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PREFACE

Every mathematician needs to know advanced calculus. Some courses on the subject
emphasize practical applications and problem solving. Others stress the rigorous
exposition of a standard set of topics: basic topology and continuity, differentiation
and integration of functions of several variables, and calculus on manifolds. This
book combines a strong theoretical grounding in each of these topics with applications
to a wide variety of problems and examples.

The book is aimed at the second-year undergraduate level. Indeed, the material
presented here evolved over many years of teaching a course at this level at the
University of Toronto. Students in the course tend to be specialists in mathematics,
computer science, physics, and related areas. Thus, the book presupposes a good
understanding of first-year (one-variable) calculus and linear algebra, as well as a
certain level of comfort with a rigorous style of proof.

The most distinctive characteristic of the book is its geometric approach to central
concepts, theorems, and applications. Geometric intuition is essential for both the
theoretical and practical aspects of advanced calculus and for the subsequent study
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of analysis. Our aim throughout the book is to cultivate this intuition as we present
the theorems and their applications.

As the title suggests, we believe that the geometric character of advanced calculus
is most effectively conveyed in the vector space setting. Following two introductory
chapters that supply background information on set theory and basic properties of
the real numbers, Chapter 3 provides a thorough review of linear algebra. A notable
feature of the chapter is a geometric version of the spectral theorem. This version
gives a direct proof of an important property of determinants: they are the "volume
multipliers” associated with linear transformations. The spectral theorem also gives
a simple geometric picture of orthogonal projections between the subspaces of a
Euclidean space. This has applications in the later study of manifolds.

Chapter 4 discusses normed vector spaces. A normed vector space is an ordinary
vector space equipped with a norm, a well-behaved function that assigns a nonnegative
"length" to each vector. Basic topological concepts— convergence, continuity, and
compactness—are presented in this setting. There is often more than one natural
choice for a norm, but it is shown that all norms on a finite-dimensional vector space
are equivalent: they define the same topological notions. This fact is useful in later
applications.

This preparatory material allows us to define derivatives, in Chapter 5, in the general
setting of normed spaces rather than just on R™. Differential calculus is the study of
functions between normed vector spaces that behave locally like linear transforma-
tions. In fact, the derivative at any point is just a linear transformation. The chapter
highlights the idea of approximation through mean value theorems, which allow us
to estimate the increments of a function in terms of increments of the approximating
linear transformation.

In Chapter 6 we prove the inverse function theorem, a fundamental result of differ-
ential calculus. The theorem also provides an excellent illustration of the proper role
and limitations of geometric intuition in analysis. The theorem states a fact that may
seem obvious: if the derivative of a function at a point is an invertible linear trans-
formation, then the function itself is invertible in a neighborhood of that point. This
fact should seem obvious because the one-dimensional special case is easily proven.
Yet the general proof of this "obvious" fact, in n dimensions, requires careful and
involved analysis. Thus, while our geometric intuition may point us in the direction
of a correct result and may even give us hints as to the proof, the actual proof often
requires hard work and ideas that are not at all obvious. Chapter 6 also introduces
manifolds, defined here as generalizations of graphs.

Approximation by a linear transformation corresponds to approximation by a first-
degree polynomial. Better approximations require higher-degree polynomials. These
considerations lead to higher-order derivatives, Taylor polynomials, and Taylor series.
These concepts are introduced in Chapter 5 for vector-valued functions of a single
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variable and in Chapter 7 for functions of a vector variable. The definition of higher-
order derivatives is considerably more complex for vector variables than for single
variables. Chapter 7 may be considered optional, as later material does not depend
upon this chapter in any essential way.

Our discussion of the theory of integration begins in Chapter 8. We take volume as
the fundamental concept here, and our strategy is based on Archimedes’ approach
to defining volume more than two thousand years ago. The same approach leads to
a rigorous definition of the integral of a function as the volume under its graph. A
central result of this chapter is the change of variable theorem in integration. Like
the inverse function theorem, this is another highly plausible result that requires hard
work to prove.

The final two chapters deal with integration on manifolds and Stokes’ theorem. We
restrict our attention to manifolds in Euclidean spaces. The content (or volume) of
subsets of a manifold is usually defined using change of variables. Chapter 9 develops
this idea in detail and explains how it is naturally extended to the integration of vector
and tensor fields on manifolds. The final part of the chapter offers an alternative,
geometrically motivated definition of content on a manifold. Content of subsets of a
manifold can be defined directly from the volume function on the larger Euclidean
space in which the manifold is embedded. This geometric approach to content on
manifolds agrees with the usual definition in important cases, and it also extends to
cases not easily dealt with by the ‘change of variables’ approach.

Chapter 10 presents two distinct approaches to Stokes’ theorem. The first approach
shows how a special case of the theorem is a direct generalization of the fundamental
theorem of calculus. The second approach, directed towards the same special case, is
offered in the spirit of the original classical analysis in terms of the flows generated
by vector fields. The remainder of the chapter shows how the special case can be
transformed into more general tensor and vector formulations of Stokes’ theorem.
It should be noted that both of our approaches are different from the formulation of
Stokes’ theorem in terms of differential forms. That approach is elegant and very
general, but we leave it for a later course.

Many of our important proofs and examples favor a more lengthy explanatory style
than is common in other mathematics texts. Working through these arguments and
solving the many problems in the book is the key to mastering a subject which is both
a source of interesting and enjoyable problems and central to more advanced work in
mathematics.

This book has taken shape over many years, during the course of which many indi-
viduals have made significant contributions. We received many valuable suggestions
from our colleagues, including Edward Bierstone and Andrés del Junco (who has our
special thanks for using early versions of the book in his courses). We acknowledge
with gratitude the supportive staff of the mathematics department at the University
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of Toronto, and in particular we thank Marie Bachtis, Pat Broughton, Ida Bulat, Anu
Mohindra, Betsy Moshopoulos, and Karin Smith for their help. We appreciate the
encouragement of the editors at Wiley and the many helpful suggestions of several
anonymous reviewers. Two former students, Karhan Akcogiu and Dennis Hui, have
our deepest gratitude for revising and contributing to early versions. Finally, this
book would not have been possible without input from our long-suffering students.
It is to them, and to future mathematics students, that we dedicate this book.
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CHAPTER 1

SETS AND FUNCTIONS

This first chapter introduces the notation, terminology and basic concepts needed
for what lies ahead. We review some basic facts about sets in general, about sets
of numbers, and about functions. We also take the opportunity to introduce some
elementary functions of several (mainly two or three) variables that will be used in
several examples in later chapters.

1.1 SETS IN GENERAL

Why should we begin our discussion with sets and not with numbers? After all, most
of the sets we deal with are sets of numbers. Furthermore, the mathematical concept
of number is older than that of set and is probably more intuitive.

Even though both concepts seem to be primitive (we shall not define either), sets are,
in fact, more fundamental than numbers and can be used to generate number systems.
Today, most mathematics is based on a solid set theoretic foundation, too lengthy to
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4 SETS AND FUNCTIONS

present here. Instead, we will confine ourselves to the elements of naive set theory,”
doing little more than reviewing some standard notation and presenting a few basic
facts about sets.

Definition 1.1.1 Terminology for sets. The following are basic notations and terms
involving sets and set relations.

1. A ser is a collection of objects. If A is a set, then the objects in A are the
elements or members or points of A. The notation x € A means that x is a
member of A and x ¢ A means that x is not a member of A.

2. The set having no elements is the empty set, denoted by §. A nonempty set is
a set that contains at least one element.

3. Let A and B be sets. Then A is a subset of B if x € A implies x € B. The
notation A C B means that A is a subset of B and A ¢ B means that A is not
a subset of B. Thus, A ¢ B if and only if thereis an x € A suchthat z ¢ B.
Hence, it follows that § C B for every set B, since {} has no elements, and
hence no element x for which x ¢ B. We say that A is a proper subset of B if
A C Bandthereisan z € B suchthatz ¢ A.

4. Let X be a set. Then the power set of X, denoted by P(X), is the set of all
subsets of X.

5. If AC Band B C A, then we write A = B.

6. Let S be a set. Foreach z € S, let P(x) be a statement about x that is either
true or false. We define

{zreS|P(z)}

to be the subset of S consisting of those z in S for which P(z) is true. When
S is clear from the context, this set is also expressed as { z | P(z) }.

Example 1.1.2 Let A = {1,5,{1,5}}, B = {1,5,0}.

1. The members of A are 1,5 and {1,5}. The members of B are 1,5 and 0.

2. A ¢ Bbecause {1,5} € Abut {1,5} ¢ B. Also, B ¢ A because ) € B but
0g A

3. {1,5} is a proper subset of both A and B.
4. We have

P(A) ={0,{1}, {5}, {{1,5}}, {1,5}, {1, {1,5}}.{5,{1,5}}, {1,5,{1,5} }}.
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Note that {1,5} is an element in A so that {{1,5}} is a subset of A. Thus,
{{1,5}} is an element in P(A4) and {{1,5}} # {1,5}. Note that A has 3
elements and P(A) has 8 = 23 elements. In general, whenever X is a finite
set with n elements, P(X) has 2" elements. We can see this by observing
that every subset of X is formed by considering each element of X and either
including it or omitting it. A

Definition 1.1.3 Operations on sets. Let A, B be sets.

1. We define

AUB = {z|z€AorzeB}
ANB = {z|ze€Aand z€B}.

The sets AU B and A N B are called, respectively, the union of A and B and
the intersection of A and B.

2. If AN B = (), then A and B are disjoint scts. If AN B # (), then we say that A
and B intersect, or A intersects B, or B intersects A. The sets in a collection
of sets are called pairwise disjoint if any two (different) sets in this collection
are disjoint.

3. The complement of B in A, denoted by A \ B, is defined by
A\B={z|z€Aand z¢B}.

When all sets A, B, ... under discussion are subsets of a fixed set 5, we write
A€ for S\ Aand B¢ for S\ B. If S is left implicit, then A° = S\ Ais called
the complement of A rather than the complement of A in S.

4. The symmetric difference of A and B is defined by
ANAB = (A\ B)U(B\ A).
5. The Cartesian product of A and B, denoted by A x B, is defined by
AxB={(a,b)|lac A, be B}.

An element (a,b) of A x B is an ordered pair. Note that Ax B # B x A
unless A = B. Similarly, A x B x C = {(a,b,¢) | a € A,b € B,c € C}
consists of ordered 3-tuples. The Cartesian product of any finite number of
sets is defined in a similar way.

Basic properties of set operations are summarized in the following lemma.
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Lemma 1.1.4 The following are true for all subsets A, B and C of a set X.

(1) AUB=BUA, ANnB=BnNA.

(2) (AUB)UC=AU(BUQC),(ANB)NC=ANn(BnNC).
(3) AN(BUC)=(ANB)U(ANC).

(4) (AU B)® = A°N B.

(5) (AN B)¢ = A°U B-.
In parts (4) and (5), the complements are with respect to X.

Proof. We will prove part (3) to illustrate the general method; the other assertions
are of comparable difficulty or even easier. They are left as exercises.

Letz € AN(BUC). Thenz € Aandz € BUC. Thus, eitherz € Borz € C. If
z € B,thenz € ANB.Ifz € C,thenz € ANC. Hence,z € ANBorz € ANC.
Thatis, z € (AN B)U (AN C). Thus,

AN(BUC) < (AnB)yUANC).
Conversely, lety € (AN B)U(ANC). Theneithery €« ANBory € AnC.
If y € AN B, then of course, y € AN (B UC). Similarly, if y € AN C, then
y € AN(BUC). Thus, in both cases, y € AN (B U C). Hence,
(ANBYU(ANC) C An(BUCQO).

These two inclusions imply that (AN B)U(ANC)=ANn(BUC). O
Definition 1.1.5 General unions and intersection. Let G be a collection of sets.

Hence G is a set whose elements G are also sets. The union and intersection of the
sets in this collection are defined in an obvious way as

UGeS ¢
ﬂGeS ¢

Additional concepts and notation for dealing with collections of sets will be intro-
duced in the examples below.

i

{x|thereisa G € Gsuchthatx € G },

{zjzeGforallGeG}.
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Relations and Equivalences

Definition 1.1.6 Relations. Let A and B be sets. A relation between the elements
of A and the elements of B is a subset R of A x B. If (a, b) € R, then one says that
R is satisfied by a and b or that a is related to b by R. One may omit explicit mention
of R if this relation is understood from the context. There is an all-important class
of relations: functions. They are introduced in Section 1.3. Another important class
of relations is formed by equivalences, introduced below in Definition 1.1.9.

Example 1.1.7 Let A be a set and let B = P(A) be the power set of A. Then
R={(a,S) e AxPA)|ac S}
defines a relation between the elements of A and the subsets of A. This relation is

satisfied by a and S if and only ifa € 5. A

Example 1.1.8 Let A be a set. Then
R={UV)ePA) xPA|UCV}
defines a relation R between elements of P(A). An ordered pair (U, V) of subsets

of A satisfies this relation ifand only if U C V. A

Definition 1.1.9 Equivalences. Let Abeaset. Let £ C A x A. Then F is called an
equivalence relation on A (or an equivalence on A, or simply an equivalence when
A is clear from the context) if it has the following properties.

Reflexivity If a € A, then (a, a) € E.
Symmetry If (a, b) € E, then (b, a) € E.
Transitivity If (a, b) € E and (b, ¢) € E, then (a, ¢) € E.

If E C A x A is an equivalence, then one usually writes @ ~ b to indicate that
(a, b) € E. With this notation the properties above are expressed as follows. Let
a,b,ce A Then (1)a ~ a,(2)ifa ~ bthend ~ a, and (3)if a ~ b and b ~ c then
a ~ c. If a ~ b, then one also says that ¢ and b are equivalent (with respect to the
underlying equivalence).

Example 1.1.10 Let A be a set and let C C A. Define a relation E C A x A such
that, for any two points ¢ and b in A, (a, b) € E if and only if both a and b are in C
or both a and b are not in C. Hence let

E={(a,b)e Ax A|Either[a€ Candbe Clor[ag Candbg C1]}.



8 SETS AND FUNCTIONS
It is easy to check that F is an equivalence . A

Definition 1.1.11 Equivalence classes. Let ~ be an equivalence on A. Letp € A.
Then
[pl={acAla~p}

is called the equivalence class of p. A subset P of A is called an equivalence class
if there is a p € A such that P = [p].

Theorem 1.1.12 Let ~ be an equivalence relation on A.

(1) Let z,y in A. Then [z] = [y] ifand only if x ~ y.
(2) Two different equivalence classes are disjoint.

(3) The union of all equivalence classes is A.

Proof. Assume that z ~ y. If a € [:r], then @ ~ x. By transitivity, a ~ y. Thus,
[z] C [y]. Similarly, [y] C [z]. Hence, [z] = [y]. Conversely, if [z] = [y], then of
course, z € [y] and z ~ y. This proves (1).

Now assume that [z] N [y] # 0. We will show that [z] = [y]. Leta € [z] N [y]. Then
a ~ z and ¢ ~ y. Hence, by symmetry and transitivity of ~, we have x ~ y. Thus,
by part (1), [z] = [y]. Hence two different equivalence classes can not intersect. This
proves (2).

Finally, a € [a] for all a € A. Hence, every element of A belongs to an equivalence
class. This proves (3). O

Definition 1.1.13 Complete set of representatives. Let A be a set with an equiva-
lence. Let P be an equivalence class. Any point p € P is called a representative for
P. A subset R of A is called a complete set of representatives if each equivalence
class has exactly one point in R as its representative.

Example 1.1.14 Let A be a set and let C be a subset of A. Let ~ be the equivalence
defined in Example 1.1.10. Then C and A \ C are the only two equivalence classes.
If both C' and A \ C are nonempty, then any two-point set consisting one point from
C and one point from A \ C is a complete set of representatives. A

Example 1.1.15 Let X and Y be sets and let Z = X x Y. Define a relation ~ on
Z as follows: (x,y) ~ (z,y’) forallz € X and all y,y’ in Y. We verify easily that
this relation is an equivalence on Z. Let b € Y be a fixed pointin Y. It is easy to see
that X x {b} is a complete set of representatives for this equivalence. A
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Problems

1.1  Give an example of a family of sets such that any two sets in the family intersect
(that is, they have nonempty intersection) but the intersection of all the sets in this
family is empty.

1.2 Let A be a collection of subsets of a set X. Show that

(Uaead) =NaeaA®and (MNycq4)° = Usea 4
Hence, (AU B)° = A°N B°and (AN B)° = A°U B°.

1.3 If A is a collection of subsets of a set X and if B C X, then show that
(UAEAA) nB = {J, ,(AnB)and
(ﬂAEAA) VB ﬂAeA(A Y B).

1.4  Show that AAB = (AU B) \ (AN B). Deduce that AAB = ( if and only if
A= Band AAB = X if and only if B = A°.

il

1.5  Show that AAB C (AAC) U (CAB) for any three sets. Give an example to
show that in general the inclusion is a proper inclusion.

1.6 A collection of subsets of a set X is called an algebra of sets if it satisfies the
following three conditions:

1. X e A;
2. if A € A, then also A° € A,
3. if A,Bc A, thenalso AU B € A.

Show that if A is an algebra of sets and if A, B € A, then AN B, A\ B,and AAB
are also in A.

1.7 A collection of nonempty subsets of a set X is called a partition of X if the
sets in this collection are pairwise disjoint and if their union is X. Show that any
partition is the family of equivalence classes with respect to an equivalence on X.

1.8 Let A be a partition of X and B a partition of Y. Show that the family
C={AxB|Ac€A, BeB}

is a partition of X x Y.
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1.2 SETS OF NUMBERS

In this course we will deal mainly with sets of numbers. We shall assume that the
set of natural numbers, N, the set of integers, Z, the set of nonnegative integers, 7%,
and the set of rational numbers, Q, are familiar. These sets are

N = {1,2,3,...},
Z = {..,-2-1,0,1,2,...},
Zzt = {0,1,2,...},
Q = {a/bla,beZ,b#0}.

We shall assume that the reader is acquainted with the addition and multiplication
operations and the order relations on these sets. Another familiar set of numbers is
R, the set of real numbers. Note that N C Z+ C Z Cc Q C R. We will discuss R in
some detail in Chapter 2. However, we shall assume that the basic properties of the
real numbers are familiar. These properties are used below to give other examples of
sets of numbers.

Intervals in R

Example 1.2.1 Intervals. Four basic types of unbounded interval are defined in
terms of a number p € R. These intervals are, in standard notation,

[p,o0) = {reR|p<r}, (p,oo) = {reR|p<r},
(moo,p] = {reR|r<p}, (moo,p) = {reR|r<p}.

Intersections of these intervals give other types of intervals. For example, again in
standard notation,

[a,b)={(—00,b)N{a, 0)={teR|a<t<b}.
Here a and b are two fixed numbers in R. Note that [a, b) = 0ifb < a. A
Example 1.2.2 Collections of intervals. Let r > 0 be a fixed number. For each
aceRletl,=[a—r,a+r). Thend = {I,|a € R }is a collection of intervals.

Denote this collection as {, },cr and the union and intersection of the intervals in
this collection as U,er 1, and Nyerl,. Obviously,

Userle =R and ), cpgla =0.

We can also consider subcollections of this collection. For example, {I,}o<a<1 i8
such a subcollection. We see easily that

U0§a§1 I,=[-r,1+7r) and nogagl Iy=[1~r7).
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Hence (V<o ida = 0if 1 —r > 7, thatis, if r < 1/2. A

Examples 1.2.3 Lines and half-planes in R?. We consider R? = R x R as the
usual zy-plane. It consists of all ordered pairs (z, y), with z, y € R. A line in R?
is a set of the form L = { (z, y) € R? Az + By + C =0 }, where A, B, and C
are three fixed numbers in R and at least one of A or B is nonzero. A line divides
R? into three pairwise disjoint sets

L = {(&yeR’[ Azt By+C=0},
H = {(z,y)€eR’|Az+By+C>0},
Hy = {(z,y)eR*|Az+By+C<0}.

Here H; and H, are the two half-planes bounded by the line L. We may refer to
them as the lower and upper half-planes or as the left-hand and right-hand half-
planes, depending on the position of L. Finally, one may also refer to the equation
Ax 4+ By+ C =0asaline. A

A
y A y ._Jff

=Y
Y

Figure 1.1.  Triangle in Example 1.2.4. Figure 1.2. Region in Example 1.2.5.

Example 1.2.4 Let R C R? be the triangle in the zy-plane bounded by the lines
z =0,y =1, and x = y (see Figure 1.1). Specify R by a set of inequalities.

Solution. We see that R is the intersection of the following three half-planes. (1)
The right-hand side of z = 0, (2) the lower part of y = 1, and (3) the upper part of
z =1y. Hence (z, y) € Rifandonlyif x > Oand y < 1 and y > z. We can express
this more concisely as

(z,y) € Rifandonlyif 0 <z <y <1,
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Here we have assumed that R contains the inside, the edges, and the vertices of this
triangle. The inside of R without the vertices and without the edges corresponds to
therelation0 <z <y < 1. A

Example 1.2.5 Let R be the region in the zy-plane that lies in the first quadrant (that
is, z > 0 and y > 0) and is between the hyperbolas zy = 1, zy = 2, and bounded
by the lines 2y = z, y = 2x (see Figure 1.2). Specify R by a set of inequalities.

Solution. The region in the first quadrant that is between the hyperbolas zy = 1 and
xy = 2 is specified by the conditions that z > 0 and 1 < zy < 2. Similarly, the
region in the first quadrant that is between the lines 2y = x and y = 2z is specified
by the conditions that x > 0 and 1/2 < y/x < 1. Hence we see that (z, y) € R if
and only if

1<zy<2andl/2<y/z<2andz>0. A

Remark 1.2.6 Note that in the last two examples we have used undefined (yet
intuitive) terms like bounded by and upper part. In such cases, the final formal
statements in terms of inequalities may be considered as the definition of these
intuitive terms.

Discs in R?

Example 1.2.7 Collections of discs. Let r > 0. If (a, b) is a point in the zy-plane
(i.e., a point in R?), then let

D,(a, b) = { (z, y) € R? } (x—a)’+(y-b)2<r? }
be the (open) disc of radius r about the point (a, b). This notation is convenient

because we shall often need to refer to open discs, just as we often refer to intervals
in R. We see easily that

U (o, pyer2 Dr(a, b) = R? and N (@ byerz Dr(a; b) = 0.

It may require some work to identify
U(G, r) = U4, nyec Dr(a, b) and I(G, 7) = (4 nyec Dr(a, b)
for various regions G in the zy-plane. If
G:{(a,b)GRQ{cﬁ—l—bQ:l}

is the unit circle about the origin, for example, then

_ (1-r?<@@+y)<1+r)?} ifr<i

viG,r) = { (a:2+y2)<(1+r)2} ifr > 1,

ifr <1
| (#2+9?) < (r—1)?%} ifr>1

P
G, r)y = {?(:c y)
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In obtaining these results, it is helpful to keep in mind the geometric interpretation
of the above sets. For example, U(G, r) is the set of all points in the plane that have
a distance less than r to a pointin G. A

The Induction Principle

There is an “obvious” property of N called the well-ordering property. Since this
property does not follow formally from the rules of the order relation, it is stated as
an axiom for N.

Axiom 1.2.8 The well-ordering axiom. Any nonempty subset of N contains a
smallest element. More explicitly, if 7 C N and if 7" is not empty, then there is an
n € T suchthatn < mforallm e T.

The well-ordering of N implies the induction principle for N.

Theorem 1.2.9 Induction principle. Let S C N. Suppose that 1 € S and that
k+1¢€ Swheneverk € S. Then S = N.

Proof. Assume, on the contrary, that S # N, Let T = N\ S. Then T is a nonempty
subset of N. Hence, by the well-ordering axiom, there is a smallest element a in 7.
Since ¢ & S and 1 € S, we must have a > 1. Thus, a — 1 € N. Since a is the
smallest element in 7", we must have a — 1 ¢ 7. Hence, a — 1 € S. By property 2,
we havea = (a — 1) + 1 € S, a contradiction. O

Example 1.2,10 Let S C Z. Assume that @ € S and that £ + 1 € S whenever
ke S. Showthat {a+k|keN} CS.

Solution. SetT = {k e N|a+k € S }. We will show that T = N. First, since
a€ S,wehavea+1€ S. Hence,1 € T. Assume that k € T. Thena +k € S.
Hence, by assumption, a + (k+ 1) = (a+ k) +1 € S. Thus, £+ 1 € T. By the
induction principle, T = N. A

The following example shows how the induction principle gives us the familiar
method of proof by induction. The idea is to prove that some result holds for n =1
(the base case) and to show that if it holds for n, then it holds for n + 1 (the inductive
step).

Example 1.2.11 Showthatl +2+---+n=n(n+1)/2foralln € N.
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Solution. Let S = {neN|14+2+---+n=n(n+1)/2}. Thenl € S (the
base case). For the inductive step, suppose that n € S. Then

i

1+2+--+n+(n+1) (14+24--4+n)+(n+1)
(nin+1)/2) +(n+1)

= (n+1)(n+2)/2
shows that (n + 1) € S. Hence S = N by the induction principle 1.2.9. A
Remarks 1.2.12 Limitations of the induction principle. The induction principle
is useful in stating certain arguments in a clear and concise way. But this principle
may not be very helpful in obtaining new results. For example, the principle will not

help you to guess the result 1 + --- +n = n(n + 1)/2. To obtain this result, you
need other methods,

Definition 1.2.13 Binomial coefficients. Let r € R and & € N. Define

(g>:1’ (;)27", and (ki1>:7'(’““(1k)¥'1§?!°—k).

These are the general binomial coefficients. These expressions will be used in

examples and later in the discussion of multilinear functions. If » € N, then ( Z )

is the number of ways to select k£ objects from a collection of 7 objects.

Problems

1.9 Express the set
C={zeR|0<a’~5c+4<10}CR
in terms of intervals.

1.10 There are four bounded regions in the zy-plane bounded by the lines y = =
and y = 2z + 1, and by the ellipse 22 + 432 = 16. One of these regions is

{(z.y)eR? |2 + 4> <16andy >zandy > 2z +1}.
Express the other three regions similarly.

111 Let G = {(z,y) €R?|-1<x <1, -1<y<1}. Consider the sets
U(G, 1) and I(G, 1) defined in Example 1.2.7. Express these sets in simpler terms.
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1.12  Let (a1,b;), (as,b2) be in U(C,r). Consider R? as the xy-plane and use
the customary vectorial notations. A subset C' of the zy-plane is called convex if
whenever C contains two points {a1, b1) and (az, b}, then C also contains all the
points on the line segment joining these points. Let C be the set of all points (z, y)
that can be expressed as

(‘Tv y):p(17 O)+Q(2a 0)+T(O7 2)+3(—1’ _1)3

where p, ¢, r and s are all nonnegative and p+ ¢+ r + s = 1. Show that C is a
convex set and describe it in simpler terms.

1.13 Define arelation D C Z x Z as
D={(a,b)€Z xZ|Thereisak € Zsuchthata = kb } .

This relation is called divisibility: (a, b) € D just in case a is divisible by b. Show
that divisibility is reflexive and transitive but not symmetric.

114 Letp € N. Define a relation C, C Z x Z by
CP:{(aﬂb)ezxzx(a_bap)ED}7

where D is the divisibility relation defined in Problem 1.13. This relation among the
integers is called congruence modulo p.

1. Show that congruence modulo p is an equivalence on Z.
2. Show that there are exactly p equivalence classes for this equivalence.

3. Show that the set of integers
R={1,2,...,p}
is a complete set of representatives for congruence modulo p.

4. What is the equivalence class represented by k € Z?

1.15 Define a relation ) C R x R by the condition that (r, s) € C} if and only if
(r — s) € Z. This relation among the real numbers is called congruence modulo 1.

1. Show that congruence modulo 1 is an equivalence on R.

2. Show that the interval

R=[0,1)={teR|0<t<1}
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is a complete set of representatives for congruence modulo 1.

3. What is the equivalence class represented by ¢t € R ?

Note. Let p € N, p > 2. Congruence modulo p can be defined on R, but this is not
customary.

1.16 Define a relation among the points (z, y) € R? as follows. A point (z, y)
is related to a point (z’, 3/) if and only if z? + y? = 2/ + 32, Show that this
is an equivalence. What are the equivalence classes? What is a complete set of
representatives? Is the z-axis

{(z,00eR*|z=0}
a complete set of representatives? Why or why not?

1.17 Define a relation among the points (z, y) € R? as follows. A point (z, y) is
related to a point (z/, ') if and only if zy = x’y’. Show that this is an equivalence.
What are the equivalence classes? What is the equivalence class containing the origin
(0, 0) ? What is a complete set of representatives? Is the line

{(z.y)eRz=y}
a complete set of representatives? Why or why not?
1.18 Let C'be a convex set in the xy-plane (see Problem 1.12) and let r > 0. Show
that the sets U(C, r) and I{C, r) are also convex, with the notation of Example
1.2.7. (Hint for the convexity of /(C, r): show that the intersection of any family of

convex sets is convex.)

1.19 Letn € N. Show by induction that 4® — 3n — 1 is divisible by 9. (Divisibility
is defined in Problem 1.13.)

1.20 LetrcRandn e Z*t.

()0 =0 )

2. Use the induction principle to show that for all integers n > 0,

z::0<r—lzk>_<r+z+l >

1. Show that
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1.21  (Binomial Theorem) Let a, b € R and n € Z*. Use the induction principle

to show that
n_ " n n—kpk
(a+b) —Zk:()(k)a b .
122 Letr, s€ Randn € Z". Show that
Zn T S [ r+s
k=0 \ k n—k ) n '
1.23 Letn € N. Showthat ) ;_, k% = (1/6)n(n+ 1)(2n + 1).

1.3 FUNCTIONS

The concept of a function is one of the most important ideas in mathematics. Func-
tions are certainly of paramount importance in analysis. A function from a set X to
a set Y is a special type of relation between the elements of X and Y. A subset of
X x Y that defines a function is called a graph.

Definition 1.3.1 Graphs. Let X and Y be nonempty sets. A subset ' of X X Y is
called a graph if, whenever (z, y) and (z, 3’) are both in I', then y = 3. Hence I"
is a graph if for each € X there is at most one point (z, y) € I'. The domain of T,
denoted by Dom T, is defined by

Dom[ = {z € X |thereisay € Y suchthat (z, y) €T }.

Also, the domain space of I is X and the range space of T'is Y.

Definition 1.3.2 Functions. Let I' C X x Y be a graph and let D = DomI". The
relation defined by this graph I is called a function f : D — Y from Dto Y. Itis
customary to denote graphs and functions by different symbols. What distinguishes
a function f from a general relation is the condition that each € D is related to a
unique point y € Y by f. One calls y the value of f at x, or the image of x under
f, and one writes this as y = f(x). If x € D, then one also says that f is defined at
x. The domain D of T" is also called the domain of f and denoted as Dom f. The
domain space of f is X and the range space of fis Y.

Remark 1.3.3 Roles of X and Y. Note that the sets X and Y are not uniquely
determined by the function f. In fact, X can be any set containing the domain of f,
and Y can be any set containing all the values of f. They do determine, however, the
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nature of the function under consideration. If X = Y = R, for example, then we are
dealing with a real-valued function defined on a set of real numbers. Also, the sets
X and Y are important for defining bijections in Definition 1.3.20 below.

Remarks 1.3.4 Role of the graph, The formal definition of a function given above
in Definition 1.3.2 is satisfactory but rarely used in the actual statement of a function.
One usually defines f(xz) for a general point = by an explicit rule or computational
formula. Nevertheless, the graphical definition of a function is an important idea that
will have applications later.

Remarks 1.3.5 Notation for functions. When a function is defined by an explicit
rule, then one denotes this function by y = f(z) or by f(x). This notation is not
strictly correct: y = f(z) is a point in Y rather than the function f : D — Y itself.
Nevertheless, y = f(x) is convenient notation which causes no confusion in practice.
When a function is given as y = f(z), D = Dom f is understood to be the set of x
for which f(x) is defined.

We shall sometimes express a function as y = y(z). This notation indicates that we
are dealing with a function the points of whose domain space are denoted by x and
points in the range space by y. It eliminates the unnecessary symbol f. Still, the
most common notation in practice is y = f(x).

Definition 1.3.6 Restrictions of a function. Let f : D — Y be a function and
A C D. The restriction of f to A is a new function that has the value f(z) forz € A
but is undefined if z ¢ A. In general, it is not necessary to use a different notation
for the restricted function. This is understood from the context.

Definition 1.3.7 Identity functions. Let X be a set. Define a function Iy : X — X
as Ix(x) = x for all x € X. Itis called the identity function on X, or simply the
identity on X. We also write [ instead of [x if X is understood from the context.

Definition 1.3.8 Sequences. Let K be a subset of Z such that K is bounded below
but not above. A function defined on K is called a sequence. One usually takes
K as N or an unbounded subset of N. The range space of a sequence can be any
nonempty set Y. By a sequence in' Y, we mean a sequence with the range space Y.
K is called an index set. The value of a sequence o : K — Y at k € K is called the
kth term of the sequence and is denoted by aj. The sequence itself may be denoted
asa:K —Y,asag k €K, as {ax}, or simply as ay, if the domain K is understood.
This last notation is not strictly correct, but it is convenient to use when the meaning
is clear from the context. A sequence is usually given by a formula involving n.
Such a sequence is defined for all n € N for which this formula is meaningful. For
example, a,, = (n — 5) defines a sequence @ : N — Z and b, = 1/(n — 5) defines a
sequence b : K — Q, where K = N\ {5}.
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Examples 1.3.9 Graphs in R x R = R2, The graphs introduced in Definition 1.3.1
above become ordinary graphs in the plane when X =Y = R.

. Let G = { (z,2°) € R? |z € R }. Then G is a graph and Dom G = R. The
function defined by G is 7 = 2. Asnoted above in Remarks 1.3.4, one defines
this function directly by the formula y = z2, without mentioning the graph G.
In this case, G is a parabola.

2. Let G’ = { (z, y) € R? |z = y* }. Then G’ is once again a parabola, but G’
is not a graph. If z > 0, then both (z, 2'/?) and (2, —z'/?) are in G’ and
z'/2 % —21/2. The uniqueness requirement of Definition 1.3.1 is not satisfied.

Note that G’ is obtained from G by interchanging z and y. As z and y do not
appear symmetrically in the definition of a graph, it turns out that G is a graph
but G’ is not.

3. Let Gy = {(z,y) eR? |z =92 y>0}. Gy is the upper branch of the
parabola G’ above. Gy is a graph and Dom G = [0, oc), the positive part of
the z-axis. The function ¢; defined by G4 is y = z'/2. Note that this formula
is meaningful only if x > 0. Hence D = [0, oc) is the domain of g;. The
lower branch G2 of G is another graph. The function g, defined by G is
y = —x/2. Also, Dom gy = [0, 00).

4. Let H = {(z,y) € R? |zy = 1 } be a hyperbola. We see that H is a graph.
In fact, if (z, y) and (z, 3’) are both in H, then xy = xy’ = 1 implies that
z # 0and y = y'. We see easily that the domain of H is

D =DomH = (R\ {0}) = (—o0, 0) U (0, cc).

The function defined by Hisy = 1/z, 2 # 0. A

Examples 1.3.10 More general functions. In this course we deal mainly with
functions for which the domain space is R™ and the range space is R", where
m, n € N. An efficient way to work with these functions in specific examples is to
define them directly by a set of formulas.

1. Let m = 2, n = 1. Identify the domain space R? with the xy-plane and
the range space R with the z-axis. A formula z = f(z, y) gives us a real-
valued function defined on a subset D of the xy-plane. For example, let
f(z, y) = zy/(x? + y?) . Then the domain of f is the set D of all (z, y) € R?
for which the expression (zy)/(z?+y?) is meaningful. We see that D contains
all points in R? except the origin (0, 0) of R?. The graph I of f is a subset of
R? x R = R3. More explicitly,

I={(z, v, 2)6R3|z:a:y/(x2+y2)andz2+y27é0}.
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Geometrically, I is a surface in R3.

2. Letm = n = 2. Identify the domain space R? with the xy-plane and the range
space R? with the uv-plane. A set of formulas

u=ulz, y), v=uov(z,y)

gives us a function defined on a subset of the zy-plane and taking values in the
uv-plane. For example

u=z’+y° v=y/z
is such a set of formulas. The domain of this function is the set

D:{(w,y)|(m,y)€R2,x7’:O}.

Hence one obtains D by removing the y-axis from the xy-plane. A

Remark 1.3.11 Coordinate changes. Certain functions for which both the domain
and range spaces are R™ are called coordinate changes in R™. Coordinate changes
are considered in later chapters in some detail. Here we provide a few examples of
functions R™ — R™ that are used as coordinate changes. A

Example 1.3.12 Polar coordinates. Polar coordinates are given as
z=z(r, 0) =rcosb, y=y(r,0) =rsind.

This is a coordinate change in R?. Both the domain and range spaces for this function
are R2. The domain space R? is identified with the r#-plane and the range space
R? with the zy-plane. This function takes the point (r, §) € R? in the rf-plane to
the point (r cos #, rsing) € R? in the zy-plane. In the present context, 7 € R and
6 € R are two real numbers and (r, §) € R? is an ordered pair of real numbers. We
see that (rcos @, rsinf) € R? is defined for all (r, §) € R2. Hence the domain of
this function is also R2. A

Example 1.3.13 Cylindrical coordinates. These coordinates are given as
r=rcosb, y=rsinf, z=_.

This is a coordinate change in R®. The domain space R? is identified with the r6¢-
space and the range space R® with the xyz-space. Actually, the standard notation
for ( is also z. Hence the domain space is the rfz-space and the range space is the
xyz-space. The domain of this function is also R3, since

(rcos®, rsinf, ¢) € R®
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is defined for all (r, 8, {) € R3. A

Example 1.3.14 Spherical coordinates. These coordinates are given as
x = psinpcosf, y = psinpsind, z = pcosy.

This is a coordinate change in R3. The domain space R? is identified with the ppf-
space and the range space R® with the zyz-space. The domain of this function is
also R3, since

(psin@cos, psin@sinf, peosy) € R

is defined for all (p, , ) C R%. A

Images Under Functions

Definition 1.3.15 Images of sets. Let f : D — Y be a function with domain space
X and range space Y.

1. Direct images under a function. Let U C X. Then the direct image of U
under f is defined as the set

fU)={yeY|y=flz), ccUnD}.

Hence f(U) is the set of all values f(z), where x € UND. Notethat f(U) =0
ifandonly if UND = . Alsonote that f(U) = f(UND) forany setU C X.

2. The range of a function. The direct image of the domain space is called the
range of f and denoted as Range f. Hence

Range f = f(X) = f(D).

The range of f is the set of all points y € Y in the range space that are the
images of points x € D.

3. Inverse images under a function. Let V C Y. Then the inverse image of V'
under f is the set

V) ={zeX|fl@)eV}={aeD|flx)eV}.

Here the first equality is the definition of f~1(V/) as the set of all points x € X
which have images f(z) in V. Since f(z) exists only for 2 € D, we need to
consider only points € D. This is expressed by the second equality.

Example 1.3.16 Images under polar coordinates. Let f : R> — R? be the polar
coordinates defined in Example 1.3.12. The domain space is represented by the
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rf-plane and the range space by the zy-plane. The value of f at the point (r, 8) in
the domain space is the point

(z,y) = f(r, 0) = (rcosb, rsinh)
in the range space. Note that

f(r,8) =" f(r, 0+ 2kn)
= f(-r, 0+ (2k+ 1)7) forallk € Z.

Hence, if an inverse image f~*(V) contains a point (r, §), then it also contains all
the points of the form

(r, 8+ 2km) and (—r, 8 + (2k + 1)7), where k € Z.

Vertical lines in the r8-plane correspond to the constant values of 7. We see that the
direct images of these lines in the rd-plane are concentric circles about the origin in
the xy-plane. The images of the horizontal lines in the r@-plane are lines passing
through the origin in the zy-plane. Let C be a circle of radius a about the origin in
the zy-plane. Then the inverse image f~!(C) of this circle consists of two vertical
lines » = +a in the rf-plane. Let L be a line in the zy-plane passing through the
origin and making an angle of ¢ with the positive z-axis. Then the inverse image
f~Y(L) of this lines consists of infinitely many horizontal lines in the rf-plane given
asf@=yp+km keZ

Figure 1.3 shows a part of the inverse image of the shaded region in the zy-plane.
This region is bounded by two circles about the origin and two lines passing through
the origin. Its inverse image under f is the union of infinitely many rectangles in the
r@-plane. Figure 1.3 shows four of these rectangles. The direct image of each of
these rectangles is the same shaded region in the zy-plane. A

This last example shows that a function may have the same value at many different
points. Functions for which this does not happen are important. They are called
one-to-one functions.

Definition 1.3.17 One-to-one functions. Let f be a function with D = Dom f.
Let A C D. Then f is said to be one-to-one (or injective) on A if f{x1) # f(x2)
whenever x1, 2 € A and 1 # x2. Equivalently, f is one-to-one on A if 1 = z2
whenever 1, 2 € A and f(z1) = f(z2).

Theorem 1.3.18 Let f be a function with D = Dom f. Let A C D and B = f(A).
Then f is one-to-one on A if and only if there is a function

g: B — A suchthat g(f(x)) =z forallz € A.
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2

~Y

=T

Figure 1.3. Images under polar coordinates.

Also, if such a function g exists, then it is unique and f(g(y)) = y foreach y € B.

Proof. Assume that f is one-to-one on A. Let B = f(A). Then for each y € B,
there is a unique z € A such that f(z) = y. Hence, we can define a function
g: B — Aby letting z = g(y) whenever f(z) = y. Hence, z = g(y) = g(f(z))
forall z € A.

Conversely, assume the existence of g. If 21, 22 € A and f(z1) = f(z2), then

z1 = g(f(x1)) = g(f(22)) = z2.

Hence f is one-to-one on A.

Finally, if g exists, then it is unique. In fact, the previous argument shows that if
g exists, then for each b € B there is a unique a € A such that b = f(a) and
g{b) = g(f(a)) = a. If h is another function on B such that h{f(z)}) = z for all
x € A, then h(b) = h(f(a)) = a = g(b). Hence h = g. Finally, ¢g(y) = = and
f(z) = y show that f(g(y)) =y. O

Definition 1.3.19 Inverse functions. Let f be a function with D = Dom f. Let
A C Dand B = f(A). A function defined on B is called an inverse function of
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fon Aif g(f(x)) = x forall z € A. Theorem 1.3.18 above shows that f has an
inverse function on A if and only if f is one-to-one on A. Also, if an inverse function
g exists, then it is unique. Its value at y € B is the unique solution of the equation
y = f(z). Finally, the same theorem also shows that if g is the inverse of f on 4,
then f is the inverse of g on B = f(A).

Definition 1.3.20 Invertible functions. A function f : A — B is called an invert-
ible function, or a bijection, or a one-to-one correspondence between A and B if
it has an inverse function g : B — A. Theorem 1.3.18 shows that f : A — B
is an invertible function between A and B if and only if f is one-to-one on A and

B = f(A).

Definition 1.3.21 One-to-one and onto functions. When a function f : A — B is
said to be invertible, it is understood that it is invertible between A and B. Hence,
in the case of an invertible function f, the sets A and B in the notation f : A — B
become important. The invertibility of f : A — B means that f is one-to-one on A
and that B = f(A). An invertible function f : A — B is also called a one-to-one
and onto function. Here the sets A and B are again important. It is understood that
f 1s one-to-one on A and that it maps A onto B = f(A).

Example 1.3.22 Lety = f(x) = (22 — 1)/(3z + 1). This function is defined for
all z # —1/3. Hence D = Dom f = (R \ {—1/3}). The equation

2z -1
v=J =37
is uniquely solved as
2= oy) = 5
2 -3y

for each y # 2/3. Hence f is one-to-one on D, and its inverse on D is g. Also,
Domg = (R\ {2/3}). A

Example 1.3.23 Lety = f(2) = 2% + x + 1. Then f(z) is defined for all x € R.
Hence D = Dom f = R. The solution of the equation > + x + 1 = y is given by
the formula
= —(1/2)(1 = (4y - 3)/2).

This formula defines z if and only if 4y — 3 > 0, that is, if and only if y > 3/4.
Hence f(D) = f(R) = [3/4, co). Finally, the equation z2 + z + 1 = y has two
solutions for each y > 3/4. These two solutions are symmetrical with respect to the
point z = —1/2. There is only one solution in A = [—1/2, co) and also only one
solution in A’ = (—o0, —1/2]. Hence f is one-to-one on A and also one-to-one on
A’. The inverse of f on A is

9(y) = (1/2)(-1+ (4y — 3)'/?)
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and the inverse of f on A’ is
J(y) = (1/2)(=1 - (4y - 3)'/?).

Note that f(A) = f(A") = f(R) = [3/4, o). There are (infinitely many) other sets
C C R such that f is one-to-one on C' and such that f(C) = f(R). For example,
C=(—o0, —1)U[—1/2, 0]issuch aset. A

Example 1.3.24 Polar coordinates were discussed in Examples 1.3.12 and 1.3.16.
They are defined as a function f : R? — R? such that

f(r, 8) = (x, y), where © = rcos# and y = rsin 6.

As observed in 1.3.16, f is not one-to-one on R? = Dom f. Hence f does not
have an inverse function on R?. But there are many sets A C Dom f such that f is
one-to-one on A. For example any function is one-to-one on a singleton set. The
important point is to find a set A C R? = Dom f such that f is one-to-one on A and
such that f(A) = f(IR?). There are many such sets. Let, for example, o € R be a
fixed number and define

Ay = {(n®)eR’|0<r,a<l<a+2r }U{(0,0)},

A, = {(n9)eR’|r<0,a<d<a+2r }U{0 0)}
It is easy to check that f is one-to-one on each of these sets and also that
f(AL) = f(AL) = f(R?) = R? foreach o € R.
Note that f is not one-to-one, for example, on
Co={(r,0)eR*|0<r,0<f<2r}.
In fact, in this case f maps all the points on the vertical segment
So={(r0)eR*|r=0,0<0<2r}CC

to (0, 0). This is a triviality, and it is ignored in many cases. One defines the polar
coordinates of (x, y) as (r, §) such that 0 < r, @ < 6 < « + 2w, and such that
z = rcosfand y = rsinf. Here « is a fixed specific number like « = Oora = —1,
depending on the problem. Everyone knows that this does not determine the 8 value
for (z, y) = (0, 0). But everyone also knows that this is not an important point in
most cases. A

Composition of Functions

Definition 1.3.25 Composition of functions. If f and g are two functions, then
the composition g o f is defined by (g o f)(x) = g(f(z)). The domain of g o f is
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specified by this definition in an obvious way. It is the set of all x for which g(f(x))
is defined. Let F' = Dom f and G = Dom g. We see that

Dom(go f) = F N f~1(G) = f71(G).
In fact, F is the set of all x for which f(z) is defined and
G ={zeF|flz)eG}CF

is the set of all z € F for which f(z) is in the domain of g. Hence g(f(x)) is defined
ifand only if z € f~1(G).

The composition of more than two functions is defined similarly. If f, g, and & are
three functions, for example, then h o g o f is defined as

(hogo f)(x) = h(g(f(2))).
The domain of h o g o f is the set of all = such that h{(g(f(z))) is defined. If
F=Domf, G=Domg, and H = Domh,

then we see that
Dom (hogo f)= f~' (g7 (H)).

In fact, z € Dom (h o go f)if and only if g(f(z)) € H. This happens if and only if
f(x) € g~ '(H), which is equivalent to z € f~ (g~} (H)).

Lemma 1.3.26 Images under compositions. Let f and g be two functions. Then

(go /)™HE) = g U(E))
for any set E. Also, if A C Dom (g o f), then

(g0 f)(4) = g(f(A)).

Proof. For the first part, note that

z€(gof) ™ E) <= (gof)lx)e E < g(f(z)) €FE
= flx)eg ME) < ze f g "(E)).

Also,

(go f)(4) {(gof)@)xeA}t={g(f(z))|zecA}

{9(y) [y e f(A)}=g(f(4). B
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Remarks 1.3.27 Compositions and inverses. Let X be a set. The identity function
Ix : X — X on X was defined in Definition 1.3.7 as Ix(z) = z for all z € X.
Let f be a function with A = Dom f and B = f(A4). Let g be a function with
B = Domg. Then g is the inverse of f on A if and only if g o f = I4. In this case
also, f o ¢ = Ig. These remarks follow directly from Theorem 1.3.18.

Problems

124 1Let f: D — Y be a function with the domain D C X and the domain space
X. Let € be a collection of subsets of X. Show that

f (UEeaE)) =Upee f(E) and FNpeeE) CNpee fIE).
Give an example to show that f((\pce E) # [gee f(E) is possible.

1.25 Let f: D — Y be a function with the range space Y. Let F be a collection
of subsets of Y. Show that

SV UpesF) = Upesf HF) and f7' (NpesF) = NpesfHE).

1.26 Let f: D — Y be a function with the domain D C X, the domain space X,
the range space Y, and the range R = f(X) = f(D) C Y.

1. Show that f(f~1(B)) = BN Rforall BC Y.
2. Show that AN D C f~Y(f(A))forall A C X.
3. Give examples to show that f~1(f(A)) # AN D is possible.
4. Show that if f is one-to-one on D, then f~!(f(4)) = AN D.

127 Let f(z) = 2* — 62 — 7. What is the range f(D) of f? Is f one-to-one on
its domain? If not, find two different sets P, () C R such that f is one-to-one on P
and one-to-one on @ and such that f(P) = f(Q) = f(R). Find the inverse function
of f on P and the inverse function of f on Q.

1.28 Let f: D — Y be a function with the domain D C X, the domain space X,
the range space Y, and the range R = f(X) = f(D) C Y. Define a relation on D
by the condition that ¢ € D is related to b € D if and only if f(a) = f(b).
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. Show that this is an equivalence in D.

Let P C D be an equivalence class and let V' C Y be any subset of Y. Show
that either P C f~'(V)or PN f~1(V) = 0.

Let A C D be a complete set of representatives for this equivalence. Show
that f is one-to-one on A and R = f(A).

Let f : R? — R? be the polar coordinates defined by

(z,y) = f(r, 6) = (rcosb, rsind).

Find f1(A) for

1.30

1.31

A={(z,y)eR*|1< (e +¢y*) <4 and 0< (y/z) <1}.

Define the function f from the zy-plane to the uv-plane by

(u, v) = flz, y) = (3x + 2y, 6x + 4y).

. What is the domain D C R? of f?
. What is the range R = f(R?) = f(D) C R? of f?

. Leta, b € R, and let L, be the line © = a and M, the line v = b in the

uv-plane. What are the inverse images f ~!(L,) and = (M;)?

Let (a, b) € R. Whatis f~1({ (a, b) })?

. Find some examples of A C D such that f is one-to-one on A and such that

f(A) = f(D).

Define the function f from the zy-plane to the uv-plane by

(u, v) = f(z, y) = (3z + 2y, 6z — 4y).

Repeat the parts of Problem 1.30 for this example.

1.32

Define the function f from the xy-plane to the uv-plane by

(u7 U) = f(.’l?, y) = (xy, y/x)

Repeat the parts of Problem 1.30 for this example.



FUNCTIONS 29

A Inverse images-of Ay Inverse images of
=3 3,3, 7 lines v=-05,0 1,15 lines

Inverse images of

[nverse images of w = 1.5 and 2.25 lines

u=-3 3357 lines

a AR/ N )
X

Part A Part B

Figure 1.4. Hints for Problems 1.33 and 1.34.

1.33  Define the function f from the zy-plane to the uv-plane by

(u, v) = flz, y) = ((2* + )/ (22), (2* +°)/(2y)).

Repeat the parts of Problem 1.30 for this example. (Hint. In Part A of Figure 1.4 we
see the inverse images of the lines u = —3, 3, 5, 7 and the lines v = —3, 3, 5, 7.)

1.34 Define the function f from the zy-plane to the wv-plane by

(u, v) = f(z, y) = ((z° +y* + 1)/(22), (&® +y* ~ 1)/(29)).

Repeat the parts of Problem 1.30 for this example. (Hint. In Part B of Figure 1.4 we
see the inverse images of the lines u = 1.5, 2.25 and the lines v = —0.5, 0, 1, 1.5.)

1.35 Define the function f from the zy-plane to the uv-plane by

(u, v) = f(=z, y) = (p(=, y) + q(z, y), p(z, ¥) — a(z, ¥)),

where p(z, y) = ((z +1)* + ¢*)"/? and g(z, y) = ((z — 1)* + y?)*/*. Repeat the
parts of Problem 1.30 for this example.
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Figure 1.5. Hint for Problem 1.35.



CHAPTER 2

REAL NUMBERS

This chapter reviews key facts about the set of real numbers, denoted by R. Some im-
portant subsets of R are the set of natural numbers N = {1, 2, ... }, the set of integers
Z = {0, £1, £2, ... },and the setof rational numbersQ = {p/q¢ | p, ¢ € Z, ¢ # 0 }.
The set of integers and the set of rational numbers are constructed easily, starting
with the set of natural numbers. By contrast, there is no easy construction for the set
of real numbers. Appendix A provides a construction of R.

We shall be selective in our discussion of R, for we shall assume a working knowledge
of the real numbers. Specifically, we shall assume that all the rules of working with
the arithmetic operations and with the order relations are known. By the arithmetic
operations we mean addition, multiplication, subtraction, and division. By the rules
of order relations we mean the rules of working with equalities, inequalities, and
absolute values. Section 2.1 summarizes the basic facts about order relations, which
may not be quite so familiar as the arithmetic operations.

Analysis in Vector Spaces. 31
By M. A. Akcoglu, P. F. A. Bartha and D. M. Ha
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An essential property of the real numbers is completeness. Most of the basic results
in this course rely upon this property. Section 2.2 explains the completeness property,
and subsequent sections of the chapter explore some of its implications for analysis.

The final sections of the chapter review basic facts about series of real numbers, as
well as essential results about the topology of R, i.e., open, closed, and connected
sets.

2.1 REVIEW OF THE ORDER RELATIONS

We begin with the set of positive real numbers,
P={zeR|0<z}CR

Other order relations may be defined in terms of P. The basic inequality z < y
means that (y — ) € P. Other inequalities are defined in terms of this first one:
y >z, x <y, and y > x. We assume that the rules of working with inequalities
are known, noting only that all of them can be derived easily from the following two
properties of positive numbers. (Some examples are given below in Example 2.1.5
and also in the problems.)

Remark 2.1.1 Two properties of P. The set P of positive numbers has the following
properties.

1. For each = € R exactly one of the following three cases is true: x = 0, z € P, or
-z € P.

2. fx,ye P,thenz+y &€ Panday € P.

Remark 2.1.2 A property of Z. The set of integers has the following special
property, stated in terms of the order relations on R.

For every real number s € R, there is an integer k € Z such that
k<s<k+1.

More generally, let n € N. Then for every real number ¢t € R, there is an integer
k € Z such that
(k/n) <t< (k+1)/n.

To see this, apply the first result to s = tn: thereisa k € Z suchthatk < tn < k+1.
Since 0 < n, we can divide these inequalities by n to obtain (k/n) < t < (k+1)/n.

Remark 2.1.3 A property of N. Let» € Rand 0 < r. Then there is an n € N such
that (1/n) < r. Forif s = 1/r, then there is a k € Z such that k < s < k + 1, and
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we may take n = k + 1. Since 0 < s < n, we have (1/n) < r. It is clear that if
r € Rissuchthat 0 < r < (1/n) forall n € N, then r = 0.

Density of (Q. The following lemma shows that the rational numbers are dense in R:
between any two distinct real numbers, there is a rational number.

Lemma 2.1.4 Leta, b € R and a < b. Then there is a rational number p € Q such
thata <p <b.

Proof. Lett = b — a. Then O < t. Use property 2.1.3 of N to find an n € N
such that (1/n) < t. Then use property 2.1.2 of Z to find a k € Z such that
(k/n) <b< (k+1)/n. Letp = (k/n). Thenp € Q and p < b. Also

b—p<[((k+1)/n) = (k/n)] = (1/n) <t=1b—a,

sothata < p. Hencea <p <b. O

Example 2.1.5 Inequalities. Prove the following inequalities by applying the two
properties of P stated in 2.1.1.

1. If £ £ 0, then 0 < 22.

We are given that either z € P or (—x) € P. In the first case 22 = xx € P.
In the second case 22 = (—x)(—z) € P.

2. Ifx <yand 0 < z, then zz < zy.

We are given that (y — z) € Pand z € P, Hence (y — x)z = (yz —xzz) € P.
Therefore xz < yz.

3. f0 <zand 0 < zy, then 0 < y.

We are given that x € P and (zy) € P. If y = 0, then zy = 0, which
contradicts 2y € P. Hence y # 0. If (—y) € P, then 2(—y) = —(zy) € P.
This contradicts zy € P. Hence (—y) € P. Theny € P is the only remaining
possibility. A

Example 2.1.6 We want to show that n < 2™ for all n € N. We use an induction
argument. Let G = {n € N|n < 2" }. Then we see that 1 € G. Assume that
n € G. Thenalso (n + 1) € G, since

(n+1) =1+ (1/n))n<2n < 22" =27+

Here the first inequality follows from the fact that (1/n) < 1 for all n € N, and the
second inequality follows from the induction hypothesis. Hence G = N. Also note
that for any integer K > 2,n < 2™ < K™ foralln e N. A
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Example 2.1.7 Letr e N. If 0 < r < 27" foralln € N, then r = 0. In fact, in this
case we also have 0 < r < 27" < (1/n) for all n € N. The last inequality follows
from Example 2.1.6 above. Hence r = 0, asin 2.1.3. A

Definition 2.1.8 Absolute values. Let © € R. Then the absolute value of x, denoted
by |z|, is defined by

-z ifz <0,
|z| = 0 ifz=0,
r f0<z.
Hence |z| = —z if z < 0 and |z| = z if 0 < 2. Note that 0 < |z| in every case. In

arguments involving |z|, we usually separate the cases z < 0 and 0 < z.

Lemma 2.1.9 The following are true forall x, y € R.
(1) | —a| = |zl
(2) —|z| <z < |z}
(3) |z| <yifandonlyif —y <z <y.
(4) lzyl = fa!lyl-
(5) |z +y| < |z| + |yl (The triangle inequality)

Proof. (1) If z < 0, then 0 < —z. Hence |z| = —z and | — z| = —z. Therefore
|z| = | — x| in this case. The other case is similar.
(2)Ifx < 0then 0 < (—z) and |z| = —z. Hence

—lzl = —(-2) =2 <0 < (~z) = |z|.

The other case is similar.

(3) Assume that |z] < y. Then —y < —|z|. Hence, by the previous case,
—y < —lz| <z <z <y

Conversely, assume that —y < o < y. Multiply these inequalities by —1 to obtain
—y < —z < y. Since |z| is either x or —x, we see that —y < |z| < y.

4 Let0 <xand 0 <y. Then O < (xy). Hence |zy| = zy = |z||y| in this case.
The general case follows from this case by observing that |zy| = | (Jz| |y|} |.

(5)Bypart2, —|z| < z < |z|and —|y| < y < |y|. Hence,

(el +yh) Sz +y <zl + Jyl.
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Hence, by part 3, |z + y| < |z| + |y|. O

Example 2.1.10 Find all real numbers x such that |2z + 1} + |1 — 3z| < 5.

Solution, Call the given inequality (A). The expression for |2z + 1| changes at
x = —1/2. Similarly, the expression for |1 — 3z{ changes at x = 1/3. Hence (A)
have different expressions in the intervals

I=(-o00, =1/2], J=[-1/2,1/3], and K = [1/3, ).

Ifzx el =(—00, —1/2], then (A) becomes
|22 + 1|+ |1 - 3z|=(-2z — 1)+ (1 — 3z) = —5z < 5.
This gives —1 < z. Hence (A) is satisfied in 7 N (-1, 00) = (-1, —1/2].
If z € J =[-1/2, 1/3], then (A) becomes
Re+1+1-3z]=2+1)+(1-3z)=2—-2 <5.
This gives —3 < z. Hence (A) is satisfied in J N (=3, o0) = [-1/2, 1/3] = J.
If z € K = [1/3, ), then (A) becomes
|22 +1{+ |1 — 3z| = (22 + 1) + (—1+ 3z) = 5z < 5.
This gives ¢ < 1. Hence (A) is satisfied in K N (—o0, 1) = [1/3, 1).
Combining these results, we see that (A) is satisfied if and only if

ze (-1, -1/2U[-1/2,1/3]U[1/3,1) = (-1, 1). A

Problems

2.1 Show thatif 0 < a < b, then 0 < (1/b) < (1/a). Use only the two properties
of positive numbers listed in Remark 2.1.1.

2.2 Let S be the set of all real numbers 2 € R such that
—2§x2—x+|x2—1| < 2.
Express S in terms of intervals.

2.3 Let S be the set of all points (z, y) in the zy-plane such that

lz—2[+ |y -3 <L
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Show that S is a region bounded by four lines. Find these lines and describe S
geometrically.

2.4 Show that for ali real x, y, we have {|z| — |yl| < |z — y].

2.5 Leta,b, and c be real numbers with @ > 0. Show that there is an M € R such
that if |z| > M, then az? + bz + ¢ > 0.

2.6 Show that for all positive a, we have

1
a+—>2.
a

2.7 Leta,b, and ¢ be real numbers. Show that

a®+b* 4+ 2> ab+be+ ca.

2.8 Findall z € R such that
(x— Dz +3)(z+5)(z+2) <.

2.2 COMPLETENESS OF REAL NUMBERS

Completeness is a basic property of the real numbers. The rational numbers do not
have this property. In fact, the real numbers can be obtained by adding new elements
to the set of rational numbers to make it complete. Details of this construction are
found in Appendix A. Here we simply treat the completeness of the real numbers as
an axiom, since our objective is 1o explore its implications.

Upper and Least Upper Bounds

Definition 2.2.1 Upper bounds. Let A C R. If there is a number M € R such that
a < M forall a € A, then A is is said to be bounded above. Any number M such
that a < M for all @ € A is called an upper bound of A. Hence a subset of R is
bounded above if and only if it has an upper bound. Also, if M is an upper bound of
Aandif M < M’, then M’ is also an upper bound of A.

Definition 2.2.2 Least upper bounds. Let A be bounded above. An upper bound
L of A is called a least upper bound of A if all upper bounds for A are greater than

or equal to L.
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For example, the interval (1,4)={2 € R|0 < = < 4 } has least upper bound 4.

Axiom 2.2.3 Completeness of R. Let A be a nonempty subset of R. If A has an
upper bound, then A has a least upper bound.

Remark 2.2.4 Uniqueness of the least upper bound. A set can have at most one
least upper bound. For if L and L’ are both least upper bounds of A, then they are
also upper bounds of A. Therefore L < L’ and L' < L. Hence L = L'.

Remark 2.2.5 Completeness axiom and the empty set. The completeness axiom
excludes the empty set . In fact, any number M € R is an upper bound for ), since
the condition that a < M for all @ € () is vacuously satisfied for any M € R. Hence
there are upper bounds but no least upper bound for the empty set.

Remark 2.2.6 Incompleteness of Q. The set of rational numbers is not complete:
S = {:1: eQ ‘ 2?2 <2 } has an upper bound but no least upper bound. There is no
rational number r such that 72 = 2, as proved in Example 2.2.7 below. But there
is a real number p such that p> = 2. We show this in Example 2.2.8, by using
the completeness of the real numbers. Hence the set of rational numbers cannot be
complete.

Example 2.2.7 There is no rational number r such that % = 2.

To see this, assume that there are integers a and b such that 2 = (a/b)?. By reducing
to least terms, we may assume that a and b have no common factors except +1. Now
2b% = a2 so that 2 is a factor of a2. It follows that 2 is also a factor of @, i.e, a = 2m
for some integer m. Hence, 2b%> = 4m? so that b2 = 2m?. This implies that 2 is
also a factor of b. This contradicts our assumption that ¢ and b have no common
(nontrivial) factors. Hence, no such @ and b exist. A

Ei(ample 2.2.8 There is a real number p such that p? = 2.

To obtain such a p, let A = {x eR | 0<wxandz? <2 } Then A is nonempty
since, for example, 1 € A. Also, A is bounded above (by 2). By completeness, A
has a least upper bound, p. Note that 1 < p < 2. We will show that p? = 2.

Suppose that p? < 2. Then p? = 2 —¢ forsome € > 0. So (p+06)? = p? + 2p6 + §2
will be less than 2, provided we take § > 0 small enough that 2p5 + 62 < . But
then p + § € A, so that p is not an upper bound for A, a contradiction. Similarly,
if p? > 2, we can find 6 > 0 such that (p — 6)? > 2, proving that p is not the least
upper bound for A. Once again, we have a contradiction. Hence, p? = 2. A

Definition 2.2.9 Irrational numbers. A real number is called an irrational number
if it is not a rational number. The previous examples show that there are irrational
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numbers. In fact, the following example shows that the set of irrational numbers is
also dense in R.

Example 2.2.10 Density of irrational numbers. There is an irrational number
between any two distinct real numbers. We see easily that if a is a rational number,
then a+/2 is an irrational number. Now given any r, s € R, if 7 < s, then we have
(r/v/2) < (s/+/2). Then, by Lemma 2.1.4, there is a rational number a such that
(r/v/2) < a < (s/v/2). Hence r < av/2 < s and a+/2 is irrational. A

Lower and Greatest Lower Bounds

Upper and least upper bounds have symmetrical counterparts: lower and greatest
lower bounds. There is an equivalent statement of the completeness axiom in terms
of lower bounds.

Definition 2.2.11 Lower bounds. Let A C R. If there is a number m € R such
that m < g for all a € A, then A is is said to be bounded below. Any number m
such that m < q for all a € A is called a lower bound of A. Hence a subset of R is
bounded below if and only if it has a lower bound. Also, if m is a lower bound of A
and if m’ < m, then m/ is also a lower bound of A.

Definition 2.2.12 Greatest lower bounds. Let A be bounded below. A lower bound
£ for A is called a greatest lower bound of A if all lower bounds for A are less than
or equal to £.

Lemma 2213 let ACRand M, L € R Let —A={—-acR|ac A}. Then
the following are true.

(1) M is an upper bound of A if and only if —M is a lower bound of — A.

(2) L is the least upper bound of A if and only if —L is the greatest lower bound
of —A.

(3) A is bounded above if and only if — A is bounded below.
Proof. Trivial. O

Remark 2.2.14 The completeness axiom 2.2.3 is equivalent to the following axiom:
if a nonempty set of real numbers has a lower bound, then it has a greatest lower
bound.
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Definition 2.2.15 Supremum and infimum. Let A C R. The least upper bound of
A, if it exists, is called the supremum of A and is denoted as sup A. Similarly, the

greatest lower bound of A, if it exists, is called the infimum of A and is denoted as
inf A.

Definition 2.2.16 Bounded sets. A set of real numbers is called a bounded ser if it
is both bounded above and bounded below. By the completeness axiom, a nonempty
bounded set has both a greatest lower bound (an infimum) and a least upper bound
(a supremum). Hence, if A is a nonempty bounded set of real numbers, then sup 4
and inf A both exist.

Theorem 2.2.17 Let ¢ = sup P. Then

(c,00)NP=0and (s, c]NP #Dforalls <ec.

Proof. Since c is an upper bound for P, we have p < ¢ for all p € P. Hence
(¢, ©)N P = 0. If (s, c] N P were empty for some s < ¢, then we would have
(s, 00)N P =Pandp < sforall p € P. Hence s would be an upper bound for P
that is smaller than the least upper bound ¢. O

Problems

29 Ifa € Rand S C R, then let aS denote the set of all real numbers of
the form x = as, where s € S. Show that if sup S exists and if a > 0, then
sup(aS) = asup S. If a < 0, then show that inf(a.S) = asup S.

2.10 Let S,T be two nonempty bounded sets of real numbers. Let S+ T =
{s+t]seS,teT }and ST = {st|se S,t €T }.Show that

sup(S+T) = supS+supT
inf(S+7T) = infS+infT.

Is it true that sup(ST) = (sup S)(supT)?

2.11 Let F C R be nonempty and bounded. Show that R \ E is bounded neither
from above nor below.

2.12 Let
1

1
=< -————1|kcZk -1 ;.

Find inf S and sup S.
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2,13 lLeta,b,c,anddbein R witha < band ¢ < d. Set
T ={}2z - 3y| |z € [a,bl,y € [c.d] }.
Show that T is bounded. Find sup 7 and inf 7.

2.14 Let S, T be nonempty sets of real numbers that are bounded from above. Is
it true that { s — ¢ | s € S,t € T } is also bounded from above?

2.3 SEQUENCES OF REAL NUMBERS

Sequences were defined in Definition 1.3.8. Here we consider sequences of real
numbers. Such a sequence is typically a function z : N — R, where x,, is the value
of the sequence at n € N. We also commonly denote the sequence itself as x,,. This
slight abuse of notation is convenient when the meaning is clear from the context.
Sequences may also be defined only on subsets of N.

Definition 2.3.1 Bounded sequences. A sequence z,, of real numbers is called a
bounded sequence if there is a number A such that |z,,| < Aforalln € N. Otherwise,
Xy, 18 an unbounded sequence.

Definition 2.3.2 Convergent sequences. A sequence z,, is called a convergent
sequence if there is a number ¢ € R with the following property: for each £ > 0
there is an N € N such that |z, — a| < £ forall n > N. In this case the number
a is called the limit of the sequence x, and one says that x,, converges to a. The
convergence of z, to a is indicated as lim,, z,, = a, or as lim, ¢y, = a, or simply
as x, — a.

Lemma 2.3.3 A sequence cannot converge to two different points.

Proof. Assume that 2, — a and z,, — band |a — b| = p > 0. Find an M € N such
that |z, — a| < p/3 foralln > M. Also find an N € N such that |z, — b| < p/3
forallm > N. If n > max(M, N), then

la—b] <la— x|+ |b—z,] < (2/3)p < p.

This contradicts |a — b| = p > 0. Hence, if z,, — a and z,, — b,thena =b. U
Lemma 2.3.4 Any convergent sequence is bounded.

Proof. Let z,, — a. Find an N € N such that |z,, — a| < 1 foralln > N. Hence

[xn| < la]l + |z, —al =la| + 1
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forallm > N. Let A = max((a1l, ..., [ay|) and let M = A + |a| + 1. Then we
see that |z,| < M foralln e N. O

Remarks 2.3.5 A bounded sequence need not be convergent. z,, = (—1)"is a
bounded but not a convergent sequence.

Definition 2.3.6 Zero sequences. A sequence &, in R is called a zero sequence if it
converges o zero.

Lemma 2.3.7 A sequence x,, in R converges to a € R if and only if x,, = a + z,,
where z, Is a zero sequence.

Proof. This a reformulation of the definition of convergence. O

Theorem 2.3.8 The sum of two zero sequences is a zero sequence. The product of a
zero sequence and a bounded sequence is a zero sequence. In particular, the product
of a zero sequence and a convergent sequence is a zero sequence. Also, the product
of two zero sequences is a zero sequence.

Proof. Let r,, and s,, be two zero sequences. Givene > 0find P € Nand Q € N
such that |r,| < &/2ifn > Pand|s,| <&/2ifn > Q. Let N = max(P, Q). Then
[7n + 8n| < |7l + |8al < (6/2) + (¢/2) = £ whenever n > N. Hence (7, + s,,) is
a zero sequence.

Now let r,, be a zero sequence and u,, a bounded sequence in R. Hence there is a
K > 0 such that |u,| < K forall n € N. Given ¢ > 0, find an N € N such that
irn| < e/K foralln > N. Then

[untn] = |un|lra| < Klra| < K(e/K) =¢
for all n > N. Hence u,r, is a zero sequence. [
Theorem 2.3.9 Let v, and v, be two sequences in R. Assume that u, — a and

v, — b. Then (u, + v,) — (a + b) and (u,v,) — (ab). Ifa # 0, then also
(Un/un) — (b/a).

Proof. Letr, = (u, —a) and s, = (v, — b). Both are zero sequences. Then
Theorem 2.3.8 shows that

(Unp +vn) —(@+b) = 7,4+ 8n,
UntUnp —ab = (a4 7p)(b+ sn) —ab
= as, + br, + +rps,
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are zero sequences. Hence (u,, + v,,) — (a + b) and (uy, v,) — (ab).

Now 1/u,, is defined only if u,, = (@ + ry) # 0. Since r,, — 0, thereisan N € N
such that |r,| < |a|/2 foralln > N. Let

1 1 —Tn

L _a:a(a—f—rn)'

But |a + r,|~! < 2/|a| and |p,,| < (2/]a|?) |rx| for all n. > N. Therefore, p,, is a
zero sequence. Hence (1/u,) — (1/a). Then

(Vn/un) = va(1/un) — b(1/a)

by the first part. O

Theorem 2.3.10 Let u,, and v, be two sequences in R. If u, — a and if (v, — uy,)
is a zero sequence then also v, — a.

Proof. We see that (v, — a) = (u, — a) + (v, — u, ) is a zero sequence, as the sum
of two zero sequences. O

Monotone Convergence Theorem

The Monotone Convergence Theorem gives a sufficient condition for the convergence
of a sequence. This condition does not refer to the limit of the sequence, but only to
the terms of the sequence.

Notations 2.3.11 If s,, is a bounded sequence in R, the set
S={s,|neN}

is a bounded set in R. Hence inf S and sup .S exist. For this particular set S we write
inf § = inf,, s, and sup S = sup,, sn.-

Definition 2.3.12 Monotone sequences in R. Let s,, be a sequence in R. Then s,
is called a monotone sequence if either s, < s,41 foralln € Nor s,1 < s, for

all n € N. In the first case, s, is also called an increasing sequence; in the second
case, it is called a decreasing sequence.

Theorem 2.3.13 Monotone Convergence Theorem. Every monotone and bounded
sequence is convergent. More specifically, let s, be a bounded and monotone
sequence. Then s, — inf, s, if s, is decreasing and s, — sup,, S, if sp is
increasing.
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Proof. Let s, be a decreasing and bounded sequence. Let ¢ = inf,, s,,. Thena < s,
foralln € N, but if @’ > a, there is an N € N such that sy < a’. We claim that
8, — a. Lete > 0. Then a’ = (a + &) > a, and therefore there is an N € N such
that sy < (a +¢€). But s, < sy forall n > N since s, is a decreasing sequence.
Therefore, if n > N, then

[sp —al=s,—a<sy—a<(a+e)—a=ce.

Hence s,, — a = inf §. The proof for increasing and bounded sequences is similar.
In this case we see that s,, — b =sup,, s,. O

Example 2.3.14 Geometric series. Let p be a number, 0 < p < 1. Define z,, =
14 p+p?+ .-+ p*. We claim that z,, is a convergent sequence. Clearly,
Tn < xnyq forall n € N, so z, is an increasing sequence. Also, by familiar
algebraic manipulations we see that

To=14p+p 4+ tp" =1 -p")/(1-p) <1/(1-p).

Hence z,, is also a bounded sequence. Therefore, x,, converges by the Monotone
Convergence Theorem. In this case we can also show that z,, — (1 — p)~!, but this
point is not important for the following application. A

Examples 2.3.15 An application of geometric series. Let s,, be a sequence in R.
Assume that there is a constant M, an integer N, and a number p such that 0 < p < 1
and suchthat 0 < s, < Mp™foralln > N. Letz, = s1 +82+ -+ 8,. Then z,,
is monotone increasing. It is also bounded. In fact, if m € N, then

INtm = 2IN-1+IN+ -+ TNim
ey +MpN(L+p+-+p™)

<
< ano1+ MpN(1-p)h

Therefore x,, converges in R.

As a specific case, let s, = r™/(n!), where 7 € R is a fixed number, 0 < r, and
n!=1-2-3---n,asusual. Find N € Nsuchthatp = (r/N) < 1. Then we see easily
that sy 4 < syp™ = (syp~N)pN*t™ for all m € N. Hence our requirements are
satisfied with M = syp & = sy (N/r)". Therefore we know that
14T r? r"

Tp = +E+§+.“+71—!
converges for all » > 0. The limit is well defined, but it cannot be expressed (at
least not in an obvious way) in terms of r and the previously defined operations. Of
course, this limitis e”. A
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Problems

2.15 Let|a| < 1. Show that lim, a™ = 0.
216 Let0 < a. Show that lim, a!/™ = 1.
2,17  Show that each irrational number is the limit of a sequence of rational

numbers. Also show that any rational number is the limit of a sequence of irrational
numbers.

2.18 Let (z,), (yn) be sequences of real numbers with lim,, ., x, = —2 and
lim,, o0 ¥n = 3. If a, b are real numbers such that

lim (az, —by,) = lim (bx, + ayn)

n—oo n—o

lim (bx, —ay,) = lim (azn + by,),

n—oo n—00

what are the values of a and b?

2.19 Let|a|] < 1andr € R. Show that the sequence

Tn :Z::1 ( ; ) a"

is convergent. (The limit of this sequence is (1 + a)”, but the proof of this fact
requires more work.)

2.20 Leta > 0. Define a sequence z,, recursively by 1 = a and
Tpi1 =14+ (1+z,)"", neN.

Show that z,, is a convergent sequence. Show that lim,, z,, = V2.

221 Leta > 0and c > 0. Define a sequence x,, recursively by z; = a and
Tpe1 = 14c(l+ xn)_l, n € N.

Show that z,, is a convergent sequence. What is lim,, x,,?

2.22 Leta > 0and ¢ > 0. Define a sequence x,, recursively by z; = a and

Znt1 =14+ (¢/zn), n €N

Show that x,, is a convergent sequence. What is lim,, z,,?
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2.4 SUBSEQUENCES

Lemma 2.3.4 shows that every convergent sequence is a bounded sequence. Itis clear
that not every bounded sequence is a convergent sequence. Nevertheless, there is a
basic relation between bounded sequences and convergent sequences: every bounded
sequence has a convergent subsequence. This is called the Bolzano-Weierstrass
theorem, and it is a very important consequence of the completeness of the real
numbers.

Definition 2.4.1 Subsequences. Let z : N — R be a sequence of real numbers. A
subsequence of x is the restriction of the domain N to an unbounded subset K C N.
Hence z, k € K, isasubsequence of z,,,n € N. Wewrite zy, — aorlimgex zx = @
to signify the convergence of the subsequence zj to a € R. A more familiar way
to denote a subsequence is the following. Let xx, k € K, be a subsequence. Order
the integers in K as a sequence k; < kp < --- and denote this subsequence as zy,,,
where n € N, or simply as zj, . We then write i, — a or lim,en 2, = a for the
convergence of xx to a.

Remarks 2.4.2 Note that if a sequence is convergent, then every subsequence of it
is also convergent and converges to the same point as the full sequence. This follows
easily from the definitions.

Lemma 2.4.3 Let z,, be a sequence in R. Let a € R. Assume that the set
K,={neN|a—-r<z,<a+r}

is an infinite (unbounded) set of integers for each v > 0. Then x,, has a subsequence
that converges to a.

Proof. Define a sequence of integers k1 < ko < --- as follows. Let k; be the
smallest integer in K;. If k; < --- < k,, are defined, then let k,, 1, be the smallest
integer in Ky /(1) such that k, < k,, 1. Such an integer exists since Ky /(5 41) is
an infinite subset of N. Then an induction argument shows that k,, is defined for each
n € N. Now given any r > 0, there is an N € N such that (1/N) < r. Hence we
see that

|z, —al <1/n<1/N < r whenevern > N.

This means that the subsequence x,, converges toa. O

Lemma 2.4.4 Let x,, be a sequence in R. For eacht € R, let

Qt)={neN|z, <t}.
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Let a € R be a number such that Q(u) is a finite set of integers whenever u < a and
Q(v) is an infinite set of integers whenever a. < v. Then there is a subsequence of
T, that converges to a.

Proof. Given r > 0, find u, v € R such that
a—-r<u<a<v<atr.

Then we have

Qw)\Qu) = {neN|lu<z,<v}
C {neNja—r<z,<a+r}=K,.

We see that (Q(v) \ Q(u)) C N is an infinite set, since Q(v) is an infinite set and
Q(u) is a finite set. Therefore K, is an infinite set for each » > 0. Then Lemma
2.4.3 shows that there is a subsequence of x,, that convergesto a. [

Theorem 2.4.5 Bolzano-Weierstrass Theorem. Every bounded sequence in R has
a convergent subsequence.

Proof. Let x,, be a bounded sequence in R. Assume that p < z,, < g foralln € N.
Foreacht € R, let
Qty={neN|z,<t}.

Let T’ C R be the set of all ¢ € R for which Q(t) is a finite set of integers. That is, a
real number ¢ belongs to T just in case all but finitely many members of the sequence
T, are larger than ?.

Ift < p, then Q(t) = () is a finite (bounded) set. Hence ¢t € T forall ¢ < p. Therefore
T is not an empty set. If ¢ > ¢, then Q(¢) = N is an infinite (unbounded) set. Hence
t ¢ T forall t > q. Therefore T is bounded above. Hence a = sup T exists by the
completeness axiom.

If v > a, then v € T, since a is an upper bound for 7. Then (Q{v) is infinite. If
u < a, then u is not an upper bound for T'. Therefore there is a w € T such that
u < w. Hence Q(w) is finite. Then @Q(u) is also finite since Q(v) C Q(w). Hence
Q(u) is finite for all u < a and Q(v) is infinite for all v > a. Lemma 2.4.4 shows
that there is a subsequence of z,, convergingtoa. O

Cauchy Sequences

Definition 2.4.6 Cauchy sequences. A sequence of real numbers z,, is called a
Cauchy sequence if for each ¢ > 0 there is an integer N € N such that |z, — z,,| < €
forallm, n > N.
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Theorem 2.4.7 A sequence of real numbers is a Cauchy sequence if and only if it is
a convergent sequence.

Proof. Assume that z,, is a convergent sequence and let z,, — a. Given € > (), find
N € Nsuch that |z,, — a] < ¢/2foralln > N. Then

T — 2| < lon —al +la—wn| <(e/2) +(/2) = ¢

for all m, n > N. Hence x,, is a Cauchy sequence.

Conversely, assume that z,, is a Cauchy sequence. Then z,, is clearly bounded. Use
the Bolzano-Weierstrass theorem to find a convergent subsequence xx, k € K. Let
a = limgeg zx. Then for each ¢ > 0 there is a K € K such that |z — a| < /2
forall k > K, k € K. Also, find an N € N such that |z, — z,,| < £/2 for all
m, n > N.Letk > max(K, N)and k € K. If n > N, then

|Z —a| <l|zp —zk|+ |2k —a| <e/2+¢/2=¢,

sincen,k > Nandk > K. Hence z,, > a. O

Theorem 2.4.8 Let x,, and y, be Cauchy sequences. Then x,, + y, and T,y, are
also Cauchy sequences. If im,, x,, # 0, then 1/, is also a Cauchy sequence.

Proof. Theorem 2.3.9 shows that the sum and the product of two convergent se-
quences is again a convergent sequence. Theorem 2.4.7 shows that a sequence is
a Cauchy sequence if and only if it is convergent. These two results show that the
sum and the product of two Cauchy sequences is again a Cauchy sequence. The last
part of the theorem follows in the same way from the corresponding part of Theorem
2.3.9. Here 1/x,, is defined, of course, only when z,, # 0, as mentioned in the proof
of Theorem 2.39. O

Remarks 2.4.9 Convergent sequences and Cauchy sequences. Theorem 2.4.7
shows that, in R, the notions of Cauchy sequence and convergent sequence are
equivalent. This is an important fact about R — it does not hold for the rational
numbers. The concept of a Cauchy sequence is the simpler of the two, for the
definition is stated in terms of the sequence only and does not refer to the limit point,
which may or may not belong to the sequence. The definition of Cauchy sequences
can be simplified even further, as the following theorem shows.

Theorem 2.4.10 Let x,, be a sequence in R. Then the following are equivalent.

(1) There is a number a € R such that ., — a; i.e., for each € > 0 there is an
N € N such that |z, — a| < e foralln > N.



48 REAL NUMBERS

(2) Foreache > Othereisan N € N such that |x, — x| < € foralln > N.

(3) Foreache > Othereisan N € N such that (¥, — x| < & forallm, n > N.

Proof. The equivalence of (1) and (3) is Theorem 2.4.7 above. Also, itis clear that (3)
implies (2). Now assume (2). Given e > 0, find N € N such that |z,, — zn| < £/2
foralln > N. If m, n > N, then

lxn_xmlé‘xn*'LN|+!xm-$N|<(€/2)+(5/2):€

Hence (3) follows. O

Problems

2,23 Letx, be asequence in R. Let a € R. Assume that
L,={neN|la-r<z,<a}

is an infinite (unbounded) set of integers for each » > 0. Show that x,, has a monotone
increasing subsequence converging to a.

2.24 Let x,, be asequence in R. Let a € R. Assume that
S,={neN|ja<z, <a+r}

is an infinite (unbounded) set of integers for each » > 0. Show that x,, has a monotone
decreasing subsequence converging to a.

2,25 Let x, be a bounded sequence in R. For each n € N, let
Sp={z€eR|z=zp, n<k}.

Then S, is a nonempty and bounded set and s,, = sup .S, exists. Show that s, is a
convergent sequence. Show that if s,, — a, then z,, has a subsequence converging
to a. (This gives another proof for the Bolzano-Weierstrass theorem.)

2.26 Let z,, be a bounded sequence in R. Let s, be the sequence obtained in
Problem 2.25. Assume that there is an N € N such that sy = sy, forall k € N.
Show that x,, has a monotone increasing convergent subsequence.

2,27 Let z,, be a bounded sequence in R. Let s, be the sequence obtained in
Problem 2.25. Assume that there is no N € N such that sy = sy forall k£ € N.
Show that z,, has a monotone decreasing convergent subsequence.
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2.28 Show that every sequence (bounded or not) has a monotone subsequence.

2.29 Show that a sequence x,, is a Cauchy sequence if and only if there is a zero
sequence z,, such that |z, — 2| < z, forall m, n € N,m > n.

230 Let z, and y, be Cauchy sequences. Show directly, without using Theorem
24.7, that x,, + vy, and z,y, are also Cauchy sequences. Also show directly that
if there is an a > 0 such that |z,| > a, then 1/z,, is a Cauchy sequence. Give an
example of a Cauchy sequence x,, such that z,, # 0 for all n € Nbut 1/x,, is not a
Cauchy sequence.

2.31 Give an example of a nonconvergent sequence x,, such that

|Zpio — Tnt1| < |Zny1 — x| foralln e N.

232 Letx, be a sequence in R. Define a new sequence
$n = |2 — 21|+ |23 — 2| + -+ [z — Tpa ], R 2 2.

Show that if s,, is a bounded sequence then x,, is a Cauchy sequence.

2.33  Give an example of a Cauchy sequence z,, for which the sequence
Sp = lxo — 1|+ |23 —@2| + -+ |Tt1 — 2|, nEN,

is an unbounded sequence.

2.34 Let p, be any sequence of numbers such that p, > 0 for all n € N. Show
that any Cauchy sequence z,, has a subsequence xy, such that

|2k, .1 — Tk, | < pn forallm € N.

2.35 Show that every Cauchy sequence z,, has a subsequence x,, for which

n €N

n|7

Sn = |$1€2 - wkl' + |xk3 - mk2| 4k |xkn+1 — Tk
is a bounded sequence.
2.36 Let ¢, be a sequence. Assume that the sequence
Cn:(cl“}‘""‘r‘lcn‘
is a bounded sequence. Show that there is a zero sequence z, such that

lenar + -+ gkl < 2
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foralln, k € N,
237 Letp,g€Nandp <q.

1. With the general binomial coefficients as defined in Definition 1.2.13, show
that
k| P k[ 4
*(5)= (1)

2. Show that (1 + (¢/p)x)? < (1 +z)?forallz > 0.

forall £k € N.

3. Letz = 1/nand (q/p)—1 = r > 0. Transform the last inequality algebraically
to obtain

1 < 1/1 1
(n+ )" —r\n" (n+1)
foralln € N.

2.5 SERIES OF REAL NUMBERS

Definition 2.5.1 Series. Let z,,, n € Z1, be a sequence. Then the sequence
n
- - = +
Sp = Tg + X1+ +xn—zk:0xk,n€Z ,

is called a series (or an infinite series). The terms s, of this series are called its
partial sums. Note that there is no great difference between series and sequences:
just as a series is a sequence of partial sums, any sequence s, may be considered as
the series s, = >, Tk Withzg = sp and 2, = 8, — sp—1,n € N.

Definition 2.5.2 Convergence of series. If lim,, s, = lim, ZZ;O x), exists, then
Sy is called a convergent series. If the limit does not exist, then the series diverges.
We denote the limit of a convergent series as

s = l1m, 8, = lIn T = L.
non n § k=0 k § k=0 k

If p, > 0andif s, = pg + p1 + - - - + px is a bounded sequence then we express

this as 00
Zk:o Pr = Zn Pn < 00.

Note that although expressions like s = ZZOZO Tk and Z;’;O Py involve a sgmmation
sign, they are not proper summations. That is because, in general, they lack important
properties of ordinary finite summation (e.g., insensitivity to the order of summation).
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Lemma 2,53 If Y |z,| < oo, then S =3 7" |xkland s = Y~y @y exist.

Proof. The sequence S,, = >y _, |@k| is monotone increasing. If }° |z,| < oo,
then .S, is also a bounded sequence. Hence S = lim,S, = Z;ozo |xk] exists.
This follows from the Monotone Convergence Theorem, 2.3.13. Then we know that
S,, is a Cauchy sequence. Therefore, given £ > 0, there is an N € N such that
Snak = Sn = |Sntk — n| < eforalln > N and for all £ € N. Then

|3n+k - Sn| = |‘Tn+1 + -+ xn+k‘ < |xn+1| + -+ |xn+k| = Sn+k - Sn
shows that s, is a Cauchy sequence. Hence s = lim,, 5, = 220:0 T exists. O

Definition 2.5.4 Absolute convergence. A series s, = > ,_, Tk is called abso-
lutely convergent if 3" |z,,| < cc.

Lemma 2.5.3 shows that if a series is absolutely convergent, then it is also convergent.
It a.lso shows thr?t a serigs Sn = D pr—q Tk 18 absolutely convergent if and only if the
series S, = >, |2/ is convergent.

A convergent series is not necessarily absolutely convergent. A counterexample
is 8, = D> p_o(—1)"/(n + 1). The limit of an absolutely convergent series is
insensitive to rearrangements of the terms of the series, but the same is not true for a
series that is convergent but not absolutely convergent. Using Problem 2.42, one can
show that the terms of the series s, = > ._,(—1)"/(n + 1) can be rearranged to
converge to any desired limit or to diverge.

Tests for the Convergence of Series

We review some familiar and very useful tests to investigate the convergence of a
series.

Theorem 2.5.5 The root test. Let s, = >, _, i be a series. Assume that there
are M, r € Rand N € N such that 0 < r < 1 and such that

|Zn| < M 2™

foralln > N. Then S =377 || and s = 3 oo o @) both exist.
Proof. We have
BUETIED DANED DA
SRS

S lesl + M1~ )

IA
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for all n € N. Hence we see that ), |z,| < co. Then Lemma 2.5.3 shows that
S=3 1o |lzkland s =377 ) xp exist. O

Corollary 2.5.6 The ratio test. Let s, — ZZ:O xy be a series. Assume that there
isanr € Rand N € N such that 0 < r < 1 and such that

(lensal/leal) <7
foralln > N. Then S = %Y"72 |kl and s = 3", xx both exist.
Proof. Let M = |z n]|. Then, by an induction, |2 | < M r¥ forall k € N. Hence

|2,,| < (M/rN)r™ forall m > N. Then an application of Theorem 2.5.5 completes
the proof. O

Theorem 2.5.7 Let a, > 0 be a sequence. Assume that there is an v > 0 such that
S lan| T < co. Then S, ann*z™ < oo forallk € Nand |z| <.

Proof. Let y; = (2/r) and y, = (n/(n — 1))%(x/r), n > 2. Note that

k
nte" =y -y yn v

We see that lim,,(n/(n — 1))¥ = 1. Also, |z/r| < 1. Hence there is a N € N such
that |y, | < 1foralln > N. Let M = |y; - y2 - - -yn/|. Then

}annkx"| < M lag|r™

foralln > N. Thisshowsthat}_, |a,n*z"| < co. Hence s, (z) = 3. _ amm*z™
is absolutely convergent. O

Problems

238 If > ai converges, show that lim,,_,, a,, = 0.

2.39 Foreachn > 1, let

Determine if 3 a,, converges.

2.40  Suppose that > a, and 3 b, are infinite series with positive terms. Assume

that a
lim — =/>0.

n—od n
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Show that both 3 a,, and > b, converge or diverge together.

2.41 Let a, be a decreasing sequence of positive numbers such that 3 a,, con-
verges. Show that lim na,, = 0.

2.42 Show that > °7 % diverges. Hence, show that if p(n) and g(n) are polyno-

n=1n

mials and g(n) # 0 for any n € N, then
Z p(n)
q(n)
diverges if the degree of p is 1 less than the degree of q.

2.43  Suppose that ) |ax| converges. Show that > |ak|P converges for all p > 1.

2.44 Let x,, be a sequence in R such that lim,, .., x, exists. Decide whether or

not
0
§ (-Tn+1 - -rn)
n=1

converges.

2.45 Suppose that Y ay converges. What can we say about the convergence of
it
1+a?

2.46 Suppose that a,, converges and >z converges. If x; > 0 for all k, show
that > agxy, converges absolutely.

2.47 Does the series > sin (1/k) converge?
2.48 Show that there is a unique function 7 : N — Z% such that
27’(’”) <n< 27‘(n)+1

for each n € N. Define z, = (277™n — 1) for n € N. Write the first fifteen
terms of this sequence. Show that for eacha € R, 0 < ¢ < 1, there is a convergent
subsequence of ., converging to 7.

2.49 Letr, be asequence in R. Assume that there is an R € R, 0 < R, such that
|rn] < R™ for all n € N. Show that

Sp = g —
" k=0 k!

is a convergent sequence.
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2.50 Let x, be a sequence of positive real numbers with

1

Ly = ————
T1...-Tp-1

for all n > 2. Determine whether or not Zz’;l Zyj, converges.

2.51 Binary expansions. Letr € Rand 0 < r < 1. A sequence b, is called a
binary expansion of r if b, = 0 or b,, = 1 for each n € N and if the sequence

Sp = Z:Zlan_"

converges to r. Show that each 7 € [0, 1] has a binary expansion. Show that the
binary expansion is unique, except for the numbers of the form r = k27", for some
n, k € Nwith 0 < k£ < 2™, Show that for numbers of this type there are exactly two
binary expansions.

2.52  Ternary expansions. Let » € R and 0 < r < 1. A sequence ¢, is called
a ternary expansion of v if t,, = Qort, = 1l ort, = 2 foreach n € N and if the

sequence
n
Sp = E t, 37"

converges to 7. Show that each 7 € [0, 1] has a ternary expansion. Show that the
ternary expansion is unique, except for the numbers of the form r = k37", for some
n, k € Nwith 0 < k < 3™. Show that for numbers of this type there are exactly two
ternary expansions.

2.6 INTERVALS AND CONNECTED SETS

Intervals were introduced in Example 1.2.1. Here we define intervals rigorously and
prove that they are the only connected subsets of R. The concept of a connected
set, explained below, will be important (and much less simple) in muitidimensional
vector spaces.

Definition 2.6.1 Intervals. A set of real numbers I is called an interval if it satisfies
the following condition: ifa, b € T anda < t < b, thent € I. Hence I is an interval
if whenever I contains two numbers, then it also contains all the numbers in between.

Definition 2.6.2 End points of bounded intervals. Let / be a bounded nonempty
interval. Hence a = inf I and b = sup I both exist. They are called the end points
of I. In particular, ¢ = inf I is the initial point and b = sup I is the final point of I.
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Definition 2.6.3 Open intervals, closed intervals. We see that
(a,b)={tcRja<t<b} and [a,b]={teR|a<t<b}

are both intervals with end points a and b. We call (a, b) an open interval and [a, b]
a closed interval.

Lemma 2.6.4 Let I be a bounded interval with the initial point a and the final point
b. Then (a, b) C I C [a, b].

Proof. Lett € (a, b). Thena < timplies that ¢ is not a lower bound for . Therefore,
there is an a’ € I such that ¢’ < ¢. Similarly, b is not an upper bound for I, and
therefore there isa b’ € I such that ¢ < b’. Hence @’ < t < b witha/, ¥ € I. So
t € I by the definition 2.6.1 of an interval. This shows that (a, b) C {. The other
inclusion is obvious. If t € I, theninfl = a <t < b = supl, since a is a lower
bound and b is an upper bound for the points in /. O

Remarks 2.6.5 Bounded intervals. Let I be a bounded interval with the initial
point a and the final point . Lemma 2.6.4 shows that there are only four possible
forms for I. These are {(a, b), [ a, b], and the half-open intervals

la,b)={teR|a<t<b} and (g, b]={tcRja<t<b}.

Incidentally, we note that the infimum and the supremum of a bounded set may or
may not be elements of the set.

Closures of Sets in R

Definition 2.6.6 Closure of a set. Let A C R. The closure of A is defined as the set
A = {z € R |thereis a sequence z,, € A, n € N, such that z = lim,, ,, }.

Hence A consists of all those points z € R that are the limits of convergent sequences
in A. Intuitively, one may say that A is the set of all points that are approachable
by sequences from A. Note that A C A. In fact, every 2 € A is also the limit of a
constant sequence x,, = x in A.

Lemma 2.6.7 Points in the closure. Let A C R and u € R. Then v € A if and
only if for each r > 0 there is an x € A such that |x — u| <.

Proof. Assume that u € A. Hence there is a sequence &, in A such that z, — u.
Hence |2, — u| is a zero sequence. Therefore, for each » > 0, there isan N € N
such that |z,, — u| < rforalln > N.
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Conversely, assume that for each r > 0, there is an z € A such that |z — u| < 7.
For each n € N, choose z,, € A such that |z,, — u| < 1/n. Then we see that x,, is a
sequence in A and z, — u. Henceu € A. O

Remarks 2.6.8 Reformulations of the above lemma. We may also state Lemma
2.6.7 as follows. A point u € R is in the closure of A C R if and only if for each
r > 0 the open interval (u — 7, u 4+ r) intersects A. Equivalently: a point u € R is
in the closure of A C R if and only if every open interval containing u intersects A.

Lemma 2.6.9 Let A C Randt € R Assume that a < t for all a € A. Then also
xz <tforall z € A.

Proof. Assume that u > ¢. Then r = (u —¢) > 0. Forany a € A,
(u—a)>{u—ty=r.

Hence there is no a € A such that |a — u| < r. Therefore, by Lemma 2.6.7, v & A.
O

Corollary 2.6.10 Letc € Rand A C (—oo,¢], B C [¢, oc). Then AN B is either
empty or the single point set { c}.

Proof. Lemma 2.6.9 shows that if A C (—o0, ], thenalso A C (o0, ¢]. Similarly,
we see that B C [¢, o0). Hence ANB C {¢}. O

The proof of the following lemma contains the main argument of this section.

Lemma 2.6.11 Let a < b. Let A and B be two sets such that AU B = [a, b],
a € A be B. Then(a, b] N AN B is not empty.

Proof. The set A is nonempty, since a € A, and bounded, since A C [a, b]. Hence
¢ = sup A exists and a < ¢ < b. We show that every open interval containing ¢
intersects both A and B.

Now (s, ¢] intersects A for all s < ¢ and (c, t) is disjoint from A for all £ > c.
This follows easily from the the definition of ¢ as sup A4 or directly from Theorem
2.2.17. Hence we see that each open interval (s, t) containing c intersects both A
and A° = R\ A. We want to show that (s, t) also intersects B. If ¢ = b, then this
is trivial, because b € B. If ¢ < b, then (¢, b) C [a, b] but (¢, b)) N A = P. Since
AU B = [aq, b], this means that (¢, b) C B. Hence (s, t) intersects both A and B
whenever s < ¢ < t. Therefore ¢ € AN B by the remarks above in 2.6.8. Hence
[a, b] N AN B contains ¢ € [a, b] and therefore is nonempty. O



INTERVALS AND CONNECTED SETS 57

Connected Sets in R

Definition 2.6.12 Connected sets. A set C in R is called a connected set if the
following condition is satisfied: for any two nonempty sets A and B such that
C = AU B, C N AN B is nonempty. An intuitive formulation of this condition is
that whenever C'is the union of two nonempty sets A and B, then C contains points
that are approachable both by sequences from A and by sequences from B.

Theorem 2.6.13 Connectedness in R. A set in R is connected if and only if it is an
interval.

Proof. The empty set is (trivially) an interval and (again trivially) a connected set.
Now assume that C' is a nonempty connected set. We will show that C is an interval.
Leta, b€ Canda <c<b Let A=Cn(—oo,cland B =CnN|e, 00). Then
a € Aand b € B. Hence A and B are both nonempty and C' = A U B. Therefore,
C N AN B is nonempty. But by Corollary 2.6.10, A N B may contain only c.
Therefore ¢ € C. This shows that C'is an interval.

Conversely, assume that C' is a nonempty interval. Let P and () be two nonempty
disjointsets and C = PUQ. Assumea € P,b € @,anda < b. Notethat[a, b] C C,
since C'isanintervaland a, b € C. Let A = PN[a, bland B = QN[a, b]. Lemma
2.6.11 shows that {a, b] N A N B is nonempty. But we see easily that A C P and
B C Q. Hence C N P NQ is also nonempty. O

Closed Sets and Open Sets in R

Definition 2.6.14 Closed sets. A set C in R is called a closed set if C contains
the limits of all convergent sequences in C'. More explicitly, C is closed if x € C
whenever there is a sequence z,, in C such that lim,, z,, = z.

Recall (Definition 2.6.17) that the closure A of A consists of all limit points of
convergent sequences in A.

Theorem 2.6.15 Closures and closed sets. Ler A C R. Then the closure A of A is
the smallest closed set that contains A. That is:

(1) The closure A of A is a closed set and A C A.

(2) IfC is a closed set and if A C C, then A C C.

Proof. (1) First, we prove that A is closed. Lety, € A, n € N, be a sequence in A.
Assume that lim,, y, = y. We show thaty € A. Foreachn € Nthereisanx, € A
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such that |y,, — x| < 1/n. This follows from the fact that y,, € A is the limit of a
sequence in A. Then (y, — ) is a zero sequence. So by Theorem 2.3.10, z, is also
convergent and lim y,, = limz,, = y. Hence y € A and therefore A is closed. Also,

clearly, A C A. In fact, every 2 € A is the limit of the constant sequence z,, =  in
A.

(2) Let C'beaclosed setand A C C. If z € A, then there is a sequence z,, in A such
that z,, — x. Bgt Z,, is also a sequence in C. Therefore x € C since C' is closed.
This shows that A ¢ C. O

Corollary 2.6.16 A set A in R is closed if and only if A = A.

Proof. We always have that Ais closed and A C A, by Part (1) of Theorem 2.6.15
above. Hence, if A = A, then A is closed. Conversely, if A is closed, then, by Part

(2) of the same theorem, A C A. Since the other inclusion is always true, we obtain
A=A O

Recall that A = R\ A is the complement of A.

Definition 2.6.17 Boundary of a set. Let A be a setin R. Then 4 = AN Acis
defined as the boundary of A. Points in 0A are the boundary points of A. Since
(A%)° = A, we see that 0A = JA°.

Definition 2.6.18 Open sets. A set GG in R is said to be an open set if its complement
G° =R\ G is a closed set.

Remarks 2.6.19 Topology of R. The family of open sets in R is called the topology
of R. Informally, the topology of R refers to the collection of results about open
sets, closed sets, and boundaries. In Chapter 4, on normed vector spaces, we will
discuss the topology of a normed vector space, which includes the topology of R as
a special case. For now, we limit our exposition to the basic definitions and results
Just presented. Some further results are stated as problems.

Problems

2.53 Let E be a finite subset of R. Show that E = E.
254 letE={1-1/n|neN} FindE.

2.55 Whatis 0Q?
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2,56 Let A, B be nonempty connected subsets of R suchthat ANB = (. s AUB
connected?

2.57 Show that an intersection of finitely many closed sets in R is closed.
2.58 Prove or disprove: If A, B are subsets of R, then 8(A U B) = 0A U 0B.

2.59  Show that the intersection of any family of intervals is again an interval. Also
show that the intersection of any family of closed intervals is again a closed interval.
Give examples to show that the intersection of a family of open intervals can be any
type of interval (open, closed, or half-open).

2.60 Nested intervals. A sequence of intervals I,, is called nested if I,,1 1 C I,
for all n € N. Let I,, be a nested sequence of intervals. If I; is bounded and if each
1, is closed and nonempty, then show that the intersection of this family of intervals
is also nonempty. Give an example to show that a nested sequence of bounded and
nonempty intervals may have an empty intersection (so that the result only applies to
sequences of closed intervals).

2.61 Let I,, be a sequence of bounded and closed intervals. Assume that the inter-
section N7_, I is nonempty for each £ € N. Show that N, en/,, is also nonempty.

2.62 Bisectionsequences. Let [,, = [a,, b,]beasequence of closed and bounded
intervals with the middle points ¢,, = (a, + b,)/2. Then I, is called a bisection
sequence of intervals if I, 11 = [ay, ¢n] ot Int1 = [cp, by] foreach n € N.

(1) Show that the intersection N, ¢y 1, of a bisection sequence of intervals contains
exactly one point r € R.

(2) Show that a bisection sequence is determined by the first interval I; and by
a sequence b, such that b, = 0 or b, = 1 for each n € N and such that
I,y = |a,, cp] if and only if b, = 0 and I,,+1 = [cp, b,] if and only if
b, = 1.

(3) If I; = [0, 1], then show that the sequence b,, obtained in Part (2) is a binary
expansion for the number r € R obtained in Part (1).

