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Preface

The purpose of this book is to give a comprehensive introduction to the modeling of
financial derivatives, covering the major asset classes and stretching from Black and
Scholes’ lognormal modeling to current-day research on skew and smile models.
The intended reader has a solid mathematical background and works, or plans to
work, at a financial institution such as an investment bank or a hedge fund. The aim
of the book is to equip the reader with modeling tools that can be used in the (future)
work involving derivatives pricing, trading, or risk management.

The field of derivatives modeling is extensive and to keep the book within a
reasonable size, certain sacrifices have been made. For instance, the implementation
of models is not discussed as this can be viewed as an art rather than science and is
therefore an ungrateful subject for a text book. Minor asset classes, such as inflation
products, and asset classes that require specific mathematical tools, e.g., credit and
mortgage products, have been left out. Furthermore, the financial basics are covered
at a faster pace than in other introductory books to the area. For example, the
martingale theory is summarized in a compact appendix, and the introduction to
the Black–Scholes model is done by working directly in continuous space-time, in
contrast to the pedagogical approach of initially reviewing the binomial model. This
enables us to quickly go beyond the Black–Scholes framework and thereby focus
on skew and smile models and on derivatives in specific asset classes.

The book is divided into four parts. The first part consists of Chaps. 1–4 and
contains the general framework of derivatives pricing. This part is essential for the
understanding of the rest of the book. An exception is Chap. 4 which a novice
reader might find too abstract and is advised to skip and come back to later
when the necessary financial maturity has been reached. The rest of the book
consists of chapters that can be read independently. Chapters 5–8 cover skew and
smile modeling. The pricing of exotic derivatives is the subject of the third part,
Chaps. 9–10. The concluding fourth part comprises Chaps. 11–14 and applies the
pricing methods to specific asset classes.

Stockholm Christian Ekstrand
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Part I
Derivatives Pricing Basics



Chapter 1
Pricing by Replication

This chapter provides an introduction to the theory of derivatives pricing. We start by
defining the fundamental objects – the underlyings – that the theory depends upon.
We state the conditions that the underlyings are assumed to satisfy and explain how
the theory can be applied. The presentation here has an abstract character while the
remainder of the book contains specific examples of models based on this theory.

1.1 Underlyings and Derivatives

The theory of derivatives pricing is based on a set fSig D fS1; S2; S3; : : :g of
predefined financial assets that can be stocks, bonds, etc. The price of an asset S
is a real number which we also denote by S , or by St when we want to emphasize
the time dependence. We assume that today’s prices fSitD0g are given and refer to
these assets as the underlyings of the theory.

We are interested in pricing contracts V for which the prices at time T are known
as expressions of the price ST of an underlying. As the future values can be derived
from the values of the underlyings, these contracts are called derivatives. Examples
include VT D .ST /

2 or VT D ST �K for a fixed K , but also more general payoff
types such as VT depending on the values of several underlyings at T or on the
average value of St attained in the time interval t 2 Œ0; T �.

We show later that the present value (PV) VtD0 of a derivative can be computed
using only a couple of natural assumptions. We are not, however, interested in
computing the present values of the underlyings. The reason is that the underlyings
are often too complex to be handled in a universal pricing framework. For instance,
the price of an equity stock depends on multiple hard-to-measure factors including
the employees’ morale, the interaction between the divisions of the company, the
management’s decisions and the state of the world economy. Instead, our philosophy
is that the underlyings are correctly priced through the supply and demand by market
participants.

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 1,
© Springer-Verlag Berlin Heidelberg 2011
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4 1 Pricing by Replication

1.2 Assumptions

To set up a theoretical framework for derivatives pricing, it is necessary to impose
certain conditions on the underlyings. We assume that the underlyings are liquidly
traded meaning that they can be bought and sold at any instance in time with equal
bid and offer prices. We allow St to be equal to any real value (or positive real
value), i.e. we let the tick size be zero. When purchasing an asset, it takes a couple
of days until the asset and the payment change hands. This time period is called the
settlement lag and is set to zero for simplicity.

We allow for assets to be shorted, i.e. a negative number of assets can be
held. In practice, assets can be shorted by entering futures or forward contracts.
Alternatively, assets can be borrowed (typically from a broker) and then sold
whereafter they are bought back and returned at a later time. We assume that the
underlyings are non-defaultable and that there are neither any costs associated with
holding the underlyings (e.g. storage costs) nor any cash flows generated by them
(e.g. dividends).

The markets are assumed to be efficient: there are no dominant market par-
ticipants and no market manipulation, the markets are unregulated, the decisions
made by the market participants are based solely on financial arguments, there is
no shortage of cash, etc. Furthermore, all market participants are assumed to have
excellent credit rating, which means that they never default.

In financial modeling, the zero-coupon bond PtT is a particularly useful instru-
ment. It pays $1 (1 unit of the currency under consideration) at T for certain and has
no other cash flows either before or after T . It can also be viewed as a loan taken at
t that together with the interest rate yields a repayment of $1 at T . PtT is also called
the discount factor from T as it measures the time t value of $1 at T . As derivatives
pricing involves discounting cash flows, we impose the same conditions on zero-
coupon bonds as for the underlyings (indeed, the bond itself acts as an underlying
for interest rate derivatives). This means, in particular, that P0T are assumed to be
given for all T .

The assumptions are not made because we believe that they are satisfied in real
markets but to obtain a theory that is as simple as possible. In practice, it is often
necessary to take into consideration the fact that the assumptions are violated. Some
of the violations can be taken care of with minor adjustments to the theory. For
example, in Sect. 3.11 we describe how a careful discounting accounts for a non-
zero settlement lag. Other violations, such as a non-zero bid-offer spread, require
more general models.

With only a few exceptions, we choose not to consider such generalized models.
One of the reasons for this decision is that the question as to which assumption has
the greatest impact on the derivatives price is often hard to answer and depends on
both the type of the underlying and the derivative, and can even change during the
lifetime of the derivative. Furthermore, there exist no well-established models that
take such effects into account.



1.3 The No-Arbitrage Assumption 5

Generalized models often involve complex and thereby lower performing com-
puter implementations. As performance is of crucial importance for many market
participants, a generalized model is sometimes not a viable option. The alternative
is to accept the model uncertainty arising from the violations of the assumptions. It
means that if we sell a derivative, the customer needs to be charged an extra premium
for the model risk we undertake. The size of the premium is delicate as it should
be large enough to compensate for the model risk but small enough for the price
to remain competitive. One of the main reasons for employing skilled quantitative
analysts (colloquially known as quants) is to reduce the model risk, which leads to
a lower premium. The result is a higher competitiveness and more deals won over
rival firms.

Parts I–III of the book cover pricing of derivatives with underlyings that satisfy
the idealized assumptions above. As we move on to the pricing of real-life
derivatives in Part IV, it is necessary to relax some of the constraints.

1.3 The No-Arbitrage Assumption

Let V D P
i biS

i be a financial portfolio, i.e. a weighted sum of financial assets,
where the bi s are real numbers. We allow the portfolio to be rebalanced at each
instance in time, whereby some assets are sold while others are bought. The
restructuring of the content is called the strategy of the portfolio. A self-financing
strategy has no in- or out-flux of cash, i.e. each purchase is exactly funded by a sale.
Unless stated otherwise, we only consider self-financing strategies and therefore
refer to them simply as strategies.

A strategy V is said to be an arbitrage strategy if it has zero initial value V0 D 0,
is always positive P.VT � 0/ D 1 and strictly positive with a non-zero probability
P.VT > 0/ > 0 for a given future time T . An arbitrage strategy permits a possible
positive future cash flow without any downside risk. Any arbitrage strategy that
exists in a market is therefore taken advantage of by traders until supply and demand
forces have adjusted the prices so much that the arbitrage disappears. As a result,
arbitrage strategies are rare, and when they exist, they only do so for a short time.
For this reason, it is possible to base a theory on the assumption that arbitrage
strategies do not exist. This assumption has far reaching consequences and is the
base of derivatives pricing.

An immediate implication of the no-arbitrage assumption is that certain financial
strategies must be excluded from the theoretical framework. For instance, consider
an investment into an overnight deposit, i.e. a loan that starts today and ends
tomorrow. When tomorrow comes, we reinvest the proceeds in a new overnight
deposit that ends the day after tomorrow. As interest rates are always non-negative
(with a few peculiar historical exceptions), repeating this procedure results in a
strategy with earnings greater than the holding of the amount in cash. We conclude
that the combined strategy of being long the above strategy and short cash is an
arbitrage strategy.
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To exclude arbitrage strategies of the above type, it is necessary to remove
the substrategy with the smallest payoff, which in this instance is the holding of
cash. From now on, we assume that all suboptimal strategies are excluded from the
theoretical framework. This leaves us with a setting that is completely arbitrage free.

1.4 Replication

Let us now turn to a particular implication of the no-arbitrage assumption that serves
as the foundation for derivatives pricing. For this purpose, consider two strategies
V and U for which we know for certain that VT � UT at a given future time T . We
claim that V0 � U0. The statement can be proven by showing that U0 D V0 C k,
for k > 0, leads to a contradiction. The strategy X D V C .kP�1

0T /PtT � U of being
long V , short U and long kP�1

0T bonds maturing at T satisfies X0 D 0 and XT > 0,
violating the no-arbitrage assumption. The argument can be generalized to arbitrary
times t before T : P.VT � UT / D 1 ) P.Vt � Ut/ D 1. Indeed, if this were
not true, there would exist a scenario for which Vt < Ut and P.VT � UT / D 1,
violating the no-arbitrage assumption when using the time t as a starting point.

The direction of the inequality can be reversed by interchanging the roles of V
and U . Together with the original inequality, we arrive at the following conclusion:
if two strategies for certain are equal at a future date, P.VT D UT / D 1, their values
at any earlier time t � T must be equal, P.Vt D Ut/ D 1. In particular, when t is
today’s date we obtain V0 D U0 (Fig. 1.1).

To determine today’s price V0 of a complex contract V , the no-arbitrage assump-
tion can be applied in the following way: assume that it is possible to construct a
strategy U which is worth as much as V at a future time T (independently of the
scenarios followed by the market) and for which the present value U0 is known. The
no-arbitrage principle implies that V0 equals U0. In fact, as the portfolios have equal
values for all t < T , the strategy U is said to replicate V .

To reconnect with Sect. 1.1, we are typically interested in the pricing of a contract
V for which the future value VT is known as an expression of underlying values
fSiT gi . We construct a replicating portfolioU consisting of underlyings. The current
value U0 can be determined from fSi0g, which are assumed to be known. The

V

U

= =

T

V

U

t0

Fig. 1.1 Contracts that for certain have the same future values must have the same present values



1.4 Replication 7
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Derivative
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ii

Fig. 1.2 Modeling of a derivative with a single cash flow

no-arbitrage principle then allows us to find the present value of V through V0 D U0
(Fig. 1.2).

In Chap. 2, we restrict ourselves to static replication for which the content of U
is set up at t D 0 and held until T , without any additional trading between t D 0

and T . This is in contrast to dynamic replication, covered in Chap. 3, for which the
content of U is changed through time in order to replicate V .

It is sometimes not possible to find a practically applicable strategy that replicates
V . It can then be useful to construct a strategy U that superreplicates V , i.e. VT �
UT , which gives an upper bound on today’s price: V0 � U0. In the same manner, a
strategy that subreplicates V leads to a lower bound.



Chapter 2
Static Replication

A portfolio is said to be static if it is unmanaged, which means that the content is not
changed through time. In this chapter we review some important situations where
static replication can be used for pricing or for finding upper and lower bounds on
prices.

We start with pricing forward contracts and general fixed-time payments. We
then derive constraints on option prices in preparation for the next chapter, where
options are priced with dynamic replication. Finally, the method of static replication
is applied to more exotic contracts such as early exercisables and barrier options.

2.1 Forward Contracts

Under the specifications of a forward contract, the counterparties are obliged to
exchange a certain underlying S for a strike price K at a given maturity T . The
contract is therefore worth S �K at T .

The pricing of a forward contract is trivial as we can immediately conclude that
the time t value is S �KPtT . Indeed, if we own this amount at t , by sellingK bonds
maturing at T , enough money is generated for a purchase of the underlying S . The
strategy is worth S �K at maturity, which is the same amount as that of the forward
contract. The no-arbitrage principle implies that the forward contract must be worth
S � KPtT .

The cash amount K that is used in the initiation of a forward contract is by
convention such that the contract values to par, i.e. the price equals to zero. This
value of the strike is called the forward. It is usually denoted by F and is equal to
P�1
0T S .

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 2,
© Springer-Verlag Berlin Heidelberg 2011
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2.2 European Options

A European call option gives the contract owner the right to buy the underlying S
at time T for a given amount K . In contrast to forward contracts, the owner is not
committed to the purchase but only does so if it is profitable. The option value at
maturity is therefore .ST �K/C D max.ST �K; 0/.

An option is said to be in the money (ITM) if S > K , out of the money (OTM) if
S < K and at the money (ATM) if S D K . Sometimes the forward is used in this
classification, i.e. the conditions F > K , F < K and F D K are used to define
whether an option is ITM, OTM or ATM. It is usually clear from the context which
definition is used.

A European put option gives the owner the right to sell the underlying. The value
at maturity is .K � ST /C. A digital European call option pays $1 if ST > K

and 0 otherwise. Thus, the value at maturity is �.ST �K/, where � is the Heaviside
function. Similarly, a digital European put option is worth �.K � ST / at T .

Options belong to the type of contracts that cannot be priced with static replica-
tion. We postpone the pricing of these contracts to the next chapter in which dynamic
replication is introduced. For the remainder of this chapter, we assume that option
prices are known and use them for the static replication of more complex contracts.

2.3 Non-Linear Payoffs

We determine the present value of a contract V that pays h.S/ at T for a fixed, but
arbitrary, function hwith a well-defined second derivative. We have already covered
the special case h.S/ D S �K , for which the pricing can be done using the present
values of the underlying S and the zero-coupon bond maturing at T . In the same
manner, any linear payoff h.S/ D ˛S �K can be priced. When h.S/ is non-linear,
on the other hand, additional information is needed. The present values of European
call options maturing at T turn out to provide sufficient information. This statement
is made clear by the following computation:

h.S/ D
Z 1

0

h.K/ı.S �K/dK

D
Z 1

0

�

� d

dK
.h.K/�.S �K//C h0.K/�.S �K/

�

dK

D h.0/C
Z 1

0

h0.K/�.S �K/dK

D h.0/C
Z 1

0

�

� d

dK

�
h0.K/.S �K/C

�C h00.K/.S �K/C
�

dK

D h.0/C h0.0/S C
Z 1

0

h00.K/.S �K/CdK
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=S S S

Fig. 2.1 Replication of an arbitrary payoff with zero-coupon bonds, the underlying and call
options

Thus, if we at time t D 0 buy h.0/ number of bonds maturing at T , h0.0/ number of
underlyingsS and h00.K/ number of options with strikes in ŒK;K C dK�, for allK ,
then the contract is worth h.S/ at T (Fig. 2.1). The no-arbitrage principle implies
that

V D h.0/P0T C h0.0/S C
Z 1

0

h00.K/V C.K/dK

where V C.K/ is the present value of a call option with strike K .
Fixed-time payoffs can also be statically replicated with other option types. For

example, according to the third line in the calculation above, digital calls options
can be used. In this instance, the underlying S is not needed for the replication.

We move on to discuss which option type is preferable in the replication, call
options or digital call options. From a theoretical point of view, the question is
irrelevant as the two product types can be statically replicated from each other. For
instance, using the third line in the above equation for h.S/ D .S �K/C gives

.S �K/C D
Z 1

0

�.K 0 �K/�.S �K 0/dK 0 D
Z 1

K

�.S �K 0/dK 0

Conversely, the relation �.S �K/ D � d
dK
.S �K/C shows that a digital call option

can be approximated by a call spread, i.e. the difference between two call options,
having the following payoff at T :

1

�K
..S �K C�K/C � .S �K/C/

We conclude that a digital call option can be approximated by two call options while
a large number of digitals are needed to approximate a call option. This suggests
that call options should be used in static replication of contracts paying h.S/. The
main reason for using call options, however, is that they are more liquid market
instruments than digital call options.

The replicating formula is also applicable to payoffs with a discontinuous
(mathematical) derivative. Consider, for example, a put option paying h.S/ D
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S =
S S

Fig. 2.2 Put-call parity

.K�S/C at T . Using h0.S/ D ��.K�S/ and h00.S/ D ı.K�S/ in the replication
formula gives:

V P.K/ D KP0T � S C V C.K/

This relation is called put-call parity and shows that a call and a put option only
differ by a linear payoff (Fig. 2.2). The parity is obvious as the difference in payoff
at maturity

.S �K/C � .K � S/C D S �K
is equal to the payoff of a forward contract.

Since a put equals a call up to a linear payoff, some of the calls in the replication
formula can be replaced with puts. As puts are cheaper than calls when the strike is
low, the cost of the options in the replication formula can be reduced by replacing
low strike calls with puts. The details can be understood from the computation

Z NK

0

h00.K/.K � S/CdK C
Z 1

NK
h00.K/.S �K/CdK

D h0. NK/. NK � S/C �
Z NK

0

h0.K/�.K � S/dK

�h0. NK/.S � NK/C C
Z 1

NK
h0.K/�.S �K/dK

D h0. NK/. NK � S/C � h. NK/�. NK � S/C
Z NK

0

h.K/ı.K � S/dK

�h0. NK/.S � NK/C � h. NK/�.S � NK/C
Z 1

NK
h.K/ı.S �K/dK

D h0. NK/. NK � S/ � h. NK/C h.S/

The no-arbitrage principle implies that
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Z NK

0

h00.K/V P.K/dK C
Z 1

NK
h00.K/V C.K/dK

D �
h0. NK/ NK � h. NK/�P0T � h0. NK/S C V

which shows how a fixed-time payoff can be replicated with low strike puts and high
strike calls. Denoting the right-hand side with g. NK/, we obtain

g0. NK/ D h00. NK/. NKP0T � S/
g00. NK/ D h000. NK/. NKP0T � S/C h00. NK/P0T

Assume for a moment that the second derivative of h is positive. The only extreme
point of g. NK/ is then a minimum located at the forward NK D P�1

0T S D F . We
conclude that

VD �
h.F /�h0.F /F

�
P0T Ch0.F /S C

Z F

0

h00.K/V P.K/dKC
Z 1

F

h00.K/V C.K/dK

is the replication of V that has the cheapest option content. The same result is
obtained if h has a negative second derivative.

Liquid European options are found in the market only for a finite set of strikes.
It means that the static replication strategy for non-linear payoff is not directly
applicable in practice. Instead, European option prices for arbitrary strikes are typ-
ically inferred from the liquid market quotes by mathematical interpolation. Once
this has been done, static replication can be used. As the outcome depends on the
interpolation scheme, different market participants arrive at different conclusions
regarding the price. This is particularly apparent when the payoff depends on strikes
outside the liquid range, making extrapolation a necessity.

2.4 European Option Price Constraints

Before constructing option pricing models, it is useful to derive the asymptotic limits
and the no-arbitrage conditions that a European call option price V has to satisfy.
These conditions can be used to exclude inappropriate models. As the corresponding
constraints for put options follow from put-call parity, it is sufficient to focus on
European call options.

Consider first the asymptotic behavior of V : for very large values of K the call
option is worthless, V D 0. In the limit of small values of K , the option certainly
gets exercised at maturity. The option holder then needs the amount KP0T today to
pay the strike price K at T in order to receive S . Today’s value of the contract is
therefore S � KP0T .

We proceed to the no-arbitrage conditions and observe that the value of a contract
paying h.S/ � 0 at T is obviously positive. As h.S/ D R1

0
h.K/ı.S �K/dK , this
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requirement is equivalent with demanding positivity of a contract paying ı.S �K/.
Using

ı.S �K/ D d2

dK2
.S �K/C D d2

dK2
VT

which is the �K!0 limit of .�K/�2 .VT .KC�K/ � 2VT .K/CVT .K ��K//,
we obtain the constraint d2

dK2 V � 0.
There is also a constraint for option combinations with different maturities: V2 �

V1 is positive for V1 and V2 European call options with strike K and maturities
T1 < T2. The statement can be verified by proving that a portfolio of one long unit
of V2 and one short unit of V1 is always positive at T1. It is sufficient to consider the
situation when V1 is ITM at T1, giving a portfolio value of V2 � S C K . From the
conditions V.K ! 1/ ! 0, V.K ! 0/ ! S �KP0T and V 00.K/ � 0 it follows
that V.K/ � S �KP0T , which implies that V2.t D T1/ � S �KPT1T2 � S �K ,
proving the statement. Observe that V2 � V1 is equivalent with the infinitesimal
condition dV

dT
� 0.

In summary, the following constraints must be satisfied by the European call
option price (Fig. 2.3):

• V.K ! 0/ ! S �KP0T
• V.K ! 1/ ! 0

• V.T ! 0/ ! .S �K/C
•

d2

dK2
V � 0

•
d

dT
V � 0

From these fundamental constraints, it is possible to derive other interesting
conditions on the option price. For instance, from conditions 1, 2 and 4, we obtain
upper and lower bounds on the European call option price and its (mathematical)
derivative with respect to the strike (which is the digital option price).

.S �KP0T /C � V � S

�P0T D dV

dK

ˇ
ˇ
ˇ
ˇ
KD0

� dV

dK
� dV

dK

ˇ
ˇ
ˇ
ˇ
KD1

D 0

Fig. 2.3 No-arbitrage
conditions and asymptotics
for European call option
prices T

K

S-KP0T

+(S-K)

0

increasing

convex
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2.5 American and Bermudan Options

American options can be exercised any time up to the maturity T . For example, an
American call option exercised at t < T gives a payment S � K at t . This is in
contrast to European options which can only be exercised at maturity T . Bermudan
options are something in between (just as Bermuda lies somewhere between Europe
and America): they can only be exercised at certain prespecified dates. The extra
optionality makes an American option more valuable than a Bermudan option,
which in turn is worth more than a European option. There are, however, many
instances where this extra optionality is worthless and all option types have equal
value.

We saw in the previous section that .S � KP0T /C is a lower bound for the
European call option price. As this amount is greater than the exercise value
S � K , a call option should never be exercised early. We conclude that American,
Bermudan and European call options have equal prices. Observe that if we permit
the underlying to have cash flows such as dividend payments, there can be situations
for which it is optimal to exercise early in order to obtain these cash flows.

For European put options, the lower bound .KP0T � S/C is below K � S for
S < K which means that there are instances when an early exercise is preferable.
American and Bermudan put options are therefore worth strictly more that their
European counterpart. To find an upper price bound, observe that, because of the
possibility to exercise early, American and Bermudan put options with a time-
dependent strike KPtT must be worth more than a European put option with strike
K . However, as .KPtT � S/C is a lower bound for the European price, an early
exercise is not feasible as it yields KPtT � S . We conclude that the American,
Bermudan and European put options have equal prices in this instance of a time-
dependent strike. As put option prices increase with the strike, American and
Bermudan put options with strike KP0T are worth less than the corresponding
options with strike PtT , which in turn is worth as much as a European put option
with strike K . Replacing K with KP�1

0T , we conclude that American and Bermudan
put options with strike K are bounded from below by the European put option with
strike K and from above by the European put option with strike KP�1

0T .
The argument leading to put-call parity for European options do not carry

through to American and Bermudan options. Instead, the parity relation can be
replaced with an upper and lower bound on the put option price when formulated in
terms of the call option, or vice versa. Indeed, using put-call parity on the European
put options in the above bounds together with the fact that American, Bermudan and
European call options are worth equally much, we obtain

KP0T � S C V C � V P � K � S C V C

where we have used the common notation V for both American and Bermudan
options. The right-hand side option has strike KP�1

0T which because of decaying
call prices with strike values can be replaced with strike K .
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Early exercise decisions for call and put options with zero strike value are
particularly simple to analyze. Consider first the trivial situation of a call option on
an underlying that is restricted to being positive. As there is no cost in exercising the
option, we definitely do that at some point in time and it does therefore not matter
when the exercise is made. When the underlying can be negative as well as positive,
it is suboptimal to exercise early in the zero strike case. Indeed, exercising early
and holding the underlying to maturity is associated with the risk of the underlying
becoming negative, which can be avoided by postponing the exercise till maturity.
A swaption, i.e. an option on a swap, is an example of a zero strike option on an
underlying that can be negative.

2.6 Barrier Options

We consider barrier options that are of call type, i.e. they pay .S � K/C at T if
the underlying S breached (or did not breach) a barrier level B sometime between
t D 0 and T . Options of put type can be treated in a parallel way. A barrier option
is said to be of knock-out type if the payment occurs conditional on that the barrier
was not breached. If the barrier needs to be breached for the payment to occur, the
option is said to be of knock-in type. For instance, the payoff for a knock-out call
option with a lower barrier can be written as �minfSt2Œ0;T �g>B.ST �K/C.

As a barrier is either breached or not, the sum of a knock-out option and a knock-
in option is equal to a standard option. This is known as the parity relation for barrier
options. Assuming that we know how to price standard options, we can focus on the
pricing of one of the option types. We choose to focus on knock-outs.

Knock-out call options can be classified into four different types depending on
whether the barrier is above or below the strike and on whether the barrier is an
upper or lower barrier. For an upper barrier that is below the strike, the call option
is worthless, which means that there are only three non-trivial types of knock-outs.

Let us start with a lower barrier that is below the strike. The barrier lies in
the out-of-the-money region and has relatively little effect on the option. Under
certain modeling assumptions, we compute its price V C

B;K in the next section. The
corresponding digital option, obtained from the K derivative of V C

B;K , is denoted by
NV C
B;K . The corresponding put options are denoted by V P

B;K and NV P
B;K and have an

upper barrier that lies above the strike. For now, we assume that these prices are
given and use them to price the other two types of knock-out options.

When the lower barrier lies above the strike, we see in Fig. 2.4 that the price of
the knock-out option equals

V C
B;B C .B �K/ NV C

B;B

In the instance of an upper barrier above the strike, we see in Fig. 2.5 that this
contract can be written as a sum of a spread put and a digital put, all with an upper
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Fig. 2.4 Replication of a barrier option with strike < barrier < spot
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B-K
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Fig. 2.5 Replication of a barrier option with spot, strike < barrier

knock-out barrier. The price is equal to

V P
B;K � V P

B;B C .B �K/ NV P
B;B

2.7 Model-Dependent Pricing

The relations derived so far have been independent of the process followed by the
underlying and can be viewed as model independent results. We now show how
static replication can be applied in more complex situations by using modeling
assumptions. We illustrate the technique by showing how barrier options can be
statically replicated by European options.

We price a knock-in option that matures at T and has strikeK and barrierB <K .
The corresponding knock-out option can be priced using the parity relation for
barrier options. An alternative pricing method for barrier options is presented in
Sect. 9.1.

We initially assume that the underlying value S equals the barrier value which
means that the option has knocked in. It is clear graphically from Fig. 2.6 that ifK is
large enough, there exists a put option with strike K 0 < B that is worth as much as
the call option. We temporarily assume that the call and the put are equal at all times
as long as S D B , i.e. along the dotted line in the figure. Under this assumption the
knock-in call option is worth as much as the put option. Indeed, their prices are
equal if the barrier is touched while they are both worthless otherwise. Observe that
the method is model dependent as a model must be used to find the strike for the put
option.
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Fig. 2.6 Relication of a
knock-in call by a put option
and a strip of digital put
options

S

t

K

T

KB

It is possible to relax the assumption that the two options should have equal
prices along the whole barrier. To prove this statement, assume first that their prices
are equal along the barrier when close to maturity. The further away we come from
the maturity, the more the prices start to deviate. When far enough away from the
maturity, the prices will differ more than a specified tolerance level. The reason
is that a different put strike should have been used for the two options to have
equal values at the barrier. The incorrectness in the payoff profile used at maturity is
therefore equal to the difference between two put option, with similar strikes, which
can be approximated by a digital put option. The price difference at the current time
can therefore approximately be adjusted by adding a digital put option. When going
further back in time along the barrier the price difference will increase again, which
can be periodically reset by adding more digital put options, see Fig. 2.6.

The reflection in the barrier can be done more efficiently by not using a single put
options but several put options with the same strikeK 0. The result is a payoff profile
with a steeper slope. This reflects the payoff of the call for longer time periods away
from T , reducing the number of digital put options along the boundary. An example
of when more than one put option is necessary is within the lognormal model that
will be discussed thoroughly in the book.

The replication becomes particularly simple when the strike equals the barrier
and interest rates are assumed to be zero. The price of a knock-out call option is
then S0 � K . The payoff can be replicated by holding this amount of cash and by
entering at zero cost a forward contract to purchase the underlying for S0 at T . If the
barrier is not touched, the replicating strategy is worth .ST �S0/CS0�K D ST �K
which is as much as the barrier option value. On the other hand, the forward position
can be liquidated should the option be knocked out, yielding .B�S0/CS0�K D 0

and showing that the replication is successful.



Chapter 3
Dynamic Replication

When pricing certain derivatives, the content of the replicating portfolio needs to be
rebalanced through time. The derivative is then said to be dynamically replicated.
For the replication to succeed, some knowledge about the propagation of the
underlying is needed. As the future is unknown, the best that can be done is an
educated guess on the future distributions. The various market participants base their
guesses on their individual beliefs and do therefore not necessarily agree completely
on the fair price. Thus, dynamic replication is model dependent in theory as well as
in practice. This is in contrast to static replication that can be model dependent in
practice (see Sect. 2.3) but often not in theory. For this reason, dynamic replication
should only be used to price contracts for which static replication is not viable. An
example of such a contract is the European call option which we discuss in detail.

We start by describing a naive dynamic replication strategy and explain why
it cannot be applied in practice. Motivated by the failure of this strategy, we
introduce a more sophisticated framework based on stochastic calculus. We show
how stochastic calculus can be used to price fixed-time payoffs and in particular
European call options. The resulting Black–Scholes formula is analyzed and the
concept of implied volatility is introduced. We then view the pricing on a more
abstract level and introduce the fundamental theorem of asset pricing and consider
the relation between PDEs and SDEs. The chapter ends with discussions of
convexity adjustments and dynamic replication of futures contracts.

3.1 Naive Replication of European Options

A naive attempt to replicate call options involves a portfolio that is empty if S �
KPtT and consists of one underlying S and short K zero-coupon bonds maturing at
T if S > KPtT. When the underlying crosses the level S D KPtT from below, the
underlying S can be bought by selling K bonds. If it crosses the level from above,
the K bonds can be bought back by selling the underlying, resulting in an empty

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 3,
© Springer-Verlag Berlin Heidelberg 2011
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portfolio. The strategy is worth .S �K/C at maturity, so the replication appears to
be successful.

The replicating portfolio is worth .S � KPtT/C at time t and, in particular, it
is equal to 0 if S < KPtT. Clearly, this cannot be true as there is a chance of S
exceeding K at maturity, implying a non-zero option price. To understand the flaw
in our argument, we analyze the t-dependence of S .

A study of historical time series of prices on financial products as equity stocks
or FX rates shows an erratic behavior of S as a function of t . In particular, it appears
that S.t/ does not have a well-defined (mathematical) derivative: .S.t C �t/ �
S.t//=�t is �t-dependent even for small values of �t . Actually, this behavior
makes sense intuitively because if S.t/ had a well-defined derivative, the relation

S.t C�t/ � S.t/C S 0.t/�t

would enable us to approximately predict the value of S.t C �t/ given only
information at the earlier time t . Compare with the situation where a cash sum
S.t/ is invested in zero-coupon bonds. The value S.t/P�1

t;tC�t would then have
been obtained at t C�t . Absence of arbitrage therefore implies that S.t C�t/ �
S.t/P�1

t;tC�t . Thus, instruments S not behaving like zero-coupon bonds can only
be included in our theoretical framework if we allow a t-dependence such that the
derivative S 0.t/ is ill-defined.

The fact that S.t/ does not have a well-defined derivative means, for example,
that when S crosses the level S D KPtT from below, we do not succeed in buying
exactly at the level, but only at a bit higher value. Similarly, we only succeed in
selling the underlying for a little bit too low value when it crosses from above.

Assume that the underlying is bought at KPtT C ı and sold at KPtT � ı. If
the underlying first moves up and then down, or vice versa, a loss of 2ı is made.
These losses accumulate during the lifetime of the option. Letting ı ! 0 to better
replicate the option does not save us from the losses because of the stochastic nature
of the underlying. For example, if modeling S with a Brownian motion, only an
infinitesimal amount is lost each time the level is crossed. However, it is well known
that if a Brownian motion crosses a level once, it does so an infinite number of
times in any open time interval containing the first crossing. The infinite number of
crossings of the barrier combined with an infinitesimal loss at each crossing sums up
to a finite loss. It means that our replication strategy is not possible either in practice
or in theory.

The price of a call option can be written as .S � KPtT/C C g.K/, where g.K/
is a measure of the cost of buying and selling when the level KPtT is hit. If K is
very large or very small, the average number of hits is small and so is g.K/. On the
other hand, for K close to P�1

tT S , we expect many hits and g.K/ must be large. We
conclude that the option price must be given by a bell-shaped positive function g.K/
centered somewhere around P�1

tT S and added to .S � KPtT/C. In the following, we
develop more advanced models to quantitatively determine the option price.
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3.2 Dynamic Strategies

Consider a strategy with initial amount V.t D 0/ and such that for each time t ,
�.t; S/ number of underlyings S is held and the rest of the amount is invested
in zero-coupon bonds PtT. To follow the evaluation through time, we first assume
that the portfolio is only restructured at times 0 D T0 < T1 < : : : < Tn�1 <
Tn D T . We let the portfolio contain �i number of underlyings S in ŒTi ; TiC1/
and use the notation Pin for the Ti value of the bond maturing at Tn. At T0, the
portfolio consists of �0 underlyings and therefore V.T0/ � �0S0 worth of bonds,
i.e. .V .T0/��0S0/P

�1
0n number of bonds:

V.T0/ D �0S0 C �
.V .T0/ ��0S0/P

�1
0n

�
P0n

D �0S0 C �
.V .T0/P

�1
0n ��0F0/

�
P0n

The value of the portfolio at times T1, T2 and Tk is equal to

V.T1/ D �0S1 C �
.V .T0/P

�1
0n ��0F0/

�
P1n

D �1S1 C �
.�0 ��1/F1 C .V .T0/P

�1
0n ��0F0/

�
P1n

V.T2/ D �1S2 C �
.�0 ��1/F1 C .V .T0/P

�1
0n ��0F0/

�
P2n

D �2S2 C ..�1 ��2/F2 C .�0 ��1/F1

C.V .T0/P�1
0n ��0F0/

�
P2n

V.Tk/ D .�kFk C .�k�1 ��k/Fk C .�k�2 ��k�1/Fk�1 C : : :

C.�0 ��1/F1 C .V .T0/P
�1
0n ��0F0/

�
Pkn

D .�k�1.Fk � Fk�1/C�k�2.Fk�1 � Fk�2/C : : :

C�0.F1 � F0/C V.T0/P
�1
0n

�
Pkn

, V.Tk/=Pkn D
k�1X

iD0
�i.FiC1 � Fi /C V.T0/=P0n

In the continuous-time limit, we obtain

V.t/=PtT D
Z t

0

�dF C V.t D 0/=P0T

which gives the following value for t D T :

V.T / D
Z T

0

�dF C V.t D 0/=P0T

The above equations indicate that it is more natural to work with the quotientU.t/ D
V.t/=PtT than with V.t/. Thus, instead of quoting portfolio prices in dollar terms,
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we quote them relative to a tradable asset, in this case the bond maturing at T . The
asset, in terms of which the prices are quoted, is called the numeraire. U is called
the forward value of the contract V just as Ft D St=PtT is the forward value of S .
In terms of the forward values, the value of U at T can be obtained from the trading
strategy .�;U.t D 0// according to

U.T / D
Z T

0

�dF C U.t D 0/

The portfolio value generally depends on the path followed byF . We now restrict
ourselves to strategies that give path-independent values of the portfolio, i.e. U.t/
depends only on Ft and t , but not on the values assumed by F before t . To analyze
such strategies, it is necessary to postulate the propagation of the forward F . We
make the assumption that F satisfies a stochastic differential equation (SDE):

dFt D �.t; Ft /dt C �.t; Ft /dWt

It means that during a small time step dt , the value of Ft changes by �.t; Ft /dt
plus a part that is proportional to a change dWt of a Brownian motion. The term
�.t; Ft / is called the drift while �.t; Ft / is called the volatility. This chapter
only considers continuous processes as the SDE above; the generalization to non-
continuous processes is the subject of Chap. 8.

The products of stochastic differentials are special because they are not zero as
for ordinary differentials. For example,

E
�
.dWt /

2
� D E

�
.WtCdt �Wt/

2
� D dt

holds since Wt2 �Wt1 is normally distributed with mean 0 and variance t2 � t1. The
products .dt/2 and dWt dt , and the variance of .dWt /

2 are all of higher orders in
dt . This suggests the use of the following product rule for stochastic differentials:
dWtdWt Ddt , and all other differential products equal to zero. A rigorous derivation
of the product rule can be found in the Appendix.

Combining the product rule for stochastic differentials with Taylor expansion
gives the following change in a path-independent U during an infinitesimal time
step dt :

dU.t; Ft / D Utdt C UF dFt C 1

2
�.t; Ft /

2UFFdt

This chain rule of stochastic differentiation is called Ito’s lemma. Observe that the
subindices on U denote partial derivatives while for F they denote a dependence
on t . Inserting the previous result dU D �dF in the above equation, we conclude
that a path-independent strategy has to satisfy

8
<

:

� D UF

Ut C 1

2
�.t; Ft /

2UFF D 0
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The (parabolic) partial differential equation (PDE) in the second line is of funda-
mental importance for derivatives pricing and will be used repeatedly in the book.

For an example of a strategy with a path-independent portfolio value, assume
that the volatility has the form �.t; Ft / D �Ft and consider U D F �

t g.t/. g.t/ can
be solved by inserting this expression into the PDE:

g0.t/C 1

2
�2�.� � 1/g.t/ D 0 , g.t/ D g.0/ exp

�

�1
2
�2�.� � 1/t

�

We then obtain

U.t/ D U.0/
F �
t

F �
0

exp

�

�1
2
�2�.� � 1/t

�

and

� D UF D �
U.t/

Ft
) dU

U
D �

dF

F

We see that the daily percentage increase of U is � times the increase in F . At each
point in time, the amount �Ft D �U.t/ is held in the underlying, i.e. a multiple �
of the total portfolio amount. These leveraged strategies are particularly popular for
� equal to –3, –2, –1, 2 and 3.

To illustrate that the leverage strategies imply path-independent portfolio values
for the model with �.t; Ft / D �.t/Ft , we simulate the underlying process over a
time period of one year. We use 500 paths, 100 time steps and assume that � D 2,
�.t/ D 20%, �.t; Ft / D Ft � 5% and that interest rates are zero. We assume that
the initial values of the underlying and the portfolio is 1. Figure 3.1 displays the 1Y
value of the portfolio for various end values of the simulated underlying paths. Apart
from some numerical noise, the portfolio value only depends on the end value of the
simulation and not on the path that was taken. The figure also shows the strategy for
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long-short strategy
leverage = 2

Fig. 3.1 Comparing strategies with path-independent and path-dependent portfolio values
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which� D 1 if the underlying value is greater than 1, and� D �1 if the underlying
value is less than 1. This strategy does not satisfy the above PDE and we therefore
expect the portfolio value to be path dependent. Indeed, it is clear from the figure
that the portfolio value cannot be written as a function of only the underlying value.

Observe that the drift part �.t; Ft / does not enter the PDE. It means that the
question of whether a strategy leads to a path-independent portfolio value only
depends on the model via the volatility and not on the form of the drift. This
important fact is discussed in more detail in Sect. 3.8.

3.3 Replication of Fixed-Time Payoffs

We saw in the previous section how a future portfolio value U.T / can be computed
from a given initial value U.t D 0/ and strategy �. We showed that if the strategy
is chosen so that U satisfies a certain PDE, then U.t/ depends only on t and Ft ,
and not on the path followed by F . We now attack the reverse problem: how to
construct the trading strategy .�;U.t D 0// that reproduces a given future payoff
U.T / D h.FT / D h.ST /.

As U.T / D h.FT /, the strategy is path independent and the PDE of the previous
section must be fulfilled. We can therefore use U.T / D h.FT / as the final condition
for the PDE. As the PDE is of first order in time, this is sufficient information for
computing U.t; Ft / for all t 2 Œ0; T �. Setting t D 0 gives U.t D 0/ and taking the
Ft derivative gives�.

The findings in this section can be summarized as:
If F satisfies the SDE

dFt D �.t; Ft /dt C �.t; Ft /dWt

then a payoff V.T / D h.FT / can be attained by solving the PDE

8
<

:
Ut C 1

2
�.t; Ft /

2UFF D 0

U.t D T; F / D h.F /

and using the strategy V.t D 0/ D P0T U.t D 0/ and � D UF D @U
@F

.

3.4 The Black–Scholes Formula

We assume that any scaling �F , � > 0, satisfies the same SDE as the forward itself:

d.�Ft/ D �.t; �Ft/dt C �.t; �Ft /dWt
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Together with d.�F / D �dF , this scale invariance implies that �.t; �F / D
��.t; F / or �.t; F / D �.t/F for some F -independent function �.t/, and the
corresponding result for the drift.

Should the forward value change from F to �F , the scale invariance states that
a basket of 1=� underlyings propagates as the original forward value. This is not,
however, how financial assets behave. For instance, a substantial fall in the price of
an equity stock is often a sign of a weakness in the issuing company, which makes
investors nervous and leads to a higher trading activity and a higher volatility. This
behavior can be expressed mathematically as

�.t; �F / > ��.t; F /

for 0 < � < 1. In Chap. 5, we analyze SDEs that satisfy this, and related,
inequalities. For now, we restrict ourselves to the corresponding equality as a first
non-trivial attempt of derivatives pricing. We then have

dF � �FdWt

and F is then said to follow a geometric Brownian motion or a lognormal process.
We have chosen to omit the drift as it does not impact the pricing.

We assume, for simplicity, that the lognormal volatility � is independent of t . As
we show in later chapters, the time-dependent generalization is straightforward. We
need to solve the following problem for European call options:

8
<

:
Ut C 1

2
�2F 2UFF D 0

U.t D T; F / D .F �K/C

The PDE is called the Black–Scholes equation and was originally derived in Black
and Scholes (1973). Using the transformation

U.t; F / D K‰.�; x/

with �
� D �2.T � t/

x D F=K

leads to the dimensionless problem

8
<

:
‰� � 1

2
x2‰xx D 0

‰.� D 0; x/ D .x � 1/C

A transformation to a PDE with constant coefficients is possible by using	.�; z/ D
‰.�; x/, for z D lnx:
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8
<

:
	� C 1

2
	z � 1

2
	zz D 0

	.� D 0; z/ D .ez � 1/C

Through the substitution
	 D ez=2��=8ˆ

we obtain the heat equation:

8
<

:

ˆ� � 1

2
ˆzz D 0

ˆ.� D 0; z/ D �
ez=2 � e�z=2

�
C

The above problem can be solved by first focusing on the corresponding
equations for the Green’s function:

8
<

:
p� � 1

2
pzz D 0

p.� D 0; z; z0/ D ı.z � z0/

It is then clear that

ˆ.�; z/ D
Z 1

�1
p.�; z; z0/

	
ez0=2 � e�z0=2




C d z0

satisfies the correct PDE and initial condition. The Green’s function problem can be
solved by using the Fourier transform of p:

8
ˆ̂
<

ˆ̂
:

p.�; z; z0/ D 1

2


Z 1

�1
Op.�; k; z0/e�ikzdk

Op.�; k; z0/ D
Z 1

�1
p.�; z; z0/eikzd z

As @2ze
�ikz D �k2e�ikz, the transformed PDE reads

Op� D �1
2
k2 Op , Op.�; k; z0/ D e�k2�=2 Op.� D 0; k; z0/

with initial condition

Op.� D 0; k; z0/ D
Z 1

�1
ı.z � z0/eikzd z D eikz0

It gives us

p.�; z; z0/ D 1

2


Z 1

�1
e�k2�=2e�ik.z�z0/dk D 1p

2
�
e�.z�z0/2=2�
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where the last equality can be verified by using calculus of residues or through tables
of Fourier transforms, see Gradshteyn and Rhyzik (2007).

Collecting the results, we obtain

ˆ.�; z/ D 1p
2
�

Z 1

0

e�.z�z0/2=2�
	
ez0=2 � e�z0=2



d z0

D 1p
2
�

e�z2=2�
Z 1

0

	
e�.z0�.zC�=2//2=2� e.zC�=2/2=2�

�e�.z0�.z��=2//2=2� e.z��=2/2=2�


d z0

D 1p
2

e�z2=2�

�

e.zC�=2/2=2�
Z 1

�.zC�=2/=p�

e�z02=2d z0

�e.z��=2/2=2�
Z 1

�.z��=2/=p�

e�z02=2d z0
�

D e�=8
�

ez=2N

�
zp
�

C 1

2

p
�

�

� e�z=2N

�
zp
�

� 1

2

p
�

��

where the cumulative normal function is defined by

N.z/ D 1p
2


Z z

�1
e�y2=2dy

We finally arrive at

	.�; z/ D ez=2��=8ˆ.�; z/ D ezN

�
zp
�

C 1

2

p
�

�

�N
�

zp
�

� 1

2

p
�

�

) U.t; F / D K	.�2.T � t/; ln.F=K//

D FN .dC/ � KN .d�/ ; d˙ D ln.F=K/

�
p
T � t ˙ 1

2
�

p
T � t

which is the celebrated Black–Scholes formula. With spot values, the formula takes
the form

V.t; S/ D SN .dC/� PtTKN .d�/ ; d˙ D ln.S=.PtTK//

�
p
T � t

˙ 1

2
�

p
T � t

In the same way, with the terminal condition U.t D T; F / D .K � F /C, we obtain
the Black–Scholes formula for put options:

U.t; F / D KN .�d�/� FN .�dC/

V .t; S/ D PtTKN .�d�/ � SN .�dC/
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3.5 Analysis of the Black–Scholes Formula

To analyze the Black–Scholes formula, we first note that, due to put-call parity, it is
possible to only consider call options. We use QU .!; x/ D U.F;K; t; T; �/=K with

�
! D �

p
T � t

x D F=K

to obtain a dimensionless formula:

QU.!; x/ D xN .dC/�N .d�/ ; d˙ D lnx

!
˙ 1

2
!

where x; ! 2 .0;1/. This expression is easy to analyze as it depends on only
two variables: ! and x, instead of the traditional six: S , K , t , T , � and PtT . The
dimensional reduction is possible as the option price has a similar dependence on
many of its variables. For instance, an increasing maturity has the same effect as an
increasing volatility.

QU has the asymptotic limits

QU .x ! 0/ ! 0

QU .x ! 1/ ! x � 1

QU .! ! 0/ ! .x � 1/C
QU .! ! 1/ ! x

and by using the relations

dN

dx
D n.x/ D 1p

2

e�x2=2

dn

dx
D �xn.x/

dd˙
dx

D 1=x!

dd˙
d!

D �d�=!

n.d�/ D xn.dC/

we obtain the lowest-order partial derivatives:

QUx D N.dC/C xn.dC/
ddC
dx

� n.d�/
dd�
dx

D N.dC/ > 0
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QU! D xn.dC/
ddC
d!

� n.d�/
dd�
d!

D n.d�/ > 0

QUxx D n.dC/
ddC
dx

D 1

x!
n.dC/ > 0

QUx! D n.dC/
ddC
d!

D �d�
!
n.dC/

QU!! D �d�n.d�/
dd�
d!

D dCd�
!

n.d�/

From these expressions, we conclude that the Black–Scholes formula has the correct
asymptotics and satisfies the necessary constraints derived in Sect. 2.4. The only
partial derivatives of order 2 or less that have zeros are

QUx! D 0 , d� D 0 , x D e!
2=2

QU!! D 0 , d˙ D 0 , x D e˙!2=2

It follows, in particular, that

max
!

QU!.!; x/ D 1p
2


max.x; 1/

To visualize the Black–Scholes formula, consider the graphs in Fig. 3.2 where
one of the parameters is fixed while the other is varied. Observe that for increasing
!, the price grows from the intrinsic payoff .x � 1/C to the value of the forward
x. Thus, an increasing volatility, or an increasing time to maturity, leads to a higher
option value. An increasing x gives a call option price that grows from zero to the
value of the forward x. This means that the call option price increases with higher
values of the underlying while it decreases with the strike.

A typical volatility of a financial asset is in the order of magnitude of 20% but
can be as low as a few percent or as high as 100%. The maturity of an option is
typically from a few weeks up to 20 years or so, but is usually around a couple of
years or less. Thus, a typical value of ! is in the order of magnitude of 0.2. As we

x

U
∼

1

ω

∼

ω

U

x
(x-1)

+ x=1

Fig. 3.2 Dependence of the normalized Black–Scholes formula on its variables
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see examples of later in the book, such a small value opens up for the possibility to
make a perturbative expansion of the option price in terms of !.

3.6 Implied Volatility

The Black–Scholes formula depends on the contract specific parameters K and
T , today’s date t , the current value of the underlying S , the volatility � and the
discount factor to maturity. The numerical values of these variables can be found in
the contract specification and from the market data. The exception is � , which can
be estimated from, for example, historical data together with a certain belief of the
future up to the maturity of the contract. As � is the only variable that is not directly
observable, the Black–Scholes formula can be viewed as a transformation between
the volatility and the price. The transformation is invertible as the price increases
with the volatility. Thus, given a call option price, the volatility can be determined.
Unfortunately, no closed-form formula exists and an approximate function or a root-
finding routine is necessary.

Using the one-to-one correspondence between prices and volatilities, options can
be quoted in terms of volatilities. Indeed, this is the market convention and the value
�imp of the volatility that gives the market price is called the implied volatility. The
market convention is to use the actual/365 day-count convention, see Sect. 13.1. In
order to differentiate between the implied volatility and the volatility appearing in
the SDE, the latter is usually referred to as the local volatility. When it is clear from
the context which of the two types of volatilities is meant, we refer to them simply
as volatilities.

For a more detailed discussion of implied volatilities, consider two call options
with different strikes, but with the same maturity, for which we back out the implied
volatilities from market prices. These volatilities should be identical according to
the Black–Scholes model, but in reality we find that they are different. Indeed,
the Black–Scholes model is nothing but a model and the real world does not
necessarily behave accordingly. It means that the implied volatility is a function
of the strike. The same statement holds when the maturity is varied, which gives
�imp D �imp.T;K/.

At first, it seems as we have gained nothing from the Black–Scholes model: we
started with prices V.T;K/ that depend on the strike and maturity and we ended
up with implied volatilities �imp.T;K/ that depend on the same variables. The
usefulness of the Black–Scholes model can be seen by assuming a flat volatility
surface: �imp.T;K/ D �imp. We then obtain reasonable option prices with correct
asymptotics and without violating the no-arbitrage conditions. If, on the other hand,
we had assumed that V.T;K/ is independent of the strike and maturity, non-sense
results would have been obtained. Furthermore, the price surface V.T;K/ has a
complex shape while the volatility surface �imp.T;K/ is much flatter. It is therefore
often simpler to base more advanced option models on the volatility instead of
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directly in terms of the price. The Black–Scholes model is also useful because it
gives us information about how to risk manage options, see Sect. 4.3.

The fact that the implied volatility is not constant means that it contains market
information that is incorrectly modeled or overlooked by the Black–Scholes model.
For instance, equity stocks are typically observed to become relatively more volatile
after a fall in the value. This increase in volatility has the consequence that call
options with low strikes must be priced with a higher volatility than call options
with high strikes, i.e. the implied volatility curve for equity options decreases with
increasing strikes. An implied volatility curve is said to be skewed if it tilts in a
region containing the ATM point.

A similar scenario occurs in the FX market: if an FX rate drops substantially, the
volatility typically increases. If, on the other hand, the FX rate has a sharp upturn,
the inverse FX rate drops, which should again lead to an increase in the volatility.
Observe that this kind of symmetry argument does not exist for an equity stock as we
expect the currency buying the equity stock to be much more stable than the stock
itself. We conclude that implied volatility curves for FX often have a minimum close
to ATM. Implied volatility curves with this shape are said to have a smile.

Please note that we have only given single reasons why implied volatilities have
a skew for equity options and a smile for FX options. The reality is much more
complex and there are several explanations for the non-flatness of the implied
volatility surface, including the fact that hedging is only done discretely in time,
a non-zero correlation between the underlying and the volatility, transaction costs
from bid-offer spreads, supply and demand considerations, fat tail probability
distributions, etc. There even exist situations for which equity options have implied
volatilities smiles and FX options have implied volatilities skews.

Because of put-call parity, adding KP0T � S to the call option price
V.�imp.T;K// gives the put option price with the same strike and maturity. As
the Black–Scholes formula fulfills put-call parity when the put volatility equals the
call volatility, �imp.T;K/ is the unique volatility in the Black–Scholes formula that
gives the correct price for put options. We therefore conclude that the value of the
implied volatility �imp.T;K/ is independent of the option type.

Since the Black–Scholes formula can be interpreted as a transformation between
the price and the implied volatility, the latter depends on the current time t and the
forwardF (or the spotS ) as well as onK and T . As the option price is very sensitive
to changes in F , it is important to model the implied volatility surface to reflect the
market behavior when F changes.

A particularly simple class of models, the sticky-strike models, assumes that the
implied volatility surface is independent of changes in F . The fact that this model
type is in disagreement with typical market behavior can be understood from the
example of an implied volatility smile with the minimum located at the ATM point.
A changing forward then means that the minimum moves away from the ATM point.

An alternative class of models, the sticky-delta models, assumes that the
implied volatility depends on K and F only through the combination K=F : �imp

.T;KI t; F / D �imp.T;K=F; t/. To understand the behavior of these models when
the forward changes, assume that today’s volatility curve is given by g.K/ for
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the maturity T . The implied volatility curve that matches these prices is given by
�imp.T; z; t/ D g.F z/. After this calibration of the curve, let the time go and revisit
the model at a later date, when the forward value equals QF . A sticky delta model
then predicts the volatility curve

�imp.T;KI t; QF / D �imp.T;K= QF ; t/ D g

�
F

QF K
�

from which we conclude that the implied volatility curve slides along with the
change in the forward.

In reality, the dynamics (i.e. the dependence on F ) of the implied volatility curve
are often somewhere between that of sticky strike and sticky delta. The dynamics
can be estimated by analyzing historical data on option prices.

3.7 Relations between PDEs and SDEs

In Sect. 3.2, we started with an SDE for the forward and derived a PDE for the
derivatives price. This indicates a close connection between SDEs and PDEs, which
we now analyze in more detail.

Let X be a process that satisfies the SDE

dX D �.t; X/dt C �.t; X/dWt

and denote by p.T; �I t; x/d� the probability that XT is in a small interval Œ�; � C
d�� conditional on Xt D x. p is called the Green’s function of the process and was
previously encountered in Sect. 3.4. p satisfies the Chapman-Kolmogorov equation

p.T; �I t; x/ D
Z

p.T; �I t 0; x0/p.t 0; x0I t; x/dx0

for any t 0 between t and T . For an arbitrary function h.x/, set

g.t; x/ D EŒh.XT /� D
Z

h.xT /p.T; xT I t; x/dxT

Ito’s lemma gives

dg.t; X.t// D .gt C �gx C 1

2
�2gxx/dt C �gxdWt

As g is the expectation of a function, it cannot have any drift, i.e. the dt term must
be zero:

gt C �gx C 1

2
�2gxx D 0
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h being arbitrary implies that

pt C �px C 1

2
�2pxx D 0

From this PDE in the backward coordinates .t; x/, the Chapman-Kolmogorov
equation can be used to derive a corresponding PDE in the forward coordinates
.T; �/:

0 D @

@t
p.T; �I t 0; x0/ D

Z
@

@t

�
p.T; �I t; x/p.t; xI t 0; x0/

�
dx

D
Z �

p.t; xI t 0; x0/
�

�� @

@x
� 1

2
�2

@2

@x2

�

p.T; �I t; x/

Cp.T; �I t; x/ @
@t
p.t; xI t 0; x0/

�

dx

D
Z

p.T; �I t; x/
�
@

@t
C @

@x
� � 1

2

@2

@x2
�2
�

p.t; xI t 0; x0/dx

where the derivatives on the right-hand side acts on everything to the right of them.
Let us summarize the results obtained so far:

Let X satisfy the SDE

dX D �.t; X/dt C �.t; X/dWt

and let p.T; �I t; x/d� denote the probability that XT is in a small interval Œ�; �C
d�� conditional on Xt D x. Then the following relations must be satisfied:

• Chapman-Kolmogorov Equation:

p.T; �I t; x/ D
Z

p.T; �I t 0; x0/p.t 0; x0I t; x/dx0; t 0 2 .t; T /

• Backward Kolmogorov Equation:

pt C �px C 1

2
�2pxx D 0

• Forward Kolmogorov (or Fokker-Planck) Equation:

pT C @

@�
�p � 1

2

@2

@�2
�2p D 0
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We conclude that the following two problems have the same solution:

1:

8
<

:
gt C �.t; x/gx C 1

2
�.t; x/2gxx D 0

g.t D T; x/ D h.x/

2: g.t; x/ D E Œh.X.T //jdX D �.t 0; X.t 0//dt 0 C �.t 0; X.t 0//dWt 0; X.t/ D x�

In the derivation of this statement, g.t; X.t// could have been replaced with
g.t; X.t// exp.� R t

0
r.u; X.u//du/ and h.x/ with h.x/ exp.� R T

0
r.u; X.u//du/.

The result is a well-known theorem:
Feynman-Kac Theorem: The two problems below have the same solution.

1:

8
<

:
gt C �.t; x/gx C 1

2
�.t; x/2gxx � r.t; x/g D 0

g.t D T; x/ D h.x/

2: g.t; x/ D E
h
h.X.T //e� R T

t r.u;X.u//duj
dX D �.t 0; X.t 0//dt0 C �.t 0; X.t 0//dWt 0 ; X.t/ D x

�

3.8 The Fundamental Theorem of Asset Pricing

In Sect. 3.2, the process

dFt D �.t; Ft /dt C �.t; Ft /dWt

lead us to the derivatives-pricing problem

8
<

:
Ut C 1

2
�.t; Ft /

2UFF D 0

U.t D T; F / D h.F /

According to the Feynman-Kac theorem, this problem can alternatively be solved
by

U D EŒh.F /�

where the expectation is taken under the SDE

dFt D �.t; Ft /dWt

The original SDE for F has thereby been turned into one that lacks drift.
We now consider measures Q that assign different probabilities to events than

the real-world measure P . It is well known that the drift, but not the volatility, of an
SDE is affected when changing measure from P to an equivalent measure Q, see
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the Appendix. In fact, for any given SDE, there exists a measure that cancels the
drift.

As derivatives pricing can be done by eliminating the drift of the SDE for the
forward, the above discussion indicates a connection to measure changes. Indeed,
the pricing of derivatives can be interpreted as a transformation from the real-
world measure P to the measure Q in which the drift vanishes. The forward of the
derivatives price can then be computed as the expectation of its value at maturity.
As the underlying forward is driftless, it is also equal to the expectation of its
future value: Ft D E

Q
t ŒFt 0 �, t

0 > t . Processes with the property that they are
equal to the expectation of their future values therefore play a fundamental role
in derivatives pricing. This type of processes are called martingales. We conclude
that the tradables of concern to us, i.e. S and V , are martingales in the Q measure
when quoted relative to the numeraire PtT .

The above discussion can be generalized to encompass several underlyings
and an arbitrary numeraire: for a given set of tradables fSig and a tradable N ,
the numeraire, there exists a probability measure Q under which fSi=N g are
martingales. It can be proven that the existence of Q is a consequence of the
absence of arbitrage in the market. The converse is also true: if there exists a
measure under which fSi=N g are martingales, then the market must be arbitrage
free. The equivalence between absence of arbitrage and the existence of a martingale
probability measure is called the fundamental theorem of asset pricing. If limiting
ourselves to measures only associated with the stochastic information in fSig and
N , it can be proven that Q is unique.

To explain the intuition behind the fundamental theorem of asset pricing, assume
that time is discrete with a single time step from 0 to T and that the market only
consists of two assets, S1 and S2, where we let the latter be the numeraire,N D S2.
The fact that the market is arbitrage free implies that there exists an event with non-
zero probability in the real-world measure P such that S1=N > 1 at T . Similarly,
there exists a non-zero probability event with S1=N < 1 at T . By assigning different
probability weights to the events it is clearly possible to construct a probability
measureQ under which S1=N is a martingale.

For the reverse statement, assume that S1=N is a martingale in a measure Q
equivalent to the real-world measure P . Unless S1 equals N with probability one,
there must exist an event with non-zero probability in P such that S1=N > 1, or
equivalently such that S1 > S2. Similarly, there must exist an event with non-zero
probability such that S1 < S2. We conclude that the market must be arbitrage
free. The generalization of the proof of the fundamental theorem of asset pricing
to continuous time and several assets is more mathematically challenging but the
principle remains the same.

The bondPtT is the most common choice of numeraire when pricing a derivative
that has a payment at a single point T in time. The reason for this choice is that
the value of the numeraire becomes particularly simple at t D T : PT T D 1.
The corresponding martingale probability measure is called the forward measure.
Another popular numeraire is the money market account, defined as a continuous
reinvestment into the short rate. It means that $1 invested at t D 0 has the time T
value
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.1C r0ıt/.1C rıt ıt/.1C r2ıt ıt/ : : : ! e
R T
0 rudu

The corresponding martingale measure is called the risk-neutral measure. This
measure is identical to the forward measure when interest rates are deterministic.

The fundamental theorem of asset pricing provides us with a bit faster route
to price derivatives compared to what was done in the Sect. 3.2. By working in
the martingale measure Q, F has only a diffusion part and we never have to be
concerned with the drift. We do not have to set up a hedging portfolio to do the
pricing as we know that U is a martingale and the price is equal to the expectation
of the time T value. Furthermore, if the volatility needs to be estimated from, for
instance, a historical time-series analysis, then this is possible as only the drift is
affected by measure changes.

3.9 Expectation of Non-Linear Payoffs

We have seen that derivatives prices can be calculated through expectations. To
prepare for calculations later in the book, we collect some useful approximative
results regarding the computation of expectations.

The expectation of EŒh.FT /� is trivial if h.F / D 1. As the forward F is a
martingale, Ft D Et ŒFT �, the computation is also trivial if h.F / D F . It remains to
compute the expectation for non-linear functions h. The fact that the computation is
simple for linear functions suggests that we should make use of Taylor expansion:

EŒh.FT /� � E

�

h. QF /C h0. QF /.FT � QF /C 1

2
h00. QF /.FT � QF /2

�

D h. QF /C h0. QF /.Ft � QF /C 1

2
h00. QF /E �.FT � QF /2�

With QF D Ft , the equation becomes

EŒh.FT /� � h.Ft /C 1

2
h00.Ft /E

�
.FT � Ft /

2
�

Using

Var.FT / D Var.FT � Ft / D E
�
.FT � Ft /

2
� � E ŒFT � Ft �

2 D E
�
.FT � Ft /

2
�

we arrive at

EŒh.FT /� � h.Ft /C 1

2
h00.Ft /Var.FT /

As h is often a convex function, the second term on the right-hand side gives
the lowest-order contribution coming from the convexity. This is called the
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(lowest-order) convexity adjustment and we observe that it is proportional to the
variance of the underlying. Higher-order contributions to the convexity adjustment
can be added by using more terms in the Taylor expansion.

The situation is sometimes the reverse when EŒh.FT /� is known and EŒFT � is
sought. This can be handled by using QF D NFt with

h. NFt / D EŒh.FT /�

leading to

EŒFT � � NFt � 1

2

h00. NFt /
h0. NFt /

E
�
.FT � NFt /2

�

Consider then

Var.FT / D Var.FT � NFt / D E
�
.FT � NFt /2

� �E �FT � NFt
�2

� E
�
.FT � NFt /2

�

where the lowest-order approximation ofEŒFT �was used in the last step. We obtain

EŒFT � � NFt � 1

2

h00. NFt /
h0. NFt /

Var.FT /

It is well known that by using a number � between Ft and FT , the Taylor
expansion can be made exact:

h.FT / D h.Ft /C h0.Ft /.FT � Ft /C 1

2
h00.�/.FT � Ft /

2

If h is convex and Ft D Et ŒFT �, Jensen’s inequality follows by taking expectations
of both sides:

EŒh.FT /� � h.EŒFT �/

3.10 Futures Contracts

We have so far seen how dynamic replication can be used for modeling European
options and other products with fixed-time payoffs. Later in the book, we discuss
many more product types that can be priced with this technique. A particularly
common product type to which dynamic replication can be applied is the futures
contracts, which is the topic of this section. The arguments in this section are not
limited to futures contracts but also apply to any over-the-counter (OTC) contract
(i.e. non-exchange traded products) for which a clearing house offers themselves to
be a central counterpart.
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To describe the purpose of futures in financial markets, we first recall some of
the main features of the closely related forward contract. Holding this contract gives
as much exposure to the underlying as if the underlying itself would have been
bought. As V.t/ D 0 at initiation, it is possible to obtain a non-zero exposure for
a zero initial cost. Needless to say, this feature is attractive to speculators. At the
same time there is a risk that one of the counterparties fails to satisfy the obligations
at maturity, should the market move unfavorably. One of the advantages of futures
contracts is that much of this credit exposure is eliminated. As we see below, futures
contracts retain many of the attractive features of forward contracts but offer only a
small credit risk.

Just as for a forward contract, a futures contract is an agreement to exchange an
underlying S for a cash amount F 0 at T . The futures price F 0 is the fair price, but it
is determined in a different way than the forward. If the futures price moves fromF 0

t

to F 0
tCıt from one day till the next, a variation margin paymentF 0

tCıt �F 0
t has to be

made between the counterparties. This daily settlement reduces the credit exposure
and it leads to a futures price F 0 that for short maturities is close to the forward price
F . For longer maturities, on the other hand, the price difference can be substantial.

There are several practical differences between forwards and futures. For
instance, futures contracts are exchange traded and the payments and credit
exposure are through a clearing house. The credit exposure is further reduced
by an initial deposit, the initial margin, from each counterparty to the exchange.
From a modeling and pricing perspective, however, we are mainly concerned with
the effect of the daily settlement. The implication is that a futures contract always
has zero value after the settlement has been made. This is in contrast to a forward
contract that is worth St �F0PtT at t (disregarding the credit impact on the pricing),
where F0 is the strike price determined at initialization t D 0.

We follow Cox et al. (1981) and determine the fair price F 0 when daily
settlements are made. For this purpose, consider a portfolio U with initial value
F 0
0 D F 0

tD0. Let this amount be invested in the money market account from today
t D 0 to tomorrow t D ıt . If the continuously compounded interest rate for this
period is r0, the investment yields the amount er0ıtF 0

0 at t D ıt . Assume that we
also invest in, at zero cost, er0ıt futures contracts. If the futures price equals F 0

1

at ıt , the daily settlement requires a payment of er0ıt .F 0
1 � F 0

0/. The portfolio is
therefore worth U1 D er0ıtF 0

1 at ıt . We proceed in the same way by investing the
amount U1 in the money market until t D 2ıt and enter er1ıt er0ıt � er0ıt more
futures contracts, where r1 is the interest rate for the period Œıt; 2ıt/. As we already
had er0ıt contracts, the total number of contracts held is e.r0Cr1/ıt . The portfolio
is therefore worth U2 D e.r0Cr1/ıtF 0

2 at t D 2ıt . Repeating the procedure up to

maturity gives the amount UT D e
R T
0 rdtST as F 0

T D ST .

The above argument implies that today’s price of a payment e
R T
0 rdtST at T equals

the futures price F 0
0 at t D 0 as the portfolio U that replicated the payment had

this initial value. Alternatively, the payment can be priced under the risk-neutral
measure:

F 0
0 D U0 D E

h
UT =e

R T
0 rdt

i
D EŒST � D EŒF 0

T �
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from which we conclude that the futures price is a martingale under the risk-neutral
measure.

To compare futures and forward prices, we price a forward contract under the
risk-neutral measure. The forward F0 is then given by

0 D E
h
.ST � F0/=e

R T
0 rdt

i
D E

h
ST e

� R T
0 rdt

i
� F0E

h
PT T =e

R T
0 rdt

i

D E
h
ST e

� R T
0 rdt

i
� F0P0T

, F0 D P�1
0T E

h
ST e

� R T
0 rdt

i

The corresponding computation in the forward measure would, of course, show that
the forward is the expectation of the spot value at maturity, i.e. forward prices are
martingales in the forward measure. We obtain the relation

F 0
0 D EŒST � D F0 CEŒST � � P�1

0T E
h
ST e

� R T
0 rdt

i

D F0 CEŒST � � P�1
0T

	
Cov

	
ST ; e

� R T
0 rdt



C E ŒST �E

h
e� R T

0 rdt
i


D F0 � P�1
0T Cov

	
ST ; e

� R T
0 rdt




We see that the difference between the futures price and the forward price is
determined by the covariance between the underlying and the inverse money market
account. In particular, the prices are equal if interest rates are deterministic. For T

not too large, e� R T
0 rdt is close to one and its volatility is therefore small. Thus,

the difference between forward and futures prices is most pronounced for long
maturities. As the covariance between two variables is independent of the measure,
see Appendix, the covariance can be measured in the real-world measure, for
example, by a historical analysis. The correction term needed to price a futures
contract from the linear instrument of a forward contract is called a convexity
adjustment.

There are a couple of practical aspects that often affect the price difference
between forward and futures contracts more than that of the convexity adjustment.
For instance, the forward price needs to include a premium for the counterparty risk.
For the futures contract, on the other hand, there are certain costs associated with
the trading. For example, although interest rate is paid by the clearing house on the
collateral it is not always the best rate that can be found in the market. There are also
fees that need to be paid to the clearing house. Companies therefore often prefer to
use forward contracts if they consider their counterparty bank to be safe.

An option on a futures contract pays .F 0NT �K/C at the maturity NT of the option.
Assuming deterministic interest rates, the futures price is equal to the forward price,
meaning that the option can be priced with the techniques that were used earlier in
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this chapter. The general case can be solved by working in the risk-neutral measure,
see, for example, Sect. 12.3.

3.11 Settlement Lag

When purchasing a financial asset V , the payment does in general not take place
today t but at a later date t 0. The payment date t 0 is defined in the contract
specification as a certain number of business days after the trade date. The number
of business days between the two dates is called the settlement lag and is typically
equal to 0, 1, 2 or 3 but can also be much longer. The corresponding date t 0
is referred to as the settlement date. Each financial market has its own standard
convention of the settlement lag that is used unless stated explicitly. The settlement
date is then referred to as the spot date. As we mainly consider standard contracts,
we use the terminology spot date and settlement date interchangeably.

The contract calendar that classifies days into business days and holidays does
not have to coincide with the holiday calendar of a specific country. For instance, an
exchange can define its own calendar that can be different from the calendar of the
country in which it is located. Another example is the target calendar which relates
to the Euro zone and does not exactly coincide with the calendars of the member
countries.

A payment date for a product can either be given explicitly as a date or indirectly
via a tenor, i.e. a time period, which usually extends from the spot date. For example,
a 1M forward contract traded on April 13 has spot date 15 April (assuming no
holidays between these dates and a 2 day settlement lag) and the payment takes
place May 15. As payments cannot take place on holidays, it might be necessary to
holiday adjust the payment date with the contract-specific calendar to the following
or the previous business day. In the former case the payment could end up the next
month should the spot date be located in the end of the month. This can be avoided
by using the previous convention in this particular instance. The resulting holiday
adjustment is the most commonly used. It is called modified following. Similarly,
modified previous is defined by using the next business day should the previous
business day be located in the preceding month.

If the spot date is one of the last dates in a month, it might be necessary to
compute the payment date from the last date in the forward month. For instance, the
payment date of a 1M forward contract with spot date January 30 is determined by
applying the holiday adjustment to the last day in February, i.e. 28 (non-leap year)
or 29 (leap year).

If the spot date is the last business day of a month, the end-of-month rule is
sometimes used. It means that the payment date is the last business day in the
forward month. For example, assume that the spot date is April 29 and that the next
day is a holiday. The 1M forward date is then the holiday adjusted date obtained
from May 31.
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Forward contracts are often cash settled, which means that the amount S �K is
exchanged between the counterparties instead of performing the actual purchase of
S by K . Just as there is a settlement lag between the trade date t and the spot date
t 0, there is a lag between the date T when S is read off from the market and the
date T 0 when a forward contract pays S �K . The fixing date or reset date T is the
date that has T 0 as its spot date. If there can be more than one date that has T 0 as
its spot date, as for FX markets, it is custom to let T be the earlier of these dates.
We conclude that the reset date cannot be obtained directly from the trade date but
needs to be computed via the spot date and the payment date.

The above construction of dates is standard and does not only apply to our
illustrating example of forward contracts. For instance, a 6M European call option
pays .ST �K/C at the holiday adjusted date T 0, 6M from the spot date, where T is
the earliest date with spot date T 0. For option and forwards, the date T is referred to
as the expiry or maturity and T 0 as the delivery date.

When entering a contract at the trade date t , the amount Vt that needs to be paid
at the spot date t 0 is called the price of V at t . If it were possible for a customer to
make an upfront payment, the fair amount would beDtt 0Vt , whereD is the discount
factor. We refer to this amount as the value of V at t . Thus, in our terminology, the
value of a contract is different from the price when the settlement lag is non-zero.
The price PtT 0 of a zero-coupon bond is therefore equal to Dt 0T 0 WD DtT 0=Dtt 0 and
does not coincide with the discount factorDtT 0 , defined as the t-value of a payment
of $1 at T 0, which explains the change of notation in this section.

Most often, only the price is of concern. For example, traders are not interested
in having values displayed on the trading screen but only want to see the prices as
this is what they quote their clients. For a quantitative modeler, on the other hand,
it is important to be aware of the difference between these concepts. For instance,
even though a certain number of settlement days might be the practice in a specific
market, there can be products that violate this convention, e.g. overnight deposits in
interest rate markets and cash deals in FX markets.

To explain the impact of the settlement lag on derivatives pricing, we start by
considering a forward contract that pays ST �K at the payment date T 0. To replicate
this payment, S must be bought today and sold at T at the same time as we go short
K zero-coupon bonds maturing at T 0. This requires an initial cost of St �KPtT 0 to
be paid at the spot date t 0. We conclude that the forward price equals Ft D P�1

tT 0St .
A derivative can have a different settlement lag than the underlying. To illustrate

the consequences of different lags, consider the (unrealistic) example when the
forward market has zero lag. The pricing then involves a payment of ST at T , which
through inverse discounting is equivalent with a paymentD�1

T T 0ST at T 0. This latter
payment can be approximately priced by assuming deterministic interest rates (or
that they are uncorrelated with the underlying), meaning that the contribution from
the discount factor can be read off from today’s yield curve. This approach is for
obvious reasons not possible when the underlying is an interest rate product and this
instance is dealt with in Sect. 13.4.

