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Preface

Mathematics is an essential tool for physicists and engineers which students must
use from the very beginning of their studies. This combination of textbook and study
guide aims to develop as rapidly as possible the students’ ability to understand and
to use those parts of mathematics which they will most frequently encounter. Thus
functions, vectors, calculus, differential equations and functions of several variables
are presented in a very accessible way. Further chapters in the book provide the
basic knowledge on various important topics in applied mathematics.

Based on their extensive experience as lecturers, each of the authors has acquired
a close awareness of the needs of first- and second-years students. One of their aims
has been to help users to tackle successfully the difficulties with mathematics which
are commonly met. A special feature which extends the supportive value of the
main textbook is the accompanying “study guide”. This study guide aims to satisfy
two objectives simultaneously: it enables students to make more effective use of the
main textbook, and it offers advice and training on the improvement of techniques
on the study of textbooks generally.

The study guide divides the whole learning task into small units which the stu-
dent is very likely to master successfully. Thus he or she is asked to read and study
a limited section of the textbook and to return to the study guide afterwards. Learn-
ing results are controlled, monitored and deepened by graded questions, exercises,
repetitions and finally by problems and applications of the content studied. Since the
degree of difficulties is slowly rising the students gain confidence immediately and
experience their own progress in mathematical competence thus fostering motiva-
tion. In case of learning difficulties he or she is given additional explanations and in
case of individual needs supplementary exercises and applications. So the sequence
of the studies is individualised according to the individual performance and needs
and can be regarded as a full tutorial course.

The work was originally published in Germany under the title “Mathematik für
Physiker” (Mathematics for physicists). It has proved its worth in years of actual
use. This new international version has been modified and extended to meet the
needs of students in physics and engineering.
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viii Preface

The CD offers two versions. In a first version the frames of the study guide are
presented on a PC screen. In this case the user follows the instructions given on the
screen, at first studying sections of the textbook off the PC. After this autonomous
study he is to answer questions and to solve problems presented by the PC. A second
version is given as pdf files for students preferring to work with a print version.

Both the textbook and the study guide have resulted from teamwork. The au-
thors of the original textbook and study guides were Prof. Dr. Weltner, Prof.
Dr. P.-B. Heinrich, Prof. Dr. H. Wiesner, P. Engelhard and Prof. Dr. H. Schmidt.
The translation and the adaption was undertaken by the undersigned.

Frankfurt, August 2009 K. Weltner
J. Grosjean
P. Schuster
W. J. Weber
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Chapter 1
Vector Algebra I: Scalars and Vectors

1.1 Scalars and Vectors

Mathematics is used in physics and engineering to describe natural events in which
quantities are specified by numerical values and units of measurement. Such a de-
scription does not always lead to a successful conclusion.

Consider, for example, the following statement from a weather forecast:
‘There is a force 4 wind over the North Sea.’
In this case we do not know the direction of the wind, which might be important.

The following forecast is complete:
‘There is a force 4 westerly wind over the North Sea.’
This statement contains two pieces of information about the air movement,

namely the wind force which would be measured in physics as a wind velocity

Fig. 1.1
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2 1 Vector Algebra I: Scalars and Vectors

in metres per second (m/s) and its direction. If the direction was not known, the
movement of the air would not be completely specified. Weather charts indicate the
wind direction by means of arrows, as shown in Fig. 1.1. It is evident that this is
of considerable importance to navigation. The velocity is thus completely defined
only when both its direction and magnitude are given. In physics and engineering
there are many quantities which must be specified by magnitude and direction. Such
quantities, of which velocity is one, are called vector quantities or, more simply,
vectors.

As an example from mathematics, consider the shift in position of a point from
P1 to P2, as shown in Fig. 1.2a. This shift in position has a magnitude as well as
a direction and it can be represented by an arrow. The magnitude is the length of the
arrow and its direction is specified by reference to a suitable coordinate system. It
follows that the shift of the point to a position P3 is also a vector quantity (Fig. 1.2b).

Fig. 1.2

A figure in a plane or in space can be shifted parallel to itself; in such shifts the
direction of all lines of the figure are preserved. Figure 1.3 shows a rectangle shifted
from position A to position B where each point of the rectangle has been shifted
by the same amount and in the same direction. Shifts which take place in the same
direction and are equal in magnitude are considered to be equal shifts. A shift is
uniquely defined by one representative vector, such as a in Fig. 1.3. Two vectors are
considered to be equal if they have the same magnitude and direction.

Fig. 1.3
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Furthermore, vectors may be shifted parallel to themselves, as shown in Fig. 1.4a,
if the magnitudes and directions are preserved.

A vector may also be shifted along its line of action, as shown in Fig. 1.4b.

Fig. 1.4

Vectors can be combined in various ways. Let us consider the addition of vectors.
Consider the point P1 in Fig. 1.5 shifted to P2, and then shifted again to P3. Each
shift is represented by a vector, i.e.

−−→
P1P2 and

−−→
P2P3, and the result of the two shifts

by the vector
−−→
P1P3. Hence we can interpret the succession of the two shafts as the

sum of two vectors giving rise to a third vector.

Fig. 1.5

The length of the vector representing a physical quantity must be related to the
unit of measurement.

Definition Vectors are quantities defined by magnitude and direction. The
geometrical representation of a vector is by means of an arrow
whose length, to some scale, represents the magnitude of the
physical quantity and whose direction indicates the direction of
the vector.
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On the other hand, there are physical quantities, distinct from vectors, which are
completely defined by their magnitudes. Such quantities are called scalar quantities
or, more simply, scalars.

Definition A scalar quantity is one which is completely defined by its mag-
nitude.

Calculations with scalar quantities follow the ordinary rules of algebra with pos-
itive and negative numbers. Calculations with vectors would appear, in the first in-
stance, to be more difficult. However, the pictorial geometrical representation of
vector quantities facilitates this task. With vectors it is possible to describe physical
situations concisely. A clear notation is needed to represent vector quantities and
there are, in fact, a number of notations in use.

Vectors are represented by

1. two capital letters with an arrow above them to indicate the sense of direction,
e.g.

−−→
P1P2 where P1 is the starting point and P2 the end point of the vector;

2. bold-face letters, e.g. a,A (the style used in this text);
3. letters with an arrow above, e.g. →a ,

→
A;

4. underlined letters, e.g. a, and occasionally, by a squiggle underneath the letter,
e.g. a∼.

To distinguish the magnitude of a vector a from its direction we use the mathemati-
cal notation

|a| = a

The quantity |a| is a scalar quantity.

1.2 Addition of Vectors

Geometrically, vectors may be combined by defining easy rules.
It is important that the results (sum, difference) should correspond exactly to the

way actual physical quantities behave.

1.2.1 Sum of Two Vectors: Geometrical Addition

Previously the sum of two vectors was shown to be made up of two shifts, i.e. the
result of two successive shifts was represented by means of another shift. If two
vectors a and b are to be added so that their sum is a third vector c then we write

c = a+b
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Consider the two vectors a and b, shown in Fig. 1.6a, with a common origin at A.
We can shift vector b parallel to itself until its starting point coincides with the end
point of vector a (see Fig. 1.6b). As a result of this shift we define the vector c as
a vector starting at A and ending at the end of vector b (see Fig. 1.6c). Then c is the
vector sum of the two vectors a and b and is called the resultant. The triangle law
of addition of vectors is expressed by the vector equation

c = a+b

Fig. 1.6

The sum of several vectors is obtained by successive application of the triangle law;
a polygon is formed as illustrated in Fig. 1.7.

Fig. 1.7

The order in which the vectors are added is immaterial. This is known as the
commutative law, i.e. a+b = b+a. Furthermore, the law for addition of vectors is
associative, i.e. if a,b and c are three vectors then their sum is

a+(b+ c) = (a+b)+ c (1.1)

This means that we could add to a the sum of b and c or find the sum of a and b

and add it to c and still obtain the same resultant.
Vector addition also follows Newton’s parallelogram law of forces which applies

to two forces acting at a point, as shown in Fig. 1.8. The vector sum of two such
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vectors a and b is obtained by drawing two lines parallel to the vectors a and b,
respectively, to form a parallelogram. The vector sum is then represented by the
diagonal

−→
AB; hence c = a + b. A study of the figure shows that it is equivalent

to the triangle law and that c =
−→
AB is obtained by either adding b to a or a to

b, i.e.
c = a+b = b+a (1.2)

Fig. 1.8

1.3 Subtraction of Vectors

The method of subtraction for two vectors is obtained by an extension of the rule of
addition if we first introduce the concept of a negative vector.

Definition The negative of a vector a is a vector having the same magni-
tude but opposite direction. We write it as −a.

If the vector a starts at A and ends at B, such that a =
−→
AB, then it follows that

−a =
−→
BA.

The sum of a vector and its negative counterpart is zero, for

a+(−a) = 0

In vector calculus, 0 (as above) is called the null vector.
If a and b are two vectors, then we call a third vector c the difference vector

defined by the equation
c = a−b

We can regard this difference as the sum of vector a and the negative of vector b,
i.e. c = a+(−b).

This result is illustrated in Fig. 1.9 in three steps.
Firstly, we draw the negative vector −b (Fig. 1.9a); secondly, we shift this neg-

ative vector so that its end is at the tip of vector a (Fig. 1.9b); and thirdly, we form
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Fig. 1.9

the sum of a and (−b) in accordance with the triangle law and obtain the difference
vector c = a+(−b) (Fig. 1.9c).

To add and subtract vectors we proceed using the rules for addition and subtrac-
tion.

The difference vector c = a−b can also be constructed using the parallelogram
rule. Figure 1.10a shows two vectors a and b; in Fig. 1.10b the parallelogram is com-
pleted. The difference vector c = a−b is then given by the diagonal

−→
BA (Fig. 1.10c).

Fig. 1.10

It is easy to see that both constructions lead to the same result, and that the latter
construction shows clearly that the difference vector can be regarded geometrically
by the line joining the end points of the two vectors.

1.4 Components and Projection of a Vector

Let us consider the shift of a point from position P1 to position P2 by the vector a,
as shown in Fig. 1.11a, and then find out by how much the point has shifted in the
x-direction. To ascertain this shift we drop perpendiculars on to the x-axis from the
points P1 and P2 respectively, cutting the axis at x1 and x2. The distance between
these two points is the projection of the vector a on to the x-axis. This projection is
also called the x-component of the vector.

In the figure, we have shown a rectangular set of axes, i.e. axes which are per-
pendicular to each other so that point P1 has coordinates (x1,y1) and point P2 coor-
dinates (x2,y2). It follows, therefore, that the x-component of the vector a is given
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Fig. 1.11

by the difference between the x-coordinates of the points P1 and P2, i.e. by x2−x1.
Similarly, the shift of the point in the y-direction is obtained by dropping perpendic-
ulars from P1 and P2 on to the y-axis, cutting it at y1 and y2, as shown in Fig. 1.11b.
Hence the y-component of the vector a in the y-direction is given by y2 −y1.

The components of the vector a are usually written as follows:

ax = x2 −x1

ay = y2 −y1

If the coordinate axes are not perpendicular to each other the coordinate system is
called oblique. Projections in such a coordinate system are obtained by using lines
parallel to the axes instead of perpendiculars. We will not use this type of coordinate
system in this book, even though oblique coordinates are very useful in certain cases,
e.g. in crystallography.

Generalisation of the concept of projection. So far we have considered the pro-
jection of a vector on to a set of rectangular coordinates. We can generalise this
concept by projecting a vector a on a vector b as follows.

We drop normals from the starting and end points of the vector a, as shown in
Fig. 1.12a, on to the line of action of vector b. The line of action of the vector
is the straight line determined by the direction of the vector. It extends on either

Fig. 1.12
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side of the vector, as shown in Fig. 1.12a. The distance between the two normals is
the component of vector a along vector b; this is written as ab . We can simplify the
construction by shifting the vector a parallel to itself until its starting point meets
the line of action of vector b and then dropping a normal on b from the tip of vector
a, as shown in Fig. 1.12b. This results in a triangle and the projection or component
of a in the b direction is

|ab| = |a|cos˛

or ab = acos˛

Similarly, we can project vector b on to a, giving

ba = b cos˛

1.5 Component Representation in Coordinate Systems

The graphical addition and subtraction of vectors can easily be carried out in a plane
surface, e.g. in the x−y plane of a rectangular coordinate system. However, we
frequently have to cope with spatial problems. These can be solved if the vector
components in the direction of the coordinate axes are known. We can then treat the
components in each of the axes as scalars obeying the ordinary rules of algebra.

1.5.1 Position Vector

The position vector of a point in space is a vector from the origin of the coordinate
system to the point. Thus, to each point P in space there corresponds a unique vector.
Such vectors are not movable and they are often referred to as bound vectors.

The addition of two position vectors is not possible. But in contrast subtracting
them gives a sensible meaning. If P1 and P2 are two spatial points, i.e. two positions
in space, and O is the origin of a coordinate system, then the position vectors are−−→
OP1 and

−−→
OP2 and their difference,

−−→
OP2 −−−→

OP1, is a vector starting at P1 and ending
at P2, as shown in Fig. 1.13.

Fig. 1.13
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1.5.2 Unit Vectors

Vectors have magnitude and direction, but if we wish to indicate the direction only
we define a unit vector. A unit vector has a magnitude of 1 unit; consequently it
defines the direction only.

Figure 1.14 shows three such unit vectors (bold arrows) belonging to vectors a,b
and c respectively.

Of special significance are unit vectors along a Cartesian or rectangular coordi-
nate system (see Fig. 1.15). The set of these vectors is also called a base and these
vectors are called base vectors. In such a three-dimensional system, these unit vec-
tors are denoted by the letters i ,j ,k or ex,ey ,ez or e1,e2,e3. Here we shall adopt
the i ,j ,k notation.

Fig. 1.14 Fig. 1.15

Figure 1.16 shows a point P with coordinates Px,Py ,Pz . The position vector−→
OP = P has three components:

• a component Px i along the x-axis;
• a component Py j along the y-axis;
• a component Pz k along the z-axis.

Fig. 1.16
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From the figure it then follows that
−→
OP = P = Pxi +Pyj +Pzk

1.5.3 Component Representation of a Vector

A vector can be constructed if its components along the axes of a coordinate system
are known. Hence the following information is sufficient to fix a vector:

• a defined coordinate system;
• the components of the vector in the direction of the coordinate axes.

Fig. 1.17

Figure 1.17 shows a rectangular x-y-z coordinate system. If the vector a has
components ax,ay ,az then

a = axi +ayj +azk

It can also be expressed in the abbreviated forms

a = (ax ,ay ,az)

or a =

⎛
⎝
ax

ay

az

⎞
⎠

Thus the vector a is defined by the three numbers ax ,ay ,az . To obtain the vector
a we simply multiply these numbers by the appropriate unit vectors. ax,ay and az

are the ‘coordinates’ of the vector; they are scalar quantities.



12 1 Vector Algebra I: Scalars and Vectors

Definition We may express a vector

a = axi +ayj +azk

thus: a = (ax ,ay ,az) =

⎛
⎝
ax

ay

az

⎞
⎠

These are called the component representations of the vector a.

Example The vector shown in Fig. 1.18 is given by a = (1,3,3).

Fig. 1.18

Two vectors are equal if and only if their components are equal. Hence if a = b,
then

ax = bx

ay = by

az = bz

1.5.4 Representation of the Sum of Two Vectors
in Terms of Their Components

We will now show that the result of the geomet-
rical addition of two vectors can be obtained by
adding separately the components of the vectors
in given directions.

Two vectors a and b in the x–y plane, as shown
in Fig. 1.19a, can be expressed in terms of unit
vectors thus:

a = axi +ayj

and
b = bxi +byj
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We now add a and b to give the resultant vector
c, as shown in Fig. 1.19b:

c = a +b

The x-component of c is cxi = axi + bxi or
cxi = (ax +bx)i . Hence the x-component of the
resultant vector is equal to the algebraic sum of
the x-components of the original vectors.

Similarly, the y-component (see Fig. 1.19c) is

cyj = (ay +by)j

Fig. 1.19

It then follows that the vector c, the resultant of vectors a and b, is given by

c = (ax +bx)i +(ay +by)j

whose coordinates are (ax +by),(ay +by).
The same procedure can be adopted in the case of three-dimensional vectors.
If a and b are two such vectors so that

a = (ax ,ay ,az) and b = (bx ,by ,bz)

then it follows that

a+b = (ax +bx, ay +by, az +bz) (1.3a)

Generally, the sum of two or more vectors is found by adding separately their com-
ponents in the directions of the axes.

1.5.5 Subtraction of Vectors in Terms of their Components

The task of finding the difference a−b between two vectors a and b can be reduced
to that of adding vector a and the negative of vector b.
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It therefore follows that, for the two-dimensional case

a−b = (ax −bx, ay −by)

and for the three-dimensional case

a−b = (ax −bx, ay −by, az −bz) (1.3b)

Example Let the vectors be a = (2,5,1) and b = (3,−7,4) then, in terms of the
components, we have

a−b = (2−3, 5+7, 1−4) = (−1,12,−3)

Of special significance is the difference vector of two position vectors. This is given
by the vector which joins the end points of the two position vectors.

Figure 1.20 shows that vector c is obtained by joining the two points P1 and P2

so that c = P1 −P2.
In terms of the components of P1 and P2,

c = (P1x −P2x , P1y −P2y)

Fig. 1.20

Example If P1 = (3,−1,0) and P2 = (−2,3,−1) are two points in space then the
difference vector c given by c = P2 −P1 is

c = (−2−3, 3+1, −1−0) = (−5,4,−1)

1.6 Multiplication of a Vector by a Scalar

Multiplication of a vector by a scalar quantity results in a vector whose magnitude
is that of the original vector multiplied by the scalar and whose direction is that of
the original vector or reversed if the scalar is negative.
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Definition Multiplication of a vector a by a scalar � gives the vector �a

having length �a and the same direction as a when � > 0. If
�< 0 it has the opposite direction.

In terms of the components of the vector a, the new vector �a is given by

�a = (�ax , �ay , �az) (1.4)

If �= 0, then the vector �a is the null vector (0, 0, 0).

Example Given a = (2,5,1), then when �= 3 we have

�a = (6,15,3)

and when �= −3 we have

�a = (−6,−15,−3)

1.7 Magnitude of a Vector

If the components of a vector in a rectangular coordinate system are known, the
magnitude of the vector is obtained with the aid of Pythagoras’ theorem.

Figure 1.21 shows a vector a with components ax ,ay , i.e. a = (ax ,ay).
Since the vector and its components form a right-angled triangle, we have

a2 = ax
2 +ay

2

and the magnitude of the vector is

|a| = a =
√
ax

2 +ay
2 (1.5a)

Fig. 1.21
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Fig. 1.22

The three-dimensional vector a = (ax ,ay ,az) shown in Fig. 1.22 has a magnitude
given by

|a| = a =
√
ax

2 +ay
2 +az

2 (1.5b)

Example The magnitude of the vector a = (3,−7,4) is

a =
√
32 +72 +42 =

√
74≈ 8.60

The distance between two points in space is thus easily determined if the compo-
nents are known.

Example Figure 1.23 shows two given points in the plane P1 = (x1,y1) and
P2 = (x2,y2). It is required to find the distance between them.

To find the distance we require the coordinates of the connecting vector
−−→
P2P1.

These are −−→
P2P1 = (x1 −x2, y1 −y2)

and the magnitude is

|−−→P2P1| =
√

(x1 −x2)2 +(y1 −y2)2

Fig. 1.23
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If P1 and P2 are two points in space, then the distance between them is

|−−→P2P1| =
√

(x1 −x2)2 +(y1 −y2)2 +(z1 − z2)2

Any vector may be expressed in terms of a unit vector. If a = (ax ,ay ,az) is any
vector, its magnitude is

|a| = a =
√
ax

2 +ay
2 +az

2

If the unit vector in the direction of a is denoted by ea, then

ea =
axi +ayj +azk√
ax

2 +ay
2 +az

2

or

ea = �a =
1

|a|a =
(
ax

|a| ,
ay

|a| ,
az

|a|
)

Hence

a = aea

Exercises

1.1 Scalars and Vectors

1. Which of the following quantities are vectors?

(a) acceleration
(c) centripetal force
(e) quantity of heat
(g) electrical resistance
(i) atomic weight

(b) power
(d) velocity
(f) momentum
(h) magnetic intensity

1.2 Addition of Vectors 1.3 Subtraction of Vectors

2. Given the vectors a, b and c, draw the vector sum S = a+b+ c in each case.

Fig. 1.24 Fig. 1.25
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3. Draw the vector sum a1 +a2 + . . .+an.

Fig. 1.26 Fig. 1.27

4. Draw the vector c = a−b.

Fig. 1.28 Fig. 1.29

1.4 Components and Projections of a Vector

5. Project vector a on to vector b.

Fig. 1.30 Fig. 1.31
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6. Calculate the magnitude of the projection of a on to b.

(a) |a| = 5, � (a, b) =
�

3

(c) |a| = 4, � (a, b) = 0

(b) |a| = 2, � (a, b) =
�

2

(d) |a| = 3

2
, � (a, b) =

2

3
�

1.6 Component Representation

7. Given the points P1 = (2, 1), P2 = (7, 3) and P3 = (5, −4), calculate the
coordinates of the fourth corner P4 of the parallelogram P1P2P3P4 formed by
the vectors a =

−−→
P1P2 and b =

−−→
P1P3.

Fig. 1.32

8. If P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3) and P4 = (x4, y4) are four
arbitrary points in the x−y plane and if a =

−−→
P1P2, b =

−−→
P2P3, c =

−−→
P3P4, d =−−→

P4P1, calculate the components of the resultant vector S = a + b + c + d and
show that S = 0.

Fig. 1.33
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9. A carriage is pulled by four men. The components of the four forces F1, F2,
F3, F4 are

F1 = (20N, 25N)
F2 = (15N, 5N)
F3 = (25N, −5N)
F4 = (30N, −15N)

Fig. 1.34

Calculate the resultant force.

10. If a = (3, 2, 1), b = (1, 1, 1), c = (0, 0, 2), calculate
(a) a+b− c (b) 2a−b+3c

1.6 Multiplication of a Vector by a Scalar

11. Calculate the magnitude of vector a = �1a1 + �2a2 − �3a3 for the follow-
ing cases:

(a) a1 = (2, −3, 1), a2 = (−1, 4, 2), a3 = (6, −1, 1),
�1 = 2, �2 = 1

2 , �3 = 3

(b) a1 = (−4, 2, 3), a2 = (−5, −4, 3), a3 = (2, −4, 3),
�1 = −1, �2 = 3, �3 = −2

12. Calculate in each case the unit vector ea in the direction of a:
(a) a = (3, −1, 2) (b) a = (2, −1, −2)

1.7 Magnitude of a Vector

13. Calculate the distance a between the points P1 and P2 in each case:
(a) P1 = (3, 2, 0)

P2 = (−1, 4, 2)
(b) P1 = (−2, −1, 3)

P2 = (4, −2, −1)

14. An aircraft is flying on a northerly course and its velocity relative to the air is
V1 = (0 km/h, 300 km/h)
Calculate the velocity of the aircraft relative to the ground for the following
three different air velocities:

(a) V2 = (0, −50) km/h, headwind
(b) V3 = (50, 0) km/h, crosswind
(c) V4 = (0, 50) km/h, tailwind
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Fig. 1.35

Calculate the magnitude of the absolute velocity relative to the ground for the
three cases:

(d) |V1 +V2| (e) |V1 +V3| (f) |V1 +V4|



Chapter 2
Vector Algebra II: Scalar and Vector Products

We saw in the previous chapter how vector quantities may be added and subtracted.
In this chapter we consider the products of vectors and define rules for them. First
we will examine two cases frequently encountered in practice.

1. In applied science we define the work done by a force as the magnitude of the
force multiplied by the distance it moves along its line of action, or by the com-
ponent of the magnitude of the force in a given direction multiplied by the dis-
tance moved in that direction. Work is a scalar quantity and the product obtained
when force is multiplied by displacement is called the scalar product.

2. The torque on a body produced by a force F (Fig. 2.1) is defined as the product
of the force and the length of the lever arm OA, the line of action of the force
being perpendicular to the lever arm. Such a product is called a vector product
or cross product and the result is a vector in the direction of the axis of rotation,
i.e. perpendicular to both the force and the lever arm.

Fig. 2.1

2.1 Scalar Product

Consider a carriage running on rails. It moves in the s-direction (Fig. 2.2) under
the application of a force F which acts at an angle ˛ to the direction of travel. We

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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require the work done by the force when the carriage moves through a distance s in
the s-direction (Fig. 2.3).

Fig. 2.2 Fig. 2.3

In order to study the action of the force F on the carriage we resolve it into
two components: one along the rails (in the s-direction), and one perpendicular to
the rails, i.e. F s and F p respectively. F s,F p and s are vector quantities; the work
is, by definition, the product of the force along the direction of motion and the
distance moved. In this case, it is the product of F s and s. It follows also from the
definition that the work done by F p is zero since there is no displacement in that
direction. Furthermore, if the rails are horizontal then the motion of the carriage and
the work done is not influenced by gravity, since it acts in a direction perpendicular
to the rails.

IfW is the work done then W = F · cos ˛ · s or F · s · cos ˛ in magnitude.
Since work is a scalar quantity the product of the two vectors is called a scalar

product or dot product, because one way of writing it is with a dot between the two
vectors:

W = F s·s

where

|F s| = |F |cos˛

It is also referred to as the inner product of two vectors. Generally, if a and b are
two vectors their inner product is written a ·b.

Definition The inner or scalar product of two vectors is equal to the prod-
uct of their magnitude and the cosine of the angle between their
directions:

a ·b = ab cos˛ (2.1)

Geometrical interpretation. The scalar product of two vectors a and b is equal to
the product of the magnitude of vector a with the projection of b on a (Fig. 2.4a):

a ·b = ab cos˛
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Or it is the product of the magnitude of b with the projection of a on b (Fig. 2.4b):

a ·b = bacos˛

Fig. 2.4

In the case of the carriage, we can also evaluate the work done by the product
of the magnitude of the force and the component of the displacement along the
direction of the force (Fig. 2.5).

Fig. 2.5

Example A force of 5 N is applied to a body. The body is moved through a distance
of 10 m in a direction which subtends an angle of 60◦ with the line of action of the
force.

Fig. 2.6

The mechanical work done is

U = F · s = F s cos˛

= 5×10× cos 60◦ = 25Nm

The unit of work should be noted: it is
newtons×metres = Nm or joules (J). This
example could be considered to repre-
sent the force of gravity acting on a body
which slides down a chute through a dis-
tance s; the force F =mg where m is the
mass of the body and g the acceleration
due to gravity (Fig. 2.6).
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2.1.1 Application: Equation of a Line and a Plane

The scalar product can be used to obtain the equation of a line in an x−y plane
if the normal from the origin to the line is given (Fig. 2.7). In this case the scalar
product of n with any position vector r to a point on the line is constant and equal
to n2. Thus

n2 = n ·r = (nx , ny) · (x,y)

n2 = xnx +yny

y =
nx

ny
x+

n2

ny
(2.2a)

If we extend the procedure to three dimensions we obtain the equation of a plane in
an x−y−z coordinate system:

n2 = xnx+yny+znz (2.2b)

Fig. 2.7

2.1.2 Special Cases

Scalar Product of Perpendicular Vectors

If two vectors a and b are perpendicular to each other so that ˛ = �
2 and hence

cos˛ = 0, it follows that the scalar product is zero, i.e. a ·b = 0.
The converse of this statement is important. If it is known that the scalar product

of two vectors a and b vanishes, then it follows that the two vectors are perpendic-
ular to each other, provided that a �= 0 and b �= 0.
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Scalar Product of Parallel Vectors

If two vectors a and b are parallel to each other so that ˛ = 0 and hence cos ˛ = 1,
it follows that their scalar product a ·b = ab.

2.1.3 Commutative and Distributive Laws

The scalar product obeys the commutative and distributive laws. These are given
without proof.

Commutative law a ·b = b ·a (2.3)

Distributive law a · (b+ c) = a ·b+a · c (2.4)

As an example of the scalar product let us derive the cosine rule. Figure 2.8
shows three vectors; ˛ is the angle between the vectors a and b.

Fig. 2.8

We have b+ c = a

c = a−b

We now form the scalar product of the vectors with themselves, giving

c · c = c2 = (a−b)2

c2 = a ·a+b ·b−2a ·b
c2 = a2 +b2 −2ab cos˛ (2.5)

If ˛ = �
2 , we have Pythagoras’ theorem for a right-angled triangle.

2.1.4 Scalar Product in Terms of the Components of the Vectors

If the components of two vectors are known, their scalar product can be evaluated.
It is useful to consider the scalar product of the unit vectors i along the x-axis and
j along the y-axis, as shown in Fig. 2.9.
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From the definition of the scalar product we deduce the following:

Fig. 2.9

Figure 2.10 shows two vectors a and b that issue from the origin of a Cartesian
coordinate system. If ax ,bx ,ay and by are the components of these vectors along
the x-axis and y-axis, respectively, then

Fig. 2.10

The scalar product is

a ·b = (axi +ayj ) · (bxi +byj )
= axbxi · i +axbyi ·j +aybxj · i +aybyj ·j

a ·b = axbx +ayby

Thus the scalar product is obtained by adding the products of the components of the
vectors along each axis (Fig. 2.11).
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Fig. 2.11

In the case of three-dimensional vectors it is easily demonstrated that the following
rule holds true:

a ·b = axbx +ayby +azbz (scalar product) (2.6)

It is also an easy matter to calculate the magnitude of a vector in terms of its
components. Thus

a2 = a ·a
= axax +ayay +azaz

= ax
2 +ay

2 +az
2

a = |a| =
√
ax

2 +ay
2 +az

2

(In Sect. 1.7, (1.5b))

Example Given that a = (2,3,1),b = (−1,0,4), calculate the scalar product.

a ·b = axbx +ayby +azbz

= 2× (−1)+3×0+1×4= 2

The magnitude of each vector is

a =
√
22 +32 +1=

√
14≈ 3.74

b =
√
1+42 =

√
17≈ 4.12
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2.2 Vector Product

2.2.1 Torque

At the beginning of this chapter we defined the torque C , resulting from a force F

applied to a body at a point P (Fig. 2.12), to be the product of that force and the
position vector r from the axis of rotation O to the point P, the directions of the
force and the position vector being perpendicular.

The magnitude of the torque is therefore C = |r||F | or, more simply, C = rF .
This is known as the lever law.

Fig. 2.12

A special case is illustrated in Fig. 2.13 where the line of action of the force
F is in line with the axis (the angle between force and position vector r is zero).
In this situation, the force cannot produce a turning effect on the body and conse-
quently C = 0.

Fig. 2.13
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The general case is when the force F and the radius r are inclined to each other
at an angle ˛, as shown in Fig. 2.14. To calculate the torque C applied to the body
we resolve the force into two components: one perpendicular to r,F ⊥, and one in
the direction of r ,F ‖.

The first component is the only one that will produce a turning effect on the body.
Now F ⊥ = F sin˛ in magnitude; hence C = rF sin˛.

Fig. 2.14

Definition Magnitude of torque C

C = rF sin˛

2.2.2 Torque as a Vector

Physically, torque is a vector quantity since its direction is taken onto account. The
following convention is generally accepted.

The torque vector C is perpendicular to the plane containing the force F and the
radius vector r . The direction of C is that of a screw turned in a way that brings r

Fig. 2.15
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by the shortest route into the direction of F . This is called the right-hand rule. To
illustrate this statement let us consider the block of wood shown in Fig. 2.15 where
the axis of rotation is at A and a force F is applied at P at a distance r . The two
vectors r and F define a plane in space. F is then moved parallel to itself to act at
A; as the screw is turned it rotates the radius vector r towards F through an angle
˛. Hence the direction of the torque C coincides with the penetration of the screw.

2.2.3 Definition of the Vector Product

The vector product of two vectors a and b (Fig. 2.16) is defined as a vector c of
magnitude ab sin˛, where ˛ is the angle between the two vectors. It acts in a di-
rection perpendicular to the plane of the vectors a and b in accordance with the
right-hand rule.

Fig. 2.16

This product, sometimes referred to as the outer product or cross product, is
written

c = a×b or c = a∧b (2.7)

It is pronounced ‘a cross b’ or ‘a wedge b’. Its magnitude is c = ab sin˛. Note
that a×b = −b×a.

This definition is quite independent of any physical interpretation. It has geomet-
rical significance in that the vector c represents the area of a parallelogram having
sides a and b, as shown in Fig. 2.17. c is perpendicular to the plane containing a

and b, direction given by the right-hand rule.

Fig. 2.17
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The distributive laws for vector products are given here without proof.

a× (b+ c) = a×b+a× c (2.8)

and (a+b)× c = a× c +b× c (2.9)

Further, we note with respect to a scalar λ that

λa×b = a×λb = λ(a×b) (2.10)

Example Given two vectors a and b of magnitudes a = 4 and b = 3 and with an
angle ˛ = �

6 = 30◦ between them, determine the magnitude of c = a×b.

c = ab sin30◦ = 4×3×0.5= 6

2.2.4 Special Cases

Vector Product of Parallel Vectors

The angle between two parallel vectors is zero. Hence the vector product is 0 and
the parallelogram degenerates into a line. In particular

a×a = 0

It is important to note that the converse of this statement is also true. Thus, if the vec-
tor product of two vectors is zero, we can conclude that they are parallel, provided
that a �= 0 and b �= 0.

Vector Product of Perpendicular Vectors

The angle between perpendicular vectors is 90◦, i.e. sin˛ = 1. Hence

|a×b| = ab

2.2.5 Anti-Commutative Law for Vector Products

If a and b are two vectors then

a×b = −b×a (2.11)
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Proof Figure 2.18 shows the formation of the vector product. The vector product
is c = a× b and c points upwards. In Fig. 2.19, c is now obtained by turning b

towards a, then, by our definition, the vector b× a points downwards. It follows
therefore that a×b = −b×a. The magnitude is the same, i.e. ab sin˛.

Fig. 2.18 Fig. 2.19

2.2.6 Components of the Vector Product

Let us first consider the vector products of the unit vectors i , j and k (Fig. 2.20).
According to our definition the following relationships hold:

Fig. 2.20

Let us now try to express the vector product in terms of components. The vectors
a and b expressed in terms of their components are

a = axi +ayj +azk

b = bxi +byj +bzk
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The vector product is

a×b = (axi +ayj +azk)× (bxi +byj +bzk)

Expanding in accordance with the distributive law gives

a×b = (axbxi × i )+ (axbyi ×j )+ (axbzi ×k)
+ (aybxj × i )+ (aybyj ×j )+ (aybzj ×k)
+ (azbxk× i )+ (azbyk×j )+ (azbzk×k)

Using the relationships for the vector products of unit vectors we obtain

a×b = (aybz −azby)i +(azbx −axbz)j +(axby −aybx)k (2.12a)

The vector product may conveniently be written in determinant form. A detailed
treatment of determinants can be found in Chap. 15.

a×b =

∣∣∣∣∣∣
i j k

ax ay az

bx by bz

∣∣∣∣∣∣
(2.12b)

Example The velocity of a point P on a rotating body is given by the vector product
of the angular velocity and the position vector of the point from the axis of rotation.
In Fig. 2.21, if the z-axis is the axis of rotation, the angular velocity ! is a vector
along this axis. If the position vector of a point P is r = (0,ry ,rz) and the angular
velocity ! = (0,0,!z), as shown in the figure, then the velocity v of P is

v = !× r =

∣∣∣∣∣∣
i j k

0 0 !z

0 ry rz

∣∣∣∣∣∣
= −ry!zi

Fig. 2.21
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Exercises

2.1 Scalar Product

1. Calculate the scalar products of the vectors a and b given below:
(a) a = 3 b = 2 ˛ = �/3 (b) a = 2 b = 5 ˛ = 0

(c) a = 1 b = 4 ˛ = �/4 (d) a = 2.5 b = 3 ˛ = 120◦

2. Considering the scalar products, what can you say about the angle between
the vectors a and b?
(a) a ·b = 0 (b) a ·b = ab

(c) a ·b =
ab

2
(d) a ·b < 0

3. Calculate the scalar product of the following vectors:
(a) a = (3, −1, 4) (b) a = (3/2, 1/4, −1/3)

b = (−1, 2, 5) b = (1/6, −2, 3)
(c) a = (−1/4, 2, −1) (d) a = (1, −6, 1)

b = (1, 1/2, 5/3) b = (−1, −1, −1)

2. Which of the following vectors a and b are perpendicular?
(a) a = (0, −1, 1) (b) a = (2, −3, 1)

b = (1, 0, 0) b = (−1, 4, 2)
(c) a = (−1, 2, −5) (d) a = (4, −3, 1)

b = (−8, 1, 2) b = (−1, −2, −2)
(e) a = (2, 1, 1) (f) a = (4, 2, 2)

b = (−1, 3, −2) b = (1, −4, 2)

5. Calculate the angle between the two vectors a and b:
(a) a = (1, −1, 1) (b) a = (−2, 2, −1)

b = (−1, 1, −1) b = (0, 3, 0)

6. A force F = (0N, 5N) is applied to a body and moves it through a distance
s. Calculate the work done by the force.
(a) s1 = (3m, 3m) (b) s2 = (2m, 1m) (c) s3 = (2m, 0m)

2.2 Vector Product

7. Indicate in figures 2.22 and 2.23 the direction of the vector c if c = a×b

(a) when a and b lie in the x−y plane
(b) when a and b lie in the y−z plane

8. Calculate the magnitude of the vector product of the following vectors:
(a) a = 2 b = 3 ˛ = 60◦ (b) a = 1/2 b = 4 ˛ = 0◦
(c) a = 8 b = 3/4 ˛ = 90◦
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Fig. 2.22 Fig. 2.23

9. In figure 2.24 a = 2i, b = 4j , c = −3k (i , j and k are the unit vectors
along the x-, y- and z-axes, respectively). Calculate
(a) a×b (b) a× c (c) c ×a

(d) b× c (e) b×b (f) c ×b

Fig. 2.24

10. Calculate c = a×b when
(a) a = (2, 3, 1) (b) a = (−2, 1, 0)

b = (−1, 2, 4) b = (1, 4, 3)



Chapter 3
Functions

3.1 The Mathematical Concept of Functions
and its Meaning in Physics and Engineering

3.1.1 Introduction

The velocity of a body falling freely to Earth increases with time, i.e. the velocity of
fall depends on the time. The pressure of a gas maintained at a constant temperature
depends on its volume. The periodic time of a simple pendulum depends on its
length. Such dependencies between observed quantities are frequently encountered
in physics and engineering and they lead to the formulation of natural laws.

Two quantities are measured with the help of suitable instruments such as clocks,
rulers, balances, ammeters, voltmeters etc.; one quantity is varied and the change in
the second quantity observed. The former is called the independent quantity, or
argument, and the latter the dependent quantity, all other conditions being carefully
kept constant. The procedure to determine experimentally the relationships between
physical quantities is called an empirical method. Such a method can be extended
to the determination of the relationships between more than two quantities; thus the
pressure of a gas depends on its volume and its temperature when both volume and
temperature vary.

Relationships obtained experimentally may be tabulated or a graph drawn show-
ing the variation at a glance. Such representations are useful but in practice we prefer
to express the relationships mathematically.

A mathematical formulation has many advantages:

• It is shorter and often clearer than a description in words.
• It is unambiguous. Relationships described in such a way are easy to communi-

cate and misunderstanding is out of the question.
• It enables us to predict the behaviour of physical quantities in regions not yet

verified experimentally; this is known as extrapolation.

The mathematical description of the relationship between physical quantities may
give rise to a mathematical model.

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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3.1.2 The Concept of a Function

We now investigate the exact mathematical description of the dependence of two
quantities.

Example Consider a spring fixed at one end and stretched at the other end, as
shown in Fig. 3.1. This results in a force which opposes the stretching or displace-
ment. Two quantities can be measured: the displacement x in metres (m); the force
F in newtons (N).

Measurements are carried out for several values of x. Thus we obtain a series of
paired values for x and F associated with each other.

1. The paired values are tabulated as shown in Fig. 3.1. The direction of the force
is opposite to the direction of the displacement.
Such a table is called a table of values for all displacements x of the spring for
which it is not permanently deformed or destroyed. The range of x is called the
range or domain of definition. The corresponding range of the functional values
is called the range of values (sometimes referred to as the co-domain).

Displacement Force
(m) (N)

0 0
0.1 −1.2
0.2 −2.4
0.3 −3.6
0.4 −4.8
0.5 −6.0
0.6 −7.2

Fig. 3.1

2. We plot each paired value on a graph and draw a curve through the points. This
enables us to obtain, approximately, intermediate values (Fig. 3.2).

Fig. 3.2

3. The relationship between x and F can be expressed by a formula which must
be valid with the domain of definition. In this case the formula is

F = −ax , where a = 12N/m
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By substituting values of x we obtain the corresponding values of F . We notice that
there is only one value of F for each value of x. The formula is unambiguous.

The letters x and y are frequently used in mathematics to represent paired values,
so we can write y = −ax.

Let us recapitulate. A function may be expressed in different ways:

by setting up a table of values;
graphically;
by means of a formula.

These three ways of representing a function are of course related. For example, we
can draw up a table of values from the formula or from a graph.

If y depends on x then y is said to be a function of x; the relationship is ex-
pressed as

y = f (x)

It reads “y equals f of x”.
In order to define the function completely we must state the set of values of x for

which it is valid, i.e. the domain of definition.
The quantity x is called the argument or independent variable and the quantity y

the dependent variable.
Once the nature of the function is known, we can obtain the value of y for each

value of the argument x within the domain of definition.

Example y = 3x2

The function in this case is 3x2. For a given value of the argument x, for example
x = 2, we can calculate y:

y = 3×22 = 12

A function can be quite intricate, for example:

y =
ax2

√
(1−x2)2 +bx2

This is an expression found in the study of vibrations.
For the sake of clarity let us give a formal definition:

Definition Given two sets of real numbers, a domain (often referred to
as the x-values) and a co-domain (often referred to as the
y-values), a real function assigns to each x-value a unique
y-value.

In this book we will mainly be concerned with real functions, as opposed to
more general functions like complex functions. Note that the concept of a function
implies that the y-value is determined unambiguously. During the previous one or
two decades the use of the term ‘function’ has changed. In the engineering literature,
the term ‘two-valued’ or ‘many-valued function’ is still occasionally used. Strictly
speaking, in modern terminology what is meant is not a function but a relationship.
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Example Consider the equation y2 = x; it is clear that x has only one value for
two values of y, e.g. if y1 = +2 and y2 = −2 then x = 4 in each case. The equation
may be rewritten thus:

y = ±√
x

This means that for every (positive) value of x,y has two possible values, +
√
x

and −√
x. Hence y is a two-valued ‘function’. Which root we assign to y will, in

general, depend on the nature of the problem. For instance, the equation

y =
ax2

±√
(1−x2)2 +bx2

mentioned previously, is two-valued but the negative root has no physical meaning.
The ambiguity is removed by, e.g. restricting the value of y to the positive root;

thus y = +
√
x is unambiguous. This is a function; its range of values is y ≥ 0. From

now on, whenever we use the symbol
√

for the square root, the positive root is to
be understood.

3.2 Graphical Representation of Functions

3.2.1 Coordinate System, Position Vector

Many functions can easily be represented graphically. Graphs are usually based
on a rectangular coordinate system known as a Cartesian system (after the French
mathematician Descartes). The vertical axis is usually referred to as the y-axis, and
the horizontal axis as the x-axis (Fig. 3.3). In certain applications they may bear
different labels such as t ,� , etc. The axes intersect at the point O, called the origin
of the coordinate system.

Associated with each axis is a scale and the choice of this scale depends on the
range of values of the variables. The coordinate system divides a plane into four
regions, known as quadrants, numbered counterclockwise. A point P1 (Fig. 3.4)

Fig. 3.3 Fig. 3.4
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is uniquely defined in the coordinate system by two numerical values. If we drop
a perpendicular from P1, it meets the x-axis at Px . Px is called the projection of
P1 on to the x-axis and is related to a number x1 on the x-axis, the x-coordinate or
abscissa.

In a similar way, Py is the projection of P1 on the y-axis, and we find a number
y1, the y-coordinate or ordinate. Thus, if we know both coordinates for the point
P1, then it is uniquely defined.

This is often written in the following way:

P1 = (x1,y1)

The coordinates represent an ordered pair of numbers: x first and y second. The
point P1 in Fig. 3.4 is defined by x1 = 2 and y1 = 3, or P1 = (2,3).

As an aside, note that the distance measured from the origin O of the coordinate
system and the point P1 as a directed distance is called the position vector and its
projections on the axes are referred to as its components. These components are
directed line segments. Vectors will be introduced in detail in Chap. 1.

3.2.2 The Linear Function: The Straight Line

A straight line is defined by the equation

y = ax+b

We can obtain a picture of the line very quickly by giving x two particular values
(Fig. 3.5):

for x = 0 , y(0) = b

for x = 1 , y(1) = a+b

Fig. 3.5 Fig. 3.6
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The constant a is the slope of the line. If two points of a straight line are known
its slope can be calculated:

a =
y2 −y1

x2 −x1
(3.1)

Proof Consider two arbitrary points on the line, P1 = (x1,y1) and P2 = (x2,y2).
Substitution in the equation for the straight line gives

y1 = ax1 +b
y2 = ax2 +b

If these are now substituted in the right-hand side of the equation to find the slope,
we have

(ax2 +b)− (ax1 +b)
x2 −x1

=
a(x2 −x1)
x2 −x1

= a

The constant b is the intercept of the line on the y-axis (Fig. 3.6), i.e. the point of
intersection of the line with the y-axis has the value b.

3.2.3 Graph Plotting

Consider the function

y =
1

x+1
+1

and suppose we wish to plot its graph. There are three basic steps to follow:

1. Set up a table of values. The best way to do this is to split up the function by
taking a convenient number of simple terms as illustrated in the table 3.1.

Table 3.1

x x +1
1

x +1
y

−4 −3 −0.33 0.67
−3 −2 −0.50 0.50
−2 −1 −1.00 0
−1 0 ∞ ∞

0 1 1.00 2.00
1 2 0.50 1.50
2 3 0.33 1.33
3 4 0.25 1.25
4 5 0.20 1.20
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2. From the table of values, place each point whose coordinates are (x,y) onto the
coordinate system (Fig. 3.7).

3. Draw a smooth curve through the points as shown in Fig. 3.8.

Fig. 3.7 Fig. 3.8

We observe that for this function there is a difficulty at x = −1. As x tends
to the value −1 the function grows beyond limit: it tends to infinity. In order
to obtain a better picture of the behaviour of the function it is advisable to take
smaller steps and hence calculate additional values in the neighbourhood of x =−1,
e.g. −1.01,−1.001,−0.95,−0.99, etc. This means that we increase the density of
the points to be taken close to x=−1, whereas for other values of x where the graph
changes less dramatically we can increase the distance of x between the points.

Physicists and engineers often require a picture of the way a function behaves
rather than to know its exact behaviour. The process of obtaining such a picture is
called curve sketching. For this purpose it is important to be able to identify the
salient features of a function and these we will now investigate.

Poles

These are the points where the function grows beyond limit, i.e. tends to infinity
(+∞ or −∞). In the above discussion, such a point was found at x = −1. Poles are
also referred to as singularities. The corresponding x-values are excluded from the
domain of definition.

To determine where the poles occur we have to find the values of x for which the
function y = f (x) approaches infinity. In the case of fractions, this occurs when the
denominator tends to zero, provided that the numerator is not zero. In our example
we need to consider the fraction 1

1+x .
We see that the denominator vanishes when x = −1; thus our function has a pole

at the point xp = −1.
Poles can also be found by taking the reciprocal of the function so that for y to

tend to infinity the reciprocal must tend to zero.
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Asymptotes

When a curve has a branch which extends to infinity, approaching a straight line,
this line is called an asymptote. In our example such an asymptote is the line y = 1

which is parallel to the x-axis.

Zeros of a Function

These occur where the curve crosses the x-axis. To find their positions we simply
have to equate the function to zero, i.e. y = 0, and solve for x.

In our example we have
1

1+x
+1= 0

Solving for x gives x = −2.

Maxima and Minima and Points of Inflexion

These are other characteristic points of a function which are discussed in Chap. 5,
Sect. 5.7.

As a further example, consider the function

y = x2 −2x−3

It is a parabola. It does not have poles or asymptotes. The zeros are found by equat-
ing it to zero and solving for x, which is shown in the following section:

x2 −2x−3= 0

The zeros are x1 = 3 and x2 = −1.
The graph of the function is shown in Fig. 3.9.

Fig. 3.9



3.3 Quadratic Equations 47

3.3 Quadratic Equations

Any equation in which the square, but no higher power of the unknown, occurs is
called a quadratic equation. The simplest type, the pure quadratic, is x2 = 81, for
example. To solve for x we take the square root of both sides. Then x = +9 or
x = −9 since (+9)2 = 81 and (−9)2 = 81; hence x = ±9. It is essential in practice
to state both values or solutions, although in some situations only one value will
have a physical significance.

The general expression for a quadratic takes the form

ax2 +bx+ c = 0

Because of the squared term this equation has two solutions or roots. It can be solved
by ‘completing the square’. We proceed as follows.

The terms containing the unknown are grouped on one side of the equation and
the constants on the other side. The left-hand side is made into a perfect square by
a suitable addition, the same amount being added to the right-hand side. Then the
square root of both sides is taken.

Hence the roots are found as follows:

ax2 +bx+ c = 0

We subtract c on both sides, giving

ax2 +bx = −c

We divide throughout by a:

x2 +
b

a
x = − c

a

To make the left-hand side into a perfect square we must add b2/4a2 to both sides:

x2 +
b

a
x+

b2

4a2
=
b2

4a2
− c

a
=
b2 −4ac
4a2

Hence

(
x+

b

2a

)2

=
b2 −4ac
4a2
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Taking the square root of both sides gives

x+
b

2a
= ±

√
b2 −4ac
4a2

= ± 1

2a

√
b2 −4ac

Hence x = (−b)/(2a)±1/(2a)
√
b2 −4ac

The roots of the quadratic equation ax2 +bx+ c = 0 are

x1 =
−b+

√
b2 −4ac
2a

and x2 =
−b−√

b2 −4ac
2a

(3.2a)

Quadratic equations occur frequently in physics and engineering; the formulae
for the two roots should be remembered. Often the quadratic equation is written in
the form

x2 +px+q = 0

The roots of the quadratic equation x2 +px+q = 0 are

x1 =
−p+

√
p2 −4q
2

, x2 =
−p−

√
p2 −4q
2

(3.2b)

As a check, it is easy to verify that with these values of x1,x2

x2 +px+q = (x−x1)(x−x2)

i.e. the quadratic is expressed as the product of two linear expressions.
It should be noted that there are cases when no real solutions exist. The general

quadratic equation ax2 +bx+ c = 0 has real solutions if the expression b2 −4ac,
called the discriminant, is positive, i.e. the square root can be extracted. It is not
hard to see that this corresponds to the function f (x) = ax2 +bx+c having zeros.

Conversely, if the discriminant b2 − 4ac is negative, then the function does not
have a zero, i.e. its graph does not cut the x-axis.

We therefore have a criterion which allows us to decide whether a parabola, given
by an algebraic expression, lies entirely above the x-axis or below the x-axis; the
condition is b2 −4ac < 0.



3.4 Parametric Changes of Functions and Their Graphs 49

3.4 Parametric Changes of Functions and Their Graphs

Very often functions contain constants which may be chosen deliberately; these are
called parameters. By considering the corresponding graphs we will now study the
changes in the shape of the graphs associated to common variations of parameters.
For the following examples we will use the standard parabola, but the effects are
not limited to parabolas, of course. For instance, we will apply the rules instantly to
trigonometric functions.

Multiplication of the function by a positive constant C

Effect: The graph will appear elongated along the y-axis if C > 1. It is compressed
if C < 1.

y

x

2

1

1

y = x2

y

x

2

1

1

y

x

2

1

1

y = C ∙ x2C = 2
elongated

C = 0.5
compressed

Fig. 3.10

Adding a constant C to the function

Effect: The graph will be shifted along the y-axis by the amount C.

y

x
y = x2

2

1

1

y = x2 + C

2

1

1

2

1

1

y

x

y

x
C = 2 C = 0.5

Fig. 3.11



50 3 Functions

Multiplication of the argument by a positive constant C

Effect: The graph will appear compressed along the x-axis if C > 1. It is elongated
if C < 1.

x
y = x2

1

1

y y y

x x
y = (C ∙ x)2

1

1 1

1
C = 2 C = 0.5

Fig. 3.12

Adding a constant C to the argument

Effect: The graph will be shifted along the y-axis by the amount C: The direction is
to the left if C is positive and to the right if C is negative.

x

y = x2

1

y

y = (x+C)2

1 12 x

y

x

y

C = 2 C = 0.5

Fig. 3.13

3.5 Inverse Functions

Given a function y = f (x), its inverse is obtained by interchanging the roles of x
and y and then solving for y. The inverse function is denoted by y = f −1(x). For
example, if y = ax+ b where a and b are constants, then the inverse function is
y = x/a−b/a.

Geometrically, the formation of the inverse can be understood in two ways which
are equivalent:

1. Interchanging the roles of x and y is equivalent to interchanging the roles of the
coordinate axes. In this case the graph remains unchanged but now we have a
y−x coordinate system.
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2. If we keep the x−y coordinate system, as is generally done, the graph of the
inverse function is obtained by reflecting the graph of f (x) in the line y = x.
This is shown in Fig. 3.14. AA′ is the bisecting line.

Fig. 3.14

The figure shows the function y = 2x2 and its inverse y = ±√
x/2, showing,

in this case, that the inverse ‘function’ has two values for every x, i.e. it is not
a monotonic function. The problem is solved by restricting the domain of the origi-
nal function y = 2x2 to x ≥ 0. Then the inverse function is y =

√
x/2.

Multi-valued inverse functions cannot occur when y = f (x) is a continuous
and monotonic function. Such a function is defined as follows. A continuous func-
tion y = f (x) is monotonic if, in the interval x1 < x < x2, it takes all the val-
ues between f (x1) and f (x2) only once. Such a function has a unique inverse,
y = f −1(x), which is itself a continuous monotonic function in the corresponding
interval. Thus the inverse is also single-valued. (The concept of continuity is treated
in detail in Chap. 5, Sect. 5.2. For the time being it will suffice to say that all func-
tions commonly encountered, such as power functions, fractional rational functions
and trigonometric functions, are continuous throughout their domain of definition.)
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3.6 Trigonometric or Circular Functions

3.6.1 Unit Circle

A circle having a radius equal to unity is called a unit circle and is used as a reference
(Fig. 3.15).

Fig. 3.15

In geometry, angles are measured in degrees. A right angle has 90◦, whilst the
angle around the four quadrants of a circle is 360◦ or the total angle at the center is
360◦, this being subtended by the circumference.

In physics and engineering, angles are usually measured in radians (abbreviated
to rad). In radians an angle of 360◦ has the value of the circumference of the unit
circle, namely 2� .
It follows that since

360◦=̂2� rad

then 1 rad=̂
360◦

2�
= 57.3◦

and 1◦=̂
1

57.3
= 0.01745 rad

To convert an angle from degrees to radians, we have

�rad =
�◦

57.3
rad

and to convert an angle from radians to degrees we have

�
◦
= �rad ×57.3

It is customary for angles to be considered positive when measured anticlockwise
from the x-axis (Fig. 3.15) and negative when measured clockwise.
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3.6.2 Sine Function

The sine function is frequently encountered in physical problems, e.g. in the study
of vibrations. The sine of an angle is defined by means of a right-angled triangle, as
shown in Fig. 3.16a; the sine of an angle is the quotient of the side opposite and the
hypotenuse. Its magnitude is independent of the size of the triangle.

sin� =
a

c
(3.3)

Fig. 3.16

Considering now the unit circle shown in Fig. 3.16b, let P be a point on the
circumference; the position vector of the point makes an angle � with the x-axis. It
follows that the y-coordinate of the point P is equal to the sine of the angle for, by
definition,

sin� =
y

r

but since r = 1 we have y = sin�.
This is true for all points on the circumference and therefore for all angles.

Definition The sine of an angle � is the y-coordinate of the point P on the
unit circle corresponding to �.

A graphical representation of the sine function is obtained by plotting � as the
independent variable (the argument) and sin� (the dependent variable) as ordinate,
as shown in Fig. 3.17 for � between 0 and 2� radians. This corresponds to one
complete revolution of the point P on the unit circle.
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Fig. 3.17

If P is allowed to move several times around the unit circle, then � grows beyond
2� and takes on large values, as shown in Fig. 3.18. For each revolution of P the
values of the sine function are repeated periodically.

Fig. 3.18

Definition A function y = f (x) is called periodic if for all x within the
range of definition we have

f (x+p) = f (x)

where p is the smallest value for which this equation is valid. p
is called the period.

The sine function has a period equal to 2� .
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If P is allowed to revolve clockwise around the unit circle then � is negative,
by our definition, and this is equivalent to the sine function being continued to the
left, as shown in Fig. 3.19. For negative values of �, for example � = −1, the sine
function has the same value as for � = 1 except for the change in sign, i.e.

sin(−�) = −sin�

Fig. 3.19

If a function f (x) is such that f (−x) =−f (x), then it is called an odd function.
The sine function is odd.

If a function f (x) is such that f (−x) = f (x) it is called an even function. An
example will be discussed in Sect. 3.6.3 cosine function.

If the sine function is plotted in a Cartesian x−y coordinate system, then x rep-
resents the angle in the unit circle and y the sine of the angle (Fig. 3.20).

Fig. 3.20

Values of the sine functions can be obtained using a calculator or from tables, but
the former is more convenient. They can also be calculated using power series, as
will be shown in Chap. 8.

In the following we apply the rules obtained in this Section.

Amplitude

The function y = sinx has an amplitude of 1 unit; the range of values of the function
is −1≤ y ≤ 1. If we multiply the sine function by a factor A we obtain a function
having the same period but of amplitude A.

Definition The amplitude is the factor A of the function

y = Asinx
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Figure 3.21 shows sine functions with A= 2, 1 and 0.5 respectively.

y1 = 2sinx (dashed curve)
y2 = sinx (full curve)
y3 = 0.7sinx (dot–dash curve)

Fig. 3.21

Period

Multiplying the argument of a sine function by a constant factor changes the period
of the function. For example,

y = sin2x

where the argument is 2x. Plotting this function as shown in Fig. 3.22 reveals that
the period is � , i.e. the function oscillates at twice the frequency as does the function
y = sinx.

Fig. 3.22

In general, the period p of the sine function
y = sinbx

is given by
p =

2�

b
(3.4)
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Figure 3.23 shows the graphs of the function y = sinbx for a large and a small
value of b.

Fig. 3.23

In physics and engineering, we frequently encounter the following notation:

y = sin!t

The constant b has been replaced by the symbol ! which stands for circular fre-
quency (in radians per second) and t which stands for time (in seconds). The circular
frequency ! is the number of oscillations in a time of 2�s.

The frequency f in cycles per second or hertz is the number of oscillations in
a time of 1 s. Hence the circular frequency ! and the frequency f are related as
follows:

! = 2�f

Phase

Consider the function
y = sin(x+ c)

The effect of adding a constant to the argument x is shown in Fig. 3.24 for a partic-
ular case where c = �/2 radians.

Fig. 3.24

The graph shows that the sine curve is shifted by an amount �/2 to the left. This
constant is called the phase.
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Definition The phase is the constant term added to the argument of
a trigonometric function.

For a positive phase the curve is shifted to the left and for a negative phase it is
shifted to the right. It is usual in physics and engineering to use a Greek letter such
as �0 to denote a phase.

The function y =Asin(!t+�0) is a sine function of amplitudeA, of the circular
frequency ! and phase angle �0.
The function y =Asin(!t +�0) is said to lead the function y =B sin!t by �0.
The function y = Asin(!t −�0) is said to lag the function y = B sin!t by �0.

3.6.3 Cosine Function

The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse
in a right-angled triangle (Fig. 3.25).

cos� =
b

c
(3.5)

Consider a point P on the unit circle shown in Fig. 3.26. The cosine of the angle �
is equal to the length of the abscissa, the x component, which is the projection of P
on the horizontal axis.

Fig. 3.25 Fig. 3.26

If, as shown in Fig. 3.27, x is the angle turned through by the radius of the unit
circle and y the projection of the point P on the horizontal axis, then

y = cosx

Definition The cosine of an angle � is the x-coordinate of the point P on
the unit circle corresponding to �.
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Fig. 3.27

Figure 3.27 illustrates the graph of this function for positive and negative values
of x. We observe that the cosine function is an even function. The cosine function
can be obtained from the sine function by shifting the latter to the left by �/2 radi-
ans; hence, by inspection of the graphs,

cosx = sin
(
x+

�

2

)
(3.6)

It follows that the sine function can be obtained from the cosine function by shifting
the latter by an amount �/2 radians to the right; hence

sinx = cos
(
x− �

2

)

Whether one uses the sine or cosine function depends on the particular situation.

Amplitude, Period and Phase

The general expression for the cosine function is

y = Acos(bx+ c)
where A = amplitude

2�

b
= period

c = phase; the curve is shifted to the left if c is positive

and to the right if c is negative .

3.6.4 Relationships Between the Sine and Cosine Functions

1. In Fig. 3.28, the position vector to the point P makes an angle � with the x axis,
while the point P1 is obtained by subtracting a right angle from �. We have

�1 = �− �

2
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Fig. 3.28

From the figure it is clear that

sin� = cos�1 = cos
(
�− �

2

)

Similarly, as already mentioned in the previous section,

cos� = sin
(
�+

�

2

)

2. Applying Pythagoras’ theorem to the right-angled triangle in Fig. 3.29 gives

sin2�+ cos2� = 1 (3.7)

Fig. 3.29

From this identity there follow two relationships which are frequently used:

sin� =
√
1− cos2�

cos� =
√
1− sin2�

They are valid for values of � between 0 and �/2. For larger angles the sign of the
root has to be chosen appropriately.
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3.6.5 Tangent and Cotangent

The tangent of the angle � in Fig. 3.30 is defined as the ratio of the opposite side to
the adjacent side.

tan� =
a

b
(3.8a)

Fig. 3.30

From the definition of the sine and cosine functions it follows that

tan� =
sin�
cos�

(3.8b)

As for the sine and cosine, the graph of the tangent function can be derived from the
unit circle. In Fig. 3.31 we erect a tangent at A to the unit circle until it meets the
radial line OP extended to P′. The point P′ has the value tan�.

Fig. 3.31

As � approaches �/2 the value of tan� grows indefinitely. The function y =
tan� is shown in Fig. 3.31. The period of tan� is � .

The cotangent is defined as the reciprocal of the tangent so that

cot� =
1

tan�
=

cos�
sin�

(3.9)
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3.6.6 Addition Formulae

A trigonometric function of a sum or difference of two angles can be expressed
in terms of the trigonometric values of the summands. These identities are called
addition formulae.

sin(�1 +�2) = sin�1 cos�2 + cos�1 sin�2

cos(�1 +�2) = cos�1 cos�2 − sin�1 sin�2 (3.10)

If �2 is negative, then, noting that

sin(−�2) = −sin�2

cos(−�2) = cos�2

we immediately obtain the addition formulae for the difference of two angles:

sin(�1 −�2) = sin�1 cos�2 − cos�1 sin�2

cos(�1 −�2) = cos�1 cos�2 + sin�1 sin�2 (3.11)

The proof for sin(�1 +�2) is as follows. From Fig. 3.32 we have

� = �1 +�2

Fig. 3.32

We drop a perpendicular from P2 on to the position vector P1 obtaining a right-
angled triangle having sides

a = cos�2

b = sin�2

The sine of the angle � = �1 +�2 is given by the line segment P2Q made up of two
segments c and d ; thus

sin(�1 +�2) = c+d
= a sin�1 +b cos�1
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Substituting for a and b gives

sin(�1 +�2) = sin�1 cos�2 + cos�1 sin�2

The proof for cos(�1 + �2) can be developed geometrically in a similar fashion;
alternatively it can now be given algebraically, since cos� = sin(�+�/2).

Sum of a Sine and a Cosine Function with Equal Periods

The sine and cosine functions have the same period but the amplitudes may be
different. Their sum should result in a single trigonometric function of the same
period but with different amplitude and with a phase shift.

Superposition formula
Asin�+B cos� = C sin(�+�0)

where C =
√
A2 +B2

and tan�0 =
B

A
(3.12)

This relationship is important in the study of waves and vibrations.
Figure 3.33 illustrates the superposition of the two functions

y1 = 1.2sin� and y2 = 1.6cos�

with the resultant y3 = 2sin(�+53◦).

Fig. 3.33



64 3 Functions

The proof of the superposition formula is as follows. From Fig. 3.34 we have

a = Asin�

b = B cos�

and a+b = C sin(�+�0)

It follows that

a+b = Asin�+B cos�

= C sin(�+�0)

Furthermore, we see that

C =
√
A2 +B2

tan�0 =
B

A

Fig. 3.34

Further important relationships will be found in the appendix at the end of this
chapter. All formulae follow from the addition formulae given and the known rela-
tionships between trigonometric functions.

3.7 Inverse Trigonometric Functions

Trigonometric functions are periodic and therefore cannot be monotonic; conse-
quently their inverses cannot be formed unless the domain of definition is restricted.

The restricted domains of definition are chosen as follows:

−�
2
≤ x ≤ �

2
for y = sinx

0≤ x ≤ � for y = cosx

−�
2
≤ x ≤ �

2
for y = tanx

0≤ x ≤ � for y = cotx

Inverse sine function:
y = sin−1x defined for |x| ≤ 1 and
y ≤ �/2

Fig. 3.35
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Inverse cosine function:
y = cos−1x defined for |x| ≤ 1 and
0≤ y ≤ �

Fig. 3.35 (continued)

Inverse tangent function:
y = tan−1x defined for all real
values of x and |y| ≤ �/2

Fig. 3.35 (continued)

Inverse cotangent function:
y = cot−1x defined for all real
values of x and 0≤ y ≤ �

Fig. 3.35 (continued)
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The symbol sin−1x is used to denote the smallest angle, whether positive or nega-
tive, that has x for its sine. The symbol does not mean 1/sinx; it is understood as
‘the angle whose sine is x’. It can be written as arcsin x. The other inverse trigono-
metric functions may be written in a similar way, using either symbol, e.g. tan−1x

or arctan x.
We know from our discussion of inverse functions in Sect. 3.5 that the inverse

function is the mirror image of the original function in the bisector of the first quad-
rant in a Cartesian coordinate system. The graphs of the inverse trigonometric func-
tions are shown in Fig. 3.35.

3.8 Function of a Function (Composition)

We frequently encounter functions where the independent variable is itself a func-
tion of another independent variable. For example, the kinetic energy T of a body
is a function of its velocity v:

T = f (v)

But in many cases the velocity is itself a function of the time t , so that

v = g(t) .

It is therefore evident that the kinetic energy can also be considered a function of
time t ; hence we have

T = f (g(t)) .

Definition A function of a function is expressed in the following form:

y = f [g(x)]

f is called the outer function, g is called the inner function.
The new function is also referred to as the composition of the
functions f and g.

Example

y = g2

g = x+1

We require y = f (x)
The solution is y = (x+1)2

This is a rather simple example. To demonstrate that the use of the concept of com-
position may simplify calculations, consider the following function:

y = sin(bx+ c)
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To calculate the value of y we first evaluate the inner function g and then apply the
outer function. Hence we compute g = bx+ c independently and then obtain the
sine of g.

As a very special, but nevertheless important example, consider the case where
f and g are inverse functions, i.e. g(x) = f −1(x). Then the following identities
hold true:

f (f −1(x)) = x and f −1(f (x)) = x (3.13)

Loosely speaking, the functions f (x) and f −1(x) have opposite effects. For
example, let

f (x) = x2 (x ≥ 0) , f −1(x) =
√
x

Then f (f −1(x)) = (
√
x)2 = x

and f −1(f (x)) =
√
x2 = x

Appendix

Relationships Between Trigonometric Functions

sin(−�) = −sin� sin2�+ cos2� = 1

cos(−�) = cos� tan� =
sin�
cos�

sin
(
�+

�

2

)
= cos� cot� =

cos�
sin�

cos
(
�+

�

2

)
= −sin�

Addition Theorems

sin(�1 +�2) = sin�1 cos�2 + cos�1 sin�2

sin(�1 −�2) = sin�1 cos�2 − cos�1 sin�2

cos(�1 +�2) = cos�1 cos�2 − sin�1 sin�2

cos(�1 −�2) = cos�1 cos�2 + sin�1 sin�2

sin2� = 2sin� cos�

sin
�

2
=

√
1

2
(1− cos�)

sin�1 + sin�2 = 2

(
sin
�1 +�2

2
cos

�1 −�2

2

)
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Table of Particular Values of Trigonometric Functions

Radians 0
�

6

�

4

�

3

�

2

Degrees 0◦ 30◦ 45◦ 60◦ 90◦

sin� 0
1

2

1

2

√
2 ≈ 0.707

1

2

√
3 ≈ 0.866 1

cos� 1
1

2

√
3 ≈ 0.866

1

2

√
2 ≈ 0.707

1

2
0

tan� 0
1

3

√
3 1

√
3 = 1.732 ±∞



Chapter 4
Exponential, Logarithmic
and Hyperbolic Functions

4.1 Powers, Exponential Function

4.1.1 Powers

Consider the multiplication of a number by itself, for example a×a×a. A simple
way of expressing this is to write a3. If we multiplied a by itself n times we would
write an. We would say a to the power n;n is known as an index or exponent.

Definition The power an is the product of n equal factors a.
a is called the base and n the index or exponent.

This defines the powers for positive integral exponents only. What about negative
exponents?

If an is reduced by the factor a, this is equivalent to dividing it by a, i.e. an/a.
The number of factors is now n−1; hence we would write

an

a
= an 1

a
= an−1

If we carry on dividing by a we obtain after n such divisions

an−n = a0 = 1 since
a1

a
= 1

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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By this process we have, in fact, given a meaning to a negative index. Hence

n> 0 a2 =
a3

a
= aa

a1 =
a2

a
= a

n= 0 a0 =
a1

a
= 1

n< 0 a−1 =
1

a

a−2 =
1

a2

Definition

a−n =
1

an
(4.1)

a0 = 1 is valid for any base a except for a = 0 because 00 is not defined.

4.1.2 Laws of Indices or Exponents

Product an ×am = an+m (4.2)

Quotient
an

am
= an−m (4.3)

Power (an)m = anm (4.4)

Root a
1
m = m

√
a

an/m = an

(
1

m

)
= m

√
an (4.5)

This is only defined for a > 0 .

These rules are valid for integral indices and also for arbitrary indices; the latter will
be examined in Chap. 8.

There are three values of the base a which are in common use:

1. Base 10: Order of magnitude of quantities can be easily expressed in terms of
powers of 10.

Examples: Distance of the Earth from the Moon is given as 3.8× 108m, av-
erage height of an adult as 1.8×100m, radius of a hydrogen atom
as 0.5×10−10m.
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2. Base 2: This is used in data processing and information theory (computers).
3. Base e: e is a special number, known as Euler’s number; its numerical value is

e = 2.71828 . . .

The importance of this number and powers of it will become clear in Chaps. 5, 6
and 10 on differential and integral calculus, and on differential equations. It is of
paramount importance in higher mathematics.

4.1.3 Binomial Theorem

The following identities are well known:

(a+b)2 = a2 +2ab+b2

(a−b)2 = a2 −2ab+b2

The general formula for positive integral powers of a sum, (a+b)n, is known as the
binomial theorem; it states

(a+b)n = an +
n

1
×an−1b+

n(n−1)
1×2 an−2b2 +

n(n−1)(n−2)
1×2×3 an−3b3 + . . .

+
n(n−1)(n−2) . . .×2×1
1×2× . . .(n−2)(n−1)nb

n (4.6)

The coefficients are known as binomial coefficients. The last coefficient is included
for the sake of completeness; its value is 1.

4.1.4 Exponential Function

The function ax is called an exponential function; x, the index or exponent, is the
independent variable.

Example Let y = 2x

By giving x positive and negative
integral values, the table on the
right is easily produced.

x 2x

−3 0.125
−2 0.25
−1 0.5

0 1
1 2
2 4
3 8
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Figure 4.1 shows the graphs of the functions y = 2x,y = ex,y = 10x.

Fig. 4.1

All exponential functions go through the point corresponding to x = 0, since all
are equal when y = 1. Exponential functions grow very rapidly, as can be seen from
the figure, even for small x-values; hence they are not easily represented graphi-
cally for large x-values. Exponential functions grow much faster than most other
functions (unless a < 1).

Rates of growth in nature are described by exponential functions. An example is
the increase in the number of bacteria in plants. Suppose that cell division doubles
the number of bacteria every 10 hours. Let A be the number of bacteria at the start
of an experiment; the table below gives the growth of the bacteria and this growth is
represented graphically in Fig. 4.2.

Time Number of
(h) bacteria

0 A
10 2A
0 4A
30 8A
40 16A
0 32A

Fig. 4.2

The relationship between the growth of the bacteria and the time is expressed
by means of the exponential function y = A× 20.1t . The coefficient 0.1 is used
because after exactly 10 time units (hours in this instance) the number of bacteria
has doubled. In general this coefficient is the reciprocal of the time T required to
double the bacterial population. Hence we write

y = A×2t/T .

Exponential functions, in particular decreasing exponential functions (decay and
damping), are frequently encountered in physics and engineering.
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Example Radium is an element which decays without any external influence owing
to the emission of ˛ and � radiation. Measurements show that the quantity of radium
decays to half its original value in 1 580 years. Unlike the bacteria example, the
quantity of radium decreases with time. In this case we can write

y = A×2−ax

The time required for the quantity of radium to decay to half its original value is
referred to as the half-life th.

Hence the law for radioactive decay is given by

y = A×2−t/th

Figure 4.3 shows the decreasing exponential function for the decay of radium.

Fig. 4.3

The decreasing exponential function describes damped vibrations, the discharge
of capacitors, Newton’s law of cooling and many other cases.

Finally, we will mention in passing another exponential function, namely

y = e−x2

for positive and negative values of x. The graph of the function is bell-shaped, as
shown in Fig. 4.4. This function can play an important role, e.g. in statistics (the
Gaussian or normal distribution).

Fig. 4.4
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4.2 Logarithm, Logarithmic Function

4.2.1 Logarithm

In Sect. 4.1.4 we considered the exponential function

y = ax

We calculated y for various integral values of x. For fractional values of x we need
to use either tables or a calculator. We will now consider the inverse problem, i.e.
given y, what is x?

Example If 10x = 1000, what is the value of x?
The solution is easy in this case, for we know that 103 = 1000; hence x = 3.

The required process is to transform the equation in such a way that both sides have
powers to the same base; thus

10x = 103

Hence, by comparing exponents, we have x = 3.

Example If 10x = 100000, what is x?

Step 1: We write both sides as powers to the same base, i.e. 10x = 105.
Step 2: We compare exponents: x = 5.

In both examples we required the exponent to the base 10 which yields a given
value. This exponent has been given a name; it is called a logarithm.

The following statements are equivalent:
x is the exponent to the base 10 which gives the number 100000.
x is the logarithm of the number 100000.
This last statement is written as

x = log100000= 5

In order to avoid any doubts about the base, it is common practice to specify it by
a subscript. Thus

x = log10 100000= 5

Example If 2x = 64, what is x?
We write both sides as powers to the same base, 2 in this case.

2x = 26 Hence x = 6

The exponent which raises the base 2 to 64 is 6. This result can be expressed as
follows:

x = log2 64= 6
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Definition Logarithm: The logarithm of a number c to a base a is the ex-
ponent x of the power to which the base must be raised to equal
the number c. As an equation, this definition is expressed as

a(loga c) = c (4.7)

We have to remember that the logarithm is an exponent. To resolve the equation
ax = c we should proceed in two steps:

Step 1: Write both sides as powers to the same base, i.e.

ax = a(loga c)

Step 2: Compare exponents
x = loga c

The examples we have just considered had integral exponents but in many cases
where exponents are not integral, expressions cannot be resolved in such a simple
manner. The case of fractional exponents will be explained in Chap. 8.

Equations in which exponents appear are more easily dealt with by taking log-
arithms. Taking logarithms is the transformation which consists of the two steps
described above.

To avoid having to write the base below the log as a subscript, which is not very
convenient, the following notation has been adopted:

Base 10: This base is mainly used in numerical calculations and it is written as

log10 = lg or log .

Logarithms to base 10 are also known as common logarithms.
Base 2: This base is mainly used in data processing and information theory.
Logarithms to the base 2 are written

log2 = ld

Base e: Logarithms to the base e are called natural logarithms or Napierian log-
arithms; they are frequently used in calculations relating to physical problems.
Logarithms to the base e are written

loge = ln
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4.2.2 Operations with Logarithms

Operations with logarithms follow the power rules since logarithms are exponents.
Thus, for example, the rule for multiplication is simplified to the addition of expo-
nents, while the rule for division is simplified to subtraction of exponents, provided
that the base is the same.

The rules are:

Multiplication
logaAB = logaA+ logaB (4.8)

The logarithm of a product is equal to the sum of the log-
arithms of the factors.

Division

loga

A

B
= logaA− logaB (4.9)

The logarithm of a quotient is equal to the difference of
the logarithms of the numerator and denominator.

Power
logaA

m =m logaA (4.10)

The logarithm of a number raised to a power is equal to
the logarithm of that number multiplied by the exponent.

Root

loga
m
√
A= logaA

1
m =

1

m
logaA (4.11)

The logarithm of the mth root of a number is equal to the
logarithm of that number divided by m.

Conversion of a logarithm to base a into a logarithm to another base b is a fairly
straightforward operation.

If x = loga c

then c = ax

Taking log to the base b on both sides gives

logb c = logb a
x = x logb a

Since x = loga c, it follows that

logb c = loga c× logb a

or loga c =
1

logb a
logb c
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Example We sometimes need to convert from base e to base 10 and vice versa.

logc = 0.4343 lnc

lnc = 2.3026 logc

4.2.3 Logarithmic Functions

The function y = loga x is called a logarithmic function; it is equivalent to

x = ay for a > 0

Example
y = log2x or 2y = x

Numerical values are given in the table below and the graph of the function is shown
in Fig. 4.5.

x y

0.25 −2
0.5 −1
1 0
2 1
4 2

Fig. 4.5

Figure 4.6 shows the logarithmic functions for three different bases, i.e. 10,
2 and e.

Fig. 4.6
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All logarithmic functions tend to minus infinity as x tends to zero, and they are
all equal to zero at x = 1. Logarithmic functions are monotonic as they increase,
and they tend to infinity as x goes to infinity. The reader should observe that the
logarithmic function is the inverse of the exponential function. This is shown in
Fig. 4.7 for bases 2 and e.

Fig. 4.7

4.3 Hyperbolic Functions and Inverse Hyperbolic Functions

4.3.1 Hyperbolic Functions

These functions play an important role in integration and in the solution of differen-
tial equations. They are simple combinations of the exponential function ex and e−x

and are related to the hyperbola just as trigonometric (circular) functions are related
to the circle. They are denoted by adding an ‘h’ to the abbreviations for the corre-
sponding trigonometric functions. Graphs of the hyperbolic functions are shown in
the following figures.

Hyperbolic Sine Function

This function is denoted by sinh (pronounced shine) and is defined as follows:

sinhx =
ex − e−x

2
(4.12)

Figure 4.8a shows sinh x and also the functions 1/2ex and −1/2e−x; sinh x is
obtained by adding them together.
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Fig. 4.8

We observe that the hyperbolic sine is an odd function: it changes sign when x
changes sign, i.e. it is symmetrical about the origin.

Hyperbolic Cosine Function

This function is denoted by cosh and is defined as follows:

coshx =
ex + e−x

2
(4.13)

Its graph is shown in Fig. 4.8b; it is an even function.
A chain or cable which hangs under gravity sags in accordance with the cosh

function. The curve is called a catenary.

Hyperbolic Tangent

This function is denoted by tanh and is defined as follows:

tanhx =
sinhx
coshx

=
ex − e−x

ex + e−x
=
1− e−2x

1+ e−2x
(4.14)

It is an odd function, i.e. its graph is symmetrical with respect to the origin. It
is defined for all real values of x, and its range is |y| < 1. Its graph is shown in
Fig. 4.9a. There are two asymptotes: y = 1 and y = −1.
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Fig. 4.9 a Hyperbolic tangent; b Hyperbolic cotangent. Dotted line hyperbolic tangent

Hyperbolic Cotangent

This function is denoted by coth and is defined as follows:

cothx =
coshx
sinhx

=
ex + e−x

ex − e−x
=
1+ e−2x

1− e−2x
=

1

tanhx
(4.15)

It is an odd function. It is defined for all real values of x, except x = 0. Its graph
is shown in Fig. 4.9b; and it lies above 1 and below −1. It is asymptotic to y = 1

and y = −1.
An examination of the graphs of the hyperbolic functions reveals that they are

not periodic, unlike the trigonometric functions.
There are a number of relationships between the hyperbolic functions which we

will not discuss here. We will, however, derive an important one because of its sim-
ilarity with the corresponding identity for trigonometric functions, i.e.

sin2 x+ cos2 x = 1

Now consider the corresponding hyperbolic functions. We have

sinh2 x =
1

4
(ex − e−x)2 =

1

4
(e2x −2+ e−2x)

cosh2 x =
1

4
(ex + e−x)2 =

1

4
(e2x +2+ e−2x)

By subtraction we find

cosh2x− sinh2x = 1 (4.16)
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4.3.2 Inverse Hyperbolic Functions

The hyperbolic functions are monotonic except for cosh x. Hence we can form the
inverse functions, except that for the inverse cosh x the range will be restricted to
positive values of x. Figures 4.10 and 4.11 show the graphs of the inverse functions.
They are formed by reflection in the bisectrix in the first quadrant.

Fig. 4.10 a Inverse hyperbolic sine; b inverse hyperbolic cosine

Inverse Hyperbolic Sine

y = sinh−1x (Fig. 4.10a)

It is defined for all real values of x. The following identity holds true:

sinh−1x = ln(x+
√
x2 +1) (4.17)

Inverse Hyperbolic Cosine

y = cosh−1x (Fig. 4.10b)

It is defined for x ≥ 1; hence y ≥ 0. The following identity holds true:

cosh−1x = ln(x+
√
x2 −1) (4.18)
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Inverse Hyperbolic Tangent

y = tanh−1x (Fig. 4.11)

It is defined for |x| < 1. The following identity holds true:

tanh−1x =
1

2
ln
1+x
1−x (4.19)

Inverse Hyperbolic Cotangent

y = coth−1x (Fig. 4.11)

It is defined for |x| > 1; its range consists of all real numbers except y = 0. The
following identity holds true:

coth−1x =
1

2
ln
1+x
x−1 (4.20)

Fig. 4.11
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Exercises

If you have solved the exercises you may try to solve them again with the aid of
computers using programs like Mathematica, Derive or Maple.

Calculate the terms given in the next questions or give a transformation:

1. (a) a−n

(c) a
1
n

(e) (y3)2

(g) 103 ·10−3 ·102

(b) 27
1
3

(d) (0,1)0

(f ) x−
3
2

(h) 3−3

2. (a) (
√
2)

1
2

(c) (ln2)0

(e) (0, 5)2 · (0, 5)−4 · (0, 5)0

(b) e
1

10

(d)
√
5 ·√7

(f )
√
8 ·√3

3. (a) lg100

(c) 10 · lg10
(e) 10lg10

(b) lg
1

1000

(d) lg106

(f ) (lg10)10

4. (a) ld8

(c) ld25

(e) a3·ld4

(g) 2lda

(b) ld0, 5

(d) (a3)ld4

(f ) (ld2)2

(h) 2ld2

5. (a) elne

(c) lne3

(e) (lne)e4

(b) eln57

(d) (eln3)0

(f ) ln(e · e4)

6. (a) lg10x

(c) ln(e2x · e5x)

(e) ld (4n)

(b) lg
1

10x

(d)
1

n
lga

(f ) m · ld5

7.
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(a) ln(a ·b)

(c) ld (4 ·16)

(e) ln(e3x · e5x)

(b) lgx2

(d) ld
√
x

(f ) lg
10x

103

8. Calculate the inverse functions:

(a) y = 2x−5 (b) y = 8x3 +1 (c) y = ln2x

9. Calculate the function of a function:

(a) y = u3 , u= g(x) = x−1 ; Wanted: y = f (g(x))

(b) y =
u+1
u−1 , u= x2 ; Wanted: y = f (g(x))

(c) y = u2 −1 , u=
√
x3 +2 ; Wanted: y = f (g(x))

(d) y = 1
2u , u= g(x) = x2 −4 ; Wanted: y = f (g(1))

(e) y = u+
√
u , u=

x2

4
; Wanted: y = f (g(2))

(f ) y = sin(u+�) , u=
�

2
x ; Wanted: y = f (g(1))



Chapter 5
Differential Calculus

5.1 Sequences and Limits

5.1.1 The Concept of Sequence

As a preliminary example, consider the fraction 1/n.
By giving n the values of the natural numbers 1,2,3,4,5 . . . successively, we

obtain the following sequence:

1,
1

2
,
1

3
,
1

4
,
1

5
, . . .

These values are illustrated graphically in Fig. 5.1.

Fig. 5.1

In this example, 1/n defined the form of the sequence and to n we assigned
the values of the natural numbers. The functional representation of the terms of
a sequence is usually denoted by an, so that the sequence becomes

a1,a2,a3, . . . ,an,an+1, . . .

This can be abbreviated thus: {an}
an is the nth term of the sequence, sometimes referred to as the general term.

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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Example Let an be given by

an =
1

n(n+1)

It then gives rise to the following sequence:

1

1×2 ,
1

2×3 ,
1

3×4 , . . .

Example Let an be given by
an = (−1)nn

It then gives rise to the following sequence

−1,2,−3,4,−5,6, . . .
Example Let an be given by an = aqn, where a and q are real numbers. By giving
n the values 0,1,2,3, . . . the following sequence is obtained: a,aq,aq2 ,aq3, . . . This
type of sequence is called a geometric progression (GP), and q is known as the
common ratio.

A sequence may be finite or infinite. In the case of a finite sequence, the range of
n is limited, i.e. the sequence terminates after a certain number of terms. An infinite
sequence has an unlimited number of terms.

5.1.2 Limit of a Sequence

Consider the sequence formed by an = 1/n. If we let n grow indefinitely then it
follows that 1/n converges to zero or tends to zero. This is expressed in the follow-
ing way:

1

n
→ 0 as n→ ∞

or lim
n→∞

1

n
= 0

Zero denotes the limiting value of 1/n as n tends to infinity. Such a sequence is
referred to as a null sequence.

The sequence whose general term is an = 1+1/n, on the other hand, converges
to the value 1 as n increases indefinitely. In general, the limiting value of a sequence
may be any number g.

Definition If a sequence whose general term is an converges towards a fi-
nite value g as n→ ∞, then g is called the limit of the sequence.
This is written as lim

n→∞
an = g.
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A precise mathematical definition is as follows:
The sequence formed by the general term an is said to converge towards the con-

stant value g if for any preassigned positive number ", however small, it is possible
to find a positive integerM such that

|an −g| < " for all n>M

If a sequence converges towards the value g it is said to be convergent. A sequence
that does not converge is said to be divergent.

The following examples are given without proof to illustrate convergent and di-
vergent sequences.

Convergent Sequences

Example The sequence defined by an = n/n+1 has the limiting value 1 as n→∞.
This is because the number 1 in the denominator becomes less and less important

as n becomes larger and larger. This sequence is illustrated in Fig. 5.2.

Fig. 5.2

Example The sequence defined by an = 2+(−1/2)n has the limiting value 2 as
n→ ∞. This sequence is illustrated in Fig. 5.3.

Fig. 5.3
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Example A sequence of great significance is defined by an = (1+1/n)n. This
sequence has a limiting value which is denoted by the letter e, named after Euler
who discovered it.

Definition Euler’s number:

e = lim
n→∞

(
1+

1

n

)
= 2.718281828 · · ·

Example The following limit, given here without proof, will be used in Sect. 5.5.3:

lim
n→∞

(
e

1
n −1

)
n= 1 (5.1)

Divergent Sequences

Example The sequence defined by an = n2 grows beyond all bounds as n→ ∞.
This sequence is illustrated in Fig. 5.4.

Fig. 5.4

Example The sequence defined by an = 2n/n2 grows beyond all bounds as n→∞.

Example The sequence defined by an = (−1)nn/(n+1) has no limit. It oscillates
between the values +1 and −1 as n→ ∞. This sequence is illustrated in Fig. 5.5.

Fig. 5.5
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5.1.3 Limit of a Function

The concept of the limit of a sequence can be extended without difficulty to func-
tions. Consider the function y = f (x). The independent variable x can take the
values x1,x2, . . . If these values do not exceed the domain of definition of the func-
tion f (x), then the corresponding values yn = f (xn) form a sequence of values
for y.

Definition Within the domain of definition of the function y = f (x) we
take out all possible sequences {xn} which converge towards
a determined fixed value x0.
If {yn} = {f (xn)} tends to one single value, g, for all {xn},
then we call g the limit of the function f (x) as x→ x0.

We say that the function f (x) converges and write

lim
x→x0

f (x) = g if x tends to the finite value x0

lim
x→∞

f (x) = g if x tends to infinity (∞)

Example y =
1

x
for x→ ∞

Let us assume that x takes the values 1,2,3, . . . successively. We then have a se-
quence whose general term is an = 1/n and which tends to zero as n increases
beyond limit. But we could equally let x run through sequences such as 1, 3, 9, 27,
. . . or 3/7,6/7,9/7,12/7, . . ., or indeed many other sequences of real numbers. In
each case we shall find that y tends to zero,
i.e. y = 1/x has the limit g = 0 as x→ ∞.

Hence lim
x→∞

1

x
= 0

5.1.4 Examples for the Practical Determination of Limits

Up to now we have not given a clear and precise procedure for obtaining limits.
In fact, such a procedure is not readily available; but to some extent the successes
in obtaining the limits in certain cases give rise to a procedure for achieving our
objective in other cases. This is illustrated by the following examples.
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Example lim
x→∞

x2

x2 +x+1
We know that lim

x→∞
1/x = 0; hence, if we divide each summand of the fraction by

the highest power of x, we get terms in the denominator which vanish if x→ ∞.

x2

x2 +x+1
=

1

1+1/x+1/x2
(if x �= 0)

As x→ ∞,
1

x
→ 0 and

1
x2

→ 0 Hence lim
x→∞

1

1+1/x+1/x2
= 1

Example lim
x→0

sinx
x

(x in radians)

This is an important limit as we shall see later when we calculate the differential
coefficient of the sine function (Sect. 5.5.3).

Figure 5.6a shows a circular sector OAB of unit radius. If x is the angle be-
tween the radii OA and OB, then it follows from the definitions of the trigonometric
functions that BD = sinx,OD = cosx and AC = tanx. Also, x is the length of the
arc AB.

Fig. 5.6

Now consider the areas of the triangles ODB and OAC and the area of the sector
OAB shown in Fig. 5.6b. We see that the area of the sector OAB is greater than the
area of the triangle ODB and smaller than the area of the triangle OAC, i.e.

Area ∆ ODB < Area sector OAB < Area∆ OAC

sinx cosx
2

<
x

2
<

tanx
2

Dividing by sinx/2 gives

cosx <
x

sinx
<

1

cosx
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We take the reciprocal
1

cosx
>

sinx
x

> cosx

As x → 0,cosx → 1 and hence sinx/x lies between two expressions which both
tend to the limit 1. It follows, therefore, that

lim
x→0

sinx
x

= 1 (5.2)

5.2 Continuity

If a function takes a sudden jump at x = x0 it is said to be discontinuous; if, on the
other hand, no such jump occurs then the function is said to be continuous.

This is illustrated in Fig. 5.7a and b respectively.

Fig. 5.7

Definition The function y = f (x) is continuous at the point x = x0 if the
following conditions are satisfied:
f (x) has the same limit g as x→ x0 whether x0 is approached
from the left or from the right on the x-axis. This limit g agrees
with the value f (x0) at x = x0.