2.63 Let ] be an interval. Let A C R. If I contains points both from A and from

its complement A® = R\ A, then show that I also contains points from the boundary
of A.
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CHAPTER 3

VECTOR FUNCTIONS

We assume that the reader has a working knowledge of vector spaces. The first
section of the chapter reviews basic results and notation. In particular, this initial
section summarizes the essential facts about linear functions between vector spaces.
These functions are essential tools for analysis in vector spaces. Much of this material
is treated in an elementary course in linear algebra, although an important exception
is the dimension theorem 3.1.14 (proved in Appendix B).

After this review, we introduce first bilinear and then multilinear functions, which
operate on Cartesian products of vector spaces. As far as possible, the section
on multilinear functions is structured to parallel the preceding section on the special
(and simpler) case of bilinear functions. An understanding of bilinear and multilinear
functions is also crucial for analysis. In particular, polynomials in vector variables are
defined in terms of multilinear functions. As we shall see in later chapters, the subject
of differential calculus is functions that can be approximated by such polynomials.

The last two sections of the chapter review the most important facts about Euclidean
spaces, orthogonal projections, and linear transformations between Euclidean spaces.

Analysis in Vector Spaces. 61
By M. A. Akcoglu, P. F. A. Bartha and D. M. Ha
Copyright © 2009 John Wiley & Sons, Inc.
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3.1 VECTOR SPACES: THE BASICS

A vector space X is a nonempty set with two operations, scalar multiplication and
vector addition. Scalar multiplication is a function R x X — X written (a, x) — ax.
Vector addition is a function X x X — X written (x, x’'} — x + x’. The two
operations satisfy a set of conditions known as the vector space axioms (omitted
here). Elements of a vector space are called vectors. The zero vector of X is denoted
as Ox or simply as O if X is understood. In general, we denote vectors by boldface
letters like x. If X and Y are two vector spaces and if f : X — Y is a function, then
the value of f at x € X is denoted by f(x) € Y. Boldface letters are not used for
the vector f(x).

Example 3.1.1 Let D be any nonempty set and let X be any vector space. Let
F(D, X) be the set of all functions from D into X. If f,g are in F(D, X) and ¢ is
any scalar, define f + g and ¢ f as functions from D to X by the following formulas:
foralld € D,

(f+9)d) = [f(d)+g(d)
@f)d) = tf(d).
In the first equation above, the “ + ” on the right-hand side is the addition operation

in the vector space X. Thus, f(d) + g(d) is the sum of the vectors f(d) and g(d) in
X. Similarly, tf(d) is the scalar multiple of f(d) by ¢.

Thus, f + ¢ and ¢f are in F(D, X). The zero vector of F(D, X) is the function
that maps each d in D to 0, the zero vector in X. It’s easy to check that F(D, X),
together with these operations, is a vector space. In particular, F(D,R") is a vector
space. A

Spans, Subspaces, Linear iIndependence, Bases

Definition 3.1.2 Linear combinations. Let A = {a,, ..., a,} C X be a finite
nonempty set of vectors. A linear combination of { a1, ..., a, } is any vector of the
form ria; + -+ - + rpa,, where rq, ..., 7, € R

Definition 3.1.3 Span of a finite set. Let A = {aj, ..., a,} C X be a finite

nonempty set of vectors. The span of A is defined as the set of all linear combinations
of vectors in A:

Span A={ra;+---+rya,|r,...,mmm ER}.

We define the span of the empty set as Span §§ = { 0}, the set consisting of the zero
vector alone.
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Definition 3.1.4 Subspaces. A set U in a vector space X is called a subspace if it
is nonempty and if it is closed under linear combinations. This last condition means
that if u, '’ € U and r, ' € R, then ru+ r'u’ € U. Note that 0 € U for any
subspace U. Also, the set { 0} is a subspace. It is the smallest subspace in the sense
that { 0} C U for any subspace U.

Examples 3.1.5

1. LetU = { (21,72, 73) € R3| 22y — |xa] + 23 =0 } Clearly, (0,0,0) € U.
If x € Uandt € R, then tx € U. However, U it is not a subspace of R?
because U is not closed under vector addition. For example, (0,1,1) and
(0, —1,1) are in U, but their sum, (0,0, 2), is notin U.

2. Let U = {{z1,22,%3) | |z1| > |z223| }. Then (0,0,0) € U. If x =
(x1,%2,23) € U and t € R, then tx € U since [tx1| = |t] |z1] > |t| |zozs| =
|tzoz3|. However, U is not a subspace of R since (1,0,1) and (-1, 1,0) are
in U , but their sum, (0, 1,1), is notin U.

3. Letn € Nand letaq, ..., a, be any real numbers. Set
U={(z1,....%s) |a1z1+ -+ a2, =0 }.
Then U is a subspace of R™.

4. Let X be the set of all functions from [—1, 1] into R. As explained in Example
3.1.1, this is a vector space. Let

E={feX|f(-t)=f@) forallt € [-1,1] } 3.0
and let
O={feX]|f(—t)=—f(t)forallt € [-1,1] }. (3.2)

Then F and O are subspaces of X. For instance, to verify that F is a subspace
of X, note that the zero vector of X (which is the function that takes each
te[~1,1to0)isin E. If f, g are in E and a, b are scalars, then

(af +bg)(=t) = a(f(=t)) + blg(=t)) = af(t) + bg(t) = (af + bg)(t).

5. Let D be a nonempty subset of R. A polynomialon Disafunction f: D — R
for which there is some nonnegative integer nn and real numbers aq, . . . , a,, such
that

f)=apg +ait+---+apt™ foralte D.

Let P(D) denote the collection of all polynomials on D. Clearly, P(D) C
F(D,R). Itis easy to verify that P(D) is a subspace of F(D,R). A
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Example 3.1.6 Intersection of subspaces. Let X be a vector space. Then the
intersection of a family of subspaces of X is also a subspace.

To see this, let V be a collection of subspaces and set U = ﬂvevV- Hence, U
consists of all x € X suchthatx € V foreachV € V. Now 0 € V foreachV € V.
Therefore 0 € U. Letx,y €¢ Uanda,b € R. Thenx,y € V foreach V € V.
Therefore ax + by € V foreachV € V. Hence ax + by € U. A

Remarks 3.1.7 The span of any set is a subspace. In fact, Span A is the smallest
subspace that contains A. This means that if U is a subspace and if A C U, then
Span A C U.

Definition 3.1.8 Sums of subspaces. Let U and V' be two subspaces in X. Then the
sum of U and V is the set of all vectors of the formu+ v withu € Uandv € V.
We denote this set by U/ + V. It is another subspace of X.

Definition 3.1.9 Linear independence. A finite set A = {aj,...,a,} of distinct
vectors is linearly independent if whenever r1, ..., 7, are real numbers and

r1a1+"'+rnan:0a

then r; = ... = r, = 0. This is equivalent to saying that each vector in the span of
A is a unique linear combination of vectors in A.

Definition 3.1.10 Bases. A linearly independent set A is called a (finite) basis
for Span A. In particular, if B = {ey, ..., e,} is linearly independent and if
Span B = X, then B is called a basis for X. Equivalently, B is a basis for X if each
x € X is a unique linear combination of vectors in B.

Example 3.1.11 Standard basis for R". The set R™ consisting of all n-tuples of
real numbers (x1, ..., Zp) is a vector space with the usual definitions of linear
operations. The set E = { ey, ..., e, } consisting of n vectors

e1 =(1,0,...,0),e0=(0,1,...,0),...,e, = (0,0, ..., 1) is a basis for R™.
It is called the standard basis of R™.

Examples 3.1.12 Bases for some vector spaces.

1. Each zero vector space {0} has () as a basis.
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2. Let W = {(z,y,2) € R® |z +y—2=0}. Then W is a subspace of R3.
Let us find a basis for W. Let v = (z,y, z) € R3. Then v € W if and only if
z = —y + 2. Thus,

W = {(-y+zuy,2) |y, are arbitrary real numbers }
= {-y(1,1,0) + 2(1,0,1) | y, = are arbitrary real numbers }
= Span {(—1,1,0),(1,0,1)}.

It’s easy to verify that E = {(—1,1,0), (1,0, 1)} is a linearly independent set;
hence, it is a basis for W.

3. Let £ = {(1,1,2,1),(2,-1,0,4),(4,1,4,6)} and let W = Span E. Ob-
viously, E satisfies the first condition for being a basis for W. But E is not
linearly independent since

2(1,1,2,1) + (2,—1,0,4) — (4,1,4,6) = 0.

Hence, we cannot conclude that E is a basis for W. However, it can be shown
that the smaller set {(1,1,2,1),(2,—1,0,4)} is a basis for W. A

Remarks 3.1.13 Finite dimensional vector spaces. A vector space may or may
not have a basis in the sense of Definition 3.1.10 above. Unless otherwise stated, we
consider only vector spaces with a (finite) basis. These spaces are also called finire
dimensional vector spaces. Hence, in this course, by a vector space we mean a finite
dimensional vector spaceunless otherwise stated. The following is a major theorem
about vector spaces.

Theorem 3.1.14 The dimension theorem. Any two bases for a vector space contain
the same number of vectors.

See Appendix B for a proof of this theorem.

Definition 3.1.15 The dimension of a vector space. The number of vectors in a
basis for X is called the dimension of X. This number is denoted by dim X. The
dimension of X is independent of the choice of basis because of the dimension
theorem 3.1.14 above.

Examples 3.1.16

1. Since @ is a basis for {0}, we have dim{0} = 0.

2. Example 3.1.11 shows that R™ has a basis consisting of n vectors. Hence,
dimR"™ = n.
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3. Letn € N and let P, be the vector space of all polynomials on R of degree
no more than n. Let pi(z) = a2k forallz € Randall k = 0,1,...,n. Then
{po, ..., pn} is a basis for P,,. Hence,

dimP, =n+ 1.

Direct Sums and Complementary Subspaces

Lemma 3.1.17 Let Uy, ..., Uy be subspaces of X. Then the following are equiva-
lent.

(1) For each x € X there are unique u; € U; suchthatx = u; + -+ + ug.
(2)If Ay = {al, ..., a\ } is a basis for U, then A = Uk_| A; is a basis for X.

Proof. This is left as an exercise. O

Definition 3.1.18 Direct sums. Let U;, i = 1, ..., k, be subspaces of X. Then
X is said to be the direct sum of Uy, ..., Uy if the conditions of Lemma 3.1.17
above are satisfied. This is expressed as X = U; @ - -+ @ Uy. Note that in this case
dim X = (dlm Ul) + -4 (dlmUk)

Definition 3.1.19 Complementary subspaces. A set of subspaces U, is called a
complementary set of subspaces in X if they satisfy the conditions in Lemma 3.1.17
above or, equivalently, if X = Uy & --- @ Uy.

Lemma 3.1.20 The subspaces U and V in X are complementary if and only if
X=U+VandUNV ={0}.

Proof. This is left as an exercise. O

Examples 3.1.21

1. Let X be any vector space. Then {0} and X are always complementary
subspaces in X,

2. LetU={(a+ba+2b,a+b)|a,becR}andletV = {(0,0,¢c) | ceR }.
Then U NV = {0} and for any x = (21,2, 73) € R>, we have

x=(a+b,a+ 2b,a+b)+(0,0,c),

where a = 221 — z2,b = 2o — 21,¢ = 73 — 1. Hence, R = U 4+ V. Thus,
R® = U @ V. So, U and V are complementary subspaces in R3,
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3. LetU = {(a,0,0,0) |a,b e R }andlet V = {(0,0,0,c) jc€ R }. ThenU
and V are complementary subspaces in { (z,v,0, z) | ,y, z € R }. However,
U and V are not complementary subspaces in R* because U + V # R%.

4. Consider X, E and O as in part 4 of Examples 3.1.5. Let us see that
X=FE3O0. (3.3)

First, let f € X. Define f1(z) = f(z) + f(—z) and fo(z) = f(z) — f(—x)
forall x € [-1,1]. Then f; € F and f; € O. Thus,

1 1

Hence, we have shown that X = E + O. Also, if h € E N O, then for
all x € [~1,1], we have —h(x) = h{—z) = h(z) so that h(z) = 0 for all
x € [—1,1]. Thus, E N O contains only the zero vector of X. So, (3.3) holds.
A

Cartesian Products and Direct Sums

Definition 3.1.22 Cartesian products. The Cartesian product of k vector spaces
Ui, ..., Ug is defined as a new vector space X = U; X --- X Ug. The elements of
X are the k-tuples x = (uy, ..., ug) of vectors u; € U,. Linear operations on these
k-tuples are defined as

rx+sy =r(uy, ..., ug) +s(vy, ..., vi) = (rug + svy, ..., rug + Svg)

forallr, s € Randforallx = (uy, ..., ug), y = {vi, ..., vi) € X. Itis easy to
check that X is a vector space with these operations.

Remarks 3.1.23 Cartesian products and direct sums. For simplicity we consider
only the products of two factors. Generalizations to more than two factors will be
obvious. Let X = U Xx V and put

U = {d=(10|uelU}cCX,
Vo= {v=(0,v)veV)cCX

We see that each x € X has a unique representation as
x=uv)=u+V

withw’ € U', v/ € V'. Hence X = U’ @ V'’ by Definition 3.1.18. This is the
standard representation of a Cartesian product as a direct sum.
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Notation 3.1.24 Identification of direct sums and Cartesian products. Note that
U and V above are separate vector spaces, but U’ and V'’ are the subspaces of
X = U x V. We will usually ignore the difference between U and U’ and between
V and V', The meaning will be clear from the context. This amounts to the following.
In a direct sum X = U @ V, one can consider U and V as separate vector spaces.
If this 1s done, then X becomes the Cartesian product space U x V. The difference
between U @ V and U x V is only notational. We will ignore this difference and
treat these spaces as the same space.

Linear Transformations

Definition 3.1.25 Linear functions. Let X and Y be two vector spaces. A function
T : X — Y is said to be a linear function if forallu, v € X andforall r, s € R,

Tru+sv) =rT(u) + sT(v).

A linear function is also called a linear transformation, a linear operator, or a linear
map — these terms are interchangeable. The values of a linearmap 7' : X — Y,
denoted as T'(x) or T, are vectors in Y.

Definition 3.1.26 The vector space L(X, Y') of linear maps. Let L(X, Y') be the
set of all linear functions T : X — Y. Then L(X, Y') is itself a vector space. The
linear operations on L(X, Y') are defined in a natural way. If S, T € L(X, Y) and
if a, b € R, then R = aS + bT is the function

Rx =aSx+bTxforx € X.
An easy verification shows that R : X — Y is also linear. Hence
R=(aS+bT) e L(X.,Y).

Another easy verification shows that these linear operations on L(X, Y') satisfy the
axioms for a vector space.

Examples 3.1.27

1. The identity function [4 : A — A on any set A is defined by [ 4(a) = « for all
a € A. In particular, there is an identity function Ix : X — X on any vector
space X. Itis easy to see that /x : X — X is actually a linear transformation.
If X is understood from the context, then we simply write [ instead of Ix.

2. Let T € L(X,Y) and assume that T is invertible: T one-to-one on X and
T(X)=Y.LetS:Y — X bethe inverse of T. Thus, S(y) = x if and only
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if T(x) = y. Then S is also linear. To see this, let y1,y2 be in Y and let a, b
be scalars. Suppose that S(y1) = x; and S(y2) = x2. Then

T(ax; + bxz) = aTx; + txg = ay; + bya.

Hence,
S(ay: + by2) = axy + bxg = aS(y1) + bS(y2).

This shows that S is linear.

Definition 3.1.28 Range and the kernel of a linear transformation. LetT : X — Y
be a linear transformation. Then the range and the kernel of T' are defined as

RangeT = {Tx|xe€ X} CY and
KerT = {x|Tx=0}CX.

Lemma 3.1.29 Images of subspaces. The images and inverse images of subspaces

under linear transformations are also subspaces. In particular, the range and the
kernel of T,

Range T = T(X) and Ker T = T~'{0},

are subspaces of Y and X, respectively.
Proof. This is left as an exercise. O

Lemma 3.1.30 Let T : X — Y be a linear map. If T is one-to-one on a subspace
U cC X, thendimU = dim T(U).

Proof. Assume that 1" is one-to-one on U. Then it is easy to show that T" maps
linearly independent sets in U to linearly independent sets in 7'(U). Hence T maps
bases of U to bases of T(U). Hence we see that dimU = dimT(U). O

Lemma 3.1.31 Let T : X — Y be a linear transformation. If a subspace U of X is
complementary to Ker T, then T is one-to-one on U and

T(U)=T(X)=RangeT.

Proof. Letu € U and Tu = 0; thatis, u € U N (Ker T'). Then u = 0, since U and
Ker T are complementary. From this we see that

ifu,u e Uandif Tu = Tu/, thenu =u’
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by applying the preceding observation to u — u’. Hence T is one-to-one on U.
Also, any x can be expressed as x = u+ v with u € U and v € Ker T, since
X = U & (Ker T). Hence Tx = Tu. This shows that T(X) C T(U). But
T(U) CT(X),since U C X. Therefore T(U) =T(X). O

Theorem 3.1.32 Let T : X — Y be a linear transformation. Then

dim (Range T') + dim(Ker T') = dim X.

Proof. Let U be a complementary subspace to Ker T'. Hence
dim U + dim(Ker T') = dim X.

Now T is one-to-one on U and T(U) = T(X) = Range T by Lemma 3.1.31.
Lemma 3.1.30 shows that dim U = dim T(U). Then the result follows. O

Examples 3.1.33

1. Suppose that 7' : R® — R® is linear and 7(1,1,1) = 0 = T(2,1,0). Then
at least one of u; = (1,1,1,1,1) oruz = (3,1,1,0,2) is not in T(R?). This
is because (1,1,1) and (2,1,0) are in Ker T, so dimKer T > 2. Hence,
dim T(R?) < 1, so uy, us cannot both belong to 7'(R3).

2. Let T : X — R be linear, where dim X = n for some n € N. Then either
T = 0ordimKer T' = n — 1. To see this, suppose that 7" # 0. Then T'x # 0
for some x € X. Hence,

1 <dim(7T(X)) < dimR = 1.
Thus, dim(7T (X)) = 1. So, dim(Ker 7'} =n — 1.

3. Let X, Y be finite-dimensional vector spaces and let 7: X — Y be linear.
Then

dimKer T' = dim X —dim7T(X) > dim X —dimY.
Hence, if dim X > dim Y, then Ker T # {0}. It follows easily that T’ cannot

be one-to-one on X.

Remarks 3.1.34 Linear transformations and bases. Let X and Y be two vector
spaces with the bases

A = {a;,...,a,} and B = {by,...,bn},
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respectively. Any linear map 7" : X — Y is uniquely determined by its values
c; = Ta; € Y on the basis vectors. In fact, if the values c; are known, then

Tx = T(a:lal +'-~+:cnan)
= xTay+ - +z,Ta,
= I1C1+ "+ TnCh
is determined for all x € X. Here, the z; s are the coordinates of x with respect to

the basis A. There is no restriction on the c; s: they can be n arbitrary vectors in Y.
In particular, referring to the basis vectors in A and B, for each pair (a;, b;), define

T;;: X - Yby
| by ifi =k
Ti‘a’“‘{ Oy ifitk
foreachk =1, ..., n. Hence 7T};; maps a; to b; and maps all other a;, to Oy . We see

easily that the set of these nm maps is a basis for L(X, Y'). Therefore we conclude
that dim L(X, Y) = (dim X ){(dim Y").

Remarks 3.1.35 Composition of linear transformations. Let R : X — Y and
S Y — Z be two linear transformations. Let us verify that the composition

S-R=SR:X - Z (3.4)
is a linear transformation. In fact, setting 7' = S o R, we have
T(ax+o'x") = S(R(ax+ a'x")) = S(aRx + o' Rx')
= aS(Rx)+dS(Rx") =aTx+ a'Tx'
forall x, x’ € X and forall o, o’ € R.

Forming the compositions of linear transformations is a kind of multiplication. This
multiplication is associative, in the sense that R(S5T) = (RS)7, but not necessarily
commutative. In general, RS # SR. If T : X — X, then one can form powers 7"
of T. They are defined inductively by 7' =T, 7? =T - T, T} =T . T™.

Projections

Projections are an especially simple, butimportant, category of linear transformations.
A close connection between projections and direct sums (or Cartesian products) is
brought out in Theorem 3.1.37.

Definition 3.1.36 Projections. A linear map P : X — X is called a projection if
P2=PP=P.
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Projections are closely connected with complementary subspaces.

Theorem 3.1.37 Let U; be a set of complementary subspaces of X. Then there is a
set of projections P; : X — X such that P,X = U; and such that 3, P; = I, the
identity on X

Proof. Let U; s be k complementary subspaces of X. Then foreachx € X thereare k
uniquely defined vectors u; € U; such that x = > u,. This follows from Definition
3.1.19 of complementary subspaces. Hence there are k functions P; : X — X such
that P;x = wu;. An easy check shows that each F; is a linear transformation and
Pf = P, that is, P;u; = u;. Hence each P; is a projection. Also, Y. P; = I since
Y. Px=3% uw=xforeachxe X. O

The converse is also true. Let P;s be a finite set of projections X — X such
that >, P; = I. Then their ranges U; = P; X constitute a set of complementary
subspaces of X. This is left as an exercise. We will consider only the following
special case.

Theorem 3.1.38 If P : X — X is a projection, then @ = (I — P) is also a
projection. The ranges U = PX and V = QX are complementary subspaces of X.
Also, U = Ker Q and V = Ker P.

Proof. If P is a projection, then P? = P and therefore
(I-P2=(I-P)Y(I-P)=I1-2P+P*=(-P).

Hence ) = ({ — P} is also a projection. Here we have used some composition rules,
such as (R + S)T = RT + ST. These identities have easy verifications. Also,

PQ=PJ-P)=P-P>*=P-P=0.
Now
x=P+Q)x=Px+Q@x=u+vwithucUandveV

forany x € X. Also,if x = v’ + v/ withu’ € U and v’ € V, then W’ = Pa and
v/ = Qb for some a, b € X. Therefore

u= P(x)=P(Pa+Qb)=P?a+PQa=Pa=1u'
Similarly, v/ = v. This shows that the representation

x=ut+vwithueUandveV
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is unique. Therefore U and V' are complementary subspaces. Finally, Px = 0 if and
onlyifx=Qx=veV. Hence Ker P=V = QX. Also, Ker @ = U = PX.
O

Definition 3.1.39 Complementary projections. If P : X — X is a projection,
then Q = I — P is also a projection by Theorem 3.1.38. The projections P and )
and are called complementary projections. Note that if P and ) are complementary
projections, then their ranges U = PX and V = QQ X are complementary subspaces
in X.

Remarks 3.1.40 Projections on a subspace. Let P : X — X be a projection. If
U = PX is the range of P, then we denote P alsoas P : X — U and call it a
projection on U. Note that a subspace U does not define a projection. If U # X,
then there are many projections of X on U. A projection on U is specified if one also
chooses a subspace V' which is complementary to U. In this case there is a unique
projection P : X — U suchthat V = Ker P. Also,Q = (I — P) : X — Visthe
projection on V corresponding to the choice of U as a complementary subspace to
V.

Example 3.1.41 Let X = R® be the 2yz-space. Let U be the xy-plane. Let V be
the line spanned by the vector (1, 1, 1) € X. Show that U and V" are complementary
subspaces. What are the associated projections P and Q7

Solution. A general vector in U is of the form u = (u, ug, 0) withuy, up € R. A
general vector in V is of the form v = (v, v, v) withv € R. If w € U NV, then
w = (uy, ug, 0) = (v, v, v). Hence v = 0 and w = 0. To obtain the associated
projections, we find the unique decomposition of w = (z, y, z) as w = u + v with
u€ Uandv e V. Setting

("Ba Y, Z) = (u17 uz, 0) + (Uy v, U)
givesv=2z,u3 = —v=2 —2,us =y — v =y — 2. Therefore
Plz,y,2)=(z—2,y—2 0)and Q(z, y, 2) = (2, 2, 2)

define the associated projections P and (). We check that we have indeed P% = P,
Q?=Q,P+Q=1I1,andRange P =U,RangeQ=V. A

Coordinate Systems

Definition 3.1.42 Coordinate systems. Let U and V' be a pair of complementary
subspaces of X. Then (U, V) is called a coordinate system in X. The projections
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P: X — UandQ : X — V are the coordinate projections of this coordinate
system. In this case X = U x V. Any x € X is represented as

x = (Px, @x) = (u, v)

in terms of its coordinates Px = u € U and (x = v € V in this system. The
generalization to more than two components is obvious. If X = Uy x - -+ x Uy, then
(Ui, ..., Uy) is a coordinate system in X with the corresponding set of coordinate
projections F; : X — U,.

V X

/

/

Figure 3.1. Complementary projections P and Q.

]

Definition 3.1.43 Coordinate functions of a basis. Let X be a vector space with
the basis A = {aj, ..., a,}. Let U; be the one-dimensional space spanned by
a;. Then the U;s form a set of complementary subspaces. The coordinate system
(Un, ..., Uy) is called the coordinate system defined by the basis A. In this case,
the coordinate projections P; : X — U, are projections on one-dimensional spaces.
They can be represented by functions z; : X — R such that P;x = z;(x)a;. This
gives, as before, the unique expression for x € X,

x =x1(x)a; + -+ + Tp(X)an, (3.5
as a linear combination of basis vectors. The functions z; : X — R are called the
coordinate functions (of the basis A). Note that x;(a;) = 0if ¢ # j and x;(a;) = 1.

We see that the earlier form

X=1z1a1 + -+ 2,4, 3.6)
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was not quite precise, as the coefficients are actually functions z; : X — R and should
not have been confused with their values x;(x). Nevertheless, we will continue to use
the form (3.6) for convenience. Also, an easy verification shows that x; € L(X, R).

Remarks 3.1.44 Coordinate functions as a basis for L(X, R). Coordinate func-
tions themselves are vectors in the vector space L(X, R) (even though they are not
written in boldface letters). We show that they are linearly independent. Suppose

f=rixi+-- +rpx, =0. 3.7

Here the meaning is that f is the O-function, ie., f(x) = O forall x € X. In
particular, f(a;) = r; = 0, since z;(a;) = 01if j # i. Hence x;s are linearly
independent in the vector space L(X, R). They also form a basis for L(X, R). In
fact, let f € L{X, R) be arbitrary. Let f(a;) = r;. Then

f(X) = f(xl(x)al +- + xn(x)an)
z1(x)f(ar) + -+ + za(x) f(an)
= rz(x)+ -+ rpza(x)

I

for all x € X. This means that f = ryz1 + - - - rp2,, as a linear combination in the
vector space L(X, R). This shows that the set

A*={zy, ..., 2.} CTL(X, R)

is linearly independent and spans L(X, R). Hence it is a basis for L(X, R).

Isomorphic Spaces

Definition 3.1.45 Isomorphisms. A linear map 7" : X — Y is called an isomor-
phism from X to Y if it is one-to-one and onto, i.e., T(X) = Y. Equivalently, an
isomorphism is an invertible linear map from X to Y. An easy check shows that
the inverse map 7! : Y — X is also an invertible linear map.

Example 3.1.46 Assume thatdim X = n =dimY forsomen € N. LetT : X —
Y be linear. Then T is one-to-one on X if and only if T is an isomorphism. To
see this, assume that T is one-to-one on X. Then Ker T = {0}. Hence, by the
dimension theorem, dim X = dim T'(X). Thus, dimY = dim(7'(X)). Since T'(X)
is a subspace of Y, we have T(X) = Y. Conversely, if T is an isomorphism, then of
course, T' is one-to-one.

Definition 3.1.47 Isomorphic spaces. Two vector spaces X and Y are called iso-
morphic if there is an isomorphism 7" : X — Y from X to Y. The fact that X and Y
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are isomorphic spaces is expressed as X ~ Y. Being isomorphic is an equivalence
relation between vector spaces.

The next two results establish that for two vector spaces to be isomorphic amounts
to having the same dimension.

Lemma 3.1.48 [fdim X = n, then X is isomorphic to R™.

Proof. Let A = {ay, ..., a,} be abasis for X. Define T : X — R"” by
T(x) = (z1(x), ..., zp(x)) € R"

for x € X. Here x; : X — R are the coordinate functions of the basis 4. We see
easily that T is an isomorphism. Let F = { ey, ..., e,} be the standard basis of
R™, as in Definition 3.1.11. Then T takes a; € X toe; € R*. O

Theorem 3.1.49 Two (finite dimensional) vector spaces X and Y are isomorphic if
and only if dim X = dim Y.

Proof. Assume that X and Y are isomorphic. Let 7" : X — Y be an isomorphism
from X to Y. Then T is one-to-one on X and T(X) = Y. Therefore, by Lemma
3.1.30, dim X = dim7T(X) = dim Y. Conversely, assume that dim X = dimY =
n. Then X and Y are both isomorphic to R™”. O

Matrices

Definition 3.1.50 Matrices. Let m, n € N. Anm X n matrix A is a function
A:{1,....m}x{l,...,n} >R

that takes the pair (4, j) € {1, ..., m} x {1, ..., n} to the number A;; € R. The
numbers A;; are called the entries or components or coordinates of the matrix A.
Such a matrix is defined by arranging its entries as a table

All e Aln
A= : . :
Ani . Ann

consisting of m rows and n columns. We also denote a matrix A in terms of its
entries as { A;;}, or simply as A, if the meaning is clear from the context.
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Definition 3.1.51 The vector space M,,,,. Let M,,,,, be the set of all m x n matrices.
Then M,,,, is a vector space under the usual (componentwise) definition of linear
operations. The set of matrices with all components equal to 0 except one component
equal to 1 forms a basis for M,,,,. Since this set contains mn matrices, we obtain

dim(M,,,,,) = mn.

Another way of seeing this is as follows. There is an obvious isomorphism between
M., and R™. In fact, both spaces are the set of all functions F' — R, where F'isa
finite set of mn elements. In each case, the set of all functions F° — R that take the
value 1 at one point and vanish at all other points forms a basis. Hence we see that
the difference between M,,,,, and R™" is only notational.

Remarks 3.1.52 Matrices and linear transformations. Let dim X = n and
dimY = m. Then we see that M,,, and L(X,Y) are of the same dimension.
Therefore they are isomorphic spaces. There is a standard isomorphism between
L(R™, R™) and M,,,,,. Given a matrix T = { T};} € M,,,,,, define a transformation
T :R™ — R™ as follows. If

T(x1, ooy Tn) = Wiy -+, Ym),s
then y; = Z?Zl Tz foralli=1, ..., m.
There is one further basic connection between matrices and linear transformations:

composition of linear transformations corresponds to matrix multiplication. We shall
establish this in the next section.

Problems

31 LetT : X — Y be alinear map. Let U be a subspace of X. Show that if
dimU = dimT'(U), then T is one-to-one on U.

3.2 Let X be a vector space and let x € X. Show that for all scalars a, b, we have
(a — b)x = ax — bx.

3.3 Let X be a vector space. Show that if x € X is nonzero and s, ¢ are distinct
scalars, then sx # tx.

34 Letxj,...,x, be vectors in a vector space X. Assume that u, v are linear
combinations of x1,...,x,. Show that any linear combination of u and v is also a
linear combination of X, ..., X,.
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35 Letu=(1,2,3),v =(2,5,~-4). Find all real numbers a such that (-2, a, 7)
is a linear combination of w and v.

3.6 Let
-2 1 3 1 4 3
3 0 7 -2 0 5
A= 1 -5 9 |’ B= 7 -1 3
2 2 0 0 3 -1

Find a matrix X such that A — 3X = 2B.

3.7 Give an example of a nonempty subset A of R? such that A + A # 2A. Find
all subsets B of R? with tB + sB C B for all scalars s and t.

3.8 Given any u and v in R?, show that
R % {au+bv|iacR,beR}.

(The solution is easy if one uses the results on dimensions: a three-dimensional space
cannot be spanned by two vectors. Try to give a solution that uses only the basic
definitions.)

39 Foreacha € R, letU, = {(z, v, z) |alr|] =2 +y+ 2} Find all a for
which U, is a subspace of R3.

3.10 LetU, V be subspaces of a vector space X. When is it true that U U V is also
a subspace of X?

3.11 Letu,,...,u, be vectors in a vector space X. Let
U:{a:(a’17"'7an) eRnlalul+"'+anun :0}7
where O is the zero vector of X. Show that U is a subspace of R™.

312 LetW ={(z,y, 2) € R®| 2z — z =y }. Show that W is a subspace of R®
and find a basis for W.

3.13 Let A be a nonempty subset of a vector space X. Let ¢ be a nonzero scalar.
Is it true that Span (tA) = Span A?

3.14 Find a finite subset S of R? such that Span S = A + B, where

A = {(z,yz, ) eR [z —y+t=0} and
B = {(z,y, 2. ) R |z +42-2t=0}.
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3.15 Let A and B be two subsets in a vector space X. Does Span A C Span B
imply that A C B?

3.16 Find mutually disjoint subsets A, B, and C of R? such that

R? = Span A = Span B = Span C.

3.17 Let A and B be two subsets in a vector space X . Show that

Span (A + B) C Span A + Span B.

3.18 Let U,V be two subspaces of X such thatdimU =dimV and U # V.

1. Showthat U +V #Uand U +V # V.
2. Show thatif (dimU) = (dimV) = (dimX) — 1, then X = U + V.

319 LetT : R? — R3 be defined by

T(z,y) = (x —y,y — 3z,z + |y|) forall (z, y) € R
Is T linear?
3.20 Isthere a linear T : R? — R? such that

T(1,2,1) = (1,1), T(=2,0,3) = (2,5), and T(—4,—4,1) = (—3,2)?

321 LetT e L(X,Y)and letyg € Y be such that
{xe X |Tx=yq}
is a subspace of X. Show that yy = 0.

3.22 Supposethat E C X and Span E = X. Let T and S be in L(X,Y). Show
that 7' = S if and only if Tu = Suforallu € E.

323 Let7,Sbein L(X,Y). Let U ={x € X [Tx=S5x}. Showthat U isa
subspace of X.

3.24 Showthatif X ~Y andY ~ Z, then X ~ Z, recalling that X ~ Y means
that X is isomorphic to Y.
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3.25 Leta € R. Consider the linear map 7" : R® — R3 given by
T(z,y, 2) = (z, ax +y, 2) forall (z,y, z) € R3.
Show that 7T is invertible and find its inverse map T-' : R® — R?,
3.26 Let X and Y be vector spaces and a € X. Define f : L(X,Y) — Y by
f(T)y=Ta forall T € L(X,Y).
Show that [ is linear.

327 letR:X —YandS:Y — Z beisomorphisms. Show that SR : X — Z
is also an isomorphism and (SR) ! = R°1S7!: Z — X.

3.28 Let (dim X) > 2. Give an example of anonzero 7' € L(X, X) such that 7?2
is the zero transformation.

3.29 Let X be a vector space. Let T € L(X, X) be non-invertible. Show that
CT = 0 foranonzero C € L(X, X).

330 Let T: R5 — RS be linear. Assume that whenever x € R® and Tx = x,
then x = 0. Show that for any y € R5, there exists x € R® with

x=Tx+y.
3.31 Is there a linear map 7' : X — X such that T is not one-to-one on X but
Tk . X — X is one-to-one for some k > 2 7

332 Let A, B € L(X, X). If AB is invertible, show that both A and B are
invertible.

333 LetT € L(X,Y). Let U be a subspace of X such that U N Ker T = {0}.
Show that dim U = dim T'(U).

334 LetT € L(X,Y). Let U be a subspace of X such that X = U @ Ker T.
Show that dim X = dim T'(U) + dim Ker T..

3.35 Let X and Y be two vector spaces. Let W be a subspace of X. If
dimY > (dim X) — (dim W),

then show that thereisa 7" € L(X, Y) such that W = Ker 7.
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336 Let f, g € L(X, R). Show that Ker f C Ker g if and only if g = c¢f for
some scalar c.

3.37 Let U,V be subspaces of a finite-dimensional vector space. Let W =
{(=x,x) |xeUNV }L

I. Show that W is a subspace of U x V and W is isomorphicto U NV

2. Define f: UxV - U+Vby flu,v) =u+vforal (uv) e UxV.
Show that f is linear. Hence, deduce that

dim(U + V) = dim U 4+ dimV — dim(U N V).

3.38 Let W and Z be two vector spaces with dimW = dimZ. Let X be a
subspace of W and let T': X — Z be a one-to-one linear map. Show that there is an
isomorphism R : W — Z such that the restriction of R to X is 7T".

339 Let X and Z be two vector spaces with (dim X') < (dim Z). Show that there
is a vector space Y with the following property. Given any one-to-one linear map
T : X — Z, there is an isomorphism R : (X x Y') — Z such that the restriction of
Rto X is T. Here X is identified with the subspace of X x Y consisting of vectors
of the form (x, 0) € X x ¥, withx € X.

3.40 Let W and Z be two vector spaces with dimW =dimZ. Let S : Z — W
be a linear map and let X = S(Z) be the range of S, which is a subspace of W.
Show that there is an isomorphism L : Z — W and a projection P : W — W such
that § = PL.

3.41 Let X and Z be two vector spaces with (dim X') < (dim Z). Show that there
is a vector space Y with the following property. Given any linearmap S : Z — X
that maps Z onto X (thatis, T(Z) = X)), there is an isomorphism L : Z — (X xY)
such that S = PL, where P : (X x Y) — X is the coordinate projection onto X.
Recall that P(x, y) = (x, 0) for all (x, y) € X x Y. Here X is again identified
with a subspace of X x Y.

342 Let (U, V) be a coordinate system in X, in the sense of Definition 3.1.42. A
set I' C X is a graph in this system if thereisa set A C U and a function f : A — V
such that T is the set of points (a, f(a)) witha € A, Let (U;, V), 7 =1, 2, be two
coordinate systems for X. Show that I is a graph in one system if and only if it is a
graph in the other system.

343 Let (U, V;), i = 1,2, be two coordinate systems in X, in the sense of
Definition 3.1.42. Consider the following proposition: a set I' C X is a graph in
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one system if and only if it is a graph in the other system. Show either that this
proposition is true or that it is false.

3.2 BILINEAR FUNCTIONS

Ordinary multiplication is an operation that takes a pair of real numbers (a, b) to
their product M (a, b) = ab. Multiplication is bilinear: forall a, b, ¢, r, s € R,

M(ra+sb,c) = rMla,c)+sM(b, ¢) and
M(a, rb+sc) = rMla,b)+sM(a, c).

Bilinearity deserves special attention, for it will play an important part in our discus-
sion of polynomials.

Definition 3.2.1 Bilinear operations. Let X, Y, and Z be three vector spaces. A
function B : X x Y — Z is called a bilinear function (or a bilinear operation, or a
bilinear map) if

Blax+a'x',y) = aB(x,y)+dB(x',y) and
B(X, ﬂy + /Blyl) = ,BB(X, y) + ﬁ,B(X, yl)
forallx, x’ € X,y,y' €Y,and o, &, 3, 3 € R.

Thus, a bilinear function can be considered as a function of two variables that is
linear in each variable separately when the other variable is kept constant.

Remarks 3.2.2 Linear and bilinear functions. The term bilinear may perhaps
suggest that bilinear functions are some type of special linear function. This is not
the case. Bilinear functions are completely different from linear functions. Consider,
for example, the linear and bilinear functions from R x R = R? to R. Here R
is considered as a (one-dimensional) vector space. We see that a linear function
L : R? — Ris of the form

L(x, y) = Az + By, where A = L(1, 0) and B = L(0, 1) are two constants.
On the other hand a bilinear function B : R? — R is of the form
Bz, y) = Pxy, where P = B(1, 1) is a constant.
This follows from the observation that

Bz, y) = B(zl, y) = zB(1, y) = zB(1, yl) = zyB(1, 1).
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Remarks 3.2.3 General form of bilinear functions. Let X and Y be vector spaces
with bases A = {a;,...,a,} and B = {by, ..., b,,}, respectively. Then a
function R : X x Y — Z is a bilinear function if and only if

X y) Z Z xl Cij. (38)

Here ; : X — Rand y; : ¥ — R are the coordinate functions with respect to
the bases A and B, and ¢,;; = R(a;, b;) are arbitrary vectors in Z. Equation (3.8)
follows by expressing x and y as linear combinations of a; and b, respectively, and
then expanding R(x, y) using bilinearity.
Example 3.2.4 Standard dot product. Define B : R™ x R™ — R by

B(x,y) =xy1 + -+ Tpy, forall (x,y) € R® x R™

This function is the standard dot product on R™. It is easy to verify that B :
R™ x R™ — R is a bilinear function. A

Example 3.2.5 Bilinear functions (R® x R) — R. Denote the points in R? as
(z, y, z) and the points in R as ¢. Hence the points in R? x R are ((z, y, 2), t). Let
A, B, C € R be arbitrary. An easy check shows that

R(($7 Y, Z)a t) = Azt + Byt+ CZt, ((1‘, Y, Z)v t) € RS X Rv

defines a bilinear function R® x R — R. Also, this is the general form of a bilinear
function R? x R — R. We see that

R((1,0,0),1) = A, R((0,1,0),1) =B, R({0,0,1),1)=C. A

Example 3.2.6 Bilinear functions (R? x R?) — R. Denote the points in R? x R?
as ((z, y), (u, v)). Let A, B, C, D be arbitrary in R. An easy check shows that

R((z, y), (u, v)) = Azu+ Byu + Czv + Dyv, ((z,y), (u, v)) € R* x R?,

defines a bilinear function R? x R? — R. Also, this is the general form of a bilinear
function R? x R? — R. We see that

R((L O)’ (1’ 0)) = 4, R((Oa 1)7 (17 0
R((1, 0), (0, 1)) R((0, 1), (

3

) B
) = D. A

|
Q

Remarks 3.2.7 Dependence on the factorization. In Examples 3.2.5 and 3.2.6
above, the domain space of the bilinear functions is the same space

R =R% x R = R? x R?.
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However, the two classes of bilinear functions are different. Hence, bilinearity
depends on the way of expressing the domain space as a Cartesian product.

Definition 3.2.8 The space of bilinear functions. The set of all bilinear maps
X xY — Z will be denoted by BL(X x Y, Z). An easy verification shows that
BL(X x Y, Z) is actually a vector space itself, by the natural definitions of linear
operations. The following lemma states this explicitly.

Lemma 3.2.9 Let P and Q) be two bilinear functions, and let v, s € R. Define
(rP+sQ): X xY — Zas

(rP+ sQ)(x, y) = rP(x, y) + sQ(x, y)

forall(x,y) € X x Y. Then (rP+ sQ) : X xY — Z is also a bilinear function.
The set of all bilinear functions X xY -+ Z becomes a vector space BL(X,Y; Z)
with these linear operations.

Proof. This is left as an exercise. O

Example 3.2.10 Composition of linear transformations. If X : X — Y and
S :Y — Z are two linear transformations, then their composition
CR,S)=5-R=SR:. X—-Z
is another linear transformation. We see that the operation of composition itself,
C:LX,Y)x LY, Z) - L(X, Z),
is a bilinear operation. In fact, we have

ClaR+d'R, S)(x) = S((aR+dR)(x))=S(aRx+ o R'x)
aS(Rx) +a'S(R'x) = (aSR+ &’ SR)(x)
— (aC(R, )+ /C(R, 8))(x)

I

for all x € X. Similarly, we can verify the linearity of C in its second factor. Thus,
C'is a bilinear operation L(X, Y) x L(Y, Z) — L(X, Z). A

Matrix Multiplication

Matrix multiplication is defined as follows. If A = { A;.} € M, is an m x £
matrix, and B = { By,;} € My, is an ¢ X n matrix, then their product

A[(A B) =AB=C= {CU} € Monn
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is the m x n matrix whose entry in row 4 and column j is given by C;; =
Zf;:lAik By;. We see that this operation defines a bilinear function

M : Mmg X Mgn - an
and therefore a product between the matrices.

An easy check shows that matrix multiplication is associative. If A € M,,,4, B €
Myp, and C € M,,, then A(BC) and (AB)C define the same matrix in M,
which we may consequently denote as ABC. Significantly, matrix multiplication
is noncommutative. In fact, BA may not be defined, even if AB is defined. This
happens, for instance, if A isa 2 x 3 matrix and B is a 3 x 5 matrix.

Matrices can be used to represent linear maps, and a particularly simple kind of
matrix multiplication can be used to represent the effect of applying a linear map to
a vector.

Example 3.2.11 Linear maps as matrix multiplication. There is a standard iso-
morphism between M,,,,, and L(R"™, R™), as pointed out in Remarks 3.1.52. It
takes the matrix T = {T;;} € M, to the transformation T' : R® — R™ defined
as follows: if T(z1, ..., #n) = (Y1, -+, Ym)s then y; = 37 Ty ;. T can be
expressed as matrix multiplication in the following way. Let C,, : R™ — M,,; take
vectors in R™ to n x 1 matrices as follows:

T
C'n(xl,...,:cn)= € M,,1
Tn
for (z1, ..., z,) € R™. We usually call the matrices in Ml,; column vectors and

ignore any differences between R™ and M.,,;. We denote the elements of both spaces
by symbols like x and y. If T € M,,,,,, with corresponding operator T' : R™ — R™,
then y = Tx if and only if y = Tx, or, more explicitly,

Y Ti1 ... Ty T
Ym Tni - Tmn Tn

Thus, any linear transformation can be represented as matrix multiplication.

Example 3.2.12 Compositions as matrix multiplication. Let
Rc L(R" RY and S ¢ L(RY, R™).

Then their composition 7' = SR belongs to L(R™, R™), as mentioned in Example
3.2.10. Let the maps R, S, T correspond to the matrices

R € My,, S € M, and T € M,
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as above in Example 3.2.11. Then T = S R. In fact, by the associativity of matrix
multiplication,
Tx = S(Rx) = (SR)x.

Second-degree Homogeneous Polynomials

Second-degree real homogeneous polynomials in two variables have the form
flz, y) = Az? + 2Bxy + Cy? with A, B, C € R.

As noted at the start of the chapter, this class of functions will have an important role
later. This function is still defined if the coefficients are vectors from a vector space
Y. Such polynomials are defined in terms of bilinear functions.

Definition 3.2.13 Second-degree homogeneous polynomials. Let X and Y be two
vector spaces. A second-degree homogeneous polynomial f : X — Y is a function
of the form f(x) = B(x, x),x € X, where B : X X X — Y is a bilinear function,

Definition 3.2.14 Symmetric bilinear functions. If the bilinear function
B: X x X — Y satisfies B(u, v) = B(v, u) forallu, v € X,

then it is called a symmetric bilinear function. If B : X x X — Y is any bilinear
function, then
B(u, v) = (1/2)(B(u, v) + B(v, u))

is a symmetric bilinear function. It is called the symmetric part of B. Note that
B(x, x) = B(x, x) forall x € X.

Hence a bilinear function and its symmetric part define the same second-degree
homogeneous polynomial.

Example 3.2.15 Second-degree homogeneous polynomials f : R? — R, A gen-
eral bilinear function B : R? x R? — R is of the form

B((z, v), (u, v)) = Azu + Byu + Czv + Dyv, ((z,y), (u, v)) € R? x R?,

as shown in Example 3.2.6. Hence a general second-degree homogeneous polynomial
f :R? — Ris of the from

f(.’l?, y) = B((x’ y)) (iL‘, y)) = Az’ + (B + C)xy+ Dy27 (Jf, y) € R%
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Note that the symmetric part of B is
B((z, y), (u, v)) = Azu+ (1/2)(B + C)(zv + yu) + Dyv.
Hence we see that the relation

B((z, ), (z, ) = B((z, y), (z, y)) = Az® + (B + C)ay + Dy’

is verified. A

Problems

344 Let X, Y, Z be three vector spaces. Show that the vector spaces
BL(X,Y; Z), L(X, L(Y, Z)), and L(Y, L(X, Z))

are isomorphic to each other.

3.45 The cross product of two vectors is defined as

(x1, y1, 21) X (z2, Yo, 22) = (Y122 — Y221, 2122 — T122, T1Y2 — Y122).

Show that the cross product, as a function R3 x R® — R3, is a bilinear operation.
Hence, the cross product is also a product in the sense defined here.

3.46 Show that B((uy, ..., Un), (V1, ..., Um)) = Z?zlzg.n:luivjaij, with ar-
bitrary a;; € Y, is a general bilinear function B : R® x R™ — Y.

3.47 Show that f(zy1, ..., zp) = Z?lezzlmixjaij is a general second-degree
homogeneous polynomial f : R® — Y. Here a;; € Y are arbitrary.

3.48 Supposethat T : X x Y — Z is bilinear. Must its kernel
W={(,y) e XxY|T(x,y)=0}
be a subspace? What about the range of T'?

3.49 Let X be a vector space with basis {xy,...,xx}. Then every bilinear map
S X x R® — R™ is of the form

S(%,¥) = 1Ay + -+ e Ary forally € R™,
where Aq,..., A are m X n matrices and c,1, . . . , Cp are scalars such that

X = Cp1X] + -0+ Cpk Xk
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350 LetX,Y,and Z be vector spaces. Thenboth BL(X xY, Z)and L(X xY, Z)
are subspaces of F(X x Y, Z), the vector space of all functions from X x Y into
Z. Here, L(X x Y, Z) is the subspace of all linear maps from X x Y to Z, where
X x 'Y is equipped with the usual vector space structure. Show that

BL(X xY,Z)NL(X x Y, Z) = {0}.

351 LetT: X xY — Z be bilinear. Suppose that
(dimY)(dim Z) < dim X.
Show that there is a nonzero xg € X such that

T(xp,y) =0 forally €Y.

3.52 Suppose that f is a homogeneous polynomial of degree 2 on R? such that
f(1,0) = 1, f(0,1) = 1. What is the value of f(1,1) so that f(z,y) > 0 for all
(z,y) € R*?

3.3 MULTILINEAR FUNCTIONS

Products between two vector spaces are defined in terms of bilinear functions. Prod-
ucts between finitely many vector spaces are expressed in terms of multilinear func-
tions. Before we define multilinear functions, we review the coordinate systems
defined by Cartesian products, as described in Definition 3.1.42.

Notation 3.3.1 Review of coordinate systems. Consider (Uq, ..., Uy) as a coor-
dinate system in X = U; X - -« x Ug. Let P, : X — U, be the associated coordinate
projections and let (); = I — P;. Here ] : X — X is the identity. Hence P; and @),
are complementary projections as in Definition 3.1.39.

Remarks 3.3.2 Multilinearity as componentwise linearity. Let M : X — Y be
a function, where X = U; x --- x Uj. Multilinearity of this function is defined
as its linearity in each component (or coordinate) taken separately, with all other
components kept fixed. That is,

M(arx) + o) %], Xo,. .., Xk) = a1 M(Xy, Xg,...,Xp) + o] M(x], X2,..., %)

for all x1, x} € Uy, x; € U, and a1, o) € R; and similarly for each of the other
components.
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To formulate this concisely, note the following. If a = (aj, ..., ax) and x =
(X1, ..., Xi), then

Qia+ Px=(ay, ..., %x; ..., a)

is obtained from a by replacing only its ith component by the sth component of x.
Therefore, if we let Tj(a) : X — Y be the function T;(a)(x) = M(Q;a + Pix),
then the linearity of all of the functions 7;(a) : X — Y is equivalent to the linearity
of M : X — Y in each component separately, when all other components are kept
constant. Hence we introduce the definition of multilinearity as follows.

Definition 3.3.3 Multilinear functions. Let M/ : X — Y be a function, where
X=U; x---xUg Letae Xandleti =1, ..., k be fixed. Let

T,(a)x = M(Q;a+ P;x) for x € X.

Then M : X — Y is called a multilinear (or k-linear) function if T;(a) : X — Y is
a linear function foreacha € X and foreachi =1, ..., k.

Example 3.3.4 Suppose that 7 : R? x R x R — R? is multilinear. Given that
T((1,0),1,1) = (2,3),T((0,1),1,1) = (5, —1), letus find a formula for T'((x, y), u, v)
where ((z,y),u,v) € R x R x R.

Let ((z,y),u,v) € R? x R x R be arbitrary. Then

T((z,y),u,v) = T(x(1,0)+y(0,1),u,v)

= zT((1,0),u,v) + yT((0,1),u,v)

= zuT((1,0),1,v) + yuT((0,1),1,v)
zuwoT((1,0), 1, 1) + yuoT((0,1),1, 1)
zuv(2,3) + yuv(5, —1)
= ((2x + 5y)uv, (3x — y)uv).

I

Lemma 3.3.5 If M : X — Y is multilinear, then

Tiy(a)(x) = M(Q;a+ Px) = M(a+ Px) — M(a), x€ X. (3.9)

Proof. We have

M(a+ Px) = M(Q:a+ Pia+ Px)=M(Q;a+ Pi(x+a)) (3.10)
= M(Qia+PiX) +M(Qia+Pia) 3.11)
M(Q;a+ Pix) + M(a). (3.12)

Hence (3.9) follows. Here (3.11) uses the linearity of T;(a) : X — Y. 0O
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Definition 3.3.6 Spaces of multilinear functions. Let U; and Y be vector spaces.
Let Xy = U x---x Uy, k € N. (The U; s are listed in descending order for
notational convenience in the arguments below.) Let

MLy(Up x -+ x Uy, Y) = MLi(Xs, Y)

be the set of all k-linear functions. We see easily that M L, (Xg, Y') is a vector space
under the natural definitions of linear operations. That is, if A, B : X, — Y are
multilinear functions and if , s € R, then

(rA+ sB)(x) = rA(x) + sB(x) where x = (ug, ..., u;) € Xy

defines another multilinear functionr4 + sB : X, — Y.

Definition 3.3.7 An identification of multiple products. There is a natural iso-
morphism between M Ly 1(Xk41, Y) and L(Ugs1, MLi(Xy, Y)). For each
Fe MLy 1(Xgt1, Y), define 9F € L(Up41, MLi(Xg, Y)) by

IF (1) (U, - -, u1) = F(ugqr, Uk, ..., ug). (3.13)

Here ¥F is a linear function Upy1 — MLi(Xg, Y). It maps ugy; € Ugq to
BF(ugt1) € M Lg(Xk, Y). Equation (3.13) defines ¥F(ug,) : X — Y ateach
(ug, ..., uy) € Xi. An easy verification shows that

9 MLy (X1, V) — L(Ugy1, MLE(Xg, Y))

is an isomorphism. That is, 9 is linear and invertible. In practice, we ignore the
difference between F' and ¥F'. Hence the values of F' € M Lj11(Xk+1, Y) may be
denoted as

Flukyr, ug, ..., ug)
or as

F(ugi1)(ug, .., ug),
depending on the context. In the basic case of the usual product of (k + 1) numbers,
this corresponds to identifying

Tkl Tk 71 and rgyq - (Pe v 71)-

The main significance of this identification is as follows. General results about
MLy (X, Y) are usually proved by mathematical induction on k. Our identification
simplifies these inductive proofs, as the isomorphism ¢ is used in the induction step
to pass from k to (k + 1).

Note also that
MILi(X.,Y)=L(U,,Y)

is the space of linear functions U; — Y and
MLy(X5,Y)=BL(Uy x Uy, Y) ~ L(Us, L(U;, Y))

is the space of bilinear functions (Us x U;) — Y.
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General Polynomials in Vector Variables

Here we generalize our earlier discussion of second-degree homogeneous polynomi-
als. We assume some familiarity with permutations. Appendix C on determinants
also contains a review of permutations. Foreach k € NweletN, = {1, ..., k} and
denote the set of all permutations of N by 8. Note that 8, contains k! elements.

Notation 3.3.8 If U; = --- = U,, = X, then we let
Xy =Upx - xU = X"

Also, M Li(X*, Y) denotes the space of all k-linear functions (or k-products) with
all factors from X.

Definition 3.3.9 Homogeneous polynomials of degree k. Each
M e MLi(X* Y)
defines a function f : X — Y by
fx)=Mx,...,x), xe X.

Such a function is called a homogeneous polynomial (of a vector variable and of
degree k). A sum of homogeneous polynomials is called a polynomial.

Definition 3.3.10 Symmetric multilinear functions. A multiple product M €
MLy (X*,Y) is called symmetric if it is independent of the ordering of its k argu-
ments. More explicitly, M is symmetric if

]\/[(Xl, sy Xk) :]W(x(,(l), ceey xo(k)) (314)

for all permutations o € 8.

Definition 3.3.11 Space of symmetric multilinear functions. Denote the set of all
symmetric k-products as SM L (X*, Y). Hence

SMLp(X*,Y) C MLy(X*, Y).
We see easily that SM Ly, (X*, Y) is a subspace of M Ly (X%, Y).

Definition 3.3.12 The symmetric part of a multilinear function. Given M €
MLy (X*,Y), define

~ 1
M(xy, ..., Xp) = o Z M(Xo(1)s - Xo(k)) (3.15)
CoeSy
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forall (xi, ..., xz) € X*. Weseethat M € SML;(X*, Y). In fact, a permutation
of the arguments of M results only in a change of the order of summation in (3.15).
Hence the value of M does not change under a permutation of its arguments. (Note
that this definition is a generalization of Definition 3.2.14.)

Lemma 3.3.13 Let M € ML;(X*,Y) and let M € SMLy(X*,Y) be the sym-

metric part of M. Then M and M define the same polynomial. That is,

forallx € X.

Proof. If x, = xforalli =1, ..., k, then
(Xl, ey Xk) = (Xg(l), ey Xo(k))
for any permutation o € 8. Then the conclusion follows from the definition of M

given above in Definition 3.3.12. O

Example 3.3.14 Compositions of operators. Let L = L(X, X) be the vector
space of all linear operators R : X — X. The composition of two operators is a
2-product, as shown in Example 3.2.10. If R;, ..., R; € L are k linear operators
X — X, then their composition

M(Rka7R1):(Rle)eL

defines a k-product M € MLy (L*, L). In general, this is not a symmetric (commu-
tative) product. Note that the corresponding polynomial is

with the definition of powers in Remarks 3.1.35. Note that 7% may be induced by
several different k-products. For example, T° is induced by M;(P, Q, R) = PQR
or by M2((P, Q, R) = (1/2)(PQR + PRQ). These are both non-symmetric
products. Their symmetric parts are

M, = M, = (1/6)(PRS + RSP + SPR + PSR+ SRP + RPS).

The equality of the symmetric parts is not accidental. If My, My € MLy (X* Y)
induce the same polynomial

f(x)=M(x, ..., x) = Ma(x, ..., xX),

then ]\Z = ]\A/[;



MULTILINEAR FUNCTIONS 93

Probiems

3.53 Definep: R3xR3xR® — Rasp(x, y, z) = (X X y, z), where x X y is the
usual cross-product of x and y, and {, ) is the usual inner product operation. Show
that  is a multilinear function. Find a linear function 7' : R® — BL(R? x R3, R)
such that p(x, y, z) = (T'x)(y, z) forall (x, y, z) € R® x R® x R3.

354 Definep:RExRIxR3*xR® 5> Rasg(x,y,2 u) = (xxy,zxu).
Show that ¢ is a multilinear function. Find a linear function

T:R* - ML3(R® x R®* x R®, R)

such that p(x, y, z,u) = (Tx)(y, 2, u) forall (x, y, z, u) € R? x R® x R x R3.
3.55 Define p: R® x R® x R?* — R3 as p(x, y, z) = (x X y) X z. Show that ¢
is a multilinear function. Find a linear function T : R® — BL(R3 x R?, R?) such
that p(x, y, z) = (Tx)(y, z) forall (x, y, z) € R® x R? x R3.

356 LetT: Xy X---xX,, — Zbemultilinear, where X1, ..., X,,, Z are vector
spaces. Suppose that X = (X1,...,Xm) € X1 X -+ X X, and x; = O for some k.
Show that T'x = 0.

3.57 Let Xj,..., X\ be vector spacesand let T : X7 x -+ x X — X1 x -+ X
X be multilinear. Suppose that there are linear maps T; : X; — X such that

T(xl,...,xk) = (Tlxl,...,Tkxk). Itk > 2, mustT = 0?

3,58 Let m > 1 be an integer and let X4,..., X,,, Z be vector spaces. Let
Ty : Xy — Z be linear and define §: X; X --- x X,,, — Z by

S(x1,.-Xm) =T1x1 + -+ Tpxyn  forall (xq,...,%x,) € X™.
Show that S is multilinear if and only if Ty, = O forallk =1,...,m.

359 Let7T: R3 x R? x R5 — R* be multilinear. Show that there is a multilinear
map ¢ : R? x R2 — My, 5 such that

T(x,y,z) = p(x,y)z forall (x,y,z) € R? x R? x R°.

Here, we identify each vector in R™ with an m x 1 column matrix. Thus, the right-
hand side of the equation above is interpreted as the product of a 4 x 5 matrix and
a 5 x 1 column matrix. The product obtained is a 4 x 1 matrix, which is identified
with the corresponding vector in R%.
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360 LetM: X;x---xX, — Zbemultilinear, and let T}, : X, — X}, be linear
foreachk =1,...,n. DefinelU : X; x---x X,, - Zby

U(Xl,. ..,Xn) = ]\I(Tlxl,. ..,Tnxn) for all (Xl,... ,Xn) € Xl X oo X Xn

Show that U is multilinear.

361 LetT € ML(X; x---x Xg,Z) and let By, ..., By be nonempty bases for
Xy, ..., Xk, respectively. Show that if T'(bs,...,bs) = 0 forall (by,...,bg) €
By x---x Bg,thenT = 0.

3.62 Let X1,..., X, Z be vector spaces, and let L : X; X --- X Xy, — Z be
multilinear. Let Y be any any nonzero vector space, and let yo be any nonzero
vector in Y. Let D C Y with yg € D be such that {yo} U D is a basis for Y.
Show that there is a multilinear map S : X; x -+ x X X Y — Z such that for all
(Xl,...,Xk) € X1 X oo X Xk»

L(x1,...,%x ifu=
S(xl,...,xk,u):{ O(XL g ifue%?

3.63 Let X;,..., X, Z be vector spaces and suppose that B, ..., By are bases
for X1, ..., Xy, respectively. Show that

1. Given b € By x -+ x B and z € Z, there is a unique multilinear map
Tp,z : X1 % -+ x X — Z such that

0 ifxeByx---xBr,x#b
Tb’z(x)z{z ifx — b, 7

2. If B is abasis for Z, then a basis for M L{X; X -+ x X, Z) is the set
{Tvz|beB X - X Bg,z€ B},
where T, , is the unique multilinear map in part 1. It follows that
dimML(X; x -+ x X, Z) = (dim X4) - - - (dim X} )(dim Z).
3. If £ > 2, then
ML(Xy %+ x X, Z) ~ L(X1, ML(Xg x -+ x Xy, Z)).

3.64 Give an example of a bilinear map 7' : R? x R? — R such that the map
S: R x R® — R defined by S(x, (u, v, w)) = T((z,u), (v, w)) is not bilinear.

3.65 Find all homogeneous polynomials of degree 3 from R? to R.
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3.4 INNER PRODUCTS

Definition 3.4.1 Inner products. Let W be a vector space. An inner product on
W is a function B : W x W = W2 — R that satisfies the following three conditions
forall x, y, z € W and forall o, 3 € R.

(1) B(x, x) > 0forall x € W and B{x, x) = 0 if and only if x = 0.
(2) B(x,y) = Bly, x).
(3) Blax+ By, z) = aB(x, z) + B(y, z).

In working with a particular inner product, it is customary to denote this inner product
by (, ) and to write (x,y) instead of B(x,y).

Remarks 3.4.2 Inner products and bilinear functions. Properties (2) and (3)
of inner products imply that an inner product B is a symmetric bilinear function.
Property (1) is referred to as positive definiteness. Hence, an inner product on X is a
symmetric and positive definite bilinear function B : X? — R.

Definition 3.4.3 Inner product spaces and Euclidean spaces. If B is an inner
product on W, then (W, B) is called an inner product space. The inner product B
is usually understood from the context, and W itself is also called an inner product
space. A finite dimensional inner product space is called a Euclidean space. As
we consider only finite dimensional spaces, all inner product spaces we consider
are Euclidean spaces. We assume that Euclidean spaces are nontrivial, i.e., their
dimension is at least 1.

Definition 3.4.4 The standard Euclidean space. The standard dot product on R
was defined in Example 3.2.4 as

<Xa }’>:331y1++33nynER,

where x = (x4, ..., z,) andy = (Y1, ..., Yn). We see that this is an inner product
on R™, so that R™ becomes a Euclidean space with this inner product. This is the
standard inner product on R™.

Definition 3.4.5 Norms. The norm of a vector x in a Euclidean space W is defined
as

X[l = v/ (x, x). (3.16)
Note that for all x € W,

||| > 0and ||x|| = 0if and only if x = 0. (3.17)
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This property is referred to as positive definiteness of the norm. Also, foranyx ¢ W
andt € R,
ltx)) = {tx, tx) = t3(x, x) = £||x]],

so that
x| = [tlfii-

This property of the norm is referred to as homogeneity. A third important property
of norms, the triangle inequality, is established below as Theorem 3.4.7.

Theorem 3.4.6 The Cauchy-Schwartz inequality. [f x and y are two vectors in a
Euclidean space W, then |(x, y)| < |Ix]| ||l¥]|-

Proof. Let x,y € W. Then, forall ¢t € R,
0 < {tx+y, tx+y) = |Ix[*t* +2(x, y) t + lly]|*.
The conclusion follows from the following elementary fact: if A, B, C' € R and if

At? + 2Bt +C > Oforallt € R, then B?> < AC. In not, the quadratic equation
would have two distinct real roots, implying the existence of negative values. O

Theorem 3.4.7 The triangle inequality. Let W be a Euclidean space and x, y €
W. Then |lx +yl|l < |ix|i + [yl -

Proof., We have

x+y,x+y)

= (x,x)+2(x,y) +{y,¥)
%1% +2(x, y) + Iy l?

< (Il + Iy,

I + ¥

N

where the last step follows from the Cauchy-Schwartz inequality. [
Corollary 3.4.8 Ifx,y € W, then | x| — |yl | < |x = ¥
Proof. This is left as an exercise. O

Example 3.4.9 Inner products and homogeneous polynomials. Fork = 1,... n,
let 7, : X — X be a linear map and let { ,); be an inner product on X. Define
S: X —Rby

Sx = |Tix|? + - + ||Tux|2  forall x € X.
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Then S is a homogeneous polynomial of degree 2 on X. To see this, define Uy, : X X
)(—aﬂkby
Up(x,y) = (Tex, Try)r forall (x,y) € X x X.

Then Uy is bilinear. Hence, the sum U = U; + --- + U, is also a bilinear map
from X x X into R. Hence, the map x — U(x, x) is a homogeneous polynomial of
degree 2 on X. Clearly,

Ux,x)=> Ux(x,x) =) |Tex|} = Sx forallx € X,
k=1 k=1

Orthogonality

Definition 3.4.10 Orthonormal sets and orthonormal bases. Let W be an inner
product space.

1. Two vectors x and y in W are said to be orthogonal (or perpendicular) if
(%, y) = 0. To indicate that x and y are orthogonal, we write x L y.

2. Let A C W. Then A is called an orthogonal set if u L v whenever u and v
are distinct vectors in A.

3. Let A C W. Then A is called an orthonormal set if ||u|| = 1 foreachu € A
and u L v whenever u and v are distinct members in A.

4. If an orthonormal set is also a basis for W, then it is called an orthonormal
basis for W.

Example 3.4.11 Let X be an inner product space and x, y € X. Then (x,y) =0
if and only if |x + ay||? = ||x — ay||? for all scalars . To see this, let x, y be in
X and let £ € R. Then

I +tyll* = (x + ty, x + ty) = [|x]|* + 2t(x, y) + 2 [[y]]*.

Thus, ||x + ayl||? = ||Jx — ay||? if and only if 4a(x, y) = 0. Hence, if & # 0, then
lx + ay|* = ||x — ayl|? implies that (x, y) = 0. The converse is obvious.

Theorem 3.4.12 Pythagorean Theorem. Let a and b be two vectors in a Euclidean
space. Then a 1L b if and only if

lla+b|? = lla||* + [|b]|?. (3.18)

Proof. |a+b||? = (a+b,a+b) = a]?+2(a, b) + |b||?. O

Orthonormal bases for a Euclidean space have particular importance. We restate their
definition separately.



98 VECTOR FUNCTIONS

Definition 3.4.13 Orthonormal bases. Let W be a Euclidean space. Let
E= {el, ey en}

be a basis for W. Then E is called an orthonormal basis if

. fo ifi # j,
{e:. eﬂ>"{1 ifi = j.

We also write this last condition as (e;, e;) = d;;.
Example 3.4.14 Let X be a Euclidean space. Let {uy, ..., u,}and{e, ..., e,}
be two orthonormal bases for X. Define T € L(X, X)byTe; = u;fori = 1,...,n.

Let us verify that 7" is invertible and then compute 7"~ 'e; in terms of the e; s and the
u; S.

Since {uy,...,u,} is a basis for X and T'e; = u;, we have
T(X) = Span {Tey,...,Te,} = Span {uy,...,u,} = X.

Hence T is invertible. We have

e; = (e;, up)u; +--- +{e;, up)u, forallj=1,...,n,
since {uy,...,u,} is orthonormal. Hence
T_lej = (ej, u)T tug -+ (e, u,)T ',

= {ej,up)e; + -+ {(e;, uy)e,.

Remark 3.4.15 Inner products in an orthonormal basis. Let
E={e,...,ey}
be an orthonormal basis for a Euclidean space W. Let
u=wuje; +---+une, and v=uvie; + - -+ v,€,
be two vectors in . Then we see easily that

(u, v) = uivy + -+ + UpUy -

Theorem 3.4.16 Given any basis A for a vector space W, there is a unique inner
product on W with respect to which A is an orthonormal basis.

Proof. Let A = {a;,...,a,} be abasis for W. If

X=aa;+ - +aja, €W and y = bja; +--- + bpa, € W,
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then define
(x,y) =aibi + - +anby .

We see that this is an inner product on W. The basis A becomes an orthonormal
basis in this inner product. Also, this is the only inner product on W that makes A
an orthonormal basis. This follows from the expression of an inner product in terms
of an orthonormal basis, as given above in Remark 3.4,15. O

Theorem 3.4.20 below shows that there are orthonormal bases for any Euclidean
space. That is, given an inner product on W, we can find an orthonormal basis.
Hence any inner product on a finite dimensional vector space is of the form described
above, with an appropriate choice of the basis.

Lemma 3.4.17 An orthonormal set A is a linearly independent set.

Proof. If cju; + - + ¢c,u, = 0 where u; s are distinct members of A, then
0={(cquy + -+ cpup), 0y =c¢foralli=1,...,n. O

Lemma 3.4.18 In an n-dimensional Euclidean space, any orthonormal set with n
vectors is an orthonormal basis.

Proof. Orthonormal sets are linearly independent, by Lemma 3.4.17. Also, in an
n-dimensional vector space, any linearly independent set of n vectors is a basis, by
the dimension theorem 3.1.14. O

Lemma 3.4.19 Gram-Schmidt process. Let A = { ay, ..., a;} beanorthonormal
set in an n-dimensional Euclidean space W. If k < n, then there is an a € W such
that A’ = {a,, ..., ay, a} is also an orthonormal set.

Proof. We have Span A # W. In fact, A contains fewer than n vectors and therefore
cannot be a basis for the n-dimensional space W. Hence there is a b € W such that
b & Span A. Let

b/ = <b, a1>a1 +-+ <b, ak)ak

andsetc = b — b’. Weseethatc L a;forall: =1, ..., n, since

(c,a;) =(b—Db, a;) = (b, a;) — (b, a;) =0.

Hence {ai, ..., ai, ¢} is an orthogonal set. Also, ¢ = (b — b’) # 0, since
b ¢ Span A and b’ € Span A. Now leta = (||c||)~! . An easy check shows that
A’ ={ay, ..., a;, a} is an orthonormal set. O

Theorem 3.4.20 Existence of orthonormal bases. Any Euclidean space X has an
orthonormal basis.
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Proof. Let n = dimX, n > 1 (since we assume that X is nontrivial, as in
Definition 3.4.3). Lemma 3.4.18 shows that any orthonormal set with n elements is
an orthonormal basis for X. To see the existence of such an orthonormal set, take
any nonzero vector a € X and sete; = (||al|)"'a. Then E = {e} is an orthonormal
set in X. By Lemma 3.4.19 (the Gram-Schmidt process), if 1 < n, we can find e,
such that {e, e} is also an orthonormal set. Continuing to apply the Gram-Schmidt
process, after a finite number of steps, we obtain an orthonormal set with n elements,
which must be a basis. [

Theorem 3.4.20 on the existence of an orthonormal basis is important. One of its
consequences is another basic result about the representation of linear functions.

Theorem 3.4.21 Representation of linear functions. Let f : X — R be a linear
Sfunction on a Euclidean space X. Then there is a unique vector a € X such that
f(x) = {(a, x) foreachx € X.

Proof. Let E = { ey, ..., e,} be an orthonormal basis for X . Let
a=ae; + - +aney
with a; = f(e;). Letx = z1eq + - - + z,€, be any vector in X. Then

f(x) = flzier+ - +znen)
= xif(er) + - +z.f(e,)
= X101+ + Tpay
= {(a, x).
This shows the existence of an a € X such that f(x} = (a, x) forall x € X. To see
the uniqueness of a, let a’ € X be another vector such that f(x) = (a’, x) for all

x € X. Then
(a,x)—{a,x)={a—a’,x)=0

forall x € X. Hence (a — a’, a —a’) = 0, and thereforea —a’ = 0. O

Example 3.4.22 Let B, By be inner products on a vector space W. Then for any
a & W, there is an a’ € W such that

Bi(a,x) = By(a’,x) forallx € W.

To see this, let a € W. Define f(x) = Bi(a,x) forallx € W. Then f : W — R
is a linear map on the Euclidean space (W, By). Hence, by Theorem 3.4.21, there is
an a’ € W such that

Bi(a,x) = f(x) = Ba(a’,x) forallx € W. A
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Example 3.4.23 Let X be a finite dimensional inner product space with inner product
(', ). Let us determine all bilinear maps from X x X into R in terms of the inner
product { , ).

Suppose that T': X x X — R is multilinear. For each x € X, define Tx(y) =
T(x,y) forall y € X. Then each Ty is a linear functional on X, and hence, there
exists a unique zx in X such that

Tely) ={y,zx) forally e X.
Since T is also linear in the first variable, it follows that
Zautby = UZy + bzy.

Define f: X — X by f(x) = zx. Then f is a linear map. Let A be the standard
matrix for f with respect to some basis B of X. Then f(x) = A[x] forall x € X,
where [x] is the coordinate vector of x with respect to B. Thus,

T(x,y) = {y,A[x]) forall (x,y) € X x X. A

The Cauchy-Schwartz inequality 3.4.6 and the representation theorem 3.4.21 above
have the following important consequence.

Theorem 3.4.24 Boundedness of linear functions. Let W be a Euclidean space.
Let f : W — R be a linear function. Then there is a constant K such that
|f(w)| < K|\wl| forallw ¢ W.

Proof. The representation theorem 3.4.21 shows that for any linear f : W — R,
there exists a € W such that f(w) = {a, w) for all w € W. Hence, by the
Cauchy-Schwartz inequality (Theorem 3.4.6),

[f(w)] = [{a, w)| < fla]| [|w]
foralw ¢ W. Put K = ||la|. O

Theorem 3.4.25 Boundedness of linear transformations. Let X and Y be two
Euclidean spaces. Let T : X — Y be a linear transformation. Then there is an M
such that | Tx|ly < M||x||x forallx € X.

Proof. Let (uy, ..., u,) be an orthonormal basis for Y. Foreachi =1, ..., n,let
fi(x) = (Tx, u;). Then f; : X — R is a linear function. Theorem 3.4.24 shows
that there is a K; such that | f;(x)| < K;||x|| for all x € X. Hence,

ITxl = IKTx, up)uy + -+ +(TX, un)u,|
[f1()ur + - + fa(x)un|
1) -+ ()]
(K1 + -+ Kn) x|

IAIA
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The conclusion follows by setting M = K7 +---+ K,,. O

Example 3.4.26 Let X be a Euclidean space and f € L(X, R). Theorem 3.4.24
shows that there exists a constant K for which |f(x)| < K||x|| forall x € X. The
smallest such K is ||a||, where a € X is such that f(x) = (a, x) forallx € X.

To see this, let K be the smallest K as defined above. The Cauchy-Schwartz
inequality shows that | f(x)| = |{(a, x}| < ||a|| ||x|| forall x € X. Hence K, < | a||.
But | f(a)| = ||al| ||a]| shows that we cannot have Ky < {|al|. Hence K = ||a||.

Problems
3.66 Let () be an inner product on a vector space X. Let TS be elements of
L(X,X). DefineU : X x X — Rby

Ux,y) = (5x,Ty) forall (x,y) € X x X.

Show that U is bilinear.

3.67 Suppose that X is any finite dimensional vector space. Show that given a
homogeneous polynomial f : X — R of degree 2 and any inner product (, ) on X,
there is a linear map L : X — X such that

f(x) = (x,Lx) forallx € X.

3.68 Let B,..., By be inner products on a vector space X. For any positive
scalars ¢y, . .., g, show that ¢; By + - - - + ¢ By, is an inner product on X

3.69 Let X be an inner product space. Let x,y € X and x # 0. Show that
[l + ¥l = |Ix|]| + ly|l if and only if there is an & > 0 such that y = ax.

3.70 If x, y are vectors in an inner product space, show that
I +y 11 + llx = ¥? = 20| + [ly]}?)-

3.71 Suppose that u, v are vectors in an inner product space X and ||u|| = ||v||.
Show thatu — v L u+v.

3.72 Suppose that {uy, ..., u,} is an orthogonal set of distinct vectors in an inner
product space. Show that for all scalars ¢y, . . ., ¢,, we have

lexus + -+ cautl* = efffun | + - + ¢l lunll*.
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3.73 Let X be a Euclidean space. Let f € L(X, R). Then, by Theorem 3.4.21,
there is a unique ay € W such that f(x) = (ay, x) for all x € X. Define
T:L(X,R) - X by Tf =as. Show that T is an isomorphism.

3.74 Let B be an orthonormal basis for a Euclidean space X, and let S be a
nonempty subset of B with § £ B. Define T : X — X by

Tx = ZveB\S<x’ viv forallx € X.
Show that Ker T" = Span S.

3.75 Let X be a Euclidean space. Let fy,..., fr, bein L(X, R), If m > dim X,
then show that some f}, is a linear combination of the remaining f;s.

376 LetS = {uy,...,u,} be an orthonormal subset in a Euclidean space X.
Define T : X — R™ by

T(x) = ({x, u1),...,{x, u,)) forall x € R™.
Show that dim Ker 7' = dim X — m.

3.77 Let X be an inner product space, and let a € X be nonzero. Show that for
any scalar ¢, there is an f € L(X, R) and a u € X such that

{xeX|(x,a)=c}=Ker f+u.

3.5 ORTHOGONAL PROJECTIONS

Recall the definition of orthogonality given in Definition 3.4.10: u and v are orthog-
onal, written u ! v, if (u, v) = 0.

Definition 3.5.1 Orthogonal subspaces. Let U and V be two subspaces of a Eu-
clidean space X. Then U and V are said to be orthogonal to each other if u L v for
alueUandv € V. We write U L V to indicate that U and V are orthogonal to
each other.

Lemma 3.5.2 I[fU LV, then UNV = {0}.
Proof. Letw € U NV. Then (w, w) =0. Hencew = 0. O

Corollary 3.5.3 IfU | V, then U and V are complementaryin W = U + V.
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Proof. By Lemma 3.1.20, U and V are complementary in W if U + V = W and if
U NV = {0}. Hence the conclusion follows from Lemma 3.5.2. O

Definition 3.5.4 Orthogonal complements. If U 1. V and U +V = X, then U
and V are called the orthogonal complements of each other. In this case the pair
(U, V) is called an orthogonal decomposition of X. Corollary 3.5.3 shows that
orthogonal complements are indeed complementary subspaces in X. Hence U and
V are orthogonal complements if and only if U L Vand X =U g V.

Remark 3.5.5 Uniqueness of the orthogonal complements. In general, a subspace
U of X has many complementary subspaces. If X is a Euclidean space, then the
orthogonal complement of U is a special complementary subspace. It is uniquely
determined by U, as the following theorem shows.

Theorem 3.5.6 Let U be a subspace of a Euclidean space X and let

V = {veX|vLluforall uelU}
= {veX|{(v,uy=0 forall ueU}.

Then U and V are orthogonal complements. Also, the orthogonal complement of U
is uniquely defined by U.

Proof. We have to show that V' is a subspace, U L V,and X = U + V. Let
v,v eVandr, v € R Ifu € U, then (v, u) = 0 and {v/, u) = 0. Hence, if
u € U, then

(rv+7'v u =r{v,u) =r"{(v,u) =0.

This shows that rv + 7'v/ € V. Hence V is a subspace of X. Also, if v € V and
u € U, then (v, u) = 0, and therefore u L v. Hence U L V.

Now we show that X = U + V. Let { ey, ..., e} be an orthonormal basis for U.
For each x € X, define

a=(x, e e + -+ {x, ex)eg,

and let b = x — a. We see that (b, e;) = (x — a, ¢;) = (x, ¢;) — (x, e;) = 0 for
alli =1, ..., k. Butany u € U is a linear combination u = u;e; + - - - + ug€ex of
e;s. Hence (b, u) = 0 for all u € U. Therefore b € V. Also, clearly, a € U and
x=a+b. Hence X =U + V.

To see the uniqueness of V, let V' be another orthogonal complement of U. If
v € V', thenv’ L uforallu € U. Hence v/ € V. Therefore V' C V. Similarly,
weobtainV C V/. Hence V' =V. O



ORTHOGONAL PROJECTIONS 105

Notation 3.5.7 Orthogonal complements. One denotes the orthogonal complement
of U as U+. Note that (U+)+ = U by the preceding theorem.

Example 3.5.8 Application to linear functionals. Let & and F be subspaces of a
Euclidean space W. Let U = Span (E U F'). Then E C U and F C U. Hence,
U+t c EYandU*t C F*. Thus, U+ C E+ N F*. So,

(EtnFhHt cwhHt=U. (3.19)
We will next show that if f1,..., f;, and g are linear functionals on X, then
gESpan{flv"'afm} (320)
if and only if
(] Ker fi C Ker g. (3.21)
k=1

It is clear that (3.20) implies (3.21). Conversely, assume (3.21). By Theorem
3.4.21, there are ay, ..., a,, and b in X such that Ker f; = (Span {ax})* and
Ker g = (Span {b})*. Put E;, = Span {a;} and U = Span {b}. Then by our
assumption (3.21),

Eifn---nELcUL

Hence, by (3.19),
U=UHt c(ELn---NEL)L cSpan (B U - U Ey).

This implies that b € Span {ai, ..., a,,}, and thus, g € Span {f1,..., fm}.

Definition 3.5.9 Orthogonal projections. If U and V are orthogonal complements
in a Euclidean space X, then they are also complementary subspaces in X. Hence
Theorem 3.1.37 shows that they are the ranges of complementary projections P and
. In this case, these projections are called the orthogonal projections on U and V,
respectively. Hence, if P is the orthogonal projection on U, then U = Range P =
PX andV = Range Q = (I — P)X.

As mentioned in Remarks 3.1.40, a subspace U of X does not determine a projection
on U. Such a projection is determined only after a complementary space V of U is
specified. In a Euclidean space X, every subspace U has a distinguished complement
V = U+. Hence, in Euclidean spaces, every subspace U specifies a distinguished
projection, namely, the orthogonal projection on U.
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Theorem 3.5.10 Let E = { e, ..., ey} be an orthonormal basis for a subspace U
of a Euclidean space X. Define P : X — X by

Px = <X, el)el + 4 (X, ek>ek.

Then P : X — X is the orthogonal projection on U. More explicitly, P is a
projection withU = PX and V = (I - P)X is the orthogonal complement of U.

Proof. We see that Px € U for all x € X and that Pu = u for alt u € U. Hence
P?x = P(Px) = Px for all x € X and therefore P? = P. This shows that P is a
projection and that U = Range P. Also, as in the proof of Theorem 3.5.6 above, we
see that x — Px is orthogonal to eachu € U.

Let Q@ = I — P be the complementary projection and V' = Range (. To complete
the proof, we have to show that V' is the orthogonal complement of U. If v € V,
then Qv = (I — P)v = v — Pv is orthogonal to each u € U, as observed above.
Therefore V' = Range (I — P) is indeed the orthogonal complement of /. [

Remark 3.5.11 The projection P : X — X in Theorem 3.5.10 above is defined in
terms of a basis E for U. The properties of P obtained in that theorem show that P
is uniquely determined in terms of UU. Hence P is independent of the choice of the
basis E for U. Another important property is given in Theorem 3.5.12 below. This
property also shows that P is determined by U alone. Geometrically, this property
means that the point Px in U is the closest point to x among the points in U.

Theorem 3.5.12 Let U be a subspace of a Euclidean space X. Let P : X — X be
the orthogonal projection on U. Let x € X. Then

lx — Px|| < ||x — af| foralla € U.

Proof. Let v = x — Px. Then (v, u) = 0 for all u € U by Theorem 3.5.10. Now
x—a=(x—Px)+(Px—a)=v+uwhereu=(Px—-a)eU.Hencev L u
and ||v + u? = ||v||? + ||u||* by the Pythagorean Theorem 3.4.12. Consequently,

Ix —all* = [[v + uli® = [v|* + [[u}® > Iv]* = x - Px|*>. ©

Example 3.5.13 Let X = R? be the 2yz-space and
U={(z,y.2) eR®|la+y+2=0}.

Show that U is a subspace of X and find the orthogonal projection P on U.
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First solution. It is obvious that U is a subspace. To find P, we need to find an
orthonormal basis for U. One example of a nonzero vector in U is a = (1, —1, 0).
Another vector in U not in the span of ais ¢ = (1, 0, —1). But we want to find a
vector in U orthogonal to a, in order to facilitate the passage to an orthonormal basis.
By inspection, we see that b = (1, 1, —2) is such a vector. The vectors a and b are
nonzero and orthogonal to each other. Hence they are linearly independent. They
must be a basis for U since (dimU) = 2. In fact (dimU) > 2 since U contains
two linearly independent vectors. Also (dim U) < 3, since it is clear that U # R3.
Hence

er = (laf)"'a=2""3(1, -1, 0) and e = (IIb])'b=6"/%(1, 1, ~2)
constitute an orthonormal basis for U. Therefore, for all r = (z, y, z) € R3,
Pr = (r,ej)e; +(r, ex)e; and

Pz, y, 2z) = (1/2)(x -1, —1,0)+ (1/6)(z +y—22)(1, 1, -2)
(1/3) 2z —y— 2, -z + 2y — z, —x —y + 22).

To verify that this is the correct answer, it is enough to show that Pr € U and
(r—Pr) L U,thatis, (r — Pr) L uforallu € U. First, we see that Pr € U, since
the sum of the coordinates of P(z, y, z) is

(1/3)(2r—y—2)+(~z+2y—2)+ (—z -y +22)) =0.
To see that (r — Pr) L U, we compute (r — Pr) as

((l‘, Y, 2) = Pz, y, 2)) = (1/3)(33 +y+z)(1 1, 1)'

We see that (1, 1, 1) L U. In fact, if (u1, ug, uz) € U, then u; + ug + ug = 0 and
therefore {(1, 1, 1), (u1, ug, u3)) = u1 + ug + ug = 0. Hence (r — Pr) L U.

Second solution. Instead of P, we may find the complementary projection @ =
(I — P). This is the orthogonal projection on the orthogonal complement V' of U.
Since (dim U) = 2, we have (dim V') = 1. Hence @ should be easier to find. One
example of a nonzero vector orthogonal to U is g = (1, 1, 1). In fact, U is the set of
r € R3 such that (r, g) = 0. Hence V is the space spanned by g. An orthonormal
basis for V' is

e= (HgH)_lg = 371/2(17 1,1).

Therefore Qr = (r, e)e is
Qz,y, 2) = (1/3)(x+y+2)(1,1,1).
Then we obtain
Pla,y, 2) =T - Q)(z, 9, 2) = ((z, 9, 2) — (1/3)(x +y + 2)(1, 1, 1).

This agrees with the previous result, as already verified. A
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Problems

3.78 Let X be a Euclidean space. Let Uy,...,U,, be subspaces of X such that
Uy LU foralli # jand W = Uy + - - - + Up,,. Let P; be the orthogonal projection
onU;. Show that ] = P, +---+ P, and

Ix)|> = [|Px]|® + - + | Pnx||® forallx e X.
3.79 Let (W,{, )) be a Euclidean space, and let a be a nonzero vector in W. Let
ceRandlet E={w &€ W|(w,a) =c}. Show that

[(wo,a) — ¢

la

min ||wy — el = for all wo € W.
eckE

3.80 LetU, V be subspaces of an inner product space. Show that if U C V, then
VL C U'. Hence, deduce that U+ NV+ ¢ (UN V)L,

3.81 LetU and V be subspaces of a Euclidean space and assume that UNV = {0}.
Is it true that U+ N V4 = {0}? Is it true that (U + V) = U+ + V12

3.82 Let U be a subspace of X with dimU = (dim X) — 1. Show that U is the
kernel of a nonzero f € L(X, R).

383 Let uy,...,u, be distinct vectors in a Euclidean space X. Assume that
u; L u;foralli # j. Leta € X. Let S be the set of all numbers of the form

m
a— Cru
H stlk k"

where ¢1, . . ., ¢, range over all real numbers. Find inf S.

3.84 Let U be a subspace in a Euclidean space X. Letc € X and
E=c+U={c+uluel}.
Find infecp ||b — €| foreach b € X.

385 LetE=1{e;, ...,extandU = {uy, ..., ug} be orthonormal subsets of a
Euclidean space X such that Span E = Span U. Is it true that

2 2 2 9
ma X, € + 4 (X, € = ma; X, u N X, u 2
x€X,H)i(H:1 |, e1)] [{x, k)] xeX,y|>i(y|=1 I{ D+ i k)



SPECTRAL THEOREM 109

3.86 Let X be a Euclidean space with an orthonormal basis {uj,...,u,,}. Let
1 < k < m. Show that for each x € X, there isay € X such that

x = (X, er)e; + - +(x, ex)er + (¥, exr1)€k i1+ + (¥, em)en

3.87 LetT: X — X be an orthogonal projection. Is it true that

(Tx,y) = (x, Ty) forallx,yinX?

3.6 SPECTRAL THEOREM

The spectral theorem is of central importance in linear algebra. It summarizes many
properties of linear transformations on Euclidean spaces. The proof of the spectral
theorem that we shall develop in this section is simple, although not elementary. The
usual route to the spectral theorem proceeds via the fundamental theorem of algebra,
which is a familiar result but one that requires a good deal of preliminary work.
Our alternative approach relies upon the Bolzano-Weierstrass theorem in Euclidean
spaces, Theorem 4.2.9. (The proof of that result, in chapter 4, is entirely independent
of the ideas developed in this section.)

We will use the spectral theorem mainly for two purposes. First, the theorem gives us
a geometrical picture of orthogonal projections between the subspaces of a Euclidean
space. Second, the theorem allows us to provide a direct geometrical proof of a
basic fact about the effect of a linear transformation upon the volume of a set: when
a linear transformation maps one Euclidean space into another, the volumes of the
images of sets under that transformation are multiplied by the absolute value of its
determinant. For both of these purposes, an alternate formulation of the spectral
theorem is convenient. This formulation is stated below as Theorem 3.6.4. It is
equivalent to the standard version, Theorem 3.6.12. The standard version of the
spectral theorem is not used in this book.

Eigenbases

The property of linear maps that we want to show is the following. For any linear
map 7" : X — Y between two Euclidean spaces, there is an orthonormal basis for
X that is mapped to an orthogonal set of vectors in Y. We will call such a basis
an eigenbasis for T. The key step in the proof of this result is Lemma 3.6.1, which
states that any linear transformation between Euclidean spaces attains a maximum
norm on the unit ball. The proof depends crucially upon Theorem 4.2.9, the Bolzano-
Weierstrass theorem in Euclidean spaces. After convergence in Euclidean spaces is
discussed, we will restate Lemma 3.6.1 as Lemma 4.5.45 with a short proof.
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Lemma 3.6.1 Let X and Y be Euclidean spaces. Let T : X — Y be a linear
transformation. Then there is a unit vector € € X such that ||Tx|| < ||Te| for all
unit vectors x € X.

Proof. By the boundedness of linear transformations, Theorem 3.4.25, there is a
number M such that || Tx|| < M||x||forallx € X. Hence, B = {||[Tx]| | [|x]| =1}
is a bounded set of numbers. If o = sup B, then there is a sequence x, € X
such that ||x,|| = 1 and such that lim,, ||Tx,|| = «. By the Bolzano-Weierstrass
theorem, Theorem 4.2.9, there is a subsequence x,,, and a vector e € X such that
limy [Xn, — e = 0. Then limg| [xn, || ~ lle] | = |1~ el | = 0 and

limy | | 7%, || = [Tl | < | Txn, —Te|| < M|[xn, —efl =0,

by Corollary 3.4.8. It follows that ||e}| = 1 and || Te|| = «. Therefore ||Tx|| < ||Te||
for all unit vectors x € X. O

Lemma 3.6.2 Let T : X — Y be a linear map between two Euclidean spaces. Let
e € X be a unit vector such that | Tx|| < ||Te|| for all unit vectors x € X. Then
Tx | TeinY wheneverx 1 ein X.

Proof. Let u be a unit vectorin X andu L e. Let
A= |Te|? B = (Te, Tu),and C = ||Tu||?.

An easy check shows that v = costu + sinte is a unit vector in X. Hence,
|Tv||? < A by the hypothesis about e. Therefore

|Tv]|? = (costTu+sintTe, costTu + sintTe)
Ccos’t+ 2Bsintcost + Asin®t < A.

It follows that
2Btant < (A-C)

forall t € (—n/2, m/2). This implies that B = (Te, Tu) = 0. O

Definition 3.6.3 Eigenbases. Let T : X — Y be a linear transformation between
two Euclidean spaces. An eigenbasis for T is any orthonormal basis

E:{el,...,en}

for X such that
(Te;, Tej)y = 0fori # j.
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Theorem 3.6.4 Spectral theorem (eigenbasis version). Every linear transforma-
tionT : X — Y between two Euclidean spaces has an eigenbasis.

Proof. Let T : X — Y be a linear map. We proceed by induction on n = dim X. If
n = 1, then either of the two unit vectors in X forms an eigenbasis for 7. Assume
that the result is true for n-dimensional spaces, and let X be an n + 1-dimensional
space. Use Lemma 3.6.1 to find a unit vector g € X such that ||[Tu|| < ||Teg|| for
all unit vectors u € X. Let X, be the orthogonal complement of the space spanned
by eg. Lemma 3.6.2 shows that T'e | T X. Since X is an n-dimensional space, we

may use the inductive hypothesis to find an orthonormal basis Eqg = { ey, ..., e,}
for X such that (Te;, Te;) = 0 whenever i, j =1, ..., nand i # j. But then
E ={eg, €1, ..., e, } is an eigenbasis for T. O

Self-Adjoint Transformations

The standard version of the spectral theorem is about self-adjoint transformations.
These are linear transformations 7' : X — X such that (T'x, y) = (x, T'y) for all
x, y € X. They are also defined in terms of the adjoint transformation.

Theorem 3.6.5 Let T : X — Y be a linear transformation between two Euclidean
spaces. Then there is a unique linear transformation T* :' Y — X such that

(Tx,y)y ={x, T*y)x forallx € X andy €Y.

Proof. Lety € Y be fixed. Then f(x) = (T, ¥)vy, x € X, defines a linear map
f+ X — R. By Theorem 3.4.21, there is a unique vector u € X such that

f(x)=(Tx, y)y ={x, u)x, forallx € X.
This defines amap .S : Y — X such that
Tx,y)y =, S(y))x forallxe X,y €Y.
It remains to show that S : Y — X islinear. Let v, 3 € R, u, v € Y. Then

(x, S(au + pv)) = I'x,au+fvix = (Ix, au)x + (I'x, fv)x
= oTx,u)yx +8(Tx, v)x
= ax, Su)y + 8x, S(v))y
= (x, aS(u) + BS(v))y

forall x € X. Hence S(au + fv) = aS(u) + gS(v). O



112 VECTOR FUNCTIONS

Definition 3.6.6 The adjoint transformation. The linear transformation S defined
by Theorem 3.6.5 is called the adjoint transformation of T : X — Y. It is denoted
byT*:Y — X.

Definition 3.6.7 Self-adjoint transformations. A linear transformation 7" : X —
X is called a self-adjoint transformation if T = T™*.

Lemma 3.6.8 Let E be an eigenbasis forT : X — Y. Ife; € E, then

T*Te; = piie; where p; = ||Te;|*.
Proof. We have (e;, T*Te;)x = (Te;, Tei)y = |Te;||*d;;. O

Definition 3.6.9 Eigenvectors and eigenvalues. Let X be a Euclidean space and
let S : X — X be a linear transformation. A vector e € X is called an eigenvector
of S if e # 0 and if Se = A\e with A\ € R. The number A is called the eigenvalue of
the eigenvector e € X.

Lemma 3.6.10 Every self-adjoint transformation S : X — X has an eigenvector.

Proof. Let e be a vector in an eigenbasis of S. Let & = || Se||. If Se = —aetheneis
an eigenvector with the eigenvalue A = —q. Otherwise, u = (ae+Se) # 0. Lemma
3.6.8 shows that S?e = o’e since S* = S. Hence, S(ce + Se) = a(ae + Se).
Therefore, u is an eigenvector of .S with the eigenvalue A = . O

Lemma 3.6.11 Let S : X — X be a self-adjoint transformation. Let u be an
eigenvector of S. If v L u, then Sv 1 u

Proof. We have (v, u) = 0. Let Su = Au. Hence,
(Sv,u) = (v, Su) = A{v,u) =0

shows that Sv L u. 0O

Theorem 3.6.12 Spectral theorem. Let S : X — X be a self-adjoint transforma-
tion. Then X has an orthonormal basis consisting of the eigenvectors of S.

Proof. Proceed by induction on n = dim X. If n = 1 then any nonzero vector is an
eigenvector of S. The result is clear in this case. Assume the result for n-dimensional
spaces, and let X be an (n + 1)-dimensional space. Apply Lemma 3.6.10 to find a
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unit eigenvector e. Let X be the orthogonal complement of the one-dimensional
space spanned by e. Lemma 3.6.11 shows that the subspace X, is invariant under S.
Since X is an n-dimensional space, the induction hypothesis shows that there is an
orthonormal basis g for X consisting of the eigenvectors of S. Then E = (e, Eo)
is an orthonormal basis for X consisting of the eigenvectors of S. O

Remarks 3.6.13 Two versions of the spectral theorem. Theorems 3.6.4 and 3.6.12,
our two versions of the spectral theorem, are equivalent. We have seen that Theorem
3.6.12 follows from Theorem 3.6.4 through elementary arguments. The following
theorem shows that the converse is also true.

Theorem 3.6.14 Let T : X — Y be a linear map between Euclidean spaces and let
T*:Y — X be its adjoint. Then an orthonormal basis E of X is an eigenbasis of
T if and only if each e; € E is an eigenvector of S =TT : X — X.

Proof. Let E be an eigenbasis for T. If e € E, then Lemma 3.6.8 shows that
T*Te = ||Te||?e. Hence e is an eigenvector of S with the eigenvalue || Te||%.

Conversely, assume that [E is an orthonormal basis of X such that each e € E is an
eigenvector of S = T*T. If e; and e; are two different vectors in E, then

(Tei, T6j>y = (Sei, ej)X = /\i<ei, ej)X =0.

Hence E is an eigenbasis for 7. O

Eigenbases for the Adjoint Transformation

There is a natural correspondence between the eigenbases of a linear transformation
T : X — Y and the eigenbases of the adjoint transformation 7% : Y — X. The
situation is simplest for invertible transformations. We consider this case separately.

Lemma 3.6.15 Let T : X — Y be an invertible transformation. Let E be an
eigenbasis for T. Let U = {Te/||Te||e e E}. Then U is an eigenbasis for
T*:Y - X. IfecEandifTe = auwithu € U, then T u = «e.

Proof. Lete € E and let « = ||Te||. Then o # 0 since T is invertible, If
u = (1/a)Te, then Te = auand T*Te = a T*u = o’e by Lemma 3.6.8. Hence
T*u = ae. This also shows that U is an eigenbasis for 7*. O

Remarks 3.6.16 Kernel of a transformation. The kernel of a linear transfor-
mation T' : X — Y was defined in Definition 3.1.28 as the subspace Ker T =
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{x|Tx=0} = X, € X. Lemma 3.6.17 below shows that an eigenbasis for
T separates X, from its orthogonal complement Xy, = X 1. Note that not every
orthonormal basis has the property formulated in Lemma 3.6.17.

Lemma 3.6.17 Let T : X — Y be a linear transformation. Let X1 = Ker T and
let Xo = X17& be the orthogonal complement of X,. Then each eigenbasis E for T
decomposes as E = Eq UEy, Eg NE; = 0, such that Eq spans Xo and Ey spans
Xy. Furthermore, if B} is any orthonormal basis for X1, then B = Eq U E} is also
an eigenbasis for T.

Proof. Given an eigenbasis E, let Eg = {e|e € E, Te # 0 }. The rest of the
proof is left as an exercise. O

Theorem 3.6.18 Let T : X — Y be a linear transformation and let T* 1 Y — X
be the adjoint transformation. Let X1 = Ker T and Yy = Ker T*. Let Xo = X1~
andYy = Yﬁ. Let | be an eigenbasis for T. Let B = Eg UE,, EgNE; = 0, be the
decomposition of E as obtained in Lemma 3.6.17. Let

Ug={Te/||Te| |le€Ey }.

Let Uy be an orthonormal basis for Y1. Then U = Uy U U; is an eigenbasis for
T*:Y — X. Also, ife € Ey and o = ||Te||, then there is a unique u € Uq such
that Te = au and T*u = ce.

Proof. This is summary of the results obtained above. O

Application to Orthogonal Projections

An application of Theorem 3.6.18 to orthogonal projections gives a simple geomet-
rical picture for these projections.

Let A and B be two subspaces of a Euclidean space X. The orthogonal projection
on B is a linear map defined on X. The restriction of this map to A defines a linear
transformation 7" : A — B. Similarly, take the orthogonal projection on A and
restrict this to B. One gets another linear transformation S : B — A.

The situation is very simple if A and B are both one-dimensional spaces. Let u be a
unit vector of A and let v be a unit vector of B. Then

Tx = (x,v)xyviorallx € Aand Sy = (y, u)x uforally € B.

Theorem 3.6.20 shows that the general case can be understood in terms of this simple
case.
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Lemma 3.6.19 Let A and B be two subspaces of a Euclidean space X. Let T :
A — Band S : B — A be the corresponding orthogonal projections. Then S = T*
is the adjoint transformation of T.

Proof. Leta € Aand b € B. Thena = a; + Ta where a; 1 B. Hence,
(a, b)X = <a1 + Ta, b>X = <a1, b>X + <Ta, b>X = (Ta, b>B

Similarly we obtain {a, b)x = (a, Sb)4. Hence T* = 5. O

Theorem 3.6.20 Let A and B be two subspaces of a Euclidean space X. Then there
is a decomposition

A=Ay Ay with Ay L Ay and B = By @ By with By 1. By

such that Ay L B, By L A, and dim Aqg = dim By. Also, there are orthonormal
bases Uy and YV for Ag and By such that Tu; = A\;v; and Sv; = A\, for all
u; € Agand v; € Byg.

Proof. This follows directly by an application of Theorem 3.6.18 to the adjoint
transformations 7" and S. O

Note that Tu; = u; = v; = Sv; is possible for some ¢. These vectors would span
AN B. Otherwise, the two-dimensional spaces spanned by u; and v; are invariant
under both T" and S. These spaces are mutually orthogonal to each other, and in each
one of them the projections 7" and S are like the projections between two vectors.

A Summary of Determinants

Determinants are a particularly important class of multilinear functions. They are
essential in integration and are also important in other applications. Appendix C
contains a review of the most important results about determinants, together with
complete proofs. Here we summarize the main features of determinants.

Definition 3.6.21 Alternating multilinear functions. Let X and Y be two vector
spaces, and k € N. A multilinear function F : X* — Y is called an alternating
multilinear function if

F(X)\(l), ey X)\(k)) = (sign)\) F(Xl, ey Xk)

for all permutations A € 8§ of N, = {1, ..., k}. The set of alternating multilinear
functions F : X* — Y is denoted by AML(X*, Y). We see that this is a subspace
of ML(X*, Y).
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Definition 3.6.22 Determinant functions. If dim X = n, then any nonzero element
Y of AML(X™, R) is called a determinant function, or simply a determinant.

Theorem 3.6.23 below expresses a key fact about determinants.
Theorem 3.6.23 If dim X = n, then AML(X", R) is a one-dimensional space.

Proof. See Corollary C.3.10 in Appendix C. O

Theorem 3.6.23 implies that any determinant function is a nonzero multiple of any
other determinant function. Hence, there is essentially only one determinant function
X" — R, up to a nonzero multiplicative constant. (It is essential here that dim X =
n.) The following example tells us what this single determinant function looks like.

Example 3.6.24 Basic example of a determinant function. Let X be an n-
dimensional space. Let E = (e, ..., e,) € X™ be an ordered basis for X, that is,
an n-tuple of vectors that constitute a basis for X. Given any (x1, ..., X,) € X",
let M = {x;,} be the matrix obtained from the coordinate expansions

X; = E j.’Eije]‘

and let
YE(X1, .., Xp) = det M = det{z;;}.

Here det M is the usual determinant of an n X n matrix (see Appendix C for the
definition and basic properties). This is an alternating multilinear function. It follows
that g : X™ — R is a determinant function. Note that

Yr(er, ..., e,) =1 (3.22)

for any basis E = (ey, ..., e,), since the identity matrix has determinant 1.