We now consider an option V that pays .ST �K/C at the payment date T 0. We
assume that the option market and the underlying market have equal settlement lag.
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We also assume that interest rates are deterministic, which means that the discount
factor between two future dates is independent of today’s date.

To reconnect with the option pricing techniques discussed earlier in this chapter,
we introduce hypothetical zero-lag contracts NS and NV that have the same values as
S and V . The prices are then related by NSt D Dtt 0St and NVt D Dtt 0Vt . We have

NVT D DTT 0VT D DT T 0.ST �K/C D . NST � NK/C
where NK D DT T 0K . According to Sect. 3.4, the price is

NV .t; S/ D NStN .dC/�DtT
NKN .d�/ ; d˙ D ln. NSt=.DtT

NK//
�

p
T � t

˙ 1

2
�

p
T � t

which implies that

V.t; S/ D StN .dC/�Dt 0T 0KN .d�/ ; d˙ D ln.St=.Dt 0T 0K//

�
p
T � t

˙ 1

2
�

p
T � t

Thus, the settlement-lag effect on option pricing is that the discounting needs to be
done from T 0 to t 0 instead of from T to t . The volatility, on the other hand, still
needs to be measured from t to T .

To obtain as simple formulae as possible in the book, we have chosen to only
include the effect of the settlement lag in this section. It is, however, important to
account for the settlement lag for liquid vanilla products as the impact can exceed
the bid-offer spread. For exotics, the lag is of less importance, but as it is simple to
account for, we recommend financial modelers to include it in the pricing, not the
least to obtain agreement between exotics and vanillas in limiting cases.
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Chapter 4
Derivatives Modeling in Practice

This chapter covers general derivatives modeling questions such as:

• What do the various market participants expect from a derivatives model?
• How can the model variables be determined?
• How should a model be used?
• What are the model limitations?
• How should a model be tested?

To avoid too abstract a discussion, we frequently narrow down the subject to the
pricing of European call options within the Black–Scholes model. We assume, for
simplicity, that interest rates are zero, implying that F D S .

We start the chapter by considering the incentives of the various participants in
the derivatives market. That provides us with an understanding of the demands on
models and how they should be used. We then review various calibration techniques
followed by a section on hedging. We discuss model limitations and round off the
presentation with an overview of model testing methods.

4.1 Model Applications

To illustrate the various application areas of a derivatives model, we first discuss
the motivation for trading derivatives. One of the main uses of derivatives is for
speculation. Consider, for example, a portfolio consisting of S=V European call
options V . The portfolio is worth as much as the underlying itself, but changes
to lowest order by S=V VSdS when the underlying changes by dS . As the leverage
S=V VS is greater than 1, the exposure to the underlying has increased by purchasing
call options instead of the underlying itself. In the Black–Scholes model, the
leverage is an increasing function with limits 1 for K ! 0 and 1 for K ! 1.
This spectrum of the leverage makes options ideal for speculative purposes.

Derivatives can also be used to reduce the risk that comes from price fluctuations.
For instance, a copper mining company can protect itself from a fall in the copper
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Fig. 4.1 The role of
derivatives in the market
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price by entering futures contracts or by purchasing put options. Because of the
leverage, it is possible to reduce the risk for a limited cost. A strategy that results in
the reduction of the risk to a financial variable is referred to as a hedging strategy.

The hedging with and speculation in derivatives opens up for another type of
market participants: the derivatives sellers. The sellers are mainly banks dealing
with derivatives to supply the demand by the hedgers and speculators. They do not
want to be exposed to any risk themselves and therefore hedge derivatives by going
long the replicating strategy predicted by their models (Fig. 4.1).

There are several reasons why the hedgers and speculators do not go long the
replicating strategy themselves. For example, they might not have the interest as
it takes them off their core business area. Another reason is the various demands
necessary for a successful replication, including the know-how, the access to
market places and a trading platform. It is also important to have the volumes
required for liquid trading and contacts with counterparties that might be interested
in taking the opposite position of the deal. Furthermore, there is a risk of an
unsuccessful replication because of human error, system faults, bad choice of
modeling assumptions, etc.

A derivatives model results in an analytical or numerical expression of the price
in terms of the model variables, for example t , S and � . The (mathematical)
derivative of the price with respect to these variables measures the sensitivity of
the model, which can be used to compute the market risk. Market participants can
be interested in only the price, only the risk or both the price and the risk. Let us now
look at what the different market participants expect of a derivatives model under
various circumstances.

Any derivatives model useful to a hedger should obviously take into account the
original market risk, i.e. the exposure that the hedge should reduce. As the nature
of this risk is different from business to business, it is impossible to apply a general
model in this situation.

For the seller of a derivative, the problem is more isolated and a general
derivatives model can often be applied. The model is used in fundamentally different
ways depending on whether the derivative is quoted or not in the market. If it is
quoted, the model needs to be calibrated to the market price and should be used
for hedging purposes, i.e. for the construction of the replicating portfolio. In this
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instance, the risk of the model is the important component as it states how the
derivative should be hedged. If, on the other hand, the price is not quoted, neither for
the derivative under consideration nor for any related derivative, the model variables
cannot always be calibrated but need to estimated, for example, by a time-series
analysis of the underlying. In this situation, both the risk and the price are important.

The situation is often somewhere between the two extreme cases above, i.e. there
is no quote for the specific derivative that is going to be sold, but only for related
derivatives on the same underlying, for example, with different strikes or maturities.
The model can then be calibrated to the quoted derivatives by either matching the
quotes exactly or approximately, e.g. through a least squares fit. In this instance,
the pricing is simply an interpolation (or approximate fit) and is not as important,
i.e. model dependent, as the risk. An approximate calibration of derivatives quotes
can also be used by a speculator to identify cheap and expensive derivatives in the
market, meaning that the price of the model is of major importance.

The model price can be important even for derivatives quoted in the market.
Consider, for example, the situation when 3M options are liquidly traded and we
buy one of those. Viewed from the day of purchase, the model price is not important
as the correct price can be found in the market. Later on, on the other hand, the
option has a maturity below 3M and then it is no longer possible to read off its price
from the market. Even though we might not be interested in selling the option to a
third party, it is still useful to provide a valuation. For instance, it is often necessary
to have a measure of the credit exposure towards the counterparty.

A typical situation is that the bank that sells a derivative knows some other bank
that quotes better prices. The bank can then make a back-to-back deal, which means
that the derivative is simultaneously bought from another bank and sold to the client.
The original bank then acts as a broker. Back-to-back deals are often made between
local banks, with strong relationship to the industry of their country or region, and
investment banks in the major trading centers New York, London and Tokyo, but are
also common between investment banks. The model price of a back-to-back deal
is unimportant at the trade date as it is provided by the counterparty bank. At later
dates the model price becomes important for the measurement of the credit exposure
toward the two counterparties. The market risk is less important as two opposite
positions have been taken. For this reason, local banks are sometimes exclusively
interested in model prices.

4.2 Calibration

A derivatives model depends on three types of variables: contract specific such as
K and T for an option, observables such as S and t , and unobservables such as � in
the Black–Scholes model. To be able to use a model, the unobservable variables first
need to be determined. This can be done either by backing them out, i.e. calibrating
them, from market data on derivatives or by estimating them, for example, from
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a historical analysis of the underlying. The latter approach can, of course, only be
pursued if there is a financial interpretation of the model variable.

Care needs to be taken when estimating the variables as the price is then be
heavily dependent on how well the model reflects the reality. For instance, historical
data reveals that the implied volatility of options is closely related, but still different
from the volatility in a time-series analysis of the underlying. The difference
can be much bigger for other types of model variables such as the volatility of
volatility in stochastic volatility models. Furthermore, the estimation of variables
is often backwards looking, i.e. historical data is used, while derivatives are forward
looking. Sampling of historical data also depends on the length of the time series
and the observation frequency, e.g. daily or weekly. It is therefore dangerous to
use the approach of estimation of model variables in isolation. As an attempt of
improvement, consider the pricing of an option in the situation when there exists an
option quote for a closely related underlying. If the implied volatility of the quoted
option is, for example, 1% above the historical volatility, then by assuming the same
to be true for the option to be priced, a better estimate is hopefully obtained for the
implied volatility.

Because of the fundamental difficulties associated with the estimation of model
variables, this approach should only be used when the market is too illiquid to allow
for calibration. The advantage of calibrating to market prices is that some of the
responsibility put on the model gets removed. Indeed, from a pricing perspective
the model then acts as an interpolator between the calibration instruments and the
limiting constrains (such as V ! S � KP0T when K ! 0 for European call
options). Furthermore, as we explain in the next section, much of the risk towards
the underlying can be removed by hedging with the calibration instruments.

The calibration of a model amounts to the determination of the unobservable
variables f�i g so that the model prices fCmodel

k .f�ig/g of the calibration instruments
match, or are a good approximation of, the market prices fCmarket

k g. We have used
the notation f�ig for the unobservables to relate with the Black–Scholes model for
which there is a single unobservable variable � ; it does not mean that these variables
have to be volatilities.

Derivatives can be classified into two groups: vanillas and exotics. The former
group consists of European call and put options and other simple products such as
their digital counterparts. The group of exotic options comprises everything else and
they are typically path dependent or higher dimensional. The model calibration is
usually done to liquid vanilla derivatives, such as ATM European options. Once the
calibration has been done, the model can be used to price exotic options or non-
liquid vanillas such as call options on non-quoted strikes.

The calibration of a model can be done numerically through an iterative process.
The first step is to make an initial guess of f�ig, which can be based on the last
successful calibration. Once the choice has been made, the model prices can be
computed. Based on information such as the differences fCmarket

k �Cmodel
k .f�i g/g and

the Jacobian

�
@Cmodel

k

@�i



, a better estimate for f�i g can be found. This procedure is

repeated until convergence is reached.
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The calibration instruments fCkg can usually be priced with models of the Black–
Scholes type meaning that each of them only depends on a single unobservable Q�k
that has the interpretation as a volatility. For instance, the LIBOR market model for
interest rates is formulated in terms of caplet volatilities f�i g but is often calibrated
to swaptions that are quoted in the market in terms of their implied volatilities f Q�kg,
see Chap. 13. To put fair weights on OTM and ITM derivatives, the calibration is
typically done by minimizing the elements in the vector f Q�market

k � Q�model
k .f�i g/g

instead of the price differences.
As the calibration instruments are priced repeatedly during the calibration

process, not only do they have to be included in the set of products that can be
priced by the model, but the pricing needs to be fast as well. These instruments
are therefore often priced analytically within the model or, alternatively, through an
analytical proxy formula. The calibration instruments should be liquid enough for
reliable and up-to-date market quotes to exist and they should be chosen in such a
way that the unobservable variables can be backed out. The latter statement means
that not only should there be at least as many calibration instruments as there are
unobservable variables, but also that the instruments should depend collectively on
all the variables.

Let us first focus on the instance when there are as many calibration instruments
as there are unobservables. If the calibration instruments are chosen appropriately,
there is a unique solution of the unobservables that price them correctly. Further-
more, there exist efficient numerical algorithms for finding the solution, e.g. the
Newton-Raphson root finder. The result is model prices that are identical with the
market prices for the calibration instruments. At first, this appears to be exactly
what we want to achieve. Indeed, the prices of a model can obviously not be trusted
should the calibration instruments be mispriced. The problem with the approach
originates in the fact that even though the calibration instruments are assumed to be
liquid, their market prices are often not in agreement with what one might expect.
For instance, some of the quotes can be a bit out of date or someone might just
have made a bid that was too high considering the current market conditions. Thus,
the market quotes of the calibration instruments are not part of a smooth curve:
some quotes appear too high and some too low. A model with an exact pricing of
the calibration instruments therefore inherits this type of non-smooth behavior.

An example of the consequences of non-smooth market data can be seen in the
method of bootstrapping, which means that the unobservable variables are backed
out iteratively. The first calibration instrument is chosen to depend on a single
unobservable variable which therefore can be backed out. The second calibration
instrument is chosen to depend on two variables: the one that was just backed
out and one additional unobservable. It is again possible to back out the unknown
variable. If the calibration instruments are chosen appropriately, these steps can be
applied repeatedly until all variables have been backed out. A bootstrapping method
has the advantages of high performance and easy implementation. Indeed, for a
numerical calibration it is only necessary to use 1-dimensional root finders instead
of being confronted with the harder problem of finding a higher-dimensional root.
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To understand the impact of non-smooth market data on bootstrapping, assume
that the first instrument is quoted inaccurately. The resulting error propagates, and
possibly gets magnified, through the bootstrapping equations. The consequence can
be that the bootstrapping equations fail to be solvable. Note that the problem is
generic and bootstrapping was only used to illustrate how unsolvable equations can
arise. The problem often originates from the fact that the root does not exist, which
leads to the failure of any root-finding technique.

The problem of non-smooth market data can partly be circumvented by using
more calibration instruments than unobservables. It is then no longer possible to
match the market prices exactly. Instead, an approximate method needs to be used,
for example, by minimizing the sum of the squared differences between the model
and market prices for the calibration instruments. Less emphasis is then put on single
data points, resulting in a smoother fit. The scheme can be made more sophisticated
by using multiplicative weights on the squared differences in the minimization
procedure. The weights can be chosen proportionally to the importance we assign
to the various quotes, usually determined by the liquidity of the corresponding
products.

The approximate fit to the market data is typically implemented with numerical
methods designed to find a minimum value (for the sum of the squared differences).
Unfortunately, these methods are usually not as successful as methods designed to
find a unique root. The main reason is that the convergence is often towards a local
minimum instead of the global minimum. In fact, it is difficult to determine numer-
ically whether the convergence really is towards the global minimum. A serious
consequence is that, because of the changing market data, the next calibration can
be towards a different minimum, leading to an artificial jump of the model prices.
The same effect can occur when computing the risk by bumping the variables. Apart
from being unstable and not always returning the correct solution, the methods for
finding a global minimum are in general slower than root-finding algorithms.

As an illustrating example of the situation when there are fewer unobservable
variables than calibration instruments, consider the calibration of the Black–Scholes
model to ATM options maturing at T1; T2; : : : ; Tn. The model can be calibrated
by choosing the volatility that minimizes the sum of the squared differences of
the model and market implied volatilities for the calibration instruments. As only
a single free parameter is used to match n quotes, the fit is likely to be poor. A
better result can be obtained by allowing the unobservable variables to depend on
the observable variables. For instance, in our example we can allow the volatility to
depend on t . The following parametric form of the volatility is popular:

�.t/ D ˛ C .ˇ C  t/e�ıt ; ı > 0

which can be interpreted as an interpolation between a linear function ˛ C ˇ C
 t � ˇıt for small t and a constant function ˛ for large t . The four parameters
can be determined, for example, by a least squares minimization method. The
result is a smooth model curve with a relatively close match to the market prices
of the calibration instruments. Even more degrees of freedom can be introduced
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by allowing the volatility to be a continuous and piece-wise linear function with
discontinuous derivatives at T1; T2; : : : ; Tn. It is then possible to match the market
quotes exactly. Another possibility that leads to a smoother result is to let the
volatility be given by a spline with node points at T1; T2; : : : ; Tn.

The technique of allowing the unobservable variables to depend on the observ-
able variables is a powerful tool for calibration. It is easy to implement and can be
calibrated to a flexible set of market quotes. In fact, the method is so successful that
it is sometimes possible to calibrate models that are an inherently bad representation
of the problem. Therefore, it is important to ensure that the functional dependence
of the variables is not abused, but only used for small adjustments of a model that
we already believe to be good. If the unobservables show too big a functional
dependence after the calibration, the model has probably been tweaked too much
and its predictive powers are lost. Models for which the unobservable variables are
allowed to depend on the observable variables are generalizations of so-called local
volatility models, the topic of Chap. 6.

The case of fewer unobservables than calibration instruments can alternatively
be handled by allowing the unobservable variables to have different values for
different market data points. For instance, in the above example it is for each i
possible to correctly price the Ti maturing option through the Black–Scholes model
with volatility equal to the corresponding implied volatility �imp;i . The pricing of
a general T -maturing option can be done with a Black–Scholes volatility obtained
through an interpolation or an approximate fit from the set f�imp;i g. For instance, the
pricing of the T D .Ti C TiC1/=2 maturing option can be done with the volatility
.�imp;i C �imp;iC1/=2.

The two approaches above are different as we either allow the unobservable
variables to depend on observable variables or on contract specific variables. In our
example, it means that the time interpolation (or approximate fit) is either done
in terms of the local volatility � or in terms of the implied volatility �imp. By
introducing a volatility weighted time variable according to

Qt.t/ D
Z t

0

�.u/2du

in the computations in Sect. 3.4, we conclude that the implied volatility and the local
volatility are linked by

�imp.T / D
s
1

T

Z T

0

�.u/2du

The two calibration schemes are therefore closely related. For instance, a linear
interpolation of the local volatility corresponds to a non-linear interpolation of the
implied volatility and vice versa.
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A disadvantage of the local-volatility interpolation is that the local volatilities
need to be backed out from the market quotes, which are given by the implied
volatilities. Fortunately, these computations are often relatively straightforward.

An advantage of local-volatility interpolations is that the local volatility has a
financial meaning: it measures the level of the instantaneous fluctuations of the
underlying. This is in contrast to the implied volatility which does not have any
financial interpretation and is simply a number. For example, consider the situation
when we are given two ATM market quotes at Ti and TiC1 and would like to price
ATM options with maturities in ŒTi ; TiC1�. Having no additional information, the
simplest possible model seems to be to assume that the local volatility varies linearly
between these two points. A linear interpolation in the implied volatility, on the
other hand, corresponds to a local-volatility interpolation with a less natural model
interpretation.

We have seen that once a model has been constructed, we can choose between (1)
keeping it the way it is, (2) generalizing it by allowing the unobservable variables
to depend on the observable variables, or (3) generalizing it by allowing the unob-
servable variables to depend on the contract specific variables. The fundamental
difference between the approaches lies in the hedge and in the pricing of products
with a different flavor than the calibration instruments. The former is covered in the
next section while we now turn our attention to the latter. For this purpose, we use
the example of European call option pricing and rely on the fundamental theorem
of asset pricing to write the price as

U.F;K; t; T / D
Z

.FT �K/Cp.T; FT I t; F /dFT

implying that
d2

dK2
U.F;K; t; T / D p.T;KI t; F /

for some Green’s function p. We conclude that there is a bijective correspondence
between option prices and Green’s functions. As prices and implied volatilities
also are bijectively related, there exists a bijective correspondence between implied
volatilities and Green’s functions for fixed t and T . An implied volatility interpo-
lation can therefore be interpreted as an interpolation in the forward coordinates of
the Green’s function, giving us the function p.T; FT I t; Ft / for the maturities T to
which we calibrate, where t is today’s date. This is in contrast to the outcome when
using the constant volatility Black–Scholes model, or the generalization to S - and
t-dependent volatility, when p.T; FT I t 0; Ft 0/ is obtained for arbitrary t 0 in .t; T /.
As path-dependent derivatives depend on conditional distributions, they cannot be
priced when interpolating the implied volatility.

The problems occurring when the unobservables depend on the contract specific
variables can also be illustrated by, for example, the pricing of a knock-out option
with barrier B and strike K . This product can be priced using a local volatility
equal to �imp.K/, i.e. the same volatility that is used for the corresponding call
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option. Unfortunately, it is not clear whether this is the correct volatility to be used.
Indeed, as the barrier option also depends on the volatility when the underlying
is close to the barrier, we could just as well have used � D �imp.B/, or perhaps
� D �imp.

1
2
.K C B//. The pricing of barrier options therefore becomes ambiguous

when using the method of implied volatility interpolation.
We have seen that the pricing of products that have a type different from the

calibration instruments can be problematic when the unobservable variables depend
on the contract specific variables. To be fair, there are also some issues with the
pricing of such products for the unmodified model, or when the model is generalized
so that the unobservable variables depend on the observable variables. The reason
for these issues can be understood by considering the pricing of path-dependent
derivatives with a model based on a process (an SDE) that has been calibrated to
European option quotes, i.e. the Green’s function is such that the skews and the
smiles are as observed in the market. It is well known, however, that there are
several influencing factors, e.g. supply and demand effects, for the implied volatility
skew and smile apart from the propagation of the underlying. It means that the
calibration assigns unrealistic probability weights to the paths of the underlying,
with the consequence that path-dependent derivatives are mispriced, for instance,
by using a too high probability that a knock-out level is reached for a barrier option.

We conclude that there are some issues associated with using the same model
for vanilla options and path dependent derivatives, as the former product type
is typically priced with models for which the full skew and smile behavior is
determined by the underlying process. The problems could be solved by using
more sophisticated models explaining the skew and smile via other effects as
well, but there are currently no popular models of this type. We are therefore
sometimes forced to use one model for vanilla options and another for path-
dependent derivatives.

To understand the implication of using different models for vanillas and exotics,
consider again the pricing of a knock-out option. When the barrier is far away from
the spot, the product converges to the corresponding vanilla option. In this instance,
we end up with two models for the same product: one vanilla model and one exotic
model, resulting in different prices and hedges. This type of arbitrage within a
pricing system can be problematic. One way to avoid it is to use the method of
adjusters that is introduced in the next section.

In later chapters, we give examples of how it is possible to calibrate skew
and smile models with constant variables. When calibrating to several maturities,
it is often necessary to use time-dependent variables. One possible approach to
calibrate models with time-dependent variables is to identify the corresponding
model with constant variables that gives the same prices for a certain fixed maturity.

For instance, the Black–Scholes model with constant volatility
qR T

0
�.u/2du=T

gives the same T -maturity prices as when using the time-dependent volatility. The
same kind of idea can be used to replace time-dependent skew and smile variables
with constant variables. The most popular technique is currently that of Markovian
projection, see, for example, Piterbarg (2006).
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Let us turn our attention to the implementation of a calibration, with a focus on
the performance. Because of the repetitive pricing of the calibration instruments,
the calibration of a model is often much slower than the pricing itself. This is
particularly the case if no analytical proxy formula is used for the calibration instru-
ments, or if there are fewer model variables than there are calibration instruments,
meaning that an approximate fit has to be made. Depending on the implementation,
the majority of the calibration time is spent on computing the Jacobian f dCk

d�i
g for

the transformation between the unobservable model variables and the calibration
instrument prices. Fortunately, the matrix elements can be computed independently
by bumping the variables one at a time. It means that the computations can be done
in parallel. Another way to increase the performance is to separate the calibration
from the pricing and only calibrate at certain times, typically overnight. Needless
to say, this suffers from the risk of a large intra-day market move. Smaller market
moves can, however, be accounted for by the method of adjusters, see next section.

The number of pricing iterations in a numerical calibration is typically 10–100.
One of the reasons for this high number is that the calibration must be much
more accurate than the bump size used for the greeks to avoid any distortion
to the risk management (see the next section). It might therefore appear that
numerical calibration is unfeasible from a performance perspective and analytical
calibration is the only possibility. With the speeding-up methods of the previous
paragraph, however, we conclude that this is not necessary the case. Furthermore,
development in computing, including multicore technology and the possibility to
perform calculations on the graphics card, are also in favor of numerical calibration.
We now discuss some further advantages and speeding-up possibilities that can
be done with a numerical calibration. We choose to focus on the instance when
the pricing and calibration is done with a Monte Carlo simulation, which means
that a (pseudo) random number generator is used for simulating the paths of the
underlyings.

The numerical calibration with Monte Carlo can be speeded up by pricing all
calibration instruments in the same simulation. It is also useful to have the same
settings (the same random numbers, simulation dates, number of simulation paths,
etc.) for the calibration as for the pricing (and for the risk). Once the calibration
has been done, the calibration instruments are then priced correctly in the pricing
simulation, even if only a single simulation path is used. Viewing pricing as an
interpolation of the calibration instrument prices, there are two sources of errors:
from the calibration instrument prices and from the interpolation. In a numerical
calibration with the same calibration and pricing settings, the first source of error
is removed as the calibration instruments are priced accurately in the pricing
simulation. This is in contrast to analytical calibration for which the errors in the
calibration instrument prices originate both in the Monte Carlo noise of the pricing
simulation and in the approximate value from the closed-form proxy formulae. The
numerical noise means that, for a given pricing accuracy, fewer number of paths are
needed for the numerical calibration than for an analytical calibration. Furthermore,
the numerical calibration does not introduce any systematic error like those coming
from approximative closed-form expressions.
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Although the calibration instruments are relatively simple, typically being call
options, the pricing models can be complex, meaning that suitable closed-form
formulae can only be found for special types of SDEs. When doing a numerical
calibration, on the other hand, there is no such constraint and the SDE can be chosen
according to our needs. With a clever choice of SDE, it can also be possible to
implement a substantially faster pricer, see Sect. 13.16 for a specific application.

There exists various approaches for speeding up the computation of parameter
sensitivities in Monte Carlo simulations, such as the adjoint method by Giles
and Glassermann (2006). With such techniques it is also possible to improve the
performance for computing f dCk

d�i
g.

A practical advantage of calibrating through simulation is that the pricer itself is
used for the calibration, meaning that only little extra implementation work needs
to be done. Furthermore, it is possible to calibrate to any product that can be priced
with the pricer. For instance, it is straightforward to calibrate a yield curve model to
skew and smile, something that is problematic to do analytically and has triggered a
lot of research.

Some of the unobservable variables can be left uncalibrated. The user of the
model can then decide on the purpose of these variables. For instance, the variables
can be used to manually calibrate the model to one or several instruments that are
considered to be of particular importance for the product that is priced. Alternatively,
a variable might have a financial interpretation for which we have a specific view
of the value. For instance, even though the correlation matrix between LIBOR rates
can be calibrated from cap and swaption prices, it is usually left as a free input to
yield curve models. It is popular to assume a functional form of the correlation and
then manually calibrate or estimate the functional parameters, see Sect. 12.4. As an
additional example, consider the situation when a seller of an exotic derivative finds
out that the model price is incorrect. This information can come from, for instance,
a more advanced (but slower) model or from a derivatives buyer claiming that other
clients offer prices in a different range. With a free variable, the model can be made
to match what is believed to be the correct price. Of course, the model parameters
should not vary too much (or should not vary at all) from deal to deal as this might
be a sign of fundamental weaknesses with the model. It is then useful to have a
financial interpretation of the model variables to get an intuition of the size of the
adjustments that are made.

4.3 Risk Management

A bank that sells a derivative is exposed to a market risk. By analyzing how the
value of a derivative changes with the market moves, we now describe how the risk
can be partially removed by hedging appropriately. We consider a fixed derivative,
meaning that the contract specific variables are constant and the price only depends
on the unobservable variables f�i g and on the observables variables, e.g. the current
time t and the underlying S . To simplify notation, we assume that there is only a
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single underlying S and a single unobservable � , which means that the model price
can be written as V.S; �; t/.

Assume that at a later time tCdt, the underlying value is SCdS and the calibrated
unobservable variable is � Cd� . It means, according to the model, that the seller of
the derivative has made a gain (or loss) of

� V.S C dS; � C d�; t C dt/ � .�V.S; �; t// �

� dV

dS
dS � dV

d�
d� � dV

dt
dt � 1

2

d2V

dS2
.dS/2 � d2V

dSd�
dSd� � : : :

We observe that the risk is measured by the (mathematical) derivatives dV
dS
; dV
d�
;

dV
dt
; d

2V
dS2

; d
2V

dSd� ; : : : . The collective name for these derivatives is greeks as they are
usually denoted by Greek symbols. We now discuss the role of the greeks in the
Black-Scholes model, one at a time.

The derivative’s exposure to the underlying can be partially eliminated by
holding dV

dS
number of underlyings. A change in the underlying then implies a

change dV
dS

dS which compensates the lowest order gain of the derivative from the
move of the underlying. dV

dS
is called the delta � and the strategy of going long �

number of underlyings is referred to as delta hedging the derivative. The delta is
equal to N.dC/ in the Black–Scholes model.

The exposure to the unobservable variable � is to the lowest order measured by
dV
d�

, called the vega ƒ of the derivative. Observe that the underlying has a delta:
dS
dS D 1, and can be used to delta hedge the derivative, but not a vega as dS

d�
D 0. An

instrument depending on � , i.e. another derivative, is therefore necessary for a vega
hedge.

Dynamic hedging of derivatives involves frequent buying and selling of the
hedging instruments. Because of the bid-offer spread, this can be a costly affair.
These transaction costs can, however, be limited by choosing appropriate hedging
instruments. For instance, the hedging instruments should be as liquid as possible
since this implies small bid-offer spreads. Also, note that the underlying is usually
more liquid than derivatives, which means that it is cheaper to delta hedge than to
vega hedge. The cost of the vega hedge can be reduced by hedging with derivatives
that have a large vega. To explain how this can be done, consider the Black–Scholes
model where we have

dV

d�
D S

p
T � tn.dC/

Plotting the vega as a function of K shows a bell-shaped form that goes to zero
for both large and small K . Indeed, for large K we know that the call option is
almost worthless and the volatility is therefore irrelevant. For small K , on the other
hand, we are certain to exercise the option and again there is only a weak volatility
dependence. The maximum of the vega is given by

d2V

d�dK
D 0 , dC D 0 , K D Se�

p
T�t=2
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The quantity �
p
T � t is in general small, which leads to a maximum at K � S . If

the computation had been done with non-zero interest rates, the same result would
have been obtained with S replaced with F , i.e. the vega assumes its maximum close
to the forward. As options are usually most liquid for K D F , ATM instruments
are ideal for the vega hedge as only a small amount is needed at the same time as
bid-offer spreads are small.

Let us now turn our attention to the derivative dV
dt

, called the theta ‚. It is a
measure of the gain (or loss) in a derivative from t to t C dt when the market quotes
are unchanged between these two points in time. The role of ‚ in risk management
is fundamentally different from that of � and ƒ. For a detailed explanation of
‚, assume � to be constant. According to Sect. 3.2, the delta hedge then gives an
exact replication of the derivative, if performed continuously in time. It means, in
particular, that the replicating portfolio and the derivative must have an equally large
theta. The role of the theta can therefore be understood by analyzing the replicating
portfolio.

To explain how the replicating portfolio can gain or lose money from t to t C dt
when the market is unchanged: S.t C dt/ D S.t/, consider the discretization t0 D
t; t1 D tCdt=2; t2 D tCdt, where we for simplicity have used only one intermediate
time point. We use the notation Si D S.ti / and �i D �.ti /, which means that
S2 D S0. The replicating portfolio consists of �0 underlyings S0 at t0. At t1, this
part of the portfolio is worth

�0S1 D �1S1 C .�0 ��1/S1

i.e. it consists of �1 number of underlyings and .�0 � �1/S1 cash. At t2, the
underlying is assumed to have moved back to S0, so the new value is

�1S0 C .�0 ��1/S1 D �0S0 � .�1 ��0/.S1 � S0/ ! �0S0 � d2V

dS2
.S1 � S0/2

Assuming a lognormal process: dS D �SdW, we obtain the gain

�d
2V

dS2
.S1 � S0/

2 D ��2S2 d
2V

dS2
.W1 �W0/

2 � �1
2
�2S2

d2V

dS2
dt

since the Brownian motion changed from W0 to W1 in the time 1
2
dt. This result can

be made exact by using more intermediate points and approaching the continuous
limit. By definition, the gain must be equal to the theta, implying the derivatives
pricing equation

dV

dt
D �1

2
�2S2

d2V

dS2

which was initially derived in Sect. 3.4.
The theta is in general negative for European call options. For example, if the

volatility is time-independent in the Black–Scholes framework, the option depends
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Fig. 4.2 The theta loss in the
hedging strategy occurs
because the underlying is
bought at high values and
sold at low values

SS1S0

Loss

Loss

Δ0

Δ1

on t and T only through the combination T � t . Thus, the no-arbitrage relation
dV
dT � 0 implies a negative theta: dV

dt
� 0. According to the pricing equation, d

2V
dS2

must be positive, i.e. the option price is a convex function of S .
To understand in detail why the term d2V

dS2
.dS/2 leads to a loss, assume that

S1 > S0 in the above discretization. The positivity of d2V
dS2

implies that �1 > �0,
i.e. the holdings of the underlying in the replicating portfolio increase when the
underlying goes up and decrease when it goes down. It is this strategy of buying
more underlyings at high values and selling off at low values that leads to a loss in
the time value when replicating options (Fig. 4.2). The same result is obtained in
the case S0 > S1. As the loss is proportional to the gamma � D d2V

dS2
, it follows that

the higher the gamma, the higher the gain in the hedging strategy and the higher the
loss in being long an option. Since the Black–Scholes gamma

d2V

dS2
D 1

S�
p
T � t

n.dC/

has its maximum close to ATM, it is for these options that the time-value is the
greatest.

According to the Black–Scholes equation, options decrease in value by

dV

dt
D �1

2
�2impS

2�

if the underlying value does not move between two time steps. As the corresponding
loss for the hedging strategy is

dV

dt
D �1

2
�2S2�

where � is the realized volatility, the combined strategy of selling an option and
delta hedging it leads to the gain

1

2

Z T

0

	
�2imp � �2



S2�dt

We conclude that the gain is positive if the realized volatility is lower than the
implied volatility at times when S2� is large.
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For a deterministic volatility � , the delta hedge provides a perfect replication
of a derivative if continuous-time trading is permitted. In practice, however, the
restructuring of the hedge is done discretely in time, typically daily or when a
large market move occurs. The reason is not only because it is impossible to hedge
continuously in reality, but also since it would imply large transaction costs. When
limited to a discrete-time hedge, the underlying moves a finite amount between
hedging times and not infinitesimally as previously assumed. To avoid as much
transaction costs as possible, the best practice is to only rehedge when � has
changed by a certain amount. It means that rehedging should be done frequently
when � changes a lot, that is when � is large. For administrative reasons, however,
rehedging is typically done daily.

Assume that the underlying moves from S0 to S1 during a small, but finite, time
period dt. Being short an option leads to a gain

�V.t C dt; S1/C V.t; S0/ D �‚dt � V.t; S1/C V.t; S0/� : : :

D �‚dt � .S1 � S0/� � 1

2
.S1 � S0/2� � : : :

where the higher order terms have been omitted. Being long the hedging strategy
leads to a gain .S1 � S0/�. The total position therefore has the gain

�‚dt � 1

2
.S1 � S0/

2� � : : :

which means that the break-even points where no gain or loss is made is to the
lowest order given by

S1 D S0 ˙
r

�2‚
�

dt D S0.1˙ �imp

p
dt/

We conclude that the lowest order gain has a maximum at S0 and zeros located one
standard deviation away from S0 in the Black-Scholes model. The daily hedge of an
option therefore leads to positive gains 68% of the time. The gains cannot exceed
‚dt while the losses can be unlimited (Fig. 4.3).

Fig. 4.3 Comparing the
change in the option price
with the delta hedging
strategy for a small time step SS0
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To avoid the remaining exposure for a delta hedged option it is common to
also gamma hedge. The underlying has zero gamma: d2S

dS2
D 0, which means that

a derivative is required for this purpose. As the maximum of the Black–Scholes
gamma occurs close to ATM, it is standard to use ATM options for this purpose.
The vanna d2V

dSd� and the volga d2V
d�d�

are also often hedged, but their contribution is
typically smaller than that of the gamma.

The hedging could have been done for even higher orders such as VSSS. This is
usually not done as the model already contains several approximating assumptions,
e.g. the form of the underlying process, that most likely have a higher impact than
these higher order derivatives.

A derivatives dealer typically manages a large portfolio of derivatives, with long
and short positions, all priced and hedged within the same model. For practical
reasons, and to minimize the cost of hedging, the deals are not hedged individually,
but the risk parameters, such as delta, vega and gamma, are aggregated to a hedge
for the whole portfolio. Observe that the Black–Scholes gamma and vega only differ
by a factor containing the time to maturity and the value of the underlying. It means
that for a portfolio of options with the same underlying and with similar maturities,
a vega hedge automatically implies an approximate gamma hedge.

The hedge values can be computed analytically for simple models as the Black–
Scholes model. For more advanced models, it is necessary to compute the risk by
bumping the variables one by one and then revalue the deal (or portfolio). The hedge
values are usually computed daily or when a large market move occurs. They also
need to be computed at the time a deal is made in order to do an immediate hedge.

It happens frequently that a derivatives trader chooses not to fully hedge a
derivative. One reason could be that the vega hedge is expensive and the trader
instead accepts the risk associated with a volatility move. Another reason could be
that the trading desk believe in increasing volatility and therefore choose not to vega
hedge as this would lead to a loss, assuming that we are long volatility.

Recall from the previous section that some variables are only (manually)
calibrated or estimated at pricing date. Since they are not recalibrated from day
to day, it is not possible to dynamically hedge the exposure. The dealer is then
subjected to unhedged price fluctuations. Furthermore, incorrect model greeks are
obtained for the other variables. To illustrate this fact, assume that the Black–
Scholes volatility is determined at pricing date and then used throughout the deal.
At a later date, not only the volatility is incorrect but also the Black–Scholes delta,
as it depends on the volatility. For an additional example, consider the pricing of a
deal that pays the floored difference .S1�S2/C of two assets at time T . Assume that
both S1 and S2 follow lognormal processes where the volatilities are calibrated and
hedged, while the correlation � is estimated only at the pricing date. To understand
the impact on the greeks, assume that the deal is ITM and that the correlation
between the underlyings is high. The deal is approximately replicated by going long
1 unit of S1 and short 1 unit of S2. If the correlation decays during the lifetime of
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the trade, the volatility of the difference S1 � S2 increases with the consequence
that fewer underlyings are needed for the hedge as the chance of the deal ending up
OTM at maturity is greater. Thus, chosing not to calibrate the correlation leads to an
incorrect delta hedge.

To make the theory behind hedging more explicit, consider the situation when
we are short a European option V.K; T / and would like to hedge this exposure.
We assume that hedging is done in continuous time so that only first-order hedges
are of interest. The corresponding ATM option is usually liquidly traded, which
means that the purchase of b D dV.K;T /

d�
=

dV.KATM;T /

d�
ATM options gives a volatility-

independent portfolio �V.K; T /C bV.KATM; T /. The next step is to purchase c D
dV.K;T /

dS � b dV.KATM;T /

dS underlyings to obtain a portfolio where the S -dependence has
been eliminated. The result is that

V.K; T / D bV.KATM; T /C cS C A

where A is both underlying- and volatility-independent. The value of A can be
computed from the model price of the difference between the left-hand side and
the first two terms on the right-hand side. It should be small, assuming that the
derivative is well replicated by its hedging instruments.

The above formula instructs us that once V.K; T / has been sold, we should
immediately purchase b ATM options and c number of underlyings for the hedge.
To cover the true hedging costs, we need to charge the customer for the market price
of the ATM option, leading to the price

V.K; T / D bVmarket.KATM; T /C cS C A

By the same token, the market price of S should be used and not the model
price, which could be different, for example, in a Monte Carlo implementation. In
summary:

V.K; T / D V model.K; T /Cb.V market.KATM; T /�V model.KATM; T //Cc.S�Smodel/

from which we see how the last two terms use the market prices of the hedging
instruments to adjust the model price of the derivative.

We move on to the general theory of hedging and let fhj g denote the hedging
instruments. We determine the optional hedge, i.e. the weights fbj g such that
V � P

j bj hj is as independent as possible of the market. We continue to assume
continuous-time hedging to avoid complications from higher-order hedges. As the
market data only enters the pricing via the calibration instruments fCkg, the weights

fbj g should be chosen so that the vector
n

dV
dCk �P

j bj
dhj
dCk

o
has as small entries as

possible.
Let us first consider the situation when the hedging instruments are used to

calibrate the model, i.e. Ck D hk . If they also are independent, dhj
dCk D ıjk, the
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hedge weights are given by bj D dV
dCj . When the calibration instruments are

volatility dependent and can be written as Ck D Ck. Q�k/, for some volatility Q�k , the

weights can be computed from dV
dCj D dV

d Q�j
d Q�j
dCj . The latter factor is typically known

analytically (it is the inverse vega in the Black–Scholes model) while the former can
be computed, for example, by a bump and revalue approach.

There are two schools of modeling techniques when Ck D hk . One of them
uses a general model for a large class of products while the other one uses models
that are tailor-made for each product. We now discuss these techniques in detail by
considering European option pricing in the Black–Scholes model.

The first technique can be illustrated by using the Black–Scholes model,
calibrated to an ATM option, for the pricing of options with the same maturity
but arbitrary strikes. As the hedging instrument is assumed to coincide with the
calibration instrument, it is given by the ATM option, which is not an ideal hedge for
ITM and OTM options. In the second technique, the calibration is product specific.
It means that the calibration is done to the liquid option that has strike closest to the
option that we want to price. We then end up with several Black–Scholes models,
calibrated to options with different strikes. Although the pricing is more accurate
with this approach, the risk (hedge) aggregation and netting is not consistent as
different models are combined. Furthermore, a product-specific calibration needs to
be done at the same time as the pricing, which can have a performance impact. In
our example of the Black–Scholes model, these problems can be avoided by using
more advanced models that takes skew and smile into account. However, there exist
other examples for which it is not easy to find more advanced models, for instance,
the use of the LMM to price ITM and OTM Bermudan swaptions, see a further
discussion later in this section.

One attempt to get the best of both worlds is to let the hedging instruments be
different from the calibration instruments. The calibration instruments can then be
chosen to be general enough so that a large class of products can be priced within
the model. At the same time, the hedging instruments can be tailor-made to each
product resulting in accurate hedging and, as we explain below, it leads to accurate
pricing as well. Furthermore, the calibration can be separated from the pricing and
done overnight.

Let us describe how to find the weights fbj g when the calibration instruments
are different from the hedging instruments. It is then necessary to minimize the

vector
n

dV
dCk �P

j bj
dhj
dCk

o
, or equivalently

n
dV
d Q�k �P

j bj
dhj
d Q�k
o
. Introducing the

vector .ƒV /k D dV
d Q�k and the matrix .ƒh/kj D dhj

d Q�k , we see that if there are
as many hedging instruments as there are calibration instruments and if ƒh is
invertible, the choice b D ƒ�1

h ƒV makes the derivative fully hedged. If the matrix
is non-invertible (for example, if there are fewer hedging instruments than there are
calibrated variables), b can be chosen to minimize the sum of squares in the vector.
The result is b D .ƒT

h ƒh/
�1ƒT

h ƒV . There are also other possible criteria that can
be used to determine b in this situation. For instance, the squared sum of a weighted
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vector
n
�k.

dV
d Q�k �P

j bj
dhj
d Q�k /

o
can be minimized. If we believe that a variable Q�k

varies widely during the lifetime of the derivative, the corresponding weight �k
should be chosen to be a large number.

If there are more hedging instruments than there are calibration instruments,
there are often several combinations of fbj g that eliminate the risk vector. A natural
solution is the smallest hedge with this property, i.e. the minimum of bTb under the
condition ƒV � ƒhb D 0. The result is b D ƒT

h .ƒhƒ
T
h /

�1ƒV . A straightforward
generalization is to minimize the squared sum of a weighted vector �Tb. The
entries in the vector � can then be chosen to be large if the corresponding hedging
instrument has a large bid-offer spread. Alternatively, the additional degrees of
freedom can be used to minimize higher-order terms such as the gamma, vanna
or volga.

When the hedging instruments are chosen different from the calibration instru-
ments, their model prices may no longer agree with the market prices, even when
an exact calibration is done. This is important to account for as the product price
can obviously not be completely trusted if the hedging instruments are priced
inaccurately. The incorrect pricing of the hedging instruments can also happen when
they are equal to the calibration instruments, for instance, when an approximate
calibration is made (although this has the advantage of smoothing out rough market
data). Furthermore, the hedging instruments are mispriced when an intra-day market
move occurs after an overnight calibration. We now follow Hagan (2004) and extend
the method of model adjustment to a more general setting.

After selling a derivative, we immediately hedge it by purchasing bj quantities
of the hedging instruments for the price

P
j bj h

market
j . We charge the buyer the cost

of the hedge plus the price of the remaining exposure. The latter is given by V �P
j bj hj and must be computed with a derivatives model. It results in the price

V D
X

j

bj h
market
j C .V �

X

j

bj hj /
model D V model C

X

j

bj

	
hmarket
j � hmodel

j




being charged to the customer. We see that apart from the computation of the hedge
weights fbj g, the model is only used for correcting the price through the difference
between the derivatives model price and the model price of the hedge. Certainly, it is
also possible to use an alternative model for the computation of the difference. If the
hedging instruments fhj g and the model are chosen appropriately, it is possible for
each instance in time to find a vector fbj g such that the linear combination

P
j bj hj

approximately represents the market behavior of the derivative, resulting in a weak
model dependence of the difference.

The adjustment technique can mistakenly appear not to have any impact on the
risk as in both the non-adjusted and the adjusted case, fbj g hedging instruments
are bought. To show the advantage of adjustment for risk management, consider
the situation of holding a derivative that is hedged with fbj g hedging instruments,
resulting in the portfolio V � P

j bj hj . As market prices exist for the hedging
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instruments, they can be used for the pricing which leads to a portfolio of value
V �Pj bj h

market
j . Now, the non-adjusted price is V model�Pj bj h

market
j and changes

by dV model �Pj bj dh
market
j when the market moves. This change is not necessarily

zero, which implies that the hedge is imperfect. For the adjusted portfolio value, the
change is given by

dV �
X

j

bj dh
market
j

D dVmodel �
X

j

bj dh
model
j C

X

j

	
hmarket
j � hmodel

j



dbj

It follows from the defining expression for fbj g that the difference between the
first two terms on the right-hand side is relatively small. Furthermore, the model is
assumed to be good, which means that the model prices of the hedging instruments
are close to the market prices. We conclude that the last term is small and thereby
the whole right-hand side. The hedge weights fbj g therefore provide an accurate
description of the risk of the adjusted price.

To fully understand the adjustment method when the hedging instruments are
different from the calibration instruments, we show how a general model can be
tailor-made using a particular set of hedging instruments suitable for the product
that is priced. More specifically, we consider the example of pricing a European call
option V.K; T /with the Black–Scholes model calibrated to the ATM quote with the
same maturity. We assume that there is a liquidly traded option V.K 0; T / with strike
that is close to K . To account for the skew and smile effects, we hedge with this
option rather than the ATM option. The adjusted price is equal to

V.K; T / D V model.K; T /C b.V market.K 0; T / � V model.K 0; T //C c.S � Smodel/

As we are working in the Black–Scholes model, the model price of the underlying
agrees with the market price: Smodel D S . With � being the calibrated model
volatility, i.e. the implied volatility of the ATM option, and � 0 the implied volatility
of the K 0 option, we obtain

V.K; T / D BS.K; �/C
d
d�

BS.K; �/
d
d�

BS.K 0; �/
�
BS.K 0; � 0/ � BS.K 0; �/

�

If � 0 is close to � , the expression within the brackets can to the lowest order be
written as .� 0 � �/ d

d�
BS.K 0; �/, resulting in

V.K; T / � BS.K; �/C .� 0 � �/ d
d�

BS.K; �/ � BS.K; � 0/
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We see that for � 0 close to � , the adjustment has moved the price from BS.K; �/ to
BS.K; � 0/ which is an improvement as the hedging instrument was assumed to be
close to V.K; T /.

We now look at an alternative application of the adjustment formula. To avoid
too abstract a discussion, we illustrate the method of Ekstrand (2010) by an example
from interest rate derivatives. More specifically, we consider the pricing of a callable
floored CMS spread product. We assume that counterparty A makes quarterly
payments to counterparty B that are proportional to the difference between two swap
rates. We let the payments be floored at 0 to ensure that they always are positive. In
return, B makes payments proportional to a LIBOR rate. At each payment date (or
a couple of days before), counterparty A has the right to call the deal, i.e. to decide
for the future payments to stop. Such deals are typically priced with yield curve
models such as the LMM model, see Chap. 13. This type of models is usually good
in deciding when it is optimal for A to call the deal and in determining the price
for having the callability embedded into the deal. With regards to the pricing of the
individual cash flows, there exist other models that do a better job. For instance,
the pricing of a single payment proportional to a swap rate is often done by static
replication with swaptions, see Sect. 13.4. The pricing of a floored CMS spread
payment can then be done by combining a static replication approach with a copula
model, see Sect. 10.1.

The above example illustrates a situation that frequently occurs when pricing
exotic derivatives: the derivative contains two (or more) important features, but the
models can each only take proper account of one of the features. In our case there
is a copula model with static replication that can price the individual cash flows but
not the callability and there is a yield curve model that can price both features but
we are not too confident about the quality of the cash-flow pricing. We now explain
how adjusters can be used to get the best of both worlds.

For an abstract description of the problem, let M be a model that can price a
product V as well as a set fVj g of simpler products for which there exists a more
accurate model M 0. For reasons that will soon become clear, we refer to M 0 as
an adjustment model. In the above example, V is the callable floored CMS spread
product and Vj the corresponding floored CMS spread payment at time Tj . M is
a yield curve model while the adjusted model M 0 is a copula model with marginal
distributions based on static replication.

In parallel with how the hedging coefficients were determined earlier in this
section, we choose fbj g to be such that V �Pj bj Vj is as independent as possible
of the model parameters in M . More precisely, they are computed by minimizing

the (weighted) vector
n

dV
d Q�k �P

j bj
dVj
d Q�k
o

, where f Q�kg are the implied volatilities

of the calibration instruments that belong to M . It is then possible to use the more
accurate modelM 0 for

P
j bj Vj to obtain

V D
X

j

bj V
adj.model
j C.V �

X

j

bj Vj /
model D V modelC

X

j

bj

	
V

adj.model
j � V model

j






64 4 Derivatives Modeling in Practice

This method is essentially identical with the approach earlier in this section where
adjusters were used with the market quotes of the hedging instruments. Indeed, the
main idea is to approximate the model dependence of a product with a simpler
set of products for which more accurate prices can be obtained, either from the
market or from more specialized models. In the example of the callable floored CMS
spread, the weights fbj g can be chosen as the probabilities of calling the deal at the
corresponding dates. The advantage is that these probabilities are often a byproduct
of the pricing which leads to a reduced computing time.

The adjustment improves not only the price, but also the risk. This is because
the adjustment models are more accurate and can often take into account skew,
smile and the dynamics of the volatility curve. Furthermore, the numerical stability
is usually improved. To understand the details behind this statement, let us return
to the example of the callable floored CMS spread and assume for the sake of
the argument that the payments are digital, i.e. a fixed amount is paid if the
swap spread is positive. The implementation of yield curve models then contains
unwanted numerical noise deriving, for example, from Monte Carlo simulations.
The advantage of the adjustment method is that the pricing can usually be done
analytically for cash flow models, leading to more stable results.

We further illustrate the benefits of adjustment models by looking at an additional
example: the pricing of Bermudan swaptions. We assume that floating and fixed
interest rate payments are exchanged (e.g. 6M LIBOR versus 5%) and that one of
the counterparties has the right to call the deal. This product is also typically priced
with yield curve models as the LMM. Unfortunately, it is difficult to account for
the skew, smile and the proper dynamics in this kind of model, see Chap. 13. It
means that in the extreme case when the Bermudan swaption is sure to be called at
a specific date, we effectively end up with a rather poor swaption model. As typical
pricing software already have an advanced model for vanilla products as swaptions,
the result is two vanilla models: one poor model derived from the extreme case of
the exotics pricer, and a good model tailor-made for vanillas. Being short an exotic
product that is certain to be called at a specific date and long the corresponding
swaption does therefore not lead to a perfect hedge in the pricing system. This
inconsistency between exotic models and vanilla models has troubled quantitative
analysts for a long time. The inconsistency disappears when using adjusters as this
approach can be viewed as a natural way to calibrate exotics models to vanilla
models. Furthermore, the inconsistency in the greeks also disappears as the skew,
smile and dynamics of vanilla models become induced into exotic models via the
adjustment.

When using an adjustment model,

V D
X

j

bj V
adj.model
j C .V �

X

j

bj Vj /
model

it is possible to adjust the expression further, for example, with adjusters obtained
from the market quotes of the hedging instruments. It means that V adj.model

j should
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be replaced with
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where fcjig and faig are determined as usual. The resulting price is then given by
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We have assumed that the adjustment model has the same hedging instruments as
the original model. This is clearly not necessary and it is straightforward to extend
the computations to the general case.

To understand the computational cost associated with the adjustment formula,
note that three components are needed to adjust the classical result V model, namely
hmarket
j or hadj.model

j , hmodel
j and bj . If the former equals hmarket

j , it can be immediately

read off from the market. If, on the other hand, it is equal to h
adj.model
j , the

performance cost is negligible as the adjustment model typically is (semi-)analytic.
For the model prices of the hedging instruments, there is typically a performance
cost. However, if the pricer is such that the hedging instruments can be priced
simultaneously with V , for example, in a common Monte Carlo simulation, the cost
is low.

Whether there is a performance impact from the computation of the hedge
weights fbj g depends on the situation. Let us first consider some instances for
which the impact is negligible. The first example is when the hedge weights are
obtained as a byproduct of the pricing, for instance, when they represent exercise
probabilities. Another example regards the adjustment of a whole portfolio with the
hedging instruments. In this situation the hedge weights are also obtained for free as
they are already computed for the risk management. In general, the hedge weights
are not known and as their computation is a magnitude slower than that of the non-
adjusted price, the performance can suffer.

There are also several reasons why the performance should be improved by the
adjustment. For instance, since much of the pricing responsibility is transferred to
the adjustment model, which typically is high performing, the original model does
no longer have to be a state-of-the-art model and it is instead possible to use a high-
speed model. Furthermore, much of the risk is also transferred to the more accurate
adjustment model. As the risk is usually the most performance demanding part of
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a model, substantial improvement can be achieved by, for example, reducing the
number of paths in a Monte Carlo simulation.

We leave the method of adjusters and return to the example of the previous
section where the Black–Scholes model was calibrated to ATM options maturing
at T1; T2; : : : ; Tn. We assume that these calibration instruments are used for the
hedging as well. In the instance of an approximate calibration through a parametric
function, a change in any of the Ti option prices affects the option prices for all
maturities. It means that an option needs to be hedged with a combination of all the
calibration instruments. We immediately see the absurdity: an option with maturity
before T1 should obviously be hedged with the T1 option and possibly with the T2
and T3 option but certainly not with the Tn option. The same effect occurs for an
exact calibration when using a spline for the interpolation as a change in a single
point impacts the whole curve. This unwanted non-local risk is the price to pay
when using smooth curves obtained from global interpolation, i.e. an interpolation
depending on all the node points, with and not only the neighboring.

The alternative is to do an exact calibration using a local interpolation scheme
as the linear interpolation. The change of a node point then only affects the curve
between the two neighboring node points. The disadvantage of this approach is a
less smooth curve.

The two extreme cases we described above both have their shortcomings and it
is therefore natural to look for hybrids of them so that the negative effects are less
pronounced. We consider exact calibrations and discuss an interpolation technique
referred to as a tension spline. This interpolation method has a free parameter which
on the one extreme turns the interpolation linear and on the other extreme turns the
interpolation into a spline. The tension spline can be visualized as a rubber band
connecting the node points, with the free parameter being the tension.

To derive the mathematical expression for the tension spline, observe that the
linear interpolation can be obtained by minimizing the length

R
.y0.x//2dx of the

curve while the cubic spline minimizes the curvature
R
.y00.x//2dx. The tension

spline, on the other hand, minimizes a linear combination
R �
�.y0.x//2 C .1 � �/

.y00.x//2
�

dx of these quantities, where the free parameter � 2 Œ0; 1� is the tension.
Using calculus of variations, we obtain

y.x/ D Ae!x C Be�!x C Cx CD; ! D p
�=.1 � �/

Just as for ordinary cubic splines, see Press et al. (2002), the tension spline is
patched together at the node points in the unique (up to choices at the end points)
way making the curve, its derivative and second derivative continuous. This leads
to a curve that can be tuned between local and global interpolation and thereby
controlling locality of the risk.

We now change topic and consider the concept of dynamics for an option model,
defined as the dependence of the implied volatility on the underlying. From
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we see how the dynamics affect the delta and thereby the hedging. As mentioned in
Sect. 3.6, the dynamics are usually observed to be somewhere between sticky strike
and sticky delta. For hedging purposes, it is therefore important to have a model that
reflects this behavior.

Consider the example of the Black–Scholes type model with a volatility depend-
ing on the underlying. It follows that
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It is interesting to note that the function �.S/, which is determined through the
calibration to market quotes, also gives the dynamics. Thus, the choice of model
type, and the corresponding calibration, determines the dynamics. For this purpose,
we discuss the three most popular fundamental model types, local volatility models,
stochastic volatility models and Lévy models, and their dynamics in Chaps. 6–8.

We return to the discussion of models for which the unobservable variables are
allowed to depend on the contract specific variables and consider the example of
implied volatility interpolation. Recall that the calibration gives p.T; FT I t; Ft / for
various T and FT but only for the fixed t and Ft given by today’s values. It means
that we have no information about the Ft -dependence and it therefore needs to
be imposed externally. We described in Sect. 3.6 how this can be done for a pure
sticky-strike or sticky-delta behavior. It is also possible to impose a mixture of these
extremes, for example, by setting �imp.T;KI t; F / D �imp.T;K=F

ˇ; t/.
Care needs to be taken when imposing the dynamics, as we now show with

an example when the implied volatility is interpolated in the strike direction. For
the sake of argument, we impose a sticky-delta behavior �imp D �imp.K=S/, and
assume that the implied volatility at K D .Ki C KiC1/=2 is obtained from linear
interpolation, i.e. �imp D .�imp;i C �imp;iC1/=2. Taking the S -derivative on both
sides and using the fact that S@Sg.K=S/ D �K@Kg.K=S/ for any differentiable
function g, we obtain:

K@K�imp.K=S/
ˇ
ˇ
KD.K1CK2/=2

D 1

2

	
K1@K�imp.K=S/

ˇ
ˇ
KDK1 C K2@K�imp.K=S/

ˇ
ˇ
KDK2




This constraint means that it is not possible to impose arbitrary dynamics on
volatility curves. Indeed, the imposed dynamics do not necessarily commute with
the interpolation, i.e. different results are obtained depending on whether we first
take the S derivative at the node points and then interpolate, or vice versa. To retain
consistency, the dynamics can be imposed only at the calibration pointsK1; : : : ; Kn,
from which the dynamics at a generalK follow.
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As the dynamics modify the delta through the dependence of the implied
volatility on the underlying value, one might expect this effect to cancel out if we
also vega hedge. To investigate whether this is true, assume that we are long an
option V that is vega hedged with an ATM option VATM, resulting in a vega-neutral
portfolio: d

d�
.V �bVATM/ D 0. When the underlying moves, the implied volatilities

of the two options change in certain ways while the dynamics of the model predict a
different change. The outcome is a mispricing with amounts d� and d�ATM. If these
two changes are equal, the hedged portfolio is not mispriced to the lowest order:

V.� C d�/ � bV.�ATM C d�/ � V.�/ � bV.�ATM/C d�
d

d�
.V � bVATM/

D V.�/ � bV.�ATM/

If, on the other hand, the changes in volatilities are unequal, the dynamics are of
importance for vega hedged portfolios as well.

The implied volatility curve shifts often almost in parallel when the underlying
changes, for instance when there is a pure skew and no smile. Conditional on that
we vega hedge, the above discussion implies that we obtain a good delta hedge as
long as we use a model that predicts a parallel shift, even if the shift size incorrect.
This is important because we later see that the most popular skew and smile models
often give a parallel shift in the implied volatility that is fundamentally different
from the observed shift. It means that these models yield good delta hedges only if
they are vega hedged.

There is an interesting connection between the dynamics of a model and
the pricing of path-dependent derivatives. Because the price of path-dependent
derivatives depends on conditional distributions, it depends on the Green’s function
p.T; FT I t 0; Ft 0/ both in the forward and backward coordinates. This is in contrast to
vanilla options that only depend on the backward coordinates for t 0 equal to today’s
date, with the dependence only important for hedging and not for pricing. As the
dynamics of a model are given by the dependence on the backward variables, we see
that the choice of dynamics affects both the pricing and hedging of path-dependent
derivatives.

In reality, the most popular skew and smile models have dynamics that are
in disagreement with the observed market behavior. Fortunately, the incorrect
dynamics are usually only of minor importance for vanillas as we vega hedge them
or impose the dynamics externally. For path-dependent derivatives, on the other
hand, there is no such simple solution and we are stuck with incorrect prices unless
we find a model with appropriate dynamics. If imposing the dynamics for vanillas,
but not for path-dependent derivatives (as this is not possible), the outcome is two
models that agree on the price but not on the hedge.

We round off by discussing the implementation of the risk computations that for
advanced models has to be done via a bump-and-revalue approach. If it takes as long
time to do the revaluation as it does to do the pricing, the risk computation is slower
than the pricing by a factor given by the number of calibration instruments. The
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performance bottleneck in a derivatives pricing system is for this reason often found
in the risk computation. Fortunately, there are several possible ways to speed up the
computation of the risk and we now describe some of the more efficient techniques.

First of all, the bumping of the prices (or implied volatilities) of the calibration
instruments can be done independently. Thus, the performance can be improved by
using parallel computing. Secondly, as mentioned earlier, the risk does not have to
be computed for the individual products but can be done on a portfolio level.

The performance can be improved substantially in the instance when the pricer
depends on a low-performing calibration. Indeed, evaluating the risk amounts to
computing

dV

d Q�k D
X

j

dV

d�j

d�j

d Q�k
where the first factor is fast to evaluate as it measures how much the price varies with
the model parameters and is therefore independent of the calibrations. The second
factor, on the other hand, is slow as it requires a calibration for each calibration
instrument. Fortunately, in the common situation when there are as many calibration
instruments as there are model variables, the second factor is the inverse of the

matrix
n
d Q�k
d�j

o
. This matrix only involves the pricing of the calibration instruments

and does not depend on the calibration. The computation of the risk can therefore
be done efficiently via the formula
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4.4 Model Limitations

Derivatives models can fail to produce accurate results for various reasons. We go
through some of the most important cases and discuss how they can be improved.

We start by looking at some situations where the method of dynamic replication
breaks down due to unrealistic hedges. The standard example is that of a digital
option paying �.ST �K/ at maturity. The present value can be computed with the
traditional lognormal Black–Scholes framework or with static replication to account
for the skew and smile. In the Black–Scholes model, a digital option is worth � dV

dK D
N.d�/, where V is the corresponding call option. The Black–Scholes delta is then
given by

dN.d�/
dS

D 1

S�
p
T � t n.d�/

Observe that for ATM options, K D S , the delta tends to infinity when t ! T . It
means that ATM options with short maturities need a large number of underlyings
for the hedge. This hedging strategy is associated with a large gamma risk as it in
practice only can be done discretely in time.
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Fig. 4.4 Pricing a digital call
option with a call spread

S

1

KK-dK

A standard technique for pricing a product for which dynamic replication fails
is to find another product, worth a little bit more, but with a well-behaved hedge.
Assume, for example, that a client wants to buy a digital call option. We do not
want to charge the Black–Scholes price as this means that we take on the problem
with the ill-behaved hedge for free. Instead, we purchase 1

dK call options with strike
K � dK and sell 1

dK call options with strike K and charge the client the resulting
price, see Fig. 4.4. If the underlying is below K � dK at maturity, no payments
occur as we make no money on the call options and do not have to pay the client
anything for the digital call. If the underlying is above K at maturity, we make
1

dK ..S � K C dK/ � .S � K// D 1 on the call options which is just the amount
needed to be paid to the client. Finally, if the underlying is between K � dK andK
at maturity, we make a profit 1

dK .S �KC dK/ on the call options while no payment
need to be made to the client. We have therefore charged the client the price for a
call spread that has equal or greater value than the digital option in all scenarios.

As dK is typically small, it is not possible to find liquid call options in the market
that have such a small difference in strike. It means that the call spread has to be
dynamically replicated. But as long as dK is not too small, the call spread has a
well-behaved hedge, which means that the dynamic replication approach works.

The only non-trivial in the strategy is the choice of dK. In the case dK ! 0, we
take on the problem with the ill-defined hedge for free, while in the case of a large
dK, the client gets overcharged and rather deals with someone else. The delicate
value of dK must therefore be such that we are satisfied with the hedge at the same
time as the client finds the price attractive.

For another example of ill-behaved hedges in dynamic replication, consider a
knock-out option of call type with an upper barrier B . If the underlying is far away
from the barrier, the price of the option increases when the underlying increases.
When the value of the underlying comes close enough to the barrier, the price
starts to decrease and tends to zero, see Fig. 4.5. When pricing the option with,
for example, a lognormal model for the underlying, the price curve is steep close to
the barrier. The large negative value of the delta leads to hedging problems.

In the same way as for digital options, the problem is usually solved by finding
a product with a more conservative price and better behaved greeks, typically an
option with a slightly higher barrier B C dB. We charge the client the price of the
higher barrier and hedge the option accordingly. If the underlying never hits the
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Fig. 4.5 Pricing a knock-out
option with a barrier shift

SB+dBB

barrier, the final payoff of the hedging strategy has the same value as the payment
required by the client. If the underlying hits the barrier, on the other hand, we
terminate the positively valued hedge while no payment is needed to the client.
For dB not too small, the greeks behave well as long as the underlying is below B .

An additional example of derivative models having problems in practice is when
they include parameters that cannot be hedged by liquid products. A correlation is
a typical example of a parameter for which there are limited hedging possibilities.
For a bank it is therefore important to sell products that are both long and short
correlation to avoid a naked exposure to this type of risk. This has not been the
situation traditionally and banks have sold long correlation products such as options
with and without barriers on baskets of equity shares or products depending jointly
on credit defaults. In times of uncertainty, equity correlations increase, which results
in losses for the banks. An example of popular equity products with short correlation
is given by payoffs that depend positively on the performance of the best (or worst)
share(s) in a basket.

It is not always obvious whether the parameters in a model can be hedged
with liquid instruments. Consider, for example, the situation when a bank sells
a derivative to a client. To minimize the exposure to market movements, the
bank purchases the hedging instruments and constructs a replicating portfolio.
However, when markets go through a crisis, there is a general escape to products
that are considered safe. The consequence is that the liquidity disappears for
certain products, resulting in large bid-offer spreads. If this happens to the hedging
instruments, it may no longer be possible to hedge the derivative effectively meaning
that the issuer is exposed to the risk of unfavorable market moves.

Another property to account for is the feedback effect the hedge can have on the
price: a price move can lead to hedges of the market participants which moves the
price even more which results in new hedges, and so on. The feedback takes place
until the market has established itself at a new equilibrium. This effect appears when
the positions in the market are large compared to the liquidity or when the products
involved have high leverage.

An example of the feedback effect can be seen in the events taking place
following the unexpected announcement on June 5, 2008 that the European Central
Bank was likely to raise the interest rate at its next meeting. This led to an increase of
the short rates in a yield curve that was already relatively flat. As investment banks
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had sold exotic products containing zero-strike digital options on calendar spreads
of the yield curve, they all had to hedge themselves simultaneously. The result was
a fast, and dramatic, inversion of the euro interest rate curve. In this situation, all
investment banks had to hedge themselves in a similar way, which is an example of
how liquidity can disappear from the market. The result was substantial losses for
the European parts of the investment banks.

Quantitative analysts face two conflicting requirements on the models they
construct: they should be simple enough for practical use but complex enough
to account for realistic market behavior. The first requirement is obviously more
important and simplifying assumptions such as those in Sect. 1.2 are therefore
made. It is then left to the traders to account for, and charge extra premium for,
the inaccuracies in the models. Unfortunately, the competition between traders at
different banks is sometimes so strong that the charged price does not cover the risk.

To give an example of a simplifying assumption that has not been properly
accounted for historically, consider the situation when a model contains the problem
of merging marginal distributions to a joint distribution. This can be solved with
the Gaussian copula, which only uses the correlation as an input, see Sect. 10.1 for
details. Unfortunately, after calibrating the correlation to normal market scenarios,
the correlation between extreme events is too weak. The solution to this problem
would require a copula with at least one additional parameter, which cannot
be accurately calibrated as extreme events are rare. Banks therefore took the
simple approach and traditionally used the Gaussian copula. Another reason for
its popularity was that the merging of distributions often was only one of many
problems to be solved in a complex model, thereby making it hard to motivate
anything but the simplest non-trivial copula. The result of the simplification was
that banks significantly mispriced the impact of extreme scenarios.

The most important simplifying assumption of Sect. 1.2 that needs to be
accounted for in practice is arguably that of negligible credit exposure. For instance,
when trading a product that involves future cash flows from a client, it is necessary
to include the counterparty credit exposure in the price. Although the adjustment
in principle can be done ad hoc by the traders, the responsibility has lately shifted
to models developed by quants. It is then possible to quantify and hedge the credit
risk. Investment banks nowadays have many quantitative analysts working on credit
value adjustment (CVA). CVA is the value that needs to be added to the price of a
product to account for the risk of the counterparty to default.

Let e.t/ be the expected loss of a contract conditional on that a counterparty
default happens at t . We assume e.t/ to be discounted to today and contain the
factor 1-R, where R is the recovery rate. The CVA for a product with the last cash
flow taking place at T can then be written as

Z T

0

e.t/p.t/dt
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where p.t/ is the risk-neutral probability density function that the counterparty
defaults at t . For major counterparties, p.t/ can be obtained from quotes on credit
default swaps (CDSs).

The expected loss is in general correlated with the probability of the counterparty
defaulting. The risk is said to be in the wrong way if e.t/ is large when the
probability of default is high. The reverse situation is known as right way risk.

The simplest possible CVA computation is done by assuming the expected loss
to be independent of the probability of default. e.t/ is then equal to .1 � R/U.t/C
where U is the discounted contract value. The computation becomes particularly
simple when the contract value always is positive, for instance, for a bond. The
outcome of the CVA is then nothing more than adding an appropriate spread on top
of the discount curve.

When U can be positive as well as negative, such as for a swap, the pricing
is more complex. Indeed, the CVA then looks like an option payout. Thus, CVA
introduces a volatility-dependence even in the situation when the contract itself is
volatility independent. Because of the complexities, CVA often has to be priced with
numerical methods such as Monte Carlo simulations.

There are often netting agreements in place regarding credit defaults. It means
that if fUigi are parts of such an agreement, the loss on default is .1�R/.Pi Ui /C,
which is smaller than the un-netted amount .1�R/Pi .Ui /C. The complexity with
netting agreements is that it is no longer sufficient to compute CVA for individual
contracts, but all contracts belonging to the same netting agreement need to be
accounted for.

It is also common to include the effect of own default. The resulting price impact
is referred to as debt value adjustment (DVA). It can be accounted for in the same
way as for CVA. For instance, consider a simulation of the contract valueU.t/ and of
the default probabilities for us and our counterparty. Should the counterparty default
first, we consider U.t/C while if we default first, U.t/� should be used. One of the
main problems with DVA is that hedging it involves trading CDSs on ourselves.

Another example where the credit component affects the pricing regards the
traded product itself. Consider, for instance, a product that depends on the perfor-
mance of a basket of equities. Account should then be taken of the fact that any of
the shares in the basket can default. In fact, it does not have to be as dramatic as
a default; even a trade halt in one of the shares is sufficient to have an impact on
derivatives. For example, the suspension of trades in Fortis in 2008 had a significant
impact on barrier options on Euro Stoxx 50.

4.5 Testing

When a model has been implemented, it needs to go through rigorous testing. The
goal of the testing is to verify that the model:

• Gives reasonable prices and risk values
• Gives correct prices and risk values in special cases (for example, when the

volatility is zero or when the calibration instruments are priced)
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• Is in agreement with other models that can be used for (a subset of) the supported
products

• Is arbitrage free
• Has appropriate dynamics

In this section we show that there exist several different testing techniques and that
a combination of them is necessary for completeness.

There are three components that can cause unwanted behavior in an implementa-
tion of a model. They originate in the model itself, the method by which the model
is solved, or in the implementation. A typical error from the model is the existence
of arbitrage strategies. For an example of a method error, consider the pricing of
a European option using a Crank-Nicholson PDE solver. It is well known that the
price has an oscillatory dependence on the spot value when the option has a short
maturity and is close to ATM. In this case there is nothing wrong with the model
(the PDE), but the problem is instead that the PDE solver performs badly when the
payoff has a discontinuous derivative (which can be taken care of by smoothing out
the payoff, for example, by using an implicit PDE solver near the maturity date).
Finally, by errors in the implementation we mean bugs in the computer code.

The first test a model should go through is a theoretical investigation, i.e. an
analysis with a pen and paper. It is then often possible to verify if a model is arbitrage
free, has correct asymptotics and behaves well qualitatively. This testing is also
necessary for a proper understanding of the model. It is not, however, sufficient to
meet all the above conditions.

A model can only be thoroughly tested once it has been implemented. As it is
the implementation that is used by the traders and the risk managers, this is where
the testing becomes particularly important. The disadvantage of such a test is that
it can be hard to determine if a problem has its roots in the model, the method of
solving the model or if it comes from a bug. Many times, the origin of a problem
can be determined by varying the model parameters (e.g. the shift parameter in a
shifted lognormal model) or the parameters of the solution method (e.g. the number
of paths in a Monte Carlo simulation). A theoretical analysis of a model can also
help us to find the origin of a problem as it guides us to instances for which the
behavior of the model is known.

We now discuss in more detail how the implementation of a model can be tested.
The initial test is to verify that the implementation is stable and has proper error
handling. This can be done by using unexpected arguments. For instance, in the
field expecting a strike value for a European option, a string “test” can be inserted.
The system should then not crash but instead return an appropriate error message
such as: “Please insert a numerical strike value”. Other tests of this type are the
use of a negative number of paths in a Monte Carlo simulator, a correlation value
outside the interval Œ�1; 1�, or a negative or zero FX rate.

The second step is to test the model behavior when the arguments are strange, but
anyway acceptable, e.g. a negative strike for a European call option. From one point
of view, this is unnatural and an error is expected. On the other hand, viewing a call
option as a contract with payoff .S �K/C, there is nothing that prevents the strike
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from becoming negative. In fact, permitting negative strikes allows us to price a
larger set of products. Thus, in this situation it is not clear whether an error should be
thrown or not. Another example concerns the value of the volatility. One philosophy
is to limit volatilities to the range Œ0; 1� to avoid the user inserting a volatility
of five, for example, mistakenly interpreting it as 5% D 0:05. By making such
restrictions, we might not support certain markets such as the electricity market for
which the spot volatility can be several hundred percent, which leads to high implied
volatilities. For yet another example, assume that 1435.7 number of simulations
is inserted in a Monte Carlo simulation. One solution is to interpret this as 1436
simulations by rounding upwards. However, it seems to be a plausible explanation
that the user made a typo and possibly meant 14357 simulations, or something else.
It therefore appears more natural to throw an error here.

The dependency on the input values should also be tested to ensure that sensible
values (i.e. not an error) are returned for special cases, for example, when the strike
or the volatility is zero. Consider, for instance, the Black–Scholes formula which
contains a division with the volatility, meaning that the zero-volatility instance has
to be implemented in a special way.

