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Preface

This work is aimed at an audience with a sound mathematical background
wishing to learn about the rapidly expanding field of mathematical finance.
Its content is suitable particularly for graduate students in mathematics
who have a background in measure theory and probability.

The emphasis throughout is on developing the mathematical concepts
required for the theory within the context of their application. No attempt
is made to cover the bewildering variety of novel (or ‘exotic’) financial in-
struments that now appear on the derivatives markets; the focus through-
out remains on a rigorous development of the more basic options that lie
at the heart of the remarkable range of current applications of martingale
theory to financial markets.

The first five chapters present the theory in a discrete-time framework.
Stochastic calculus is not required, and this material should be accessible
to anyone familiar with elementary probability theory and linear algebra.

The basic idea of pricing by arbitrage (or, rather, by non-arbitrage)
is presented in Chapter 1. The unique price for a European option in a
single-period binomial model is given and then extended to multi-period
binomial models. Chapter 2 introduces the idea of a martingale measure
for price processes. Following a discussion of the use of self-financing trad-
ing strategies to hedge against trading risk, it is shown how options can
be priced using an equivalent measure for which the discounted price pro-
cess is a martingale. This is illustrated for the simple binomial Cox-Ross-
Rubinstein pricing models, and the Black-Scholes formula is derived as the
limit of the prices obtained for such models. Chapter 3 gives the ‘funda-
mental theorem of asset pricing’, which states that if the market does not
contain arbitrage opportunities there is an equivalent martingale measure.
Explicit constructions of such measures are given in the setting of finite
market models. Completeness of markets is investigated in Chapter 4; in a
complete market, every contingent claim can be generated by an admissible
self-financing strategy (and the martingale measure is unique). Stopping
times, martingale convergence results, and American options are discussed
in a discrete-time framework in Chapter 5.

The second five chapters of the book give the theory in continuous time.
This begins in Chapter 6 with a review of the stochastic calculus. Stopping
times, Brownian motion, stochastic integrals, and the Itô differentiation
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vi Preface

rule are all defined and discussed, and properties of stochastic differential
equations developed.

The continuous-time pricing of European options is developed in Chap-
ter 7. Girsanov’s theorem and martingale representation results are de-
veloped, and the Black-Scholes formula derived. Optimal stopping results
are applied in Chapter 8 to a thorough study of the pricing of American
options, particularly the American put option.

Chapter 9 considers selected results on term structure models, forward
and future prices, and change of numéraire, while Chapter 10 presents the
basic framework for the study of investment and consumption problems.

Acknowledgments Sections of the book have been presented in courses
at the Universities of Adelaide and Alberta. The text has consequently
benefited from subsequent comments and criticism. Our particular thanks
go to Monique Jeanblanc-Piqué, whose careful reading of the text and
valuable comments led to many improvements. Many thanks are also due
to Volker Wellmann for reading much of the text and for his patient work
in producing consistent TEX files and the illustrations.

Finally, the authors wish to express their sincere thanks to the Social
Sciences and Humanities Research Council of Canada for its financial sup-
port of this project.

Edmonton, Alberta, Canada Robert J. Elliott
Hull, United Kingdom P. Ekkehard Kopp



Preface to the Second
Edition

This second, revised edition contains a significant number of changes and
additions to the original text. We were guided in our choices by the com-
ments of a number of readers and reviewers as well as instructors using the
text with graduate classes, and we are grateful to them for their advice.
Any errors that remain are of course entirely our responsibility.

In the five years since the book was first published, the subject has con-
tinued to grow at an astonishing rate. Graduate courses in mathematical
finance have expanded from their business school origins to become stan-
dard fare in many mathematics departments in Europe and North America
and are spreading rapidly elsewhere, attracting large numbers of students.
Texts for this market have multiplied, as the rapid growth of the Springer
Finance series testifies. In choosing new material, we have therefore fo-
cused on topics that aid the student’s understanding of the fundamental
concepts, while ensuring that the techniques and ideas presented remain
up to date. We have given particular attention, in part through revisions
to Chapters 5 and 6, to linking key ideas occurring in the two main sections
(discrete- and continuous-time derivatives) more closely and explicitly.

Chapter 1 has been revised to include a discussion of risk and return in
the one-step binomial model (which is given a new, extended presentation)
and this is complemented by a similar treatment of the Black-Scholes model
in Chapter 7. Discussion of elementary bounds for option prices in Chapter
1 is linked to sensitivity analysis of the Black-Scholes price (the ‘Greeks’)
in Chapter 7, and call-put parity is utilised in various settings.

Chapter 2 includes new sections on superhedging and the use of ex-
tended trading strategies that include contingent claims, as well as a more
elegant derivation of the Black-Scholes option price as a limit of binomial
approximants.

Chapter 3 includes a substantial new section leading to a complete proof
of the equivalence, for discrete-time models, of the no-arbitrage condition
and the existence of equivalent martingale measures. The proof, while not
original, is hopefully more accessible than others in the literature.

This material leads in Chapter 4 to a characterisation of the arbitrage
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viii Preface to the the Second Edition

interval for general market models and thus to a characterisation of com-
plete models, showing in particular that complete models must be finitely
generated.

The new edition ends with a new chapter on risk measures, a subject
that has become a major area of research in the past five years. We include a
brief introduction to Value at Risk and give reasons why the use of coherent
risk measures (or their more recent variant, deviation measures) is to be
preferred. Chapter 11 ends with an outline of the use of risk measures in
recent work on partial hedging of contingent claims.

The changes we have made to the text have been informed by our
continuing experience in teaching graduate courses at the universities of
Adelaide, Calgary and Hull, and at the African Institute for Mathematical
Sciences in Cape Town.

Acknowledgments Particular thanks are due to Alet Roux (Hull) and
Andrew Royal (Calgary) who provided invaluable assistance with the com-
plexities of LaTeX typesetting and who read large sections of the text.
Thanks are also due to the Social Sciences and Humanities Research Coun-
cil of Canada for continuing financial support.

Calgary, Alberta, Canada Robert J. Elliott
Hull, United Kingdom P. Ekkehard Kopp
May 2004
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Chapter 1

Pricing by Arbitrage

1.1 Introduction: Pricing and Hedging

The ‘unreasonable effectiveness’ of mathematics is evidenced by the fre-
quency with which mathematical techniques that were developed without
thought for practical applications find unexpected new domains of appli-
cability in various spheres of life. This phenomenon has customarily been
observed in the physical sciences; in the social sciences its impact has per-
haps been less evident. One of the more remarkable examples of simulta-
neous revolutions in economic theory and market practice is provided by
the opening of the world’s first options exchange in Chicago in 1973, and
the ground-breaking theoretical papers on preference-free option pricing by
Black and Scholes [27] (quickly extended by Merton [222]) that appeared
in the same year, thus providing a workable model for the ‘rational’ market
pricing of traded options.

From these beginnings, financial derivatives markets worldwide have
become one of the most remarkable growth industries and now constitute
a major source of employment for graduates with high levels of mathemat-
ical expertise. The principal reason for this phenomenon has its origins in
the simultaneous stimuli just described, and the explosive growth of these
secondary markets (whose levels of activity now frequently exceed the un-
derlying markets on which their products are based) continues unabated,
with total trading volume now measured in trillions of dollars. The vari-
ety and complexity of new financial instruments is often bewildering, and
much effort goes into the analysis of the (ever more complex) mathematical
models on which their existence is predicated.

In this book,we present the necessary mathematics, within the con-
text of this field of application, as simply as possible in an attempt to
dispel some of the mystique that has come to surround these models and
at the same time to exhibit the essential structure and robustness of the
underlying theory. Since making choices and decisions under conditions
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2 CHAPTER 1. PRICING BY ARBITRAGE

of uncertainty about their outcomes is inherent in all market trading, the
area of mathematics that finds the most natural applications in finance
theory is the modern theory of probability and stochastic processes, which
has itself undergone spectacular growth in the past five decades. Given
our current preoccupations, it seems entirely appropriate that the origins
of probability, as well as much of its current motivation, lie in one of the
earliest and most pervasive indicators of ‘civilised’ behaviour: gambling.

Contingent Claims

A contingent claim represents the potential liability inherent in a derivative
security; that is, in an asset whose value is determined by the values of one
or more underlying variables (usually securities themselves). The analysis
of such claims, and their pricing in particular, forms a large part of the
modern theory of finance. Decisions about the prices appropriate for such
claims are made contingent on the price behaviour of these underlying
securities (often simply referred to as the underlying), and the theory of
derivatives markets is primarily concerned with these relationships rather
than with the economic fundamentals that determine the prices of the
underlying.

While the construction of mathematical models for this analysis often
involves very sophisticated mathematical ideas, the economic insights that
underlie the modelling are often remarkably simple and transparent. In
order to highlight these insights we first develop rather simplistic mathe-
matical models based on discrete time (and, frequently, finitely generated
probability spaces) before showing how the analogous concepts can be used
in the more widely known continuous models based on diffusions and Itô
processes. For the same reason, we do not attempt to survey the range
of contingent claims now traded in the financial markets but concentrate
on the more basic stock options before attempting to discuss only a small
sample of the multitude of more recent, and often highly complex, finan-
cial instruments that finance houses place on the markets in ever greater
quantities.

Before commencing the mathematical analysis of market models and
the options based upon them, we outline the principal features of the main
types of financial instruments and the conditions under which they are
currently traded in order to have a benchmark for the mathematical ide-
alisations that characterise our modelling. We briefly consider the role of
forwards, futures, swaps, and options.

Forward Contracts A forward contract is simply an agreement to buy
or sell a specified asset S at a certain future time T for a price K that is
specified now (which we take to be time 0). Such contracts are not normally
traded on exchanges but are agreements reached between two sophisticated
institutions, usually between a financial institution such as a bank and one
of its corporate clients. The purpose is to share risk: one party assumes
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a long position by agreeing to buy the asset, and the other takes a short
position by agreeing to sell the asset for the delivery price K at the delivery
date T . Initially neither party incurs any costs in entering into the contract,
and the forward price of the contract at time t ∈ [0, T ] is the delivery price
that would give the contract zero value. Thus, at time 0, the forward price
is K, but at later times movement in the market value of the underlying
commodity will suggest different values. The payoff to the holder of the
long position at time T is simply ST − K, and for the short position it is
K − ST . Thus, since both parties are obliged to honour the contract, in
general one will lose and the other gain the same amount.

Trading in forwards is not closely regulated, and the market participant
bears the risk that the other party may default-the instruments are not
traded on an exchange but ‘over-the-counter’ (OTC) worldwide, usually by
electronic means. There are no price limits (as could be set by exchanges),
and the object of the transaction is delivery; that is, the contracts are not
usually ‘sold on’ to third parties. Thus the problem of determining a ‘fair’
or rational price, as determined by the collective judgement of the market
makers or by theoretical modelling, appears complicated.

Intuitively, averaging over the possible future values of the asset may
seem to offer a plausible approach. That this fails can be seen in a simple
one-period example where the asset takes only two future values.

Example 1.1.1. Suppose that the current (time 0) value of the stock is
$100 and the value at time 1 is $120 with probability p = 3

4 and $80 with
probability 1 − p = 1

4 . Suppose the riskless interest rate is r = 5% over the
time period. A contract price of 3

4 ×$120+ 1
4 ×$80 = $110 produces a 10%

return for the seller, which is greater than the riskless return, while p = 1
2

would suggest a price of $100, yielding a riskless benefit for the buyer.

This suggests that we should look for a pricing mechanism that is inde-
pendent of the probabilities that investors may attach to the different future
values of the asset and indeed is independent of those values themselves.

The simple assumption that investors will always prefer having more to
having less (this is what constitutes ‘rational behaviour’ in the markets)
already allows us to price a forward contract that provides no dividends
or other income. Let St be the spot price of the underlying asset S (i.e.,
its price at time t ∈ [0, T ]); then the forward price F (t, T ) at that time is
simply the value at the time T of a riskless investment of St made at time
t whose value increases at a constant riskless interest rate r > 0. Under
continuous compounding at this rate, an amount of money Ms in the bank
will grow exponentially according to

dMs

Ms
= rds, s ∈ [t, T ].

To repay the loan St taken out at t, we thus need MT = Ste
r(T−t) by

time T .
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We therefore claim that

F (t, T ) = Ste
r(T−t) for t ∈ [0, T ] .

To see this, consider the alternatives. If the forward price is higher, we
can borrow St for the interval [t, T ] at rate r, buy the asset, and take a
short position in the forward contract. At time T , we need Ste

r(T−t) to
repay our loan but will realise the higher forward price from the forward
contract and thus make a riskless profit. For F (t, T ) < Ste

r(T−t), we
can similarly make a sure gain by shorting the asset (i.e., ‘borrowing’ it
from someone else’s account, a service that brokers will provide subject
to various market regulations) and taking a long position in the contract.
Thus, simple ‘arbitrage’ considerations (in other words, that we cannot
expect riskless profits, or a ‘free lunch’) lead to a definite forward price at
each time t.

Forward contracts can be used for reducing risk (hedging). For example,
large corporations regularly face the risk of currency fluctuations and may
be willing to pay a price for greater certainty. A company facing the need to
make a large fixed payment in a foreign currency at a fixed future date may
choose to enter into a forward contract with a bank to fix the rate now in
order to lock in the exchange rate. The bank, on the other hand, is acting
as a speculator since it will benefit from an exchange rate fluctuation that
leaves the foreign currency below the value fixed today. Equally, a company
may speculate on the exchange rate going up more than the bank predicts
and take a long position in a forward contract to lock in that potential
advantage-while taking the risk of losses if this prediction fails. In essence,
it is betting on future movements in the asset. The advantage over actual
purchase of the currency now is that the forward contract involves no cost at
time 0 and only potential cost if the gamble does not pay off. In practice,
financial institutions will demand a small proportion of the funds as a
deposit to guard against default risk; nonetheless, the gearing involved in
this form of trading is considerable.

Both types of traders, hedgers and speculators, are thus required for
forward markets to operate. A third group, arbitrageurs, typically enter
two or more markets simultaneously, trying to exploit local or temporary
disequilibria (i.e., mispricing of certain assets) in order to lock in riskless
profits. The fundamental economic assumption that (ideal) markets op-
erate in equilibrium makes this a hazardous undertaking requiring rapid
judgements (and hence well-developed underlying mathematical models)
for sustained success-their existence means that assets do not remain mis-
priced for long or by large amounts. Thus it is reasonable to build models
and calculate derivative prices that are based on the assumption of the
absence of arbitrage, and this is our general approach.

Futures Contracts Futures contracts involve the same agreement to
trade an asset at a future time at a certain price, but the trading takes
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place on an exchange and is subject to regulation. The parties need not
know each other, so the exchange needs to bear any default risk-hence the
contract requires standardised features, such as daily settlement arrange-
ments known as marking to market. The investor is required to pay an
initial deposit, and this initial margin is adjusted daily to reflect gains and
losses since the futures price is determined on the floor of the exchange by
demand and supply considerations. The price is thus paid over the life of
the contract in a series of instalments that enable the exchange to balance
long and short positions and minimise its exposure to default risk. Futures
contracts often involve commodities whose quality cannot be determined
with certainty in advance, such as cotton, sugar, or coffee, and the delivery
price thus has reference points that guarantee that the asset quality falls
between agreed limits, as well as specifying contract size.

The largest commodity futures exchange is the Chicago Board of Trade,
but there are many different exchanges trading in futures around the world;
increasingly, financial futures have become a major feature of many such
markets. Futures contracts are written on stock indices, on currencies, and
especially on movements in interest rates. Treasury bills and Eurodollar
futures are among the most common instruments.

Futures contracts are traded heavily, and only a small proportion are
actually delivered before being sold on to other parties. Prices are known
publicly and so the transactions conducted will be at the best price available
at that time. We consider futures contracts in Chapter 9, but only in the
context of interest rate models.

Swaps A more recent development, dating from 1981, is the exchange of
future cash flows between two partners according to agreed prior criteria
that depend on the values of certain underlying assets. Swaps can thus
be thought of as portfolios of forward contracts, and the initial value as
well as the final value of the swap is zero. The cash flows to be exchanged
may depend on interest rates. In the simplest example (a plain vanilla
interest rate swap), one party agrees to pay the other cash flows equal to
interest at a fixed rate on a notional principal at each payment date. The
other party agrees to pay interest on the same notional principal and in
the same currency, but the cash flow is based on a floating interest rate.
Thus the swap transforms a floating rate loan into a fixed rate one and
vice versa. The floating rate used is often LIBOR (the London Interbank
Offer Rate), which determines the interest rate used by banks on deposits
from other banks in Eurocurrency markets; it is quoted on deposits of
varying duration-one month, three months, and so on. LIBOR operates as
a reference rate for international markets: three-month LIBOR is the rate
underlying Eurodollar futures contracts, for example.

There is now a vast range of swap contracts available, with currency
swaps (whereby the loan exchange uses fixed interest rate payments on
loans in different currencies) among the most heavily traded. We do not
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study swaps in this book; see [232] or [305] for detailed discussions. The lat-
ter text focuses on options that have derivative securities, such as forwards,
futures, or swaps, as their underlying assets; in general, such instruments
are known as exotics.

Options An option on a stock is a contract giving the owner the right,
but not the obligation, to trade a given number of shares of a common
stock for a fixed price at a future date (the expiry date T ). A call option
gives the owner the right to buy stocks, and a put option confers the right
to sell, at the fixed strike price K. The option is European if it can only be
exercised at the fixed expiry date T . The option is American if the owner
can exercise his right to trade at any time up to the expiry date. Options
are the principal financial instruments discussed in this book.

In Figures 1.1 and 1.2, we draw the simple graphs that illustrate the
payoff function of each of these options. In every transaction there are two
parties, the buyer and the seller, more usually termed the writer, of the
option. In the case of a European call option on a stock (St)t∈T with strike
price K at time T , the payoff equals ST − K if ST > K and 0 otherwise.
The payoff for the writer of the option must balance this quantity; that is,
it should equal K −ST if ST < K and 0 otherwise. The option writer must
honour the contract if the buyer decides to exercise his option at time T .

Fair Prices and Hedge Portfolios

The problem of option pricing is to determine what value to assign to the
option at a given time (e.g. at time 0). It is clear that a trader can make
a riskless profit (at least in the absence of inflation) unless she has paid an
‘entry fee’ that allows her the chance of exercising the option favourably at
the expiry date. On the other hand, if this ‘fee’ is too high, and the stock
price seems likely to remain close to the strike price, then no sensible trader
would buy the option for this fee. As we saw previously, operating on a set
T of possible trading dates (which may typically be a finite set of natural
numbers of the form {0, 1, . . . , T}, or, alternatively, a finite interval [0, T ]
on the real line), the buyer of a European call option on a stock with price
process (St)t∈T will have the opportunity of receiving a payoff at time T
of C(t) = max {ST − K, 0}, since he will exercise the option if, and only if,
the final price of the stock ST is greater than the previously agreed strike
price K.

With the call option price set at C0, we can draw the graph of the gain
(or loss) in the transaction for both the buyer and writer of the option.
Initially we assume for simplicity that the riskless interest rate is 0 (the
‘value of money’ remains constant); in the next subsection we shall drop
this assumption, and then account must be taken of the rate at which
money held in a savings account would accumulate. For example, with
continuous compounding over the interval T = [0, T ], the price C0 paid for
the option at time 0 would be worth C0e

rT by time T . With the rate r = 0,
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Figure 1.1: Payoff and gain for European call option

the buyer’s gain from the call option will be ST − K − C0 if ST > K and
−C0 if ST ≤ K. The writer’s gain is given by K − ST + C0 if ST > K
and C0 if ST ≤ K. Similar arguments hold for the buyer and writer of a
European put option with strike K and option price P0. The payoff and
gain graphs are given in Figures 1.1 and 1.2.

Determining the option price entails an assessment of a price to which
both parties would logically agree. One way of describing the fair price for
the option is as the current value of a portfolio that will yield exactly the
same return as does the option by time T . Strictly, this price is fair only
for the writer of the option, who can calculate the fair price as the smallest
initial investment that would allow him to replicate the value of the option
throughout the time set T by means of a portfolio consisting of stock and
a riskless bond (or savings account) alone. The buyer, on the other hand,
will want to cover any potential losses by borrowing the amount required
to buy the option (the buyer’s option price) and to invest in the market in
order to reduce this liability, so that at time T the option payoff at least
covers the loan. In general, the buyer’s and seller’s option prices will not
coincide-it is a feature of complete market models, which form the main
topic of interest in this book, that they do coincide, so that it becomes
possible to refer to the fair price of the option. Our first problem is to
determine this price uniquely.

When option replication is possible, the replicating portfolio can be
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Figure 1.2: Payoff and gain for European put option

used to offset, or hedge, the risk inherent in writing the option; that is, the
risk that the writer of the option may have to sell the share ST for the fixed
price K even though, with small probability, ST may be much larger than
K. Our second problem is therefore to construct such a hedge portfolio.

Call-Put Parity

Our basic market assumption enables us to concentrate our attention on
call options alone. Once we have dealt with these, the solutions of the cor-
responding problems for the European put option can be read off at once
from those for the call option. The crucial assumption that ensures this is
that our market model rules out arbitrage; that is, no investor should be
able to make riskless profits, in a sense that we will shortly make more pre-
cise. This assumption is basic to option pricing theory since there can be
no market equilibrium otherwise. It can be argued that the very existence
of ‘arbitrageurs’ in real markets justifies this assumption: their presence
ensures that markets will quickly adjust prices so as to eliminate disequi-
librium and hence will move to eliminate arbitrage.

So let Ct (resp. Pt) be the value at time t of the European call (resp. put)
option on the stock (St)t∈T. Writing

x+ =

{
x if x > 0
0 if x ≤ 0

,
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we can write the payoff of the European call as (ST − K)+ and that of the
corresponding put option as (K − ST )+.

It is obvious from these definitions that, at the expiry date T , we have

CT − PT = (ST − K)+ − (K − ST )+ = ST − K. (1.1)

Assume now that a constant interest rate r > 0 applies throughout T =
[0, T ]. With continuous compounding, a sum X deposited in the bank (or
money-market account) at time t < T accumulates to Xer(T−t) by time T .
Hence a cash sum of K, needed at time T, can be obtained by depositing
Ke−r(T−t) at time t.

We claim that, in order to avoid arbitrage, the call and put prices on
our stock S must satisfy (1.1) at all times t < T, with the appropriate
discounting of the cash sum K; i.e.,

Ct − Pt = St − e−r(T−t)K for all t ∈ T. (1.2)

To see this, compare the following ‘portfolios’:

(i) Buy a call and sell a put, each with strike K and horizon T. The fair
price we should pay is Ct − Pt.

(ii) Buy one share at price St and borrow e−r(T−t)K from the bank. The
net cost is St − e−r(T−t)K.

The value of these portfolios at time T is the same since the first option
yields CT − PT = ST − K, while the net worth of the second portfolio at
that time is also ST − K. Hence, if these two portfolios did not have the
same value at time t, we could make a riskless profit over the time interval
[t, T ] by simultaneously taking a long position in one and a short position
in the other. Equation (1.2) follows.

Exercise 1.1.2. Give an alternative proof of (1.2) by considering the pos-
sible outcomes at time T of the following trades made at time t < T : buy
a call and write a put on S, each with strike K, and sell one share of the
stock. Deposit the net proceeds in the bank account at constant riskless
interest rate r > 0. Show that if (1.2) fails, these transactions will always
provide a riskless profit for one of the trading partners.

More generally, the relation

Ct − Pt = St − βt,T K for all t ∈ T (1.3)

holds, where βt,T represents the discount at the riskless rate over the in-
terval [t, T ]. In our examples, with r constant, we have βt,T = βT−t =
e−r(T−t) in the continuous case and βt,T = βT−t = (1 + r)−(T−t) in the
discrete case.
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1.2 Single-Period Option Pricing Models

Risk-Neutral Probability Assignments

In our first examples, we restrict attention to markets with a single trading
period, so that the time set T contains only the two trading dates 0 and
T . The mathematical tools needed for contingent claim analysis are those
of probability theory: in the absence of complete information about the
time evolution of the risky asset (St)t∈T it is natural to model its value at
some future date T as a random variable defined on some probability space
(Ω,F, P ). Similarly, any contingent claim H that can be expressed as a
function of ST or, more generally, a function of (St)t∈T, is a non-negative
random variable on (Ω,F, P ).

The probabilistic formulation of option prices allows us to attack the
problem of finding the fair price H0 of the option in a different way: since
we do not know in advance what value ST will take, it seems logical to
estimate H by E (βH) using the discount factor β; that is, we estimate H
by its average discounted value. (Here E (·) = EP (·) denotes expectation
relative to the probability measure P .)

This averaging technique has been known for centuries and is termed the
‘principle of equivalence’ in actuarial theory; there it reflects the principle
that, on average, the (uncertain) discounted future benefits should be equal
in value to the present outlay. We are left, however, with a crucial decision:
how do we determine the probability measure? At first sight it is not clear
that there is a ‘natural’ choice at all; it seems that the probability measure
(i.e., the assignment of probabilities to every possible event) must depend
on investors’ risk preferences.

However, in particular situations, one can obtain a ‘preference-free’ ver-
sion of the option price: the theory that has grown out of the mathematical
modelling initiated by the work of Black and Scholes [27] provides a frame-
work in which there is a natural choice of measure, namely a measure
under which the (discounted) price process is a martingale. Economically,
this corresponds to a market in which the investors’ probability assign-
ments show them to be ‘risk-neutral’ in a sense made more precise later.
Although this framework depends on some rather restrictive conditions, it
provides a firm basis for mathematical modelling as well as being a test bed
for more ‘economically realistic’ market models. To motivate the choice of
the particular models currently employed in practice, we first consider a
simple numerical example.

Example 1.2.1. We illustrate the connection between the ‘fair price’ of a
claim and a replicating (or ‘hedge’) portfolio that mimics the value of the
claim. For simplicity, we again set the discount factor β ≡ 1; that is, the
riskless interest rate (or ‘inflator’) r is set at 0. The only trading dates are
0 and 1, so that any portfolio fixed at time 0 is held until time 1. Suppose
a stock S has price 10 (dollars, say) at time 0, and takes one of only two
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possible values at time 1:

S1 =

{
20 with probability p

7.5 with probability 1 − p
.

Consider a European call option H = (S1 − K)+ with strike price K = 15
written on the stock. At time 1, the option H yields a profit of $5 if S1 = 20
and $0 otherwise. The probability assignment is (p, 1−p), which, in general,
depends on the investor’s attitude toward risk: an inaccurate choice could
mean that the investor pays more for the option than is necessary. We look
for a ‘risk-neutral’ probability assignment (q, 1−q); that is, one under which
the stock price S is constant on average. Thus, if Q denotes the probability
measure given by (q, 1 − q), then the expected value of S under Q should
be constant (i.e., EQ (S1) = S0), which we can also write as EQ (∆S) = 0,
where ∆S = S1 − S0. (This makes S into a ‘one-step martingale’.) In our
example, we obtain

10 = 20q + 7.5(1 − q),

so that q = 0.2. With the probability assignment (0.2, 0.8), we then obtain
the option price π(H) = 5q = 1.

To see why this price is the unique ‘rational’ one, consider the hedge
portfolio approach to pricing: we attempt to replicate the final value of the
option by means of a portfolio (η, θ) of cash and stock alone and determine
what initial capital is needed for this portfolio to have the same time 1
value as H in all contingencies. The portfolio (η, θ) can then be used by
the option writer to insure, or hedge, perfectly against all the risk inherent
in the option.

Recall that the discount rate is 0, so that the bank account remains
constant. The value of our portfolio is

Vt = η + θSt for t = 0, 1.

Here we use $1 as our unit of cash, so that the value of cash held is simply
η, while θ represents the number of shares of stock held during the period.
Changes in the value of the portfolio are due solely to changes in the value
of the stock. Hence the gain from trade is simply given by G = θ∆S, and
V1 = V0 + G. By the choice of the measure Q, we also have

V0 = EQ (V0) = EQ (V1 − G) = EQ (V1) (1.4)

since EQ (θ∆S) = θEQ (∆S) = 0. To find a hedge (η, θ) replicating the
option, we must solve the following equations at time 1:

5 = η + 20θ, 0 = η + 7.5θ.

These have the solution η = −3 and θ = 0.4. Substituting into V0 = η+θS0
gives V0 = −3 + 0.4(10) = 1.
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The hedging strategy implied by the preceding situation is as follows.
At time 0, sell the option in order to obtain capital of $1, and borrow $3
in order to invest the sum of $4 in shares. This buys 0.4 shares of stock.
At time 1, there are two possible outcomes:

1. If S1 = 20, then the option is exercised at a cost of $5; we repay the
loan (cost $3) and sell the shares (gain 0.4 × $20 = $8).

Net balance of trade: 0.

2. If S1 = 7.5, then the option is not exercised (cost $0); we repay the
loan (cost $3) and sell the shares, gaining 0.4 × $7.5 = $3.

Net balance of trade: 0.

Thus, selling the option and holding the hedge portfolio exactly balance
out in each case, provided the initial price of the option is set at π(H) = 1.
It is clear that no other initial price has this property: if π(H) > 1 we can
make a riskless profit by selling the option in favour of the portfolio (η, θ)
and gain (π(H) − 1), while if π(H) < 1 we simply exchange roles with the
buyer in the same transaction! Moreover, since π(H) = 5q = 1, the natural
(risk-neutral) probability is given by q = 0.2 as before.

Remark 1.2.2. This example shows that the risk-neutral valuation of the
option is the unique one that prevents arbitrage profits, so that the price
π(H) will be fixed by the market in order to maintain market equilibrium.
The preceding simple calculation depends crucially on the assumption that
S1 can take only two values at time 1: even with a three-splitting it is no
longer possible, in general, to find a hedge portfolio (see Exercise 1.4.6).
The underlying idea can, however, be adapted to deal with more general
situations and to identify the intrinsic risk inherent in the particular market
commodities. We illustrate this first by indicating briefly how one might
construct a more general single-period model, where the investor has access
to external funds and/or consumption.

1.3 A General Single-Period Model

We now generalise the hedge portfolio approach to option pricing by ex-
amining the cost function associated with various trading strategies and
minimising its mean-square variation. Suppose that our stock price takes
the (known) value S0 at time 0 and the random value S1 at time 1. (These
are again the only trading dates in the model.) In order to express all
values in terms of time-0 prices, we introduce a discount factor β < 1 and
use the notation X = βX for any random variable X. So write S1 = βS1
for the discounted value of the stock price.

The stock price S and a quite general contingent claim H are both taken
to be random variables on some probability space (Ω,F, P ), and we wish
to hedge against the obligation to honour the claim; that is, to pay out



1.3. A GENERAL SINGLE-PERIOD MODEL 13

H(ω) at time 1. (Here we are assuming that an underlying probability P is
known in advance.) To this end, we build a portfolio at time 0 consisting of
θ shares of stock and η0 units of cash. The initial value of this portfolio is
V0 = η0 +θS0. We place the cash in the savings account, where it increases
by a factor β−1 by time 1. We wish this portfolio to have value V1 = H at
time 1; in discounted terms, V 1 = H.

Assuming that we have access to external funds, this can be achieved
very simply by adjusting the savings account from η0 to the value η1 = H−
θS1 since this gives the portfolio value V1 = θS1 +η1 = θS1 +H −θS1 = H.
As H is given, it simply remains to choose the constants θ and V0 to
determine our hedging strategy (η, θ) completely. The cost of doing this
can be described by the process (C0, C1), where C0 = V0 is the initial
investment required, and ∆C = C1 − C0 = η1 − η0 since the only change
at time 1 was to adjust η0 to η1. Finally, write ∆X = βX1 − X0 for any
‘process’ X = (X0, X1), in order to keep all quantities in discounted terms.
From the preceding definitions, we obtain

∆C = βC1 − C0 = βη1 − η0

= β(V1 − θS1) − (V0 − θS0)

= H − (V0 + θ∆S). (1.5)

Equation (1.5) exhibits the discounted cost increment ∆C simply as the
difference between the discounted claim H and its approximation by linear
estimates based on the discounted price increment ∆S. A rather natural
choice of the parameters θ and V0 is thus given by linear regression: the
parameter values θ and V0 that minimise the risk function

R = E
(
(∆C)2

)
= E

(
(H − (V0 + θ∆S))2

)
are given by the regression estimates

θ =
cov
(
H, ∆S

)
var
(
∆S
) , V0 = E

(
H
)

− θE
(
∆S
)
.

In particular, E
(
∆C
)

= 0, so that the average discounted cost remains
constant at V0. The minimal risk obtained when using this choice of the
parameters is

Rmin = var
(
H
)

− θ2var
(
∆S
)

= var
(
H
) (

1 − ρ2) ,
where ρ = ρ

(
H, S1

)
is the correlation coefficient. Thus, the intrinsic risk

of the claim H cannot be completely eliminated unless |ρ| = 1.
In general pricing models, therefore, we cannot expect all contingent

claims to be attainable by some hedging strategy that eliminates all the
risk-where this is possible, we call the model complete. The essential feature
that distinguishes complete models is a martingale representation property:
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it turns out that in these cases the (discounted) price process is a basis for
a certain vector space of martingales.

The preceding discussion is of course much simplified by the fact that
we have dealt with a single-period model. In the general case, this rather
sophisticated approach to option pricing (due to [136]; see [134] and [268] for
its further development, which we do not pursue here) can only be carried
through at the expense of using quite powerful mathematical machinery.
In this chapter we consider in more detail only the much simpler situation
where the probabilities arise from a binomial splitting.

1.4 A Single-Period Binomial Model

We look for pricing models in which we can take η1 = η0 = η, that is,
where there is no recourse to external funds. Recall that in the general
single-period model the initial holding is

V0 = η + θS0,

which becomes
V1 = η + θS1 = V0 + θ∆S

at time 1.

Pricing

The simplest complete model has the binomial splitting of ∆S that we
exploited in Example 1.2.1. We assume that the random variable S1 takes
just two values, denoted by Sb = (1+b)S0 and Sa = (1+a)S0, respectively,
where a, b are real numbers. For any contingent claim H, we find θ and
V0 such that, at time 1, the discounted value of βH coincides with the
discounted value βV1 of its replicating portfolio (η, θ), where η = V0 − θS0.
Writing Hb and Ha for the two possible time 1 values of H, we require V0
and θ to satisfy the equations

βHb = V0 + θ(βSb − S0), βHa = V0 + θ(βSa − S0).

Their unique solution for (V0, θ) is given by

θ =
Hb − Ha

Sb − Sa
(1.6)

and

V0 = βHa − Hb − Ha

Sb − Sa
(βSa −S0) = β

(
Hb

β−1S0 − Sa

Sb − Sa
+ Ha

Sb − β−1S0

Sb − Sa

)
.

Hence we also have

η = V0 − θS0 = β
SbHa − SaHb

Sb − Sa
= β

(1 + b)Ha − (1 + a)Hb

b − a
. (1.7)
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Since V1 = H for these choices of θ and V0,

θ =
Vb − Va

Sb − Sa
=

δV

δS

represents the rate of change in the value of the portfolio (or that of the
contingent claim it replicates) per unit change in the underlying stock price.
We shall meet this parameter again in more general pricing models (where
it is known as the delta of the contingent claim and is usually denoted by
∆).

Setting

q =
β−1S0 − Sa

Sb − Sa
,

it follows that
V0 = β(qHb + (1 − q)Ha)

since 1 − q = Sb−β−1S0
Sb−Sa

. In the special case where the discount rate β is
(1+r)−1 for some fixed r > 0, we see that q ∈ (0, 1) if and only if r ∈ (a, b)
(i.e., the riskless interest rate must lie between the two rates of increase
in the stock price). This condition is therefore necessary and sufficient for
the one-step binomial model to have a risk-neutral probability assignment
Q = (q, 1 − q) under which the fair price of the claim H is given as the
expectation of its discounted final value, namely

π(H) = V0 = EQ(βVT ) = EQ(βH). (1.8)

These choices of θ and V0 provide a linear estimator with perfect fit for
H. The fair price V0 for H therefore does not need to be adjusted by any risk
premium in this model, and it is uniquely determined, irrespective of any
initial probability assignment (i.e., it does not depend on the investor’s at-
titude toward risk). The binomial model constructed here therefore allows
preference-free or arbitrage pricing of the claim H. Since the cost function
C has constant value V0, we say that the replicating strategy (η, θ) is self-
financing in this special case. No new funds have to be introduced at time
1 (recall that η = V0 − θS0 by definition).

In the general single-period model, it is not possible to ensure that C is
constant. However, the pricing approach based on cost-minimisation leads
to an optimal strategy for which the cost function is constant on average.
Hence we call such a strategy mean-self-financing (see [141]).

The pricing formula (1.8) is valid for any contingent claim in the one-
period binomial model. The following example shows how this simplifies
for a European call option when the riskless interest rate is constant and
the strike price lies between the two future stock price values.

Example 1.4.1. Assume that H = (S1 − K)+, β = (1 + r)−1, and

(1 + a)S0 < K ≤ (1 + b)S0.
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Then we have

Hb = (1 + b)S0 − K, Ha = 0,

so that

θ =
Hb − Ha

Sb − Sa
=

S0(1 + b) − K

S0(b − a)
.

The call option price is therefore

H0 = V0 =
1

1 + r

r − a

b − a
(S0(1 + b) − K) .

Note that differentiation with respect to b and a, respectively, shows that,
under the above assumptions, the call option price is an increasing function
of b and a decreasing function of a, in accord with our intuition.

Risk and Return

We can measure the ‘variability’ of the stock S by means of the variance of
the random variable S1

S0
, which is the same as the variance of the return on

the stock, RS = S1−S0
S0

. This is a Bernoulli random variable taking values
b and a with probability p and 1 − p, respectively. Hence its mean µS and
variance σ2

S are given by

µS =
pSb + (1 − p)Sa

S0
− 1 = a + p(b − a) (1.9)

and

σ2
S = p(1 − p)

(
Sb − Sa

S0

)2

= p(1 − p)(b − a)2,

respectively.
We take the standard deviation σS =

√
p(1 − p)(b−a) as the measure of

risk inherent in the stock price S. We call it the volatility of the stock. Thus,
with a given initial probability assignment (p, 1−p), the risk is proportional
to (b − a) and hence increases with increasing ‘spread’ of the values a, b,
as expected. However, contrary to a frequently repeated assertion, the
call option price H0 does not necessarily increase with increasing σS , as
is shown in the following simple example due to Marek Capinski (oral
communication).

Example 1.4.2. Take r = 0 and let the call option begin at the money
(i.e., let K = S0 = 1). Then (1 + b)S0 − K = b, so that the option price
computed via (1.8) reduces to V0 = −ab

b−a . The choice of b = −a = 0.05
yields V0 = 0.025, while σS = 0.1

√
p(1 − p). On the other hand, b = 0.01,

a = −0.19 gives V0 = 0.0095, and σS = 0.2
√

p(1 − p).
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Nonetheless, under any fixed initial probability assignment P = (p, 1 −
p), we can usefully compare the risk and return associated with holding
the stock S with those for the option (or any contingent claim H). The
treatment given here is a variant of that given in [69] and provides a fore-
taste of the sensitivity analysis undertaken for continuous-time models in
Chapter 7.

In the single-period binomial model, the calculations reduce to consid-
eration of the mean and standard deviation of Bernoulli random variables
since the mean and variance of the claim H under P are given analogously
by

µH =
pHb + (1 − p)Ha

H0
− 1, σ2

H = p(1 − p)
(

Hb − Ha

H0

)2

. (1.10)

Define the elasticity (also known as the beta of the claim) as the covari-
ance of the returns RS and RH normalised by the variance of RS . Since
both are Bernoulli random variables, it is easy to see that

EH =
p(1 − p)Hb−Ha

H0

Sb−Sa

S0

p(1 − p)
(

Sb−Sa

S0

)2 =
Hb − Ha

H0
÷ Sb − Sa

S0
. (1.11)

Noting that θ = Hb−Ha

Sb−Sa
, we obtain EH = S0

H0
θ, and therefore σH = EHσS ,

so that the volatility of the claim H is proportional to that of the underlying
stock S, with EH as the constant of proportionality.

What about their rates of return? We shall consider the case of a
constant riskless rate r > 0 and compare the excess mean returns µH − r
and µS − r. Recall that the replicating portfolio (η, θ) computed for H in
(1.6) and (1.7) satisfies

η(1 + r) + θSb = Hb, η(1 + r) + θSa = Ha,

while also determining the option price H0 = η + θS0. Thus, with this
portfolio we obtain

θSb − Hb = (1 + r)(θS0 − H0) = θSa − Ha.

Hence, for any p ∈ (0, 1), we have

p(θSb − Hb) + (1 − p)(θSa − Ha) = (1 + r)(θS0 − H0);

i.e.,

θ(pSb + (1 − p)Sa) − (pHb + (1 − p)Ha) = (1 + r)(θS0 − H0),

so that

θS0

(
pSb + (1 − p)S0

S0
− 1
)

− H0

(
pHb + (1 − p)Ha

H0
− 1
)

= r(θS0 − H0).
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Using the definitions of µS and µH given by (1.9) and (1.10), we have

θS0µS − H0µH = rθS0 − rH0.

Rearranging terms, and recalling that EH = S0
H0

θ, we have therefore shown
that

µH − r = EH(µS − r).

These relations are valid for any contingent claim H in the single-period
binomial model and any fixed probability assignment P = (p, 1 − p). Now
recall that the risk-neutral probabilities

(q, 1 − q) =
(

(1 + r)S0 − Sa

Sb − Sa
,
Sb − (1 + r)S0

Sb − Sa

)
(1.12)

provide the price of the claim H as the discounted expectation of its final
values: H0 = ( 1

1+r )(qHb + (1 − q)Ha). This leads to the identity

(1 + r) (S0(Hb − Ha) − H0(Sb − Sa)) + (SbHa − SaHb) = 0. (1.13)

Exercise 1.4.3. Show that (1.13) indeed holds true.

In particular, if H = (S1 − K)+ is a European call, then

SbHa − SaHb ≤ 0, (1.14)

irrespective of the relationship between the values of K, Hb, and Ha.

Exercise 1.4.4. Verify that (1.14) holds true in all three cases.

Hence, for a European call option, the elasticity satisfies EH ≥ 1. This
shows that holding the option is intrinsically riskier than holding the stock
but also leads to a greater mean excess rate of return over the riskless
interest rate.

Note further that for the risk-neutral probability Q = (q, 1 − q), the
mean excess return is zero, as EQ

(
1

1+r H1

)
= H0; i.e.,

EQ (RH) =
qHb + (1 − q)Ha

H0
− 1 = r.

It is easy to verify that, for any given P = (p, 1 − p), we have

EP (RH) − EQ (RH) = (p − q)
Hb − Ha

H0
,

so that for any P with positive excess mean return (i.e., EP (RH) ≥ r), we
can express the mean return as

EP (RH)−r = EP (RH)−EQ (RH) = |p − q| Hb − Ha

H0
= |p − q| σH√

p(1 − p)
.
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This justifies the terminology used to describe Q: the excess mean
return under any probability assignment P is directly proportional to the
standard deviation σH of the return RH calculated under P. However, the
mean return under Q is just the riskless rate r, and this holds irrespective
of the ‘riskiness’ of H calculated under any other measure. The investor
using the probability q to calculate the likelihood that the stock will move
to (1 + b)S0 is therefore risk-neutral.

Thus, by choosing the risk-neutral measure Q, we can justify the long-
standing actuarial practice of averaging the value of the discounted claim,
at least for the case of our single-period binomial model. Moreover, we have
shown that in this model every contingent claim can be priced by arbitrage;
that is, there exists a (unique) self-financing strategy (η, θ) that replicates
the value of H, so that the pricing model is complete. In a complete model,
the optimal choice of strategy completely eliminates the risk in trading H,
and the fair price of H is uniquely determined as the initial value V0 of the
optimal strategy, which can be computed explicitly as the expectation of
H relative to the risk-neutral measure Q.

Before leaving single-period models, we review some of the preceding
concepts in a modification of Example 1.2.1.

Example 1.4.5. Suppose that the stock price S1 defined in Example 1.2.1
can take three values, namely 20, 15, and 7.5. In this case, there are an
infinite number of risk-neutral probability measures for this stock. Since
β = 1 in this example, the risk-neutral probability assignment requires
EQ (S1) = S0. This leads to the equations

20q1 + 15q2 + 7.5q3 = 10, q1 + q2 + q3 = 1,

with solutions
(
λ, 1

3 (1 − 5λ), 1
3 (2 + 2λ)

)
for arbitrary λ. For nondegenerate

probability assignments, we need qi ∈ (0, 1) for i = 1, 2, 3; hence we require
λ ∈
(
0, 1

5

)
. For each such λ, we obtain a different risk-neutral probability

measure Qλ.
Let X = (X1, X2, X3) be a contingent claim based on the stock S. We

show that there exists a replicating portfolio for X if and only if

3X1 − 5X2 + 2X3 = 0. (1.15)

Indeed, recall that a hedge portfolio (η, θ) for X needs to satisfy V1 =
η + θS1 = X in all outcomes, so that

η + 20θ = X1, η + 15θ = X2, η + 7.5θ = X3.

This leads to

θ =
X1 − X3

12.5
=

X2 − X3

7.5
,

which, in turn, leads to (1.15). Thus, a contingent claim in this model is
attainable if and only if equation (1.15) holds.
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Finally, we verify that the value of an attainable claim X is the same
under every risk-neutral measure: we have

EQλ
(X) = λX1 +

1
3
(1 − 5λ)X2 +

1
3
(2 + 2λ)X3

=
1
3

(λ(3X1 − 5X2 + 2X3) + X2 + 2X3) .

This quantity is independent of λ precisely when the attainability crite-
rion (1.15) holds.

If the claim is not attainable, we cannot determine the price uniquely.
Its possible values lie in the interval (infλ EQλ

(X) , supλ EQλ
(X)), where

λ ∈
(
0, 1

5

)
. For example, if X = (S1−K)+ is a European call with strike 12,

then we obtain EQλ
(X) = 1

3 (λ(24 − 15)+ 3) = 1 + 3λ. Hence, the possible
option values lie in the range (1, 1.6). The choice of the ‘optimal’ value
now depends on the optimality criterion employed. One such criterion was
described in Section 1.3, but there are many others. The study of optimal
pricing in incomplete models remains a major topic of current research and
is largely beyond the scope of this book.
Exercise 1.4.6. Extend the market defined in the previous example by
adding a second stock S′ with S′

0 = 5 and S′
1 = 6, 6, or 4, so that the

vector of stock prices (S, S′) reads

(S0, S
′
0) = (10, 5), (S1, S

′
1) =

⎧⎪⎨⎪⎩
(20, 6) with probability p1

(15, 6) with probability p2

(7.5, 4) with probability p3

.

Verify that in this case there is no risk-neutral probability measure for
the market-recall that we would need pi > 0 for i = 1, 2, 3. We say that
this market is not viable. Show that it is possible to construct arbitrage
opportunities in this situation.
Exercise 1.4.7. Suppose the one-period market has riskless rate r > 0 and
that the risky stock S has S0 = 4 while S1 can take the three values 2.5, 5,
and 3. Find all the risk-neutral probabilities Q = (q1, q2, q3) in this model
in terms of r. Show that there is no risk-neutral probability assignment for
this model when r = 0.25. With this riskless rate, find an explicit strategy
for making a profit with no net investment. When r < 0.25, find a sufficient
condition (in terms of r) for a claim X = (X1, X2, X3) to be attainable.

1.5 Multi-period Binomial Models

Consider a binomial pricing model with trading dates 0, 1, 2, . . . , T for some
fixed positive integer T . By this we mean that the price of the stock takes
values S0, S1, S2, . . . , ST , and, for each t ≤ T ,

St =

{
(1 + b)St−1 with probability p

(1 + a)St−1 with probability 1 − p
.
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Figure 1.3: Event tree for the CRR model

As before, r > 0 is the riskless interest rate (so that β = (1 + r)−1) and
r ∈ (a, b).

The event tree that describes the behaviour of stock prices in this model
is depicted in Figure 1.3. Each arrow points ‘up’ with probability q and
‘down’ with probability 1 − q.

A One-Step Risk-Neutral Measure

Assume that H is a contingent claim to be exercised at time T . Consider
the current value of H at time T − 1, that is, one period before expiry. We
can consider this as the initial value of a claim in the single-period model
discussed previously, and so there is a hedging strategy (η, θ) that replicates
the value of H on the time set {T − 1, T} and a risk-neutral measure Q;
we can therefore compute the current value of βH as its expectation under
Q.

To be specific, assume that H = (ST − K)+ is a European call option
with strike price K and expiry date T . Writing Hb for the value of H if
ST = (1 + b)ST−1 and Ha similarly, the current value of H is given by
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EQ

(
H

1+r

)
, where the measure Q is given by (q, 1 − q) as defined in (1.12).

Hence
VT−1 =

1
1 + r

(qHb + (1 − q)Ha) (1.16)

with (writing S for ST−1)

q =
(1 + r)S − (1 + a)S
(1 + b)S − (1 + a)S

=
r − a

b − a
.

This again illustrates why we called Q the ‘risk-neutral’ measure since
a risk-neutral investor is one who is indifferent between an investment with
a certain rate of return and another whose uncertain rate of return has
the same expected value. Under Q, the expectation of ST , given that
ST−1 = S, is given by

EQ (ST |ST−1 = S ) = q(1 + b)S + (1 − q)(1 + a)S = (1 + r)S.

Two-Period Trading

Now apply this analysis to the value VT−2 of the call H at time T − 2:
the stock, whose value ST−2 is now written as S, can take one of the three
values (1 + b)2S, (1 + a)(1 + b)S, and (1 + a)2S at time T ; hence the call
H must have one of three values at that time (see Figure 1.3). We write
these values as Hbb, Hab, and Haa, respectively. From (1.8), and using the
definition of q in (1.12), we can read off the possible values of VT−1 as

Vb = β(qHbb + (1 − q)Hab), Va = β(qHab + (1 − q)Haa),

respectively. For each of these cases, we have now found the value of the
option at time T − 1 and can therefore select a hedging portfolio as before.
The value of the parameters θ and η is determined at each stage exactly
as in the single-period model. We obtain

VT−2 = β(qVb + (1 − q)Va)
= β {qβ(qHbb + (1 − q)Hab) + (1 − q)β(qHab + (1 − q)Haa)}

= β2
{

q2 [(1 + b)2S − K
]+

+ 2q(1 − q) [(1 + a)(1 + b)S − K]+

+(1 − q)2
[
(1 + a)2S − K

]+}
.

Hence the current value of the claim is completely determined by quantities
that are known to the investor at time T − 2.

The CRR Formula

We can continue this backward recursion to calculate the value process
(Vt)t∈T. In particular, with β = (1 + r)−1, the initial investment needed to
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replicate the European call option H is

V0 = βT
T∑

t=0

(
T

t

)
qt(1 − q)T−t

(
(1 + b)t(1 + a)T−tS0 − K

)+
= S0

T∑
t=A

(
T

t

)
qt(1 − q)T−t (1 + b)t(1 + a)T−t

(1 + r)T

− K(1 + r)−T
T∑

t=A

(
T

t

)
qt(1 − q)T−t, (1.17)

where A is the smallest integer k for which S0(1 + b)k(1 + a)T−k > K.
Using

q =
r − a

b − a
, q′ = q

1 + b

1 + r
,

we obtain q′ ∈ (0, 1) and 1 − q′ = (1 − q) 1+a
1+r . We can finally write the fair

price for the European call option in (1.17) in this multi-period binomial
pricing model as

V0 = S0Ψ (A; T, q′) − K(1 + r)−T Ψ (A; T, q) , (1.18)

where Ψ is the complementary binomial distribution function; that is,

Ψ (m; n, p) =
n∑

j=m

(
n

j

)
pj(1 − p)n−j .

Formula (1.18) is known as the Cox-Ross-Rubinstein (or CRR, see [59])
binomial option pricing formula for the European call. We shall shortly give
an alternative derivation of this formula by computing the expectation of H
under the risk-neutral measure Q directly, utilising the martingale property
of the discounted stock price under this measure.

Recall the event tree in Figure 1.3. At each node there are only two
branches, that is, one more than the number of stocks available. It is this
simple splitting property that ensures that the model is complete since it
allows us to ‘cover’ the two random outcomes at each stage by adjusting
the quantities θ and η.

The Hedge Portfolio

More generally, it is clear that the value Vt of the option at time t ≤ T is
given by the formula

Vt = StΨ (At; T − t, q′) − K(1 + r)−T−tΨ (At; T − t, q) , (1.19)

where At is the smallest integer k for which St(1 + b)k(1 + a)T−t−k > K.
An analysis similar to that outlined in Section 1.4 provides the components
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of the trading strategy (η, θ): the portfolio (ηt−1, θt−1) is held over the time
interval [t − 1, t] and is required to replicate Vt; i.e.,

θt−1St + ηt−1(1 + r) = Vt.