A notation for the limit approached from the right-hand side is

lim
x→x0+0

f (x)

When the limit is approached from the lift-hand side we write

lim
x→x0−0

f (x)

Hence the function f (x) is continuous at x = x0 if

lim
x→x0−0

f (x) = lim
x→x0+0

f (x) = lim
x→x0

f (x) = f ( lim
x→x0

x) = f (x0)
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5.3 Series

A series is formed by adding the terms of a sequence or progression.
As an example, consider the sequence

1,
1

2
,
1

3
,
1

4
, . . . ,

1

n
, . . . ,

1

r

By adding the terms we obtain the series

1+
1

2
+
1

3
+
1

4
+ · · ·+ 1

n
+ · · · 1

r

We should note the following:
Sequence: a1,a2,a3, . . . ,an, . . . ,ar

Series: a1 +a2 +a3 + · · ·+an + · · ·ar

a1 is referred to as the leading term,
an the general term,
ar the last or end term,
n is a variable number and assumes all values between 1 and r . Other letters such
as i ,j ,k are often used to denote the variable.

To indicate a series, the Greek letter sigma (Σ) is used to avoid writing down
long and complicated expressions.

a1 +a2 +a3 + · · ·+ar =
r

∑
n=1

an = Sr

Sr denotes the sum of r terms.

The notation
r

∑
n=1

an means that n takes on all the values between 1 and r , e.g.

2

∑
n=1

an = a1 +a2 = S2

4

∑
n=1

an = a1 +a2 +a3 +a4 = S4

The variable is completely determined by its limits (1 to r), and it does not matter
which letter is used to represent it.

As an example, consider the series formed by adding the squares of the natural
numbers

12 +22 +32 +42 + · · ·+n2 + · · ·+ r2 .

Here the general term is
an = n2

By using the summation sign, the series is expressed as follows:



5.3 Series 93

r

∑
n=1

n2 = 12 +22 +32 + · · ·+ r2

If a series has an infinite number of terms, such that r → ∞, then we write

lim
r→∞

Sr = lim
r→∞

r

∑
n=1

an

This is usually written

S =
∞

∑
n=1

an

Such a series is referred to as an infinite series.
We should note, however, that, strictly speaking, this summation indicates a lim-

iting process. r → ∞ means that we take r as large as we please. S for r → ∞ is
a limiting value of {Sr}, provided it exists.

5.3.1 Geometric Series

The following series is called a geometric series, the sum of the geometric progres-
sion (GP)

a+aq+aq2 +aq3 + · · ·+aqn + · · ·
The sum of the first r terms of this series is

Sr =
n=r−1

∑
n=0

aqn

To obtain an expression for this sum we multiply the original series by the common
ratio q and then subtract the original series from the new one:

Srq = aq+aq2 + · · ·+aqr−1 +aqr

Sr = a+aq+aq2 + · · ·+aqr−1

Subtracting gives

Srq−Sr = −a+aqr

or Sr(q−1) = a(qr −1)
Thus we get:

Geometric series: Sr = a
qr −1
q−1 = a

1−qr

1−q for q �= 1 (5.3)

This is the sum of the first r terms of the GP.
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To obtain the sum for an infinite number of terms we need to find the limit of Sr

as r → ∞. We have to distinguish between the following two cases:

Case 1: |q| < 1

Here lim
r→∞

qr = 0

Hence S = lim
r→∞

Sr = lim
r→∞

a 1−qr

1−q = a
1−q

Case 2: |q| > 1

In this case qr grows beyond all bounds as r → ∞ and the geometric series has
no finite limit.

5.4 Differentiation of a Function

5.4.1 Gradient or Slope of a Line

Definition The gradient of a line is the ratio of the rise ∆y to the base line
∆x from which this rise is achieved.

The symbol ∆ is the Greek letter ‘delta’ and is used here to mean the ‘difference
between’. Hence ∆x does not mean ∆ multiplied by x but the difference between
two values of x such as x1 and x2, i.e. ∆x = x2 −x1.

The gradient or slope is also given by the tangent of the angle of elevation ˛, as
shown in Fig. 5.8.

∆y
∆x

= tan˛

Fig. 5.8
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5.4.2 Gradient of an Arbitrary Curve

The gradient of an arbitrary curve, unlike the gradient of a line, varies from point
to point, as can be seen by examining the curve shown in Fig. 5.9. If we could find
the gradient at some fixed point P on the curve, then the line through P with the
same slope is called the tangent to the curve at P, and we can use as synonyms the
expressions ‘gradient of the curve’ and ‘slope or gradient of the tangent’.

Fig. 5.9

The problem now is to find an expression for the gradient of any curve at a given
point P.

Consider a point P on the curve
y = f (x) shown in Fig. 5.10a and
a neighbouring point Q. The line
drawn through P and Q is called the
secant, whose slope is

tan˛′ =
∆y
∆x

We have
∆y = f (x+ ∆x)−f (x)
(see Fig. 5.10b).

Fig. 5.10



96 5 Differential Calculus

With P fixed for the moment, let the point Q move towards P. It follows that in
the limit, when Q coincides with P, the angle ˛′ is equal to the angle ˛, the slope of
the tangent to the curve at P. As Q gets nearer to P we notice that ∆x tends to zero
and, as a consequence, ∆y tends to zero also; but the ratio ∆y/∆x tends to a definite
limit since the secant PQ becomes the tangent to the curve at P. Hence

tan˛ = lim
˛′→˛

tan˛′ = lim
∆x→0

∆y
∆x

= lim
∆x→0

f (x+ ∆x)−f (x)
∆x

This is the slope of the tangent at P.

Definition

The fraction
f (x+ ∆x)−f (x)

∆x
=

∆y
∆x

is called

the difference quotient . (5.4)

Example Calculate the slope of the parabola y = x2 at the point P = (1/2,1/4).
From Fig. 5.11, the slope of the secant PQ, where Q is any other point, is

tan˛′ =
f (x+ ∆x)−f (x)

∆x
We wish to obtain the slope of the tangent at P. We know that

f (x+ ∆x) = (x+ ∆x)2

Therefore the slope of the tangent at P is

tan˛ = lim
∆x→0

(x+ ∆x)2 −x2

∆x

This reduces to
tan˛ = lim

∆x→0
(2x+ ∆x)

Fig. 5.11



5.4 Differentiation of a Function 97

As ∆x→ 0 we have, in the limit,

tan˛ = 2x

At the point P(1/2,1/4) the slope is tan˛ = 2×1/2= 1, giving ˛ = 45◦.
It is not always true that the difference quotient has a limit as ∆x → 0 because

not every curve f (x) has a well-defined slope at a particular point. For example,
consider the point P on the curve shown in Fig. 5.12.

Fig. 5.12

5.4.3 Derivative of a Function

Moving from the geometrical concept above to the general case, we consider the
difference quotient of a function f (x), namely

∆y
∆x

=
f (x+ ∆x)−f (x)

∆x

Definition If the difference quotient ∆y/∆x has a limit as ∆x → 0, this
limit is called the derivative or differential coefficient of the
function y = f (x) with respect to x and we write

dy
dx

= lim
∆x→0

∆y
∆x

(5.5)

This differential coefficient is denoted by y′,f ′(x) or dy/dx. It must be clearly
understood that the d does not multiply y or x but is the symbol for the differential
of y or x; dy/dx is read as ‘dy by dx’.

Using the above notations, we have

y′ = f ′(x) =
dy
dx

=
d

dx
f (x) = lim

∆x→0

∆y
∆x

= lim
∆x→0

f (x+ ∆x)−f (x)
∆x
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We have thus defined analytically the first derivative by a limiting process which we
can also interpret geometrically as the slope of the tangent to the curve at a point x,
as shown in Fig. 5.13.

Fig. 5.13

By this process we have obtained substantially more than we had postulated;
instead of obtaining the slope at some fixed point P, we have, in fact, obtained the
slope as a function of the independent variable x.

The importance of the differential calculus lies in the fact that it describes rela-
tionships between variable entities. The differential coefficient y′ gives the rate of
change of y with respect to x. In the next section we will look at an example taken
from the physics of motion.

5.4.4 Physical Application: Velocity

The vehicle shown in Fig. 5.14 is observed to cover a distance ∆x in a time ∆t , i.e.
we start the clock at some time t and stop it at a time t + ∆t . The magnitude of the
average velocity, the rate of change of displacement with time, is given by

v0 =
∆x
∆t

This expression gives us an average value only: it does not tell us how fast the
vehicle is moving at a particular instant in time, i.e. we do not know its instantaneous
velocity v(t).

The smaller we take ∆t , and hence ∆x, the closer we get to the value of the
instantaneous velocity at a particular time. Figure 5.15 shows the vehicle travelling
a shorter distance ∆x which it will cover in a shorter interval of time ∆t .

We now define the instantaneous velocity as the first derivative of the position
coordinate x with respect to time:

v(t) = lim
∆t→0

∆x
∆t

or v(t) =
dx
dt

= ẋ
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Fig. 5.14 Fig. 5.15

The ‘dot’ notation is frequently used when calculating derivatives with respect to
time. This limiting process with ∆t → 0 is one of the fundamental mathematical ab-
stractions of physics. Although we are not able to measure arbitrary small times, we
are nevertheless justified in taking limits with respect to time because we can draw
conclusions which can be verified experimentally. The expression for the velocity at
any instant of time t has been written v(t) to imply that the velocity itself may vary
with time. This variation, i.e. the rate of change of velocity with respect to time, is
referred to as acceleration. This is a quantity which has a relationship with another
measurable physical quantity – the force as shown in treatises on mechanics.

Hence the acceleration a(t) is defined by

a(t) = lim
∆t→0

∆v
∆t

=
dv
dt

= v̇

5.4.5 The Differential

We have defined the derivative or differential coefficient as

dy
dx

= lim
∆x→0

∆y
∆x

where dy/dx was not to be regarded as dy divided by dx but as the limit of the
quotient ∆y/∆x as ∆x→ 0. There are, however, situations where it is important to
give separate meanings to dx and dy.

Let us arbitrarily assume that dx is a finite quantity! dx is called the differential
of x. Consider two points P and Q on the curve y = f (x) shown in Fig. 5.16.

In going from P to Q along the curve, y changes by an amount ∆y given by

∆y = f (x+ ∆x)−f (x)

The tangent to the curve at the point x changes by an amount

dy = f ′(x) dx

during the same interval ∆x = dx. dy is called the differential of the function
y = f (x).
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Fig. 5.16

We see quite clearly that, in general, the differential of the function is not equal
to the functional change in y, i.e.

dy �= ∆y

Thus the differential dy is an approximation for the change ∆y: the smaller the
interval ∆x, the better the approximation. Hence, as soon as we are able to calculate
the derivative y′ of a function we are also able to calculate its differential.

The differential is used extensively as a first approximation for the change in
the function. Geometrically, it means that the function is replaced by its tangent at
a particular point.

Notation

x = independent variable

y = dependent variable

dx = differential of the independent variable x

dy = differential of the dependent variable y ,

i.e. dy = f ′(x) dx

dy is often replaced by df

5.5 Calculating Differential Coefficients

We first demonstrate the calculation of differential coefficients for power functions.
The calculation of the difference quotient and the limiting process is easy.

In the following sections, we will derive some general rules for calculating dif-
ferential coefficients. Using these rules, we will be able to treat the functions most
often used in practical applications.
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5.5.1 Derivatives of Power Functions; Constant Factors

First we state the formula for obtaining the derivatives of power functions.

If y = f (x) = xn where n is any rational number

then y′ = nxn−1 (5.6)

The proof is given only for the special case when n is a positive integer.
We start by investigating the difference quotient:

∆y
∆x

=
(x+ ∆x)n −xn

∆x

Expanding the term (x+ ∆x)n by the binomial theorem (cf. Sect. 4.1.3) gives

∆y
∆x

=
xn +nxn−1∆x+ · · ·+(∆x)n −xn

∆x

=
nxn−1∆x+ · · ·+(∆x)n

∆x

Factorising ∆x gives

∆y
∆x

= nxn−1 +
n(n−1)

2
xn−2∆x+ · · ·+(∆x)n−1

We proceed with the limiting process. Making ∆x→ 0 results in all terms vanishing
except the first one:

y′ = nxn−1

Example If y = x3, then n= 3.
Applying the above rule gives

y′ = 3x3−1 = 3x2

It can be shown that if n is a negative integer, n = −˛, then y′ = −˛x−(˛−1)

It can also be shown that if y = xp/q , where p and q are both integers, then

y′ =
p

q
x(p/q)−1

Hence the rule applies whether n is positive, negative or a fraction.

Example If y = 1/
√
x = x−1/2, i.e. n= −1/2,

then y′ = −1/2x−1/2−1 = −1/2x−3/2
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The derivative of a constant vanishes:

y(x) = c , c = constant

y′(x) = 0

The graph of this function is shown in
Fig. 5.17. It is parallel to the x-axis. The
slope is zero. This obvious result is also ob-
tained by systematic calculation:

y′ = lim
∆x→0

f (x+ ∆x)−f (x)
∆x

= lim
∆x→0

c− c
∆x

= 0

Fig. 5.17

5.5.2 Rules for Differentiation

Constant Factor

A constant factor is preserved during differentiation:

y = cf (x) where c is a constant

y′ = cf ′(x) (5.7)

Proof We can take out the constant c and place it in front of the limit sign, since it
is not affected by the limiting process

y′ = lim
∆x→0

cf (x+ ∆x)− cf (x)
∆x

= c lim
∆x→0

f (x+ ∆x)−f (x)
∆x

Hence y′ = cf ′(x) .

Differentiation of a Sum: Sum Rule

The derivative of the sum of several functions is the sum of the individual deriva-
tives:

y = u(x)+v(x)

y′ = u′(x)+v′(x) (5.8)
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Proof We separate the limit into a sum of limits.
By definition,

y′ = lim
∆x→0

u(x+ ∆x)+v(x+ ∆x)−u(x)−v(x)
∆x

Provided that the limit of each function exists we can separate the two functions,
so that

y′ = lim
∆x→0

u(x+ ∆x)−u(x)
∆x

+ lim
∆x→0

v(x+ ∆x)−v(x)
∆x

Hence y′ = u′(x)+v′(x) .

The rule applies equally well to the sum or difference of two functions and to the
sum or difference of several functions.

Generally, the derivative of the algebraic sum of n functions is the algebraic sum
of their derivatives:

If y = u1(x)+u2(x)+ · · ·+un(x)

then y′ = u1
′(x)+u2

′(x)+ · · ·+un
′(x)

Product of Two Functions: Product Rule

If u(x) and v(x) are two functions, the derivative of the product is given by the
following expression:

y = u(x)v(x)
y′ = u′(x)v(x)+u(x)v′(x) (5.9)

Proof By definition,

y′ = lim
∆x→0

u(x+ ∆x)v(x+ ∆x)−u(x)v(x)
∆x

Adding and subtracting u(x)v(x+ ∆x) to the numerator gives

y′ = lim
∆x→0

u(x+ ∆x)v(x+ ∆x)−u(x)v(x)+u(x)v(x+ ∆x)−u(x)v(x+ ∆x)
∆x

Collecting terms in such a way that difference quotients are formed gives

y′ = lim
∆x→0

u(x+ ∆x)−u(x)
∆x

v(x+ ∆x)+ lim
∆x→0

v(x+ ∆x)−v(x)
∆x

u(x)

Hence y′ = u′(x)v(x)+v′(x)u(x)
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Quotient of Two Functions: Quotient Rule

If u(x) and v(x) are two functions, the derivative of the quotient is given by the
following expression:

y =
u(x)
v(x)

y′ =
u′(x)v(x)−u(x)v′(x)

[v(x)]2
(5.10)

The proof follows the pattern given above and is omitted here.

Derivative of a Function of a Function: Chain Rule

If g(x) is a function of x and f (g) is a function of g, let y = f (g), i.e.

y = f (g(x))

y is said to be a function of a function. Its derivative is obtained by differentiating
the outer function f with respect to g (written df /dg) and the inner function with
respect to x and multiplying the two derivatives.

y = f (g(x))

y ′ =
df
dg
g′(x) (5.11)

Proof By definition,

dy
dg

=
df
dg

= lim
∆g→0

f (g+ ∆g)−f (g)
∆g

and
dg
dx

= lim
∆x→0

g(x+ ∆x)−g(x)
∆x

dy
dg

= lim
∆g→0

∆f
∆g

and
dg
dx

= lim
∆x→0

∆g
∆x

Before proceeding to the limit, consider the product ∆f
∆g · ∆g

∆x .
This is equal to ∆y/∆x.

Thus
dy
dx

= lim
∆x→0

∆y
∆x

= lim
∆g→0

∆f
∆g

lim
∆x→0

∆g
∆x

giving
dy
dx

=
df
dg

dg
dx

Hence y′ =
df
dg
g′(x)
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Example

y = (1+x2)3

g(x) = 1+x2 (inner function)

f (g) = g3 (outer function)
df
dg

= 3g2 and g′(x) = 2x

y′ = 3g2 ×2x = 6(1+x2)2x

Derivative of the Inverse Function

If the function f (x) is differentiable in a given interval where f ′(x) �= 0, then the
inverse function f −1(x) possesses a derivative at all points in the corresponding
interval. The following relationship holds true:

d
dx
f −1(x0) =

[
f −1(x0)

]′
=

1

f ′(y0)

To demonstrate this, consider the graphs of f −1(x) and f (x), as shown in Fig. 5.18.
It will be remembered from the geometrical correlation discussed in Chap. 3,
Sect. 3.5 that these graphs are symmetrical about the bisection line.

Fig. 5.18

At a point P = (x0,y0) the slope of the curve is the derivative of the function
f −1(x0). We will now determine the slope.

tan˛ =
[
f −1(x0)

]′
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We denote by ˛ the angle made by the tangent to the curve at P and the x-axis. The
slope of the tangent measured with respect to the y-axis is denoted by � . Further-
more, the slope of the tangent to f (y0), at the position symmetrical to P, is also � .
(Note: y0 = f −1(x0).)

tan� = f ′(y0)

Since ˛+ � = 90◦, it follows that tan˛ = cot� = 1/tan� .

Hence [f −1(x)]′ =
1

f ′(y)
=

1

f ′[f −1(x)]

This formula can be rewritten as follows:
f ′(y) is the derivative of f at the point y; remember that y = f −1(x) means

x = f (y). Thus dx/dy = f ′(y). If we insert dx/dy in the formula we obtain

dy
dx

=
1

dx/dy

Derivative of the inverse function y = f −1(x):

d
dx
f −1(x) =

dy
dx

=
1

f ′(f −1(x))
dy
dx

=
1

dx/dy
(5.12)

5.5.3 Differentiation of Fundamental Functions

We now evaluate the differential coefficients for functions which are frequently
used. Fortunately, we do not, in each individual case, have to carry out the limit-
ing process for the function f (x) under consideration:

f ′(x) = lim
∆x→0

f (x+ ∆x)−f (x)
∆x

The basic difficulty in obtaining this limit is that the numerator and the denominator
of the difference quotient both become zero as ∆x→ 0, giving the expression 0/0. To
overcome this difficulty we try to transform the difference quotient in such a way
that the denominator does not become zero during the limiting process; this can
only be achieved with some fundamental functions like power functions. In some
cases (for example with sine functions and exponential functions) we are forced to
carry out the limiting process. But in most other cases we may reduce the differ-
ential coefficient to the known differential coefficients of other functions, using the
differentiation rules derived in the previous section. The following brief proofs for
a number of fundamental functions illustrate this.
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Trigonometric Functions

y = sinx y′ = cosx

y = cosx y′ = −sinx

y = tanx y′ =
1

cos2 x
= 1+ tan2 x

y = cotx y′ =
−1

sin2x
= −1− cot2x (5.13)

In the case of the last two derivatives we must exclude the values of x for which the
denominator becomes zero.

Proof Sine function
We start with the difference quotient

∆y
∆x

=
sin(x+ ∆x)− sinx

∆x
∆y
∆x

=
2sin(∆x/2)cos(x+ ∆x/2)∗

∆x

=
sin(∆x/2)
(∆x/2)

cos(x+ ∆x/2)

We saw in Sect. 5.1.4 (5.2) that

lim
∆x→0

sin∆x
∆x

= 1

Hence
dy
dx

= lim
∆x→0

sin(∆x/2)
∆x/2

cos

(
x+

∆x
2

)
= cosx

Proof Cosine function

y = cosx = sin
(
x+

�

2

)

We apply the chain rule for a function of a function with

g(x) = x+
�

2
f (g) = sing

Differentiating gives

y′ = cosgg′ = cos
(
x+

�

2

)

= −sinx

∗ To obtain this transformation, we use the relationships from Chap. 3, p. 67:

sin˛− sinˇ = 2

(
sin

˛−ˇ

2
cos

˛ +ˇ

2

)

In our case ˛ = x +∆x and ˇ = x
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The derivatives of the tan and cot functions can be obtained by applying the quotient
rule:

y = tanx =
sinx
cosx

, y′ =
cos2 x− (−sin2x)

cos2 x
=

1

cos2x

and y = cotx =
cosx
sinx

, y′ =
−sin2 x− cos2 x

sin2x
=

−1
sin2x

Example The vibration equation. A sine function with an arbitrary period has
the form

y = sinax The period is
2�

a

This can be treated as a function of a function with g(x) = ax and f (g) = sin(g).
The derivative is obtained by means of the chain rule. First we differentiate f

with respect to g and then g with respect to x.

f (g) = sin(g)
df
dg

= cos(g)

g(x) = ax
dg
dx

= g′(x) = a

Hence, by the chain rule,
y′ = acosax

In physics and engineering, we often have to deal with quantities which depend on
time. Mechanical and electrical vibrations are typical examples.

A vibration with an amplitude A and a frequency ! (also referred to as circular
frequency) is described by the equation

x = Asin(!t)

(When there is no possible confusion, the bracket around!t may be omitted, so that
x = Asin!t .)

To obtain the velocity of the vibration we have to differentiate this equation with
respect to the time t :

v(t) =
dx
dt

= ẋ

Remember that the ‘dot’ above the x indicates differentiation with respect to time t .
Hence

v(t) = ẋ = !Acos(!t)

since A is a constant factor which remains unchanged during differentiation. The
rest of the equation is identical to the equation y = sinax where a replaces !,x re-
places t ,y replaces x.
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Inverse Trigonometric Functions

y = sin−1x y′ =
1√
1−x2

y = cos−1x y′ =
−1√
1−x2

y = tan−1x y′ =
1

1+x2

y = cot−1x y′ =
−1
1+x2

(5.14)

To prove the derivatives of the inverse trigonometric functions we use the general
equation derived in Sect. 5.5.2, i.e.

dy
dx

=
1

dx/dy

Proof Derivative of the inverse sine function

y = sin−1x

x = siny

We differentiate with respect to y, obtaining

dx
dy

= cosy =
√
1− sin2 y =

√
1−x2

Since
dy
dx

=
1

dx/dy

it follows that y′ =
1√
1−x2

Other proofs follow the same pattern.

Exponential and Logarithmic Functions

y = ex y′ = ex

y = lnx y′ =
1

x
(5.15)

Proof Exponential function

∆y
∆x

=
e(x+∆x)− ex

∆x
=

ex(e∆x −1)
∆x

According to (5.1), lim
n→∞

(e1/n −1)n= 1.
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This limit remains valid if we substitute any suitable sequence of numbers for n.
If we substitute 1/n= ∆x then, as n→ ∞,∆x→ 0. Hence

lim
∆x→0

e∆x −1
∆x

= 1

Consequently
dy
dx

= y′ = ex

Proof Logarithmic function

y = lnx (log to the base e)

This function is equivalent to
ey = elnx = x

We now obtain the derivative of x with respect to y:

dx
dy

= ey

Remembering (5.12)
dy
dx

=
1

dx/dy

we find

y′ =
dy
dx

=
1

ey
=
1

x

Comments on the Importance of the Exponential Function

We notice the exponential function, y = ex , remains unchanged when differenti-
ated, i.e. y′ = y. According to our geometrical interpretation of the derivative (see
Sect. 5.4.3), y′ indicates how y changes with x. Therefore this function will play an
important role in all fields where the rate of change of a function is closely related
to the function itself. This is, for example, the case with natural growth and decay
processes.

The equation y′ = y is, by the way, the first ‘differential equation’ encountered
in this book. It is called a differential equation because it involves not only y but
also the derivative of y. We note that the function y = ex satisfies this differential
equation; it is said to be a solution of y′ = y. We shall use this also when we consider
the solution of other differential equations (Chap. 10).

Hyperbolic Functions

The derivatives of hyperbolic functions and their inverses have a special significance
in the evaluation of certain integrals.
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y = sinhx y′ = coshx

y = coshx y′ = sinhx

y = tanhx y′ =
1

cosh2x
= 1− tanh2x

y = cothx y′ =
1

sinh2x
= 1− coth2 x (5.16)

The proofs of the derivatives are quite straightforward. We shall concentrate on
the derivative of sinh x.

The derivative of the hyperbolic cosine function can be obtained in a similar
manner. The derivatives of the hyperbolic tangent and cotangent can be obtained
using the quotient rule.

Proof Derivative of the hyperbolic sine

y = sinhx =
1

2
(ex − e−x)

We know the derivatives of the exponential functions,

(ex)′ = ex , (e−x)′ = −e−x

Hence

y′ =
1

2
(ex + e−x) = coshx

Inverse Hyperbolic Functions

y = sinh−1 x y′ =
1√
1+x2

y = cosh−1x y′ =
1√
x2 −1 (x > 1)

y = tanh−1x y′ =
1

1−x2
(|x| < 1)

y = coth−1x y′ = − 1

x2 −1 (|x| > 1) (5.17)

The derivatives of tanh−1x and coth−1x look identical. But they do differ in their
domain.

Proof Derivative of the inverse hyperbolic sine function

y = sinh−1x
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We use the rule for inverse functions:

dy
dx

=
1

dx/dy

If y = sinh−1x

then x = sinhy

Thus
dx
dy

= coshy =
√
1+ sinh2 y =

√
1+x2

It follows that

y′ =
1√
1+x2

5.6 Higher Derivatives

The differential coefficient of the function y = f (x) not only gives the slope of the
function at a particular point but also gives the slope at every other point within the
range for which the function f (x) is defined and for which the derivative exists.
The differential coefficient is itself a function of x.

This, therefore, suggests that we can differentiate the derivative f ′(x) once more
with respect to x. In this way the second derivative of y = f (x) with respect to x
is obtained (Fig. 5.19).

Definition The limiting value

lim
x→0

f ′(x+ ∆x)−f ′(x)
∆x

= f ′′(x) = y′′(x) (5.18)

is called the second derivative of y = f (x) with respect to x. It
is denoted by f ′′(x), y′′(x), d/(dx)(dy)/(dx), (d2y)/(dx2),
or (d2)/(dx2)f (x).
((d2y)/(dx2) is read as ‘d-two y by dx squared’!)

Fig. 5.19
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This second derivative will, in general, be a function of x and we can obtain the
third derivative of f ′′′(x) = d3y/dx3.

Hence, by repeated differentiation, we can obtain the 4th, 5th, . . .nth derivative:

y(n) =
d(n)y

dxn
=

dn

dxn
f (x) = f (n)(x)

In the same way as the first derivative gave us information about the slope of a func-
tion f (x), the second derivative gives us information about the slope of the function
f ′(x), the third derivative about f ′′(x), and so on.

Example If y = x, then y′ = 1 and y′′ = 0. All the higher derivatives will be zero.

Example Consider the equation for SHM (simple harmonic motion):

x = Asin!t

ẋ = A! cos!t (velocity)

ẍ =
d2x

dt2
= −A!2 sin!t (acceleration)

We note in passing that, since x = Asin!t , ẍ = −!2x, i.e. the acceleration is pro-
portional to the displacement. (This is another example of a differential equation.)

5.7 Extreme Values and Points of Inflexion; Curve Sketching

5.7.1 Maximum and Minimum Values of a Function

In Chap. 3 we showed that certain characteristic points of a function (zeros, poles
and asymptotes) helped us to visualise its behaviour.

We are now able to refine our knowledge of the behaviour of a function with the
help of the first and second derivatives and to find points where the function has
extreme values (referred to as local maxima and minima).

In what follows we will assume that the function possesses a second derivative.

Definition A function f (x) possesses a local maximum at a point x0 if all
the values of the function in the immediate neighbourhood of
the point x0 are less than f (x0) (see Fig. 5.20a).
A function f (x) possesses a local minimum at a point x0 if all
the values of the function in the immediate neighbourhood of
the point x0 are greater than f (x0) (see Fig. 5.20b).

A necessary condition for a function f (x) to have a maximum or a minimum
at a point x = x0 is that its first derivative f ′(x0) should be zero. Conversely, is it
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Fig. 5.20

possible to conclude that, if f ′(x0) = 0, the function has a minimum or a maximum
value?

The answer to this question is ‘No’, as can be seen from Fig. 5.21. At x = x1

the slope f ′(x1) = 0, but to the right of x1 the value of the function is greater than
at x1 and to the left of x1 it is less than x1. Hence we have neither a maximum
nor a minimum. Such a point is referred to as a point of inflexion with a horizontal
tangent.

Fig. 5.21

At the point of inflexion shown, the curvature changes. Figure 5.21 shows a point
of inflexion where the tangent to the curve at x1 is horizontal. Such a point is also
called a saddle point. An examination of the derived curve y′ (Fig. 5.22) shows that
the derivative decreases left of the point of inflexion and increases right of that point.
At the point of inflexion it happens to be zero (hence the horizontal tangent) and the
curve of y′ goes through a minimum at x = x1; thus f ′′(x1) = 0. This holds for any
point of inflexion with a horizontal or non-horizontal tangent.

This example has shown that the condition f ′(x0) = 0, although necessary, is not
sufficient to determine whether the function has a minimum or maximum value at
the pointx= x0. The value of the second derivative, f ′′(x0), will give us the second
condition for a minimum or a maximum.

Consider the slope of the function in the neighbourhood of a maximum, as shown
in Fig. 5.23. On the left of x0 it is positive and on the right of x0 it is negative.
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Fig. 5.22

Hence, in the immediate vicinity of x0, the slope of the function f (x) decreases
monotonically and y′′(x0) < 0 (Fig. 5.23).

By a similar argument, if y′′(x0) > 0 and y′(x0) = 0 then the function has a min-
imum at x = x0 (Fig. 5.24).

Maximum or minimum: If f ′(x0) = 0 (a necessary condition) and if, in
addition, f ′′(x0) < 0, then there exists a local maximum at x = x0.
If f ′′(x0) > 0 there is a local minimum.
Point of inflexion: The condition f ′′(x0) = 0 is necessary for the existence
of a point of inflexion and f ′′′(x0) �= 0 furnishes the sufficient criterion.

Fig. 5.23



116 5 Differential Calculus

Fig. 5.24

Procedure for the Determination of Maxima or Minima†

Step 1: Calculate the first derivative f ′(x). Set f ′(x) = 0. Solve this equation and
obtain its roots x0,x1,x2 . . ., at which points the function may have a mini-
mum or a maximum.

Step 2: Calculate the second derivative f ′′(x). If f ′′(x0) < 0, there is a maximum
at x = x0. If f ′′(x0) > 0, there is a minimum at x = x0. Furthermore, if
f ′′(x0) = 0, then there may neither be a minimum nor a maximum, and,
provided f ′′′(x0) �= 0, there is a point of inflexion at x = x0.
Similar checks will have to be made for the points x1,x2, . . .

Example Consider the function y = x2 −1.
Step 1 gives y′ = 2x, so that x0 = 0.
Step 2 gives y′′ = 2 which is positive.

Hence the function has a minimum at x = 0.

Example Consider the function y = x3 +6x2 −15x+51.
Step 1 gives y′ = 3x2 +12x−15= 0

This is a quadratic equation whose roots are x0 = −5,x1 = 1.
Step 2 gives y′′ = 6x+12
For x0 = −5 , y′′ = −30+12= −18.

† This procedure is only valid if the maxima or minima are within the range of definition of
the function. It is not valid if the maxima or minima coincide with the boundary of the range
of definition. In order to identify such cases, it is helpful to sketch the graph of the function.
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Hence the function has a maximum at this point.
For x1 = 1 , y′′ = 6+12= 18.
Hence the function has a minimum at this point.
Verify for yourself that this function also has a point of inflexion at x = −2.

5.7.2 Further Remarks on Points of Inflexion (Contraflexure)

Consider the curve shown in Fig. 5.25a, de-
fined by the equation y = f (x). As we trace
the curve from N to N′ its slope varies; it
decreases from x1 to x2 and increases from
x2 to x3. The curvature changes from con-
cave downwards to concave upwards at N
and N′, respectively. The slope of the curve is
shown in Fig. 5.25b. It can be seen that at x2

the slope has a minimum value. The second
derivative can be understood as the ‘slope’ of
the slope.

Fig. 5.25a,b

Figure 5.25c shows that at x1 we have y′′ <
0. This means that in the direction of the x-
axis the slope decreases, while at x3 we have
y′′ > 0 and the slope increases.
It was mentioned earlier that a point such as
P is called a point of inflexion or a point
of contraflexure. The function y = f (x)
possesses a point of inflexion at x = x2 if
y′′(x2) = 0 and y′′′(x2) �= 0.

Fig. 5.25c
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Example Suppose that the deflexion of a uniformly loaded beam, fixed at one end
and simply supported at the other, is given by

y =K(3X3 −2X4−X) where X = x/L

x is the distance along the beam, K is a constant and L is the length, as shown in
Fig. 5.26. (Note the directions of the axes.)

Fig. 5.26

For such a beam there is a point of inflexion at P, and to locate it the condition is
that y′′ = 0.

Differentiating gives y′ =K(9X2−8X3−1) and y′′ =K(18X−24X2).
Putting y′′ = 0 givesX1 = 0 and X2 = 18/24= 0.75.
Of course, only the point X2 is of interest to us. We now have to check that

y′′′(X2) �= 0:

y′′′(X) = K(18−48X)
y′′′(X2) = K(18−36)< 0

Thus there is, in fact, a point of inflexion at X2 = 0.75, i.e. at x2 = 0.75L, three-
quarters of the way along the length of the beam.

5.7.3 Curve Sketching

Relationships between variables are frequently derived from physical laws leading
to equations or functions. These are often difficult to visualise, so it is not easy to
picture the way the function behaves. The difficulty can be overcome by sketching
the curve. This is not a matter of plotting each point but of deriving a trend from par-
ticular points, such as zeros, poles and asymptotes, as has been shown in Chap. 3.
We now have more precise methods which enable us to find further important fea-
tures like extreme values and points of inflexion. An example of how a curve may
be sketched is given below.

To sketch a curve given by y = f (x), the following steps may be taken in any
order:

(i) find the intersections with the x-axis (see Sect. 3.2.3);
(ii) find the poles (see Sect. 3.2.3);
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(iii) examine the behaviour of the function as x→±∞ and find the asymptotes (see
Sect. 3.2.3);

(iv) find the range of values for x and y;
(v) find the extreme values (i.e. maxima, minima) and points of inflexion.

Also, in certain cases, it may be useful to look for symmetry.

Example Let us investigate the behaviour of the function

f (x) =
(x−1)2

x2 +1

By rearranging we find

f (x) =
(x−1)2

x2 +1
=
x2 +1−2x
x2 +1

= 1− 2x

x2 +1

This shows that f (x) is the result of shifting an odd function (namely−2x/(x2 +1))
one unit along the positive y-axis. Remember that a function g(x) is called odd if
g(−x) = −g(x). An odd function is symmetric with respect to the origin. f (x) is,
therefore, symmetric with respect to the point (0,1).

Intersections with the x-axis

(x−1)2 = 0 (set numerator to zero)

giving x0 = 1 (repeated)

Note: the denominator does not vanish at that point.

Pole Positions

x2 +1= 0 (set denominator to zero)

There are no poles for any real value of x.

Asymptotes

f (x) =
(x−1)2

x2 +1
= 1− 2x

x2 +1
In the limit we obtain

lim
x→±∞

f (x) = lim
x→±∞

(
1− 2x

x2 +1

)
= 1

The proper fractional function (2x/(x2 +1)) vanishes as x → ±∞, and the line
parallel to the x-axis f (x) = 1 is the asymptote as x tends to plus or minus infinity.
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Range of Definition

f (x) is a fractional rational function. It is defined for all values for which the de-
nominator is different from zero. In this case it is the entire x-axis.

Maxima and Minima

The necessary condition is

f ′(x) = 0= 2
(x−1)(x+1)

(x2 +1)2

It is satisfied for x1 = +1 and x2 = −1.
The sufficient condition is

f ′′(x) �= 0

f ′′(x) = 4
3x−x3

(x2 +1)3

Since
f ′′(x1) = 1> 0 we have a minimum at x1 = +1

and since
f ′′(x2) = −1< 0 we have a maximum at x2 = −1

The coordinates of the extreme points are

minimum (+1,0)
maximum (−1,2)

Points of Inflexion

The necessary condition is

f ′′(x) = 0= 4
3x−x3

(x2 +1)3

It is satisfied for x3 = 0,x4 = +
√
3 and x5 = −√

3.
The sufficient condition is

f ′′′(x) �= 0

f ′′′(x) = 4
3x4 −18x2 +3

(x2 +1)4
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Since f ′′′(x3) = 12 �= 0

f ′′′(x4) = −3/8 �= 0

and f ′′′(x5) = −3/8 �= 0

there are three points of inflexion. Their coordinates are

(0,1);(+
√
3,1−1/2×

√
3) and (−

√
3,1+1/2×

√
3)

Figure 5.27 shows a sketch of the function, using the information obtained above.

Fig. 5.27

By considering symmetry with respect to a point, we could have shortened our
calculation. We know that there is a minimum at x = +1; therefore there must be
a maximum at x = −1. We know too that there is a point of inflexion at x = +

√
3;

therefore there must also be another one at x = −√
3.

5.8 Applications of Differential Calculus

We have developed a number of rules for obtaining the derivatives of various func-
tions. We are now in a position to apply them to the solution of practical problems.

5.8.1 Extreme Values

Here we consider the application of the rule for calculating minimum and maximum
values.

Example A cylindrical tank, flat at the top and the bottom, is to be made from thin
sheet metal. The volume is to be 4 cubic metres. We wish to know the diameter
D and the height H of the cylinder for which the total area A of sheet metal is
a minimum.

The volume of the cylinder is

V =
�

4
D2H = 4

Hence H =
16

�D2
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The area is
A= �DH +

�

2
D2

Substituting forH gives

A=
16

D
+
�

2
D2

For a minimum
dA
dD

= 0 , i.e. − 16

D2
+�D = 0

Solving forD gives

D = 3

√
16

�
= 2× 3

√
2

�
= 1.721m

Note thatH =D!
The other condition for a minimum is

d2A

dD2
> 0

It is satisfied, since
d2A

dD2
=
32

D3
+� > 0

The required area of metal will be

A=
3�

2
D2 =

3�

2
×1.7212 = 13.949m2

5.8.2 Increments

A useful application of differential calculus is the calculation of small increments.
When an experiment is carried out, readings are taken and results deduced from
them. Normally there is the possibility of some error in the measurements and it is
then required to calculate the incremental effect on the result. This effect may be
calculated as follows. The experimental data may be denoted by x and the result by
y = f (x). Figure 5.28 shows a portion of a graph representing y = f (x). Consider
the function at P and let x increase by a small amount ∆x (error); the corresponding
increment in y is ∆y = f (x+ ∆x)−f (x).

An approximate measure for the increment in the value of the function at Q is
given by ∆y. At P the slope is dy/dx, hence the approximate increment in the
function is

∆y ≈ dy
dx

∆x = f ′(x)∆x for small ∆x (5.19)

The expression is called the absolute error. The relative error is
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Fig. 5.28

∆y
y

≈ f ′(x)
f (x)

∆x

(See also Sect. 5.4.5.)

Example Suppose a cylindrical vessel of the type encountered in Sect. 5.8.1 (i.e.
height H = diameter D) is produced automatically. Supposing there is an error of
2% in the dimensions of H and D, what is the resulting error in the volume of the
vessel?

V =
�

4
D2H =

�

4
D3

Differentiating gives
dV
dD

=
3

4
�D2

If ∆D is the error in D (andH ) then

∆V ≈ 3

4
�D2∆D

The relative error in V is
∆V
V

≈ 3∆D
D

Thus, if the dimensions vary by 2%, the volumes of the vessel may vary by up to 6%.

5.8.3 Curvature

Given a function y = f (x), we are often interested in calculating the radius of
curvature of the function, e.g. in the bending of beams.

Figure 5.29 shows a portion of the graph of the function y = f (x). P and P′
are two points close to each other. Draw tangents PT and P′T′, making angles  and
 +∆ , respectively, with the x-axis. From P and P′ draw the normals to meet at the
point C. In the limit, as P′ approaches P, this point is called the center of curvature.
The length of the normal to C is called the radius of curvature, denoted by R.
1/R is called the curvature. Let us calculate R. We will consider the segment of

the curve between P and P′, the length of which is denoted by s. It is approximately
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Fig. 5.29

an arc of a circle of radius CP = CP′ =R. From the diagram we have

R∆ = ∆s or
1

R
=

∆ 
∆s

In the limit, as we take ∆s smaller and smaller, we find

1

R
=

d 
ds

or R =
ds
d 

We wish to relate R to y and its derivatives and can now use a relationship
derived in Sect. 7.2 (lengths of curves) which is based on Pythagoras’ theorem
ds2 = dx2 +dy2:

ds
dx

=
√
1+(y′)2

Using the chain rule we find

ds
d 

=
ds
dx

dx
d 

=
dx
d 

√
1+(y′)2

We also know that
tan = y′

Differentiating this expression with respect to x gives

(tan )′ = y′′ =
1

cos2 
· d 

dx

y′′ = (1+ tan2 )
d 
dx

=
[
1+(y′)2

] d 
dx

Substituting for dx/d it follows that
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Radius of curvature

R =
ds
d 

=

[
1+(y′)2

]3/2

y′′
(5.20)

This is the desired expression for the radius of curvature at any point x in terms
of the first and second derivatives of the given function.

Example Calculate the radius of curvature of the function y = cosx when

x =
�

4
.

Differentiating twice we have

y′ = −sinx and y′′ = −cosx

substituting in the equation for R gives

R =
(1+ sin2 45◦)3/2

−cos45◦
= −2.6

The negative sign means that the curve is concave downwards.

5.8.4 Determination of Limits by Differentiation: L’Hôpital’s Rule

The determination of limits of functions by differentiation has a special significance
in physics and engineering. For this reason we state briefly l’Hôpital’s rule. It gives
us the values of expressions at points for which the value cannot be calculated di-
rectly because indeterminate expressions arise.

The Indeterminate Expression
0

0

L’Hôpital’s first rule states:
If lim

x→x0

f (x) = 0 and lim
x→x0

g(x) = 0, then

lim
x→x0

f (x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

if the limit on the right-hand side exists.
If f ′ and g′ at x = x0 are continuous and g′(x0) �= 0, then
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lim
x→x0

f (x)
g(x)

=
f ′(x0)
g′(x0)

(5.21)

If lim
x→x0

f ′(x) = 0 and lim
x→x0

g′(x) = 0, then we apply the same rule again.

Example

L= lim
x→0

1− cosx
x2

is of the form
0
0

.

We differentiate numerator and denominator, so that

L= lim
x→0

sinx
2x

which is again
0
0

.

We differentiate the top and bottom again:

L= lim
x→0

cosx
2

=
1

2

The Indeterminate Expression
∞∞
∞∞

L’Hôpital’s second rule states:
If lim

x→x0

f (x) = ∞ and lim
x→x0

g(x) = ∞, then

lim
x→x0

f (x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

if the limit on the right-hand side exists.
If lim

x→x0

f ′(x) = ∞ and lim
x→x0

g′(x) = ∞, then we apply the rule once more.
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Example

lim
x→∞

x

lnx
=

∞
∞

By the above rule we have

lim
x→∞

x

lnx
= lim

x→∞

1

1/x
= ∞

Special Forms

The expressions 0×∞,∞−∞,1∞,00,∞0 can be reduced to 0/0 or ∞/∞.

Example The expression 0×∞

lim
x→+0

(x lnx) = lim
x→+0

lnx
1/x

= lim
x→+0

1/x

−1/x2
= lim

x→+0
(−x) = 0

Example The expression ∞0

lim
x→∞

x1/x = lim
x→∞

e(
1
x ·lnx) = e

lim
x→∞

lnx
x = e0 = 1

5.9 Further Methods for Calculating Differential Coefficients

We now outline some methods which are useful to know when complicated func-
tions arise.

5.9.1 Implicit Functions and their Derivatives

Functions such as y = 3x2 + 5,y = sin−1x,y = ae−x are referred to as explicit
functions. Functions like x2 + y2 = R2,x3 − 3xy2 + y3 = 10 where the function
has not been solved for y are called implicit functions. In this case, y is said to be an
implicit function of x. Similarly, we could equally say that x is an implicit function
of y.

It is occasionally possible to solve an implicit function for one of the variables.
For example, the equation of a circle of radius R,x2 + y2 = R2, can be solved
for y, giving y = ±√

R2 −x2. Remember that in some cases it may be difficult or
impossible to do this.

Differentiation of implicit functions
Differentiate all the terms of the equation as it stands and regard y as a func-
tion of x; then solve for dy/dx.
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Example Obtain the derivative dy/dx of x2 +y2 =R2 (equation of a circle).

Step 1: Differentiate all terms of the equation with respect to x. This is often ex-
pressed as applying the operator d/dx to each term:

d
dx
x2 +

d
dx
y2 =

d
dx
R2

Step 2: Carry out the differentiation

2x+2y
dy
dx

= 0 (R is a constant)

Step 3: Solve for dy/dx
dy
dx

= −x
y

Example Obtain dy/dx of x3 −3xy2 +y3 = 10.

Step 1:
d

dx
x3 − d

dx
(3xy2)+

d
dx
y3 =

d
dx

(10)

Step 2: Differentiate

3x2 −3
(
y2 +x2y

dy
dx

)
+3y2 dy

dx
= 0

(Note: Treat d/dx(xy2) as a product, i.e. like d/dx (uv).)
Step 3: Solve for dy/dx

dy
dx (3y2 −6xy)

= 3(y2 −x2)

Hence
dy
dx

=
y2 −x2

y2 −2xy

5.9.2 Logarithmic Differentiation

Certain functions may be more easily differentiated by expressing them logarithmi-
cally first.

Example Differentiate y =
√
1+x2 · 3

√
1+x4

Step 1: Take logs to the base e on both sides

lny =
1

2
ln(1+x2)+

1

3
ln(1+x4)
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Step 2: Differentiate the new expression with respect to x

d
dx

(lny) =
1

2

2x

1+x2
+
1

3

4x3

1+x4

1

y

dy
dx

=
x

1+x2
+
4

3

x3

1+x4

Step 3: Solve for dy/dx

dy
dx

=
√
1+x2 3

√
1+x4

(
x

1+x2
+
4

3

x3

1+x4

)

5.10 Parametric Functions and their Derivatives

5.10.1 Parametric Form of an Equation

A curve in a plane Cartesian coordinate system has so far been represented by an
equation of the form

y = f (x)

However, we frequently encounter variables x and y which are functions of a third
variable, for example t or � , which is called a parameter. We can express this in the
following general form:

x = x(t) and y = y(t)

or alternatively in the form

x = g(t) and y = h(t)

For example, in order to describe the movement of a point in a plane, we can specify
the components of the position vector r as functions of time. Then the parameter is
the time t :

r = [x(t) , y(t)]

As time passes, the components of the position vector vary and the point of the
position vector moves along a curve (Fig. 5.30).

Fig. 5.30
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Example Describe the movement of a particle projected horizontally with initial
velocity v0 in a constant gravitational field (Fig. 5.31).

Fig. 5.31

The horizontal movement of the particle is of constant velocity v0. Thus the
x-component is

x(t) = v0t

The vertical movement of the particle is that of a freely falling body with a gravita-
tional acceleration g. Thus the vertical component is given by

y(t) = −g
2
t2

The position vector of the movement is

r(t) =
(
v0t , −g

2
t2

)

Both components depend on a third variable, the time t . To each value of the param-
eter t there corresponds a value for x and a value for y.

Generally, when x and y are expressed as functions of a third variable, the equa-
tion is said to be in parametric form.

The parameter may be the time t , an angle � or any other variable. In many cases
it is possible to eliminate the parameter and to obtain the function of the curve in the
familiar form. To do this in the case given above, we solve the equation x = x(t)
with respect to t :

x = v0t

t =
x

v0

Now we insert this expression for t into the equation for y = y(t):

y = − g

2v0
2
x2
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This is the equation of a parabola, as was to be expected from the known proper-
ties of freely falling bodies.

Example Describe the rotation of a point around the circumference of a circle
(Fig. 5.32). The equation of a circle can be expressed in parametric form:

x =Rcos�

y =R sin�

In this case R is the radius, and the parameter is the angle measured from the x-axis

Fig. 5.32

to the position vector. The position vector is

r(t) = (Rcos�, R sin�)

In order to obtain the equation of the circle in Cartesian coordinates, we take the
square of both parametric equations and add them.

x2 +y2 =R2 cos2�+R2 sin2� =R2

If a point rotates with uniform velocity on a circle, the angle � is given by � = !t .
Here! is a constant which is called angular velocity (see Chap. 3). The parameter

is now t and the parametric form of these rotations is

x(t) =Rcos!t

y(t) =R sin!t

The position vector scanning the circle is given by

r(t) = (Rcos!t , R sin!t)

Example Describe the parametric form of a straight line in a plane (Fig. 5.33). b is
a vector pointing in the direction of the line. a is a vector from the origin of the
coordinate system to a given point on the line. Now consider the vector

r(�) = a+�b
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Fig. 5.33

This vector r(�) scans all points on the line if the parameter � varies between
−∞ and +∞. Thus, the line is given in parametric form by

x(�) = ax+�bx

y(�) = ay+�by

If we consider straight lines in three-dimensional space, there is a third equation for
the z-component:

z(�) = az+�bz

Example Describe a helix in parametric form. Let us consider a point which moves
on a helical curve (screw). The direction of the screw is the z-axis (Fig. 5.34). With
one rotation, the point gains height by an amount h.

Fig. 5.34

The coordinates of the point are easily given in parametric form if we use the
angle � as the parameter:

x =Rcos�

y =R sin�

z = h
�

2�
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The position vector is

r(�) =
(
Rcos� , R sin� , h

�

2�

)

These examples show that it is sometimes more relevant to the nature of a problem to
establish the parametric form of a curve. Although, in the plane, it is often possible
to transform the parametric form into the more familiar relationship y = f (x), this
may sometimes be more complicated.

5.10.2 Derivatives of Parametric Functions

Derivative of a Position Vector

Given a position vector in plane Cartesian coordinates in parametric form, the pa-
rameter being the time t ,

r(t) = [x(t), y(t)] = x(t)i +y(t)j

We can find the derivative of a position vector by finding its velocity. According
to Fig. 5.35, the velocity is given by

v = lim
∆t→0

∆r
∆t

= lim
∆t→0

r(t + ∆t)− r(t)
∆t

Fig. 5.35

The components are

v =
(

lim
∆t→0

∆x
∆t

, lim
∆t→0

∆y
∆t

)
=

(
dx
dt

,
dy
dt

)

The components of the velocity are the derivatives of the x- and y-components.
Therefore if a vector is given in parametric form, its derivative can be obtained by
differentiating each component with respect to the parameter.
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Example Find the parametric form of the velocity and acceleration of a particle,
acting under gravity, which is projected horizontally (Fig. 5.31).

We start with the known equation in parametric form:

r(t) =
(
v0t , −g

2
t2

)

The velocity is obtained by differentiating each component with respect to the pa-
rameter t :

v(t) = (v0, −gt)
For the horizontal component of v we obtain the constant initial velocity v0. For the
vertical component we get the time-dependent velocity of a freely falling body.

If we want to know the acceleration, we have to differentiate once more with
respect to t :

a(t) = (0, −g)
We find there is no horizontal acceleration. But there is a vertical acceleration (due
to gravity).

Example Find the parametric form of the velocity and acceleration of a point ro-
tating on a circle with radius R.

We start with the known equation in parametric form with the parameter t for
time:

r(t) = (Rcos!t , R sin!t)

The components of the velocity are given by the derivatives of the components with
respect to the parameter t :

v(t) =
dr(t)

dt
=

d
dt

(Rcos!t , R sin!t)

v(t) = (−R! sin!t , R! cos!t)

The magnitude of v is

v =
√
R2!2 sin2!t +R2!2 cos2!t = !R
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The acceleration is given by the second derivative with respect to time:

a(t) =
dv(t)

dt
= (−R!2 cos!t , −R!2 sin!t)

Comparing with r gives
a(t) = −!2r(t)

The acceleration has the opposite direction to r (Fig. 5.36). You can verify for your-
self that r(t) is perpendicular to v(t) and v(t) is perpendicular to a(t).

(Hint: The scalar products r ·v and v ·a must vanish in this case.)
The magnitude of a is a = !2R.
Using the equation v = !R we can express the acceleration in two ways:

a =
v2

R

a = v! = !2R

Fig. 5.36

The Normal Vector

At each point on the curve there is a tangent vector. A vector perpendicular to the
tangent vector is called a normal vector (Fig. 5.37). It is easy to find the formula of
a normal vector: the scalar product of the tangent vector and a normal vector must
vanish.

Fig. 5.37
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Given: a tangent vector t =
(

dx
dt

,
dy
dt

)

Wanted: normal vector n= (nx ,ny)

Condition: scalar product = 0 :
dx
dt
nx +

dy
dt
ny = 0

Solve for nx: nx = −dy/dt
dx/dt

ny = −dy
dx
ny

We are free to choose ny . In Fig. 5.37 a normal vector is obtained by setting ny = 1.

n =
(
−dy

dx
, 1

)

Note that in solving the equation for nx the parameter t was eliminated. Therefore,
the result is also true for any curve given in the usual form y = f (x). In this case,
a tangent vector is given by

t =
(
1,

dy
dx

)

Derivative of a Curve Given in Parametric Form

Given the parametric equations

x = x(t)
y = y(t)

we wish to find the differential coefficient dy/dx, i.e. the slope of the curve. We
proceed as follows.

Step 1: Differentiate the equations for x and y with respect to the parameter to
obtain

dx
dt

and
dy
dt

Step 2: Rearrange to obtain the desired derivative:

dy
dx

=
dy/dt
dx/dt

This is the slope y′ of the function y = f (x) at the point (x,y). Note that we did
not establish the function y = f (x) to find its derivative.
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Example Find the parametric form of the equation of a circle. The parameter is
denoted by � this time:

x = Rcos�

y = R sin�

Step 1: Differentiate x and y with respect to the parameter � :

dx
d�

= −R sin� = −y ,
dy
d�

=Rcos� = x

Step 2: Obtain the derivative of y with respect to x:

dy
dx

=
dy/d�
dx/d�

= −cot� = −x
y

Example The cycloid is a curve traced out by a point on the circumference of
a wheel which rolls without slipping. It is conveniently expressed in parametric
form. The following gives the equation for a wheel with radius a. The parameter �
is the angle of rotation as the wheel moves in the x-direction. Figure 5.38 shows the
wheel at different positions. The set of parametric equations is

x = a(� − sin�)
y = a(1− cos�)

We wish to obtain the derivative of y with respect to x.

Step 1:
dx
d�

= a(1− cos�) ,
dy
d�

= a sin�

Step 2:
dy
dx

=
dy/d�
dx/d�

=
sin�

1− cos�

Fig. 5.38
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Appendix: Differentiation Rules

General rules Function Derivative
y = f (x) y′ = f ′(x)

1. Constant factor y = cf (x) y′ = cf ′(x)

2. Sum (algebraic) rule y = u(x)+v(x) y′ = u′(x)+v′(x)

3. Product rule y = u(x)v(x) y′ = u′(x)v(x)+u(x)v′(x)

4. Quotient rule y =
u(x)
v(x)

y′ =
u′(x)v(x)−u(x)v′(x)

v(x)2

5. Chain rule y = f [g(x)] y′ =
df

dg
g ′(x)

6. Inverse functions y = f −1(x) y′ =
1

dx/dy
= 1

f ′(y)

i.e. x = f (y)

Derivatives Function Derivative
of fundamental functions y = f (x) y′ = f ′(x)

1. Constant factor y = constant y′ = 0

2. Power function y = xn y′ = nxn−1

3. Trigonometric functions y = sinx y′ = cosx

y = cosx y′ = −sinx

y = tanx y′ =
1

cos2 x
= 1+ tan2 x

y = cotx y′ =
−1

sin2 x
= −1− cot2 x

4. Inverse trigonometric functions y = sin−1 x y′ =
1√

1−x2

y = cos−1 x y′ = − 1√
1−x2

y = tan−1 x y′ =
1

1+x2

y = cot−1 x y′ = − 1

1+x2
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Derivatives Function Derivative
of fundamental functions y = f (x) y′ = f ′(x)

5. Exponential function y = ex y′ = ex

Logarithmic function y = lnx y′ =
1

x

6. Hyperbolic trigonometric functions y = sinhx y′ = coshx

y = coshx y′ = sinhx

y = tanhx y′ =
1

cosh2 x
= 1− tanh2 x

y = cothx y′ =
1

sinh2 x
= 1− coth2 x

7. Inverse hyperbolic
trigonometric functions

y = sinh−1 x y′ =
1√

1+x2

y = cosh−1 x y′ =
1√

x2 −1
(x > 1)

y = tanh−1 x y′ =
1

1−x2
(|x|< 1)

y = coth−1 x y′ = − 1

x2 −1
(|x|> 1)

Exercises

5.1 Sequences and Limits

1. Calculate the limiting value of the following sequences for n→ ∞:

(a) an =
√
n

n

(c) an =
(
−1
4

)n

−1

(e) an =
n3 +1

2n3 +n2 +n

(g) an =
n2 −1

(n+1)2
+5

(b) an =
5+n
2n

(d) an =
2

n
+1

(f) an = 2+2−n
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2. Calculate the following limits:

(a) lim
x→0

x2 +1
x−1

(c) lim
x→0

x2 +10x
2x

(e) lim
x→0

√
1+x−√

1−x
x

(b) lim
x→2

1

x

(d) lim
x→∞

e−x

(f) lim
x→0

1− cosx
x

5.2 Continuity

3. (a) Is the function y = 1+ |x| continuous at the point x = 0?
(b) Determine the points for which the following function is discontinuous:

f (x) =
{
1 for 2k ≤ x ≤ 2k+1
−1 for 2k+1< x < 2(k+1)

}
, k = 0,1,2,3 . . .

(c) At which points is the function f (x) shown in Fig. 5.39 discontinuous?

Fig. 5.39

5.3 Series

4. Obtain the values of the following sums:

(a) S5 =
5

∑
v=1

(
1+

1

v

)

(b) S10 =
9

∑
n=0

3

(
1

2

)n

(c) What is the value of the sum S =
∞
∑

n=0

(
1

2

)n

?

5.4 Differentiation of a Function; 5.5 Calculating Differential Coefficients

5. (a) Given the curve y = x3 − 2x, calculate the slope of the secant to the
curve between the points x1 = 1 and x2 = 3/2. Compare the slope of
the secant with that of the tangent at the point x1 = 1.

(b) The distance-time law for a particular motion is given by
s(t) = 3t2 −8tm. Evaluate the velocity at t = 3 s.

(c) Determine the differential dy of the following functions:
(i) f (x) = x2 +7x
(ii) f (x) = x5 −2x4 +3
(iii) f (x) = 2(x2 +3)
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6. Differentiate with respect to x the following expressions:

(a) 3x5

(d) 7x3 −4x3/2

(b) 8x−3
(e)

x3 −2x
5x2

(c) x7/3

7. Obtain the derivatives of the following:

(a) y = 2x3

(d) y =
2x

4+x

(g) y =
√
1+x2

(b) y = 3
√
x

(e) y = (x2 +2)3

(h) y =
(
a− b

x

)3

(c) y =
1

x2

(f) y = x4 +
1

x

8. Differentiate

(a) y = 3cos(6x)
(d) y = ln(x+1)
(g) y = (3x2 +2)2

(b) y = 4sin(2�x)
(e) y = sinx cosx
(h) y = a sin(bx+ c)

(c) y=Ae−x sin(2�x)
(f) y = sinx2

(i) y = e2x3−4

9. Differentiate (inverse trigonometric functions)

(a) y = cos−1(cx)
(c) y = sin−1(x2)

(b) y = A tan−1(x+2)
(d) y = coth−1(

√
x)

10. Differentiate (hyperbolic trigonometric functions)

(a) y = C sinh(0.1x)
(c) �= ln(cosh�)
(e) y = sinh2x− cosh2 x

(b) u= � tanh(v+1)
(d) s = ln(cosh t)
(f) y = 2x cothx−x2

11. Differentiate (inverse hyperbolic trigonometric functions)

(a) y = Asinh−1(10x)

(c) �= tanh−1(sin�)

(b) u= C coth−1(v+1)

(d) y = sinh−1

(
x−1
x

)

5.6 Higher Derivatives; 5.7 Extreme Values and Point of Inflexion

12. Obtain the following derivatives:

(a) g(�) = a sin�+ tan�, required g′(�), 1st derivative
(b) v(u) = ueu, required v′′(u), 2nd derivative
(c) f (x) = lnx, required f ′′(x), 2nd derivative
(d) h(x) = x5 +2x2, required h(iv)(x), 4th derivative
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13. Find the zeros and the extreme values for the following functions:

(a) y = 2x4 −8x2

(c) y = sin(0.5x)

(e) y = 2cos(�+2)

(b) y = 3sin�

(d) y = 2+
1

2
x3

(f) y =
2

3
x3 −2x2 −6x

14. Points of inflexion. Show that the following functions have a point of inflex-
ion. Calculate the value of the function at such a point.

(a) y = x3 −9x2 +24x−7
(b) y = x4 −8x2

15. Curve sketching. Sketch the following functions:

(a) y = x2 +
1

x3

(b) y =
4x+1
2x+3

(c) y =
x2 −6x+8
x2 −6x+5

5.8 Applications of Differential Calculus

16. Errors.
(a) A tray in the form of a cube is to be manufactured out of sheet metal.

It is to have a cubic capacity of 0.05m3. If the tolerance on the linear
dimensions is not to exceed 3 mm, calculate the change in the volume
and in the area of metal as a percentage.

(b) The height of a tower is calculated from its angles of elevation of 35◦
and 28◦, observed at two points 100 m apart in a horizontal straight line
through its base. If the measurement of the larger angle is found to have
an error of 0.5◦, what will be the error in the calculated height?

17. Curvature. Calculate the radius of curvature for the following functions:
(a) y = x3 at x = 1

(b) y2 = 10x at x = 2.5

18. L’Hôpital’s rule

(a) lim
x→0

sinx
x

(c) lim
x→+0

xsinx

(e) lim
x→1

xtan|�
2

x|

(g) lim
�→0

cosa� − cosb�
�2

(b) lim
x→+0

ln(1+1/x)
1/x

(d) lim
x→0

1

x

(
1

sinhx
− 1

tanhx

)

(f) lim
x→∞

lnx3

3
√
x



Exercises 143

5.9 Further Methods

19. Implicit functions. Obtain the derivative y′ for the following expressions:

(a) 2x2 +3y2 = 5

(b) 3x3y2 +x cosy = 0

(c) (x+y)2 +2x+y = 1 at x = 1,y = −1
20. Logarithmic differentiation. Obtain y′ for the following expressions:

(a) y = (5x+2)(3x−7)
(b) y = xsinx

(c) y = xx

5.10 Parametric Functions and their Derivatives

21. Parametric equations. Obtain dy/dx for the following expressions:
(a) x = ut and y = vt −1/2gt2

u,v and g are constants
(b) x = a(cos t + t sin t)

y = a(sin t − t cos t)

22. A point rotates in the x−y plane with a radius R around the origin of the
coordinate system with constant angular velocity. In 2 s it completes 3 revo-
lutions. Give the parametric form of the movement.

23. (a) The parametric form of a curve is

x(t) = t

y(t) = t

z(t) = t

What curve is it?
(b) What curve is described by the following equations?

x(t) = acos t

y(t) = b sin t

24. (a) Calculate the acceleration vector

vx(t) = −v0 sin!t

vy(t) = v0 cos!t

(b) The position of a point in three-dimensional space is given by

r(t) = (Rcos!t , R sin!t , t)

Calculate the velocity for t =
2�

!
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(c) The acceleration of a freely falling body is

a = (0,0,−g)
Calculate the velocity v(t) if

v(0) = (v0,0,0)



Chapter 6
Integral Calculus

6.1 The Primitive Function

6.1.1 Fundamental Problem of Integral Calculus

In Chap. 5 we started from a graph of a function which could be differentiated and
obtained its slope or gradient.

The problem was to find the derivative f ′(x) = dy/dx of a given function
y = f (x).

This problem can also be reversed. Let us assume that the derivative of a function
is known. Can we find the function?

Example A function is known to have the
same slope throughout its range of definition
(see Fig. 6.1) i.e.

y′ =m

Can we find the function? To do so we re-
view all functions known to us to find out
whether there is among them one which has
a constant slope.
In this case, we know such a function: it is
a straight line. Hence, one possible solution
of our problem is a straight line with a slope
m through the origin, i.e.

y(x) =mx

Figure 6.2 shows such a function. The pro-
cess of finding the function from its deriva-
tive is called integration and the result an in-
definite integral or primitive function.

Fig. 6.1

Fig. 6.2

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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A general statement of the problem is as follows:
Let a given function f (x) be the derivative of a function F (x) which we wish to

find. Then F (x) has to satisfy the condition that

F ′(x) = f (x)

Definition F (x) is a primitive function of f (x) if the following holds true:

F ′(x) = f (x) (6.1)

Example Let f (x) =m, a constant. We have already found a solution to be

F (x) =mx

We can easily verify the result by differentiating:

f (x) =
d

dx
(mx) =m

Remember that the derivative of a constant term is zero. Hence, if a constant term
is added to the function F (x) just found, the function obtained will also have the
same derivative. Therefore we can put

F (x) =mx+C

where C is any constant.
It obviously follows that there is not just one solution but many others which

differ only by constants. Thus the solution of the equation F ′(x) = f (x) gives rise
to the family of curves given by

y = F (x)+C

In our simple example, all straight lines with the slope m are primitive functions of
f (x) =m, as shown in Fig. 6.3.

Fig. 6.3
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In order to obtain a particular primitive function from the whole family of prim-
itive functions, we need to specify certain conditions.

We may, for example, specify that the function must pass through a particular
point given by a set of coordinates. Such conditions are known as boundary condi-
tions.

In our example, suppose we specify that when x = x0,y = y0. Substituting in
the equation y =mx+C , we find

y0 =mx0 +C
Hence C = y0 −mx0

The final solution is
y =mx+y0 −mx0

This is shown by the solid line in Fig. 6.3.
All primitive functions differ from each other by a constant which can be deter-

mined from specified boundary conditions.

6.2 The Area Problem: The Definite Integral

Consider the problem of calculating the area under a curve. The area F (shown
shaded in Fig. 6.4) is bounded by the graph of the function f (x), the x-axis and the
lines parallel to the y-axis at x = a and x = b. If f (x) is a straight line, then the
area F is easily calculated. We now develop a method for the evaluation of F which
is applicable to any function, provided that it is continuous in the interval a≤ x ≤ b.
For the time being, we will assume that f (x) is positive in the interval considered.

Fig. 6.4

We divide the interval into n sub-intervals of lengths ∆x1,∆x2, . . . ,∆xn and se-
lect from each sub-interval a value for the variable xi , as shown in Fig. 6.5. The
value of the function, or height, is f (xi ).

The area F is approximately given by the sum of the rectangles
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Fig. 6.5

F ≈ f (x1)∆x1 +f (x2)∆x2 + · · ·+f (xi )∆xi + · · ·+f (xn)∆xn

This sum is more compactly written

F ≈
n

∑
i=1

f (xi )∆xi

We now wish to find the limit of this sum for n increasing indefinitely. Each ∆x will
diminish indefinitely at the same time (Fig. 6.6).

Fig. 6.6

We know intuitively that by this process we shall obtain the exact value for the
area F .

Hence

F = lim
n→∞
∆xi→0

n

∑
i=1

f (xi )∆xi

A new symbol is now introduced to denote this limiting value and write

F =
∫ b

a
f (x) dx
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The symbol
∫

is called an integral sign and the expression is called a definite in-
tegral. It is read as ‘the integral of f (x) dx from a to b’. The integral sign is an
elongated S and stands for ‘sum’. It should be remembered, however, that the inte-
gral is the limit of a sum. The limiting process is valid for continuous functions. For
discontinuous functions we have to prove in each case that a limit exists.

If we take the greatest value of the function in each sub-interval as the height of
the rectangles, then the sum is called an upper sum; if we take the smallest value of
the function in each sub-interval, then the sum is called a lower sum. For continuous
functions the upper and lower sums will coincide in the limiting process.

The dx after the integral sign should not be left out as it is part of the process we
have just examined.

Definition

F = lim
n→∞
∆xi→0

n

∑
i=1

f (xi )∆xi =
∫ b

a
f (x) dx (6.2)

The symbol
∫ b

a f (x) dx is called the definite integral of f (x)
between the values x = a and x = b.

• a is called the lower limit of integration,
• b is called the upper limit of integration,
• f (x) is called the integrand,
• x is called the variable of integration.

6.3 Fundamental Theorem
of the Differential and Integral Calculus

The fundamental theorem states: The area function is a primitive of the func-
tion f (x).

How is it arrived at? We begin with a continuous and positive function f (x) and
consider the area below the graph of the function (shown shaded in Fig. 6.7).

Fig. 6.7
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In contrast to the previous area problem whose limits were fixed, here we con-
sider the upper limit as a variable. It follows, therefore, that the area is no longer
constant but is a function of the upper limit x.
x now has two meanings:

1. x is the upper limit of integration;
2. x is also the variable in the function f (x).

To avoid any difficulties that might arise because of this double meaning, we will
change the notation and use t as the variable in y = f (t) and consider the area
below the graph of this function between the fixed lower limit t = a and the variable
upper limit t = x, as shown in Fig. 6.8.

Fig. 6.8

The area under the curve is

F (x) =
∫ x

a
f (t) dt

The function F (x) defines the area below the curve of f (t) bounded by t = a and
t = x. Figure 6.9 shows the function F (x) for the curve f (t) depicted in Fig. 6.8.
We call the function F (x) the area function.

Fig. 6.9
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We now ask ourselves the question: what is the nature of F (x)? To answer this,
first of all consider a small increase in the upper limit x by an amount ∆x. The area
increases by the amount of the shaded strip shown in Fig. 6.10.

Fig. 6.10

The area function increases by ∆F as shown in Fig. 6.11.
This increase in the area, ∆F , lies between the values f (x)∆x and f (x+ ∆x)

∆x, i.e.
f (x)∆x ≤ ∆F ≤ f (x+ ∆x)∆x

Fig. 6.11

We should note that this is valid for a monotonic increasing function. If the function
is a decreasing monotonic function, the argument is still valid, except for a change
in the inequalities.

Dividing by ∆x throughout gives

f (x) ≤ ∆F
∆x

≤ f (x+ ∆x)
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Let us now consider the limiting process as ∆x→ 0 for the area function

lim
∆x→0

∆F
∆x

=
dF
dx

= F ′(x)

We also have
lim

∆x→0
f (x+ ∆x) = f (x)

Hence we find
f (x) ≤ F ′(x) ≤ f (x)

This means that
F ′(x) = f (x)

The derivative of the area function F (x) is equal to f (x). In other words, the area
function is a primitive of the function f (x).

This is the fundamental theorem of the differential and integral calculus. It em-
bodies the relationship between the two.

The area function is given by

F (x) =
∫ x

a
f (t) dt

Differentiating gives

F ′(x) =
d

dx

(∫ x

a
f (t) dt

)
= f (x)

If we carry out an integration, followed by a differentiation, the operations cancel
one another out. Thus, loosely speaking, differentiation and integration are inverse
processes.

The fundamental theorem of the differential and integral calculus

If F (x) =
∫ x

a
f (t) dt

then F ′(x) = f (x) (6.3)

So far we have not paid much attention to the choice of the lower limit a. We
will now investigate how the area function changes if we replace the lower limit a
by a new one, a′, as shown in Fig. 6.12.

Let F1(x) be the new area function. F1(a′) is zero; F1(a) corresponds to the
area between a′ and a. If we now consider the course followed by the original area
function F (x), we see that the new area function F1(x) is made up of two parts:

F1(a) = area between a′ and a (which is a constant)

and F (x) = area between a and x

Hence F1(x) = F (x)+F1(a)
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Fig. 6.12

Fig. 6.13

Thus a change in the lower limit leads to a new area function which differs from the
original function by a constant. This is illustrated in Fig. 6.13. It is in accordance
with the fact we found earlier that primitive functions differ from each other by
a constant.

6.4 The Definite Integral

6.4.1 Calculation of Definite Integrals from Indefinite Integrals

We will now proceed to calculate the value of the definite integral from the geomet-
rical meaning of the primitive function as an area function.

We require the area shown shaded below the function y = x and between the
limits a and b in Fig. 6.14.
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Fig. 6.14

A primitive function which satisfies the condition F ′(x) = f (x) is

F (x) =
1

2
x2

This can easily be verified by differentiation.
This primitive function is the area function for the lower limit x = 0 and rep-

resents the area below the graph and between the limits x = 0 and x. We wish to
calculate the area for x = a to x = b. We know from Sect. 6.3 that this area is
the difference between two areas, namely the area F (b) bounded by the graph and
the limits x = 0,x = b, and the area F (a) bounded by the graph and the limits
x = 0,x = a (see Fig. 6.15). Hence the area required is

A= F (b)−F (a)

In our example, this area is A= b2

2 − a2

2
Having obtained the value of a definite integral by means of a particular example,

we can now generalise the procedure.
We obtain a primitive function F (x) for a given f (x) and then form the differ-

ence of the values of the primitive function F (x) at the positions of the upper and
lower limit. As a shorthand notation, a square bracket with the limits as shown is
often used.

Calculation of a definite integral:
∫ b

a
f (x) dx = [F (x)]ba = F (b)−F (a) (6.4)

Primitive functions for a given f (x) differ only by an additive constant which
cancels out when a difference is formed as above.
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Fig. 6.15

The definite integral is not restricted to the geometrical case of calculating area,
as the following example shows.

Example What is the distance covered by a vehicle in the time interval t = 0 to
t = 12 seconds if the velocity v is constant at 10 m/s?

The distance is given by

s =
∫ t2

t1

v dt = [vt ]t2t1 = v(t2 − t1) = 10×12= 120m
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6.4.2 Examples of Definite Integrals

Integration of x2

We wish to calculate the area under the parabola y = x2 between x1 = 1 and x2 = 2

shown in Fig. 6.16.

Fig. 6.16

The area required is A=
∫ 2

1 x
2dx

First we have to find a primitive function whose derivative is f (x) = x2; such
a function is

F (x) =
x3

3

We can easily verify this statement by differentiating F (x).
The area required is then given by

A=
∫ 2

1
x2dx =

[
x3

3

]2

1

=
8

3
− 1

3
=
7

8
units of area

Integration of the Cosine Function

We want the area under the cosine function in the interval 0≤ x ≤ �/2 (Fig. 6.17).

The required area is A=
∫ �/2

0 cos x dx
From our knowledge, we are able to identify a primitive function of

f (x) = cosx. It is
F (x) = sinx
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Fig. 6.17

Hence we have

A=
∫ �/2

0
cosx dx = [sinx]�/2

0 = sin
�

2
− sin0= 1

If the area lies below the x-axis, the definite integral is negative.
Consider the area under the x-axis in the interval �/2≤ x ≤ 3�/2 (Fig. 6.18).

Fig. 6.18

It is

A=
∫ 3�/2

�/2
cosx dx = [sinx]3�/2

�/2
= sin

3�

2
− sin

�

2
= −1−1= −2 units of area

If we want to find the absolute value of an area, we must pay attention to the value of
the function between the limits of integration, i.e. whether the function lies entirely
above the x-axis, below it, or partly above and partly below.

If the function is partly positive and partly negative, it is necessary to split it into
parts, as shown in the following example and illustrated in Fig. 6.19.

Suppose we require the absolute value of the area bounded by the function cosx
for 0≤ x ≤ � . We proceed as follows:
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First: Since the function is positive
for 0 ≤ x ≤ �/2, the area A1 = 1
(see above).
Second: Since the function is negative
for �/2≤ x ≤ � , the area is given by
∫ �

�/2
cosx dx = [sinx]��/2

= sin�− sin
�

2
= −1

If this area is to be taken positive, we
must take its absolute value, i.e.

A2 = |−1|= 1

The total absolute area is A = A1 +
A2 = 2 units of area.

Fig. 6.19

Uniformly Accelerated Motion

Example This is an example which differs from the calculation of an area and
shows an application of integral calculus to physics.

We first calculate the velocity of a rocket moving with a constant acceleration of
15m/s2, 40 s after starting from rest.

The relationship between acceleration a and velocity v is

a =
dv
dt

, at any instant t

The velocity is given by

v =
∫ t2

t1

a dt = [at ]t2t1 = a(t2 − t1) = 15(40−0) = 600m/s

In addition we wish to find the distance covered by the rocket during that time. The
relationship between velocity and distance is v= ds/dt at any instant t . Substituting
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in the expression

v =
∫ t

0
a dt = at

gives

at =
ds
dt

Hence s =
∫ t2

t1

at dt =
[
at2

2

]t2

t1

=
a

2

(
t2

2 − t12
)

=
15

2
(402 −0) = 12000m

6.5 Methods of Integration

We now consider general methods for determining primitive functions. The primi-
tive function is an indefinite integral, indicated by the symbol

∫
f (x) dx

6.5.1 Principle of Verification

The problem of obtaining the derivatives of functions can always be solved. But for
the inverse problem, integration, a solution cannot always be found. Integration is
a more difficult problem, and this makes the principle of verification important. We
try to guess a solution and check whether it is a solution by differentiating, since

F ′(x) =
d

dx

(∫
f (x) dx

)
= f (x)

The function f (x) is given. We assume that F (x) is a primitive function.
Next we test the assumption by differentiating F (x) and comparing F ′(x) with

f (x). Our assumption is valid if F ′(x) = f (x). In this case, F (x) is a primitive
function of f (x). If our assumption is incorrect, i.e. F ′(x) �= f (x), we have to
make a new assumption and repeat the procedure until a solution is found. For this
task we shall find tables of integrals a great help. These tables, which are universally
available, cover a great many cases.

6.5.2 Standard Integrals

The integration of basic functions can be found very easily by applying the funda-
mental theorem of differential and integral calculus, integration being the inverse
of differentiation. Table 6.5 gives some elementary functions and their integrals; it
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is easy to verify the results by differentiation. A more comprehensive table will be
found in the appendix at the end of this chapter.

Function Integral

xn(n �= −1)
xn+1

n+1
+C

sinx −cosx +C

cosx sinx +C

ex ex +C

1

x
(x �= 0) ln |x|+C

(6.5)

6.5.3 Constant Factor and the Sum of Functions

Many integrals can be simplified before carrying out the integration. It is very wise
to carry out the initial step of simplifying integrals as it reduces the amount of work
involved and time is therefore saved.

Constant Factor

If k is a constant then

∫
kf (x) dx = k

∫
f (x) dx (6.6)

Proof Let F (x) =
∫
f (x) dx. Then it is true to write

kF (x) = k

∫
f (x) dx

Differentiating both sides gives

kF ′ = kf (x)

Sum and Difference of Functions

The integral of the sum of two or more functions is equal to the sum of the integrals
of the individual functions, i.e.

∫
{f (x)+g(x)} dx =

∫
f (x) dx+

∫
g(x) dx (6.7)
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Proof Let F (x) be the primitive function of f (x) and G(x) that of g(x). Then

F (x)+G(x) =
∫
f (x) dx+

∫
g(x) dx

Differentiating both sides gives

F ′(x)+G′(x) = f (x)+g(x)

For the difference of two functions it follows that

∫
{f (x)−g(x)} dx =

∫
f (x) dx−

∫
g(x) dx (6.8)

6.5.4 Integration by Parts: Product of Two Functions

This follows directly from the product rule for differentiation. Let the functions be
u(x) and v(x). If we differentiate the product uv we have

d
dx

{u(x)v(x)} =
du
dx
v(x)+

dv
dx
u(x)

or, written in a more concise way,

(uv)′ = u′v+uv′

By transposing we get
uv′ = (uv)′ −u′v

Now we integrate this equation and can hence write down the primitive function
straight away as follows:

∫
uv′ dx = uv−

∫
uv′ dx (6.9)

The integral on the right-hand side is frequently much easier to evaluate than the
one on the left-hand side. This method is particularly useful when the expression
to be integrated contains functions such as logx and inverse functions. The right
choice of u and v′ is decisive.

Example
∫
xex dx

Let u= x, v′ = ex .
Then u′ = 1 and we know that v = ex .
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Substituting in the equation gives
∫
uv′ dx = uv−

∫
vu′ dx

∫
xex dx = xex −

∫
ex dx = ex(x−1)+C

We must not forget the constant of integration C .
Suppose we had chosen u= ex and v′ = x.
Then u′ = ex and v = 1

2x
2.

Hence ∫
xex dx =

x2ex

2
− 1

2

∫
x2ex dx

We note that the right-hand integral will be more difficult to solve than in the previ-
ous case.

Example ∫
x2ex dx

Let us try u= x2 and v′ = ex .
Before going any further we must consider whether our choice is going to be

favourable. We need to consider the vu′ product in
∫
vu′dx and do a rough calcula-

tion.
From u= x2 it follows by differentiation that

u′ = 2x

And from v′ = ex it follows by integration that

v = ex

Aside: If you are meeting this for the first time, you should get into the habit of
making quick and rough calculations, and not leave the choice of u and v′ to chance.
We know that powers of x are reduced by one when differentiated. The term ex

remains unchanged when differentiated. If we had set u= ex and v′ = x2, then we
would have found an increase of one in the power of x, i.e. and x3, leading to a more
difficult integral on the right-hand side.

Going back to our example, we have
∫
x2ex dx = x2ex −2

∫
xex dx

We have already computed the integral on the right-hand side in the previous exam-
ple. It is

ex(x−1)+C ′

Thus
∫
x2ex dx = x2ex −2ex(x−1)+C = ex(x2 −2x+2)+C

We can easily verify the result by differentiating – you are advised to do so.
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Example ∫
sin2x dx =

∫
sinx sinx dx

Let u= sinx and v′ = sinx
Then u′ = cosx and v = −cosx

∫
sin2 dx = −sinx cosx+

∫
cos2 x dx

Since cos2x = 1− sin2 x, then, by substituting, we find that
∫

sin2 x dx = −sinx cosx+
∫

(1− sin2x) dx

= −sinx cosx+x−
∫

sin2x dx

Transposing gives

2

∫
sin2x dx = x− sinx cosx+C ′ = x− 1

2
sin2x+C ′

Hence we obtain the final solution:
∫

sin2 dx =
x

2
− 1

2
sinx cosx+C =

x

2
− 1

4
sin2x+C

With the help of integration by parts, it is often possible to simplify integrals whose
integrands are of the nth power, since the exponent can be reduced by one each
time. Applying the method successively may lead either to a standard integral or to
another integrable expression. This was demonstrated in the last two examples.

For the sake of completeness a further point should be noted. If the exponent of
the sine function is some arbitrary number (�= 0), then the integral can be solved
step by step. This process leads to what is known as a reduction formula.

Example Reduction formula for
∫

sinn x dx.
Let u= sinn−1x and v′ = sinx
Then u′ = (n−1)sinn−2x cosx and v = −cosx
The integral now becomes

∫
sinnx dx = −cosx sinn−1x+(n−1)

∫
sinn−2x cos2x dx

Recalling the identity cos2 x = 1− sin2x, the integral on the right-hand side can be
split into the sum of two integrals:
∫

sinnx dx = −cosx sinn−1x+(n−1)
∫

sinn−2x dx− (n−1)
∫

sinnx dx

Observe that the integral to be solved now appears on both sides of the identity.
Rearranging leads to the desired formula:
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∫
sinn x dx = −1

n
cosx sinn−1x+

n−1
n

∫
sinn−2x dx (6.10)

Remember that this formula is valid for any exponent n �= 0. If n is negative then
it is to be read from the right to the left. In the exercises, the reader will be invited
to derive the reduction formula for

∫
cosnx dx.

6.5.5 Integration by Substitution

Suppose we want to evaluate the following integral:
∫

sin(ax+b) dx

How should we proceed?
A minute’s thought leads us to try to reduce it to a standard form, such as∫

sinu du.
We can substitute u= ax+b

But we still have to find a substitution for dx. To do this we differentiate u =
ax+b with respect to x and find that

du
dx

= a

From which dx = 1/adu
The integral now becomes

∫
sinu

1

a
du=

1

a

∫
sinu du= −1

a
cosu+C

To express the result in terms of the original variable x, we substitute back for
u= ax+b and obtain

∫
sin(ax+b) dx = −1

a
cos(ax+b)+C

Substitution then enables us to reduce the function into a standard form. Further-
more, it also often transforms a difficult or an apparently unsolvable problem into
a solvable one.

The method of substitution is carried out in four steps.
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To solve

∫
f {g(x)} dx

Choice of a suitable
substitution which promises to
make the problem easier.

Example

∫
e
√

x dx

u= g(x) =
√
x

Substitute for
(a) the function
(b) the differential dx.
In order to carry out (b), we
differentiate the substitution,
solve it for dx and express it in
terms of u.

∫
eu dx

du
dx

=
1

2
√
x

dx = 2
√
x du

= 2u du∫
eu2u du

Integrate with respect to the
new variable u.

∫
2ueu du= 2eu(u−1)+C

Substitute back to express the
solution in terms of
the original variable x.

2eu(u−1)+C =
2e

√
x(
√
x−1)+C

There are no general rules for finding suitable substitutions.
To complete the discussion on this method, let us assume that the integrand can

be put in the form f {g(x)} as a function of a function. Then the integral we have
to solve is ∫

f {g(x)} dx

We now introduce a new variable by a substitution.
Let u= g(x) for the inner function.
Differentiating u with respect to x gives

du
dx

=
dg
dx

= g′(x)

We solve for dx to give

dx =
1

g′(x)
du



166 6 Integral Calculus

The integral becomes

∫
f {g(x)} dx =

∫
f (u)

du
g′

(6.11)

This new integral must be in terms of u only.

6.5.6 Substitution in Particular Cases

We examine four substitutions which will reduce certain types of integrals to a stan-
dard form.

∫
f (ax+b) dx substitution: u= ax+b

∫
f ′(x)
f (x)

dx substitution: u= f (x)

∫
f [g(x)]g′(x) dx substitution: u= g(x)

∫
R(sinx,cosx, tanx,cotx) dx substitution: u= tan

x

2

Integrals of the type
∫
f (ax+b) dx

The integral is a function of the linear function (ax+b). By letting u= ax+b, the
integral is simplified; now du/dx = a or dx = 1/adu.

The integral becomes

∫
f (ax+b) dx =

1

a

∫
f (u) du (6.12)

It is now much simpler than the original integral. If f (u) is a simple function its
solution is known. We found this to be the case when we introduced the substitution
method and considered the integral

∫
sin(ax+b) dx
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To illustrate this point let us look at some further examples:

Example ∫
2

cos2(4x−12) dx

Let u= 4x−12, then du= 4dx; hence dx = 1/4du. The integral becomes

2

4

∫
du

cos2u

This is a standard integral given in the appendix at the end of this chapter:

1

2

∫
du

cos2u
=
1

2
tanu+C

Substituting back in terms of x gives the final solution:

∫
2

cos2(4x−12) dx =
1

2
tan(4x−12)+C

Example ∫
5dx

1+(ax+b)2

Let u= ax+b, then dx = 1/adu
Hence we get one of the standard integrals given in the appendix at the end of

this chapter:

∫
5dx

1+(ax+b)2
=
5

a

∫
du

1+u2
=
5

a
tan−1u+C

=
5

a
tan−1(ax+b)+C

Integrals of the type
∫
f ′(x)
f (x)

dx

The integrand is a fraction whose numerator is the differential coefficient of the
denominator.

Let u= f (x), then f ′(x) dx = du
Hence we have

∫
f ′(x)
f (x)

dx =
∫

du
u

= ln |u|+C = ln |f (x)|+C (6.13)

In many cases we will have first of all to put the function to be integrated in the
above form.
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Example
∫

x+a/2
x2 +ax+b

dx =
1

2

∫
2x+a

x2 +ax+b
dx

Let u= x2 +ax+b, then du= (2x+a) dx
Hence

1

2

∫
2x+a

x2 +ax+b
dx =

1

2

∫
du
u

=
1

2
ln |u|+C

=
1

2
ln |x2 +ax+b|+C

Example ∫
cosx

a+b sinx
dx

Let u= a+b sinx, then du= b cosx dx or cosx dx = 1/b du
Hence ∫

cosx
a+b sinx

dx =
1

b

∫
du
u

=
1

b
ln |u|+C

=
1

b
ln |a+b sinx|+C

Integrals of the type
∫
f (g(x))g′(x) dx

The integrand is a product, but what is important is the fact that the second function
is the differential coefficient of the inner function.

To solve the integral, let

u= g(x) , g′(x) dx = du

Hence we have

∫
f (g(x))g′(x) dx =

∫
f (u) du (6.14)

Example ∫
sin2x cosx dx

Let u= sinx, then du= cosx dx
Hence ∫

sin2 x cosx dx =
∫
u2du=

1

3
u3 +C

=
1

3
sin3 x+C

In many cases we first have to generate the form of the integrand which corresponds
to (6.14), as the following example shows.
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Example
∫

(tan4 x+ tan2 x+1) dx

The integrand does not contain the factor 1/cos2x which we need in order to apply
the method explained. We therefore expand with cos2 x by using the relation

1

cos2x
= 1+ tan2x or 1 = (1+ tan2x)cos2x

We find ∫
(tan4 x+ tan2 x+1) dx =

∫ (tan4x+ tan2x+1)
(1+ tan2 x)cos2 x

dx

Now let u= tanx, then du= 1/cos2 x dx.
We obtain a new integral, namely

∫
u4 +u2 +1
1+u2

du=
∫ (

u2 +
1

1+u2

)
du=

∫
u2 du+

∫
du

1+u2

i.e. two standard forms.
The final solution is

1

3
u3 + tan−1u+C =

1

3
tan3x+ tan−1(tanx)+C

=
1

3
tan3x+x+C

Integrals of the type
∫
R(sinx,cosx, tanx,cotx) dx

The integrand is a rational expression, denoted byR, of the trigonometric functions.
It can be transformed into a more accessible form by substitution u = tanx/2, i.e.
x = 2 tan−1u.

By differentiating we get dx =
2du
1+u2

(6.15a)

The trigonometric functions can all be expressed in terms of u. Thus

sinx = 2sin
x

2
cos

x

2
=

2 tan(x/2)
1+ tan2(x/2)

=
2u

1+u2
(6.15b)

cosx = cos2(x/2)− sin2(x/2) =
1− tan2(x/2)
1+ tan2(x/2)

=
1−u2

1+u2
(6.15c)

tanx =
sinx
cosx

=
2u

1−u2
(6.15d)

cotx =
cosx
sinx

=
1−u2

2u
(6.15e)

Thus the integral is transformed into one whose integrand is a function of u.



170 6 Integral Calculus

Example
∫

dx
sinx

=
∫
1+u2

2u

2du
1+u2

=
∫

du
u

= ln |u|+C = ln
∣∣∣tan

x

2

∣∣∣+C

Example
∫

dx
1+ sinx

= 2

∫
1

1+2u/(1+u2)
du

1+u2
= 2

∫
du

1+2u+u2

= 2

∫
du

(1+u)2
=

−2
1+ tan(x/2)

+C

In the table of fundamental standard integrals (at the end of this chapter) we find
that ∫

dx
1+ sinx

= tan
(x
2
− �

4

)
+C .

The reader should verify for him- or herself that these results differ by a constant
only (= 1).