It is necessary to test whether the result is independent of how and when the
pricing is done. For instance, if we first price a specific product, then a couple
of intermediate products and thereafter the original product again, the same result
should obviously be returned, assuming that the market data remains unchanged.
This type of errors occurs relatively often because some variable in the computer
code has not been reset.

The testing described so far relates only to the functionality of the implementa-
tion but not to the correctness of the returned values: the present value, the greeks
and other output variables. These values are non-trivial to validate as the answer
is not known in general. For instance, the price is model dependent when obtained
from dynamic replication, meaning that there is no such thing as a true price. For
this reason, much of the testing has to be limited to special cases for which the
correct price and/or risk values are known. For example, the tests can be on special
products types such as the calibration instruments or zero strike products. Another
approach is to let the model parameters take extreme values. For instance, setting
the volatility to zero leads to a known price. Observe that it is a good idea to let the
parameters be very small rather than exactly equal to zero as these limiting cases
can be implemented differently.

Despite the difficulty of testing a model in non-special cases, some limited
testing can anyway be done. First of all, the model should be tested to be free of
arbitrage. For instance, a callable deal should always be verified to be worth more
that the corresponding non-callable deal. It is also a good idea to verify that the
parity relations are fulfilled. Secondly, when implementing a new model, there often
already exists a model in the pricing software that can be used for at least a subset
of the intended products to be priced. The two models can then be compared on this
subset to verify that they do not deviate more than expected. If there is not an already
existing model, it is a good idea to invent an alternative model (preferably not by
the same person that came up with the original model to minimize the risk of the
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same mistake occuring twice) or choose it from the literature. When testing a new
method of solving an existing model, it is obviously possible to use the full set of
products for the test. When it comes to the testing of the implementation, it is useful
to have an alternative implementation of the model, for example, in a spreadsheet,
preferably by someone other than the creator of the original code.

When testing two different models, methods or implementations, a suitable set of
test cases needs to be chosen. The test cases consist of a choice of products, market
data, model parameters and method parameters. It is common to use (a subset of) the
deals already booked as test cases. Additionally, it is useful to include manufactured
test cases designed to target suspected weaknesses in the model, the solution method
and the implementation. Furthermore, randomly generated test cases are useful in
catching unexpected errors.

We have so far discussed tests that can be performed to validate a new model
or method. This testing is done at only one instance in time. Apart from this, there
are tests that need to be run each time there is a change in the implementation of
a model. These recurring tests are simpler as they can be done by comparing the
new version with the older version. Therefore, the focus is mainly on the choice of
appropriate test cases. Typically, the test cases are chosen in a similar way as for the
initial testing, i.e. they are a combination of currently booked deals, manufactured
deals and randomly generated deals. It is useful to have the same set of test cases
throughout the lifetime of the implementation as the changes in the PV and the risk
values then can be tracked through the different versions of the model. When the
computer code has been modified, it should be verified that only the deals that were
expected to change values did so, and no other. It is also necessary to investigate if
the changes were as anticipated.

Observe that for financial pricing models it is often required that all test cases
succeed and all PV and risk value differences from one version to the next are
understood. This is in contrast to many other industries, such as IT, where only a
subset (for example, 99%) of the test cases have to succeed. This is understandable
as the impact of a bug in a pricing model can lead to a substantial loss while a bug
in a mobile telephone, for instance, can often be resolved by turning the device off
and then on again.

Apart from testing the PV and the greeks separately, it is also important to verify
that these numbers are consistent with each other, i.e. whether the greeks accurately
describe the changes in the price. This can be done by letting the model undergo a
hedging simulation. In such a simulation we use a data set that describes how the
market can change from one day to the next (or whichever hedging time interval
that is used). The data set can be obtained either from a historical database or by
generating it through a model. For each scenario of the simulation, the profit or loss
from being short the derivative and long the hedge (or vice versa) is recorded. By
aggregating the results for all simulation paths, the correctness of the model can be
measured. It is also possible to investigate how the product together with the hedge
behaves under large moves of the market data.

The hedging simulation is typically done between two dates and not over a
succession of dates covering a longer time period such as a month. The reason is that
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the hedging instruments are typically defined in terms of time periods from the trade
date such as 3M or 1Y, and are therefore different on the various simulation dates.
This linear explosion of hedging instruments often complicates the implementation
of a hedging simulation unless restricting to a single simulation step. An exception
to the rule is the analysis of a static hedge for which the hedging is only done at
the first date. Another exception is when the hedge is done by futures contracts or
by options on futures, which is typically the situation for commodities markets, for
which the maturity is defined as a specific date or month and not as a time period
from the trade date.

To understand the precise meaning of a hedging simulation, let us restrict
ourselves to the situation when the calibration instruments are independent and
equal to the hedging instruments, Cj D hj , meaning that the weights of the
replicating portfolio are given by bj D dV

dhj
. The hedging portfolio

P
j

dV
dhj
hj then

changes by
P

j
dV
dhj

dhj when hj changes by dhj . The change in hj , in turn, comes
from a change d Q�j in the volatility, assuming for simplicity that the underlying is
constant so that only vega risk is present. The change in the hedging portfolio can
be written as

X

j

dV

dhj

dhj
d Q�j d Q�j D

X

j

dV

d Q�j d Q�j

A hedging simulation therefore amounts to comparing the price difference

V model �f Q�j C d Q�j g�� V model �f Q�j g�

with the change
X

j

�
dV

d Q�j
�model

d Q�j

of the replicating portfolio. If market quotes exist for V , another useful test is
obtained by replacing V model.�/ with V market.�/ in the above difference. In general,
the change in the hedging portfolio is different from the change in V and there are
a couple of reasons for this behavior. One explanation is that the market move is so
large that the lowest-order hedge term does not suffice to explain the price change. In
this situation the hedging should ideally have been done by including higher-order
terms such as the volga. Another reason can be that the numerical computations of
the risk are unstable and give a poor value of dV

d Q�j . The difference can also depend
on a poor choice of model that does not correctly take into account the moves in the
market, e.g. the move in V market.�/ is not only described by the values of f Q�j g, but
also by other variables.

The hedging simulation has the advantage that it is a good reflection of the
reality. Unfortunately, the reality is usually quite complex, meaning that it can be
complicated to analyze any peculiarities or errors that show up in the testing. To
obtain a more tractable simulation, recall that V depends on the market quotes f Q�j g
via the model variables f�ig. The change in the replicating portfolio can therefore
be written as
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X

j

dV

d Q�j d Q�j D
X

ij

dV

d�i

d�i

d Q�j d Q�j D
X

i

dV

d�i
d�i

assuming that there is a bijective relation between f Q�j g and f�i g. We can therefore
compare

V model .f�i C d�i g/� V model .f�i g/
with

X

i

�
dV

d�i

�model

d�i

This is similar to the hedging simulation with the difference that the dependence on

the matrix
n
d�i
d Q�j
o
, relating the model to the calibration, has been eliminated. This

test is therefore not as comprehensive as the hedging simulation, but it is anyway
useful as it isolates the test to only depend on the pricing and not the calibration.
Thus, if this test behaves well while there are problems with the hedging simulation,
the error must lie in the calibration.

Even when a model has gone through thorough testing, it might still happen that
it fails when in use. The worst type of failure is arguably when an incorrect price
is returned that is so close to the correct price that the trader does not realize that
something is wrong. The cause of this can be the model, the solution method or the
implementation. An example is when the method for determining the early exercise
boundary (when using a Monte Carlo simulator) does not work properly for certain
products. To prevent such mispricing, it is useful to have at least one more model at
the trading desk to verify the sanity of the result. Should the prices of the models
differ too much, it is necessary to investigate the reason and determine which model
(if any) that returns an appropriate price.
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Part II
Skew and Smile Techniques



Chapter 5
Continuous Stochastic Processes

In Chap. 3 we saw that stochastic differential equations play an important role in the
pricing of derivatives. We here discuss various types of SDEs that can be used for
the underlying process. We focus on SDEs that have simple solutions and thereby
allow for an efficient implementation. As the drift term does not enter the pricing
formula for derivatives, we often assume it to be zero. The European call option
price formula is derived for the driftless SDEs. This is useful not only as call options
are important by themselves, but also because they through static replication can be
used to price any other fixed-time payment. Furthermore, exotics models are most
often calibrated to European call options.

We consider equations of the type

Ft D
Z t

0

�.u; Fu/du C
Z t

0

�.u; Fu/dWu

where an integral with respect to a Brownian motion can be defined from limits of
integrands that are piece-wise constant functions of t , see Appendix. It is common
to write SDEs in the equivalent differential form:

dFt D �.t; Ft /dt C �.t; Ft /dWt

We have chosen to only discuss SDEs for which the stochastic part is represented
by a Brownian motion. The more general case of jump processes is the topic of
Chap. 8. Furthermore, we are only concerned with SDEs that admit strong solutions,
i.e. that are adapted to the filtration of the Brownian motion, see the Appendix for the
definition of these concepts. It can be shown that under certain growth restrictions
for the functions � and � , a strong solution exists and is unique.

We start with an introduction to the linear SDE and the special cases of the
normal SDE, the lognormal SDE, the shifted lognormal SDE and the Ornstein-
Uhlenbeck SDE. We also cover the quadratic SDE, the Brownian bridge, the Bessel
process and the closely related CEV process. Finally, we describe how certain non-
analytic SDEs can be used for derivatives pricing.

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 5,
© Springer-Verlag Berlin Heidelberg 2011
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5.1 The Linear SDE

The linear SDE

dFt D .�1.t/C �2.t/Ft /dt C .�1.t/C �2.t/Ft /dWt

can be solved by first solving the corresponding geometric process with Ito’s lemma:

d QFt D �2 QFtdt C �2 QFtdWt

) d ln QFt D QF�1
t d QFt � 1

2
QF�2
t .d QFt /2 D �2dt C �2dWt � 1

2
�22 dt

) QFT D QF0 exp

�Z T

0

.�2 � 1

2
�22 /dt C

Z T

0

�2dWt

�

With d QF�1
t D .��2 C �22 /

QF �1
t dt � �2 QF �1

t dWt we obtain the solution

d.Ft QF�1
t / D .dFt / QF�1

t C Ftd QF �1
t C .dFt /d QF �1

t

D .�1 C �2Ft / QF�1
t dt C .�1 C �2Ft / QF�1

t dWt C Ft .��2 C �22 /
QF �1
t dt

�Ft�2 QF�1
t dWt � .�1 C �2Ft /�2 QF�1

t dt

D .�1 � �1�2/ QF�1
t dt C �1 QF �1

t dWt

) FT D QFT
�

F0 QF�1
0 C

Z T

0

.�1 � �1�2/ QF�1
t dt C

Z T

0

�1 QF �1
t dWt

�

Important special cases of the linear SDE are the lognormal SDE, the normal SDE,
the shifted lognormal SDE and the Ornstein-Uhlenbeck process, all to be covered in
the following sections.

5.2 The Lognormal SDE

We saw in the previous section that the lognormal SDE

dFt D �FtdWt

has the solution

FT D F0 exp

�

�1
2

Z T

0

�2dt C
Z T

0

�dWt

�
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The integral
R t
0
�dWt is normally distributed with mean 0 and variance N�2T WD

R T
0
�2dt , see the Appendix. It follows that

FT D F0e
�N�2T=2CN�p

TX

for X a N .0; 1/ variable, i.e. pX.x/ D 1p
2

e�x2=2. If the volatility had been

constant, we would have obtained a similar expression:

FT D F0e
��2T=2C�p

TX

We therefore see that it is possible to assume, without loss of generality, that the
volatility is constant because if this is not the case, we can simply replace the
variance with the integrated variance.

We compute the Green’s function pF .T; FT ; F0/, where we by abuse of notation
have used FT to denote the distribution of F at T as well as the value of F at T .
Introducing the variable x by

FT D F0e
��2T=2C�p

T x , x D ln.FT =F0/

�
p
T

C 1

2
�

p
T

it follows that

pF .T; FT ; F0/dFT D pX.x/dx

, pF .T; FT ; F0/ D pX.x/=
dFT

dx
D 1p

2
�2T FT
e

�
	

ln.FT =F0/

�
p

T
C 1
2 �

p
T

2
=2

The forward European call option price is equal to

EŒ.FT �K/C� D 1p
2


Z 1

�1

	
F0e

��2T=2C�p
T x �K




C e
�x2=2dx
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�.x��p
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T

The price of an ATM option,K D F0, is for small �
p
T given by
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5.3 The Normal SDE

The normal SDE
dFt D �dWt

is solved by

FT D F0 C
Z T

0

�dWt D F0 C �
p
TX; X � N .0; 1/

The Green’s function

pF .T; FT ; F0/ D pX.x/=
dFT
dx

D 1p
2
�2T

e�.FT�F0/2=2�2T

is fundamentally different from the lognormal version as it supports negative values
forFT . Some financial processes can be negative and for these it is certainly possible
to use this type of SDE. For other financial variables, such as FX rates or equity
stocks, the positivity of a process can be a necessity. One way to avoid negative
values is to impose boundary conditions at F D 0. The most commonly used
boundary conditions are the absorbing (Dirichlet) and the reflecting (Neumann)
conditions. The reflecting boundary condition states that if the process hits 0 then it
bounces back out again along the positive axis, just as a ball would bounce against
a wall. The absorbing boundary condition states that if the process hits 0 then it gets
stuck there forever, just as a ball thrown at a wall covered with glue would stick.

The boundary conditions can be represented mathematically by the method of
images. It means that we use a mirror process that has the same probability to be
located at �F as the original process has to be located at F . In the instance of an
absorbing condition, the image process is given a negative value, which means that it
annihilates the original process if they hit each other (which happens at F D 0). For
the reflecting condition, the processes have the same sign which can be interpreted
as if they bounce off each other at F D 0. The Green’s function therefore takes the
form:

pF .T; FT ; F0/ D 1p
2
�2T

e�.FT �F0/2=2�2T C �
1p

2
�2T
e�.FT CF0/2=2�2T

where

� D
8
<

:

0 No boundary condition
�1 Absorbing boundary condition
1 Reflective boundary condition

For a more detailed discussion of the method of images, consult any standard
textbook on PDEs.

The choice of boundary condition depends on the type of problem under
consideration. We have already seen that the disadvantage of having no boundary
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conditions is that the underlying can be negative. The probability of this happening
is Z 0

�1
1p

2
�2T
e�.FT�F0/2=2�2T dFT D N.�F0=�

p
T /

With absorbing boundary conditions the possibility of a negative F is avoided but
instead there is a finite probability that FT D 0:

P.FT D 0/ D 1 � P.FT > 0/

D1�
Z 1

0

�
1p

2
�2T
e�.FT �F0/2=2�2T� 1p

2
�2T
e�.FTCF0/2=2�2T

�

dFT

D 1 �N.F0=�
p
T /CN.�F0=�

p
T / D 2N.�F0=�

p
T /

A finite probability for the underlying to be equal to zero can also ruin the model.
For example, consider the situation when F represents an FX rate and we need to
convert a currency via multiplication by F�1. This problem can be partially solved
by moving the boundary to a small positive value F D � > 0.

The probability of ending up at F D 0 is small for short maturities, meaning
that a boundary condition only has a minor effect. For large maturities, on the other
hand, the contribution can be important with a mispricing of far out-of-the-money
put options (or equivalently, by put-call parity, far in-the-money call options) as a
consequence.

A reflecting boundary avoids negative values as well as assigning a zero
probability to the event F D 0 (but the PDF is not equal to zero at this point).
Unfortunately, this boundary condition does often not have a realistic financial
interpretation. For example, when F models an equity forward, it is counterintuitive
that F bounces back up along the positive axis after it has hit the zero point. In this
instance the absorbing condition is more natural as if F D 0 is hit, the equity
forward stays there forever.

We conclude that if positivity is essential, the introduction of boundary condi-
tions is often not sufficient to rescue a model for long or intermediate maturities. It
is usually better to change the underlying process so that only positive values are
supported. Examples of such processes are given later in this chapter.

The inclusion of boundary conditions is not limited to the normal SDE but can be
used for any of the processes in this chapter. We have chosen to have the discussion
here as boundary conditions are commonly applied to the normal SDE.

In the absence of boundary conditions, the European call option price is equal to

EŒ.FT �K/C� D 1p
2


Z 1

�1

	
F0 C �

p
T x �K




C e
�x2=2dx

D 1p
2


Z 1

.K�F0/=�
p
T

�

.F0 �K/e�x2=2 � �p
T
d

dx
e�x2=2

�

dx

D .F0 �K/N.d0/C �
p
T n.d0/; d0 D F0 �K

�
p
T



86 5 Continuous Stochastic Processes

From the form of the Green’s function with boundary conditions, we conclude
that the general solution is obtained by adding a term with F0 replaced by �F0,
multiplied by �:

EŒ.FT �K/C� D .F0 �K/N.d0/C �
p
T n.d0/

C�.�F0 �K/N.d�
0 /C ��

p
T n.d�

0 /;

d0 D F0 �K

�
p
T
; d�

0 D �F0 �K

�
p
T

Just as for the lognormal SDE, a time-dependent volatility is handled by replacing
�2T with the integrated variance

R T
0
�2dt . We end this section with the simple

expression obtained for ATM options in the absence of boundary conditions:

EŒ.FT �K/C�jKDF0 D 1p
2

�

p
T

5.4 The Shifted Lognormal SDE

It is useful to have an SDE that interpolates (and extrapolates) between the
lognormal SDE and the normal SDE. We would like this SDE to be such that the
ATM volatility is independent of the interpolation parameter when �

p
T is small.

As the normal model
dFt D �F0dWt

has the same ATM volatility as the lognormal model for small �
p
T , this suggests

the form
dFt D �.F0 C ˇ.Ft � F0//dWt

which reduces to the lognormal SDE for ˇ D 1 and the normal SDE for ˇ D 0.
Writing the SDE as

dFt D ˇ�.Ft � QF /dWt ; QF D F0

�

1 � 1

ˇ

�

for ˇ ¤ 0, we conclude that G D F � QF satisfies

dGt D dFt D ˇ�.Ft � QF /dWt D ˇ�GtdWt

i.e. G is lognormal. As F is a constant added to a lognormal process, the SDE
followed by F is referred to as a shifted lognormal SDE. Gt is lognormal and
therefore positive, which implies that Ft > QF .

The solution for the lognormal process G gives us

FT D QF C �
F0 � QF � e�ˇ2�2T=2Cˇ�p

TX ; X � N .0; 1/
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From

x D ln
��
FT � QF � = �F0 � QF ��

ˇ�
p
T

C 1

2
ˇ�

p
T

dFT
dx

D ˇ�
p
T
�
FT � QF �

we obtain

pF .T; FT ; F0/ D pX.x/=
dFT
dx

D 1
p
2
ˇ2�2T

�
FT � QF �e

�
�

ln..FT � QF /=.F0� QF //
ˇ�

p

T
C 1
2 ˇ�

p
T

�2
=2

The call option price is

EŒ.FT �K/C� D 1p
2


Z 1

�1

	 QF C �
F0 � QF � e�ˇ2�2T=2Cˇ�p

T x �K



C e
�x2=2dx

D
� �
F0 � QF �N.dC/� �

K � QF �N.d�/; K > QF
F0 �K; K � QF

d˙ D
ln
	
F0� QF
K� QF




ˇ�
p
T

˙ 1

2
ˇ�

p
T

As usual, a time-dependent volatility is handled by replacing �2T with the
integrated variance

R T
0
�2dt .

We have considered two SDEs for option pricing earlier in this chapter: the
lognormal SDE and the normal SDE. They have each one free parameter, � , and
can therefore only be calibrated to ATM options. The shifted lognormal SDE, on the
other hand, has two free parameters and can be calibrated to both ATM options and
the skew. In the next chapter we discuss in a more general setting how ˇ determines
the skew, but this behavior can also be verified directly from the above European call
option formula. The skew in the shifted lognormal model is such that the implied
volatility decreases with the strike for ˇ < 1. This behavior is useful when modeling
underlyings for which the volatility decreases with increasing F . This is typically
the situation for equities and sometimes for interest rates and FX rates (as there is
one currency on each side of an FX rate, half of the FX rates have skews in one
direction and half in the other direction, unless there is no skew at all).

Observe that the ATM price without boundary condition and with small �
p
T is

given by
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EŒ.FT �K/C�jKDF0 D F0

ˇ

�

N

�
1

2
ˇ�

p
T

�

�N
�

�1
2
ˇ�

p
T

��

� F0

ˇ
ˇ�

p
T
d

dx
N.x/jxD0 D 1p

2

�

p
TF0

which indeed is independent of ˇ. It can also be shown that � only has a small effect
on the skew (this, of course, depends on the exact definition of skew). As � mainly
affects the ATM price and ˇ mainly affects the skew, the calibration is easy both to
implement and to debug.

5.5 The Quadratic SDE

We here consider the quadratic SDE

dFt D �.Ft � a/.1 � Ft=b/dWt ; a < b

The PDE for the corresponding call option problem is

8
<

:
U� D 1

2
.F � a/2.1 � F=b/2UFF; � D �2.T � t/

U.� D 0/ D .F �K/C

Following Ingersoll (1996), we use the transformation

U.�; F / D .1 �K=b/.1� F=b/

1 � a=b ‰.�; x/; x D F � a

1 � F=b
to obtain

UF D 1 �K=b

1 � a=b
�

�1
b
‰ C .1 � F=b/‰x

1 � a=b

.1 � F=b/2
�

) UFF D
�

�1 �K=b

b � a
‰x C 1 �K=b

1� F=b
‰xx

�
1 � a=b
.1 � F=b/2

C 1 �K=b
.1 � F=b/2

1

b
‰x

D .1 �K=b/.1� a=b/
.1 � F=b/3

‰xx

The PDE takes the form

.1 �K=b/.1� F=b/

1 � a=b ‰� D 1

2
.F � a/2.1 � F=b/2 .1 �K=b/.1� a=b/

.1 � F=b/3 ‰xx

, ‰� D 1

2
.1 � a=b/2x2‰xx
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with initial condition

‰.� D 0/ D 1 � a=b

.1 �K=b/.1� F=b/.F �K/C

D
�
.F � a/.1 �K=b/� .1 � F=b/.K � a/

.1 �K=b/.1� F=b/
�

C
D
�

x � K � a

1 �K=b
�

C

As this looks like the lognormal problem for F0;K 2 .a; b/, we obtain

‰ D x0N.dC/� K � a

1 �K=bN.d�/; d˙ D
ln
	
x0=

	
K�a
1�K=b





.1 � a=b/�p
T

˙ 1

2
.1� a=b/�p

T

Transforming back to the original coordinates gives

U D 1

1 � a=b ..F0 � a/.1 �K=b/N.dC/ � .K � a/.1 � F0=b/N.d�// ;

d˙ D
ln
		

F0�a
1�F0=b



=
	

K�a
1�K=b





.1 � a=b/�p
T

˙ 1

2
.1 � a=b/�

p
T

The cases when F0 < a and F0 > b can be solved in a similar way. For example,
when F0;K > b, we obtain

U D 1

1� a=b
..F0 � a/.1 �K=b/N.�dC/ � .K � a/.1 � F0=b/N.�d�// ;

d˙ D
ln
		

F0�a
1�F0=b



=
	

K�a
1�K=b





.1 � a=b/�p
T

˙ 1

2
.1 � a=b/�

p
T

The Green’s function can be computed by taking the second derivative of V with
respect to K , see Sect. 6.2. It follows from the form of the Green’s function that if
F starts in one of the regions .�1; a/, .a; b/ or .b;1/, it stays there forever.

To simplify the calibration, we want the variables a and b to have as small an
effect as possible on the ATM price, which suggests the rescaling

dFt D �
.Ft � a/.1 � Ft=b/

.F0 � a/.1 � F0=b/
F0dWt ; a < b

It is then necessary to replace � with � F0
.F0�a/.1�F0=b/ in the option pricing formula.

As the quadratic volatility process has three free parameters: � , a and b, it can be
used not only to control the skew, but the smile as well.

The quadratic volatility model can be used for F0 2 .a; b/ if we are relatively
confident that the underlying F stays within the region .a; b/. For instance, based
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on the observation that most of the major currency pairs have historically been
within certain bounds, this model was used in Ingersoll (1996) for FX rates. Care
needs to be taken when using the quadratic volatility model as the implied volatility
has a peculiar dependence on the strike when F0 is close to a or b, or when the
maturity is long.

The instance F0 > b > 0 can be used to model skew for which implied volatility
increases with the strike. This skew is in the opposite direction to the shifted
lognormal model and is useful when the volatility increases with the underlying.
This is sometimes the situation for commodities and FX rates.

5.6 The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process has the form

dFt D �t . QFt � Ft /dt C �tdWt

We derive and analyze the Green’s function, but we do not compute the option
price as the SDE is not driftless. We have chosen to explicitly express the time-
dependence of the variables as the general solution cannot be obtained from the
constant coefficient case by simple substitutions such as �2T ! R T

0
�2du.

For Ft > QFt the drift term is negative while it is positive for Ft < QFt . It means that
Ft is pulled towards QFt and the strength of the pull is determined by the factor �t .
For this reason, QFt is referred to as the mean-reversion level while �t is called
the mean-reversion factor. Clearly, for �t D 0 the process reduces to a Brownian
motion and is independent of the mean-reversion level. For �t ! 1, on the other
hand, the process immediately becomes equal to QFt and stays there forever.

The solution to the Ornstein-Uhlenbeck process is obtained from

d
	
e
R t
0 �uduFt



D e

R t
0 �udu�t QFtdt C e

R t
0 �udu�tdWt

) FT D e� R T
0 �udu

�

F0 C
Z T

0

e
R t
0 �udu�t QFtdt C

Z T

0

e
R t
0 �udu�tdWt

�

D e� R T
0 �udu

�

F0 C
Z T

0

e
R t
0 �udu�t QFtdt C N!T

p
TX

�

where X � N .0; 1/, !t D e
R t
0 �udu�t , and N!T is defined by N!2T T D R T

0
!2du. As

FT is normally distributed, it is completely determined by its mean and variance. To
analyze the solution in more detail, let us consider the situation when the coefficients
are constant. We then obtain

FT D e��T
�

F0 C � QF
Z T

0

e�tdt C �

Z T

0

e�t dWt

�
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with mean and variance given by

E ŒFT � D QF C e��T �F0 � QF �

Var .FT / D �2

2�

�
1 � e�2�T �

For T or � small, the expressions simplify to

E ŒFT � ! F0

Var .FT / ! �2T

which is the same result as would have been obtained for the corresponding non
mean-reverting process. As mentioned above, for large � the process becomes
constant and equal to the mean-reversion level:

E ŒFT � ! QF
Var .FT / ! 0

Finally, we consider the limit of large T . Then

E ŒFT � ! QF

Var .FT / ! �2

2�

As expected, the mean is equal to QF . It is interesting to observe that the variance
becomes independent of T . The reason is that for large T a state of equilibrium is
established between the variance increasing effect from the Brownian driver and the
variance decreasing effect from the pull towards the mean-reversion level QF .

The Ornstein-Uhlenbeck belongs to the class of mean-reverting processes.
Additional examples of processes belonging to this class are the geometric Ornstein-
Uhlenbeck model, obtained by replacing �t with �tFt , and the Cox-Ingersoll-Ross
(CIR) process, obtained by replacing �t with �t

p
Ft in the equation for dFt .

5.7 The Brownian Bridge

To explain the purpose of Brownian bridge processes, we first consider the
distribution of a Brownian motion conditional on that its value WT at a future time
T is known. Since
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Covar

�

Wt � t

T
WT ;WT

�

D Covar .Wt ;WT �Wt/C Covar .Wt ;Wt / � t

T
Covar .WT ;WT /

D t � t

T
T D 0

and as Gaussian variables are characterized by their covariance,Wt � t
T
WT andWT

must be independent. Conditional on that WT D x, Wt and Wt � t
T
WT C t

T
x have

equal distribution. It means that the conditional distribution of Wt is equal to t
T
x

added to the conditional distribution of Wt � t
T
WT . However, the latter is equal to

the non-conditional distribution ofWt � t
T
WT according to the above discussion. As

this is a normal variable with mean 0 and variance t.T � t/=T , it follows that

Wt jWT � N
�
t

T
WT ;

t.T � t/
T

�

This argument can be generalized to obtain the distribution ofWt conditional onWs

and WT for s < t < T . Using the Brownian motionW 0
t D WsCt �Ws in the above

result gives

Wt jWs;WT � N
�

Ws C t � s
T � s

.WT �Ws/;
.t � s/.T � t/

T � s

�

Consider now

Xt D T � tp
T
Wt=.T�t / C t

T
x

To analyze this process, we use the fact that

QWt D
Z g�1.t/

0

�udWu; g.t/ D
Z t

0

�2u du

is a Brownian motion for arbitrary functions �u. Indeed, it is straightforward to show
that the defining properties for a Brownian motion (see Appendix) is satisfied. For
example,

Var
� QWt � QWs

� D Var

 Z g�1.t/

g�1.s/

�udWu

!

D
Z g�1.t/

g�1.s/

�2u du

D
Z g�1.t/

0

�2u du �
Z g�1.s/

0

�2u du D t � s

From this general statement we obtain

Xt D .T � t/

Z t

0

.T � u/�1dWu C t

T
x



5.8 The CEV Process 93

It follows that

Xt D .T � t/

Z s

0

.T � u/�1dWu C .T � t/
Z t

s

.T � u/�1dWu C t

T
x

D T � t
T � s

	
Xs � s

T
x



C t

T
x C .T � t/

Z t

s

.T � u/�1dWu

D Xs C t � s

T � s
.x � Xs/C .T � t/

Z t

s

.T � u/�1dWu

from which we conclude that Xt jXs has the same distribution as Wt jWs;WT if Xs D
Ws and x D WT . In fact, it can be proven that XT is the unique continuous-path
process with this property. This process is called a Brownian bridge.

From the computation

dXt D �
�Z t

0

.T � u/�1dWu

�

dt C 1

T
xdt C .T � t/.T � t/�1dWt

D �.T � t/�1
�

Xt � t

T
x

�

dt C .T � t/�1
T � t

T
xdt C dWt

D x �Xt
T � t

dt C dWt

we conclude that a Brownian bride process is nothing more than an Ornstein-
Uhlenbeck process with time-dependent parameters. The mean reversion is such
that the process converges to the point x when t ! T .

5.8 The CEV Process

The constant elasticity of variance (CEV) process

dFt D �F
ˇ
t dWt

can be used as an alternative to the shifted lognormal model to interpolate between
the normal (ˇ D 0) and the lognormal (ˇ D 1) processes. We solve this model by
using the corresponding backward Kolmogorov equation

U� D 1

2
F 2ˇUFF; � D �2.T � t/

An alternative solution method is given in Sect. 5.9. The above PDE can be
transformed to have integer powers by setting 	.�; x/ D U.�; F /, where x D
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F 1�ˇ . Using

UF D 	x.1 � ˇ/F �ˇ ) UFF D 	xx.1 � ˇ/2F�2ˇ �	xˇ.1 � ˇ/F �ˇ�1

we obtain

	� D U� D 1

2
F 2ˇUFF D 1

2
.1 � ˇ/2	xx � 1

2
ˇ.1 � ˇ/x�1	x

The similarity between this PDE and the operator

D
x D d2

dx2
C x�1 d

dx
� �2x�2

appearing in Bessel’s differential equation is clear. To make this explicit, we use

	.�; x/ D x1=ˆ.�; x/;  D 2.1� ˇ/

) 	x D x1=ˆx C 1


x1=�1ˆ

) 	xx D x1=ˆxx C 2


x1=�1ˆx C 1



�
1


� 1

�

x1=�2ˆ

to get

ˆ� D x�1=	� D 1

8
x�1= �2	xx C . � 2/x�1	x

�

D 1

8

�
2ˆxx C 2x�1ˆx C .1 � /x�2ˆC . � 2/x�1ˆx C . � 2/x�2ˆ

�

D 1

8
2
�
ˆxx C x�1ˆx � �2x�2ˆ

� D 1

8
2D

xˆ

Finally, by a time-scaling

‰.!; x/ D ˆ.�; x/; ! D 2

4
�

we arrive at

‰! D 1

2
D
x‰

In summary, the transformation that has been made is

8
ˆ̂
<

ˆ̂
:

U.�; F / D F 1=2‰

�
2

4
�; F =2

�

‰.!; x/ D x�1=U
�
4

2
!; x2=

�
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To solve the resulting PDE we use the Hankel transformations

8
ˆ̂
<

ˆ̂
:

‰.!; x/ D
Z 1

0

k O‰.!; k/J1= .kx/dk

O‰.!; k/ D
Z 1

0

x‰.!; x/J1= .kx/dx

which can be verified from the orthogonality relation between Bessel functions

Z 1

0

kJ1= .kx
0/J1= .kx/dk D ı.x � x0/=x

As Bessel functions solve Bessel’s differential equation

D
xJ1= .kx/ D �k2J1= .kx/

the transformed problem becomes

O‰! D �1
2
k2 O‰ , O‰.!; k/ D e�k2!=2 O‰.! D 0; k/

The Green’s function q.!; x; x0/ for the PDE satisfied by‰.!; x/ is by definition
the solution to the problem

8
<

:
q! D 1

2
D
xq

q.! D 0; x; x0/ D ı.x � x0/

The transformed problem then has the initial condition

Oq.! D 0; k; x0/ D
Z 1

0

xı.x � x0/J1= .kx/dx D x0J1= .kx0/

from which we obtain

q.!; x; x0/ D
Z 1

0

ke�k2!=2x0J1= .kx0/J1= .kx/dk

We change integration variable from k to kx0 and use the equation

Z 1

0

ke�k2�=2J1= .k/J1= .k�/dk D 1

�
I1= .�=�/e

�.1C�2/=2�

which can be found in, for example, Luke (1962). The result is
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q.!; x; x0/ D x0�1
Z 1

0

ke�k2!=2x02

J1= .k/J1= .kx=x
0/dk

D x0�1 x02

!
I1=

 
x02

!

x

x0

!

e�.1C. xx0 /
2
/x02=2!Dx0

!
I1=

�
xx0

!

�

e�.x2Cx02/=2!

The Green’s function can be used to find the solution

‰.!; x/ D
Z 1

0

h.x0/q.!; x; x0/dx0

to the general problem 8
<

:
‰! D 1

2
D
x‰

‰.! D 0; x/ D h.x/

As an example of the applicability of the above method, let us find the Green’s
function to the original PDE satisfied by U . We have the initial condition

U.� D 0; F / D ı.F � F 0/

, ‰.! D 0; x/ D x�1=U
�
� D 0; x2=

� D x�1= ı.x2= � F 0/

D x�1= 
2
x1�2= ı.x � F 0=2/ D 

2
x1�3= ı.x � F 0=2/

which gives

‰.!; x/ D 

2!
F 0�3=2

I1=

 
xF 0=2

!

!

e�.x2CF 0 /=2!

The Green’s function p.T; F 0I t; F / for the CEV process is therefore given by

p.T; F 0I t; F / D F 1=2 4

2�



2
F 0�3=2

I1=

�

4
.FF 0/=2

2�

�

e�2.F CF 0 /=2�

D 2

�
F 0�2

.FF 0/1=2I1=
�

4
.FF 0/=2

2�

�

e�2.F CF 0 /=2�

� D �2.T � t/;  D 2.1� ˇ/

Observe that we solved the PDE by using the fact that J1= is a solution of the
Bessel PDE. Recall that a second-order differential equation can have more than
one solution and the choice of solution determines the boundary condition. Our
choice of solution is such that p.F 0; T IF; t/ is zero at the boundary F 0 D 0. This
condition was enforced by our choice of solution for ˇ < 1=2 while it is satisfied
automatically for ˇ � 1=2.
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In the normal case  D 2 we can use

I1=2.z/ D
r
2


z
sinh.z/

to obtain

pˇD0.T; F 0I t; F / D 1

�
.FF0/1=2

r
2�


FF0
1

2

	
eFF

0=� � e�FF 0=�


e�.F 2CF 02/=2�

D 1p
2
�

	
e�.F�F 0/2=2� � e�.FCF 0/2=2�




which as expected is the normal Green’s function with an absorbing boundary
condition. Recall from Sect. 5.3 that in this situation there is a finite probability
that F D 0. This is in fact true for all ˇ < 1 and it can be shown that the probability
is given by

P.F 0 D 0/ D G

�
1


;
2

�2
F 

�

where G is the complementary gamma distribution function

G.y; x/ D �.y/�1
Z 1

x

e�zzy�1d z

and � is the gamma function

�.y/ D
Z 1

0

e�zzy�1d z

satisfying �.nC 1/ D nŠ for positive integers n.
The way F ends up in the absorbing point F D 0 depends on the value of ˇ.

Indeed, by using the asymptotic limit

I˛.z/ � 1

�.˛ C 1/
.z=2/˛; for 0 < z � p

˛ C 1

we obtain the Green’s function for small F 0:

p.T; F 0I t; F / � 2

�
F 0�2

.FF 0/1=2
1

�.1= C 1/
.2
.FF 0/=2

2�
/1=e�2F  =2�

D
�
2

2�

�1=C1
F

�.1= C 1/
e�2F =2�F 0�1
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We conclude that p has the asymptotic behavior

8
<

:

p ! 0 for ˇ < 1=2
p ! const for ˇ D 1=2

p ! 1 for 1=2 < ˇ < 1

when F 0 ! 0.
The call option price can be computed by integrating the payoff over the Green’s

function. Unfortunately, the series expansion of the modified Bessel function
converges slowly, which means that there is a performance impact for accurate
calculation of option prices. An alternative method, described in Lipton (2001),
makes use of the fact that I˛ is particularly simple for ˛ a half integer: ˛ D
1=2; 3=2; 5=2; : : : ; corresponding to ˇ D 0; 2=3; 4=5; 5=6; : : : :The modified Bessel
functions are then simple expressions of the hyperbolic functions (sinh and cosh),
which means that it is straightforward, though a bit cumbersome, to compute the
option price. The option price for a general value of ˇ can then approximately be
obtained by interpolation.

5.9 The Bessel Process

The Bessel process is closely related to the CEV process and is reviewed in detail
in Revuz and Yor (1999). Several of the variables that appear in our treatment of
Bessel processes are gamma distributed so we start our discussion there.

The gamma distribution is the two-parameter family �˛ˇ of random variables
with PDF

pX.x/ D 1

ˇ˛�.˛/
x˛�1e�x=ˇ

The moment generating function is given by

MX.k/ D E
�
ekX

� D 1

ˇ˛�.˛/

Z 1

0

z˛�1e�.1�kˇ/z=ˇd z

D 1

ˇ˛�.˛/.1 � kˇ/˛
Z 1

0

z˛�1e�z=ˇd z D 1

.1 � kˇ/˛

As an example of a gamma distributed variable, let X � N .0; 1/ and consider

P.X2 < x/ D 2P.0 < X <
p
x/ D 2

1p
2


Z p
x

0

e�z2=2d z

D 1p
2


Z x

0

z�1=2e�z=2d z D 1

21=2�. 1
2
/

Z x

0

z�1=2e�z=2d z
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from which it follows that X2 � �1
2 ;2

.
By multiplying together the generating functions of �˛iˇ distributed variables

fXig, it follows that

MPı
iD1 Xi

.k/ D 1

.1 � kˇ/
Pı
iD1 ˛i

which means that
Pı

iD1 Xi � �Pı
iD1 ˛i ;ˇ

. If fXig are normally distributed, then
Pı

iD1 X2
i � � ı

2 ;2
. In the special case ˇ D 2, the gamma distribution is called the

chi-square distribution �2ı D � ı
2 ;2

.

Let X be equal to a constant
p
b added to a N .0; 1/ distributed variable. The

moment generating function for X2 is

MX2.k/ D E
h
ekX

2
i

D 1p
2


Z 1

�1
ek.

p
bCz/2e�z2=2d z

D 1p
2


Z 1

�1
e�.1�2k/z2=2C2kp

bzCkbd z

D 1p
1 � 2k

1p
2


Z 1

�1
e

�z2=2C 2k
p

b
p

1�2k
zCkb

d z

D 1p
1 � 2k

ekb=.1�2k/
1p
2


Z 1

�1
e

�
	

z� 2k
p

b
p

1�2k


2
=2
d z D 1p

1 � 2k
ekb=.1�2k/

By multiplying the individual moment generating functions, we obtain the
moment generating function for a sum

Pı
iD1 X2

i , where the Xis are independent
random variables that can be written as a sum of a constant

p
bi added to a N .0; 1/

distributed variable:

MPı
iD1 X

2
i
.k/ D 1

.1 � 2k/ı=2
ekb=.1�2k/; b D

ıX

iD1
bi

This distribution is called the non-central chi-square distribution. To find its PDF,
we rewrite the moment generating function as

MPı
iD1 X

2
i
.k/ D 1

.1 � 2k/ı=2
e�b=2e

b
2

1
1�2k D

1X

nD0

bne�b=2

nŠ2n
1

.1 � 2k/nCı=2

Using a term-by-term argument, we obtain the PDF

pPı
iD1 X

2
i
.x/ D

1X

nD0

bne�b=2

nŠ22nCı=2�.nC ı=2/
xnCı=2�1e�x=2
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which can be written as

pPı
iD1 X

2
i
.x/ D 1

2
e�.bCx/=2 	x

b


ı=4�1=2 1X

nD0

.
p
bx/2nCı=2�1

nŠ22nCı=2�1�.nC ı=2/

D 1

2
e�.bCx/=2

	x

b


ı=4�1=2
Iı=2�1.

p
bx/

where we have used a well-known expression for the modified Bessel function:

I�.z/ D
1X

nD0

.z=2/�C2n

nŠ�.nC � C 1/

The above result can be further extended to a weighted sum of squares of theXi s,
see Sect. 10.4. Here we instead generalize the Xis to Brownian motions Wi with
starting points

p
bi . We also discuss a natural extension to positive non-integers ı.

Using the time-scaling cZt=c2 � Zt for a standard Brownian motion, we can

writeWi;t D Zt C
p
bi � p

t
	
Z1 Cp

bi=t



, whereZ1 � N .0; 1/. It then follows

from the above that the moment generating function for Ft D Pı
iD1 W 2

i;t is given by

MF .k/ D 1

.1 � 2kt/ı=2
ekb=.1�2kt/

This process is called the squared Bessel process. It depends on two parameters ı
and b, and is denoted by BESQı.b/. Observe that

Ft D F0 C
Z t

0

dFs D b C 2

Z t

0

ıX

iD1
Wi;sdWi;s C

Z t

0

ıX

iD1
ds

D b C 2

Z t

0

v
u
u
t

ıX

iD1
W 2
i;sdZs C ıt D b C 2

Z t

0

p
jFsjdZs C ıt

where Zt is a standard Brownian motion. This formula provides us with a natural
extension of squared Bessel processes to positive non-integers ı. It can be proven
that the SDE has a unique strong solution when b; ı� 0. Furthermore, since Ft D 0

is the solution when b; ı D 0, it is possible to use comparison SDE theorems
to prove that Ft � 0 when b; ı � 0. The absolute value under the square root
is therefore not necessary. The positivity of the solution to an SDE is often a
desirable property in mathematical finance and this is one of the main reasons for
the popularity of squared Bessel processes.

Using the defining SDE, we see that if F � BESQı.b/ and F 0 � BESQı0

.b0/
are independent, then F C F 0 � BESQıCı0

.b C b0/. Therefore, if M.ı; b/ is the
moment generating function of BESQı.b/, then
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M.ı; b/M.ı0; b0/ D M.ı C ı0; b C b0/

From this relation we conclude that M.ı; 0/ D ˛Aı and M.0; b/ D ˇBb , and
since M.ı; b/ D M.ı; 0/M.0; b/ we obtain M.ı; b/ D AıBb . It implies that
MF.k/ must be of the above form also for positive non-integers ı. The PDF for the
squared Bessel process can be derived in exactly the same way as was done for the
corresponding random variables. The result is

pFt .x/ D 1

2t
e�.bCx/=2t

	x

b


ı=4�1=2
Iı=2�1

 p
bx

t

!

We now show that it is possible to obtain several familiar processes from the
squared Bessel process. For all these processes, the PDF and the moment generating
function can easily be obtained from the corresponding results for the squared
Bessel process.

The square root G of the squared Bessel process is called the Bessel process
BESı.b/. For ı � 2, it can be shown that the point x D 0 is unattainable. We can
therefore apply Ito’s lemma and obtain the SDE satisfied by the Bessel process:

Gt D G0 CZt C ı � 1
2

Z t

0

G�1
s ds

Well-known examples of Bessel processes are max0�u�t Wu � Wt � BES1.0/ and
2max0�u�t Wu � Wt � BES3.0/ for W a standard Brownian motion, see Pitman
(1975).

Consider the inclusion of mean-reversion in the squared Bessel process:

dGt D 2
p

jGt jdZt C .2ˇGt C ı/dt

This is a popular SDE, in particular for the short rate in interest rate modeling where
it is called the Cox-Ingersoll-Ross model. It is also used for the volatility in the
Heston model, see Sect. 7.4. Setting F 0

t D e�2ˇtGt gives

dF 0
t D 2e�ˇtpjF 0

t jdZt C e�2ˇt ıdt

We make use of the fact that
R t
0
�udZu and ZR t

0 �
2
u du describe the same process for

Z a standard Brownian motion, to arrive at

dF 0
t D 2

p
jF 0
t jdZ.

Z t

0

e�2ˇudu/C e�2ˇt ıdt

D 2
p

jF 0
t jdZ..1 � e�2ˇt /=2ˇ/C ıd.1 � e�2ˇt /=2ˇ

from which we see that F 0
t D F..1 � e�2ˇt /=2ˇ/, where F � BESQı.�/. The

distribution for the mean-reverting process can then easily be computed.
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The squared Bessel process is closely related to the CEV process. Indeed, for

dGt D �G
ˇ
t dWt

and F 0 D G2.1�ˇ/, we obtain

dF0
t D 2.1� ˇ/G

1�2ˇ
t �G

ˇ
t dWt C 1

2
2.1� ˇ/.1 � 2ˇ/G�2ˇ

t �2G
2ˇ
t dt

D 2.1� ˇ/�
p
F 0
t dWt C .1 � ˇ/.1 � 2ˇ/�2dt

D 2
p
F 0
t dW.1�ˇ/2�2t C 1 � 2ˇ

1 � ˇ d..1� ˇ/2�2t/

Thus,Gt DF
1=2.1�ˇ/
.1�ˇ/2�2t for F � BESQ.1�2ˇ/=.1�ˇ/.�/. With  D 2.1�ˇ/ and � D �2t

we get Gt DF
1=

2�=4
for F � BESQ2.�1/= .b/, with b D x


0 where GtD0 Dx0.

Using the PDF for the squared Bessel function gives

pGt .x/ D pF2�=4 .x
 /
dx

dx

D 1

22�=4
e.x


0Cx /=.22�=4/

�
x

x

0

��1=2
I�1=

0

B
@

q
x

0 x



2�=4

1

C
A x

�1

D 2

�
x�2 �x0 x


�1=2

I1=

�

4
.x0x/

=2

2�

�

e�2.x0Cx /=2�

which is identical to the expression in Sect. 5.8.

5.10 Non-Analytic SDEs

The SDEs considered so far have all been analytically solvable. This is useful when
pricing vanilla products for which the performance is often important. However,
there are many situations in derivatives pricing where analyticity is of minor
importance. As an example of this, we now explain how exotic derivatives can be
priced by simulating SDEs that do not have closed-form solutions.

A simulation is often not done over a single time step but over a discrete set of
dates. The reason can be that an exotic product has several payments or that the
model requires multiple simulation points, see, for instance, the lognormal LMM
model of Sect. 13.17 that in general is set up so that the simulation is done according
to the frequency of the underlying LIBOR rates. It is in this situation necessary to
use an SDE that can be simulated over discrete time steps, typically of size less than
a year. The SDE also has to be such that it can be calibrated to vanilla products. We
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now show how both these demands can be satisfied by SDEs that do not have known
analytical solutions.

As an illustrating example, we consider an SDE that gives a volatility skew
without permitting negative values for the underlying, as opposed to the shifted
lognormal SDE, or by allowing a non-zero probability for the underlying to end up
at 0, as opposed to the CEV process. The precise specification of the SDE we have
in mind is

dF D !.ˇ; F /

!.ˇ; F0/
O�F0dWt D !.ˇ; F /�dWt ; !.ˇ; F / D ˇ�1 �1 � e�ˇF �

where O� is a constant.
Just as for the shifted lognormal process and the CEV process, the ˇ parameter

controls the skew. For instance, ˇ! 0 gives !.ˇ; F /!F meaning that the process
turns lognormal. If ˇ! 1, on the other hand, !.ˇ; F /=!.ˇ; F0/ ! 1 giving
a normal process. We also note that the process becomes lognormal in the limit
F ! 0, which implies that the underlying always stays positive. Furthermore, the
process is normal in the limit F ! 1. We conclude that the skew is such that the
implied volatility decreases with increasing strike.

The simulation of the process can be done by using the SDE the way it is and
taking small time steps. This is quite time consuming though. As an alternative,
consider the transformation

G D ˇ�1 �eˇF � 1�

Ito’s lemma gives

dG D G

�

�dWt C 1

2

ˇG

1C ˇG
�2dt

�

so the non-linearity is transferred from the stochastic part of the SDE to the
deterministic part (the drift). The reason for doing this transformation is that the
stochastic part of the SDE can be viewed as the lowest-order term while the drift
is of higher order, which can be formally understood from the relation dW 2 D dt .
With the non-linearity in the drift, there exist simulation schemes of high accuracy.

For the simulation between two time steps tn and tnC1, consider first the situation
when the G-dependence of the drift is frozen to its value Gn just before the
simulation. The SDE can then be solved as:

dG D G

�

�dWt C 1

2

ˇGn

1C ˇGn
�2dt

�

) GnC1 D Gn exp

�

�
p
�tX � 1

2

1

1C ˇGn
�2�t

�

; X � N .0; 1/

To understand the consequence of the freezing, transform back to the original
variable
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dF D !.ˇ; F /�dWt C 1

2
ˇ!.ˇ; F / .!.ˇ; Fn/ � !.ˇ; F // �2dt

We see that a mean-reverting drift has been added to the SDE, which gives a smaller
variance. To regain the variance, we apply the well-known predictor-corrector
technique. In this method the simulation is done an additional time by using the
resultGnC1 of the first simulation as the freezing value in the SDE. The final result is
the arithmetic mean of the result of the two simulations. With this method, accurate
results are obtained for simulations on time steps of at least one year.

The above SDE reveals that the advantage of first transferring the non-linearity
to the drift and then doing the freezing is that it keeps the stochastic part of the SDE
unchanged and the only effect is a mean-reverting term. This should be compared
with the strategy of a naive freezing of the original SDE, dF D !.ˇ; Fn/�dWt ,
which gives nothing but a normal process. We could, of course, have frozen the
coefficients in different ways such as dF D F.!.ˇ; Fn/=Fn/�dWt leading to a
lognormal SDE. The point is that no matter how the stochastic part is frozen, it does
not come close to the original SDE when using a single simulation step. This is in
contrast to freezing the drift which allows long simulation steps, especially when
using techniques such as the predictor-corrector method.

Although we transformed the SDE to become lognormal in the diffusion part,
it is also possible to transform to any solvable SDE. The reason for choosing the
lognormal version is that it is a particularly simple SDE that coincides with the
original one in the limits F ! 0 and ˇ ! 0. Furthermore, the transformation was
such that F is positive if and only if G is positive and the approximate solution of
G (through the predictor-corrector method) preserved the positivity.

The calibration can, for example, be done by approximating the process with
a quadratic SDE. As the quadratic SDE has three free parameters, it is possible
to match the level, the tilt and the curvature of the implied volatility curve at the
forward F0. The SDE and its approximating quadratic SDE are therefore in close
agreement in a region around F0 which implies that the calibration to ATM options
is accurate for maturities of at least 10 years. The computations for determining the
approximate quadratic process can be done through Taylor expansion around F0:

dF D ˇ�1 �1 � e�ˇF � �dWt

�
�

ˇ�1 �1 � e�ˇF0�C e�ˇF0 .F � F0/ � 1

2
ˇe�ˇF0.F � F0/

2

�

�dWt

D ..F � F�/.1� F=FC// � 0dWt

where

F˙ D F0 C ˇ�1
	
1˙

p
1eˇF0 � 1




� 0 D 1

2
ˇe�ˇF0FC�
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Chapter 6
Local Volatility Models

One way to construct models more complex than the Black–Scholes model is to
allow the volatility to depend on the current time and on the value of the underlying:

dFt D �.t; Ft /FtdWt

Models of this type are called local volatility models. By choosing the volatility
�.t; F / appropriately it is possible to match the prices of any arbitrage free implied-
volatility surface �imp.T;K/. The corresponding option pricing PDE has the form

Ut C 1

2
�.t; F /2F 2UFF D 0

We investigate the relation between �imp.T;K/ and �.t; F /. Obviously, for
�.t; F / D �.t/ the introduction of a volatility weighted time

Qt .t/ D
Z t

0

�.u/2du

immediately reveals that

�imp.T / D
s
1

T

Z T

0

�.u/2du , �.T / D
q
�imp.T /2 C 2�imp.T /�

0
imp.T /T

For the general case, we use Dupire’s formula to express �.t; F / in terms of
�imp.T;K/. The inverse relation, i.e. to express �imp.T;K/ as a function of �.t; F /,
is done by perturbative expansion techniques. Thanks to Dupire’s formula, local
volatility models are easy to calibrate and have become popular. Unfortunately, their
dynamics are not in agreement with market behavior.

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 6,
© Springer-Verlag Berlin Heidelberg 2011
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6.1 ATM Perturbation

We solve the European call option problem

8
<

:
Ut C 1

2
�.F /2F 2UFF D 0

U.t D T; F / D .F �K/C

by doing an expansion around the ATM point: F D .1 C �x/K , where � is small.
We obtain

Ut C 1

2

.1C �x/2

�2
�..1C �x/K/2Uxx D 0

The form of the PDE suggests that we should consider times to maturity .T � t/ of
the order �2. We therefore change variables:

8
<

:
! D �.K/2

T � t
�2

ˆ.!; x/ D U.t; F /=�K

which leads to 8
<

:
ˆ! D 1

2
g.�x/ˆxx

ˆ.! D 0; x/ D xC
where

g.z/ D �..1C z/K/2

�.K/2
.1C z/2

Taylor expanding g and using g.0/ D 1 gives

Dˆ D .g1�x C g2�
2x2 C : : :/ˆxx; D D @! � 1

2
@2x; gn D 1

2

1

nŠ
@nz gjzD0

Doing a perturbative expansion

ˆ D ˆ0 C �ˆ1 C �2ˆ2 C : : :

and equating equal powers of � gives a chain of PDEs

8
ˆ̂
<

ˆ̂
:

Dˆ0 D 0

Dˆ1 D g1xˆ
0
xx

Dˆ2 D g1xˆ
1
xx C g2x

2ˆ0xx
: : :

with boundary conditions
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ˆn.! D 0; x/ D
�
xC n D 0

0 n > 0

To solve the above equations, first note that

‰ D 1

nC 1
!nC1@mx @k!	

solves � D‰ D !n@mx @
k
!	

‰.! D 0/ D 0

if D	 D 0 and n � 0. Indeed,

D‰ D
�

D; 1

nC 1
!nC1@mx @k!

�

	

D �
@!; !

nC1� 1

nC 1
@mx @

k
!	 D !n@mx @

k
!	

where ŒA; B� D AB � BA is the commutator. The reason why we managed to find
the solution in such a simple way was that the factor in front of 	 did not contain
any powers of x but only derivatives of x. Because the right-hand side in the chain
of PDEs contains powers of x, we must first find a way to convert these powers of
x into powers of ! together with x- and !-derivatives.

As ˆ0 is the solution to the normal SDE,

ˆ0.!; x/ D xN.x=
p
!/C p

!n.x=
p
!/

we can use the equations

ˆ0 D xˆ0x C 2!ˆ0! ) xˆ0xx D �2!ˆ0x!
to convert powers of x in front ofˆ0xx andˆ0xxx into powers of ! and !-derivatives:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

xnˆ0xx D xn�1xˆ0xx D �2!xn�1ˆ0x! D �!xn�1ˆ0xxx
xn�1ˆ0xxx D 2xn�2@!xˆ0x D 2xn�2@!.ˆ0 � 2!ˆ0!/

D 2xn�2.�ˆ0! � 2!ˆ0!!/ D �2.1C 2!@!/x
n�2ˆ0!

D �.1C 2!@!/x
n�2ˆ0xx

)

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

x2nˆ0xx D .! C 2!2@!/
nˆ0xx

x2nC1ˆ0xx D �.! C 2!2@!/
n!ˆ0xxx

x2nˆ0xxx D .1C 2!@!/.! C 2!2@!/
n�1!ˆ0xx

x2nC1ˆ0xxx D �.1C 2!@!/.! C 2!2@!/
nˆ0xx
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We are now prepared to solve the chain of PDEs. For ˆ1, we get

Dˆ1 D g1xˆ
0
xx D �g1!ˆ0xxx ) ˆ1 D �1

2
g1!

2ˆ0xxx D �g1!2ˆ0x!

Using this result we can solve for ˆ2:

Dˆ2 D g1xˆ
1
xx C g2x

2ˆ0xx D �g21!2xˆ0xxx! C g2x
2ˆ0xx

D g21!
2@!.1C 2!@!/ˆ

0
xx C g2.! C 2!2@!/ˆ

0
xx

D g2!ˆ
0
xx C .3g21 C 2g2/!

2ˆ0xx! C 2g21!
3ˆ0xx!!

) ˆ2 D 1

2
g2!

2ˆ0xx C
�

g21 C 2

3
g2

�

!3ˆ0xx! C 1

2
g21!

4ˆ0xx!!

D g2!
2ˆ0! C 2

�

g21 C 2

3
g2

�

!3ˆ0!! C g21!
4ˆ0!!!

The solution method can be summarized as follows: Assume that the chain of
equations for ˆ0, ˆ1, : : :, ˆn�1 has been solved and that the solutions have been
expressed as a sum of terms of the canonical form !n@mx @

k
!ˆ

0, where m equals
0 or 1. Inserting these solutions into the equation for ˆn, it is possible to get rid of
the x powers on the right-hand side of the PDE with the method described above.
The resulting PDE can then be solved by taking the ! anti-derivative. Finally, using
Dˆ0 D 0, the x derivatives can be converted to ! derivatives so that there remains
no more than one x derivative. The expression for ˆn is then of the canonical form
and the method can be repeated to find the solutions of higher orders.

We now explicitly compute the solution to order �1 when t D 0. With

ˆ1 D �g1!2ˆ0x! D 1

2
g1!xˆ

0
xx D g1!xˆ

0
!

we obtain

ˆ � ˆ0 C �ˆ1 D ˆ0 C �g1!xˆ
0
!

g1 D 1CK
� 0.K/
�.K/

; ! D �.K/2
T

�2
x D 1

�
.F=K � 1/

which is approximately true for short maturity options with strike close to the
forward. The expression for the implied volatility can be found by comparing
with an option Q̂ that is priced with a strike-dependent lognormal volatility:
Q�.F;K/ D �imp.K/ for some function �imp. The generalization to higher orders
of � is straightforward. As
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�imp.K/ D �imp.F=.1C �x// � �imp.F /� �xF� 0
imp.F /

) Q! D �imp.K/
2 T

�2
�
	
�imp.F /

2 � 2�xF�imp.F /�
0
imp.F /


 T

�2

D Q!0 C � Q!1
and g1 D 1 for a lognormal model, we obtain

Q̂ . Q!; x/ � ˆ0. Q!; x/C � Q!xˆ0!. Q!; x/
� ˆ0. Q!0 C � Q!1; x/C �. Q!0 C � Q!1/xˆ0!. Q!0 C � Q!1; x/
� ˆ0. Q!0; x/C �. Q!1 C Q!0x/ˆ0!. Q!0; x/

Comparing with the general formula above gives the lowest-order expression

ˆ0. Q!0; x/ D ˆ0.!; x/ , Q!0 D ! , �imp.F / D �.K/

and the first-order (in �) expression

Q!1 C Q!0x D g1!x , Q!1 D .g1 � 1/!x

, �2xF�imp.F /�
0
imp.F /

T

�2
D K

� 0.K/
�.K/

�.K/2
T

�2
x

, � 0
imp.F / D � K

2F
� 0.K/

We therefore finally arrive at

�imp.K/ � �imp.F /� �xF� 0
imp.F /

D �.K/C �xF
K

2F
� 0.K/

� �

�

K C 1

2
.F �K/

�

D �

�
1

2
.F CK/

�

which implies that

�imp.F / D �.F /

� 0
imp.F / D 1

2
� 0.F /
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Fig. 6.1 Relation between
the local volatility and the
implied volatility skew for
short maturities and close to
ATM

KF

σ
σimp

We conclude that the implied volatility is equal to the local volatility at K D F , but
the derivative is only half the size, see Fig. 6.1.

With a vanishing ATM skew, i.e. � 0
imp.F / D 0, the lowest order non-vanishing

contribution is of order �2 and can be shown to be given by

�imp.K/ � �

�

F C 1p
3
.K � F /

�

In particular, we obtain

� 00
imp.F / D 1

3
� 00.F /

which means that the curvature of the local volatility is three times the size of the
ATM implied volatility smile.

Observe that we did not include boundary conditions in the computations. As
ˆ0 is a solution to the normal PDE, the underlying can assume negative values.
By imposing appropriate boundary conditions in the solution technique described
above, it is possible to obtain a solution ˆ that only supports positive values of the
underlying. From a theoretical point of view, the existence of boundary conditions is
irrelevant as they affect the distribution in the tails while the perturbative expansion
technique is concerned with the ATM region. Different choices of boundary
conditions do not therefore have a significant impact on the prices in the region of
interest (unless the maturity is very long). From a practical point of view, however,
boundary conditions can be important. When implementing a successful model, the
users sooner or later use the model far away from the domain where it is supposed
to be valid, in particular if there is no other suitable model. It is then important that
even though we no longer have a state-of-the-art model in this region, the model
should still give reasonable prices and be arbitrage-free.

We have so far assumed that �.t; F / is a function only of F . If it is of product
form �.t; F / D �1.t/�2.F /, the introduction of a volatility weighted time:

Qt .t/ D
Z t

0

�21 .u/du
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reduces the problem to the situation where �.t; F / only depends on F . A general
dependence of � on t and F can be solved with perturbation. The calculations are
roughly the same as above but more cumbersome.

6.2 Dupire’s Equation

Assume, as usual, that the forward option price can be obtained as an expectation
under some SDE. With p the Green’s function, we have

U.F;K; t; T / D
Z

.FT �K/Cp.T; FT I t; F /dFT

and
d2

dK2
U.F;K; t; T / D p.T;KI t; F /

The right-hand side is non-negative as it is a probability. We conclude that the left-
hand side is non-negative as well, which is equivalent with the no-arbitrage relation
derived in Sect. 2.4. To investigate whether the no-arbitrage relation d

dT
V � 0 is

satisfied, consider the relation

U.F;K; t; T C�T / � U.F;K; t; T /

D
Z Z

.FTC�T �K/Cp.T C�T;FTC�T IT; FT /p.T; FT I t; F /dFT dFTC�T

�
Z

.FT �K/Cp.T; FT I t; F /dFT

which is positive since

Z

.FTC�T �K/Cp.T C�T;FTC�T IT; FT /dFTC�T � .FT �K/C

according to Jensen’s inequality. We obtain the relation d
dT
U � 0 which is slightly

weaker than the no arbitrage relation d
dT
V � 0.

Using the forward Kolmogorov equation gives

d

dT
U D

Z

.FT �K/C d

dT
p.T; FT I t; F /dFT

D
Z

.FT �K/C 1
2

d2

dF2T
�.T; FT /

2F 2
T p.T; FT I t; F /dFT
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D
Z
1

2
�.T; FT /

2F 2
T p.T; FT I t; F / d

2

dF2T
.FT �K/CdFT

D 1

2
�.T;K/2K2p.T;KI t; F / D 1

2
�.T;K/2K2 d

2

dK2
U.F;K; t; T /

, �.T;K/ D
v
u
u
t

d
dTU

1
2
K2 d2

dK2U

This interesting relation by Dupire (1994) shows how the local volatility can be
computed from European call option prices. According to the above discussion, the
factors inside the square root are positive if the model is arbitrage-free. Expressing
the price in terms of implied volatility gives after some computations the relation
between the local volatility and the implied volatility:

�.T;K/ D

�imp

s
1C2 �imp;T

�imp
.T�t /

.1CKdC�imp;K
p
T�t /.1CKd��imp;K

p
T�t /C.K�imp;KCK2�imp;KK/�imp.T�t /

This equation can be used for calibration since the local volatility surface can be
computed from a given implied volatility surface. In practice, the implied volatilities
are found in the market only for a discrete set of maturities and strikes. The implied
volatility surface can be derived from the market quotes through a 2-dimensional
interpolation. As Dupire’s formula contains derivations of the implied volatility,
the resulting local volatilities are highly dependent on the choice of interpolation
scheme.

6.3 Short Maturity Expansion

With the variables �
� D T � t
x D ln.K=F /

and the functions � Q�.�; x/ D �.T;K/

I.�; x/ D �imp.T;K/

Dupire’s equation takes the form

I 2 C 2II� � D Q�2
 �

1 � x Ix
I

�2
� 1

4
I 2I 2x �

2 C IIxx�

!
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This non-trivial PDE can be solved by Taylor expanding I around � D 0:

I.�; x/ D I0.x/C I1.x/� C I2.x/�
2 C : : :

To the lowest order �0, we obtain

I D Q�0
�

1 � x I
0
0

I0

�

) 1 D Q�0.I�1
0 C x

d

dx
I�1
0 / D Q�0 d

dx
.xI�1

0 /

) I0.x/ D
�
1

x

Z x

0

dx0

Q�0.x0/

��1
D
�Z 1

0

ds

Q�0.sx/
��1

where Q�0 is the lowest order term in the Taylor expansion

Q�.�; x/ D Q�0.x/C Q�1.x/� C Q�2.x/�2 C : : :

We conclude that the local volatility and the implied volatility are to the lowest order
related by

8
<̂

:̂

�.K/ D �imp.K/
	
1 �K ln.K=F /

�imp;K .K/

�imp.K/


�1

�imp.K/ D
	R 1

0
ds

�.F 1�sKs/


�1

It is straightforward to verify that this formula reduces to the expression

�imp.K/ � �..F CK/=2/

of Sect. 6.1 when jK � F j is small. The formula in this section is more natural as it
depends on the local volatilities in the whole range between K and F and not only
on a single point .F CK/=2. For instance, we do not expect to see any significant
change in the implied volatility if there is a spike (or dip) of the local volatility at
this single point.

If � 0
imp.F / D 0, which is equivalent with � 0.F / D 0, the second derivative of the

above expression for �imp.K/ gives

� 00
imp.F / D 1

3
� 00.F /

or equivalently

�imp.K/ � �

�

F C 1p
3
.K � F /

�

for jK � F j small, which was previously derived in Sect. 6.1.
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I can be computed via induction by assuming that I0.x/; : : : ; In�1.x/ are known
and deriving an expression for In.x/. We do the computation by inserting the Taylor
expansion of I into the PDE and equating terms of order �n. As the terms that
contain Ik.x/ with k > n lead to higher order powers, the Taylor expansion can be
truncated at In.x/�n. The PDE then consists of two parts: terms containing In and
terms containing Ik.x/, k < n. By induction, the latter part is known and can be
summarized into a function f .x/. It remains to compute the terms that contain In
and is of order �n. For instance,

�

1 � x
Ix

I

�2
ˇ
ˇ
ˇ
ˇ
ˇ
�n;In

D
�

1 � x I
0
0 C : : :C I 0

n�
n

I0 C : : :C In�n

�2
ˇ
ˇ
ˇ
ˇ
ˇ
�n;In

D
�

1 � x I
0
0 C I 0

n�
n

I0 C In�n

�2
ˇ
ˇ
ˇ
ˇ
ˇ
�n;In

D
�

1 � x

I0

�
I 0
0 C I 0

n�
n
�
�

1 � In

I0
�n
��2

ˇ
ˇ
ˇ
ˇ
ˇ
�n;In

D �2
�

1 � x
I 0
0

I0

�

x
�n

I0

�

I 0
n � In

I0
I 0
0

�

Equating the �n terms in the PDE gives then

2I0In C 2nI0In D Q�20
�

�2
�

1 � x
I 0
0

I0

�

x
�n

I0

�

I 0
n � In

I0
I 0
0

��

C f .x/

which can be written as

I 0
n.x/C g.x/In.x/ D h.x/

for known functions g.x/ and h.x/. This ordinary differential equation can be
solved by multiplying both sides with exp

�R x
0
g.x0/dx0�. The solution is

In.x/ D e� R x
0 g.x

0/dx0

�Z x

0

h.s/e
R s
0 g.x

0/dx0 C In.0/

�

We leave it as an exercise for the reader to derive the expressions for the lowest
order terms.
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6.4 Dynamics

In the discussion of perturbative ATM expansion of local volatility models we
showed that the implied volatility and the local volatility are to lowest order
related by

�imp.K/ D �..F CK/=2/

where F is today’s forward. Assume that market prices �imp.K/ are given and that
we would like to calibrate the local volatility model to match these prices. This is
done by setting

�.z/ D �imp.2z � F /

Assume then that we revisit the model at a later time, for example, tomorrow, when
the forward has changed fromF to QF . The local volatility model predicts the market
prices

Q�imp.K/ D �.. QF CK/=2/ D �imp.K C QF � F /

We see that the curve has been shifted sideways by an amount QF � F . It means,
for example, that when the forward increases, i.e. QF > F , the implied volatility
curve moves to the left. This is opposite to the expected market behavior. Observe
that the argument is only true close to the ATM point and for small moves in the
forward. In fact, it is easy to understand that it cannot be true for arbitrary points on
the volatility curve as an arithmetic shift would lead to the existence of volatilities
for negative values of the underlying. Nevertheless, the argument was not made to
show the exact dependence of the implied volatility on the forward, but rather to
show its qualitative behavior.

Local volatility models are useful in finance because of the easy fit to market data.
Their volatility dynamics, however, are in the opposite direction to what is observed
in the market. Local volatility models are for this reason often used in combination
with other models. To illustrate the benefits of combining models, consider a model
that has the opposite properties compared to local volatility models, i.e. it has good
dynamics but is hard to fit to the market. Assume that we use this model and fit it to
the market as well as we can. On top of this model we can then add a local volatility
model that can be fitted to the remaining difference between market data and model
data. By adding a local volatility model on top of a sticky-delta model, the result is
somewhere between sticky-strike and sticky-delta behavior. As the market often has
dynamics in this region, it comes down to choosing the appropriate portions of local
volatility model and sticky-delta model.
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Chapter 7
Stochastic Volatility Models

A natural generalization of the Black–Scholes model is to allow the volatility to
be stochastic. This is motivated by the fact that a historical analysis shows that the
volatility indeed behaves as if it was stochastic. In this chapter we consider various
techniques for solving stochastic volatility models. For optimal transparency, we
focus on a particularly simple model

dFt D �tFtdWt

d�t D �t�tdZt

where the Brownian motionW is of the form

W D �Z C
p
1 � �2Z?

and Z? is a Brownian motion independent of Z. It is straightforward to generalize
the solution techniques that we present to more general SDEs. For instance, instead
of using a lognormal process, it is possible to use a shifted lognormal or a CEV
process for the underlying. Furthermore, when pricing products that have payoffs
at more than one instance in time, it is useful to add a mean-reverting drift term
to the SDE for the volatility. The reason is that for most product types the time
dependence of the variance of the volatility can be better matched with a mean-
reverting process than with a lognormal process. Recall that as the forward can be
written as a quotient of a tradable and a numeraire, the fundamental theorem of
asset pricing implies that the forward process cannot have a drift term in the pricing
measure. For the volatility, on the other hand, there is no such restriction.

The above equations are assumed to be formulated in the forward measure. It
means that we need to take the expectation of .F �K/C to compute the European
call option price. According to the Feynman-Kac theorem, the price can also be
calculated with the corresponding backward Kolmogorov equation. The derivation
of this PDE is as in Sect. 3.7. The result is

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 7,
© Springer-Verlag Berlin Heidelberg 2011

119



120 7 Stochastic Volatility Models

Ut C 1

2
�2F 2UFF C ���2F UF� C 1

2
�2�2U�� D 0

We argued in Sect. 3.5 that �2.T � t/ is often much smaller than 1, which
motivates a perturbative treatment. Similarly, restricting ourselves to contracts with
short maturities, we can assume that �2.T � t/ � 1. Several of our arguments and
methods in this chapter are therefore based on the assumption that �2.T �t/ is small.

We would like to point out that the priority of the models in this book is not
to explain reality. Instead, the aim is to obtain models that are flexible enough to
match market data. Despite this, our choice of models is often based on how we
believe that the reality behaves. This is because the reality can give us clues about
how to model certain phenomena. A good example of this practice can be seen
by the choice of stochastic volatility models, based on empirical properties of the
underlying that implies an option skew and smile. In reality, the estimated historical
volatility of volatility often only makes up a fraction (perhaps a quarter or half) of
the implied volatility of the volatility. Other contributing factors to the skew and the
smile include supply and demand, and fat tails coming from underestimated extreme
events. Despite the fact that a large part of the smile is coming from other effects,
it is common to use stochastic volatility models because they are simple to work
with. However, as we pointed out in Sect. 4.2, although it is sometimes possible
to use unrealistic processes for vanilla pricing, it can lead to serious mispricing of
path-dependent derivatives.

It is also possible to build models based on the assumption that it is the implied
volatility that is stochastic rather than the local volatility, see Hafner (2004) and
references therein. We have chosen to omit any discussion of this model type as it is
not as popular as the models in this chapter.

The focus of this chapter is on perturbative methods. We also treat the semi-
analytic method of Fourier transforms, applicable to special types of stochastic
volatility models. We compare the various techniques, discuss the dynamics and
show a relation to local volatility models.

7.1 Skew and Smile

The origin of the skew and smile for stochastic volatility models can be understood
by relatively simple arguments. We first argue for the existence of the skew and then
for the smile. We also derive the form of the skew and smile for contracts with short
maturity and with small volatility of volatility.

To explain the skew in stochastic volatility models, assume for concreteness that
the correlation between the underlying and the volatility is negative and consider an
ITM call option. Because of the vega profile, the option has its strongest dependence
on the volatility around the ATM point. For the ITM option to end up in the ATM
region, the underlying needs to decrease, which means an increase in the local
volatility due to the anti-correlation. Thus, if the market moves in such a way that the
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option ends up where it has a strong dependence on the volatility, then the volatility
has increased from its original value. This clearly implies a high implied volatility
for ITM options. A similar argument proves that OTM options have low implied
volatility. This argument explains the skew of stochastic volatility models. We also
see that the larger the correlation, the steeper the skew.

