dxµ = − dxµ ∧ dxν = 0, if µ = ν,

we get
(

n∑

ν=1

fν dxν

)
∧
(

n∑

µ=1

gµ dxµ

)
=

∑

1≤ν<µ≤n
(fνgµ − fµgν) dxν ∧ dxµ.

IV. The Exterior Derivative

Generalizing the total differential of a function, we define

d : Ap → Ap+1
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by the formula

d
(∑

fa dxa

)
=

∑
dfa ∧ dxa.

The following formulae can easily be checked:

1. d(ω + ω′) = dω + dω′.

2. d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)p ω ∧ (dω′),

ω ∈ Ap(D), ω′ ∈ Aq(D).

In particular, d(cω) = cdω for c ∈ C.

3. d(dω) = 0.

An important special case is

d(ω ∧ ω′) = dω ∧ ω′ if dω′ = 0.

By induction, we obtain

d(ω1 ∧ . . . ∧ ωm) = 0 if dω1 = . . . = dωm = 0.

Hence we have

d(ω ∧ df1 ∧ . . . ∧ dfm) = dω ∧ df1 ∧ . . . ∧ dfm.

V. Complex Coordinates

Now we consider an open subset D ⊂ C
n. Since we can identify C

n with R
2n

by
C
n ←→ R

2n,

(z1, . . . , zn)←→ (x1, y1, . . . , xn, yn),

all of what we have said for the real case holds in the complex case too. Nev-
ertheless it is frequently useful to introduces “complex coordinates” in the
complex case:

dzν := dxν + i dyν , dz̄ν := dxν − dyν .

We have

dxν =
1
2
( dzν + dz̄ν), dyν =

1
2i

( dzν − dz̄ν).

So, we see that each 1-form can be written as

ω =
n∑

ν=1

fν dzν +
n∑

ν=1

gν dz̄ν .
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If we set

A1,0(D) =

{
n∑

ν=1

fν dzν

}
,

A0,1(D) =

{
n∑

ν=1

gν dz̄ν

}
,

we obtain
A1(D) = A1,0(D) +A0,1(D).

We want to generalize this decomposition to arbitrary degrees, and define for
this purpose

Ap,q(D) :=

⎧
⎪⎨

⎪⎩

∑

1≤i1<...<ip≤n
1≤j1<...<jq≤n

f( i1,...,ip
j1,...,jq

) dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq

⎫
⎪⎬

⎪⎭
.

Then, obviously,
Am(D) =

∑

p+q=m

Ap,q(D).

This decomposition is direct , i.e. the decomposition of an m-form ω as

ω =
∑

ωp,q, ωp,q ∈ Ap,q(D),

is unique.
Obviously, the alternating product respects this decomposition in the fol-

lowing sense: if
ω ∈ Ap,q(D), ω′ ∈ Ap′,q′(D),

then
ω ∧ ω′ ∈ A(p+p′,q+q′)(D).

But the exterior derivative does not respect the decomposition of Am(D). How-
ever, it is possible to split it into a sum such that each summand respects this
decomposition. For this, we set

∂

∂zν
=

1
2

(
∂

∂xν
− i

∂

∂yν

)
,

∂

∂z̄ν
=

1
2

(
∂

∂xν
+ i

∂

∂yν

)
.

If we define the operators

∂ : C∞(D) −→ A1,0(D),

∂̄ : C∞(D) −→ A0,1(D)



344 V. Analytic Functions of Several Complex Variables

by

∂f :=
n∑

ν=1

∂f

∂zν
dzν ,

∂̄f :=
n∑

ν=1

∂f

∂z̄ν
dz̄ν ,

then we have
df = ∂f + ∂̄f.

Now we define the more general maps

∂ : Ap,q(D)→ Ap+1,q(D),

∂̄ : Ap,q(D)→ Ap,q+1(D)

by the formulae

∂(f dzi1∧. . .∧ dzip∧ dz̄j1∧. . .∧ dz̄jq ) = ∂(f)∧ dzi1∧. . .∧ dzip∧ dz̄j1∧. . .∧ dz̄jq
and
∂̄(f dzi1∧. . .∧ dzip∧ dz̄j1∧. . .∧ dz̄jq ) = ∂̄(f)∧ dzi1∧. . .∧ dzip∧ dz̄j1∧. . .∧ dz̄jq

(1 ≤ i1 < . . . < ip ≤ n, 1 ≤ j1 < . . . < jq ≤ n)

Then the rules

∂ ◦ ∂ = 0, ∂̄ ◦ ∂̄ = 0,

∂ ◦ ∂̄ = −∂̄ ◦ ∂

hold. We now formulate the two most important theorems about alternating
differential forms in the “local case”. For both of them, we assume thatD ⊂ R

n

is a convex domain (i.e. D is open and the straight segment between two points
of D is contained in D). First, we have to give a definition.

6.2 Definition. A differential form ω is called closed if

dω = 0.

Sometimes this is called “d-closed”. The terms “∂-closed” (∂ω = 0) and “∂̄
closed” (∂̄ω = 0) are defined analogously.

6.3 Lemma (Poincaré’s lemma).
For every closed p-form ω, there exists a (p− 1)-form ω′ with

ω = dω′.

In the case n = p = 1, this follows from the main theorem of differential and
integral calculus.
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6.4 Lemma (Dolbeault’s lemma).
For every (p, q)-form ω which is ∂̄-closed (i.e. ∂̄ω = 0), there exists a (p, q−1)-
form ω′ such that

ω = ∂̄ω′.

(The same lemma holds for the ∂-complex as well.)
We shall not prove these two lemmas, since we shall not use them in the

following.

VI. Analytic Differential Forms

A differential form ω on an open subset of C
n is called analytic if the following

two conditions are satisfied:
a) ω is of the type (p, 0), i.e. of the form

ω =
∑

fi1,...,ip dzi1 ∧ . . . ∧ dzip .

b) The components fi1,...,ip are analytic functions.
Obviously, a p-form ω of type (p, 0) is analytic iff

∂̄ω = 0.

The exterior derivative of an analytic p-form is also analytic. Moreover, the
formula

dω = ∂ω =
∑

dfi1,...,ip ∧ dzi1 ∧ . . . ∧ dzip
holds. The exterior derivative of an analytic function is

df = ∂f =
∑ ∂f

∂zν
dzν .

If we denote the set of all analytic p-forms on D by Ωp(D), then the exterior
derivative gives a map

∂ = d : Ωp(D)→ Ωp+1(D).

Of course, ∂2 = 0.

6.5 Lemma (Poincaré’s analytic lemma).
Let D ⊂ C

n be a convex domain. Then every closed analytic p-form ω (dω = 0)
can be written in the form

ω = dω′, ω′ ∈ Ωp−1(D).
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In the case n = p = 1, this is the well-known theorem of complex analysis that
any analytic function on a convex domain D ⊂ C admits a primitive.

We shall use Poincaré’s analytic lemma only in the case p = 1 and D = C
n.

So, we shall prove it only in this special case. In this case it states:
Let f1, . . . , fn be analytic functions on C

n. We assume that

∂fi
∂zk

=
∂fk
∂zi

for 1 ≤ i, k ≤ n (equivalent to d
(∑

fν dzν
)

= 0).

Then there exists an analytic function on C
n with

∂f

∂zi
= fi for i = 1, . . . , n.

Proof by induction on n.
We have already considered the case n = 1. So, let n > 1. Termwise integration
of the power series expansion of f1 with respect to the first variable gives an
analytic function f with

∂f

∂z1
= f1.

We can replace fi by fi−∂f/∂zi without changing the assumptions. Hence we
can assume

f1 = 0.

But then,
∂fk
∂z1

= 0 for all k.

Hence the functions fk do not depend on z1. Now we can apply induction.
��

Exercises for Sect. V.6

1. Determine an analytic function f(z1, z2) with

df = z2
2 dz1 + 2z1z2 dz2.

2. Prove the product rule

d(ω ∧ ω′) = (dω) ∧ ω′ + (−1)p ω ∧ (dω′).

3. Prove

d(ω1 ∧ . . . ∧ ωk = dω1 ∧ . . . ∧ ωk if dω2 = · · · = dωk = 0.
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As the theory of elliptic integrals leads naturally to the theory of elliptic functions,

the theory of general algebraic integrals leads to the theory of Riemann surfaces and

then to the theory of abelian functions. These are meromorphic functions on a higher-

dimensional complex torus. The case n > 1 is much more involved than the case of the

elliptic functions (n = 1). The reason for this is that the Weierstrass approach using

the ℘-function does not work, since the zeros and poles of meromorphic functions of

several variables are no longer discrete. Hence the method of Mittag-Leffler partial

fraction series and Weierstrass products is no longer available. In [FB], Sect. V.6, we

touched on another approach to the theory of elliptic functions. This uses, instead of

the Weierstrass σ-function, the Jacobi theta function for the proof of Abel’s theorem.

We shall follow this thread now. Many of the ideas of this chapter are taken from

Igusa’s fundamental book [Ig4].

1. Lattices and Tori

We start with the real theory.

1.1 Lemma. Let L ⊂ R
n be a discrete additive subgroup. There exist linearly

independent vectors ω(1), . . . ω(k) such that

L = Zω(1) + · · ·+ Zω(k).

The number k is uniquely determined (k ≤ n).

The proof is given by induction on n:
Beginning of the induction (n = 1). A discrete subgroup L ⊂ R which is
different from zero has an element a ∈ L, a �= 0, with minimal modulus. It is
easy to show that L = aZ.
Induction step. We assume that the proposition has been proved for n − 1
instead of n. The discreteness of L means that each compact subset contains
only finitely many elements of L. We can assume that L �= 0. Then we can
choose, from all vectors in L which are different from zero, one with minimal
Euclidean norm

|ω(1)| =

√√√√
n∑

ν=1

|ω(1)
ν |

2
.

After a suitable coordinate transformation, we can assume that

ω(1) = (1, 0, . . . , 0).
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It follows from the beginning of the induction that

{x ∈ R; (x, 0, . . . , 0) ∈ L} = Z.

Now we consider the projection

p : R
n −→ R

n−1, (x1, . . . , xn) �−→ (x2, . . . , xn),

and claim that the image L′ = p(L) is discrete in R
n−1.

Otherwise, there would exist infinitely many vectors p(ω), ω ∈ L, such that

|ων | ≤ C for ν = 2, . . . , n (C suitable).

We could add an integral multiple of ω(1) to obtain also |ω1| ≤ C, which gives
a contradiction to the discreteness of L.

By the induction assumption, there exist vectors ω(2), . . . , ω(k) ∈ R
n whose

images in R
n−1 are linearly independent and generate L′ as a Z-module. Then

ω(1), . . . , ω(k) are of course linearly independent and we have

L =
k∑

ν=1

Zω(ν).

The uniqueness of k is clear, since k is the dimension of the vector space spanned
by L. ��

1.2 Definition. If the number k which occurs in Lemma 1.1 equals the
dimension n, we call L a lattice. The point set

P =

{
n∑

ν=1

tνω
(ν); 0 ≤ tν ≤ 1

}

is called a fundamental parallelogram of L.

Obviously,
R
n =

⋃

a∈L
Pa, Pa = {a+ x; x ∈ P},

i.e. R
n is covered by L-translates of the fundamental parallelogram. Up to

boundary points, this decomposition is disjoint.

1.3 Remark. Let L ⊂ R
n be a lattice. Then

L◦ := {x ∈ R
n; 〈a, x〉 ∈ Z for all a ∈ L}

(
〈a, x〉 =

n∑

ν=1

aνxν

)

is a lattice as well. We have (L◦)◦ = L.
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We call L◦ the dual lattice of L.

Proof. Obviously,
(Zn)◦ = Z

n.

Each lattice is of the form
L = A Z

n,

with a certain n×n matrix A. The columns of A are a lattice basis. Obviously,

L◦ = At
−1

Z
n. ��

As usual, we associate with the lattice L ⊂ R
n a torus

X = R
n/L.

The elements of X are equivalence classes

[x] = {x+ a; a ∈ L}

with respect to the equivalence relation

x ∼ y ⇐⇒ x− y ∈ L.

There is a natural projection

p : R
n −→ X, x �−→ [x].

Functions on X are in one-to-one correspondence with functions on R
n that

are periodic under L, i.e.

f(x+ a) = f(x) for all a ∈ L.

Fourier Series

We denote by C∞(X) the set of all L-periodic C∞-functions on R
n. Some

examples of periodic functions under L are

f(x) = e2πi〈a,x〉, a ∈ L◦.

The theory of Fourier series says that these are the basic functions for con-
structing all periodic functions.
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1.4 Lemma. Every periodic C∞-function

f ∈ C∞(X), X = R
n/L,

admits on the whole of R
n an expansion

f(x) =
∑

g∈L◦
age

2πi〈x,g〉

which converges absolutely and uniformly. The coefficients ag are unique, and

ag =
1

vol(P )

∫

P

f(x)e−2πi〈x,g〉dx1 . . . dxn.

Here P is a fundamental parallelogram of L.

The case L = Z
n is usually treated in basic courses on analysis. In this case

the Fourier series is of the form

f(x) =
∑

g integral

age
2πi(g1x1+...+gnxn),

ag =

1∫

0

· · ·
1∫

0

f(x)e−2πi(g1x1+...+gnxn).

We assume this to be known. In the general case, we write the lattice in the
form L = AZ

n. By means of

〈Ax,At−1
y〉 = 〈x, y〉,

we obtain the result that the Fourier series of f with respect to L corresponds
to the Fourier series of

g(x) = f(Ax)

with respect to Z
n. ��

What are the conditions for the coefficients ag such that the corresponding
Fourier series converges and represents a C∞-function?

1.5 Lemma. The series

f(x) =
∑

g∈L◦
age

2πi〈x,g〉

is the Fourier series of a C∞-function iff for each polynomial P (g1, . . . , gn) we
have

|agP (g1, . . . , gn)| −→ 0 for g2
1 + · · ·+ g2

n −→∞.
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Proof. We can assume that L = Z
n.

1) Assume that the coefficients ag satisfy the decay behavior formulated in
Lemma 1.5. We have to show that the Fourier series and all series which are
obtained by repeated termwise partial differentiation converge absolutely and
uniformly. Termwise differentiation with respect to xν means that ag is replaced
by 2πigνag. This does not affect the decay behavior. Hence it is sufficient to
show that the Fourier series itself,

∑

g∈L◦
|ag|,

converges. For this, it is sufficient to show that the majorants

∑′
(g2

1 + . . .+ g2
n)

−k

⎛

⎝
∑′

ν

:=
∑

ν �=0

⎞

⎠

converge for sufficiently large k. This series converges iff the integral
∫

x2
1+...+x

2
n≥1

(x2
1 + . . .+ x2

n)
−k

converges. By means of polar coordinates, one one can easily show that this is
the case for 2k > n. (compare [FB], Lemma V.2.1).
2) Assume that f is continuously differentiable arbitrarily often. By partial
integration, one can show that

gν · ag =
1

2πi

∫

P

∂f

∂xν
e−2πi〈g,x〉.

The integrand is bounded on the compact set P uniformly in g, since the
exponential term has modulus one. Iterated application of this observation
shows that

agP (g1, . . . , gn)

is bounded for every polynomial. But this expression must in addition tend to
0, since we can multiply it by g2

1 + . . .+ g2
n. ��

Exercises for Sect. VI.1

1. Let L be a lattice. Show that a subgroup L′ ⊂ L is a lattice iff it has a finite
index.
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2. Show that the volume of a fundamental parallelogram of a lattice is independent
of the choice of the lattice basis.

3. Let L′ ⊂ L be a subgroup of finite index [L : L′] of a lattice L, and let P ′, P be
fundamental parallelograms. Show that

vol(P ′) = [L : L′]vol(P ).

2. Hodge Theory of the Real Torus

We denote by Ap(X) the set of all p-forms on R
n whose components are peri-

odic. We consider the de Rham complex of the torus,

· · · d−→Ap(X) d−→Ap+1(X) d−→· · · .

The periodicity will not be destroyed by differentiation. We set

Cp(X) = Kernel
(
Ap(X) d−→Ap+1(X)

)
,

Bp(X) = Image
(
Ap−1(X) d−→Ap(X)

)
,

and
Hp(X) = Cp(X)/Bp(X) (we have Bp(X) ⊂ Cp(X)),
hp(X) = dimC H

p(X).

We also set

Hp(X) =
{
ω ∈ Ap(X); the components of ω are constant

}
.

We have

dimHp(X) =
(
n

p

)
.

Differentiation of a Fourier series gives another one without a constant Fourier
coefficient. Hence d cannot be surjective.

2.1 Proposition. Let L ⊂ R
n be a lattice. We have

Cp(X) = Bp(X)⊕Hp(X).

The composition of Hp(X) ↪→ Cp(X) with the projection Cp(X) → Hp(X)
induces an isomorphism

Hp(X) ∼= Hp(X) , and hence hp(X) =
(
n

p

)
.
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Proof. We have already noticed that

Bp(X) ∩Hp(X) = 0.

Hence it suffices to show that the image Bp(X) under d contains all closed
p-forms ω with vanishing constant Fourier coefficient. It is useful to consider
first the special case n = p = 1. Here we have to show that if

f(x) =
∞∑

k=−∞
ake

2πikx

is a C∞-Fourier series whose constant Fourier coefficient vanishes, then f(x)
is the derivative of a C∞-Fourier series.

It is clear what we have to do. Because of Lemma 1.5, the series

g(x) =
∑

k �=0

( ak
2πik

)
e2πikx

is a C∞-function like f .
In principle, the general case (n, p arbitrary) rests on the same effect. But

working it out leads to certain combinatorial difficulties. The following formal-
ism – which works also in the complex case – gets around these difficulties.

The Laplace operator is defined by the formula

∆f =
n∑

ν=1

∂2f

∂x2
ν

.

It transforms periodic functions into periodic functions. More generally, we
define the Laplace operator for differential forms componentwise:

∆
(∑

fi1,...,ip dxi1 ∧ . . . ∧ dxip
)

=
∑

∆fi1,...,ip dxi1 ∧ . . . ∧ dxip .

This is an operator
∆ : Ap(X)→ Ap(X).

Now we define, for arbitrary p, an operator called the co-differentiation opera-
tor,

δ : Ap(X)→ Ap−1(X),

by means of the formula

δ

⎛

⎝
∑

1≤i1<...<ip≤n
fi1,...,ip dxi1 ∧ . . . ∧ dxip

⎞

⎠

=
p∑

ν=1

(−1)ν
∑

1≤i1<...<ip≤n

∂fi1,...,ip
∂xiν

dxi1 ∧ . . . ∧ ˆdxiν ∧ . . . ∧ dxip .
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Here the symbol “ˆ” means that the term beyond it has to be canceled.
By means of co-differentiation, we obtain an important splitting of the

Laplace operator. A simple calculation that can be left to the reader shows
that

−∆ = dδ + δ d (on Ap(X)).

We consider two more operators which can be applied to Fourier series

f(x) =
∑

g∈L◦
age

2πi〈x,g〉,

namely

(Hf)(x) = a0,a)

(Gf)(x) = − 1
4π2

∑

g �=0

ag
g2
1 + . . .+ g2

n

e2πi〈x,g〉.b)

Again these operators can be generalized to differential forms by applying them
componentwise.

The key to the proof of Proposition 2.1 is the following simple formula:

(∆G)(ω) = ω −Hω (ω ∈ Ap(X)) .

Now let ω be a closed form without a constant Fourier coefficient;

dω = 0 and Hω = 0.

Obviously,
dω = 0 =⇒ d(Gω) = 0.

The above formula now says

−d(δGω) = ω,

which proves Proposition 2.1. ��

Exercises for Sect. VI.2

1. Verify the formulae

−∆ = dδ + δd, (∆G)(ω) = ω −Hω
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in the case n = 2.

2. Show that in the case n = 2, every harmonic L-periodic function is constant.

Hint. Assume that the function is real-valued. Then you can apply the theory
given in Chap. II.

In the following exercise, it can be assumed that this has been proved for all
n.

3. Show that for a p-form ω ∈ Ap(X), we have

∆ω = 0 ⇐⇒ dω = ∂ω = 0.

3. Hodge Theory of a Complex Torus

We now come to the case of a complex torus

X = C
n/L, L ⊂ C

n (= R
2n) a lattice.

In Sect. V.6, we introduced the Dolbeault complex. Now we introduce its
periodic version

Ap,q(X) := Ap,q(Cn) ∩ Ap+q(X).

The operators ∂, ∂̄ preserve periodicity. In analogy to the real case, we can
introduce the following vector spaces:

Cp,q(X) = Kernel
(
Ap,q(X) ∂̄−→Ap,q+1

)
,

Bp,q(X) = Image
(
Ap,q−1(X) ∂̄−→Ap,q(X)

)
,

Hp,q(X) = Cp,q(X)/Bp,q(X),

Hp,q(X) = Ap,q(X) ∩Hp+q(X)

= {ω ∈ Ap,q(X), the components of ω are constant } .
The so-called Hodge numbers are

hp,q = dimC H
p,q(X).

3.1 Proposition. Let L ⊂ C
n be a lattice. We have

Cp,q(X) = Bp,q(X)⊕Hp,q(X);

in particular,

Hp,q(X) ∼= Hp,q(X) and hp,q(X) =
(
n

p

)
·
(
n

q

)
.
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The proof is analogous to the real case: we now give a brief indication of it.
First we verify that the operators ∆, G,H which we introduced in the real

case respect the bi-grading

Am(X) =
⊕

p+q=m

Ap,q(X),

since the formulae

∆(fω0) = (∆f)ω0, G(fω0) = (Gf)ω0, and H(fω0) = (Hf)ω0

are also valid in complex coordinates

ω0 = dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .

The reason for this is that ω0 can be written as a linear combination with
constant coefficients in the corresponding real basis elements.

We also have, in analogy to the real case,

∂̄ω = 0 =⇒ ∂̄Gω = 0.

So, the proof of the real version will work in the complex case as well if we can
find an operator

δ : Ap,q(X)→ Ap,q−1

such that
−∆ = ∂̄δ + δ∂̄ on Ap,q(X).

The formula

δ(f dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq )

=
q∑

ν=1

(−1)ν
∂f

∂z̄jν
dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ ˆdz̄jν ∧ . . . ∧ dz̄jq

defines such an operator. ��
Although the proofs of the real and complex Hodge decompositions are very

similar, there is a fundamental difference between the real and the complex
cases. In the real case, there exists in each dimension essentially only one torus
and only one de Rham complex. The reason is that exterior differentiation d
commutes with R-linear maps and that every lattice in R

n can be transformed
by an R-linear isomorphism into another given lattice. In the complex case,
the situation is different.
The operators ∂/∂zν and ∂/∂z̄ν commute only with C-linear maps – not with
arbitrary R-linear ones.
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Usually, two lattices L,L′ ⊂ C
n cannot be transformed into each other by

means of a C-linear isomorphism. (In the case n = 1, the C-linear automor-
phisms are the similarity transformations .)

Exercises for Sect. VI.3

1. Verify the formula

−∆ = ∂̄δ + δ∂̄ on Ap,q(X))

in the case n = 1.

2. Show that a differential form ω ∈ Ap,q(X) has constant coefficients if and only if

∂̄ω = δω = 0.

4. Automorphy Summands

Let f be a meromorphic function on C
n. For a given vector ω ∈ C

n, we can
define the meromorphic function g(z) = f(z + ω) in an obvious way. We say
that f has period ω if g = f .

In the following, L ⊂ C
n denotes a lattice. An abelian function f is a

meromorphic function on C
n that is periodic with respect to L:

f(z + ω) = f(z) for all ω ∈ L.

So, an abelian function has 2n periods which are linearly independent over R.
In the case n = 1, an abelian function is nothing but an elliptic function. In
analogy to the first Liouville theorem in the theory of elliptic functions, we can
make the following statement.

4.1 Remark. Every analytic abelian function is constant.

Proof. An abelian function takes all of its values in a fundamental parallel-
ogram. Since this is compact, an everywhere analytic abelian function has a
maximum and hence is constant by the maximum principle. ��

We have seen (Theorem V.5.9) that every meromorphic function on C
n,

and, in particular, every abelian function f , can be written as a quotient of
two analytic functions g and h, i.e. f = h/g. We can achieve the result that
the power series expansions of h and g at each point are coprime. For a period
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a, we have two coprime representations as quotients f(z) = g(z)/h(z) = g(z +
a)/h(z + a). This gives

h(z + a) = e2πiHa(z)h(z)

(and similarly for g), with certain analytic functions Ha. If f is not identically
zero, then Ha has to satisfy the following functional equation:

Ha+b(z) ≡ Hb(z + a) +Ha(z) mod 1.

(By definition, the congruence

a ≡ b mod 1

means that a− b is integral.)

4.2 Definition. An automorphy summand (with respect to L) is a map

H : L× C
n −→ C, (a, z) �−→ Ha(z),

with the following properties:

1) Ha(z) is analytic in z for each a ∈ L.
2) Ha+b(z) ≡ Hb(z + a) +Ha(z) mod 1.

Owing to the theorem concerning the representation of meromorphic functions
as quotients of analytic functions, we can associate automorphy summands
with abelian functions. A big part of the theory of abelian functions deals with
the classification of these summands. We shall treat this classification in this
and the following section (see Proposition 5.6):

Trivial Automorphy Summands

For any analytic function ϕ : C
n → C,

Ha(z) := ϕ(z + a)− ϕ(z)

is an automorphy summand. For reasons which will immediately be clear, we
call such summands trivial automorphy summands.

4.3 Definition. Two automorphy summands Ha, H̃a are called equivalent if
they differ only by a trivial summand:

H̃a(z) = Ha(z) + ϕ(z + a)− ϕ(z), ϕ analytic on C
n.
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Equivalent automorphy summands should be considered as “essentially equal”:
if h is a solution of the functional equation

h(z + a) = e2πiHa(z)h(z),

then
h̃(z) := e2πiϕ(z)h(z)

is a solution of
h̃(z + a) = e2πiH̃a(z)h̃(z).

This gives a one-to-one correspondence between the solution spaces. If g is a
second solution and g̃ is the corresponding transformed function, we have

g(z)
h(z)

=
g̃(z)
h̃(z)

.

Equivalent automorphy summands perform in the same way for the construc-
tion of abelian functions.

In the following, we shall choose a suitable representative from each equiv-
alence class. We shall show in this section (Theorem 4.5) that Ha(z) is a
polynomial of degree ≤ 1 in z for each a. For the proof, we shall use the Hodge
decomposition on a complex torus.

It is useful (but not necessary for our purposes) to equip the set of equivalence
classes of automorphy summands with a structure in the form of a group. First,
we can see that the sum of automorphy summands is an automorphy summand as
well. So, the set of all automorphy summands is an abelian group. The set of trivial
automorphy summands is a subgroup. We have to deal with the factor group. We
shall determine the structure of this factor group. There is a connection between this
factor group and the Picard group of a compact Riemann surface (see Exercise 4).

We want to change the congruence 2) in Definition 4.2 into an equality.
For this, we consider the imaginary part ha(z) = ImHa(z) of the automorphy
summand. We have

ha+b(z) = hb(z + a) + ha(z).

We accept that ha is not analytic. The goal of the following construction is to
associate with the system of functions ha a closed periodic differential form of
type (p, q) = (1, 1). We shall apply the Hodge decomposition (Proposition 3.1)
to this differential.

4.4 Lemma. Let

h : L× C
n −→ R, (a, z) �−→ ha(z),

be a map with the following properties:
1) ha(z) is a (real) C∞-function for fixed a ∈ L;
2) ha+b(z) = hb(z + a) + ha(z).
Then there exists a real C∞-function h : C

n → R with the property

ha(z) = h(z + a)− h(z).
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(In the real theory, we can consider ha as a trivial C∞-automorphy summand.)
Proof of Lemma 4.4. We choose a real C∞-function

ϕ : C
n −→ R, ϕ ≥ 0,

with the following properties:
1) The support of ϕ is compact.
2) The set of points z ∈ C

n with ϕ(z) > 0 contains a fundamental parallelo-
gram of L.

It is not difficult to prove the existence of such a function. We shall skip the
proof. Because of 1) and 2), the series

∑

a∈L
ϕ(z − a) (the sum is finite for fixed z)

is an everywhere (!) positive C∞-function. If we set

ψb(z) :=
ϕ(z − b)∑
a∈L ϕ(z − a) ,

we obtain for each b ∈ L a C∞-function with compact support with the property

ψa+b(z + b) = ψa(z).

It is easy to check that

h(z) :=
∑

a∈L
ψa(z)ha(z − a)

has the desired property. ��
We come back to our automorphy summand Ha(z). By Lemma 4.4, there

exists a real C∞-function h with the property

h(z + a)− h(z) = ImHa(z).

We apply the operator ∂∂̄ to this equation (see Sect. V.6). Analytic functions
are annihilated by ∂̄, and antianalytic functions by ∂. Because ∂∂̄ = −∂̄∂, the
operator ∂∂̄ annihilates the sum of an analytic and an antianalytic function.
This shows that

∂∂̄ ImHa(z) = 0.

We obtain the result that the (1,1)-form ∂∂̄h is periodic under L,

ω := ∂∂̄h ∈ A1,1(X), X := C
n/L.
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Of course,
∂̄ω = 0 (since ∂∂̄ = −∂̄∂ and ∂̄2 = 0).

As announced, we have associated a closed differential form of type (1, 1) with
the automorphy summand. We now apply the Hodge decomposition. By
Proposition 3.1, we have

∂∂̄h =
∑

1≤i,k≤n
aik dzi ∧ dz̄k + ∂̄φ

with a periodic (1, 0)-form

φ =
∑

φi dzi ∈ A1,0

and a matrix (aik) of complex numbers.
We point out again that h itself need not to be periodic.
Obviously, we have

∑

1≤i,k≤n
aik dzi ∧ dz̄k = ∂∂̄

∑
aikziz̄k

and hence
∂̄
[
∂
(
−h+

∑
aikziz̄k

)
− φ

]
= 0.

The differential form in the square brackets,

ω0 := ∂(−h+
∑

aikziz̄k)− φ,

is of type (1, 0). Since it is annihilated by ∂̄, it is an analytic differential form
of type (p, q) = (1, 0). From ∂2 = 0, we get ∂ω0 = −∂φ. Hence ∂ω0 is periodic,
like ϕ. By Liouville’s theorem (Remark 4.1), the components of ∂ω0 and hence
of ∂φ are constant! The constant terms in the Fourier expansion of φ are
annihilated by ∂. For this reason, we have

∂ω0 = −∂φ = 0.

We have shown that ω0 is an analytic differential form of type (1, 0) which is
annihilated by ∂.

From Poincaré’s analytic lemma (Lemma V.6.5), we obtain ω0 = ∂g, with
an analytic (but not necessarily) periodic function g : C

n → C.
Now we use the fact that ϕ is a differential form of type (1, 0) which is

annihilated by ∂. The Hodge decomposition (Proposition 3.1) holds for the
∂-complex as well as the ∂̄-complex. This shows that

φ =
∑

Ci dzi + ∂ψ,
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with a periodic C∞-function ψ and an n-tuple (Ci) of complex numbers.
Comparing the two representations for ω0 and ϕ, we obtain

∂g = ∂
(
−h+

∑
aikziz̄k

)
−

∑
Ci dzi − ∂ψ.

If we replace g by the analytic function

g +
∑

Cizi,

the above equation becomes

∂
(
−h+

∑
aikziz̄k − g − ψ

)
= 0.

Here g is an analytic (not necessarily periodic) function and ϕ is a periodic
(not necessarily analytic) function. The expression in the brackets must be an
analytic function. So, we obtain

−h = −
∑

aikziz̄k + g + g̃ + ϕ

with
a) g analytic,
b) g̃ antianalytic,
c) ϕ periodic.

We are interested only in the difference

ImHa(z) = h(z + a)− h(z) (a ∈ L).

Since this is independent of ϕ, we can assume ϕ = 0. We also know that h is
real, so

−h = −Re
[∑

aikziz̄k

]
+ Re g + Re g̃.

The real part of g̃ will not change if we replace g̃ by its complex conjugate.
This function is also analytic and can be absorbed by g. This means that we
can assume that

−h = −Re
[∑

aikziz̄k

]
+ Re g.

If we replace the automorphy summand Ha by the equivalent

H̃a(z) := Ha(z) + i(g(z + a)− g(z)),

we get
Im H̃a(z) = h̃(z + a)− h̃(z)
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with
h̃(z) = Re

[∑
aikziz̄k

]
.

We obtain
Im

(
H̃a(z)

)
=

∑

ν

ανzν +
∑

ν

βν z̄ν +K,

with certain complex constants αν , βν , K (αν = β̄ν , K ∈ R). Since an analytic
function is determined by its real part up to an additive constant, we obtain
from the last equation

H̃a(z) = C +
n∑

ν=1

Cνzν ,

with certain complex numbers C,Cν which can depend on a. This gives the
main result of this section, expressed in the following theorem.