In light of Theorem 3.6.23, any other determinant function is a nonzero multiple of

’(/}]E .

Definition 3.6.25 Determinant of a linear operator. Lemma C.4.1 shows that
if T': X — X is a linear transformation, ¢ is any determinant function and E =
(e1, ..., e,)is any basis for X, then the number ¢)(Tey, ..., Te,)/v(er, ..., e,)
is independent of the choice of the determinant function 1 and the basis E. It
is called the determinant of T and is denoted by detT. In particular, detT =
Yr(Teq, ..., Te,) for any basis E (since ¢g(eq, ..., e,) = 1).



SPECTRAL THEOREM 117

Definition 3.6.26 Euclidean determinants. There is a special situation in Euclidean
spaces. If E and U are two orthonormal bases for a Euclidean space, then they define
the same determinant up to a factor of +1. Such a determinant is called a Euclidean
determinant. Hence there are exactly two Euclidean determinants in a Euclidean
space.

Definition 3.6.27 Determinant of a linear transformation between two Euclidean
spaces. In general, there is no way to define a unique determinant of a linear transfor-
mation between two different vector spaces (of equal dimension) independently of the
choice of a basis and a determinant function on each vector space. f T : X — Y is
a linear transformation between two Euclidean spaces of equal dimension, however,
then there is a natural choice for the determinant for 7', although it is defined only up
to a factor of +1. Let U and V be orthonormal bases for X and Y. Then define

detT = ¢V(T917 LR Ten)/wU(elv RS en)v (323)

where E = (ey, ..., e,) is any basis for X. This definition is independent of the
choice of E, but it depends minimally on the choices of the Euclidean determinants
1y and 1y. Nevertheless, different choices change the result only up to a factor of
=+1. Fortunately, this is not important for most of our work with determinants, which
depends only upon the absolute value of the determinant. In particular, this absolute
value is the volume multiplier associated with the linear transformation.

Determinants as Volume Multipliers
Theorem 3.6.28 Let T : X — Y be a linear transformation between two Euclidean
spaces of the same dimension n. If E is an eigenbasis for T, then
detT =+ Ay - Ay, with \; = ||TelH
Proof. The vectors T'e;, e; € E, are orthogonal to each other, since E is an eigenbasis

for T. Some of these vectors may vanish, but in any case, there is an orthonormal
basis U for Y such that T'e; = A;u;. Then

Yu(Ter, ..., Te,) = yyulhu, ..., Apuy) (3.24)
= )\1 )‘n d)m(ul, PRI un) (325)
= Ay A, (3.26)

Here (3.25) follows from the multilinearity of determinant functions. The conclusion
follows from definition (3.23), since ¥g(e;, ..., e,) = 1 by(3.22). O

Remarks 3.6.29 Comments about volume. An important part of the theory of
integration (Chapter 8) is to define a notion of volume on Euclidean spaces. Our
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definition will agree with intuitive ideas about volume recognized by Archimedes
more than two thousand years ago. “Cubic boxes” spanned by orthonormal bases will
have unit volume. The volume of a general rectangular box, spanned by orthogonal
vectors, will be the product of its side lengths. Combining these points with Theorem
3.6.28, we see that a linear transformation transforms a certain cubic box of unit
volume into a rectangular box of volume | det T'|. For now, we know only that this is
true for this one particular cubic box. But it is a very plausible fact, which we shall
eventually prove, that a linear transformation changes all volumes by the same factor.
This factor will be called the volume multiplier of the transformation. Therefore the
volume multiplier of T is equal to | det T'|.

Examples

Example 3.6.30 Finding an eigenbasis. Let A = [ u v | be a 2 x 2 matrix
considered as a linear map from R? to R2. Assume that [Ju]| = ||v||. As a first
step towards finding an eigenbasis for A, let us find a unit vector e in R? such that
|| Ax|| < ||Ae|| for all unit vectors x in R?. Each unit vector in R? is of the form
(cos 8,sin 6} for some 6 € [0, 2x]. Thus, we look for # for which

A cosd 1
sin 6

is maximized. Now,

cosf 11

HA [ o8 ”’ = (cosfu+sinév) - (cosfu+sinfv)
sin 6
= sin? 0||v||? + cos® 8|lu||? + sin(26)(u - v)
[ull? + sin(26) (u - v).

So, if u-v > 0, then we choose 8 so that sin(26) = 1. If u- v < 0, we choose 9

1o } _Then [ju = ||v| and

so that sin(26) = —1. As an illustration, let A = [ 75

u - v > 0. Thus, with § = 7/4, we have

e = (cosf,sinf) = L(1, 1).

V2

Hence,

|| Ae|| = 3V/10.

Let u € R? withu L e. Then u = t(—1, 1) for some scalar ¢. Since

][] w2 ]2
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are orthogonal, it follows that Au L Ae, as predicted by Lemma 3.6.2.

Example 3.6.31 Eigenbases of real-valued functions. Let 7 : X — Y be a linear
transformation between Euclidean spaces. If dim Y = 1, then one can easily exhibit
an eigenbasis for 7. Let u be a unit vector in Y and express 1" in terms of a real
valued function f : X — R as Tx = f(x)u. Then, by Theorem 3.4.21, there is
a vector a € X such that f(x) = (a, x). Let e; be a unit vector in X such that
a = ae. If |a]| # 0, one can take e; = a/l|a}|. Complete e; to an orthonormal
basis E = (ey, ..., e,) for X. It is clear that this is an eigenbasis for T : X — Y
since Te; =O0foralli =2, ..., n.

Example 3.6.32 Let R? be represented as the zyz-space. Let A be the subspace
2+ 2y +32z = 0 and let B be the subspace z = 0. Let P : R® — B be the orthogonal
projection on B. Let G : A — B be the restriction of P to A. Find eigenbases for
P and for G.

Solution. An easy verification shows that P(z, y, z) = (z, y, 0). Hence we see

that the orthonormal basis

E = {(1,0,0),(0,1,0), (0,0, 1)} of R?is mapped to
PE {(1,0,0), (0,1,0), (0,0, 0) }.

We see that PE is an orthogonal set in B. Hence E is an eigenbasis for P.

To find an eigenbasis for G : A — B, consider A as the graph of the function
z = F(z,y) = —(1/3)(x + 2y). This is defined on the zy-plane B and takes
values on the z-axis. Since it is a real-valued function defined on a Euclidean
space B, it can be represented as an inner product. In fact, z = (a, (z, y))5.
where a = (—1/3, —2/3). Express this vector as a = «e;, where o = /5/3 and
e; = (=1, —2)/+/5 is a unit vector. Example 3.6.31 shows that the orthonormal
basis consisting of

e, = (-1, —2)/vV5ande; = (2, —1)/v5
is an eigenbasis for F' : B — R. Let S : B — A be the transformation that takes a

point (z, y) € B to the corresponding point S(z, y) = (z, y, —(1/3){z + 2y)) on
A, the graph of F' : B — R. Theorem 3.6.20 shows that the normalized vectors

ISe1)l| 7" S(e1) = —(3, 6, 5)/V70 and | Sez)| "' S(ez) = (2, ~1,0)/V3

form an eigenbasis for the orthogonal projection G: A — B. A
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Problems

3.88 Let A and B be two subspaces of a Euclidean space. Let T : A — B,
S : B — A be the corresponding orthogonal projections as in Lemma 3.6.19. Show
directly, without using eigenbases, that 7" and S are adjoint transformations.

3.89  Show that any orthogonal projection T' : X — X to a subspace of X is a
self-adjoint transformation.

390 LetT : X — X be a self-adjoint transformation. Let U be an invariant
subspace for T. That is, let Tu € U for all u € U. Show that V = U+ is also
invariant under 7.

391 Give an example of a self-adjoint transformation 7" : X — X and an
eigenbasis [E for T such that no vector in E is an eigenvector of T'.

3.92 Let A and B be two subspaces of X withdimA =dimB. LetT: A — B
and S : B — A be the corresponding orthogonal projections. Also assume that
there is an eigenbasis U for 7" such that Tu; # 0 for all w; € U. Show that
|det T| = |det S|. Also, if A’ = A+, B’ = B+ with the corresponding orthogonal
projections T/ : A’ — B’ and S’ : B’ — A’, then

|det T| = |det S| = |det T"| = | det S’|.

Show that in the two-dimensional case this is a familiar statement: the angle between
two lines is the same as the angle between their normals.
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CHAPTER 4

NORMED VECTOR SPACES

The norm of a vector in a Euclidean space V has already been defined as ||v|| =
{v, v)¥/2. The most important properties of the norm are the following:

() |lvl]| > 0forall v e V and ||v|]| = 0 if and only if v = 0.
2) |tv]| = |t| ||v|| for all vectors v € V and for all scalars t € R.
3) fla+ v|| < |lul| + ||| for all vectors u, v € V.

Any function that has these three properties is a reasonably well-behaved candidate
for the length of a vector. A well-behaved concept of length gives us a well-behaved
notion of distance between two vectors. That is the basic tool for defining limits and
convergence. Thus, analysis depends upon norms in an essential way.

It turns out, however, that many arguments in analysis apply not just to Euclidean
spaces, but also to any vector space X that is equipped with a function ||| : X - R
that has the three properties listed above. Such functions are called (general) norms
on X, and X is called a normed vector space. The first part of the chapter establishes
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the basic results about norms and about when a sequence in a normed vector space
converges to a limit.

It is natural to wonder whether facts about convergence and limits might vary, de-
pending upon one’s choice of norm. A key result in the early portion of the chapter is
that any two norms (on a finite-dimensional vector space) are equivalent: they define
exactly the same class of convergent sequences and exactly the same limits. This
part of the chapter also shows that we can define a very natural (and useful) norm on
the vector space of linear transformations between two normed spaces, and the same
point applies to multilinear transformations.

The middle section of the chapter defines the continuity of functions on normed
spaces. In this section, we establish analogues of familiar results about the continuity
of functions of a real variable as well as some basic facts about Cartesian products.
Finally, by exploiting properties of the norm defined on the space of linear transfor-
mations, we show that the operation that maps a linear transformation to its inverse
is continuous.

The final section defines the most important concepts of general topology: open and
closed sets, boundaries, compactness, and connectedness. Still working in the setting
of normed vector spaces, we establish fundamental results about compactness and
continuity that will be used throughout the rest of the book.

4.1 PRELIMINARIES

Definition 4.1.1 Norms. Let X be a vector space. A function || - || : X — Ris
called a norm on X if it satisfies the following three conditions.

1. Positive definiteness: If x € X and x # 0, then ||x]| > 0.
2. Homogeneity: If x € X and ¢ € R, then ||tx|| = |¢| [|x]|.

3. Triangle inequality: If x, y € X, then ||x + y|| < ||x]| + lly]l-

Definition 4.1.2 Normed spaces. A normed space is a vector space X together with
anorm ||| : X — R. We use the same notation, || - ||, for norms on different normed
spaces. Where the distinction between different spaces is not clear, we write || - || x
for the norm on X.

Examples 4.1.3 Norms on R"”, The standard Euclidean norm on R" is

%l = (21, .-, @a)ll = (@F + - +23) V2.
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It is induced by the standard inner product on R™. When n = 1, the Euclidean norm
is simply the absolute value function on R. Two other useful norms on R™ are

and
IxIl = l(z1, ..., zo)ll = max ([z1], ..., |zal)-

It is easy to verify that these are indeed norms. In both cases, the triangle inequality
follows immediately from the definition and the special case of the triangle inequality
for R.

Example 4.1.4 Norms on R! = R, The absolute value |a| of a € R defines a norm
on the one-dimensional space R! = R. Any norm on R! is a positive multiple of the
absolute value. To see this, let || - || be a norm on R! and let ||1]] = M. Then M > 0
and ||a|| = |lal|| = |a| ||1|| = M |a| for all a € R' = R. When we consider R as a
normed space, we will always assume that the norm is the absolute value.

Example 4.1.5 Norms on Cartesian products. Let U; be a normed space for
1 <i<k,andlet X = U; x --- X Uy. There are several natural ways to define a
norm on X . The three most common are:

Il = [[(ars s w)l = ]l + - + [Jul]
x| = fug, - w)ll = (laall? -+ (o)
Il = fi(ur, o we)ll = max (sl .o flugl)-

It is easy to verify that these are indeed norms on X.

Remarks 4.1.6 Non-Euclidean norms. There are many advantages to using a
Euclidean norm when one is available. In some cases, however, there are other
natural choices for a norm. The most important case is L(X, Y'), the vector space of
all linear maps T : X — Y. We shall define a very useful non-Euclidean norm on
this space.

Definition 4.1.7 Equivalent norms. Let || - || and || - |’ be two norms on a vector
space X. If there are two constants L, M € R such that, forall x € X,

x|l < Lfix|" and fjx||” < M [,

then these are equivalent norms on X. We write || - [ ~ |l - ||’ to indicate the
equivalence of these norms. We can see easily that this is an equivalence relation
among the norms on the vector space X. We will show below that any two norms on
a (finite dimensional) vector space are equivalent.
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Remarks 4.1.8 Triangle and reverse triangle inequalities. Consider three points
a, b, and c in a normed space. The inequalities

la—cl < [la=bl+[b-c| .1
llla—=bll —lla-cll| < {b-c| 4.2)
are used frequently. The first inequality (4.1) is just the triangle inequality

%+l < [l + iyl

applied tox = a — band y = b — c; it is also referred to as the triangle inequality.
The second inequality (4.2) is equivalent to the two inequalities

la=bl—lla-cl<|b-c| and lla—-cll-[a-b]<lb-c|

Each of these is a rearrangement of a triangle inequality. For easy reference, we will
call the inequality (4.2) the reverse triangle inequality.

Remarks 4.1.9 Geometric formulations. The triangle and the reverse triangle
inequalities can be stated in terms of familiar geometrical concepts. If a and b are
two points in a normed space X, then the set

{xeX|x=ta+(1—-t)b, 0<t<1}

is the line segment joining these two points. The length of this segment, defined as
|la—bl}, is the distance between the end points a and b. Hence the triangle inequality
says that the length of one side of a triangle is dominated by the sum of the lengths
of the other two sides. The reverse triangle inequality says that the length of one side
of a triangle dominates the difference between the lengths of the other two sides.

Problems

4.1 Let X be a vector space. If a, b are in X, the line segment joining a and b is
the set

Liabl={xe X |x=ta+(1—-t)b, 0<t <1},
Show that L[a, b] is convex: If u, v are in L|a, b], then su+ (1 — s)v € L[a, b] for
all0 < s < 1.

4.2 If Ny, N, are norms on a vector space X, show that Ny + N5 is also a norm
on X. What about the product Ny No?

4.3 Let || || be the standard Euclidean norm on R™, and let ||x|| = |z1]+- - - + |z
for all x € R™. Show that there are constants A, B such that

Alx|]' < |lx|| < B||x||" forall x € R™.
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(So these two norms are equivalent.)

44 Let X,Y be vector spaces and suppose that f : X — Y is an isomorphism.
Let || || x be a norm on X and define

Iyl = lixllx
whenever y = f(x) for (unique) x in X. Show that || || isanormon Y.

4.5 Let| || beanormon X and let x,y be in X. Assume that |3x — y|| < 1 and
|5% — 4yl < 3. Show that ||y|| < 2.

4.6 Let X be a normed space. For a € X and r > 0, show that B,.(a) =
{x€ X ||x—al <r}isconvex.

4.7 Let M be a subspace of a normed space X. If there is some a € X and some
r > 0 such that B.(a) C M, show that M = X.

4.8 Is it true that for any nonzero normed space X, the set B,(a) is infinite for all
acXandallr >07?

4.9 Let X be a normed space. Leta € X and » > 0. Show that

S

(—a+ B.(a)) = B;(0).

4.10 Let] || be anormon X. Define f(x) = ||x||? forall x € X. Is f a norm on
X?

411 Let X be a vector space with dim X = 1. Given a nonzero e € X and a norm
Il | on X, there is some positive constant C' such that ||ae|| = |a|C for all a € R.
True or false?

412  Let|| || be the standard Euclidean norm on R™, and let ||x||” = maz(|z1],- -, |xa])
for all x € R™. Show that this defines a norm, and that it is equivalent to the standard

Euclidean norm.

4.13 Show that, for any real x, y, and 2,

VE+29)2+ y+222+(z+22)2 < Vz-y)?+@—2)>2+(z—x)?

+ 324y + 22
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4.2 CONVERGENCE IN NORMED SPACES

The definitions and notation for representing a sequence are as defined in previous
chapters. Our immediate objective is to define the convergence of a sequence in a
normed space.

Convergent Sequences

Recall that a sequence 7, in R is called a zero sequence if r,, — 0. More explicitly,
T, is a zero sequence if for each ¢ > Othereisan N € N such that |r,,| < € whenever
n>N.

Definition 4.2.1 Convergent sequences. A sequence X,, in a normed space X is
said to converge to a point a € X if

for each ¢ > 0 there is an N € N such that ||x,, — a|| < e foralln > N.

Equivalently, r,, = ||x,, — a| is a zero sequence in R. This condition is expressed as
X, — a, or as lim,, x, = a. If x,, — a, then x,, is a convergent sequence and a is
the /imit of this convergent sequence. This terminology is justified by Lemma 4.2.2
below.

Lemma 4.2.2 A sequence cannot converge to two different points.
Proof. Assume that x,, — a and x,, — b. The triangle inequality 4.1.8 shows that

la—bl <fla—=xul+[b—xul— 0.

Hence Ja — b|| =0,andsoca=b. O
Lemma 4.2.3 Ifx,, — ain X, then [|x,|| — ||a|| in R.

Proof. The reverse triangle inequality 4.1.8 shows that
[ 1xall = llall| < lixn —all

Since ||x, — al| - 0, we see that ||x,,|| — lla]| inR. O

Definition 4.2.4 Bounded sets. Let B be a set in a normed space X. Then B is
called a bounded set if there is an M € R such that ||x|| < M forall x € B.
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Definition 4.2.5 Bounded sequences. Let X be a normed space. A sequence X, in
X isis called a bounded sequence if its range is a bounded set. More explicitly, x,, is
called a bounded sequence if there is an M € R such that ||x,,|| < M foralln € N,

Example 4.2.6 Let ¢ be abounded sequence in R and let uy, be a bounded sequence
in R™. Define a sequence xi in R™ by
xk = (1/k)(cius + -+ cpug), keN.

Then x;, is also bounded. Indeed, since c; and ug are bounded, there is a constant
C such that |¢;| < C and ||u;|| < C forall j € N. Then for all £ € N, the triangle
inequality gives

1(1/k)(crur + - + cpug)l
(1/k)(Jer] lhagf] + -+ + Jer| Jull)
(1/k)(kC?) = C2.

x|l

IN A

Theorem 4.2.7 Every convergent sequence is bounded.

Proof. Let x,, — a. Then by Lemma 4.2.3, ||x,, || — ||a||. Hence, by Lemma 2.3.4,
(|Ix~]]) is a bounded sequence of real numbers. O

Bolzano-Weierstrass Theorem

Remark 4.2.8 Bolzano-Weierstrass theorem. The converse of the last theorem is
obviously false. As a simple counterexample, let a be any nonzero vector and define
Xp, = (—1)™a. Then x,, is bounded but does not converge. However, it turns out that
in any finite-dimensional normed space, every bounded sequence has a convergent
subsequence. This is the Bolzano-Weierstrass theorem, a key result in analysis.
The Bolzano-Weierstrass theorem has already been proved for sequences in E. To
extend it to arbitrary normed spaces, it turns out that the best strategy is first to prove
it for the special case of Euclidean spaces. The general result will follow from this
special case once we prove two additional results: the equivalence of all norms on a
finite-dimensional normed space, and the fact that a Euclidean norm can always be
defined on any finite-dimensional vector space.

Theorem 4.2.9 Bolzano-Weierstrass theorem in Euclidean spaces. A bounded
sequence in a Euclidean space has a convergent subsequence.

Proof. Let X be an n-dimensional Euclidean space. We use an induction argument on
n. The result is true for n = 1 by Theorem 2.4.5. Now assume the result for (n — 1)-
dimensional spaces, n > 2. Let{ ej, ..., e, } be an orthonormal basis for X . Let x,
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be a bounded sequence in X. Let ry = (e, xx). Then |ri| < |le.|l l|xkll = |Ixx]]-
Hence, 7}, is a bounded sequence in R. Therefore, it has a convergent subsequence
rm, m € K. Here K is an unbounded subset of N.

Now the sequence u,,, = X, — " €p 1s a bounded sequence in the subspace spanned
by the vectors { ey, ..., e,_1}. This subspace is an (n — 1)-dimensional Euclidean
space. Therefore, by the induction hypothesis, u,, has a convergent subsequence uy,
£ € L. Here L. is an unbounded subset of K. The subsequence r¢, £ € L, is still
convergent as a subsequence of a convergent sequence. Hence, x, = uy + e,
£ € 1, is a convergent subsequence of x;,. O

Equivalence of Norms

We will now show that any norm on a finite-dimensional vector space is equivalent
to a Euclidean norm. This implies the stronger-sounding result that any two norms
are equivalent.

First, recall that one can define a Euclidean norm on any finite-dimensional vector
space X . Take any basis £ = { ey, ..., e,} for X and let

]| = (z1(%)? + -+ + 2o (x)%)/2,

where x; : X — R are the coordinate functions for the basis F. This is a Euclidean
norm induced by the inner product defined as

(u, v) = zy(a) z1(v) + - -+ + 2 (1) 2, (V)

for all u, v € X. The basis F is an orthonormal basis in this inner product. We shall
assume that one such Euclidean norm is fixed in the following discussion.

Notations 4.2.10 Suppose X has a Euclidean norm || - |lewc : X — R and also
another norm || - || : X — R. Formally, we then have two different normed spaces,
which we denote as (X, || - |leuc) and as (X, ||-]|). We write thatx,, — ain (X, ||-||)
just in case ||x,, — a|| — 0.

To show that any norm is equivalent to the Euclidean norm involves proving two
inequalities, as defined in Definition 4.1.7. We prove these as two separate lemmas.

Lemma 4.2.11 There is an L € R such that ||x|| < L ||%||euc for all x € X.

Proof. Let E = { ey, ..., e,} bean orthonormal basis for X for the given Euclidean
norm. Let z; : X — R be the coordinate functions for E. Hence

x=x1(x)er + - + z,(X) ey,
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Here |z;(x)] < ||x]||euc forallx € X and foralli = 1, ..., n. Therefore

[z G [lex]] +- - + [zn(x)] [lenl]

[l <
< (el + -+ llenlDlixfieue = L [[%[leuc

with L = lle;||+ - -+ |lex]. O

Corollary 4.2.12 Ifx, — ain (X, || - |leuc), then also x,, — ain (X, |} - ||).
Proof. We have ||x,, — a|| < L ||x, — allewe — 0. O

Lemma 4.2.13 There is an M € R such that ||x||euc < M ||x|| forallx € X.

Proof. We first show that there is an 1 > 0 such that
m < ||x|| whenever (|x|{ey. = 1. 4.3)

If (4.3) is false, then there is a sequence X, € X such that ||X,[leue = 1 and
Ixnll — 0. But x,, is a bounded sequence in (X, || - |leuc). Hence by the Bolzano-
Weierstrass theoremin Euclidean spaces (Theorem 4.2.9), x,, has a subsequence xy,,
such that

Xk, — ain (X, [+ [leuc)-

Therefore, by Corollary 4.2.12 above, also
Xk, = ain (X, [ -]).

Hence, by Lemma 4.2.3, {|xx, |leuc — ||alleuc and ||xk, || — [|al]- Then ||aljeyc =1
since each |xx, {leuc = 1 and [la]| = O since (x| — 0. But [[a]| = 0 means that
a = 0and ||allcuc = 1 means that a # 0. This contradiction shows that (4.3) is true.

Now let x € X. If x = 0, then the conclusion of the lemma is clear. Assume that
I%]leuc = ¢ > 0. Then ||(1/t)}x|leve == 1. Hence m < ||(1/t)x]| by (4.3). This
means that ¢ = ||x||eyc < (1/m)||x]| = M]|x||, where M = 1/m. O

Theorem 4.2.14 Any two norms on a vector space are equivalent.

Proof. Let || - ||;, i = 1, 2, be any two norms, and let || - ||cuc be a Euclidean norm
on a vector space X. Use Lemmas 4.2.11 and 4.2.13 to find L;, M; € R such that

1xlls < Ls ||1%]|eue and [|x|lene < M; ||x]|; for i = 1, 2 and for all x € X.

Then ||x||; < Ly Ma||x||2 and ||x||2 < Ly My||x||; forallx € X. O
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Theorem 4.2.15 A set in a vector space is bounded with respect to one norm if and
only if it is bounded with respect to any other norm. A sequence X,, in a vector space
X converges to a with respect to one norm if and only if it also converges to a with
respect to any other norm.

Proof. Let |- || and || - || be twonorms on X. Let || - || < L|| - ||"and || - ||" < M| - .
If a set A in X is bounded in || - ||, then there is a K € R such that ||aj| < K for all
a € A. In this case ||a]|’ < KM forall a € A. Hence, A is also bounded in || - ||.
The proof for convergence is similar. O

Theorem 4.2.16 Bolzano-Weierstrass theorem in normed spaces. Every bounded
sequence in a normed space has a convergent subsequence.

Proof. Let || - || be the given norm on X. Let || - ||" be a Euclidean norm on X. If
X, is bounded in (X, || - ||), then by Theorem 4.2.15 it is also bounded in (X, || - ||).
By the Bolzano-Weierstrass theorem in Euclidean spaces, 4.2.9, it has a subsequence
converging in (X, || - ||'). Applying Theorem 4.2.15 again, this subsequence also
convergesin (X, || -||). O

Sequences in Cartesian Product Spaces

In addition to the Bolzano-Weierstrass theorem, the following basic result is a second
consequence of the equivalence of all norms on a finite-dimensional normed space.
It tells us that convergence of a sequence in a product space is equivalent to the
convergence of all of the component sequences.

Theorem 4.2.17 Let Uy, - -- U, be normed spaces and let X = Uy x --- x U,,. Let
Xk, be a sequence in U; and let
X — (Xk,la e ka)
be the corresponding sequence in X. Then
limgxp =x=(x1, ..., Xp) in X

if and only if each limg xy, ; = x; in U, foreachi =1, ..., n.
Proof. Convergence is independent of the norm used in a space. This follows from
Theorem 4.2.15 above. A convenient norm to use in X is

%]l = 1[(x1, - xa)ll = max(|xa ], ..., %)
It is easy to see that this is indeed a norm on X . Then it is clear that

i — x| = max(|lxe,1 —xall, -, [Xpn = Xnf) = 0

if and only if ||x),; — x;|| — Oforeachi=1,...,n. O
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Cauchy Sequences

Definition 4.2.18 Cauchy sequences in normed spaces. A sequence X, in anormed
space X is called a Cauchy sequence if for each € > 0 there is an integer N € N
such that ||x,, — X;»|| < e forallm, n > N.

Theorem 4.2.19 A sequence in a normed space is a Cauchy sequence if and only if
it is a convergent sequence.

Proof. This proof is almost the same as the proof of the analogous Theorem 2.4.7 for
Cauchy sequences of real numbers. First, suppose that x,, is a convergent sequence
and let x,, — a. Givene > 0, find N € Nsuch that |x,, —a|| < e/2foralln > N.
Then

3 = Xnll < 130 = all + la = xull < (£/2) + (£/2) = £

for all m, n > N. Hence x,, is a Cauchy sequence.

Conversely, assume that x,, is a Cauchy sequence. Since x,, must then be bounded,
we can apply the Bolzano-Weierstrass theorem to find a convergent subsequence X, , .
Let a = lim x,,,. Then for each ¢ > O there is a K such that ||x,,, —a| < /2 forall
k > K. Since x,, is Cauchy, we may take K large enough so that ||x,, — X, || < /2
for all m, n > K. Pick some ny large enough that both &k, n; > K. If n > K, then

Ixn —al| < {ixn — Xy || + 1 Xn, — alf-

But ||x, — X, || < €/2 since n, ny > K. Also ||x,, — al| < £/2since k > K.
Therefore ||x,, — al} < e foralln > K. Hence x,, — a. O

Example 4.2.20 Let a be a nonzero vector in a normed space X. Let ¢, be a
sequence of real numbers. Then ,,a converges if and only if ¢,, converges. Indeed,
since ||a|| > 0 and |t,, — t,.|||al] = ||tna — t,al|, we see that t,a is Cauchy if and
only if £, is Cauchy. Hence, by Theorem 4.2.19, ¢,,a converges if and only if ¢,
converges.

Theorem 4.2.21 Let u,, be a sequence in a normed space X. Let X,, = Z?:lui be
the sequence of partial sums. If 3, || uy|| < oo, then x, is a Cauchy sequence in X.
Iflim, X, = a, then ||x, —a|| <>, [ugl.

Proof. The sequence S, = .7, ||u,|| is a monotone and bounded sequence in R.
Therefore it converges by the monotone convergence theorem, Theorem 2.3.13. It
follows that S, is a Cauchy sequence in R. Hence, given € > 0, thereisan N € N
such that 0 < S, . — S, < eforalln > N and for all k € N. Hence

1% — Xparll < 1% = Xpgal 4+ + [[Xngk—1 — Xntkll
= |upgill + -+ apskll = Spyr — Sn < ¢
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whenever n > N and k € N. This proves that x,, is a Cauchy sequence.

For the last part we have
limg||xn — Xntkl| = [[Xn — af < lme(Spik — Sn) = Zi>n||ui|| .

Here the first equality follows from Lemma 4.2.3 and from the observation that
limg(x, — Xpyg) =%, —a. O

Problems

4.14 If A, B are bounded subsets of a normed space X, show that rA + sB is also
a bounded subset of X for any scalars r, s.

4.15 Let x,, be a sequence in a normed space. Let f: N — N be an increasing
function. If x,, converges, show that the sequence x ¢, also converges.

416 Let x, and y, be convergent sequences in a normed space X. Let ¢, s be
scalars. Show that the sequence sx,, + ty,, is convergent and

lim (sx, +ty,) =s lim x, +¢ lim y,.
n— 00 n—oo n—oo

Also, show that

lim [|%.] = H lim %,
x> n—oo

n—

4.17 Define norms || || and || ||’ on R? by
x|l = |z1| + |z2|, |x|I' = max{|z1],|z2|} forallx = (z1,x2) € RZ
Show directly that || || and || || are equivalent norms on R2.

4.18 Let x, be a sequence in a normed space X. Foreach k € N, let y, = Xg%
and let z; = xgx—1. Show that x,, converges to a if and only if both y,, and z,,
converge to a.

4.19 Let X be an inner product space, and let || || be the norm induced by the
inner product. Suppose that x,, is an orthogonal sequence in X that converges. Find
lim,, o0 Xn,.

4.20 Let x4 be a sequence in a normed space. For n € N, set

t, = Zkzl(xk—i—l —Xg), dp= Zk:1l|xk+1 - x|l
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Show that t,, converges if and only if x; converges. If x; converges, must d,
converge?

4.21 Suppose that a,, is a sequence in a normed space that converges to some a.
Show that

1
lim —(a; 4+ - +a,) =a.
n—oc 1

422 Fork=1,...,n,let| - | be normon Xy. Is it true that there is a constant
C such that whenever x; € X1,...,x; € Xk, then

I 4+ + a2 < € max (e ]1)?

4.23 Let X beavector space withbases {uy, ..., u,, }and {vy,..., v, }. Suppose
S C X and assume that there is a constant M such that whenever x € S with
X =ciug + -+ + Cp U, then maxi<k<m || < M. Show that there is a constant
C such that whenever x € S and x = d1vy + - - - + d,,Vin, then

ldi| + -+ |dm| < C.

4.24 Show that there is a positive constant A such that

(I +lza] 4+ +lznl)?

> A forall x € R™ with maxi<kg<n I:Ek| = 1.

425 Letay = (ak,0,ak1,---,0kn) be a bounded sequence in R™*+!, Show that
there is an increasing sequence my, in N, and a polynomial p of degree no more than
n such that

llm max |am, 0+ Gmy,1t + -+ Gmy at” —p(t)| = 0.

k—oote(0,1]

4.3 NORMS OF LINEAR AND MULTILINEAR TRANSFORMATIONS

A linear map 7' : X — Y between two normed spaces has an important property
called boundedness. This property leads to the definition of a natural norm on the
vector space L(X, Y) of all linear maps X — Y.

Theorem 4.3.1 Boundedness of linear transformations. Let X and Y be two
normed spaces. LetT : X — Y be alinear transformation. Then thereisan M € R
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such that || Tx||y < M ||x||x forall x € X. Here, |

Ix and || |y denote the norms

on X andY.
Proof. Define ||x|| = ||Tx|ly + ||x||x for all x € X. Then || - || is a norm on X.
(What goes wrong if we try |[x|| = [[Tx||y?) Hence, || - || and | - | x are equivalent.

Thus, there is a constant C such that
ITx[ly + lIxllx < Cllx[lx forallx € X.

Thus, with M = C - 1, the result follows., O

Example 4.3.2 Let X and Y be two normed spaces. Let T: X — Y be an
isomorphism (Definition 3.1.45). Then here are positive constants A, B such that

Alx|| < |ITx]| < B||x|| forallx € X.

This follows immediately from the fact that ||x||" = ||7'x||y is a norm (since T is an
isomorphism), and hence equivalent to ||x|).
Theorem 4.3.3 Norms of linear transformations. Let X and Y be two normed
spaces. Let T : X — Y be a linear function. Then

1T} = sup { 17| | [x]l =1, x € X } (4.4)
exists and defines a norm on L(X, Y).
Proof. If T € L(X, Y), then Theorem 4.3.1 shows that there is an M € R such that

ITx|l < M whenever ||x|| = 1, x € X. Hence the set in (4.4) is contained in the
interval [0, M |. Therefore ||T|| exists.

We check that ||T|| satisfies the defining conditions for norms stated in Definition
4.1.1. Clearly |T|| > O forall T € L(X,Y) and |T}| = 0 if and only if T =
Oz(x,v), that is, if and only if Tx = Oy for all x € X. Hence the positive
definiteness of || 7' follows. Now let T € L(X, Y) and ¢t € R. Then

[T = sup{{itTx|/[x € X, |x|{=1}
sup { || [Tx|| | x € X, [lx[| =1}
tlsup { | 7]l | x € X, [Ix[| =1} = J¢|[|T]-

I

This shows that ||7’]] is homogeneous. Note that the third of these equalities depends
upon the following observation: if B is a bounded set of numbers, r > 0, and
B’ ={rs|s e B } thensup B’ = rsup B. Finally, to verify the triangle inequality,
let7T, S e L(X,Y)andx € X, ||x|| = 1. Then

(T -+ S)x|| = [ Tx + Sx|| < [ITx{| +[[Sx[| < (Tl 4 1S]]-
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Hence | T+ S|| < ||IT|| +||S||. DO

Definition 4.3.4 Standard norms of linear transformations. The standard norm
on L(X,Y) is the norm defined in the preceding theorem, in terms of the norms
on X and Y. Hence, with this standard norm, ||Tx||y < ||T|p(x,v) x|l x for all
TeL(X,Y)andforallx € X,y €Y.

Example 4.3.5 Let T: R?> — R? be given by Tu = (z + y,z — y) for all u =
(x,y) € R2. Then with respect to the standard Euclidean norm on R?,

ITull? = (z +y)* + (2 — y)* = 22" +y*) = 2|[u)*.

Hence, ||T'|| < v/2. Since ||Te; || = v/2, it follows that |T|| = v/2.

Example 4.3.6 Let X,Y be (finite-dimensional) vector spaces. Let || || x, || |’ and
Il llv, ]l Iy be pairs of norms on X and Y, respectively. Then there is a constant C
suchthatif T : X — Yislinearand ||T|| is the norm of T’ with respect to || || x, || ||y,
then the norm ||T'||" of T with respect to || ||’y and || ||} satisfies

Iy < ClTl.
The reason is that L({X,Y) is a finite-dimensional normed vector space under the

two different norms 7' — ||7'|| and T + ||T||’. Consequently, the norms || || and || ||’
on L(X,Y) are equivalent, and the desired conclusion follows.

Theorem 4.3.7 If T € L(X, Y), then | Tx|| < ||T)| |x|| for all x € X.

Proof. If ||x| = 1, then the result follows from the definition of || T’|| in Theorem
4.3.3 above. Any x € X can be expressed as x = txo with ¢ € R and ||x¢|| = 1,
and in this case ||x|| = |¢| ||xo|| = |¢|. Therefore

ITx[| = T (tx0)!| = [t [Txoll < [¢[ I T]| = |ITl ||
as claimed. [
Example 4.3.8 Let 7' : X — Y be a linear map between normed spaces. If z,, is a

Cauchy sequence in X, then Tz, is also a Cauchy sequence in Y. This is because
ITzn — Txm|| = |T(2n — 2m)|| < (IT) | — 27| for all n, m.

Theorem4.3.9 If R € L(X,Y)and S € L(Y, Z), then ||SR| < ||S||||R||- Here
SR € L(X, Z) is the composition of R and S.
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Proof. If x € X, then
ISR = [|[S(R=)[| < ||S]} [ Bx|| < [SIII[R]] Ix]].
This shows that |[(SR)x|| < ||S|| |R| whenever |x| =1. O
Example 4.3.10 Let X,Y be nontrivial normed spaces. Let T: X — Y be an

isomorphism. Then Iy = TT~! is the identity mapping on Y. Clearly, ||Iy] = 1
(since Y is nontrivial, there is a non-zero vector y with Iy (y) = y). Thus,

L=yl =TT~ < 17T
Also, since T is not the 0 mapping, ||7'|| > 0. Hence,

/1T < 1.

Norms on Multilinear Functions

Let U; and Y be normed spaces. It will be convenient to write Xy = U x --- x U3
and let M Ly (X, Y) denote the corresponding vector space of k-linear functions.
There is a standard way to define a norm on M L (X, Y'), using induction on k.

For the induction step, we use the natural isomorphism
9 MLy (Xky1, Y) — LUkg1, MLp(Xg, Y))

defined in Definition 3.3.7. If F' € MLyy1(Xg41,Y), then F is a function of
(k + 1) variables ugt1, ug, ..., u;. Foreach ug41 € U4, we obtain 9F (ugy1)
by holding uy; fixed and considering F' as a function of the remaining % variables.
That is:

OF (ug1) (g, -. ., up) = Flugyr, ug, ..., ug).
This defines 9F (ugy1) € MLi(Xg, Y) for each ugy1 € Upyy.
Definition 4.3.11 Norm on M L, (Xy, Y). For k = 1, the norm on
MLi(X,,Y)=L({U,Y)

is just the standard norm on L(U;, V). For the inductive step, we may suppose that
the norm on M Ly (X, Y} is defined. We know that there is a standard norm on

L(Uks1, MLy (Xg, Y)).
If F e MLy (Xgt1, Y), then we define

||FHAILk+1(Xk:+17Y) = “19F||L(Uk+1,IV[Lk(Xk,Y))-
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These norms on M L;.( Xy, Y) are defined as the standard norms on these spaces; as
in the case of linear transformations, they depend upon the norms on the underlying
vector spaces.

Remarks 4.3.12 The following theorems refer to several normed spaces and several
norms, all of which should be clear from the context. To illustrate, suppose F' €
]\/[Lk+1(Xk+1, Y) Then

IIF]| 1is the standard normon M Liyq(Xgy1, Y).

1F(ugs1. vy o wr)| is the norm on Y.
9F is the norm on L(Ugy1, MLE(Xg, Y)).
(I9F (wgr1)l is the norm on ML (X, Y).
WF(ugp1)(ug, ..., w) is the norm on Y.

The following theorem shows that the standard norm for multilinear functions has a
useful property analogous to that of the standard norm for linear functions.

Theorem 4.3.13 If F € M Ly(Xy, Y), then

IFGI = [[F(ug, ..., u) | < [1FI - [Jug ] - o] (4.5)
Jorallx =(ug, ..., u1) € Xy =Up x --- x U.
Proof. If £ = 1, then (4.5) is true by Theorem 4.3.7. Suppose, for induction,

that (4.5) is true for k € N. Let F € MLy;1(Xgi1, Y). Then for all x =
(Ugg1, Uk, ..oy ur) € X1,

IFI = [F(ugs1, ug, ... wa)]l
= [[9F(ugs1)(ug, ..., w)l
< WF (k)] - fhaell - fhad]
< OF[ - lugaall - Jluell - ol
= |IF|l - flugsall - flagll - ).

Here the first inequality follows from the inductive hypothesis and the second in-
equality from Theorem 4.3.7. The last equality follows from the definition of || F'l} in
Definition 4.3.11. O

The next theorem will be useful in our study of differentiation.

Theorem 4.3.14 Increments of multilinear maps. Ler Uy,...,Uy and Z be
normed spaces, let X = Uy x --- x Uy, and suppose that F € MLy (Xy, Z).
Let

x=(ug, ..., u1) € Xpandy = (vg, ..., v1) € X.
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Ifllui] < R, |

vi| < R, and ||u; — v;|| < aforeachi=1, ..., k, then
IF(x) - F(y)ll < |F|| - kR* ' o (4.6)

Proof. Proceed by induction on & € N. If k£ = 1, then (4.6) reduces to

|F(a1) — F(v1)|| < ||F|| « for linear F : Uy — Z.
This follows from Theorem 4.3.7. Assume for induction that (4.6) holds for k. Let
F e MLiy1(Xkt1, Z). To simplify the notation, let’s write

(Ugs1, Uk, «- ., U1) = (Wgg1, w) and (Vgg1, Vi, - .o, V1) = (Vig1, V).
Note that || F(ug11, u) — F(vg41, v)|| is dominated by the sum
[F (g1, w) = Fupsr, V)| + [1F kg1, V) = F(Veya, vl

We estimate these two terms separately. For the first term we have
[VF (ag41) () = IF (ar1) (V)|
[9F (ugs1)ll - kR*
IOF|| - [fugs1]l - kR e
|F|| - kR* a.

Here the first inequality follows from the induction hypothesis. The second inequality
follows from Theorem 4.3.7 applied to the linear map ¥/F". For the second term,

[9F (ug41)(v) = IF (Vi) (V)|
[(F (ag41) — OF (vier1)) (V)]
[9F (uer1 — vesa)| - R

1OF] - [[ag i1 — Vg - R*

| F]] -RFa.

Il

1F(ukt1, w) = Fluggs, v)||

IA A IA

| F(kr1, v) = F(Viir, V)|

Il

INIAIA

The first inequality follows from Theorem 4.3.13. In the second inequality, we again
apply Theorem 4.3.7 to the linear map JF. Adding these two estimates, we obtain
@6)for(k+1). O

Example 4.3.15 Theorem 4.3.14 generalizes a familiar situation. Let each U; = R
with the absolute value norm. Define F' € M Ly(Xy, R) by
Fluy, ..., up) = ug - Ug.

We can easily show that ||F'|| = 1 by induction on k. Hence, if |u;], |v;] < R and
|us — v;| < «, then Theorem 4.3.14 gives

|(U1 .. 'Uk) — (Ul .. ‘Uk)| S kRk_la.

In particular, [uf — v¥| < kRFlaif |ul, jv| < R, |u —v| < au
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Problems

426 LetT: R? — R2begivenby Tu = (z+2y,3z—y) forallu = (z,y) € R2.
With respect to the standard Euclidean norm on R2, show that ||T|| < v/11.

4.27 Let X be a nonzero normed space and let T € L{(X,Y) with T # 0. What
is{|ITx]| |[xe X }?

428 LletT € L(X,Y) with ||T|| < 1. Show that if u, v are vectors in the unit ball
{xe X |]x||<1} then|Tu-Tv| <2

429 LetT:(X,||)— Y bealinear map between normed spaces. Let L : X —
X be an isomorphism such that [[Lx|| = 1 for all x € X with |[x|| = 1. Define a
norm |} |"on X by ||x||" = || Lx|| forallx € X. If Aisthenormof T : (X, || ||) = Y,
show that the norm B of T : (X, || ||') — Y satisfies B > A.

430 Consider R™ with the norm ||x|| = (2% + --- + 22)Y/2. Let ay,...,an
be constants and define T : R” — R™ by Tx = (a121,...,0,%y,) for all x =
(1’1, .. .,Llfn) € R™. Show that ”T” > maxi<i<n |ak}.

431 Fork=1,...,n,letTy : Y — X be linear maps between normed spaces.

Let || ||x be the norm on Xj. Consider the norm || || on X = X; % - .- x X} given
by
1
G, xa) ) = (i + -+ flxall2) 2.
LetT:Y - XbyTy = (Tvy,...,T,y) forally € Y. Show that T is linear. Is it

true that
T <Talf® + - + [ Tl®?

4.32  Suppose that X, Y are normed spaces. Let 7,, € L(X,Y) be such that
ITnll < 1forall n € N. Show that there is some T" € L(X,Y) with ||T|| < 1 and
some subsequence 77, of T, such that

433 Let X,Y be normed spaces. For x € X, define X: L(X,Y) — Y by
X(T) = T(x) for all 7" € L(X,Y). Show that X is a bounded linear map with
X[ < fixl.

434 LetT € L(X, X). Recall that A is an eigenvalue of T if there is some u € X
with u # 0 such that Tu = Au. Show that for all eigenvalues A of T, we have

A< 1T



142 NORMED VECTOR SPACES

435 LetT € L(X,X) and suppose that there is some S € L(X, X) such that
S§? =T. Then \/||T|| < ||S||. True or false?

4.36 let X,Y be normed spaces and let L : X — Y be linear. Define F: R x
X - Y by F(r,x) =rLxforall (r,x) € R x X. Compute || F||.

4.4 CONTINUITY IN NORMED SPACES

There are two familiar definitions of continuity of a function at a point. We start with
a lemma that proves the equivalence of these two conditions.

Lemma 4.4.1 Let X and Y be two normed spaces,a € A C X, and f : A - Y a
function. Then the following are equivalent.

(1) For each £ > O there is a § > 0 such that ||f(x) — f(a)|| < & whenever
Ix —al| < éandx € A

(2) If x,, is a sequence in A and if X, — ain X, then f(x,) — f(a)inY.

Proof. Assume (1). Let x,, be a sequence in A and assume that x,, — a. Given
€ > 0,find § > Oasin (1). Since x,, — a, there is an N such that ||x,, — a|| < § for
alln > N. Hence, || f(x,) — f(a)|| < e forall n > N. Therefore f(x,,) — f(a)
and (2) follows.

Conversely, assume that (1) is not true. Then there is an o > 0 with the following
property. For each § > 0 there is an x € A such that ||x — al| < § but || f(x,,) —
f(@)|| = «. In particular, for each n € N there is x,, such that

I — all < (1/n) but [ f(x,) — f(a)]| =

Then x,, — a but f(x,) /4 f(a). Hence (2) is not true. Therefore (1) and (2) are
equivalent. O

Definition 4.4.2 Continuity of functions. Let X and Y be two normed spaces,
ac AC X,and f: A — Y afunction. Then f is said to be continuous at a if f
satisfies one of the equivalent conditions above in Lemma 4.4.1. If f is continuous
ateach a € A, then f is said to be continuous on A.

Remarks 4.4.3 Continuity and norms. As proved in Theorem 4.2.15, the conver-
gence of a sequence in a vector space is independent of the choice of the norm on
that space. As a result, the continuity of a function between the vector spaces is
independent of the choice of norms on these spaces.
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Remarks 4.4.4 General theorems on continuity. Most of the functions we shall
consider in this course are linear, multilinear, or obtained from linear and multilinear
functions by composition, taking limits, or taking inverses. First, we establish the
continuity of linear and multilinear functions. Then we show that continuity is
preserved under composition, taking limits, and taking inverses, with some mild
restrictions. This will establish the continuity of almost all the functions we consider
in this course. Even with these functions, however, there may be some special
points at which continuity is not clear. This happens especially in taking inverses
(which includes division, the inverse of multiplication). The following three special
examples illustrate how to proceed in such cases. The first example is a natural one;
the others are contrived to reveal possible difficulties.

Special Examples

Example 4.4.5 Define f : R> — R by

flay) = { g/ ey

[N

(0, 0)
(0, 0).
Is f continuous at (0, 0)? The restriction of f to the z-axis or to the y-axis is
identically the zero function. That is continuous everywhere. But we can draw no
general conclusion about the continuity of f from these restrictions. Suppose we
restrict f to the line y = ma, m # 0. This restriction is the function ¢ : R — R
defined as ¢(z) = f(x, mx) for all z € R. We see that o(z) = m/(1 +m?) if
x # 0 and p(0) = 0. Hence ¢ is discontinuous at x = 0. Therefore f is also
discontinuous at (0, 0). A

Example 4.4.6 Define f : R? — R by

[ 1 ifz#0andy= 227
=, y) = { 0  otherwise.

See Figure 4.1. This function is discontinuous at (0, 0). We can see this by restricting
f to the parabola y = 2x2. This restriction is the function ¢ : R — R defined as
w(z) = f(z, 22?) for all z € R. We see that p(x) = 1if z # 0 and ¢(0) = 0.
Hence ¢ is discontinuous at = 0. Therefore f is also discontinuous at (0, 0).

Note that unlike the previous example, the restriction of f to any straight line passing
through (0, 0) is continuous at (0, 0). Certainly, the restrictions of f to the coordinate
axes are identically zero. Now consider a line y = mz, m # 0. Then ¢(x) =
f(z, mx) is obtained as follows. First, ¢(0) = f(0,0) = 0. Let x # 0. Then
o(z) = 1if y = mz = 222, that is, if z = m/2, and p(x) = 0 if z # m/2. This
function is continuous at z = 0. (It is discontinuous at z = m/2, but this is not
important.)
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This example shows that a function may have continuous restrictions to all straight
lines passing through a point but still be discontinuous at that point. A

YA
y:2x2

Figure 4.1. For Example 4.4.6.

Example 4.4.7 Define f : R? — R by

flz, y) = (y — 2?)(32% —y)/z* ifz # 0and 2% < y < 322
¥= 0 otherwise.

This function is even more pathological than the one in Example 4.4.6. It is dis-
continuous at (0, 0) even though its restriction to any straight line is continuous
everywhere. (Recall that the restriction of the previous function to y = ma was
continuous at (0, 0) but discontinuous at (m/2, m?/2).) A

Continuity of Linear and Multilinear Functions

Theorem 4.4.8 Continuity of linear functions. A linear map T : X — Y is
continuous on X.

Proof. Let M € R be such that || Tx| < M |jx||, x € X. Let x,, — a. Then
[Txn — Tal| = | T(xn — a){| < M|ix, —al| - 0.



CONTINUITY IN NORMED SPACES 145

Hence T'x,, —» Ta. O

Theorem 4.4.9 Continuity of multilinear functions. A multilinear map
F:Xpy=Usx---xU -Y
is continuous on Xy,.
Proof. As continuity is independent of the choice of the norms, we may choose a
convenient norm on X;. We will let
[l = ll(ug, ..., w)ll = max((full, ..., [lu).

It is easy to check that this is a norm on X. Fix a € X. Choose an R € R so that
|lal]] < R. Lete > 0 be given. Choose ¢ > 0 so that

|F||- kR*16 < e.

Without loss of generality, assume that ||a|| 4+ < R. We now apply Theorem 4.3.14,
which allows us to estimate the increment || F'(x) — F(a)||. If [|x — al| < §, then we
see that this theorem gives

|F(x) - F(a)]| < |F|l- kR*'5 < .

Hence F': X — Y is continuous at an arbitrary pointa € X;. O

Continuity in Cartesian Products

Theorem 4.4.10 Let X; s and Y; s be normed spaces and consider the Cartesian
product spaces

X=Xy x-+xXiadY =Y, x---xY.

Let A; C X;and A = Ay, x --- X Ay. Let f; + A; — Y be a function for each
i=1,...,k Define f: A—Y as

F(x) = (fe(xx)y -5 f1(x1))

forallx = (Xg, ..., x1) € A. Then f is continuous ata = (ay, ..., a;) € Aif
and only if each f; is continuous at a; € A;.

Proof. Let x,, = (Xgn, ..., X1n) € A be a sequence. Theorem 4.2.17 shows that
this sequence converges to a in X if and only if each component x,,; converges to a;
in X;. Similarly

Fn) = (fen)s - fi(x1n)) €Y

converges to f(a) in Y if and only if each component f;(x;,) converges to f;(a;) in
Y;. Then the proof follows from the definition of continuity. [
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Continuity Under Compositions

Let X,Y, Z,be normed spaces,and A C X,BCY.Letf: A—Yandg: B— Z
be two functions. Let i = g o f be the composite function, h(x) = g(f(x)) for all
x € C,where C = AN f~1(B) is the set of all x € A such that f(x) € B.

Theorem 4.4.11 If f is continuous at a € C and g is continuous at b = f(a), then
h = g o f is continuous at a.

Proof. Let x,, be asequencein C suchthatx,, — a. Then f(x,) =y, — b = f(a),
since f is continuous at a. But y, is a sequence in B and y,, — b. Hence,
h(xn) = g(yn) — g(b) = h{a), since g is continuous at b. This shows that A is
continuous ata. [J

Applications

Most of the following results could be proven directly from the definitions of con-
vergence and continuity. We present them here as consequences of the preceding
results about the continuity of linear and multilinear functions, the composition of
continuous functions, and Cartesian products.

Lemma 4.4.12 Let a,, — a in R and x,, — X in a normed space X. Then
Xy — axin X.

Proof. We apply Theorem 4.2.17 on sequences in Cartesian products. We see
that (a,, x,) € R x X converges to (a, x) in R x X. We then use the fact that
multiplication by scalars,

M : (R x X) — X defined by M (r, u) = ru,
is multilinear, and hence continuous. Therefore, M (a,, X,) = a,X, converges to
M(a, x) =axinX. O

Lemma 4.4.13 Ifu, —» uwand v, — vin X, then (u, + v,,) — (u+v)in X.

Proof. Theorem 4.2.17 shows that (u,, v,) — (u, v) in X x X. But addition

F(a, b) = a+ bis alinear operation F': (X x X) — X and therefore continuous.

Hence F(u,,, v, ) converges to F'(u, v) in X. This is the conclusion of the lemma.
0
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Theorem 4.4.14 Continuity of linear combinations. Let X and Y be normed
spaces. Letr; : A — Rand f; : A — Y be continuous functions, where A C X and
i=1,...,k Let f =3, rifi. Then f : A —Y is continuous.

Proof. leta € A x, € A, and x,, — a in X. Then r;(x,) — r;(a) in R
and f;(x,) — fi(a) in X. Then Lemmas 4.4.12 and 4.4.13 and an easy induction
argument show that

f(xn) = Zz 7i(Xn) fi(Xn) — ZZ ri(a)fi(a) = f(a)

inY. Hence f : A — Y iscontinuous ateacha € 4. O

Theorem 4.4.15 Continuity of inner products. Let X be a normed space and Y
a Euclidean space. Let f : A — Y and g : A — Y be continuous, A C X. Then
p(x) = {f(x), g(x)) defines a continuous function p : A — R.

Proof. Define h : A — (Y x Y) by h(x) = (f(x), 9(x)), x € A. Then h is
continuous by Theorem 4.4.10 on continuity in Cartesian products. Define the inner
product function P : (Y xY) - Rby P(u, v) = (u, v}, (u, v) € Y x Y. Since
P is multilinear, it is continuous. Then p = P o h: A — R is the composition of
two continuous functions and hence is continuous. O

Example 4.4.16 LetT,, — T in L(X, Y)and x, — xin X. Then T,,x,, — Tx in
Y. To see this, note that (T, x,) — (T, x) in L(X, Y) x X, again by Theorem
4.2.17. Also, the mapping

F:(L(X,Y)x X)—Y

defined by F(T, x) =Tx € Y, for (T, x) € (L(X, Y) x X), is multilinear, and
hence continuous. Therefore T,,x,, = F(T,,, x,) = F(T, x)=TxinY. A

Continuity of the Inverse Function

Let X and Y be two normed spaces, A C X. If a function f : A — Y is one-to-one
on A, then it has an inverse function g : B — X, where B = f(A). Assume that
f A — Y is continuous. In general, g : B — X is not continuous, as we show by
means of two counterexamples. The first example is rather artificial; the second is
more natural.

Example 4.4.17 Let X =Y =R. Let
A={1/k|keN}C]0,1].
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Define f : A — Rby f(1) = 0and f(1/k) = 1/kifk > 2 Thenf: A - R
is continuous. Actually, any F' : A — R is continuous on A. The reason is that if
z, € Ais asequence in A and if z,, — a € A, then there is an N € N such that
z, = aforalln > N. (Why?) Any convergent sequence in A must eventually be a
constant sequence. Hence F(z,,) — F(a)forany F: A — R.

Now the particular function f defined above is one-to-one on A. Let B = f(A),
and let the inverse inverse of f be g : B — R. We see that 0 € B and the sequence
yn = 1/n, n > 2is a sequence in B converging to 0 € B. But g(y,,) = (1/n) #
g(0) = 1. Therefore g is discontinuous at 0 € B. A

Example 4.4.18 Let X = R, Y = R2%, A = [0, 1). We denote the points in X as
t € R and the points in Y as (z, y) € R% We define f : A — R? as

f(t) = (cos2mt, sin2nt), 0<t<1.

Then B = f(A) is the unit circle. We see that f is one-to-one and continuous on
A. But the inverse function g is not continuous at (1, 0) € B. To see this, define a
sequence (Z,, yn) as follows:

( ) = (cos 27 /n, sin 27w /n) if n is odd
T Yn) = (cos2m(n —1)/n, sin2nx(n — 1)/n) if niseven.

Then we see that (x,,, y,) € B converges to (1, 0) € B. But

1/n if n is odd
(n—1)/n ifniseven

does not converge in R. Therefore g is not continuous at (1, 0). A

These counterexamples are due to a deficiency in the domain A of the original
function f : A — Y. If A satisfies one natural additional condition, then the inverse
of a continuous and invertible function on A is, in fact, continuous. This additional
condition is called compactness.

Definition 4.4.19 Compact sets. Let X be normed space and C' C X. Then C' is
called a compact set if every sequence in C has a subsequence converging to a point
in C.

Example 4.4.20 Let A, B be compact subsets of a normed space X. Then A+ B is
also compact. To see this, let c,, be a sequence in A + B. Then there are sequences
a, in A and b, in B such that ¢,, = a,, + b, for all n. Since A is compact, there is
a subsequence a,,, of a,, that converges to a € A. Now b,,, is a sequence in B, and
by the compactness of B, it has a subsequence b,,,; that converges to b € B. Since
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anm, is a subsequence of a,,, , it must also converge to a. Thus, ¢,,, is a subsequence
of ¢, and ¢, = am; +Cm; » a+b € A+ B.Hence, A+ B is compact.

In the next section we will provide several equivalent formulations of compactness,
including one that is easy to verify. Hence the following theorem is a useful and
important result.

Theorem 4.4.21 Let X and Y be two normed spaces. Let A be a compact subset of
X. Let f : A — Y be a one-to-one and continuous function on A. Then the inverse
function g : B — X is continuous on B = f(A).

Proof. Let b € B. Hence b = f(a) and a = g(b). We will show thatg : B — X
is continuous at b. Let y,, be a sequence in B and y,, — b. Let x,, = g(y.). We
must show that x,, — a.

If x, # a, then ||x,, — a|]| 7> 0. In this case, there is a number & > 0 and
a subsequence xx, k& € K, such that ||xx — al| > «a for all £ € K. Now x,
k € K, is still a sequence in the compact set A. Hence it has a subsequence
x¢, £ € L, that converges to a point a’ € A. We see that ||la — a’|| > « > 0.
Hence a’ # a and therefore f(a) # f(a’), since f is one-to-one on A. But then
ye = f(x¢) — f(a) # f(a’), which means that f is not continuous at a’ € A. This
contradiction shows that x,, — a. O

Continuity Under Limits

Consider a sequence of functions f,, : A — Y defined on a set A in a normed space
X and taking values in another normed space Y. Assume that the sequence f;,(x)
in Y converges for each x € A. In this case lim,, f,,(x) = f(x) defines a new limit
function f : A — Y, and we say that f,, converges pointwise to f. Suppose that
each f, : A — Y is continuous. Can we conclude that f is also continuous on A?
Not in general, but we do get continuity if we assume uniformity of the convergence.
We prove this result below, but first we offer a counterexample for the general case
where we have only pointwise convergence.

Example 4.4.22 A sequence of continuous functions with a discontinuous limit.
Let X =Y = Rand A = [0,1]. Let fo(z) = 2™ for each n € N and for
each x € A. Each f, is a polynomial and therefore is continuous on A. Also,
f(z) = lim, f,(z) = lim,2™ exists foreachz € A. But f(z) =0if0 <z < 1
and f(1) = 1. Hence f(z)is discontinuousatz =1 € 4. A

Lemma 4.4.23 Let X and Y be two normed spaces and A C X. Let f : A — 'Y be
a function with the following property: for each e > Q, there is a continuous function
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g: A=Y suchthat |f(x) — g(x)|| < eforallx € A. Then f: A - Y isa
continuous function on A.

Proof. To show that f : A — Y is continuous at a € A, we will show that for
each ¢ > 0 there is a § > 0 such that || f(x) — f(a)|| < € whenever x € A and
|Ix —al| < 4. Given ¢ > 0, first find a continuous function g : A — Y such that

IIf(x) — g(x)|| < e/3forall x € A.

Then finda d > 0 such that ||g(x) — g(a)|| < /3 whenever x € Aand ||x—al < 4.
This can be done since g : A — Y is continuous at a € A. Now if x € A and
llx —a|| <4, then

17(x) = f(a)l]

il

1£(x) = 9(x) + 9(x) — g(a) + g(a) - f(a)]l
I1£(x) = g(x)]l + lg(x) — g(a)ll + llg(a) — f(a)l]
(€/3) +(e/3) + (¢/3) = «.

N IA

Hence f : A — Y iscontinuous ata € A. O

Definition 4.4.24 Uniform convergence. Let X and Y be two normed spaces and
A C X. Foreachn € N, let f,, : A — Y be afunction. Let f : A — Y be another
function. Then f,, is said to converge to f uniformly on A if the following condition
is satisfied: for each € > O there is an N € N such that || f,,(x) — f(x)|| < € for all
n > N and forall x € A.

Remarks 4.4.25 Convergence and uniform convergence. Uniform convergence
on A is a stronger condition than convergence at each point in A. The sequence
fn(x) = x™ considered in Example 4.4.22 provides a good illustration. We see that
for each z € A = [0, 1] the sequence of numbers f,(x) = z™ converges to f(z)
inR. Here f(z) = 0if 0 <z < 1 and f(1) = 1. This sequence does not converge
uniformly on A. In fact, given any n € N, we can find apointa € 4,0 < a < 1,
such that | £, (a) — f(a)| = a™ > (1/2). We simply take a = (1/2)'/™. Hence there
isnon € Nsuch that | f,,(x) — f(z)] < (1/2) for all z € A, and the convergence of
fn to f is not uniform. Note that this also follows from Theorem 4.4.29 below.

Definition 4.4.26 Uniform continuity. Let X and Y be two normed spaces and
A C X. Suppose f: A — Y. fisuniformly continuous on A if for each € > 0 there
is § > Osuchthatforall xq, x5 € A, || f(x1)— f(x2)]| < € whenever ||x; —x2]| < d.

It should be clear that uniform continuity of a function on A implies its continuity
on A. The concept of uniform continuity is needed for the following example and in
the proof of Theorem 4.4.29.
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Example 4.4.27 Let f,: A — Y andletg: Y — Z, where A C X and X,Y,Z
are normed spaces. Assume that g is uniformly continuous and the sequence f,
converges uniformly on A. Then g o f,, also converges uniformly on A. To see this,
suppose that f,, converges uniformly on Ato f: A — Y. Lete > 0 be given. Then
by the uniform continuity of g, there is some & > 0 such that whenever y1, ys are in
Y and ||y1 — y2|| < 6, then ||g{y1) — g{y2)|| < €. Since f,, converges uniformly on
Ato f, there is some N such that

Wfn(x)— f(x)l <4 foralln > N andallx € A.

Hence, foralln > N andallx € A,

lg(fn(x)) — g(f(x))] < e

Thus, g o f,, converges uniformly on Ato g o f.

Example 4.4.28 Let S,,(z) = Y ,_,(1/k?)sin(kz) for all z € A, where A C R.
Then S,, converges uniformly on A. More generally, let fi be a sequence of real-
valued functions defined on a set A, and let My, be a sequence of real numbers such
that | fy(z)] < Mg forallz € A If Y 72, My < oo, then Y oo fi converges
uniformly on A. To see this, let € > 0. Put S, (z) = >_;_, fu(z) forallz € A and
all n € N. Since Zzozl M, < oo, there is some N such that

Z M, <e foralln>m>N.

k=m+1

Thenforalln >m > Nandallz € A,

> ful2)

k=m+1

n

< > IR@I< D) My<e

k=m+1 k=m+1

19n(2) — Sm(2)| =

Hence, S,(x) is a Cauchy sequence for all z € A. Let S(z) = lim, o0 Sy (z) for
all z € A. By letting n — oc in the above inequalities, we get

1S(x) — Spp(z)| <e forallm > Nandallz € A.

This shows that .S,, converges uniformly on A to S.

Theorem 4.4.29 Uniform limits of continuous functions. Let X and Y be two
normed spaces and A C X. Let f,, + A — Y be a sequence of continuous functions
on A converging uniformly on A to a function f +: A — Y. Then f : A — Y is also
a continuous function on A.

Proof. We see that f : A — Y satisfies the hypothesis of Lemma 4.4.23 above.
Indeed, given any ¢ > 0, there is a continuous function f,, : A — Y such that
[ fa(x) — f(x)|| < e forall x € A. Then the same lemma shows that f : A — Y is
continuous. O
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Sequences of Polynomials

Almost all of the functions we consider in the course, apart from counterexamples,
are the uniform limits of polynomials. We now give a sufficient condition for the
uniform convergence of a sequence of polynomials.

Notations 4.4.30 Sequences of polynomials. Let X and Y be normed spaces. If
SeML,(X™ Y),then

fx)=8(x,...,x), x€ X,
defines a corresponding homogeneous polynomial f : X — Y. Foreachn € N,
suppose S, € ML,(X"™, Y) and let f, : X — Y be the corresponding homoge-

neous polynomial. Then F,, = Y 1, f;, n € N, defines a sequence of polynomials.
Finally, for each r > 0, let

B, ={x|xeX, |x|<r}.

Theorem 4.4.31 Continuity of homogeneous polynomials. With the notations in
4.4.30, f : X — Y is continuous. Also, ||f(x)|| < ||S| IIx]|*, x € X.

Proof. Define T : X — X" by Tx = (X, ..., x}. Then T is linear and therefore
continuous. Also, S : X™ — Y is multilinear and therefore continuous. We see
that f = §-T : X — Y is the composition of two continuous functions. Hence,
f: X — Y is also continuous. Also,

1SGen, -5 x| S ST Hxnll -+ - fixall
by Theorem 4.3.13. Hence || f(x)|| < ||S]| - [|x/|™ follows. O

Theorem 4.4.32 Convergence of polynomials. With the notations in4.4.30, assume
that there is an R > 0 such that || Sy || 7™ < oo whenever 0 < r < R. Then

lim, F,,(x) = F(x) existsinY foreachx € Br

and defines a continuous function F : B — Y.

Proof. If x € Bp, then ||x|| < R. Let  be such that ||z|| < r < R. Hence
1 GO < AISnlHIXI™ < [[Snll 7™

Then Theorem 4.2.21 shows that F,(x) is a Cauchy sequence in X and that F'(x) =
lim,, F,,(x) exists in Y. The same theorem also shows that

IFG) = Fa)ll < > Gl <D0 Skl lx]*
< anuskn * =L —L,,
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where L, = 5> p_,||Sellr* and L = lim,, L,, in R. Hence, given ¢ > 0, we
can find an N € N such that (L — L,,) < ¢ for all n > N. This shows that the
convergence Fy,(x) — F(x) is uniform for x € B,. Hence Theorem 4.4.29 shows
that F' : B, — Y is continuous. This implies continuity on Bp, since each x € Bp
is contained in some B,,r < R. O

The Inversion Operator

The passage from an invertible function to its inverse function is called the inversion
operation. We will consider this operation only on the class of invertible linear
transformations. The main result is that inversion is a continuous function (with
respect to the standard norm). The proof of this fact relies upon an elegant analogy
between series of real numbers and series of linear mappings.

Definition 4.4.33 The inversion operator. Let Lo(X, Y') be the set of all invertible
linear mappings 7' : X — Y, asubset of L(X, Y). Let

Inv: Lo(X,Y) — LY, X)
be the function defined as Inv(T) = T—! € L(Y, X). Then Inv is called the

inversion operator (on Lo(X, Y)).

Remarks 4.4.34 Nonlinearity of the inversion. The set of invertible linear maps,
Lo(X,Y),isasubset of L(X, Y) but not a subspace of L(X, Y'). Hence Lo(X, Y)
is not a vector space and Inv is not a linear operator. The following special case
makes this point even more obvious.

Example 4.4.35 Inversion of linear mappings R — R. Any linear mapping R —
R is just multiplication by a constant. Hence L(R, R) can be identified with R: if
a € R, then a € L(R, R) is the linear mapping ¢ - ax. This mapping is invertible
if and only if @ # 0. Hence

LiR,R)={ala€eR, a#0}.

The inversion operator Inv : Ly(R, R) — L(R, R) is Inv(a) = 1/a forall a # 0.

Example 4.4.36 A series expression for inversion in Ly(R, R). We continue with
the previous example. If |a| < 1, then we know that the geometric series

gn(a)=1+a+a*+- - +a"

converges to (1 —a)™! = Inv(1 — a). The result of the inversion can be expressed
as the limit of a sequence of polynomials. More generally, if p # 0 and if |¢/p| < 1,
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then the geometric series

an(t/p) =1+ (t/p) + (t/p)* + - + (t/p)"

converges to p (p — t)™! = p Inv(p — t). We shall show that an analogous result
holds in general.

Notations 4.4.37 Let X be a normed space. Let L(X, X') be the normed space of all
linear transformations X — X, using the standard norm for linear transformations as
defined in Definition 4.3.4 and Theorem 4.3.3. Recall that || SR|| < ||.S|| || R]| for all
S, R ¢ L(X, X), as shown in Theorem 4.3.7. Write T? = T - T for the composition
of T with itself and T"+! = T'- T™ for n € N. The result about composition implies
that for all n, ||T™| < ||T'||™. Finally, recall that [ is the identity mapping.

The following theorem develops the analogy with Example 4.4.36.

Theorem 4.4.38 Inversion in Lo(X, X). Let P € Lo(X, X) and put Q = P~L.
T e L(X, X)and if |QT| < 1, then (P —T) € Lo(X, X) (i.e, (P ~Tis
invertible) and the sequence

Qn(QT) =1+ (QT) +(QT)* +--- +(QT)"
convergesto (P —T)7'P.
This implies that the inversion operator, Inv : Lo(X, X) — L(X, X), is continuous.

Proof. First, consider the special case where P = [. In this case, @ = I as well, our
assumption is that ||7']| < 1, and our desired conclusion is that the sequence

Qu(T)=IT+T+T*+ - +T"

converges to (I —T) 1. This special case is easy to prove. First, observe that Q,,(T)
is a Cauchy sequence in L(X, X ) because

1Qm(T) = Qu(T)l < T -+ T < [T + -+ [TI™

and |T]| < 1. So, @,(T) converges to some ) € L(X, X). Then by simple
manipulations, Q,(T)(I — T') = (I — T™"!) converges to both Q(I — T) and I,
showing that Q(I — T') = I. Similarly, (I — 7)Q = I. Hence, Q = (I = T)~! =
Inv(I — T).

The general case follows from the special case by substituting Q7" for 1", where
Q = P~ as before. Since || Q7| < 1, we conclude that (I — QT) is invertible and

Qnu(QT) =1+ (QT) +(QT)* + -+ (QT)"
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converges to (I — QT)~!. By simple manipulations,
(P—T)=P(I~PT) = P(I - QT).

It follows that (P — T)~! = (I — QT)~*Q exists whenever (I — QT) ! exists, and
(P—T)"'P = (I — QT)! is the limit of the sequence Q,,(QT). This shows that
(P—-T)"' - P71 as T — 0; hence, Inv is continuous. O

Problems

437 Let f: X — X be defined by f(x) = ax + b, where X is a normed space,
a is a constant, and b is a fixed vector in X. Show that f is uniformly continuous on
X.

438 If Xisanormedspaceand f: X — R, g: X — Rareuniformly continuous
on X, must the product fg : X — R be uniformly continuous on X?

4.39 Is there a continuous function f : R3 — R with the following properties:

For each k € N, there are X, yx with ||xg]| = ||y«|| = 1 such that

Ixk —ykll < (1/k) and  f(xx) = fyx) > 17

4.40 Consider R? with the standard Euclidean norm. Suppose that f : R? — R
is continuous and f(r, s) = 0 whenever r is rational and s is irrational. Show that
f(z,y) = 0forall (z,y) € R%

441 Let || ||l1,]] |2 be norms on a vector space X. Let f: (X,]| 1) — R be
defined by
fx)=|x|2 forallxe X.

Show that f is uniformly continuous.

442 Let X be a normed space and let L : X — X be an isomorphism. Show that
for any linear map T': X — X, there is a constant A such that

ITx|| £ A||Lx| forallx € X.

443 IfI — S € Lo(X, X), must it follow that ||S|| < 1?

4.44 Let M be a proper subspace of L(X, X ). Show that
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4.45 Suppose that T, € Lo(X,X) forall n € N and T;,, — T". Must it be true
that T € Lo(X, X)?

4.46 Let M be a nonempty subset of a normed space X. Defined : X — R by
dx)=inf{||x—m|j|me M} forallxe X.

Is d continuous on X ? Is d uniformly continuous on X?

4.47 Let X and Y be normed spaces. Let M be a nonempty compact subset of X.

Let C(M, Y ') be the collection of all continuous functions from M into (Y, ||v). For
f,gin C(M,Y) and scalar t, define f + g and ¢ f in the usual way: for all m € M,

(f+g)(m) = f(m)+g(m)
(tf)(m) = t(f(m)).

Show that C(M,Y’) is a vector space, which may or may not be finite-dimensional.
Furthermore, show that the function

£l = max || f(m)lly forall f € C(M,Y)

defines a norm on C(M,Y).

448 LletT € L(X, X). Show that

1 1
el = lim, <I+—T+--~+_T">
1! n!

exists and defines a continuous function e’ : L(X, X) — L(X, X).

4.5 TOPOLOGY OF NORMED SPACES

In the previous section we defined compact subsets of a normed space, but only in
order to prove the continuity of inverse functions. It turns out that compactness is
an extremely important property of certain sets; indeed, it plays an essential role in
many significant theorems. In this section, we provide an alternative characterization
of compactness in terms of the open subsets of a normed space. The investigation of
properties of open sets in a normed space, and more generally of concepts defined
in terms of open sets, is referred to as the topology of a normed space. This section
presents some basic results about the topology of a normed space.
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Open Sets

Definition 4.5.1 Open balls. Let X be a normed space. An open ball in X is a set
of the form
B (a)={xeX||x—a|]<r}.

Here a € X is any point and r > 0. More explicitly, B,.(a) is the open ball of radius
r about (or with its center at) point a.

Remark 4.5.2 The shape of a ball. If X = R? or R3 with its standard Euclidean
norm, then a ball looks like an ordinary ball. With other norms, a ball has a different
shape. In our illustrations, we usually represent balls as discs, keeping in mind that
this may not correspond to their actual shape. Figure 4.2 shows three balls of radius
d in R2. These balls are with respect to the norms, from left to right,

(@® +y")V2, (lz] + |y]), and max(|z, [y]).

Figure 4.2. Balls of radius d in three different norms.

Definition 4.5.3 Open sets. A set G in a normed space X is called open if, whenever
G contains a point, it also contains an open ball about that point. More explicitly, G
is open if for every a € G there is an r > 0 such that B,.(a) C G. To justify the
terminology of Definition 4.5.1, we show that open balls are also open sets.

Theorem 4.5.4 An open ball is an open set.

Proof. Let B,.(a) be an open ball. Let x € B,(a). Thenp = ||x —a| < r.
If s = r —p, then s > 0. We claim that B,(x) C B,(a). If u € B,(x), then
|lu - x|| < s. Hence, by the triangle inequality 4.1.8,

lu—afl <flu—xj+lx-af<s+p=r

Therefore u € B, (a) and, consequently, B;(x) C B.{a). O
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Theorem 4.5.5 Properties of the collection of open sets. The collection of open
sets in a normed space has the following three properties.

(1) The whole space X and the empty set () are open.
(2) A finite intersection of open sets is open.

(3) Any union of open sets is open.

Proof. These conditions follow easily from the definitions. To prove (2), let
Gy, ..., G, be open sets and let G = N7_; G;. Assume x € G. Since x € G; for
each ¢, there is an r; > 0 such that B, (x) C G;. Let 7 = min; 7;. Then 7 > 0 and
B.(x) c G;foralli =1, ..., n. Hence B,(x) C G, and therefore G is also open.
The proofs of parts (1) and (3) are left as exercises. O

Definition 4.5.6 Topological spaces. Let X be a nonempty set together with a
collection @ of subsets of X. If O contains X and @ and O is closed under finite
intersections and arbitrary unions, then O is called a topology on X . A set X together
with a topology is called a topological space. The subsets of a topological space X
contained in the collection O are called the open sets in X. A concept is called a
topological concept if it can be defined in terms of open sets only. We will show that
convergence and continuity are topological concepts.

Theorem 4.5.5 above shows that a normed space becomes a topological space with
the definition of open sets given in Definition 4.5.3. Note that the phrase "the
topology of a normed space” sometimes refers to the collection of open sets (as in
the preceding definition) and sometimes to the investigation of topological concepts
(as in the opening remarks of this section). In practice, there should be no confusion,

Theorem 4.5.7 Topology of a vector space. Any two norms on a (finite dimensional)
vector space X define the same topology on X.

Proof. Let || - || and || - |/ be two norms on X. Let G be openin || - ||. Leta € G.
Then there is an r > 0 such that x € G whenever ||x — a|| < r. Theorem 4.2.14
shows that any two norms on X are equivalent. In particular, there is an M > 0 such
that || - || < M]| - ||’. Then we see that x € G whenever ||x — a||’ < r/M. Hence G
is also open in || - ||’. The proof of the converse is the same. O

Definition 4.5.8 Neighborhoods of a point. Let X be a normed space and a € X.
Any open set containing a is called a neighborhood of a. Hence a nonempty open
set is a neighborhood of each of the points that it contains.
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Interiors, Exteriors, and Boundaries

Definition 4.5.9 Boundary points and boundaries. Let £ be a set in a normed
space X. A pointa € X is called a boundary point of E if every neighborhood of a
intersects both F and its complement E¢ = X \ E. The set of all boundary points
of E is called the boundary of E and is denoted as OF.

Definition 4.5.10 Interiors and exteriors. Let E be a set in a normed space X.
The set E® = F'\ OF is called the interior of E. The points in E° are the interior
points of E. The set E** = X \ (F U QE) is called the exterior of E. The points in
E are the exterior points of E.

Remarks 4.5.11 Boundaries of complementary sets. If F is any set in a normed
space, then OF = QFE°. This follows easily from the observations that the roles of £
and E* are interchangeable in Definition 4.5.10 and that (E°)¢ = E.

Remarks 4.5.12 Boundaries of subsets. If A C B are subsets of a normed space,
it does not follow that 94 C O0B. For example, take B = R and A = Q. Then
A =RbutdB = {.

Example 4.5.13 Let

D = {(zy2)eR|a®+y*+2° =1},
E = {(zy2)eR[a?+y*+22 <1},
F o= {(wy)eR|a® 1y +" <1}

Then 9D = 0E = 0F = D = { (z,y,2) e R® | 2? + y* + 22 =1 }.

Theorem 4.5.14 Boundaries and open sets. A set G in a normed space X is open
if and only if it contains none of its boundary points. Equivalently, G is open if and
only if GNOG = (.

Proof. Assume that G is open. Let a € G. Then G is a neighborhood of a. But G
does not intersect G°. Hence a has a neighborhood that does not intersect both G
and G¢. Therefore a is not a boundary point of G.

Conversely, assume that G is such that G N 8G = (. Let a € G. Then a is not
in G, so a has a neighborhood H that does not intersect both G and G¢. But H
intersects G since a is common to these two sets. Therefore H N G° = . This
means that a € H C G, where H is an open set. Hence there is an » > 0 such that
B.(a) C H C G, proving that G is an open set. O
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Remarks 4.5.15 Empty boundaries. Note that the space X and the empty set
have no boundary points. It turns out that these are the only two sets in a normed
space that have no boundary points. It is a good exercise to show that if ' and
E* are both nonempty, then their boundaries are also nonempty. (Hint: leta € E
andb € E°. Let S = {t|0<t<1,{l1-tlat+tbeFE}. Lety=supS and
c = (1 —~v)a—+~b. Show thatc € IF.)

Closed Sets

Definition 4.5.16 Closed sets. A set F'in a normed space X is said to be a closed
set if its complement F'° = X \ F'is an open set.

Example 4.5.17 Let a € X, where X is a normed space. Then {a} is closed in X.
To see this, let G = X \ {a}. lf x € Gand r = ||x — a|, then r > 0 and B(x,7/2)
does not contain a. Thus, B(x,r/2) C G. Thus, G is open; hence, {a} is closed in
X.

Example 4.5.18 The surface of the bail B,.(a) is the set
S(ay={xeX||x—al=r}.

This set is closed. To see this, suppose that ¢ € S,(a). Letp = |jc — a|| and
s = |p — r|. Then s > 0. We see that B;(c) N S,(a) = @, whether p < r or r < p.
This shows that the complement of S,.(a) is open. A

Example 4.5.19 A finite union of closed subsets of a normed space is closed. If
Aj,..., A, are closed subsets of a normed space X, then [, (X \ Ax) is open,
being an intersection of finitely many open subsets of X. But

N VA =x\ (U 4)

so that { ;" ; Ay is also closed in X.

Theorem 4.5.20 Boundaries and closed sets. A set F' in a normed space X is
closed if and only if it contains all of its boundary points. Equivalently, F is closed
ifand only if OF C F.

Proof. This follows from the definitions and from Theorem 4.5.14. O

Remarks 4.5.21 Sets that are both open and closed. Note that the whole space
X and the empty set §) are both open and closed. These are the only two sets in a
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normed space that are both open and closed. This follows from the remarks in 4.5.15
above.

Definition 4.5.22 Closure of a set. Let I be any subset of a normed space X . Then
E = E U QOFE is called the closure of E.

Lemma 4.5.23 If an open set G intersects E, then it also intersects E.

Proof. Leta € GNE. If a € E, the conclusion follows. If a € 8F, then G is a
neighborhood of the boundary point a. Hence G must intersect E. O

Lemma 4.5.24 The closure E of any set E is a closed set.

Proof. Leta ¢ E. Let G be a neighborhood of a. Then G intersects E° since
a € G N FE° If G intersects £, then it also intersects E. Ihis follows from Lemma
4.5.23. Therefore, if every neighborhood of a intersects F, Elen ac JF, wlli_ch is

a contradiction. Hence, a has a neighborhood contained in (F)°. Therefore (E)° is
open. U

Closed Sets and Convergent Sequences

Theorem 4.5.25 Let F be a set in a normed space X. Then F'is a closed set if and
only if every convergent sequence in F' converges to a point in F.

Proof. Assume that F' is a closed set. Hence F° is open. If a € F, then there is an
r > Osuchthat B,.(a) C F°. Therefore, if x,, is a sequence in F, then ||x, —al|| > r
for all n € N. Hence x,, /4 a. This means that if x,, converges, it must converge to
apointin F.

Conversely, assume that every convergent sequence in F’ converges to a point in F'.
Let a € OF. Then By /,(a) intersects F for all n € N. Hence there is an x,, € F
such that ||x, — a|| < 1/n. This shows that there is a sequence x,, in F' converging
to a € dF. Therefore F C F and F'is closed. O

Example 4.5.26 Any one-dimensional subspace of a normed space is closed. To see
this, let £ = span {a}, where a € X. Let x,, be a sequence in F that converges
to some z € E. Then for each n, we have x,, = t,a for some scalar ¢,,. Since x,,
converges, the sequence ¢,, must also converge in R to some s € R (as was shown in
a previous example). Hence, x,, = t,a — sa € E. Thus, F is closed.
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Theorem 4.5.27 Limits of convergent sequences in E. A point a € X can be the
limit of a sequence in E if and only ifa € E.

Proof. Note that E is a closed set by Lemma 4.5.24 above._Hence, ifx, ¢ ECE
and if x,, — a, then Theorem 4.5.25 above shows thata € E.

Conversely, assume that a € E. If a € E, then the constant sequence X, = a is
a sequence in E converging to a. If a ¢ E, then a € 9E. Therefore, every ball
By (a) contains a point X, € E. Then we see that x, — a. O

Continuous Functions and Topology

There is a close connection between continuity and topology. The following theorem
shows that continuity can be defined in terms of open sets.

Theorem 4.5.28 Continuity and open sets. Let X and Y be two normed spaces
and A C X. Then a function f : A — Y is continuous if and only if for each open
set H in'Y there is an open set G in X such that f7*(H) = ANG.

Proof. Assume that f : A — Y is continuous. Let I be an open set in Y. If
x € f7}H), then f(x) = y € H. Since H is open, there is a ¢ > 0 such
that B.(y) C H. Since f is continuous at x € f~1(H), there is a § > 0 such that
[|f(x")— f(x)|| < & whenever ||x" —x|| < §andx’ € A. Therefore f(ANBs(x)) C
B.(y) C H. Note that § > 0 depends on x. To show this explicitly, we write §(x)
instead of §. With this notation, let

G = Uxef—l(H) B&(x) (X)

Then G is open in X, since it is a union of open balls. Also, f~1(H) = ANG.

Conversely, assume that f : A — Y is such that for each open H C Y there is an
open G C X suchthat f~'(H) = ANG. Letx € Aandy = f(x). Giveng > 0,
let H = B.(y). This is an open set in Y. Hence, there is an open G C X such that
f7HH) = ANG;ie, f(ANG) C B:(y) = H. Sincex € f}(H) = AnG,
there is a § > 0 such that Bs(x) C G. This means that f(x'} € B.(y) whenever
x" € AN Bs(x). Hence f is continuous atx € A. O

Corollary 4.5.29 Continuous functions with open domains. Let X and Y be two
normed spaces. Let A C X be an open set. A function f : A — Y is continuous if
and only if the inverse image f~'(G) of any open set G inY is an open set in X.

Proof. Apply Theorem 4.5.28. O
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Corollary 4.5.30 Continuous functions defined over the whole space. Let X and
Y be two normed spaces. A function f : X — Y defined on the whole space X is
continuous if and only if the inverse image of every open set is open. Equivalently,
[+ X — Y is continuous if and only if the inverse image of every closed set is closed.

Proof. Apply Theorem 4.5.28. O

Example 4.5.31 All subspaces of a vector space are closed sets. In fact, every
subspace K of X is the kernel of a linear transformation 7 : X — X. An example
is the coordinate projection on a complementary subspace, as in Definition 3.1.42.
Then K = T~1({0}) is the inverse image of the closed set {0} under the continuous
function7 : X — X. A

Continuous Functions and Connected Sets

Definition 4.5.32 Connected sets. A set C'inanormed space X is called a connected
set if it satisfies the following condition: if P and  are two nonempty sets in X
such that P U @ = C, then C' N P N Q is nonempty.

Remarks 4.5.33 Connectedness in R and in normed spaces. Definition 4.5.32 is
the same as Definition 2.6.12 for connected subsets of R. But there is a difference
between the intuitive ideas of connectedness in R and in general vector spaces. In R
every connected set is an interval: if a connected set contains two points, then it also
contains all the points in between. There is an analogous notion of connectedness
for general spaces, called arcwise connectedness. These two notions, connectedness
and arcwise connectedness, are different in general, but they coincide for subsets of
R, and for open subsets of a normed space (see problem 4.83).

Definition 4.5.34 Arcwise connected sets. A set C' in a normed space X is called
arcwise connected if it has the following property: given two points a, b € C there
is a continuous function f : I == [0, 1] — X such that f(0) = a, f(1) = b and
such that f(¢) € C for all ¢t € I. In this case we say that a and b can be joined by
anarcinC.

Theorem 4.5.35 Continuity and connected sets. Let X and Y be two normed
spaces and A C X. Let f : A — Y be a continuous function. If C C Aisa
connected subset of X, then B = f(C') is a connected subset of Y.

Proof. Let R and S be two nonempty sets in Y such that R U S = B. Let
P=Anf"YR)and Q = AN f1(S). Then we see that P and Q are two
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nonempty sets in X such that PUQ = C. Since C is a connected set, there is a point
c € CNPNQ. We will show that f(c) € BN RN S. This means that BARNS
is nonempty and therefore B is connected.

Since ¢ € P, there is a sequence u, € P C C such that u,, — c. This follows from
Theorem 4.5.27. Then f(u,) € Rand f(u,,) — f(c) by the continuity of f. Hence,
by the same theorem, f(c) € R. Therefore f(c) € BN R. Similarly, there is a
sequence v, € Q C C suchthat v,, — c. Then f(v,) € Sand f(v,,) — f(c) € S.
This shows that f(c) € BNRNS. O

Theorem 4.5.36 Let A be a connected set in a normed space X. Let f : A — R be
a real-valued continuous function. If f takes two values on A, then it also takes all
the values in between. More explicitly, if f(a) =r <t < s = f(b), witha, b € A,
then there is a point ¢ € A such that f(c) =t.

Proof. Theorem 4.5.35 shows that f(A) is a connected set in R. But we know
from Theorem 2.6.13 that any connected subset of R is an interval. Hence, if f(A4)
contains r and s and if r < ¢t < s, then f(A) also contains ¢&. O

Theorem 4.5.37 Intermediate value theorem. ler a,b € R, a < b. Let f :
[a, b] — R be a continuous function. If f(a) =r <t < s = f(b) then there is a
c€ Rsuchthata <c<band f(c) =1t

Proof. Apply Theorem 4.5.36 with the connected set A = [a, b] CR. O

Compact Sets

Compact sets were defined in Definition 4.4.19 as follows. A set C' in a normed
space is called compact if every sequence in C' has a subsequence converging to a
point in C. Compact sets play a central role in analysis. They have several equivalent
definitions. One of these definitions is established in Theorem 4.5.38 below. Another
defining property is obtained in Theorem 4.5.42. This property is called the Heine-
Borel property. Usually it is taken as the principle definition of compactness in more
general settings.

Theorem 4.5.38 A subset of a (finite dimensional) normed space is compact if and
only if it is bounded and closed.

Proof. Assume that C is not bounded. Then for each n € N there is an x,, € C
such that ||x,, || > n. Then every subsequence of x,, is an unbounded sequence and
therefore cannot converge. Hence C' is not compact.
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Now assume that C' is not closed. Then Theorem 4.5.25 shows that there is a
sequence X, in C converging to a point a € C. Every subsequence of this sequence
also converges to a € C. Therefore x,, has no subsequence converging to a point in
C. Hence C is not compact.

Conversely, assume that C' is closed and bounded. Then every sequence in C is
a bounded sequence. Therefore it has a convergent subsequence by the Bolzano-
Weierstrass theorem, 4.2.16. Then Theorem 4.5.25 shows that this subsequence
converges to a point in C, since C is closed. Therefore C is compact. O

Definition 4.5.39 Open covers. A collection of open sets § = { G } is called an
open cover for a set E if F is contained in the union of this collection. Equivalently,
G = { G }isan open cover for F if foreachx € E thereisa G € G such thatx € G.

Theorem 4.5.40 Let G be an open cover for a compact set C. Then thereisa é > 0
with the following property: ifu, v € C and |ju — v|| < 6, then there isa G € §
that contains both u and v.

Proof. Assume that the conclusion of the theorem is false. Then for each n € N
there are u,, v, € C such that |ju,, — v,,!| < 1/n, but there is no set G € G that
contains both u, and v,. Since C' is compact, there is a subsequence uy, k € K
such that uxy, — a € C. It follows easily that vy — a. Now there is a G € G such
that a € G. Since G is open, there is an 7 > 0 such that B,.(a) C G. But uy and vy,
are both in B,(a) for all sufficiently large k € K. Then u and vy are in the same
G & G for such k. This contradiction proves the theorem. O

Theorem 4.5.41 Let G be an open cover for a compact set C. Then thereisanr > 0
such that each ball B,.(x), x € C, is containedina G € G.

Proof. Assume that the conclusion of the theorem is false. Then for eachn € N
there is an x,, € C such that B /,,(x,) is not contained in any G € §. Then there
is a subsequence xx, k € K, such that x;, — a € C. Now we know that there is a
G € Gsuchthata € G. In this case there is an R > 0 such that Bg(a) C GG. Choose
k € K sufficiently large such that ||x;, — al| < R/2 and (1/k) < R/2. Then we see
that By, (xx) C Br(a) C G € §. This contradiction proves the theorem. O

Theorem 4.5.42 Heine-Borel Theorem. A set C in a normed space is compact if
and only if every open cover for C' has a finite subcover.

Proof. First, suppose that C is compact, and let § be an open cover for C. Find
7 > 0 as in Theorem 4.5.41 above. Then for each x € C, B,(x) is contained in a
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G € G. We claim that there are finitely many points x1, ..., X, € C such that
CCE,= Uiler(x,»). 4.7

Let x; € C be arbitrary. If C' C E; = B,(x3), then we are done. Otherwise choose
x3 € (C'\ Fy). Continuing in this way, if x1, ..., X, have been chosen and if
C ¢ E,, then choose x,,.1 € (C'\ E,). If this process does not terminate, then we
obtain a sequence X,, in C. The distance between any two points in this sequence
is at least ». Any subset of this sequence has the same property. By compactness,
there is a convergent subsequence X, k& € K, such that x; — a € C. Hence there
are k1, k2 € K such that ||xg, — a|| < r/2,¢ =1, 2, and k; < ko. We see that this
implies ||xg, — X, || < 7. Hence xi, € B, (xx,) C Ek,. This contradicts the choice
of xg,. Therefore there must be an n € N such that C' C E,,. Since each B,(x;) is
contained in some G; € G, we see that (4.7) gives a finite cover for E.

Conversely, assume that C' C X is such that every open cover for C has a finite
subcover. Let x,, be a sequence in C. Foreacha € X and r > 0, let

K.{(a)={keN]||xx—al<r}.

We see that x,, has a subsequence converging to a if and only if K,.(a) is an unbounded
set for all » > 0. Hence, if no subsequence of x,, converges to a point a € C, then
for each a € C there is an r(a) > 0 such that B, (,)(a) contains only finitely many
Xp, s. In this case { B,(a)(a)}, a € C, is an open cover for C. Hence C is contained
in a finite union of these balls. This means that C contains x,, for only finitely many
n s. This contradiction shows that x,, must have a subsequence converging to a point
in C. Hence C'is compact. O

Compact Sets Under Continuous Functions

Theorem 4.5.43 Let X and Y be two normed spaces. Let C be a compact subset in
X and f : C — Y a continuous function. Then B = f(C) is a compact subset of Y .

Proof. We have to show that every sequence y,, in B must have a convergent
subsequence yy, converging to a point b in B. Let y,, be a sequence in B = f(C).
Then each y,, = f(x,,) for some x,, € C. Since x,, is a sequence in the compact set
C, it has a convergent subsequence x;,, converging to a pointa € C. Letb = f(a).
Then b € B, and the continuity of f at a implies that

Yk, = f(xx,,) — f(a) =b € B.

This shows that B is compact. O
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Theorem 4.5.44 Let X be a normed space. Let A be a nonempty compact subset
of X. Then any real-valued continuous function f : A — R is bounded and attains
its maximum and minimum on A. More explicitly, if f : A — R is a continuous
Junction defined on a nonempty compact set A, then there are points a, b € A such
that f(a) < f(x) < f(b) forallx € A.

Proof. The set B = f(A) C R is the image of the compact set A C X under the
continuous function f : A — R. Then Theorem 4.5.43 shows that B is a compact
subset of R. Hence B is bounded and closed. It is also nonempty, since A is
nonempty. Therefore m = inf B and M = sup B exist. Both belong to 9B. But
OB C B since B is closed. Hence m, M € B = f(A) and, therefore, there are
points a, b € A such that m = f(a) and M = f(b). Then b = f(x) € B satisfies
m<b< M. 0O

Recall that the proof of the spectral theorem, Theorem 3.6.4, depended on Lemma
3.6.1. It was obtained by an application of the Bolzano-Weierstrass theorem. Theo-
rem 4.5.44 allows us to give a short proof of this result, restated as Lemma 4.5.45.

Lemma 4.5.45 Let X and Y be Euclidean spaces. Let T : X — Y be a linear
transformation. Then there is a unit vector e € X such that | Tx|| < ||Te| for all
unit vectors x € X.

Proof. The function that takes x € X to || Tx| € R is continuous. Therefore, it
reaches its maximum value on the compactset {x | [|x||=1}. O

Uniform Continuity and Compactness

Uniform continuity was defined in Definition 4.4.26. Recall that a function may be
continuous but not uniformly continuous on a set. Theorem 4.5.46 below shows that
the situation is different for compact sets.

Theorem 4.5.46 Uniform continuity on compactsets. Let X andY be two normed
spaces, and let A be a compact set in X. Then any continuous function f : A —-'Y
is also uniformly continuous on A.

Proof. If f : A — Y is not uniformly continuous on A, then there is an o > 0
such that for each ¢ > 0 there are two points p, q € A with ||p — q|| < J but
IIf/(p) = f(a)|| > «. Then there are two sequences p,, and q, in A such that
lpr. — Qnll < (1/n) and || f(pr) — f(qn)|] > « forall n € N. Since A is compact,
there is a subsequence py,, that converges to a point a € A. Then

lak, —all < lak, — Ppx, || + Ipx, —all < (1/n) + ||pe, —all
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shows that q;,, — a. Hence f(px,) — f(a) and f(qg,) — f(a) by the continuity
of fata € A. This shows that

1f Pk, ) = Flar )l < I f(Pr,.) — f@)I] + [ f(ax,) — f(a)ll = 0.

This contradicts the fact that || f(pk, ) — f(Qk,)|| > a > 0 forall n € N. Hence f
must be uniformly continuous on 4. O

Distance Between Sets

Definition 4.5.47 Distance between sets. Let A and B be two nonempty sets in a
normed space. Then

p(A, B)=inf{|la—b||ac A, be B}

is called the distance between A and B. Note that, the infimum is taken over a
nonempty set of nonnegative numbers. Hence, the distance p(A, B) is well-defined
for any two nonempty sets A and B.

Lemma 4.5.48 Ler K be a compact set and let F' be a closed set in a normed space
X. fFKNF = 0 then p(K, F) > 0. Also, there is a compact set E such that
KCE°CECG=F=X\F.

Proof. Since G = F¢, by assumption we have K C G where K is closed and G
is open. Hence for each x € K there is an 7(x) > 0 such that B,()(x) C G.
Then {B,(x)/3(x)}, x € K, is an open cover for K. By the Heine-Borel Theorem
4.5.42, it has a finite subcover. Hence there are finitely many x; € K such that
K C Ui Byx,y/3(x:). Letr = minr(x;)/3. Thenr > 0. If x € K then there is an
x; such that x € B,(x,)/3(X;). This means that B,.(x) C B,(x,)(xi;) C G. Hence
lx —yl|| > rforany y € F. Therefore p(K, F') > r > 0.

For the second part, let £ = UiEQr(xi) s3- This is a compact set, since it is a finite
union of compact sets. We can easily verify that E' satisfies the requirements of the
lemma. O

Definition 4.5.49 Convex sets. A C' be a set in a vector space. Assume that if C
contains two points a and b, then it also contains the line segment

L={tb+(1-tal0<t<1}

joining these two points. In this case, C is called a convex ser.
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Problems

4.49 Show that if a closed set contains F then it also contains E.

4.50 Given any set F in a normed space X, show that the sets E°, E®** and OF are
pairwise disjoint and their union is X. Give examples of sets E such that 0F = X,
or such that £° = X, or such that E** = X,

4,51 Let A, B be subsets of a normed space. Show that
(AU B) CBAUHB.

Give an example to show that it is possible to have (AU B) # 0AUJB. If A C B,
must it follow that 04 C 9B?

4.52 Show that x € E° if and only if there is an 7 > 0 such that B,.(x) C E.
4.53 Given a normed space X, find an example of a set F such that O0F = X
454 LetS={(z,y,2) €R®|2z —y+52=0 }. Show that S = S.

4,55 Letx, be a sequence in a normed space X and assume that x,, — a for some
ac X. LetS={x,|neN} Isittrue that 05 = {a}?

4.56 Let x, be asequence in a normed space X and assume that x,, — a for some
a€ X. ShowthatT = {x, | n € N} U {a} is a closed subset of X.

4,57 Let X be a normed space. Verify that ) = § = 8X. If £ C X, must it be
true that 9{OF) C OE?

4.58 Showthatd(a+ E)=a+ dF foralla € X andforall E C X.

4.59 Let F be any finite subset of a nonzero normed space X . Show that 3F = F.
Hence, deduce that F' is closed.

4.60 Let A be a bounded subset of a normed space. Show that A U 04 is also
bounded.

4,61 Let F be a finite subset of an open set O in a normed space. Show that O\ F'
is also open.

4.62 Let E be a subset of a normed space X. Let a € X. Show that F is open if
and only if a + E is open. Similarly, if c is any nonzero scalar, show that £ is open
if and only if ¢E is open.
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4.63 Show that an arbitrary intersection of closed sets is closed and a union of
finitely many closed sets is also closed.

4.64 Let M, N be subsets of a Euclidean space such that m | n forall m € M
and alln € N. Let my, be a sequence in M and let ng be a sequence in N. Assume
that my, + ny, is a bounded sequence. Show that there exists a sequence £ in N such
that both my, and ny,, converge.

465 LetU = {(2,y4,2) e R3||2z4+3y+2| <1,z —y+5z] <3 }. Show
that U is open in the Euclidean space R3.

4.66 Let X and Y be normed spaces. Let T : X — X be linear. Assume that T’
maps a basis of X to a basis of Y. Show that G C X is open if and only if T(G) is
opern.

4.67 Suppose that X and Y are normed spaces and let f : X — Y be continuous.
Let D C X. If f is one-to-one on X, show that f(0D) C 8(f(D)). What happens
if f is not one-to-one?

4.68 Show that the set of all isomorphisms X — X is an open subset of L( X, X).

4.69 Let E be a set in a normed space X. A pointa € X is an accumulation point
of E if 1 By(a) is an infinite set (that is, contains infinitely many points) for all
r > 0. Show that every bounded infinite set has an accumulation point. Is every
point in JF an accumulation point of E?

4.70 Let E be a set in a normed space X. A sequence in E is dense in E if every
point in £ is an accumulation point (Problem 4.69) of this sequence. Show that every
infinite set contains dense sequences.

Problems on Compact Sets

471 Let A, B be compact subsets of a normed space. Show that AN Band AU B
are compact.

472 LetS = {x = (21,22,73) | 1 < 2%+ 2} + z3 <2 }. Show that S is com-
pact in the Euclidean space R3.

4.73 Let X be a normed space. Let A be a compact subset of X, and let B be a
nonempty finite subset of X. Must A+ B = {a+b|a€ A b & B } be compact?
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474 Letn € N. Give an example of compact subsets E, F of R™ such that E\ F
is not compact.

4.75 Let E be a subset of a normed space X. If a € X is an accumulation point
(Problem 4.69) of E then E \ {a} is not compact. If u € JF, is it true that F \ {u}
is not compact?

476 LetU = {x = (z1,20,73) eR3|1 < maxi<k<s |Tk| < 3 } Show that
there is an a € U such that

a?+aj+ai=min{z}+2}+2}|xecU}.

4.77 Let E, be a sequence of nonempty compact subsets of a normed space X. If
E, .1 C Ej forall k € N, show that N, F,, # 0. Give an example of a sequence A,,
of nonempty subsets of R with A1 C Ay for all £ € N, but such that N, F,, = .

4.78 Let X and Y be normed spaces. Let M be acompactsetin X. Let fq,..., fin
be continuous functions M — Y. Let
X = (Tp1, Tk, - - Thom) € R™, k€N,
be a bounded sequence in R™. For each k € N, define
9k = Tp1f1+ -+ Tem frn-
Show that there is a continuous function g : M — Y such that a subsequence of gy

converges to g uniformly on M. Is g unique?

479 Let X and Y be normed spaces. Let M be a compact set in X. Let
f:+ M — Y be a continuous and one-to-one function. Show that a sequence
m,, € M converges if and only if f(m,,) € Y converges.

Problems on Connected Sets

4.80 Let A be a connected subset of a normed space X and assume that there is
an a € A suchthat A\ {a} is connected. Let B be any nonempty subset of normed
space Y such that for each y € B, the set B \ {y} is not connected. Show that
there is no one-to-one, onto continuous map f : A — B. Deduce that if ¢ < d are
real numbers and I is an interval of the form [a, b), (a, b} or [a, b] with real numbers
a < b, then there is no one-one onto continuous function f : I — (¢, d).

481 LetC = AU B, where A and B are two sets in the xy-plane defined by
A={(0,y)|-1<y<lltand B={(z,sin(1/z))|0<z <1}



172 NORMED VECTOR SPACES

Show that C' is connected but not arcwise connected.

4.82 Let G be an open and connected set. If A and B are open sets and if
G = A U B, then show that A or B is empty.

4.83 Show that if an open set is connected, then it is also arcwise connected. (Hint:
Let G be an open set and a € G. Let A be the set of all points in G that can be joined
toabyanarcin C. Let B = G\ A. Show that A and B are both open.)