To understand the smile effect, assume first that the correlation is zero. As the
processes of the underlying and the volatility are independent, the European option
price can be computed as

U D EŒ.F �K/CjdFt D �FtdWt ; d�t D �t �tdZt �

D E

�

U 0

�Z T

0

�2dt

�ˇ
ˇ
ˇ
ˇd�t D �t�tdZt

�

where U 0 is the non-stochastic volatility price obtained from the Black–Scholes
formula. According to Sect. 3.5, the Black–Scholes formula is a concave function
of the volatility for strikes close to the ATM point. It means that the expectation in
the above expression is lower than the non-stochastic volatility result, see Sect. 3.9.
The same type of argument implies that the expectation is higher than the non-
stochastic volatility result in the convex regions away from the ATM point. This
argument shows that stochastic volatility produces volatility smiles. It also follows
that the smile is more pronounced for larger volatility of volatility.

We now assume that �2.T � t/ � 1 and �2.T � t/ � 1 to mathematically argue
that stochastic volatility models imply both skew and smile. Observe that

U.T / � U.t/C .T � t/Ut

, U.t/ � U.T /C
�
1

2
�2F 2UFF C ���2F UF� C 1

2
�2�2U��

�

.T � t/

Viewing this equation to the lowest order in � and �2.T � t/ makes it possible to
replace the U on the right-hand side with the price U 0 of the corresponding non-
stochastic volatility model, i.e. the Black–Scholes formula. Indeed, the contribution
from the stochastic volatility only leads to higher-order terms. We then see that the
effect of the stochastic volatility on the option price is through the option vanna
U 0
F� and volga U 0

�� , while the effect from the non-stochastic volatility is through
the gamma U 0

FF .
From Sect. 3.5 it follows that the second-order greeks are given by

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

U 0
FF D 1

F�
p
�
n.dC/

U 0
F� D �d�

�
n.dC/

U 0
�� D F

p
�

�
dCd�n.dC/

� D T � t; d˙ D ln.F=K/

�
p
�

˙ 1

2
�

p
�
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with zeros at (
U 0
F� D 0 , d� D 0 , K D Fe��2�=2
U 0
�� D 0 , d˙ D 0 , K D Fe˙�2�=2

The maxima of the greeks with respect to the strike can be computed by taking the
derivative with respect to K:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

U 0
FFK D 1

KF�2�
dCn.dC/

U 0
F�K D n.dC/

K�2
p
�
.1� dCd�/

U 0
��K D n.d�/

�2
.d 2Cd� � d� � dC/

with zeros at

8
ˆ̂
<

ˆ̂
:

U 0
FFK D 0 , dC D 0 , K D Fe�

2�=2

U 0
F�K D 0 , 1� dCd� D 0 , K D Fe˙�p

�
p
1C 1

4 �
2�

U 0
��K D 0 , d2Cd� � d� � dC D 0

The last equation can be solved by using that �2.T � t/ is small:

U 0
��K D 0 , .ln.F=K/C �2�=2/2.ln.F=K/� �2�=2/� 2 ln.F=K/�2� D 0

, .ln.F=K//3 C 1

2
�2�.ln.F=K//2 � 2�2� ln.F=K/ � 0

, K � F or Fe˙�p
2�

From which we get the extrema
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Fig. 7.1 Contribution to
stochastic volatility from
second-order greeks
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In Fig. 7.1 we plot the three terms that are used in expansion of U.t/. The term
proportional to the vanna gives skew around the ATM while the term proportional to
the volga gives a smile effect around the ATM. We also see that the non-stochastic
volatility effect from gamma is much larger than the stochastic volatility effect.
Furthermore, as long as the correlation is not too close to zero, the skew effect from
the vanna is much larger than the smile effect from the volga. Indeed, the gamma
term is of order �0, the vanna term of order �1 and the volga term of order �2. Thus,
there is a second-order contribution from the vanna comparable to the volga term
which we neglected by only looking at the lowest-order effect. This effect and other
higher-order contributions are covered in the next section.

Recall from Sect. 4.3 that the time decay in the option price was compensated by
the gamma gain from the delta hedge. For stochastic volatility models we see from
the differential equation that the time decay is different and is now compensated by
three terms: the gamma gain, the vanna gain and the volga gain. The gamma gain
comes from the non-stochastic volatility effect that the underlying is sold at high
values and bought at low values in the delta hedge. The vanna and volga gain comes
from the volatility hedge.

7.2 Perturbation for Small Volatility of Volatility

The European call option problem

8
<

:
Ut C 1

2
�2F 2UFF C ���2F UF� C 1

2
�2�2U�� D 0

U.t D T / D .F �K/C

can through a change of coordinates

8
<

:

ˆ D U=K

x D ln.F=K/
� D T � t
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be made dimensionless
8
<

:
Dˆ D ���2@x�ˆC 1

2
�2�2@2�ˆ; D D @� � 1

2
�2.@2x � @x/

ˆ.� D 0; x/ D .ex � 1/C

A perturbative expansion in �,

ˆ D ˆ0 C �ˆ1 C �2ˆ2 C :::

gives a chain of PDEs by equating equal powers of �:

Dˆn D ��2@x�ˆ
n�1 C 1

2
�2@2�ˆ

n�2; ˆ�1 D 0 D ˆ�2

with boundary conditions given by

ˆn.� D 0; x/ D
�
.ex � 1/C n D 0

0 n > 0

We conclude that ˆ0 depends on � and on � only through the combination �2� .
Indeed,ˆ0 is the standard Black–Scholes solution. As ˆ0 D ˆ0.�2�/, we obtain

@�ˆ
0 D 2�

�
@�ˆ

0 D ��.@2x � @x/ˆ0

where we used the PDE forˆ0 in the last step.
We now show that the solution can be written of the form

ˆn D
X

i;j;k�0
cni;j;k�

i�j @kxˆ
0

Clearly, this is true for n D 0. We now assume it to be true for n � 2 and n � 1 and
prove it for n. The general case follows by induction. Consider first the situation
when the right-hand side of the PDE is of this form. We are then interested in solving

D‰ D
X

ijk

ci;j;k�
i�j @kxˆ

0

A solution to this equation that satisfies ‰.� D 0/ D 0 is given by

‰ D
X

ijk

1

i
ci�1;j;k� i�j @kxˆ0

Indeed,
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D‰ D
X

ijk

1

i
ci�1;j;kL�i �j @kxˆ0

D
X

ijk

1

i
ci�1;j;kŒL; � i ��j @kxˆ0 C �i�j @kxLˆ0 D

X

ijk

ci;j;k�
i�j @kxˆ

0

We now assume that

ˆm D
X

ijk

cmi;j;k�
i�j @kxˆ

0; m D 0; 1; :::; n � 1

and show that ˆn is of this form. The first thing to be done is to compute the terms
on the right-hand side of the PDE:

��2@x�ˆ
n�1 D

X

ijk

�cn�1
i;j;k�

i�2@��
j @kC1

x ˆ0

D
X

ijk

�cn�1
i;j;k�

i .j�jC1@kC1
x C �jC2@kC1

x ��.@2x � @x//ˆ0

D
X

ijk

�cn�1
i;j;k.j�

i�jC1@kC1
x C �iC1�jC3@kC3

x � �iC1�jC3@kC2
x /ˆ0

D
X

ijk

�
	
.j � 1/cn�1

i;j�1;k�1 C cn�1
i�1;j�3;k�3 � cn�1

i�1;j�3;k�2


�i�j @kxˆ

0

1

2
�2@2�ˆ

n�2 D
X

ijk

1

2
cn�2
i;j;k�

i�2@2��
j @kxˆ

0

D
X

ijk

1

2
cn�2
i;j;k�

i
�
j.j � 1/�j @kx C 2j�jC1@kx��.@2x � @x/

C�jC2@kx@���.@2x � @x/
�
ˆ0

D
X

ijk

1

2
cn�2
i;j;k

�
j.j � 1/�i�j @kx C .2j C 1/� iC1�jC2.@kC2

x � @kC1
x /

C�iC2�jC4.@kC4
x � 2@kC3

x C @kC2
x /

�
ˆ0

D
X

ijk

�
1

2
j.j � 1/cn�2

i;j;k C .j � 3=2/cn�2
i�1;j�2;k�2

� .j � 3=2/cn�2
i�1;j�2;k�1 C 1

2
cn�2
i�2;j�4;k�4

�cn�2
i�2;j�4;k�3 C 1

2
cn�2
i�2;j�4;k�2

�

�i�j @kxˆ
0
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which gives
ˆn D

X

ijk

cni;j;k�
i�j @kxˆ

0

with

icni;j;k D �
	
.j � 1/cn�1

i�1;j�1;k�1 C cn�1
i�2;j�3;k�3 � cn�1

i�2;j�3;k�2



1

2
j.j � 1/cn�2

i�1;j;k C .j � 3=2/cn�2
i�2;j�2;k�2 � .j � 3=2/cn�2

i�2;j�2;k�1

C 1

2
cn�2
i�3;j�4;k�4 � cn�2

i�3;j�4;k�3 C 1

2
cn�2
i�3;j�4;k�2

We now make explicit use of the formula by computing the lowest order termsˆ1

and ˆ2. As c00;0;0 D 1 is the only non-zero coefficient for n D 0, we conclude that
there are only two non-zero coefficients for n D 1: c12;3;3 D �=2 and c12;3;2 D ��=2.
It means that

ˆ1 D 1

2
��2�3.@3x � @2x/ˆ

0

and in the same way we see that

ˆ2 D
�
1

3
�3
1

2
��3�4@4x C 1

4
�
1

2
��4�6@6x � 1

4
�
1

2
��4�6@5x

� 1

3
�3
1

2
��3�4@3x � 1

4
�
1

2
��4�6@5x C 1

4
�
1

2
��4�6@4x

C 1

2

1

2
�2�2@2x � 1

2

1

2
�2�2@x

C1

3

1

2
�3�4@4x � 1

3
�3�4@3x C 1

3

1

2
�3�4@2x

�

ˆ0

D
�
1

2
�2�3�4.@4x � @3x/C 1

8
�2�4�6.@6x � 2@5x C @4x/

C1

4
�2�2.@2x � @x/C 1

6
�3�4.@4x � 2@3x C @2x/

�

ˆ0

Using the recursive formula for c, ˆn can be computed for arbitrary n. In fact,
it is straightforward to implement the formula in a computer to calculate ˆ up to
arbitrary powers.

The implied volatility from these lowest-order terms can be computed through a
Taylor expansion

�imp � �imp;0 C ��imp;1

We equate ˆ.�/ and ˆ0.�imp/:
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ˆ D ˆ0.�imp/ � ˆ0.�imp;0/Cˆ0�.�imp;0/��imp;1

and

ˆ � ˆ0.�/C �ˆ1.�/ D ˆ0.�/C 1

2
���2�3.@3x � @2x/ˆ

0 D ˆ0.�/C 1

2
����2ˆ0x�

up to order �1. Equating the terms with and without epsilon, respectively, gives

8
<̂

:̂

�imp;0 D �

�imp;1 D 1

2
��2�

ˆ0x�
ˆ0�

Using

ˆ0 D exN.dC/ �N.d�/; d˙ D x

�
p
�

˙ 1

2
�

p
�

) ˆ0� D n.d�/
p
�

) ˆ0x� D �d�
�
n.d�/

we obtain

�imp;1 D �1
2
��

p
�d� D �1

2
�.x � �2�=2/

which means that the implied volatility has the lowest-order expression

�imp � � � 1

2
��.x � �2�=2/

Stochastic volatility models are often used with � D 0. The skew from the
correlation is then lost but can be regained by using a non-lognormal process for
the underlying, with the consequence of different dynamics. For the zero correlation
case, ˆ2 is the lowest-order contribution. We then have

ˆ2 D
�
1

4
�2�2.@2x � @x/C 1

6
�3�4.@2x � @x/2

�

ˆ0

D 1

4
��ˆ0� C 1

6
�2�3.@2x � @x/@�ˆ

0

D 1

4
��ˆ0� C 1

6
�2@�

�
�3.@2x � @x/ˆ0

� � 1

2
�2�2

�
@2x � @x

�
ˆ0

D 1

4
��ˆ0� C 1

6
�@�

�
�2ˆ0

� � 1

2
��ˆ0�

D 1

12
��ˆ0� C 1

6
��2ˆ0��
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) ˆ � ˆ0 C 1

12
�2��ˆ0� C 1

6
�2��2ˆ0��

To find the implied volatility we make a Taylor expansion

�imp � �imp;0 C ��imp;1 C �2�imp;2

) ˆ0.�imp/ � ˆ0.�imp;0/Cˆ0�.�imp;0/��imp;1 Cˆ0� .�imp;0/�
2�imp;2

C 1

2
ˆ0�� .�imp;0/�

2�2imp;1

Equating equal powers of � in the equation ˆ.�/ D ˆ0.�imp/ gives

8
ˆ̂
<

ˆ̂
:

�imp;0 D �

�imp;1 D 0

�imp;2 D
1
12
��ˆ0� C 1

6
��2ˆ0��

ˆ0�
D 1

6
��

�

�
ˆ0��
ˆ0�

C 1

2

�

Using

ˆ0� D n.d�/
p
�

) ˆ0�� D
p
�

�
dCd�n.d�/ D

p
�

�

�
x2

�2�
� .�2�=4/

�

n.d�/

we obtain

�imp;2 D 1

6�

�
x2 C �2�=2� .�2�=2/2

�

) �imp � �

�

1C �2

6�2

�
x2 C �2�=2� .�2�=2/2�

�

Observe that the term containing �2 can be viewed as a correction term only if �
is smaller than � or if the option is close to ATM. Unfortunately, this is far from
always the case.

The general second-order expression, with non-zero correlation, can be com-
puted in the same way. The result is

�imp � � � 1

2
��.x � !/C �2

6�

�
x2 C ! � !2

�C �2

2�
�2
�

�1
2
x2 � 1

2
x! C !2

�

where ! D �2�=2. The method we have presented here is easily extendable to
other processes such as the shifted lognormal process or the CEV process. The
CEV process becomes particularly simple to include with the interpolation approach
described at the end of Sect. 5.8.
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7.3 Conditional Expectation Approach

The method described here works only for zero correlation, which means that the
processes of the underlying and the volatility are independent. The expectation
of the payoff can then be done iteratively: the expectation is first taken over the
underlying and then over the volatility. As we know that the expectation with respect
to the underlying is given by the Black–Scholes formula, it remains to compute
the expectation of the Black–Scholes formula with respect to the volatility. This
is usually done by only considering the lowest-order terms in �. Before doing the
actual computation, note that

Z T

0

Ztdt D
Z T

0

.d.Zt t/ � tdZt / D ZT T �
Z T

0

tdZt D
Z T

0

.T � t/dZt

is a normal distribution with mean 0 and variance

Z T

0

.T � t/2dt D 1

3
T 3

which implies that

E

"�Z T

0

Ztdt

�2#

D 1

3
T 3

Let U 0.�/ denote the dependence of the Black–Scholes call formula on the
volatility. We then have

U D EŒ.F �K/CjdFt D �tFtdWt ; d�t D ��tdZt ; dWtdZt D 0�

D E

2

4U 0

0

@

s
1

T

Z T

0

�2t dt

1

A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
d�t D ��tdZt

3

5

D E

2
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0
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s
1

T
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0

e2�Zt��2tdt

1

A

3

5

� E

2
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0
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s
1

T

Z T

0

.1C 2�Zt � �2t C 2�2Z2
t /dt

1

A

3

5

� E

�

U 0

�

� C ��

T

Z T

0

Ztdt C �2�

T

Z T

0

.Z2
t � t/dt

C1

4
�2�T � �2�

2T 2

�Z T

0

Ztdt

�2!#
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� E

�

U 0 C ��

T

Z T

0

ZtdtU
0
� C �2�

T

Z T

0

.Z2
t � t/dtU 0

� C 1

4
�2�T U 0

�

� �
2�

2T 2

�Z T

0

Ztdt

�2

U 0
� C �2�2

2T 2

�Z T

0

Ztdt

�2

U 0
��

#

D U 0 C 1

12
�2�T U 0

� C 1

6
�2�2T U 0

��

The price at an arbitrary time can be obtained by replacing T with � D T � t . As
expected, this is identical to the zero-correlation result of the previous section.

7.4 Fourier Transform Approach

With this approach, we obtain an expression for the option price that is valid for
arbitrary values of the parameters in the model. Thus, the method is not based on
that any of the parameters are small. The result is an expression for the price as a
1-dimensional integral in the complex plane over a closed-form function.

The European call option price can be written as

U D EŒ.F �K/C� D EŒFT �FT >K� �KEŒ�FT >K�

The first term can be computed by changing the numeraire from PtT to St . Using
the martingale measure P � corresponding to the numeraire St gives that

EŒFT�FT >K� D S0

P0T
E�

�
PT T

ST
FT �FT >K

�

D F0E
� Œ�FT >K�

according to the rule of measure change, see the Appendix. It then follows that

U D F0P
�.xT > 0/ �KP.xT > 0/

where xt D ln.Ft=K/.
Using calculus of residues, the Heaviside function can be expressed as

�.x0/ D 1

2
C 1

2


Z 1

�1
eikx

0

ik
dk

from which we obtain
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P.xT > 0/ D
Z 1

�1
p.x0/�.x0/dx0

D 1

2
C 1

2


Z 1

�1
p.x0/

 Z 1

0

eikx
0

ik
dk �

Z 1

0

e�ikx0

ik
dk

!

dx0

D 1

2
C 1




Z 1

0

Re

� Op.k/
ik

�

dk

where Op is the Fourier transform of the PDF:

Op.k/ D
Z 1

�1
p.x0/eikx0

dx0 D EŒeikx�

The computation of the first term in the expression for U is similar, but a measure
change is needed:

Op�.k/DE� �eikxT
� D P0T

S0
E

�
ST

PT T
eikxT

�

D 1

F0
E
�
FT e

ikxT
� D K

F0
E
�
e.1Cik/xT

�

The results so far can be summarized as:
The European option price can be computed by

U D F0P
1 �KP0

Pm D 1

2
C 1




Z 1

0

Re

� Opm.k/
ik

�

dk

Opm.k/ D MmE
�
e.mCik/xT � ; M0 D 1;M1 D K=F0

As we see below, Opm.k/ can often be written as a closed-form expression. Therefore,
all that remains to price options is to compute the above integrals. Note that at this
stage we have not made any assumptions on the model, i.e. the above result is valid
for the lognormal model, the CEV model, stochastic volatility models, etc. We now
compute Opm when the underlying follows a lognormal process.

dxt D �dWt � 1

2
�2dt , xT D x0 C

Z T

0

�dWt � 1

2

Z T
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e
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As � is independent ofZ?, it is possible to compute the expectation with respect to
this variable. It is done by using the fact that

E
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�Z T

0

�tdZ
?
t
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�
1
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Z T
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�2t dt
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for �t any process independent of Z?
t . The equality follows from
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and because the expectation of an odd number of factors on the left-hand side is
equal to zero. We arrive at
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.mCik/

	
�
R T
0 �dZtC 1

2 .mCik/.1��2/ R T0 �2dt� 1
2

R T
0 �2dt


�

D Mme
.mCik/x0E

h
e.mCik/� R T0 �dZtC 1

2 .mCik/..mCik/.1��2/�1/ R T0 �2dt
i

The computations up to this stage are rather general. A lognormal process has
been used for the underlying but no assumptions have been made for the volatility
process. For simplicity, we assume that the volatility satisfies a particularly simple
SDE:
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which gives that
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The expectation can be computed by using the Feynman-Kac theorem and solving
the resulting PDE:

8
<

:
g� D 1

2
�2g�� C b�2g; � D T � t

g.� D 0; �/ D ea�
2

Based on the form of the initial condition, we make the substitution g D ef to
transform the problem into

8
<

:
f� D 1

2
�2f�� C 1

2
�2f 2

� C b�2

f .� D 0; �/ D a�2

We see immediately that the solution has the form

f D A.�/C B.�/� C C.�/�2

Inserting this expression into the PDE gives three ordinary differential equations,
for which the solutions are straightforward. This gives us an analytical expression
for g and therefore also for Opm.k/.

The solution method succeeded because the integral
R T
0 �dZt could be converted

to powers of �T . This, in turn, was possible because of the simple form of the
volatility SDE. If, for instance, the SDE instead had been a CEV process with an
arbitrary skew parameterˇ, the resulting PDE would have been too complex to solve
with a simple ansatz. Even for basic models as the lognormal process, the resulting
PDE becomes rather complex. Despite this, there are a couple of interesting SDEs
for which the method works. For example, adding a mean-reverting drift to the
above volatility SDE does not make the solution procedure much more complicated.
Furthermore, the method works fine on well-known models such as the Heston
model where � D p

� follows a mean-reverting square root process

d�t D �. N�� �t /dt C �
p
�tdZt

The method of solution is then almost identical to the above.
The method we have reviewed is only one of several types of Fourier transform

techniques that can be used for option pricing. A more direct approach is to
first make a substitution of variables in the stochastic volatility SDE so that the
coefficients are independent of the underlying F . Once this is done, a Fourier
transform gives a PDE of one dimension lower. The resulting volatility PDE for call
option pricing has an initial condition that is independent of the volatility. The PDE
is therefore fundamental because it can be used for any type of payoff, as long as the
payoff only depends on the underlyingF and not on the volatility � . If an analytical
solution can be found to the volatility PDE, all that remains is to perform the
inverse Fourier transform. The reason for not devoting more time to this technique
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is that it is similar to the above approach. Indeed, both techniques only work for
special forms of the volatility SDE and the remaining complex integral needs to be
solved numerically. It should also be pointed out that there is a complication in the
convergence of the Fourier transform of the payoff. This problem has been solved
in Lewis (2000) by using a Fourier transform variable with an imaginary part and in
Carr and Madan (1999) by using a damping function.

7.5 Comparison of Methods

In this section we compare the methods that have been discussed. But first we would
like to point out that there are several other ways to solve stochastic volatility models
apart from the ones mentioned in this chapter. We have chosen to focus on the
techniques that we find to be the most theoretically appealing as well as useful from
a practical perspective.

One of the methods that has been neglected in this chapter is the SABR model.
It has a CEV SDE for the underlying and a correlated lognormal SDE for the
volatility. The processes are therefore identical to the ones used in this chapter with
the exception that SABR allows a CEV type of process in the underlying instead
of limiting itself to a lognormal process. There are two components giving rise
to a skew: the CEV parameter and the correlation between the Brownian drivers.
The traditional wisdom is that an appropriate combination of these parameters can
match the skew as well as the dynamics. The reason is that the CEV parameter
implies sticky-strike dynamics while the correlation gives sticky-delta dynamics.
However, as we argue in Sect. 7.7, this statement is not completely sound. Observe
that this does not invalidate the results of the original paper by Hagan et al. (2002)
as the SABR model was intended to be used for single-maturity derivatives and in
Sect. 4.3 we showed that it is then possible to impose arbitrary dynamics, including
the choice made by the inventors of the model.

The SABR model was originally solved using perturbation around the ATM
point. Somewhat confusingly, when referring to the SABR model it is often not
the processes that are meant but rather the processes together with the solution
technique. The perturbative method used in the original paper contains rather
complicated computations and it is hard to obtain anything but the lowest-order
contribution. Even the lowest order term is complicated and we have therefore
chosen to omit a detailed discussion of the SABR model. Furthermore, the SABR
model is known to produce implied volatilities in disagreement with market data
when far away from ATM and the model assumes both a small volatility and a small
volatility of the volatility. Despite the shortcomings, the SABR model is popular
among practitioners and has become the industry standard for pricing many types
of products that have a single payment date (it works less well for multiple payment
dates because of the lack of mean-reversion in the volatility process). In fact, it has
become so popular that the quotes in many markets, e.g. caps and swaptions, follow
the SABR model almost religiously.
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Table 7.1 Stochastic volatility models comparison.

Method General SDEs Exact High performance � ¤ 0

Vol of vol perturbation Yes No Yes Yes
Conditional expectation Yes No Yes No
Fourier transforms No Yes No Yes
SABR No No Yes Yes

The choice of method for solving stochastic volatility models depends on the
purpose. The perturbative expansion technique in Sect. 7.2 is often to prefer because
of the resulting simple expressions which allow for extensions, e.g. to include higher
order terms, to do the perturbation around a different base function or to use a
mean-reverting volatility process. The same comment applies to the conditional
expectation approach, but it requires a zero correlation. The advantage of this
approach is that the computations are even simpler. The Fourier transform approach
is usually applied when the user is not satisfied with perturbative expansions but
prefers analytical solutions. The drawback is that an integral has to be computed
numerically, which can be time consuming. Furthermore, the Fourier transform
technique is only efficient for special types of SDEs.

We compare the techniques of this chapter in Table 7.1. The comparison is made
based on the following criteria: if the techniques can solve general forms of SDEs,
if the solution is exact or perturbative, if an implementation is of high performance
(i.e. if only a few algebraic operations are needed) and whether it is possible to apply
the technique to models with non-zero correlation.

7.6 Relations to Implied and Local Volatility

In Sect. 6.2 we used the forward Kolmogorov equation to find a relation between the
local volatility and the implied volatility. We now use the same technique to find a
corresponding relation for a stochastic volatility model:
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D 1

2
K2

Z

�2T p.T; �T I t; � jFT D K/d�T p.T;KI t; F /

D 1

2
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2
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2
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As expected, the formula gets reduced to Dupire’s formula for non-stochastic
volatility. Unlike the situation for non-stochastic volatility, this formula is not
suitable for calibration. However, by recognizing that the right-hand side is the
local volatility, we obtain a relation (Derman and Kani (1998)) between a stochastic
volatility model and the local volatility model that gives the same option prices

�2loc.T;K/ D EŒ�2T jFT D K�

7.7 Dynamics

The dynamics of stochastic volatility models can be understood from the following
dimensionless formulation of the benchmark model that has been used in this
chapter:

8
<

:
Dˆ D ���2@x�ˆC 1

2
�2�2@2�ˆ; D D @� � 1

2
�2.@2x � @x/

ˆ.� D 0; x/ D .ex � 1/C

The implied volatility can be computed by comparing with the corresponding non-
stochastic volatility model, obtained by setting � D 0. We then see that F and K
enter both expressions only through the combination x D ln.F=K/. It means that
the implied volatility must be of the form �imp.K; F / D �imp.K=F /, i.e. the model
is of sticky-delta type. However, as pointed out in Mercurio and Morini (2008), this
argument is not completely sound. The reason is that a change in F implies a change
in the volatility � as they are correlated. Indeed, assume that F changes by dF . It
means that the driver of the forward changes by dW D dF=�F which implies a
change

d� D ��.�dW C
p
1 � �2dW ?/ D ��

F
dF C ��

p
1 � �2dW ?

As EŒdW ?� D 0, the average change in the volatility is given by ��

F
dF .
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To understand the effect of the volatility change on the dynamics, we use the
lowest-order perturbative expression

�imp.K/ � � � 1

2
��
�
ln.F=K/ � �2�=2�

derived earlier in this chapter. When F changes with dF and � with ��

F
dF , we

obtain the following new expression for the implied volatility to the lowest order:

�new
imp .K/ � � C ��

F
dF � 1

2
��
�
ln..F C dF /=K/� �2�=2�

D ��

F
dF � 1

2
�� ln

�

1C dF

F

�

C �imp.K/ � 1

2

��

F
dF C �imp.K/

Consider the instance of a negative correlation which means that the implied
volatility decreases with the strike. As � < 0, the implied volatility shifts downward
when the underlying increases, i.e. when dF > 0, according to the above formula. It
means that just as for local volatility models, the implied volatility surface moves in
the wrong direction when the underlying is changing. In fact, we see from the above
computation that the change in F gives a sticky-delta behavior while the change
in the volatility, coming from the correlation with the underlying, gives a larger
and opposite change. It is straightforward to verify that the same effect occurs for
positive correlation. Furthermore, it can be shown that the implied volatility moves
in the wrong direction not only for our benchmark model but for any stochastic
volatility model, as long as the volatility of volatility is small. It seems that this
behavior also occurs for finite values of the volatility of volatility, see Mercurio and
Morini (2008) for a specific example.

Observe that the above dynamics effect only occurs for non-zero correlation.
Indeed, when the underlying and the volatility are uncorrelated we clearly obtain a
model with sticky-delta dynamics. We therefore conclude that stochastic volatility
models have one type of dynamics for the skew part and another for the smile part.

When pricing vanillas, it is possible to impose dynamics different from the
inherent behavior of the model, for example, a sticky-delta behavior. Unfortunately,
as we discussed in Sect. 4.3, this does not help when it comes to the pricing of path-
dependent derivatives.

Let us move on to the hedging in a stochastic volatility model. Because of bid-
offer spreads, the vega hedge is more expensive than the delta hedge. Vega hedging
is for this reason sometimes avoided. It is then possible to pick up a part of the
volatility risk through the delta hedge. Indeed, using

dU

dF
D @U

@F
C @U

@�

d�

dF

and the above expression for d� , we see that the best estimate for the delta is
given by



138 7 Stochastic Volatility Models

dU

dF
D @U

@F
C ��

F

@U

@�

We then pick up the change in volatility that is parallel to the driver of the underlying
while the orthogonal part is left unhedged. This technique works best for a high
absolute value of the correlation between the underlying and the volatility.

The danger of using this method is that the correlation is often calibrated to
the implied volatility skew. It can then have a completely different value from the
observed correlation between the underlying and the volatility. Such a mismatch
can lead to a stochastic volatility model with bad dynamics and the correction term
��

F
@U
@�

might do more bad than good.

7.8 Local Stochastic Volatility

It is popular to combine stochastic volatility models with local volatility models.
One example of how this can be done is by letting the forward follow

dFt D �tA.t; Ft /FtdWt

and allowing �t to be stochastic. A popular approach for calibrating such models is
via fixed point iterators, see Ren et al. (2007).
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Chapter 8
Lévy Models

We have seen that modeling the logarithmic returns of the underlying as a Brownian
motion does not capture the rich structure observed in the option markets. It
can explain neither the skew or smile nor the dynamics of the implied volatility
surface. As an attempt at improvement, we extended the Black–Scholes model
in the previous two chapters to local volatility models and stochastic volatility
models. Despite the success and frequent use of these model types around financial
institutions, we have made it clear that they also suffer from the fact that the
dynamics disagree with market behavior. For this reason we now discuss yet another
model class generalizing the Black–Scholes framework.

Instead of using the Brownian motion as the fundamental process in the
modeling, Lévy models use a more general class of processes that include jumps.
The class of Lévy processes is large and the modeling can therefore contain several
free parameters giving a flexibility in the model and the possibility to match skew
and smile accurately. Furthermore, the occurrence of jumps in Lévy processes
makes these models more suitable than stochastic volatility models for describing
skew and smile for short maturities. Unfortunately, there are in general no closed-
form solutions for option prices in Lévy models. Another disadvantage is that these
models are complicated to implement efficiently on a tree structure.

Just as local volatility models and stochastic volatility models can be used
together, it is also possible to combine these models with Lévy models to obtain
the best of the individual models. For example, by replacing the Brownian driver
with a Lévy driver in these model types, we obtain local Lévy models (Carr et al.
(2004)) and stochastic volatility models with jumps (Bates (1996)). One reason for
combining Lévy processes with stochastic volatility models is of practical character:
both models are relatively simple to solve in Fourier space. Therefore, if Fourier
transforming in order to solve a Lévy process, it is possible to add stochastic
volatility without too much extra work.

Because we expect the reader to be familiar with the mathematics of Brownian
motions, we chose not too include this theory in the previous chapters, but instead
summarized it in the Appendix. The mathematics behind Lévy processes is, on the
other hand, not as well known and we have therefore chosen to include it in the main
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text. As a result, this chapter has a more mathematical character. We spend most of
the time on defining Lévy processes and on developing the corresponding stochastic
calculus. We also discuss important special cases and indicate how they can be used
for pricing.

8.1 Lévy Processes

To obtain a richer set of processes, we relax the defining conditions for a Brownian
motion that were given in the Appendix. To understand which of the conditions
that should be kept and which that can be omitted, we consider the example of a
process that describes the returns of a financial product such as an equity stock. For
arbitrage to be absent, the returns over two non-overlapping time periods must be
independent. Furthermore, it is a plausible assumption that the returns over time
periods of equal length should be identically distributed. It therefore makes sense
to keep the conditions that the increments should be independent and stationary, the
latter meaning that the distribution of XtC�t �Xt is independent of t .

As usual, there are violations to every assumption underlying a model. For
instance, financial returns have a tendency to be auto-correlated when viewed at
time scales that are so small that they are comparable with the time for information
to flow through the market. The distribution of the returns of a financial underlying
can also be fundamentally different on certain days, violating the stationarity
assumption. An example is given by days when close-call political elections are
held or when statistical data concerning the financial market is presented. This type
of external information flow into the financial market can also result in jumps of
financial assets.

To include jumps in the underlying process, thereby obtaining a more realistic
description of financial instruments, it is necessary to relax the condition of
continuous paths that was used for Brownian motions. When relaxing this condition,
it is no longer possible to require the increments to be normally distributed. We
therefore see that from a financial context, it makes sense to extend the Brownian
motion to Lévy processes X defined by:

• The increments are stationary and independent
• X.0/ D 0

• For every � > 0 and t � 0, lim�t!0 P .jXtC�t � Xt j > �/ D 0

The second condition has been added for normalization while the third condition
turns out to be useful in the analysis of processes with independent and stationary
increments.

It can be shown that for every Lévy process, there is a modification Y that is
càdlàg. A function f is said to be càdlàg if the limits f .t�/ D lim�t!0 f .t ��t/

and f .tC/ D lim�t!0 f .tC�t/ exists and f .t/ D f .tC/. A process Y is said to be
càdlàg if its paths have this property and it is said to be a modification (or version)
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of X if Yt D Xt a.s. for all t . Motivated by the fact that all Lévy processes have a
càdlàg modification, we restrict ourselves to considering càdlàg Lévy processes.

It is easy to understand that the main defining condition of Lévy processes,
namely that of independent and stationary increments, is fundamental and not
specific to finance. For this reason, Lévy processes have been used in several of
the mayor quantitative disciplines. Thus, there is a long history of work done on
Lévy processes and many powerful theorems exist. This makes them an ideal tool
for financial modeling.

8.2 Lévy-Ito Decomposition

The most well-known Lévy process is the Brownian motion. In fact, the defining
conditions for Lévy processes are satisfied even after including time-independent
drift and volatility in the Brownian motion. However, the defining conditions also
allow for processes with discontinuous paths. To study the fundamental properties
of such processes, we initially focus on pure jump processes, i.e. Lévy processes
that are constant until a jump occurs.

For an arbitrary t and positive integer M , divide the time-interval Œ0; t/ into M
subintervals of equal length: Œ0; t/ D Œ0; t=M/[Œt=M; 2t=M/[: : :[[(M-1)t=M; t/.
A Poisson process is a pure jump process such that the probability of more than one
jump occurring in any of the subinterval tends quickly to zero when M ! 1. It
follows from the independence and stationarity that for large M and small �t , the
probability of a jump occurring in Œ0;�t/ is equal to M times the probability of a
jump occurring in Œ0;�t=M/. This implies that the probability of a jump in Œ0;�t/
equals ��t for �t small. From the stationarity of increments, we conclude that
the probability of a jump in Œt; t C �t/ is equal to ��t for small �t , where � is
independent of t .

ForM large, the probability of k jumps occurring in the interval Œ0; t/ equals the
probability of k of the subintervals to have one jump each and forM�k subintervals
to have no jumps. This gives us

P.Nt D k/ D MŠ

kŠ.M � k/Š

�
�t

M

�k �

1 � �t

M

�M�k

! Mk

kŠ

�
�t

M

�k �

1 � �t

M

�M
! e��t .�t/k

kŠ

when M ! 1. Thus, Nt is Poisson distributed with parameter �t . In particular, it
follows that the expected number of jumps before t equals �t .

We observe that the defining conditions for Lévy processes allow for arbitrary
jump sizes, as long as the jumps are independent. Using the relation Nt D PNt

iD1 1,
the Poisson process can be generalized to
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Xt D
NtX

iD1
Yi

where fYi g are independent and identically distributed (i.i.d.) variables that are
independent of Nt . This process is called a compound Poisson process and is quite
general as we have the freedom in the choice of the jump intensity � as well as the
jump distribution. In fact, it is intuitively clear that the only Lévy processes with
piece-wise constant paths are the compound Poisson processes.

To express the compound Poisson process in a form suitable for generalization to
arbitrary Lévy processes, we introduce the measure �X such that �X.!I Œ0; t �; C / is
the number of jumps with size in C that occurs before t for the path ! 2 	, where
C 
 R is a Borel set. The compound Poisson process can then be written as

Xt D
Z t

0

Z

R

x�X.ds; dx/

For a space E equipped with a �-algebra B, a function � W 	 � B ! RC is said
to be a random measure if (1) for each fixed !, �.!; �/ is a measure on .E;B/ and
(2) for each fixed B 2 B, �.�; B/ is a random variable on 	. Let N� be a �-finite
measure on .E;B/, i.e. a measure such that E can be written as the countable union
of sets with finite measure. The measure � is then said to be a Poisson random
measure with respect to N� if its range is the positive integers and it satisfies

• �.�; B1/, �.�; B2/; : : : ; �.�; Bn/ are independent for disjoint B1, B2, . . . , Bn.
• If N�.B/ < 1, then �.�; B/ is Poisson distributed with density N�.B/.

P .�.�; B/ D k/ D N�.B/k
kŠ

e� N�.B/

We are interested in the situation when E D RC � R contains the time t 2 RC
and the size x 2 R of the jump, and B is the Borel �-algebra on E. We take the
measure N� onE to be the product of the Lebesgue measure on RC and the measure
on R that describes the jump-size distribution. The measure �X for a compounded
Poisson distribution is then a Poisson random measure. The Lévy measure �X counts
the expected number of jumps with a certain jump size:

�X.C / D E Œ�X.�I Œ0; t �; C /� =t

From the independence and stationarity of the increments, it follows that �X does
not depend on t .

Consider the martingale QNt D Nt � �t obtained by subtracting the intensity
from a Poisson process. This is called a compensated Poisson process. In the same
manner, the compensated compound Poisson process can be defined by
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QXt D
Z t

0

Z

R

x Q�X.ds; dx/

where Q�X is the compensated Poisson random measure defined by

Q�X.!I Œ0; t �; C / D �X.!I Œ0; t �; C / � t�X.C /

After this reformulation of (compensated) compound Poisson processes in terms
of (compensated) Poisson random measures, we are prepared for a generalization
to arbitrary Lévy processes. It is well known that for every Lévy process, the
measure �X is a Poisson random measure with Lévy measure �X satisfyingR

R
min

�
1; jxj2� �X.dx/ < 1. Motivated by our discussion of compound Poisson

processes, it is tempting to express the pure jump part of an arbitrary Lévy processes
as
R t
0

R
R
x�X.ds; dx/. Unfortunately, there is a problem with convergence as a

càdlàg function can have an infinite, but countable, number of jumps in any time
interval. The rescue lies in the fact that for any � > 0 and t > 0, there is only a
finite number of jumps in Œ0; t/ with size larger than �. It means that the integralR t
0

R
jxj>� x�X.ds; dx/ contains only a finite number of jumps and is therefore well

defined. Because of the possibility of an infinite number of small jumps, however,
the limit when � ! 0 might not exist. One approach to reach convergence is to
replace �X with the compensated measure Q�X and apply convergence results for
martingales. It can be shown that the integral then converges in the limit of small �,
but there are instead problems with convergence for large values of jxj. The standard
way to solve this dilemma is to separate the integral into two pieces where �X is
used for jxj > 1 and Q�X for jxj � 1. We then obtain the convergent result

Z t

0

Z

jxj>1
x�X.ds; dx/C

Z t

0

Z

jxj<1
x Q�X.ds; dx/

The above expression describes the jump part of the Lévy process. For an
expression for the most general Lévy process, it turns out to be sufficient to
add an independent Brownian motion with drift. This is the idea of the Lévy-Ito
decomposition that states that for an arbitrary Lévy process there exist constants 
and � such that Xt is a.s. equal to

 t C �Wt C
Z t

0

Z

jxj>1
x�.ds; dx/C

Z t

0

Z

jxj<1
x Q�.ds; dx/

where� is a Poisson random measure, Q� D ��� is the corresponding compensated
measure and the Lévy measure satisfies

R
R

min
�
1; jxj2� �.dx/ < 1. Wt is a

standard Brownian motion that is independent of �.
It can be shown that the jump part of a Lévy process is of finite variation if and

only if
R

R
min .1; jxj/ �.dx/ < 1. The truncation of small jumps is therefore not

needed and the Lévy-Ito decomposition can be written as
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 t C �Wt C
Z t

0

Z

R

x�.ds; dx/

As we see later, the distribution of a Lévy process is in general easier to
analyze in Fourier space. For this purpose, we use Lévy-Ito decomposition to
derive the characteristic function for the most general Lévy process. As usual, we
start by considering a compound Poisson process Xt D PNt

iD1 Yi , which has the
characteristic function

ˆXt .k/ D E
h
eik

PNt
iD1 Yi

i
D

1X

jD0
P.Nt D j /E

h
eik

Pj
iD1 Yi

i

D
1X

jD0
e��t .�t/j

j Š
E
�
eikY

�j D exp
�
�t
�
E
�
eikY

� � 1��

D exp

�

t

Z

R

�
eikx � 1

�
�pY .dx/

�

D exp

�

t

Z

R

�
eikx � 1� �X.dx/

�

As the terms in the Lévy-Ito decomposition are independent, it can be shown that
for a general Lévy process we have

ˆXt .k/ D et‰.k/

where the characteristic exponent is given by

‰.k/ D ik � 1

2
�2k2 C

Z

R

�
eikx � 1 � ikx�jxj�1

�
�X.dx/

This expression for the characteristic function is called the Lévy-Khinchin represen-
tation. It is defined by the so-called characteristic triplet .�2; �; /.

8.3 Stochastic Calculus

Before discussing stochastic calculus for Lévy processes, we recall that the cor-
responding calculus for Brownian motion was in fact developed in the Appendix
for the more general class of continuous semimartingales. The reason was that,
as opposed to Brownian motions and Lévy processes, this class is closed under
the operations of interest to us, for instance, the application of a second-order
differentiable function. It would therefore make sense to develop stochastic calculus
for non-continuous semimartigales, which is the corresponding generalization of
Lévy processes. Indeed, the stochastic calculus for this class is similar to that for
continuous semimartingales. However, the class of non-continuous semimartingales
is a bit too general for our purposes (the same can also be said for the continuous
semimartingale generalization of Brownian motions but we have anyway chosen
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to include it because we assume that most readers are somewhat familiar with this
topic) and we therefore only develop stochastic calculus for processes of the form

Xt D
Z t

0

sds C
Z t

0

�sdWs C
Z t

0

Z

jxj>1
ısx�.ds; dx/C

Z t

0

Z

jxj�1
ısx Q�.ds; dx/

which clearly generalizes Lévy processes.
For Xt of the above form and f a C2 function, Ito’s lemma reads:

f .Xt / D f .X0/C
Z t

0

f 0.Xs�/dXs C 1

2

Z t

0

�2s f
00.Xs/ds

C
Z t

0

Z

R

�
f .Xs� C ısx/ � f .Xs/� ısxf

0.Xs�/
�
�.ds; dx/

This formula can be understood by first considering the situation when X does not
have any jumps. The last term then vanishes and the first three terms are exactly
what we had expected from the continuous version of Ito’s lemma. On the other
hand, if X is a pure jump process, i.e. Xt D R t

0

R
R
ısx�.ds; dx/, then clearly

f .Xt/ D f .X0/C
Z t

0

Z

R

.f .Xs� C ısx/� f .Xs//�.ds; dx/

This also agrees with the above version of Ito’s lemma as the second term cancels the
last term in the double integral. The general formula is obtained by combining the
special cases when X has no jumps and when it is a pure jump process. Inserting
the expression for dXt gives

f .Xt /Df .X0/C
Z t

0

�sf
0.Xs�/dWs C

Z t

0

Z

R

.f .Xs� C ısx/ � f .Xs// Q�.ds; dx/

C
Z t

0

sf
0.Xs�/ds C 1

2

Z t

0

�2s f
00.Xs/ds

C
Z t

0

Z

R

�
f .Xs� C ısx/� f .Xs/� ısxf

0.Xs�/�jxj�1
�
�.ds; dx/

where the first line is the martingale part of f .Xt/ and the second and third line are
the bounded-variation part.

We now consider two useful applications of Ito’s lemma. The first regards the
instance when Yt D f .Xt / D eXt , which gives

dYt

Yt�
D �tdWt C

Z

R

�
eıtx � 1

� Q�.dt; dx/C tdt C 1

2
�2t dt

C
Z

R

�
eıtx � 1 � ıtx�jxj�1

�
�.dt; dx/
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As an example of Ito’s lemma in higher dimensions, we consider the product XY
where X is as above and Y is given by a corresponding expression:

Yt D
Z t

0

 0
sds C

Z t

0

� 0
sdWs C

Z t

0

Z

jxj>1
ı0

sx�.ds; dx/C
Z t

0

Z

jxj�1
ı0

sx Q�.ds; dx/

In the same way as in the 1-dimensional case, we obtain

XtYt D X0Y0 C
Z t

0

Xs�dYs C
Z t

0

Ys�dXs C
Z t

0

�s�
0
sds
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Z t

0
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�
.Xs� C ısx/.Ys� C ı0

sx/� Xs�Ys�

� ı0
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�.ds; dx/

D X0Y0 C
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Z t

0

Ys�dXs C
Z t

0

�s�
0
sds C

Z t

0

Z

R

ısxı
0
sx�.ds; dx/

For a useful application of the product formula, let

Xt D
Z t

0

Z

R

ıtx .�.dt; dx/ � y.t; x/�.dt; dx//

for a positive function y and assume that Mt satisfies

dMt

Mt�

D  t�tdWt C
Z

R

.y.t; x/ � 1/ Q�.dt; dx/

It follows that

XtMt D X0M0 C
Z t

0

Xs�dMs C
Z t

0
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Z

R

ısx .�.ds; dx/� y.s; x/�.ds; dx//
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Z
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ısx.y.s; x/ � 1/�.ds; dx/

D X0M0 C
Z t

0

Xs�dMs C
Z t

0

Ms�

Z

R

ısxy.s; x/ Q�.ds; dx/

which means thatXtMt is a martingale. Therefore, ifM describes a measure change
Mt D dQt

dPt
, then Xt is a Q-martingale. It implies that

�Q.dt; dx/ D y.t; x/�P .dt; dx/

Consider the relation
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Xt D
Z t

0

sds C
Z t

0

�sdWs C
Z t

0

Z

jxj>1

ısx�.ds; dx/C
Z t

0

Z

jxj�1

ısx Q�.ds; dx/

D
Z t

0

sds C
Z t

0

�sd

�

Ws �
Z s

0

 u�udu

�

C
Z t

0

�2s  sds C
Z t

0

Z

jxj>1

ısx�.ds; dx/

C
Z t

0

Z

jxj�1

ısx .�.ds; dx/ � y.s; x/�.ds; dx//

C
Z t

0

Z

jxj�1

ısx .y.s; x/ � 1/ �.ds; dx/

As Wt � R t
0
 u�udu is a Q-Brownian motion, Xt has the Q-triple

8
<̂

:̂


Q
t D t C �2t  t C R

jxj�1 ıtx.y.t; x/ � 1/�.dt; dx/=dt

�
Q
t D �t

�Q.dt; dx/ D y.t; x/�.dt; dx/

8.4 Examples of Lévy Processes

In Sect. 8.2 we gave some important examples of Lévy processes in terms of
Brownian motions with drift and compound Poisson processes. In this section
we consider some other examples of Lévy processes that are useful in financial
modeling.

A random variable that for every positive integer M can be written as a sum of
M i.i.d. variables is said to be infinitely divisible. This property is satisfied for a
Lévy process X at arbitrary times t since

Xt D
MX

iD1

�
Xit=M � X.i�1/t=M

�

Furthermore, it can be shown that for every infinitely divisible distribution and
t > 0, there exists a Lévy processX such thatXt has this distribution. The existence
of a Lévy-Khinchin representation for infinitely divisible distributions is therefore a
consequence of the results in Sect. 8.2.

In a decomposition X D PM
iD1 X.i/ of an infinitely divisible distribution, the

distribution of the i.i.d. componentsX.i/ can be fundamentally different from that of
X . In certain quantitative branches, there is no reference time scale which means that
it should not be possible to determine the value of the time t from the distribution
of Xt . This motivates us to consider distributions with the property that for any M ,PM

iD1 X.i/ has the same distribution as bX.0/ C c if fX.i/gi�1 are i.i.d. variables
with the same distribution as X.0/. Thus, summing up i.i.d. distributions leads to
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nothing but a scaled and translated version of the distribution. We conclude that the
characteristic function of X D X.0/ must be of the form ˆX.k/

M D ˆX.kb/e
ikc ,

where b and c depend onM . This property can be generalized to a continuous-time
process by replacing the integerM with an arbitrary positive number a, giving

ˆX.k/
a D ˆX.kb/e

ikc

Distributions with this property are said to be stable. It can be shown that b must be
of the form a1=˛ for ˛ 2 .0; 2�.

For ˛ D 2 it can be proven that � D 0 in the Lévy-Khinchin representation,
which means that the distribution is given by a normal random variable. For ˛ < 2,
it follows that � D 0 in the characteristic triple and

�.dx/ D
�
c1

x˛C1 �x>0 C c2

jxj˛C1�x<0
�

dx

for some positive constants c1 and c2, i.e. the tail decay is that of a Pareto
distribution. The characteristic function of a stable distribution can be written as

ˆX.k/ D eikC�˛.ik!�jkj˛/; ! D
8
<

:

�ˇ 2



ln jkj; ˛ D 1

ˇjkj˛�1 tan

˛

2
; ˛ ¤ 1

for � � 0, ˇ 2 Œ�1; 1� and  2 R. It can be shown that only for 1 < ˛ � 2 it
holds that EŒjX j� < 1 and only for ˛ D 2 we have EŒjX j2� < 1. Closed-form
expressions for the PDFs of the stable distributions are known in three cases:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Gaussian distribution.˛ D 2/ W 1

2�
p


e�.x�/2=4�2

Cachy distribution .˛ D 1; ˇ D 0/ W �


 ..x � /2 C �2/

Lévy distribution .˛ D 1=2; ˇ D 1/ W
	 �

2



 1
2 1

.x � /3=2 e
��=2.x�/

�x>

A Lévy process is said to be stable if Xat equals a1=˛Xt C ct in distribution.
Stable Lévy processes are often referred to as Lévy flights. The distribution of Xt is
then stable for any t > 0. Conversely, for every stable distribution and t > 0, there
exists a Lévy flight X such that Xt has this distribution.

Recall that there exist fundamental time scales in finance, for example, given by
the time it takes for information to flow through the market. It should therefore come
as no surprise that the distributions of the returns from financial instruments have
been found to depend on the observing time period. An example of this is that the
tails of the distributions are typically much fatter for short time intervals. Therefore,
despite their attractive theoretical properties and application in various scientific
areas, Lévy flights are not ideal for mathematical finance. Despite this, they have
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anyway been used as modeling tools in certain branches of mathematical finance,
e.g. risk measurement. Unfortunately, their applicability to derivatives pricing is
limited because of divergence problems originating in the infinite second moment.
We therefore spend the remaining part of this section on finding alternative Lévy
processes useful for financial modeling.

A popular technique for constructing interesting processes in mathematical
finance is to take a familiar process Xt and then change the flow of time from t

to �.t/ for some function � . We have given several examples of this technique, see,
for example, Chaps. 5 and 13. We now generalize the method by allowing � to be
a stochastic process. In fact, we let � be a Lévy process as it is then obviously true
that X�.t/ is a Lévy process if Xt is a Lévy process. To not deviate too much from
standard Gaussian modeling, we restrict the analysis to X being a Brownian motion
with drift:  t C �Wt .

As time is an increasing process, we must restrict ourselves to � being a
subordinator, i.e. a Lévy process that is increasing: �.t1/ � �.t2/ a.s. when t1 � t2.
Clearly, such a process cannot have a diffusion part, � D 0, and must only allow
positive jumps, � ..�1; 0// D 0. It can be proven that the positive jumps must be
of finite variation, which implies that the characteristic exponent can be written as

‰.k/ D ik C
Z 1

0

�
eikx � 1� �.dx/

for  � 0. The integral can be analytically continued to the positive part of the real
axis, which gives a well-defined moment generating function

M�.k/ D E
�
ek�
� D exp

�

k � i

Z 1

0

�
eikx � 1� �.dx/

�

Clearly, a Lévy process that is positive, Xt > 0 a.s. for any fixed t , is a
subordinator. Therefore, one way to construct subordinators is to find positive and
infinitely divisible distributions. For this reason, we consider the inverse Gaussian
distribution X with the PDF

p.x/ D ıp
2
x3

e�.ı�x/2=2x ; x > 0

The name can be a bit misleading as the distribution is not the inverse of the
Gaussian distribution

p.x/ D 1p
2
�2t

e�.x��t/2=2�2t

in the usual sense. The explanation for the name is that the Gaussian distribution
describes the location in space of a drifted Brownian motion at a fixed time while
the inverse Gaussian distribution describes the location in time when a positive level
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in space is first hit. The above formula can be obtained from the Appendix after the
transformation ı D m=� ,  D �=� .

Rewriting the inverse Gaussian distribution as

p.x/ D ıeıp
2

x�3=2e�.2xCı2x�1/=2

and noting the similarity with the modified Bessel function

K�.z/ D 1

2

Z 1

0

y��1e�z.yCy�1/=2dy

see Watson (1995), for example, the inverse Gaussian distribution can be general-
ized to

p.x/ D .=ı/�

2K�.ı/
x��1e�.2xCı2x�1/=2; x > 0

This is the generalized inverse Gaussian distribution and it does not only generalize
the inverse Gaussian distribution but also the gamma distribution. This statement
can be proven by letting ı ! 0 and using the small z asymptotic expression

K�.z/ � 1

2
�.�/ .z=2/�� ; � > 0

to obtain

p.x/ D
�
2

2

��
1

�.�/
x��1e�2x=2

which is the gamma distribution with parameters .�; 2=2/. If X � ��; 1�
is gamma

distributed, the distribution of 1=X is

p.x/ D ��

�.�/
.1=x/�C1e��=x ; x > 0

This inverse gamma distribution can also be obtained as a special case of the
generalized inverse Gaussian distribution. Indeed, when � < 0 and  ! 0 we
can use K�.z/ D K��.z/ to obtain

p.x/ D
�
2

ı2

��
1

�.��/x
��1e�ı2=2x; x > 0

It is well known, see Barndorff-Nielsen and Halgreen (1977), that the generalized
inverse Gaussian distribution is infinitely divisible and can therefore be used in
the construction of a subordinator. We use the subordinator for a drifted Brownian
motion according to

Xt D �t C ˇ�.t/CW�.t/
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where we assume that �.1/ is generalized inverse Gaussian distributed with
parameters �, ı and

p
˛2 � ˇ2 and is independent of W . The PDF at t D 1 is

given by

pX1.x/ D P .X1 2 Œx; x C dx// =dx

D P
�
W�.1/ 2 Œx � � � ˇ�.1/; x � � � ˇ�.1/C dx/

�
=dx

D
Z 1

0

p�.1/.y/
1p
2
y

e�.x���ˇy/2=2ydy

which through a straightforward computation can be seen to be equal to

a.�; ˛; ˇ; ı; �/
�
ı2 C .x � �/2�.��1=2/=2

eˇ.x��/K�� 1
2

	
˛
p
ı2 C .x � �/2




where

a.�; ˛; ˇ; ı; �/ D
�
˛2 � ˇ2��=2

p
2
˛��1=2ı�K�

	
ı
p
˛2 � ˇ2




This is known as the generalized hyperbolic distribution with parameter values
.�; ˛; ˇ; ı; �/.

The moment generating function for the generalized inverse Gaussian is obvi-
ously equal to

MGIG.k/ D
�

2

2 � 2k

��=2 K�

	
ı
p
2 � 2k




K� .ı/

from which we obtain the characteristic function

ˆGH.�;˛;ˇ;ı;�/.k/ D ei�kM
GIG.�;ı;

p
˛2�ˇ2/.k

2=2C iˇk/

D ei�k
�

˛2 � ˇ2
˛2 � .ˇ C ik/2

��=2 K�

	
ı
p
˛2 � .ˇ C ik/2




K�

	
ı
p
˛2 � ˇ2




for the generalized hyperbolic distribution. We conclude that the generalized
inverse Gaussian distribution and the generalized hyperbolic distribution have finite
moments of arbitrary orders.

Consider the situation when the subordinator �.t/ is of the form �2t t for some
stochastic process �t for which �1 is generalized inverse Gaussian distributed. As
W�2t t

has the same distribution as �tWt , it follows that

Xt D �t C �t .�tˇt CWt/
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in distribution. A consequence of the above is therefore that this stochastic volatility
process has a generalized hyperbolic distribution at t D 1.

The Lévy measure for the generalized inverse Gaussian distribution is equal to

�GIG.dx/ D e�2x=2

x

0

@
Z 1

0

e�xy


2y
	
J 2j�j

�
ı
p
2y
�C Y 2j�j

�
ı
p
2y
�
dy C ����0

1

A dx

according to Barndorff-Nielsen and Shephard (2001). It implies that

�GH.dx/ D eˇx

jxj

0

@
Z 1

0

e�
p
2yC˛2jxj


2y
	
J 2j�j

�
ı
p
2y
�C Y 2j�j

�
ı
p
2y
�
dy C �e�˛jxj

���0

1

A dx

where J� and Y� are the first and second kind Bessel functions.
Having five free parameters, the generalized hyperbolic distribution can generate

a large class of distributions and is therefore useful in financial modeling. It is in
general not necessary to use all these degrees of freedom and we now consider
some instances with fewer parameters for which the modeling is simpler.

Observe that the Bessel function K� that appears in the expression for the
generalized hyperbolic distribution becomes particularly simple when ı ! 0.
Motivated by this fact, we consider the situation when ı D 0, � D 0 and � > 0.
This is the variance gamma distribution and the characteristic function is given by

ˆ.k/ D
�

1

1 � i�vk C �2vk2=2

�1=v

with v D 1=�, � D 2ˇ�=.˛2 � ˇ2/ and � D p
2�=.˛2 � ˇ2/.

From arguments given earlier in this section, we see that Xt D ˇ�.t/ C W�.t/

gives a variance gamma distributed X1 for �.1/ gamma distributed with parameters
.�; 2=.˛2 �ˇ2//. We generalize this result by consideringXt D ��.t/C!W�.t/ for
�.t/ a gamma process, i.e. �.t/ is a gamma distributed Lévy process:

p�.t/ D bt=v

�.t=v/
xt=v�1e�bx

With straightforward computations we see that the characteristic function equals

E
�
eik�.t/

� D
�

1

1 � ik=b

�t=v

and that the right-hand side can be expressed as

exp

�

t

Z 1

0

�
eikx � 1� v�1x�1e�bxdx

�
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We conclude that the Lévy measure is given by

�.dx/ D v�1x�1e�bx
�x>0dx

The characteristic function for the gamma subordinated process is equal to

ˆXt .k/ D
�

1

1 � i�k=b C w2k2=2b

�t=v

Apart from the choice b D 1=v�2, � D �=�2, ! D 1 used above, the variance
gamma distribution can also be obtained from the parametrization b D 1=v, � D � ,
! D � . The latter is the most commonly used representation for the variance gamma
process, i.e. the Lévy process that is variance gamma distributed at t D 1.

Observe that the characteristic function decomposes as

�
1

1 � i�vk C �2vk2=2

�t=v

D
�

1

1 � i�Ck

�t=v �
1

1 � i��k

�t=v

where

�˙ D
r
�2v2

4
C �2v

2
˙ �v

2

from which it follows that the variance gamma process can be written as the
difference of two gamma processes with parameters .1=v; �C/ and .1=v; ��/,
respectively. Using this representation, it was shown in Madan et al. (1998) that
the Lévy measure for the variance gamma process is equal to

�.dx/ D e�jxj=�

vjxj dx; � D
�
�C x > 0

�� x < 0

Based on this expression, the variance gamma process was generalized in Carr et al.
(2002) to a process defined by

�.dx/ D

8
ˆ̂
<

ˆ̂
:

C
e�M jxj

jxj1CY x > 0

C
e�Gjxj

jxj1CY x < 0

where C;G;M > 0 and Y 2 .�1; 2/. For Y < 0 the characteristic function is
given by

ˆ.k/ D exp
�
C�.�Y / �.M � ik/Y �MY C .G C ik/Y �GY

��
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Another important subclass of the generalized hyperbolic distributions is the
class of normal inverse Gaussian distributions. They are obtained by using inverse
Gaussian distributions instead of generalized inverse Gaussian distributions in the
generation of the generalized hyperbolic distributions, which means that � D �1=2.
The characteristic function is

ˆ.k/ D ei�k
eı

p
˛2�ˇ2

eı
p
˛2�.ˇCik/2

from which it follows that the sum of two random variables, which have normal
inverse Gaussian distributions with parameters .˛; ˇ; ı1; �1/ and .˛; ˇ; ı2; �2/, has
a normal inverse Gaussian distribution with parameters .˛; ˇ; ı1 C ı2; �1 C �2/.
Thus, unlike the class of generalized hyperbolic distributions, this subclass is closed
under convolutions.

Finally, we would like to mention the subclass of hyperbolic distributions. They
are obtained in the special case when � D 1:

p.x/ D
p
˛2 � ˇ2

2˛ıK1

	
ı
p
˛2 � ˇ2


e�˛
p
ı2C.x��/2Cˇ.x��/

8.5 Pricing

The pricing of derivatives can as usual be done by assuming that the quotient of the
underlying and the numeraire is a martingale. Unfortunately, derivatives cannot be
perfectly replicated in markets that support jumps. Markets for which replication is
not possible are called incomplete. In this situation there is no unique derivatives
price and the pricing can be done in various ways, including minimizing (under
some appropriate norm) the absolute value of the terminal payoff of being long the
derivative and short the replicating strategy.

8.6 Dynamics

Consider the forward European call option price V D EŒ.F � K/C�, modeled
with the lognormal SDE dFt D �FtdWt . Dividing by K in both the SDE and the
pricing equation, we conclude that V=K depends on F and K only through the
moneyness x D F=K . This result also holds true when replacing W with another
driving process, for instance, a Lévy process. To find the implied volatility of a Lévy
model, we need to solve for �imp in the equation

V Lévy.F;K/ D V BS.F;K; �imp.F;K//
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Dividing byK , we obtain

V Lévy

K
.x/ D V BS

K
.x; �imp.F;K//

from which we see that �imp must be a function depending only on the moneyness x.
We conclude that lognormal Lévy models have sticky-delta dynamics. Obviously, if
using alternative SDEs such as of local volatility type, � D �.F /, different dynamics
are obtained in analogy to the corresponding results for Brownian motions, see
Sect. 6.4.
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Part III
Exotic Derivatives



Chapter 9
Path-Dependent Derivatives

Path-dependent derivatives have payoffs that not only depend on the value ST of the
underlying at maturity but also on the values fStg0�t�T attained up to maturity. They
can broadly be classified into two categories: weakly and strongly path dependent.
The former only depends on the value of the underlying at one or a few instances
in time. These points in time might not be known today but can be determined
by the future path taken by the underlying. An example is given by the derivative
that pays the difference between the maximum value obtained in the time up to
maturity and the value at maturity. The maximum only occurs at one instance
in time, but viewed from today, we do not know when that will be. In contrast,
a strongly path-dependent derivative depends on the whole path. An example is
given by Asian options that have payoffs linked to the average of fStg0�t�T when
monitored daily.

Weakly path-dependent derivatives can sometimes be priced with tools similar to
those used for vanilla options. For instance, barrier options can be priced by adding
boundary conditions to the same PDE used for vanillas. For strongly path-dependent
derivatives, on the other hand, the pricing is fundamentally different. Indeed, it is
often necessary to introduce variables that depend on the path. For instance, Asian
options are usually modeled with the average value of the path as an extra variable.
This leads to a PDE of one dimension higher.

Path-dependent derivatives are often priced numerically. The pricing is then done
with a model calibrated to vanilla prices. If skew and smile effects are included, the
calibration to vanilla instruments is typically done with perturbative methods or
through the evaluation of low-dimensional integrals. The model is typically solved
by simulating a SDE or by a numerical solution of a PDE. The reason for using
numerical solutions for path-dependent derivatives is twofold: first of all, it is often
hard to find suitable models for path-dependent options that can be solved by low-
dimensional integrals, by simple perturbative techniques or other semi-analytical
methods. Secondly, the types of path-dependent products that are popular change
from client to client and from year to year. This is in contrast to vanilla products that
are few and remain the same over the years. It is therefore useful to have generic
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methods (by simulating SDEs or solving PDEs) for path-dependent derivatives
rather than tailor-made methods.

We saw in Chap. 3 that the derivatives pricing problem can be formulated either
in terms of SDEs or PDEs. From a theoretical point of view, these equivalent
formulations complement each other: it is sometimes easier to analyze a pricing
problem in terms of SDEs and sometimes in terms of PDEs. The same argument
applies to numerical pricing. The main numerical difference between the two
approaches is that SDEs are simulated forward in time while PDEs compute the
price backwards in time from maturity to the pricing date. The PDE computations
can be done either by using a finite difference approximation or through a tree
structure using an explicit expression for the Green’s function. Several investment
banks nowadays use a version of PDE solver consisting of recombining trees
that are generalizations of binomial and trinomial trees with equally many nodes
for each time slice. When going backwards in time and computing expectations,
splines are used to connect the node points and the integrals can be solved by fast
methods, usually with Gaussian quadrature. The high accuracy allows for large
time steps with a substantial performance increase compared to traditional PDE
solvers.

With experience, one learns for which derivatives SDEs are best suited and for
which PDEs should be used. The basic guidelines are: PDEs usually perform better
for low-dimensional problems, i.e. when there are only a small number of variables
to track. Because of the technique of working backwards in time, PDE methods
handle American and Bermudan features with ease. Furthermore, they return stable
risk values. The SDE approach, on the other hand, is better performing in higher
dimensions (typically equal to 3 or higher). Also, this approach is often simpler to
implement and can be easily generalized to different types of payoffs.

There is a vast array of publications on the implementation of SDEs and PDEs,
and we advise the interested reader to consult these. Path-dependent derivatives are
sometimes also priced semi-analytically, but as there is currently no consensus on
preferred methods, we have decided not to include these methods in the book.
We instead focus on formulating the problems mathematically and solve them
analytically if possible. The aim is not to provide state-of-the-art formulae but rather
to help the reader to develop an intuition about path-dependent derivatives.

We use the constant-parameter lognormal SDE as an illustrating model. Please be
aware of the fact that limiting ourselves to a lognormal model means that we do not
have any control of the dynamics (which, as we pointed out in Sect. 4.3, is important
for the pricing of path-dependent derivatives) or the possibility to calibrate to the
skew and the smile. Furthermore, using time-independent parameters means that it
is only possible to calibrate to a single maturity. Because of the limited space in this
book, we only consider a small selection of products consisting of barrier options,
variance swaps, American options and callable products. We believe that this set of
products is large enough for the reader to gain familiarity with the techniques and
to be able to price general path-dependent products.

Just as we did in Sect. 2.4 for European call options, it is possible to derive
no-arbitrage conditions for path-dependent derivatives. For instance, a knock-out
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option must be worth more than the underlying European option and the price must
increase the further away the barrier is from the current value of the underlying.
Apart from the brief discussion of barrier options in Chap. 2, we have chosen not
to write down the no-arbitrage conditions and parity relations that the various path-
dependent derivatives have to satisfy but we instead rely on the reader to work out
the details when pricing such contracts.

9.1 Barrier Options

We price a barrier option that knocks out if the underlying goes below an
exponentially increasing or decreasing barrier, i.e. if St <Be��.T�t /. The usual
situation of a constant barrier can be obtained from the special case �D 0. For
generality, we assume the barrier to be equipped with a rebate, which means that
an amount w.t/ is paid to the option holder if the barrier is hit. Depending on the
contract specifications, the rebate w.t/ can be paid either at the time t when the
barrier is hit or at maturity. We assume the former, meaning that the latter case
can be obtained by redefining w.t/�! w.t/e�r.T�t /. We price the option with a
lognormal process and initially follow the corresponding approach for ordinary call
options in Sects. 3.2 and 3.4.

The PDE in Sect. 3.2 is formulated in terms of the forward while the barrier
condition is in terms of the underlying itself. To avoid this problem we assume a
constant interest rate r up to the maturity T . The barrier then has the form Ft D
Be.r��/.T�t /.

We assume that a payment of qSdt is received if holding the underlying during
Œt; t C dt�. This payment can represent continuous dividends or a foreign interest
rate yield. Generalizing the derivation in Sect. 3.2 gives an extra term �qF UF in
the PDE. The problem then reads

8
<̂

:̂

Ut � qF UF C 1
2
�2F 2UFF D 0

U.t D T; F / D .F �K/C
U
�
t; Ft D Be.r��/.T�t /� D w.t/

for Ft > Be.r��/.T�t /.
We change variables according to

U.t; F / D Ke˛zCˇ�ˆ.�; z/

where
(
� D �2.T � t/

z D ln
�
Fe�.r��/.T�t /=K

� D ln.F=K/� .r � �/.T � t/
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It implies that

Ut D
�
@�

@t
@� C @z

@t
@z

�

U D ���2@� C .r � �/@z
�
U

D Ke˛zCˇ� ���2.ˇ C @� /C .r � �/.˛ C @z/
�
ˆ

UF D
�
@�

@F
@� C @z

@F
@z

�

U D 1

F
@zU D 1

F
Ke˛zCˇ� .˛ C @z/ˆ

) UFF D 1

F 2

��@z C @2z
�
U

D 1

F 2
Ke˛zCˇ� ��˛ � @z C ˛2 C 2˛@z C @2z

�
ˆ

The ˆz term in the PDE vanishes if ˛D 1
2

� r�q��
�2

while the ˆ term vanishes if
ˇD � ˛2=2. With these choices we obtain the heat equation. Together with the
terminal condition and the boundary condition:

(
.F �K/C D U.t D T; F / D Ke˛zˆ.� D 0; z/

w.t/ D U
�
t; Ft D Be.r��/.T�t /� D Ke˛ ln.B=K/�˛2�=2ˆ.�; ln.B=K//

we obtain

8
<̂

:̂

ˆ� � 1
2
ˆzz D 0

ˆ.� D 0; z/ D e�˛z .ez � 1/C
ˆ.�; z D QB/ D Qw.�/

where QB D ln.B=K/ and Qw.�/ D 1
K
e�˛ QBC˛2�=2w.T � �=�2/.

We use the Green’s function p.�; zI � 0; z0/, defined by

(
p� � 1

2
pzz D 0

p.� D � 0; zI � 0; z0/ D ı.z � z0/

This should be compared with Sect. 3.4 in which we used the related function
Qp.�; z; z0/ D p.� C � 0; zI � 0; z0/ that satisfies the initial condition

Qp.� D 0; z; z0/ D ı.z � z0/

The initial condition can be moved to the PDE, resulting in

Qp� � 1

2
Qpzz D ı.�/ı.z � z0/
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This follows since if we apply the Laplace transform

L f Qp.�/g D
Z 1

0

e�su Qp.u/du

to both PDEs, the identical result

�ı.z � z0/C sL f Qp.�/g � 1

2
@2zL f Qp.�/g D 0

is obtained. According to Lerch’s theorem, functions with equal Laplace transforms
are unique up to null function, i.e. functions satisfying

Z t

0

f .t 0/dt 0 D 0; 8t

We therefore obtain an equivalent definition of the Green’s function p:

p� � 1

2
pzz D ı.� � � 0/ı.z � z0/

Following the approach in Sect. 3.7, we see that the equation in the backward
coordinates reads

�p� 0 � 1

2
pz0z0 D ı.� � � 0/ı.z � z0/

Alternatively, it can be verified from the expression below for p that p� 0 D �p� and
pz0z0 D pzz are satisfied.

The following general computation can now be done:

ˆ.�; z/ D
Z 1

0

Z 1

QB
ı.� � � 0/ı.z � z0/ˆ.� 0; z0/d� 0d z0

D
Z 1

0

Z 1

QB

�

�p� 0 � 1

2
pz0z0

�

ˆ.� 0; z0/d� 0d z0

D
Z 1

0

Z 1

QB

�

�@� 0.pˆ/C pˆ� 0 � 1

2
@z0.pz0ˆ/

C 1

2
@z0.pˆz0/� 1

2
pˆz0z0

�

d� 0d z0

D
Z 1

QB
p.�; zI 0; z0/ˆ.0; z0/d z0

C 1

2

Z 1

0

�
pz0.�; zI � 0; QB/ˆ.� 0; QB/� p.�; zI � 0; QB/ˆz0.� 0; QB/�d� 0
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The values of ˆ.0; z0/ and ˆ.� 0; QB/ are known from the initial condition and
the boundary condition, but not ˆz0.� 0; QB/. To obtain an expression for ˆ.�; z/
that does not contain this unknown value, it is necessary impose the condition
p.�; zI � 0; QB/D 0, 8� 0 D 0. It is at this stage where our solution starts to differ
from the pricing of vanilla options in Sect. 3.4, where we implicitly assumed the
boundary condition p ! 0 for jzj ! 1 and obtained

p0.�; zI � 0; z0/ D 1
p
2
.� � � 0/

e�.z�z0/2=2.��� 0/

which is called the fundamental solution of the PDE. It is possible to use the
fundamental solution to construct a Green’s function that satisfies the boundary
condition for a barrier:

p.�; zI � 0; z0/ D p0.�; zI � 0; z0/� p0.�; zI � 0; 2 QB � z0/

This function clearly satisfies the boundary condition at QB and also the PDE as

�

@� � 1

2
@zz

�

.p0.�; zI � 0; z0/� p0.�; zI � 0; 2 QB � z0//

D ı.� � � 0/ı.z � z0/� ı.� � � 0/ı.z C z0 � 2 QB/ D ı.� � � 0/ı.z � z0/

where the last equality holds because z; z0 > QB
Using the Green’s function, we obtain the solution

ˆ.�; z/ D
Z 1

QB
1p
2
�

	
e�.z�z0/2=2� � e�.zCz0�2 QB/2=2�



e�˛z0

	
ez0 � 1




C d z0

C
Z 1

0

1
p
2
.� � � 0/

z � QB
� � � 0 e

�.z� QB/2=2.��� 0/ Qw.� 0/d� 0

For simplicity, we only evaluate this expression for zero rebate, i.e. Qw.� 0/D 0,
and we assume that the barrier is below the strike B <K . The instance of a
constant barrier above the strike can then be obtained by using static replication
methods, see Sect. 2.6. The first of the two remaining terms in the above expression
equals

I.�; z/ D
Z 1

QB
1p
2
�

e�.z�z0/2=2� e�˛z0

	
ez0 � 1




C d z0

D
Z 1

0

1p
2
�

e�.z�z0/2=2� e�˛z0

	
ez0 � 1



d z0
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since QB < 0. The second term is given by

Z 1

0

1p
2
�

e�.z�z0/2=2� e�˛z0

d z0 D 1p
2

e�˛z

Z 1

�z=
p
�

e�z02=2e�˛z0
p
�d z0

D e�˛zC˛2�=2N
�

zp
�

� ˛
p
�

�

The first term can then be obtained by replacing ˛ with ˛� 1. We now
arrive at

ˆ.�; z/ D I.�; z/� I.�; 2 QB � z/

D e�.˛�1/zC.˛�1/2�=2N
�

zp
�

C .1 � ˛/p�
�

� e�˛zC˛2�=2N
�

zp
�

� ˛
p
�

�

� e�.˛�1/.2 QB�z/C.˛�1/2�=2N
 
2 QB � zp

�
C .1 � ˛/p�

!