4.5 Theorem. Every equivalence class of automorphy summands contains
an automorphy summand of the form

Ha(z) = Qa(z) + Ca.

Here Qa is C-linear in z and Ca is a constant.

(A function Q : C
n → C is called linear if it is of the form

Q(z) = α1z1 + . . .+ αnzn.)

Now that we have proved this proposition, the Hodge decomposition has served
its purpose and will no longer be used.

4.6 Definition. Assume that the automorphy summand Ha(z) has the normal
form of Theorem 4.5. An analytic solution of the functional equation

f(z + a) = e2πiHa(z)f(z) for a ∈ L

is then called a theta function.

So far, we have proved the following proposition.

4.7 Proposition. Every abelian function is the quotient of two theta function
for a suitable automorphy summand.

The classification of automorphy summands does not end with Theorem 4.5.
Two problems remain to be investigated:
1) What are the conditions for the system (Qa, Ca) such that Ha is an auto-
morphy summand?
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2) What does it mean that two such special automorphy summands are equiv-
alent?

In the next section, we will attack both of these problems, with some effort in
linear algebra.

Exercises for Sect. VI.4

1. Show that the Weierstrass σ-function ([FB], Section V.6) is a theta function.

2. Show that Jacobi’s theta function ([FB], Sect. V.6) f(z) := ϑ(τ, z) is a theta
function with respect to the lattice Z + τZ.

3. Prove Proposition 4.7 in the case n = 1 by means of the theory of elliptic functions
([FB], Chap. V).

4. Consider a one-dimensional complex torus X = C/L. Let D be a divisor on X.
By the Weierstrass’ product theorem, one can find a meromorphic function f on
C which fits D in an obvious sense. Then, after the choice of a holomorphic
logarithm, one can consider the automorphy summand log(f(z + ω)/f(z)). Show
that this defines an isomorphism from Pic(X) onto the group of equivalence classes
of automorphy summands.

5. Quasi-Hermitian Forms on Lattices

We are looking for a simple algebraic description of automorphy summands of
the form

Ha(z) := Qa(z) + Ca, Qa linear in z.

Of course, this summand is determined if we know Ha(z) for all a from a lattice
basis ω1, . . . , ω2n:

Hων (z) =: H(ν)(z) = Q(ν)(z) + C(ν).

But we one cannot – and this is our problem – prescribe the linear forms Q(ν)

and the numbers C(ν) arbitrarily. Because of the commutativity of the group
L, we have to take care of the relations

Hb(z + a) +Ha(z) = Ha(z + b) +Hb(z).
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The conditions which the linear forms Q(ν) and constants C(ν) have to satisfy
need some effort in the field of linear algebra.

We now recall some ideas from linear algebra. Let Z be a finite-dimensional
complex vector space. Without loss of generality, we could assume Z = C

n,
but we prefer, for good reasons, a coordinate-free presentation. If we want, Z
can be considered as a real vector space of doubled dimension.

We also recall that each finite-dimensional real vector space V has a natural
topology. So, we can define the notion of a lattice L ⊂ V in a natural way.
If V,W are finite-dimensional complex vector spaces, then the notion of an
analytic (= holomorphic) map from an open subset in V into an open subset
of W is well defined.

A symmetric bilinear form S on Z is a map

S : Z × Z → C

with the following properties:

a) S(z, w) is linear in z for fixed w.
b) S(z, w) = S(w, z).
A Hermitian form on Z is a map

H : Z × Z → C

with the following properties:

a) H(z, w) is linear in z for fixed w.
b) H(z, w) = H(w, z).
A quasi-Hermitian form Q on Z is a map

Q : Z × Z → C,

which can be written as the sum of a Hermitian form H and symmetric bilinear
form S:

Q = H + S.

We associate with a quasi-Hermitian form Q the following R-bilinear form:

A(z, w) :=
1
2i

(Q(z, w)−Q(w, z)) .

Obviously, A depends only on H:

A(z, w) = ImH(z, w).
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We have
A(z, w) = −A(w, z).

This means that A is an alternating R-bilinear form on Z.
One can reconstruct H from A. A simple calculation gives

H(z, w) = A(iz, w) + iA(z, w), A(iz, w) = A(iw, z).

As a consequence, the decomposition of a quasi-Hermitian form into a sum of
a Hermitian form and a symmetric bilinear form is unique!

5.1 Remark. The map
Q : Z × Z → C

is quasi-Hermitian if and only if the following conditions are satisfied:

a) Q(z, w) is C-linear in z for fixed w.
b) Q(z, w) is R-linear in w for fixed z.
c) A(z, w) := (1/2i) (Q(z, w)−Q(w, z)) is real.

The proof is easy and will be omitted (see Exercise 1).

Representation by Matrices

Let Z := C
n, with the C-standard basis e1, . . . , en. We shall denote the ma-

trices associated with Hermitian or C-bilinear forms by the same letter. There
is no danger of confusion, because they determine each other.

1) The matrix S with entries

sµν := S(eµ, eν)

is symmetric.
2) The matrix H with entries

hµν := H(eµ, eν)

is Hermitian (i.e. hµν = h̄νµ).
Since A is only R-bilinear, we should use an R-basis to describe it as a matrix,
for example

e1, . . . , en; en+1 := ie1, . . . , e2n := ien.

The matrix A with entries

aµν = A(eµ, eν) (1 ≤ µ, ν ≤ 2n)

is an alternating 2n× 2n-matrix (aµν = −aνµ).
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The connection between A and H is, in matrix notation,

A =
(

ImH −ReH
+ ReH ImH

)
.

What is the connection between quasi-Hermitian forms and affine automor-
phy summands? A function H : Z → C on a complex vector space Z is called
affine if it can be written as a sum of a linear function Q and a constant C. By
an (affine) automorphy summand in this somewhat more abstract context, we
of course mean a map which associates with each lattice point a ∈ L an affine
function Ha : Z → C, such that the relations

Ha+b(z) ≡ Hb(z + a) +Ha(z) mod 1

are valid. This means that

Qa+b(z) + Ca+b ≡ Qa(z + b) + Ca +Qb(z) + Cb mod 1.

If we put z = 0, we obtain

Ca+b ≡ Qa(b) + Ca + Cb mod 1

and then
Qa+b(z) = Qa(z) +Qb(z).

Hence the map a �→ Qa(z) is a Z-linear map in z for fixed a. We shall make
use of the following trivial principle:
Every Z-linear map of a lattice L ⊂ Z into an R-vector space V is determined
by its values on a lattice basis. Hence it can be extended to an R-linear map
Z → V .
When we apply this principle to the map a �→ 2iQa, we obtain the following
result. There exists a unique map

Q : Z × Z → C

with the properties

a) Q(z, w) = 2iQw(z) for w ∈ L;
b) Q(z, w) is C-linear in the first variable, z;
c) Q(z, w) is R-linear in the second variable, w.
We claim that Q is quasi-Hermitian. Because of Remark 5.1, it is sufficient to
show that

A(z, w) :=
1
2i

(Q(z, w)−Q(w, z))

takes only real values. It is enough to prove this for an R-basis. Hence it is
enough to prove this for L. But then we have more, namely

A(a, b) = Qb(a)−Qa(b) ∈ Z.

So Q is quasi-Hermitian. The fact that A takes only integral values on L × L
will turn out to be of high importance. Hence we fix this in a definition.
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5.2 Definition. Let L ⊂ Z be a lattice in a finite-dimensional C-vector space
Z. A quasi-Hermitian form on the lattice L is a map

Q : Z × Z → C

with the following properties:

1) Q is quasi-Hermitian, i.e. the sum of a symmetric bilinear form S and a
Hermitian form H.

2) The alternating R-bilinear form

A(z, w) :=
1
2i

(Q(z, w)−Q(w, z))

has the property
A(a, b) ∈ Z for all a, b ∈ L.

What we have proved is the following statement.

5.3 Remark. Assume that

Ha(z) := Qa(z) + Ca

is an affine automorphy summand. There exists a unique quasi-Hermitian form
Q on L with the property

Q(z, a) = 2iQa(z) for a ∈ L.

Now we can ask the following question. Let Q be a quasi-Hermitian form on
L. What are the conditions for the constants Ca such that

Ha(z) := Qa(z) + Ca, Qa(z) :=
1
2i
Q(z, a),

is an automorphy summand?
It is useful to replace the constants Ca by

Da := Ca −
1
2
Qa(a).

The characteristic equations are then

Da+b ≡
1
2
A(a, b) +Da +Dbmod 1.
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We shall describe all solutions of this system. In the first step, we shall show
that it suffices to determine the real solutions. It follows from the equations
for the Da that

ImDa+b = ImDa + ImDb.

Hence the map a �→ ImDa is Z-linear, and can be extended to an R-linear
form r : Z → R. Each R-linear map r can be written as the imaginary part of
a C-linear form l : Z → C, namely of

l(z) := r(iz) + ir(z).

So, we have shown that there exists a C-linear form l : Z → C such that

Ea := Da − l(a)

is real. Hence it is sufficient to analyze the real solutions of the equation

Ea+b ≡
1
2
A(a, b) + Ea + Ebmod 1.

We fix them by the idea of an A-character.

5.4 Definition. An A-character on L is a map

E : L −→ R

with the property

Ea+b ≡
1
2
A(a, b) + Ea + Ebmod 1.

It is not difficult to classify all A-characters.
Since we are interested in Ea only mod 1, we compose it with the natural

projection R → R/Z:
Fa : L→ R/Z.

First case. A = 0, and hence

Fa+b = Fa + Fb.

The solutions of this equation can be obtained as follows. Take a lattice basis
of L. The values of E can be described arbitrarily on this basis. Hence the
group of all characters is isomorphic to

(R/Z)2n (∼= group of A-characters in the case A = 0).

Second case. A is arbitrary. The difference of two A-characters is a 0-character,
which we have described in the context of the first case. So, we can obtain all
A-characters from a single A-character by adding the 0-characters. Hence we
have to clarify whether an A-character exists at all.
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5.5 Remark. Let A be an alternating bilinear form whose values on L × L
are integral. Then there exists an A-character.

Proof . Obviously, every integral alternating matrix A = −At can be written
in the form

A = B −Bt,

with an integral matrix. For example, we have in the case n = 2

(
0 a

−a 0

)
=

(
0 a

0 0

)
−

(
0 0
a 0

)
.

In the language of bilinear forms, this means that we can write A in the form

A(z, w) = B(z, w)−B(w, z),

with an R-bilinear form which is integral on L× L.
Obviously,

E(a) :=
1
2
B(a, a)

is an A-character. ��

5.6 Proposition. Let L be a lattice in the finite-dimensional complex vector
space Z. Assume that there are given
a) a quasi-Hermitian form Q on Z;
b) a C-linear form l on Z;
c) an A-character E on L.
Then

Ha(z) :=
1
2i
Q(z, a) +

1
4i
Q(a, a) + l(a) + Ea

is an automorphy summand. Every affine automorphy summand is of this
form.

Supplement. The triple (Q, l, Emod 1) is uniquely determined by the auto-
morphy summand.

Proof. It is easy to verify that Ha actually is an automorphy summand. The
previous considerations show that every affine automorphy summand is of this
form. ��

The automorphy summands in Proposition 5.6 can be trivial:

1) Let l be a C-linear form on Z; then the automorphy summand

Ha(z) := l(a) (= l(a+ z)− l(z))

is trivial.
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2) Let S be a symmetric C-bilinear form on Z; then the automorphy summand

Ha(z) : =
1
2i
S(z, a) +

1
4i
S(a, a)

=
1
4i

(S(z + a, z + a)− S(z, z))

is trivial. This gives us the following statement.

5.7 Remark. The automorphy summand which is described by the triple
(Q, l, E) is equivalent to the automorphy summand which is described by

(H, 0, E), H := Q− S.

These are the only equivalences which can occur.

This completes the description of automorphy summands.

We can formalize Remark 5.7. For this, we denote by Pic(X) the group of equiva-
lence classes of automorphy summands. Because of the result of Exercise 4 in Sect. 4,
this notation is justified. Because of Remark 5.7, this group is isomorphic to the
group of pairs (H,E). The group law is

(H1, E1) + (H2, E2) = (H1 +H2, E1 +E2).

We denote the subgroup of all (0, E) by Pic0(X). As we have seen, this subgroup
is isomorphic to R

2n/Z2n. The factor group Pic(X)/Pic0(X) is called the Neron
Severi group. This can be written in the form of an exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0.

The Neron Severi group is isomorphic to the additive group of all Hermitian forms

on Z that are integral on L× L.

Exercises for Sect. VI.5

1. Give the details of the proof of Remark 5.1.

2. Determine the triple [Q, l, E] for Jacobi’s theta function ϑ(τ, z) ([FB], Sect. V.6).

3. Let f(z) be a theta function which is different from zero. Show that

f(z + a)f(z − a)

f(z)2

is, for every a, an abelian function for L.
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4. Show that every theta function without zeros is constant.

5. The Neron Severi group is isomorphic to Z
m for suitable m. In the case n = 1, it

is isomorphic to Z. The map Pic(X) → NS(X) then corresponds to the degree of
divisors (from the point of view of Exercise 4 in Sect. 4).

6. Riemannian Forms

As described in Proposition 5.6, we fix a triple (Q, l, E) and the associated
automorphy summand Ha. We shall investigate theta functions

f : Z := C
n → C analytic, f(a+ z) = e2πiHa(z)f(z).

The space of these theta functions will be denoted by

[Q, l, E] (∼= [H, 0, E]).

Although it is possible, it will not always be useful to bring (Q, l, E) into the
special form (H, 0, E).

6.1 Lemma. If [Q, l, E] contains a theta function which does not vanish
identically, then the Hermitian form H is semipositive, i.e. H ≥ 0.

“Semipositive” means
H(z, z) ≥ 0 for all z ∈ Z.

Since H is Hermitian, the numbers H(z, z) are real.

Proof of Lemma 6.1. Let f ∈ [H, 0, E]. We assume that there exists z0 ∈ Z0

with H(z0, z0) < 0 and then show that f ≡ 0. The key to the proof is the claim
that the function

g(z) := |f(z)|e−(π/2)H(z,z)

is periodic under L.

This follows immediately from the equation

|f(z + a)| = e−2π ImHa(z)|f(z)|

and from

− ImHa(z) =
1
2

ReH(z, a) +
1
4
H(a, a).
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Since the function g is continuous and periodic, it attains a maximum.
Hence there exists a constant M such that

|f(z)| ≤Me(π/2)H(z,z).

We choose an arbitrary but fixed z ∈ Z . For variable t ∈ C, we have

H(z + tz0, z + tz0) = |t|2H(z0, z0) + αt+ ᾱt̄+ β.

This expression tends to −∞ for t→∞. Hence the function

h(t) := f(z + tz0)

is bounded on C and is then constant by Liouville’s theorem. The constant
has to be 0. Since this is true for all z ∈ Z , we obtain f ≡ 0. ��

6.2 Definition. A Riemannian form on the lattice L ⊂ Z is a Hermitian
form H on Z with the following properties:

a) H is semipositive.
b) The alternating part A of H is integral on L× L.

The Riemannian form H is called nondegenerate if H is positive definite,
i.e.

H(z, z) > 0 for z �= 0.

The simplest example of a Riemannian form H is the zero matrix. But this is
without any interest for us, since we have the following result:

Every function f from [H = 0, 0, E] is constant.

Proof. In the case H = 0, S = 0, and l = 0, we have the result that Ha is real.
But then

|f(z + a)| = |f(z)|.

It follows that f is bounded and hence constant. ��
The theory which we have developed so far has the following important

consequence:

If there exists a nonconstant abelian function for L, then there exists a Rie-
mannian form H �= 0 on L.

Later, we shall see that in the case n > 1 there are lattices which do not admit
a nonzero Riemannian form. Every abelian function for such a lattice must be
constant!



374 VI. Abelian Functions

Degenerate Abelian Functions.

We will show now that, in the theory of abelian functions, we can restrict
ourselves to nondegenerate Riemannian forms

H > 0 (and not only H ≥ 0).

Let l : Z → Z ′ be a surjective linear map of finite-dimensional complex vector
spaces. If U ′ ⊂ Z ′ is an open subset and f ′ an analytic function on U ′, then
f := f ′ ◦ l is an analytic function on the inverse image U := l−1(U ′). If f ′ is
meromorphic on the whole of Z ′, then f is meromorphic on the whole of Z.
A meromorphic function f on Z comes from a meromorphic function f ′ if all
elements of the kernel of l are periods:

f(z + a) = f(z) for all a ∈ Kernel l.

Now let L ⊂ Z be a lattice. It may then happen that

L′ := l(L)

is a lattice in Z ′. (But it also can happen that L′ is not discrete. Consider, for
example, the projection

C × C −→ C, (z, w) �−→ z + w.

By means of L1 = Z + iZ, we can construct L = L1 × L1. The image in Z ′

is L1, and hence a lattice. But if we take L = L1 ×
√

2L1, the image L′ is
not discrete.) So, we make the assumption now that L′ is a lattice. If f ′ is an
abelian function on Z ′ with respect to L′, then f is an abelian function on Z
with respect to L.

We denote the set of all abelian functions on Z with respect to L by K(L).
This is a field which contains the constant functions. The map g �→ f =
l ◦ g induces (under the assumption of the discreteness of L′) an injective field
homomorphism

K(L′) −→ K(L).

6.3 Proposition. For each lattice L ⊂ Z, there exists a surjective C-linear
map

l : Z → Z ′

onto a complex vector space of possibly smaller dimension, such that the fol-
lowing properties are satisfied:

1) L′ := l(L) is a lattice in Z ′.
2) The map g �→ g ◦ l defines an isomorphism

K(L′)→ K(L).

3) There exists a nondegenerate Riemannian form on L′.

Proof. The vector space Z ′ will be constructed as the factor space by the
degeneration locus. We first have to define this locus.
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6.4 Lemma. Let H be a semipositive Hermitian form on Z. For a vector
z0 ∈ Z, the following conditions are equivalent:
1) H(z0, z0) = 0;
2) H(z0, z) = 0 for all z ∈ Z;
3) A(z0, z) = 0 for all z ∈ Z.

The set Z0 of all vectors z0 ∈ Z with the properties 1)–3) is a C-subvector
space of Z (because of 2)). We call Z0 the degeneration locus of H.
Proof of Lemma 6.4.
1)⇒ 2). For arbitrary t ∈ C, we have

0 ≤ H(z + tz0, z + tz0) = H(z, z) + 2 Re (tH(z0, z)) .

From this, we get H(z0, z) = 0.
2)⇒ 3). This is trivial.
3)⇒ 1). We use the formula

H(z, w) = A(iz, w) + iA(z, w), A(iz, w) = A(iw, z). ��
6.5 Lemma. Let f ∈ [H, 0, E] be a theta function. The elements of the
degeneration locus of H are periods, i.e. f comes from a meromorphic function
on Z/Z0.

Proof. The argument is similar to that in the proof of Lemma 6.1. The in-
equality |f(z)| ≤Me(π/2)H(z,z) shows that the function

Z0 −→ C, z �−→ f(z + a),

is bounded for each a ∈ Z. Hence it is constant. ��
Before we continue with the proof of Proposition 6.3, we derive a criterion

for the discreteness of an additive subgroup of R
n.

6.6 Lemma. Let L ⊂ R
n be an additive subgroup with the following proper-

ties:
1) It is finitely generated.
2) It generates R

n as a vector space (over R).
3) The Q-vector space which is generated by L has dimension ≤ n.
Then L is a lattice.

Proof. We make use of the structure theorem for finitely generated abelian
groups, which states that every torsion-free finitely generated abelian group
is isomorphic to Z

m (for a suitable m). Because of 1), there exist vectors
ω1, . . . , ωm such that each element of L can be represented as a unique integral
linear combination of these vectors. These vectors are linearly independent
over Q, since a linear relation with rational coefficients produces, after multi-
plication by a joint denominator, a relation with integral coefficients. From 3),
we obtain m ≤ n. Because of 2), the vectors ω1, . . . , ωm generate the R-vector
space R

n. Hence these vectors must be a basis (and m = n). ��
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6.7 Lemma. Let H be a Riemannian form with respect to the lattice L ⊂ Z
and let Z0 be the degeneration locus of H. We have

1) L0 := L ∩ Z0 is a lattice in Z0.

2) If
p : Z → Z ′ := Z/Z0

denotes the canonical projection, then L′ := p(L) is a lattice in Z ′.

Proof. 1) Since L0 is discrete, it is enough to show that the real vector space
Z0 is generated by L0. Let ω1, . . . , ω2n be a lattice basis of L. A vector

ω :=
∑

xνων , xν ∈ R (1 ≤ ν ≤ 2n),

is contained in the kernel Z0 if the real vector (x1, . . . , x2n) solves the linear
equations ∑

aikxk = 0 with aik = A(ωi, ωk).

The elements of L0 can be obtained from the integral solutions of this system.
We have to show that each real solution can be written as a real linear com-
bination of integral solutions. Of course, it is sufficient to show that each real
solution is a real linear combination of rational (rather than integral) solutions.
But this is in fact the case, since the matrix (aik) of the system is rational (and
even integral). We use the well-known fact from linear algebra that the dimen-
sion of the space of solutions is governed by the rank of the matrix. But the
rank does not depend on the field in which the matrix is considered (Q or R).

2) The first part shows that the dimension of the Q-vector space which is
generated by L′ does not exceed the dimension of Z ′. Hence we can apply
Lemma 6.6 to conclude that L′ is a lattice. ��

After these preparations, the proof of Proposition 6.3 is easy. The sum of
two Riemannian forms is itself a Riemannian form. Its degeneration locus is
the intersection of the degeneration loci. Hence there exists a Riemannian form
H with the smallest degeneration locus Z0. The Hermitian form H factorizes
through a Hermitian form on Z/Z0. Its degeneration locus must be zero. It
should be clear that the three properties in Proposition 6.3 hold. ��

Proposition 6.3 can be formulated very conveniently in a geometric form. Consider

the tori X := Z/L and X ′ = Z ′/L′. We have a surjective homomorphism X → X ′

and can consider X ′ as a factor torus of X. Proposition 6.3 says that for each complex

torus X there exists a factor torus X ′ such that fields of abelian functions are “equal”,

and such that X ′ admits a nondegenerate Riemannian form.

In any case, it is sufficient for the theory of abelian functions to consider
lattices which admit a nondegenerate Riemannian form.
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Examples of Riemannian Forms

Let P be a complex n×2n matrix. If the columns of P are linearly independent
over R, they span a lattice LP ⊂ C

n:

LP :=
2n∑

ν=1

Zpν , P := (p1, . . . , p2n).

If H is a Hermitian n× n-matrix, we can consider the Hermitian form on C
n

H(z, w) := ztHw̄.

We want to determine P and H such that H is a nondegenerate Riemannian
form.

6.8 Remark. Let T be an integral n×n matrix whose determinant is different
from zero, and let Z be a symmetric complex n × n matrix whose imaginary
part is positive definite. The columns of the matrix P = (T,Z) generate a
lattice L in C

n. The Hermitian (and also real) matrix H = (ImZ)−1 defines
a nondegenerate Riemannian form on L.

We first show the R-independence of the columns. Since the columns of T are
R-independent, it suffices to show that the columns of ImZ are R-independent.
But we know that a positive definite matrix has a positive determinant. Next,
we show that ImH is integral on L. This means that the matrix Im P̄ tHP is
integral. We have

P̄ tHP =
(
T t(ImZ)−1T T t(ImZ)−1Z

Z̄t(ImZ)−1T Z̄t(ImZ)−1Z

)
.

We take the imaginary part. It is easy to show that the matrices

T t(ImZ)−1T and Z̄t(ImZ)−1Z

are real. Therefore we have

Im P̄ tHP =
(

0 T t

−T 0

)
.

By assumption, this is an integral matrix. ��
In the next section, we shall show that we can obtain all nondegenerate

Riemannian forms in this way.
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Exercises for Sect. VI.6

1. Show that each finitely generated subspace of Q
n is discrete.

2. Construct a finitely generated subgroup of R which is not discrete.

3. Two lattices L,L′ ⊂ V are called commensurable if their intersection has a finite
index in L and in L′. Show that two lattices are commensurable iff they generate
the same Q-vector space.

4. Show that if L,L′ are commensurable lattices, then L∩L′ and L+L′ are lattices.

7. Canonical Lattice Bases

By an elementary matrix, we understand a diagonal matrix of the form

T :=

⎛

⎜⎝

t1 0
. . .

0 tn

⎞

⎟⎠ , tν ∈ N, tν |tν+1 (1 ≤ ν < n).

The significance of elementary matrices arises from the elementary divisor the-
orem:

For every integral p × q matrix, there exist matrices U ∈ GL(p,Z), V ∈
GL(q, Z) such that

UAV =
(
T 0
0 0

)
,

with a uniquely determined elementary matrix T .

This result is more or less equivalent to the following theorem

7.1 Theorem (main theorem for abelian groups).
For any finitely generated abelian group L, there exist a unique integer m ≥ 0
and a unique elementary matrix T, t1 > 1, with the property

L ∼= Z
m ⊕ Z/t1 ⊕ . . .⊕ Z/tn.

In this context, we need to consider the classification theorem for integral al-
ternating bilinear forms, as below.
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7.2 Proposition. Let

A : L× L −→ Z, L ∼= Z
m,

be a nondegenerate alternating bilinear form over Z, i.e.
a) A(a+ b, c) = A(a, c) +A(b, c);
b) A(a, b) = −A(b, a);
c) A(a, x) = 0 for all x ∈ L =⇒ a = 0.
Then m = 2n is even. There exists a Z-basis ω1, . . . , ωm of Z

m with the
property

(A(ωi, ωj))1≤i,j≤2n =
(

0 T
−T 0

)
.

Here T is a unique elementary matrix.

Another formulation of this result is as follows.
For every integral alternating matrix A whose determinant is different from
zero, there exists a unimodular matrix U ∈ GL(n,Z) and a uniquely determined
elementary matrix T with the property

U tAU =
(

0 T
−T 0

)
.

Proof of Proposition 7.2 . We argue by induction on m. The strategy is as
follows. In the case m > 1, we construct a splitting of L of the form

L = Zω1 ⊕ Zω2 ⊕ L′, L′ ∼= Z
m−2,

and such that the following conditions apply:

a) (A(ωi, ωj)) =
(

0 t1

−t1 0

)
, t1 �= 0.

b) The restriction of A to L′ is nondegenerate and we have A(ωi, L′) = 0.
c) t1|A(x, y) for all x, y ∈ L′.
(After this splitting, Proposition 7.2 is proved, since the induction hypothesis
can be applied to L′.)

We choose ω1 and ω2 such that

t1 := |A(ω1, ω2)|

is different from zero and minimal with this property. Then we set

L′ := {x ∈ L; A(ω1, x) = A(ω2, x) = 0}.

We have to show a)–c).
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a) is trivial (since A is alternating, we have A(ωi, ωi) = 0).

b) The image of the homomorphism

L −→ Z, x �−→ A(ω1, x),

is a subgroup of Z. Every such subgroup is cyclic. Since t1 has the minimal
absolute value, the image consists of the integral multiples of t1. Therefore, for
arbitrary x ∈ L, the element

x′ := x− A(ω2, x)
t1

ω1 −
A(ω1, x)

t1
ω2

is contained in L′. We also know that the restriction of A to L′ is nondegenerate.

c) Let x, y be arbitrary elements of L′ and let m ∈ Z. We have

A(mω1 + x, ω2 + y) = mt1 +A(x, y).

If A(x, y) were not an integral multiple of t1, we could choose m in such a way
that

|mt1 +A(x, y)| < |t1|.

This contradicts the minimality of t1.

The uniqueness of the elementary matrix T follows from the fact that

t1, t1, t2, t2, . . . , tn, tn

are the elementary divisors of the matrix A. ��

7.3 Corollary. The determinant of a nondegenerate integral alternating
matrix is the square of a natural number.

We call
t1 · . . . · tn =+

√
detA

the Pfaffian of the alternating form A.

Now we consider triples (Z, L,H), where L is a lattice in a finite-dimensional
complex vector space Z and H is a nondegenerate Riemannian form. Two
such triples are called isomorphic, (Z, L,H) ∼= (Z ′, L′, H ′), if there exists an
isomorphism

σ : Z → Z ′

with the property

L′ = σ(L), H ′ (σ(z), σ(w)) = H(z, w).
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We want to select a simple representative from each isomorphy class. First we
describe the representants which will be used (compare with Remark 6.8). We
start with
a) T , an elementary matrix,
b) Z, a symmetric matrix with positive imaginary part.
We know that the columns of (T,Z) are linearly independent over R. Hence
they generate a lattice L = L(T,Z). On this lattice L, we have a Riemannian
form

H = H(T,Z),

namely
H(z, w) := zt(ImZ)−1w̄,

as we have seen in Sect. 4. For the sake of completeness, we mention that a
symmetric real invertible matrix Y is positive iff this is true for Y −1. This
follows from the formula

gtY g = (Y g)tY −1(Y g).

7.4 Proposition. For each nondegenerate Riemannian form H on a lattice
L ⊂ Z, there exist

a) an elementary matrix T ,
b) a symmetric complex matrix Z with positive definite imaginary part,
such that

(Z, L,H) ∼= (Cn, L(T,Z), H(T,Z)) .

The elementary matrix T is uniquely determined.

Proof. We choose a lattice basis ω1, . . . , ω2n such that A := ImH is of the form

(A(ωi, ωj)) =
(

0 T

−T 0

)
,

with an elementary matrix T . The lattice basis contains a C-basis of Z. Ac-
tually, we claim the following:
The vectors ω1, . . . , ωn define a C-basis of Z.
Since n is the complex dimension of Z, we have to show that

Z =
∑

Cων

(
=

∑
Rων + i

∑
Rων

)
.

Since the vectors ω1, . . . , ωn are R-linearly independent, it suffices to show that

(
n∑

ν=1

Rων

)
∩ i

(
n∑

ν=1

Rων

)
= 0.
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If z = iw is an element in the intersection, we have

H(z, z) = A(iz, z) = A(−w, z) = 0 (because A(ωi, ωj) = 0).

The definiteness of H shows that z = 0.

We can also use the vectors

t−1
1 ω1, . . . , t

−1
n ωn

as a C-basis of Z. Now we consider the isomorphism Z ∼→C
n which transforms

this basis to the standard basis. Then we can assume that

Z = C
n and (ω1, . . . , ωn) = T =

⎛

⎝
t1 0

. . .
0 tn

⎞

⎠ .

We collect the remaining lattice vectors together in an n× n matrix

Z := (ωn+1, . . . , ω2n).

For the proof of Proposition 7.4, we have to show:

a) Z is symmetric and ImZ is positive definite.
b) H(z, w) = zt(ImZ)−1w̄.

By the definition of Z and by the choice of the basis of Z, we have

ωn+µ =
n∑

ν=1

Zνµt
−1
nuων (1 ≤ µ ≤ n).

b) is equivalent to

b′)
(
H(t−1

µ ωµ, t
−1
ν ων)

)
= (ImZ)−1.

We have the following information about A:

A(ωµ, ων) = A(ωn+µ, ωn+ν) = 0, A(ωn+ν , ωµ) = δµνtν (1 ≤ µ, ν ≤ n).

We recall the relation between A and H:

a) A(z, w) = ImH(z, w);
b) A(iz, w) = A(iw, z);
c) H(z, w) = A(iz, w)+iA(z, w) (both sides have the same imaginary part and

are C-linear in z; this is true for the right-hand side because of b)).
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Proof of b′).
It follows from the equation

ωn+µ =
∑

ν

Re(Zνµ)t−1
ν ων + i

∑

ν

Im(Zνµ)t−1
ν ων

that
δµχtχ = A(ωn+µ, ωχ) =

∑

ν

Im(Zνµt−1
ν A(iων , ωχ).

The matrix (
A(it−1

µ ωµ, t
−1
χ ωχ)

)
1≤µ,χ≤n

is inverse to (ImZ)t. Because A(ωµ, ων) = 0 (1 ≤ µ, ν ≤ n), this matrix equals
(
H(t−1

µ ωµ, t
−1
ν ων)

)
1≤µ,ν≤n .

But this is a real matrix. Every real Hermitian matrix is symmetric. As we
know, (ImZ)−1 is positive definite if and only if this is the case for ImZ.

It remains to show that ReZ is symmetric too. This follows from

A(ωn+µ, ωn+ν) = 0,

since because H(z, w) = zt(ImZ)−1w̄) we have

Im
(
Zt(ImZ)−1Z̄

)
= 0.