6.5.7 Integration by Partial Fractions

We now consider the integration of functions where the numerator and denominator
are polynomials. In Chap. 4, Laplace-Transformations, we will use this technique
extensively. Such functions are called fractional rational functions and have the
following form:

R(x) =
P (x)
Q(x)

=
anx

n +an−1x
n−1 + · · ·+a1x+a0

bmxm +bm−1xm−1 + · · ·+b1x+b0

where m and n are integers and an and bm �= 0. The coefficients ai and bi are real.
If n<m,R(x) is a proper fractional rational function; in short, a proper fraction.
If n>m,R(x) is an improper fraction, e.g. x4/x3 +1.
Any improper fraction can be transformed into a sum of a polynomial and

a proper fraction by simple division. For example

x4

x3 +1
= x− x

x3 +1
Our discussion is restricted to proper fractional rational functions, such as the sec-
ond expression in the above example.

In order to understand the expansion of such a function, we have to remember
the fundamental theorem of algebra. This theorem states that a rational function of
degree n, such as

P(x) = anx
n +an−1x

n−1 + · · ·+a1x+a0
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can be resolved into a product of factors, each of which is linear:

P(x) = an(x−x1)(x−x2) · · · (x−xn)
ai are constant real coefficients (an �= 0) .

xi are the real or complex roots of the equation P(x) = 0 .

Complex roots occur in pairs and are conjugate, e.g. ˛+ jˇ and ˛− jˇ. (Complex
numbers are treated in detail in Chap. 9.)

Example The cubic equation

x3 −x2 −4x+4= 0

has the following roots: x1 = 1,x2 = 2,x3 = −2.
Hence, x3 −x2 −4x+4= (x−1)(x−2)(x+2).

Such an expansion into linear factors will help us to integrate fractional rational
functions. Assume that the integral to be solved is of the form:

∫
anx

n +an−1x
n−1 + · · ·+a0

xm +bm−1xm−1 + · · ·+b0
dx

(Note that bm = 1 is easily obtained by division, and that n<m.)
The integral is then resolved into a sum of proper partial fractions. The form of

the partial fractions is dictated by the roots of the denominator, which we will call
D(x). There are three cases to consider:

Case 1:D(x) has real and unequal roots
Case 2:D(x) has real and repeated roots
Case 3:D(x) has complex roots

Real and Unequal Roots

The denominator takes on the form

D(x) = xm +bm−1x
m−1 + · · ·+b0 = (x−x1)(x−x2) . . . (x−xm)

Example
∫

3x−5
x2 −2x−8 dx

The denominator has two real and unequal roots, x1 = −2 and x2 = 4.
Hence x2 −2x−8= (x+2)(x−4) and the integral becomes

∫
3x−5

x2 −2x−8 dx =
∫

3x−5
(x+2)(x−4) dx

In this form, the integral is not easily solved. Now we will show that integrals of this
type can be solved if we expand the integrand into partial fractions, i.e.

3x−5
(x+2)(x−4) =

A

x+2
+

B

x−4
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A and B are constants to be determined. Multiplying both sides of the identity by
(x+2)(x−4) also referred to as ‘clearing the fractions’, yields

3x−5= A(x−4)+B(x+2)

As this is an identity, it must hold for all values of x.
To calculate the values ofA andB it is sufficient to insert any value for x we care

to choose. If, in this example, we insert x = x1 = −2 and then x = x2 = 4, we find

x = −2 , 3× (−2)−5= A(−2−4) ; hence A=
11

6

x = 4 , 3×4−5= B(4+2) ; hence B =
7

6

The integral becomes

∫
3x−5

(x−2)(x+4)
dx =

∫ (
11/6

x+2
+
7/6

x−4
)

dx

=
11

6
ln |x+2|+ 7

6
ln |x−4|+C

The expansion of a function into partial fractions is carried out in three steps.

1. Find the roots of the denominator and express it as the product of factors of the
lowest possible degree.

2. Rewrite the original integrand as the sum of partial fractions.
3. Multiply both sides of the identity by the denominator and then calculate the

values of the constants of the partial fractions A,B,C , . . . ,M by inserting suc-
cessively the roots of the denominator, x1,x2,x3, . . . ,xn.

Rule If the roots of the denominatorD(x),x1,x2,x3, . . . ,xn, are real and
unequal, then we set up

N (x)
D(x)

=
A

(x−x1)
+

B

(x−x2)
+ · · ·+ M

(x−xn)
(6.16)

Real and Repeated Roots

Let us consider the integral

∫
dx

x3 −3x2 +4
=
∫

dx
(x+1)(x−2)2

The denominator has roots x1 = x2 = 2 and x3 =−1. The roots x1 and x2 are equal;
they are called repeated roots. To every r-fold linear factor (x−xi )r ofD(x) there
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correspond r partial fractions of the form

A1

(x−xi )
+

A2

(x−xi)2
+

A3

(x−xi )3
+ · · ·+ Ar

(x−xi)r

Let us return to our example. The integrand is now

1

(x+1)(x−2)2
=

A

x+1
+

B1

(x−2) +
B2

(x−2)2

To calculate A1,B1 and B2 we insert three particular values of x. We have, by
clearing the fractions,

1= A(x−2)2 +B1(x+1)(x−2)+B2(x+1)

With x = x1 = 2 1= 3B2 hence B2 =
1

3

with x = x3 = −1 1= 9A hence A=
1

9

with x = 0 (say) 1= 4A+(−2B1)+B2 hence B1 = −1
9

Thus we obtain
∫

dx
x3 −3x+4

=
1

9

∫
dx

(x+1)
− 1

9

∫
dx

(x−2) +
1

3

∫
dx

(x−2)2

Apart from integrals of the type
∫

du/u, we should recognise the standard integral∫
un du.
According to Sect. 6.5.5, we will have with the substitution u= x−2:
1

3

∫
dx

(x−2)2
=
1

3

∫
du
u2

=
1

3

∫
u−2 du= −1

3

1

u
+C = − 1

3(x−2) +C

The solution to our example is

∫
dx

x3 −3x2 +4
=
1

9
(ln |x+1|− ln|x−2|)− 1

3(x−2) +C

Rule If the denominator has a real root x0 repeated r times (and some
other distinct real roots x1, . . . ,xn), then the integrand takes on
the form

N (x)
D(x)

=
A1

x−x0
+

A2

(x−x0)2
+ · · ·+ Ar

(x−x0)r

+
B1

x−x1
+

B2

x−x2
+ · · ·+ Bn

x−xn
(6.17)
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Complex Roots

IfD(x) has complex roots, the method outlined above must be altered.
For each quadratic expression we will set (Px+Q)/(x2 +ax+b);P and Q

are constants to be determined.
The procedure is best illustrated by an example.

Example ∫
2x2 −13x+20
x(x2 −4x+5)

dx

Again we set D(x) = x(x2 −4x+5) = 0

The roots of the denominator are x1 = 0,x2 = 2−j ,x3 = 2+j , i.e. there is only
one real root. Thus we can write

2x2 −13x+20
x(x2 −4x+5)

=
A

x
+

Px+Q
x2 −4x+5

In the case of complex roots, the denominator is not split up into linear factors.
Clearing the fractions we have

2x2 −13x+20= A(x2 −4x+5)+Px2 +Qx

The constantsA,P andQ are calculated by inserting particular values for x. Hence

putting x = x1 = 0 , 20= 5A

putting x = 1 , 9= 2A+P +Q
putting x = −1 , 35= 10A+P −Q

Solving for A,P andQ gives

A= 4 , P = −2 , Q = 3

The integral becomes

∫
2x2 −13x+2
x(x2 −4x+5)

dx = 4

∫
dx
x

−
∫

2x−3
x2 −4x+5

dx = 4 lnx−
∫

2x−3
x2 −4x+5

dx

The remaining integral can be solved in a slightly roundabout way. In the table of
standard integrals at the end of this chapter we find

∫ (2x+a)
x2 +ax+b

dx =
1√
b−a2

tan−1 (x+a)√
b−a2
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Thus with the given denominator we can solve

∫ (2x−4)
x2 −4x+5

dx

This is not exactly our integral. But we can transform our given integral to match
the pattern:

∫
2x−3

x2 −4x+5
dx =

∫
2x−4+1
x2 −4x+5

dx =
∫

2x−4
x2 −4x+5

dx−
∫

1

x2 −4x+5
dx

Both integrals are included in the table of standard integrals. So the solution of the
second integral is:

∫
2x−3

x2 −4x+5
dx = ln(x2 −4x+5)+ tan−1(x−2)+C

The final result of our given integral is thus:

∫
2x2 −13x+2
x(x2 −4x+5)

dx = 4 lnx+ ln(x2 −4x+5)+ tan−1(x−2)+C

This last example illustrates the fact that integration of partial fractions needs careful
consideration and that, in the end, we may have to use the whole range of integration
techniques.

Rule If the denominator D(x) of the integrand has, e.g. the two conju-
gates, complex roots x1 and x2, then the expansion into partial frac-
tions takes on the following form:

N (x)
D(x)

= · · ·+ Px+Q
(x−x1)(x−x2)

+ · · · = · · ·+ Px+Q
x2 +ax+b

+ · · ·
(6.18)

6.6 Rules for Solving Definite Integrals

The rules for solving indefinite integrals apply equally to definite integrals, e.g.
a constant factor in the integrand can be placed in front of the integral. The inte-
gral of a sum or difference of functions is equal to the sum or difference of the
integrals of the individual functions, and so forth.

We have interpreted the definite integral geometrically as the area under a curve.
From this interpretation we can easily derive certain characteristics of the definite
integral which are geometrically evident.
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Expansion of an Integral Into a Sum by Subdividing the Range of Integration

The value of the integral
∫ b

a f (x) dx remains unchanged if we insert another limit
c between the limits a and b and calculate its value not from a to b but from a to c
and then from c to b. Thus

∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx

= F (c)−F (a)+F (b)−F (c)
= F (b)−F (a) (6.19)

The rule becomes evident if we consider the problem geometrically (see
Fig. 6.20).

Fig. 6.20

Interchanging the Limits of Integration

If we interchange the limits of integration the integral changes sign:

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx (6.20)

Proof
∫ b

a
f (x) dx = F (b)−F (a) = −[F (a)−F (b)]

= −
∫ a

b
f (x) dx
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Upper and Lower Limits of Integration are Equal

If the upper and lower limits of integration are equal, the integral vanishes:

∫ b

a
f (x) dx = 0 if a = b (6.21)

Designation

The value of a definite integral is independent of the designation of the variable:

∫ b

a
f (x) dx =

∫ b

a
f (z) dz =

∫ b

a
f (u) du (6.22)

The value of a definite integral depends only on its limits and not on the desig-
nation of the variable of integration. We can use whatever designation we like for
convenience; this is often done in physics.

Substitution of Limits of Integration

By means of a suitable substitution, it is often possible to transform a given integral
into a standard one. The method of substitution discussed in Sect. 6.5.5 is applica-
ble to definite integrals. Sometimes calculations are shortened by working out new
limits corresponding to the new variable. The following illustrates the procedure.

To solve
∫ b

a
f (g(x)) dx

Example
∫ 5

1

√
2x−1 dx

Select a substitution. u= g(x) =
√
2x−1

Substitute and change the
limits:
lower limit u1 = u(a),
upper limit u2 = u(b).

u1 =
√
2×1−1= 1

u2 =
√
2×5−1= 3∫ 5

1

√
2x−1 dx =

∫ 3

1
u2 du

Integrate∫ u2

u1

f (u) du

∫ 3

1
u2 du=

[
1

3
u3

]3

1

=
26

3
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6.7 Mean Value Theorem

If f (x) is a continuous function throughout the range x = a to x = b, then

∫ b

a
f (x) dx = f (x0)(b−a)

Within the interval a to b, there exists at least one value x0 of x for which the area
of the rectangle of width (b− a) and height f (x0) is equal to the area under the
curve within that same interval (Fig. 6.21).

Fig. 6.21

It follows, therefore, that the value f (x0) is the mean value of the function in the
interval considered. Hence

f (x0) = ym =
1

b−a
∫ b

a
f (x) dx (6.23)

In physics and engineering, we frequently find it necessary to calculate the mean
value of a varying quantity. For example, in the case of a variable force acting against
some resistance, the work done will depend on the mean value of that force; the
power in an electrical network is the mean value of the product of the alternating
current and voltage.

Example A force applied to a body from s1 = 1m to s2 = 8m is given by F =
s2/2N. Calculate its mean value.

If Fm = mean force in the interval s2 − s1, then

Fm =
1

s2 − s1
∫ s2

s1

F (s) ds =
1

(8−1)
∫ 8

1

s2

2
ds =

1

7

[
s3
]8

1

6
=
1

42
(83 −1) = 12.2N

This force, Fm, represents the constant force applied to the body which produces
the same amount of work in the interval as the actual force.
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6.8 Improper Integrals

Let the function y = f (x) = 1/x2, with x �= 0 (Fig. 6.22).

Fig. 6.22

It is required to calculate the area shown shaded in the figure within the interval
x = a to x = b.

Let A be this area. Then

A=
∫ b

a

dx
x2

=
[
− 1
x

]b

a

=
1

a
− 1

b

There is no particular difficulty in this instance. Suppose we now extend the upper
limit to the right (Fig. 6.23): the value of the area will increase, and if we allow b to
grow indefinitely we find that

A= lim
b→∞

∫ b

a

dx
x2

= lim
b→∞

(
1

a
− 1

b

)
=
1

a
or, more simply,

F =
∫ ∞

a

dx
x2

=
1

a

Such an integral is called an
improper integral, but its value
can be finite.

Fig. 6.23

Definition Integrals with infinite limits of integration are called improper
integrals. An improper integral is said to be convergent if its
value is finite, and divergent if its value is infinite.
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Integrals whose integrands tend to infinity for
some value of the variable are also called im-
proper, e.g.

∫
dx/

√
x−1 is improper because the

function f (x) = 1/
√
x−1 at x = 1 is infinite.

However, the area under the curve in the interval
x = 1 to x = 2 is finite since
∫ 2

1

dx√
x−1 =

[
2
√
x−1

]2

1
= 2 (see Fig. 6.24)

Fig. 6.24

By the above definition we have extended to infinite limits the concept of the
definite integral, which was originally established for finite limits.

It should be borne in mind that not all integrals with infinite limits are convergent.

Example ∫ ∞

a

dx
x

, a > 0

First consider
∫ b

a dx/x where b is finite. Its value is lnb− lna.
If we now allow b to grow beyond all bounds, the term ln b tends to infinity.

Hence the integral has no finite value: it is an improper divergent integral, i.e.
∫ ∞

a

dx
x

→ ∞

Example Work done in the gravitational field.
If U is the work required to move a body of mass m through a given distance

against the gravitational field produced by a body of mass M (Fig. 6.25), then, by
Newton’s law of gravitation, the force F between the two bodies is

F = �
mM

r2

where � = universal gravitational constant, r = distance between the centers of the
bodies. The negative sign is due to the fact that the direction of F is opposite to r .

For a small displacement dr , the work done, dU , is

dU = F dr = γ
mM

r2
dr

Fig. 6.25
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If the body of mass m is moved from a distance r0 to a distance r1, the total work
done during the displacement against the gravitational force is

U =
∫ r1

r0

γ
mM

r2
dr = �mM

∫ r1

r0

dr
r2

= �mM

(
1

r0
− 1

r1

)

An interesting case occurs when the mass m ‘leaves’ the gravitational field, i.e.
r1 → ∞. We find a convergent improper integral:

v = γmM
∫ ∞

r0

dr
r2

=
γmM
r0

6.9 Line Integrals

As an example, we will consider the force F exerted on a body which depends on
the position r in space (see Fig. 6.26). This could be, e.g. a gravitational force on
a mass point or an electric force on a charged particle. We want to determine the
work U corresponding to the body’s movement along some curve from a point P1

to a point P2. This movement can be described in parametric form

r(t) = (x(t),y(t),z(t))

The components of the force are

F (r) = (Fx(r), Fy(r), Fz(r))

Fig. 6.26

The curve may be thought of as being split up into n small segments. As an approx-
imation for the work, we take the sum of all fractional amounts of work, assuming
that the force is approximately constant along each tiny segment (see Fig. 6.27).
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Fig. 6.27

The work ∆Ui corresponding to the i th segment is determined by the scalar prod-
uct of the force F i and the vector pointing along the segment ∆ri .

∆Ui = F i ·∆ri

Thus the whole work is the sum

U = ∑
i

F i ·∆ri

If we make the elements smaller and smaller we get, in the limiting case, the integral

U =
∫ P2

P1

F (r) ·dr

This type of integral is called a line integral. The name is based on the fact that the
path of integration is a curve or a line in space. Let us look at the integral in more
detail. The force is given by

F = (Fx(r), Fy(r), Fz(r))

Now our problem is to determine an expression for the path element dr . We start
with the expression

r = (x(t), y(t), z(t))

As t varies from t1 to t2, the position vector r moves from P1 to P2. The path
element is given by

dr =
(

dx(t)
dt

dt ,
dy(t)

dt
dt ,

dz(t)
dt

dt

)

dr = (dx, dy, dz)
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Now we calculate the line integral:

U =
∫ P2

P1

F (r(t)) ·dr

=
∫ t2

t1

F (x(t),y(t),z(t)) ·dr

=
∫ t2

t1

(
Fx(r) · i +Fy(r) ·j +Fz(r) ·k

)(
dx
dt

dt · i+
dy
dt

dt ·j +
dz
dt

dt ·k
)

Hence the formula for the work U reads

U =
∫ t2

t1

(
Fx(r)

dx
dt

dt+Fy(r)
dy
dt

dt +Fz(r)
dz
dt

dt

)

Example Let us consider the gravitational field near the Earth’s surface. It is ex-
pressed by

F = (0, 0, −mg)
Consider the fairground Ferris wheel in Fig. 6.28. We want to find the work done
during the ascent of the Ferris wheel (mass m). The path is the semicircle from P1

to P2. Its parametric form with parameter � is

r = (0, R sin�, −Rcos�)
dr = (0, Rcos�, R sin�) d�

U =
∫ �

�=0
(0, 0, −mg)(0, Rcos�, R sin�) d�

=
∫ �

�=0
(−mgR sin�) d� = [mgRcos�]�0 = 2mgR

Fig. 6.28
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Forces like gravitational or electrostatic forces are due to conservative fields. This
means that the work done on a body depends not on the path but only on the points
P1 and P2, and that it is independent of time.

Examples of non-conservative fields are electrical fields caused by induction pro-
cesses.

In the case of conservative fields, the line integral can be calculated easily if the
path is chosen in such a way that force and path are either perpendicular or parallel
to each other. This means that the path is divided into segments which are easy to
work with.

Appendix

Table of Fundamental Standard Integrals

The constant of integration has been omitted

f (x)
∫

f (x) dx f (x)
∫

f (x) dx

c cx
1

x2 +a2

1

a
tan−1 x

a
or

−1

a
cot−1 x

a

xn xn+1

n+1
(n �= −1)

1

x2 +2ax +b

1√
b−a2

tan−1

(
x +a√
b−a2

)

(b > a2)

1

x
ln |x| (x �= 0)

2x +a

x2 +ax +b
ln |x2 +ax +b|

ex ex

ax ax

lna

(
a > 0
a �= 1

) √
ax +b

2

3a

√
(ax +b)3

lnx x lnx−x (x > 0)
1√

ax +b

2

a

√
ax +b

1

x−a
ln |x−a| 1√

a2 −x2
sin−1 x

a

1

(x−a)2
− 1

x−a

√
a2 −x2

x

2

√
a2 −x2 +

a2

2
sin−1 x

a

1

x2 −a2

1

2a
ln

∣∣∣∣
x−a

x +a

∣∣∣∣=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1

a
tanh−1 x

a
,

|x| < |a|
−1

a
coth−1 x

a
,

|x| > |a|
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f (x)
∫

f (x) dx f (x)
∫

f (x) dx

1√
x2 +a2

ln

(
x +

√
x2 +a2

|a|

)
= sinh−1 x

a

1

1− sinx
−cot

(x

2
− �

4

)
= tan

(x

2
+

�

4

)

√
x2 +a2

x

2

√
x2 +a2 +

a2

2
ln(x +

√
a2 +x2)

1

1+ cosx
tan

x

2

1√
x2 −a2

ln

∣∣∣∣∣
x +

√
x2 −a2

a

∣∣∣∣∣= cosh−1 x

a

1

1− cosx
−cot

x

2

tanx − ln |cosx|

sinx −cosx tan2 x tanx−x

sin2 x
1

2
(x− sinx cosx) =

1

2

(
x− sin2x

2

)
cotx ln |sinx|

1

sinx
ln
∣∣∣tan

x

2

∣∣∣ cot2 x −cotx−x

1

sin2 x
−cotx sin−1 x x sin−1 x +

√
1−x2

cos−1 x x cos−1 x−
√

1−x2

cosx sinx tan−1 x x tan−1 x− ln
√

1+x2

cos2 x
1

2
(x + sinx cosx) =

1

2

(
x +

sin2x

2

)
cot−1 x x cot−1 x + ln

√
1+x2

1

cosx
ln
∣∣∣tan

(x

2
+

�

4

)∣∣∣ sinhx coshx

1

cos2 x
tanx coshx sinhx

tanhx ln |coshx|

1

1+ sinx
tan
(x

2
− �

4

)
cothx ln |sinhx|

sinh−1 x x sinh−1 x−
√

x2 +1

cosh−1 x x cosh−1 x−
√

x2 −1

tanh−1 x x tanh−1 x + ln
√

1−x2

coth−1 x x coth−1 x + ln
√

x2 −1
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Rules and Techniques of Integration

1.1
∫ b

a
f (x) dx =

∫ c

a
f (x) dx+

∫ b

c
f (x) dx

1.2
∫ b

a
kf (x) dx = k

∫ b

a
f (x) dx (k = constant)

1.3
∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

1.4
∫ a

a
f (x) dx = 0

1.5
∫ b

a
[f (x)+g(x)]dx =

∫ b

a
f (x) dx+

∫ b

a
g(x) dx

2.1 Integration by parts

∫ b

a
u(x)v′(x) dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x) dx

2.2 Integration by substitution
The integrand is a function of a function; the inner function is taken as the new
variable. ∫ b

a
f (g(x)) dx =

∫ g(b)

g(a)
f (u)

du
g′

By substitution
u= g(x)

2.3 Integration by partial fractions
Proper fractional, rational functions are expanded into the sum of partial frac-
tions.

∫
P (x)
Q(x)

dx =
∫

P (x)
(x−a)(x−b)2(x2 + cx+d )

dx

=
∫ [

A

x−a +
B1

x−b +
B2

(x−b)2
+

Cx+D
x2 + cx+d

]
dx

(P (x) must be of lower order than Q(x))

Exercises

6.1 The Primitive Function

1. Find the primitives of the following functions and the value of the constant:

(a) f (x) = 3x given F (1) = 2

(b) f (x) = 2x+3 given F (1) = 0
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6.4 The Definite Integral

2. Evaluate the following definite integrals:

(a)
∫ �/2

0
3cosx dx (b)

∫ �/2

−�/2
3cosx dx (c)

∫ �

0
3cosx dx

3. Obtain the absolute values of the areas corresponding to the following inte-
grals:

(a)
∫ 0

−2
(x−2) dx (b)

∫ 2

0
(x−2) dx (c)

∫ 4

0
(x−2) dx

6.5 Methods of Integration

4. Integrate and verify the result by differentiating

(a)
∫

2dx
(x+1)2

=
x−1
x+1

+C

(b) 2
∫

sin2(4x−1) dx = x− 1

8
sin(8x−2)+C

(c)
∫

1−x2

(1+x2)2
dx =

x

1+x2
+C

5. Evaluate the following integrals by using the table of standard integrals
given at the end of Chap. 6.

(a)
∫

dx
x−a

(d)
∫

sin2˛ d˛

(g)
∫
5(x2 +x3) dx

(b)
∫

1

cos2x
dx

(e)
∫
at dt

(h)
∫ (

3

2
t3 +4t

)
dt

(c)
∫

a√
x2 +a2

dx

(f)
∫

3
√
x7 dx

6. Integrate by parts the following integrals:

(a)
∫
x lnx dx

(b)
∫
x2 cosx dx

(c)
∫
x2 lnx dx

(d)
∫
x2 cosh

x

a
dx

(e) Find the reduction formula for
∫

cosnx dx (n �= 0)

(f) Find the general formula for
∫
xn lnx dx
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7. Use a suitable substitution to evaluate the following integrals:

(a)
∫

sin(�x) dx

(c)
∫

dx
2x+a

(b)
∫
3e3x−6 dx

(d)
∫

(ax+b)5 dx

8. (a)
∫

cot2x dx

(c)
∫

x39

x40 +21
dx

(b)
∫

2x

a+x2
dx

(d)
∫

sinhu

cosh2u
du

9. (a)
∫

(sin4x+8sin3x+sinx)cosx dx

(c)
∫ −x√

a−x2
dx

(b)
∫
x4
√
3x5 −1 dx

(d)
∫
x cosx2 dx

10. Mixed questions

(a)
∫

ex

ex +1
dx

(c)
∫

cos3 x dx

(e)
∫
3x2 −1
x3 −x dx

(b)
∫

cos
(
x− �

2

)
dx

(d)
∫

1

x lnx
dx

(f)
∫

1

(1+x2) tan−1x
dx

11. Using partial fractions, integrate the following functions:

(a)
1

2−x−x2

(c)
x2

(x−1)(x−2)(x−3)
(e)

1

x3 +3x2 −4
(g)

x2 +15
(x−1)(x2 +2x+5)

(b)
2x+3

x(x−1)(x+2)

(d)
x

x4 −x2 −2
(f)

x2 −1
x4 +x2 +1

6.6 Rules for Solving Definite Integrals

12. Evaluate the following definite integrals:

(a)
∫ 2

−2
(x5 −8x3 +x+7) dx

(c)
∫ 2

0
sin t dt

(b)
∫ 1

0

1

1+x
dx

(d) 3
∫ 125

100
dt

13. Find the value of the absolute area between the following boundary lines:

(a) y = x3; x-axis; a =
1

2
; b = 2
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(b) y = cosx; x-axis; a = −3�
2

; b =
5

6
�

(c) What is the value of the area between the curves y = 4x3 and y =
6x2 − 2? (Hint: Sketch the graphs of both functions first. Note that for
x = 1 both curves have a point in common, but do not intersect.)

6.8 Improper Integrals; 6.9 Line Integrals

14. Integrate the following:

(a)
∫ ∞

4

d�
�2

(d)
∫ ∞

1

dλ
λ

(g)
∫ −1

−∞

dx
x2

(b)
∫ ∞

10

dx
x

(e)
∫ ∞

1

dr
r3

(h)
∫ ∞

1

1√
x

dx

(c) γ
∫ ∞

r0

dr
r2

(f)
∫ ∞

1

(
1+

1

x2

)
dx

15. A force in a conservative field is given by

F = (2, 6, 1)N

A body is moved along the line given by

r(t) = r0 + ti

from point r(0) = r0 to point r(2) = r0 +2i . Calculate the work done.

16. A force in a conservative field is given by

F = (x, y, z)N

A body moves from the origin of the coordinate system to the point

P = (5, 0, 0)

Calculate the work done.

17. Given the force

F =

(
x√

x2 +y2
,

y√
x2 +y2

)

Evaluate the line integral along a semicircle around the origin of the coordi-
nate system with radius R. Can you give the answer without computing?

18. Given a force F = (0, −z, y). calculate the line integral along the curve

r(t) =
(√

2cos t , cos2t ,
2t

�

)

from t = 0 to t = �
2 .



Chapter 7
Applications of Integration

The purpose of this chapter is to consider some of the important applications of
integration as applied to problems in physics and engineering. Its objective is two-
fold. Firstly, it demonstrates the practical use of the integral calculus to readers
who are particularly interested in applications. Secondly, other readers may use this
chapter as a reference when practical problems are encountered.

You will remember the calculation of areas discussed in Chap. 6 as one typical
example. We will consider this problem again and move on to the calculation of
volumes, lengths of curves, centroids, centers of mass, moments of inertia, and cen-
ters of pressure, all of which are frequently encountered in practice. In line with the
notation used in most technical books, we will now use the symbol ı instead of ∆.
Both refer to the same concept, that of a very small but finite increment.

7.1 Areas

By definition, the area of a plane figure is the product of two linear dimensions, e.g.
the area A of a rectangle of widthW and length L is A=WL square units. We will
calculate areas bounded by curves. Consider the curve CC1 shown in Fig. 7.1. We
wish to calculate the area bounded by a portion P1P2 of the curve and the x-axis.

P1 has coordinates (x1,y1) and P2 coordinates (x2,y2). At x and x+ ıx we
erect two perpendiculars to the x-axis to meet the curve at B and B′ respectively;
the strip thus formed is a rectangle (or nearly so) whose area is approximately given
by yıx where y is the mean height of the rectangle. As we saw in the previous

chapter, the area lies between
−→
AB · ıx and

−−→
A′B′ · ıx; however, ıx can be as small

as we like. The total area A under the curve from x1 to x2 is the sum of all such
rectangles, and as we take ıx smaller and smaller the area is given by the following
definite integral:

A=
∫ x2

x1

y dx (7.1)

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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Fig. 7.1

To evaluate it, we must know y as a function of x, i.e. y = f (x):

A=
∫ x2

x1

f (x) dx = F (x2)−F (x1)

Example Calculate the area A bounded by the parabola y = 2+ 0.5x2 and the
x-axis between x = 1.5 and x = 3.5 to 3 decimal places.

A =
∫ 3.5

1.5
(2+0.5x2) dx =

[
2x+

0.5

3
x3

]3.5

1.5

= 2(3.5−1.5)+
0.5

3
(3.53 −1.53) = 10.583square units

Example This example is taken from a problem in thermodynamics. Figure 7.2
shows the path corresponding to a gas as if it expands in a cylinder against a piston;
p is the pressure and V the volume.

Fig. 7.2
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The work done by the gas during expansion is given by the area under the p−V
curve. Thus the work done, ıW , in expanding from volume V to a volume V + ıV
is given by

ıW = pıV

where p is the mean pressure in the interval ıV . The total work done in expanding
from a pressure p1, volume V1, to a pressure p2, volume V2, is

W =
∫ V2

V1

p dV (units of work, i.e. Joules in SI units)

To evaluate this work we need to know the expansion law relating pressure and
volume. There are two important cases to consider:

(a) the isothermal case in which the temperature is constant throughout the whole
process and pV is constant;

(b) the adiabatic case in which there is no flow of energy through the walls and pV n

is constant.

Case (a): pV = constant = C ; hence p = C
V .

The work done is

W =
∫ V2

V1

C

V
dV = C

∫ V2

V1

dV
V

= [C lnV ]V2

V1
= C ln

V2

V1
= pV ln

V2

V1

Case (b): pV n = C ,n> 1, e.g. n= 1.4 for air.
Hence p = C

V n , and the work done is

W = C

∫ V2

V1

dV
V n

= C

∫ V2

V1

V −n dV =
C

1−n
(
V 1−n

2 −V 1−n
1

)

=
1

1−n
(
CV 1−n

2 −CV 1−n
1

)

Since C is a constant, we can write C = p2V
n
2 = p1V

n
1 .

Substitution givesW =
p2V2 −p1V1

1−n for the work done.

Complementary Area

Referring once more to Fig. 7.1, we may in particular cases wish to calculate the
area bounded by the curve and the y-axis between y = y1 and y = y2 as shown. We
proceed as before and consider a small strip of mean length x and width ıy whose
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area ıA2 is xıy. The total area is

A2 =
∫ y2

y1

x dy (7.2)

To evaluate it, we must know the functional relationship, i.e. x = g(y).
The area A2 is often referred to as the complementary area.

7.1.1 Areas for Parametric Functions

Occasionally a curve is defined by parametric equations of the form

x = f (t) and y = g(t) (cf. Chap. 5, Sect. 5.10)

In this case, the areas are given by the following integrals:

A=
∫ x2

x1

y dx =
∫ t2

t1

y
dx
dt

dt =
∫ t2

t1

g(t)
dx
dt

dt (7.3)

The limits t1 and t2 are those values of t which correspond to x1 and x2.
Similarly, the complementary area:

A1 =
∫ y2

y1

x dy =
∫ t2

t1

x
dy
dt

dt =
∫ t2

t1

f (t)
dy
dt

dt (7.4)

Example The cycloid (Fig. 7.3) is given by the equations x = a(� − sin�),
y = a(1− cos�). Calculate the area between the x-axis and one arc of the curve.
The angle turned through is 2� .

Remember that the cycloid is a curve traced out by a point P on the circumfer-
ence of a circle which rolls without slipping along the x-axis. It has already been
introduced in Chap. 5 (cf. Fig. 5.38).

Fig. 7.3
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The area required is

A=
∫ 2�a

0
y dx =

∫ 2�

0
a(1− cos�)

dx
d�

d�

But dx/d� = a(1− cos�), so that

A= a2
∫ 2�

0
(1− cos�)2d� = a2

∫ 2�

0
(1−2cos� + cos2 �) d�

Using the table of standard integrals, appendix Chap. 6:

A= a2

[
� −2sin�+

�

2
+

sin2�
4

]2�

0

= 3�a2

7.1.2 Areas in Polar Coordinates

The equation of a curve is in some cases expressed in polar coordinates (r ,�),r
being the length of the radius vector measured from the origin O and � , the angle it
makes with a known direction, as shown in Fig. 7.4.

Suppose that we require the area bounded by the radii OC and OD and the curve
CD. Consider a small sector OC′D′:

OC′ = ri , OD′ = ri+ır i

The angle between OC′ and OD′ is ı� .
Now we will work out an approximation for the area of OC′D′.
Let C′′ cut the line OD′ so that OC′′ = ri and C′C′′ = riı�i

The area ıA,OC′C′′, is given by

ıA=
1

2
base×height

=
1

2
C′C′′ ×OC′ =

1

2
r2
i ı�i

Fig. 7.4
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An approximation for the total area A will be the sum of all such small areas, i.e.

A=
n

∑
i=1

1

2
r2
i ı�i

Now let us take ı�i smaller and smaller so that n becomes very large. Then, in the
limit, the area is given by an integral:

A= lim
n→∞

n

∑
i=1

1

2
r2
i ı�i =

1

2

∫ �2

�1

r2d� (7.5)

Example The area A of the circle may be considered as being generated by a line
of constant length, its radius, rotating through 2� radians about its center. The area
is then given by

A=
1

2

∫ 2�

0
r2d� =

1

2
r2

∫ 2�

0
d� =

1

2
r22� = �r2

Example The curve represented by the equation r = a sin3� consists of three
loops, as shown in Fig. 7.5, lying within a circle of radius a. As � varies from 0
to �/3, the radius r traces the loop OABC. Calculate its area if a = 250mm.

The area of one loop is A= 1/2
∫ �/3
0 r2 d� = 1/2a2

∫ �/3
0 sin2 3� d�

Using the table of integrals we find
∫

sin2kx dx =
x

2
− sin2kx

4k
+C

Hence

A=
1

2
a2

[
�

2
− sin6�

12

]�/3

0

=
1

2
a2

(�
6
−0

)
=
�a2

12
=
�

12
×0.252 ≈ 0.016m2

Fig. 7.5
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7.1.3 Areas of Closed Curves

Let ABCD be a closed curve (see Fig. 7.6) such that it cannot be cut by any line
parallel to the y-axis at more than two points, and all ordinates are positive. AA′
and CC′ are tangents parallel to the y-axis and OA′ = a,OC′ = b.

The area A enclosed by the curve is

A=
∫ b

a
BD′ dx−

∫ b

a
DD′ dx

where the points B and D move along ABC and ADC respectively. Let us denote
BD′ by f2(x) and DD′ by f1(x).

The area is

A=
∫ b

a
f2(x) dx−

∫ b

a
f1(x) dx =

∫ b

a
(f2 −f1) dx

Fig. 7.6

Example Calculate the area enclosed between the straight line y = 4x and the
parabola y = 2+x2.

It is wise to sketch a graph of the two functions, as shown in Fig. 7.7.

Fig. 7.7
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The required area is shown shaded. The curves cross each other at A and B,
corresponding to x = a and x = b, respectively. We need to calculate the values of
a and b, our limits of integration. These are given by solving the equation

4x = 2+x2

This is a quadratic equation whose roots are x1 = a = 0.59,x2 = b = 3.41 to 2 d.p.
Since the straight line between A and B is above the parabola, we have

f2(x) = 4x ,f1(x) = 2+x2

Hence the area is given by

A=
∫ 3.41

0.59
(4x−2−x2) dx =

[
2x2 −2x− 1

3
x3

]3.41

0.59

= 3.77 square units

Let us suppose that the coordinates of a point P(x,y) on a closed curve (see Fig. 7.6)
are given in terms of a parameter t , such that t increases from t1 to t2 as we travel
round the curve once. The point travels from A to C, via B, and from C back to A,
via D. The equation for the area A of the closed curve becomes

A=
∫ t2

t1

y
dx
dt

dt

Example Suppose that the closed curve ABCD (Fig. 7.6) is an ellipse whose equa-
tion is

(x−h)2

a2
+

(y−k)2

b2
= 1 (h,k,a and b are constants)

What is the area of the ellipse?
Let x = h−acos t and y = k+b sin t .
Then, as t varies from 0 to 2� , a point P(x,y) goes round the curve in the direc-

tion ABCDA.
The area is

∫ 2�

0
(k+b sin t)a sin t dt = ka

∫ 2�

0
sint dt+ab

∫ 2�

0
sin2t dt = �ab

Note that the first integral = ka
2�∫
0

sin t dt = 0.

7.2 Lengths of Curves

In this section we will derive formulae for the length of a curve. (In fact, one of
these has already been used in Chap. 5, Sect. 5.8.3) Consider the curve defined by
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Fig. 7.8

the equation y = f (x), shown in Fig. 7.8, and a small portion BC, B and C being
close to each other.

Let ıs = length of the arc BC, BD = ıx and CD = ıy, as shown by the small
triangle BCD.

Then the arc BC is nearly equal to the chord BC, so we may write

(ıs)2 ≈ (chord BC)2 = (ıx)2 +(ıy)2

Therefore
(
ıs

ıx

)2

≈ 1+
(
ıy

ıx

)2

or

(
ıs

ıy

)2

≈
(
ıx

ıy

)2

+1

ıs

ıx
≈

√
1+

(
ıy

ıx

)2

or
ıs

ıy
≈

√
1+

(
ıx

ıy

)2

Hence, as ıx→ 0,ıs/ıx→ ds/dx and ıy/ıx→ dy/dx and

ds/dx =
√
1+(dy/dx)2 and ds/dy =

√
1+(dx/dy)2

The total length s of the curve from A to E, corresponding to x = a and x = b,
respectively, is

s =
∫ b

a

√
1+

(
dy
dx

)2

dx =
∫ b

a
(1+y′2)1/2 dx (7.6)

The length is also given by

s =
∫ d

c
(1+x′2)1/2 dy

Example Let us find the length of the circumference of a circle of radiusR, which,
of course, is well known to us.
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The equation of a circle is
x2 +y2 =R2

Differentiating implicitly with respect to x gives

2x+2y
dy
dx

= 0 or yy′ = −x

Hence y′ = −x/y = −x/√R2 −x2 and (1+y′2) =R2/(R2 −x2)
The length of the circumference

L= 4× length of
1

4
circumference = 4R

∫ R

0

dx√
R2 −x2

Note that to evaluate the integral we can substitute x =R sin� .

Then dx =Rcos� d� , so that

L= 4R

∫ �/2

0

Rcos� d�
Rcos�

= 4R

∫ �/2

0
d� = 2�R

Example Evaluate the length of a parabola from the origin to x = 2.
The equation of the parabola is y = 1/4 x2.

y =
1

4
x2 , y′ =

1

2
x

The required length of the curve is

∫ 2

0
(1+y′2)1/2 dx =

∫ 2

0

(
1+

x2

4

)1/2

dx

=
1

2

∫ 2

0
(4+x2)1/2 dx ≈ 2.3units of length

Note that the integral is of the form
∫ √

a2 +x2 dx which is included in the table of
standard integrals on p. 184.

∫ √
a2 +x2 dx =

1

2
x
√
a2 +x2 +

a2

2
ln

(
x+

√
a2 +x2

)
+C

You will soon discover that evaluating lengths of curves can be very laborious; in
fact, there are few curves whose length can be expressed by means of simple func-
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tions. This is due to the presence of the square root. In most cases the lengths are
calculated by approximate means.

7.2.1 Lengths of Curves in Polar Coordinates

Referring to Fig. 7.9, which shows a detail from Fig. 7.4, consider the small triangle
C′D′C′′. We have

C′C′′ = rı� , C′′D′ = ır and C′D′ = ıs

Fig. 7.9

Using Pythagoras’ theorem, (C′D′)2 = (C′C′′)2 +(C′′D′)2, we can write

(ıs)2 = r2(ı�)2 +(ır)2

We obtain one expression with respect to � and one with respect to r :

ıs =

√
r2 +

(
ır

ı�

)2

ı� or ıs =

√
1+ r2

(
ı�

ır

)2

ır

As ır → 0,ı� → 0. The length of the curve is then given by an integral:

s =
∫ �2

�1

(
r2 +

(
dr
d�

)2
)1/2

d� or s =
∫ r2

r1

(
1+ r2

(
d�
dr

)2
)1/2

dr (7.7)
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Example Calculate the length of the cardioid whose equation is r = a(1+ cos�).
� varies from 0 to 2� . The curve is symmetrical about the x-axis (Fig. 7.10).

Because of symmetry, the length will be twice that given by letting � vary from
0 to � .

Since r = a(1+ cos�),dr/d� = −a sin�

Fig. 7.10

The length is given by

L = 2

∫ �

0

[
a2(1+ cos�)2 +a2 sin2 �

]1/2
d�

= 2a

∫ �

0
(2+2cos�)1/2 d� = 4a

∫ �

0
cos

�

2
d� = 8a

7.3 Surface Area and Volume of a Solid of Revolution

When a solid of revolution is generated, the boundary of the revolving figure sweeps
out the surface of the solid. The volume of the solid depends on the area of the
revolving figure, and the surface generated depends on the perimeter of the revolving
figure.
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Consider the curve AB, defined by y = f (x), and shown in Fig. 7.11 between x = a

and x = b.

Fig. 7.11

Let us revolve the curve AB about the x-axis. Two figures are generated: (a)
a surface and (b) a solid. If we consider a small strip of width ıx and height y, then
the small surface generated is given by ıA = 2�yıs, where ıs is the length of the
curve corresponding to ıx. The total surface will be the sum of all such elements,
i.e. surface ≈ Σ2�yıs. If ıx becomes smaller and smaller we have, in the limit,

A=
∫ b

a
2�y ds = 2�

∫ b

a
y

(
1+

(
dy
dx

)2
)1/2

dx (7.8)

Furthermore, as the strip is rotated, it generates a thin circular slice whose volume
ıV is approximately

ıV = �y2ıx

For the whole curve, as ıx→ 0, the volume of the solid generated is

V = �

∫ b

a
y2dx (7.9)

Example The straight line y = mx is rotated about the x-axis, thus generating
a right circular cone, as shown in Fig. 7.12. Calculate (a) its surface area and (b) its
volume. (Of course, the results are well known. They are usually obtained without
using integral calculus.)
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Fig. 7.12

(a) The surface area is

A= 2�

∫ b

0
mx

√
1+m2 dx =

[
2�m

√
1+m2

x2

2

]b

0

= �mb2
√
1+m2 = �R

√
b2 +R2

where R is the radius of the base of the cone and m=R/b.
We can express the surface area of the cone as

A= �RL , where L= slant height =
√
b2 +R2

(b) The volume is

V =
∫ b

0
�y2dx = �m2

∫ b

0
x2 dx

= �m2

[
1

3
x3

]b

0

=
1

3
�m2b3 =

1

3
�
R2

b2
b3 =

1

3
�R2b

Hence

Surface area of a cone = 1/2× circumference of base × slant height.
Volume of a cone = 1/3×area of base × height (1/3 of the volume of a cylinder
having same base and height).

Example Calculate (a) the surface area and (b) the volume of a lune of a sphere of
radius R and thickness h (see Fig. 7.13).

The surface will be generated by rotating the arc AB and the volume by rotating
the area ABCD about the x-axis.
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Fig. 7.13

From the figure, we have
y2 =R2 −x2

Differentiating implicitly gives
yy′ = −x

Thus

y′2 =
x2

y2
and 1+y′2 =

y2 +x2

y2
=

R2

R2 −x2

(a) The surface area is

A= 2�

∫ b

a
(R2 −x2)1/2 R

(R2 −x2)1/2
dx = 2�R

∫ b

a
dx = 2�R(b−a)

Hence A= 2�Rh

(b) The volume V is

V = �

∫ b

a
y2dx = �

∫ b

a
(R2 −x2) dx = �

[
R2x− x3

3

]b

a

For the special case where b =R and a = 0, we have

V =
2

3
�R3

This is the volume of a half sphere or hemisphere. Hence the volume of a sphere
is V = 4

3�R
3.

Example Small aluminium alloy pillars having a parabolic profile are manufac-
tured by turning down cylinders 125 mm in length and 50 mm in diameter. The di-
ameter of the pillars at the thinner end is to be 30 mm. Calculate the amount of metal
removed. (The density of aluminium is 2720kg/m3.)
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Fig. 7.14

Figure 7.14 shows the required profile of each pillar and the amount of material
to be removed is indicated by the shading.

The volume of material removed is

Volume of the cylinder−volume of the pillar = �R2
2h−volume ABB′A′

With axes as shown, the equation of the parabola AB is

y = a+bx2

To find the values of a and b, we note that when x = 0,y =R1(= 15mm) and when
x = h,y =R2(= 25mm); also h= 125mm.

Hence a =R1 and b = (R2 −R1)/h2, i.e. a = 15,b = 10/1252 = 0.00064
Rotating the element of width ıx about the x-axis gives the volume of the slice

as �y2ıx; the volume of the pillar is

V = �

∫ h

0
y2dx = �

∫ h

0
(a+bx2)2dx = �

∫ h

0
(a2 +2abx2 +b2x4) dx

= �h

(
a2 +

2abh2

3
+
b2

5
h4

)

Substituting numerical values gives

V = 125�

(
152 +

2

3
×15×0.00064×1252+

0.000642

5
×1254

)

≈ 0.135×106mm3 = 0.135×10−3m3

Volume of cylinder = �R2
2h= �×252×125≈ 0.245×106mm3

= 0.245×10−3m3

Material removed ≈ (0.245−0.135)×10−3×2720≈ 0.3kg

If some arbitrary closed curve is rotated about the x-axis it generates a solid, i.e.
a ring of irregular cross section (see Fig. 7.6).

Referring to Fig. 7.6, the volume generated by the thin slice BD is a hollow
circular plate having radii D′B = y2 and DD′ = y1 and thickness ıx.
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Hence its volume V is
ıV = �

(
y2

2 −y2
1

)
ıx

The volume V of the hollow solid of revolution is

V = �

∫ b

a

(
y2

2 −y2
1

)
dx (7.10)

where y1 = f1(x) and y2 = f2(x) are the equations of the curves ADC and ABC
respectively.

Example Calculate the volume of a solid ring (torus or anchor ring) obtained by
rotating a circle of radius R about an axis distant h from its center (h>R).

The circle is conveniently positioned, as shown in Fig. 7.15, relative to the x- and
y-axes. O′ is the center of the circle.

Consider any point P with coordinates (x,y). Consider the triangle O′A′P; we
have (y−h)2 +x2 =R2. Solving for y gives y = h±√

R2 −x2.
The two functions f1(x) and f2(x) are f2(x) = h+

√
R2 −x2 for portion ABC

of the circle, and f1(x) = h−√
R2 −x2 for portion ADC of the circle.

Fig. 7.15

Therefore
ıV = �

(
f2

2 −f1
2
)
ıx = 4�h

√
R2 −x2ıx
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and the volume of the ring formed is

V = 4�h

∫ R

−R

√
R2 −x2 dx = 2�2R2h

Note that the integral can be solved by letting x =R sin� (cf. the table of integrals).

7.4 Applications to Mechanics

7.4.1 Basic Concepts of Mechanics

When a rigid body moves in two or three dimensions under the action of forces it is
the same as if the whole mass of the body was concentrated in one point with all the
forces acting through that point, giving the body a translation in the direction of the
resultant force. Furthermore, the body rotates about an axis through that point under
the action of the resultant moment of the forces about that axis. The point referred
to is called the center of mass of the body.

If M is the total mass of the body and F the resultant force, then Newton’s
second law of motion states F = Mr̈ (vector equation), where r̈ is the acceleration
of translation.

Also, if H is the angular momentum of the body, then

Moment of the external forces =
d
dt

(H )

It can be shown that H = I!, where I is the moment of inertia of the body about an
axis through the center of mass and! is the angular velocity of the body. Remember
that the moment of inertia is (the sum of) the product of a mass by the square of its
distance from the axis of rotation.

When studying the motion of a rigid body, e.g. a car, an aircraft, a link in a mech-
anism, etc., we need to know the position of the center of mass and the moment of
inertia.

Another important point is met when studying the forces acting on a body which
is immersed in a liquid. This point, called the center of pressure, is the point where
the total pressure on the body is supposed to act.

We will consider these three concepts in some detail.

7.4.2 Center of Mass and Centroid

Consider a system of n particles Pi whose masses are mi (i = 1,2, . . . ,n); let the
coordinates of these particles, referred to a Cartesian set of axes x,y,z, as shown in
Fig. 7.16, be xi ,yi ,zi .
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Fig. 7.16

If M is the total mass of the particles, the position of the center of mass G is given
by the following equations:

x̄ =
1

M

n

∑
i=1

mixi , ȳ =
1

M

n

∑
i=1

miyi , z̄ =
1

M

n

∑
i=1

mizi

where M =
n

∑
i=1

mi

The product mass × distance is often referred to as the first moment.
When the particles form a solid body, the above summations become integrals.

If ım is the mass of a typical particle in the body at distances x,y and z from the
planes, then the center of mass of the body is given by

x̄ =
∫
x dm∫
dm

, ȳ =
∫
y dm∫
dm

, z̄ =
∫
z dm∫
dm

between appropriate limits.
∫

dm=M = total mass of the body

A plane figure of area ABCD may be considered as a thin lamina. Its center of mass
is found by taking moments about the x- and y-axes (Fig. 7.17).

Let it be a requirement to find the position of the center of mass, G, of the thin
lamina ABCD of mass m per unit area shown in the figure. The small strip has
a mass myıx. Hence, by the above equations, if x̄ is the x-coordinate of the center
of mass, G

x̄ =
∫ b

a xmy dx
∫ b

a my dx
=
1

A

∫ b

a
yx dx (7.11a)
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Fig. 7.17

A is the total area =
∫ b

a y dx. We note thatm cancels out.
If we now take moments about the x-axis, we have, for the y-coordinate ȳ of the

center of mass, G

ȳ =
1

2A

∫ b

a
y2dx (independent of m) (7.11b)

(The moment of the small strip about the x-axis is y/2(myıx) = 1/2my2ıx.)
G in the case of an area or a volume is usually referred to as the centroid.

Example Find the center of mass G of a thin strip AB bent into a circular arc, as
shown in Fig. 7.18. The mass per unit length ism and the radius r . The arc subtends
an angle 2� at the center O.

Fig. 7.18
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Taking axes as shown, it follows that the center of mass G lies along the x-axis.
Consider a small element PP′ of length ıs; its mass is mıs = mrı� , using polar
coordinates.

The moment of PP′ about the y-axis is xmrı� =mr2 cos�ı� .
Hence the position of G is

x̄ =
∫ �
−� mr

2 cos� d�
∫ �
−� mr d�

=
2mr2 sin�
2mr�

=
r sin�
�

If the strip is bent into a semicircle, � = �/2 and

x̄ =
2r

�

Example Determine the center of mass G of the solid cone shown in Fig. 7.12.
The equation of the straight line is y = R

b
·x.

The mass of the thin slice obtained by rotating the element ıx about the x-axis
is m�y2ıx, where m is the mass per unit volume. The total mass of the cone is

M = m�

∫ b

0
y2dx =m�

R2

b2

∫ b

0
x2dx

=
1

3
m�R2b

The moment about the y-axis of the slice is

xm�y2ıx =m�
R2

b2
x3ıx

Hence the total moment = (m�R2)/b2
∫ b

0 x
3dx = 1/4m�R2b2

The position of G, which lies along the x-axis, is given by

x̄ =
1
4m�R

2b2

1
3m�R

2b
=
3

4
b

7.4.3 The Theorems of Pappus

Pappus’ First Theorem

Let AB be an arc of length L measured between x = a and x = b (Fig. 7.19).
When it revolves about the x-axis, it generates a surface of revolution whose area is
S = 2�

∫ b
a y ds.
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Fig. 7.19

If ȳ is the ordinate of the centroid (of the arc) G then

ȳL=
∫ b

a
y ds

Multiplying both sides by 2� gives

S = 2�ȳL= 2�

∫ b

a
y ds (7.12)

This is known as Pappus’ first theorem. It states that the area of a surface of
revolution is equal to the product of the path travelled by the centroid (of the arc)
and the length of the generating arc.

Pappus’ Second Theorem

The volume of the solid of revolution generated by the area bounded by the arc, the
ordinates at x = a and x = b and the x-axis is given by

V = �

∫ b

a
y2dx

If we denote the area by A, the centroid (of area) by G′ and its ordinate by y′, then

y′A=
1

2

∫ b

a
y2dx
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Multiplying both sides by 2� gives

V = 2�y′A= �

∫ b

a
y2dx (7.13)

This is known as Pappus’ second theorem. It states that the volume of a solid
of revolution is equal to the product of the path travelled by the centroid and the
generating area.

These two theorems apply also to a closed curve, provided it does not cut the axis
about which it is rotated.

Example Calculate (a) the surface area and (b) the volume of a torus (cf. Fig. 7.15).
O′ is the centroid in this case.

(a) By the first of Pappus’ theorems for the surface area we have

S = 2�ȳL

But L= 2�R, ȳ = h; hence S = 2�h×2�R= 4�2Rh

(b) By the second of Pappus’ theorems for the volume we have

V = 2�ȳA

But A= �R2, ȳ = h; hence V = 2�h�R2 = 2�2R2h

Pappus’ theorems are also useful in obtaining the centroid of a curve or an area
when we know the surface or volume generated. This is illustrated by the following
example.

Example Find the position of the centroid of one quarter of a circular area of ra-
dius R.

Rotating the quarter circle about the x-axis gives a hemisphere. If ȳ is the posi-
tion of the centroid, we find

2�ȳ
�R2

4
=
2

3
�R3

Hence

ȳ =
4R

3�
(note that x̄ = ȳ by symmetry)

7.4.4 Moments of Inertia; Second Moment of Area

Moments of inertia play an important role in the study of the motion of rigid bodies.
Equally important is the concept of the second moment of area which arises, for
example, in the study of beam bending, torsion of bars and in problems involving
surfaces immersed in fluids.
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Moments of Inertia

Definition The moment of inertia I of a mass M at a distance l from
a fixed axis is given by

I =Ml2

If we have a system of n masses Mi at distance li from the fixed axis, then the total
moment of inertia is

I =
n

∑
i=1

Mi li
2

When the number of masses is infinite, i.e. when they merge into one mass forming
a rigid body, the summation becomes an integral.

Figure 7.20 shows a rigid body with P a typical particle of mass ım at distances
x and y from a Cartesian set of axes.

Fig. 7.20

By definition, the moment of inertia of that particle about the x-axis is y2ım and
the moment of inertia of the whole body about that axis is

Ix =
∫

A

y2dm limits are defined by area A . (7.14)
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Similarly, the moment of inertia about the y-axis is

Iy =
∫

A

x2dm (7.15)

It is important to specify the axis by a subscript unless it is obvious from the nature
of the problem.

Example Obtain the moment of inertia of a thin disc of radius R, thickness h and
density � about a diameter (Fig. 7.21).

Fig. 7.21

Consider a strip PQ of length 2x and of width ıy, parallel to the x-axis and
at a distance y from it. The moment of inertia of the strip about the x-axis is
2xy2h�ıy.

Hence, for the whole disc

Ix = 2�h

∫ R

−R
xy2dy

The integral may be solved by substituting x = Rcos� ,y = R sin� and conse-
quently dy =Rcos� d� :

Ix = 4�R4h

∫ �/2

0
cos2 � sin2 � d� =

��R4h

4

If we denote the mass of the disc, �R2h�, by M, then Ix = 1/4MR2. This result is
obviously true for any diameter.
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Example For an axis through O perpendicular to the disc (the z-axis) let us take
a thin ring at a distance r from the axis and of width ır (Fig. 7.22). Its moment of
inertia is, by definition, r2ım= r22�rhır� = 2��hr3ır .

Fig. 7.22

The total moment of inertia of the disc about the z-axis is

Iz = 2��h

∫ R

0
r3dr =

1

2
��hR4 =

1

2
MR2

This result is also valid for a long cylinder. Iz is often referred to as the polar
moment of inertia.

Example A flywheel is an element with many practical applications. It consists
basically of a hollow thin disc. The hole is necessary so that the flywheel can be
supported by a shaft. In Fig. 7.23 the cylinder (known as a boss) FHJG is to ensure
a good support on the shaft.

Calculate the moment of inertia of the flywheel about its central z-axis. It is made
of steel whose density is 7800kg/m3. The sketch on the right of the figure shows
a cross section through the diameter AB.

The moment of inertia Iz is the sum of the moments of inertia of the discs that
make up the flywheel:

Iz = I (CDEI)+ I (FHJG)− I (KLMN) = I1 + I2− I3

The moment of inertia of the hole has to be subtracted. Each element is a thin
disc whose moment of inertia about the z-axis is 1/2MR2 (previous example) or
1/8MD2, whereD is the diameter of the element.

Let us first calculate the masses:
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Fig. 7.23

M1 =
�

4
D2

1h1� =
�

4
×0.452×0.035×7800= 43.42kg to 2 d.p.

Similarly, we find M2 = 8.96kg,M3 = 0.98kg.
The moment of inertia about the z-axis is

Iz =
1

8
(43.42×0.452+8.96×0.152−0.98×0.042) = 1.124kg/m2

Perpendicular and Parallel Axis Theorems

Consider the particle of mass ım at P shown in Fig. 7.20. Its coordinates are x
and y. The body is a thin plate in the x-y plane.

The moments of inertia of the small element are y2ım about Ox,x2ım about
Oy and r2ım about Oz.

Since r2 = x2 +y2, multiplying through by ım gives

r2ım= x2ım+y2ım

By integration, we find
∫
r2dm =

∫
x2dm+

∫
y2dm

Hence Iz = Iy + Ix (7.16)

This is known as the perpendicular axis theorem.
For example, we saw that the moment of inertia of the thin disc in Fig. 7.21 was

1/4MR2 about a diameter. It follows from the perpendicular axis theorem that
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Iz = 2Ix = 2× 1

4
MR2 =

1

2
MR2

Now let us consider the body shown in Fig. 7.24. Its center of mass is at G, and
there are two parallel axes, one through G and another AB at a fixed distance d . The
moment of inertia about AB of a small strip of mass ım is

ım(x+d )2

The moment of inertia of the whole body about AB is

IAB =
∫

(x+d )2 dm=
∫
x2dm+

∫
d2 dm+

∫
2xd dm

=
∫
x2dm+d2

∫
dm+2d

∫
x dm

Fig. 7.24

Since
∫
x dm= 0 by definition of the center of mass

IAB = IG+Md2

This is known as the parallel axis theorem (Steiner’s theorem).

Radius of Gyration

IfM is the mass of the body and k a distance such that the moment of inertia of the
body I is expressed by

I =Mk2

then k is known as the radius of gyration about the axis. Physically it means that we
regard the whole mass to be concentrated at a radius k.

Example We saw earlier that the moment of inertia of a cylinder about a central
axis was given by I = 1/2MR2. If we write I =Mk2, it follows that the radius of
gyration of the cylinder is K =R/

√
2.
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Example Calculate the radius of gyration of the flywheel analysed in a previous
example on p. 216.

Total mass M = 43.42+8.96−0.98= 51.40kg.
Moment of inertia I = 1.124kg/m2.
Since I =Mk2, solving for k gives

k =

√
I

M
=

√
1.124

51.40
= 0.148m

Example In practice we often need to calculate the moment of inertia of a body. Its
value can be estimated from drawings, but an experimental verification of the value
might be required. One way of achieving this is to suspend the body on an axis and
allow it to oscillate like a pendulum. The time for a number of complete oscillations
is observed and, by a simple calculation, the radius of gyration is obtained.

Figure 7.25 shows a body, such as a connecting rod in an internal combustion
engine, pivoted at O. The total mass is M and its center of mass is at G, which can
both be obtained experimentally.

Fig. 7.25

The connecting rod is allowed to oscillate about the axis O through a small an-
gle � . The distance between O and G is d . In this way we have a compound pendu-

lum. It can be shown that the period of one oscillation is given by t = 2�

√
k0

2/gd

(g is the acceleration due to gravity and k0 is the radius of gyration about an axis
through O). If IG is the moment of inertia about an axis through G parallel to the
axis through O, then by the parallel axis theorem

I0 = IG +Md2 or Mk2
0 =Mk2

G +Md2
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Hence k0
2 = kG

2 +d2, and the required radius of gyration is

kG =

√
t2gd

4�2
−d2

Hence the moment of inertia about G is Mk2
G.

Second Moment of Area

When studying the deflection of loaded beams or the twist in a shaft subjected to
a torque, we encounter the following expression

r2ıA

where ıA is an element of area in the cross section of the beam or the shaft and r is
a distance from some axis.

This product is known as the second moment of area and is similar to the moment
of inertia of a body.

The second moment of area of a plane figure of finite size is

I =
∫
r2 dA between appropriate limits (7.17)

The perpendicular axis and parallel axis theorems are valid for second moments of
area as can readily be verified.

Example The rectangle plays an important role in beams. Let us calculate its sec-
ond moment of area about various axes.

Figure 7.26 shows a rectangle, of width B and depth D, and two axes: one
through the centroid denoted NA (which stands for neutral axis where the stress
in a beam would be zero) and another, XX, at one end.

Fig. 7.26
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(a) To find INA, consider the small strip of thickness ıy. Its second moment of area
about NA is

Bıyy2 or By2ıy

Hence, for the whole rectangle

INA =B

∫ D/2

−D/2
y2dy =

BD3

12
or INA = AkNA

2

whereA= cross sectional area =BD, and kNA = radius of gyration =D/
√
12.

By symmetry, it is easily verified that

IN1A1
=
DB3

12

(b) To find IXX: the distance between the axis NA and XX is D/2; hence, by the
parallel axis theorem, we have

IXX = INA +A

(
D

2

)2

=
1

12
BD3 +BD

D2

4
=
1

3
BD3

and kXX =
D√
3

Example Figure 7.27 shows the cross section of a type of beam known as an
I -section. Using the dimensions given on the sketch, calculate the second moment
of area about an axis through its centroid.

Fig. 7.27



222 7 Applications of Integration

The centroid lies half way up the section which has been indicated as NA. To
calculate the second moment of area, INA, we can divide the area into three parts.

Parts 1 and 3 are of dimensions B1 = 110mm and D1 = 15mm. By the parallel
axis theorem and whereD = total depth of the beam:

INA1
=
1

12
B1D

3
1 +B1D1

(
D

2
− D1

2

)2

Substituting numerical values gives

INA1
=
1

12
×110×153+110×15×82.52 = 11.26×106mm4

Part 2 is of dimensions B2 = 15mm and D2 = 150mm. Thus

INA2
=
1

12
B2D

3
2 =

1

12
×15×1503 = 4.22×106mm4

Hence, for the whole section

INA = 2INA1
+ INA2

= (2×11.26+4.22)×106 = 26.74×106mm4

Center of Pressure

If a body is immersed in a fluid, e.g. water, then the pressure per unit area of surface
is not uniform over the body because the pressure is proportional to the depth. The
point at which the total pressure may be assumed to act is known as the center of
pressure.

Consider the plane surface S immersed in a fluid of density � and making an
angle � with the free surface QP, as shown in Fig. 7.28.

Fig. 7.28
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For a small area of length y and width ıx, the pressure on it is g�h where h is the
vertical distance from the surface QP to the element. The force ıF on this element is

ıF = g�hyıx and h= x sin�

The total force on the surface is given by

F = g

∫
� sin�xy dx between appropriate limits

= g� sin�
∫
xy dx

But
∫
xy dx = first moment of area about PP′ = Ax̄, where A is the area of the

surface.
Hence F = g�Ax̄ sin� = g�Ah̄.
To find the point where the resultant force F acts, we take moments about PP′.

For the element we have

g�hyıxx = g� sin�yx2ıx

Hence, if z is the position of the point C where the resultant force acts, then

Fz = g� sin�
∫
yx2 dx or g�Ax̄ sin�z = g� sin�

∫
yx2 dx

Solving for z gives

z =
∫
yx2dx
Ax̄

(7.18)

Hence, the point C where the resultant force due to the pressure of the fluid acts is
given by

z =
Second moment of area about PP′

First moment of area about PP′

C is known as the center of pressure.

Exercises

7.1 Areas

1. Calculate the area bounded by the positive branch of the parabola y2 = 25x,
the x-axis and the ordinates where x = 0 and x = 36.

2. Calculate the area bounded by the positive branch of the curve
y2=(7−x)(5+x), the x-axis and the ordinates where x = −5 and x = 1.

3. Calculate the area bounded by the parabola 20y = 3(2x2 −3x−5) and the
x-axis between the points where the curve cuts the x-axis.
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4. Calculate the area bounded by the curve y2(x2 + 6x− 55) = 1, the x-axis
and the ordinates where x = 7 and x = 14.

5. Sketch the curve y = 2x3 −15x2 +24x+25 between x = 0 and x = 4 and
then calculate the area enclosed by the ordinates at these points, the x-axis
and the portion of the curve.

6. Calculate the area bounded by the hyperbola r2 cos2� = 9 and the radial
lines � = 0 and � = 30◦.

7. Calculate the entire area of the curve r = 3.5sin2� .

8. Calculate the area bounded by the following curves:

(a) y2 = 4x and x2 = 6y

(b) y = 4−x2,y = 4−4x
(c) y = 6+4x−x2 and the line joining the points (−2,−6) and (4, 6).

7.2 Length of Curves

9. Calculate the lengths of the curves given in exercises 1, 2 and 3.

7.3 Surface Area and Volume of a Solid of Revolution

10. Calculate the area of the surface generated by the revolution of the curve
y = x3 about the x-axis between the ordinates x = 0.5 and x = 0.

11. The curve y = x(6−x)−7.56 is rotated about the x-axis between the points
where it crosses the x-axis. Calculate (a) the surface area and (b) the volume
of the solid thus generated.

12. Calculate (a) the surface area and (b) the volume generated by rotating the
cycloid x = � − sin� ,y = 1− cos� about the x-axis.

13. Calculate the volume generated by revolving the ellipse x2/9+y2/25= 1

about the x-axis.

7.4 Applications to Mechanics

14. Find the position of the centroid of the area of one quarter of an ellipse. The
equation of the ellipse is

x2

a2
+
y2

b2
= 1

15. A plate is cut into a circular sector of 375 mm radius and 65◦ included angle.
Find the position of the centroid along the axis of symmetry.

16. The density of the material of which a right circular cone is made varies as
the square of the distance from the vertex. Find the position of the center
of mass.

17. A hemisphere has a radius of 125 mm. Calculate the position of its centroid.

18. A cylindrical shell has a mass M , a radius R and a length L. Calculate its
moment of inertia about

(a) a central axis
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(b) an axis about a diameter at one end
(c) an axis through its centroid and along a diameter.

19. A steel rod is 3.75 m long and of circular cross section of 35 mm diameter.
The density of steel is 7800kg/m3. Calculate the moment of inertia about
(a) the centroid and (b) one end.

20. A solid right circular cone has a mass of 165 kg, a base radius of 175 mm
and a height of 650 mm. Calculate its moment of inertia about a central axis.

21. A beam has the cross section shown in Fig. 7.29. Calculate its second mo-
ment of area about an axis through its centroid (NA) and the corresponding
radius of gyration. The dimensions are in millimetres.

Fig. 7.29

22. Calculate the total pressure on the gate in the dam shown in Fig. 7.30 at
a depth of 5 m. The gate is 2.5 m high and 1.5 m wide. Calculate also the
position of the center of pressure. Density of water = 1000kg/m3.

Fig. 7.30
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23. A triangular plate of base 5 m and height 8 m is immersed in a lake with its
base along the water level. Calculate the total pressure on the plate and the
depth of the center of pressure if the plate is vertical.
Density of water = 1000kg/m3



Chapter 8
Taylor Series and Power Series

8.1 Introduction

In Chap. 5 we showed that the sum of a geometric series is given by

1+x+x2 +x3 + · · · = 1

1−x
This formula holds true for −1 < x < 1. We will now consider this result from
a different point of view. The left-hand side of the equation is an infinite series in
powers of x, while the right-hand side is a simple function of x. Figure 8.1 shows
the graph of this function.

Fig. 8.1

The series and the function are identical for a certain interval. It is also possible
to represent other functions by means of series in ascending powers of x.

In this chapter we investigate functions which can be expressed as infinite power
series. An infinite power series is an expression of the form

a0 +a1x+a2x
2 +a3x

3 + · · · =
∞

∑
n=0

anx
n

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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Power series have an infinite number of terms, each term being a simple power of an
independent variable such as x. We will try to express functions already discussed,
like the trigonometric functions, as power series. Power series are easy to handle
numerically. For small values of x, the higher terms of the series decrease rapidly.
In this case an approximate value of a function can be obtained by taking the first
terms of the series.

The expansion of a function as a power series is useful for the following reasons:

1. Evaluation. The functional values of exponential, trigonometric and logarithmic
functions, for instance, can be computed numerically with the help of power
series to a high degree of accuracy.

2. Approximation. The first terms of a power series can be used to obtain an ap-
proximate value for a given function.

3. Term-by-term integration. It is not always possible to integrate a function as it
stands. If, however, the function can be represented by an absolutely convergent
power series it can then be integrated term by term to give the value of the
integral to a high degree of accuracy.

8.2 Expansion of a Function in a Power Series

The following relationship holds true for many functions:

f (x) =
∞

∑
n=0

anx
n = a0 +a1x+a2x

2 +a3x
3 + · · ·+anx

n · · · (8.1)

The coefficients have to be evaluated for each function separately. One important
property of such a series is that it is differentiable. It is a necessary condition but

not a sufficient one. The function f (x) = e−1/x2
for x �= 0, for example, can be

differentiated, but it cannot be expanded in a series. In Sect. 8.3 we will investigate
the range of values of x for which the expansion is valid. For the time being we will
assume that such an expansion is possible.

Consider (8.1). The fundamental assumption is that the value of the function and
the power series coincide at x = 0 and that the values of their derivatives coincide as
well. This gives rise to an algorithm for evaluating the coefficients ai of the power
series.
Step 0: The function and the series must coincide at x = 0. This gives

f (0) = a0 +a1 ×0+a2×0+ · · ·+an ×0+ · · ·
Thus a0 is known to be a0 = f (0).
Step 1: The first derivatives of the function and the series must coincide at x = 0.
Obtain the first derivative:

f ′(x) = a1 +2a2x+3a3x
2 + · · ·+nanx

n−1 + · · ·
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For x = 0 we get
f ′(0) = a1 (all other terms are zero)

Thus a1 is known to be a1 = f ′(0).
Step 2: The second derivatives of the function and the series must coincide at x = 0.
Obtain the second derivative:

f ′′(x) = 2a2 +3×2a3x+ · · ·+n(n−1)anx
n−2 + · · ·

For x = 0 we get

f ′′(0) = 2a2 (all other terms are zero)

Thus a2 is known to be a2 = 1
2 f

′′(0).
Step n: The nth derivatives of the function and the series must coincide at x = 0.
Obtain the nth derivative:

f (n)(x)= n(n−1)(n−2)×·· ·×3×2×1×an+(n+1)n(n−1)×·· ·×an+1x+ · · ·
For x = 0 we get

f (n)(0) = n(n−1)(n−2)×·· ·×3×2×1×an (all other terms are zero)

Hence

an =
f (n)(0)

n(n−1)(n−2) · · ·×3×2×1 =
1

n!
f (n)(0)

Note that n! = n(n−1)(n−2)×·· ·×3×2×1 (n! is read ‘n factorial’)

1! = 1= 1

2! = 1×2= 2

3! = 1×2×3= 6

4! = 1×2×3×4= 24 and so on

By definition, 0! = 1

Definition The expansion of a function f (x) expressed in a power series
is given by

f (x) = f (0)+
1

1!
f ′(0)x+

1

2!
f ′′(0)x2 +

1

3!
f ′′′(0)x3 + · · ·

or, more simply

f (x) =
∞

∑
n=0

f n(0)
n!

xn (8.2)

This is known as Maclaurin’s series.
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Expansion of the Exponential Function f (x) = ex

The derivatives are

f ′(x) = ex, f ′′(x) = ex, · · · ,f n(x) = ex

Substituting in (8.2) gives

ex = 1+
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · ·

=
∞

∑
n=0

xn

n!
(8.3)

For any given value of x, the factorial n! increases more rapidly than the power
function xn; hence the terms get smaller as n increases.

For x = 1, for example, we have

e1 = 1+1+
1

2
+
1

6
+
1

24
+

1

120
+

1

720
+

1

5040
+ · · ·

so that
e ≈ 2.7182 · · ·

Similarly, the expansion for e−x is obtained by replacing x with −x:

e−x = 1− x

1!
+
x2

2!
− x3

3!
+
x4

4!
−+ · · ·

Expansion of the Sine Function f (x) = sinx

f (x) = sinx f (0) = 0

f ′(x) = cosx f ′(0) = 1

f ′′(x) = −sinx f ′′(0) = 0

f ′′′(x) = −cosx f ′′′(0) = −1

Substituting in (8.2) gives

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

=
∞

∑
n=0

(−1)n 1

(2n+1)!
x2n+1 (8.4)
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Expansion of the Binomial Series f (x) = (a+x)x

f (x) = (a+x)n f (0) = an

f ′(x) = n(a+x)n−1 f ′(0) = nan−1

f ′′(x) = n(n−1)(a+x)n−2 f ′′(0) = n(n−1)an−2

...
...

f k(x) = n(n−1) · · · (n−k+1)(a+x)n−k f k(0) = n(n−1)· · ·(n−k+1)an−k

Note that n need not be an integer. Thus the expansion is valid for, e.g. n = 1/2.
Substituting in (8.2) gives

(a+x)n = an +nan−1x+
n(n−1)
2!

an−2x2 +
n(n−1) · · ·(n−k+1)

k!
an−kxk + · · ·

A useful version of this series is when a = 1. We then have

(1+x)n = 1+nx+
n(n−1)
2!

x2 +
n(n−1)(n−2)

3!
x3 + · · · (8.5)

Expansion of the Function f (x) = 1
1−x

We know the result already because this is the sum of a geometric series.

f (x) =
1

1−x f (0) = 1

f ′(x) =
1

(1−x)2
f ′(0) = 1

f ′′(x) =
1×2

(1−x)3
f ′′(0) = 2!

f ′′′(x) =
1×2×3
(1−x)4

f ′′′(0) = 3!

...
...

f n(x) =
n!

(1−x)n+1
f n(0) = n!

Substituting in (8.2) gives the familiar result

1

1−x = 1+x+x2 +x3 + · · ·+xn + · · · =
∞

∑
n=0

xn (|x| < 1) (8.6)

(Absolute value of x < 1)
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8.3 Interval of Convergence of Power Series

There are functions for which Maclaurin’s series converge for values of x within
a certain range. This is the case for the geometric series. It is only convergent pro-
vided that −1< x < 1. This range is referred to as the interval of convergence.

Consider the power series

a0 +a1x+a2x
2 +a3x

3 + · · ·+anx
n +an+1x

n+1 + · · ·
The coefficients are numbers independent of x. The series may converge for certain
values of x and diverge for other values.

We wish to find the range of values of x for which the series converges, i.e. the
interval of convergence. We form the ratio

an+1x
n+1

anxn

assuming that all coefficients ai are non-zero. Now consider its limit:

lim
n→∞

∣∣∣∣
an+1

an
x

∣∣∣∣ =
|x|
R

where R = lim
n→∞

∣∣∣∣
an

an+1

∣∣∣∣ (8.7a)

R is called the radius of convergence.
The series is absolutely convergent if |x| < R and divergent if |x| > R. Hence

a power series is convergent in a definite interval (−R,R) and divergent outside this
interval. This is illustrated in Fig. 8.2.

Fig. 8.2

Another well-known formula for computing R is due to Cauchy and Hadamard.
It is

1

R
= lim

n→∞
n
√
|an| (8.7b)

The formula is also applicable if some coefficients ai vanish, e.g. in the trigonomet-
ric functions.

Example Consider the power series

x− x2

22
+
x3

32
− x4

42
+ · · ·+(−1)n−1x

n

n2
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Using (8.7a) we obtain

R = lim
n→∞

∣∣∣∣
an

an+1

∣∣∣∣= lim
n→∞

∣∣∣∣
−(n+1)2

n2

∣∣∣∣= 1

Hence the series is convergent if |x| < 1 and divergent if |x| > 1.

Example Consider the exponential series

ex =
∞

∑
n=0

xn

n!

Using (8.7a) we obtain

R = lim
n→∞

∣∣∣∣
an

an+1

∣∣∣∣= lim
n→∞

(n+1)!
n!

= lim
n→∞

(n+1) = ∞

Hence the series is valid for all values of x; the radius of convergence is ∞.

8.4 Approximate Values of Functions

It is easier to handle a finite number of terms of a series than an infinite number. In
a convergent series the terms tend to zero; the evaluation of a power series can there-
fore be broken off after a certain number of terms. Where we break it off depends
on the accuracy required. It is important then to be able to estimate the error.

Consider the series

f (x) = a0 +a1x+a2x
2 + · · ·+anx

n + · · ·
Let us divide the series in two parts so that

f (x) = a0 +a1x+a2x
2 + · · ·+anx

n

︸ ︷︷ ︸
Approximate polynomial
Pn(x) of degree n

+an+1x
n+1 + · · ·︸ ︷︷ ︸

Remainder
Rn(x)

The first part represents the approximate value of the function f (x), and the second
part the remainder. If we take the polynomial of degree n as an approximation of
the value of the function f (x), it follows that the error is equal to Rn(x), the re-
mainder. This remainder is an infinite series and if we can estimate its magnitude
we automatically have an estimate for the value of the error.

To appreciate the behaviour of approximations, let us consider graphically the
sine function taking one term, then two terms, and so on, of the power series for
sinx.
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First approximation , sinx ≈ x

Second approximation , sinx ≈ x− x3

6

Third approximation , sinx ≈ x− x3

6
+
x5

120

The first approximation is represented by a tangent at the position x = 0 (Fig. 8.3a).
We can see that the error builds up rapidly after x ≈ �/6.

The second approximation replaces the sine function by a polynomial of the third
degree (Fig. 8.3b). The range of values of x for which the approximation is suffi-
ciently exact is greater.

The third approximation replaces the sine function by a polynomial of the 5th de-
gree (Fig. 8.3c). The range of values of x for which the approximation is satisfactory
is much larger, e.g. consider an extreme case:

sin
�

2
= sin90◦ ≈ 1.00452 , error = 0.00452

Fig. 8.3
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In practice, we would have to decide what error we could accept, and this depends
very much on the nature of the problem. The above example does illustrate the point
that a polynomial can give a good approximation to the value of some other function.

Lagrange succeeded in estimating the error when the first terms of a series are
used to calculate the value of a function. He showed that the terms neglected can be
represented by the expression

Rn(x) =
f (n+1)(ξ)
(n+1)!

xn+1 (8.8)

This expression contains the (n+1)th derivative of the function at some value of �,
which lies in the interval 0 < � < x. There exists a value of � = �0 for which the
remainder is a maximum. The error cannot be greater than Rn(�0).

Example Suppose we stop the series for the exponential function after the third
term. Then the remainder for x = 0.5, say, is

R3(0.5) = eξ (0.5)4

4!

As ex is monotonic increasing, we get the maximum value of the remainder with
�0 = 0.5:

R3(0.5) =
e0.5(0.5)4

24
≈ 0.004

The error, in this case, will be less than 0.004 if we stop at the 3rd term of the
expansion.

8.5 Expansion of a Function f (x) at an Arbitrary Position

It is often useful to expand a function at a position x0 which is different from zero.
To obtain such an expansion we could proceed as in Sect. 8.2, but instead we intro-
duce a new variable, u= x−x0. Since this auxiliary variable is zero at x = x0, we
can expand the function at the position u= 0 in terms of ascending powers of u and
afterwards express the expansion in terms of x. Hence we proceed as follows:

Since the function is to be expanded at x = x0, we introduce a new variable,
u= x−x0.

We resolve in terms of x;x = u+ x0 and substitute the expression u+ x0 for
x in f (x):

f (x) = f (u+x0) .

We expand at the position u= 0 with respect to u to obtain

f (x) = f (u0 +x0) = f (x0)+f ′(x0)u+
f ′′(x0)
2!

u2 + · · ·+ f (n)(x0)
n!

un + · · ·
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Now we replace u by x−x0 so that

f (x) = f (x0)+f ′(x0)(x−x0)+
f ′′(x0)
2!

(x−x0)2 + · · ·

+
f (n)(x0)

n!
(x−x0)n + · · · (8.9)

This type of series is known as Taylor’s series.

Note that the geometric meaning of the substitution u = x−x0 is a transforma-
tion of coordinates; the variable u has its origin at x = x0. By means of this shift, we
are back to the previous situation when we expanded a function at a position where
the abscissa was zero.

Example Expand the cosine f (x) = cosx about the point x0 = �/3 or (60◦).
Differentiating gives

f ′(x) = −sinx , f ′′(x) = −cosx , f ′′′(x) = sinx

f ′
(�
3

)
= −

√
3

2
, f ′′

(�
3

)
= −1

2
, f ′′′

(�
3

)
=

√
3

2

and so on.
Substituting in (8.9) gives

cosx =
1

2
−
(
x− �

3

)√
3

2
−
(
x− �

3

)2 1

4
+
(
x− �

3

)3
√
3

12
+ · · ·

Suppose we wish to calculate the value of cosine 61◦ without using tables. Then

cos61◦ =
1

2
−

√
3

2

( �

180

)
− 1

4

( �

180

)2
+

√
3

12

( �

180

)3
+ · · ·

If we use two terms only

cos61◦ ≈ 1

2
−

√
3

2

( �

180

)
= 0.5000−0.01511= 0.48489

Error Rn(x) =
cos
(
�+ n+1

2 �
)

(n+1)!

(
x− �

3

)n+1

Note: The (n+1)th derivative of cos(x) is cos(x+(n+1)/2�).
Also, �/3< � < �/3+�/180.

In this case the error is

≤ 1

2

( �

180

)2
= 0.00015
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since

cos

(
�+

n+1
2

�

)
≤ 1 .

(The actual error is 0.00008.)

Example Expand the function f (�) = (1−a sin2 �)1/2.
This expression is important in the study of the slider crank mechanism as used

in the car engine.
To expand this function, we could use Maclaurin’s or Taylor’s series. However,

a moment’s thought leads us to conclude that we should use the binomial expansion
instead. We saw earlier that

(1+x)n = 1+nx+
n(n−1)
2!

x2 +
n(n−1)(n−2)

3!
x3 + · · ·

With x = −a sin2 � and n= 1/2 we have

(1−a sin2 �)1/2 = 1− 1

2
a sin2 � +

1
2

(−1
2

)
2!

a2 sin4 � −
(

1
2

)(−1
2

)(−3
2

)
3!

a3 sin6 � · · ·

= 1− 1

2
a sin2 � − 1

8
a2 sin4 �− 1

16
a3 sin6 � −·· ·

8.6 Applications of Series

At the beginning of this chapter we mentioned briefly the important applications of
series. The numerical values of trigonometric, exponential, logarithmic and many
more functions are computed by means of series. The values found in tables were
first computed by hand a very long time ago: an extremely tiresome task! Today
computers make the task far easier and furthermore, error is reduced.

8.6.1 Polynomials as Approximations

The expansion of functions as infinite series has a special significance in calculating
approximate values. With a rapidly convergent series and with small values of x we
only need to take the first two or three terms of the expansion; in some cases the
first term is adequate. If we replace the function by an approximate polynomial, the
mathematical expression may be simplified considerably.

Example The atmospheric pressure p is a function of altitude h and is given by

p = p0e−˛h
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p0 and ˛ are constants, p0 being the pressure when h= 0. To calculate the pressure
difference we have

∆p = p−p0 = p0

(
e−˛h −1

)

This expression can be simplified by using an approximation.
Since e−x = 1− x+ · · · , as a first approximation to the pressure difference, it

follows that
∆p ≈ p0(1−˛h−1) = −p0˛h

Suppose we want to calculate the altitude hwhen the pressure p is decreased by 1%
of the pressure at h= 0, i.e.

∆p/p0 =
−1
100

, ˛ = 0.121×10−3 1

m
We have

h= − ∆p
p0˛

=
1

100
× 1

0.121×10−3
= 82.64m

The error is 0.4 m or 0.49% of the true value.

Example Detour problem. Figure 8.4 shows two possible paths that can be taken
when travelling a distance S from A to B, a direct one and an indirect one via C.
The problem is to find how much longer is the detour via C than the direct path?

Fig. 8.4

Let u be the detour. If h is the height of an assumed equilateral triangle, then, by
Pythagoras’ theorem, we have

u= 2

⎛
⎝
√(

S

2

)2

+h2 − S

2

⎞
⎠

u= S

⎛
⎝
√
1+
(
2h

S

)2

−1
⎞
⎠

To investigate the behaviour of u as a function of h, it is much simpler to express it
by an approximate polynomial. Using the binomial expansion, we have

1+u
S

= f (h) =

(
1+
(
2h

S

)2
)1/2

= 1+
1

2

(
2h

S

)2

−
1
2

(
1− 1

2

)
2!

(
2h

S

)4

+ · · ·
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Provided that h< S , we can use a first-degree approximation by taking the first two
terms of the series:

f (h) ≈ 1+
1

2

(
2h

S

)2

Substituting in the equation for u gives

u= S

(
1+

1

2

(
2h

S

)2

−1
)

=
2h2

S

As an example, let S = 100km. The function is shown in Fig. 8.5. An examination
of the graph shows, e.g. that when h= 5km, the detour is only 0.5 km.

Fig. 8.5

Example Obtain a closer approximation for one of the roots of the equation

x4 −1.5x3 +3.7x−21.554= 0

A rough estimate gave x = 2.4.
Let x be a rough approximation for the root of an equation found by trial and

error. If the true solution is x+h, then, by Taylor’s theorem, we have

0= f (x+h) ≈ f (x)+h ·f ′(x)

Solving for h gives

h≈− f (x)
f ′(x)

; hence x− f (x)
f ′(x)

is a better approximation.

This is also known as the Newton-Raphson approximation formula (see Chap. 17).
Returning to the example, we find

f ′(x) = 4x3 −4.5x2 +3.7 and f ′(2.4) = 33.076

Also f (2.4) = −0.2324
It follows that h= 0.2324/33.076= 0.007.

A more accurate approximation is x = 2.4+0.007= 2.407.
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8.6.2 Integration of Functions when Expressed as Power Series

We often encounter integrals whose integrands are complicated functions. This
makes their integration extremely difficult or even near impossible. If the function
to be integrated can be expressed as a power series, then we can integrate it term by
term within the interval of convergence. In this way we can solve practical problems
more easily. This is illustrated by the following examples.

Example The function e−x2
is known as the Gaussian bell-shaped curve. It is sym-

metrical about the y-axis. In statistics and the theory of errors the dispersion of mea-
sured values about a mean is described in terms of a function of a similar type. We
wish to compute the integral ∫ x

0
e−t2

dt

This corresponds to the area under the curve between t = 0 and t = x (Fig. 8.6).

Fig. 8.6

It is not possible to evaluate this integral as it stands; instead we replace it by
a power series. Remember that

ex = 1+x+
x2

2
+
x3

6
+
x4

24
+ · · ·

Substituting −t2 for x gives

e−t2

= 1− t2 +
t4

2
− t6

6
+
t8

24
−+ · · ·

Substituting for e−t2
in the integral and integrating term by term gives

∫ x

0
e−t2

dt = x− x3

3
+
x5

10
− x7

42
+
x9

216
−+ · · ·

As x→ ∞ the integral has a limiting value. This value is given here without proof:

∫ ∞

0
e−t2

dt =
√
�

2
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Fig. 8.7

The total area under the bell-shaped curve (Fig. 8.7) is then
∫ ∞

−∞
e−t2

dt =
√
�

It is useful to normalise the curve so that the area under it is equal to unity, i.e.
∫ ∞

−∞

e−t2

√
�

dt = 1

In the next example we will use the following statement which is given with-
out proof.

Multiplying two power series is valid within the interval of convergence if
they are both absolutely convergent.

Absolute convergencemeans that the sum of the absolute values of the summands
converges as well.

Example Evaluate
∫ 0.4

0

√
4−x2

4+4x3
dx

First we express the integrand as a product, i.e.

∫ √
4−x2

4+4x3
dx =

∫ (
1−
(x
2

)2
)1/2

(1+x3)−1/2 dx

The binomial series converges for |x| < 1. The condition is satisfied in the case of
our two functions. The expansions are

(
1−
(x
2

)2
)1/2

= 1− 1

8
x2 − 1

128
x4 − 1

1024
x6 −·· ·

(1+x3)−1/2 = 1− x3

2
+
3

8
x6 −+ · · ·
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Multiplying the two series gives, for the integrand I

I = 1− 1

8
x2 − 1

2
x3 − 1

128
x4 +

1

16
x5 +

383

1024
x6 + · · ·

Integrating term by term we find

∫ 0.4

0
Idx =

[
x− 1

24
x3 − 1

8
x4 − 1

640
x5 +

1

96
x6 +

383

7168
x7 + · · ·

]0.4

0∫ 0.4

0
Idx ≈ 0.4−0.00267−0.00320−0.00002+0.00004+0.00009

≈ 0.3942

8.6.3 Expansion in a Series by Integrating

The expansion of a function in a series can sometimes be achieved by expanding its
derivative first and then integrating term by term.

Integrating a convergent power series term by term is valid.

Example Obtain a series for tan−1x.
We know that

tan−1x =
∫

dx
1+x2

If we expand the integrand in a series and integrate term by term we will obtain
a series for tan−1x.

Expanding the integrand by means of the binomial theorem gives

1

1+x2
= (1+x2)−1 = 1−x2 +x4 −x6 +x8 −·· ·

which is convergent for |x| < 1.
Hence we have

∫ x

0

dx
1+x2

= tan−1x = x− x3

3
+
x5

5
− x7

7
+
x9

9
−·· · (|x| ≤ 1)



Appendix 243

Appendix:

Commonly Used Approximate Polynomials

This table contains a number of typical functions, together with the first terms when
expanded as power series. These expansions can be used to obtain approximate
values for the functions. The range of values of x for which the approximations
are valid are given; these are based on the error being smaller than 1% and 10%,
respectively.