Thus Vt is determined by St−1 and the price movement in the time interval
[t − 1, t], so that it takes two possible values, depending on whether St =
(1 + b)St−1 or St = (1 + a)St−1. Writing V b

t and V a
t , respectively, for the

resulting values, we need to solve the equations

θt−1(1 + b)St−1 + ηt−1(1 + r) = V b
t , θt−1(1 + a)St−1 + ηt−1(1 + r) = V a

t .

Again we obtain

θt−1 =
V b

t − V a
t

(b − a)St−1
, ηt−1 =

(1 + b)V a
t − (1 + a)V b

t

(1 + r)(b − a)
. (1.20)

This leads to the explicit formulas

θt =
T−t∑
s=At

(
T − t

s

)
(q′)s(1 − q′)T−t−s

ηt = −K(1 + r)−(T−t)
T−t∑
s=At

(
T − t

s

)
qs(1 − q)T−t−s

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.21)

for θt and ηt.

Exercise 1.5.1. Verify the formulas in (1.21) by writing down binomial
expressions for V b

t and V a
t analogously with (1.16).

1.6 Bounds on Option Prices

We conclude this chapter with a few simple observations concerning bounds
on option prices. We restrict attention to call options, though similar arbi-
trage considerations provide bounds for put options. The bounds described
here are quite crude but are independent of the model used, relying solely
on the assumption of ‘no arbitrage’. In this section, we denote the call
price by C0 and the put price by P0.

It should be obvious that American options are, in general, more valu-
able than their European counterparts since the holder has greater flexi-
bility in exercising them. We can illustrate this by constructing a simple
arbitrage. For example, if the price C0(E) of a European call with strike
K and exercise date T were greater than the price C0(A) of an American
option with the same K and T , then we would make a riskless profit by
writing the European option and buying the American one, while pocket-
ing the difference C0(E) − C0(A). We keep this riskless profit by holding
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the American option until time T when both options have the same value.
Thus, in the absence of arbitrage, the relations

0 ≤ C0(E) ≤ C0(A) (1.22)

will always hold.
Both option prices must lie below the current value S0 of the underlying

share (and will in practice be much less): if C0(A) were greater than S0,
we could buy a share at S0 and write the option. The profit made is secure
since the option liability is covered by the share. By (1.22), both option
values are therefore less than S0.

Call-put parity for European options (see (1.3)) demands that

C0(E) − P0(E) = S0 − βT K.

As P0(E) ≥ 0, it follows that C0(E) ≥ S0 − βT K. We conclude that the
European call option price lies in the interval

[
min
{
0, S0 − βT K

}
, S0
]
.

While this remains a crude estimate, it holds in all option pricing models.
These bounds provide a simple, but initially surprising, relationship

between European and American call option prices for shares that (as here)
pay no dividends. Note first that

C0(A) ≥ C0(E) ≥ S0 − βT K ≥ S0 − K (1.23)

since the discount factor β is less than or equal to 1. This means that
the option price is, in either case, at least equal to the gain achieved by
immediate exercise of the option. Hence (as long as our investor prefers
more to less) the option will not be exercised immediately. But the same
argument applies at any starting time t < T , so that the European option’s
value Ct(E) at time t (which must be the same as that of an option written
at t with strike K and exercise date T ) satisfies Ct(E) ≥ St − βT−tK,
and, as previously, Ct(A) ≥ St − K, which is independent of the time
to expiry T − t. Consequently, an American call option on a stock that
pays no dividends will not be exercised before expiry, so that in this case
C0(E) = C0(A).

Exercise 1.6.1. Derive the following bounds for the European put option
price P0(E) by arbitrage arguments:

max
{
0, βT K − S0

}
≤ P0(E) ≤ βT K.

Call-put parity allows a calculation of the riskless interest rate from
European put and call prices since we can write

e−r(T−t)K = St − Ct(E) + Pt(E) for t < T,

so that
r =

1
T − t

[log K − log(St + Pt(E) − Ct(E))] . (1.24)
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However, as European options are much less frequently traded than
their American counterparts, it is more useful to have an estimate of r
in terms of the latter. This follows at once: as we have just seen for the
case t = 0, we must have Ct(A) = Ct(E) for all t < T, while Pt(A) ≥
Pt(E) by the same argument as was established in (1.22) for calls. Hence,
for American options during whose lifetime the underlying stock pays no
dividends, we have

r ≥ 1
T − t

[log K − log(St + Pt(A) − Ct(A))] . (1.25)

In practice, this inequality is used to check put and call prices against the
prevailing riskless rate (e.g. , LIBOR rate); where it fails, market prices offer
(usually short-lived) arbitrage opportunities. It can also serve to provide
estimates of r for use in the simulation of the evolution of the stock price
from options on the stock (see, e.g. , [210].



Chapter 2

Martingale Measures

2.1 A General Discrete-Time Market Model

Information Structure

Fix a time set T = {0, 1, . . . , T}, where the trading horizon T is treated as
the terminal date of the economic activity being modelled, and the points of
T are the admissible trading dates. We assume as given a fixed probability
space (Ω,F, P ) to model all ‘possible states of the market’.

In most of the simple models discussed in Chapter 1, Ω is a finite prob-
ability space (i.e., has a finite number of points ω each with P ({ω}) > 0).
In this situation, the σ-field F is the power set of Ω, so that every subset
of Ω is F-measurable.

Note, however, that the finite models can equally well be treated by
assuming that, on a general sample space Ω, the σ-field F in question is
finitely generated. In other words, there is a finite partition P of Ω into
mutually disjoint sets A1, A2, . . . , An whose union is Ω and that generates
F so that F also contains only finitely many events and consists precisely
of those events that can be expressed in terms of P. In this case, we further
demand that the probability measure P on F satisfies P (Ai) > 0 for all i.

In both cases, the only role of P is to identify the events that investors
agree are possible; they may disagree in their assignment of probabilities
to these events. We refer to models in which either of the preceding addi-
tional assumptions applies as finite market models. Although most of our
examples are of this type, the following definitions apply to general market
models. Real-life markets are, of course, always finite; thus the additional
‘generality’ gained by considering arbitrary sample spaces and σ-fields is a
question of mathematical convenience rather than wider applicability!

The information structure available to the investors is given by an in-
creasing (finite) sequence of sub-σ-fields of F: we assume that F0 is trivial;
that is, it contains only sets of P -measure 0 or 1. We assume that (Ω,F0)
is complete (so that any subset of a null set is itself null and F0 contains all

27
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P -null sets) and that F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ FT = F. An increasing family
of σ-fields is called a filtration F = (Ft)t∈T on (Ω,F, P ). We can think of Ft

as containing the information available to our investors at time t: investors
learn without forgetting, but we assume that they are not prescient-insider
trading is not possible. Moreover, our investors think of themselves as
‘small investors’ in that their actions will not change the probabilities they
assign to events in the market. Again, note that in a finite market model
each σ-field Ft is generated by a minimal finite partition Pt of Ω and that
P0 = {Ω} ⊂ P1 ⊂ P2 ⊂ · · · ⊂ PT = P. At time t, all our investors know
which cell of Pt contains the ‘true state of the market’, but none of them
knows more.

Market Model and Numéraire

The definitions developed in this chapter will apply to general discrete
market models, where the sample space need not be finite. Fix a prob-
ability space (Ω,F, P ), a natural number d, the dimension of the mar-
ket model, and assume as given a (d + 1)-dimensional stochastic process
S =

{
Si

t : t ∈ T, i = 0, 1, . . . , d
}

to represent the time evolution of the se-
curities price process. The security labelled 0 is taken as a riskless (non-
random) bond (or bank account) with price process S0, while the d risky
(random) stocks labelled 1, 2, . . . , d have price processes S1, S2, . . . , Sd. The
process S is assumed to be adapted to the filtration F, so that for each
i ≤ d, Si

t is Ft-measurable; that is, the prices of the securities at all times
up to t are known at time t. Most frequently, we in fact take the filtra-
tion F as that generated by the price process S =

(
S1, S2, . . . , Sd

)
. Then

Ft = σ (Su : u ≤ t) is the smallest σ-field such that all the Rd+1-valued
random variables

{
Su =

(
S0

u, S1
u, . . . , Sd

u

)
, u ≤ t

}
are Ft-measurable. In

other words, at time t, the investors know the values of the price vectors
(Su : u ≤ t), but they have no information about later values of S.

The tuple (Ω,F, P, T, F, S) is the securities market model. We require
at least one of the price processes to be strictly positive throughout; that
is, to act as a benchmark, known as the numéraire, in the model. As is
customary, we generally assign this role to the bond price S0, although in
principle any strictly positive Si could be used for this purpose.

Note on Terminology: The term ‘bond’ is the one traditionally used
to describe the riskless security that we use here as numéraire, although
‘bank account’ and ‘money market account’ are popular alternatives. We
continue to use ‘bond’ in this sense until Chapter 9, where we discuss
models for the evolution of interest rates; in that context, the term ‘bond’
refers to a certain type of risky asset, as is made clear.
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2.2 Trading Strategies

Value Processes

Throughout this section, we fix a securities market model (Ω, F, P, T, F, S).
We take S0 as a strictly positive bond or riskless security, and without loss
of generality we assume that S0(0) = 1, so that the initial value of the bond
S0 yields the units relative to which all other quantities are expressed. The
discount factor βt = 1

S0
t

is then the sum of money we need to invest in
bonds at time 0 in order to have 1 unit at time t. Note that we allow the
discount rate - that is, the increments in βt - to vary with t; this includes
the case of a constant interest rate r > 0, where βt = (1 + r)−t.

The securities S0, S1, S2, . . . , Sd are traded at times t ∈ T: an investor’s
portfolio at time t ≥ 1 is given by the Rd+1-valued random variable θt =
(θi

t)0≤i≤d with value process Vt(θ) given by

V0(θ) = θ1 · S0, Vt(θ) = θt · St =
d∑

i=0

θi
tS

i
t for t ∈ T, t ≥ 1.

The value V0(θ) is the investor’s initial endowment. The investors select
their time t portfolio once the stock prices at time t − 1 are known, and
they hold this portfolio during the time interval (t − 1, t]. At time t the
investors can adjust their portfolios, taking into account their knowledge
of the prices Si

t for i = 0, 1, . . . , d. They then hold the new portfolio θt+1
throughout the time interval (t, t + 1].

Market Assumptions

We require that the trading strategy θ = {θt : t = 1, 2, . . . , T} consisting of
these portfolios be a predictable vector-valued stochastic process: for each
t < T , θt+1 should be Ft-measurable, so θ1 is F0-measurable and hence
constant, as F0 is assumed to be trivial. We also assume throughout that
we are dealing with a ‘frictionless’ market; that is, there are no transaction
costs, unlimited short sales and borrowing are allowed (the random vari-
ables θi

t can take any real values), and the securities are perfectly divisible
(the Si

t can take any positive real values).

Self-Financing Strategies

We call the trading strategy θ self-financing if any changes in the value
Vt(θ) result entirely from net gains (or losses) realised on the investments;
the value of the portfolio after trading has occurred at time t and before
stock prices at time t + 1 are known is given by θt+1 · St. If the total
value of the portfolio has been used for these adjustments (i.e., there are
no withdrawals and no new funds are invested), then this means that

θt+1 · St = θt · St for all t = 1, 2, . . . , T − 1. (2.1)
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Writing ∆Xt = Xt − Xt−1 for any function X on T, we can rewrite (2.1)
at once as

∆Vt(θ) = θt · St − θt−1 · St−1 = θt · St − θt · St−1 = θt · ∆St; (2.2)

that is, the gain in value of the portfolio in the time interval (t − 1, t] is
the scalar product in Rd of the new portfolio vector θt with the vector ∆St

of price increments. Thus, defining the gains process associated with θ by
setting

G0(θ) = 0, Gt(θ) = θ1 · ∆S1 + θ2 · ∆S2 + · · · + θt · ∆St,

we see at once that θ is self-financing if and only if

Vt(θ) = V0(θ) + Gt(θ) for all t ∈ T. (2.3)

This means that θ is self-financing if and only if the value Vt(θ) arises
solely as the sum of the initial endowment V0(θ) and the gains process
Gt(θ) associated with the strategy θ.

We can write this relationship in yet another useful form: since Vt(θ) =
θt · St for any t ∈ T and any strategy θ, it follows that we can write

∆Vt = Vt − Vt−1

= θt · St − θt−1 · St−1

= θt · (St − St−1) + (θt − θt−1) · St−1

= θt · ∆St + (∆θt) · St−1. (2.4)

Thus, the strategy θ is self-financing if and only if

(∆θt) · St−1 = 0. (2.5)

This means that, for a self-financing strategy, the vector of changes in
the portfolio θ is orthogonal in Rd+1 to the prior price vector St−1. This
property is sometimes easier to verify than (2.1). It also serves to justify the
terminology: the cumulative effect of the time t variations in the investor’s
holdings (which are made before the time t prices are known) should be to
balance each other. For example, if d = 1, we need to balance ∆θ0

t S0
t−1

against ∆θ1
t S1

t−1 since by (2.5) their sum must be zero.

Numéraire Invariance

Trivially, (2.1) and (2.3) each have an equivalent ‘discounted’ form. In fact,
given any numéraire (i.e., any process (Zt) with Zt > 0 for all t ∈ T), it
follows that a trading strategy θ is self-financing relative to S if and only
if it is self-financing relative to ZS since

(∆θt) · St−1 = 0 if and only if (∆θt) · Zt−1St−1 = 0 for t ∈ T \ {0} .
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Thus, changing the choice of ‘benchmark’ security will not alter the
class of trading strategies under consideration and thus will not affect mar-
ket behaviour. This simple fact is sometimes called the ‘numéraire invari-
ance theorem’; in continuous-time models it is not completely obvious (see
Chapter 9 and [102]). We will also examine the numéraire invariance of
other market entities. While the use of different discounting conventions
has only limited mathematical significance, economically it amounts to un-
derstanding the way in which these entities are affected by a change of
currency.

Writing Xt = βtXt for the discounted form of the vector Xt in Rd+1,
it follows (using Z = β in the preceding equation) that θ is self-financing
if and only if (∆θt) · St−1 = 0, that is, if and only if

θt+1 · St = θt · St for all t = 1, 2, . . . , T − 1, (2.6)

or, equivalently, if and only if

V t(θ) = V0(θ) + Gt(θ) for all t ∈ T. (2.7)

To see the last equivalence, note first that (2.4) holds for any θ with S
instead of S, so that for self-financing θ we have ∆V t = θt ·∆St; hence (2.7)
holds. Conversely, (2.7) implies that ∆V t = θt·∆St, so that (∆θt)·St−1 = 0
and so θ is self-financing.

We observe that the definition of G(θ) does not involve the amount θ0
t

held in bonds (i.e., in the security S0) at time t. Hence, if θ is self-financing,
the initial investment V0(θ) and the predictable real-valued processes θi

(i = 1, 2, . . . , d) completely determine θ0, just as we have seen in the one-
period model in Section 1.4.

Lemma 2.2.1. Given an F0-measurable function V0 and predictable real-
valued processes θ1, θ2, . . . , θd, the unique predictable process θ0 that turns

θ =
(
θ0, θ1, θ2, · · · , θd

)
into a self-financing strategy with initial value V0(θ) = V0 is given by

θ0
t = V0 +

t−1∑
u=1

(
θ1

u∆S
1
u + · · · + θd

u∆S
d

u

)
−
(
θ1

t S
1
t−1 + · · · + θd

t S
d

t−1

)
. (2.8)

Proof. The process θ0 so defined is clearly predictable. To see that it pro-
duces a self-financing strategy, recall by (2.7) that we only need to observe
that this value of θ0 is the unique predictable solution of the equation

V t(θ) = θ0
t + θ1

t S
1
t + θ2

t S
2
t + · · · + θd

t S
d

t

= V0 +
t∑

u=1

(
θ1

u∆S
1
u + θ2

uS
2
u + · · · + θd

u∆S
d

u

)
.
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Admissible Strategies

Let Θ be the class of all self-financing strategies. So far, we have not
insisted that a self-financing strategy must at all times yield non-negative
total wealth; that is, that Vt(θ) ≥ 0 for all t ∈ T. From now on, when
we impose this additional restriction, we call such self-financing strategies
admissible; they define the class Θa.

Economically, this requirement has the effect of restricting certain types
of short sales: although we can still borrow certain of our assets (i.e., have
θi

t < 0 for some values of i and t), the overall value process must remain
non-negative for each t. But the additional restriction has little impact on
the mathematical modelling, as we show shortly.

We use the class Θa to define our concept of ‘free lunch’.

Definition 2.2.2. An arbitrage opportunity is an admissible strategy θ
such that

V0(θ) = 0, Vt(θ) ≥ 0 for all t ∈ T, E (VT (θ)) > 0.

In other words, we require θ ∈ Θa with initial value 0 but final value
strictly positive with positive probability. Note, however, that the proba-
bility measure P enters into this definition only through its null sets: the
condition E (VT (θ)) > 0 is equivalent to P (VT (θ)) > 0) > 0, justifying the
following definition.

Definition 2.2.3. The market model is viable if it does not contain any
arbitrage opportunities; that is, if θ ∈ Θa has V0(θ) = 0, then VT (θ) =
0 a.s..

‘Weak Arbitrage Implies Arbitrage’

To justify the assertion that restricting attention to admissible claims has
little effect on the modelling, we call a self-financing strategy θ ∈ Θ a weak
arbitrage if

V0(θ) = 0, VT (θ) ≥ 0, E (VT (θ)) > 0.

The following calculation shows that if a weak arbitrage exists then it can
be adjusted to yield an admissible strategy - that is, an arbitrage as defined
in Definition 2.2.2.

Note. If the price process is a martingale under some equivalent measure-as
will be seen shortly-then any hedging strategy with zero initial value and
positive final expectation will automatically yield a positive expectation at
all intermediate times by the martingale property.

Suppose that θ is a weak arbitrage and that Vt(θ) is not non-negative a.s.
for all t. Then there exists t < T, and A ∈ Ft with P (A) > 0 such that

(θt · St)(ω) < 0 for ω ∈ A, θu · Su ≥ 0 a.s. for u > t.
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We amend θ to a new strategy φ by setting φu(ω) = 0 for all u ∈ T and
ω ∈ Ω \ A, while on A we set φu(ω) = 0 if u ≤ t, and for u > t we define

φ0
u(ω) = θ0

u(ω) − θt · St

S0
t (ω)

, φi
u(ω) = θi

u(ω) for i = 1, 2, . . . , d.

This strategy is obviously predictable. It is also self-financing: on Ω\A we
clearly have Vu(φ) ≡ 0 for all u ∈ T, while on A we need only check that
(∆φt+1) · St = 0 by the preceding construction (in which ∆θu and ∆φu

differ only when u = t + 1) and (2.5). We observe that φi
t = 0 on Ac for

i ≥ 0 and that, on A,

∆φ0
t+1 = φ0

t+1 = θ0
t+1 − θt · St

S0
t

, ∆φi
t+1 = θi

t+1 for i = 1, 2, . . . , d.

Hence

(∆φt+1) · St = 1A(θt+1 · St − θt · St) = 1A(θt · St − θt · St) = 0

since θ is self-financing.
We show that Vu(φ) ≥ 0 for all u ∈ T, and P (VT (φ) > 0) > 0. First

note that Vu(φ) = 0 on Ω \ A for all u ∈ T. On A we also have Vu(φ) = 0
when u ≤ t, but for u > t we obtain

Vu(φ) = φu ·Su = θ0
uS0

u − (θt · St)S0
u

S0
t

+
d∑

i=1

θi
uSi

u = θu ·Su − (θt ·St)
(

S0
u

S0
t

)
.

Since, by our choice of t, θu · Su ≥ 0 for u > t, and (θt · St) < 0 while
S0 ≥ 0, it follows that Vu(φ) ≥ 0 for all u ∈ T. Moreover, since S0

t > 0, we
also see that VT (φ) > 0 on A.

This construction shows that the existence of what we have called weak
arbitrage immediately implies the existence of an arbitrage opportunity.
This fact is useful in the fine structure analysis for finite market models we
give in the next chapter.

Remark 2.2.4. Strictly speaking, we should deal separately with the possi-
bility that the investor’s initial capital is negative. This is of course ruled
out if we demand that all trading strategies are admissible. We can relax
this condition and consider a one-period model, where a trading strategy
is just a portfolio θ, chosen at the outset with knowledge of time 0 prices
and held throughout the period. In that case, an arbitrage is a portfolio
that leads from a non-positive initial outlay to a non-negative value at time
1. Thus here we have two possible types of arbitrage since the portfolio θ
leads to one of two conclusions:

a) V0(θ) < 0 and V1(θ) ≥ 0 or

b) V0(θ) = 0 and V1(θ) ≥ 0 and P (V1(θ) > 0) > 0.
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In this setting, the assumption that there are no arbitrage opportunities
leads to two conditions on the prices:

(i) V1(θ) = 0 implies V0(θ) = 0 or

(ii) V1(θ) ≥ 0 and P (V1(θ)) > 0 implies V0(θ) ≥ 0.

The reader will easily construct arbitrages if either of these conditions fails.
In our treatment of multi-period models, we consistently use admissible
strategies, so that Definition 2.2.3 is sufficient to define the viability of
pricing models.

Uniqueness of the Arbitrage Price

Fix H as a contingent claim with maturity T so H is a non-negative FT -
measurable random variable on (Ω,FT , P ). The claim is said to be attain-
able if there is an admissible strategy θ that generates (or replicates) it,
that is, such that

VT (θ) = H.

We should expect the value process associated with a generating strategy
to be given uniquely: the existence of two admissible strategies θ and θ′

with Vt(θ) �= Vt(θ′) would violate the Law of One Price, and the market
would therefore allow riskless profits and not be viable. A full discussion
of these economic arguments is given in [241].

The next lemma shows, conversely, that in a viable market the arbitrage
price of a contingent claim is indeed unique.

Lemma 2.2.5. Suppose H is an attainable contingent claim in a viable
market model. Then the value processes of all generating strategies for H
are the same.

Proof. If θ and φ are admissible strategies with

VT (θ) = H = VT (φ)

but V (θ) �= V (φ), then there exists t < T such that

Vu(θ) = Vu(φ) for all u < t, Vt(θ) �= Vt(φ).

The set A = {Vt(θ) > Vt(φ)} is in Ft and we can assume P (A) > 0 without
loss of generality. The random variable X = Vt(θ)−Vt(φ) is Ft-measurable
and defines a self-financing strategy ψ as by letting

ψu(ω) = θu(ω) − φu(ω) for u ≤ t on A, for u ∈ T, on Ac,

ψ0
u = βtX and ψi

u = 0 for i = 1, 2, . . . , d for u > t, on A.

It is clear that ψ is predictable. Since both θ and φ are self-financing,
it follows that (2.1) also holds with ψ for u < t, while if u > t, ψu+1 · Su =
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ψu · Su on Ac similarly. On A, we have ψu+1 = ψu. Thus we only need to
compare ψt · St = Vt(θ) − Vt(φ) and ψt+1 · St = 1Ac(θt+1 − φt+1) · St +
1AβtXS0

t . Now note that S0
t = β−1

t and that X = Vt(θ) − Vt(φ), while
on Ac the first term becomes (θt − φt) · St = Vt(θ) − Vt(φ) and the latter
vanishes. Thus ψt+1 · St = Vt(θ) − Vt(φ) = ψt · St.

Since V0(θ) = V0(φ), ψ is self-financing with initial value 0. But
VT (ψ) = 1A(βtXS0

t ) = 1Aβtβ
−1
T X is non-negative a.s. and is strictly posi-

tive on A, which has positive probability. Hence ψ is a weak arbitrage, and
by the previous section the market cannot be viable.

We have shown that in a viable market it is possible to associate a
unique time t value (or arbitrage price) to any attainable contingent claim
H. However, it is not yet clear how the generating strategy, and hence
the price, are to be found in particular examples. In the next section,
we characterise viable market models without having to construct explicit
strategies and derive a general formula for the arbitrage price instead.

2.3 Martingales and Risk-Neutral Pricing

Martingales and Their Transforms

We wish to characterise viable market models in terms of the behaviour
of the increments of the discounted price process S. To set the scene, we
first need to recall some simple properties of martingales. Only the most
basic results needed for our purposes are described here; for more details
consult, for example, [109], [199], [236], [299].

For these results, we take a general probability space (Ω,F, P )together
with any filtration F = (Ft)t∈T, where, as before, T = {0, 1, . . . , T}. Con-
sider stochastic processes defined on this filtered probability space (also
called stochastic basis) (Ω,F, P, F, T). Recall that a stochastic process X =
(Xt) is adapted to F if Xt is Ft-measurable for each t ∈ T.

Definition 2.3.1. An F-adapted process M = (Mt)t∈T is an (F, P )-
martingale if E (|Mt|) < ∞ for all t ∈ T and

E (Mt+1 |Ft ) = Mt for all t ∈ T \ {T} . (2.9)

If the equality in (2.9) is replaced by ≤ (≥), we say that M is a super-
martingale (submartingale).

Note that M is a martingale if and only if

E (∆Mt+1 |Ft ) = 0 for all t ∈ T \ {T} .

Thus, in particular, E (∆Mt+1) = 0. Hence

E (Mt+1) = E (Mt) for all t ∈ T \ {T} ,
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so that a martingale is ‘constant on average’. Similarly, a submartingale
increases, and a supermartingale decreases, on average. Thinking of Mt

as representing the current capital of a gambler, a martingale therefore
models a ‘fair’ game, while sub- and supermartingales model ‘favourable’
and ‘unfavourable’ games, respectively (as seen from the perspective of the
gambler, of course!).

The linearity of the conditional expectation operator shows trivially
that any linear combination of martingales is a martingale, and the tower
property shows that M is a martingale if and only if

E (Ms+t |Fs ) = Ms for t = 1, 2, . . . , T − s.

Moreover, (Mt) is a martingale if and only if (Mt − M0) is a martingale,
so we can assume M0 = 0 without loss whenever convenient.

Many familiar stochastic processes are martingales. The simplest exam-
ple is given by the successive conditional expectations of a single integrable
random variable X. Set Mt = E (X |Ft ) for t ∈ T. By the tower property,

E (Mt+1 |Ft ) = E (E (X |Ft+1 ) |Ft ) = E (X |Ft ) = Mt.

The values of the martingale Mt are successive best mean-square estimates
of X, as our ‘knowledge’ of X, represented by the σ-fields Ft, increases
with t.

More generally, if we model the price process of a stock by a martingale
M, the conditional expectation (i.e., our best mean-square estimate at time
s of the future value Mt of the stock) is given by its current value Ms. This
generalises a well-known fact about processes with independent increments:
if the zero-mean process W is adapted to the filtration F and (Wt+1−Wt) is
independent of Ft, then E (Wt+1 − Wt |Ft ) = E (Wt+1 − Wt) = 0. Hence
W is a martingale.

Exercise 2.3.2. Suppose that the centred (i.e., zero-mean) integrable ran-
dom variables (Yt)t∈T are independent, and let Xt =

∑
u≤t Yu for each

t ∈ T. Show that X is a martingale for the filtration it generates. What
can we say when the Yt have positive means?

Exercise 2.3.3. Let (Zn)n≥1 be independent identically distributed random
variables, adapted to a given filtration (Fn)n≥0. Suppose further that each
Zn is non-negative and has mean 1. Show that X(0) = 1 and that Xn =
Z1Z2 · · ·Zn (n ≥ 1) defines a martingale for (Fn), provided all the products
are integrable random variables, which holds, for example, if all Zn ∈
L∞(Ω,F, P ).

Note also that any predictable martingale is almost surely constant: if
Mt+1 is Ft-measurable, we have E (Mt+1 |Ft ) = Mt+1 and hence Mt and
Mt+1 are a.s. equal for all t ∈ T. This is no surprise: if at time t we know
the value of Mt+1, then our best estimate of that value will be perfect.

The construction of the gains process associated with a trading strategy
now suggests the following further definition.
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Definition 2.3.4. Let M = (Mt) be a martingale and φ = (φt)t∈T a
predictable process defined on (Ω,F, P, F, T). The process X = φ ·M given
for t ≥ 1 by

Xt = φ1∆M1 + φ2∆M2 + · · · + φt∆Mt (2.10)

and
X0 = 0

is the martingale transform of M by φ.

Martingale transforms are the discrete analogues of the stochastic in-
tegrals in which the martingale M is used as the ‘integrator’. The Itô
calculus based upon this integration theory forms the mathematical back-
drop to martingale pricing in continuous time, which comprises the bulk
of this book. An understanding of the technically much simpler martin-
gale transforms provides valuable insight into the essentials of stochastic
calculus and its many applications in finance theory.

The Stability Property

If φ = (φt)t∈T is bounded and predictable, then φt+1 is Ft-measurable and
φt+1∆Mt+1 remains integrable. Hence, for each t ∈ T \ {T}, we have

E (∆Xt+1 |Ft ) = E (φt+1∆Mt+1 |Ft ) = φt+1E (∆Mt+1 |Ft ) = 0.

Therefore X = φ·M is a martingale with X0 = 0. Similarly, if φ is also non-
negative and Y is a supermartingale, then φ ·Y is again a supermartingale.

This stability under transforms provides a simple, yet extremely useful,
characterisation of martingales.

Theorem 2.3.5. An adapted real-valued process M is a martingale if and
only if

E ((φ · M)t) = E

(
t∑

u=1

φu∆Mu

)
= 0 for t ∈ T \ {0} (2.11)

for each bounded predictable process φ.

Proof. If M is a martingale, then so is the transform X = φ · M , and
X0 = 0. Hence E ((φ · M)t) = 0 for all t ≥ 1 in T.

Conversely, if (2.11) holds for M and every predictable φ, take s > 0, let
A ∈ Fs be given, and define a predictable process φ by setting φs+1 = 1A,
and φt = 0 for all other t ∈ T. Then, for t > s, we have

0 = E ((φ · M)t) = E(1A(Ms+1 − Ms)).

Since this holds for all A ∈ Fs, it follows that E (∆Ms+1 |Fs ) = 0, so M is
a martingale.
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2.4 Arbitrage Pricing: Martingale Measures

Equivalent Martingale Measures

We now return to our study of viable securities market models. Recall that
we assume as given an arbitrary complete measurable space (Ω,F) on which
we consider various probability measures. We also consider a filtration
F = (Ft)t∈T such that (Ω, F0) is complete, and FT = F. Finally, we are
given a (d + 1)-dimensional stochastic process S = {Si

t : t ∈ T, 0 ≤ i ≤ d}
with S0

0 = 1 and S0 interpreted as a riskless bond providing a discount
factor βt = 1

S0
t

and with Si (i = 1, 2, . . . , d) interpreted as risky stocks.
Recall that we are working in a general securities market model: we do not
assume that the resulting market model is finite or that the filtration F is
generated by S.

Suppose that the discounted vector price process S̄ happens to be a
martingale under some probability measure Q; that is,

EQ

(
∆S̄i

t |Ft−1
)

= 0 for t ∈ T \ {0} and i = 1, 2, . . . , d.

Note that, in particular, this assumes that the discounted prices are inte-
grable with respect to Q. Suppose that θ =

{
θi

t : i ≤ d, t = 1, 2, . . . , T
}

∈
Θa is an admissible strategy whose discounted value process is also Q-
integrable for each t. Recall from (2.7) that the discounted value process
of θ has the form

V̄t(θ) = V0(θ) + Gt(θ)

= θ1 · S0 +
t∑

u=1

θu · ∆S̄u

=
d∑

i=1

(
θi
1S

i
0 +

t∑
u=1

θu∆S
i

u

)
.

Thus the discounted value process V (θ) is a constant plus a finite sum of
martingale transforms; and therefore it is a martingale with initial (con-
stant) value V0(θ). Hence we have E

(
V t(θ)

)
= E (V0(θ)) = V0(θ).

We want to show that this precludes the existence of arbitrage oppor-
tunities. If we know in advance that the value process of every admissible
strategy is integrable with respect to Q, this is easy: if V0(θ) = 0 and
VT (θ) ≥ 0 a.s. (Q), but EQ

(
V t(θ)

)
= 0, it follows that VT (θ) = 0 a.s. (Q).

This remains true a.s. (P ), provided that the probability measure Q has
the same null sets as P (we say that Q and P are equivalent measures
and write Q ∼ P ). If such a measure can be found, then no self-financing
strategy θ can lead to arbitrage; that is, the market is viable. This leads
to an important definition.

Definition 2.4.1. A probability measure Q ∼ P is an equivalent martin-
gale measure (EMM) for S if the discounted price process S is a (vector)
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martingale under Q for the filtration F. That is, for each i ≤ d the dis-
counted price process S

i
is an (F, Q)-martingale (recall that S

0 ≡ 1).

To complete the argument, we need to justify the assumption that the
value processes we have considered are Q-integrable. This follows from the
following remarkable proposition (see also [132]).

Proposition 2.4.2. Given a viable model (Ω,F, P, T, F, S), suppose that
Q is an equivalent martingale measure for S. Let H be an attainable claim.
Then βT H is Q-integrable and the discounted value process for any gener-
ating strategy θ satisfies

V t(θ) = EQ (βT H |Ft ) a.s. (P ) for all t ∈ F. (2.12)

Thus V (θ) is a non-negative Q-martingale.

Proof. Choose a generating strategy θ for H and let V = V (θ) be its
discounted value process. We show by backward induction that V t ≥
0 a.s. (P )for each t. This is clearly true for t = T since V T = βT H ≥ 0 by
definition. Hence suppose that V t ≥ 0. If θt is unbounded, replace it by
the bounded random vectors θn

t = θt1An , where An = {|θt| ≤ n} , so that
V t−1 (θn) = V t−1(θ)1An is Ft−1-measurable and Q-integrable. Then we
can write

V t−1 (θn) = V t (θn) −
d∑

i=1

θn,i
t ∆S

i

t ≥ −
d∑

i=1

θn,i
t ∆S

i

t,

so that

V t−1(θ)1An
= V t−1 (θn)

= EQ

(
V t−1 (θn) |Ft−1

)
≥ −

d∑
i=1

θn,i
t EQ

(
∆S

i

t |Ft−1

)
= 0.

Letting n increase to ∞, we see that V t−1(θ) ≥ 0.
Thus we have a.s. (P ) on each An that

EQ

(
V t(θ) |Ft−1

)
− V t−1(θ) = EQ

(
d∑

i=1

θn,i
t ∆S

i

t |Ft−1

)

=
d∑

i=1

θn,i
t EQ

(
∆S

i

t |Ft−1

)
= 0.
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Again letting n increase to ∞, we have the identity

EQ

(
V t(θ) |Ft−1

)
= V t−1(θ) a.s. (P ) . (2.13)

Finally, as V0 = θ1 · S0 is a non-negative constant, it follows that
EQ

(
V 1
)

= V0. But by the first part of the proof V 1 ≥ 0 a.s. (P ) and
hence a.s. (Q), so V 1 ∈ L1(Q). We can therefore begin an induction, using
(2.13) at the inductive step, to conclude that V t ∈ L1(Q) and EQ

(
V t(θ)

)
=

V0 for all t ∈ T. Thus V (θ) is a non-negative Q-martingale, and since its
final value is βT H, it follows that V t(θ) = EQ (βT H |Ft ) a.s. (P ) for each
t ∈ T.

Remark 2.4.3. The identity (2.12) not only provides an alternative proof of
Lemma 2.2.5 by showing that the price of any attainable European claim
is independent of the particular generating strategy, since the right-hand
side does not depend on θ, but also provides a means of calculating that
price without having to construct such a strategy. Moreover, the price does
not depend on the choice of any particular equivalent martingale measure:
the left-hand side does not depend on Q.

Exercise 2.4.4. Use Proposition 2.4.2 to show that if θ is a self-financing
strategy whose final discounted value is bounded below a.s. (P )by a con-
stant, then for any EMM Q the expected final value of θ is simply its initial
value. What conclusion do you draw for trading only with strategies that
have bounded risk?

We have proved that the existence of an equivalent martingale mea-
sure for S is sufficient for viability of the securities market model. In the
next chapter, we discuss the necessity of this condition. Mathematically,
the search for equivalent measures under which the given process S is a
martingale is often much more convenient than having to show that no
arbitrage opportunities exist for S.

Economically, we can interpret the role of the martingale measure as
follows. The probability assignments that investors make for various events
do not enter into the derivation of the arbitrage price; the only criterion is
that agents prefer more to less and would therefore become arbitrageurs if
the market allowed arbitrage. The price we derive for the contingent claim
H must thus be the same for all risk preferences (probability assignments)
of the agents as long as they preclude arbitrage. In particular, an econ-
omy of risk-neutral agents will also produce the arbitrage price we derived
previously. The equivalent measure Q, under which the discounted price
process is a martingale represents the probability assignment made in this
risk-neutral economy, and the price that this economy assigns to the claim
will simply be the average (i.e., expectation under Q) discounted value of
the payoff H.

Thus the existence of an equivalent martingale measure provides a gen-
eral method for pricing contingent claims, which we now also formulate in
terms of undiscounted value processes.
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Martingale Pricing

We summarise the role played by martingale measures in pricing claims.
Assume that we are given a viable market model (Ω,F, P, F, S) and some
equivalent martingale measure Q. Recall that a contingent claim in this
model is a non-negative (F-measurable) random variable H representing a
contract that pays out H(ω) dollars at time T if ω ∈ Ω occurs. Its time
0 value or (current) price π(H) is then the value that the parties to the
contract would deem a ‘fair price’ for entering into this contract.

In a viable model, an investor could hope to evaluate π(H) by con-
structing an admissible trading strategy θ ∈ Θa that exactly replicates the
returns (cash flow) yielded by H at time T. For such a strategy θ, the initial
investment V0(θ) would represent the price π(H) of H. Recall that H is an
attainable claim in the model if there exists a generating strategy θ ∈ Θa

such that VT (θ) = H, or, equivalently, V t(θ) = βT H. But as Q is a mar-
tingale measure for S, V (θ) is, up to a constant, a martingale transform,
and hence a martingale, under Q, it follows that for all t ∈ T,

V t(θ) = EQ (βT H |Ft ) ,

and thus

Vt(θ) = β−1
t EQ (βT H |Ft ) (2.14)

for any θ ∈ Θa. In particular,

π(H) = V 0(θ) = EQ (βT H |F0 ) = EQ (βT H) . (2.15)

Market models in which all European contingent claims are attainable
are called complete. These models provide the simplest class in terms of op-
tion pricing since any contingent claim can be priced simply by calculating
its (discounted) expectation relative to an equivalent martingale measure
for the model.

Uniqueness of the EMM

We have shown in Proposition 2.4.2 that for an attainable European claim
H the identity V̄0(θ) = EQ (βT H) holds for every EMM Q in the model
and for every replicating strategy θ.

This immediately implies that in a complete model the EMM must be
unique. For if Q and R are EMMs in a complete pricing model, then any
European claim is attainable. It follows that EQ (βT H) = ER (βT H) and
hence also

EQ (H) = ER (H) , (2.16)

upon multiplying both sides by βT , which is non-random. In particular,
equation (2.16) holds when the claim is the indicator function of an ar-
bitrary set F ∈ FT = F. This means that Q = R; hence the EMM is
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unique. Moreover, our argument again verifies that the Law of One Price
(see Lemma 2.2.5) must hold in a viable model; that is, we cannot have
two admissible trading strategies θ, θ′ that satisfy VT (θ) = VT (θ′) but
V0(θ) �= V0(θ′). Our modelling assumptions are thus sufficient to guarantee
consistent pricing mechanisms (in fact, this consistency criterion is strictly
weaker than viability; see [241] for simple examples).

The Law of One Price permits valuation of an attainable claim H
through the initial value of a self-financing strategy that generates H; the
valuation technique using risk-neutral expectations gives the price π(H)
without prior determination of such a generating strategy. In particular,
consider a single-period model and a claim H (an Arrow-Debreu security)
defined by

H(ω) =

{
1 if ω = ω′

0 otherwise,

where ω′ ∈ Ω is some specified state. If H is attainable, then

π(H) = EQ (βT H) =
1

βT
Q({ω′}).

This holds even when β is random. The ratio Q({ω′})
βT (ω′) is known as the state

price of ω′. In a finite market model, we can similarly define the change
of measure density Λ = Λ({ω})ω∈Ω, where Λ({ω}) = Q({ω})

P ({ω}) ) as the state
price density. See [241] for details of the role of these concepts.

Superhedging

We adopt a slightly more general approach (which we shall develop further
in Chapter 5 and exploit more fully for continuous-time models in Chapters
7 to 10) to give an explicit justification of the ‘fairness’ of the option price
when viewed from the different perspectives of the buyer and the seller
(option writer), respectively.

Definition 2.4.5. Given a European claim H = f(ST ), an (x, H)−hedge is
an initial investment x in an admissible strategy θ such that VT (θ) ≥ H a.s.

This approach to hedging is often referred to as defining a superhedging
strategy. This clearly makes good sense from the seller’s point of view,
particularly for claims of American type, where the potential liability may
not always be covered exactly by replication. By investing x in the strategy
θ at time 0, an investor can cover his potential liabilities whatever the
stock price movements in [0, T ]. When there is an admissible strategy θ
exactly replicating H, the initial investment x = π(H) is an example of an
(x, H)−hedge. Since the strategy θ exactly covers the final liabilities, (i.e.,
VT (θ) = H), we call this a minimal hedge.

All prices acceptable to the option seller must clearly ensure that the
initial receipts for the option enable him to invest in a hedge (i.e., must
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ensure that there is an admissible strategy whose final value is at least H).
The seller’s price can thus be defined as

πs = inf {z ≥ 0 : there exists θ ∈ Θa with VT (θ) = z + GT (θ) ≥ H a.s.} .

The buyer, on the other hand, wants to pay no more than is needed to
ensure that his final wealth suffices to cover the initial outlay, or borrowings.
So his price will be the maximum he is willing to borrow, y = −V0, at time
0 to invest in an admissible strategy θ, so that the sum of the option payoff
and the gains from following θ cover his borrowings. The buyer’s price is
therefore

πb = sup {y ≥ 0 : there exists θ ∈ Θa with − y + GT (θ) ≥ −H a.s.} .

In particular, θ must be self-financing, so that βT VT (θ) = V0+βT GT (θ),
and since βS is a Q-martingale, we have EQ (βT GT (θ)) = 0. So the seller’s
price requires that z ≥ EQ (βT H) for each z in (2.21)and hence πs ≥
EQ (βT H) .

Similarly, for the buyer’s price, we require that −y+EQ (βT H) ≥ 0 and
hence also πb ≤ EQ (βT H) . We have proved the following proposition.

Proposition 2.4.6. For any integrable European claim H in a viable pric-
ing model,

πb ≤ EQ (βT H) ≤ πs. (2.17)

If the claim H is attained by an admissible strategy θ, the minimal
initial investment z in the strategy θ that will yield final wealth VT (θ) = H
is given by EQ (βT H) , and conversely this represents the maximal initial
borrowing y required to ensure that −y + GT (θ) + H ≥ 0. This proves the
following corollary.

Corollary 2.4.7. If the European claim H is attainable, then the buyer’s
price and seller’s price are both equal to EQ (βT H) . Thus, in a com-
plete model, every European claim H has a unique price, given by π =
EQ (βT H) , and the generating strategy θ for the claim is a minimal hedge.

2.5 Strategies Using Contingent Claims

Our definition of arbitrage involves trading strategies that include only
primary securities (i.e., a riskless bank account which acts as numéraire
and a collection of risky assets, which we called ‘stocks’ for simplicity).
Our analysis assumes that these assets are traded independently of other
assets. In real markets, however, investors also have access to derivative
(or secondary) securities, whose prices depend on those of some underlying
assets. We have grouped these under the term ‘contingent claim’ and we
have considered how such assets should be priced. Now we need to consider
an extended concept of arbitrage since it is possible for an investor to build
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a trading strategy including both primary securities and contingent claims,
and we use this combination to seek to secure a riskless profit. We must
therefore identify circumstances under which the market will preclude such
profits.

Thus our concept of a trading strategy should be extended to include
such combinations of primary and secondary securities, and we shall show
that the market remains viable precisely when the contingent claims are
priced according to the martingale pricing techniques for European contin-
gent claims that we have developed. To achieve this, we need to restrict
attention to trading strategies involving a bank account, stocks, and at-
tainable European contingent claims.

Assume that a securities market model (Ω,F, P, T, F, S) is given. We
allow trading strategies to include attainable European claims, so that the
value of the investor’s portfolio at time t ∈ T will have the form

Vt = θt · St + γt · Zt =
d∑

i=0

θi
tS

i
t +

m∑
j=1

γj
t Zj

t , (2.18)

where S0 is the bank account,
{
Si

t : i = 1, 2, . . . , d
}

are the prices of d

risky stocks, and Zt = (Zj
t )j≤m are the values of m attainable European

contingent claims with time T payoff functions given by (Zj)j≤m. We
write S = (Si)0≤i≤d. Recall that an attainable claim Zj can be repli-
cated exactly by a self-financing strategy involving only the process S.
The holdings of each asset are assumed to be predictable processes, so that
for t = 1, 2, . . . , T , θi

t and γj
t are Ft−1-measurable for i = 0, 1, . . . , d and

j = 1, 2, . . . , m. We call our model an extended securities market model.
The trading strategy φ = (θ, γ) is self-financing if its initial value is

V0(φ) = θ1 · S0 + γ1 · Z0

and for t = 1, 2, . . . , T − 1 we have

θt · St + γt · Zt = θt+1 · St + γt+1 · Zt. (2.19)

Note that · denotes the inner product in Rd+1 and Rm, respectively. A new
feature of the extended concept of a trading strategy is that the final values
of some of its components are known in advance since the final portfolio
has value

VT (φ) = θT · ST + γT · Z,

as Z = (Zj
T )j≤m represents the m payoff functions of the European claims.

Moreover, unlike stocks, we have to allow for the possibility that the values
Zj

t can be zero or negative (as can be the case with forward contracts).
However, with these minor adjustments we can regard the model simply
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as a securities market model with one riskless bank account and d + m
risky assets. With this in mind, we extend the concept of arbitrage to this
model.

Definition 2.5.1. An arbitrage opportunity in the extended securities
market model is a self-financing trading strategy φ such that V0(φ) = 0,
VT (φ) ≥ 0, and EP (VT (φ)) > 0. We call the model arbitrage-free if no such
strategy exists.

As in the case of weak arbitrage in Section 2.2, we do not demand
that the value process remain non-negative throughout T. That this has
no effect on the pricing of the contingent claims can be seen from the
following result.

Theorem 2.5.2. Suppose that (Ω,F, P, T, F, S) is an extended securities
market model admitting an equivalent martingale measure Q. The model
is arbitrage-free if and only if every attainable European contingent claim
with payoff Z has value process given by

{
S0

t EQ

(
Z
S0

T
|Ft

)
: t ∈ T

}
.

Proof. Let θ = (θi)i≤d be a generating strategy for Z. The value process of

θ is then given as in equation (2.14) by Vt(θ) = S0
t EQ

(
Z
S0

T
|Ft

)
since the

discount process is βt = 1
S0

t
when S0 is the numeraire.

We need to show that the model is arbitrage-free precisely when the
value process (Zt)t∈T of the claim Z is equal to (Vt(θ))t∈T. Suppose there-
fore that for some u ∈ T these processes differ on a set D of positive
P -measure. We first assume that D = {Zu > Vu(θ)}, which belongs to Fu.
To construct an arbitrage, we argue as follows: do nothing for ω /∈ D, and
for ω ∈ D wait until time u. At time u, sell short one unit of the claim Z
for Zu(ω), invest Vu(ω) of this in the portfolio of stocks and bank account
according to the prescriptions given by strategy θ, and bank the remainder
(Zu(ω) − Vu(ω)) until time T . This produces a strategy φ, where

φt =

{
0 if t ≤ u(
θ0

t + Zu−Vu(θ)
S0

u
, θ1

t , . . . , θd
t ,−1

)
1D if t > u.

It is not hard to show that this strategy is self-financing; it is evidently
predictable. Its value process V (φ) has V0(φ) = 0 since in fact Vt(φ) = 0
for all t ≤ u, while VT (φ)(ω) = 0 for ω /∈ D. For ω ∈ D, we have

(θT · ST )(ω) = VT (θ)(ω) = Z(ω)

since θ replicates Z. Hence

VT (φ)(ω) =
(

θT · ST + (Zu − Vu(θ))
S0

T

S0
u

− Z

)
(ω)

=
(

(Zu − Vu(θ))
S0

T

S0
u

)
(ω)



46 CHAPTER 2. MARTINGALE MEASURES

> 0.

This shows that φ is an arbitrage opportunity in the extended model since
VT (φ) ≥ 0 and P (VT (φ) > 0) = P (D) > 0.

To construct an arbitrage when Zu < Vu(θ) for some u ≤ T on a set
E with P (E) > 0, we simply reverse the positions described above. On E
at time u, shortsell the amount Vu(θ) according to the strategy θ, buy one
unit of the claim Z for Zu, place the difference in the bank, and do nothing
else. Hence, if the claim Z does not have the value process V (θ) determined
by the replicating strategy θ, the extended model is not arbitrage-free.

Conversely, suppose that every attainable European claim Z has its
value function given via the EMM Q as Zt = S0

t EQ

(
Z
S0

T
|Ft

)
for each

t ≤ T , and let ψ = (φ, γ) be a self-financing strategy, involving S and
m attainable European claims (Zj)j≤m, with V0(ψ) = 0 and VT (ψ) ≥
0. We show that P (VT (ψ) = 0) = 1, so that ψ cannot be an arbitrage
opportunity in the extended model. Indeed, consider the discounted value
process V (ψ) = V (ψ)

S0 at time t > 0:

EQ

(
V t(ψ) |Ft−1

)
= EQ

⎛⎝ d∑
i=0

φi
tS

i

t +
m∑

j=1

γj
t

Zj
t

S0
t

|Ft−1

⎞⎠
=

d∑
i=0

φi
tEQ

(
S

i

t |Ft−1

)
+

m∑
j=1

γj
t EQ

(
V

j

t (θ
j) |Ft−1

)
.

Here we use the fact that S
i

= Si

S0 is a martingale under Q and, defining

V
j

t (θ
j) as the discounted value process of the replicating strategy for the

claim Zj , we see that V
j

t (θ
j) = EQ

(
Zj

S0
T

|Ft

)
= Zj

t

S0
t
. Since each process

V
j
(θj), j ≤ m, is a Q-martingale, it follows that

EQ

(
V t(ψ) |Ft−1

)
=

d∑
i=0

φi
tS

i

t−1 +
m∑

j=1

γj
t V

j

t−1(θ
j) = V t−1(ψ)

since the strategy ψ = (φ, γ) is self-financing, so that V (ψ) is also a
Q-martingale. Consequently, EQ

(
V t(ψ)

)
= EQ (V0(ψ)) = 0. Therefore

Q(V T (ψ) = 0) = 1, and since Q ∼ P it follows that P (VT (ψ) = 0) = 1.
Therefore the extended securities market model is arbitrage-free.

This result should not come as a surprise. It remains the case that
the only independent sources of randomness in the model are the stock
prices S1, S2, . . . , Sd, since the contingent claims used to construct trading
strategies are priced via an equivalent measure for which their discounted
versions are martingales. However, it does show that the methodology is
consistent. We return to extended market models when examining possible
arbitrage-free prices for claims in incomplete models in Chapter 4.
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Some Consequences of Call-Put parity

In the call-put parity relation (1.3), the discount rate is given by βt,T =
βT−t, where β = (1 + r). Write (1.3) in the form

St = Ct − Pt + βT−tK. (2.20)

With the price of each contingent claim expressed at the expectation
under the risk-neutral measure Q of its discounted final value, we show
that the right-hand side of (2.20) is independent of K. Indeed,

St = βT−t[EQ

(
(ST − K)+

)
− EQ

(
(K − ST )+

)
+ K]

= βT−t

(∫
{ST ≥K}

(ST − K)dQ −
∫

{ST <K}
(K − ST )dQ + K

)

= βT−t

(∫
Ω
(ST − K)dQ + K

)
= βT−tEQ (ST )

= β−1
t EQ

(
βT ST

)
.

This shows that call-put parity is a consequence of the martingale property
of the discounted price under Q in any market model that allows pricing of
contingent claims by expectation under an equivalent martingale measure.

Remark 2.5.3. The identity also leads to the following interesting obser-
vation due to Marek Capinski, which first appeared in [35]. Recall the
Modigliani-Miller theorem (see [20]), which states that the value of a firm
is independent of the way in which it is financed. Since its value is repre-
sented by the sum of its equity (stock) and debt, the theorem states that
the level of debt has no impact on the value of the firm. This can be
interpreted in terms of options, as follows.

If the firm’s borrowings at time 0 are represented by βT K, so that it
faces repayment of debt at K by time T , the stockholders have the option
to buy back this debt at that time, in order to avert bankruptcy of the
firm. They will only do so if the value ST of the firm at time T is at
least K. The firm’s stock can therefore be represented as a European call
option on S with payoff K at time T, and thus the current (time 0) value of
the stock is the call option price C0. The total current value of the firm is
S0 = C0−P0+βT K, where P0 is a put option on S with the same strike and
horizon as the call. The calculation above shows that S0 is independent of
K, as the Modigliani-Miller theorem claims. Moreover, the current value
of the debt is given via the call-put parity relation as (βT K − P0). This is
lower than the present value βT K of K, so that P0 reflects the default risk
(i.e., risk that the debt may not be recovered in full at time T ).
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2.6 Example: The Binomial Model

We now take another look at the Cox-Ross-Rubinstein binomial model,
which provides a very simple, yet striking, example of the strength of the
martingale methods developed so far.