C e�˛.2 QB�z/C˛2�=2N
 
2 QB � zp

�
� ˛p

�

!

) U.t; F / D Ke˛z�˛2�=2ˆ.�; z/

D Kez�˛�C�=2N
�

zp
�

C .1 � ˛/p�
�

�KN
�

zp
�

� ˛
p
�

�

�Ke�2.˛�1/ QBC.2˛�1/z�˛�C�=2N
 
2 QB � zp

�
C .1 � ˛/

p
�

!

CKe�2˛ QBC2˛zN

 
2 QB � zp

�
� ˛

p
�

!

D Fe�q.T�t /N
�

ln.F=K/ � q.T � t/

�
p
T � t

C 1

2
�

p
T � t

�

�KN
�

ln.F=K/ � q.T � t/

�
p
T � t

� 1

2
�

p
T � t

�

� Fe�q.T�t /
�
F

B
e�.r��/.T�t /

�2.˛�1/
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N

�
ln.B2=FK/C 2.r � �/.T � t/ � q.T � t/

�
p
T � t C 1

2
�

p
T � t

�

CK

�
F

B
e�.r��/.T�t /

�2˛

N

�
ln.B2=FK/C 2.r � �/.T � t/ � q.T � t/

�
p
T � t � 1

2
�

p
T � t

�

) V.t; S/ D Se�q.T�t /N
�

ln.S=K/C .r � q/.T � t/

�
p
T � t

C 1

2
�

p
T � t

�

�KN
�

ln.S=K/C .r � q/.T � t/

�
p
T � t

� 1

2
�

p
T � t

�

� B2

S
e�.qC2�/.T�t /

�
Se�.T�t /

B

�2˛

N

�
ln.B2=SK/C .r � q � 2�/.T � t/

�
p
T � t

C 1

2
�

p
T � t

�

CK

�
Se�.T�t /

B

�2˛

N

�
ln.B2=SK/C .r � q � 2�/.T � t/

�
p
T � t

�1
2
�

p
T � t

�

Denote the sum of the first two terms by Cq.t; S/. This is the price of a call option
without a barrier but with dividend payments. We can then formulate the price of
the barrier option as

V.t; S/ D CqC�
�
t; Se�.T�t /� �

�
Se�.T�t /

B

�1�.r�q��/=�2
CqC�

�

t;
B2

Se�.T�t /

�

When � D 0 we see from this formula that the barrier condition has been satisfied
by adding a reflective term to the European call option price, by replacing S with
B2=S and multiplying by a certain factor. The condition V.t; B/ D 0 is then
obviously true. We also note that the formula for an exponential barrier � ¤ 0

is obtained from the constant barrier case by replacing S with Se�.T�t / and q with
q C �.

Assume that a barrier option is close to knock out at a certain observation point.
As the barrier in practice is often only monitored at certain discrete time points,
for example, by daily observations, there is a chance that the option would have
knocked out in the time interval between the previous and current observation point
if the observation had been continuous. It means that if we use a model with a
continuous barrier, the model barrier B 0 needs to be below the product barrier B ,
assuming that the barrier is located below the underlying. In Broadie et al. (1997),
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an approximative relation between a continuously and discretely observed barrier
was derived:

B 0 D Be�
p
T �.1=2/=

p
2
m

where it was assumed that the underlying follows a lognormal process. � is the
Riemann zeta function with �.1=2/ � �1:46 and m is the number of regularly
distributed observation points.

It is often not sufficient to use lognormal processes for pricing path-dependent
derivatives because of the poor agreement with vanilla prices. To calibrate to a rich
set of vanilla instruments, more sophisticated models have to be used, e.g. local or
stochastic volatility models. The pricing is typically done numerically by using n
number of discrete time steps. Because of performance limitations, n is typically
smaller than the number of observations stated in the contract. Using the above
result, the level B 00 of the barrier in the implementation is approximately related to
the barrier B in the contract according to

B 00 D Be
�

p
T �.1=2/

	
1

p

m
� 1

p

n



=
p
2


The value of � is determined from the lognormal process that best matches the
implemented model. This result only holds if the implemented model is not too
different from a lognormal model. If the implemented model is locally (in time)
close to a lognormal process, the result can be generalized to a time-dependentB 00.
In Broadie et al. (1999) it is shown how the method of shifting a parameter, such as
the barrier, can be used for other path-dependent derivatives such as a lookback
option, for which the distinction between continuous and discrete monitoring is
important.

There are several proposed semi-analytical methods that can be used when not
all of the above assumptions are satisfied, e.g. in the presence of non-lognormal
processes, time-dependent parameters or when having a double barrier. Another
solution method is, as we saw in Sect. 2.7, to statically replicate a knock-in call by
a put and a strip of smaller digital puts with shorter maturities. We now show that
it is actually possible to do the static replication using only European options with
equal maturities.

We price a down-and-in call option with barrier B <K and maturity T . We
do the pricing using an auxiliary European option with a payoff h.S/ such that
h.S/D 0 if S >B , see Fig. 9.1. We then determine h.S/ so that this option is
worth as much as the underlying European option along the barrier. With similar
arguments as in Sect. 2.7 it follows that the knock-in has the same price as the
European option with payoff h.S/. This price can be determined as the latter option
can be priced through static replication of a bond, the underlying and European puts,
see Sect. 2.3.

It remains to determine h.S/ so that the conditional expectations are equal:

Et Œ.S �K/C� D EtŒh.S/�
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S

t

T

KB

h(S)

Fig. 9.1 Relication of a knock-in call by a European option with payoff h.S/

for all times t and for St DB . Assuming constant interest rates and a lognormal
process for the underlying gives with  D r � 1

2
�2 the result

er�BN .dC/�KN .d�/ D
Z B

0

1p
2
�2�S

e�.ln.S=B/��/2=2�2�h.S/dS

D
Z 1
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1p
2
�2�

e�.xC�/2=2�2�h.Be�x/dx

D e�2�=2�2
Z 1

0
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2
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x�

e�x=��p
2x=�h
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Be��p

2x
�
dx

,
Z 1

0

e�x� 1p
x
e�p

2x=�h.Be��p
2x/dx

D e
2=2�2� 2

p

p
�

�

er�
�1

BN

�
ln.B=K/C r��1

���1=2 C 1

2
���1=2

�

�KN
�

ln.B=K/C r��1=2

���1 � 1

2
���1=2

��

h.S/ can be computed from this relation as the right-hand side is the Laplace
transform of 1p

x
e�p

2x=�h
�
Be��p

2x
�
.

Observe that this static replication technique, as well as the one in Sect. 2.7, is
model dependent. For instance, the equality in payoffs was only computed with the
present value of the volatility and will not be valid at later times should the implied
volatility change.

9.2 Volatility Products

If being long a European call option, we make a gain with increasing underlying
value or with increasing volatility. We have therefore taken a position in the
underlying value as well as in the volatility. If we instead want a pure exposure
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to the underlying value, this can be obtained by purchasing the underlying itself or
by entering a forward or futures contract. This brings us to the question of how to
obtain a pure exposure to the volatility, which is the topic of this section.

One approach to obtain a pure volatility dependence is to hold an option that is
delta hedged. Unfortunately, dynamic replication is not exact in practice because
of the idealized assumptions of: imperfect modeling of the underlying process,
discrete-time trading, presence of transaction costs, etc. It means that even after the
delta hedge, there remains some exposure to the underlying. Another disadvantage
of this approach is that the moneyness of the option changes during the lifetime:
sometimes the option is close to ATM and sometimes it is far away, depending
on the underlying value. As the vega is heavily dependent on the moneyness, the
volatility dependence will be unpredictable with the passage of time.

A more direct way to gain exposure to the volatility is through volatility products.
They mainly consist of variance swaps and volatility swaps. The former has a
payment at maturity T proportional to

1

n � 1
nX

iD1
.ln.Sti =Sti�1//

2 �K

while the latter has a time T payment proportional to

v
u
u
t 1

n � 1

nX

iD1
.ln.Sti =Sti�1//

2 �K

The observations are usually made on a daily basis.
We now describe how variance swaps can be priced in the limit n! 1 of

continuous observations. The underlying returns .Sti � Sti�1 /=Sti�1 are then small
meaning that we can use Taylor approximation twice on ln.Sti =Sti�1/ to obtain

nX

iD1
.ln.Sti =Sti�1//

2 D
nX

iD1

�

ln

�

1C Sti � Sti�1
Sti�1

��2

�
nX

iD1

�
Sti � Sti�1
Sti�1

�2

D 2

nX

iD1

 
Sti � Sti�1
Sti�1

�
 
Sti � Sti�1
Sti�1

� 1

2

�
Sti � Sti�1
Sti�1

�2
!!

� 2

nX

iD1

�
Sti � Sti�1
Sti�1

� ln.Sti =Sti�1/

�

D 2

nX

iD1

Sti � Sti�1
Sti�1

� 2 ln.Stn=St0/
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We assume zero interest rates and consider the zero-cost ti�1 investment of 1=Sti�1
underlyings and –1 bonds. This gives a payment of .Sti � Sti�1/=Sti�1 at ti
which means that the first term on the right-hand side can be obtained with zero
initial investment. Thus, the two time T payments of

Pn
iD1 .ln.Sti =Sti�1//

2 and
�2 ln.ST =S0/ are worth equally much. We also know how to price the latter
payment with static replication. We have thereby shown how variance swaps
can be priced with static replication when interest rates are zero and in the
limit of continuous observations. We then obtain the interesting result that this
approximation of the variance swap price only depends on the underlying process
through European option prices. Assuming a lognormal process for the underlying,
we obtain .dS=S/2 D �2dt and

nX

iD1

�
Sti � Sti�1
Sti�1

�2
�

nX

iD1
�2i dt !

Z T

0

�2dt

which explains the name variance swap.
Consider now the pricing of a variance swap at the date t D tk . The payment can

then be decomposed into a known part and an unknown part

nX

iD1
.ln.Sti =Sti�1// D

kX

iD1
.ln.Sti =Sti�1//C

nX

iDkC1
.ln.Sti =Sti�1//

It means that historical information of the underlying is necessary for the pricing.
This is a typical property of strongly path dependent options.

9.3 American Options

American style options were defined in Sect. 2.5 as options that can be exercised
at any time up to the maturity. The advantage of not exercising early is that the
exercise decision can be based on information about the underlying all the way
up to the maturity. The exercise decision also depends on the discounting of the
strike from the maturity to the pricing date: the longer we wait with the exercise,
the smaller the value of the discounted strike. These factors are both in favor of
not exercising American call options early, which means that these options must
have the same price as their European counterparts. For put options, on the other
hand, the discounting effect encourages early exercise, which means that there are
situations when this is the optimal strategy. With similar arguments it can be proven
that American call options on futures contracts should never be exercised early while
the corresponding statement for put options is not necessarily true.

In parallel to our treatment of barrier options, we assume that the underlying
pays continuous dividends to obtain more general and non-trivial results. An early
exercise then yields dividend payments and might therefore be feasible for call
options as well.



9.3 American Options 171

To start off lightly, we first price an American digital option that pays �.S �K/
upon exercise. Whenever the value of S exceedsK , the holder is entitled a payment
of one dollar. As it is preferable to receive one dollar sooner than later in time, the
optimal strategy is to exercise the option as soon as S � K . This product is therefore
equivalent to a digital up and out barrier option that pays a rebate of one dollar and
can be priced as in Sect. 9.1.

Assume that the condition S DK means that the price of a European digital
option is close to 1

2
as there is about as high probability of ST to end up below as

above K . An American digital call can then be replicated by two European digital
call options as both strategies are worth 1 if the barrier is hit and are worthless
otherwise.

The pricing is less trivial for American call (or put) options on dividend-paying
underlyings. The reason is that the exercise boundary is not known in advance. As
there are no known analytical solutions, numerical or semi-analytical methods have
to be used for these products.

We set up the pricing equations for American call options on dividend-paying
underlyings. The instance of put options can be handled in a similar way. First,
consider the situation when the underlying has a very high value. We are then certain
to end up ITM at maturity and it can therefore be preferable to exercise the option
early to cash in the dividend payments. If the underlying has a low value, on the
other hand, it is not advisable to exercise early. We conclude that for each time
t there exists a boundary point Bt , possibly equal to infinity, such that the option
should be exercised if St � Bt . The early exercise boundary is given by the function
Bt , where t 2 Œ0; T �.

We find it more convenient to formulate the problem in terms of the spot variables
S and V rather than using the forward variables F and U . Assuming a lognormal
underlying, the pricing problem can be written as

8
<̂

:̂

�rV C Vt C .r � q/SVS C 1
2
�2S2VSS D 0

V.t D T; S/ D .S �K/C
V .t; St D Bt / D Bt �K

where St �Bt and we have assumed a time-independent interest rate and dividend
yield. The exercise boundary Bt should be determined so that V becomes maxi-
mized. This type of problem is called a free-boundary problem.

The option value is obviously continuous across the boundary. We now argue
that the first-order (mathematical) derivative is also continuous, a consequence of
the fact that the exercise boundary is chosen to optimize the option value. Indeed,
for any given time, let V.S;B/ be the option value and h.B/ the value if exercised
early, e.g. h.B/ D B � K for a call option. The continuity condition can then be
written as h.B/ D V.S;B/jSDB . Taking the B derivative on both sides gives

dh

dB
D @V

@S

ˇ
ˇ
ˇ
ˇ
SDB

C @V

@B

ˇ
ˇ
ˇ
ˇ
SDB

D @V

@S

ˇ
ˇ
ˇ
ˇ
SDB

where the last equality follows as B has been chosen to optimize V .
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Before discussing techniques for determining the early exercise boundary, we
describe its shape qualitatively. Assume first that the maturity is very short. Clearly,
BT > K as we do not want to exercise an OTM option. To determine when an ITM
option should be exercised, the proceeds of an early exercise have to be compared
with an exercise at maturity. An early exercise gives S �K which is equivalent with
a payment of Seq.T�t / �Ker.T�t / � S �KC Sq.T � t/�Kr.T � t/ at T . Thus,
the option should only be exercised early when

S �K C Sq.T � t/ �Kr.T � t/ > S �K , S >
r

q
K

as more cash is generated from the dividends than from the interest rate of being
short K amount of cash. We conclude that BT > K maxf1; r=qg.

We argued in Sect. 4.3 that the European option price typically decreases with t
if all other variables are unchanged. The American option price must also decrease
with t as we lose the optionality of exercising in Œt; t 0/ when time goes from t to t 0.
Because the early exercise boundary is where an American call option price is equal
to S�K , the decreasing option price implies that the exercise boundaryBt decreases
with t .

Let us now determine the exercise boundaryBt when the maturity T is far in the
future. The long maturity implies a weak t-dependence that can be omitted in the
lowest-order approximation. We obtain the PDE

(
�rV C .r � q/SVS C 1

2
�2S2VSS D 0

V .S D B/ D B �K

which is of Euler type and has the solution

V D ACS�C CA�S�� ; �˙ D �.r � q � �2=2/˙p
.r � q � �2=2/2 C 2�2r

�2

The requirement of a well-defined solution at S D 0 gives A� D 0 while the
condition at the exercise boundary implies that

V D .B �K/

�
S

B

��C

Maximizing this solution with respect to the early exercise point B gives

B D K
�C

�C � 1

We thereby conclude that the exercise boundary decreases from the value K �C

�C�1
when far from maturity to a value BT > K maxf1; r=qg at maturity.
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We now briefly discuss some techniques that can be used to price Amer-
ican options. We start by observing that the American call option price can
be expressed semi-analytically as a function of the underlying and the exercise
boundary: V DV.t; St ; fBt 0gt<t 0<T /, with the continuity condition of the form
V.t; Bt ; fBt 0gt<t 0<T /DBt �K . The exercise boundary can be determined itera-
tively by taking small time steps backwards from the maturity T until today’s
date. In each step, the option price is computed whereafter the boundary can be
determined. The computations are tedious because of the complicated expression
for V . An alternative approach is to use the formula for the continuity of the
first derivative instead of the continuity of the price, as it gives slightly simpler
equations.

The exercise boundary can also be computed by using the fact that it optimizes
V.t; St ; fBt 0gt<t 0<T /. For example, the boundary can be parametrized with a
function that depends on a small number of variables. The boundary can then be
determined by maximizing the price with respect to these variables. The choice of
function should be guided by our knowledge of its value at maturity and that it
increases (for call options) with the distance to maturity to a known limiting value.
If choosing an exponential boundary, the analytic expressions of Sect. 9.1 can be
used to obtain high-performing calculations.

An immediate exercise of an ITM option gives the lower bound of .S �K/C on
the American call option price. If, on the other hand, we choose to never exercise
the option, i.e. Bt ! 1, we see that the European price is a lower bound. For
general choices of Bt , more interesting lower bounds can be found such as those
obtained from a constant or exponential exercise boundary. Unfortunately, it is
hard to know how tight these bounds are (i.e. how far they are from the optimal
exercise). This question can be answered if tight upper bounds are found and much
research has been devoted to this. We saw a particularly simple upper bound in our
discussion of static replication of Americans in Sect. 2.5 and in the same way it
is possible to find an upper bound for American call options on dividend paying
underlyings.

When it comes to pure numerical solutions, American options can, just like exotic
options, be priced with a PDE solver or an SDE simulator. The preferred solution
is often through PDEs as they work backward in time and enable us to determine
the optimal exercise boundary iteratively. This is done by comparing the intrinsic
option value with the exercise value in each node and choosing the maximum of the
two. When it comes to simulation, there have been major developments in Monte
Carlo methods for American option pricing during the last decade and satisfactory
results are now produced.

There also exist several types of semi-analytic techniques for pricing American
options. One of the simplest is that of Bermudan approximation. The American
option is then approximated with a Bermudan option Vn that can be exercised at
n points in time. As the analytical computations for Bermudan options become
increasingly complex with increasing n, they are often only carried out for small
values, n D 1, 2 and 3. The American option price V1 can then be estimated with
extrapolation techniques.
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9.4 Callable Products

We will here mainly be concerned with swaps, i.e. products that exchange one
type of cash flow for another. The coupons are typically determined from an equity
index, a commodity price, an FX rate, an interest rate or are equal to a constant. The
cash flows are obtained by multiplying the coupons with a notional or a quantity
and possibly an FX rate (for interest rates there is also a multiplication with a day
count fraction). An example of a swap is given by the product that once per year
exchanges the oil price for a fixed price (multiplied by the number of barrels) during
five years’ time.

A swap is said to be callable if there exists a triggering event that results in
the cancelation of the future cash flows. A callable swap is said to be a Bermudan
swaption if the triggering event is such that one of the counterparties can cancel the
deal at any cash flow date. The triggering event can also be a market event. The
swap is then said to be autocallable. An example of an autocallable is a fixed-for-
floating swap that gets canceled when the underlying (that determines the floating
flows) reaches a certain level.

A closely related product is the enter-into swap for which a trigger event
leads to an activation of the cash flows. By going long this product and short the
corresponding vanilla swap, a cancelable swap is obtained. Because of this parity
relation, we focus exclusively on callable swaps.

There are several possible types of trigger events that can be used for auto-
callables. For instance, a swap can be canceled when an external index, i.e. different
from the underlying that determines the floating flows, reaches a certain level.
Another popular type of autocallables is represented by the target redemption notes
(TARNs), for which the cancelation occurs when the cumulated floating coupons
exceed a certain level.

There also exist autocallables that depend on several trigger events. One
example is the auto cap which just like an ordinary cap consists of a set of
caplets, see Sect. 13.3. The auto cap gets canceled when n of the caplets have
ended up ITM at their maturities, where n is an integer determined at the trade
date. A related product is the chooser cap, where the receiver of the caplets
decides if the cash flows should be paid out, with a maximum of n received
payments.

It is difficult to find suitable analytical or semi-analytical formulae for callable
swaps and these products are therefore priced numerically via PDE or SDE methods.
In fact, it can even be a hard task to find a suitable numerical method. For instance,
the choice of the optimal exercise date for Bermudan swaptions is a non-trivial
problem when using Monte Carlo simulations and is often solved by using methods
similar to those developed in Longstaff and Schwartz (2001) and Andersen (2000).
An example of the opposite situation, when a Monte Carlo simulation is easy while
a tree implementation is harder to use, is found in the pricing of TARNs. This
problem is usually solved by adding another dimension to the tree, representing
discrete levels of the cumulative coupons.
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The reader might at this stage wonder why we even bother about a difficult
method when there exists a simpler method. There are several reasons for doing
so. First of all, we might be located at a trading desk with limited resources and
can therefore only afford to implement one of the numerical methods, typically
the Monte Carlo simulation as it is more flexible and easier to work with. In this
situation we must solve all problems with Monte Carlo simulations, even the ones
more suitable for trees. Another reason can be that the model is only suitable for one
of the numerical methods. For instance, the high dimensionality of the LMM model
makes it hard to find a suitable tree implementation, see Sect. 13.17.

It is also common to encounter products that contain some features not suitable
for tree pricers and some other features not suitable for Monte Carlo pricers. An
example is given by Bermudan swaptions for which the coupons depend on the
previous coupon payments. The simplest, and the most common, of these products
has coupons that depend only on the previous coupon. The relation between
the coupons is typically positive, meaning that a high previous coupon makes it
likely that the current coupon will be high as well. The consequence can be a
runaway effect with increasing coupons. Products with coupon dependencies are
called snowballs because of the analogy of a snowball rolling down a hill and
growing larger and larger. A Monte Carlo pricer can easily incorporate the coupon
dependencies while the callability is harder to handle. For a tree pricer, on the other
hand, it is the coupon dependency that makes the problem difficult.

Another example of a product for which both a Monte Carlo and a tree
implementation are non-trivial is the chooser cap. The Monte Carlo pricer typically
has to include the number of exercised caplets among the state variables in a
generalization of the Longstaff and Schwartz or Andersen methods. For the tree,
the number of exercised caplets can be included as an extra dimension of the tree.

Barrier options and American options can be viewed as cancelable products for
which the cancelation affects a single cash flow. For general callable swaps, on the
other hand, the triggering event affects several cash flows, which results in a higher
sensitivity to the input parameters and therefore a risk that is hard to compute.

Because of the digital feature of the triggering event in a callable swap, the
computation of the risk is arguably the most important, and the most difficult, task
for a pricer. The trick is often to make a modification to a more conservative product
for which the risk is better behaved, as was done in Sect. 4.4 for digital options and
barrier options. For instance, the method of improving the risk for digital options can
be viewed as letting the notional go linearly to zero in an interval next to the strike.
Similarly, we could let the notional of a TARN go linearly to zero in an interval next
to the target level. Similar ideas can be applied to other types of callable swaps.

The risk computations for Bermudan swaptions are straightforward for tree
pricers but can be more complicated when using Monte Carlo simulations. For-
tunately, there is a trick that simplifies the computation of the first-order greeks.
To explain how it works, note that the pricing is done by first computing the early
exercise boundary and then doing the pricing itself. As the early exercise boundary
is determined from an optimizing condition, that of obtaining the best possible
payoff, it remains unchanged under first-order changes of the model parameters.
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It means that the early exercise boundary does not need to be computed in the bump-
and-revalue process. Avoiding the recomputation of the early exercise boundary
increases the performance and gives more stable first-order greeks.

If a Bermudan swaption is such that there is only a small chance of it to be
called, a Monte Carlo simulator does not effectively determine the early exercise
boundary as only a few paths contribute to this information. For the purpose of
determining the early exercise boundary it is a good idea to shift the current value
of the underlying to a value for which an early exercise is more probable. This leads
to a higher accuracy of the early exercise boundary as it is independent of the current
value of the underlying.
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Chapter 10
High-Dimensional Derivatives

We cover the pricing of path-independent derivatives such that the payoff at a given
time T depends on the values of several underlyings F1; F2; : : : ; Fn. The general
case of path-dependent higher-dimensional derivatives can be handled by combining
the methods of this chapter with those in Chap. 9. The fundamental theorem of asset
pricing states that the price can be computed from

E Œg.F1; F2; : : : ; Fn/�

where g is the payoff function and the expectation is in the T -forward measure.
Just as for path-dependent derivatives, there are several possible payoff types. In

a similar way, we here also choose to leave it as an exercise for the reader to work
out the no-arbitrage conditions and parity relations. We assume that the individual
distributions of F1; F2; : : : ; Fn are known from prices of vanilla options. As the
expectation not only depends on the marginal distributions, but also on the joint
distribution, it is necessary to account for the correlation between the underlyings.

The first solution that comes to mind when attacking higher-dimensional problem
is the use of copulas. We start by covering this technique. Although a general
method, the implementation is often of low performance. We therefore proceed by
considering special cases for which high-performance implementations are possible.
The methods are: variable freezing, moment matching, quadratic functional model-
ing and the change of measure technique. We also consider the important special
cases of digital options and spread options. We end the chapter with discussions of
correlations and calibration.

10.1 Copulas

The natural approach for obtaining a joint distribution of F1; F2; : : : ; Fn from
the marginal distributions is to use a copula, see Appendix. We usually have an
idea about the value of the correlation between the underlyings, but not for the

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 10,
© Springer-Verlag Berlin Heidelberg 2011

177



178 10 High-Dimensional Derivatives

higher-order moments. It therefore makes sense to use the simplest possible copula
that only depends on the correlation matrix, which happens to be the Gaussian
copula. Unfortunately, just as the normal variable assigns too low a probability to
extreme events in financial applications, the Gaussian copula implies too weak a
correlation between extreme events. For this purpose, alternative copulas are often
used in financial modeling, in particular since the financial crisis starting in 2007
which has been claimed to be partly the result of underestimating extreme event
correlations by using Gaussian copula. To focus on the essentials, however, we only
consider the simple case of the Gaussian copula.

To gain a better understanding of the Gaussian copula, let us limit ourselves
to the instance of two underlyings: F1 and F2. Motivated by the form of several
of the SDEs in Chap. 5, we assume that the distributions can be written as Fi D
hi .Xi/, where fXig are standard normal variables and fhi g are monotonic increasing
functions. We assume that X1 and X2 have correlation � and are the components of
a 2-dimensional Gaussian variable. The joint distribution is then given by

P.F1 < f1; F2 < f2/ D P.X1 < h
�1
1 .f1/; X2 < h

�1
2 .f2//

D 1

2

p
1 � �2

Z h�1
1 .f1/

�1

Z h�1
2 .f2/

�1
exp

�� �z21 � 2�z1z2 C z22
�
=2
�
1 � �2

��
d z1d z2

Observe that if we instead had correlated F1 and F2 by using their marginal
distributions

P.Fi < fi / D P.Xi < h
�1
i .fi // D N

�
h�1
i .fi /

�

in the Gaussian copula, see Appendix, we would have obtained the same expression
for P.F1 < f1; F2 < f2/. We conclude that using the Gaussian copula is the correct
way to patch together marginal distributions if they can be written as functions of
the components of a 2-dimensional Gaussian copula. Furthermore, the correlation
in the copula has to be equal to the correlation between the normal variables. Note
that the 2-dimensional case was only used as an illustration and the generalization
to higher dimensions is straightforward.

Consider now the situation when the underlyings follow an SDE driven by a
Brownian motion in such a way that

Fi D Fi

�Z T

0

�idWi

�

at the maturity T . Examples include the normal and lognormal process. Assume that
the Brownian motion can be written as

Wi.t/ D
X

j

Z t

0

aij .u/dZj .u/
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where fZi g are independent standard Brownian motions and the non-stochastic
variables aij satisfy

P
j a

2
ij .t/ D 1. As

.dWi.t//
2 D

X

j

a2ij dt D dt

Wi is a standard Brownian motion. The covariation is given by

dWidWj D
X

k

aikdZk
X

m

ajmdZm D
X

k

aikajkdt DW �ij dt

The correlation �ij between the Brownian motions is restricted by

j�ij j D j
X

k

aikajk j �
 
X

k

a2ik

!1=2  
X

k

a2jk

!1=2

D 1

where Cauchy-Schwarz inequality has been used. As

X

i

�i

Z T

0

�idWi D
X

j

Z T

0

 
X

i

�i�iaij

!

dZj

is normally distributed for arbitrary f�i g, fXig D fR T
0
�idWig must be Gaussian,

see Appendix. It is therefore possible to use the above result and patch together the
marginal distributions fFig using a Gaussian copula.

We now compute the correlation corr.Xi ; Xj / that should be used in the copula.
For completeness, we allow the Xi s to be observed at different points in times, i.e.

Xi D
Z Ti

0

�i dWi

It is shown in the Appendix that

Var.Xi/ D
Z Ti

0

�2i dt

and with similar ideas it can be proven that

Covar.Xi ; Xj / D
Z min.Ti ;Tj /

0

�i�j �ij dt

from which we obtain

Corr.Xi ; Xj / D
R min.Ti ;Tj /
0 �i�j �ij dt

qR Ti
0
�2i dt

qR Tj
0 �2j dt
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To avoid confusion, we refer to this as the statistical or terminal correlation while
�ij is called the instantaneous or local correlation. Similarly, . 1

T

R T
0
�2i .u/du/1=2 is

called the terminal volatility and �i the local volatility. If the Xis are all reset at
the same time, i.e. Ti D T;8i , and the local volatilities and correlations are time
independent, the statistical correlation is equal to the local correlation. In general,
however, the correlations are not equal and it is important to remember to use the
statistical correlation in the Gaussian copula.

When using copulas for modeling high-dimensional derivatives, we obtain the
probability density function p after which the price can be computed through the
integral Z

g.x1; x2; : : : ; xn/p.x1; x2; : : : ; xn/dx1; dx2; : : : ; dxn

Although theoretically attractive, this approach is in general only possible for low
dimensions, typically n D 2 and n D 3. For higher dimensions, the implementation
is low performing because of the difficulty in evaluating a high-dimensional
integral numerically. Sometimes the method is too slow even in 2 or 3 dimensions,
depending on the product type and the demands of the users.

10.2 Variable Freezing

We illustrate this method by considering payoffs of the form

g.F1; F2; : : : ; Fn/ D .h.F1; F2; : : : ; Fn/ �K/C
Examples include basket options: h.F1; F2; : : : ; Fn/ D P

i wiFi , and index options:
h.F1; F2; : : : ; Fn/ D Q

i F
wi
i . For a motivation of the approach, consider a basket

option when the underlyings follow a normal SDE,

dFi D �idWi

The basket price also satisfies a normal SDE,

d
X

i

wiFi D
X

i

wi �idWi D �dW; � D
sX

ij

wiwj �i �j �ij

and can therefore be priced with standard techniques, see Sect. 5.3. Similarly, if the
underlyings follow a lognormal SDE,

dFi D �iFidWi

then the index satisfies a lognormal SDE with drift:
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and the pricing can again be done with standard techniques.
Consider now a general function h.F1; F2; : : : ; Fn/ and assume the underlyings

to satisfy
dFi D �i .Fi /dWi

The SDE for h is then

dh.F1; F2; : : : ; Fn/ D
X

i

.@ih/�idWi C 1

2

X

ij

.@ij h/�i�j �ij dt

Observe that in general there is no analytical solution to the SDE as .@ih/�i
and .@ij h/�i�j are functions of F1; F2; : : : ; Fn. However, if we believe that h
approximately behaves as a normal variable, we might try to replace these functions
with the results obtained by evaluating them at today’s values of the underlyings.
Thus, by freezing .@ih/�i and .@ij h/�i�j at today’s value, we obtain a normal
SDE for h that can be solved analytically. Similarly, if we believe h to be close
to lognormal, we write �i@ih D �ih@ih=h and freeze �i .@ih/=h at today’s value,
and similar for �i�j @ij h.

The technique of freezing variables is most successful for short and possibly
also intermediate maturities. Unfortunately, the tails of the resulting distributions
are incorrectly modeled and that the outcome is dependent on the choice of freezing
SDE. It is particularly popular to freeze the equation into the normal, the lognormal
or the shifted lognormal SDE, because of the attractive analytical properties of these
processes.

10.3 Moment Matching

Just as in the previous section, we price high-dimensional derivatives by considering
the function h.F1; F2; : : : ; Fn/ as an underlying itself. We use the fact that it is
possible to compute the lowest-order moments of h from the marginal distributions
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and some knowledge about the joint distribution, e.g. the correlations. We can then
construct an analytically solvable distribution with identical moments and use it as
an approximation of h in the pricing.

For example, assume that the distributions Fi can be written as functions of
standard normal variablesXi with correlations �ij . By expressing h.F1; F2; : : : ; Fn/
in terms of fXig, the two lowest moments EŒh1� and EŒh2� can be computed and h
can be approximated with a distribution with two degrees of freedom, for instance,
the normal or lognormal distribution. If it is possible to compute the three lowest
moments, h can be approximated by a distribution with three degrees of freedom,
for example, the shifted lognormal distribution.

The matching of moments gives in general a better approximation than the
method of freezing the coefficients. This approach unfortunately also gives an
incorrect tail distribution. Furthermore, h is only known at a fixed point T in time,
meaning that nothing is known about the time dependence of the process. It means
that path-dependent derivatives cannot be priced.

10.4 Quadratic Functional Modeling

We here limit ourselves to underlyings Fi that depend on standard normal vari-
ables Xi . The function h can be viewed as depending directly on fXig instead of
indirectly via the underlyings. For a more compact notation, we use matrices and let
X be an n � 1 matrix with components fXig. The method that we introduce works
when h is a quadratic function

h.X/ D aC BX C 1

2
XTCX

where B is a 1 � n matrix and C is a symmetric n � n matrix. As a quadratic
function appears naturally in a second-order Taylor expansion, the method is useful
when the dependence on X is weak, for example, for products with short maturity.
Furthermore, as the quadratic function contains three free parameters, it can be used
as an approximate distribution obtained by moment matching arbitrary distributions
up to the third order.

To obtain independent variables, we write X D MX 0, where M is an n � n

matrix and fX 0
i gniD1 are independent N .0; 1/ distributed variables. It implies that

h.X/ D a C B 0X 0 C 1

2
X 0T C 0X 0

where B 0 D BM and C 0 D MTCM . As C 0 is symmetric, there exists an
n � n matrix O that is orthogonal, OTOD 1 and OOT D 1, and diagonalizes C 0:
OTC 0O D diag.fcj g/. Introducing the N .0; 1/ independent variables fYj gnjD1 by
X 0 D OY and the matrix B 00 D B 0O gives
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h.X/ D aC B 00Y C 1

2
Y T diag.fcj g/Y D aC

nX

jD1

�

bj Yj C 1

2
cj Y

2
j

�

Assume that the variables have been labeled so that cj ¤ 0 for j � � and cj D 0

otherwise:

h.X/ D a C
nX

jD�C1
bj Yj C

�X

jD1

1

2
cj

�

Yj C bj

cj

�2
C

�X

jD1

b2j

2cj

The second term is a sum of independent normal variables with zero mean and is
therefore itself a normal variable with zero mean. We can therefore write

h.X/ D ˛ C ıY0 C
�X

jD1

1

2
j
�
Yj C ˇj

�2

To price derivatives depending on h.X/, we now derive the probability density
function. As h.X/ is a sum of independent variables, the characteristic function is
particularly simple to compute:

Op.k/ D E
�
eikh.X/

� D eik˛E
�
eikıY0

� �Y

jD1
E
h
e
1
2 ikj .YjCˇj /2

i

For Y a standard normal variable it holds that E
�
eikY

� D e�k2=2 and it follows
from Sect. 5.9 that

E
h
eik.YCˇ/2

i
D 1p

1 � 2ik
eikˇ

2=.1�2ik/

D .1C 4k2/�1=4ei�=2 exp
�
ikˇ2.1C 2ik/=.1C 4k2/

�

where � is defined from 1�2ik D p
1C 4k2e�i� , which means that � D arctan 2k.

Thus, the characteristic function has the form

Op.k/ D eik˛e�ı2k2=2
�Y

jD1
.1C 2j k

2/�1=4ei�j =2

exp

�
1

2
ij kˇ

2
j .1C ij k/=.1C 2j k

2/

�

We now follow the computations in the beginning of Sect. 7.4 and express the
Heaviside function as a complex integral to obtain
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which concludes our derivation of the probability density function.
The existence of a closed-form expression has made the quadratic functional

approach popular for approximating distributions. Furthermore, in the 1-dimen-
sional case, it is even possible to derive a Black–Scholes type of expression for
European options. Indeed, consider

h.X/ D aC bX C 1

2
cX2 D a � 1

2

b2

c
C 1

2
c

�

X C b

c

�2
D ˛ C 1

2
 .X C ˇ/2
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where we have assumed that c ¤ 0 to avoid reduction to the simple first-order
Taylor expansion. The PDF can be computed by using

P.h.X/ < x/ D P
�
.X C ˇ/2 < y2

� D N.y � ˇ/ �N.�y � ˇ/;
y D

p
2.x � ˛/=

if x > ˛ and 0 otherwise. It follows that

ph.X/.x/ D d

dx
P.h.X/ < x/ D .n.y � ˇ/C n.y C ˇ//

dy

dx

The call option price can be computed by

EŒ.h.X/�K/C� D
Z 1

max.K;˛/
.x �K/.n.y � ˇ/C n.y C ˇ//

dy

dx
dx

D
Z 1

K0

.y2=2C ˛ �K/.n.y � ˇ/C n.y C ˇ//dy

where K 0 D p
2.K � ˛/C= . We focus on the term containing y � ˇ as the term

with y C ˇ can be obtained by substituting ˇ with �ˇ:

Z 1

K0

.y2=2C ˛ �K/n.y � ˇ/dy

D
Z 1

K0�ˇ
.y2=2C yˇ C ˛�K C ˇ2=2/n.y/dy

D
Z �K0Cˇ

�1

�

�=2 d
dy
.yn.y//C ˇ

d

dy
n.y/C .=2C ˛ �K C ˇ2=2/n.y/

�

dy

D =2.ˇCK 0/n.ˇ �K 0/C .=2C ˛ �K C ˇ2=2/N.ˇ �K 0/

The end result is

EŒ.h.X/�K/C�

D =2.ˇCK 0/n.ˇ �K 0/C .=2C ˛ �K C ˇ2=2/N.ˇ �K 0/

C =2.�ˇCK 0/n.�ˇ �K 0/C .=2C ˛ �K C ˇ2=2/N.�ˇ �K 0/
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10.5 Change of Measure

The method that we discuss here reduces the dimensionality by one unit. It is
therefore not particularly useful when the dimension is high. For low dimensions,
on the other hand, the method can lead to a substantial performance improvement.
For instance, the evaluation of an integral in 1 or 2 dimensions is much faster than
if there were an additional dimension.

We illustrate the method by considering a product that pays the positive part of
the difference between two equities S1 and S2:

V D P0T E Œ.S1 � S2/C�

where the expectation is with respect to the forward measure. A straightforward
computation involves the evaluation of a 2-dimensional integral. An alternative
approach is to change numeraire to one of the equities, for example, S2:

V D S2E
�
��
S1

S2
� 1

�

C

�

where the expectation E� is with respect to the measure with S2 as numeraire.
The pricing can be done by interpreting S1=S2 as the single underlying of the
problem. This underlying is clearly driftless as it is the quotient of a tradable and the
numeraire. Furthermore, it is trivial to compute the volatility as the diffusion parts
of S1 and S2 remain unchanged under a change of measure.

10.6 Digital Options

We now focus on payoffs that have a digital dependence on at least one of the
underlyings. It is then often possible to reduce the dimensionality of the pricing.
Consider, for example, an option with payoff �.F1 � F2 CK/. Assuming that both
F1 and F2 can be written as functions h1 and h2 of standard normal variables X1
and X2 D �X1 Cp

1 � �2X?
1 , where h2 is monotonically increasing, we obtain

EŒ�.F1 � F2 CK/� D P.F1 > F2 �K/ D P.h1.X1/ > h2.X2/ �K/
D P

	
�X1 C

p
1� �2X?

1 < h�1
2 .h1.X1/CK/




D P

 

X?
1 <

h�1
2 .h1.X1/CK/� �X1

p
1 � �2

!

D E

"

N

 
h�1
2 .h1.X/CK/� �X

p
1 � �2
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As there exist efficient implementations of the cumulative normal functionN.�/, the
integrand can be considered as analytic and we have thereby reduced the problem to
a 1-dimensional integral. It is straightforward to extend this approach to other types
of payoffs, for instance, h.F1/�.F1 � F2 �K/, or to higher dimensions.

The above technique usually only reduces the dimension by 1 and is therefore
uninteresting for high dimensions. As a complement, we now go through a method
that works particularly well in this situation. To illustrate the approach, we price a
digital call option on the maximum of weighted underlyings, i.e. the payoff takes
the form

�

�

max
1�i�nwiFi �K

�

D 1 � �.K � w1F1/�.K � w2F2/:::�.K � wnFn/

D 1 � �.K1 � F1/�.K2 � F2/:::�.Kn � Fn/

where Ki D K=wi . We consider underlyings that can be written as monotonically
increasing functions of standard normal variables fXig. The main assumption of this
technique is that the variables can be written as

Xi D �iY C
q
1 � �2i Yi

where fY; fYigg are independent standard normal variables. We obtain the equivalent
payoff

1 � �

0

B
@
h�1
1 .K1/ � �1Y
q
1 � �21

� Y1

1

C
A �

0

B
@
h�1
2 .K2/� �2Y
q
1 � �22

� Y2

1

C
A :::

�

 
h�1
n .Kn/ � �nY
p
1 � �2n

� Yn
!

Taking the expectation gives a 1-dimensional integral

1 �
Z

p.y/N

0
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@
h�1
1 .K1/ � �1y
q
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1

C
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0
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@
h�1
2 .K2/� �2y
q
1 � �22

1

C
A :::
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h�1
n .Kn/ � �ny
p
1 � �2n

!

dy

The problem of evaluating an n-dimensional integral has thereby been reduced to
an integral over a single dimension.
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The above result can be used to price ordinary calls on the maximum of a
weighted set of underlyings. For example

�

max
1�i�nwiFi �K

�

C
D
Z 1

K

�

�

max
1�i�nwiFi �K 0

�

dK 0

can be computed through a 2-dimensional integral. Observe that a 2-dimensional
maximum option with zero strike is preferally computed by

max.F1; F2/ D F2 C .F1 � F2/C

and changing the numeraire as in Sect. 10.5.
One of the limitations with the above technique is that the correlation between

the Xis is restricted to the form

corr
�
Xi;Xj

� D �i�j C �
1 � �2i

�
ıij

If this correlation structure is considered to be too restrictive, the definition of fXig
can be generalized to

Xi D �iY C �0
iY

0 C
q

1 � �2i � �0
i
2
Yi

This leads to integrals of one dimension higher. By the same token, more variables
Y .n/ can be introduced until the user obtains the appropriate balance between
dimensionality and flexibility in the correlation structure.

The approach is limited in the number of supported payoff types. Fortunately, the
special cases to which it can be applied are often useful for derivatives pricing. For
instance, the method can be used to compute the cumulative function P.F1 < x1;

F2 < x2; : : : ; Fn < xn/.

10.7 Spread Options

We here discuss spread options that pay .F1 � F2 �K/C at time T . Because of the
strike K , it is not possible to use the change of numeraire technique of Sect. 10.5.
We instead do the pricing by computing

Z

.F1 � F2 �K/Cp.F1; F2/dF1dF2

A 2-dimensional integral can be too slow to compute in many practical applications.
We therefore use p.f1; f2/ D d2

df1df2
P.F1 < f1; F2 < f2/ to obtain
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Z

.f1 � f2 �K/C
d2

df1df2
P.F1 < f1; F2 < f2/df1df2

D
Z

ı.f1 � f2 �K/P.F1 < f1; F2 < f2/df1df2

D
Z

P.F1 < f CK;F2 < f /df

As it is often possible to find an approximate expression for the cumulative
distribution P , e.g. when the distribution is Gaussian, only a 1-dimensional integral
remains.

By combining the inequalities

.F1�K1/C�.F2 �K2/C � .F1 � F2 � .K1 �K2//C � .F1 �K1/CC.K2 � F2/C
with static replication techniques, upper and lower bounds on spread options are
given in terms of ordinary call options. Although the bounds do not appear to be too
tight, violations of the lower bound occurred in 2009 for interest rate products with
F1 and F2 EUR CMSs with 10Y and 2Y tenors starting in 5Y and with a maturity
of 20Y, see McCloud (2011).

10.8 Correlations

The correlation is often the parameter to which the price of a higher-dimensional
payoff is most sensible. Unfortunately, the number of liquid correlation-dependent
products in the market is limited. It means that the correlation often has to be
estimated rather then calibrated. A consequence is that the correlation dependence
then cannot be hedged. It means that the sellers of higher-dimensional derivatives
are relatively highly exposed to market risk and therefore charge a high margin.

We would like to issue a warning on the currency effect on volatilities and
correlations. Most financial practitioners are aware that the volatility depends on
the currency for which the underlyings are valued. For instance, the dollar value
of gold has a different volatility from the euro value of gold. It is not, however,
as well known that the correlation is a statistical measure that also depends on the
currency in which the measurement is made. This fact can easily be verified by
inspecting the defining formulae for the local and terminal correlation. Alternatively,
use any information services such as Bloomberg or Reuters to compare, for example,
the correlation between EURSEK and USDSEK with the correlation between
EURCHF and USDCHF, which reflects that the correlation between euro and dollar
depends on whether the measurement is done in Swedish kronor or Swiss francs.
The dependency on the currency is not marginal but can lead to relatively large
differences in correlation. It means that the European branch of a bank cannot
use USD-based correlations computed by a US-based research department for their
EUR-based models.
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Another misconception is the belief that a high correlation between assets means
that they are interchangeable. This is far from true as can be seen from the fact that
the difference F1 �F2 between two assets with equal normal volatilities � and 99%
correlation has a normal volatility of

p
�2 C �2 � 2��� D �

p
2
p
1 � � � 1

7
�

which is not as significant reduction of the volatility as one naively would expect.

10.9 Calibration

Because of the lack of liquid market data, the correlation (or any other relevant
copula parameter) can often not be calibrated. One of the few exceptions for which
liquid calibration instruments can be found is in the pricing of equity basket options.
We first discuss the question whether there are enough calibration instruments to
uniquely determine the correlation, or more generally the joint PDF p.fFi g/. We
then give a concrete example of how a calibration can be performed.

If, for a basket F D P
i wiFi and a given maturity T , option prices are given for

all weights fwi g and strikes K , it is intuitively clear that the joint PDF p.fFi g/
is known. The statement can be proven mathematically by observing that when
differentiating the forward option price

U D
Z  

X

i

wiFi �K

!

C
p.fFi g/d fFig

twice with respect to the strike, the Radon transform of the PDF is obtained:

d2

dK2
U D

Z

ı

 
X

i

wiFi �K

!

p.fFi g/d fFig DW RŒp�.fwi g; K/

The inverse Radon transform then gives p as a function of d2

dK2 U , see Carr and
Laurence (2011) and references therein.

In general, liquid equity basket option prices only exist for indices, which means
that the weights w1;w2; : : : ;wn are fixed for a given set of underlyings fFig.
The weights can vary with time, but for simplicity we assume them to be time
independent. The consequence is that there are not enough calibration instruments
in the market for a unique determination of the joint distribution. A common
way to obtain a calibration problem with a unique solution is to assume a certain
parametric function for the correlation. In Sect. 12.4 we give concrete examples of
such parameterizations when modeling commodity futures.
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Based on the simplicity of calibrating local volatility models, we attempt to
extend that approach to include correlations. Models obtained in this way are called
local correlation models.

We assume that there exist liquid options for all maturities and strikes on the
basket F D P

i wiFi and on the underlyings fFig. We assume that it is possible
to simultaneously calibrate local volatility models for both the basket and the
underlyings. It means that there exist functions �.t; F / and f�.t; Fi /g that correctly
price the calibration instruments and are related by

�.t; F /FdW D dF D
X

i

wi dFi D
X

i

wi �.t; Fi /FidWi

Squaring both sides gives

�.t; F /2F 2 D
X

ij

wiwj �.t; Fi /�.t; Fj /FiFj �ij

We conclude that simultaneous local volatility models for the basket and the
underlyings can be constructed if �ij satisfies the above equation. In Langnau (2010)
it was shown how (non-unique) solutions can be found by constructing continuous
1-dimensional parameterizations of the correlation such that the right-hand side is
increasing and has values both above and below the value of the left-hand side. The
solution can then be found via a 1-dimensional root finder.
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Chapter 11
Equities

This chapter deals with derivatives that depend on the value of one or several equity
stocks or equity indices. We argue that equity stocks are similar to the idealized
underlying S that has been considered in previous chapters and it is therefore
possible to use the models discussed there. There are, however, certain aspects
of the equity stock behavior that do not agree with the idealized underlying. One
example is that a company can default, which results in a worthless stock. The
theory treating such credit defaults is a quantitative area of its own. Some of the
methods used in that field are similar to the ones in this book, e.g. hazard-rate
models for defaults corresponds to short-rate models for interest rates, but most
often they are fundamentally different. Derivatives that depend on credit defaults
often rely on copula models and on models for extreme events. This makes credit
default modeling closely linked to auctorial mathematics and we have therefore
chosen not to include this area in the set of the major asset classes discussed in
this book.

Equity derivatives can be priced accurately without using models for defaults
of the underlying stock. The reason is that the credit information is accounted for
by the market through the value of the underlying and its implied volatility. It is,
however, necessary to be aware of the way the credit exposure affects these values,
e.g through occasional downward jumps in the underlying process and a skew in the
implied volatility.

Another example of how equity stocks behave differently from an idealized
underlying is that they pay discrete dividend cash flows throughout their life. The
implication is that the assumptions in Chap. 1 are violated and that the models
discussed so far in the book need to be modified before they can be applied to
equities.

Equities are different from the other major asset classes as they are almost
exclusively used for investment and speculation. Commodities, interest rates and
foreign exchange, on the other hand, are often traded for hedging purposes as well
as for investment and speculation.

A particularly interesting equity derivative is the warrant. This instrument type
is similar to a call option with a few exceptions. For instance, it usually has a
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longer maturity than ordinary equity options. More important, from a modeling
perspective, is the fact that new stocks are issued when a warrant is exercised.
This dilutes the value of the stock and leads to a lower stock price if several warrants
are exercised simultaneously. It is straightforward to modify the option pricing
formula to account for this diluting effect.

We first discuss characteristic behavior of equity prices and volatilities. This
guides us in the choice of an appropriate model. The effects of dividend payments,
and how to modify derivatives models to account for them, are also covered.

11.1 Stylized Facts

The price of an equity stock is driven by news relating to the issuing company and
the competitors, and by global news affecting the stock market as a whole. The news
flow typically results in more extreme events in the stock returns than predicted by
Gaussian models such as the normal or lognormal process. This is represented by
fat tails in the probability distributions. Furthermore, the center of the distribution
has a higher peak than a Gaussian model. This behavior is not unique to equities but
occurs within all asset classes.

Unexpected news gives jumps in the stock price. Equities are different from
the other asset classes because large jumps are more often negative than positive.
This behavior reflects the investor fear of negative news and the associated credit
exposure. It manifests itself in a fatter left tail and a skew for the implied
volatility.

For most asset classes, the distribution looks less lognormal the smaller the
time scale of the distribution. This is particularly pronounced for equities and
commodities where jumps are frequent. For equities, the volatility skew for short
maturities is sometimes so strong that if described by a shifted lognormal model, an
extrapolation beyond the normal process is necessary.

Consider the situation when a company reports unexpectedly low profits. The
consequence is a sell-off and a lower stock price. This scenario makes investors
uncertain and implies higher trading volumes and a higher volatility. This is one of
the main reasons for the negative correlation between the price of an equity stock
and the volatility. The outcome is a skewed implied volatility surface.

11.2 Dividends

An equity stock pays discrete dividend cash flows throughout its life. The payment
dates and the size of the dividends are not known unless they are in the near future.
We later discuss how known dividend payments can be accounted for in derivatives
pricing. For now, we assume that all future dividend payments are unknown both in
size and in the payment date. The simplest way to model this situation is to assume
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an equal probability of receiving a dividend proportional to the stock value at any
given date. The benefit of the possibility of receiving dividend payments in a time
interval Œt; t C dt/ can then be written as qSdt where the variable q is called the
dividend yield.

We start the discussion of derivatives pricing on dividend-paying equities by
considering forward contracts. The pricing can be done by repeating the static
replication argument of Sect. 2.1 in the presence of a dividend yield. For this
purpose, we compare the strategy of holding e�q.T�t / underlyings with the holding
of a forward contract with strike K and a cash amount KPtT . As both strategies
are worth ST at the maturity T , the fair value of the strike, i.e. the forward, is
Ft D e�q.T�t /P�1

tT St , or Ft D e.r�q/.T�t /St with r the continuous compounded
interest rate for the period Œt; T �.

If dividends are accounted for, the purchase of an equity stock at t D 0 gives
a holding of Steqt at t . The fundamental theorem of asset pricing states that the
forward Ft D e�q.T�t /P�1

tT St is a martingale in the T -forward measure as it is the
quotient of an investment strategy andPtT . As the lognormal price of a call option is

Vt D PtT .FN .dC/ �KN .d�//

the above expression for the forward gives us the following generalization of the
Black–Scholes formula:

Vt D e�q.T�t /StN .dC/ � PtT KN .d�/ ;

d˙ D ln.e�q.T�t /St=.PtTK//
�

p
T � t ˙ 1

2
�

p
T � t

It is straightforward to extend the formula to a time-dependent dividend yield by
replacing qt with

R t
0
qudu.

With Bt being the money market account, Steqt =Bt is a martingale in the risk-
neutral measure. For simplicity, we assume it to be a driftless lognormal process

d
�
Ste

qt =Bt
� D �

�
Ste

qt =Bt
�
dWt

Combining this equation with the product rule of differentiation

d
�
Ste

qt =Bt
� D .q � r/ �Steqt =Bt

�
dt C �

eqt =Bt
�
dSt

gives

dSt D .r � q/Stdt C �StdWt

which generalizes the option pricing SDE in earlier chapters. This SDE can be used
to numerically price exotic equity options, for example, by simulations.
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By representing the unknown future dividend payments by a dividend yield, we
have seen that it is straightforward to generalize the derivative models we have used
for idealized underlyings. Observe that many of the results in the previous chapters
are affected by such a generalization. For instance, we leave it as an exercise to the
reader to derive the corresponding asymptotic limits and no-arbitrage conditions of
Sect. 2.4. Another consequence concerns American call options for which the lower
bound .S�KeqT P0T /C invalidates the argument in Sect. 2.5 that it is never optimal
to exercise an American call option early. There are now situations when an early
exercise is preferable in order to obtain the dividend payments, which are otherwise
missed out on by the option holder. The consequence is that American call options
for equities can be worth more than their European counterparts, see Sect. 9.3 for
more details.

We now turn to the analysis of known future dividend payments and start by
assuming a single dividend payment D that occurs at tD . To avoid arbitrage, the
equity stock must drop by the same amount: StDC

DStD�
�D. A European option

with maturity T > tD can therefore equivalently be viewed as an option on a
fictional non-dividend paying underlying

QS D
(
S �DPttD t < tD

S t � tD

This new underlying has the same time T value as S and as

QStD�
D StD�

�D D StDC
D QStDC

it is also continuous. We conclude that if the option is priced at t < tD with the
Black–Scholes formula, S should be replaced with S �DPttD .

It is not sufficient to change the spot value from S to QS , but the volatility needs
to be modified as well. To understand why this is the case, assume for the sake of
the argument that interest rates are zero and that the option matures just after the
dividend payment. It means that QS DS �D for essentially the whole life of the
option. We then obtain

d QSt D dSt D �StdWt D �
St

St �D
QStdWt

Freezing to today’s spot prices gives an estimate for the volatility: Q� D � S0
S0�D .

When it comes to American call options, there are no dividend payments in
.tDC; T / and they should therefore not be exercised early in this interval. We
conclude that they have the same price at tDC as their European counterparts.
There are, however, situations when it is optimal to exercise just before the dividend
payment date tD . Indeed, an American call option not exercised at tD has the value

VAmerican.tDC; StDC
/ D VEuropean.tDC; StDC

/ D VEuropean.tDC; StD�
�D/



11.3 More Advanced Models 199

tDC. If, on the other hand, an American call option has been exercised early, a
payment StD�

� K would have been obtained. This gives us the breakpoint B for
the early exercise boundary, defined by

B �K D VEuropean.tD; B �D/

If exercising at tD�, we lose the time tD value ofK �KPtDT in interest rate cost
compared to an exercise at maturity. As the dividend payment must compensate for
this loss if early exercise should be optimal, the above equation only has a solution if

D � K.1 � PtDT /

For the same reason as a non-dividend paying American call option should not
be exercised early, the American call option in our example can only be optimally
exercised early at tD�, and not before. Thus, if the underlying pays dividends on a
discrete set of dates tD1 , tD2 ; : : : ; tDN , the option can only be optimally exercised
just before any of the payment dates. The American option therefore coincides with
the corresponding Bermudan option and can be priced with the same methods.

We now turn our attention to American put options, where we again start with a
single dividend paymentD at time tD . We conclude from Sect. 9.3 that the exercise
boundary between tD and T is an increasing function reaching the strike level K
at maturity. When it comes to the exercise decision for t 0 < tD , the gain in interest
rateKP�1

t 0tD
�K needs to be compared with the gain from the drop in the underlying

value by D at tD . Assuming constant interest rates: P�1
t 0tD

D er.tD�t 0/, gives the
break-even time

t 0 D tD � 1

r
ln

�

1C D

K

�

We see that it is never optimal to exercise an American put in the interval Œt 0; tD/,
regardless of the value of the underlying. Continuing backwards in time, the exercise
boundary increases from the zero value at t 0 to a local maximum at some t 00 < t 0
after which it will continue its more normal behavior and decrease with the time
to maturity. It is straightforward to generalize this argument to obtain a qualitative
understanding of the early exercise when there are several dividend payments. It is
important to be aware of the implications of the simplifying assumption that the
dividend for certain pays D at tD . For instance, if the underlying is close to the
exercise boundary just before t 0, the value is very low and it is unlikely that
the whole dividend amount is paid.

11.3 More Advanced Models

Although good to a lowest-order approximation, the lognormal model does not
account for the stylized fact in Sect. 11.1. For instance, a proper model should
account for the correlation between the underlying and the volatility by including a
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stochastic volatility. This introduces a skew in the implied volatility which is found
to be weaker than the market skew, in particular for short maturities. Because of
their ability to produce a pronounced skew for short maturities, Lévy processes
are popular tools for equity derivatives models. The use of such models is also in
agreement with the observational fact that the prices of equity stocks do jump, in
particular downwards.

11.4 Volatilities and Correlations

We now explain in more detail how exotic equity options can be priced. To make
the discussion as simple as possible, we use the lognormal process of Sect. 11.2.
As the drift was given by a no-arbitrage condition, it remains to determine the value
of the volatility. This is usually done by calibrating to European options.

We illustrate the procedure by calibrating a lognormal model to European ATM
options with maturities T1, T2; : : : ; TN and assume a piece-wise constant local
volatility: �t D �i for t 2 .Ti�1; Ti �, where T0 is today’s date. The following chain
of equations is then obtained:

�21 T1 D �21;impT1

�21 T1 C �22 .T2 � T1/ D �22;impT2

� � �

from which the local volatility can be computed. This method can, of course, be
extended to other interpolation methods for the local volatility, though the result is
more complicated formulae. When generalizing to non-lognormal processes, it is
often necessary to use approximate expressions for the implied volatility. Another
technique for obtaining the local volatility is to assume a parametric form and rely
on a least squares fit. For a more general discussion of calibration, see Sect. 4.2.

In this and the following chapters we limit the discussion to calibration to
ATM options. The calibration to skew and smile is more complicated and can, for
example, be done by using the perturbative methods in Sects. 6.1 and 7.2.

Recall that European option pricing is based on the forward being a martingale.
Being the quotient of the spot price and a zero-coupon bond, the forward volatility
has components coming from both the spot volatility and interest rate volatility.
To obtain the spot volatility from the calibration, it is necessary to strip out the
interest rate volatility. Fortunately, if the maturity is not too long, the interest rate
contribution is small. The interest rate effect for longer maturities is discussed in
Sect. 13.21.

Regarding the correlation, the situation is similar to that for idealized underly-
ings. We therefore refer the reader to Sects. 10.8 and 10.9. It is, however, important
to be aware of the fact that correlations tend to increase in times of a crisis, when
equity prices are falling.
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Commodities

This chapter is dedicated to the pricing and risk management of financial derivatives
for which the underlying is a commodity. The asset class of commodities is vast and
can roughly be subdivided into energy, agriculture, base metals and precious metals,
see Fig. 12.1 for some examples of commodities in each class. Each commodity has
its own characteristics that need to be accounted for in the modeling. Nevertheless,
our goal is to set up a general framework that can guide the reader in the modeling
of derivatives that depend on any type of commodity.

From a derivatives modeling perspective, the most important differences between
commodities and purely financial asset classes are the facts that commodities are
constantly produced and consumed, and that for every commodity there is a storage
cost, i.e. a cost for physically holding the commodity. The immediate consequence
is that the forward price argument of Sect. 2.1 breaks down. Indeed, instead of
storing a commodity up to the maturity of the forward contract in a static replication
argument, it is often cheaper to purchase a newly produced commodity at maturity.
The conclusion is that there is no such strong connection between the spot price and
the forward prices as is found in purely financial markets such as the equity and the
FX markets. The modeling of commodities therefore involves the evolution of the
forward curve, which is similar to yield curve modeling for interest rates.

The cost of storage depends on the commodity type, with precious metals
found in one extreme. They are cheap to store and the amount consumed and
produced every day is low compared to the existing stock. It means that the forward-
replication argument is approximately valid. Precious metals can therefore with a
high degree of accuracy be described by using only the spot value and in many
pricing systems they are not modeled as other commodities but rather as FX rates.
We do therefore not discuss this commodity class in detail but rather focus on the
other extreme where we find electricity, which is very expensive to store. In this
instance the link between the spot and the forward prices is weak. Because of
its extreme properties, electricity is arguably the most complex commodity from
a modeling perspective. It is no exaggeration to claim that mastering the art of
electricity derivatives modeling makes it possible to model any other commodity
derivative. For this reason we often use electricity as an illustrating example.
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Fig. 12.1 Classification of the major commodities

As commodities are only weakly correlated to interest rates, the forward and
futures prices are approximately equal. We therefore use the words forward and
futures interchangeably in this chapter.

We start the chapter by classifying the various commodities traders and discuss
their incentives. We then review the main characteristics of commodity prices.
Based on these observations, we describe how commodity derivatives can be
modeled. Finally, we discuss in detail how volatilities and correlations enter the
models in practical applications.

12.1 Commodities Trading and Investment

With the exception of precious metals, it is in general not profitable to invest in
commodities physically because of the high storage costs. Instead, commodities
are mainly traded through futures contracts (swaps are used for oil distillates,
e.g. heating oil, gasoline and jet fuel). The counterparties agree, via an exchange, on
a future delivery of the underlying commodity in return for a cash payment.

Let us consider the example of a crude oil futures contract with a delivery in
March next year. This contract is traded, and settled daily, up to some date in
February, the last trade date, that has been defined by the exchange. The oil then
needs to be delivered some time between two exchange-specific dates in March, the
first delivery date and the last delivery date. The futures contract also states the place
of the delivery, the quality of the oil, how the cash deposit should be made, etc.

The buyers of March oil futures contracts are not prepared to pay much more
than what they believe the oil price will be in March. By symmetry, the sell side
are not prepared to sell for much less than what they believe the oil price will be in
March. The intersection of these supply and demand forces determines the futures
prices. It follows that the March futures price of oil is close to what oil analysts
expect the price to be at that time.
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It is in general not possible to make a profit from the information that commodi-
ties prices are expected to increase. Assume, for instance, that the media report that
oil prices are expected to increase for the next couple of years and that you decide
to take advantage of this by purchasing oil. As the high storage cost prevents a
physical holding, you turn to the futures market. But as the futures price reflects the
expected price of oil in the future, the increase reported by the media has already
been included in the futures price, meaning that no profit can be made.

The only way to make a profit from increasing prices in the commodities market
is if the commodity price increases more than what is predicted by the futures prices.
However, as the prices of futures are mainly determined by the consensus on the
expected future spot price, it appears that the return on commodity investments
should be zero on average. Despite this, investments in commodity futures have
historically been as attractive as investments in equity stocks. As we now show, the
good returns can partly be explained by a supply and demand argument by Keynes
(1930) that originates in the fact that not all participants in the commodities market
have purely financial interests.

The producer of a commodity usually knows a certain time in advance (typically
a couple of months) how much of the commodity is going to be produced. The
price of the commodity can then be secured by entering long-dated futures contracts
right away instead of selling at a later date when the commodity has be produced,
and thereby taking the risk of price fluctuations. The purchaser of a commodity,
on the other hand, typically has customers interested in buying at the spot price.
To minimize the price risk between the buy side and sell side, the purchaser buys
short-dated futures.

The supply and demand forces described above affect most commodities. The
result is that the discounted price is, on the average, higher at the short end than
at the long end of the futures curve. A profit can therefore be made by purchasing
long-dated futures and selling short-dated futures. In practice, this can be done by
holding futures contracts until they have short maturity, whereafter they are sold
and new long-dated futures are purchased. This strategy, which can be perpetual,
is referred to as rolling futures contracts. As the futures contracts are never held
beyond the last trade date, the strategy is ideal for financial investors which have no
interest in delivering, or taking delivery of, the underlying commodity.

The expected returns in the commodities market do not come from expected
increases in commodities prices, but rather from the premium that certain market
participants are prepared to pay to secure the price. It means that a profit can be made
in times of expected decreasing spot prices as well as in times of expected increasing
spot prices. Thus, a purely financial market participant can take advantage of the
supply and demand forces and obtain a yield in return for taking on the exposure to
price fluctuations. An investment in commodities is therefore similar to any other
financial investment: a certain positive return is expected for a given risk.

The arguments of Keynes’ work in the reverse direction for certain commodities.
For instance, as refineries buy crude oil at the short end of the futures curve they
would also like to sell their end products, the oil distillates, at the short end to
minimize their financial risk. The refineries are then only exposed to the price of
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the crack spreads, which are the price differences between the distillates and crude
oil, and avoid any temporal risk. Some purchasers of oil distillates have the foresight
to hedge themselves longer out on the futures curve. A financial investor aiming to
pick up a risk premium in such a market must therefore sell long-dated futures and
buy them back the short end, i.e to roll a short commodities position.

We have so far described the trading activity of industrial market participants and
how this opens up for the possibility of obtaining a positive return. Let us now focus
on the purely financial investor. Apart from the attractive returns, there are a couple
of other reasons for investing in the commodities markets.

The global financial market is currently in an inflationary period that has lasted
since the beginning of the twentieth century, see Fischer (1996) and references
within. It means that the price of tradable goods increases with time, at least when
viewed over long time periods of a decade or more. As commodities (which we
in this book define as exchange-traded goods) are tradable goods, their values
appreciate on the average. It means that holding a commodity with a low storage
cost (e.g. gold) is in the long run at least as good an investment as holding cash.
Furthermore, it has been observed that rolling strategies of commodity futures have
higher correlation to inflation than equity and interest rate investments. Commodity
investments are therefore popular with investors such as pension funds that seek
inflation-linked investments. It should be noted, however, that the correlation
between commodities investments and inflation is much lower than the common
belief, especially for shorter time scales (of a decade or less) where it can be
indistinguishable from zero.

Investments in commodities have historically given high returns at different times
in the business cycle than equities and bonds. An investment portfolio containing
commodities therefore allows access to a high-performing market at times when
neither equities nor bonds are performing. Empirical studies show that commodities
investments have low correlation to other asset classes such as equities and interest
rates. Furthermore, investments in the various commodity classes are themselves
only weakly correlated. It means that adding a component of commodities to the
traditional equity and bond investment portfolio leads to a diversification that can
result in a higher return for a given risk.

The above reasons have led to a large number of financial market participants
entering the commodities markets. In fact, the influx has been so large that they
outnumber the industrial market participants. It is therefore no longer certain
whether the traditional Keynes’ supply and demand argument is valid. Even though
financial investors take both sides of the trades, i.e. they can go both long and
short the commodity, they tend to be predominately long. It means that the rolling
strategies used by the financial investors can very well be such that their supply and
demand forces are stronger than those coming from the industry. The result is that
the returns originating from supply and demand could be negative when rolling long
futures positions. This applies in particular to rolling strategies in the short end of the
futures curve as most financial investors have chosen to do the rolling there because
their clients expect an investment that follows the spot price as closely as possible
and because the liquidity dries out quickly when moving away from the very short
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end. Despite this effect, long investors have anyway been rewarded by high returns
recently, and the reason depends on the commodity type. For instance, gold prices
have been driven by the flight to security during the financial crisis starting in
2007 while the prices for industrial metals have been driven by the booming Asian
economies.

12.2 Commodity Price Characteristics

With commodites being traded goods, their prices are driven by supply and demand.
For instance, if there is an abundance of a certain commodity, the price tends to
be low. Because of low profitability, the producers tend to lower the production in
such times. Consumption then erases the abundance with a return to more normal
prices. The reverse situation occurs in times of scarcity. The consequence is a mean-
reverting behavior for commodity prices. A purely financial market such as the
equity market can only display a weak mean reversion as it is otherwise possible to
take advantage of this behavior by buying at low prices and selling at high prices. For
commodities, on the other hand, the success of such strategies is limited by storage
costs, which means that a relatively strong mean reversion can exist. As a low stor-
age cost has a dampening effect on the fluctuations around the mean-reversion level,
the mean-reverting behavior is more pronounced when the storage costs are high.

After this short introduction to the behavior of the spot price, we proceed to
discuss the dynamics of the forward (futures) curve. We start by investigating
relationships between the forward and the spot. Recall that a forward contract on
an idealized underlying, i.e. without credit exposure, dividends and storage costs,
can be replicated by purchasing the underlying at spot and holding it until maturity.
The outcome is that the discounted forward value equals the spot. As we now see,
this equality is replaced with an inequality for commodities.

Consider the strategy Vphys. of storing a commodity up to a certain future time T .
Starting today with one unit of the commodity S , we end up with commodities
worth e�cT S at T , where we have assumed a constant proportional storage cost
c � 0 per unit time. We compare with the strategy V 0

roll of holding e�cT forward
contracts f and StD0 worth of bonds maturing at T . Assuming constant interest
rates, this strategy is worth

e�cT f C erT S0 D e�cT .f C F /C � D e�cT S C �; � D erT S0 � e�cT F

at T , where F as usual denotes the futures price. This strategy has the same initial
value as Vphys. while the terminal value differs by a term � that is already known
at today’s date. If � is negative, Vphys. is preferable to V 0

roll, which means that it
is possible to arbitrage the forward market by physically holding the commodity.
We conclude that � � 0 which gives an upper bound on commodities forward
prices:

F � e.rCc/T S0
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Recall from Chap. 1 that it was necessary to exclude the strategy of holding cash
from our theoretical framework because of the existence of a better performing
strategy, the money market account. We now use a similar argument to exclude
the physical holding of a commodity.

First of all, we would like to point out that the above argument of V 0
roll being

better than Vphys. at T is not sufficient for this purpose. The reason is that someone
that holds a commodity physically probably does so to be able to take advantage of
any surges in the price permitted by the mean-reverting behavior. It means that we
instead should consider the strategy V 0

phys. in which the investor is allowed to sell the
commodity at the time of choice and not only at T . As the holder of V 0

roll is not able
to take advantage of any surges in the spot price, it is not true that V 0

roll is better than
V 0

phys.. For this purpose, we now modify V 0
roll to a strategy that dominates V 0

phys..

Consider the strategy V 1
roll consisting of e�cT=2 forward contracts maturing at

T=2 and S0 worth of bonds. It follows from the above that this investment is worth
e�cT=2S C � at T=2, for � positive. If then investing e�cT=2ST=2 C � in bonds and
entering e�cT forward contracts, we obtain e�cT S C � 0 at T , for � 0 positive. We
have thereby constructed a strategy that is better than Vphys. if observed at T as well
as at T=2. By introducing more and more intermediate dates, we obtain a strategy
V1

roll that performs better than Vphys. if viewed at any date in Œ0; T �. As we can exit
the strategy V1

roll at the time of choice, V1
roll performs better than V 0

phys.. To avoid
arbitrage it is therefore necessary to exclude the strategy of physically holding a
commodity.

Observe that in the strategies V k
roll we enter futures contracts and when they are

close to maturing, we sell them and purchase new futures contracts. This is just
the rolling strategy described earlier. The limit k ! 1 means that the rolling is
done with contracts of infinitesimal maturity. This enables us to follow the behavior
of the spot without being subjected to storage costs. Thus, infinitesimal rolling
(which excludes the strategy of physically holding of a commodity) is similar to
the money market account (which excludes the strategy of holding cash). Observe
that as infinitesimal-maturing futures do not exist in reality, it is anyway common
to hold commodities physically to benefit from the timing option of being able to
sell the commodity at the time of choice. The infinitesimal rolling strategy is also
limited in practice by the bid-offer spread.

The difference in value between V 0
phys. and Vphys. represents the benefit of being

able to sell the commodity at the time of choice before T . If expressing this value
as eyT S0, then y is called the convenience yield. We would like to draw the reader’s
attention to the fact that there exist several different definitions of convenience
yield in the literature. For instance, it is common to define it through the relation
F DS0 exp ..r C y/T / between the forward and the spot. When this definition is
used, the convenience yield no longer represents the benefit of a timing option.

We have argued that the link between futures prices and the spot price is vague
when the storage costs are high. Market participants instead tend to agree on a
futures price that is close to the expected value of the spot at the maturity. If there is
more interest from sellers than from buyers at a certain maturity, a supply-demand
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argument leads to a futures price below the expected spot price, and vice versa.
The higher the variance of the spot distribution at maturity, the more the sellers (or
buyers) are prepared to pay to lock in their price risk, which results in a bigger
difference between the futures price and the expected spot price. Furthermore, we
have also seen that the storage cost, interest rates and the convenience yield have an
impact on the shape of the futures curve. The conclusion is that the futures curve
has a complex behavior that depends on several factors.