Table 8.1 Approximations for Typical Functions

Function First approximation Second approximation
Error less than Error less than

1% 10% 1% 10%
for x = 0 for x = 0 for x = 0 for x = 0
to x = to x = to x = to x =

sinx x 0.24 0.74 x− x3

3!
1.00 1.66

cosx 1− x2

2
0.66 1.05 1− x2

2!
+

x4

4!
1.18 1.44

tanx x 0.17 0.53 x +
x3

3
0.52 0.91

ex 1+x 0.14 0.53 1+x +
x2

2
0.43 1.10

ln(1+x) x 0.02 0.20 x− x2

2
0.17 0.58

x > −1

√
1+x 1+

x

2
0.32 1.42 1+

x

2
− x2

8
0.66 1.74

|x|< 1

1√
1+x

1− x

2
0.16 0.55 1− x

2
+

3

8
x2 0.32 0.73

|x|< 1

1

1−x
1+x 0.10 0.31 1+x +x2 0.21 0.46

|x|< 1

1

1−x2
1+x2 0.31 0.56 1+x2 +x4 0.46 0.68

|x|< 1
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Table 8.2 Power Series of Important Functions

This table is included for further reference. It contains some expansions which have not been
discussed in the text. In some cases negative powers occur.

ex = 1+
x

1!
+

x2

2!
+

x3

3!
+ · · ·

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

tanx = x +
x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+ · · ·

(
|x|< �

2

)

cotx =
1

x
− x

3
− x3

45
− 2x5

945
− x7

4725
−·· · (0 < |x|< �)

secx = 1+
x2

2!
+

5x4

4!
+

61x6

6!
+

1385x8

8!
+ · · ·

(
|x|< �

2

)

sin−1 x = x +
x3

2×3
+

3x5

2×4×5
+

(3×5)x7

2×4×6×7
+ · · · (|x|< 1)

cos−1 x =
�

2
− sin−1 x

tan−1 x = x− x3

3
+

x5

5
− x7

7
+

x9

9
−+ · · · (|x|< 1)

cot−1 x =
�

2
− tan−1 x

sinhx = x +
x3

3!
+

x5

5!
+

x7

7!
+ · · ·

coshx = 1+
x2

2!
+

x4

4!
+

x6

6!
+ · · ·

tanhx = x− x3

3
+

2x5

15
− 17x7

315
+

62x9

2835
−·· ·

(
|x|< �

2

)

cothx =
1

x
+

x

3
− x3

45
+

2x5

945
− x7

4725
+ · · · (0 < |x|< �)

sinh−1 x = x− 1×x3

2×3
+

(1×3)x5

2×4×5
− (1×3×5)x7

2×4×6×7
+ · · · (|x|< 1)

sinh−1 x = (ln2)x +
1

(2×2)x2
− 1×3

(2×4×4)x4
+

1×3×5

(2×4×6×6)x6
−·· · (|x|> 1)

cosh−1 x = (ln2)x − 1

(2×2)x2
− 1×3

(2×4×4)x4
− 1×3×5

(2×4×6×6)x6
−·· · (x > 1)

tanh−1 x = x +
x3

3
+

x5

5
+

x7

7
+ · · · (|x|< 1)
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Table 8.2 (continued)

coth−1 x =
1

x
+

1

3x3
+

1

5x5
+

1

7x7
+ · · · (|x|> 1)

ln(1+x) = x − x2

2
+

x3

3
− x4

4
+−·· · (−1 < x ≤ 1)

(1+x)n = 1+nx +
n(n−1)

2!
x2 +

n(n−1)(n−2)
3!

x3

+
n(n−1) · · ·(n−k +1)xk

k!
+ · · · (|x|< 1)

This last formula is valid both for integral exponents and for fractional exponents.

Note: There is no expansion for cotx and for coth x at x = 0 because these functions have a pole
at this value. The series expansions were obtained by expanding x cotx and x cothx and dividing
the result by x.

Exercises

8.2 Expansion of a Function in a Power Series

1. Expand the following functions at x0 = 0 in a series up to the first four terms:

(a) f (x) =
√
1−x

(c) f (x) = ln[(1+x)5]
(e) f (x) = tanx

(b) f (t) = sin(!t +�)
(d) f (x) = cosx
(f) f (x) = coshx

8.3 Interval of Convergence of a Power Series

2. Obtain the radius of convergence of the following series:

(a) f (x) = sinx =
∞
∑

n=0

(−1)n

(2n+1)!
x2n+1

(b) f (x) =
1

1−3x =
∞
∑

n=0
3nxn

8.4 Approximate Value of Functions

3. Sketch in the neighbourhood of x0 = 0 the function f (x) and the graphs of
the approximate polynomials P1(x),P2(x) and P3(x).

(a) y = tanx (b) y =
x

4−x
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8.5 Expansion of a Function at an Arbitrary Position

4. Expand the following functions at x0 = �:

(a) y = sinx (b) y = cosx

5. Expand the function f (x) = lnx at x0 = 1.

6. Expand the function f (x) =
4

1−3x at x0 = 2. Obtain the first four terms.

8.6 Applications of Series

7. Determine the intersection – which lies in the first quadrant – of the func-
tions ex −1 and 2sinx. Approximate both functions by a polynomial of the
third degree, P3(x).

8. Calculate
√
42=

√
36+6 to 4 d.p.

9. Replace the function f (x) by an approximate polynomial in the interval
(0, 0.3). The error should not exceed 1%.

(a) f (x) = ln(1+x) (b) f (x) =
1√
1+x

10. Given the functions f (x), compute approximately (see Table 8.1) the value
of f (1/4). The value obtained should have an accuracy of 10%.

(a) f (x) = ex (b) f (x) = ln(1+x) (c) f (x) =
√
1+x

11. Let the series for the function f (x) =
∞
∑

n=0
anx

n be given. Obtain a series

expansion for the integral
∫
f (x) dx by integrating the series term by term

for the following functions:

(a) f (x) =
1

1+x
=

∞
∑

n=0
(−1)nxn = 1−x+x2 −x3 +x4 −·· · (|x| < 1)

(geometric series)

(b) f (x) = cosx =
∞
∑

n=0
(−1)n x

2n

2n!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

12. Solve the following integrals using a series expansion:

(a)
∫ 0.58

0

√
1+x2 dx

(b)
∫ x

0

sin t
t

dt (Integral (b) cannot be evaluated by any other method.)

13. (a) Obtain a power series for sin−1x by first expanding 1/
√
1−x2, which

is the derivative of sin−1 x, and, second, integrating term by term.
(b) Since sin−1(1) = �/2, by inserting x = 1 into the series one obtains

a series for �/2. Compute the value of this series up to the fifth term
and compare with the correct numerical value.



Chapter 9
Complex Numbers

9.1 Definition and Properties of Complex Numbers

9.1.1 Imaginary Numbers

The square of positive as well as negative real numbers is always a positive real
number. For example, 32 = (−3)2 = 9. The root of a positive number is therefore
a positive or negative number. We now introduce a new type of number whose square
always gives a negative real number: they are called imaginary numbers.

Definition The unit of imaginary numbers is the number j with the property
that

j2 = −1 (9.1)

The imaginary unit j corresponds to 1 for real numbers.

An arbitrary imaginary number is made up of the imaginary unit j and any real
number y; thus yj is the general form for an imaginary number.

We know that we cannot extract the root of a negative number when dealing with
real numbers; nevertheless, we can factorise the root of a negative number thus:

√−5=
√
5(−1) =

√
5×√−1

Since j2 = −1, it follows that j =
√−1; hence

√
5×√−1= j

√
5.

The root of a negative number is an imaginary number. Moreover, with j2 = −1,
we can simplify higher powers of j.

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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The ordinary rules of algebra extend to imaginary numbers. In addition one must
remember that j2 = −1, i.e.

j1 = j

j2 = −1
j3 = j2 × j = −j

j4 = j2 × j2 = 1

9.1.2 Complex Numbers

The sum z of a real number x and an imaginary number jy is called a complex
number, complex meaning ‘composed’. Thus

z = x+ jy

where x is the real part of z and y is the imaginary part of z.
If we replace j by −j, we obtain a different complex number z∗ given by

z∗ = x− jy

z∗ is called the complex conjugate of z.
A complex number has the value zero only if both the real part and the imaginary

part are zero.

9.1.3 Fields of Application

The most obvious property of imaginary numbers is that we can ‘extract’ the root
of a negative number, which means we obtain an expression which we can handle.
This property enables us, in principle, to solve equations of any degree. Consider,
for instance, the quadratic equation

ax2 +bx+x = 0

We have seen that it is unsolvable in terms of real x if b2 < 4ac, i.e. when the
radicand b2 −4ac becomes negative. The solution in terms of complex x is

x1,2 =
1

2a

(
−b± j

√
4ac−b2

)
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Complex numbers are important in the solution of differential equations which are
dealt with in Chap. 10. They are also a useful concept in electrical engineering, and
they are indispensable in the study of quantum physics.

9.1.4 Operations with Complex Numbers

When handling complex numbers there are two rules to remember:
The complex number x+ jy is zero if and only if x = 0 and y = 0.
Complex numbers obey the ordinary rules of algebra, in addition j2 = −1.

Addition and Subtraction of Complex Numbers

Rule The sum of complex numbers is obtained by adding real and
imaginary parts separately.
The difference of complex numbers is obtained by subtracting real
and imaginary parts separately.

Let Example

z1 = x1 + jy1 z1 = 6+7j
z2 = x2 + jy2 z2 = 3+4j

Then their sum is

z1 + z2 = (x1 + jy1)+ (x2 + jy2) z1 + z2 = (6+7j)+ (3+4j)
= (x1 +x2)+ j(y1 +y2) = 9+11j
Their difference is Example

z1 − z2 = (x1 −x2)+ (y1 −y2)j z1 − z2 = 3+3j

Product of Complex Numbers

Rule The product z1,z2 of two complex numbers is obtained by simple
multiplication of the terms, taking into account j2 = −1.

General expression Example

z1z2 = (x1 + jy1)(x2 + jy2) z1z2 = (6+7j)(3+4j)

= x1x2 + jx1y2 + jy1x2 + j2y1y2 = 18+24j+21j−28
= (x1x2 −y1y2)+ j(x1y2 +x2y1) = −10+45j



250 9 Complex Numbers

Division of Complex Numbers

Rule Division of a complex number by another complex number is car-
ried out by multiplying numerator and denominator by the conjugate
of the divisor to transform the latter into a real number. Note that the
denominator then appears as the sum of two squares.

General expression Example

z1

z2
=
x1 + jy1

x2 + jy2
=

(x1 + jy1)(x2 − jy2)
(x2 + jy2)(x2 − jy2)

z1

z2
=
6+7j
3+4j

=
(6+7j)(3−4j)
(3+4j)(3−4j)

=
(x1x2 +y1y2)− j(x1y2 −y1x2)

x2
2 +y2

2
=

−10−3j
25

=
−2
5

− 3

25
j

The conjugate of z2 is z2
∗ = x2 − jy2

9.2 Graphical Representation of Complex Numbers

9.2.1 Gauss Complex Number Plane: Argand Diagram

The complex number z = x+ jy can be represented in an x−y coordinate system
by placing the real part along the x-axis and the imaginary part along the y-axis in
a similar way to the components of a vector. Figure 9.1 shows this.

We obtain a point P(z) in this plane which corresponds to the complex number z.
This plane is called the Gauss number plane, better known as the Argand diagram.
In this way we have produced a geometrical picture of a complex number.

Example Where is the point in the Argand diagram corresponding to the complex
number z = 4−2j? Figure 9.2 shows the answer.

Fig. 9.1 Fig. 9.2
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Addition

z3 = z1 + z2

If z1 = 6+3j and z2 = 2+5j we know that the sum z3 = 8+8j. This addition may
be represented in an Argand diagram, as shown in Fig. 9.3.

To obtain the complex number z3, we first draw the two complex numbers z1

and z2 as vectors as shown. Then we shift vector z2 parallel to itself in such a way
that its tail is made to coincide with the tip of vector z1. The tip of vector z2 locates
the tip of the required vector or complex number z3 whose magnitude is given by
the length OP. This construction is based on the parallelogram rule for the addition
of vectors. The same result is obtained if we shift z1 instead of z2. We dealt with
vectors in Chap. 1, so this construction should not be new to the reader.

To add more than two complex numbers we draw a polygon by joining the vectors
tip to tail. The tip of the closing vector represents the required complex number.

Fig. 9.3

Subtraction

z3 = z1 − z2 = z1 +(−z2)

The problem of the subtraction of two complex numbers can be transformed into
one of addition if to one complex number we add the negative of the other.

9.2.2 Polar Form of a Complex Number

Instead of specifying a complex number by means of the coordinates x and y, we
could specify it by means of a distance r from the origin of the coordinates and an
angle ˛, as shown in Fig. 9.4 x and y are the Cartesian coordinates, and r and ˛ are
the polar coordinates.
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Fig. 9.4

From the figure we see that

x = r cos˛

y = r sin˛

Substituting in the expression for the complex number, z = x+ jy, gives

z = r(cos˛+ j sin˛) (9.2)

This expresses a complex number in terms of the trigonometric functions. It fol-
lows that the conjugate z∗ of the complex number z is

z∗ = r(cos˛− jsin˛)

If we know r and ˛ we can calculate x and y from the above equations. If on the
other hand we know x and y and we want to express a complex number in polar
form, it follows from Fig. 9.4 that

r =
√
x2 +y2 taking the positive value only

˛ = tan−1
(y
x

)

r is known as the modulus and ˛ as the argument.

Table 9.1 illustrates the values taken by ˛ according to the sign of x and y.

Table 9.1

x y tan˛ P(z) lies in ˛ in the range

positive positive positive 1st quadrant 0 to
�

2

negative positive negative 2nd quadrant
�

2
to �

negative negative positive 3rd quadrant � to
3�

2

positive negative negative 4th quadrant
3�

2
to 2�
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Example Express the complex number z = 1− j in polar form.
z = 1− j means that x = 1 and y = −1.

Hence r =
√
x2 +y2 =

√
1+1=

√
2

˛ = tan−1

(−1
1

)
= tan−1(−1) =

3�

4
or

7�

4

We represent the complex number in the Argand diagram (Fig. 9.5) and find that it
lies in the fourth quadrant. It follows then that

˛ =
7�

4

Thus the complex number z = 1− j can be written in polar form:

z =
√
2

(
cos

7�

4
+ jsin

7�

4

)

Example Express the complex number z = 6j in polar form.
In this case, z = x+ jy ≡ 0+6j, i.e. x = 0. Consequently r = 6

tan˛ =
y

x
=
6

0
= ∞ , i.e. ˛ =

�

2
or

3�

2

To determine ˛, the complex number is shown in Fig. 9.6. It follows, therefore, that
˛ = �

2 . In polar form the complex number is

z = 6
(

cos
�

2
+ j sin

�

2

)

Fig. 9.5 Fig. 9.6
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9.3 Exponential Form of Complex Numbers

9.3.1 Euler’s Formula

It is also possible to express a complex number in the form

z = rej˛ (9.3)

As before, r is the modulus of z and ˛ is the argument. We can show that it is
equivalent to the polar form of a complex number:

z = r(cos˛+ j sin˛)

In other words we want to prove that

rej˛ = r(cos˛+ jsin˛)

Dividing by r gives
ej˛ = cos˛+ jsin˛

In Chap. 8, Sect. 8.2, we showed that the expansion for ex is

ex = 1+x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

This expansion remains valid if we replace x by j˛. Remembering that j2 = −1, we
obtain

ej˛ = 1+ j˛− ˛2

2!
− j
˛3

3!
+
˛4

4!
+ j
˛5

5!
· · ·

We also showed that

sin˛ = ˛− ˛3

3!
+
˛5

5!
−·· ·

Hence

j sin˛ = j˛− j
˛3

3!
+ j
˛5

5!
−·· ·

cos˛ = 1− ˛2

2!
+
˛4

4!
−·· ·

Comparing these expressions, we obtain

cos˛+ jsin˛ = 1+ j˛− ˛2

2!
− j
˛3

3!
+
˛4

4!
+ j
˛5

5!
−·· · = ej˛
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Euler’s formula
ej˛ = cos˛+ j sin˛ (9.4)

This enables us to express a complex number in a third way.
A table giving the various forms in which complex numbers can be expressed

will be found in the appendix at the end of this chapter.

9.3.2 Exponential Form of the Sine and Cosine Functions

The conjugate complex number of ej˛ is obtained by replacing j by −j, so that if
z = ej˛ then z∗ = e−j˛.

Now we will try to express the sine and cosine function in terms of ej˛ .
According to Euler’s formula, we have

ej˛ = cos˛+ j sin˛

e−j˛ = cos˛− j sin˛

Adding both equations gives

cos˛ =
1

2
(ej˛ + e−j˛) = coshj˛

Subtracting both equations gives

sin˛ =
1

2j
(ej˛ − e−j˛) =

1

j
sinhj˛

9.3.3 Complex Numbers as Powers

Given the complex number z = x+ jy, we wish to calculate the modulus and argu-
ment of

w = ez

Substituting for z, we have

w = e(x+jy) = exejy ≡ rej˛

Comparing the last two expressions, it follows that r = ex and jy = j˛. Hence the
modulus of w is ex , and the argument of w is y.

Example If z = 2+ j�/2, calculate w = ez .

w = ez = e(2+j�/2) = e2ej�/2
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Hence the modulus is r = e2 and the argument is ˛ = �/2, and we have

w = e2
(

cos
�

2
+ j sin

�

2

)
= je2

The solution is shown in the Argand diagram (Fig. 9.7).

Fig. 9.7

Example If z = −2+ j3�/4, calculate w = ez .

w = e

(
−2+j 3�

4

)
= e−2ej 3�

4

r = e−2 and ˛ =
3�

4

Hence w = e−2

(
cos

3�

4
+ j sin

3�

4

)

= e−2

(
− 1√

2
+ j

1√
2

)

This solution is shown in the Argand diagram (Fig. 9.8).

Fig. 9.8
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Suppose now that z is a function of some parameter t . The simplest case is that
of the linear function where a and b are constants.

z(t) = at + jbt

One important interpretation of t in practice is the time, so that z(t) grows with
time, i.e. the real part and the imaginary part grow with time.

Substituting for z in w = ez gives w(t) = e(at+jbt) = eat ejbt

Using Euler’s formula, we get w(t) = eat (cosbt+ jsinbt)
To examine the behaviour of this function, we can consider the real and the imag-

inary parts separately and represent each one graphically as a function of the time t .
The real part of w(t) is eat cosbt . It is the product of an exponential function

and a trigonometric function of period p = 2�/b.
If a is positive then w = eat cosbt represents a vibration whose amplitude grows

exponentially with time, as shown in Fig. 9.9.

Fig. 9.9

If a is negative then w = eat cosbt represents a vibration whose amplitude de-
creases exponentially with time; the vibration is said to be damped and is shown
below in Fig. 9.10.

Fig. 9.10
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The imaginary part of w(t) is eat sinbt . It is also the product of an exponential
function and a trigonometric function whose graphical representation is similar to
Fig. 9.9 or Fig. 9.10, depending on the sign of a.

The mathematical solution of vibration problems is often simplified by means
of complex numbers. Thus, in solving a practical problem, we start by considering
the physical situation consisting of real quantities. We then perform all calculations
using complex numbers and finally consider and interpret the results of the real and
imaginary parts.

9.3.4 Multiplication and Division in Exponential Form

Addition and subtraction of complex numbers are best carried out using the form
z = x+ jy. Multiplication and division, on the other hand are best carried out by
expressing the complex numbers either in exponential form or in polar form.

Consider two complex numbers

z1 = r1ej˛1 and z2 = r2ej˛2

Multiplying gives

z = z1z2 = r1ej˛1r2ej˛2 = r1r2ej(˛1+˛2) (9.5)

Here we use the power rule anam = an+m.
Dividing gives

z =
z1

z2
=
r1ej˛1

r2ej˛2
=
r1

r2
ej(˛1−˛2) (9.6)

Here we use the power rule an/am = an−m.

Rule To multiply (or divide) complex numbers, we multiply (or divide)
the moduli and add (or subtract) the arguments.
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9.3.5 Raising to a Power, Exponential Form

We have
zn = (rej˛)n = rnejn˛ (9.7)

Rule To raise a complex number to a given power we raise the modulus
to that power and multiply the argument by that power.

Figure 9.11 shows the points z and z2 in the complex plane with r = 2.

Fig. 9.11

In the case of z1/n we have

z1/n = n
√
z = n

√
rej˛ = n

√
rej˛/n (9.8)

Rule To extract the root of a complex number, we find the root of the
modulus and divide the argument by the index.

9.3.6 Periodicity of re j˛

We should like to mention the fact, perhaps surprising to the reader, that the complex
number

z = rej˛

is identical to z = rej(˛+2�)
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Fig. 9.12

If we examine Fig. 9.12 we can see that the same point P(z) is obtained whether
the angle is ˛ or ˛+2� . In fact we could equally take the angle to be ˛+4�,˛+
6�,˛−2�,˛−4� , etc. Hence, generally

rej˛ = rej(˛+2�k)

where k = ±1,±2,±3 etc.

In particular we have 1= ej2�

9.3.7 Transformation of a Complex Number From One Form
into Another

Transformation from the Algebraic Form into the Exponential Form

The transformation from x+ jy into rej˛ is based on the relationships derived in
Sect. 9.2.2, i.e.

r =
√
x2 +y2 , tan˛ =

y

x

Example Convert the complex number z = −√
5+2j to the exponential form.

r =
√

(−
√
5)2 +22 = 3

tan˛ =
2

−√
5

= −0.894

The angle is in the second quadrant; therefore ˛ = 138.19◦ or 0.768� radians.

Transformation of the Exponential Form into the Algebraic Form

Since z = rej˛ = r(cos˛+ j sin˛) = x+ jy

then x = r cos˛

y = r sin˛
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Example Convert the expression z = e(0.5+1.3j) to the algebraic form.

z = e(0.5+1.3j) = e0.5e1.3j

x = e(0.5) cos1.3= 0.441

y = e(0.5) sin1.3= 1.589

Hence z = 0.441+1.589j

9.4 Operations with Complex Numbers Expressed in Polar Form

In the previous section, the rules for operations with complex numbers have been de-
rived using the exponential form. We will now show that the same rules are obtained
if we express the complex numbers in polar form. We make use of the addition the-
orems for trigonometric functions given in Chap. 3, Sect. 3.6.6.

9.4.1 Multiplication and Division

Let z1 and z2 be expressed in polar form so that

z1 = r1(cos˛1 + j sin˛1)
z2 = r2(cos˛2 + j sin˛2)

Multiplication

z1z2 = r1r2(cos˛1 + j sin˛1)(cos˛2 + j sin˛2)
= r1r2[(cos˛1 cos˛2 − sin˛1 sin˛2)+ j(sin˛1 cos˛2 + cos˛1 sin˛2)]

Using the addition formulae for the sine and cosine functions,

z1z2 = r1r2[cos(˛1 +˛2)+ j sin(˛1 +˛2)]
= r(cos˛+ j sin˛) (9.9)

Thus the modulus r of the product equals r1r2, and the argument ˛ is (˛1 +˛2).
This is exactly in accordance with the rule derived in the previous section: to

multiply complex numbers we multiply the moduli and add the arguments.
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Figure 9.13 illustrates geometrically the multiplication of complex numbers.
Draw a triangle OPP1 similar to the triangle OP2Q (Q has coordinates 1, 0), then

z

z1
=
z2

1
, hence z = z1z2

Also ˛ = angle QOP = ˛1 +˛2

Fig. 9.13

Division

Both the numerator and the denominator are multiplied by the conjugate of the
divisor.

z1

z2
=
r1(cos˛1 + jsin˛1)
r2(cos˛2 + jsin˛2)

r2(cos˛2 − j sin˛2)
r2(cos˛2 − j sin˛2)

Using the addition formulae for the sine and cosine functions,
z1

z2
=
r1

r2
[cos(˛1 −˛2)+ jsin(˛1 −˛2)] (9.10)

Thus the modulus of the quotient equals r1
r2

, and the argument is (˛1 −˛2).
Again this is in accordance with the rule derived in the previous section: to divide

complex numbers we divide the moduli and subtract the arguments.
Figure 9.14 illustrates the division of complex numbers by a reasoning similar to

that for multiplication.

Fig. 9.14
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9.4.2 Raising to a Power

We saw earlier that z1z2 = r1r2[cos(˛1 +˛2)+ j sin(˛1 +˛2)]
If we now let z1 = z2 = z,r1 = r2 = r and ˛1 = ˛2 = ˛ it follows that

z2 = r2(cos2˛+ j sin2˛)

Similarly z3 = r2(cos2˛+ j sin2˛)r(cos˛+ jsin˛)

= r3(cos3˛+ j sin3˛)

The general expression is

zn < = rn(cosn˛+ j sinn˛) (9.11)

Rule To raise a complex number to a given power, we raise the modulus
to that power and multiply the argument by that power.

By setting r = 1 we have

(cos˛+ j sin˛)n = cosn˛+ jsinn˛

This is known as De Moivre’s theorem.

9.4.3 Roots of a Complex Number

De Moivre’s theorem holds true for positive, negative and fractional powers. We
can, therefore, use this fact to determine all the distinct roots of any number.

Since x+ jy = r(cos˛+ j sin˛), then, by De Moivre’s theorem, it follows that

n
√
x+ jy = n

√
r
(

cos
˛

n
+ jsin

˛

n

)

However, using this equation, we obtain one root only. In order to obtain all the roots
we must consider the fact that the cosine and sine functions are periodic functions
of period 2� radians or 360◦. Thus we can write

(cos˛+ j sin˛)n = [cos(˛+2�k)+ j sin(˛+2�k)]n

= cos(n˛+2�nk)+ j sin(n˛+2�nk)

where k = 0,±1,±2,±3, · · ·
When raising a complex number to an integral power there is no ambiguity: the
result is independent of periodicity. But extracting the roots of a complex number
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means raising it to a fractional power. Now periodicity becomes important, and
we have

n
√
x+ jy = n

√
r

[
cos

(
˛

n
+
2�

n
k

)
+ j sin

(
k

n
+
2�

n
k

)]

where k = 0,±1,±2, · · · (9.12)

Rule The nth roots of a complex number are obtained by extracting the
nth root of the modulus and dividing the argument by n. Due to the
periodicity of the trigonometric functions, there are n solutions.

By giving k the values 0,1,2,3, · · · ,(n− 1), we obtain the n different roots of
a complex number; for example,

k = 0 , z1 = n
√
r
(

cos
˛

n
+ j sin

˛

n

)

k = 1 , z2 = n
√
r

[
cos

(
˛

n
+
2�

n

)
+ j sin

(
˛

n
+
2�

n

)]

k = 2 , z3 = n
√
r

[
cos

(
˛

n
+
4�

n

)
+ j sin

(
˛

n
+
4�

n

)]

and so on. With k = n, we would obtain the same value as with k= 0; also we would
not obtain any new values for k > n or k =−1,−2,−3, · · · . The root corresponding
to k = 0 is called the principal value.

Example Calculate the four roots of

z4 = cos
2�

3
+ jsin

2�

3

In this case r = 1 and n= 4; hence

z4 = cos

(
�

6
+
2�

4
k

)
+ jsin

(
�

6
+
2�

4
k

)

= cos
(�
6

+
�

2
k
)

+ jsin
(�
6

+
�

2
k
)

The roots are

k = 0 , z1 = cos
�

6
+ jsin

�

6
=
1

2

√
3+

1

2
j

k = 1 , z2 = cos
4�

6
+ jsin

4�

6
= −1

2
+

√
3

2
j

k = 2 , z3 = cos
7�

6
+ jsin

7�

6
= −

√
3

2
− 1

2
j

k = 3 , z4 = cos
10�

6
+ jsin

10�

6
=
1

2
−

√
3

2
j
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The roots z1 and z3, as well as z2 and z4, are opposite to each other; moreover, we
can see that the argument, starting from the principal value, is successively increased
by �/2. Figure 9.15 shows all the values on a circle of radius 1. They form a square.

Fig. 9.15

All the nth roots of a complex number of modulus 1 have modulus 1. When
depicted in an Argand diagram they form the vertices of a regular n-sided
polygon inscribed in a unit circle.
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Appendix

Summary of operations with complex numbers

Designation Formulae

Imaginary unit j j 2 = −1
Imaginary number � � = jy (y real)

Complex number z in arithmetic form z = x + jy (x,y real)
x = real part
y = imaginary part

Complex conjugate z∗ = x− jy

Complex numbers in polar form z = r(cos˛ + j sin˛)

Transformation (x,y) ↔ (r ,˛) x = r cos˛
y = r sin˛

}
r =

√
x2 +y2

tan˛ = y/x

}

Complex number in exponential form z = rej˛

Euler’s formula ej˛ = cos˛ + j sin˛

Exponential form for cosine
and sine functions

cos˛ =
1

2
(ej˛ + e−j˛) = cosh j˛

sin˛ =
1

2j
(ej˛ − e−j˛) =

1

j
sinh j˛

Periodicity of complex numbers
z = r ej˛

= r ej(˛+2k�) (k = ±1,±2,±3, · · ·)

Multiplication and division
in exponential form

z1 = r1ej˛1 ,z2 = r2ej˛2

z1z2 = r1r2ej(˛1+˛2)

z1

z2

=
r1

r2

ej(˛1−˛2)

Raising to a power and extracting z = rej˛

roots in exponential form zn = rnejn˛

n
√

z = n
√

rej[(˛+2�k)/n] (k = 0, ±1, ±2, · · ·)

Multiplication and division
in polar form

z1 = r1(cos˛1 + j sin˛1)

z2 = r2(cos˛2 + j sin˛2)

z1z2 = r1r2[cos(˛1 +˛2)+ j sin(˛1 +˛2)]
z1

z2

=
r1

r2

[cos(˛1 −˛2)+ j sin(˛1 −˛2)]

Raising to a power and extracting z = r(cos˛ + j sin˛)
roots in polar form zn = rn[cosn˛ + j sinn˛]

n
√

z = n
√

r

[
cos

(
˛

n
+

2�k

n

)
+ j sin

(
˛

n
+

2�k

n

)]

(k = 0,±1,±2, · · ·)
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Exercises

9.1 Definition and Properties of Complex Numbers

1. Express the following in terms of j:

(a)
√
4−7

(c)

√
5√−4

(b)
√−144

(d)
√
4(−25)

2. Compute

(a) j8

(c) j45
(b) j15

(d) (−j)3

3. Evaluate

(a)
√−48+

√−75−√−27
(c)

√−3√−3
(e) 5j32j6

(g) 8j/2j

(i) 6j/j7
√
3

(k)
√
b−a√a−b

(b)
√−12−√−8+

√−0.6
(d)

√−a√+b

(f) (−j)3j2

(h) 1/j 3

(j) 1/j5 +1/j7

(l)

√−3√12
j
√−a2

4. Determine the imaginary part of z:

(a) z = 3+7j
(b) z = 15j−4

5. Determine the conjugate complex number z∗ of z:

(a) z = 5+2j

(b) z =
1

2
−√

3j

6. Evaluate the (complex) roots of the following quadratic equations:

(a) x2 +4x+13= 0

(b) x2 +
3

2
x+

25

16
= 0

7. Calculate the sum z1 + z2:

(a) z1 = 3−2j

z2 = 7+5j

(b) z1 =
3

4
+
3

4
j

z2 =
3

4
− 3

4
j
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8. Compute w = z1 − z2 + z3
∗:

(a) z1 = 5−2j
z2 = 2−3j
z3 = −4+6j

(b) z1 = 4−3.5j
z2 = 3+2j
z3 = 7.5j

9. Compute the productw = z1z2:

(a) z1 = 1+ j
z2 = 1− j

(b) z1 = 3−2j
z2 = 5+4j

10. Determine

(a) (16+ j
√
2)/2

√
2

(c) (2+3j)/(2−4j)
(e)

1+ j
1− j

− 1− j
1+ j

(b) (4− j√3)/2j
(d) 1/(1+ j)

(f)
(5+ j

√
3)(5− j

√
3)

2− j
√
3

11. Convert the following sums into products:

(a) 4x2 +9y2 (b) a+b

9.2 Graphical Representation of Complex Numbers

12. Plot each point zi and −zi
∗ in the complex number plane:

(a) z1 = −1− j

(d) z4 =
3

2
j

(b) z2 = 3+2j

(e) z5 = −3+
1

2
j

(c) z3 = 5+3j

(f) z6 =
√
2

13. Using Fig. 9.16, determine the real and imaginary parts of each point
z1,z2, · · · ,z6.

Fig. 9.16



Exercises 269

14. Convert the complex number z = x+ jy to the polar form
z = r(cos˛+ j sin˛):

(a) z = j−1 (b) z = −(1+ j)

15. Transform the complex number z = r(cos˛ + j sin˛) into the form z =
x+ jy:

(a) z = 5
(

cos
�

3
− j sin

�

3

)
(b) z = 4(cos225◦+ j sin225◦)

16. Compute z1z2:

(a) z1 = 2(cos15◦ + jsin15◦)
z2 = 3(cos45◦ + jsin45◦)

(b) z1 =
√
5(cos80◦ + jsin80◦)

z2 =
√
5(cos40◦ + jsin40◦)

17. Calculate z1/z2:

(a) z1 = cos70◦+ jsin70◦
z2 = cos25◦+ jsin25◦

(b) z1 = 4

z2 = 4(cos30◦ + jsin30◦)
(Hint: 4= 4(cos360◦+ jsin360◦))

18. What is meant geometrically by the multiplication (or division) of a complex
number by −j?

19. Calculate

(a) (1− j)5
(b)

(
1

2
− j
1

2

√
3

)3

20. (a) Prove that (cos50◦ − j sin50◦)4 = cos200◦− j sin200◦.
(b) State De Moivre’s theorem.

21. Calculate all the roots of

(a)
√−5+12j (b) 4

√
cos60◦ + j sin60◦

9.3 Exponential Form of Complex Numbers

22. Using Euler’s formula, compute cos˛ and sin˛ and convert to the alge-
braic form:

(a) ej�/2 (b) ej�/3

23. Let the values for ej˛ and e−j˛ be given. Compute the values of ˛,cos˛ and
sin˛:

(a) ej˛ = 1

e−j˛ = 1

(c) ej˛ = −j

e−j˛ = j

(b) ej˛ = −1
e−j˛ = −1

(d) ej˛ =
1

2

√
3+

j

2

e−j˛ =
1

2

√
3− j

2
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24. Given the complex number z = x+ jy,w = ez is then a new complex num-
ber. Put it in the form w = rej˛ and compute r and ˛ if

(a) z = 3+2j (b) z = 2− j

2

25. Transform the complex number w = ez into the form w = u+ jv if

(a) z =
1

2
+ j�

(c) z = −1− j
3�

2

(b) z =
3

2
− j�

(d) z = 3− j

26. Let the complex quantity z be a linear function of the parameter t (for ex-
ample time), i.e. z(t) = at + jbt(0≤ t ≤ ∞). Given

(a) z(t) = −t+ j2�t ,

(b) z(t) = 2t − j
3

2
t ,

(i) what is the real part, Re[w(t)], of w(t) = ez(t)?
(ii) what is the period of Re[w(t)]?

(iii) what is the amplitude of the function w(t) at time t = 2?

27. Compute the product z1z2:

(a) z1 = 2ej�/2

z2 =
1

2
ej�/2

(b) z1 =
1

2
ej�/4

z2 =
3

2
e−j3�/4

28. Calculate for the pairs of numbers z1,z2 in the previous exercise the quotient
z1

∗/z2.

29. (a) Given z = 2ej�/5, calculate z5.

(b) Given z =
1

2
ej�/4, calculate z3.

30. (a) Given z = 32ej10� , calculate z1/5.

(b) Given z =
1

16
ej6� , calculate z1/4.

31. Given z = rej˛ , what in each of the following cases is the angle ˛ for which
0≤ ˛ ≤ 2�?

(a) z = 3ej7�
(b) z =

1

2
ej14�/3

32. Put the following complex numbers into exponential form:

(a) 5−5j (b) 15−13j
33. (a) Put the expression z = 2.5ej43◦30′

into the form x+ jy.
(b) Calculate ej146◦

e−j82◦
and express the result in the form z = x+ jy.
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9.4 Operations with Complex Numbers Expressed in Polar Form

34. (a) Determine the real and imaginary parts of
(1+ j)2

√
2(1− j)

(b) What is the polar form of this complex number?

35. Put z = −2(cos30◦− j sin30◦):

(a) into the form x+ jy,
(b) into exponential form.



Chapter 10
Differential Equations

10.1 Concept and Classification of Differential Equations

Many natural laws in physics and engineering are formulated by equations involving
derivatives or differentials of physical quantities.

An example is Newton’s axiom in mechanics, which states

Force = mass× acceleration

The acceleration is the second derivative of the displacement x with respect to the
time t . The law can be written as

F =mẍ(t)

The force F may be constant or a function of the displacement, a function of the
velocity v or a function of some other parameter of the system. We are interested in
the displacement as a function of time, i.e.

x = x(t)

To find it, we must solve Newton’s equation.
An equation containing one or more derivatives is called a differential equation.

In what follows we will use the term DE for short.
Let us consider a concrete example. The motion of a body of mass m falling

freely (see Fig. 10.1) is described by the DE

mẍ = −mg
or ẍ = −g
(Air resistance is neglected; g, the acceleration due to gravity, is 9.81m/s2.) We
require the displacement x(t), which is determined by the DE given above.

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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Fig. 10.1

Later we will show how to solve such an equation systematically, but for the time
being we will merely quote the result.

The position of a body at an instant of time t which satisfies the DE ẍ = −g is
given by

x(t) = −1
2
gt2 +C1t +C2

C1 and C2 are arbitrary constants. You can verify the correctness of this solution
for yourself by differentiating it twice. Thus a DE serves to determine a required
function, unlike an algebraic equation which determines numbers.

In general, the DE of a function y(x) may contain one or more derivatives of that
function, as well as the function itself and the independent variable x.

Examples of DEs are

y′′ +x2y′ +y2 + sinx = 0

y′′ +x = 0

exy′ −3x = 0

Among the great number of possible types of DE encountered in physics and en-
gineering the most important ones are the linear DEs of the first and of the second
order, with constant coefficients.

But first we must define the terms order of a DE and linear DE.

Order of a DE

Definition The order of a DE is defined by the highest derivative contained
therein. Thus an nth order DE contains an nth derivative.

Examples are

y′ +ax = 0 , which is of the first order

and y′′ +7y = 0 , which is of the second order.
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Linear DE

Definition If the function y and its derivatives (y′,y′′, . . .) in a DE are all
to the first power and if no products like yy′,y′y′′′ etc. occur,
then the DE is linear.

Examples are

y′′ +7y+ sinx = 0 and 5y′ = xy which are linear DEs.

y′′ +y2 = 0 and (y′′)2 = x2y which are non-linear DEs.

Linear DE with Constant Coefficients

Definition The DE
a2y

′′ +a1y
′ +a0y = f (x)

where a2 �= 0 and a2,a1 and a0 are arbitrary real constants, is
called a second-order linear differential equation with constant
coefficients since all aj are constants.

Given the linear DE with constant coefficients

a2y
′′ +a1y

′ +a0y = f (x)

We must distinguish between two cases:

f (x) = 0 and f (x) �= 0

If f (x) = 0, then the DE is referred to as a homogeneous DE. If f (x) �= 0, then it
is referred to as a non-homogeneous DE.

A homogeneous DE is my′′ +�y′+ky = 0

A non-homogeneous DE is my′′ +�y′+ky = sin!x

If in the DE in the definition above, a2 = 0 and a1 �= 0, the equation becomes
a1y

′ +a0y = f (x), which is a first-order linear DE with constant coefficients. (a1

and a0 are real numbers.)
The following equations are examples of first-order linear DEs:

y′ −gt = 0

y′ −xy = 0

Every function which satisfies a DE is called a solution of that DE. The purpose
of this chapter is to deal with the problem of finding solutions of DEs. Before pro-
ceeding further, let us consider the solution of the equation y′′ = −g. The following
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equations are possible solutions of this DE, as can easily be verified by inserting in
the DE:

y1 = −1
2
gx2 +C1x+C2

y2 = −1
2
gx2 +C2

y3 = −1
2
gx2 +C1x

and y4 = −1
2
gx2

The solutions y2,y3 and y4 are obviously special cases of the solution y1. They are
obtained when constants are set to zero. We are allowed to giveC1 and C2 any value
we like, e.g.

C1 = −1 , C2 = 5

Hence the solution y = −1/2gx2 −x+ 5 is another solution of the DE y′′ = −g.
Thus we have made it clear that y1 is a solution of the DE, no matter what values we
assume forC1 and C2. This implies that the solution of the DE is not uniquely deter-
mined. The constants which appear in the solution and which we can choose freely
are called integration constant. The solution is referred to as the general solution
before the constants are evaluated.

The number of constants which appear in the solution of a DE is determined by
the following lemma.

Lemma 10.1 The general solution of a first-order DE contains exactly one
undetermined integration constant. The general solution of a second-order
DE contains exactly two integration constants, which can be chosen indepen-
dently of each other.

This statement follows from the fact that a first-order DE requires one integra-
tion and hence one constant of integration, while a second-order DE requires two
integrations, and hence two constants of integration.

A special solution of the DE is obtained by assigning particular values to the
constants in the general solution. The special solution is called a particular solution
or a particular integral.

In the example above, the second, third and fourth solutions are particular so-
lutions of the general solution, i.e. of the first solution (C1 = 0,C2 = 0, and
C1 = C2 = 0, respectively).

We are, above all, interested in the general solution, since it contains all the par-
ticular solutions. A particular solution is obtained if additional conditions are im-
posed. These conditions are referred to as boundary conditions.

There is a similarity with the problem of integration. An indefinite integral is
a general solution, while the definite integral is the particular solution when certain
conditions are imposed, such as the limits of integration.
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The constants in the general solution of a DE are chosen in such a way as to
satisfy the boundary conditions. The problem in physics and engineering is that
of obtaining a particular solution by fixing boundary conditions in order to solve
a particular case.

We will now develop methods for solving first- and second-order DEs with con-
stant coefficients.

10.2 Preliminary Remarks

It has already been mentioned that a special case of the linear second-order DE is
obtained by setting a2 = 0 in

a2y
′′ +a1y

′ +a0y = f (x)

The result is the linear first-order DE

a1y
′ +a0y = f (x)

For this reason, we will derive the solution for the second-order DE and only refer
briefly to its application to the first-order DE. The main reason for doing this is
that in physics and engineering many of the problems we meet lead to second-order
DEs.

Finding a solution for the non-homogeneous second-order DE is made easier by
the following lemma.

Lemma 10.2 Consider the non-homogeneous DE

a2y
′′ +a1y

′ +a0y = f (x)

Let yc be the general solution of the homogeneous equation

a2y
′′ +a1y

′ +a0y = 0

yc is also called the complementary function.
Let yp be a particular solution of the non-homogeneous DE

a2y
′′ +a1y

′ +a0y = f (x)

Then the general solution of the DE is given by

y = yc +yp (10.1)
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Proof We will first show that y = yc +yp is a solution of the DE.
According to the assumptions we have made for the homogeneous DE,

a2yc
′′ +a1yc

′ +a0yc = 0 [1]

For the non-homogeneous DE we have

a2yp
′′ +a1yp

′ +a0yp = f (x) [2]

Substituting y = yc +yp in the non-homogeneous equation gives

a2(yc +yp)′′ +a1(yc +yp)′ +a0(yc +yp) = f (x)

Rearranging gives

(
a2yc

′′ +a1yc
′ +a0yc

)
+

(
a2yp

′′ +a1yp
′ +a0yp

)
= f (x)

But the first bracket is zero, according to Eq. [1], and the second bracket is in accor-
dance with Eq. [2]. It follows that y = yc +yp is a solution of the non-homogeneous
DE. Furthermore, since we assumed that yc is the general solution of the homoge-
neous DE, it contains two arbitrary constants (cf. Lemma 10.1). Hence the solution
y = yc + yp also contains two arbitrary constants which can be chosen indepen-
dently of each other: it is the general solution.

According to Lemma 10.2, the general, or complete, solution of

a2y
′′ +a1y

′ +a0y = f (x)

can be achieved in three steps:

Step 1: Find the complementary function yc of the homogeneous equation.
Step 2: Find a particular integral yp of the non-homogeneous equation.
Step 3: Add both solutions to obtain the general solution of the non-homogeneous

equation:
y = yc +yp

To solve DEs, physicists and engineers will often look up solutions from a col-
lection of solutions and will only try to find solutions for themselves when such
a collection is not at hand. Even in these circumstances they will not necessarily
follow a systematic procedure that is always successful; instead they will try to find
a solution and then use the principle of verification to prove that it is valid. If the
assumed solution is found not to be valid, it is modified and the process repeated
until a valid solution is found. To guess successfully requires experience which the
learner, obviously, does not possess; in the following section we will therefore con-
sider systematic methods of solution.
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10.3 General Solution of First- and Second-Order DEs
with Constant Coefficients

10.3.1 Homogeneous Linear DE

In this section, we derive a method for finding solutions of first- and second-order
homogeneous DEs with constant coefficients. The method is always successful.

Homogeneous First-Order DE

We will consider briefly the first-order DE with constant coefficients

a1y
′ +a0y = 0

Rearranging the equation gives

a1
dy
dx

= −a0y

or by ‘separating the variables’:

dy
y

= −a0

a1
dx

Integrating both sides gives

lny = −a0

a1
x+ constant

For convenience, we can write lnC for the constant. The solution is

y = C er1x , where r1 = −a0

a1

This type of equation is frequently encountered in, e.g. the decay of radioactive
substances, the tension of a belt round a pulley, the discharge of a capacitor in an
electric circuit.

Note: If it is possible to write any DE with only x terms on one side and only
y terms on the other, the solution can be obtained by straightforward integration of
both sides. This is called separation of variables.

Homogeneous Second-Order DE

We now seek a general solution of the homogeneous second-order DE with constant
coefficients, i.e.

a2y
′′ +a1y

′ +a0y = 0
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The solution of this equation will contain two arbitrary constants, corresponding to
two different solutions y1 and y2. The solutions must be linearly independent, i.e.
they cannot be represented by y1 = Cy2, where C is some constant, for all values
of x in the interval considered. The following lemma will be useful for finding the
general solution.

Lemma 10.3 If the homogeneous linear DE

a2y
′′ +a1y

′ +a0y = 0

has two different solutions y1 and y2, then the following expression is also
a solution of the DE:

y = C1y1 +C2y2

C1 and C2 may be real or complex quantities. This expression is the general
solution of the DE.

Proof We assume that

a2y1
′′ +a1y1

′ +a0y1 = 0 [1]

a2y2
′′ +a1y2

′ +a0y2 = 0 [2]

Substituting y = C1y1 +C2y2 in the DE gives

a2(C1y1 +C2y2)′′ +a1(C1y1 +C2y2)′ +a0(C1y1 +C2y2) = 0

Rearranging the terms gives

C1

(
a2y1

′′ +a1y1
′ +a0y1

)
+C2(a2y2 +a1y2 +a0y2) = 0

By [1] and [2], both expressions in brackets are identically zero. Hence we have
proved that

y = C1y1 +C2y2

is a solution of the DE. It is the general solution since it contains two arbitrary
constants.

We must find two linearly independent solutions y1 and y2. Guided by the results
for the first-order DE, we assume that the second-order DE is solved by functions
of the type y = erx. The admissible values for the unknown r are to be determined.
Table 10.1 shows the systematic procedure and an example.

The roots of the auxiliary equation will depend on the values of the constants
a2,a1 and a0. We must therefore examine these roots carefully. There are, in fact,
three cases to distinguish.
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Table 10.1

Systematic procedure for the solution of the
homogeneous second-order DE

Example

Let the equation be
a2y′′ +a1y′ +a0y = 0 y′′ +3y′ +2y = 0

Let y = erx be a solution of the DE. Substituting
for

y′ = r erx

and y′′ = r2erx

y = erx , y′ =
dy

dx
= rerx

y′′ =
d2y

dx2
= r2erx

gives a2r2erx +a1rerx +a0erx = 0
We can factorise erx :

erx(a2r2 +a1r +a0) = 0 erx(r2 +3r +2) = 0
Since erx �= 0, the expression in the bracket must
be zero:

a2r2 +a1r +a0 = 0 r2 +3r +2 = 0
This is a quadratic in r . It is called the auxiliary
equation of the DE. Its roots are

r1,2 =
−a1 ±

√
a1

2 −4a2a0

2a2

r1 = −1, r2 = −2

Provided that r1 and r2 are different, the general
solution of the DE is

y = C1er1x +C2er2x y = C1e−x +C2e−2x

Case 1: The expression a1
2 −4a2a0 is positive.

Here the roots are real and unequal.

Example Solve 2y′′ +7y′+3y = 0.
The auxiliary equation is 2r2 +7r+3= 0.
The roots are r1 = −0.5,r2 = −3, and the general solution is

y = C1e−0.5x +C2e−3x

The solutions are combinations of exponential functions. A detailed discussion of
this type of solution with respect to applications can be found in Sect. 10.4.2.
Case 2: The expression a1

2 −4a2a0 is zero.
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Here the two roots are equal and so far we know only one solution, namely erx:

r = − a1

2a2

We need to find a second solution. Let us assume that it is of the type y = uerx,
where u is some function of x. Differentiating we find

y′ = u′erx + ruerx y′′ = u′′erx +2ru′erx + r2uerx

Substituting in the DE gives
(

use r = − a1

2a2

)
a2u

′′erx = 0

The DE is satisfied only if u′′ = 0, i.e. if u is a linear function

u= C1 +C2x

Then the solution of the equation is

y = (C1 +C2x)erx (10.3)

As it contains two arbitrary constants, it is the general solution.

Case 3: The expression a1
2 −4a2a0 is negative.

Here the roots r1 and r2 are complex conjugates. As we are concerned with real
solutions we must show how complex roots lead to real solutions.

To simplify, let the roots be denoted by

r1 = a+ jb and r2 = a− jb

where a = − a1

2a2
and b =

1
2a2

√
4a2a0 −a1

2

The general solution of the DE is then

y = C1e(a+jb)x +C2e(a−jb)x

= eax
(
C1ejbx +C2e−jbx

)

From Euler’s formula ((9.4) in Chap. 9, Sect. 9.3.1)

e±jx = cosx± j sinx

Substituting for the complex exponential gives

y = eax [(C1 +C2)cosbx+ j(C1 −C2)sinbx]
or y = eax(Acosbx+B sinbx) (10.4)

where A= C1 +C2 and B = j(C1 −C2).
To demonstrate that we can obtain a real solution from this general complex

solution, we will consider the following lemma.
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Lemma 10.4 Let the solution of the homogeneous DE

a2y
′′ +a1y

′ +a0y = 0

be a complex function y of the real variable x so that

y = y1(x)+ jy2(x)

The constants a2,a1 and a0 are assumed to be real.
Then the real part y1 and the imaginary part y2 are particular solutions,

and the general real valued solution is given by

y = C1y1 +C2y2 (10.5)

with real constants C1 and C2.

Proof According to our assumption, we have

a2(y1 + jy2)′′ +a1(y1 + jy2)′ +a0(y1 + jy2) = 0

Collecting real and imaginary parts gives

(
a2y1

′′ +a1y1
′ +a0y1

)
+ j

(
a2y2

′′ +a1y2
′ +a0y2

)
= 0

But a complex number is exactly equal to zero if the real and the imaginary parts
are zero at the same time. Hence

a2y1
′′ +a1y1

′ +a0y1 = 0

and a2y2
′′ +a1y2

′ +a0y2 = 0

From this it follows that both y1 and y2 are solutions of the DE and, according to
Lemma 10.3, the general solution is

y = C1y1 +C2y2

thus proving the lemma.
We can now state that if the auxiliary equation of the homogeneous DE has con-

jugate complex roots r1 = a+ jb and r2 = a− jb there is a real solution given by

y = eax(Acosbx+B sinbx)
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Example Solve y′′ +4y′+13y = 0.
The auxiliary equation is r2 +4r+13= 0,
whose roots are r1 = −2+3j and r2 = −2−3j.
By the above, the general solution is

Y = e−2x(C1 cos3x+C2 sin3x)

Summary The solution of the homogeneous second-order DE

a2y
′′ +a1y

′ +a0y = 0

with constant coefficients may be summarised by the following steps.
Set up the auxiliary equation.

y′′ is replaced by r2

y′ is replaced by r

y is replaced by 1

The auxiliary equation is a2r
2 +a1r+a0 = 0.

Calculate the roots r1 and r2 of the auxiliary equation:

r1,2 =
−a1 ±

√
a1

2 −4a2a0

2a2

Obtain the general solution according to the following three possible cases.

Case 1 If r1 �= r2 are real and unequal roots

y = C1er1x +C2er2x (10.2)

Case 2 If r1 = r2 are equal roots

y = er1x(C1 +C2x) (10.3)

Case 3 If r1 and r2 are complex roots with

r1 = a+ jb and r2 = a− jb

y = eax(C1 cosbx+C2 sinbx)
(10.4)
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10.3.2 Non-Homogeneous Linear DE

According to Lemma 10.2, the complete solution of the non-homogeneousDE is the
sum of the complementary function and a particular integral. We have learned how
to find the complementary solution, i.e. the solution of the homogeneous equation.
We must find methods for obtaining a particular solution. One method, called the
variation of parameters, which always yields a solution is discussed later in this
section. The only problem with this method is that it is long-winded. Consequently
we often tend to find a way of guessing a particular solution. You may think this is
unsatisfactory, but with practice you will soon appreciate its value.

Example Find a particular integral of the DE

y′′ +y = 5

One such particular integral is
yp = 5

since yp
′′ = 0 and yp = 5 satisfy the DE.

Generally, if the right-hand side of the non-homogeneousDE is a constant, so that

a2y
′′ +a1y

′ +a0y = C (a0 �= 0)

then a particular integral is yp = C/a0, since yp
′ = 0 and yp

′′ = 0.

Solution by Substitution or by Trial

Given the DE a2y
′′ + a1y

′. + a0y = f (x). We wish to obtain particular solutions
for typical functions f (x), the right-hand side of this non-homogeneous equation.

The most important cases encountered in practice are those where f (x) is of the
type C e�x,C sinax, or C cosax or of the polynomial type.

If the function f (x) is the sum of two or more types, a particular solution is
found for each term separately and then these solutions are added. Note that the DE
is linear!
Polynomial function f (x) = a+bx+ cx2 + . . . in which a,b,c, . . . are constants.

The only functions whose differential coefficients are positive integral powers of
the variable x are themselves positive integral powers of x. Hence, for a particular
integral, we assume

yp = A+Bx+Cx2 + . . . .

The degree of the function assumed for yp must equal the degree of f (x), and
no powers of x can be omitted, even if the RHS of the DE does not contain all
powers. Substituting yp and its derivatives in the DE and comparing coefficients of
the different powers of x gives equations for the coefficients A,B,C , . . .
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Example Find a particular integral of the DE

y′′ −3y′ +2y = 3−2x2

Since the RHS is a quadratic, we assume

yp = A+Bx+Cx2

Hence yp
′ = B+2Cx and yp

′′ = 2C

Substituting in the DE gives

2C −3(B+2Cx)+2(A+Bx+Cx2) = 3−2x2

Comparing coefficients we find

for x2, 2C = −2 , C = −1
for x, −6C +2B = 0 , B = −3
constant terms, 2C −3B+2A= 3 , A= −2

A particular integral is
yp = −2−3x−x2

Exponential function f (x) = C e�x .
We have seen that differentiating an exponential gives an exponential. Hence we

assume for a particular solution that

yp = Ae�x

Substituting in the DE, we find
(
a2�

2 +a1�+a0

)
Ae�x = C e�x

The unknown factor A is then given by

A=
C

a2�2 +a1�+a0

If, however, e�x happens to be a term of the complementary function the method
fails, since a2�

2 +a1�+a0 = 0. In this case, we can substitute yp = Axe�x .
Should this fail because xe�x is a term of the complementary function, then we

assume yp = Ax2e�x , and so on.

Example Find a particular integral of

y′′ −4y′+3y = 5e−3x

The roots of the auxiliary equation are 3 and 1. Thus e−3x is not a term of the
complementary function; hence we assume

yp = Ae−3x

yp
′ = −3Ae−3x

yp
′′ = 9Ae−3x
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Substituting in the DE gives

[9−4(−3)+3]Ae−3x = 5e−3x

so that A =
5

24

A particular integral is

yp =
5

24
e−3x

The complete solution is

y = C1e3x +C2ex +
5

24
e−3x

Example Suppose that the RHS of the previous example was 5ex . As ex is a term
of the complementary function, we assume

yp = Axex

yp
′ = A xex +Aex = A(xex + ex)

yp
′′ = A xex +Aex +Aex = A(xex +2ex)

Substituting in the DE, we have

(x+2−4x−4+3x)Aex = 5ex or −2A= 5

Hence A = −5
2

A particular integral is

yp = −5
2
xex

The complete solution is

y = C1e3x +C2ex − 5

2
xex

Trigonometric function f (x) =R1 sinax+R2 cosax.
The differential coefficients of sine and cosine functions are trigonometric func-

tions also. We therefore assume for the particular integral that

yp = Asinax+B cosax

We then calculate the derivatives, substitute in the DE and compare the coefficients
of sine and cosine in order to obtain equations for A and B .

If the complementary function contains terms of the same form, i.e. sinax,cosax,
the method fails and, as for type 2, we substitute

y = Ax sinax+Bx cosax
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Example Solve y′′ −3y′+2y = 7sin4x.
The roots of the auxiliary equation are r1 = 1, r2 = 2

The complementary function is

yc = C1ex +C2e2x

To find a particular integral, we assume that

yp = Asin4x+B cos4x

yp
′ = 4Acos4x−4B sin4x

yp
′′ = −16Asin4x−16B cos4x

The DE becomes

−16Asin4x−16B cos4x−12Acos4x+12B sin4x+2Asin4x+2B cos4x=7sin4x

We compare the coefficients of sin4x and cos4x:

−14A+12B = 7

−14B−12A = 0

Hence A =
−49
170

and B =
21

85
.

The general solution is

y = C1ex +C2e2x − 49

170
sin4x+

21

85
cos4x

Example Solve y′′ +9y = sin3x.
The roots of the auxiliary equations are

r1 = 3j , r2 = −3j
The complementary function is

yc = C1 cos3x+C2 sin3x

Since f (x) = sin3x is a term of the complementary function, we assume for a par-
ticular integral that

yp = Ax sin3x+Bx cos3x

Thus y′p = 3Ax cos3x+Asin3x−3Bx sin3x+B cos3x

and y′′p = −9Ax sin3x+6Acos3x−9Bx cos3x−6B sin3x

The differential equation becomes

−9Ax sin3x+6Acos3x

−9Bx cos3x−6B sin3x+9Ax sin3x+9Bx cos3x = sin3x
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Comparing the coefficients of sin3x and cos3x, we find

B = −1
6

, A= 0

The complete solution is

y = C1 cos3x+C2 sin3x− 1

6
x cos3x

Method of Variation of Parameters

Let us consider the linear non-homogeneous DE with constant coefficients. No as-
sumptions are made about the type of f (x).

a2y
′′ +a1y

′ +a0y = f (x) [1]

Let y1 and y2 be independent solutions of the homogeneous equation. We then
know that the complementary function is yc = C1y1 +C2y2.

We need to find a particular integral yp. We assume that it is of the follow-
ing form:

yp = V1y1 +V2y2 [2]

V1(x) and V2(x) are two functions of x to be determined. Hence we require two
equations for the two unknowns, V1 and V2.

Substituting Eq. [2] in Eq. [1] gives one equation which must be satisfied by V1

and V2. We then try to find another equation which will simplify the calculation of
V1 and V2. Although this equation may be chosen arbitrarily, it must not contradict
the first equation. Differentiating Eq. [2], we find

y′p = (V1y
′
1 +V2y

′
2)+ (V ′

1y1 +V ′
2y2)

y′p can be simplified by choosing the second equation for the unknowns V1 and V2

to be

V ′
1y1 +V ′

2y2 = 0 [3]

Hence y′p = V1y
′
1 +V2y

′
2 [4]

and y′′p = V1y
′′
1 +V2y

′′
2 +V ′

1y
′
1 +V ′

2y
′
2 [5]

Substituting Eqs. [4] and [5] in Eq. [1] and rearranging, we have

V1(a2y
′′
1 +a1y

′
1 +a0y1)+V2(a2y

′′
2 +a1y

′
2 +a0y2)+a2(V ′

1y
′
1 +V ′

2y
′
2) = f (x)

Since y1 and y2 satisfy the homogeneous DE, the expressions in the first two brack-
ets vanish. Hence we have

a2(V ′
1y

′
1 +V ′

2y
′
2) = f (x) [6]
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Equations [3] and [6] are really the only ones that concern us. It is these that we
have to solve in order to find V ′

1 and V ′
2. We now obtain

V ′
1 =

−f (x)y2

a2(y1y
′
2 −y′1y2)

, V ′
2 =

f (x)y1

a2(y1y
′
2 −y′1y2)

(10.5a)

Since y1 and y2 are independent solutions of the homogeneous equation, the de-
nominator does not vanish identically.

If we denote the expressions on the right-hand sides by g1(x) and g2(x), then
V1 and V2 are obtained by integration:

V1 =
∫
g1(x) dx , V2 =

∫
g2(x) dx (10.5b)

You may have noticed that this method is somewhat lengthy.
This is the reason for attempting the trial solution approach first.

Example Solve y′′ −y = 4ex.
The complementary function is

yc = C1ex +C2e−x

i.e. y1 = ex , y2 = e−x

For a particular integral let

yp = V1ex +V2e−x

First, we compute the denominator of the integrands:

y1y
′
2 −y′1y2 = ex(−e−x)− exe−x = −2

Second, we compute the parameters V1 and V2 by integration:

V1 = −
∫
f (x)y2

−2 dx =
1

2

∫
4exe−x dx = 2x

V2 =
∫
f (x)y1

−2 dx = −1
2

∫
4e2x dx = −e2x

Third, we can write yp explicitly:

yp = 2xex − e2xe−x = ex(2x−1)
The complete solution of the DE is

y = C1ex +C2e−x +(2x−1)ex
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10.4 Boundary Value Problems

10.4.1 First-Order DEs

Let us consider the equation a1y
′ + a0y = 0. The auxiliary equation is r1 =

−a0/a1. The solution is
y = C er1x

Since C can take on any value, there is an infinite number of solutions. But we often
know the value of the function or its derivative at a particular point. For example,
we might state that for a body in motion its velocity is v0 at time t = 0. Such
a condition is referred to as a boundary condition or initial condition, and this fixes
the value of the constant C . The general solution becomes a particular solution
because it satisfies a preassigned condition. According to Lemma 10.2 a first-order
DE contains one arbitrary constant. This constant is determined by one boundary
condition.

Example Solve y′+3y= 0, so that when x= 0,y = 2 (i.e. the solution is to contain
the point x = 0,y = 2).

The general solution is
y = C e−3x

Substituting the boundary condition, we have

2= C e0 = C ; hence C = 2

Consequently, the particular solution satisfying the boundary condition is

y = 2e−3x

10.4.2 Second-Order DEs

The general solution of a second-order DE has two arbitrary constants. We therefore
require two boundary conditions to calculate their values. These conditions may take
various forms. For example, the solution might have to pass through two points in
the x−y plane, or it might have to pass through one point and have a certain slope
at another. These conditions could be stated thus:

at x = x1 , y = y1 and at x = x2 , y = y2

or at x = x1 , y = y1 and at x = x2 , y′ = y′2
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Example Figure 10.2 shows a cantilever beam of length L supporting a load W at
the free end. The DE is given by

EIy′′ −M = 0

where the bending moment M at a section XX is Wx. The product EI is constant
and is a property of the beam material and its cross-sectional dimensions.

Fig. 10.2

Solve the DE, given that

when x = L , y = 0

and when x = L , y′ = 0

}
boundary conditions

The DE is EIy′′ =Wx

This second-order DE can be solved directly by integrating twice: thus

EIy′ =
Wx2

2
+C1 [1]

and EIy =
Wx3

6
+C1x+C2 [2]

Let us now consider the boundary conditions. Since y′ = 0 when x = L, we have

C1 = −WL
2

2

Since y = 0 when x = L, we have

C2 = −WL
3

3
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The desired solution is

y =
1

EI

(
Wx3

6
− WL2x

2
+
WL3

3

)

or y =
W

EI

(
x3

6
− L2x

2
+
L3

3

)

Example Solve y′′ +y = 0, given that y(0) = 0 and y(�) = 1 (boundary condi-
tions).

The roots of the auxiliary equation are r1 = j and r2 =−j. The general solution is

y = C1 sinx+C2 cosx

Substituting the first boundary condition in this equation, we have

0= C1 sin0+C2 cos0= C1 ×0+C2

Hence C2 = 0

The second boundary condition stipulates that

1= C1 sin�+C2 cosß = C2 ×0+C2

Hence C2 = −1
In this example, the two given boundary conditions contradict each other: they

cannot both be satisfied if the solution is expected to be a differentiable function.
No differentiable solution exists.

10.5 Some Applications of DEs

10.5.1 Radioactive Decay

Let N (t) be the number of radioactive atoms present at time t . We assume that the
rate of decay with time is proportional to the number of atoms remaining, i.e.

dN (t)
dt

∝N (t)

If we introduce a factor of proportionality k, bearing in mind that the number of
atoms is decreasing with time, the DE is

d
dt
N (t) = −kN (t) (k > 0)

or Ṅ +kN = 0

This is a homogeneous first-order DE whose solution is

N = C e−kt
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To fix C , we need to choose some initial value. For example, let N0 be the number
of atoms at time t = t0 = 0. Then

N0 = C e−kt0 = C e0 = C

The particular solution is N = N0e−kt

10.5.2 The Harmonic Oscillator

Free Undamped Oscillations

Figure 10.3 shows a mass m on a spring of stiffness k (load per unit elongation). If
the mass is pulled down by an amount x from the equilibrium position, the spring
will exert a restoring force trying to bring back the mass towards that position.

Fig. 10.3

By Newton’s second law of motion,

mẍ(t) = −kx(t)
ẍ+!2

nx = 0 , !2
n =

k

m

!n = natural frequency

This is a linear second-order DE. The auxiliary equation is

r2 +!2
n = 0

The roots are r1 = j!n and r2 = −j!n.
The general solution is (cf. Sect. 10.3.1, Case 3)

x = C1 cos!nt +C2 sin!nt

We need two boundary conditions to determine the values of C1 and C2.
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For example, the boundary conditions of an oscillation are

x = 0 at t = 0 (position at the instant t = 0)
ẋ = �0 at t = 0 (velocity at the instant t = 0)

Substituting the first condition in the DE above gives

0= C1 cos0+C2 sin0

Hence C1 = 0

Substituting the second boundary condition gives

ẋ = �0 = −!nC1 sin0+!nC2 cos0= !nC2

Hence C2 = v0/!n

The particular solution is

x =
�0

!n
sin!nt

showing that the motion of the mass is oscillatory at a frequency of !n rad/s and of
constant amplitude v0/!n.

The general solution of the DE is a superposition of two trigonometric functions
with the same period (Fig. 10.4):

x(t) = C1 cos!nt +C2 sin!nt

According to the superposition formula in Chap. 3, Sect. 3.6.6, x(t) can be ex-
pressed in the form

x(t) = C cos(!nt −˛)

where C =
√
C1

2 +C2
2

and ˛ = tan−1

(
C2

C1

)

Fig. 10.4
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Thus, if we start with
x = C cos(!nt −˛)

as the general solution, we have two unknown constants, C and ˛. These are deter-
mined by the boundary conditions as before.

Since x = 0 at t = 0 and ẋ = v0 at t = 0, we have

0= C cos(−˛) = C cos˛

Since C �= 0, it follows that ˛1 = �/2 or ˛2 = −�/2.
Differentiating x gives

ẋ = −!nC sin(!nt −˛)

Inserting the second boundary condition gives

�0 = !nC

Therefore C =
�0

!n

The particular solution is

x =
�0

!n
cos

(
!nt − �

2

)
=
�0

!n
sin!nt

which is identical to the previous solution.
Finally, we could also have chosen the solution

x = C0 sin(!nt +˛0)

You should verify this for yourself.

Damped Harmonic Oscillator

The harmonic oscillator considered above is an ideal case. In reality, friction is
present in all systems in the form of dry friction, viscous friction and internal fric-
tion between the molecules in a material. Friction in whatever form slows down
motion because it dissipates energy in the form of heat which cannot be recov-
ered. No matter how small the friction is in a system (such as our spring-mass
system) oscillations will eventually die out. The effect of friction is known as
damping.

The friction or damping force is given in some cases by

F = −cẋ
where c is a friction or damping coefficient, ẋ is the velocity and the minus sign
indicates that the force acts in a direction opposite to the motion. By Newton’s
second law, the equation of motion for our spring-mass system becomes

mẍ+ cẋ+kx = 0



10.5 Some Applications of DEs 297

This is the DE of motion for free oscillations or vibrations, meaning that there are
no external forces acting on the system.

The auxiliary equation is

mr2 + cr+k = 0

whose roots are

r1,2 =
−c
2m

±
√
c2 −4mk
2m

= −a±b
As we saw in Sect. 10.3.1, there are three cases to consider, these depend on the
value of c2 −4mk, i.e.

c2 −4mk > 0 , c2 −4mk < 0 , c2 −4mk = 0

Case 1: c2 −4mk > 0.
This means that the roots are real and unequal. In this case the general solution is

x = C1er1t +C2er2t

= e−at
[
C1ebt +C2e−bt

]

This corresponds to an over-damped system, and its response from a given initial
displacement is shown in Fig. 10.5. No oscillations are present. The system will
return to the equilibrium position slowly.

Fig. 10.5

Case 2: c2 −4mk = 0.
The roots are equal, i.e. r1 = r2 = −a. The general solution is

x = (C1 +C2t)e−at

The system will return to the equilibrium position more quickly than the system in
Case 1 but again there will be no oscillations. It is referred to as critical or aperi-
odic and the damping is called critical damping. Its response from a given initial
displacement and initial velocity is shown in Fig. 10.6.
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Fig. 10.6

Case 3: c2 −4mk < 0.
The roots in this case are complex conjugate, i.e. r1 = −a+ jb,r2 = −a− jb,

with a > 0. The general solution is

x = e−at
[
C1ejbt +C2e−jbt

]

or x = e−at [C1(cosbt + jsinbt)+C2(cosbt− j sinbt)]

= e−at (Acosbt+B sinbt)

where A= C1 +C2 and B = j(C1 −C2) and A and B are arbitrary.
We should point out that although C1 and C2 may be complex, A and B are not

necessarily complex. As we are dealing with a real physical problem, the solution
must be real, hence A and B must be real, which means that C1 and C2 must be
complex conjugate numbers.

The displacement x may be put in another form thus:

x = C e−at cos(bt−˛)

An examination of this function shows that the system will oscillate, but the oscil-
lations will die out due to the exponential factor. Its response from a given initial
displacement and velocity is shown in Fig. 10.7. It is a damped oscillation.

Fig. 10.7
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Forced Oscillations

The damped oscillator shown in Fig. 10.8 is now subjected to an exciting force
given by F0 cos!t . F0 is constant and ! is the frequency of excitation, or forcing
frequency.

Newton’s second law gives

mẍ+ cẋ+kx = F0 cos!t

According to Lemma 10.2, the general solution is the sum of the complementary
function xc and the particular integral xp. We have just examined the three possible
solutions of the homogeneous equation; it now remains to find the particular inte-
gral. The simplest approach in this instance is to use a trial solution, as discussed in
Sect. 10.3.2. Hence we assume an oscillation at the frequency of the exciting force:

xp = x0 cos(!t −˛1)

Fig. 10.8

Substituting in the DE and comparing coefficients, we find

x0 =
F0√

(k−m!2)2 + c2!2

and tan˛1 =
!c

k−m!2

The general solution is

x = xc +xp , xc = complementary function

i.e. x = xc +
F0√

(k−m!2)2 + c2!2
cos(!t −˛1)
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If there is damping in the system, the complementary function will die out after
a certain time (known as the transient phase) and the motion will be given by

x =
F0√

(k−m!2)2 + c2!2
cos(!t −˛1)

The system will oscillate at the frequency ! of the excitation. This phase of the mo-
tion is called the steady state. Figure 10.9 shows the complementary function xc, the
particular integral xp, and the response of the system from the instant the excitation
is applied, i.e. x = xc +xp.

Fig. 10.9
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From a practical point of view, the amplitude x0 of the steady state is most im-
portant. It depends on the excitation frequency!. If we vary ! we will reach a value
which will make x0 a maximum. This condition is referred to as resonance because
! corresponds to the natural frequency!n of the system. This maximum is obtained
by setting

dx0

d!
= 0

which gives

! = !d =

√
!2

n − c2

2m2

where !2
n = k

m is the undamped natural frequency, and !d is the damped natural
frequency of the system.

Fig. 10.10

If the system is undamped, then c = 0. We see that the excitation frequency
corresponds to the undamped natural frequency and the amplitude grows beyond all
bounds because the denominator in x0 = F0

k−m!2 vanishes. This situation is shown
in Fig. 10.10a which shows the amplitude of the steady state as a function of the
excitation frequency.

In practice the amplitude is reduced due to the presence of damping, no matter
how small, as shown in Fig. 10.10b. The greater the damping the smaller the ampli-
tude. With a small amount of damping the amplitude at resonance can be very large
and engineers avoid this situation.

The following sections offer, in a concise fashion, some further methods of solv-
ing certain types of DE. In Sects. 10.7.3 and 10.7.4, concepts which have not yet
been introduced will be referred to, namely ‘partial derivative’, ‘total differential’
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and ‘partial DE’. It may be advisable to skip the rest of this chapter during a first
course and to return to it when the need arises.

10.6 General Linear First-Order DEs

10.6.1 Solution by Variation of the Constant

The DEs discussed so far have constant coefficients, but that is only a special case of
what we shall start to discuss now. In this section, we are concerned with linear first-
order equations. First order means that no higher derivatives other than y′ appear;
linear means that no powers of y and y′ and no products like yy′ appear. The general
form is thus

p(x)y′ +q(x)y = f (x)

The coefficientsp and q are arbitrary functions of x and the following are examples:

y′ +
y

x
= 4x2 ; with p(x) = 1 , q(x) =

1

x
, f (x) = 4x2

√
xy′ −y = 1 , with p(x) =

√
x , q(x) = −1 , f (x) = 1

We will now derive a method for solving first-order linear DEs which relies on the
method of variation of parameters from Sect. 10.3. A quicker method, using the
integrating factor, is described in Sect. 10.6.2.

We have seen how to solve systematically a DE with constant coefficients by
the method of variation of parameters. Step 1 requires us to solve the homogeneous
equation, and Step 2 to vary the constant. A general linear first-order DE can be
solved by a straightforward generalisation of this method.

p(x)y′ +q(x)y = f (x)

Step 1: Solve the homogeneous equation

p(x)
dy
dx

+q(x)y = 0

dy
y

= − q(x)
p(x)

dx

∫
dy
y

= ln |y| = −
∫
q(x)
p(x)

dx+C1

Hence y = C e
−∫ q(x)

p(x) dx
(10.7)

The function e
∫

(q/p) dx = I (x) is called integrating factor, for reasons that
will soon become clear. In some other references, the integrating factor
is abbreviated as IF. [I (x)]−1 is a particular solution of the homogeneous
equation.
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In order to solve the non-homogeneous equation, we will now vary the con-
stant C .

Step 2: Let the constant C become a function v(x). Assume that

y = v(x)/I (x) solves the given equation, i.e. y = v(x)e−∫
v(x)
I (x) dx

Compute

y′ : y′ =
v′(x)
I (x)

− q(x)
p(x)

v(x)
I (x)

=
1

I (x)

(
v′(x)− q(x)

p(x)
v(x)

)

Inserting this into the original equation gives

1

I (x)
p(x)� ′(x) = f (x)

This equation allows us to compute v(x). Thus

v(x) =
∫
� ′(x) dx =

∫
I (x)

f (x)
p(x)

dx

The solution of the equation p(x)y′ +q(x)y = f (x) reads

y(x) =
1

I (x)

∫
I (x)

f (x)
p(x)

dx

We note in passing that the general solution of any first-order DE must contain one
free parameter. In the case under consideration, this is the constant which arises in
the last integration.

Example y′ + y
x = 4x2

Step 1: The homogeneous equation reads

y′ +
y

x
= 0

Its solution is

dy
y

= −dx
x

ln |y| = − ln |x|+C1

y =
C

x

Step 2: Variation of the constant C = v(x).

Assume y =
�(x)
x

, y′ =
� ′(x)
x

− �(x)
x2
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Inserting into the original equation gives

LHS = y′ +
y

x
=
� ′(x)
x

− �(x)
x2

+
�(x)
x2

=
� ′(x)
x

RHS = 4x2

Thus
� ′(x)
x

= 4x2

and �(x) =
∫
4x3dx = x4 +C

The general solution of the given equation reads

y(x) = x3 +
C

x

Let us convince ourselves that this claim is correct (direct computation):

y′ = 3x2 − C

x2
, y′ +

y

x
= 3x2 − C

x2
+x2 +

C

x2
= 4x2

The DE is indeed solved by y(x). As the solution contains one free parameter
(namely C ) we can be certain that it is the general solution.

10.6.2 A Straightforward Method Involving the Integrating Factor

Remember that the integrating factor is the reciprocal of a particular solution of the
homogeneous equation

I (x) = e
∫ q(x)

p(x) dx

In other words, C/I (x) solves p(x)y′ +q(x)y = 0.
The name integrating factor is justified by the following observation. If the given

non-homogeneous DE is multiplied through by the integrating factor, then the LHS
can be expressed almost as an ordinary derivative:

I (x)p(x)y′ + I (x)q(x)y = I (x)f (x)

Observe that

[I (x)y]′ = I (x)′y+ I (x)y′ =
q(x)
p(x)

I (x)y+ I (x)y ′

Thus p(x)[I (x)y]′ = I (x)f (x)
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The solution of the equation p(x)y′ +q(x)y = 0 is

y(x) =
1

I (x)

∫
I (x)
p(x)

f (x) dx (10.8)

where I (x) = e
∫ q(x)

p(x) dx

For the sake of clarity, let us list the steps necessary for solving a linear first-order
DE, p(x)y′ +q(x)y = f (x), using this result.

As a preliminary step, identify p(x),q(x) and f (x).

Step 1: Solve the integral ∫
q(x)
p(x)

dx

and write down the integrating factor

I (x) = e
∫ q(x)

p(x) dx

Step 2: Solve the integral ∫
I (x)
p(x)

f (x) dx

and write down the general solution. The necessary constant emerges because of the
last integration.

y(x) =
1

I (x)

∫
I (x)
p(x)

f (x) dx

Example Solve
√
xy′ −y = 1.

p(x) =
√
x , q(x) = −1 , f (x) = 1

Step 1: −∫ dx√
x

= −2√x , I (x) = e−2
√

x

Step 2: y(x) = e2
√

x
∫ e−2

√
x√

x
dx = e2

√
x(−e−2

√
x +C ) = Ce2

√
x −1

The following example shows that the method just described can also be used for
DEs with constant coefficients.

Example The DE for the current i in an electrical circuit consisting of an inductor
L and a resistor R in series is given by

di
dt

+
R

L
i =

E

L
sin!t

where E sin!t is the voltage applied to the circuit. Solve the equation and discuss
the solution.
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Step 1:

I (x) = e∫ (R/L) dt = e(R/L)t

Step 2:

i(t) = e−(R/L)t
(
E

L

∫
e(R/L)t sin!t dt+ c

)

The integral has to be evaluated by parts.
(Remember that

∫
u dv = uv− ∫

v du.)
This integral is, leaving out the constant

Le(R/L)t

R2 +!2L2
(R sin!t −!Lcos!t)

Step 3: The solution of the DE is

i =
E

(R2 +!2L2)
(R sin!t−!Lcos!t)+C e−(R/L)t

or i =
E√

R2 +!2L2
sin(!t −˛)+C e−(R/L)t

where ˛ = tan−1

(
!L

R

)

As t increases, the last term decreases and the current i tends to a steady
periodic value.

We conclude this section with a word of warning. The process of first determin-
ing the integrating factor and then the general solution of a linear first-order DE
is guaranteed to work in principle but not always in practice! The snag lies in the
annoying fact that a given integral may not have an elementary solution. Thus it
may well prove to be unavoidable to resort to numerical methods, even in cases of
presumably innocuous DEs.

10.7 Some Remarks on General First-Order DEs

10.7.1 Bernoulli’s Equations

The general Bernoulli DE for arbitrary n is

y′ +q(x)y = f (x)yn (n �= 1)
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Note that n may also be negative, but it must not be unity. A Bernoulli DE can
be converted to a first-order linear equation by means of the substitution

u= y1−n =
1

yn−1
(10.9)

Then u′/(1−n)yn = y′,uyn = y; hence Bernoulli’s equation becomes

1

1−nu
′yn +q(x)uyn = f (x)yn

Dividing by yn gives

1

1−nu
′ +q(x)u= f (x)

This is a linear first-order DE. Its solution has been shown in the preceding section.

Example y′ −xy = −y3e−x2

This is a Bernoulli-type equation with n= 3. We put u= y−2,y = uy3.
Hence

y′ = −1
2
u′y3

Inserting these into the given DE gives

−1
2
u′y3 −xuy3 = −y3e−x2

, u′ +2xu= 2e−x2

This is a linear first-order DE for the function u.
The integrating factor is I (x) = ex2

. The solution for u is

u(x) = e−x2
2

∫
ex2

e−x2
dx = 2xe−x2

+C e−x2

After substituting this into y = u−1/2, we obtain the solution in its final form:

y =
1√
u

=
1√

2x+C
ex2/2

10.7.2 Separation of Variables

If the equation is neither linear nor of the Bernoulli type, then we may still be able
to solve it using only elementary tools. The simplest case is when the equation can
be rewritten with only y terms on the LHS and only x terms on the RHS. The DE
is said to have separable variables when it can be written in one of the following
equivalent forms:

p(y)y′ +q(x) = 0

p(y) dy = −q(x) dx
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The solution of such an equation is obtained by simple integration:
∫
p(y) dy = −

∫
q(x) dx = C

Example The variables in the following equation can be separated:

y′x3 = 2y2

Dividing by x3y2, we obtain

1

y2
y′ =

2

x3
, i.e.

1
y2

dy =
2

x3
dx

This is an equation of the type required with p(y) = 1/y2 and q(x) = −2/x3.
Now, straightforward integration gives

1

y
=

1

x2
+C

and hence y =
x2

Cx2 +1

10.7.3 Exact Equations

If, in a given DE, the variables cannot be separated, there is still a chance of finding
an easy way to solve the equation. We must, however, refer to the basic concepts
of partial derivative and total differential which are covered in Chap. 12. Logically
speaking, it should be read beforehand.

Definition Let p(x,y) dy+q(x,y) dx = 0.
If the following condition holds then the DE is said to be exact:

∂p
∂x

=
∂q
∂y

Example 2xyy′ +y2 = x2

This can be rewritten as

2xydy+(y2 −x2) dx = 0

We identify p(x,y) and q(x,y), so that

p(x,y) = 2xy , q(x,y) = y2 −x2

Let us now check whether the condition of exactness holds:

∂p
∂x

= 2y ,
∂p
∂y

= 2y

Hence the given equation is exact.
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The LHS of an exact DE can be considered as the total differential of some
function F (x,y):

p dy+q dx = dF =
∂F
∂y

dy+
∂F
∂x

dx = 0

The equation is therefore solved by the functions y(x) which are defined implic-
itly by F (x,y) = C = constant. The obvious question is how a suitable func-
tion F (x,y) may be found for any given exact DE. We will describe in general
terms a method for finding such a function. Later we will refer back to the example
just given.

The starting point can be either one of the following equations:

∂F
∂y

= p(x,y) ,
∂F
∂x

= q(x,y)

Let us choose the first one.

Step 1: From this first equation we find, by integration, that F =
∫
p(x,y) dy+C .

The constant of integrationC is an, as yet, undetermined function of x only,
i.e. C = v(x). The reason is that any such function vanishes if the partial
derivative ∂/∂y is taken.

Step 2: In order to determine v(x), insert F into the equation ∂F /∂x = q(x,y).
This yields a differential equation for v(x), i.e.

∂F
∂x

=
∂

∂x

∫
p(x,y) dy+

d
dx
�(x) = q(x,y)

Note that since v(x) is a function of x only, the partial derivative ∂/(∂x)v(x)
equals the usual derivative d/(dx)v(x).

v(x) =
∫ [

q(x,y)− ∂
∂x

∫
p(x,y) dy

]
dx

Step 3: Insert the result of the last integration into the equation for F .

Exact DE p dy+ q dx = 0. It is solved by functions y(x) which are given
implicitly by F (x,y) = C = constant.

The function F (x,y) can be obtained in either one of two ways.
If we start with the equation ∂F

∂y
= p, then the formula reads

F =
∫
p dy+

∫ [
q− ∂

∂x

∫
p dy

]
dx (10.10a)

If we choose to start with the equation ∂F
∂x

= q then the formula reads

F =
∫
q dx+

∫ [
p− ∂

∂y

∫
q dx

]
dy (10.10b)
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We will now solve the equation given in the previous example; it has already
been proved to be exact. The equation is

2xyy′ +y2 = x2

Step 1:

p(x,y) = 2xy

F =
∫
2xy dy = xy2 +v(x)

Step 2:

q(x,y) = y2 −x2 =
∂F
∂x

= y2 +
d

dx
v(x)

v(x) = −
∫
x2dx = −x

3

3

Step 3:

F (x,y) = xy2 − x3

3

Therefore, the general solution of the given DE is

xy2 − x3

3
= C , i.e. y2 =

x2

3
+
C

x

It is not hard to verify that these functions do indeed solve the equation.

Example Solve the DE

y
dy
dx

+x = ±
√
x2 +y2

Even though this is not an exact equation, the notion of exactness aids us in finding
solutions.

Rearranging the equation we have

xdx+ydy

±
√
x2 +y2

= dx

Inspection reveals that the LHS is a differential, i.e.

d
(
±

√
x2 +y2

)
= dx

By integration, we find
±

√
x2 +y2 = x+C

Squaring gives
y2 = 2Cx+C 2

This is the equation of a parabola.
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10.7.4 The Integrating Factor – General Case

If the given DE is not exact, then sometimes it is possible to turn it into an exact
equation by multiplying it by a suitable function�(x,y). This function is also called
an integrating factor.

Example Suppose the given DE is

(xy−1)y′+y2 = 0

If it were exact then we would have

∂p
∂x

=
∂q
∂y

Now, p = xy−1 and q = y2, so

∂p
∂x

= y �= ∂q
∂y

= 2y

It does, however, become exact if it is multiplied by �= 1
y .

The DE (x − 1
y )y′ +y = 0 is exact.

Proof p = x − 1
y and q = y, so

∂p
∂x

= 1=
∂q
∂y

This equation can therefore be treated as described in Sect. 10.7.3.
How can an integrating factor �(x,y) be found in the general case? In order to

provide the answer, we must formulate the problem mathematically.

Given: p(x,y)y ′ +q(x,y) = 0 with
∂p
∂x

�= ∂q
∂y

Wanted: �(x,y) such that
∂ (p�)

∂x
=

∂ (q�)
∂y

If an integrating factor � exists, then it must satisfy the following condition which
derives from the equation above and from the product rule:

∂p
∂x
�+p

∂�
∂x

=
∂q
∂y
�+q

∂�
∂y

This is a partial DE, and it would seem less easy to solve a partial DE when it is
not possible first to solve the ordinary DE. However, we do not need the general
solution of the partial DE: any non-zero particular solution � will suffice.

Even though we can offer no general advice on how to find the integrating fac-
tor �, there are two important special cases in which � can be readily obtained.
Below we state these without proof.



312 10 Differential Equations

Special case 1

If
1

p

(
∂q
∂y

− ∂p
∂x

)
= f (x) is a function of x only, then �= e∫f (x) dx .

Special case 2

If
1

p

(
∂p
∂y

− ∂q
∂x

)
= g(y) is a function of y only, then �= e∫g(y) dy .

Example Let us return to the equation encountered in the last example, i.e.

(xy−1)y′ +y2 = 0

Both ∂p
∂x

and ∂q
∂y

are functions of y, as is q. Therefore from special case 2, we get

g(y) = − 1
y

,

∫
g(y) dy = − ln |y|+C

The function �(x,y) = �(y) = e− ln |y| = 1/|y| is an integrating factor. � has al-
ready been used above as an integrating factor.

Finally, we can solve the equation:(
x− 1

y

)
y′ +y = 0

It is exact, and we must now find a function F such that

∂F
∂y

= x− 1

y
and

∂F
∂x

= y

The solution is obtained by the method outlined in Sect. 10.7.3. It reads

F (x,y) = xy− ln |y|−C
Therefore, the general solution of the given equation is the class of functions which
is given in implicit form by

xy− ln |y| = C

Let us note in passing that the method outlined in this section is a generalisation of
the technique covered in Sect. 10.6.2. You are invited to prove for yourself that if
a linear first-order DE is treated as proposed here, then �(x,y) = �(x) = I (x).

Hint: Use the normalised form of the equation, which means that it has been
divided by the first coefficient:

y ′ =
q(x)
p(x)

y =
f (x)
p(x)

It is, admittedly, not altogether satisfactory that we are unable here to present a more
general procedure for finding the integrating factor �. For a more extensive treat-
ment, the reader is referred to the standard treatises on DEs.
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10.8 Simultaneous DEs

Often problems arise involving several dependent variables. They give rise to a set
of differential equations. The number of equations corresponds to the number of
dependent variables.

We will restrict ourselves to the solution of simultaneous first- and second-order
DEs with constant coefficients and two dependent variables. Before considering
practical problems, let us look at the form of the equations.

Let x and y be the dependent variables and t the independent variable. These
quantities are related by means of a set of simultaneous DEs such as

dy
dt

+ay+bx = f (t)

d2y

dt2
+A

dy
dt

+B
dx
dt

+Cy = g(t)

where a,b,A,B and C are constants and f (t) and g(t) are functions of the inde-
pendent variable t only.

To illustrate the method of solution, consider the examples that follow.

Example Solve

dx
dt

+5x−3y = 0 [1]

dy
dt

+15x−7y = 0 [2]

First method If we want to solve for x first we must eliminate y and dy/dt from
these equations.

Differentiating Eq. [1] with respect to t gives

d2x

dt2
+5

dx
dt

−3dy
dt

= 0

Inserting the expression for dy
dt from Eq. [2] and the expression for y from Eq. [1]

we obtain
d2x

dt2
−2dx

dt
+10x = 0
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We know how to solve this equation. Its solution is

x = et (Acos3t+B sin3t)

We can now obtain the solution for y from Eq. [1] or Eq. [2]:

y = et [(2A+B)cos3t+(2B−A)sin3t)]

You should note that there are only two arbitrary constants.

Second method We saw earlier that to solve a DE we assumed a solution ert and
found the values of r which would satisfy the equation. There is no reason why we
cannot use the same method for simultaneous DEs.

Hence let x = aert , y = bert .
It follows that

dx
dt

= raert ,
dy
dt

= rbert

.
Substituting in Eqs. [1] and [2] we have

[(r+5)a−3b]ert = 0

[15a+(r−7)b]ert = 0

Since ert �= 0, it follows that

(r+5)a−3b = 0 [3]

15a+(r−7)b = 0 [4]

To calculate the value of r we must eliminate a and b. Hence

(r+5)(r−7)+45 = 0

or r2 −2r+10 = 0

This is the auxiliary equation we have met before. Its roots are

r1 = 1+3j and r2 = 1−3j
x is then given by

x = et
(
a1e3jt +a2e−3jt)

or x = et (A1 cos3t+A2 sin3t)
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Similarly

y = et
(
b1e3j t +b2e−3jt

)

or y = et (B1 cos3t+B2 sin3t)

b1 is connected with a1, and b2 with a2 by Eq. [3] or Eq. [4], i.e.

b1 =
r1 +5
3

a1 b2 =
r2 +5
3

a2

We now consider two further examples taken from electrical and mechanical engi-
neering.

Example Two electrical circuits are coupled magnetically. Each circuit consists
of an inductor and a resistor; a voltage is applied to one of the circuits. Applying
Kirchhoff’s law to each circuit, the equations relating the two currents i1 and i2
(measured in amps) are

L1
di1
dt

+M
di2
dt

+R1i1 = E1

L2
di2
dt

+M
di1
dt

+R2i2 = 0

L1,L2 are the values of the inductors, in henries.R1,R2 are the values of the resis-
tors, in ohms.M is the coefficient of mutual inductance, in henries.E1 is the applied
voltage, assumed constant in this instance, in volts. The independent variable t is the
time in this case.

Proceeding as in the previous example, we assume an exponential solution for
the complementary function, so that

i1 = Aert , i2 = Bert

Substituting in the DE we find

(L1r+R1)A+MrB = 0

MrA+(L2r+R2)B = 0

Eliminating A and B from these two equations gives the auxiliary equation, i.e.