The CRR Market Model

The Cox-Ross-Rubinstein binomial market model was described in Chap-
ter 1. Recall that we assumed that d = 1. There is a single stock S1 and
a riskless bond S0, which accrues interest at a fixed rate r > 0. Taking
S0

0 = 1, we have S0
t = (1 + r)t for t ∈ T, and hence βt = (1 + r)−t. The

ratios of successive stock values are Bernoulli random variables; that is, for
all t < T, either S1

t = S1
t−1(1+a) or S1

t = S1
t−1(1+b), where b > a > −1 are

fixed throughout, while S1
0 is constant. We can thus conveniently choose

the sample space
Ω = {1 + a, 1 + b}T

together with the natural filtration F generated by the stock price values;
that is, F0 = {∅, Ω}, and Ft = σ(S1

u : u ≤ t) for t > 0. Note that FT =
F = 2Ω is the σ-field of all subsets of Ω.

The measure P on Ω is the measure induced by the ratios of the stock
values. More explicitly, we write S for S1 for the rest of this section to
simplify the notation, and set Rt = St

St−1
for t > 0. For ω = (ω1, ω2, . . . , ωT )

in Ω, define
P ({ω}) = P (Rt = ωt, t = 1, 2, . . . , T ). (2.21)

For any probability measure Q on (Ω,F), the relation EQ

(
St |Ft−1

)
=

St−1 is equivalent to
EQ (Rt |Ft−1 ) = 1 + r

since βt

βt−1
= 1+r. Hence, if Q is an equivalent martingale measure for S, it

follows that EQ (Rt) = 1 + r. On the other hand, Rt only takes the values
1 + a and 1 + b; hence its average value can equal 1 + r only if a < r < b.
We have yet again verified the following result.

Lemma 2.6.1. For the binomial model to have an EMM, we must have

a < r < b.

When the binomial model is viable, there is a unique equivalent martin-
gale measure Q for S. We construct this measure in the following lemma.

Lemma 2.6.2. The discounted price process S is a Q-martingale if and
only if the random variables (Rt) are independent, identically distributed,
and Q(R1 = 1 + b) = q and Q(R1 = 1 + a) = 1 − q, where q = r−a

b−a .
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Proof. Under independence, the (Rt) satisfy

EQ (Rt |Ft−1 ) = EQ (Rt) = q(1+b)+(1−q)(1+a) = q(b−a)+1+a = 1+r.

Hence, by our earlier discussion, S is a Q-martingale.
Conversely, if EQ (Rt |Ft−1 ) = 1+r, then, since Rt takes only the values

1 + a and 1 + b, we have

(1 + a)Q(Rt = 1 + a |Ft−1 ) + (1 + b)Q(Rt = 1 + b |Ft−1 ) = 1 + r,

while

Q(Rt = 1 + a |Ft−1 ) + Q(Rt = 1 + b |Ft−1 ) = 1.

Letting q = Q(Rt = 1 + b |Ft−1 ), we obtain

(1 + a)(1 − q) + (1 + b)q = 1 + r.

Hence q = r−a
b−a . The independence of the Rt follows by induction on t > 0.

For ω = (ω1, ω2, . . . , ωT ) ∈ Ω, we see inductively that

Q (R1 = ω1, R2 = ω2, . . . , Rt = ωt) =
t∏

i=1

qi,

where qi = q when ωi = 1 + b and equals 1 − q when ωi = 1 + a. Thus the
(Rt) are independent and identically distributed as claimed.

Remark 2.6.3. Note that q ∈ (0, 1) if and only if a < r < b. Thus a
viable binomial market model admits a unique EMM given by Q as in
Lemma 2.6.2.

The CRR Pricing Formula

The CRR pricing formula, obtained in Chapter 1 by an explicit hedging
argument, can now be deduced from our general martingale formulation
by calculating the Q-expectation of a European call option on the stock.
More generally, the value of the call CT = (ST −K)+ at time t ∈ T is given
by (2.14); that is,

Vt(CT ) =
1
βt

EQ (βT CT |Ft ) .

Since ST = St

∏T
u=t+1 Ru (by the definition of (Ru)), we can calculate

this expectation quite easily since St is Ft-measurable and each Ru (u > t)
is independent of Ft. Indeed,

Vt(CT ) = β−1
t βT EQ

⎛⎝[St

T∏
u=t+1

Ru − K

]+

|Ft

⎞⎠
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= (1 + r)t−T EQ

⎛⎝[St

T∏
u=t+1

Ru − K

]+

|Ft

⎞⎠
= v(t, St). (2.22)

Here

v(t, x) = (1 + r)t−T EQ

⎛⎝[x T∏
u=t+1

Ru − K

]+
⎞⎠

= (1+ r)t−T
T−t∑
u=0

(
T − t

u

)
qu(1− q)T−t−u

[
x(1 + b)u(1 + a)T−t−u − K

]+
and, in particular, the price at time 0 of the European call option C with
payoff CT = (ST − K)+ is given by

v(0, S0) = (1 + r)−T
T∑

u=A

(
T

u

)
qu(1 − q)T−u

[
S0(1 + b)u(1 + a)T−u − K

]
,

(2.23)

where A is the first integer k for which S0(1 + b)k(1 + a)T−k > K. The
CRR option pricing formula (1.5.3) now follows exactly as in Chapter 1.

Exercise 2.6.4. Show that for the replicating strategy θ = (θ0, θ1) describ-
ing the value process of the European call C, the stock portfolio θ1 can be
expressed in terms of the differences of the value function as θ1

t = θ(t, St−1),
where

θ(t, x) =
v(t, x(1 + b)) − v(t, x(1 + a))

x(b − a)
.

Exercise 2.6.5. Derive the call-put parity relation (2.20) by describing the
values of the contingent claims involved as expectations relative to Q.

2.7 From CRR to Black-Scholes

Construction of Approximating Binomial Models

The binomial model contains all the information necessary to deduce the
famous Black-Scholes formula for the price of a European call option in a
continuous-time market driven by Brownian motion. A detailed discussion
of the mathematical tools used in that model is deferred until Chapter 6,
but we now describe how the random walks performed by the steps in
the binomial tree lead to Brownian motion as a limiting process when we
reduce the step sizes continually while performing an ever larger number
of steps within a fixed time interval [0, T ]. From this we will see how the
Black-Scholes price arises as a limit of CRR prices.
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Consider a one-dimensional stock price process S = (St) on the finite
time interval [0, T ] on the real line, together with a European put option
with payoff function fT = (K − ST )+ on this stock. We use put options
here because the payoff function f is bounded, thus allowing us to deduce
that the relevant expectations (using EMMs) converge once we have shown
via a central limit theorem that certain random variables converge weakly.
The corresponding result for call options can then be derived using call-put
parity.

We wish to construct a discrete-time binomial model beginning with
the same constant stock price S0 and with N steps in [0, T ]. Thus we let
hN = T

N and define the discrete timeline TN = {0, hN , 2hN , . . . , NhN} .
The European put PN with strike K and horizon T is then defined on TN .
By (2.14), (exactly as in the derivation of (2.22)), PN has CRR price PN

0
given by

PN
0 = (1 + ρN )−NEQN

⎛⎝[K − S0

N∏
k=1

RN
k

]+
⎞⎠ , (2.24)

where, writing SN
k for the stock price at time khN , the ratios RN

k = SN
k

SN
k−1

take values 1 + bN or 1 + aN at each discrete time point khN (k ≤ N).
The values of aN , bN and the riskless interest rate ρN have yet to be

chosen. Once they are fixed, with aN < ρN < bN , they will uniquely
determine the risk-neutral probability measure QN for the Nth binomial
model since by Lemma 2.6.2 the binomial random variables (RN

k )k≤N are
then an independent and identically distributed sequence. We obtain, as
before, that

QN (RN
1 = 1 + bN ) = qN =

ρN − aN

bN − aN
. (2.25)

We treat the parameters from the Black-Scholes model as given and ad-
just their counterparts in our CRR models in order to obtain convergence.
To this end, we fix r ≥ 0 and set ρN = rhN , so that the discrete-time
riskless rate satisfies limN→∞(1 + ρN )N = erT , so that r acts as the ‘in-
stantaneous’ rate of return.

Fix σ > 0, which will act as the volatility per unit time of the Black-
Scholes stock price, and for each fixed N we now fix aN , bN by demanding
that the discounted logarithmic returns are given by

log
(

1 + bN

1 + ρN

)
= σ
√

hN = σ

√
T

N
, log

(
1 + aN

1 + ρN

)
= −σ

√
hN = −σ

√
T

N
,

so that

uN = 1 + bN =
(

1 +
rT

N

)
eσ

√
T
N , dN = 1 + aN =

(
1 +

rT

N

)
e−σ

√
T
N .
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Note that the discount factor at each step is 1 + ρN = 1 + rT
N for each

k ≤ N. The random variables{
Y N

k = log
(

RN
k

1 + ρN

)
: k ≤ N

}
are independent and identically distributed. We shall consider their sum

ZN =
N∑

k=1

Y N
k =

N∑
k=1

RN
k − N log(1 + ρN )

for each N. The discounted stock price is thus

S
N

N = (1 + ρN )−N
n∏

k=1

RN
k = exp

{
N∑

k=1

Y N
k

}
= eZN ,

so that the N th put option price becomes

PN
0 = EQN

⎛⎝[(1 +
rt

N

)−N

K − S0e
ZN

]+
⎞⎠ . (2.26)

Convergence in Distribution

The values taken by Y N
1 are ±σ

√
hN , so its second moment is σ2hN = σ2 T

N ,
while its mean is given by

µN = (2qN − 1)σ
√

hN = (2qN − 1)σ

√
T

N
.

Our choices will imply that qN converges to 1
2 as N → ∞. We show

this by checking the rate of convergence. First recall some notation: aN =
a + o

( 1
N

)
means that N(aN − a) → 0 as N → ∞.

Since 1 − qN = uN −ρN

uN −dN
, we see that 2qN − 1 is of order 1√

N
:

2qN − 1 = 1 − 2(1 − qN ) = 1 − 2

(
eσ

√
hN − 1

eσ
√

hN − e−σ
√

hN

)

= 1 − eσ
√

hN − 1
sinh(σ

√
hN )

.

Expanding into Taylor series the right-hand side has the form

1 − x + x2

2! + x3

3! + · · ·
x + x3

3! + · · ·
=

−x2

2 − x4

4! + · · ·
x + x3

3! + · · ·
,

so that 2qN − 1 = − 1
2σ

√
hN + o

( 1
N

)
. Thus µN = − 1

2
σ2T
N + o

( 1
N

)
, so that

NµN → − 1
2σ2T as N → ∞.
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Since the second moment of Y N
1 is σ2 T

N , its variance σ2
N therefore sat-

isfies

σ2
N = σ2 T

N
+ o

(
1
N

)
. (2.27)

We apply the central limit theorem for triangular arrays (see, e.g. , [168,
VII.5.4] or [45, Corollary to Theorem 3.1.2]) in the following form to the
independent and identically distributed random variables (Y N

k ) for k ≤ N
and N ∈ N.

Theorem 2.7.1 (Central Limit Theorem). For N ≥ 1, let (Y N
k )k≤N

be an independent and identically distributed sequence of random variables,
each with mean µN and variance σ2

N . Suppose that there exist real µ and
Σ2 > 0 such that NµN → µ and σ2

N = Σ2 + o
( 1

N

)
as N → ∞ . Then

the sums ZN =
∑N

k=1 Y N
k converge in distribution to a random variable

Z ∼ N (µ,Σ2).

We prove this by verifying the Lindeberg-Feller condition for the Y N
k ,

namely that for all ε > 0
N∑

k=1

EQN

(
(Y N

k )21{|Y N
k |>ε}

)
→ 0 as N → ∞. (2.28)

We have seen that for fixed N and all k ≤ N, (Y N
k )2 is constant on

Ω and takes the value σ2T
N . Therefore, using Chebychev’s inequality with∣∣Y N

k

∣∣ = σ
√

T
N , we see that for each k ≤ N

EQN

(
(Y N

k )21{|Y N
k |>ε}

)
=

σ2T

N
P (
∣∣Y N

k

∣∣ > ε) ≤ σ2T

N

E
(∣∣Y N

k

∣∣)
ε

,

and since the right-hand side equals σ3

ε

(
T
N

) 3
2 , the Lindeberg condition is

satisfied. The Lindeberg-Feller Theorem completes the proof.
For the sequence (Y N

k ) defined above, the conditions of the theorem are
satisfied with µ = − 1

2σ2T and Σ = 1
2σ2T with σ as fixed above. Thus (ZN )

converges in distribution to Z ∼ N (− 1
2σ2T, σ2T ), while (1 + ρN )−N →

e−rT as N → ∞. It follows that the limit of the CRR put option prices
(PN

0 ) is given by
E
(
(e−rT K − S0e

Z)+
)
, (2.29)

where the expectation is now taken with respect to the distribution of Z.

The Black-Scholes Formula

Standardising Z, we see that the random variable X = 1
σ

√
T

(Z + 1
2σ2T )

has distribution N(0, 1); that is, Z = σ
√

TX − 1
2σ2T . The limiting value

of PN
0 can be found by evaluating the integral∫ ∞

−∞

[
e−rT K − S0e

− 1
2 σ2T+σ

√
Tx
]+ e− 1

2 x2

√
2π

dx. (2.30)
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Observe that the integrand is non-zero only when

σ
√

Tx +
(

r − 1
2
σ2
)

T < log
(

K

S0

)
,

that is, on the interval (−∞, γ), where

γ =
log
(

K
S0

)
− (r − 1

2σ2)T

σ
√

T
.

Thus the put option price for the limiting pricing model reduces to

P0 = Ke−rT (Φ(γ)) − S0

∫ γ

−∞
e− σ2T

2 eσ
√

Tx− x2
2

dx√
2π

= Ke−rT (Φ(γ)) − S0

∫ γ

−∞
e− 1

2 (x−σ
√

T )2 dx√
2π

= Ke−rT (Φ(γ)) − S0

(
Φ(γ − σ

√
T )
)

.

Here Φ denotes the cumulative normal distribution function.
Setting d− = −γ and d+ = d− + σ

√
T , and using the symmetry of Φ,

we obtain 1−Φ(γ) = Φ(−γ) = Φ(d−) and 1−Φ(γ −σ
√

T ) = Φ(d+), where

d± =
log
(

S0
K

)
+ (r ± 1

2σ2)T

σ
√

T
. (2.31)

By call-put parity, this gives the familiar Black-Scholes formula for the call
option: the time 0 price of the call option fT = (ST − K)+ is given by

V0(C) = C0 = S0Φ(d+) − e−rT KΦ(d−). (2.32)

Remark 2.7.2. An alternative derivation of this approximating procedure,
using binomial models where for each n the probabilities of the ‘up’ and
‘down’ steps are equal to 1

2 , can be found in [35].

By replacing T by T − t and S0 by St, we can read off the value process
Vt for the option similarly; in effect this treats the option as a contract
written at time t with time to expiry T − t,

Vt(C) = StΦ(dt+) − e−r(T−t)KΦ(dt−), (2.33)

where

dt± =
log
(

St

K

)
+ (r ± 1

2σ2)(T − t)
σ
√

T − t
.

The preceding derivation has not required us to study the dynamics of
the ‘limit stock price’ S; it is shown in Chapter 7 that this takes the form

dSt = Stµdt + σStdWt, (2.34)
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where W is a Brownian motion. The stochastic calculus necessary for the
solution of such stochastic differential equations is developed in Chapter 6.
However, we can already note one remarkable property of the Black-Scholes
formula: it does not involve the mean return µ of the stock but depends on
the riskless interest rate r and the volatility σ. The mathematical reason
for this lies in the change to a risk-neutral measure (which underlies the
martingale pricing techniques described in this chapter), which eliminates
the drift term from the dynamics.

Dependence of the Option Price on the Parameters

Write Ct = Vt(C) for the Black-Scholes value process of the call option;
i.e.,

Ct = StΦ(dt+) − e−r(T−t)KΦ(dt−),

where dt± is given as in (2.33). As we have calculated for the case t = 0,
the European put option with the same parameters in the Black-Scholes
pricing model is given by

Pt = Ke−r(T−t)Φ(−dt−) − StΦ(−dt+).

We examine the behaviour of the prices Ct at extreme values of the param-
eters. (The reader may consider the put prices Pt similarly.)

When St increases, dt± grows indefinitely, so that Φ(dt±) tends to 1,
and so Ct has limiting value St − Ke−r(T−t). In effect, the option becomes
a forward contract with delivery price K since it is ‘certain’ to be exercised
at time T . Similar behaviour is observed when the volatility σ shrinks to 0
since again dt± become infinite, and the riskless stock behaves like a bond
(or money in the bank).

When t → T (i.e., the time to expiry decreases to 0) and St > K, then
dt± becomes ∞ and e−r(T−t) → 1, so that Ct tends to St − K. On the
other hand, if St < K, log

(
St

K

)
< 0 so that dt± = −∞ and Ct → 0. Thus,

as expected, Ct → (ST − K)+ when t → T.

Remark 2.7.3. Note finally that there is a natural ‘replicating strategy’
given by (2.33) since this value process is expressed as a linear combination
of units of stocks St and bonds S0

t with S0
0 = 1 and S0

t = β−1
t S0

0 = ert.
Writing the value process Vt = θt · St (where by abuse of notation S =
(S0, S)), we obtain

θ0
t = −Ke−rT Φ(dt−), θ1

t = Φ(dt+). (2.35)

In Chapter 7, we consider various derivatives of the Black-Scholes op-
tion price, known collectively as ‘the Greeks’, with respect to its different
parameters. This provides a sensitivity analysis with parameters that are
widely used in practice.



Chapter 3

The First Fundamental
Theorem

We saw in the previous chapter that the existence of a probability measure
Q ∼ P under which the (discounted) stock price process is a martingale is
sufficient to ensure that the market model is viable (i.e. , that it contains
no arbitrage opportunities). We now address the converse: whether for
every viable model one can construct an equivalent martingale measure for
S, so that the price of a contingent claim can be found as an expectation
relative to Q.

To deal with this question fully while initially avoiding difficult technical
issues that can obscure the essential simplicity of the argument, we shall
assume throughout Sections 3.1 to 3.4 that we are working with a finite
market model, so each σ-field Ft is generated by a finite partition Pt of
Ω. In Section 3.5, we then consider in detail the construction of equivalent
martingale measures for general discrete models without any restrictions on
the probability space. This requires considerably more advanced concepts
and results from functional analysis.

3.1 The Separating Hyperplane Theorem in
Rn

In finite markets, the following standard separation theorem for compact
convex sets in Rn, which is a special case of the Hahn-Banach separation
theorem (see [97], [264]), will suffice for our purposes.

Theorem 3.1.1 (Separating Hyperplane Theorem). Let L be a linear
subspace of Rn and let K be a compact convex subset in Rn disjoint from L.
Then we can separate L and K strictly by a hyperplane containing L; (i.e.,
there exists a (bounded) linear functional φ : Rn → R such that φ(x) = 0
for all x ∈ L but φ(x) > 0 for all x ∈ K).

57
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The following lemma will be used in the proof but also has independent
interest.

Lemma 3.1.2. Let C be any closed convex subset of Rn that does not
contain the zero vector. Then there is a linear functional φ on Rn that has
a strictly positive lower bound on C.

Proof. Denote by B = B(0, r) the closed ball of radius r centred at the
origin in Rn, and choose r > 0 so that B intersects C. Then B ∩ C is non-
empty, closed and bounded, and hence compact. Therefore the continuous
map x → |x|n attains its infimum over B ∩ C at some z ∈ B ∩ C. (Here
|x| = |x|n denotes the Euclidean norm of x in Rn.) Since |x| > r when
x /∈ B, it is clear that |x| ≥ |z| for all x ∈ C. In particular, since C is
convex, y = λx + (1 − λ)z is in C whenever x ∈ C and 0 ≤ λ ≤ 1, so that
|y| ≥ |z| , i.e.,

|λx + (1 − λ)z|2 ≥ |z|2 . (3.1)

Multiplying out both sides of (3.1), writing a · b for the scalar product in
Rn, we obtain

λ2x · x + 2λ(1 − λ)x · z + (1 − λ)2z · z ≥ z · z,

which simplifies at once to

2(1 − λ)x · z − 2z · z + λ(x · x + z · z) ≥ 0.

This holds for every λ ∈ [0, 1] . Letting λ → 0, we obtain

x · z ≥ z · z = |z|2 > 0.

Defining φ(x) = x · z, we have found a linear functional such that φ(x)
is bounded below on C by the positive number |z|2 . (φ is also bounded
above, as any linear functional on Rn is bounded.)

Proof of Theorem 3.1.1. Let K be a compact convex set disjoint from the
subspace L. Define

C = K − L = {x ∈ Rn : x = k − l for some k ∈ K, l ∈ L} .

Since K and L are convex, C is also convex.
In addition, C is closed; indeed, if xn = kn − ln converges to some

x ∈ Rn, then, as K is compact, (kn) has a subsequence converging to some
k ∈ K. Thus xnr = knr − lnr → x as r → ∞ and knr → k, so that
lnr = knr −xnr → k −x and hence l = k −x belongs to L since L is closed.
But then x = k − l ∈ C, so that C is closed.

As C does not contain the origin, we can therefore apply Lemma 3.1.2
to C to obtain a bounded linear functional φ on Rn such that φ(x) ≥
|z|2 > 0 for z as above. In other words, writing x = k − l, we have
φ(k) − φ(l) ≥ |z|2 > 0. This must hold for all x ∈ C. Fix k and replace l
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by λl for arbitrary positive λ if φ(l) ≥ 0 or by λl for arbitrary negative λ
if φ(l) < 0. The vectors λl belong to L, as L is a linear space; since φ is
bounded, we must have φ(l) = 0 (i.e., L is a subspace of the hyperplane
kerφ = {x : φ(x) = 0}, while φ(K) is bounded below by |z|2 > 0). The
result follows.

3.2 Construction of Martingale Measures

The above separation theorem applies to sets in Rn. We can apply it to
RΩ, the space of all functions Ω → R, by identifying this space with Rn for
a finite n, in view of the assumption that the σ-field F is finitely generated
(i.e., any F-measurable real function on Ω takes at most n distinct values,
where n is the number of cells in the partition P that generates F). In
other words, we assume that Ω = D1 ∪ D2 ∪ · · · ∪ Dn, where

Di ∩ Dj = ∅ for i �= j, P (Di) = pi > 0 for i = 1, 2, . . . , n.

Without loss, we now take the (Di) as atoms or ‘points’ ωi of Ω . Thus
any random variable X defined on (Ω,F) will be regarded as a point

(X(ω1), X(ω2), . . . , X(ωn))

in Rn. We apply this in particular to the random variables making up the
value process {Vt(θ)(ω) : ω ∈ Ω} and the gains process {Gt(θ)(ω) : ω ∈ Ω}
of a given admissible strategy θ ∈ Θa.

Recall (Definition 2.2.3) that the market model is viable if it contains no
arbitrage opportunities (i.e., if whenever a strategy θ ∈ Θa has initial value
V0(θ) = 0, and final value VT (θ) ≥ 0 a.s. (P ), then VT (θ) = 0 a.s. (P )).

Denote by C the positive orthant in Rn with the origin removed; i.e.,

C = {Y ∈ Rn : Yi ≥ 0 for i = 1, 2, . . . , n, Yi > 0 for at least one i} . (3.2)

The set C is a cone (i.e., closed under vector addition and multiplication
by non-negative scalars) and is clearly convex.

The no-arbitrage assumption means that for every admissible strategy
θ ∈ Θa we have that

V t(θ) = Gt(θ) /∈ C if V0(θ) = 0.

Thus the discounted gains process G(θ) for such a strategy θ with initial
value zero cannot have a final value contained in C since otherwise it would
be an arbitrage opportunity.

Recall from (2.8) that a self-financing strategy θ =
(
θ0, θ1, θ2, . . . , θd

)
is completely determined by the stock holdings θ̂ =

(
θ1, θ2, . . . , θd

)
. Thus,

given a predictable Rd-valued process θ̂ =
(
θ1, θ2, . . . , θd

)
, there is a unique

predictable real-valued process θ0 such that the augmented process θ =
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(
θ0, θ1, θ2, . . . , θd

)
has initial value V0(θ) = 0 and is self-financing. By a

minor abuse of notation, we define the discounted gains process associated
with θ̂ as

Gt(θ̂) =
t∑

u=1

θu · ∆S(u) =
t∑

u=1

(
d∑

i=1

θi
u∆S

i

u

)
for t = 1, 2, . . . , T.

Suppose that Gt(θ̂) ∈ C. Then, with β denoting the discount factor,

VT (θ) = β−1
T V t(θ) = β−1

T (V0(θ) + Gt(θ)) = β−1
T Gt(θ̂)

is non-negative and is strictly positive with positive probability. So θ is
a weak arbitrage, which contradicts the viability of the model. We have
proved the following result.

Lemma 3.2.1. If the market model is viable, the discounted gains process
associated with any predictable Rd-valued process θ̂ cannot belong to the
cone C.

Since Gt(θ̂) is a sum of scalar products θt · ∆St in Rn, and since any
linear functional on Rn takes the form x → x · y for some y ∈ Rn, the rele-
vance of the separation theorem to these questions now becomes apparent
in the proof of the next theorem, which is the main result in this section.

Theorem 3.2.2 (First Fundamental Theorem of Asset Pricing for
Finite Market Models). A finite market model is viable if and only if
there exists an equivalent martingale measure (EMM) for S.

Proof. Since we have already shown more generally (in Chapter 2) that the
existence of an EMM ensures viability of the model, we need only prove
the converse.

Suppose therefore that the market model is viable. We need to construct
a measure Q ∼ P under which the price processes are martingales relative
to the filtration F. Recall that C is the convex cone of all real random
variables φ on (Ω,F) such that φ(ω) ≥ 0 a.s. and φ(ωi) > 0 for at least
one ωi ∈ Ω = {ω1, ω2, . . . , ωn} (and by assumption pi = P ({ωi}) > 0).
We have shown that in a viable market we must have Gt(θ̂) /∈ C for all
predictable Rd-valued processes θ̂. On the other hand, the set defined by
such gains processes,

L =
{

Gt(θ̂) : θ̂ =
(
θ1, θ2, . . . , θd

)
, with θi predictable for i = 1, 2, . . . , d

}
,

is a linear subspace of the vector space of all F-measurable real-valued
functions on Ω.

Since L does not meet C, we can separate L and the compact convex
subset K = {X ∈ C : EP (X) = 1} of C by a linear functional f on Rn
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that is strictly positive on K and 0 on L. The linear functional has a
representation of the form

f(x) = x · q =
n∑

i=1

xiqi

for a unique q = (qi) in Rn. Taking ξi = (0, . . . , 0, 1
pi

,0,. . . ,0) in turn for
each i ≤ n, we see that EP (ξi) = pi

pi
= 1, so that ξi ∈ K, and hence

f(ξi) = qi

pi
> 0. Thus qi > 0 for all i ≤ n.

Now define a new linear functional g = f
α , where α =

∑n
i=1 qi > 0. This

is implemented by the vector p∗ with p∗
i = qi

α > 0, so that
∑n

i=1 p∗
i = 1.

Hence we may use the vector p∗ to induce a probability measure P ∗ on
Ω = {ω1, ω2, . . . , ωn} by setting P ∗({ωi}) = p∗

i > 0, so that P ∗ ∼ P.

Let E∗ (·) denote expectation relative to P ∗. Since g(x) = 1
αf(x) = 0

for all x ∈ L, we have E∗
(
GT

(
θ̂
))

= 0 for each vector θ̂ of stock holdings,

creating a self-financing strategy θ with V0(θ) = 0. As V t(θ) = V0(θ) +
GT (θ), this implies that E∗ (V T (θ)

)
= 0 for such θ. But by (2.8) we can

generate such θ from any n-dimensional predictable process, in particular
from (0, . . . , 0, θi, 0, . . . , 0), where the predictable real-valued process θi is
given for i ≤ n. Thus

E∗
(

T∑
t=1

θi
t∆S

i

t

)
= 0

holds for every bounded predictable process
(
θi
)
i=1,2,...,T

. Theorem 2.3.5
now implies that each Si is a martingale under P ∗. Hence P ∗ is the desired
EMM for the price process S.

3.3 Pathwise Description

The geometric origin of the above result is clear from the essential use
that was made of the separation theorem. A geometric formulation of
Theorem 3.2.2 can be based on the ‘local’ equivalent of the no-arbitrage
condition in terms of ‘one-step’ changes in the value of a portfolio. In fact,
although the definition of (weak) arbitrage involves only the initial and
final values of a strategy, this will demonstrate that the no-arbitrage con-
dition is an assumption about the pathwise behaviour of the value process.
Although this discussion is somewhat detailed, it is included here for its
value in providing an intuitive grasp of the ideas that underlie the more
abstract proof of Theorem 3.2.2 and in giving a step-by-step construction
of the equivalent martingale measure. As before, our discussion (which
follows [290]) is confined to the case where F is finitely generated.
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One-Step Arbitrage

The idea behind the construction lies in the following simple observation.
Consider a market model with a single bond and stock (i.e., d = 1) and
assume that the bond price S0 ≡ 1 for all trading dates. In particular,
for any self-financing strategy θ = (θ0, θ1), the value process Vt(θ) has
increments ∆Vt = θ1

t ∆S1
t , as ∆S0(t) = 0. These increments will be ‘con-

centrated’ to one side of the origin precisely when the same is true for the
price increments ∆S1

t .
Now suppose we know at some time (t − 1) ∈ T that the stock price S1

will not decrease in the time interval [t − 1, t]; that is, for some partition
set A ∈ Pt−1 we have P (

{
∆S1

t ≥ 0
}

|A ) = 1. Then we can buy stock S1 at
time t − 1, sell it again at time t, and invest the profit ∆S1

t in the riskless
bond until the time horizon T. To prevent this arbitrage opportunity, we
need to have P (

{
∆S1

t = 0
}

|A ) = 1; i.e., that S1 (and hence also the value
process V (θ) associated with any admisssible strategy θ) is a ‘one-step
martingale’ in the time interval [t − 1, t].

This idea can be extended to models with d stocks and hyperplanes in
Rd+1. In this case, we have

∆Vt(θ) = θt · ∆St =
d∑

k=1

θk
t ∆Sk

t ,

so it is clear that condition (i) in Proposition 3.3.1 below expresses the
fact that, along each sample path of the price process S, the support of the
conditional distribution of the vector random variable ∆St, given A ∈ Pt−1,
cannot be wholly concentrated only on one ‘side’ of any hyperplane in Rd+1.

Assume for the remainder of this section that S0(t) ≡ 1 for all t ∈ T.

Proposition 3.3.1. If the finite market model S =
(
S0, S1, S2, . . . , Sd

)
is

viable, then, for all θ ∈ Θ, t > 0 and A ∈ Pt−1, and with Vt = Vt(θ), the
following hold:

P (∆Vt ≥ 0 |A ) = 1 implies that P (∆Vt = 0 |A ) = 1,
P (∆Vt ≤ 0 |A ) = 1 implies that P (∆Vt = 0 |A ) = 1.

Proof. Fix t > 0 and θ ∈ Θ. Suppose that P (∆Vt ≥ 0 |A ) = 1 for some
A ∈ Pt−1. We define ψ with ψ0 = 0 as follows for s > 0: let

ψs(ω) = 0 for all s = 1, 2, . . . , T and ω /∈ A,

while, for ω ∈ A,

ψs(ω) =

⎧⎪⎨⎪⎩
0 if 0 < s < t,

(θ0
t (ω) − Vt−1(θ)(ω), θ1

t (ω), θ2
t (ω), . . . , θd

t (ω))′ if s = t,

(Vt(θ)(ω), 0, . . . , 0)′ if s > t.
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Under the strategy ψ, we start with no holdings at time 0 and trade
only from time t onwards, and then only if ω ∈ A (which we know by time
t − 1). In that case, we elect to follow the strategy θ in respect to stocks
and borrow an amount equal to (Vt−1(θ) − θ0) in order to deal in stocks at
(t − 1)-prices using the strategy θ for our stock holdings. For ω in A, this
is guaranteed to increase total wealth. At times s > t, we then maintain
all wealth (i.e., our profits from these transactions) in the bond.

The strategy ψ is obviously predictable. To see that it is self-financing,
we need only consider ω ∈ A. Then we have

(∆ψt) · St−1 = (θ0
t − Vt−1(θ))S0

t−1 +
d∑

i=1

θi
tS

i
t−1

= θt · St−1 − Vt−1(θ)
= θt−1 · St−1 − Vt−1(θ)
= 0

since S0 ≡ 1 and θ is self-financing. Hence ψ is also self-financing.
With this strategy, we certainly obtain VT (ψ) ≥ 0. In fact, for u ≥ t

we have
Vu(ψ) = ψt · St = ∆Vt(ψ) = ∆Vt(θ) ≥ 0

on A and Vu(ψ) = 0 off A. Hence ψ defines a self-financing strategy with
initial value 0 and VT (ψ) ≥ 0. If there is no arbitrage, we must therefore
conclude that VT (ψ) = 0. Since VT (ψ) = 0 off A and VT (ψ) = ∆Vt(θ) on
A, this is equivalent to

0 = P (VT (ψ) > 0) = P ({VT (ψ) > 0} ∩ A) = P ({∆VT (θ) > 0} |A )P (A),

that is, P (∆Vt = 0 |A ) = 1. This proves the first assertion. The proof of
the second part is similar.

The above formulation can be used to establish a further equivalent
form of market model viability. Below we write Ŝ for the Rd-valued process
obtained by deleting the 0th component of S, that is; where S = (1, Ŝ).

Note. For the statement and proof of the next proposition, we do not need
the assumption that the filtration F = (Ft)t∈T is finitely generated; it is
valid in an arbitrary probability space (Ω,F, P ). It states, in essence, the
‘obvious’ fact that if there is an arbitrage opportunity for the model defined
on the time set T = {0, 1, . . . , T}, then there is an arbitrage opportunity
in at least one of the single-period markets [t − 1, t).

Proposition 3.3.2. Let (Ω,F, P, T, F, S) be an arbitrary discrete market
model, where (Ω,F, P ) is a probability space, T = {0, 1, . . . , T} is a discrete
time set, F = (Ft)t∈T is a complete filtration, and S = (Si)i=0,1,...,d is a
price process, as defined in Section 2.1. The following are equivalent:

(i) The model allows an arbitrage opportunity.
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(ii) For some t = 1, 2, . . . , T there is an Ft−1-measurable φ : Ω → Rd+1

such that φ · ∆St ≥ 0 and P (φ · ∆St > 0) > 0.

(iii) For some t = 1, 2, . . . , T there is an Ft−1-measurable φ̂ : Ω → Rd

such that φ̂ · ∆Ŝt ≥ 0 and P (φ̂ · ∆Ŝt > 0) > 0.

Proof. The equivalence of (ii) and (iii) is clear. Now assume that (ii) holds
with φ and A = {ω : (φ · ∆St)(ω) > 0}. We can construct an arbitrage
opportunity θ as follows: set

θu(ω) = 0 for all u ∈ T and ω /∈ A,

while, for ω ∈ A,

θu(ω) =

⎧⎪⎪⎨⎪⎪⎩
0 if u < t,(
−∑d

i=1 φi(ω)Si
t−1(ω), φ1(ω), φ2(ω), . . . , φd(ω)

)′
if u = t,

(Vt(θ)(ω), 0, . . . , 0)′ if u > t.

By construction, θ is predictable. (The strategy θ is in fact a special case
of ψ constructed in Proposition 3.3.1.) To see that it is also self-financing,
note that the value process V (θ) only changes when ω ∈ A, and then
∆Vu(θ) = 0 unless u = t. Moreover,

∆Vt(θ)(ω) = θt · St(ω) − θt−1 · St−1(ω)
= θt · St(ω)

= −
d∑

i=1

φi(ω)Si
t−1(ω) +

d∑
i=1

φi(ω)Si(t)(ω)

= θt · ∆St(ω).

Now V0(θ) = 0, while for u > t we have Vu(θ) = 0 on Ω \ A, and, since
S0 ≡ 1,

Vu(θ) = ∆Vt(θ) = θt · ∆St = φt · ∆St ≥ 0

on A. Hence VT (θ) ≥ 0 a.s. (P ). By the definition of A,

{VT (θ) > 0} = {∆Vt(θ) > 0} ∩ A.

Hence θ is an arbitrage opportunity since P (A) > 0. Thus (ii) implies (i).
Conversely, assume that (i) holds. Then there is a gains process GT (θ)

that is a.s. non-negative and strictly positive with positive probability for
some strategy θ ∈ Θ. Assume without loss of generality that (θ · S)0 = 0.
There must be a first index u ≥ 1 in T such that (θ ·S)u is a.s. non-negative
and strictly positive with positive probability. Consider (θ · S)u−1: either
(θ · S)u−1 = 0 a.s. or A = {(θ · S)u−1 < 0} has positive probability.

In the first case,

(θ · S)u = (θ · S)u − (θ · S)u−1 = θu · ∆Su ≥ 0
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since (θu−θu−1)·Su−1 = 0 because θ is self-financing. For the same reason,
P [θu · ∆Su > 0] > 0. Hence (ii) holds.

In the second case, we have

θu · ∆Su = (θ · S)u − (θ · S)u−1 ≥ −(θ · S)u−1 > 0

on A, so that the predictable random variable φ = 1Aθu will satisfy (ii).
This completes the proof.

This result shows that the ‘global’ existence of arbitrage is equivalent
to the existence of ‘local’ arbitrage at some t ∈ T. To exploit this fact
geometrically, we again concentrate on the special case of finite market
models. First we have the following immediate corollary.

Corollary 3.3.3. If a finite market model is viable, then for all t > 0 in T

and all (non-random) vectors x ∈ Rd, we have that x · ∆Ŝt(ω) ≥ 0 a.s. (P )
implies that x · ∆Ŝt(ω) = 0 a.s. (P ).

Geometric Interpretation of Arbitrage

We briefly review two well-known concepts and one basic result concerning
convex sets in Rd.

First, define the relative interior of a subset C in Rd as the interior of
C when viewed as a subset of its affine hull, where the affine hull and the
convex hull of C are defined by

aff(C) =

{
x ∈ Rd : x =

n∑
i=1

aici, ci ∈ C,

n∑
i=1

ai = 1

}
,

conv(C) =

{
x ∈ Rd : x =

n∑
i=1

aici, ci ∈ C, ai ≥ 0,

n∑
i=1

ai = 1

}
.

The relative interior of C is then simply the set

ri(C) = {x ∈ aff(C) : Bε(x) ∩ aff(C) ⊂ C for some ε > 0} ,

where Bε(x) is the Euclidean ε-ball centred at x. (See [245] for details.)
It is an easy consequence of the definitions that the existence of a hyper-

plane separating two non-empty convex sets is equivalent to the statement
that their relative interiors are disjoint. For a proof, see [245], p.96.

In the absence of arbitrage, there is no hyperplane in Rd that properly
separates the origin from the convex hull of Â =

{
∆Ŝt(ω) : ω ∈ A

}
for any

given A ∈ Pt−1, t > 0. Writing Ct(A) for the convex hull, we have proved
the first part of the following result.

Proposition 3.3.4. In a finite market model, the no-arbitrage condition
is equivalent to the condition that, for all t ∈ T and all A ∈ Pt−1, the
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origin belongs to the relative interior of Ct(A). In other words, the finite
market model allows no arbitrage opportunities if and only if, for each t
and A ∈ Pt−1, the value of St−1 is a strictly convex combination of the
values taken by St on A.

Proof. To prove the latter equivalence, suppose that 0 ∈ Ct(A). Since
A ∈ Pt−1 and S is adapted, Ŝt−1(ω) = c ∈ Rd is constant for ω ∈ A.
Any vector in Ct(A) thus takes the form

∑m
i=1 αi(zi − c), where αi > 0,∑m

i=1 αi = 1, and each zi is equal to Ŝt(ω) for some ω ∈ A. Thus 0 ∈ Ct(A)
if and only if c =

∑m
i=1 αizi, where the vectors zi are values of Ŝt on A,∑m

i=1 αi = 1, and all αi > 0.

Constructing the EMM

The last result can in turn be interpreted in terms of conditional prob-
abilities. For each fixed A ∈ Pt−1, we can redistribute the conditional
probabilities to ensure that under this new mass distribution (probability
measure) the price increment vector ∆Ŝt has zero conditional expectation
on A. Piecing together these conditional probabilities, we then construct
an equivalent martingale measure for S.

More precisely, fix t, let A =
⋃n

k=1 Ak be a minimal partition of A,
and let M = (aik) be the d × n matrix of the values taken by the price
increments ∆Ŝi

t on the cells Ak. By Proposition 3.3.4, the origin Rd lies
in the relative interior of Ct(A). Hence it can be expressed as a strictly
convex combination of elements of Ct(A).

This means that the equation Mx = 0 has a strictly positive solution
α = (αk) in Rn.

It is intuitively plausible that the coordinates of the vector α should
give rise to an EMM for the discounted prices. To see this, we first need
to derive a useful ‘matrix’ version of the separation theorem, for which we
will also have use in Chapter 4.

Lemma 3.3.5 (Farkas (1902)). If A is a d × n matrix and b ∈ Rd, then
exactly one of the following alternatives holds:

(i) There is a non-negative solution x ≥ 0 of Ax = b.

(ii) The inequalities y′A ≤ 0 and y · b > 0 have a solution y ∈ Rd.

Proof. The columns aj = (aij) (j ≤ n) of A define a convex polyhedral
cone K in Rd, each of whose elements is given in the form k =

∑n
j=1 xjaj

for scalars xj ≥ 0. Thus Ax = b for some x ≥ 0 if and only if the vector
b ∈ Rd belongs to K. If b /∈ K, we can separate it from K by a linear
functional f on Rd such that f(b) > 0, f(k) ≤ 0 for k ∈ K (this is an easy
adaptation of the first part of the proof of Theorem 3.1.1). Now implement
f by f(z) = y ·z for some y ∈ Rd. Then y ·aj ≤ 0 for j ≤ n. Hence y′A ≤ 0,
and y · b > 0, as required.
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The following reformulations of Farkas’ lemma follow without much
difficulty and will be used in the sequel.

Lemma 3.3.6. For a given d × n matrix M , exactly one of the following
holds:

(α) The equation Mx = 0 has a solution x ∈ Rn with x > 0.

(β) There exists y ∈ Rd such that y′M ≥ 0, and y′M is not identically 0.

For a given d×n matrix M and b ∈ Rd, exactly one of the following holds:

(a) The equation Mx = b has a solution in Rn.

(b) There exists z ∈ Rd with z′M = 0 and z · b > 0.

Exercise 3.3.7. Prove Lemma 3.3.6.
Applying the alternatives (α), (β) to the matrix M = (aik), we see

that the existence of a strictly positive solution α = (αk) of the equation
Mx = 0 is what precludes arbitrage: otherwise there would be a θ ∈ Rd

with θ′M ≥ 0 and not identically zero; such a θ would yield an arbitrage
strategy.

We proceed to use the components (αk) of this positive solution to
build a one-step ‘conditional EMM’ for this model, restricting attention
to the fixed set A ∈ Pt−1. First denote by AA the σ-field of subsets of
A generated by the cells A1, A2, . . . , An of Pt that partition A, and let
PA be the restriction to AA of the conditional probabilities P (· |A ). Now
construct a probability measure QA on the measurable space (A, AA) by
setting

QA(Ak) =
αk

|α| for k = 1, 2, . . . , n, where |α| =
n∑

i=1

αk.

Clearly QA ∼ PA. As AA is generated by (Ak)k≤n, any AA-measurable
vector random variable Y : A → Rd takes constant values Y (ω) = yk ∈ Rd

on each of the sets Ak. Hence its expectation under QA takes the form

EQA
(Y ) =

n∑
k=1

ykQA(Ak) =
1

|α|

n∑
k=1

ykαk.

In particular, taking Y = ∆Ŝt yields yk = (aik)i≤d for each k ≤ n, where
the aik are the entries of the matrix M defined above, so that 0 = Mα =∑n

k=1 ykαk. Thus EQA

(
∆Ŝt1A

)
= 0. Since S0 is constant by hypothesis,

it follows that EQA
(∆St1A) = 0 (in Rd+1) as well.

Conversely, suppose we are given a probability measure QA on AA with
EQA

(∆St1A) = 0. Setting αk = QA(Ak) for k ≤ n, the calculation above
shows that Mα = 0, so that the zero vector in Rd can be expressed as a
strictly convex combination of vectors in ct(A) and hence the condition of
Proposition 3.3.4 is satisfied. We have proved the following proposition.
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Proposition 3.3.8. For a finitely generated filtration F, the following are
equivalent:

(i) For all t > 0 and A ∈ Pt−1, the zero vector in Rd can be ex-
pressed as a strictly convex combination of vectors in the set ct(A) ={

∆Ŝt(ω) : ω ∈ A
}
.

(ii) For all t > 0 in T and all Ft−1-measurable random vectors x ∈ Rd,
we have that x · ∆Ŝt ≥ 0 a.s. (P ) implies that x · ∆Ŝt = 0 a.s. (P ).

(iii) There exists a probability measure QA ∼ PA on (A,AA) satisfying
EQA

(∆St1A) = 0.

Finally, we can put it all together to obtain three conditions, each de-
scribing the viability of the market model. Note, in particular, that con-
dition (ii) is not affected by an equivalent change of measure. However,
our proof of the steps described in Proposition 3.3.8 crucially used the fact
that the filtration F was taken to be finitely generated.

Theorem 3.3.9. The following statements are equivalent:

(i) The securities market model (Ω,F, P, T, F, S) is viable.

(ii) For all t > 0 in T and all Ft−1-measurable random vectors x ∈ Rd,
we have that x · ∆Ŝt ≥ 0 a.s. (P ) implies that x · ∆Ŝt = 0 a.s. (P ).

(iii) There exists an equivalent martingale measure Q for S.

Proof. That (i) implies (ii) was shown in Corollary 3.3.3, and that (iii)
implies (i) was shown in Section 2.4. This leaves the proof that (ii) implies
(iii), in which we make repeated use of Proposition 3.3.8. The family

{PA : A ∈ Pt, t < T}

determines P since all the σ-fields being considered are finitely generated.
Thus for each ω ∈ Ω we can find a unique sequence of sets (Bt)t∈T with
Bt ∈ Pt for each t < T and such that

Ω = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ BT .

By the law of total probability, we can write

P ({ω}) = PB0(B1)PB1(B2) · · ·PBT −1({ω}).

Now, if (ii) holds, we can use Proposition 3.3.8 successively with t = 1 and
A ∈ P0 to construct a probability measure QA and then repeat for t = 2
and sets in Pt, etc. In particular, this yields probability measures QBt for
each t < T, defined as in the discussion following Lemma 3.3.6. Setting

Q({ω}) = QB0(B1)QB1(B2) · · ·QBT −1({ω}),
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we obtain a probability measure Q ∼ P on the whole of (Ω, F). For any
fixed t > 0 and A ∈ Pt−1, the conditional probability is just

Q({ω} |A ) = 1A({ω})QA(Bt)QBt
(Bt+1) · · ·QBT −1({ω}).

Therefore, for ω ∈ A, EQ (∆St |Ft−1 ) (ω) = 0, and thus Q is an equivalent
martingale measure for S.

3.4 Examples

Example 3.4.1. The following binomial tree example, which is adapted
from [241], illustrates the stepwise construction of the EMM and also shows
how viability of the market can break down even in very simple cases.

Let Ω = {ω1, ω2, ω3, ω4} and T = 2. Suppose that the evolution of a
stock price S1 is given as

S1
0 = 5, S1

1 = 8 on {ω1, ω2} , S1
2 = 9 on {ω1} ,

S1
1 = 4 on {ω3, ω4} , S1

2 = 6 on {ω2, ω3} ,

S1
2 = 3 on {ω4} .

Note that F0 = {∅, Ω} and that the partition Pt−1 = {ω1, ω2} ∪ {ω3, ω4}
generates the algebra F1 = {∅, {ω1, ω2} , {ω3, ω4} , Ω} , while F2 = P(Ω).

Although the stock price S1
2 is the same in states ω2 and ω3, the histories

(i.e., paths) of the price process allow us to distinguish between them. Hence
the investor knows by time 2 exactly which state ωi has been realised. For
the present we shall take S0 ≡ 1 (i.e., the discount rate r = 0).

To find an EMM Q = {q1, q2, q3, q4} directly, we need to solve the
equations EQ

(
S1

u |Ft

)
= S1

t for all t and u > t. This leads to the following
equations:

t = 0, u = 1 : 5 = 8(q1 + q2) + 4(q3 + q4),
t = 0, u = 2 : 5 = 9q1 + 6(q2 + q3) + 3q4,

t = u = 1, S1
1 = 8 : 8 =

1
q1 + q2

(9q1 + 6q2),

t = u = 1, S1
1 = 4 : 4 =

1
q3 + q4

(6q3 + 3q4).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.3)

Solving any three of these (dependent) equations together with
∑4

i=1 qi = 1
yields the unique solution

q1 =
1
6
, q2 =

1
12

, q3 =
1
4
, q4 =

1
2
. (3.4)

On the other hand, it is simpler to construct qi step-by-step, as indicated
in the previous section. Here this means that we must calculate the one-
step conditional probabilities at each node of the tree for t = 0 and t = 1.
When S1

0 = 5, this requires 5 = 8p + 4(1 − p); i.e., p = 1
4 .
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Figure 3.1: Event tree for two-stock model

For S1
1 = 8 we solve 8 = 9p′ + 6(1 − p′), (i.e., p′ = 2

3 ,) while for S1
1 = 4

we need 4 = 6p′′ + 3(1 − p′′), (i.e., p′′ = 1
3 .) According to the proof of

Theorem 3.3.9, this yields the qi as

q1 =
1
4

· 2
3
, q2 =

1
4

· 1
3
, q3 =

3
4

· 1
3
, q4 =

3
4

· 2
3
.

This agrees with the values in (3.4).
It is instructive to examine the effect of discounting on this example.

Suppose instead that S0(t) = (1 + r)t for each t, with r ≥ 0. The left-hand
sides of the equations (3.3) then become 5(1 + r), 5(1 + r)2, 8(1 + r), and
4(1 + r), respectively.

This yields the solution for the qi (using the one-step method, greatly
simplifying the calculation) as

q1 =
1 + 5r

4
2 + 8r

3
, q3 =

3 − 5r

4
1 + 4r

3
,

q2 =
1 + 5r

4
1 − 8r

3
, q4 =

3 − 5r

4
2 − 4r

3
.

⎫⎪⎬⎪⎭ (3.5)
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Exercise 3.4.2. Verify the solutions given in (3.5).

This time the requirement that Q be a probability measure is not au-
tomatically satisfied: when r ≥ 1

8 , q2 becomes non-positive. Hence Q is
an EMM for S = (S0, S1) only if 0 ≤ r < 1

8 (i.e., if the riskless interest
rate is less than 12.5%). If r ≥ 1

8 , there is no EMM for this process, and
if we observe S1

1 = 8, an arbitrage opportunity can be constructed since
we know in advance that the discounted stock price S

1
2 will be lower than

S
1
1 = 8

1+r in each of the states ω1 and ω2.

Example 3.4.3. Consider a pricing model with two stocks S1, S2 and a
riskless bond S0 with tree structure as shown in Figure 3.1. This example
is taken from [301].

The partitions giving the filtration F begin with P0 as the trivial par-
tition and continue with

P1 = {A1, A2, A3} , P2 = {A11, A12, A13, A21, A22, A31, A32, A33} .

We take T = 2, and the various probabilities are as shown in Figure 3.1.
(Note that we again keep S0 ≡ 1 here.) Note that in each case the one-step
transition includes both ‘up’ and ‘down’ steps, so that by Theorem 3.3.9
the model is viable and an EMM Q can be constructed for S = (S0, S1, S2).
The calculation of Q proceeds as in the previous example (using the one-
step probabilities), so that for example Q(A13) = pq, where p is found by
solving the equations

10 = 11p + 11p′ + 8(1 − p − p′), 10 = 9p + 10p′ + 11(1 − p − p′),

which yields p = 1
3 , while q must satisfy

11 = 10q + 10q′ + 14(1 − q − q′), 9 = 8q + 13q′ + 8(1 − q − q′).

This yields q = 11
20 ; hence Q(A13) = 11

60 .

Exercise 3.4.4. Find the values of Q(A) for all A ∈ P.

To use the measure Q to calculate the price of a European call option
C on stock S2 with strike price 10, we simply find the time 0 value of C as

EQ (C) = 0· 5
60

+ 3· 4
60

+ 0·11
60

+ 1·1
6

+ 0·1
6

+ 0· 1
21

+ 4· 2
21

+ 1· 4
21

=
197
210

.