4.84 Show that any open set is the union of a sequence of pairwise disjoint con-
nected open sets.

4.85 Show that any open set in R is the union of a sequence of pairwise disjoint
open intervals. Give an example to show that this union need not be a finite union,
even for bounded open sets.

Remarks on Problem 4.85. Try to give a simple solution for this problem. At the
same, time keep in mind that there are also very complicated open sets. Here is
one: Let rx be a dense sequence (Problem 4.70) in (0, 1). Leteg = 2k—1 e
Gr = (0, 1) N (rg — ek, rx + €x). Then G = UGy, is an open set. Hence G is a
union of pairwise disjoint open intervals. Probably no one knows the explicit forms
of these intervals. Show, however, that G # (0, 1).

Problems on Distances Between Sets

4.86 Let X be a normed space. Let B C X be a nonempty set and a € X. Then
p(a, B) = infxep ||x — a| is the distance between the point a and the set B. Show
that there is a point b € B such that p(a, B) = |la — b||. Is b € B unique?

4.87 For any nonempty set E and for any r > 0 let E, = UxepB,-(x) be the
enlargement of E by r > 0. Show that x € E,. if and only if p(x, E) < 7.

4.88 Show that x € B if and only if p(x, B) = 0. Show that X € B = M5B,
4.89 Let A and B be two nonempty sets in a normed space X. Let p(x, B),
x € X, be as defined in Problem 4.86, and p( A, B), the distance between A and B,
as defined in Definition 4.5.47. Show that p(A, B) = infxc p(x, B).

490 Let A and B be two nonempty sets in a normed space X. If A is compact,
then show that there are points a € A and b € B such that p(A, B) = ||a—b||.
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491 Let A and B be two nonempty sets in a normed space X . Give an example to
show that there may not be any pointsa € Aandb € Bsuchthat p(A, B) = |Ja—b|.

Problems on Convex Sets
4.92 Show that a convex set is either contained in a lower dimensional subspace or

it contains an interior point.

4.93 Show that if a convex set in a normed space X contains points from a set A
and from its complement A¢ = X \ A, then it also contains points from 0 A. Give
an example to show that this is not necessarily true for non-convex sets.

494 Let a be an interior point of a convex set C. If b € Cand 0 <t < 1, then

show that (1 — ¢t)a + tb is also an interior point of C. Give an example to show that
this is not necessarily true for non-convex sets.

Problems on Oscillations

495 Let X andY be normed spaces. Let E C X andlet f : E — Y be a bounded
function. If G C F, then show that

Qf, G) =suwp {|[f(0) = F(V)][ |u, ve G}

exists. It is called the oscillation of f over the set G. Also show thatif AC B C F
then O(f, A) < Q(f, B).

4.96 With the notations of Problem 4.95, let a € E. Show that
w(f, a) = lim, o+ Q(f, E N By(a)

exists. It is called the oscillation of f at the point a.

4.97 Show that f is continuous at a if and only if w(f, a) = 0.

498 Given a € R, let E(a) be the set of x € E such that w(f, x) > a. Show
that E(a) is a closed set for all & € R.
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CHAPTER 5

DERIVATIVES

The properties of linear transformations are relatively easy to grasp. The key idea of
differential calculus is to consider the broader class of functions that can be approx-
imated locally by linear transformations. The approximating linear transformation,
which typically changes from point to point, is the derivative of the function at a
point, while any function that can be approximated in this way is said to be differen-
tiable at such points. Our objective is to investigate the extent to which the properties
of linear transformations are passed on to this larger class of differentiable functions.
Note that this is a direct generalization of differential calculus in the one-variable
case, where we study functions that can be locally approximated by straight lines.

To begin our study, we first have to define the nature of approximation by a linear
transformation. Second, we have to develop a test to find out if a given function can
be so approximated, i.e., whether it is differentiable at a given point. It turns out,
however, that checking the differentiability of a function is, in general, not easy. We
shall concentrate on the sub-class of continuously differentiable functions. 1t happens
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176 DERIVATIVES

that functions belonging to this class can be recognized by a routine test, and we shall
make such functions the focus of our study.

Section 5.1 discusses differentiability for an important special case: the class of
vector-valued functions of a real variable. The general definitions of differentiability
and continuous differentiability are given in Section 5.2. The routine test for continu-
ous differentiability is developed in Section 5.3. This test makes use of directional or
partial derivatives, which are usually easy to compute. Subsequent sections explore
the many applications of partial derivatives. Most importantly, these sections tell us
how partial derivatives may be used to represent the full derivative of a function and
how they enable us to differentiate sums, products and compositions of differentiable
functions.

5.1 FUNCTIONS OF A REAL VARIABLE

In this section, A is an open subset of R and f : A — Y is a function. The range
space Y is an arbitrary normed space.

Definition 5.1.1 Derivative. Leta € A. If

L flatn) - f@

r—0 T

=fla)eY (5.1)
exists, then it is called the derivative of f ata € A.

The limit in (5.1) is taken in Y. Hence, the assertion that the limit exists means that
for each £ > 0, there is a § > O such that if 0 < |r| < J, then

Hf(aH“) — fla)

. - f'(a)|| <e. (5.2)

An equivalent formulation is that for each ¢ > 0, there is a § > 0 such that if |r| < 4,
then

If(a+7) = fla) = rf'(a)il <elr|. (5.3)

This slight re-arrangement helps to set the stage for the general definition of the
derivative in Section 5.2.

Finally, note that if f’(a) exists, then

et —f@] et )~ f@
7 r—0 7|

r—0

=f'@l. 649

This follows from the continuity of the norm function.
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Remarks 5.1.2 Independence of the norm on Y. The above statements are in-
dependent of the norm on Y. This follows easily from the equivalence of any two
norms on the (finite-dimensional) vector space Y.

Example 5.1.3 Let Y be a normed space with basis B = {ug,...,u,,}. Let
f R — Y be defined by

ft) =up+tu; +---+t™u, forallteR.

For a € R, we have

(a+r)"—a®

lir% =na™"" for all positive integers n.
T T
Hence,
/ . . f(a—i—r)—f(a)
Sla) = lim ==
| m k k
= lim - k:l((a +7)° —a)ug

m
= E kak_lu;c.
k=1

Remarks 5.1.4 Openness of A. The assumption that A is open is implicitly used
in these statements. In fact, since a € A, there is a ¢ > O such that (a +r) € A
whenever |r| < ¢. Hence in (5.2) and (5.3), the term f(a + r) is always defined
whenever r is sufficiently small. No further restrictions on r are necessary. This is
an important point in the definition of the derivative. There should be no restrictions
on the increments of the variable other than that they are sufficiently small.

Remarks 5.1.5 Computations of derivatives. Ordinary rules of differentiation.
To compute the derivative f’(z), we have to evaluate the limit

fl@+r) - f(=)

r

inY. If Y = R, that is, if f is a real-valued function, then these evaluations are
routine for elementary functions. The computations of these ordinary derivatives
are worked out in a basic calculus course. We know, for example, how to compute
the derivatives of polynomials, and of functions such as cosz or e*. We shall refer
to these computations as the ordinary rules of differentiation, and we shall assume
that all such results are familiar to the reader. These computations are used in our
examples and problems, but not in the development of the main results.

If Y is a general vector space, then the ordinary rules of differentiation may be
applied to the components of f. Let W = {w1, ..., w,,} be a basis for Y. The
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components of f : A — Y are the functions f; : A — R defined by f; = v, - f,
where the functions y; : Y — R are the coordinate functions of the basis W. Hence,

f:flwl++fmwm

We see easily that f/'(x) € Y exists if and only if each f](z) € R exists. In this case
fil@) = fil@wi 4+ fr (@)W

Each f](x) can be computed by the ordinary rules of differentiation.

Example 5.1.6 Take Y = R* with the standard basis e, €3, €3, e4. Let

ft) = <1;t,sint2,e5°°”,(t2 + 1)3) , t€(0,1).
Then for all ¢t € (0, 1), we have
A)=——, fot)=sin(t®), fs(t) =% fut) = +1)%
By the ordinary rules for differentiation,

Fie) = filther + fa(t)ez + fa(t)es + fi(t)ey

1
<_t_2’ 2t cos(t?), —5sin te® o5t 6t(t? + 1)2> , te(0,1).

Example 5.1.7 Let Y = L(R*, R?), the normed space of all linear transformations
from R* to R%. For each z € R, let f(z) be the linear map from R* to R? defined
forall u = (uy,us, us, ug) € R* by

Uy

[ -1 2 22-1 In(2®+1) U
fl@)u = { et 5 T CoS T U3
Uy

We will compute f'(z). The standard basis for Y consisis of the linear maps
L;j,i =1,2,j = 1,,3,4, where the standard matrix for each L;; : R* — R? s the
2 x 4 matrix whose every entry is 0 except the (¢, j) entry, which is 1. Thus, the
coordinate functions of f with respect to the standard basis of Y are the functions f;;
given by fi1(z) = —1, fi2(z) = 2, fi3(z) = 2% — 1, fia(z) = In(z? + 1), and so
on. Hence, for each z € R and each u = (u1, uz, u3, us4) € R*, we have

U1
, 0 0 2 (2z)/(z*>+1) us
f(z)u e*!(1+z) 0 7 —sinz us

U4
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Definition 5.1.8 Affine approximations. Let f : A — Y be differentiable at
a € A. The affine (or first-order polynomial) approximation of f at a is the function
T, : R — Y defined by T,z = f(a) + f'(a)(z —a), z € R. If Y = R, then
y = Tyz = f(a) + f'(a)(x — a) is the familiar equation of the tangent line of the
curve y = f{x).

Derivatives and Increments

In this course, derivatives are used mainly to estimate the increments of functions.
The starting point is the following result.

Theorem 5.1.9 Increments and derivatives. Assume that f'(a) exists and that
lf(a)|| < M. Then there is a § > 0 such that

If(a+71)— fla)|| < M|r| whenever|r| <. (5.5)

Proof. Since lim,_o(1/|7])||f(a+7) — f(a)l| = |[f'(a)]|, there is a § > O such that

If(a+7) — fla)l

Ir|

<M (5.6)
whenever 0 < |r] < 6. O

Corollary 5.1.10 Derivatives and continuity. If f'(a) exists, then f is continuous
ata € A,

Proof. Assume that || f'(a)| < M. If r,, — 0, then we see that
1f(a+rn) = fla)l < M |ry| (5.7

for all sufficiently large n. Hence f(a +r,) — f(a)inY. O

Theorem 5.1.9 may be thought of as letting us compare the increments of f to the
increments of ¢(x) = M z. We shall need the following generalization of Theorem
5.1.9, which allows us to compare the increments of f to the increments of other
functions ¢ : A — R.

Theorem 5.1.11 Let o € A. If || f'(a)|| < ¢'(a), then there is a § > 0 such that

If(a+r) = fla)l <o(r+a)—p(a) (5.8)
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whenever 0 < r < 6.

Proof. Let M € R be such that || f/(a)|| < M < ¢'(a). We have

lim,—o(1/r) [ £(a+7) = fla)] = [/f'(@)[ <3 and
lim, ~o(1/r)(¢(a+7) —pa) = ¢'(a)> M.

In this case there is a § > 0 such that

Ifla+r)—fla)ll < Mlr| and
platr)—pla) = Mr

whenever |r| < §. We see that (5.8) is satisfied with this § > 0. D

Mean Value Theorems

The main tools for estimating the increments of functions belong to an all-important
collection of results that we shall refer to as the mean value theorems. Here, we
present two of these results. In what follows, Y is a normed space and A is an open
subset of R.

Theorem 5.1.12 Mean Value Theorem (variable upper bound). Let f : A — Y
andlet : A — R. Assume that f'(x) and @' () both exist and that || f' (z)|| < ¢'(x)
foreachz € I =[a,b] C A Then

1£(b) = f(a))] < o(b) — (a). (5.9

Proof. Let ¢ > 0 and put ¢/(z) = ¢(x) + ez. Define
J={zel[lf(z)- fla)l <v(z)—¥(a) }. (5.10)

Then .J is bounded since J C I and nonempty since a € J. Hence ¢ = sup J exists
and ¢ € I. We show first that ¢ € J. This is clear if ¢ = a. Otherwise, we see easily
that there is a sequence ., € J such that x,, — cin R. Hence

If(@n) — fla)l] < ¥(zn) — P(a) (5.11)

for all n € N. Now, since f’(c) and ¢'(c) = ¢'(c) + € both exist, Corollary 5.1.10
shows that both f and 1 are continuous at ¢ € I. Hence f(z,) — f{(c)inY and
¥(x,) — ¥(c) in R. Then, from (5.11) and from the continuity of the norm,

1f(e) = Fa)ll < ¥(e) —(a).
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Hence c € J.

Next, | f/(c)|| < ¢'(¢) < ¢'(c) + € = ¥'(c). Therefore, Theorem 5.1.11 shows that
there is a § > 0 such that

f(c+7r) = FOll < vlct+r)—d(e)

whenever 0 < r < §. Now assume that ¢ < b. Then there is an 7 such that0 < r < §
and such that (¢ + ) = e < b. Then

I1f(e) = fla)l] 1f(e) = Flll + Il f(e) = fla)ll
(¥(e) = ¥(c)) + (¥(c) — v(a)) = ¥(e) — P(a).

This shows that e € J. This is a contradiction, since ¢ < e and ¢ = sup J. Hence
¢ = b. It follows that

£ (B) = fla)ll < ¥(b) — ¥(a) = (0(b) — p(a)) + (b —a). (5.12)
But (5.12) is true for all € > 0. Then (5.9) follows. DO

IACIA

Theorem 5.1.13 Mean Value Theorem (fixed upper bound). Assume that f'(z)
exists and that || f'(2)|] < M fora <z < b. Then ||f(b) — f(a)|| < M (b— a).

Proof. Apply Theorem 5.1.12, with p(z) = Mz. O

Even though Theorem 5.1.13 is a special case of Theorem 5.1.12, it is the version of
the mean value theorem that we shall use most widely (although we employ Theorem
5.1.12 in the discussion of Taylor polynomials in the next subsection). We freely use
the name ‘mean value theorem’ for either of these two results.

Example 5.1.14 Suppose that f, g are functions from A into Y and I = [a,b] C A.
If || f/(2) — ¢'(x)|| < M forall z € I, then

1£(6) = f(@)]) < llg(b) —g(a)]l + M |b - al.

To see this, set h(z) = f(z) — g(x) forall z € A. Then h'(z) = f'(z) — ¢'(z) at
each x where f and g are differentiable. Thus, by assumption, ||A’(z)|} £ M for all
x € I. Hence, by Theorem 5.1.13,

1£(0) = f(a) - (g(b) — g(a)]| = [I~(b) — h(a)|| < M [|b — aj.
Thus, it follows from the triangle inequality that
HIF () = fla)ll = llg(b) — gla)ll | < M {b - al.
N FB) = fla)ll < llg(b) — gla)ll + M |b—al.
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Remarks 5.1.15 Relation to other mean value theorems. The classical mean value
theorem states the following. Suppose [ = [a, b] and f : I — R is a real-valued
function. If f is continuous on I and differentiable in the interior of I, then there
is a ¢ € R such that @ < ¢ < b and such that f(b) — f(a) = f'(¢)(b — a). This is
a stronger result than our mean value theorems, but it is valid only for real-valued
functions. There is no comparable result for vector-valued functions. It turns out,
however, that the classical mean value theorem can be replaced by 5.1.12 or 5.1.13
in all the applications considered in this course. The mean value theorem 5.1.13 can
be obtained from the classical result, but the direct proof given above seems to be
shorter and more instructive. Also, note that the mean value theorem 5.1.12 is related
to the well-known Cauchy Mean Value Theorem. Since we do not need this latter
result, we shall not discuss it here.

Taylor Polynomials

Definition 5.1.16 Higher-order derivatives. If f : A — Y has a derivative f'(z) €
Y at every x € A, then we have a well-defined derivative function f' : A — Y.
If this new function also has a derivative at € A, then it is called the second
derivative of f at z € A and denoted by f”(z) € Y. If the second derivatives
exist at each ¢ € A, then they define the second-derivative function f"' : A - Y.
Higher-order derivatives are defined by induction. If the nth-order derivative function
f™ : A — Y exists and has a derivative f(**1)(z) € Y at every = € A, then these
derivatives define the (n + 1)st-order derivative function f("+1) : A — Y. We also
write f(1) = f/, () = ¢ and f(O = f.

Lemma 5.1.17 Assume that f*)(a) = 0 for k = 0,1, ..., (n — 1) at a certain
point a € A. Also assume that there is an R > 0 such that |f(™(a + z)|| < M
whenever |z| < R. Then

I f(a+2)l| < (1/nY) M |z|* whenever |z| < R. (5.13)

Proof. First, assume that z > 0. Proceed by inductiononn € N. Letn = 1. Let z
be fixed, 0 < & < R. Then ||f'(a -+ t)|| < M forall t € [0, x]. Therefore by the
mean value theorem 5.1.13,

Ifla+z)| =[fla+z) - fla)ll <((a+x) —a)M =z M.
A similar result holds if —R < « < 0. This proves the result for n = 1.

Now assume the result for (n — 1), n > 2. Given f : A — Y satisfying the
hypotheses of the lemma, let g = f’. Then

g® @) = fEY@)=0fork=0,1,..., (n—2), and
lg" V(a+z) = |f™(a+z)| <M whenever [z] < R.



FUNCTIONS OF A REAL VARIABLE 183

Hence, by the induction hypothesis,
ligla+2)] = [If'(a+2)ff < (1/(n - 1)) MV (5.14)
whenever 0 < x < R. Define

] /Y Mzm if >0,
“0(:”)_{0 if z <0.

Let = be fixed, 0 < x < R. Then we see that (5.14) can be expressed as
If (a+8)f < &'t

forall t € [0, z]. Hence the mean value theorem 5.1.12 shows that

lfata)| = [fa+2) - f)
< (pla) —e(0)) = (1/nl) M.

This proves the result for z > 0. Arguments for z < 0 are similar. O

Example 5.1.18 Let f : R — Y be such that (™) exists on R for all n. Assume
that f(®)(0) = 0 forall nand || f")(z)|| < nR forall n and all z € R with || < R.
Then f(z) = 0 for all z € R. To see this, let » € N and let R > 0 be arbitrary.
Apply Lemma 5.1.17 with ¢ = 0, M = nR to obtain

I (@)]| < (1/nl) (nR) |2" <

R™! whenever |z| < R.

1
(n—1)!

Since the above holds for all n € N, we get

R™!' =0 whenever |z| < R.

. 1
If @) = i ==

Since this is true for any R > 0, it follows that f(x) = O for all z € R.

Definition 5.1.19 Taylor polynomials. Let f : A — Y be a function. Assume
that f(")(a) exists for a certain n € N and a € A. Then the (nth-degree) Taylor
polynomial P,, : R — Y of f: A — Y ata € Aisdefined as

(a + ) Z o f(k)(a (5.15)

forallz € R. Note that the value of P,, : R — Y ateach z € R isalinear combination
of (n + 1) fixed vectors f(*)(a) € Y, k =0, 1, ..., n. The coefficients of these
fixed vectors are the powers (1/k!)z"
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(
) = (—sinz,e”,1—cosz)
() (—cosz,e”,sinx)
f®@) = (sinz,e® cosz)
@) = (cosz,e®, —sinz)
fOx) = (—sinz,e”, —cosz)

Hence, for all z € R,

2
Ps(z) = (1,1,0)+x(0,1,0) + 5;7 (~1,1,0)

3 pd 5

3! 5!

+Z 01,1+ % (1,1,0) + = (0,1, —1).

Lemma 5.1.21 Derivatives of Taylor polynomials. Let P, : R — Y be the nth-

degree Taylor polynomial of f : A — Y ata € A. Then

PI(q) :{ S90) yosksn

Proof. This follows by an easy computation. O

(5.16)

Theorem 5.1.22 Approximation by Taylor polynomials. Let f : A — Y be a

function. Assume that there is an R > 0 such that ™ (a + z) exists and

|f™(a+ )| < M forall x| < R.

Then || f(a + z) — Pooy(a + 2)|| < (1/n))M |z|™ whenever |z} < R.

Proof. Define g : A — Y by g(z) = f(z) — P,_1(z). We see that ¢ (a) = 0
for0 <k < (n—1)and ||g"(a + z)|| = || £ (a + x)|] < M whenever |z| < R.

Then the proof follows from Lemma 5.1.17. O

Example 5.1.23 Let f(z) = (cosz, €*, sinz). Then,

IF™(2)]]? = sin® z + % + cos?z = 1 + **
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foralln € Nandz € R. If R > 0and M = (1 + €?%)1/2, then
lF™(2)]] < (14 €e2F)Y2 =M  whenever || < R.
Hence, by Theorem 5.1.22,
1£(@) — Pu(@)ll < (1/(n+ DYM 2" < (1/(n + D)M R*
whenever |z| < R. Since lim, M R"/n! = 0 for all R > 0, we see that

f(z) = lim P,(x) forallz € R.
n—o0

Taylor Series

Assume that f(") (a) exists for all n € N. Then P, (x), as defined in (5.15), exists for
each n € N. Then P,(x) is an approximation of f(z) for z close to a for each fixed
n € N. The exact formulation of this approximation is given by Taylor’s theorem,
Theorem 5.1.22. Now we fix € R and want to know if lim,, P, (z) exists and is
equal to f(z). The answer is easy; it follows from Theorem 5.1.22 above.

Theorem 5.1.24 Approximation by Taylor series. For each n € Nand r > 0, let
My (r) = sup { /™ (@ + @) 2] <7 }

if it exists. Assume that there is an R > 0 such that (1/n!) M, (R)R™ is a bounded
sequence. Then

flata) = f@)+ @zt fO@a 6
= lim, Y % f*)(a)z* = lim, P,(a + z) (5.18)
k=0

whenever |x| < R. Also, the series in (5.17) can be differentiated term-by-term to
obtain, forallk € N,

¥t 2) = fOa) + FD @+ fE @ b (619)

Proof. Let (1/n!) M, (R)R™ be a bounded sequence. We see that
lim,(1/n!) M, (R)r™ =0

whenever |r| < R. Then (5.17) follows from Theorem 5.1.22. For the second part,
note that g(a + z) = f*)(a + ) satisfies the same hypotheses as f(a +z). O
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Motions of Euclidean Spaces

Motions of Euclidean spaces provide instructive examples of differentiation. We
consider only the following type of motions.

Definition 5.1.25 Motions. Let X be a Euclidean space. Let A C R be an open
interval containing the origin 0 € R. Lets : A — X and S : A — L(X, X) be
two differentiable functions. Assume that S(0) = I is the identity on X. These two
functions define a mapping M (¢t) : X — X by

Mt)a=s(t)+S(t)a, ac X

foreacht € A. Each M(t) : X — X is an affine mapping of X into itself. The
family {M(t)}. t € A, is called a motion of X. The trajectory of a € X is the
functionr : A — X defined as r(t) = M(¢)a, t € A. Note that r(0) = a. Hence
r(t) = M(#)r(0) and r(t), t € A, is the trajectory of r(0). Note that s(¢), t € A, is
the trajectory of s(0) € X.

Definition 5.1.26 Velocities. Notations are the same as in Definition 5.1.25 above.
Letr: A — X be atrajectory. Then its derivative att € A

r'(t) = limpo(1/R)(x(t + h) — x(t))
is defined as the velocity on this trajectory at the point r(t). We see that
r'(t) = s'(t) + S'(t)(r(0)).
The proof of this is given as Problem 5.11.
Definition 5.1.27 Rigid motions. A motion M (t) is called a rigid morion if it
preserves the distances between any two points. More explicitly, M (¢) is a rigid

motion if
[M(t)a~ M(@)b|| = [la—bl]|

foralla, b € X andforallt € A. Itis clear that M (t) is a rigid motion if and only if
S(t) is an isometry for each ¢ € A. This means that ||S(¢)x|| = ||x|| foreach x € X
and for each t € A.

Examples and applications of these notions are given as problems.

Problems

In the following problems, the norm on R" is the standard Euclidean norm. Also, A
always denotes an open interval in R.
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5.1 Define f : R — R? by f(t) = (cos 2nt, sin 27t). Find (™ (t) and show that
(F(t), f(#)) =0 forallt € Randn € N.

52 Define f : R — R3 by f(t) = (cos 2rt, sin 27¢, 2nt). Find £ (¢) and show
that () (¢), f®*1(t)) = 0forallt ¢ Randn € N,n > 1.

5.3 Assume that f : A — R” is differentiable and that || f(¢)|| > O forall t € A.
Show that u(t) = f(¢)/||f(t)| is also differentiable and (u(t), w'(¢)) = 0 for all
te A

54 Define f : R — R? by f(t) = (e! cos2nt, e’ sin2nt). Show that the angle
between the vectors f(¢) and f’(t) is constant.

5.5 Let X be anormed space. Given A € L(X, X)andt € R, let
D= etd —tim, (144 a4 L a2 g
F0) = et =tim, (14 LA S A7+ D
as in Problem 4.48. Show that f : R — L(X, X) is differentiable. Find f’(¢).

5.6 A disc of radius 2R in the zy-plane rolls on the z-axis without gliding. At
time ¢ the center of the disc is at the point (vt, 2R), where v > 0 is a constant. Let
P be the point on this disc which is at point (0, R) at time ¢t = 0. Find the equation
f : R — R? of the the trajectory of P. Find the points where this trajectory has
horizontal tangents f(t).

5.7 Letf, g: A — R"™be two differentiable functions. Then show that
F={(fg):A—R
is also differentiable and F'(t) = (f'(t), g(t)) + (f(t), ¢'(1)).

58 Letf, g: A — R3be two differentiable functions. Let
F=fxg:A—R5

with the usual cross product in R3. Show that F' : A — R3 is also differentiable and

F(t) = (F'(t) x g(t)) + (F(1) x ¢'(t)).

5.9 Frenet formulas. Consider a function r : A — R? as the equation of a curve
C in R3. Then

u(t) = r'(t)/|Ir'(¢)] is called the unit tangent vector,
n(t) = u'(¢)/||0'(t)| is called the unit principal normal vector, and
b(t) = wu(t) x n(t) is called the binormal vector
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of C at the point r(t). We assume that C'is such that all three vectors are well-defined
at every point of C. We let p(t) = ||r'(t)||~! and define

the curvature of C atr(t) as p(t) = |u’(¢)| p(¢) and
the torsion of C at x(t) as  7(t) = |\b ()] p(t) -

Show that (u(t), n(¢), b(t)) is an orthonormal basis for R3 and that

W (B)p(t) = plt)n(o),
W'(6)p(t) = —p(t)u(t) - 7(t) b(t), and
B(&)p(t) = r(t)n(t).

The sign of the torsion 7(¢) is defined by the last formula. The formulas above are
known as the Frenet formulas. We will refer to the set of three vectors (u(t), n(t), b(¢))
as the Frenet vectors of the curve C at the point r(¢).

5.10 Compute the Frenet vectors for the helix
r(t) = (R coswt, R sinwt, At), t € R,

and verify the Frenet formulas. Here R > 0 and w, A € R are constants.

Problems on the Motions of Euclidean Spaces

511 Let X be aEuclidean space and S : A — L(X, X) a differentiable function.
Show that for each a € X the function r(t) = S(t) a, t € A, is also differentiable
and r'(t) = S'(¢) a.

5.12 Let X be a Euclidean space. Let S : R — L(X, X) be such that
S(a+b)=5()  S(a)

forall @, b € R. If $’(0) = A exists then show that S(t) = e“* for all t € R. Here
el =% ,(1/a)T", T € L(X, X), as defined in Problem 4.48. What is S'(¢) in
terms of S(¢) and S’(0)?

5.13 Let X be a Euclidean space. Let S : A — L(X, X) be such that ||S(t)v] =
|lv]| forallt € Aand v € X. If S'(t) exists, then show that (S’(¢)v, S(¢t)v) =0
forallt € Aand v € X.

5.14 Reotations of R3. Let w € R? be a unit vector and let w € R. The rotation of
R3 about the axis w with the angular velocity of w is defined as follows. Complete
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w to an orthonormal basis (u, v, w) so that w = u x v. Then let

R(t)(au+ gv+yw) = «aR({t)u+ BR(t)v + yR(t)w, where
R(t)u = coswtu+sinwtv
R(t)v = —sinwtu+coswtv
Rit)yw = w

for all x = (au + Bv + yw) € R3 and for all # € R. Show that R(¢) is a rigid
motion. Also show that
R(t)x =ww x R(t)x

for all x € R3 and forall £ € R.

515 LetS: A — L(R3, R3)beadifferentiable function such that || S(t)x|| = |||
forallt € Aandx € R3. Show thatforeacht € A there is aunique vectorm(t) € R3
such that S’(t)x = m(t) x S(t)x forall ¢ € A and for all x € R3.

Remarks. Rigid motions about a fixed point. We see that S(t) in the preceding
problem is a rigid motion about the fixed origin. This problem shows that at each
instant ¢ € A, the velocities for the rigid motion are the same as the velocities in a
rotation. The angular velocity of this rotation is given by w(t) = ||m(¢)|| and the axis
is given by the unit vector w(t) = (1/w(t))m(t). They are called the instantaneous
angular velocity and instantaneous axis of rotation of this rigid motion S(t) with a
fixed point.

5.16 Letc € R3. Define A : R® - R® by Ax = ¢ x x for x € R3. Compute
eAtx forall t € Rand x € R3.

5.17 Helicoidal motions. Let R(t) : R — R® be a rotation given in terms of
w € R3 and w € R as in Problem 5.14. Let T'(¢) : R — R3 be a translation given
by T(t)x = x + ta, x € R3, ¢ € R, where a € R? is fixed. Then

H(t)x =tc+ R(t)x, tcR, x € R®

is called a helicoidal motion. Show that helicoidal motions are rigid motions. If
r(t) = H{t)x, then show that the velocities are given as r'(t) = ¢ + ww X R(t)x.

5.18 General rigid motions. Let M ()x = s(¢) + S(t)x,t € A, be a general rigid
motion. If r(¢) = M (t)x, then show that for each instant t € A the velocities r'(#)
are the same as the velocities in a helicoidal motion. The translational and rotational
parts of this helicoidal motion depend on t € A. They are called the instantaneous
translations and rotations in a general rigid motion.

5.19 Instantaneous translations and rotations of Frenet vectors. The Frenet
vectors (u(t), n(t), b(t)) of acurve r : A — R® form an orthonormal basis for R3
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forall t € A. Hence, they define a rigid motion as follows. For convenience, assume
that 0 € A and define

5(t)(au(0) + Bn(0) +b(0)) = au(t) + fn(t) + vb(t)

for all x = (a, 3, 7) € R3. Then M (t)x = r(t) + S(t)x defines a rigid motion of
R3. Find the instantaneous translations and rotations of this rigid motion.

Problems on Plane Curves

Letr : A — R? C R3 be a plane curve C with the corresponding Frenet vectors
(u(t), n(t), b(t)). Let k be a unit vector orthogonal to the subspace R? in the vector
space R3.

5.20 Show that u(¢) and n(t) are orthogonal to k and b(¢) = =k and 7(¢) = 0 for
allt € A. Also show that n(t) = +k x u(t) and u(¢) = £k x n(¢) forall t € A.

5.21 The point e(t) = r(t) + (1/p(t)) n(t) is called the center of curvature of C
at the point r(t). Then e : A — R? C R3 defines another curve E. Show that the
unit tangent vector of E at e(t) is £n(t).

5.22 Define S : A — L(R?, R?) as follows. Let tg € A be fixed. Any v € R?
has a unique expression as v = r(tg) + a u(tg) + bn(to). Then

S(tyv=v(t) =r(t) +au(t) +bn(?).

Show that the velocity field v'(¢) at any instant ¢t € A is the same as the rotational
velocities of the plane R? about the point e(¢) = r(t) +(1/p(t))n(t) with the angular
velocity w(t) = p(¢) ||t/ (2)]]-

5.23 Let L and L' be the lines in R? passing through the points r{t) and r(¢') and
in the directions of n(t) and n(¢'), respectively. Show that the intersection points

P(t, t') of these lines converge to e(t) as t — t'.

5.24  Verify the results of the last four problems for the parabola given by r(t) =
(t, (1/2)t?) € R* forall t € R.

5.2 DIFFERENTIABLE FUNCTIONS

The main purpose of this section is to define the differentiability of a function f
between two normed spaces X and Y. As stated in the chapter introduction, a
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function is differentiable at a point if it can be locally approximated by a linear
transformation. This linear transformation is then the derivative (or full derivative)
of the function at that point. Plainly, this way of understanding the derivative requires
a subtle shift from the familiar definition of the derivative as a real number in the
one-variable case, and indeed from its definition as a vector in the special case that
we have just presented in Section 5.1.

Perhaps the easiest way to motivate this new way of thinking about the derivative
is to note the equivalence, in the one-variable case, between the existence of the
numerical limit f'(a) and the fact that, in a neighborhood of a, the graph of f(z) can
be approximated by the tangent line whose slope is f'(a). Thatis, f(a + r) can be
very well estimated by f{a) + [f’(a)](r). Similarly, consider the situation of Section
5.1, where f : A — Y for a normed space Y, A is an open subset of R, and a € A.
In this case, the existence of the vector derivative f’(a) is equivalent to the fact that,
in a neighborhood of a, f(a + ) can be very well estimated by f(a) + [f'(a)](r).
The meaning of ‘very well estimated’ is given precisely by the formulation for the
derivative that we pointed out in (5.3): for each & > 0, there is a § > 0 such that if
|r| < &, then

If(a+7) = fla) = [f (@)l < elrl.

The notation [f'(a)] is meant to be suggestive. Any vector y in Y corresponds to
the linear transformation 7, : R — Y given by Ty (r) = ry. Conversely, any linear
transformation T in L(R, Y) corresponds to the vector y = T'(1). It turns out that
thinking of [f’(a)] as a linear transformation in L(R, Y’), rather than as a vector, is
the key that lets us generalize the definition to cases where the domain space X is
not R. We make this precise in Definition 5.2.1: the derivative f’(a), when it exists,
is a linear transformation from X to Y. (Note that we shall write f’(a)u, rather than
[f'(a)](u), for the application of the linear transformation to a vector u € X.)

The main difficulties with this novel definition are how to tell when a function has
a derivative and how to picture the derivative. We get some help by introducing the
notion of a partial or directional derivative. Suppose that X = R? and Y = R,
and we have a function f : R? — R. Given a point a = (a,b), we can watch
how f behaves along straight lines through a—for example, horizontal lines of the
form (a + t,b) and vertical lines of the form (a, b + t). Either of these restrictions
turns f into a function of one variable ¢, and the familiar (numerical) derivatives
associated with these restricted functions are called partial or directional derivatives.
Furthermore, there is no need to restrict ourselves to horizontal and vertical lines.
Directional derivatives may be taken along any line through a (Definition 5.2.11).

At this point, there are two important questions about the relationship between the
full derivative and the directional derivatives. First: given the full derivative, can
we compute the directional derivatives? Second: given the directional derivatives,
can we compute the full derivative? In this section, we answer the first question
in the affirmative and explain the computation. We answer the second question in
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the negative: unfortunately, the existence of all directional derivatives is compatible
with the non-existence of the full derivative. The good news, deferred to Section
5.3, is that the existence of continuously differentiable directional derivatives does
guarantee the existence of the full derivative. In this case, the directional derivatives
even give us a convenient matrix representation of the full derivative.

In what follows, X and Y are any two normed spaces and A is an open set in X.

Definition 5.2.1 Differentiable functions. A function f : A — Y is said to be
differentiable at a € A if there is a linear map 7" € L(X, Y'), such that

g fatr) - fla) -Tr| _ (5.20)
r—0 (el

Lemma 5.2.4 will show thatif suchaT : X — Y exists, then it is unique. It is called
the derivative (or full derivative) of f at a € A and is denoted by f’(a). Note that
f'(a) : X — Y isalinear operator and its value at x € X is writtenas f’(a)(x) € Y.

Remarks 5.2.2 Other formulations. An explicit formulation of (5.20) is that for
each ¢ > 0 there is a 6 > 0 such that

If(a+r)— f(a) — Tr| < elr|| whenever |jr|] < 4. (5.21)

Since A is open, there is a ¢ > 0 such that B.(a)} C A. We choose ¢ < c¢. Therefore,
(a+r) € A and consequently f(a+ r) is defined whenever |r| < 4.

An equivalent form of (5.21) is the following. For every zero-sequence r,, in X there
is a zero-sequence t,, in R such that

[flatrn) — f(a) = Tra| < tnlral.- (5.22)

This form avoids the e-0 statements. Sometimes this may be an advantage. The
equivalence of (5.21) and (5.22) follows easily.

The next two lemmas establish that there can be at most one linear transformation 7'
that satisfies (5.20). If the derivative exists, then it is unique.

Lemma 5.2.3 IfS € L(X, Y) and if limy_,o(||Sr)| /|Ir]] ) = O, then S = 0.

Proof. The condition lim,_,q( || St|[ /x|l ) = O means that for each ¢ > 0 there is a
¢ > 0 such that
(ISl / lIr]l ) < & whenever 0 < ||r|| < 6.
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Let u € X be a nonzero vector. Choose a nonzero ¢ € R so that ||tu]] < §. Then

(IS /lltull) = (I1Sult/lul}) < e

and therefore ||Su| < e||lu||. This is true for any ¢ > 0. Hence Su = 0 for all
u € X. Thismeansthat S =0. D

Lemma 5.24 Let T, T' € L(X,Y) both satisfy (5.20) in the definition of deriva-
tives, 5.2.1. Then T = T'.

Proof. Let S =T — T’. We have

ISrl| = | Tr = T'x|
< lfta+r) = fla) - T'r| +||fa+1) — f(a) - Tr|.

Then lim,_o( ||Sr{|/ |Ir]]) = 0 by (5.20) in the definition of derivatives, Definition
5.2.1. Hence S = 0 by Lemma 5.2.3. O

In light of the foregoing lemmas, we can speak of the derivative f'(a) and we can
define an associated affine approximation function.

Definition 5.2.5 Affine approximations. Let f : A — Y be differentiable at
a € A. The affine (or first-order polynomial) approximation of f at a is the function
T, : X — Y defined by Tax = f(a) + f'(a)(x — a), x € X. Note that the linear
transformation f’(a) does not approximate the function, but rather its increments.
The function itself is approximated by the affine approximation 7,.

Since f’ is a function from X to L(X,Y") and both of these are normed spaces, it
makes sense to ask whether f’ is a continuous function.

Definition 5.2.6 Continuously differentiable functions. A function f : 4 — Y is
said to be continuously differentiable on A if there is a continuous function f’ : A —
L(X, Y), such that

PGB (ORECL 529

for all a € A.

Remarks 5.2.7 An important question. How can we decide if a function is differ-
entiable? Unfortunately there is no easy answer in general. Lemma 5.2.8 formulates
a necessary condition for differentiability, but it is not a sufficient condition. For
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continuous differentiability, however, there is a routine test. Lemma 5.2.9 formu-
lates a necessary condition for continuous differentiability that turns out also to be
sufficient. This condition provides the desired test for continuous differentiability.

Lemma 5.2.8 A necessary condition for differentiability. Assumethatf: A - Y
is differentiable at a € A. Then

lim > (f(a + tx) — f(a) (5.24)

exists for eachr € X.

Proof. Assume that the derivative T' = f'(a) exists. We will show that the limit in
(5.24) converges to T'r. This is clear if r = 0. Otherwise,

flatir) - f(a) _ o Mfattr) = fa) - Tir|

—Tr

shows that lim,_,o(1/t)(f(a+tr) — f(a)) =Tr. O

Example 5.3.1 below shows that the condition in Lemma 5.2.8 is not sufficient for
differentiability. Note, however, that if the domain space X is one-dimensional, then
Lemma 5.2.8 gives a necessary and sufficient condition for differentiability. This
follows by an easy argument and is left as an exercise. Hence for one-dimensional
domains, the existence of the limit in (5.24) can be taken as the definition of differ-
entiability.

Lemma 5.2.9 A necessary condition for continuous differentiability, Assume
that f : A — 'Y is continuously differentiable on A. Then, for each fixedr € X,

lim = (f(a+tr)  f(a) = F(a) (5.25)

exists and defines a continuous function F : G — Y.

Proof. Lemma 5.2.8 shows that F'(a) exists and is equal to f'(a)r. But, by
hypothesis, f' : A — L(X, Y) is continuous. Then F(-) = f'(:)r: A — Y is
also continuous for each fixedr € X. O

Theorem 5.3.4 below shows that the condition in Lemma 5.2.9 is also sufficient for
continuous differentiability. Hence this condition provides an easy test for continuous
differentiability. These arguments are left to the next section. The rest of this section
contains miscellaneous remarks about full and directional derivatives, together with
some computational examples.
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Restricted and Directional Derivatives

We continue to assume that A is an open set in X and that f : A — Y is a function.

Definition 5.2.10 Restricted derivatives. Let U be a subspace of X. Then f : A —
Y is said to have a restricted derivative at a € A along U if there is a linear map
S : U — Y such that

i (@ w) — @)~ Sul
uel, u—0 lal|

0. (5.26)

Simply by replacing X with U in the proof of Lemma 5.2.4, we can see that if such
an S : U — Y exists, then it is unique. S is called the restricted derivative of f at
a € Aalong U and is denoted by f{;(a). f{;(a) : U — Y is a linear operator and its
valueatu € U is f{;(a)(u) € Y.

Definition 5.2.11 Directional derivatives. Letu € X. If

i 1) — f(a)
t—0 t

(5.27)

exists, then it is called the directional derivative of f at a € A along u. The
directional derivative is denoted as f'(a; u). Itis a vectorin Y.

Remarks 5.2.12 Relations between the derivatives. If f'(a) € L(X, V) exists,
then f{;(a) € L(U, Y') also exists for all subspaces U C X. Also, f{;(a) = f'(a)|v
is the restriction of f’(a) to U. Furthermore, if the restricted derivative f],(a) €
L(U, Y) exists, then the directional derivatives f’(a; u) € Y alsoexistforallu € U.

The most significant relationship here is that if f{;(a) exists, then f'(a; u) =
fi;(a)(u). That is, we can compute the directional derivative along u by apply-
ing f{;(a) to u. (Lemma 5.2.8, which shows that f'(a; u) = f’(a)(u), establishes
this result for the case where U = X.)

The proofs for all of these claims are easy. All are similar to the proof of Lemma
5.2.8 and all of them are left as exercises.

Example 5.2.13 Suppose that f : R? — R? is differentiable at 0. Given that
Lo frr) = £(0)
T

r—0

=(2,-1,1) and }%w:(1,4,3),

we show how to compute
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First, note that the given equations are equivalent to
f10;(1,1)) = (2,-1,1) and f'(0;(3,2)) = (1,4.3).

Hence, since f is differentiable at 0, Theorem 5.2.12 implies that f'(0)(1,1) =
(2,—1,1) and f'(0)(3,2) = (1,4, 3). Furthermore, the same theorem implies that

flr=r) = 4O) _ . fO+r(1,-1) - 1(0)

lim

r—0 r r—0 r
= f(0)(1,~-1).
Since (1, —1) = —5(1,1) + 2(3,2) and f’(0) is linear, we have
F0)(1,-1) = —5f(0)(1,1) +2f(0)(3,2)

= —5(2,-1,1) +2(1,4,3)
— (=8,13,1).

Hence,

i HEZ0 =IO o1, 1)) = o)1) = (-8,18,1)

Example 5.2.14 Let f : R? — R3? be differentiable at 0 and f(0) = 0 with

lim fr2r) =(1,-2,1) and lim &:Q =

r—0 7 r—0

(2,1,5). (5.28)
We show how to compute f'(0). Note that since f(0) = 0, Equations (5.28) say that
£1(0:(1,2)) = (1,-2,1)  f(0:(2,1)) = (2,1,5).

So, by Theorem 5.2.12,
F(0)(1,2) =(1,-2,1) and [f/(0)(2,1) = (2,1,5).

Also, for any (z,y) € R?, we have

@y = 20,2+ e,
Thus, since f'(0) is linear,
FOy) = 20,2+ T o)
- 2y;”””(1,-2,1)+2$3_y(2,1,5).
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Differentiability of the Restricted Function

Lemma 5.2.15 Open sets in subspaces. Let A be an open set in a normed space
X. Let U be a subspace of X. Then B = ANU is an open set in U, considered as
a normed space by itself.

Proof. Letb € B C A. Since A is open in X, there is a § > 0 such that if ||x]|| < 4,
thenb-+x € A. Butifx = u € U, thenalsob+u € U and therefore b+u € ANU.
Hence b + u € B whenever u € U and ||u|| < §. This shows that B is an open set
mlU. O

Lemma 5.2.16 Derivatives of restricted functions. Ler A be an open set in X
and U a subspace of X. Let B = ANU. Let f : A — Y be a function and
let p = flg : B — Y be the restriction of f to B. Ifbe B = ANU and if
f'(b) € L(X,Y) exists, then ¢'(b) € L(U, Y') also exists and ©'(b) = f'(b)|v.

Proof. Lemma 5.2.15 above shows that B is an open set in U. We claim that
T = f'(b)|ly € L(U, Y) is the derivative of ¢ : B — Y atb € B. In fact,

o (@t ) — oa) - Tu
wth [l

o @)~ f@) ~ el _

uel,u—0 ||u||

0

shows that ¢’ (b) exists and ¢'(b) = f'(b)|y € L(U, Y). O

Functions of a Real Variable

Remarks 5.2.17 Special notation for functions of a real variable. Let the domain
space X be a one-dimensional space. We can assume that X = R without loss of
generality. In this case, all three types of derivatives are essentially the same. Let I
be an open interval in R. The standard definition of the derivative of f : I — Y at
a € I, Definition 5.1.1, is

f'(a) = lim; o (1/t)(f(a + 1) = f(a)).

We see that this corresponds to the directional derivative of f in the directionof 1 € R.
Hence it could be denoted as f'(a; 1) or as f'(a)l. Obviously, we never denote
derivatives in this way for functions of one variable. As noted in the introduction to
this section, we employ the notation f’(a) differently for the one-variable case.
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Computations of Directional Derivatives

The following lemma shows that any directional derivative can be computed as the
ordinary derivative of a function of a real variable. Hence we can use the standard
rules of differentiation to compute directional derivatives.

Lemma 5.2.18 Define p(s) = f(a—+ se), a function of one variable defined in terms
of f. Then
o(5) = f'(a+se; e)

whenever ' (s) exists.

Proof. We have

¢'(s) = lim .
— 1 fla+(s+r)e) — f(a+ se)
r—0 r
= f'(a+ se;e)

whenever ¢’ (s) exists. O

Lemma 5.2.19 Homogeneity of the directional derivatives. If /' (a; e) exists, then
f'(a; te) also exists for allt € R and f'(a; te) = tf'(a; e).

Proof. The result is trivial if ¢ = 0. Otherwise, we have

lim l(f(z:1+7"te) —f(a)) = tlim lt(f(aJrrte) — f(a))

r—07r r—07r

= tlim(f(a+se) - f(@) =t f(ae). O

Remarks 5.2.20 If we know that f'(a) € L(X, Y) exists, then Lemma 5.2.8 shows
that f'(a; e) = f’(a)e. In this case, lemma 5.2.19 becomes a triviality. If the
existence of f/(a) is not known, then a small argument may be necessary to show the
homogeneity of the directional derivatives.

Increments and Derivatives

The basic use of derivatives is to estimate the increments of a function. We formulate
several relations between derivatives and increments.
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Theorem 5.2.21 . Let T = f'(a) € L(X,Y) be the derivative of f : A — Y at
ac A Let M = ||T||, using the usual norm on linear transformations. Then for
each ¢ > 0 there is a § > 0 such that

[f(a+1) = f(a)] < (M +e)|r] (5.29)

whenever ||r|| < 6.

Proof. Given e > 0, find a § > 0 such that
[fla+r)— f(a)~Tr| <&
whenever ||r|| < §. Hence

If(a+r) = fa)l ITe|l + 1l f(a+1) ~ fa) = Tr]

M ie|f + e ]| = (M + &)[x]|

IN A

whenever ||r|| < 4. O

Corollary 5.2.22 Derivatives and continuity. If f has a derivative at x, then f is
continuous at x.
Proof. Let r,, be a zero-sequence in X. Theorem 5.2.21 shows that

fla+r,)— f(a)inY.

This is the continuity of f ata. O

Example 5.2.23 Let a be a constant. Define f : R? — R? by

_ [ zy/@®+y?) if (2,y) # (0,0)
fay) = { a if (z.y) = (0,0)

Let us show that lim(,, y_,(0,0) f(, y) does not exist. Thus, no matter what the value
of a is, f is not continuous at (0, 0). It follows that for all values of a, the function f
cannot be differentiable at (0,0).

To show that lim .. ,y_(0,0) f(x, y) does not exist, we let (x,y) approach 0 through
different paths. Along the line y = z, we have

fm  f(a.y) = lim 2 = 2
im z,y) = lim — = -.
(z,y)—(0,0) Y z—0 272 2
Along the line y = 0, we have
0 0
im  f(oy) = lim —2 O i 2 g,

(z.4)—(0,0) a—0 22+ (0)2  <—0 22
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Problems

5.25 Consider the xy-plane as a horizontal plane with the z-axis pointing directly
upward. Assume that z = f(z, y) = 10 — z2 — 2y? describes the surface of a hill.

1. Find the directional derivatives of z = f(z, y) at the point (z = 2, y = 1)
and along an arbitrary vector (u, v).

2. Take (u, v)asaunit vector, u?+v? = 1. Explain why the directional derivative
f/((2, 1); (u, v)) can be considered as the slope a hiker would experience if
she starts at the point (2, 1, 4) on the hill and moves in the (u, v) direction
determined by the horizontal coordinates.

3. Show that there is a plane passing through (2, 1, 4) such that all the slopes on
this plane are the same as the corresponding slopes on on the hill.

4. Find the equation of this plane.

5. What are the directions (u, v) of the steepest ascent, the steepest descent, and
of zero slope?

5.26 The temperature distribution in a certain region of the zyz-space at the time
tis given as f(z, y, z, t) = (100 — z? — y% — 22%)e~t/2, A fly is moving in this
region according to the law of motion z(t) = 2 — ¢, y(¢) = 1 + 2, and 2(t) = t3.
Find the rate of change in the temperature this fly experiences at the time ¢t = 2.
Show that this rate of change is the directional derivative of f at a certain point in R*
and along a certain vector in R*. Find this point and this vector.

5.27 Find the directional derivative of

I2y2

f(xvy) = W ’ ($,y) 7é (0,0)
0’ (xay) = (0,0)

at an arbitrary point and in an arbitrary direction, if it exists.

5.28 Same as Problem 5.27 for

1.3

fa) = 8 Fagp V700
07 (:E, y) = (0’ 0) .
5.29 Same as Problem 5.27 for
fay) = { WnggE @£ 00,

0, (z,y) = (0,0).
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5.30 Same as Problem 5.27 for

ry . 1
f($>y) = (.1'2 + y2)1/2 s 2 + y2 ’ (%,y) 7£ (070)7

0, (x,y) = (0,0).

531 Let f: R? — R? be the polar coordinates function
flr, 0) =(z, y) = (rcosf, rsinb).

Find the directional derivative of f at the point (r = 1, § = «) along an arbitrary
vector (a, A) in the rf-plane. The result will be a vector in the xy-plane. In particular,
find the directional derivatives along the vectors (1, 0) and (0, 1). Show that these
two directional derivatives are orthogonal to each other.

5.32 Let f : R® — R3 be the cylindrical coordinates function
f(r, 8,¢) = (=, y, z) = (rcosb, rsind, ().

Find the directional derivative of f at the point (r = 1,8 = «a, { = 0) along
an arbitrary vector (a, A, h) in the r6(-space. The result will be a vector in the
xyz-space. In particular, find the directional derivatives along the vectors (1, 0, 0),
(0, 1, 0), and (0, 0, 1). Show that these three directional derivatives are orthogonal
to each other.

533 Let f(p, ¢, 8) = (x, y, z) be the spherical coordinates function
x = psinpcosf, y=psingpsind, z = pcosyp.

Find the directional derivative of f at the point (p = 1,8 = a, ¢ = (3) along
an arbitrary vector (a, A, pt) in the rfp-space. In particular, find the directional
derivatives along the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1). Show that these three
directional derivatives are orthogonal to each other.

5.3 EXISTENCE OF DERIVATIVES

Lemma 5.2.8 gives a necessary condition for differentiability. This condition is the
existence of the directional derivatives in all directions. The following example
shows that this condition is not sufficient for differentiability.

Example 5.3.1 A nondifferentiable function with directional derivatives. Let

[ 1 ifz#0andy=2?
flz, y) = { 0  otherwise.
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This is the same as an earlier example, Example 4.4.6. We know that this function
f : R? — R is discontinuous at the origin. Hence Corollary 5.2.22 shows that it
cannot be differentiable at the origin. But its directional derivatives at the origin
exist in all directions, and they are all zero. To see this, restrict f to a line passing
through the origin. If this line is one of the coordinate axes, then this restriction is
identically zero. Hence it is differentiable everywhere. Now consider the restriction
of f to the line y = ma, m # 0. This restriction is zero everywhere except at the
point (m, m?), where it has the value of 1. Hence the restriction is zero in an open
interval containing the origin. Therefore f'((0, 0); ) = 0 foralle € R%. A

Lemma 5.2.9 shows that the existence and the continuity of directional derivatives in
all directions are necessary for continuous differentiability. We will now show that
this condition is also sufficient. In what follows, X and Y are two normed spaces,
and A is an open set in X.

Lemma 5.3.2 Let e € X be a fixed vector. Assume that the directional derivative

) = iy L7 10) = 0

(5.30)

exists for all x € A and defines a continuous function h : A — Y. Then for each
a € A and for each e > 0, there is a § > 0 such that

1f(x + te) — f(x) —th(a)| < e t] (5.31)

whenever ||x — a|| < & and |t| < §. In particular, if v,, is a zero-sequence in X and
ty, Is a zero-sequence in R, then there is a zero-sequence €,, € R such that

[f(a+vn +tne) = fla+va) = tah(a)l] < en [t (5.32)

Proof. Given £ > 0, there is a § > 0 such that
|h(x + te) — h(a)|| < ¢

whenever ||x — al| < d and |¢| < 4. This is possible because of the continuity of
h:A—Y. Let x be fixed and ||x — a|| < §. Define

w(s) = f(x+se)— f(x)— sh(a). Then

¢'(s) = lm(1/t)(e(s +1) = ¢(s))
= hm( JOf(x+ se+te) — f(x+ se) —th(a))
= h(x+ se) — h(a).

Hence we see that ||’ (s)|| < € for all |s| < |¢| < &. Then

le(®) — o0}l = lle@®)]] = | f(x + te) — f(x) — th(a)|| < e]t].
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The last step follows from the mean value theorem, Theorem 5.1.13. Finally, (5.32)
follows directly from (5.31). O

Lemma 5.3.3 Assume that X is spanned by a subspace V' together with a vector
e € X \ V. Assume that the directional derivative

1) = iy L4 10) 59

(5.33)

exists for all x € A and defines a continuous function h : A — Y. Assume that the
restricted derivative f{,(a) =T € L(V, Y) exists ata € A. Then f is differentiable
at a. Its derivative is given as

f(a)x = f'(a)(v+re)=Tv +rh(a) (5.34)

forallx =(v+re)e X withveVandr € R

Proof. Each x € X has a unique representation as x = v + te with v € V and
t € R. Note that v = Px and te = Qx with the coordinate projections P and ()
associated with this decomposition of X. Hence, ||v|| < K||x| and ||te|| < K|x||
for some K > 0. Define S € L(X, Y) by

Sx = S(v+te) =Tv +th(a), x=(v+te) e X. (5.35)
We see that the increment f(a + x) — f(a) is the sum of two increments

fla+v)— f(a) and (5.36)
fla+v+te)— fla+v), (5.37)

where x = v + t(e). Let x,, = v, + t,e be a zero-sequence in X. Then we see
that, v, is a zero-sequence in V' and ¢, is a zero-sequence in R. Recall that 7 is the
restricted derivative of f ata € A along V. Hence, by the observations in Remarks
5.2.2, there is a zero-sequence a,, € R such that

1f(@+vn) = f(a) = Tvnl < anljvnl- (5.38)
Also, Lemma 5.3.2 shows that there is a zero-sequence 3,, € R such that
1£(a+ Vo + tae) = fa -+ vn) ~ tah(a)]| < Ba[itaell. (5.39)
Then, (5.38) and (5.39) imply that, with x,, = v, + t,e,
1f(a+xn) — f(a) = Sxall < anllvall + Bnltal < nllxall; (5.40)

where ¢, = (v, + 3,) K. This proves (5.34). O
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Theorem 5.3.4 Existence of derivatives. Let f : A — Y, where Aisan open subset
of X. Let E ={ey, ..., e,} beabasisfor X. If all the directional derivatives
along the vectors e; exist, and if they are continuous functions on A, then f is
continuously differentiable on A.

Proof. Apply an induction argument on n = dim X. The result is correct if n = 1.
In fact, in this case directional derivatives and derivatives are the same, as already
observed in Remarks 5.2.17. Assume that the result is true for (n — 1)-dimensional
spaces. This implies that f has restricted derivatives along the subspace spanned
by (€1, ..., €n—1). Then Lemma 5.3.3 shows that f is differentiable. Continuous
differentiability follows from the continuity of the directional derivatives. O

Problems

5.34 Define f : R? — R by f(0, 0) = 0 and
Flo, ) = (2 + 9P) eos = a2 447 >0
T, y)=(z"+y cosx2+y21:1:+y> .

Show that f’ : R? — L(R?, R) exists but is not continuous at (0, 0) € R2.

535 Let f : R® — R be defined as f(x,y,2) = 1ifz = ¢, y = t2, and
z = t3 for some t > 0, and f(z, y, z) = 0 otherwise. Show that f has a restricted
derivative at the origin along any one- or two-dimensional subspace. Show that f is
not differentiable at the origin.

536 letn € N, n > 2. Give an example of a function f : R® — R that has
restricted derivatives at the origin in all (n — 1)-dimensional subspaces of R™ but is
not differentiable at the origin.

537 Let f(z, y) = lify < 2% < 2y and f(z, y) = 0 otherwise. Show that f has
directional derivatives at the origin in any direction. Is f differentiable at the origin?

538 Let f(z,y) = 1if 2z < 2% + y? < 4z and f(z, y) = 0 otherwise. Show
that f has directional derivatives at the origin in any direction. Is f differentiable at
the origin?

5.39 Suppose that f : R?2 — R has a directional derivative at the origin along
the vector (1, 0). Assume that for all x € R the directional derivative of f at the
point (z, 0) and in the direction of (1, 1) exists and is equal to p(z). Show that if
p: R — Ris continuous, then f is differentiable at (0, 0).
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5.4 PARTIAL DERIVATIVES

Definition 5.4.1 Partial derivatives. Let f : A — Y be a function and let x € A,
LetE = {ey, ..., e,}beabasis for the domain space X . The directional derivatives
f/(x; e;) in the directions of the basis vectors e; are called the partial derivatives of
f+A—Y arx € Awith respect to the basis E.

Definition 5.4.2 Functions of several variables. Functions defined on subsets of
R™ are called functions of several variables. In discussing partial derivatives, we shall
ignore the difference between functions defined on subsets of a finite-dimensional
normed space X and functions defined on subsets of R™. The following conventions
justify this practice.

Fix abasis E = { ey, ..., e,} for X. Letz; : X — R be the coordinate functions
with respect to E. There is an isomorphism ¥ : R™ — X that takes
(1, ..., z,) €R"
to
V(zy, ..., Tp) =x1€1 + -+ Tpe, € X.
Set

ﬁ:\If_l(A):{(a:l, ey Zp) ER? e+ Fane, € AL
Then we may define a function f = (f-¥): A—Yby
Flzy, .. xn) = f(zie1 + - + Zney).

We will ignore the difference between f and ]7, and between A and A. Hence we
write x = (21, ..., ) € A and

f(x):f(l'l’---vxn)'

Definition 5.4.3 Standard notation for partial derivatives. Fix a basis £ =

{e1, ..., e,} for X. The standard notation for f'(x; e;) is
of of
_— = — e . 541
axj (X axj (l‘l, ’ In) ( )

This notation indicates the way partial derivatives are computed. To find f'(x; e;),
proceed as follows. Consider f(x) as a function g(x) of a single variable « = «;,
keeping the other coordinates x, k # j, fixed. Then

of g fxArey) = f(x)
8_301(}() = lim J

r—0 r

o 90 ) = g(2;)

_ R
A , =g'(z;)
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is the differentiation of f with respect to the variable x = x;, regarding all other
coordinates zx, k # j, as constants. Therefore a partial derivative of a function of
several real variables can be obtained by the basic differentiation rules applied to a
single real variable.

Let e}, ey be the standard basis vectors of R?. Since points in R? are usually denoted
as {z,y), alternative notation for f/(x; e;) and f'(x; ez) is, respectively,

0 0 0 0
o) =L@y ma Too =),

Similar alternative notation is used for R3.

Definition 5.4.4 The Jacobian matrix. Partial derivatives provide a convenient way
to represent the full derivatives of a vector-valued function f : A — Y in terms of
real-valued functions. Choose a basis W = { wy, ..., w,, } for Y and consider the
component functions f; : A — R defined by f = fiw1 +--- + fuWn,. Then

of dfs Ofm

8xj N 8:1,‘]‘ (X)WI + + 3.Tj X)Wm.
If the domain space X is an n-dimensional space, then each component has n partial
derivatives. Hence there are mn real-valued partial derivatives

ofi
aZIIj

We organize these mn real numbers as an m X n matrix, referred to as the Jacobian
matrix. It is denoted as

(x)

(x), i=1,...,m, j=1 ..., n

[ Oy L Ohy
Jf(X) — 8(flv K] fm) (X) — 8x1: . azn
a(xl) R} .’En) ’ ’
Ofm Ofm

i 8—%(’() oz, (%)

filx;er) ... fi(x;en)

L fm(en) - fr(xen)
The Jacobian matrix plainly depends upon the choice of the bases £ C X and
W Y.

If all the partial derivatives f'(x; e;), 7 = 1, ..., n, exist for all x € A, then the
Jacobian matrix defines a function

_8(f177fm) N
M By AT M
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It takes each point x € A to a real-valued matrix with the entries f/(x; ;).

Remarks 5.4.5 Jacobian matrix and the derivative. Example 5.3.1 shows that the
Jacobian matrix for f at a € A can exist even if f is not differentiable at a. But if f
is differentiable at a € A, then its derivative f’(a) : X — Y is represented by the
Jacobian matrix J(a) with respect to the bases F and W. This means that if

Y= ym) = @)z, ..., z,) = f(a)(x), (5.42)
then y can be computed by matrix multiplication:
%N filaser) ... fi(a; en) 1
y= : = : : o =Jf(a)x. (5.43)
Ym f(asen) ... fr(a; en) Tn

Here, as in Definition 5.4.3, we ignore the difference between elements of R™ and
M,,;. That is, we identify

Ty
(1, ..., xn) € R" and : € M,,1,
Ty

and denote both objects by x. To verify (5.43), it is enough to observe that it gives
the correct result for each x = e;. In fact, if x = e;, then (5.43) becomes

fi(a; e;)
Jf(a)e; = : ,
fm(a; €;)
which represents f'(a; e;) = f'(a)e;.
Example 5.4.6 Define f : (R?\ {0}) — (0,00) x [0, 27) by f(z,y) = (r,0) where

r= (22 +y%)/? and § € [0, 27) withsin @ = y/r, cos§ = z/r. Let us compute the
Jacobian matrix of f at (x,y), where « # 0,y # 0. Here, the components of f are

fley) =@ +y)"? and  fo(z,y) = arcsin(y(«® + y*)71/?).
We see that, after some computations,

of

%(:c,y) = z(2*+ 3/2)71/2 = cos 0,

%—J;(w,y) = y(@®+y?) /2 =sino,

Of2 B o o1 .
%(x,y) = —y(z*+y°) = —(1/r)sind, and
%(ﬂc,y) = ax(z? +y?) ' =(1/r)cosh.
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Thus, the Jacobian matrix of f at (z,y) is

s 6 in6
Jf(z, y) = [ _(1C/c;) siné (1/?") cos 6 ] '

Here the variables r and # are used to simplify the expressions. A

Example 5.4.7 Define g : R?> — R? by g(r, §) = (rcosé, rsinf). An easy
computation shows that

Jg(r, 0) = [ cosf —rsiné ]

sinf rcosé

We see that Jg(r, 8) is the inverse of Jf(z, y) in Example 5.4.6. This is not
accidental. In fact, the restriction of g to (0,00) x [0, 27) is the inverse of f. The
chain rule, Theorem 5.5.6 below, will show that ¢’ is the inverse of f/. A

Example 5.4.8 Let A = R?\ {0} and define f : A — R? by

fla,y) = ((2° +9*)/(22), (a® +y*)/(2y)) forall (z,y) € A.

Letus find all h € Rsothat f'(1,2)(h,1—h) = (=5, —1/2). Here, the components
of fare fi(z,y) = (z* + v?)/2z and fo(z,y) = (22 + y?)/2y. Thus,

0f1 22—y Oh oy
al, (:C7y) - 2:1:2 3 8y (mvy) - E
of2 T 0f oyt —a?

Hence, f'(1,2)(z,y) = (1/2)(—3z + 4y, = + 3y) forall (x,y) € A. Thus,
F(1,2)(h,1 —h) = (1/2)(=Th + 4, —2h + 3).

Hence, we musthave h = 2. A

The Gradient Vector

The derivative of a real-valued function at a point is a real-valued linear function.
Hence it can be represented as an inner product with a unique vector. This vector is
called the gradient of the function. We formulate this as Lemma 5.4.9.

Lemma 5.4.9 Let A be an open set in a Euclidean space X. Let f : A — R be a
real-valued differentiable function. Then, for each a € A, there is a unique vector
Vf(a) € X suchthat f'(a)x = (Vf(a), x) forallx € X.
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Proof. The derivative at a € A is a linear function f’(a) : X — R. In this case,
Theorem 3.4.21 shows that f/(a) can be represented as an inner product with a unique
vector as stated in the lemma. O

Definition 5.4.10 The gradient vector. Let A be an open set in a Euclidean space
X. Let f : A — R be areal-valued differentiable function. The vector V f(a) € X
obtained in Lemma 5.4.9 is called the gradient vector of f at a € A. The function
Vf: A— X isthe gradient function of f.

Remarks 5.4.11 Inner products of the gradient vector. The inner product of the
gradient vector V f(a) € X with a vector x is the directional derivative of f along
the vector x. This follows from Definition 5.4.10:

(V(a), ) = f(ax = f(a; x) = Jim + (f(a+ ) ~ f(a).

Remarks 5.4.12 Cartesian coordinates of the gradient vector. Let X = R" with

its standard inner product and with its standard basis (eq, ..., e,). Then
Vi@ = (Vf(a),eer+--+(Vf(a) en)en
0 0
= —%(a)el +t 8—£(a)en.

In fact, (Vf(a), e;) = f'(a)e, is the partial derivative of f with respect to the ith
coordinate x;, by Definition 5.4.1.

Remarks 5.4.13 The gradient vector and the Jacobian matrix. Let A C R" be
an open set and let f : A — R be a differentiable function. The Jacobian matrix

Jf= {ﬁ ﬁ} c A — My,

8.’1,'1 ’ ’ 3l‘n

and the gradient function

Vf=(ﬁ'~ 8f):A—>]R"

dz,) Bz,

are two different notations for the linear transformation determined by the n partial
derivatives of this function.

Definition 5.4.14 Local extremal values. Let f : A — R be a real-valued function
defined on an open set A in a vector space X. Then a € A is called a local maximum
for f if there is a § > 0 such that f(x) < f(a) whenever x € A and ||x — a|| < 0.
Local minimum values are defined similarly. Itis easy to see thatif V f(a) # 0, then
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f cannot have a local extremal value at a. Thus, local maxima or minima for A will
always be found among the set of points a for which V f(a) = 0.

Remarks 5.4.15 Higher-order partial derivatives. Higher-order derivatives are
discussed in Chapter 7 in a systematic way. Here, however, we may define higher-
order partial derivatives as we did in the case of functions of a real variable. In fact,
in dealing with partial derivatives, we effectively consider functions with only one
real variable, since the other variables are kept fixed. For example, let f : R — Y
be a function of three variables x, y, z taking values in a normed space Y. Then
notations like

o of  0°f oof 0*f 882f_ 3f

Oy Oz Oydx’ Oxdx 0Oz 020y 02002 ete.
have obvious meanings. For example, the first means to take the derivative of f with
respect to x, and then to differentiate the resulting function with respect to y. We
will prove that for higher-order derivatives, the order of differentiation is generally
immaterial. For the time being, however, we must perform the differentiations in the
given order.

Functions that are n times continuously differentiable are called €™ functions. They
are defined precisely in Definition 7.1.5, and discussed in the sequel.

Problems

5.40 Let(u, v) = (3z+2y, 62—4y). Find the gradients Vu, Vv, and the Jacobian
matrix O(u, v)/d(x, y) at a general point (z, y), if they exist.

5.41 Same as Problem 5.40 for (u, v) = (zy, y/x).
5.42  Same as Problem 5.40 for (u, v) = ((2? + y?)/(2z), (2% + y?)/(2y)).

5.43 Same as Problem 5.40 for

(u, v) = (p(z, y) + 9z, v), p(z, ¥) — a(=, y)),
where p(z, ) = ((z + 1)? + y*)"/? and ¢(z, y) = ((z — 1)* + y*)V/%

544 Letr: R? — R? be the polar coordinates function

(x, y) =r(r, 0) = (rcosb, rsinf).

Find e; = Or/0r and e; = Or/09 at all points (r, §) € R2. Show that if r # 0,
then ey (r, 8) and ex(r, 0) is an orthogonal basis for the zy-plane. Find the Jacobian
matrix 0(z, y)/0(r, 6).
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545 A particle moves in the xy-plane according to the law of motion
s(t) = (x(t), y(t)), where x(t) = e’ cos 2t and y(t) = €’ sin 2t.

Find the coordinates of the velocity s’(t) and acceleration s” (¢} of this particle with
respect to the basis e (e!, 2t) and e, (e?, 2t) defined in Problem (5.44).

546 Letr:R3 — R3 be the cylindrical coordinates function
(z,y, z) =r(r, 8, () = (rcos, rsiné, ¢).

Find e; = Or/0r, e; = Or/99, and e3 = Or/(¢ at all points (r, 8, ¢) € R3. Show
that if r # 0 then e (1, 6, (), e2(r, 8, ¢), and e3(r, 6, ¢} is an orthogonal basis for
the zyz-space. Find the Jacobian matrix d(z, y, z)/0(r, 6, ¢).

5.47 A particle moves in the xyz-space according to the law of motion

s(t) = (x(¢), y(t), 2(t)) where
x(t) = et cos 2t, y(t) =e'sin2t, z(t) = 3t.

Express the velocity s’(t) and acceleration s” (¢) of this particle in terms of the basis
ei(et, 2t, 3t), ea(ef, 2t, 3t), and e3(e’, 2t, 3t) defined in Problem 5.46.

548 Letr:R3 — R? be the spherical coordinates function

(z, ¥, 2) =1(p, @, 0) = (psinpcosl, psinpsing, pcosy).

Finde; = 0r/0p, es = Or/dp, and e3 = Gr/00 at all points (p, ¢, 8) € R3. Show
that if p #£ 0, then e1(p, ¥, 0), e2(p, @, 8), and es(p, v, 0) is an orthogonal basis
for the xyz-space. Find the Jacobian matrix d(z, y, 2)/9{p, ¢, 6).

5.49 A particle moves in the zyz-space according to the law of motion
s(t) = (z(t), y(t), 2(¢)), where

z(t) = e'sin 3t cos 2t, y(t) = e'sin3tsin2t, z(t) = 3t cos 3t.

Express the velocity s’(t) and acceleration s” (¢) of this particle in terms of the basis
e1(p, v, 0), ex(p, p, B), and e3(p, ¢, B) defined in Problem 5.48.

5.5 RULES OF DIFFERENTIATION

In this section, we obtain some general rules for differentiation. As before, X and Y
are two normed spaces, A C X is an opensetin X, and f : A — Y is a function.
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Lemma 5.5.1 Derivativeofasum. Let f, g : A — Y be two differentiable functions
on A Then (f +g) : A — Y is also differentiable on A and

(f+9)=/+4. (5.44)

Proof. This is left as an exercise (a straightforward application of the definition of
the derivative). 0O

Lemma 5.5.2 Derivative of a constant function. Ler f : A — Y be a constant
function. Then ' : A — L(X,Y) is the zero-function. That is,

fl@)(x)=0€Y forallac Aandx € X.
Proof. This is also left as an exercise. O

Lemma 5.5.3 Derivative of a linear function. Let R : X — Y be a linear
function. Then R : X — L(X,Y) is the constant function with the constant value
Re L(X,Y). Thatis,

R'(a) = Rforallac X and R'{(a)x = Rx foralla, x € X.

Proof. If R : X — Y is linear, then AR(x)(r) = Rr and |AR(x)(r) — Rr|| =0
forall x, r € X. This shows that DR(x) = R. O

Remarks 5.5.4 Constants and constant functions. Sometimes it may be awkward
to distinguish between a constant and a function that takes the same constant value
at all points in the domain of its definition. If this constant value is a point R
in L(X, Y), the derivative function is helpful to make this distinction. Hence, if
R e L(X,Y),then DR : X — L(X, Y) is the function that has this constant value
Rateachx € X.

Example 5.5.5 Derivative of the identity function. Let 7 : X — X be the identity
function. Then I € L(X, X). Hence DI : X — L(X, X) is the constant function
DI(xy=1€ L(X, X)forallxe X. A

The Chain Rule

The chain rule states that the composition of two differentiable functions is differen-
tiable. The derivative of the composition is the composition of the derivatives. This is
a key result for differentiation in the multi-variable case, just as it is for one-variable
calculus. In the following, X, Y, and Z are normed spaces, A is an open set in X
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and B is an open set in Y. We consider two functions f : A - Y, g: B — Z, and
assume that f(A) C B.

Theorem 5.5.6 Chain rule. If f : A — Y is differentiable at a € A and if
g : B - Z is differentiable at b = f(a), then

h=g-f:A— Zis differentiable at a and h'(a) = ¢'(b) - f'(a) = ¢'(f(a)) - f'(a).

If f and g are continuously differentiable functions, then h : g- f is also a continuously
differentiable function.

Proof. Let R = f’(a) and S = ¢/(b). Given a zero-sequence x, in X, let

fla+x,) = f(a) = yn (5.435)

gb+yn)—g(b) = 2z, (5.46)
Then we have

ha+x,)—h(a) = z,. (5.47)

The last equality follows from
9(f(a+xn)) —g(f(a)) = g(b+yn) — g(b). (5.48)
Recall that R = f’(a). Hence there is a zero-sequence 7, in R such that
lyn = Bxnll = [|f(a+xn) = f(a) = Bxnl < 70 %0 (5.49)
This was observed in Remarks 5.2.2. Therefore
lynll < 1BXnll + lyn — Bxn|l < ([[B]] + 74) [[%n]l- (5.50)

Hence y, is a zero-sequence in Y. Recall that S = ¢’(b). Therefore, as in (5.49),
there is a zero-sequence s, in R such that

120 — Sy lg(b +yn) — g(b) — Syal (5.51)

< sallyal < sallRl 4 72) ol
Here the last inequality follows from (5.50). Now (5.51), (5.49), and

Zp, — (SR)Xp, = (2, — Syn) + S(yn — RXyn) (5.52)
show that

12 = (SR)Xnll < (sn(I Rl +7n) + Sl ) %nll = tn [I%n- (5.53)
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Here t,, = sp(||R|| + r,) + IS|| 7» is a zero-sequence in R. Hence, by (5.47),
h(a+x,) — h(a) ~ (SR)xn|| < t, |1xnl. (5.54)
This shows that h'(a) = SR, as observed in Remarks 5.2.2.

For the continuity of 2’ : A — L(X, Z), leta, € Aand a, — a € A. Then
g (f(an)) = (¢ - fi(an) — ¢ (f(a)) in L(Y, Z), since the composition of two
continuous functions is continuous. Also, f'(a,) — f'(a) in L(X, Y). Then we
see that b (an) = (9’ - f)(an) - f'(an) — h'(a) = (¢'- f)(a) - f'(a) in L(X, Z) by
the continuity of products. Hence &' : A — L(X, Z) is continuous. O

Example 5.5.7 Chain rule in terms of Jacobian matrices. With the notation
introduced above for the chain rule, Theorem 5.5.6, let U, V, and W be bases for
X,Y,and Z, respectively. Letz; : X — R, y; : Y — R, and 2, : Z — R be the
corresponding coordinate functions. Assume that p, ¢, and r are the dimensions of
X, Y, and Z, respectively. If the chain rule

W(a) = g'(b) - f'(a) (5.55)
is expressed in terms of the Jacobian matrices, then it becomes
Jh(a) = Jg(b) - Jf(a). (5.56)

Note that h takes its values in Z. Hence it has r = dim Z components hj. Each
component hy depends on p = dim X variables z;. With similar notation for the
other functions, we see that (5.56) becomes, in terms of the entries,

Ohx _ <~ Ogx Of;
s = ;1 B, Do (5.57)

A more instructive form of (5.57) is as follows. Denote f(x) as y(x) and g(y) as
z(y). In fact, f expresses the y; coordinates in terms of the x; coordinates. Hence,
f can be considered as ¢ = dimY functions y;, each depending on p = dim X
variables x; as

Yi =y;(@1, ..., 2p), (5.58)
with 7 =1, ..., ¢. Similarly, g consists of » = dim Z functions 2y, each depending
on g = dim Y variables y; as

2k :Zk(y17 (RN yq)a (559)

withk = 1, ..., r. The composite function s = ¢- f has again the same components
Zx, but each argument y; is expressed in terms of z;s by (5.58). Hence one can state
(5.57) as

Ozp 1. 0z oy; Dz, Dy;
dz; Z dy; Oz Zj dy; Ox; (5.60)

j=1
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When one takes the partial derivative of 2z, with respect to z;, it is understood that
zk 1s considered as a function of x;-variables. If zj is differentiated with respect to
y;, then it is considered as a function of y;-variables. Equations (5.60) are easier to
remember than Equations (5.57). A

Example 5.5.8 Let f : R — R be a differentiable function. Assume that f'(z) =0
if and only if z = 0. Define H : R? — R% by

ha,y) = (f@a* = ¢?), fa® +y%)) forall (z,y) € R2.

Let us see that h is differentiable. Here, the components of h are hi(z,y) =
f(z? —4?) and ho(x,y) = f(z? + y?). Thus, since f is differentiable,

ohy _ 12 .2 Ohy _ T2 .2
B (x,y) = 2zf'(z” —y7), oy (z,y) = —2yf'(2° —y°)
8h2 - 172 2 8h2 _ 172 2

B (z,y) = 2zf'(z*+y"), oy (z,y) = 2yf'(=* + y°).

Since f’ is continuous, it follows that the above partial derivatives are all continuous
on R?. So, f is differentiable on R2. Also, the matrix for f'(x,y) is

[ 222 ) 2yf' (2% - y?)
Jf(z,y)f 2xf'(1‘2+y2) 2yf’(w2+y2) A

Total Differentials

Notations 5.5.9 The d-symbol. If f : A — R is a real-valued differentiable func-
tion, then one also writes df for f’. In basic calculus courses, the notation df
usually suggests some kind of smallness. There is no such implication here. Hence
df : A — L(X, R)is afunction with values df (a) € L(X, R),a € A. Also, df (a)x
is a real number foralla € Aand x € X.

We should be careful to use this notation only for real-valued functions. In advanced
calculus courses, the d-symbol is usually reserved for exterior derivatives. Exterior
derivatives will be considered in chapter 10. For real-valued functions, they are the
same as the derivatives discussed here.

Example 5.5.10 Derivatives of the coordinate functions. Let z; : X — R be the
coordinate functions with respect to a basis in X. They are real-valued functions.
The notation dz; is the standard notation for their derivatives. Each z; : X — R
is a linear transformation. Therefore, as in Lemma 5.5.3, dz; : X — L(X, R)isa
constant function. Indeed, dx;(a) = x; forall a € X. Hence dz;(a)(x) = z;(x)
foralla,x € X. A
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Definition 5.5.11 Total differentials. Let A be an open set in a vector space X . Let
{e1, ..., e,} beabasis for X. Let f : A — R be a continuously differentiable
function. Then X

of of

- 24 o e,
df Bt r1 + +8xn dx

is called the total differential of f. This is just the derivative of a real-valued function
expressed in terms of the derivatives of the coordinate functions dx; : X — R.

Lemma 5.5.12 Derivative of the inverse function. Let f : A — Y be a differen-
tiable and invertible function. Assume that its range f(A) = B is open inY. If the
inverse function g : B — X is differentiable, then g'(b) = (f'(a)) ! foralla € A
andb = f(a) € B.

Proof. We see that the composition g-f : X — X is the identity function : X — X.
Hence, by the chain rule, Theorem 5.5.6, and by appealing to Example 5.5.5,

g(b) - fl(a)=TI'(a)=1.
This shows that ¢'(b) = (f'(a))~!. O
Theorem 5.5.13 Derivatives and Cartesian products. Let X, Y and U be normed

spaces. Let A be an open subset of U. Let f : A — X and g : A — Y be two
continuously differentiable functions. Define

p: A X xY by pla)=(f(a),g(a))e X xY, ac A
Then ¢ is a continuously differentiable function on A with
¢'(a)(u) = (f'(a)(u), g'(a)(u)) € X x Y

forallac Aandu e U.

Proof. Define R: X — X xY and S:Y — X xY as Rx = (x, 0) and
Sy = (0, y) forall x € X and y € Y. Then we see that

p=R-f+5-9g.

Now R and S are linear functions. Hence, they are continuously differentiable.
Therefore, ¢ is continuously differentiable by the chain rule, Theorem 5.5.6. To find
its derivative ata € A, let f(a) = b € X and g(u) = ¢ € Y. Hence, again by the
chain rule, Theorem 5.5.6,

¢'(a) = R'(b) f'(a)+ S'(c)-g'(a)=R- f'(a) + 5 g'(a).



RULES OF DIFFERENTIATION 217

The last equality follows from Lemma 5.5.3, which gives the derivatives of linear
functions. Hence

¢(a)u) = R-f(a)(u)+S-g'(a)(uw)
(f'(a)(u), 0) + (0, g'(a)(u))
= (f(a)(u), ¢'(a)(w))

forallue U. O

Problems

5.50 Let f: R® — R3 be differentiable. Assume that
fla,y,2) = f(@+y,0,2+z) forall (z,y,2) € R®
Show that the linear transformation f’(x) : R® — R3 is never onto for any x € R?

of the form (a, 0, ¢).

551 Letp: X — R be a differentiable function. If ¢(a) # 0, then show that
V(1/p)(a) = —(1/p(a)*)Ve(a).

5.52 Let f be a real-valued differentiable function of y = (y1, ..., yn). Let
y = y(x) be a differentiable function of x = (21, ..., Zy,). Show that

I R

5.53 Let A be an open set in the Euclidean space R™. Let f : A — R be a twice
continuously differentiable function. Then the Laplacian of f is defined as

0? 0?
A = G0+ S (0

wherex = (21, ..., T,) € A. Letn = 2andlet(xy, z3) = (z, y). Express f(z, y)
in terms of polar coordinates x = rcosfandy = rsinfas f(x, y) = F(r, 8). Show
that

9 f PF 18F 1 0°F

Megmtap T Tra T

554 Let f(z,y, z) = p(z% + y* + 2?), where ¢ : R — R is a differentiable
function. Find V f and A f. Here Af is as in Problem 5.53.
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555 Letk € N. Let f : R® — R be a differentiable function. If f(tx) = t*(x)
for all x € R™ and for all ¢ € R, then show that (V f(x), x) = kf(x).

556 Letg:Y — R be a differentiable function. Let f{x) = g(T'x), where
T : X — Y is a linear transformation. Find V f in terms of Vg. '

557 letg: R — R be a differentiable function. Define f : X x Y — R as
f(x,y) =9((Tx,y)),where T : X — Y is a linear transformation. Find V f.

5.6 DIFFERENTIATION OF PRODUCTS

The rule for the differentiation of products is familiar from the one-variable case.
Consider
f(z) = z%e® cosx (5.61)

as an example. To differentiate f, consider it as the product of three functions
fi(z) = 22, f2(z) = €%, and f3(z) = cosz. Then

f'(=z) fi(@) f2(@) fs(z) + fi(2) fo(x) f3(2) + fu(@) falz) f3(2)

= 97ée"cosz + r%e” cosz — x2e” sin z.

To generalize this method, consider f(z) as the composition of two functions F :
R — R3?and M : R? — R defined by

Fz) = (fi(z), fa(z), f3(2))

(x?, €%, cosz) € R3
and
My, y2,¥3) = w1-y2-ys €R
Then f(z) = M(F{x)). Therefore, by the chain rule, Theorem 5.5.6,
f(@) = M(F(2)) - F'(a).
The derivative of F' : R — R3 is obtained as
F'(z) = (2z, €*, cos ).

This follows from Theorem 5.5.13. We will show below that M’ (yy, y2, y3) : R® —
R is given as

M'(y1, y2, y3)(v1, v2, v3) = VIY2ys + Y1v2Y3 + Y1Y203 (5.62)
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for all (v1, ve, v3) € R3. Then the differentiation rule for f(z) = z%e® cosz in
(5.61) follows. Equation (5.62) is true for all multilinear functions. This is a key
result in the differentiation of product-like functions.

Notations 5.6.1 Multilinear functions. The notations and definitions below were
introduced in Section 3.3. Let Uy, ..., U be vector spaces. We ignore the difference
between the spaces

U1X~'~><Uk and Uy @ - U

and denote both spaces as X. Let P, : X — X be the coordinate projection on the
ith component. Hence, if u; € U;, j =1, ..., k, then

P(ui+---4ug)=u; forall i =1, ..., k.

Also, let Q; = I — P;. Then M : X — Y is called a multi-linear function if the
equation

Ti(a)x = M{(Q;a+ P;x) = M(a+ P;x) — M(a), x€ X (5.63)

defines a linear map T;(a) : X — Y for each fixed a € X and for each fixed
i =1, ..., k. The second equality in (5.63) follows from Lemma 3.3.5. In particular,
ifae X,u; € U;,and t € R, then

M{a+ P;(tu;)) — M(a) (5.65)
= M(a+tu) — M(a). (5.66)

Here P;(tu;) = tu; since u; € U;. Equation (5.65) follows from Lemma 3.3.5.

Theorem 5.6.2 Derivatives of multilinear functions. Multilinear functions are
differentiable everywhere. If X = U1 @ -+-- ® U and if M : X — Y is multilinear,
then

M'(a)(x) = Z; M(Q:a+ Pix) (5.67)

forall a, x € X. The notations are as in Notations 5.6.1 above.

Proof. If u; € U;, then the directional derivative of M : X — Y ata € X and in
the direction of u; is

M(a; wy) = lim 2B = M@)

s n (Q:a+u,).

In fact, (5.66) and the linearity of T3(a) : X — Y show that the ratio above has the
constant value of

Ti(a)u, = M(a+w;) — M(a) = M(Q;a+ u;).
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Multilinear functions M : X — Y are continuous by Theorem 4.4.9. Hence
M’ (a; u;) is a continuous function of a € X for each fixed u; € U;.

If E; is a basis for U;, then we see that &/ = U; F; is a basis for X = @,U;. Hence, X
has a basis consisting of vectors contained in U; spaces. Therefore M : X — Y has
continuous directional derivatives with respect to the vectors in a basis. Therefore,
M : X — Y is also continuously differentiable by the existence theorem, Theorem
5.3.4. To obtain (5.67), note that each x € X = U; § - -+ @ Uy has a representation
as

X:P1X+"'+ka, PiXEUi.

Hence (5.67) follows from M’(a)(P;x) = M(Q;a + P;x) and from the linearity of
M@): X —-Y. O

Remarks 5.6.3 Explicit notations. Theorem 5.6.2 above is the key result in the
differentiation of products. This theorem implies, for example, that if

a= (ap, ag, ag) and x = (x1, X2, X3)
are two vectors in X = Uy x Uy x Uz ~ Uy @ Uy @ Us, then

M/(a)(x) = M/(alv az, aS)(xla X2, X3)

= M(x17a27a3)+M(a17x23 a3)+1\/[<a17327x3)'

This is a direct generalization of the usual product rule (5.62) above.

Examples of Product Differentiations

The following examples of product differentiation are all obtained by the direct
application of Theorem 5.6.2 above. In these examples, A is an open set in a normed
space X.

Example 5.6.4 Product of a scalar function with a vector-valued function. Let
r: A— Randg: A — Y be two differentiable functions. Define

f=rg: A->Yby f(x)=r(x)g(x) € Yforalxc A
Then f : A — X is differentiable and
fi(x) =r"(x) g(x) +r(x)d'(x) € L(X, Y),
or, more explicitly, for all u € X,

Fx) () = r'(x)(w) g(x) + r(x) g'(x)(u) € V.
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To prove this result, define ': A — R x Y by
Fz)=(r{z),g(z)) eRxY,z€ A
and@Q :RxY — Yby
Qla,y)=aycV, (a,y) e RxY,

and apply Theorem 5.6.2 above. A

Example 5.6.5 Inner products. Let Y be a Euclidean space. Let f : A — Y and
g : A — Y be two differentiable functions. Define

h={f, g): A= Rbyh(x) = (f(x), g(x)) forall x € A.
Then h : A — R is differentiable and
W=(fg)+(f,9:A— LX,R)
More explicitly,
K (x) = (f(x), ' (%) + (f'(x), gx)) : X = R
for all x € A. Still more explicitly,
' (x)(u) = (f(x), g'(x)(w)) + (f'(x)(w), g(x)) €R

for all x € A and for all u € X. To prove this result, define F': A — Y x Y by

F(x) = (f(x), 9(x)) € Y XY, x € 4,
and @ =Y xY — Rby

QP a)=(p,a) €R, (p,qg) €Y xY,

and apply Theorem 5.6.2 above. A

Example 5.6.6 Cross products in R3. Let f, g : A — R be two differentiable
functions. Define ¢ : A — R? as the cross product

o(x) = f(x) x g(x) € R3, x € A.
Then ¢ : A — R3 is differentiable and
¢ (x)(n) = f(%)(u) x g(x) + f(x) x ¢ (x)(u) € R®

forallx € Aandu € X. To see this, note that Q(p, q) = p X q defines a multilinear
function @ : R3 x R® - R3. A
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Example 5.6.7 Mixed productsinR®. Let f, g, h : A — R3 be three differentiable
functions. Define ¢ : A — R as the mixed product

¢(x) = (f(x), g(x) x h(x)) € R, x € A.

Then ¢ : A — R is differentiable and

(X)) = (f(x)(u), g(x) x h(x)) + (f(x), ¢'(x)(u) x h(x))
+ {(f(x), g(x) x W (x)(u)) € R

forall x € A and u € X. To see this, note that Q(p, q, r) = (p, q x r) defines a
multilinear function Q : R® x R? x R® - R. A

Example 5.6.8 Products of linear maps. Let R, S : A — L(Y, Y) be differen-
tiable functions. Define

T=5R:A- LY, Y)asT(x) = S(x) - R(x) forall x € A.
Then T : A — L(Y, Y) is differentiable and
=S R+S8 R:A— L(X, L(Y,Y)).
More explicitly,
T'(x) = S(x)  R(x)+S'(x) - R(x): X = L(Y, Y)
for all x € A. Still more explicitly,
T'(x)(u) = S(x) - B'(x)(u) + ' (x)(u) - R(x) € L(Y, Y)

forallx € Aand forallue X. A

Problems

5.58 Leth: R® — R be defined by
h(x) = ||(z —y,y — z,x — 2)||* forallx = (x,y, 2) € R,
where the norm is the Euclidean norm. Compute //(a)(x) for a, x € R>.

559 LetT : X — X be a linear transformation. Let f(x) = (T'x, x), x € X.
Show that (V f(a), x) = (Ta, x) + (T'x, a),a, x € X.

560 LetT, SeL(X,Y)and f(x) = (Tx, Sx)y,x € X. Find Vf(a),a € X.
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561 LetT € L(X,Y)andlet p : X — R be a differentiable function. Find V f
for f(x) = (p(x)Tx, x),x € X.

562 LetT € L(R3, R3) and let ¢ : X — R be a differentiable function. Define
F:R? - R3by F(x) = ¢(x)(x x Tx). Find F'(a)(x).
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CHAPTER 6

DIFFEOMORPHISMS AND MANIFOLDS

Diffeomorphisms are invertible mappings between two open sets that are continuously
differentiable in both directions. The simplest type of diffeomorphism is an invertible
linear transformation. This is a basic concept in linear algebra. Similarly, the study
of diffeomorphisms is a basic part of differential calculus.

Most of the results on diffeomorphisms depend on the inverse function theorem. This
is one of the central results we obtain in this course. It states that if a continuously
differentiable function has an invertible derivative at a point, then its restriction to
a neighborhood of that point is a diffeomorphism. We also call a continuously
differentiable function a C* function.

Diffeomorphisms and the inverse function theorem are the gateway to the study of
manifolds: surfaces, curves and other lower-dimensional structures that are embedded
in a larger space. A good example is the upper half of the surface of the unit
sphere in R3, which is a two-dimensional manifold. We can represent this set
as the image of the unit disk { (z, y) | 22+ y®> <1 } in R? under the mapping
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oz, y) = (z, y, (1 — (x? + y?))*/?). We can also represent the entire surface of
the unit sphere implicitlyas { (z, y, 2) | F(z, y, 2) =1 — (@ +y? +2%) =0 }. It
turns out that there are a number of equivalent ways to define a manifold. In each case,
the best approach is to define what a manifold looks like locally (in the neighborhood
of each of its points) rather than to attempt to represent the entire structure by a single
function. These ideas, as well as the important topic of differentiation on manifolds,
are explored in sections 6.2 - 6.5.

6.1 THE INVERSE FUNCTION THEOREM

We begin with a statement of the inverse function theorem for €' functions. Let
A C X beanopensetand F' : A — X a C! function. If F'(a) : X — X is
invertible at a € A, then a has a neighborhood G C A such that the restriction of F'
to G is a C! diffeomorphism F|g : G — X.

The hardest part of proving the inverse function theorem is to demonstrate the exis-
tence of a continuous inverse. After this is done, the second part of the theorem—
continuous differentiability of the inverse function—follows by routine arguments.
First, we are going to obtain this second part. In what follows, X and Y are two
normed spaces and A and B are open sets in X and Y, respectively.

Lemma 6.1.1 Let f : A — Y be a function and B = f(A). Assume that B is open
inY and f has a continuous inverse g : B — X. If f is differentiable at a € A and
if its derivative T = f'(a) : X — Y ata € A is invertible, then g is differentiable
atb = f(a)and g'(b) = S = T~ .Y — X. Furthermore, if f is a C' function on
A with an invertible derivative f'(a) : X — Y at every point a € A, then g is a C!
function on B.

Proof. Lety, € Y be a zero-sequence. Since b = f(a) € B and since B is open,
assume that (b + y,,) € B without loss of generality. Let x,, = g(b + y») — g(b).
Then x, € X is a zero-sequence because of the continuity of g. Since T is the
derivative of f at a, there is another zero-sequence r,, € R such that

Hf(a +Xn) - f(a) - Txn” = ”yn - TXnH < T'nHXnH
This follows from the definition of the derivative. Hence
%l < Syl + lIxn — Syall
= HSerH + HS(TXn - Yn)”

ISyl + ISTHIT%n = ynll
ISI Nyl + 151 7s [1%nl, and, therefore,

STy ll-

IA A IA

(@ =7 [IS1) lxnll
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Since r, — 0, we will assume that (1 — r,, ||S||) > 1/2 for all n. In this case,

Ixnll < 2|IS) lynll. Therefore
lg(b+yn) —g(b) = Syall = lx»— Syxl
[1S(Txp — yu)ll
[S][ lyn — Txx||
1517 llxn |
2 |51 [ly=]l-

IAIN A

Since 2, ||S]|? — 0, we see that g is differentiable at b and ¢’(b) = S.

To obtain the second part, assume that f is a C' function on A with an invertible
derivative f’(a) : X — Y atevery pointa € A. Hence f' : A — L(X,Y)isa
continuous function and its range is contained in L1y (X, V), the set of invertible
linear operators. The first part of the proof shows that ¢’ = Inv - f’ - g is the
compositionof g : ¥ — X with f': X — Lp,,, (X, Y) and with the inversion Inv :
Liny(X, Y) — L (Y, X). The first two mappings are continuous by assumption.
The inversion mapping is continuous by Theorem 4.4.38. Hence ¢’ : ¥ — L(Y, X)
is continuous as the composition of continuous functions. O

The next step is to prove the inverse function theorem for an important special case
(roughly, the case where ||Df(x) — I]| < 1, i.e., the derivative is "close" to the
identity map). Subsequently, we show that the general case can be reduced to this
special case.

Lemma 6.1.2 Ler f : X — X be a C! function with an invertible derivative f'(a) :
X — X at every point a € X. Assume that there is a A < 1 such that

1f(v) = F(u) = (v —w)|f < Allv —u|
forallu, v € X. Then f(X) = X and f has a C* inverse g : X — X.

Proof. If f(u) = f(v), then ||v — u}| < Allv — u||. This implies ||v — u|| = 0,
since A < 1. Hence f is a one-to-one function. To show that it maps X onto X, we
will show that the equation f(x) = c has a solution a € X for any given ¢ € X. We
obtain a as the limit of a sequence of approximate solutions x,,. This is essentially
Newton’s iteration method, as explained below in Remarks 6.1.7.

Let xg = ¢ and X 4+1 = Xp, + (¢ — f(x,)) for n > 0. Then we have, forn > 1,

Xn4+1 —Xn = Xp—Xp—1— f(xn) + f(xn—l) and 6.1)
Xnt1 = %xull = |Ixn — Xn-1 — f(%xn) + f(Xn-1)l! (6.2)
< Alxp — Xpo1]] (6.3)
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Then || X411 — Xp|| < A™||%x1 — Xol| for all n € N. This follows from (6.3) by an
easy induction argument. Hence the sums

Dl = xall < (30 47) lher =0l < (1= 0 a =

remain bounded. Therefore x,, is a Cauchy sequence in X and lim,, x,, = a exists.
Then f(x,) — f(a) by the continuity of f : X — X. Hence, by taking limits
in the inductive step X,11 = X, + ¢ — f(x,), we obtain f(a) = c. Hence f is a
one-to-one function that maps X onto X.

It follows that f has an inverse function g : X — X. We claim that g is continuous.
Letp, q € X. Let g(p) = u, g(q) = v. Hence p = f(u) and q = f(v). We have

< lla-pli+tlla—p—(v—-u)
= |la—-pll+f(v) = f(u) = (v —u)]
la —pil + Allv—uj.

v =l

IA

Hence ||g(q) — g(p)|| = |Ilv —u]| < (1 — A\)"!||q — p||. This gives the continuity
(actually the uniform continuity) of g on X. Then Lemma 6.1.1 shows that ¢’ : X —
L(X, X) exists and is continuous. O

Lemma 6.1.2 generalizes to the case where |Df(x) — T|| < ||T}|| for some
invertible linear mapping 7.

Corollary 6.1.3 Let f : X — X be a C! function with an invertible derivative
ff(a) : X — X at every point a € X. Let T € L(X, X) be an invertible
transformation with inverse S. Assume that there is a A such that \||S|| < 1 and
such that

[F(v) = f(u) =T(v =) < Alv —uj

forallu, v € X. Then f(X) = X and f has a C! inverse g : X — X.

Proof. Note that ||x|| = {|STx|| < ||S|| ||T%] for all x € X. Hence

1Sf(u) = Sf(v) = (u=v)| < |SIIIf(u) = f(v) - T(u—v)|
< AlSa = vl

If A|lS]| < 1, then Lemma 6.1.2 shows that h = Sf : X — X is invertible. Then
Th = f is also invertible, O

The general case follows from Corollary 6.1.3. The key idea is that if F is C! at a,
then the requirement of the corollary is met locally (with T = DF'(a)). We construct
a function f for which the requirement of the corollary is met over the whole space
X, ensuring that f and F are identical in a neighborhood of a.
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Theorem 6.1.4 The inverse function theorem for C! functions. Ler A C X be an
opensetand F : A — X a C! function. If F'(a) : X — X is invertible at a € A,
then a has a neighborhood G C A such that the restriction of F : A — X to G isa
C! diffeomorphism F|¢ : G — X.

Proof. Let a € A. Assume that T = F'(a) : X — X is invertible. Given & > 0,
find an r > 0 such that Bs.(a) C A and (since F is C!)
”F/(X) — T”L(X,X) <eforallx € Bgr(a) C A. 6.4)

Let ¢ : X — R be a C! function such that ¢(x) = 1if [|x| < 1 and ¢(x) = 0 if
[Ix|| = 2. An example of ¢ is given in Lemma 6.1.6 below. Define, forall x € X,

fla+x) = Fla)+Tx+¢x/r)(Fla+x)— F(a)—Tx). (6.5)

Then
fla+x) = Fla+x) if|x]| <rand (6.6)
fla+x) = F(a)+Tx if||x| > 2r. 6.7)

The function f is thus identical to F inside a ball of radius r around a, and identical
to an affine function outside a ball of radius 2r around a. We claim that f : X — X
is a ! function. In fact, f is a sum of the products of C' functions in the set
lx — a|| < 3r, soclearly f is a C! function in this set. And if ||x — a|| > 2r, then
f(x) = F(a) + T(x — a), so that f is also a C' function in this region. Therefore f
is a C! function on X.

We want to estimate || f'(x)||z(x, x). We first claim that
|[F{a+x)— F(a) —Tx||x < 2er and (6.8)
[F'a+x)=Tlox,x) < € (6.9)

for all ||x|| < 2r. Here (6.9) follows immediately from (6.4). To obtain (6.8), let
A(x) = F(a+x) — F(a) — T'x. Then [\ (x)| < e by (6.9). Hence, by the Mean
Value Theorem,

IAX) = A0)| = |F(a+x) — F(a) - Tx|| < elx|| < 2er
whenever ||x|| < 2r.
The next step, with (6.5) in mind, is to differentiate
d(x) = p/r)(Fla+x)—F(a) - Tx)
to obtain

(x) = (1/r)(Fla+x)—F(a) - Tx)¢'(x/r)
+o(x/r)(F'(a+x) = T).
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Note that ¥/ (x) = 0 for ||z|| > 2r, since then ¢'(x/r) and p(x/r) are both 0. To
derive a uniform bound on ¥(x), let

p = sup, [l¢(x)| and g = sup, [[¢’(x)|. (6.10)

They both exist since they are the upper bounds of continuous functions of compact
support. Then if ||| < 2r, it follows from (6.8) and (6.9) that

[9'(x)| < (1/r)IF(a+x)~ F(a) = Tx]|| l¢'(x/r)]|
+lex/MI N F'(a+x) =T
< (1/r)2erq +pe = (2¢ + pe.

But this bound actually holds for all x, since 9'(x) = 0 for ||z|| > 2r. By definition
(6.5), we also have

9(x) = fa+x)— F(a) - Tx and ¥ (x) = f'(a+x) - T.
Then, again by the Mean Value Theorem, we obtain
[f(u) = f(v) = T(a - v)| < (2¢ + pleflu- v (6.11)

Choose € > 0 so that (2q + p)e||S|| < 1, where S = T~!. Then Corollary 6.1.3
shows that f : X — X is a @' diffeomorphism. Hence f maps any open G C X to
an open f(G), and its restriction to G is a diffeomorphism between G and f(G). But
if we set G = Br(a), then f(x) = F(x) for x € G. Hence F is a diffeomorphism
between G and F(G). O

To complete the proof of the inverse function theorem, the following two lemmas
establish the existence of a function ¢ with the properties exploited in the above
argument.

Lemma 6.1.5 Define iy : R — Ras

1 ift <1
) 1-@2/9¢-1)?% if1<t<5/2
VI =9 (2/9)(4 - 1)2 if5/2 <t <4
0 if4 <t

Then 1y is a C* function.
Proof. This is left as an exercise. See Figure 6.1. O

Lemma 6.1.6 Given a Euclidean space X, there is a ' function ¢ : X — R such
that p(x) = 1if |x|| < 1and o(x) =0if ||x]| > 2.
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0 1 2 3 4

Figure 6.1. Graph of the function in Lemma 6.1.5.

Proof. Let ¢(x) = (||x]|?), where ¢ : R — R is the function obtained in Lemma
6.1.5. Note that ||x]|> = (x, x) is a €! function, X — R, as it is a polynomial.
Hence ¢ is the composition of two C! functions, and therefore a @' function. O

Remarks 6.1.7 Relation to Newton’s iteration method. Lemma 6.1.2 should be
considered the core of the inverse function theorem. The fact that the equation
f(x) = c can be solved for all ¢ € X is the essential component of this theorem.
The other arguments are more or less cleaning up the details. The solution of this
equation is obtained by a simplified form of Newton’s iteration process. Originally
this is used to solve f(z) = 0, where f : I — R is a continuously differentiable
function defined on an open interval I. Let a; € I. If f(ay) = 0, then we are done.
Otherwise, replace the original function f by its affine approximation

filz) = flar) + f(a)(z — ar)

and solve fi(x) = 0. This is a linear equation. Let ag be its solution. Under some
reasonable assumptions, as is a better approximation for a solution. Continue this
process to obtain a sequence a,,. If it converges, the limit is a solution for f{z) = 0.