(L1r+R1)(L2r+R2)−M 2r2 = 0

i.e.
(
L1L2 −M 2

)
r2 +(L1R2 +L2R1)r+R1R2 = 0

The form of the solution will depend on the nature of the roots of this equation. We
saw in Sect. 10.3.1 that the roots can be (1) real and unequal, (2) real and equal or
(3) complex conjugate.
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If Case 3 applies, for example, the solution is

i1 = e−at (A1 cosbt +B1 sinbt)+
E1

R1

E1/R1 is the particular integral and i2 = e−at (A2 cosbt +B2 sinbt). Remember
that A2 and A1,B2 and B1 are related.

Example This example concerns the calculation of the translational natural fre-
quencies of a particular two-storey building whose idealised mathematical model
leads to the following DEs:

15000ẍ1 +31×107x1 −6×107x2 = 0

8500ẍ2 +6×107x2 −6×107x1 = 0

where x1 and x2 are the displacements of each floor under free vibration conditions.
The dot notation, as you will remember, refers to differentiation with respect to
time t .

The method of solution in this case is approached in a different way from that of
the previous examples because of the vibratory nature of the problem.

We could assume an exponential solution as before.
Instead, let

x1 =A1 cos!nt , x2 = A2 cos!nt

Therefore
ẍ1 = −!2

nA1 cos!nt , ẍ2 = −!2
nA2 cos!nt

!n is the natural frequency. We are using this method of solution because a vibration
can be represented by a sine or cosine function. We have already discussed some
aspects of vibrations in Sect. 10.5.2.

Substituting in the differential equations we have, after dividing by 104

(−1.5!2
n +31×103

)
A1 −6×103A2 = 0

−6×103A1 +
(−0.85!2

n +6×103
)
A2 = 0

Since we are concerned with the values of the natural frequencies !n, we eliminate
A1 and A2 from these two equations. Hence

(
31×103−1.5!2

n

)(
6×103−0.85!2

n

)−36×106 = 0

Expanding and collecting terms gives

1.275!4
n −35.35×103!2

n +150×106 = 0

known as the frequency equation, whose roots are !2
1 = 22495.7, !2

2 = 5229.75.
Therefore the two natural frequencies of this building are 150 rad/s or 23.87 Hz and
72.32 rad/s or 11.5 Hz.
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As a matter of interest, this was a real problem! Dangerous vibrations were ob-
served when the building was commissioned due to a fan operating on the first floor
at a frequency of 12 Hz.

10.9 Higher-Order DEs Interpreted as Systems
of First-Order Simultaneous DEs

Any DE of order n can be transformed into a system of n simultaneous first-order
DEs. In fact, this is no more than a way of rephrasing the problem: it does not
lead us any closer to a solution. However, it can be quite useful in a number of
circumstances. If we wish to solve a DE by numerical methods, we find that first-
order DEs are much easier to handle than higher-order DEs.

Let us start with a linear second-order DE

py′′ +qy′ + ry = f (x)

The fundamental idea is to introduce a new function, u= y′. The given equation is
then equivalent to the following pair of first-order simultaneous DEs:

pu′ +qu+ ry = f (x)
y′ = u

The general case is treated quite similarly. Given a DE of order n, we introduce n−1
new functions, u1 = y′,u2 = u1

′ = y′′,u3 = u2
′ = y′′′, . . . By inserting the us for all

higher-order derivatives of y, a first-order DE (for the n functions, u1, . . . ,un−1,y)
is obtained. In conjunction with the defining equations for the us, we have a system
of n simultaneous first-order DEs.

10.10 Some Advice on Intractable DEs

The sorts of differential equations discussed in this chapter can give only a glimpse
of the subtle ideas involved in this topic. Sometimes a judicious change of variables
may provide the answer, but each equation requires individual attention. Should you
be confronted with severe problems, two routes can be taken.

On the one hand, the remedy might be provided by more powerful theoretical
means. A very worthwhile subject, which could not be included in great detail in
this book, is the theory of Laplace transforms. This is outlined in the following
chapter.

On the other hand, if you are only interested in numerical data, then computer
methods can provide the answer swiftly and reliably.
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In any case, the first step when encountering a new DE is to classify it according
to the criteria: What is its order? Is it linear? What types are its coefficients (constant
or variable)? Is it an ordinary DE or a partial DE? Only then will you be able to use
other sources of information efficiently.

Exercises

10.1 Concept and Classification of Differential Equations

1. Which of the following are linear first- and second-order DEs with constant
coefficients?

(a) y′ +x2y = 2x

(c) y4 +2y′′+3y′ = 0

(e) y′′ −x5 = 2

(b) 5y′′ −2y′ −4x = 3y

(d) sinxy′′ −y = 0

(f) 2y′′ −y′ + 3

2
y = 0

2. Which of the following are homogeneous and non-homogeneous DEs and
what is the order in each case?

(a) y′′ +ax = 0

(c) 2y′ = 3y

(e) 3y′′ +y′ = 2y

(b)
5

4
y′′ +

2

3
y′ =

1

2
y

(d)
3

10
y′′ +

2

5
y′ +

1

6
y− sinx = 0

10.3 General Solutions of First and Second Order DEs
with Constant Coefficients

3. Solve the following DEs. In the case of complex roots give the real solution.

(a) 2y′′ −12y′+10y = 0

(c) y′′ +2y′+5y = 0

(e)
1

4
y′′ +

1

2
y′ −2y = 0

(b) 4y′′ −12y′+9y = 0

(d) y′′ − 1

2
y′ +

5

8
y = 0

(f) 5y′′ −2y′+y = 0

4. Solve the following DEs:

(a) 2y′ +8y = 0 (b)
1

5
y′ = 6y (c) 3y′ = 6y

5. Obtain the general solution of the following second-order DEs:

(a) S ′′(t) = 2t (b) x′′(t) = −!2 cos!t
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6. Given the following non-homogeneous DEs, obtain the particular integral
using a trial solution.

(a) y′′ +y′ +y = 2x+3 (b) y′′ +4y′+2y = 2x+3

7. Obtain the general solution of the following non-homogeneous DEs:

(a) 7y′′ −4y′ −3y = 6

(c) 3y′′ −y′ −4y = x2
(b) y′′ −10y′+9y = 9x

(d) y′′ +2y′ +5y = cos2x

8. A particular integral yp(x) of the following non-homogeneousDE is known.
Check that it is a solution and obtain the general solution of the DE.

1

2
y′′ −3y′+ 5

2
y =

3

4
x2 −1 , yp(x) =

3

10
x2 +

18

25
x+

43

125

10.4 Boundary Value Problems

9. Solve the following DEs:

(a)
1

2
y′ +2y = 0 (given that y(0) = 3)

(b)
4

7
y′ − 6

5
y = 0 (given that y(10) = 1)

10. The DE 1/3y′ −2/3y = 0 has for its general solution y(x) = C e2x . Calcu-
late the value of the constant if

(a) y(0) = 0

(c) y(−1) = 1

(b) y(0) = −2
(d) y′(−1) = 2e−2

11. Solve y′′ +4y = 0 for the following boundary conditions:

(a) y(0) = 0 , y
(�
4

)
= 1

(c) y(0) = 0 , y′(0) = 1

(b) y
(�
2

)
= −1 , y′

(�
2

)
= 1

(d) y
(�
4

)
= a , y′′(0) = b

12. Solve y′′ +y = 2y′, given that y(0) = 1 and y(1) = 0.

10.6 General Linear First Order DE

13. Solve the following first-order linear DEs:

(a) xy′ = 2y−xy
x

(c) y′ +y tanx = sin2x

(b) y′ =
y

x
+x

(d) xy′ +(1+x)y = xe−x

14. Verify that the following DEs can be brought into the form of Bernoulli-type
equations and solve them.

(a) y′ +xy = xy3

(c) x2y2y′ +xy3 = 1

(b) y′ − 2

x2 −1y = −y2

(d) yy′ +
y2

x
+x+1= 0
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15. In the following DEs, the variables can be separated. Solve

(a) y′ = e(x−2y)

(c) xy′ +(lnx)y2 = 0

(b) y′ +xy′ +
x

y
= 0

(d) (y′)2 +xexy′ +xex = 1

16. Verify that the following are exact DEs. Find F and solve.

(a)
2y

x
y′ +

(
4− y2

x2

)
= 0

(c) (2y−x2 sin2y)y′+2x cos2y =
0

(b) (1−xe−y)y′ + e−y = 0

(d) (2x−3)y′+3x2 +2y = 0

17. You will remember that the integrating factor �(x,y) for a DE p(x,y)y′ +
q(x,y) = 0 is easy to find in special cases. Solve the following equations by
finding an integrating factor, �, and then solving the exact equation.

(a) sinyy′ − cosy = −e2x

(b) (ey −x)y′ +1= 0

18. Solve the following simultaneous DEs:

(a) x′ −7x+y = 0

y′ −2x−5y = 0

(b) x′ +y′ +2x+y = 0

y′ +5x+3y = 0



Chapter 11
Laplace Transforms

11.1 Introduction

In Chap. 10 we learned how to solve certain differential equations of the first and
second order. We now consider a special technique for the solution of such ordinary
differential equations known as the Laplace transform. It was first introduced by
the French mathematician P. S. de Laplace in about 1780. The main advantage of
the method is that it transforms the DE into an algebraic equation which, in many
cases, can be readily solved. The solution of the original DE is then arrived at by
obtaining the inverse transforms which usually consist of the ratio of two polyno-
mials. The transforms and their inverses can be derived or obtained by consulting
a table of transforms. We shall build up such a table of the functions frequently
met in practice. The method is particularly useful in the solution of DEs whose
boundary conditions are specified at a particular point and it is extensively used in
the study of electrical networks, mechanical vibrations, impact, acoustics, structural
problems, control systems, and in many other fields.

It is also used to solve linear DEs of any order, linear DEs with variable co-
efficients, linear partial DEs with constant coefficients, difference equations and
integral equations.

In this chapter, however, we shall restrict ourselves to an introduction to the tech-
nique, and solve first- and second-order DEs with constant coefficients.

11.2 The Laplace Transform Definition

The Laplace transform L [f (t)] of a given original function f (t) for values
of t > 0 is defined as

L [f (t)] =
∫ ∞

0
e−st f (t) dt = F (s) (11.1)

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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This means that we take the given function, multiply it by e−st , and integrate
between the limits t = 0 to t = ∞. s is a number which may be complex but whose
real part is positive and sufficiently large to ensure that the integral is convergent.
Since the value of the integral depends on s, the Laplace transform is a function of s.

As the reader certainly knows any functions may be denoted in different ways,
say f (t) or y(t); f (x) or y(x), etc. In addition to that, please note that for the
Laplace transform we will use two different notations, either by capitalisation e.g.
F (s); Y (s) or by adding a bar to the function e.g. f̄ or ȳ.

Proceeding in the opposite direction, i.e. finding the original function from
a given Laplace transform is called finding the inverse transform. The inverse trans-
form is denoted by L 1.

The inverse Laplace transform generates the unique original function from
a given Laplace transform

L −1[F (s)] = f (t)

Since the computation of the inverse transformation needs knowledge of theory of
functions which is beyond the scope of this textbook we will desist from computing
the inverse transformations. This does not limit in practice since as a rule there exist
tables of Laplace transforms and especially tables of inverse Laplace transforms
which enable us to solve problems. The table at p. 333 gives the inverse Laplace
transforms for most functions needed for applications in physics and engineering.

Before we can appreciate the usefulness of the Laplace transform, we need to de-
rive the transforms of some of the more common functions encountered in physical
problems.

These functions are

1. A, a constant.
2. eat , an exponential function with the constant a real or complex.
3. sin!t ,cos!t , periodic functions where ! is usually a frequency.
4. At, a linearly increasing function where, in practice, t is usually the time. This

function is known as a ramp.
5. t sin!t , t cos!t , periodic functions whose amplitudes increase linearly with the

independent variable t .
6. eat sin!t ,eat cos!t , an exponentially increasing or decreasing oscillation, de-

pending on whether a is positive or negative.

We also need to know the transforms of the derivatives of these functions:
dny

dtn
, n = 1,2, . . .

11.3 Laplace Transform of Standard Functions

We will now derive the Laplace transforms of the functions mentioned above.
When evaluating the transforms, i.e. solving the integrals, the quantity s is re-

garded as a constant.
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1. y(t) = A, a constant

y(s) =
∫ ∞

0
Ae−st dt = A

∫ ∞

0
e−st = A

[
e−st

−s

]∞

0

=
A

s
(11.2)

2. y(t) = eat , with a real or complex

y(s) =
∫ ∞

0
e−st eat dt =

∫ ∞

0
e−(s−a)t dt =

[
e−(s−a)t

−(s−a)

]∞

0

=
1

s−a
(11.3)

Note that s > real part of a for the integral to be convergent.

3. y(t) = sin!t and y(t) = cos!t

The simplest way of obtaining these transforms is to make use of 2.
Remember:

y(t) = sin!t =
1

2j
(ej!t − e−j!t)

Hence, from 2., we have

y(s) =
1

2j

(
1

s− j!
− 1

s + j!

)
=

!

s2 +!2
(11.4a)

We obtain the Laplace transform of the cosine function in the same way.

y(t) = cos!t =
1

2
(ej!t + e−j!t )

y(s) =
s

s2 +!2
(11.4b)

4. y(t) = At

y(s) =
∫ ∞

0
Ate−st dt = A

∫ ∞

0
te−st dt

= A

(
−

[ t

s
e−st

]∞

0
+

1

s

∫ ∞

0
e−st dt

)
=

A

s2
(11.5)

when integrating by parts.
The first term is zero since e−st decreases more rapidly than t increases as
t → ∞.

Before proceeding further with transforms of functions, we will consider some im-
portant theorems, the first enables us to extend the list of transforms.

Theorem I: The Shift Theorem

If y(t) is a function and ȳ(s) its transform, and a is any real or complex

number, then ȳ(s +a) is the Laplace transform of e−at y(t) . (11.6)
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Proof The Laplace transform of e−at y(t) is
∫ ∞

0
e−st e−at y(t) dt =

∫ ∞

0
e−(s+a)t y(t) dt = ȳ(s +a)

Thus we see that we simply replace s by (s +a) wherever s occurs in the transform
of y(t). If a is negative, then we can show that s is replaced by (s−a).

As an example, let us find the transform of

y(t) = e−at sin!t

The transform of the sine function is given by ȳ(s) = !
s2+!2

Applying the shift theorem gives

ȳ(s) =
!

(s +a)2 +!2
(11.7a)

Similarly, if y(t) = e−at cos!t , the shift theorem gives

ȳ(s) =
s +a

(s +a)2 +!2
(11.7b)

Example Obtain the Laplace transform of y(t) = 3e5t cos10t .

a = −5 , ! = 10

ȳ(s) = 3
s−5

(s−5)2 +102
=

3(s−5)
s2 −10s +125

Let us now continue with the derivation of the Laplace transforms of frequently used
functions.

5. y(t) = t sin!t

ȳ(s) =
∫ ∞

0
e−st t sin!t dt =

2!s

(s2 +!2)2
(11.8)

Even though the result is already stated, we wish to know how it is arrived at.
Looking at the integral, you will realise that the task of evaluating it is not a straight-
forward one. The following theorem will be of considerable help.

Theorem II: Transform of Products ty(t)

If y(t) is a function and ȳ(s) its transform, then the transform of the new
function ty(t) is

L [ty(t)] = − d
ds

[ȳ(s)] (11.9)
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Proof

d
ds

[ȳ(s)] =
d
ds

(∫ ∞

0
e−st y(t) dt

)
= −

∫ ∞

0
e−st ty(t) dt = −L [ty(t)]

This is due to the fact that we can differentiate under the integral sign with respect
to a parameter.

Let us go back to y(t) = t sin!t . The transform of the sine function is known
to be

L (sin!t) =
!

s2 +!2

Hence, by theorem II, the transform ȳ(s) of t sin!t is

L (t sin!t) = − d
ds

(
!

s2 +!2

)
=

2!s

(s2 +!2)2

Similarly, the transform of t cos!t is

L (t cos!t) = − d
ds

(
s

s2 +!2

)
=

s2 −!2

(s2 +!2)2
(11.10)

We can extend the use of theorem II. For example,

L (t2 cos!t) = L [t(t cos!t)] = − d
ds

{L (t cos!t)}

= − d
ds

(
s2 −!2

(s2 +!2)2

)
=

2s(s2 −!2)
(s2 +!2)3

If f (t) is a function and f̄ (s) its transform, then the transform of the new
function is y(t) = tnf (t)

ȳ(s) = (−1)n dn

dsn
[f̄ (s)] (11.11)

6. y(t) = tn, where n is a positive integer.

ȳ(s) =
∫ ∞

0
e−st tn dt =

n!
sn+1

As before, the result is already stated but the proof is missing yet. We start by writing
the function tn as a product:

y(t) = tn−1t

The transform of the function t is known to be 1/s2.
Now, using the general result (11.11) we find

ȳ(s) = (−1)n−1 dn−1

dsn−1

1

s2
= (−1)n−1(−2)(−3) . . .(−n)

1

sn+1
=

n!
sn+1
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For example, if y(t) = t2, then ȳ(s) = 2/s3.
For the sake of completeness, we will mention another theorem which, in fact,

has already been used implicitly.

Theorem III: Linearity

Linearity of the Laplace transform
Let y(t) be a combination of functions:

y(t) = Af (t)+Bg(t) (A,B are constants)

Then the Laplace transform is the corresponding combination of the trans-
formed functions:

ȳ(t) = Af̄ (t)+Bḡ(t) (11.12)

or L [Af (t)+Bg(t)] = AL [f (t)]+BL [g(t)]

The proof is obvious. It follows from the linearity of the integral.
As a particular case, note that a constant factor is preserved by the Laplace trans-

form:
L [Af (t)] = AL [f (t)]

For example, the transform of sin!t is !/(s2 +!2) and the transform of t is 1
s2 .

Therefore, the transform of −6sin!t + t is −6!/(s2 +!2) + 1
s2 .

Theorem IV: Transforms of Derivatives

First Derivative of a Function y(t)

By definition

L

[
d
dt

y(t)
]

=
∫ ∞

0
e−st dy

dt
dt

We find, putting dy
dt = ẏ i.e. using a dot to denote the derivative with respect to

time that
∫ ∞

0
e−st ẏ dt =

[
e−st y

]∞
0
−

∫ ∞

0
y(−se−st ) dt = −y(0)+ sȳ = sȳ −y(0)

This result holds for those functions for which e−t y(t) → 0 as t → ∞.
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L

[
d
dt

y(t)
]

= sȳ(s)−y(0) (11.13)

where y(0) is the value of the function at t = 0 (initial value or initial condi-
tion).

Second Derivative of a Function y(t)

L

(
d2

dt2
y(t)

)
=

∫ ∞

0
e−st ÿ dt =

[
ẏe−st

]∞

0

+ s

∫ ∞

0
e−st ẏ dt

= −ẏ(0)− sy(0)+ s2ȳ

L [ÿ(t)] = s2ȳ − sy(0)− ẏ(0)

where ẏ(0) is the value of the first derivative at t = 0.
By repeating the process we can show that

L [
...
y (t)] = s3ȳ − s2y(0)− sẏ(0)− ÿ(0)

where ÿ(0) is the value of the second derivative at t = 0.
The following notation for the values of the function y(t) and its derivatives at

t = 0 is commonly used:

y0 = y(0) is its value at t = 0 ,

y1 = ẏ(0) is the value of the first derivative at t = 0 ,

y2 = ÿ(0) is the value of the second derivative at t = 0 ,

...

yn = y(n)(0) is the value of the nth derivative at t = 0 .

For example, the Laplace transform of the 4th derivative will be

L [y(4)(t)] = s4ȳ− s3y0 − s2y1 − sy2 −y3

Transforms of Derivatives

L [y(n)(t)] = snȳ −
n−1

∑
i=0

sn−i−1yi (11.14)

A table of transforms, and a table of inverse transforms, will be found in the
appendix to this chapter.



328 11 Laplace Transforms

11.4 Solution of Linear DEs with Constant Coefficients

Suppose we have to solve the DE

d2y

dt2
+A

dy

dt
+By = f (t)

with initial conditions

y = y0 ,
dy

dt
= y1 at t = 0

If we multiply the equation throughout by e−st and integrate each term for t = 0

to t = ∞, we in fact replace each term by its Laplace transform. In doing so we
transform the DE into an algebraic equation in terms of the parameter s.

Using the table of transforms, we find

s2ȳ − sy0 −y1 +A(sȳ−y0)+Bȳ = f̄

Solving for ȳ gives

ȳ =
f̄ + sy0 +Ay0 +y1

s2 +As +B
(11.15)

All we need do now is look up the inverse transform. The reader will notice that we
do not have to find the values of arbitrary constants; but we may have to express ȳ

as a partial fraction or in a form from which the inverse can be found easily.

Example Solve the equation

dy

dt
+4y = e−2t

given that y = 5 when t = 0, i.e. y0 = 5.
The transformed equation is

sȳ −y0 +4ȳ =
1

s +2

Solving for ȳ gives

y =
5s +11

(s +2)(s +4)
=

1

2(s +2)
+

9

2(s +4)

From the table, we can look up the inverse transform. Hence the solution is

y =
1

2
e−2t +

9

2
e−4t

Example Solve the equation

ÿ +5ẏ +4y = 0

given that y = 0 and ẏ = 3 at t = 0.
From the table we find
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s2ȳ− sy0 −y1︸ ︷︷ ︸
L (ÿ)

+5(sȳ −y0)︸ ︷︷ ︸
L (5ẏ)

+ 4ȳ︸︷︷︸
L (4y)

= 0

The initial conditions are y0 = 0,y1 = 3.
Hence

s2ȳ −3+5sȳ +4ȳ = 0
or

ȳ(s2 +5s +4) = 3

Solving for ȳ gives

ȳ =
3

s2 +5s +4
=

3

(s +4)(s +1)
=

1

(s +1)
− 1

(s +4)

From the table we get
y = e−t − e−4t

Example Solve the equation

ÿ +8ẏ +17y = 0 if y = 0 , ẏ = 3 at t = 0

The initial values are y0 = 0,y1 = 3. Hence the transformed equation is

s2ȳ −3+8sȳ +17ȳ = 0

Solving for ȳ gives

ȳ =
3

s2 +8s +17
=

3

(s +4)2 +1

From the table we find
y = 3e−4t sin t

Example Solve the equation
ÿ +6y = t

The initial conditions are y = 0 and ẏ = 1 at t = 0.
The transformed equation is

s2ȳ −1+6ȳ =
1

s2

Therefore ȳ(s2 +6) =
1

s2
+1 =

1+ s2

s2

Solving for ȳ gives

ȳ =
s2 +1

s2(s2 +6)
=

5

6(s2 +6)
+

1

6s2

From the table of inverse transforms at the end of this chapter we find

y =
1

6
t +

5

6
× 1√

6
sin

√
6t =

1

6

(
t +

5√
6

sin
√

6t

)
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11.5 Solution of Simultaneous DEs with Constant Coefficients

In physics and engineering, we frequently encounter systems which give rise to si-
multaneous differential equations, e.g. an electrical network consisting of two loops,
or a double spring–mass system. We will now illustrate their solution by means of
the Laplace transform technique.

If x(t) and y(t) are two functions of the independent variable t , their transforms
are denoted by x̄(s) and ȳ(s), respectively, or simply x̄ and ȳ.

Example Solve the equations

3ẋ +2x + ẏ = 1

ẋ +4ẏ +3y = 0

The initial conditions are x = 0 and y = 0 at t = 0

Transforming the equations gives

3(sx̄−x0)+2x̄ + sȳ−y0 =
1

s
sx̄ −x0 +4(sȳ−y0)+3ȳ = 0

but x0 = 0 and y0 = 0

Hence we obtain a pair of simultaneous equations in x̄ and ȳ:

x̄(3s +2)+ ȳs =
1

s
x̄s + ȳ(4s +3) = 0

Solving for x̄ gives

x̄ =
(4s +3)

s(s +1)(11s+6)
=

1

2s
− 1

5

1

(s +1)
− 3

10(s +6/11)

Hence

x =
1

2
− 1

5
e−t − 3

10
e−6t/11

Solving for ȳ gives

ȳ =
−1

(s +1)(11s +6)
=

1

5

(
1

s +1
− 1

s +6/11

)

Hence

y =
1

5
(e−1 − e−6t/11)

Example Solve the differential equations

ẍ +2x− ẏ = 1

ẋ + ÿ +2y = 0
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The initial conditions are x = 1 and ẋ = y = ẏ = 0 at t = 0.
Transforming the equations gives

(s2 +2)x̄− sȳ =
1

s
+ sx0 =

1

s
+ s

sx̄ +(s2 +2)ȳ = x0 = 1

Solving these two simultaneous algebraic equations in x̄ and ȳ we find

x =
s4 +4s2 +2

s(s2 +1)(s2 +4)
=

1

2s
+

s

3(s2 +1)
+

s

6(s2 +4)

Looking up the table of inverse transforms at the end of this chapter we have

x =
1

2
+

1

3
cos t +

1

6
cos2t

Also

ȳ =
1

(s2 +1)(s2 +4)
=

1

3

(
1

s2 +1
− 1

s2 +4

)

and from the table of inverse transforms we get

y =
1

3
sin t − 1

6
sin2t
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Appendix
Table of Laplace Transforms

f (t) or y(t) L [f (t)] or ȳ(s)

A
A

s

eat 1

s−a

tn(n = 0,1,2,3, . . .)
n!

sn+1

sin!t
!

s2 +!2

cos!t
s

s2 +!2

t sin!t
2!s

(s2 +!2)2

t cos!t
s2 −!2

(s2 +!2)2

sinh!t
!

s2 −!2

cosh!t
s

s2 −!2

t sinh!t
2!s

(s2 −!2)2

sinh!t
!

s2 −!2

cosh!t
s

s2 −!2

t sinh!t
2!s

(s2 −!2)2

t cosh!t
s2 +!2

(s2 −!2)2

e−at y(t) ȳ(s +a)

tny(t) (−1)n dn

dsn
ȳ(s)

y(t)
t

∫ ∞

s
ȳ(s) ds, if lim

t→0

(
y(t)

t

)
exists

sin!t

t
tan−1 !

s
ẏ(t) sȳ−y0

ÿ(t) s2ȳ− sy0 −y1

...
y(t) s3ȳ− s2y0 − sy1 −y2

dn

dtn
y(t) snȳ(s)−

n−1

∑
i=0

sn−i−1 di

dt i
y(t)

∣∣∣∣∣
0∫ t

0
y(t) dt

ȳ(s)
s

2ke˛t cos(!t +�)
kej�

s−˛− j!
+

kej�

sin˛ + j!
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Table of Inverse Laplace Transforms

F (s) or ȳ(s) L −1[f (s)] = f (t) or L −1[ȳ] = y(t)

A

s
A

1

sn

tn+1

(n−1)!
1

s−a
eat

1

(s−a)n

tn−1eat

(n−1)!
1

(s−a)(s −b)
1

a−b
(eat − ebt )

s

(s−a)(s −b)
1

a−b
(aeat −bebt )

1

s2 +!2

1

!
sin!t

s

s2 +!2
cos!t

1

(s−a)2 +!2

1

!
eat sin!t

s−a

(s−a)2 +!2
eat cos!t

1

s(s2 +!2)
1

!2
(1− cos!t)

1

s2(s2 +!2)
1

!3
(!t − sin!t)

1

(s2 +!2)2

1

2!3
(sin!t −!t cos!t)

s

(s2 +!2)2

t

2!
sin!t

s2

(s2 +!2)2

1

2!
(sin!t +!t cos!t)

s

(s2 +!1
2)(s2 +!2

2)
, !1

2 �= !2
2 1

!2
2 −!1

2
(cos!1t − cos!2t)

1

s2 −!2

1

!
sinh!t

s

s2 −!2
cosh!t
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Exercises

11.3 Laplace Transform of Standard Functions

1. Obtain the Laplace transforms for the following functions:

(a) 1/4t3

(c) 4cos3t

(b) 5e−2t

(d) sin2 t

2. Obtain the inverse transforms for the following:

(a)
1

4s2 +1

(d)
6

1− s2

(b)
1

s(s +4)

(e)
1

s2(s2 +1)

(c)
2

s(s2 +9)

(f)
4

s(s2 −6s +8)

11.4 Solution of Linear DEs with Constant Coefficients

3. Solve the following differential equations:

(a) ÿ +5ẏ +4y = 0 (initial conditions: y = 0, ẏ = 2 at t = 0)
(b) ÿ +9y = sin2t (initial conditions: y = 1, ẏ = −1 at t = 0)
(c) ẏ +2y = cos t (initial conditions: y = 1 at t = 0)

4. If ÿ−3ẏ +2y = 4 and y = 2, ẏ = 3 at t = 0, show that ȳ =
2s2 −3s +4

s(s−1)(s−2)
,

and hence find the solution for y.

5. Given
...
y + ÿ = et + t + 1 with the initial conditions y = 0, ẏ = 0, ÿ = 0 at

t = 0, obtain y.

11.5 Solution of Simultaneous DEs with Constant Coefficients

6. Solve the following simultaneous equations for y:

ẏ +2ẋ +y−x = 25

2ẏ +x = 25et

Initial conditions: y = 0,x = 25 at t = 0.

7. Solve for y and x given

4ẋ− ẏ +x = 1

4ẋ−4ẏ−y = 0

Initial conditions: x = 0,y = 0 at t = 0
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8. An electrical circuit consists of a capacitor, C farads, and an inductor,
L henries, in series, to which a voltage E sin!t is applied.
If Q is the charge on the capacitor in coulombs show that

Q =
E

L(!2 −1/LC )

[
!

s2 +1/LC
− !

s2 +!2

]
, !2LC �= 1

and hence calculate Q given that C = 50×10−6F,L = 0.1H,! = 500 rad/s,
E = 2V and Q = Q̇ = 0 at t = 0.



Chapter 12
Functions of Several Variables;
Partial Differentiation; and Total Differentiation

12.1 Introduction

So far we have dealt with functions of only a single variable, such as x, t etc. But
functions of more than one variable also occur frequently in physics and engineer-
ing.

Example A voltage V is applied to a circuit having a resistance R, as shown in
Fig. 12.1.

Fig. 12.1

What is the value of the current which flows in the circuit?
According to Ohm’s law, the current I depends on the resistance R and the ap-

plied voltage V , i.e.

I =
V

R

Hence I = I (V ,R), which is a function of two variables.

Example A gas is trapped inside a cylinder of volume V . The gas pressure on
the cylinder walls and the piston is p and the temperature is T (see Fig. 12.2).
The following relationship between volume, pressure and temperature holds true
for 1 mol (6.02×1023 gas molecules):

pV =RT

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009



338 12 Functions of Several Variables; Partial Differentiation; and Total Differentiation

where R, the gas constant, is approximately 8.314J K−1mol−1. The equation can
be rewritten as

p =R
T

V

This means that the pressure is a function of two variables, i.e. p = p(V ,T ).

Fig. 12.2

12.2 Functions of Several Variables

Let us now leave the physical examples and consider the mathematical concept. If
z is a function of two variables, x and y, then the relationship is usually expressed
in the form

z = f (x,y)

Remember that, geometrically, a function y of one variable x(y = f (x)) represents
a curve in the x−y plane, as shown in Fig. 12.3.

Fig. 12.3

Similarly, a function z = f (x,y) of two independent variables x and y can be
thought of as representing a surface in three-dimensional space.

A geometrical picture of the function z = f (x,y) can be obtained in two differ-
ent ways.
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12.2.1 Representing the Surface by Establishing a Table ofZ-Values
By giving x and y a particular value
we obtain a value for z by substitu-
tion in z = f (x,y)

This value is erected perpendicular
to the x−y plane at P ′(x,y) and it
determines a point in three-dimen-
sional space.

The procedure is carried out sys-
tematically for many pairs of values
(x,y) in the x−y plane by tabulat-
ing the values as shown in the fol-
lowing example.

Fig. 12.4

Example Values for the function

z =
1

1+x2 +y2

are given in Table 12.1.

Table 12.1

x 0 1 2 3
y

0 1
1

2

1

5

1

10

1
1

2

1

3

1

6

1

11

2
1

5

1

6

1

9

1

14

3
1

10

1

11

1

14

1

19
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By plotting each computed value of z and the corresponding pair of values (x,y),
we obtain a picture in three-dimensional space (Fig. 12.5).

The set of values of (x,y) for which the function z = f (x,y) is defined is called
the domain.

Fig. 12.5

12.2.2 Representing the Surface by Establishing Intersecting
Curves

Let us return to the function z= 1/(1+x2 +y2). Its domain is the entire x−y plane.
Two characteristics of the function can be established at a glance:

1. For x = 0 and y = 0 the denominator 1+x2 +y2 has its smallest value. Con-
sequently the function z (the surface) has a maximum given by

f (0,0) = 1

2. As x→ ∞ or y→ ∞ the denominator grows beyond all bounds and the function
z tends to zero.

Of course, these two characteristics are not sufficient to sketch the surface. Gener-
ally speaking, the shape of surfaces is more difficult to determine than that of curves.
Nevertheless, we can obtain a true picture of the function if we proceed systemati-
cally by dividing the task into parts. The basic idea is to investigate the influence of
each variable separately on the shape of the surface by assuming that one of the two
variables is constant.

If we regard y as being constant (y = y0) and vary x, then we obtain z-values
which depend only on one variable.

For example, if we set y = 0 in the above function we have

z(x) =
1

1+x2

This represents an intersecting curve between the surface z = f (x,y) and the x−z
plane at y = 0 (Fig. 12.6).
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Fig. 12.6

For an arbitrary value y = y0, we have

z(x) =
1

1+x2 +y0
2

This represents an intersecting curve between the surface z = f (x,y) and a plane
parallel to the x− z plane shifted by an amount y0 along the y-axis (Fig. 12.7).

Fig. 12.7

Similarly, we obtain a second group of curves by setting x to a constant (x = x0).
For example, if we set x = 0 we have

z(y) =
1

1+y2

For an arbitrary value x = x0 we have

z(y) =
1

1+x0
2 +y2

Both z(y) curves are shown in Fig. 12.8a.
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Fig. 12.8

By plotting both types of curves in one diagram we obtain a better picture. In
this case the graph shows a symmetrical ‘hill’ (Fig. 12.8b). (Note that the values in
a given row or column of Table 12.1 are the values of an intersecting curve.)

The sketch becomes clearer if we fill in lines of constant z-value. Mathematically,
they are the curves of the surface which are at a constant distance from the x−y
plane; they are the intersecting curves of the surface with planes parallel to the x−y
plane at a given z-value (Fig. 12.8c).
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12.2.3 Obtaining a Functional Expression for a Given Surface

In the above discussion we started from a known function and looked for the result-
ing surface. Now we reverse the process and look for a functional expression for
a given surface.

For example, consider a sphere of radius R with the origin of the coordinates at
the center (Fig. 12.9). Our task is to determine the equation of the spherical surface
above the x−y plane.

Referring to the figure and applying Pythagoras’ theorem, we have

R2 = z2 + c2 , c2 = x2 +y2

Thus we obtain R2 = x2 +y2 + z2

Solving for z gives
z1,2 = ±

√
R2 −x2 −y2

The positive root z1 represents the spherical shell above the x−y plane.
The negative root z2 represents the spherical shell below the x−y plane.

The domain is −R≤ x ≤R
and −R ≤ y ≤R
such that x2 +y2 ≤R2

Having acquired a pictorial idea of functions of two variables, z = f (x,y), we now
give a formal definition.

Definition z = f (x,y) is called a function of two independent variables if
there exists one value of z for each paired value (x,y) within
a particular domain.

Fig. 12.9
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By plotting points (x,y) and z = f (x,y) in a three-dimensional coordinate sys-
tem we obtain a graph of the function which represents a surface F within the
domainD of the variables (Fig. 12.10).

Fig. 12.10

It is not possible to represent a function of three variables geometrically since to
do so we would need a four-dimensional coordinate system.

However, in physics and engineering such relationships play a very important
role. For example, we can express the temperature T of the atmosphere as a function
of three variables: the latitude x, the longitude y and the altitude (above sea level)
z, i.e. T = T (x,y,z).

12.3 Partial Differentiation

Remember that the geometrical meaning of the derivative of a function of one vari-
able is the slope of the tangent to the curve y = f (x) (Fig. 12.11).

Fig. 12.11
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Fig. 12.12

In the previous section we considered as an example of a function of two vari-
ables the function

z(x,y) =
1

1+x2 +y2
[1]

It represents a surface in three-dimensional space. By setting one variable at
a constant value we obtain an intersecting curve of the surface with a particu-
lar plane.

We can slice the surface with planes parallel to the x−z plane (Fig. 12.13a). If
the intersecting plane is at a distance y0 from the x−z plane, the equation of the
resulting curve is obtained by substituting y = y0 in [1], i.e.

z(x) =
1

1+x2 +y0
2
z

is now a function of x only.

Fig. 12.13
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We can also slice the surface with planes parallel to the y−z plane (Fig. 12.13b).
If the intersecting plane is at a distance x0 from the y−z plane, the equation of the re-
sulting curve is obtained by substituting x = x0 in [1], i.e. z(y) = 1/(1+x0

2 +y2).
z is now a function of y only.

Let us now consider an intersecting curve of the first type (where y is constant).
As it is a function of one variable, z = f (x), we can calculate the slope ˛ at any
given point (Fig. 12.14).

Fig. 12.14

In order to distinguish between the ordinary derivative and this new deriva-
tive, we use the symbol ∂ instead of d. It indicates that we are differentiating
a function of more than one variable with respect to a particular variable only,
regarding all other variables as constant. Thus, when differentiating the function
z = f (x,y) = 1/1+x2 +y2 where y is kept constant at some fixed value y0, we
obtain

∂z
∂x

=
∂

∂x
f (x, y0) =

∂
∂x

(
1

1+x2 +y0
2

)
= − 2x

(1+x2 +y0
2)2

Since this holds true for any value y = y0, we can write

∂z
∂x

=
∂

∂x
f (x, y) =

∂
∂x

(
1

1+x2 +y2

)
= − 2x

(1+x2 +y2)2

This operation is called partial differentiation with respect to x.
Similarly, we may obtain the slope of the second type of intersecting curves. It is

given by the partial derivative of the function with respect to y. x is kept constant at
some fixed value (Fig. 12.15).
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Fig. 12.15

Thus we obtain

∂z
∂y

=
∂

∂y
f (x, y) =

∂
∂y

(
1

1+x2 +y2

)
= − 2y

(1+x2 +y2)2

Functions of three variables, f = f (x,y,z), are treated similarly, but it is not possi-
ble to present them in geometrical form. There exist, of course, three partial deriva-
tives. Table 12.2 contains a summary of rules and an example of each one.

Table 12.2

Partial derivative Rule Example:
f (x,y,z) = 2x3y +z2

Partial derivative with respect

to x:
∂

∂x

Treat all variables as constants
except for x

∂f

∂x
= 6x2y (12.1a)

Partial derivative with respect

to y:
∂

∂y

Treat all variables as constants
except for y

∂f

∂y
= 2x3 (12.1b)

Partial derivative with respect

to z:
∂

∂z

Treat all variables as constants
except for z

∂f

∂z
= 2z (12.1c)

The partial derivative may be written in another way. Let f (x,y,z) be a function
of the three variables x,y and z, then the partial derivatives may be abbreviated as
follows:

∂f
∂x

= fx ,
∂f
∂y

= fy ,
∂f
∂z

= fz (12.2)
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Example f (x,y,z) = xyz

then fx =
∂f
∂x

= yz

fy =
∂f
∂y

= xz

and fz =
∂f
∂z

= xy

Example Obtain the partial derivatives of the function

z = 5x2 +2xy−y2 +3x−2y+3 at x = 1 , y = −2
The partial derivatives are

∂z
∂x

= 10x+2y+3

∂z
∂y

= 2x−2y−2

Substituting the values x = 1,y = −2 gives
(

∂z
∂x

)
x = 1

y = −2

= 10×1+2(−2)+3= 9

(
∂z
∂y

)
x = 1

y = −2

= 2×1−2(−2)−2= 4

Note that we have introduced the expression
(

∂z
∂x

)
x = 1

y = −2

.

It means that the partial derivative with respect to x of the function z is to be evalu-
ated at x = 1 and y = −2.

12.3.1 Higher Partial Derivatives

The partial derivatives are themselves functions of the independent variables
x,y, . . ., in general. We can, therefore, differentiate them partially again.

Example Let

f (x,y,z) =
x

y
+2z .
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Evaluate
∂

∂x

(
∂f
∂y

)

and
∂

∂y

(
∂f
∂x

)
.

The first expression means that we differentiate the function f first with respect
to y and then with respect to x.

∂
∂x

(
∂f
∂y

)
=

∂ 2f

∂x∂y

=
∂

∂x
fy = fyx

Therefore

fyx = − 1

y2

Similarly
∂

∂y

(
∂f
∂x

)
=

∂ 2f

∂y∂x
=

∂
∂y
fx = fxy

Therefore

fxy = − 1

y2

The order of partial differentiation is immaterial.
For most functions encountered in physics and engineering the following

holds true:
fxy = fyx , etc. (12.3)

Example For the function u = x2/y sinz show that the following mixed third
derivatives are equal:

uxyz = uzyx

ux =
2x

y
sinz uz =

x2

y
cosz

uxy = −2x
y2

sinz uzy = −x
2

y2
cosz

uxyz = −2x
y2

cosz uzyx = −2x
y2

cosz
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12.4 Total Differential

12.4.1 Total Differential of Functions

A function z = f (x,y) represents a surface in space; on this surface there are lines
at the same level, z = constant. If we drop perpendiculars from these lines on to the
x−y plane we obtain their projections on this plane. These projections are called
contour lines. They are extensively used in geographical maps.

Algebraically, contour lines are obtained by setting the function z= f (x,y) =C

(where C is a constant). When f (x,y) = 1/(1+x2 +y2), we have

1

1+x2 +y2
= C

This is an implicit representation of a curve in the x−y plane.
In this case we obtain contour lines which are circular, as shown in Fig. 12.16.

This can be proved as follows. Rearranging gives

x2 +y2 =
1

C
−1

Remember that the equation of a circle of radius R in the x−y plane is x2 +y2 =
R2. Hence, in this case, R=

√
1/C − 1. The larger we choose C the smaller is the

radius of the circle. (But, of course, C must not exceed 1, and it must be positive.)
Following these preliminary remarks we are now in a position to look for the

direction of steepest rise or decrease of the surface at a given point:

z =
1

1+x2 +y2

Fig. 12.16
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Fig. 12.17

It is clear from Fig. 12.17 that the surface decreases most steeply in a radial direc-
tion. (Note that, for the sake of clarity, the surface has been redrawn to a differ-
ent scale.)

Let us look more closely at this figure.
If we travel the same distance dr from point A′ in the x−y plane:

(a) in an arbitrary direction dr,
(b) perpendicularly to a contour line dr2,
(c) along a contour line dr3,

then, on the given surface, this corresponds to the paths
−→
AC,

−→
AB,

−→
AD respectively.

The path
−→
AD is along a contour line. Hence dz3 = 0 and the function does not

change at all.
In contrast, the function z changes most rapidly along the path

−→
AB which is in

a direction perpendicular to the contour lines.
We are interested in finding how much the function z = f (x,y) changes when

we travel a distance dr in an arbitrary direction dr = (dx,dy). The total displace-
ment, in vector notation, is

dr = dxi +dyj

In Chap. 5 we saw that for functions of one variable the differential is an approx-
imation for the change of the function for a given ∆x, i.e. ∆y ≈ df /dx∆x. In the
same way the total differential is an approximation for the change in the function
for small changes in x and y. The change of f (x,y) is obtained in two steps:

1. by proceeding in the x-direction through a distance dx, with y remaining con-
stant;

2. by proceeding in the y-direction through a distance dy, with x remaining con-
stant.
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Fig. 12.18

Let us be more explicit. Regard Fig. 12.18

Step 1: For the change in z in the x-
direction, with y remaining
constant, we have:

dz(x) =
∂

∂x
f (x,y) dx

Step 2: For the change in z in the y-
direction, with x remaining
constant, we have:

dz(y) =
∂

∂y
f (x,y) dy

The total change in z is the sum of these partial changes. Thus

dz = dz(x) +dz(y) =
∂z
∂x

dx+
∂z
∂y

dy

Definition The total differential of a function z = f (x,y) is given by

dz =
∂f
∂x

dx+
∂f
∂y

dy (12.4)

The total differential is an approximation of the true change
∆z in the function z as we proceed from a point (x,y) a short
distance in the direction dr = (dx,dy)

∆z ≈ dz

Example The function z = x2 +y2 has a total differential

dz = 2x dx+2y dy
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Example The total differential of the function f (x,y) = 1
(1+x2+y2)

is

df (x,y) = − 2x

(1+x2 +y2)2
dx− 2y

(1+x2 +y2)2
dy

Example Calculate the values of ∆z (the true change in z) and dz (the approximate
change in z) if z = 5x2 +3y at the point (2, 3) with dx = 0.1 and dy = 0.05.

The true change in z is given by

∆z = f (x+ ∆x,y+ ∆y)−f (x,y)

Hence with ∆x = dx = 0.1, ∆y = dy = 0.05 we have

∆z = 5(2.1)2 +3(3.05)− (5×22+3×3) = 2.20

The approximate change is given by the total differential

dz = 10x dx+3dy = 10×2(0.1)+3(0.05)= 2.15

The difference between the true value ∆z and the total differential dz is small. Thus

∆z ≈ dz

In practice, if dx and dy are small then the approximation ∆z ≈ dz is acceptable
and commonly used in many of the problems physicists and engineers encounter.

Extension to Functions of Three Independent Variables f (x,y,z)

In the case of a function f (x,y,z) of three independent variables the total differen-
tial is given by

df =
∂f
∂x

dx+
∂f
∂y

dy+
∂f
∂z

dz (12.5)

Fig. 12.19
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As before, the total differential is a measure of the change in the function
u = f (x,y,z). If we proceed by a small displacement along dr = (dx,dy,dz),
as shown in Fig. 12.19, the function changes by an amount equal to the total differ-
ential.

Example The volume of a parallelepiped is given by V = f (x,y,z) = xyz, where
x,y and z are the lengths of the three sides. The total differential dV is

dV = yz dx+xz dy+xy dz

12.4.2 Application: Small Tolerances

We know for a function of a single variable y = f (x) that if x is subject to
an increment or decrement ∆x, then the change in y is approximately given by
∆y ≈ f ′(x)∆x.

In the preceding section this has been generalised to several variables. For the
sake of concreteness, let us concern ourselves with the tolerances of finished prod-
ucts due to the tolerances of their components. Thus the increment or decrement is
determined by the tolerances ı of these components. (In this section we will use the
symbol ı instead of ∆.)

If we have a function of several variables, such as u = u(x,y,z), then the total
tolerance ıu due to individual tolerances ıx,ıy,ız is

ıu≈ ∂u
∂x
ıx+

∂u
∂y
ıy+

∂u
∂z
ız

It is assumed that the tolerances ıx,ıy and ız are small. In practice, this is the case
in most situations.

Since u is a linear function in ıx,ıy and ız, it follows that the total tolerance is
obtained by adding the effects due to each one separately.

For example, consider a dimension of a link in a mechanism. It would be spec-
ified by its length x and a manufacturing tolerance imposed on it of ±ıx. When
the part has been made and a check on its dimension is carried out we would hope
to find that its length will lie in the interval x− ıx ≤ x ≤ x+ ıx as a result of the
manufacturing process.

If a device consists of a number of parts, it will be affected by the tolerances im-
posed on those parts. If u, the output, is a function of n parts of
lengths xi , i = 1,2, . . . ,n, and tolerances ıxi , then the tolerance in the output will be

ıu≈
n

∑
i=1

∂u
∂xi

ıxi

The individual tolerance ıxi may have either sign and usually it does not attain
its maximum value. But, if we assume the worst, we must add the effects of all
maximum individual tolerances in order to obtain the maximum possible tolerance.
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The maximum tolerance is then given, approximately, by

ıu≈±
n

∑
i=1

∣∣∣∣
∂u
∂xi

ıxi

∣∣∣∣

Example Figure 12.20 shows diagrammatically a link pivoted at O and connected
to another link at A (not shown). The position of the link at A (its output) will have
an influence on the position of the link to which it is connected. This position will
then depend on the tolerances ±ıl on its length and ±ı� on its angle relative to
some datum, i.e. the x-axis in this instance. If l = 95.00mm and ıl = ±0.10mm,
� = 35.00◦ and ı� = ±0.25◦, calculate the maximum tolerance in y and compare
the result with its true maximum value.

Fig. 12.20

As a result of the manufacturing process, we know that l − ıl ≤ l ≤ l + ıl and
� − ı� ≤ � ≤ � + ı� . It follows, therefore, that A will lie somewhere inside the
boundaries BCB′C′.

Now let us calculate this maximum tolerance using the total differential ap-
proach.

y = f (l ,�) = l sin�

Hence

ıy =
∂f
∂ l
ıl+

∂f
∂�

ı�

∂f
∂ l

= sin� ,
∂f
∂�

= l cos�
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Substituting in the above equation gives

δy = sin�(±δl)+ l cos�(±δ�)

= sin35◦(±0.1)+95cos35◦
(
±0.25
57.3

)

= ±
(

(sin35◦)0.1+(95cos35◦)
0.25

57.3

)

= ±0.3969≈±0.40mm to 2d.p.

(Note that the factor 1/57.3= 2�/360 is necessary to convert the ı� value to radi-
ans.)

Now let us calculate the true maximum and minimum value of y. Considering
the y position, its maximum value will correspond to B and its minimum value to B′.
It is easy to calculate these values:

ymax = (l+ δl)sin(� + ı�)
= 95.1sin35.25= 54.8865= 54.89mm to 2d.p.

and ymin = 94.9sin34.75= 54.0927= 54.09mm to 2d.p.

The exact or nominal value of y, ignoring tolerances, is

y = l sin� = 95sin35= 54.4898= 54.49mm

Hence the maximum tolerances in y are

ymax −y = δy = 54.89−54.49= 0.4mm

and ymin −y = δy = 54.49−54.09= 0.4mm

i.e. δy = ±0.4mm

Both methods give the same result.
This was a very simple case in which we could visualise easily where the output

position of the links was likely to be, but in practice the problems encountered are
much more involved and visualisation can be almost impossible.

An example of this can be found in precision mechanisms where the output de-
pends on the accuracy of a number of links, cams and gears. In such cases, the
influence of tolerances can only be calculated using the total differential approach.

12.4.3 Gradient

In Sect. 12.4.1 the total differential of a function z = f (x,y) was defined as

dz =
∂f
∂x

dx+
∂f
∂y

dy
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It is possible to regard the total differential as a scalar product of two vectors:

first vector: dr = dxi +dyj (called the path element)

second vector: gradf =
∂f
∂x

i +
∂f
∂y

j (called the gradient of f )

It is easy to verify by inserting these vectors

dz = dr grad f

Definition The vector (
∂f
∂x

,
∂f
∂y

)

is called the gradient of a function z = f (x,y).

grad f (x,y) =
(

∂f
∂x

,
∂f
∂y

)
(12.6)

The gradient has two properties:

1. The gradient is a vector normal to the contour lines. Thus it points in the direc-
tion of the greatest change in z.

2. The absolute value of the gradient is proportional to the change in z per unit of
length in its direction.

In order to explain these properties, we will consider the scalar product

grad f dr = dz

If dr coincides with a contour line we obtain dz = 0, since a contour line is the
projection of a line of constant z-value on to the x−y plane. Thus, in this case

grad f dr = 0

We know from Chap. 2 that the scalar product of two non-zero vectors vanishes
if and only if they are perpendicular to each other. Thus it follows that grad f is
perpendicular to the contour lines, i.e. grad f is a vector normal to the contour lines.

Let us illustrate this with the example used earlier:

f (x,y) =
1

1+x2 +y2

Remember that the contour lines are circles.
The gradient of the given function is

grad f =
( −2x

(1+x2 +y2)2
,

−2y
(1+x2 +y2)2

)
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This vector always points in the direction of the origin of the coordinate system.
Thus it is perpendicular to circles around the origin (Fig. 12.21).

Fig. 12.21

The absolute value of the gradient is a measure of the change of z. This follows
directly from the equation

dz = dr grad f

For the particular case when dr is normal to a contour line, the equation can be
rearranged:

dz
|dr| = |grad f |

Thus the change in dz per unit of length in the direction of the gradient is given by
the absolute value of the gradient.

The concept of a gradient can be extended to functions of more than two vari-
ables. In the case of a function of three independent variables, f (x,y,z), constant
function values are represented by surfaces in three-dimensional space. The gradient
is normal to these surfaces:

grad f (x,y,z) =
(

∂f
∂x

,
∂f
∂y

,
∂f
∂z

)

Its magnitude gives the change in the value of the function in the direction of the
gradient.

12.5 Total Derivative

12.5.1 Explicit Functions

Up to now we have assumed that x and y are independent variables. It may happen
that x and y are both functions of one independent variable t . If this is the case, z =
f (x,y) is, in fact, a function of the single independent variable t . z will, therefore,
have a derivative with respect to t .
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Let x = g(t) and y = h(t); it is assumed that the functions can be differenti-
ated. If t is given a small increment ∆t , then x,y and z will have corresponding
increments ∆x,∆y and ∆z. The change or increment in the function z is given by

∆z ≈ ∂f
∂x

∆x+
∂f
∂y

∆y

Dividing by ∆t we have
∆z
∆t

≈ ∂f
∂x

∆x
∆t

+
∂f
∂y

∆y
∆t

We can now proceed to the limit ∆t → 0. The result is stated below.

dz/dt is called the total derivative or total differential coefficient.

dz
dt

≈ ∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

Similarly if u = u(x,y,z) where x,y and z are functions of t , we obtain the
total derivative of u with respect to t :

du
dt

≈ ∂u
∂x

dx
dt

+
∂u
∂y

dy
dt

+
∂u
∂z

dz
dt

(12.7)

Note that we write dz
dt , not ∂z

∂ t
, since z is a function of a single variable.

This concept can obviously be generalised for any number of variables.

Example Let z = f (x,y) = x+y and x = et

2 , y = e−t

2

Obtain the derivative dz
dt .

Firstly we need the partial derivatives:

∂z
∂x

= 1 ,
∂z
∂y

= 1

Secondly we need the derivatives of x and y with respect to t :

dx
dt

=
et

2

dy
dt

= −e−t

2

Hence the total derivative is
dz
dt

=
et

2
− e−t

2

Note that z is familiar: z(t) = cosh t , and the derivative with respect to t is
dz/dt = sinh t .
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12.5.2 Implicit Functions

Remember that the function f (x,y) = C is an implicit function y of one single
variable x in the x−y plane (contour line). We wish to obtain the derivative dy/dx
without explicitly solving for y. In Chap. 5, Sect. 5.9.1, we showed how this could
be done. Using the concept of the total derivative, we will now obtain a general
expression.

The geometrical meaning of a total derivative of the function z = f (x,y) is that
it gives the total change in z.

The total derivative with respect to x is

dz
dx

=
∂f
∂x

dx
dx

+
∂f
∂y

dy
dx

But since z is constant for a contour line (i.e. dz = 0), and dx/dx = 1, we obtain

0 =
∂f
∂x

+
∂f
∂y

dy
dx

Solving for
dy
dx

gives
dy
dx

= −∂f /∂x
∂f /∂y

(12.8)

Example If x3 −y3 +4xy = 0,
calculate the value of the derivative dy/dx at x = 2,y = −2.

Let f = x3 −y3 +4xy

Then
∂f
∂x

= 3x2 +4y and
∂f
∂y

= −3y2 +4x

Therefore
dy
dx

= − 3x2 +4y
−3y2 +4x

Hence the value of the derivative at x = 2,y = −2 is

dy
dx

= − 3×22 +4(−2)
−3(−2)2 +4×2 = − 4

−4 = 1

The equation f (x,y,z) = 0 can be considered as defining z as an implicit function
of two variables x and y. We are interested in finding expressions for the partial
derivatives of z, i.e. ∂z/∂x and ∂z/∂y.

We first concentrate our attention on ∂z/∂x.
We know that

0= f (x,y,z)

The total derivative of this expression with respect to x gives

0=
∂f
∂x

+
∂f
∂y

∂y
∂x

+
∂f
∂z

∂z
∂x
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Remember that forming the partial derivative with respect to x implies regarding y
as constant. Thus ∂y/∂x = 0, and solving for ∂z/∂x gives

∂z
∂x

= −∂f /∂x
∂f /∂z

Similarly, we obtain
∂z
∂y

= −∂f /∂y
∂f /∂z

Example Given x2/25+y2/15+ z2/9= 1, calculate the partial derivatives of z.

∂f
∂x

=
2x

25
,

∂f
∂y

=
2y

15
,

∂f
∂z

=
2z

9

Substituting in the equations for the partial derivatives we find

∂z
∂x

= −2x/25
2z/9

= − 9x

25z
,

∂z
∂y

= −2y/15

2z/9
= − 9y

15z

12.6 Maxima and Minima of Functions
of Two or More Variables

In Chap. 5 we derived the necessary conditions for a function of a single variable to
have a maximum or a minimum. We now consider the conditions for maximum and
minimum values in the case of functions of several independent variables.

A function of two variables, z = f (x,y) (see Fig. 12.22), is said to have a max-
imum at the point (x0,y0) if

∆f = f (x0 +h,y0 +k)−f (x0,y0) < 0

for all sufficiently small values of h and k, positive or negative.
The function will have a minimum if

∆f = f (x0 +h,y0 +k)−f (x0,y0) > 0

From a geometrical standpoint, this means that when the point (x0,y0,z0) on
the surface z = f (x,y) is higher than any other point in its neighbourhood then
(x0,y0,z0) is a maximum, but if the point is lower than any other neighbouring
point on the surface it is a minimum.

At a maximum or a minimum, the tangent plane to the surface is parallel to the
x−y plane. This condition will be satisfied if

fx(x0, y0) = 0 and fy(x0, y0) = 0 (12.9)

The condition is necessary but not sufficient, as the following considerations show.
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Fig. 12.22

Consider, for example, two adjacent hills (Fig. 12.23). If we go from the top of
one hill to the other one (path 1) there is a minimum. If we go through the passage
between the hills (path 2) there is a maximum. Even though the condition fx =
fy = 0 is satisfied at P, P is a saddle point and not an extreme point.

Fig. 12.23

We will now state a sufficient condition. The following comments do not con-
stitute a complete mathematical proof: they are only included as a hint for diligent
readers. The expansion of the function with respect to h and k is

∆f = f (x0 +h,y0 +k)−f (x0,y0)

= (hfx +kfy)x0y0
+
1

2!
(h2fxx +2hkfxy +k2fyy)x0y0

+ · · ·
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The first term of the expansion is zero at a maximum or a minimum, since fx = 0,
fy = 0. For a maximum the expression must be negative, independently of h and k.
For a minimum it must be positive, independently of h and k. Thus the sign of the
second term determines whether there is a maximum, a minimum or a saddle point.

Taking k2 outside the brackets we have

∆f =
k2

2!

[(
h

k

)2

fxx +2
h

k
fxy +fyy

]

x0y0

+ · · ·

The expression in the brackets is a quadratic function in h/k.
From Chap. 3, Sect. 3.5, we know that the graph of a quadratic function –

a parabola – lies entirely above or below the horizontal axis only if this function
has no real roots (Fig. 12.24).

Fig. 12.24

This means that the radicand must be negative in this case. Therefore, the sup-
plementary criterion for the extreme value we were seeking is

(fxy)2 −fxxfyy < 0

Furthermore, there will be a maximum if

fxx(x0,y0) < 0 and fyy(x0,y0) < 0 (12.10a)

and there will be a minimum if

fxx(x0,y0) > 0 and fyy(x0,y0) > 0 (12.10b)
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This can be memorised by recalling the corresponding criteria for a function of one
variable.

There remains one other case to consider:

[fxy(x0,y0)]2 −fxx(x0,y0)fyy(x0,y0) = 0

However, we shall not enlarge on this case; generally speaking, one needs fur-
ther information to decide whether or not the point (x0,y0) corresponds to an ex-
treme value.

Let us recapitulate the results obtained.

The necessary condition for the existence of an extreme value at x0y0 is

fx(x0,y0) = fy(x0,y0) = 0

This condition becomes sufficient if it is supplemented by the following con-
dition:

[fxy(x0,y0)]2 −fxx(x0,y0)fyy(x0,y0) < 0

Maximum if fxx < 0 and fyy < 0.
Minimum if fxx > 0 and fyy > 0.

Example Calculate the extreme values of the function f = 6xy−x3 −y3.

1. Apply the necessary condition for a horizontal tangent plane.

fx = 6y−3x2 = 0 , fy = 6x−3y2 = 0

Solving the two equations in x and y, we find that

(a) x = 0,y = 0 is one solution, i.e. the point (0, 0)
(b) x = 2,y = 2 is the other solution, i.e. the point (2, 2).

2. Apply the sufficient condition for a maximum or a minimum.

fxx = −6x , fxy = 6 , fyy = −6y
The condition is

fx2y −fxxfyy = 36−36xy < 0

We must check whether this condition is satisfied at the two points under con-
sideration.
Inserting x = 0 and y = 0 gives 36−0> 0

Therefore there is no extreme value at the point (0, 0).
Inserting x = 2 and y = 2 gives

36−36×2×2< 0

In this case the sufficient condition is fulfilled: there is a minimum or a maxi-
mum at the point (2, 2).
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3. Check the type of the extreme value.
Since fxx = −6x = −12 and fyy = −6y = −12 there is a maximum at the
point (2, 2). Its value is fmax = 8.

Example in engineering A container of 10m3 capacity with an open top is to be
made from thin sheet metal. Calculate what the dimensions of the sides and the
height must be for a minimum amount of metal to be used. What is the saving
compared with a container of equal sides?

If V is the volume, A the surface area of metal and x,y and z the lengths of the
container, we have

V = xyz , A= 2xz+2zy+xy (where z is the height)

We need to eliminate one of the variables, z say; thus z = V /(xy). Substituting in
the equation for the surface area A, we obtain

A=
2V

y
+
2V

x
+xy

i.e. A= f (x,y) is a function of two independent variables.

1. Apply the necessary condition for an extreme value; calculate the partial deriva-
tives and set them equal to zero:

∂A
∂y

= −2V
y2

+x = 0 ,
∂A
∂x

= −2V
x2

+y = 0

Solving the two equations gives

x = y = 3
√
2V = 3

√
20= 2.714m

Obviously, this makes sense only for a minimum of the area. But let us use the
formal procedure to verify this common-sense judgement.

2. Apply the sufficient condition for an extreme value:

∂ 2A

∂y2
=
4V

y3
,

∂ 2A

∂x∂y
= 1 ,

∂ 2A

∂x2
=
4V

x3

With x = y = 3
√
2V it follows that

(Axy)2 −AxxAyy = −3< 0

3. Axx and Ayy are positive; hence we have a minimum.
The numerical result is given by

z =
V

xy
= 3

√
V

4
= 3

√
2.5≈ 1.357m

The amount of metal required = 4.2×714×1.357+2.7142. Hence A= 16.58m2.
If we made x = y = z = a, say, then a = 3

√
10 = 2.15m, and the amount of metal

would be A1 = 5a2 = 5.2×152 = 23.11m2. The saving is A1 −A= 6.53m2.
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Example in engineering A trough, 12 m long, is to be made out of a steel sheet
1.65 m wide by bending it into the shape ABCD, as shown in Fig. 12.25. Calculate
the lengths x of the sides and the angle � if the sectional area is to be a maximum.

Fig. 12.25

We first observe that the length of the trough is not relevant, as we are concerned
only with the cross section. The relevant variables are the length x and the angle � .
Let us denote the cross section by A:

A =
1

2
(AD+BC)× (vertical depth) =

1

2
(l−2x+2x cos� + l−2x)x sin�

= lx sin� −2x2 sin� +x2 sin� cos�

A = f (x,�)is a function of two independent variables .

1. Calculate the partial derivatives and equate them to zero:

∂A
∂x

= l sin�−4x sin� +2x sin� cos� = 0

∂A
∂�

= lx cos�−2x2 cos�+x2(cos2 � − sin2 �) = 0

Solve the two equations in x and � :

(a) By inspection, we find a trivial solution x = 0,sin� = 0; but this has no
physical meaning.

(b) Assuming x �= 0 and sin� �= 0, we divide the first equation by sin� and the
second equation by x, so that

l = 4x−2x cos�

l cos� = 2x cos� −x(2cos2 �−1)
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By combining these equations we obtain

l

x
= 4−2cos� = 2− 2cos2 � −1

cos�
We solve for cos� and x:
2cos� = 1, i.e. cos� = 1/2 or � =�/3(60◦), and l/x = 3, i.e. x = l/3= 0.55m.
Steps 2 and 3, which are necessary to prove that this is in fact a maximum, are

left to the reader.

12.7 Applications: Wave Function and Wave Equation

12.7.1 Wave Function

Let us consider the function of two variables: z = f (x,y) = sin(x− y) It can be
represented by a surface in space.

To gain a proper understanding of this function, we first draw the intersecting
curves with planes parallel to the x−z plane for the values

y = 0 , y =
�

2
, y = � , y =

3�

2
, y = 2� (see Fig. 12.26)

In the x-direction, the intersection curves are sine functions with a period of 2� .
We may see already that the surface is a series of parallel hills and valleys. The

direction of the hills and valleys is an angle of 45◦ to the x- and the y-axes.

Fig. 12.26

We now draw the intersecting curves with planes parallel to the y−z plane (see
Fig. 12.27).
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Fig. 12.27

We obtain sine functions with the same period. Again we see that the surface is
a series of parallel hills and valleys.

The maxima and minima lie on parallel lines making an angle �/4 with the x-
and y-axes. These are given by

x−y =
(
2n+

1

2

)
� for maxima

x−y =
(
2n− 1

2

)
� for minima, where n is an integer

Now let us examine the special case when one variable, say y, represents time. If
we consider the value of time without its dimension, we have

f (x, t) = sin(x− t)
If we sketch the graph of this function we get the same picture, a series of parallel
hills and valleys. The only difference is that f (x, t) of course is now a function of
position and time. In practice, we often encounter this type of function f (x, t) as
a function of x, the value of which changes with time. What is observed at a given
time t0 is the intersecting curve of a plane parallel to the x−z plane at the point
t = t0 with the surface z = f (x, t) (Fig. 12.28).

As time progresses, t increases and the intersecting curve changes. In this case,
this results in a sine function travelling in the x-direction. We obtain a function
which behaves like a wave on a cable. This type of function is called a wave function.
The period in both the x-direction and the t-direction is 2� in our example.

The length of one period in the x-direction is called the wavelength. If we want
to describe a wave function with an arbitrary wavelength �, we must set

f (x, t) = sin
(
2�
x

�
− t

)
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Fig. 12.28

The period, usually denoted by T , is the time interval of one oscillation at a given
point x0. The inverse value is called the frequency �, i.e. the given function sin
(x− t) has the frequency � = 1

T .
If we wish to describe an arbitrary frequency � = 1

T we must write

f (x, t) = sin

(
2�
x

�
− 2�

T
t

)

We have now obtained a general formula for the one-dimensional wave function. It
must be noted that now we can reintroduce the dimensions of the physical quantities
position and time. The argument of the sine function remains dimensionless.

The value of 2�� is also referred to as the circular frequency !.
From another aspect, it can be observed that during the time T = 1

� = 2�
! the

wave travels one wavelength λ.
The velocity v of the wave is called the phase velocity:

v =
�

T
, i. e. v = ��

Using the circular frequency, the phase velocity can be expressed

v =
!

2�
�
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Particular positions of the wave such as maxima, minima or zeros travel in the x-
direction with this velocity.

Generally, the one-dimensional harmonic wave function is written in two equiv-
alent forms:

f (x, t) = Asin

(
2�

�
x−!t+�0

)

= Asin

(
2�

�
(x−vt)+�0

)

The argument of the wave function is called the phase. �0 is the phase at t = 0

and x = 0. A is the amplitude. It may be the physical displacement of a point, an
electrical quantity, an air pressure (sound waves), a distortion etc. Amay be a scalar
or A may be a vector, like a displacement r or an electrical field vector E .

Figure 12.29 shows the usual graphical representation of the wave function. Fig-
ure 12.29a gives the wave for a fixed time t0; Fig. 12.29b gives the oscillation of
a fixed point x0.

Fig. 12.29
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A harmonic wave propagating in the opposite direction is given by

f (x, t) = Asin

(
2�

�
x+!t+�0

)

or f (x, t) = Asin

(
2�

�
(x+�t)+�0

)

Spherical Waves

In physics we frequently encounter waves which travel in all directions from the
origin of a point source. The wavefronts of such waves are concentric spheres with
the source as center. The separation of two adjacent wavefronts having the same
phase is equal to one wavelength. Electromagnetic and acoustic waves are often
spherical waves.

In the case of spherical waves, we have to take into account the fact that their
amplitudes decrease with the distance from the source; for instance, this is the case
for sound waves.

In the case of an acoustic wave, the amplitude of the air pressure p is given by
the following function:

p =
(p0

r

)
sin

(
2�

�
r−!t+�0

)

where p is the pressure difference compared with the air pressure of the air at rest
and r is the distance from the center of a harmonic sound source.

12.7.2 Wave Equation

Wave functions are solutions of differential equations of the form

∂ 2f (x, t)
∂x2

=
1

c2

∂ 2f (x, t)
∂ t2

The RHS is the second derivative with respect to time, and the LHS is the second
derivative with respect to displacement.

Equations in which differential coefficients appear are called differential equa-
tions (Chap. 10). In the above case, since the differential coefficients are partial
ones, the equation is referred to as a partial differential equation.

The equation is known as the one-dimensional wave equation with a velocity of
propagation c.

Waves on the surface of a liquid, or on a stretched membrane, lead to a wave
equation being two-dimensional for the function f (x,y, t):

∂ 2f

∂x2
+

∂ 2f

∂y2
=
1

c2

∂ 2f

∂ t2
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In the case of sound and electromagnetic waves we find the wave equation to be
three-dimensional for the function f (x,y,z, t):

∂ 2f

∂x2
+

∂ 2f

∂y2
+

∂ 2f

∂z2
=
1

c2

∂ 2f

∂ t2

Thus the wave equation occurs in many different fields of physics and engineering.
J. Maxwell showed the relationship between electric and magnetic fields by means
of the wave equation, and this started the search for electromagnetic waves. H. Hertz
proved their existence experimentally in 1888.

The general solution of partial differential equations is a subtle problem in math-
ematics. There is no general method like, for instance, the exponential solution for
ordinary differential equations (see Chap. 10).

Starting with the general solution of ordinary differential equations, we were able
to obtain particular solutions from the statement of the boundary conditions. Partial
differential equations have no general solutions, only particular ones; consequently,
the boundary conditions have a marked influence on their solutions.

The wave equation has a great number of solutions. Which one is chosen depends
on the boundary conditions of the problem.

We will concern ourselves with the one-dimensional case and show that any func-
tion of the following form is a solution of the one-dimensional wave equation. Thus
u can be any function which is differentiable twice with respect to x and t :

f (x, t) = u(x− ct)

D’Alembert’s solution

D’Alembert noticed that x and ct have the dimensions of length and he therefore
introduced two new independent variables:

p = x− ct
q = x+ ct

He then reduced the wave equation to a form which can readily be integrated. It can
be shown that by these substitutions the wave equation becomes

∂ 2f

∂p∂q
= 0

or
∂

∂p

(
∂f
∂q

)
= 0

Integrating once, we obtain

∂f
∂q

=Q(q) , an arbitrary function of q only .
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Integrating once again gives

f =
∫
Q(q) dq+P (p)

where P (p) is an arbitrary function of p only.
If we let

∫
Q(q) dq =G(q) the solution becomes

f = P (p)+G(q)

Substituting for p and q, we obtain

f = P (x− ct)+G(x+ ct)

This is d’Alembert’s solution of the wave equation.P andG are arbitrary functions.
This result implies that, physically, the wave equation is satisfied for waves trav-

elling in opposite directions. It gives rise to stationary waves. A stationary wave can
be produced by the superposition of two harmonic waves of equal frequency trav-
elling in opposite directions. It can also be produced by a progressive wave being
reflected at a boundary, provided that the conditions are suitable. Examples are the
vibrations in a pipe and the vibrations of a string fixed at each end.

In this book we will deal no further with partial differential equations. Further
examination belongs to more advanced texts.

Exercises

1. Construct a table of values for the function f (x,y) = x2y + 6 where
x = −2,−1,0,1 and y = −2,−1,0,1,2.

2. What surfaces are represented by the following functions? Sketch them!

(a) z = −x−2y+2
(b) z = x2 +y2

(c) z =

√
1− x2

4
− y2

9

12.3 Partial Differentiation

3. Obtain the partial derivatives of

(a) f (x,y) = sin x+ cos y

(c) f (x,y) = e−(x2+y2)

(e) f (x,y,z) = ex lny+ z4

(b) f (x,y) = x2
√
1−y2

(d) f (x,y,z) = xyz+xy+ z
(f) f (x,y) = esin x + ecos(x+y)

4. Determine the slope of the tangent in the x- and y-directions to the surface
z = x2 +y2 at the point P = (0,1).
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5. Determine the partial derivatives fxx ,fxy ,fyx and fyy of the function

z =R2 −x2 −y2

6. Show that the function z = e(x/y)2
satisfies the relation xfx +yfy = 0.

12.4 Total Differentiation

7. Determine the total differential of the functions
(a) z =

√
1−x2−y2

(b) z = x2 +y2

(c) f (x,y,z) =
1

(x2 +y2 + z2)
8. A container in the form of an inverted right circular cone has a radius of

1.75 m and a height of 4 m. The radius is subject to a tolerance of 50 mm
and the height to a tolerance of 75 mm.
(a) Calculate the total percentage tolerance in the volume.
(b) What is the total percentage tolerance in the surface area of the con-

tainer?
9. Find the contour lines and calculate the gradient for the following functions:

(a) f (x,y) = −x−2y+2

(b) f (x,y) =

√
1− x2

4
− y2

9

(c) f (x,y) =
10√
x2 +y2

10. Find the surfaces of constant functional values and calculate the gradient.

(a) f (x,y,z) = x+y−3z
(b) f (x,y,z) = x2 +y2

(c) f (x,y,z) = (x2 +y2 + z2)3/2

12.5 Total Derivative

11. Obtain du/dt when

(a) u= x2 −3xy+2y2 and x = cos t ,y = sin t

(b) u= x+4
√
xy−3y,x = t3,y = 1/t

12. (a) u= x2 +y2,y = ax+b
Obtain ∂u

∂x

(b) x3 −y3 +4xy = 0

Obtain dy
dx at x = 2,y = −2

(c) xy+ siny = 2

Obtain dy
dx at x = 4,y = �/2
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12.6 Maxima and Minima

13. Examine the following functions for maxima and minima:
(a) f (x,y) = x3 −3xy+y3

(b) f (x,y) = 12x+6y−x2 +xy−y2

(c) Application in engineering: A conduit along a wall is to have a cross-
section (as shown in Fig. 12.30) made by bending a sheet of metal of
width 0.75 m and length 5.5 m along the line ABCD. Calculate h, l and
� for maximum cross-sectional area.

Fig. 12.30

12.7 Wave Function and Wave Equation

14. Two cables considered as being infinitely long are excited at the left-hand
end with an amplitude A and a frequency f . Write down the wave func-
tion for

cable (a) A= 0.5m , f = 5Hz , �= 1.2m

cable (b) A= 0.2m , f = 0.8Hz , �= 4.0m

15. Verify that the function f (x, t) = e−(�t−x)2
satisfies the wave equation

∂ 2f

∂ t2
= �2 ∂ 2f

∂x2



Chapter 13
Multiple Integrals; Coordinate Systems

13.1 Multiple Integrals

Let us develop the problem by a simple example.
A solid cube, as shown in Fig. 13.1, has a volume V . If the density � is constant

throughout the entire volume then the mass is given by

M = �V

There are cases, however, in which the density � is not constant throughout the
volume. The density of the Earth is greater near the center than at the surface. The
density of the atmosphere is at a maximum at the surface of the Earth: it decreases
exponentially with the altitude.

Let us assume that the variation in the density is determined empirically and ex-
ists in a three-dimensional table of values or in the form of an equation as a function
of position, i.e. � = �(x,y,z).

Fig. 13.1

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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To obtain an approximation for the mass when the density varies we proceed as
follows. The volume is divided into N cells, the volume of the i th cell being

∆Vi = ∆xi ∆yi ∆zi

If the density at the point Pi (xi ,yi ,zi ) is � the mass of the cell is

∆Mi ≈ �(xi ,yi ,zi )∆xi ∆yi ∆zi

The mass of the entire cube is obtained, approximately, by adding up the masses of
all the cells. Hence

M ≈
N

∑
i=1

∆Mi =
N

∑
i=1

�(xi ,yi ,zi )∆xi ∆yi ∆zi

Now let the size of the cells be taken smaller and smaller, so that N tends to infinity.
In this way we get closer and closer to the exact value and can write

M = lim
N→∞

N

∑
i=1

�(xi ,yi ,zi )∆xi ∆yi ∆zi

When we were dealing with a function of only one variable, such a limit was called
an integral. We now extend this concept to the above sum. In the limiting process,
the differences ∆xi ,∆yi and ∆zi become differentials dx,dy,dz; and to express our
limiting process we use three integrals, one for each variable, and write

M =
∫∫∫

V

�(x,y,z) dx dy dz

In words, we describe this as the integral of the function � over the volume V . Such
an integral is also referred to as a multiple integral; the special case of three variables
is called a triple integral or a space integral. To solve for M we have to carry out
three integrations, taking each variable in turn and paying attention to the limits of
integration.

There are two cases to consider:

(a) Multiple integrals with constant limits
All limits of integration are constant.

Example
∫ 10

z=0

∫ �

y=−�

∫ 4

x=3
�(x,y,z) dx dy dz

(b) Multiple integrals with variable limits
Not all the limits of integration are constant.

Example
∫ 1

z=0

∫ x2

y=−�

∫ y

x=3
�(x,y,z) dx dy dz

The analytical evaluation of multiple integrals is discussed in the following sections.
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Many multiple integrals can be solved analytically. There are, however, cases
which lead to very complex expressions or which cannot be solved at all. In such
cases, the values of multiple integrals can be computed approximately by means of
sums which are sufficiently exact for practical purposes if the subdivision is fine
enough.

13.2 Multiple Integrals with Constant Limits

The actual execution of a multiple integration is particularly easy if all the limits
of integration are constant. It is thus reduced to the repeated integration of simple,
definite integrals. In our example of a solid cube, the computation of the mass of the
cube is obtained by integrating throughout the entire volume (cf. Fig. 13.1), i.e.

along the x-axis from O to a

along the y-axis from O to b

along the z-axis from O to c

The triple integral sign denotes the following operations:

Step 1: Obtain the inner integral. y and z are regarded as constants; the only vari-
able is x.

Step 2: The result of the first integration is a function of the variables y and z. We
now solve the second integral assuming z to be constant by integrating with
respect to y.

Step 3: Finally, we are left with a function of z alone and the outer integral is ob-
tained.

Note that in the case of constant limits the order of integration can be changed,
provided the integrand is continuous.

Multiple integrals are referred to as simple, double, triple, quadruple etc., de-
pending on how many integrations are to be performed.
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Example Calculate the mass of the rectangular prism shown in Fig. 13.2 of base a,
b and height h.

Fig. 13.2

The density decreases exponentially with height according to the relationship

� = �0e−˛z

This example is of practical interest in the calculation of the mass of a rectangu-
lar column of air above the Earth’s surface. Due to gravity, the density decreases
exponentially with increasing altitude.

�0 is the density at z = 0

The constant ˛ has the form ˛ = �0/P0 g, where g = acceleration due to gravity
and P0 = barometric pressure at z = 0.
The mass of the column of air is calculated by the following multiple integral:

M =
∫ h

0

∫ b

0

∫ a

0
�0e−˛z dx dy dz

Evaluation of the inner integral gives

M =
∫ h

0

∫ b

0
�0e−˛z [x]a0 dy dz = a

∫ h

0

∫ b

0
�0e−˛z dy dz

Evaluation of the second integral gives

M = a

∫ h

0
�0e−˛z[y]b0 dz = ab

∫ h

0
�0e−˛z dz
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Evaluation of the outer integral gives

M = ab�0

[
1

−˛ e−˛z

]h

0

=
ab�0

˛
(1− e−˛h)

Figure 13.3 shows that the mass of the column of air approaches a limiting valueM∞.

Fig. 13.3

13.2.1 Decomposition of a Multiple Integral
into a Product of Integrals

There are cases in which the integrand can be expressed as the product of functions,
each in terms of a single variable.

f (x,y,z) = g(x)h(y)m(z)

Hence the multiple integral is the product of simple integrals:

∫ 1

z=0

∫ 2

y=0

∫ 1

x=0
f (x,y,z) dx dy dz =

∫ 1

0
g(x) dx

∫ 2

0
h(y) dy

∫ 1

0
m(z) dz

Example Evaluate I =
∫ �

y=0

∫ �/4
x=0 sinx cosy dx dy.

The integrand is the product of two independent functions. Hence

I =
∫ �/4

0
sinx dx

∫ �

0
cosy dy = [−cosx]�/4

0 [siny]�0 = 0
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13.3 Multiple Integrals with Variable Limits

Multiple integrals with constant limits of integration are a special case. Generally,
the limits of integration are variable. Now we will consider the general case of vari-
able limits.

We will demonstrate the procedure with an example of the calculation of the area
shown shaded in Fig. 13.4.

Fig. 13.4

The area is obtained by summing all the small areas or meshes, such as ∆A =
∆x∆y, within the boundaries so that

A≈
N

∑
i=1

∆xi ∆yi

By letting N → ∞ we obtain a double integral:

A=
∫∫

dA=
∫∫

dx dy

The problem now is how to regard the boundaries of the area.
Let us consider a small strip (Fig. 13.5) of width dx corresponding to a summa-

tion in the y direction.
The limits of this integral with respect to y are

lower limit , y = 0

upper limit , y = f (x)

In this case the upper limit is a function of x. We now insert this into the formula
and obtain

A=
∫∫ f (x)

y=0
dx dy
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Fig. 13.5

The limits of the variable x are constant:

lower limit , x = a

upper limit , x = b

Inserting these limits into our double integral gives

A=
∫ b

x=a

∫ f (x)

y=0
dx dy

Here the order of integration is no longer arbitrary. We must integrate first with
respect to variables whose limits are variable. We integrate first with respect to y
obtaining

A=
∫ b

a
[f (x)−0]dx =

∫ b

a
f (x) dx

We are already familiar with this result. We see that if we solve the area problem
systematically we first obtain a double integral. In Chaps. 6 and 7, when dealing with
areas under curves, one integration had already been performed, without mentioning
it, by considering a strip of height f (x) and width dx.

Example Calculate the area A bounded by the curves shown in Fig. 13.6.
The area A has the following boundaries:

y = x2 for the lower one,

y = 2x for the upper one.

If we integrate in the direction of y from y = x2 to y = 2x, we obtain the area of
the strip of width dx. The required area A is then obtained by integrating along x
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Fig. 13.6

from x = 0 to x = 2, since both curves intersect at x = 0 and x = 2. Hence

A=
∫ 2

x=0

∫ 2x

y=x2
dy dx

Now we have first to integrate with respect to y, since its limits are variable:

A=
∫ 2

0
(2x−x2) dx =

[
x2 − 1

3
x3

]2

0

=
4

3

We can generalise the process as follows.
Multiple integrals with variable limits are evaluated step by step, evaluating the

integrals with variable limits first, up to the last integral, whose limits must be con-
stant.

Thus at least one integral must have constant limits.
You can proceed as follows.
Find a variable which does not appear in any limit of the integrals. Now integrate

with respect to this variable. Repeat this procedure until all integrals are dealt with.
Following this procedure, integrals with variable limits are dealt with first.

Multiple integrals often occur in practical problems.

Example Obtain the position (x̄, ȳ) of the center of mass for the area A in the
previous example (Fig. 13.6). A problem of this type in mechanics has already been
discussed in Chap. 7.

First let us find the component ȳ of the position of the center of mass. To do this
we take the first moment about the x-axis of an elemental area dx dy and then sum
for the whole area. Hence

Aȳ =
∫ 2

x=0

∫ 2x

y=x2
y dy dx (A= area)
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Let us evaluate this integral. Since the variable y does not appear in any limit, we
integrate with respect to y first:

Aȳ =
∫ 2

0

[
y2

2

]2x

x2

dx =
∫ 2

0

(
2x2 − x4

2

)
dx =

[
2

3
x3 − x5

10

]2

0

= 2.133

Second, we find the component x̄ in a similar way. In this case, consider the first
moment of the elemental areas dx dy about the y-axis.

Ax̄ =
∫ 2

x=0

∫ 2x

y=x2
x dy dx

and Ax̄ =
∫ 2

0
[xy]2x

x2 dx =
∫ 2

0
(2x2 −x3) dx =

[
2x3

3
− x4

4

]2

0

= 1.333

Since A= 4/3, it follows that x̄ = 1, ȳ = 1.6.

Example Determine the area of a circle with radius R.
The area is given by a multiple integral,

A=
∫∫

dx dy

The problem is how to take the boundaries of the circle into account. Let us look at
Fig. 13.7. We wish to sum the elemental areas dx dy in the y-direction, indicated

Fig. 13.7

by the small strip. This means that we integrate with respect to y first. The limits of
this integration are given by the boundaries of this small strip and these in turn are
given by the familiar equation of a circle

x2 +y2 =R2 or y = ±
√
R2 −x2
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Lower limit, y0 = −√
R2 −x2

Upper limit, y1 = +
√
R2 −x2

Thus we obtain

A =
∫∫ y1=

√
R2−x2

y0=
√

R2−x2
dy dx

A =
∫

[y]y1
y0

dx

A =
∫
2
√
R2 −x2 dx

The expression 2
√
R2 −x2 dx is the area of the small strip.

The remaining integral with respect to x sums together the elemental strips from
−R to +R. Thus the limits are

lower limit, x0 = −R
upper limit, x1 = +R

A=
∫ +R

x0=−R
2
√
R2 −x2 dx

Using the table of integrals in the appendix to Chap. 6, we obtain

A = 2

[
x

2

√
R2 −x2 +

R2

2
sin−1

( x
R

)]R

−R

A = R2�

We will see in the next section that this result can be obtained much more easily by
using polar coordinates.

13.4 Coordinate Systems

The evaluation of volumes, masses, moments of inertia, load distributions and many
other physical quantities leads to multiple integrals. The integrals are not always of
a simple type with constant limits of integration. However, in many cases we can
obtain simpler types if we replace the variables x,y,z by other more appropriate
ones. This implies that we should select our coordinate system carefully accord-
ing to the particular symmetry of the problem. For circular symmetries we choose
polar coordinates or cylindrical ones. For radial symmetries spherical coordinates
are advisable. In the following discussion we examine polar coordinates, cylin-
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drical coordinates and spherical coordinates and relate them to Cartesian coordi-
nates.

13.4.1 Polar Coordinates

Polar coordinates have been first mentioned in Sect. 7.1.2. A point P in the x−y
plane can be represented by the position vector r, as shown in Fig. 13.8. In Cartesian
coordinates, the position vector is given by its x−y components. The same position
vector can be defined by two other quantities:

the length of r ,
the angle � with respect to the x-axis, or any other fixed direction.

These two quantities are called polar coordinates.

Fig. 13.8

Polar coordinates can be obtained from Cartesian coordinates and vice versa. The
equations of transfer can be derived from Fig. 13.8. We obtain Cartesian coordinates
from polar coordinates by

x = r cos�

y = r sin�

We obtain polar coordinates from Cartesian coordinates by

r =
√
x2 +y2

tan� =
y

x
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An elemental area in Cartesian coordinates is given by dA= dx dy (see Fig. 13.9a).

Fig. 13.9

In polar coordinates, an elemental area is given by

dA= r d� dr (see Fig. 13.9b)

Example Compute the area of a circle of radiusR.
We have to sum the elemental areas within the boundaries of the circle. The

variable � extends from � = 0 to � = 2� . The variable r extends from r = 0 to
r =R. Thus the limits of integration for both variables are constant.

A=
∫

dA=
∫ R

r=0

∫ 2�

�=0
r d� dr = �R2

Note that the area of a circle with polar coordinates is obtained far more easily than
with Cartesian coordinates.

Example Compute the area within the spiral r = a�,a > 0 for one rotation of the
radius vector (see Fig. 13.10).

Fig. 13.10
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Consider the elemental area dA= r d� dr . The total area A is given by the inte-
gral

A=
∫∫

r dr d�

The variable � extends from � = 0 to � = 2� , since we are considering one rotation.
The variable r extends from r = 0 to r = a�. Thus the limits of r are variable.
Inserting the limits and solving the integral gives

A=
∫ 2�

�=0

∫ a�

r=0
r dr d� =

∫ 2�

0

[
r2

2

]a�

0

d�

=
∫ 2�

0

a2

2
�2d� =

[
a2

6
�3

]2�

0

=
4

3
a2�3

13.4.2 Cylindrical Coordinates

Cylindrical coordinates are polar coordinates for a point in three-dimensional space
obtained by the addition of the coordinate z to specify its height, as shown in
Fig. 13.11.

Fig. 13.11

The equations of transformation between cylindrical and Cartesian coordinates
are

x = r0 cos�

y = r0 sin�

z = z

or, in the reverse direction,

r0 =
√
x2 +y2

tan� =
y

x

z = z
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The elemental volume dV in Fig. 13.12 is then given by

dV = r0 d� dr dz

Cylindrical coordinates can facilitate calculation in the case of either of the follow-
ing symmetries.

Fig. 13.12

Axial Symmetry

For cylindrical coordinates we only need the functional relationship between r0
and z, since these are independent of the angle �.

Examples are the chess piece in Fig. 13.13, and the magnetic field round a coil
(Fig. 13.14).

Fig. 13.13 Fig. 13.14
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Cylindrical Symmetry

In cylindrical coordinates the function which describes the quantity under consid-
eration depends only on the distance r0 from the z-axis: it is independent of both z
and �.

An example is the magnetic field H = H (r) surrounding a straight conductor
carrying an electric current (Fig. 13.15). Its absolute value possesses cylindrical
symmetry.

Fig. 13.15

13.4.3 Spherical Coordinates

Spherical coordinates are particularly useful in problems where radial symmetry
exists. Furthermore, these coordinates are used in geography to fix a point on the
Earth’s surface; it is assumed that the surface of the Earth is spherical. Spherical
coordinates are also called spatial polar coordinates.

To fix the position of a point in these coordinates, we need three quantities:

r , the position of the radius vector,
� , the angle between the radius vector and the z-axis, known as the polar angle,
�, the angle which the projection of the radius vector in the x−y plane makes

with the x-axis, known as the meridian.

To determine the equations of transformation between Cartesian and spherical co-
ordinates, we start with the projection of the position vector r upon the x−y plane.
The projection of the position vector upon the x−y plane has the length r sin � .
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The relationships are then easily shown (see Fig. 13.16) to be

x = r sin� cos�

y = r sin� sin�

z = r cos�

Fig. 13.16

The equations in the reverse direction are

r =
√
x2 +y2 + z2

cos� =
z√

x2 +y2 + z2

tan� =
y

x

The elemental volume is given by

dV = r2 sin� d� d� dr

It is a little more difficult to determine. Let us find it by taking one step at a time.
dV in the direction of the radius vector has a thickness dr and a base area dA′
(Fig. 13.17), so that

dV = dAdr
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Fig. 13.17

From Fig. 13.18, we see that

dA= (r sin� d�)(r d�) = r2 sin� d� d�

Hence it follows that
dV = r2 sin� d� d� dr

Fig. 13.18
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Example Obtain the volume of a sphere of radiusR.
In order to obtain V we integrate over the three spherical coordinates. The vol-

ume V of the sphere is

V =
∫ 2�

�=0

∫ �

�=0

∫ R

r=0
r2 sin� dr d� d�

=
∫ 2�

0

∫ �

0

R3

3
sin� d� d�

=
∫ 2�

0

R3

3
[−cos� ]�0 d� =

∫ 2�

0

2R3

3
d� =

4

3
�R3

Spherical Symmetry

Examples of spherical symmetry include the gravitational field of the Earth, the
electric field of a point charge and the sound intensity of a point source.