But the left-hand side equals ReZ − ReZ′. ��
The following considerations should make it plausible that the manifold of

lattices which admit a nondegenerate Riemannian form is a “thin subset of the
manifold of all lattices”.

Let LA ⊂ C
n be a lattice with lattice basis

A := (ω1, . . . , ω2n).

A is not unique, but it can easily be shown that

LA = LB ⇐⇒ B = GAH, G ∈ GL(n,C), H ∈ GL(2n, Z).

(The matrix G changes the coordinate system in C
n; the matrix H changes

the lattice basis.) The number of free parameters (classically they are called
“moduli”) is

n · (2n) − n2 = n2.
↑ ↑

parameters of A parameters of G
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Since lattices with nondegenerate Riemannian forms up to the discrete elemen-
tary divisors are determined by a symmetric matrix Z, the number of moduli
is

n(n+ 1)
2

(< n2 if n > 1).

These inexact dimensional considerations can at least be used to construct
examples of lattices which admit no Riemannian form different from zero, so
all abelian functions for these lattices are constant! An example is given in
Exercise 2.

Exercises for Sect. VI.7

1. Determine, for the matrix M =
(
2 3
5 7

)
, unimodular matrices U, V such that UMV

is an elementary matrix.
2. Let a, b, c, d be four real numbers which are algebraically independent over Q.

This means that there exists no nonzero polynomial P in four variables and with
rational coefficients that has the property P (a, b, c, d) = 0.

Show that the lattice which is defined by the matrix
(

1 0 ia ib

0 1 ic id

)

admits no nonzero Riemannian form.

3. Determine, for the matrix A =
(

4 6
−6 10

)
, a unimodular matrix U such that the

diagonal of U tAU is zero.

8. Theta Series (Construction of the Spaces [Q,l,E ])

In the following, L ⊂ C
n denotes a lattice and

H : C
n × C

n −→ C

denotes a nondegenerate Riemannian form. We want to determine the dimen-
sions of the spaces

[Q, l, E] (∼= [H, 0, E]).

Because of Proposition 7.4, we can assume that the lattice L is of the form
L = L(T,Z). Here T is an elementary matrix and Z is a symmetric matrix
with positive definite imaginary part.
1) So, the columns of T and Z give a Z-basis of L.



Q, l, E]) 385

2) H(z, w) = zt(ImZ)−1w.

The automorphy summands are equivalent to

(H + S, l, E).

The dimensions do not depend on the choice of S and l. To get formulae which
are as simple as possible, we prefer to take

l = 0

and
S(z, w) = −zt(ImZ)−1w.

The latter is a symmetric C-bilinear form. We have

Q(z, w) = −2izt(ImZ)−1(Imw).

We still have to describe the A-characters

E : L −→ R.

An arbitrary element ω ∈ L can be written in the form

ω = Tα+ Zβ, α, β ∈ Z
n (columns).

A simple computation gives

A(ω, ω̃) = Im[ωt(ImZ)−1ω̃] = βtTα̃− β̃tTα (ω̃ = T α̃+ Zβ̃).

Now we see that
E(ω) =

1
2
αtTβ

is an A-character:

E(ω + ω̃)− E(ω)− E(ω̃) =
1
2
αtT β̃ +

1
2
α̃tTβ =

1
2
A(ω, ω̃) + β̃tTα ≡ 1

2
A(ω, ω̃) mod 1.

Since two A-characters differ by a character of the usual kind, we obtain the
most general A-character in the form

E(ω) = Ea,b(ω) =
1
2
αtTβ + atα− btβ,

8. Theta Series (Construction of the Spaces [
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where a and b are two arbitrary real columns. Since we are interested in E
only mod 1, we have to consider the columns also only mod 1:

“a, b ∈ (R/Z)n”.

Now the automorphy summand can be written in the form

1
2i
Q(z, ω) +

1
4i
Q(ω, ω) +E(ω) = −ztβ − 1

2
βtZβ + atα− btβ (ω = Tα+Zβ).

Hence a theta function θ ∈ [Q, 0, E] has the following transformation proper-
ties:

1) θ(z + Tα) = e2πiatαθ(z);

2) θ(z + Zβ) = e−2πi[ztβ+ 1
2β

tZβ+btβ]θ(z).

It is our task to solve this functional equation and to compute the dimension
of [Q, 0, E].

For the sake of simplicity, we first treat the (typical) case

n = 1 and a = b = 0.

We write Z = (τ) and T = (t). Both are 1 × 1 matrices. In this case the
characteristic functional equation says

θ(z + t) = θ(z);1)
θ(z + τ) = e−πi(2z+τ)θ(z), β ∈ Z2)

Here θ : C → C is an analytic function, t a natural number, and τ a point in
the upper half-plane. Because of 1), the function θ admits a Fourier expansion

θ(z) =
∞∑

m=−∞
ame

(2πi/t)mz.

The functional equation 2) gives a condition for the Fourier coefficients ag:

θ(z + τ) =
∑

ame
(2πi/t)mτe(2πi/t)mz;a)

e−πi[2z+τ ]θ(z) =
∑

ame
−πiτe(2πi/t)(m−tτ)b)

=
∑

am+te
−πiτe(2πi/t)mz.

The uniqueness of the Fourier expansion shows that

am+te
−πiτ = ame

(2πi/t)mτ .
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The equation can easily be solved.
The coefficients am+tβ , β ∈ Z, are determined by am. So, we can prescribe

a0, . . . , at−1 arbitrarily and then compute the other coefficients from them.
Slightly more abstractly this means that the linear map

[Q, 0, E]→ C
t, θ �→ (a0, . . . , at−1),

has kernel zero and hence is injective. In particular,

dim[Q, 0, E] ≤ t.

We want to show that the dimension equals t. For this, we have to prove
the convergence of the Fourier series for given a0, . . . , at−1 and the computed
am.
It is sufficient, for

r ∈ {0, . . . , t− 1},
to treat the case

am =
{

1 for m = r,
0 for m �= r, m ∈ {0, . . . , t− 1}.

But then

θ(z) =
∞∑

β=−∞
ar+tβe

2πi(r/t+β)z with ar+eβ = eπiβ2τe(2πi/t)rβτ ,

and hence

θ(z) = e−πiτ(r/e)2
∞∑

β=−∞
eπi

(
((β+r)/t)2τ+2((β+r)/t)z

)
.

This series is called a theta series. It is closely related to the Jacobi theta
series, introduced in [FB], Sect. V.6, in connection with elliptic functions. The
simple proof of convergence is the same as for the Jacobi theta series. Hence
we obtain the surjectivity of the map

[Q, 0, E] −→ C
t.

Actually, we have obtained an explicit basis of [Q, 0, E]. We can rewrite it as

∞∑

β=−∞
eπi[τ(β+r)2+2(β+r)z], r ∈

{
0
e
,
1
e
, . . . ,

e− 1
e

}
.

In the same way, we can construct a basis of [Q, 0, E] for arbitrary n. We shall
anticipate the result and immediately define the theta series occurring. We
shall use the notation Z[h] := htZh.

8. Theta Series (Construction of the Spaces [
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8.1 Definition. Let Z be a symmetric n × n matrix with positive definite
imaginary part and let a, b be two columns from R

n. We define

ϑ
[a
b

]
(Z, z) :=

∑

g∈Zn

eπi{Z[g+a]+2(g+a)t(z+b)}.

We can reduce these series to the special case a = b = 0. This the Riemann
theta function.

Riemann theta function

ϑ(Z, z) :=
∑

g∈Zn

eπi{Z[g]+2gtz}.

It generalizes the Jacobi theta function. A fundamental (but simple) result
states the following.

8.2 Proposition. The theta series defined in Definition 8.1 converges as
a function of z (for fixed Z, a, b) absolutely and locally uniformly in C

n and
defines an analytic function there.

Proof . We can assume b = 0. We have

|eπi{Z[g+a]+2(g+a)tz}| = eπ{(ImZ)[g+a]+2(g+a)ty}, y = Im z.

Now we use a simple lemma about positive definite quadratic forms:
For every positive definite real symmetric matrix Y , there exists a positive
number δ with the property

Y [g] ≥ δgtg = δ
∑

g2
j for g ∈ R

n.

It is sufficient to prove this for gtg = 1. But this a compact set, and the
continuous function g �→ Y [g] has a minimum there.

Now the general term of the theta series can be estimated by

e−π{δ(g+a)
t(g+a)+2(g+a)ty} =

n∏

ν=1

e−π{δ(gν+aν)
2+2(gν+aν)yν}.

By Cauchy’s multiplication theorem, it is enough to show the convergence of

∞∑

gν=−∞
e−π{δ(gν+aν)

2+2(gν+aν)yν}.
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In other words, we have reduced the claim to the case n = 1. We now omit the
index ν. Obviously,

δ(g + a)2 + 2(g + a)y ≥ 1
2
δg2

for all g ∈ Z up to finitely many exceptions, if y varies in a compact set. It
remains to show that the series

∞∑

g=−∞
e−δg

2
= 1 + 2

∞∑

g=1

e−δg
2

converges. This is clearly the case, since we can estimate the series with the
geometric series because e−δ < 1 (δ > 0). Now Proposition 8.2 has been proved.

��

8.3 Lemma. Up to a constant factor, the theta series ϑ
[
a
b

]
(Z, z) depends

only on a, b modulo Z
n. More precisely, we have

ϑ
[a
b

]
= e2πiat(b̃−b)ϑ

[
ã

b̃

]
if a− ã, b− b̃ ∈ Z

n.

The pair (a, b) is called the characteristic of the theta series. The proofs of this
and the following lemma are trivial.

8.4 Lemma. Let α, β ∈ Z
n. Then the transformation formulae

ϑ
[a
b

]
(Z, z + α) = e2πiatαϑ

[a
b

]
(Z, z),

ϑ
[a
b

]
(Z, z + Zβ) = e−2πi{ztβ+(1/2)Z[β]+βtb}ϑ

[a
b

]
(Z, z)

hold.

These formulae tell us that the theta series are theta functions with respect to
the lattice

L(Z,E), E unit matrix.

But we are interested in the sublattice L(Z, T ). From Lemma 8.4, we immedi-
ately obtain the following result.

8.5 Lemma. Let r be a column such that Tr is integral (r ∈ T−1
Z
n). Then

the function

z �→ ϑ

[
r + T−1a

b

]
(Z, z)

is contained in [Q, 0, E].

8. Theta Series (Construction of the Spaces [
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We recall that the automorphy summand which belongs to (Q, 0, E) is given
by

Hω(z) = −ztβ − 1
2
βtZβ + atα− btβ (ω = Tα+ Zβ).

If we change the vector r in Lemma 8.5 mod Z
n, then the theta series changes

only by a constant factor. Hence r should run through a system of representa-
tives of (T−1

Z
n)/Z

n, for example

rν ∈
{

0
tν
,

1
tν
, . . . ,

tν − 1
tν

}
.

This system consists of t1 · . . . · tn elements.

8.6 Theorem. If r runs through a system of representatives (T−1Z
n)/Zn,

the functions

z �→ ϑ

[
r + T−1a

b

]
(Z, z)

give a basis of [Q, 0, E].
Corollary. The space [Q, l, E] has finite dimension and the dimension equals
the Pfaffian of A.

We shall see now that the proof of Theorem 8.6 is analogous to the case n = 1.
Let

ϑ ∈ [Q, 0, E];

in particular,
ϑ(z + Tα) = e2πiαtaϑ(z).

It is useful to replace ϑ(z) by the function

ϑ0(z) := ϑ(z) · e−2πiatT−1z,

since this function is periodic under Z
n:

ϑ0(z + Tα) = ϑ0(z), α ∈ Z
n.

As in the case n = 1 (a = 0), we can expand such a function into a complex
Fourier series:

ϑ0(z) =
∑

g∈Zn

age
2πigtz.

We shall prove this in the appendix to this section. Now we make use of the
transformation formula under z �→ z + Zβ. As in the case n = 1, the formula

ϑ(z + Zβ) = e−2πi[ztβ+ 1
2β

tZβ+btβ]ϑ(z)
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gives a recursion for the coefficients ag. This recursion allows us to compute
ag+Tβ from ag. Hence ϑ is determined by finitely many ag. The index g has
to run through a system of representatives of Z

n/(TZ
n). This gives us the

estimate

dim[Q, 0, E] ≤ t1 · . . . · tn.

For the proof of Theorem 8.6, it remains to show that the theta series in Lemma
8.5 are linearly independent or, equivalently, that the Fourier series

e−2πiatT−1zϑ

[
r + T−1a

b

]
(Z, z)

are linearly independent if r runs through a system of representatives of
(T−1Z

n) mod Z
n. This follows from the following simple criterion.

8.7 Remark. Let

f (ν)(z) =
∑

g∈Zn

a(ν)
g e2πigtz , ν = 1, . . . , N,

be a Fourier series which converges in C
n, and such the following conditions

are satisfied:

1) f (ν) �= 0 for ν = 1, . . . , N .

2) If g ∈ Z
n, then a

(ν)
g can be different from zero only for one ν.

Then the functions f (1), . . . , f (N) are linearly independent.

Proof. Let

N∑

ν=1

Cνf
(ν)(g) = 0, and hence

N∑

ν=1

Cνa
(ν)
g = 0.

For a given ν0, we choose an index

g ∈ Z
n, a(ν0)

g �= 0.

Then a(ν)
g �= 0 for ν �= ν0, and hence Cν0 = 0. ��

This completes the proof of the fundamental existence and finiteness theo-
rem stated in Theorem 8.6. ��

8. Theta Series (Construction of the Spaces [
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Exercises for Sect. VI.8

1. Assume that for i = 1, 2 there are given lattices Li and two associated triples
Qi, li, Ei with a nondegenerate Hermitian form. Define a “Cartesian product”
Q, l, E on C

n with n = n1 + n2, and show also that L = L1 × L2 admits a
nondegenerate Hermitian form. Show that each theta function θ ∈ [Q, l, E] can
be written as a finite sum of functions of the form θ1θ2, with θi ∈ [Qi, li, Ei].*)

2. Construct, in the case n = 1, a triple Q, l, E such that the space of solutions
[Q, l, E] is spanned by Jacobi’s theta function.

3. The theta function ϑ
[

a
b

]
(Z, a, b) can be considered as a function in all of the

variables Z, a, b, z. Show that the theta series converges normally on A = Hn ×
C

n×C
n×C

n, where Hn denotes the space of all symmetric matrices with positive
definite imaginary part.

Appendix to Sect 8. Complex Fourier Series
Let the following be given:
1) a domain V ⊂ R

n;
2) a lattice L ⊂ R

n (not in C
n);

3) a periodic analytic function

f : D→ C, f(z + a) = f(z) for all a ∈ L,

where D denotes the domain

D = {z ∈ C
n; z = x+ iy, y ∈ V }.

Claim. The function f admits an expansion into an absolutely and locally
uniformly convergent Fourier series of the kind

f(z) =
∑

g∈L◦
age

2πigtz.

The coefficients ag are uniquely determined. For arbitrary y ∈ V , we have

ag =
∫

P

f(x+ iy)e−2πigt(x+iy) dx,

where P is a fundamental parallelogram of the lattice L.

*) The “correct” formula is [Q, l, E] ∼= [Q1, l1, E1] ⊗ [Q2, l2, E2].
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In the case n = 1, this is an easy consequence of the Laurent expansion. Since
we have not developed Laurent expansions in several variables, however, we
use a different approach. We reduce the complex case to the real case (which
in fact is more fundamental).

From Lemma 1.4, we obtain for fixed y an expansion

f(x+ iy) =
∑

g∈L◦
bg(y)e2πigtx.

This can be written in the form

f(x+ iy) =
∑

g∈L◦
ag(y)e2πigtz

(ag(y) = e2πg
tybg(y)). We have to show that the coefficient

ag(y) =
∫

P

f(x+ iy)e−2πigt(x+iy) dx

is independent of y. This can easily be reduced to the case n = 1, where the
complex Fourier expansion is known. Another proof uses the Cauchy–Riemann
differential equations: We have

∂̄f = 0.

It is easy to show that the operator ∂/∂z̄ can be applied termwise to the Fourier
series. We obtain

∂̄
(
ag(y)e2πigtz

)
= 0

and then
∂

∂yν
ag(y) = 0. ��

9. Graded Rings of Theta Series

As usual, L ⊂ C
n denotes a lattice here. Let H1, H2 be two Riemannian forms.

Then H1 + H2 is also a Riemannian form. It is nondegenerate of one of the
two is so.
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9.1 Lemma. Let H̃,H be two Riemannian forms, H nondegenerate. Then
there exists a natural number r such that

rH = H̃ +H0,

with a nondegenerate Riemannian form H0.

Proof. The imaginary part of H0 is integral on L×L for any choice of r. Hence
we have to show only that rH − H̃ is positive definite for sufficiently large r:

rH(z, z)− H̃(z, z) > 0 for z ∈ C
n − {0}.

It is sufficient to restrict ourselves to the compact set defined by ‖z‖ = 1. Now
a simple compactness argument gives the proof. ��

The sum of two automorphy summands is again an automorphy summand.
The product of two corresponding theta functions is a theta function with
respect to this sum. So we have the following.

Assume that an automorphy summand is given by a triple (Q, l, E). Then
the triple (rQ, rl, rE) (r ∈ Z) is also an automorphy summand. We have

f ∈ [rQ, rl, rE], g ∈ [sQ, sl, sE] =⇒ f · g ∈ [(r + s)Q, (r + s)l, (r + s)E].

So, we are led to consider the set of all finite sums

∑

r∈Z

fr, fr ∈ [rQ, rl, rE], fr = 0 for almost all r.

We denote this set by

A(Q, l, E) =
∑

r∈Z

Ar(Q, l, E), where Ar(Q, l, E) := [rQ, rl, rE].

We have seen that this is a ring. We have

Ar(Q, l, E) = 0 for r < 0 and A0(Q, l, E) = C.

9.2 Lemma. We have

∞∑

r=0

ϑr = 0 (ϑr ∈ [rQ, rl, rE], almost all = 0)

if and only if
ϑr = 0 for all r.
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Proof. Let z ∈ C
n. We have

0 =
∑

r=0

ϑr(z + a) =
∑

(e2πiHa(z))rϑr(z).

Hence the polynomial

x �−→
∞∑

r=0

ϑr(z)xr

has infinitely many roots. Hence its coefficients are zero. ��
By Lemma 9.2, the sum decomposition of A(Q, l, E) is direct. So, we can

write

A(Q, l, E) =
∞⊕

r=0

Ar(Q, l, E).

Instead of proving Lemma 9.2, one could take this direct sum for the definition
of A(Q, l, E). It should be clear how the ring structure and such an abstract
direct sum have to be defined. Compare this with the final remarks in [FB],
Sect. VI.3.

9.3 Lemma. Let P be the Pfaffian of the alternating form which belongs to
Q. Then

dimAr(Q, l, E) = P · rn for r ≥ 0.

Proof. Let e1, . . . , en be the elementary divisors of A. Then rt1, . . . , rtn are
the elementary divisors of rA. The rest follows from Theorem 8.6. ��

We associate with the graded ring A = A(Q, l, E) a subfield of the field of
abelian functions, namely

K(A) :=
{
f

g
; f, g ∈ Ar, r ∈ Z, g �= 0

}
.

Clearly, K(A) is a field; for example,

f

g
+
f̃

g̃
=
fg̃ + f̃g

gg̃

and
f g̃ + f̃g, gg̃ ∈ Ar+r̃ for f, g ∈ Ar; f̃ , g̃ ∈ Ar̃.

9.4 Proposition. Let (Q, l, E) with a nondegenerate Riemannian form H be
given. Then K(A(Q, l, E)) is the field of all abelian functions with respect to
L.
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Proof. As we know, every abelian function can be written in the form

f

g
, f, g ∈ [Q̃, l̃, Ẽ],

for a suitable triple (Q̃, l̃, Ẽ).
We choose the natural number r as in Lemma 9.1. Then we choose an

arbitrary theta function

h ∈ [rQ− Q̃, rl − l̃, rE − Ẽ], h �= 0.

The existence of h is ensured, since rQ−Q̃ leads to a nondegenerate Riemannian
form. We have

f

g
=
fh

gh
and fh, gh ∈ [rQ, rl, rE]. ��

Exercises for Sect. VI.9

1. The polynomial ring A = C[X1, . . . , Xm] admits the grading

Ar := {P ∈ A; P homogeneous of degree r}.
Can there be an isomorphism from A(Q, l, A) onto A (for suitable m) which is
compatible with this grading?

2. Can there be an isomorphism from A(Q, l, A) onto the graded ring of elliptic
modular forms ([FB], Sect. V.3) which respects the gradings?

10. A Nondegenerateness Theorem

In principle, it could be possible that every abelian function for a lattice L is
periodic with respect to a bigger lattice L̃, even if L admits a nondegenerate
Riemannian form. Our next goal is to prove that such a pathological behavior
is not possible at least for theta functions. We start with some notation.

Let A be an alternating nondegenerate bilinear form on C
n × C

n which
takes only integral values on L×L. We can define the dual lattice with respect
to A (compare Remark 1.3):

L∗ := {z ∈ C
n; A(z, a) ∈ Z for all a ∈ L}.

It is easy to show that L∗ is a lattice and that L ⊂ L∗.
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10.1 Lemma. Let
θ ∈ [Q, l, E], θ �= 0,

be a theta function with a nondegenerate Riemannian form. Let a ∈ C
n be a

vector such that
θ(z + a)
θ(z)

is analytic on the whole of C
n. Then a is contained in the lattice L∗.

Proof. A simple calculation shows that the function

θ0(z) := e−πH(z,a) θ(z + a)
θ(z)

satisfies the transformation formula

θ0(z + b) = e2πiA(a,b)θ0(z) for b ∈ L.

It follows that |θ0(z)| attains its maximum in C
n. Hence it is constant. This

implies that
A(a, b) ∈ Z. ��

This proof shows more, as follows.
Let L̃ be the set of all vectors a which occur in Lemma 10.1. We have

L ⊂ L̃ ⊂ L∗

Obviously, L̃ is a lattice. The function θ which occurs in Lemma 10.1 is a theta
function for L̃; more precisely,

θ ∈ [Q, l, Ẽ],

where Ẽ is some extension of the A-character E to L̃.
There are only finitely many extensions of an A-character on L to an A-
character on L̃.
This is clear, since the extensions are determined by their values on a system
of representatives of L̃/L and this group is finite.

In the next step, we show that [Q̃, l̃, Ẽ] are proper subspaces of [Q, l, E] if L
is a proper sublattice of L̃. Because of the dimension formulae (Theorem 8.6),
this means that:
The Pfaffian P̃ of A with respect to L̃ is smaller than the Pfaffian P of A with
respect to L.
For the proof, we consider normal bases

ων and ω̃ν (1 ≤ ν ≤ 2n)
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of A with respect to L and L̃ respectively. Since L is contained in L̃, we have

ωµ =
∑

ν

uµν ω̃ν ,

with a suitable matrix
U = (uµν)1≤µ,ν≤2n.

A simple computation shows that

(
0 T

−T 0

)
= U

(
0 T̃

−T̃ 0

)
U ′,

and hence
P = | detU | · P̃ .

The determinant of U is integral. It cannot be ±1, since otherwise U−1 would
be integral as well and we would have L = L̃. But we have excluded this
possibility. ��

Now we obtain the following result.

10.2 Lemma. We consider the automorphy summand defined by a triple
(Q, l, E) with a nondegenerate Riemannian form H. If we take θ ∈ [Q, l, E]
outside of the union of certain finitely many subspaces of smaller dimension,
then the function θ(z + a)/θ(z) is not analytic for any a ∈ C

n, a /∈ L.

Note. Since a (real or complex) vector space can never be the union of finitely
many subvector spaces of smaller dimension, there exists a θ with the properties
formulated in Lemma 10.2.

10.3 Proposition (point separation theorem). Let L ⊂ C
n be a lattice

on which an automorphy summand is given through a triple (Q, l, E) with a
nondegenerate Riemannian form H.
1) Assume m ≥ 2. Then, for each point a ∈ C

n, there exists

θ ∈ [mQ,ml,mE] with θ(a) �= 0.

2) Assume m ≥ 3. Then, for each pair a, b ∈ C
n of points which are not

equivalent mod L, there exists

θ ∈ [mQ,ml,mE] with θ(a) = 0, θ(b) �= 0 (point separation).
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The proof of this fundamental theorem rests on a very simple but fundamental
observation:
Let θ be an element of [Q, l, E] and let

a1, . . . , am ∈ C
n with a1 + · · ·+ am = 0.

Then
m∏

i=1

θ(z + ai) ∈ [mQ,ml,mE].

For the proof, we only have to observe that for “a1 + · · · + am = 0” and any
automorphy summand

(a, z) �−→ Qa(z) + Ca,

it follows that

m[Qa(z) + Ca] =
m∑

i=1

[Qa(z + ai) + Ca].

Proof of Theorem 10.3 .
1) We choose a theta function

θ0 ∈ [Q, l, E], θ0 �= 0,

and consider

θ(z) := θ0(z + a)θ0

(
z − a

m− 1

)m−1

.

We know that this function is contained in [mQ,ml,mE]. Now we show that
for a given z, there exists an a such that θ(z) �= 0. For this, we consider θ for
fixed z as an abelian function in a. In this case, this function is zero, and we
have

θ0(z + a) ≡ 0 or θ0

(
z − a

m− 1

)m−1

≡ 0 (for all a).

In both cases we would have θ0 = 0, which contradicts our assumption.
2) Using Lemma 10.2, we choose a theta function

θ0 ∈ [Q, l, E],
θ0(z + b− a)

θ0(z)
is not analytic in C

n.

In our first approach, we make a restrictive assumption. Later we will see how
to get rid of it.
Assumption. The function θ0 is reduced. This means that the power series
expansion of θ0 at an arbitrary point of C

n is square-free in the ring of power
series.
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Claim. Under this assumption, there exists a c with

θ0(c) = 0, θ0(c+ b− a) �= 0.

Proof. We choose c in such a way that θ0(z + b − a)/θ0(z) is not analytic in
any open neighborhood of c. The claim then follows from the theorem of the
unique prime factor decomposition in C{z1 − c1, . . . , zn − cn} and from the
following remark. ��
Remark. Let P,Q be two prime elements in C{z1, . . . , zn}. Assume that

P (z) = 0 =⇒ Q(z) = 0

in a full neighborhood of z = 0. Then

P = UQ,

with a unit U (U(0) �= 0).

This remark follows from Proposition V.4.10.

Now we choose a further vector c1 ∈ C
n and define c2 by the equation

c− a+ c1 + (m− 2)c2 = 0

(observe that m > 2). The function

θ(z) := θ0(z + c− a)θ0(z + c1)θ0(z + c2)m−2

is then contained in [mQ,ml,mE]. We have

θ(a) = 0 (because θ0(c) = 0 ).

We claim that with a suitable choice of c1,

θ(b) �= 0.

If this were not the case, we would have

θ0(b+ c1)θ0(b+ c2)m−2 = 0

(as a function of c1) and this would imply θ0 = 0.

Finally, we want to get rid of the assumption of reducedness.
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10.4 Lemma. Each theta function

θ0 ∈ [Q, l, E], θ0 �= 0 (H nondegenerate)

admits a decomposition
θ0 = θred

0 · θ̃0
as a product of two theta functions

θred0 ∈ [Qred, lred, Ered], θ̃0 ∈ [Q̃, l̃, Ẽ]

with the properties
1) θred0 is reduced;
2) Hred is nondegenerate;
3) θ̃0(z) = 0 =⇒ θred0 (z) = 0.

We assume that such a decomposition has been proved. We then find vectors
a1, . . . , am, a1 + · · ·+ am = 0 such that

θred(z) :=
m∏

ν=1

θred0 (z + aν)

has the desired properties

θred(a) = 0, θred(b) �= 0.

Then

θ(z) :=
m∏

ν=1

θ0(z + aν)

has the same properties, since because of 3) we have

θred(z) = 0 ⇐⇒ θ(z) = 0.

Proof of the existence of the decomposition θ0 = θred0 · θ̃0 (Lemma 10.4).
As we know from Proposition V.5.2, the set of points at which the power series
expansion of an analytic function is square-free is open. From this and the fact
that for each Cousin distribution on C

n there exists an analytic function which
fits it, we obtain the following result (compare Exercise 4 in Sect.V.5):
Every analytic function f : C

n → C (f �= 0) admits a decomposition

f = f red · f̃ ,

where f red and f̃ are both analytic functions in C
n, such that the power series

expansion of f red at any point a is the square-free part of the power series
expansion of f . So, we have

f̃(z) = 0 =⇒ f red(z) = 0.
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Using the prime decomposition and a compactness argument, we obtain the
result that if U ⊂ C

n is a bounded open set, then there exists a natural number
N such that

(f red)N

f̃

is analytic in U .

We apply this to the theta function θ0:

θ0 = θred0 · θ̃0.

Since we can choose U in such a way that it contains a fundamental parallelo-
gram U , we obtain

(θred0 )N

θ̃0
is analytic in the whole of C

n.

We can multiply θred0 by a suitable function fromO(Cn)∗. Hence we can assume
that θred0 is a theta function. Then θ̃0 is also a theta function:

θred0 ∈ [Qred, lred, Ered], θ̃0 ∈ [Q̃, l̃, Ẽ].

The corresponding Riemannian forms are

H = Hred + H̃.

We also know that

NHred − H̃

is a Riemannian form. From this we can deduce that Hred is nondegenerate.
Assume that Hred(z0, z0) = 0. Since NHred − H̃ is semipositive, we obtain
H̃(z0, z0) = 0 and hence H(z0, z0) = 0. But, by assumption, H is nondegener-
ate. This completes the proof of Proposition 10.3. ��
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Exercises for Sect. VI.10

1. Show that the index of L in L∗ equals the Pfaffian.

2. Show that the Weierstrass σ-function and the Jacobi theta function ϑ(τ, z) ([FB],
Sect. V.6) are reduced.

11. The Field of Abelian Functions

We now have the tools to prove that the field of abelian functions with respect
to a lattice L ⊂ C

n with a non-degenerated Riemannian form is an algebraic
function field of transcendental degree n. The basic facts about algebraic func-
tion fields have been collected together in the algebraic appendix (Chap. VIII)
to this volume. Once more, we arrange what is needed from the theory so far.

Let H be a nondegenerate Riemannian form and let (Q, l, E) be an associ-
ated triple. We consider

Ar(Q, l, E) = [rQ, rl, rE]

and

A(Q, l, E) =
∞⊕

r=0

Ar(Q, l, E).

We then have:
1) dimAr(Q, l, E) = Prn (P > 0).
2) Each abelian function is the quotient of two elements from Ar(Q, l, E) for

a suitable r.
3) Let a, b ∈ C

n be two points which are inequivalent with respect to L, and
assume r ≥ 3. There then exists

θ ∈ Ar(Q, l, E) with θ(a) = 0, θ(b) �= 0.

11.1 Definition. The analytic functions

f1, . . . , fm : U → C, U ⊂ C
n open, nonempty,

are called analytically independent if there exists a point a ∈ U at which the
Jacobian

J(f, a) =
(
∂fi
∂zk

(a)
)

i=1,...,m
k=1,...,n

has rank m.

In particular, m ≤ n. It is well known that any m×n matrix of rank m admits
an extension to an n×n matrix whose determinant is not zero. This shows the
following.
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11.2 Remark. Assume that the Jacobi matrix J(f, a) of the analytic
functions f1, . . . , fm has rank m. Then they can be extended to an n-tuple
f := (f1, . . . , fn) of analytic functions such that the complex functional deter-
minant of f is different from zero.

(One can take linear functions for the fm+1, . . . , fn.)

11.3 Remark. Analytically independent functions are algebraically indepen-
dent. This means that there exists no nonzero polynomial P with

P (f1, . . . , fm) ≡ 0.

Because of Remark 11.3 we can assume m = n. The claim then follows from
the theorem of invertible functions. ��

11.4 Lemma. Let

f : U → C
m, U ⊂ C

n open and nonempty,

be an injective analytic map. Then the components of f contain an analytically
independent subsystem consisting of n functions.

Proof. Let d be the maximal number of analytically independent subsys-
tems. We can assume that f1, . . . , fd are analytically independent. We extend
f1, . . . , fd to an n-tuple

ϕ = (f1, . . . , fd, gd+1, . . . , gn)

of analytically independent functions (see Remark 11.3). We can assume that

ϕ : U −→ V, V ⊂ C
n,

is a biholomorphic map onto some open set V . Now we replace f by

F := f ◦ ϕ−1 : V → C
m.

Obviously, the statement of Lemma 11.4 does not change if f is replaced by F .