We follow this method in the proof of Lemma 6.1.2. Actually, things are even simpler.
We start with x; € X. The affine approximation of f at x; is

filx) = fx1) + f1(x1)(x = x1).
Instead of this function, we replace the derivative f'(xq) : X — X by the identity
I:X — X anduse
g1(x) = f(x1) + (x — x1).
This is reasonable, since our hypotheses imply that all the derivatives of f are close

to the identity. In fact, we see that if f : X — X is a differentiable function such
that

1f(v) = f(u) = (v —w)[l < Alv —u|

forallu, v € X, then || f'(x) ~ Illn(x, x) < Aforall x € X. The solutions of

gn(X) = f(xXn) + (x —xn) =c
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give a sequence that converges to the solution of f(x) = c.

Lemma 6.1.8 Graph diffeomorphisms. Let X and Y be Euclidean spaces, A an
open subset of X, and f : A — 'Y a C! function. Define F as

Fx,y)=(xy+ f(x), (x,y) € AxY. (6.12)

Then F: A XY — A x Y is a diffeomorphism.

Proof. Let (a, b) € A x Y and (x, y) € X x Y. We see that
F'(a, b)(x, ¥) = (x, y + f(2)x). (6.13)
We see that F'(a, b)(x, y) = (0, 0) implies that (x, y) = (0, 0). Hence,
F(a,b): X xY - X xY (6.14)
is an isomorphism. Also, F': A x Y — A x Y is invertible with the inverse
FUx,y) = (xy = f(x). (6.15)

Hence F': A x Y — A x Y is adiffeomorphism. O

Definition 6.1.9 Graph diffeomorphisms. The diffeomorphism
F:AxY - AxY (6.16)

defined in Lemma 6.1.8 is called the graph diffeomorphism induced by f : A — Y.

Examples of Diffeomorphisms

Let X and Y be two Euclidean spaces, A an open setin X, and f : A — Y a C!
function. To find out if f is a diffeomorphism, we start with the routine part of the
test. Compute the derivative f'(x) € L(X, Y') at a general point x € A and see if
this is an invertible linear transformation for all x € A. If f passes this test, then
it may be a diffeomorphism. At this stage, we know that the range B = f(A) is
also an open set. (Why?) We do not know, however, if f has an inverse function
g : B — A. The inverse function exists if and only if f is a one-to-one function on
A. The verification of this point may not be easy. Being a one-to-one function is not
a local property, and here there is no help from calculus.

Nevertheless, the inverse function theorem tells us that if f'(a) : X — Y is an
invertible linear transformation for a certain a € A, then the restriction of f to a
small enough neighborhood of a is a diffeomorphism. In general, this is all we need
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to know in differential calculus, as this study involves the properties of functions only
in small neighborhoods.

It is useful to consider the part of the domain A where f : A — Y has an invertible
derivative. We refer to this part as the regular part of the domain.

Definition 6.1.10 Regular part of the domain. Let f : A — Y be a C! function.
Then its regular domain (or the regular part of its domain) is

Ag={alac 4, f(a): X —Y isinvertible }. (6.17)

Note that Ag is also an open set. (Why?)

Example 6.1.11 Define f : R — R by f(x) = 2. What is the regular part of its
domain? Give examples of the subsets of the regular domain on which the restrictions
of f are diffeomorphisms.

Solution. We have f'(a) = 2a for all @ € R. This defines an invertible transforma-
tion x — 2ax for all @ # 0. Hence, Ay = R\ {0} = (—o0, 0) U (0, oo). For all
a € Ag, there is a neighborhood of ¢ where f is a diffeomorphism. In particular,
there is a neighborhood of a € Ag in which f is one-to-one. This is not true at
0 ¢ Ap. There is no neighborhood of 0 in which f is one-to-one. We see that the
restrictions of f to (—oo, 0) and to (0, o) are diffeomorphisms. The restriction of
fto (—oo, —3) U (1, 3) is also a diffeomorphism. A

Example 6.1.12 Define f : R — R by f(z) = x3. What is the regular part of its
domain? Give examples of the subsets of the regular domain on which the restrictions
of f are diffeomorphisms.

Solution. We have f/(a) = 3a?. Hence A4p = R\ {0} = (—o0, 0) U (0, o0). We
see that f : R — R is one-to-one and onto R. Hence it has an inverse g(z) = /3.
The restriction of f to Ay is a diffeomorphism fy : Ag — R, but f itself is not a
diffeomorphism, since its inverse g is not differentiable at 0. A

What about functions from R? — R? or from R* — R3? Chapter 1 provides many
examples, and we can ask about their invertibility or the invertibility of their various
restrictions. Some of the problems in this section require finding the regular parts
of their domains. Here, we shall consider only the spherical coordinates mapping
defined in Example 1.3.14.

Example 6.1.13 Spherical coordinates. Define F : R? — R3 as

F(p, 0, ¢) = (psinpcosf, psinpsing, pcosy). (6.18)
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What is the regular part of its domain? Give examples of subsets of the regular
domain on which the restrictions of F' are diffeomorphisms.

Solution. The standard coordinates of the domain space R® are denoted as (p, 0, )
in this example. The derivative F'(p, 6, ) : R® — R3 transforms the vectors in the
standard orthonormal basis of the domain space to the vectors

8—F p, 8, 0) = (singpcosf, sinpsing, cosy (6.19)
dp

oF . . .

5 (p, 0, ¢) = (—psinpsing, psinpcosf, 0) (6.20)
I3

g—@ (p, 0, p) = (pcospcost, pcospsind, —psinp) 6.21)

in the range space R®. An easy check shows that these vectors are orthogonal to
each other and their norms are, respectively, 1, psin, and p. Hence the standard
orthonormal basis of the domain is an eigenbasis (Definition 3.6.3) for the derivative.
The derivative is invertible unless psiny = (. Hence the regular domain of the
spherical coordinates is obtained by removing the planes

p=0, p=kr (k€Z) (6.22)

from the (p, 6, ¢)-space. We see that all the values taken by F on its regular domain
are also taken on the part of this domain defined by 0 < pand 0 < ¢ < 7. The
restriction of F’ to this part is still not a diffeomorphism, since the points 8 = 8+ 2k,
k € Z, with a fixed 6y € R, are all mapped to the same point in the xyz-space. To
obtain a diffeomorphism, we have to restrict the domain of # to a convenient interval
like (0, 27) or (—m, ). Hence the restrictions of F to

A = {(pb,9)|0<p 0<f<2r, 0<p<m}orto (623)
A = {(p0,9)|0<p, —T<lh<m,0<p<7} (6.24)

are diffeomorphisms. Again, an exact choice of these regions is not too important.
Note that p sin ¢ = 0 corresponds to the points on the z-axis in the xyz-space. Hence
as long as a point (x, y, z) is away from the z-axis, then a neighborhood of that point
will be the diffeomorphic image of a region in the pfp-space under the function F'
defined in (6.18). A

Remarks 6.1.14 A visualization of spherical coordinates. One usually attaches
the values of p, 6, and @ to the image point F'(p, 0, ) in the zyz-space to obtain a
visualization of this coordinate system, as in Figure 6.2.

Example 6.1.15 For any open bounded interval I of R, there is a diffeomorphism
f+ I — R. We obtain this diffeomorphism as follows. There is a diffeomorphism
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(X.y.z)
N ey

Y

Figure 6.2. Spherical coordinates.

g: I — (—=m/2,7/2). Also, the function h(z) = tanz is a diffeomorphism from
(—m/2,7/2) onto R. Thus, f = h-g: I — Ris a diffeomorphism.

Example 6.1.16 Let g : R? — R? be defined by g(x) = (x + €%,y + €%,z + €%)
forall x = (x,y, z) € R®, Then

1 e 0
fixy=10 1 e*
e 0 1

Hence, det f'(x) = 1 + e®*¥7= = 0 for all x € R3. So, at each point x € R3,
there is an open set U of R? containing x such that the restriction of f to U is a
diffeomorphism.

Example 6.1.17 There are r > 0 and s > 0 such that if |a — 8] < r and |b] < r,
then the system of equations

Il
o

x4 22y 4+ 9°
yr® —3z'y +y® = b
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has a unique solution (x, y) such that |z — 2| < s and |y| < s. To see this, let

flz,y) = (@ + 22%y + y?, y2® — 32y 4+ y3) forall (z,y) € R2.

Then
, B 3x? + dxy 2% + 2y
fla,y) = [ 2ry — 1223y 22 — 3z* + 3y |
Hence,
, | 12 8
f(270)”“[ 0 _44:|

is invertible. Also, f(2,0) = (8, 0). Hence, by the inverse function theorem, there is
an open set U containing (2, 0) and an open set V' containing (8, 0) such that f maps
U onto V in a one-to-one way. In particular, for all (a,b) € V, there is a unique
(z,y) € U such that f(z,y) = (a,b).

Problems

6.1 Let
A = {x:(x,y)€R2|x>0,y>0},
B = {x=(zy)eR*|y>0}.

Let
f(x) = (2% -9 2zy) forallx € A.

Show that f is a diffeomorphism from A onto B.
62 LetD={x=(z,y,2) R |z >0,y>0,2>0}. Let

f(x) = (zy,yz,zz) forallx € D.
Show that every point in D has a neighborhood on which f is a diffeomorphism.
6.3 Let D be an open subset of W and f : D — Z a continuously differentiable
function. Suppose that f'(x) : W — Z is an isomorphism for all x € D. Show that
f(D) is an open subset of Z. In addition, if f is one-to-one on D, then show that f

is a diffeomorphism on D.

64 Let f(x) = (23 +x,9° + 9,25 + 2) forall x = (z,y,2) € R3. Show that
f: R® — R3 is a diffeomorphism.
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6.5 Let

A = {(z,y) eR*|zeRO<y<7},
B = {(z,9)eR’|y>0}.

Define f : A — R? by
f(x) = (e" cosy,e®siny) forallx = (z,y) € RZ.
Show that f is a diffeomorphism from A onto B.
6.6 Let F: R* — R* be defined by
F(x)= (x1, 79,2322 + 23,2, — 29 + xy) forall x = (x1, 2,23, 24).

Show that F is a diffeomorphism.

6.7 Define f : R? — R2 by f(z,y) = (e® + e¥,e® — e¥). Show that f is a
diffeomorphism. What is the range of f?

6.8 Define f from the xy-plane to the uv-plane by
(u, v) = flz, y) = 3z + 2y, 6z + 4y).

Give some examples, if exist, of open sets in the zy-plane such that the restrictions
of f to these sets are diffeomorphisms. (Cf. Problem 1.30.)

6.9 Repeat Problem 6.8 for
(u, v) = f(z, y) = 3z + 2y, 6z — 4y).
(Cf. Problem 1.31.)
6.10  Repeat Problem 6.8 for
(u, v) = f(z, y) = (zy, y/z).
(Cf. Problem 1.32.)
6.11 Repeat Problem 6.8 for
(u, v) = f(z, y) = ((° +y°)/(22), (2* +y°)/(29)).

(Cf. Problem 1.33.)

6.12 Repeat Problem 6.8 for

(u, v) = f(z, y) = (" + y* + 1)/(22), (z> +y* = 1)/(2y)).
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(Cf. Problem 1.34.)

6.13 Repeat Problem 6.8 for

(u, v) = f(x, y) = (p(x, y) + q(z, y), p(z, ¥) — q(z, y)),
where p(z, y) = ((z +1)2 + y*)/? and g(z, y) = ((z — 1)? +y?)"/2.
(Cf. Problem 1.35.)

6.2 GRAPHS

Graphs are among the most basic examples of manifolds in Euclidean spaces. A
manifold (to be defined formally in the next section) is a set that coincides with a
graph in a neighborhood of each one of its points. Hence, a manifold can also be
called a local graph.

Graphs were defined in Definition 1.3.1. From now on, we will use the term ‘graph’
in a slightly restricted sense. The intended meaning will be clear from the context.

Definition 6.2.1 Graphs. A set I in a Euclidean space Z is called a graph if there is
a coordinate system (X, Y') for Z, an open set A in X, and a C! function f : A — Y
such that

P={(x,y)eZ|xcA y=fx)}.

Usually we assume that (X, Y) is an orthogonal coordinate system. This is not a
restriction of generality. If dim X = k and dim Z = n, then I is a k-dimensional
graph in an n-dimensional space. A function f : A — Y is also denoted as
y = f(x), x € A, or even more simply as y = f(x). The function y = f(x) is
called an equation or an explicit equation for I'.

Definition 6.2.2 Tangent spaces. Let ' be the graph of y = f(x). The linear
tangent space T of T" at ¢ = (a, f(a)) € T is the graph of the linear function
y = f'(a)x. The affine tangent space AT, of T at the same point is the graph of the
affine function

y = f(a)+ f'(a)(x —a). (6.25)
This is an explicit equation for the affine tangent space at ¢ = (a, f(a)) € I
When the meaning is clear from the context, we will omit the distinction between

these two tangent spaces and call them both the tangent space at ¢ € I'. Note that
AT, =c+ Tg.

Remarks 6.2.3 Graph and tangent space as diffeomorphic images of A and X.
Let T" be the graph of a function f : A — Y. Let F(x, y) = (x, ¥y + f(x)) be the
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graph diffeomorphism induced by f as defined in Definition 6.1.9. Consider A as a
subset of X X Y ~ X @Y. Then we see that I" = F'(A) is the image of A under the
diffeomorphism F'. Similarly, the tangent space T4, f(a)) i$ the image of X under
the graph diffeomorphism X x ¥ — X x Y induced by f'(a) : X — Y. The affine
tangent space AT (4, f(a)) is the image of X under the graph diffeomorphism induced
by the affine function that takes x to f(a) + f/(a)(x — a).

Remarks 6.2.4 Dependence on the coordinate system. The definition of the tan-
gent space given above is in terms of a coordinate system. Different coordinate
systems for a graph actually give the same tangent space. This is noted in Remarks
6.3.23 below. A direct proof of this independence is now possible, but later arguments
give a more systematic approach.

Definition 6.2.5 Normal spaces. The orthogonal complement N, of the tangent
space T¢ is called the normal space. Again, one may distinguish between the linear
normal space NV, and the affine normal space AN, = ¢ + N,.

AN.=c+N,

ATe=c+T,

c=(a, f(a)) r

] / °
/

Figure 6.3. Graph with tangent and normal spaces.
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Theorem 6.2.6 Equations of normal spaces. Let I be the graph of a C function
y = f(x) in the coordinate system (X, Y). Then

x=—f(a)*yandx =a— f'(a)*(y — f(a))

are explicit equations for the linear normal space and for the affine normal space
of T at the point ¢ = (a, f(a)) € T and in the coordinate system (Y, X). Here
fl(@)y 1Y — X isthe adjoint of f'(a) : X = Y.

Proof. We have (x, y) € N, if and only if (x, y) L Ta. Vectors in T} are of the
form (u, f'(a)u), u € X. Hence (x, y) € N if and only if

(% y), (u, fllAu)z = (x, ux+{y, f(@u)y (6.26)
= (x,wx +{(f(a)y, ux (6.27)
= (x+ f'(a)'y, u)x =0 (6.28)

for all u € X. This happens if and only if x = —f’(a)*y. This is an explicit
equation of N, in the coordinate system (Y, X). Then the equation of the affine
normalj space also follows. O

Scalar Equations

Let (X, Y) be a coordinate system in Z withdim X =k, dimY = ¢, and dim Z =
k+{=mn.Letx; : X - Randy; : Y — R be the coordinate functions with respect
to some bases in X and in Y. Then a vectorial function y = f(x) is expressed in
terms of £ scalar functions of & variables as

yj:fj(l’l,...,l'k), ]:1,,€

These are the explicit scalar equations of a k-dimensional graph I" in an n =
(k + #)-dimensional space. The scalar equations of the affine tangent space at
(@1, ..., ag; by, ..., be), where b; = f;(as, ..., ax), are

(v = b)) =3, (@F;/0)(ar, ... an)(ws — i),

The affine normal space at the same point is given as

(0 =) ==Y, (Ofi/0z)(ar, ..., ar)ly; ~ ).

Examples of Graphs

Example 6.2.7 Let T = { ((2,y,2), (z? — yz,4® — 22)) | (z,y,2) € R® }. Then
T is a three-dimensional graph in R®. Here, Z = R>, X = R Y = R? A = X,
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and f: A — Y isdefined by f(x) = (2% — yz,9y? — z2) forallx = (x,y, z) € R3,
Note that f : R® — R?, Also,

re= T

-z 2y -—=x
Let a = (1,—-1,2). Then the linear tangent space ['¢ to F at c = (a, f(a)) is the

graph of the function L{x) = f’(a)x. Now, f'(a) = [ i ] so that

I. = {(x,f'(a)x)|xeR®}
= {(x,(?w—2y+z,—2x—2y~z)) |x = (z,y,2) eR* }.
Since f(a) = f(1,—1,2) = (3, —1), the affine tangent space to I at c is

Ae = {(x,f(a)+f’(a)(x»a)|xeR3}
= {(x,(22 -2y +2-3,-2z-2y—2z+1)) |xeR®}.

The equations for the linear normal space and affine normal space in the coordinate
system (R?,R?) of RS are, respectively,

x = —f'(a)'y and
x = a—f'(@)"y— f(a)
Here,
2 -2
Jay=| -2 -2
1 -1

In particular, the linear normal space to I at ¢ is
Ne = { (u, (20 — 2u, 2u + 2v,v — u)) Iu—uv)€R2}
Similarly, the affine normal space to I" at ¢ is
4t = {(wa-f@(u-f@)|uck®}
= {(u,(-7-2v+2u,7 - 2u—2v,—v+u))| ueR?}.
Example 6.2.8 The set
S={(x,2* +y+22)|x=(z,y,2) eR®}

is a surface in R%. The affine tangent space to S at P((1,0,1),3) is the set of all
(x,u) in R* given by

u—3=(Vf(1,0,1),x —(1,0,1)) = {(2,1,2),(z — 1,4,z — 1))



242 DIFFEOMORPHISMS AND MANIFOLDS

or

u—3=2(x—-1)+y+2(z—-1).
The equation of the normal line to S at P is

(r—1,y,z—1)=—(y—3)Vf(1,0,1) = —(y — 3){2,1,2).

Problems

6.14 Let I be the graph of f : R® — R3, where f(x) = (2?y, 4?2, 2%z) for all
x = (z,y,2) € R3. Leta = (1,—1,1). Find the linear tangent space, the affine
tangent space, the linear normal space, and the affine normal space to I" at the point

(a, f(a)).
6.15 Show that the linear tangent space to the graph of a function f: R™ — R"
at (0, £(0)) is the same as the linear tangent space to the graph of y = f(x — a) at

the point where x = a.

6.16 Let T be the graph of some f : R?> — RZ2. Suppose that the linear tangent
space I at the point where x = 0 is

{(@y), @2z —y.2+9) | (@,y) R }.

If T : R? — R? is defined by T(z,y) = (2? + 2z,%? + yz), find the linear tangent
space to the graph of g = f - T at (0, g(0)).

6.17 Let I' be the graph of f: R™ — R". Let a,b be in R™ such that

f'(b)*f'(a) = —I. Show that the linear tangent space to I at (a, f(a)) and the

linear tangent space to T at (b, f(b) are orthogonal subspaces of R™*".

6.18 Find the affine tangent space to the surface
S={(x,z+e€¥—-2%)|x=(z,y,2) R’}

at the point P((1,0,2), —2).

6.19 The linear tangent space to the graph of a function f : R™ — R at any point
(a, f(a)) is a subspace of R"*1. Show that this subspace has dimension n.

6.20 If I is the graph of f: R™ — R¥, is it true that the dimension of the linear
tangent space to I" at a point (a, f(a)) is always m?
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6.3 MANIFOLDS IN PARAMETRIC REPRESENTATIONS

We would like to use graphs to investigate surfaces and curves and other similar
structures in Euclidean spaces. Qur definition of graphs is too restrictive for this
purpose. The unit circle

{(z,y) eR?*|®+y* =1},

for example, is not a graph. In fact, there is no single equation that expresses one
of these variables in terms of the others. One possibility is y = +(1 — 2?)1/2.
This is not a function, however, as it does not determine y uniquely. One may try
y = +(1 — 22)1/2 to represent the upper half of the circle, but this does not give the
points below the x-axis. Hence we must modify our definitions to include this and
other important cases. Manifolds are defined for this purpose. They are the sets that
agree with a graph in small neighborhoods.

Definition 6.3.1 Manifolds. A set M in a Euclidean space Z is called a manifold
if for each m € M there is an open set G and a graph I' such that m € G and
G N M = GnNT. If the graphs associated with the points of M are all of the same
dimension k, then M is called a k-dimensional manifold. Tt is clear that a graph is
also a manifold.

In a more explicit form, a set M in Z is a manifold if for each point m € M there is
an open set G, an orthogonal coordinate system (X, Y') for Z, an open set A C X,
and a ! function f : A — Y withits graph I'suchthatm € GandGNM = GNT.
If this can be done at each m &€ M with a k-dimensional X, then M is called a
k-dimensional manifold.

Example 6.3.2 Let M be a manifold in a Euclidean space Z. Let A be an open set in
Z suchthat B = M N A # (). Then B is amanifold. To see this,letm € B = MNA.
Then m € M, so there is some open set G and a graph I' such that m € G and
GNM = GnT. Hence, Go = AN G is an open set containing m and

GoNB=GoN(MNA)=(ANG)N(MNA) =(GNM)NA=TnNA.

Since T"is a graph and A is open, it is easy to verify that I’ N A is also a graph. Hence,
B is a manifold.

Example 6.3.3 A sphere is a manifold. Let
Ml—‘:{(l‘, Y, Z)ER3I$2+y2+22=1, Z>0}

be the upper half of the unit sphere without the equator. Then M, is the graph
of z = +(1 — 22 — y?)'/2 defined on the open disc 2% + y? < 1. The lower
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hemisphere is also a graph. To include the points on the equator, consider the graphs
of x = +(1 —y? - 2)Y2and z = —(1 — y* — 2%)"/? defined on > + 2% < 1.
These four graphs still miss the two points (0, 4-1, 0). They can be covered by the
graphs of y = +(1 — 22 — 22)/2 and y = —(1 — z? — 22)'/2. Hence we use six
graphs to include all points of the unit sphere. Implicit representations of manifolds
will provide an easier way of showing that a sphere is a manifold.

Definition 6.3.4 Curves and surfaces. A one-dimensional manifold is called a
curve and an (n — 1)-dimensional manifold in an n-dimensional space is called a
surface. We see that a circle is a curve in R? and a sphere is a surface in R3.

Example 6.3.5 Let C = { (¢,t%,¢',1—t) [t € R }. Then C is a one-dimensional
graph in R%. In particular, C is a curve in R%,

Let § = { (x,y,2,2%yz) |z >0,y > 1,2 > 2 } Then S is a three-dimensional
manifold in R4. Hence, S is a surface in R%.

Parametric Equations of Manifolds

An explicit equation for a graph is a function that defines this graph. In general,
there are three ways to characterize a manifold: by graphs, by parametric equations,
and by implicit representation. Having dealt with graphs, we now turn to parametric
equations; implicit representations are discussed in the next section.

Parametric equations are familiar from cases such as the parametric equations of the
unit circle: z = cosu, y = sinu. The omission of the domain of v is not accidental,
as there are some difficulties to be resolved in connection with this domain. See the
remarks in Remarks 6.3.10 below.

We will assume without loss of generality that all spaces considered below are
Euclidean spaces even if this is not explicitly stated. In particular, U and V denote
two subspaces of W and X and Y two subspaces of Z.

Lemma 6.3.6 Let H be an open set in W and ® : H — Z a diffeomorphism. Let
U be a subspace of W and C' = U N H. Then each ¢ € C has neighborhood E in
U such that ®(E) is a graph in the coordinate system (X, Y'), where X = ®'(c)U,
andY is any subspace of Z complementary to X. Also, there is an open set G C Z
such that ®(E) = G N ®(C).

Proof. Let P : Z — X and () : Z — Y be the coordinate projections. Then
P-®:.C — X isaC! function, as a composition of €1 functions. Also,

(P-®)(c)=P¥(c):U—X (6.29)
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by the chain rule. Note that P®'(c) : U — X is an isomorphism. In fact, T’ =
®'(c) : W —» Z is an isomorphism as the derivative of a diffeomorphism. Then
the restriction of 7" to a subspace U is an isomorphism between U and X = TU.
Therefore, the inverse function theorem gives an open set £ in U suchthatc € E C C
and such that the restriction of P-® : C — X to E'is a diffeomorphism#n : £ — X.
We have

@(u) = (PB(u), Q(u)) = (n(u), Q&(w)), u e E.

Let n(E) = A be the range of n and ¥ : A — F the reverse diffeomorphism. If
n(u) = x, then let u = ¥(x). Hence, ®(u) = (x, QP(I(x))) forall u € E. We
seethat f = Q-®-9: A — Y is acomposition of C! functions. Hence, f : A — Y
is also a C! function. Therefore ®(E) is the graph of this function in the coordinate
system (X, Y'). Also, HN(E x V}isanopensetin H. Hence G = ®(HN(ExV))
is an open set in Z containing m = ®(c). We see that G N &(C) = O(E), since
UNnHN(ExV)=E. O

Theorem 6.3.7 Parametric representations of manifolds. Let H be an open set in
W and ® : H — Z a diffeomorphism. Let U be a subspace of W and C = U N H.
Then ®(C) = M is a manifold in Z.

Proof. Lemma 6.3.6 above shows that each m € ®(C) has a neighborhood G in Z
such that G N ®(C) is a graph. Hence M is a manifold. O

Example 6.3.8 Let f(x) = (z° — y°, 2% + ¢°) for all x = (z,y) € R?. Then

5z —hyt

M) —
det f'(x) = det { srt 5yt

} = 5024y

Let H be any open subset of R? that does not contain any point x for which z = 0
or y = 0. Then f/(x) is invertible for all x € H. Also, f is one-to-one on all of
R2. In fact, 2% — 3% = 2§ — ¢ and 25 + y® = 2} + y? imply that 2° = z3. Then
x = z1 and hence, y = y;. Therefore, f : H — R?isa diffeomorphism. Hence, by
Theorem 6.3.7, f(H) is a manifold in R?.

Definition 6.3.9 Parametric equations. Let C be an open set in a Euclidean space
U. A function z = ¢(u), u € C, is called a parametric equation for a manifold if
@ : C — Z is the restriction of a diffeomorphism ® : H — Zto C' = HNU. Here
H is an open set in a space W that contains U as a subspace. The diffeomorphism
® : H — Z is referred to as an underlying diffeomorphism.

Remarks 6.3.10 A difficulty with parametric equations. If z = p(u), u € C,
is a parametric equation, then we see that ¢ : C — Z is a ! function and its
derivative ¢'(c) : U — Z is a one-to-one linear map at every point ¢ € C. The
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converse is not true. A function with these properties is not necessarily a parametric
equation. Let ¢ : C — Z be such a function. It may not be easy to find out if
z = p(u), u € C, is a parametric equation. Fortunately, this is not too important for
our purposes. In differential calculus one is interested in the behavior of a function
in the neighborhoods of a point. In this case, Theorem 6.3.12 shows that any point
c € C has a neighborhood C; C C such that ¢ restricted to C; is a parametric
equation z = ¢(u), u € Cy. Hence (C}) is a manifold even though ¢(C) might
not be a manifold. To refer to this type of case, it is useful to define local parametric
equations.

Definition 6.3.11 Local parametric equations. Let C be an open set in a Euclidean
space U. A function z = ¢(u)}, u € C, is called a local parametric equation if every
¢ € C has a neighborhood C; C C such that z = ¢(u), u € C4, is a parametric
equation for a manifold M;. There may not be a single manifold M that contains all
such M, as subsets. The following is an important result.

Theorem 6.3.12 Let C be an open set in U and ¢ : C — Z a C! function such that
Y'(c) : U — Z is a one-to-one linear map at every point ¢ € C. Then z = p(u),
z € C, is a local parametric equation.

Proof. Let V be a space withdimV = dim Z —~dimU and W =U x V. Letc € C
and X = ¢'(c)U. Since ¢'(¢) : U — Z one-to-one, we see that dim X = dim U.
Let Y = X+. Then dimY = dimV. Let S : V — Y be an isomorphism,
and as usual let P and @ be orthogonal projections onto X and Y. For each
(u,v) e CxVcCcW,let

O(u, v) = (Po(u), Qp(u) + Sv) e X xY = Z.

This defines a C! function ® : H — Z, where H = C x V is an open set in W. Its
derivative ®'(c, 0) : W — Z at (c, 0) € H is given as

?'(c, 0)(u, v) = (Py'(c)u, Q¢(c)(u) + 5v)
= (Py/(c)u, Sv), forall (u, v) € W.

To obtain the second equality, note that ¢'(c)u € X by the definition of X. Hence
Q¢'(c)(u) = 0. We see that &’(c, 0) : W — Z is invertible. Hence, by the inverse
function theorem, there is an open set 1 C W such that (¢, 0) € H; C H and such
that the restriction of ® to H, is a diffeomorphism ®;, : H — Z. Let C, = U N Hy.
Then, by Theorem 6.3.7, ¢ : Ciy — Z is a parametric equation for the manifold
M1 = <I>1(C1) O
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Example 6.3.13 Let C = (-2, 2 + (3/2)7) C R and let Z = R? be the zy-plane.
Define ¢ : C — Z by

(u, 0) if —2<u<0,
w(u) =< (sinu, 1 —cosu) if 0<w<(3/2)r,
(—1,1+3/2)r—u) if (3/2)r <u<2+(3/2)n.

Then ¢ : C — R? is a @' function with a one-to-one derivative at every point.
Hence, ¢ is a local parametric equation. But ¢(C) is not a manifold and ¢ is not the
parametric equation of any manifold. This is clear from Figure 6.4, as ¢(C) cannot
be a manifold in any neighborhood of (—1, 0). One may think that this is due to the
fact that ¢ is a not a one-to-one function. Also consider Cy = (=2, 14+(3/2)7) C R
and

(u, 0) if 2<u<0,
wo(u) =< (sinu, 1 —cosu) if 0<u<(3/2)m,
(=1, 1+ (3/2)r —u) if (3/2)x <a <14 (3/2)m.

We see that ¢ : Cy — R? is a one-to-one local parametric equation but still is not a
parametric equation. Problem 6.27 gives a sufficient condition for a local parametric
equation to be also a parametric equation.

y
(A y /
2,0 1o X
Y

Figure 6.4. Local parametric equations in Example 6.3.13.
Example 6.3.14 Let g : C — R3 be defined by g(u) = (v? + vw, v* — w, w?), for
allu = (u, v, w) € C, where
C={ueR|u#0,v#0,w+#0}.

Then z = g(u),u € C is a local parametric equation.
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Example 6.3.15 Explicit and parametric equation. Let I' be the graph of a C!
function f : A — Y in the coordinate system (X, Y). Then I" = M is a manifold.
The explicit equation y = f(x) for I" defines a natural parametric equation for M.
Infact,let H = A x Y andlet ® : H — Z be the graph diffeomorphism induced by
p, as defined in Definition 6.1.9. Hence

B(z) =2(x, y) =(x, y + f(x)), z=(x,y) € H.
The restriction of ® to A = H N X is a parametric equation

w(x) = (%, f(x)),x € A, forT.

Compatibility of Two Parametric Representations

Many concepts and operations related to manifolds are defined in terms of parametric
equations. Clearly, we must show that such definitions are independent of the
parametric equation used. Hence we develop some notations and relations about
different parametric representations that agree on a part of a manifold.

Notations 6.3.16 Different parametric equations. Let H; be open sets in W,
i =1,2,and ®; : H; — Z diffeomorphisms, G; = ®;(H;). Let U; be a subspace
in W;, and C; = H; N U;. Assume that ®(C) N ®2(Cy) = M is not empty. Then
G, N G5 is not empty either, as it contains M. Without loss of generality, we will
assume that G; = G». If originally this is not the case, then we let G = G; NG5 and
replace H; by H} = ®;'(G) C H; and ®; by the restriction of ®; to H}. Hence we
assume that

®, : H; — Z are two diffeomorphisms; (6.30)
&, (Hy) = ®3(Hy) = G;and (6.31)
D1(C1) = §3(C2) = M, where (6.32)
C;,=U,NH,. (6.33)

Definition 6.3.17 Equivalent parametric equations. Let ¢; : C; — Z be two
parametric equations. Let ®; : H; — Z be the underlying diffeomorphisms. Call
;s equivalent if ®;s are equivalent in the sense that they satisfy the conditions
(6.30) - (6.33) in Notations 6.3.16. Arguments above in Notations 6.3.16 show that if
©1(C1) Na(Cs) = M is not empty, then there is no loss of generality in assuming
that they are equivalent.

Lemma 6.3.18 Diffeomorphisms for equivalent parametric equations. Let ; :
C; — Z be two equivalent parametric equations. Then there is a diffeomorphism
9 : C1 — Cy such that o1 = pg - V.



MANIFOLDS IN PARAMETRIC REPRESENTATIONS 249

Proof. Use the underlying diffeomorphisms ®; : H; — G to define
=0, 9, :H — Hs.
We see that ©(C1) = C5 and that ®)(c1)U; = Us forall ¢; € C. Let
¥ =0|¢, : C1 — Ho

be the restriction of © to C, We verify easily that 3(C1) = Cyand 9 : C7 — Cs is
a diffeomorphism. It is clear that p; = w9 - 9. O

Remarks 6.3.19 One can define 9 : C; — Cs directly as 9(u;) = 5 ' (1(u1)),
without any reference to the underlying diffeomorphisms. This expression is defined
since ; : C; — M are both one-to-one functions that map C; onto M. It is not
clear, however, if 9 : C7; — Cs is a diffeomorphism of C onto Cs.

Lemma 6.3.20 Let ; : C; — Z be two equivalent parametric equations. If
(Pl(cl) = @2(02) = m, then (,Oll(cl)Ul = (,0/2(C2)U2.

Proof. Let ¥ : C; — C5 be the diffeomorphism obtained in Lemma 6.3.18. Then
w(c1) = p2(¥(c1)) = m shows that ¥(c;) = co. Therefore

¢ (1)Ut = @h(e2) (€1)Ur = ¢i(c2)Vo.

The first step follows from the chain rule. To obtain the second step, one observes
that ¥’ (¢, )Uy = Uy, since ¥'(¢y) : Uy — Uy is invertible. O

Remarks 6.3.21 A diffeomorphism for equivalent equations. In the proof of
Lemma 6.3.20 above, one essentially uses only ¥ = O|¢, : C; — Ca. This can
be defined without any reference to the underlying diffeomorphisms, as ¥(u;) =
@5 ' (p1(c1)). This is defined since both ¢; : C; — M are one-to-one functions that
map C; onto M. Hence, m = o1 (u;) € M and @5 ' (m) € C exists. It is not clear,
however, if ¢ : C; — C5 is a diffeomorphism of C; onto Cs. By referring to the
diffeomorphisms P;, we see that this is indeed the case.

Tangent Spaces of Manifolds

Definition 6.3.22 Tangent spaces. Let A be a manifold in Z and m € M. Let
¢ : C — Z,C C U, be a parametric equation for M with m € ©(C). Then
the linear tangent space of M at m is the subspace T(m) = ¢'(c)U in Z. Note
that if ® : H — Z is the underlying diffeomorphism for ¢ : C — Z, then also
®'(c)U = T(m). A parametric equation for T(m) is z = ¢’(c)u, u € U. Lemma
6.3.20 shows that 7'(m) is independent of the parametric equation used.
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Remarks 6.3.23 Agreement with the earlier definition. The tangent space of a
graph was defined earlier in Definition 6.2.2. In fact, if a graph I' is given by the
explicit equation y = f(x), x € A, then

2= p(x) = (x, f(x)), x € A

is a parametric equation for I', as observed in Example 6.3.15. Then the tangent
space T'(m) at m = (a) has the parametric equations

z = ¢'(a)x = (x, f'(a)x), x € X.
Therefore an explicit equation for 7(m) is y = f/(a)x.
Definition 6.3.24 Normal spaces. Let M be a manifold in Z and m € M. The

normal space N (m) at m is the orthogonal complement of the tangent space T'(m).
Hence N(m) = T(m)>.

Some Properties of Tangent Spaces

Theorem 6.3.25 Tangent spaces and graphs. Let M be a manifold and let X =
T'(m) be the tangent space of M at m € M. Then m has a neighborhood G such
that M NG is a graph in the coordinate system (X, Y'), where Y is any subspace of
Z complementary to X.

Proof. Let ® : H — Z be a diffeomorphism such that
m=®(c) e P(HNU) C M.

Lemma 6.3.6 shows that m € M has a neighborhood G in Z such that M NG is a
graph in (X, V) where X = ®'(c)U = T(m), and Y is any complementary space
toX. O

Definition 6.3.26 Curves and their tangent vectors. Let / be a vector space and 7
an open interval. A curve C in Z is a continuously differentiable functionr : [ — Z
with a nonzero derivative at every point ¢ € . If M is a manifold in Z and if
r(I) C M, then C is a curve on the manifold M. If z € Z and if r(t) = z for some
t € I, then C is a curve passing through z. The vector

v'(t) = limy_o(1/s)(r(t +s) —r(t)) € Z

is the tangent vector of C' at the point r(t) = z.
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Theorem 6.3.27 Tangent vectors of curves on a manifold. The tangent space
T(m) of a manifold M is the set of tangent vectors of the curves on M passing
through m. More explicitly, p € T(m) if and only if there is a curver : I — M on
M andat € I such thatr(t) = m and r'(t) = p.

Proof. Let o : C — Z be a parametric equation with the underlying diffeomorphism
®: H— Z,C = HnNU, and the inverse diffeomorphism ¥ : G — W, where
G =®(H). Letm = ¢(c) € M. Letz = r(t),t € I, be a curve on M passing
through m = r(tg). Then s(t) = ¥(r(¢)) is a curve in C C U passing through
c = W(r(tg)) € C. Then s'(ty) € U since s(t) € U for all t € I, and (since
w-s(t) =r(t)fort € I)

r'(to) = (¢ 8)'(to)) = ¢'(s(t0))s'(to) = ¢'(c)s'(to) € T(m).
Conversely, if p € T(m), then q = ¥/(m)p € U. Hence
s(t) =tq,t € I = (—¢, ¢),

is a curve in C for some £ > 0. Then r(¢) = ¢(s(¢)), t € I, is a curve on M passing
through m = r(0). Also,

r'(0) = (v -8)'(0) = ¢'(c)s'(0) = ¢'(c)ga=p. O
Problems

621 Let M = {(x,(z?+y—2zy*+z+2))|x=(z,9,2) eER*}. s M a
manifold in R®? If it is, find a parametric equation for A/ and an underlying
diffeomorphism.

6.22 Letk # 0 be areal number. Let C' = { x = (z,y) € R? | zy # 0 }. Define
f: C — R3by f(x) = (zy, 2 + 32, kx) for all x € R2. Show that f is a local
parametric equation for a manifold.

6.23 Let M C R" be an r-manifold and let N C R™ be an s-manifold. Show that
M x N CR™ x R" = R™*" is an (r + s)-manifold.

6.24 Show that a compact manifold cannot be represented by a (single) parametric
equation.

6.25 Let C beanopensubsetof U and p : C — Z a one-to-one €' function with a
one-to-one derivative at every point. Example 6.3.13 shows that ©(C') does not have
to be a manifold. Let Cy be an open subset of C with closure Coy C C. Show that
©{Co) is a manifold.
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6.26 Let C be an open subset of U and o : C' — Z a one-to-one @! function with
a one-to-one derivative at every point. Leta € C'and u € U. Let L C R be the set
oft € Rsuchthata+tu € C. Definea : L — Z by at) = ¢(a+tu),t € L.
Show that if ¢(C) is a manifold in Z then (L) is also a manifold in Z.

6.27 Let C be an open subset of U and ¢ : C — Z a one-to-one ! function with a
one-to-one derivative at every point. Assume that the inverse function ¢ : ¢(C) — C
is continuous. Show that ©(C') is a manifold in Z.

6.4 MANIFOLDS IN IMPLICIT REPRESENTATIONS

Implicit representations of manifolds may be considered as the reverse of parametric
representations. In the proof of Theorem 6.4.1 below, the inverse function theorem
is used to reduce implicit representation to parametric representations.

Theorem 6.4.1 Implicit representations of manifolds. Ler dimV < dim Z. Let
E be an open setin Z and let F : E — V be a C* function. Then

M={z|ze€FE, F(z)=0, Fl(2)Z=V}
is a manifold in Z. The tangent space of M atm € M is

T{(m) = Ker F’(m).

Proof. Letm € M. Let X = Ker F/(m)and Y = X*. Let P: Z — X and
Q) : Z — Y be the coordinate projections. We see that dim V' = dimY’, since
F'(m): Z — Visonto V. Let U be a space withdimU =dimX and §: X - U
an isomorphism. Define ¥ : E - W =U x V by

Hez) = (SPz, F(z)) = (Sx, F(x,y)). Hence
19/(1’1’1)()(, y) = (SX7 F/(m)(xv y)) = (SX, F/(m)Y>'

Then ¥'(m) : Z — W is an isomorphism since SX = U and F/(m)Y = V. Also,
¥ : E — W is a@! function because both components are C! functions. The inverse
function theorem shows that there is an open set GG in Z such thatm € G C E and
such that the restriction of ¥ to G is a diffeomorphism

INeg=V:G—>W.

Let ¥(G) = H. Note that ¥ : G — W maps M NG to U N H, since F(z) = 0O for
z € M. Hence the reverse diffeomorphism ® : H - Gmaps C = UNH to MNG.
Therefore M N G is a manifold with a parametric equation ®|c = ¢ : C — Z. Then



MANIFOLDS IN IMPLICIT REPRESENTATIONS 253

M is a manifold by Definition 6.3.1. We see that & maps U to X = Ker F'(m).
Hence X is the tangent space of M atm € M. O

Example 64.2 Let E = {x = (z,y,u,v) € R* |z # v }. Let M be the set of all

x € E such that
r = yu—v
u = v
Then M is a manifold in R%. To see this, define
F(x)=(z —yu+uv,av—u) forallx = (z,y,u,v) € E.
Then

, 1w -y 1
Fi(x) = v 0 -1 :E}

Since x # v, it follows that the matrix for F”(x) has two linearly independent vectors.
Hence, F'(x) : R* — R? is onto for all x € E. So, by Theorem 6.4.1,

M={x€eE|F(x)=0}={x€E|F(x)=0, F (xR =R}

is a manifold in R?.

Also, the tangent space to M atm = (0,1,1,1) € M is Ker F'(m), which is the
set of all (a, b, ¢,d) € R* such that F'(0,1,1,1)(a, b, c,d) = 0. That is, it is the set
of all solutions (a, b, ¢, d) to the system

a—-b—c+d =
a—c =

Hence,
T'(0,1,1,1) = { (t,s,t,s) [t e R, s e R }.

Definition 6.4.3 Implicit equations. Let E be a set and V' a vector space. Let
F: E — V be afunction. Then F'(e) = 0 is called the implicit equation of the set
S = F~1({0}). Hence e € S if and only if F(e) = 0.

Theorem 6.4.4 Implicit equations of manifolds. Letr E be an open set in Z and
F: E — V aC! function. Assume that F'(z)Z = V whenever F(z) = 0. Then
F(z) = 0 is an implicit equation of a manifold M C E.

Proof. This is a reformulation of the first part of Theorem 6.4.1. O



254 DIFFEOMORPHISMS AND MANIFOLDS

Theorem 6.4.5 Implicit equations of tangent spaces. Let F/(z) = 0 be the implicit
equation of a manifold M. Then F'(m)z = 0 is an implicit equation of the tangent
space of M at m € M.

Proof. This is a reformulation of the second part of Theorem 6.4.1. O

Another version of these results is known as the implicit function theorem.

Theorem 6.4.6 Implicit function theorem. Let F C Z = X x Y be an open set in
Z. Let (a,b) € E. Let V be a space withdimV = dimY. Let F: E — V be a C!
function with F(a, b) = 0 and F'(a,b)Y = V. Then there is an open set A in X
and a C! function f : A — Y such thata € A, f(a) = b, and F(x, f(x)) = 0 for
allx € A.

Proof. Theorems 6.4.4 and 6.4.5 show that F'(x, y) = 0 is an implicit equation for
a manifold M and that the tangent space of M at (a, b) € M is

X =T(m) = Ker F'(a, b).

Define ¢/ : E — L(Y,V) by ¥y(e) = F'(e)|y, the linear map F'(e) restricted to Y.
That is, ¥(e) : Y — V is defined by ¢(e)(y) = F'(e)(y) forally € Y. Since F'is
a @! function, v is continuous. Also, ¢(a, b) is invertible because dim Y = dim V
and ¥(a,b)Y = F'(a,b)Y = V. Because inversion is continuous, it follows
that there is an open set U containing (a, b) with U C G and such that v(z) is
invertible for all z € U. Thus, F’'(z)Y = V forall z € U. This implies that Y is
complementary to X. Then Theorem 6.3.25 shows that (a, b) has a neighborhood
G such that M N G is a graph in (X, ). But X is also complementary to Y since
(X, Y) is a coordinate system in Z. Then, we see easily that M N G is also a graph
in (X, Y. (cf. Problem 3.42). This is the conclusion of the theorem. O

Example 6.4.7 Let F : R? x R? — R? be defined by
F(x,u) = (zv+yu — 1,2y —wv) forallx = (z,y) € R?,u = (u,v) € R
Then

’ - v u Yy T
F(%%%U)‘“[y r —v _U:I

Letc = (1,0,0,1) € R? x R2. Then F(c) = (0,0) and

Fe={o Y 3 o)

Hence,

O (0.0u,) | (w0) € B } = { (v, =) | (wv) € B® } = B2
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In the notation of Theorem 6.4.6
F(c)(Y)=V.

Hence, by that theorem, there is an open set A in R? containing (1,0) and a continu-
ously differentiable function f : A — R? such that

F(x,f(x))=0 forallx € A.

That is, the equation F'(x, u) = 0 defines u implicitly as a differentiable function of
x in the neighborhood A of (1, 0). In particular, the system

zw+yu—1 = 0
zy—uv = 0

can be solved for (u,v) as a differentiable function of z and y for (z,y) in a
neighborhood of (1, 0).

Example 6.4.8 Let E C R*"™™ be open and let F : E — R™ have continuously
differentiable component functions Fi, ..., F,,,. Suppose that we denote a point
x € R"by (21,...,2,) and apointy € R™ by (y1,...,¥ym) and a point z € R**™
by z = (a,b), where a € R",b € R™. Assume that (a,b) € E. If F(a,b) =0
and

8F1 afpl
A T
det ; - : # 0, (6.34)
oFy, OFy,
Ty & P) T B P)

then the conclusion of Theorem 6.4.6 holds: there is an open set A in R™ and a C!
function f : A — R™ such that a € A, f(a) = b, and F(x, f(x)) = 0 for all
x € A. This is because the last m columns of F’(a, b) are

OF oF;
“liab ekl
o, @) T
oF,, oF,,
9Im o b 9m a b
ayl (a7 ) 8ym (a’ )

and (6.34) implies that these columns form a linearly independent set of m vectors,
whence F'(a, b)R™ = R™,

As an illustration, consider the system

Putyr = 7

zu® — y2v = 11.
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Let f1(x,u) = z%u + yv — 7, fo(x,u) = zu® — y?v — 11 forall x = (z,y),u =
(u,v). Then at a point (x, y, u, v), we have

3f1/3u 8f1/a1) o _'EQ Y _ 3 o 9
det 8fa/Ou Ofa)Ov | = det suls —y? | = —z%y? — 3uxy.

Thus, at (1,1, -1, —1), the above determinant is —4 # 0. So, whenever (u,v) is
near the point (—1, —1), it can be solved uniquely in terms of x, y in a neighborhood
of (1,1).

Example 6.4.9 The conclusion of the implicit function theorem may hold even if the
hypotheses of the theorem are not satisfied. Let F(z,y,2) = (2% — 162%,y — 22)
for all (z,v,2) € R¥®sothat F : R x R? — R2. Then

, _ 423 0 —642°
F (‘T7 y,z) - l: 0 1 -2 *
, 0 0 /
Let ¢ = (0,0,0). Then F(c) = 0 and F'(c) = 0 o |- Hence, F'(c)
x

0

1
does not map ¥ = R? onto V = R2. Let f(z) = (z,z/2) for all z € R. Then
f: R — R? is continuously differentiable and F(z, f(x)) = F(z,z,z/2) = 0 for
al x € R.

Implicit Functions and Jacobian Matrices

The implicit function theorem states a very plausible fact, even though it has a rather
involved proof. Let X = R™ and Y = V = R™. Then the equation F(z) = O can
be expressed as

Fl(xla"'vx’m;yla"wyn) =0

Fn($17"‘a$m§y1»~--7yn) = 0.

These are n equations. We would like to solve them for the n unknowns y; and
express each y; in terms of the m variables z;. If these equations were linear
equations, then they could be expressed as

Ax+By =0

Here A is an n x m and B is an n x n matrix, and x, y are, respectively, m x 1 and
n X 1 matrices, or column-vectors. We know that if B is an invertible matrix, then
these equations can be solved for y;. In fact, y = -B" ' Ax.
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In the general case, we have an equation of the form F'(x, y) = 0. We are given
that ¢ = (a, b) is a solution. We would like to solve this equation for all the values
of x close to a and obtain y = f(x) as a function of x. First, we try to do this
approximately. We replace F'(x, y) by its first-order Taylor polynomial

P(c)(z) = F(c)+ F'(c)(z—¢c) = F'(c)(z - ¢)
at ¢ = (a, b). Then we obtain the linear equation F’(c)(z —c) = 0 or
F'(a, b)(x —a) + F'(a, b)(y — b) = 0.

To express this equation in terms of scalar equations, we form the Jacobian matrices
A = {A,;} and B = {B;;} with the components

OF:
b) and Bj, = =2 :
(a: ) an ]k 8yk (av b)

OF;
Aji = 8$Z

Then we obtain A (x — a) + B (y — b) = 0. This equation can be solved if B is
invertible. We see that the invertibility of B means that if the derivative

F'a,b): (X xY) —V

is restricted to vectors in Y, then it becomes an invertible mapping Y — V. The
implicit function theorem shows that if the approximate linear system of equations
can be solved, then the original system of equations can be also solved.

Component Forms

Remarks 6.4.10 A summary of component forms. Let dim Z = n and dimV =
m < n. Choose an orthonormal basis (e, ..., e,,) for V and express F : Z — V
in terms of its components F; : Z — R so that

F(z)=Fi(2)e1 +- -+ Fp(z)en.
This amounts to replacing V' by R™. Hence we assume that V' = R™ and let
F(z) = (Fi(2), ..., Fn(2)) e R™.
Then the derivative F'(a) : Z — R™ is expressed as
F'(a)z = ((VFi(a), z), ..., (VF,(a), z))
forall z € Z. The condition that F'(a)Z = V is equivalent to saying that

{VF(a), ..., VF,(a)}



258 DIFFEOMORPHISMS AND MANIFOLDS

is linearly independent and has m distinct elements. The vectorial equation F’'(a)z =
0 for the tangent space T'(a) becomes m scalar equations

(VFi(a),z)=0, ..., (VE,(a), z) = 0.
Hence T'(a) is the orthogonal complement of the space spanned by the vectors

{VFi(a), ..., VE,(a)}.

The space spanned by these vectors is then the normal space N(a) = T'(a)*.

Example 6.4.11 The unit sphere in R™. The unit sphere S
xf + -+ xi =1
is a manifold in R™. In fact, define h : R® — R = V by
h(x) =22+ +22 —1, x= (21, ..., Tp) € R™

Then S is given by a single scalar equation h(x) = 0. This is the equation of a
manifold if the gradient vectors of the components of h are linearly independent. In
this case, there is only one component. The linear independence of a set of one vector
Vh means that VA # 0. This is indeed the case, since

Vhia) =2(a1, ..., a,) #0

for all a € E (where we may take E = R™ \ {0}). Therefore h(x) = 0 defines a
manifold S in R™. The normal space N (a) is the one-dimensional space spanned by
Vh(a) = 2(ay, - .., ay). The tangent space T'(a) = N(a)* is the set of all x € R™
such that

ai1xy + -+ apz, =0.

Similarly, the equation of the affine tangent space AT'(a) is

a(zy —a1) + - +an(z, —a,) = 0, or,equivalently,
axy+ - tanxr, = 1. A

Problems

6.28 let F: A — R™, where A is an open set in R and F is of class ! on A.
Let M be the set of all x € A such that dim(Range F'(x)) = m. Show that if
M # (), then M is an (n — m)-dimensional manifold.
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629 Let F:R?® — R2begivenby F(z,y,2) = (¥ + 2 2 +z) forall x =
(z,y,z) € R®. Show that

M={(z,y,2) €R* F(x)=(0,0)}

is a manifold in R3. Find the tangent space of M at m = (1,1, —1). Also, find the
normal space of M at the same point m.

6.30 Let F': R™ — R be of class C'. Suppose that ¢ € R and
B.={xcR"|F(x)=c}#0.

Assume further that whenever x € B,, we have F'(x) # 0. Show that B, is an
(n — 1)-manifold in R™.

6.31 Consider the system

1
x2+§y2+z3—z2 _

N |

2?4y -3y+2 = -3

Can we solve for y and z as a function of z for (z,y,2) in a neighborhood of
(-1,1,0)?

6.32  Suppose that F' : R*"*™ — R™ is a continuously differentiable function with

F(a,b)=0and
O(Fy, ..., Fn)
det <__8(y1, o) (a, b)) # 0.

Let A be a neighborhood of a in R™ and let f be a €! function f : A — R™ such
that f(a) = b, and F(x, f(x)) = 0forall x € A. Show that

A(Fy, ..., Fm)(a b)>—1 O(F, ..., Fi) a

Jf(a):_(a(yl,“.’ym) oNxy, -y Tn)

6.33  Show that the system

zv+yu = 1

Ty = uv

defines {u, v) = h(z, y) implicitly as a function of (z, y) for (z, y) in a neighbor-
hood of (1, 0). Compute ~'(1,0).
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6.5 DIFFERENTIATION ON MANIFOLDS

Let M be a manifold in a Euclidean space Z. Let Y be another Euclidean space
and f : M — Y a function. We shall define a concept of differentiation for such
functions. The earlier definition of differentiation given in Definition 5.2.1 does not
apply, as the domain of f may not be an open set in any vector space.

Definition 6.5.1 Derivatives of functions on manifolds. Let ¢ : C — Z be a
parametric equation for a manifold M and m = ¢(c). Then a function f : M — Y
is said to be differentiable at m € M it g = f-¢ : C — Y is differentiable
at ¢ € C. In this case, the derivative of f : M — Y at m € M is defined as
F'(m) = ¢'(c) - ¢/(c)™! € L(T(m), Y).

Note that ¢'(c) : U — Z is not invertible. But ' (c) is invertible as a linear map
between U and the tangent space 7(m) = ¢'(c)U. Hence f'(m) : T(m) — Y is
well-defined. Nevertheless, our definition still has to be justified. Specifically, we
need to show that the differentiability of f is independent of the parametric equation
@ used.

Lemma 6.5.2 Let p; : C; — M be two equivalent parametric equations for M. Let
wi(c;) =m € M. Then

g1 = f -1 : C1 — Y isdifferentiable at c; if and only if
g2 = f - @2 : Cy = Y is differentiable at c,.

If both are differentiable, then f'(m) = gj(c1) - ¢} (c1) ™! = gh(ca) - ph(ea) ™t

Proof. Let ¢ : C; — (5 be the diffeomorphism obtained in Lemma 6.3.18 so that
w1 = 2 - J. Note that ¢z = ¥(c;). Assume that gj(cz) exists. We have

g1 = f-o1=f @2 9 =go-¥ and, therefore,

giler) = (g2-9)(e1) = g2(9(c1))¥'(€1) = ga(c2)?V'(c1)
by the chain rule. Hence g¢{c;) also exists and g (c1) = g5(cq)?(e1). The other
direction is similar. Now assume that the derivatives exist. Given p € T (m), let
u; = ¢(c;) " 'p. Then p = ¢ (c1)uy = (2 - 9) (c1)uy = ph(e2)? (c1)u; shows
that uy = ¥ (cq)u;. Therefore

flmp = gi(c)) - pie:)™'p = gici)w;, and

gileur = (g2-9)(c1)ur = gh(c2)¥'(c1)er = gh(ea)ua.

Hence f'(m) : T(m) — Y is independent of the parametrization. O
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A Special Case

Let M be a manifold in Z. In many cases of interest, a function f on M is
the restriction of a differentiable function ' : G — V defined on an open set
G C Z containing M. In this case, differentiation on M is simple. The derivative
f'(m) : T(m) — V on M is obtained as the restriction of F'(m) : Z — V to the
tangent space T'(m). Hence f/(m) = F/(m)| if f = F|a. We state this also as a
lemma.

Lemma 6.5.3 Let M be a manifold in Z and m € M. Let F : G — V bea
differentiable function defined on an open set containing m. Define

f:(MNG)—Vbyf(z) = F(z).

Then f'(m) : T(m) — Y exists and f'(m) : T(m) — V is the restriction of
F'(m): Z — V toT(m).

Proof. Let ¢ : C — Z be a parametric equation for M such that ¢(c) = m and
@(C)CG. Theng=f-¢=F-¢@showsthat g: A — Y is differentiable. Hence
f'(m) : T(m) — Y exists. Also, if z € T(m), then

fl(m)z = g'(a)¢'(c) 7'z = F'(p(c))¢'(c)¢(c) 'z = F'(m)z.
This shows that f'(m) is the restriction of F/(m) to T(m). O

Derivatives Along Curves on Manifolds

Let F': G — V be a differentiable function defined on an open set G. Then F'(a)z
is the directional derivative of F" at a € G in the direction of z € Z. On manifolds
one cannot, in general, take directional derivatives because the manifold will not
contain straight lines running in every direction. Directional derivatives have to be
replaced with derivatives along curves. Recall that a curve C on M is a C! function
r : I — M defined on an open interval I C R. The derivative r’(a) at a € I is
the tangent vector of C at r(a) = m € M, a vector in the space Z in which M is
embedded. Theorem 6.3.27 shows that r'(a) € T'(r(a)). So the tangent vector of a
curve in M atm € M is in the tangent space T'(m). If f/(m) : T(m) — V exists
forallm € M, then f/(r(a))r’'(a) is defined for all curves r : I — M. These are
the derivatives along curves.

Theorem 6.5.4 Derivatives and derivatives along curves. Let M be a manifold in
Zand [ : M — V a differentiable function. Letr : I — M be a curve on M and
acl LetA=f -r:1—YV. Then

Vi) — timg T +0) — £((@)

t—0 t

(6.35)
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exists in V and X (a) = f'(r(a))r'(a).

Proof. Let ¢ : C — Z be a parametric equation for M and ¢(u) = r(a) = m. Let
s(a) = ¢ 1(r(a)) so that p(s(a)) = r(a). Then

r'(a) =¢'(s(a))s’(a) and A=f-r=f-p-s=g-s.

Now f : M — V is assumed to be differentiable. Hence ¢ = f - ¢ is also
differentiable by Definition 6.5.1. Therefore

N(a) = g'(s(a))s'(a) = f((s(a)))[¢' (s(a))s'(a)]
f'(x(a)r'(a). O

Local Extremal Values on Manifolds

Let M be a manifold in X. Let p : M — R be a real-valued function defined on M.
A point mg € M is called a local maximum point for p if there is a § > 0 such that
p(m) < p(me) whenever ||m — my|| < § and m € M. Local minimum points are
defined similarly.

Lemma 6.5.5 Let m € M be a local extremal point for p : M — R. Assume that
p'(m) : T(m) — R exists. Then p’'(m) = 0.

Proof. Assume that there is a u € T(m) such that p’(m)u € R is not zero. Use
Theorem 6.3.27 to findacurver : I — M on M such thatr(ag) = mforanag € I
and such that r'(ag) = u. Define s : I — R by s(t) = p(r(¢)). Then Theorem 6.5.4
shows that s'(ag) = p(m)u # 0. Therefore s : I — R cannot have a local extremal
point at ap € I. Then m = r(ao) cannot be a local extremal point for p. O

Recall that N(m) = T'(m)* is the normal space at m of M, the orthogonal com-
plement of the tangent space.

Lemma 6.5.6 Let M C G C Z, where H is an open set. Let p : M — R be the
restriction of a differentiable function q : G — R to M. Then p'(m) = 0 if and only
if Vg(m) € N(m).

Proof. In this case, p'(m) : T(m) — R is just the restriction of ¢’(m) : R — R to
T{(m), as we proved in Lemma 6.5.3. Hence p/(m) = 0 if and only if

p'(m)u = ¢'(mju = (Vg(m), u) =0
for all u € T'(xm). In this case Vg(m) L T(m) or Vg(m) € N(m). O

Finally, assume that V = R™ and F' : G — R™ is given as m scalar functions
F,:G— R Hence F' = (Fy, ..., F,): G — R™,
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Theorem 6.5.7 Lagrange multipliers. Let G be an open set in Z. Let M be a
manifold in G given by the equations Fi(z) = 0,i=1,...m. Letq: G - Rbea
differentiable function. Then the restriction of q to M can have a local extremal point
atm € M only if Vq(m) is a linear combination of the gradient vectors V F;(m).

Proof. Lemmas 6.5.5 and 6.5.6 show that the restriction of ¢ : H — R to M can have
an extremal point at m only if V¢(m) € N(m). Then the result follows from the
fact that N(m) is spanned by the gradient vectors V F;(m), as observed in Remarks
6.4.10. O

Example 6.5.8 Let us compute the maximum and minimum values of z° + 3 + 23,
where 22 + y2 4+ 22 = 9. Let f(x) = 2% + ¢ + 2° and let g(x) = 22 + 3 + 22
We want to maximize f on S = { x € R? | g(x) =9 }. Thus, we seek x € S and
A € R such that V f(x) = AVg(x). Thus,

(322, 3y%,32%) = A\(2z, 2y, 22).

Since 2% 4+ y? + 22 = 9, we have A # 0. Assume first that z # 0,y # 0,z # 0.
Then we obtain z = y = 2 and, therefore, £2 = 3. Thus, x = j:(\/g, Vv3,V3). In
this case, f(x) = £9/3.

Now, suppose that z = 0 = y. Then 2 = £3 and A = (3z)/2. Similarly, if
x=2z=0,theny =33, A = (3y)/2,and if y = z = 0, then z = £3, A = (3z)/2.
In each of these three cases, f(x) = £27.

Finally, if only one of z, y, or z is zero, then the remaining two unknowns are equal
to one another and each equals ++/3/2. It is clear that the values of f in these cases
are between —27 and 27. Hence, the maximum value of f is 27, which occurs at
(3,0,0), (0,3,0), and (0, 0, 3), and the minimum value of f is —27, which occurs at
(—3,0,0), (0,-3,0), and (0,0, —3).

Example 6.5.9 Let us find the maximum value of u? - - - u2, where
uf+~-~+ui:1.
Let f(u) = uf - u2 andlet S = {ueR"|uf+ - +u2 =1} Since fis

continuous on the compact set .S, we know that f must have a maximum value on S.
Thus, there is some A € R and some x € S such that V f(x) = AVg(x). Thus,

:(:1333 .. xi = A
Tirexs - 22 = Az
2 2 -
T Ty 1Ty = ATp.
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Multiplying the first equation by z;, the second equation by 3, ..., and the last
equation by x,,, we deduce that

Since f takes on some positive values on S, the maximum value of f on .S must also
be positive. Hence, none of x; can be zero. In particular, A # 0. Therefore,

Thus, since 22 + -+ + 22 = 1, we get
9 1
2y =— forallk=1,...,n
n

Therefore, the maximum value of f on S occurs when xi =1/nforallk =1,...,n.
In particular,

n 24 ... 2\ "
’u§-~-u,2l:f(u)§f(x): (%) = <ﬂ+_iﬁ) forallu € S.

n
That is,

1 u§+-~‘—|—ui

whenever u? + -+ - +u2 = 1. (6.36)
n

From the above, we obtain the arithmetic-geometric mean inequality:
Letty, ...ty be nonnegative numbers. Then

<t1+~--+tn‘

(t1--tn)" < (6.37)

n

To prove (6.37), let t1, ..., ¢, be any nonnegative numbers. Put S =¢; +--- + t,,.
If S = 0, then each ¢, = 0 and (6.37) is obvious. Assume that S > 0. Since each
tx/S is nonnegative, there is some uy € R with ¢,/S = u2. Then

uf—i—---—i—ui:l.

Thus, (6.37) follows from (6.36) because

1 1wl 4wl et
_t e n o — 2'-~ 2 n <L 1 TL: TL.
(1 tn) (ul +un) — n Sn

Example 6.5.10 Suppose that f : R” — Ris a continuously differentiable function.
Assume that for any « € R, the system of equations

of

axk(u):auk, k=1,....n
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has at most one solution u with u? + --- + u2 = 1. Then f is constant on
{xeR"|a?+ ---+22=1}. To see this, let g(x) = 2% +--- +z2. Put
S = {xeR"|g(x)=11}, a compact set in R". Hence, f must have a maxi-
mum value and a minimum value on S. But these extreme values of f must occur at
points u € S for which there is some A € R with V f(u) = AVg(u). Hence, with
a = 2, we must have

of

8ﬂck(u) =oqu, forallk=1,...,n.

By assumption, there is at most one such u € S. This implies that the maximum

and minimum values of f on S occur at the same point u. Hence, the maximum and
minimum values of f on S are equal. Thus, f must be constant on S.

Problems

6.34 A linear transformation T : R? — R? is given as
T(z,y) = (Az + By, Cz + Dy).
Find ||| in terms of A, B, C, D. The norm on R? is the standard Euclidean norm.

6.35  Find the maximum and minimum values of 2 +y2+ 22 given thatz+y+2z = 0
and (z — 3)? +y? + 22 = 0.

6.36  Find the minimum value of 3z —y—3z where z+y—2 = Oand 2 +22% = 1.
6.37 Find the maximum value of zyz where 22 4+ % + 22 = 3.

6.38  Find the maximum and the minimum value of z+y+ 2 where 72 +12+ 2% = 1.
6.39  Find the minimum value of 5 — 2y + 7z where 22 + 2y + 422 =9

6.40 Find the minimum value of zyz where z2 + 2y? + 322 = 12

6.41 Find the points on the curve £ + 2y + y? = 3 closest to and farthest from
the origin.

6.42 Find the maximum value of yz + zy where zy = 1 and 4% + 22 = 1
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CHAPTER 7

HIGHER-ORDER DERIVATIVES

Practically all computations are done in terms of polynomials. In fact, the scope of
differential calculus is essentially limited to functions that can be approximated by
polynomials. In these approximations the higher-order derivatives play a central role.
We have already considered higher-order derivatives for functions of a real variable.
Here we will discuss them in the general case.

7.1 DEFINITIONS

Let X and Y be two normed spaces. Let A be an open subset of X. We will define
the higher-order derivatives of a function f : A — Y.

Definition 7.1.1 Difference operators. New notations for directional derivatives.
Leta € A and u € X. The difference operator A is defined as

Auf(a) = fla+u) - f(a).
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Here it is assumed that (a + u) € A, We will also write D, f(a) for the directional
derivative of f at a € A in the direction of u € X. Hence

fatt) = fa) _ . Anfl@)
4

t t—0

Duf(a) = f'(a; u) = lim

Definition 7.1.2 Higher-order directional derivatives. Let u; € X be finitely
many vectors. The higher-order directional derivatives

Dun"' Du1f(a) €Y

are defined inductively on n € N. The definition is known for n = 1. Assume that
F(a) = Dy, -+~ Dy, f(a) is defined as a function " : A — Y. Letu € X. Then
we define

Ay
Dy Dy, -+ Dy, f(a) = DuF(a) = lim %@‘)

The limit is takenin Y.

Definition 7.1.3 Higher-order derivatives. Let us now consider the main or *full’
derivative. Higher-order derivatives of a function f : A — Y are also defined
inductively. The first derivative was already defined as a function f' : A —
L(X,Y) = ML(X,Y). The second derivative of f : A — Y is the first
derivative of f' : A — L(X,Y). Hence the second-order derivative is a function
" A—-L(X, L(X, Y)).

Recall that there is an isomorphism between L(X, L(X, Y)) and ML3(X? Y) as
defined in Definition 3.3.7. Accordingly, we will consider the second derivative as a
function

" A— MLy(X2%Y).

By induction we see that the nth order derivative will be defined as a function
f™ A ML, (X", Y).
Hence, the (n + 1)st order derivative will be a function
fOD A o (X, ML,(X™, Y)) 2 ML,y (X™ V).
Notations 7.1.4 Values of higher-order derivatives. Notations for the values of
higher-order derivatives depend on the way the spaces
L(X, ML,(X™, Y))and ML, (X" Y)
are identified. This identification is made in such a way that the relation
f™(a)(un, ..., u;) = Dy, --- Dy, f(a) (7.1)
holds forall n € N.
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Classes of Differentiable Functions

Definition 7.1.5 C" functions. Let A be an open set in a vector space X. Then
€™ =C"(A,Y), n € N, is the set of all functions f : A — Y for which

D f=f™ A ML(X™,Y)

exists and is continuous. Hence C"(A4, Y') is the class of all functions f : A — Y
that are n-times continuously differentiable. Also, € = €*°(A, Y) is the class of
functions that have derivatives of all orders. A C™ diffeomorphism f : A — Yisa C"
function, and a diffeomorphism such that the reverse diffeomorphism g : f(A4) — A
is also a C™ function. Finally, the graph of a €™ function is a €™ graph, and C”
manifolds are locally C™ graphs. In the following statements about the properties of
€™ functions, the superscript n will also stand for oo unless specified otherwise.

Theorem 7.1.6 Chain rule for C™ functions. Let A and B be open setsin X and Y,
respectively. If f : A — Band g : B — Z are C" functions, thenh =g-f : A — Z
is also a C™ function.

Proof. The chain rule was given in Theorem 5.5.6. It shows that if f and ¢ are
differentiable, then h is also differentiable and

W(x)=g'(f(x)) f'(x), x€ A

We will express b’ : A — L(X, Z) also as a composed function. Define

P : A-LY,Z)xL(X,Y) and (7.2)

Q : LY,Z)xL(X,Y)— L(X, Z) by (7.3)

Pla) = (¢ ( (a)), f(a)), a€ A, and (7.4)
Q(S, T) = ST, (S,T)e LY, Z) x L(X,Y). (7.3)

Then we see that h'(a) = Q(P(a)) for all a € A or that
=Q -P:A— L(X, 7). (7.6)

We proceed by induction on n € N. If n = 1, then the result is already obtained
in Theorem 5.5.6. Now assume that the composition of two €™ functions is a €
function. Let f and g be €**! functions. Then ¢’ : B — L(Y, Z) is a €" function.
Therefore, (¢ - f) : A — L(Y, Z) is a C™ function by the induction hypothesis. In
this case an easy check shows that

P=(¢-f f'): A= L(Y, Z) x L(X, Y)
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is a €™ function. Also, @ is a bilinear function and, therefore, a € function. Hence
the induction hypothesis shows that 2’ = (@ - P) is a € function. Therefore h is a
@7+ function. O

Lemma7.1.7 Let n € N. Then f : A — Y belongs to C" if and only if
Dy, Dy, f: A=Y exists and is continuous for all (uy, ..., u,) € X™

Proof. If f € G, then clearly Dy, --- Dy, f : A — Y exists and is continuous for
all (ug, ..., u,) € X™. To prove the converse, apply an induction on n € N. For
n = 1 this result follows from the existence theorem for derivatives, Theorem 5.3.4.
Now assume the result for n € N, Let

DvDun "'Du1f:A.) Y
exist and be continuous for all (uy, - - , Uy, v) € X In particular,
Dy, Dy f:A-Y

also exists and is continuous. Hence g = D, f : A — ML(X" Y) exists by the
induction hypothesis. Then we see that Dyg : A — ML(X™ Y) exists and is
continuous for all v € X. Therefore, the existence theorem, Theorem 5.3.4, shows
that Dg = D" 1 f : A — ML(X™"!, Y) also exists and is continuous. O

7.2 CHANGE OF ORDER IN DIFFERENTIATION

We have defined Dy, - - - Dy, f : A — Y as the result of n successive differentiations
in the directions of uy, ..., u, € X. It turns out that if f is a €™ function, then the
result is independent of the order of these differentiations.

Lemma 7.2.1 Commutativity of the difference operators. Let A,,, be n difference
operators. Then for any permutation o of {1, ..., n}

Ay, Ay, f(x) = A“o(l) B 'A“cr(n)f(x)’

whenever one of these expressions is defined.

Proof. It is enough to show that A, A, f(x) = AyA, f(x) whenever one side is
defined. We have

AvALf(x) = Ay (f(x+u) - f(x))
fx+v+u)— f(x+v)— fx+u)+ f(x)
An(f(x+v)— f(x) = AuAy f(x). O

I
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Remarks 7.2.2 Theorem 7.2.3 below establishes a relation between
Ay, -+ Ay, f(x)and Dy, - -+ Dy, f(x).

This result generalizes Lemma 5.3.2. Recall that if g : A — Y is a function and
E C Athen

Qe(g) =sup{llg(x) —g(x)| Ix,x' € B}

is the oscillation of g over E if this supremum exists.

Theorem 7.2.3 Assume that f : A — Y is a C" function. Leta € A andletr > 0
be such that B.(a) C A. Letuy, ..., u, € X. Then

“Aul o 'Aunf(a + W) - Du1 o 'Dunf(a)“ QBr(a)(Dul o 'Dunf)

sl -- - [unl| 25, @ (D" f)

IA A

whenever |[ui|| + - - + [Jun| + W] <.

Proof. Define
o(s) = Au, -+ Agu, f(@a+ W) = Dy, -+ Dsu, f(a).
The first estimate of the theorem can be expressed as
le(DIF < 2, (a)(Du, -+ Du,, f)-
We see easily that, as in the proof of Lemma 5.3.2,
©'(8) = Ay, -+ Ay, Du, fla+w+su,) — Dy, -+ Dy, _, Dy, f(a).

Let F(x) = Dy, f(x) and assume that the conclusion of the theorem is true for
(n — 1) as an induction hypothesis. This implies that, forall s € I = [0, 1],

HQOI(S)” < QBr(a)(DUJ T Dllnle) = QBr(ﬂ)(Dlh e Dun—-lDunf)'
Hence, by the mean value theorem, Theorem 5.1.13, we have
(W = 1le(1) = (0)]] < (1 - 0)p,(a)(Dy; - - Du,_y Du,, f)-

This is the first estimate of the theorem. The second estimate follows from

| Dy, +++ Du,,_, Du, f(x)|ly

D™ f(x)(u, - wa)lly

aillx - [lanflx 10" f ()il mrxn, vy B

IN
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Theorem 7.2.4 Assume that f : A — Y isa C” function. Leta € Aandletu; € X.
Then for each £ > O there is a 6 > 0 such that

Atnun e Atlul f(a)
tn . tl

— Dy, Dy, f(a)]| < ¢

whenever 0 < |t;| < dforalli=1,..., n.

Proof. Choose r > 0 such that B,.(a) C A and such that

as]l-- - l[unll 2p,@ (D" f) <e.

This can be done because of the continuity of D" f : A — ML(X™ Y). Then
choose § > 0 such that

[tra]] + -+ [[taun ] <7
whenever |t;| < § forall i = 1, ..., n. In this case Theorem 7.2.3 shows that

1At - Atpu, f(a) = (t1+ tn) Dy, -+~ Dy, f(a)]
= ||At1u1 "'Atnunf(a) _Dtlul "'Dtnunf(a)u

< - [teun]| Qp, @) (D™ f)
= (tre-to)u]]- - lunll Qp,. ) (D™ f)
< (tl s tn) €.

Then the proof follows easily. O

Theorem 7.2.5 Assume that f : A — Y is a C" function. Let a € A. Then
Dy, -+ Dy, f(a) = f™(@)(an, -, m) €Y

is independent of the ordering of the vectors uy, ..., u, € X.

Proof. This follows from Theorem 7.2.4 above and from the commutativity of the
difference operators, Lemma 7.2.1. O

Theorem 7.2.6 Assume that f : A — Y is a C" function. Then
f(")(a) X" SY

is a symmetric multilinear function for each a € A.

Proof. This a reformulation of Theorem 7.2.5. O
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7.3 SEQUENCES OF POLYNOMIALS

Recall that a homogeneous polynomial of degree n € N is a function f : X — Y of
the form
f(x)=Qx,...,x), where Q@ € ML, (X", Y).

Hence, a homogeneous polynomial is defined in terms of an associated multilinear
function (). This multilinear function is defined on X™ with values in Y. The points
in X are denoted as x and the points in X™ as

(X1, .oy Xp)y X, €X, =1, ..., n.
The multilinear function associated with a polynomial is not unique. In particular,

note that f(x) = Q(x, ..., x) = 9(x, ..., x) where

1
S(Xl, ey Xn) = ;L—'ZUEETL Q(xa(l)a ey Xo(n))

is the symmetric part of @, as in Definition 3.3.12.

Derivatives of Polynomials

Lemma 7.3.1 Let f(x) = Q(x, ..., X) be a homogeneous polynomial of degree n.
Let S € ML,(X",Y) be the symmetric part of Q). Then

fx)u) = Qu,x,....,x)+...+Q(x,..., x,u) (7.7
= nSx,...,x,u) (7.8)

forallx, u e X.

Proof. Define P : X — X" by P(x) = (x, ..., x) € X", x € X. We see that
P : X — X™is alinear function. Hence

P'(x)(u) = P(u)=(u, ..., u)forallx, u € X.

Now f : X — Y is the composition f = S - P. Now apply the chain rule, Theorem
5.5.6. The derivative of S is given by Theorem 5.6.2, together with Remarks 5.6.3.
This gives (7.7). To obtain (7.8), note that f(x) = S(x, ..., x) and use the symmetry
of Sin(7.7). O

Theorem 7.3.2 Ler f(x) = Q(x, ..., x) be a homogeneous polynomial of degree
n. Let S € ML,(X",Y) be the symmetric part of Q. Then for each k € N and for
each x € X the kth derivative f*)(x) € MLy (X", Y) exists. If 1 < k < n, then

n!

f(k)(x)(ul, e ug) = m

S(x, ...,x,ug, -, Ug). (7.9)
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Here x enters (n — k) times as an argument of S : X™ — Y.

Proof. Lemma 7.3.1 gives (7.9) for k = 1. Now assume (7.9) fora k, 1 < k < n.
Letuy, ..., uy be fixed vectors in X. Then, with £ = n — &,

R(Xl, ...,Xg) :S(Xl, X, U, e, uk)

is a symmetric multilinear function in M Ly(X*, Y). If g is the associated homoge-

neous polynomial of degree ¢, then
FE ), -, )
f(k+1)(x)(u17 ceey Uk, uk+1)

(n!/€9)g(x). Hence

(n!/€1)g' (x)(ug+1)
(nl/EHYES(x, ...,x, uy, -+, Uk, Wt1)-

i

This is (7.9) for kK + 1. Hence (7.9)is true forall k, 1 < k <n. 0O

Corollary 7.3.3 If f(x) = S(x, ..., x) with symmetric S € ML, (X", Y), then
F) (Uny -, wg) =0l S(uy, -, ug) (7.10)

is independent of x. Hence f®) : X — MLy (X*, Y) vanishes for all k > n. Also,
F®)(0) = 0 forall k # n.

Proof. This follows directly from (7.9) of Theorem 7.3.2. If k¥ < n, then

f(k)(o)(uh"'vuk): S(07"'507u13"'7uk):0~

(n—k)!

If k = n, then S contains no x terms. Hence f(™ : X — ML, (X", Y)isaconstant
function and all higher derivatives vanish. O

Example 7.3.4 Define F : L(X, X) — L(X, X) by F(T) = T3, T € L(X, X).
This is a homogeneous polynomial of degree 3. In fact, Q(A, B, C) = ABC
defines a multilinear function and F(T") = T3 = Q(T, T, T'). By three successive
applications of Lemma 7.3.1 we obtain

F'(T)(A) AT? + TAT + T?A
F"(T)(A, B) ABT + ATB+ BAT +TAB+ BTA+TBA
F'"(T)(A, B,C) = ABC+ ACB+ BAC +CAB+ BCA+ CBA.

The symmetric part of this polynomial is
S(A, B, C) = (ABC + BCA+CAB+ ACB+ CBA+ BAC)/S.
Hence the relation F"'(T)(A, B, C) = 6 S(A, B, C) is verified.
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Term-by-Term Differentiations

Consider a sequence of multilinear functions Q,, € M L,{X™, Y') and the associated
homogeneous polynomials f,,(z) = Q,(x ..., x). We define

Fo(x) = 311, fi(x) and G (x) = Fy(x) = 320, fi(x).
We assume that (),,s are symmetric multilinear functions. This is not a loss of
generality since f,(z) = Qn(x ..., x) = Sp(x ..., x), where S, is the symmetric
part of (). We write Q},, = S,,. We also assume that there is an R > 0 for which
the sequence ||.S,, || R™ is bounded. As before,
B.(0)={x|[xll<r}cX

is the open ball of radius r > 0 about the origin.

Theorem 7.3.5 If x € Bg(0), then lim, F,,(x) = F(x) exists in Y. Also, F :
Bgr(0) — Y is a continuous function.

Proof. This a restatement of Theorem 4.4.32. O

Lemma 7.3.6 [fx € Br(0) and u € X, then

G(x)(u) = limGr(x) () = >~ fr(x)(w) (7.11)

existsinY.

Proof. Theorem 7.3.2 shows that
1) = [InSn(u, x, ..., ¥)|| < ||Salln ful x>

Let || x|] < R. Find an r € R such that ||x|| < r < R. Since ||S,||R™ is bounded,
we have Y ||Sp[lnr™~! < oo by Theorem 2.5.7. Hence

> USalln ull x|t < oo,

Then, as in the proof of Theorem 4.4.32, we see that the limit in (7.11) exists. O

Notations 7.3.7 For fixed x, u € X, r > 0, and n € N, define

ho(s) = fa(x+su)— fr(x) —sf.(x)(u) € Y and (7.12)
on(s) (n(n = 1)/2) 1Sall 7" 2lul® s* € R (7.13)
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forall s € R.

Lemma 7.3.8 If0 < r < R then

M= (nln—1)/2) Sa] ™ 2lju)* < oo

n

and Y., on(s) < Ms? forall s € R.

Proof. Theorem 4.4.32 shows that >°_ (n(n—1)/2) ||S,, || 7" ~?|ju||? < oo whenever
IS,.|| R" is a bounded sequence and 0 <+ < R. O

Lemma 7.3.9 If (||x|| -+ |[ull [¢]) < 7. then ||hn()]] < @n(t).

Proof. We see that h,, : R — Y is a differentiable function and

hy(s) fa(x 4+ su)(u) - fr(x)(u)
= nQp(u,x+su,...,x+su)—nQ,(u, x,...,x), scR

For a fixedu € X, define S,, 1 € ML, (X" ! Y)by
Sn_](X1, LR Xn—l) = S’n(u7 X1y oens xn—l)-

Then, clearly, ||Sp—1|| < ||u|l||Sx|]. Hence Theorem 4.3.14 on the increments of
multilinear functions shows that, if (||x|| + |jul| |s|) < R, then

1B ()]l n(n =Dl Sp-1]r"? ||sul
n(n = DSl ulfr" =2 ||sull
n(n = DSl 72 [ul® |s|

@ (Isl)-

TANVANVA

I

Then Theorem 5.1.12, a version of the mean value theorem, shows that

[ ()] = 11 (£) = R (0} < @([t]) — 9(0) = ¢(t). D

Lemma 7.3.10 Let fp(2) = Su(x, ..., X), x € X be a sequence of polynomials
X — Y. Forfixedx, u € X, let

Fo(x) = Y01 fe(x) and Gp(x)(n) = Y7 fi(x)(u), n € N.
If there is an R > 0 such that || S, || R" is a bounded sequence, then

lim, Fy, (x) = F(x) and lim, G, (x)(u) = G(x)(u)
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both exist in'Y for all x € Bgr(0) and w € X. Also, F : BR(0) — Y is a
differentiable function and F'(x)(u) = G(x)(u) forallu € X.

Proof. The existence of F(x) was obtained in Theorem 7.3.5 and the existence of
G(x)(u) in Lemma 7.3.6 above. Let x € Br(0), u € X. Let ¢ > 0 be such that
(Ix]| +¢llul]) < r < R. If [t| < ¢, then

[ Balx + 1) = Fo(x) = tGn ()i < D7 [hx ()]
< chpn(t)thQ.

The last two inequalities follow from Lemmas 7.3.8 and 7.3.9 above. By taking the
limit on n and using the the continuity of the norm function, we obtain

|F(x + tu) — F(x) — tG(x){u)|| < M ¢
whenever |t| < c¢. This proves that F'(x)(u) = G(x)(u). O
Theorem 7.3.11 Term-by-term differentiation. Let f,,(z) = S,(x, ..., X) be a

sequence of polynomials X — Y. Assume that there is an R > 0 such that the
sequence ||S,, || R™ is bounded. Then

F(x) =3 fax)

defines a C* function F': Br(0) — Y. Also,

Duk"'Du1F(x):Z Duk"'Dulfn(x) (7.14)

foralluy, ..., u, € X.

Proof. This follows from Lemma 7.3.10 above by an induction on £ € N. In
fact, this lemma gives (7.14) for £ = 1. Assume (7.14) for a fix set of vectors
g, ..., ux € X. Let max; |lu;{| = v Then we see easily that

1Day -+ Dy falx)ll < 27 Snll u? flx]*~F.

But ), n*7!|S, || uF 7" % < oo whenever 0 < r < R. This is again by Theorem
4.4.32. Then Lemma 7.3.10 above shows that (7.14) is also true for k + 1. O

Example 7.3.12 The inversion operator. Let L1, (X, X) be the set of all invertible
mappings in L{X, X). Then the inversion operator

d9=Inv: L1 (X, X) — Li(X, X) C L(X, X)
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takes T € Lin (X, X) to 9(T) = T1. We claim that 9 is a > function on
Linv(X, X). First, we show that all the derivatives 9¥(™)(I) exist at the identity.
This follows from the expansion

II+T)=T T+ T+ + (=1)"T" + - -

obtained in Theorem 4.4.38 and from Theorem 7.3.11 above. To see differentiability
at a general point A € Ly, (X, X), itis enough to let A~! = B and observe that

YA+T)=9({I[+BT)-B
as in the proof of Theorem 4.4.38. Finally, the inversion operator
Inv: Lin(X,Y) — LY, X)

between different spaces is also a C* function. Again, to see this, it is enough to let
let A€ Ly (X, Y) with B= A~ € L(Y, X) and observe that

Inv(A+T)=9(+ BT) - B.

See Example 7.3.20 below on the computation of some derivatives of 4. A

Example 7.3.13 The exponentiation operator. The exponentiation operator exp :
L(X, X)— L(X, X)takesT € L(X, X) to

lim, (I + T + (1/2)T2 + --- + (1/n)T™) = T € L(X, X).

Theorem 7.3.11 shows that exp : L(X, X) — L(X, X) is a C* function. Note that
the derivatives of 7 exist, but they may not have simple expressions. For example,
if A€ L(X, X) then

DaeT = A+ (AT +TA)+ (1/2)(AT? + TAT + TA?) + (1/3))
+(1/30)(AT? + TAT? + T?AT + T3 A) + - -- .

This may not have a simple expression unless A and 7' commute. If AT = TA,
then Dye? = AeT = eT A. See Example 7.3.19 below for the derivatives of e”
at T = 0. Finally, let X = R and consider { € R as the linear map that takes
z € Rtotx € R. In this case e is the classical exponential function. We see that
D, et =lim,_o(1/7)(e!*7® —et) = aet. A

Taylor Polynomials and Series

Taylor polynomials and Taylor series can be generalized from functions of a real
variable to functions of a vector variable. No new arguments are needed here. These
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generalizations follow directly from the corresponding results for the functions of a
real variable.

Definition 7.3.14 Let f : A — Y be a C" function. Let a € A. Then

o
w(a+x) ZE (%, ..., %)

m=0

is the Taylor polynomial of f of degree k at a € A.

Theorem 7.3.15 Approximation by Taylor polynomials. Let f : A — Y be a
@" function. Let R > 0 and M > 0 be such that || f(™(a + x)|| < M whenever
||| < R. Then

I£(a+x) = Pasi(a+x)] < (1/nt)M x| (7.15)

whenever ||z]| < R.

Proof. Letx € X, 0 < ||x|| < R, be fixed. Define p(s) = f(a+ sx). Then Lemma
5.2.18 on the computation of directional derivatives shows that

¢'(s) = f'(a+ sx)(x). By an induction on k we obtain
o®(s) = f®(a+sx)(x,...,x). Hence
)

= T /k) P ()t
= /) fY @), L 08t

Letr = R/||x|. Thenr > 1and || f(™(a+ sx)| < M whenever 0 < s < r. Hence

pn—l(s

lp(m)(s)] = /™ @+ sx)(x, ..., x)| < M |x|

whenever 0 < s < 1 < r. Then Taylor’s theorem, Theorem 5.1.22, for functions of
a real variable shows that

lo(1) = po-1 (Wl = If(a+x) — Pa_r(a+x)|| < (1/n)M [Ix[|".
Here we observed thatp,,_1(1) = P,_1(a+x). O
Notation 7.3.16 Foreachn € Nand r > 0, let

Ma(r) = sup { | ™ (a+x)] | x| <7 }

if it exists.
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Theorem 7.3.17 Approximation by Taylor series. Assume that there is an R > 0
such that (1/n!) M,,(R)R™ is a bounded sequence. Then

fla+x)

Fla) + F@)e0) 4 o f @) %)

T
. 1 .
= lim, E i f®a)(x, ..., x) =lim,P,(a+x)
k=0
whenever ||x|| < R.

Proof. Let (1/n!) M,,(R)R" be a bounded sequence. We see that
lim, (1/nl) M,,(R)r" =0

whenever || < R. Then the result follows directly from Theorem 7.3.15. O

Derivatives in Terms of Taylor Series

Let f: A — Y be a function. If we can express f(a + x) as a convergent sequence
of polynomials in x, then we can easily find the derivatives of f at a. We state this
result as follows.

Theorem 7.3.18 Let f,,(x) be a sequence of homogeneous polynomials associated
with multilinear functions Q,, € ML, (X™, Y). Assume that there is an R > 0 such
that the sequence ||Q, || R™ remains bounded. If

F(x) = filx) + fa(x) + -

with ||x|| < R, then F(™(0)(uy, -+, u,) = n! Sp(uy, -+, w,). Here Sy, is the
symmetric part of Qn, as in Definition 3.3.12.

Proof. By Theorem 7.3.11 we can differentiate F'(x) term by term. Hence

FM(0)(uy, -, u,) = 1(”)(0)(111’ C ) +f2")(0)(u1, R R
But, by Corollary 7.3.3, f,gn)(O)(ul, -++,u,) = O unless k = n. Hence,
F(n)(O)(ula Ty uTL) - f(n)(o)(ul7 Ty un) = n' Sn(u17 T u'n)v

again by Corollary 7.3.3. O
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Example 7.3.19 Derivatives of e’ at T = 0. From the definition

FT)=el =I+T+Q/20T% 4+ + (1/a)T" + -
we see thatF(")(O)(Al, v Ap) =0l 8, (A4;, ..., Ayn). Here S, is the symmetric
part of Q, € ML,(X"™, Y) such that (1/n)T™ = Q,(T, ..., T). Hence, for

example,

F"(0)(A, B, C) = (ABC + BCA+ CAB + ACB + CBA + BAC). A

Example 7.3.20 The inversion operator. Let L1,,, (X, X) be the set of all invertible
mappings in L(X, X). Then the inversion operator

Inv : Lin (X, X) — Liny(X, X)

takes T € Liny (X, X) to InvT = T~1. We can find the derivatives of the function
at A € Lo (X, X) as follows. Let B = A~1. We have

(A+T)'=(AU+BT)'=(I+BT)'A™' =+ BT)"'B.
Theorem 4.4.38 shows that the series of polynomials
F(T)=B— (BT)B+ (BT)’B+ -+ (=1)"(BT)"B + - - -
converge to F(T) = (A + T)~! whenever ||BT|| < 1. In particular, we have
convergence whenever ||| < 1/||B||. Hence we can find the derivatives of F'(T) at
T = 0. We see easily that F(™)(0) = (Inv)(™ (A). Hence
(Inv)M (AU, ..., Up) = 0! Sy (U, ..., Up).

Here S,, is the symmetric part of a multilinear function that induces the polynomial
(BT)™B. The first three derivatives of the inversion operation are

(Inv) (A)(U) = -—-BUB
(Inv)"(A)(U, V) = (BUBVB+ BVBUB)
(Inv)"(A)(U, V,W) = —(BUBVBWB+ BVBWBUB+ BWBUBVB

= +BUBWBVB+ BWBVBUB + BVBUBWB).

In the classical case of f(x) = (1/z), x # 0, these formulas are reduced to

F ) = (1)

The verification of this is left as an exercise.
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Inverse Function Theorem for Higher Derivatives

Theorem 7.3.21 Extended inverse function theorem. Ler A be an open set in X
andlet f : A — Y be a C™ function. Let a € A and assume that f'(a) : X — Y is
an isomorphism. Then there is an open set GG in X such thata € G C A and such
that the restriction of f to G is a C"-diffeomorphism.

Proof. Let f : A — Y be a C! function such that f’(a) : X — Y is an isomorphism.
Then the inverse function theorem, Theorem 6.1.4, shows that there is an open set G
in X suchthata € G C A and such that the restriction of f to G is a diffeomorphism.
Hence f(G) = H is an open set in Y containing b = f(a), and the inverse function
g : H — X is also a continuously differentiable function. Also, we know that

J) =g =0 f9)y), yeH, (7.16)
since g : H — G is the reverse diffeomorphism of f : G — H. Here
9 L (X, Y) = L{Y, X)

is the inversion operator that takes an invertible 7 : X — Y to its inverse ¥(7") =
T71:Y - X.

The additional part in the extended theorem is that if f : G — H is a €™ function,
then g : H — (G is also a C™ function. Proceed by induction on n. This result is
true for n = 1 by the original theorem. Assume that it is true if f is a C™ function.
Let f be a C"™! function. Then f' : G — L(X,Y)and g : H — G are C"
functions by the induction hypothesis. Also, ¥ : L1, (X, Y) — L(Y, X) is a €
function, since it is actually a € function by Example 7.3.12. Then (7.16) shows
thatg’ : H — L(Y, X) is a composition of €™ functions. Hence, by Theorem 7.1.6,
¢’ is also a €™ function. Therefore g : H — G is a @**! function. O

7.4 LOCAL EXTREMAL VALUES

Local extremal values of real-valued functions were defined in Definition 5.4.14.
Taylor polynomials allow us to obtain a test to find these values. This is formulated
in terms of positive or negative definite real-valued polynomials.

Definition 7.4.1 Positive definite polynomials. Let p : X — R be a real-valued
homogeneous polynomial of degree n € N. Then p is called a (strictly) positive
definite polynomial if p(x) > 0 whenever x #£ 0.

Remarks 7.4.2 If X is an inner product space, then p(x) = (x, x) is a positive
definite homogeneous polynomial of degree 2. If p is a homogeneous polynomial
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of degree n, then p(fx) = " p(x). Hence, if n is odd, then p can never be positive
definite. If n is even, then p may or may not be positive definite. If p : R? — R
is a second-degree homogeneous polynomial, then there is a familiar necessary and
sufficient condition for positive definiteness. This is given in Problem 7.1. In general,
there may not be an easy way of finding out if a homogeneous polynomial is positive
definite.

Lemma 7.4.3 Let p : X — R be a positive definite polynomial of degree n. Then
there is a number K > 0 such that K ||x||" < p(x) forallx € X.

Proof. Let S = {u€ X ||lu]|=1}. Then S is a compact set in X. Also,
p: X — R is a continuous function. (One way of seeing this is to note that p is a
differentiable function.) Hence p reaches a minimum value on the compact set S by
Theorem 4.5.44. Therefore there is an a € S such that p(a) < p(u) forall u € S.
Then 0 < p(a) = K since p is positive definite and a # 0. Now any x € X can
be expressed as x = ||x|| u with u € S. Hence p(x) = ||x||™ p(u). Then the proof
follows. O

Theorem 7.4.4 Let f : A — R be a real-valued function defined on an open set A
in X. Assume that f is differentiable as many times as needed. Let a € A and let
m € N be the smallest integer such that f(™)(a) # 0. If m is odd, then f cannot
have a local extremal value at a. If m is even and if the polynomial

p(x) = fM(@)(x, ..., %)

is positive definite, then [ has a local minimum at a. If there are x; such that
p(x1) > 0and p(x2) < 0, then f cannot have a local local extremal value at a. If
p(x} > 0orifp(x) <0 forall x € X, then f may or may not have a local extremal
value at a.

Proof. Let f(™)(a) be the first nonzero derivative. Let
p(x) = (1/m)f™(a)(x, ..., x), x€X.

Then the mth order Taylor polynomial P,,(a + x) defined in Definition 7.3.14
becomes

Pr(a+x) = f(a) + p(x).

Let R > 0and M > 0 be such that | f(™+D(a + x)|| < (m + 1)! M whenever
{|x|| < R. Then Taylor’s theorem, Theorem 7.3.15, shows that if ||x|| < R then

|[flat+x)— Pula+x)| = [fla+x)- f(a)-p(x)| (7.17)
< Mx|™H (7.18)
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Now assume that m € N is odd. Letr € X be such that p(r) # 0. If p(r) < 0, then
p(—r) = (=1)™p(r) > 0. Hence assume that p(r) > 0 without loss of generality.
Let x = tr with ¢ € R. Then p(tr) = t™ p(r) and ||¢r||™*! = t™*1|ir||. Hence

t™(p(r) — tM|lr|}) < f(a + tr) — f(a) < ™ (p(r) + tM|r]])
whenever [t|]|r]| < R. Take ¢t > 0 such that tM||r|| < (1/2)p(r). Then we see that

0 < (1/2)t"p(r) < f(a+tr) — f(a) and
fla—tr) - f(a) < =(1/2)t"p(r) < 0.
Hence f(a) cannot be a local extremal value for f.

Now assume that m is even and p : X — R is positive definite. Lemma 7.4.3 shows
that there is a K > 0 such that K ||x||™ < p(x) for all x € X. In this case (7.18)
shows that

Ix[I™ (K = M{|x}}) < f(a+x) - f(a)

whenever ||x|| < R. But this implies 0 < f(a + x) — f(a) whenever
0 < |Ix|| < K/M and ||x|| < R.

Hence f(a} is a local minimum value for f. Other parts of the theorem are left as
Problem 7.2. DO

Problems

7.1  Show that the polynomial P(z, y) = Az? + 2Bzy + Cy? is positive definite
if and only if B2 < AC and 0 < A.

7.2 Give examples of the form
f(z, y) = Az? + 2Bzy 4 Cy? + Dz® + Ex?y + Fay® + Gy

to cover all cases mentioned in Theorem 7.4.4.
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CHAPTER 8

MULTIPLE INTEGRALS

Integration in R™ is a generalization of integration in R = R!. In many ways,
integration of functions of a single variable is a leading special case: it provides
valuable guidance as we generalize to functions of several variables. Many of the
basic definitions and theorems are essentially the same in R and in R™. In the
general case, as in R, integrals are defined as the limit of Riemann sums. Continuous
functions are integrable. Integration is linear: if f, f’ are integrable and ¢, o’ € R,
then [(af +&'f') = af f+« [ f. Even many of the proofs that work in the
one-variable case generalize to functions of several variables.

All the same, at least two significant complications emerge when we shift our focus
from R to R™. The first of these has to do with computational techniques, and the
second has to do with the contrast between length (in one dimension) and volume (in
n dimensions). Let us take these two points in turn.

The first difference, as noted, pertains to computational techniques. The Fundamental
Theorem of Calculus shows that differentiation and integration are inverse operations
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in R. The theorem allows us to compute integrals in R by finding anti-derivatives.
This simple method is not available when n > 2. Computations in R™ must usually
be done by successive integrations, each involving the computation of an integral in
R with familiar techniques. For this reason, integrals in R™ are usually referred to as
multiple integrals. The main result that licenses this type of computation is Fubini’s
Theorem (Theorem 8.2.37), proven towards the end of Section 8.2.

The second difference relates to the fact that, while integration in R starts with the
notion of the length of an interval, integration in R™ starts with higher-dimensional
volumes. There is a basic difference between the definition of length and the definition
of volume. If I is an interval with end points r and s, with r < s, then its length is
given by £(I) = (s — r). No such simple formula is available in higher dimensions,
for we shall be interested in the volumes of many odd-shaped regions.

Volumes in higher dimensions — the main topic of Section 8.1 — are defined by
a method that, in all essential respects, was developed by Archimedes (c.287-212
B.C.). To estimate the area A of a two-dimensional region R, we can trace R on
graph paper and count the number of squares of the graph paper that are completely
in R. This gives a lower estimate for A. We can also count the number of squares
that intersect R but may or may not be completely in R. This gives an upper estimate
for A. To improve these estimates, we use finer graph paper with smaller squares.
The region R has a well-defined area if and only if, as we let the squares on the
paper shrink in size, the limit of the lower estimates agrees with the limit of the upper
estimates.

The formal definition of area, or higher-dimensional volume, utilizes Archimedes’
idea. We first define the volumes of certain basic sets, called cubes, and then the
volumes of unions of cubes. In the one-dimensional case, these sets are intervals and
their finite unions. In the the two-dimensional case described above, they are squares
and finite unions of squares. And so on, for higher dimensions. Following the lead of
Archimedes, we define the volume of other sets by forming upper and lower estimates
with unions of cubes and then taking limits as the cubes become smaller and smaller.
We shall denote volume in R™ by v™ or simply by v. One-dimensional volume, or
length, will often be represented as ¢ instead of as v! or v.

It is quite important that the exact specifications of the squares in our sequence of
grids, or the cubes employed in the limiting construction, turn out not to matter, so
long as the edge lengths shrink to zero. Many different choices lead to the same limit
and hence to the same notion of volume. We shall make use of binary cubes, whose
edge lengths are always of the form 2% , as our basic type.

The approach we have just described for defining volume does not always work,
since the upper and lower estimates may not converge to a common limit. In many
texts, including this one, the term Jordan set is reserved for sets where the approach
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does lead to a well-defined volume. This is in honor of Camille Jordan (1838-1922),
who formulated a general theory of volumes.

The ideas of Archimedes are enough to establish a complete theory of volumes.
Actually, as we shall see, these methods also give a complete theory of integration.
That is because an integral on R™ can be thought of as an 7 + 1-dimensional volume,
just as an integral on R is essentially the area of the two-dimensional region "under
the curve" (for a positive function). The only part missing in this approach is an
efficient general method for the computation of these volumes. Such a method
was not obtained until almost two thousand years later through the development of
calculus. Section 8.2 presents the basic theory of integration, together with the most
important computational techniques.

Section 8.1, then, is devoted to providing a rigorous definition of volume, and Section
8.2 outlines the basic definitions and results for the theory of multiple integrals. The
final two sections of the chapter provide a proof of the Change of Variable Theorem.
This theorem, perhaps more than any other result, beautifully illustrates both the
deep analogy and the contrast between integration on R and on R™. The one-variable
version of the theorem is usually stated as follows:

g(b) b
/ fwwszmmymm. 8.1)
g(a) a

The proof is an easy application of the Fundamental Theorem of Calculus. For
functions on R™, the theorem takes the form

/ﬂww:/ﬂﬂmvmwwnw, (8:2)
B A

where ¢ is a diffeomorphism, ¢’ is its derivative, and B = ¢(A). The formal analogy
between the two equations is clear, with ¢ in the multidimensional case playing the
role that g plays in the one-dimensional case. Unlike the one-dimensional case, the
proof of this result is far from easy. That is a consequence of the complexity of the
notion of volume as compared to length. In order to appreciate that a strong analogy
between R and R"™ still exists, one has to tackle this proof in three steps. The first
step, in Section 8.3, is to prove the result where ¢ is a fixed linear transformation.
The second and third steps, in Section 8.4, establish the result first where f(y) = 1
and then for general f.

8.1 JORDAN SETS AND VOLUME

Recall that Z = {0, £1, +2, ...} and Z* = {0, 1, 2, ...} are the set of integers
and the set of nonnegative integers. As explained in the introduction, we start by
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defining volume for a special class of cubes — a class that is big enough to construct
the grids that we need to apply Archimedes’ technique. We then define the volume
of Jordan sets by employing that technique.

Binary Grids of Cubes

Definition 8.1.1 Binary grids in R". Let n € Nand k € Z*. The kth-order binary
grid of R* = R x .- x Ris the collection €} of cubes C' = I x - - - x I,, where each
I; C Ris an interval of the form I; = [u;, v; ) withu; = p; 275, v; = (p; +1)27F,
p; € Z. Thus, CF is a particular family of cubes in R™ with edge length 2=, The
center of C'is the point

c=(1/2)(ur + w1, -+, Up + vn). (8.3)

Let Z} be the set of centers of the cubes in the grid €F. If the dimension n is
understood from the context, we also write Cj, and Z, instead of €} and 23} If n =1
or n = 2, then these cubes are certain intervals or squares. We will call the special
cube By, = [0, 27%)™ € CV the kth-order basic cube. In particular, Ey = [0, 1) is
called the unit cube of R™. Note that a binary grid divides R™ into mutually disjoint
cubes C € €7 by the hyper-planes z; = p; 27%, p; € Z. (Taking half-open intervals
is necessary for the cubes to be disjoint.)

Remarks 8.1.2 Translations of cubes. Translation by s € R™ is the transformation
R™ — R™ that takes x € R™ to (s + x) € R”. If E C R", then s + E denotes the
translation of F by s. More explicitly,

s+E={s+x|x€F}.

Any two cubes in a grid C}, are translations of each other. In particular,each C' € €7 is
the translation of the kth-order basic cube Ej, = [0, 27%)" € €. These translations
are by the binary vectors s = 27%(py, ..., p,) with p; € Z.