3.5 General Discrete Models

We now turn to the construction of equivalent martingale measures for
discrete market models where the underlying probability space (Ω,F, P )
is not necessarily finitely generated. This question has been studied inten-
sively in recent years, both in the discrete- and continuous-time settings.
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The extension from finite market models to the general case proves to be
surprisingly delicate, and several different approaches have been developed
since the first proof of the result by Dalang, Morton, and Willinger [68]-
the interested reader should compare the expositions in [281] and [76]. We
mainly follow the development in [132], which is based in turn on recent
expositions in [262] and [181].

The importance of the first fundamental theorem should be clear: it
provides the vital link between the economically meaningful assumption of
the absence of arbitrage and the mathematical concept of the existence of
equivalent measures under which the discounted stock prices are martin-
gales. In generalising from the relatively simple context of finite market
models, one wishes to maintain the essential aspects of the equivalence
of these two conditions. In the continuous-time setting, however, the two
conditions are no longer equivalent and much work has gone into reformu-
lations that reflect the requirement that the market should be ‘essentially’
arbitrage-free while seeking to maintain a close link with the existence of
equivalent martingale measures.

The general discrete-time result can be stated in the following form,
which is close to that of the original paper [68].

Theorem 3.5.1 (First Fundamental Theorem of Asset Pricing).
Let (Ω,F, P ) be a probability space, and set T = {0, 1, . . . , T} for some
natural number T. Let F = (Ft)t∈T be filtration, with F0 consisting of all
P -null sets and their complements, and suppose the Rd+1 -valued process
S = (Si

t : 0 ≤ i ≤ d, t ∈ T) is adapted to F, with S0
t > 0 a.s. (P ) for each t

in T. The following are equivalent:

(i) There is a probability measure Q ∼ P such that the discounted price
process S/S0 is a (Q, F)-martingale.

(ii) The market model (Ω,F, P, T, F, S) allows no arbitrage opportunities.

If either (i) or (ii) holds, then the measure Q can be chosen with bounded
density dQ

dP relative to P.

As we have seen for finite market models, in a model with an equivalent
martingale measure (i.e., when (i) holds), it is straightforward to prove the
absence of arbitrage, and this has already been proved in Chapter 2 without
any restrictions on (Ω,F, P ). Moreover, for finite market models, the task of
showing that (ii) implies (i) was broken into a sequence of steps that allowed
us to consider a multi-period model as a finite sequence of single-period
models, where the EMM is constructed by piecing together a succession
of conditional probabilities (see the steps leading to Theorem 3.3.9). The
principal difficulty in extending this approach to general probability spaces,
where the corresponding function spaces can no longer be identified with
Rn for some finite n, lies in obtaining a formulation in the single-period
case that allows one to avoid subtle questions of measurable selection while
applying appropriate versions of the Hahn-Banach separation theorem to
find the required one-step densities.
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No-arbitrage in a Randomised
Single-Period Model

For the inductive procedure, we shall need to move from single-period to
multi-period models, and it will not suffice to consider single-period models
where the initial prices are given positive constants. We therefore need to
find one-step martingale measures when the initial prices are themselves
random. For this, we make the following modelling assumptions.

First, we remove, until further notice, the restriction on F0 stated in the
theorem and instead assume as given an arbitrary σ-field F0 ⊂ F. Let S0 =
(S0

0 , S1
0 , . . . , Sd

0 ) : Ω → Rd be an F0-measurable random vector representing
the bond and stock prices in a single-period market model at time 0. The
prices at time 1 are given by the F-measurable non-negative random vector
S1 = (S0

1 , S1
1 , . . . , Sd

1 ), so that the price process S = (S0
t , S1

t , . . . , Sd
t )t=0,1

is adapted to the filtration (F0,F1), where we take F1 = F. We take S0 as
numeraire; i.e., we assume that

P (S0
t > 0) = 1 for t = 0, 1.

The discounted price increment, omitting the 0th coordinate (which is
zero), is, as before, the Rd-random vector ∆Ŝ = (∆Ŝi)1≤i≤d, where

∆Ŝi =
Si

1

S0
1

− Si
0

S0
0

for 1 ≤ i ≤ d. (3.6)

The condition that this market model does not admit an arbitrage op-
portunity can then be stated as follows: the one-step pricing model is viable
(also called arbitrage-free) if for every vector θ in Rd we have P -a.s. that

θ̂ · ∆Ŝ ≥ 0 implies θ̂ · ∆Ŝ = 0. (3.7)

Note that this requirement involves only the null sets of the given measure
and hence is invariant under an equivalent change of measure. Moreover,
since we assume that all prices are non-negative, ∆Ŝi is bounded below by
−Si

0
S0

0
, and thus EQ

(
∆Ŝ |F0

)
is well-defined for any probability measure

Q ∼ P.

The ‘martingale property’ in the single-period model reduces to the
requirement that

EQ

(
Si

1

S0
1

|F0

)
=

Si
0

S0
0

a.s. (Q) for 1 ≤ i ≤ d,

so that we need to find an equivalent measure Q such that

EQ

(
∆Ŝ |F0

)
= 0 a.s. (Q) .
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Notation 3.5.2. Write M1(Ω,F) for the space of all probability measures
on (Ω,F), and define

P =
{

Q : Q ∈ M1(Ω,F), Q ∼ P and EQ

(
∆Ŝ |F0

)
= 0 a.s. (Q)

}
and

Pb =
{

Q ∈ P,
dQ

dP
is bounded

}
.

We call elements of P equivalent martingale measures for the model.

We wish to analyse the geometric properties of the set of discounted
gains processes arising from admissible trading strategies. By (2.8), we
know that such strategies are generated by predictable Rd-valued processes
θ̂, so that in the single-period model we need to consider elements of the
space L0(Rd) = L0(Ω,F0, P ; Rd) of all a.s. (P )-finite F0-measurable ran-
dom vectors

θ̂ =
(
θ1, θ2, . . . , θd

)
.

We then define the linear space of inner products,

K =
{

θ̂ · ∆Ŝ : θ̂ ∈ L0(Ω,F0, P ; Rd)
}

, (3.8)

which is a subspace of L0 = L0(Ω,F0, P ; R). We can now rewrite the
no-arbitrage condition (3.7) as

K ∩ L0
+ = {0} , (3.9)

where L0
+ is the convex cone of non-negative elements of L0. (The cones

Lp
+ are defined similarly for the Lebesgue spaces Lp = Lp(Ω,F, P ; R) with

1 ≤ p ≤ ∞.) We also introduce the convex cone

C = K−L0
+ =

{
Y = θ̂ · ∆Ŝ − U : θ̂ ∈ L0(Ω,F0, P ; Rd), U ∈ L0

+(Ω,F, P )
}

.

Lemma 3.5.3. C ∩ L0
+ = {0} if and only if K ∩ L0

+ = {0} .

Proof. The first statement is clearly necessary for the second. On the other
hand, if the second statement holds and Z is an element of C ∩ L0

+, we can
find U ∈ L0

+ and θ̂ ∈ L0 such that Z = θ̂ · ∆Ŝ − U ≥ 0 a.s. (P ). In
particular, θ̂ · ∆Ŝ ≥ 0 a.s. (P ) and so is an element of K ∩ L0

+ and hence
equals 0. This forces U = 0; thus Z = 0 a.s. (P ), so that the two statements
are equivalent.

Having reformulated the no-arbitrage condition, we restate the principal
objective of this section as follows.

Theorem 3.5.4. With the above definitions for the single-period model,
the following are equivalent:



3.5 GENERAL DISCRETE MODELS 75

(i) K ∩ L0
+ = {0},

(ii) C ∩ L0
+ = {0},

(iii) Pb �= ∅,

(iv) P �= ∅.

The equivalence of (i) and (ii) was proved in Lemma 3.5.3. Trivially,
(iii) implies (iv), and the following lemma shows that (iv) implies (i).

Lemma 3.5.5. If P is non-empty, then K ∩ L0
+ = {0} .

Proof. Let Q ∈ P, and suppose that θ̂ ∈ L0(Rd) has θ̂ · ∆Ŝ ∈ K ∩ L0
+.

Since θ̂ is a.s. finite, we can approximate it pointwise by truncation; i.e.,
θ̂n = θ̂1{|θ̂|<n} increases to θ̂. If θ̂ ·∆Ŝ > 0 on a set of positive P -measure,

the same must be true for θ̂n · ∆Ŝ if n is chosen sufficiently large. Now
EQ

(
θ̂n · ∆Ŝ

)
is well-defined, but since Q ∈ P we have

EQ

(
θ̂n · ∆Ŝ

)
= EQ

(
θ̂n · EQ

(
∆Ŝ |F0

))
= 0.

This contradicts the claim that θ̂n ·∆Ŝ is non-zero and in L0
+. So K∩L0

+ =
{0} .

Remark 3.5.6. In order to complete the proof of the fundamental theorem
for this single-period model, it remains to show that (ii) implies (iii) in
Theorem 3.5.4 (i.e., that the reformulated no-arbitrage condition C ∩L0

+ =
{0} implies the existence of an EMM with bounded density). To do this,
it will be advantageous to assume that

EP

(
Si

t

S0
t

)
< ∞ for i = 0, 1, . . . , d and t = 0, 1.

In fact, we can make this assumption without loss of generality since the
statement C ∩ L0

+ = {0} is invariant under equivalent changes of measure.
We therefore assume that it holds for the measure P1 whose density relative
to P is given by

dP1

dP
=

c

1 +
∑d

i=0

(
Si

0
S0

0
+ Si

1
S0

1

) ,

where c is a normalising constant chosen to make P1 a probability measure.
Clearly the P1-expectations of the discounted prices are finite. If we find
a probability measure Q with EQ

(
∆Ŝ |F0

)
= 0 and dQ

dP1
bounded, then

dQ
dP = dQ

dP1

dP1
dP is bounded, so that Q ∈ Pb. Henceforth we shall assume

without further mention that the discounted prices are P -integrable.
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We show in several steps that (ii) implies (iii), initially by adding a
further assumption on the cone C, as described below.

The following proposition presents a basic fact about the behaviour of
conditional expectations under equivalent measure changes. We shall need
it several times in this chapter, as well as in Chapter 9.

Proposition 3.5.7 (Bayes’ Rule). Given probability measures P, Q with
Q � P on the measurable space (Ω,F), a sub-σ-field G of F and a random
variable Y ≥ 0 integrable with respect to both measures, we have the identity

EQ (Y |G ) =
EP

(
Y dQ

dP |G
)

EP

(
dQ
dP |G

) a.s. (Q) . (3.10)

Proof. Let Q � P have Radon-Nikodym derivative dQ
dP = Z. Then Q(Z >

0) = 1 since, for any A ∈ F,

Q(A) =
∫

A

ZdP =
∫

A∩{Z>0}
ZdP = Q(A ∩ {Z > 0}).

As G ⊂ F, the density dQ
dP

∣∣∣
G

equals EP (Z |G ) since

Q(G) =
∫

G

ZdP =
∫

G

EP (Z |G ) dP for all G ∈ G.

For the F-measurable random variable Y ≥ 0, let

W =

{
EP (Y Z|G )
EP (Z|G ) if EP (Z |G ) > 0,

0 if EP (Z |G ) = 0.

By the above, the latter occurs only on a Q-null set.
To prove that W = EQ (Y |G ), we must verify that EQ (1GW ) =

EQ (1GY ) for all G ∈ G. But this follows from

EQ (1GW ) = EP (1GWZ)
= EP (EP (1GWZ |G ))
= EP (1GWEP (Z |G ))
= EP (1GEP (Y Z |G ))
= EP (EP (1GY Z) |G )
= EP (1GY Z)
= EQ (1GY ) .

The role of the convex cone C is clarified in the following general theorem
about convex cones in L1. We use separation arguments in the Banach
space L1 to provide a normalised element of the dual space L∞, which will
act as the bounded density of the martingale measure we wish to construct.
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Theorem 3.5.8 (Kreps-Yan). Let C be a closed convex cone in L1 con-
taining the negative essentially bounded functions (i.e., C ⊃ −L∞

+ ) and such
that C ∩L1

+ = {0} . Then there exists Z ∈ L∞ such that Z > 0 a.s. (P ) and
EP (Y Z) ≤ 0 for all Y ∈ C.

Proof. The separation theorem we need is the analogue of the separating
hyperplane theorem (Theorem 3.1.1) and follows from the Hahn-Banach
theorem (see, e.g. , [264, Theorem I.9.2]): given a closed convex cone C
disjoint from a compact set K in a Banach space B, we can find a con-
tinuous linear functional f in the dual space B∗ and reals α, β such that
f(c) ≤ α < β < f(k) for all c ∈ C, k ∈ K.

Applying this to the convex cone C and the compact set {U}, where
0 �= U ∈ L1

+, we find f ∈ (L1)∗, with f(X) = EP (XZ) if X ∈ L1, so that
Z ∈ L∞ implements f. Thus, for all Y ∈ C,

EP (Y Z) ≤ α < β < EP (UZ) for some α, β.

Since C contains 0, we must have α ≥ 0, and as C is a cone and EP (Y Z) ≤ α
for all Y ∈ C, it follows that α = 0 (Y ∈ C implies λY ∈ C for all λ ≥ 0,
so if EP (Y Z) > 0 for some Y in C, EP (λY Z) = λEP (Y Z) cannot be
bounded above as λ → ∞). On the other hand, EP (−XZ) ≤ 0 holds for
all X ∈ L∞

+ since C contains −L∞
+ . Apply this with X = 1{Z<0}, so that

EP (Z−) ≤ 0; hence Z ≥ 0 a.s. (P ).
As EP (UZ) > β > 0, it follows that P (Z > 0) > 0. Note that we can

replace Z by Z
|Z|∞

so that we can assume without loss of generality from
now on that 0 ≤ Z ≤ 1. Hence we have shown that for each non-zero
U ∈ L1

+ there exists a ZU ∈ L∞ with 0 ≤ ZU ≤ 1, P (ZU > 0) > 0, and
EP (Y ZU ) ≤ 0 for all Y ∈ C, but EP (UZU ) > 0.

However, the claim is that we can find some Z > 0 a.s. (P ) with these
properties. To construct it, we employ an exhaustion argument. First let∑∞

k=1 αk = 1, αk ≥ 0, and define

Z =
∞∑

k=1

αkZUk
,

where each Uk ∈ L1
+ and ZUk

is as constructed above. Then, for Y ∈ C,∑∞
k=1 |αkZUk

Y | ≤ |Y | shows that EP (
∑n

k=1 αkZUk
Y ) is bounded above

in L1. Therefore, by dominated convergence, we have

EP (Y Z) =
∞∑

k=1

αkEP (Y ZUk
) ≤ 0.

Now let
c = sup

ZU ∈D
P (ZU > 0),

where

D = {ZU ∈ L∞ : 0 ≤ ZU ≤ 1, P (ZU > 0) > 0; EP (Y ZU ) ≤ 0 if Y ∈ C} .
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Choose a sequence (ZUk
) in D such that P (ZUk

> 0) → c as k → ∞. The
countably convex combination Z =

∑∞
k=1

1
2k ZUk

satisfies EP (Y Z) ≤ 0
for all Y in C by the above argument and hence is in D, and {Z > 0} =
∪∞

k=1 {ZUk
> 0} . It follows that P (Z > 0) = c, and it remains to show that

c = 1.

If c < 1, the set A = {Z = 0} would have P (A) > 0. Then U =
1A ∈ L1

+, U �= 0, and so EP (UZU ) > 0. This would mean that P [A ∩
{ZU > 0}] > 0 and hence the function W = 1

2 (Z + ZU ) ∈ D would have
P (W > 0) > P (Z > 0) = c, contradicting the definition of c.

As required, we have found Z ∈ L∞ with EP (Y Z) ≤ 0 for all Y in C
and Z > 0 a.s. (P ).

Applying this to the cone C = K − L0
+, we can now prove the following

result.

Proposition 3.5.9. If C ∩L0
+ = {0} and C ∩L1 is closed in L1, then there

is a probability measure Q ∼ P with bounded density relative to P such that
EQ

(
∆Ŝ |F0

)
= 0 a.s. (Q).

Proof. The L1-closed cone C∩L1contains −L∞
+ since 0 ∈ K∩L1. Hence the

Kreps-Yan theorem provides a Z ∈ L∞ with Z > 0 a.s. (P ) and EP (Y Z) ≤
0 for all Y in C. Since K ∩ L1 is a linear space, α(θ̂ · ∆Ŝ) lies in K ∩ L1 and
hence in C ∩ L1 (recall Remark 3.5.6) for any α ∈ R and θ̂ in L∞(F0, R

d).
It follows that EP

(
Z(θ̂ · ∆Ŝ)

)
= 0 for all choices of θ̂. But then

EP

(
θ̂ · EP

(
Z∆Ŝ |F0

))
= EP

(
Z(θ̂ · ∆Ŝ)

)
= 0

for all θ̂ ∈ L∞(F0; Rd), so that EP

(
Z∆Ŝ |F0

)
= 0 a.s. (P ). Now apply

the conditional Bayes rule (3.10) so that, setting dQ
dP = Z

EP (Z) , we finally
obtain

EQ

(
∆Ŝ |F0

)
=

EP

(
Z∆Ŝ |F0

)
EP (Z |F0 )

= 0 a.s. (Q) . (3.11)

Hence Q is an EMM for the single-period model.

We have now proved Theorem 3.5.4 under the additional assumption
that the cone C∩L1 is closed in the L1-norm. The removal of this additional
assumption requires a more subtle analysis, which is presented in the next
section. The reader may prefer to omit this on a first reading and go
directly to the proof of the fundamental theorem in a multi-period setting,
which, with the above preparation, now only requires a careful backward
induction procedure.
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Closed Subsets of L0

We saw that, to reformulate the no-arbitrage condition in geometric terms,
we need to deal with the larger space L0, which does not have the conve-
nience of a norm topology. Indeed, the appropriate topology in L0 is that
of convergence in probability.

Definition 3.5.10. The random variables (Xn) in L0(Ω,F, P ; Rd) (d ≥ 1)
converge in probability to a random variable X if

lim
n→∞

P (|Xn − X|d > ε) = 0 for all ε > 0.

Here |·|d denotes the Euclidean norm in Rd.

This convergence concept for Rd-valued random vectors can of course
also be defined in terms of their coordinate random variables. The topology
on L0(Ω,F, P ; R) is induced by the metric

d(X, Y ) = EP

( |X − Y |
1 + |X − Y |

)
,

so that with the resulting topology, L0(Ω,F, P ; Rd) is metrisable and the
above definition suffices to describe convergence in this topology for each
coordinate. It is elementary that convergence in the Lp-norm for any p ≥ 1
implies convergence in probability. Moreover, a.s. (P )-convergence implies
convergence in probability, and if Xn → X in probability, then some sub-
sequence (Xnk

)k≥1 converges to X a.s. (P ).
Our principal source of relevant information on sets in L0(F0; Rd) are

the θ̂ ∈ L0(F0; Rd), which give rise to discounted gains processes whose
conditional expectation relative to F0 vanishes a.s. (P ). It is thus natural
to fix vectors in Rd whose values are a.s. (P ) orthogonal to the discounted
price increments.

Write

N =
{

φ ∈ L0(F0; Rd) : φ · ∆Ŝ = 0 a.s. (P )
}

,

N⊥ =
{
ψ ∈ L0(F0; Rd) : φ · ψ = 0 a.s. (P ) for all φ ∈ N

}
.

It is of course by no means clear at this stage that the notation N⊥ signifies
any ‘orthogonality’ in the function space L0(F0; Rd): we show below how
this notation will be justified. First we note some simple properties of the
linear subspaces N and N⊥.

Lemma 3.5.11. N and N⊥ are closed subspaces of L0(F0; Rd), and are
closed under multiplication by functions in L0(F0; R). Moreover, N∩N⊥ =
{0} .

Proof. If (φn) in N converges in probability to φ ∈ L0(F0; Rd) then some
subsequence (φnk

) converges to φ a.s. (P ). Hence(
φ · ∆Ŝ

)
(ω) = lim

k

(
φnk

· ∆Ŝ
)

(ω) = 0 a.s. (P ) ,
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so that φ ∈ N . Hence N is closed in L0(F0; Rd). An identical proof shows
that N⊥ is also closed.

Next, let h : Ω → R be F0-measurable and finite a.s. (P ). Then(
(hφ) · ∆Ŝ

)
(ω) = h(ω)

(
φ · ∆Ŝ

)
(ω) = 0 a.s. (P ) for all φ ∈ N,

so that hφ ∈ N. Similarly, for ψ in N⊥, ((hψ) · φ) = h(ψ · φ) = 0 for all
φ ∈ N.

Finally, if φ ∈ N ∩N⊥, we have (φ ·φ)(ω) = |φ(ω)|2d = 0 a.s. (P ). Hence
N ∩ N⊥ = {0} as subspaces of L0(F0; Rd).

The next result provides the ‘orthogonal decomposition’ of L0(F0; Rd)
indicated by the notation.

Proposition 3.5.12. Every φ ∈ L0(F0; Rd) can be decomposed uniquely
as φ = P1φ + P2φ, where P1φ ∈ N, P2φ ∈ N⊥.

Proof. We prove this first for the constant functions ω → ei, where the (ei)
form the standard ordered basis of Rd. Any element of L0(F0; Rd) can be
written in the form φ =

∑d
i= φiei, where the coordinate functions (φi) are

F0-measurable real random variables.
Fix i ≤ d, and by a minor abuse of notation write ei for the constant

function with this value. As a bounded function, ei is in the Hilbert space
H = L2(F0; Rd), and H1 = N ∩ H and H2 = N⊥ ∩ H are linear subspaces
of H. Both are closed in H since L2-convergence implies convergence in
probability. Hence the projection maps Pi : H → Hi (i = 1, 2) are well-
defined. Consider the element ψ = ei − P1ei. To show that H2 = H⊥

1 , we
need only prove that ψ ∈ N⊥, which implies that ψ = P2ei. If ψ is not in
N⊥, we can find φ ∈ N such that the inner product (φ · ψ)(ω) > 0 on a set
A ∈ F0 with P (A) > 0. Since it is possible that EP (φ · ψ) is infinite, we
consider the truncations

φn(ω) =

{
φ(ω)1{|φ|≤n} if ω ∈ A,

0 if ω /∈ A.

Then each EP (φn · ψ) is finite, and we have (φn, ψ)H = EP (φn · ψ) > 0 for
large enough n, where (·, ·)H is the inner product in H. As φn ∈ H1 = N∩H,
this would contradict the construction of ψ as a vector orthogonal to H1
in H, so ψ ∈ N⊥.

This completes the decomposition of ei. Since ei = P1ei + P2ei for
each i ≤ d, with P1ei ∈ N ∩ H, P2ei ∈ N⊥ ∩ H, is a unique decomposi-
tion, we can now write (P1φ)(ω) =

∑d
i=1 φi(ω)(P1ei)(ω) and (P2φ)(ω) =∑d

i=1 φi(ω)(P2ei)(ω) for each ω ∈ Ω. The function P1φ is in N and P2φ
is in N⊥ by Lemma 3.5.11, which also confirms that the decomposition is
unique.
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The final lemma we need provides a measurable way of selecting a con-
vergent subsequence from a given sequence in L0(F0; Rd). This is achieved
by a diagonal argument on the components of the random vectors.

Lemma 3.5.13. If (fn)n≥1 is a sequence in L0(F0; Rd) with lim infn |fn|
finite, then there is an element f in L0(F0; Rd) and a strictly increasing
sequence (τn) of F0-measurable random variables taking their values in N

such that fτn(ω)(ω) → f(ω) for P -almost all ω ∈ Ω.

Proof. Write F (ω) = lim infn |fn(ω)|d , where |·|d is again the Euclidean
norm in Rd. On the P -null set B = {F = ∞}, we set τm = m for each m.
For ω in Bc we define τm inductively. First set

σ0
m(ω) =

{
1 if m = 1,

min
{
n > σ0

m−1(ω) : ||fn(ω)| − F (ω)|d ≤ 1
m

}
if m ≥ 2.

The first component f1 of f is now taken as

f1(ω) = lim inf
m→∞

f1
σ0

m(ω)(ω), (3.12)

and at the same time we define a subsequence of random indices (σ1
m)m≥1

by using this ‘limit value’ in the construction: let σ1
1(ω) = 1, and for m ≥ 2

define

σ1
m(ω) = min

{
σ0

n : σ0
n(ω) > σ1

m−1(ω) and
∣∣∣f1

σ0
n−1(ω)(ω) − f1(ω)

∣∣∣ ≤ 1
m

}
.

Continue this inductively for i = 2, 3, . . . , d, finding the second coordi-
nate of the limit function at the next step and simultaneously constructing
a subsequence (σ2

m) of
(
σ1

m

)
that leads to the next coordinate of f. Fi-

nally, let τm = σd
m for each m ≥ 1. It is clear from the construction that∣∣∣f i

τm(ω)(ω) − f i(ω)
∣∣∣ ≤ 1

m for each i ≤ d and that (τm) is strictly increasing,
and each τm is F0-measurable by construction.

We are now ready for the final step in the proof of Theorem 3.5.4.

Proposition 3.5.14. If K ∩ L0
+ = {0}, then C = K − L0

+ is closed in L0.

Proof. Let (Yn) be a sequence in C converging to Y ∈ L0 as n → ∞. There
is a subsequence converging to Y a.s. (P ), so we can assume without loss
of generality that Yn → Y a.s. (P ). Write Yn = ψn · ∆Ŝ − Un for some
Un ∈ L0

+ and ψn ∈ N⊥ since by Proposition 3.5.12 any θ ∈ L0(F0; Rd) can
be decomposed uniquely as θ = φ + ψ with φ ∈ N and ψ ∈ N⊥, and then
φ · ∆Ŝ = 0 so θ · ∆Ŝ = ψ · ∆Ŝ.

Define αn = (1 + |ψn|d)
−1 and set fn = αnψn. Extend this to a ‘port-

folio’ Fn = (αn, fn) in L0(F0, R
d+1) and note that |Fn| ≤ 2, so that we can

apply Lemma 3.5.13 to provide F0-measurable random variables with val-
ues τ1 < τ2 < · · · < τn < · · · in N and a function F ∈ L∞(F0, R

d+1) such
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that Fτn → F P -almost surely. Since the convergence holds coordinate-
wise, we can write F = (α, f) and then ατn → α and fτn → f.

We show that fτn
∈ N⊥ for each n. For this, let φ ∈ N be given. Then

(φ · fτn
)(ω) =

∞∑
k=1

αk (ω)1{τn(ω)=k}(ω)(φ · ψk)(ω) = 0 a.s. (P )

since each ψk ∈ N⊥. Since N⊥ is closed in L0(F0; Rd), it follows that
f ∈ N⊥.

Now consider the set A = {α = 0} . We claim that P (A) = 0. To
see this, note that since Yn → Y a.s. and ατn

→ α a.s. it follows that
ατnYτn = fτn ·∆Ŝ−ατnUτn converges a.s. (P ). On A the limit is obviously
0. But fτn · ∆Ŝ → f · ∆Ŝ a.s. (P ), so we have proved that

1Aατn
Uτn

→ 1Af · ∆Ŝ a.s. (P ) .

Now each element on the left-hand side is non-negative and hence so is
their limit. By the no-arbitrage condition K ∩ L0

+ = {0}, it follows that
(1Af) · ∆Ŝ = 0. Since f ∈ N⊥, the same is true of 1Af , which therefore
belongs to N ∩ N⊥ = {0} .

Thus f = 0 a.s. (P ) on A. This forces P (A) = 0. To see this, note that
by definition, ατn(ω)(ω) → 0 means that (

∣∣ψτn(ω)(ω)
∣∣
d
)n is unbounded

above. Hence
|ψτn |

1 + |ψτn | → 1,

so that

1A |f | = 1A lim
n

|ατn
ψτn

| = 1A lim
n

|ψτn |
1 + |ψτn

| = 1A. (3.13)

In other words, |f | = 1 a.s. (P ) on A, which is impossible unless P (A) = 0.
We therefore need only examine the convergence of (ψτn

)n on Ac =
{α > 0} since this set has full P -measure. By construction, we have

ατn(ω)(ω) > 0 a.s. (P ) .

Hence, as P (A) = 0,

1
α

f = lim
n

1
ατn

fτn = lim
n

ψτn a.s. (P ) . (3.14)

Thus, as Un ≥ 0 for all n, we have

Y = lim
n

Yn = lim
n

Yτn ≤ lim
n

(ψτn · ∆Ŝ) =
1
α

f · ∆Ŝ a.s. (P ) . (3.15)

Thus Y has the form φ · ∆Ŝ − U for some U ∈ L0
+, so that Y ∈ C as

required. This completes the proof.

Remark 3.5.15. Note that we have equality in (3.15) if Yn = ψn · ∆Ŝ for
all n. Therefore, if all Yn are in K, then so is their L0-limit Y. Hence we
have also shown that if K ∩ L0

+ = {0}, then K is closed in L0.
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The Fundamental Theorem for a Multi-period Model

Having completed the construction of the EMM for a general single-period
model with random initial prices, we can finally return to a multi-period
setting to complete the proof of Theorem 3.5.1. We take as given a prob-
ability space (Ω, F, P ) and a time set T = {0, 1, . . . , T} for some natural
number T. We also reinstate the condition on F0 as in the theorem: let
F = (Ft)t∈T be a filtration with F0 consisting of all P -null sets and their
complements. Suppose the Rd+1-valued process S = (Si

t : 0 ≤ i ≤ d, t ∈ T)
is adapted to F, with S0

t > 0 a.s. (P ) for each t in T.
As usual, we take the 0th asset as numéraire and consider the discounted

price processes S
i

t = Si
t

S0
t

instead. This ensures that S
0 ≡ 1 and that all

prices are expressed in units of S0. Given any self-financing trading strategy
θ =
{
θi

t : 0 ≤ i ≤ d
}

1≤t≤T
, the discounted value process V (θ) defined as

V 0(θ) = θ1 · S0, V t(θ) = θt · St(θ) for t = 1, 2, . . . , T

satisfies
V t(θ) = V 0(θ) + Gt(θ) for all t = 1, 2, . . . , T,

where

Gt(θ) =
t∑

u=1

θ̂u · ∆Ŝt,

with ∆Ŝt =
(

Si
t

S0
t

− Si
t−1

S0
t−1

)
1≤i≤d

and θ̂t = (θi
t)1≤i≤d.

Proof of the Fundamental Theorem. As we have seen in Proposition 3.3.2,
the no-arbitrage condition in this multi-period model can be restated as,
for all t and θ ∈ L0(Ω,Ft−1, P ; Rd), the requirement θ̂t · ∆Ŝt ≥ 0 a.s. (P )
implies that θ̂t · ∆Ŝt = 0 a.s. (P ).

We therefore consider the single-period model with times {t − 1, t} in-
stead of {0, 1}. Defining the subspace

Kt =
{

θ̂t · ∆Ŝt : θ̂t ∈ L0(Ω,Ft−1, P ; Rd)
}

, (3.16)

we have the reformulation of the no-arbitrage condition as

Kt ∩ L0
+(Ω,Ft, P ) = {0} . (3.17)

This statement involves knowledge of the measure P only through its null
sets and thus remains valid for any probability equivalent to P. It also
allows us to apply Theorem 3.5.4 to the tth trading period for each t ≤ T.
Beginning with t = T, we obtain a probability measure QT ∼ P with
bounded density dQT

dP such that EQT

(
∆ŜT |FT−1

)
= 0. Thus we are able

to start the backward induction procedure. Assume by induction that
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we have found a probability measure Qt+1 ∼ P that turns the process
(Ŝu)t+1≤u≤T into a martingale; i.e., that

EQt+1

(
∆Ŝu |Fu−1

)
= 0 for u = t + 1, t + 2, . . . , T.

Then (3.17) is valid with Qt+1 in place of P, and we can again apply
Theorem 3.5.4 to find a probability measure Qt ∼ Qt+1 with bounded
Ft-measurable density dQt

dQt+1
such that EQt

(
∆Ŝt |Ft−1

)
= 0. The density

dQt

dP = dQt

dQt+1

dQt+1
dP remains bounded and is strictly positive a.s. (P ), since

Qt ∼ Qt+1 ∼ P. Now apply the Bayes rule (3.10) to these measures with
integrand ∆Ŝu for t + 1 ≤ u ≤ T :

EQt

(
∆Ŝu |Fu−1

)
=

EQt+1

(
∆Ŝu

dQt

dQt+1
|Fu−1

)
EQt+1

(
dQt

dQt+1
|Fu−1

)
= EQt+1

(
∆Ŝu |Fu−1

)
= 0

since the density dQt

dQt+1
is Ft-measurable and hence Fu−1-measurable for

every u ≥ t + 1. Under Qt ∼ P , the process (Ŝu)t≤u≤T is therefore a
martingale, which completes the induction step. The measure Q1 ∼ P we
obtain at the final step, when t = 1, turns (Ŝu)1≤u≤T into a martingale.
The result follows.

Equivalent Martingale Measures and
Change of Numéraire

Having established the fundamental relationship between viability of the
model and the existence of EMMs, it is natural to consider the impact
of a change of numéraire. On the one hand, the viability of the model
is not affected by a change of numéraire, since the definition of arbitrage
(e.g. , as expressed in terms of the gains process at a single step, as in
Proposition 3.3.2) does not involve the amount of a positive gain but only
its existence. On the other hand, whether a given measure is an EMM
for the model will in general depend on the choice of numéraire. At the
same time, it seems plausible that there should be a simple relationship
between the sets of EMMs for a given model under two different choices of
numéraire: it is clear from model viability that both sets are either empty
or non-empty together.

So assume that we have a viable pricing model in which the assets S0

and S1 are strictly positive throughout. Denote by Pi the non-empty set
of EMMs for the model when Si is used as numéraire (i = 0, 1). Recall that
we write the discounted price process as S =

(
1, S1

S0 , S2

S0 , . . . , Sd

S0

)
when S0



3.5 GENERAL DISCRETE MODELS 85

is used as numéraire. Write S̃ for the discounted price process when the
numéraire is S1, so that S̃ =

(
S0

S1 , 1, S2

S1 , . . . , Sd

S1

)
. Note that S̃i = S0

S1 S
i

for i = 0, 1, . . . , d. Recall that M1(Ω,F) denotes the space of probability
measures on (Ω,F).

Proposition 3.5.16. We have

P1 =

{
Q̃ : Q̃ ∈ M1(Ω,F);

dQ̃

dQ
=

S
1
t

S
1
0

for some Q ∈ P0

}
.

Proof. Denote the set of probability measures on the right by P̃. We first
show that P1 ⊂ P̃. To do this, fix Q ∈ P0, let t ∈ T be given, and write

Λt =
S

1
t

S
1
0

=
S1

t

S0
t

.
S0

0

S1
0
.

Then Λ0 ≡ 1 and Λ is a Q-martingale since

EQ (Λt |Ft−1 ) =
1

S
1
0

EQ

(
S

1
t |Ft−1

)
=

S
1
t−1

S
1
0

= Λt−1 a.s. (Q) . (3.18)

Since S0
t > 0 and S1

t > 0 for all t by hypothesis, Λt > 0 a.s. (Q) for all t.

In particular, dQ̃
dQ = Λt defines a probability measure Q̃ ∼ Q ∼ P .

It remains to show that S̃ is a martingale under Q̃. By Bayes’ rule and
the definition of Λ, we have a.s. (Q) for u < t in T and i = 0, 1, . . . , d,

EQ̃

(
S̃i

t |Fu

)
=

EQ

(
S̃i

tΛt |Fu

)
EQ (Λt |Fu )

=
1

Λu
EQ

(
S̃i

tΛt |Fu

)
=

1
Λu

EQ

(
S0

t

S1
t

S
i

tΛt |Fu

)
=

1
Λu

S0
0

S1
0
EQ

(
S

i

t |Fu

)
=

S0
u

S1
u

S
i

u = S̃i
u.

Therefore Q̃ ∈ P1 and we have proved that P̃ contains P1. To prove
the opposite inclusion, we need only reverse the roles of S̃ and S, so the
proposition is proved.



Chapter 4

Complete Markets

Our objective in this chapter is to characterise completeness of the market
model. First we provide a simple reformulation of completeness in terms
of the representability of martingales. Although we restrict our attention
(and apply the results) to finite market models, the more general theorems
proved in the final two sections of this chapter can easily be applied to
reproduce this proof for general discrete-time models.

The key result proved for finite market models states that in a viable
complete model the equivalent martingale measure is unique. For finite
models such as the CRR model, which is examined in detail, the fine struc-
ture of the filtrations can be identified more fully. However, we shall see
later that the restriction to finite complete models is more apparent than
real and that, in the discrete setting, complete models form the exception
rather than the rule. To establish the desired characterisation of complete
models, we also characterise the attainability of contingent claims-in the
general setting, this requires the full power of the first fundamental theo-
rem.

Let S = (Si : i = 0, 1, . . . , d) be a non-negative Rd+1-valued stochastic
process representing the price vector of one riskless security with

S0
0 = 1, S0

t = β−1
t S0

0 ,

and d risky securities
{
Si

t : i = 1, 2, . . . , d
}

for each t ∈ T = {0, 1, . . . , T} .
Let X be a contingent claim (i.e., a nonnegative F-measurable random

variable X : Ω → R). Recall that X is said to be attainable if there exists
an admissible trading strategy θ that generates X (i.e., whose value process
V (θ) ≥ 0 satisfies VT (θ) = X a.s. (P )).

87
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4.1 Completeness and Martingale Represen-
tation

Let (Ω, F, P, T, F) be a complete market model with unique EMM Q. This
is equivalent to the following martingale representation property: the dis-
counted price S serves as a basis (under martingale transforms) for the
space of (F, Q)-martingales on (Ω,F). To avoid integrability issues, we re-
strict ourselves to finite models in the proof of the following proposition.

Proposition 4.1.1. The viable finite market model (Ω,F, T, F, P ) with
EMM Q is complete if and only if each real-valued (F, Q)-martingale M =
(Mt)t∈T can be represented in the form

Mt = M0 +
t∑

u=1

γu · ∆Su = M0 +
d∑

i=1

(
t∑

u=1

γi
u∆S

i

u

)
(4.1)

for some predictable process γ =
{
γi : i = 1, 2, . . . , d

}
.

Proof. Suppose the model is complete, and (since every martingale is the
difference of two positive martingales) assume without loss of generality
that M = (Mt) is a non-negative (F, Q)-martingale. Let C = MT S0

T ,
and find a strategy θ ∈ Θa that generates this contingent claim, so that
VT (θ) = C, and hence V T (θ) = MT . Now, since the discounted value
process V is a Q-martingale, we have

V t(θ) = EQ

(
V t(θ) |Ft

)
= EQ (MT |Ft ) = Mt.

Thus the martingale M has the form

Mt = V t(θ) = V0(θ) +
t∑

u=1

θu · ∆Su = M0 +
t∑

u=1

θu · ∆Su

for all t ∈ T. Hence we have proved (4.1) with γu = θu for all u ∈ T.
Conversely, fix a contingent claim C, and define the martingale M =

(Mt) by setting Mt = EQ (βT C |Ft ) . By hypothesis, the martingale M has
the representation (4.1). So we define a strategy θ by setting

θi
t = γi

t for i ≥ 1, θ0
t = Mt − γt · St for t ∈ T.

We show that θ is self-financing by verifying that (∆θt) · St−1 = 0. Indeed,
for fixed t ∈ T, we have

(∆θt) · St−1 = S0
t−1

(
∆Mt − ∆

[
d∑

i=1

γi
tS

i

t

])
+

d∑
i=1

Si
t−1∆γi

t

=
d∑

i=1

(
S0

t−1

[
γi

t∆S
i

t −
(
γi

tS
i

t − γi
t−1S

i

t−1

)]
+ Si

t−1∆γi
t

)
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=
d∑

i=1

Si
t−1
(
∆γi

t − ∆γi
t

)
= 0.

Moreover, Vt(θ) = θt · St = MtS
0
t for all t ∈ T. In particular, we obtain

C = VT (θ), as required. Thus the market model is complete.

4.2 Completeness for Finite Market Models

We saw in Chapter 2 that the Cox-Ross-Rubinstein binomial market model
is both viable and complete. In fact, we were able to construct the equiv-
alent martingale measure Q for S directly and showed that in this model
there is a unique equivalent martingale measure. We now show that this
property characterises completeness in the class of viable finite market mod-
els.

Theorem 4.2.1 (Second Fundamental Theorem for Finite Market
Models). A viable finite market model is complete if and only if it admits
a unique equivalent martingale measure.

Proof. Suppose the model is viable and complete and that Q and Q′ are
martingale measures for S with Q′ ∼ P ∼ Q. Let X be a contingent claim,
and let θ ∈ Θa generate X. Then, by (2.7), we have

βT X = V T (θ) = V0(θ) +
T∑

t=1

θt · ∆St. (4.2)

Since each discounted price process S
i

is a martingale under both Q and
Q′, the above sum has zero expectation under both measures. Hence

EQ (βT X) = V0(θ) = EQ′ (βT X) ;

in particular,
EQ (X) = EQ′ (X) . (4.3)

Equation (4.3) holds for every F-measurable random variable X, as the
model is complete. In particular, it holds for X = 1A, where A ∈ F is
arbitrary, so that Q(A) = Q′(A). Hence Q = Q′, and so the equivalent
martingale measure for this model is unique.

Conversely, suppose that the market model is viable but not complete,
so that there exists a non-negative random variable X that cannot be
generated by an admissible trading strategy. This implies that X cannot
be generated by any self-financing strategy θ =

{
θ0, θ1, θ2, . . . , θd

}
, and

by (2.8) we can restrict attention to predictable processes
{
θ1, θ2, . . . , θd

}
in Rd, as these determine θ0 up to constants.

Therefore, define

L =

{
c +

T∑
t=1

θt · ∆St : θ predictable, c ∈ R

}
.



90 CHAPTER 4. COMPLETE MARKETS

Then L is a linear subspace of the vector space L0(Ω,F, P ). Note that this
is just Rn, where the minimal F-partition of Ω has n members. Since this
space is finite-dimensional, L is closed.

Suppose that βT X ∈ L (i.e., βT X = c+
∑T

t=1 θt·∆St for some Rd-valued
predictable process θ). By (2.8), we can always extend θ to a self-financing
strategy with initial value c. However, X would be attained by this strategy.
Hence we cannot have βT X ∈ L, and so L is a proper subspace of L0 and
thus has a non-empty orthogonal complement L⊥.

Thus, for any EMM Q, there exists a non-zero random variable Z ∈ L0

such that

EQ (Y Z) = 0 for all Y ∈ L. (4.4)

As L0 is finite-dimensional, Z is bounded. Note that EQ (Z) = 0 since
Y ≡ 1 is in L (take θi ≡ 0 for i ≥ 1).

Define a measure Q′ ∼ Q by

Q′(ω)
Q(ω)

= R(ω),

where

R(ω) = 1 +
Z(ω)

2 ‖Z‖∞
, ‖Z‖∞ = max {|Z(ω)| : ω ∈ Ω} .

Then Q′ is a probability measure since Q′({ω}) > 0 for all ω and

Q′(Ω) = EQ (R) = 1,

as EQ (Z) = 0. Moreover, for each Y = c +
∑T

t=1 θt · ∆St ∈ L, we have

EQ′ (Y ) = EQ (RY ) = EQ (Y ) +
1

2 ‖Z‖∞
EQ (Y Z) = c.

In particular, EQ′ (Y ) = 0 when Y has c = 0. Thus, for any predictable
process θ =

{
θi

t : t = 1, 2, . . . , T, i = 1, 2, . . . , d
}
, we have

EQ′

(
T∑

t=1

θt · ∆St

)
= 0. (4.5)

Again using θ = (0, . . . , 0, θi, 0, . . . , 0) successively for i = 1, 2, . . . , d in (4.5),
it is clear that Theorem 2.3.5 implies that S is a Q′-martingale. We have
therefore constructed an equivalent martingale measure distinct from Q.
Thus, in a viable incomplete market, the EMM is not unique. This com-
pletes the proof of the theorem.
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4.3 The CRR Model

Again the Cox-Ross-Rubinstein model provides a good testbed for the ideas
developed above. We saw in Section 2.6 that this model is complete, by
means of an explicit construction of the unique EMM as a product of one-
step probabilities. We explore the content of the martingale representation
result (Proposition 4.1.1) in this context and use it to provide a more precise
description of the generating strategy for a more general contingent claim.

Recall that the bond price in this model is S0
t = (1 + r)t for t ∈ T =

{0, 1, . . . , T} , where r > 0 is fixed, and that the stock price S satisfies
St = RtSt−1, where

Rt =

{
1 + b with probability q = r−a

b−a ,

1 + a with probability 1 − q = b−r
b−a .

Here we assume that −1 < a < r < b to have a viable market model,
and the sample space can be taken as Ω = {1 + a, 1 + b}T\{0}

, so that the
independent, identically distributed random variables {Rt : t = 1, 2, . . . , T}
describe the randomness in the model. The unique EMM Q then takes the
form

Q(Rt = ωt : s = 1, 2, . . . , T ) =
∏
t≤T

qt,

where

qt =

{
q if ωt = 1 + b,

1 − q if ωt = 1 + a.

In such simple cases, a direct proof of the martingale representation
theorem is almost obvious and does not depend on the nature of the sample
space, since the (Rt) contain all the relevant information.

Proposition 4.3.1. Suppose that (Ω,F, Q) is a probability space and (Rt,
where 1, 2, . . . , T , is a finite sequence of independent and identically dis-
tributed random variables, taking the two values u, v with probabilities q and
1−q, respectively. Suppose further that E (R1) = w, where −1 < v < w < u
and

q =
w − v

u − v
(4.6)

while mt =
∑t

s=1(Rt − w), F0 = {∅, Ω}, andFt = σ(Rs : s ≤ t) for all
t = 1, 2, . . . , T .

Then (mt,Ft, Q) is a centred martingale and every (Ft, Q)-martingale
(Mt,Ft, Q) with EQ (M0) = 0 can be expressed in the form

Mt =
∑
s≤t

θs∆ms, (4.7)

where the process θ = (θt) is (Ft)-predictable.
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Proof. We follow the proof given in [299],15.1 (see also [63], [283]). It
is obvious that m = (mt) is a martingale relative to (Ft, Q). Since Mt is
Ft−measurable, it has the form

Mt(ω) = ft(R1(ω), R2(ω), . . . , Rt(ω)) for all ω ∈ Ω.

Now suppose that (4.7) holds. It follows that the increments of M take the
form ∆Mt(ω) = θt(ω)∆mt(ω), so that, if we set

fu
t (ω) = ft(R1(ω), R2(ω), . . . , Rt−1(ω), u),

fv
t (ω) = ft(R1(ω), R2(ω), . . . , Rt−1(ω), v),

then (4.7) results from showing that

fu
t − ft−1 = θt(u − w), fv

t − ft−1 = θt(v − w).

In other words, θt would need to take the form

θt =
fu

t − ft−1

u − w
=

fv
t − ft−1

v − w
. (4.8)

To see that this is indeed the case, we simply use the martingale property
of M . Since EQ (∆Mt |Ft−1 ) = 0, we have

qfu
t + (1 − q)fv

t = ft−1 = qft−1 + (1 − q)ft−1.

This reduces to
fu

t − ft−1

1 − q
=

fv
t − ft−1

q
,

which is equivalent to (4.8) because of (4.6).

Valuation of General European Claims

We showed in Section 2.6 that the value process

Vt(C) = (1 + r)−(T−t)EQ (C |Ft )

of a European call option C in the Cox-Ross-Rubinstein model can be
expressed more concretely in the form Vt(C) = v(t, St), where

v(t, x) = (1 + r)−(T−t)
T−t∑
u=o

[(
T − t

u

)
qu(1 − q)T−t−u

]
×(x(1 + b)u(1 + a)T−t−u − K)+

]
.

This Markovian nature of the European call (i.e., the fact that the value
process depends only on the current price and not on the path taken by the
process S), can be exploited more generally to provide explicit expressions
for the value process and generating strategies of a European contingent
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claim (i.e., a claim X = g(ST )). In the CRR model, we know that the
evolution of S is determined by the ratios (Rt), which take only two values,
1 + b and 1 + a. For any path ω, the value ST (ω) is thus determined
by the initial stock price S0 and the number of ‘upward’ movements of
the price on T = {0, 1, . . . , T} . To express this more simply, note that
Rt = (1+a)+ (b−a)δt, where δt is a Bernoulli random variable taking the
value 1 with probability q. Hence we can consider, generally, claims of the
form X = h(uT ), where uT (ω) =

∑
t≤T δt(ω).

Recall from Proposition 4.3.1 that the martingale Mt = EQ (X |Ft ) can
be represented in the form Mt = M0 +

∑
u≤t θu∆mu. Using v = 1 + a,

w = 1 + r, and u = 1 + b in applying Proposition 4.3.1 in the CRR setting,
we have mu = Ru − (1 + r). Therefore

∆mu = (1+a)−(b−a)δu−(1+r) = (b−a)
(

δu − r − a

b − a

)
= (b−a)(δu−q).

Thus the representation of M can also be written in the form

Mt =
∑
u≤t

αu(δu − q),

where αu = (b − a)θu.
Consider the identity ∆Mt = αt(δt − q). Exactly as in the proof of

Proposition 4.3.1, this leads to a description of α. Indeed,

αt =
EQ (MT |{δu, u < t} , δt = 1) − EQ (MT |{δu, u < t} )

1 − q

=
EQ (h(uT ) |{δu, u < t} , δt = 1) − EQ (h(uT ) |{δu, u < t} )

1 − q
.

We now restrict our attention to the set

A = {ω : ut−1(ω) = x, δt = 1} .

On A, we obtain, using the independence of the (Rt),

EQ (h(uT ) |Ft ) = EQ (h(x + 1 + (uT − ut))) ,

EQ (h(uT ) |Ft−1 ) = EQ (h(x + (uT − ut−1)))
= qEQ (h(x + 1 + (uT − ut)))
+ (1 − q)EQ (h(x + (uT − ut))) .

Thus, on the set A, we have

EQ (h(uT ) |Ft ) − EQ (h(uT ) |Ft−1 )
= (1 − q)EQ (h(x + 1 + (uT − ut)) − h(x + (uT − ut))) ,

and the final expectation is just

T−t∑
s=0

(
T − t

s

)
[h(x + 1 + s) − h(x + s)]qs(1 − q)T−t−s.
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We have therefore shown that

αt = HT−t(ut−1; q),

where

Hs(x; q) =
s∑

τ=0

(
s

τ

)
(h(x + 1 + τ) − h(x + τ)) qτ (1 − q)s−τ .

For a European claim X = f(ST ), this can be taken further using the
explicit form of the martingale representation given in Proposition 4.1.1.
We leave the details (which can be found in [283]) to the reader and simply
note here that the function h given above now takes the form

h(x) = (1 + r)−T f(S0(1 + b)x(1 + a)T−x),

which leads to the following ratio for the time t stock holdings:

αt = (1 + r)−(T−t) FT−t(St−1(1 + b); q) − FT−t(St−1(1 + a); q)
St−1(b − a)

, (4.9)

where

Ft(x; p) =
t∑

s=0

(
t

s

)
f
(
x(1 + b)s(1 + a)t−s

)
ps(1 − p)t−s.

Note that for a non-decreasing f we obtain αt ≥ 0 for all t ∈ T. Hence
the hedge portfolio can be obtained without ever having to take a short
position in the stock, although clearly we may have to borrow cash to
finance the position at various times.

Exercise 4.3.2. Use formula (4.8) to obtain an explicit description of the
strategy that generates the European call option with strike K and expiry
T in the CRR model.

4.4 The Splitting Index and Completeness

Harrison and Kreps [148] introduced the notion of the splitting index for vi-
able finite market models as a means of identifying event trees that lead to
complete models. This idea is closely related to the concept of extremality
of a probability measure among certain convex sets of martingale mea-
sures, and in this setting, the ideas also extend to continuous-time models
(see [290], [150]).

Fix a finite market model (Ω,F, Q, T, F, S) with St = (Si
t)0≤i≤d. We

assume that the filtration F = (Ft) is generated by minimal partitions
(Pt). The splitting index K(t, A) of a set A ∈ Pt−1 is then the number of
branches of the event tree that begin at node A; i.e.,

K(t, A) = card{A′ ∈ Pt : A′ ⊂ A} for t = 1, 2, . . . , T. (4.10)
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It is intuitively clear that this number will serve to characterise com-
pleteness of the market since we can reduce our consideration to a single-
period market (as we have seen in Chapter 3) with A as the new sample
space. In order to construct a hedging strategy that we use to ‘span’ all the
possible states of the market at time t by means of a linear combination of
securities (i.e., a linear combination of the prices (Si

t(ω))0≤i≤d) clearly the
number of different possible states should not exceed (d+1). Moreover, it is
possible that some of the prices can be expressed as linear combinations of
the remaining ones and hence are ‘redundant’ in the single-period market,
so that, as before, what matters is the rank of the matrix of prices (which
correspond to the price increments in multi-period models). Recalling fi-
nally that the bond is held constant as numéraire, the following result, for
which we shall only outline the proof, becomes plausible.