From the equation F = f ◦ ϕ−1, it follows that F ◦ ϕ = f , but

Fν(f1, . . . , fd, gd+1, . . . , gn) = fν (1 ≤ ν ≤ m)

and therefore
Fν(w1, . . . , wn) = wν for 1 ≤ ν ≤ d.

(We denote the coordinates of V by w1, . . . , wn.)
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The complex functional matrix of F is of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 | 0 . . . 0
. . . |

...
...

0 1 | 0 . . . 0
− − − − − − −

∂Fd+1
∂w1

. . .
∂Fd+1
∂wd

| ∂Fd+1
∂wd+1

. . .
∂Fd+1
∂wn

...
... |

...
...

∂Fm
∂w1

. . . ∂Fm
∂wd

| ∂Fm
∂wd+1

. . . ∂Fm
∂wn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By assumption, the rank of this matrix must not exceed d. This gives

∂Fd+1

∂wν
= 0 for ν > d.

Since we can assume that V is connected, we obtain the result that Fd+1 (and
analogously Fd+2, . . . , Fm) are independent of the variables wd+1, . . . , wn. Since
F , by assumption, is injective, such variables cannot exist. ��

The next proposition now follows from the point separation theorem (The-
orem 10.3).

11.5 Proposition. Let θ0, . . . , θN be a basis of the vector space Ar(Q, l, E)
with r ≥ 3. We set

D = {[z] ∈ C
n/L; θ0(z) �= 0} .

The map

D −→ C
N , [z] �−→

(
θ1(z)
θ0(z)

, . . . ,
θN (z)
θ0(z)

)
,

is injective. The abelian functions

θ1
θ0
, . . . ,

θN
θ0

contain a subsystem of n analytically (and, in particular, algebraically) inde-
pendent functions.

Proof. The injectivity follows from the point separation property. The analytic
independence follows from Lemma 11.4 ��
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Algebraic Dependence

11.6 Lemma. There exists a natural number M , which depends only on
r ∈ N and on the Pfaffian, such that the following holds:
If

θ1, . . . , θn ∈ Ar(Q, l, E)

and
θ ∈ Ars(Q, l, E) (s ∈ N arbitrary),

then the monomials

θνθν00 · · · θνnn , νs+ ν0 + ν1 + ν2 + · · ·n = Ms,

are linearly dependent.

Proof. The monomials are contained in the vector space ArsM (Q, l, E), which
has the dimension

P (rsM)n.

So we only have to take care that the number of monomials, and hence the
number of solutions of

νs+ ν0 + ν1 + ν2 + · · ·n = Ms,

is greater than P (rsM)n. The number of solutions of

ν0 + ν1 + ν2 + · · ·n = s(M − ν) (0 ≤ ν ≤M )

for fixed ν equals the binomial coefficient

(
s(M − ν) + n

n

)
≥ [s(M − ν)]

n!
.

Hence the number we are looking for is

M∑

ν=0

(
s(M − ν) + n

n

)
≥ sn

∑M
ν=1 ν

n

n!
.

We know that

Q(M) :=
M∑

ν=0

νn

is a polynomial of degree n+ 1 in M . We need the inequality

snQ(M) > P · rnsnMn · n!.
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It is clear that this inequality is valid for large enough M = M(r, P ), since on
the left-hand side we have a polynomial of higher degree than on the right-hand
size. ��

In the following, we choose elements θ0, . . . , θn (by Proposition 11.5) from
Ar(Q, l, E) (for some r) such that the abelian functions

f1 =
θ1
θ0
, . . . , fn =

θn
θ0

are algebraically independent. They generate a subfield C(f1, . . . , fn) of the
field of all abelian functions. Now let f be a further abelian function. We first
assume that it is of the special form

f =
θ

θs0
, θ ∈ Ars(Q, l, E).

Because of Lemma 11.6, it satisfies an algebraic equation of degree ≤ M over
the field C(f1, . . . , fn). Now let f be arbitrary. It can be written in the form

f =
θ̃

θ
, θ, θ̃ ∈ At(Q, l, E), t suitable.

We can assume that t is divisible by r, i.e. t = rs, since we can write

f =
θ̃r

θθ̃r−1
.

Now we have

f =
θ̃/θs0
θ/θs0

.

This shows that an arbitrary f can written as a quotient of two functions which
satisfy algebraic equations of degree ≤ M . But then f satisfies an algebraic
equation of degree ≤M2. (This follows from Remark VIII.4.5.)

We have shown that there exist n algebraically independent abelian func-
tions f1, . . . , fn, and that each such abelian function satisfies an algebraic equa-
tion of bounded degree over C(f1, . . . , fn). This says that the field of abelian
functions is an algebraic function field of transcendental degree n (see Propo-
sition VIII.4.7).

11.7 Theorem. Let L ⊂ C
n be a lattice which admits a nondegenerate

Riemannian form. The field of all abelian functions is an algebraic function
field of transcendental degree n.

We know that algebraic function fields are finitely generated. (Actually, they
can be generated by n + 1 elements.) This shows that there is an r ∈ N such
that the field of abelian functions is generated by θν/θ0 (1 ≤ ν ≤ N), where
θ0, . . . , θN denotes a basis of Ar(Q, l, E). This, in connection with Proposition
9.4 shows the following.
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11.8 Theorem (theta theorem). For a suitable r ≥ 3, we have the
following. Let θ0, . . . , θN be a basis of Ar(Q, l, E). The field of all abelian
functions is generated by the quotients

θ1
θ0
, . . . ,

θN
θ0
.

Actually, a better result holds: one can take every r ≥ 3. A proof can be found
in [Co].

Exercise for Sect. VI.11

1. Let Li ⊂ C
ni be two lattices with a nondegenerate Riemannian form. Show that

the field of abelian functions for L1 × L2 is generated by the special function
f1(z1)f2(z2), where the fi are abelian functions for Li.

Hint. Use the result of Exercise 1 in Sect. VI.8.

12. Polarized Abelian Manifolds

Similarly to the way in which the theory of elliptic functions leads to the theory
of (elliptic) modular functions, the theory of abelian functions leads to the
theory of modular functions of several variables. The link is achieved if we
consider not only individual lattices but the set of all lattices L ⊂ C

n. Of
course, certain lattices have to be identified. How this has to be done becomes
clear if we recall the construction of the canonical basis of a lattice. In that
case, we had to consider triples (Z, L,H), where L ⊂ Z is a lattice and H is a
nondegenerate Riemannian form. We saw that each triple is equivalent to one
of the form (Cn, L(Z, T ), H(Z, T )). Here the elementary matrix T is unique,
but not the matrix Z.

Change of the Canonical Basis

The dimension n and the n×n elementary-matrix T are fixed in the following.

Recall that the lattice is generated by the columns of the matrix L =
L(Z, T ). The associated Riemannian form is H(z, w) = zt Im(Z)−1w̄.

Now we consider a second matrix Z̃ and seek an isomorphism

R : (Cn, L(Z, T )), H(Z, T ) −→ (Cn, L(Z̃, T ), H(Z̃, T )).
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So, R is an automorphism of C
n, which we shall identify with the corresponding

matrix. The conditions for R are:

a) RL(Z, T ) = L(Z̃, T );

b) zt Im(Z)−1w̄ = (Rz)t Im(Z̃)−1(Rw).

Condition a) can be formulated as follows:

There is a matrix M ∈ GL(2n, Z) with the property

(Z̃, T ) = R(T,Z)M t.

It is known from linear algebra that condition b) can be rewritten as

M t

(
0 T
T 0

)
M =

(
0 T
T 0

)
.

It is easy to verify that the set of all integral matrices with this property is a
group.

12.1 Definition. The paramodular group Γ0(T ) of level T consists of all
integral M with the property

M t

(
0 T
T 0

)
M =

(
0 T
T 0

)
.

If T is the unit matrix or a multiple of it, then Γ0(T ) coincides with the
integral symplectic group Sp(n,Z), which has already appeared during our
investigations of the period relations of compact Riemann surfaces (see Remark
IV.10.6). There, we saw that the period lattice of such a surface always admits
a nondegenerate Riemannian form whose associated elementary matrix is the
unit matrix.

Polarization

A Riemannian form is called minimal if the first elementary divisor t1 equals
1. If H is an arbitrary Riemannian form, then t−1

1 H is a minimal Riemannian
form. For our purposes, two Riemannin forms can be considered as equal if
they differ by a factor. Hence we can restrict ourselves to minimal Riemannian
forms.

12.2 Definition. A polarized abelian manifold is an isomorphy class of
triples (Z, L,H), where L is a lattice in the vector space Z and H is a minimal
Riemannian form on L.
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The corresponding elementary divisor matrix T , t1 = 1, is called the polariza-
tion type of the polarized abelian manifold.

With each point Z ∈ Hn we associate a polarized abelian manifold of
a prescribed polarization type T (t1 = 1), namely the isomorphy class of
(Cn, L(Z, T ), H(Z, T )). Hence the totality of all isomorphy classes is a set,
which we denote by A(T ). Two points Z, Z̃ have the same image in A(T ) if
there are matrices R ∈ GL(n,C) and M ∈ Γ0(T ) such that

(Z̃, T ) = R(T,Z)M t.

If we decompose M into four n× n blocks

M =
(
A B
C D

)
,

then this equations reads as

Z̃ = R(ZAt + TBt),
T = R(ZCt + TDt).

Hence the matrix R is determined:

R = T (ZCt + TDt)−1.

This leads to the following definition.

12.3 Definition. Two points Z, Z̃ ∈ Hn are called equivalent mod Γ0(T ) if
there exists a matrix M ∈ Γ0(T ) with the following two properties:
1) The matrix ZCt + TDt is invertible.
2) We have

T−1Z̃ = (ZCt + TDt)−1(ZAt + TBt).

It is clear that this defines an equivalence relation. We denote the set of
equivalence classes by

H/Γ0(T ).

In the next chapter, we shall show that this equivalence relation comes from a
group action. In fact, we shall see that condition 1) is automatically true for
Z ∈ Hn and M ∈ Γ0(T ), and that the matrix Z̃, which can now be defined
by the equation 2), is automatically contained in Hn. We should mention that
we have already dealt with this problem in connection with period relations
(compare Proposition IV.10.9).

In this section, we are satisfied to rewrite these relations in a standard form.
If we use the fact that Z̃ is symmetric, then we can rewrite 2) of Definition
12.3 in the form

Z̃ = (AZ +BT )(CZ +DT )−1T.
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If we introduce

(
Ã B̃
C̃ D̃

)
=

(
A BT

T−1C T−1DT

)
=

(
E 0
0 T−1

)(
A B
C D

)(
E 0
0 T

)
,

we can rewrite the equation in the standard form

Z̃ = (ÃZ + B̃)(C̃Z + D̃)−1.

The matrix

N :=
(
Ã B̃
C̃ D̃

)

is symplectic, i.e.

N t

(
0 E
−E 0

)
N =

(
0 E
−E 0

)
.

We recall that E denotes the unit matrix. The map

(
A B
C D

)
�−→

(
Ã B̃
C̃ D̃

)

is an injective homomorphism

Γ0(T ) −→ Sp(n,Q),

where Sp(n,Q) is the rational symplectic group. We denote the image of this
homomorphism by Γ(T ) and call this group the embedded paramodular group
of level T . The advantage is that all paramodular groups now occur as a
subgroup of one group Sp(n,Q) and that the formula 2) of Definition 12.3
takes the unified form

Z̃ = (AZ +B)(CZ +D)−1.

We shall continue with this form in the next chapter.
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Exercises forVI.12

1. Let t be a natural number. Show that

Γ0(tT ) = Γ0(T ), Γ(tT ) = MT Γ(T )M−1
T ,

with a rational symplectic matrix MT . Describe this matrix explicitly.

2. In the next chapter, we shall study the principal congruence subgroup

Sp(n, Z)[q] := Kernel(Sp(n, Z) −→ Sp(n, Z/qZ)).

Show that

Γ(T ) ⊃ Sp(n, Z)[detT ].

3. Two subgroups of a group are called commensurable if their intersection has a
finite index in both of them. Show that every two Γ(T ) in Sp(n,Q) are commen-
surable.

13. The Limits of Classical Complex Analysis

Complex tori C
n/L are examples of n-dimensional analytic manifolds. The notion of

an analytic manifold is an obvious generalization of the notion of a Riemann surface
for several variables.

Analytic Manifolds

A (complex) n-dimensional chart on a topological space X is a topological
map ϕ : U → V of an open subset U ⊂ X onto an open subset V ⊂ C

n.
Two n-dimensional charts ϕ,ψ are said to be analytically compatible if the
chart transformation ψϕ−1 is biholomorphic in the sense of complex analysis
in several variables. An n-dimensional analytic atlas A is a set of n-dimensional
analytic charts whose domains of definition cover X , such that any two charts
from A are analytically compatible. Two analytic atlases are said to be equiv-
alent if their union is an analytic atlas. A (complex) analytic manifold (X, [A])
of dimension n is a pair consisting of a Hausdorff space X and a full equiva-
lence class of analytic atlases. So, any analytic atlas A defines a structure in
the form of an analytic manifold on X. We shall usually write simply (X,A)
instead of (X, [A]). If it is clear which analytic structure is being considered at
any particular moment, we shall simply write X. Riemann surfaces are nothing
but one-dimensional analytic manifolds.

Some of the basic notions of the one-dimensional case carry over literally to
the case of an arbitrary dimension. We briefly mention them here.
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1) Any open subset U ⊂ C
n carries a natural structure in the form of an

analytic manifold by means of the tautological atlas. This consists of only
one chart, namely the identity id : U → U .

2) In analogy to the case n = 1, we can introduce the notion of an analytic
(= holomorphic) map f : X → Y of an n-dimensional analytic manifold
X = (X,A) into an m-dimensional analytic manifold Y = (Y,B). The
composition of analytic maps X → Y , Y → Z is analytic. In the spacial
case Y = C (equipped with the tautological structure), analytic maps are
called analytic functions.

3) A map f : U → V between open sets U ⊂ C
n, V ⊂ C

m is an analytic map
of analytic manifolds iff it is analytic in the sense of Chap. V, which means
that its components locally admit power series expansions.

4) A map f : X → Y between analytic manifolds is called biholomorphic if it
is bijective and if both f and f−1 are holomorphic.

5) Every analytic atlasA is contained in a unique maximal analytic atlas Amax.
This is the union of all atlases which are equivalent to A. The elements of
Amax are called analytic charts.

6) If U ⊂ X is an open subset of an analytic manifold (X,A), we can define
a restricted atlas A|U . In this way, U is equipped with the structure of
an analytic manifold. We call U (equipped with this structure) an open
analytic submanifold. The elements of the maximal atlas Amax are nothing
but biholomorphic maps from open sub-manifolds U ⊂ X onto open sets
V ⊂ C

n.
7. Finally, the Cartesian product X × Y of two analytic manifolds (X,A) and

(Y,B) can be provided with a structure in the form of an analytic manifold.
For two charts ϕ ∈ A, ψ ∈ B, we can define the product chart

ϕ× ψ : Uϕ × Uψ −→ Vϕ × Vψ,
(x, y) �−→ (ϕ(x), ψ(x)).

The set
A× B = {ϕ× ψ; ϕ ∈ A, ψ ∈ B}

is an analytic atlas on X × Y . If X is an n-dimensional and Y an m-
dimensional analytic manifold, then X × Y is an analytic manifold of di-
mension n+m.

More generally, we can define the Cartesian product X1 × · · · ×Xn of n
analytic manifolds. The projections

pν : X1 × · · · ·Xn −→ Xν (ν = 1, . . . , n)

are analytic. More generally, a map

f : X −→ X1 × · · · ×Xn
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of a further analytic manifold X into X1 × · · · × Xn is analytic iff the
compositions with the n projections are analytic.

An example of an analytic manifold is the complex torus XL = C
n/L, which

can be associated with a lattice L ⊂ C
n. It carries a natural structure in the

form of an n-dimensional analytic manifold, such that the natural projection

C
n −→ C

n/L

is locally biholomorphic (and, in particular, analytic).

Meromorphic Functions

Let U be an open and dense subset of an analytic manifold X. An analytic
function f : U → C is called meromorphic on X if each point a ∈ X admits an
open connected neighborhood U(a) ⊂ X and analytic functions

g : U(a) −→ C, h : U(a) −→ C

with the following properties:
a) h does not vanish identically.
b) For all x ∈ U(a) ∩ U such that h(x) �= 0, we have

f(x) =
g(x)
h(x)

.

Two pairs (U, f), (V, g) are said to be equivalent if f |U ∩ V = g|U ∩ V . It is
of course sufficient to demand the equality of f and g on an open and dense
subset of U ∩ V . A meromorphic function is a full equivalence class [U, f ] of
such pairs. If (U, f) is a representative, we call U a domain of holomorphy
of the meromorphic function. The union of all domains of holomorphy is also
a domain of holomorphy. We call it the domain of holomorphy. We shall
frequently write f instead of [U, f ] and we denote the domain of holomorphy
by Df .

The set M(X) of all meromorphic functions is, in an obvious manner, a
ring, furthermore, a field if X is connected. Any analytic function f on X
can be considered as a meromorphic function ([X, f ]). In this sense, we have
O(X) ⊂M(X).

Caution. Let f : X → C̄ be an analytic map of the analytic manifold X into
the Riemann sphere. We assume that the fiber over ∞ is thin in X. Then f can be
considered in an obvious way as a meromorphic function on X. But, in contrast to
the case n = 1, not every meromorphic function needs to be of this form. A typical
example is the meromorphic function on C × C

f(z1, z2) =
z1
z2
, Df = {z; z2 �= 0}.
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It makes sense to define

f(z1, z2) = ∞ for z2 = 0 and z1 �= 0,

and we obtain in this way an analytic map

C × C − origin −→ C̄ .

But this map cannot be extended to the origin as a continuous function. The reason
is that at the origin the pole set (z2 = 0) and the zero set (z1 = 0) intersect. By
the way, for each w ∈ C̄ we can find a sequence zn ∈ C

2 − {0} with the property
f(zn) → w. So, if we wanted to associate function values with the origin, every point
of C̄ would have the same right to be a value of f . Then f would be multivalued.
Sometimes the notion “meromorphic” is understood in this way as “multishaped”*).

Of course, we shall insist on the rule that maps have to be single-valued. Hence
there is no way for us to consider meromorphic functions as maps on the whole of X.
(Complex analysis of several variables has another way to get around this problem.
One constructs a “blow-up” X̃ → X such that the meromorphic function f can be
interpreted as an analytic map f : X̃ → C̄ . We shall not need this here.)

In the following, we shall deal with some properties of compact analytic
manifolds. These are closely related to the following two propositions, which
we shall not prove here in full generality. But we shall obtain partial results in
this direction which will be enough for our purposes.

13.1 Proposition. Let X be a connected compact analytic manifold of
dimension n > 0. The field M(X) of meromorphic functions is an algebraic
function field of transcendental degree ≤ n.

The first complete proof seems to have been given by Remmert in 1956. Rem-
mert mentions that this theorem had already been announced in 1953 by
W.L. Chow without proof. There are important special cases due to Thimm
(1954) and Siegel (1955). Interesting historical comments can be found in
Siegel’s paper “Meromorphe Funktionen auf kompakten analytischen Mannig-
faltigkeiten” ([Si2], No 64).

Up to now, we have proved Proposition 13.1 for Riemann surfaces and
complex tori. It is our goal to prove it also for the n-fold Cartesian product
Xn of a compact Riemann surface and, as a consequence, also for the symmetric
power X(n). This will imply an important consequence for the Jacobi inversion
theorem.

*) But this is not correct historically. The notion of a “meromorphic function” has
its origin in the complex analysis of one variable.
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Removability Theorems

We need a higher-dimensional version of the Riemann removability theorem.

13.2 Lemma. Let U ⊂ C
n an open subset and g : U → C an analytic

function with thin zero set S = {z ∈ U ; g(z) = 0}. Any bounded analytic
function f : U − S → C extends to an analytic function on the whole of U .

Proof. The function fg can be extended (by zero) to a continuous function on
U . Moreover, the function fg2 admits partial complex derivatives and hence
is analytic. So, f is at least meromorphic on U . We assume that there exists
a point a ∈ S such that f cannot be extended as an analytic function to
some open neighborhood U(a) ⊂ U . We can assume that in U(a), f can be
written as the quotient of two analytic functions whose power series expansions
for all points of U(a) are coprime. The zero set of the denominator cannot be
contained in the zero set of the numerator. (Here we have to use the preparation
theorem!) But then the function f cannot be bounded. ��

It us useful to reformulate the removability theorem in the following modi-
fied form.

13.3 Definition. A closed subset S ⊂ X of an analytic manifold X is called
analytically thin if, for any point a ∈ X, there exist an open, connected
neighborhood U(a) ⊂ X and an analytic function ha : U(a)→ C, ha �= 0, with

S ∩ U(a) ⊂ {x ∈ U(a); ha(x) = 0}.

If X is a Riemann surface, then the discrete subsets of X are analytically thin.
The removability theorem can be reformulated as follows.

13.4 Proposition. Let S ⊂ X be a closed analytically thin subset of an
analytic manifold X and let f : X − S → C be an analytic function. Assume
that for every point a ∈ S there exists a neighborhood U(a) such that f is
bounded on U(a) ∩ (X − S). Then f extends to an analytic function on X.

Corollary. If X is connected, then X − S is connected as well.

Every locally constant function on X − S extends to an analytic function on
the whole of X and hence is constant. ��

The condition “analytically thin” can be weakened under additional as-
sumptions for f , as follows.
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13.5 Definition. A closed subset S of an analytic manifold X is called
nowhere decomposing if it has no inner points and if, for each open, con-
nected subset U ⊂ X, the complement

U − S := {x ∈ U ; x /∈ S}

is connected.

Because of the corollary to Proposition 13.4, analytically thin subsets are
nowhere decomposing. The union of two nowhere decomposing sets is nowhere
decomposing. If X0 ⊂ X is an open submanifold, then S∩X0 ⊂ X0 is nowhere
decomposing if S ⊂ X is so.

13.6 Proposition. Let X be a connected analytic manifold and let S ⊂ X be
a (closed) nowhere decomposing subset. Let f be a meromorphic function on
X−S which is algebraic over the field of meromorphic functionsM(X) on X.
Then f is meromorphic on the whole of X.

Proof. The meromorphic function f is holomorphic outside an analytically thin
subset. We can add this subset to S and hence assume that f is holomorphic
on X −S. By assumption, there exist meromorphic functions ϕ0, . . . , ϕn on X
such that

ϕnf
n + · · ·+ ϕ0, ϕn �= 0.

We can assume that the polynomial P = ϕnt
n + · · · + ϕ0 from M(X)[t] is

irreducible. For the proof, we can replace X by a small open connected neigh-
borhood of a given point. Hence we can assume that the functions ϕν are
quotients of functions which are holomorphic on the whole of X. Since we
can multiply them by a common denominator, we can assume that they are
all holomorphic. By multiplying the algebraic equation by ϕn−1

n , we obtain an
algebraic equation for ϕnf with a highest coefficient of one. Hence we can as-
sume ϕn = 1. Now we shall show that f extends to a holomorphic function on
X. We can assume that the ϕν are bounded on X, since this is true in a small
neighborhood of a given point. Now we obtain the result that f is bounded
on X − S. In the case where S is analytically thin, the proof now follows from
the Riemann removability theorem. The general case needs the following extra
consideration.

It is enough to show that there exists an closed analytically thin subset
A ⊂ X such that f extends holomorphically to X − A, because then the
Riemann removability theorem ensures holomorphic extendability to X. We
apply this to the set A of all x ∈ X such that the discriminant of the polynomial
Px = ϕn(x)tn + · · · + ϕ0(x) vanishes. Since our polynomial P is irreducible
over the field M(X), its discriminant is a nonzero element of this field. It
follows from the explicit formula for the discriminant that the discriminant
of the specialized polynomial Px depends holomorphically on x. Hence A is
analytically thin. So, we can assume that the discriminant of Px is different
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from zero for all x. We now choose some point a. The equation Pa(w) =
0 has n solutions b1, . . . , bn. The derivative of Pa does not vanish at these
points, since the discriminant is different from 0. From the theorem of implicit
functions (Remark V.3.4), we obtain the result that there exist a small open
neighborhood U(a) and holomorphic functions wν on U(a) with the properties
wν(a) = bν and Px(wν(x)) = 0 and such that the wν have disjoint images.
Since we may replace X by U(a), we can assume that there exist holomorphic
functions wν on the whole of X such that Px(wν(x)) = 0 and all zeros of Px
are exhausted by the wν(x).

Since f(x) is a zero of Px for x ∈ X − S, we obtain

(w1(x)− f(x) · · · (wn(x)− f(x)) = 0 for x ∈ X − S.
Since X − S is connected (!), we obtain wν(x) = f(x) for some ν. This shows
that f(x) can be extended to the whole of X. ��

Galois Coverings

An important consequence of the removability theorem states the following.

13.7 Lemma. Let f : X → Y be a surjective proper analytic map between
analytic manifolds. Assume that there exists a closed analytically thin subset
S ⊂ Y such that T = f−1(S) is analytically thin in X. Assume that the
restriction of f

X − T −→ Y − S, T = f−1(S),

is locally biholomorphic. Let g : Y − S → C be an analytic function whose
pullback g ◦ f extends analytically to X. Then g extends analytically to Y .

Proof. The assumption of local biholomorphy implies that g is analytic on
Y − S. For s ∈ S, we choose an open neighborhood V (s) whose closure is
compact. Since f is proper, the inverse image of V (s) is compact. Hence the
analytic continuation of g ◦ f is bounded on the inverse image. Hence g is
bounded on V (s)− S and we can apply the Riemann removability theorem.

��
We need a variant of Lemma 13.7 which includes meromorphic functions.

Under the assumptions of Lemma 13.7, we have the following.
If V ⊂ Y − S is an open and dense subset, then U = f−1(V ) is (open and)

dense in X − T . This follows from the fact that X − T → Y − S is proper and
open. As a consequence, the inverse image of an open and dense subset of Y
is open and dense in X . Let g be a meromorphic function on Y . We can then
define the composition g ◦ f as a meromorphic function on X . In this way, we
obtain an embedding (= injective homomorphism) of the fields of meromorphic
functions,

M(Y ) −→M(X).

We are interested in the image. A very simple answer can be given if f : X → Y
is Galois in the following sense.
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13.8 Definition. A surjective proper analytic map

f : X −→ Y

of connected analytic manifolds is called a ramified Galois covering if there
exists a finite group G of biholomorphic automorphisms of X such that two
points x, y from X have the same image under f iff there exists a γ ∈ G with
the property y = γ(x). Then the map f factorizes over a bijective map

X/G −→ Y.

We make two further assumptions (which in reality are always fulfilled; in our
applications, their validity is immediately visible, so there is no need to prove
them):
1) The map is topological if X/G is equipped with the quotient topology or,

equivalently, the map f is open.
2) There exists a closed analytically thin subset S ⊂ Y such that the restriction

X − T −→ X − S, T = f−1(S),

is locally biholomorphic.

The map X−T → X−S is proper and locally topological and hence a covering
in sense of topological covering theory (Lemma I.3.13 and Definition I.3.14). It
is Galois with deck transformation group G (see Definition III.5.15). We call
G also simply the deck transformation group of X → Y .

As we have mentioned already, there is a natural embedding M(Y ) ↪→
M(X). For the sake of simplicity, we identifyM(Y ) with its image inM(X).

13.9 Proposition. Let f : X → Y be a ramified Galois covering with a
corresponding deck transformation group G. The image of M(Y ) in M(X)
consists precisely of the G-invariant function from M(X):

M(Y ) =M(X)G (fixed field).

Proof. We know already from Lemma 13.7 that the analogous theorem is
true for analytic instead of meromorphic maps. Let g ∈ M(X)G be a G-
invariant meromorphic function and let U ⊂ X be an open and dense domain
of holomorphy of g. The set V = f(U) is open and dense in Y . There exists
a holomorphic function h : V → C with h(x) = g(f(x)) for x ∈ U . We have
to show that h is meromorphic on the whole of Y . Let b ∈ Y be an arbitrary
point and let a ∈ X be a preimage of b. We want to prove the meromorphy
of h in a neighborhood of b. In a small open neighborhood U(a) of a, we can
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write g as a quotient of analytic functions g = g1/g2. We can assume that U(a)
is G-invariant. We then have

g =
g1g3
g2g3

, with g3(x) =
∏

γ∈G γ �=id

g2(γx).

The denominator in this representation is G-invariant. Since f is G-invariant,
the numerator must also be G-invariant. Now the denominator and numerator
define analytic functions on the image V (a) = f(U(a)). ��

In the following, we shall make use of some simple facts of algebra, namely
some rudiments of Galois theory. For simplicity, we assume that all of the fields
considered have a characteristic of zero.

1) Let G be a finite group of automorphisms of a field L; then L is a finite
algebraic extension of the fixed field

K = LG = {x ∈ L; g(x) = x for all g ∈ G}.

We have
#G = [L : K] (= dimK L).

2) An extension of fields K ⊂ L is said to be Galois if there exists a finite
group G of automorphisms of L such that K = LG is the fixed field.

If K ⊂ L is a finite field extension, then there exists an extension L ⊂ L̃ such
that L̃|L and L̃|K are Galois.

The next statement follows from this and the closed relation between com-
pact Riemann surfaces and function fields.

13.10 Remark. Let X be a connected compact Riemann surface and let
f : X → C̄ a nonconstant meromorphic function. There exist a connected
compact Riemann surface X̃ and an analytic map g : X̃ → X such that

g : X̃ → X, g ◦ f : X̃ → C̄

are ramified Galois coverings.
Supplement. The maps f and g induce maps

X̃n −→ Xn −→ C
n.

Here
gn : X̃n −→ Xn, gn ◦ fn : X̃n −→ C̄

n

are ramified Galois coverings.

Now we are in a position to prove Proposition 13.1 for the Cartesian powers of
Riemann surfaces.
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13.11 Theorem. The field of meromorphic functions M(Xn) on the n-
fold Cartesian power of a connected, compact Riemann surface is an algebraic
function field of transcendental degree n.

Proof. Let C ⊂ K ⊂ L be field extensions, L|K finite (algebraic). If K is an
algebraic function field of transcendental degree n, then this is the case for L
for trivial reasons. But the converse is also true. Let f1, . . . , fm (m ≤ n) be a
maximal system of algebraically independent elements ofK. ThenK and hence
also L are algebraic over C(f1, . . . , fn). Since L is an algebraic function field of
transcendental degree n, we obtain m = n and the extension L|C(f1, . . . , fn),
and hence K|C(f1, . . . , fn) is finite.

We obtain the result that Theorem 13.11 holds for a compact Riemann
surface if and only if it holds for the Riemann sphere. Hence it holds if it is
true for some compact Riemann surface. But we know that the proposition
is true for powers of tori C/L, since powers of tori are tori themselves. And
we know from the theory of abelian functions that the field of meromorphic
functions on a complex torus is an algebraic function field. ��

The Symmetric Power

Let X be a set and let Xn = X × · · · × X be the n-fold Cartesian power.
The symmetric group Sn acts on Xn by permutation of the components. The
quotient is the nth power,

X(n) := Xn/Sn.

If X is a topological space, we equip Xn with the product topology and X(n)

with the quotient topology. Now let X = C be the complex plane. The n
elementary symmetric functions E1, . . . , En define a map

E : C
n −→ C

n, E(z) = (E1(z), . . . , En(z)).

This map factors through the nth symmetric power. For the sake of simplicity,
we denote this map also by E:

E : C
(n) −→ C

n.

We can consider the statement that this map is topological (Proposition
IV.12.4) as the main theorem of elementary symmetric functions. Hence we
can equip C

(n) with a structure in the form of an analytic manifold such that
this map is biholomorphic.

We want to extend this construction to Riemann surfaces X . We have to
study the natural projection Xn −→ X(n). We study it locally, i.e. in a small
open neighborhood U of a point a ∈ Xn. For this, we have to study the
stabilizer

G := {g ∈ Sn; g(a) = a}.
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When the components of a are pairwise distinct, then G is trivial. In this case,
Xn → X(n) maps a small open neighborhood of a onto an open neighborhood
of the image point in X(n). This map can be used to construct a chart.

Next we consider the extreme case in which all components of a are equal.
In this case G = Sn. We can construct a small open neighborhood U ⊂ Xn of
a which is G-invariant and such that U/G → X(n) defines a topological map
onto some open subset of X(n). Since U can be identified with a subset of C

n

and hence U/G with an open subset of C
(n), we can use this to construct a

chart.