Cubes and Balls

Definition 8.1.3 The maximum norm. The Euclidean norm provides the standard
notion of distance in R™. But in the theory of integration, the maximum norm is also
a very convenient norm. It is defined as

Wz, ..oy 2p)llm = max(jz1], - .., |25]).

With respect to this norm, balls are cubes. More precisely, the interior of a cube is
an open ball and the closure of a cube is a closed ball. Restricting our attention to
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binary cubes, let C' € Cy be a kth-order cube with center ¢, as in (8.3) of Definition
8.1.1. Then we see that

B.(c)=C°c C c C = B,c)

where r = (_1/2)2"c = 27k~ is the common radius of the cubes in Cj. (Here both
B.(c) and B, (c) are balls with respect to the maximum norm, C° is the interior of
C, and C is the closure of C.) Hence

B.(c) ={x|||x— ¢||m = max;|z; —¢;] <r }

and similarly for B..(c), substituting < for <. We shall often denote cubes using this
notation.

Lemma 8.1.4 Density of the binary grids. Any open set G C R™ contains cubes
from a binary grid.

Proof. As we proved in Chapter 4, the openness of a set is independent of the norm.
Hence, given u € G, there is an r > 0 such that x € G whenever ||x — u|l < r,
where we are using the maximum norm. Hence,

(up—ryur+7) X X (Up — 71, up +7) CG.

Let k € N be such that 2=% < 7. In this case, each interval (u; — 7, u; + ) contains
a binary interval [p;27%, (p; + 1)27%) with p; € Z. Hence G contains a cube from
the binary grid €. O

Cartesian Products of Cubes

In the following discussion, we use the integers n and m for the dimension of the
space, while h and k are reserved for the order of the binary grid.

Notations 8.1.5 Sets in Cartesian products. Let n, m € N. If A C R" and
B CR™, then A x B C R"® x R™ = R"™ is

AxB={(a,b)|la€ A, beB}.

We can easily extend this idea to define Cartesian products of collections of sets. Let
A C P(R") and B C P(R™) be two collections of subsets of R™ and R™. Then
A x B will denote the class of all subsets of R™ x R™ = R"*™ that are of the form
Ax Bwith4d e Aand B € B.
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Lemma 8.1.6 Products of cubes. Lern, m € N. Then C;1™ = €7 x C*. Hence,
C € €™ if and only if there are A € C} and B € C* such that C = A x B.

Proof. This follows from Definition 8.1.1 above. O

The next result provides a partition of a binary cube into a disjoint union of smaller
binary cubes.

Lemma 8.1.7 Cubes as the union of higher-order cubes. Let h, k € Z1 and
h < k. Then each cube in C}} is the union of 2F=M" cubes in Cr.

Proof. First, consider the result in R, i.e., assume that n = 1. Letg = (k — h). If
g = 1, simply note that each interval I = [r, s) € €}, is the union of two "cubes"
Iy=1[r,(r+s)/2)and I; = [(r + s)/2, s) in €}, since k = h + 1. An induction
proves the result for any ¢ € N and forn = 1.

Now assume the result holds for all n < M, where M € N, and for any ¢ € N, where
q =k — hasbefore. If C € €' thenC = A x Bwith A € C? and B € C}, by
Lemma 8.1.6. Hence, by the induction hypothesis, A = U; 4; and B = U; B;, where
the first union contains 27" cubes A; € C;, = €y and the second union contains

29 cubes B; € €}, = Cj. Then

C:(AXB):UZ‘UJ‘(A,L'XBJ‘)

is the union of 29" - 29 = 29("+1) cubes (A; x B;) € €X' So the result holds for
n + 1 and thus for all n by induction. O

Volumes of the Unions of Cubes

The volume of an individual cube is the product of its edge lengths, the volume of
a disjoint union of cubes is just the sum of the individual volumes, and the volume
of a Cartesian product of cubes is the product of the individual volumes. First, we
establish these basic facts for binary cubes.

Definition 8.1.8 Volumes of cubes in a grid. The volume of C € C}, is defined as
v™(C) = 275", In particular, if I = [p2~%, (p+1)27%) € C}, then v!(I) = 27%
is the length £(I) of I. Andif C = (I; x --- x I,) € C} with I; € C}, then

vM(C) = 27F = (7R = 4() - (1),

the product of n constant edge lengths. Note that v 7™ (C) = v"T™(A x B) =
v™(A) - v™(B) whenever C = (A x B) € C;*™ with A € €} and B € C}".
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Lemma 8.1.9 Additivity of volume. Let h < k. If C € Cp, and if C = U, A; with
A; € Cy, then v(C) = >, v(A;). (Note that we write v for v™.)

Proof. Lemma 8.1.7 shows that the number of cubes A; in the union C' = U; A; is
27(k=h)_Since v(A;) = 2~ *" for each i we have

D w(dy) =2nh TR — g7 — (). O

3

Definition 8.1.10 Finite unions of cubes in a grid. Let Uy denote the collection of
sets consisting of the finite unions of cubes C' € €. We assume that §} € Uy, — it is
the union of an empty collection of cubes. Lemma 8.1.7 shows that if h < k, then
Cr C Uk. Hence we see that U, C Uy whenever h < k. We sometimes write U}
instead of Uy to identify the dimension of the underlying space R™.

Definition 8.1.11 Volumes of finite unions of cubes in a grid. Let E € U;. Then
E € Uy for all k > h. Hence, for each k > h, there is a finite collection of cubes
&k C Cg such that E = Ugc ¢, C. Note that, by Lemma 8.1.7, [E;| = 26— (g, |,
where |€x| is the number of elements in £y. The volume of E is defined as

w(B) = (U, ©) = e, WO =275 Ex. (8:4)

The important point is that this number is well-defined: v(E) is the same regardless
of which & > h we use in the definition. We sometimes write v™ instead of v to
identify the dimension of the underlying space R™.

Lemma 8.1.12 Ler E € Uy, and F € Uy. Thenv(EU F) < v(E) + v(F). Also, if
E and F are disjoint, then v(E U I') = v(E) + v(F).

Proof. Let p = max(h, k). Then E, F' € U, by Definition 8.1.11. Hence, there
are finite collections &, F C €, such that E = Ugec e C and F' = Uce 5 C. Then
G = E U F is the union of the collection § = £ U F. Hence the first part follows
from the estimate that |G| < || + |F|. If the sets E and F are disjoint, then € and F
are also disjoint and |G| = || 4 |F]. This proves the second part. O

Lemma 8.1.13 Monotonicity of volume for unions of cubes. Let E € Uy, and
F € Uy, and suppose E C F. Then v(E) < v(F).

Proof. Once again, let p = max(h, k), so that E, F' € U,. Then there are finite
collections £, F C €, suchthat E = Ugeeg C'and F = Ugc 5 C. Since E C F,
we must have & C F. It follows that |€| < |F], and hence v(E) < v(F). O



294 MULTIPLE INTEGRALS

Lemma 8.1.14 Volumes in Cartesian products. Let A € U} and B € U, Then
(A x B) € U™ and v ™ (A x B) = v™(A) - v™(B).

Proof. Let A = U;A; and B = U;B; with finitely many A; € € and B; € C}".
Then A X B = U;;(A4; x B;) with finitely many (A4; x B;) € C;™™. This follows
from Definition 8.1.8. Then

v"TM(Ax B) = Zij«umm(m x Bj) = Zijv"(Ai) -v™(B;)

= () (X mm) =) 7 (8),

again by the same definition, 0O

Approximations by the Cubes of a Grid

Our immediate task is to show that the elementary results that we have just established
for unions of cubes may be transferred to the class of sets that can be approximated
by unions of cubes.

Definition 8.1.15 Approximating cubes of a bounded set. Let C} = Cj be the
kth-order binary grid in R™. Let E be a bounded subset of R”.

Inner approximation. The collection of all cubes in € that are contained in E
is denoted by J7(E), or simply by J;(E) if n is understood. The cubes in J(F)
are called the kth-order inner cubes of F, and the union of all of these cubes is the
kth-order inner approximation of E. It is denoted by Ij.(E).

Boundary approximation. The collection of all cubes in Cy, that intersect both £
and E¢ = R™ \ F is denoted by D;(FE). The cubes in Dy (F) are called the kth-
order boundary cubes of E, and the union of these cubes is the kth-order boundary
approximation of E. It is denoted by Dy (E).

Outer approximation. The set O, (F) = I (F)U D (F) is called the the kth-order
outer approximation of E. Also, Ox(E) = J,(FE) U Dg(F) is the collection of all
cubes in Cj that intersect E. The union of these kth-order outer cubes is Ok (E).

Remarks 8.1.16 Note that
Di(E) = Or(E) \ Tx(E) and Dy (E) = O (E) \ I (E). (8.5)

Also, I,(E) and Oy (FE) are the best inner and outer approximations of a set by the
cubes of the grid €y, in the following sense. If F, G € Uy and if F C E C G, then
also

FCI(F)CECOWE)CG. (8.6)



JORDAN SETS AND VOLUME 295

This is clear from the definitions. Finally, note that if A < k, then
I(E) CI(FE) C E C O(E) C Op(E). 8.7

No surprises here: the approximations improve as the grids become finer.

Lemma 8.1.17 If E is a bounded set, then the limits
Q(E) = limy, 'U(Ik(E)) andE(E) = limy U(Ok(E)) (8.8)

both exist and y(E) < v(E).

Proof. The inclusions (8.7) above and the monotonicity of volume for unions of
cubes, Lemma 8.1.13, show that

W(In(E)) < v(Ii(E)) < v(O4(E)) < v(On(E))

whenever h < k. Hence v(F) and T(E) both exist and v(F) < 7(F). O

Definition 8.1.18 Inner and outer volumes of bounded sets. Let E be a bounded
set in R™. Then the limits obtained above,

v(E) = limg v(I(F)) and 5(E) = limg v(Or(E)), (8.9)

are called, respectively, the inner and outer volumes of E.

Lemma 8.1.19 Monotonicity of the inner and outer volumes. If A and B are
bounded sets and if A C B, then v(A) < v(B) and 5(A) < 5(B).

Proof. Definition 8.1.15 shows that if A C B, then
Ik(A) C Ik(B) and Ok(A) C Ok(B) (8.10)

Hence the proof follows. O

Jordan Sets

Definition 8.1.20 Jordan sets. A bounded set E C R™ is called a Jordan ser if it has
the same inner and outer volumes. In this case, v(E) = ©(FE) is called the volume of
the Jordan set E and is denoted by v(F) = v(F) = T(E).
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Theorem 8.1.21 Other definitions of Jordan sets. Let ¥ C R"™ be a bounded set.
Then the following are equivalent.

(1) E is a Jordan set.
(2) Foreache > Othereisak € Zt such that v(Or(E)) — v(Ix(E)) < €.
(3) Foreache > Othereisak € Z% such that v(Dy(E)) < e.

(4) Foreache > Othereisak € ZV and F, G € Uy such that F C E C G and
such that v(G) — v(F) < e.

(5) Foreach e > 0 there are Jordan sets F and G such that F C E C G and such
that v(G) — v(F) < e.

Proof. The sets It,(E), Ox(F), and Dy (E) were defined in Definition 8.1.15. Note
that Dy (F) = Ox(E) \ Ix(F) by (8.6) and, therefore,

v(Di(E)) = v(Ok(E)) - v(Ix(E))

by Lemma 8.1.12. This shows the equivalence of (2) and (3). The other parts of the
theorem are left as exercises. O

Definition 8.1.22 Negligible sets. Jordan sets of zero volume are called negligible
sets.

Lemma 8.1.23 A ser E is negligible if and only if for each € > 0, there is a Jordan
set G such that E C G and v(G) < e. In particular, the empty set is a negligible set.

Proof. This is left as an exercise. O

Theorem 8.1.24 Additivity of volume. If A and B are Jordan sets, then AU B,
AN B, and A\ B are also Jordan sets. Also, v(AU B) < v(A) +v(B). If A
and B are disjoint, then v(A U B} = v(A) + v(B). Finally, if A; are finitely many
Jordan sets and A = U;A;, then A is a Jordan set, v(A) < 3, v(A;) in general,
and v(A) =3, v(A;) if the sets A; are pairwise disjoint.

Proof. We claim that Dy(A U B) C Di(A) U Di(B). In fact, if E is a kth-order
cube in Di{A U B), then E intersects both A U B and its complement. Hence
contains a point from A or B and also a point not in A and not in B. Then we see
that either E C Dy (A) or E C Dy(B). Then Lemma 8.1.12 shows that

o(De(AU B)) < v(Dy(A)) + v(Dx(B)).
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This implies that A U B is a Jordan set by Part (3) of Theorem 8.1.21. Similarly,
AN B and A\ B are also Jordan sets. The other parts follows from Lemma 8.1.12.
In fact, this lemma shows that

v(lk(AUB)) < wv(lx(A))+v(Ix(B)) in general and 8.11)
v(Ix(A U B)) v(I(A)) + v(Ix(B)) if A and B are disjoint. (8.12)

The generalization to finitely many sets is by induction. O

Theorem 8.1.25 Cartesian products of Jordan sets. Let A C R™ and B C R™ be
Jordan sets. Then A x B is a Jordan set in R™ x R™ = R™"™ and v"*™(A x B) =
v (A4) - v™(B).

Proof. The notation is as in Definition 8.1.15. By Lemma 8.1.14, I (A) x I(B)
and Oy (A) x Ok(B) both belong to U™ and

V(I (A) x Ik(B)) = v"(Ix(A)) - v™(Ix(B)) (8.13)
and
VT OR(A) x Ok(B)) = v™(Ok(A)) - v (Ok(B)). (8.14)

Hence both volumes in (8.13) and (8.14) approach the same limit v™(A) - v™(B)
with increasing k. Since

Ik(A) X Ik(B) CAxBC Ok(A) X Ok(B),

this shows that A x B is a Jordan set with v"*™(A x B) = v™(A) -v™(B). O

Blocks in R™

We can now show that not just binary cubes but also blocks in general are Jordan sets
— our first important example.

Definition 8.1.26 Blocks in R™”. A block B C R” is a Cartesian product B =
Jy x--- x J,, of intervals. Here each J; is a bounded interval of arbitrary type: open,
closed, or half-open. Empty intervals and empty blocks are allowed. Lemma 8.1.27
shows that each block is a Jordan set.

Lemma 8.1.27 Blocks are Jordan sets. Any block B = J; x --- X Jp in R™ is
a Jordan set with v(B) = £(Jy)...£(J,). Here £(J;) = 0 if J; = 0. Otherwise,
£(J;) = (s; — r;) where 1; is the left and s; the right end point of J;.
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Proof. If n = 1, then blocks are just intervals. We see easily that the conclusion
is correct in this case because of the density of binary numbers, Lemma 8.1.4. The
general case follows by induction on n, using Theorem 8.1.25. O

Lemma 8.1.28 A Jordan set E with a nonempty interior is not negligible.

Proof. Use the maximum norm on R"™, as defined in Definition 8.1.3. Leta € E°.
Then there is a ball B.(a) C E. But in the maximum norm, B,.(a) is a block with
equal side lengths 2r. Hence, v(E) > v(B,(a)) = (2r)* > 0. O

Jordan Sets and the Topology of R™

Topological considerations are important in many arguments about volume and in-
tegration. We will discuss the topology of Jordan sets in more detail in Section 8.3.
Here we make some observations in order to deal with general partitions of R™.

Lemma 8.1.29 Blocks in R" and the topology of R". Given a block E in R™ and
g > 0, there is a closed block F and an open block G such that F C E° C E C
E C G and such that v(G) — v(F) < e.

Proof. If n = 1, then closed (or open) blocks are closed (or open) intervals. The
conclusion is correct in this case because of the density of binary numbers, Lemma
8.1.4. The general case follows by an easy induction on n on the basis of Theorem
8125 0O

Theorem 8.1.30 Jordan sets in R” and the topology of R", Let E be a Jordan set
and € > 0. Then there is a closed Jordan set F' and an open Jordan set G such that
F C E° C ECFE C G and such that v(G) — v(F) < €. Also, F can be taken as a
Sinite union of closed blocks and G as a finite union of open blocks.

Proof. Given ¢ > 0, find two unions of cubes P — U; B; and Q = U;C; such that
P CE CQandv(Q)—v(P) < e/2. Let K € N be such that the number of B; s
and Cj s is less than K. By Lemma 8.1.29, we can find a closed block F; C Bf and
an open block G; D ?J such that

v(B;) — v(Fi) < e/(8K) and v(G;) — v(C;) < ¢/(8K) (8.15)

forall 4, j. Then F' = U; F; and G = U;G; satisfy our requirements. 0O

Theorem 8.1.31 Ler E be a Jordan set and € > 0. Then there are two Jordan sets
F and G and a number 6 > O such that F C E C G, v(G) — v(F) < ¢ and such
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that Bs(u) C E whenever u € F and Bs(v) C G whenever v € E. Here Bs(x) is
the ball of radius § around x € R™.

Proof. Find F' and G as in Theorem 8.1.30, so that F' is a compact set contained in
the open set £'° and E is a compact set contained in the open set G. Then the result
follows from Theorem 4.5.48. O

General Partitions

As mentioned in the introduction, the method of binary cubes is not the only way to
define volumes. Different collections of sets may be used to define Jordan sets and
their volume (with the identical result). There are some natural conditions that any
such collection must satisfy. These are formulated below.

Definition 8.1.32 Partitions. A collection P of Jordan sets in R" is called a (Jordan)
partition (of R™) if these sets are pairwise disjoint and if their union is R™. The
pairwise disjointness of the sets means that any two distinct sets in P are disjoint.

Definition 8.1.33 Partitions of finite size. If F is a bounded set, then define its
size as (size E) = sup { lu — v|| | u, v € E }. A partition P is called a partition of
finite size if the set { (size P) | P € P } is a bounded set in R and if any bounded set
in R"™ is contained in a finite union of sets in P. If P is a partition of finite size, then

(size P) =sup { (size P) | P € P } (8.16)
is called the size of P.

Definition 8.1.34 Inner and outer approximations in a partition. Let P be a
partition of finite size. Let F be a bounded set in R™. Then

Is(EF) = U{P|P€? and PCE} (8.17)
Op(E) = U{P|PeP and PNE#0} (8.18)
will be called, respectively, the inner and outer approximations of E in P. Definition

8.1.33 of partitions of finite size shows that both unions above are finite unions.
Hence Ip(E) and Op(FE) are Jordan sets.

Theorem 8.1.35 Jordan sets in terms of partitions. A bounded set E in R™ is a
Jordan set if and only if it satisfies the following condition (A).

(A) For each € > 0 there is a § > 0 such that

v(09(E)) —v(Ip(E)) <¢ (8.19)
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whenever P is a partition of finite size and (size P) < 4.

Proof. If F satisfies (A), then for each ¢ > 0 there are Jordan sets Ip(E) and Op(E)
such that I (E) C F C Op(F) and such that (8.19) is satisfied. In this case, Lemma
8.1.17 shows that F is a Jordan set.

To obtain the converse, let E be a Jordan set and £ > 0. Apply Theorem 8.1.31 to
obtain the Jordan sets ' and G and § > 0 such that v(G) — v(F') < ¢ and such that
Bs(u) C F whenever u € F and Bs(v) C G whenever v € E. An easy check
shows that if P is a partition of finite size with (size P) < 4, then

FclIp(E)CECOp(E)CQG.
In this case, v(Op(E)) — v(Ip(E)) <v(G) —v(F) <e. 0O

Problems

8.1 Find Ix(E) and Ox(FE) for k =0, 1, 2, 3, where
x,y)lOSw,OSy, x2+y2§1}CR2,
z,y)|0<z, 0<y 2 +y* <1} CR?
(z,)|0<2, 0<y, 24+y<1}cCR?

1. E={
2. E={
3. E={
4. E={

Here I, (E) and Oy (FE) are the inner and outer approximations of F, as in 8.1.15.

8.2 Find I (F) and Oy (E) forall k € Z*, where E is the set of points in the unit
square [0, 1] x [0, 1] with at least one rational coordinate. Find the inner and outer
volumes (in this case areas) of F.

8.3 Foreachn € N find a negligible set E,, such that £ = U,,cy is not negligible.

84 Foreachn € Nandforeachk =0,1,..., nlet
Eu={(z,y)lz=k/n,0<y<1/n} CR,

E, = U} _oEnk, and E = UpenE,. Show that all these sets are negligible.

Problems on Cross-Sections

Definition 8.1.36 Cross-sections. Denote the points in R = R” x R as (x, y)
with x € R™ and y € R. The cross-sectionof aset E C R**! = R"” x Raty € R
isEy ={x|xeR" (x,y) € £} CR"™
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Definition 8.1.37 Variations of cross-sections. Let E be a bounded set in R"*?
and ./ a bounded interval in R. Then the variation of the cross-sections of E over J

is VE(J) =" ((Uyes Ey) \ (Nyes Ey)).

85 LetE={(z,y)||z|+ |yl <1} CRxR. Find Vg(J) for any interval J.

86 LetE={(z,y)|2?+y* <1} CRxR Find Vg(J) for any interval J.
8.7 Let E be the bounded region in the zy-plane between the parabolas y = z2
and y = 222 — 1. Find the variations of the cross-sections of E. Consider the cross-
sections both with the vertical z = constant lines and with the horizontal y = constant
lines.

88 Let £ C R x R be the set of points in the unit square [0, 1] x [0, 1] with at
least one rational coordinate. Find Vg (J) for any interval J.

8.9 Let E be the bounded region in the zyz-space R? x R between the cylinders
22 + 22 = 1 and 2 + 22 = 1. Find the variation of the cross-sections of E with the
horizontal z = constant planes.

Definition 8.1.38 Continuously changing cross-sections. Let F be a bounded set
in R™ x R and I an interval in R. We will say that cross-sections of £ change
continuously on I if for each p € I and for each ¢ > 0 there is a § > 0 such that
VE(IN(p—46,p+9)) <e

8.10 Let E C R*"! = R"™ x R be a bounded set. Let I be an interval such that
E, = 0 forall y ¢ I. Assume that each E,, is a Jordan set in R™ and that £ has
continuously changing cross-sections on (I N .J) for any interval J. Show that F is
a Jordan set in R**!. (Hint: First, assume that the continuity of the cross-sections

is uniform on [ in the following sense: for each ¢ > 0 there is a 6 > 0 such that if
Ve(I'NJ) < £ whenever £(J) < 4.)

8.11  Show that both |x| + |y| < 1 and 2 + y? < 1 are Jordan sets in R2.

8.12 Let I beaninterval. Leta : I — R® andt : I — R be two continuous
functions. Let A be a Jordan set in R™. Let £ C R™ x R be defined in terms of its
cross-sections E, as B, = Qify ¢ I and E,, = a(y) + t(y)A if y € I. Show that
E is a Jordan set. (Hint: First, assume that A is a cube in C}.)

8.13 Cylinders. Let A be a Jordan set in R™ and ¢ = (a, h) € R™ x R with
h # 0. Then the set

C=C(Ac)={(x,0)+ta h)|xc A4 0<t<1}cR™
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is called a cylinder. Show that all cylinders are Jordan sets.

8.14 Cones. Let A be a Jordan set in R™ and ¢ = (a, h) € R™ x R with h # 0.
Then the set

K=K c)={(1-t)(x,0)+ta, h)|xc A 0<t<1}cCR*!
is called a cone. Show that all cones are Jordan sets.

8.15  Show that all triangles in R? are Jordan sets.

8.16 Show that the "general tetrahedra”

E= {x:(azl, ey X)) GR”)OS.TZ', chz < 1}
are Jordan sets in R™,
8.17 Show that all Euclidean balls

E:{x:(xl,...,mn)GR"

Zi(mi —¢)? < R? }

are Jordan sets in R™. Here ¢ = (c1, ..., ¢, ) is the center of the ball. (Hint: First,
assume that ¢ = 0 and proceed by induction on n € N.)

8.18 Show that all ellipsoids

E:{x:(xl,...,:cn)ER"

Zirfz(:ci —¢)? < R? }

are Jordan sets in R™. Here ¢ = (cy, ..., ¢,) is the center of the ellipsoid and
(r1, ..., Tn) is a fixed vector in R™ with r; # 0.

8.19 Show that the region F = {(;z:7 Y, 2) 1 22 4+22<1, 2 +22<1 } is a
Jordan set in R3. This is the region between two (ordinary circular) cylinders.

820 LetE, = {(z,y)|z=p/n,y=¢q/n, p,q=0,1,...,n} C R2, with
n € N. Show that E = U, E,, is not a Jordan set in R?, but all of its cross-sections
are Jordan sets in R,

8.21  Give anexample of a bounded set E in R? such that E is not a Jordan set in R?,
but all of its cross-sections £, C R are Jordan sets in R with v(E,) = {(E,) = 1/2
for all y in the interval [0, 1].
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8.2 INTEGRALS

A nonnegative function f : R® — R7 is said to be an integrable function if the
region Ey C R™™! = R™ x R under the graph of this function is a Jordan set in
R™*!. In this case, the (n + 1)-dimensional volume of E is called the integral of
f. Hence, the main problems in integration are to find out whether this special type
of set is a Jordan set and, if it is, to compute its volume.

Definition 8.2.1 Regions under graphs. Given f : R* — R, define
Ef={(x,y) eR"xR|0<y < f(x) } CR™"

as the region under the graph of f. Note that only the positive values of f are
important in this definition.

Definition 8.2.2 Integrals of nonnegative functions. A nonnegative function f :
R™ — R is said to be integrable if Ey is a Jordan set in R"*1. In this case, the
integral of f is defined as [ f = v (Ey).

Definition 8.2.3 Positive and negative parts of a function. Given a real-valued
function f : X — R on a set X, define

f(z) = max(f(z), 0) and f~(x) = max(—f(z), 0) = —min(f, 0),

the positive part and the negative part of f. Note that both the positive and the
negative parts are nonnegative functions and f = f* — f~.

Definition 8.2.4 Integrals of general functions. A function f : R* — R is said to
be integrable if its positive and negative parts ft and f~ are both integrable. In this
case, the integral of f is definedas [ f= [ fT— [ f~.

Definition 8.2.5 Bounded functions of bounded support. A function f : R® — R
may be integrable only if both ¢+ and F¢— are bounded sets in R™*1. This happens
if and only if there is a number M € R and a bounded set S C R™ such that
—M < f(x) < M forall x € R" and f(x) = 0if x € S. Such a function is called
a bounded function of bounded support. The set S is called a support for f. Any
bounded set is contained in a finite union of cubes. Hence we may always assume
that a function of bounded support has its support in a finite union of cubes.
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Step Functions

Step functions constitute an especially important class of integrable functions. They
are simple to integrate, and it is easy to establish their basic properties. Yet it turns
out that any integrable function can be approximated by step functions. As a result,
most of the fundamental properties of integrable functions can be obtained from the
corresponding properties of step functions.

Definition 8.2.6 Characteristic functions. Let £ C R"™. The characteristic (or
indicator) function of E is the function yg : R — R defined by xg(x) = 1 if
x€ Eand xg(x) =0ifx ¢ E.

Definition 8.2.7 Step functions. A function ¢ : R® — R is called an kth-order
step function if it can be expressed as a linear combination ¢ = >".a;xc, of the
characteristic functions of a finite number of cubes C; € €}.

A step function has the constant value «; on the set C; and the value 0 everywhere
else. For instance, a step function on R takes constant non-zero values on finitely
many binary intervals and is zero elsewhere.

Lemma 8.2.8 Step functions are integrable. If ¢ = " .a;xc, is a step function,
then  is integrable and [ ¢ = . a;v™(C}).

Proof. First, assume that «; > 0 for all 7. In this case, we have
qu =U; (Cz X [0, (o7} ))

This is a Jordan set in R™*1, since it is a finite union of the blocks (C; x [0, ;).
These blocks are pairwise disjoint because the cubes C; in the grid €} are pairwise
disjoint. Hence, by the additivity of volume, Theorem 8.1.24,

/(p:’[)n+1 ZU"+1CX Oaz) Zaz z-

In general, let §; = max(0, ;) and y; = max(0, —¢;). Then A = ). Bixc, is the
positive part of ¢ and i = Y~ v;x ¢, is the negative part of . Both of these parts
are nonnegative step functions, and therefore integrable. We verify easily that the
integral of pisstill [ =3, a;o™(C;). O

Lemma 8.2.9 Integration of step functions as a positive linear operator. The
class 8 of step functions R® — R is a vector space, and integration [ : § — R
is a positive linear operator. More explicitly, if ¢, ¢’ € 8§ and o, &' € R, then
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(ap + /¢') € 8 and [(ap + /¢y = afo+ao [¢. Also, if ¢ < 1, then
Je<Jv

Proof. If p and ¢’ are of the same order, then the lemma is clear. If the orders of ¢
and ¢’ are h and h', then we see that ¢ and ¢’ are both of order k = max(h, h').
Hence the proof follows. O

Riemann Condition for Integrability

In general, there are no efficient algorithms to decide if a given set is a Jordan set
(though Problem 8.51 helps in many cases) and no simple way to compute the volume
of a Jordan set. In the case of a region under the graph of a function, however, the
situation is different. A bounded function of bounded support can be approximated
by step functions. A condition for the integrability of a function can be formulated,
and its integral computed, in terms of these approximating step functions.

Definition 8.2.10 Approximations by step functions. Let f : R® — R be a
bounded function of a bounded support S. For any nonempty F' C R™ let

inf(f, F)=inf{ f(x) | x € F }andsup(f, F) =sup{ f(x) | x € F }.
For each k € Z™T define
Pk = ZCE cr lnf(f) C)XC and ¢, = ZCG er Sup(fv C)XC’ (8.20)

respectively the kth-order lower and upper approximations of f by step functions.
These functions really are step functions, since the sums in their definitions are finite.
In fact, if C does not intersect S, then inf (f, C') = sup(f, C') = 0. Since the support
S of f is a bounded set, the number of C' ¢ €} that intersect S is finite.

Lemma 8.2.11 Monotonicity of the lower and upper approximations. If h < k,
then pp, < o < f <Y < .

Proof. This follows from the definitions. The approximations get better as the grid
on which the step functions are defined becomes finer. U

Definition 8.2.12 Lower and upper sums. The integrals

/ o = Zcee inf(f, C)v"(C)zZCEekinf(f, o)2 k" (8.21)

k

[ = X sl 00 €)= 3 suplf 02 (822)
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are called the kth-order lower and upper (Riemann) sums for f. We also write
Lk(f) = /Sok and Uk(f) = /’(/Jk

Theorem 8.2.13 Limits of lower and upper sums. If f : R™ — R is a bounded
Junction of bounded support, then limy, Ly (f) and limy, Ug(f) exist.

Proof. Lemma 8.2.9 shows that integration is a positive linear operator on the
vector space of step functions. Combining this fact with Lemma 8.2.11, we see that
Lp(f) < Le(f) < Up(f) < Un(f) whenever 0 < h < k. Hence both sequences
are monotone and bounded, and therefore convergent. O

Definition 8.2.14 Lower and upper integrals. Let f : R* — R be a bounded
function of bounded support. Then limy, L (f) and limy, Uy (f) obtained in Theorem
8.2.13 are called the lower integral of f and the upper integral of f. They are denoted
as

limy Lg(f) = limy, / Y = Zf and lim U (f) = limk/dfk =7f-

Theorem 8.2.15 Riemann condition for integrability. Ler f : R* — R be a
bounded function of bounded support. Then f is integrable if and only if [ f = [ f.
In this case, [ [ is the common value of these limits.

Proof. Recall that F; is the region under the graph of f as defined in Definition

8.2.1. First, consider a nonnegative function f. Assume that [ f = 7 f. Givene > 0,
find a k£ € N such that a

/ e / or =" (Ey,) — v (E,,) <e. (8.23)

Hence, Ey, and E,, are two Jordan sets in R®*! such that E,, C E; C Ey, and
such that v (B, ) — v"T1(E,, ) < e. Then Theorem 8.1.21 shows that E is a
Jordan set in R™*!. Hence f is integrable. Also,

[ =) <0 B <0 (B = [

shows that v" T (E) = [ f :if :Tf.

Conversely, assume that f is (nonnegative and) integrable. This means that £y is
a Jordan set in R**!. Given ¢ > 0, find a £ € N so that the inner and the outer
approximations of E; by the kth-order cubes in R™*! satisfy

V" (Ok(Ef)) — v (IL(Ey)) <e.
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Now any kth-order cube H € €7 is of the form H = C x [r, s), where C € €}
and r = 27Fp, s = 2‘k(p + 1), with p € Z. f H C Iy (Ey), then we see
that 0 < r < s < inf(f, C). Otherwise H would contain points outside of E}.
Hence, we see that H C E,,,. Therefore, I(Fy) C E,,. Similarly, we see that
Ey, C Ox(Ey). Hence

/d)k - /wk <" (OR(Ey)) — 0" (Ik(Ey)) <e.

Therefore, [f = T f. If f is not necessarily nonnegative, then one considers the
positive and negative parts separately. This is left as an exercise. O

Supports of Lower and Upper Approximations

Let f be a bounded function with a bounded support S. Lemma 8.2.16 relates S and
the supports of its lower and upper approximations, as defined in Definition 8.2.10.
In this lemma O(.S) is the outer approximation of S defined in Definition 8.1.15.
Hence O (S) is the union of all kth-order cubes that intersect S.

Lemma 8.2.16 Let S be a support for a bounded function f andleth, k € N, h < k.
Then Oy (S) is a support for the kth-order lower and upper approximations oy, and

Yi of f.

Proof. Each x € X belongs to a unique cube C € Cy. If x & O(S), then C is
disjoint from O (.S). Hence, C is also disjoint from S. Therefore,
sup(f, C) = inf(f, C) = 0 and pr(x) = Yr(x) = 0.

This means that O (S) is a support for ¢, and v5,. Then Op(S) is also a support for
vk and ¥y, since O (S) C Op(S). O

Theorem 8.2.17 Let K be a compact support for a bounded function f. If K is
contained in an open set G, then there is an h € N and a compact set K’ such that
K C K’ C G and K' is a support of vy, and iy, for all k > h.

Proof. Theorem 4.5.48 shows that if K is compact, G is open, and if K C G then

there is a compact K’ and an h € N such that O, (S) C K’ C G forall k > h. Then
the proof follows from Lemma 8.2.16 above. O

Integration as a Positive Linear Operator

Lemma 8.2.18 Let f and f' be two bounded functions of bounded support. If f < f,
then [f< [fand [f< [f.
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Proof. If f < f/, then also ¢, < ) and ¥, < 1, for the respective approximating
step functions. Then the proof follows. O

Lemma 8.2.19 Let f : R™ — R be a function. If for each € > O there are integrable
functions f', f" such that f' < f < f" and such that [ f" ~ [ f' < e, then f is
integrable.

Proof. From Lemma 8.2.18 we obtain [ f' < [f < Tf < [ f”. Hence

o< [1-[r<[r-[r<
for all € > 0. Therefore, [ f = [f and f is integrable. O

Lemma 8.2.20 A function f : R™ — R is integrable if and only if for each € > 0
there are step functions ¢ and ¥ such that ¢ < f < and [ — [p <.

Proof. If f is integrable, then [ ¢, — [ 4 < € for a sufficiently large k, where oy
and ¥, are approximating step functions. In the other direction, by Lemma 8.2.18,

wgfgwimpliesfcpgifgffgfw. Hence, if [¢ — [¢ < &, then
[f-[f<e D

Theorem 8.2.21 Integral as a limit of sums. Let f : R® — R be an integrable
function. Then

/ f = limy Zcezk f(e)2=kn (8.24)

Here Zy, is the set of centers of the cubes in the grid Cy, defined in Definition 8.1.1.
It is understood that the above sum is taken over the centers with f(c¢) # 0.

Proof. Let ¥, = Zceekf(C)XO We see that g, < & < 1g. Therefore, by
Lemma 8.2.18 above,

LN < [0e=Y, , 1©2F <),

Then the result follows by Theorem 8.2.15. O

Remarks 8.2.22 If K is a support for the function f in (8.24), then the collection Zj,
of all kth-order centers can be replaced by Ky C Zy, the collection of all kth-order
centers that are contained in K. In fact, f vanishes on the remaining centers in

(Zr \ Ki).
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Remarks 8.2.23 The role of the centers. In Theorem 8.2.21 above, the centers
of the cubes do not have any particular significance. If uc is an arbitrary point
from each cube C' € €y, then [ f = limy ZCeek flug)27F", In fact, if A\, =
Zceekf(uC)XC’ one still has ; < Ar < 9. Then the proof follows by the same
arguments as before.

Theorem 8.2.24 Positivity and the linearity of integration. The class J of inte-
grable functions R™ — R is a vector space and integration f : J — R is a positive
linear operator. More explicitly, if f, f' € Jand o, o € R, then

(af+ofyedand [(af +d'f)=aff+ [ f.
Also, if f < f'.then [ f < [ f.

Proof. Given ¢ > 0, use Corollary 8.2.20 to find the step functions , ¥, ¢’, ¢’ such
that p < f <, ¢ < f' <Y, [ — [y <e/2,and [¢ — [¢' < e/2. Then
(p+¢) < (f+[f) < (w+4¢)and [(Y+¢') — [(p+¢’) < e. The last inequality
follows from the linearity of integration on step functions, Lemma 8.2.9. Hence
(f + f') is integrable. The integrability of «f follows easily from ap < af < av
ifa > 0, or from oy < af < apif a < 0. This shows that J is a vector space.
The linearity and positivity of integration [ : § — R on step functions are known
from Lemma 8.2.9. Then we verify easily, using Theorem 8.2.21, that integration
J : 9 — R on integrable functions is also a positive and linear operator. O

Theorem 8.2.25 The class J of integrable functions R™ — R is closed under multi-
plication and under taking absolute values, minima, and maxima.

Proof. To show that f - g is integrable, first assume that f and g are nonnegative
integrable functions. Since both are bounded functions, there is an M such that
0< f(x) < Mand 0 < g(x) < M forall x € R®. Given n > 0, find the step
functions ¢, ¢, A, psuch that 0 < ¢ < f <1 and 0 < A < g < p and such that
fv—fo<nand [pu—[A<n Then0<p-A< f-g <9 p Also,

Yop—p- A=W —plp+elp—A) <MY —p)+ M- A)

shows that [ (v~ 1) — [(2 - N) < M(Jw — [ @) + M(f u~ [ X) < 2Mn. This
can be made less than given any £ > 0. Hence f - g is integrable. In the general
case, one has f-g = (f' — f")(g' — ¢"), with the respective positive and negative
parts. These parts are all integrable by Definition 8.2.4. Hence, f - g is integrable.
The integrability of | f| follows from |f] = f' + f”. Then

max(f, g) = (1/2)((f+g)+]f~gl) and
min(f, g) = (1/2)((f+g)—If —gl)

are also integrable. O
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Integrals of Characteristic Functions

Theorem 8.2.26 Integrability of characteristic functions. A characteristic func-
tion x 4 : R® — R is integrable if and only if A is a Jordan set in R™. In this case,

Ixa=v"(A).

Proof. Let ¢ and ¢ be the kth-order approximating step functions for x 4, as
in Definition 8.2.10. An easy check shows that ¢ = x 1, (4) and ¥x = X0, (4)-
Hence, [ ¢ ~ [ or = v™(Ok(A)) — v" (I (A)) converges to zero if and only if A
is a Jordan set. O

Definition 8.2.27 Integration over a set. Let f : R® — R be a function and F a
setin R™. If f - xg is integrable, then [(fxg) is called the integral of f over E.
It is also denoted as |, g foras /, 5 J(x)dx if one wants to indicate that x denotes a
general point in R™.

Integrals of Continuous Functions

Remarks 8.2.28 Continuous functions on compact sets. Recall from Definition
4.4.2 that a function f : R — R is said to be continuous on £ C R"™ if for each
a € F and for each € > 0, there is a § > 0 such that | f(x) — f(a)| < & whenever
|lx —al| < § and x € E. Theorem 4.5.46 shows that if F = K is a compact set, then
the continuity of f on K is uniform. That is, for each € > 0, there is a § > 0 such
that | f(x) — f(x)| < & whenever ||x — x/|| < § and x, x’ € K. Also, a continuous
function on a compact set is bounded, as shown in Theorem 4.5.44.

Theorem 8.2.29 Integrability of continuous functions. Any continuous function
on a compact Jordan set is integrable on that set.

Proof. The idea of the proof is to exploit the uniform continuity of f. If we take
small enough cubes, then the lower and upper approximations for f will be almost the
same, except on boundary cubes. But the boundary cubes don’t matter in computing
the integral, since their volume can be made as small as desired.

In detail: let K be a compact Jordan set and g : K — R a continuous function.
The theorem states that f = gxx is integrable. Here f(x) = g(x) if x € K and
f(x) = 0 otherwise. Now g is bounded on K. If ~M < g(x) < M forallx € K,
then —M < f(x) < M forall x € R™. Hence f is a bounded function and vanishes
outside of the bounded set K.

Let n > 0 be given. Use the uniform continuity of g on K to find a § > 0 such that
|f(x) — f(x")] < nwhenever ||x — x| < §and x, X’ € K. Find a kg € Z* such
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that if kK > kg and if C' € Cy, then ||x — x’|| < § for any x, x’ € C. For a fixed
k > ko, let C; s be the kth-order inner cubes of K and B; s the kth-order boundary
cubes of K. Also, let o; = inf(f, C;) and 3; = sup(f, C;). Then by our choice of
ko, 0 < B — a; < 1. If g and ¢, are the kth-order lower and upper approximations
of f, as in Definition 8.2.10, then we see that

ZiaiXCi Sop <Y < Ziﬂch,- + ZjMXBj~
All these functions are step functions. Hence

[on- / o S (G- au(C) + Y Mu(B,)

nv(Ilx(K)) + M v(Dp(K))
nv(K) + M v(Dg(K)).

IN

INIA

Given ¢ > 0, choose 7 > 0 so that nv(K) < &/2. Then choose k > kg so
that 2M v(Dy(K)) < /2. This is possible since K is a Jordan set and therefore
limy, v(Dg(K)) = 0 by Lemma 8.1.17. It follows that [ ¢; — [ & < €. Hence g is
integrable by Theorem 8.2.15 or by Lemma 8.2.20. O

Fundamental Theorem of Calculus

Theorem 8.2.30 Let f : R — R be continuous on a closed interval I = [a, b].
Define F : I — Rby F(z) = [ [ X{ao) forall x € I° = (a, b). Then F is
continuous on I, differentiable on I°, and F'(z) = f(z) forall z € I°.

Proof. Continuity of f on the compact set I implies that f is bounded on . Let
0< flz) < Mforallz € I. If a <7 < s < b, then we see that F'(s) — F(r) =
J I X(s)- Hence |F(s) — F(r)| < M|s — r|. Therefore F is continuous on /.

Next, given z € I° and € > 0, use the continuity of f at « to find ry and so such
that e < rg < = < 89 < band such that | f(z) — f(y)| < e whenever o <y < sg.
Letp = (f(z) —¢) and g = (f(z) +¢). Thenp < f(y) < g forall y € [ro, so].
Therefore, if rg < r < s < sg, then

p=(f(z) —¢) < (F(s) = F(r))/(s =) < (f(x) +¢) = ¢
Hence F'(z) exists and F'(z) = f(z). O

Corollary 8.2.31 Let f : [ — R be as in Theorem 8.2.30. Let G : I — R be
continuous on I and differentiable in I° with G'(z) = f(z) for x € I°. Then
G(s) = G(r) = [ f - xj whenever a < r < s < band J is any type of interval with
the end points r and s.
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Proof. Let o(z) = F(z) — G(z) + G(a) for z € I. Then ¢ is continuous on I,
vanishes at a, and is differentiable in I° with ¢/(z) = 0 for all z € I°. Then the
mean value theorem, Theorem 5.1.13, shows that p(x) = 0 for all z € I. Hence
G(s) —G(r)=F(s)— F(r) = [ - X(r,s) by Theorem 8.2.30. O

Integrals in Product Spaces

Notations 8.2.32 Functions of two variables. Let n, m € N. As usual, we may
consider R*™™ as R™ x R™. Points in W = R*™™ are denoted by w = (u, v)
withu € U = R" and v € V = R™. The coordinate projections P : W — U and
Q : W — V are defined as P(u, v) = uand Q(u, v) = v. Functions f : W — R
on W = R™"*™ are considered as functions of two variables f : U x V — R with
values f(u, v) € R. For each fixed u € U, we have a function f(u, -): V — R
and for each fixed v € V, we have a function f(-, v) : U — R.

Notations 8.2.33 Iterated integrals. Let f : W — R be a bounded function of a
bounded support S C W. Let A = PS and B = QS be the projections of S on U
and V. These sets are also bounded. Hence f(u, -) : V — R is a bounded function
of bounded support for each u € U and f(-, v) : U — R is a bounded function
of bounded support for each v € V. Therefore these two functions have lower and
upper integrals. The lower integral of f(-, v} : U — Ris denoted as

J f(u, v)du

and similarly for the other integrals. Here the symbol du is only used to indicate that
this lower integral is taken with respect to u, keeping v fixed. The result depends on
V.

This integration defines a new functiong : V — Rby g(v) = [ f(u, v)du,v e V.
This function is also a bounded function of bounded support. In fact, if | f(w)| < M
for all w € W, then |g(v)| < Mov™(A). Also, if v € B = @S, then f(u, v) = 0.
Therefore the integrals of g : V' — R also exist. The lower integral of g : V' — R is
denoted as

Jo(v)dv =] [ f(u, v)dudv.

In this last expression, the order of dudv is important. It indicates that the first
integration is with respect to u and the second integration is with respect to v.

The same observations apply to upper integrals. In fact, we see that eight different
iterated integrals can be defined, taking into account the four possible combinations
of upper and lower integrals and the two possible orders of integration. If any one of
the integrals in these expressions exists, then lower and upper integral signs may be
replaced by the integral sign.
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These observations give us our first special case of Fubini’s theorem.

Lemma 8.2.34 Let C € C}'™ be a cube in R*™ and f = x¢. Then

/f(W)dW://f(u, v)dudv.

Proof. We have, by Lemma 8.1.6, that C; 7™ = €7 x €. Hence C = A x B with
A € C}and B € C'. Hence f(u, v) = xc(u, v) = xa(u) - xp(v), and

//XAxB(U, v)dudv = //XA(u)xB(v)dudv

v (A) /XB(V) dv
= v"(4) - v™(B) =v""™(A x B)
VT (C) = /XC(W) dw.

Here we have used Theorem 8.2.26 on the integration of characteristic functions. The
relation v ™(C) = v™(A) - v™(B) is given in Definition 8.1.8 of the volumes of
cubes. O

By combining this special case with the technique of approximation by step functions,
we prove the general version of Fubini’s theorem, Theorem 8.2.37 below.

Lemma 8.2.35 Let f; : R*™™ — R be integrable functions such that
/fz(w) dw = //fz(u, v) dudv. (8.25)
Then (8.25) also holds for a (finite) linear combination f = Zz a;fi, a; € R

Proof. This follows directly from the linearity of integration, Theorem 8.2.24. Note
that this theorem is applied three times here for the three separate integrals that appear
in(8.25). O

Corollary 8.2.36 Fubini’s theorem for step functions. Let ¢ : R"*™ — R be a

step function. Then
/Lp(w) dw = //cp(u7 v)dudv.

Proof. Follows directly from Lemmas 8.2.35 and 8.2.34 above. O
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Theorem 8.2.37 Fubini’s theorem. If f : W — R is integrable, then

/f(w)d,w:/lf(u, v)dudv:/7f(u, v)dudv, (8.26)

with the corresponding results in the other order of integration.

Proof. Lemma 8.2.20 shows that given £ > 0, there are two step functions ¢ and
such that ¢ < f < 4 and such that [ (¢ — ¢) < £. Then

/<P(U, v)du < Zf(u, v)du < /¢(u, v) du. (8.27)

Here we have used the positivity properties of lower integrals, Lemma 8.2.18, and
the fact that the first and last integrals exist. We obtain, again by using the positivity
properties of lower and upper integrals and the fact that the first and last functions in
(8.27) are integrable functions V — R,

Jewyaw = [ [ouv)dudv < 1 1 f(u, v)dudv

/lf(u, v)dudvﬁ//w(u, v)dudv:/w(w)dw.

The equalities follow from Corollary 8.2.36. Now we also have that

IN

[ewiaws [ fowraw < [ (w)aw

and that ([ ¢(w)dw — [¢(w)dw) < e. Hence we see that [ [ f(u, v)dudv

exists and is equal to [ f(w) dw. The proof of the second equality in (8.26) uses the
same arguments. O

Notations 8.2.38 Iterated integrals. Fubini’s theorem has an obvious generaliza-
tion to decompositions into more than two components. In particular, R may be
decomposed into 7 one-dimensional subspaces spanned by the vectors in the standard
basis of R™. In this case, Fubini’s theorem shows that

/f(x)dx:/---/f(xl,...,xn)dx1~--dxn (8.28)

if all these integrals exist. On the right-hand side of (8.28), there are n integrals of
functions of one variable. The convention is that they have to be performed in the
following order. For the first integral consider f as a function of z; only, keeping
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the other variables fixed. The integral of this function results in a function of (n — 1)
variables

fl(.TQ, ey l‘n) = /f(l‘l, ey In)dxl

For the second integral consider f; as a function of zo only, keeping the other
variables fixed. The integral of this function results in a function of (n — 2) variables

folzs, ..., xn) = /fl(:rg, cey Tn ) dza.

After (n — 1) integrals, the last integral to be performed is [ fn—1(2n) dzn. Fubini’s
theorem states that if f f(x)dx exists, then it is equal to the result of this last
integral. Note that the existence of these n iterated integrals does not imply the
existence of [ f(x) dx; this has to be assumed separately. Problem 8.29 asks for a
counter-example.

Notations 8.2.39 Integrals on RZ. If f is an integrable function on R?, then

[1= ] t@wdedy= [ e yazay= [ [ @ ndran

Here the first three integrals show some of the common notations used for the integral
of f on R?, The last integral is an iterated integral. It shows two integrals to be
computed in the order explained in Notations 8.2.38 above.

If E is a Jordan set in the xy-plane, then

| =] s ”d”“"dy:/l/@f(‘”’ y) dy da

are some of the notations for the integral of fyg. In the iterated integral, the first
integration is with respect to y. It is the integral of f(z, -) : R - R over the cross-
section £, of E with the z = constant line. The second integration can be performed
over any interval [ in the z-axis such that E, = 0 whenever x ¢ I. Hence [ is any
interval that contains the projection of £ on the z-axis.

In most examples E is an interval in the y-axis, and L, is not empty if and only
if @ < z < b. The initial and final points of the interval F, depend on z. If these
points are denoted, respectively, as g; (z) and go (), then

b rga(x)
/f(r-, y) dxdy:/ / f(z, y)dydx. (8.29)
E a Jgi(z)

This form is applicable in many examples.
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Notations 8.2.40 Integrals on R3. Let f : R® — R be a function and let G be a
Jordan set in R®. Assume that f is integrable over G. Then in many applications,
Jo f can be expressed as

b prga(z) philz,y)
/ flz,y, 2)dedydz = / / / flz, y, 2)dzdy dz. (8.30)
G a Jg h

1(x) 1(z,y)

This form is similar to (8.29) for integration in R?. Here the first integral is with
respect to z. Integration is performed on the portion of the z, y = constants line that
lies in the region G. In (8.30) it is assumed that if this portion is not empty, then it is
an interval with the initial point 1 (z, y) and the final point ha(z, y). After the first
integration one obtains an integral in R2, It is over a set E in R2. This set consists
of all points (x, y) for which the line x, y = constants intersects G. Hence E is the
projection of G on the zy-plane. The remaining two integrals are integrals on R2,
Then one uses the notations in 8.2.39 above.

Notations 8.2.41 Another decomposition of R3. There is another common form
for integrals on R3. It is obtained by applying Fubini’s theorem to the decomposition
of W =R%as U x V = R? x R. One obtains

/ flz, y, 2)dadydz = /q </ flz, y, 2) dxdy) dz. (8.31)
G P G

In the first integral, z is a constant, and this integral is performed on the set
G.={(z,y) | (z,y, 2) € G} CR

This is the cross-section of G with the z = constant plane. The integral on G, is
computed as an integral in R?. The result is a function of z only. One obtains (8.31)
by taking [p, ¢] an interval on the z axis such that G, = @) for z & [p, q}.

Example 8.2.42 Volume between two cylinders. We compute the volume of the
region £ bounded by the two cylinders 22 + 22 = 1and 3% + 22 = 1.

The region E is the set of all (z, y, z) € R3 such that 22 + 22 < 1and 3% + 2% < 1.
We know that this is a Jordan set by Problem 8.19. We would like to compute [ xg.
We apply Fubini’s theorem as expressed in (8.31) above. Hence

q
NE) = = 2)dzdy ) dz.
A(E) /XE(x,y,zmdmdydz /p(/Gf(fry ) do y) 2

The first integral is on the zy-plane. In the first integral the z coordinate is fixed and
the integration is over the cross-section of £ with a z = constant plane. Hence G, =
{(z,y)|2* <(1—22), andy® < (1 —22) }. We see that G, = 0 if 22 > 1, and
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G is a square with side length 2(1 — 22)1/2 if 22 < 1. Therefore the first integral is
the area of this square. Hence we obtain

1
v} (E) = 4/ (1 —2%)dz =8~ (8/3) = 16/3.

1

As an exercise, let us also decompose the xyz-space in a different way. Let U be the
yz-plane and V' the z-axis. In this case, the cross-section of E with the z = constant
plane is

Fz)={(y,2) |2 <(1—-z%andy® +2°<1}.

This is the part of the unit disc 4> + 22 < 1 between the lines z = +(1 — z2)1/2,
This area can be computed in different ways. We apply Fubini’s theorem again and

obtain
(1=22)1/2 (1—22)1/2
vI(F(z)) = / / dy dz

(1—22)1/2 (1—22)1/2
(1-22)1/2

= 2/ (1—2%12dz

—(1—z?)1/2

= 2(cos™'z + (1 —22)V?), and,

v} (E) = /_UQ(F(x))dx

1

1
4/ (cos'z + (1 — z2)V2) dx = 16/3.
0

This example illustrates how the complexity of the computations may depend upon
the order of integration. A

Example 8.2.43 All Euclidean balls are Jordan sets. This fact is proved in one
way in Problem 8.17. Here is another argument. Proceed by induction on the number
of dimensions. The unit ball in R is (—1, 1), which is a Jordan set. Now assume
that the unit ball A C R"™ is a Jordan set in R™. The function f : A — R¥ defined
by f(x) = (1 — ||x||?)!/? is continuous on A. Hence the region under its graph is a
Jordan set £y in R™. This is the upper half of the unit ball. Similarly, the lower half
is also a Jordan set. Hence the unit ball is a Jordan set, since the union of two Jordan
sets is still a Jordan set. Finally, any ball is obtained from the unit ball by scaling and
a translation, and therefore the same arguments apply to any ball. A

Example 8.2.44 Volume of the unit ball in R". The volume of the unit ball in
a Euclidean space can be computed by an induction on the number of dimensions.
Let ¥ be the volume of the unit ball in R™. Note that the volume of any ball of
radius 7 in R™ is r™J;. Also, ¥ = £(—1, 1) = 2. Assume that ¥, is known. Let
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W =R =R"xR=UxV andwrite w = (u, v) € W withu € U = R" and
veV =R Let
E={(wv)eW||uP+v*<1}

be the unit ball in R™*!. The cross-sections of E with v = constant subspaces are
E, = {ueU]||lul? <1-v?}. Hence E, is a ball of radius (1 — v?)!/2 in R".
Therefore v"(E,) = (1 — v?)"/29;. This gives

Unt1 = /XE(W) dw = //XE(u, v) dudv
1 1
= / V(B dv = 219k/ (1 — 022 dy.
—1 0
The computation of the last integral is left as an exercise. We obtain

Bop = 7" /n! and Ygp_y =2"7""1/(1-3-5.-(2n — 1))

foralne N. A

Problems

8.22 Volumes of cylinders. Let A be aJordansetin R™ andc = (a, h) e R" xR

with & # 0. Show that the volume of cylinder
C=C(A,c)={(x,0)+ta,h)|x€A 0<t<1} R

is v"T1(C) = |h|v™(A). (Cylinders are Jordan sets by Problem 8.13.)

8.23 Volumes of cones. Let A be a Jordan setin R” and ¢ = (a, h) € R* x R
with i # 0. Show that the volume of cone

K=K c)={(1-t)(x,0)+t(a,h) | x€c A, 0<t<1}cCR"™!
is v"TH(K) = |h|v"(A)/(n + 1). (Cones are Jordan sets by Problem 8.14.)
8.24 Show that the volume of the tetrahedron

E:{x:(xl,...,xn)ER”

0<a, Y ai <1}

is v™(E) = 1/nl. (Tetrahedra are Jordan sets by Problem 8.16.)
8.25 Find the volume of the ellipsoid

E:{XZ(xl,...,xn)ER”

Zirzﬂ(zi - ci)2 < R? } .
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Here ¢ = (¢1, - .., ¢,) is the center of the ellipsoid and (71, ..., ry,) is a fixed vector
in R™ with r; # 0. (Ellipsoids are Jordan sets by Problem 8.18.)

8.26 Integrate the function f(z, y, 2) = % + y? + 2° over the tetrahedron E =
{(z,y, z) o)+ ]yl + 20 <1}

8.27 Letp € R. Find the volume V of
E:{(w, y,z)]x2+y2+22§1, pgz}.
How do we know that F is a Jordan set?

8.28 Integrate f(x, y, z) = |z| over E defined in Problem 8.27 above.

8.29 Give an example of a nonintegrable function f : R? — R for which the
integrals [ [ f(z, y)dz dy exist. (This means that g(y) = [ f(z, y) dz exists for
each y and defines an integrable function g : R — R. Such an example shows that
the converse of Fubini’s theorem is false.)

830 1Let f: R™ — R be an integrable function. Points in R*! = R™ x R are
denoted as z = (x, y). Let

A = {(x,y) ER"XR[xER", f(x) <y<0} and
B = {(x,y) eR"xR[xeR", 0<y< f(x)}.

Let D ¢ R™*! be a compact set containing AU B. Let G : D — R be an integrable
function. Show that

/BG(z)dz—/AG(z)dz:/X/Of(X)G(x, y) dy dx.

Here the integral with respect to y € R is expressed in familiar notations. If
f{(x) > 0 then this is an integral over the interval [0, f(x)] as defined in this course.
If f(x) < O then this is the negative of the integral over the interval [ f(x), 0].

8.31 If f: R? — Ris integrable, show that for any £ > 0,

Eez{yGRl/f(w, y)d:v—/f(w,y)dw>€}
is a Jordan subset of R with v(E.) = 0.
8.32 Let f: R™ — R be a bounded function of compact support. For each ¢ > 0,

let £, = {z|w(f, z) > ¢}, where w(f, z) is the oscillation of f at z (Problem
4.96). Show that f is integrable if and only if E. is a negligible set for all € > 0.
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8.33  Show that if a bounded function of compact support is integrable, then the set
E of its discontinuities is a countable union of negligible sets ;. That is, there is a
sequence of negligible sets E;, ¢ € N, such that £ = U;enE;. Give an example to
show that the set E of discontinuities need not itself be negligible.

834 Let f: R™ — R be a bounded function of compact support. If the set £ of
discontinuities of f is a countable union of negligible sets F; (thatis, £ = U;cnE)),
then f is integrable. (Problems 8.33 and 8.34 give a necessary and sufficient condition
for the integrability of a bounded function of compact support. This is known as
Lebesgue’s theorem.)

The following set of three problems provides a proof of the bounded convergence
theorem.

835 Let0 < (. Let K and By be compact Jordan sets such that By C K and
B < v(Byg) forall k € N, Then show that there is an x € K that belongs to infinitely
many By, s.

8.36 Let f be a step function with compact support in a Jordan set K. Assume
that 0 < f(x) < M. Given a > 0, let D be the set of x € K such that o < f(x).
Then show that [ f < Mv(D) + av(K).

8.37 Let f, be a sequence of integrable functions. Assume that all f,, s have
support in a compact Jordan set K and that | f,,(x)| < M for all n € N and for all
x € K. Iflim,, f,(x) = f(x) for all x € K and if f is also integrable, then show
thatlim, [ fn = [ f.

8.38  Give a counterexample to show that the conclusion in Problem 8.37 is false
if there is no compact set that contains the support of all f,s.

8.39  Give a counterexample to show that the conclusion in Problem 8.37 is false
if there is no number M which is an upper bound for all | f,,|s.

8.40  Give an example to show that the limit function in Problem 8.37 need not be
integrable.

841 Give examples of f,, and f to show that several of the hypotheses in Problem
8.37 are not necessary for the conclusion of the problem to be true.
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8.3 IMAGES OF JORDAN SETS

The image of a Jordan set under a diffeomorphismis a Jordan set and its volume can
be computed by the change of variables formula. In this section, we establish the
first point and we prove the second point for the special case of an invertible linear
transformation.

We begin with Theorem 8.3.2, which provides a nice topological characterization
of Jordan sets. This establishes an important connection between Jordan sets and
the topology of R™. All further results on volume and integration depend upon this
connection.

It is convenient to repeat here a few definitions that will be useful in what follows. A
set in R™ is called negligible if it is a Jordan set of zero volume, as stated in Definition
8.1.22. The kth-order boundary cubes of a set F, as defined in Definition 8.1.15, are
the kth-order cubes that intersect both E and its complement E¢ = R™\ E. The union
of these cubes is Di(E) = Oy (E) \ Ix(E), the kth-order boundary approximation
of F.

Topological Definition of Jordan Sets

Lemma 8.3.1 Boundary cubes. Any boundary cube of E intersects OF. Hence
Di(E) C Oi(OFE). The converse is not true. A cube that intersects OF is not
necessarily a boundary cube of F.

Proof. Any boundary cube contains points a € E and b ¢ E. The line segment
joining these two points contains a point from OF, and this point also belongs to
the boundary cube because cubes are convex. To disprove the converse: any cube
contains points from its boundary but, trivially, does not intersect its complement.
0

Theorem 8.3.2 Boundaries of Jordan sets. A bounded set is a Jordan set if and
only if its boundary is a negligible set.

Proof. Let E be a Jordan set. Given ¢ > 0, use Theorem 8.1.30 to find a closed
Jordan set I and and an open Jordan set & such that

FCE°CECECGandv(G)—v(F)<e.
Hence 0E = E\ E° C G\ F. Also, G \ F is a Jordan set and

v(G\F)=v(G)—v(F) <e
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by Theorem 8.1.24. Hence OF is between the Jordan sets () and G \ F with v(G \
F) —v(0) = v(G \ F). This implies that JF is a Jordan set of zero volume.

Conversely, assume that E' is a bounded set of negligible boundary. Given ¢ > 0,
find an integer & such that v(O(8E)) < . Hence, by Lemma 8.3.1,

Dy (E) C Or(9F) and, therefore, v(Dy(E)) < e.

Then Theorem 8.1.21 shows that F is a Jordan set. O

Corollary 8.3.3 Interiors and closures of Jordan sets. A bounded set is a Jordan
set if and only if both its interior and closure are Jordan sets of the same volume.

Proof. This is left as an exercise. O

Jordan Sets Under Diffeomorphisms

We begin by showing that diffeomorphisms transform Jordan sets into Jordan sets. It
is convenient to recall a few facts about diffeomorphisms. First,if f : A — Y isaC!
diffeomorphism, then A and B = f(A) are both open sets, f : A — B has an inverse
g: B -— A, and both f and g have continuous derivatives f' : A — L(X,Y) and
g : B — L(Y, X). Second, f : A — B preserves the topological properties of sets
in A. Open sets, compact sets and boundaries are transformed into corresponding
open sets, compact sets and boundaries. In particular, f(E) = f(OF) for any E
such that E C A. This last condition is necessary to ensure that not only E but also
OF are contained in A.

In the context of Jordan sets we will mostly use the maximum norm

”XH = H('Tl’ R xn)”m = max(|$1|, Ceey |.I'n|)

This norm was introduced in Definition 8.1.3, where we noted that all balls in this
norm are open blocks. Hence, all such balls are Jordan sets. The interior of a cube
C is aball B such that B ¢ C C B. We will call the radius of B the radius of C. In
particular, the cubes in the kth-order grid are all cubes of radius 2751,

Lemma 8.3.4 Let A C R™ be an open set and f : A — R" a C! mapping. Let
K C A be a compact set. Then there is a number M with the following property: if
a cube C of radius r is contained in K, then f(C) is contained in a cube of radius
Mr.

Proof. The continuous function f' : A — L(R™, R™) is bounded on the compact
set K. Hence there is an M such that || f'(x)| ,(zn, gy < M forallx € K. Let C
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be a cube contained in K. If u, v € C, then the line segment joining these points is
in C C K. Therefore || f'(w}|| < M for every w on this segment. Then the mean
value theorem 5.1.13 implies that || f(u) — f(v)|| < M|lu — v|. We see that this
implies the conclusion of the lemma. O

Theorem 8.3.5 Let A be an open set in R™ and f : A — R™ a diffeomorphism. Let
E be a Jordan set in A with E C A. Then f(E) is also a Jordan set.

Proof. The basic idea is to combine the fact that OF is negligible with the preceding
lemma. A cover for OF of small volume will be mapped by f to a cover for 0f(E)
of small volume. So 8f(FE) is also negligible, which shows that f(E)) is a Jordan set.

In detail: the set E is compact (as it is closed and bounded), and contained in the
open set A. Theorem 4.5.48 shows that there is a compact set K and a number § > 0
such that E ¢ K° ¢ K C A. Note that in this case there is a number & > 0 such
that x € K whenever ||x — a|| < § and a € E. This follows again from Theorem
4.5.48. Hence we see that if a cube of radius less than /2 intersects E, then it is
contained in K.

Now FE is a Jordan set. Hence it has a negligible boundary OF. Given € > 0, find
an outer approximation Oy (OF) of this boundary with volume v(O¢(9F)) < e.
Then O (8E) = U;C; is a finite union of kth-order cubes C; of radius r = 2751,
Without loss of generality, assume that 2r = 27% < §. In this case we see that all
C; s are contained in K. Therefore all f(C;) s are contained in cubes of radius Mr,
where M is the number obtained in Lemma 8.3.4. Now f(OF) C f(Ox(OFE)) =
F(U;Cy) = U; £(C;) shows that f(OF) is contained in a set of volume

> pf(C) <Y M™(C) (8.32)
= M™(0L(OE)) < M"e. (8.33)

v(Ui f(Cs))

IA

Hence f(OF) = Of(F) is a negligible set and f(F) is a Jordan set. O

Jordan Sets Under Isomorphisms

An isomorphism 7" : R™ — R™ is an invertible linear transformation. Therefore it is
also a diffeomorphism. It follows that T'E is a Jordan set whenever E is a Jordan set,
by Theorem 8.3.5. In this case, more is true. We show that there is a fixed number
p(T) > 0 such that v(TE) = p(T) v(E) for all Jordan sets E. This number will be
called the volume multiplier of T.

Definition 8.3.6 Translations. Let a € R™. Then translation by a is the transfor-
mation T, : R — R" given by T5(x) = a + x. If £ C R”, then a + E denotes
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the image of £ under translation by a. That is, a + E consists of all vectors (a + x)
withx € E.

Theorem 8.3.7 Volumes under translations. If £ C R" is a Jordan set and
a € R", then a+ E is also a Jordan set and v(a + E) = v(E).

Proof. Since a translation is a diffeomorphism, we know that a + E is a Jordan
set whenever F is a Jordan set. Translation of a block is also a block with the same
side lengths. Hence the volumes of blocks are preserved under translations. We see
that this is also true for finite disjoint unions of blocks, by the additivity of volume.
Hence the volumes of inner and outer approximations of sets are preserved under
translations, since they consist of finite disjoint unions of cubes. It follows easily that
via+ E) =v(E) for any Jordan set E. D

Lemma 8.3.8 Let T : R™ — R”™ be an isomorphism. Let Cy = [0, 1) be the unit
cube in R™. Let p(T) = v(TCy). Then p(T) > 0 and v(TC) = p(T)v(C) for any
cube C'in any kth-order grid Cy, k € N,

Proof. All cubes C € Gy, are translations of each other. The same is true for their
images TC. Hence v(T'C) is the same for all C' € €. The unit cube C, is the disjoint
union of 2*” cubes in Cj. Therefore T'Cy is the disjoint union of 2*” translates of
TC, for any C € €. Hence v(TC) = 27*v(Cy) = v(C)p(T). Also, TCy has
a nonempty interior since the interior of Cy is nonempty and 7' : R® — R™ is an
isomorphism. Hence p(T') = v(T'Cp) > 0, by Lemma 8.1.28. [

Lemma 8.3.9 Let T : R™ — R" be an isomorphism. Let Cy = [0, 1)™ be the unit
cube in R™ and let k € N. Ler p(T) = v(TCy). If F = U;F; is a finite union of
cubes F; € Cy, then v(TF) = p(T)v(F).

Proof. The cubes in a grid are pairwise disjoint. So if F; € Cj, then the F; are
disjoint and therefore the images T'F; are also disjoint, since 7 is an isomorphism.
Hence v(F) = >, v(F;) and v(TF) = 3, v(TF;). Then the result follows from
Lemma 8.3.8. O

Theorem 8.3.10 Let T : R™ — R"” be an isomorphism. Then there is a number
p(T) > 0 such that v(TE) = p(E) v(E) for all Jordan sets E C R™,

Proof. Let p(T) = v(T'Cy), where Cj is the unit cube of R™. Let E be a Jordan
set and ¢ > 0. Find inner and outer approximations of F, F and G such that
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FC FECGandv(G) —v(F) < e. Here F and G are both finite disjoint unions of
cubes F;, G; € C. Then, by Lemma 8.3.9,

p(T)0(F) = v(TF) < v(TE) < o(TG) = p(T)u(G).

We see that both numbers v(7T'F) and p(T')v( E) are between p(T')v(F') and p(T)v(G).
Hence

[W(TE) - p(T)(E)| < (o(T)o(G) — p(T)o(F)) < ep(T).

Since € > 0 is arbitrary, this implies that v(T'E) = p(T)v(E). O

Definition 8.3.11 Volume multipliers of isomorphisms. Let T" be an isomorphism
R™ -» R™. Then the volume multiplier of T is defined as the number p(T) > 0
obtained in Theorem 8.3.10. Hence v(TE) = p(T)v(E) for all Jordan sets E in R™.

Theorem 8.3.12 Volume multipliers of isometries. Let T : R” — R" be an
isometry of the Euclidean space R™. Then p(T) = 1.

Proof. The unit ball B = {x | ||x|| < 1}, with the usual Euclidean norm (rather
than the maximum norm), is a Jordan set and is invariant under any isometry 7. Also,
it has nonzero volume since its interior is not empty. Therefore v(TB) = v(B) =
p(T)v(B), which shows that p(T) = 1. O

Corollary 8.3.13 Let (uy, ..., u,) be an orthonormal basis for R™ and X\; > 0.
Then the “rectangular box”

B={x=sjuj+ - +s,u,|0<s;, <N, i=1,...,n, }

is a Jordan set in R"” and v(B) = A1 - -+ A,

Proof. Let (ej, ..., e,) be the standard basis of R™. Then the transformation
defined by T'u; = e; is an isometry and takes B into a rectangular block with side
lengths A;. Hence v(B) = v(TB) = A1 -+ A,. O

Corollary 8.3.14 Volume multipliers of scaling transformations. Let ¢t > 0. If
T :R® — R” is defined by Tx = tx, then p(T) = t™.

Proof. Apply Corollary 8.3.13 with \;, =¢t,i=1,...,n. O
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Determinants and Volume Multipliers

Remarks 8.3.15 A review of determinants. If X is an n-dimensional vector space,
then a determinant on X is any nonzero alternating multilinear function ¢ : X™ —

R. Each ordered basis E = (ey, ..., e,) defines a unique determinant ¢y on X
such that Yg(e;, ..., e,) = 1. Theorem C.7.2 shows that if T : X — X isa
linear transformation and if E = (ey, ..., e,) is a basis for X, then the number
w(Tey, ..., Tey)/y(ey, ..., e,) is independent of the choice of the determinant

) and of the basis E. It is called the determinant of T and denoted by det T'. Note
that det T = ¢g(Tes, ..., Te,) for any basis E.

Remarks 8.3.16 Euclidean determinants. There is a special situation in Euclidean
spaces. If E and U are two orthonormal bases for a Euclidean space, then they define
the same determinant up to a factor of £1. Such a determinant is called a Fuclidean
determinant. Hence there are exactly two Euclidean determinants in a Euclidean
space.

Theorem 8.3.17 Determinants as volume multipliers. Let T’ be an isomorphism
of the Euclidean space R™. Then p(T)} = | det T

Proof. By the spectral theorem, Theorem 3.6.4, T has an eigenbasisE = (e1, ..., ep).
Recall from Definition 3.6.3 what this means: E is an orthonormal basis for R™ such
that Te; L Te; whenever i # j. It follows that if we put u; = T'e;/||Te;||, then
U = (uy, ..., u,) is another orthonormal basis for R such that T'e; = A;u; for all
i, with scalars A; > 0. In fact, each A; > 0 since T is an isomorphism. Therefore

detT = og(Tey, ..., Tey) (8.34)
= +yy(Tey, ..., Te,) (8.35)
= Yp(hug, ..., Agug) (8.36)
= +(A\; - A )vuluy, ..., uy) (8.37)
= (A1 Ap) (8.38)

Here (8.35) follows from the fact that determinants with respect to any two orthonor-
mal bases differ by a factor of +1 only. To obtain (8.37), we use the multilinearity
of the determinant. The last step is by the definition of ¢y.

Now T takes the rectangular box
B={x=s1e1+ - +s,6,|0<s, <1, i=1,...,n}
with volume v(B) = 1 to the rectangular box

TB:{X281u1+"'+snuk|0S8i§Ai7 i:]-)"'vn}
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with volume v(TB) = (Ay - -+ Ag). Hence

p(T) = o(TB) = (A; -+ M) = |det T).

Problems

842 A plane Ax + By + C'z = D divides an ellipsoid
(2/a)® + (y/0)* + (2/0)* = 1
into two parts. Find the volumes of these parts. (One part may be empty.)
8.43 Find the volume of E = { (z, y) | 2z +y)? + (z —y)* <1} C R2
8.44 Findthe volume of E = { (x, y) | |22 + y| + |z —y| <1} C R2
8.45  Find the volume of
E={(z,y,2) ||zl +lz+yl+|z+y+2/ <1} CR.
846 LetH C B C A C R™ Assume that A is compact, H is open, andtA C H

whenever 0 < ¢t < 1. Show that A, B, and H are all Jordan sets of the same volume.

8.47  Show that any open ball or any closed ball with respect to any norm on R"
is a nonnegligible Jordan set.

848 LetT : R™ — R”™ be an isometry with respect to an arbitrary norm on R™.
Then show that p(T) = 1.

8.49 Denote the vectors in R"*! = R x R as (x, y) withx € R* and y € R.
Let a € R™ be a fixed vector. Define R : R"™! — R**! by R(x, y) = (x + ya, y)
for all (x, y) € R**1. Then show that p(R) = 1.

8.50 Let E be abounded set in R™ such thatif 0 < ¢ < 1, thentE C E. Prove or
disprove that E is a Jordan set.

8.51 Show that any bounded convex set is a Jordan set.

8.52 Let F C R™ be a bounded set and r > 0. Show that Uxe r B,.(x) is a Jordan
set.
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8.53 Let E be an open set in X = R™ and F an open set in ¥ = R™. Let
u: K ->U=R"andv : F — V = R"” be two diffeomorphisms. Show that
w(x, y) = (u(x), v{y)) defines a diffeomorphism

wi(EXF)—-W=R"" =R"xR".

Also show that p(w'(x, y)) = p(u'(x)) p(v'(y)) forx € E,y € F.

8.4 CHANGE OF VARIABLES

Introduction 8.4.1 Changing the integration variable is a familiar technique from
basic calculus courses. Let y : A — R be a continuously differentiable function
defined on an open interval A. Assume that y'(x) > Oforallz € A. If [a, b] C A
and if g is integrable over [y(a), y(b)], then

y(b) b
/ oly) dy = / (@) (@) do (8.39)
y(a) a

The generalization of this result to multiple integrals is one of the major theorems
of this course. This result is stated as Theorem 8.4.16 below. The key step in the
proof of this theorem is an approximation theorem. It compares the volumes of
the images of small sets under a diffeomorphism and under the derivative of that
diffeomorphism. Such an approximation is fairly easy to obtain locally for small
balls about a fixed point. We need a uniform version of this result. The proof of this
uniform approximation theorem depends on a uniform mean value theorem. Hence
we first review some mean value theorems,

Notations 8.4.2 Diffeomorphisms and compact sets. For this section, we review
a few basic facts and some standard notation. Let A be an open set in X = R™. Let
¢ : A — Y = R” be a difftomorphism. This means that ¢ : A — Y is a
continuously differentiable function, the image of A under ¢ is an open set B =
@(A) C Y, and there is a continuously differentiable inverse function ¢ = ¢! :
B — X. If K is a compact set and if K C A, then Theorem 4.5.43 shows
that K is mapped to a compact set H = ¢(K) C B by the continuous function
@. Also, the derivatives ¢’ : A — L(X, Y)and ¢’ : B — L(Y, X) are continuous
functions. Hence, by Theorem 4.5.44, they are bounded on the compact sets K and
H respectively. Finally, by Theorem 4.5.48, if K is a compact set, A is an open set,
and K C A, then there is a § > O such that Bs(a) C Aforalla € K.
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A Review of Mean Value Theorems

We review several mean value theorems. Throughout the discussion, ¢ is a diffeo-
morphism.

Theorem 8.4.3 Basic mean value theorem. Assume that
w(t) = (tu+ (1 —t)v) € Aand that ||¢"(w(t))l| < M

forallt € [0, 1]. Then ||p(v) — p(u)|| < M ||v —u].
Proof. This is a restatement of the basic mean value theorem, Theorem 5.1.13. O

Theorem 8.4.4 Mean value theorem on convex sets. Let C' be a convex set and
Cc A IflY (=) < Mforall x € C then

le(v) =)l < Mlv —ulf

forallu, veC.

Proof. This follows from Theorem 8.4.3. [

Theorem 8.4.5 Local mean value theorem. For each a € A and for each ¢ > 0,
there is a & > 0 such that Bs(a) C A and

le(v) — ¢(u) = ¢"(a)(v —u)| < efv -]

forallu, v € Bs(a).

Proof. Let a € A. Since A is open, there is a 6o > 0 such that Bs,(a) C A. Also,
there is a & such that 0 < § < &g and such that

I’ (un) — ¢’ (a)]] < e whenever u € Bs(a).
This follows from the continuity of ¢’ : A — L(X, Y). Define A\: A — Y as
A(x) = p(x) - p(a) — ¢'(a)(x —a), x € A. (8.40)

We see that [N (x)|| = ||¢'(x) — ¢'(a)]| < ¢ for all x € Bs(a). Now Bs(a) is a
convex set. Then Theorem 8.4.4, the mean value theorem on convex sets, shows that

IAV) = Al = lle(v) — p(u) - (@) (v —w)]| <& lv — ul (8.41)

forallu, ve Bs(a). O
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Theorem 8.4.6 Uniform mean value theorem. For each ¢ > 0 and for each
compact set K C A thereis a § > 0 such that

Bs(a) C Aand [o(v) — ¢(u) — ¢'(a)(v —u)|| <elv —u]| (8.42)

forall a € K and for allu, v € Bs(a).

Proof. Let K be a compact set, K C A, and ¢ > 0. Use Theorem 4.5.48 to find
another compact set Ky C A and a number dy > 0 such that Bs,(a) C Ky for all
a € K. The continuous function ¢’ : A — L(X, Y) is uniformly continuous on the
compact set Ky C A. That means we can find a 4 such that 0 < § < g and such
that ||’ (v) — ¢'(u)|l < &€ whenever u, v € Ky and ||v — u|| < 4. Now ifa € K,
then Bs(a) C Bs,(a) C Ko C A. Define A : A — Y as in (8.40). As before, we
see that || N (x)|| < € for all x € Bs(a). Then (8.42) follows as in (8.41) above. O

Definition 8.4.7 Affine approximations. The affine approximation of p ata € A
is the affine mapping ¥, : X — Y given as

Ja(x) = p(a) + ¢/ (a)(x — a), x € X. (8.43)

Note that 9,(a) = ¢(a) and 95(v) — Fa(u) = p’'(a)(v —u),a € A, u, v e X.

Lemma 8.4.8 Inverses of affine approximations. Lera € A and b = ¢(a). Let
U4 be the affine approximation of @ at a. Then 9, is invertible and

97 (y)=a+(¢'(@) " (y —b) =4(b) +¢¥/(b)(y —b), y€Y.  (8.44)

Also, 971 : B — X is the affine approximation of ) : B — A atb = p(a).

Proof. Note that (¢'(a))~! = v¥/(b), since (¢ - p) : A — A is the identity. Then
the proof follows directly from the definitions. O

The affine approximation 9, allows us to approximate f in a neighborhood of a. The
next theorem shows that the ‘local’ multiplying effect of f on Jordan sets is also well
approximated by the multiplying effect of 5, which (as we know) is expressed by
the value | det ¢'(a)].

Uniform Approximations Theorem

The uniform approximations theorem states that the image under ¢ of a suitably small
ball around a can be approximated both from inside and outside by images under 9,
of slightly reduced and slightly enlarged balls around a. The radius of the original
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ball is r; the radii of the reduced and enlarged balls are (1 — ¢)r and (1 + ¢)r for a
specified parameter £ with 0 < ¢t < 1. (Nothing in the argument will depend upon
the particular choice of norm.)

Theorem 8.4.9 Uniform approximations. Let ¢ : A — Y be a diffeomorphism
and K C A a compact set. Let 0 < t < 1. Then thereisa § > O such thatifa € K
and if 0 < r < 0, then B.(a) C A and

DalBa-or(2)) € 9(Br() C Pal(Broy (a). (8.45)

Proof. Choosing oo and M. Apply Theorem 4.5.48 to find an o > 0 and a compact
set Ko such that B,(a) C Ko C A forall a € K. Also, find a number M > 0
such that ||¢/(x)|| < M for all x € K. Such a number exists, since the continuous
function ¢’ : A — L(X, Y') is bounded on the compact set Ky C A. Note that

le(v) — @)l < Mlv —ul (8.46)

whenever a € K and u, v € B,(a). This follows from Theorem 8.4.4, the mean
value theorem on convex sets. Also,

[Fa(u) = da(v)l| = ¢ (@)(v — )l < M|lv —ul (8.47)
forallu, v € K.

Choosing 3. Let H = ¢(K). Then H is a compact set contained in B = p(A).
Use Theorem 4.5.48 again to find a number 3; > 0 and a compact set Hy such that
Bg,(b) C Hy C Bforall b € H. Now apply Theorem 8.4.6, the uniform mean
value theorem, to find a 3 such that 0 < 3 < 3y and such that

1¥(y) — %(b) —4'(b)(y — b)|| < (t/M) |ly —b] (8.48)
whenever b € H andy € Bs(b).
A basic estimate. Letb € H,y € Bg(b), and a = ¢(b) = ¢, '(b). Then
v —ul| < (/M) |y - bl (8.49)

with v = ¢~ }(y) = ¢¥(y) and u = 97 (y). This is just a reformulation of (8.48).
In fact, using the expression of 19;1 1Y — X in (8.44), we see that

W(y) —9(b) —¢/(b)(y —=b) = v—a-d(y)+79,'(b) (850)

= v—a—ut+a=v-—u (8.51)

Completion of the proof. We will show that the inclusions (8.45) in Theorem 8.4.9

are satisfied with 6 = min(a, 8/M). To obtain the first inclusion, let b = ((a) and

y =971 (u) € Ua(B(1_¢)-(a)) withu € B(;_y,(a). Note that
ly =b] < Mhh—al<M1A-tr<M(1-1t) (8.52)
< M1 —t)(3/M) < B, (8.53)
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Hence (8.49) is applicable, Let v = 1(y). Then
[v—all < |lu-al+iv-ull<(1-t)r+ /M)y bl (8.54)

< (1-tr+tl-t)r<r (8.55)

This shows that if y = 971 (u) € Ja(B(1-1).(a)), thenalso y = ¢(v) € ¢(Br(a)).
Hence the first inclusion follows. To obtain the second inclusion in (8.45), let
y = p(v) € p(B,(a)). We see that, as in (8.52), y € Bg(b). Hence (8.49) is again
applicable. Let u = 9 (y). Then

[u—all < [v-al+|v—ul<r+ /M)y -Db] (8.56)
< r4tr=(1+t)r (8.57)

This shows that if y = ¢(v) € ¢(B,(a)), then also y = Ja(u) € Ja(B(144)-(a)).
Hence the second inclusion follows. O

Change of Volumes

Remarks 8.4.10 Cubes and balls. We will use the maximum norm
{x1, ..., zp)||m = max;|z;| on R™.

This is a natural norm here since the balls in the maximum norm are the interiors of
cubic blocks, as was observed in Definition 8.1.3.

Notations 8.4.11 Cubes as unions of smaller cubes. Let C be a cube in a grid C,.
If £ > ko, then C is a union of cubes in C, as C = U;C;, C; € Cg. The center of C;
is a;. Note that the interior of C; is the open ball C¢? = B,.(a;) with r = 2-k—1 apd
the closure of C; is the closed ball C; = B,(a;).

Lemma 8.4.12 Let ¢ : A — Y = R be a diffeomorphism. Let C € Cy,, C C A,
and 0 <t < 1. Then there is a k1 > kg such that

(1= ol (@)o(C) < w(p(0) <T(#(C)) (8:58)
< (40" e (@)(C)  (8.59)

whenever k > ki, C; € Cy, and C; C C, with the center at a; and radius r = 2751,

IA

A

Proof. Find é > 0 from the uniform approximations theorem, Theorem 8.4.9, so
that (8.45) is satisfied whenever a € C and 0 < r < 6. Find k1 > kg so that
r=2"%-1<§. Since B.(a;) C C; C B,(a;) and C = U;C}, we obtain

Uiﬁai (B(l_t)r(ai)) C Ui(p(ci> C Uiﬁai (B(Ht)r(ai)) (8.60)
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from (8.45) of Theorem 8.4.9. But C' = U;C; implies that o(C) = U;(C;) since
 is a diffeomorphism and, therefore, one-to-one. Also, the sets (C}) are pairwise
disjoint. Therefore

Ziv(ﬂai(B(l_m(ai))) < u(e(0)) < T(p(C)) (8.61)
< Ziv(ﬁai(B(Ht)r(ai))). (8.62)
Also, by Definition 8.3.11 and Corollary 8.3.14,

v(Ba; (Ba-nr(ai))) p(¢'(a:) v(Ba—tyr(ai)) (8.63)
= (1-t)"p(¢ (1)) v(Br(a3)), (8.64)

and similarly for v(¥a, (B(14+)r(a;))). Then (8.58) and (8.59) follow. O

Lemma 8.4.13 Images of cubes. Let ¢ : A =Y = R" be a diffeomorphism. Let
C be a cube in a grid Cy, and C' C A. Then o(C) is a Jordan set and

Proof. First, p(¢’'(x )) is continuous and therefore integrable on a cube C. Therefore,
limg 3, p(¢ (a:))v(Ci) = [ p(¢'(x)) dx by Theorem 8.2.21. Here k is the order
of the grid €y, that contams the cubes C,, and the sum is extended over all C; € Cg
contained in C'. Then Lemma 8.4.12 shows that

(1-0" [ olo't0)dx

IN
|

(0(C)) < T(0(C)) (8.65)

< (1+ t)"/ p(¢' (x)) dx. (8.66)
c
The conclusion follows, since these inequalities are true forallt,0 <t < 1. O

Theorem 8.4.14 Change of volumes. Let A C X = R" be an open set and
p: A—Y =R"adiffeomorphism. If E is a Jordan set with closure F contained
in A, then F' = ¢(E) is a Jordan set contained in ¢(A) = B and

o(F) = v(olE)) = [ ¢/ x)) (8.67)

Proof. Lemma 8.4.13 above shows that the conclusion of this theorem is true for
cubes with closures contained in A. Then the linearity of integrals and the additivity
of volumes show that this conclusion is also true for Jordan sets E that are the finite
disjoint unions of such cubes. Let E be any Jordan set with closure £ C A. Let
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I, = I,(E) and Gy, = Ok (E) be the kth-order inner and outer approximations of E,
as defined in Definition 8.1.15. Use Theorem 4.5.48 to obtain a compact set K C A
and a kg € N such that G, C K for all kK > ky. The conclusion of the change of
volumes theorem is valid for all Fy, and G, k > kq. Since Fr, C FE C Gy C K, we
obtain

o(@(Fy) = Lymamwxgme» (8.68)

< WAE) < [ /) dx =G (869)

Gy

The difference between these outer and inner estimates is

v@@W—Mﬂm»=AHF¢W@»msMwm\ﬂx

where M is an upper bound for the positive function p(¢’(x)) on K. Such an upper
bound exists, since (p-¢’) : A — Ris a continuous function and, therefore, bounded
on the compact set K C A. But limy v(Gj \ Fj;) = O since E is a Jordan set. Hence
@(E) is also a Jordan set and [, p('(x)) dx exists. Then this integral is v(¢(E))

since both of these numbers are between v(p(Fy)) and v(p(Gy)) for all k > kq.
O

Change of Integrals

Lemma 8.4.15 Let A be an open set in X = R™. Let ¢ : A — R™ be a diffeo-
morphism. Then ®(x, t) = (p(x), t), (x,t) € A x R, defines a diffeomorphism
D : (A xR) - (R x R). Also, p(¥'(x, t)) = p(¢'(x)) forall (x,t) € A xR

Proof. We see that ® is a continuously differentiable function. Its range
P(AxR)y=BxR

is open in R™ x R, since B = p(A) is open in R™. Also, ¥(y, t) = (¢¥(y), t) for
(y, t) € (B x R) defines the inverse of ®, where 9 is the inverse of ¢. Clearly, ¥
is a continuously differentiable function. Finally, if E is a Jordan set in R™ and J is
an interval, then ®'(x, t}(F x J) = (¢'(x)(F)) x J. Hence we see that the volume
multipliers are related as stated in the lemma. O

Theorem 8.4.16 Change of integrals. Ler A C X = R" be an open set and
@ A — R"™ a diffeomorphism. If f :' Y — R is integrable and has a compact
support S C B = p(A), then (f - ) : A — R is integrable on A and

/ﬂww:/ﬂwwm¢MMx (8.70)
B A
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Proof. First, assume that f : Y — R is a nonnegative function. Let
Er={t)[0<t<fly),yeB}C(BxR)

be the region under the graph of f. Since f is an integrable function, the set 'y
is a Jordan set in R™ x R. Also, its closure is contained in (S x R) C (B x R).
IfG = {(x,t)|0<t < flox)), x € A}, then we sce that Ef = ®(G), with
the notations in Lemma 8.4.15 above. Hence, by the change of volumes theorem,
Theorem 8.4.14,

‘Lf@ww = WL(Ey) = 0" (@(G))

/p(@'(x, t))dtdx:/p(<p’(x))dtdx
G G

I

/f@demm
A

Here the last step follows from Fubini’s theorem, Theorem 8.2.37. 0O

Some Useful Notation

In practice, changing the variable of integration in multiple integrals requires a careful
distinction between the old and new spaces and careful attention to the direction of
the transformation between these spaces. The following notation is helpful. Suppose
we want to compute an integral [;, f(x)dx in the X-space. We want to make a
change of variables and express x as x = (y). Note that this is a transformation
fromY to X, using ¢ : ¥ — X. The new integration region is the set of all y such
that ¢(y) = x € E. In other words, the new integration region is o~ *(E). We start

by writing
/ﬂmw:/ o) U(y) dy.
E e~ 1(E)

Here, we know that U/ must be the volume multiplier for either ¢ : ¥ — X or
¢~1: X — Y. But which one? To get the correct answer, write U (y) as

dx
dy

Uly) =

so that the dy s cancel out and we are left with dx, the original variable of integration.
It follows, of course, that the correct multiplier is

Oz, ., zn)
YO =\

the usual notation for the determinant of the Jacobian matrix.

y
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Problems
8.54 Integrate f(x, y) = 222+ y? over the region bounded by the lines 3z + 2y =
5,3z +2y=8,6x—4y =2,and 6x — 4y = T7.

8.55 Integrate f(x, y) = 222 + y? over the region in the first quadrant (that is,
x > 0 and y > 0) bounded by the curves ry = 2, xy = 4, y = 3z, and y = 5z.

8.56  Theunitdisc z?>+y? < 1isdivided into two parts by the circle 22+ (y—1)2 =
1. Use polar coordinates x = r cos §, y = rsin f to find the areas of these parts.

8.57  The elliptical region (z/a)? + (y/b)? < 1 is divided into two parts by the
ellipse (z/a)? + ((y — b)/b)? = 1. Find the areas of these parts.

8.58 Let f: R — R be acontinuous function, 0 < p < ¢,0 < r < s, and
E={(z,y)|pz<a®+y* <qw, ry<z®+y* <sy} CR%

Show that one can define a function ' : R? — R so that

/Ef(y/a:)dxdy:/pq/rsp'(u, v) du dv

for all choices of p, ¢, r, and s. Find F' explicitly in terms of f. Contrive some
examples for f £ 0 to compute this integral without too much work.

8.59 Let f(x,y) = exp(—x? — y?). Compute the integral of f over a disc
z? +y? < R%

8.60 Let F'(R) be the integral of f(z, y) = exp(—z? — y?) over z2 + y% < R%
1. Show that imp_,o F'(R) = K € R exists. What is K?
2. Let o > 0. Show that limg_,~, F(aR) exists and is equal to K.

3. Letor # 0and B # 0. Show that limpg ffR ffR exp(—a?x?—F3%y?) dz dy
exists and is equal to K/|af3)|.

4. Show that limp . f_RR exp(—22) dz exists and is equal to v K.

8.61 Let7 : R? — R? be an isomorphism. For each R, let ER be the elliptical
region (x/a)? + (y/b)> < R?. Here a # 0 and b # 0 are fixed. Show that
limp_o [ By, €P(—(T'z, Tz)) dz exists and compute its value.
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8.62 Let n € Nand let T : R® — R”™ be an isomorphism. For each R, let
Er be the elliptical region Y,;(z;/a;)? < R?. Here a; # 0 are fixed. Show that
limg_.eo || £, €P(—(T'z, Tz)) dz exists and compute its value.

8.63 Centroid. Let E be a Jordan set in R™. Show that there is a unique vector
¢ € R", called the centroid of E, such that

1 /
a, c)=—— a, z)dz
(@ ¢) = gy [ {7
foralla € R™.

8.64 Pappus’ Theorem. Let E be a Jordan set in the zz-plane. Let ¢ = (a, b) be
the centroid of E. Assume that if (x, z) € F, then z > 0. Rotate E about the z-axis
to get a solid R in R3. Show that v3(R) = 27 a v?(E).

8.65 Find the volume of the torus obtained by rotating the disc (z — 2)2 + 22 < 1
around the z-axis.
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CHAPTER 9

INTEGRATION ON MANIFOLDS

The main objective of this chapter is to present and investigate definitions of content
(volume) and integration on manifolds: curves, surfaces and the like. We work up to
these definitions, beginning with the simpler problem of defining volume on vector
spaces and subspaces other than R”™.

Any n-dimensional vector space X is isomorphic to R™. One natural way to define
volume on X is to use an isomorphism 7" : X — R™. E C X is a Jordan set in X if
TFE is a Jordan set in R™, and its volume is then defined as v(T'E). This definition
of volume on X depends on T, albeit in a minor way: any two volume functions
defined in this manner are constant multiples of each other. That is a consequence of
Theorem 8.3.10.

We shall restrict our attention to the problem of defining volume on a Euclidean
space X. In this case, there is a particularly natural choice for T" which defines a
volume on X called the Euclidean volume. But there is also a way to define this
volume as an intrinsic feature of X, without making use of the mapping to R"™.

Analysis in Vector Spaces. 339
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Copyright (©) 2009 John Wiley & Sons, Inc.
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The two approaches, extrinsic and intrinsic, also give us (equivalent) ways to define
k-dimensional volume on k-dimensional subspaces of X.

We move to the definitions of content and integration of real-valued functions on
manifolds in section 9.2. These definitions are extrinsic; they utilize a parametric
characterization to reduce integration over a manifold to integration over an under-
lying (Euclidean) parameter space. This theory of content and integration is then
extended, in sections 9.3 and 9.4, to the integration of vector functions and tensor
fields. In both cases, the vector or tensor function is used to generate a real-valued
function which is then integrated over the manifold.

The final section raises the question of whether we can provide an intrinsic charac-
terization of content and integration on a manifold. We show that the answer is “yes”
for the special case of manifolds that can be represented as graphs in some coordinate
system. We prove that the intrinsically defined ‘geometric’ content agrees with the
standard, extrinsically defined notion of earlier sections.

9.1 EUCLIDEAN VOLUMES

Definition 9.1.1 Euclidean volumes. Let Z be an n-dimensional Euclidean space.
If (e, .... e,) is an orthonormal basis, then

Tz =T(z1€1+ -+ 2zn€n) = (21, - .-, 2n) 9.1

defines an isomorphism T : Z — R™. The Euclidean volume of a set E C Z is
defined as vz (E) = v™(TE) (or simply v(T'E)), where v™ (or v) is volume in R™.
Hence vz(F) is defined whenever TE C R”™ is a Jordan set.

This definition has to be justified by showing that vz (E) is independent of the choice
of orthonormal basis. This is left as an exercise. It also follows from an intrinsic
characterization of Euclidean volume which does not rely upon any mapping from Z
to R™. We develop this idea by offering a second definition of Euclidean volume in
terms of Euclidean determinants on Z (Theorem 9.1.7 and Remarks 9.1.8 below).

A Review of Euclidean Determinants

Determinants were introduced in section 3.6. Here, we review and expand upon that
earlier discussion.

For any nonnegative integer k, let Ay (Z) = AM Ly(Z*, R) be the linear space of
all alternating multilinear functions Z* — R, as defined in Definition 3.6.21. Let
n = dim Z. A basic fact about A,,(Z) is that it is a one-dimensional space. Any
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nonzero element of A,,(Z) is called a determinant (or a determinant function) on
Z. Hence any determinant is a basis for A, (Z). In particular any determinant is a
multiple of any other determinant.

Definition 9.1.2 Determinant of a basis. Determinant functions are related to the
familiar determinant det{a;; } of ann xn matrix {a;;}. Infact,letU = (uy, ..., uy,)
be an (ordered) basis for Z and let A = (ay, ..., a,) beany (ordered) set of n vectors
in Z™. Then the coordinates {a;;} of a; s with respect to u; s form an n X n matrix.
The determinant of this matrix defines a determinant function ¢y : Z™ — R. We say
that 1y is the determinant of the ordered basis U. Note that 1y is uniquely defined by
the condition that ¢ (U) = 1. Also, note that any determinant function is a multiple

of d)U-

Definition 9.1.3 Euclidean determinants. If Z is a Euclidean space, then a determi-
nant function ¥ is called a Euclidean determinant if ¥(E) = %1 for any orthonormal
basis E = (ey, ..., e,). If we fix an orthonormal basis E, then there are exactly
two Euclidean determinants: g and —g. Any (ordered) basis U, however, may be
used to characterize these two Euclidean determinants, since

YE = Yu/YPu(E),

where 1y is the determinant of U (in the sense of Definition 9.1.2).

Definition 9.1.4 Oriented Euclidean spaces. A Euclidean space Z together with
one of its Euclidean determinants ©J is called an oriented Euclidean space. An
oriented Euclidean space may be also denoted as (Z, 7). Each Euclidean space has
exactly two orientations.

Remarks 9.1.5 Computation of Euclidean determinants. Let ¥ € A,(Z) be a
Euclidean determinant and A = (a3, ..., a,) € Z" Then ¥(A) € R can be
computed in two different ways:

(1) 9(A) = £det(a,, e;), in terms of coordinates over an orthonormal basis
(e1, ..., en);

(2) 9(A) = +(det(a;, a;))'/2, intrinsically.

The equivalence of (1) and (2) derives from the following facts. First, if A is the
matrix with entries (a;, e;), then the conjugate or transpose matrix A* has the same
determinant (Appendix C, Theorem C.2.4). Second, (a;, a;) are the entries of the
product AA*. Third, det AA* = det Adet A* = (det A)2.
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Euclidean determinants and volume

Remarks 9.1.6 Volume of aboxin R”. Let X = R™ with its standard inner product.
IfA=(ay,...,a,) € X" let

BAY={oja1+ - +0na, |0<a; <1, i=1,...,n}CX (9.2)

be the box spanned by A. Then B(A) is a Jordan set and v(B(A)) = [#(A)|. This
follows from our work in chapter 8.

Theorem 9.1.7 Let Z be an n-dimensional Euclidean space. Let
BA)={oma+ - +0,8,|0<a; <1, i=1,...,n} (9.3)

be the box spanned by A = (ay, ..., a,) € Z™. Then B(A) is a Jordan set. Its
Euclidean volume is vz(B(A)) = (det{a;, a;)7)V/? = |9(A)]|, where 9 € A (Z)
is a Euclidean determinant on Z.

Proof. letT : Z — R™ = X be an isomorphism as defined in 9.1.1. Then
TB(A) C X is the box spanned by (Tay, ..., Ta,). Since TB(A) is a Jordan set,
sois B(A), and

vz(B(A)) = v(TB(A)) =v(B(TA)) = (det(Ta;, Ta;)x)"/* (94)
= (det(a;, a;)z)"% = [9(A)]. 9.5)

The reason for the first equality in (9.5) is that T : Z — X = R™ preserves inner
products. O

Remarks 9.1.8 Intrinsic definition of Euclidean volumes. The boxes in a Eu-
clidean space are “geometrical” objects, independent of the choice of coordinates.
As we have just seen, their volumes can be defined in terms of Euclidean determi-
nants, which are also independent of coordinates. Hence the volume of a box can
be defined purely in terms of the inner product. Since the inner product defines the
“geometry” of the space, volume is a geometrically determined quantity.

Note also that in defining the Euclidean volume of a box in Z, we have also defined
the volumes of unions of boxes and hence the volumes of all Jordan sets. In fact,
Jordan sets are those that can be approximated by inner and outer unions of boxes
that are close in volume.

Integrals on Euclidean Spaces

Let f : Z — R be a real-valued function defined on a Euclidean space Z. For
convenience we will assume that all functions are defined on the whole space. This
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is not a restriction of generality: any function can be extended to the whole space by
making it vanish outside its original domain of definition. This does not affect the
integration.

The integral of such a function is denoted by

/for/Zfor/Zf(z)dz (9.6)

or by a similar notation. The definition is obvious. Let T : X = R" — Z be an
isomorphism that takes the standard basis of X = R" to an orthonormal basis E of
Z. Then define [, f(z)dz as [y f(Tx)dx, if this latter integral exists. We see that
the result is independent of the choice of the orthonormal basis E.

Volumes on Subspaces

The preceding approach gives us an intrinsic notion of volume for subspaces of a
Euclidean space.

Definition 9.1.9 Euclidean volumes on subspaces. A subspace X of a Euclidean
space Z is also a Euclidean space with the same inner product (restricted to X). It
follows that X has its own two Euclidean determinants 9 x, as well as its own
volume vx defined on its own family of Jordan sets. We sometimes write vy, for
this k-dimensional volume. Note that for any k-dimensional box B(A) in X, where
A = (ay, ..., ag), Theorem 9.1.7 tells us that

vk(B(A)) = (det(ay, a;))"/.

Definition 9.1.10 Lower-dimensional volume of a box. Let A = (a;, ..., a;) €
Z* be a k-tuple of vectors from Z. It is convenient to define

ve(B(A)) = (det{a,, aj>)1/2 9.7

as the k-dimensional volume of the box spanned by these vectors. Of course, this
agrees with the volume in Definition 9.1.9, when B(A) is considered as a Jordan
subset of a k-dimensional subspace. Sometimes, however, it is convenient to talk
about the k-dimensional volume of a box without specifying any subspace. Note that
vr(B(A)) is nonzero if and only if the vectors in A form a linearly independent set.

Theorem 9.1.11 Euclidean determinants on coordinate systems. Let (X, Y') be
a coordinate system in Z with the respective Euclidean determinants ¥x, Oy, and
¥ 7. Then there is a v such that

Vz(A, B) = vIx(A) Iy (B) 9.8)
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forall A= (ay,...,a;) € X*and B = (by, ..., by) € Y, where
(A,B) = (a1, ..., a; by, ..., by) € Z™. 9.9)

Heredim X =k, dimY =4 anddimZ =n=k+ 4 If X LY, theny = x1.
Proof. This is a restatement of Theorems C.6.5 and C.5.3. O

Theorem 9.1.12 Euclidean volumes on coordinate systems. Ler (X,Y) be a
coordinate system in Z. Then thereisa 3 = (X, Y) > 0 such that

Uz(AXB) Zﬂvx(A)vy(B) (9.10)

SJorall Jordan sets A C X and BC Y. Also, f X LY then (X, Y)=1.

Proof. If A and B are boxes, then the first part is a restatement of Theorem C.6.5.
The result for general Jordan sets follows by approximations. If X 1 Y, then take
the boxes A and B as the unit boxes spanned by orthonormal bases in X and Y.
Then A x B is also a unit box spanned by an orthonormal basis in Z. Hence in this
case all three determinants will be equal to 1. Then 3(X, Y) = 1 follows. O

Corollary 9.1.13 Let X be a proper subspace of Z. Then any bounded set E in X
is a Jordan setin Z and vz(E) = 0.