Proposition 4.4.1. A viable finite market model is complete if and only
if for every t = 1, 2, . . . , T and A ∈ Pt−1 we have

dim(span{∆St(ω) : ω ∈ A}) = K(t, A) − 1. (4.11)

In particular, if the market contains no redundant securities (i.e., there is
no α �= 0 in Rd+1, t > 0 in T and A ∈ Pt−1 such that Q(α·St = 0 |A ) = 1),
then K(t, A) = d + 1.

Outline of Proof. (see [290] for details) Refer to the notation introduced
in the discussion following Lemma 3.3.6. We can reduce this situation to
the one-step conditional probabilities as in Chapter 3 and finally ‘paste
together’ the various steps. We also assume without loss of generality that
S0 ≡ 1 throughout, so that St = St for all t ∈ T.

Fix A ∈ Pt−1 and consider the set M of all probability measures on the
space (A,AA), where AA is the σ-algebra generated by the sets {Ai, i ≤ n}
in Pt that partition A. Consider an element QA of the convex set

M0 =
{
Q′

A ∈ M : EQ′
A

(∆St1A) = 0
}

.

If QA is in M0 and assigns positive mass to A1, A2, . . . , Am, while giving
zero mass to the other Ai, then we can write the price increment on the
set Aj , j ≤ m, as ∆St(ω) = yi − y, where St−1(ω) = y is constant on A
since S is adapted. The condition that QA cannot be expressed as a convex
combination of measures in M0 now translates simply to the demand that
the vectors (yi−y) are linearly independent. In other words, that the matrix
of price increments has linearly independent columns. But we have already
seen that non-singularity of the matrix of price increments is equivalent to
completeness in the single-period model. The proof may now be completed
by pasting together the steps to construct the unique EMM.

Example 4.4.2. We already know that the binomial random walk model
is complete by virtue of the uniqueness of the EMM. Our present interest
is in the splitting index. Recall that the price process S has the form
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St =
∏t

u=1 rt, where the return process rt takes only the values u = 1 + b
and d = 1+a and is independent of Ft−1, so that we can describe the price
dynamics by an event tree, as in Figure 1.3.

Clearly there are only two branches at each node, so that K(t, A) = 2,
while

dim(span{∆St(ω) : ω ∈ A}) = 1

for each A ∈ Pt, t ∈ T : ∆S0 ≡ 0, and ∆S1
t (ω) = S1

t−1(ω)(Rt(ω) − 1) takes
the values bS1

t−1(ω) and aS1
t−1(ω), both of which are multiples of S1

t−1(ω),
which remains constant throughout A.

Example 4.4.3. For d ≥ 2, however, the d-dimensional random walk com-
posed of independent copies of one-dimensional walks cannot be complete;
we have K(t, A) = 2d, and this equals d + 1 only when d = 1.

We can easily construct an infinite number of EMMs for the two-
dimensional (also known as two-factor) random walk model. In the ex-
ample above, we have a price process S = (1, S1, S2) with stock return
processes R1, R2, which we assume to take the values (1±a1) and (1±a2),
respectively (so that we make the ‘up’ and ‘down’ movements symmetrical
in each coordinate). Suppose that a1 = 1

2 and a2 = 1
4 , and define, for each

λ ∈ (0, 1
2 ), a probability measure Qλ by fixing, at each t = 1, 2, . . . , T , the

return probabilities as follows:

Qλ(R1
t = 1 + a1, R

2
t = 1 + a2) = λ = Qλ(R1

t = 1 − a1, R
2
t = 1 − a2),

Qλ(R1
t = 1 + a1, R

2
t = 1 − a2) =

1
2

− λ = Qλ(R1
t = 1 − a1, R

2
t = 1 + a2).

It is straightforward to check that each Qλ is an EMM; i.e., that

EQλ

(
Ri

t |Ft−1
)

= EQλ

(
Ri

t

)
= 1 for all t ≥ 1.

It can be shown (much as we did in Chapter 2) that the multifactor
Black-Scholes model is a limit of multifactor random walk models and is
complete. Consequently, it is possible to have a complete continuous-time
model that is a limit (in some sense) of incomplete discrete models. If
one is interested in ‘maintaining completeness’ along the approximating
sequence, then one is forced to use correlated random walks. See [63], [151]
for details.

Filtrations in Complete Finite Models

The completeness requirement in finite models is very stringent. It fixes
the degree of linear dependence among the values of the price increments
∆St on any partition set A ∈ Pt−1 in terms of the number of cells into
which Pt ‘splits’ the set A. It also ensures that the filtration F = (Ft) that
is determined by these partition sets is in fact the minimal filtration FS

(i.e., the σ-field Ft = FS
t = σ(Su : u ≤ t) for each t).
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To see this, let Q denote the unique EMM in the complete market
model and suppose that, on the contrary, the filtration F = (Ft) strictly
contains FS . Then there is a least u ∈ T such that Fu strictly contains
FS

u . This means that some fixed A ∈ PS
u (the minimal partition generating

FS
u ) can be split further into sets in the partition Pu generating Fu (i.e.,

A = ∪n
i=1Ai for some Ai ∈ Pu(n ≥ 2)).

Note that Su is constant on A = ∪n
i=1Ai. There is a unique set B ∈

Pu−1 = PS
u−1 that contains A. The partition Pu then contains disjoint sets

{Ai : i = 1, 2, . . . , m} whose union is B, and since A ⊂ B, we can assume
(re-ordering if needed) that m ≥ n and the sets A1, A2, . . . , An defined
above comprise the first n of these.

Let Q∗ be a probability measure on (Ω,F) such that Q∗(· |B ) defines
different conditional probabilities with Q∗(Ai |B ) > 0 for all i ≤ n and
such that

n∑
i=1

Q∗(Ai |B ) = Q(A |B ), Q∗(Aj |B ) = Q(A |B ) for j = n + 1, . . . , m,

and agreeing with Q otherwise. There are clearly many choices for such
Q∗.

Since ∆Su is constant on A =
⋃n

i=1 Ai, it follows that

EQ∗ (∆Su |Fu−1 ) (ω) = EQ (∆Su |Fu−1 ) (ω) = 0

holds for all ω ∈ B and hence throughout Ω. Hence Q is not the only EMM
in the model, which contradicts completeness.

Thus, in a complete finite market model there is no room for ‘extraneous
information’ that does not result purely from the past behaviour of the
stock prices. This severely restricts its practical applicability, as Kreps [202,
p. 228] has observed: the presence of other factors (Kreps lists ‘differential
information, moral hazard, and individual uncertainty about future tastes’
as examples) that are not fully reflected in the security prices will destroy
completeness.

4.5 Incomplete Models: The Arbitrage In-
terval

We return to the general setup of extended securities market models that
was introduced in Section 2.5. We wish to examine the set of possible
prices of a European contingent claim H that preclude arbitrage. Since
H is itself a tradeable asset, we need to include it in the assets that can
be used to produce trading strategies. It was shown in Theorem 2.5.2
that, for any given measure Q, the only price for H consistent with the
absence of arbitrage is given by the ‘martingale price’ π(H) = EQ (βT H)
derived in (2.15). We now consider a viable model with P as the set
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of equivalent martingale measures for the discounted price process Sand
augment this model by regarding H as an additional primary asset. In
discounted terms, we therefore set S

d+1
t = βtH and consider the range

of possible initial prices πH consistent with the no-arbitrage requirement
in the model. We call these prices arbitrage-free prices for the extended
model. Denote the extended (discounted) price process by S̃ = (S, S

d+1
),

where the final coordinate must satisfy the constraints

S
d+1
0 = πH , S

d+1
t ≥ 0 a.s. (P ) for t = 1, 2, . . . , T − 1, S

d+1
T = H.

Denote by Π(H) the set of all arbitrage-free prices for H. The first
fundamental theorem immediately enables us to identify Π(H) via the set
of expectations EQ (βT H) for Q in P. However, since H cannot necessarily
be generated by an admissible strategy, we do not know in advance that
the integral is finite. We need the following result.

Theorem 4.5.1. Let H be a European claim in a viable securities market
model (Ω,F , P, T, F, S) with P as the set of EMMs for S. The set Π(H) of
arbitrage-free prices for H is given by

Π(H) = {EQ (βT H) : Q ∈ P, EQ (H) < ∞} . (4.12)

The lower and upper bounds of Π(H) are given by

π− = inf
P

EQ (βT H) , π+ = sup
P

EQ (βT H) .

Proof. The first fundamental theorem states that the extended model is
viable if and only if it admits an EMM Q for the price process S̃ = (S

i
:

i = 0, 1, . . . , d + 1). This measure therefore satisfies

S
i

t = EQ

(
S

i

T |Ft

)
for i = 1, 2, . . . , d + 1 and t = 0, 1, . . . , T.

Thus, in particular, S = (S
i

: i = 0, 1, . . . , d) is a Q-martingale, so that
Q ∈ P, and EQ (βT H) = EQ

(
S

d+1
t

)
< ∞. The arbitrage-free price πH is

therefore a member of the set on the right-hand side in (4.12).
To establish the converse inclusion, let πH = EQ (βT H) for some Q ∈ P.

We need to show that πH is an arbitrage-free price. For this, take the
martingale X = (Xt), where

Xt = EQ (βT H |Ft ) for t ∈ T,

as the candidate for the ‘price process’ of the asset βH. This clearly satisfies
the requirements in (4.12) so that, with this S

d+1
= X, the price πH is

an arbitrage-free price and Q is an EMM for the extended model, which is
thus viable. Hence the two sets in (4.12) are equal.
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The expectations are non-negative, so the expression for the lower
bound π− is clear. The same is true for the upper bound if the sets are
bounded above.

This leaves the proof that π+ = ∞ if EQ (βT H) = ∞ for some Q ∈ P.
This is left to the reader as an exercise in using the fact that the EMM can
always be chosen to have bounded density relative to the given reference
measure.

This result allows us to characterise attainable claims as the only claims
admitting a unique arbitrage-free price and further identify the possible
prices of a general claim as the open interval (π−, π+). Our proof follows
that in [132].

Theorem 4.5.2. Let H be a European claim in a securities market model.

(i) If H is attainable, then Π(H) is a singleton and the unique arbitrage-
free price for H is π− = V0(θ) = π+, where θ is any generating
strategy for H.

(ii) If H is not attainable, then either Π(H) = ∅ or π− < π+ and Π(H)
is the open interval (π−, π+).

Proof. The first statement follows from (2.15) and Theorem 4.5.1.
For the second, note that if Π(H) is non-empty, then it must be an

interval since P is convex. We need to show that it is open and thus
neither bound is attained. For this, we need to construct for any π ∈ Π(H)
two arbitrage-free prices π∗, π∗ with π∗ < π < π∗.

So fix π = EQ (βT H), where Q ∈ P. We have to construct a measure
Q∗ ∈ P such that

EQ∗ (βT H) > EQ (βT H) .

The given price π is the initial value of the process V = (Vt)t∈T defined
by Vt = EQ (βT H |Ft ). Although the stochastic process V is not the value
process of a generating strategy, we are nonetheless guided in our search for
Q∗ by what happens in that special situation. Since H is FT -measurable,
we obtain the telescoping sum

VT = EQ (βT H |FT ) = βT H = V0 +
T∑

t=1

(Vt −Vt−1) = V0 +
T∑

t=1

∆Vt. (4.13)

By the first conclusion of this theorem, H is an attainable claim if and
only if each term ∆Vt = EQ (βT H |Ft ) − EQ (βT H |Ft−1 ) has the form
∆Gt(θ) = θ̂t∆Ŝt for some predictable process θ̂ = (θi)i=1,2,...,d, and by
Theorem 2.3.5 this occurs for the measure Q ∈ P if and only if EQ (∆Vt) =
0 for each t = 1, 2, . . . , T . Since the given claim H is not attainable, this
must fail for some t = 1, 2, . . . , T (i.e., for some such t, ∆Vt is not of the
form θ̂ · ∆Ŝt for any Q-integrable Ft−1-measurable random vector θ̂).



100 CHAPTER 4. COMPLETE MARKETS

In other words, for this value of t, the random variable ∆Vt is disjoint
from the space Kt ∩ L1(Ft, Q), where Kt is as defined by (3.16). Since this
is a closed subspace of L1(Ft, Q), we can separate it from the compact set
{∆Vt} by a linear functional Z in L∞(Ft, Q). We thus obtain real numbers
α < β such that for all X ∈ Kt ∩ L1(Ft, Q):

EQ (XZ) ≤ α < β ≤ EQ (∆VtZ) . (4.14)

Now since Kt ∩ L1(Ft, Q) is a subspace, EQ (XZ) ≤ α for all X ∈ Kt ∩
L1(Ft, Q) implies (as in the proof of Theorem 3.5.8) that α = 0. But then
if EQ (XZ) < 0 for some X, −X would violate the condition EQ (XZ) ≤ 0.
Hence EQ (XZ) = 0 for all X ∈ Kt∩L1(Q). This means that EQ (∆VtZ) >
0. The same conclusion is reached if Z is replaced by Z

3‖Z‖∞
, so that we

may assume without loss of generality that |Z| ≤ 1
3 a.s. (P ).

Therefore the L∞-function Z∗ = 1+Z−EQ (Z |Ft−1 ) is a.s. (P ) positive
and has EQ (Z∗) = 1, so that dQ∗

dQ = Z∗ defines a probability measure
equivalent to Q and hence to P. We calculate the Q∗-expectation of βT H
using the fact that Z∗ is Ft-measurable:

EQ∗ (βT H) = EQ (βT HZ∗)
= EQ (βT H) + EQ (ZEQ (βT H |Ft )) (4.15)
− EQ (EQ (Z |Ft−1 ) EQ (βT H |Ft−1 ))
= EQ (βT H) + EQ (ZVt) − EQ (Vt−1EQ (Z |Ft−1 ))
= EQ (βT H) + EQ (ZVt) − EQ (EQ (Vt−1Z |Ft−1 ))
= EQ (βT H) + EQ (∆VtZ)
> EQ (βT H) (4.16)

by construction of Z. Therefore π∗ = EQ∗ (βT H) will be an element of
Π(H) greater than π, provided we can show that Q∗ ∈ P, and thus we must
show that the discounted stock prices (Ŝi)i=1,2,...,d are Q∗-martingales.

Fix i ≤ d and u > t. Then, by Bayes’ rule, we have

EQ∗
(
∆Ŝi

u |Fu−1

)
=

EQ

(
∆Ŝi

uZ∗ |Fu−1

)
EQ (Z∗ |Fu−1 )

= EQ

(
∆Ŝi

u |Fu−1

)
= 0

since Z∗ is Fu−1-measurable for each u > t. On the other hand, since

EQ (Z∗ |Ft−1 ) = EQ (1 + Z − EQ (Z |Ft−1 ) |Ft−1 ) = 1,

the restrictions of the measures Q and Q∗ coincide on Fu for every u < t,
and so

EQ∗
(
∆Ŝi

u |Fu−1

)
= EQ

(
∆Ŝi

u |Fu−1

)
= 0.

Thus, to show that Q∗ ∈ P, we need only consider EQ∗
(
∆Ŝi

t |Ft−1

)
.

For this, since by construction of Z, EQ

(
(θ̂ · ∆Ŝt)Z

)
= 0 for all Ft−1-

measurable Rd-valued random vectors θ, we have EQ

(
Z∆Ŝi

t |Ft−1

)
=
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0 a.s. (P ) for each i ≤ d. So we can write

EQ∗
(
∆Ŝi

t |Ft−1

)
= EQ

(
∆Ŝi

tZ
∗ |Ft−1

)
= EQ

(
∆Ŝi

t(1 + Z − EQ (Z |Ft−1 )) |Ft−1

)
= EQ

(
∆Ŝi

t(1 − EQ (Z |Ft−1 )) |Ft−1

)
+ EQ

(
Z∆Ŝi

t |Ft−1

)
.

The final term is a.s. (P ) zero, as was shown above, while the first is,
a.s. (P ),

EQ

(
∆Ŝi

t |Ft−1

)
[1 − EQ (Z |Ft−1 )] = 0

since EQ (Z |Ft−1 ) is Ft−1-measurable and Q ∈ P. So we have verified that
Q∗ ∈ P and hence π∗ ∈ Π(H).

The construction of a suitable π∗ < π in Π(H) is now straightforward.
For example, we can use the probability measure Q∗ with density

dQ∗
dQ

= 2 − Z∗,

a choice that ensures that EQ∗ (2 − Z∗) = 1 and that 0 < 2−Z∗ ≤ 5
3 since

|Z| ≤ 1
3 . Since 2 − Z∗ = 1 − Z + EQ (Z |Ft−1 ) , it follows as in (4.16) that

EQ∗ (βT H) = EQ (βT H) − EQ (∆VtZ) < EQ (βT H) .

Also Q∗ ∈ P :

EQ

(
∆Ŝi

t(2 − Z∗) |Ft−1

)
= 2EQ

(
∆Ŝi

t |Ft−1

)
− EQ

(
∆Ŝi

tZ
∗ |Ft−1

)
= 0,

as Q, Q∗ ∈ P.

Remark 4.5.3. Note that Theorems 4.5.1 and 4.5.2 together imply that if
Π(H) is empty, then there is no EMM in the model for which the claim H
has finite expectation.

4.6 Characterisation of Complete Models

We saw in Theorem 4.5.2 that a viable finite market model is complete if
and only if the set P of its EMMs is a singleton. We could not establish this
result in greater generality until we had dealt with the first fundamental
theorem in the general setting (i.e., shown that the model is viable if and
only if P �= ∅) . Having done this, and also having characterised the
attainability of claims, we can now go much further in identifying the class
of complete market models more fully. We shall demonstrate, after the fact,
that the argument provided to prove Theorem 4.5.2 will suffice in general
since every complete model in the discrete-time setting must actually be a
finite market model.
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Theorem 4.6.1. A viable securities market model (Ω,F, P, T, F, S) is com-
plete if and only if it allows a unique equivalent martingale measure. When
P is a singleton, the underlying probability space Ω is finitely generated and
its generating partition has at most (d + 1)T atoms.

Proof. With the more advanced tools now at our disposal, the proof of this
far-reaching result is elementary for general market models. Throughout,
we only need to work with bounded claims: in a finite-dimensional space
of random variables all elements are automatically bounded.

First consider the single-period case (i.e., let T = 1). Completeness of
the market means that every European contingent claim, that is, every non-
negative function in L0(F) is attainable by some generating strategy based
on the price processes (S)0≤i≤d. In particular, as already observed in Chap-
ter 2, the indicator 1A of any set in F is an attainable claim. Theorem 4.5.2
shows that the unique arbitrage-free price EQ (βT 1A) is independent of the
choice of EMM Q. Hence Q(A) is also uniquely determined for each A, so
that P is a singleton.

Conversely, if Q is the unique EMM in the model, any bounded claim H
is Q-integrable, and its price is given uniquely by EQ (βT H) . Again by The-
orem 4.5.2, it follows that H is attainable. Thus every element H ∈ L∞(F)
is of the form θt ·St for some Rd+1-valued random vector θ. In other words,
the collection of possible portfolio values

{
θ · S : θ ∈ θ ∈ Rd+1

}
contains

L∞(F). This is only possible if L∞(F) has dimension at most d + 1 and
thus the σ-field F is generated by a finite partition with at most d + 1
atoms (see Lemma 4.6.2 below, whose proof is an easy exercise). Thus
every contingent claim is automatically bounded, hence attainable.

Turning now to the multi-period case, we argue by induction on T. Note
first that if every F-measurable bounded claim is attainable then F = FT

since for any A ∈ F the generating value process is by construction FT -
measurable. We know that, when T = 1, the probability space Ω of a
complete model has at most d + 1 atoms. Assume that, for every complete
model with T − 1 trading periods, the underlying probability space has
at most (d + 1)T−1 atoms, and consider a complete model with T trading
periods. Thus every FT -measurable non-negative bounded random variable
can be written in the form VT−1 + θT · ∆ST for some FT−1-measurable
functions VT−1 and θT . These functions are constant on each of the (at
most (d + 1)T−1) atoms of (Ω,FT−1, P ). For each such atom A, we can
consider the conditional probability P (· |A ) since P (A) > 0. The vector
space L∞(Ω,FT , P (· |A )) has dimension at most (d+1), so by Lemma 4.6.2
it follows that (Ω, FT , P (· |A )) has at most (d + 1)T atoms.

Since the vector spaces Lp are therefore all finite-dimensional, all con-
tingent claims in the given model are bounded. Thus the value of each
claim H is given by the unique element of Π(H), and by Theorem 4.5.2 it
follows that H is attainable.

Lemma 4.6.2. For 0 ≤ p ≤ ∞, the dimension of the space Lp(Ω,F, P )
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equals

sup {n ≥ 1 : ∃ partition {Fi ∈ F : i ≤ n} of Ω with P (Ai) > 0 for i ≤ n} .

The dimension n of Lp(F) is finite if and only if there is a partition of Ω
into n atoms.

Remark 4.6.3. There are various other characterisations of completeness,
notably in terms of the set of extreme points of P , which are better adapted
to their continuous-time analogues. We refer to [132] and [280] for details.
Note, however, that the characterisation given above illustrates that, in
mathematical terms, completeness will hold only for a very restricted subset
of the class of viable market models, since all complete models must in fact
be finite market models. Finance theorists, on the other hand, might argue
that realistic market models are necessarily finite.



Chapter 5

Discrete-time American
Options

American options differ fundamentally from their European counterparts
since the exercise date is now at the holder’s disposal and not fixed in
advance. The only constraint is that the option ceases to be valid at time T
and thus cannot be exercised after the expiry date T . The pricing problem
for American options is more complex than those considered up to now,
and we need to develop appropriate mathematical concepts to deal with
it. As in the preceding chapters, we shall model discrete-time options on a
given securities market model (Ω,F, P, T, F, S).

5.1 Hedging American Claims

Random Exercise Dates

First, we require a concept of ‘random exercise dates’ to reflect that the
option holder can choose different dates at which to exercise the option
depending on her perception of the random movement of the underlying
stock price. The exercise date τ is therefore no longer the constant T
but becomes a function on Ω with values in T, that is, a random variable
τ : Ω → T. It remains natural to assume that investors are not prescient,
so that the decision whether to exercise at time t when in state ω depends
only on information contained in the σ-field Ft. Hence our exercise dates
should satisfy the requirement that {τ = t} ∈ Ft.

Exercise 5.1.1. Show that the following requirements on a random variable
τ : Ω → T are equivalent:

a) For all t ∈ T, {τ = t} ∈ Ft.

b) For all t ∈ T, {τ ≤ t} ∈ Ft.

105
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Hint: Recall that the (Ft) increase with t.

We briefly review relevant aspects of martingale theory and optimal
stopping. These often require care about measurability problems. The
greater technical complexity is offset by wider applicability of our results,
and they provide good practice for the unavoidable technicalities that we
encounter in the continuous-time setting. Throughout, however, it is in-
structive to focus on the underlying ideas, and it may be advantageous in
this and the following chapters to skip lightly over some technical matters
at a first reading.

Hedging Constraints

Hedge portfolios also require a little more care than in the European
case since the writer may face the liability inherent in the option at any
time in T. More generally, an American contingent claim is a function
of the whole path t → St(ω) of the price process under consideration,
for each ω ∈ Ω, not just a function of ST (ω). We again assume that
S =

{
Si

t : i = 0, 1, . . . , d; t ∈ T
}
, where S0

t = β−1
t is a (non-random) risk-

less bond, and the stock price Si is a random process indexed by T for each
i = 1, 2, . . . , d.

Accordingly, let f = (ft(S))t∈T denote an American contingent claim,
so that f is a sequence of non-negative random variables, each depending,
in general, on

{
Si(ω) : 0 ≤ i ≤ d

}
for every ω ∈ Ω. As considered in Sec-

tion 2.4, the hedge portfolio with initial investment x > 0 for this claim will
now be a self-financing strategy θ =

{
θi

t : i = 0, 1, . . . , d; t ∈ T
}
, producing

a value process V (θ) that satisfies the hedging constraints

V0(θ) = θ1 · S0 = x,

Vt(θ)(ω) ≥ ft(S0(ω), S1(ω), . . . , ST (ω)) for all ω ∈ Ω and t > 0.

The hedge portfolio θ is now described as minimal if, for some random
variable τ with {ω : τ(ω) = t} ∈ Ft for all t ∈ T, we have

Vτ(ω)(θ)(ω) = fτ(ω)(S0(ω), . . . , ST (ω)). (5.1)

Since the times at which the claim f takes its greatest value may vary
with ω, the hedge portfolio θ must enable the seller (writer) of the claim
to cover his losses in all eventualities since the buyer has the freedom to
exercise his claim at any time. The hedge portfolio will thus no longer
‘replicate’ the value of the claim in general, but it may never be less than
this value; that is, it must ‘superhedge’ or super-replicate the claim. This
raises several questions for the given claim f :

(i) Do such self-financing strategies exist for a given value of the initial
investment x > 0?

(ii) Do minimal self-financing strategies always exist for such x?
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(iii) What is the optimal choice of the random exercise time τ?

(iv) How should the ‘rational’ time-0 price of the option be defined?

These questions are examined in this chapter. To deal with them, however,
we first need to develop the necessary mathematical tools.

5.2 Stopping Times and Stopped Processes

The preceding considerations lead us to study ‘random times’, which we call
stopping times, more generally for (discrete) stochastic processes. While
our applications often have a finite time horizon, it is convenient to take
the study further, to include stopping times that take values in the set
N̄ = {0, 1, . . . ,∞}. This extension requires us to establish results about
martingale convergence, continuous-time versions of which will also be
needed in later chapters. The well-known martingale convergence theo-
rems are discussed briefly; we refer to other texts (e.g. ,[109], [199], [299])
for detailed development and proofs of these results.

The idea of stopping times for stochastic processes, while intuitively
obvious, provides perhaps the most distinguishing feature of the techniques
of probability theory that we use in this book. At its simplest level, a
stopping time τ should provide a gambling strategy for a gambler seeking
to maximise his winnings; since martingales represent ‘fair’ games, such a
strategy should not involve prescience, and therefore the decision to ‘stop’
the adapted process X = (Xt) representing the gambler’s winnings at time
t should only involve knowledge of the progress of the winnings up to that
point; that is, if state ω occurs, the choice τ(ω) = t should depend only on
Ft. Generally, suppose we are given a filtration F = (Ft)t∈N on (Ω,F, P )
with F = F∞ = σ (

⋃∞
t=0 Ft) and such that F0 contains all P -null sets. We

have the following definition.

Definition 5.2.1. A stopping time is a random variable τ : (Ω,F) → N̄

such that for all t ∈ N, {τ ≤ t} ∈ Ft.

Remark 5.2.2. Exercise 5.1.1 shows that we could equally well have used
the condition: for all t ∈ N, {τ = t} ∈ Ft. Note, however, that this depends
on the countability of N. For continuous-time models, the time set T is a
finite or infinite interval on the positive halfline, and we have to use the
condition {τ ≤ t} ∈ Ft for all t ∈ T in the definition of stopping times. In
discrete-time models, the condition {τ = t} is often much simpler to verify.

Nevertheless, many of the basic results about stopping times, and their
proofs, are identical in both setups, and the exceptions become clear from
the following examples and exercises.
Example 5.2.3. (i) Observe that if τ = t0 a.s., then {τ = t0} ∈ F0 ⊂

Ft0 , so that each ‘constant time’ is a stopping time. Similarly, it is
easy to see that τ + t0 is a stopping time for each stopping time τ
and constant t0.
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(ii) Suppose that σ and τ are stopping times. Then σ ∨ τ = max {σ, τ}
and σ ∧ τ = min {σ, τ} are both stopping times. Indeed, consider

{σ ∨ τ ≤ t} = {σ ≤ t} ∩ {τ ≤ t} , {σ ∧ τ ≤ t} = {σ ≤ t} ∪ {τ ≤ t} .

In both cases, the sets on the right-hand side are in Ft since σ and τ
are stopping times.

(iii) Let (Xt)t∈N be an F-adapted process and let B be a Borel set. We
now show that τB : Ω → N defined by τB(ω) = inf {s ≥ 1 : Xs ∈ B}
(where inf ∅ = ∞) is an F-stopping time. (We call τB the hitting
time of B.)
To see this, note that each X−1

s (B) is in Fs since Xs is Fs-measurable.
Moreover, since F is increasing, Fs ⊂ Ft when s ≤ t. Hence, for any
t ≥ 0, {τB = t} ∈ Ft since

{τB = t} =
t−1⋂
s=0

{τB > s} ∩ X−1
t (B) =

t−1⋂
s=0

(Ω \ X−1
s (B)) ∩ X−1

t (B).

The continuous-time counterpart of this result is rather more difficult
in general and involves delicate measurability questions; in special
cases, such as when B is an open set and t → Xt(ω) is continuous, it
becomes much simpler (see, e.g. ,[199]).

Exercise 5.2.4. Suppose that (τn) is a sequence of stopping times. Extend
the argument in the second example above to show that

∨
n≥1 τn = sup(τn :

n ≥ 1) and
∧

n≥1 τn = inf(τn : n ≥ 1) are stopping times. (Note that this
uses the requirement that the σ-fields Ft are closed under countable unions
and intersections.)

Fix a stochastic basis (Ω,F, N̄, F, P ) with F = F∞ = σ (∪∞
t=0Ft). Recall

that we assume throughout that the σ-fields Ft are complete. First we
consider random processes ‘stopped’ at a finite stopping time τ , as most of
our applications assume a finite trading horizon T .

Definition 5.2.5. If X = (Xt) is an adapted process and τ is any a.s.
finite stopping time, then we define the map ω → Xτ(ω)(ω), giving the
values of X at the stopping time τ , by the random variable

Xτ =
∑
t≥0

Xt1{τ=t}.

To see that Xτ is F-measurable, note that, for any Borel set B in R,

{Xτ ∈ B} =
⋃
t≥0

({Xt ∈ B} ∩ {τ = t}) ∈ F. (5.2)

Moreover, if we define the σ-field of events prior to τ by

Fτ = {A ∈ F : A ∩ {τ = t} ∈ Ft for all t ≥ 1} , (5.3)

then (5.2) shows that Xτ is Fτ -measurable since {Xt ∈ B} is in Ft for each
t, so that {Xτ ∈ B} ∈ Fτ . Trivially, τ itself is Fτ -measurable.
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Exercise 5.2.6. Let σ and τ be stopping times.

(i) Suppose that A ∈ Fσ. Show that A∩{σ ≤ τ} and A∩{σ = τ} belong
to Fτ . Deduce that if σ ≤ τ then Fσ ⊂ Fτ . (Hint: The continuous-
time analogue of this result is proved in Theorem 6.1.8. Convince
yourself that a virtually identical statement and proof applies here.)

Deduce that, for any σ, τ , Fσ∧τ ⊂ Fσ ⊂ Fσ∨τ .

(ii) Show that the sets {σ < τ}, {σ = τ}, and {σ > τ} belong to both Fσ

and Fτ .

The next two results, which we will extend considerably later, use the
fact that stopping a martingale is essentially a special case of taking a
martingale transform. They are used extensively in the rest of this chapter.

Theorem 5.2.7 (Optional Sampling for Bounded Stopping Times).
Let X be a supermartingale and suppose that σ and τ are bounded stopping
times with σ ≤ τ a.s. Then

E (Xτ |Fσ ) ≤ Xσ a.s. (5.4)

If X is a martingale, then E (Xτ |Fσ ) = Xσ a.s.

Proof. Consider the process φ = (φt), where φt = 1{σ<t≤τ}. The random
variable φt is Ft−1-measurable for t > 0 since

{σ < t ≤ τ} = {σ < t} ∩ (Ω\ {τ < t}) .

Thus φ is predictable and non-negative. We consider the transform φ · X.
Since τ is assumed to be bounded (by some k ∈ N, say), we have

|(φ · X)t| ≤ |X0| + · · · + |Xk| for all t,

so that each Zt = (φ · X)t is integrable. Thus Z is a supermartingale with
Z0 = 0 and Zk = Xτ − Xσ. Hence

0 = E (Z0) ≥ E (Zk) = E (Xτ − Xσ) .

Now consider A ∈ Fσ and apply the preceding equation to the bounded
stopping times σ′ and τ ′, where σ′ equals σ on A, and k otherwise, with a
similar definition for τ ′.

Exercise 5.2.8. Check carefully, using (5.3) and Exercise 5.2.6, that σ′ and
τ ′ are indeed stopping times.

This yields ∫
A

XτdP ≤
∫

A

XσdP.

Hence the result follows, again using Exercise 5.2.6.
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Definition 5.2.9. Let X be a stochastic process on (Ω,F, P, T, F), and
let σ be any stopping time. Define the process Xσ stopped at time σ by
Xσ

t = Xσ∧t for all t ∈ T.

Remark 5.2.10. Note carefully that (t, ω) → X
σ(ω)
t (ω) = Xt∧σ(ω)(ω) is a

random process, while ω → Xσ(ω)(ω) is a random variable.
Then Xσ is again a transform φ · X, with φt = 1{σ≥t}. To complement

Theorem 5.2.7, we have the following result.

Theorem 5.2.11 (Optional Stopping Theorem). Suppose that X is
a (super-)martingale and let σ be a bounded stopping time. Then Xσ is
again a (super-)martingale for the filtration F.

Proof. We deal with the supermartingale case. For t ≥ 1,

Xt∧σ = X0 +
∑
s≤t

φs∆Xs,

where we have set φs = 1{s≤σ}, which is predictable. Hence Xσ is adapted
to F and φs ≥ 0. Hence Xσ is a supermartingale. The martingale case is
then obvious.

5.3 Uniformly Integrable Martingales

In order to deal with unbounded stopping times, we need to develop a
little of the convergence theory for a particularly important class of mar-
tingales indexed by N, namely uniformly integrable (UI) martingales. The
counterparts of these results in the continuous-time setting are outlined in
Chapter 6.

Definition 5.3.1. A family C of random variables is uniformly integrable
(UI) if, given ε > 0, there exists K > 0 such that∫

{|X|>K}
|X| dP < ε for all X ∈ C. (5.5)

In other words, supX∈C
∫

{|X|>K} |X| dP → 0 as K → ∞, which explains
the terminology. Such families are easy to find.

Examples of UI Families

First of all, if C is bounded in Lp(Ω,F, P ) for some p > 1, then C is UI.
To see this, choose A such that E (|X|p) < A for all X ∈ C and fix X ∈ C,
K > 0. Write Y = |X|1{|X|>K}. Then Y (ω) ≥ K > 0 for all ω ∈ Ω, and
since p > 1 it is clear that Y ≤ K1−pY p. Thus

E (Y ) ≤ K1−pE (Y p) ≤ K1−pE (|X|p) ≤ K1−pA.

But K1−p decreases to 0 when K → ∞, so (5.5) holds.
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Exercise 5.3.2. Prove that if C is UI, then it is bounded in L1, but the
converse is false.

A useful additional hypothesis is domination in L1: if there exists Y ≥ 0
in L1 such that |X| ≤ Y for all X ∈ C, then C is UI. (See, e.g. ,[299] for a
simple proof.)

To illustrate why uniform integrability is so important for martingales,
consider the following.

Proposition 5.3.3. Let X ∈ Lp, p ≥ 1. The family

U = {E (X |G ) : G is a sub-σ-field of F}
is UI.

We prove this for the case p > 1 (which is all we need in the sequel) and
refer to [299, Theorem 13.4] for the case p = 1. First we need an important
inequality, which we will use frequently.

Proposition 5.3.4 (Jensen’s Inequality). Suppose that X ∈ L1. If
φ : R → R is convex and φ(X) ∈ L1, then

E (φ(X) |G ) ≥ φ (E (X |G )) . (5.6)

Proof. Any convex function φ : R → R is the supremum of a family of affine
functions, so there exists a sequence (φn) of real functions with φn(x) =
anx + bn for each n, such that φ = supn φn. Therefore φ(X) ≥ anX + bn

holds a.s. for each (and hence all) n. So by the positivity of E (· |G ), we
have

E (φ(X) |G ) ≥ sup
n

(anE (X |G ) + bn) = φ(E (X |G )) a.s.

Proof of Proposition 5.3.3. With φ(x) = |x|p, Jensen’s inequality implies
that |E (X |G )|p ≤ E (|X|p |G ), and taking expectations and pth roots on
both sides, we obtain

‖E (X |G )‖p ≤ ‖X‖p for all G ⊂ F.

Thus the family U is Lp-bounded and hence UI.

Remark 5.3.5. Jensen’s inequality shows that the conditional expectation
operator is a contraction on Lp. The same is true for L1. Taking φ(x) = |x|,
we obtain |E (X |G )| ≤ E (|X| |G ), and hence ‖E (X |G )‖1 ≤ ‖X‖1.

Jensen’s inequality also shows that, given p > 1 and an Lp-bounded
martingale (Mt,Ft)t∈T, the sequence (|Mt|p ,Ft) is a submartingale. This
follows upon taking φ(x) = |x|p, so that by (5.6), with t ≥ s, we have

E (|Mt|p |Fs ) ≥ |E (Mt |Fs )|p = |Ms|p .

Here the integrability of Nt, which is required for the application of (5.6),
follows from the Lp-boundedness of Mt. Similar results follow upon apply-
ing (5.6) with φ(x) = x+ or φ(x) = (x − K)+ with suitable integrability
assumptions.
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Martingale Convergence

We now review briefly the principal limit theorems for martingales. The
role of uniform integrability is evident from the following proposition.

Proposition 5.3.6. Suppose (Xn) is a sequence of integrable random vari-
ables and X is integrable. The following are equivalent:

a) The sequence (Xn) converges to X in the L1-norm; i.e. , ‖Xn − X‖1 =
E (|Xn − X|) → 0.

b) The sequence (Xn) is UI and converges to X in probability.

See [109] or [299] for the proof of this standard result. Since a.s. con-
vergence implies convergence in probability, we also have the following.

Corollary 5.3.7. If (Xn) is UI and Xn → X a.s., then X ∈ L1 and
Xn → X in L1-norm.

Thus, to prove that a UI martingale converges in L1-norm, the princi-
pal task is showing a.s. convergence. Doob’s original proof of this result
remains instructive and has been greatly simplified by the use of martin-
gale transforms. We outline here the beautifully simple treatment given
in [299], to which we refer for details.

Let t → Mt(ω) denote the sample paths of a random process M defined
on N × Ω and interpret ∆Mt = Mt − Mt−1 as ‘winnings’ per unit stake
on game t. The total winnings (‘gains process’) can be represented by the
martingale transform Y = C ·M given by a playing strategy C in which we
stake one unit as soon as M has taken a value below a, continue placing
unit stakes until M reaches values above b, after which we do not play until
M is again below a, and repeat the process indefinitely. It is ‘obvious’ (and
can be shown inductively) that C is predictable.

Let UT [a, b](ω) denote the number of ‘upcrossings’ of [a, b] by the path
t → Mt, that is, the maximal k ∈ N such that there are 0 ≤ s1 < t1 < s2 <
· · · < tk < T for which Msi

(ω) < a and Mti
(ω) > b (i = 1, 2, . . . , k). Then

YT (ω) ≥ (b − a)UT [a, b](ω) − (MT (ω) − a)− (5.7)

since Y increases by at least (b− a) during each upcrossing, while the final
term overestimates the potential loss in the final play.

Now suppose that M is a supermartingale. Since C is bounded and
non-negative, the transform Y is again a supermartingale (the results of
Chapter 2 apply here as everything is restricted to the finite time set
{0, 1, . . . , T}. Thus E (YT ) ≤ E (Y0) = 0. Then (5.7) yields

(b − a)E (UT [a, b]) ≤ E (MT − a)−
. (5.8)

If, moreover, M = (Mt)t∈N is L1-bounded, K = supt ‖Mt‖1 is finite, so
that

(b − a)E (UT [a, b]) ≤ |a| + K.
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The bound is independent of T , so monotone convergence implies that

(b − a)E (U∞[a, b]) < ∞,

where U∞[a, b] = limT→∞ UT [a, b].
Hence {U∞[a, b] = ∞} is a P -null set; that is, every interval is ‘up-

crossed’ only finitely often by almost all paths of M . Now the set D ⊂ Ω
on which Mt(ω) does not converge to a finite or infinite limit can be written
as

D =
⋃

{a,b∈Q:a<b}
Da,b,

where

Da,b =
{

ω : lim inf
t

Mt(ω) < a < b < lim sup
t

Mt(ω)
}

.

Since Da,b ⊂ {ω : U∞[a, b] = ∞}, it follows that D is also P -null.
Thus the a.s. limit M∞ exists a.s. (P ) in [−∞,∞]. By Fatou’s lemma,

‖M∞‖1 = E (lim inf |Mt|) ≤ lim inf ‖Mt‖1 ≤ K,

so that M∞ is in L1 and consequently a.s. finite.
Finally, if the family (Mt)t∈N is a martingale and is also UI (we simply

say that M is a UI martingale), then it follows at once from Corollary 5.3.7
that Mt → M∞ in L1-norm. Moreover, the martingale property ‘extends
to the limit’; that is, for all t,

Mt = E (M∞ |Ft ) . (5.9)

To see this, note that for A ∈ Ft and u ≥ t, the martingale property yields∫
A

MudP =
∫

A
MsdP , while∣∣∣∣∫

A

MtdP −
∫

A

M∞dP

∣∣∣∣ ≤ ∫
A

|Mt − M∞| dP ≤ ‖Mt − M∞‖1 → 0

as t → ∞. This proves (5.9). Whenever (5.9) holds, we say that the limit
random variable M∞ closes the martingale M .

To summarise, we have the following.

Theorem 5.3.8 (Martingale Convergence). (i) If the supermartin-
gale M is bounded in L1, then M∞(ω) = limt→∞Mt(ω) exists a.s. (P )
and the random variable M∞ is integrable.

(ii) If M is a UI martingale, Mt → M∞ a.s. and in L1, and M∞ closes
the martingale M .

(iii) If X ∈ L1 and Mt = E (X |Ft ) for all t ∈ N, then M is a UI
martingale and Mt → E (X |F∞ ) a.s. and in L1.
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Proof. Only the final statement still requires proof; this can be found
in [299, 14.2]. Note that if F = F∞ (as we assume), then Mt → X.

One immediate consequence of the convergence theorems is that for
UI martingales we can extend Definition 5.2.5 to general stopping times.
Given a UI martingale M and any stopping time τ , the random variable
Mτ (ω) = Mτ(ω)(ω) is now also well-defined on the set {τ = ∞}, on which
we set Mτ = M∞.

We extend Theorems 5.2.7 (optional sampling) and 5.2.11 (optional
stopping) to general stopping times when M is a UI martingale. In the
first place, we have the following result.

Theorem 5.3.9. Let M be a UI martingale and τ a stopping time. Then

E (M∞ |Fτ ) = Mτ a.s. (P ) . (5.10)

Proof. As M∞ closes M , we have Mt = E (M∞ |Ft ) for all t. In addi-
tion, as τ ∧ t is a bounded stopping time, Theorem 5.2.7 yields Mτ∧t =
E (Mt |Fτ∧t ). Hence E (M∞ |Fτ∧t ) = Mτ∧t.

Let A ∈ Fτ . The set Bt = A ∩ {τ ≤ t} is in Ft by definition and in Fτ

since τ is Fτ -measurable. Hence Bt ∈ Fτ∧t and so∫
Bt

M∞dP =
∫

Bt

Mτ∧tdP =
∫

Bt

MτdP. (5.11)

Assume without loss of generality that M∞ (and hence each Mt) is non-
negative, and let t ↑ ∞. Then (5.11) shows that∫

A∩{τ<∞}
M∞dP =

∫
A∩{τ<∞}

MτdP.

Since Mτ = M∞ trivially on {τ = ∞}, the result follows.

Corollary 5.3.10. Let M be a UI martingale.

(i) (Optional Sampling) If σ ≤ τ are stopping times, then

E (Mτ |Fσ ) = Mσ a.s. (P ) . (5.12)

(ii) (Optional Stopping) If τ is a stopping time, then Mτ ∈ L1 and Mτ

is a UI martingale. In particular, E (Mτ ) = E (M0).

Doob Decomposition and Quadratic Variation

Again let (Ω,F, P, N, F) be a stochastic basis, and let X = (Xt)t∈T be an
F-adapted process. Since martingales describe what we might call ‘purely
random’ behaviour, it is natural to ask to what extent the ‘martingale part’
of X can be isolated from the ‘long-term trends’ that X exhibits. In discrete
time, this is easily accomplished; remarkably there is also such a decompo-
sition in continuous time (the Doob-Meyer decomposition, see [109], [199]).
This fact underlies the success of general stochastic integration and the
success of martingale methods in continuous-time finance.
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Definition 5.3.11. Given an adapted sequence X = (Xt) of random vari-
ables on (Ω, F, P ), construct the stochastic processes M and A by setting

M0 = 0, ∆Mt = Mt − Mt−1 = Xt − E (Xt |Ft−1 ) for t > 0,

A0 = 0, ∆At = At − At−1 = E (Xt |Ft−1 ) − Xt−1 for t > 0.

Adding terms for s ≤ t, it is clear that

Xt = X0 + Mt + At for all t ≥ 0. (5.13)

We call this the Doob decomposition of the adapted process X.

It is clear that At is Ft−1-measurable, so that A is predictable. The
process M is a martingale null at 0 since E (∆Mt |Ft−1 ) = 0. Thus we
have

E (∆Xt |Ft−1 ) = ∆At for all t > 0. (5.14)

By construction, ∆Mt + ∆At = ∆Xt for all t > 0.
The Doob decomposition is unique in the following sense. If we also

have X − X0 = M ′ + A′ for some martingale M ′ and predictable process
A′, then M + A = X − X0 = M ′ + A′, so that M − M ′ = A′ − A is a
predictable martingale. Such a process must be constant, as we saw in
Chapter 2. Hence (up to some fixed P -null set N , for all t ∈ N) equation
(5.13) is the unique decomposition of an adapted process X into the sum
of its initial value, a martingale, and a predictable process A, both null at
0.

When X is a submartingale, equation (5.14) shows that ∆At ≥ 0, so
that t → At(ω) is increasing in t, for almost all ω ∈ Ω. This increasing
predictable process A therefore has an a.s. limit A∞ (which can take the
value +∞ in general).

Now consider the special case where X = M2 and M is an L2-bounded
martingale with M0 = 0; then M2 is a submartingale by Jensen’s inequal-
ity (5.6) (see Remark 5.3.5). The Doob decomposition M2 = N+A consists
of a UI martingale N and a predictable increasing process A, both null at
0. Define A∞ = limt↑∞ At a.s. We have

E
(
M2

t

)
= E (Nt) + E (At) = E (At) for all t ∈ N,

and these quantities are bounded precisely when A∞ ∈ L1.
Observe, using (5.14), that, since M is a martingale,

∆At = E
((

M2
t − M2

t−1
)
|Ft−1

)
= E

(
(∆Mt)2 |Ft−1

)
. (5.15)

For this reason, we call A the quadratic variation of M and write A = 〈M〉.
We have shown that an L2-bounded martingale has integrable quadratic
variation.
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Remark 5.3.12. In Chapters 6 to 8, we make fuller use of the preceding
results in the continuous-time setting. The translation of the convergence
theorems so that they apply to continuous-time UI martingales is straight-
forward (though somewhat tedious) once one has established that such a
martingale M , with time set [0, T ] or [0,∞), always possesses a ‘version’
almost all of whose paths t → Mt(ω) are right-continuous and have left
limits. This enables one to use countable dense subsets to approximate
the path behaviour and use the results just presented; see [109], [199] for
details. With the interpretation of T as an interval in R+, the convergence
theorems and the optional sampling and optional stopping results proved in
the foregoing go over verbatim to the continuous-time setting. We assume
this in Chapter 6 and beyond.

Of particular importance in continuous time is the analogue of the Doob
decomposition, the Doob-Meyer decomposition of a sub- (or super-) mar-
tingale; we briefly outline its principal features without proof (see [109] for
a full treatment). We discuss the Doob-Meyer decomposition further when
introducing Itô processes in Chapter 6; we will make essential use of the
decomposition when analysing American put options in Chapter 8.

If T = [0,∞) and X = (Xt) is a supermartingale with right-continuous
paths t → Xt(ω) for P -almost all ω ∈ Ω, then we say that X is of class
D if the family {Xτ : τ is a stopping time} is UI. If X is a UI martingale,
this is automatic from Theorem 5.3.9, but this is not generally the case for
supermartingales. Every such supermartingale has decomposition

Xt = Mt − At,

where M is a UI martingale and the increasing process A has A0 = 0
and is predictable. In continuous time, this definition requires that A be
measurable with respect to the σ-field P on [0,∞)×Ω that is generated by
the continuous processes. The Doob-Meyer decomposition is unique up to
indistinguishability (see Definition 6.1.12), and the process A is integrable.

Given an L2-bounded (hence UI) martingale M , the decomposition
again defines a quadratic variation for the submartingale M2 = N + A,
and we write A = 〈M〉. Note that since M is a martingale, (5.15) also
holds in this setting, which justifies the terminology. Of particular in-
terest to us are martingales whose quadratic variation is non-random; we
shall find (Chapter 6) that Brownian motion W is a martingale such that
〈W 〉t = t.

5.4 Optimal Stopping: The Snell Envelope

American Options

We return to our consideration of American options on a finite discrete
time set. Consider a price process S =

(
S0, S1

)
consisting of a riskless

bond S0
t = (1+r)t and a single risky stock (S1

t )t∈T, where T = {0, 1, . . . , T}
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for finite T > 0 and r > 0, defined on a probability space (Ω,F, P ). We
have seen that the holder’s freedom to choose the exercise date (without
prescience) requires the option writer (seller) of an American call option
with strike K to hedge against a liability of (S1

τ − K)+ at a (random)
stopping time τ : Ω → T. Thus, if the system is in state ω ∈ Ω, and
if τ(ω) = t, the liability is

(
S1

t (ω) − K
)+. In general, both the stopping

time and the liability vary with ω. We write T = TT for the class of all T-
valued stopping times. Since T is assumed finite, we can restrict attention
to bounded stopping times for the present, and hence Theorems 5.2.7 and
5.2.11 apply to this situation.

Suppose that the writer tries to construct a hedging strategy θ = (θ0, θ1)
to guard against the potential liability. This will generate a value process
V (θ) with

Vt(θ) = V0(θ) +
∑
u≤t

θu · ∆Su = V0(θ) +
∑
u≤t

(θ0
u∆S0

u + θ1
u∆S1

0).

The strategy should be self-financing, so we also demand that (∆θt)·St−1 =
0 for t ≥ 1.

We assume that the model is viable and that Q is an EMM for S. Then
the discounted value process M = V (θ) is a martingale under (F, Q) and
by Theorem 5.2.7 we conclude that

V0(θ) = M0 = EQ

(
V τ (θ)

)
= EQ

(
(1 + r)−τVτ (θ)

)
. (5.16)

Note that, since τ is a random variable, we cannot now take the term
(1 + r)−τ outside the expectation as in the case of European options.

Hence, if the writer is to hedge successfully against the preceding lia-
bility, the initial capital required for this portfolio is EQ ((1 + r)−τVτ (θ)).
This holds for every τ ∈ T. But since we need Vτ (θ) ≥ (Sτ − K)+, the
initial outlay x with which to form the strategy θ must satisfy

x ≥ sup
τ∈T

EQ

(
(1 + r)−τ (S1

τ − K)+
)
. (5.17)

More generally, given an American option, we saw in Section 5.1 that its
payoff function is a random sequence ft = ft(S1) of functions that (in
general) depend on the path taken by S1. The initial capital x needed for
a hedging strategy satisfies

x ≥ sup
τ∈T

EQ

(
(1 + r)−τfτ

)
.

If we can find a self-financing strategy θ and a stopping time τ∗ ∈ T such
that Vτ∗(θ) = fτ∗ almost surely, then the initial capital required is exactly

x = sup
τ∈T

EQ

(
(1 + r)−τfτ

)
= EQ

(
(1 + r)−τ∗

fτ∗
)

. (5.18)
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Recall from Section 5.1 that a hedging strategy (or simply a hedge) is a
self-financing strategy θ that generates a value process Vt(θ) ≥ ft a.s. (Q)
for all t ∈ T, and we say that the hedge θ is minimal if there exists a
stopping time τ∗ with Vτ∗(θ) = fτ∗ a.s. (Q). Thus (5.18) is necessary for
the existence of a minimal hedge θ, and we show that it is also sufficient.
This justifies calling x the rational price of the American option with payoff
function f .