In the general case, the group G is isomorphic to a Cartesian product of
groups Sd. We restrict our considerations to a typical case. Let n = 3 and
a1 = a2, a3 �= a1. Then G is isomorphic to S2, where S2 permutes the first two
coordinates. Again it is easy to construct an open neighborhood U of a which
is invariant under G and such that the natural map

U/G −→ X(n)

defines a topological map onto an open neighborhood of the image of a. We
can choose U in the form U = U1 × U2 × U3 with U1 = U2. Here Ui ⊂ C is an
open neighborhood of ai. We have a natural identification

U/G = (U1 × U2)/S2 × U3 (U1 = U2).

We already know that U2
1 /S2 carries a structure in the form of an analytic

manifold. Hence U/G is an analytic manifold. The arguments indicated above
easily lead to a proof of the following statement.

13.12 Remark. Let X be a Riemann surface. Then the symmetric power
X(n) admits a structure in the form of an analytic manifold such that the natu-
ral projection Xn → X(n) is a ramified Galois covering Xn → X(n) whose deck
transformation group is isomorphic to Sn. The field of meromorphic functions
on X(n) is an algebraic function field of transcendental degree n.

We now return to the Jacobi inversion theorem. Recall that we have associated
a compact Riemann surface with a complex torus

Jac(X) = C
n/L,

together with a map
X(n) −→ C

n/L.

It is clear from our construction that this map is analytic. We have seen that
this map is “nearly bijective”:
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1) The fibers of this map are connected.
2) Let U ⊂ X(n) be the subset of all points such the map is locally biholo-

morphic in a small open neighborhood. The set U is open and dense. The
same is true for the image V ⊂ Jac(X), and the induced map U → V is
biholomorphic. (To be honest, we should note that the inversion theorem
(Theorem IV.12.2) has only been formulated in such a way that one can find
an open, dense subset U such that U → V is locally topological. But the
explicit U which we constructed in the proof of Theorem IV.12.2 obviously
has the property that U → V is biholomorphic. As a consequence, the set
U which we have defined here is open and dense, and it follows from 1) that
for this set, U → V is biholomorphic.)

3) If we set T = X(n)−U and S = Jac(X)−V then T is the full inverse image
of S. (Let a, b be two different points which are mapped to the same image
point in S. Then, because of 1), the map cannot be locally biholomorphic
close to a or b. Hence both points are contained in T .)

The set T can be described locally as the zero set of a Jacobian determinant.
Hence T is analytically thin and hence nowhere decomposing. We can show
that its image S is nowhere decomposing. For this, we consider some open and
connected subset W ⊂ Jac(X). We denote its inverse image by W̃ . The map
W̃ →W is proper and has connected fibers. It is easy to deduce from this that
W̃ is connected. We obtain the result that W̃ − T is connected. Hence the
image W − S is connected as well.

Now we consider the inclusion M(Jac(X)) ↪→ M(X(n)). Both fields are
algebraic function fields of transcendental degree n. Hence the field extension
is algebraic. Let g ∈M(X(n)). We can consider g as a meromorphic function on
Jac(X)−S. From Proposition 13.6, we obtain that g is meromorphic on Jac(X).
Hence the two function fields agree. In this way, we obtain the following finer
version of the Jacobi inversion theorem (compare Theorem IV.12.2):

13.13 Theorem. Let U ⊂ X(n) be the set of all points such that the Jacobi
map

X(n) −→ C
n/L = C

n/L

is locally biholomorphic close to them. This set is open and dense. The Jacobi
map maps U biholomorphically onto an open and dense subset of Jac(X). It
induces a bijection between the abelian functions with respect to L and the
meromorphic functions on X(n).

In this sense, one can call the Jacobi map a bimeromorphic map.
As an application of the theory of elliptic functions, we have seen that the

inverse function of an elliptic integral of the first kind is an elliptic function.
The solution of the Jacobi inversion problem yields a fantastic generaliza-

tion for algebraic integrals. We shall formulate a special case of this inversion
theorem and show how concrete these questions are.
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We consider the example of the hyperelliptic integral of genus two which be-
longs to the algebraic function

√
1 + x6 (see Remark IV.7.7). Following Jacobi,

we consider the integrals

y1 = y1(x1, x2) =

x1∫

−∞

dt√
1 + t6

+

x2∫

−∞

dt√
1 + t6

,

y2 = y2(x1, x2) =

x1∫

−∞

t dt√
1 + t6

+

x2∫

−∞

t dt√
1 + t6

,

and then – since both integrals are invariant when x1, x2 are permuted – take
the symmetric expressions (elementary symmetric functions)

x1 + x2 and x1 · x2.

The Jacobi inversion problem asks for the inversion of

(x1 + x2, x1x2) �−→ (y1, y2).

Of course, we cannot expect that this map will be invertible globally. In an
initial step, we can consider local inversions and then study their analytic
continuation.

The following answer follows from Theorem 13.13.

13.14 Theorem. There exists a lattice L ⊂ C
2 and a pair of abelian functions

f, g with respect to L, such that the two following conditions are satisfied:

1) There exists an open and dense subset U ⊂ R
2 which is contained in a

common domain of holomorphy of f and g;

2)

f(y1, y2) = x1 + x2,

g(y1, y2) = x1x2.

In this sense, Abel’s discovery that the inversion of elliptic integrals of the
first kind leads to doubly periodic meromorphic functions has found a fantastic
generalization to hyperelliptic integrals. The triumph of the theory compact
Riemann surfaces was that it allowed to discover the true nature of the result
and to provide a proof of it.
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Short Historical Note on the Jacobi Inversion Problem

Abel pointed out in 1825 that the inverse function of a hyperelliptic integral
of genus two should have four independent periods. As Jacobi observed, more
than two periods are not possible for single-valued meromorphic functions.
This argument is no longer valid if the two hyperelliptic integrals are combined
into a function of two independent variables. The formulation of the inversion
problem that we gave just before Theorem 13.13 is roughly the same as that
which Jacobi originally gave in 1834. This was a long time before the theory
of Riemann surfaces was created. The inversion problem had a tremendous
influence. Important mathematicians of that time worked on the solution of
this problem, among them Riemann and Weierstrass. The latter called it a
piece of good fortune that he could find, at the beginning of his scientific
career, such a basic problem as the Jacobi inversion problem. The theory of
Riemann surfaces was the basis for the general solution of this problem. But
many famous mathematicians participated in the work of this problem and its
partial solutions; we cannot mention them all here.

The inversion theorem also had another aspect in the second half of the
nineteenth century. We have formulated it – as is nowadays usual – simply as
a statement that the inversion of algebraic integrals leads to abelian functions.
But, originally the question of an explicit inversion by means of theta functions
was the central concern. The classical solutions of the inversion problem imply
more than merely an existence theorem of the kind that we have formulated.
The corresponding theta functions had already been introduced, in analogy to
the Jacobi functions, before the theory of Riemann surfaces was developed.
They lead to an explicit solution of the inversion problem in the hyperelliptic
case w2 = P (z), where P has degree 5 or 6 (p = 2). The solution was found
independently by A. Göpel in 1847 and J.G. Rosenhain in 1851. (Rosenhain’s
solution had already been submitted in 1846 because of a prize from the Paris
Academy, and had even been mentioned in a letter to Jacobi in 1844).

The breakthrough for the most general case came with the theory of Rie-
mann surfaces. In his fundamental paper of 1857, Riemann constructed the
theta function for several variables directly from the Riemann surface of an
algebraic function by means of the canonical dissection of the surface and the
resulting period relations. This theta function is now called the Riemann theta
function. Through a study of the theta function, Riemann was led to a solu-
tion of the inversion problem under certain restrictions. Since Riemann’s paper
contained only vague suggestions, it was necessary to work out the theory in
special cases also. The case p = 2 was treated in 1862 by F.E. Prym.

The original proofs of the inversion theorem contain more than a mere
existence result. The inverse function was constructed explicitly by means of
theta functions.

The function-theoretic elaboration of the theory, which then also led to
proofs of the inversion theorem without theta functions, was provided by
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Clebsch and Gordan in 1866 in their work about abelian functions and by
Weierstrass in his lectures on the theory of the Abel’schen Transzendenten.

Exercises for Sect. VI.13

1. Using the result of Exercise 2 in Sect. 11 and the theory of elliptic functions in
[FB], Chap. V, show that the field of meromorphic functions on the nth power of
a one-dimensional torus (C/L)n is a finite extension of the rational function field

C(℘(z1), . . . , ℘(zn)).

This extension has degree 2n. A basis is given by the functions

℘′(zν1
) · · ·℘′(zνk

), 1 ≤ ν1 ≤ . . . ≤ νk ≤ n.

2. Consider the map
℘ : C/L −→ C̄.

This is a ramified Galois covering (ramified at four points). The group of deck
transformations consists of the identity and the map z 
→ −z. Correspondingly,

℘n : (C/L)n −→ C̄
n

is a Galois covering whose deck transformation group is isomorphic to (Z/2Z)n.
The field of functions which is invariant under this group is precisely

C(℘(z1), . . . , ℘(zn)).

Show that this implies the following theorem of Hurwitz:

Every meromorphic function on the product C̄
n

of n Riemann spheres is rational.

This theorem may be derived by a devious route from the theory of abelian
functions. Actually, there is a direct elementary proof. We refer to the classic
book by Osgood [Os], where this theorem is proved in Chap. 3, Sect. 23, rather
laboriously.

3. Using the result of the previous exercise and Proposition 13.9 in conjunction with
Remark 13.10, show the following.

Let X be a connected compact Riemann surface whose function field is realized as
an algebraic extension of degree d of a rational function field,

M(X) = C(f)[g] =

d⊕

ν=1

C(f)gν .

The field of meromorphic functions on the Cartesian power Xn is a finite algebraic
extension of the rational function field

C(f(x1), . . . , f(xn))

of degree dn. A possible basis is given by the monomials

g(x1)
ν1 · · · g(xn)νn , 0 ≤ ν1, . . . , νn ≤ d.
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In the same manner as the theory of elliptic functions leads to the theory of elliptic
modular functions, the theory of compact Riemann surfaces and abelian functions
leads to the theory of modular functions of several variables. We have tried here
to give an introduction which is as simple as possible. In order to give complete
proofs, we have restricted ourselves for the most part to the case n = 2. One of the
main results is an elementary proof of a structure theorem of Igusa, which states that
the ring of modular forms with respect to his group Γ2[4, 8] is generated by the ten
classical theta nullwerte. The analogous result in the case n = 1 has been proved in
[FB], Sect. VI.6 using a similar method.

The roots of the theory of modular functions of several variables lie in the nine-

teenth century. These functions occurred as theta functions in connection with the

theory of compact Riemann surfaces and the theory of abelian functions. But at that

time, modular functions came up as examples and there was no systematic theory

of them. An epochmaking function-theoretic foundation of the theory of modular

functions, with far reaching new results, was provided in 1935 by C.L. Siegel [Si2].

The modular group of degree n is called Siegel’s modular group and modular func-

tions (or forms) of severable variables are called Siegel modular functions (or forms)

in his honor. We should mention that the theory of modular functions has now been

generalized in many respects; for example, the symplectic group can be replaced by

other Lie groups, and analyticity can be replaced by other conditions.

1. Siegel’s Modular Group

We have already, in connection with the period relations of compact Riemann
surfaces (Definition IV.10.10) and the canonical lattice bases (Remark VI.6.8),
been led to the generalized upper half-plane Hn. This consists of all complex
symmetric n × n matrices Z = X + iY whose imaginary part Y is positive
(i.e. positive definite). We also have met the symplectic group Sp(n,R) (Def-
inition IV.10.5 and Sect. VI.12). This consists of all real 2n × 2n matrices M
which leave invariant the standard alternating form I :

M tIM = I, I =
(

0 E
−E 0

)
.

Frequently, a symplectic matrix M is decomposed into four n× n blocks,

M =
(
A B
C D

)
.

A simple calculation shows the following.
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1.1 Remark. 1) A matrix M =
(
A B
C D

)
is symplectic if the relations

AtD − CtB = E, AtC = CtA, BtD = DtB

are satisfied. In particular, we have

Sp(1,R) = SL(2,R).

2) We have It = −I−1. Hence M t is symplectic if M is so, and

ADt −BCt = E, ABt = BAt, CDt = DCt.

3) The inverse of a symplectic matrix is

M−1 = I−1M tI =
(
Dt −Bt
−Ct At

)
.

4) Some special examples of symplectic matrices are

a)
(
E S
0 E

)
, S = St;

b)
(
U t 0
0 U−1

)
, U ∈ GL(n,R);

c) I =
(

0 E
−E 0

)
.

1.2 Proposition. Let M ∈ Sp(n,R) be a real symplectic matrix and let
Z ∈ Hn be a point in the generalized upper half-plane. Then

1) det(CZ +D) �= 0;

2) MZ := (AZ +B)(CZ +D)−1 ∈ Hn.

The group Sp(n,R) acts by means of (Z,M) �→MZ on Hn. This means

E(2n)Z = Z, (MN)Z = M (NZ).

Two symplectic matrices M,N define the same symplectic substitution iff they
differ by a sign.

The substitutions obtained from a)–c) in Remark 1.1 have the effect

a) Z �−→ Z + S;
b) Z �−→ Z[U ] := U tZU ;
c) Z �−→ −Z−1.



1. Siegel’s Modular Group 429

Proof. 1) We give an indirect argument and assume that the homogeneous
system of linear equations (CZ + D)tz = 0 has a solution z ∈ C

n which is
different from zero. Multiplication by the rowvector z̄tC from the left gives

z̄tC(CZ +D)tz = Ctz
t
ZCz + z̄tCDtz = 0.

If S is a real symmetric matrix, then

z̄tSz = S[x] + S[y] (z = x + y)

is real. Hence the imaginary part of the above expression is

Y [Ctx] + Y [Cty].

Since Y is positive definite, we obtain Ctx = Cty = 0. It follows that Dtx =
Dty = 0. This contradicts the fact that (C,D) has maximal rank n.
2) We can now take (AZ + B)(CZ +D)−1 and show that this matrix is sym-
metric:

(CZ +D)t−1(AZ +B)t = (AZ +B)(CZ +D)−1

or
(ZAt +Bt)(CZ +D) = (ZCt +Dt)(AZ +B).

This follows easily from the symplectic relations.
It remains to show that the imaginary part of MZ is positive. If S = S(n)

is a real symmetric matrix and A = A(n,m) is a complex n ×m matrix such
that ĀtSA is also real, then

ĀtSA = S[ReA] + S[ReA].

The claim that ImMZ is positive follows from this and from the following
explicit formula.

1.3 Lemma. We have

ImMZ = (CZ +D)t−1(ImZ)(CZ +D)
−1
.

Proof. We multiply the expression

ImMZ =
1
2i

[
(AZ +B)(CZ +D)−1 + (AZ +B)(CZ +D)

−1
]

=
[
(CZ +D)t−1(AZ +B)t + (AZ +B)(CZ +D)

−1
]

from the left by (CZ +D)t and from the right by (CZ +D), and in this way
remove the denominators. Now we can multiply term by term. Application of
the symplectic relations gives the claim. ��
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End of the proof of Proposition 1.2. It remains to show that only ±E(2n) acts
as an identity. From the fact that MZ = Z for all Z, it follows that

AZ +B = Z(CZ +D).

By specializing to Z = zE, we obtain

C = 0, B = 0 and A = D.

Now we get AZ = ZA and, from this, A = aE. It follows from the symplectic
relations that a2 = 1. ��

The modular group of degree n consists of all integral symplectic matrices.
We denote this group by

Γn = Sp(n, Z).

We have already encountered this group in connection with the period relations
of compact Riemann surfaces (Remark IV.10.6) and later in connection with
polarized abelian manifolds (Definition VI.12.1), as a special case of the so-
called paramodular group Γ(T ). It would be possible to develop the theory of
modular forms more generally for these paramodular groups. For the sake of
simplicity, we restrict ourselves here to the important case T = E.

It is possible to define, for each commutative ring R with unity, the sym-
plectic group Sp(n,R) with coefficients from R. This consists of all matrices
M ∈ R(2n,2n) with the property M tIM = I. We have detM2 = 1. By
Cramer’s rule, M is invertible in R(2n,2n). Hence Sp(n,R) is a group.

For natural numbers q, we can consider the ring of cosets Z/qZ. There is
a natural group homomorphism

Sp(n, Z) −→ Sp(n,Z/qZ).

The kernel of this homomorphism will be denoted by Γn[q]. We call this kernel
the principal congruence subgroup of level q. This is a subgroup of finite index
in Γn.

Analogously, we consider the groups

GL(n, Z)[q] = Kernel
(
GL(n,Z) −→ GL(n,Z/qZ)

)
,

SL(n, Z)[q] = Kernel
(
SL(n, Z) −→ SL(n,Z/qZ)

)
.

So, we have
Γn[q] = Γn ∩GL(2n, Z)[q].
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Exercises for Sect. VII.1

1. Show that M t is symplectic if M is so.

2. Show that every symplectic matrix M with the property C = 0 can be uniquely
written in the form (

U t 0
0 U−1

)(
E S
0 E

)
,

with a symmetric matrix S.

3. Describe all symplectic matrices M with B = 0.

4. Prove that the subgroups of the symplectic group which are defined by C = 0 and
B = 0 are conjugated.

5. Prove that the subgroup which is defined by C = 0 inside Sp(n, R) acts transitively
on Hn.

2. The Notion of a Modular Form of Degree n

We denote by
Zn = {Z = Z(n) = Zt}

the vector space of all symmetric complex n × n matrices. This is a vector
space of dimension n(n+ 1)/2. After the choice of an isomorphism

Zn −→ C
N , N =

n(n+ 1)
2

,

we can define notions of open subsets, analytic functions, etc. All of these
notions are independent of the choice of the isomorphism. If we want, we can
order the pairs (i, j), 1 ≤ i ≤ j ≤ n, lexicographically to produce a concrete
isomorphism.

2.1 Remark. The generalized upper half-plane Hn is an open and convex
domain in Zn.
Proof. A real symmetric matrix is positive definite if the n minors (principal
subdeterminants) are positive. The convexity is clear; moreover, we have
a) Z ∈ Hn, t > 0 =⇒ tZ ∈ Hn;
b) Z,W ∈ Hn =⇒ Z +W ∈ Hn. ��

A simple generalization of the “chain rule” for cz + d says the following.
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2.2 Remark. Let I(M,Z) = CZ +D. We have

I(MN,Z) = I(M,NZ)I(N,Z).

Corollary. Let j(M,Z) = det(CZ +D). We have

j(MN,Z) = j(M,NZ)j(N,Z).

We want to admit modular forms of half-integral weight , and need for this a
holomorphic square root of j(M,Z). Its existence follows from the next lemma.

2.3 Lemma. For every holomorphic function without zeros

f : Hn −→ C
.
,

there exists a holomorphic function

h : Hn −→ C
.

with the property
h(Z)2 = f(Z).

Like h, −h is also a holomorphic square root. These are the only continuous
square roots of f .

Proof. Uniqueness. If h, h̃ are two continuous square roots of f , then h/h̃ is
a continuous function with values ±1. Since Hn is connected, we obtain the
result that h/h̃ is constant ±1.
Existence of h. We can assume thatf(iE) = 1. Since Hn is convex, the segment
between iE and any given point Z ∈ Hn is contained in Hn; in particular,

α(t) = α(Z; t) = f(iE + t(Z − iE)) for 0 ≤ t ≤ 1

is defined and different from zero, and we can define

H(Z) :=

1∫

0

α′(t)
α(t)

dt.

Obviously, H(Z) is analytic in Hn, and we have

eH(Z) = f(Z).

The function
h(Z) = EH(Z)/2

has the desired property. ��
For every matrix M ∈ Sp(n,R), there exists a holomorphic square root of

det(CZ +D). From now on, we choose one square root and denote it by
√

det(CZ +D) = det(CZ +D)1/2.

(This notation has to be used with some caution. It can happen that det(CZ1+
D) = det(CZ2 + D) for two different points Z1, Z2 ∈ Hn, but nevertheless√

det(CZ1 +D) = −
√

det(CZ2 +D).)
Since the square root is not unique, the chain rule only holds up to a sign

(compare [FB], Remark VI.5.4):
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2.4 Remark. There exists a map

w : Sp(n,R)× Sp(n,R) −→ {±1}

with the following property:
√
j(MN,Z) = w(M,N)

√
j(M,NZ)

√
j(N,Z).

As in the case n = 1 one defines the notion of a multiplier system on a
congruence subgroup. By a congruence subgroup we understand a subgroup
Γ ⊂ Sp(n, Z) which contains a principal congruence subgroup Γn[q] (com-
pare [FB], Definition VI.5.1). Generalizing [FB], Definition VI.5.5, we define a
multiplier system as follows.

2.5 Definition. Let Γ ∈ Sp(n, Z) be a congruence subgroup. A map

v : Γ −→ C

is called a multiplier system of weight r/2, r ∈ Z, if the following conditions
are satisfied:
a) There exists a natural number l such that

v(M)l = 1 for all M ∈ Γ.

b) If we define

jr(M,Z) = v(M) det(CZ +D)r/2 (M ∈ Γ),

we have
b1) jr(MN, z) = jr(M,NZ)jr(N,Z);
b2) jr(−E,Z) = 1, if − E ∈ Γ.

As in the case n = 1 ([FB], Remark VI.5.7), we can also define the conjugate
multiplier system.

2.6 Lemma. Let v be a multiplier system on the congruence group Γ ⊂
Sp(n, Z) and let L ⊂ Sp(n, Z). Then

vL(LML−1) = w(L−1, L)rw(L,ML−1)rw(M,L−1)rv(M )

is a multiplier system on the conjugate group LΓL−1.

We call vL the conjugate multiplier system.
Now we can introduce the notion of a modular form in analogy to the case

n = 1 (compare [FB], Definition VI.5.8).
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2.7 Definition. Let Γ ⊂ Sp(n, Z) be a congruence subgroup, let r ∈ Z be an
integer, and let v be a multiplier system of weight r/2 on Γ. A modular form
of weight r/2 with respect to the multiplier system v is a holomorphic function
f : Hn → C with the following properties:
1) f(MZ) = v(M) det(CZ +D)r/2f(Z) for all M ∈ Γ.
2) For every M ∈ Sp(n, Z), the function

(f |M)(Z) := det(CZ +D)−r/2f(Mz)

is bounded in domains of the kind

Y ≥ Y0 > 0 (Y0 arbitrary).

The set of all modular forms for given Γ, v, r is a vector space. We denote this
set by

[Γ, r/2, v].

If r is even and v ≡ 1 is the trivial multiplier system, we write simply

[Γ, r/2].

Exercises for Sect. VII.2

1. Using the Petersson notation

(f |M)(Z) = (f |rM)(Z) =
√

det(CZ +D)
−r
f(Z),

show that
f |MN = wr(M,N)(f |M)|N.

2. Show that a system of lth roots of unity {v(M)}M∈Γ is a multiplier system iff
there exists a (not necessarily continuous) non-vanishing function f : H → C

which satisfies the transformation formula

f |M = v(M)f.

3. Let L ∈ Γn and let Γ ⊂ Γn be a congruence subgroup. Show that Γ̃ := LΓL−1 is
a congruence subgroup as well and that the map

f �−→ f |rL
−1

defines an isomorphism

[Γ, r/2, v]
∼−→ [Γ̃, r/2, ṽ].

Here ṽ denotes the multiplier system which is conjugate to v.
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3. Koecher’s Principle

In this section, we want to show that the condition of boundedness in the
definition of modular forms (Definition 2.7) is automatically fulfilled in the
case n > 1. This was proved in 1954 by Max Koecher [Koc]: A corresponding
principle for Hilbert modular forms was apparently already known in 1928 by
Fritz Götzky [Go].

We have to study periodic analytic functions

f : Hn −→ C, f(Z + S) = f(Z), S = St integral.

As we know, these can be expended as Fourier series (Appendix to Sect. VI.8):

f(Z) =
∑

a
(
(nij)

)
exp

(
2πi

∑

1≤i≤j≤n
nijzij

)
.

Here, there is an arbitrary integral linear combination of the N variables in the
exponent. If we define the symmetric matrix T by

tij = tji = nij for i > j and tii = 2nii for i = j,

we can write this sum as
1
2
σ(TZ) (σ = trace).

Then the Fourier expansion has the form
∑

T

a(T )eπiσ(TZ).

Here, we have to sum over all symmetric integral matrices with even diagonal
elements. Such matrices are called even. They can be characterized by the
property that T [g] = gtTg is even for all integral columns g.

We recall the notation

SL(n, Z)[q] = Kernel(SL(n, Z) −→ SL(n, Z/qZ)).

3.1 Proposition. Let f : H → C be a holomorphic function with a Fourier
expansion

f(Z) =
∑

T=T t even

a(T )eπiσ(TZ).

Assume that there exists a natural number q with the property

a(T [U ]) = a(T ) for all U ∈ SL(n, Z)[q].

Under the assumption n > 1, we have

a(T ) �= 0 =⇒ T ≥ 0.

Here “T ≥ 0” means that T is semipositive, i.e. T [g] ≥ 0 for all g ∈ R
n. By a

continuity argument, it is sufficient to take g ∈ Q
n and, by homogeneity, even

g ∈ Z
n. In addition, one can assume that the components of g are coprime.

For the proof of Proposition 3.1, we need a well-known lemma of Gauss, as
below.
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3.2 Lemma. For every column g ∈ Z
n, there exists a unimodular matrix

U ∈ GL(n, Z) with the property

Ug =

⎛

⎜⎜⎝

a1

0
...
0

⎞

⎟⎟⎠ .

Corollary. Every vector g ∈ Z
n with coprime components occurs as the first

column of a unimodular matrix U ∈ GL(n,Z):

U = (g, ∗).

In the case n > 1, one can obtain U ∈ SL(n, Z).

Proof. We can assume that g is different from zero. In the first step, we find a
matrix U ∈ GL(n, Z) (actually a permutation matrix) such that

Ug =

⎛

⎝
a1
...
an

⎞

⎠ , a1 �= 0.

We choose one such matrix with minimal |a1|. Next we find a triangular matrix
V ∈ GL(n,Z) such that

V Ug =

⎛

⎜⎜⎝

a1

a1 + x2a1
...

an + xnan

⎞

⎟⎟⎠ ,

with given x2, . . . , xn. By means of the Euclidean algorithm, we can choose
x2, . . . , xn in such a way that

|aν + xνa1| < |a1| (2 ≤ ν ≤ n).

From the minimality, we get aν + xνa1 = 0. ��
Proof of Proposition 3.1. We give an indirect proof and assume that there exists
a Fourier coefficient a(T ) �= 0 for a matrix T which is not semipositive. We
choose a vector g ∈ Z

n, T [g] < 0, with coprime components and complete it to
a unimodular matrix U = (g, ∗) ∈ SL(n, Z). Then the first diagonal element of
T̃ = T [U ] is negative. Now we consider

U(x) := U

⎛

⎜⎜⎜⎜⎝

1 x 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1

⎞

⎟⎟⎟⎟⎠
.
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By assumption,
a(T [U(x)]) = a(T ) if x ≡ 0 mod q.

Since any subseries of f(Z) converges, the series

∑

T1

eπiσ(T1Z)

has to converge, where the sum is taken over all T1 which can be written in the
form T1 = T [U(x)]. In particular,

e−πσ(T [U(x)]), x ≡ 0 mod q,

has to be bounded. But we have

σ(T [U(x)]) = x2t̃11 +O(x)→ −∞ for |x| → ∞. ��

Fourier Expansion of a Modular Form

If we apply the transformation property of modular forms to translation ma-
trices, we obtain

f(Z + S) = v

(
E S
0 E

)√
0Z + E

r
f(Z)

for all S ≡ 0 mod q (for suitable q). We take +1 for the square root. Then v is
a homomorphism of the additive group of all symmetric matrices S ≡ 0 mod
q into a finite group of roots of unity. Hence there exists a multiple l of q such
that all S ≡ 0 mod l are contained in the kernel. We obtain

f(Z + S) = f(Z) for all integral symmetric S ≡ 0 mod l.

As described, the function f can be expanded into a Fourier series. Using this
fact together with Koecher’s principle, we obtain the following result.

3.3 Proposition. Let f be a modular form. There exists a natural number l
such that f has an expansion of the form

f(Z) =
∑

exp(πiσ(TZ)).

Here T runs through all symmetric matrices such that lT is integral and such
that T ≥ 0.
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Exercises for Sect. VII.3

1. Construct a matrix in SL(3, Z) with first row (2, 3, 5).

2. Show that the condition a(T [U ]) = a(T ) in Proposition 3.1 can be weakened to

|a(T [U ])| ≤ ‖U‖ |a(T )|.

Here ‖U‖ denotes some norm on the vector space of matrices.

3. Let f : Hn → Zn, n > 1, be a matrix-valued function with the properties

f(Z + S) = f(Z), S integral, f(Z[U ]) = f(Z)[U ], U ∈ SL(n, Z).

Show that f is bounded in domains of the kind Y − δE ≥ 0 for δ > 0.

4. Show that the Fourier expansion of a modular form is independent of the choice
of l in Proposition 3.3.

4. Specialization of Modular Forms

Let S = St = S(n) > 0 be a positive real matrix. For a point z ∈ H in the
usual upper half-plane, the point Sz is contained in the half-plane Hn of degree
n. Let M ∈ SL(2,R). We seek a symplectic matrix MS ∈ Sp(n,R) which is
compatible with the map z �→ Sz. This means that MS(Sz) = SM(z), or

(ASz +B)(CSz +D)−1 = S(az + b)(cz + d)−1

(
M =

(
a b
c d

)
, MS =

(
A B
C D

))
.

This equation is satisfied if we define

MS =
(

aE bS
cS−1 dE

)
.

An easy calculation shows that MS is actually symplectic.

4.1 Lemma. Let S = S(n) = St > 0 be a positive real matrix. The map

SL(2,R) −→ Sp(n,R),

M =
(
a b
c d

)
�−→MS =

(
aE bS
cS−1 dE

)
,
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is an injective group homomorphism. It is compatible with the embedding

H −→ Hn, z �−→ Sz,

in the following sense:
S · (Mz) = MS(Sz).

Supplement. If Γ ⊂ Sp(n, Z) is a congruence subgroup, then its inverse
image

Γ0 := {M ∈ SL(2,Z), MS ∈ Γ}

is a congruence subgroup in SL(2, Z).

Proof. Excluding the supplement, the proof is given by straightforward com-
putation. For the proof of the supplement, we choose q in such a way that
Γ ⊃ Γn[q]. Then we determine a natural number Q such that Q is a multiple of
q and such that QS and QS−1 are integral. We then have Γ0 ⊃ Γ1[Q]. ��

We can verify the formula

det(S−1cSz + dE) = (cz + d)n.

If v is a multiplier system of weight r/2, then

v0(M ) := v(MS)

is a multiplier system on Γ0. So, we obtain the following lemma.

4.2 Lemma. If f ∈ [Γ, r/2, v], Γ ⊂ Sp(n, Z), is a Siegel modular form of
weight r/2, then

f0(z) := f(Sz)

is an elliptic modular form of weight nr/2,

f0 ∈
[
Γ0,

rn

2
, v0

]
.

This lemma allows us to reduce some basis facts for Siegel modular forms to
the case of elliptic modular forms.

4.3 Proposition. A Siegel modular form of negative weight vanishes. Any
modular form of weight zero is constant. (The constant can be different from
zero only if the multiplier system is trivial.)
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Proof. The case n = 1 is known ([FB], Proposition VI.5.11). Now let f be
a Siegel modular form of negative weight. Using the specialization of Lemma
4.2, we can show that f(Sz) = 0 for arbitrary rational S > 0 and then, by
continuity, also for real S > 0. In particular, f(iY ) = 0. Simple arguments
from the complex analysis of one variable show that f = 0.

Now we assume that the weight of f is zero. Since we know that elliptic
modular forms of weight zero are constant ([FB], Proposition VI.5.11), we
obtain the result that f(Sz) is a constant CS (depending on S), first for all
positive rational S and then, by continuity, for all positive real S. Obviously,
CS = limy→∞ f(Sz) is the zero Fourier coefficient of f and hence C = CS is
independent of S. Now f(Z)−C vanishes on matrices of the form Z = iY and
hence is identically zero. ��

Exercises for Sect. VII.4

1. In the case n > 1, any modular form without zeros in Hn is constant. Is this true
for n = 1?

2. Assume that it has been proved that every modular form of weight 0 is constant
but not yet that modular forms of negative weight vanish. Show that it is not
possible that there exist nonvanishing modular forms of positive weight and also
of negative weight.

3. You may use the fact that

ϑ(Z) =
∑

g∈Zn

exp(πiZ[g])

is a modular form (Proposition 7.8). What is its weight?