Proof. Let Abe aJordansetin X and E C A. Let Y = X1, Then Y is a Euclidean
space. Let B, be the ball of radius r in Y. Then

E=FEx{0} C Ax B, forallr > 0. 9.11)
But vz(A x B,) = vx(A)vy(B,) = rfvx(A)vy(By) — 0asr — 0. (Here
£ = dimY'.) This shows that E' is a negligible setin Z. O

Volume Multipliers of Linear Maps

Lemma 9.1.14 Let W and Z be two Euclidean spaces of the same dimension. Let
T : W — Z be a linear map. Then there is a number p(T) > 0 such that

vz(TE) = p(T) vw (E) 9.12)

for all Jordan sets E C W. Also p(T) = |9z(TE)|, where E = (eq, ..., e,) isan
orthonormal basis for W and 9 z is a Euclidean determinant for Z.
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Proof. Theorem 8.3.17 shows that if W = Z = R*and if T : W — Z is an
isomorphism, then this result holds with p(T") = vz (TU), where U = [0, 1)™ is the
unit cube in W. The arguments for the general case are the same.

If T is not an isomorphism, then the range X = T'W of T is a proper subspace of Z.
Therefore TE C X is a negligible set in Z for all bounded £ C W, by Corollary
9.1.13. In this case, let p(T) = 0. O

Definition 9.1.15 General volume multipliers. Let 7 : W — Z be a linear
transformation between any two Euclidean spaces. Let A = (a;, ..., ax) be an
orthonormal basis for W. Then the number

p(T) = v(B(TA)) = (det(Ta;, Ta;))/? (9.13)

is called the general volume multiplier of T. If W and Z have the same dimension,
then this agrees with the earlier definition. Note that p(T) > 0 if and only if
dim W = dim(TW), that is, if and only if T" is one-to-one.

Problems

91 Let (X,Y) and (U, V) be two orthogonal coordinate systems (Definition
3.1.42)in Z. Assume that (U, Y) is also a coordinate system for Z. Let P : U — X
be the orthogonal projection of U/ on X and let @ : Y — V be the orthogonal
projection of Y on V. Show that p(P) = p(Q).

9.2 Let U be a two-dimensional Euclidean space. Let T : U — R be a linear
mapping. Show that p(T') = [|Tu; X T'uz||, where (uy, up) is an orthonormal basis
for U and x denotes the cross product in R3.

9.2 INTEGRATION ON MANIFOLDS

A manifold M consists of the “local images” of subspaces under diffeomorphisms.
For our discussion of integration on manifolds, it is also convenient to work with the
reverse diffeomorphisms. They will be called charts on M.

Charts for Manifolds

The following notation is used in this chapter and Chapter 10.
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Definition 9.2.1 Charts. Let W and Z be two spaces, U a subspace of W, and M
asubsetof Z. Let ¥ : G — W be a diffeomorphism defined on an open set G C Z.
Then V is called a chart for M if

V(M NG)=UnNH with H = ¥(G). 9.14)
Hence M is a manifold if each m € M is contained in the domain of a chart for M.

IfV:G — H=V(G)isachart for M, then U~! = @ : H — G is the reverse
chart. Note that the restriction of ® : H — Z to U N H is a parametric representation
‘I)IUQH :(pZUﬁH—)ZfOI‘MﬂG.

b4 .
/—F‘_ﬂ_'_'_' —‘—___h‘“—-____ Z

W / T
— ¢ M
H G
L.’
¥
I}
\Lf
L0)]
Figure 9.1. Charts as in Definition 9.2.1.
Definition 9.2.2 Atlases for a manifold. A collection A of charts
U, :G,— Hy(=V(G,)), acA, (9.15)

is called an atlas for M if the collection of their domains { G, } forms an open cover
for M. Hence M C UG, and ¥ (M NG,,) = U, N H,. We shall usually assume
that U, = U is the same subspace for all «, which (as we shall see) involves no loss
of generality. Note that every manifold has an atlas; this follows from the definition
of a manifold.

Definition 9.2.3 Derivatives and tangent spaces. Let ® : H — G be a reverse
chart. If u € U N H and ®(u) = m, then m € M and

T = ®'(w)U
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is called the tangent space of M at m. If we let ¢ = @|ynp, then ¢’ (u) : U — Ty,
is the restriction of ®'(u) : W — Z to the subspace U.

Note that ¢'(u) is an isomorphism between U and Ty,. The volume multiplier
p(®'(u)|y) = p(¢’(u)) of this isomorphism plays a central role in the theory (and
practical applications) of integration on manifolds. Also note that

V' (m)|r,, : Tm — U is the inverse of &' (u)|y : U — Tiy. 9.16)

Hence p(¥'(m)|z,,) = 1/p(®' (uw)lv).

Local Integrals

Remarks 9.2.4 Local integrals. Integrals on manifolds are usually computed by
means of parametric representations (see Definition 6.3.11). When one computes an
integral using a parametric representation, it is understood that this is only a partial
integration over the part of the manifold covered by this representation. We will call
such an integral a local integral. This generates a problem: how do we integrate
a function whose support does not lie entirely within a region covered by a single
parametric representation?

Here is an efficient way to handle this situation. Let ¥ : G — H be a chart for M,
with the associated parametric representation ¢ : U N H — Z. (It helps to keep
Figure 9.1 handy.) The part of M covered by this representation is M N G. When
working with this particular parametric representation, assume that any function to
be integrated has compact support contained in GG. In this case, we can use ¢ to
obtain the complete integral of the function on M.

The integration of a general function is defined by using a technique called partitions
of uniry. In essence, the idea is to re-write an arbitrary function f as a sum of functions
Ji, each of which has compact support covered by single parametric representation,
and to define the integral of f as the sum of the (local) integrals of the functions
fi. This technique is discussed later in this section, starting with Definition 9.2.10.
We shall begin with local integrals, working with a fixed chart ¥ : G — H and the
associated parametric representation ¢ : U N H — Z.

Definition 9.2.5 Local integration. Let ® : H — ( be a reverse chart for a
manifold M. If f : Z — R is a function with compact support K C G, then its
integral over M is defined as

/ f= / £(®(w)) p(®'(w)]y) du, ©.17)
M U

whenever the integral on the right exists. This integral involves ordinary integration
over a Euclidean space, and is computed by the usual methods of muttiple integrals.
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We can re-state (9.17) in terms of the parametric representation ¢ = &l : U — Z:

/ f = / F((u)) ol (w) du. ©.18)
M U

To justify this definition, we must show that if there are two reverse charts ®; : H; —
G, such that the support of f : Z — R is contained in G; N G2, then the definitions
of the integral of f using these two charts give the same result. That is the content of
our next theorem.

Theorem 9.2.6 Let $; : H; — G; be two reverse charts for M. Let f : Z — R be
a function with support in G; N Gy, Then

/f p(®1(u)lv) du—/ F(@2(u)) p(®3(u)v) du (9.19)

whenever either one of the integrals exists.

Proof. Let ¥, and ¥, be the charts associated with @1 and ®5. Let G = G1NG5. The
restriction of each ¥; to G is another chart for M. We see that the integrals in (9.19)
for the original charts are the same integrals for the restricted charts. Hence, we may
assume that G; = G2 = G, without loss of generality. Then © = Uy &, : Hy — Hs
is a diffeomorphism. We see that § = Olynp, : UN H; — U N Hy is also
a diffeomorphism, and ¢ = ¢y - 6. (Here we have put p; = ®;|y.) Hence
©1(n) = ph{6(u)) - #'(u), and therefore,

plp1(w) = p(pe(0(u))) - p(6' (w)). (9.20)

The change of variables theorem, Theorem 8.4.16, shows that

/ g(us) duy = / g(8(u1))p(6' (uy)) duy 9.21)
UNH, UNH;

whenever the first integral exists. If g(us) = f{w2(u2)) p(ph(uz)), then

g(0(u)p(0'(u1)) = f(p2(8(w))) p(£a(0(u1)))p(6'(ur))  (9:22)
= fler(u1))p(e) (r)). (9.23)

To obtain (9.23) we used (9.20). The conclusion now follows. O
Contents on Manifolds

Definition 9.2.7 Jordan sets in manifolds. A set ' in a manifold M is called a
Jordan set in M if its characteristic function xg : M — R is integrable on M. In
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this case, o(E) = [,, xg is called the content of E. The term ‘content’ stands for
k-dimensional volume on a k-dimensional manifold.

Remarks 9.2.8 Notations for integrals. The integral of f : M — R on a manifold
is denoted by expressions such as

/Mf = .y f(m)dm = /M f(m)o(dm) = /Mfdo 9.24)

or by similar expressions. In general, none of these expressions is suitable for
computations. To compute an integral on a manifold, we have to use a chart and the
corresponding parametric representations ¢ : U N H — Z to reduce a problem of
integration on a manifold to a problem of integration on a Euclidean space. Then we
can use the usual techniques of multiple integration to compute the integral. With
this practical focus on computation in mind, a useful notation for the integral is

/M fdo = /U (el pl () d / fp(w)do(u),  (9.25)

UnH

where p(¢’(u))du = do(u) is considered as the content of a small part of the
manifold. This small part is the image of a small cube in the Euclidean space U.

Remarks 9.2.9 Content and integration. Integration on M can be defined in terms
of the content on M. In fact, we see that if f : M — R is a function of compact
support K C M, then [ u fexists if and only if for each ¢ > 0 there are finitely
many pairwise disjoint Jordan sets F; C M such that K C U; E; and such that

> _(sup{f(z) |z € E;} ~inf{f(z) |z € E; })o(E:) <e. (9.26)

The details are left as an exercise.

General Integrals

The above definition of integrals is only for functions A/ — R with supports contained
in the domain of a single chart. Integrals of more general functions are defined by a
technique called the partitions of unity. The basis of this technique is the following
theorem.

Definition 9.2.10 Partitions of unity. Let A be a set in a Euclidean space Z. Let
G s be a finite collection of bounded open sets such that A C U;G;. Then a (finite)
setof C° functions \; : Z — [0, 1] is called a partition of unity for A subordinate to
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the covering G, if each \; has a compact support contained in G; andif 3, X;(z) = 1
forall z € A.

Theorem 9.2.11 Existence of partitions of unity. Given a finite covering G; of a
set A by bounded open sets, there is a partition of unity for A subordinate to the
covering G;.

The proof of this theorem is fairly elementary and self-contained. The requirement
that A; s are C> functions does not cause any additional complications in the proof.
It is made for convenience so that the result can be used in other applications that
require a high degree of differentiability. Theorem 9.2.11 is re-stated and proved in
Appendix D as Theorem D.1.8.

Definition 9.2.12 Integrals on manifolds. Let M be a manifoldin Z. Let f : M —
R be a function of compact support S C M. By the definition of a manifold, each
point m € S is in the domain G of some chart, and each such G is an open set. Use
the compactness of S to find finitely many of these domains G; such that S C U;G;.
Then find a partition of unity A; : Z — [0, 1] for S subordinate to G; and define the
surface integral of f : M — R as

[ =% ] i ©0.27)

if each fA; : M — Ris integrable. Note that the integrals on the right-hand side are
obtained by local integration (as in Definition 9.2.5), since each fA; : M — R hasa
compact support contained in M N G;.

Nevertheless, our definition has to be justified by showing that different partitions of
unity lead to the same result.

Lemma 9.2.13 Let f : M — R be a function of compact support S C M. Let G;

and H; be two finite coverings of S by bounded open sets. Let o; and (3; be two
partitions of unity for S subordinate to G; and to H; respectively. If

Z/ fa; exists, then Z/ fB; also exists, (9.28)
tJIM JIM
and these two sums are equal.

Proof. Note that oi(z) = }_; ;(2)Bj(z) for all z € S. If [, fa; exists, then
fM foy 85 also exists and

fa; = Zj /M foiB;. Hence (9.29)

> /M foi = 3. /N faif; (9.30)
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The double summation above is also equal to > j f a JBj» by symmetry. O

Problems

9.3 Find the surface area of a sphere of radius R.

9.4 Aplane z = h, 0 < h < 1, divides the unit sphere z? + y2 + 22 = 1 into two
parts. Compute the surface areas of these parts.

9.5 Let E be a Jordan set in the rectangle (—m, 7) x (0, w). Map this region
by the spherical coordinates to get a region ®(F) in the unit sphere. Hence ®(F)
consists of all points with the Cartesian coordinates

z=cosf sing, y=sinf siny, z=-cosy
with (0, ¢) € E. Express the surface area of ®(E) as an integral over E. Find the
areas corresponding to rectangles — 7 < p <8 < g <71, 0<r < p <s <7 Also

apply this result to give another solution of Problem 9.3.

9.6  Find the surface area of the part of the sphere 2 4 y? + 2% = 4 that lies inside
the cylinder (z — 1)2 + 42 < 1.

9.7 Compute the surface area of the helicoidal surface
x=rcosf, y=rsinf, z =40,
where 1 <r <2,0<80 < 27.

9.8  Find the surface area of the part of the cylinder 22 4+ 3> = 1 that lies between
the planes z = 0 and z = 2z + 3y + 10.

9.9  Find the surface area of the part of the cylinder 22 + 2% = a? that lies above

the zy-plane and inside the cylinder 22 + y? = a?.

9.10 Integrate f(x, y, z) = |z| over the surface of the sphere

22 +y? 422 =1

9.11 Compute [,(z?z + y*z)do where G is the upper half of the sphere

?+y? 427 =4
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9.12 Compute [ (y* + z%) do where G is the part of the surface
r=4-—y* -2

that lies in the region z > 0.

9.13  Compute [ (y* + 2*) do where G is the part of the surface
£C2 —4— y2 _ 22
that lies in the region z > 0.

9.14 Compute |, ¢ Yz do where G is the part of the plane 2 = y + 3 that lies in the
cylinder 2% + y? = 1.

9.15 Compute | c zy* do where C is the right half of the circle

2 +y? = 16.

9.16 Compute [ zydo where C is the line segment joining (—1, 1) to (2, 3).

9.17 Compute fc xyz do where C is the curve

x =sin2t,y =3t z=cos2t,0<t <7/4

9.18 Centroid. Let E be a Jordan set on a manifold M in a Euclidean spaceZ.
Show that there is a unique vector cg such that

(a, cg)o(E) = / (a, z)do

E
for all a € Z. This vector is called the centroid of E.

9.19  Find the centroid (Problem 9.18) of the upper-half of the sphere

22 +y? 422 =1

9.20  Find the centroid (Problem 9.18) of the helix

z =cost, y=sint, z=1t0<t<a.

9.21 Find the centroid (Problem 9.18) of the helicoidal surface

z=rcost, y=rsint, 2=10<t<a,1 <r <2
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9.22 Pappus’ theorem. Let F be a curve in the half of rz-plane corresponding to
r > 0. Let £(E) be the length of E and let cg = (a, b) be the centroid of E. Rotate
C around the z-axis to obtain a surface S in R3. Show that the surface area of S is
2ral(E). (See also Problem 8.64.)

9.23  Find the surface area of the torus obtained by rotating the circle
(r—2°+2*=1

around the z-axis. (See also Problem 8.65.)

9.3 ORIENTED MANIFOLDS

We will formulate definitions for the integral of a vector field and the integral of
a tensor field over a manifold. Both definitions require the concept of an oriented
manifold. In this section, we define the orientation of a manifold. We will distin-
guish between local orientation and global orientation. Almost all computations of
integrals on manifolds are done locally, in terms of charts. For these computations,
we only need the local orientations induced by charts. Global orientations, however,
are needed for Stokes’ theorem, which is discussed in Chapter 10.

As a preliminary to defining the orientation of a manifold, it is useful to begin with
some facts about the orientation of a vector space, as defined in Definition 9.1.4.
In particular, the idea of charts that preserve orientation becomes important. We
will define orientation-preserving diffeomorphisms and then show that an atlas of
orientation-preserving charts always exists.

Notations 9.3.1 Review of charts. Charts were defined in Definition 9.2.1, but it
helps to repeat the main definitions and the standard notation. Recall that Z and
W are two Buclidean spaces and U is a subspace of W. A chart for a manifold
M is a diffeomorphism ¥ : G — H = ¥(G) such that ¥(GN M) = HNU.
The reverse chart is ® : H — ( and the corresponding parametric representation
s =®grv:HNU - GNM. Hue HNU and m = ¢(u) = ¢(u), then
Tm = (W)U = ¢'(u)U is the tangent space of M at m € M. We will assume
that dimW =dimZ =n > 2and 1 < k = dimU < n. An atlas for a manifold A
is a collection of charts whose domains cover M.

Notations 9.3.2 Orientations of U, W, and Z. We will assume that W and Z are
oriented, respectively, by the Euclidean determinants ¢ and ¥J. Assume that U is also
oriented by a positive orthonormal basis E. These are all arbitrarily chosen but fixed
orientations. If U = W, however, then we assume that U and W have the same
orientations. This is a trivial case that is only important if we wish to consider an
open subset of Z as an n-dimensional manifold.
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Orientation-Preserving Charts

Definition 9.3.3 Orientation-preserving isomorphisms. An isomorphism T be-
tween the two oriented spaces (W, p) and (Z, ) is called orientation-preserving if
there is a positive basis of W that is mapped by 7" to a positive basis of Z. In this
case, T" maps all positive bases of W to positive bases of Z (Problem 9.25). If T is
not orientation-preserving, then it is called orientation-reversing.

Definition 9.3.4 Orientation-preserving diffeomorphisms. Let X and Y be two
oriented spaces. Let A be an opensetin X andlet : A — Y be a diffeomorphism.
Leta € A. If ¢(a) : X — Y is an orientation-preserving isomorphism, then
6 : A — Y is called an orientation-preserving diffeomorphism at a. 1If0 : A — Y
is an orientation-preserving diffeomorphism at every x € A, then it is called an
orientation-preserving diffeomorphism.

Lemma 9.3.5 Let6 : A — Y be anorientation-preserving diffeomorphismata € A.
Then there is an open set G such that a € G C A and such that the restriction of 0
to G is an orientation-preserving diffeomorphism.

Proof. Let E be a positive basis for X. Let Y be oriented by a Euclidean determinant
£. We see that f(x) = &£(0'(x)E), x € A, defines a continuous function f : A — R.
If @ is orientation-preserving at a € A, then f(a) > 0. So there is an open
neighborhood GG of a € A such that a € G C A and such that f(x) > 0 for
all x € GG. This means that the restriction of # to GG is an orientation-preserving
diffeomorphism. O

Notations 9.3.6 Bases for U and W. Let V = U~ be the orthogonal complement
of U. LetU = (uy, ..., ug) be abasis for U and let V = (v, ..., v;) be a basis
for V. Then we see that (V, U) = (v1. ..., vy 1y, ..., ug) is a basis for W.

Definition 9.3.7 Orientation-preserving charts. A chart ¥ : G — H for a man-
ifold M is orientation-preserving if ¥ is an orientation-preserving diffeomorphism
on GG

Theorem 9.3.8 shows that there is no loss of generality in assuming that all charts are
orientation-preserving.

Theorem 9.3.8 Any manifold has an atlas of orientation-preserving charts.

Proof. Let M be a manifold and let m € M. Let ¥y : Gg — Hg be a chart for
M such that m € Gg. Let &y : Hy — G be the reverse chart. Let E be a positive



ORIENTED MANIFOLDS 355

basis for U. Let V be a basis for the orthogonal complement of U such that (V, U)
is a positive basis for W. Let Uo{m) = u. Then (®}(u)V, ®;(u)U) is a basis for
Z. If this is a positive basis for Z, then ®q : Hy — G is orientation-preserving at
u. In this case, we see that U, : Gy — Hy is orientation-preserving at m. Hence.
Lemma 9.3.5 shows that there is an open set G such that m € G C Gy and such that
the restriction of W to G is orientation-preserving. This restriction is still a chart for
M. Hence m is contained in the domain of an orientation-preserving chart.

If (®((u)V, ®,(u)U) is not a positive basis for Z, then replace ¥y : Gy — Hy by
¥, = R-VUg: Gy — RHy, where R : W — W is defined as follows. With the
notations in Notations 9.3.6, let

Rul:—ul,Rui:ui,Rvj:vj,1<i§k,1§j§E. (9.31)

We see that R : W — W is an isomorphism and RU = U. An easy verification
shows that | : Go — H; = RHj is another chart for M and that ¥ is orientation-
preserving at m. Then a restriction of ¥; to a neighborhood of m is an orientation-
preserving chart. O

Local Orientations

Definition 9.3.9 Local orientation of a manifold. A local orientation of a manifold
M is defined by achart ¥ : G — H. Itis an orientation of each of the tangent spaces
Tm atthe points m € GNM. If ¥(m) = u, then the orientation of T}, is determined
by taking a positive basis E for U and declaring B, = ®'(u)E = ¢’ (u)E a positive
basis for 7;,. We see that these orientations are independent of the choice of the
positive basis E in /. This point is formulated as Problem 9.24.

Example 9.3.10 If M is a curve, then its tangent spaces are one-dimensional. In this
case, the orientations of these tangent lines define a positive direction on the curve.
The curve M = { (z, y) | 2 +y? =1, y #0 } in this example consists of two
halves of a circle. Here Z = R? is represented by the xy-plane. Represent W = R?
by the #r-plane. The following are four different charts ¥, : G — W for M with
the same domain G C Z and with the same range H C W. They are expressed in
terms of the reverse charts ®; : H — (. Let

H = {(6,r]|-r<0<0, -1/2<r<1/2},
Hy {0, 1) |0<b<m -1/2<r<1/2},
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Figure 9.2. For Example 9.3.10.

and H = Hy U H,. See Figure 9.2. Define

Dy(0, 1) (14 7)cosb, (1+7)sind), (8, r) € H,
&0, r) = ((1+7)cosh, ~(1+7r)sinh), (A, r)e H
B30, (—(1+7r)cosf, —(1+r)sinf), if(0, r) € Hy,
30, 1) { ((14r) c050 —(1+471)sin@), if (6, r) € Hy
Bal0, 1) = { E( +7)cosf, —(1+r)sinb), if (6, r) € Hy,

(L+7)cosf, —(1+r)sinf), if (8, r) € Ho

We see that &; : H — G are reverse charts for A/. Here U is the r = 0 line,
which is the #-axis in the #r-plane. Let U be oriented in the standard way, with the
basis consisting of the unit vector (1, 0). These four charts induce four different
orientations on M. In intuitive terms they can be described as the four possible
choices of the clockwise or the counterclockwise orientations for the upper and the
lower halves of M.

Incidentally, in this example all ¥;s are charts with domains covering all of M.
Hence, they orient M completely; they also give examples of global orientations of
a manifold.

It may seem pedantic to use the diffeomorphisms ®; : H — G rather than the simpler
and more natural parametric representations ¢; : H N U — G N M. One reason for
using the full diffeomorphism approach is to verify that ¢; is indeed the restriction
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of a diffeomorphism to a subspace. Another reason is that the charts and reverse
charts play an important role in some applications, most notably Stokes’ theorem, to
be discussed in Chapter 10. A

Remarks 9.3.11 Charts with connected domains. Connected sets were defined in
Definition 4.5.32. We see that in Example 9.3.10, the domains of ®; and ¥; are not
connected sets. This is the reason for having so many possible local orientations.
Problem 9.31 states that a collection of charts with the same connected domain can
induce at most two different local orientations.

Global Orientations

A global orientation of a manifold is a collection of local orientations that cover
the whole manifold and agree on their common domains. The precise definition is
formulated in terms of atlases of compatible local orientations. Recall that atlases
for manifolds were defined in Definition 9.2.2.

Definition 9.3.12 Compatible charts. Let ¥; : G;, — H;, i = 1, 2, be two
diffeomorphisms for a manifold M. They are called compatible charts if for every
m € G, N G2 N M, they induce the same orientation on the tangent space Tp,.

Definition 9.3.13 Orientable manifolds. Global orientations. A manifoldis called
an orientable manifold if it has an atlas of compatible charts. An atlas of compatible
charts for a manifold is called a global orientation of this manifold.

Remarks 9.3.14 Not all manifolds are orientable. There are surfaces for which
the unit normal vectors cannot be chosen in a continuous way. These surfaces are
not orientable. A standard example is the Mdbius strip. (See Problem 9.30.)

Remarks 9.3.15 Outer boundary-surfaces. In this course we will consider only
one example of a global orientation. This will be the outer boundary-surface of a
set. It is introduced in Section 10.5, in connection with Stokes’ theorem.

Orientations of Surfaces and the Right-Hand Rule

Surfaces are (n — 1)-dimensional manifolds in an n-dimensional space. In particular,
planes are the (n — 1)-dimensional subspaces of an n-dimensional space. Tangent
spaces of surfaces are planes. An orientation of a surface consists of the orientations
of its tangent planes.
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There is a useful way of visualizing the orientation of a plane. The normal space
of a plane is one-dimensional. Hence, a plane has two unit normal vectors. We
can establish a one-to-one correspondence between these two unit normal vectors
and the two orientations of a plane. There is no intrinsic correspondence between
these elements; such a correspondence is established by a convention. In physics this
convention is usually referred to as the right-hand rule.

Definition 9.3.16 The right-hand rule. Assume that 7" is an oriented plane in an
oriented space Z. Let B be a positive basis for 7. Then the corresponding unit
normal vector n is specified by the requirement that (n, B) should be a positive basis
for Z. Here, if B = (bs, ..., by), then (n, B) = (n, by, ..., b,).

Remarks 9.3.17 Orientation of the tangent planes. Let ¥ : G — H be a chart for
asurface M in Z. Then GNM is oriented by this chart. Therefore, the tangent planes
T at m € G N M are oriented planes. It is assumed that the underlying space Z
is also an oriented space. Hence, the right-hand rule applied to 7},, associates a unit
normal vector ny, to each point m € GNM. This defines a functionn : GNM — Z.
The value of this function at m € G N M is a unit normal vector of Ty,. Theorem
9.3.20 shows that this is a continuous function.

Definition 9.3.18 Outer normals of an oriented surface. The normal vectors
obtained in Remarks 9.3.17 are calied the outer normals of the oriented surface. This
is in reference to the canonical case of orienting the outer boundary-surface of a set.
This case is discussed in Section 10.5. Otherwise, the name of outer normal is used
only as a convenient way of referring to these orienting normal vectors.

Notations 9.3.19 Outer normal vector of U. The orientations of U, W, and
Z were introduced in Notations 9.3.2. They are arbitrary but fixed orientations.
When working with surfaces and with the right-hand rule, the outer unit normal
vector of U is also important. We denote this (fixed) vector by e = e;. Also,
from now on, E = (ey, ..., e,) is a positive orthonormal basis for U. Hence,
(e, E) = (eq, ey, ..., e,) is a positive orthonormal basis for W. Recall that ¥ and
o are, respectively, the positive Euclidean determinants of Z and W.

Theorem 9.3.20 An expression for outer normals. Let ¥V : G — H be an
orientation-preserving chart for M. Let F(z) = e - ¥(z), z € G. (Here we
write X - y for the inner product (X, y).) Then

N = VF(m)/|[VF(m)|, m € G M, (9.32)

is the outer unit normal vector of M at m € G N M, with respect to the orientation
induced by the chartV : G — H.
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Proof. Leta € G. We claim first that V F'(a) # 0. The linear map ¥'(a) : Z — W
is an isomorphism. Let ¢ = ¥/(a) 'e. Then VF(a) - c =e-¥'(a)c=e-e =1,
by Remarks 5.4.11 and Example 5.6.5. Hence n,, as defined in the statement of the
theorem is well-defined. Next, observe that F(z) = 0 is an implicit equation for
G N M. Then Theorem 6.4.5 shows that F'{m)z = 0 is an implicit equation for the
tangent space of G N M at m. But F/(m)z = 0 means that VF(m) - z = 0, again
by Remarks 5.4.11. This shows that n,, is a unit normal vector of G N M at every
meceGnNM.

The next step is to show that ny, is the outer unit normal, i.e., that (ny,,By) is a
positive basis for Z where B,, is a positive basis for the tangent space Tr,,. Now
we know that (®'(b)e, ®'(b)E) = (c, By,) is a positive basis for Z, since U is
orientation-preserving. Hence ¥(c, By,) > 0. If ¢ = (¢ ngm)nm + ¢, then
¢j € Tm- Since By, is a basis for T}, we see that ¥(c;1, By, ) = 0. By multilinearity,
this implies
3c, By,) = (€ Dy )P (0, Bm)-

Since ¢ - ny, > 0 and ¥(c, By,) > 0, we see that ¥(1ym, Bym) > 0. Hence n,y, is
indeed the outer unit normal vector. O

Remarks 9.3.21 Continuity of the outer normals. Theorem 9.3.20 shows that the
outer normal functionn : GNM — Z is continuous. The converse is also true. This
1s stated as Problem 9.32.

The following theorem is useful in computations. Here ¥ is a positive Euclidean
determinant for Z and E is a positive orthonormal basis for U.

Theorem 9.3.22 Volume multipliers and outer normals. IfV : G — H isa chart,
then p(¢' (1)) = ¥(nim, Bm). Here m = o(u) and By, = ¢’ (u)E.

Proof. By Definition 9.3.9 of the orientation on M, the basis
¢'(WE = ®'(u)E = By,

is a positive basis for the tangent space T;,. Then by Definition 9.3.18 of the outer
normals, (N, By, ) is a positive basis for Z. Therefore ¥(ngm, Bm) > 0. Also,
since ny, | Ty, Theorem 9.1.12 shows that

H(0m, Bm) = [0 - [07, (Bem)| -

Here 91, is a Euclidean determinant for 75,. But By, is the image of an orthonormal
basis for U. In this case, Lemma 9.1.14 shows that

p(¢' () = V7, (Bum)|.

Then the conclusion follows., O
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Problems

924 LetS: X — Y be an isomorphism between two oriented Euclidean spaces.
If the bases E and E’ have the same orientation in X, then show that SE and SE’
have the same orientation in Y.

9.25 Let W and Z be oriented spaces. Show that an isomorphism 7" : W — Z is
orientation-preserving (Definition 9.3.3) if and only if it maps any positive bases of
W to a positive basis of Z.

9.26 Letabeadeterminanton W andlet 3 be adeterminanton Z. LetT : W — Z

be an isomorphism. Show that «(E) - 3(TE) is nonzero and has the same sign for
all bases E of W.

9,27 Show that an isomorphism is orientation-preserving if and only if its inverse
is orientation-preserving.

9.28 Compatible isomorphisms. Let P; : W — Z be two isomorphisms between
two oriented spaces. If they are both orientation-preserving or both orientation-
reversing, then they are called compatible isomorphisms. Show that two isomor-
phisms are compatible if and only if their inverses are compatible. Also show that
compatibility is independent of the orientations of the spaces.

929 LetT : W — Z be an orientation-preserving isomorphism. Is —T also
orientation-preserving? Why?

9.30 Mabius strip. Define a surface ¥ in cylindrical coordinates (r, 9, z) as
follows. For each o € R let

.I:I()¢:{(T‘,l97 Z)|T20 ’[9:-0(7 ZGR}
be the ¥ = o half-plane. Let the intersection of £ with H,, be the line segment
Lo ={(r,2)|r=2+tcos(a/2), z = tsin{a/2), t € (-1, 1) }.

Show that ¥ is not an orientable surface.

9.31 Let G be a connected set and let ¥; : G — H; be two charts for a manifold
M. Let Ty, be the tangent space of M at m € M. Show that the local orientations
(U;, E;) induce either the same orientation on Ty, forallm € G N M, or the opposite
orientations on Ty, forallm € G N M.

9.32 Let M be a surface. Let n : M — Z be a continuous function such that ny,
is a unit normal vector of M at every m € M. Show that the vectors ny, are the
outer normals of M with respect to some orientation.
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9.4 INTEGRALS OF VECTOR FIELDS

Vector-valued functions are usually called vecror fields. Vector fields can be integrated
over surfaces or along curves. Such integrals are called, respectively, surface integrals
and line integrals of vector fields. They depend upon the orientation of the manifold
over which integration takes place.

In the context of our discussion of the integration of vector fields, we will denote the
inner product in Z as the dot product to conform to common usage. Hence we write
a-bfor (a, b), wherea, b € Z.

Definition 9.4.1 Vector fields. Let D be a set in a Euclidean space Z. A function
h : D — Z is referred to as a vector field on D. Hence a vector field h attaches a
vector h(z) € Z to every point z € D. We shall be mainly concerned with vector
fields f : C' — Z defined on a curve C, and with vector fields f : S — Z defined on
a surface S.

Line Integrals of Vector Fields

Curves are one-dimensional manifolds. Integrals of vector fields along curves are
called line integrals. These integrals are usually computed by employing parametric
representations, as discussed in 9.2.4.

Remarks 9.4.2 Parametric representations of curves. Parametric representations
of manifolds were defined in 9.2.1. For one-dimensional manifolds, the subspace U
is one-dimensional. It is oriented by a unit vector u € U. We identify tu € U with
t € R. Then a parametric representation of C' becomes a function of a real variable,
@ : L — Z, defined on an open set L C R. To conform to common notation,
we denote this function as r : L — Z. The derivative r/(t) = ®'(tu)u € Z is the
directional derivative of the reverse chart & : H — Z atthe pointtu € U C Winthe
direction of u. Hence r'(t) # 0 as itis the directional derivative of a diffeomorphism.

Remarks 9.4.3 Integrals on curves. Integrals on manifolds were defined in 9.2.5.
Letr : L — Z, L C R, be a parametric representation foracurve C. Let f : C — R
be a function. In this case we see that

/ /= / FEE)p(r () du 9.33)
C L

is an integral on R. Note that r'(t) € Z is the image of the unit vector u € U under
the linear map ®'(¢tu)|y : U — Z. Then, by Definition 9.1.15, p(r'(¢)) = |I*'(¥)|| 2
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The content on C' is called the arc-length and usually denoted as s. Hence, by the
notations in 9.2.8,

/Cfds

/ Fr(e)p(x! (1)) dt (0.34)
/ @) (6 dt = / fE@dst).  9.39)

Definition 9.4.4 Orientation induced by r : L — Z. The line U in W is oriented
by the unit vector u. Hencer : L — C C Z orients the tangent line atr(t) = c € C
by the derivative vector r'(t). Then

te =1'(t)/lir' (V)| 2 (9.36)

is the positive unit tangent vector of C atc € C.

Definition 9.4.5 Line integrals of vector fields. Let C' be a curve oriented by
r: [ — C asin Definition 9.4.4. The line integral of a vector field f on C is defined
as the integral of the real valued function f(c) = f{¢) - t¢, on C. Hence, by the
remarks in Remarks 9.4.3 above,

/Cf

] o) tey I ) 937)

I

/Lf(r(t)) -’ (t) dt. (9.38)

Other notations for this integral are

/f-t:/f-tds:/f-ds. (9.39)
C C c

They suggest that ||r’(¢)|| dt = ds may be considered as the length of a small segment
of the curve and

te) I/ ()] dt = toy ds =1’ (t) du = ds(t) (9.40)

as a small displacement in the positive direction of the curve. One well-known
physical interpretation of |, o I+ dsis that it is the work done by the force f when a
particle travels along C in the positive direction.

Surface Integrals of Vector Fields

Letf : M — Z be a vector field defined on a surface M. We will assume that f has
a compact support K contained in the domain G of a chart ¥ : G — H for M. This
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means we need only consider local integration on M. Full generality is obtained by
applying the partitions of unity theorem, Theorem 9.2.11, as discussed in Definition
9.2.12.

Notations 9.4.6 Outer vectors of the surface. The surface M is locally oriented
by the chart ¥ : G — H, as in Definition 9.3.9. Letn : G N M — Z be the outer
normal function of this orientation, as defined in Definition 9.3.18.

Definition 9.4.7 Surface integrals of vector fields. Let A be a surface oriented
by achart ¥ : G — H. Let n : M — Z be the outer normal function for this
orientation. Let f : M — Z be a vector field with a compact support K C G. Then
the surface integral of £ on M is defined as the integral of the real valued function
f(m) =f(m) - nm, m € M, on M. Hence, by Definition 9.2.5 of local integrals,

[ £= [ now - fo) o (w) du ©.41)
M U
The second integral is the integral of a real-valued function on a Euclidean space.

Theorem 9.4.8 Computations of surface integrals. Ler E be a positive orthonor-
mal basis for U. Let ¥ be the positive Euclidean determinant in Z. Then

/ f= / J(f(m)}, By, ) du.
M U
Here m = p(u) and By, = ¢'(u)E, where E is a positive orthonormal basis for U.
Proof. We have
Lt -
M

Ny - fp(u)) p(¢'(u)) du 9.42)

@(u) * f(‘ﬂ(u» ﬁ(ngo(u)a SOI(H)E) du (943)

I
I
=

N - £(m) (0, By) du (9.44)

9.45)

I
S
)
=
2
=
g
u
=

Here (9.42) is by Definition 9.4.7, and (9.43) follows from Theorem 9.3.22. To obtain
(9.44) let m = (u) and By, = ¢’ (u)E. Finally, for (9.45), let

f(m) = (ny, - f(m))ny, + £ (m), (9.46)
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where f;(m) € Ty, is the tangential component of f(m). Substitute (9.46) into
9(f(m), B,,) and note that 9(f; (m), By,) = 0. We obtain (9.45). O

Remarks 9.4.9 Special expressions in R3, Let Z = R3 be the ryz-space and
U = R? the uv-plane. Euclidean determinants can be expressed in a familiar way in
R3. One Euclidean determinant in R? is

¥a, b,c)=a-(bxc). (9.47)
Here b X c is the usual cross product. Assume that (9.47) is the positive Euclidean
determinant of Z. The orthonormal basis E in U determines the coordinates (u, v).
Let us denote the parametric representation p : HNU — Z of GN M as r(u, v) to
use more conventional notation. Here (u, v) are the coordinates with respect to the
orthonormal basis E = (eq, e3) of U. Hence

(,Dl(u)el = ru(”v ’U) and (10/(“)92 = rv(ua U)

are the partial derivatives with respect to © and v. Then

V(Nyuy, ¢ (WE) = 0py 0y - (Tulu, v) X ry(u, v)) > 0. (9.48)

Let f : R® — R3 be a €! vector field of compact support K C G. Then

/ f = / f-n (9.49)
M M
= / (f-n)llry x rylldudv 9.50)
U
= / f(r{u, v)) ry(u, v) x r,(u, v)dudv. 9.51)
U

Other familiar expressions for this integral are
/ f-ndS = f. ds. (9.52)
M M

Here dS = ||r, X r,|| dudv denotes the surface area element on S. To find the area
of a part of S this is the expression we have to integrate over that part. The expression
dS = ndS is sometimes called the vectorial area element. To obtain one physical
interpretation of [ s T+ dS, consider f as the stationary velocity of a body of fluid in
motion. Then this integral gives the volume of fluid that passes through S per unit
time. Material in the next chapter on Stokes’ theorem might make this interpretation
more plausible.
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Problems

9.33  Define f : R®* — R2 by f(z, y) = (zy, xy?). Compute [, f from the point
(0, 0) to the point (1, 1), where C'is

1. the parabola y = x2;

2. the circle z2 + (y — 1)? = 1, oriented counterclockwise;

3. the circle z2 + (y — 1)? = 1, oriented clockwise;

4, theliney = .

9.34 Define f : R? — R3 by f(z, y, 2) = (xyz, zy?2, y). Compute fcf from
the point (0, 0, 0) to the point (1, 1, 1), where C'is

1. the intersection of the parabolic cylinder z = z? with the plane y = z;

2. the shorter arc of the intersection of the circular cylinder 22 + (y — 1)% = 1
with the plane y = z;

3. the longer arc of the intersection of the circular cylinder 2 + (y — 1)? = 1
with the plane y = z;

4, thelinex =y = 2.

9.35 Let A be a connected open set in a Euclidean space Z. Letf : A — Zbea
continuous vector field. Show that the following are equivalent.

1. There is a €! function F : A — Rsuch thatf = VF.

2. If C'is a curve in A, then the line integral |, ¢ I depends only on the initial and
the final points of C'. More explicitly, if C; are two curves in A with the same
initial point P and the same final point @, then [ f = [ f.

936 LetB={(z,y)|z<0,y=0}andlet A=R?\ B. Define f : A — R?
as f(z,y) = (-y, z)/(z* + y?). Show that there is an F' : A — R such that
f = VF. Also, extend f : A — R? to a vector field on R? \ { 0} in an obvious way
and compute the line integral of this extended vector field over the circle 2% +y2 = 1,
oriented counterclockwise.

9.37 Define f : R® — R3 as f(z, y, 2) = (zyz, 23”2, z). Compute [, f over
the following surfaces S, oriented by taking normals with positive z-coordinates.
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1. Upper half of the sphere 22 + y? + 22 = 1.
2. The part of the paraboloid z = 1 — (22 + y?).
3. The part of the cone z = (22 + y?)!/? between the planes z = 1 and z = 2.

4. The helicoidal surface z = rcos®d, y = rsind, z = ¢, where 1 < r < 2 and
0<¥<2m.

9.38 A curve in R? is also a surface. Let C be the unit circle 22 + y? = 1 in R?
oriented by the outer normals as a surface and oriented counterclockwise as a curve.
Let F(z, y) = P(z, y)i + Q(z, y)j be a C! vector field. Express the line integral
/. o f - ds and the surface integral i) o T+ dS as ordinary integrals on R.

9.5 INTEGRALS OF TENSOR FIELDS

We have considered the integrals of scalar-valued functions on manifolds and the
integrals of vector valued functions on lines and surfaces. These special cases are
unified (and simplified) by introducing the integration of tensor-valued functions.
Indeed, the change of variables formula becomes more transparent when stated in
terms of tensor functions. Also, tensor-valued functions are essential in Stokes’
theorem.

We will not discuss the algebraic theory of tensors; instead, we use this term in a
restricted sense as a name for alternating multilinear functions. (Commonly, any
multilinear function may be referred to as a tensor.)

Definition 9.5.1 Tensors. Let Z be a vector space. For any k£ € N let
A(Z) = AMLy(Z*, R) (9.53)

be the vector space of all alternating multilinear functions A : Z*¥ — R.

Functions in Ay (Z) are called alternating tensors, or alternating k-tensors, on Z.
As we shall consider only alternating tensors, we will simply refer to them as rensors
or k-tensors.

Definition 9.5.2 Tensor fields. Let D C Z. A function w : D — Ag(Z) is called a
tensor field or a tensor field of order k on D . In this case

w(z) € Ax(Z)forze Dand (9.54)
w(z)(Z) = w(z)(z1,...,2x) €ERforz € DandZ € Z*. (9.55)
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A tensor field w : Z — Ag(Z) takes values in a (finite-dimensional) normed vector
space. Hence the continuity and the differentiability of these functions are well
defined.

Remarks 9.5.3 Integrations of tensor fields. Tensor fields of order k are integrated
over k-dimensional oriented manifolds. The process is the same as for vector fields.
We first have to produce a real-valued function, defined in terms of the tensor field
and the given oriented manifold, and then we can integrate this real-valued function
over the manifold.

For convenience, we shall assume that all integrals are local integrals, computed in
terms of a single chart. This amounts to assuming that the tensor field has a compact
support contained in the domain of one chart. The general case is obtained by
applying the partitions of unity theorem, Theorem 9.2.11, as discussed in Definition
9.2.12.

We will also assume that ¥ : G — H is an orientation-preserving chart, as defined
in Definition 9.3.4. Theorem 9.3.8 shows that this assumption implies no loss of
generality.

Definition 9.5.4 Integrals of tensor fields. Let M be a k-dimensional manifold.
Let ¥ : G — H be achart for M that orients G N M. Foreachm € GN M, let B,
be a positive orthonormal basis for the tangent space Ty, Letw : M — Ax(Z) be a
€! tensor field of compact support K C G. The integral of w on M N G is defined
as the integral of the real-valued function f(m) = w(m)(By,) over G N M. Hence

/ ws= / (o () (Byguy) pl (w)) d.
M U

Theorem 9.5.5 Computation of integrals. Let E be a positive orthonormal basis
forU. Let B = B,y = ¢'(0)E, where m = o(u). Then

[

I

/ w(m)(By,)du (9.56)
U

I

/U wlp(w)(' (WE) du. .57)

Proof. Let m € G'N M. The function w(m) : Z*¥ — R restricted to Ty, * becomes
amember of Ag(Ty,). This space is one-dimensional since dim T}, = k. Hence this
restricted function is a multiple of the positive Euclidean determinant ¥y, € A (Tm)-
Let w(m)(T) = g(m)dym(T) for all k-tuples T € Ti,*. By letting T = Byy,. we see
that w(m)(By,) = g(m) = f(m). Hence

w(m)(T) = f(m)dm(T) (9.58)
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for all T € Tp,*. Therefore

[ = [ s o) du 9.59)
M U
- /U £(11) Do (Brw) (9.60)
= /w(m)(Bm)du. (9.61)
U

To obtain (9.60), note that p(¢’(u)) = | Fm(Bm)| = Fm(Bm). Here, the first
equality follows as in the proof of Theorem 9.3.22 and the second equality holds
because ¥y, (B ) > 0, by the definition of Jy,. The inference to (9.61) then follows
from (9.58). O

Connection with Vector Fields

Each vector field f : D — Z, D C Z, defines two tensor fields, a tensor field £
of order one and a tensor field 7 of order (n — 1), where n = dim Z. The £ field
is defined in terms of inner products only. For the definition of the 7 field, Z must
be a space oriented by a Euclidean determinant 4 € A, (Z). Then the integrals of
¢ on one-dimensional manifolds are the line integrals of f and the integrals of 7 on
(n — 1)-dimensional manifolds are the surface integrals of f.

Definition 9.5.6 Tensor fields associated with a vector field. Let (Z, 9) be an
n-dimensional oriented Euclidean space. Given a vector field f : D — Z, where
D c Z, defineé: D — Ay(Z)andn: D — A,—-1(Z) as follows. Forall a € D:

£a)(z) = f(a)-z, Z = (z1) € Z, and

n(a)(Z) = 9(f(a),Z), Z=(za, ...,2,) € 2" L. (9.62)

Theorem 9.5.7 Let f be a vector field with the associated tensor fields £ and 1. If C
is a curve oriented by a parametric representation ¢ - U N H — Z, then

/ &= / f. (9.63)
cnG onG

If M is a surface oriented by a parametric representation p : U N H — Z then

/ n=/ f. (9.64)
MNG MNG

In each case, G = ©(H) where ® : H — G is the inverse of the chart V : G — H
associated with the parametric representation ¢ = ®|yng.
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Proof. This is left as an exercise. O

Remarks 9.5.8 Integrals of real-valued functions. Let (Z, ¥/) be an oriented n-
dimensional Euclidean space. Associate a real-valued functionf : D — R and a
tensor field ¢ : D — A, (Z) through the relation

C(a)(Z) = f(a)d(Z),a € D, 7 = (21, ..., z,) € 2™ (9.65)

An open set G C Z is an n-dimensional manifold in Z. An obvious chart for G is
the identity map. Let E € Z™ be a positive orthonormal basis. All tangent spaces of
G are Z, and all are oriented by ¥. Then we see that

/Gf(z) dz:/Gg(z)(E) dz:/cg (9.66)

This is rather trivial but still very useful.

Definition 9.5.9 Vector fields associated with tensor field. The relations between
the vectors and tensors are symmetrical. Let A € A1(Z) be a tensor of order one.
Then X : Z — Ris alinear function. Hence, by the representation theorem for linear
functions on Euclidean spaces, there is a vector £ € Z such that A(z) = f - z for all
z€ Z. If¢: D — Ai(Z) is a tensor field, then there is a vector field f : D — Z
such that

£(a)(Z)=f(a) 2z, Z=(z1) € Z* 9.67)

foralla € D. Lemma 9.5.10 gives a similar representation for A € A,,_{(Z).

Lemma 9.5.10 Let A € A,,_1(Z) withn = dim Z. Let ¥ € A,(Z) be a determi-
nant. Then there is a unique vector p € Z such that

MNZ) =9(p, Z), forall 7.€ Z" . (9.68)

Proof. The case of n = 2 is left as an exercise. Note that the representation is
different from the one in (9.67), even though n — 1 = 1 in this case.

Now letn > 3and A € A,,_1(Z). Let E = (e, ..., e,) be a basis for Z such that
Y(E) = 1. Then foreache; € E, thereis an E; € Z"~! such that [E; is a permutation
of e; with j # 7 and such that J(e;, E;) = 1. Let p; = A(l§;) and p = ), pie;.
Then an easy verification shows that (9.68) is satisfied. O

Change of Variables

Let M be a manifold in Z. To simplify things, assume as usual that M is covered by
a single chart ¥ : G — H with M C G. (Otherwise, replace M by M N G for this
section, and use Partitions of Unity for the general case.)
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Let X be another space and 2 : G — X a diffeomorphism with F' = Q(G) and with
the reverse diffeomorphism I' : F' — G. Then L = (M) is manifold in X. In fact,
¥ .T': F — H isachart for L.

Let M be oriented by the chart ¥ : G — H and by a fixed orthonormal basis E in U,
as in Definition 9.3.9. Let L be oriented by the chart ¥ -T" : F' — H.

Definition 9.5.11 Pullbacks of tensor fields. With the notation above, the pullback
of the tensor field w : G — Ag(Z) by the diffeomorphism I : F' — G is defined as

I (w)(x)(X) = w(T(x)(I"(x)X) (9.69)

for x € F and X € X, This is another tensor field I'*(w) : F — Ag(X).

P I
W / /FRH\Z / \ X
i e o .
~ T~/
ey}

Figure 9.3. Diffeomorphisms in Theorem 9.5.12.

Theorem 9.5.12 Change of variables for tensor fields. We have

/ w:/f‘*(w), (9.70)
M L

with the notations and assumptions above.

Proof. Let 7 = '™ (w). Let ® : H — G be the reverse chart of ¥ : G — H and
©=Q.-9&: H— Fthereversechart of ¥.T : F — H. Letz = ®(u) and
x = Q(z). Then x = ©(u). Also ©'(u) = ¥’ (z)®'(u). Then

HOW)O'WE) = w(I(6(u)([ ()6 (wE) ©.11)
= w(®(u))(®'(0)E). (9.72)
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The integral of w on M is the integral of w(p(1))(¢’'(W)E) = w(®(u))(®'(u)E) on
U N H, and the integral of 7 = I'*(w) is the integral of 7(©(u))(©'(u)E) on the
same set U N H. Then the proof follows. O

Lemma 9.5.13 Composition of pullbacks. Let A, B, and C be open sets in the
Euclidean spaces X,Y, and Z, respectively. LetV : A — Y and ® : B — Z be
diffeomorphisms with W(A) = B. Then (® - ¥)*(w) = U*(®*(w)) for any tensor
fieldw : Z — A (2).

Proof. This follows from the definitions. The details are left as an exercise. Note
the change of order in (® - ¥)*(w) = ¥*(9*(w)). O

Problems

9.39 Let Z be an n-dimensional oriented Euclidean space. Definition 9.5.6 shows
that a vector defines a tensor of order one and another tensor of order (n — 1). If
n = 2, then these orders are the same; show, however, that the associated tensors are
different. What are the tensors on R? associated with the vector (1, 0)? Conversely,
each tensor of order one on R? is associated with two vectors. What are the vectors
in R? associated with the tensor 7 : R? — R defined by 7(z, y) = y? (You may
assume that R? has its standard orientation.)

9.40 Definef: R® — R3by f(z, v, 2) = (222, y?2, 22 + y?). Let M be the part
of the cone z = (22 +y?)'/2 between the planes z = 1 and z = 2. Let M be oriented
by the normals with positive z-coordinates. Let B = {(z, y, 2) |t =y =0} be
the z-axis and G = R3 \ B. Define 2 : G — G by

Uz, y, 2) = (9, 2 = (@ + )2 + (@@ +9%).
1. Show that Q2 is a diffeomorphism and find its inverse I : G — G

2. Find the tensor field w : R® — A(R¥) sothat [, f= [, w

3. Let L = Q(M). Compute |  w and /. L I'™*(w) directly and verify the change
of variables theorem, Theorem 9.5.12.

9.6 INTEGRATION ON GRAPHS

Graphs form a simple class of manifolds. A graph is defined by a single special
type of chart. Furthermore, content and integration on graphs can be interpreted
geometrically.
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Notations 9.6.1 Graphs and coordinate systems. For this section, let (X, Y) be
an orthogonal coordinate system for Z. Hence

Z=X8Y =X XY, (9.73)

where X L Y. LetP:Z — X and Q : Z — Y be the corresponding coordinate
projections. Let A C X be an opensetand h: A — Y a C! map. The graph of h is

M={(x, hx)|xec A} (9.74)

Remarks 9.6.2 Graphs are manifolds. The graph of 4 is a manifold in Z. To see
this, let G = H = A x Y. Then

U(x,y) = (x,y — h(x)) and ®(x,y) = (x,y + h(x)) (9.75)
define a chart ¥ : G — H for M and the reverse chart ® : H — G. We have
Y(MNG)=XNH=A. (9.76)

Hence p(x, 0) = (x, h(x)), x € A, is a parametric representation for M.

Remarks 9.6.3 Tangent spaces are graphs. Let a € A and let T, be the (linear)
tangent space of M at (a, h(a)) € M. Then T, is the graph of the linear function
Ka): X —=Y.

Notations 9.6.4 Orthogonal projections of tangent spaces onto X. For each
ac Alet

Plp, =Pa:Tya — X 9.77)
be the restriction of the orthogonal projection P : Z — X to T,. Then

Ta = {(x,h'(a)x)]xe X} and (9.78)
Py(x, h'(a)x) = (x,0) forallx € X. (9.79)

We see that P, : T, — X is an isomorphism. Its inverse P! : X — T, is given by
P7l(x, 0) = (x, h'(a)x),x € X.

Lemma 9.6.5 Let o(x, 0) = (x, h(x)), x € A, be the parametric representation of
M obtained above. Then ¢'(a, 0) = P! : X — T, foralla € A.

Proof. We verify that the application of ¢'(a, 0) : X — Z to (x, 0) € X is

¢'(a, 0)(x, 0) = (x, h'(a)x) = P '(x, 0). D (9.80)
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Lemma 9.6.6 Let f : M — R. Then

/ f= / F(x, h(x))/p(Py) dx ©.81)
M A

if the second integral exists.

Proof. We have [, f = [, f( )) p(¢'(x, 0)) dx by the definitions in 9.2.5.
Also, ¢'(x, 0) = P_ ! implies p((p (x 0))=1/p(Px). O

Remarks 9.6.7 A geometric interpretation. Assume that the integral

[ o bty x
A
exists. Then it can be approximated by a finite sum

> flai, (@) vx (E:)/p(Pa,), (9.82)

where F; s are pairwise disjoint sets in X anda, € ANE,;. Let B; = P;,lEi, which
is a subset of Ty,. Then vx (E;)/p(Pa,) = v;(B;), where v; is the volume on the
tangent space T,,. Hence |  J can be approximated by

> fla hlag) vi( By). (9.83)

Here (a;, h(a;})) € M and B; C T,,.

Now the sets B; are pairwise disjoint, since their projections F; = P, B; on X are
pairwise disjoint. Therefore we can imagine the following procedure to compute
the integral | a7 J- The manifold M is partitioned into finitely many small sets
M; = @(E};), each of these sets is replaced by the ‘flat” set B; = ¢'(a;, 0)E; (a
piece of the tangent space at a;), and then the sum in (9.83) is formed using the
Euclidean volumes of the B; s.

Remarks 9.6.8 Formulations in terms of normals. The normal space N, of M
at (a, h(a)) is defined as N, = T.™", the orthogonal complement of the tangent
space. Let Qa = Q|n, : Na — Y be the restriction of the orthogonal projection
Q@ : Z — Y to the normal space N,. It is a useful fact that P, and (), have the same
volume multipliers. This result follows easily from Theorem 3.6.20. It is also stated
as Problem 3.92.

Remarks 9.6.9 Computations of volume multipliers. Let S : X — Y be a linear
transformation. Let T = {(x, Sx) |x € X } be the graph of S. Let L : X — T
be the mapping L(x, 0) = (x, Sx). The arguments above show that the volume
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multiplier p(L) plays an important role in integration on graph-manifolds. With the
notations we have been employing, p( L) corresponds to 1/p(F,) at a particular point
a€ Awith S = h'(a) : X — Y. How do we compute p(L)?

LetE = (eq, ..., ex) be an orthonormal basis for X. We know that
p(L) = (det(Le;, Le;))'/2. (9.84)

But Le; = (e;, Se;) and (Le;, Le;)z = d;; + (Se;, Se;)y. Computations are
simplified if we can exhibit an eigenbasis for § : X — Y: an orthonormal basis E
for X such that SE is an orthogonal set in Y. In this case, (Se;, Se;) = 0if ¢ # 5
and (Se;, Se;) = A; > 0 for some scalars ;. Then we obtain

p(L)? = (14 X)) (1+ ). (9.85)

Here the values \; are also the eigenvalues of the nonnegative definite self-adjoint
transformation $*S : X — X,

The case of dimY = 1 is especially important. In this case, the computations are
simple. Assume that Y = R and S : X — R is a real valued linear map. Hence
there is a unit vector a € X and a scalar « such that Sx = a(a, x) forall x € X.
Complete a to an orthonormal basis U for X. This is an eigenbasis for S. All vectors
in U are mapped to 0, except a. Hence p(L)? = (1 + o2) in this case.

Geometric Content

Let M be a manifold in a Euclidean space Z. As we noted in Remarks 9.2.8, our
definitions of integration and content on M depend upon a parametric representation
that allows us to reduce integration on M to integration on a Euclidean space. To
be sure, we showed that such integrals do not vary if we change the parametric
representation. Nevertheless, there is no escaping the fact that, on these definitions,
we rely upon extrinsic elements (charts and subsets of a Euclidean space) to define
the existence and value of an integral on M.

In the remainder of this chapter, we provide an intrinsic definition of content (and
hence integration) on M in terms of the volume on the space Z in which the manifold
is embedded. We shall call the content defined in this way geometric content. Then
we prove the non-obvious fact that geometric content agrees with the standard notion
of content defined earlier.

The definition of geometric content depends upon the concept of enlargements of
sets.

Definition 9.6.10 Enlargements of a set. For any set K in Z and for any r > 0, let
K, = Ukek B (k) be the enlargement of K in Z by r > 0. Hence

K.={ze€Z|keK,|z—k|<r}. (9.86)
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Problem 8.52 shows that if K is a bounded set in Z, then K. is always a Jordan set
in Z. We will assume this fact for convenience. Otherwise, our definitions have to
be formulated in terms of inner and outer volumes.

Definition 9.6.11 Geometric content. Let E' be a bounded set in an n-dimensional
Euclidean space Z. Let k be an integer, 0 < k < n,and £ = (n — k). Let S; be the
volume of the unit ball in R if ¢ > 1 and Sy = 1. Then the k-dimensional geometric
content of E is defined as

%(E) = lim ———vz(E;) (9.87)
¢

if this limit exists.

For example, if E is a curve in R3, we find the 1-dimensional geometric content of
E by considering sausage-like sets in R? consisting of all points within r of E. We
calculate the volume of the sausage, divide by 7r? (the area of the circle or radius 7),
and note whether this ratio converges to some value.

Our main purpose in this section is to prove the following theorem.

Theorem 9.6.12 Agreement of standard content with geometric content, Ler
(X, Y) be an orthogonal coordinate system for Z = X x Y with k = dim X and
{=dimY. Let Abe anopensetin X, f : A — Y a C! function, and M the graph
of f. Let p(x) = (x, f(x)), x € A, be a parametric equation for M. If E is a
Jordan set in X such that E C A and if L = ¢(E), then 7v(L) = o(L).

The proof of this theorem is given after a few lemmas. The following comments
might be helpful in following the arguments in those lemmas.

Remarks 9.6.13 Comments on the proof of Theorem 9.6.12. Fubini’s theorem
allows us to compute vz(L,) (the volume of the enlargement of L) by integration
over E (essentially), as [, A(x) dx. Here Ma) = vy (C(L,, a)) is the volume in
Y of the cross-section C'(L,, a) of L, with the “vertical space” Y (a). This vertical
space consists of vectors with constant X components x = a.

The cross-section C(L,., a) consists of all vectors in Y (a) that have a distance less
than r to L. If L is replaced by the affine tangent space at (a, f(a)), then the
orthogonal projection of C(L,, a) on the normal plane N(a) is a ball of radius r.
Therefore

vy (C(Ly, a)) = vy (B,(0))/p(S(a)) = r* Se/p(S(a)). (9.88)
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Here p(S(a)) is the volume multiplier of the orthogonal projection S(a) : ¥ —
N(a). This is the same as for the orthogonal projection Y (a) — N(a).

As observed in Remarks 9.6.8, we have p(S(a)) = p(R(a)). Hence
valle) = [ o Su/p(S(x)) dx = [ supreax 089
= 7S, / (p(R(x)))"Ldx = r* Syo(L). (9.90)
E

The formal proof of Theorem 9.6.12 consists of justifications for the various approx-
imations we have made in these comments.

Definition 9.6.14 Cross-sections. Let H beasetin Z = X x Y. If a € X, then
the cross-sectionof H ata € X 1s

CH,a)={yeY|(a,y)e H}CY. (9.91)

The following two lemmas are not stated in terms of cross-sections, but they will be
used to obtain estimates on various cross-sections,

Lemma 9.6.15 Ler A be an open set in X and let f, g : A — Y be two functions.
Let B, ,(a) C A. Foreachr, 0 <1 <o, define

Ala,r) = {yeY|IxeX, |(x fx)—-(ayz<r}, 992
Bla,r) = {ye€Y|3xeX, |(x9(x)—(ayllz<r}. (993)

Assume that there are ¢ > 0 and 6, 0 < § < rg, such that
If(x) — g(x)|ly <e|x— al|lx whenever ||x —a| x <.

Then B{a, (1 —e)r) C A(a, r) C B(a, (1 + €)r) whenever 0 < r < 4.

Proof. Let0 < r < §and y € A(a, r). Then there is an x € X such that

1Ge f(x)) = (a, YIZ = Ix —alik + /() -yl <r® <o

Hence |x —allx < dand || f(x) — g(x)|]y <e¢|lx —alx < er. Therefore

I(x, g(x)) = (&, yII* = lx—al®+|g(x) -yl
< x—all® + (1f(x) =yl + llg(x) = F(x)I)?
< x—al® + (If(x) — vl +er)?
= lx—all’ + If(x) = ylI* + 27|l f(x) — ¥ + €%
< P4 2?4 e = (1 1 )2
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This shows that y € B(a, (1 + ¢)r). Hence A(a, r} C B(a, (1 + ¢)r) whenever
0 < r < J. By the symmetry between these sets, we also have

B(a, (1—¢)r) C Ala, 1 +e)(1 —e)r) C Ala, 1)
whenever 0 < r < §. Then the conclusion follows. O

Lemma 9.6.16 LetT" C Z = X X Y be the graph of a linear function F : X —Y,
where Y is an {-dimensional space. For eacha € X andr > 0, let

Bla,ry={yeY|IxeX, |(x, Fx)—(a,y)llz <r}.

Then vy (B(a, r)) = 7* Sy p(R)™. Here Sy is the volume of the unit ball in Y,
R =P(T, X) : T — X is the orthogonal projection of T to X, and p(R) is the
volume multiplier of R.

Proof. We seethaty € B(a, r)ifandonlyifthereisat € T suchthat{|(a, y)—t|| <
r.Let N =T% andlet S : Y — N be the orthogonal projection of Y to N. Then,
by the properties of orthogonal projections,

1S(a, y)Il = mineer||(a; y) — ¢

Therefore (a, y) € B(a, r) if and only if S(a, y) € B,(0). Here B.(0) C N is
the ball of radius r in /N about the origin of N. Hence

p(S)vy (B(a, 1)) = vn(B,(0)) = 'S

Then the proof is concluded by p(S) = p(R), as observed in Remarks 9.6.8. O

Remarks 9.6.17 Review of assumptions and notation. Let X and Y be two
Euclidean spaces with dim X = k and dimY = ¢. Let A be an open set in X and
f:A— Y aC! function. Then y = f(x) is an explicit equation for the manifold

M={xy)eZ=XxY|xcA y=/[(x)}. (9.94)
A parametric equation for M is ¢ : A — Z, with ¢(x) = (x, f(x)) € Z,a € A.
At the point (x, f(x)) € M, the linear tangent space of M is T'(x). Also, p(R(x))

is the volume multiplier of the orthogonal projection R(x) : T'(x) — X. Finally,
L = ¢(F) C M, where E is a Jordan set such that E C A.

Lemma 9.6.18 Ler P, ), R, and E be Jordan sets in X such that

PCE°CECQ°CcQCR CRCA. (9.95)
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Let L = @(E). Then for each ¢ > Q there is a § > 0 such that if 0 < r < 0, then

(1= [ plRO0) dx < 770 g (L) < (14 ) /Q p(R(x)) ! dx.(9.96)

Proof. First, find an o > 0 such that if 0 < r < 7g, then
PCECE.CcQcQ,CR. (9.97)

This can be done because of the assumptions in (9.95). Here, as implicit in (9.97),
all enlargements are in X. Now use the uniform continuity of ' : A — L(X, Y) on
the compact set R to find a § > 0 such that 0 < § < rq and such that

£ () = f'(¥)lL(x,v) <& wheneveru, v € Rand |ju—vix <4. (9.98)

We claim that if a € @ and if 0 < r < 4, then
If(x) = f(a) - f'(a)(x — a)|| < ellx - a (9.99)
whenever ||x — a|| < §. This follows from the mean value theorem applied to

¥(x) = f(x) — f/(a)x. Since ¥ (x) = f'(x) — f'(a), we see that || (x)|| < ¢
whenever ||x — a]| < §. Therefore

If(x) = f(a) - f(@)(x - a)ll = |[¥(x) — d(a)]| <elix —al|  (9.100)

whenever ||x — a|| < §. Now at every point a € H, apply Lemma 9.6.15 with f(x)
and g(x) = f(a) + f'(a)(x — a). We obtain

B(a, (1 —-¢)r) C A(a, r) C B(a, (1 +¢)r) 9.101)

whenever a € H and 0 < r < 4. Also, vy (B(a, r)) = rfSyp(R(a))~! by Lemma
9.6.16. Hence

(1 —e)r'Sep(R(a)) ™" < vy (A(a, 1)) < (1 +&)r'Sep(R(a))™"  (9.102)

whenever a € (Q and 0 < r < 6. Now if 0 < r < 6, then we see that

C(L,, a)=A(a, r)ifaec P, (9.103)

C(L,,a) C Aa, r)ifa € @Q, and 9.104)

C(L,,a) =0ifad Q. (9.105)
We have vz(L,) = [, vy (C(Ly, x)) dx by Fubini’s theorem. Hence

/ vy (A(x, r)Ydx <wvz(L,) < / vy (A(x, r)) dx. (9.106)
P Q
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Then the proof follows by the estimates in (9.102). O
Proof of Theorem 9.6.12. Let P, (), and R be as in Lemma 9.6.18 above. We have

o(L) = [ pRx) " dx
E
as observed in Remarks 9.6.8. Hence

/p(R(x))—ldxga(L)g/p(R(x))*ldx. (9.107)
P Q

The difference between these two integrals can be made arbitrarily small. In fact, the
continuous function p(R(-))~* : A — R is bounded on the compact set B C A. If
M is an upper bound for p(R(-))~?, then

0< /Q p(RG) ™ dx— [ plR0) dx < Mox(@\P). ©0108)

Given any £ > 0, we can choose the sets P and @ in Lemma 9.6.18 to make
vx (@ \ P) < £. Then the proof follows by comparing the estimates in (9.96) and
(9.107) above. O

Example 9.6.19 Surface area of a sphere. Let ¥, (R) be the surface of the sphere
Br(0) C R™. We will show that it has a positive (n — 1)-dimensional geometric
content. The enlargements of ¥, (R) are

Sn(R)y = Bgryr(0)\ Br_.(0). Hence (9.109)
V' (Se(R) = v*(Bger(0)) = v"(Bp_.(0)) (9.110)
(R+7)" = (R—1)™)S,. ©.111)

Since £ = n — {n — 1) = 1 in this case and since S} = 2, we have

S, =nR"'S,.  (9.112)

. (R+r)"—(R—r)
v (0 (0) = i

Hence 71(Z2(R)) = 27 R and 2(23(R)) = 47 R?, since S; = 7 and S3 = (4/3)7.
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CHAPTER 10

STOKES' THEOREM

Stokes’ theorem generalizes the fundamental theorem of calculus to functions of
several variables. In this chapter, we prove this major result in two different ways.
The first way is via direct generalization of the fundamental theorem of calculus for
functions of one variable. This approach leads to a proof that is concise but difficult
to motivate. Our second approach employs the concept of flows. This second method
arguably comes closer than the first to replicating the intuitions and ideas behind the
original proofs of Stokes’ theorem. Although the proof is easier to motivate, it is
somewhat lengthy because it requires background preparation pertaining to flows.

The first step in both proofs is to establish Stokes’ theorem for a special case. Indeed,
the two proofs differ only at this first step. We shall refer to this special case as
the basic Stokes’ theorem. The general case is obtained by the application of two
different tools. The first is to pass from special regions to more general regions by
using diffeomorphisms. The second is to move from local results to global results
by employing the partitions of unity. Both of these steps are fairly routine, and they
operate in the same manner in all applications.
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382 STOKES' THEOREM

Stokes’ theorem is stated in terms of a vector field and the “divergence” of that
vector field. These are, respectively, vector-valued and real-valued functions. In
determining how these functions change under diffeomorphisms, the most fruitful
strategy is to represent them as tensor fields and use the pullbacks of these fields.
The basic idea of this strategy was developed in chapter 9.

Throughout this chapter, inner products are denoted as dot products, as is customary
in discussions of Stokes’ theorem.

10.1 BASIC STOKES’ THEOREM

Let Z be a Euclidean space. The basic Stokes’ theorem is stated for a C! vector field
f : G — Z thatis defined on an open set G C Z and has a compact support K C G.
Recall that K contains the closure of the set { z | f(z) # 0 }. We may assume that K
is a Jordan set. Also, if one defines f(z) = 0 forz ¢ G, then the extended function is
still a €* function. Hence we may assume, without loss of generality, that the vector
field is defined on the whole space Z.

Divergence of a Vector Field
Definition 10.1.1 Divergence of a vector field. Letf : Z — Z be a ! vector field.
Its divergence div f : Z — R is defined as

(div f)(z) = Trf'(z), z € Z. (10.1)
Here f'(z) : Z — Z is a linear transformation and Tr f'(z) is its trace.
Remarks 10.1.2 Trace of a linear transformation. Suppose that (ey, ..., e,) is

an orthonormal basis of Z and ¢ is a Euclidean determinant with p(eq, ..., e,) = 1.
For any linear transformation T € L(Z, Z),

TrT =o(Tey,...,en)+ -+ pler, ..., Te,) (10.2)
(See Definition C.7.3 in Appendix C.)

Note that Tr: L(Z, Z) — R is a linear function. It follows that divergence is a linear
operation on vector fields:

div (af + 8g) = adivf + divg. (10.3)
Another basic property of the trace is that

TeT = lim det(I +tT) —1

t—0 t ’

(10.4)
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where I € L(Z, Z) is the identity. This result is obtained in Theorem C.7.4.

Lemma 10.1.3 Suppose Tz = S(z) p, where S : Z — R is a linear transformation
and p € Z is a fixed point. ThenT : Z — Z is linear and TrT = 5(p).

Proof. The linearity of 7" is obvious. Since S : Z — R is linear, there is a fixed
a € Zsuchthat S(z) =a-zforallz € Z. Let (e, ..., e,) be an orthonormal
basis such that a = ae;. Then Te; = ap and Te; = 0if i # 1. Hence

TtT = ¢lap, ey, ..., e,) (10.5)
= QO(CY(el : p)eh €2, ..., en) (10.6)
= ae;-p=a-p=S5(p). (10.7)

Here (10.5) follows from the definition of trace in (10.3) and the fact that Te; = 0 if
1 # 1. To obtain (10.6), write

p=(p-ei)e; + pq,

where po lies in the space spanned by (eo, ..., e,). Then use the multilinear-
ity of ¢ and the fact that p(p2, €2, ..., e,) = 0. For (10.7), simply note that
plel,...,e,) =1 0O

Lemma 10.1.4 Suppose f = fp, where f : Z — R is a C! function and p € Z
is fixed. Then for any u € Z, divf(u) = f'(u)p = f'(u; p), the directional
derivative of f at u along p.

Proof. Letu € Z. Then S = f'(u) : Z — R is a linear transformation and
f'(u)z = (f'(u)z)p = S(z)p. Hence the result follows from Lemma 10.1.3. O

Corollary 10.1.5 Ler (e1, ..., e,) be an orthonormal basis for Z with the corre-
sponding coordinate functions (z1, ..., zn). If £ is expressed as
f=> fiei (10.8)
then
divf(z) = > _ 8f:/dz:. (10.9)

Equation (10.9) is the most common way to express div f.

Proof. If f = f; e;, then the result follows from Lemma 10.1.4. The general case
follows from the linearity of the divergence operator, as stated in (10.3). O
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Basic Stokes’ Theorem: direct version

Definition 10.1.6 Two sides of a plane. Let n € Z be a unit vector. Let U be the
plane z - n = (. The sets

A={z|z-n<0}andB={z|0<z-n} (10.10)

are called, respectively, the lower and the upper sides of U. The vector n is called
the outer unit normal vector of U.

Notations 10.1.7 Two types of integrals. The following arguments involve integrals
over two Euclidean spaces. There are integrals in Z, and integrals on planes like U.
(If dim Z = n, then the two types are essentially integrals on R™ and integrals on
R7! ) These integrals will be denoted by expressions of the form [, f(z) dz and
Jiy f(u) du. The second integral involves only values f(z) forz = u € U

Theorem 10.1.8 Basic Stokes’ theorem. Let f : Z — Z be a C! vector field of
compact support. If A and U are as in Definition 10.1.7, then

/ divf(z) dz = / n - f(u) du. (10.11)
A U

Proof. Complete n = e; to an orthonormal basis (e1, ..., e,). Let the correspond-
ing coordinate functions be (z1, ..., z,). Since f has compact support, we can find

an M > O such thatif f(z) # 0, then —M < z; < M for all i. Both sides of (10.11)
are linear in f. Hence it is enough to prove the result for f = f;e;. But we have to
treat the cases ¢ = 1 and ¢ # 1 separately. We see that (10.11) states

af’() dz = 0 ifi#1and (10.12)
4 0z

of _

le( z)dz = /Ufl(u)du. (10.13)

We evaluate the integrals on the left-hand side by Fubini’s Theorem. First, let ¢ # 1
be fixed. Decompose Z as Z = V x X, where X is the one-dimensional space
spanned by e; and V = X . Write each point in Z as z = v 4 xe; = (v, z), with
v € V and x = z;. Then we see that

/8fi(z)dz = / /% (v, z)dzdv (10.14)
4 0z VA

:/ / af‘(vxdmdv (10.15)
VNA

/ (filv, M) — fi(v, —M)) dv (10.16)
VNnA

/V A(O—O)dv:O. (10.17)
n
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This proves the result for ¢ £ 1.

For i = 1, decompose Z as U x Y where Y is the one-dimensional space spanned
by e; = n. Denote the pointsin Z asz =u+yn = (u, y) withu € U and y = z.
Then we see that

ofi B
Bz, B2 = //m oy (W ) dydu (10.18)
= // 8f1 y) dy du (10.19)
M ay
= /(fl(u, 0) — fi(u, —M)) du (10.20)
LY
= /(fl(u, 0) — 0)du (10.21)
U
= /fl(u)du (10.22)
U

For the last step, the point z = (u, 0) is expressed as z = u + On = u. This
completes the proof of the theorem in the general case. O

Problems

10.1  On the basis of Corollary 10.1.5, we use V - f as another notation for

divf = div Zifiel Z gg

Here (eq, ..., e,) is an orthonormal basis for Z and z;s are the corresponding
coordinate functions. If f = VF, then show that divf = 3_.(8%F/92?). This is
also expressed as

divf =V .VF =V?F=AF.

The expression V2F = AF is called the Laplacian of F. A function F is called a
harmonic function if AF = 0.

102 Showthat V- (FVG) = (VF) - (VG) + FV2G.
10.3 Let Z be an n-dimensional Euclidean space. Let » = ||z||. Show that

F(z) = r?~™ is a harmonic function (Problem 10.1) in Z \ {0}. Also, if n = 2,
then show that F'(z) = logr is a harmonic function in Z \ {0 }.

104 LetB={(z,y)|z<0,y=0}andlet A =R?\ B. Define

¥:A— (-7, m) bycosd = z(z? + y?)~V/2 and sin 9 = y(z? + y?)~ /2



386 STOKES' THEOREM

Show that ¥ is a harmonic function. See also Problem 9.36.

10.2 FLOWS

Definition 10.2.1 Flows of compact support. Let Z be a Euclidean space. Let
J C R be an open interval containing 0 € R. A flow (of compact support) is a
mapping F' : (Z x J) — Z that satisfies the following conditions.

(1) There is a compact set K C Z, called a support of F', such that
F(z,t)y=zforall(z,t) e K°x J=(Z\ K) x J.

(2) F(z,0)=zforallz € Z.
(3) F:(Z x J) — Zis a C! function.
(4) For each fixed t € J, the mapping
F(-,t): Z — Z is adiffeomorphism of Z onto Z.

A flow can be considered as specifying the motion of a set of particles, such as the
particles in a fluid (think of a swirling pond). The particle that was at z at initial
time t = 0 moves to the position F(z, t) at time ¢ € J. The particles outside the
compact set K do not move at all. This may seem like an important restriction, but
it is assumed only for technical convenience. See 10.2.7 for further remarks.

Notations 10.2.2 Derivatives of flows. Velocity fields. The derivative of a flow
F:(ZxJ)— Zatapoint (a, o) € (Z x J) is a linear transformation F’(a, o) :
(Z x R) — Z. We express the application of this linear transformation to a vector
(z,t) € (Z xR)as

F'(a, a)(z, t) = (DzF)(a, a)z + t (OF/0t)(a, a). (10.23)

Here Dz F : (Z x J} — L(Z, Z) is the derivative of F restricted to Z and (OF/0t) :
(Z x J) — Z is the partial derivative of F with respecttot € .J. Hence Dz F can be
considered as the space derivative of F and (OF/0t) the time derivative of F. More
explicitly, Dz F(a, «) : Z — Z is the unique linear transformation that satisfies

lim |F(a+ 2z, o) — F(a, a) — Dz F(a, a)z|| _

0, (10.24)
z2—0 (]
and (OF/0t)(a, o) = (8F)/(0t)(a, @) € Z is the vector defined by
OF . Fla,a+t)—F(a, a)
E(a, a) = }1_{% . . (10.25)
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We call (OF/dt)(-, t) : Z — Z the velocity field of the flow at the time ¢ € J. If a
particle is at the point z € Z at initial time ¢ = 0, then at a general time £ € J itis at
the point F'(z, t) € Z with the velocity of (0F/dt)(z, t) € Z.

Definition 10.2.3 The initial velocity field. Velocities at the initial time £ = 0 will
be important. We let f(z) = (8F/0t)(z, 0) and define f : Z — Z as the initial
velocity field.

Smooth Flows

One usually calls a function a smooth function if it has derivatives of all orders. For
our arguments below, we need much less.

Definition 10.2.4 Smooth flows. A function F': (Z x J) — Z is said to satisfy the
smoothness condition if the second-order mixed partial derivatives
d(DzF)/8t and Dz (9F/0t) (10.26)

exist, are equal to each other, and are continuous functions Z x J — L(Z, Z). A
function F' : (Z x J) — Z is said to be a smooth flow if it is a flow and it satisfies
the smoothness condition. From now on, all flows are assumed to be smooth flows
even if this is not explicitly stated.

Smooth Flows with Given Initial Velocities

If F:Z x J — Zisasmooth flow, then its initial velocity field
f(-Y=(F/0t)(-,0): Z > Z (10.27)
is a ! function. In fact, by the smoothness assumption,
Dzf(-)=Dz(8F/0t)(-,0): Z — L(Z, Z) (10.28)
exists and is continuous. Theorem 10.2.5 shows that the converse is also true.
Theorem 10.2.5 Construction of a smooth flow. Let f : Z — Z be a C! function
of compact support K C Z. Then there is an v > 0 such that F(z, t) = z + tf(z)

is a smooth flow F : Z x (—r, r) — Z. The support of this flow is K and its initial
velocity fieldisf : Z — Z.

Proof. We have F(z, 0) = zforall z € Z and F(z, t) = z for all t € R and for all
z ¢ K. We first show that F satisfies the smoothness condition of 10.2.4. In fact,

DzF(z,t) =1+tDzf(z)and (OF/0t)(z, t) = f(z) (10.29)
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show that (9D z F/dt)(z, t) = Dz (OF/0t)(z, t) = Dzf(z). Also, this is a contin-
vous function Z — L(Z, Z), as required.

Now we need to find an » > O such that F' : Z X (—r, r) — Z is a flow. (Combining
this with the preceding paragraph gives us our conclusion that F' is a smooth flow).
This means that we need to show that for each fixedt € (—r, r), F(-, ) : Z — Zis
a diffeomorphism of Z onto Z.

The function Dzf : Z — L(Z, Z) is a continuous function of compact support.
Hence there is an M > 0 such that |Dzf(z)||1z 7z) < M forallz € Z. Let
r=1/(2M)and |t| < 7. If F(a, t) = F(b, t), then a + tf(a) = b + tf(b) and

b —al| = [t] [f(b) — f(a)[| < [t M|b—a| < (1/2)|b—a]  (10.30)

Hence |b—a|| = 0and a = b, so (-, t) is one-to-one. (The first inequality above
follows from the mean value theorem.) Also Dz F(z, t) = Iz + tDzf(z), where
Iz : Z — Z is the identity mapping. But |[tDzf(z)|/1(z, z) < [t]M < (1/2), so
Dz F(z, t) is an invertible element in L(Z, Z). This last part follows from Theorem
4.438.

Hence if |t| < r, then F(-,t) : Z — Z is a one-to-one and C' function with an
invertible derivative at each point. We will show that it also maps Z onto Z. The
inverse function theorem shows that F'/(-, ¢) : Z — Z maps open sets to open sets.
Therefore R; = F(Z, t) (i.e., the image of the entire space Z under F'( -, t)) is an
open set, since Z is open.

We claim that R; is also a closed set. Let q,, be a sequence in R, converging to a
point q € Z. Since F(-, t) is one-to-one, there is a unique sequence p,, € Z such
that F(p,., t) = q,. We see that p,, is a bounded sequence, since F(z, t) = z for
all z outside the compact set K C Z. Hence, by the Bolzano-Weierstrass theorem,
it has a convergent sub-sequence. Without loss of generality, assume that p,, — p.
Then q,, = F(pn, t) — F(p, t), by the continuity of F( -, t). Since q, — q we
see that g = F(p, t) € R;. Hence R; is closed, and is therefore both open and
closed. Since Ry is not empty, we must have R, = Z. O

Remarks 10.2.6 Non-uniqueness of flows. Differential equations. There is no
uniqueness result for a flow with a given initial velocity field f : Z — Z. The
particular flow in Theorem 10.2.5 above may just be the simplest flow to construct
starting with a given initial velocity field. In the theory of differential equations, one
is interested in particular flows that satisfy the additional requirement that

or
ot
forall z € Z and t € J. Here is an intuitive characterization of this condition: the
velocity of a particle at a time ¢ depends only on the position F'(z, t) that the particle

(z, t) = £(F(z, t)) (10.31)
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has reached at that time. When a particle arrives at a point z € Z at a certain time,
its velocity is f(z) at that time. The existence and the uniqueness of flows that meet
this condition are discussed in the theory of differential equations.

Remarks 10.2.7 Flows of compact support. We consider only flows of compact
support. This is not an important restriction. We are interested in flows generated by
velocity fields and in their behavior over bounded regions £ C Z. If f is a velocity
field without a compact support, then one can take a C! function A : Z — [0, 1] of
compact support which is 1 on an open set G containing the closure of £. Then the
velocity field Af has compact support. Flows generated by f and by Af have the same
initial velocities on GG. Hence the initial behavior of a flow on G can be understood
in terms of a flow of compact support.

In applying this reasoning, it may be sufficient to take A as a C! function. In this
case, the example in Lemma 6.1.6 can be used. If necessary, A can be taken to be a
€ function, as obtained in Appendix D on partitions of unity.

Problems

10.5 Let Z be a Euclidean space. Let J be an open interval containing 0. A
function Q : Z x J — Z is called a displacement function if it has the following
properties. (1) There is a compact set K C Z such that (z, t} = 0 for ¢t € J and
z¢€ K. (2)Qz,0)=0forallz€ Z. 3):(Z x J) — ZisaC! function. (4)
The second order mixed partial derivatives

d(D ) /0t and Dz (59/t) (10.32)

exist, are equal to each other, and are continuous functions Z x J — L(Z, Z). Show
thatif F' : Z x J — Z is a smooth flow, then 2(z, ¢} = F(z, t) — 2z is a displacement
function. Conversely, show that if 2(z, t) is a displacement function, then there is an
r > 0 such that (—r, 7) C J and such that F'(z, t) = z + (2, t) defines a smooth
flow Z x (—r, r) — Z.

10.6 Let A: Z — Z be alinear transformation. Let G(z, t) = e'?z,t € R, as
defined in Example 7.3.13. Let A : Z — [0, 1] be a €* function such that A(z) = 1
for ||z|| < 1 and A(z) = O for ||z|| > 2. Show that there is an r > 0 such that

F(z, t) = A(2)G(z, t) + (1 — A(2))z
isaflow F': Z x (—r, r) — Z. What are the initial velocities f(z) for ||z| < 1?

10.7 Let (X, Y) be a coordinate system (Definition 3.1.42) in Z with the coordi-
nate projections P : Z — X and Q : Z - Y. If F: Z x J — Z is a smooth flow,
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then show that there is an open interval I, 0 € I C J, such that
G(x,t)=PF(x,t) and H(y, t)=QF(y, t)

define smooth flows G : X x I — X and H : Y x I — Y. (Note that here we take
Z = X ® Y rather than Z = X X Y, so that both x and y are in Z.)

10.8 LetF : ZxJ — Z beasmooth flow with the initial velocity fieldf : Z — Z.
Then show that lim; ,o(1/t)(F (2, t) — z) = f(2) uniformly in z € Z. (Hint. Use
Problem 10.9 below.)

109 Let W be a normed space. LetI' : Z x J — W be a function such that
H = (0r/ot) : Z x J — W exists and is continuous. Then show that given a
compact set K C Z and an € > 0, there is a & > 0 such that

[(T(z, t) = (2, 0)) — tH(w, 0)[lyy < eft]
whenever |¢| + ||z — w|| < 6 and z, w € K. In particular, show that
lim;_,o(1/t) (I'(z, t) — ['(z, 0)) = H(z, 0)
uniformly in z on any compact set K C Z.

10.10 Let F: Z x J — Z be a smooth flow with the initial velocity field f. Then
show that lim;_o(1/t)(DzF(z, t) — Iz) = f'(z) uniformly inz € Z.

10.11 Let F': Z x J — Z be a smooth flow with the initial velocity field f. Then
show that lim;_,4(1/t)(det Dz F(z, t) — 1) = Tr {'(2z) uniformly inz € Z.

1012 let ¢ : Z — Z, t € J, be a family of continuous functions. If
limg g ¢(z) = @(z) uniformly in z € Z, then show that

tim [ ) da= [ ota)ds

for any Jordan set E.

10.3 FLUX AND CHANGE OF VOLUME IN A FLOW

Definition 10.3.1 Volume of a set in a flow. Let ' : (Z x J) — Z be a flow. For
EC Zandte J,let E* ={F(z,t)|z€ E } = F(E, t) C Z be the image of E
under the diffeomorphism F'( -, t) : Z — Z. We can think of E? as the locations at ¢
of all particles that started out in £ at time O. It is a snapshot of a moving ensemble.
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Theorem 8.4.14 shows that if E is a Jordan set, then E* is also a Jordan set. In general,
the volume of E* will be different at different times. Our second route to Stokes’
theorem begins with a result about the rate of change in this volume. Actually, we
shall only need this rate of change at the time ¢t = 0, and only for the special type of
flow constructed in Theorem 10.2.5. (The result is true for any smooth flow, but the
proof of this fact is left as an exercise.)

Theorem 10.3.2 Initial rate of change in the volume. Ler f : Z — Z be a €'
vector field of compact support and suppose that F(z, t) = z + tf(z). Let E C Z
be a Jordan set and E* = F'(E, t). Then

t —_ 1
L w(E) ~ v(E)
t—0 t

:/ div f(z) dz, (10.33)
E

which gives the initial rate of change in the volume of E.

Proof. Theorem 10.2.5 shows that there is an open interval J containing 0 € R such
that the mapping F'(-, t) : Z — Z is a diffeomorphism for each fixed t € J. If
t € J, then by the change of volumes theorem 8.4.14,

v(EY) = /EdetDZF(z, t)dz (10.34)
= /Edet(l+tf’(z))dz. (10.35)

Hence
v(EY) —v(E) = /E(det(I+tf’(z))~1)dz. (10.36)

Now we know that (det(] +¢f’(z)) — 1) may be written as a polynomial Y, A (z)t*
in t. The coefficients A (z) are polynomials in the partial derivatives of the compo-

nents of £f. Therefore they are all continuous functions on Z. Also, as observed in
10.1.2,

4 —_
A1 (2) = lim det(I + tf'(z)) — 1
t—0 i

= div f(z). (10.37)

Then the proof of the theorem follows easily. O

Remarks 10.3.3 Divergence as the density of expansion. On the interpretation we
have been developing, the divergence of a vector field gives the density of the initial
rate of expansion for a flow with the initial velocity field f : Z — Z. The basis for
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this interpretation is Theorem 10.3.2. In fact, by this theorem,

ty _
limM = /divf(z)dz, and (10.38)
t—0 t E
.1 [v(EY) B 1 .
Jim — (U(E) ~1> - TE)/Edwf(z) dz. (10.39)

Flux of a Vector Field

Definition 10.3.4 Flux out of a Jordan set. Let f : Z — Z be a C! vector field of
compact support. Let £ be a Jordan setin Z. Then

flux(f, E) = / divf(z) dz (10.40)
E
is called the flux of f out of E.

Flux is defined as a function of f and E, but in light of Theorem 10.3.2, we can also
characterize it in terms of the initial rate of change in the volume of E for the flow
associated with f.

Theorem 10.3.5 Another expression for the flux. Let f : Z — Z be a C' vector
field with a compact support. Let F' : Z x J — Z be any smooth flow with the initial
velocity field f. Then

flux(f, E) = lim;_o(1/t)(v(E") — v(E)) (10.41)
= limo(1/t)(u(E*\ E) — w(E\ EY))  (10.42)

where E is a Jordan setand E* = F(E, t), t € J.

Proof. The first equality (10.41) follows from Theorem 10.3.2. Also,

E = (EnEYU(E\E") and (10.43)
E' = (E'NnE)U(E'\E), (10.44)

where both unions are the unions of disjoint sets. Then (10.42) follows from the
additivity of volume. O

Flux and Boundaries

As our next step towards Stokes’ theorem, we prove that the flux of f out of E,
although defined as an integral over the whole set E, depends only on the values of f
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on the boundary of E. This follows from Lemma 10.3.7 below and from the linearity
of the flux. We also show that flux(f, F) depends only on the part of E that is inside
the support of f. This is formulated in Lemma 10.3.10.

In what follows, f : Z — Z is a C' vector field with a compact support and
F:Z x J — Zisthe flow defined as F(z, t) = z + tf(2).

Lemma 10.3.6 I[ff(z) # 0, then also £(F(z, t)) # 0 foralit € J.

Proof. Suppose that f(w) = 0 for w = F(z, t) = z + tf(z), where t € J and
t # 0. Then we also have w = w + tf(w) = (w, t). So F(w, t) = F(z, t) with
w +# z. This is a contradiction, since F'(-, t) : Z — Z is one-to-one. O

Lemma 10.3.7 If f(z) = O for all z € OF, then flux(f, E) = 0. (If the initial
velocity everywhere on the boundary of E is 0, then there is no flux out of E.)

Proof. We will show that F* = F(E, t) = E forall t € J. Then Theorem 10.3.5
implies that flux(f, F) = 0.

Assume that ¢ # 0 and that there is a z € E* \ E. Then there is a w € E such
thatz = F(w, t) = w + tf(w) ¢ FE. Since z # w, we must have f(w) # 0, and
therefore (by the assumption of the theorem) w ¢ GFE. It also implies that there is a
nonzero 7 € J such that F(w, 7) = v = w + 7f(w) € JFE. (To see this, let 7 be
the supremum of all ¢ such that w + tf(w) € E.) Then f(v) = 0 by the hypothesis.
This contradicts Lemma 10.3.6 which implies that f(v) # 0. Hence there cannot be
any points in E* \ E. Similarly one shows that E \ E* = (). Therefore E* = E for
allteJ. O

Lemma 10.3.8 Let K be the support of a flow F on Z. Let D and F be two sets in
Z suchthat DNK = ENK. Then E*\ E = D*\ Dand E\ E* = D\ D".

Proof. Let Eg = ENK and 1 = E\ Eg = ENK*¢. Then Ef = FE; forallt € J,
since F(z, t) = zforallz € K°andt € J. Hence E = FyUE) and Et = E}UE;.
This implies E* \ E = Ef \ Ey. Since Dy = DN K = EN K = E, we see that
D'\ D = E*'\ E. The arguments for the second claim are the same. O

Corollary 10.3.9 Let E and D be as in Lemma 10.3.8 above. If E is a Jordan set,
then D'\ D and D \ D! are also Jordan sets. In particular, if K N D is a Jordan
set, then D'\ D and D \ D! are also Jordan sets.

Proof. This follows directly from Lemma 10.3.8 and the fact that E? is a Jordan set.
O
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Lemma 10.3.10 Let f : Z — Z be a C! vector field with a compact support K.
Then flux(f, E) = flux(f, E N K) for any Jordan set E C Z.

Proof. Let F' : Z x J — Z be a smooth flow with the initial velocity field f and
with the same support K. Let By = ENK and Ey = E\ Ey = E N K¢, the part
of E outside K. Then Ef = E, forall t € J, since F(z, t) = z forall z € K and
t € J. Hence E = Ey U Fy and E* = E} U F;. Then the conclusion follows since
both unions are unions of disjoint sets. [

Basic Stokes’ theorem: flow interpretation

Let us recall the notation employed in Definition 10.1.7: n € Z is a unit vector, U
is the plane z - n = 0, and A is the lower side of U, as defined by the condition
z - n < 0. We are ready for our second proof of the basic Stokes’ theorem, stated
exactly as in 10.1.8.

Theorem 10.3.11 Basic Stokes’ theorem. Let f : Z — Z be a €' vector field of
compact support. Then

/divf(z)dz:/ n - f(u)du. (10.45)
A

U

Proof. The proof utilizes three main ideas. First, interpret £(z) as the initial velocity
of afiow F(z,t) = z+tf(z). We can imagine U as a plastic sheet that is perfectly flat
at time ¢ = 0, but whose parts are about to bulge up or down or stay put, depending
upon the direction in which f(z) points. Second, interpret the integral on the left side
of (10.45) as the initial rate of change in the volume being added to or taken away
from A as its boundary (which is ) begins to shift. Third, interpret the right side
of (10.45) as a simple computation of this newly added (or subtracted) volume using
the standard formula for the volume under a surface.

First, we define the flow. Let K be the support of f. Let GG be an open Jordan set such
that K C G,andlet E =GNA. Weseetht KNE=KNA LetF:ZxJ— Z
be the flow F(z, t) = z + tf(z) and let A’ and E* the images of A and E under this
flow. The existence of some J = (—r, ) for which F' is a smooth flow is guaranteed
by Theorem 10.2.5, and all we need is some interval J containing O.

Next, we interpret the divergence integral on the left side of (10.45) as a rate of
change in volume. Lemma 10.3.8 shows that E*\ E = A*\ Aand E\ Et = A\ A"
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Hence

/ divf(z)dz = / divf(z) dz (10.46)
A E
= lim¢o(1/t)(v(E*\ E) —v(E\ E))  (1047)
= lim_o(1/t)(v(A*\ A) —v(A\ AY)) (10.48)
by Theorem 10.3.5 and Definition 10.3.4.

Finally, we interpret the integral on the right side of (10.45) as computing the volume
under the shifted surface Ut. Suppose first that f | n everywhere. In this case,
Jy n - f(u) du = 0. But then we also have no shift in the surface. So A* = A for all
t € J, and the above formula for the divergence integral yields [ 4 divf = 0. Hence
in this first special case, the conclusion (10.45) follows.

Next suppose that f L U everywhere. In this case, f(z) = f(z)n for some scalar
function f : Z — R. Decompose Z as U X Y >~ U x R where Y is the one-
dimensional space spanned by n. Express the the points z = u + yn as (u, y). If
u € U, then F(u, t) = u+tf(u)n. Hence U* is the graph of the function y = ¢ f(u)
in U x R. Also (assuming ¢f(u) > 0)

A'={(u,y)|uecl y<itf(u)}. (10.49)
This can be seen by noticing that A = U*. Therefore

v(A'\ A) —v(A\ AY) = /Utf(u) du, (10.50)

the volume between the graph of ¢ f and the U-plane. (The same formula works if
tf < 0.) Again, the conclusion (10.45) follows.

In general, f = f; +f, withf; L nand f; L U. The conclusion then follows by the
linearity of both sides in (10.45). O

Problems

10.13  The proof of Theorem 10.3.11 above uses the facts that
lim;_o(v(E*\ E) — v(E \ EY))

depends only on the initial velocity field and that this dependence is linear. Prove

lim (v(E*\ E) — v(E\ EY)) = /Un-f(u) du (10.51)

t—0

directly, without using this information. Here F'(z, t) = z + tf(z).

10.14  Prove (10.51) for a general smooth flow.
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10.4 EXTERIOR DERIVATIVES

To obtain the general version of Stokes’ theorem, the simple geometry exploited in
the basic version must be transformed to more general settings by diffeomorphisms.
The relation between the transformations of f : Z — Z and (divf) : Z — R will be
important. As it turns out, the shift can be handled most effectively by representing
vector fields in terms of tensor fields, as discussed in chapter 9.

Remarks 10.4.1 Restriction to C? diffeomorphisms. There is one drawback to this
approach: it requires the assumption of €2 diffeomorphisms. Our general version
of Stokes’ theorem will thus be applicable only where the relevant diffeomorphisms
are G2, rather than just @', This entails no great loss of generality by comparison to
most treatments of the subject, which customarily work with €*° diffeomorphisms.
In particular, the “Classical Stokes’ Theorem”, stated as Theorem 10.6.10 below, is
true only for €2 surfaces.

Nevertheless, most of the results obtained here are in fact true for ! diffeomorphisms.
Stokes’ theorem without the restriction to €2 diffeomorphisms is proved in other
texts (notably in W. Fleming, Calculus of Several Variables (Springer-Verlag UTM,
1977)). Problem 10.20 indicates a way of proving this more general version of
Stokes’ theorem.

Remarks 10.4.2 Review of tensor representations. Let (Z, ¥) be an n-dimensional
oriented Euclidean space. Hence Z is a Euclidean space together with a chosen
Euclidean determinant . Recall that Ax(Z) is the linear space of all k-tensors
(real-valued alternating multilinear functions) on Z.

Recall that we can represent a vector field f : Z — Z by the tensor field w : Z —
An—1(Z) defined by

w(z)(Z) = 9(f(z), Z) € R, (10.52)

where z € Z,7Z = (2a, ..., Z,) € Z" ' and ¥(f(z), Z) = ¥(£(2), 22, ..., Zn) €
R.

We can represent a scalar function g : Z — R by the tensor field 7 : Z — A,(Z)
defined by

r(2)(2) = g(z2)9Z) €ER, 2€Z, T=(z1,...,2,) € Z".  (10.53)

Remarks 10.4.3 Exterior derivatives: aspecial case. Letf : Z — Z beaC! vector
field represented by w : Z — A,_1(Z). If the divergence function (divf): Z — R
is represented by 7 : Z — A, (Z) as in the preceding remarks, then one calls 7 the
exterior derivative of w, written as T = dw.
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We shall show that there is a more general way to define the exterior derivatives of
tensor fields. If w: Z — Ax(Z) is a C! tensor field, then its exterior derivative will
be a continuous tensor field dw : Z — Ag41(Z). The special case just mentioned is
thus the case k = n — 1.

Lemma 10.4.4 Alternating part of a multilinear function. Let k be a nonnegative
integer and let o : Z* — R be a multilinear function. Then

1 .
(At a)(zy, ..., 2zk) = P Zaesk (signo) a(zs(1), - - - » Zo(k)) (10.54)

defines a k-tensor (Alt o) € Ag(Z). It is called the alternating part of .

Proof. Recall that 8, is the set of all permutations of {1, ..., k} (see Appendix C).
HZ=(z1,...,2) € Z¥ and 0 € §, then write
0L = (Zo1), ---» Zo(k)) € Z* (10.55)

for the re-arrangement of the vectors in Z according to the permutation . Now let
p € 8y and write pZ = (vy, ..., vi) = V. Since it is clear that Alt « is multilinear,
we are done once we show that

Alt a(pZ) = (sign p) (Alt a)(Z).

IfoV = (wy, ..., wg) = W, then w; = v,y = Z,(5(:))- Hence o(pZ) = (po)Z.
Therefore, recalling that sign (po) = (sign p) (signo),
' = i
k! (Alt )(pZ) ZUESk (sign o) a(o(pZ)) (10.56)
= > (signo)a((po)Z) (10.57)
oES
= (signp) Z(pa)esk (sign (po)) a((po)Z) (10.58)
= k!(signp) (Alt @)}(Z). O (10.59)

Remarks 10.4.5 Derivative of a tensor field. Let w : Z — Ay(Z) be a €' tensor
field. Then w(-)(Z) : Z — R is a C! function for each fixed ordered k-tuple
Z=(z1,...,2)in Z*, Let

J()Z): Z — L(Z, R) (10.60)

be the derivative of this function. We will denote the application of this derivative to
a vector zg € Z as

(- Wzo; Z): Z — R. (10.61)
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But now if we fix z € Z and allow zg and Z to vary, o’ () is a multilinear function that

takes (2o, z1, - .., 2x) € Z1 to w'(2)(20, 21, ..., k) € R. So (10.61) defines a
function w’ : Z — M Ly11(Z). We have

W (2)(z0; Z) = limy o(1/8)(@(z + t20)(Z) — w(z)(Z)) (10.62)
forallz € Z and for all (zg; Z) € Z¥T With Z = (z,, ..., z,) € Z*.

Definition 10.4.6 Exterior derivatives. Let w : Z — Ax(Z) be a C! tensor field.
Letw' : Z — MLy1(Z) be its derivative as defined in Remarks 10.4.5. Then the
tensor field

do = (k+ 1) Altw' : Z — Appr(2) (10.63)
of order (k + 1) is called the exterior derivative of w.

We can now show that this definition agrees with our earlier definition of the exterior
derivative for the special case in Remarks 10.4.3.

Theorem 10.4.7 Exterior derivatives and divergence. Lez (7, ) be an n-dimensional
oriented Euclidean space. If

w 4= N 1(2)
represents a Cl vector field £ : Z — Z, then
dw : Z— A, (2)

represents the function (divf) : Z — R.

Proof. Letz € Z,2, € Z,and Z = (22, ..., Z,) € Z"~ 1. We see that
W (z)(z1; Z) = 9(f(2) 21, 22, ..., Zn). (10.64)

Here w'(z) € M L,(Z) is already alternating in its last k = (n — 1) variables, since
¥ € A, (7Z) is a determinant. Then an easy computation shows that
dw(z) (21, 22, - .-, Zn) = n(AltW)(z) (21, ..., Zn)
W (z) 21, 22, ..., Za) +
ez, £(z)22, ..., 2,) +
v + (21, 22, .., £(2) 2,)
= Trf(2)9(z1, ..., Zn)
= divE(z) ¥z, ..., zn).
The second last step follows from Definition C.7.3, the definition of the trace of

t'(z) € L(Z, Z). The last step follows from the fact that Trf’ = divf, by the
definition of the divergence. [
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Commutativity of Pullbacks and Exterior Derivatives

We will show that exterior differentiation commutes with taking pullbacks under €2
diffeomorphisms.

Remarks 10.4.8 Pullbacks with C? diffeomorphisms are C!. Let us recall the
definition of pullbacks, from Definition 9.5.11. Let W be another Euclidean space,
H C W be an open set, and ® : H — Z a €2 diffeomorphism with G = ®(H)
(see Figure 9.1 or Figure 9.3). Let w : G — Ay(Z) be a tensor field with a compact
support K C G. Then the pullback of w is defined as

O (W) (W) (W) = w(®(w))(¥'(W)W), we Hand W € W*.  (10.65)

We see that if w : G — Ax(Z) is a C! tensor field, then ®*(w) : H — Ap(W) is
also a C! tensor field. This follows from the assumption that ® : H — G is a G2
diffeomorphism, and that assumption is essential. If necessary, we can extend the
definitions of w and ®*(w) to Z and to W by defining them as zero outside G and H,
respectively. An easy argument shows that these extensions are also C! functions.

Theorem 10.4.9 Exterior derivatives of pullbacks. Let ® : H — G be a G2
diffeomorphism. Let w : G — Ap(Z) be a C! tensor field with a compact support
K C G. Then d(d*w) = & (dw).

Proof. Letw € H, wo € W, and W € Wk, Also let z = ®(w). Compute
(D*w)'(w)(wo; W) from (10.65) by the chain rule and by the rules of differentiation
for multilinear functions. Then, with the notations of Remarks 10.4.5,

(" w) (w)(wo; W) = W' (z)(®(w)wo; &' (W)W) (10.66)
+Zf:1w(z)(Zi) (10.67)

where Z; = (2;1, ..., zi) € Z* are defined as
z; = @' (w)w; if i # jand z;; = O"(w)(wo, w;). (10.68)

(The differentiation here is undeniably messy. Problem 10.15 asks you to work out
this derivative for the special cases k = 1 and k = 2.)