A curve for which the futures prices decrease with maturity is said to be in
backwardation. The reverse situation, seen in the equities market (but also for
commodities), is referred to as contango (Fig, 12.2).

As the futures prices are often mainly driven by the expected value of the spot
price, we take a closer look at the factors that affect the spot price. As it is difficult to
make general statements regarding the consumers on the demand side, we focus on
the supply side. We observe that the prices of commodities are heavily influenced
by the inventories: the larger the inventories, the larger the supply of the commodity,
which results in low prices. Thus, we conclude that the spot price is inversely
correlated to the level of inventories. Furthermore, the expected future levels of
the inventories have a significant effect on the shape of the futures curve. This
can lead to many different shapes of the curve, for instance, it can increase for the
first few months after which it starts to decrease. There exist several other factors
that influence the futures curve, such as expected weather conditions and political
decisions.

The price behavior of renewable and non-renewable commodities can be funda-
mentally different. From an economic viewpoint, a commodity is considered to be
non-renewable if it is expected to last some decades or perhaps up to a century. It
means that we consider oil and natural gas as non-renewable but not coal as it is
expected to last for at least another thousand years (based on current production and
consumption levels). The price of non-renewable commodities is influenced by news
regarding the estimated reserves. The reserves can also be classified into different
price layers. To illustrate this fact, assume that the price of oil increases and stays at
high levels for several years. Oil companies can then make a profit by extracting oil
at places that were not economically viable before, e.g. deep water drilling. When
the new drilling platforms come in use, the supply of oil increases, which leads to a
decrease in the price in order to be linked to the marginal costs of the extraction.

Fig. 12.2 Commodity
futures prices can increase
(contango) or decrease
(backwardation) with
maturity T

Backwardation

Contango
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Many commodities display a seasonal pattern in their prices. This behavior can
originate in the supply side as well as in the demand side. An example of seasonality
on the demand side is found in countries in the Far North where more electricity
is needed during the winter than during the summer. On the other hand, if these
countries rely on hydropower, there can be an abundance of electricity during
the spring due to snow melting. This is an example of seasonality originating in
the supply side. For a commodity like electricity, which is economically unviable
to transport over vast distances, the seasonal patterns depend on the geographic
location. For instance, many warm locations have higher electricity prices during
the summer (because of air conditioning) than in the winter.

The seasonality is not restricted to the yearly seasons. Consider again the
example of electricity where the demand is high during the day but low in the night
when most people are asleep. The result is higher prices during the day. Apart from
the daily profile, there is also a weekly seasonal pattern as the energy consumption
is different on weekdays versus weekends. Furthermore, the daily profile looks
different on holidays, weekends and working days.

As the futures prices reflect the expected future spot price, an increase in the
spot price implies an increase in the futures prices, though with a smaller amplitude
because of the mean-reverting behavior. It means that a backwardated curve has
an even more pronounced backwardation after an increase in spot. Similarly, a
decreasing spot price gives less backwardation. The same type of argument applies
to a curve in contango. The conclusion is that the slope of the futures curve is
positively correlated to the inventories and both these quantities are negatively
correlated to the spot. Another implication is that the volatility of futures contracts
decreases with the maturity.

Recall that the (lognormal) volatility for an equity stock generally goes up when
the stock value decreases. This is because a decrease in the stock value is often
related to a market uncertainty regarding the underlying company, which in turn
implies a higher volatility. The situation can be the reverse for commodities. If
a commodity price goes up, this could, for example, be because of unexpectedly
low inventories. As the inventories act as a buffer on the price towards unexpected
news flows, the volatility increases in this situation. The spot price and the volatility
are therefore sometimes positively correlated for commodities. This is one of the
explanations why the implied volatility skew for commodities can be found in the
opposite direction compared to equity options. It also follows that a commodity with
a seasonal price dependence has a seasonal volatility as well.

We conclude that the spot price, the futures prices, the inverse slope and the
volatility are often positively correlated for commodities. These variables are in turn
negatively correlated to the inventory levels. Several empirical studies, for example,
by Deaton and Laroque (1992), Fama and French (1987), Fama and French (1988)
and Ng and Pirrong (1994), have been done that support these conclusions. We
would like to point out, however, that these relations are violated relatively often
and can therefore not be taken as a rule.

The cost of storage makes commodities highly volatile. The general rule is that
the higher the storage cost, the higher the volatility. The reason is that commodities
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with low storage costs have high inventories, which acts as a buffer on any sudden
changes in the supply or the demand. The most extreme example of high storage
costs is electricity with limiting storage techniques, such as pumping up water into
reservoirs during night time. The consequence is a spot volatility that can exceed
a hundred percent. This should be compared with equity stocks that seldom have
volatilities above 50%. The large volatility (and volatility of volatility) observed
for many commodities can make it impractical to use perturbation schemes like
those in Chaps. 6 and 7. The volatility for the futures contracts, however, is often
substantially smaller than the spot volatility.

For commodities with high storage costs and low inventories, a sudden disruption
in the supply or the demand causes the price to jump. Again, the most extreme
case is electricity for which the spot price can jump by several hundred percent.
It can result in jumps of the futures prices, but of more modest amplitudes. This
explains the popularity of using jump processes for the modeling of electricity
and other commodities with high storage costs. The jumps are often followed by
a correction/jump of roughly the same size but in the opposite direction. The reason
is that the disruption that caused the initial jump was temporary and when corrected
the spot price returns to more normal levels. This behavior of the jumps is typical
of commodities and does not characterize financial assets because of arbitrage
opportunities. Thus, commodities require different types of jump models than, for
example, equities.

12.3 Commodities Derivatives Modeling

We base our commodities modeling on the evolution of the futures prices as
these are the liquidly traded contracts for commodities. The modeling becomes
particularly simple as the futures have zero drift in the risk-neutral measure
according to the result of Sect. 3.10.

We start by pricing a European option on a futures price. This product only
depends on one point on the futures curve and a modeling of the full curve is not
necessary. As the futures price is a martingale in the risk-neutral measure, we can
pick a driftless SDE of choice for the modeling. Let us for simplicity use a lognormal
SDE

dFt D �tFtdWt

The price of a European call option is then given by

Vt D E
h
.FT �K/C=e

R T
t rudu

i
D e� R T

t rudu .FtN.dC/�KN.d�//

where we have used the computations in Sect. 5.2 together with the assumption that
interest rates are deterministic.

When it comes to exotic options pricing, models of the full futures curve can be
required. Models of this type are similar to yield curve models. For example, it is
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popular to base commodity models on the evaluation of the spot, see, for example,
the models by Gibson and Schwartz (1990) and Gabillon (1992), which correspond
to short-rate models for interest rates. We instead follow an approach similar to
Andersen (2008) and choose to work with models based directly on the futures
curve, in analogy to the market model approach for interest rates. We show below
that this approach gives a relatively simple model to work with that at the same time
can reflect the stylized facts of the previous section.

We choose to work in the risk-neutral measure where futures prices are martin-
gales. For concreteness, we assume lognormal dynamics:

dFtT D �tT FtT dWt

where FtT denotes the time t value of the futures price with maturity T . We
assume a zero correlation to interest rates, making the calibration to European
option prices straightforward. Indeed, the change to the T -forward measure does
not alter the SDE, which implies a trivial relation between the local volatility and
the implied volatility. The pricing of exotics can then be done by solving the above
SDE (actually chain of SDEs as we have one for each T ) either analytically or
numerically.

The futures prices are totally correlated in the SDE we have chosen. A straight-
forward decorrelating generalization can be obtained by allowing each futures price
FtT to have its own Brownian driver Wt.T /. This gives an infinite set of Brownian
motions as T is a continuous variable. For a practical implementation, however,
a finite set will suffice. This can be achieved by setting

W.T / D
X

i

ai .T /Zi

where fZi g are independent Brownian motions and
P

i ai .T /
2 D 1 in order for

W.T / to be a standard Brownian motion. The price to pay for this flexibility in
the correlation structure is a lower performance of the implementation as values of
several Brownian motions need to be computed and stored.

Even when there is only a single driver, the implementation can have a higher-
dimensional character. To understand how this can be the case, consider the situation
when futures prices FtT1 , FtT2 and FtT3 of three maturities are simulated over the
time steps ftig. Assume that the simulation has been made up to ti and that we are
about to evolve the SDE to tiC1. We use

FtiC1Tj D Fti Tj exp

�

�1
2

Z tiC1

ti

�2sTj ds C
Z tiC1

ti

�sTj dWs

�

where Fti Tj is assumed to be known. The problem is that for each path of
the simulation, the vector .Fti T1 ; Fti T2 ; Fti T3/ is needed for the computation of
.FtiC1T1 ; FtiC1T2 ; FtiC1T3/. The storage and access of such a vector can be a
performance bottleneck in an implementation of a Monte Carlo simulator if many
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futures prices fFtTj gj need to be evolved. Even worse, a tree (or PDE) solver has the
same dimension as the number of futures prices. As the performance of tree solvers
is heavily dependent on the dimension, they are practically impossible to use on
these types of models.

The dimensionality problem can be solved by allowing the futures prices fFtT gT
to depend on one (or a couple) common factors. For instance, with a separable
volatility �tT D ƒT �t we obtain

FtiC1T D Fti T exp

�

�1
2
ƒ2
T

Z tiC1

ti

�2s ds CƒT

Z tiC1

ti

�sdWs

�

We see that if fFti T gT are known, fFtiC1T gT can be computed by only using the
stochastic information

R tiC1

ti
�sdWs. This process is independent of T and all futures

prices can therefore be obtained by simulating
R ti
0
�sdWs over the time steps ftig.

This is equivalent to simulating a standard Brownian motion over the scaled time
steps t 0i D R ti

0
�2s ds. As only a single random process needs to be stored, an efficient

tree implementation can be done. The approach can be generalized by setting �tT DPN
kD1 ƒk

T �
k
t . This method gives a greater flexibility in the choice of volatility while

the performance decreases with increasing N .
Recall that the volatility typically decreases with the time to maturity of the

futures contract. This can be accounted for by including a factor of the form
ek.t�T / in the volatility. A possible choice of separable volatility function is then
�tT D �te

k.t�T / D e�kT �t ekt .
The penalty to pay for using a separable volatility �tT D ƒT �t is that the futures

curve becomes highly correlated. For instance, with similar computations as those
in Sect. 10.1, we obtain an expression for the terminal correlation:

Corr.lnFtT ; lnFt 0T 0/ D
s
Z min.t;t 0/

0

�2s ds=

Z max.t;t 0/

0

�2s ds

We see that �t can be used to control the correlation. However, as pointed out in
Sect. 4.2, constant parameter values should guide us in what can be done and what
should be avoided in a model. In our example, a constant �t gives no control over
the correlation. Furthermore, �t already has the responsibility of controlling the
volatility of the futures prices. Therefore, to use this parameter for controlling the
correlation can be going one step too far, and even if we did this, the futures prices
fFtT gT would still be perfectly correlated. This type of model should therefore not
be used to price products that have a strong dependence on the correlation between
different futures prices.

The optimal solution that allows for non-trivial correlation appears to be a
combination of separable volatility and multiple drivers. For instance, a driver of
the form �tT dWt D ƒ

.1/
T �

.1/
t dZ

.1/
t C ƒ

.2/
T �

.2/
t dZ

.2/
t allows for a low dimensional

implementation at the same time as it has a non-trivial correlation structure.
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As we show in Chap. 13, the extension to skew and smile models is complicated
for interest rate models because the SDEs get modified under transformations
between the pricing measure and the calibration measures. For commodities, on
the other hand, we do not have this problem when assuming zero correlation
to interest rates as the SDEs look the same in the risk-neutral measure and the
forward measures. It is therefore straightforward to extend the model to include
skew and smile, either through local volatility, or by stochastic volatility techniques.
In the same manner, jumps can be incorporated, which is particularly important for
commodities with high storage costs.

As pointed out earlier in the chapter, a commodity futures curve can have a
peculiar appearance governed by supply and demand, expected future inventory
levels, seasonality, etc. These factors can be hard to take into account in models
based on the evaluation of the spot price. Furthermore, such models are typically
based on variables defined from fixed time periods beginning today. For example,
for the spot price itself this time period is zero as the spot is defined at today’s date.
When doing a simulation of such models, the variables are rolling along with the
simulation date keeping a constant distance from it. This makes it hard to model
effects that are defined for fixed points in time and not for fixed time periods from
today, e.g. seasonality. From this perspective it is more natural to use models based
on futures prices FtT that are defined for fixed time points T . It is then trivial to
calibrate to today’s value of the futures curve as it is given by the initial state of the
SDE.

As far as modeling is concerned, it can be useful to divide commodities into three
distinct classes. The first one consists of commodities with low storage costs such
as gold. The dynamics of the future curve can then to a high degree of accuracy
be described by using only the spot St . We have chosen not to cover this type of
commodities as the modeling can be done with foreign-exchange techniques. The
second class comprises commodities that can be described by their futures prices
FtT , as discussed above. Example of commodities in this class are oil and copper.
The third class consists of commodities that are not delivered at a certain point in
time but rather during a fixed time period, such as electricity. The modeling can
then be based on the futures price FtT T 0 representing the price per time unit for
delivering the commodity during the time period ŒT; T 0/. Observe that the number
of time parameters increases with the numbering of the commodity classes. From
a modeling perspective, the increasing number of time parameters makes the first
class the simplest while the third is the most difficult.

Regarding the modeling of commodities with a delivery period, observe that
.T 0 � T /FtT T 0 must obey the cocycle relation (we borrow this expression from
the mathematical branch of homology)

.T 0 � T /FtT T 0 C .T 00 � T 0/FtT 0T 00 D .T 00 � T /FtT T 00

This relation restricts the set of possible evaluations for FtT T 0 . For example,
if FtT T 0 and FtT 0T 00 satisfy lognormal SDEs, FtT T 00 cannot be lognormal. The
normal SDE, on the other hand, is closed under the cocycle relation. Unfortunately,
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commodities with delivery periods generally have high storage costs, which leads
to high volatilities. The existence of negative values of the underlying can therefore
cause problems when using a normal SDE. Despite the fact that the cocycle relation
needs to be fulfilled from a theoretical perspective, it is often possible to violate it
in practice without too severe consequences. It is, however necessary to be aware of
the pitfalls of doing so.

An alternative approach to construct a consistent model that satisfies the cocycle
relation is to base the theory on prices for infinitesimal delivery periods, i.e. FtT T 0

in the limit when T 0 ! T . The finite delivery futures prices FtT T 0 can then be
obtained from the infinitesimals through integration. The advantage of this approach
is twofold: the modeling is reduced to two time variables instead of three and the
cocycle relation is automatically satisfied. This technique is also used for interest
rates and in Chap. 13 we show how it can be applied in practice.

We now clarify why it is possible to use a martingale (e.g. the lognormal SDE)
to describe a market that is mean reverting. The reason is that we are referring to
two fundamentally different market variables, the spot price and the futures prices.
It is the former that is mean reverting while the latter is modeled by martingales.
The consistency in this argument originates in the fact that the spot is a rolling (with
respect to today’s date) financial variable while the futures prices are stationary in
time. For a mathematical explanation, assume for simplicity that the futures prices
are normal with a separable volatility

dFtT D ƒT �tdWt

, FtT D F0T CƒT

Z t

0

�sdWs

The spot price St D Ftt satisfies

dSt D StCdt � St D FtCdt;tCdt � Ftt

D F0;tCdt CƒtCdt
Z tCdt

0

�sdWs � F0t �ƒt

Z t

0

�sdWs

D
�

@tF0t C @tƒt

ƒt

.Ft t � F0t /
�

dt Cƒt�tdWt

D �@tƒt

ƒt

� QSt � St
�
dt Cƒt�tdWt ; QSt D F0t � ƒt

@tƒt

@tF0t

which is a mean-reverting process. We discuss the relation between mean-reverting
rolling variables and martingale stationary variables in more detail for interest rates
in Chap. 13.

An industrial user is often exposed to the daily price of a commodity. For this
reason, Asian options are very popular for commodities. Another reason for their
popularity is that they help to avoid price manipulation in illiquid markets, which
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can occur for European options. Asian options can be priced by solving models like
the one developed above either numerically or by using analytic approximations.

The physical user of commodities can also face volume risk on top of the
price risk. For example, more electricity is consumed during harsh winters. As the
demand is high during such times, so is the price. The user should therefore ideally
hedge the volume risk as well as the price risk. In the electricity market, the most
popular products for handling this risk are swing options. They typically work in
the following way: for a predetermined number of days during a period, say a year,
the holder of the option can consume electricity between a lower and upper bound
for a fixed price. The option holder decides on which days to use this optionality.
The total amount of electricity purchased for this price during the year must also be
between a certain lower and upper bound.

12.4 Volatilities and Correlations

In the same way as for equities, the drift is given by a no-arbitrage condition while
the volatility typically needs to be determined through calibration. The difference
from equities is that each commodity futures contract has its own volatility and the
model therefore contains a volatility surface: �tT , t � T instead of just a volatility
curve. The calibration can be done separately for each liquid maturity in the same
way as it was done for equities. The value of the local volatility for an arbitrary T
can then be found by interpolation.

There are often too few liquid calibration instruments for the above calibration
procedure to succeed. For instance, liquid option quotes in general only exist when
the option expiry equals (or is close to) the maturity of the underlying futures
contract. An alternative calibration approach is to reduce the dimensionality of
the problem by only considering certain shapes of the volatility surface. Such a
restriction is also necessary when a tailor-made calibration is done to a subset of the
possible liquid calibration instruments, see Sect. 4.3. Furthermore, we saw above
that restricted forms of the volatility can enhance the performance. Examples of
volatility surfaces include �tT D ƒT �t , �tT D �te

k.t�T / and �tT D Aek.t�T / C B ,
where the latter choice is based on the observation that commodities with high
storage costs have a dependence on T � t that is stronger than the dependence
on t or T alone. The choice of functional form depends on the product to be priced
as well as the set of liquid calibration products.

When it comes to commodities (and interest rates), it is necessary to distin-
guish between intercorrelation, i.e. correlation between different commodities, and
intracorrelation, which is the correlation between futures contracts on the same
commodity but with different maturity months. There exists some limited market
information on intercorrelation. For instance, New York Mercantile Exchange
(NYMEX) lists options on certain crack spreads. The intercorrelation clearly also
depends on the maturity months for which the correlation is measured. This
temporal dependence can to some extent be derived from the intracorrelation.
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We here choose to focus on intracorrelation, for which there is only limited
information available in the market. An example is given by the various calendar
spreads that are traded at NYMEX. The intracorrelation modeling is rather complex
as the correlation �.t; T; T 0/ depends on one more time variable than the volatility.
In analogy with the above discussion for the volatility, we assume that the
correlation only depends on the relative times to maturity � D �.T � t; T 0 � t/.
We can then without loss of generality assume that t D 0. Because of the limited
relevant market data, we choose to model intracorrelation by finding a suitable
functional form.

As opposed to volatility modeling, there exist several constraints on the corre-
lation, which makes it a complex problem to find a useful parametric form. The
conditions are:

1. �.T; T 0/ D �.T 0; T /
2. �.T; T / D 1

3. � should be positive semidefinite
4. �.T; T 0/ � �.T; T 0 C�T /

5. �.T ��T; T 0/ � �.T; T 0/
6. �.T; T 0/ � �.T C�T; T 0 C�T /

7. � � �.T; T 0/

for T � T 0. The first two conditions are obvious. For the third condition, assume,
for example, that commodity futures satisfy dFT D �T dWT , where �T is allowed
to depend on the futures priceFT . As a weighted sum of futures prices has a positive
variance:

0 �
 

d
X

i

wiFi

!2

D
X

ij

wiwj �i�j �.Ti ; Tj /

for an arbitrary vector fwig, the third condition must hold. It is natural to assume that
the correlation between two futures should decrease with the distance between them,
which explains conditions 4 and 5. Furthermore, we also believe that the correlation
between two equidistant rates should increase with the distance from today’s date.
Indeed, the further away the rates are from today, the more indistinguishable they
become. This is the content of condition 6. The upper bound of 1 for a correlation
follows from the above conditions. For the lower bound, the theoretical limit is �1,
corresponding to perfect anti-correlation. However, in practice we do not expect the
correlation to become as low and we introduce a lower bound � . For example, we
seldom find futures prices that are negatively correlated, so � D 0 appears to be
a natural constraint. Apart from the above conditions, it is also important that the
correlation matrix should be in agreement with certain observational “facts”, which
we see examples of later.

We would like to point out that although conditions 4, 5 and 6 are often satisfied
in the market, they are not written in stone. For example, the existence of a seasonal
pattern can violate them. Despite this, we still believe that the conditions serve as a
good base for finding a suitable functional form.
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One of the simplest functional forms of the correlation is based on the assumption
that there are only two driving factors Z and Z0 of the futures curve. The drivers
WT of the futures prices FT can be written as

WT D aT Z C bTZ
0

The constraint a2T C b2T D 1, necessary for fWT g to be standard Brownian motions,
suggests the introduction of the variable �T defined by

(
aT D cos�T
bT D sin �T

which implies that

�.T; T 0/ D aT aT 0 C bT bT 0 D cos.�T 0 � �T /

We have thereby simplified the parametrization of a 2-dimensional function �.T; T 0/
to the simpler problem of finding a parametrization of a 1-dimensional function �T .

As a general correlation matrix, the � constructed above satisfies conditions 1,
2, 3 and 7. We now choose �T so that the remaining conditions are satisfied. By
a redefinition of the drivers Z and Z0, we can assume that �0 D 0 and �T � 0.
We also make the natural assumption that 0 � �T � 
 for all T . Condition 4 then
implies

cos.�T / � cos.�TC�T / , �T � �TC�T

i.e. the function � D �.T / is increasing. Condition 6 implies

cos.�T � �T��T / � cos.�TC�T � �T / , �T � �T��T � �TC�T � �T
so � D �.T / is concave. Note that condition 5 follows automatically when � is an
increasing function.

It remains to find an increasing and concave function limited from above. One
example of such a function is

�T D ˛ .1 � exp .�ˇT //

which implies

�.T; T 0/ D cos
�
˛
�
exp .�ˇT / � exp

��ˇ.T 0/
���

For T D 0, it follows that �0 D 0 and a0 D 1, b0 D 0, so Z is the driver W0

for futures close to today’s date. The second driver Z0 becomes more pronounced
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Fig. 12.3 The Brownian
driver as an angle in the Z-Z0

plane for a 2-factor model

Z

Z ’

Tφ

with increasing T . The variable �T can be viewed as an angle between Z and Z0,
see Fig. 12.3.

We now consider an alternative parametrization that allows for more driving
factors and decorrelation. Based on the ease through which the conditions on the
correlation could be incorporated into a 2-factor model, we here also attempt to
reduce the correlation matrix �.T; T 0/ to a function of a single variable �T .

Consider three Brownian driversWT , WT 0 andWT 00 , T < T 0 < T 00. We write

(
WT 0 D �.T; T 0/WT Cp

1 � �.T; T 0/2W ?
T

WT 00 D �.T 0; T 00/WT 0 Cp
1 � �.T 0; T 00/2W ?

T 0

where W ?
T is independent of WT and W ?

T 0 is independent of WT 0 . As the driver
W ?
T 0 is a part of WT 00 but does not affect WT 0 , it seems reasonable to assume that it

should not affectWT since T < T 0. Following Shoenmakers and Coffee (2000), we
therefore assume that WT and W ?

T 0 are independent. We obtain the cocycle relation:

�.T; T 00/ D �.T; T 0/�.T 0; T 00/

Limiting ourselves to positive correlations and setting aT D �.0; T /�1 gives that

�.T; T 0/ D �.0; T 0/�.0; T /�1 D aT =aT 0 ; T � T 0

and �.T; T 0/ D �.T 0; T / for T > T 0.
Again, conditions 1,2, 3 and 7 are automatically satisfied while the remaining

conditions can be used to determine an appropriate functional form for aT .
Conditions 4 and 5 imply that aT is an increasing function. With �T D ln aT
condition 6 becomes

aT =aT 0 � aTC�T =aT 0C�T , �T � �T 0 � �TC�T � �T 0C�T
, �T � �TC�T � �T 0 � �T 0C�T , �T � �TC�T � �TC�T � �TC2�T

so � must be concave. Without lack of generality, we can assume that a0 D 1 which
means that �0 D 0. We therefore end up with the same demands on � as for the
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2-factor model and can choose it in the same way as was done there:

�.T; T 0/ D aT =aT 0 ; T � T 0; aT D exp .˛ .1 � exp .�ˇT  ///

We would like to point out that although the cocycle relation might look
intuitively appealing at first sight, its validity should be taken with a grain of salt.
For instance, the 2-factor model does not satisfy this condition. Furthermore, the
cocycle relation together with condition 6 implies that �.T0; T / is a convex function
of T . This is in contrast with the 2-factor model for which the function is concave
for T close to T0 and only becomes convex for later maturities. We discuss this issue
in more detail in Sect. 13.20 on interest rates where we also use empirical results to
guide us in the choice of an appropriate model.

In the implementation of a commodities model, only a discrete set of futures
prices is used. The correlation then takes the form of a matrix. In the functional form
chosen above, the matrix has full rank. It means that there are as many Brownian
drivers as there are futures prices. This is sometimes a bit too many drivers as it can
cause performance problems in the implementation. For this reason, it is common
to use an approximate matrix with a lower rank. The approximation is done with
respect to some appropriate matrix norm. This technique is commonly referred to as
factor reduction. It usually performs well, i.e. without modifying the original full-
rank matrix too much, if the reduced rank is not too low. However, one needs to take
care so that the correlation conditions are not violated too much (or at all). When
the rank is low (2 or 3), it is obviously better to immediately use a low-rank method
as the 2-factor parametrization.

The choice of a suitable set of Brownian drivers, or equivalently the choice of
correlation matrix, is important. Realistic drivers means that the correct instruments
are used for the hedging. The choice can also have an impact on the price. This can
be understood by considering the pricing of an option on the difference between two
futures contracts with different maturities. If using a single driving factor, the two
futures prices move up and down together implying a low volatility for the spread.
By introducing a second factor the futures prices become decorrelated which implies
a higher spread volatility and an increase in the option value. In this situation,
it is sufficient to use two factors. Assume now that we use a single model for
pricing several spread options which have underlying futures of different maturities.
The reason for using a single model is to be able to hedge consistently within the
model, see Chap. 4. It is then no longer sufficient to use two factors. Instead, it is
necessary to find an appropriate representation of the evaluation of the futures curve
in terms of the drivers in order to hedge and price correctly.

The correlation often needs to be bumped in order to investigate the market risk
and sometimes, when appropriate correlation-dependent products are available, to
find the hedge. Bumping intracorrelations is more difficult than bumping volatilities
as the correlation constraints should preferably be preserved. For intercorrelations
the problem of the bumping comes from the constraint of a positive semidefinite
matrix. The bumping obstacles can be avoided by assuming a suitable parametriza-
tion of the correlation matrix as we have done above for the intracorrelation.
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Chapter 13
Interest Rates

The topic of this chapter is pricing and risk management of derivatives that depend
on interest rates. These products can be divided into two classes. The first class
consists of derivatives that only depend on interest rates and no other asset classes.
An example is given by an option paying the positive part of the difference between
an interest rate and a fixed rate. Regarding the second product type, observe that
derivatives on other asset classes such as equity, commodities and FX contain
discount factors from the payment dates. This introduces an interest rate component
into the pricing. As we see in this chapter, the impact of the interest rate volatility
is usually much smaller than the contribution from the volatility of the main
underlying in the contract. It is therefore often possible to assume deterministic
interest rates without too much loss of accuracy. The exceptions are typically for
long-dated products where a stochastic model for interest rates is necessary for a
proper pricing and risk management. In this second class of derivatives we also
include interest rate hybrids for which the dependence on interest rate is explicit,
e.g. convertible bonds.

Just as for other asset classes, interest rate derivatives can be divided into vanillas
and exotics. We define the former as consisting of products that can be modeled with
a stochastic process of only a single underlying rate. For the pricing of exotics, the
evaluation of the whole yield curve is often necessary. This modeling is similar to
commodity exotics pricing where a whole curve also needs to be evolved. The most
important difference is that measure transformations are non-trivial for yield curve
models. As such transformations are often necessary for the calibration, interest
rates modeling can be quite complicated. We have therefore chosen to provide a
detailed discussion on interest rate modeling which results in a longer chapter than
for the other asset classes.

We start with a review basic interest rate terminology and explain how vanillas
can be priced. After a short discussion of convexity adjustment, we turn our attention
to yield curve models. Our main focus is on a normally distributed model for
which we discuss the relation to short-rate models, HJM models, market models
and Markov-functional models. We then consider the stochastic impact of interest
rates on other asset classes. We disregard liquidity and credit risk in the first part of

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 13,
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the chapter. It means that we limit ourselves to the way interest rate modeling was
done before 2007. The more general situation is considered from Sect. 13.22 and
onwards.

13.1 Interest Rates and Conventions

Recall that the zero-coupon bond PtT represents the time t value of the contract
paying $1 at T . Therefore, a fair loan of $1 at t should be repaid with P�1

tT at T .
The earning per time for the lender is

LtT D P�1
tT � 1
T � t

The instantaneous rate of earning is obtained from

rt D lim
dt!0

Lt;tCdt D lim
dt!0

P�1
t;tCdt � P�1

t t

dt
D d

ds
P�1
ts jsDt D � d

ds
Pts jsDt

rt is called the short rate.
Assuming that the short rate is independent of time, rt D r , an investment of

$1 grows to $.1C rdt/ during a small time interval dt . Separating the time period
Œt; T � into N parts of size .T � t/=N , we see that $1 grows to

�

1C r
T � t
N

�N
! er.T�t / when N ! 1

dollars from t to T . It means that

P�1
tT D er.T�t /

Based on the above discussion we define the simple compounded interest rate
LtT by

P�1
tT D 1C .T � t/LtT

and the continuously compounded interest rate rtT by

P�1
tT D ertT .T�t /

Another important concept is the n-compounded interest rate r 0
tT defined by

P�1
tT D .1C r 0

tT =n/
n.T�t /
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The continuously compounded rate is obtained in the limit n ! 1. Of the above
rates, the most commonly used are the annual compounded rate (n D 1), the semi-
annual compounded rate (n D 2), the quarterly compounded rate (n D 4) and
the simple compounded rate. The continuously compounded rate is rarely used in
practice. It is, however, often used in interest rate modeling because of the cocycle
relation: PtT1PT1T2 D PtT2 , which holds when the continuously compounded rate is
constant.

An important example of a simple compounded interest rate is the London
interbank offered rate (LIBOR) produced by British Bankers’ Association (BBA).
It is an average of the offered lending rates between major banks in the London
interbank market. LIBOR is given each day for 15 different maturities up to one
year and for 10 currencies (AUD, CAD, CHF, DKK, EUR, BGP, JPY, NZD,
SEK and USD). There also exist rates defined in a similar way but on the local
interbank markets: EURIBOR (EUR), HIBOR (HKD), SABOR (ZAR), SIBOR
(SGD), TIBOR (JPY), etc. To simplify the terminology, we from now on refer to
all simple compounded rates as LIBOR rates.

The value of a zero-coupon bond varies widely with the values of t and T .
The limiting values are 0 when T ! 1 and 1 when t ! T . Interest rates, on the
other hand, have a much weaker dependence on t and T . Indeed, interest rates have
historically most often been in the order of magnitude of 5%. As rates have more
stable values than zero-coupon bonds, they are more suitable to use for modeling.
This is analogous to the preference of working with volatilities instead of directly
with option prices.

An ambiguity in the definition of interest rates is the computation of T � t .
For instance, if t D 26 Aug and T D 26 Sep, should T � t be defined as 1/12 since
it is exactly one month or do we define it as 31/365 or in any other way? In fact, there
is no standard convention and to define an interest rate it is necessary to specify the
day-count convention that is used.

Commonly used day-count conventions are actual/365 and actual/360, for which
the day-count fraction T � t is computed by dividing the number of days between
t and T by 365 or 360. For example, .T � t/actual/365 is equal to 31=365 � 0:0849

in the above example. Another common day-count convention is 30/360 where
every month is counted as 30 days and every year as consisting of 360 days, and
actual/actual for which the actual number of days between t and T is divided by
the actual number of days in the year. There are several versions of the mentioned
day-count conventions depending on how to count the number of days in a month,
how to treat the short month of February and how to treat leap years.

A forward interest rate is an interest rate for a time period ŒT0; T1� in the future,
t < T0 < T1. For example, the LIBOR rate for ŒT0; T1�, as observed from t , is
defined by

P�1
tT1
=P�1

tT0
D 1C .T1 � T0/LtT0T1

The continuously compounded forward interest rate ftT0T1 is defined by

P�1
tT1
=P�1

tT0
D eftT0T1 .T1�T0/
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It follows in particular that LtT D LttT and rtT D fttT . By letting T0 ! T1 we
obtain the instantaneous forward rate

ftT D � d

dT
lnPtT

which is related to the short rate by rt Dftt . As the above expression is
invertible,

PtT D exp

�

�
Z T

t

ftT 0dT 0
�

the zero-coupon bond prices can be computed from the instantaneous forward
interest rates and vice versa.

13.2 Static Replication

This section deals with interest rate products that can be statically replicated with
zero-coupon bonds. Example of such products are coupon-paying bonds, FRAs and
swaps.

We start by discussing the relation between coupon-paying bonds and zero-
coupon bonds. The time t value of a bond with notional N , fixed coupon c and
payment dates T0; T1; : : : ; Tn is given by

Vn D N

 

c

nX

iD0
PtTi C PtTn

!

which shows how to express the price of a coupon-paying bond in terms of the prices
of zero-coupon bonds. To obtain as simple formulae as possible, we assume that the
notional is equal to 1 unless otherwise stated. Subtracting the above price with the
bond Vn�1 with one fewer payment date gives

Vn � Vn�1 D cPtTn C PtTn � PtTn�1 , PtTn D Vn � Vn�1 C PtTn�1

1C c

As V0 D .c C 1/PtT0 , it follows that zero-coupon bond prices can be bootstrapped
from bond prices Vi .

For a given future period ŒT0; T1� a forward rate agreement (FRA) pays the
LIBOR rate LT0T1 in return for a fixed rate K . As typical for interest rate products,
the payment is multiplied by the day-count fraction and notional (which we have
assumed to be equal to 1):

FRA.T1/ D .T1 � T0/.LT0T1 �K/
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As LT0T1 is known at T0, the value of the FRA can be discounted to T0 and this is
where the payment of the FRA usually takes place:

FRA.T0/ D .T1 � T0/.LT0T1 �K/PT0T1 D .T1 � T0/ LT0T1 �K
1C .T1 � T0/LT0T1

The part containing K consists of a payment �.T1 � T0/K at T1 and is therefore
worth �.T1 � T0/KPtT1 at t . The part containing LT0T1 can be written as

.T1 � T0/LT0T1PT0T1 D PT0T0 � PT0T1

at T0, which means that it is worth

PtT0 � PtT1 D .T1 � T0/LtT0T1PtT1
at t . We conclude that

FRA.t/ D .T1 � T0/.LtT0T1 �K/PtT1
At the initiation of the contract, K is chosen so that the contract values to par:
K D LtT0T1 . A FRA represents the difference between a loan with a floating rate
LtT0T1 , i.e. a rate that depends on t , and a loan with a fixed rate K , i.e. a rate that is
independent of t .

For a given set of dates T0; T1; : : : ; Tn, a vanilla interest rate swap pays the
floating rate LTi TiC1

versus a fixed rate K for each interval ŒTi ; TiC1�. Thus, it
consists of a strip of FRAs with the same fixed rate on consecutive and adjacent
time periods. The time t value of a swap is therefore given by

Vt D
n�1X

iD0
.TiC1 � Ti/.LtTi TiC1

�K/PtTiC1

D
n�1X

iD0
..PtTi � PtTiC1

/� .TiC1 � Ti /KPtTiC1
/

D PtT0 � PtTn �K

n�1X

iD0
.TiC1 � Ti/PtTiC1

As opposed to FRAs, the LIBOR payments LTi TiC1
are made at the end TiC1 of the

period.
Just as for forward contracts, K is chosen so that the swap value is zero at

initialization:

K D PtT0 � PtTn
Pn�1

iD0.TiC1 � Ti/PtTiC1



226 13 Interest Rates

This value of K is called the swap rate. The set of dates T0; T1; : : : ; Tn is called the
tenor structure, the length of the swap Tn�T0 is called the tenor and the denominator
in the above expression is called the annuity and is denoted by A. Observe that a
LIBOR rate is a special case of a swap rate for which there are only two tenor dates.
The swap often starts at today’s date: t D T0. If T0 > t , it is called a forward starting
swap.

We denote the swap rate by R. A swap initialized at t D 0 has strike K equal to

R0 D P0T0 � P0Tn
A0

Using the swap rate, the value of a swap can be expressed as

Vt D
 

PtT0 � PtTn
Pn�1

iD0.TiC1 � Ti/PtTiC1

�K

!
n�1X

iD0
.TiC1 � Ti /PtTiC1

D .Rt � R0/At

This expression is both simple and natural. For example, it follows immediately that
VtD0 D 0.

The use of swap rates for the modeling of swaps is as natural as the use of
LIBOR rates for FRAs. The validity of this statement becomes explicit in the next
section where we price options on FRAs and swaps. Furthermore, as LIBOR rates
can be bootstrapped from swap rates (by bootstrapping zero-coupon bonds as an
intermediate step), and vice versa, swap rates are as fundamental quantities for
the yield curve modeling as LIBOR rates. The choice of rate type depends on the
product to be modeled.

The tenor dates are generally different for the two payment legs in a swap.
For example, the floating-rate payments can be semi-annual while the fixed-rate
payments can be annual. Furthermore, the business-day adjustments and the day-
count conventions can differ between the legs. This leads to minor (but important)
modifications of the swap pricing formula.

We would like to emphasize that in practice, zero-coupon bonds (or equivalently,
loans) cannot always be used directly in replication formulae. Instead, we rather
view them as useful mathematical building blocks. For example, replicating a FRA
with coupon-paying bonds is most easily done by replicating the FRA with zero-
coupon bonds as an intermediate step and after that replicating the zero-coupon
bonds with coupon-paying bonds.

13.3 Caps, Floors and Swaptions

We now turn our attention to interest rate products that cannot be priced with static
replication. In this section, we discuss the simplest of such products, namely caps,
floors and swaptions. The reason for their simplicity is that they can be modeled as
depending on only a single underlying. The resulting pricing expressions are similar
to the Black–Scholes formula.
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A caplet with strike K and period ŒT0; T1� pays

C.T1/ D .T1 � T0/.LT0T1 �K/C
which is the positive part of a FRA. Similarly, a floorlet pays

F.T1/ D .T1 � T0/.K �LT0T1 /C

at T1. As

C � F D FRA

a floorlet can be statically replicated using a caplet and a FRA. Therefore, it is
sufficient to focus on caplet pricing. Being a non-linear function of the LIBOR rate,
a caplet cannot be priced through static replication of FRAs. We instead use the
fundamental theorem of asset pricing to price caplets with dynamic replication.

As

LtT0T1 D PtT0 � PtT1
.T1 � T0/PtT1

the LIBOR rate can be written as a quotient of tradable assets. With PtT1 as the
numeraire,LtT0T1 is a martingale. We make the standard assumption of a lognormal
process

dLtT0T1 D �LtT0T1dWt

where W is a Brownian motion in the forward measure. As C.t/=PtT1 is also a
martingale, it follows that

C.t/ D PtT1EŒC.T1/=PT1T1 � D .T1 � T0/PtT1EŒ.LT0T1 �K/C�

Using the calculations of Sect. 5.2, we obtain

C.t/ D .T1 � T0/PtT1.LtT0T1N.dC/ �KN.d�//;

d˙ D ln.LtT0T1=K/

�
p
T0 � t

˙ 1

2
�
p
T0 � t

The caplet pricing can also be done by using a direct hedging argument as we
did in Sect. 3.2 for European call options. It is then made explicit that caplets are
hedged with FRAs.

Caplets are often not traded themselves, but they rather appear as constituents of
a cap. A cap defined on a tenor structure T0; T1; : : : ; Tn consists of a strip of caplets
with identical fixed rate on the consecutive and adjacent time periods. Let ci be the
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price of a caplet with time period ŒTi ; TiC1�. As the caplets constituting a cap can
be priced independently, the price of a cap is given by

Pn�1
iD0 ci . A floor is defined

from floorlets in a similar way. Caps (and floors) are quoted in the market in terms
of their implied volatility. By definition, the market price is obtained by inserting
the implied volatility into the above caplet formula for all the caplets constituting
a cap.

Just as for European options, a lognormal process only gives a rough approxi-
mation to the caplet and floorlet prices. More accurate models can be obtained by
using, for example, local volatility or stochastic volatility. The most popular model
for caplets and floorlets is currently the SABR model.

Caplets are important instruments in interest rate modeling as they are well
suited for calibration of exotic interest rate products, see Sect. 13.20. It is then
first necessary to back out the caplet prices from cap quotes. In theory, this looks
simple: the price difference between two caps with tenor structure T0; : : : ; TiC1
and T0; : : : ; Ti is exactly that of a caplet ci . In practice, however, it can be quite
complicated as only caps with annual tenors are liquid, while caplets are semi-
annual or quarterly depending on the currency. It means that there are two or four
caplets between consecutive liquid caps. The caplet bootstrapping is therefore non-
trivial since it does not give the price of individual caplets directly but only of the
sum of two or four of them.

The market conventions for caps and floors are derived from the underlying
FRAs, see Table 13.2 in Sect. 13.6, with the exception of the 1Y cap (and sometimes
the 2Y cap) which is quarterly even when the standard market convention is semi-
annual. Furthermore, the first caplet, which would have been fixed today, is always
missing. For instance, a 3Y EUR cap, has a premium payment at the spot date,
i.e. 2 business days after today according to the target calendar. The underlying
rates starts at 6M, 12M, 18M, 24M and 30M and have lengths of 6M. The ATM
strike is determined from the underlying swap rate which in our example starts at
6M and ends at 3Y.

A swaption is an option on a forward starting swap. At the swap start date, the
swaption value is the positive part of the swap price:

V.T0/ D .RT0 � RtD0/CAT0

Using

Rt D PtT0 � PtTN
At

and the fact that At is a tradable as it is a linear combination of tradables, it follows
that V.t/=At and Rt are martingales in the measure for which At is a numeraire.
The fundamental theorem of asset pricing implies that

V.t/ D AtEŒV .T0/=AT0� D AtEŒ.RT0 � RtD0/C�
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Assuming a lognormal process for the swap rate, we obtain

V.t/ D At.RtN.dC/�R0N.d�//; d˙ D ln.Rt=R0/

�
p
T0 � t

˙ 1

2
�
p
T0 � t

Just as for caplets, floorlets and European options, a non-lognormal process can
account for skew and smile. The most popular model is currently the SABR
model.

There is a credit default risk embedded in swaptions as the premium is paid at
spot date while the additional cash flows occur after (or at, in the instance when the
swaption is cash settled) the swap start date. The effect of this credit risk became
particularly apparent during the financial crisis starting in 2007. The outcome has
been that the swaption conventions have changed for many currencies so that the
premium is paid at the swap start date.

A swaption is exercised when the underlying swap has a cash flow that is positive
in average. Such positive net position introduces a credit exposure, in particular
when the swap tenor is long. The credit exposure can be avoided via a one time
payment of the swap market value at the swaption exercise date. The swaption is
then said to be cash-settled. The problem is that the counterparties do not always
agree on the market value as their models predict different values of the discount
factors that enter the swap pricing via the annuity.

For GBP and EUR swaptions, the problem is solved by agreeing that the discount
factors in the annuity should be computed using the swap rate, for which there is no
ambiguity. More precisely, these swaptions pay by definition the amount

P.texp; T0/A.Stexp/.Stexp �K/C

where texp is the expiry of the swaption andA.S/ can be viewed as an approximation
of the annuity using a fixed rate S :

A.S/ D
n�1X

iD1

�

.1C �S/i
D 1

S

�

1 � 1

.1C �S/n�1

�

where we for simplicity have assumed a constant day count fraction � . The market
convention for cash-settled swaptions makes them harder to price than the physically
settled swaptions that we considered earlier. For instance, using the annuity as the
numeraire, we obtain the following expression for the price:

AtEŒP.texp; T0/A.Stexp/.Stexp �K/C=Atexp�

which cannot easily be computed since Atexp depends on various interest rates and
not only on Sexp. As swaptions are liquid vanilla products, performance is important
and models depending on the whole yield curve are therefore in general not an
option. A popular approach to obtain an efficient expression is to observe that
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P.texp; T0/A.Stexp/=Atexp is a low volatility process and can be frozen to its value
at t . The expression can then be taken outside the expectation, resulting in the price

P.t;T0/A.St /EŒ.Stexp �K/C�

where the expectation can be computed in the same way as for physically settled
swaptions.

Needless to say, care should to be taken when using this kind of simplifying
assumptions. For instance, as pointed out in Mercurio (2008), the above formula is
in general not arbitrage free.

Interest rate and commodities markets are different from equities and FX since
for a given underlying, there is often only a single exercise date for which liquid
options exist. For instance, swaptions on swaps starting two years from now are
only liquidly traded when the exercise is a market-specific number of business days
(typically 2) before the start date of the swap. As options with different exercise
dates are on different underlyings, the temporal no-arbitrage condition derived
in Sect. 2.4 cannot be used for liquid options in interest rate and commodities
markets.

For the liquid volatility products in interest rate markets, there are two other
non-trivial no-arbitrage conditions that need to be taken into account. The first one
follows from the obvious fact that a swaption on a swap starting in m years and
ending in n years must be worth less than the difference between the n year cap and
the m year cap with the same strike as the swaption. Indeed, for the most favorable
market moves for the swaption all the cash flows will be positive and agree with
those coming from the cap spread.

The second condition states that a swaption with tenor structure T0; T1; : : : ; Tn
is worth less than the sum of the two swaptions with the same strike and tenor
structures T0; T1; : : : ; Tm and TmC1; TmC2; : : : ; Tn. This statement is based on the
inequality

 
n�1X

iD0
.TiC1 � Ti /.LtTi TiC1

�K/PtTiC1

!

C

�
 
m�1X

iD0
.TiC1 � Ti/.LtTi TiC1

�K/PtTiC1

!

C

C
 
n�1X

iDm
.TiC1 � Ti /.LtTi TiC1

�K/PtTiC1

!

C

At the expiry t D T0, the left-hand side is the price of the swaption with tenor
structure T0; T1; : : : ; Tn while the first term on the right-hand side is the price of
the swaption with tenor structure T0; T1; : : : ; Tm. The second term on the right-hand
side is the price of the swaption with tenor structure TmC1; TmC2; : : : ; Tn when the
exercise decision has to be taken at T0. As it is suboptimal to exercise swaptions
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early, see Sect. 2.5, this swaption is worth less than the corresponding standard
swaption. The statement is therefore true for t DT0 and by the no-arbitrage principle
also for general t � T0.

13.4 Convexity Adjustment

We have explained how to price LIBOR and swap rate payments, and options on
these, when the payments occur at the natural dates of the rates. There also exist
products for which the rates are paid out at other dates. We here explain how the
pricing can be done to a high degree of accuracy without resorting to models for the
whole yield curve.

We saw in Sect. 13.2 that the time t value of a contract paying .T1 � T0/LT0T1 at
T1 is equal to

.T1 � T0/LtT0T1PtT1 D PtT0 � PtT1
This contract was particularly simple to price since it is equivalent to being long a
bond maturing at T0 and short a bond maturing at T1. We now compute the price
of a contract that pays LT0T1 at a date different from T1. As LT0T1 is known at T0,
it is possible to pay the rate at any date after T0. In fact, it is common that LT0T1 is
paid at its fixing date T0, i.e. the date when the rate is read off from the market. We
see below that it is then no longer possible to statically replicate the contract with
zero-coupon bonds. Indeed, such a replication is only possible when the payment is
made on the inherent payment date T1 in the definition of the rate.

We consider in detail the pricing of a LIBOR-in-arrears payment, i.e. a cash flow
that pays the LIBOR rate LT0T1 at the fixing date T0. As the discount factor between
T0 and T1 can be expressed in terms of the LIBOR rate itself, the time T0 payment
of LT0T1 is equivalent with the following payment at T1:

LT0T1 .1C .T1 � T0/LT0T1 / D LT0T1 C .T1 � T0/L
2
T0T1

The first term is nothing but a LIBOR payment at its natural payment date, for
which the pricing is obvious. As LT0T1 is typically in the order of magnitude of 5%,
the second term is much smaller. Furthermore, as this term is a convex function
of LT0T1 , it is referred to as a convexity adjustment. Thus, the value of a LIBOR-
in-arrears payment is equal to an ordinary LIBOR payment plus the convexity
adjustment.

As a non-linear expression of the underlying rateLT0T1 , the convexity adjustment
is often priced with dynamic replication. The calculations are similar to the ones for
caplet pricing in Sect. 13.3, with the terminal condition L2T0T1 instead of .LT0T1 �
K/C. As the standard assumption of a lognormal model disregards skew and smile,
the static replication technique of Sect. 2.3 can be preferable. To understand the
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details of how static replication can be used, consider the pricing of the convexity
adjustment and caplets within the fundamental theorem of asset pricing:

8
ˆ̂
<̂

ˆ̂
:̂

V 0
t D PtT1EŒL

2
T0T1

� D PtT1

Z 1

0

L2T0T1p.LT0T1/dLT0T1

Vt D PtT1EŒ.LT0T1 �K/C� D PtT1

Z 1

0

.LT0T1 �K/Cp.LT0T1 /dLT0T1

The PDF p can be solved from the second equation by taking the second derivative
with respect to the strike K . Inserting the PDF in the first equation gives the
statically replicated value

V 0
t D

Z 1

0

L2T0T1
@2Vt

@K2
.LT0T1 /dLT0T1

of the convexity adjustment.
The pricing of a contract paying LT0T1 at an arbitrary time T 0 > T0 is similar.

Let us first assume that T 0 2 .T0; T1/. The time T 0 payment can then be discounted
to T1 by assuming a rate of LT0T1 in the time period from T 0 to T1. The equivalent
payment at T1 is then given by

LT0T1 .1C .T1 � T 0/LT0T1/

which can be priced in a similar way as the LIBOR-in-arrears contract. Because of
the natural properties of the continuously compounded rate, see Sect. 13.1, it appears
more natural to assume a constant continuously compounded rate r in the time
period ŒT0; T1� instead of a constant simple compounded rate. r is then defined by

1C .T1 � T0/LT0T1 D er.T1�T0/

which gives an inverse discount factor from T 0 to T1 of

er.T1�T 0/ D .1C .T1 � T0/LT0T1 /.T1�T
0/=.T1�T0/

Although this formula gives a more consistent price for the contract paying LT0T1
at time T 0, the implementation can be a performance bottleneck for Monte Carlo
pricing of exotic products due to the expensive power function.

For contracts paying LT0T1 at time T 0 > T1 it is again possible to use the rate
LT0T1 for the discounting to T 0. Unfortunately, the approximation breaks down when
T 0 � T1 as it is then no longer possible to view the contract as depending on only
a single rate LT0T1 but it depends on the rate LT1T 0 as well.

We would like to point out that LIBOR-in-arrears contracts are usually not
traded by themselves. Instead, the computations above should be considered as a
useful exercise for pricing more complex contracts that contain LIBOR-in-arrears
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or other convexity-adjusted payments. For instance, for in-arrear swaps the floating
payments are on the fixing dates rather than on the natural payment dates of the
underlying LIBOR rates. Another example is given by the situation when a swap
has its own payment schedule, which is often close, but not identical to the tenor
structure of the underlying LIBOR rates. The convexity adjustment is then quite
small, but can anyway be important because of the tight bid-offer spreads in the
swap market.

We have analyzed interest rate swaps for which counterparty A pays counterparty
B LIBOR in return for fixed-rate payments. This is only one of many combinations
of swap structures. For example, LIBOR payments of different frequencies can be
swapped. We now consider constant maturity swaps (CMSs) for which the LIBOR
payments made by counterparty A are replaced with swap-rate payments. The swap
rate in the payments is not necessarily related to the underlying tenor structure of
the swap. For instance, the swap could be 10 years long with tenor structure T0,
T1; : : : ; T10, where TiC1�Ti D1Y and such that A pays the 5 year swap rate at each
payment date in return for a fixed rate payment, for example, 5%. The payments
made by B are not necessarily restricted to a fixed rate, but can be a floating rate
such as a LIBOR or swap rate.

The value of a CMS can be computed by decomposing it into a sum of its
individual cash flows. The non-trivial component in a CMS is therefore the pricing
of a payment of a swap rate at one particular date T . We have already seen in
Sect. 13.3 that if the swap rate is paid out on its underlying tenor structure, the
pricing is straightforward through static replication of zero-coupon bonds. The
pricing of a CMS payment is more complicated because the swap rate is not paid
at its natural payment dates, but rather at a fixed single date. This is analogous to
LIBOR-in-arrears pricing for which a convexity adjustment is needed.

Let V.t/ be the time t value of the payment of a swap rate RT at T . Following
the technique of Sect. 13.3 for swaption pricing, we use the annuityA as numeraire.
Then both Rt and V.t/=At are martingales and

V.t/ D AtEŒV .T /=AT � D AtEŒRTA
�1
T �

AsRt is a martingale, we can, for example, assume it to follow a driftless lognormal
process. Since A has an interest rate dependence that cannot be expressed in
terms of R, this is not sufficient information for computing the expectation. Using
our experience from LIBOR-in-arrears pricing, we know that the problem can
be solved by approximating A in terms of R. The approximation can be made
in several different ways, see Hagan (2003), for details. A particularly popular
approximation is the one used in the definition of cash-settled swaptions. Observe
that the approximation might not be accurate if the swap rate has a long tenor. The
approximation can then be improved by lettingA depend on one more rate and using
a 2-factor model.

As for LIBOR-in-arrears, dynamic replication with a lognormal process does
not take into account the market skew and smile. It can therefore be preferable to
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statically replicate CMS payments with swaptions. This technique is similar to the
way caplets were used to statically replicate LIBOR-in-arrear payments.

The value of the convexity adjustment is heavily dependent on the choice of
model. In fact, a poor choice of model can even lead to infinite prices. Consider, for
instance, the stochastic volatility model

dLt D �tLtdWt

d�t D ��tdZt

dWtdZt D 0

The LIBOR-in-arrears convexity adjustment can be computed using conditional
expectation as the two Brownian motions are independent:

EŒL2T � D E
�
E
�
L2T jdLt D �tLtdWt

� jd�t D �t�tdZt
�

D L20E

�

exp

�Z T

0

�2t dt

�

j�t D �0 exp
�
�Zt � �2t=2

�
�

Since

E
�
exp

�
�2T T

� j�t D �0 exp
�
�Zt � �2t=2�� D 1

it follows that EŒL2T � is divergent. It is straight forward to verify divergence also
for non-zero correlation. Thus, LIBOR-in-arrears payments have infinite prices in
models for which both the underlying and the volatility are lognormal. This is
obviously also true for CMS payments. As CMS payments are more complicated
to price we from now on focus on them.

The above model can be obtained by setting ˇD 1 in the SABR process. As
this is the most popular model for caplets and swaptions, the above divergence is
important not only in theory but also for practical modeling.

Using a model with CEV parameter ˇ <1 avoids the divergence but reveals other
weaknesses in the modeling. The problem is that caplets and swaptions are often
priced with perturbation techniques (such as the SABR model). These models are
successful when the strike is close to the forward. However, if calibrating the models
to liquid swaption quotes, CMS payments are typically mispriced as they depend
heavily on out of the money swaptions.

One solution is to avoid perturbation techniques and use, for example, Fourier
transform methods, see Sect. 7.4. Needless to say, it can be dangerous to use one
model for the CMS book and another model for the swaption book. To avoid
this inconsistency, non-perturbative methods need to be used also for swaptions.
Unfortunately, this can lead to performance bottlenecks.

As SABR is so generally accepted, it is popular to use this model for swaptions
but to modify it for high strikes to obtain CMS prices that are in agreement with
the market. This can be done by introducing a cutoff strike Kcutoff and use SABR
(or any other perturbative technique) when K < Kcutoff and an alternative model
for K > Kcutoff. Clearly, Kcutoff should be large enough so that liquid swaptions are
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priced with the perturbative model. We now discuss what possibilities there are to
model swaptions beyond the cutoff.

A common way to extrapolate swaptions is to construct the implied volatility
as a functional form �imp.K/, K >Kcutoff, that dampens the increasing behavior of
the implied volatility which is common in perturbative models. This function must
be patched together at the cutoff with the implied volatility from the perturbative
model. As the PDF is obtained from the second derivative of the swaption price with
respect to the strike, a discontinuity in the second derivative of �imp is equivalent
with a discontinuity in the PDF itself. Even worse, a discontinuity in the first
derivative of �imp implies a spike in the PDF. Thus, it is important that �imp is
patched smooth enough at the cutoff pointKcutoff. Furthermore, the functional form
of �imp has to be chosen carefully to avoid arbitrage. This is particularly difficult
as the no-arbitrage condition is complex when expressed in terms of the implied
volatility.

Due to the complexity in the construction of �imp beyond the cutoff, the
extrapolation is sometimes done in terms of the PDF. This is clearly possible since
the implied volatility can be obtained from the PDF and vice versa. There are
advantages as well as disadvantages to doing the extrapolation in terms of the
PDF. One advantage is that the smoothness is two degrees better: a discontinuity
in the PDF cannot be seen directly on the volatility curve since it is only a
discontinuity in the second derivative. Furthermore, as long as we choose the PDF
to be positive, the model will be arbitrage free. To understand the disadvantages,
recall that digitals swaptions and ordinary swaptions are priced via the formu-
lae

Z 1

K

p.R/dR

Z 1

K

.R �K/p.R/dR

Therefore, in order to not change the prices of swaptions with strikes K <Kcutoff,
the following conditions must be satisfied:

Z 1

Kcutoff

p.K/dK D �@KV.Kcutoff/=At

Z 1

Kcutoff

Kp.K/dK D .V �K@KV /.Kcutoff/=At

where V.K/ denotes the swaption price with strikeK . We conclude that a change in
�imp for K >Kcutoff leads to a change in p.K/ only for K >Kcutoff, while a change
in p.K/ forK >Kcutoff leads to a change in �imp only forK >Kcutoff conditional on
that the two conditions above are satisfied.
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An additional constraint on p is that it must give reasonable CMS prices. Finally,
it is desirable to have a functional form of p that reduces to the lognormal PDF for
the case when the original (perturbative) model is lognormal.

We have so far discussed the trouble caused by the asymptotics for high strikes
when using perturbative techniques. In the same way, the small strike expansion is
not in agreement with far from ATM swaption prices. The difference from the high
strike case is that this effect does not show up as drastically in CMS prices as they
depend mainly on high strikes. To obtain more consistent prices, it is common to
introduce a cutoff for small strikes as well.

For the SABR model, the introduction of a low strike cutoff Klow is crucial.
Indeed, assume that we are backing out the PDF p.Klow/ for a low strike by
taking the second derivative of swaption prices with respect to the strike. We
compare the result with the integral over the PDF up to Klow. This value is obtained
from the digital swaption price at Klow. For long maturities we often see the
inequality

Klowp.Klow/ <

Z Klow

0

p.K/dK

for modest values of Klow when using the SABR model. For this inequality to be
true, p must have a local maximum in the region Œ0;Klow� of low strikes. This is
clearly an unnatural feature of the PDF and it has its roots in the choice of SABR
boundary conditions that was used in the original paper by Hagan et al. (2002). The
boundary conditions are such that they support negative values of the underlying.
Therefore, one solution to the above problem is to allow negative interest rates.
However, this can be rather dangerous since the pricing of low strike swaptions will
be inaccurate. A better alternative seems to be the use of a perturbative model with
an appropriate boundary condition when the underlying is zero, see Sect. 7.2.

By using a perturbative model that contains more expansion terms than the lowest
order, it is possible to push the cutoff points Khigh (and Klow) further away from
the ATM point. The result is CMS prices that are less dependent on the choice of
extrapolation. For instance, using the technique of Sect. 7.2, it is possible to include
arbitrary higher order contributions.

13.5 The Yield Curve

When referring to the yield curve, what is usually meant is the function T 7!
r.t; T /, where the interest rate r.t; T / is simple compounded for T � t � 1 and
annually compounded for T � t > 1. The part of the yield curve for which T is
close to today t is called the short end of the curve while the part where T is large
is called the long end. The interest rate in the limit T ! t is called the short rate
while it is called the long rate in the limit T ! 1.
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To understand the shape of the yield curve, assume that we have a certain amount
of cash and are choosing between the strategies of: 1. lending it up to time T , or 2.
lending it to T=N and when the money is returned we lend it until 2T=N and so
on up to T . If interest rates are equal and constant, the second strategy is preferable
as we at N � 1 points in time can choose to stop lending if there is something else
we would like to do with the money. Should cash be needed in the first strategy, it
is possible to enter the opposite position by taking a loan. This netting of positions
leads to a loss if interest rates have increased unexpectedly since the first loan was
issued. The conclusion is that the first strategy is riskier and should be rewarded with
a liquidity premium. Note the analogy with the convenience yield in commodities
markets: in this case there is a convenience of holding cash. The implication is
that short rates should be lower than long rates, i.e. r.t; T / should be an increasing
function of T .

Allowing interest rates to be stochastic does not affect the first strategy as the
loan is locked at a fixed rate until T . For the second strategy, on the other hand, the
earnings until T are unknown. A premium compensation for the unknown earnings
promotes a downwards sloping yield curve.

Another explanation for the shape of the yield curve is that the default risk of the
counterparty increases with the lending time T . The credit premium to compensate
for this risk has the effect of an increasing yield curve.

The above discussion, just as the discussion regarding convenience yield for com-
modities, is purely theoretical. In reality, most of the yield curve shape is determined
by the expected future values of rates, political decisions and regulations, and by the
supply and demand by market participants. For example, the short end is influenced
by governments setting the short rate based on the state of the economy in the
monetary region concerned. This can sometimes lead to an inverted curve, i.e. a
yield curve that decreases with T . The curve can even take peculiar shapes such as
having a hump.

For investment purposes it is possible to take advantage of the fact that the yield
curve usually has a positive tilt. This can be done by today locking in an interest rate
for a future period. By entering the opposite position at a later time it is possible to
obtain a return that is positive on the average as the short rate most often is below the
long rate. Observe that even if the yield curve stays non-inverted, an investor in such
a strategy can still make a loss from a parallel move of the curve. This investment is
similar to the roll-yield investment strategy for commodities.

The above strategy is an example of an investment in the tilt, or spread, of the
yield curve. Many of the products that depend on the whole yield curve expose the
investor to the spread in various ways. A disadvantage of the above strategy is that
it depends on the level as well as on the spread. It is therefore popular to structure
products, such as CMS spreads, that contain the opposite position of the level so that
only a pure spread dependence remains.

As mentioned in the introduction, no account to credit and liquidity risk is taken
in the first part of this chapter. It means that interest rates can be modelled by a single
yield curve, which will be the topic of discussion up to Sect. 13.22, whereafter the
generalization to post-2007 interest rate modeling will be considered.
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13.6 Yield Curve Instruments

The yield curve in a classical pricing system is constructed from the most liquid
products from which the prices of zero-coupon bonds can be backed out. Depending
on the currency, either interbank deposits or LIBOR fixings are used for maturities
up to 3 months. Thereafter, either futures or FRAs are used out to 2–5 years. Finally,
swaps are used for the long end of the curve.

In order to build a yield curve consistently, it is necessary to know the exact
market conventions for the product types used in the construction. Except for the
futures contracts, these are all OTC contracts. Nevertheless, for each currency there
are certain standard conventions and these are the products that can be seen quoted
on Reuters and Bloomberg.

We start with the settlement lag which is equal to 2 for most currencies.
The main exceptions are AUD, CAD and GBP for which the lag is zero. The
start date of an interest rate contract is called the effective date. For standard
products like those detailed in this section, the effective date is equal to the spot
date.

As mentioned in Sect. 3.11, a forward date is determined by adding a tenor to
the spot date. For example, a 2Y semi-annual swap has payment dates located 6M,
12M, 18M and 24M after the spot date. The holiday adjustment is in general made
with the modified following convention. An exception is deposits with maturity less
than one month for which the following convention is used. Furthermore, the end-
of-month rule is often applied.

The interest rates are simple compounded and the day-count convention for the
floating leg of a swap is the same as for LIBOR fixings, deposits, FRAs and futures.
It is actual/365 for AUD, CAD and GBP while actual/360 is used for most other
currencies. 30/360 is used for EUROLIBOR and EURIBOR. For instance, consider
a 1M USD deposit traded on December 13, a Monday, with quoteL and notionalN .
It has cash flows N on the spot date December 15, and � �1C 33

360
L
�
N on January

17, a Monday.
There are also deposits for which the start date of the rate is different from the

spot date. These are the overnight (O/N) loan and the tomorrow next (T/N) loan. For
O/N, the start date is the trade date and the end date is the next business day. For
T/N, the start date is the next business day and the end date is the spot date.

FRAs are usually written as SxE, where S is the number of months to the start
date and E is the number of months to the end date. For instance, a 3x6 USD FRA
traded on February 4, a Friday, has spot date February 8, a Tuesday. The interest
rate period has start date May 9, a Monday, and end date August 8, also a Monday.
The 3M rate L is fixed May 5, a Thursday, i.e. 2 business days before the start date.
Observe that the rateL is defined with respect to the 3M period between May 9 and
August 9. A payment of 91

360
L�K
100

N=
�
1C 91

360
L
100

�
is made at the start date, whereK

is the fixed par rate determined at the trade date.
For certain currencies it is popular to trade IMM FRAs. They work as ordinary

FRAs with the difference that the interest rate period is between two adjacent IMM



13.6 Yield Curve Instruments 239

dates. The International Monetary Market dates (IMM dates) are defined as the
third Wednesday is March, June, September and December. Just as for ordinary
FRAs (and swaps), there can be a few days mismatch between the interest period of
the contract and that of the underlying interest rate.

The day-count convention for the fixed leg of a swap is actual/365 for CAD, GBP
and JPY, while USD use actual/360 and most European currencies use 30/360. The
fixed-leg payments are semi-annual for CAD, GBP, JPY while they are annual for
USD and most European currencies. These conventions are closely related to the
corresponding bond markets, see Table 13.1.

The floating side of a swap is paid quarterly for GBP, SEK and USD, while it is
semi-annual for EUR, CHF and JPY. The fixing of the floating leg is done at the date
for which the spot date equals the start date of the accounting period. For example,
assume that the floating payment dates of a USD swap have been rolled out and
been holiday adjusted, and that two adjacent dates are July 11, a Wednesday, and
October 11, a Thursday. The floating rate L is then fixed at July 9, and a payment
of 92

360
L
100
N takes place in October 11, where N denotes the notional. Payments are

netted if a fixed-leg payment occurs on the same date.
Futures contracts work as exchange-traded FRAs that are settled on a daily basis.

The most common contracts have an underlying loan that starts on an IMM date.
The last trade date is the Monday preceding the IMM date that is the start date of the
loan. The quote is presented in a different way compared to the other instruments
in this section: if V is the quote then the simple compounded interest rate for the
period is given by 1� V=100.

Table 13.1 Market conventions for (government) bonds

Bond Type Frequency Day count

US treasury Semi-annual Actual/Actual
US corporate Semi-annual 30/360
UK gilts Semi-annual Actual/Actual
Euro government (OATs, bunds) Annual Actual/Actual
Italian government Semi-annual Actual/Actual
Japanese government Semi-annual Actual/365
Canadian government Semi-annual Actual/365
Australian government Semi-annual Actual/Actual
Eurobonds Annual 30/360

Table 13.2 Standard conventions for interest rate instruments in some major currencies

Ccy Lag Money Fixed Floating Fixed
market dc leg dc freq freq

EUR 2 Actual/360 30/360 Semi-annual Annual
USD 2 Actual/360 Actual/360 Quarterly Annual
GBP 0 Actual/365 Actual/365 Semi-annual Semi-annual
JPY 2 Actual/360 Actual/365 Semi-annual Semi-annual
CHF 2 Actual/360 30/360 Semi-annual Annual
SEK 2 Actual/360 30/360 Quarterly Annual
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We summarize the interest rate market conventions for some of the major
currencies in Table 13.2. Special cases are the 1Y EUR and 1Y CHF swaps which
are quarterly on the floating leg and the 1Y GBP swap which has an annual fixed
leg payment. USD swaps are often also semi-annual and 30/360 on the fixed leg and
this is the standard convention used for USD swaptions.

13.7 Yield Curve Construction

To illustrate the practical issues involved in the construction of a yield curve, let
us consider a specific case when the building blocks are deposits up to 3M, futures
up to 2Y and then swaps. The short end of the curve is constructed from the liquid
deposits that mature in 1M, 2M, 3M, and also from shorter maturities such as 1W
and O/N. This curve is patched together with the quotes from eight futures. Then the
liquid swaps are used with maturities of 3Y, 4Y, 5Y; : : : ; 10Y, 12Y, 15Y, 20Y; : : :

The yield curve can be represented by various different choices of underlying
variable. We here choose to define it from the continuous compounded interest rate
starting at the spot date. It is straightforward to find the rates that correctly price
the deposits. Through interpolation, the discount factor to the start date of the first
future can be obtained. The futures quotes then determine forward interest rates from
which it is possible to compute the rates all the way up to the end date of the last
futures contract. Using the swap quotes it is possible to continue the bootstrapping
to the long end. The final step is to pick an interpolation method of choice, e.g. a
tension spline, in this way connecting the dots. As pointed out in Sect. 4.3, above
choice of interpolation method is important as it determines the smoothness of the
curve and the locality of the risk.

There are a couple of complications that one encounters in the above curve
construction. First of all, the three instrument types that build up the curve have
different features and it is therefore not always possible to patch them together to a
global and smooth curve. For instance, as we discuss in Sect. 13.24, the instruments
expose the holder to various degrees of credit risk.

To be able to patch futures quotes together with deposit and swap quotes, it is
necessary to account for the effect of the daily settlement. As described in Sect. 3.10,
this is done by adjusting for the convexity.

Care needs to be taken when including the swap quotes. To understand the issue,
assume that the yield curve has been bootstrapped just beyond the 2Y point and
that we are about to include a 3Y swap with semi-annual frequency for the fixed
leg. The price of this swap involves the unknown discount factors at 30M as well
as at 36M. The bootstrapping therefore involves the solution of a problem with two
unknowns and only one known variable. Similar complications appear for caplet
bootstrapping, see Sect. 13.3. It can be solved by imposing an additional constraint
or by interpolating the swap quotes to intermediate tenors.

The difficulty with including swaps originates in the iterative procedure in the
bootstrapping process. An alternative approach is to use an interpolation scheme for
the yield curve with node points (the x-values) agreeing with the end points in time
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of the deposits, futures and swaps. The quotes of these instruments are then as many
as there are unknowns (the y-values), which means that a root finder can be used.
This approach is slower than bootstrapping but allows for a higher flexibility in the
choice of interpolation technique. It is also possible to use this type of interpolation
scheme with the prices of the underlying instruments only approximately matched.
The prices can then be accounted for by the method of adjusters. The disadvantage
of this approach is that only approximate values are obtained for the greeks.

The constructed yield curve often looks smooth when inspecting the discount
factors or the zero-coupon interest rates. When viewed in terms of the forward
rates, on the other hand, the shortcomings of the construction method can become
apparent.

The overnight interest rate spikes at certain dates because of low liquidity in the
market. The reason is that banks seek increased liquidity for their balance sheets. For
instance, this effect is often visible the last working day of the year. It does not only
impact overnight rates, but any loan that extends over such a date. For example, the
turn of year effect is visible for 3M EURIBORs with spot dates between October 1
and December 31. Needless to say, the longer the tenor, the smaller the impact. It is
therefore important to include the effect of these spikes in the construction of the
short end of the curve.

The spikes can be estimated from a historical time-series analysis together with
a view of the future. Alternatively, by comparing an interest rate covering a low
liquidity date with the interpolated result from neighboring interest rates, an estimate
of the effect can be obtained. The curve construction should be done with the
spikes removed to ensure a smooth curve. Once the interpolation has been done,
the spikes need to be superimposed on the curve. One complication with modeling
the spikes is that a study of historical time series (in EUR) show that the overnight
interest rates do not immediately return to more normal values after a jump. Instead,
the decay can take a couple of days. A consistent model therefore needs to include
such a decay profile.

Disregarding the spikes, the overnight interest rate can jump at monetary policy
meeting dates and then stays relatively constant between two such dates. It can,
however, deviate substantially from being constant when there is a shortage of
liquidity because of market stress. Furthermore, there is also the possibility of an
interest rate change at an unscheduled meeting, but this happens rarely.

13.8 Yield Curve Modeling

For the rest of this chapter we focus on interest rate products that have payments at
several points in time and cannot be priced with as simple models as in the previous
sections, i.e. they depend on more than one rate. An example of such a product is a
callable swap where one of the counterparties can terminate the deal at any of the
tenor dates. If the termination is made at Ti , the resulting cash flows are identical
to a swap with tenor dates T0; : : : ; Ti . It means that the price of the callable swap
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depends on the n swap rates with tenor dates T0; : : : ; Ti , i D 1; : : : ; n. Furthermore,
it also depends on their volatilities and correlations. It is clearly not possible to use
the methods of the previous sections where only a single rate is modeled. Instead,
a model for the full yield curve fPtT gT is necessary. Models of this type are called
yield curve models.

The volatility in a yield curve model is typically calibrated to caplets and
swaptions. As we saw in Sect. 13.3, caplet pricing is best done in the forward
measure, i.e. the measure corresponding to PtTiC1

as a numeraire. As the index i
depends on the specific caplet, different measures are needed for the calibration of
the different rates. When the calibration has been done, it is necessary to transform
back to a common measure for which the pricing can be done. The technique
of changing measures therefore takes a central role for yield curve models. This
complication was avoided for commodities as we assumed deterministic interest
rates. This is for obvious reasons not possible here.

There are four main types of yield curve models: short-rate models, HJM
models, LMM models and Markov-functional models. Most publications cover
these separately as if they were completely different model types. We use a different
approach and highlight the connection between the models. This can be done by
focusing on a particular model that has an interpretation within all these models
types. The chosen model is then used as a point of reference through the remainder
of the chapter.