3. Again, you may use the fact that

ϑ(Z) =
∑

g∈Zn

exp(πiZ[g])

is a modular form. Show that
∑

g∈Zn

(−1)g1 exp(πiZ[g])

is a modular form too.
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5. Generators for Some Modular Groups

Recall that the group SL(2, Z) is generated by the two matrices
(

1 1
0 1

)
and

(
0 −1
1 0

)

(see [FB], Proposition VI.1.8). A variant states that it is generated by the two
matrices (

1 1
0 1

)
and

(
1 0
1 1

)
,

and hence by strict triangular matrices. For a proof, one can consider the
formula (

1 0
1 1

)(
1 1
0 1

)−1( 1 0
1 1

)
=
(

0 −1
1 0

)
.

In [FB], we proved this by means of the fundamental domain of the modular
group. Because of its importance, we give another proof here. It rests on the
following statement.

5.1 Remark. For each pair (a, b) of integers, there exists a matrix U in the
group

G =
〈(

1 1
0 1

)
,

(
1 0
1 1

)〉
⊂ SL(2, Z),

which is generated by the two given matrices, such that

U

(
a
b

)
=
(
α
0

)
.

The proof can be obtained by induction on |a||b|.
Beginning of the induction. |a||b| = 0. Then a = 0 or b = 0. Since the matrix(

0 −1
1 0

)
is contained in G, we can assume that b = 0.

Induction step. We now assume that |a||b| > 0. Multiplication by powers of
the two generating matrices has the effect

(
a
b

)
�−→

(
a

b+ xa

)
or

(
a+ yb
b

)
,

respecitvely. By means of the Euclidean algorithm, we can make |a||b| smaller.
��

Besides the ring Z, we consider factor rings

R = Z/qZ, q ≥ 0.

In the case q = 0 we obtain Z, but in the case q > 0 we obtain a finite ring.
When q is prime, then R is a finite field. It is clear (and follows from Remark
5.1) that Remark 5.1 holds for R instead of Z.
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5.2 Lemma. Let R be a factor ring of Z (and hence R = Z or R = Z/qZ,
q > 0). The group SL(2, R) is generated by the two matrices

(
1 1
0 1

) (
1 0
1 1

)
.

Proof. By Remark 5.1, there exists for a given U ∈ SL(2, R) a matrix V ∈ G
with the property

UV =
(
a b
0 d

)
=
(
a 0
0 a−1

)(
1 a−1b
0 1

)
.

The prove now follows from the following formula.

5.3 Formula. We have

(
a 0
0 a−1

)
=
(

1 a
0 1

)(
0 1
−1 0

)(
1 a−1

0 1

)(
0 1
−1 0

)(
1 a
0 1

)(
0 1
−1 0

)
.

We define for each pair (µ, ν), 1 ≤ µ < ν ≤ n, an embedding (= injective
homomorphism)

αµν : SL(2, R) −→ SL(n,R),

(
a b
c d

)
�−→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
a · · · b
...

. . .
...

c · · · d
1

. . .
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← µth row

← νth column

The image is called an embedded SL(2, R). We denote by

Gn = 〈αµν(SL(2, R), 1 ≤ µ < ν ≤ n〉

the subgroup of SL(n,R) which is generated by all embedded SL(2, R).

We need the following seeming generalization of Gauss’s lemma.
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5.4 Lemma. For every column g ∈ Rn, there exists U ∈ Gn with

Ug =

⎛

⎜⎜⎝

a1

0
...
0

⎞

⎟⎟⎠ .

Proof. By means of the matrix
(
0−1
1 0

)
, we construct matrices U ∈ Gn such that

the transformation g �→ Ug permutes two components of g up to a sign. Hence
we can assume that g1 �= 0. Now we multiply g step by step by matrices from
the images of α1n . . . , α12 to obtain gn = . . . = g2 = 0.

As an application, we prove the following proposition for factor rings R of
Z.

5.5 Proposition. The group SL(n,R) (n ≥ 2) is generated by the embedded
SL(2, R).

Before giving the proof, we formulate two obvious consequences.

5.6 Corollary. The group SL(n,R) is generated by (upper and lower) strict
triangular matrices.

5.7 Corollary. The natural homomorphism

SL(n, Z) −→ SL(n, Z/qZ)

is surjective.

Proof of Proposition 5.5. We use induction on n. The proposition is assumed
to have been proved for n − 1 in place of n. By Lemma 5.4, there exists a
matrix V ∈ Gn with

V U =

⎛

⎜⎜⎝

a1 ∗ . . . ∗
0
...
0

A

⎞

⎟⎟⎠ .

We can achieve a1 = 1. We then have A ∈ SL(n− 1) and hence A ∈ Gn−1. We
obtain (

1 0
0 A

)
∈ Gn

and
(

1 0
0 A

)−1

V U =

⎛

⎜⎝

1 ∗ . . . ∗
0
...
0

E

⎞

⎟⎠ .
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Such a matrix can easily be written as a product of embedded SL(2, R) matrices.
��

A third corollary refers to the group GL(n,R). This group is generated by
SL(n,R) and diagonal matrices. Making use of the formula

(
1 1
0 1

)
=
(

1 1
1 0

)(
0 1
1 0

)
,

we obtain the following result.

5.8 Lemma. The group GL(n,R) can be generated by symmetric matrices.

There are similar results for the symplectic group . The main-result is the
following.

5.9 Proposition. Let R be a factor ring of Z. The group Sp(n,R) is
generated by the matrices(

A B
C D

)
, B = 0 or C = 0.

Corollary 1. The group Sp(n,R) is generated by the matrices
(

0 E
−E 0

)
,

(
E S
0 E

)
.

Corollary 2. The group Sp(n,R) is generated by the matrices
(
E S
0 E

)
,

(
E 0
S E

)
.

Corollary 3. The natural homomorphism

Sp(n, Z) −→ Sp(n, Z/qZ)

is surjective.

For the proof, we have to use the formulae(
A B
0 D

)
=
(
U t 0
0 U−1

)(
E S
0 E

)
with U = At, S = St = A−1B.

Obviously, Formula 5.3 holds for the matrices E instead of 1 and U instead of
a. We obtain the result that for symmetric U ,(

U t 0
0 U−1

)

can be expressed by (
E S
0 E

)
and

(
0 E
−E 0

)
.

Because of Lemma 5.8, this is true for arbitrary U ∈ GL(n, Z).
Proof of Proposition 5.9 . We use induction on n and assume that the proposi-
tion has been proved for n−1 in place of n. The proof rests on a simple variant
of Gauss’s lemma.
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5.10 Lemma. For each vector g ∈ Z
2n, there exists a matrix M ∈ Sp(n, Z)

such that

Mg =

⎛

⎜⎜⎝

a1

0
...
0

⎞

⎟⎟⎠ .

Furthermore, M can be found in the subgroup which is generated by the special
matrices “B = 0 or C = 0”.

The proof is similar to that of Gauss’s lemma. Hence we shall keep it short.
The formulae

(
U t 0
0 U−1

)(
a
b

)
=
(
U ta
U−1b

)
,

(
0 E
−E 0

)(
a
b

)
=
(

b
−a

)

show that we can find an M such that the first component of Mg is different
from 0. We choose M such that the first entry of Mg is different from 0 and
has minimal modulus. If we replace M by

(
E 0
S E

)(
U t 0
0 U−1

)
M,

the claim can be obtained by means of the Euclidean algorithm as in the case
of the linear group. ��

Now we can prove Proposition 5.9. Let M ∈ Sp(n,Z) be given. By the
above lemma, there exists a matrix N in the group Hn which is generated by
the special matrices, such that

NM =

⎛

⎜⎝

1 ∗ ∗ ∗
0 A1 ∗ B1

0 ∗ ∗ ∗
0 C1 ∗ D1

⎞

⎟⎠ .

We can easily check that the matrix
(
A1 B1

C1 D1

)
is symplectic. By the in-

duction hypothesis, this matrix is contained in Hn−1. We obtain the result
that

M̃1 =

⎛

⎜⎝

1 0 0 0
0 A1 0 B1

0 0 0 0
0 C1 0 D1

⎞

⎟⎠

is contained in Hn. A simple calculation shows that

M̃−1
1 NM =

(
Ã B̃
C̃ D̃

)
, Ã =

(
1 ∗
0 E

)
, C̃ =

(
0 ∗
0 0

)
.

From the symplectic relations ÃtC̃ = C̃tÃ, ÃD̃t = E, we get C̃ = 0 and hence
M̃−1

1 NM ∈ Hn. This implies M ∈ Hn. ��
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Congruence Subgroups of Level Two

It is difficult to find generators for arbitrary congruence subgroups. An ex-
ceptional case is the principal congruence subgroup of level two. In the first
volume ([FB], Appendix to Sect. VI, Proposition A.6), we showed that the
elliptic principal congruence subgroup of level two SL(2, Z)[2] = Γ1[2] can be
generated by the matrices

(
1 2
0 1

)
,

(
1 0
2 1

)
,

(
−1 0
0 −1

)
.

The proof used properties of the fundamental domain. In the exercises for this
section, we explain an algebraic proof.

The technique of embedded SL(2) allows to generalize this result to arbitrary
SL(n). The restrictions of the embeddings αµν define embeddings

αµν : SL(2, Z)[2] −→ SL(n,Z)[2].

We denote by

Gn[2] := 〈αµν(SL(2, Z)[2]), 1 ≤ µ < ν ≤ n〉

the subgroup which is generated by their images.

5.11 Lemma. Let g ∈ Z
n be a column whose first component g1 is odd, and

all other components of which are even. Then there exists

U ∈ Gn[2] with Ug =

⎛

⎜⎜⎝

a1

0
...
0

⎞

⎟⎟⎠ .

Proof. It is sufficient to prove this for n = 2, since then one can use embedded
SL(2) matrices to annul gn, . . . , g2 successively. In the case n = 2, we can use
G2[2] = SL(2, Z)[2]. We can assume that that g1 and g2 are coprime. Hence
they can be completed to a matrix from SL(2, Z),

U =
(
g1 g3
g2 g4

)
∈ SL(2, Z).

Because of the determinant condition, g4 has to be odd. If g3 is also odd, we
make the replacement

U �−→ U

(
1 1
0 1

)
.

After that, we can assume U ∈ SL(2, Z)[2], and U−1 has the desired property.
��

Now the same proof as in the case of the full modular group can be used to
obtain the following result.
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5.12 Proposition. The group SL(n,Z)[2] is generated by the embedded
SL(2, Z)[2].

Corollary. The group SL(n,Z)[2] is generated by (upper and lower) triangular
matrices.

An analogous result in the case of the symplectic group states the following.

5.13 Proposition. The principal congruence subgroup of level two, Γn[2], is
generated by the special matrices

M =
(
A B
C D

)
, B = 0 or C = 0.

The same proof as in the case of the full modular group works if we use the
following variant of Gauss’s lemma.

5.14 Lemma. Let Hn[2] be the subgroup of Γn[2] which is generated by the
special matrices

M =
(
A B
C D

)
, B = 0 or C = 0.

For each column g ∈ Z
2n whose first column is odd but the other columns of

which are even, there exists a matrix M ∈ Hn[2] with

Mg =

⎛

⎜⎜⎝

a1

0
...
0

⎞

⎟⎟⎠ .

Proof. We decompose g:

g =
(
a
b

)
, a ∈ Z

n, b ∈ Z
n.

First we find U ∈ SL(n, Z)[2] with the property

Ua =

⎛

⎜⎜⎝

a1

0
...
0

⎞

⎟⎟⎠ .

Because (
U t 0
0 U−1

)
∈ Hn[2],
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we can assume that

a =

⎛

⎜⎜⎝

a1

0
...
0

⎞

⎟⎟⎠ (a1 odd).

Now we use the embedded SL(2) matrix

α1,n+1

(
a b
c d

)
=

⎛

⎜⎝

a 0 b 0
0 E(n−1) 0 0
c 0 d 0
0 0 0 E(n−1)

⎞

⎟⎠

to obtain the result that besides a2 = . . . = an = 0, also b1 = 0.
Now we consider, for given ν ∈ {2, . . . , n}, a special symmetric matrix S.

This matrix includes the values

s11 = s1ν = sν1 = 1.

All other entries are 0. The transformations(
a
b

)
�−→

(
E 2S
0 E

)(
a
b

)
and

(
E 0
2S E

)(
a
b

)

have the effect
a1 �→ a1 + 2bν ,
bν �→ bν ,

and
a1 �→ a1,

bν �→ bν + 2a1,

respectively. All other components are unchanged. The same transformation
is obtained from(

a1

bν

)
�−→

(
1 2
0 1

)(
a1

bν

)
and

(
1 0
2 1

)(
a1

bν

)
,

respectively. By means of Lemma 5.11 (applied in the case n = 2), we obtain
b = 0. ��

Exercises for Sect. VII.5

1. Construct a matrix M ∈ Γ2 with first column (2, 3, 5, 7).

2. Construct a matrix from Γ2[2] with first row (3, 10, 14, 22).

3. Write
(
3 7
2 5

)
as a product of symmetric integral matrices.

4. Show that the homomorphism

GL(n, Z) −→ GL(n, Z/qZ), q > 2,

is not surjective.
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6. Computation of Some Indices

We start with the computation of the order of GL(n, k), where k is a field of
p elements. The first column of A can be an arbitrary vector different from
0. There are pn − 1 such vectors. The second column is not allowed to be a
multiple of the first column. There are pn − p possibilities for it. The third
column has to avoid the subspace which is generated by the first two columns.
If the first two columns are given, there remain pn− p2 possibilities, and so on.

6.1 Remark. Let p be a prime. We have

# GL(n, Z/pZ) =
n−1∏

ν=0

(pn − pν).

The homomorphism
GL(n, Z/pZ) �−→ (Z/pZ)∗

is surjective; its kernel is SL(n, Z/pZ). We obtain the following result.

6.2 Remark. For prime numbers p, we have

[
SL(n, Z) : SL(n, Z)[p]

]
= # SL(n, Z/pZ) =

1
p− 1

n−1∏

ν=0

(
pn − pν

)
.

Similar considerations apply for the symplectic group. We know that the sym-
plectic group Sp(n,Z/pZ) acts transitively on (Z/pZ)2n − {0}. Let

Pn ⊂ Sp(n,Z/pZ)

be the subgroup which stabilizes the first unit vector. We have

# Sp(n, Z/pZ) =
(
p2n − 1

)
#Pn.

We know that

Pn −→ Sp(n− 1, Z/pZ),
⎛

⎜⎝

1
A1 B1

1
C1 D1

⎞

⎟⎠ �−→
(
A1 B1

C1 D1

)

is a surjective homomorphism. We denote its kernel by Kn. We have

#Pn = # Sp(n− 1,Z/pZ) ·#Kn.
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The elements of Kn are of the form
(
A B
0 D

)
, A =

(
1 ∗
0 A1

)
, B =

(
∗ ∗
∗ 0

)
,

where the symplectic relations D = At
−1

and ABt = BAt must hold. This
shows that

#Kn = p2n−1.

Now we have proved the inductive formula

# Sp(n, Z/pZ) = p2n−1
(
p2n − 1

)
# Sp(n− 1, Z/pZ).

Induction on n gives the following lemma.

6.3 Lemma. Let p be a prime. We have

[
Γn : Γn[p]

]
= # Sp(n, Z/pZ) = pn(2n+1)

n∏

ν=1

(
1− 1

p2ν

)
.

Now we consider the case of a power of a prime q = pm. Again we start
with the case of the general linear group. The idea is to study the natural
homomorphism

GL(n, Z/pmZ) −→ GL(n, Z/pm−1
Z), m > 1.

This consists of all matrices of the form

E + pm−1A, A ∈ (Z/pmZ)(n,n).

Because m > 1, we have, modulo pm,

(E + pm−1A)(E + pm−1B) = E + pm−1(A+B).

So, the kernel is abelian. We also observe that E + pmA is invertible for all
A ∈ Z/pmZ. The inverse is obtained by replacing A by −A. The condition

pm−1a = pm−1b for a, b ∈ Z/pmZ

means simply that the images of a and b in Z/pZ agree. Hence the groups

pm−1(Z/pmZ) and Z/pZ

are isomorphic. We obtain the following lemma.
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6.4 Lemma. Assume m > 1. The kernel of the natural homomorphism

GL(n,Z/pmZ) −→ GL(n,Z/pm−1
Z)

and the additive group
(Z/pZ))(n,n)

are isomorphic.

Supplement 1. The kernel of the natural homomorphism

SL(n,Z/pmZ) −→ SL(n, Z/pm−1
Z)

is isomorphic to the additive group

A ∈ (Z/pmZ)(n,n) with trace(A) = 0.

Supplement 2. The kernel of the natural homomorphism

Sp(n,Z/pmZ) −→ Sp(n,Z/pm−1
Z)

is isomorphic to the set of all symmetric matrices

N = N t ∈ Z/pmZ
(2n,2n).

Only the supplements have to be proved. We restrict ourselves to the second
supplement. We have to consider, in Z/pm−1

Z
(2n,2n), the equation

(E + pm−1M)tI(E + pm−1M) = I.

This means
pm−1M tI = −pm−1IM.

Because It = −I, it is equivalent to the symmetry of N = IM . ��
If q = q1q2 is the product of two coprime natural numbers, then, by the

Chinese remainder theorem, a number a ∈ Z is determined modulo q by its
remainders modulo q1 and q2. This means that the natural homomorphism

Z/qZ −→ Z/q1Z × Z/q2Z

is an isomorphism. This gives an isomorphism

GL(n,Z/qZ) ∼−→ GL(n, Z/q1Z)×GL(n, Z/q2Z),

and analogously for the special linear and the symplectic group. Now we obtain
the general index formulae.
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6.5 Proposition. We have

[
SL(n, Z) : SL(n, Z)[q]

]
= # SL(n,Z/qZ) = qn

2−1
∏

p|q

n∏

ν=2

(
1− 1

pν

)
,a)

[
Γn : Γn[q]

]
= # Sp(n, Z/qZ) = qn(2n+1)

∏

p|q

n∏

ν=1

(
1− 1

p2ν

)
.b)

Exercises for Sect. VII.6

1. A congruence subgroup is defined by

Γn,0[q] = {M ∈ Γn; C ≡ 0 mod q}.

Compute its index in Γn.

2. A congruence subgroup is defined by

Γn,1[q] = {M ∈ Γn; C ≡ 0, A ≡ D ≡ E mod q}.

Compute its index in Γn.

3. Show that the index of Γ2[2] in the full modular group is 720. Is there a full
permutation group Sn of the same order?

4. If you have a computer and, for example, the program GAP, show by computation
that the groups S6 and Sp(2, Z/2Z) are isomorphic.

7. Theta series

The theta functions, as they occurred in the theory of abelian functions (Defi-
nition VI.8.1),

ϑ
[a
b

]
(Z, z) :=

∑

g∈Zn

eπi{Z[g+a]+2(g+a)t(z+b)},

are functions of two variables Z, z. In Chap. VI, we studied them in terms
of the variable z for fixed Z. Now we are interested in Z as a variable. It
turns out that these series are now of special interest if z is rational, since then
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they turn out to be modular forms. The most interesting case is z = 0, and
ϑ
[
a
b

]
(Z, 0) is called a theta nullwert. We shall try to keep our investigations

of theta nullwerte independent of Chap. VI.

The simplest “theta nullwert” in the case n = 1 was

ϑ(z) =
∞∑

n=−∞
eπin2z .

Its obvious generalization to the case n > 1 is

ϑ(Z) = ϑ(n)(Z) =
∑

g∈Zn

eπiZ[g].

In the following, we use the notation

e(a) = eπia.

In the case n = 1, it was necessary to consider besides ϑ(Z) also the conjugate
forms

ϑ̃(z) =
∑

(−1)ne(n2z),

˜̃
ϑ(z) =

∑
e((n+ 1/2)2z).

Using the notation

ϑ

[
a
b

]
(z) =

∑
e
(
(n+ a/2)2z + b(n+ a/2)

)
,

we obtain

ϑ = ϑ

[
0
0

]
, ϑ̃ = ϑ

[
0
1

]
, ϑ

[
1
0

]
.

This suggests how the satellites of ϑ have to be generalized:

ϑ

[
a
b

]
(Z) =

∑

g∈Zn

e
(
Z[g + a/2] + bt(g + a/2)

)
.

Here a, b could be arbitrary vectors from C
n. But for us, only integral a, b are

of interest. This is the reason for the deviation from the notation in Definition
VI.8.1,

ϑ

[
a
b

]
(Z) = ϑ

[
a/2
b/2

]
(Z, 0).
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7.1 Lemma. The series

ϑ

[
a
b

]
(Z) =

∑

g∈Zn

e
(
Z[g + a/2] + bt(g + a/2)

)

converges normally in Hn for a, b ∈ Z
n and defines an analytic function there.

Moreover, it converges uniformly in domains of the kind Y ≥ δE, δ > 0, and
defines a bounded function there. In the case

atb ≡ 1 mod 2,

it is identically zero. In all other cases, it does not vanish identically.

Proof. The statements about convergence are simple. In principle, they already
have been proved in the first volume. We shall repeat the argument briefly. In
the domain Y ≥ δE, we can easily verify the estimate

∣∣(Z[g + a/2] + bt(g + a/2)
)∣∣ ≤ e−ε(g21+...g2n),

with a suitable positive number ε = ε(δ, a, b). The statements about the con-
vergence follow from this.

We now study the vanishing of the theta series. For this, we rewrite these
series as Fourier series. This is possible, since

Z[g] = gtZg = σ(ggtZ).

We obtain

ϑ

[
a
b

]
=

∑

T=T t

a(T )e(σ(TZ)/4),

with
a(T ) =

∑

g integral
(2g+a)(2g+b)t=T

e(bt(g + a/2)).

If we replace g by −g−a, the sums change by a factor (−1)a
tb. Hence a(T ) = 0

for odd atb. We now compute a(T ) for a special T . This contains only entries
0, 1, and it suffices T ≡ aat mod 2. The equation (2g+a)(2g+b)t = T has only
two solutions, and they satisfy g ≡ 0 and g ≡ −a mod 2. We get a(T ) = ±2
for even atb. This proves Lemma 7.1.

Up to a sign, the theta series depend on a, b only modulo 2, since it follows
from

ã ≡ amod 2, b̃ ≡ bmod 2

that

ϑ

[
ã
b̃

]
= (−1)a

t(b̃−b)/2ϑ
[
a
b

]
,
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as one can easily verify. In this context, the pair

m :=
(
a
b

)
∈ Z

2n

is called a theta characteristic. This is frequently normalized in such a way that
the components of m are contained in {0, 1}. A theta characteristic is called
even iff

atb ≡ 0 mod 2,

and odd otherwise. In the case n = 1, there are three even characteristics
mod 2,

m =
(

0
0

)
,

(
0
1

)
,

(
1
0

)
.

The following lemma can easily be shown by induction on n.

7.2 Lemma. Modulo 2, there are

2n−1(2n + 1)

even characteristics, and hence 3 in the case n = 1, 10 in the case n = 2, and
36 in the case n = 3.

We have to investigate the transformation behavior of these theta series under
modular substitutions. This theta transformation formalism goes back to the
nineteenth century.

7.3 Proposition. Let M ∈ Γn = Sp(n, Z) be a modular substitution of degree
n. For each characteristic

m ∈ {0, 1}2n,

there exists a characteristic

M{m} ∈ {0, 1}2n

and an eighth root of unity v(M,m) such that the transformation formula

ϑ[M{m}](MZ) = v(M,m) det(CZ +D)1/2ϑ[m](Z)

is valid.

Of course, v(M,m) depends on the choice of the square root of det(CZ +D).

It is sufficient to prove Proposition 7.3 for generators of the modular group.
Hence Proposition 7.3 follows from the next statement.
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7.4 Lemma. We have

1) ϑ

[
a
b

]
(Z + S) = eπiS[a]/4ϑ

[
a

b+ Sa+ S0

]
(Z),

where S0 is the column built from the diagonal of S.

ϑ

[
a
b

]
(Z[U ]) = ϑ

[
Ua

U t
−1
b

]
(Z).2)

ϑ

[
a
b

]
(−Z−1) = eπiatb/2ϑ

[
b
−a

]
(Z).3)

Proof. The proof of the first two formulae is very simple:

1) We observe that

S
[
g +

1
2
a
]

= S[g] + (Sa)tg +
1
4
S[a]

and note the congruence

S[g] =
n∑

i=1

sijgi + 2
∑

i<j

sijgigj ≡ St0g mod 2.

2) In the series of ϑ[m](Z[U ]), we perform the transformation g �→ U−1 of the
summation variable.

3) It is sufficient to prove the formula for purely imaginary Z, and hence for
matrices of the form Z = Sz, S real, z ∈ H. It is then a consequence of the
theta transformation formula for theta series with respect to quadratic forms
on the usual upper half-plane ([FB], Theorem VI.4.7). ��

One can work out an explicit formula for m �→M{m}.

7.5 Lemma. Let m =
(
a
b

)
∈ {0, 1}2n and M ∈ Sp(n,Z). If we define

M{m} ∈ {0, 1}2n by

M

{
a
b

}
≡M t−1

(
a
b

)
+
(

(CDt)0
(ABt)0

)
mod 2,

then Proposition 7.3 holds.

For the generators of the modular group, this follows from Lemma 7.4. For
this reason, it is sufficient to show the following.
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7.6 Lemma. If we define, for m ∈ (Z/2Z)2n and M ∈ Sp(n, Z),

M{m} = M

{
a
b

}
≡M t−1

(
a
b

)
+
(

(CDt)0
(ABt)0

)
∈ (Z/2Z)2n,

we have
(MN){m} = M{N{m}}.

Proof. It is sufficient to assume that M is an arbitrary modular matrix and

N a generator. For example, in the case N =
(
E S
0 E

)
, the statement is

equivalent to
CS0 ≡ (CtCS)0 and AS0 = (AtAS)0.

This follows from x2 = x (mod 2). ��

7.7 Lemma. The set

Γn,ϑ := {M ∈ Γn, CDt and ABt have even diagonal}

is a congruence subgroup.

We call Γn,ϑ the theta group of degree n. It generalizes the theta group intro-
duced in [FB], Appendix to Sect. VI.5.

Proof of Lemma 7.7. The set Γn,ϑ is characterized by the condition M{0} = 0.
The claim follows from Lemma 7.6. Moreover, Γn,ϑ ⊃ Γn[2]. ��

The next proposition now follows from Proposition 7.3.

7.8 Proposition. The theta series

ϑ(Z) = ϑ[0](Z) =
∑

g∈Zn

eπiZ[g]

is a modular form of weight 1/2 with respect to a certain multiplier system vϑ
for the theta group Γn,ϑ.

The multiplier system
vϑ : Γn,ϑ −→ C

.

is called the theta multiplier system. It is the most important multiplier system
of nonintegral weight.
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7.9 Lemma. Every even theta characteristic m ∈ {0, 1}2n can be written in
the form m = M{0}. The stabilizer of m in the full modular group

Γn(m) := {M ∈ Γn, M{m} = m}

is conjugate to the theta group:

Γ(m) = MΓn,ϑM−1 (M{0} = m).

We have
ϑ[m] ∈ [Γn(m), 1/2, vm].

Here vm denotes the conjugate multiplier system of vϑ.

Proof. Only the statement about transitivity remains to be proved. This
statement says that for two

a, b ∈ Z
n

with atb ≡ 0 mod 2, there exists a modular matrix M ∈ Γn with the property

a ≡ (CDt)0, b ≡ (ABt)0.

We argue by induction on n and decompose

a =
(
a1

a2

)
, a1 ∈ Z, a2 ∈ Z

n−1, and correspondingly b =
(
b1
b2

)
.

In the case a1b1 ≡ 0, the characteristic
(
a2

b2

)
is even. Using the induction

hypothesis, we reduce the problem to the case a2 = b2 = 0. Now it is enough
to apply a suitable embedded SL(2) matrix.

In the case a1b1 ≡ 1, there must exist a further index ν such that aνbν is
odd. Now we can easily construct a translation matrix such that

(
E S
0 E

){
a
b

}

suffices for the assumption of the first case. ��
The product of all theta series is of special importance. The next proposition

follows from Proposition 7.3.

7.10 Proposition. The product

∆(n) =
∏

ϑ

[
a
b

]

of all theta series is a modular form of weight 2n−2(2n+1) for the full modular
group with respect to some multiplier system v(n):

∆(n) ∈ [Γn, 2n−2(2n + 1), v(n)].

In the case n ≥ 2, the weight is integral. Hence, in this case, v(n) is a character
on Γn.
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It is possible to show that this character is trivial for n ≥ 3.

Exercises for Sect. VII.7

1. Verify by means of generators that the character of ∆(3) is trivial.

2. What is the connection between ∆(1) and the discriminant ∆ from the theory of
elliptic functions?

3. Show that ϑ(Z) is positive for real imaginary Z and use Lemma 7.9 to prove that
the theta series with even characteristics do not vanish.

8. Group-Theoretic Considerations

We consider the set of all left cosets

Γn/Γn,ϑ = {MΓn,ϑ, M ∈ Γn}.
By the definition of Γn,ϑ, the map

Γ/Γn,ϑ −→
{
m =

(
a
b

)
∈ {0, 1}n, atb even

}
,

MΓn,ϑ −→M{0},
is well defined and injective. By Lemma 7.9, it is also surjective. This shows
the following.

8.1 Remark. The theta group has the index 2n−1(2n+1) in the full modular
group.

The theta group is not normal in Γn. On the contrary, the following is true.

8.2 Remark. The 2n−1(2n + 1) conjugate groups

Γn(m), m ∈ {0, 1} even,

of the theta group are pairwise distinct.

Proof. It suffices to show that Γn(0) and Γn(m) are different. Therefore we
have to show that if m ∈ Z

2n and if

Mm ≡ mmod 2 for all M ∈ Γn,ϑ,

then m ≡ 0 mod 2. In the case n = 1, this is obvious; in the case n > 1, we
consider embedded SL(2). ��
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Some Exceptional Isomorphisms

We now investigate the group Sp(n, Z/2Z) for small n. We make use of the
action of Sp(n,Z/2Z) on (Z/2Z)2n. An element m =

(
a
b

)
of (Z/2Z)2n is said

to be even, if atb = 0 (in Z/2Z).

Let M be an element which fixes all m ∈ (Z/2Z)2n. Then M fixes 0:

M{0} = M t−1 ·m.

It follows that M is the unit matrix. But we have further results, as below.

8.3 Lemma.
1) If M is an element which fixes all even m ∈ (Z/2Z)2n, M{m} = m, then

M is the unit matrix.

2) Let n > 1. If M is an element which fixes all odd m ∈ (Z/2Z)2n, then M
is the unit matrix.

Proof. 1) If M fixes all even m, then M fixes 0. Because M{0} = M t−1 · m,
the sum of two even characteristics is fixed. But we can easily show that each
odd element of (Z/2Z)2n is the sum of two even elements. In the case n = 1,
this follows from the formula

(
1
1

)
=
(

1
0

)
+
(

0
1

)
.

The general case can be reduced to this case.

2) So, let n > 1. There then exist two odd m, n such that m + n is odd. The
general rule

M{m + n} = m + n +M{0},

together with the assumption

M{m} = m, M{n} = m, M{m + n} = m + n,

shows that M{0} = 0. Again it follows that the sum of two odd elements is
fixed. But in the case n > 1, each element of (Z/2Z)2n is the sum of two odd
characteristics.

An immediate consequence of the first part of Lemma 8.3 is the following.

8.4 Proposition. The intersection of the conjugates of the theta group is the
principal congruence subgroup of level two.
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There is an other way to look at Lemma 8.3. We order the even and odd
elements of (Z/2Z)2n. Their numbers are denoted by g = g(n) and u = u(n),
respectively. The operation m �→M{m} permutes these elements and can now
be considered as a permutation of the digits 1, . . . , g or 1, . . . , u, respectively.
This gives homomorphisms

Sp(n, (Z/2Z)) −→ Sg and Su.

It follows from Lemma 8.3 that the first of these homomorphisms is always
injective, and that the second is injective in the case n > 1. We are interested
in the cases where such a homomorphism is an isomorphism. It turns out that
this happens in exactly two cases.

An injective homomorphism of finite groups is an isomorphism iff the orders
agree. Hence we compare the orders.

1) We have # SL(2, (Z/2Z)) = 6. On the other hand, g(1) = 3 and #S3 = 6.

2) By our index formulae, # Sp(2, (Z/2Z)) = 720. On the other hand, u(2) =
6 and #S6 = 720.

We obtain the following result.

8.5 Proposition.
1) The group # SL(2, (Z/2Z)) is isomorphic to S3.

2) The group # Sp(2, (Z/2Z)) is isomorphic S6.

The isomorphisms are realized through the action of these groups on the even
elements of (Z/2Z)2 and the odd elements of (Z/2Z)4, respectively.