In spherical coordinates, the absolute value of the describing function depends
only on the distance r from the origin and not on the angles � and �.

f = f (r)

Table 13.1 shows the important characteristics of cylindrical and spherical coordi-
nates and their relationship with Cartesian coordinates.

Table 13.1

Coordinates Equations of transformation Elemental volume Suitable for

Cartesian x dV = dx dy dz
y
z

Cylindrical x = r cos�

y = r sin�

z = z

r =
√

x2 +y2

tan� =
y

x
z = z

dV = r d� dr dz axial
symmetry;
cylindrical
symmetry

Spherical x = r sin� cos�

y = r sin� sin�

z = r cos�

r =
√

x2 +y2 +z2

cos� =
z√

x2 +y2 +z2

tan� =
y

x

dV = r2 sin� d� d� dr spherical
symmetry
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13.5 Application: Moments of Inertia of a Solid

In Chap. 7, Sect. 7.4.4 we dealt to some extent with moments of inertia. Here we will
show the calculation of moments of inertia using the concept of multiple integrals.
The moment of inertia plays a major role in the dynamics of rotary motions.

The energy of rotation of a mass element dm rotating about the axis of rotation
with the constant angular velocity ! (see Fig. 13.19) is

dErot =
1

2
!2r2 dm

r denotes the perpendicular distance from the axis of rotation. Thus the energy of
rotation of the total body is

Erot =
1

2
!2

∫

body
r2 dm

The following quantity is called the moment of inertia:

I =
∫

body
r2 dm

Fig. 13.19

Example Calculate the moment of inertia of the cylinder shown in Fig. 13.20. The
axis of rotation is the axis of the cylinder. The density is constant throughout the
body. This problem can best be solved using cylindrical coordinates.

Consider a mass element dm inside the body at a distance r from the axis of
rotation. The moment of inertia of the mass element is

dI = r2 dm

The mass element can be expressed in terms of its volume and density so that

dm= � dV
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Fig. 13.20

The moment of inertia of the whole cylinder is

I =
∫

V
r2� dV = �

∫
r2 dV

The elemental volume dV in cylindrical coordinates is

dV = r d� dr dz

Thus

I = �

∫ h

z=0

∫ R

r=0

∫ 2�

�=0
r3d� dr dz

I = �
R4�h

2
=
R2

2
M (M = total mass = �R2�h)

Example Now we will consider an example in Cartesian coordinates. The solid
shown in Fig. 13.21 has a square base OABC, vertical faces and a sloping top
O′A′B′C′. We want to calculate the moment of inertia about the z-axis.

OA = 25mm, AA′ = 50mm, CC′ = 75mm, OO′ = 100mm. The density is uni-
form throughout the body (� = 7800kg/m3).

We must first find the equation of the plane O′A′B′C′ to get the upper limit of the
variable z.

The general equation of a plane is given by ax+by+cz+d = 0. The constants
a,b,c and d are determined by inserting the given values of the four points O′A′B′C′
in the general equation. For example,

O′ = (0,0,100) , so that c×100+d = 0 and d = −100c ;

A′ = (25,0,50) , so that a×25+ c×50+d = 0 and d = −25a−50c .

There are four such linear equations giving a = 25,b = 1,c = 1,d = −100. The
required equation is 25x+y+ z−100= 0.
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Fig. 13.21

Iz =
∫

x

∫

y

∫

x
�(x2 +y2) dx dy dz

=
∫ 25

x=0

∫ 25

y=0

∫ 100−25x−y

z=0
�(x2 +y2) dz dy dx = 13.875×106�

= 1.079×10−4kg/m2

To conclude this example, let us also calculate the radius of gyration (see Chap. 7,
Sect. 7.4.3):

M = mass =
∫∫∫

� dx dy dz

= �

∫ 25

x=0

∫ 25

y=0

∫ 100−25x−y

z=0
dz dy dz , since � is constant

=
∫ 25

0

∫ 25

0
(100−25x−y) dy dx = 39062.5�= 0.305kg
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The radius of gyration with respect to the z-axis is

kz =

√
1

M
=

√
1.079×10−4

0.305
= 1.88×10−2m or 18.8mm

Appendix

Applications of Double Integrals

Field of Expression
application General Cartesian coordinates Polar coordinates

y = f (x) r = g(�)

Area A A

∫
A

dA =
∫ x2

x1

∫ y2

y1

dy dx =
∫ �2

�1

∫ r2

r1

r dr d�

First moment
or static moment

Mx =
∫

A
y dA =

∫ x2

x1

∫ y2

y1

y dy dx =
∫ �2

�1

∫ r2

r1

r2 sin� dr d�

My =
∫

A
x dA =

∫ x2

x1

∫ y2

y1

x dy dx =
∫ �2

�1

∫ r2

r1

r2 cos� dr d�

Centroid x̄ =
Mx

A

ȳ =
My

A

Moment
of inertia

Ix =
∫

A
y2dA =

∫ x2

x1

∫ y2

y1

y2dy dx =
∫ �2

�1

∫ r2

r1

r3 sin2 � dr d�

Iy =
∫

A
x2dA =

∫ x2

x1

∫ y2

y1

x2dy dx =
∫ �2

�1

∫ r2

r1

r3 cos2 � dr d�

Polar moment
of inertia

I0 =
∫

A
r2dA =

∫ x2

x1

∫ y2

y1

(x2 +y2) dy dx =
∫ �2

�1

∫ r2

r1

r3 dr d�
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Exercises

13.2 Multiple Integrals with Constant Limits

1. Evaluate the following multiple integrals:

(a)
∫ b

y=0

∫ a

x=0
dx dy

(c)
∫ �

x=0

∫ �

y=0
sinx siny dx dy

(e)
∫ 1/2

x=−1/2

∫ 1

y=−1

∫ 2

z=0
dx dy dz

(b)
∫ 2

y=0

∫ 1

x=0
x2dx dy

(d)
∫ 2

n=1

∫ 4

v=2
n(1+v) dn dv

(f)
∫ 1

x=0

∫ y1

y=y0

∫ z1

z=z0

eaz dx dy dz

13.3 Multiple Integrals with Variable Limits

2. Evaluate the integrals

(a)
∫ 2

x=0

∫ 3x

y=x−1
x2dx dy

(b)
∫ 1

x=0

∫ 2x

y=0

∫ x+y

z=0
dx dy dz

Pay particular attention to the order of integration!
(c) Using a double integral, obtain the area of an ellipse and the position of

the center of mass of the half ellipse (x ≥ 0).
The equation of an ellipse is

x2

a2
+
y2

b2
= 1

13.4 Coordinate Systems

3. (a) A point has Cartesian coordinates P = (3,3). What are its polar coordi-
nates?

(b) Give the equation of a circle of radius R in Cartesian coordinates and
polar coordinates.

Fig. 13.22
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(c) Obtain the equation of the spiral shown in Fig. 13.22 in polar coordi-
nates.

(d) Evaluate
∫ �/4

�=0

∫ a

r=0
r2 cos� dr d� .

4. (a) Compute the volume of the hollow cylinder shown in Fig. 13.23 using
cylindrical coordinates.

Fig. 13.23

(b) Evaluate the volume of a cone of radius R and height h. Obtain the
moment of inertia of the cone about its center axis. The density � is
constant.

5. Calculate the moment of inertia of a sphere of radius R and of constant
density � about an axis through its center, using spherical coordinates.



Chapter 14
Transformation of Coordinates; Matrices

14.1 Introduction

One important aspect in the solution of physical and engineering problems is the
choice of coordinate systems. The right choice may considerably reduce the degree
of difficulty and the length of the necessary computations.

Consider, for example, the motion of
a spherical particle down an inclined
plane, as shown in Fig. 14.1.

Fig. 14.1

The force of gravity, F =mg, directed vertically down can be resolved into two
components, one parallel to the inclined plane and the other perpendicular to the
plane, as shown in the figure.

The component parallel to the inclined plane is

F p =mg sin˛

and the component perpendicular to the plane is mg cos˛.

Fig. 14.2

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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To analyse the motion of the particle we must define a frame of reference, i.e.
a suitable coordinate system. Two obvious possibilities exist:

(a) the x-axis horizontal (Fig. 14.2a); or
(b) the x-axis parallel to the inclined plane (Fig. 14.2b).

Of course the actual motion of the particle is totally independent of the choice of
a coordinate system. But it is important to note that a judicious choice of coordinates
can simplify the calculations, as we will now demonstrate.

First let us consider case (a). As the particle rolls down the incline, it has motion
in both the x and y directions. In order to determine the motion, we need to divide
the force F p into its components in the x-direction and the y-direction (Fig. 14.3a):

F px = F p cos˛ =mg sin˛ cos˛

F py = F p sin˛ = −mg sin˛ sin˛

According to Newton’s second law of motion,

mẍ = mg sin˛ cos˛

mÿ = −mg sin2˛

The negative sign takes care of the fact that the direction of the force and the chosen
positive direction of the y-coordinate are opposite to each other.

Fig. 14.3

Now let us consider case (b). The motion is restricted to the x-direction
(Fig. 14.3b). Hence

mẍ = mg sin˛

mÿ = 0

These equations are obviously much simpler than those for case (a).
This example shows the importance of the choice of coordinates; in fact in some

cases a problem can only be solved through the choice of appropriate coordinates.
Therefore, before commencing the solution of a problem we should spend a little
time selecting the most appropriate system of coordinates.
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In very complex problems it sometimes happens that during a calculation it be-
comes apparent that a different choice of coordinates would have been more sen-
sible. In such cases, we can either start again from scratch, or, if a lot of work has
already been done, transform the old coordinates into new ones.

In this chapter we consider the second alternative, i.e. the transformation of
a rectangular x−y−z coordinate system into a different rectangular x′−y′−z′ co-
ordinate system, as illustrated in Fig. 14.4.

Fig. 14.4

The following two transformations are particularly important.

Translation

The origin of the coordinates is shifted by a vector r0 in such a way that the old and
the new axes are parallel (Fig. 14.5a).

Fig. 14.5a



404 14 Transformation of Coordinates; Matrices

Rotation

The new system of coordinates is rotated by an angle � relative to the old system.
(Figure 14.5b shows, as an example, a rotation about the x-axis through an angle �.)

Fig. 14.5b

A more general transformation of a rectangular coordinate system into a different
rectangular coordinate system is composed of a translation and a rotation. In this
book we will not consider inversion. For this topic and for general transformations
of coordinate systems the reader should consult advanced mathematical texts.

14.2 Parallel Shift of Coordinates: Translation

Figure 14.6 shows a point P whose position is defined by the vector r = (x,y,z) in
an x−y−z coordinate system.

Fig. 14.6
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We now shift the origin O of the coordinate system to a new origin O′ by the
vector r0 = (x0,y0,z0), as shown in Fig. 14.7, and denote the new set of coordinates
by the axes x′,y′ and z′.

What are the coordinates of P in the new system of coordinates? The vector r in
the x−y−z system corresponds to the vector r ′ in the x′−y′−z′ system of coordi-
nates. From Fig. 14.7 we see that

r = r0 + r ′

or r ′ = r − r0

This is the required vectorial transformation when the axes remain parallel.

Fig. 14.7

When expressed in terms of the coordinates, we obtain the transformation rule
for a shift.

Transformation rule If an x−y−z coordinate system is shifted by a vec-
tor r0 = (x0,y0,z0), the coordinates of a point in
the shifted x′−y′−z′ system are given by

x′ = x−x0 x = x′ +x0

y′ = y−y0 or y = y′ +y0

z′ = z− z0 z = z′ + z0 (14.1)

Example Consider a position vector r = (5,2,3) of a point P. Now shift the coor-
dinate system by the vector r0 = (2,−3,7). Calculate the position vector in the new
system.

According to the transformation rule we have r ′ = r− r0
x′ = 5−2= 3

y′ = 2− (−3) = 5

z′ = 3−7= −4
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Hence P in the x′−y′−z′ system is given by the position vector r ′ = (3,5,−4).
To make clear how useful it can be to shift coordinates, let us consider an-

other case.
Figure 14.8a shows a sphere of radius R whose center O′ does not coincide with

the origin of an x−y−z coordinate system.

Fig. 14.8

Let us investigate the equation of the sphere in two sets of coordinates. The center
of the sphere is fixed by the position vector r0 = (x0,y0,z0). The position vector
for an arbitrary point P on the sphere (Fig. 14.8b) is

r = r0 +R or R = r − r0

Taking the scalar product, we get the equation of the sphere:

R ·R =R2 = (x−x0)2 +(y−y0)2 +(z− z0)2

Fig. 14.9
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Now we will consider an x′−y′−z′ coordinate system which is obtained by shifting
the old system by the vector r0.

The new origin of the coordinate system coincides with the center of the sphere
(see Fig. 14.9). The equation of the sphere in the x′−y′−z′ coordinate system is
well known to be

R2 = x′2 +y′2 + z′2

This equation is obtained by applying the transformation rule to the previous equa-
tion.

Hence the equation of a sphere and other equations as well can often be made
simpler by shifting the origin of the coordinate system.

14.3 Rotation

14.3.1 Rotation in a Plane

Consider the position vector r = xi + yj in an x−y system of coordinates. We
can now rotate this system through an angle � into a new position, as shown in
Fig. 14.10. The new coordinate axes are denoted by x′ and y′ and the unit vectors
by i ′ and j ′, respectively.

Fig. 14.10

In the x′−y′ coordinate system the vector r is given by

r = x′i ′ +y′j ′

The problem now is to find the relationship between the original coordinates (x,y)
and the new coordinates (x′,y′).

We start with the components (x,y) of r in the original system. These are sepa-
rated into components in the direction of the new axes; we need to find these com-
ponents. Finally, we will collect corresponding terms.



408 14 Transformation of Coordinates; Matrices

From Fig. 14.11, we have

xi = x cos�i ′ −x sin�j ′ for the x component

yj = y sin�i ′ +y cos�j ′ for the y component

In the original system the vector r was given by

r = xi +yj

In the new system, the vector r is obtained by using the relationships for xi and
yj. Thus

r = x cos�i ′ −x sin�j ′ +y sin�i ′ +y cos�j ′

or r = (x cos�+y sin�)i ′ +(−x sin�+y cos�)j ′

The expressions in brackets are the components x′ and y′ in the new coordinate
system:

x′ = x cos�+y sin�

y′ = −x sin�+y cos�

Fig. 14.11

By the reverse argument, the vector r = (x,y) is obtained from r = (x′,y′) by
replacing � by −�. We get

x = x′ cos�−y′ sin�
y = x′ sin�+y′ cos�
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Rule If a vector r = (x,y) is transformed into the vector r = (x′,y′)
when a two-dimensional system of coordinates is rotated through
an angle �, the transformation equations are

x′ = x cos�+y sin�

y′ = −x sin�+y cos�

x = x′ cos�−y′ sin�
y = x′ sin�+y′ cos� (14.2)

Example Given the position vector r = (2,2) of a point P in an x−y system, what
is the position vector of this point when the coordinate system is rotated through an
angle of 45◦?

r is transformed by the rotation according to (14.2) as follows:

x′i ′ = (2cos45◦+2sin45◦)i ′ = 2
√
2i ′

y′j ′ = (−2sin45◦ +2cos45◦)j ′ = 0×j ′

Hence r is given in the rotated system by r = (2
√
2,0) as shown in Fig. 14.12.

It is obvious that in the new system the y′-component vanishes since the x′-axis
coincides with r.

Fig. 14.12

Example Given the hyperbola x2−y2 = 1 in an x−y coordinate system, what is
the equation of this same hyperbola in an x′−y′ coordinate system after the coordi-
nate system has been rotated through an angle of −45◦?

From (14.2), we have

x = x′ cos(−45◦)−y′ sin(−45◦) =
1

2

√
2(x′ +y′)

y = x′ sin(−45◦)+y′ cos(−45◦) =
1

2

√
2(y′ −x′)
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Substituting these into the equation x2−y2 = 1 gives
[
1

2

√
2(x′ +y′)

]2

−
[
1

2

√
2(y′ −x′)

]2

= 1

or
1

2
(x′2 +2x′y′ +y′2)− 1

2
(y′2 −2x′y′ +x′2) = 1

Hence x′y′ =
1

2
or y′ =

1

2x′
This is the required equation of the hyperbola in the x′−y′ coordinate system.

Let us consider the reverse problem.
Given xy = 1/2, we rotate the system of coordinates through an angle of +45◦.

Then the equation of the hyperbola in the new x′−y′ system of coordinates is

(x′ cos45◦−y′ cos45◦)(x′ sin45◦+y′ cos45◦) =
1

2

Hence x′2 −y′2 = 1

14.3.2 Successive Rotations

We will now derive transformation equations for the case when an x−y coordinate
system is rotated through an angle � into an x′−y′ system and then taken through
a further rotation  into an x′′−y′′ system. We require the formula describing the
transformation from the x−y system into the x′′−y′′ system.

Fig. 14.13

We note from Fig. 14.13 that the two successive rotations, � and  , are equal to
a single rotation, �+ . We will show analytically that this assumption is justified.

From (14.2) we have

(a) the rotation of the x−y system into the x′−y′ system through an angle � gives

x′ = x cos�+y sin�

y′ = −x sin�+y cos�
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(b) the rotation of the x′−y′ system into the x′′ − y′′ system through an an-
gle  gives

x′′ = x′ cos +y′ sin 
y′′ = −x′ sin +y′ cos 

Substituting the expressions for x′ and y′ in the last two equations gives

x′′ = (x cos�+y sin�)cos +(−x sin�+y cos�)sin 

y′′ = −(x cos�+y sin�)sin +(−x sin�+y cos�)cos 

Expanding, rearranging and using the addition theorems of trigonometry
(Chap. 3, (3.10)) gives the rule for successive rotations.

Transformation rule for successive rotations in the x−y plane:

x′′ = x cos(�+ )+y sin(�+ )
y′′ = −x sin(�+ )+y cos(�+ )

Reverse transformation:
x = x′′ cos(�+ )−y′′ sin(�+ )
y = x′′ sin(�+ )+y′′ cos(�+ )

(14.3)

The vector r = (x,y) is transformed into the vector r = (x′′,y′′) if the coordinate
system is rotated successively through the angles � and  .

Thus our assumption was correct and the rule is established.

14.3.3 Rotations in Three-Dimensional Space

In this section, we will restrict ourselves to rotations about one of the coordi-
nate axes.
Case 1: Rotation about the z-axis through an angle � (Fig. 14.14).

Fig. 14.14
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The x-axis is rotated to the x′-axis and the y-axis to the y′-axis, the z-axis re-
maining unchanged, i.e. the z- and z′-axes coincide.

It follows that the z-component of a vector r = (x,y,z) is unchanged for a rota-
tion � about the z-axis, i.e. z′ = z.

The transformations of the x- and y-components are those of a rotation through
an angle � in a plane. The transformations from the x−y plane to the x′−y′ plane
are thus the same as in (14.2) in Sect. 14.3.1.

x′ = x cos�+y sin�

y′ = −x sin�+y cos�

z′ = z

Case 2: Now consider a rotation about the x-axis, as shown in Fig. 14.15.

Fig. 14.15

In this case we see that y→ y′,z→ z′ and x′ = x; the transformation takes place
in the y−z plane.

From equations (14.2) we find

y′ = y cos�+ z sin�

z′ = −y sin�+ z cos�

x′ = x

Similarly, for rotations about the y-axis the transformation would take place in the
x−z plane and y′ = y.
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Rule For a rotation about the z-axis of a three-dimensional x−y−z sys-
tem through an angle �, the transformation equations are

x′ = x cos�+y sin�

y′ = −x sin�+y cos�

z′ = z (14.4)

For a rotation about the x-axis, they are

x′ = x

y′ = y cos�+ z sin�

z′ = −y sin�+ z cos� (14.5)

For a rotation about the y-axis, they are

x′ = x cos�+ z sin�

y′ = y

z′ = −x sin�+ z cos� (14.6)

We have obtained transformation equations for rotations about the x-, y- or z-
axis only. Successive rotations can be described as a single rotation about some axis.
Conversely, any rotation about any given axis can be described as a succession of
rotations about the axes of the coordinate system. Details of this can be found in
more advanced texts on algebra.

14.4 Matrix Algebra

Matrix algebra is a powerful tool in linear algebra. It also has the advantage of being
very concise. The transformation equations in the preceding sections can be more
clearly arranged by introducing the concept of matrix operations.

Definition A rectangular array or set of real numbers is called a real matrix.

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 . . . amn

⎞
⎟⎟⎟⎠
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The horizontal lines of numbers are referred to as rows of the matrix.
⎛
⎜⎜⎜⎝

· · · · · ·
· a22 · · · ·
...

...
...

· · · · · ·

⎞
⎟⎟⎟⎠This example shows the second row.

The vertical lines of numbers are referred to as columns of the matrix.
⎛
⎜⎜⎜⎝

· · · · · ·
· a22 · · · ·
...

...
...

· · · · · ·

⎞
⎟⎟⎟⎠This example shows the second column.

Please note that in this book we are dealing only with real matrices (as opposed
to complex matrices). Also, all vectors considered are real vectors (as opposed
to complex vectors).

A matrix with m rows and n columns is said to be an m× n matrix or an
(m,n) matrix. When m �= n the matrix is rectangular, and when m = n it is
square. An m×nmatrix is said to be of the orderm×n.

Matrices are often denoted by a bold upper-case letter or by an upper-case
letter underlined, e.g. A in a manuscript.

Example

A =

⎛
⎝
a11 a12

a21 a22

a31 a32

⎞
⎠ is a 3×2matrix, or a matrix of order 3×2= 6

This matrix can also be written thus:

A = (aik) with i = 1,2,3

k = 1,2

The numbers aik are called the elements of the matrix; the first subscript, i , refers
to the row and the second, k, to the column.

In the case of square matrices, the elements ai i are found on a diagonal which is
called the leading diagonal.
Matrices with one row or one column only are referred to as vectors.

Column and row vectors are denoted by bold lower-case letters.
For example a row vector is given by

a = (aik)(1,n) = (a11 a12 . . . a1n) = (a1 a2 . . . an)
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For example a column vector is given by

a = (aik)(n,1) =

⎛
⎜⎜⎜⎝

a11

a21

...
an1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

a1

a2

...
an

⎞
⎟⎟⎟⎠

14.4.1 Addition and Subtraction of Matrices

Definition The sum (or difference) of two matrices A and B of the same
order m×n is another matrix C of the order m×n whose el-
ements cik are the sum (or difference) aik ± bik of the corre-
sponding elements of matrices A and B.

C = A±B =

⎛
⎜⎜⎜⎝

a11 ± b11 a12 ± b12 · · · a1n ± b1n

a21 ± b21 a22 ± b22 · · · a2n ± b2n

...
...

am1 ± bm1 · · · · · · amn ± bmn

⎞
⎟⎟⎟⎠

(14.7)

Example Given

A =

⎛
⎝

3 −1 4 10

1 3 3 −2
−7 1 5 3

⎞
⎠ and B =

⎛
⎝
−2 5 −8 0

−4 1 −3 0

1 −3 0 −1

⎞
⎠

obtain A +B.
We simply add the elements with the same subscript, i.e. in the same posi-

tion. Hence

C = A +B =

⎛
⎝

1 4 −4 10

−3 4 0 −2
−6 −2 5 2

⎞
⎠
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14.4.2 Multiplication of a Matrix by a Scalar

Definition A matrix A multiplied by a scalar quantity k is a new matrix

whose elements are multiplied by k. (14.8)

Example

If A =
(
a11 a12 a13

a21 a22 a23

)

then kA =
(
ka11 ka12 ka13

ka21 ka22 ka23

)

Example

If A =
(
5 −7 −1
3 2 2

)
and k = 2.5

then kA =
(
12.5 −17.5 −2.5
7.5 5 5

)

14.4.3 Product of a Matrix and a Vector

We illustrate the product of a matrix and a vector by considering the 2×2matrix

A =
(
a11 a12

a21 a22

)

and the vector r = (x,y) or r =
(
x

y

)

We can therefore state the following definition.

Definition The product Ar of a matrix A and a vector r is a new vector r ′
whose components are given by

r ′ = Ar =
(
a11 a12

a21 a22

)(
x

y

)
=
(
a11x+a12y

a21x+a22y

)
(14.9)

The components x′ and y′ of the vector r ′ are obtained by forming the product

of rows and columns as for the scalar product. Hence, if r ′ =
(
x′
y′

)
, then

x′ = a11x+a12y and y′ = a21x+a22y
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Example Obtain Ar if A =
(
1 −3
6 4

)
and r =

(
x

y

)

Ar = r ′ =
(
x′
y′

)
=
(
1 −3
6 4

)(
x

y

)
=
(
x−3y
6x+4y

)

If we have a 3×3matrix and a three-dimensional vector

⎛
⎝
x

y

z

⎞
⎠ then

⎛
⎝
x′
y′
z′

⎞
⎠=

⎛
⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠
⎛
⎝
x

y

z

⎞
⎠=

⎛
⎝
a11x+a12y+a13z

a21x+a22y+a23z

a31x+a32y+a33z

⎞
⎠

Example Obtain r ′ = Ar if r = (x,y,z) and

A =

⎛
⎝
1 0 3

4 −2 0

0 0 5

⎞
⎠

The solution is

r ′ =

⎛
⎝
x′
y′
z′

⎞
⎠=

⎛
⎝
1 0 3

4 −2 0

0 0 5

⎞
⎠
⎛
⎝
x

y

z

⎞
⎠=

⎛
⎝
x+3z
4x−2y
5z

⎞
⎠

14.4.4 Multiplication of Two Matrices

The product AB of two matrices A and B is defined as follows, provided that the
number of columns in A is the same as the number of rows in B.

Definition The product AB of a matrix A of order (m×n) and a matrix B

of order (n×p) is a matrix C of order (m×p). The coefficients
of the matrix C are denoted by

cik(i = 1,2, . . .m; k = 1,2, . . .p).

They are obtained by multiplying the i th row of matrix A by the
kth column of B, both being considered as vectors and forming
the ‘scalar product’ as follows:

cik =
n

∑
v=1

aivbvk = ai1b1k +ai2b2k + · · ·+ainbnk (14.10)
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The following diagram indicates the way the coefficients of the matrix C = AB

are generated. It shows how the coefficient c22 is calculated.

This shows what is meant by saying that we form the scalar product of the i th
row (2nd in this example) of matrix A by the kth column (2nd in this example) of
matrix B.

Example Obtain the product of

A =
(
5 2

0 1

)
and B =

(−3 7

1 −1
)

The solution is

AB =
(
5 2

0 1

)(−3 7

1 −1
)

=
(−15+2 35−2

0+1 0−1
)

=
(−13 33

1 −1
)

Example Find the product of

A =

⎛
⎜⎜⎝
1 0 1

2 −7 8

0 1 −4
6 2 1

⎞
⎟⎟⎠ and B =

⎛
⎝

2 0

−3 −1
4 5

⎞
⎠

A is a 4×3matrix and B a 3×2 matrix. Hence the product will be a 4×2 matrix.
The solution is

AB =

⎛
⎜⎜⎝
2+0+4 0+0+5
4+21+32 0+7+40
0−3−16 0−1−20
12−6+4 0−2+5

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

6 5

57 47

−19 −21
10 3

⎞
⎟⎟⎠

Note that the product of two matrices A and B is, in general, not commutative,
i.e. AB �= BA.
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14.5 Rotations Expressed in Matrix Form

14.5.1 Rotation in Two-Dimensional Space

The transformation equations for a rotation through an angle � (Fig. 14.16) were
obtained in Sect. 14.3.1 (14.2). They are

x′ = x cos�+y sin�

y′ = −x sin�+y cos�

Fig. 14.16

These equations can now be expressed in matrix form to give the new vector as
a product of a rotation matrix and the original vector:

(
x′
y′

)
=
(

cos� sin�
−sin� cos�

)(
x

y

)

Example Let us rotate an x−y coordinate system through an angle � =�/2 so that
the x-axis moves into the y-axis and the y-axis into the negative x-axis. Calculate
the rotation matrix.

Substituting the value of �/2 into the general rotation matrix we get

(
cos �

2 sin �
2

−sin �
2 cos �

2

)
=
(

0 1

−1 0
)

The transformation of coordinates is obtained:
(
x′
y′

)
=
(

0 1

−1 0
)(

x

y

)
=
(

y

−x
)

We now determine the matrix for successive rotations � and  .
We first rotate through an angle �. Thus x goes to x′ and y to y′. Second, we

rotate through an angle  . Thus x′ goes to x′′ and y′ to y′′. The equations obtained
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in Sect. 14.3.2 look in matrix form as follows:(
x′
y′

)
=
(

cos� sin�
−sin� cos�

)(
x

y

)
[1]

(
x′′
y′′

)
=
(

cos sin 
−sin cos 

)(
x′
y′

)
[2]

Substituting Eq. [1] into Eq. [2] gives
(
x′′
y′′

)
=
(

cos sin 
−sin cos 

)(
cos� sin�
−sin� cos�

)(
x

y

)

Multiplying out these matrices gives
(
x′′
y′′

)
=
(

cos cos�− sin sin� cos sin�+ sin cos�
−sin cos�− cos sin� −sin sin�+ cos cos�

)(
x

y

)

By applying the addition theorems in trigonometry, the transformation matrix finally
becomes (

cos(�+ ) sin(�+ )
−sin(�+ ) cos(�+ )

)

14.5.2 Special Rotation in Three-Dimensional Space

In Sect. 14.3.3 we derived the transformation equations for a rotation about the z-
axis (Fig. 14.17) through an angle �.

These transformation equations are

x′ = x cos�+y sin�

y′ = −x sin�+y cos�

z′ = z

Fig. 14.17
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We can express these equations in matrix form thus:
⎛
⎝
x′
y′
z′

⎞
⎠=

⎛
⎝

cos� sin� 0
−sin� cos� 0
0 0 1

⎞
⎠
⎛
⎝
x

y

z

⎞
⎠

The transformation matrix for rotation about the y-axis through an angle  is
⎛
⎝

cos 0 sin 
0 1 0

−sin 0 cos 

⎞
⎠

You should verify this for yourself.

14.6 Special Matrices

In this section we introduce the definitions of some important special matrices.
Some assertions will be made without proof.

Unit Matrix

A unit matrix is a quadratic matrix of the following form:

I =

⎛
⎝
1 0 0

0 1 0

0 0 1

⎞
⎠

All elements on the leading diagonal are unity and all other elements are zero.
If a vector r or a matrix A is multiplied by a unit matrix I , the vector or the

matrix remains unchanged.

Ir = r

IA = A

These relationships are easy to verify.

Diagonal Matrices

A diagonal matrix is a quadratic matrix whose elements are all zero except those on
the leading diagonal.

D =

⎛
⎝
a11 0 0

0 a22 0

0 0 a33

⎞
⎠

A unit matrix is thus a special diagonal matrix.
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Null Matrix

A null matrix is one whose elements are all zero; it is denoted by 0. We should note
that if AB = 0, it does not necessarily follow that A = 0 or B = 0.

Transposed Matrix

If we interchange the rows and columns of a matrix A of order m×n we obtain
a new matrix of order n×m. This matrix is called the transposed matrix or the
transpose of the original matrix and it is denoted by AT or Ã.

If A =

⎛
⎝
a11 a12

a21 a22

a31 a32

⎞
⎠ then AT =

(
a11 a21 a31

a12 a22 a32

)
(14.11)

Note that AT is the mirror image of A.

Example

If A =

⎛
⎝
2 0 0

2 1 −6
6 0 −1

⎞
⎠ then AT =

⎛
⎝
2 2 6

0 1 0

0 −6 −1

⎞
⎠

Note that the first row becomes the first column, the second row becomes the second
column, etc.

You should verify the following assertions for yourself.

1. The transpose of the transposed matrix gives the original matrix A.

(AT)T = A

2. An important relationship is

(AB)T = BTAT

and generally (ABC . . .Z)T = ZT . . .BTAT

Orthogonal Matrices

A square matrix A which satisfies the following identity is called an orthogonal
matrix:

AAT = I (orthogonality) (14.12)

This relationship is equivalent to

ATA = I
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It can be interpreted in terms of rows and columns of the matrix A as follows. The
nth column of A is the nth row of AT. Now consider the equation AAT = I . If
we think of rows and columns as vectors and compute their scalar product, then we
observe for an orthogonal matrix A that

1. the scalar product of a column by itself is 1;
2. the scalar product of a column by a different column is always zero.

The following assertions are equivalent:

3. the scalar product of a row by itself is 1;
4. the scalar product of a row by a different row is always zero.

For example, the matrices describing rotations are always orthogonal matrices.
The name ‘orthogonal’ is derived from the fact that if an orthogonal matrix A is

applied to two vectors r and s, their scalar product remains unaffected, i.e.

r · s = (Ar) · (As)

This implies that the lengths and angles of the vectors are preserved, and, in partic-
ular, a system of orthogonal coordinate axes is transformed into another orthogonal
system.

Singular Matrix

A matrix whose determinant is zero is called a singular matrix (for determinants see
Chap. 15).

Symmetric Matrices and Skew-Symmetric (or Antisymmetric) Matrices

For square matrices two new properties may be relevant. A square matrix is called
symmetric if for all i and jaij = aj i . This means it equals its transpose.

A = AT (symmetry) (14.13)

A square matrix is called skew-symmetric or antisymmetric if all aij = −aj i .
This means it equals the negative of its transpose. Note that for antisymmetric ma-
trices all elements on the leading diagonal are zero.

A = −AT (skew-symmetry) (14.14)

It is useful to note that any square matrix can be expressed as the sum of a sym-
metric and a skew-symmetric matrix.
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Proof

A =
1

2
(A +AT)+

1

2
(A−AT)

Observe that the first term is a symmetric matrix and the second term is a skew-
symmetric matrix.

Example Write as the sum of a skew-symmetric and a symmetric matrix

A =

⎛
⎝
798 29 26

1 8 27

74 69 88

⎞
⎠

The solution is

A =

⎛
⎝

0 14 −24
−14 0 −21
24 21 0

⎞
⎠+

⎛
⎝
798 15 50

15 8 48

50 48 88

⎞
⎠

14.7 Inverse Matrix

If a square matrix A when multiplied by another matrix B results in the unit matrix,
then the matrix B is called the inverse matrix of A; it is denoted by A−1. Not all
matrices possess an inverse, and the criterion for a matrix to have an inverse is that
its determinant must be different from zero, i.e. it must not be singular. Determinants
are dealt with in Chap. 15. If an inverse exists it is unique.

The following equations must hold true:

AA−1 = I , (post multiplication by A−1)

A−1A = I , (pre multiplication by A−1) (14.15)

We will not give details here of how A−1 is calculated. This will be done in
Chap. 15, Sect. 15.2.3. For the time being we will give only the following example
for an inverse matrix.

If A =

⎛
⎝
2 0 0

2 1 −6
6 0 −1

⎞
⎠ then A−1 =

⎛
⎝

1
2 0 0

17 1 −6
3 0 −1

⎞
⎠

As an exercise, you should verify for yourself that

AA−1 = A−1A = I

Returning to the concept of orthogonal matrices introduced earlier, we can now state
the following criterion. A square matrix A is orthogonal if its inverse is equal to its
transpose, i.e. if A−1 = AT.
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If the operations with matrices have been understood using simple examples you
will do the calculations later on using a PC and programs like Mathematica, Maple,
Derive or others.

Exercises

14.2 Parallel Shift of Coordinates

1. The vertex of the paraboloid shown in Fig. 14.18 is at a distance 2 from the
origin of the coordinates. The equation is

z = 2+x2 +y2

What is the transformation which will shift the paraboloid so that its vertex
coincides with the origin O?

Fig. 14.18

2. The equation of a certain straight line is y =−3x+5. What will its equation
be in a new x′−y′ coordinate system due to a shift of the origin of (−2,3)?
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14.3 Rotation

3. A two-dimensional system of coordinates is rotated through an angle of
�/3. The transformation matrix is

⎛
⎜⎜⎝

1

2

√
3

2

−
√
3

2

1

2

⎞
⎟⎟⎠

What is the new vector r ′ if r = (2,4)?

4. Given the equation y = −x/√3+2, if the system of coordinates is rotated
through an angle of 60◦ obtain an expression for the equation in the rotated
system.

5. A three-dimensional system of coordinates is rotated about the z-axis
through an angle of 30◦. Obtain the transformed vector r ′ if r = (3,3,3).

14.4 Matrix Algebra

6. Given the two matrices A and B where

A =

⎛
⎝
1 3

2 5

0 7

⎞
⎠ and B =

⎛
⎝

2 0

−1 3
−1 2

⎞
⎠

evaluate

(a) A +B,
(b) A−B

7. Let

A =

⎛
⎝
2 7

3 0

9 −1

⎞
⎠ and B =

(
9 3 0

1 −2 4
)

(a) Evaluate the matrix 6A.
(b) Show that the expression AB �= BA.

8. Given

A =

⎛
⎝
1 2

7 3

5 9

⎞
⎠ and B =

⎛
⎝
−1 0

2 3

−1 −1

⎞
⎠

evaluate AB
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9. Evaluate the product Ar = r ′ if

A =
(
1 −2
5 7

)
, r =

(
x

y

)

10. Given

A =

⎛
⎝
1 2

4 −3
3 0

⎞
⎠

evaluate

(a) AT

(b) (AT)T

11. How many independent entries are there in a skew-symmetric 3×3matrix?

12. Decompose into a symmetric and a skew-symmetric matrix:
⎛
⎜⎝
54 1 1

0 26 20

8 84 9

⎞
⎟⎠

14.7 Inverse Matrix

13. If

A =

⎛
⎝
1 0 3

2 −3 1

1 2 2

⎞
⎠ and A−1 =

1

13

⎛
⎝
−8 6 9

−3 −1 5

7 −2 −3

⎞
⎠

show that AA−1 = A−1A = I



Chapter 15
Sets of Linear Equations; Determinants

15.1 Introduction

In this chapter we will investigate the solution of sets of linear algebraic equations.
First, we show a method which will be used in most practical cases. This is the
Gaussian method of elimination and its refinements. The basic idea is quite clear
and elementary. Notation in matrix form will prove to be helpful.

Second, the concept of determinants and a second method of solution, Cramer’s
rule, will be developed. This concept is of theoretical importance, e.g. a determinant
shows whether a set of simultaneous equations is uniquely solvable.

15.2 Sets of Linear Equations

15.2.1 Gaussian Elimination: Successive Elimination of Variables

Our problem is to solve a set of linear algebraic equations. For the time being we
will assume that a unique solution exists and that the number of equations equals
the number of variables.

Consider a set of three equations:

a11x1 +a12x2 +a13x3 = b1

a21x1 +a22x2 +a23x3 = b2

a31x1 +a32x2 +a33x3 = b3

The basic idea of the Gaussian elimination method is the transformation of this set
of equations into a staggered set:

a′
11x1 +a′

12x2 +a′
13x3 = b′

1

a′
22x2 +a′

23x3 = b′
2

a′
33x3 = b′

3

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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All coefficients a′
ij below the diagonal are zero. The solution in this case is straight-

forward. The last equation is solved for x3. Now, the second can be solved by in-
serting the value of x3. This procedure can be repeated for the uppermost equation.

The question is how to transform the given set of equations into a staggered set.
This can be achieved by the method of successive elimination of variables. The
following steps are necessary:

1. We have to eliminate x1 in all but the first equation. This can be done by sub-
tracting a21/a11 times the first equation from the second equation and a31/a11

times the first equation from the third equation.
2. We have to eliminate x2 in all but the second equation. This can be done by

subtracting a32/a22 times the second equation from the third equation.
3. Determination of the variables. Starting with the last equation in the set and

proceeding upwards, we obtain first x3, then x2, and finally x1.

This procedure is called the Gaussian method of elimination. It can be extended to
sets of any number of linear equations.

Example We can solve the following set of equations according to the procedure
given:

6x1 −12x2 +6x3 = 6 [1]

3x1 − 5x2 +5x3 = 13 [2]

2x1 − 6x2 +0 = −10 [3]

1. Elimination of x1. We multiply Eq. [1] by 3/6 and subtract it from Eq. [2]. Then
we multiply Eq. [1] by 2/6 and subtract it from Eq. [3]. The result is

6x1 −12x2 +6x3 = 6 [1]

x2 +2x3 = 10 [2′]
−2x2 −2x3 = −12 [3′]

2. Elimination of x2. We multiply Eq. [2′] by 2 and add it to Eq. [3′]. The result is

6x1 −12x2 +6x3 = 6 [1′]

x2 +2x3 = 10 [2′]

2x3 = 8 [3′′]

3. Determination of the variables x1,x2,x3. Starting with the last equation in the
set, we obtain

x3 =
8

2
= 4

Now Eq. [2′] can be solved for x2 by inserting the value of x3. Thus

x2 = 2
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This procedure is repeated for Eq. [1] giving

x1 = 1

15.2.2 Gauss–Jordan Elimination

Let us consider whether a set of n linear equations with n variables can be trans-
formed by successive elimination of the variables into the form

x1 + 0 + 0 + · · ·+ 0 = C1

0 + x2 + 0 + · · ·+ 0 = C2

0 + 0 + x3 + · · ·+ 0 = C3

...
...

...
...

...

0 + 0 + 0 + · · ·+ xn = Cn

The transformed set of equations gives the solution for all variables directly. The
transformation is achieved by the following method, which is basically an extension
of the Gaussian elimination method.

At each step, the elimination of xj has to be carried out not only for the co-
efficients below the diagonal, but also for the coefficients above the diagonal. In
addition, the equation is divided by the coefficient ajj .

This method is called Gauss–Jordan elimination.
We show the procedure by using the previous example.
This is the set

6x1 −12x2 +6x3 = 6

3x1 − 5x2 +5x3 = 13

2x1 − 6x2 +0 = −10

To facilitate the numerical calculation, we will begin each step by dividing the re-
spective equation by ajj .

1. We divide the first equation by a11 = 6 and eliminate x1 in the other two equa-
tions.

Second equation: we subtract 3× first equation

Third equation: we subtract 2× first equation

This gives
x1 −2x2 +x3 = 1 [1]

0+x2 +2x3 = 10 [2]

0−2x2−2x3 = −12 [3]
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2. We eliminate x2 above and below the diagonal.

Third equation: we add 2× second equation

First equation: we add 2× second equation

This gives
x1 +0 +5x3 = 21 [1′]
0+x2 +2x3 = 10 [2′]
0+0 +2x3 = 8 [3′]

3. We divide the third equation by a33 and eliminate x3 in the two equations
above it.

Second equation: we subtract 2× third equation

First equation: we subtract 5× third equation

This gives
x1 +0 +0 = 1 [1′′]
0+x2 +0 = 2 [2′′]
0+0 +x3 = 4 [3′′]

This results in the final form which shows the solution.

15.2.3 Matrix Notation of Sets of Equations
and Determination of the Inverse Matrix

Let us consider the following set of linear algebraic equations:

a11x1 +a12x2 +a13x3 = b1

a21x1 +a22x2 +a23x3 = b2

a31x1 +a32x2 +a33x3 = b3

This set of equations can formally be written as a matrix equation. Let A be a matrix,
whose elements are the coefficients aij . It is called a matrix of coefficients.

A =

⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

x and b are column vectors:

x =

⎛
⎝

x1

x2

x3

⎞
⎠ b =

⎛
⎝

b1

b2

b3

⎞
⎠
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The set of equations can now be written

Ax = b

In Chap. 14 we discussed the rules for the multiplication of matrices, the concepts of
the inverse matrix A−1 and of the unit matrix I . You will remember that A−1A = I .

Let us consider a matrix equation representing a set of linear algebraic equations:

Ax = b

We will now multiply both sides of this matrix equation from the left (premultipli-
cation) by the inverse of A.

A−1Ax = A−1b

Since A−1A = I , we obtain
Ix = A−1b

This equation is in fact the solution of the set of linear equations in matrix notation.
But at present we do not have the inverse A−1 of the matrix of coefficients A to
perform this multiplication. On the other hand, we do know a method for solving
a set of linear equations, e.g. the Gauss–Jordan elimination. We want to find if a re-
lationship exists between the solution of a set of equations and the determination of
A−1.

Without giving the proof we can state the answer. We transform the matrix of
coefficients A by the Gauss–Jordan elimination into a unit matrix I . If we apply all
operations simultaneously to a unit matrix I , the latter will be transformed into the
inverse A−1.

Thus we do not, in practice, gain a new method for solving a set of linear equa-
tions, but a method for calculating the inverse of a given matrix.

Consequently, if we form the inverse of the matrix of coefficients A and premul-
tiply matrix b by it, then we obtain as a column vector the solution of x.

An n×m matrix can formally be augmented by another n× o matrix B thus
forming an augmented n× (m + o) matrix denoted A|B. For example, A|I is an
augmented matrix whose first part consists of A and whose second part consists
of I .

Rule Calculation of the inverse A−1 of a matrix A.
Augment A by a unit matrix I . Execute the Gauss–Jordan elimina-
tion to transform the first part A of the augmented matrix into a unit
matrix. Then the second part I will be transformed into A−1.

As an example, we will show the calculation of the inverse matrix of A cited in
Sect. 14.7. Consider

A =

⎛
⎝

2 0 0

2 1 −6

6 0 −1

⎞
⎠
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We extend A by I and get the augmented matrix A|I :

A|I =

⎛
⎝

2 0 0

2 1 −6

6 0 −1

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

⎞
⎠

Now we carry out the Gauss–Jordan elimination to transform its first part A into the
unit matrix, following the steps described in the previous section.

1. Division of the first row by a11 = 2 and elimination of the elements of the first
column below the diagonal results in

⎛
⎝

1 0 0

0 1 −6

0 0 −1

∣∣∣∣∣∣

1
2 0 0

−1 1 0

−3 0 1

⎞
⎠

2. The elements of the second column above and below the diagonal are already
zero, so nothing has to be done for this step.

3. Division of the third row by a33 = −1 and elimination of the element above in
the third column results in

⎛
⎝

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣

1
2 0 0

17 1 −6

3 0 −1

⎞
⎠

The second part of the augmented matrix represents A−1:

A−1 =

⎛
⎝

12 0 0

17 1 −6

3 0 −1

⎞
⎠

Further, we make use of the matrix notation to facilitate the writing while transform-
ing the system of equations.

Each row of the matrix equation Ax = b represents a linear algebraic equation.
Suppose we multiply row i by a factor. Then all terms aij xj (j = 1 . . . n) and bi

have to be multiplied by this factor. This is carried out by multiplying all elements
in row i of the matrix of coefficients and bi by this factor.

Suppose we add row i to row j . Then we have a new row whose coefficients are
(ai1 +aj1), (ai2 +aj 2), . . . , (ain +ajn) and the value of b′

j is then (bi +bj ).
This equals the addition of corresponding elements of the coefficient matrix A

of row i to row j and of bi to bj . It can be generalised for the addition of multiples
of an equation and for subtraction of multiples of equations.

Thus the Gaussian elimination method and the Gauss–Jordan elimination can
be carried out by performing the transformations with the elements of the matrix of
coefficients and with the corresponding elements of b. This can be done using matrix
notation if we augment the matrix of coefficients A with the column vector b and
transform this augmented matrix A|b according to the Gaussian or Gauss–Jordan
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elimination. Then the first part A will be transformed into a unit matrix and the
column b will be transformed into the column vector of solutions. This is more
concise and reduces the chance of making errors.

15.2.4 Existence of Solutions

Number of Variables and Equations

We know that from one equation we can only determine one unknown variable. If
we have one equation and two variables, one of the variables can only be expressed
in terms of the other.

In order to determine n variables we need n equations. These equations must be
linearly independent. An equation is linearly dependent if it can be expressed as
a sum of multiples of the other equations.

If we have n variables and m linearly independent equations (m < n), only m

variables can be determined and n−m variables can be freely chosen. Let us ex-
plain: in a system of m equations, (n−m) variables can be shifted to the RHS,
m variables remain at the LHS. The Gauss–Jordan elimination can now be carried
out, giving a solution for m variables. But this solution contains the n−m variables
previously shifted to the RHS. Thus these are the freely chosen parameters.

If m > n, the system is overdetermined. It is solvable only if m−n equations are
linearly dependent.

Existence of a Solution

Let us consider a set of n linear equations containing n variables. If at any stage in
the elimination procedure the coefficient ajj of a variable xj happens to be zero,
the equation has to be changed for an equation whose coefficient of xj below the
diagonal is �= 0. If all coefficients of xj below the diagonal are zero too, the set has
no unique solution or no solution at all. In this case, we proceed to the next variable
and continue the elimination procedure.

The set of equations has no unique solution if on the RHS of row j the value
of bj is zero. This happens when the equation is linearly dependent on the other
ones. The value of this variable is not determined and it is freely chosen. It should
be added that if this happens r times we will have r variables freely chosen.

This can be understood if we note that a row of zeros reduces the number of
equations. In this case, the number of variables n exceeds the number of remaining
equations (m = n− r) and, as has been stated above, n−m = r parameters are
freely chosen.

The set has no solution at all if on the RHS of row j the value of bj is not
zero. In this case we have the equation 0 = bj , which is impossible. Thus the set of
equations contains contradictions and has no solution at all.
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Solution of a Homogeneous Set of Linear Equations

Consider a set of n linear equations with n variables. If all constants bj on the RHS
are zero, we have what is referred to as a set of homogeneous linear equations.
There is a trivial solution with

xj = 0 , j = 1, . . . ,n

A non-trivial solution may also exist. In this case, there must be at least one equa-
tion linearly dependent on the others. Consequently, the solution is not unique and
contains at least one parameter freely chosen.

Example Given a set of linear equations
⎛
⎜⎜⎝

4 −8 0 −4

1 1 3 5

2 −2 2 4

−3 7 1 7

⎞
⎟⎟⎠ x =

⎛
⎜⎜⎝
−12

12

8

18

⎞
⎟⎟⎠

Augmented matrix A|b

A|b =

⎛
⎜⎜⎝

4 −8 0 4

1 1 3 5

2 −2 2 4

−3 7 1 7

∣∣∣∣∣∣∣∣

−12

12

8

18

⎞
⎟⎟⎠

We use matrix notation and carry out the transformations with the augmented matrix
A|b.

1. Division of the first row by a11 and then elimination of the coefficients in the
first column: Subtraction of row 1 from row 2, subtraction of row 1 multiplied
by 2 from row 3, and addition of row 1 multiplied by 4 to row 4, gives

⎛
⎜⎜⎝

1 −2 0 −1

0 3 3 6

0 2 2 6

0 1 1 4

∣∣∣∣∣∣∣∣

−3

15

14

9

⎞
⎟⎟⎠

2. Division of the second row by a22 and then elimination of the coefficients in the
second column: Addition of row 2 multiplied by 2 to row 1, subtraction of row
2 multiplied by 2 from row 3, and subtraction of row 2 from row 4 gives

⎛
⎜⎜⎝

1 0 2 3

0 1 1 2

0 0 0 2

0 0 0 2

∣∣∣∣∣∣∣∣

7

5

4

4

⎞
⎟⎟⎠

3. In the third column a33 and all coefficients below the diagonal happen to be
zero. Thus we proceed to the fourth column. We divide the fourth row by a44
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and eliminate the coefficients above. We obtain
⎛
⎜⎜⎝

1 0 2 0

0 1 1 0

0 0 0 0

0 0 0 1

∣∣∣∣∣∣∣∣

1

1

0

2

⎞
⎟⎟⎠

In the third row all elements are zero. Thus the set has no unique solution. The value
of x3 can be freely chosen and hence the values of x1 and x2 depend on this choice.

x1 = 1−2x3

x2 = 1−x3

x4 = 2

Example Solve the following set of homogeneous linear equations.
⎛
⎝

1 4 −1

4 16 −4

2 −3 1

⎞
⎠x = 0

Augmented matrix A|b ⎛
⎝

1 4 −1

4 16 −4

2 −3 1

∣∣∣∣∣∣
0

0

0

⎞
⎠

1. Eliminating the coefficients in the first column gives
⎛
⎝

1 4 −1

0 0 0

0 −11 3

∣∣∣∣∣∣
0

0

0

⎞
⎠

We see that the set has a non-trivial solution, since one row consists of zeros and
is thus linearly dependent.

2. Since a22 = 0, we interchange row 2 and row 3. Dividing the new diagonal
element and eliminating the coefficient above the diagonal in the second col-
umn gives ⎛

⎝
1 0 1

11

0 1 − 3
11

0 0 0

∣∣∣∣∣∣
0

0

0

⎞
⎠

We are left with two equations for three variables. We write it down explicitly, shift
the third variable to the RHS and obtain the solution:

x1 = − 1

11
x3

x2 =
3

11
x3

The variable x3 is freely chosen. Thus the solution is not unique: it contains one free
parameter.
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15.3 Determinants

15.3.1 Preliminary Remarks on Determinants

In this section on determinants we explain the concept and its properties. We
give as an application the method of solving sets of linear equations known as
Cramer’s rule.

We will introduce the concept of a determinant by means of an example.
Consider two linear equations with two unknowns, x1 and x2:

a11x1 +a12x2 = b1

a21x1 +a22x2 = b2
or

(
a11 a12

a21 a22

)(
x1

x2

)
=
(

b1

b2

)

These equations, when solved, give

x1 =
b1a22 −b2a12

a11a22 −a12a21

x2 =
b2a11 −b1a21

a11a22 −a12a21

The solutions exist, provided that the denominators are not equal to zero. We notice
that these denominators are the same for x1 and x2. It is customary to express them
as follows: ∣∣∣∣

a11 a12

a21 a22

∣∣∣∣= a11a22 −a12a21

This expression is called the determinant of the matrix A. If this determinant is
different from zero, then unique solutions exist for x1 and x2.

The determinant is a prescription to assign a numerical value to a square matrix.
For example, we can speak of the determinant of the 2× 2 matrix A. There are

several notations used in the literature:

det

(
a11 a12

a21 a22

)
= det A =

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣= ∆ = a11a22 −a12a21

The given formula applies only for the determinant of a 2×2 matrix. But the eval-
uation of the determinant of a n×n matrix can be reduced successively to the eval-
uation of determinants of 2×2 matrices.

The solution of a set of two linear equations for x1 and x2 can be expressed in
terms of determinants:

x1 =

∣∣∣∣
b1 a12

b2 a22

∣∣∣∣
det A

x2 =

∣∣∣∣
a11 b1

a21 b2

∣∣∣∣
det A

This is Cramer’s rule for two linear equations which will be dealt with generally in
Sect. 15.3.4.
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15.3.2 Definition and Properties of an n-Row Determinant

Generally speaking, the determinant of a square matrix of order n (n rows and
n columns) is referred to as an n-order determinant. Although the determinant is
a prescription to assign one numerical value to a given square matrix consisting of
n2 elements, it is usual, before the numerical evaluation, to refer to elements, rows
and columns of the determinant in the notation below. Nevertheless, it is essential
to distinguish between a matrix, which is an array of numbers, and its determinant,
which is a number.

det

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1k . . . a1n

...
...

...
...

ai1 ai2 . . . aik . . . ain
...

...
...

...
an1 an2 . . . ank . . . ann

⎞
⎟⎟⎟⎟⎟⎟⎠

=

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1k . . . a1n

...
...

...
...

ai1 ai2 . . . aik . . . ain
...

...
...

...
an1 an2 . . . ank . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣

With each element aik is associated a minor found by omitting row i and column k.
The minors are determinants with n−1 rows and columns.

The cofactor Aik is obtained by multiplying the minor of aik by (−1)i+k.
The procedure for evaluating the cofactor Aik is shown below.

Finally, we define the expansion of the determinant by a row (or a column). It
is defined by multiplying each element of the row (or column) by its cofactor and
summing these products.

Example We expand the given determinant by the first row. First we evaluate the
cofactors of the first row:

det A =

∣∣∣∣∣∣
1 2 3

3 2 1

5 −3 1

∣∣∣∣∣∣
Cofactor A11:

A11 = (−1)1+1

∣∣∣∣
2 1

−3 1

∣∣∣∣= 1

∣∣∣∣
2 1

−3 1

∣∣∣∣= 2− (−3) = 5
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Cofactor A12:

A12 = (−1)1+2

∣∣∣∣
3 1

5 1

∣∣∣∣= −1

∣∣∣∣
3 1

5 1

∣∣∣∣= −1×3− (−1)5 = 2

Cofactor A13:

A13 = (−1)1+3

∣∣∣∣
3 2

5 −3

∣∣∣∣= 1

∣∣∣∣
3 2

5 −3

∣∣∣∣= −9−10 = −19

Second, we multiply the cofactors by the elements a1j and obtain the sum

1×5+2×2+3(−19)= −48

Without giving the proof, we state that the expansion of a determinant by different
rows or columns always gives the same value.

Evaluation of determinants
The value of an n-order determinant is defined by the value of its expansion

by any row or any column.
Expanding by the i th row gives

det A = ai1Ai1 +ai2Ai2 + · · ·+ainAin

Expanding by the kth column gives

det A = a1kA1k +a2kA2k + · · ·+ankAnk

The value of the 3×3 determinant in the preceding example is thus given by the
expansion which has already been obtained.

The evaluation of a determinant with n rows and n columns is reduced to the
evaluation of n determinants with (n−1) rows and (n−1) columns. Applying the
rule again reduces it to determinants with (n−2) rows and (n−2) columns and so
on until we are left with 2-row determinants.

As a special case, it should be noted that the determinant of a diagonal matrix is
given, up to sign, by the product of the diagonal elements. This follows if the given
method is applied.

Hints for the Expansion of Second- and Third-Order Determinants

(a) Second-order determinants. The formula for the evaluation of a second-order
determinant can be easily remembered with the help of the following scheme:
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The value is given by the algebraic sum of the products formed by the elements
on each of the two diagonals, the product taken downwards being positive, and
that taken upwards being negative, i.e. a11a22 −a21a12.

(b) Third-order determinant. We can establish a similar scheme for the expansion
known as Sarrus’ rule.

Sarrus’ rule Repeating the first two columns of the determinant on the
right, the expansion may be written down by taking the al-
gebraic sum of the products formed by the elements on each
of the six diagonals, as shown below; products taken down-
wards are positive and products taken upwards are negative.

Example Evaluate the determinant det A =

∣∣∣∣∣∣
2 3 5

2 1 −3

1 3 4

∣∣∣∣∣∣
Solution 1 using the Sarrus’ rule:

2     3 5     2 3

2     1     –3      2    1

1     3 4     1 3

det A =

= 2×1×4+3(−3)×1+5×2×3

−1×1×5−3(−3)×2−4×2×3

= 8−9+30−5+18−24= 18

Solution 2 using cofactors and expanding by the first column:

det A =

∣∣∣∣∣∣
2 3 5

2 1 −3

1 3 4

∣∣∣∣∣∣

= (−1)1+1 2

∣∣∣∣
1 −3

3 4

∣∣∣∣+(−1)2+1 2

∣∣∣∣
3 5

3 4

∣∣∣∣+(−1)3+1 1

∣∣∣∣
3 5

1 −3

∣∣∣∣
= 2(4+9)−2(12−15)+1(−9−5)
= 26+6−14 = 18
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Properties of Determinants

To evaluate determinants, in practice we frequently make use of the following prop-
erties (considering third-order determinants only for simplicity) to simplify the
working.

Property 1 The value of the determinant is unaltered if columns and
rows are interchanged (transposed).

det A = det AT

Since interchanging rows and columns does not affect the value of the determi-
nant, any property established below for ‘rows’ also holds for ‘columns’. This will
not again be mentioned explicitly. Thus∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a11 a21 a31

a12 a22 a32

a13 a23 a33

∣∣∣∣∣∣

Property 2 If two rows of the determinant are interchanged, the absolute
value of the determinant is unaltered, but its sign is changed.

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
a21 a22 a23

a11 a12 a13

a31 a32 a33

∣∣∣∣∣∣
(rows 1 and 2 are interchanged)

Property 3 If all the elements of one row of the determinant are mul-
tiplied by a constant k, the new determinant is equal to
k× (value of the original determinant).

det A =

∣∣∣∣∣∣
a11 a12 a13

ka21 ka22 ka23

a31 a32 a33

∣∣∣∣∣∣
= k

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
If all the elements of the matrix are multiplied by a constant k the new determinant
is equal to kn× (value of the original determinant).

Property 4 If two rows of a determinant are identical, the value of the
determinant is zero. This applies equally if two rows are pro-
portional to each other.
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Property 5 The value of a determinant is not altered by adding to the
corresponding elements of any row the multiples of the ele-
ments of any other row.

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a11 +ka21 a12 +ka22 a13 +ka23

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣

k× (second row)
is added to first
row

Property 6 If each element of any row is expressed as the sum of two
numbers, the determinant can be expressed as the sum of
two determinants whose remaining rows are unaltered.

∣∣∣∣∣∣
a11 +b1 a12 +b2 a13 +b3

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
+

∣∣∣∣∣∣
b1 b2 b3

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣

Property 7 If the elements of any row are multiplied in order by the
cofactors of the corresponding elements of another row, the
sum of the products is zero.

a11A21 +a12A22 +a13A23 = 0

Using properties 2, 3, 5, any determinant can be transformed so that only diago-
nal elements remain. The product of the diagonal elements is, except for the sign,
the value of the determinant. This is equivalent to the Gauss–Jordan elimination.
In practice, this method considerably reduces the amount of calculation involved in
solving determinants of the fourth order and above. It should be noted that it is suf-
ficient to eliminate the elements below the diagonal (Gaussian elimination), since
the elimination of the elements above the diagonal does not affect the diagonal ele-
ments. ∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
P1 0 0

0 P2 0

0 0 P3

∣∣∣∣∣∣
= P1P2P3

The following example illustrates the application of the above properties before
expanding by a row or column.

Example Evaluate the determinant:

∣∣∣∣∣∣
11 3 7

10 2 6

5 1 4

∣∣∣∣∣∣

Subtraction of row 2 from row 1 (property 5) gives

∣∣∣∣∣∣
1 1 1

10 2 6

5 1 4

∣∣∣∣∣∣
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Subtraction of two times row 3 from row 2 gives

∣∣∣∣∣∣
1 1 1

0 0 −2

5 1 4

∣∣∣∣∣∣

According to property 3, we can write −2

∣∣∣∣∣∣
1 1 1

0 0 1

5 1 4

∣∣∣∣∣∣
We interchange row 1 and row 2 (property 2) and evaluate the cofactor A′

13, obtain-
ing

2

∣∣∣∣∣∣
0 0 1

1 1 1

5 1 4

∣∣∣∣∣∣
= 2(−4) = −8

The determinant can also be solved by transformation into a diagonal form. In this
case we get ∣∣∣∣∣∣

1 0 0

0 −4 0

0 0 +2

∣∣∣∣∣∣
= (+2)(−4)

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
= −8

15.3.3 Rank of a Determinant and Rank of a Matrix

If det A �= 0, we define the rank r of an n order determinant as r = n. If det A = 0,
the rank r is less than n. In this case, the rank of the determinant is defined by the
order of the largest minor whose determinant does not vanish. Thus its rank r is m

if a minor with m rows exists which is not zero, but all minors with more than m

rows are zero.
The rank of a square matrix is defined by the rank of its determinant. From a m×

n matrix, submatrices can be formed by deleting some of its rows or columns. The
rank of a m×n matrix is the rank of the square matrix with the highest rank which
can be formed.

Example Evaluate the rank of the matrix and of its determinant.

det A =

∣∣∣∣∣∣∣∣

1 2 1 2

2 0 2 0

1 0 1 0

2 2 2 2

∣∣∣∣∣∣∣∣
It is not practical to evaluate the determinant of the matrix by calculating the minors
as the calculation involved is rather tedious. We had better try to transform the de-
terminant. If we subtract row 1 and row 3 from row 4, the latter becomes zero. If we
subtract half of row 2 from row 3 the latter becomes zero. Hence

det A =

∣∣∣∣∣∣∣∣

1 2 1 2

2 0 2 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
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There are only minors of rank two which do not vanish. Thus the rank of the matrix
and its determinant is 2. The same result is obtained if we notice that two pairs of
columns of the original matrix are equal.

15.3.4 Applications of Determinants

Cramer’s Rule

Cramer’s rule is a method for solving sets of linear algebraic equations using deter-
minants. This method is of theoretical interest. In practice, it will only be feasible
for sets of two or three equations.

Given a set of equations in matrix notation
⎛
⎜⎝

a11 . . . a1n

...
...

an1 . . . ann

⎞
⎟⎠

⎛
⎜⎝

x1

...
xn

⎞
⎟⎠=

⎛
⎜⎝

b1

...
bn

⎞
⎟⎠

Let det A be the determinant of the matrix of coefficients A. If det A �= 0, the
system has a unique solution.

Let A(k) be a matrix which is obtained by replacing in the matrix of coefficients
the kth column by the column vector b. The solution is then given by

xk =
det A(k)

det A
(k = 1,2,3, . . . ,n)

We will refrain from giving the proof. Although it is straightforward it is quite te-
dious.

Cramer’s rule Given a set of linear algebraic equations Ax = b, the solu-
tion is

xk =
det A(k)

det A
(k = 1,2,3, . . . ,n)

det A(k) is generated from det A by replacing the column of
coefficients aik of the variable xk by the column vector b.

Regarding Cramer’s rule, we can draw some conclusions about the existence
of a solution which are obvious and plausible and have already been stated in
Sect. 15.2.4.

(a) The case of a non-homogeneous set of n linear equations with n unknowns. If
det A = 0, then Cramer’s rule cannot be applied. Such a set of equations has
either an infinite number of solutions or none at all. In this situation, the concept
of the rank of a determinant is of great value.
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(i) If det A is of rank r < n and any of the determinants det A(k) are of rank
greater than r , then no solution exists.

(ii) If det A is of rank r < n and none of the det A(k) have a rank greater
than r , then there is an infinite number of solutions.

(b) The case of a set of homogeneous linear equations (b = 0).

(i) This set of linear equations always has the trivial solution
x1 = x2 = . . . = xn = 0.

(ii) A non-trivial solution exists if and only if the rank r of the matrix A is less
than n, i.e. r < n.

(iii) A homogeneous set of equations with m independent equations and n un-
knowns has a solution which differs from zero if n > m. The solution con-
tains (n−m) arbitrary parameters.

Example Consider the following set of non-homogeneous equations:

x1 + x2 +x3 = 8

3x1 +2x2 +x3 = 49

5x1 −3x2 +x3 = 0

It can be written in matrix notation thus:
⎛
⎝

1 1 1

3 2 1

5 −3 1

⎞
⎠
⎛
⎝

x1

x2

x3

⎞
⎠=

⎛
⎝

8

49

0

⎞
⎠

We can calculate the determinants:

det A =

∣∣∣∣∣∣
1 1 1

3 2 1

5 −3 1

∣∣∣∣∣∣
= −12 det A(1) =

∣∣∣∣∣∣
8 1 1

49 2 1

0 −3 1

∣∣∣∣∣∣
= −156

det A(2) =

∣∣∣∣∣∣
1 8 1

3 49 1

5 0 1

∣∣∣∣∣∣
= −180 det A(3) =

∣∣∣∣∣∣
1 1 8

3 2 49

5 −3 0

∣∣∣∣∣∣
= 240

From Cramer’s rule, the solution is

x1 = 13 , x2 = 15 , x3 = −20

Example Consider now the following set of non-homogeneous equations:

x1 +2x2 + 3x3 = 4

3x1 −7x2 + x3 = 13

4x1 +8x2 +12x3 = 2

It can be written in matrix notation thus:
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⎛
⎝

1 2 3

3 −7 1

4 8 12

⎞
⎠
⎛
⎝

x1

x2

x2

⎞
⎠=

⎛
⎝

4

13

2

⎞
⎠

We can calculate the determinant:

det A =

∣∣∣∣∣∣
1 2 3

3 −7 1

4 8 12

∣∣∣∣∣∣
= 0

According to the above statement, this set of equations has either no unique solu-
tion or no solution at all. To decide which is the case, we use the Gauss–Jordan
elimination and obtain, after the first step,

⎛
⎝

1 2 3

0 −13 −8

0 0 0

⎞
⎠ x =

⎛
⎝

4

1

−14

⎞
⎠

The last equation 0 =−14 is impossible. Thus the system has no solution at all. The
same result follows if we look at the rank of the determinant of A. The rank is 2.
Since the rank of det A(1) is 3, there is no solution at all.

Example Consider again the set of homogeneous linear equations given in the Ex-
ample on p. 437. ⎛

⎝
1 4 −1

4 16 −4

2 −3 1

⎞
⎠x = 0

The first and second equation differ only by the factor 4. Hence the equations are
linearly dependent and

∣∣∣∣∣∣
1 4 −1

4 16 −4

2 −3 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 4 −1

0 0 0

2 −3 1

∣∣∣∣∣∣
= 0

Thus a non-trivial solution exists. Rewriting the first and third equations gives

x1 +4x2 = x3

2x1 −3x2 = −x3

From Cramer’s rule, we have

x1 =

∣∣∣∣
x3 4

−x3 −3

∣∣∣∣∣∣∣∣
1 4

2 −3

∣∣∣∣
= −x3

11
x2 =

∣∣∣∣
1 x3

2 −x3

∣∣∣∣∣∣∣∣
1 4

2 −3

∣∣∣∣
=

3x3

11

Hence we see that, as before, the solution contains one arbitrary parameter.
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Vector Product in Determinant Notation

In Chap. 2, Sect. 2.2.7, we defined the vector product of two vectors
a = (ax , ay , az) and b = (bx , by , bz) as

a×b = i (aybz −azby)+j (azbx −axbz)+k(axby −aybx)

If we regard the expressions in brackets as two-row determinants, the RHS of the
equation can be looked at as the evaluation of a three-row determinant:

a×b =

∣∣∣∣∣∣
i j k

ax ay az

bx by bz

∣∣∣∣∣∣
From the properties of determinants it follows that

a×b = −b×a , since∣∣∣∣∣∣
i j k

ax ay az

bx by bz

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
i j k

bx by bz

ax ay az

∣∣∣∣∣∣

Volume of a parallelepiped

Consider the parallelepiped defined by the three vectors a, b, and c (Fig. 15.1).
From Chap. 2 we know that the value of the vector product z = a×b represents the
area of the base. Furthermore, z is a vector rectangular to the base.

Fig. 15.1

The projection of c on to z represents the height of the parallelepiped. Thus the
volume is

V = |c ·z| = |c(a×b)|
Written as components:

V = |cx(aybz −azby)+ cy(azbx −axbz)+ cz(axby −aybx)|
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This can be expressed as a determinant (up to sign):

V =

∣∣∣∣∣∣
cx cy cz

ax ay az

bx by bz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣
Note that the sign of the determinant is positive if a, b and c are oriented according
to the right-hand screw rule (see Chap. 2).

Exercises

15.2 Sets of Linear Equations

1. Solve the following equations using either Gaussian or Gauss–Jordan elim-
ination. Use matrix notation.

(a)
2x1 + x2 +5x3 = −21

x1 +5x2 +2x3 = 19

5x1 +2x2 + x3 = 2

(c)
x1 + x2 +x3 = 8

3x1 +2x2 +x3 = 49

5x1 −3x2 +x3 = 0

(b)
x− y +3z = 4

23x +2y +4z = 13

11.5x + y +2z = 6.5

(d)
1.2x−0.9y +1.5z = 2.4
0.8x−0.5y +2.5z = 1.8
1.6x−1.2y + 2z = 3.2

2. Obtain the inverse of the following matrices:

(a)

⎛
⎝

2 1 0

1 1 −2

0 3 −4

⎞
⎠

(b)

(−4 8

−6 7

)

3. Investigate the following sets of homogeneous equations and obtain their
solutions.

(a)
x1 + x2 −x3 = 0

−x1 +3x2 +x3 = 0

x2 +x3 = 0
(b)

2x− 3y + z = 0

4x + 4y− z = 0

x− 3
2y + 1

2z = 0



450 15 Sets of Linear Equations; Determinants

15.3 Determinants

4. Evaluate the following determinants:

(a)

∣∣∣∣∣∣
4 3 2

1 0 −1

5 2 2

∣∣∣∣∣∣

(c)

∣∣∣∣∣∣∣∣

3 4 0 2

6 1 −3 1

0 0 4 0

5 −1 2 4

∣∣∣∣∣∣∣∣

(e)

∣∣∣∣∣∣∣∣

−1 0 2 3

2 1 8 5

0 0 −4 −2

1 0 1 4

∣∣∣∣∣∣∣∣

(b)

∣∣∣∣∣∣∣∣

1 7 4 12

5 5 4 3

−2 6 25 3

5 35 20 60

∣∣∣∣∣∣∣∣

(d)

∣∣∣∣∣∣∣∣

4 6 0 7

−3 0 2 8

10 1 0 2

5 2 0 1

∣∣∣∣∣∣∣∣

5. Determine the rank r of

(a) A =

⎛
⎝
−1 4 1 3

2 −2 −2 0

0 2 0 2

⎞
⎠ (b) B =

⎛
⎜⎜⎝

3 2 2 2

4 2 4 2

3 1 3 1

2 1 2 1

⎞
⎟⎟⎠

6. Find out whether the sets of linear equations given in question 1 are uniquely
solvable by examination of the determinant of the matrix of coefficients.



Chapter 16
Eigenvalues and Eigenvectors of Real Matrices

16.1 Two Case Studies: Eigenvalues of 2×2 Matrices

In Chap. 14 it was shown how a matrix A and a vector r can be multiplied to give
a new vector r ′ (provided the dimensions of the vector and the matrix fit):

r ′ = Ar

Let us remember that each row of A is to be multiplied with r, which is thought to
be a column vector. As an example, we will consider a 2×2 matrix A and a 2-row
vector r ; multiplication results in a new 2-row vector r ′.

If A =
(
0.5 0
0 2

)
and r =

(
1

1

)
then

r ′ =
(
0.5 0
0 2

)(
1

1

)
=
(
0.5
2

)

Figure 16.1 shows both the old vector r and the new vector r ′. The result of applying
A to r can be described as reducing the x-component by half and doubling the y-
component.

Fig. 16.1

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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Generally, the new vector r ′ and the old vector r will point in different directions.
However, there are some special vectors whose direction does not change when A

is applied.
If r points along either axis, then for the matrix A under consideration the cor-

responding vector r ′ will point in the same direction (Fig. 16.2).

Fig. 16.2

To give an example,

if r1 =
(
0

1.5

)
then r ′

1 =
(
0.5 0
0 2

)(
0

1.5

)
=
(
0

3

)
= 2r1

Instead of applying A to this special vector we could simply multiply r1 by the
scalar 2. This is, of course, by no means true for any vector. Therefore a special
nomenclature has been introduced.

Definition Given an n×n matrix A and an n-vector r , if r ′ = Ar points
in the same direction as r , i.e. r ′ = �r where � is a real scalar,
then r is called an eigenvector of A with real eigenvalue �. The
cases r = 0 or �= 0 are excluded from this definition.

The last example could thus be rephrased as follows. The vector r1 is an eigen-
vector of A and the corresponding eigenvalue �1 = 2. In this case, there is also

a second eigenvector, e.g. r2 =
(
1

0

)
, with eigenvalue �2 = 0.5. Thus the matrix A

possesses two real eigenvalues and we have found two corresponding eigenvectors.
Three questions now arise:

1. What is the maximum number of real eigenvalues and eigenvectors for a given
matrix?

2. Does every matrix possess real eigenvalues and eigenvectors?
3. How can these real eigenvalues and eigenvectors be computed?
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We will restrict our examples to the case of 2× 2 and 3× 3 matrices, and, before
discussing generalities, we should look at a second, slightly less trivial, case.

Example For A =
(
1.25 0.75
0.75 1.25

)
find the eigenvalues and eigenvectors.

Clearly, vectors pointing in the direction of an axis do not solve this problem. We
could embark on a trial and error search. But that could be tedious because real
eigenvalues might not exist!

Therefore, let us start by reformulating the problem. We wish to find a number �
and a vector r such that

Ar = �r (16.1)

Let us write this down as a set of two equations for the x and y components of r:

A =
(
1.25 0.75
0.75 1.25

)
r =

(
x

y

)

The equations are

1.25x+0.75y = �x

0.75x+1.25y = �y

By subtracting the RHS, a homogeneous set of two linear equations is obtained:

(1.25−�)x+0.75y = 0

0.75x+(1.25−�)y = 0 (16.2)

By definition, the trivial solution x = y = 0 does not interest us. Are there any non-
trivial solutions? We know from Chap. 15 that these indeed exist, if the determinant
of the coefficients vanishes:

(1.25−�)2−0.752 = 0 (16.3)

This is a quadratic equation in �, and there are two distinct real roots:

�1 = 2 , �2 = 0.5

The computed values are the only candidates for the eigenvalues of A. Inserting
them one after the other into the set of (16.2) in fact gives the following solutions:

For �1 r1=
(

1

−1
)

For �2 r2 =
(
1

1

)
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Fig. 16.3

(Any scalar multiple would naturally do as well.) For the sake of clarity, we will
check explicitly that these vectors do satisfy (16.1) with �= �1 and �= �2, respec-
tively (Fig. 16.3):

r ′1 = Ar1 =
(
1.25 0.75
0.75 1.25

)(
1

1

)
=
(
2

2

)
= 2

(
1

1

)
,

r ′2 = Ar2 =
(
1.25 0.75
0.75 1.25

)(
1

−1
)

=
(

0.5
−0.5

)
= 0.5

(
1

−1
)

Let us recapitulate. There are two eigenvalues for A and for each of them an eigen-
vector has been found. The eigenvalues were obtained as the roots of (16.3). That
equation deserves some attention. It is called the characteristic equation of A.

We know well that polynomial equations need not have any real roots, and, in
general, some roots are complex and some are real. There are, at most, as many
real roots as is the degree of the equation; in particular, a 2×2 matrix has, at most,
two real eigenvalues. (Consider for example, the matrix given in question 3 of the
exercise at the end of this chapter.) Also, any 2×2matrix describing a rotation about
an angle ˛ �= 0 or � , has, evidently, no real eigenvalues.

Please note that we are dealing throughout this book with real matrices and real
vectors, i.e. all entries must be real numbers. Accordingly, it would not be suitable
to use complex scalars for multiplying vectors, and we do not consider complex
eigenvalues. But you should be aware that in other situations it may be quite useful,
or even unavoidable, to use the complex values.

16.2 General Method for Finding Eigenvalues

In order to find a general procedure for obtaining all eigenvalues and eigenvectors of
a given matrix A, we will retrace the steps taken in the preceding section; however
we will employ a somewhat more abstract notation.
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Given a square n×n matrix A, we want to find all real eigenvalues of A (up to
n distinct values) and an eigenvector for each of them.

Equation 16.1 still describes the general situation correctly:

Ar = �r

Let us insert a unit matrix I on the RHS:

Ar = �Ir

As before, the RHS is subtracted:

(A−�I)r = 0

This is again a set of linear equations and the condition for finding non-trivial solu-
tions is that the determinant should vanish.

Theorem 1 For the real scalar � to be an eigenvalue of the matrix A it must
be a real root of the characteristic equation:

det(A−�I) = 0 (16.4)

This is a polynomial equation of degree n if A is an n×n matrix.

For convenience, we give the explicit forms of the characteristic equation for
dimensions 2 and 3:
If

A =
(
a11 a12

a21 a22

)

then the characteristic equation is

�2 − (a11 +a22)�+a11a22 −a12a21 = 0 (16.5)

If

A =

⎛
⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

then the characteristic equation is

−�3 + (a11 +a22 +a33)�2

− (a11a22 +a11a33 +a22a33 −a12a21 −a13a31 −a23a32)�
+ detA = 0 (16.6)

For a square matrix of any dimension n the characteristic polynomial starts with
(−1)n�n +(−1)n−1�n−1(a11 +a22 + · · ·+ann) and it always ends with +detA.
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The first non-obvious coefficient is always the sum of the entries along the main
diagonal of A. It is called the trace of A:

tr(A) = a11 +a22 +a33 + · · ·+ann

After determining all real roots of the characteristic polynomial, we proceed to solve
the homogeneous systems of linear equations in order to find eigenvectors.

16.3 Worked Example: Eigenvalues of a 3×3 Matrix

This section goes step by step through the details of finding the eigenvalues and
eigenvectors of a given 3×3matrix.

A =

⎛
⎝
2 1 3

1 2 3

3 3 20

⎞
⎠

1. Find the characteristic equation. Its RHS = 0 and its LHS is given by the deter-
minant

det

⎛
⎝
2−� 1 3

1 2−� 3

3 3 20−�

⎞
⎠= −�3 +24�2−65�+42= 0

2. Find the roots of the characteristic equation. This means solving a cubic equa-
tion – and we could try any of several approaches to this problem.
We can (a) use numerical methods; (b) refer to Cardan’s formulae for third order
equations to find the solutions explicitly; (c) try to guess a first solution �1 and
then divide the cubic polynomial by (�− �1) in order to obtain a quadratic
polynomial.

For the given matrix A, we use the third approach. It is not hard to see that �1 = 1

is a root. Therefore, we can split off the linear factor (�− 1) and the characteristic
polynomial can be written thus:

−�3 +24�2−65�+42= (�−1)(−�2 +23�−42)= 0

In order to find the two other eigenvalues, if the roots are real, we solve the quadratic
equation

�2 −23�+42= 0

Its solutions are

�2,3 =
23

2
±
√(

23

2

)2

−42=
23

2
± 19

2
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Now we know that there are, in fact, three distinct real eigenvalues of the given
matrix A: These are

�1 = 1 , �2 = 2 and �3 = 21

3. For each eigenvalue �i we must now find a non-trivial solution r i of the respec-
tive homogeneous sets of linear equations

(A−�iI)r i = 0

The vectors obtained will be eigenvectors of the matrix A to the respective eigen-
value �i .

When �= 1. Set to solve:
⎛
⎝
1 1 3

1 1 3

3 3 19

⎞
⎠
⎛
⎝
x1

y1

z1

⎞
⎠ = 0

1x1 +1y1 + 3z1 = 0

1x1 +1y1 + 3z1 = 0

3x1 +3y1 +19z1 = 0

A particular and non-trivial solution is obtained if z1 = 0 and hence x1 = −y1. We
can put, for example, x1 = 1,y1 = −1. Then the vector found is

r1 =

⎛
⎝

1

−1
0

⎞
⎠

It is an eigenvector of A with eigenvalue 1.
When �= 2. Set to solve:

0x2 +1y2 + 3z2 = 0

1x2 +0y2 + 3z2 = 0

3x2 +3y2 +18z2 = 0

The third equation can be seen to be linearly dependent on the two other equations,
so we can multiply each one of the two first equations by 3 and add. We need only
consider the first two equations:

y2 +3z2 = 0

x2 +3z2 = 0

They give x2 =y2 =−3z2. A particular solution is obtained by, e.g. letting z2 =−1;

r2 =

⎛
⎝

3

3

−1

⎞
⎠
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It is an eigenvector of A with eigenvalue 2.
When �= 21. Set to solve:

−19x3 + 1y3 +3z3 = 0

1x3 −19y3 +3z3 = 0

3x3 + 3y3 −1z3 = 0

Again, the third equation can be seen to be linearly dependent on the two other
equations, so we can add the first two equations and divide by −6. We need only
consider the first two equations.

They give 6x3 = 6y3 = z3.
A particular solution is obtained by, e.g. letting z3 = 6:

r3 =

⎛
⎝
1

1

6

⎞
⎠

It is an eigenvector of A with eigenvalue 21.
The problem of finding the eigenvalues and eigenvectors of the given matrix A

is thereby solved exhaustively.

16.4 Important Facts on Eigenvalues and Eigenvectors

The matrix A in the preceding section was chosen deliberately. It is symmetric, i.e.
it equals its own transpose. It seems we were lucky in being confronted with a ma-
trix which duly possesses three real eigenvalues and corresponding eigenvectors.
But that was not a coincidence; it illustrates the following theorem, which we shall
not prove.

Theorem 2 A real non-singular symmetric n× n matrix possesses n real
eigenvalues. Corresponding eigenvectors can be found such that each of them
is orthogonal to each one of the others.

You should not find it too difficult to verify the second half of the assertion for
the case of the matrix A. We can now answer the three questions posed in Sect. 16.1
more explicitly. (We assume that the matrix is non-singular.)

1. The maximum number of real eigenvalues and eigenvectors of a given n× n
matrix is n. If the matrix happens to be symmetric, this maximum is attained.

2. The following statement is relevant only for the case of non-symmetric matrices.
If n is even there may be no real eigenvalues at all of a given n×n matrix.
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If n is odd there must be at least one real eigenvalue of a given matrix, since the
characteristic polynomial is of odd degree.

3. Eigenvalues are found by solving the characteristic equation (Eq. 16.4). Eigen-
vectors are determined by finding a non-trivial particular solution of the result-
ing set of homogeneous linear equations. Please remember that the values �= 0

and r = 0, respectively, are not admitted.

Exercises

1. (a) For A =
(
4 2

1 3

)
find the eigenvalues.

(b) In a diagram draw two corresponding eigenvectors.

2. Is it possible for a real 2×2matrix to have one real and one complex eigenvalue?

3. Prove that there are no real eigenvalues of the matrix

A =
(

3 2

−2 1
)

4. (a) For A =

⎛
⎝
−1 −1 1
−4 2 4

−1 1 5

⎞
⎠ find all the eigenvalues.

(Hint: they are all integers.)
(b) Find corresponding eigenvectors.

5. In certain, rare, cases finding suitable eigenvectors may prove difficult. In order
to illustrate what might happen, find the roots of the characteristic equation for

A =
(
1 1

0 1

)

Then try to find corresponding eigenvectors.



Chapter 17
Vector Analysis: Surface Integrals, Divergence,
Curl and Potential

17.1 Flow of a Vector Field Through a Surface Element

Consider a steady flow of water through a pipe. The water is assumed to be incom-
pressible, i.e. it has a uniform density (for which we will use the symbol �), the
velocity of each particle having a constant value v = ds/dt .

Thus, by assigning each point inside the pipe the velocity of the particle of water
at that point, we are confronted with a field of vectors. See Fig. 17.1.

For a start, let us simplify the discussion by stipulating that the velocity is con-
stant, i.e. it has the same magnitude and the same direction at all points. In this case
we call the vector field homogeneous.

Now imagine a small plane rectangular frame that is placed perpendicular to
the flow of water (Fig. 17.2). We wish to determine the amount of water passing
through the enclosed area A during a given time interval ∆t . Evidently, this will
be determined by the water that is contained in the cuboid defined by A and the
extension ∆s. This extension is given by

∆s = v ·∆t
So the volume is

V = A ·v ·∆t
The mass of the water passing through the area in the given time will be

∆M = � ·V = � ·Av∆t

υ

Fig. 17.1

A υ

Fig. 17.2

A

Δs

υ

Fig. 17.3
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A characteristic value for the flow is the mass of water passing through a unit area
per time unit. It is given by the quotient

∆M
A ·∆t = � ·v = j

This value is called the flow density j . It is a vector since the velocity is a vector.

Definition The expression j = � ·v is called the flow density.
Its absolute value is given by the amount of water passing
a unit area per time unit.
(The area is assumed to be perpendicular to the velocity v.)
The vector j is parallel to v. (17.1)

If we consider an arbitrary plane area A perpendicular to the direction of flow,
the total flow is given by

I = A · |j | = a · j
Next, we assume the plane area A to be in a general position, i.e. its normal and
the direction of flow include an arbitrary angle ˛. Figure 17.4 shows us that the
projection area perpendicular to the flow, which we will denote by Aj , is given by

Aj = Acos˛

Aj

α
A α

υυ
A

Fig. 17.4

As the flow density is assumed to be a constant, the mass of water passing through an
arbitrary plane A area evidently equals the mass passing through its projection Aj .

So the flow I passing through A is given by

I = j ·Aj = jAcos˛

This equation formally resembles the scalar product of two vectors j and A, which
is yet to be defined.

We next introduce the concept of a surface element vector by taking the orienta-
tion of the surface element into account.

Definition The surface element vector A of a plane element A is given by
the vector perpendicular (i.e. normal) to A with magnitude

|A| = A (17.2)
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The sign of A will be determined by convention. In our case it is convenient to
choose it in a way that A points along the direction of the flow.

Example Consider a square element A that is part of the x-z plane as shown in
Fig. 17.5. It will be assigned the vector

A = A(0,1,0)

z

x
y

A
A

Fig. 17.5

Example We now slide the base of the square element along the y-axis, so that it
defines a 45◦ angle to the x-y plane as shown in Fig. 17.6. Now its surface element
vector is given by

A =
A√
2
(0,1,1)

z

x
y

A A

Fig. 17.6

So we are in a position to describe the flow I through an arbitrary plane surface
element A as a scalar product (also called dot product):

I = j ·A
Let us generalize this concept by looking at any homogeneous vector field

F (x,y,z) and define its flow through any plane surface element:

Definition Given a plane surface element A and a homogeneous vector
field F , the flow of F through A is defined to be the scalar
product of F and the surface element vector A:

F ·A = Flow of F through A (17.3)
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Please note: The flow of a vector field through a surface A is sometimes also
called the flux across A. Unfortunately, the usage of this term is ambiguous, since
some authors refer to the flux as the flow per time (e.g. in fluid dynamics), while
others use it for the flow itself (e.g. in electrodynamics). In order to avoid confusion,
we will not use the term flux in our book.

17.2 Surface Integral

The definition 17.3 of the flow of a vector field through a surface imposes two
restrictions:

1. The vector field is supposed to be homogeneous.
2. The surface element A is thought to be plane.

We will now drop these two restrictions. Let us consider arbitrary vector fields
and curved surfaces.

From Chap. 12 on Functions of Several Variables we already know that a func-
tion of two real variables generally defines a curved surface in three-dimensional
space.

Example A hemisphere on top of the x-y plane is given by the function

z = +
√
R2 −x2 −y2

z

x

y

Fig. 17.7

How can we compute the flow of any vector field F through a curved surface A?
A good approximation can be obtained as follows: By dissecting the surface A

into sufficiently small elements ∆Ai , we may assume these small elements to be al-
most plane. Thus we can work with surface element vectors ∆Ai , with |∆Ai |= ∆Ai .
Furthermore, for each ∆Ai we may assume the vector field F to be homogeneous
on that small element. See Fig. 17.8 and 17.9.
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So, approximately, the flow of the
vector field F through the element
∆Ai is given by

F (xi ,yi ,zi ) ·∆Ai

We have assigned indices i to the
arguments x, y, and z of F . That
means that we compute the value
of the vector field for a point
(xi ,yi ,zi ) on the element ∆Ai .

z

x

y

ΔAi

ΔAi+1

Fig. 17.8
z

x

y

Fi–1
Fi–2

Fi

ΔAi xi

yi

zi

Fig. 17.9

The total flow of the vector field F through the surface A is obtained by adding
the flows through all the elements ∆Ai :

Flow of F through A : ≈
n

∑
i=1

F (xi ,yi ,zi ) ·∆Ai

Refining the dissection by using ever smaller elements ∆Ai will increase accuracy.
Going to the limit n→ ∞ will yield the exact value, which is called the surface

integral, written as
∫

A
F (x,y,z) ·dA = Flow of F through A

Definition The surface integral of F (x, y, z) on the surfaceA (also called
the flow of F through A) is given by:

∫

A
F ·dA = lim

n→∞

n

∑
i=1

F (xi ,yi ,zi ) ·∆Ai (17.4)

Applications of surface integrals in physics and engineering often deal with
closed surfaces, i.e. the flow of a vector field through a closed surface.

Definition A closed surface divides space into two disjoint regions,
so that any continuous path from one region to the other
must cross the surface (at least once). (17.5)
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Examples of closed surfaces are:

• the surface of a cube
• the surface of a sphere
• the surface of an ellipsoid
• the surface of a torus (shape of a donut)

The surface integral across a closed surface is usually denoted by adding a small
circle to the integral sign. As was already mentioned, the sign of a surface element
vector is determined by convention. So we now stipulate that dA is pointing away
from the inner region.

Definition Flow of F through a closed surface:
∮

F ·dA (17.6)

dA points into the outward direction.
Please note that the notation of the integral is not unique, as
some authors denote the surface integral by a symbol for the
surface beneath the integral sign, e.g.

∫
A . . .

dA

dAA

Fig. 17.10

In the case of a fluid streaming through a closed surface, the flow has a direct
meaning. It tells us whether more fluid is flowing into or out of the inner region.