A yield curve derivatives model should, of course, satisfy the usual demands e.g.
be possible to calibrate to a rich set of quotes, have appropriate dynamics and be of
high performance. Such models are often formulated in terms of the forward rates
ftT , t �T or the LIBOR rates LtT T 0 , t � T <T 0, but can also be formulated with
the zero-coupon bonds PtT , t � T . As the bonds are tradables (and not quotients
of tradables), it is necessary to find an appropriate numeraire Nt and consider
NPtT DPtT =Nt . Once NPtT has been computed through the model (for example by

simulating it as a martingale), it is possible to obtain the value of the numeraire
Nt D NP�1

t t and the zero-coupon bonds PtT D NPtT = NPtt .
As all three variable types are popular to use for yield curve derivatives modeling,

we derive the relations between them. To obtain a simple expression for the
discounted bond prices in terms of the forward rates, we use the money market
account Bt D exp.

R t
0
rsds/D exp.

R t
0
fssds/ as a numeraire. We then obtain

NPtT D exp

�

�
Z T

t

ftsds �
Z t

0

fssds

�

The rates can be obtained from the discounted bond prices, or from each other, by

LtT T 0 D 1

ı

�
PtT

PtT 0

� 1
�

D 1

ı

 NPtT
NPtT 0

� 1

!

D 1

ı

 

exp

 Z T 0

T

ftsds

!

� 1

!

ftT D � d

dT
lnPtT D � d

dT
ln NPtT
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where ı D T 0 � T . Thus, if one of f NPtT gt�T , fftT gt�T or fLtT T 0gt�T<T 0 is known,
the other two can be computed.

13.9 The Gaussian Model

We focus on the model for which the forward rates satisfy a normal SDE

dftT D ˛tT dt C �tT dWt

under the risk-neutral measure, i.e. the martingale measure corresponding to the
numeraire Bt . Our motivation for using this particular model is that it can be
formulated within several of the most popular yield curve model types including
HJM models, short-rate models and LMM models. We are then able to give an
introduction to these model types with a specific example in mind.

Another reason for using this particular model is that it is analytically solvable,
i.e. closed-form expressions exist for the future probability distributions. In fact,
ftT is Gaussian distributed which motivates the name Gaussian model. Analytical
formulae are useful as they help us to understand the basics of yield curve modeling
before moving on to more complex models. The advantages of using closed-form
expressions should not be underestimated as even a simple model such as the Gaus-
sian can be difficult to understand fully. The reason is that the products to be priced
can have complicated payoff structures, which means that it might be necessary to
use advanced numerical schemes even though the model is analytic. We therefore
recommend developers of derivatives pricing software to initially implement an
analytical model for which the results can be better understood and analyzed. The
model can also guide us in the extension to more sophisticated models.

Analytically solvable models are often used because closed-form expressions
lead to high-performing implementations. This type of models can also be used as a
component in more advanced models. For instance, consider a product that depends
on an FX rate but also has a weak dependence on the level of the rates in the two
currencies. Because of performance, it can be a good idea to use an analytic model
for the rates.

The empirical study by Rebonato and de Guillaume (2010) show that interest
rates behave as lognormal when they are small enough (less than about 1.5%)
or high enough (larger than about 5%) while they are Gaussian in between. The
result is consistent across currencies and means that our choice of model is a good
representation of reality in common market scenarios.

The shortcomings of the Gaussian model are that there is only a single driver,
negative rates are supported and there is no flexibility in the skew and smile.
Furthermore, the dynamics cannot be controlled. The use of a single driver means
that options on the difference between two rates are mispriced. The existence of
negative rates does usually not cause any problem for short-dated products as the
probability of this happening is small. Long-dated products, on the other hand, can
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be mispriced. Fortunately, the Gaussian model can easily be extended or modified to
more advanced models. We show how it is possible to only allow positive rates, how
the skew and the smile can be controlled and how the dynamics can be changed. Just
as for the commodity futures modeling in Sect. 12.3, it is possible to generalize to
multiple drivers for decorrelation and to decompose the volatility in product form to
boost the performance.

The LIBOR rates obey

.1C .T 0 � T /LtT T 0/.1C .T 00 � T 0/LtT 0T 00/ D .1C .T 00 � T /LtT T 00/

This cocycle relation puts a restriction on the possible evolutions of the rates. This is
similar to commodities for which there is a corresponding condition. We later show
that the LIBOR rates follow

dLtT T 0 D 1

T 0 � T
.1C .T 0 � T /LtT T 0/�tT dWt

in the Gaussian model. Using Ito’s lemma on the cocycle relation, we see that if this
type of dynamics is imposed on LtT T 0 and LtT 0T 00 , then LtT T 00 follows the same
SDE, at least when the drift is disregarded. However, we show later in this chapter
that the drift is unimportant as it is determined from a no-arbitrage condition and
must be zero in the forward measure of the rate. The Gaussian model therefore
has the attractive theoretical property that it is closed under the cocycle relation.
In practical modeling it is not necessary to limit oneself to SDEs closed under
the cocycle relation, but one should be aware of the pitfalls that can follow from
violating the relation. It is straightforward to verify that the class of lognormal SDEs
is an example of processes that are not closed under the cocycle relation.

13.10 Derivation of the Pricing Formula

We now solve the Gaussian model, i.e. we derive expressions for NPtT , ftT or LtT T 0 .
From the SDE, we immediately see that

ftT D f0T C
Z t

0

˛sT ds C
Z t

0

�sT dWs

from which it follows that
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ftsds �
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�
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D �
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From these formulae, a straightforward application of Ito’s lemma gives the
corresponding SDEs:

d NPtT D NPtT
��

AtT C 1

2
‰2
tT

�

dt C‰tT dWt

�

dLtT T 0 D 1

ı
.1C ıL0T T 0/ exp.:::/

d exp.:::/
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�

As NPtT is a quotient of a tradable and the numeraire, it must have zero drift. The
drift and the volatility must therefore be related by

AtT C 1

2
‰2
tT D 0
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Thus, when constructing a model in terms of the forward rates, it is enough to
specify either the drift or the volatility. The other parameter can be computed from
the no-arbitrage relation. The standard approach is to specify the volatility and from
that derive the drift. The reason is that it is often straightforward to calibrate the
volatility to market quotes.

Observe that the computations do not depend on the Gaussian assumption,
i.e. they hold when the drift and the volatility are allowed to depend on the forward
rates. The relation between the drift and the volatility is therefore a general result.
Thus, models based on forward rates incorporate the no-arbitrage condition in a
particularly simple way and have as a consequence become popular. They are
referred to as HJM models in honor of their discoverers (Heath et al. (1992)).

In terms of the original variables, the HJM condition takes the form

˛tT D �tT

Z T

t

�tsds

Using the HJM condition, the equations can be rewritten as
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and the SDEs as
8
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d NPtT D NPtT ‰tT dWt

dLtT T 0 D 1

ı
.1C ıLtT T 0/ .‰tT 0 .‰tT 0 �‰tT / dt C .‰tT �‰tT 0/dWt/

The equations are straightforward to solve as long as �tT (and therefore ‰tT ) does
not depend on the forward rates.

Denote
R t
0
‰2
sT ds by !tT and observe that W!tT describes the same process as

R t
0
‰sT dWs, see Sect. 5.7. The Gaussian model can then be formulated in terms of

NPtT and LtT T 0 according to
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NPtT D NP0T exp
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We see that under the Gaussian model, the logarithm of the discounted bond price
is nothing but a time-scaled Brownian motion with drift determined by the HJM
condition. This is actually obvious as the starting point of the computations was a
formulation of the forward rates that can be interpreted as a time-scaled Brownian
motion with appropriate drift.

For an example of how the equations can be applied, we compute the futures
rate, which according to Sect. 3.10 is equal to the expectation of LT T T 0 under the
risk-neutral measure:
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Subtracting the forward rate L0T T 0 gives the well-known convexity adjustment
between futures and FRAs:
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To obtain an expression that is easy to analyze, we assume a time-independent
volatility �tT D � . It gives ‰tT D �.T � t/� and the convexity adjustment
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which for small volatilities and interest rates can be approximated by
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if using a lognormal volatility.
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The convexity adjustment is small for low interest rates and the Gaussian
model then gives a good lowest order approximation. For higher values of interest
rates it is necessary to account for the non-perfect correlations within the yield
curve. That can be achieved by adding more drivers (one more appears to be
sufficient) to the SDE. Furthermore, in Piterbarg and Renedo (2004) it was found
that the impact of the skew and smile on the convexity adjustment cannot be
disregarded.

13.11 Change of Measure

Observe that the equations of the previous section look simpler for NPtT than for ftT
andLtT T 0 . This should come as no surprise since NPtT is a quotient of a tradable PtT
and the numeraire Bt and must be a martingale. It therefore makes sense to work
with NPtT if formulating the model in the risk-neutral measure. Unfortunately, it is
not straightforward to calibrate the model in this measure.

The calibration of the volatility information ‰tT should be done to match the
most liquid volatility-dependent products in the market, which are the caps and
swaptions. We restrict ourselves to the calibration to caplets; the calibration to
swaptions can then be done as in Sect. 13.20. Recall that caplet pricing is simplest
in the forward measure of the underlying LIBOR rate. In this measure, the LIBOR
rate is a martingale and has a particularly simple expression. However, as we now
show, NPtT looks more complicated as it is no longer a martingale. Observe that a
yield curve model contains several LIBOR rates LtT T 0 and each of them is typically
calibrated in its own natural measure with numeraire being the zero coupon bond
maturing at T 0. A model is therefore usually calibrated in several different measures.
Once a model has been calibrated, it has to be reformulated in the pricing measure,
which could, for instance, be the risk-neutral measure. This measure is chosen to
obtain pricing computations that are as simple as possible.

We have formulated the Gaussian model in the risk-neutral measure and for
calibration purposes we now show how the model looks when working in an
arbitrary forward measure with maturity LT . Choosing P

t LT as a numeraire, it follows
from the Appendix that the Radon-Nikodym derivative is given by Mt DB0Pt LT =
BtP0 LT D NPt LT = NP0 LT . Using the results of the previous section, we obtain

Mt D exp

�

�1
2

Z t

0

‰2

s LT ds C
Z t

0

‰s LT dWs

�

Girsanov’s theorem implies that

W
LT
t D Wt �

Z t

0

‰s LT ds
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is a Brownian motion in the LT -forward measure. The results of the previous section
can then be expressed in the LT -forward measure, i.e. with respect to the Brownian
motionW LT :

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

ftT D f0T C
Z t

0

�sT

�Z T

LT
�sudu

�

ds C
Z t

0

�sT dW
LT
s

NPtT D NP0T exp

�

�1
2

Z t

0

‰sT .‰sT � 2‰s LT /ds C
Z t

0

‰sT dW
LT
s

�

LtT T 0 D 1

ı

�

.1C ıL0T T 0/ exp

�

�1
2

Z t

0

.‰sT 0 �‰sT /

.2‰s LT �‰sT 0 �‰sT /ds C
Z t

0

.‰sT �‰sT 0/dW
LT
s

�

� 1

�

The corresponding SDEs are
8
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ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

dftT D �tT

�Z T

LT
�tsds

�

dt C �tT dW
LT
t

d NPtT D NPtT .‰tT ‰t LT dt C‰tT dW
LT
t /

dLtT T 0 D 1

ı
.1C ıLtT T 0/

�
.‰tT 0 �‰tT /.‰tT 0 �‰t LT /dt

C.‰tT �‰tT 0/dW
LT
t




As expected, the choice LT D T makes ftT a martingale and is particularly simple to
handle. This follows as ftT can be obtained from the quotient .Pt;T�ı � PtT /=ıPtT
in the limit ı ! 0, where the numeraire is in the denominator. Similarly, the
expression for LtT T 0 simplifies for LT D T 0. For NPtT , on the other hand, there is
no choice of LT that simplifies the expression as it is not a martingale in any forward
measure.

These measure transformations make it possible to calibrate the model. We
discuss the details in Sect. 13.20 and from now on we assume that the model is
calibrated, meaning that f‰tT g are known. We instead focus on the properties of the
model and on its generalizations.

13.12 Local Volatility

Recall that the Gaussian model supports negative rates and lacks control of the
skew and smile. These problems can be avoided by allowing the volatility to be
state dependent, i.e. to depend on the rates. For instance, it is popular to assume
lognormality,
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dftT D �tT ftT

�Z T

LT
�tsftsds

�

dt C �tT ftT dW
LT
t

in the LT -forward measure. This SDE looks particularly simple in the natural
measure of ftT where LT DT . But this is not the situation for arbitrary LT , and as
we discussed earlier, it is often necessary to work in different measures for yield
curve models. If ftT needs to be simulated between two times ti and tiC1 under the
lognormal model, the rates fftT 0g LT�T 0�T are needed. As the rates are stochastic, the
evaluation from one time step ti to the next tiC1 has to be done by an approximate
scheme such as the predictor-corrector method. This introduces numerical errors in
the simulations and it is no longer be possible to take large simulation steps, as can
be done for the Gaussian model. This has a significant effect on the performance.

Just as for commodities, the dimensionality of the implementation can be
reduced by assuming a separable volatility, see Sect. 13.15 for a further discussion.
Unfortunately, this approach is not possible if the volatility depends on the rate ftT .
One way to circumvent the problem is to use a method proposed in Cheyette (1992)
and Cheyette (1996). To illustrate the technique, assume a separable volatility
�tT D �tƒT . Let T 0 be the payment date of the last rate ftT 0 used in the pricing and
assume that ftT depends locally on this rate instead of on itself:

dftT D ƒT f
2
tT 0�

2
t

�Z T

LT
ƒsds

�

dt CƒT ftT 0�tdW
LT
t

When the pricing is done in the terminal measure, i.e. the forward measure of the
last rate, we obtain

ftT D f0T CƒT

�Z T

T 0

ƒudu

�Z t

0

f 2
sT 0�

2
s ds CƒT

Z t

0

fsT 0�sdW
T 0

s

We see that all the forward rates can be computed by only storing the two stochastic
variables

R t
0 fsT 0�sdW

T 0

s and
R t
0 f

2
sT 0�

2
s ds. By setting LT D T in the SDE, however,

we see that the calibration of Cheyette type of models is not as straightforward as,
for example, the Gaussian model or the model defined from a lognormal SDE.

13.13 Stochastic Volatility

The skew and smile can be controlled through stochastic volatility. We consider the
following set of SDEs:

8
<̂

:̂

dftT D �tT

�Z T

t

�tsds

�

dt C �tT dWt

d�tT D tT dt C �tT dZt
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where tT and �tT are allowed to depend on �tT . The Radon-Nikodym derivative
Mt D NPtT = NP0T for the change to the T -forward measure satisfies

dMt D Mt‰tT dWt

Girsanov’s theorem implies that

8
ˆ̂
<

ˆ̂
:

W T
t D Wt �

Z t

0

‰sT ds

ZT
t D Zt � �

Z t

0

‰sT ds

are Brownian motions in the T -forward measure, where � is the correlation between
W and Z. The SDEs in the forward measure take the form

(
dftT D �tT dW

T
t

d�tT D .tT C ��tT ‰tT /dt C �tT dZ
T
t

We would like to investigate under which assumptions we can retain the attractive
features of the Gaussian model, namely that of analytic solvability and a low-
dimensional implementation.

Observe that the volatility SDE depends on f�tsgt<s<T through‰tT , which means
that a high-dimensional implementation is needed. This problem can be avoided
by setting � D 0. Whether this is a reasonable assumption depends on the reason
why the correlation was included in the model: was it to match the implied skew
or to obtain realistic dynamics? In the former case, many interest rate markets are
observed to only have a weak skew meaning that the assumption can be acceptable.
In the latter case, we note that there is no strong fundamental reason why interest
rates should be correlated with their volatility. This is in contrast to equities and
commodities for which such reasons can be found. In fact, studies of historical data
(Chen and Scott (2001)) reveal that the correlation is indistinguishable from zero.

With the correlation set to zero, the volatility SDE is unaffected by transfor-
mations between the risk-neutral measure and the forward measures. Furthermore,
unlike the SDE for the underlying, there does not exist any no-arbitrage condition
for the volatility SDE. It means that we have no restrictions in our choice of either
�tT or tT . As the SDE for ftT is analytic, it makes sense to choose �tT and tT so
that the volatility SDE becomes analytically solvable as well.

Recall that a low-dimension tree implementation of the underlying process is
possible if the volatility is of product form. By the same token, the volatility of
volatility must be of product form �tT D �T �t for a low-dimensional implementa-
tion of a stochastic volatility model. No such restriction exists for tT .

In Sect. 13.15 we argue for the obvious fact that a single driver for the underlying
is insufficient for accurate pricing of correlation-dependent products. Instead, an
extension to multiple drivers of the underlying is necessary. It is then an interesting
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question whether it is enough to have a single driver for the volatility or if this
process also has to be decorrelated? According to Piterbarg (2005), the volatility
decorrelation effect is important and needs to be accounted for.

As we argued above, the form of the SDE for the underlying has been fixed to
obtain analytical properties and the only remaining degrees of freedom live in the
volatility SDE. Thus, it is the volatility process that needs to be calibrated to the
caplets and swaptions skew and smile. The details are somewhat similar to those of
Dupire in Sect. 6.2, but for the volatility instead of the underlying. For the sake of
argument, we focus on calibration to caplets and use the SDE for a LIBOR rate in
the forward measure

dLtT T 0 D 1

ı
.1C ıLtT T 0/�tdW

T 0

t

where we have used the notation �t D ‰tT �‰tT 0 for the volatility. For deterministic
volatility, we follow the logic in Sect. 13.3 to arrive at an expression for the caplet
price:

C.t/ D ıPtT 0

��

LtT T 0 C 1

ı

�

N.dC/�
�

K C 1

ı

�

N.d�/
�

d˙ D ln.
�
LtT T 0 C 1

ı

�
=
�
K C 1

ı

�
/

qR T
t �

2
udu

˙ 1

2

s
Z T

t

�2udu

If an uncorrelated volatility process is included, the caplet price can be computed
by conditional expectation. The result is

C.t/ D ıPtT 0E

��

LtT T 0 C 1

ı

�

N.dC/�
�

K C 1

ı

�

N.d�/
�

where the expectation is over the volatility process. It appears difficult to infer the
volatility distribution from this expression. Instead, we consider payoff functions
f .LT T 0/ for which it is easier to back out the distribution. It is then possible to use
the fact that the present value of products with arbitrary fixed time payoffs can be
obtained from static replication of caplets.

Using ideas similar to those in Carr and Lee (2008), we find that shifted power
functions

f .LT T 0/ D
 
LT T 0 C 1

ı

LtT T 0 C 1
ı

!q

are particularly suitable for our purpose. It is straightforward to compute the price
for deterministic volatility:

V.t/ D ıPtT 0 exp

�
1

2
.q2 � q/

Z T

t

�2udu

�
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With vT D R T
t
�2udu it follows that the stochastic-volatility price is given by

V.t/ D ıPtT 0

Z 1

0

exp

�
1

2
.q2 � q/vT

�

�.vT /dvT

It means that the Laplace transformation of the variance probability density function
gives the prices of the shifted power options. Through Laplace inversion it is then
possible to back out the PDF for the variance and in that way calibrating the
volatility process.

13.14 Inclusion of Jumps

We extend the computations of Sects. 13.10 and 13.11 to include jumps. For this
purpose, we consider the SDE

dftT D ˛tT dt C �tT dWt C
Z

R

ıtT x Q�.dt; dx/

where we for simplicity have assumed appropriate regularity conditions to be
fulfilled to avoid the cutoff in the final term. The solution is given by

ftT D f0T C
Z t

0

˛sT ds C
Z t

0

�sT dWs C
Z t

0

Z

R

ısT x Q�.ds; dx/

The discounted bond prices can be computed in a similar way as when no jumps
were present:

ln NPtT D �
Z T

t

ftsds �
Z t

0

fssds

D �
Z T

t

�

f0s C
Z t

0

˛usdu C
Z t

0

�usdWu C
Z t

0

Z

R

ıusx Q�.du; dx/

�

ds

�
Z t

0

�

f0s C
Z s

0

˛usdu C
Z s

0

�usdWu C
Z s

0

Z

R

ıusx Q�.du; dx/

�

ds

D �
Z T

t

f0sds �
Z t

0

du
Z T

t

ds˛us �
Z t

0

dWu

Z T

t

ds�us

�
Z t

0

Z T

t

ds

Z

R

ıusx Q�.du; dx/

�
Z t

0

f0sds �
Z t

0

du
Z t

u
ds˛us �

Z t

0

dWu

Z t

u
ds�us

�
Z t

0

Z t

u
ds

Z

R

ıusx Q�.du; dx/
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D �
Z T

0

f0sds �
Z t

0

du
Z T

u
ds˛us �

Z t

0

dWu

Z T

u
ds�us

�
Z t

0

Z T

u
ds

Z

R

ıusx Q�.du; dx/

D ln NP0T C
Z t

0

AsT ds C
Z t

0

‰sT dWs C
Z t

0

Z

R

DsT x Q�.ds; dx/;
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AtT D �
Z T

t

˛tsds

‰tT D �
Z T

t

�tsds

DtT x D �
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t

ıtsxds

, NPtT D NP0T exp

�Z t

0

AsT ds C
Z t

0

‰sT dWs C
Z t

0

Z

R

DsTx Q�.ds; dx/
�

which gives the following expression for the LIBOR rates:

LtT T 0 D 1

ı

 NPtT
NPtT 0

� 1
!

D 1

ı
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.1C ıL0T T 0/ exp

�Z t

0

.AsT � AsT 0/ds C
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.‰sT �‰sT 0/dWs
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Z t
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Z

R

.DsT x �DsT 0x/ Q�.ds; dx/
�

� 1

�

A straightforward application of Ito’s lemma gives the SDEs

d NPtT D NPtT
��

AtT C 1

2
‰2
tT

�

dt C
Z

R

.eDtTx � 1 �DtT x/�.dt; dx/

C‰tT dWt C
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.eDtTx � 1/ Q�.dt; dx/
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AtT � AtT 0 C 1

2
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�

dt

C
Z

R

.eDtT x�DtT 0x � 1 �DtT x CDtT 0x/�.dt; dx/

C .‰tT �‰tT 0/dWt C
Z

R

.eDtTx�DtT 0x � 1/ Q�.dt; dx/
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The HJM condition reads

AtT C 1

2
‰2
tT C

Z

R

.eDtT x � 1 �DtT x/�.�; dx/ D 0

where �.�; dx/ D �.dt; dx/=dt .
Writing the HJM condition as

˛tT D �tT

Z T

t

�tsds C
Z

R

ıtT x.1 � e� R T
t ıtsxds/�.�; dx/

the equations and SDEs can be summarized as
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The next step is to investigate how the equations look in the LT -forward measure.
The Radon-Nikodym derivativeMt D NPt LT = NP0 LT satisfies

dMt D Mt

�

‰t LT dWt C
Z

R

.eDt LT x � 1/ Q�.dt; dx/
�

It follows from Sect. 8.3 that

W
LT
t D Wt �

Z t

0

‰s LT ds

is a Brownian motion in the LT -forward measure and that

�
LT .dt; dx/ D eDt LT x �.dt; dx/

is the Lévy measure. We obtain the following equations and SDEs in the LT -forward
measure:
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As before, the SDE for ftT simplifies for LT D T and the SDE for LtT T 0 simplifies
for LT D T 0.

13.15 The Hull-White Model

The Gaussian model has been formulated in terms of �tT for the forward rates and
in terms of !tT for the discounted bond prices and the LIBOR rates. As �tT and !tT
are 2-dimensional functions of time, it is popular to reduce them to a 1-dimensional
dependence.

We consider the performance-boosting assumption that the volatility is separable:
�tT D ƒT �t . We obtain
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 Z tCdt

s

ƒudu

!

ds

CƒtCdt
Z tCdt

0

�sdWs � f0t �ƒt

Z t

0

�2s

�Z t

s

ƒudu

�

ds �ƒt

Z t

0

�sdWs

D
�

@tf0t C @tƒt

ƒt

.ft t � f0t /Cƒ2
t

Z t

0

�2s ds

�

dt Cƒt�tdWt

D �t .Qrt � rt /dt C Q�tdWt
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which means that the short rate follows an Ornstein-Uhlenbeck process with
volatility Q�t D ƒt�t , mean-reversion factor �t D �.@tƒt/=ƒt and mean-reversion
level

Qrt D f0t C @tf0t =�t C ƒ2
t

�t

Z t

0

�2s ds

A model for which the short rate follows an Ornstein-Uhlenbeck process is said to
be a Hull-White model (Hull and White (1990)). Thus, we conclude that normally
distributed forward rates with separable volatilities �tT D ƒT �t give a Hull-White
model.

To show that the two model types are equivalent, let us now start with the Hull-
White model

drr D �t.Qrt � rt /dt C Q�tdWt

and derive forward rates that are normally distributed with separable volatilities.

The pricing is straightforward as the money market account Bt D exp
	R t

0 rsds



is

expressed in terms of the short rate and

NPtT D EtŒB
�1
T �

To simplify the computations, we only compute the stochastic part of NPtT . The
reason is that the deterministic part can be computed by using the fact that NPtT is a
martingale. Letting “�” denote equality up to a deterministic part, we have

rt � ƒt

Z t

0

�sdWs; ƒt D e� R t
0 �sds ; �t D ƒ�1

t Q�t

according to Sect. 5.6. With �t D � R t0 ƒsds, we obtain

NPtT � Et

�

exp

�

�
Z T

0

ƒs

�Z s

0

�udWu

�

ds

��

D Et

�

exp

�

�
Z T

0

�u

�Z T

u
ƒsds

�

dWu

��

D Et

�

exp

�Z T

0

�u.�T � �u/dWu

��

� Et

�

exp

�Z t

0

�u.�T � �u/dWu

��

D exp

�Z t

0

�u.�T � �u/dWu

�
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which gives

NPtT D NP0T exp

�

�1
2

Z t

0

�2s .�T � �s/2ds C
Z t

0

�s.�T � �s/dWs

�

To simplify the expression, we introduce a new measureQ by

�
dQ

dP

�

t

D Mt D exp

�

�1
2

Z t

0

�2s �
2
s ds �

Z t

0

�s�sdWs

�

with corresponding numeraireDt D MtBt . It gives

D�1
t PtT D P0T exp

�

�1
2
�2T

Z t

0

�2s ds C �T

Z t

0

�2s �sds C �T

Z t

0

�sdWs

�

which can be written as

D�1
t PtT D P0T exp

�

�1
2
�2T

Z t

0

�2s ds C �T

Z t

0

�sd LWs

�

in terms of the Brownian motion LWt D Wt C R t
0
�s�sds in the measure Q. Finally,

with �t D R t
0 �

2
s ds, we obtain

D�1
t PtT D P0T exp

�

�1
2
�2T �t C �T LW�t

�

The pricing equation for the Hull-White model is similar to what would have
obtained from the Gaussian model if letting !tT be of product form �2T �t :

B�1
t PtT D P0T exp

�

�1
2
�2T �t C �TW�t

�

The difference is that the pricing equations are formulated in different measures.
The forward rates can be obtained from

ftT D � d

dT
lnPtT D � d

dT
lnB�1

t PtT

D f0T C .@T �T /

Z t

0

�2s .�T � �s/ds � .@T �T /
Z t

0

�sdWs

D f0T CƒT

Z t

0

�2s

�Z T

s

ƒudu

�

ds CƒT

Z t

0

�sdWs

which is identical to the starting equation and proves that the Hull-White model
indeed is equivalent to the Gaussian model with separable volatility.
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Let us briefly discuss the calibration of the model. As mentioned before, the
calibration of the volatilities can be done, for example, by formulating the model
in terms of the LIBOR rates. It is also necessary to calibrate the model to the yield
curve. This calibration is straightforward if using the formulae for ftT , NPtT and
LtT T 0 in Sect. 13.10 as they contain the information f0T , NP0T and L0T T 0 about
today’s yield curve. The calibration is actually also simple when the drift and the
volatility are allowed to depend on the rate, which means that explicit expressions
for ftT , NPtT and LtT T 0 might not be found. The reason is that the model can be
formulated in terms of SDEs and the current yield curve is the initial condition for
these equations. We therefore see that an advantage of formulating a yield curve
model as a stochastic model for ftT , NPtT or LtT T 0 is that the calibration to today’s
yield curve is automatic. The calibration to the yield curve for short-rate models,
i.e. models formulated in terms of the short rate, is not as straightforward. A notable
exception is the Hull-White model. Indeed, we saw above that the mean-reversion
level is determined from today’s yield curve if the other model parameters are
known. It is interesting to observe how the yield curve calibration is transformed
from an initial condition to a mean-reversion level through the equivalence relation
between the Gaussian model with separable volatility and the Hull-White model.

When calibrated to the yield curve, the free parameters in the Hull-White model
are the mean-reversion factor and the volatility. We saw above how these parameters
are in one-to-one correspondence with the separable volatility ƒT �t :

� Q�t D ƒt�t
�t D �.@tƒt /=ƒt

,

8
ˆ̂
<

ˆ̂
:

�t D Q�t= exp

�

�
Z t

0

�sds

�

ƒt D exp

�

�
Z t

0

�sds

�

whereƒT and �t have been scaled so that ƒ0 D 1.
When simulating the forward rates ftT , the first variable t is evolved while the

second variable T is kept fixed. This is in contrast to the short rate rt D ftt for
which both variables are evolved. This motivates us to study the rolling forward
rates ft;tCT that describe the instantaneous forward rate at a certain time period T
into the future instead of at a fixed time as was done for ftT . The short rate is then
obtained in the limit T ! 0. The evolution of the rolling rates for the Gaussian
model with separable volatility can be derived in the same way as was done for the
short rate:

ftCdt;tCdtCT � ft;tCT D f0;tCdtCT CƒtCdtCT
Z tCdt

0

�2s

 Z tCdtCT

s

ƒudu

!

ds

CƒtCdtCT
Z tCdt

0

�sdWs � f0;tCT �ƒtCT
Z t

0

�2s

�Z tCT

s

ƒudu

�

ds

�ƒtCT
Z t

0

�sdWs
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D
�

@tf0;tCT C @tƒtCT
ƒtCT

.ft;tCT � f0;tCT /CƒtCT �2t
Z tCT

t

ƒsds

Cƒ2
tCT

Z t

0

�2s ds

�

dt CƒtCT �tdWt

from which it follows that the rolling rates are mean reverting just as the short rate.
We conclude that forward rates (with a fixed payment date) of separable volatility

are equivalent with mean-reverting rolling rates. We have also seen that when
specifying an Ornstein-Uhlenbeck process for the short rate, the evolution of
all the forward rates can be derived. A consequence is that when specifying an
Ornstein-Uhlenbeck process for the short rate, the rolling forward rates must all
follow Ornstein-Uhlenbeck processes with parameters determined from the short-
rate process. It means that there is no degree of freedom left for ft;tCT once an
Ornstein-Uhlenbeck process has been specified for the special case T D 0.

Recall that the no-arbitrage condition takes the form of the HJM condition for
the forward rates. We now see that in terms of the rolling rates, it takes the form
that all rates are determined from the short rate. This result is general and not
restricted to the Hull-White model. Indeed, any model for the short rate predicts
the evolution of the whole yield curve. This can be understood from the relation
NPtT D Et

	
exp

	
� R t

0
rsds




. The reverse is not true, i.e. an arbitrary stochastic

evolution of the yield curve may not necessarily be described by a short-rate model.
To obtain richer dynamics of the yield curve it has therefore become popular to
formulate models directly in terms of forward rates or LIBOR rates.

In parallel to the modeling of a commodity futures curve, a separable volatility
implies a highly correlated curve. The Hull-White model should therefore not
be used to price products that have a strong dependence on the correlation
between rates. Instead, correlation-dependent products are best handled with higher-
dimensional models, see Sect. 12.3.

A whole myriad of short-rate models have been suggested in the literature, see
Brigo and Mercurio (2006) for an overview. Most of the models are not analytically
solvable and are cumbersome to calibrate and to generalize to price correlation-
dependent products. Our personal view is that models based on the theory in this
chapter are preferable and for this reason we only consider the Hull-White model of
all the short-rate models. Furthermore, short-rate models are inconsistent if allowing
the short rate to be lognormal. Indeed, disregarding the contribution from the drift
gives rt D r0 exp.�Wt /, where we have assumed a constant volatility. The expected
value of the money market account is then given by

EŒBt � � E

�

exp

�Z t

0

rudu

��

� E

�

exp

�
1

2
t .r0 C rt /

��

where the integral has been approximated by the trapezoidal method. As
E Œexp .e�/� is divergent for � � N .0; 1/, this heuristic argument shows that the
expected value of the money market account is divergent for lognormal short rates.
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Fortunately, the divergence disappears if the model is implemented numerically on
a lattice, which means that the model can anyway be used in practice. It is then
important to be aware of the fact that the price depends on the choice of lattice and
no convergence is obtained in the limit when the distance between the points tends
to zero.

13.16 Markov-Functional Models

Markov-functional models, developed in Hunt et al. (2000), are based on the fact that
an arbitrary interest rate product can be priced if the discounted zero-coupon bond
pricesN�1

t PtT are known for arbitrary t and T > t , whereNt is the numeraire. This
fact follows from Sect. 13.8. As

N�1
t PtT D Et

�
N�1
T

�

all that we need to know is Et
�
N�1
T

�
. To compute this conditional expectation, we

assume that the numeraire can be written as a function of a simple process, chosen
such that the computations are straightforward. We typically, but not necessarily,
assume that the numeraire is a function of a Brownian motion:NT D �TˆT .WT /

�1.
�T is a scalar and ˆT is such that EŒˆT .WT /�D 1, where the expectation is
conditional on today’s state. �T can then be calibrated to today’s yield curve
according to

P0T D E
�
N�1
T

� D ��1
T E ŒˆT .WT /� D ��1

T

where we have assumed that N0 D 1. The Markov-functional approach therefore
amounts to finding suitable functions ˆT .WT / with mean equal to 1. An example
of a Markov-functional model was given in Sect. 13.10 where

Nt D Bt D NP�1
t t D NP�1

0t exp

�
1

2

Z t

0

‰2
stds �

Z t

0

‰stdWs

�

The main characteristic feature of Markov-functional models is the flexibility in
the choice of functionsˆt .Wt/ and therefore in the matching of skew and smile. To
illustrate how an appropriate function ˆ can be constructed, let W!tt D R t

0
‰stdWs

in the Gaussian model be replaced with g.W!tt / for some suitable function g. An
example of such a function is

g.x/ D x C 1

aC bx C cx2

which can be used to match the skew and the smile. Note thatˆ needs to be rescaled
to preserve the identity EŒˆt � D 1.
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Markov-functional models are usually implemented on a discrete tenor structure
fTig. To simplify notation, we set Pij DPTi Tj andNi DNTi . fN�1

i Pij gi�j can then
be computed from fNig by the pricing formula.

It is useful to formulate the model in terms of LIBOR rates instead of the
numeraire when calibrating to caplets. The numeraire and the LIBOR rates are
related by

Pi;iC1=Ni DEi
�
N�1
iC1
� , N�1

i D .1C ıiLi .Ti //Ei
�
N�1
iC1
�

If the numeraire is chosen as the terminal bond,Ni DPin, thenNn D 1 and the above
formula can be used to recursively determine the numeraire from the distribution
of the LIBOR rates Li at their fixing dates Ti . The distribution of the LIBOR
rate can be chosen to match today’s yield curve in a similar way to what was
done for the numeraire. Indeed, setting Li D �iˆ.Wi /, the scalar is determined
from

P0i � P0;iC1
P0n

D E0

�
1 � Pi;iC1
Pin

�

D E0

�
ıiLi .Ti /Pi;iC1

Ni

�

D ıi �iE0
�
ˆiEi ŒN

�1
iC1�

�

, �i D P0i � P0;iC1
ıiP0nE0

�
ˆiEi ŒN

�1
iC1�

�

The above formulae can appear quite abstract. For this reason, we illustrate with
a tree implementation. We assume that Wi can only attain certain discrete values
fpTiakgk, with a0 D 0. The probabilities

�
j i

lk D P.Wj D p
Tj al jWi D

p
Tiak/

are then assumed to be known. Regarding the values of the distribution, we use the
notation ˆil D ˆi.

p
Tial /. It follows that

�n�1 D P0;n�1 � P0;n

ın�1P0n
P

l �
n�1;0
l0 ˆn�1;l

) N�1
n�1;k D N�1

n�1jW.Tn�1/Dp
Tn�1ak

D 1C ın�1�n�1ˆn�1;k

) �n�2 D � � �
) � � �

which calibrates the model to today’s yield curve through the choice of f�ig and
determines the numeraire values fNig used in the pricing.

The calibration to volatility-dependent products can be complex for Markov-
functional models and often needs to be done numerically. This is fortunately not
always as bad as it first appears. For instance, we saw in Chap. 4 that there are several
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techniques by which a numerical calibration can be improved performance-wise.
Furthermore, for Markov-functional models it is possible to choose the evaluation
equations in the pricing measure to avoid complicated drift computations which can
be a performance bottleneck for interest rate models, see next section. The processes
can also be chosen to be analytic which means that a simulation does not have to be
limited to small time steps. Instead, the rates can be evaluated in one go to the time
points where the pricer needs them. Thus, even though calibration by simulation
appears performance-challenged from the outset, this speed-up can make it feasible.
However, bear in mind that for Markov-functional models it is necessary to calibrate
to the yield curve as well as to the volatilities while for the other models in this
chapter, the yield curve calibration is automatic.

When implementing Markov-functional models on a discrete tenor structure,
the values fN�1

i Pij gi�j are obtained. For dates not aligned with the tenor dates,
N�1
t PtT can be obtained from interpolation. Unfortunately, interpolation leads to

mispricing of volatility-dependent products when more than one driving factor is
used. The reason is that account is not taken to the stochastic nature of the processes
between the tenor dates. To give an example that illustrates the effect, assume that
L1 and L2 follow normal processes with volatility � and correlation �. The linearly
interpolated mid rate follows

d
1

2
.L1 C L2/ D 1

2
�.dW1 C dW2/ D

p
1C �p
2

�dW

and has a volatility less than � unless L1 and L2 are perfectly correlated.
Observe that the reduced volatility due to interpolation is not limited to Markov-

functional models but applies to any model implemented on a discrete tenor
structure. It therefore also occurs for LMMs, SMMs and for models in other asset
classes as well. The problem can be avoided by not doing an interpolation but
rather using a Brownian bridge process to generate values on dates not lying on
the simulation dates.

13.17 LIBOR Market Models

The Gaussian model gives the following SDEs for the LIBOR rates in their natural
(T 0-forward) measure:

dLtT T 0 D 1

ı
.1C ıLtT T 0/.‰tT �‰tT 0/dW T 0

t

We focus on LIBOR rates Lti D LtTi TiC1
defined on a discrete tenor structure T0,

T1; : : : ; Tn. The SDE can then be written as

dLti D .1C ıiLti /�tidWti
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where Wti D W
TiC1

t and �ti D .‰tTi � ‰tTiC1
/=ıi . Models formulated as SDEs of

discrete LIBOR rates are called LIBOR market models (LMMs) and were developed
independently by Brace et al. (1997) and Miltersen et al. (1997). Needless to say,
these models are simple to calibrate to caplets.

As we use a discrete tenor structure, the continuous-time numeraire (the money
market account) cannot be used. It is instead popular to work in the terminal
(Tn-forward) measure. The Radon-Nikodym derivative is then given by

Mt D Ptn=P0n

Pti =P0i
D

nY

jDiC1

�
1C ıjLtj

1C ıjL0j

��1

where Pti D PtTi . It gives the expression for W n
i , the Brownian driver of Li in the

terminal measure:

dWti D dW n
ti C hdWti ; d lnMti D dW n

ti �
nX

jDiC1
hdWti ; d ln.1C ıjLtj /i

D dW n
ti �

nX

jDiC1

ıj

1C ıjLtj
hdWti ; dLtj i D dW n

ti �
nX

jDiC1
ıj �ij �j

The resulting SDE is

dLti D .1C ıiLti /�ti

0

@dW n
ti �

nX

jDiC1
ıj �tij �tj dt

1

A

Observe that we without any additional complications have allowed the Brownian
drivers to be correlated.

The LIBOR rates satisfy a shifted lognormal SDE that is close to the normal
SDE as ıiLi is in general much smaller than 1. The reason why the LIBOR rates
follow a more complicated SDE than ftT is that the simple compounding “disrupts”
the process. Indeed, if instead working with continuous compounded forward rates
fi D 1

ıi
ln.1C ıiLi /, a Gaussian behavior is obtained:

dfti D 1

1C ıiLti
dLti � 1

2

ıi

.1C ıiLti /2
.dLti /

2

D �tidW
n
ti �

0

@�ti

nX

jDiC1
ıj �tij �tj C 1

2
ıi�

2
ti

1

A dt

The discrete-time version of the money market account is given by a constant
reinvestment at the LIBOR rate for each tenor date. The time t value of this strategy
is given by
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Pt�t

�tY

jD0
.1C ıjLj /

where �t D i if t 2 .Ti�1; Ti � and T�1 is today’s date. The corresponding measure is
called the spot measure and is, together with the terminal measure, the most popular
pricing measures for LMM.

Just as in Sect. 13.12, it is common to sacrifice the analytical properties of the
Gaussian model for a better match of the skew and smile by allowing the volatility to
depend on the rates. For instance, the most popular type of LMMs is the lognormal
LIBOR market model:

dLti D �tiLtidWti

As we work on a discrete tenor structure, the model avoids the divergence that
otherwise occurs for a lognormal short rate. The model has the form

dLti D �tiLti

0

@dW n
ti �

nX

jDiC1
�tij

ıj

1C ıjLti
�tj Ltj

1

A

in the terminal measure. The calibration is trivial as f�i g are the lognormal caplet
volatilities. Because of the simple conversion between ATM volatilities for the
lognormal and the shifted lognormal model, as was described in Sect. 5.4, the
calibration to ATM caplets is simple for the Gaussian model as well. The skew
of the LMM can be controlled by using a CEV process or a shifted lognormal
process:

dLti D �ti .L0i C ˇi .Lti �L0i // dWti

Finally, we would like to point out that it is straightforward to extend the LMM to
include stochastic volatility and jumps in parallel to what was done in Sects. 13.13
and 13.14.

13.18 Swap Market Models

The main reason for using the LMM is the simple caplet calibration. Unfortunately,
the swaption calibration is less straightforward for these types of models, as we
show in Sect. 13.20. An alternative approach is to formulate the model in terms
of swap rates on a discrete tenor structure instead of in terms of LIBOR rates.
Such models are called swap market models (SMM) and they are characterized by
their simple calibration to swaptions. The caplet calibration unfortunately needs to
be done using techniques similar to how swaption calibration is done for LMMs.
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The choice between the LMM and the SMM depends whether the product to be
priced is more sensitive to the correctness of the caplet quotes or swaption quotes.
However, the LMM is generally viewed as the simpler model to work with and it is
often the model type of choice.

Just as for LMM, we work with rates defined on a tenor structure T0; T1; : : : ; Tn.
We base the model on swap rates with a common final payment date Tn, i.e. Ri D
.Pi � Pn/=Ai , where Ai D Pn

jDiC1 ıjPj is the annuity. This particular class of
models is called coterminal SMMs. Other choices are also possible, e.g. all swap
rates can have the same start date, see Galluccio et al. (2007) for a discussion of
various types of swap market models.

We initially formulate the model in the measure belonging to the numeraire Ai .
This makes the swaption pricing and calibration straightforward. The swap rate is a
martingale in this measure and we assume an SDE of the form

dRti D �tid QWti

where QWi is a Brownian motion in the measure corresponding toAi and the volatility
�i is allowed to depend on Ri .

We choose the terminal measure as the common measure in which the pricing
is done. The transformation to this measure is given by the Radon-Nikodym
derivative

Mt D Ptn=P0n

Ati=A0i

and Girsanov’s theorem

d QWti D dW n
ti C hd QWti ; d lnMt i

To simplify the computations, we set

!ij D
n�1X

kDj
ıkC1

kY

lDiC1
.1C ılRl/; i � j

and !i D !ii . As

An�1 D ınPn D !n�1Pn

it follows by induction that

!iPn D .ıiC1 C .1C ıiC1RiC1/!iC1/ Pn

D ıiC1Pn C .1C ıiC1RiC1/AiC1/ D ıiC1Pn C AiC1 C ıiC1.PiC1 � Pn/
D Ai
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We then obtain

d lnMt � d ln!ti � � 1

!ti

n�1X

kDi
ıkC1d

kY

lDiC1
.1C ılRtl /

D � 1

!ti

n�1X

kDiC1

n�1X

jDiC1
ıkC1

0

@
kY

lDiC1;l¤j
.1C ılRtl /

1

A ıj �tj d QWtj

D � 1

!ti

n�1X

jDiC1

n�1X

kDj
ıkC1

0

@
kY

lDiC1;l¤j
.1C ılRtl /

1

A ıj �tj d QWtj

D � 1

!ti

n�1X

jDiC1

ıj �tj

1C ıjRtj
!tij d QWtj

which gives the SDE for the swap rate in the forward measure:

dRti D �tidW
n
ti � �ti

!ti

n�1X

jDiC1

ıj �tj

1C ıjRtj
!tij �tij dt

The choice of letting �i be proportional to the rate Ri is common. This is the
lognormal swap market model. Observe that since !ij depends on fRkgiC1�k�n�1,
unlike the LMM, there is no functional form of �i that makes the drift and the
diffusion state-independent.

13.19 Including Adjusters

When using a Gaussian interest rate model

dLti D .1C ıiLti /�tidWti

we obtain a Markovian model. It means that a tree implementation is possible and
that simulations can be done efficiently using large time steps. Unfortunately, with
the exception of adding an uncorrelated volatility process, there are no remaining
degrees of freedom for fitting the skew and the smile of the implied volatility
surface. Indeed, if the skew and the smile are prioritized and we choose a non-
Gaussian process for the underlying, e.g. the lognormal LMM, the Markovian
property is destroyed and the implementation is more complex and performance
demanding.

This dilemma of yield curve modeling can be solved with the method of
adjusters. It is then possible to use the Gaussian model for the evolution of the curve
while a skew and smile model can be used for the adjustment. In that way we obtain
a high-performing version of the LMM that can match the skew and the smile.



13.20 Volatilities and Correlations 269

13.20 Volatilities and Correlations

The modeling of interest rates depends on a curve, the yield curve. It is therefore
similar to the modeling of commodities that depend on the futures curve. As we
now show, the parallel is particularly strong regarding the choice of volatilities and
correlations. Much of the results in Sect. 12.4 apply here as well and we therefore
choose to focus on the differences.

Let us start with the calibration of the volatility surface �tT to the liquid volatility-
dependent products for interest rates, namely caplets (caps) and swaptions. We show
below that the calibration is more complex than for commodities as the two time
variables t and T become mixed. We therefore discuss the volatility calibration in
more detail.

Consider the calibration to caplet and swaption quotes for a given tenor structure
T0; : : : ; TN . We assume that the model is formulated in terms of SDEs for the
LIBOR rates Li D LtTi TiC1

in their natural measure. The calibration to caplets
is then straightforward. For the calibration to swaptions, we express the swap rate
Rij with tenor structure Ti ; : : : ; Tj in terms of the underlying LIBOR rates:

Rij D 1 �Qj

lDiC1
1

1CılLl
Pj

kDiC1 ık
Qk
lDiC1 1

1CılLl

AsRij depends on several LIBOR rates, we can use a higher-dimensional technique
of Chap. 10 to obtain an approximate distribution. For example, when the LIBOR
rates are lognormal it is popular to write the stochastic part of d lnRij as Q�ij dWtij

and freeze the fLkg-dependent volatilities at today’s values fLk.0/g. This method
by Hull and White (2000) is popular and the accuracy can be verified numerically
by computing the ATM swaption prices with the SDEs for the LIBOR rates. The
SDEs for the swap rates are commonly approximated by the same type of SDE
followed by the LIBOR rates. For instance, if the LIBOR rates satisfy a lognormal,
shifted lognormal, CEV or SABR process, the swap rates are approximated with the
same type of process, see, for example, Hagan and Lesniewski (2008) for the SABR
evaluation. This is a natural approach as the LIBOR rates are the 1-period special
case of swap rates.

As an illustrating example for the calibration, we use our benchmark model

dLti D �.1C ıiLti /dWti

We start by describing how the calibration can be done for piece-wise constant
volatilities

�tT D �kl ; t 2 ŒTk�1; Tk�; T 2 ŒTl�1; Tl �

where T�1 is today’s date. Observe that 0 � k < l as the volatility of a rate is not
defined after its fixing date. A swaption with tenor structure Ti ; : : : ; Tj then depends
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on the volatilities with l D i C 1; : : : ; j . These volatilities need to be evolved up
to the fixing Ti of the underlying swap rate, which means that k D 0; 1; : : : ; i .
For example, the swaption with tenor structure .T1; T2; T3/ depends on �02, �03, �12
and �13.

To see how the volatilities �kl can be bootstrapped from the swaption quotes
on the tenor structure, we first focus on the .T0; T1/ swaption (which is actually
a caplet). This swaption only depends on �01 and can therefore be determined
from the market quote of the swaption (caplet). Next, consider the .T0; T1; T2/
swaption, which depends on �01 and �02. As �01 has been computed, �02 can be
backed out. By the same token, all �0l can be determined for arbitrary positive
integers l . For kD 1, the .T1; T2/ swaption (caplet) depends on �02 and �12.
The first volatility is known, so the latter can be backed out. Repeating this
procedure, we can determine all volatilities for kD 1 and then in the same way for
k > 1.

For N LIBOR rates, there are N.N C 1/=2 parameters and as many calibration
instruments. This large number of parameters can lead to an overspecification of the
model. An alternative is to reduce the number of parameters by assuming a product
form of the volatility. This approach is similar to what we did for commodities in
Sect. 12.4.

The shape of the volatility surface is fundamentally different from that found for
commodities markets. For interest rates, the short end of the yield curve is influenced
by political choices. This has a damping effect which means that the volatility often
increases initially as a function of the maturity T , for fixed t . After a certain time
period out on the curve, the volatility behaves in a more normal way and starts to
decay. Thus, the volatility is often found to have a humped shape. A popular choice
of parametric form is therefore

�tT D ˛ C .ˇ C .T � t//e�ı.T�t /; ı > 0

This can obviously be generalized by allowing the parameters to depend on t .
The correlation modeling for interest rates and commodities have many parallels.

For example, with only some minor modifications it is possible to use the parametric
models in Sect. 12.4. It is popular to use a parametric correlation surface, often
based on historical data, and after that calibrate the volatility. One difference from
commodities is that there are liquid calibration instruments (the swaptions) that
depend on the intracorrelation. As they have a volatility dependence that cannot be
directly inferred from elsewhere, however, it can be hard to extract the correlation
component. The correlation can also be obtained from other, less liquid, products
such as CMS spreads. When it comes to the intercorrelation, i.e. the correlation
between interest rates in different currencies, there are few market instruments that
can be used for the calibration.

Recall the full-rank intracorrelation parametrization in Sect. 12.4:

�.T; T 0/ D exp .�T � �T 0/ T � T 0
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where �T is a concave and increasing function. It implies that

d2

dT 2
�.T0; T / D exp .�0 � �T /

 �
d�T

dT

�2
� d2�T

dT 2

!

� 0

so �.T0; T / is convex. This is in disagreement with empirical studies where �.T0; T /
is found to be concave for T close to T0 and convex for larger T , see Rebonato
(2002) and references therein. Furthermore, the 2-factor model in Sect. 12.4 also
changes sign of the convexity and the model we are looking for should preferably
be a higher-order correction of the 2-factor model and should therefore not have
fundamental different properties. Thus, we have good reasons to require the model
to have a convexity that changes sign.

Although the 2-factor parametrization shows good agreement with reality when
it comes to the convexity, it cannot reproduce the decorrelation observed in the
market. For instance, studies of historical yield curves movements report that the
largest eigenvalue often accounts for only 80–90% of the dynamics, while for
2-factor models it is virtually impossible to get this number below 90%. Therefore,
if choosing between the 2-factor parametrization and the full-rank parametrization
above, the modeler has to decide which is more important: the convexity or the
decorrelation.

An alternative approach is to use a new type of parametrization or by modifying
one of the existing ones. For example, the proof of the convexity of the full-rank
parametrization only used the cocycle condition and condition 6 of Sect. 12.4.
Therefore, concavity can be obtained for T close to T0 by relaxing one of these
conditions. For instance, consider the situation when condition 6 is relaxed and �T
is no longer concave everywhere. It is possible to obtain a correlation with changing
sign of the convexity. This approach makes some sense for interest rates as condition
6 is not specially important. Indeed, we know from the discussion of volatilities that
most of the dynamics of the yield curves do not lie in the very front (which is the
case for commodities) and it is therefore not unreasonable to assume that the rates
are decorrelated the most at the place of the curve where the volatility hump is
found.

The choice of driving factors is important for correct hedging and pricing.
Unlike commodities it is not always clear beforehand how interest rate products
depend on the correlation. The reason is that the interest rate calibration instruments
themselves depend on the correlation. For a concrete example, we follow Andersen
and Andreasen (2001) and consider the pricing of a Bermudan swaption in the
LMM. This model is usually calibrated to swaptions (and caplets) which, just as the
Bermudan swaption, depend on the correlation between the LIBOR rates. It means
that if the correlation structure is changed, it is not always obvious where the effect
is stronger: for the calibration instruments or for the product to be priced. In order
to retain the swaption market prices, the change in their prices from the correlation
needs to be compensated by changing the volatilities. It is then not clear if the end
result is an increase or a decrease of the Bermudan swaption price.
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13.21 Interest Rate Effects on Other Asset Classes

So far in this chapter, we have been concerned with pure interest rate modeling.
We now study the impact of the yield curve evaluation on other asset classes. For a
concrete example, we consider the pricing of an exotic derivative that depends on
the value of a tradable S . We use a lognormal process

dSt D �tStdt C �tStdWt

formulated in the risk-neutral measure. As St=Bt is a martingale, it follows that

�

0 D d
St

Bt

�

drift
D .�t � rt / St

Bt
dt , �t D rt

The volatility �t is usually determined through calibration to vanilla option
prices. Consider, for example, the pricing of a call option paying .ST � K/C D
.FT � K/C at T , where Ft D P�1

tT St is the forward. As usual, the option price
depends on the volatility of the martingale Ft . We see from the relation between
the underlying and the forward that their volatilities are only equal for deterministic
interest rates. To obtain a more general result, assume that the interest rates satisfy

dftT � � IR
t ftT dW

IR
t

where the drift has been omitted as it does not affect the volatility computations. We
have assumed a lognormal process for the interest rates since it makes the analysis
easier.

Using

dPtT D d exp

�

�
Z T

t

ftT 0dT 0
�

� �� IR
t PtT

�Z T

t

ftT 0dT 0
�

dW IR
t

we obtain

d
�
P�1
tT St

� � P�1
tT St

�
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�Z T
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ftT 0dT 0
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which gives the volatility

Q� D �

 

1C 2�
� IR
t

�t

Z T

t

ftT 0dT 0 C
�
� IR
t

�t

Z T

t

ftT 0dT 0
�2!1=2

for the forward. To understand the interest rate effect on the volatility more
easily, assume that the rates and the volatilities are constant: ftT Dft , �t D � and
� IR
t D � IR. As rates are typically in the order of magnitude of 5%, it follows that
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R T
t
ftT 0dT 0 Dft .T � t/ � 1 if the maturity is not too long. We can then omit the

last term to obtain

Q� � �

�

1C �
� IR

�
ft .T � t/

�

We conclude that the volatility of the forward is approximately equal to the volatility
of the underlying for short maturities. The two volatilities then deviate linearly with
the maturity. If the correlation is zero, on the other hand, the relation is purely
quadratic for small maturities. By the same token, it can be shown that the skews
and smiles are approximately equal for the forward and the underlying when the
maturity is small. For longer maturities, however, they deviate in general.

The effect that we have described here is not only important for the calibration of
exotics models, but also for long-dated vanilla options. Indeed, it follows from the
above how such options need to be dynamically hedged not only with respect to the
underlying but also by the interest rate components.

13.22 Overnight Index Swaps

We have defined P�1
tT as the fair amount to be paid back at T for a loan of $1 at t . In

a practical trading situation, the value of P�1
tT depends on the credit worthiness of

the borrower because a default means that the lender will not necessarily be repaid.
Thus, the value of P�1

tT is high if the loan taker has a poor credit rating. The lowest
possible value of P�1

tT corresponds to loan takers with zero probability of default.
These risk-free loans can to a good approximation be taken by stable governments
and certain major corporations.

The credit exposure depends on the tenor T � t of the loan. The longer the
tenor, the larger the risk of the loan taker to default during the period of the loan.
It means that the interest rate for overnight loans taken by highly rated corporations
is close to risk free. Money can therefore be lent risk free for longer time periods
by repeatedly entering overnight contracts with counterparties that are considered
safe. The money repaid from one overnight loan is used for a new loan expiring the
following day.

One problem with the strategy of repeated overnight loans is that the future
overnight interest rates are unknown as of today. For instance, we do not know
in advance the overnight interest rate that will apply between the date one month
from now and the day after that. It means that the future earnings of the strategy are
unknown.

Overnight index swaps (OISs) can be used to overcome the above problem.
In these products, the earnings obtained up to a certain time in the overnight
lending strategy are exchanged for a fixed-rate cash flow. For a more detailed
description, consider the OISs that are actively traded in the Euro zone. They are
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based on the euro overnight index average (EONIA) which is a weighted average
of overnight interest rates quoted by a selected panel of major banks. The swaps
themselves are called EONIA swaps. They use the actual/360 day count convention
and the payment takes place one day after the end date. For instance, a 1M EONIA
swap with 4% fixed rate traded at August 10, a Wednesday, uses a floating rate r
defined by

1C 31

360
r D

�

1C 3

360
rA12

��

1C 1

360
rA15

�

� � �
�

1C 1

360
rS8

��

1C 3

360
rS9

�

where rA12 is the overnight interest rate fixed at August 12, and so on. Observe
that because of non-business days, some of the rates are used for more than 1 day
(e.g. 3 days over a weekend). The cash flow resulting from the swap equals

N
31

360
.r � 4%/

whereN is the notional. The payment takes place one day after the end of the swap,
in this instance September 13. EONIA swaps with maturities less than 1Y have only
a single payment at the end of the swap. For longer maturities, the payments are
annual.

OISs in other currencies are very similar, such as the GBP OISs, which are based
on the sterling overnight index average (SONIA) and the USD OISs, which are based
on the federal funds rate. For example, the only difference between USD OISs and
EONIA swaps is that the payment takes place 2 instead of 1 day after the end of
the swap. As usual, there are exceptions to every rule. For instance, ZAR OISs use
a different compounding convention. Furthermore, for some currencies there exist
overnight index swaps that are forward starting and defined for periods between
monetary policy meeting dates.

SONIA, EONIA, TONAR (JPY) and TOIS (CHF) swaps are quoted out to 30Y
while USD OISs can be found out to 2Y. OIS quotes for other major currencies (e.g.
AUD, NZD, CAD, RUB, SEK) can be found out to a year while for some currencies
(e.g. NOK), they are not traded at all.

Combining the strategy of repeated overnight loans with an OIS results in the
floating swap leg remaining the loans and only the fixed leg remaining. It means that
as of today, the earnings obtained at the end date of the swap are known. Assuming a
maturity of less than a year, so that the OIS only has a single payment, an investment
of $1 accumulates to $.1 C r � d=360/ at maturity, where d is the number of days
to maturity and r is the OIS rate. Thus, the OIS quotes represent the rates at which
risk-free investments can be made.

By bootstrapping OIS quotes and using appropriate interpolation and extrapola-
tion techniques, risk-free rates can be obtained to arbitrary maturities. The resulting
curve can be used for discounting future risk-free cash flows. Discount curves for
specific counterparties, or classes of counterparties, can be constructed by adding
spreads determined by the probability of default.
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13.23 Collateral

To avoid credit risk for OTC contracts, collateral can be posted between the
counterparties. A contract value that becomes negative for one of the counterparties
then has to be compensated by paying the corresponding amount to the other
counterparty. The terms of the collateralization are most often given by the Credit
Support Annex (CSA) which is a part of the ISDA master agreement. The latter is a
standardized contract created by International Swaps and Derivatives Association
(ISDA) regarding the trading terms between the counterparties of a derivatives deal.
Collateralized products are valued on a regular basis, often daily or when a certain
threshold has been reached, and collateral is transferred between the counterparties.
At the end of the deal, the collateral is paid back in return for the the contract cash
flows.

The practice of using collateral reduces the credit risk but does not eliminate it
completely. Indeed, there is still the possibility of a default between two collateral
posting dates, referred to as the gap risk. The gap risk can be non-negligible if the
contract value is correlated with the risk of the counterparty defaulting. Furthermore,
the situation can get even worse if the value of the collateral is correlated with these
quantities. Because of the initial margin, the gap risk is much smaller for exchange-
traded product.

In the case of a default, the non-defaulting counterparty typically needs to enter a
new contract. The associated risk is called replacement risk. Due to the time interval
between the default and the writing of the new contract, the market will have moved
meaning that the replacement cost can be positive as well as negative. Such a market
move can be expensive if the default is correlated with the market move. If the
default happens during volatile times, the replacement risk can be particularly costly.
For instance, there can be several market participants that all need replacement,
leading to a shift in market price. The bid-offer spreads also tend to be large in this
scenario.

The terms of the collateral posting can be unilateral as well as bilateral. In
the former case, only one of the counterparties is required to pay collateral. The
counterparty that does not pay collateral typically belong to a group of market
participants commonly referred to as SSA (sovereign, supernatural and agency). We
choose to only cover bilateral collateral agreements, for which both counterparties
are required to post collateral.

The collateral is usually represented by cash, but other assets are possible.
We initially consider single-currency products and assumed that the collateral is
in the same currency. The multi-currency extension is dealt with in Sect. 14.11. Fur-
thermore, we assume that the value of the assets used for collateral is uncorrelated
with the contract value.

The collateral receiver has to pay interest rate on the collateral. We assume that
the overnight interest rate is paid on the collateral as this is the most common
situation (when the collateral is cash). To explain the impact of collateralization
on derivatives pricing, consider the simple example when two counterparties agree
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to exchange a fixed cash flow for a floating at a future time T . Assume that the
contract is valued to par at deal time but immediately thereafter changes due to a
market move. We then assume the market to remain at its level until maturity. The
day after the deal, collateral needs to be posted, on which the overnight interest
rate should be paid until T . By entering an OIS swap, the daily overnight payments
can be seen to be equivalent with a single payment of the OIS rate at maturity.
The correct amount of collateral has been posted if this payment together with the
collateral amount equals the deal value at T . This can only be true if the required
collateral was calculated by discounting the time T cash flow using the OIS rate.
We conclude that collateralized derivatives should be priced by discounting future
cash flows using the OIS curve. If a different interest rate is paid on the collateral,
such as a repo rate or LIBOR rate, then the corresponding curve should be used for
discounting.

The choice of discounting curve has a minor effect on products that values to par.
The difference in price is due to a mismatch between the dates where the cash flows
are positive respective negative. For products with a non-zero present value, on the
other hand, the impact can be substantial.

13.24 Credit and Liquidity Risk

We have previously discussed how credit exposure can be handled with CVA and
DVA. We now discuss another effect of credit risk that was largely ignored before
2007. Since then, it has been important to take into account credit exposure for
market participants that previously were considered as safe. It means that LIBOR
rates, which are lending rates between banks, show signs of this effect. This is
important as many market instruments are defined in terms of these rates and are
therefore affected. Thus, credit exposure needs to be taken into account even when
trading simple products such as swaps between two counterparties for which there
is negligible default risk.

When pricing cash flows like those from a corporate bond, the discounting can
be done by using the risk-free rate together with a spread obtained from credit
default models. For major corporations and governments, the input to the models
can be the rating from credit agencies such as Standard & Poor’s, Moody’s and
Fitch Ratings. For the computation of the credit spread between LIBOR rates, more
sophisticated models for credit defaults are necessary as the set of LIBOR-rated
banks can vary with time. To understand how this impacts LIBOR spreads, compare
a 6M LIBOR loan with two consecutive 3M LIBOR loans. Both strategies lead
to a loss if the counterparty LIBOR-rated bank should default. However, consider
the scenario when the LIBOR-rated bank, to which the 6M loan and the first 3M
loans are given, becomes downgraded within 3M and then defaults between 3M
and 6M. This would lead to a loss for the 6M loan but not for the 3M loans as the
second 3M loan was by assumption taken by a LIBOR-rated bank and can therefore
not coincide with the defaulting bank. We conclude that if credit models are used to
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explain the spread between LIBOR rates, they need to model not only the probability
of default but also the probability of a downgrade followed by a default. We do
not pursue this path but rather take a more direct approach for modeling LIBOR
spreads.

We have simplified the terminology by referring to the credit exposure as the
sole cause of the difference between an interest rate and a compounding of interest
rates with shorter tenors that together span the same time period. As pointed
out in Sect. 13.5, other causes are supply and demand, liquidity and premium
compensation for unknown future rates. These effects are not necessarily minor
compared to the credit exposure. For instance, research (Michaud and Upper (2008))
indicates that credit exposure only explains a relatively small part of the spread
between LIBORs and OISs during the credit crunch that started in the summer of
2007. Another possible contributor to rate spreads is that some interest rate quotes,
e.g. LIBOR, are only fixings and the banks that quote them are not committed
to trade at these levels. This opens up for strategic misrepresentations. To reduce
such effects in the BBA LIBOR rates, the upper and lower quartiles of the 8,
12 or 16 banks (depending on the currency) are removed before computing the
average.

Rates with certain tenors can be particularly unattractive (or attractive). For
instance, the bank sector in a country might have a lot of 1M payments coming in
from retail while they prefer a different tenor, for example 3M, that better matches
their other cash flows. Such a supply and demand situation also contributes to the
spread between LIBOR rates. Furthermore, for each currency there is typically one
tenor that is particularly liquid, see the column for the floating swap frequency in
Table 13.2, which also affects the spread.

13.25 Interest Rate Surface Construction

The curve construction in Sect. 13.7 is obviously not consistent if credit and liquidity
risk is taken into account: the underlying instruments have different features and
cannot be combined in a single curve. Instead, a surface has to be constructed that
depends on, for example, the start date and the tenor of the interest rate.

We start by considering a cash-collateralized swap for which the floating leg pays
6M LIBOR. It follows from Sect. 13.2 that the swap rate can be written as

Pn�1
iD0.TiC1 � Ti /LtTi TiC1

PtTiC1
Pn�1

iD0.TiC1 � Ti/PtTiC1

Observe that LtTi TiC1
.TiC1 � Ti/PtTiC1

¤PtTi �PtTiC1
as the LIBOR rates contain

6M credit exposure while the discount factors are risk free because of the use of
collateral. When taking the credit exposure into account it is therefore no longer
possible to further simplify the swap rate expression as was done in Sect. 13.2.
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We instead define the forward LIBOR rates LtTi TiC1
from the condition that

LtTi TiC1
PtTiC1

is today’s value of a LIBOR payment taking place at PtTiC1
.

Assuming the discount curve has been backed out from OIS quotes, it is possible
to determine a curve for 6M forward rates from swap quotes using the above
formula. By including 6M FRAs and the 6M deposit rate, the curve can be made
granular for shorter maturities. In a similar manner, curves for forward rates with
any tenor (for which there are liquid market quotes) can be constructed.

When constructing the OIS curve, it is necessary to allow for jumps at mon-
etary policy meeting dates and to make the curve as flat as possible (while
still calibrated to liquid market data) between two such dates. For this purpose,
it is useful to calibrate the curve to the forward OISs (between consequtive
monetary policy meeting dates) that are traded for some currencies. This effect
is only important for the short end of the curve where the market can have
a view on the future rates policy. For this segment of the curve it is also
important to include the spikes that are caused by low liquidity at specific
dates. When it comes to the long end, for most currencies there is a lack of
liquidity. The OIS curve can then be extrapolated by defining the risk-free interest
rates as a constant spread subtracted from, for example, the 3M or 6M LIBOR
curve, or by extrapolating the OIS swap quotes by subtracting a spread from
LIBOR swap quotes. Alternatively, the risk-free rates can be determined from
an extrapolation of LIBOR curves, for instance, by using the 1M and 3M tenor
curves.

One possible approach to obtain an interest rate surface is by first constructing
a set of curves for fixed tenors as detailed above. The forward rate for an arbitrary
tenor can then be found by interpolation or extrapolation. The discount curve is
obtained from the special case when the tenor is equal to one day. Using the interest
rate surface, it is possible to price forward starting swaps, swaps with stub periods,
exotic interest rate products, etc.

With the above approach it is also possible to price, or calibrate to, basis swaps.
These are swaps for which both legs are floating, for example, 3M LIBOR against
6M LIBOR. The spread that needs to be added to one of the legs for the price to
be at par is called the basis spread. When the two legs are in different currencies,
the basis swap is a floating vs floating cross currency swap, described in detail in
Sect. 14.11.

13.26 Caps, Floors and Swaptions Revisited

We turn our attention to the pricing of simple volatility products in the presence
of credit and liquidity spreads. We restrict the discussion to caplets and swaptions.
For the purpose of pricing caplets, consider first FRAs, which can be viewed as
paying LT0T1 � K at T1, where the notional and the day count fraction have been
omitted. Using the T1 forward measure, the present value of the contract equals
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PtT1EŒLT0T1 �K�. The FRA rate LtT0T1 is by definition the value ofK such that the
contract values to par:

LtT0T1 D EŒLT0T1 �

Observe that because of the credit exposure, it is not possible to explicitly compute
the expectation as was done in Sect. 13.2.

Following the same path for caplets, the price can be written asEŒ.LT0T1 �K/C�.
Observe thatLtT0T1 is a martingale as it can be written as an expectation. Caplets can
therefore be priced in the usual way by assuming a driftless lognormal (or SABR,
etc.) process for the FRA rate LtT0T1 .

In practice, the payment of a FRA is slightly different from the above, namely

LT0T1 �K

1C .T1 � T0/LT0T1
at T0. As the denominator contains a certain amount of credit exposure, it does not
exactly represent the risk-free discount factor to T1. For the purpose of caplet and
FRA pricing, however, it can be shown that this effect is negligible (assuming the
credit spread has a low volatility).

Just as in Sect. 13.3, it is possible to use the annuity as a numeraire for swaption
pricing and arrive at the expression

V.t/ D AtEŒ.RT0 � RtD0/C�

The only difference when taking credit risk into account is that the swap rate has
a slightly different expression, see Sect. 13.25. Nevertheless, it is still possible to
assume driftless lognormal (or SABR, etc.) dynamics to derive an expression for the
price.

13.27 Interest Rate Surface Modeling

We here discuss the pricing of products that depend on the whole yield curve.
Assume that we have already chosen our favorite interest rate model for the risk-
free rate. The simplest extension to account for credit and liquidity effects is to
assume deterministic basis spreads added to the risk-free curve. Equivalently, the
LIBOR curve, with tenor such that the most liquid volatility instruments can be
found, can be used as a base curve from which the deterministic basis spreads are
defined. Such models are easy to implement but they misprice products that depend
on basis spread volatilities.

A more general approach is to evolve the risk-free rate and the LIBOR rates
separate, see Mercurio (2009). In this instance we recommend the Gaussian model
to avoid the complication of a state-dependent drift. The calibration is straight
forward but the basis spreads can be negative. An alternative approach is to directly
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model the basis spreads. Using an appropriate process, e.g. the lognormal, means
that the spreads remain positive. The drawback is that the calibration becomes more
complicated, see Mercurio (2010) for details.
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Chapter 14
Foreign Exchange

Up to this point, we have only considered cash flows that depend on a single
currency. We now cover the multi-currency extension. The fundamental building
stones in such a theory are the FX rates Xij

t which represent the time t value in
currency j of one unit of currency i . By construction, the FX rates satisfy the inverse
relation .Xj i

t /
�1 D X

ij
t and the cocycle relation Xij

t X
jk
t D Xik

t .
We single out one of the currencies and use it to define the numeraire and the

pricing measure. We call it the domestic currency while the others currencies are
referred to as foreign currencies. A measure defined from a numeraire quoted in the
domestic (foreign) currency is called a domestic (foreign) measure.

Derivatives depending on foreign exchange can be classified into two types. The
first type consists of products that only depend on the values of the FX rates, e.g. FX
forwards and FX options. The challenge of modeling this product type is to find
a suitable equation for the evaluation of the FX rates. The second product type
consists of multi-currency extensions of the products discussed in previous chapters.
These products depend on underlyings in the domestic and the foreign currencies in
such a way that it is not possible to decompose them into a sum of single currency
products. An example is given by a contract that pays a certain cash amount if two
underlyings (e.g. interest rates) quoted in different currencies simultaneously exceed
some predefined levels. The evolving equation for a foreign underlying is typically
assumed to have been defined and calibrated in the corresponding foreign measure.
For a consistent pricing with several currencies, it is then necessary to transfer these
equations to the (domestic) pricing measure. The methods developed in this chapter
can also be used to model combinations of the two product types, i.e. products that
depend explicitly on FX rates at the same time as they depend on underlyings in
several currencies.

Some countries have chosen to peg their currencies. It means that the value
of their currency closely (but not exactly) follows another, more major, currency.
Examples include the pegging of the Chinese renminbi to the US dollar, the Danish
krone to the euro and the historical practice of pegging currencies to gold or
silver. An additional example is given by the Chinese currency, which exists in two
versions: in the domestic market (CNY) and in the international market (CNH),

C. Ekstrand, Financial Derivatives Modeling, DOI 10.1007/978-3-642-22155-2 14,
© Springer-Verlag Berlin Heidelberg 2011
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with slightly different values. As the dynamics of exchange rates between pegged
currency pairs depend on political decisions, we choose not to cover this special
case.

We initially focus on forward contracts and static replication. We then turn our
attention to dynamic replication techniques and price FX options. Exotic derivatives
are analyzed with a focus on foreign underlyings and quantos. We end the chapter
by summarizing the conventions used in the FX markets and describing the impact
of credit and liquidity risk.

14.1 Static Replication

An FX forward is an agreement to exchange a certain amount K of the domestic
currency at maturity T in return for one unit of the foreign currency. With X the
domestic-foreign FX rate, the payment can be written as VT D XT � K in the
domestic currency. It follows that Vt D P for

tT Xt � P dom
tT K since if we have this

amount at t , we can sell K domestic bonds and purchase one foreign bond to obtain
VT at T . The cash amount K such that the forward contract is worth zero is called
the forward Ft and is equal to .P dom

tT /�1P for
tT Xt . This relation between domestic and

foreign interest rates, the FX spot and the FX forward is called covered interest rate
parity.