Exercises for Sect. VII.8

1. Show that in the case n ≤ 2, the modular group Γn admits a subgroup of index
two.

2. Show that in the case n ≥ 3, the images of Γn in Sg and Su are contained in the
alternating group.

3. Find an element in Γ2 such that its image in S6 is a transposition.
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9. Igusa’s Congruence Subgroups

Igusa’s congruence subgroup Γn[q, 2q] (q ∈ N) is a generalization of the theta
group (compare [FB], Sect. VI.3).

9.1 Remark. The set

Γn[q, 2q] :=
{
M ∈ Γn[q],

1
q
(CDt) ≡ 1

q
(ABt) ≡ 0 mod 2

}

is a congruence subgroup.

Because
Γn[q] ⊃ Γn[q, 2q] ⊃ Γn[2q],

it is sufficient to show that Γn[q, 2q] is group. For odd q, we obviously have

Γn[q, 2q] = Γn[q] ∩ Γn,ϑ.

Hence we can restrict ourselves to the even case. In this case, we have

q2 ≡ 0 mod 2q,

which will be used frequently in the following. If we write a matrix M ∈ Γn[q]
in the form

M =
(
A B
C D

)
=
(
E + qÃ qB̃
qC̃ E + qD̃

)
,

we obtain
1
q
ABt ≡ B̃t mod 2q.

Hence the condition which defines Γn[q, 2q] inside Γn[q] is simply

B̃0 ≡ D̃0 mod 2.

Now Remark 9.1 is consequence of the following statement.

9.2 Remark. Assume that q is even. The map

η : Γn[q] −→ (Z/2Z)2n,
(
A B
C D

)
�−→ 1

q

(
B0

C0

)
,

is a surjective homomorphism. Its kernel is Γn[q, 2q].
Corollary. We have the index formula

[Γn[q] : Γn[q, 2q]] = 22n.

The homomorphy property η(MN) = η(M) + η(N) follows easily from q2 ≡
0 mod 2q. For the surjectivity, we use special matrices where A = D = E,
B = 0, or C = 0. ��

We know that the theta group Γn,ϑ = Γ[1, 2] is not normal in Γn. But,
remarkably, we can make the following statement.
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9.3 Remark. Let q be even. The group Γn[q, 2q] is a normal subgroup of the
full modular group.

For the proof, it is sufficient to show that MΓn[q, 2q]M−1 ⊂ Γn[q, 2q] for the
generators of the modular group. The simple computation will be skipped
here. ��

Because of Remark 9.3, the group Γn[2q, 4q] is normal in Γn[q].

9.4 Lemma. The group
Γn[2]/Γn[4, 8]

is abelian.

Proof. We have to show that the commutator of two elements of Γn[2] is
contained in Γn[4, 8]. It is enough to verify this for the generators, and easy to
do so. ��

We want to determine the group which occurs in Lemma 9.4 when we take
the quotient by the subgroup ±E, since we are interested only in the mapping
groups. Hence we consider the group

Γ̃n[4, 8] = Γn[4, 8] ∪ (−Γn[4, 8]),

which also is normal in Γn[2], and consider

Gn := Γn[2]/Γ̃n[4, 8].

In the first volume ([FB], Lemma VI.6.2), we have shown in the case n = 1
that

G1 = Z/4Z × Z/4Z.

We have to generalize this result. We make use of our knowledge of the gener-
ators of the principal congruence subgroup of level two,

(
E S
0 E

)
,

(
E 0
S E

)
,

(
U t 0
0 U−1

)
.

For the sake of simplicity, we restrict ourselves to the case n = 2, since we shall
not use the case n > 2.

The matrices S which we have to use are, in the case n = 2, only

S =
(

2 0
0 0

)
,

(
0 0
0 2

)
,

(
0 2
2 0

)
,

and, since we know the generators of SL(2, Z)[2] and hence of GL(2, Z)[2], we
need the matrices U only in the cases

U =
(

1 2
0 1

)
,

(
1 0
2 1

)
,

(
−1 0
0 −1

)
, and

(
1 0
0 −1

)
.
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Hence we obtain 2·3+4 = 10 generators of Γ2[2]. Since we factor out {±E(2n)},
the negative unit matrix can be canceled. So,

G2 = Γ2[2]/Γ̃2[4, 8]

can be generated by nine elements. Since G2 is abelian, this means that we get
a surjective homomorphism

Z
9 −→ G2.

In the following, we denote the generators by

T1, T2, T̃1, T̃2, T3, T̃3, P1, P2, P3,

where

Tν =
(
E Sν
0 E

)
, T̃ν =

(
E 0
Sν E

)
,

S1 =
(

2 0
0 0

)
, S2 =

(
0 0
0 2

)
, S3 =

(
0 0
2 0

)

and

Pν =
(
U tν 0
0 U−1

ν

)
,

U1 =
(

1 2
0 1

)
, U2 =

(
1 0
2 1

)
, U3 =

(
1 0
0 −1

)
.

The homomorphism is given by

(a1, b1, a2, b2, a3, b3, c1, c2, c3) �−→ T a1
1 T̃ b11 T a2

2 T̃ b22 T a3
3 T̃ b33 P c11 P c22 P c33 .

The images of the first four matrices have order 4; the other five have order 2.
So we obtain a surjective homomorphism

(Z/4Z)4 × (Z/2Z)5 −→ Γ2[2] Γ̃2[4, 8].

This turns out to be an isomorphism.

9.5 Lemma. The map

(a1, b1, a2, b2, a3, b3, c1, c2, c3) �−→ T a1
1 T̃ b11 T a2

2 T̃ b22 T a3
3 T̃ b33 P c11 P c22 P c33

(mod Γ̃2[4, 8]) induces an isomorphism

(Z/4Z)4 × (Z/2Z)5 −→ Γ2[2]/Γ̃2[4, 8].

For the proof, it is sufficient to compare the orders of the two groups. The index
formulae, in particular, that in Remark 9.2 show that they are equal. ��
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Decomposition into Eigenspaces

Let Γ′ ⊂ Γ be congruence subgroups and let Γ′ be a normal subgroup with an
abelian factor group G := Γ/Γ′. Assume that a multiplier system v of weight
r/2 on the larger group Γ is given. Then the map

f �−→ v(M)−r det(CZ +D)−rf(MZ)

associates each M ∈ Γ with an endomorphism of [Γ′, r/2, v]. This linear map
depends only on the image ofM inG. So, it defines an action of G on this space.
Since G is abelian, we can decompose the space into eigenspaces (compare [FB],
Remark VI.6.4). In the following, we identify characters of G with characters
on Γ which are trivial on Γ′. We obtain

[Γ′, r/2, v] =
∑

χ

[Γ, r/2, vχ],

where χ runs through all characters of G. We shall use this decomposition in
the special case Γ′ = Γ2[2] and Γ = Γ2[4, 8]. As in [FB], Sect. VI.6, we have
the following lemma.

9.6 Lemma. We have

[Γ2[4, 8], r/2, vrϑ] =
∑

χ

[Γ[2], r/2, vrϑχ],

where χ runs through all characters of G2 = Γ[2]/Γ̃[4, 8]. The characters χ are
determined by their values on

T1, T2, T̃1, T̃2, T3, T̃3, P1, P2, P3.

On the first four matrices, they can be arbitrary fourth roots of unity, and on
the rest they can be ±1. So, there are 2048 such characters.

The group Γ2[4, 8] is generated by the commutators of Γ2[2], the fourth powers
of the first four, and the squares of the remaining five. The multiplier systems of
two ϑ[m] differ only by a character. This character is trivial on all commutators.
One can easily check that it is trivial on the other nine generators. This gives
us the following result (compare [FB], Lemma VI.6.2):

9.7 Proposition. The multiplier systems of the ten theta series agree on
Γ2[4, 8]. In particular, they are contained in eigenspaces of the decomposition
in Lemma 9.6.
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Exercises for Sect. VII.9

1. Determine the index of Γn[q, 2q] in Γn[q] and in Γn.

2. Show that in the case r = 1, at least ten of the eigenspaces in Lemma 9.6 are
different from zero. (We will see later that there are exactly ten.)

3. To illustrate the complexity of congruence subgroups, we ask: How many groups
are between Γ̃[4, 8] and Γ[2]?

10. The Fundamental Domain of the Modular Group of
Degree Two

The fundamental domain of the Siegel modular group was constructed by Siegel
in his original paper of 1935. The essential tool was Minkowski’s reduction the-
ory for the group GL(n,Z). In the case n = 2, this is essentially the elliptic
modular group, and Minkowski’s reduction theory is equivalent to the construc-
tion of the fundamental domain of the elliptic modular group. So, in the case
n = 2, the theory becomes very simple. We restrict ourselves to this case.

Let

R2 =
{
Y =

(
y0 y1
y1 y2

)
, 0 ≤ 2y1 ≤ y0 ≤ y2, 0 < y0

}
.

10.1 Remark. Each matrix from R2 is positive definite. In R2, the inequal-
ities

detY ≤ y0y2 ≤
4
3

detY

hold.

The proof is simple and will be omitted. The following lemma is a little more
difficult.

10.2 Lemma. For each positive 2× 2 matrix Y ∈ P2, there exists a unimod-
ular matrix

U ∈ GL(2, Z)

with the property
Y [U ] ∈ R2.
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Proof. The operation Y �→ Y [U ] is compatible with the substitution Y �→ tY ,
t > 0. For this reason, we can restrict ourselves to matrices of determinant
one,

Pn(1) := {Y ∈ P2, detY = 1}.
For the proof, we make use of the map

ϕ : H −→ P2(1),

z �−→ S :=
(

1 0
x 1

)(
y−1 0
0 y

)(
1 x
0 1

)
.

We can easily verify the following three simple facts:
a) The map ϕ is bijective.
b) ϕ(Mz) = S[M ] for M ∈ SL(2, Z).
c) We have

ϕ(F) = {Y ∈ P2(1), 0 ≤ |2y1| ≤ y0 ≤ y2, 0 < y0}.

Here F is the fundamental domain of the elliptic modular group, ([FB],
Proposition V.8.7).

So, each matrix from P2(1) can be transformed into ϕ(F) by means of a matrix
SL(2, Z). Making use of the fact that the diagonal matrix with entries 1 and
−1 is contained in GL(2, Z), we can enforce the condition y1 ≥ 0. ��

By the height of a point Z ∈ Hn, we understand the positive number

h(Z) = detY.

10.3 Lemma. Assume that a point Z ∈ H2 and a positive number ε > 0 are
given. There are only finitely many numbers h0 with the properties
a) h0 ≥ ε;
b) h0 = h(MZ) for an M ∈ Γ2.

Proof.*) Let Z∗ = MZ, M ∈ Γn, h0 = h(Z∗) ≥ ε. The height is invariant
under unimodular transformations Z∗ �→ Z∗[U ]. Hence we can assume

Y ∗−1 ∈ R2.

If we denote the diagonal elements of Y ∗−1 by r1, r2, we obtain from Remark
10.1

r1r2
4
3

det(Y ∗)−1 ≤ 4
3
ε−1.

The formula
Y ∗−1 = Y −1[(CX +D)t] + Y [Ct]

*) A proof for arbitrary n can be found in [Fr1].
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shows that
rk = [Xctk + dtk] + Y [ctk] (k = 1, 2),

where ck, dk denote the kth rows of C,D. The rows ck, dk cannot both vanish.
Therefore rk has a lower bound depending on Y . Since the product of the rk is
bounded from above, both have a lower bound (depending only on Y and ε).
This shows that the vectors ck, dk belong to a finite set. ��

10.4 Proposition. The subset M ⊂ H2 defined by

0 ≤ 2y1 ≤ y0 ≤ y2,
√

2
2
≤ y0

is a fundamental set of the modular group of degree two. This means that for
each Z ∈ H2 there exists M ∈ Γ2 with MZ ∈M.

Proof. Let Z ∈ H2 be an arbitrary point. Because of Lemma 10.3, the orbit
{MZ, M ∈ Γ2} contains a point Z0 with maximal height. This point satisfies

|det(CZ0 +D)|−2h(Z0) = h(MZ) ≤ h(Z0).

This means
| det(CZ0 +D)| ≥ 1.

Since the height remains unchanged under unimodular transformations, we can
assume that Y0 ∈ R2. Now we use the condition | det(CZ0 +D)| ≥ 1 for the
matrices

M =
(
A B
C D

)
, A =

(
a 0
0 1

)
, B =

(
b 0
0 0

)
, C =

(
c 0
0 0

)
, D =

(
d 0
0 1

)
.

We obtain the result that the first diagonal element z of Z0 satisfies the in-
equality

|cz + d| ≥ 1 for all
(
a b
c d

)
∈ SL(2,Z).

This gives y ≥
√

3/2. The same argument works for the second diagonal
element. ��

Exercises for Sect. VII.10

1. Show that, in the case n ≤ 2, there exists a number δn > 0 such that the set
defined by Y − δnE ≥ 0 is a fundamental set of the modular group (This true
for arbitrary n. But the general proof needs the complete Minkowski reduction
theory; see for example, [Fr1].)
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2. Show that two different points of the form iyE for sufficiently large y can never
be equivalent. Show that it follows that there is no compact fundamental set for
Γn.

3. Let dv be the Euclidean volume element on Hn and let

dω =
dv

detY n+1
.

Show that dω is invariant under Sp(n, R), i.e.
∫

Hn

f(MZ) dω =

∫

Hn

f(Z) dω,

for example for continuous functions with compact support.

4. The set

{Z ∈ H2; |x0|, |x1|, |x2| ≤ 1/2, 0 ≤ 2y1 ≤ y0 ≤ y2,

√
3

2
≤ y0}

is a fundamental set of Γ2. Show that its volume with respect to dω is finite.

Hint. Use Remark 10.1. Integration over the x-coordinates is harmless. After
that, integrate over y1.

11. The Zeros of the Theta Series of Degree two

In the first volume, we saw that in the case n = 1 the theta series ϑ[m] have
no zeros in the upper half-plane ([FB], Lemma VI.6.6). This is false for n > 1.
But in the case n = 2, the zeros can be described by simple equations. This
has been done by Igusa [Ig3]. A short, elementary proof can be found in [Fr3];
see also [Fr1]. This proof will be reproduced here.

11.1 Lemma. Let

a =
(
a1

a2

)
, b =

(
b1
b2

)
, a1, b1 ∈ Z

n1 , a2, b2 ∈ Z
n2 .

Then

ϑ

[
a
b

](
Z

(n1)
1 0
0 Z

(n2)
2

)
= ϑ

[
a1

b1

]
ϑ

[
a2

b2

]
.
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Proof. The proof follows easily from the formula

(
Z1 0
0 Z2

)[g1
g2

]
= Z1[g1] + Z2[g2]

together with the Cauchy multiplication theorem for infinite series. ��
The expression in Lemma 11.1 vanishes if one of the two characteristics is

odd. For example,

ϑ

⎡

⎢⎣

1
1
1
1

⎤

⎥⎦
(
z0 0
0 z2

)
= 0.

In this section, we shall show that in some sense this describes all zeros of theta
series of degree two. The ten even characteristics are

(
a
b

)
∈

⎧
⎪⎨

⎪⎩

0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 1 1
0 1 0 1 0 0 0 1 0 1
0 0 1 1 0 0 1 0 0 1

⎫
⎪⎬

⎪⎭
.

We now determine the zeros of the ten theta series on the fundamental set M
(0 ≤ 2y1 ≤ y0 ≤ y2,

√
3/2 ≤ y0).

11.2 Lemma. 1) The eight theta series

ϑ

[
a
b

]
, a �=

[
1
1

]
,

have no zeros in M.

2) The two functions

ϑ

⎡

⎢⎣

1
1
1
1

⎤

⎥⎦

eπiz1 − 1
and

ϑ

⎡

⎢⎣

1
1
0
0

⎤

⎥⎦

eπiz1 + 1

are analytic in H2 and have no zeros in M.

The proof rests on elementary estimates:

1) Let a = 0. We extract from the theta series the constant term (g = 0), and
estimate the rest by means of the series of the absolute values

∣∣∣ϑ
[

0
b

]
− 1

∣∣∣ ≤
∑

g �=0

e−πY [g].
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Then we extract the terms for g2
1 + g2

2 = 1 from the sums to obtain

∑

g �=0

e−πY [g] ≤ 4e−(π/2)
√

3 +
∑

g21+g22

e−(π/4)(g21+g22) < 1.

A numerical computation shows that the expression on the right-hand side is
smaller than one. This shows that

ϑ

[
0
b

]
(Z) �= 0 for Z ∈M.

2) Let a =
(
1
0

)
. First we divide the theta series by eπiz/4, and then we extract

the constant terms which belong to g =
(
0
0

)
,
(−1

0

)
. The rest is estimated by

means of the series of the absolute values,

∣∣∣∣∣ϑ
[

1(
1
0

)
](

0
∗

)
[Z]e−πiz0 − 2

∣∣∣∣∣ ≤
∑

g �=(0
0),(−1

0 )
e−π{y0g1(g1+1)+y1(2g1+1)g2+y2g

2
2}.

By means of the identity

(2g1 + 1)g2 = (g1 + g2 + 1)(g1 + g2)− g1(g1 + 1)− g2
2,

we see that

y0g1(g1 + 1) + y1(2g1 + 1)g2 + y2g
2
2

≥ (y0 − y1)g1(g1 + 1) + (y2 − y1)g2
2 ≥

1
4

√
3[g1(g1 + 1) + g2

2 ].

As in the first case, we now obtain

ϑ

[
a
b

]
�= 0 in M for a =

(
1
0

)
and similarly for a =

(
1
1

)
.

3) It remains to consider a =
(
1
1

)
and a = ε

(
1
1

)
with ε = 0 or 1. A simple

conversion of the theta series shows that

e−
1
4πiZ[a]+πiz1ϑ

[
a
b

]
(Z)

= 2
∑

g1,g2≥0

(−1)ε(g1+g2)eπig1(g1+1)(z0−z1)+πig2(g2+1)(z2−z1)

·
{
eπi(g1+g2+1)2z1 + (−1)εeπi(g2−g1)2z1

}
.
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The expression in the curly brackets can be divided by 2(1+(−1)εeπiz1). After
this, we bring the term for g1 = g2 = 0 to the left-hand side and estimate the
rest by means of the series of the absolute values:

∣∣∣∣∣∣∣∣

ϑ

[
a
b

]
(Z)

2eπiZ[a]/4(1 + (−1)εeπiz1)
− (−1)r

∣∣∣∣∣∣∣∣

≤ −1 +
∑

g1, g2 ≥ 0e−πg1(g1+1)(y0−y2)−πg2(g2+1)(y2−y1)

·

⎧
⎨

⎩

(2g1+1)(2g2+1)−1∑

n=0

e−πny1

⎫
⎬

⎭ .

Here we have used

eπi(g1+g2+1)2 + (−1)εeπi(g1−g2)2z1

= eπi(g1−g2)2z1(1 + (−1)εeπiz1)(−1)ε ·
(2g1+1)(2g2+1)−1∑

n=0

(−1)n(ε−1)eπinz1
.

For Z in M, we immediately obtain
∣∣∣∣∣∣∣∣

ϑ

[
a
b

]
(Z)

2eπiZ[a]/4(1 + (−1)εeπiz1)
− (−1)r

∣∣∣∣∣∣∣∣
≤ −1 +

(∑
e−(π

√
3/4)n(n+1)(2n+ 1)2

)
.

Since the expression on the right hand side is < 1, we obtain that

ϑ

[
a
b

]

1 + (−1)εeπiz1
in the case a =

(
1
1

)
, b = ε

(
1
1

)

has no zero in M. ��
We now determine all symplectic substitutions which transform the diagonal

into itself. For this, we recall the embedding

SL(2,R)× SL(2,R) −→ Sp(2,R),

(
a b
c d

)
,

(
α β
γ δ

)
�−→

⎛

⎜⎝

a b
0 α β
c d

γ δ

⎞

⎟⎠ .

The image acts on the diagonal componentwise. There is another substitution
which transforms the diagonal into itself, namely the unimodular transforma-
tion (

U t 0
0 U−1

)
, U =

(
0 1
1 0

)
.

One can easily verify the following statement.
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11.3 Remark. The set N of all matrices of the form

⎛

⎜⎝

a b
0 α β
c d

δ Γ

⎞

⎟⎠ and

⎛

⎜⎝

0 1
1 0

0 1
1 0

⎞

⎟⎠

⎛

⎜⎝

a b
0 α β
c d

δ Γ

⎞

⎟⎠

is a subgroup of Sp(2,R) which transforms the diagonal into itself.

We denote by
N (Z) = N ∩ Sp(2, Z)

the subgroup of integral matrices. It contains a subgroup which is isomorphic
to SL(2, Z)× SL(2, Z). Obviously, N (Z) fixes the characteristic

m =

⎛

⎜⎝

1
1
1
1

⎞

⎟⎠ .

Hence we have
N (Z) ⊂ Γ2(m).

The group Γ2[2] is also contained in Γ2(m). We shall show that Γ2(m) is
generated by both subgroups.

11.4 Lemma. The homomorphism

N (Z)/(N (Z) ∩ Γ2[2]) −→ Γ2[m]/Γ2[2],

which is induced by the inclusion

Γ2[2] −→ Γ2(m),

is an isomorphism.

Proof. It suffices to show that the orders of the groups agree. On one side, we
have

#(Γ2(m)/Γ2[2]) =
[
Γ2(m) : Γ2[2]

]
=

[
Γ2 : Γ2[2]

]
[
Γ2 : Γ2(m)

] =

[
Γ2 : Γ2[2]

]
[
Γ2 : Γ2,ϑ

] =
720
10

and, on the other side, N (Z)/(N (Z) ∩ Γ2[2]) is an extension of index two of
SL(2, Z/2Z)× SL(2, Z/2Z). Hence the order of both groups is 72. ��
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11.5 Proposition. Let f ∈ [Γ2[2], r/2, v] be a modular form with respect
to the principal group of level two which vanishes on the diagonal. Then f is
divisible by ϑ[m], and we have

f

ϑ[m]
∈
[
Γ2[2],

r − 1
2

,
v

vm

]
, m =

⎛

⎜⎝

1
1
1
1

⎞

⎟⎠.

Proof. Since M is a fundamental set of the full modular group, it is sufficient
to show the following:
For an arbitrary modular substitution M ∈ Sp(2, Z), the function

f(MZ)/ϑ[m](MZ)

is analytic in an open neighborhood of M(M).
We know that ϑ[m](MZ) equals ϑ[M{m}](Z) up to a factor without zeros.

The first part of Lemma 11.2 shows that it is sufficient to consider the cases

M{m} =

⎛

⎜⎝

1
1
1
1

⎞

⎟⎠ and

⎛

⎜⎝

1
1
0
0

⎞

⎟⎠ .

First case. M{m} = m. Then M ∈ Γ2(m). Because of Lemma 11.4, we can
assume that M ∈ N (Z). Like f , the modular form f(MZ) det(CZ + D)−r/2

is a modular form of level two which vanishes on the diagonal. Hence it is
sufficient to show that f is divisible by ϑ[m] in a full open neighborhood of
M. By Lemma 11.2, this means that f(Z)/(eπiz1 − 1) is analytic or that the
functions f(Z)/(z1 − 2k) are analytic for all k ∈ Z. This follows from the fact
that f vanishes on the diagonal and hence on all z1 = 2k.

Second case. M{m} =

⎛

⎜⎝

1
1
0
0

⎞

⎟⎠.

As in the first case, it is sufficient to consider a special M . We take

M =
(
E S
0 E

)
with S =

(
0 1
1 0

)
.

So, it suffices to show that
f(Z + S)(
eπiz1 ± 1

)

is analytic in H2. This follows from the fact that f(Z + S) vanishes on z1 =
2k + 1, k ∈ Z. ��
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Exercises for Sect. VII.11

1. Let α, β, γ, δ, ε be five integers with the property

αδ + βγ − ε2 = −1.

We consider the sets

N(α, β, γ, δ, ε) = {Z ∈ H2; αz0 + βz1 + γz2 + δ(z2
1 − z0z2) + ε}

and their union
N =

⋃

β2−4αγ−4δε=1

N(α, β, γ, δ, ε).

Show that a modular substitution M ∈ Γ2 permutes the sets N(α, β, γ, δ, ε). As
a consequence, the modular group acts on N.

2. The diagonal is contained in N (see the previous exercise). Deduce from Lemma
11.2 that all zeros of the ten theta series are contained in N.

3. This exercise is not quite so simple: Show that the modular group Γ2 permutes
the sets N(α, β, γ, δ, ε) transitively. Hence N is the precise zero set of the function
∆(2) (the product of the ten theta series).

12. A Ring of Modular Forms

In this section, we shall give a proof of Igusa’s beautiful structure theorem
about the ring of modular forms on the group Γ2[4, 8]. Igusa’s proof can be
found in his paper [Ig3] of 1964, which we quoted at the beginning of the last
section. A completely different and much more elementary proof was given by
A. Lober in his Heidelberg Diplomarbeit; a published version can be found in
[Lo].

We study modular forms for the principal congruence subgroup of level two,

f ∈ [Γ2[2], r/2, v].

We write the multiplier system in the form

v = χvrϑ,

with a character χ on Γ2[2]. Now we use the fact that the substitution

P3 =

⎛

⎜⎝

1
−1

1
−1

⎞

⎟⎠
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is contained in Γ2[2]. It acts as

P3

(
z0 z1
z1 z2

)
=
(
z0 −z1
−z1 z2

)
.

Since the theta series ϑ[0] is invariant under P3, we have

det
(

1 0
0 −1

)1/2

vϑ(P3) = +1.

So, we obtain

f

(
z0 z1
z1 z2

)
= χ(P3)f

(
z0 −z1
−z1 z2

)
.

If χ(P3) is different from 1, then f vanishes by force on the diagonal.

12.1 Definition. The diagonal D is an enforced zero for the space
[Γ2[2], r/2, v] if

χ(P3) �= 1 (v = χvrϑ).

By means of Koecher’s principle, we can now deduce the following from Propo-
sition 11.5.

12.2 Remark. If the diagonal is an enforced zero for [Γ2[2], r/2, v], then the
map [

Γ2[2],
r − 1

2
,
v

vm

]
−→ [Γ2[2], r/2, v],

f �−→ f · ϑm,

m =

⎛

⎜⎝

1
1
1
1

⎞

⎟⎠,

is an isomorphism.

Example. If the diagonal is an enforced zero for the space [Γ2[2], 1/2, v] and if v
is different from vm, then this space is the zero space, since any modular form
of weight 0 for a nontrivial multiplier system does not vanish. This argument
shows that the space [Γ2[2], 1/2, v], v = vϑχ, vanishes for at least 1023 of the
2048 characters.

If f ∈ [Γ2[2], r/2, v] does not vanish on the diagonal, we can consider one of
the conjugate forms

(f |M)(Z) = det(CZ +D)−r/2f(MZ)

instead of f . The form belongs to a conjugate multiplier system

f |M ∈ [Γ2[2], r/2, vM ].

It may happen that the diagonal is an enforced zero for this space. In this case
we can divide f by

ϑ[m], m = M

⎧
⎪⎨

⎪⎩

1
1
1
1

⎫
⎪⎬

⎪⎭
.

These considerations lead to the following definition.
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12.3 Definition. The space [Γ2[2], r/2, v] has an enforced zero if there ex-
ists a matrix M ∈ Sp(2, Z) such that the diagonal is an enforced zero for
[Γ2[2], r/2, vM ].

These considerations show the following.

12.4 Proposition. If the space

[Γ2[2], r/2, v]

has an enforced zero, then there exists a characteristic m such that the map
[
Γ2[2],

r − 1
2

,
v

vm

]
−→

[
Γ2[2],

r

2
, v
]
,

f �−→ ϑ[m],

is an isomorphism.

How can one decide whether a space [Γ2[2], r/2, v] has an enforced zero? From
now on, we consider only multiplier systems of the form v = vrϑχ, where χ is
one of the 2048 characters. As we know, each conjugate multiplier system vM

is again of this form, i.e.
vM = vrϑχ̃.

The character χ̃ depends on M and r, but on r only mod 4. We write

χ̃ = χ(M,r).

12.5 Remark. Consider M ∈ Sp(2, Z) and r ∈ Z. By means of

χ(M,r) =
(vrϑχ)M

vϑr
,

we obtain a permutation of the 2048 characters. This map depends only on the
coset Γ2[2]M and on r mod 4.

We now formulate some simple rules which rest on the formula

(v1v2)M = vM1 vM2 ,

which is valid for two multiplier systems v1, v2. If v is a multiplier system of
even weight (a character), we have

vM (N ) = v(MNM−1).

12.6 Remark. We have

χ(M,r) =
(vrϑ)

M

vϑr
χM .

Here
χM (N) := χ(MNM−1).

By the way, χM = χ(M,0). From Remark 12.6, we can conclude the following.
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12.7 Remark. 1) If r is even and χ is the square of one of the 2048
characters, then χ(M,r) is the square of one these characters too.
2) If M ∈ Γn,ϑ is an element of the theta group, then

χ(M,r) = χ(M,0) = χM

for all r.

Character squares will play an important role in what follows.
We recall that [Γ2[2], r/2, v] has an enforced zero if

χ(M,r)(P3) �= 1

for some M . Because P 2
3 = E, characters can have only the values ±1 on P3.

Hence character squares have the value 1. If r is even and χ is a character
square, then χ(M,r) is a character square by Remark 12.7. Hence we have no
enforced zero in this case. Fortunately, in all other cases we have an enforced
zero.

12.8 Proposition. The space [Γ2[2], r/2, vrϑχ] has an enforced zero, if one of
the following conditions is satisfied:

1) r is odd.
2) r is even and χ is not a character square.

Proof. We have use the formula

χ(M,r)(P3) =
(
vMϑ (P3)
vϑ(P3)

)r
χ(MP3M

−1).

For this, we need some information on

ε(M) := vMϑ (P3)/vϑ(P3).

We shall extract this information only from the fact that vMϑ is the multiplier
system of a well-known modular form, namely the theta series ϑ[m] with m =
M{0}. More exactly,

ϑ[m](P3Z)
ϑ(P3Z)

= ε(M)
ϑ[m](Z)
ϑ(Z)

.

We know how theta series transform under P3. The transformation formula
shows that ε(M) takes only the values ±1 and that both values actually occur.

For the proof of Proposition 12.8, we have to distinguish between two cases:
First case. χ is a character square. Then, by assumption, r is odd and

χ(M,r)(P3) = ε(M)r
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takes both values ±, in particular −1.
Second case. χ is not a character square. In this case, we construct M from
the theta group, such that χ(M,r)(P3) = −1. For M in the theta group, we
have vMϑ = ϑ and hence

χ(M,r)(P3) = χ(MP3M
−1).

We have to exhibit an element M of the theta group such that this expression
is −1. What does it mean that χ is not a character square? Character squares
are 1 on squares of elements and, conversely, each element with this property
is a character square. In our case, this follows easily from the isomorphy of G2

and its character group with (Z4Z)4× (Z/2Z)5. Since χ is assumed not to be
a character square, we must have

χ(N) �= 1 for some M ∈ {T 2
1 , T

2
2 , T̃

2
1 , T̃

2
2 , T3, T̃3, P1, P2, P3},

since these elements generate the subgroup consisting of elements of order ≤ 2.
So we have to show that each of them can be written modulo Γ̃[4, 8] in the
form MP3M

−1, with some element M of the theta group. This can easily be
verified. ��

Now we investigate the case where r is even and χ is a character square.
For this, we recall the embedding

Γ1[2]× Γ1[2] −→ Γ2[2],

(
a b
c d

)
,

(
α β
γ δ

)
�−→

⎛

⎜⎝

a b
α β

c d
δ γ

⎞

⎟⎠ .

This induces an embedding

G1 × G1 −→ G2 (Gn = Γn[2]/Γ̃n[4, 8]).

The “restriction” of a character χ on G2 is a character on G1 × G1. This
corresponds to a pair of characters (χ1, χ2) of G1. We write

(χ1, χ2) = χ|G1 × G1.

We have

χ

(
a b
c d

)
,

(
α β
γ δ

)
�−→

⎛

⎜⎝

a b
0 α β
c d

δ γ

⎞

⎟⎠ = χ1

(
a b
c d

)
· χ2

(
α β
γ δ

)
.

The map χ �→ (χ1, χ2) cannot be injective. But we have the following fact.
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12.9 Lemma. The map

χ �→ (χ1, χ2) = χ|G1 × G1

is a bijection between the set of all character squares of G2 and the set of pairs
of character squares of G1.

The proof follows from the explicit structure: we shall give only a hint. The
group of characters of G2 is isomorphic to (Z/4Z)4 × (Z/2Z)5, and hence the
group of character squares is isomorphic to (Z/2Z)4. On the other hand, the
group of characters of G1 is isomorphic to (Z/4Z)2. The group of its squares
is isomorphic to (Z/2Z)2. ��

12.10 lemma. Let χ be a character of G2 and let

f ∈ [Γ2[2], r/2, vrϑχ].