17.3 Special Cases of Surface Integrals

17.3.1 Flow of a Homogeneous Vector Field Through a Cuboid

Consider a homogeneous vector field F = (Fx ,Fy ,Fz). The components Fx , Fy ,
and Fz are constants (see Fig. 17.11).

In order to compute the flow of F through the cuboid, we treat each of its six
faces separately.
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By choosing the coordinate system
conveniently, as was done in Fig. 17.12,
we obtain the following surface vec-
tors:

A1 = ab(0,0,1)
A2 = ab(0,0,−1)
A3 = ac(0,1,0)
A4 = ac(0,−1,0)
A5 = (1,0,0)
A6 = bc(−1,0,0)

In that special case we do not need to
integrate at all, since the surface inte-
gral of a homogeneous vector field F

on a plane surface A is just the dot
product of F and A.

Fi

Fig. 17.11

A
1

A
3

A
2

A
4

A
5

A
6

z

c

ya
b

x

Fig. 17.12

So we determine the six partial flows directly.

F ·A1 = ab ·Fz

F ·A2 = −ab ·Fz

F ·A3 = ac ·Fy

F ·A4 = −ac ·Fy

F ·A5 = bc ·Fx

F ·A6 = −bc ·Fx

The total flow through the cuboid then is the sum of its six parts. We thus realize
that the flow of a homogeneous vector field F through a cuboid always vanishes.

Total flow =
6

∑
i=1

F ·Ai = 0
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Rule The flow of a homogeneous vector field F through a cuboid van-
ishes. We can even generalize this result:
The flow of a homogeneous vector field F through any closed surface
amounts to zero. (17.7)

F

F

Fig. 17.13

The reasoning for the generalized statement will be given by plausibility.
Given any closed surface, let us approximate the region contained therein by

small cuboids. Figure 17.13 shows an arbitrary surface and one such cuboid.
As we have just seen for any cuboid the flow of a homogeneous vector field

vanishes.
Looking at two adjacent cuboids we observe that the total flow must vanish also.

As the two surface vectors at their common bounding areas differ by their sign only,
the overall flow is determined by just the outer bounding areas of the two cuboids.

By iterating that argument we find that for any set of cuboids, conveniently ap-
proximating the given surface, the flow must evaluate to zero.

Looking back to the constant stream of water this result is obvious: the same
amount that is going into the volume V must come out again.

17.3.2 Flow of a Spherically Symmetrical Field Through a Sphere

A field that possesses spherical symmetry (Fig. 17.14) can generally be expressed
as follows

F = er ·f (r)

er is the unit vector pointing into radial direction:

er =
r

|r |
We assume that the center of the sphere coincides with the origin of the coordinate
system (Fig. 17.14).
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F F

z

y

x

R

Fig. 17.14

As all the surface element vectors dA are normal to the sphere, they always point
into the same direction as r. Therefore, the surface integral can be simplified:

∮

A

F ·dA =
∮

A

f (r)er ·dA =
∮

A

f (r)dA

The integration is to be performed over the complete spherical surface with the
radiusR. Since the integrand f (r) only depends on r , we may replace r =R in the
expression f (r). It therefore is a constant and can be factored:

∮

A

f (r)dA =
∮

A

f (R)dA = f (R)
∮

A

dA

The remaining integral is well known, it is the surface area of a sphere with radiusR
∮

A

dA = 4�R2

We have thus found the following rule:

Rule The flow of a field with spherical symmetry F = erf (r) through
a spherical surface with radius R is given by

∮
F ·dA = 4�R2f (R) (17.8)
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17.3.3 Application: The Electrical Field of a Point Charge

A point chargeQ at the origin of the coordinate system gives rise to an electric field.

E(x,y,z) =
Qer

r24�"0
=Q

(x,y,z)
r34�"0

for r =
√
x2 +y2 + z2

E

z

y

x

R

Fig. 17.15

This field obviously is spherical symmetric, and we wish to compute its flow through
a sphere with radius R. We can make use of rule 17.8:

∮
F ·dA = 4�R2f (R)

In the particular case we know that F = E(x, y, z) which leads to
∮

E ·dA =
Q

"0

This result tells us that the flow of the electric field generated by a point charge is
independent of the radius R of the sphere.

This relation, incidentally, holds true for any closed surface surrounding the point
charge. It can also be generalized to any number of charges distributed inside the
closed surface. It is then called the Gaussian law, one of the fundamental equations
describing electromagnetic phenomena. Its name honors Carl Friedrich Gauss, one
of the most prolific German mathematicians. His name will be mentioned again very
soon.

17.4 General Case of Computing Surface Integrals

We are given a surface integral
∫

A
F (x,y,z) ·dA
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By explicitly writing down the dot product, it can be expanded into the sum of three
integrals: ∫

A
F (x,y,z) ·dA =

∫

A
[FxdAx +FydAy +FzdAz ]

F(x,y,z)

z

x y
x

yz

A

dA

Fig. 17.16

That leads to two questions:

1. How do we determine the components dAx,dAy , and dAz of the differential
surface vector dA?

2. How, for any given surfaceA, do we take the bounds of integration into account?

Let us start with question 1: Recalling Chap. 1 on Vector Algebra we know that
any vector r in three-space can be represented as the sum of its components along
the three axes, each component being a multiple of the base vectors ex,ey , and ez :

r = xex +yey + zez

z

y

x

xe
x

e
x

e
z

e
y

ye
y

r

ze
z

Fig. 17.17
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Now, what are the base vectors for a finite surface element A?
Figure 17.18 shows the three unit vectors for the surface element vectors: The

unit vector in x-direction, for instance, represents a unit square in the y-z plane.

z

y
x

1

1

A
x

z

y

x

1

1

A
y

z

y

x

1
1

A
z

Fig. 17.18

Generally speaking, the components of a surface vector A, Ax ,Ay , and Az , re-
spectively, represent surface elements in the y-z plane, in the x-z plane and in the
x-y plane, respectively. The components are just the projections of the surface A
into the appropriate plane, as shown in Fig. 17.19.
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z

A
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A
y

A
z

A

Fig. 17.19

By looking at ever smaller surface elements we obtain for the components

dAx = dydz dAy = dxdz dAz = dxdy

The surfaces that are perpendicular to these vectors are no longer unit squares but
differential elements dydz,dxdz, and dxdy.

z

y
x

dy

dzdA
x

z

y

x

dz
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dx
dx

dA
y dA

z

Fig. 17.20
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We can thus express the differential surface element as follows

dA = (dydz, dxdz, dxdy)

Question 1 being answered; let us turn to the task of determining the boundaries
for integration. The integral is already known to be a sum of three expressions:

∫
F dA =

∫
[FxdAx +FydAy +FzdAz ]

Let us look at the last summand∫
Fz ·dAz =

∫
Fzdxdy

What is the suitable range for the x and y values? It must be the projection of A
into the x-y plane, which we denote by Axy (Fig. 17.21).

x
y

z

A
xy

A

Fig. 17.21

Thus we obtain a double integral
∫
Fz(x,y,z)dxdy

Locally, we assume that for the surface A the z coordinate can be described as
a function of x and y; z = f (x, y). Inserting this into the expression for Fz we get

Fz(x,y,f (x,y))

Likewise, we assume that locally we can express x = g(y,z) and y = h(x,y).
Inserting all this into the surface integral results in:

∫

A
F (x,y,z)dA =

∫

Ayz

Fx(x = g(y,z),yz)dydz

+
∫

Axz

Fy(x,y = h(x,z),z)dxdy

+
∫

Axy

Fz(x,y,z = f (x,y))dxdy
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Example Given is the nonhomogeneous vector field F = (0, 0, y) (Fig. 17.23).

F

z

a

b
y

x

Fig. 17.23

We compute the flow through the rectangular area in the x-y plane limited by the
origin and the points

P1 = (a,0,0)
P2 = (0,b,0)
P3 = (a,b,0)

We must evaluate the integral

∫
F ·dA =

∫ a

x=0

∫ b

y=0
y ·dxdy =

a ·b2

2

This means that the flow increases in a linear fashion as the surface is extended in the
x-direction, and it obeys a square law as the surface is extended in the y-direction.
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17.5 Divergence of a Vector Field

In the previous sections we were confronted with the following question: Given
a closed surface A, how strongly does a vector field F “flow” through A? The
answer was given by the surface integral as defined in (17.4).

This concept is particularly important in the theory of electricity and magnetism.
Assume that a closed surface contains a stationary charge density � which, inciden-
tally, is defined by the quotient of charge per volume: � = dQ/dV .

Field lines emerge from positive charges and they end at negative charges. Thus
positive charges arc sources of the field, and negative charges are sinks.

Example If the surfaceA encloses a positive charge density, the flow of the electric
field E through the surface is proportional to the total charge Q according to the
law ∫

EdA =
Q

"0

+
–

Fig. 17.24

This generalizes the result obtained in Sect. 17.3.3, where a point charge inside
a sphere was discussed.

Now let us proceed to something new: can we assign a meaning to the quotient of
the flow through the bounding surface divided by the volume of the enclosed space?

1

V

∮
F ·dA

Physically speaking, this expression must denote the average density of sources (or
sinks, in the negative case) contained in the volume V .

If we consider the limit of ever smaller volumes V → 0 containing just the point
P , we will call this the divergence of the vector field F at the point P . It is denoted
by divF .

divF = lim
V →0

1

V

∮

A(V )

F ·dA
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The divergence describes in a unique manner, whether P belongs to the sources
of F , in which case divF > 0, or whether it belongs to the sinks of F , in which
case divF < 0.

A vanishing value of divF indicates that the field contains neither sources nor
sinks.

Having a good grasp of the concept, we now must arrive at a practical means to
compute the divergence.

Let us consider a small cuboid of dimensions ∆x,∆y,∆z as shown in Fig. 17.25.

divA = lim
V →0

1

V

∮
F ·dA

The surface integral is given by the sum of the flows through the six faces, and
on each one the vector field will be constant, approximately.

z

x y

Δy

Δx

Δz

F
z
(x, y, z + Δz)

F
y
(x, y + Δy, z)F

y
(x, y, z)

F
z
(x, y, z)

Fig. 17.25

As the components of F are parallel to the surface element vectors, we get:

1

V

∮
F ·dA ≈ 1

∆x∆y∆z
{[Fx(x+ ∆x, y, z)−Fx(x, y, z)]∆y∆z

+[Fy(x, y+ ∆y, z)−Fy(x, y, z)]∆x∆z

+[Fz(x, y, z+ ∆z,z)−Fz(x, y, z)]∆x∆y}

=
Fx(x+ ∆x, y, z)−Fx(x, y, z)

∆x

+
Fy(x, y+ ∆y, z)−Fy(x, y, z)

∆y

+
Fz(x, y, z+ ∆z)−Fz(x, y, z)

∆z
In the limit V → 0 i.e. ∆x → 0, ∆y → 0, ∆z → 0, we end up with three partial
differentials.
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Definition Divergence of the vector field F

divF = lim
V →0

1

V

∮
F ·dA =

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
(17.9)

The divergence of a vector field is a scalar. In other words: the operation of
computing the divergence maps a vector field F onto a scalar field divF .

Please recall Chap. 12.4 on total differentials, where we have already encoun-
tered the operator just mentioned. We will now give it the name nabla (sometimes
also called del) and a symbol ∇ of its own:

∇ =
(

∂
∂x

,
∂

∂y
,

∂
∂z

)

This identity, which is valid in the Cartesian coordinate system, enables us to,
formally, express the divergence of a vector field as the dot product of the nabla
operator and the vector field:

divF = ∇ ·F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
Let us return to our example from electrostatics where a given charge density

� = dQ/dV gives rise to a field E . As was already mentioned, the laws of physics
tell us ∮

E ·dA =
Q

"0

Q is the total charge inside the volume that is enclosed by the surface A.
After dividing by the volume V and going to the limit V → 0 we obtain

divE(x,y,z) =
�(x,y,z)

"0

We thus arrive at an equation connecting the values of E and � for each point in
space.

Example The divergence of a homogeneous vector field vanishes because the
derivative of a constant always amounts to zero.

F (x,y,z) = (a,b,c)

divF =
(

∂
∂x

(a)+
∂

∂y
(b)+

∂
∂z

(c)
)

= 0

Example The vector field F (x,y,z) = (x,y,z) is characterized by a constant di-
vergence = 3.

divF =
∂x
∂x

+
∂y
∂y

+
∂z
∂z

= 3
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Fig. 17.26

Example The electric field E generated by a spherical charge distribution with
total charge Q and radius R is given by the following expression for points away
from the sphere:

E(x,y,z) =
Q

4�"0

(x,y,z)

(
√
x2 +y2 + z2)3

For points inside the sphere it is given by

E(x,y,z) =
Q

4�"0R3
(x,y,z)

Outside of the sphere the divergence of the electric field vanishes:

divE =
Q

4�"0

{
+

3

(
√
x2 +y2 + z2)3

− 3(x2 +y2 + z2)

(
√
x2 +y2 + z2)5

}
= 0

Inside the sphere we get

divE =
Q

4�"0R3
=
�

"0

Assuming a homogeneous charge distribution inside the sphere, each point is
a source of the electric field. Away from the sphere the field possesses neither
sources nor sinks.

17.6 Gauss’s Theorem

This theorem establishes a connection between the integral of the divergence of any
vector field F over any volume in space V and the total flow of that vector field
through the bounding surface A.

As usual, let us dissect the volume V into n small parts ∆Vi having boundary
∆Ai . For each such element we can approximate the value of divF as follows

divF (xi ,yi ,zi ) ≈ 1

∆Vi

∮
F ·dA
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Multiplication by ∆Vi and adding the n values yields

n

∑
i=1

divF (xi ,yi ,zi )∆Vi ≈
n

∑
i=1

∮
F ·dA

It is quite apparent that all adjacent faces of the ∆Vi in the interior give rise to
values which cancel out. So just the values of F ·dA on the surface A are left over
to be summed up. In the limit n→ ∞ and Vi → 0 we arrive at

lim
n→∞

n

∑
i=1

divF · (xi ,yi ,zi )∆Vi =
∫

V
divF ·dV

and furthermore

lim
n→∞

n

∑
i=1

∮

Ai

F ·dA =
∮

A
F ·dA

ΔV
i

–ΔV
i+1

dA
i

dA
i+1

= –dA
i

Fig. 17.27

All this adds up to the following theorem.

Gauss’s theorem ∫

V
divF ·dV =

∮

A(V )
F ·dA (17.10)

Gauss’s theorem is sometimes also referred to as Ostrogradski’s theorem to honor
the Russian mathematician Michel Ostrogradski (1801–1861) who independently
worked on this topic.

The theorem tells us that the integral of the divergence of a vector field over
a volume in space equals the total flow of the vector field through the bounding
surface.
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17.7 Curl of a Vector Field

Some vector fields are especially well behaved in the following sense: given any
two points P1 and P2, the value of the line integral from the first point to the other
does not depend on the particular path connecting them.

One well-known example is provided by the gravitational field, another one is
the electric field generated by static point charges. In cases like these, we are free to
choose the path in a most convenient way in order to facilitate the integration.

These vector fields are characterized by the following result:

Observation The value of the line integral from a point P1 to another
point P2 does not depend on the chosen path if and only if
any closed line integral along any closed curve C vanishes:

∮

C
F ·ds = 0

For the easy proof we only have to realize that an arbitrary closed path containing
both P1 and P2 can be split into two paths: the one connects P1 to P2, which in
Fig. 17.28 is denoted by C1, and the other one, C2, connects P2 to P1:

∮

C
F ·ds =

∫ P2

P1

C1

F ·ds +
∫ P1

P2

C2

F ·ds = 0

Equivalently:

∫ P2

P1

C1

F ·ds = −
∫ P1

P2

C2

F ·ds

P1

P2
C2

C1

Fig. 17.28

Inverting the direction of the path changes the sign of the integral and we are
done. ∫ P2

P1

C1

F ·ds =
∫ P1

P2

C2

F ·ds

A vector field is called curl-free or irrotational if all line integrals along any
closed curve amount to zero.

This definition would not make sense, if all vector fields had that property. In-
deed, there are many such vector fields where generally

∮

C
F ·ds �= 0
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Conversely, a vector field for which the line integrals do not generally vanish is
said to possess curl.

Example Suppose a magnetic field B perpendic-
ular to the plane changes in time and thus gen-
erates an electric field as shown in Fig. 17.29.
The work required to move a positive charge from
point P1 to P2 is certainly dependent on the path
chosen: along C1 it will be negative, whilst along
C2 it will be positive.
So the line integral from P1 to P2 and back to P1

again is the difference between the two values and
will not be zero.

C
1

C
2

P
1

P
2

Fig. 17.29

The value of the line integral along a closed curve is called circulation.
Figure 17.30 depicts three vector fields and a circular path in each of them. The

corresponding circulation is largest in case 1), and it is zero in case 3).
It is very useful to be able to talk about the “circulation” at a single point. So

quite similar to determining the divergence in Sect. 17.5, we set out to compute the
line integrals for ever smaller contours, all of which converge to a common point P .

However, we must observe one additional fine point: as we are dealing with sur-
faces, we must take their orientation into account. This is given by the surface ele-
ment vector A.

Now consider the limit:

lim
A→0

1

A

∮

C (A)
F ·ds

We are free to orient A in different directions and will normally get different
results. In fact, the vector we are keen to know is obtained as follows: use the three

1) 2) 3)

Fig. 17.30
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standard planes to compute three components and combine them to form a vector
accordingly.

The vector thus obtained is called the curl of F , sometimes also denoted by
rot F in accordance with the notation of the famous Scottish physicist James Clerk
Maxwell (1831–1879).

For a physical understanding of the concept of curl think of water flowing along
a brook. As opposed to the tame example in the introductory section of this chapter,
now the vector field v will describe both a general flow along the main direction and
locally also give rise to circular movements. Imagine a small spherical body having
the same density as the water immersed in the fluid. At points with nonzero curl
the sphere will spin. Its rotational axis points into the direction of curl v, its angular
velocity indicates the magnitude.

The rigorous but tedious proof of this
statement will not be given here. The
keen reader is advised to check special-
ized mathematics books or consult the
Internet.
The next task is to arrive at a concrete
rule for calculating the components of
the vector curl F . Let us start with the
x-component and choose a small rect-
angular plane surface Ax with dimen-
sions ∆y and ∆z.

y
x

z Δy

Δy · ΔzΔz
Ax=

Fig. 17.31

A first approximation for the x-
component of the line integral can be
obtained by multiplying each length of
the rectangle by the projection of F

onto the path of integration as shown
in Fig. 17.32:

y
x

z

Δy

ΔzAx

Fy(x,y,z)

Fy(x,y,z + Δz)

F z
(x

,y
 +

 Δ
y,

z)

F z
(x

,y
,z

)

Fig. 17.32
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curlxF =
1

∆y∆z

∮

Cx

F ·ds

≈ 1

∆y∆z
[Fz(x,y+ ∆y,z)∆z−Fz(x,y,z)∆z−Fy(x,y,z+ ∆z)∆y

+Fy(x,y,z)∆y]

=
[
Fz(x,y+ ∆y,z)−Fz(x,y,z)

∆y
− Fy(x,y,z+ ∆z)−Fy(x,y,z)

∆z

]

In the limit ∆y→ 0,∆z→ 0 we obtain the difference of partial derivatives

curlxF =
∂Fz

∂y
− ∂Fy

∂z

The other components of curl F can be determined similarly. So we can an-
nounce the following:

Definition Curl of a vector field

curlF =
(

∂Fz

∂y
− ∂Fy

∂z
;

∂Fx

∂z
− ∂Fz

∂x
;

∂Fy

∂x
− ∂Fx

∂y

)

(17.11)

Using the nabla operator ∇ in Cartesian coordinates the curl of a vector field F

can be expressed as the cross product of ∇ and F :

curlF = ∇×F

Like any cross product the curl can also be expressed as a determinant:

curlF =

∣∣∣∣∣∣∣∣

ex ey ez

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣

Computing the curl assigns a new vector field to the given vector field. Recall,
that computing the divergence maps a vector field into a scalar field.

Example Let us compute the curl of a spherical symmetric field:

F (x,y,z) = (x,y,z)
curlF = (0,0,0)

This vector field obviously is free of curl. (The reader is invited to generalize this
result to any spherical symmetric field.)
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Example Figure 17.33 shows a cross sec-
tion of a fluid streaming in the y-direction.
The velocity is zero at the bottom (z = 0)
and it increases linearly proportional to the
height.
The velocity field can be expressed as fol-
lows

v(x,y,z) = az ·ey ; a = const

The curl of v is (−a,0,0), and so the line
integral along a path C as indicated will
not vanish.

z

x y

υ

C

Fig. 17.33

Example Compute the curl of the vector
field

F (x,y,z) = (−y,x,0)
curlF = (0,0,2)

This vector field is not curl-free which
becomes apparent when looking at
Fig. 17.34.

z

x
y

(r)F

Fig. 17.34

17.8 Stokes’ Theorem

This theorem establishes a connection be-
tween the integral of the curl of any vector
field F over any surface in space A and the
line integral of that vector field along the
boundary C .
Figure 17.35 shows how the surface can be
approximated by small elements dAj , each
of which is bounded by Ci .

C

A

ΔAi

ΔAi+1

Fig. 17.35

We next compute the line integral and observe that it approximates the product
of curl F times the small area: w∮

Ci

F ·ds ≈ F ·∆Ai
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Summing for all i leads to
n

∑
i=1

curlF ·∆Ai =
n

∑
i=1

curlF (xi ,yi ,zi ) ·∆Ai ≈
n

∑
i=1

∮

Ci

F ·ds

By an argument similar to the one used be-
fore we realize that line integrals along in-
ner paths cancel in pairs so that only the
paths at the outer boundary are relevant.
The limiting process, as ∆Ai → 0,n→ ∞
then leads to Stokes’ theorem.

C

Ci

Ci+1 A

Fig. 17.36

Stokes’ Theorem ∫

A
curlF ·dA =

∮

C (A)
F ·ds (17.12)

Its name honors the Irish mathematician and physicist Sir George Gabriel Stokes
(1819–1903).

Stokes’ theorem tells us that the integral of the curl of a vector field on a surface
A equals the line integral along the boundary C .

Suppose we know for a given vector field that curl F = 0 in a certain volume
V which contains the area A. Then the left hand side in Stokes’ theorem vanishes
altogether and we are left with

∮

C (A)
F ·ds = 0

Recalling Sect. 17.7 we can then be certain that the line integrals in that particular
volume are independent of the path.

17.9 Potential of a Vector Field

Assume that a given vector field F (x,y,z) is curl-free. According to the observation
from Sect. 17.7 the line integral between two points P0 and P does not depend on
the chosen path.

Consider now P to be a variable and assign the value of the line integral to the
point. This is just an ordinary function of P . Let us call that function the vector
potential '(P ) of the vector field F .

'(P ) =
∫ P

P0

F ·ds (17.13)



486 17 Vector Analysis: Surface Integrals, Divergence, Curl and Potential

Obviously, this procedure will work for any curl-free vector field. The potential
' is uniquely defined up to an additive constant, which is determined by the choice
of P0.

Next, let us convince ourselves that from the definition 17.13 the following rela-
tion can be arrived at:

F (x,y,z) = grad'

Recall, how in Sect. 12.4.3 we have derived a vector field from a given scalar
function, named its gradient. The vector grad ' is orthogonal to the surfaces which
are defined by ' = const. and its magnitude indicates the change of ' as we move
from one surface to the adjacent one in an orthogonal direction.

grad' =
(

∂'
∂x

,
∂'
∂y

,
∂'
∂z

)

The change of ' with respect to an infinitesimal change in space is given by:

d' = grad' ·ds

In case of larger distances an integral must be used and we then obtain

'(P ) =
∫ P

P0

grad' ds

This happens to coincide with definition 17.13 for the potential of a vector field.
So we conclude

F (x,y,z) = grad'(x,y,z) =
(

∂'
∂x

,
∂'
∂y

,
∂'
∂z

)

Any curl-free vector field F can be assigned a potential field ' according to the
relationship:

'(x,y,z) =
∫ P =(x,y,z)

P0

F ·ds

If we know the scalar field '(x,y,z) the corresponding vector field F (x,y,z)
can be computed as its gradient.

potential ϕ Vector F

grad ϕ

F · ds∫

The meaning of this roundabout connection for physics is as follows: the field
F can be interpreted as a force field and ' as the potential energy. Furthermore,
by convention, the potential can be defined as the value of the line integral along
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any path connecting some arbitrary point P0 to the point P against the force field,
which means that the sign is reversed.

To sum up, in physics the relation between a curl-free force field F and its po-
tential ' is defined as follows:

'(x,y,z) = −
∫ P

P0

F ds

F (x,y,z) = −grad'

As was already mentioned in Sect. 6.9, a force field without curl is also called
a conservative field.

As an example let us look at the gravitational field produced by a massM which
evenly fills a sphere of radius R. Outside of the sphere the force is given by

F (x,y,z) = −GM (x,y,z)√
x2 +y2 + z2

(G is, of course, Newton’s constant of gravity, sometimes also denoted by � . Its
approximate value is 6.67428×10−11m3 kg−1 s2.)

As the reader can verify for him or herself F is curl-free. The potential is deter-
mined by

'(x,y,z) =GM

∫ r

r0

(x,y,z) · (dx,dy,dz)√
x2 +y2 + z2

3

If we choose the path of integration in the radial direction, the dot product r •dr

simply is rdr , and the integral is easy to compute.
The bounds are:

r0 =
√
x2

0 +y2
0 + z2

0 and r =
√
x2 +y2 + z2

'(x,y,z) = GM

∫ r

r0

dr
r2

= −GM
(
1

r
− 1

r0

)
=GM

(
1

r0
− 1

r

)

The potential ' is fixed up to an additive constant GM/r0. By convention the
potential energy is set to 0 as r → ∞ , so ' will be

'(x,y,z) =
−GM√

x2 +y2 + z2

Just to make sure, let us compute the gradient in order to arrive at F again:

F = −grad' = −GM (x,y,z)√
x2 +y2 + z2

3
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17.10 Short Reference on Vector Derivatives

Notation

∇' = grad' ' is a scalar function, grad' is a vector field.
∇ ·F = divF F is a vector field, divF is a scalar function.
∇×F = curlF F is a vector field, curlF is a vector field.
∇ · (∇') = div(grad') = ∆' ∆ is called the Laplacian operator, sometimes writ-

ten as ∇2.

Important Identities

∇× (∇') = curl(grad') ≡ 0 For any scalar function ', the curl of grad'
vanishes.

∇ · (∇×F ) = div(curlF ) ≡ 0 For any vector field F , the divergence of curlF
vanishes.

∇× (∇×F ) = curl(curlF ) = ∇ · (∇ ·F )−∆F = grad(divF )−Laplacian(F )

This identity holds true in Cartesian coordi-
nates.

Special case spherical symmetry: F = f (r)
r

|r | , excluding r = 0

∇×F = curlF = 0 The curl of a spherically symmetrical field van-
ishes.

∇ ·F = divF =
2f (r)
r

+
∂f (r)

∂r
Note the exceptional case of inverse square

functions f (r) =
c

r2
.

Further Information on the web:
http://eom.springer.de and http://mathworld.wolfram.com

Exercises

1. Given three squares with an area of 4 units each. They are placed

(a) in the x-y plane,
(b) in the x-z plane, and
(c) in the y-z plane.

Determine the surface elements.
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2. Given a rectangle with area a ·b, determine the vector element.

z

x
yb

A
A

A

2

A

2

3. Compute the flow of the vector field F (x,y,z) = (5,3,0) through the surfaces
given by the respective surface elements:

(a) A = (1,1,1)
(b) A = (2,0,0)
(c) A = (0,3,1)

4. Find the vector surface elements for the cuboid shown in the figure.

z

x

y

A
1

A
2

A
3

A
4

A
5

A
6

4

3
2

5. Compute the flow of the vector field F (x,y,z) = (2,2,4) through

(a) a sphere centered at the origin with radiusR = 3.
(b) the cuboid from exercise 4

6. Compute the flow of the vector fields through a sphere centered at the origin
with radius R.

(a) F (x,y,z) = 3
(x,y,z)

x2 +y2 + z2

(b) F (x,y,z) =
(x,y,z)√

1+x3 +y3 + z3
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7. A vector field is given by F (x,y,z) = (z,y,0). Compute the flow through
area A.

z

x
y

3

2

2

1

1 1

A

8. Compute divF for the given vector fields F . Indicate the respective sources and
sinks, if applicable.

(a) F (x,y,z) = (x−a,y,z)
(b) F (x,y,z) = (a,−x,z2)

9. Do the following vector fields possess curl?

(a) F (x,y,z) = (a,x,b)

(b) F (x,y,z) =
(x,y,z)

x2 +y2 + z2

10. Compute the value of the line integral
∮

F ·ds along the rectangular path in the
x-y plane with dimensions a and b.
The vector field is given by F (x,y,z) = 5(0,y,z)

z

x y

C

a

b

11. For the vector field F (x,y,z) = (0,y,z) compute the line integral along the
path as shown in the figure, i.e. from the point (0,0,0) to the point (0,2,3) and
then to the point (0,0,3).

z

x y

3

2

C



Chapter 18
Fourier Series; Harmonic Analysis

18.1 Expansion of a Periodic Function into a Fourier Series

In Chap. 8 we showed that a function f (x) which may be differentiated any number
of times can usually be expanded in an infinite series in powers of x, i.e.

f (x) =
∞

∑
n=0

anx
n

The advantage of the expansion is that each term can be differentiated and integrated
easily and, in particular, it is useful in obtaining an approximate value of the function
by taking the first few terms.

We now ask whether a function can be expanded in terms of functions other than
power functions, and especially whether a periodic function may be expanded in
terms of periodic functions, say trigonometric functions. Many problems in physics
and engineering involve periodic functions, particularly in electrical engineering,
vibrations, sound and heat conduction. A periodic function f (x) is a function such
that f (x) = f (x+L), where L is the smallest value for which the relationship is
satisfied.

Fourier’s theorem relates to periodic functions and states that any periodic func-
tion can be expressed as the sum of sine functions of different amplitudes, phases
and periods. The periods are of the form L divided by a positive integer.

Thus, however irregular the curve representing the function may be, as long as
its ordinates repeat themselves after equal intervals, it is possible to resolve it into
a number of sine curves, the ordinates of which when added together give the or-
dinates of the original function. This resolution of a periodic curve is known as
harmonic analysis.

To simplify the mathematics we will start by considering functions whose period
is 2�; this implies (see Fig. 18.1) that

f (x) = f (x+2�)

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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Fig. 18.1

Expressed mathematically, Fourier’s theorem states that

y = f (x) =
∞

∑
n=0

An sin(nx+�n) (18.1)

Since sin(nx+�n) = sinnx cos�n + cosnx sin�n, we can express the function in
terms of sine and cosine functions. We have

y = f (x) =
a0

2
+

∞

∑
n=1

(an cosnx+bn sinnx) (18.2)

This series is called a Fourier series. The terms in Fourier series differ in period (or
frequency). The nth term has the period 2�/n (or the frequency n/(2�)). The 1/2
in a0/2 is to make a0 fit the general equation.

18.1.1 Evaluation of the Coefficients

Before actually proceeding with the evaluation of the coefficients, we will state
the results of some definite integrals in the range −� to � , where n and m are
positive integers. It can be shown that the same results are obtained in the range
from 0 to 2� .

∫ �

−�
cosnx dx =

∫ �

−�
sinnx dx = 0 [1]

∫ �

−�
cosmx cosnx dx =

∫ �

−�
sinmx sinnx dx =

{
0 , m �= n

� , m= n
[2]

∫ �

−�
sinmx cosnx dx = 0 [3]

The integrals in Eq. [1] are standard.
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Let us evaluate the first integral in Eq. [2]. We integrate by parts:

∫ �

−�
cosmx cosnx dx =

[
1

m
sinmx cosnx

]�

−�

+
n

m

∫ �

−�
sinmx sinnx dx

The first term is zero. The second term can be integrated by parts once more:

n

m

∫ �

−�
sinmx sinnx dx =

[
− n

m2
cosmx sinnx

]�

−�
+
n2

m2

∫ �

−�
cosmx cosnx dx

Again the first term is zero. Inserting this result into the original integral and rear-
ranging gives (

1− n2

m2

)∫ �

−�
cosmx cosnx dx = 0

Thus the integral is zero except for n2/m2 = 1, i.e. n=m.
In the latter case we have a standard integral, the result of which is known:

∫ �

−�
cos2mx dx = �

The integral with sine functions may be solved by the reader. The solution can be
obtained in exactly the same way.

The integral in (18.3) may be solved in the same way too. In the case of m = n

we have ∫ �

−�
sinmx cosmx dx =

1

2

∫ �

−�
sin2mx dx = 0

Evaluation of a0

To find a0 we integrate the Fourier series from −� to �:

∫ +�

−�
f (x) dx =

1

2

∫ +�

−�
a0 dx+

∞

∑
n=1

(
an

∫ +�

−�
cosnx dx+bn

∫ +�

−�
sinnx dx

)

According to Eq. [1] above, all integrals in the infinite sum vanish. Hence

∫ +�

−�
f (x) dx =

1

2

∫ �

−�
a0 dx = �a0

Therefore, we have obtained a0:

a0 =
1

�

∫ +�

−�
f (x) dx

Note that a0/2 is the average value of the function in the range −� to +� .
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Evaluation of an

The coefficients an have to be evaluated one by one. For a given n= k multiply the
Fourier series by coskx and integrate from −� to +�:

∫ +�

−�
f (x)coskx dx =

∫ +�

−�

a0

2
coskx dx +

∞

∑
n=1

∫ �

−�
an cosnx coskx dx

+
∞

∑
n=1

∫ +�

−�
bn sinnx coskx dx

By virtue of equations 1 and 3 above, all integrals on the right vanish except the one
for n= k. We thus obtain
∫ +�

−�
f (x)cosnx dx =

∫ +�

−�
an cosnx cosnx dx = an

∫ +�

−�
cos2nx dx = an�

Hence an =
1

�

∫ �

−�
f (x)cosnx dx

Evaluation of bn

We proceed in the same way: we multiply the Fourier series by sinkx and integrate
in the range −� to � . All integrals on the right vanish except for n= k.

∫ �

−�
bn sin2nx = bn�

Hence bn =
1

�

∫ �

−�
f (x)sinnx dx

The result is:

If a function f (x) of period 2� can be represented in a Fourier series then

f (x) =
a0

2
+

∞

∑
n=1

an cosnx+
∞

∑
n=1

bn sinnx

where a0 =
1

�

∫ �

−�
f (x) dx (18.3)

an =
1

�

∫ �

−�
f (x)cosnx dx n= 1,2, . . . (18.4)

bn =
1

�

∫ �

−�
f (x)sinnx dx n= 1,2, . . . (18.5)

Since f (x) is a periodic function of period 2� we could, if we wished, use
the range 0 to 2� instead, or any other interval of length 2� .
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The terms cos x, sin x are known as the fundamental or first harmonic, cos 2x,
sin 2x as the second harmonic, cos 3x, sin 3x as the third harmonic and so on.

We have not yet discussed the conditions that must be satisfied by f (x) for the
expansion to be possible. There are, in fact, several sufficient conditions which guar-
antee that the Fourier expansion is valid, and most functions the applied scientist is
likely to meet in practice will be Fourier expandable.

We should mention one criterion which is connected with the name of the emi-
nent mathematician Peter G. L. Dirichlet (1805–1859).

Dirichlet’s lemma states that a periodic function f (x) which is bounded (i.e.
there is a constant B such that |f (x)| < B for all x) and which has a finite number
of maxima and minima and a finite number of points of discontinuity in the interval
[−L; L] has a convergent Fourier series. This series converges towards the value
of the function f (x) at all points where it is continuous. At points of discontinuity
the value of the Fourier series is equal to the arithmetical mean of the left-hand and
right-hand limit of the function f (x), i.e. it is equal to

1

2
[ lim

∆x → 0

∆x > 0

f (x+ ∆x)+ lim
∆x → 0

∆x > 0

f (x−∆x)]

The proof of this lemma is beyond the scope of this book, and the reader should
refer to advanced books on mathematics.

18.1.2 Odd and Even Functions

Even Functions

A function is even when f (x) = f (−x). In this case all the coefficients bn vanish.
Since f (x)sin nx is an odd function, its integral from −� to � is zero.

For an even function the Fourier series is

f (x) =
a0

2
+

∞

∑
n=1

an cosnx

Odd Functions

A function is odd when f (x) =−f (−x). In this case all the coefficients an vanish.
Since f (x)cos nx is an odd function, its integral from −� to � is zero.

For an odd function the Fourier series is

f (x) =
∞

∑
n=1

bn sinnx
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Thus the Fourier series for an even function consists of cosine terms only,
whereas that for an odd function consists of sine terms only.

18.2 Examples of Fourier Series

Sawtooth Waveform

The sawtooth function is shown in Fig. 18.2 with a period of 2� . It is defined by

f (x) =

{
1
� x+1 , −� ≤ x ≤ 0
1
� x−1 , 0≤ x ≤ �

Fig. 18.2

Since the function is odd, only the coefficients bn are required. Because there
are two branches of the function we have to split the interval of integration. We
then have

bn =
1

�

∫ 0

−�

( x
�

+1
)

sinnx dx+
1

�

∫ �

0

( x
�
−1
)

sinnx dx

=
1

�2

∫ �

−�
x sinnx dx+

1

�

∫ 0

−�
sinnx dx− 1

�

∫ �

0
sinnx dx

The first integral can be solved by parts; the other two are standard.
Integrating gives

bn = −
[
1

�2n
x cosnx

]�

−�

+
[

1

�2n2
sinnx

]

︸ ︷︷ ︸
=0

�

−�

−
[
1

�n
cosnx

]0

−�

+
[
1

�n
cosnx

]�

0

bn = − 2

�n
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Fig. 18.3

Hence, for the sawtooth waveform the Fourier series is

f (x) = − 2
�

∞

∑
n=1

sinnx
n

Figure 18.3 shows the first six terms of the expansion in the range −� ≤ x ≤ 0. As
the number of terms is increased the series gets closer and closer to the function.

Triangular Waveform

The triangular function is shown in Fig. 18.4. Its period is 2� . It is defined by

f (x) =

{
−x , −� < x ≤ 0
x , 0≤ x ≤ �

Fig. 18.4
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Half sine wave, such as a rectified alternating current.
Since it is an even function, we only need to calculate the coefficients an. Because

there are two branches of the function we have to split the interval of integration.

a0 =
1

�

∫ 0

−�
(−x) dx+

1

�

∫ �

0
x dx = �

an =
1

�

∫ 0

−�
(−x)cosnx dx+

1

�

∫ �

0
x cosnx dx

Integrating by parts gives

an = −
[
1

�n2
cosnx

]0

−�

−
[
x

�n
sinnx

]

︸ ︷︷ ︸
=0

0

−�

+
[
1

�n2
cosnx

]�

0

+
[
x

�n
sinnx

]

︸ ︷︷ ︸
=0

�

0

an =
2

�n2
(cosn� −1)

If n is even cos n� = +1 hence an = 0

If n is odd cos n� = −1 hence an = − 4

�n2

The Fourier series of the triangular waveform is

f (x) =
�

2
− 4

�

∞

∑
n=0

cos(2n+1)x
(2n+1)2

Rectangular Waveform

The function is shown in Fig. 18.5. It is defined in the interval −� to � by

f (x) =

⎧⎪⎨
⎪⎩

−1 , −� < x ≤−�
2

1 , −�
2 < x ≤ �

2

−1 , �
2 < x ≤ �

Fig. 18.5
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Since the function is even, we need only calculate the coefficients an.

a0 =
1

�

∫ �

−�
f (x) dx = 0 (we can see this by inspection)

an =
1

�

(
−
∫ −�/2

−�
cosnx dx+

∫ �/2

−�/2
cosnx dx−

∫ �

�/2
cosnx dx

)

an =
2

�n
sin
n�

2

The Fourier series for the rectangular waveform is

f (x) =
2

�

∞

∑
n=1

1

n
sin
n�

2
cosnx

Figure 18.6 shows approximations to the function. We see that as we take more and
more terms we approach the original function f (x) = f1 +f2 +f3 + · · · .

There is, however, a snag to approximating a function at a point of discontinuity
such as x = �/2 in our example. Even if a lot of terms are added, f1 +f2 +f3 +
· · ·+fk , the graph overshoots before and after the discontinuity.

This is known as the Gibbs phenomenon. For most practical purposes this effect
can usually be neglected; but if special attention is to be paid to the function at
a discontinuity, the Gibbs phenomenon must be kept in mind.

Fig. 18.6
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Half sine wave, such as a rectified alternating current.
The function is shown in Fig. 18.7. It is defined by

f (x) =

{
0 , −� < x ≤ 0
I0 sinx , 0< x ≤ �

Fig. 18.7

The coefficient a0 is

a0 =
I0

�

(∫ 0

−�
0 dx+

∫ �

0
sinx dx

)
= 2

I0

�

To find the coefficients an and bn we use two identities which are based on the
addition formulae (Chap. 3, Sect. 3.6.6):

sin (n+1)x = sin nx cos x+ sin x cos nx

sin (n−1)x = sin nx cos x− sin x cos nx

Subtracting gives

sin(n+1)x− sin(n−1)x = 2 sin x cos nx

Similarly, we obtain

cos(n+1)x = cos nx cos x− sin nx sin x

cos(n−1)x = cos nx cos x+ sin nx sin x
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Subtracting gives

cos(n−1)x− cos(n+1)x = 2 sin nx sin x

Now we evaluate an:

an =
I0

�

∫ �

0
sinx cosnx dx =

I0

�

∫ �

0

1

2
(sin(n+1)x− sin(n−1)x) dx

=
I0

2�

[
−cos(n+1)x

n+1
+

cos(n−1)x
n−1

]�

0

(n �= 1)

If n= 1 , a1 =
I0

�

∫ �

0
sin x cos x dx= 0 ; hence a1 = 0

If n is odd n+1 and n−1 are even, so that

an = 0 (n odd)

If n is even n+1 and n−1 are odd, so that

an = − 2I0

�(n+1)(n−1) (n even)

The coefficients bn are

bn =
I0

�

∫ �

0
sinx sinnx dx

=
I0

�

∫ �

0

1

2

(
cos(n−1)x− cos(n+1)x

)
dx = 0 if n �= 1

If n= 1 , b1 =
I0

�

∫ �

0
sin2x dx=

I0

2

The Fourier series for the rectified waveform is

f (x) =
I0

�

(
1+

�

2
sinx− 2

1×3 cos2x− 2

3×5 cos4x− 2

5×7 cos6x−·· ·
)

18.3 Expansion of Functions of Period 2L

A periodic function f (x) of period 2L is repeated when x increases by 2L, i.e.

f (x+2L) = f (x)

If we put z = �/Lx, then the new function f (z) is a periodic function of period
2� . As x increases from −L to L, z increases from −� to � , and (18.2) holds true
for the new variable z. We have

f (z) =
a0

2
+

∞

∑
n=1

(an cosnz+bn sinnz) (18.6)
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To get back to the original function, we simply replace z by �/Lx and obtain

f (x) =
a0

2
+

∞

∑
n=1

(
an cos

n�

L
x+bn sin

n�

L
x
)

(18.7)

The coefficients of a Fourier series of a function with period 2L are

a0 =
1

L

∫ L

−L
f (x) dx (18.8)

an =
1

L

∫ L

−L
f (x)cos

n�

L
x dx n= 1, 2 . . . (18.9)

bn =
1

L

∫ L

−L
f (x)sin

n�

L
x dx n= 1, 2 . . . (18.10)

Rectangular Waveform of Period 4

The function is defined by

f (x) =

{
0 , −2< x ≤ 0
1 , 0< x ≤ 2

In this case, we have L= 2. All integrals from −2 to 0 vanish.

From (18.8): a0 =
1

2

∫ 2

0
dx = 1

From (18.9): an =
1

2

∫ 2

0
cos

n�x

2
dx = 0

From (18.10): bn =
1

2

∫ 2

0
sin
n�x

2
dx =

1

n�
(1− cos n�)

We therefore have

f (x) =
1

2
+
2

�

(
sin
�x

2
+
1

3
sin
3�x

2
+
1

5
sin
5�x

2
+ · · ·

)

18.4 Fourier Spectrum

A periodic function of time, such as a vibratory motion, expressed as a Fourier series
is often represented by a Fourier spectrum. It consists of the values of the amplitudes
and phases of the different terms as a function of the frequency. This is shown in
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Fig. 18.8. a1 is the amplitude of the fundamental frequency !; a2, a3 etc. are the
amplitudes of the harmonics 2!, 3!, etc. and �1, �2, etc. are the phase angles when
the function is expressed in the form of (18.1). For example, if s is a vibration or
a signal in an electrical system then (18.1) takes on the following form:

s =
∞

∑
n=1

an sin (n!t +�n) (! = frequency , t = time)

A periodic electrical signal introduced into a transducer, filter or amplifier will be
modified; it will be damped and distorted unless special precautions are taken in the
design of the equipment. By expressing the signal as a Fourier series it is easy to
find out how each Fourier component is affected.

For sine and cosine functions these modifications are often easy to find either
empirically by measurement or theoretically by calculation. As a rule, modifications
depend on the frequency of the function.

Thus the modification of an arbitrary periodic signal can be obtained by express-
ing the signal as a Fourier series, finding the modifications of the Fourier compo-
nents and reconstructing the modified signal.

In a transmission line, for example, it is most important to ensure that a signal
is not distorted. This implies that the relative amplitudes of the terms making up
the signal, as well as the phase angles of the harmonics, are faithfully reproduced.
In other words, it is necessary to ensure that the time shift due to the transmission
remains the same for all harmonics.

Fig. 18.8
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Exercises

1. Obtain the Fourier series for the function (Fig. 18.9) defined by

f (x) =

⎧⎪⎨
⎪⎩

0 , −� ≤ x < −�
2

1 , −�
2 ≤ x < �

2

0 , �
2 ≤ x ≤ �

Fig. 18.9

2. Obtain the Fourier series for the function (Fig. 18.10) defined below. The func-
tion is periodic with period 2� .

f (x) =

{
1 , −� ≤ x < 0

−1 , 0≤ x ≤ �

Fig. 18.10
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3. Obtain the Fourier series for a rectified waveform (Fig. 18.11) given by

f (x) = |sinx| =
{
−sinx , −� < x < 0

sinx , 0< x < �

Use the results obtained in the example on p. 498.

Fig. 18.11

4. Obtain the Fourier series for the function (Fig. 18.12) defined below. Its period
is 4� .

f (x) =

⎧⎪⎨
⎪⎩

0 , −2� ≤ x < −�
1 , −� ≤ x < �

0 , � ≤ x < 2�

Fig. 18.12



Chapter 19
Probability Calculus

19.1 Introduction

The concepts and methods of probability have been used increasingly in the last
decades. They are the basis for an understanding of a large part of modern physics,
both theoretical and applied, e.g. statistical and quantum mechanics.

Statistical mechanics describes physical systems such as gases, solid bodies, and
fluids, all of which consist of many atoms and molecules. The properties which refer
to a single element of a system are called microscopic, e.g. state of motion, position,
kinetic and potential energy.

Those which refer to the whole system are called macroscopic, e.g. pressure,
volume, temperature, magnetism, electrical conductivity and so on.

Statistical mechanics attributes the macroscopic properties of the whole system
to the microscopic properties of the constituent elements. Statistical mechanics uses,
above all, the fact that the whole system consists of a very large number of elements,
e.g. 1 litre of air contains about 1023 gas molecules.

Quantum mechanics describes physical objects like atoms, atomic nuclei etc. In
quantum mechanics statistics plays a major role, since only probability statements
can be made about the properties of these objects.

New mathematical methods are needed for the quantitative treatment of physical
systems with a large number of elements; and it has been found that the theory of
probability provides the necessary methods for the mathematical treatment of such
systems. One important fact is that the larger the number of elements of a system
under consideration is, the more closely will the results of the theory of probability
agree with experiments.

A further field of application is the theory of errors. All physical measurements
are in principle liable to errors. Before we can draw useful conclusions about an
experiment, we must first estimate the errors. In Chap. 21 we will show how to
infer the accuracy of measurements from the scatter of points, i.e. the variance of
experimental data.

An important application is quality control in the small or large-scale industrial
production of almost any product. Manufacturers need the sound knowledge of qual-
ity control which statistics can provide.

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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19.2 Concept of Probability

19.2.1 Random Experiment, Outcome Space and Events

The concept of probability in mathematics has been derived from the colloquial
word ‘probable’. If the sky is cloudy we say: ‘It will probably rain today’. Of course,
we are not sure that it will rain, i.e. whether the event will occur or not, but there is
a likely chance that it will. It is the aim of probability theory to calculate and express
quantitatively the degree of certainty or uncertainty in the possible occurrence of
an event.

The concept of probability can be deduced from an analysis of well-known games
of chance. Suppose a die is thrown. This can be repeated arbitrarily often. A process
which can be repeated arbitrarily many times in accordance with certain rules is
called an experiment. In this case the experiment can have six different outcomes.
The possible outcomes are the number of spots on the faces of the die, i.e. the
numbers 1, 2, 3, 4, 5, 6. The outcome cannot be forecast with certainty. Such an
experiment is called a random experiment.

The outcome of a random experiment depends on the statement of the problem.
When throwing a die, as in our example, we could ask: ‘What is the number of
spots?’ or ‘is the number even or odd?’.

In the first case, the set of outcomes is

{1, 2, 3, 4, 5, 6}
In the second case the set of outcomes is

{ even, odd } or {{2, 4, 6}{1, 3, 5}}
The set of outcomes is called the outcome space or the sample space of the experi-
ment.

Possible outcomes with equal probability are called elementary events. Equal
probability means that no outcome is more favoured than any other for physical or
logical reasons.

In the case of throwing a die, we have six elementary events, the number of spots:

R = {1, 2, 3, 4, 5, 6}
Any set of elementary events is called an event.

In the case of throwing a die and regarding the outcomes as ‘number even’ or
‘number odd’ we have two events, each of which is a subset of the set of elementary
events:

{2, 4, 6}{1, 3, 5}
Thus an event can be any outcome of a random experiment, depending on the
problem:

1. an elementary event;
2. any combination of elementary events.
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For the sake of completeness, an impossible event is defined as an event which is
not an element of the outcome space. For example, when throwing a die, the event
‘number of spots = 7’ is impossible.

19.2.2 The Classical Definition of Probability

Let a random experiment consist of N equally possible outcomes, i.e. elementary
events. Let us consider an event A consisting of NA elementary events. The proba-
bility P of outcome A is given by the classic definition of probability:

Definition Classical definition of probability

P (A)=
NA

N
=

number of elementary events contained in event A

total number of possible elementary events

Some authors refer to the number NA as ‘favoured’.

Example What is the probability that an even number will appear when throwing
a die?

There are 6 possible ways a die can fall; hence N = 6. Of these 6 there are 3
which will show an even number {2, 4, 6} and 3 an odd number {1, 3, 5}; therefore
NA = 3. Consequently the probability that an even number will appear is

P (even) =
NA

N
=

3

6
=

1

2

Example A pack of 52 cards contains 4 jacks. What is the probability of drawing
one jack?

It is possible to draw 52 different cards; thus N = 52 (possible elementary
events). Since there are 4 jacks in the pack, we have 4 possibilities to realise the
event ‘one jack’; hence NA = 4. Therefore the probability of drawing one jack is

P (jack) =
NA

N
=

4

52
=

1

13

The basis of the classic definition of probability is the assumption that all elementary
events are equally probable. In reality, all experiments carried out with real dice,
playing cards and other games approach this assumption only to a certain degree.
A perfect or fair die, for example, is one whose material is absolutely homogeneous
and whose shape is perfect.

19.2.3 The Statistical Definition of Probability

In many cases it does not make sense in practice to assume that all elementary events
are equally probably. For example, a die becomes deformed after long use, or the
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centre of mass may be deliberately altered so that it is ‘loaded’ with the intent to
defraud.

In cases of this kind we can also state the probability that a particular event
will occur.

Let N experiments be carried out under identical conditions and let NA of them
have the outcome A. The expression

hA =
NA

N
is called the relative frequency .

The relative frequency is a quantity which has to be determined experimentally. It
should not be confused with the classic definition of probability. NA is the actual
number of experiments with outcome A.

If the values of the relative frequency do not change for a large number N of
experiments actually carried out, then we can interpret the relative frequency as
the probability. We call the probability obtained from the relative frequency the
statistical probability P (A).

Definition The statistical definition of probability is the limit of the relative
frequency of an event A.

P (A) = hA =
NA

N
as N → ∞

In practice, of course, it is not possible to carry out an arbitrarily large number of
experiments.

Example The probability of getting a 1 when throwing a die can be determined
empirically, as shown in Fig. 19.1 which is the result of an actual test. The relative
frequency approaches the value of 1/6 as the number of experiments increases. If

Fig. 19.1
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we repeat the test, the shape of the curve will be different at first but will again
approach the value 1/6 for a large number of experiments.

If the curve approaches a different value we can deduce that the die is faulty or
loaded. In this way we can check the die.

The concept of the statistical definition of probability refers to actual experi-
ments. It can be applied to the result of scientific measurements (from observations
of the radioactive decay process we can derive the probability of the decay of a ra-
dium atom, for instance). In the case of throwing ideal dice or similar games, both
definitions of probability coincide for large values of N . Unless we state otherwise,
we will use the classic definition; this means that we will consider ideal experiments.
In Chap. 21, which deals with the theory of errors, we shall concern ourselves with
the analysis of the results of real experiments.

19.2.4 General Properties of Probabilities

We will now derive a few general properties of probabilities which will be useful in
practical calculations by means of an example.

Example A box contains N balls. N1 balls have the number 1 written on them, N2

the number 2, . . . and Nk the number k. k is the largest number on a ball.

In our case let N = 9, k = 4

N1 = 2︷ ︸︸ ︷
1© 1©

N2 = 1︷ ︸︸ ︷
2©

N3 = 4︷ ︸︸ ︷
3© 3© 3© 3©

N4 = 2︷ ︸︸ ︷
4© 4©

↑
2 balls
with the
number 1

↑
1 ball
with the
number 2

↑
4 balls
with the
number 3

↑
2 balls
with the
number 4

We take one ball out of the box. Let this ball carry the number j . This event is
denoted by j whose probability is

P (j ) =
Nj

N

Now we want to find what the probability is of our taking out a ball with the num-
ber i on it or a ball with the number j . This event is represented by the balls carrying
the number i or j . There are Ni and Nj balls with the number i and j respectively.

The probability of our taking out one ball in this subset is

P (i or j ) =
Ni +Nj

N
=

Ni

N
+

Nj

N
= P (i)+P (j )

This is the addition law for probabilities and is only valid if the events are mutually
exclusive or disjoint, i.e. independent.
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Rule Addition law for independent probabilities

P (i or j ) = P (i)+P (j )

This theorem can be generalised for any number of mutually exclusive events.

Rule

P (1 or 2 or . . . or k) =
k

∑
i=1

P (i)

If the set of events is equal to the set of all possible events, then the probability
P (1 or 2 or . . . or k) is a certainty. In such a case, the normalisation condition must
be satisfied.

Rule Normalisation condition for probabilities

k

∑
i=1

P (i) = 1

Proof Let the total number of events be N , then
k

∑
i=1

Ni = N

and hence
k

∑
i=1

P (i) =
k

∑
i=1

Ni

N
=

1

N

k

∑
i=1

Ni =
1

N
N = 1

An event with the probability P = 1 occurs with certainty.
What is the probability of taking out of the box a ball with the number m, where

m > k? Since k is the largest number on a ball, we know that there are no balls with
the number m. Therefore

P (m) =
0

N
= 0

This means that an event which cannot take place has the probability zero: it is an
impossible event.

Example Each group of spots from 1 to 6 on a die has the probability 1/6 of ap-
pearing when the die is thrown.

The probability of throwing either a 1 or a 2 is

P (1 or 2) =
1

6
+

1

6
=

1

3

The probability of throwing an even number is

P (even) =
1

6
+

1

6
+

1

6
=

1

2
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The probability of obtaining any number between 1 and 6 is a certainty:

P (1 or 2 or 3 or 4 or 5 or 6) =
1

6
+

1

6
+

1

6
+

1

6
+

1

6
+

1

6
= 1

The probability of throwing a number greater than 6 is zero, an impossible event.
We will consider one more relationship of this kind. Let the probability P for the

occurrence of an event i be known and let N be the total number of possible events.
To obtain the number Ni , we need only solve the equation P (i) = Ni/N for

Ni . Hence
Ni = P (i)N

Example When throwing a die, let N = 60. The probability of throwing a 1 is
P (1) = 1/6. The number N1 for the event of ‘getting a 1’ is

N1 = P (1)N =
1

6
×60 = 10

This means that, on average, after 60 throws we can expect the number 1 to appear
ten times.

19.2.5 Probability of Statistically Independent Events.
Compound Probability

In this section we will determine the probability of the simultaneous occurrence of
two different events.

For example, a person throws a die and at the same time tosses a coin. We are
interested in the probability of the die showing a 6 and the coin showing a tail. The
experiments and their outcomes are independent of each other.

Such composite events are called compound events.
Suppose we have two groups of independent events, the number of spots on the

die (group A) and the faces of the coin (group B). We require the probability of
the simultaneous occurrence of these two events. The table lists all events and their
possible combinations.

Coin: 2 Die: 6 elementary events
elementary events 1 2 3 4 5 6

Head (H) H1 H2 H3 H4 H5 H6
Tail (T) T1 T2 T3 T4 T5 T6

Compound events

We see that there are 12 possible elementary compound events.
The total number of elementary compound events is equal to the product of the

number of elementary events of group A (the die) and the number of elementary
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events of group B (the coin). Hence

N = N1 ×N2

In the example above N1 = 6, N2 = 2, N = 12.
From the table above we can determine the probability of a particular compound

event when the die is thrown and the coin is tossed.

Example What is the probability that the die will show a 6 and the coin a tail?
In this case N6T = 1 and N = 12. Hence P (6T) = 1/12.

Example What is the probability that the die will show an even number and the
coin a head?

The number of events is N = 6×2 = 12.
For group A (die), N1 = 3.
For group B (coin), N2 = 1.
Probability P (even, head) = 3×1/12 = 1/4.
The concept of statistically independent events is important. In our example oc-

currence of the number 6 on the die is in no way influenced by the coin showing
head or tail. The two events are independent.

Definition If the probability of the occurrence of an event in group A is in
no way influenced by the occurrence of an event in group B ,
then we say that the events A1, . . . , An are
statistically independent of events B1, . . . , Bm.

The compound event ‘number even’ on the die and ‘head’ on the coin is made
up of the events ‘number even’ and ‘head’. Hence the total number of compound
events is given by the product of elementary events A and B. Thus

Nnumber even, head = Nnumber even ×Nhead

The required probability of both events occurring is

P(even, head) =
Neven ×Nhead

N1N2
=

Neven

N1
× Nhead

N2

Rule The probability of the occurrence of a compound event – A and B –
is for statistically independent events, A and B , the product of the
probability of the occurrence of A and of B

P (A and B) = P (A)×P (B)

The probability of compound events is generally less than the probability of sin-
gular events:

P (A and B) ≤ P (A)
P (A and B) ≤ P (B)
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Example The probability that a thirty-year-old man will reach the age of 65 is, ac-
cording to statistics, P (man) ≈ 0.75. The probability that his wife (who is the same
age) will live through these 30 years is P (woman) ≈ 0.80. What is the probability
that both will be living 30 years hence?

P (man and woman) = 0.75×0.80 = 0.6

Note that

P (man and woman) ≤ P (man)
P (man and woman) ≤ P (woman)

19.3 Permutations and Combinations

To calculate probabilities the standard problem is to calculate the number of ele-
mentary events contained in an event A. To simplify the solution of these problems
we introduce the concept of permutations and combinations.

19.3.1 Permutations

Given n objects, we may place them in a row in any order; each such arrangement is
called a permutation. Thus two elements, a and b can be arranged in two different
ways: ab and ba. Three elements, a, b and c, can be arranged in six different ways:

abc, bac, cab, acb, bca, cba

How many permutations are there for n different elements a1, a2, . . . ,an? The fol-
lowing reasoning leads us to the solution. First of all, we assume that the n possible
places are empty. The element a1 can be put in any place, i.e. there are n possibil-
ities. The element a2 can be put in any one of the remaining (n− 1) places which
are still empty, i.e. there are (n− 1) possibilities. Thus the number of possibilities
for placing the first two elements is given by

n(n−1)

For element a3 there are (n− 2) possibilities, etc. until we reach element an for
which there is only one possibility left.

Thus the total number of arrangements of the n elements a1, a2, . . . , an is

n(n−1)(n−2) . . .1 = n!

Rule The number nP of permutations of n different elements is

nP = 1×2×3× . . .× (n−1)n = n!
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Remember from Chap. 8, Sect. 8.2, that n! is referred to as ‘factorial n’. We also
defined factorial zero as 0! = 1.

For example, 3! = 1×2×3 = 6 is read as ‘3 factorial equals 6’.
It is a little more difficult to obtain the number of permutations of n elements if

some of them are equal as, for example, in the case of the three elements a, b, b.
We can write the number of permutations of these 3 elements thus:

abb, bab, bba, abb, bab, bba

But note that there are three pairs of identical permutations; hence there are only
three different permutations. The identical permutations are formed by rearranging
equal elements. If we are interested in the number of different permutations, then
we must divide the total number of permutations by the number of permutations of
equal elements.

Nabb =
3!
2!

=
6

2
= 3

Rule If out of n elements n1, n2, . . . , nm elements are equal to each other,
then the number of different permutations is

np =
n!

n1!n2! . . .nm!

Proof Let np be the required number of permutations. From any of these, if the
n1-like elements were different, we could make n1! new permutations. Thus if the
n1-like elements were all different, we would get npn1! permutations.

Similarly, if the n2-like elements were different, we would get n2! new permuta-
tions from each of the second set of permutations.

Thus, if the n1-like elements and the n2-like elements were all different, we
would get npn1!n2! permutations in all.

The process is continued until all the sets of like elements are dealt with, and we
then get the number of permutations of n elements which are all different. This is n!

Therefore npn1!n2! . . .nm! = n!

Hence np =
n!

n1!n2! . . .nm!

19.3.2 Combinations

We now alter the problem considered in the previous section to ask the number of
different ways in which k elements can be selected out of n elements.

Example Consider the four letters a, b, c, d (n = 4). They can be arranged in groups
of two (k = 2) as follows:

ab, ac, ad, bc, bd, cd

That is, there are six groups in all.
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Example Now consider the five letters, a, b, c, d, e (n = 5). They can be arranged
in groups of three (k = 3) as follows:

abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde

That is, there are 10 groups in all.

Definition Each of the groups which can be made by taking k different
elements of a number of elements n is called a combination of
these elements.

Generally, if there are given n different elements and each group contains k of

them, the symbol nCk or

(
n

k

)
is used to denote the number of all possible groups.

In other words, nC k is the number of combinations of n different elements taken
k at a time without repetition. This is also referred to as the kth class. The number
obtained is given here without proof:

Binomial coefficient:
(

n

k

)
= nCk =

n!
k!(n−k)!

Note: This is called the binomial coefficient. These coefficients occur in the bi-

nomial expansion (a+b)n =
n

∑
k=0

(
n

k

)
an−kbk .

Note the special case

(
n

0

)
=

(
n

n

)
=

n!
0!n!

= 1 since 0! = 1 . (19.1)

Example A club has 20 members. The managing committee is formed by 4 mem-
bers having equal rights. How many combinations are possible in choosing a com-
mittee?

We must choose 4 members out of the 20. Thus there are

(
20

4

)
combinations:

(
20

4

)
=

20!
4!16!

=
20×19×18×17

4×3×2×1
≈ 5000

So far we have considered combinations containing different elements only. Now
we will consider combinations where several elements are allowed to recur. We will
see that, in this case, more combinations are possible.

Example Given the four letters a, b, c, d, how many combinations are there when
taking 2 letters at a time?

(i) Without repetition: ab, ac, ad, bc, bd, cd

These are 6 combinations 6 =
(

4

2

)
.
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(ii) With repetition: there are 6 combinations as in (i) plus aa, bb, cc, dd, giving 10
combinations, i.e. 4 more than when repetition is not allowed.

We give the rule without proof.

Rule There are

(
n+k−1

k

)
combinations of n different elements taken

k at a time with repetition.

Up to now we have not made any allowance for the order in determining the
number of combinations. If we distinguish between combinations with the same
elements but with different orders, we are considering variations. We give the rule
for the number of variations without proof.

Rule There are
n!

(n−k)!
variations of n different elements taken k at

a time with repetitions and taking account of different order.

Exercises

1. A menu contains five dishes from which two can be chosen freely. Give the
sample space.

2. A set of cards consists of 16 red and 16 black cards. What is the probability of
drawing a black card out of the pile?

3. What is the probability that when tossing a die the number that appears will be
divisible by 3?

4. An experiment is carried out 210 times. Outcome A has been measured 7 times.
What is the relative frequency of outcome A?

5. A box contains 20 balls. Of these, 16 are blue and 4 are green. Evaluate the
probability of taking out a blue ball and, after putting it back, the probability of
drawing a green ball.

6. What is the probability that when tossing two dice we will obtain a sum of 2
spots after the first throw and a sum of 5 after the second throw?

7. A player casts with two dice. What is the probability that a 2, a 3 or a 4 will be
thrown?

8. A sales representative has to visit 6 towns. In how many ways can the route be
fixed so that the journey always starts from town A?

9. A teacher has a class of 15 pupils. Of these, 3 must be selected for a special task.
How many possibilities are there?



Chapter 20
Probability Distributions

20.1 Discrete and Continuous Probability Distributions

20.1.1 Discrete Probability Distributions

In the practical treatment of statistical problems, it is wise to characterise individ-
ual outcomes of a random experiment with numerical values. A simple method is
to number the individual outcomes consecutively. For example, the outcomes of
throwing a die can be described by the number of the spots on the faces.

The set of numerical values can be regarded as the range of definition of a vari-
able, which is called a random variable or a variate. The outcomes of a random
experiment are therefore assigned to the values of the random variable within its
range of definition.

If the range of definition consists of discrete values, we call the variable a discrete
random variable. We are then in a position to assign to each value of the random
variable the probability of its outcome in a random experiment.

This can be expressed symbolically as

Outcome of random experiment j → random variable xj → probability P (j )

The complete set of probabilities for each value of the discrete random variable in
a random experiment is called a discrete probability distribution.

Definition A discrete probability distribution is the complete set of proba-
bilities of the discrete values of the random variable in a random
experiment.

Example Consider an ideal or ‘fair’ die. There are six possible outcomes when
throwing a die. The discrete random variable, in this case, ‘number of spots’, as-

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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Random Probability
variable x P (x)

1 P (1) = 1
6

2 P (2) = 1
6

3 P (3) = 1
6

4 P (4) = 1
6

5 P (5) = 1
6

6 P (6) = 1
6

Fig. 20.1

sumes the values from 1 to 6. Each value of the random variable has the prob-
ability

P (x) =
1

6
(x = 1, 2, 3, 4, 5, 6)

The probability distribution for this somewhat trivial example is shown in Fig. 20.1.
In the figure, the values of the discrete random variable are plotted on the abscissa

and their respective probabilities along the ordinate.

Example Two dice are thrown. We choose as the random variable the sum of the
number of spots. Thus the random variable assumes the values 2, 3, 4, . . ., 12. We
now seek the probability distribution for this random variable.

The outcome x = 2, for example, can only be realised if each die shows a ‘1’.
The probability for this event is

P (2) =
1

6
×
(
−1
6

)
=
1

36

The outcome x = 5, as another example, can be realised by 4 elementary events:

First die Second die Sum

1 4 5
4 1 5
2 3 5
3 2 5

The probability distribution in this example is shown as Fig. 20.2.
We could have numbered the values of the random variable in a different way.

The outcomes could have been assigned, just as easily, to the numbers 1 to 11 or
to any other set of numbers consisting of 11 values, e.g. 100 to 110, but this would
surely have made it more difficult to relate the values of the random variable to the
numerical results of the experiment.
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Random Probability
variable x P (x)

2 1
36

3 2
36

4 3
36

5 4
36

6 5
36

7 6
36

8 5
36

9 4
36

10 3
36

11 2
36

12 1
36

Fig. 20.2

Example Consider a cylinder, having a base of 1 square unit, containing air and
subdivided into 5 regions, as shown in Fig. 20.3.

There are no material partitions between the regions. Let us consider an arbitrary
air molecule. The purpose of the experiment is to measure the position (height) of
this air molecule at a particular instant when the air has been thoroughly mixed. We
wish to evaluate the probability that we will find the air molecule in a particular
region. We number the regions 1 to 5; these are our random variables. The volume

Regions

Fig. 20.3
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Random Volume of Probability
variable x region Vx P (x)

1 8 1
2

2 4 1
4

3 2 1
8

4 1 1
16

5 1 1
16

Fig. 20.4

of each region is given in Fig. 20.4. The probability P (x) of the air molecule being
at a particular position is given by the ratio of the partial volume Vx to the total
volume V of the cylinder. Hence

P (x) =
Vx

V

The table and the diagram show this discrete probability distribution. In this ex-
ample, we assumed that the positional probability in a region was proportional to
the volume of the region.

20.1.2 Continuous Probability Distributions

The random experiments considered so far had discrete values of the random vari-
able. There are, however, many random experiments whose results are best ex-
pressed by means of a continuous variable.

Let us consider again the example of the cylinder filled with air and an arbitrarily
chosen air molecule.

The purpose of the experiment is to measure the position of this air molecule at
a certain instant when the air is thoroughly mixed, and we now wish to evaluate the
probability that we will find this air molecule at a position defined by the height h
(Fig. 20.5). The external conditions of this random experiment remain unchanged;
all that has changed is the formulation of the problem. The result is the position h
of the air molecule which can take on any value between 0 and H .

The position (reading the height) h is now a continuous quantity; it is a logical
way of describing the outcome of the random experiment with h as the random
variable. We have thus obtained a new type of random experiment. The outcomes
and the random variable have a continuous set of values. This is always the case
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Fig. 20.5

when we consider a measurement as a random experiment in which the measured
quantity varies continuously.

An important and perhaps a surprising conclusion for continuous random vari-
ables can be drawn from our example. The probability of finding the air molecule
somewhere between 0 and H is 1 (by the normalising condition). The number of
possible readings of its position is infinite for an arbitrarily small subdivision of the
height H . It follows, therefore, that the probability at a definite position h0 has to
approach the value zero.

For continuous random variables it is not possible to specify a probability
different from zero for an exactly defined value of a random variable.

A value for the probability of the outcome of a random experiment for a contin-
uous variable can, however, be given if we formulate the problem differently, i.e. by
asking for the probability that the air molecule will be inside a given interval.

What then is the probability of finding the air molecule in the interval h0 to
h0 + ∆h? (see Fig. 20.6).

The total height of the cylinder is H . The probability P (h0 ≤ h ≤ h0 + ∆h) of
finding the air molecule in the interval h0 and h0 +∆h is proportional to the interval
∆h, i.e.

P (h0 ≤ h≤ h0 + ∆h) =
1

H
∆h

In general, the probability will also depend on the value of h0 considered. This will
be the case when, for example, we take the influence of gravity into account.

Hence, more generally, we have

P (h0 ≤ h≤ h0 + ∆h) = F (h0)∆h
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Fig. 20.6

F (h0) is called the probability density function and is as yet unknown. If the prob-
ability density is known as a function of h, then we can evaluate the probability of
finding the air molecule in the interval ∆h for each value h0.

This concept of a probability density function has to be very clearly distinguished
from the probability of a discrete distribution. The probability density is not quite
a probability, but a probability per unit of the random variable. The probability itself
can only be given for an interval of the random variable. The probability for an
interval is then the product of the probability density function by the magnitude of
the interval (for small intervals).

Let us now determine the probability distribution in the case of the air molecule.

Case 1: We will assume for the time being that the influence of gravity can be
neglected, in which case the probability density function will not depend on h0. The
probability of finding the air molecule in an interval of length ∆h was

∆h
H

= F (h)∆h

Hence the probability density function is F (h) = 1/H ; it is independent of h.
Case 2: We now take the influence of gravity into account. The density of the air
decreases with height in accordance with the barometric equation (see Chap. 13,
Sect. 13.2).

It is shown in statistical mechanics that the probability density function for a gas
molecule, taking gravity into account is given by

F (h) =
1

c
e−˛h for 0≤ h≤H

The constant c depends on the conditions of the gas inside the column:

˛ =
�0

P0
g

�0 = density at h= 0, P0 = pressure at h= 0, and g = acceleration due to gravity.
c is a constant which is obtained by the normalisation condition, i.e.

∫ H

0
F (h) dh= 1
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and hence
∫ H

0

1

c
e−˛h dh= 1

from which we get c =
1

˛
(1− e−˛H )

In this case, the probability density function is a function of the altitude h.
Let us denote the probability density function for an arbitrary random variable x

by f (x). In order to determine the probability that x will assume any value between
x1 and x2, we have to add up the probabilities of all the intervals between x1 and
x2. When the lengths of the intervals ∆x tend to zero the sum becomes an integral
and we have

P (x1 ≤ x ≤ x2) =
∫ x2

x1

f (x) dx

All probability distributions have to satisfy the normalisation condition; for discrete
probability distributions this is

n

∑
i=1

P (i) = 1

For a continuous distribution, the normalisation condition is∫ ∞

−∞
f (x) dx = 1

20.2 Mean Values of Discrete and Continuous Variables

Mean Value of Discrete Random Variables

A class of students is given a test with the following results:

Grade Number of students

1 4
2 4
3 6
4 2
5 1
6 0

It is often very useful to characterise the performance of a class by means of
a single number, although by doing so a lot of information is lost, since the individ-
ual grades of the pupils are not included. Nevertheless, such a number, if carefully
chosen, is sufficient in many cases. Such a number is the arithmetical mean value.
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The arithmetical mean value is defined as the sum of all individual grades divided
by the number of students. In our example, we have

(1×4+2×4+3×6+4×2+5×1+6×0)
17

=
43

17
= 2.53

We encounter the same type of problem when we measure a physical quantity sev-
eral times in succession and the measured values do not agree completely with each
other, which is frequently the case in practice. In this case we also take the arith-
metical mean value as the most probable value of the physical quantity.

Now let us generalise. If we carry out a random experiment n times, the random
variable may take on the values x1, x2, x3, . . . , xn.

The arithmetical mean value x̄ of discrete random variables is defined as

x̄ =
1

n

n

∑
i=1

xi

Let the range of definition of a discrete random variable x be x1, x2, . . . , xk . We
then carry out a random experiment n times. If the random value xi appears with
a frequency ni , then the mean value x̄ of the random variable is defined as

x̄ =
1

n

k

∑
i=1

nixi

If we know the probability distribution P (i) of a discrete random variable, then the
mean value is defined as

x̄ =
k

∑
i=1

P (i) xi

Mean Value of Continuous Random Variables

If a continuous random variable is defined between the values x1 and x2 and
the probability density function is f (x), then the mean value of x is given by

x̄ =
∫ x2

x1

xf (x) dx

Example The probability density function of a gas in a cylinder is given by

f (h) =
e−˛h

1
˛ (1− e−˛H)

(0≤ h≤H )



20.3 The Normal Distribution as the Limiting Value of the Binomial Distribution 527

Fig. 20.7

Fig. 20.8

The mean value of the random variable h (the height of the gas molecule in the
cylinder shown in Fig. 20.7) is

h̄=
∫ H

0

h e−˛h

1
˛ (1− e−˛H )

dh=
1

˛
− H e−˛H

1− e−˛H

In the case of an air molecule in the Earth’s atmosphere,˛ has the value 0.00018m−1.
Figure 20.8 shows the mean height h of a gas molecule plotted against the alti-
tudeH .

We notice that for small values of H , h̄=H/2. This means that the mean value
of the random variable h is in the middle of the height of the column. ForH→∞, h̄
approaches the limiting value of 5400m, which means that for arbitrarily large
heights of the column h̄ remains finite.

20.3 The Normal Distribution as the Limiting Value
of the Binomial Distribution

A coin is tossed 10 times in succession. The probability of the outcome being a head
k times and a tail (10−k) times is given by the binomial distribution for a random
experiment carried out n times with two possible outcomes.
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Fig. 20.9

Fig. 20.10

For n = 10 and equally likely outcomes, the probabilities have been plotted as
a function of k in Fig. 20.9.

Such a distribution can be reproduced experimentally in the following manner.
n rows of nails are positioned on a board in the form of a pyramid, as shown in
Fig. 20.10. Each nail is exactly positioned in the middle of two nails belonging to
the next lower row. Such a board is known as a Galtonian board, and the figure
illustrates two such boards, one with 4 rows of nails and the other with 8 rows
of nails.

A marble (or a small steel sphere) is introduced in the tunnel at the top of the
board and allowed to drop freely so that it impinges on the top nail centrally. It is
then deflected to the right or left with equal probability, after which it impinges on
a nail in the next row and so on through every row. Each time it hits a nail it is
deflected to the left or right with equal probability. The sphere is then collected in
one of the partitions shown in the figure.
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If there are n rows of nails, then this corresponds exactly to n experiments with
two equally probable outcomes. This leads to the binomial distribution. A marble
reaches the kth partition if it has been deflected on k nails to the left and (n− k)
nails to the right. The probability P (n; k) for this (cf. Sect. 20.3.2) is

P (n;k) =
(
n

nk

)(
1

2

)k (
1

2

)n−k

=
(
n

nk

)(
1

2

)n

If we allow many marbles to drop through the Galtonian board, we then find that
they are distributed in accordance with the probabilityP (n; k). The number of mar-
bles in the different partitions approaches the binomial distribution. (From a prac-
tical point of view, we have to select the radius of the marbles and the distance
between the nails in such a way that ideal conditions are obtained.)

Figure 20.11 shows results obtained empirically with n= 4 and n= 8.
We can, of course, increase the number of rows, n, and the number of partitions.

Figure 20.12 shows results obtained empirically with n= 24.
In the limit, as n → ∞, we will obtain a continuous function, as shown in

Fig. 20.13. It is known as the normal distribution.
The proof that the binomial distribution is transformed into the normal distribu-

tion for n→ ∞ is quite complex and beyond the scope of this book.

Fig. 20.11

Fig. 20.12
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Fig. 20.13

20.3.1 Properties of the Normal Distribution

The analytical expression for the normal distribution, given without proof is

f (x) =
1

�
√
2�

e−
1
2

( x
� )2

It is symmetrical with respect to the origin of the coordinates. Because of its shape, it
is frequently called the bell-shaped curve. Because of symmetry, it has its maximum
at x = 0.

The parameter � defines the particular shape of the normal distribution. This is
illustrated in Fig. 20.14 for � = 1, 2 and 3.

When � is small the curve is narrow and elongated, i.e. it has a sharp maximum.
The larger � the flatter and broader the curve becomes. Whatever the value of � the
area under the curve remains constant.

The normal distribution is a probability distribution and has to satisfy the nor-
malisation condition, i.e. the sum of all probabilities must be equal to 1. In this case,
we have ∫ ∞

−∞
f (x) dx =

∫ ∞

−∞

1

�
√
2�

e−
1
2

( x
� )2

dx = 1

The proof is given in the appendix to this chapter.

Fig. 20.14
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If we consider the normal distribution as the probability distribution of a random
variable x, we can then compute its mean value. We have

x̄ =
∫ ∞

−∞
xf (x) dx

=
∫ ∞

−∞

x

�
√
2�

e−
1
2

( x
� )2

dx =
[ −2�
�
√
2�

e−
1
2

( x
� )2

]+∞

−∞
x̄ = 0

Here the normal distributed random variable has zero as its mean value.
A new normal distribution is obtained if we shift it along the x-axis by an

amount � (Fig. 20.15). This is achieved by replacing x by (x−�) so that

f (x) =
1

�
√
2�

e−
1
2

( x−�
� )2

This function, of course, has its maximum value at x = �. The mean value of the
random variable in this case is x̄ = �, which should be fairly obvious.

The parameter � is called the standard deviation. It is given by

�2 =
∫ ∞

−∞
(x−�)2f (x) dx

� determines the width of the normal distribution curve. It is a measure of the vari-
ation of the random variable x about its mean value. Within the interval �+� and
�− � lies 68% of the area beneath the normal distribution curve (Fig. 20.16). Its
meaning will be discussed further in Chap. 21 which deals with the theory of errors.

The normal distribution is symmetrical about its maximum value at x = �.

Fig. 20.15 Fig. 20.16
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20.3.2 Derivation of the Binomial Distribution

There are some random experiments for which there are only two possible out-
comes, e.g. tossing a coin.

Let us denote the two possible outcomes of an experiment by A and B , and
let P (A) and P (B) be the probabilities for the occurrence of events A and B ,
respectively. Since A and B are the only two elementary events in this random
experiment, we must have

P (A)+P (B) = 1

We now carry out this experiment N times in succession, e.g. we toss a coin N
times. What is the probability of eventA occurringNA times inN experiments? We
call this probability P (N ; NA). We are not concerned here with the order in which
the NA events occur.

The solution can be divided into three steps.

1. We compute the probability for the occurrence of a particular outcome with NA

events A and NB events B , so that N =NA +NB.
2. We obtain the number of particular outcomes which differ only in arrangement,

not in NA. This is the permutation discussed in Chap. 19, Sect. 19.3.1.
3. We evaluate, from the probability of one particular outcome and the number of

equally probable outcomes, the probability that out of N experiments NA will
lead to the event A.

Step 1: We pick out one particular outcome, perhaps the one for which event A
occursNA times, and after that event B occursNB = (N −NA) times, i.e.

A A A . . .A A︸ ︷︷ ︸
NA times

B B B . . .B B︸ ︷︷ ︸
NB times

The elementary eventA has the probabilityP (A). The compound probabil-
ity for the occurrence of NA events A is

P (NA) = P (A)×P (A)×·· ·×P (A) = P (A)NA

The elementary event B has the probability P (B). The compound proba-
bility for the occurrence of NB =N −NA events B is

P (NB) = P (B)×P (B)×·· ·×P (B) = P (B)NB = P (B)N−N A

The compound probability for the simultaneous occurrence of NA eventsA
and NB =N −NA events B is then the product

P (A)NAP (B)NB = P (A)NAP (B)N−N A

We have thus determined the probability for the occurrence of one particular
outcome of the test.
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Step 2: In Chap. 19, Sect. 19.3.1, we determined that the number of permutations
of N elements in which NA and NB are equal is

N !
NA!NB!

=
N !

NA!(N −NA)!
=
(
N

NA

)

Step 3: Each of the permutations in Step 2 has the same probability of occurring.
The probability that one of these permutations may occur is (in accordance
with the addition theorem for probabilities) obtained by summing the prob-
abilities of all the permutations.

Hence, with the results obtained in Steps 1 and 2, the probabilityP (N ; NA) that
out of N random experimentsNA will have the outcome A is given by

P (N ;NA) =
N !

NA!(N −NA)!
P (A)NAP (B)N−NB =

(
N

NA

)
P (A)NAP (B)N−NA

This also means that out of N experiments those that remain, namelyNB, will have
the outcome B. For a preassignedN , P (A) and P (B), this probability is a function
ofNA. The range of definition of this function is the set of integers from 0 toN . For
each NA, we can calculate the accompanying probability using the above equation.
The totality of these probabilities is called the binomial distribution.

Note: Repeating an experiment N times can be replaced by carrying out N equal
experiments simultaneously, e.g. tossing one coin N times is equivalent to
tossing N coins simultaneously.

Summary

Suppose an experiment has two possible outcomes, A and B, which occur with prob-
abilities P (A) and P (B). If we carry out N such experiments, then the probability
for the occurrence of NA events A is given by the binomial distribution

P (N ;NA) =
(
N

NA

)
P (A)NAP (B)N−NA

Appendix

Evaluation of the integral

I =
1

�
√
2�

∫ ∞

−∞
e−

1
2 (x−�

� )2

dx = 1

First substitute

z =
1√
2

(
x−�
�

)
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Then
dx =

√
2� dz

Hence the integral becomes

I =
1√
�

∫ ∞

−∞
e−z2

dz

To integrate this expression we use a ‘trick’: we multiply the expressions

I =
I√
�

∫ ∞

−∞
e−z2

dz and I =
1√
�

∫ ∞

−∞
e−u2

du

So obtaining the double integral

I 2 =
1

�

∫ ∞

−∞

∫ ∞

−∞
e−(z2+u2) dz du

Now we introduce polar coordinates:

r2 = z2 +u2 , z = r cos�

u = r sin�

The differential area dz du becomes r dr d�. We integrate � from 0 to 2� and r
from 0 to ∞ and obtain

I 2 =
1

�

∫ ∞

0

∫ 2�

0
e−r2

r dr d�

The integration with respect to � gives

∫ 2�

0
d� = 2�

so that I 2 = 2

∫ ∞

0
r e−r2

dr

The solution can be verified easily

I 2 = 2

[
−1
2

e−r2

]∞

0

= 2

[
0+

1

2

]
= 1

Thus I 2 = 1, and hence

I =
1√
2�

∫ ∞

−∞
e−

1
2

( x−�
� ) dx = 1

(The value I = −1 is ruled out, since the integrand assumes positive values only.)
If we now insert in the integral �= 0 and � = 1/

√
2 we obtain

1√
�

∫ ∞

−∞
e−x2

dx = 1 or
∫ ∞

−∞
e−x2

dx =
√
�
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Evaluation of the integral

1

�
√
2�

∫ ∞

−∞
(x−�)2 e−

1
2 (x−�

� )2

dx = �2

First substitute

z2 =
1

2

(
x−�
�

)2

Then (x−�)2 = 2�2z2 and dx =
√
2� dz.

The integral
1

�
√
2�

∫ ∞

−∞
(x−�)2 e−

1
2 (x−�

� ) dx

is transformed into
2�2

√
�

∫ ∞

−∞
z2 e−z2

dz

Integrating by parts gives

2�2

√
�

∫ ∞

−∞
z2 e−z2

dz =
2�2

√
�

[
−z 1

2
e−z2

]+∞

−∞︸ ︷︷ ︸
=0

−2�
2

√
�

∫ ∞

−∞

(
−1
2

e−z2

)
dz

=
�2

√
�

∫ ∞

−∞
e−z2

dz

From above we know that ∫ ∞

−∞
e−z2

dz =
√
�

Hence
1

�
√
2�

∫ ∞

−∞
(x−�)2 e−

1
2( x−�

� ) dx = �2

Exercises

1. Two dice are thrown. Calculate the mean value of the random variable ‘sum of
the number of spots’.

2. A random variable has the probability distribution

f (x) =

⎧⎨
⎩
x

2
, 0≤ x ≤ 2

0 , otherwise

Compute the mean value of the random variable.



536 20 Probability Distributions

3. 60% of the students who start to study for an engineering degree complete their
studies and obtain a degree. What is the probability that in a group of 10 arbi-
trarily chosen students in the first term of study 8 will obtain a degree?

4. Evaluate the mean values of the random variable x which have the following
normal distributions:

(a) f (x) =
1

3
√
2�

e−(x−2)2/18 (b) f (x) =
1√
2�

e−(x+4)2/2



Chapter 21
Theory of Errors

21.1 Purpose of the Theory of Errors

The theory of errors is a part of mathematical statistics and deals with the follow-
ing facts.

Given the results of measurements carried out in a laboratory, we require state-
ments about the ‘true’ value of the measured quantity and a prediction of the accu-
racy of the measurements.

There are two types of errors which arise when we carry out a measurement:
systematic or constant errors and random errors.

Constant errors are errors generated in the measuring instruments or in the
method of measurement. They always bias the result in a particular direction so
that it is either too large or too small; they arise through wrong calibration of the
measuring instrument or not paying attention to secondary effects. An example of
a constant error is often found in the speedometer of a car, sometimes as a result of
design. The speed indicated is frequently found to be 5% above the ‘true’ speed of
the car, but this can vary from 0 to 7% in practice.

Constant errors can only be avoided by a critical analysis of the measuring tech-
nique and of the instruments, and such errors cannot be discovered with the help of
the theory of errors.

Random errors are due to interference during measurements, so that a repetition
of measurements does not give exactly the same results, i.e. the measured values
vary. For example, if we weigh a body repeatedly we will always obtain a differ-
ent result. Although we take great care on each occasion, we are not able to read
each time exactly the same position of a pointer between two very fine marks. Fur-
thermore, the pointer itself does not always settle at the same position. Random
errors are the result of a multiplicity of interference factors like the fluctuation of
the boundary conditions which had initially been assumed to be controllable (tem-
perature, air pressure, voltage fluctuations, shocks and errors of observation).

To avoid random errors we must naturally improve the method of measurement.
This leads to more reliable measurements but does not solve the fundamental prob-

K. Weltner, W. J. Weber, J. Grosjean, P. Schuster, Mathematics for Physicists and Engineers
ISBN 978-3-642-00172-7 © Springer 2009
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lem. The influence of random errors can be limited, and the accuracy of measure-
ment may even be improved in powers of 10; however, each instrument has limited
accuracy and hence random errors will always appear.

The purpose of the theory of errors can now be formulated more precisely.
From the measured values we want to be able to infer the ‘true’ value of the

measured quantity and estimate the reliability of the measurement. Each reading in
an experiment is made up of a hypothetical ‘true’ value of the measured quantity
and an error component:

x = T +E

where x = measured value, T = ‘true’ value free of errors, and E = error compo-
nent. Furthermore,

E =E1 +E2

where E1 = random error which can be estimated by repeated measurements, and
E2 = constant error.

21.2 Mean Value and Variance

21.2.1 Mean Value

The acceleration due to gravity, g, is to be determined experimentally. The time
of fall of a sphere is measured with a stopwatch and the distance with a tape mea-
sure. In order to increase the reliability, the measurements are repeated in a series
of readings. A series of readings comprising 20 measurements is considered to be
a random sample of all possible measurements for this experimental set-up. The
arithmetic mean value of n measurements is taken as the best estimate for the ‘true’
value. We have

x̄ =
1

n

n

∑
j=1

xj

If individual measured values occur repeatedly, the mean value can be expressed in
terms of the frequency hi with which they occur, in which case we have

x̄ =
k

∑
i=1

hixi

where ni is the frequency and hi = ni/n is the relative frequency of the measured
value xi . If n → ∞, the relative frequencies become the probabilities P (i) (see
Chap. 19, Sect. 19.2).

The sum of all deviations from the arithmetic mean value vanishes, i.e.

n

∑
i=1

∆xi =
n

∑
i=1

(xi − x̄) = 0
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21.2.2 Variance and Standard Deviation

Individual measurements deviate from the mean value partly because of random er-
rors. These deviations become smaller as the measurements become more reliable
and more exact. They thus enable us to predict the reliability of the measurements
and the magnitude of the random errors. In order to draw this conclusion, we have
to define a measure of dispersion. Let us start by considering the deviation of the in-
dividual measurements from the mean. Since positive and negative deviations from
the mean cancel out, their sum is zero. However, to obtain positive values we square
the deviations. A suitable measure of dispersion is obtained by taking the mean
value of the square of the deviations. Such a measure is called variance.

Definition The variance is the mean value of the square of the deviation:

S2 =
1

n

n

∑
i=1

(xi − x̄)2 (21.1)

If a frequency distribution exists, then the variance becomes

S2 =
k

∑
j=1

hj (xj − x̄)2

The unit of variance is the square of a physical quantity.
The measure of dispersion of the physical quantity is obtained by taking the

square root of the variance and is called the standard deviation.

Definition Standard deviation:

S =

√
1

n

n

∑
i=1

(xi − x̄)2 =

√√√√ k

∑
j=1

hj (xj − x̄)2 (21.2)

Meaning of Standard Deviation

For a large number of measurements, about 68% of all measured values of x will lie
within the interval

x̄−S < x < x̄+S

The mean value and the variance are related to each other. We demonstrate below
that for the arithmetic mean the variance (and with it the standard deviation) assume
a minimum value.

Proof We take the variance as the mean value of the squares of the deviations from
some independent reference value x̃ so that

S2 =
1

n
∑ (xi − x̃)2
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We wish to determine x̃ in such a way that the variance assumes a minimum. Ac-
cording to the rules of differential calculus, we find the minimum if we set

d
dx̃

(S2) = 0

i.e.
d

dx̃

(
1

n
∑ (xi − x̃)2

)
=
2

n
∑(xi − x̃)(−1) = 0

or ∑xi −nx̃ = 0

Hence x̃ =
1

n
∑xi = x̄ , the arithmetic mean value .