An FX call option gives the holder the right to buy one unit of the foreign
currency for the domestic strike amount K at maturity T . The payment can be
written as .XT �K/C in the domestic currency. Using .XT �K/C D XTK.1=K�
1=XT /C we see that this is equivalent with a payment of K.1=K � 1=XT /C
in the foreign currency. As 1=X is the inverse FX rate, the same payment can
be obtained by holding K number of FX put options in the foreign currency.
Through a static replication argument, it follows that today’s value of K FX put
options V P

1=K.1=X/ in the foreign currency equals an FX call option V C
K .X/ in

the domestic currency. By converting to the domestic currency we conclude that
for FX options we not only have the standard put-call parity, but also the parity
relation

V C
K .X/ D KXV P

1=K.1=X/

Using put-call parity, this relation can be rewritten as

V C
K .X/�KXV C

1=K.1=X/ D P for
tT X � P dom

tT K

If allowed to exercise early, it is clear that holders of the above call and put
options would exercise simultaneously. The parity relation between puts and calls
described above therefore holds for American options as well. This is in contrast to
the standard put-call parity relation which does not hold for American options, see
Sect. 2.5.
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For another example of an FX product for which static replication is important,
consider a digital FX option that pays one unit of the domestic currency if the foreign
currency is worth more than the domestic strike K at maturity. Viewed in terms
of the domestic currency, the payment can be written as VT D �.XT � K/. This
contract can be priced as in Sect. 14.2. Here we are instead interested in the twist
when the payment �.XT �K/ is made in the foreign currency. This is an example
of a quanto product, i.e. the payment is made in a non-natural currency for the
product. Writing the payment in the domestic currency VT D XT �.XT � K/ D
K�.XT � K/ C .XT � K/C, we see that it can be statically replicated with K
non-quanto FX digitals and one FX call option. In a similar way, following the
discussion in Sect. 2.3, we see that XT .XT � K/C D 2

R1
K
.XT � K 0/CdK 0 C

K.XT �K/C which shows how an FX call quanto can be statically replicated with
ordinary calls.

Please note that there is an alternative and simpler approach to price digital FX
quanto options. Indeed, the payment can be written as �.XT � K/ D �..1=K/ �
.1=XT // in the foreign currency. Being a non-quanto digital FX option in the foreign
currency it can be priced with the methods in Sect. 14.2 and then converted to
the domestic currency by using today’s FX rate. Combining the above results, we
conclude that a digital FX option in one currency is equal to a sum of an FX digital
and an FX call option in the other currency. It follows that an FX call (or put)
option is equal to the difference of non-quanto digital FX options in the respective
currencies of the FX rate. Indeed, a digital FX put option in the foreign currency
with payment �..1=K/ � .1=XT // D �.XT � K/ is equivalent to the payment
XT �.XT � K/ in the domestic currency. Adding �K domestic FX digital options
then gives the payment of an FX call option.

14.2 FX Options

An FX call (put) option is typically modeled in the domestic T -forward measure
with numeraire P dom

tT . The fundamental theorem of asset pricing states that the time
t value of the option is given by

Vt D P dom
tT EŒ.XT �K/C� D P dom

tT EŒ.FT �K/C�

where we have used P dom
T T D 1 D P for

T T . As Ft D P for
tT Xt=P

dom
tT is the quotient

of a domestic tradable (a product of a foreign tradable and the FX rate) and the
numeraire, it must be a martingale. We therefore see that FX options can be priced
with the methods used previously in the book. For instance, it is possible to use a
lognormal process

dFt D �tFtdWt

or any other driftless SDE to describe the evolution of the forward in the domestic
T -forward measure.
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For a consistent modeling of FX rates, the class of SDEs describing their
evolution must be closed under the inverse relation and the cocycle relation. We now
show that lognormal SDEs satisfy these constrains.

As X�1
t is the inverse FX rate, P dom

tT X�1
t =P for

tT D F �1
t is the forward of the

domestic currency when priced in the foreign currency. It means that the forwards
also satisfy the inverse relation. To verify that lognormal SDEs are closed under the
inverse relation, we therefore need to prove that F�1

t follows a lognormal process.
Using Ito’s lemma, we obtain

dF�1
t D ��tF�1

t dWt C �2t F
�1
t dt

We would now like to transform this SDE, formulated in the domestic T -forward
measure, to the foreign T -forward measure. As F �1

t is a quotient of a foreign
tradable and the foreign zero-coupon bond maturing at T , we actually know that
the drift must be zero, resulting in

dF�1
t D ��tF �1

t dW for
t

where W for
t is a standard Brownian motion in the foreign T -forward measure.

However, for the reader to gain familiarity with the techniques of measure changes
in FX modeling, we perform the explicit computations.

By multiplying all tradables in the domestic currency with the FX rate X�1
t , they

can be viewed as tradables in the foreign currency. This multiplication is irrelevant
for the modeling as we are only interested in the quotient with the numeraire which
itself is a domestic tradable and has therefore also been multiplied by the FX rate.
Thus, the FX multiplication cancels out in the quotient. After the multiplication,
the numeraire has changed from P dom

tT to P dom
tT X�1

t . The transformation to the
measure with numeraire P for

tT can then be done by using the Radon-Nikodym
derivative

Mt D P for
tT

X�1
t P dom

tT

X�1
0 P dom

0T

P for
0T

D Ft=F0

according to the Appendix. Using Girsanov’s theorem, it follows that

dW for
t D dWt � hdWt ; d lnMti D dWt � �dt

from which we obtain the driftless SDE for F�1
t in the foreign T -forward

measure.
We have proven that if Ft satisfies a lognormal SDE in the domestic T -forward

measure,F �1
t also satisfies a lognormal SDE, but in the foreign T -forward measure.

It means that the class of driftless lognormal SDEs is closed under the inverse
relation. To show that this class is closed under the cocycle relation as well, observe
that

F ik D P iXik=P k D P iXijXjk=P k D .P iXij =P j /.P jXjk=P k/ D F ij F jk
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which proves that the forwards fulfill the cocycle relation. Assuming lognormal
SDEs for the forwards on the right-hand side:

(
dF

ij
t D �ij F

ij
t dW

ij
t

dF
jk
t D �jkF

jk
t dW

jk
t

we obtain from Ito’s lemma that

dF ik
t D �ikF

ik
t dW

ik
t ; �2ik D �2ij C �2jk C 2�ij;jk�ij �jk

We have chosen not to include the explicit computations for the drift as it is
obviously zero in the natural measure of the forward. This can also be shown with
a calculation similar to the one for the inverse relation. We have thereby concluded
the proof that the class of lognormal SDEs is closed under both the inverse relation
and the cocycle relation.

Observe that the FX parity relation V C
K .X/ D KXV P

1=K.1=X/ is satisfied by the
Black–Scholes FX model, i.e. when the forward is assumed to be lognormal. With
similar arguments as in Sect. 3.6, we conclude that the implied volatility �imp.T;K/

is equal to �imp.T; 1=K/. We thereby see how volatility surfaces of reciprocal
currency pairs are related.

14.3 Stochastic Volatility

For a consistent construction of a stochastic volatility model in FX, the inverse
relation and the cocycle relation have to be fulfilled. We here give a simple example
of a model that satisfies these constraints. The model we have in mind has the
form

dF
ij
t D �ij F

ij
t dW

ij
t

d�ij D ��ij dZt

which means that all the volatilities have the same driver and volatility of volatility.
We furthermore assume that Z is uncorrelated to the W ij s which means that we do
not have any control over the skew.

The process is clearly closed under the inverse relation so we focus on the cocycle
relation. As F ik

t follows a lognormal process with volatility

�ik D
q
�2ij C �2jk C 2�ij;jk�ij �jk

it remains to show that �ik follows the correct process. Applying the differential
operator to both sides of the equation gives
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d�ik D @�ik

@�ij
d�ij C @�ik

@�jk
d�jk C 1

2

@2�ik

@�2ij
.d�ij /

2

C 1

2

@2�ik

@�2jk
.d�jk/

2 C @2�ik

@�ij @�jk
d�ij d�jk

D �

�
�ij C �ij;jk�jk

�ik
�ij C �jk C �ij;jk�ij

�ik
�jk

�

dZt

C 1

2
�2

 

� .�ij C �ij;jk�jk/
2

�3ik
�2ij C �2ij

�ik
� .�jk C �ij;jk�ij /

2

�3ik
�2jk C �2jk

�ik

� 2.�ij C �ij;jk�jk/.�jk C �ij;jk�ij /

�3ik
�ij �jk C 2

�ij;jk�ij �jk

�ik

�

dt

D ��ikdZt

14.4 Exotics

When pricing exotic options, it is popular to use the domestic terminal measure
or the domestic risk-neutral measure. We choose to work in the latter and for
concreteness assume a lognormal SDE for the FX rate:

dXt D �Xt Xtdt C �Xt XtdW
X
t

As B for
t Xt=B

dom
t is a quotient of a domestic tradable and the numeraire, it must be

a martingale. It therefore follows that

0 D
�

d
B for
t Xt

Bdom
t

�

drift

D �
r for
t C �Xt � rdom

t

� B for
t Xt

Bdom
t

dt

, �Xt D rdom
t � r for

t

Thus, the no-arbitrage condition determines as usual the drift of the SDE. Observe
that FX modeling is similar to equity modeling if we interpret the foreign interest
rate as a continuous dividend payment.

14.5 Modeling Foreign Underlyings

A call option on a foreign underlying S gives the holder the right to purchase the
underlying at maturity T for the domestic strike amount K . The payment at T can
be written as .STXT � K/C D ..P dom

T T /
�1STXT �K/C in the domestic currency.
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As StXt is a domestic tradable, we conclude that .P dom
tT /�1StXt is a martingale in

the domestic forward measure. This expression equals .P dom
tT /�1P for

tT Xt.P
for
tT /

�1St
which is the product of the FX forward and the forward of the foreign underlying.
Since the volatilities of these forwards can be derived from vanilla option quotes,
we obtain the volatility of .P dom

tT /�1StXt from which the option can be priced.
To model exotics, assume for simplicity that the foreign tradable S follows a

lognormal SDE in the domestic risk-neutral measure:

dSt D �St Stdt C �St StdW
S
t

The calibration of the volatility is a single currency affair as it can be done in a
measure of the foreign currency. To determine the drift, use the fact that StXt=Bdom

t

is a martingale in the risk-neutral measure. With a lognormal process for the FX
rate, we obtain

0 D
�

d
StXt

Bdom
t

�

drift

D .�St C rdom
t � r for

t C �t�
S
t �

X
t � rdom

t /
StXt

Bdom
t

dt

, �St D r for
t � ��St �Xt

The SDE for the foreign underlying is then known from which exotic underlyings
can be priced, for example, by simulation.

Let us now focus on non-tradable foreign underlyings. Because of their impor-
tance, we consider interest rates. For illustration, we assume that the foreign interest
rates follow the SDE

df for
tT D �tT dW

for
t

where W for is a Brownian motion in the foreign T -forward measure. This process
was analyzed in detail in Chap. 13. Recall that the drift must vanish as we have
assumed that we are working in the natural measure of the rate.

By multiplying all the foreign tradables with the FX rate, we can view them
as valued in the domestic currency. The above SDE is then in the measure of the
numeraire XtP for

tT . The Radon-Nikodym derivative for the transformation to the
domestic risk-neutral measure is given by

Mt D Bdom
t

XtP
for
tT =X0P

for
0T

Disregarding the contribution from the drift gives

d lnMt � �d lnP for
tT � d lnXt �

�Z T

t

�tsds

�

dW for
t � �Xt dW X

t

We then obtain

dW for
t D dWt C hdW for

t ; d lnMti D dWt C
�Z T

t

�tsds

�

dt � �t�Xt dt
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which gives the SDE in the domestic risk-neutral measure:

df for
tT D �tT dWt C

�Z T

t

�tsds � �t�Xt
�

�tsdt

This equation is valid for rate-dependent volatility as well and it is relatively
straightforward to extend it to multiple drivers and to simple compounded rates as
in the LIBOR market model.

We end this section by considering a commodity futures contract quoted in a
foreign currency. Assuming a lognormal model, we have

dFtT D �tT FtT dW
for
t

where W for
t now denotes a Brownian motion in the foreign risk-neutral measure.

Viewed in the domestic currency, the numeraire is XtB for
t which gives the Radon-

Nikodym derivative

Mt D Bdom
t

XtB
for
t =X0

for the transformation to the domestic risk-neutral measure. We then obtain the
following SDE for the futures values

dFtT D �tT FtT dW
for
t � �t�tT �

X
t FtT dt

14.6 Quantos

A quanto contains a payment in a non-natural currency for the product. An example
is given by a product that pays the quote of a foreign stock in the domestic currency
instead of in the foreign currency. This allows an investor to take a view on the
level of the stock value without additional FX exposure. For example, it enables
a European speculator to follow trading advice of American media without being
exposed to fluctuations in EURUSD. We do not present an extensive list of possible
quanto products, but rather consider two examples after which we believe the reader
is able to model the most general quanto.

For the first example, let S be a domestic tradable and let the quanto have the
payment ST in a foreign currency at time T . Viewed in terms of the domestic
currency, the time T value of the quanto is VT D STXT . Using lognormal dynamics
of the underlying and the FX rate, the dynamics of StXt are given by

d.StXt / D �
2rdom
t � r for

t C ��St �
X
t

�
StXtdt

C
	�
�St
�2 C �

�Xt
�2 C 2��St �

X
t


1=2
StXtdWt

from which the quanto can be priced.
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For the second example, consider a quanto caplet paying .Lfor
tT T 0 � K/C at

maturity T 0, where the strike K and the payment are in the domestic currency. This
product can be priced by using the evaluation of Lfor

tT T 0 in the domestic T 0-forward
measure which can be obtained from the SDE for df for

tT that was derived in the
previous section.

14.7 Volatilities and Correlations

Just as for equities, the volatility of the forward can be backed out from quotes on
European call options. The forward volatility can then be converted to a volatility
for the underlyingX by using the relation Ft D .P dom

tT /�1P for
tT Xt .

When pricing higher-dimensional derivatives it is sometimes necessary to
include the correlation �ij;jk between FX rates Xij and Xjk . Using lognormal
dynamics, we derived the relation

�2ik D �2ij C �2jk C 2�ij;jk�ij �jk

in Sect. 14.2. As the volatilities can be calibrated to liquid market quotes, the
value of the correlation can be backed out. This value is referred to as the implied
correlation.

By doing some algebraic manipulations, we find that the correlations are
constrained by

q
1 � �2ij;jk

q
1 � �2jk;ki

q
1 � �2ki;ij

D �ij;jk�jk;ki

q
1 � �2ki;ij C �jk;ki �ki;ij

q
1 � �2ij;jk C �ki;ij �ij;jk

q
1 � �2jk;ki

To find the implied correlations �ij;kl for j ¤ k, we use the identity F kl D F kjF jl

to conclude that �kldW kl is equal to �kj dW kj C �jldW
jl up to a drift term.

We arrive at

�ij;kl �kl D �ij;kj �kj C �ij;jl�jl

, 2�ij;kl�ij �kl D �2�ij;jk�ij �jk C 2�ij;jl�ij �jl

D ��2ik C �2ij C �2jk C �2il � �2ij � �2jl
D �2il � �2ik C �2jk � �2jl

In this case it can be shown that the correlations are constrained by the relation

�ij;kl�ik;lj �il;jk C �ik;lj �il;lk�ij;jk C �il;jk�ij;jl �ik;kl C �ij;kl�ik;kj �il;lj

� �ik;kj �il;lk�ij;jl C �ij;jk�ik;kl�il;lj D 0
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14.8 Volatility Interpolation

The FX market is global and trading takes place 24 hours a day. However, when a
local center, e.g. Tokyo for trades in yen, is closed, the trading activity decreases
for that particular currency. The outcome is that the local volatility decreases by
a certain factor on such days. To be able to calibrate to a given implied volatility,
the local volatility therefore has to be increased on business days. This effect is
important as options on currency pairs are often found to be liquid with tight bid-
offer spreads. The impact is particularly visible for short-dated options.

The factor by which the volatility should be multiplied depends on whether the
local trading center is closed because of a weekend or a holiday. It also depends on
if any of the major trading centers London, New York and Tokyo are closed. Certain
days need to be weighted with a factor larger than 1, indicating a higher trading
activity than normal. An example is FX options involving SEK that had a period
extending over September 14, 2003, the day of the Swedish referendum on the euro.

14.9 Numeraire

When dealing with foreign exchange, there are N.N � 1/=2 currency pairs to
keep track of for N currencies. For N large, this number can get uncontrollable
in practice as we need to keep track of the spot, the volatility and other variables for
all currency pairs. An alternative is to use the currencies themselves as fundamental
objects rather than the currency pairs. For this approach to succeed, it is necessary
to find something that the currencies can be valued against, i.e. to find a suitable
numeraire.

The numeraire should be a tradable product for which everyone in the world
agrees upon the price, e.g. gold. A counterexample is given by natural gas or
electricity which are expensive to transport and therefore differ in price between
different regions of the world. The numeraire does not have to be a commodity
but could, for example, be a US treasury bond. The beautiful thing about using a
numeraire for currencies is that it cancels out when computing quotients to obtain
currency pairs. The choice of numeraire is therefore irrelevant and we can assume it
to have the most well-behaved properties.

Let Xi denote the value of currency i in terms of the numeraire. As the currency
pairs are obtained from Xij DXi=Xj , it is sufficient to keep track of the N
variables fXig instead of the N.N � 1/=2 variables fXij gi>j . Furthermore, the
inverse relation and the cocycle relation are automatically satisfied as

Xji D Xj=Xi D �
Xi=Xj

��1 D �
Xij

��1

XijXjk D Xi=Xj �Xj=Xk D Xi=Xk D Xik

It means that we no longer need to keep track of any constraints.
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The use of a numeraire can be helpful in constructing consistent FX models.
Indeed, if we succeed in finding models for the Xi s such that the process for Xij

does not depend on Xi or Xj separately, but only on the combination Xi=Xj , the
model is closed under the inverse relation and the cocycle relation. Furthermore, the
volatilities and correlations for fXi g can be chosen freely and are not subject to any
constraints as is the case for fXij g, see Sect. 14.7.

In real life FX trading, the (money market account in) dollar can be considered
as a numeraire. The reason is that for most currencies, the most liquid currency
pair is the one with the dollar as the second currency. Quotes on currency pairs not
involving the dollar are obtained by using the dollar as an intermediary. The dollar
is then the domestic currency according to the convention used in the introduction
to this chapter.

From a modeling point of view it might not be the best idea to use the dollar as
a numeraire as this amounts to singling out one of the currencies. The advantages
of using a currency numeraire, however, are that it is not necessary to involve any
external asset class (such as commodities) and that there are now onlyN �1 instead
of N variables to model.

14.10 Conventions

As the conventions used in foreign exchange markets can be confusing, we find it
worth to summarizing them. The rules which we give below are valid in most cases
and in particular for the major currencies. However, the reader should be aware of
the fact that there exist many exceptions.

An FX rate is written as CCY1CCY2 or CCY1/CCY2, stating the price of one
unit CCY1 in terms of CCY2. CCY1 is called the base currency and CCY2 the terms
currency or quoting currency. The quotation is usually such that CCY2 is worth the
least of the currencies, resulting in a rate larger than 1. The main exceptions are
EUR, GBP, AUD, NZD, FJD, TOP, WST, PGK, BWP, SBD, USD, where the earliest
currency in the list is CCY1. For example, a sterling-dollar quote (called the cable by
practitioners) can have the form GBPUSD D 1.56269. There are many exceptions to
this rule such as SEKPLN which currently is less than 1. These conventions apply in
the interbank market. In local markets, on the other hand, the retail and commercial
market participants prefer to see the domestic currency always as CCY1 or CCY2.

Most of the liquidly traded FX rates have the dollar as one of the currencies.
When neither of the two currencies are the dollar, the FX is said to be a cross rate
and the quote is often determined indirectly via the dollar. An example is given by
JPYINR, for which the bid price can be found by dividing the bid price of USDINR
with the offer price of USDJPY. Because of the particular importance of the euro,
rates such as EURGBP are often not considered to be cross rates. Along the same
lines, GBPCHF is often considered to be a euro cross rather than a dollar cross
because of the high liquidity of EURCHF and EURGBP.
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In FX markets, the date when cash changes hands is called the value date.
The standard is that the value date is equal to the spot date, but it can be both before
and after. Trades with value date before the spot date are most often done as cash
deals, where the settlement date coincides with the trade date. Trades settled after
the spot date are forward contracts.

The spot date is determined from the trade date in the following way: use a
settlement lag of 2 business days and compute two spot dates using the calendars of
the trading centers belonging to the constituting currencies. If one of the currencies
is the dollar, use the non-dollar date, otherwise use the later of the dates. If the
resulting date is a business day in both trading centers as well as a New York
business day, the spot date has been found. If not, the spot date is the next day
that is a business day in New York as well as in the trading centers belonging to the
constituting currencies. For instance, the GBPUSD spot date is the business day in
both New York and London that is as few London business days as possible (but not
less than 2) after the trade date. Exceptions to this rule include USDCAD, USDRUB,
USDTRY, EURRUB, EURTRY, CADRUB, CADTRY, TRYRUB, which have a
settlement lag of 1 business day, and certain Middle Eastern and Latin American
currencies. Furthermore, it is not necessary to require the spot date to be a New
York business day for currency pairs that are not dollar crosses, e.g. EURSEK.

When defining payment dates for option and forward contracts in FX markets,
the standard is to use the modified following holiday adjustment. The adjustment is
made so that the resulting payment date is a business day in New York as well as
in the trading centers of the constituting currencies. Furthermore, the end-of-month
rule is used. The expiry and delivery dates are determined as in Sect. 3.11 when the
tenor is expressed as a number of months or years. For tenors which are written as
a number of days or weeks, on the other hand, the expiry is obtained by adding the
tenor to today’s date. If the date obtained this way is a holiday, the following day
adjustment is used conditioned on that the expiry should be a business day in both
currencies. Observe that in this instance we do not require the expiry to be a US busi-
ness day for cross rates. The delivery date is the spot date calculated from the expiry.

The remainder of the section surveys the various option conventions used in FX
markets. For this purpose, we recall the Black–Scholes formula and the delta for a
call option:

Vt DP for
tT XtN.dC/ �P dom

tT KN.d�/ ; d˙ D ln.P for
tT Xt=.P

dom
tT K//

�
p
T � t ˙ 1

2
�

p
T � t

�C D P for
tT N .dC/

Because of the 1-1 correspondence between the strike and the delta, it is possible to
use the latter to define the moneyness of an option. Indeed, it is standard to quote
implied volatilities in terms of deltas for FX markets, as opposed to equities, interest
rates and commodities markets for which strikes are used. FX options are quoted as
the ATM implied volatility and the 25% risk reversal and strangle. For options on
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liquid currency pairs, the 10% risk reversal and strangle are also given. They give
the traders access to the tail behavior of the probability distribution.

The 25% risk reversal is related to implied volatilities via the relation

�
�
�C D 25%

�� �
�
�P D �25%

� D RR25%

The 25% strangle, on the other hand, is related to option prices through

V C
� Q�C D 25%

�C V P
� Q�P D �25%

�

D BSC � Q�C D 25%; �ATM C STR25%
�C BSP � Q�P D �25%; �ATM C STR25%

�

where the Black–Scholes formula has been used on the right-hand side for the
computation of the option price. Q� is related to the strike through the Black–Scholes
formula using a volatility of �ATM C STR25%. This is fundamentally different from
� that is related to the strike via the market volatility. For instance, the strike
corresponding to �C D 25% is determined through the Black–Scholes formula
using the volatility �

�
�C D 25%

�
. The same relations apply to the 10% risk

reversal and strangle.
Because two different types of deltas are used, the volatility smile needs to

be backed out numerically from the above relations. Fortunately, it can be shown
(Reiswich and Wystup (2009)) that for small values of the risk reversal, the
following approximation works well:

1

2

�
�
�
�C D 25%

�C �
�
�P D �25%

�� D �ATM C STR25%

from which it is possible to back out the implied volatilities according to

�
�
�C D 25%

� D �ATM C 1

2
RR25% C STR25%

�
�
�P D 25%

� D �ATM � 1

2
RR25% C STR25%

The strangle usually only varies slowly with time while the risk reversal is
stochastic and has a relatively high correlation with the spot. The 10% risk reversal
and strangle are in general tightly linked to their 25% counterparts.

The deltas appearing above are not necessarily equal to the spot delta dV
dX

, but
several different versions are used depending on the currency pair and on the tenor
of the option. For instance, it is common to consider the forward delta, defined as
the number of forward contracts necessary to hedge an option position:

�C
f D dV

d.XtP
for
tT �KP dom

tT /
D �

P for
tT

��1
�C D N.dC/



294 14 Foreign Exchange

Black–Scholes formula gives the option price in the domestic currency. It is also
common to state the price in the foreign currency. It is then equal to V=S . The
currency with respect to which the price is measured is called the premium currency.

Recall that the spot delta states the amount of the foreign currency that needs to
be purchased to hedge the option position. If the option price is paid in the foreign
currency, we already have the amount V=X in that currency. The remaining amount
�adj D � � V=X that needs to be hedged is called the premium adjusted delta.
We also see that the number of forwards contracts necessary for the hedge should
be reduced by

�
P for
tT

��1
V=X , resulting in �f, adj D �

P for
tT

��1
.� � V=X/.

The premium currency coincides most often with the base currency. The main
exception is USD which is always the premium currency. It means, for example,
that adjusted deltas are used for EURGBP but not for EURUSD.

The forward delta is useful when taking the interest rate risk into account in the
hedge. It is therefore used for long maturities or for large interest rate differentials
between the currencies. As a general rule, the spot delta is only used when both
currencies belong to USD, EUR, JPY, GBP, AUD, NZD, CAD, CHF, NOK, SEK,
DKK and the maturity is less than or equal to 1Y. The forward delta is used
otherwise.

The delta convention is not only used in the definition of the risk reversal and
the strangle, but also for the ATM point. Indeed, the ATM definition �C D ��P is
often used for short-dated FX options on liquidly traded currency pairs. The ATM
definitionK D F is used otherwise.

14.11 FX Swaps and Cross Currency Swaps

As financial institutions find it easier and cheaper to borrow in the domestic market
than in foreign markets, they often follow a 2-step procedure to raise foreign cash.
A loan is first taken in the domestic currency after which it is converted to a synthetic
loan in a foreign currency by using an FX swap. An FX swap consists of a spot
exchange of currencies followed by a forward exchange in the opposite direction.
The spot and the forward amount are equal for one of the currencies. The spot
amount for the other currency is obtained from the spot FX rate while the forward
amount is such that the swap prices at par, which means that the amount can be
computed from the forward FX rate.

FX swaps, or equivalently, FX forwards, are usually liquidly traded out to 1Y.
The natural extension to longer maturities is cross currency swaps. Because of
their long maturities, the interest rate effect is more important than the FX effect
for these products. Cross currency swaps are for this reason often handled by
the IR desk and not by the FX desk. The most popular type of cross currency
swaps exchanges 3M USD LIBOR for 3M LIBOR in another currency. A spread
is added to the non-USD leg so that the swap is valued to par. At the start of the
swap the notionals of the legs are related through the FX rate and are exchanged.
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At each coupon payment date the notional of the leg paying LIBOR flat is reset
according to the prevailing FX rate. For instance, assume that counterparty A
enters a cross currency swap with counterparty B where JPY 3M LIBOR – 20 bp
is exchanged for USD 3M LIBOR and 1 basis point (bp) is defined as 0:01%.
Counterparty B then has to pay counterparty A the JPY notional N JPY at spot in
return for the dollar amount NUSD

0 D N JPY=FX0, where FX0 is the USDJPY spot
FX rate. After 3M time counterparty A pays .JPY 3M LIBOR - 20bp/ıJPYN JPY and
receives .USD 3M LIBOR/ıUSDNUSD

0 . Furthermore, A receives NUSD
0 � NUSD

3M D
NUSD
0 �N JPY=FX3M (or has to make a payment if the amount is negative). The same

procedure repeats itself after 6M, 9M, etc.
The financial literature is almost exclusively concerned with a different type of

cross currency swap for which the notionals are only exchanged at initialization
and at the final payment date. As all our arguments apply to these products as well
and because they are not as commonly traded as the cross currency swaps that we
described above, we omit any further discussion of this type of cross currency swaps.

14.12 Credit and Liquidity Risk

We describe how certain FX relations break down in the presence of credit risk,
supply and demand, liquidity, etc. The discussions can be viewed as a continuation
of the end of Chap. 13, in which the corresponding pure interest rate effect was
considered. We start by considering collateralized FX forwards and revisit covered
interest rate parity. With the new assumptions, the replication of forwards does not
succeed as there are credit and liquidity premia embedded into the loans.

Attempts at improving the replication are unsuccessful as well. For instance,
instead of taking loans covering the full tenor of the forward contract, it is possible
to reinvest using overnight loans. The proceeds can be locked in using OIS. There
are several reasons why this replication strategy is not exact. First of all, there is
still a credit risk on the loans, even though it has been reduced to overnight risk.
Secondly, there is a risk of default for the OIS counterparties. There is also a risk of
default for the counterparty of the FX forward, with an associated replacement risk
of the FX position. This risk is particularly big as the whole notional is involved (and
not just coupon payments as for single currency swaps). Finally, the overnight rates
used in the OISs are based on fixings from banks without commitment to trading.
The consequence is that the proceeds of the overnight reinvestment strategies do not
exactly cancel out the floating legs of the OISs.

Despite the fact that a strategy of using OISs does not exactly succeed in
replicating FX forwards, it can be relatively close. It means that it makes sense to let
the FX forward curve inherit features of the OIS curves such as jumps at monetary
policy meeting dates and the possible existence of (positive and negative) spikes.

During the credit crisis that started 2007, the breakdown of covered interest
rate parity became particularly obvious due to dollar shortage. European banks had
problems obtaining unsecured dollar loans while US banks were reluctant to lend
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dollars. To raise dollars, the European banks took loans in European currencies and
used FX swaps or cross currency swaps to convert them into dollars. This created a
one-sided pressure on the FX forward (and cross currency swap) markets which led
to a theoretical arbitrage that could not be picked up for the reasons described above.

The effects discussed here have an interesting impact on the pricing of cross
currency swaps. To understand this thoroughly, we need a more detailed understand-
ing of the contract specifications. Cross currency swaps (and not too short-dated
FX forwards) are most often traded collateralized with a choice of collateral from
several currencies. The receiver of the collateral has to pay the overnight interest rate
for the currency that was posted as collateral. Because of the reasons mentioned
above, the posting of collateral in one currency cannot replicate the posting of
collateral in a different currency. Thus, the price of a cross currency swap depends
on the choice of collateral currency. The consequence is that the price of a cross
currency swap should be computed using the cheapest choice of collateral currency.
It means that the discounting in a cross currency swap should be done using the
OIS curve corresponding to the cheapest collateral currency and not to the native
currencies. Observe that this argument is not restricted to cross currency swaps as
CSA agreements that allow for collateral from a choice of currencies can be found
for various product types, such as single currency swaps.

Consider a cross currency swap between CCY1 and CCY2, and assume that
CCY2 is the cheapest collateral. CCY2 cash flows should obviously be discounted
with the CCY2 OIS curve. CCY1 cash flows, on the other hand, need to be
discounted taking into account that CCY2 is the collateral. The result is a CCY1
discount curve that prices cross currency swaps to par and is different from the
CCY1 OIS curve. The consequence is that we for each currency end up with several
discount curves, depending on the allowed collateral.

The currency that is cheapest to post as collateral today might not coincide
with the cheapest collateral in the future. By using forward curves, it is possible
to account for deterministic changes in the cheapest collateral. The complexity in
the pricing can be increased one more step by taking into account stochastic changes
in the choice of the cheapest currency. The result is the inclusion of a type of option
premium in the cross currency swap price.

There is currently a controversy as to whether the pricing actually should include
the possibility to replace collateral during the lifetime of a cross currency swap as
there have been disputes in the situation when one of the counterparties has asked
for such a replacement. The pricing of CSA regulated contracts gets even more
complicated as it is common to not only allow currencies as collateral but also other
assets, e.g. government bonds.
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Appendix A
Mathematical Preliminaries

A.1 Measure Theory, Random Variables and Integration

A �-algebra F over a set 	 is a non-empty collection of subsets that contains the
empty set ¿ and is closed under the operations of taking complements and countable
unions. An example is the Borel �-algebra defined as the smallest �-algebra
containing the open sets in a topological space. A measure � is a function F ! RC
that satisfies �.¿/ D 0 and is �-additive: �.[1

iD0Ai / D P1
iD0 �.Ai/ for fAi 2 Fg

pairwise disjoint as subsets of 	. A measure P satisfying P.	/ D 1 is called a
probability measure.
X W 	 ! 	0 is said to be measurable (with respect to the �-algebras F and F 0) if

X�1.A0/ 2 F for every A0 2 F 0. If the measure on F is a probability measure then
a measurable function is referred to as a random variable. We are only concerned
with the case when 	0 D R

n and F 0 is the corresponding Borel �-algebra. Unless
stated otherwise, we assume that n D 1 as the generalization to arbitrary n is
often straightforward. An example of measurable functions is given by the simple
functions that by definition can be written as

Pn
iD1 ci�Ai where ci 2 R, Ai 2 F

and �A is the indicator function with the property that �A.!/ is equal to 1 if ! 2 A
and 0 otherwise.

The integral of a positive simple function is given by
Pn

iD1 ciP.Ai /. The integralR
	
XdP of a positive random variable is defined in the Lebesgue sense as the

supremum of integrals over simple functions smaller than X . If
R
	

jX jdP < 1
then X is said to be P -integrable. The integral is then defined as the difference
between the integrals over the positive part and the negative part.

For a random variable X , the probability density function (PDF) p D pX W R !
RC is defined by p.x/dx D P.X�1.Œx; x C dx�//, see Fig. A.1. The expectation
EŒX� of X is by definition the integral

R
	
XdP which by a change of integration

variable can be expressed with the PDF as
R

R
xp.x/dx. We are often not interested

in the set 	 of events but only in the probabilities for a random variable to attain
its various values. This is exactly the information contained by the PDF or the
cumulative density function (CDF) F.x/ D R x

p.x0/dx0.
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Fig. A.1 Relation between a
random variable and its PDF
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A.2 The Gaussian Distribution

A normally distributed N .�; �2/ variable X is a random variable with p.x/ D
exp..x � �/2=2�2/=

p
2
� . A standard normal random variable has � D 0 and

� D 1. The normal distribution is also referred to as the Gaussian distribution.
In higher dimensions, it is defined by

p.x/ D 1
p
.2
/ndet.†/

exp

�

�1
2
.x � �/T †�1.x � �/

�

where �2 R
n and†2 R

n	n is symmetric and positive semi-definite. The character-
istic function

E
h
eik

T X
i

D exp

�

ikT � � 1

2
kT †k

�

; k 2 R
n

can be computed by diagonalizing †. The moments can then be calculated
through

E
�
Xj
� D dj

ij dpj
E
h
eik

T X
iˇˇ
ˇ
ˇ
kD0

and we see in particular that the Gaussian distribution is completely determined by
its expectation EŒX� D � and covariance Covar.X/ D †.
X D fXig being a Gaussian is equivalent with �TX being a 1-dimensional

Gaussian for an arbitrary vector �. Indeed, if X is a Gaussian then

E
h
eik�

T X
i

D exp

�

ik�T � � 1

2
k�T†�k

�

; k 2 R

which shows that �TX is a Gaussian with mean �T� and variance �T†�.
Conversely, if �TX is a Gaussian then
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E
h
eik�

T X
i

D exp

�

ikm � 1

2
k2s

�

; k 2 R

where

m D EŒ�TX� D �T�

s D Var.�TX/ D �T†�

Inserting this in the above equation with k D 1 shows that X is Gaussian.
The covariance is a diagonal matrix if fXig is a Gaussian with independent

components. The converse is also true as

E
h
eik

T X
i

D eik
T �� 1

2 k
T †k D

Y

j

eikj �j� 1
2†jj k

2
j D

Y

j

E
�
eikjXj

�

and the characteristic function can be written in product form if and only if the
random variable has independent components.

A.3 Copulas

A function C W Œ0; 1�n ! Œ0; 1� satisfying:

• C.u/ D 0 if 9kI uk D 0

• C.u/ D uj if uk D 1;8k ¤ j

• C is n-increasing

is called a copula. The n-increasing property means that the weighted sum of the
copula evaluated on the vertices of an arbitrary n-dimensional rectangle must be
positive, where the weight is equal to 1 if there is an even number of lower points in
the rectangle and –1 if there is an odd number. For example, in two dimensions the
condition reads:

• C.u2; v2/� C.u1; v2/� C.u2; v1/C C.u1; v1/ � 0;8u2 � u1; v2 � v1

Sklar’s theorem. Let FX.x1; x2; : : : ; xn/DP.X1 < x1;X2 < x2; : : : ; Xn < xn/

be the cumulative density function for a random variable X D fXigniD1 and
FXi .xi /DP.Xi < xi / the marginal functions. Then there exists a copula C such
that

FX.x1; x2 : : : ; xn/ D C.FX1.x1/; FX2.x2/; : : : ; FXn.xn//

The copula is unique if the marginal functions are continuous. Conversely, for C a
copula and fFXi gi cumulative density functions,FX.x1; x2 : : : ; xn/ defined as above
is a multivariate cumulative density functions with marginal distributions fFXi gi .
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The theorem can be proven by defining the copula as

C.u1; u2; : : : ; un/ D FX
�
F �1
X1
.x1/; F

�1
X2
.x2/; : : : ; F

�1
Xn
.xn/

�

The statement then follows by identifying the three defining conditions for a copula
with corresponding necessary conditions for a multivariate cumulative density
function. �

Copulas are commonly used for the problem of constructing a higher-
dimensional random variable from a set of marginal distributions. Perhaps the
most popular copula for this purpose is the Gaussian copula. This is the copula that
relates a Gaussian random variable to its marginal distributions. For example, in
two dimensions we use the marginal distributions

FXi .xi / D N.xi/ WD 1p
2


Z xi

�1
e�z2=2d z

and the joint distribution

P.X1 < x1;X2 < x2/

D 1

2

p
1 � �2

Z x1

�1

Z x2

�1
exp

�� �z21 � 2�z1z2 C z22
�
=2
�
1 � �2

��
d z1d z2

to obtain the form

C.u1; u2/

D 1

2

p
1 � �2

Z N�1.u1/

�1

Z N�1.u2/

�1
exp

�� �z21 � 2�z1z2 C z22
�
=2
�
1 � �2��d z1d z2

of the copula.
Many of the popular copulas belong to the class of Archimedean copulas

defined by

C.u1; u2; : : : ; un/ D �Œ�1�
 

nX

iD1
�.ui /

!

where � W Œ0; 1� ! Œ0;1� is a continuous strictly decreasing convex function with
�.1/ D 0. �Œ�1�.z/ is the “pseudo-inverse” defined as ��1.z/ for z 2 Œ0; �.0/� and 0
for z � �.0/. An example is the Clayton copula defined by

�.u/ D u�� � 1; � > 0

An important property of the Clayton copula and the Gaussian copula is that
they can interpolate between the instances of complete independence and complete
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dependence of the components. For example, in the 2-dimensional case, � D 0 and
�D 0 gives independence:FX.x1; x2/ D FX1.x1/FX2.x2/, while � ! 1 and � D 1

gives complete dependency FX.x1; x2/ D min.FX1.x1/; FX2.x2//.

A.4 Processes

A set of �-algebras fFigi2I is called a filtration of F if every set in Fi also belongs
to Fj and F , for j � i , where I is the positive integers or the positive real numbers.
fXig is called a (adapted) process if for every i , Xi is a random variable that is
Fi -measurable (for a fixed image �-algebra F 0). We assume that the subsets of
null sets (sets with measure zero) in F are included in F0 (and therefore in Fi
for all i ). When I D RC we assume that the filtration is right continuous, Fi D
\j>iFj for all i . Furthermore, for I D RC we say that a process is continuous
if the paths X.!/ W RC 3 i 7! Xi.!/ 2 R are continuous almost surely (a.s.),
i.e. for all ! in the complement of a null set. A process is sometimes referred to
as a stochastic process to emphasize the dependence on the set of outcomes 	.
A process that only depends on the index i and not on ! 2 	 is said to be non-
stochastic.

Ex: Let 	 D fhh; ht; th; ttg be the set of outcomes after tossing a coin twice and
fFigiD0;1;2 the filtration such that Fi is the �-algebra of information available after
the i :th toss, e.g. F1 D f¿; fhh; htg; fth; ttg; fhh; ht; th; ttgg. If we make a bet on
which we win $1 on heads and lose $1 on tails, the process fXigiD0;1;2 describes our
earnings: X0.hh/ D $0, X0.ht/ D $0, X0.th/ D $0, X0.tt/ D $0; X1.hh/ D $1,
X1.ht/ D $1, X1.th/ D �$1, X1.tt/ D �$1 and X2.hh/ D $2, X2.ht/ D $0,
X2.th/ D $0, X2.tt/ D �$2.

A.5 Brownian Motion

A standard Brownian motion is a process Wt , t � 0 satisfying

• For each s � 0, t > 0, WtCs �Ws � N .0; t/
• fWtiC1

�Wti g are independent for given 0 � t0 � � � � � tn
• W0 D 0

• Wt is continuous in t

There are several possible techniques of constructing new Brownian motions
from a given one. For example, it is straightforward to show that the following pro-
cesses satisfy the above conditions and are therefore standard Brownian motions:

• cWt=c2

• tW1=t if t > 0, W0 D 0

• fWs �Ws�t g0�t�s for any fixed s � 0
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The maximum of a standard Brownian motion has the distribution

P.max0�t�TWt > m/ D 2p
2
T

Z 1

m

e�x2=2T dx

This follows from

P

�

max
0�t�T Wt > m

�

D P

�

max
0�t�T Wt > m ^WT > m

�

C P

�

max
0�t�T Wt > m ^WT < m

�

D 2P

�

max
0�t�T Wt > m ^WT > m

�

D 2P.WT > m/ �

In the second step of the proof, we used the fact that if a Brownian motion hits
the level m at t < T , there is an equal probability of it ending up above m at T as
of it ending up belowm at T . Indeed, for every Brownian path ending up abovem,
there is a mirror path that ends up belowm. The mirror path is obtained by reflecting
the Brownian path in the point m after the time � when this point is first hit:

QWt D
(

Wt t � �

2m �Wt t > �

The method of reflecting Brownian paths is called the reflection principle.
Letting T ! 1 in the above result reveals that a Brownian motion hits every

fixed point m with probability 1. This brings us to the question of what happens if
we allow the point to move.

The probability of a standard Brownian motion to hit a point that moves linearly in
time is given by

P.a; b/ WD P.9t 2 Œ0;1/jWt > aC bt/ D e�2aCbC

By definition, aC D max.a; 0/ and similar for bC. As the statement is obviously
true for a < 0 or b < 0, we let a; b > 0. Let q.x/ be the probability that the process
Wt � bt hits the point a if it is currently located at x < a. With p.t 0; x0; t; x/dx0 the
probability of the process to end up in Œx0; x0 C dx0� at t 0 conditional on that it was
in x at t , we obtain

q.x/ D
Z a

�1
p.�; x0; 0; x/q.x0/dx0 C �

The term � contains information regarding paths that crosses the level a before
time �. Obviously, � tends quickly to zero when � ! 0. Using the backward
Kolmogorov equation (see the main text, Sect. 3.7), we obtain



A.5 Brownian Motion 303

�bqx C 1

2
qxx D 0

Assuming for a moment that the boundary condition q.�1/ D 0 holds, we obtain
together with q.a/ D 1 the solution

q.x/ D e2b.x�a/

The statement follows by setting x D 0.
It remains to show that q.�1/ D 0, or equivalently that the probability for a

standard Brownian motion to exceed a C bt tends to zero for a ! 1 and b > 0.
But this follows from the above expression for the maximum of a standard Brownian
motion. Indeed, for small t the probability goes to zero because of the large a while
for large t the probability goes to zero because of the linear increase in the level
coming from b. �

The process �Wt C �t is referred to as a Brownian motion with drift � and
volatility � . The following statement is useful in the analysis of Brownian motions:

The joint distribution of a Brownian motion and its maximum is given by

P.�WT C �T 2 Œx; x C dx/ ^ max
0�t�T .�Wt C �t/ 2 Œm;mC dm//

D 2.2m� x/p
2
�6T 3

exp
��.x � �T /2=2�2T � 2m.m� x/=�2T � dxdm;

x < m; 0 < m

Using

P.9t 2 Œ0; T /jWt > aC bt ^WT 2 Œx; x C dx//

D P.9t 2 Œ0; T /jtW1=t > a C bt ^ T W1=T 2 Œx; x C dx//

D P.9t 2 Œ0; T /jW1=t > a=t C b ^W1=T 2 Œx; x C dx/=T /

D P.9t 2 Œ1=T;1/jWt > at C b ^W1=T 2 Œx; x C dx/=T /

D P.W1=T 2 Œx; x C dx�=T /P.a=T C b � x=T; a/

we obtain

P.9t 2 Œ0; T /j�Wt C �t > m ^ �WT C �T 2 Œx; x C dx//

D P.9t 2 Œ0; T /jWt > m=� � �t=� ^WT 2 Œx; x C dx/=� � �T=�/

D P.W1=T 2 Œx; x C dx/=�T � �=�/P.m=�T � �=� � x=�T C �=�;m=�/

D dxp
2
�2T

exp
��.x � �T /2=2�2T � 2mC.m � x/C=�2T

�

The statement follows by taking the m-derivative. �



304 A Mathematical Preliminaries

The first hitting time �m D min ft j�Wt C �t > mg of the levelm>0 for a Brownian
motion with drift has the distribution

P .�m 2 Œt; t C dt// D mp
2
�2t3

e�.x��t/2=2�2tdt

Proof:

P.�m < t/ D P. max
0<t 0�t

.�Wt 0 C �t 0 > m//

D
Z m

�1
P.�Wt C �t 2 Œx; x C dx/ ^ max

0<t 0�t
.�Wt 0 C �t 0 > m//

C
Z 1

m

P.�Wt C �t 2 Œx; x C dx//

D 1p
2
�2T

Z m

�1
e�.x��t/2=2�2t�2m.m�x/=�2tdx

C 1p
2
�2T

Z 1

m

e�.x��t/2=2�2tdx

D e2m�=�
2

N

��m � �t
�

p
t

�

CN

��mC �t

�
p
t

�

�

A.6 Total Variation and Bounded Variation

Let 
 be a partition of Œ0; t �, i.e. 
 D fti gniD0 with 0 D t0 < t1 < � � � < tn D t .
For f W R ! R, consider

V
p

f;
 .t/ D
n�1X

iD0
jf .tiC1/ � f .ti /jp

The p-variation of f is defined as the function V p

f .t/ D limk
k!0 V
p

f;
 .t/, where
the norm is maxi fjtiC1� ti jg. Important special cases are the total variation (p D 1)
and the quadratic variation (p D 2). The total variation of a process is defined point-
wise on 	, V 2

X.t; !/ D V 2
X.!/.t/. A process is said to be of bounded variation if the

total variation VX D V 1
X is finite a.s on every compact time interval.

A.7 Martingales

For an integrable random variable X , the conditional expectation EsŒXt � D
EŒXt jFs�, s < t is by definition the a.s. unique Fs-measurable variable Ys that
satisfies
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E ŒYs�A� D E ŒXt�A� ; 8A 2 Fs
The conditional expression fulfills the double expectation theorem:

Es ŒEs0 ŒXt �� D Es ŒXt � ; s < s0 < t

An integrable process Xt with EsŒXt � D Xs 8s; t is called a martingale. For
a stopping time T , i.e. a function T W	! Œ0;1� with T �1.Œ0; t// 2 Ft 8t , the
process XT defined by XT

t D Xmin.t;T / is called the process X stopped at time T .
Thus, based on the information available at t the stopping time determines whether
X should continue to be stochastic after t or if it should be constant. If X is a
martingale, then so is XT .

A process is said to be a local martingale if there exists a set fTig1
iD0 of stopping

times satisfying Ti < TiC1 a.s. for all i and Ti ! 1 a.s. when i ! 1 such
that �fTi>0gX

Ti
t is a martingale for all i . The factor �fTi>0g has been introduced so

that processes with X0 non-integrable can be included in the definition. We have
chosen to only prove the statements in this Appendix as applied to martingales. The
proofs for the general case of local martingales are often straightforward but will be
omitted in order to not obscure the basic ideas of the proofs.

A continuous local martingale of bounded variation is constant a.s.
Assume first that jV.t/j � m a.s. for all t . For a given partition 
 we have

E
h
.Xt � X0/

2
i

D E
�
X2
t �X2

0

� D E

"
n�1X

iD0

	
X2
tiC1

� X2
ti



#

D E

"
n�1X

iD0

�
XtiC1

�Xti
�2
#

� E

�

max
i

ˇ
ˇXtiC1

� Xti
ˇ
ˇV.t/

�

As the integrand maxi
ˇ
ˇXtiC1

�Xti
ˇ
ˇV.t/ is uniformly bounded and converges to

zero as k
k ! 0 a.s, the dominated convergence theorem for integrals proves that
EŒ.Xt �X0/2� D 0. The integrand is positive so we must have Xt D X0 a.s.

For the general case, note that the above part of the proof holds for XTm
t with

stopping time Tm D infft � 0jV.t/ > mg. Thus, XTm
t DX0 a.s. The finiteness of

V.t/ implies that Tm ! 1 a.s. when m ! 1 from which it follows that
Xt DX0 a.s. �

A process that can be decomposed into a sum of a local martingale and
a bounded-variation process is called a semimartingale. The two parts in the
decomposition are referred to as the local martingale part and the compensator
part. By adding a constant to one of the parts and subtracting it from the other,
we can always assume that the compensator is zero at t D 0. The process is said to
be a continuous semimartingale if both parts in the semimartingale decomposition
are continuous. It then follows from the above statement that the decomposition is
unique.
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Let X be a continuous local martingale. Then, for all t , V 2
X;
 .t/ converges in

probability to hXit , where the quadratic variation hXi is the unique continuous
bounded-variation process starting at 0 such that X2 � hXi is a local martingale

First of all, a set of random variables fYig is said to converge to Y in probability
if limi!1 P.jYi � Y j > �/ D 0. For a given partition 
 of Œs; t � we have

Es

"

X2
t �

X

i

.XtiC1
� Xti /

2

#

� X2
s

D
X

i

Es

h
X2
tiC1

�X2
ti

� .XtiC1
�Xti /2

i
D 0

Taking the limit k
k ! 0 proves the statement formally. It remains to prove that the
integral and the limit can be interchanged and that the limit exists. This part of the
proof adds nothing to the understanding of martingales necessary for this book and
is therefore omitted. As V 2

X;
.t/ is an increasing function of t , the quadratic variation
must be of bounded variation. The uniqueness follows from the uniqueness of the
semimartingale decomposition. �

Motivated by the polarization identity

.XiC1 �Xi/ .YiC1 � Yi/

D 1

4

	
..XiC1 C YiC1/� .Xi C Yi//

2 � ..XiC1 � YiC1/� .Xi � Yi //2



where Xi D X.ti / and Yi D Y.ti /, we define the covariation for two continuous
local martingales as

hX; Y i D 1

4
.hX C Y i � hX � Y i/

It is then straightforward to generalize the above statement:

For X; Y continuous local martingales, XY � hX; Y i is a martingale
An immediate consequence is that the product of two continuous martingales

is a semimartingale. From next statement it follows that a continuous process with
bounded variation does not contribute to the covariation:

h�;Xi D 0 if � is a continuous process with bounded variation and X is a
continuous semimartingale

Consider

ˇ
ˇ
ˇ
ˇ
ˇ

n�1X

iD0

�
�tiC1

� �ti
� �
XtiC1

� Xti
�
ˇ
ˇ
ˇ
ˇ
ˇ

� max
i

ˇ
ˇXtiC1

� Xti
ˇ
ˇ
n�1X

iD0

ˇ
ˇ�tiC1

� �ti
ˇ
ˇ
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The second factor on the right-hand side converges to the total variation of � when
k
k ! 0. As X is continuous, the first factor converges uniformly to 0 on the
interval Œ0; t �. The statement therefore follows in the limit k
k ! 0. �

A Brownian motion is obviously a continuous martingale and must therefore
have unbounded variation. The quadratic variation is given by:
hW it D t forW a standard Brownian motion

As

W 2
t D hW it C martingale

is the unique semimartingale decomposition of W 2, the statement holds if we can
prove that W 2

t � t is a martingale. This follows from

Es
�
W 2
t �W 2

s

� D Es

"
n�1X

iD0

	
W 2
tiC1

�W 2
ti



#

D Es

"
n�1X

iD0

�
WtiC1

�Wti

�2
#

D
n�1X

iD0
.tiC1 � ti / D t � s �

A.8 Integrals with Martingales

A process� of bounded variation induces a (signed) measure � on the time-axis RC
by letting it be pathwise defined on 	: �!.Œa; b�/ D �!.b/ � �!.a/. The integralR t
0
Hd� WD R t

0
Hd� of continuous processes H over bounded-variation processes

can be defined in the Lebesgue sense. In particular, it is possible to define the integral
over hXi if X is a continuous martingale.

For X a continuous martingale andH a continuous process the integral
R t
0
HdX

is defined by
n�1X

iD0
Hti

�
XtiC1

� Xti
�

in the limit k
k ! 0. The integral is obviously a continuous martingale itself. The
expectation of the square of the above expression is equal to

E

2

4
X

ij

HtiHtj

�
XtiC1

�Xti
� �
XtjC1

� Xtj
�
3

5

D E

"
X

i

H2
ti
Eti

h�
XtiC1

� Xti
�2
i
#

D E

"
X

i

H2
ti
Eti

h
X2
tiC1

�X2
ti

i
#
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D E

"
X

i

H2
ti
Eti

�hXitiC1
� hXiti

�
#

D E

"
X

i

H2
ti

�hXitiC1
� hXiti

�
#

In the limit k
k ! 0 we obtain

E

"�Z t

0

HdX

�2#

D E

�Z t

0

H2d hXi
�

Note that the integral on the right-hand side is finite a.s. as H is continuous on the
bounded interval Œ0; t �. As usual, the results can be extended to continuous local
martingalesX .

WhenX is a Brownian motion, the approximating sum for the integral consists of
independent normally distributed variables. The integral is therefore also normally
distributed. It has zero mean (as it is a martingale) and the calculation above gives
the variance. Thus,

R
fdWt � N �

0;
R
f 2dt

�
if f is non-stochastic.

By separating a continuous semimartingale into its local martingale part and its
bounded-variation part Y D X C �, the integral of continuous processes H over
continuous semimartingales is defined by

Z

HdY D
Z

HdX C
Z

Hd�

A.9 Ito’s Lemma

Let X W 	 ! R be a continuous martingale and f a C2 real-valued function
defined on an open set containing the range of X . Then,

f .Xt/ D f .X0/C
Z t

0

fXdX C 1

2

Z t

0

fXXd hXi; a.s.

For a given partition 
 we have

f .Xt /� f .X0/ D
n�1X

iD0

�
f .XtiC1

/� f .Xti /
�

D
n�1X

iD0
fX.Xti /

�
XtiC1

� Xti
�C 1

2

n�1X

iD0
fXX.�i /

�
XtiC1

�Xti
�2
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where �i 2 ŒXti ; XtiC1
�. The first sum converges to

R t
0
fXdX when k
k ! 0.

It remains to show that the second sum converges to 1
2

R t
0
fXXd hXi, or equivalently

that

J D
n�1X

iD0
fXX.�i /

�
XtiC1

� Xti
�2 �

n�1X

iD0
fXX.Xti /

�
XtiC1

�Xti
�2 ! 0

Clearly,

jJ j � C

n�1X

iD0

�
XtiC1

� Xti
�2
; C D max

i
jfXX.�i /� fXX.Xti /j

Assuming jX j < m we see that C ! 0 when k
k ! 0 while the sum converges
to hXi which is finite a.s. For unbounded X the proof follows by considering the
stopped processes XTm

t with stopping times Tm D infft � 0jVt > mg so that
Tm ! 1 a.s. �

It is straightforward to prove the multidimensional generalization of Ito’s lemma:

Let X W 	 ! R
n be a continuous semimartingale and f .t; X/ a C1;2 real-valued

function defined on an open set containing the range of .t; Xt/. Then a.s.:

f .t; Xt / D f .0;X0/C
Z t

0

fu.u; X/duC
X

i

Z t

0

fXi dXiC
1

2

X

ij

Z t

0

fXiXj d hXi;Xj i

Expressed in terms of infinitesimals:

df D ftdt C
X

i

fXi dXi C 1

2

X

ij

fXiXj d hXi;Xj i

Ito’s lemma can be remembered through the product rule dXidXj D d hXi;Xj i
(.dWt/

2 D dt for a Brownian motion) and all other differential products equal to 0.
When f .X; Y / D XY , Ito’s lemma becomes the product rule of differentiation:

d.XY / D XdY C YdX C d hX; Y i

A.10 Lévy’s Characterization of the Brownian Motion

A continuous local martingale X that satisfies hXit D t and X0 D 0 is a Brownian
motion

SettingX 0
t D Xt �X0� 1

2
hXit , Ito’s lemma implies that exp

�
X 0
t

�
is a martingale

for an arbitrary martingale X . Using hXit D t and X0 D 0 we see that

Yt D exp

�

�Xt � 1

2
�2t

�
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is a martingale. Rearranging the martingale condition Ys D EsŒYt � gives

Es Œexp .� .Xt �Xs//� D exp

�
1

2
.t � s/ �2

�

As this is the generating function for the Gaussian distribution, we conclude that
Xt �Xs is N .0; t � s/-distributed and is independent of Fs . �

A.11 Measure Change and Girsanov’s Theorem

Let Pt be the restriction of P to Ft , i.e. Pt is Ft -measurable and satisfies Pt.A/ D
P.A/ for all A 2 Ft . For a given set 	 with filtration fFtg, two measures P andQ
are said to be equivalent if for all t , the restrictions Pt and Qt have the same null
sets. Equivalent measures are related by the Radon-Nikodym derivative which is the
process Mt defined by Qt.A/ D R

AMtdPt for all A 2 Ft . For A 2 Fs it follows
that

EQ
�
M�1
s EP

s ŒMtXt ��A
� D EP

�
EP
s ŒMtXt ��A

�

D EP
�
EP
s ŒMtXt�A�

� D EP ŒMtXt�A� D EQ ŒXt�A�

and from the definition of conditional expectation we conclude that

EQ
s ŒXt � D M�1

s EP
s ŒMtXt �

for Xt a Q-integrable process. We conclude that Xt is a Q-martingale if and only if
MtXt is a P -martingale. In particular, setting Xt D 1 in the above equation proves
that the Radon-Nikodym derivativeMt is a P -martingale.

Let X be a continuous P -semimartingale with compensator �P . Then X is a
continuousQ-semimartingale with compensator

�Q D �P C hX; lnM i

The product rule of differentiation implies that

�
X � �P � hX; lnM i�M

D
Z
�
X � �P � hX; lnM i�dM C

Z

Md
�
X � �P

�

�
Z

Md hX; lnM i C hX � �P � hX; lnM i;M i

By using an approximating sum of the integral, the third term on the right-hand side
can be seen to be equal to �hX;M i. As continuous processes of bounded variation
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do not contribute to the covariation, this term cancels with the fourth term. The
first two terms on the right-hand side are continuous P -martingales from which we
conclude that the left-hand side is a continuousP martingale as well. The first factor
on the left-hand side must therefore be a continuousQ-martingale. �

LetW be a Brownian motion in P . ThenW �hW; lnM i is a Brownian motion inQ.
The previous statement implies that W � hW; lnM i is a continuous Q-

martingale. As

.W � hW; lnM i/jtD0 D 0

hW � hW; lnM iit D hW it D t

the statement follows from Levi’s characterization of Brownian motions. �
It is now straightforward to prove Girsanov’s theorem:

Let

Mt D exp

�Z t

0

�sdWs � 1

2

Z t

0

�2s ds

�

where �t is integrable with respect to the Brownian motion Wt in the measure P .
Then

Wt �
Z t

0

�sds

is a Brownian motion in Q.
The statement follows from the identity

�

Wt;

Z t

0

�sdWs

�

D
Z t

0

�sds ut

A.12 No-Arbitrage Pricing

We use a set fXigniD1 of strictly positive continuous semimartingales to represent the
set of tradable assets in a financial market. By abuse of notation we also let fXigniD1
denote the prices of these assets. We assume that the holding of the assets does not
result in any cash flows (e.g. dividend payments) and that the assets can be bought
or sold at any time in unlimited quantities. Based on these assumptions we develop
a model for asset pricing. This section serves as a bridge between the Appendix and
the main text. Some of the definitions and results reviewed here can also be found
in Chap. 1 and Sect. 3.8.

A trading strategy � is an R
n-valued process describing our holdings �i of asset

Xi . The value of the corresponding portfolio is given by Vt D P
i �

i
t X

i
t . To simplify

notation we suppress the summation and write Vt D �tXt . We restrict ourselves to
continuous strategies satisfying
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�tXt D �0X0 C
Z t

0

�udXu

The infinitesimal version reads d.�tXt/ D �tdXt which means that the price
fluctuations in the portfolio come solely from changes in the asset prices. Such a
strategy is said to be self financing, i.e. there is no in- or out-flux of money. Examples
include:

• � constant: it is then possible to move � outside the integral and the above
relation is trivial

• If X is a standard Brownian motion and the portfolio value satisfies @V=@t D
�.1=2/@2V=@X2 then � D @V=@X is self financing. This follows since

Vt D V0 C
Z t

0

dV D V0 C
Z t

0

@V

@X
dX

holds because of Ito’s lemma.
A self-financing strategy � is said to be an arbitrage strategy if there exists a t

for which V0 D 0; Vt � 0 a.s. and P.Vt > 0/ > 0. By restricting ourselves to self-
financing strategies without arbitrage, we exclude strategies with risk-free gains.

Instead of valuing the assets in dollar terms, the valuation can be done relative
to one of the assets. The asset with respect to which the valuation is done is called
the numeraire and by a reordering we can assumed it to be X0. The values of the
assets are then given by .1;X1=X0; : : : ; Xn=X0/. The concepts of arbitrage and
a self-financing strategy are preserved when using a numeraire. For example, the
preservation of the self-financing property follows from

d
�
�Xi.X0/�1

� D �Xid.X0/�1 C .X0/�1d.�Xi/C d h�Xi ; .X0/�1i
D �Xid.X0/�1 C .X0/�1�d.Xi/C �d hXi; .X0/�1i
D �d

�
Xi.X0/�1

�

Absence of arbitrage implies that if there is a non-zero probability for Xi
t =X

0
t to

be greater than Xi
0=X

0
0 then there must also be a non-zero probability for it to be

smaller than Xi
0=X

0
0 . By reweighing the probabilities it is then possible to turn this

process into a martingale, i.e. there exists a probability measure Q equivalent to P
such that the processesXi=X0 are martingales. The strict mathematical proof of the
fact that this can be done simultaneously for all i does not provide us with further
insights and is therefore be omitted. We only need the reverse statement:

If there exists a measure Q such that fXi=X0g are local martingales then there do
not exist any self-financing strategies with arbitrage.

As

Vt=X
0
t D �tX

i
t =X

0
t D V0=X

0
0 C

Z t

0

�d
�
Xi=X0

�
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is a Q-martingale, we have EŒVt=X0
t � D V0=X

0
0 . If V0 D 0 and Vt � 0 a.s. then

Vt D 0 a.s. which proves that � cannot be an arbitrage strategy. �
We now describe how to price contracts under this framework. In financial

mathematics, one is often faced with the problem of finding the value V0 of a
contract from the knowledge of its value VT at a future time. We assume that the
contract can be replicated with a self-financing strategy V D P

i �
iXi in terms of

some basic assets fXig. Whether it is really possible to represent (or approximate)
V in such a way is usually clear from the context. We then use one of the assets as a
numeraireNt and assume the existence of a martingale measure, i.e a measure such
that .X0=N; : : : Xn=N / are martingales. This assumption excludes the existence of
arbitrage strategies. As � is self financing, V=N is a martingale and

V0

N0
D E

�
VT

NT

�

The numeraireN is often chosen to be a simple tradable such as a zero-coupon bond
for which we know both the value at T and today’s value. The only unknown in the
above equation is V0 which therefore can be computed. Observe that the expectation
is taken underQ and not under the real-world measure.

The pricing equation might seem rather abstract at first sight. For example, it is
not at all clear at this point how to find the measureQ. However, we use this pricing
model throughout the book and hopefully it will be clear how to implement and
use it.

When using the pricing model, we need to choose a numeraire, find a correspond-
ing measure for which the tradables are martingales and then calculate expectations.
It is often necessary to do the computations for more than one numeraire and
measure, for example, when the pricing is done in one measure and the calibration
in another. From the identity

V0 D NP
0

Z

VT =N
P
T dP D N

Q
0

Z

VT =N
Q
T

 
NP
0

N
Q
0

N
Q
T

NP
T

!

dP

we see that changing numeraire from NP to NQ implies a change in measure from
dP to dQ D MdP , with MT equal to NP

0 N
Q
T =N

Q
0 N

P
T .
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Black-Scholes equation, 25
Black-Scholes formula, 27

asymptotic limits, 28
greeks, 29, 54–58

Bootstrapping, 47
bonds, 224
caplets, 228
volatilities, 270
yield curve, 240–241

Boundary conditions, 84
British Bankers’ Association, 223
Brownian motions, 301

geometric, 25
Lévy’s characterization, 309–310

Càdlàg, 140
Cable, 291
Calendar, 40
Calibration, 45
Call spread, 11
Caplets, 227
Caps, 227
Cash deals, 292
CDF, see cumulative density function
CDSs, see swaps, credit default
Chapman-Kolmogorov equation, 32
Characteristic function, 298
Characteristic triplet, 144
Cheyette’s method, 250
Chooser caps, 174
CIR model, see Cox-Ingersoll-Ross model
CMS spreads, 237

adjusters, 63–64
bounds, 189

CMSs, see swaps, constant maturity
Cocycle relation

commodities, 212–213
correlations, 217–218
discount factors, 223
FX quotes, 281, 284–286, 290–291
LIBORs, 244

Collateral, 275
Compounding, 222–223
Contango, 207
Convenience yield, 206
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Conventions
caps, 228
foreign exchange, 291–292
yield curve instruments, 238–240

Convexity adjustment, 37
futures, 38–39, 247–248
interest rates, 231–236

Copulas, 177–180, 299–301
for CMS spreads, 63

Correlations
2-factor model, 215
calibration, 190–191
commodities, 204, 210–211, 214–218
constraints, 215
currency dependence, 189–190
equities, 200
factor reduction, 218
foreign exchange, 289, 293
hedging, 71, 189
implied, 289
instantaneous, 180
inter-, 214
interest rates, 244, 251–252, 261, 270–271
intra-, 214
local, 180, 190–191
Shoenmakers-Coffee model, 217
terminal, 180
uncalibrated, 58–59
volatility skew, 120–121, 123, 134, 138,

196
Cox-Ingersoll-Ross model, 101
Crack spreads, 204, 214
Credit risk, 72–73, 276–277, 295–296

swaptions, 229–230
Credit Support Annex, 275
Credit value adjustment, 72
CSA, see Credit Support Annex
Cumulative density function, 297
Cumulative normal function, 27
CVA, see credit value adjustment

Daily settlement, 38
Day-count conventions, 223, 238–240

volatilities, 30
Day-count fraction, 223
Debt value adjustment, 73
Delivery date, 41
Delta, 54

forward, 293
FX conventions, 293–294
premium adjusted, 294
vega adjusted, 137–138

Deposits, 238

in yield curve construction, 238, 240
overnight (O/N), 5, 41, 238
tommorow next (T/N), 238

Derivatives, 3
exotic, 46
vanilla, 46

Digital options, 10
American, 170–171
for static replication, 11
FX, 282–283
hedging, 69–70
higher dimensional, 186–188

Discount factor, 4
Distributions

Cachy, 148
chi-square, 99
gamma, 98
Gaussian, 148, 298–299
generalized hyperbolic, 151
generalized inverse Gaussian, 150
hyperbolic, 154
inverse gamma, 150
inverse Gaussian, 149
Lévy, 148
non-central chi-square, 99
normal , see distributions, Gaussian
normal inverse Gaussian, 154
Pareto, 148
Poisson, 141
stable, 148
variance gamma, 152

Dividend yield, 197
Dividends, 196
Drift, 22
Dupire’s equation, 114
DVA, see debt value adjustment
Dynamic replication, 7, 19–42
Dynamics, see volatility dynamics

Effective date, 238
End-of-month rule, 40

foreign exchange, 292
yield curve instruments, 238

EONIA, see euro overnight
index average

Euro overnight index average, 274
European options, 10

asymptotics, 13
constraints, 13–14
for static replication, 10–13
naive replication, 19–20
no-arbitrage conditions, 13–14

Expiry, 41
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Federal funds rate, 274
Feynman-Kac theorem, 34
First delivery date, 202
Fixed rate, 225
Fixing date, 41
Floating rate, 225
Floorlets, 227
Floors, 228
Fokker-Planck equation, see Kolmogorov

forward equation
Forward, 9
Forward contracts, 9
Forward interest rates, 223
Forward rate agreements, 224, 238–239

in yield curve construction, 238
FRAs, see forward rate agreements
Free-boundary problem, 171
Fundamental solution, 164
Fundamental theorem of asset pricing, 35,

312–313
Futures contracts, 38, 239

in yield curve construction, 238, 240
options on, 39
rolling, 203

Gamma, 56
Gamma function, 97
Gap risk, 275
Girsanov’s theorem, 311
Greeks, 54
Green’s function, 32, 50–51

Heaviside function, 10
Hedging, 44, 53–69
Heston model, 133
HJM model, 246
Holiday adjustment, 40
Hull-White model, 258

i.i.d. variables, 142
IMM dates, see International Monetary Market

dates
In-the-money options, 10
Incomplete market, 154
Index options, 180
Infinitely divisible, 147
Inflation, 204
Initial margin, 38
Interbank markets, 291
International Monetary Market

dates, 239

International Swaps and Derivatives
Association, 275

ISDA, see International Swaps and Derivatives
Association

ISDA master agreement, 275
ITM options, see in-the-money options
Ito’s lemma, 22, 308–309

for jump processes, 145

Jensen’s inequality, 37
Jump models, see Lévy models

Kolmogorov
backward equation, 33
forward equation, 33

Lévy flights, 148
Lévy models, 139–155

in yield curve modeling, 253–257
Lévy-Ito decomposition, 143
Lévy-Khinchin representation, 144
Last delivery date, 202
Last trade date, 202
Leverage, 43
Leveraged strategies, 23
LIBOR market models, 265
LIBOR rate, see London interbank offered rate
LIBOR-in-arrears, 231
Liquidity, 71
Liquidity risk, 236–237, 277, 295–296
LMMs, see LIBOR market models
Local correlation models, 191
Local volatility models, 107

in yield curve modeling, 249–250
London interbank offered rate, 223

Market risk, 44
Markov-functional models, 262
Martingales, 35, 304–308
Mean-reversion factor, 90
Mean-reversion level, 90
Measure, 297

change of, 34–35, 310–311, 313
domestic, 281
equivalent, 310
foreign, 281
forward, 35
Lévy, 142
Poisson random, 142
random, 142
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risk-neutral, 36
spot, 266
terminal, 250

Method of images, 84
Moment matching, 181–182
Money market account, 35
Monte Carlo simulation, 52

early exercise, 174
early exercise greeks, 175–176

No-arbitrage assumption, 5–7, 312
Numeraire, 22, 312

in foreign exchange, 290–291

OISs, see swaps, overnight index
OTC contracts, see over-the-counter contracts
OTM options, see out-of-the-money options
Out-of-the-money options, 10
Over-the-counter contracts, 37

Par value, 9
Parity

barrier options, 16
covered interest rate, 282, 295
enter-into and callables, 174
foreign exchange, 282
put-call, 12

Partial differential equations, 23
Path-dependent derivatives, 159
PDEs, see partial differential equations
PDF, see probability density function
Pegged currencies, 281
Perturbation

local volatility processes, 108–113
stochastic volatility processes, 123–130

Predictor-corrector method, 104
Premium currency, 294
Present value, 3
Probability density function, 297
Processes

Bessel, 98
Brownian bridge, 91
CEV, see processes, constant elasticity of

variance
compensated Poisson, 142
compound Poisson, 142
constant elasticity of variance, 93, 101–102
jump, see processes, Lévy
Lévy , 140
lognormal, see Brownian motions,

geometric

mean-reverting, 91
Ornstein-Uhlenbeck, 90
Poisson, 141
squared Bessel, 100
stable Lévy, 148

Product rule for stochastic differentials, 22,
309

PV, see present value

Quantos, 288
European FX option, 283

Quoting currency, 291

Radon transform, 190
Radon-Nikodym derivative, 310
Rebate, 161
Replacement risk, 275
Reset date, 41
Right way risk, 73
Risk reversal, 293

SABR model, 134
extrapolation, 234–236

SDEs, see stochastic differential equations
Seasonality, 207–208
Sensitivity, 44
Settlement date, 40
Settlement lag, 40
Short rate, 222

models, 260
Skew, 31
Smile, 31
Snowballs, 175
SONIA, see sterling overnight index average
Spot date, 40

foreign exchange, 292
Static replication, 7, 9–18

foreign exchange, 282–283
interest rates, 224–226
of barrier options, 16–18, 167–168
of forward contracts, 9
of non-linear payoffs, 10–13

Sterling overnight index average, 274
Sticky-delta models, 31
Sticky-strike models, 31
Stochastic differential equations, 22

linear, 82
lognormal, 82
mean-reverting, 91
non-analytic, 102–104
normal, 84
quadratic, 88
shifted lognormal, 86
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Stochastic volatility models, 119–138
in foreign exchange, 285–286
in yield curve modeling, 250–253

Strangle, 293
Strategy, 5, 311

arbitrage, 5, 312
self-financing, 5, 312

Subordinator, 149
Swap market models, 266
Swaps

autocallable, 174
basis, 278
callable, 174
constant maturity, 233
credit default, 73
cross currency, 294, 296
enter-into, 174
forward starting, 226
FX, 294
in yield curve construction, 238, 240
in-arrears, 233
interest rate conventions, 239–240
overnight index, 273
vanilla interest rate, 225
variance, 169
volatility, 169

Swaptions, 228
Bermudan, 174–176
cash-settled, 229
early exercise, 16
physically settled, 229

Swing options, 214

Target redemption notes, 174, 175
TARNs, see target redemption notes
Tenor, 40
Tenor structure, 226
Tension spline, 66

Terms currency, 291
Theta, 55

Underlyings, 3

Value date, 292
Vanna, 58
Variable freezing, 180–181
Variation margin, 38
Vega, 54
Volatilities

commodities, 214
equities, 200
foreign exchange, 289
implied, 30
interest rates, 269–270
local, 30
local and stochastic, 135–136
lognormal, 25
separable local, 211
terminal, 180
time-weighted interpolation, 290

Volatility dynamics, 32, 66–68
jump processes, 154–155
local volatility processes, 117
stochastic volatility processes, 136–138

Volga, 58
Volume risk, 214

Warrant, 195
Wrong way risk, 73

Yield curve, 236

Zero-coupon bonds, 4
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