Then f
(
z0 0
0 z2

)
is a finite sum of functions

f1(z0)f2(z2) with fν ∈ [Γ1[2], r/2, vrϑχν ] (ν = 1, 2).

Here, (χ1, χ2) = χ|G1 × G1.

Proof. We use the transformation behavior of f under the elements of the image
of Γ1[2]×Γ1[2] ↪→ Γ2[2]. We can see that f

(
z0 0
0 z2

)
, for fixed z0 as function of z2,

is contained in [Γ1[2], r/2, vrϑχ2], and conversely. We choose a basis g1, . . . , gm
of [Γ1[2], r/2, vrϑχ2]. We have

f

(
z0 0
0 z2)

)
=
∑

hi(z0)gi(z2)

with certain functions hi ∈ [Γ1[2], r/2, vrϑχ1]. ��
Now we use the fact that the structure theorem is known in the case n = 1.

The functions fν ∈ [Γ1[2], r/2, vrϑχν ] are linear combinations of monomials

ϑ

[
0
0

]r1
ϑ

[
0
1

]r2
ϑ

[
1
0

]r3
, r1 + r2 + r3 = r,

where the characters have to satisfy the condition

χν

(
1 2
0 1

)
= ir2 , χν

(
1 0
2 1

)
= ir3 .

This formula shows that if χ is a character square, then r2 and r3 both have
to be even. Also, if r is even, then r3 has to be even. Now we make use of the
formula

ϑ

⎡

⎢⎣

a1

a2

b1
b2

⎤

⎥⎦
(
z0 0
0 z2

)
= ϑ

[
a1

b1

]
ϑ

[
a2

b2

]

to obtain the following lemma.



12. A Ring of Modular Forms 481

12.11 Lemma. Let χ be a character square of G2 and

[Γ2[2], r/2, vrϑχ], r even.

Then there exists a linear combination g of monomials in the squares of theta
series ϑ[m] with the following properties:

1) f

(
z0 0
0 z2

)
= g

(
z0 0
0 z2

)
.

2) If χ̃ is the character which belongs to this monomial, then

χ̃|G1 × G1 = χ|G1 × G1.

For trivial reason, the characters corresponding to theta squares are character
squares. We obtain the following result from Lemma 12.9.

Supplement. We have χ̃ = χ. So, we have proved the following proposition.

12.12 Proposition. Let χ be a character square of G2 and

[Γ2[2], r/2, vrϑχ], r even.

Then there exists a linear combination of monomials in the theta squares which
are all contained in the space [Γ2[2], r/2, vrϑχ] and are such that

f

(
z0 0
0 z2

)
= g

(
z0 0
0 z2

)
.

Induction on r now gives our main result:

12.13 Theorem. The space

[Γ2[4, 8], r/2, vrϑ]

is generated by the monomials of degree r in the ten theta series.

Exercises for Sect. VII.12

1. Show that the ten theta series are linearly independent.

2. Show that the 55 functions ϑ[m]ϑ[n] are linearly independent.
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3. The function ϑ(2Z)2 (observe the factor 2) is a modular form of weight one with
respect to Γ2[2]. Verify this by means of generators.

4. Show that the multiplier system of ϑ(2Z)2 is trivial on Γ2[4, 8].

5. By the structure theorem, ϑ(2Z)2 must be expressible as a linear combination of
the ϑ[m]ϑ[n]. Compute this combination explicitly.

Hint. It is enough to take the ten squares ϑ[m]2.



VIII. Appendix: Algebraic Tools

1. Divisibility

Here, we collect together the basic notions of divisibility. In the following,
R is an integral domain, i.e. an associative and commutative ring with unity
1 �= 0 which is free of zero divisors:

a · b = 0 =⇒ a = 0 or b = 0 (a, b ∈ R).

Fields are examples of integral domains. Every integral domain is a subring of
a field K. One can arrange that K consists of all fractions a/b with a, b ∈ R,
b �= 0. This field is unique up to isomorphism and is called the quotient field
of R. The construction of the quotient field is standard. We define a/b to be
the equivalence class of (a, b) with respect to an obvious equivalence relation.

The polynomial ring in n variables R[X1, . . . , Xn] was introduced in
Sect. V.3. It consists of all formal finite sums

∑

0≤ν1,...,νn

aν1...νn
Xν1

1 · · ·Xνn
n , aν1...νn

∈ R,

with the usual rules for addition and multiplication. The base ring R is em-
bedded into the polynomial ring. The element a ∈ R is identified with the
polynomial whose zero coefficient equals a and whose other coefficients vanish.

The case n = 1 is of special importance. By the degree d of an element
P ∈ R[X] which is different from zero, we understand the index of the highest
nonzero coefficient of P in the representation

P = adX
d + . . .+ a1X + a0, ai ∈ R for 1 ≤ i ≤ d− 1, ad �= 0.

Additionally, we define
deg(0) := −∞.

If R is an integral domain, which we will assume from now on, we have

deg(PQ) = deg(P ) + deg(Q).

Hence R[X ] is also an integral domain. By induction on n, using the isomor-
phism

(R[X1, . . . , Xn−1]) [Xn] ∼= R[X1, . . . , Xn],
483
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we can prove that the polynomial ring in arbitrarily many variables is an inte-
gral domain. An element ε is called a unit in R if the equation

εx = 1

can be solved in R, i.e. if ε−1 exists in R. The set R∗ of all units is a group
under multiplication.
Examples.
1) Z

∗ = {±1 }.
2) If K is a field, then K∗ = K − {0}.
3) Let R[X1, . . . , Xn] be the polynomial ring in n variables. Then

R[X1, . . . , Xn]∗ = R∗.

4) Let R = C{z1, . . . , zn} be the ring of convergent power series in n variables.
Then

R∗ = {P ∈ C{z1, . . . , zn}; P (0) �= 0}.
(P (0) is the constant term of the power series.)
One can make use of the fact that a convergent power series with nonzero

constant term defines an analytic function f without zeros in a small open
neighborhood of 0. The function 1/f is also analytic and can be expanded into
a power series.

We recall the notion of a greatest common divisor gcd(r, s) of two elements
r, s of an integral domain R. We assume that r and s are not both 0. An
element d ∈ R is called the greatest common divisor of r and s,

d = gcd(r, s),

if r and s are both divisible by d and if any element s which divides r and s is
also a divisor of d:

d|r and d|s;(a)
t|r and t|s =⇒ d|t.(b)

It is easy to see that the greatest common divisor, if it exists, is uniquely
determined up to a unit.

1.1 Definition. An element a ∈ R−R∗ is called

a) indecomposable if

a = bc =⇒ b or c is a unit;

b) a prime element if
a|bc =⇒ a|b or a|c
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(a|b means that the equation b = ax is solvable in R).
Of course, prime elements are indecomposable, but the converse is usually

false.
Example. Let R = C[X] be the polynomial ring in one variable over C and let
R0 be the subring of all polynomials without a linear term. The element X3 is
indecomposable in R0 but not a prime: X3|X2 ·X4.

2. Factorial Rings (UFD rings)

2.1 Definition. The integral domain R is called a factorial ring or UFD
ring if the following two conditions are satisfied:

1) Each element a ∈ R − R∗ can be written as a product of finitely many
indecomposable elements.

2) Each indecomposable element is prime.

In factorial rings, the decomposition into primes is unique in the following
sense. Let

a = u1 · . . . · un = v1 · . . . · vm
be two decompositions of a ∈ R−R∗ into primes. Then we have:

a) m = n.
b) There exists a permutation σ of the digits 1, . . . , n such that

uν = ενvσ(ν), εν ∈ R∗ for 1 ≤ ν ≤ n.

It is easy to prove this by induction.

Examples of factorial rings.
1) Every field is factorial.
2) Z is factorial.
3) By an important theorem of Gauss, the polynomial ring R[X1, . . . , Xn] over

a factorial ring is factorial too.

2.2 Theorem (Gauss). The polynomial ring R[X] over a factorial ring is
factorial too.

Because of the great importance of this theorem, we shall give a proof here. It
rests on the Euclidean algorithm for polynomials:
Let Q ∈ R[X ] be a normalized polynomial, i.e. the highest coefficient of Q is
1. Then any polynomial P ∈ R[X] admits a unique decomposition

P = AQ+B, degB < degQ (division with remainder).
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A simple proof can be given by means of induction on the degree of P and
will be skipped. Of course, “division with remainder” holds already if the
highest coefficient of Q is a unit (not necessarily 1). Since, in a field, any
nonzero element is a unit, we can divide with remainder through any nonzero
polynomial. This has the effect that divisibility in a polynomial ring of one
variable over a field is very simple. Hence we shall now prove Proposition 2.2,
in an initial step, for a field K instead of R.

2.3 Lemma. In the polynomial ring of one variable over a field K, there al-
ways exists the greatest common divisor of two elements P,Q. This greatest
common divisor can be obtained by combining P and Q, i.e. it is of the form

D = RP + SQ (R,S ∈ K[X]).

Sketch of the proof. We consider the set

a =
{
RP + SQ

∣∣ R,S ∈ K[X ]
}

and choose from it an element D �= 0 of minimal degree. By means of division
with remainder, we can show that

a = D ·K[X ].

It is easy to see that D is the greatest common divisor of P and Q. ��

2.4 Corollary. The polynomial ring in one variable over a field is factorial.

Proof. We restrict ourselves to the essential part: each indecomposable element
is prime. So, let P be indecomposable. But we assume that

P |RS, P � |R, P � |S.
From Lemma 2.3, we obtain the result that the equations

PX +RY = 1 and PX̃ + SỸ = 1

are solvable. Taking the product of the two equations, we obtain P |1. This
contradicts P � |R. ��

Two elements of an integral domain are called coprime if the only common
divisors are units.

2.5 Corollary. Let K ⊂ L be a subfield L and let P,Q be two polynomials
from K[X]. The two polynomials are coprime in K[X] iff they are coprime in
the larger ring L[X].

The prove follows from Lemma 2.3 and the simple fact that

P �= 0 ∈ K[X ], Q ∈ K[X ], and Q/P ∈ L[X] =⇒ Q/P ∈ K[X].

Now we consider, instead of a field, an arbitrary factorial ring R. The prime
factorization shows that in a factorial domain, the greatest common divisor
always exists. Slightly more generally, we can define the greatest common
divisor of n elements which are not zero and show that it exists in factorial
rings. It is unique up to a unit.



2. Factorial Rings (UFD rings) 487

2.6 Definition. The content of a polynomial P ∈ R[X] which is differ-
ent from zero over a factorial ring R is the greatest common divisor of all
coefficients of P :

I(P ) := gcd(a0, . . . , an) for P = anX
n + . . .+ a0.

Of course, the content is determined only up to a unit.

2.7 Lemma. Let P,Q be two polynomials (in one variable) over a factorial
ring R; then

I(PQ) ∼ I(P ) · I(Q).

Here the symbol “∼” means “equal up to a unit”. Two elements which differ
by a unit are also called associated.

We leave the proof of this lemma to the reader as a not quite simple exercise.
All that one has to show is

I(P ) ∼ 1, I(Q) ∼ 1 =⇒ I(PQ) ∼ 1.

Lemma 2.7 is a tool to compare divisibility in R[X ] and in K[X], where K
denotes the field of fractions of R.

A polynomial P �= 0 ∈ R[X] is called primitive if its content is a unit. For
example, normalized polynomials are primitive.

2.8 Lemma. Let R be a factorial ring with a field of fractions K, and let
P ∈ R[X ] be a primitive polynomial. Let Q ∈ R[X] be a further polynomial
over R. We then have

P |Q in R[X] ⇐⇒ P |Q in K[X ].

This lemma is an easy corollary of Lemma 2.7 if we take into account the
fact that every polynomial over K can be transformed, by multiplication by a
suitable nonzero element of R, into a polynomial over R. ��

We have now collected together everything that we need to prove Gauss’s
theorem. All that we have to show is:
Every irreducible (= indecompasable) polynomial P �= 0 ∈ R[X ] is prime.
First case. degP = 0, i.e. P ∈ R. Obviously, an element r ∈ R is indecompos-
able (or prime) in R if it is so in R[X]. Hence the claim follows from the fact
that R is factorial.
Second case . degP > 0. Since P is indecomposable, P must be primitive. We
assume

P |QS in R[X] (Q,S ∈ R[X]).

We then obtain
P |QS in K[X],

and hence
P |Q or P |S in K[X ]

(because of Corollary 2.4). The claim follows from Lemma 2.8. ��
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3. The Discriminant

Let K be a field and let

P = Xn + an−1X
n−1 + . . .+ a0

be a normalized polynomial overK. It is well known that there exists a splitting
field for P . This is a field L which contains K as a subfield and in which P
decomposes into a product of linear factors,

P = (X − α1) · . . . · (X − αn).

(The elements α1, . . . , αn are the zeros of P .) The discriminant of P is defined
as

∆ := ∆P :=
∏

i<j

(αj − αi)2.

3.1 Remark. For each natural number n, there exists a unique “universal
polynomial”

∆(n) ∈ Z[X1, . . . , Xn]

in n variables over Z, such that for each normalized polynomial

P = Xn + an−1X
n−1 + . . .+ a0

over an arbitrary field the relation

∆P = ∆(n)(a0, . . . , an−1)

holds.

We should mention here that the elements a of an abelian group can be mul-
tiplied by elements of Z:

na :=

⎧
⎪⎨

⎪⎩

n times︷ ︸︸ ︷
a+ . . .+ a if n > 0,
−(−n)a if n < 0,
0 if n = 0.

As a consequence, in a polynomial over Z, we can substitute the variables by
elements of an arbitrary commutative ring with unity (and obtain an element
of this ring again).

We now indicate the proof of Remark 3.1. As is well known (and trivial),
the coefficients ai of P are, up to a sign, the elementary symmetric polynomials
in the roots α1, . . . , αn. The expression

∏

i<j

(αj − αi)2
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is a symmetric polynomial in α1, . . . , αn. Now the claim follows from a well-
known result about elementary symmetric polynomials, which states that every
symmetric polynomial with integral coefficients can be written as a polynomial
with integral coefficients in the elementary symmetric polynomials. ��

By means of the discriminant, we can characterize the square-free normal-
ized polynomials in one variable over a field or, more generally, over a factorial
ring. Here an element r ∈ R is called square-free, if

x2|r =⇒ x is a unit.

3.2 Proposition. Let P ∈ R[X] be a normalized polynomial over a factorial
ring R. Then the following two statements are equivalent:
1) P is square-free in R[X].
2) ∆P �= 0.

Proof. Let K be the quotient field of R. It follows from Remark 3.1 that P is
square-free in R[X] iff P is square-free in K[X]. Hence we can assume that

R = K (field).

For the proof of Proposition 3.2, we need the derivative of a polynomial

P = anX
n + . . .+ a0 ∈ K[X].

This is defined formally by

P ′ = nanX
n−1 + . . .+ a1.

We can verify the usual rules

(P +Q)′ = P ′ +Q′,
(P ·Q)′ = P ′ ·Q+ P ·Q′.

Now we show that a polynomial over a field K (of characteristic zero) is square-
free if and only if P and P ′ are coprime.
Proof. 1) Assume P = S2Q. Then S is a common divisor of P and P ′.
2) Now assume, conversely, that S is a common divisor of P and P ′. We can
assume that S is a prime element. We define Q by

P = SQ.

Then
P ′ = S′Q+ SQ′.

It follows from S|P ′ that S|S′Q and hence S|Q. This shows that P is not
square-free. ��

For the proof of Proposition 3.2, we can replace K by a splitting field L of
P . (The statement “gcd(P, P ′) = 1” does not change if we replace K by L.)
So we can assume that P decomposes,

P = (X − α1) . . . (X − αn).

But then Proposition 3.2 is trivial, since P is square-free iff it has no multiple
roots, and this means that the discriminant is different from zero. ��
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4. Algebraic Function Fields

Let K be a subfield of the field Ω. For a subset M ⊂ Ω, we use the following
notations:

a) K〈M〉 is the smallest K-subvector space of Ω which contains M.
b) K[M] is the smallest subring of Ω which contains K andM.
c) K(M) is the smallest subfield of Ω which contains K andM.

We are mainly interested in the case where

M = {x1, . . . , xm}

is a finite set. Then

a) K〈x1, . . . , xm〉 =
∑m
i=1Kxi;

b) K[x1, . . . , xm] = {P (x1, . . . , xm); P ∈ K[X1, . . . , Xm]};
c) K(x1, . . . , xm) = {a/b; a, b ∈ K[x1, . . . , xm], b �= 0}.
(This field is naturally isomorphic to the field of fractions of K[x1, . . . , xm].)

We call Ω finitely generated as a ring over K if

Ω = K[x1, . . . , xm],

and finitely generated as a field over K if

Ω = K(x1, . . . , xm)

for suitable elements x1, . . . , xm.

Definition. The field Ω is called an algebraic function field over K if it is finitely
generated as a field over K.

The Transcendental Degree.

Let x1, . . . , xm be elements of Ω. There is a natural homomorphism of the
polynomial ring in m variables into Ω,

K[X1, . . . , Xm] −→ Ω, P �−→ P (x1, . . . , xm).

Its image is K[x1, . . . , xm]. The elements x1, . . . , xm are called algebraically
independent if this homomorphism is injective. Then K[x1, . . . , xm] is isomor-
phic to the polynomial ring. The field K(x1, . . . , xm) is then isomorphic to the
field of rational functions (This is the quotient field of the polynomial ring.)

By the way, all of the homomorphisms which we consider here keep K
elementwise fixed.
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4.1 Lemma. n + 1 polynomials in n variables over a field K are always
algebraically dependent (which means not algebraically independent).

This lemma is not deep, but it is not trivial. We skip a proof of it. ��
The next statement follows from 4.1.

4.2 Lemma. If a field Ω can be generated over K by m elements, i.e.
Ω = K(x1, . . . , xm), then m + 1 elements of Ω will be algebraically dependent
over K.

As a consequence, in an algebraic function field there exists a maximal number
of algebraically independent elements. This maximal number is called the
transcendental degree of the function field,

n = tr(Ω/K).

So, we can say that in an algebraic function field of transcendental degree
n, there exist n algebraically independent elements. n + 1 elements are alge-
braically dependent. A system of n algebraically independent elements is called
a transcendental basis of Ω/K.

Not quite obvious (but not deep) is the following fact.

4.3 Lemma. Let
Ω = K(x1, . . . , xm)

be an algebraic function field. Any maximal algebraically independent subsystem
of x1, . . . , xm is a transcendental basis.

Algebraic Extensions

An element x ∈ Ω is called algebraic over K if there exists an equation of the
kind

xn + an−1x
n−1 + . . .+ a0 = 0, aν ∈ K, 0 ≤ ν < n.

A field extension Ω/K is called algebraic if each element is algebraic over K.
It is called a finite (or finite algebraic) extension if, in addition, Ω is finitely
generated over K. This means that a finite algebraic extension is the same as
an algebraic function field of transcendental degree 0.

4.4 Remark. The following two statements for a field extension Ω ⊃ K are
equivalent:

a) Ω is a finite algebraic extension over K;
b) Ω is a finite-dimensional K-vector space.
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Proof.
a) ⇒ b). Let Ω = K(x1, . . . , xm). The elements xν (1 ≤ ν ≤ m) satisfy
polynomial equations of some degree ≤ N . It is easy to show that the K-
vector space Ω is generated by the elements

xν11 . . . xνm
m , 0 ≤ ν1, . . . , νm < N.

b)⇒ a). Let x ∈ Ω. The powers

1, x, x2, . . . , xm

are linearly dependent if m is large enough. ��
We call

[Ω : K] := dimK Ω

the degree of the finite algebraic extension. If it is monogenous, i.e. Ω = K[x]
for a suitable x ∈ Ω, then [Ω : K] is the minimal degree of a nonzero polynomial
with root x.

The characterization b) shows the following.

4.5 Remark. Let K ⊂ L and L ⊂ Ω be two finite algebraic extensions; then
K ⊂ Ω is also a finite algebraic extension and we have

[Ω : L][L : K] = [Ω : K].

The following theorem is an important result of elementary algebra.

4.6 Theorem (theorem of the primitive element). Let Ω ⊃ K be a
finite algebraic extension, and let K (and then also Ω) be of characteristic 0
(n · 1 �= 0 for n ∈ N). Then this extension is monogenous:

Ω = K[x], x ∈ Ω suitable.

An important consequence of the theorem of primitive element states the fol-
lowing.

4.7 Proposition. Let Ω ⊃ K be an algebraic field extension of characteristic
0. Assume that there exists a number N ∈ N such that each x ∈ Ω satisfies a
polynomial equation of degree ≤ N . Then Ω/K is a finite algebraic extension.

If Ω/K is an algebraic function field and x1, . . . , xn a transcendental basis, then

Ω ⊃ K(x1, . . . , xn)

is a finite algebraic extension. Using the theorem of the primitive element, we
obtain the following result.
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4.8 Proposition. An algebraic function field of transcendental degree n over
a field K of characteristic 0 can be generated by n+ 1 elements.

Final Remarks

Let Ω = K(x0, . . . , xn) be a function field of transcendental degree n; then
there exists an irreducible polynomial P (= prime element) in the polynomial
ring of n+ 1 variables with the property

P (x0, . . . , xn) = 0.

This polynomial essentially determines the field extension, since Ω is isomorphic
to the quotient field of the factor ring

K[X0, . . . , Xn]/(P ).

But P depends on the choice of the generating system.
Even in the case n = 1 and K = C it is a complicated problem to decide

when two polynomials lead to the same function field. For each function field
of transcendental degree one, there exists a compact Riemann surface X and
an isomorphism

K
∼−→M(X) = field of meromorphic fucntions on X,

which fixes C elementwise. Two function fields of transcendental degree one
over C are isomorphic if and only if the corresponding Riemann surfaces are
biholomorphically equivalent. Torelli’s theorem says that this the case if and
only if the corresponding period lattices are equivalent (in a sense which has
to be made precise). This, historically, was the starting point for the interest
in abelian functions and higher modular functions.
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biholomorphically equivalent 17
biholomorphy class 155
bimeromorphic 423
bordered case 91
boundary behavior 71
— component 139
— condition 76
— edge 218
— gluing 218
— integral 111, 135
— point 5
— value distribution 75
— — problem 63, 75
bounded homotopy 230
branch point 37

Canonical basis 255
— class 248f
— curves 228
— divisor 248
— lattice basis 378
— system 228, 235
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Cartesian power 421
— product 413
Casorati Weierstrass 159
Cauchy’s integral formula 56
— — theorem 140
chain rule 52, 124, 312, 431
character 369, 458
characteristic 389
character square 478
chart 13, 412
— transformation 13, 412
Chinese remainder theorem 451
classification 152
closed 5
— annulus 92
— differential form 344
closure 5
co-differentiation 353
cohomology group 169
combinatorial data 214
— scheme 211, 237
commensurable 378
commutator 463, 465
compact 8
completion 41
complex coordinates 342
— Fourier series 392
— functional determinant 404
— Jacobian 273, 312
— space 260
— subspace 260
— torus 355
concrete Riemann surface 32
conformal 17
conformally equivalent 17
congruence subgroup 286, 433
— subgroups of level two 446
conjugate form 453
— group 459
— multiplier system 433, 458
connected 10
— component 11

connectedness theorem 35
content 487
continuity of roots 278
continuous 5
— square roots 432
convergent sequence 10
coprime 486
countability 88
Cousin distribution 330
covering 46
— theory 36
Cramer’s rule 430
cumulation point 20
curve 10, 30
curve-lifting property 171, 182
cusp 286

Deck transformation 142, 174
— — group 142, 156, 174
decomposition into eigenspaces

465
degenerate 374
degeneration locus 271, 374f
degree 171, 193, 483
— of a differential form 121
— — a divisor 246
de Rham complex 352
derivative 489
differentiable surface 126
differential 121
— form 120
— form, degree of 121
— of the first kind 191, 231
dimension 248
Dirichlet boundary value problem

54, 66
— principle 54
discontinuously 154
discrete 154
— topology 216
discriminant 38, 328, 488
disk 80, 104
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— two-gon 78
divisibility 483
division theorem 317, 321, 323
— with a remainder 320
divisor 245
— class group 247
Dolbeault complex 355
Dolbeault’s lemma 345
domain of holomorphy 414
dual lattice 349, 396

Edge 205, 211
elementary 143
— differential of the second kind

191
— — of the third kind 191
— divisors 380
— divisor theorem 378
— domain 54
— matrix 378
— Riemann surface 143
— symmetric 278, 421, 488
elliptic 155
embedded 443
endpoint 164
enforced zero 476
equivalence relation 215
essential singularity 162
Euclidean algorithm 436, 485
— metric 11
Euler number 208, 237
even characteristic 455
— permutation 211
exceptional isomorphism 460
— point 71
exhaustion 80
extended maximum principle 114
exterior boundary 82
— derivative 341
— vertex 218
external space problem 80

Factor group 247
factorial 485
factor ring 442
— torus 376
fiber 274
field 20
fillable 167
filling 168
finite algebraic 197, 491
first homotopy group 166
— kind 231
fixed field 419
— point 152
formal power series 302
Fourier coefficient 353
— series 349
free action 175
— homotopy 230
freely homotopic 230
Frobenius’s theorem 258
function, algebraic 35
functional equation 386
function element 27, 180
fundamental domain 441
— — of the elliptic modular group

467
— group 163, 166, 176, 217, 228
— parallelogram 348, 392
— set 468, 470

Galois 195, 418
— covering 174, 183, 419
— theory 420
Gauss’s lemma 435
generalized upper half-plane 427,

431
generators 441
generic fiber 196
genus 208
gluing 76, 215
— lemma 330f
— of boundary edges 218
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graded ring 393
greatest common divisor 484, 486
Green 115
Green’s function 95, 145
group 166
— of divisor classes 270

Half integral weight 432
harmonic 54, 56, 68
— function 54
— measure 100
Harnack 61
— inequality 61
Harnack’s principle 61, 76, 85
Hartogs 301
Hausdorff 8
height 467
Heine–Borel 8
Hermitian form 365
higher differential 279
Hodge number 355
— theory 352, 355
holomorphic differential 184
— primitive 189
— square root 432
homeomorphic 7
homomorphism 200
homotopic 164
— version 232
homotopy 164
— class 166, 176, 257
— lifting 171
horocycle 286
Hurwitz 208
hyperbolic 95, 99, 147
— case 95, 145
hyperelliptic 235, 424

Identity theorem 20, 68, 301
Igusa’s congruence subgroups 462
improper integral 63
indecomposable 484f

index formula 451, 461, 464
indices 449
induced topology 3
integral domain 483
— symplectic matrix 259
interior boundary 82
intersection pairing 257
inverse curve 164
inversion problem 270
invertible functions 312
irreducible 37
— polynomial 37
irregularity 295
isomorphism of groups 167

Jacobi 261
— inversion problem 270
— — theorem 271, 422
— map 423
— matrix 404
— variety 261f

Klein’s lambda function 163
Koecher’s principle 435

Lambda function 163
Laplace operator 353f
lattice 21, 152, 348
Laurent expansion 103, 393
left coset 459
Leibniz 60, 333
Lemma of Poincaré 345
level 430
Lie 427
— group 427
line integral 124
locally arcwise connected 172
— topological 272
logarithmically singular 119, 147

Main theorem for abelian groups
378

manifold of lattices 383
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mapping group 463
maximum metric 5, 11
— principle 59, 69, 93, 301
— principle, extended 114
mean value theorem 11
meromorphic 314
— differential 184
— function 414
metric space 88
midpoint property 58f, 117
minimality property 98
Minkowski’s reduction theory 466
minor 431
Möbius transformation 152, 159,

183
modular form 433
— group of degree n 430
— space 4
moduli 383
monodromy theorem 144
monomial 406
Montel’s theorem 159f
multicanonical form 279
multi-index 303
multiplicative gluing lemma 331
multiplier system 433
multiradius 306
— of convergence 306
multivalued function 27

Negative weight 440
neighborhood 5
Neron Severi group 371
Nevanlinna 55, 103, 117
Nevanlinna’s lemma 103, 234
nondegenerate 373f
nondegenerateness theorem 396
nonunit 318
normal form 222, 226, 363
normalized solution 80, 101
normally convergent 306
normal subgroup 183

nullhomotopic 165

Odd characteristic 455
open 3
opposite orientation 217
ordered pair 212
orientation 211f
orientation-equal 211
orientation-equivalent 130
orientation-preserving 130
— diffeomorphism 125
oriented combinatorial scheme

213, 218
— polyhedra 213
— triangulation 222
orthogonal group 155

Parameter equivalence 165
paramodular group 409, 430
partition of unity 131
partner 230
period 233, 253, 262
periodic function 349
period lattice 277
— map 233, 253, 260, 263
— matrix 238
— of a differential 233
— relation 238, 241, 264
— relations 254
permutation 211
Perron 54
Petersson 434
Pfaffian 380, 395
Picard 159
Picard’s theorem, big 159
— — little 159
piecewise smooth 243
— smoothness 243
Poincaré 344
— group 166
Poincaré’s analytic lemma 345
Poisson 56
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— integral 54, 66
— — formula 56, 65
— kernel 58, 60
polar coordinates 351
polarization type 410
polarized 408
— abelian manifold 409
polyannulus 311
polydisk 306
polyhedra 204
polyhedral 219
polyhedron 205
— theorem 237
polynomial ring 303, 483
positive 431
— definite 388
positively bounded 55
power of a prime 450
— series expansion 301
— sum 278
preparation theorem 317, 323
prime 485
— element 484
primitive 103, 487
— element 492
— polynomial 487
principal congruence subgroup

155, 430
— — subgroup of level two 447,

460
— divisor 247
— subdeterminants 431
product topology 4
projection 413
proper 9
pull-back of differential forms 128
punctured disk 152

Quasi-Hermitian 364
— form 365
quotient field 316
— set 219

— space 4, 215
— topology 4, 271

Radius of convergence 29
ramification 192, 208
— order 192, 208
— point 192
ramified 419
real analytic 302
— Jacobi matrix 123
— torus 352
reciprocal curve 164
reduced 337
reduction theory 466
regular allocation 28, 181
Reinhardt 310
— domain 310
relatively compact 69
removability theorem 416
residue 188
— of a differential 188
— theorem 188
Riemann 208
Riemann–Hurwitz ramification

formula 208, 237
Riemannian form 364, 372
Riemann–Roch inequality 248
— theorem 231, 245, 249
Riemann sphere 7
— surface 13
ring of cosets 430
— — modular forms 475
rough classification 152

Satellite 453
Schottky problem 260
Schwarz 58, 74
— alternating method 54
— integral formula 58
semipositive 372, 435
sequence closed 10
— compact 10
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— continuous 10
set of periods 233
several periods 276
sheaf 26
sheet number 171
Siegel 427
— modular form 427
— — function 427
Siegel’s modular group 427
sign factor 339
simply connected 143f
single-valued 425
singularity problem 55
skew commutative 340
smooth 109
— differential 244
— parametrization 244
specialization 438
special orthogonal group 155
splitting field 488
square-free 327, 489
stabilizer 458
standard triangle 204, 215
starting point 164
stereographic projection 7
Stokes 109, 120, 138
Stokes’s theorem 109, 120, 138,

189, 241
subspace topology 3
successive analytic continuation

28
sufficiently connected 176
support 131, 360
surface integrals 130
symmetric bilinear form 365
— power 270, 278, 421
symplectic 256, 428
— group 427
— modular group 256
— relations 430
— substitution 428

Tetrahedron 206
— triangulation 213
theorem of Liouville 373
— — the primitive element 197,

492
theta characteristic 455
— function 363, 372
— group 457
— multiplier system 457
— nullwert 453
— series 384, 452
— square 481
— theorem 408
— transformation formula 456
topological classification 227
— genus 227
— invariant 208
— map 7
— model 218
topology 3
Torelli 260
Torelli’s theorem 260
torsion-free 375
torus 4, 21, 210
total derivative 185
— differential 186, 338
totally complex differentiable 311
transcendental basis 491
— degree 403, 490f
transformation of differential forms

122
— property 386
transition functions 330
triangle 205, 211
triangular area 205
— matrix 443
triangulation 204f
trivial multiplier system 434

UFD ring 485
uniformization theorem 106, 143
— theory 162
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unimodular matrix 379
unit 329, 484
universal 173
— covering 170, 173
usual topology 19

Vertex 205, 211
vertices 205
Vieta theorem 325

Weierstrass 28
— polynomial 320
— preparation theorem 317
winding number 217

Zero boundary 100
zero-bounded 55, 113
— case 113, 147
zero divisor 249, 483
— set 330
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