Now we have to check whether there is, in fact, a minimum for this value of x.
We find

d2

dx2
(S2) = 2 , a positive value .

Hence the variance is a minimum for x̃ = x̄.

21.2.3 Mean Value and Variance in a Random Sample
and Parent Population

A random sample contains n measurements of one quantity. We consider the mea-
surements as a random selection out of the set of all the possible measurements
in an experiment. This set is called the parent population. It is always larger than
the random sample. The parent population, like the random sample, is characterised
by a mean value and a variance. The mean value for the parent population is the
hypothetical ‘true’ value. The values which relate to the parent population can be
estimated on the basis of random sample data. The larger the random sample is, the
more reliable the estimate becomes.

Quantities which relate to the random sample are denoted by Latin letters, i.e.

x̄ = mean value

S2 = variance

and those which relate to the parent population are denoted by Greek symbols, i.e.

� = mean value

�2 = variance

The estimates for the ‘true’ values for the parent population are the ones we are
interested in, and the results of measurements are estimates of the unknown ‘true’
values. We give below, without proof, the most important formulae for these esti-
mates. You will find detailed explanations and proofs in textbooks on mathematical
statistics.
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Best estimate of the arithmetic mean value

�≈ x̄ =
1

n

n

∑
i=1

xi (21.3a)

Best estimate of the variance

�2 ≈ n

n−1S
2 =

1

n−1
n

∑
i=1

(xi − x̄)2 (21.3b)

This estimate for the parent population is larger than that for the sample by the
factor n

(n−1) ; for sufficiently large n this factor tends to the value 1, and hence S2

can be used as an estimate for �2.

Best estimate of the standard deviation

� =
√

n

n−1S =
√

n

n−1

√
n

∑
i=1

(xi − x̄)2

Example The diameter of a wire has been measured a number of times, as shown
in the first column of the table below. Calculate the mean value and the standard
deviation for the parent population. Columns 2 and 3 show the required workings.

Diameter (xi − x̄) (xi − x̄)2

xi (mm) (mm) (mm)2

14.1×10−2 −0.1×10−2 0.01×10−4

13.8×10−2 −0.4×10−2 0.16×10−4

14.3×10−2 0.1×10−2 0.01×10−4

14.2×10−2 0 0
14.5×10−2 0.3×10−2 0.09×10−4

14.1×10−2 −0.1×10−2 0.01×10−4

14.2×10−2 0 0
14.4×10−2 0.2×10−2 0.04×10−4

14.3×10−2 0.1×10−2 0.01×10−4

13.9×10−2 −0.3×10−2 0.09×10−4

14.4×10−2 0.2×10−2 0.04×10−4

Sum 156.2×10−2 0 0.46×10−4

1. We calculate the mean value of the sample:

x̄ = d̄ =
156.2×10−2

11
= 0.142mm
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2. Now we calculate the variance and standard deviation of the sample:

S2 =
0.46×10−4

11
= 0.042×10−4mm2

S = 0.20×10−2 = 0.002mm

3. Mean value, variance and standard deviation for the parent population:

x̄ = 0.142mm , as for the sample .

�2 ≈ S2 n

n−1 =
11

10
×0.46×10−4 = 0.046×10−4

� = 0.21×10−2 = 0.0021mm

21.3 Mean Value and Variance of Continuous Distributions

The concepts of variance and mean value can be applied to continuous distributions.
Let the probability density function p = f (x) of a distribution be given.

We know that for discrete samples the mean value is

x̄ =
n

∑
i=1

xi

n
=

k

∑
j=1

hjxj

We replace the discrete frequencies hj by the probability density functionp= f (x)
and proceed to the limit as k→ ∞. The sum becomes an integral:

Mean value � of a continuous distribution

�=
∫ ∞

−∞
xf (x) dx (21.4)

The variance for a given frequency distribution of the sample gives the best esti-
mate of the variance for the parent population. We have seen that it is given by

�2 =
n

n−1
k

∑
i=1

hi (xi − x̄)2

In the limit, the variance for a continuous distribution becomes

�2 =
∫ ∞

−∞
(x−�)2f (x) dx (21.5)

Example A factory manufactures bolts for use in the construction industry. Be-
cause manufacturing processes are not perfect not all manufactured parts are abso-
lutely identical. In the case of the bolts, their diameter x is a random variable. We
assume that the density function has the following distribution:
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f (x) =

{
A(x−0.9)(1.1−x) , 0.9< x < 1.1

0 , otherwise

The constant A is unknown.
Determine the value of the constant A, plot f (x) graphically and calculate the

mean value � and the variance �2.
First let us calculate A.
From Sect. 20.1.2 we know that all probability distributions have to satisfy the

normalisation condition, i.e. the sum of all probabilities has to equal 1. Hence
∫ 1.1

0.9
f (x) dx = 1

i.e.
∫ 1.1

0.9
(x−0.9)(1.1−x) dx =

1

A

Integrating and solving for A gives A= 750.
Figure 21.1 shows tabulated values of the function and its graph.
The function is symmetrical; in fact it is a parabola. We see from the graph that

� must be equal to 1. Let us check this with our definition:

� = 750

∫ 1.1

0.9
x(x−0.9)(1.1−x) dx

= 750

[
2

3
x3 − 1

4
x4 − 0.99

2
x2

]1.1

9.9

= 1.0

The variance is �2 = 750
∫ 1.1
0.9 (x−1)2(x−0.9)(1.1−x) dx = 0.002

x f (x)

0.90 0.0
0.92 2.7
0.94 4.8
0.96 6.3
0.98 7.2
1.00 7.5
1.02 7.2
1.04 6.3
1.06 4.8
1.08 2.7
1.10 0.0

Fig. 21.1
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21.4 Error in Mean Value

Up to now we have considered the mean value of one random sample of n mea-
surements to be the best estimate for the ‘true’ value. We have not yet answered the
question concerning the error in such an estimate.

Consider now several random samples (series of readings) of the same number
n in the same parent population. The mean values of these random samples are
also scattered around the ‘true’ value. We need to know whether the dispersion of
the mean values is smaller than that of the individual values. This dispersion of
the mean is most important to us, since it determines the reliability of the result of
a series of readings.

Let �M
2 be the variance of the mean values of random samples, the variance of

the individual values being �2.

The variance of the mean values is then given by �M
2 = �2√

n
.

The standard deviation of the mean values is �M = �√
n

.
The standard deviation of the mean values is a measure of the accuracy of the

mean values of a series of readings. It is referred to as the sampling error or the
mean error of the mean values.

Definition The standard deviation of the mean value, the sampling error
(mean error of the mean value) is

�M =
�√
n

=

√
˙(x− x̄)2

n(n−1) (21.6)

The accuracy of the measurements can be increased by increasing the number of
independent measurements. If the sampling error in the mean value is to be halved,
for example, then the number of measurements has to be quadrupled.

Example The example in Sect. 21.2.3 concerning the diameter of a wire gave the
following results:

Arithmetic mean value x̄ = 0.142mm .

Standard deviation � = 0.0021mm .

Mean error of the mean values:

�M =
�√
n

=
0.0021√
11

= 0.0006mm

Hence d̄ = 0.142±0.0006mm.

Confidence Intervals

Although the mean value x̄ obtained is an estimate of the ‘true’ value �, we also
need to take into account the sampling error.
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Since it is reasonable to suppose that the sample means are normally distributed,
we can expect the ‘true’ value to lie with a probability of 68% in the interval x̄±1�M

and with a probability of 95% in the interval x̄±2�M (see Sect. 21.5).
These intervals are called confidence intervals. The results of measurements are

usually presented by quoting the mean value and the sampling error.

21.5 Normal Distribution: Distribution of Random Errors

We have assumed that random errors are normally distributed. This assumption can
be rendered plausible on the basis that random errors arise as a result of the super-
position of many very small sources of errors referred to as elementary errors. The
individual errors in measurements arise as a result of these elementary accidental
errors like the deviations of the marbles in the Galtonian board. Starting with the
hypothesis of a large number of uncontrollable statistical interference factors, Gauss
showed that the probability function of the distribution of measured values can be
described by the normal distribution:

f (x) =
1

�
√
2�

e
−1

2

(
x−�

�

)2

The usefulness of this model has also been proved empirically. In many cases,
the errors in measurements are actually distributed in accordance with this normal
distribution around their corresponding mean value. The larger the number of mea-
surements the more closely the distribution approaches the Gaussian normal dis-
tribution. The measurements are dispersed around the ‘true’ value �. The standard
deviation is � .

Using the value of the standard deviation, we can specify the percentage of the
measured values which can be expected to fall within a given interval in the neigh-
bourhood of the mean value, as shown in Fig. 21.2.

A deviation of more than ±3� from the mean value can only, on the average, oc-
cur once in 300 measurements by chance. This means that practically all measured
results fall inside the interval �±3� .

The mean values of random samples are always normally distributed, the dis-
persion being of course smaller. As already explained in Sect. 21.4, the variance
of the mean values decreases as n, the number of measured values, is increased
since

�M =
�√
n

(standard deviation of the mean value)
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Fig. 21.2

21.6 Law of Error Propagation

Often we have to distinguish between fundamental quantities (length, mass, time)
and derived quantities (specific weight, velocity, acceleration, force, pressure etc.).
Many physical quantities cannot be measured directly, since they are calculated from
several other measured quantities. For example, specific weight is calculated from
the measured quantities weight and volume. Thus the sampling error in the specific
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weight is made up of the sampling errors which arise in the measurement of the
weight and the volume.

If we assume that some physical quantity g cannot be measured directly but is
a function of two measurable quantities x and y we have

g = f (x,y) , x and y being independent .

We can then measure x and y and obtain the mean values x̄ and ȳ and the stan-
dard deviations �Mx , �My . The standard deviation �Mg of the quantity g is then
calculated by the application of the Gaussian law of error propagation given here
without proof.

Law of error propagation

�Mg =

√(
∂f
∂x

)2

�Mx
2 +

(
∂f
∂y

)2

�My
2 (21.7)

The partial derivatives are calculated at the values x̄ and ȳ.

Example A coil having 500 windings is made of copper wire having a diameter
D = 0.142±0.0006mm and a total length L= 94290±30mm. The specific resis-
tance of copper is

� = 1.7×10−5 Ωmm

If A is the cross sectional area of the wire, then the total resistance R of the coil is

R = �
L

A
=
4�L

�D2

=
4×1.7×10−5×9.4290

�(0.142)2
= 101.2Ω

We need to know the standard deviation �MR of this total resistance. We have

∂R
∂L

=
4�

�D2
= 9.32×10−3

∂R
∂D

= − 8�L

�D3
= 1425.6

Thus

�MR =
√

(9.32×10−3×30)2 +(1425.6×6×10−4)2 ≈ 1Ω

Hence the total resistance of the coil is R = (101±1)Ω
This value would then be quoted by the manufacturer.
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21.7 Weighted Average

It frequently happens that a physical quantity can be determined by two different
measuring methods. The results of the measurements usually deviate from each
other. We then have two results whose true value lies with a probability of 0.68
in the confidence intervals

x̄1 ±�M1
and x̄2 ±�M2

A better estimate for the ‘true’ value is obtained if we combine both measurements.
We do not calculate the arithmetical mean value of the individual values but ‘weigh’
the measurements. A simple arithmetic average would not give the best value be-
cause it would mean that we were giving equal importance to both values.

The measurement with the smaller sampling error has a larger weight. The fol-
lowing expression is called the weight.

gi =
1

�Mi
2

The weighted average (weighted mean value) is given by

x̄ =
g1x̄1 +g2x̄2

g1 +g2

It can be shown that in this expression the sampling error of x has a minimum. The
expression can be generalised for more than two readings.

Weighted mean value: x̄ =
g1x̄1 +g2x̄2

g1 +g2

Weight: gi =
1

�Mi
2

Example The diameter of the wire in the example in Sect. 21.2.3 is measured by
a second method with the following results:

d̄1 = 0.1420±0.0006mm

d̄2 = 0.1410±0.001mm

The weighted mean value is obtained in the following way:

g1 =
1

�1
2

=
1

(6×10−4)2
= 2.778×106

g2 =
1

�2
2

=
1

(10−3)2
= 106

Hence d̄ =
2.778×106×0.142+106×0.141

3.778×106
= 0.1417mm
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21.8 Curve Fitting: Method of Least Squares, Regression Line

We have so far considered measurements which were related to one physical quan-
tity. We will now consider experiments which investigate the relationships between
two physical quantities, x and y, where the quantity y is measured and the quan-
tity x is varied.

Example The graph of the cooling curve for a liquid has to be determined.
We measure the temperature at intervals of 30 seconds and plot a graph of tem-

perature versus time. The experiment is repeated n times and we then calculate the
mean value and the standard deviation at each time interval and plot these, as shown
in Fig. 21.3.

We now draw the best curve through the measured values, i.e. the curve which is
as close as possible to the measured values. This method is called curve fitting.

To obtain the best fit we use the method of least squares. In this method the
squares of the distances of the measured points from the curve are a minimum.
Before we can begin, however, we must decide on the type of function that will best
fit the experimental data. In general; this function will depend on the underlying
theory. The types of functions most frequently used are straight lines, log functions,
parabolas and exponential functions.

We propose to demonstrate the method using a straight line relationship. The task
is to determine, from the given data, the coefficients a and b in the equation

y = ax+b

assuming it to be a first approximation to the experimental data. It is called
a regression line.

Fig. 21.3
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Let y = ax+b

Then a =

n

∑
i=1

xiyi −nx̄ȳ
n

∑
i=1

xi
2 −nx̄2

and b = ȳ−ax̄ (21.8)

The straight line passes through the point (x̄, ȳ) which is the ‘centroid’ of the
test data.

Proof

Fig. 21.4

The vertical distance di from the test point Pi (xiyi ) to the straight line is

di = |yi − (axi +b)|= |yi −axi −b|
Summing up the square of the distances for all the points, i = 1, 2, 3, . . . ,n, gives

S = ∑di
2 =∑(yi −axi −b)2

We now consider a and b as variable quantities and determine their values such that
S will be a minimum.

For S to be a minimum we must set

∂S
∂a

=
∂S
∂b

= 0

Hence
∂S
∂a

= 0 = ∑2(yi −axi −b)(−xi)

0 = ∑(xiyi −axi
2 −bxi) = ∑xiyi −a∑xi

2 −∑bxi

∂S
∂b

= 0 = ∑2(yi −axi −b)(−1)
0 = ∑(yi −axi −b) = ∑yi −a∑xi −bn

By definition of the arithmetic mean value: ∑xi = nx̄ and ∑yi = nȳ
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We thus have the two following equations in the two unknowns a and b:

∑xiyi −a ∑x2
i −bnx̄ = 0

nȳ−anx̄−bn= 0 (21.9)

Substituting and solving gives

b = ȳ−ax̄
a = ∑xiyi −nx̄ȳ

∑xi
2 −nx̄2

(21.10)

Thus we have determined the coefficients a and b of the regression line.
The straight line y = ax+b is the best fit for the experimental data points.

Example The values of the temperature during a cooling experiment of a liquid at
intervals of 0.5 min are as follows:

Time, t Temperature, T
(min) (◦C)

0 62
0.5 55
1 48
1.5 46
2 42
2.5 39
3 37
3.5 36
4 35

As a crude approximation, we propose to fit a straight line, i.e. T = at +b.
To obtain the values of a and b according to the method of least squares, we

proceed in accordance with the following scheme.

1. Tabulate the test data and calculate the necessary sums and products according
to (21.10), as shown in the table.

2. Calculate the mean value t̄ and T :

t̄ = 2min , T = 44.44 ◦C
3. We substitute the values in the equations for a and b. This gives

a = ∑ tiTi−nt̄T
∑ ti 2 −nT 2

=
703−9×2×44.44

51−9×22
= −6.47 ◦C/min

and b = T −at̄ = 44.44+6.47×2
= 57.4 ◦C
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ti t2
i

Ti ti Ti

(min) (min2) (◦C)

0 0 62 0
0.5 0.25 55 27.5
1 1 48 48
1.5 2.25 46 69
2 4 42 84
2.5 6.25 39 97.5
3 9 37 111
3.5 12.25 36 126
4 16 35 140

∑ 18.0 51.0 400 703

Fig. 21.5

Hence the regression curve is

T = (−6.47t+57.4)◦C
It is shown in Fig. 21.5.

21.9 Correlation and Correlation Coefficient

Let us consider two sets of measurements of two variables x and y which are graph-
ically represented in Fig. 21.6. The first impression is that the variables x and y are
correlated. In fact, if we calculate the regression lines they both lead to the same
line. But it is obvious that the first set, A, suggests a stronger dependence between
the variables than the second set, B. In the first set, we might assume a clear-cut
functional dependence between x and y which is distorted by random errors of
measurement.

In the second set of measurements, we might say that there is a correlation be-
tween x and y, but there might be other variables too which influence y. Empirical
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Fig. 21.6

data of this kind often occur in biology, psychology, meteorology, and economics,
but they also occur in technology and physics.

Our task is to find a measure which describes the magnitude of the correlation
between two variables, while a variance is superimposed, the details of which we
do not know.
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This measure is given by the correlation r2, or the correlation coefficient r.
They are defined by

Correlation r2 =

(
∑xiyi −nx̄ȳ

)2

(
∑xi

2 −nx̄2

)(
∑yi

2 −nȳ2

)

Correlation
coefficient

r = ∑xiyi −nx̄ȳ√(
∑xi

2 −nx̄2

)(
∑yi

2 −nȳ2

)

where xi ,yi = measured values, and ȳ, x̄ = mean values. All sums are formed
from i = 1 to i = n. n= number of measurements.

Note that the correlation coefficient can take on values between −1 and +1. We
get r = 1 if all points (xi ,yi ) lie on a straight line with a positive slope, i.e. the
regression line.

We get r = 0 if xi and yi are statistically independent, e.g. if the dots lie in
a circular-shaped cluster.
r is negative if the regression line has a negative slope, indicating that when x

increases y decreases.
The definition of the correlation coefficient may seem quite arbitrary. It may be

useful to know how we arrive at this concept.
We established the regression line by means of the condition that the sum of

the differences between yi -values and the adjunct points of the regression line ŷi

should be a minimum. There remains a variance 1/n∑(yi − ŷi )2 which is only
then zero if all yi -values coincide with the regression line. Consider the variance of
the yi -values with respect to the mean value ȳ. It is obviously greater.

A measure which describes the quality of the regression line as an approximation
of the given values is the relative reduction of variance achieved by the regression
line. The amount of the reduction of variance is called the explained variance. The
fraction of variance thus explained relating to the regression line with the original
variance relating to the mean value is called the correlation r2. Its root is the corre-
lation coefficient r (often called the product moment correlation).

The correlation can be obtained in the following way.
Let the variance with respect to the mean value be

SM =
∑(yi − ȳ)2

n

The remaining variance with respect to the regression line is

Sr = ∑(yi − ŷi)2

n
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Thus the explained variance is

Se = vM −vrl

The correlation is given by

r2 =
Se

SM
= ∑ (yi − ȳ)2 −∑(yi − ŷi )2

∑(yi − ȳ)2

If the formula for the regression line is inserted, it can be shown with an elementary
but cumbersome calculation that the given formula holds true.

Exercises

1. In the following examples, state whether the error is systematic (constant) S or
randomR.

(a1) A 100-metre race is held in a school during a sports day. The judges start
their stopwatches when the sound of the starting pistol reaches them. What
type of error arises in this case?

(a2) The timing of the start and end of the 100-metre race is subject to individ-
ual fluctuations, e.g. reaction time.

(b) The zero point of a voltmeter has been wrongly set. The measurements are
therefore subject to an error. What kind of error is it?

(c) The resistance of a copper coil is obtained by measuring the current flow-
ing through when a voltage is applied to it. As the coil warms up the resis-
tance increases. What kind of error will ensue?

2. (a) Nine different rock samples are taken from a crater on the moon whose
densities are then determined with the following results:

3.6, 3.3, 3.2, 3.0, 3.2, 3.1, 3.0, 3.1, 3.3g/cm3 .

Calculate the mean value and standard deviation of the parent population.
(b) The velocity of a body travelling along a straight line is measured 10 times.

The results are

1.30, 1.27. 1.32, 1.25, 1.26, 1.29, 1.31, 1.23, 1.33, 1.24m/s .

Calculate the mean value and the standard deviation.

3. A continuous random variable has the following density function:

f (x) =

{
1 , 0≤ x ≤ 1
0 , otherwise

Calculate the mean value and the variance.
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4. Determine the confidence intervals x̄ ± �M and x̄ ± 2�M for exercises 2(a)
and (b).

5. A measured variable is normally distributed with a mean value�= 8 and a stan-
dard deviation � = 1. What percentage of all test data are smaller than 7?

6. (a) The sides of a rectangle are x= 120±0.2cm and y = 90±0.1cm. Calculate
the area and the standard deviation.

(b) Calculate the density and the standard deviation of a sphere of diameter
6.2±0.1mm and mass 1000±0.1g.

7. The sensitivity of a spring balance is to be determined. To achieve this we place
different masses m on the balance and record the deflection S . The results are

mass (mg): 2000 3000 4000 5000 6000

deflection (mm) 16 27 32 35 40

If a straight line is to be fitted through these data points, i.e. S = am+b, calcu-
late the values of a and b.

8. An angle has been measured several times with two theodolites and the fol-
lowing values were obtained: 73◦2′7′′ ± 10′ and 73◦2′12′′ ± 20′′. Calculate the
weighted average.
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Chapter 1

1. Vectors are: acceleration, centripetal force,
velocity, momentum, magnetic intensity.

2. The order in which the vectors are added is
immaterial.

Fig. 1.36

Fig. 1.37

3.

Fig. 1.38

Fig. 1.39
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4.

Fig. 1.40

Fig. 1.41

5.

Fig. 1.42

Fig. 1.43

6. (a) |ab | = |a| cos 60◦ = 5× 1
2

= 2.5
(b) |ab | = 0
(c) |ab | = 4

(d) |ab | = | 3
2

cos(� − �
3

)|
= | 3

2
(−cos �

3
)| = 3

4

7. P=(10,−2) Steps in the computation:

a =
−−−→
P1P2 = P2 −P1 = (5, 2)

b = P3 −P1 = (3, −5)
P4 = P1 +a+b = (10, −2)

8. a =
−−−→
P1P2 = (x2 −x1, y2 −y1),

b=(x3 −x2, y3 −y2),
c =(x4 −x3, y4 −y3),
d =(x1 −x4, y1 −y4),
S =(x2 −x1 +x3 −x2 +x4 −x3

+x1 −x4,
y2 −y1 +y3 −y2 +y4 −y3

+y1 −y4)
=(0,0) = 0

9. F = (90N, 10N)

10. (a) (4, 3, 0) (b) (5, 3, 7)

11. (a) a = (−14 1
2
, −1, 0)

(b) a = (−7, −22, 12)

12. (a) ea = 3√
14

, −1√
14

, 2√
14

(b) ea = 2
3
, −1

3
, −2

3

13. (a) |a| = √
24 = 4.90

(b) |a| = √
53 = 7.28
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14. (a) V1 +V2 = (0,250)km/h
(b) V1 +V3 = (50,300)km/h
(c) V1 +V4 = (0,350)km/h
(d) |V1 +V2| = 250km/h
(e) |V1 +V3| = 304km/h
(f) |V1 +V4| = 350km/h

Chapter 2

1. (a) a ·b = ab cos ˛ = 3×2× 1
2

= 3
(b) a ·b = 10
(c) a ·b = 2×√

2 ≈ 2.828
(d) a ·b = −3.75

2. (a) ˛ = �
2

Vectors are perpendic-
ular

(b) ˛ = 0 Vectors are parallel
(c) ˛ = �

3
(d) �

2
< ˛ < �

3. (a) a ·b = −3−2+20 = 15
(b) a ·b = −1.25
(c) a ·b = −11

12
(d) a ·b = 4

4. (a) a ·b = 0 Vectors are perpendic-
ular to each other or one vector-
is zero

(b) a ·b = −12 a is not perpendic-
ular to b

(c) a ·b = 0 a is perpendicular to b

(d) a ·b = 0 a is also perpendic-
ular to b

(e) a ·b = −1 a is not perpendic-
ular to b

(f) a ·b = 0 a is also perpendic-
ular to b

5. cos ˛ = a·b
ab

(a) cos ˛ = −1 thus ˛ = �
(b) cos ˛ = 2

3
thus ˛ ≈ 48◦

6. U = F · s
(a) 15 N m (b) 5 N m (c) 0

7. (a) c is parallel to the z-axis
(b) c is parallel to the x-axis

8. |a×b| = ab sin ˛

(a) 2×3×
√

3
2

≈ 5.196

(b) 0 (c) 6

9. (a) −8
3

c (b) 3
2

b (c) −3
2

b

(d) −6a (e) 0 (f) 6a

10. c = (aybz −azby , azbx −axbz ,
axby −aybx)

(a) c = (10, −9, 7)
(b) c = (3, 6, −9)

Chapter 3

1. (a)

(b)

2. (a)

Zeros: x = −1,x = 3
Poles: none
Asymptote: none



560 Answers

(b)

Zeros: none
Poles: x = 0
Asymptote: x-axis

(c)

Zeros: none
Poles: none
Asymptote: x-axis

(d)

Zeros: none
Poles: x = 0
Asymptote: y = x (This is the streight
line. It intersects the first and third
quadrant.)

3. (a) 0.017
(c) 0.785

(b) 2.09
(d) 7.19

4. (a) 5.73◦
(c) 12.61◦
(e) 54.43◦

(b) 102.56◦
(d) 130.06◦
(f) 180◦

5. (a)

(b)

(c)

6. y = 1.5sin

(
x +�

3

)

7. (a) 4�

(c)
8

3
�

(b)
2

3
�

(d)
1

2

8. y = 4sin(4x +c)

9. (a) sin
(

u+
�

2

)

(c)
1

2
�

(b)
1

2
�

10. (a) sin79◦

(c) sin
(�

4

) (b) sin3◦

(d) sin

(
1

6
�

)

11. (a) 1

(c) − tan2 '

(b) tan'

(d)
2

cos2 �

12. (a)
2sin!1 cos!2

2sin!1 cos!2

= tan!1

(b) 2cos45◦ cosa =
√

2cos˛

(c)
cos2 '

2sin' cos'
=

1

2
cot'

13. sin
�

2
+ sin

�

6
=

3

2
; 2sin

�

3
cos

�

6
=

3

2
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Chapter 4

1. (a)
1

an

(d) 1

(g) 102

(b) 3

(e) y6

(h)
1

27

(c) n
√

a

(f)
1√
x3

2. (a) 4
√

2
(d)

√
35

(b) 10
√

e
(e) 4

(c) 1

(f)
√

24 =
2
√

6

3. (a) 2
(d) 6

(b) −3
(e) 10

(c) 10
(f) 1

4. (a) 3
(d) a6

(g) a

(b) −1
(e) a6

(h) 2

(c) 5
(f) 1

5. (a) e
(d) 1

(b) 57
(e) e4

(c) 3
(f) 5

6. (a) x
(d) lg(n

√
a)

(b) −x
(e) 2n

(c) 7x
(f) ld5m

7. (a) lna + lnb

(c) 6

(e) 8x

(b) 2 lgx

(d)
1

2
ldx

(f) x−3

8. (a) y−1 =
x +5

2

(c) y−1 =
ex

2

(b) y−1=
3
√

x−1

2

9. (a) y = (x−1)3

(c) y = x3 +1

(e) f (g(2)) = 2

(b) y =
x2 +1

x2 −1

(d) f (g(1))= −3

2

(f) f (g(1)) = −1

Chapter 5

1. (a) 0 (b)
1

2
(c) −1

(d) 1 (e)
1

2
(f) 2

(g) 6

2. (a) −1 (b)
1

2
(c) 5

(d) 0 (e) 1 (f) 0

3. (a) At x = 0 the function is continuous
but not differentiable. It is shown in
Fig. 5.40.

Fig. 5.40

(b) The function is shown in Fig. 5.41.
It is discontinuous at the points x =
1, 2, 3, . . .

Fig. 5.41

(c) The function is discontinuous at the
points x = 2, 4, 6, 8, . . .

4. (a) S5 = 2+
3

2
+

4

3
+

5

4
+

6

5
= 7

17

60≈ 7.28

(b) S10 = 3× 1− (1/2)g

1/2
= 6× 511

512
≈ 5.988

(c) S = 3× 1

1/2
= 6

5. (a) End points of the secant: P1(1, −1),

P2

(
3

2
,

3

8

)

Slope of the secant: ms =
∆y

∆x
=2.75

Slope of the tangent: mT =y′(1)=1

(b) v(t) =
ds

dt
=6t −8 , v(3) = 10m/s

(c) (i) dy = (2x +7) dx

(ii) dy = (5x4 −8x3) dx
(iii) dy = 4x dx
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6. (a) 15x4 (b) 8

(c)
7

3
x4/3 (d) 21x2 −6

√
x

(e)
x2 +2

5x2

7. (a) 6x2 (b)
1

3
3
√

x2

(c) − 2

x3
(d)

8

(4+x)2

(e) 6x(x2 +2)2 (f) 4x3 − 1

x2

(g)
x√

1+x2
(h)

3b

x2

(
a− b

x

)2

8. (a) −18 sin 6x (b) 8� cos (2�x)

(c) Ae−x [2� cos (2�x)− sin (2�x)]

(d)
1

x +1
(e) cos2 x− sin2 x

(f) 2x cos x2 (g) 12x(3x2 +2)

(h) ab cos (bx +c) (i) 6x2 e(2x2−4)

9. (a) y′ = − c√
1− (cx)2

(b) y′ =
A

1+(x +2)2

(c) y′ =
2x√

1−x4

(d) y′ =
1

2
√

x (1+x)

10. (a) y′ = 0.1 C cosh (0.1x)

(b) u′ = � [1− tanh2(v +1)]

(c) �′ = tanh 


(d) s = tanh t

(e) y′ = 0 (since y = −1 = constant)

(f) y′ = 2 coth x (1−x coth x)

11. (a) y′ =
10A√

1+100x2

(b) u′ = − C

�2 +2�

(c) �′ =
1

cos 


(d) y′ =
1√

x4 +x2(x −1)2

12. (a) a cos � +
1

cos2 �

(b) eu(2+u)

(c) − 1

x2

(d) 120x

13. (a) x1 = 2 (
√

2, −8), minimum
x2 = −2 (0, 0), maximum
x3 = x4 = 0 (

√
2, −8), minimum

(b) x = k� ,

x = ±�

2
,±5�

2
,±9�

2
, . . .maximum

(k = 0,±1,±2, . . .) ,

x =±3�

2
,±7�

2
,±11�

2
, . . .minimum

(c) x = 2�k ,

x =±� ,±5� ,±9� , . . .maximum

(k = 0, ±1, ±2, . . .) ,

x =±3� ,±7� , ±11� , . . . minimum

(d) x = 3
√−4, none

(e) x = (2k +1)
�

2
−2 ,

x = 2k� −2, maximum

(k = 0,±1,±2, . . .) ,

x = (2k +1)� −2, minimum

(f) x1 = 4.85,

(
−1, 3

1

3

)
, maximum

x2 = 1.85, (3, −18), minimum

x3 = 0,

14. (a) y = 11 (b) y = −8.89

15.
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Fig. 5.42

16. (a) 2.44%, 1.63% (b) 12.95 m

17. (a) 5.27
(b) 14.14 in magnitude

18. (a) 1 (b) 0 (c) 1

(d) −1

2

Hint:
1

x

(
1

sinhx
− 1

tanhx

)
=

1−coshx

x sinhx
(e) e−2/�

Hint: xtan(�/2)x = e(ln x)/cot(�/2)x

(f) 0 (g)
b2 −a2

2

19. (a) y′ =
−2x

3y

(b) y′ = − 9x2y2 + cos y

6x3y−x sin y

(c) y′ = −2(x +y)+2

2(x +y)+1
= −2

20. (a) y′ = 30x −29

(b) y′ = xsin x

(
sin x

x
+ cos x ln x

)

(c) y′ = xx(1+ ln x)

21. (a) y′ = (vu−gx)/u2

(b) y′ = tan t

22. x(t) = R cos 3�t
y(t) = R sin 3�t

23. (a) It is a straight line in three-dimen-
sional space (Fig. 5.43)

Fig. 5.43

(b) The curve is an ellipse with axes
of lengths 2a and 2b, respectively.
b2x2 +a2y2 = a2b2

x2

a2
+

y2

b2
= 1

24. (a) ax(t) = −!�0 cos !t
ay(t) = −!�0 sin !t or
a(t)=(−!�0 cos !t , −!�0 sin !t)

(b) v(t)=(−R! sin !t , R! cos !t , 1)

v

(
2�

!

)
= (0, R!, 1)

(c) v(t) = (v0, 0, −gt)

Chapter 6

1. (a) F (x) =
3

2
x2 +C ; C =

1

2
,

F (x) =
3

2
x2 +

1

2

(b) F (x) = x2 +3x +C ; C = −4,

F (x) = x2 +3x−4
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2. (a) 3 (b) 6 (c) 0

3. (a)

[
x2

2
−2x

]0

−2

=−6, F = |−6|= 6

(b) F = |−2| = 2

(c) F =
[

x2

2
−2x

]2

0

+
[

x2

2
−2x

]4

2

= 4

4. (a)
d

dx

(
x−1

x +1

)
=

2

(x +1)2

(b)
d

dx

{
x − 1

8
sin (8x −2)

}

= 1− cos {2(4x −1)}
= 1− cos2 (4x −1)+ sin2 (4x −1)
= sin2 (4x −1)+ sin2 (4x −1)
= 2 sin2 (4x −1)

(c)
d

dx

(
x

1+x2

)
=

1−x2

(1+x2)2

5. (a) ln(x −a)+C
(b) tan x +C

(c) a ln (x +
√

x2 +a2)+C

(d)
1

2
(˛− sin ˛ cos ˛)+C

(e)
at

ln a
+C

(f)
3

10
x10/3 =

3

10

3
√

x10

(g)
5

3
x3 +

5

4
x4 +C

(h)
3

8
t4 +2t2

6. (a)
x2

4
(2 ln x−1)+C

(b) x2 sin x +2x cos x−2 sin x +C

(c)
x3

9
(3 ln x−1)+C

(d) a sinh
x

a
(x2+2a2)−2axcosh

x

a
+C

(e)
1

n
sin x cosn−1 x+

n−1

n

∫
cosn−2 x dx

(f)
xn+1

(n+1)
[(n+1) ln x−1]+C

7. (a) − 1

�
cos(�x)+C

(b) e3x−6 +C

(c)
1

2
ln |2x +a|+C

(d)
1

6a
(ax +b)6 +C

8. (a) ln
√| sin 2x|+C

(b) ln |a +x2|+C

(c)
1

40
ln |x40 +21|+C

(d) − 1

cosh u
+C

9. (a)
1

5
sin5 x +2 sin4 x +

1

2
sin2 x +C

(b)
2

45
(3x5 −1)3/2 +C

(c)
√

a−x2 +C

(d)
1

2
sin (x2)+C

10. (a) ln |ex +1|+C

(b) sin
(

x− �

2

)
+C = cos x +C

(c) sin x − 1

3
sin3 x +C

(d) ln | ln x|+C

(e) ln |x3 −x|+C

(f) ln | tan−1 x|+C

11. (a) ln

∣∣∣∣∣
(

x +2

1−x

)1/3
∣∣∣∣∣+C

(b) ln

∣∣∣∣∣
(x−1)5/3

x3/2(x +2)1/6

∣∣∣∣∣+C

(c) ln

∣∣∣∣∣
(x−1)1/2(x −3)9/2

(x −2)4

∣∣∣∣∣+C

(d) ln

∣∣∣∣∣
(

x2 −2

x2 +1

)1/6
∣∣∣∣∣+C

(e)
1

3(x +2)
+ ln

∣∣∣∣∣
(

x−1

x +2

)1/9
∣∣∣∣∣

(f) ln

∣∣∣∣∣
(

x2 −x +1

x2 +x +1

)1/2
∣∣∣∣∣

(g) ln

∣∣∣∣
(x−1)2

(x2 +2x +5)1/2

∣∣∣∣

−2 tan−1

[
1

2
(x +1)

]
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Note:
x2 +15

(x−1)(x2 +2x +1)

=
2

x −1
− x +5

x2 +2x +5

12. (a) −32.5 (b) ln 2
(c) 1.416 (d) 75

13. (a)
255

64
(b) 4.5 (c)

27

16

14. (a)
1

4
(b) ∞ (c) �

1

r0

(d) ∞ (e)
1

2
(f) ∞

(g) 1 (h) ∞

15. U = {2(x0 +2−x0)+6(y0 −y0)
+1(z0 −z0)} N m = 4N m

16. U =
∫ P

0
F ·dr =

∫ 5

0
x dxNm=

25

2
Nm

17. Force and path element are perpendic-
ular. Thus the scalar product F · dr

vanishes. The line integral is zero.

18. The path element:

dr(t) =
(
−√

2sin t , −2sin2t ,
2

�

)
dt

F (t) =
(

0,−2t

�
, cos2t

)

U =
∫ �/2

0
F (t)dr(t)

=
∫ �/2

0

(
4t

�
sin2t +

2

�
cos2t

)
dt

Since
∫

t sin2tdt =
sin2t

4
− t cos2t

2
+C

U =
4

�

[
sin2t

4
− t cos2t

2

]�/2

0

+
1

�

[
sin2t

]�/2

0

=
4

�

�

4
= 1

Chapter 7

1. 720 square units

2. 9� square units

3. 2.14 square units

4. 0.693 square units

5. 100 square units

6. 2.97 square units

7. 19.24 square units

8. (a) 8 square units
(b) 10.67 square units
(c) 36 square units

9. (1) 98.12 units
(2) 9.42 units
(3) 4.064 units

10. 0.1109 square units

11. (a) 20.47 square units
(b) 8.34 cubic units

12. (a) 67.02 square units
(b) 49.35 cubic units

13. 314.16 cubic units

14. x̄ =
4a

3�
, ȳ =

4b

3�

15. 236.81 mm

16. 5/6 from the vertex

17. 46.875 mm

18. (a) MR2

(b) M

(
R2

2
+

L2

3

)

(c)
M

2

(
R2 +

L2

6

)

19. (a) 32.98kg/m2

(b) 131.9kg/m2

20. I = 1.52kg/m2

21. I = 76.04×106 mm4, k = 74.36mm
Note that the centroid is 77.27mm from
the bottom.

22. 230kN, 6.33m below the surface.

23. 5.23×105 N, 4m

Chapter 8

1. (a) f (x) =
√

1−x

= 1− 1

2
x− 1

22

x2

2!
− 3

23

x3

3!
−·· ·
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These are two ways of arriving at
a solution:
(i) with the help of (8.2);

(ii) by using the binomial series

(n =
1

2
; a = 1).

(b) f (t) = sin (!t +�) = −!t +
!3t3

3!

− !5t5

5!
+

!7t7

7!
−+ · · ·

(c) f (x) = ln[(1+x)5]

= 5x−5

2
x2+

5

3
x3−5

4
x4 + · · ·

Derivatives Values

f ′(x)=
d

dx
[ln(1+x)5]

=
5

1+x

f ′(0) = 5

f ′′(x)=−5(1+x)−2 f ′′(0) = −5

f ′′′(x)=5×2(1+x)−3 f ′′′(0) = 5×2

f (4)(x) = −5×2

×3(1+x)−4 f (4)(0)=−5×3×2

(d) f (x)=cos x =1−x2

2!
+

x4

4!
−x6

6!
+−·· ·

(e) f (x)= tan x =x+
1

3
x3+

2

15
x5

+
17

315
x7+· · ·

Derivatives Values

f (x)= tan x f (0)=0

f ′(x)=
1

cos2 x
f ′(0)=1

f ′′(x)=
2 sin x

cos x

1

cos2 x
=2ff ′ f ′′(0)=0

f ′′′(x)=2(ff ′′+f ′2) f ′′′(0)=2

f (4)(x)=2(ff ′′′+f ′f ′′+2f ′f ′′)

=2(f f ′′′+3f ′f ′′)
f (4)(0)=0

f (5)(x)=2(ff (4)+4f ′f ′′′+f ′′2) f (5)(0)=16

(f) f (x) = cosh x = 1+
x2

2!
+

x6

6!
+ · · ·

2. (a) The formula (8.7a) cannot be applied
because every other coefficient van-
ishes (an = 0 if n is even). Instead we
use the formula (8.7b):

R =
1

lim
n→∞

n
√|an|

.

Since an =
1

n!
, if n is odd we find

R = lim
n→∞

n
√

n! = ∞

(b)

∣∣∣∣
an

an+1

∣∣∣∣=
3n

3n+1
=

1

3

Therefore R = lim
n→∞

∣∣∣∣
an

an+1

∣∣∣∣=
1

3
3. (a) P1(x) = x

P2(x) = 0

P3(x) = x +
1

3
x3

For details of the solution see 1(e).

Fig. 8.8

(b) y =
x

4−x
=

4

4−x
−1=

1

1−x/4
−1

(geometric series)

P1(x) =
1

4
x, P2(x) =

1

4
x +

1

16
x2,

P3(x) =
1

4
x +

1

16
x2 +

1

64
x3

P3 is a parabola of the third degree

with a point of inflection at

(
−4

3
, − 7

27

)
.

4. (a) y =sin x

=−(x−�)+
(x−�)3

3!
−(x−�)5

5!
+ · · ·
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Fig. 8.9

Derivatives Values

y′ = cos x y′(�) = −1
y′′ = −sin x y′′(�) = 0
y′′′ = −cos x y′′′(�) = 1

y(4) = sin x y(4)(�) = 0

y(5) = cos x y(5)(�) = −1

(b) y = cos x = −1+
1

2!
(x−�)2

− 1

4!
(x−�)4 + · · ·

5. f (x)= ln x

=(x−1)− (x−1)2

2
+

(x−1)3

3
−+· · ·

Derivatives Values

f ′(x) = x−1 f ′(1) = 1

f ′′(x) = (−1)x−2 f ′′(1) = −1

f ′′′(x) = 2x−3 f ′′′(1) = 2

6. f (x)=
4

1−3x
= −4

5
+

12

25
(x −2)− 36

125

(x−2)2 +
108

625
(x−2)3 −+ · · ·

Derivatives Values

f ′(x) =
4×3

(1−3x)2
f ′(2) =

12

25

f ′′(x) =
72

(1−3x)3
f ′′(2) = − 72

125

f ′′′(x) =
648

(1−3x)4
f ′′′(2) =

648

625

7. An intersection at

(
1,

5

3

)

f1(x) = ex −1 ≈ x +
x2

2
+

x3

6
,

f2(x) = 2 sin x ≈ 2x− x3

3

x +
x2

2
+

x3

6
= 2x − x3

3

x3 +x2 −2x = 0
x1 = 0, y1 = 0

x2 = 1, y2 =
5

3

Fig. 8.10

8.
√

42 ≈ 6.4807
Solution
√

36+6 =

√
36

(
1+

6

36

)

= 6×
√

1+
1

6

We set x =
1

6
and apply the expansion

into a binomial series for
√

1+x ≈ 1+
x

2
−x2

8
+

x3

16
−5x4

128
+−·· ·

(c.f. exercise 1(a))
Hence

6×
√

1+
1

6
≈ 6

(
1+

1

2
× 1

6
− 1

8
× 1

36

+
1

16
× 1

216
− 5

128
× 1

1296
+−·· ·

)
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= 6(1+0.08333−0.00347

+0.00029−0.00003)
≈ 6.4807

Note that an alternative approach is to

use
√

72 −7 = 7

√
1− 1

7
.

9. (a) ln (1+x) ≈ x− x2

2

(b)
1√

1+x
≈ 1− x

2
+

3

8
x2

10. (a) e0.25 ≈ 1+0.25 = 1.25

(b) ln1.25≈ 1

4
−1

2

(
1

4

)2

=
7

32
≈ 0.219

(c)
√

1.25 ≈ 1+
1

2
× 1

4
=

9

8
= 1.125

11. (a)
∫

dx

1+x
= x− x2

2
+

x3

3
− x4

4
+ · · ·

= ln (1+x)+C
Solution:∫

dx

1+x
=
∫

(1−x+x2−x3+x4 · · ·)dx

=x−x2

2
+

x3

3
−x4

4
+

x5

5
· · ·+C

= ln(1+x)+C

(b)
∫

cos x dx = x− x3

3!
+

x5

5!
− x7

7!
· · ·

= sin x +C
Solution:
∫

cosx dx=
∫ (

1−x2

2!
+

x4

4!
−x6

6!
+· · ·
)

dx

= x−x3

3!
+

x5

5!
−x7

7!
+· · ·+C

= sinx +C

12. (a)
∫ 0.58

0

√
1+x2 dx ≈ 0.6111

Solution
Expand the integrand by means of
the binomial series.

Put
√

1+x2 =(1+x2)1/2 and obtain
√

1+x2 dx =
∫ (

1+
1

2
x2−1

8
x4

+
1

16
x6− 5

128
x8

− 5

128
x8 + · · ·

)
dx

∫ x

0

√
1+ t2 dt =x+

x3

6
−x5

40
+

x7

112

− 5x9

1152
+· · ·(|x|<1)

Substituting the limits x = 0.58 and
x = 0, we find the value 0.6111.

(b)
∫ x

0

sin t

t
dt = x− x3

3×3!
+

x5

5×5!

− x7

7×7!
+ · · ·

Solution:
The integrand can be represented by
the series

sin t

t
=

1

t
sin t

=
1

t

(
t − t3

3!
+

t5

5!
− t7

7!
+ · · ·
)

= 1− t2

3!
+

t4

5!
− t6

7!
+ · · ·

∫ x

0

sin t

t
dt =x− x3

3×3!
+

x5

5×5!

− x7

7×7!
+· · ·

13. (a)
1√

1−x2
= sin−1 x = x +

1×x3

2×3

+
(1×3×5)x7

2×4×6×7
+

(1×3×5×7)x9

2×4×6×8×9

+· · ·(|x| ≤ 1)

(b)
�

2
= 1+

1

6
+

3

40
+

5

112
+

35

1152

+ · · · ≈ 1.3167+ · · ·
Comparing the approximation by the
first five terms with the numer-

value 1.5707 . . ., we find that the ap-
proximation is wrong by more than
16%! Although the sequence con-
verges, it does so very slowly indeed.
This series has no significance for nu-
merical purposes.

Chapter 9

1. (a) j
√

3 (b) 12j

(c)

√
5

2j
(d) 10j
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2. (a) 1 (b) −j
(c) j (d) j

3. (a) 6j
√

3

(b) (2
√

3−2
√

2+
√

0.6)j
(c) −3 (d) j

√
ab

(e) 10j (f) −j
(g) 4 (h) j
(i) −2

√
3 (j) 0

(k) j(a−b) for a > b ;
j(b−a) for b > a

(l) ±6j

a

4. (a) 7 (b) 15

5. (a) z∗ = 5−2j (b) z∗ =
1

2
+ j

√
3

6. (a) z1 = −2+3j (b) z1 = −3

4
+ j

z2 = −2−3j z2 = −3

4
− j

7. (a) 10+3j (b)
3

2

8. (a) w = −1−5j (b) w = 1−13j

9. (a) w = 2 (b) w = 23+2j

10. (a) 4
√

2+
1

2
j (b) −1

2

√
3−2j

(c) −0.4+0.7j

(d)
1

2
− 1

2
j (e) 2j

(f) 8+4j
√

3

11. (a) (2x +3jy)(2x −3jy)

(b) (
√

a + j
√

b)(
√

a− j
√

b)

12.

Fig. 9.21

13. z1 = 2+ j z2 = j−1 z3 = −3
z4 = −2− j z5 = −2j z6 = 2− j

14. (a) z =
√

2

(
cos

3�

4
+ j sin

3�

4

)

(b) z =
√

2

(
cos

5�

4
+ j sin

5�

4

)

15. (a) z =
5

2
− 5

2
j
√

3

(b) z = −2
√

2−2j
√

2

16. (a) z = 6(cos 60◦ + j sin 60◦)
= 3+3j

√
3

(b) z = 5(cos 120◦ + j sin 120◦)

= −5

2
+

5

2
j
√

3

17. (a) z = cos 45◦ + j sin 45◦

=
1

2

√
2+

1

2
j
√

2

(b) z = cos 330◦ + j sin 330◦

=
1

2

√
3− 1

2
j

18. Multiplication by −j = j3 means an anti-
clockwise rotation of 270◦.
Division by −j = j3 means a clockwise ro-
tation of 270◦.

19. (a)
√

2(−4+4j) (b) −1
20. (a) (cos 50◦ − j sin 50◦)4

= [cos(−50◦)+ j sin (−50◦)]4
= cos(−200◦)+ j sin (−200◦)
= cos200◦ − j sin 200◦

(b) (cos ˛ + j sin ˛)n

=cos (n˛)+ j sin(n˛)

21. (a) z1 = 2+3j
z2 = −2−3j

(b) z1 = 0.966+0.259j
z2 = −0.259+0.966j
z3 = −0.966−0.259j
z4 = 0.259−0.966j

22. (a) ej�/2 = cos
�

2
+ j sin

�

2
= j

(b)
1

2
+

1

2
j
√

3

23. (a) cos˛ = 1, ˛ = 0
sin ˛ = 0

(b) cos ˛ = −1, ˛ = �
sin ˛ = 0

(c) cos ˛ = 0, ˛ = −�

2

sin ˛ = −1
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(d) cos ˛ =
1

2

√
3, ˛ =

�

6

sin˛ =
1

2

24. (a) r = e3 (b) r = e2

˛ = 2 ˛ = −1

2

25. (a) w = ez = −√
e

(r =
√

e, ˛ = �)
(b) w = −

√
e3

(r =
√

e3, ˛ = −�)

(c) w =
1

e
j

(
r =

1

e
, ˛ =

�

2

)

(d) w = e3 (cos 1− j sin 1)
≈ e3 ×0.54− e3 ×0.841j

26. (a) (i) Re[w(t)] = e−t cos 2�t

(ii) Period = 1

(iii) Amplitude = e−2×1=
1

e2
�0.135

(b) (i) Re[w(t)] = e2t cos

(
−3

2
t

)

= e2t cos

(
3

2
t

)

(ii) Period =
4

3
�

(iii) Amplitude = e4 cos 3
≈ e4(−0.99)
≈−54.0

27. (a) ej� = −1 (b)
3

4
e−j�/2 = −3

4
j

28. (a) z1
∗/z2 = 4 e−j� = −4

(b)
1

3
ej�/2 =

j
3

29. (a) z5 = 32 ej� = −32

(b) z3 =
1

8
ej3�/4

30. (a) z1/5 = 2 ej2� = 2

(b) z1/4 =
1

2
ej3�/2 = − j

2

31. (a) z = 3ej� (b) z =
1

2
ej2�/3

32. (a) z = 7.0711 e−0.7854j

or z = 7.0711 e−j45◦

(b) z = 19.8494 e−0.71413j

or z = 19.8494 e−j40◦55′

33. (a) z = 1.8134+1.7209j
(b) z = 0.4384+0.8988j

34. (a) x =
−1√

2
, y =

1√
2

(b) z = (cos 135◦ + j sin 135◦)
(= ej3�/4)

35. (a) −√
3+ j (b) 2 ej5/6�

Chapter 10

1. The linear first- and second-order DEs with
constant coefficients are (b), (e) and (f).

2. (a) non-homogeneous, second order
(b) homogeneous, second order
(c) homogeneous, first order
(d) non-homogeneous, second order
(e) homogeneous, second order

3. (a) y = C1e5x +C2ex

Auxiliary equation: 2r2−12r+10=0
Roots: r1 = 5, r2 = 1

(b) y = e1.5x(C1 +C2x)
Auxiliary equation: 4y2−12r+9=0
Roots: r1 = r2 = 1.5

(c) Complex solution:
y = e−x [(C1 +C2) cos 2x

+j(C1 −C2) sin 2x]
Auxiliary equation: r2+2r+5=0
Roots: r1 = −1+2j, r2 = −1−2j
Real solution: y = e−x(A cos 2x +
B sin 2x)

(d) Complex solution:
y = e0.25x [(C1 +C2) cos 0.75x

+j(C1 −C2) sin 0.75x]
Real solution:
y=e0.25x(Acos0.75x+B sin0.75x)

(e) y = C1 e2x +C2 e−4x

(f) Complex solution:
y = e0.2x(C ′ cos0.4x+jC ′′ sin 0.4x)
Real solution:
y = e0.2x(A cos 0.4x+B sin 0.4x)

4. (a) y(x)= C e−4x (b) y(x)= C e30x

(c) y(x) = C e2x

5. (a) S(t) =
t3

3
+C1t +C2

(b) x(t) = cos !t +C1t +C2

6. (a) yp = 2x +1 (b) yp = x− 1

2
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7. (a) y = C1 ex +C2 e−3x/7 −2

(b) y = C1 e9x +C2 ex +x +
10

9

(c) y = C1 e4x/3 + C2 e−x − 1

4
x2 +

1

8
x− 13

32

(d) y = e−x(A cos 2x +B sin 2x)

+
1

17
(cos 2x +4 sin 2x)

8. y(x)=C1 e5x +C2 ex+
3

10
x2+

18

25
x

+
43

125

9. (a) y = 3 e−4x (b) y = e−21 e2.1x

10. (a) C = 0, y(x) = 0
(b) C = −2, y(x) = −2 e2x

(c) C = e2, y(x) = e2 e2x

(d) C = 1, y(x) = e2x

11. y(x) = C1 cos 2x +C2 sin 2x

(a) y(x) = +sin 2x

(b) y(x) = cos 2x− 1

2
sin 2x

(c) y(x) =
1

2
sin 2x

(d) y(x) =
−b

4
cos 2x +a sin 2x

12. y = ex −x ex = ex(1−x)

13. (a) y = x +Cx2

(b) y = x2 +Cx
(c) y = −2 cos2 x +C cos x

(d) y = e−x

(
x

2
+

C

x

)

14. (a) u = y−2, u′ −2xu = −2x,

y =
1√

1+C ex2

(b) u = y−1, u′ +
2

x2 −1
u = 1,

y =
x−1

x +1

1

x− ln(x +1)2 +C

(c) u = y3, x2u′ +3xu = 3,

y = 3

√
3

2x
+

C

x3

(d) u = y2, u′ +
2

x
u = −2(x +1),

y =
1

x

√
C − x4

2
− 2x3

3

15. (a) y =
1

2
ln |2 ex +C |

(b) y2 = ln |C (x +1)2|−2x

(c) y =
2

(ln |x|)2 +C
(d) y1 = −x +C

y2 = x + ex(1−x)+C

16. (a)
∂

∂x

(
2y

x

)
=−2y

x2
=

∂
∂y

(
4− y2

x2

)
,

F =
y2

x
+4x, y2 = Cx −4x2

(b)
∂

∂x
(1−x e−y) =−e−y =

∂
∂y

e−y ,

F = y +x e−y , y +x e−y = C

(c)
∂

∂x
(2y −x2 sin 2y) = −2x sin2y

=
∂

∂y
(2x cos2 y), F =y2+x2 cos2 y,

y2 +x2 cos2 y = C

(d)
∂

∂x
(2x −3)=2=

∂
∂y

(3x2+2y),

F =x3+2xy−3y, y=
x3+C

3−2x

17. (a) Special case 1: 	 = ex ,
e3x −3ex cosy = C

(b) Special case 2: 	 = e−y ,
y +x e−y = C

18. (a) x = e6t (Acos t +B sin t)
y = e6t [(A−B)cos t+(A+B)sin t ]

(b) x = Acos t +B sin t

y =
1

2
(B−3A)cos t−1

2
(A+3B)sin t

(c) x = (A+Bt) et +(E +F t) e−t

y =
1

2
(B−A−Bt)et−1

2
(E+F

+F t)e−t

Chapter 11

1. (a)
3

2s4
(b)

5

s +2

(c)
4s

s2 +9
(d)

2

s(s2 +4)

2. (a)
1

2
sin

1

2
t (b)

1

4
(1− e−4t )

(c)
2

9
(1− cos 3t) (d) −6 sinh t

(e) t − sin t (f)
1

2
e4t − e2t +

1

2
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3. (a) y =
2

3
(e−t − e−4t )

(b) y =
1

5
sin 2t − 7

15
sin 3t + cos 3t

(c) y =
1

5
sin t +

2

5
cos t +

3

5
e−2t

4. y = 2−3 ex +3 e2x

5. y =
1

2
et − 1

2
e−t +

1

6
t3 − t

6. y = 25−9 et +5t et −16 e−t/4

7. y = e−t/6 − e−t/2 ,

x = 1− 1

2
(e−t/6 + e−t/2)

8. Q=4×10−4(1.12sin447t− sin500t)

Chapter 12

1.
x -2 -1 0 1

y

−2 −2 4 6 4
−1 2 5 6 5

0 6 6 6 6
1 10 7 6 7
2 14 8 6 8

2. (a) The function z = −x −2y + 2 repre-
sents a plane. The intersecting curves
of the surface are
(1) with the x−y plane: y =−x

2
+1

(2) with the x−z plane: z =−x+2

(3) with the y−z plane: z=−2y+2

(b) The function z = x2 + y2 represents
a hyperboloid of revolution about the
z-axis. Intersecting curves with planes
parallel to the z-axis are parabolas.
Intersecting curves with planes parallel
to the x−y plane are circles.

(c) The function z =

√
1− x2

4
− y2

9
re-

presents one half of an ellipsoid above
the x−y plane. The intersecting curves
with the x−z plane and the y−z plane
are semi-ellipses.

3. (a) fx = cos x, fy = −sin y

Fig. 12.31

Fig. 12.32

Fig. 12.33

(b) fx = 2x
√

1−y2, fy =
−x2y√
1−y2

(c) fx = −2x e−(x2+y2),

fy = −2y e−(x2+y2)

(d) fx = yz +y, fy = xz +x,
fz = xy +1
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(e) fx = ex ln y, fy =
ex

y
, fz = 4z3

(f) fx =esin x cosx−ecos (x+y) sin(x+y),
fy =−ecos (x+y) sin(x+y)

4. Tangent in x-direction: 2x

Slope in x-direction at point P: 0
Tangent in y-direction 2y
Slope in y-direction at point P: 2

5.
fxx = −2 fyx = 0
fxy = 0 fyy = −2

6. Withfx=
2x

y2
e(x/y)2

andfy=−2x2

y3
e(x/y)2

the statement follows.
7. (a) dz =

−x dx√
1−x2 −y2

− y dx√
1−x2 −y2

(b) dz = 2x dx +2y dy

(c) dz =
−2

(x2+y2+z2)2

×(xdx +ydy +zdz)

8. (a) 7.6% (b) 5.13%

9. (a) The contour lines are straight lines.

y = −x

2
+1−C

grad f = (−1,−2)
(b) The contour lines are ellipses.

x2

4
+

y2

9
= 1−C 2

grad f =
−1√

1−x2/4−y2/9

(x

4
,
y

9

)

(c) The contour lines are circles
centered at the origin.

grad f =
−10√

(x2 +y2)3
(x,y)

10. (a) The surfaces of constant function
value are planes.

z =
x

3
+

y

3
+C

gradf = (1,1,−3)
(b) The surfaces of constant function

value are cylinders centered at the
origin.
C = x2 +y2

grad f = (2x, 2y, 0)

(c) The surfaces of constant function
value are spheres centered at the
origin.
C = x2 +y2 +z2

gradf =3(x2+y2+z2)1/2(x, y, z)

11. (a) sin 2t −3 cos 2t

(b) 3t2 +4+
3

t2

12. (a) 2x +2ay (b) 1

(c) −�

8
(d) 0

13. (a) Minimum at x = 1, y = 1
(b) Maximum at x = 10, y = 8
(c) � = 30◦, h = 0.32m, l = 0.20m

14. Cable (a)
f (x, t)

= 0.5cos

(
2�×5×t−2�x

1.2
+�

)
m

or

f (x, t) = 0.5cos2�
(
5t − x

1.2
+�1

)
m

or

f (x, t)=0.5cos
2�

1.2
(12.5t −x +�2)m

Cable (b)

f (x, t) = 0.2cos2�
(

0.8t − x

4.0
+�
)

The wave velocities are unequal:
ca = 6m/s cb = 3.2m/s

15.
∂f

∂ t
= −2v(vt −x)e−(vt−x)2

∂ 2f

∂ t2
= −2v2e−(vt−x)2

+(2v)2(vt −x)2e−(vt−x)2

∂ 2f

∂x2
= −2e−(vt−x)2

+4(vt −x)2e−(vt−x)2

Consequently
∂ 2f

∂ t2
= v2 ∂ 2f

∂x2

Chapter 13

1. (a) ab (b)
2

3

(c) 4 (d) 12
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(e) 4 (f)
1

a
(eaz1 −eaz0 )(y1 −y0)

2. (a) 10
2

3
(b)

4

3

(c) ab� ;

(
4a

3�
, 0

)

3. (a) r = 3
√

2, � =
�

4

(b) R2 = x2 +y2, r = R,
in polar coordinates

(c) r =
�

2�
(d)

a3

3
√

2

4. (a) V = �h(R2
2 −R1

2)

(b) V =
1

3
�R2h

I =
3

10
MR2 (M = total mass = V)

5. I =
2

3
MR2, M =

4

3
�R3

Chapter 14

1. x′ = x, y′ = y, z′ = z−2

2. The transformations are
x = x′ −2 , y = y′ +3

Substitution in the equation gives

y′ = −3x′ +8

3. r ′ =

(
1+2

√
3

−√
3+2

)

4. The transformation equations are

x = x′
√

3

2
−y′ 1

2
, y = x′ 1

2
+y′

√
3

2

Substitution in the equation gives

y′ =
6√
3
− 3√

3
x′

5. The transformation equations are

x′ = 3cos30◦ +3sin30◦
= 4.0981 to 4d.p.

y′ = −3sin30◦ +3cos30◦
= 1.0981 to 4d.p.

z ′ = 3

Hence r ′ = (4.0981, 1.0981, 3)

6. (a) A +B =

⎛
⎝

3 3
1 8

−1 9

⎞
⎠

(b) A−B =

⎛
⎝
−1 3

3 2
1 5

⎞
⎠

7. (a) 6A =

⎛
⎝

12 42
18 0
54 −6

⎞
⎠

(b) AB =

⎛
⎝

25 −8 28
27 9 0
80 29 −4

⎞
⎠

BA =
(

27 63
32 3

)

Hence AB �= BA.

8. No matrix multiplication is possible in this
case.

9.

(
x ′
y′

)
=
(

x−2y
5x +7y

)

10. (a) AT =
(

1 4 3
2 −3 0

)

(b) (AT)T =

⎛
⎝

1 2
4 −3
3 0

⎞
⎠= A

11. 3.

12.

⎛
⎝

54 0.5 4.5
0.5 26 52
4.5 52 9

⎞
⎠+

⎛
⎝

0 0.5 −3.5
−0.5 0 −32
3.5 32 0

⎞
⎠

13.
AA−1 =

1

13

⎛
⎝

−8+0+21 6+0−6
−16+9+7 12+3−2
−8−6+14 6−2−4

9+0−9
18−15−3

9+10−6

⎞
⎠

=
1

13

⎛
⎝

13 0 0
0 13 0
0 0 13

⎞
⎠= I

Similarly, A−1A = I.

Chapter 15

1. (a) x1 = −1, x2 = 6, x3 = −5

(b) The second and third equation are lin-
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early dependent. Thus the solution con-
tains z as parameter free to

x =
21−10z

25
, y =

−79+65z

25

(c) x1 = 13, x2 = 15, x3 = −20

(d) x =
0.42−1.5z

0.12
, y =

0.24−1.8z

0.12
The first and third equations are lin-
early dependent.

2. (a)

⎛
⎜⎜⎜⎜⎜⎜⎝

1

4

1

2
−1

4

1

2
−1

1

2

3

8
−3

4

1

8

⎞
⎟⎟⎟⎟⎟⎟⎠

(b)
1

20

(
7 −8

−6 −4

)

3. (a) x1 = x2 = x3 = 0

(b) x = −7z

20
, y =

z

10

4. (a) −9 (b) 0 (c) −322
(d) −186 (e) 22

5. (a) r = 2 (b) r = 3

6. (a) detA = −104 �= 0; hence unique so-
lution.

(b) detA = 0; no unique solution exists.
(c) detA �= 0; unique solution exists.
(d) detA = 0; first and third equation are

dependent.
(e) detA = 0; third equation is a linear

combination of the first two equations.

Chapter 16

1. (a) The characteristic equation is

det

(
4−� 2

1 3−�

)

= (4−�)(3−2�)−2

= �2 −7�+10 = 0
�1 = 2, �2 = 5

For � = 2, solve(
2 2
1 1

)(
x1

y1

)
= 0,

i.e. 2x1 +2y1 = 0
1x1 +1y1 = 0

This reduces to x1 + y1 = 0. A con-
venient solution is

r1 =
(

1
−1

)

For �2 = 5, solve(−1 2
1 −2

)(
x2

y2

)
= 0,

i.e.−1x2 +2y2 = 0
1x2 −2y2 = 0

This reduces to x2 −2y2 = 0. A con-
venient solution is

r2 =
(

2
−1

)

Fig. 16.4

2. No. The characteristic equation is a real
polynomial equation of degree 2z. We know
from algebra that if z is a complex root
then z∗ is a root as well, i.e. this character-
istic equation has either two complex roots
or two real roots.

3. The characteristic equation is

(3−�)(1−�)+4 = �2 −4�+7 = 0

There are no real roots, since
�1,2 = 2±√

4−7 are complex numbers.

4. (a) The characteristic equation is

det

⎛
⎝

−1−� −1 1
−4 2−� 4
−1 1 5−�

⎞
⎠

= −�3 +6�2 +4�−24 = 0

If � is an integral root, then it must di-
vide into 24, the last coefficient.
�1 = 2,�2 = −2,�3 = 6.
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(b) For �1 = 2; solve

− 3x1 − y1 + z1 = 0
− 4x1 + 4z1 = 0
− x1 + y1 + 3z1 = 0

This reduces to x1 = z1 and y1 =
−2x1. x1 = 1 gives the particular so-
lution:

r1 =

⎛
⎝

1
−2

1

⎞
⎠

For �2 = −2, solve

x2 − y2 + z2 = 0
− 4x2 + 4y2 + 4z2 = 0
− x2 + y2 + 7z2 = 0

This reduces to x2 −y2 +z2 = 0 and
x2−y2−z2 = 0. Hence x2 = y2 and
z2 = 0.
Choosing x2 = 1 gives the particular
solution:

r2 =

⎛
⎝

1
1
0

⎞
⎠

For �3 = 6, solve

− 7x3 − y3 + z3 = 0
− 4x3 − 4y3 + 4z3 = 0
− x3 + y3 − z3 = 0

This reduces to x3 +y3 −z3 = 0 and
x3 −y3 +z3 = 0.
Hence x3 = 0 and y3 = z3. Choosing
y3 = 1 gives the particular solution:

r3 =

⎛
⎝

0
1
1

⎞
⎠

5. �1 = 1, �2 = 1.
For the first eigenvalue an eigenvector can
be quickly found:

r1 =
(

1
0

)

But for �2 we should like to have another
eigenvector which is truly different (i.e. not
merely a multiple of r1). Unfortunately, no
such vector exists.

Chapter 17

1. (a) A = 4(0,0,1)
(b) A = 4(0,1,0)
(c) A = 4(1,0,0)
−A would be a proper solution in each
case also.

2. A =
a ·b√

2
(0,1,1)

3. (a) F ·A = 5+3 = 8
(b) F ·A = 10
(c) F ·A = 9

4. A1 = 6(0,0,1) = −A2

A3 = 8(0,1,0) = −A4

A5 = 12(1,0,0) = −A6

5. F = (2,2,4) is a homogeneous vector field.∮
F ·dA = 0 for (a) and (b)

6. F (x,y,z) is a spherical symmetric field
for (a) and (b). Rule 17.8 tells us∮

F ·dA = 4�R2f (R) for R = 2

(a) F (R) =
3R

R2
=

3

R
∮

F ·dA=4� · 3R2

R
= 12�R

(b) F (R) =
R√

1+R2

∮
F·dA=4�R2 R√

1+R2
=

4�R3

√
1+R2

7. The differential surface element vector is
dA = (dydz,0,0).
∫

F ·dA =
∫

zdydz =
∫ 3

0
zdz

∫ 2

0
dy

=
9

2
·2 = 9

8. (a) divF = 3
Each point in space is a source.

(b) divF = 2z
In the plane z = 0 no point is a source
or a sink. All points below are a sink,
all points above are a source.

9. (a) curlF = (0,0,1)
This vector field has curl.

(b) curlF = (0,0,0)
This vector field is curl-free.
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10. We know that curlF = (0,0,0). Therefore∮

C
F ·ds = 0

11. Because of curlF = (0,0,0) the line in-
tegral is independent of the path. Therefore
we chose the path of integration
along the z-axis, z = 0 to z = 3
∮

C
F ·ds =

∫ 3

0
(0,y,z) · (0,0,dz)

=
∫ 3

0
zdz =

9

2

Chapter 18

1. Since f (x) is an even function, the coeffi-
cients bn vanish.

a0 =
1

�

∫�
−� f (x) dx = 1

an =
1

�

∫�/2

−�/2
cosnx dx

=
1

�n

[
sinnx

]�/2

�/2

=
1

�n

(
sin

n�

2
−sin

(
−n�

2

))

=
2

�n
sin

n�

2

For n even an is zero. Thus the Fourier
series is

f (x)=
1

2
+

2

�

∞

∑
n=1

(−1)n−1

2n−1
cos(2n−1)x

2. The function is odd. Thus all coefficients
an are zero.

bn =
1

�

∫ �

−�
f (x)sinnx dx

=
1

�

∫ 0

−�
sinnxdx− 1

�

∫ �

0
sinnxdx

=
−1

�n
[1−cos(−n�)]+

1

�n
[cosn�−1]

=
−2

�n
+2

(−1)n

�n

For n even the coefficients bn are zero.
Thus we obtain

f (x) = − 4

�

∞

∑
n=0

1

2n+1
sin(2n+1)x

3. a0 =
1

�

(
−
∫ 0

−�
sinx +

∫ �

0
sinx

)
=

4

�

an =
1

�

(
−
∫ 0

−�
sinx cosnx dx

+
∫ �

0
sinx cosnx dx

)

=
1

�
× 1

2

[[
cos(n+1)x

(n+1)

− cos(n−1)x
(n−1)

]0

−�

+
[
− cos(n+1)x

(n+1)

+
cos(n−1)x

(n−1)

]�

0

]

an =

⎧⎨
⎩

4

�(n+1)(n−1)
, n even

0, n odd

bn =
1

�

(∫ 0

−�
−sinx sinnx dx

+
∫ �

0
sinx sinnx dx

)
= 0

The Fourier series of the rectified wave-
form

f (x) =
2

�
− 4

�

1

1×3
cos2x

− 4

�

1

3×5
cos4x

− 4

�

1

5×7
cos6x −·· ·

4. A similar function, with the period 2� , has
been treated in the example on p. 495.

f (x)=
1

2
+

2

�

∞

∑
n=1

(−1)n−1

2n−1
cos

(2n−1)
2

x
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Chapter 19

1. Let A, B, C, D, E be the five dishes. The
sample space consists of the following sets
of possible pairs:
{AB, AC, AD, AE, BC, BD, BE, CD, CE,
DE}

2. P =
1

2

3. P =
1

3

4. hA =
1

30

5. P(blue) = 0.8, P(green) = 0.2
Compound probability = 0.16

6. P =
1

36
× 1

9
=

1

324

7. P =
1

36
+

2

36
+

3

36
=

1

6

8. Np = 5! = 120

9. N =
(

15
3

)
=

15!
3!(15−3)!

= 455

Chapter 20

1. The probability distribution for the random
variable ‘sum of the number of spots’ was
given in Sect. 20.1.1.

Random Probability Random Probability
variable variable

2
1

36
8

5

36

3
2

36
9

4

36

4
3

36
10

3

36

5
4

36
11

2

36

6
5

36
12

1

36

7
6

36

The mean value is

x̄ = 2× 1

36
+3× 2

36
+4× 3

36
+5× 4

36

+6× 5

36
+7× 6

36
+8× 5

36
+9× 4

36

+10× 3

36
+11× 2

36
+12× 1

36
.

Thus x̄ = 7.

2. x̄ =
∫ +∞

−∞
x f (x) dx =

∫ 2

0
x

x

2
dx

=
[

x3

6

]2

0

=
4

3

3. P =
(

10
8

)
(0.6)8(0.4)2

= 45×0.016×0.16
= 0.12

4. The random variable which is distributed
according to

f (x) =
1

�
√

2�
e−[(x−�)/� ]2/2

has the mean value 	. Hence it follows that

(a) x̄ = 2, (b) x̄ = −4.

Chapter 21

1. (a1) S (a2) R (b) S (c) S

2. (a)

i i − ̄ (i − ̄)2

(g/cm3) (g/cm3) (g/cm3)2

3.6 0.4 0.16
3.3 0.1 0.01
3.2 0 0
3.0 −0.2 0.04
3.2 0 0
3.1 −0.1 0.01
3.0 −0.2 0.04
3.1 −0.1 0.01
3.3 0.1 0.01

Sum 28.8 0 0.28

�2 =
0.28

8
= 0.035(g/cm3)2

� = 0.19g/cm3

 = 3.2g/cm3
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(b) Mean value:

� = ∑�i

n
=

12.80

10
m/s = 1.28m/s

Variance:

�2 = ∑(�i −�)2

N −1
=

0.011

9
(m/s)2

= 0.00122(m/s)2

Standard deviation:
� = 0.035m/s

3. Mean value:

	 =
∫ 1

0
x dx =

1

2

Variance:

�2 =
∫ 1

0

(
x− 1

2

)2

dx =
1

12

4. (a) �M=
�√
N

=
0.19g/cm3

3
= 0.06g/cm3

Confidence intervals:

3.14g/cm3 ≤  ≤ 3.26g/cm3

3.08g/cm3 ≤  ≤ 3.32g/cm3

(b) �M =
0.035m/s

3.16
= 0.01m/s

Confidence intervals:

1.27m/s ≤ v ≤ 1.29m/s

1.26m/s ≤ v ≤ 1.30m/s

5. 16%

6. (a) A=x̄ȳ=120×90cm2=10 800cm2

Calculation of �MA using Gaussian
error propagation law:

Ax =
∂

∂x
(xy) = y,

Ay =
∂

∂y
(xy) = x

Ax(x̄, ȳ) = 90cm

Ay(x̄, ȳ) = 120cm

�MA
2 = Ax

2�x
2 +Ay

2�y
2

= 902(0.2)2cm4

+1202(0.1)2cm4

= 468cm4

�MA = 21.63cm2

A = (10 800±21.63)cm2

(b)
V =

4

3
�

(
D

2

)3

= 124.79cm3

 =
M

V
=

1000

124.79
g/cm3

= 8.014g/cm3

Calculation of �MV using Gaussian
error propagation law:

∂
∂M

(
M

V

)
=

1

V
=

1

124.79cm3

= 0.008
1

cm3

∂
∂D

(
M

V

)
=

∂
∂D

(
6M

�D3

)
=
−18m

�D4

�M
2 = (0.008)2(0.1)2

( g
cm3

)2

+(3.88)2(0.01)2
( g

cm3

)2

= 0.0015041
( g

cm3

)

�M = 0.039
g

cm3

= (8.014±0.039)
g

cm3

7. a = ∑mi Si −nm̄S̄

∑m2
i
−nm2

=
65.6−5×4×3

90−5×42

=
5.6

10
= 0.56

b = S̄ −am̄ = 3−0.56×4 = 0.76

m m2 S mS
(g) (g2) (cm) (g cm)

1 2 4 1.6 3.2
2 3 9 2.7 8.1
3 4 16 3.2 12.8
4 5 25 3.5 17.5
5 6 36 4.0 24

∑ 20 90 15 65.6

m̄ = 4g S̄ = 3cm
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8. 73◦2′8′′

Fig. 21.7



Index

A

Abscissa 42
Absolute error 122
Acceleration 99, 134, 158, 273
Acoustic wave 371
Addition

formulae 62 f.
law 511
of vectors 4
theorems 67, 411

Amplitude 55, 59
Angular velocity 131
Antisymmetric matrix 423
Aperiodic system 297
Approximate polynomial 233, 243
Approximation 228

first 234
second 234
third 234

Area
bounded by curves 191
function 150, 151
in polar coordinates 195
of a circle 196, 385, 388

Argand diagram 250, 253, 256
Argument 41, 252, 256
Arithmetic mean value 525
Asymptote 46, 119
Atmospheric pressure 237
Augmented matrix 433, 434, 436
Auxiliary equation 281, 284
Average velocity 98
Axial symmetry 390

B

Base 69, 74
Base vector 471
Bernoulli DE 306
Bernoulli’s equations 306
Binomial

coefficient 71, 517
distribution 527, 529, 533
expansion 517
theorem 71

Bound vectors 9
Boundary condition 147, 276, 291, 293, 294,

296, 372

C

Cantilever beam 292
Cardioid 202
Cartesian coordinate system 42, 387
Catenary 79
Cauchy 232
Center of mass 208, 210
Center of pressure 208, 222, 223
Centroid 208, 210, 398, 550
Chain rule 104
Characteristic

equation 454–456, 459
polynomial 455, 456

Circle, equation in parametric form 131
Circular frequency 57, 369
Circulation 481 f.
Clearing the fractions 172
Co-domain 40
Cofactor 439, 443
Column vector 415, 432, 445, 451
Combination 516 ff.



582 Index

Common ratio 86
Commutative law 27
Complementary

area 193, 194
function 277, 278, 285

Complex conjugate 248, 266
Complex number 247 ff.

addition and subtraction 249, 251
arithmetic form 266
division 250
exponential form 254, 266
graphical representation 250
multiplication and division 258
periodicity 266
polar form 252, 261
product 249
raising to a power 263
roots of a 263
summary of operations 266
transformation of one form to another 260

Complex root 171, 174
Component 10, 43
Composition 66 f.
Compound

event 513, 514
probability 532

Confidence interval 545
Conservative field 184, 487
Continuity 91
Continuous quantity 522
Contour line 350, 351, 357, 360
Contraflexure 117
Coordinate 11

system 42, 386 ff.
Correlation 554

coefficient 554
Cosine 58

function 58 ff.
function, exponential form 255, 266
function, integration of 156
rule 27

Cotangent 61
Cramer’s rule 438, 445 ff.
Critical damping 297
Cross product 32 ff., 483
Curl 480 ff., 483
Curl-free 480, 484
Curvature 123, 125

centre of 123
radius of 123, 125

Curve sketching 45 f., 118
Cycloid 137

area of 194

Cylindrical
coordinates 389
symmetry 391

D

D’Alembert’s solution 372
Damping 296
DE see Dfferential equation 273
De Moivre’s theorem 263
Definite integral 147, 149, 153, 154, 175,

191, 379
Derivative 97–99, 114, 145

of a constant 102
of a constant factor 102, 138
of a cosine function 107
of a curve given in parametric form 136
of an exponential function 139
of a function 97 f., 344
of a function of a function 104
of a hyperbolic function 110
of a hyperbolic trigonometric function

139
of an implicit function 127
of an inverse function 105 f.
of an inverse hyperbolic function 111
of an inverse hyperbolic trigonometric

functions 139
of an inverse trigonometric function 109,

138
of a logarithmic function 139
of a parametric function 129, 133
partial 347
of a position vector 133
of a power function 101, 138
of a product of two functions 103
of a quotient of two functions 104
of a sine function 107
of a sum 102 f.
of a trigonometric function 107, 138

Designation 177
Determinant 423, 424, 438 ff.

evaluation of a 440
expansion of a 439
of a square matrix 439
properties of a 442

Diagonal 414, 430
Diagonal form 444
Diagonal matrix 421
Difference

quotient 96, 97
vector 6

Differential 99, 100, 351
calculus 98



Index 583

coefficient 97, 99, 100
total 351

Differential equation (DE) 273 ff.
exact 308
first-order linear 275
general first-order 306
general linear first-order 302
higher-order 317
homogeneous 275, 277
homogeneous first-order 279
homogeneous second-order 279, 281, 282
linear first-order 277
linear with constant coefficients 275
linear with constant coefficients, solution of

328
non-homogeneous 277
non-homogeneous linear 285
second-order 276
simultaneous first- and second-order 313
simultaneous with constant coefficients

330
solution by substitution 285

Differentiation rules 138
Direction 1
Dirichlet’s lemma 495
Dirichlet, Peter G.L. 495
Discriminant 48
Distributive law 27
Divergence 461
Divergence of a vector field 475
Domain 340

definition of 39, 64
of definition 40

Dot product 24
Double integral 383, 398

E

Eigenvalue 452 ff.
Eigenvector 452 ff.
Electrical field 470
Elemental

area 388
volume 392

Elementary
error 545
event 508, 509, 514, 532

End term 92
Equation

of a line 26
of a sphere 406

Equations, linear algebraic 429
Error

constant 537

random 537
systematic 537

Error propagation 547
Estimate

of the arithmetic mean value 541
of the standard deviation 541
of the variance 541

Euler’s
formula 255, 266, 282
number 71, 88

Even function 55, 495
Event 508

exclusive 512
statistically independent 514

Exact DE 308 ff.
Expansion

of a function 228, 229, 235
of the binomial series 231
of the exponential function 230

Experiment 508
Exponent 69, 74
Exponential function 71 f., 76, 109, 110
Extrapolation 39
Extreme point 362

value 119, 121
value, necessary condition 364 f.
value, sufficient condition 364 f.

F

Factorial n 516
Favoured number 509
First moment 209, 398
Flow density 462
Flow, partial 467
Flux 464
Fourier

serie 492
spectrum 502

Fourier’s theorem 491
Fraction

improper 170
proper 170

Frequency 369, 492
Function 40, 41

circular 52
continuous 91
discontinuous 91
explicit 127
exponential 71
fractional rational 170
implicit 127
inverse 50
limits of 125



584 Index

linear 43
of a function 66 f., 67
of two variables 337, 367
periodic 54
real 41
trigonometric 52

Fundamental harmonic 495
Fundamental theorem

of algebra 170
of the differential and integral calculus

149, 152

G

Galtonian board 528
Gauss 470
Gauss complex number plane 250
Gauss–Jordan elimination 431, 433–435,

443
Gaussian

bell-shaped curve 240
elimination method 430, 431
normal distribution 545

Gaussian law 470
General

solution 276, 279
term 85, 92

Geometric
progression 86, 93
serie 93, 227

Geometrical addition 4
Gradient 483

of a function 357
of a line 94

Graph 42
Graph plotting 44 ff.

H

Hadamard 232
Half sine wave 498
Half-life 73
Harmonic 503

analysis 491
oscillator 294
oscillator, damped 296
oscillator, undamped 294
wave 371, 373

Helix in parametric form 132
Hertz 57
Higher derivatives 112
Homogeneous

equation 279
linear equations 436

Hyperbolic
cosine function 79
cotangent 80
function 78 f.
sine function 78
tangent 79

I

Imaginary
number 247, 248, 266
part 248
unit j 266

Implicit function 360
Impossible event 509
Improper integral 179 ff.

convergent 179
divergent 179

Increment 122
Indefinite integral 145, 159
Indeterminate Expression 125
Index 69
Infinite series 93
Initial condition 291
Inner

function 66, 105
integral 379
product 24 f.

Instantaneous velocity 98
Integral

calculus 145 ff.
sign 149

Integrand 149
Integrating factor 302, 304, 311 ff.
Integration

application of 191 ff.
by part 161 ff., 186
by partial fraction 170 ff., 186
by substitution 164 ff., 186
constant 276

Intersecting curve 340, 342, 345, 367
Interval of convergence 232
Inverse 50 f., 432

cosine function 65
cotangent function 65
function 50, 64, 67, 322
hyperbolic cosine 81
hyperbolic cotangent 82
hyperbolic function 81
hyperbolic sine 81
hyperbolic tangent 82
matrix 424, 432
matrix, calculation 433
sine function 64



Index 585

tangent function 65
trigonometric function 64

Irrotational field 480

L

L’Hôpital’s Rule 125
Lagrange 235
Laplace transform 321 ff.

of a sum of functions 326
of derivates 326
of products 324
of standard functions 322
table of inverse transforms 333
table of transforms 332

Last term 92
Leading diagonal 414, 421, 423
Leading term 92
Lengths of a curve 198

in polar coordinates 201
Lever law 30
Limit

of a function 89, 90
of a sequence 86

Limiting value 86
Line integral 181 ff., 480
Linear

algebra 413
factor 456

Linear DE 274
Linear independence 280
Logarithm 74 ff.

common 75
conversion of 76
natural 75

Logarithmic
differentiation 128
function 77, 109

Lower limit of integration 149
Lower sum 149

M

Maclaurin’s series 229, 232, 237
Magnitude 2, 4
Matrix 413 ff.

addition and subtraction 415
algebra 413
column of 414
element of a 415
equation 432
for successive rotation 419
multiplication by a scalar 416
notation 434, 445

of coefficient 432, 433
rectangular 414
row of 414

Maximum 114, 115, 119, 120
local 113
of a function of several variables 361

Maxwell 372
Mean value 525 ff., 538

continuous distribution 542
continuous random variable 526
discrete random variable 525
of a function 178
theorem 178
weighted 548

Mechanical work 25, 180
Meridian 391
Minimum 115, 119, 120

local 113
of a function of several variables 361

Minor 439
Modulus 252, 255
Moment of inertia 208, 213, 215, 395, 398
Monotonic function 51
Multiple integral 377 ff., 378

with constant limit 378, 379
with variable limit 382, 384

Multiplication of two matrices 417

N

N -order determinant 439
Nabla operator 483
Natural frequency 294, 301, 316

damped 301
undamped 301

Negative vector 6
Neutral axis 220
Newton–Raphson

approximation formula 239
Non-homogeneous equation 278
Non-trivial solution 436
Normal distribution 73, 529, 530 ff., 545
Normal vector 135, 136
Normalisation condition 512, 524
Null

matrix 422
sequence 86
vector 6

O

Oblique coordinate system 8
Odd function 55, 495
Order



586 Index

of a DE 273
of integration 383

Ordinate 42
Orthogonal matrix 422, 424
Orthogonality 458
Oscillation

damped 298
forced 299

Outcome space 508
Outer

function 66, 105
integral 379
product 32 f.

Over-damped system 297

P

Paired values 41
Pappus’ first theorem 211
Pappus’ second theorem 212
Parallel axis theorem 218, 221
Parameter 129–132
Parametric

form of an equation 129 ff., 181
function 194

Parent population 540, 542
Partial

derivative 347
derivative, higher 348
differential equation 371
differentiation 344

Particular
integral 276, 285
solution 276, 291, 458

Path element 182, 357
Period 54, 56 f., 59, 369, 492
Periodic function 491
Periodicity 263
Permutation 515, 516, 532
Perpendicular axis theorem 217
Phase 57 f., 59, 370
Phase velocity 369
Point charge 470
Point of inflexion 113–115, 118, 120
Polar angle 391
Polar coordinate 195, 387 ff.
Polar moment of inertia 216, 398
Pole 45, 118
Polynomial 170

as an approximation 237
Position vector 9, 42, 43, 129, 182
Postmultiplication 424
Potential 485, 486

field 486

Power 69 f., 74
Power series 227–229

infinite 227
interval of Convergence 232 f.

Premultiplication 424, 433
Primitive function 145, 146, 154, 159
Principal value 264
Principle of verification 159
Probability 508 ff., 520 ff.

classical definition 509
density 524, 526
density function 524, 525
distribution 519, 520, 524–526
distribution, continuous 522, 523
distribution, discrete 519
statistical definition 510

Product moment correlation 554
Product of a matrix and a vector 416
Product rule 103, 161
Projection 7, 43, 350
Pythagoras’ theorem 27, 60

Q

Quadrant 42
Quadratic 47, 363

pure 47
Quadratic equation 47 f.

root of 48
Quantity

dependent 39
independent 39

Quotient rule 104

R

Radian 52
Radioactive decay 293
Radius

of convergence 232, 233
of gyration 218, 398
vector 391

Random
experiment 508, 509, 519, 526, 527
sample 538, 540
variable 519 ff.
variable, discrete 519

Random error 552
Range

of definition 40, 116, 120
of value 40, 119

Rank
of a determinant 444
of a matrix 444

Real



Index 587

matrix 413
part 248

Rectangular waveform 498
Reduction formula 163
Regression

curve 552
line 549 ff., 554

Relationship 41
Relative

error 122
frequency 510

Remainder 233, 235
Resonance 301
Resultant 5
Right-hand rule 32
Rotation 404, 407, 409

in three-dimensional space 411
transformation rules for 409

Row vector 414

S

Saddle point 114, 362
Salient features of a function 45
Sample space 508
Sampling error 544
Sawtooth function 496
Scalar 1 ff.

product 23 ff., 24, 357, 416, 417
quantity 4

Secant 96
Second

derivative 112, 113
harmonic 495
moment of area 213, 220

Second-order determinant, evaluation of 440
Separable variable 307
Separation of variables 279, 307, 308
Sequence 85 ff., 92

convergent 87, 87 f., 88
divergent 87, 88

Series 92 ff.
Set of linear algebraic equations 429, 445
Set of linear equations

existence of solutions 435 ff., 445
Shift theorem 323
Sine 53

function 53 f., 55
function, exponential form 255, 266

Singular matrix 423
Singularity 45
Skew-symmetric matrix 423
Skew-symmetry 423
Slope 98, 114, 346

of a line 44, 94
Small tolerance 354
Space integral 378
Spatial polar coordinate 391
Special solution 276
Sphere, equation of a 343
Spherical

coordinate 391
symmetry 394
wave 371

Square matrix 414, 422, 424, 444
Standard deviation 531, 539, 540

of the mean value 544
Standard integral 159
Static moment 398
Stationary wave 373
Statistical

mechanics 507
probability 510

Steady state 300
Steiner’s theorem 218
Stokes’ theorem 484, 485
Straight line 43, 145

equation in parametric form 131
Submatrix 444
Substitution 165

of limits of integration 177
Successive

elimination of variables 430
rotation 411

Sum rule 102
Summation sign 92
Superposition formula 63, 295
Surface area of a solid of revolution 202
Surface element 461

vector 462
vector differential 471

Surface in space 350
Surface integral 464
Symmetric matrix 423, 424

T

Tangent 61, 95, 113, 114
plane 361
vector 135, 136

Taylor’s series 236, 237
Techniques of integration 186
Term-by-term integration 228
Theory of errors 507
Third-order determinant, evaluation of 441
Torque 30, 31
Total

derivative 358, 360



588 Index

differential 351 ff.
differential coefficient 359 f.

Trace 456
Transformation

equations for a rotation 419
matrix for rotation 421
rule 405, 407
rule for successive rotation 411

Transient phase 300
Translation 403, 404
Transpose 422 ff., 458
Transposed matrix 422
Triangle law 5
Triangular function 497
Trigonometric functions 52
Triple integral 378
Trivial solution 436

U

Uniformly loaded beam 118
Unique solution 435
Unit

circle 52
matrix 421, 433
vector 10 f., 34

Upper
limit of integration 149
sum 149

V

Variable
dependent 41
independent 41
of integration 149

Variance 539 ff.
explained 554
of a continuous distribution 542

Variate 519
Variation 518

of parameters 289
of the constant 302 ff.

Vector 1 ff., 414
addition 4, 12
component representation 7
magnitude 15
multiplication by a scalar 14
product 23, 30 ff., 448
product, determinant form 35
projection of a 7
quantities 2
representation of a 3
subtraction 6, 9

Vector derivatives 488
Vector field 461

homogenous 461, 462
Velocity 98, 134, 158
Vibration 297
Vibration equation 108
Volume

of a parallelepiped 448
of a solid of revolution 202
of a sphere 394

W

Wave equation 371, 372
Wavelength 368
Weight 548
Weighted average 548
Work done by the gas during expansion 193

Z

Zero
of a function 46