To see how the value process V (θ) changes in each underlying single-
period model, we again consider the problem faced by the option writer
but work backwards in time from the expiry date T . Since fT is the value
of the option at time T , the hedge must yield at least VT = fT in order
to cover exercise at that time. At time T − 1, the option holder has the
choice either to exercise immediately or to hold the option until time T .
The time T − 1 value of the latter choice is

(1 + r)−1fT = S0
T−1EQ

(
fT |FT−1

)
;

recall that we write Y t = βtYt = (S0
t )−1Yt for the discounted value of any

quantity Yt. Thus the option writer needs income from the hedge to cover
the potential liability max

{
fT−1, S

0
T−1EQ

(
fT |FT−1

)}
, so this quantity is

a rational choice for VT−1(θ). Inductively, we obtain

Vt−1(θ) = max
{
ft−1, S

0
t−1EQ (Vt |Ft−1 )

}
for t = 1, 2, . . . , T. (5.19)

In particular, if βt = (1+r)t for some constant interest rate r > 0, equation
(5.19) simplifies to

Vt−1(θ) = max
{
ft−1, (1 + r)−1EQ (Vt |Ft−1 )

}
for t = 1, 2, . . . , T. (5.20)

The option writer’s problem is to construct such a hedge.

The Snell Envelope

Adapting the treatment given in [236], we now solve this problem in a more
abstract setting in order to focus on its essential features; given a finite
adapted sequence (Xt)t∈T of non-negative random variables on (Ω,F, Q),
we show that the optimisation problem of determining supτ∈T EQ (Xτ )
can be solved by the inductive procedure suggested previously and that
the optimal stopping time τ∗ ∈ T can be described in a very natural way.

Definition 5.4.1. Given (Xt)t∈T with Xt ≥ 0 a.s. for all t, define a new
adapted sequence (Zt)t∈T by backward induction by setting

ZT = XT , Zt−1 = max {Xt−1, EQ (Zt |Ft−1 )} for t = 1, 2, . . . , T. (5.21)

We call Z the Snell envelope of the finite sequence (Xt).
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The sequence (Zt)t∈T is clearly adapted to the filtration F = (Ft)t∈T. In
the following, we give a more general definition, applicable also to infinite
sequences.

Note that (Zt) is defined ‘backwards in time’. It is instructive to read
the definition with a ‘forward’ time variable using the time to maturity
s = T − t. Then the definitions (5.21) become

ZT = XT , ZT−s = max {XT−s, EQ (ZT−s+1 |FT−s )} for s = 1, 2, . . . , T.

We now examine the properties of the process Z.

Proposition 5.4.2. Let (Zt)t∈T be the Snell envelope of a process (Xt)t∈T

with Xt ≥ 0 a.s. for all t.

(i) The process Z is the smallest (F, Q)-supermartingale dominating X.

(ii) The random variable τ∗ = min {t ≥ 0 : Zt = Xt} is a stopping time,
and the stopped process Zτ∗

defined by Zτ∗
t = Zt∧τ∗ is an (F, Q)-

martingale.

Proof. From (5.21) we deduce that Zt ≥ Xt for t ∈ T; hence Z dominates
X. Since

Zt−1 ≥ EQ (Zt |Ft−1 ) for all t = 1, 2, . . . , T,

the process Z is also a supermartingale.
To see that it is the smallest such supermartingale, we argue by back-

ward induction. Suppose that Y = (Yt) is any supermartingale with
Yt ≥ Xt for all t ∈ T. Clearly, YT ≥ XT = ZT . Now if Yt ≥ Zt for a
fixed t ∈ T, then we have Yt−1 ≥ EQ (Yt |Ft−1 ) since Y is a supermartin-
gale. It follows from the positivity of the conditional expectation operator
that Yt−1 ≥ EQ (Zt |Ft−1 ). On the other hand, Y dominates X; hence
Yt−1 ≥ Xt−1. Therefore

Yt−1 ≥ max {Xt−1, EQ (Zt |Ft−1 )} = Zt−1,

which completes the induction step. The first assertion of the proof follows.
For the second claim, note that Z0 = max {X0, EQ (Z1 |F0 )}, and

{τ∗ = 0} = {Z0 = X0} ∈ F0 since X0 and Z0 are F0-measurable. By
the definition of τ∗, we have

{τ∗ = t} =
t−1⋂
s=0

{Zs > Xs} ∩ {Zt = Xt} for t = 1, 2, . . . , T.

This set belongs to Ft since X and Z are adapted. Thus τ∗ is a stopping
time. Note that τ∗(ω) ≤ T a.s.

To see that the stopped process Zτ∗
t = Zt∧τ∗ defines a martingale, we

again use a martingale transform, as in the proof of Theorem 5.2.11. Define

φt = 1{τ∗≥t} for t = 1, 2, . . . , T ;
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the process φ is predictable since {τ∗ ≥ t} = Ω \ {τ∗ < t}. Moreover,

Zτ∗
t = Z0 +

t∑
u=1

φu∆Zu for t = 1, 2, . . . , T.

Now, for t = 1, 2, . . . , T , we have

Zτ∗
t − Zτ∗

t−1 = φt(Zt − Zt−1) = 1{τ∗≥t}(Zt − Zt−1);

if τ∗(ω) ≥ t, then Zt−1(ω) > Xt−1(ω), so that Zt−1(ω) = EQ (Zt |Ft−1 ) (ω)
on this set. For all t = 1, 2, . . . , T , we therefore have

EQ

((
Zτ∗

t − Zτ∗
t−1

)
|Ft−1

)
= 1{τ∗≥t}EQ ((Zt − EQ (Zt |Ft−1 )) |Ft−1 ) = 0.

Thus the stopped process Zτ∗
is a martingale on (Ω, F, Q). Recall that we

assume that the σ-field F0 is trivial, so that it contains only Q-null sets
and their complements (in the case of a finite market model, this reduces
to F0 = {∅, Ω}). Therefore X0 and Z0 are a.s. constant since both are
F0-measurable.

Definition 5.4.3. We call a stopping time σ ∈ T = TT optimal for (Xt)t∈T

if
EQ (Xσ) = sup

t∈T
EQ (Xτ ) . (5.22)

Proposition 5.4.4. Let (Zt)t∈T be the Snell envelope of a process (Xt)t∈T

with Xt ≥ 0 a.s. for all t. The stopping time τ∗ = min {t ≥ 0 : Zt = Xt}
is optimal for X, and

Z0 = EQ (Xτ∗) = sup
τ∈T

EQ (Xτ ) . (5.23)

Proof. Since Zτ∗
is a martingale, we have

Z0 = Zτ∗
0 = EQ

(
Zτ∗

T

)
= EQ (Zτ∗) = EQ (Xτ∗) ,

where the final equality follows from the definition of τ∗. On the other
hand, given any τ ∈ T, we know from Proposition 5.4.2 that Zτ is a super-
martingale. Hence

Z0 = EQ (Zτ
0 ) ≥ EQ (Zτ ) ≥ EQ (Xτ )

since Z dominates X.

Characterisation of Optimal Stopping Times

We are now able to describe how the martingale property characterises
optimality more generally. Let (Zt)t∈T be the Snell envelope of a process
(Xt)t∈T with Xt ≥ 0 a.s. for all t.
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Proposition 5.4.5. The stopping time σ ∈ T is optimal for X if and only
if the following two conditions hold.

(i) Zσ = Xσ a.s. (Q) .

(ii) Zσ is an (F,Q)-martingale.

Proof. If Zσ is a martingale, then

Z0 = EQ (Zσ
0 ) = EQ (Zσ

T ) = EQ (Zσ) = EQ (Xσ) ,

where the final step uses condition 1. On the other hand, Zτ is a super-
martingale for τ ∈ T. Hence

Z0 = EQ (Zτ
0 ) ≥ EQ (Zτ

T ) = EQ (Zτ ) ≥ EQ (Xτ ) ,

as Z dominates X. Since σ ∈ T, it follows that σ is optimal.
Conversely, suppose that σ is optimal for X. By Proposition 5.4.4, we

have Z0 = supτ∈T EQ (Xτ ); it follows that Z0 = EQ (Xσ) ≤ EQ (Zσ) since
Z dominates X. However, Zσ is a supermartingale, so EQ (Zσ) ≤ Z0.
In other words, for any optimal σ, EQ (Xσ) = Z0 = EQ (Zσ). But Z
dominates X, and thus Xσ = Zσ a.s. (Q). This proves condition 1 above.

Now observe that we have Z0 = EQ (Zσ) as well as

Z0 ≥ EQ (Zσ∧t) ≥ EQ (Zσ)

since Zσ is a supermartingale. Hence

EQ (Zσ∧t) = EQ (Zσ) = EQ(EQ (Zσ |Ft )).

Again because Z is a supermartingale, we also have, by Theorem 5.2.7,
that

Zσ∧t ≥ EQ (Zσ |Ft ) ,

so that again Zσ∧t = EQ (Zσ |Ft ). This means that Zσ is in fact a mar-
tingale.

From Proposition 5.4.5, it is clear that τ∗ is the smallest optimal stop-
ping time for X since by definition it is the smallest stopping time such
that Zτ∗ = Xτ∗ a.s. (Q). To find the largest optimal stopping time for X,
we look for the first time that the increasing process A in the Doob decom-
position of Z ‘leaves zero’; that is, the time ν at which the stopped process
Zν ceases to be a martingale.

Since Z is a supermartingale, its Doob decomposition Z = Z0 + N + B
has N as a martingale and B as a predictable decreasing process, both null
at 0. Let M = Z0 + N , which is a martingale, since Z0 is a.s. constant,
and set A = −B, so that A = (At)t∈T is increasing, with A0 = 0, and
Z = M − A.
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Define a random variable ν : Ω → T by

ν(ω) =

{
T if AT (ω) = 0,
min {t ≥ 0 : At+1 > 0} if AT (ω) > 0.

(5.24)

To see that ν ∈ T, simply observe that

{ν = t} =
⋂
s≤t

{As = 0} ∩ {At+1 > 0}

is in Ft because At+1 is Ft-measurable. Thus ν is a stopping time. It is
clearly T-valued and therefore bounded.

Proposition 5.4.6. The stopping time ν in (5.24) is the largest optimal
stopping time for X.

Proof. For s ≤ ν(ω), Zs(ω) = Ms(ω) − As(ω). Hence Zν is a martingale,
so that the second condition in Proposition 5.4.5 holds for ν. To verify the
first condition (i.e. , Zν = Xν), let us write Zν in the form

Zν =
T∑

s=0

1{ν=s}Zs =
T−1∑
s=0

1{ν=s} max {Xs, E (Zs+1 |Fs )} + 1{ν=T}Xt.

Now
E (Zs+1 |Fs ) = E (Ms+1 − As+1 |Fs ) = Ms − As+1.

On the set {ν = s}, we have As = 0 and As+1 > 0; hence Zs = Ms. This
means that, on this set, E (Zs+1 |Fs ) < Zs a.s., and therefore that Zs =
max {Xs, E (Zs+1 |Fs )} = Xs. Thus Zν = Xν a.s.; hence ν is optimal.

It is now clear that ν is the largest optimal time for (Xt). Indeed, if
τ ∈ T has τ ≥ ν and Q(τ > ν) > 0, then

E (Zτ ) = E (Mτ ) − E (Aτ ) = E (Z0) − E (Aτ ) < E (Z0) = Z0.

By (5.23), the stopping time τ cannot be optimal.

Extension to Unbounded Stopping Times

We need to consider value processes at arbitrary times t ∈ T since the
holder’s possible future actions from time t onwards will help to deter-
mine those processes. So let Tt denote the set of stopping times τ : Ω →
Tt = {t, t + 1, . . . , T}, and consider instead the optimal stopping problem
supτ∈Tt

E (Xτ ). Although the stopping times remain bounded, an immedi-
ate difficulty in attempting to transfer the results we have for t = 0 to more
general t ∈ T is that we made use in our proofs of the fact that Z0 was a.s.
constant. This followed from our assumption that F0 contained only null
sets and their complements, and it led us to establish (5.23), which we used
throughout.
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In the general case, we are obliged to replace expectations EQ (Zτ ) by
conditional expectations EQ (Zτ |Ft ), thus facing the problem of defining
the supremum of a family of random variables rather than real numbers.
We need to ensure that we obtain this supremum as an F-measurable func-
tion, even for an uncountable family. We use this opportunity to extend
the definition of the Snell envelope in preparation for a similar extension
to continuous-time situations needed in Chapter 8.

Proposition 5.4.7. Let (Ω,F, P ) be a probability space. Let L be a fam-
ily of F-measurable functions Ω → [−∞,∞]. There exists a unique F-
measurable function g : Ω → [−∞,∞] with the following properties:

(i) g ≥ f a.s. for all f ∈ L.

(ii) If an F-measurable function h satisfies h ≥ f a.s. for all f ∈ L, then
h ≥ g a.s.

We call g the essential supremum of L and write g = ess supf∈L f .
There exists a sequence (fn) such that g = supn fn. If L is upward filtering
(i.e., if for given f ′, f ′′ in L there exists f ∈ L with f ≥ max {f ′, f ′′}), then
the sequence (fn) can be chosen to be increasing, so that f = limn fn.

Proofs of this result can be found in [199], [236]. The idea is simple:
identify the closed intervals [0, 1] and [−∞,∞], for example, via the in-
creasing bijection x → ex. Any countable family C in L has a well-defined
F-measurable ([0, 1]-valued) fC , which thus has finite expectation under P .
Define

α = sup {E (fC) : C ⊂ L, C countable}

and choose a sequence (f ′
n, Cn) with E (f ′

n) → α. Since K =
⋃

n Cn is
countable and E (f ′

K) = α, we can set g = f ′
K. The sequence (f ′

n) serves
as an approximating sequence, and f0 = f ′

0, fn+1 ≥ fn ∨ f ′
n+1 will make it

increasing with n.

Definition 5.4.8. Let (Ω, F, T, F, P ) be a stochastic base with T = N.
Given an adapted process (Xt)t∈T such that X∗ = supt Xt ∈ L1, define Tt

as the family of F-stopping times τ such that t ≤ τ < ∞. We call τ ∈ Tt a
t-stopping rule. The Snell envelope of (Xt) is the process Z defined by

Zt = ess sup
τ∈Tt

E (Xτ |Ft ) for t ∈ T. (5.25)

This definition allows unbounded (but a.s. finite) stopping times. When
X is UI, we can still use the optional stopping results proved earlier in this
context. The martingale characterisation of optimal stopping times can be
extended as well; see [199] or [236] for details.
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5.5 Pricing and Hedging American Options

Existence of a Minimal Hedge

Return to the setup at the beginning of Section 5.4 and assume henceforth
that the market model (Ω,F, P, T, F, S) is viable and complete, with Q as
the unique EMM.

Given an American option (ft) in this model (e.g. , an American call
with strike K, where ft = (S1

t − K)+), we saw that a hedging strategy θ
would need to generate a value process V (θ) that satisfies (5.19); that is,

VT (θ) = fT ,

Vt−1(θ) = max
{
ft−1, (1 + r)−1EQ (Vt |Ft−1 )

}
for t = 1, 2, . . . , T,

since S0
t = (1+r)−t for all t ∈ T. Moving to discounted values, Z =

(
V t(θ)

)
is then the Snell envelope of the discounted option price f t = (1 + r)−tft,
so that

ZT = fT , Zt−1 = max
{
f t−1, EQ

(
V t |Ft−1

)}
for t = 1, 2, . . . , T.

In particular, the results of the previous section yield

Zt = sup
τ∈Tt

EQ

(
fτ |Ft

)
for t ∈ T, (5.26)

and the stopping time τ∗
t = min

{
s ≥ t : Zs = fs

}
is optimal, so that the

supremum in (5.26) is attained by τ∗
t . (We developed these results for

t = 0, but with the extended definition of the Snell envelope, they hold for
general t.)

For τ∗ = τ∗
0 and T = T0, we have, therefore,

Z0 = sup
τ∈T

EQ

(
fτ

)
= EQ

(
fτ∗
)
. (5.27)

This defines the rational price of the option at time 0 and thus also the
initial investment needed for the existence of a hedging strategy.

Now write the Doob decomposition of the supermartingale Z as Z =
M − A, where M is a martingale and A a predictable increasing process.
Also write Mt = S0

t M t and At = S0
t At.

Since the market is complete, we can attain the contingent claim MT by
a self-financing strategy θ (e.g. , we could use the strategy constructed by
means of the martingale representation in the proof of Proposition 4.1.1)
and we may assume that θ is admissible. Thus V t(θ) = M t, and as V (θ)
is a martingale under the EMM Q,

V t(θ) = M t = Zt + At for all t ∈ T.

Hence also
ZtS

0
t = Vt(θ) − At for t ∈ T. (5.28)
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From the results of the previous section, we know that on the set

C = {(t, ω) : 0 ≤ t < τ∗(ω)} ,

the Snell envelope Z is a martingale and At(ω) = 0 on this set. Hence

Vt(θ)(ω) = sup
t≤τ≤T

EQ

(
(1 + r)−(τ−t)fτ |Ft

)
for all (t, ω) ∈ C. (5.29)

We saw that τ∗ is the smallest optimal exercise time and that Aτ∗(ω)(ω) =
0. Hence (5.28) and (5.29) imply that

Vτ∗(ω)(θ)(ω) = Zτ∗(ω)(ω)S0
τ∗(ω)(ω) = fτ∗(ω)(ω). (5.30)

Thus the hedge θ with initial capital investment

V0(θ) = x = sup
τ∈T

EQ

(
(1 + r)−τfτ

)
(5.31)

is minimal. Thus we have verified that this condition is sufficient for the
existence of a minimal hedge for the option.

The Rational Price and Optimal Exercise

Hedging requires an initial investment x of at least supτ∈T EQ ((1 + r)−τfτ ),
and the supremum is attained at the optimal time τ∗. It follows that x is
the minimum initial investment for which a hedging strategy can be con-
structed. Thus (5.31) provides a natural choice for the ‘fair’ or rational
price of the American option.

The optimal exercise time need not be uniquely defined, however; any
optimal stopping time (under Q) for the payoff function ft will be an op-
timal exercise time. In fact, the holder of the option (the buyer) has no
incentive to exercise the option while ZtS

0
t > ft since using the option price

as initial investment he could create a portfolio yielding greater payoff than
the option at time τ by using the hedging strategy θ. Thus the buyer would
wait for a stopping time σ for which Zσ = fσ; that is, until the optimality
criterion in Proposition 5.4.5 is satisfied. However, he would also choose
σ ≤ ν, where ν is the largest optimal stopping time defined in (5.24), since
otherwise the strategy θ would, at times greater than t > ν, yield value
Vt(θ) > ZtS

0
t by (5.28). Thus, for any optimal exercise time σ, we need to

have Zt∧σ = V t∧σ, so that Zσ is a martingale. This means that the second
condition in Proposition 5.4.5 holds, so that σ is optimal for the stopping
problem solved by the Snell envelope. (Note that the same considerations
apply to the option writer: if the buyer exercises at a non-optimal time τ ,
the strategy θ provides an arbitrage opportunity for the option writer since
either Aτ > 0 or Zτ > fτ , so that Vτ (θ) − fτ = ZτS0

τ + Aτ − fτ > 0.)
We have proved the following theorem.
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Theorem 5.5.1. A stopping time τ̂ ∈ T is an optimal exercise time for
the American option (ft)t∈T if and only if

EQ

(
(1 + r)−τ̂fτ̂

)
= sup

τ∈T
EQ

(
(1 + r)−τfτ

)
. (5.32)

Remark 5.5.2. We showed by an arbitrage argument in Chapter 1 that
American options are more valuable than their European counterparts in
general but that for a simple call option there is no advantage in early
exercise, so that the American and European call options have the same
value. Using the theory of optimal stopping, we can recover these results
from the martingale properties of the Snell envelope. Indeed, if ft = (S1

t −
K)+ is an American call option with strike K on T, then its discounted
value process is given by the Q-supermartingale (Zt) as in (5.26). Now if
Ct is the discounted time t value of the European option CT = (S1

T −K)+,
then CT = fT , so that

Zt ≥ EQ (ZT |Ft ) = EQ

(
fT |Ft

)
= EQ

(
CT |Ft

)
= Ct. (5.33)

This shows that the value process of the American call option dominates
that of the European call option.

On the other hand, for these call options, we have Ct ≥ ft = (S1
t −K)+,

as we saw in (1.23), and hence the Q-martingale (Ct) dominates (f t). It is
therefore a supermartingale dominating (f t) and, by the definition of the
Snell envelope, (Zt) is the smallest supermartingale with this property. We
conclude that Ct ≥ Zt for all t ∈ T. Hence Ct = Zt, and so the value
processes of the two options coincide.

5.6 Consumption-Investment Strategies

Extended ‘Self-Financing’ Strategies

In the study of American options in Chapter 8, and especially in studying
continuous-time consumption-investment problems in Chapter 10, we shall
extend the concept of ‘self-financing’ strategies by allowing for potential
consumption. In the present discrete-time setting, the basic concepts ap-
pear more transparent, and we outline them briefly here in preparation for
the technically more demanding discussion in Chapter 10.

Assume that we are given a price process
{
Si

t : i = 0, 1, . . . , d
}

t=0,1,...,T

on a stochastic basis (Ω, F, P, T, F). For any process X, the discounted
version is denoted by X, where Xt = βtXt as usual.

If c = (ct)t∈T denotes a ‘consumption process’ (which, if ct is nega-
tive, equates to additional investment at time t), then the self-financing
constraint for strategies (i.e., (∆θt) · St−1 = 0) should be amended to read

(∆θt) · St−1 + ct = 0. (5.34)
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An investment-consumption strategy is a pair (θ, c) of predictable processes
that satisfies (5.34), and their associated value or wealth process V is given
by Vt = θt · St as before. Also define the cumulative consumption process
C by Ct =

∑t
u=1 cu. The constraint (5.34) is trivially equivalent to each

of the following (for all t > 0):

∆Vt = θt · ∆St − ct, (5.35)

Vt = V0 +
t∑

u=1

θu · ∆Su − Ct, (5.36)

V t = V0 +
t∑

u=1

θu · ∆Su − Ct. (5.37)

Assume from now on that the market model (Ω,F, P, T, F, S) is viable
and complete and that Q is the unique EMM for S. Assume further that
C is a pure consumption process; that is, ∆Ct = ct ≥ 0 for all t ∈ T. Then
for a strategy (θ, c) as previously, the discounted value process V satisfies,
for t ∈ T,

EQ

(
∆V t |Ft−1

)
= EQ

(
(θt · ∆St − ct) |Ft−1

)
= −ct ≤ 0

since S is a Q-martingale and ct ≥ 0. In summary, we have the following.

Proposition 5.6.1. For every consumption strategy (θ, c) satisfying (5.34),
the discounted value process V is a Q-supermartingale.

Construction of Hedging Strategies

Suppose that U = (Ut) is an adapted process whose discounted version
U is a Q-supermartingale. Then we can use the increasing process in its
Doob decomposition to define a consumption process c and a self-financing
strategy θ such that the pair (θ, c) satisfies (5.34) and has value process U .

To do this, write U = M − A for the Doob decomposition of U , so
that A0 = 0 and M is a Q-martingale. As the market is complete, the
contingent claim MT = S0

T MT can be generated by a unique self-financing
strategy θ, so that θT · ST = MT ; that is, θT · StT = MT . As M is a
martingale, we have M t = EQ

(
θT · ST |Ft

)
for all t ∈ T. Thus

U t = EQ

(
θT · ST |Ft

)
− At for t ∈ T,

so that

Ut = S0
t EQ

(
θT · ST |Ft

)
− At for t ∈ T,

where the process At = S0
t At is increasing and has A0 = 0. Since θ is

self-financing, the final portfolio value has the form

θT · ST = θ0 · S0 +
T∑

u=1

θu · ∆Su for t ∈ T,
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so that

EQ

(
θT · ST |Ft

)
= θ0 · S0 +

t∑
u=1

θu · ∆Su for t ∈ T. (5.38)

Choosing C so that At =
∑t

u=1 cu and C0 = 0 = A0, we see that cu =
S0

u−1(∆Au) meets the requirement and that C is predictable and non-
negative (as A is increasing). Inductively, At =

∑t
u=1 Cu yields

At+1 = At + ∆At+1 =
t+1∑
u=1

cu,

and by (5.37) we obtain V t = U t; that is, Vt = Ut for the value process
associated with (θ, c).

Guided by our discussion of American options, we now call a consump-
tion strategy (θ, c) a hedge for a given claim (i.e., an adapted process)
X = (Xt) if Vt(θ) ≥ Xt for all t ∈ T. Writing Z for the Snell envelope of
X, the supermartingale Z dominates Xand can be used as the process U
in the previous discussion. Thus we can find a hedging strategy (θ, c) for
X and obtain

Vt(θ) = Ut = S0
t Zt ≥ Xt for t ∈ T, VT (θ) = S0

T ZT = XT .

As Z is the smallest supermartingale dominating X, it follows that any
hedge (θ′, c′) for X must have a value process dominating S0Z.

Financing Consumption

Suppose an investor is given an initial endowment x > 0 and follows a con-
sumption strategy c = (ct)t∈T (a non-negative predictable process). How
can this consumption be financed by a self-financing investment strategy
utilising the endowment x?

It seems natural to say that c can be financed (or is budget-feasible)
from the endowment x provided that there is a predictable process θ =
(θ0, θ1, θ2, . . . , θd) for which (θ, c) is a consumption strategy with V0(θ) = x
and Vt(θ) ≥ 0 for all t ∈ T. By (5.37), we require that

V t(θ) = x +
t∑

u=1

θu · ∆Su −
t∑

u=1

cu ≥ 0 (5.39)

if such a strategy θ exists. But S is a Q-martingale, so, taking expectations,
(5.39) becomes, with C =

∑t
u=1 cu as cumulative consumption,

EQ

(
Ct

)
= EQ

(
t∑

u=1

cu

)
≤ x. (5.40)
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The budget constraint (5.40) is therefore necessary if the consumption C
is to be financed by the endowment x. It is also sufficient as shown in the
following.

Given a consumption process C with ct = ∆Ct, define the process
U t = x − Ct. Since C is predictable and ct+1 ≥ 0,

U t+1 = EQ

(
U t+1 |Ft

)
≤ U t,

so that U is a supermartingale. By (5.40), EQ

(
U t

)
≥ 0 for all t ∈ T. But

then we can find a hedging strategy θ for the claim X = 0 with V0(θ) = x
and Vt(θ) ≥ 0 for all t. We have proved the following.

Theorem 5.6.2. The consumption process C can be financed by an initial
endowment x if and only if the constraint (5.40) is satisfied.



Chapter 6

Continuous-Time
Stochastic Calculus

6.1 Continuous-Time Processes

In this and the succeeding chapters, the time parameter takes values in
either a finite interval [0, T ] or the infinite intervals [0,∞), [0,∞]. We
denote the time parameter set by T in each case.

Filtrations and Stopping Times

Suppose (Ω,F, P ) is a probability space. As before, we use the concept
of a filtration on (Ω,F, P ) to model the acquisition of information as time
evolves. The definition of a filtration is as in Chapter 2 and now takes
account of the change in the time set T.

Definition 6.1.1. A filtration F = (Ft)t∈T is an increasing family of sub-
σ-fields of F(i.e., Ft ⊂ F and if s ≤ t, then Fs ⊂ Ft).

We assume that F satisfies the ‘usual conditions’. This means the fil-
tration F is:

(a) complete; that is, every null set in F belongs to F0 and thus to each
Ft, and

(b) right continuous; that is, Ft =
⋂

s>t Fs for t ∈ T.

Remark 6.1.2. Just as in the discrete case, Ft represents the history of some
process or processes up to time t. However, all possible histories must be
allowed. If an event A ∈ F is Ft-measurable, then it only depends on what
has happened to time t. Unlike the situation we discussed in Chapter 2,
new information can arrive at any time t ∈ [0, T ] (or even t ∈ [0,∞)), and
the filtration consists of an uncountable collection of σ-fields. The right
continuity assumption is specific to this situation.

131



132 CHAPTER 6. CONTINUOUS-TIME STOCHASTIC CALCULUS

Definition 6.1.3. Suppose the time parameter T is [0, ∞] (or [0,∞), or
[0, T ]). A random variable τ taking values in T is a stopping time if, for
every t ≥ 0,

{τ ≤ t} ∈ Ft.

Remark 6.1.4. Consequently, the event {τ ≤ t} depends only on the history
up to time t. The first time a stock price reaches a certain level is a stopping
time, as is, say, the first time the price reaches a certain higher level after
dropping by a specified amount. However, the last time, before some given
date, at which the stock price reaches a certain level is not a stopping time
because to say it is the ‘last time’ requires information about the future.
Note that in the continuous-time setting it does not make sense to replace
the condition {τ ≤ t} ∈ Ft by {τ = t} ∈ Ft. Many of the properties of
stopping times carry over to this setting, however.

Just as in Chapter 5, a constant random variable, T (ω) = t for all
ω ∈ Ω, is a stopping time. If T is any stopping time, then T + s is also a
stopping time for s ≥ 0.

We continue with some basic properties of stopping times.

Proposition 6.1.5. If S and T are stopping times, then S ∧ T and S ∨ T
are also stopping times. Consequently, if (Tn)n∈N is a sequence of stopping
times, then ∧nTn = infn Tn and ∨nTn = supn Tn are stopping times.

Proof. The proof is identical to that given in Example 5.2.3 for the discrete
case.

Definition 6.1.6. Suppose T is a stopping time with respect to the fil-
tration (Ft). Then the σ-field FT of events occurring up to time T is the
collection of events A ∈ F satisfying

A ∩ {T ≤ t} ∈ Ft for all t ∈ T.

Exercise 6.1.7. Prove that FT is a σ-field.
One then can establish the following (compare with Exercise 5.2.6 for

the discrete case).

Theorem 6.1.8. Suppose S, T are stopping times.

a) If S ≤ T , then FS ⊂ FT .

b) If A ∈ FS, then A ∩ {S ≤ T} ∈ FT .

Proof. (a) Suppose that B ∈ FS . Then, for t ∈ T,

B ∩ {T ≤ t} = B ∩ {S ≤ t} ∩ {T ≤ t} ∈ Ft.

(b) Suppose that A ∈ FS . For t ∈ T, we have

A ∩ {S ≤ T} ∩ {T ≤ t} = (A ∩ {S ≤ t}) ∩ {T ≤ t} ∩ {S ∧ t ≤ T ∧ t} .

Each of the three sets on the right-hand side is in Ft: the first because
A ∈ FS , the second because T is a stopping time, and the third because
S ∧ t and T ∧ t are Ft-measurable random variables.
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Definition 6.1.9. A continuous-time stochastic process X taking values
in a measurable space (E, E) is a family of random variables {Xt} defined
on (Ω,F, P ), indexed by t, that take values in (E, E).

That is, for each t, we have a random variable Xt(·) with values in E.
Alternatively, for each ω (i.e., fixing ω and letting t vary), we have a sample
path X·(ω) of the process.

Remark 6.1.10. X could represent the evolution of the price of oil or the
price of a stock over time.

For some (future) time t, Xt(ω) is a random quantity, a random variable.
Each ω represents a ‘state of the world’ corresponding to which there is a
price Xt(ω). Conversely, fixing ω means one realization of the world, as
time evolves, is considered. This gives a realization, or path, of the price
X·(ω) as a function of time t.

Equivalence of Processes

A natural question is to ask when two stochastic processes model the same
phenomenon. We discuss several possible definitions for stochastic pro-
cesses defined on a probability space (Ω, F, P ) and taking values in the
measurable space (E, E).

The weakest notion of equivalence of processes reflects the fact that
in practice one can only observe a stochastic process at finitely many in-
stants. Assume for simplicity that E = R and E is the Borel σ-field B
on R. Then we can form the family of finite-dimensional distributions of
the process X = (Xt)t≥0 by considering the probability that for n ∈ N,
times t1, t2, . . . , tn ∈ T and a Borel set A ⊂ Rn, the random vector
(Xt1 , Xt2 , . . . , Xtn

) takes values in A. Indeed, set

φX
t1,t2,...,tn

(A) = P ({ω ∈ Ω : (Xt1(ω), Xt2(ω), . . . , Xtn(ω)) ∈ A}) .

For each family {t1, t2, . . . , tn}, this defines φX
t1,t2,...,tn

as a measure on Rn.
We say that two processes X and Y are equivalent (or have the same law)
if their families of finite-dimensional distributions coincide, and then we
write X ∼ Y .

Note that the preceding does not require Y to be defined on the same
probability space as X. This means that we can avoid complicated ques-
tions about the ‘proper’ probability space for a particular problem since
only the finite-dimensional distributions and not the full realisations of the
process (i.e., the various random ‘paths’ it traces out) are relevant for our
description of the probabilities concerned. It turns out that if we consider
the process as a map X : Ω → RT (i.e., ω → X(·, ω)) and we stick to
Borel sets A in RT, then the finite-dimensional distributions give us suf-
ficient information to identify a canonical version of the process, up to
equivalence. (This is the famous Kolmogorov extension theorem; see [194,
Theorem 2.2]).
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However, at least when T is uncountable, most of the interesting sets
in RT are not Borel sets, so that we need a somewhat stronger concept of
‘equivalence’ that ‘fixes’ the paths of our process X tightly enough. Two
such definitions are now given; each of them requires the two processes
concerned to be defined on the same probability space.

Definition 6.1.11. Suppose (Xt)t≥0 and (Yt)t≥0 are two processes defined
on the same probability space (Ω,F, P ) and taking values in (E, E). The
process {Yt} is said to be a modification of (Xt) if

Xt = Yt a.s. for all t ∈ T;

i.e.,
P (Xt = Yt) = 1 for all t ∈ T.

Definition 6.1.12. The processes (Xt) and (Yt) defined as in Defini-
tion 6.1.11 are said to be indistinguishable if, for almost every ω ∈ Ω,

Xt(ω) = Yt(ω) for all t ∈ T. (6.1)

The difference between Definition 6.1.11 and Definition 6.1.12 is that
in Definition 6.1.11 the set of zero measure on which Xt and Yt may differ
may depend on t, whereas in Definition 6.1.12 there is a single set of zero
measure outside of which (6.1) holds. When the time index set is countable,
the two definitions coincide.

Exercise 6.1.13. A process X is right-continuous if for almost every ω the
map t → Xt(ω) is right-continuous. Show that if the processes X and Y
are right-continuous and one is a modification of the other, then they are
indistinguishable.

Definition 6.1.14. Suppose A ⊂ [0,∞]×Ω and that 1A(t, ω) = 1A is the
indicator function of A; that is,

1A(t, ω) =

{
1 if (t, ω) ∈ A,

0 if (t, ω) /∈ A.

Then A is called evanescent if 1A is indistinguishable from the zero process.

Exercise 6.1.15. Show that A is evanescent if the projection

{ω ∈ Ω : there exists t with (t, ω) ∈ A}

of A onto Ω is a set of measure zero.

Finally, we recall the following.

Definition 6.1.16. A process (t, ω) → Xt(ω) from ([0, T ]×Ω, B([0, T ]×F))
to a measurable space (E, E) is said to be progressively measurable, or
progressive, if for every t ∈ [0, T ] the map (s, ω) → Xs(ω) of [0, T ] × Ω to
E is measurable with respect to the σ-field B([0,T]) × Ft.
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6.2 Martingales

Definition 6.2.1. Suppose (Ft)t≥0 is a filtration of the measurable space
(Ω,F) and (Xt) is a stochastic process defined on (Ω,F) with values in
(E, E). Then X is said to be adapted to (Ft) if Xt is Ft-measurable for
each t.

The random process that models the concept of randomness in the most
fundamental way is a martingale; we now give the continuous-time defini-
tion for t ∈ [0,∞] ; the discrete-time analogue was discussed in Chapters 2
through 5.

Definition 6.2.2. Suppose (Ω,F, P ) is a probability space with a filtration
(Ft)t≥0. A real-valued adapted stochastic process (Mt) is said to be a
martingale with respect to the filtration (Ft) if E |Mt| ≤ ∞ for all t and
for all s ≤ t

E (Mt |Fs ) = Ms.

If the equality is replaced by ≤ (resp. ≥), then (Mt) is said to be a
supermartingale (resp. submartingale).

Remark 6.2.3. A martingale is a purely random process in the sense that,
given the history of the process so far, the expected value of the process at
some later time is just its present value. Note that in particular

E (Mt) = E (M0) for all t ≥ 0.

Brownian Motion

The most important example of a continuous-time martingale is a Brownian
motion. This process is named for Robert Brown, a Scottish botanist who
studied pollen grains in suspension in the early nineteenth century. He
observed that the pollen was performing a very random movement and
thought this was because the pollen grains were alive. We now know this
rapid movement is due to collisions at the molecular level.

Definition 6.2.4. A standard Brownian motion (Bt)t≥0 is a real-valued
stochastic process that has continuous sample paths and stationary inde-
pendent Gaussian increments. In other words,

a) B0 = 0 a.s.

b) t → Bt(ω) is continuous a.s.

c) For s ≤ t, the increment Bt − Bs is a Gaussian random variable that
has mean 0, variance t−s, and is independent of Fs = σ {Bu : u ≤ s}.

We can immediately establish the following.

Theorem 6.2.5. Suppose (Bt) is a standard Brownian motion with respect
to the filtration (Ft)t≥0. Then
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a) (Bt)t≥0 is an Ft-martingale.

b)
(
B2

t − t
)
t≥0 is an Ft-martingale.

c)
(
eσBt− σ2

2 t
)

t≥0
is an Ft-martingale.

Proof. a) Since Bt − Bs is independent of Fs for all s ≤ t, we have

E (Bt − Bs |Fs ) = E (Bt − Bs) = 0.

Consequently, E (Bt |Fs ) = Bs a.s.

b) For
(
B2

t − t
)
, we have

E
(
B2

t − B2
s |Fs

)
= E

(
(Bt − Bs)2 + 2Bs(Bt − Bs) |Fs

)
= E

(
(Bt − Bs)2 |Fs

)
+ 2BsE ((Bt − Bs) |Fs ) . (6.2)

The second term in (6.2) is zero by the first part. Independence
implies that

E
(
(Bt − Bs)2 |Fs

)
= E

(
(Bt − Bs)2

)
= t − s.

Therefore E
(
B2

t − t |Fs

)
= B2

s − s.

c) If Z is a standard normal random variable, with density 1√
2π

e− x2
2 ,

then
E
(
eλZ
)

=
1√
2π

∫ ∞

−∞
eλxe− x2

2 dx = e
λ2
2 for λ ∈ R.

For s < t, by independence and stationarity, we have

E
(
eσBt− σ2

2 t |Fs

)
= eσBs− σ2

2 tE
(
eσ(Bt−Bs) |Fs

)
= eσBs− σ2

2 tE
(
eσ(Bt−Bs)

)
= eσBs− σ2

2 tE
(
eσBt−s

)
.

Now σBt−s is N
(
0, σ2(t − s)

)
; that is, if Z is N(0, 1) as previously,

the random variable σBt−s has the same law as σ
√

t − sZ and

E
(
eσBt−s

)
= E

(
eσ

√
t−sZ

)
= e

σ2
2 (t−s).

Therefore

E
(
eσBt− σ2

2 t |Fs

)
= eσBs− σ2

2 s a.s. for s < t.

Conversely, we prove in Theorem 6.4.16 that a continuous process that
satisfies the first two statements in Theorem 6.2.5 is, in fact, a Brownian
motion. (Indeed, the third statement characterises a Brownian motion.)
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Uniform Integrability and Limit Theorems

We discussed the role of uniform integrability in some detail in the discrete-
time setting of Chapter 5. Here we review briefly how these ideas carry
over to continuous-time martingales. Definition 5.3.1 immediately prompts
the following.

Definition 6.2.6. A martingale {Mt} with t ∈ [0,∞) (or t ∈ [0, T ]) is said
to be uniformly integrable if the set of random variables {Mt} is uniformly
integrable.

Remark 6.2.7. If {Mt} is a uniformly integrable martingale on [0,∞), then
lim Mt = M∞ exists a.s. as we proved for the discrete case in Chapter 5.

Again, a consequence of {Mt} being a uniformly integrable martingale
on [0,∞) is that M∞ = lim Mt in the L1 norm; i.e., limt ‖Mt − M∞‖1 = 0.

In this case, {Mt} is a martingale on [0, ∞] and

Mt = E (M∞ |Ft ) a.s. for all t.

We again say that M is closed by the random variable M∞.

Recall from the examples following Definition 5.3.1 that if a class K of
random variables is in L1(Ω,F, P ) and is Lp-bounded for some p > 1, then
K is uniformly integrable.

Notation 6.2.8. Write M for the set of uniformly integrable martingales.

An important concept is that of ‘localization’. If C is a class of processes,
then C�oc is the set of processes defined as follows. We say that X ∈ C�oc if
there is an increasing sequence {Tn} of stopping times such that limTn =
∞ a.s. and Xt∧Tn ∈ C. For example, C might be the bounded processes, or
the processes of bounded variation.

Notation 6.2.9. M�oc denotes the set of local martingales.

The defining relation for martingales, E (Mt |Fs ) = Ms, can again be
extended to stopping times. This result, which is the analogue of The-
orem 5.3.9, is again known as Doob’s optional stopping theorem since it
says the martingale equality is preserved even if (non-anticipative) random
stopping rules are allowed. A complete proof of this result in continuous
time can be found in [109, Theorem 4.12, Corollary 4.13]. Note that our
discussion of the discrete case in Chapter 5 showed how the extension from
bounded to more general stopping times required the martingale conver-
gence theorem and conditions under which a supermartingale is closed by
an L1-function. This condition is also required in the following.

Theorem 6.2.10. Suppose (Mt)t≥0 is a right-continuous supermartingale
(resp. submartingale) with respect to the filtration (Ft). If S and T are
two (Ft)-stopping times such that S ≤ T a.s., then

E (MT |FS ) ≤ MS a.s. (resp., E (MT |FS ) ≥ MS a.s.).
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Corollary 6.2.11. In particular, if (Mt)t≥0 is a right-continuous martin-
gale and S, T are (Ft)-stopping times with S ≤ T , then

E (MT |FS ) = MS a.s.

Remark 6.2.12. Note that, if T is any (Ft)-stopping time, then E (MT ) =
E (M0).

The following is a consequence of the optional stopping theorem. Note
that we write x+ = max {x, 0} and x− = max {−x, 0}.

Lemma 6.2.13. Suppose Xt, t ∈ [0,∞] is a supermartingale. Then

αP
(
(inf

t
Xt) ≤ −α

)
≤ sup

t
E
(
X−

t

)
for all α ≥ 0.

Proof. Write
S(ω) = inf {t : Xt(ω) ≤ −α}

and St = S ∧ t. Using the optional stopping theorem (Theorem 6.2.10), we
have

E (XSt
) ≥ E (Xt) .

Therefore

E (Xt) ≤ −αP

{
inf
s≤t

Xs ≤ −α

}
+
∫
{infs≤t Xs>−α}

XtdP ;

that is,

αP

{
inf
s≤t

Xs ≤ −α

}
≤ E (−Xt) +

∫
{infs≤t Xs>−α}

XtdP

=
∫
{infs≤t Xs≤−α}

−XtdP

≤ E
(
X−

t

)
. (6.3)

Letting t → ∞ in (6.3), the result follows.

As a consequence, we can deduce Doob’s maximal theorem.

Theorem 6.2.14. Suppose (Xt)t∈[0,∞] is a martingale. Then

αP

{
sup

t
|Xt| ≥ α

}
≤ sup

t
‖Xt‖1 for all α ≥ 0.

Proof. From Jensen’s inequality (see Proposition 5.3.4), if X is a mar-
tingale, then Yt = − |Xt| is a (negative) supermartingale with ‖Yt‖1 =
‖Xt‖1 = E

(
Y −

t

)
. In addition,{

inf
t

Yt ≤ −α
}

=
{

sup
t

|Xt| ≥ α

}
,

so the result follows from Lemma 6.2.13.
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Before proving Doob’s Lp inequality, we first establish the following
result.

Theorem 6.2.15. Suppose X and Y are two positive random variables
defined on the probability space (Ω,F, P ) such that X ∈ Lp for some p, 1 <
p < ∞, and

αP ({Y ≥ α}) ≤
∫

{Y ≥α}
XdP for all α > 0.

Then

‖Y ‖p ≤ q ‖X‖p ,

where 1
p + 1

q = 1.

Proof. Let F (λ) = P (Y > λ) be the complementary distribution function
of Y . Using integration by parts,

E (Y p) = −
∫ ∞

0
λpdF (λ)

=
∫ ∞

0
F (λ)d(λp) − lim

h→∞
(λpF (λ))h

0

≤
∫ ∞

0
F (λ)d(λp)

≤
∫ ∞

0
λ−1

(∫
{Y ≥λ}

XdP

)
d(λp) by hypothesis

= E

(
X

∫ Y

0
λ−1d(λp)

)
by Fubini’s theorem

=
(

p

p − 1

)
E
(
XY p−1)

≤ q ‖X‖p

∥∥Y p−1
∥∥

q
by Hölder’s inequality.

That is,
E (Y p) ≤ q ‖X‖p

(
E
(
Y pq−q

)) 1
q .

If ‖Y ‖p is finite, the result follows immediately because pq − q = p.
Otherwise, consider the random variable

Yk = Y ∧ k, k ∈ N.

Then Yk ∈ Lp and Yk also satisfies the hypotheses. Therefore

‖Yk‖p ≤ q ‖X‖p .

Letting k → ∞, the result follows.
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Theorem 6.2.16. Suppose (Xt)t≥0 is a right-continuous positive sub-
martingale. Write X∗(ω) = supt Xt(ω). Then, for 1 < p ≤ ∞, X∗ ∈ Lp if
and only if

sup
t

‖Xt‖p < ∞.

Also, for 1 < p < ∞ and q−1 = 1 − p−1,

‖X∗‖p ≤ q sup
t

‖Xt‖p .

Proof. When p = ∞, the first part of the theorem is immediate because

sup
t

‖Xt‖∞ = B < ∞

implies that Xt ≤ B a.s. for all t ∈ [0,∞]. The right-continuity is required
to ensure there is a single set of measure zero outside which this inequality
is satisfied for all t. Also, for 1 < p < ∞, if X∗ ∈ Lp, then

sup
t

‖Xt‖p ≤ ‖X∗‖p < ∞.

As in Section 5.3, the random variables (Xt) are uniformly integrable,
so from [109, Corollaries 3.18 and 3.19] we have that

X∞(ω) = lim
t→∞

Xt(ω)

exists a.s. Using Fatou’s lemma, we obtain

E
(
lim

t
Xp

t

)
≤ lim inf

t
E (Xp

t ) ≤ sup
t

E (Xp
t ) < ∞.

Therefore X∞ ∈ Lp and ‖X∞‖p ≤ supt ‖Xt‖p.
Write X∗

t (ω) = sups≤t Xs(ω). Then {−Xt} is a supermartingale, so
from inequality (6.3) in Lemma 6.2.13, for any α > 0,

αP

(
inf
s≤t

(−Xs) ≤ −α

)
= αP (X∗

t ≥ α) ≤
∫

{X∗
t ≥α}

XtdP ≤
∫

{X∗≥α}
XtdP.

Letting t → ∞, we have for any α > 0,

αP (X∗ ≥ α) ≤
∫

{X∗≥α}
X∞dP.

Therefore, Theorem 6.2.15 can be applied with Y = X∗ and X = X∞ to
obtain

‖X∗‖p ≤ q ‖X∞‖p

and the result follows.

The following important special case arises when p = q = 2 and the
time interval is taken as [0, T ].

Corollary 6.2.17 (Doob’s Inequality). Suppose (Mt)t≥0 is a continu-
ous martingale. Then

E

(
sup

0≤t≤T
|Mt|2

)
≤ 4E

(
|MT |2

)
.
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6.3 Stochastic Integrals

In discrete time the discounted value of a portfolio process having initial
value V0 and generated by a self-financing strategy (Ht)t≥0 is given by

V0 +
n∑

j=1

Hj(Sj − Sj−1).

Recall that under an equivalent measure the discounted price process S is
a martingale. Consequently, the preceding value process is a martingale
transform. The natural extension to continuous time of such a martingale
transform is the stochastic integral

∫ t

0 HsdSs. However, dS = SσdWt,
where (Wt) is a Brownian motion. Almost all sample paths W·(ω) of
Brownian motion are known to be of unbounded variation. They are there-
fore certainly not differentiable. The integral

∫
HdS cannot be defined as∫

H dS
dt ·dt or even as a Stieltjes integral. It can, however, be defined as the

limit of suitable approximating sums in L2(Ω).
We work initially on the time interval [0, T ]. Suppose (Wt) is an (Ft)-

Brownian motion defined on (Ω,F, P ) for t ∈ [0, T ]; that is, W is adapted
to the filtration (Ft).

Simple Processes

Definition 6.3.1. A real-valued simple process on [0, T ] is a function H
for which

a) there is a partition 0 = t0 < t1 < . . . tn = T ; and

b) Ht0 = H0(ω) and Ht = Hi(ω) for t ∈ (ti, ti+1], where Hi(·) is Fti
-

measurable and square integrable. That is,

Ht = H0(ω) +
n−1∑
i=0

Hi(ω)1(ti,ti+1] for t ∈ [0, T ].

Definition 6.3.2. If H is a simple process, the stochastic integral of H with
respect to the Brownian motion (Wt) is the process defined for t ∈ (tk, tk+1],
by ∫ t

0
HsdWs =

k−1∑
i=0

Hi(Wti+1 − Wti
) + Hk(Wt − Wtk

).

This can be written as a martingale transform:

∫ t

0
HsdWs =

n∑
i=0

Hi(Wti+1∧t − Wti∧t).
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We write
∫ t

0 HdW =
∫ t

0 HsdWs.
Note that, because W0 = 0, there is no contribution to the integral at

t = 0.

Theorem 6.3.3. Suppose H is a simple process. Then:

a)
(∫ t

0 HsdWs

)
is a continuous Ft-martingale.

b) E

([∫ t

0 HsdWs

]2)
= E

(∫ t

0 H2
s ds
)
.

c) E

(
sup0≤t≤T

∣∣∣∫ t

0 HsdWs

∣∣∣2) ≤ 4E
(∫ T

0 H2
s ds
)
.

Proof. a) For t ∈ (tk, tk+1], we have∫ t

0
HsdWs =

k−1∑
i=0

Hi(Wti+1 − Wti) + Hk(Wt − Wtk
).

Now Wt(·) is continuous a.s. in t; hence so
∫ t

0 HsdWs. Suppose that
0 ≤ s ≤ t ≤ T . Recall that∫ t

0
HsdWs =

n∑
i=0

Hi(Wti+1∧t − Wti∧t),

where Hi is Fti-measurable. Now if s ≤ ti, then

E
(
Hi

[
Wti+1∧t − Wti∧t

]
|Fs

)
= E

(
E
(
Hi

[
Wti+1∧t − Wti∧t

]
|Fti

)
|Fs

)
= E

(
HiE

(
Wti+1∧t − Wti∧t |Fti

)
|Fs

)
= 0 = Hi

(
Wti+1∧s − Wti∧s

)
because ti+1 ∧ s = ti ∧ s = s. If s ≥ ti, then

E
(
Hi

[
Wti+1∧t − Wti∧t

]
|Fs

)
= HiE

(
Wti+1∧t − Wti |Fs

)
= Hi

(
Wti+1∧s − Wti∧s

)
.

Consequently, for s ≤ t,

E

(∫ t

0
HsdWs |Fs

)
=
∫ s

0
HudWu

and
(∫ t

0 HdW
)

is a continuous martingale.

b) Now suppose i < j so that i + 1 ≤ j. Then

E
(
HiHj

(
Wti+1∧t − Wti∧t

) (
Wtj+1∧t − Wtj∧t

))
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= E
(
E
(
HiHj

(
Wti+1∧t − Wti∧t

) (
Wtj+1∧t − Wtj∧t

) ∣∣Ftj

))
= E

(
HiHj

(
Wti+1∧t − Wti∧t

)
E
(
Wtj+1∧t − Wtj∧t

∣∣Ftj

))
= 0.

Also,

E
(
H2

i

(
Wti+1∧t − Wti∧t

)2) = E
(
H2

i E
((

Wti+1∧t − Wti∧t

)2 |Fti

))
= E

(
H2

i (ti+1 ∧ t − ti ∧ t)
)
.

Consequently,

E

((∫ t

0
HdW

)2)
=

n∑
i=0

E
(
H2

i (ti+1 ∧ t − ti ∧ t)
)

= E

(∫ t

0
H2

s ds

)
=
∫ t

0
E
(
H2

s

)
ds.

c) For the final part, apply Doob’s maximal inequality, Corollary 6.2.17,
to the martingale

(∫ t

0 HsdWs

)
.

Notation 6.3.4. We write H for the space of processes adapted to (Ft) that
satisfy E

(∫ T

0 H2
s ds
)

< ∞.

Lemma 6.3.5. Suppose {Hs} ∈ H. Then there is a sequence {Hn
s } of

simple processes such that

lim
n→∞

E

(∫ T

0
|Hs − Hn

s |2 ds

)
= 0.

Outline of the Proof. Fix f ∈ H, and define a sequence of simple functions
converging to f by setting

fn(t, ω) = n

∫ k
n

k−1
n

f(s, ω)ds for t ∈
[

k

n
,
k + 1

n

]
.

If the integral diverges, replace it by 0. By Fubini’s theorem, this only
happens on a null set in Ω since f is integrable on T × Ω.