We see that each w(z)(Z;) is a multilinear function of (k + 1) vectors wy and

W1, ..., Wg. Also w(z)(Z;) remains invariant if wo and w; are switched. In fact,
since @ is a C? diffeomorphism, we have
" (w)(wo, w;) = 0" (w)(w;, wp). (10.69)

Then, an easy verification shows that Alt w(z)(Z;) = 0. Hence
Alt (P*w) (W)(wo; W) = Alt W' (2)('(w)wy; D' (W)W), (10.70)

which is the conclusion of the theorem. O
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Basic Stokes’ theorem in Tensor Form

We shall need the basic Stokes’ theorem, Theorem 10.3.11, in tensor form. This
involves the integrals of the tensor fields w and dw over two oriented flat manifolds,
that is, manifolds with constant tangent spaces. In what follows, W is a Euclidean
space. It is oriented by a Euclidean determinant p. Also, e € W is a unit vector, A
is the half space e - w < 0, and U is the plane e - w = 0.

Notations 10.4.10 Two manifolds in the basic Stokes’ theorem. One manifold that
appears in the theorem is the n-dimensional manifold A. Its tangent spaces are always
W and they are all oriented by g. The other manifold is the (n — 1)-dimensional
manifold U. Its tangent spaces are always U and they are all oriented according to
the following convention: a basis B for U is positive if (e, B) is a positive basis for
W, that is, if ¢ (e, B) > 0. In the arguments that follow, let E = (e, ..., e,) bea
fixed positive orthonormal basis for /. Hence (e, E) = (e, e, ..., €,) is a positive
orthonormal basis for W and ¢ (e, E) = 1.

Theorem 10.4.11 Basic Stokes’ theorem in tensor form. Let

w:W—= A, (W) (10.71)

be a C! tensor field of compact support. Then

/dwz/w, (10.72)
A U

with the manifolds and orientations as defined in Notations 10.4.10.

Proof. Clearly, we want to derive this result from the vector version of the basic
Stokes’ theorem. So our first task is to recall how we associate a vector field with the
tensor w. Lemma 9.5.10 shows that there is a vector field f : W — W such that

w(w)(W) = o (f(w), W), (10.73)

where w € W and W = (wa, ..., w,) € WL Weseethatf : W — WisaC!
vector field of compact support.

Now we have a string of equalities.

Lo = [ em@an= [ o), )i (10.74)
= /U(e-f(u))du:/Adivf(w)dw (10.75)

= /divf(w)g(e, E) dw:/Adw(w)(e, E)dw  (10.76)

A
= dw. (10.77)
A
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The first step in (10.75) is derived by writing f(u) = (e - f(u))e + ez, where
e; is a linear combination of vectors in E; then use the properties of the Euclidean
determinant . The second step in (10.75) is the basic Stokes’ theorem in vector form.
The second step in (10.76) follows from Theorem 10.4.7 that relates divergences and
exterior derivatives. All other steps follow directly from the definitions. O

Problems

10.15 Prove Theorem 10.4.9 for the special cases of £k = 1 and k£ = 2 by writing
out the terms in Equations (10.66)-(10.67) explicitly.

10.16 Let (e, ..., e,) be a basis for Z. Show that a tensor A € Az(Z) of order
two is uniquely determined by its values A(e;, e;) on the pairs of basis vectors.
Also show that A(e;, ;) = 0 and A(e;, ;) = —A(e;, e;). Hence, conclude that
dim Az(Z) isn(n —1)/2.

10.17  Atensor field £ : G — A,(Z) of is represented by a vector fieldf : G — Z
as in Definition 9.5.6. Hence £(a)(z) = f(a) -z foralla € G and z € Z. What is
the application of d¢(a) to a pair of vectors (z1, z2) € Z2? Let (e, ..., e,) be a
basis for Z. Let f = )", P;e;. Find dé(a)(e;, ;) in terms of P;s.

10.18  Show that dim Ax(Z) = < .

) with n = dim Z.

10.19 Let B = {(x,y, z) |z =y =0} be the z-axis and G = R?\ B. Define
f:G — R3by f(z,y, 2) = (222, y?z, 2° + y?). Define Q : G — G by
Az, vy, 2) = (z,y, 2 — (22 + )2 + (22 + ¢?)). Let £ : G — A1(R%) and
n:G —>‘A2(]R3) be defined by

¢(a)(z) =f(a) -z and n(a)(u, v) =f(a) - u xv.

Compute d€, dn, dQ2*(€), dQY* (), Q*(dE), and Q* (d€) explicitly and verify Theorem
10.4.9 for these cases.

10.5 REGULAR AND ALMOST REGULAR SETS

We will prove Stokes’ theorem for regular sets and for almost regular sets. Intuitively,
regular sets are Jordan sets with smooth boundaries. A simple example of a regular
set is a Euclidean ball. Almost regular sets have smooth boundaries except for a
subset of the boundary that has negligible surface area. A simple example of an
almost regular set is a box spanned by the vectors of a basis.
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The main step in generalizing Stokes’ theorem is to transfer the basic Stokes’ theorem
to regular neighborhoods of a set. Recall that the basic Stokes’ theorem deals with
a half-space A and its boundary-plane A4 = U. Regular neighborhoods of a set
E are those open sets G in which E and OF behave like A and §A, up to a €2
diffeomorphism. A Jordan set E is called a regular set if its closure £ can be covered
by the regular neighborhoods of E.

Regular Neighborhoods of a Set

Notations 10.5.1 The oriented spaces U, W and Z. Letn > 2. Let Z and W be
two n-dimensional Euclidean spaces, oriented by the Euclidean determinants % and
o respectively. Let e = e; € W be a unit vector. Let U be the plane e - w = 0 and
let A be the half-space e - w < 0. Orient U by the right-hand rule, Definition 9.3.16,
with the unit vector e = e7. Let E = (es, ..., e, ) be a positive orthonormal basis
for U. Hence, (e, E) = (eq, €3, ..., €,) is a positive orthonormal basis for W.

Definition 10.5.2 Regular neighborhoods of a set. Let E be a setin Z. An open
set G C Z is called a regular neighborhood for E if there is a @2 diffeomorphism
V.G — H,H =¥(G) ¢ W, such that

U(GNE)=HNA and U(GNOE)=HNU. (10.78)

Note that if an open set G does not intersect JE, then G is a regular neighborhood
for E. If G C E°, for example, then an isomorphism 7 : Z — W takes GG to an
open subset of A. The general case is similar. Hence, Definition 10.5.2 involves only
the position of G N E with respect to G N JE.

Remarks 10.5.3 Boundaries in regular neighborhoods. Recall that surfaces in
Z are (n — 1)-dimensional manifolds. If G is a regular neighborhood for E, then
G N JF is a surface. This follows directly from the second condition in (10.78). In
fact, this condition means that W : G — H is achart for GNOE. Hence, if GNOE is
not a surface, then GG cannot be a regular neighborhood for E. If G NOF is a surface,
however, then G still may not be a regular neighborhood for F. First, there is an
additional smoothness condition on the chart ¥ that it must be a 2 diffeomorphism.
Second, the first condition in (10.78) requires that £ should be only “on one side of the
boundary”. Let, for example, £ = {(z, y) |2? +9? <2, 2®+y2 #1} C R%
Then OF consists of two circles 2 + y? = 1 and 22 + y? = 2. Any open set that
intersects the smaller circle is not a regular neighborhood for E.
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Boundaries of Regular Sets

Definition 10.5.4 Regular sets. A set in Z is called a regular set if its closure is
covered by its regular neighborhoods.

Note that a Jordan set is regular if and only if the union of its regular neighborhoods
is the whole space. This follows from the remarks in Definition 10.5.2.

To simplify the statements in the proofs of the next few results, we will define
acceptable diffeomorphisms for a set. These are the diffeomorphisms that have the
properties specified in Definition 10.5.2 of regular neighborhoods.

Definition 10.5.5 Acceptable diffeomorphisms. Let F be a set in Z. Let G be
an open setin Z. Let ¥ : G — W be a diffeomorphism and let ¥(G) = H.
Then ¥ : G — H is called an acceptable diffeomorphism (for E) if ¥ is a €2
diffeomorphism, and if

U(GNE°)=HNA and ¥W(GNOE) = HNU. (10.79)

Lemma 10.5.6 Let G and G be open setsin Z and let Go C G. If a diffeomorphism
U : G — H is acceptable for E, then its restriction to Gy is also acceptable for E.

Proof. This is left as an exercise. O

Lemma 10.5.7 Let (e, E) be the basis of W defined in Notations 10.5.1. Define
an isomorphism R : W — W as Re; = e; if 1 < i < n and Re,, = —e,. If
a diffeomorphism ¥ . G — H is acceptable, then RY : G — RH is also an
acceptable diffeomorphism.

Proof. This is left as an exercise. O

Theorem 10.5.8 If E is a regular set, then its closure can be covered by the domains
of acceptable and orientation-preserving diffeomorphisms.

Proof. Orientation-preserving diffeomorphisms were defined in Definition 9.3.4.
This proof is identical with the proof of Theorem 9.3.8. Arguments of that proof show
that one can pass from diffeomorphisms to orientation-preserving diffeomorphisms
by two types of modifications: restricting the domain of a diffeomorphism, and
reversing the orientation of a diffeomorphism. Lemmas 10.5.6 and 10.5.7 show that
acceptable diffeomorphisms remain acceptable after these modifications. O

We will show that the boundary of a regular set is an orientable surface.
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Lemma 10.5.9 Let ¥ : G — H be an acceptable diffeomorphism for E. Let
F(z)=e-9(z),z€G. Ifac GNOIE, then there is a § > 0 such that

a+tVF@)eFE if -d<t<0 and
a+tVF(a)¢ E if 0<t<o.

Proof. Let v = VF(a). Theorem 9.3.20 shows that v # 0. Let
f)=e-¥Y(at+tv)=F(a+itv).

Then we see that f(0) = 0 and f/(0) = VF(a) - v = ||[VF(a)||?. Therefore there
is a0 > 0 such that

fit) = Fla+tv)<0 if—-§<t<0 and
fl&) = Fla+tv)>0 if0<t<d.

This means that U(a+tv) € Aif —d <t <0 and ¥(a+tv) d AUUIf0 <t <.
Hence, the conclusion follows. O

Lemma 10.5.10 Let ¥, : G; — H; be two acceptable diffeomorphisms for E. Let
Fi(z) =e-Vy(z),z€ G; Ifac GiNGyNIE, then VFi(a) - VFy(a) > 0.

Proof. Observations in Remarks 10.5.3 show that S = Gy N G3 N JF is a surface.
Let v; = VF;(a). Theorem 9.3.20 shows that both v; are nonzero and normal to the
tangent plane 7, of S. Hence there is a nonzero o € R such that vy = av;. Lemma
10.5.9 shows that o cannot be negative. Then the proof follows. [

Lemma 10.5.11 Two acceptable and orientation-preserving diffeomorphisms U; :
G; — H; for E induce the same orientation on S = G; N Gy N OE.

Proof. Orientations induced by diffeomorphisms were defined in Definition 9.3.9.
Let U : G — H be an orientation-preserving diffeomorphism. Let ' = e - ¥. By
Theorem 9.3.20, the orientation of the tangent space induced by ¥ is related to the
unit normal vector n = VF/||VF|| by the right-hand rule. Hence, if ¥; define the
same unit normal vector, then they induce the same orientation on the manifold. O

Theorem 10.5.12 The boundary of a regular set is an orientable surface.

Proof. Let E be a regular set. Definition 10.5.4 of regular sets and Theorem 10.5.8
show that S = OF has an atlas of orientation-preserving acceptable diffeomorphisms.
Lemma 10.5.11 shows that this is an atlas of compatible charts, in the (obvious) sense
of Definition 9.3.12. Then, by Definition 9.3.13, S is an orientable surface. O
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Stokes’ theorem for Regular Sets

Remarks 10.5.13 Summary of notation and assumptions about orientation. The
spaces Z and W and the plane U (a subspace of W) are as specified in Notations
10.5.1. They are all oriented spaces. In particular, U is oriented by a unit normal
vector e according to the right-hand rule. The half-space A is the set of w € W such
thate-w < 0. Hence U = OA. Let Ebeasetin Z. Let G be aregular neighborhood
for £ and let ¥ : G — H be an orientation-preserving acceptable diffeomorphism
(Definition 10.5.5). In Theorem 10.5.14 below, the orientations on F and on OF are
the orientations induced by ¥ from the orientations of A and 9 A.

Theorem 10.5.14 Stokes’ theorem for regular neighborhoods Let G be a regular
neighborhood for E. Let £ : Z — Z be a C! vector field and let w : Z — A, _1(Z)
be a C! tensor field, both with compact supports contained in G. Then

/divf:/ f and /dwz/ w, (10.80)
E OE E OE

with the definitions given in Remarks 10.5.13.

Proof. With the notations of Remarks 10.5.13, let ® : H — G be the reverse
diffeomorphism of ¥ : G — H. Let £ = ®*(w) and n = ®*(dw) be the pullbacks
of w and dw by ®, as defined in Definition 9.5.11. Theorem 10.4.9 shows that
n = d€. The tensor form of the basic Stokes’ theorem, Theorem 10.4.11, shows
that [, d¢ = [, , & Assembling all of these facts gives us the following string of

equalities:

Since F°NG = (AN H)and OENG = ®(OAN H), we can apply the change of
variables theorem for tensor fields, Theorem 9.5.12, to the left and right sides of the
above equation:

This proves the tensor portion of (10.80). To obtain the vector part, represent the
vector field f by the tensor field w, as explained in Remarks 10.4.2, and apply the
result on tensor fields. Theorem 10.4.7 shows that dw represents divf and this
completes the proof. O

The extension to regular sets is an easy consequence of Theorem 10.5.14 and partitions
of unity.
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Theorem 10.5.15 Stokes’ theorem for regular sets Let E be a regular set. Let
f:Z — Z beaC! vector field and let w : Z — A,,_1(Z) be a C! tensor field, both
with compact supports. Then

/divf:/ f and /dwz/ w. (10.81)
E dE E OE

The orientation on E is the orientation of the underlying space Z. The orientation
on OF is induced by the orientation of Z and by the (geometrical) outer normal of
OF, according to the right-hand rule.

Proof. The supports of f and w are compact. Hence these supports can be covered
by finitely many regular neighborhoods. In all of these neighborhoods there are
orientation-preserving acceptable diffeomorphisms. Then the proof is completed by
an application of Theorem 10.5.14 and the partitions of unity theorem, Theorem
9.2.11. The details are the same as in Definition 9.2.12 and Lemma 9.2.13. O

Remarks 10.5.16 Role of the orientations. Where does orientation come into these
arguments? We need the orientation of £ only when we integrate the tensor field dw.
To integrate the vector field f on OF, it suffices to know the outer unit normal vectors.
The orientations of the tangent spaces play no role in this integration. Hence, the
effort spent on orientations is for the tensor version only. But the result is worth the
effort. The tensor formulation allows a lean proof of Stokes’ theorem. As already
mentioned, however, this proof requires €2 diffeomorphisms.

Stokes’ theorem for almost regular sets

We show that Stokes’ theorem can be extended to cubes and to other sets, most of
whose boundary points belong to a regular neighborhood.

Definition 10.5.17 Outer boundary-surfaces. Let E be a bounded set in Z. The
outer boundary-surface of F is the set of all points on the boundary of E that
are contained in regular neighborhoods (Definition 10.5.2) for £. We see that the
boundary-surface is indeed a surface. The boundary-surface of E will be denoted by
S,orby Sg.

Lemma 10.5.18 Ler K be a compact subset of Sp; and let B = (3F) \ K. Then E
has a finite open covering {Go} U{G,} such that Gy satisfies Go NIE C B and all
other G;s are regular neighborhoods for E.

Proof. Each point in S is contained in a regular neighborhood. Hence the compact
set K in 8g can be covered by finitely many regular neighborhoods. Let H be the
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union of these neighborhoods, and let By = (OF) \ H. Then By is a compact set
disjoint from K. Therefore there is an open set GGy that contains By and is disjoint
from K. Then H U Gy is an open set containing 8F. Hence E \ (H U Gyp) is in
the interior of E. Any open set that does not intersect OF is a regular neighborhood
for E. Therefore the compact set £\ (H U Gg) can be covered by finitely many
regular neighborhoods. These finitely many open sets are a covering of E. They are
all regular neighborhoods for £, except Gp. O

Definition 10.5.19 Upper surface-area. Let B be a bounded set in a Euclidean
space Z. The enlargement of B by r > 0 was defined in Definition 9.6.10. It is the
set B, of all points that are within distance r of a point in B. We know that B, is a
Jordan set for all » > 0 (Problem 8.52). The upper limit

1
o(B) = ]imitlp gv(Br) (10.82)
1
= lim sup —w(B,) (10.83)

q—0% o<r<qg 2T

will be called the upper surface-area of B. Here v(B,) is the volume of B, in Z.
Theorem 9.6.12 shows that if B is a Jordan set on a surface in Z, then o(B) is the
surface-area of B. (Jordan subsets of a manifold are defined in Definition 9.2.7).

Lemma 10.5.20 Let f : Z — Z be a €' vector field of compact support K. Let
M =sup, ||f(z)||. Let E be a Jordan setin Z. Let B = K N OFE. Then

/ divf
E

Proof. Apply Theorem 10.2.5 to find anr > 0 such that F(z, t} = z+f(z)is a flow
ZxJ — Z,where J = (—r, 7). Let E* = F(E, t),t € J, be the images of F under
this flow. We claim that (EAE') C By pr, Where (EAE') = (E*\ E)U(E\ EY).
Here By as is the enlargement (Definition 9.6.10) of B by [t|M. We assume that
0 < t; arguments for negative ¢ are similar.

If z € (F'\ E), then there is an a € F such that z = a + tf(a) ¢ E. Therefore, for
some 7 € [0, t}, b =a+ 7f(a) € OE. Then b € B; otherwise, F(b, s) = b for
all s € J. Then ||z — b|| = (¢t — 7)||If (a)|| < tM. Therefore, z € By pr.

Letz € (E\ E'). Since F( -, t) is a diffeomorphism of Z onto Z, thereisana € Z
such that z = a + tf(a) € E. Since z ¢ E*, we see that a ¢ E. Then, as before,
b = a+ 7f(a) € B for some 7 € [0, t]. Therefore z € B; y;.

= |flux(f, E)| < M o(B). (10.84)

Now use Theorem 10.3.5. O
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Definition 10.5.21 Almost regular sets. A Jordan set F in a Euclidean space is
called an almost regular set if for each ¢ > 0, there is a compact set K C Sg such
that o (OF \ K) < . Here o is as in (10.82).

Lemma 10.5.22 Letf : Z — Z be a C' vector field. Let E be an almost regular set.
Let 8g be the outer boundary surface of E (Definition 10.5.17). Then given ¢ > 0,
there is a compact set Ky C Sg such that

oo

whenever K is a compact set and Ko C K C Sk.

<e, (10.85)

Proof. Let M = sup, ||f(z)||. Givene > 0, use Definition 10.5.21 to find a compact
set Ko C 8g such that o(B) < ¢/M, where B = (OF)\ Kj. Let K be any compact
set such that Ko C K C Sg. Use Lemma 10.5.18 to find a finite open covering
{ Go, G;} as specified in that lemma. Use the partitions of unity theorem, Theorem
9.2.11, to find finitely many €' functions \; : Z — [0, 1], such that >~ A\; = 1 on
an open set containing £, and such that each \; has a compact support contained in
G;. Let f; = A\f;. (Note in particular that £, has support contained in Gy.) Then
f =3, f; on an open set containing E. The operation of taking the divergence of a
vector field is a linear operation. This was observed in Remarks 10.1.2. Hence

/Edivfzzi/Edivfi:Zi/E divf,.

Theorem 10.5.14 shows that [,. divf; = fKﬁGi f; = [, fi for i # 0 since each G;
is a regular neighborhood of E. Hence

divf = /divf + / div f;
/E E 0 Zz E
= div fy + / fi
/E 0 27’ KNG,

- /divf0+/ f.
E K

Lemma 10.5.20 shows that | [, div fy] < Mo(B) < e. Then the conclusion follows.
0

Remarks 10.5.23 Integration on boundary-surfaces. let f : M — R be a
function defined on a manifold M. Definition 9.2.12 of [, f is only for those
functions that have a compact support contained in M. Hence, according to this
definition, we can consider |, Sk f only if £ has a compact support contained in Sg.
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But if E is an almost regular set and if f is a @' vector field, then, on the basis of
Lemma 10.5.22, it is natural to define fSE f as fE div f. In fact, it is customary to

express this integral as f op £ Definition 10.5.24 below formalizes this notation.

Definition 10.5.24 Let E be an almost regular set. Let f : F — R be a bounded
function. Then the number &« = f oF f, if it exists, is defined as follows: for each
€ > 0, there exists a compact set Ky C Sg such that

oo

whenever K is a compact set and Ky C K C Sg.

<é€

Theorem 10.5.25 Stokes’ theorem for almost regular sets. Let E be an almost
regular set (Definition 10.5.21). Letf : Z — Z be a C! vector field. Then

/divf:/ f.
E E

The last integral is defined in Definition 10.5.24.

Proof. This follows directly from Lemma 10.5.22 and Definition 10.5.24. 0O

Problems

10.20 Call an open set G a C! regular neighborhood of a set E if the conditions in
Definition 10.5.2 for the regular neighborhoods are satisfied, except that the diffeo-
morphisms involved do not have to be €2 diffeomorphisms. Let G be a €! regular
neighborhood of E. Let f : Z — Z be a C! vector field with compact support in G.
Show that )
lim ~(v(E*\ E) —v(E\ EY)) = / f.
t—0 ¢ SE
Here E* = F(F, t)and F(z, t) = z+tf(z), as before. The boundary JF is oriented
by its outer normal.

10.21 Let F: Z x J — Z be a general smooth flow with an initial velocity field
f with a compact support contained in an open set GG. Assume that G is a C! regular
neighborhood of a set I and repeat Problem 10.20 for this case.

10.22  Compute [ f where S is the unit sphere 2° + ? 4 z* = 1 in R? oriented
by the outer normals and f(z, y, z) = (2% + ze V', Y2+ 2e7%, 2 + ez2+y{")'
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10.23  Compute |, s f where f is as in Problem 10.22 and S is the upper half (z > 0)
of the unit sphere in R? oriented by the outer normals.

10.24  Compute | 5 T where f is as in Problem 10.22 and S is the part of the unit
sphere in R? corresponding to z > 1/2, oriented by the outer normals.

10.25 Leta > 0. Let E be the region in R? specified by 22 + % < z < a. Show
that £ is an almost regular set. Compute fBE f, where f is as in Problem 10.22 and
the integral on JF is as defined in Definition 10.5.24.

10.26  Let E be an almost regular set in Z. Let I’ and G be two real-valued €2
functions on Z. Show that

/ (FVG):/((VF)~(VG)+FV2G).
oF E

10.27 Let E be an almost regular set in Z. Let F and G be two real-valued @2
functions on Z. Show that

/ (FVG - GVF) = / (FV2G — GV?F).
(2} E

1028 Let F(z, y, 2) = (2% +y2 + 22)" /2. Compute [, VF where S is the unit
sphere 22 4 y? 4+ 22 = 1 in R3 oriented by the outer normals.

10.29 Let E be an almost regular set in R3 containing the origin in its interior.
Compute [, VF where F is as in Problem 10.28 and the integral on OF is as
defined in Definition 10.5.24.

10.30  Repeat Problem 10.29 under the assumption that 0 ¢ E.

10.31 Let Z be an n-dimensional Euclidean space. Let F'(z) = ||z||> ™. Compute
Js VF where S is the unit sphere ||z|| = 1 in Z oriented by the outer normals.

10.32 Let Z and F be as in Problem 10.31. Compute faE VF where E is an
almost regular set in Z containing the origin in its interior.

10.33  Repeat Problem 10.32 under the assumption that 0 & E.
10.34  Let ¢; € R be finitely many numbers and let a; be finitely many points in

an n-dimensional Euclidean space Z. Let F(z) = 5. ¢;|lz — a;||>™™. Let E be an
almost regular set in Z such that a; ¢ OF for all 5. Compute [, VF.
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10.35 Let F(x, y) = log(z? + 3?). Let C be the unit circle 22 4+ y2 = 1. Note
that C' is both a surface and a line in R2. (See also Problem 9.38.) Compute the
surface integral [, VF where C is oriented by the outer normals.

10.36  Let F be an almost regular set in R? containing the origin in its interior. Let
F be as in Problem 10.35. Compute [, VF.

10.37  Repeat Problem 10.36 under the assumption that 0 ¢ E.

1038 Letr = (z2+4?)Y/2. Letf(z, y) = (—z, y)/r. Let E be an almost regular
set in R2. Consider the boundary-surface Sg as a curve C, oriented by the outer
normals according to the right-hand rule. Assume that £ contains the origin in its
interior. Compute the line integral | ot

10.39  Repeat Problem 10.36 under the assumption that 0 ¢ F.

10.40 Let ¢; € R be finitely many numbers and let a; € R? be finitely many
points. Let F'(z) = >, ¢;log ||z — a;]|. Let E be an almost regular set in R? such
that a; ¢ OF for all i. Compute faE VF.

10.41 Let F and F be as in Problem 10.40. Consider the boundary-surface Sg as
a curve C, oriented by the outer normals according to the right-hand rule. Consider
R? as the zy-plane in the zyz-space. Let k = (0, 0, 1) be the usual unit vector of
the z-axis. Let f = k x VF. Compute [, f.

1042  Leti, j, k be the usual unit vectors in the xyz-space. Let F be an almost

regular set in the zy-plane. Given a vector field f(z, y) = P(z, y)i + Q(=z, y)j
in this plane, apply Stokes’ theorem, Theorem 10.5.25, to f x k to obtain Green’s

theorem:
/ (Pdx 4 Qdy) = / (QQ — QB) dzdy.
EYo) g \dr Oy

Note that the surface integral of h x k becomes the line integral of h.

1043 Verify Green’s theorem for [, (z? — zy3)dz + (y° — 2zy)dy, where C'is
the square with vertices (0, 0), (2, 0}, (2, 2), (0, 2).

1044  Evaluate the line integral [, (y* sin(xy?)dz + 2zy sin(xy?)dy) where C'is
the unit circle.

10.45  Choose h(x, y) = zj to obtain the area of F as a line integral on the
boundary of E. Use this result to find the area of the region bounded by the curve
2z = acos?i, Y = asin3t, 0<t<2m.
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10.6 STOKES’ THEOREM ON MANIFOLDS

Let M be an ¢-dimensional €2 manifold in a Euclidean space Z. Let
UV:G—-H=Y(G)cW

be a €2 chart for M so that U(G N M) = H N U, where U is an {-dimensional
subspace of W. Let ® : H — ( be the reverse chart with the associated parametric
representation ¢ : H NU — G N M. Let A be an open set in W such that ANU is
aregular neighborhood foraset Bin U. Then P = M N ®(A) = o{ANU) will be
called a regular neighborhood of QQ = ®(B) = ¢(B) in M. Note that BN Ais a
regular set in U.

Letk = (£ —1)and letw : G — Ax(Z) be a C! tensor field of compact support
contained in ®(A). The pullbacks of w and dw under ¢ are the tensor fields

E=d*w): H—- Apy(W)andn = ®*(dw) : H — A(W).

Theorem 10.4.9 shows that 7 = d¢. The restriction of £(w) : W* — R to U*
defines an element in A;(U). Hence these restrictions define a new tensor field
& : HNU — Ag(U). Similarly one obtains 19 : H N U — Ag(U). By an easy
verification we see that déy = nq.

An application of Stokes’ theorem for regular neighborhoods, Theorem 10.5.14,
shows that || g df = /. op &+ We will assume that W is an orientation-preserving chart.
Arguments given for the proofs of Theorems 10.5.8 and 9.3.8 show that this is not a
loss of generality. Then the change of variables theorem for tensor fields, Theorem
9.5.12, shows that | pdw = i) 5 w- This is Stokes’ theorem on manifolds for a
regular neighborhood of a set in a manifold. From this we obtain Stokes’ theorem
on manifolds, as we obtained Theorem 10.5.15 from Theorem 10.5.14. Extensions
to almost regular sets are also obtained as before.

Stokes’ theorem on manifolds is related to flows and vector fields on manifolds. Let
M be amanifoldin Z. Then f : M — Z is called a vector field on M if f(m) € T,
at each m € M. Here T}, is the tangent space of M atm € M. If M is an
£-dimensional oriented manifold, then each T}, has a positive Euclidean determinant
Pm € Ae(Tin). Then we see that a tensor field w of order & = (£ — 1) is related to a
vector field on an oriented ¢-dimensional manifold as

w(m)(Te) = I (f(m), Tn) €R, m e M, Tp € Tin". (10.86)

Letf : M — Z be a vector field on M with a compact support K. If there is a chart
U : G — H for M such that K C G, then f is the initial velocity field of a flow on
M. In fact, if f is related to w as in (10.86), then ®*(w) is related to a vector field in
the Euclidean space V. This induces a flow in V' with compact support ¥(K) C H.
Then ® : H — G maps this flow to a flow on M.
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As an illustration of these relationships, we will consider Stokes’ theorem on two-
dimensional manifolds in three-dimensional spaces. Indeed, the original version of
Stokes’ theorem applied only to this case.

Classical Stokes’ theorem in Tensor Form

Remarks 10.6.1 Orientations in classical Stokes’ Theorem. Once again, we start
with the “basic case” for the classical version of Stokes’ theorem. The space W is a
two-dimensional plane in a three-dimensional space Y. A line U in W divides this
plane into a lower half A and an upper half. The boundary of A in the W-plane is
the line U. The orientation of U is as before: if e = e; is the outer unit normal
of U in W, then a unit vector e, defines the positive orientation on U just in case
(e1, e2) is a positive orthonormal basis for W. The orientation of the ¥ -plane itself
is specified by its outer unit normal vector n in the Y-space. Hence (n, e, e2) is a
positive orthonormal basis for Y.

In more picturesque terms, the relation between these three directions is sometimes
described as follows. If we are standing on the W-plane with our heads pointing
in the direction n of the outer normal of W, and if we want to walk in the positive
direction along the line U, then the lower half A of W must stay on our left-hand
side.

Theorem 10.6.2 Basic classical Stokes’ theorem in tensor form. With the nota-
tions and definitions in Remarks 10.6.1, if € : Y — A;{(Y) is a €' tensor field of

compact support, then
/dﬁz/ 52/5. (10.87)
A DA U

Proof. The integrals in (10.87) are performed on oriented manifolds, as described in
Remarks 10.6.1. To prove this result, restrict £ : ¥ — A;(Y) to W. We obtain a
tensor field &|w : W — A1 (W) on the W-plane. Then an application of the basic
Stokes’ theorem, Theorem 10.4.11, gives (10.87). O

Remarks 10.6.3 In Theorem 10.6.2, the boundary 3A is the boundary of A in the
W -plane, as described in Remarks 10.6.1, rather than its boundary in ¥ (which would
be the entire set A). Analogously, in Theorem 10.6.4 below, the boundary 9E will
be the boundary of F in the surface S. The definition of this boundary is left as an
exercise.

Theorem 10.6.4 Local classical Stokes’ theorem in tensor form. Let E be a set
in an oriented C? surface S in a three-dimensional Euclidean space Z. Let G be an
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open setin Z. Let
V:G-H=Y(G)CY

be an orientation-preserving C? diffeomorphism such that

T(GNS) = HAW, (10.88)
U(GNE®) = HNA, and (10.89)
V(GNOE) = HNOA=HnNU. (10.90)

Letw : G — A1 (Z) be a €' tensor field of compact support contained in G. Then

/dw:/ w. (10.91)
E OF

Proof. Use the reverse diffeomorphism ® : H — G to pull back w as £ = ¢*(w).
Then apply Theorem 10.6.2. The details are left as an exercise. O

Theorem 10.6.5 Classical Stokes’ theorem in tensor form. Let E and S be as in
Theorem 10.6.4. Assume that E is compact and is covered by open sets G as specified
in that theorem. Let w : Z — N1(Z) be a C! tensor field. Then

/dw:/ Ww. (10.92)
E OE

Proof. This is left as an exercise. O

Classical Stokes’ Theorem in Vector Form

The inner product of a, b € R3 is denoted as the dot product a - b. The standard
orientation of R? is determined by the Euclidean determinant¥(a, b, ¢) = a-(bxc),
as the usual mixed product. Let w : G — A;(R?) be a tensor field of order one,
defined on an open set G. It is associated with a vector field f : G — R3 as
w(r)(a) = f(r) - a, wherer € G,a € R,

Definition 10.6.6 Curl of a vector field. Let w(r)(a) = f(r) -abe a €! tensor field
w : G — A;(R?) of order one. Then its exterior derivative dw : G — Ao(R%) is a
tensor field of order two. Therefore it is represented by a vector field g : G — R3 as

dw(r)(a,b)=g-axb, r€G, (a b)ec (R*?
Then g = curl £ : G — R3 is called the cur! of f : G — R®. Hence

dw(r)(a, b) = curlf(r)-ax b, r € R3 (a, b) € (R?)? (10.93)
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Remarks 10.6.7 Vectorial expression of curl. Let f : R* — R3 be a C! vector
field and w(r)(b) = b - f(r). Then, by the definitions in 10.4.5 and 10.4.6,

W'(r)(a,b) = b-f'(r)a. Hence (10.94)
dw(r)(a,b) = b-f'(r)a—a-f'(r)b (10.95)
= curlf(r)-axb. (10.96)

Remarks 10.6.8 Coordinate expressions for curl. Let R? be the standard zyz-
space with the standard orthonormal basis (i, j, k). The coordinates of curl f can be
obtained by evaluating (10.95) at the pairs (j, k), (k, i), and (i, j), as in the proof of
Lemma 9.5.10. If f(r) = L(r)i+ M (r)j + N(r)k then

curl f = (Ny — My)i+ (Ly — Ny)j + (My — Ly)k, (10.97)

where the subscripts denote partial derivatives. One can remember this expression
more easily through the notation

curlf = =V x f. (10.98)

=P o~
S| v
Z¥ o w

Remarks 10.6.9 Integrals of tensor and vector fields. The classical Stokes’ the-
orem is obtained from Theorem 10.6.5 by replacing the integrals of tensor fields by
the corresponding integrals of vector fields. These two types of integrals are related
as described in Theorem 9.5.7. The tensor field w is associated with the vector field
f. The integral of w on the curve JE becomes the line integral [, . f. The integral
of dw on the surface F becomes the surface integral | g curlf. The orientations of E
and OF are as described in the proof of Theorem 10.6.2.

Theorem 10.6.10 Classical Stokes’ theorem. Let I and .S be as in Theorem 10.6.4.
Assume that E is compact and is covered by open sets G as specified in that theorem.
Letf : Z — Z be a C! vector field. Then

/curlf:/ f. (10.99)
E OE

Proof. This follows from the classical Stokes’ theorem in tensor form, Theorem
10.6.5, by replacing the integrals of tensor fields by the corresponding integrals of
vector fields. The correspondence between these integrals is as discussed in Remarks
10.6.9 above. O
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Problems

1046 ShowthatV-(fxg)=g-Vxf-f -Vxg.

1047 Showthat V-V x f=0.

1048 Showthat V x VF = 0.

10.49  Verify the classical Stokes’ theorem, Theorem 10.6.10, for the following

cases of F and f, by computing the integrals [, f and [}, curl f separately.

1. Sisgivenas z = (22 + y?)/?and 1 < 2 < 4 and f(z, y, 2) = (22, 22, y?).

2. Sisgivenas z = 22 + y% and z < 4 and f(z, y, 2) = (2, zz, z).

3. Sisgivenasz+y+2=1,0<z,0<y,0 < z,and f(z, y, z) = (v, z, 2).

10.50

Show that V - ((VF) x (VG)) =0.
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APPENDIX A

CONSTRUCTION OF THE REAL
NUMBERS

Introduction. Let Q be the set of rational numbers. The most important properties
of @ are the properties of the arithmetic operations and the properties of the order
relation on . These properties are summarized by two sets of rules called the field
axioms and the order axioms. The principal deficiency of @ is that it is not complete.
The set of rational numbers z such that 22 < 2 is bounded above, yet there is no
rational least upper bound. We would like to extend @ to R, a set of numbers that
not only satisfies the field axioms and the order axioms but also has the completeness
property. This section reviews a standard way to construct the real numbers that
meets this objective.

Outline of the construction of R. Prior to attempting any construction such as the
present one, we freely make use of the real numbers without proving their existence.
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We know many of the properties that they must have. In particular, we know that any
real number is the limit of a sequence of rational numbers. That fact suggests that we
try to define real numbers as the limits of convergent sequences of rational numbers.
But Definition 2.3.2 of convergent sequences depends explicitly upon the limit point.
We have defined convergence to L, not convergence per se. To circumvent this
difficulty, we base our construction on Cauchy sequences of rational numbers rather
than convergent sequences. Cauchy sequences are defined purely in terms of rational
numbers, and they coincide with the class of sequences that we shall uitimately regard
as convergent to a limit in R.

Let C be the class of all Cauchy sequences of rational numbers. € cannot be identified
with the set of real numbers because many different Cauchy sequences may converge
to the same real number. Hence we introduce an equivalence relation on €, making
two Cauchy sequences equivalent if the difference sequence converges to zero. Note
that convergence to zero can be defined in terms of rational numbers only. Hence
real numbers will be defined as equivalence classes of Cauchy sequences of rational
numbers. We will see that the usual arithmetic operations and the order retation
can be defined easily for these equivalence classes, and that the resulting system is
complete.

In what follows, we only assume basic knowledge of the rational numbers. We restate
some of the earlier definitions using only rational numbers, making sure that all of
our arguments are formulated in terms of rational numbers only.

A.1 FIELD AND ORDER AXIOMS IN ©

Definition A.1.1 Field axioms on Q. There are two binary operations Q x Q@ — Q
called addition and multiplication. Addition applied to (a, b) € Q x Q gives (a +b).
Multiplication applied to (a, b) € Q x Q gives (a - b). These operations have the
following properties.

Commutativity
a+b=b+aand a-b="b-a foralla, b € Q.
Associativity
{a+b)+c=a+(b+c)and (a-b)-c=a-(b-c) foralla, b, c € Q.
Distributivity
a-(b+c)=(a-b)+(a-c) foralla, b, c€ Q.

Existence of the neutral elements There are two elements in (@, 0 and 1, such that
0 # 1 and such that

0+a=aandl-a=aforalla e Q.
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Existence of inverses for addition (subtraction)
For each a € Q, thereis a (—a) € Q such thata + (—a) = 0.
Existence of the inverse for multiplication (division)

Ifa € Qandifa # 0, then there is a (1/a) € Qsuch thata - (1/a) = 1.

Definition A.1.2 Order axioms on (Q. There is a set Py C Q, called the positive
(rational) numbers, with the following two properties.

1. For each p € Q, exactly one of the following three cases is true: p = 0,
D € Py, or —p € Fy.

2. Ifp, g€ Py, thenp + g € Pyand pg € Fy.

Remarks A.1.3 Our objective. We would like to construct a set R with the following
properties.

1. There are two binary operations R xR — R on R, addition and multiplication,
that satisfy the field axioms on R.

2. Thereis aset Pg C R, the set of positive (real) numbers, that satisfies the order
axioms on R.

3. There is a one-to-one mapping ¢ : Q@ — R such that ¢(p + q) = @(p) + v(q)
and ¢(pg) = ¢(p)p(q) for all p, ¢ € Q and such that ¢(Py) C FPg. Here
©(p)+¢(q) and p(p)(q) are stated in terms of the addition and multiplication
operations on R.

4. Every nonempty subset of R with an upper bound has a least upper bound.
Hence, R satisfies the completeness axiom, Axiom 2.2.3.

A.2 EQUIVALENCE CLASSES OF CAUCHY SEQUENCES IN Q

Definition A.2.1 Cauchy sequences of rational numbers. A sequence z : N — Q
is called a Cauchy sequence of rational numbers if for each rational number a > 0,
there is an N € N such that |z,,, — z,,| < ¢ forall m, n > N. Let € be the set of all
Cauchy sequences of rational numbers.
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Definition A.2.2 Zero sequences of rational numbers. A sequence z : N — Q is
called a zero sequence of rational numbers if for each rational number @ > 0, there
isan N € Nsuch that |z,,] < aforalln > N. Let Z be the set of all zero sequences
of rational numbers.

Lemma A.2.3 Every zero sequence of rational numbers is also a Cauchy sequenceof
rational numbers. Hence Z C C.

Proof. This is left as an exercise. O

Definition A.2.4 Constant sequences of rational numbers. Each rational number
q € Q defines a constant sequence § : N — Q: weset @, = g foralln € N. Let
Q be the set of all constant sequences of rational numbers. It is clear that ¢ € € for
each g € Q. Hence Q C €. Note that § € Z if and only if ¢ = 0.

Definition A.2.5 Sum and product of two sequences. If 2 : N — Qandy: N — Q
are two sequences, then their sum is defined as the sequence (z + y), = T, + Yn
and their product as the sequence (2y), = TnYn.

Lemma A.2.6 Letz : N — Qandy : N — Q be two sequences.

(1) Ifz, y € C then (x + y) € Cand (zy) € C.
(2) Ifx,y € Z, then (x +y) € Z and (xy) € Z.

(3) Ifx € Zand y € C, then (zy) € 2.
Proof. This is left as an exercise. [

Definition A.2.7 Addition and multiplication on C. Addition on € is the operation
€ x € — C that takes the pair (z, y) € €x Cto (z+y) € C. Similarly, multiplication
on € is the operation € x € — C that takes the pair (x, y) € € x Cto (zy) € C.

Note that if p, ¢ € Q, then (p+ q) = P+ § and (pq) = 7, with the notations of
Definition A.2.4.

Definition A.2.8 An equivalence relation on C. Define a relation on € x € as
follows. If z, y € C, then z is related to y if and only if (x — y) € Z. It is easy to
check that this is an equivalence relation on C in the sense of Definition 1.1.9. We
write 2 ~ y for (z — y) € Z. Note thatif p, ¢ € Q, thenp ~ G if and only if p = ¢,
with the notations of Definition A.2.4.
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Definition A.2.9 Real numbers. Equivalence classes were defined in Definition
1.1.11. The equivalence class represented by = € € is the set

E.,={deC|z ~z}CC

Any two equivalence classes are either identical or disjoint. In fact, if x ~ y, then
E,=FE,andifx # y, then E; N E, = (). The union of all equivalence classes
is €. Each equivalence class is also called a real number. The equivalence class
E, is the real number represented by the sequence x. The same real number can be
represented by any sequence in F,, i.e., by any sequence z’ ~ x. Let R denote the
collection of all equivalence classes. This collection is called the set of real numbers.

Definition A.2.10 Operations on real numbers. We will define addition and mul-
tiplication operations R x R — R. Let E;, E, € R. Hence E; and £, are two
real numbers and also two equivalence classes represented by the sequences z and y.
Their sum F, + E, and their product E, E are defined as

E,+E,=E,,, and E,BE, = Ey,.

This definition has to be justified. If £, = E, and £y, = E,, must we have
E,vy = Epqyand B = E. 7 If not, then the definitions above are meaningless.
The required justification is provided by Lemma A.2.11 below.

These definitions are reasonable. They depend on the fact that the limit of the sum of
two sequences is the sum of their limits. The same is also true for products. Theorem
A.2.15 below shows that the field axioms are satisfied on R with these operations.

Lemma A211 Letz, o', y, v € C. Ifz ~ ' andy ~ ', then (x+y) ~ (2’ +')
and (zy) ~ (z'y').

Proof. Letz’ =z + pand ¢y = y + g with p, g € Z. Then
(@' +y)-(z+y)=p+qeZ
by the second part of Lemma A.2.6. Hence (xz + y) ~ (2’ + 3'). Also,
(@'y") — (zy) = (py) + (zq) + (pq) € Z,
by the second and third parts of Lemma A.2.6. Hence (zy) ~ (z'y'). O
Definition A.2.12 Positive real numbers. Call a sequence z : N — Q an eventually

positive sequence if there is an n € N such that z,, > 0 forall n > N. Call a real
number E, € R a positive real number if each y € E, is an eventually positive
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sequence. Let Pg C R be the set of all positive real numbers. These definitions
are reasonable as well. In fact, the limit of a sequence is positive if and only if all
the sequences converging to the same limit are eventually positive. Theorem A.2.16
below shows that the order axioms are satisfied on R with this definition of positivity.

Lemma A.2.13 Let x € C. Assume that for each rational number a > 0 and for
each N € N, there is ann > N such that |z,,| < a. Then z € Z.

Proof. Given a rational @ > 0, find an N € N such that |z, — z,,| < a/2 for all
m, n. > N. This can be done since € €. By assumption, we can find an m € N
such that m > N and such that |z,,| < a/2. Let n > N. Then

‘xnl = lxm + (xn —2m)| < |Tm| + 2n — 20| < (a/2) + (a/2) = a.

Hencex € Z. O

Lemma A.2.14 Letrx € Cand x & 2. Then there isan a > 0, a € Q, such that the
following are true.

(1) Thereis an M € N such that |x.,| > a forall m > M.

(2) There is an N € N such that either x.,, > a foralln > N or —x,, > a for all
n > N.

(3) Let y ~ x. Then there is a K € N such that xy, and y;. are both nonzero and
have the same sign for all k > K.

Proof. Since z ¢ Z, the hypothesis of Lemma A.2.13 cannot be true. Hence there
is a rational number a > 0 and an M € N such that |x,,,| > a for all m > M. This
proves the first part.

Now find an N > M, N € N, such that |z, — 2,| < a for all m, n > N. This
can be done since z is a Cauchy sequence. Let m, n > N. If z,, and z, have
opposite signs, then |z, — Z,,| > 2a, since |2,,,| > a and |z,,| > a. This violates the
condition that |z, — x,,| < a forall m, n > N. Hence either z,, > aforalln > N
or x,, < —a for all n > N. This proves the second part.

Lety ~ . Then (x - y) € Z. Finda K > N, K € N, such that |y, — 2| < a/2
forall k > K. Then —a/2 < y — a2 < a/2 shows that

zr —a/2 <y < zp +a/2

for all k > K. Hence we see that if ¢ < xy, then a/2 < yg, and if xx < —a, then
yr < —a/2forall k > K. This proves the last part. O
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Theorem A.2.15 Let R be the collection of all equivalence classes in C. Let the
addition and multiplication operations R x R — R on R be defined by

Ey+Ey = Eyyy and E.E, = E,,,

as in Definition A.2.10. Then these operations satisfy the field axioms, Axiom A.1.1,
on R.

Proof. Let 0 and 1 be the constant sequences consisting of all Os and all 1s. Note
that F5 = Z. We see that Ej is the neutral element for addition in R and Ej is the
neutral element for multiplication in R.

First, we verify the division axiom. Let F, # E5. We will show that thereisay € C
such that B, E, = F;. Now x € Cand x ¢ Z. Then the first part of Lemma A.2.14
shows that there is a rational number @ > 0 and an N € N such that |z,| > a for
alln > N. Define asequencey : N — Qby y, =0ifn < N and y, = 1/x,, if
n > N. Weclaimthaty € Cand E,E, = E;. If m, n > N, then

Yn —Uml = |[(1/2n) — (1/2m)| = [Tn — Tml|/|TnTm]
< (1/a®)|an — 2.
Given a rational number b > 0, findan M > N, M € N, such that |z, — Z,,| < a?b
forall m, n > M. Then we see that |y, — ym| < bforall m, n > M. Hence y € C.

We see that z,y, = 1 for all n > N. Therefore (x,y, — 1) = 0 foralln > N.
Then we see that (xy — 1) ~ 0 or that zy ~ 1. Hence E F, = F;.

The verification of the other axioms is quite routine. We verify only distributivity
as an example. Addition and multiplication in € have the distributivity property. In
fact, if a, b, ¢ € C, then

(ab+¢c))n = an(b+0)pn = anbn +anby
= (ab)n + (ac), = ((ab) + (ac))n.
Now let E,, Ey, E. € Rwitha, b, ¢ € C. Then
Ea(Eb =+ Ec) = E By = Ea(b+c)

E(ab)+(ac) = Eap + Fac
= E,E,+ E.Ey.

Therefore the distributivity axiom is satisfied. O
Theorem A.2.16 Let R be the set of real numbers with the arithmetic operations as

defined in Definition A.2.10. Let Py be the set of all positive real numbers as defined
in Definition A.2.12. Then the order axioms, in Definition A.1.2, are satisfied on R.
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Proof. First, note that £ = —Ej is not positive. For example, the sequence
Zn = (—=1)™(1/n) is a zero sequence which is not eventually positive. Now let
E, # E5. We will show that either E, or —E.. is positive.

We have x ¢ Z. Hence the second part of Lemma A.2.14 shows that either « or
—x is eventually positive. Assume that x is eventually positive. Then the last part
of Lemma A.2.14 shows that if y ~ z, that is, if y € E, then y is also eventually
positive. Hence E, is a positive real number. Similarly, if —z is eventually positive
and if y ~ z, then —y is also eventually positive. In this case ~F, = F_, is a
positive real number. This proves the first part of the order axioms.

For the second part, assume that E; and F,, are both positive. Then, by the second
part of Lemma A.2.14, thereare a, b > 0,a, b € Q,andan N € Nsuchthatz,, > a
andy, > bforalln > N. Thenz, +y, > a+b > 0and x,y, > ab > 0 for
alln > N. Hence £, + E, and E,E, are both nonzero, and they are both positive
numbers. O

Definition A.2.17 Canonical embedding of Q into R. Let ¢ : @ — R be the
function defined as ¢(p) = Ej. Here p € C is the constant sequence with all terms
equal to p € Q. We will call ¢ : Q — R the canonical embedding of Q into R.

Theorem A.2.18 The canonical imbedding of Q into R is a one-to-one function
@ : Q — R. It preserves addition and multiplication in the sense that

P +4q) = o(p) + ¢l(q) and v(pq) = ©(p)p{q) forall p, q € Q.

Also, ¢ : Q — R preserves the order in the sense that ¢(Pg) C Fr.

Proof. If E; = Fj, then § ~ g and (p — §) is a zero sequence. But a constant
sequence is a zero sequence only if the constant term is zero. This is obvious, as
already mentioned in Definition A.2.4. Hence E, = E; in Ronly if p = ¢ in Q.
This shows that ¢ : ) — R is one-to-one. For the second part,

P+ q) = Egpyg) = Ep + Eq = ¢(p) + ¢(q).

Here the second equality follows from the definition of addition in R. The proof of
w(pq) = p(p)(q) is similar. For the last part, note that if p is a positive rational
number, then p is not a zero sequence and eventually (in fact, always) is positive.
Hence ¢(p) = Ej is a positive real number. O

Remarks A.2.19 Identification of Q with ©(Q). We ignore the differences between
p € Qand p € Cand p(p) = E5 € R. The meaning will be clear from the context.
Hence we consider QQ as a subset of R. We also denote the real numbers with single
letters, as is customary.
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A.3 COMPLETENESS OF R

The addition and multiplication operations and the order relation on R satisfy the field
and order axioms. Hence we can develop all the related concepts, inequalities between
real numbers, absolute values of real numbers, sequences, convergent sequences, and
Cauchy sequences of real numbers as done before. We omit the repetition of these
definitions and the related results. Instead, as an example, we give a detailed proof
(perhaps more detailed than necessary) of the completeness of R.

Note that any real number 7 is an equivalence class of Cauchy sequences of rational
numbers. Any sequence z in this equivalence class will be called a representative
(sequence) for r. The choice of representatives is arbitrary and not important. If
r = @(p) = p is a rational number, however, then the constant sequence p = p
is taken as the standard representative of » = p. The identifications used here are
explained in Remarks A.2.19.

Lemma A.3.1 Let x be a representative for r € R. Assume that there isan N € N
such that 0 < x,,. Then 0 < r.

Proof. Any real number must satisfy exactly one of the following conditions: r = 0
orr € Por —r € P. Our hypothesis rules out the last condition. In fact, this
condition means that all representatives of —r must eventually be positive. But —r
has at least one representative —z which is not eventually positive. Hence —r ¢ P.
Therefore eitherr =0 orr € P. O

Remarks A.3.2 Let = be a representative for r € R. Assume that thereisan NV € N
such that 0 < x,,. Then 0 < r by Lemma A.3.1, but we cannot conclude that 0 < 7.
In fact, 0 < 7 means that not one but all representatives of r must eventually be
positive. A simple counterexample is z,, = 1/n, a positive sequence that represents
0.

Lemma A.3.3 Letr > 0, r € R. Thenthereisap € Q suchthat0 <p <r.

Proof. Let x be a representative sequence for r. Hence z is eventually positive, since
r > 0. Lemma A.2.14 shows that thereisan a > 0, a € @, and an NV € N such that
either z,, > aforalln > N or z,, < —a for all n > N. The second case cannot be
true, since x must eventually be positive. Hence z,, > a for all n > N. Then, by
Lemma A.3.1 above, 0 < a < r. Letp = a/2. Then 0 < (a/2) < a < r shows that
O<p<r. O

Lemma A.3.4 Letr, s € Randr < s. Then there is a q € Q such that r < q < s.
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Proof. We have 0 < (s —r). Use Lemma A.3.3 to find p € Q such that 0 <
p < (s —r). Let x and y be representatives for v and s. Then 0 < (s —7) —p
shows that the sequence (y, — , — p) is eventually positive. Find M € N such that
Ym > T + p forall m > M. Since z is a Cauchy sequence, there is an N > M,
N € N, such that |2y — z,| < p/4d foralln > N.

Letgy = zy + (p/4) and ¢ = zy + (3p/4). If n > N, then
a1 —xn = (p/4) + (@ —zn) = (p/4) + Jon —Tn| 2 0
shows that that r < ¢;, and
g =zn+ 3Bp/4) =z, + (an —2n)+ Bp/4) < zp +p < Yn

shows that go < 5. If ¢ = (q1 + ¢2)/2 =Ny + (p/2), thenz < g <s. O

Remarks A.3.5 Upper bounds. Completeness is formulated in terms of upper
bounds. They were introduced in Definition 2.2.1. M & R is called an upper bound
foraset A C Rifa < M forall a € A. Note that if A has an upper bound M € R,
then it also has an upper bound M’ € Q. This follows from Lemma A.3.4 or just
from the fact that any Cauchy sequence of rational numbers is bounded by a rational
number.

Lemma A.3.6 Let A be a nonempty set of real numbers. Assume that A has an
upper bound. Then there is a p € Q such that p is not an upper bound for A but
p + 1 is an upper bound for A.

Proof. Leta € A. Then r = (a — 1) is not an upper bound. Let s < r, s € Q.
Then s is not an upper bound. The sequence s,, = s + n is an unbounded sequence.
Hence there are n € N for which s 4+ n is an upper bound for A. Use the induction
principle to find the least m € N such that ¢ = s + m is an upper bound. Then
p=gq—1= s+ (m —1)is not an upper bound. (Note that this is obviously true if
m > 2, butitis also true evenifm =1.) 0O

Lemma A.3.7 Let A be a nonempty set of real numbers. Assume that A has an
upper bound. Then there are two sequences of rational numbers p,, and q,, such that
if n € N, then p,, is not an upper bound for A, q, is an upper bound for A, and
(Qn - pn) = (1/2)71‘—1.

Proof. Let p, ¢ € Q be the two numbers obtained in Lemma A.3.6. Let p; = p and
q1 = q. Our requirements are satisfied for n = 1. Assume that p,,, g, are obtained
such that p, is not an upper bound, g, is an upper bound, and (g, — p,, ) = (1/2)" 1.
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Let s, = (pn + ¢n)/2. If s, is not an upper bound, then let p,1 = s, and
Gn+1 = Gn- If s, is an upper bound, then let p,+1 = p,, and g,11 = s,. We see
that our requirements are also satisfied for n + 1. Hence the sequences p,, and g, are
defined by the induction principle. O

Lemma A.3.8 The sequences p, and g, obtained in Lemma A.3.7 are equivalent
Cauchy sequences.

Proof. We see that p,, < ppt1 < ¢nt1 < gn. By induction it follows that
Prn < Ptk < Gnyk < gq forallk € N

Therefore, if m > n, then |p, —pm| < |pn —qa| = (1/2)" 1. But(1/2)" ! isazero
sequence. Hence p,, is a Cauchy sequence. Similarly, g, is also a Cauchy sequence.
The equivalence of p,, and gy, follows from the fact that (g, — p,) = (1/2)" lisa
zero sequence. [

Theorem A.3.9 Ler A be a nonempty set of real numbers. Assume that A has an
upper bound. Then A has a least upper bound. More explicitly, there isanr € R

such that r is an upper bound for A, but if s < r, s € R, then s is not an upper bound
for A.

Proof. Let p, and g, be the sequences obtained in Lemma A.3.7. Lemma A.3.8
shows that they are equivalent Cauchy sequences. Hence they represent the same
r € R. We claim that r is a least upper bound for A.

Assume that r is not an upper bound for A. Then there is an a € A such that r < a.
Use Lemma A.3.4 to find ¢ € Q such that r < ¢ < a. Then the sequence ¢ — g,
represents the positive number (¢ — r) € R. Hence it must eventuaily be positive.
Hence thereisan N € Nsuchthatg > g, foralln > N. Thismeansthatq, < g < a
and ¢, is not an upper bound for A. This is a contradiction. Hence r is an upper
bound for A.

Now suppose that A has an upper bound s € R, s < r. As before, findap € Q
such that s < p < r. Then (p, — p) must eventually be positive, as it represents
(r — p) > 0. Therefore p,, > p > s for some n € N. This means that p,, is an upper
bound for A. This is a contradiction. Hence A cannot have upper bounds less than
r. Therefore r is a least upper bound for A. O
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APPENDIX B
DIMENSION OF A VECTOR SPACE

Let V be a vector space. Let B = {by, ..., by} and £ = {ey, ..., e,} be
two bases for V. This means that both B and F are linearly independent and
V = Span B = Span FE. Our objective is to prove that m = n. This fundamental
result tells us that the number of elements in any basis for a finite-dimensional vector
space is the same. This number is thus well defined and is called the dimension of
the vector space.

One way to prove this result is to use a well-known result about linear systems of
equations. Consider a homogeneous linear system of equations. If the number of
unknowns is more than the number of equations, then this homogeneous system has
nonzero solutions. This theorem implies that in R™, a set that contains more than
n vectors cannot be linearly independent. Then the result about dimension follows
easily. Instead of appealing to this argument, we shall provide a self-contained
vectorial proof. The arguments used in this proof are purely algebraic.

Analysis in Vector Spaces. 431
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B.1 BASES AND LINEARLY INDEPENDENT SUBSETS

The following theorem contains the main step in proving that any two bases have the
same number of elements.

Theorem B.1.1 Let E = {e1, ..., e,} beabasisfor V. Let A={ay, ..., an}
be a linearly independent set in V. Then m < n.

Proof. The idea of the proof is to start with £ and move towards A by bringing in
the elements { a;, ..., a,,} of A, one at a time. As we add each member of A, we
delete one of the remaining vectors e;, so that our transition sets always have exactly
n elements.

The first step is to bring a; into E. Note that a; # 0 for each 4, because A is linearly
independent. Suppose that

a; =c1€e1+ -+ ch€p-

One of the ¢; s must be nonzero. Rename the vectors in E, if necessary, to make
¢i # 0. Then bring in a; and delete e;. We claim that the resulting set

E={aj, e ..., en}

is a basis for V. Observe that E; spans V, since it contains e; = (1/¢;)(a; — coes —
-+ - — cp€yp) and it contains each of e, ..., e,,. Furthermore, we claim that E is a
linearly independent set. Suppose

k1a1 + k?262 + + knen =0.
Then we have
kiciey + (kico + ko)ea + - + (kicy, + kn)e, = 0.

From the linear independence of { ey, ..., e,}. each coefficient is 0. By the crucial
assumption ¢; # 0, it follows that k; = 0 and hence that ky = --- = k, = 0. So E;
is a basis for V.

For the inductive step, let1 < r < mand 1 < r < n. Suppose that we have obtained
E, by substituting the first 7 members of A for the first » members of E and that
E., is still a basis. (There is no loss of generality here; we can rearrange the original
listing of E if necessary.) Then we write a, ;1 as a linear combination of

A1y -5 Apy €041, -y €

The coefficient of at least one of e, 1, . .., e, must be nonzero because of the linear
independence of ay, ..., a,,a,41.
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Again, without loss of generality, we assume that the coefficient of e, ; is nonzero.
Proceed exactly as at the first step to substitute a,-;; for e,41. The resulting set

E’!‘+l = {a1> vy @py 8ry1,€p42, 4.0, en}

is still a basis.

If n < m, then E, = {a;, ..., a,} will be a basis for V. If n < m, then the
remaining vectors {a,41, ..., &, } in A will be linear combinations of the first
n vectors {ay, ..., a,}. This contradicts the linear independence of A. Hence
m<n.Ifn=m,thenA=FE, ={ay,...,a,}isabasisforV. D

Lemma B.1.2 Ler A be a linearly independent set in V. If b € V and b ¢ Span A,
then B = AU {b} is also a linearly independent set.

Proof. Let cb + cja; + --- + ¢,a, = 0O withsome a; € Aand ¢, ¢; € R. Then ¢
must vanish. Otherwise,

b=—(1/c)(cia; + -+ + cpay)

would imply that b € Span A. Butif ¢ = 0, thenalsoc¢; = ... = ¢, = 0, since A
is a linearly independent set. Therefore B is a linearly independent set. O

Theorem B.1.3 Let E = { e, ..., e,} be a basis for a vector space V. Let
A ={ay, ..., an} be a linearly independent set in V. Then A is also a basis for
V ifand only if m = n.

Proof. Assume that A is a basis for V. In this case, the sets E and A are both bases
and linearly independent sets. Then Theorem B.1.1 implies that both m < n and
n < m. Hence m = n.

Conversely, assume that A is not a basis for V. Hence there is a vector b € V such
that b ¢ Span A. In this case, Lemma B.1.2 above shows that B = A U {b} is
also a linearly independent set. But B contains m + 1 vectors. Then Theorem B.1.1
implies thatm + 1 < n. Hencem <n. 0O

Theorem B.1.4 Let E = {e1, ..., e,} be a basis for a vector space X. Let
A ={ay, ..., a,} be a linearly independent set in X. If A is not a basis for X,
then there is a set B C X such that AN B = B and such that AU B is a basis for X.

Proof. If A is not a basis, then Span A # X. Hence there is a b; € X such that
b; & Span A. Then A; = AU{b; } is alinearly independent set consisting of (m+1)
vectors. Repeating this step k = (n — m) times, we obtain k vectors by, ..., by
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and a linearly independent set Ay, = AU {by, ..., by} consisting of n vectors.
Then Theorem B.1.3 shows that Ay, is a basis. Hence let B = {by, ..., bi}. Then
ANB=0and AU Bisabasis. O

Remarks B.1.5 An examination of the proof of Theorem B.1.1 shows that Theorem
B.1.4 is already established there. The proof above also depends on Theorem B.1.1,
but only at the last step (via Theorem B.1.3).

Definition B.1.6 Dimension. As always, we restrict our attention to finite dimen-
sional vector spaces. Theorem B.1.1 shows that any two bases for a vector space V'
have the same number of elements. This number is called the dimension of V', and
is denoted by dim V. Any subspace of a vector space is also a vector space by itself.
Hence any subspace has a dimension too.

Lemma B.1.7 Suppose that U is a subspace of V. Then dimU < dimV, with
equality if and only if U = V.

Proof. Let E = {ey,...,e,} beabasisfor V. If A = {a;, ..., a,,} is a basis
for U, then A is also a linearly independent set in V. Therefore m < n by Theorem
B.1.1. Also, Theorem B.1.3 shows that m = n if and only A is also a basis for V.
This happens ifandonly if U = V. OO



APPENDIX C
DETERMINANTS

Determinants provide a basic algebraic tool in computing volumes and integrals in
vector spaces. They also play a key role in defining and working with tensor fields.
Many of the computational aspects of determinants will be familiar to the reader. We
will review the relevant definitions and results briefly, concentrating not so much on
the computational but rather on the conceptual features of determinants.

C.1  PERMUTATIONS

We consider only the permutations of a finite set A. In most cases, welet A = N,, =
{1,2,...,n}. Aninvertible map o : A — A is called a permutration of A. If A
contains n elements, then §,, denotes the set of all permutations of A. An induction
argument shows that §,, contains n! elements,
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The identity permutation ¢ € 8, is defined by (i) = i, i € A. The inverse of
o€ 8,iso”t € 8,. If pand o are two permutations of A, then their composition
is the permutation defined by (pc)(i) = p(o(i)), ¢ € A. The composition of more
than two permutations is defined similarly. In particular, o* is the composition of
k copies of 0. If p and ¢ are two (different) elements of N,,, then the transposition
7=(pq) € 8, isdefinedby 7(p) = ¢, 7(q) =pand 7(i) = i if i # pand i # q.

Theorem C.1.1 Permutations in terms of transpositions. Any permutation is
either the identity permutation or a composition of transpositions.

Proof. This is clear if n = 1. Let n > 2 and assume the result for (n — 1). Let
o € 8,. The set of values o*(1), k € N, is a finite set A C N,,. Then both A and
B = (N,, \ A) are invariant under c. We see that A is not empty, since 1 € A.
If B is also not empty, then both sets contain at most (n — 1) elements. Hence,
by the induction hypothesis, the restrictions of o to these sets are compositions of
transpositions. It follows that o is the composition of the two sets of transpositions.

Now assume that A = N,,, so that B = . Letp; = ak(l), 1 <k <n. Inthis
case, we have 0 = (p1p2) - (Prn—1Pn), so that o is a product of transpositions.
In this formulation, p, = 1 and we apply transpositions by working from right to
left. That is, to obtain ¢, we first apply the transposition (pn—1pr) = (pPn—11), then
(Pr—2Pn—1) and so on. The application of (pyp) is the last step. O

Remarks C.1.2 Identity in terms of transpositions. If n > 2, then the identity
permutation is also a composition of transpositions. In fact, 72 is the identity
permutation for any transposition 7. If n = 1, however, there are no transpositions.
That is why the identity permutation is singled out in Theorem C.1.1 above.

Theorem C.1.3 Sign of a permutation. There is a unique function, sign : §, —
{ =1, 1}, defined by the following properties: (1) signt = —1 for any transposition
T € 8y, and (2) sign(po) = (signp)(signo) for any p, o € &,.

Proof. If such a function exists, then its uniqueness is clear. In fact, any permutation
is a composition of transpositions. Therefore, by (1) and (2) above, if o is the
composition of p transpositions, then signo = (—1)P. The existence of such a
function is not obvious, however, because the representation of a permutation as a
composition of transpositions is not unique. If o is represented in two different ways,
as a composition of p transpositions and as a composition of g transpositions, then
we have to show that (—1)? = (—1)9.

To show that the sign function is well defined, then, set

P(.'L'17 M xn) = H1<i<j<n(xi ax.])
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This is a polynomial of n real variables x1, ..., x,. Foreach o € §,, let

oP(xy, ..., zp) = H1§i<j§n(xo(i) - ZTo(j))

We see that oP(z1, ..., z,) = £P(z1, ..., 2,). In fact, the factors of P and
o P are of the same absolute value but arranged in a different order. Then define
signo = 1if o P = P andsigno = —1 if o P = —P. We see that the properties (1)
and (2) are satisfied. O

Corollary C.1.4 The signs of the identity permutation and the inverse permu-
tations. The sign of the identity permutation € is 1. Also, any permutation ¢ and its
inverse p = o~ ! have the same sign.

Proof. Since ¢ = ¢ ¢, by Part (2) of Theorem C.1.3 show that
(signe) = (signe) (signe) = (1) = 1.

Next, po = & shows that (sign p) (signo) = (signe) = 1. Since +1 are the only
possible values for the sign function, we see that (sign p) = (signo). 0O

C.2 DETERMINANTS OF SQUARE MATRICES

Definition C.2.1 Determinant of a square matrix. Let A = (A;;) € M, be a
square matrix with n columns and n rows. Then the number

det A = det(A;;) = Zaes,,, (sign U)HiAw(i) (C.1)
is defined as the determinant of this matrix. Here the index ¢ in the product ranges
over N, = {1, ..., n}. The determinant of matrices in M,,,, is a function det :
M,, — R.

Theorem C.2.2 Determinant of the identity matrix. Let E be the identity matrix
sothat Ey; = 1 and E;; = 01ifi # j. ThendetE = 1.

Proof. Weseethat [ [, F; ,(;) = lif o = ¢istheidentity permutationand [ [, E; o;y =
0if o # €. Then (C.1) shows thatdet E =1. O

Definition C.2.3 Conjugate matrices. A and B are conjugate matrices if B;; =
Aj;. We say B is the conjugate of A.
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Theorem C.2.4 Determinant of the conjugate matrix. Let A and B be conjugate
matrices in My, so that B;; = Aj;. Then det B = det A.

Proof. Let o € S,, be a permutation with the inverse permutation p=oc"' Aterm
Aw( y in the product in (C.1) can be also expressed as A,y ; = Bj ;) by letting
j = o(i). Hence, if the terms of the product in (C.1) are rearranged with respect to
the increasing values of the second subscript, then the product becomes

HizlAwm =A,m1 Apiyn = szlAp(m = szlBj p()-

Now sign p = sign o by Corollary C.1.4. Also, the operation of taking the inverse
of a permutation is a one-to-one and onto mapping S,, — S,. Hence

detA = Zaesn (sign U)HZA@' o (i)

= Zpesn (Slgnp)H]B] p(]) = det B O

Theorem C.2.5 Determinants under linear combinationsinonerow. Lerig € N,
be a fixed index and o', "’ € R. Let A, A', A" € M,,,, be three matrices such
that A;; = A; A” if i £ tg and Aw = a' A, .+ a"” A .. In other words,

iggf L
row i of A is a lmear combination of row i of the other two matrices. Then

det A =a'det A’ + a” det A”.

Proof. We have, forany o € §,,,

HZA“T(Z) = (a A/od(lo) + a”A::]o- 2())1_[7;;&‘ AiU(i)
= /A;ucf lo)Hi?gi A;g(1 + a”AZ)cr zO)HiyéioAgg(i)
— aH A“,()_’_a//H A//

Hence we see that det A = o’ det A’ +a”’ det A”. O

Theorem C.2.6 Determinants under permutations of the rows. Let B be the
matrix obtained by permuting the rows of A € M,,,, by a permutation \ € §,,. More
explicitly, let Bj; = Aj;);. Then det B = (sign\) det A.

Proof. Let 1 = A~! € §,, be the inverse of \. For each ¢ € §,, we have

n n n
II_ Biew =TI _ Awe0 =11 _ Asow
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Here j = A(7), i = u(j), and o(i) = o(u(j)) = (ou)(j). Therefore the last two
products consist of the same factors. Also,

det A = Z SIgHUH Aot :Zaesn(sign(du))HjAj(au)(j)-

In fact, the mapping that takes o € §,, to (o) € §,, is a one-to-one and onto mapping
8, — 8,,.. Hence the two sums above consist of the same terms. Therefore, we have

. n . n
detB = ZUE Sn(sxgnU)H._ B; oy = de s (&gna)Hj_ Aj (ow ()
= (sign/\)zges (sign (o H Aj (op)(5) = (sign))det A.

For the third equality, note that (sign A)(sign (o)) = (signo). O

Remarks C.2.7 Dependence on the rows and columns. Theorem C.2.5 shows that
the determinant of a square matrix depends linearly on each particular row vector if
the other rows remain constant. This is also true for the column vectors. In fact, the
columns of a matrix are the rows of the conjugate matrix, and Theorem C.2.4 shows
that the determinants of the original and conjugate matrices are the same. Similarly,
Theorem C.2.6 shows that if the rows of a matrix are permuted, then its determinant
is multiplied by the sign of this permutation. This is also true for the permutations of
the columns, again because of Theorem C.2.4.

C.3 DETERMINANT FUNCTIONS

The determinant of square matrices is connected with alternating multilinear func-
tions. First, let us recall the definition of multilinear functions given in Definition
3.3.3. Let X and Y be two vector spaces and k € N. Then F': X*¥ — Y is called a
multilinear function if

F(x1, ..., xx)=adF(x}, ..., x}) +d"F(x{, ..., x})
whenever there is an index ig € Ny = {1, ..., k } such that x;, = a'xj_ + a”x]

and x; = x; = x if i # io. Here d’, a” € R are scalars.

Definition C.3.1 Alternating multilinear functions. Let X and Y be two vector
spaces and k € N. A multilinear function F' : X* — Y is called an alternating
multilinear function if

F(xx@), -5 Xar)) = (sign X)) F(xy, ..., Xg)

for all permutations A € 8 of Ny, = {1, ..., k}.
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Definition C.3.2 Determinant functions. Let X be an n-dimensional vector space.
Then any nonzero alternating multilinear function ¢ : X™ — R is called a determi-
nant function on X.

Note that we call ¢ a determinant function on X even though ¢ is actually a function
on X™. Here it is very important to note that n = dim X. Basic examples of
determinant functions are obtained in terms of the ordered bases of vector spaces and
the determinants of square matrices. In fact, Corollary C.3.11 below shows that these
examples cover all determinant functions.

Definition C.3.3 Ordered bases. Let X be an n-dimensional vector space. An

n-tuple E = (e, ..., e,) € X™is called an ordered basis for X if the set of vectors
{e1, ..., ey} isabasis for X. Equivalently, E = (e;, ..., e,) € X™ is an ordered
basis for X if { ey, ..., e,} is a linearly independent set of vectors.

Remarks C.3.4 Bases and ordered bases. There is no ordering of the vectors in
abasis {eq, ..., e,} of X. A basis for X can be ordered in n! different ways and
determines n! different ordered bases for X.

Example C.3.5 Basic examples of determinant functions. An ordered basis E =

(e, ..., e,) of X defines a function detg : X™ — R by

detE(xl, ey Xn) = det(mm) (CZ)
Here z;;s are the coordinates of x;s with respect to E = (e, ..., e,) so that
X; = Zj zije; foralli € N, = {1,..., n}, and det(z;;) is the determinant

of the square matrix {x;;} € My,. Theorem C.2.5 shows that detg : X™ — R
is a multilinear function, and Theorem C.2.6 shows that it is alternating. It is
also a nonzero function since, by Theorem C.2.2, detg(es, ..., e,) = 1. Hence
detg : X™ — R is a determinant function. A

Definition C.3.6 Determinant functions with respect to ordered bases. Let E =
(e1, ..., e,) be an ordered basis of X. Then the determinant function detg : X™ —
R defined above in Example C.3.5 is called the determinant function with respect to
the ordered basis E.

We are going to show that for any determinant function ¢ : X — R, there is an
ordered basis E = (e, ..., e,) of X such that ¢ = detg. We need a general
property of alternating multilinear functions.

Lemma C.3.7 If F : X* — Y is an alternating multilinear function, then we have
F(x1, ..., Xx) = 0 whenever { X1, ..., Xk} is a linearly dependent set.
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Proof. If I : X* — Y is an alternating function and if (xy, ..., x) € X* is such
that x; = x; for some 1 < ¢ < j < k, then F(xq, ..., xz) = 0. In fact, in this
case, if 7 = (47) is the transposition of 7 and j, then

(TFY(%1, ..., Xk) = F(x1, ..., x) = (sign7)F(x31, ..., Xk)
forces F'(x1, ..., xx) = O since signT = —1.

Now assume that x; is a linear combination of the other vectors: x; = Z;‘=2 a;jX;.
If F: X¥ — Y is alternating and multilinear, then

n

F‘(Xl7 X2, vauy Xk) = Zj:2ajF(xj, X9, ...y, X]c) =0

by the first part of the proof. In general, if { xy, ..., xx} is a linearly dependent set,
then one vector x; is a linear combination of the other vectors x;. If 7 = (17) is the
transposition of 1 and 4, then (7#)(x1, ..., Xx) = F(X-q), ..., X;(x)) = 0 since

the first vector X, (;) = X; is a linear combination of the others. Hence we also have
F(x1, ..., X)) =—(7F)(%1, ..., xx) =0. O

Theorem C.3.8 Let E = (e, ..., e,) be an ordered basis of X. Then any alter-
nating multilinear function ¢ : X™ — Ris a multiple ¢ = k detg of the determinant
function detg : X™ — R, where k = p(ey, ..., e,).

Proof. We have, since ¢ : X™ — R is a multi-linear function,

O(X1y ooy Xp) = 30<E ; T11€410 - - ) g ; a:njnejn)
1 n
= E jl"'g ; Tij, o T, €5, -0y €5,),

where x; = 3. x1j,€;,. Now Lemma C.3.7 shows that ¢(uj,, ..., u;,) can be
nonzero only if the vectors { u;,, ..., u;, } are all different. This happens only if
the set of indices { ji, ..., jn } is a permutation of N, = {1, ..., n}. Therefore

the last set of sums can be replaced by a single sum over the permutations o € §,,.
Thus we obtain

o(x1, ..oy Xn) = Zaesnwla(l) CTpg(n) P(€ca)s -y o)) (C.3)
= Zaesn (Sign o) T1,(1) Tro(n) (€1, .. ., €,) (C4)

pler, ..., e,) - det(x;;) (C.5)

= (e, ..., e,) detg(xy, ..., Xn). (C.6)

Here (C.4) follows from Definition C.3.1 of alternating multilinear functions, (C.5)
follows from the definition of determinants of square matrices in C.2.1, and (C.6)
follows from the definition of detg in (C.2). O
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Corollary C.3.9 If v : X™ — R is a determinant function, then p(a,, ..., a,) is
nonzero if and only if { a1, ..., a,} is a linearly independent set.

Proof. If {a;, ..., a,} is a linearly dependent set, then Lemma C.3.7 shows that
p(ag, ..., a,) = 0. Otherwise, A = (aj, ..., a,) is an ordered basis for X and
p=p(a, ..., a,) dety by Theorem C.3.8. But determinant functions are nonzero
functions, by Definition C.3.2. Hence p(a;j, ..., a,) #0. O

Corollary C.3.10 Any determinant function on X is a nonzero multiple of any other
determinant function on X.

Proof. Let , ¢ : X™ — R be two determinant functions on X, and let E be an
ordered basis (eq, ..., e,) for X. Then we see easily from Theorem C.3.8 that
¢ = ky with k = ¢ler, ..., e,)/¢(er, ..., e,). Note that k is defined since
P(ey, ..., e,) # 0 by Corollary C.3.9 above. O

Corollary C.3.11 For any determinant function p : X™ — R, there is an ordered
basis E = (eq, ..., e,) of X such that ¢ = detg.

Proof. If ¢ : X™ — Risadeterminant function and A = (ay, ..., a,) is an ordered
basis of X, then a = ¢(ay, ..., a,) # 0 by Corollary C.3.9. Sete; = (1/a)ay
and e; = a; if 2 < ¢ < n. Then we see that E = (eq, ..., e, ) is an ordered basis
for X and p(eq, ..., e,) = 1 by the muliilinearity of determinant functions. Then
@ = detg by Theorem C.3.8. It is clear that this choice for E is not unique. O

Corollary C.3.12 If ¢ : X™ — R is a determinant function and A : X" — Risan
alternating multilinear function, then there is a 3 € R such that A = (3 ¢.

Proof. This follows directly from Theorem C.3.8 and Corollary C.3.11. O

We apply these results to obtain two additional facts about the determinant of square
matrices.

Theorem C.3.13 Determinant of a product. [f A and B are square matrices in
M., then det{ AB) = det A det B.

Proof. Fix A and define the function D(B) = det(AB). From Theorem C.2.6 and
Remarks C.2.7, we know that D is an alternating multilinear function in the columns
of B. By Corollary C.3.10, there is a constant &k such that D(B) = k det B. Letting
B be the identity matrix I, we see that k = det A. This proves the conclusion. O
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Theorem C.3.14 Invertible matrices and nonzero determinants. If A is a square
matrix, then A is invertible if and only if det A # 0. If A is invertible, then
det Adet A=1 = 1.

Proof. First, A is invertible if and only if the columns of A are linearly independent
if and only if det A # 0, by Corollary C.3.9. Then if AA~! = I, Theorem C.3.13
implies that det Adet A= =1. O

C.4 DETERMINANT OF A LINEAR TRANSFORMATION

In this book we consider determinants mainly in the context of linear transformations.
Each linear transformation T : X — X has a number attached to it, called the
determinant of T. 1t is denoted as detT. We provide the definition after the
following observation.

Lemma C.4.1 Let ¢ be a determinant function on X and E = (eq, ..., e,) a basis
for X. Then the number k = ¢(Tey, ..., Tey)/ple1, ..., e,) is independent of
the choices of ¢ and E.

Proof. We distinguish two cases. First, if ¢(Te1, ..., Te,) = 0, then T maps
a basis to a linearly dependent set. In this case it will map any basis to a linearly
dependent set. Hence ¢(Tey, ..., Te,) = 0 for all choices of ¢ and E.

Second, if ¢(Te1, ..., Te,) # 0, then the function

YRy, oy X)) = @(Txyq, oo, Txy)

defines a nonzero alternating multilinear function ¢ : X™ — R (with each x; € X).
Hence v is a determinant function on X . Therefore there is a nonzero number & such
that

Y(Xyy ooy Xp) = @(Tx1, oo, Txp) = kp(x1, ..o, Xn)
for all (x1, ..., X,) € X™. This shows that k is independent of the choice of E.

Furthermore, if ¢ is another determinant function on X, then there is a number £ #£ 0
such that ¢ = £1J. Hence

o(Tey, ..., Te,) (9(Tey,...,Te,) V(Tey, ..., Te,)
oler, ..., en) ey, ..., e) deq, ..., en)

3

which shows that & is also independent of the choice of ¢. O
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Definition C.4.2 Determinant of a transformation. The number k obtained in
Lemma C.4.1 is called the determinant of the linear transformation T and denoted
as det T'. Hence

dot T — o(Teq, ..., Ten).
oler, ..., en)
Here ¢ is any determinant function on X and (e, ..., €,) is any basis for X.

C.5 DETERMINANTS ON CARTESIAN PRODUCTS

Theorem C.5.1 Ler (U, V') be a coordinate system for W, Let dim U = q, dimV =
b, and dAim W = ¢ = a + b. The associated coordinate projections are P - W — U
and QW — V. If o : W¢ — R is a determinant, then

wlug, ..., Uy Wi, ..., W) =(uy, ..., Ug; Qwy, ..., QW)
whenever (i, ..., uy) € U® with arbitrary (w1, ..., wy) € WP, Similarly,

O(W1, cony Wo; Vi, oon, V) = @(PWy, ..., PWgi vy, ..., V)
whenever (vy, ..., vy) € VP with arbitrary (wy, ..., wg) € W

Proof. We have wi = Pw + Qw with Pw, € U. Hence

pag, ..o, Uy Wy, ..., W) = ug, -0, Uy Pwy + Qwy, wa, -0, W)
= @(uy, -+, ug; Pwy, wo, -, wp) +
p(ug, -+, Ug; QwWy, Wa, -+, W)
= g(ug, -+, Uy QWy, W, -, Wp).
To obtain the last equality, note that Pw is linearly dependent on (uy, ..., u,)
and, therefore, p(u, -+, ug; Pwy, wa, -+, wp) = 0. This follows from the

alternating property of determinants. The proof is completed by an obvious induction
argument. O

Theorem C.5.2 is a generalization of Corollary C.3.12 above. Two key applications
of this theorem are given in Theorems C.5.3 and C.6.1 below.

Theorem C.5.2 Let U and V be two vector spaces with dimU = q, dimV = b,
where a, b € N, Let Q : (U® x V*) — R be a function such that

(ug, ..., ug) €U% = Quy, ..., U4 VL, ..., vp) ER (C.7)
is an alternating multilinear function for each fixed (v1, ..., vy) € V® and

(Vi, ooy V) EVE 5 Q(uy, ..., ug; v, ..., V) ER (C.8)
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is an alternating multilinear function for each fixed (uy, ..., u,) € U®. Then, given
any two determinant functions ¢ : U® — R and 1 : V® — R, there is a constant
B € R such that

Quy, ..., wg; v, oo, V) = By, ..o, ug) YV, oo, V) (C.9)
forall (uy, ..., u,) € U and for all (v1, ..., vy) € VP
Proof. Let (vy, ..., v;) € V? be fixed. The function in (C.7) is an alternating

multilinear function U* — R. Then Corollary C.3.12 shows that it is a multiple of
the determinant function ¢ : U® — R. The multiplication constant will be a number

a(vi, ..., vy) € R that depends on (v, ..., v;) € V. Hence
Quy, ooy g Vi, o, V) = vy, L V) (g, L., 1) (C.10)
forall (uy, ..., u,) € U®. But (C.8) shows that
(Vi, .., Vi) EVP s afvy, ..., vp) €R (C.11)

is also an alternating multilinear function. Hence, by Corollary C.3.12, there is a
constant 5 € R such that

a(vi, ..., vp) = B(vy, ..., V) (C.12)
forall (vq, ..., vy) € V. Then the proof follows from (C.10) and (C.12). O

Theorem C.5.3 Determinants on Cartesian products. Let W = U x V. Let
p: U >R ¢ Vt S R and 8 : We — R be three determinant functions on U,
V and W, respectively. Then there is a nonzero constant 3 such that

Oay, ..., ug; v, .., V) = Boluy, oo, u) (v, oo, V) (C.13)
forall(uy, ..., u,) € U%and (v, ..., vp) € VO
Proof. Define Q : (U® x V®) — Ras
Quy, ..., ug; ve, .oy, V) =60y, ..o, g Ve, -, V). (C.14)

We see that the hypotheses (C.7) and (C.8) of Theorem C.5.2 are satisfied. Then the
result follows from the conclusion (C.9) of that theorem. 0O

C.6 DETERMINANTS IN EUCLIDEAN SPACES

There are special determinant functions on a Euclidean space, defined in relation to
the inner product. We will refer to these special determinants as the Euclidean (or



446 DETERMINANTS

standard) determinants. We will show that each Euclidean space has exactly two
standard determinant functions.

Theorem C.6.1 Determinants in Euclidean spaces. Let X be a Euclidean space.
Let p = detg : X™ — R be the determinant function with respect to an ordered

orthonormal basis E = (eq, ..., e,) of X. Then
@(Xh -~'axn)'§0(y1a ayn):det<xzvy]> (Cls)
forall (X1, ..., %), (¥1, -+, ¥Yn) € X™ The last determinant in (C.15) is the

determinant of the square matrix (X;, y; ) € Myp.

Proof. Define 2 : (X™ x X™) — R as

QX1, ooy X3 Y1, o250 Yn) = det(xg, y; ). (C.16)

We see that the hypotheses (C.7) and (C.8) of Theorem C.5.2 are satisfied. Then the
conclusion (C.9) of that theorem shows that there is a constant 3 € R such that

Bo(X1, ..oy Xn) - @Y1, o5 ¥n) = det(xq, y5) (C.17)
forall (x1, ..., Xn), (¥1, ---» ¥n) € X™. To determine the value of 3, let
(X1, -, Xp) = (¥1, ..., yn) = (€1, ..., €,).

Then (e;, e;) € M, is the identity matrix and det{e;, ;) = 1 by Theorem C.2.2.
Also, ¢(e1, ..., e,) = detg(ey, ..., e,) = 1 by the definition of detg in (C.2).
Hence weseethat 3 =1. O

Definition C.6.2 Euclidean determinants in Euclidean spaces. Let X be a Eu-
clidean space and dim X = n. Call a determinant function ¢ : X™ — R a Euclidean
(or standard) determinant function of X if

plug, ..., u,) ==1

for all ordered orthonormal bases (uy, ..., u,) € X™ of X.

Theorem C.6.3 Existence of Euclidean determinant functions. Each Euclidean
space X has exactly two Euclidean determinant functions.

Proof. Let ¢ = detg : X™ — R be the determinant function with respect to an
ordered orthonormal basis E = (e, ..., e,) of X. Let (uy, ..., u,) be another
ordered orthonormal basis. Then Theorem C.6.1 shows that

e(ur, ..., uy)e(uyg, ..., u,) =det{u;, u;) =1,
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since (u;, u;) € M, is the identity matrix for any ordered orthonormal basis.
Hence ¢(uy, ..., u,) = *1 and ¢ = detg is a Euclidean determinant function.
Conversely, if ¢ is a Euclidean determinant function, then ¢(eq, ..., ,) = *£1.
Hence ¢ = 4+ detg by Theorem C.3.8. Thus we see that ¢ : X™ — R is a Euclidean
determinant function if and only if ¢ = £ detg.

Note that if U is another ordered orthonormal basis, then detyy = £ dety. Hence the
choice of the ordered orthonormal basis does not change the two possibilities + detg
for a Euclidean determinant function. O

Euclidean Determinants on Subspaces

A subspace U of a Euclidean space Z is also a Euclidean space with the inner
product restricted to U. Hence U also has two Euclidean determinant functions. In
the following discussion, ¥z and vy each denote one of the Euclidean determinants
on the corresponding spaces. Also, a, b € N,a+b =c¢c=dimZ, and X is a
subspace of Z with dim X = a.

Theorem C.6.4 Euclidean determinants on orthogonal subspaces. Ler (X, Y)
be an orthogonal coordinate system in Z. Then

¢Z(X17 ey Xai Y1, oo }’b) = i¢X(X1» ceey Xa)i/)Y(}’h ey Yb) (C18)

forall (x1, ...,%,) € X% (y1, ..., ys) EY2

Proof. Theorem C.5.3 shows that there is a 3 € R such that

Yz(X1, .oy Xa; Y1, oo ¥o) = B¥x (X1, oo, Xa) Yy (Y1, -, ¥8) (C19)

for all (x1,...,%s) € X% (y1,...,¥s) € Y? To find the value of 3, let
(ar, ..., a,) and (by, ..., by) be two ordered orthonormal bases for X and Y,
respectively. Then (ai, ..., a4; b1, ..., by) is an ordered orthonormal basis for
Z. Since all the Euclidean determinant functions take the values of 1 on ordered
orthonormal bases, we see that 5 = +1. O

Theorem C.6.5 Let (X, V) be a coordinate system for Z. Let Y = X' and let
P and Q be the orthogonal projections on X and Y, respectively. Then there is a
nonzero number (3 such that

Yz(X1, ooy Xay V1, oo, V) = Bx(Xq, ., X)Wy (Ve o, V)

= PYx (X1, .-, X )Py (QVy, -, QVy)

forall (Xy, ..., X,) € X®and (vy, ..., vy) € VP
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Proof. The first equality follows directly from Theorem C.5.3. To prove the second
equality, first apply Theorem C.5.1 to obtain

¢Z(xl7 sy Xy VG e, Vb) = ’l,[/Z(le <y Xaj Qvl’ tees va) (Czo)

and then apply Theorem C.6.4 to (C.20). O

Corollary C.6.6 Let V be complementary to X and Y = X*. Let Q be the
orthogonal projection on 'Y . Then there is a nonzero number 3 such that

Bov(vi, .o, V) =y (Qvy, ..., QVy)

forall (vi, ..., vp) € VP
Proof. This follows directly from Theorem C.6,5. O

Theorem C.6.7 Let Z be an n-dimensional Euclidean space. If ¥ : Z™ — Ris a
Euclidean determinant, then |1(z1, ..., Zn)] < ||z1] - - || Zn]|-

Proof. Proceed by inductiononn € N. O

C.7 TRACE OF AN OPERATOR

Notations C.7.1 Let X be an n-dimensional space and T : X — X a linear trans-
formation. For each determinant function ¢ : X™ — R and foreach (x1, ..., X,) €
X", define

n
Blp, T)(x1, -y Xu) = ) @(Xi1, -0y Xin) (€21)
where Xij = Xj if ¢ 75 j and X4 = TX,;.
Hence, if n = 3, for example, then
B(p, T)(x1, X2, x3) = @(T'x1, X2, X3) + ¢(x1, Tx9, X3) + (X1, X2, TX3).

Theorem C.7.2 Let B(p, T) : X™ — R be as defined in (C.21). Then there is a
number (Tr T') such that B(p, T) = (Tr T) ¢ for all determinants ¢ : X" — R.

Proof. This is identical to the proof of a similar statement for det 7', Lemma C.4.1.
The details are Left as an exercise. O
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Definition C.7.3 Trace of a transformation. Let 7' : X — X be a linear trans-
formation. The number (Tr7T') obtained in Theorem C.7.2 is called the trace of
T.

The determinant of 7" was defined in Definition C.4.2. We need the following special
relation between Tr 7" and det T'.

Theorem C.7.4 Let A be an open interval and let T(-) : A —» L(X, X) be a
differentiable function. Assume that T'(a) = I is the identity transformation I :
X — X forana € A. Then (det T) (a) = (Tr T'(a)).

Proof. Let E = (eq, ..., e,) be an ordered basis for X and ¢ = detg the determi-
nant function of E. Hence ¢ is the determinant function specified by the requirement
that p{eq, ..., e,) = 1. Then we see that

detT = p(Tey, ..., Tey).
Hence, by the differentiation rule for multi-linear functions,
n
(det T)'(a) = Zi:lw(eﬂ’ [P ein),
where e;; = T'(a)e; = e, if ¢ # j and e;; = T"(a)e;. Hence
(det T) (a) = (Tr T'(a))

follows. Here the equality ¢(ey, ..., e,) = lisused again. 0O
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APPENDIX D
PARTITIONS OF UNITY

Partitions of unity is a basic technique that lets us reduce the investigation of the
behavior of a function over a region to its investigation over small neighborhoods.
Conversely, the technique is used to extend results that have been established for
small neighborhoods to a larger setting.

A weak version of the technique is presented in Chapter 6 in the proof of the inverse
function theorem. The stronger version below uses G functions rather than the !
functions used earlier. Some arguments require a high degree of differentiability, and
the version of partitions of unity provided here will work for any desired degree of
differentiability. The proof below proceeds in the same general manner as the proof
for the weak version in Chapter 6.
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452 PARTITIONS OF UNITY

D.1 PARTITIONS OF UNITY

Lemma D.1.1 There is a C function h : R — R such that h(z) = 0if x < 0 and
h(z) >0ifz > 0.

Proof. Define h(z) = 0if z < 0 and h(z) = exp(—1/z) if ¢ > 0. An induction
argument shows that all derivatives of exp(—1/z) at a point z # 0 are of the
form P(u)exp(u), where P(u) is a polynomial in v = —1/z. Then we see that
lim,_g+ h(™ (x) = 0 for the derivatives of all orders n € N. Hence h: R — Ris a
C*° function with the required properties. O

Lemma D.1.2 Let a > 0. There is a €™ function g : R — R such that g(x) = 0 if
z<0orifz > aand g(z) >0if0 <z < a.

Proof. Let A : R — R be the function obtained in Lemma D.1.1. Then
g(z) = h(z)h(a — z)

is a function with the required properties. O

Lemma D.1.3 Leta > 0. There is a C> function f : R — [0, 1] suchthat f(z) =0
ifr <Oand f(x)=1ifz > a

Proof. Let g : R — R be the function obtained in Lemma D.1.2. Then
f@ =/ [ gydr ceR
0
with A = [ g(t)dt, is a function with the required properties. DO

Lemma D.1.4 Let o > 0. There is a C™ function ¢ : X — [0, 1] on a Euclidean
space X such that o(x) = 1if||x|| < 1land o(x) = 0if (1 + a) < ||x||.

Proof. Leta = (1 + a)? — 1. Let f : R — R be the function obtained in Lemma
D.1.3 with this @ > 0. We claim that

p(x) =1- f(Ix*-1), xe X
has the required properties. An easy check shows that ¢ takes values in [0, 1], and

that o(x) = 11if ||x| < 1 and o(x) = 0 if ||x|| > (1 + a). Also, the function
A(x) = [|x]|2 =1 = (x, x) — 1 isa polynomial. Hence \ : X — R isa C* function.
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It follows that f- A is also a €*° function as it is the composition of two € functions.
SopisC®. O

Lemma D.1.5 Let G; be any open covering of a compact set C. Then there is a
& > 0 such that for any x € C, Bs(x) is contained in one of the covering sets G;.

Proof. Assume this is not true. Then for each n € N, there is an x,, € C such that
B /n(xn) is not contained in any of the G;. Since C is compact, we can assume that
X, is convergent, without loss of generality. If x,, — a, thena € C and a € G; for
one of the G;s. Then By, (x,) C G; for sufficiently large n. This contradiction
proves the lemma. 0O

Lemma D.1.6 Let B, (x;) be a finite covering of a compact set C. Then there is a
B < 1 such that Bg,,(x;) is still a covering of C.

Proof. Use Lemma D.1.5to find ad > 0 such that for any x € C, B;s(x) is contained
in one of B, (x;). Then let 8 > max;((r; —8)/r;)and 3 < 1. 0O

Lemma D.1.7 Let C be compact, let G be open and suppose C C G. Then there is
a € function : X — [0, 1] suchthat(x) = 1ifx € Cand p(x) =0ifx & G.

Proof. Let B, (a;) C G be a finite covering of C consisting of n balls. Finda 3 < 1
such that Bg,, (a;) is still a covering of G. By an easy extension of Lemma D.1.4,
there are C> functions ¢; : X — [0, 1] such that p;(x) = 1 if x € Bg,,(a;) and
wi(x) =0if x € B,,(a;). Then we see that

v=1-1—-¢1) (1 =)

is a function with the required properties. O

Theorem D.1.8 Partitions of unity. Let B, (x;) be a finite covering of a compact
set C. Then there are C™ functions A; : X — [0, 1] such that each \; has a compact
support S; C By, (x;) and such that 3, \i(x) = 1 forallx € C.

Proof. Find o < 1 as in Lemma D.1.6 so that By, (x;) is still a finite cover of C.
Let o < 8 < 1. Use Lemma D.1.4 to find C* functions p; : X — [0, 1] such that
pi(x) = 1if x € Bar,(a;) and p;(x) = 0 if x € Bg,, (a;). Then the finite sum
p=3_, H; is a € function and p(x) > 1forall x € C. Let G be the set of x € X
such that u(x) > 1/2.

Now use Lemma D.1.7 to find a €% function ¢y : X — [0, 1] such that ¢(x)
ifx € Cand 9(x) = 0if x ¢ G. Define \; = (u;/u)e, but also take A;(x)

1
0
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whenever ¥(x) = 0, even if u(x) = 0. If ¢)(x) # 0, then x € G and u(x) > 1/2.
Hence the functions A; are €. They take values in [0, 1]. The support of A; is
the closure of Bg,, (a;), which is contained in B, (x;). Also Y_, Ai(x) = 1 for all
xe(C. O
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continuous
necessary conditions, 194
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differentiable function, 175
differentiable functions, 190, 192
differentials
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differentiation, 177
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intermediate value theorem, 164
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review of, 329
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symmetric, 91
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with directional derivatives, 201
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equations of, 240
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integers, 10
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difference, 268, 270
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ordered bases, 440 for sets in R, 55
orientation-preserving polar coordinates, 20

charts, 354 polynomials, 86

diffeomorphisms, 354 derivatives of, 273
orientation-preserving diffeomorphisms, 403 homogeneous, 91
orientations in vector variables, 91

global positive definite, 282

on manifolds, 357 second degree homogeneous, 86
in the classical Stokes’ theorem, 413 sequences of, 273
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of manifolds, 353 derivatives of, 184
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orthogonal complements, 104 principal normal vector, 187
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orthogonal sets, 97 integrals in, 312
orthogonal subspaces, 103 products
orthogonality, 97 differentiation of, 218
orthonormal bases, 97 projections in vector spaces, 71

existence of, 100 pullbacks
orthonormal sets, 97 and exterior derivatives, 399
outer normals of tensor fields, 370

and volume multipliers, 359

continuity of, 359 Q, 10

expressions for, 359

of oriented surfaces, 358 R, 10

range of a linear transformation, 69

pairwise disjoint sets, 5 rational numbers, 10, 419
Pappus’ theorem real numbers, 10, 31

for surface areas, 353 absolute values of, 34

for volumes, 337 arithmetic operations in, 423
parametric equations, 245 completeness of, 37, 427

equivalent, 248 density of Q in, 33

local, 246 density of irrational numbers in, 38

of manifolds, 245, 246 incompleteness of Q in, 37
parametric representations irrational, 38

compatibility of, 248 order relations in, 32, 424

for manifolds, 346 positive, 32
partial derivatives, 205 upper bounds in, 428

higher-order, 210 regions under graphs, 303
partitions, 299 regular neighborhoods, 402

approximations by, 299 boundaries in, 402

general, 299 on manifolds, 412

into binary cubes, 299 regular sets, 402, 403

of finite size, 299 almost, 407

size of, 299 Stokes’ theorem for, 409
partitions of unity, 350, 452 Stokes’ theorem for, 405
permutations, 436 relations, 7

and transpositions, 436 equivalences, 7

sign of, 436 equivalence classes, 8
plane curves, 190 representatives, 8

points of closures reflexivity, 7
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symmetry, 7 intersections of, 5
transitivity, 7 Jordan, 290, 295
restricted derivatives, 195 members of, 4
reverse charts negligible, 296
for manifolds, 346 pairwise disjoint, 5
Riemann condition points of, 4
for integrability, 305, 306 power set of, 4
right-hand rule, 358 proper subsets of , 4
for orientations of surfaces, 358 regular, 403
rigid motions, 186 almost, 407
about a fixed point, 189 subsets of, 4
rotations, 188 symmetric difference of, 5
rules of differentiation, 211 unions of, 5
span, 63
self-adjoint transformations, 111 spans
sequences, 18 subspaces and, 64
subsequences, 45 spectral theorem, 109-113
bisection, 59 for self-adjoint transformations, 112
in Cartesian product spaces, 132 spherical coordinates, 21, 233
of polynomials, 152, 273 and diffeomorphisms, 233
sequences in normed spaces, 128 standard basis in R™, 64
bounded, 129 step functions
Cauchy, 133 approximations by, 305
convergent, 128 Stokes’ theorem, 381
sequences of real numbers, 40 basic, 381, 384, 394
bounded, 40 in tensor form, 400
Cauchy, 46 classical, 413
convergent, 40 in tensor form, 414
decreasing, 42 in vector form, 414
increasing, 42 for almost regular sets, 409
limits of, 40 for regular sets, 405
monotone, 42 general, 409
unbounded, 40 on manifolds, 412
zero, 41 subspaces, 63
series intersection of, 64
Taylor, 185, 279 spans and, 64
series of real numbers, 50 sums of, 64
absolute convergence of, 51 volumes on, 343
convergence of, 50 sums
ratio test for, 52 lower, 306
root test for, 51 upper, 306
tests for, 51 supremum, 39
sets, 3 surface-area
almost regular upper, 407
Stokes’ theorem for, 409 surfaces, 244, 357
Cartesian products of, 5 orientations of, 357
complements of, 5 symmetric difference of sets, 5
elements of, 4
emptyset, 4 tangent planes
enlargements of, 375 orientations of, 358
general intersections of, 6 tangent spaces

general unions of, 6 and derivatives, 346
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equations of, 238

of graphs, 238

of manifolds, 249

properties of, 250
tangent vector, 187
tangent vectors

of curves, 250

on a manifold, 250

Taylor polynomials, 182, 183, 279

approximation by, 184

derivatives of, 184

series of, 279
Taylor series, 185, 279

approximation by, 185
tensor fields, 366

integrals of, 366

computations of, 367

pullbacks of, 370

related to vector fields, 368
term-by-term differentiation, 275
ternary expansions, 54
tetrahedra, 302

volumes of, 318
topological concepts, 158
topological spaces, 158
topology, 156

in R, 58

in normed spaces, 156

of a vector space, 158

of Jordan sets, 298
torsion, 188
total differentials, 215
trace

of a transformation, 448

of linear transformations, 382
translations

of Jordan sets, 324

volumes under, 324
transpositions

and permutations, 436
triangle inequality

between real numbers, 34

in Euclidean Spaces, 96

in normed spaces, 126

the reversed, 126

uniform continuity, 150, 167

uniform convergence, 150
and continuity, 150

unions of sets, 5

upper approximations
supports of, 307

upper bounds, 36
least, 36
uniqueness of, 37
upper integrals, 306
upper sums, 306

variables
change of, 328
variations
of cross-sections, 301
vector
binormal, 187
gradient, 208
principal normal, 187
vector field
curl of a, 415
vector fields, 361
flux of, 392
integrals of, 361
line integrals of, 361
computations of, 362
on manifolds, 412
related to tensor fields, 368
surface integrals of, 363
computations of, 363
vector spaces
bases in, 64
bilinear functions on, 82
Cartesian products of, 67
complementary subspaces in, 66
complementary projections in, 73
coordinate systems in, 74
dimension of, 65
dimension theorem in, 65
dimensions of, 431, 434
direct sums of, 66
finite dimensional, 65
images of subspaces in, 69
inner products on, 95
bilinear functions and, 95
isomorphisms between, 75
linear combinations in, 62
linear functions between, 68
linear maps between, 68
the space of, 68
linear transformations between, 68
linearly independent sets in, 64
projections in, 71
scalar multiplication in, 62
span of a finite set in, 63
subspaces in, 63
vector addition in, 62
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velocities, 186
in flows, 386
in motions of Euclidean spaces, 186
initial
in flows, 387
velocity fields, 386
volume multipliers, 117, 325
and outer normals, 359
determinants as, 326
general, 345
of isometries, 325
of isomorphisms, 325
of linear maps, 344
of scaling transformations, 325
volumes, 290
additivity of, 292
change of, 332
Euclidean, 340
in Cartesian products, 294
inner, 295
lower-dimensional, 343
monotonicity of, 293
of cones, 318
of cubes, 292
of cylinders, 318
of ellipsoids, 319
of Euclidean balls, 317
of tetrahedra, 318
of unions of cubes, 293
on subspaces, 343
outer, 295

well-ordering axiom, 13

Z, 10
Zt, 10
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