Note that, using progressive measurability (recall Definition 6.1.16), as
a random variable, the preceding integral is F k

n
-measurable, so that fn is

a simple process as defined in Definition 6.3.1. We show in the following
that

∫ T

0 |fn(t, ω) − f(t, ω)|2 dt converges to 0 whenever f(·, ω) ∈ L2[0, T ],
and also that, for all such ω ∈ Ω,∫ T

0
|fn(t, ω)|2 dt ≤

∫ T

0
|f(t, ω)|2 dt.
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Thus the dominated convergence theorem allows us to conclude that

E

(∫ T

0
|fn − f | dt

)
→ 0 as n → ∞.

We write fh = fn when h = 1
n . The proof now reduces to a prob-

lem in L2[0, T ], namely to show that if f ∈ L2[0, T ] is fixed, then as
h ↓ 0, the ‘time averages’ fh defined for t ∈

[
(k − 1)h, kh ∧ h−1

)
by

fh(t) = 1
h

∫ kh

(k−1)h f(s)ds and 0 outside
[
h, h−1

)
remain L2-dominated by f

and converge to f in L2-norm. To prove this, first consider the estimate

∫ T

0
f2

h(t)dt ≤
[ T

h ]∑
k=1

∣∣∣∣∣
∫ kh

(k−1)h
f(s)ds

∣∣∣∣∣
2

,

which is exact if T
h ∈ N or T = ∞. Now the Schwarz inequality, applied

to 1 · f , shows that each term in the latter sum is bounded above by
h ·
∫ kh

(k−1)h f2(s)ds; hence the sum is bounded by h ·
∫ [ T

h ]·h
0 f2(s)ds ≤ h ·∫ T

0 f2(s)ds, which proves domination. To prove the convergence, consider
ε > 0 and note that if f is a step function, then fh will converge to f as
h ↓ 0. Since the step functions are dense in L2[0, T ], choose a step function
fε such that ‖fε − f‖ < ε (with ‖·‖ denoting the norm in L2[0, T ]). Note
that since fh is also a step function, fh − fε

h = (f − fε)h. Moreover, by the
definition of fh, it is easy to verify that ‖fh − fε

h‖ ≤ ‖f − fε‖. Therefore
we can write

‖fh − f‖ = ‖fε
h − fε + (f − fε)h − (f − fε)‖ ≤ ‖fε

h − fε‖ + 2 ‖f − fε‖ .

But the first term goes to 0 as h ↓ 0 since fh is a step function, while the
second is less than 2ε. This proves the result.

The Integral as a Stochastic Process

Theorem 6.3.6. Suppose (Wt)t≥0 is a Brownian motion on the filtration
(Ft). Then there is a unique linear map I from H into the space of con-
tinuous Ft-martingales on [0, T ] such that:

a) If H is a simple process in H, then

I(H)t =
∫ t

0
HsdWs.

b) If t ≤ T ,

E
(
(I(H)t)

2
)

= E

(∫ t

0
H2

s ds

)
.

The second identity is called the isometry property of the integral.
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Proof. For H a simple process, one defines I(H)t =
∫ t

0 HsdWs. Suppose
H ∈ H and (Hn) is a sequence of simple processes converging to H. Then

I(Hn+p − Hn)t =
∫ t

0
(Hn+p

s − Hn
s )dWs

=
∫ t

0
Hn+p

s dWs −
∫ t

0
Hn

s dWs.

From Doob’s inequality (Corollary 6.2.17),

E

(
sup

0≤t≤T

∣∣I(Hn+p − Hn)t

∣∣2) ≤ 4E

(∫ T

0

∣∣Hn+p
s − Hn

s

∣∣2 ds

)
. (6.4)

Consequently, there is a subsequence
(
Hkn
)

such that

E

(
sup
t≤T

∣∣I (Hkn+1
)
t
− I
(
Hkn
)
t

∣∣2) ≤ 2−n.

Almost surely, the sequence of continuous functions I(Hkn)t, 0 ≤ t ≤ T is
uniformly convergent on [0, T ] to a function I(H)t. Letting p → ∞ in (6.4),
we see that

E

(
sup
t≤T

|I(H)t − I(Hn)t|2
)

≤ 4E

(∫ T

0
|Hs − Hn

s |2 ds

)
.

This argument also implies that I(H) is independent of the approximating
sequence (Hn).

Now E (I(Hn)t |Fs ) = I(Hn)s a.s. The integrals {I(Hn), I(H)} belong
to L2(Ω,F, P ), so

‖E (I(H)t |Fs ) − I(H)s‖2 ≤ ‖E (I(H)t |Fs ) − E (I(Hn)t |Fs )‖2

+ ‖E (I(Hn)t |Fs ) − I(Hn)s‖2 + ‖I(Hn)s − I(H)s‖2 .

The right-hand side can be made arbitrarily small, so I(H)t is an Ft-
martingale.

The remaining results follow by continuity and from the density in H
of simple processes.

Notation 6.3.7. We write I(H)t =
∫ t

0 HsdWs for H ∈ H.

Lemma 6.3.8. For H ∈ H,

a) E

(
sup0≤t≤T

∣∣∣∫ t

0 HsdWs

∣∣∣2) ≤ 4E
(∫ T

0 |H|2s ds
)
.

b) If τ is an (Ft)-stopping time such that τ ≤ T , then∫ τ

0
HsdWs =

∫ T

0
1{s≤τ}HsdWs.
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Proof. a) Let (Hn) be a sequence of simple processes approximating H.
We know that

E
(
I(Hn)2T

)
= E

(∫ T

0
|Hn

s |2 ds

)

so, taking limits, we have

E
(
I(H)2T

)
= E

(∫ T

0
|Hs|2 ds

)
.

Also,

E

(
sup
t≤T

I(Hn)2t

)
≤ 4E

(∫ T

0
|Hn

s |2 ds

)
.

Taking limits, the result follows.

b) Suppose τ is a stopping time of the form

τ =
∑

1≤i≤n

ti1Ai , (6.5)

where Ai ∩ Aj = ∅ for i �= j and Ai ∈ Fti . Then∫ T

0
1{s>τ}HsdWs =

∫ T

0

⎛⎝ ∑
1≤i≤n

1Ai
1{s>ti}

⎞⎠HsdWs.

Now for each i the process 1{s>ti}1Ai
Hs is adapted and in H; it is

zero if s ≤ ti and equals 1AiHs otherwise. Therefore

∫ T

0

⎛⎝ ∑
1≤i≤n

1Ai1{s>ti}

⎞⎠HsdWs

=
∑

1≤i≤n

1Ai

∫ T

ti

HsdWs =
∫ T

τ

HsdWs.

Consequently, for τ of the form (6.5),∫ T

0
1{s≤τ}HsdWs =

∫ τ

0
HsdWs.

Now an arbitrary stopping time τ can be approximated by a decreas-
ing sequence of stopping times τn where

τn =
2n∑
i=0

(k + 1)T
2n

1A ,
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where A =
{

kT
2n ≤ τ < (k+1)T

2n

}
, so that lim τn = τ a.s. Consequently,

because I(H) is almost surely continuous in t,

lim
n→∞

∫ τn

0
HsdWs =

∫ τ

0
HsdWs a.s.

Also,

E

⎛⎝∣∣∣∣∣
∫ T

0
1{s≤τ}HsdWs −

∫ T

0
1{s≤τn}HsdWs

∣∣∣∣∣
2
⎞⎠

= E

(∫ T

0
1{τ<s≤τn}H

2
s ds

)
,

and this converges to zero by the dominated convergence theorem.
Therefore

lim
n→∞

∫ T

0
1{s≤τn}HsdWs =

∫ T

0
1{s≤τ}HsdWs

both a.s. and in L2(Ω); the result follows.

Notation 6.3.9. Write

Ĥ =

{
{Hs} : H is Ft-adapted and

∫ T

0
H2

s ds < ∞ a.s.

}
.

The preceding definition and results for the stochastic integral can be
extended from H to Ĥ.

Theorem 6.3.10. There is a unique linear map Î of Ĥ into the space of
continuous processes defined on [0, T ] such that:

a) If {Ht}0≤t≤T is in H, then for all t ∈ [0, T ] the processes Î(H)t and
I(H)t are indistinguishable.

b) If {Hn}n≥0 is a sequence in Ĥ such that
∫ T

0 (Hn
s )2ds converges to

zero in probability, then

sup
0≤t≤T

∣∣∣Î(Hn)t

∣∣∣
converges to zero in probability.

Remark 6.3.11. In fact, Î(H)t is a local martingale, meaning that there
is a non-decreasing sequence Tn of stopping times with limit T such that
Tn ≤ Tn+1 ≤ T and for each n, Î(H)Tn∧t is a martingale.



148 CHAPTER 6. CONTINUOUS-TIME STOCHASTIC CALCULUS

Notation 6.3.12. One writes Î(H)t =
∫ t

0 HsdWs.

Proof. From Theorem 6.3.6, we know that for H ∈ H, I(H) is defined.
Suppose H ∈ Ĥ. Define

Tn = inf
{

0 ≤ u ≤ T :
∫ u

0
H2

s ds ≥ n

}
∧ T.

(Here and elsewhere we adopt the convention that inf(∅) = ∞.) Because
Hs is adapted,

∫ t

0 H2
s ds is adapted and Tn is an (Ft)-stopping time.

Then write Hn
s = 1{s<Tn}Hs. The processes Hn are therefore in H and∫ t

0
Hn

s dWs =
∫ t

0
1{s≤Tn}H

n+1
s dWs =

∫ Tn∧t

0
Hn+1

s dWs.

Therefore, on the set
{∫ T

0 H2
udu < n

}
, for all t ≤ T ,

I(Hn)t = I(Hn+1)t.

Now ⋃
n≥0

{∫ T

0
H2

udu < n

}
=

{∫ T

0
H2

udu < ∞
}

.

Thus we define Î(H)t by putting Î(H)t = I(Hn)t on
{∫ T

0 H2
s ds < n

}
.

Clearly Î(H)t = I(H)t and is continuous a.s.
For the second assertion, write

B =

{∫ T

0
H2

udu ≥ 1
N

}
, A =

{
ω : sup

0≤t≤T

∣∣∣Î(H)t

∣∣∣ ≥ ε

}
.

Then
P (A) = P (A ∩ B) + P (A ∩ Bc) ≤ P (B) + P (A ∩ Bc).

Therefore, for any ε > 0,

P

(
sup

0≤t≤T

∣∣∣Î(H)t

∣∣∣ ≥ ε

)
≤ P

(∫ T

0
H2

udu ≥ 1
N

)

+ P

({∫ T

0
H2

udu <
1
N

}
∩
{

sup
0≤t≤T

∣∣∣Î(H)t

∣∣∣ ≥ ε

})
. (6.6)

Write

τN = inf
{

s ≤ T :
∫ s

0
H2

udu ≥ 1
N

}
∧ T.

On the set Bc, we have∫ t

0
HsdWs =

∫ t

0
1{s≤τN }HsdWs.



6.4. THE ITÔ CALCULUS 149

Therefore, with Gs = Hs1{s≤τN }, Gs = Hs on Bc, and from Doob’s in-
equality, it follows that

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0
GsdWs

∣∣∣∣2
)

≤ 4E

(∫ t

0
(Gs)2ds

)
≤ 4

N
. (6.7)

Using Chebychev’s inequality, we also have, by (6.7),

P (A ∩ Bc) = P

(
Bc ∩

{
sup

0≤t≤T

∣∣∣Î(H)t

∣∣∣ ≥ ε

})
≤ P

(
sup

0≤t≤T

∣∣∣Î(G)t

∣∣∣ ≥ ε

)
≤ 1

ε2 E

(
sup

0≤t≤T

∣∣∣∣∫ t

0
GsdWs

∣∣∣∣2
)

≤ 4
Nε2 .

Consequently, from (6.6),

P

(
sup

0≤t≤T

∣∣∣Î(H)t

∣∣∣ ≥ ε

)
≤ P

(∫ T

0
H2

udu ≥ 1
N

)
+

4
Nε2 .

Hence we see that if (Hn) is a sequence in Ĥ such that
(∫ T

0 (Hn
u )2du

)
converges to zero in probability, then

(
sup0≤t≤T

∣∣∣Î(Hn)t

∣∣∣) converges to

zero in probability. The continuity of the operator Î is therefore established.
If H ∈ Ĥ, then, with Hn

s = 1{s<Tn}Hs, we see that
(∫ T

0 (Hs − Hn
s )2ds

)
converges to zero in probability. Using the continuity property, we see that
the map Î is uniquely defined.

Similarly, for H, K ∈ Ĥ, suppose there are the approximating sequences
Hn, Kn ∈ H. Now

(∫ T

0 (Hs − Hn
s )2ds

)
and

(∫ T

0 (Ks − Kn
s )2ds

)
converge

to zero in probability as n → ∞. Furthermore,

I(αHn + βKn)t = αI(Hn)t + βI(Kn)t.

Letting n → ∞, we see that Î is a linear map.

6.4 The Itô Calculus

If f(t) is a real-valued, differentiable function for t ≥ 0 and f(0) = 0, then

f(t)2 = 2
∫ t

0
f(s)ḟ(s)ds = 2

∫ t

0
f(s)df(s).

However, if W is a Brownian motion we know that E
(
W 2

t

)
= t. Con-

sequently, W 2
t cannot be equal to 2

∫ t

0 WsdWs because this integral is a

(local) martingale and E
(
2
∫ t

0 WsdWs

)
= 0.
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The Itô calculus is described for a class of processes known as Itô pro-
cesses, which we will now define.

Itô Processes and the Differentiation Rule

Definition 6.4.1. Suppose (Ω,F, P ) is a probability space with a filtration
(Ft)t≥0, and (Wt) is a standard (Ft)-Brownian motion. A real-valued Itô
process (Xt)t≥0 is a process of the form

Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdWs,

where

(a) X0 is F0-measurable,

(b) K and H are adapted to Ft, and

(c)
∫ T

0 |Ks| ds < ∞ a.s. and
∫ T

0

∣∣H2
s

∣∣ ds < ∞ a.s.

We can then obtain a uniqueness property that is a consequence of the
following result.

Lemma 6.4.2. Suppose the process
∫ t

0 Ks ds = Mt is a continuous mar-
tingale, where

∫ T

0 |Ks| ds < ∞ a.s. Then Mt = 0 a.s. for all t ≤ T , and
there is a set N ⊂ Ω of measure zero such that, for ω /∈ N , Ks(ω) = 0 for
almost all s.

Proof. Suppose initially that
∫ T

0 |Ks| ds ≤ C < ∞ a.s. Then, with tni = iT
N

for 0 ≤ i ≤ n, we have

n∑
i=1

(Mtn
i

− Mtn
i−1

)2 ≤ sup
i

∣∣∣Mtn
i

− Mtn
i−1

∣∣∣ n∑
i=1

∣∣∣Mtn
i

− Mtn
i−1

∣∣∣
= sup

i

∣∣∣Mtn
i

− Mtn
i−1

∣∣∣ n∑
i=1

∣∣∣∣∣
∫ tn

i

tn
i−1

Ksds

∣∣∣∣∣
≤ sup

i

∣∣∣Mtn
i

− Mtn
i−1

∣∣∣ n∑
i=1

∫ tn
i

tn
i−1

|Ks| ds

≤ C sup
i

∣∣∣Mtn
i

− Mtn
i−1

∣∣∣ .
Consequently, limn→∞

∑n
i=1(Mtn

i
− Mtn

i−1
)2 = 0 a.s., so by the bounded

convergence theorem, we have

lim
n→∞

E

(
n∑

i=1

(
Mtn

i
− Mtn

i−1

)2
)

= 0 = E
(
M2

t − M2
0
)
,
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as M is a martingale. By definition, M0 = 0 a.s. Consequently, Mt = 0 a.s.,
and so Mt = 0 a.s. for t ≤ T .

Now relax the assumption that
∫ T

0 |Ks| ds is bounded. Write

Tn = inf
{

0 ≤ s ≤ T :
∫ s

0
|Ku| du ≥ n

}
∧ T.

Then Tn is a stopping time because K is adapted, and limn→∞ Tn = T .
The preceding result shows that Mt∧Tn

= 0 a.s., and so limn→∞ Mt∧Tn
=

0 = Mt a.s.

Corollary 6.4.3. Suppose M is a martingale of the form
∫ t

0 HsdWs +∫ t

0 Ksds with
∫ t

0 H2
s ds < ∞ a.s. and

∫ t

0 |Ks| ds < ∞ a.s. Then
∫ t

0 Ksds is
a martingale that is zero a.s. and there is a P -null set N ⊂ Ω such that,
for ω /∈ N , Ks(ω) = 0 for almost all s.

Corollary 6.4.4. Suppose the Itô process X has representations

Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdWs,

Xt = X ′
0 +
∫ t

0
K ′

sds +
∫ t

0
H ′

sdWs.

Then X0 = X ′
0 a.s., Hs = H ′

s a.s. (ds × dP ), and Ks = K ′
s a.s. (ds × dP ).

In particular, if X is a martingale, then K = 0.

Proof. Clearly X0 = X ′
0. Therefore∫ t

0
(Ks − K ′

s)ds =
∫ t

0
(H ′

s − Hs)dWs,

and
∫ t

0 (Ks − K ′
s)ds is a martingale. The result follows from Lemma 6.4.2.

Remark 6.4.5. Suppose (Wt)t≥0 is a Brownian motion and

π = {0 = t0 ≤ t1 ≤ · · · ≤ tN = t}

is a partition of [0, t]. Write

|π| = max
i

(ti+1 − ti).

Then

E

(
N−1∑
i=0

(
Wti+1 − Wti

)2) = E

(
N−1∑
i=0

(
W 2

ti+1
− W 2

ti

))
= t. (6.8)

In fact, we can show that
∑N−1

i=0 (Wti+1 −Wti)
2 converges to t almost surely

as |π| → 0.
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Choose a sequence (πn) of partitions with |πn| → 0 as n → ∞. Write

Qn =
∑
πn

(Wti+1 − Wti
)2;

then we have shown that Qn → t in L2 as n → ∞. By Chebychev’s
inequality, we have, for any ε > 0, that

P (|Qn − t| > ε) ≤ E
(
(Qn − t)2

)
ε2 .

Set E
(
(Qn − t)2

)
= qn, so that qn → 0 as n → ∞. Choosing a sub-

sequence, we can assume that qn < 1
22n . Letting εn = 1

2n and writing
An =

{
|Qn − t| > 1

2n

}
, we obtain P (An) ≤ 1

2n , so that
∑∞

n=1 P (An) < ∞.
By the first Borel-Cantelli lemma, it follows that P (∩n≥1An) = 0, and
hence that Qn → t a.s. as n → ∞.

For a general, continuous (local) martingale (Mt)t≥0,

lim
|π|→0

N∑
i=0

(
Mti+1 − Mti

)2
exists and is a predictable, continuous increasing process denoted by 〈M〉t.
From Jensen’s inequality, M2 is a submartingale and it turns out that
〈M〉 is the unique (continuous) increasing process in the Doob-Meyer de-
composition of M2. This decomposition is entirely analogous to the Doob
decomposition described in Section 5.3, but the technical complexities in-
volved are substantially greater in continuous time. For details, see the
development in [109, Chapter 10] or [199, Chapter 3]. 〈M〉 is called the
(predictable) quadratic variation of M . Consequently, (6.8) states that for
a Brownian motion W ,

〈W 〉t = t.

For H ∈ Ĥ we have seen that Mt =
∫ t

0 HsdWs is a local martingale. It
is shown in [109] that in this case

〈M〉t =
∫ t

0
H2

s ds a.s.

In some sense, (6.8) indicates that, very formally, (dW )2 � dt, or (dW ) �√
dt.

Suppose X is an Itô process on 0 ≤ t ≤ T ,

Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdWs, (6.9)

where
∫ T

0 |Ks| ds < ∞ a.s. and
∫ T

0 |Hs|2 ds < ∞ a.s. Considering partitions
π = {0 = t0 ≤ t1 ≤ · · · ≤ tN = t} of [0, t], it can be shown that

lim
|π|→0

N∑
i=0

(
Xti+1 − Xti

)2
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converges a.s. to ∫ t

0
|Hs|2 ds.

That is, 〈X〉t = 〈M〉t, where Mt =
∫ t

0 HsdWs is the martingale term in the
representation (6.9) of X.

Again, if X is a differentiable process (that is, if Hs = 0 in (6.9)), then
the usual chain rule states that, for a differentiable function f ,

f(Xt) = f(X0) +
∫ t

0
f ′(Xs)dXs.

However, if X is an Itô process, the differentiation rule (commonly known
as the Itô formula) has the following form.

Theorem 6.4.6. Suppose {Xt}t≥0 is an Itô process of the form

Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdWs.

Suppose f is twice differentiable. Then

f(Xt) = f(X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d 〈X〉s .

Here, by definition, 〈X〉t =
∫ t

0 H2
s ds; that is, the (predictable) quadratic

variation of X is the quadratic variation of its martingale component∫ t

0
HsdWs.

Also, ∫ t

0
f ′(Xs)dXs =

∫ t

0
f ′(Xs)Ksds +

∫ t

0
f ′(Xs)HsdWs.

For a proof see [109]. More generally, the differentiation rule can be
proved in the following form.

Theorem 6.4.7. If F : [0,∞)×R → R is continuously differentiable in the
first component and twice continuously differentiable in the second, then

F (t, Xt) = F (0, X0) +
∫ t

0

∂F

∂s
(s, Xs)ds

+
∫ t

0

∂F

∂x
(s, Xs)dXs +

1
2

∫ t

0

∂2F

∂x2 (s, Xs)d 〈X〉s .

Example 6.4.8. (i) Let us consider the case when Ks = 0, Hs = 1. Then

Xt = X0 + Wt,
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where Wt is standard Brownian motion. Taking f(x) = x2, we have
〈X〉t = 〈W 〉t = t so

X2
t = X2

0 + 2
∫ t

0
WsdWs +

1
2

∫ t

0
2ds.

That is,

X2
t − X2

0 − t = 2
∫ t

0
WsdWs.

For any T < ∞, we have E
(∫ T

0 W 2
s ds
)

< ∞, so from Theorem 6.3.6,∫ t

0 WsdWs is a martingale. If X0 = 0, then Xt = Wt and we see that
W 2

t − t is a martingale.

(ii) An often-used model for a price process is the so-called ‘log-normal’
model. In this case, it is supposed the price process St evolves ac-
cording to the stochastic dynamics

dSt

St
= µdt + σdWt, (6.10)

where µ and σ are real constants and S0 = X0. This means that

St = X0 +
∫ t

0
Ssµds +

∫ t

0
SsσdWs.

Assuming such a process S exists, it is therefore an Itô process with

Ks = µSs, Hs = σSs.

Then 〈X〉t =
∫ t

0 σ2S2
sds. Assuming St > 0 and applying Itô’s formula

with f(x) = log x (formally, because the logarithmic function is not
twice continuously differentiable everywhere),

log St = log X0 +
∫ t

0
µ

dSs

Ss
+

1
2

∫ t

0

(
− 1

S2
s

)
σ2S2

sds

= log X0 +
∫ t

0

(
µ − σ2

2

)
ds +

∫ t

0
σdWs

= log X0 +
(

µ − σ2

2

)
t + σWt.

Consequently,

St = X0 exp
{(

µ − σ2

2

)
t + σWt

}
.
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Exercise 6.4.9. Consider the function

F (t, x) = X0 exp
{(

µ − σ2

2

)
t + σx

}
.

Apply the Itô formula of Theorem 6.4.7 to St = F (t, Wt) to show that
St does satisfy the log-normal equation (6.10). This ‘justifies’ our formal
application of the Itô formula.
Exercise 6.4.10. Let B be a Brownian motion, and suppose that the pro-
cesses X, Y have dynamics given by

dXt = Xt(µXdt + σXdBt),
dYt = Yt(µY dt + σY dBt).

Define Z by Zt = Yt

Xt
. Show that Z is also log-normal, with dynamics

dZt = Zt(µZdt + σZdBt),

and determine the coefficients µZ and σZ in terms of the coefficients of X
and Y.

Multidimensional Itô Processes

Definition 6.4.11. Suppose we have a probability space (Ω,F, P ) with
a filtration (Ft)t≥0. An m-dimensional (Ft)-Brownian motion is a process
Wt =

(
W 1

t , W 2
t , . . . , Wm

t

)
whose components W i

t are standard, indepen-
dent (Ft)-Brownian motions.

We can extend our definition of an Itô process to the situation where the
(scalar) stochastic integral involves an m-dimensional Brownian motion.

Definition 6.4.12. (Xt)0≤t≤T is an Itô process if

Xt = X0 +
∫ t

0
Ksds +

m∑
i=1

∫ t

0
Hi

sdW i
s ,

where the K and Hi are adapted to (Ft),
∫ T

0 |Ks| ds < ∞ a.s., and∫ T

0

∣∣Hi
s

∣∣2 ds < ∞ a.s. for all i = 1, 2, . . . , m.

An n-dimensional Itô process is then a process Xt = (X1
t , . . . , XN

t ),
each component of which is an Itô process in the sense of Definition 6.4.12.
The differentiation rule takes the following form.

Theorem 6.4.13. Suppose Xt = (X1
t , . . . , XN

t ) is an n-dimensional Itô
process with

Xi
t = Xi

0 +
∫ t

0
Ki

sds +
m∑

j=1

∫ t

0
Hij

s dW j
s ,
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and suppose f :[0,T]×Rn → R is in C1,2 (the space of functions once
continuously differentiable in t and twice continuously differentiable in x ∈
Rn). Then

f(t, X1
t , . . . , Xn

t ) = f(0, X1
0 , . . . , Xn

0 ) +
∫ t

0

∂f

∂s
(s, X1

s , . . . , Xn
s )ds

+
n∑

i=1

∫ t

0

∂f

∂xi
(s, X1

s , . . . , Xn
s )dXi

s

+
1
2

n∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(s, X1

s , . . . , Xn
s )d
〈
Xi, Xj

〉
s
.

Here

dXi
s = Ki

sds +
m∑

j=1

Hi,j
s dW j

s , d
〈
Xi, Xj

〉
s

=
m∑

r=1

Hi,r
s Hj,r

s ds.

Remark 6.4.14. For components

Xp
t = Xp

0 +
∫ t

0
Kp

s ds +
m∑

j=1

∫ t

0
Hpj

s dW j
s ,

Xq
t = Xq

0 +
∫ t

0
Kq

sds +
m∑

j=1

∫ t

0
Hqj

s dW j
s ,

it is shown in [227] that for partitions π = {0 = t0 ≤ t1 ≤ · · · ≤ tN = t},

lim
|π|→0

∑
i

(
Xp

ti+1
− Xp

ti

)(
Xq

ti+1
− Xq

ti

)
converges in probability to ∫ t

0

m∑
r=1

Hpr
s Hqr

s ds.

This process is the predictable covariation of Xp and Xq and is denoted by

〈XpXq〉t =
m∑

r=1

∫ t

0
Hpr

s Hqr
s ds. (6.11)

We note that 〈XpXq〉 is symmetric and bilinear as a function on Itô pro-
cesses.

Taking

Yt = Y0 +
∫ t

0
K ′

sds, Xt = X0 +
∫ t

0
Ksds +

m∑
j=1

Hj
sdW j

s ,
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we see that 〈X, Y 〉t = 0. Furthermore, formula (6.11) gives〈∫ t

0
Hpi

s dW i
s ,

∫ t

0
Hqj

s dW j
s

〉
=

{∫ t

0 Hpi
s Hqi

s ds if i = j,

0 if i �= j.

Remark 6.4.15. We noted in 6.4.5 that if (Mt)t≥0 is a continuous local
martingale, then 〈M〉t is the unique continuous increasing process in the
Doob-Meyer decomposition of the submartingale M2

t . If

Xt = X0 +
∫ t

0
Ksds +

∫ t

0
HsdMs,

where H and K are adapted,
∫ T

0 |Ks| ds < ∞ a.s., and
∫ T

0 H2
s ds < ∞ a.s.,

the differentiation formula has the form

f(Xt) = f(X0) +
∫ t

0

∂f

∂x
(Xs)Ksds

+
∫ t

0

∂f

∂x
(Xs)HsdMs +

1
2

∫ t

0

∂2f

∂x2 (Xs)H2
s d 〈M〉s .

Using without proof the analogue of the Itô rule (Theorem 6.4.6) for
general square integrable martingales M (see [109, p. 138]), we can prove
the converse of Theorem 6.2.5.

Theorem 6.4.16. Suppose (Wt)t≥0 is a continuous (scalar) local martin-
gale on the filtered probability space (Ω,F, P,Ft), such that

(
W 2

t − t
)
t≥0 is

a local martingale. Then (Wt) is a Brownian motion.

Proof. We must show that, for 0 ≤ s ≤ t, the random variable Wt − Ws is
independent of Fs and is normally distributed with mean 0 and covariance
t − s.

In terms of characteristic functions, this means we must show that

E
(
eiu(Wt−Ws) |Fs

)
= E

(
eiu(Wt−Ws)

)
= exp

{
−u2(t − s)

2

}
for all u ∈ R.

To this end, consider the (complex-valued) function

f(x) = eiux.

Applying the differentiation rule to the real and imaginary parts of f(x),
we have

f(Wt) = eiuWt = f(Ws) +
∫ t

s

iueiuWrdWr − 1
2

∫ t

s

u2eiuWrdr (6.12)

because d 〈W 〉r = dr by hypothesis. Furthermore, the real and imaginary
parts of iu

∫ t

s
eiuWrdWr are in fact square integrable martingales because
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the integrands are bounded by 1. Consequently, E
(
iu
∫ t

s
eiuWrdWr |Fs

)
=

0 a.s. For any A ∈ Fs, we may multiply (6.12) by 1Ae−iuWs and take
expectations to deduce that

E
(
eiu(Wt−Ws)1A

)
= P (A) − 1

2
u2
∫ t

0
E
(
eiu(Wr−Ws)1A

)
dr.

Solving this equation, we have

E
(
eiu(Wt−Ws)1A

)
= P (A) exp

{
−u2(t − s)

2

}
.

6.5 Stochastic Differential Equations

We first establish a useful result known as Gronwall’s lemma.

Lemma 6.5.1. Suppose α and β are integrable functions on [a, b]. If there
is a constant H such that

α(t) ≤ β(t) + H

∫ t

a

α(s)ds for t ∈ [a, b], (6.13)

then

α(t) ≤ β(t) + H

∫ t

a

eH(t−s)β(s)ds.

Note that if β(t) = B, a constant, then

α(t) ≤ BeH(t−a). (6.14)

Proof. Write

A(t) =
∫ t

a

α(s)ds, g(t) = A(t)e−Ht.

Then
g′(t) = α(t)e−Ht − HA(t)e−Ht ≤ β(t)e−Ht

from (6.13). Integrating, we obtain

g(t) − g(a) ≤
∫ t

a

β(s)e−Hsds.

That is,

A(t) ≤ eHt

∫ t

a

β(s)e−Hsds.



6.5. STOCHASTIC DIFFERENTIAL EQUATIONS 159

Using (6.13) again, we have

α(t) ≤ β(t) + HA(t) = β(t) + H

∫ t

a

β(s)eH(t−s)ds.

Definition 6.5.2. Suppose (Ω,F, P ) is a probability space with a filtra-
tion (Ft)0≤t≤T . Let (Wt) = ((W 1

t , . . . , Wm
t )) be an m-dimensional (Ft)-

Brownian motion and f(x, t) and σ(x, t) be measurable functions of x ∈ Rn

and t ∈ [0, T ] with values in Rn and L(Rm, Rn), the space of m × n ma-
trices, respectively. We take ξ to be an Rn-valued, F0-measurable random
variable.

A process Xt, 0 ≤ t ≤ T is a solution of the stochastic differential
equation

dXt = f(Xt, t)dt + σ(Xt, t)dWt

with initial condition X0 = ξ if for all t the integrals∫ t

0
f(Xs, s)ds and

∫ t

0
σ(Xs, s)dWs

are well-defined and

Xt = ξ +
∫ t

0
f(Xs, s)ds +

∫ t

0
σ(Xs, s)dWs a.s. (6.15)

Theorem 6.5.3. Suppose the assumptions of Definition 6.5.2 apply. In
addition, assume that ξ, f , and σ satisfy

|f(x, t) − f(x′, t)| + |σ(x, t) − σ(x′, t)| ≤ K |x − x′| , (6.16)

|f(x, t)|2 + |σ(x, t)|2 ≤ K2
0

(
1 + |x|2

)
, (6.17)

E
(
|ξ|2
)

< ∞.

Then there is a solution X of (6.15) such that

E

(
sup

0≤t≤T
|Xt|2

)
< C

(
1 + E

(
|ξ|2
))

.

Note, for the matrix σ, that |σ|2 = Tr(σσ∗). This solution is unique in the
sense that, if X ′

t is also a solution, then they are indistinguishable in the
sense of Definition 6.1.12.

Proof. Uniqueness: Suppose that X and X ′ are solutions of (6.15). Then,
for all t ∈ [0, T ],

Xt − X ′
t =
∫ t

0
(f(Xs, s) − f(X ′

s, s)) ds +
∫ t

0
(σ(Xs, s) − σ(X ′

s, s)) dWs.
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Therefore

|Xt − X ′
t|

2 ≤ 2
(∫ t

0
(f(Xs, s) − f(X ′

s, s)) ds

)2

+ 2
(∫ t

0
(σ(Xs, s) − σ(X ′

s, s)) dWs

)2

.

Taking expectations, we obtain

E
(
|Xt − X ′

t|
2
)

≤ 2
∫ t

0
E
(
(f(Xs, s) − f(X ′

s, s))
2
)

ds

+ 2
∫ t

0
E
(
|σ(Xs, s) − σ(X ′

s, s)|
2
)

ds.

Write φ(t) = E
(
|Xt − X ′

t|
2
)

and use the Lipschitz conditions (6.16) to
deduce that

φ(t) ≤ 2(T + 1)K2
∫ t

0
φ(s)ds.

Gronwall’s inequality (Lemma 6.5.1) therefore implies that φ(t) = 0 for all
t ∈ [0, T ]. Consequently,

|Xt − X ′
t| = 0 a.s.

The process |Xt − X ′
t| is continuous, so there is a set N ∈ F0 of measure

zero such that if ω /∈ N, Xt(ω) = X ′
t(ω) for all t ∈ [0, T ]. That is, X ′ is a

modification of X.
Existence: Write X0

t = ξ for 0 ≤ t ≤ T . Define a sequence of processes(
XN

t

)
by

XN
t = ξ +

∫ t

0
f(Xn−1

s , s)ds +
∫ t

0
σ(Xn−1

s , s)dWs. (6.18)

It can be shown that σ(Xn−1
s , s) ∈ H, so the stochastic integrals are de-

fined.
Using arguments similar to those in the uniqueness proof, we can show

that

E
(∣∣Xn+1

t − XN
t

∣∣2) ≤ L

∫ t

0
E
(∣∣Xn

s − Xn−1
s

∣∣2) ds, (6.19)

where L = 2(1 + T )K2. Iterating (6.19), we see that

E
(∣∣Xn+1

t − XN
t

∣∣2) ≤ Ln

∫ t

0

(t − s)n−1

(n − 1)!
E
(∣∣X1

s − ξ
∣∣2) ds
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and

E
(∣∣X1

s − ξ
∣∣2) ≤ LTK2

(
1 + E

(
|ξ|2
))

.

Therefore

E
(∣∣Xn+1

t − XN
t

∣∣2) ≤ C
Tn

n!
. (6.20)

Also,

sup
0≤t≤T

∣∣Xn+1
t − XN

t

∣∣ ≤ ∫ T

0

∣∣f (Xn
s , s) − f

(
Xn−1

s , s
)∣∣ ds

+ sup
0≤t≤T

∣∣∣∣∫ t

0

(
σ(Xn

s , s) − σ(Xn−1
s , s)

)
dWs

∣∣∣∣ ;
so, using the vector form of Doob’s inequality (Corollary 6.2.17), we have

E

(
sup

0≤t≤T

∣∣Xn+1
t − Xn

t

∣∣2) ≤ 2TK2
∫ T

0
E
(∣∣Xn

s − Xn−1
s

∣∣2) ds

+ CE

(∫ T

0

∣∣Xn
s − Xn−1

s

∣∣2 ds

)

≤ C1
Tn−1

(n − 1)!

using (6.20). Consequently,

∞∑
n=1

P

(
sup

0≤t≤T

∣∣Xn+1
t − Xn

t

∣∣ > 1
n2

)
≤

∞∑
n=1

n4C1
Tn−1

(n − 1)!
.

The series on the right converges. Therefore, almost surely, the series
ξ +
∑∞

n=0(X
n+1
t − Xn

t ) converges uniformly in t, and so Xn
t converges to

some Xt uniformly in t.
Each Xn is a continuous process, so X is a continuous process. Now

E
(
|Xn

t |2
)

≤ 3
[
E
(
|ξ|2
)

+ K2
0T

∫ t

0

(
1 + E

(∣∣Xn−1
s

∣∣2)) ds

+K2
0

∫ t

0

(
1 + E

(∣∣Xn−1
s

∣∣2)) ds

]
,

so

E
(
|Xn

t |2
)

≤ C
(
1 + E

(
|ξ|2
))

+ C

∫ t

0
E
(∣∣Xn−1

s

∣∣2) ds.
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By recurrence, taking C > 1,

E
(
|Xn

t |2
)

≤
(
1 + E

(
|ξ|2
))(

C + C2t + · · · + Cn−1 tn

n!

)
≤ C

(
1 + E

(
|ξ|2
))

eCt.

Using the bounded convergence theorem, we can take the limit in (6.18) to
deduce that

Xt = ξ +
∫ t

0
f(Xs, s)ds +

∫ t

0
σ(Xs, s)dWs a.s.

Therefore, X is the unique solution of the equation (6.15).

6.6 Markov Property of Solutions of SDEs

Definition 6.6.1. Let (Ω, F, P ) be a probability space with filtration
(Ft)t≥0. An adapted process (Xt) is said to be a Markov process with
respect to the filtration (Ft) if

E (f(Xt) |Fs ) = E (f(Xt) |Xs ) a.s. for all t ≥ s ≥ 0

for every bounded real-valued Borel function f defined on Rd.

Consider a stochastic differential equation as in (6.15) with coefficients
satisfying the conditions of Theorem 6.5.3 so the solution exists. Consider
a point x ∈ Rn and for s ≤ t write Xs(x, t) for the solution process of the
equation

Xs(x, t) = x +
∫ t

s

f (Xs(x, u), u) du +
∫ t

s

σ (Xs(x, u), u) dWu. (6.21)

We quote the following results.

Theorem 6.6.2. Xs(x, t) is a continuous function of its arguments, and
if the coefficients f and σ are C1 functions of their first argument, the
solution Xs(x, t) is C1 in x.

Proof. See Kunita [204].

Write Xs(x, t, ω) for the solution of (6.21), so Xs(x, t, ω) : Rd × [s, T ] ×
Ω → Rd, and FW (s, t) for the completion of the σ-field generated by
Ws+u − Ws, 0 ≤ u ≤ t − s.

Theorem 6.6.3. For t ∈ [s, T ], the restriction of Xs(x, u, ω) to Rd×[s, t]×
Ω is B(Rd) × B([s, t]) × FW (s, t)-measurable.

Proof. [109, Lemma 14.23].
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We next prove the ‘flow’ property of solutions of equation (6.21).

Lemma 6.6.4. If Xs(x, t) is the solution of (6.21) and Xr(x, t) is the
solution of (6.21) starting at time r with r ≤ s ≤ t, then Xr(x, t) =
Xs (Xr(x, s), t) in the sense that one is a modification of the other.

Proof. By definition,

Xr(x, t) = x +
∫ t

r

f (Xr(x, u), u) du +
∫ t

r

σ (Xr(x, u), u) dWu

= Xr(x, s) +
∫ t

s

f (Xr(x, u), u) du +
∫ t

s

σ (Xr(x, u), u) dWu.

(6.22)

However, for any y ∈ Rn,

Xs(y, t) = y +
∫ t

s

f (Xs(y, u), u) du +
∫ t

s

σ (Xs(y, u), u) dWu.

Therefore, using the continuity of the solution,

Xs (Xr(x, s), t) = Xr(x, s) +
∫ t

s

f (Xs(Xr(x, s), u), u) du

+
∫ t

s

σ (Xs(Xr(x, s), u), u) dWu. (6.23)

Using the uniqueness of the solution, we see from (6.22) and (6.23) that
Xr(x, s) is a modification of Xs (Xr(x, s), t).

Before establishing the Markov property of solutions of (6.21), we prove
a general result on conditional expectations.

Lemma 6.6.5. Given a probability space (Ω,G, P ) and measurable spaces
(E, E), (F,F), suppose that A ⊂ G and X : Ω → E and Y : Ω → F are
random variables such that X is A-measurable and Y is independent of A.

For any bounded real-valued Borel function Φ defined on (E×F, E ×F),
consider the function φ defined for all x ∈ E by

φ(x) = E (Φ(x, Y )) .

Then φ is a Borel function on (E, E) and

E (Φ(X, Y ) |A ) = φ(X) a.s.

Proof. Write PY for the probability law of Y . Then

φ(x) =
∫

F

Φ(x, y)dPY (y).
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The measurability of Φ follows from Fubini’s theorem.
Suppose Z is any A-measurable random variable. Write PX,Z for the

probability law of (X, Z). Then, because Y is independent of (X, Z),

E (Φ(X, Y )Z) =
∫∫

Φ(x, y)zdPX,Z(x, z)dPY (y)

=
∫ (∫

Φ(x, y)dPY (y)
)

zdPX,Z(x, z)

=
∫

φ(x)zdPX,Z(x, y)

= E (φ(X)Z) .

This identity is true for all such Z; the result follows.

Lemma 6.6.6. Suppose Xs(x, t, ω) is the solution of (6.21) and g : Rd →
R is a bounded Borel-measurable function. Then

f(x, ω) = g (Xs(x, t, ω))

is B(Rd) × FW (s, t)-measurable.

Proof. Write A for the collection of sets A ∈ B(Rd) for which the lemma
is true with g = 1A. If f(x, ω) = 1A (Xs(x, t, ω)), then

{(x, ω) : f(x, ω) = 1} = {(x, ω) : Xs(x, t, ω) ∈ A} ∈ B(Rd) × FW (s, t).

The lemma is therefore true for all A ∈ B(Rd), and the result follows for
general g by approximation with simple functions.

We now show that solutions of stochastic differential equations of the
form (6.21) are Markov processes with respect to the right-continuous (and
completed) filtration (Ft) generated by the Brownian motion (Wt)t≥0 and
the initial value x ∈ Rd.

Theorem 6.6.7. Suppose X0(x, t) is the solution of (6.21) such that
X0(x, 0) = x ∈ Rd. For any bounded real-valued Borel function g defined
on Rd, we have

E (g(Xt) |Fs ) = E (g(Xt) |Xs ) for all 0 ≤ s ≤ t.

More precisely, if
φ(z) = E (g (Xs(z, t))) ,

then
E (g(Xt) |Fs ) = φ (X0(x, s)) a.s.

Proof. Suppose g : Rd → R is any bounded Borel-measurable function. As
in Lemma 6.6.6, write f(x, ω) = g (Xs(x, t, ω)). Then, for each x ∈ Rd,
f(x, ·) is FW (s, t)-measurable and thus independent of Fs.
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Write, as in Lemma 6.6.5,

φ(x) = E (g (Xs(x, t, ω))) .

If Z is any Fs-measurable random variable,

E (g (Xs(Z, t, ω)) |Fs ) = φ(Z). (6.24)

From the flow property of the solutions, Lemma 6.6.4, it follows that

Xt = X0(x, t) = Xs (X0(x, s), t)

and X0(x, s) is Fs-measurable. Substituting Z = X0(x, s) in (6.24), there-
fore,

E (g (X0(x, t)) |Fs ) = E (g(Xt) |Fs ) = φ (X0(x, s)) = φ(Xs).

Consequently, E (g(Xt) |Fs ) = E (g(Xt) |Xs ) and the result follows.

Theorem 6.6.8. Suppose X0(x, s) = Xs ∈ Rd is the solution of (6.21),
and consider the process

βs(1, t) = βt = e−
∫ t

s
r(u,Xu)du,

where r(s, x) is a positive measurable function. Then

dβt = −r(t, Xt)βtdt, βs = 1,

and the augmented process (βt, Xt) ∈ Rd+1 is given by an equation similar
to (6.21). Consequently, the augmented process is Markov and, for any
bounded Borel function f : Rd → R,

E
(
e−

∫ t
s

r(u,Xu)duf(Xt) |Fs

)
= φ(Xs),

where
φ(x) = E

(
e−

∫ t
s

r(u,Xs(x,u))duf (Xs(x, t))
)

.



Chapter 7

Continuous-Time
European Options

In this chapter, we shall develop a continuous-time theory that is the ana-
logue of that in Chapters 1 to 3. The simple model will consist of a riskless
bond and a risky asset, which can be thought of as a stock. The dynamics of
our model are described in Section 7.1. The following two sections present
the fundamental results of Girsanov and martingale representation. These
are then applied to discuss the hedging and pricing of European options.
In particular, we establish the famous results of Black and Scholes, results
that are applied widely in the finance industry in spite of the simplified
nature of the model. Recall that the Black-Scholes pricing formula for a
European call was derived in Section 2.7 as the limit of a sequence of prices
in binomial models.

7.1 Dynamics

We describe the dynamics of the Black-Scholes option pricing model. Our
processes will be defined on a complete probability space (Ω,F, P ). The
time parameter t will take values in the intervals [0,∞) or [0, T ]. We suppose
the market contains a riskless asset, or bond, whose price at time t is S0

t ,
and a risky asset, or stock, whose price at time t is S1

t .
Let r be a non-negative constant that represents the instantaneous in-

terest rate on the bond. (This instantaneous interest rate should not be
confused with the interest rate over a period of time in discrete models.)
We then suppose that the evolution in the price of the bond S0

t is described
by the ordinary differential equation

dS0
t = rS0

t dt. (7.1)

If the initial value at time 0 of the bond is S0
0 = 1, then (7.1) can be solved

167
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to give
S0

t = ert for t ≥ 0. (7.2)

Let µ and σ > 0 be constants and (Bt)t≥0 be a standard Brownian
motion on (Ω,F, P ). We suppose that the evolution in the price of the
risky asset S1

t is described by the stochastic differential equation

dS1
t = S1

t (µdt + σdBt). (7.3)

If the initial price at time 0 of the risky asset is S1
0 , then (7.3) can be

solved to give

S1
t = S1

0 exp
{

µt − σ2

2
t + σBt

}
. (7.4)

Taking logarithms, we have

log S1
t = log S1

0 +
(

µ − σ2

2

)
t + σBt, (7.5)

and we see that log S1
t evolves like a Brownian motion with drift (µ − σ2

2 )t
and volatility σ. In particular, log S1

t is a normal random variable, which
is often expressed by saying S1

t is ‘log-normal’. It is immediate from (7.4)
and (7.5) that

(
S1

t

)
has continuous trajectories, and log S1

t has independent

stationary increments (so S1
t −S1

v

S1
v

is independent of the σ-field σ(S1
u : u ≤ v)

and S1
t −S1

v

S1
v

is identically distributed to S1
t−v−S1

0

S1
0

).

7.2 Girsanov’s Theorem

Girsanov’s theorem shows how martingales, in particular Brownian motion,
transform under a different probability measure. We first define certain
spaces of martingales.

The set of martingales for which convergence results hold is the set of
uniformly integrable martingales. As we noted in Chapters 5 and 6, this
is not a significant restriction if the time horizon is finite (i.e., T < ∞).
Recall Definition 5.3.1 applied to a martingale: if (Mt) is a martingale, for
0 ≤ t < ∞ or 0 ≤ t ≤ T , (Mt) is uniformly integrable if∫

{|Mt(ω)|≥K}
|Mt(ω)|dP (ω)

converges to 0 uniformly in t as K → ∞.
If (Xt)t≥0 is any real, measurable process, we shall write

X∗
t = sup

s≤t
|Xs| .

We shall write M for the space of right-continuous, uniformly integrable
martingales. Consistent with Notation 6.2.9, M�oc will denote the set of
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processes that are locally in M (i.e., we say that M ∈ M�oc if there exists
an increasing sequence of stopping times (Tn) such that MTn

t = Mt∧Tn ∈
M). We call M�oc the space of local martingales. Let L be the subset of
M�oc consisting of those local martingales for which M0 = 0 a.s.

For M ∈ M and p ∈ [1,∞], write

‖M‖Hp = ‖M∗
∞‖p .

Here ‖·‖p denotes the norm on Lp(Ω,F ,P). Then Hp is the space of mar-
tingales in M such that

‖M‖Hp < ∞.

In particular, H2 is the space of square integrable martingales.
Suppose (Ω,F, P ) is a probability space with a filtration (Ft)t≥0. Let

Q be a second probability measure on (Ω,F) that is absolutely continuous
with respect to P. Write

Mt =

{
dQ
dP if t = ∞,

E (M∞ |Ft ) if t < ∞.

Remark 7.2.1. In continuous time, versions of martingales are considered
that are right-continuous and have left limits. There is a right-continuous
version of M with left limits if the filtration (Ft) satisfies the usual condi-
tions (see [109, Theorem 4.11]).

Lemma 7.2.2. (XtMt) is a local martingale under P if and only if (Xt)
is a local martingale under Q.

Proof. We prove the result for martingales. The extension to local martin-
gales can be found in [168, Proposition 3.3.8]. Suppose s ≤ t and A ∈ Fs.
Then ∫

A

XtdQ =
∫

A

XtMtdP =
∫

A

XsMsdP =
∫

A

XsdQ,

and the result follows.

Suppose (Ω,F, P ) is a probability space. Recall from Theorem 6.4.16
that a real process (Bt)t≥0 is a standard Brownian motion if:

a) t → Bt(ω) is continuous a.s.,

b) Bt is a (local) martingale, and

c) B2
t − t is a (local) martingale.

This characterisation of Brownian motion using properties a)-c) is due
to Lévy, and it is shown in Theorem 6.4.16 that these properties imply the
other well-known properties of Brownian motion, including, for example,
that B is a Gaussian process with independent increments.

Write F0
t = σ (Bs : s ≤ t) for the σ-field on Ω generated by the history

of the Brownian motion up to time t. Then (Ft)t≥0 will denote the right-
continuous complete filtration generated by the F0

t .
We show how (Bt) behaves under a change of measure.



170 CHAPTER 7. CONTINUOUS-TIME EUROPEAN OPTIONS

Theorem 7.2.3 (Girsanov). Suppose (θt)0≤t≤T is an adapted, measur-
able process such that

∫ T

0 θ2
sds < ∞ a.s. and also so that the process

Λt = exp
{

−
∫ t

0
θsdBs − 1

2

∫ t

0
θ2

sds

}
is an (Ft, P ) martingale. Define a new measure Qθ on FT by putting

dQθ

dP

∣∣∣∣
FT

= ΛT .

Then the process

Wt = Bt +
∫ t

0
θsds

is a standard Brownian motion on (Ft, Qθ).

Remark 7.2.4. A sufficient condition, widely known as Novikov’s condition,
for Λ to be a martingale is that

E

(
exp

{
1
2

∫ T

0
θ2

sds

})
< ∞

(see [109]).

Proof. Using the Itô rule and definition of Λ, we see, as in Exercise 6.4.9,
that

Λt = 1 −
∫ t

0
ΛsθsdBs. (7.6)

Clearly Λt > 0 a.s. and as Λ is a martingale

E (Λt) = 1.

Now for A ∈ FT , Qθ(A) =
∫

A
ΛT dP ≥ 0 and Qθ(Ω) =

∫
Ω ΛT dP =

E (Λt) = 1, so Qθ is a probability measure.
To show that (Wt) is a standard Brownian motion, we verify that it

satisfies the conditions a)-c) above, which are required for the application
of Theorem 6.4.16. By definition, (Wt) is a continuous process almost
surely, as (Bt) is continuous a.s. and an indefinite integral is a continuous
process. For the second condition, we must show that (Wt) is a local
(Ft)-martingale under the measure Qθ. Equivalently, from Lemma 7.2.2
we must show that (ΛtWt) is a local martingale under P. Applying the Itô
rule to (7.6) and (Wt), we have

ΛtWt = W0 +
∫ t

0
ΛsdWs +

∫ t

0
WsdΛs +

∫ t

0
d 〈Λ, W 〉s

= W0 +
∫ t

0
ΛsdBs +

∫ t

0
Λsθsds −

∫ t

0
WsΛsθsdBs −

∫ t

0
Λsθsds
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= W0 +
∫ t

0
Λs(1 − Wsθs)dBs

and, as a stochastic integral with respect to B, (ΛtWt) is a (local) martin-
gale under P.

The third condition is established similarly since

W 2
t = 2

∫ t

0
WsdWs + 〈W 〉t = 2

∫ t

0
WsdWs + t.

We must prove that W 2
t − t is a local (Ft, Qθ)-martingale. However,

W 2
t − t = 2

∫ t

0
WsdWs,

and we have established that Ws is a (local) martingale under Qθ. Con-
sequently, the stochastic integral is a (local) martingale under Qθ and the
result follows.

Hitting Times of Brownian Motion

We shall need the following results on hitting times of Brownian motion.
Their proofs involve an exponential martingale M of a form similar to Λ.
Suppose (Bt)t≥0 is a standard Brownian motion with B0 = 0 adapted to
the filtration (Ft). Write

Ta = inf {s ≥ 0 : Bs = a} for a ∈ R. (7.7)

As usual, we take inf {∅} = ∞.

Theorem 7.2.5. Ta in (7.7) is a stopping time that is almost surely finite
and

E
(
e−λTa

)
= e−

√
2λ|a| for λ ≥ 0.

Proof. Suppose a ≥ 0. Because B is continuous, we have, with Q+ denoting
the positive rationals,

{Ta ≤ t} =
⋂

ε∈Q+

{
sup
r≤t

Br > a − ε

}
=
⋂

ε∈Q+

⋂
r∈Q+

r≤t

{Br > a − ε} ∈ Ft.

Consequently, Ta is a stopping time.
For any σ ≥ 0, the process

Mt = exp
{

σBt − σ2

2
t

}
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is an (Ft)-martingale by Theorem 6.2.5. For n ∈ Z+, consider the stopping
time Ta ∧ n. Then, from the optional stopping theorem (Theorem 6.2.10),
we have

E (MTa∧n) = E (M0) = 1.

However,

MTa∧n = exp
{

σBTa∧n − σ2

2
(Ta ∧ n)

}
≤ exp {σa} .

Now if Ta < ∞, then limn→∞ MTa∧n = MTa . If Ta = ∞, then Bt ≤ a for
all t ≥ 0, so that limn→∞ MTa∧n = 0.

Using Lebesgue’s dominated convergence theorem, we have

E
(
1{Ta<∞}MTa

)
= 1. (7.8)

Now BTa = a if Ta < ∞. Therefore,

E
(
1{Ta<∞}e

σae− σ2
2 Ta

)
= 1;

consequently,

E
(
1{Ta<∞}e

σ2
2 Ta

)
= e−σa. (7.9)

Letting σ → 0 in (7.9), we see that

E
(
1{Ta<∞}

)
= P (Ta < ∞) = 1.

Hence almost every sample path of the Brownian motion reaches the value
a, and

E
(
e

−σ2
2 Ta

)
= e−σa.

Now (−Bt) is also an (Ft)-Brownian motion, so the case a < 0 can be
deduced by noting that

Ta = inf
s≥0

{s ≥ 0 : −Bs = −a} .

An application of Girsanov’s theorem enables us to deduce the following
extension.

Corollary 7.2.6. Suppose µ, a are real numbers. Write

Ta(µ) = inf {t ≥ 0 : µt + Bt = a} .

Then

E
(
e−αTa(µ)

)
= exp

{
µa − |a|

√
µ2 + 2α

}
for all α > 0.
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Proof. Introduce the probability measure Q by setting

dQ

dP

∣∣∣∣
Ft

= exp
{

µBt − µ2

2
t

}
.

From Girsanov’s theorem, the process B̃ is a standard Brownian motion
under Q, where

B̃t = Bt − µt.

Clearly, the hitting time Ta(µ) of B̃t + µt is the same as the hitting time
Ta(0) of Bt. Therefore, for all α > 0 and t > 0, we have

E (exp {−α(Ta(µ) ∧ t)})

= E

(
exp {−α(Ta(0) ∧ t)} exp

{
µBTa(0)∧t − µ2

2
(Ta(0) ∧ t)

})
.

Now exp {−α(Ta(0) ∧ t)} ≤ e−αt. Noting that Ta(0) = Ta, we have for
t < Ta that t < ∞. Therefore

exp
{

µBTa∧t − µ2

2
(Ta ∧ t)

}
1{t<Ta} ≤ exp

{
µBt − µ2

2
t

}
,

which has expected value 1, and

E

(
exp {−α(Ta ∧ t)} exp

{
µBTa∧t − µ2

2
(Ta ∧ t)

}
1{t<Ta}

)
≤ e−αt.

Suppose initially that a ≥ 0, and write

M̃t = exp {−α(Ta ∧ t)} exp
{

µBTa∧t − µ2

2
(Ta ∧ t)

}
.

Then M̃t ≤ exp {µa} and, again by the dominated convergence theorem,

E
(

lim
t→∞

M̃t

)
= E

(
1{t<Ta}e

−αTaeµBTa − µ2

2 Ta

)
= eµaE

(
1{Ta<∞}e

−(α+ µ2

2 )Ta

)
= eµae−

√
2α+µ2|a|.

Again the case when a < 0 can be discussed by considering −B.
We have therefore established that

E

(
1{Ta<∞}e

−αTaeµBTa − µ2

2 Ta

)
= E

(
1{Ta(µ)<∞}e

−αTa(µ)
)

= eµa−
√

2α+µ2|a|.
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Letting α → 0, we see that

P (Ta < ∞) = eµa−|µa|,

this probability being equal to 1 if µ and a have the same sign. Furthermore,
as e−αTa = 0 on {Ta = ∞}, we have

E
(
e−αTa(µ)

)
= eµa−

√
2α+µ2|a|.

7.3 Martingale Representation

We first recall concepts related to martingales and stable subspaces of mar-
tingales.

Definition 7.3.1. Two local martingales M, N ∈ M�oc are orthogonal if
their product MN is in L.

Remark 7.3.2. We then write M ⊥ N . Note that orthogonality implies
that M0N0 = 0 a.s.

We now have the following result.

Lemma 7.3.3. Suppose M, N ∈ H2 are orthogonal. For every stopping
time τ the random variables Mτ , Nτ are orthogonal in L2(Ω,F, P ) and
MN ∈ H1.

Conversely, if M0N0 = 0 a.s. and the random variables Mτ , Nτ are
orthogonal in L2 for every stopping time τ, then M ⊥ N.

Proof. Because M∗
∞ and N∗

∞ are in L2, the product M∗
∞N∗

∞ is in L1.
Furthermore,

(MN)∗
∞ = sup

t
|MtNt| ≤ M∗

∞N∗
∞

so MN ∈ H1 if M ⊥ N, and M0N0 = 0 a.s. Consequently,

E (MτNτ ) = E (M0N0) = 0.

Conversely, suppose that, for any stopping time τ , we have Mτ ∈ L2 and
Nτ ∈ L2. Then MτNτ ∈ L1, so E (|MτNτ |) < ∞ and E (MτNτ ) = 0. From
[109, Lemma 4.18] this condition is sufficient for MN to be a uniformly
integrable martingale, and the result follows.

Notation 7.3.4. If (Xt)t≥0 is a stochastic process and τ is a stopping time,
Xτ will denote the process X stopped at time τ (i.e., Xτ

t = Xt∧τ ).

Definition 7.3.5. A linear subspace K ⊂ H2 is called stable if

(a) It is closed in the L2 norm.
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(b) If M ∈ K and τ is a stopping time, then Mτ ∈ K.

(c) If M ∈ K and A ∈ F0, then 1AM ∈ K.

Theorem 7.3.6. Suppose K is a stable subspace of H2. Write K⊥ for the
set of martingales N ∈ H2 such that E (M∞N∞) = 0 for all M ∈ K. Then
K⊥ is a stable subspace, and M ⊥ N for all M ∈ K, N ∈ K⊥.

Proof. Suppose M ∈ K, N ∈ K⊥, and τ is a stopping time. Then
E (L∞N∞) = 0 for all L ∈ K. Now Mτ ∈ K, so

E (Mτ
∞N∞) = E (MτN∞) = 0.

Therefore

E (E (MτN∞ |Fτ )) = E (MτE (N∞ |Fτ )) = E (MτNτ ) = 0.

Taking τ = 0, we have 1AM ∈ K for any A ∈ F0, so E (1AM0N0) = 0.
Therefore, M0N0 = 0 a.s. and M and N are orthogonal. We also have

E ((1AMτ )Nτ ) = E (M∞ (1ANτ )∞) = 0,

so 1ANτ ∈ K⊥ for any N ∈ K⊥, any stopping time τ , and any A ∈ F0.
Consequently, K⊥ is a stable subspace.

Corollary 7.3.7. Suppose K ⊂ H2 is a stable subspace. Then every ele-
ment M ∈ H2 has a unique decomposition

M = N + N1,

where N ∈ K and N1 ∈ K⊥.

Proof. Suppose K∞ is the closed subspace of L2(Ω,F∞) generated by the
random variables M∞ for M ∈ K. K⊥

∞ is defined analogously. Then K∞
and K⊥

∞ give an orthogonal decomposition of L2(Ω,F∞) and, for any M ∈
H2, M∞ has a unique decomposition,

M∞ = N∞ + N1
∞,

where N∞ ∈ K∞ and N1
∞ ∈ K⊥

∞. Then define N (resp. N1) to be the
right-continuous version, with left limits, of the martingale

Nt = E (N∞ |Ft ) , (resp. N1
t = E

(
N1

∞ |Ft

)
).

Remark 7.3.8. From the isometry properties of the stochastic integral, it
can be shown that the stable subspace generated by M ∈ H2 is the set of
all stochastic integrals with respect to M. See [199, page 140].
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We now prove the basic representation theorem for Brownian martin-
gales; the proof is adapted from [109]. The stochastic process (Bt)t≥0 is a
Brownian motion on the probability space (Ω,F, P ) with respect to the fil-
tration F0

t = σ {Bs : s ≤ t}. For t ≥ 0, Ft is the completion of F0
t , so that

(Ft)t≥0 is the filtration generated by B, which satisfies the ‘usual condi-
tions’ of right-continuity and completeness. We have seen that if (Ht)0≤t≤T

is a measurable adapted process on [0, T ] such that E
(∫ T

0 H2
s ds
)

< ∞,

then
(∫ t

0 HsdBs

)
is a square integrable martingale. The representation

result tells us that all square integrable martingales on (Ft)0≤t≤T are of
this form.

Theorem 7.3.9. Suppose (Mt,Ft)0≤t≤T is a square integrable martingale,
where Ft is the completion of the Brownian filtration F0

t . Then there is a
measurable, adapted process (Ht)0≤t≤T such that E

(∫ T

0 H2
s ds
)

< ∞ and

Mt = M0 +
∫ t

0
HsdBs a.s. for all t ∈ [0, T ]. (7.10)

Proof. First note that, by subtracting M0 = E (Mt) from each side of
(7.10), we can assume M0 = 0. Second, MT is FT -measurable and square
integrable, so all we have to establish is that any square integrable, FT -
measurable, zero mean random variable MT has a representation

MT =
∫ T

0
HsdBs a.s.

Write H2
T for the space of square integrable (Ft)-martingales on [0, T ].

We can consider the stable subspace of H2
T generated by stochastic integrals

with respect to (Bt); this is closed in the norm of L2(Ω,FT ). Consequently,
the martingale (Mt) has a projection on this stable subspace, which we
denote by (Yt)0≤t≤T . From Remark 7.3.8, (Yt) is a stochastic integral with
respect to (Bt), so there is a measurable adapted integrand (Ht)0≤t≤T such
that

Yt =
∫ t

0
HsdBs a.s. for t ∈ [0, T ].

By construction, Mt −Yt is orthogonal to the stable subspace H2
T (B) of

H2
T generated by stochastic integrals with respect to B. We can therefore

suppose that the martingale (Mt) is orthogonal to H2
T (B) and show that

this implies MT = 0 a.s. Write

σn = inf {t : |Mt| ≥ n} , MN
t =

1
2n

Mt∧σn .

Then
∣∣MN

t

∣∣ ≤ 1
2 and (Mt) is orthogonal to both the martingales (Bt) and

(B2
t − t) =

(
2
∫ t

0 BsdBs

)
.
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A new probability measure Q can be defined on FT by putting dQ
dP =

Λ = 1+MN
t . Now (Bt) and (B2

t −t) are continuous martingales on (Ω,F, Q).
Consequently, (Bt) is a Brownian motion under Q as well as P, so P and
Q coincide on FT . This implies that MN

t = 0 a.s. Letting n → ∞, we see
that MT = 0 a.s. and the theorem is proved.

We now extend Theorem 7.3.9 to the situation where the filtration is
generated by the weak solution of a stochastic differential equation. Sup-
pose we have a probability space (Ω,F, P ) and an Rn-valued stochastic
process (xt)0≤t≤T . Denote by (Ft) the filtration generated by (xt), and let
(Bt) be an (Ft)-Brownian motion, such that

xt = x0 +
∫ t

0
f(s, x)ds +

∫ t

0
σ(s, x)dBs a.s. (P ) .

Here, f and σ satisfy measurability and growth conditions, as in Theo-
rem 6.5.3.

In the continuous-time setting, the predictable σ-field on Ω × [0, T ] is
the σ-field generated by the left-continuous processes. A process is called
predictable if it is measurable with respect to this σ-field. (Compare this
with the discrete-time definition given in Section 2.2.)

Theorem 7.3.10. Suppose (Nt)0≤t≤T , with N0 = 0, is a square integrable
P -martingale with respect to the filtration (Ft)0≤t≤T . Then there is an
Ft-predictable process (γt) such that∫ t

0
E
(
|γs|2

)
ds < ∞, Nt =

∫ t

0
γsdBs a.s.

Proof. For n ∈ Z+, define

Tn = min
{

T, inf
{

t :
∫ t

0

∣∣σ−1
s fs

∣∣2 ds ≥ n

}}
.

Then Tn is an (Ft)-stopping time and limTn = T. Write

Λ∗
t = exp

{
−
∫ t

0
σ−1

s fsdBs − 1
2

∫ t

0

∣∣σ−1
s fs

∣∣2 ds

}
, (7.11)

and define a new measure P ∗
n by setting

dP ∗

dP

∣∣∣∣
Ft

= Λ∗
t∧Tn

.

For each n, P ∗
n is a probability measure. From Girsanov’s theorem (Theo-

rem 7.2.3), the process

zn
t = Bt +

∫ t∧Tn

0
σ−1

s fsds
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is a Brownian motion under P ∗
n . Write

Zn
t = σ {zn

s : 0 ≤ s ≤ t} .

From Theorem 7.3.9, if
(
Ñt

)
is a square integrable, zero mean martingale

under P ∗
n with respect to the filtration (Zn

t ), then there is a process (φn
t ),

adapted to (Zn
t ), such that Ñt =

∫ t

0 φn
s dzn

s a.s. Now

zn
t =

∫ t

0
σ−1

s (σsdBs + fsds) =
∫ t

0
σ−1

s dxs for t < Tn,

so (Zn
t ) = (Ft∧Tn

) . We have shown that if
(
Ñt

)
is a square integrable,

zero-mean P ∗
n -martingale with respect to the filtration (Zn

t ), then

Ñt∧Tn =
∫ t∧Tn

0
φn

s σ−1
s dxs a.s. (7.12)

Now, from Lemma 7.3.3, if (Bt) is a square integrable P -martingale with
respect to the filtration (Ft), then

(
Ñt

)
is a square integrable martingale

with respect to the filtration (Ft∧Tn), where

Ñt = (Λ∗
t∧Tn

)−1Nt∧Tn .

In this situation, we certainly have Ñt = Ñt∧Tn
, so, from (7.10),

Ñt =
∫ t∧Tn

0
φn

s σ−1
s dxs =

∫ t∧Tn

0
φn

s dBs +
∫ t∧Tn

0
φn

s σ−1
s fsds.

From (7.11), we have

Λ∗
t∧Tn

= 1 −
∫ t∧Tn

0
Λ∗

sσ
−1
s fsdBs.

Therefore, using the Itô rule,

Nt∧Tn
= ÑtΛ∗

t∧Tn

=
∫ t∧Tn

0
ÑsdΛ∗

s +
∫ t∧Tn

0
Λ∗

sdÑs +
〈
Ñ , Λ∗

〉
t∧Tn

= −
∫ t∧Tn

0
ÑsΛ∗

sσ
−1
s fsdBs +

∫ t∧Tn

0
Λ∗

sφ
n
s σ−1

s dxs −
∫ t

0
Λ∗

sφ
n
s σ−1

s ds

=
∫ t∧Tn

0
γn

s dBs,

where γn
s = Λs(φn

s − Ñsσ
−1
s fs). Furthermore,

E
(
N2

t∧Tn

)
=
∫ t

0
E
((

1{0≤s≤Tn}γ
n
s

)2)
ds ≤ E

(
N2

T

)
< ∞.
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The representation is unique, so that

γn
s = γm

s for s ≤ Tn for all m ≥ n.

Define γs to be the process such that

γs = γn
s for 0 ≤ s ≤ Tn.

Then

Nt∧Tn =
∫ t∧Tn

0
γsdBs, Nt =

∫ t

0
γsdBs for t < Tn.

However, lim Tn = T a.s. so that
∫ 1
0 E
(
|γs|2

)
ds < ∞, and the result

follows.

Corollary 7.3.11. Suppose B is a P -Brownian motion and (Ft)t≥0 is
the completed filtration generated by B. Suppose further that (θt)t≥0 is a
predictable process such that if Λ is given by

dΛt = ΛtθtdBt, Λ0 = 1,

then Λ is a (positive) martingale under (P, (Ft)t≥0) . Define a probability
measure Q by

dQ

dP

∣∣∣∣
Ft

= Λt,

so that, by Girsanov’s theorem, W is a Brownian motion under Q, where
dWt = dBt − θtdt. Then, if M is an (Ft, Q)-martingale, there is a pre-
dictable process ψ such that

Mt = M0 +
∫ t

0
ψsdWs.

Corollary 7.3.12. By considering stopping times and pasting, the repre-
sentation results apply to locally square integrable martingales.

Description of the Integrand in a Markov Model

In the Markov case, when the coefficients are sufficiently differentiable, the
form of the integrand in the martingale representation can be made more
explicit.

Suppose again that B =
(
B1, B2, . . . , Bm

)
is an m-dimensional Brow-

nian motion defined for t ≥ 0 on (Ω,F, P ). Consider the stochastic differ-
ential equation

dxt = f(t, xt)dt + σ(t, xt)dBt for t ≥ 0, (7.13)
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where f : [0,∞)×Rn → Rn and σ : [0,∞)×Rn → Rn ×Rn are measurable
functions that are three times differentiable in x, and, together with their
derivatives, have linear growth in x.

Write ξs,t(x) for the solution of (7.13) for t ≥ s under the initial condi-
tion

ξs,s(x) = x ∈ Rn.

From results of Bismut [25] or Kunita [204], we know there is a set N ⊂ Ω
of measure zero such that, for ω /∈ N , there is a version of ξs,t(x) that is
twice differentiable in x and continuous in t and s. Write

Ds,t(k) =
∂ξs,t(x)

∂x

for the Jacobian of the map x → ξs,t(x). Then D is the solution of the
linearised equation

dDs,t(x) = fx(t, xt)Ds,tdt + σx(t, xt)Ds,tdBt

with initial condition Ds,s(x) = I, the n × n identity matrix. It is known
that the inverse D−1

s,t (x) exists; see [25], [204].
Suppose g : [0,∞) × Rn → Rm satisfies conditions similar to those of f

and define the exponential Ms,t(x) by

Ms,t(x) = 1 +
∫ t

0
Ms,r(x)g(r, ξs,r(x))dBr.

Write (Ft) for the right-continuous complete family of σ-fields generated
by B. As g satisfies a linear growth condition, a new probability measure
P can be defined by putting

dP

dP

∣∣∣∣
Ft

= M0,t(x0).

From Girsanov’s theorem, W is an (Ft)-Brownian motion under P if

dWt = dBt − g(t, ξ0,t(x0))dt. (7.14)

Suppose c : Rn → R is a C2 function, that, together with its derivatives
has linear growth, and consider the P -martingale

Nt = EP (c(ξ0,T (x0)) |Ft ) for 0 ≤ t ≤ T.

Then, from Theorem 7.3.10, (Nt) has a representation

Nt = N0 +
∫ t

0
γsdWs for 0 ≤ t ≤ T, (7.15)

where
∫ T

0 E
(
|γs|2

)
ds < ∞. We can now describe γ.
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Theorem 7.3.13.

γt = E
{∫ T

t

dW ∗
r gξ (r, ξ0,r(x0)) D0,r(x0)c (ξ0,T (x0))

+ cξ (ξ0,T (x0)) D0,T (x0) |Ft

}
D−1

0,t (x0)σ (t, ξ0,t(x0)) .

Here the asterisk denotes the transpose.

Proof. For 0 ≤ t ≤ T , write x = ξ0,t(x0). From the semigroup property
of the solution of stochastic differential equations, Lemma 6.6.4, it follows
that

ξ0,T (x0) = ξt,T (ξ0,t(x0)) = ξt,T (x). (7.16)

Differentiating (7.16), we have

D0,T (x0) = Dt,T (x)D0,t(x0).

Furthermore, the exponential M satisfies

M0,T (x0) = M0,t(x0)Mt,T (x).

For y ∈ Rn, define

V (t, y) = E (Mt,T (y)c(ξt,T (y)))

and consider the martingale

Nt = EP (c(ξ0,t(x0)) |Ft )

=
E (M0,T (x0)c(ξ0,T (x0)) |Ft )

E (M0,T (x0) |Ft )

= E (Mt,T (x)c(ξt,T (x)) |Ft )
= E (Mt,T (x)c(ξt,T (x)))
= V (t, x),

the last two equalities being due to the Markov property and Theorem 6.6.7,
respectively. The differentiability of ξt,T (x) in x and t was established by
Kunita [204].

Under P , we have

ξ0,t(x0)

= x0 +
∫ t

0
(f(x, ξ0,s(x0)) + σg(s, ξ0,s(x0)))ds +

∫ t

0
σ(s, ξ0,s(x0))dWs.

Expand V (t, x) = V (t, ξ0,t(x0)) by the Itô rule to get

V (t, ξ0,t(x0)) = Nt = V (0, x0) +
∫ t

0

(
∂V

∂t
+ LV

)
(s, ξ0,s(x0))ds
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+
∫ t

0

∂V

∂x
(s, ξ0,s(x0))σ(s, ξ0,s(x0))dWs, (7.17)

where

L =
n∑

i=1

⎛⎝f i +
m∑

j=1

σijg
j

⎞⎠ ∂

∂xi
+

1
2

n∑
i,j=1

aij
∂2

∂xi∂xj
,

and (aij) is the matrix σσ∗.
A special semimartingale is a semimartingale that is the sum of a (local)

martingale and a predictable process of (locally) integrable variation. The
decomposition is unique when it exists (see [109, Theorem 12.38]).

Now N is a special semimartingale, so the decompositions given in (7.15)
and (7.17) must be the same. As there is no bounded variation term
in (7.15), we must have

∂V

∂t
+ LV = 0 with V (T, x) = c(x).

In addition,

γs =
∂V

∂x
(x, ξ0,s(x0)) σ (s, ξ0,s(x0)) .

However, ξt,T (x) = ξ0,T (x0) so, from the differentiability and linear growth
of g, we have

∂V (t, x)
∂x

= E

(
∂Mt,T (x)

∂x
c(ξ0,T (X0)) + Mt,T (x)

∂c

∂x
(ξt,T (x))

)
.

Now, using the existence of solutions of stochastic differential equations
that are differentiable in their initial conditions, we have,

∂Mt,T (x)
∂x

=
∫ T

t

g(r, ξt,r(x))
∂Mt,r(x)

∂x
dBr

+
∫ T

t

dBrgξ(r, ξt,r(x))
∂ξt,r(x)

∂x
Mt,r(x). (7.18)

Equation (7.18) can be solved by variation of constants to obtain

∂Mt,T (x)
∂x

= Mt,T (x)
∫ T

t

dW ∗
r g(r, ξt,r(x))Dt,r(x).

Therefore, with x = ξ0,t(x0),

∂V (t, x)
∂x

= E

(
Mt,T (x)

[∫ T

t

dW ∗
r gξ (r, ξt,r(x)) Dt,r(x)c (ξ0,T (x0))

+cξ(ξt,T (x))Dt,T (x)])

= EP

(∫ T

t

dW ∗
r gξ (r, ξ0,r(x0)) D0,r(x0)c (ξ0,T (x0))

+cξ (ξ0,T (x0)) D0,T (x0) |Ft ) D−1
0,t (x0)

and the result follows.
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7.4 Self-Financing Strategies

One-factor Model

In a pricing model with one risky stock, a hedging strategy is a measurable
process (φt) =

(
H0

t , H1
t

)
, with values in R2 that is adapted to the filtration

(Ft)t≥0, where Ft = σ {Bu : u ≤ t} = σ
{
S1

u : u ≤ t
}

. The quantity H0
t

(resp. H1
t ) denotes the amount of the bond S0

t (resp. the risky asset S1
t )

that is held at time t. Consequently, the value, or wealth, of the portfolio
at time t is

Vt(φ) = H0
t S0

t + H1
t S1

t . (7.19)

In discrete time, we have established (see (2.2)) that a self-financing
strategy should satisfy the identity

Vn+1(φ) − Vn(φ) = φn+1(Sn+1 − Sn)

= H0
n+1(S

0
n+1 − S0

n) + H1
n+1(S

1
n+1 − S1

n).

The natural continuous-time analogue of this condition therefore appears
to be

dVt(φ) = H0
t dS0

t + H1
t dS1

t . (7.20)

Indeed, if H0 and H1 are of bounded variation, then

dVt(φ) = H0
t dS0

t + H1
t dS1

t + S0
t dH0

t + S1
t dH1

t (7.21)

and equation (7.20) is equivalent to saying that

S0
t dH0

t + S1
t dH1

t = 0, (7.22)

which is the analogue of (2.5). The intuitive meaning of (7.22) is that
changes in the holdings of the bond, S0

t dH0
t , can only take place due to

corresponding changes in holding of the stock S1
t dH1

t ; that is, there is no
net inflow or outflow of capital.

We consider European claims with an expiration time T. Consequently,
for (7.20) to make sense, we require∫ T

0

∣∣H0
t

∣∣ dt < ∞ a.s.,
∫ T

0

(
H1

t S1
t

)2
dt < ∞ a.s. (7.23)

From the dynamics for S1, namely

dS1
t = S1

t (µdt + σdBt),

we have ∫ T

0
H0

t dS0
t =
∫ T

0
H0

t rertdt,∫ T

0
H1

t dS1
t =
∫ T

0
(H1

t S1
t µ)dt +

∫ T

0
(H1

t S1
t σ)dBt.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.24)

We can therefore give the following definition.
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Definition 7.4.1. A self-financing strategy φ = (φt)0≤t≤T is given by two
measurable adapted processes (H0

t ), (H1
t ) satisfying (7.20) and (7.23). The

corresponding wealth process is given for all t ∈ [0, T ] by

Vt(φ) = H0
t S0

t + H1
t S1

t = H0
0S0

0 + H1
0S1

0 +
∫ t

0
H0

udS0
u +
∫ t

0
H1

udS1
u a.s.

Notation 7.4.2. Write S̃1
t = e−rtS1

t for the discounted price of the risky
asset and Ṽt(φ) = e−rtVt(φ) for the discounted wealth process.

We can then establish the following result, whose discrete-time analogue
was discussed in Section 2.2.

Theorem 7.4.3. Suppose φ = (φt) =
(
H0

t , H1
t

)
0≤t≤T

is a pair of measur-
able adapted processes satisfying (7.23). Then φ is a self-financing strategy
if and only if

Ṽt(φ) = V0(φ) +
∫ t

0
H1

udS̃1
u a.s. for all t ∈ [0, T ]. (7.25)

Proof. Suppose φ =
(
H0

t , H1
t

)
is self-financing, so (7.20) holds. Then

dṼt(φ) = d
(
e−rtVt(φ)

)
= −rṼt(φ)dt + e−rtdVt(φ)

= −re−rt(H0
t ert + H1

t S1
t )dt + e−rtH0

t d(ert) + e−rtH1
t dS1

t

= H1
t (−re−rtS1

t dt + e−rtdS1
t )

= H1
t dS̃t,

and (7.25) follows.
The converse follows by considering Vt(φ) = ertṼt(φ), reversing the

steps above and using (7.25).

Remark 7.4.4. Although in general the continuous-time stochastic integral
requires predictable integrands (see [109]), we have only required the trad-
ing strategies φ =

(
H0

t , H1
t

)
to be measurable and adapted. This is possible

here because the filtration (Ft)t≥0 is generated by the continuous Brownian
motion (Bt) (or, equivalently, by the continuous process

(
S1

t

)
).

Let us write SF for the set of self-financing strategies φ = (φt)0≤t≤T

so that φt = (H0
t , H1

t ), where H0 and H1 satisfy (7.23). If there are no
contributions or withdrawals, the corresponding wealth process is given
in (7.19) as

Vt(φ) = H0
t S0

t + H1
t S1

t .

Suppose more generally (as we did for discrete-time models in Sec-
tion 5.6) that the model allows contributions to the wealth process (say,
from dividends) or withdrawals (consumption). Let these be modelled by
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the adapted right-continuous, increasing processes Dt (for contributions)
and Ct (for accumulated consumption). Then

Vt(φ) = H0
t S0

t + H1
t S1

t + Dt − Ct

= V0(φ) +
∫ t

0
H0

udS0
u +
∫ t

0
H1

udS1
u + Dt − Ct.

The self-financing condition (7.20) now becomes

S0
t dH0

t + S1
t dH1

t = dDt − dCt.

7.5 An Equivalent Martingale Measure

Consider the situation of Section 7.1 where the bond is described by a price
process

(
S0

t

)
satisfying

dS0
t = rS0

t dt (7.26)

and the risky asset has a price process
(
S1

t

)
satisfying

dS1
t = S1

t (µdt + σdBt). (7.27)

The discounted price of the risky asset is

S̃t = e−rtS1
t

with dynamics

dS̃t = −re−rtS1
t + e−rtdS1

t = S̃t ((µ − r)dt + σdBt) .

If we apply Girsanov’s theorem Theorem 7.2.3 with θt = µ−r
σ , we see there

is a probability measure Pµ defined on FT by putting

dPµ

dP
= ΛT = exp

{
−
∫ t

0
θsdBs − 1

2

∫ t

0
θ2

sds

}
such that if

Wµ
t =

(
µ − r

σ

)
t + Bt, (7.28)

then (Wµ
t )0≤t≤T is a standard Brownian motion under Pµ. Under Pµ, we

then have

dS̃t = S̃tσdWµ
t , S̃t = S0 exp

{
σWµ

t − σ2

2
t

}
.

Definition 7.5.1. A strategy φ =
(
H0

t , H1
t

)
0≤t≤T

is admissible if it is
self-financing and the discounted value process

Ṽt(φ) = H0
t + H1

t S̃t

is non-negative and square integrable under P .
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Definition 7.5.2. A European contingent claim is a positive random vari-
able h, measurable with respect to FT .

If h = f(ST ) and f(ST ) = (ST −K)+ (resp. f(ST ) = (K −ST )+), then
the option is a European call option (resp. European put option).

Recall that a claim is attainable (sometimes also called replicable) if its
value at time T (the exercise time) is equal to the value VT (φ) = H0

T S0
t +

H1
T S1

T of an admissible strategy φ.

Suppose that φ ∈ SF , and (φt) = (H0
t , H1

t ). The corresponding wealth
process is

Vt(φ) = H0
t S0

t + H1
t S1

t = V0(φ) +
∫ t

0
H0

udS0
u +
∫ t

0
H1

udS1
u.

From (7.26) and (7.27), it follows that

Vt(φ) = V0(φ) +
∫ t

0
rH0

uS0
udu +

∫ t

0
H1

uS1
u(µdu + σdBu)

= V0(φ) +
∫ t

0
rVu(φu)du +

∫ t

0
σH1

uS1
udWµ

u ,

where Wµ is defined in (7.28). Consider the discounted wealth

Ṽt(φ) =
(
S0

t

)−1
Vt(φt).

From the differentiation rule, we have

Ṽt(φ) = V0(φ0) +
∫ t

0
σH1

u

(
S0

u

)−1 (
S1

u

)
dWµ

u .

We have seen above that, under the measure Pµ, the process Wµ is a
standard Brownian motion. Consequently, under Pµ, we see that

Mt =
∫ t

0
σH1

u

(
S0

u

)−1
S1

udWµ
u

is a local martingale. In fact, consider the stopping times

Tn = inf
{

t ≥ 0 :
∫ t

0

(
σH1

u

(
S0

u

)−1
S1

u

)2
du ≥ n

}
.

Then the (Tn) are increasing and limn Tn = T. Furthermore, (Mt∧Tn) is
a uniformly integrable martingale under measure Pµ for each n. Conse-
quently,

(
Ṽt(φt)

)
is a local martingale under Pµ.

Suppose ξ = ξ(ω) is a non-negative F-measurable random variable with
Eµ (ξ) < ∞, where Eµ (·) denotes expectation with respect to the measure
Pµ. A strategy φ ∈ SF will belong to SF (ξ) if

Ṽt(φt) ≥ −Eµ (ξ |Ft ) a.s. for t ≥ 0.
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A strategy φ ∈ SF (ξ) will provide a hedge against a maximum loss of ξ.
Under this condition, Fatou’s lemma ( [279, Chap. II, §6]) can be applied,
and the local martingale Ṽt(φ) is a supermartingale under measure Pµ.

Consequently, if τ1 and τ2 are two stopping times, with τi ≤ T and
τ1 ≤ τ2 a.s., then

Eµ(Ṽτ2(φ) |Fτ1 ) ≤ Ṽτ1(φτ1)

from the optimal stopping theorem. In particular, if V0(φ0) = x ≥ 0 and
φ ∈ SF (ξ), then

Eµ
(
Ṽτ (φ)

)
= Eµ

(
e−rtVτ (φτ )

)
≤ x. (7.29)

Let us summarise these observations in the following result.

Lemma 7.5.3. a) If φ ∈ SF , then Ṽ (φ) is a local martingale.

b) If φ ∈ SF (ξ), then Ṽ (φ) is also a supermartingale.

c) If φ ∈ SF (0), then Ṽ (φ) is also a non-negative supermartingale.

Note that if φ ∈ SF (0), then simultaneous borrowing from the bank
and stocks is not permitted.

Definition 7.5.4. A strategy φ ∈ SF is said to provide an arbitrage op-
portunity if, with V0(φ) = x ≤ 0, we have VT (φ) ≥ 0 a.s. and

P (VT (φ) > 0) > 0.

We can then establish the following lemma.

Lemma 7.5.5. If ξ is a non-negative F-measurable random variable with

Eµ (ξ) < ∞,

then any φ ∈ SF (ξ) does not provide an arbitrage opportunity.

Proof. Equation (7.29) rules out the possibility of φ providing an arbitrage
opportunity.

Superhedging

We turn to the continuous-time analogue of the brief discussion outlined
in Section 2.4.

Definition 7.5.6. Suppose T > 0 and fT is an FT -measurable, non-
negative random variable. A strategy φ ∈ SF is a hedge for the European
claim fT with initial investment x if

V0(φ) = x, VT (φ) ≥ fT a.s.

We call φ ∈ SF an (x, fT )-hedge.
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Although the next definition can be given for strategies in SF , we shall
restrict ourselves to strategies in SF (0).

Definition 7.5.7. The investment price C(T, fT ) for the European claim
fT at time T > 0 is the smallest initial investment with which the investor
can attain an amount fT at time T using strategies from SF (0).

More precisely, write Σ(T, x, fT ) for the set of (x, fT )-hedges that belong
to SF (0). Then

C(T, fT ) = inf {x ≥ 0 : Σ(T, x, fT ) �= ∅} .

For any European claim fT , we must therefore do the following:

a) Determine the investment price C(T, fT ).

b) Determine the (x, fT )-hedging strategy φ ∈ SF (0) for x = C(T, fT ).

Remark 7.5.8. A European option with exercise time T > 0 and payment
fT gives the buyer of the contract the right to obtain an amount fT at time
T.

Clearly, if the seller of the contract can start with an amount x =
C(T, fT ) and obtain VT (φT ) ≥ fT at time T , then C(T, fT ) is the fair, or
rational, price for the option from the seller’s point of view. The discussion
in Section 2.4 also applies here, in the continuous-time setting, and shows
that (in a complete market, which is the case here) C(T, fT ) is also the fair
price from the buyer’s standpoint.

Recall that the price at time t of the European call option on S1 with an
exercise time T and a strike price K corresponds to taking fT = (S1

T −K)+.

Pricing

Suppose that φ ∈ SF (0). Then, since Ṽ (φ) is a supermartingale, we have

x = V0(φ0) ≥ Eµ
(
e−rT VT (φT )

)
.

If, further, φ is an (x, fT )-hedge, then

x ≥ Eµ
(
e−rT fT

)
.

Consequently, the rational investment price C(T, fT ) satisfies

C(T, fT ) ≥ Eµ
(
e−rT fT

)
.

From (7.27),
dS1

t = S1
t (µdt + σdBt),

where B is a standard Brownian motion under P. Write S1(µ) for the
solution of (7.27). Then, from (7.28), under the measure Pµ, the process
S1(µ) satisfies

dS1
t = S1

t (rdt + σdWµ
t ) ,
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where Wµ is a standard Brownian motion.
Let us write S1(r) for the solution of

dS1
t (r) = S1

t (r)(rdt + σdBt).

Then
Law

(
fT

(
S1(µ)

)
|Pµ
)

= Law
(
fT

(
S1(r)

)
|P
)

and

Eµ
(
e−rT fT

)
= Eµ

(
e−rT fT

(
S1(µ)

))
= E

(
e−rT fT

(
S1(r)

))
.

This quantity has the unexpected property that it does not depend on µ.
Suppose that fT is a non-negative FT -measurable random variable such

that
Eµ
(
f2

T

)
< ∞. (7.30)

Recall that Eµ
(
f2

T

)
= E

(
ΛT f2

T

)
, where

ΛT = exp

{
−
∫ T

0
θdBs − 1

2

∫ T

0
θ2ds

}
, θ =

µ − r

σ
.

A sufficient condition for (7.30) is that E
(
f2+δ

T

)
< ∞ for some δ > 0.

Consider the square integrable (Pµ,Ft)-martingale

Nt = Eµ
(
e−rT fT |Ft

)
for 0 ≤ t ≤ T.

From the martingale representation result, Theorem 7.3.9, there is a pre-
dictable process γ such that

E

(∫ T

0
γ2

sds

)
< ∞, Nt = N0 +

∫ t

0
γsdWµ

s a.s. (7.31)

Here, N0 = Eµ
(
e−rT fT

)
.

Now take

H1
t = γte

rtσ−1 (S1
t

)−1
H0

t = Nt − σ−1γt;

consider the trading strategy φ∗
t = (H0

t , H1
t ).

Lemma 7.5.9. a) The strategy φ∗
t is self-financing and

b)
Nt = Ṽt(φ∗) = e−rtVt(φ∗).

Proof. By definition,

Vt(φ∗) = H0
t S0

t + H1
t S1

t = NtS
0
t . (7.32)
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Therefore

dVt(φ∗) = NtdS0
t + S0

t dNt

= rNtS
0
t dt + S0

t γtdWµ
t

=
(
Nt − σ−1γt

)
dS0

t + σ−1γtS
0
t (rdt + σdWµ

t )

= H0
t dS0

t + H1
t dS1

t .

Consequently, the strategy φ∗
t =

(
H0

t , H1
t

)
is self-financing. (The condi-

tion (7.22) is satisfied because of (7.31) and the path-continuity of N.)
From (7.32) we see that

Nt =
(
S0

t

)−1
Vt(φ∗),

that is, the Pµ-martingale N is the discounted wealth process of the strat-
egy φ∗

t . Also,

Vt(φ∗) = NtS
0
t = Eµ

(
S0

t

(
S0

t

)−1
fT |Ft

)
= Eµ

(
e−r(T−t)fT |Ft

)
.

In particular,

V0(φ∗) = Eµ
(
e−rT fT

)
, VT (φ∗) = fT .

These equations mean that φ∗ is an (x, fT )-hedge with initial capital

x = Eµ
(
e−rT fT

)
.

Clearly, if φ ∈ SF is any other hedge for fT with initial capital x, then

VT (φ) ≥ VT (φ∗
T ) = fT .

Consequently, the rational price for the European option fT is

C(T, fT ) = Eµ
(
e−rT fT

)
= E

(
e−rT fT

(
S1(r)

))
.

From (7.5) this is E
[
e−rT fT

(
S1(r)

) ]
and so C(T, fT ) does not depend on

µ.

In summary, we have shown that the following results hold.

Theorem 7.5.10. Suppose that fT represents a European claim, which can
be exercised at time T. That is, fT is an FT -measurable random variable
and

Eµ
(
e−rT fT

)
< ∞.

Then the rational price for fT is

C(T, fT ) = Eµ
(
e−rT fT

(
S1(µ)

))
= E

(
e−rT fT

(
S1(r)

))
.

There is a minimal hedge φ∗
t =
(
H0

t , H1
t

)
given by

H1
t = σ−1γte

rt
(
S1

t

)−1
, H0

t = Nt − ertS1
t H1

t .

Here (Nt) is the martingale
(
Eµ
(
e−rT fT |Ft

))
and (γt) is the integrand in

its martingale representation.
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Multifactor Models

Definition 7.5.11. In the setting of a probability space (Ω,F, P ), an
equivalent measure P̃ is called a martingale measure if, under P̃ , all dis-
counted asset prices are martingales. P̃ is sometimes called a risk-neutral
measure.

Remark 7.5.12. We have seen that, in the case of one risky asset, P̃ = Pµ is
a martingale measure. We now extend these ideas to multifactor Brownian
pricing models.

Suppose (Bt) =
(
B1

t , . . . , Bm
t

)
0≤t≤T

is an m-dimensional Brownian mo-
tion on (Ω,F, P ) and let (Ft) be the filtration generated by B. Suppose
now we have a bond with price S0

t , or bank account, whose instantaneous
interest rate is rt, and n risky assets with time t prices S1

t , . . . , Sn
t .

With S0
0 = 1, we have S0

t = exp
{∫ t

0 rudu
}

. The dynamics of the risky
assets are described by the equations

dSi
t = µi(t)Si

tdt + Si
t

⎛⎝ n∑
j=1

σij(t)dBj
t

⎞⎠ .

Here µi, σij , and r are adapted processes. The prices S1
t

S0
t
, . . . ,

Sn
t

S0
t

are the
discounted prices. The differentiation rule gives

d

(
Si

t

S0
t

)
= (µi(t) − rt)

Si
t

S0
t

dt +
Si

t

S0
t

m∑
j=1

σij(t)dBj
t . (7.33)

Definition 7.5.13. (µi(t) − rt) is called the risk premium.

Definition 7.5.14. If we can find processes θ1(t), . . . , θn(t) such that

µi(t) − rt =
m∑

j=1

σij(t)θj(t) for i = 1, 2, . . . , n, (7.34)

then the adapted process

θ(t) = (θ1(t), . . . , θn(t))

is called the market price of risk. Equation (7.33) then becomes

d

(
Si

t

S0
t

)
=

Si
t

S0
t

⎛⎝ m∑
j=1

σij(t)
(
θj(t)dt + dBj

t

)⎞⎠ .

Now consider the linear system (7.34). Three cases can arise:

a) It has a unique solution (θ(t)) = (θ1(t), . . . , θn(t)).
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b) It has no solution.

c) It has more than one solution.

In the first and third cases, we have a solution process θ(t). Consider
the process

Λt = exp
{

−
∫ t

0
θ(u)dB(u) − 1

2

∫ t

0
|θ(u)|2 du

}
,

and define a new measure P θ by setting

dP θ

dP

∣∣∣∣
FT

= ΛT .

The vector form of Girsanov’s theorem states that, under P θ, W θ =
(W θi)1≤i≤m is an m-dimensional martingale with dynamics

dW θ
t = θ(t)dt + dBt.

A hedging strategy is a measurable adapted process φt = (Hj
t )1≤j≤N ,

where Hi
t represents the number of units of asset i held at time t. Its

corresponding wealth process is

Vt(φt) = H0
t S0

t + H1
t S1

t + · · · + Hn
t Sn

t .

The strategy φ is said to be self-financing if

dVt(φt) =
n∑

i=0

Hi
tdSi

t

so that

Vt(φt) = V0(φ0) +
∫ t

0

n∑
i=0

Hi
udSi

u

= V0(φ0) +
∫ t

0
rH0

uS0
udu +

n∑
i=1

∫ t

0
Hi

uSi
u

(
µi(u) +

m∑
j=1

σij(u)dBj(u)
)

= V0(φ0) +
∫ t

0
rVu(φu)du +

n∑
i=1

m∑
j=1

∫ t

0
Hi

uSi
uσij

(
θj(u)du + dBj(u)

)
= V0(φ0) +

∫ t

0
rVu(φu)du +

n∑
i=1

m∑
j=1

∫ t

0
Hi

uSi
uσij(u)dW θj

u .

Therefore, the discounted wealth

Ṽt(φt) =
(
S0

t

)−1
Vt(φt) = V0(φ0) +

n∑
i=1

m∑
j=1

∫ t

0
Hi

uSi
uσij(u)dW θj

u
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is a local martingale under P θ. For φ ∈ SF (ξ), the proof of the first part
of this section shows that Vt(φt) is a supermartingale.

Consequently, there is no arbitrage if (7.34) has at least one solution.
When the solution is unique, we must have m = n and the matrix σ =
(σij(t)) is non-singular.

If fT is a European claim to be exercised at time T , we can consider
the martingale

Nt = Eθ
(
e−rT fT |Ft

)
.

By the martingale representation result, this can be written as

Nt = N0 +
∫ t

0
γudW θ

u ,

where γu =
(
γ1

u, γ2
u, . . . , γn

u

)
is a measurable, adapted process such that

E

(∫ T

0
|γu|2 du

)
< ∞.

Write ∆t for the matrix diag
((

S1
t

)−1
, . . . , (SN

t )−1
)
, and let

(
H1

t , H2
t , . . . , HN

t

)
= S0

t ∆tσ
′(t)−1γt, H0

t = Nt −
(
σ′(t)−1γt

)
· 111,

where 111 = (1, . . . , 1). Then
(
H0

t , H1
t , . . . , HN

t

)
is a self-financing strategy

that hedges the claim fT and the market is complete.
In the case where (7.34) has multiple solutions, although there are no

arbitrage opportunities, there are claims that cannot be hedged, and the
market is incomplete. If (7.34) has no solution, there is no martingale
measure and the market may allow arbitrage.

In Chapters 3 and 4, we derived the two fundamental theorems of asset
pricing in discrete time models. The extensive literature on this topic
began with two papers by Harrison and Pliska ( [149],[150]). In continuous
time, the technical issues surrounding the ‘equivalence’ of the no-arbitrage
condition and the existence of an EMM for the model are more intricate
still, and we do not pursue this here. The reader is referred especially to
the papers by Stricker [287] and Delbaen and Schachermayer [76].

7.6 Black-Scholes Prices

In this section, we suppose the European option has the form f
(
S1

T

)
. We

require some integrability properties of f : (0,∞) → [0,∞), so we assume
that for some non-negative c, k1, k2

f(s) ≤ c(1 + sk1)s−k2 . (7.35)
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From Theorem 7.5.10, the rational price for the option f is independent
of µ and is given by

C(T, f) = E
(
e−rT f

(
S1

T (r)
))

, (7.36)

where S1 is the solution of

dS1
t = S1

t (rdt + σdWt).

Here W is a standard Brownian motion on (Ω,F, P ).
The wealth process of the corresponding minimal hedge is

Vt(φ∗
t ) = E

(
e−r(T−t)f

(
S1

T (r)
)
|Ft

)
.

Now, from (7.36),

S1
0 = S1

0 exp
{(

r − σ2

2

)
t + σWt

}
.

From the Markov property, we have

Vt(φ∗) = E
(
e−r(T−t)f

(
S1

T (r)
)
|Ft

)
= E

(
e−r(T−t)f

(
S1

T

) ∣∣S1
t

)
= e−r(T−t)F

(
T − t, S1

t

)
. (7.37)

Here

F (T − t, s) =

1√
2π

∫ ∞

−∞
f

(
s exp

{
σy

√
T − t +

(
r − σ2

2

)
(T − t)

})
e− 1

2 y2
dy

=
1
s

∫ ∞

−∞
f(y)g

(
T − t,

y

s
, r − σ2

2
, σ

)
dy,

where

g(t, z, α, β) =
1

βz
√

2πt
exp
{

− (log z − αt)2

2β2t

}
.

From the integrability condition, the function F (T − t, s) is differentiable
in t and s. Furthermore, E

(
F
(
T − t, S1

t

))
< ∞. Write G(t, x) = F (T −

t, ertx). Then, from (7.37),

Vt(φ∗)e−rt = e−rT G(t, e−rtS1
t ).

Using the Itô differentiation rule, we obtain

d
(
Vt(φ∗)e−rt

)
= e−rT d

(
G(t, e−rtS1

t )
)
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= e−rT

(
∂G

∂x
(t, e−rtS1

t )d(e−rtS1
t ) +

(
∂G

∂t
+

1
2

∂2G

∂x2 σ2 (S1
t

)2
e−2t

)
dt

)
.

That is,

Vt(φ∗)e−rt = Nt = E
(
e−rT f

(
S1

T (r)
)
|Ft

)
= e−rT E

(
f
(
S1

T (r)
))

+ e−rT

∫ t

0

∂G

∂x
· d(e−ruS1

u)

+ e−rT

∫ t

0

(
∂G

∂t
+

1
2

∂2G

∂x2 · σ2 (S1
u

)2
e−2u

)
du. (7.38)

Now d(e−ruS1
u) = σe−ruS1

udWu. Consequently, the first integral in (7.38)
is a local martingale. As the left-hand side of (7.38) is a martingale, the
bounded variation process in (7.38) must be identically zero, as in (7.17).
This implies that

∂G

∂t
+

1
2

∂2G

∂x2 σ2 (S1
t

)2
e−2t = 0,

with G(T, x) = f(erT x). Noting that ∂G
∂t = ert( ∂(

∂F x)x), we have therefore
proved the following theorem.

Theorem 7.6.1. Consider a European option with exercise time T > 0
and payment function f

(
S1

T

)
, where f satisfies the integrability condi-

tion (7.35). Then the rational price for the option is

C(T, fT ) = e−rT F (T, S1
0),

where

F (T, S1
0) =

1√
2π

∫ ∞

−∞
f

(
S1

0 exp
{(

r − σ2

2

)
T + σy

√
T

})
e− 1

2 y2
dy.

The minimal hedge φ∗
t = (H0

t , H1
t ) is

H1
t = e−r(T−t) ∂F

∂s

(
T − t, S1

t

)
,

H0
t = e−rT

(
F
(
T − t, S1

t

)
− S1

t

∂F

∂s

(
T − t, S1

t

))
.

The corresponding wealth process is

Vt(φ∗) = e−r(T−t)F
(
T − t, S1

t

)
.

This is also the rational price for the option at time t.
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The Black-Scholes Formula for a European Call

For the standard European call option we have f
(
S1

T

)
=
(
K − S1

T

)+
.

Specialising the above results, we recover the Black-Scholes pricing formula
(2.32) as well as identifying the minimal hedge portfolio.

Theorem 7.6.2 (Black-Scholes). The rational price of a standard Eu-
ropean call option is

C(T,
(
K − S1

T

)+
) = S1

0Φ(d+) − Ke−rT Φ(d−).

Here Φ(y) = 1√
2π

∫ y

−∞ e− 1
2 z2

dz is the standard normal cumulative distribu-
tion function, and

d+ =
log
(

S1
0

K

)
+ T

(
r + σ2

2

)
σ
√

T
, d− =

log
(

S1
0

K

)
+ T

(
r − σ2

2

)
σ
√

T
.

(Note that d=d+ − σ
√

T .)
The minimal hedge φ∗

t = (H0
t , H1

t ) has

H1
t = Φ

⎛⎝ log
(

S1
t

K

)
+ (T − t)

(
r + σ2

2

)
σ
√

T − t

⎞⎠ ,

H0
t = −e−rT KΦ

⎛⎝ log
(

S1
t

K

)
+ (T − t)

(
r − σ2

2

)
σ
√

T − t

⎞⎠ .

The corresponding wealth process is

Vt(φ∗) = H0
t S0

t + H1
t S1

t .

Proof. With f(s) = (s − K)+, we have, from Theorem 7.6.1,

F (t, s) =
1√
2π

∫ ∞

−∞
f

(
s exp

{
σy

√
t +
(

r − σ2

2

)
t

})
e− 1

2 y2
dy

=
1√
2π

∫ ∞

y(t,s)

(
s exp

{
σy

√
t +
(

r − σ2

2

)
t

}
− K

)
e− 1

2 y2
dy,

where y(t, s) is the solution of

s exp
{

σy
√

t +
(

r − σ2

2

)
t

}
= K, (7.39)

so

y(t, s) = σ−1t−
1
2

(
log
(

K

s

)
−
(

r − σ2

2

)
t

)
.
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Consequently,

F (t, s) =
ert

√
2π

∫ ∞

y(t,s)
s exp

{
σy

√
y − σ2 t

2
− 1

2
y2
}

dy − K [1 − Φ(y(t, s))]

=
sert

√
2π

∫ ∞

y(t,s)−σ
√

t

e− 1
2 x2

dx − K [1 − Φ(y(t, s))]

= sert
[
1 − Φ(y(t, s) − σ

√
t)
]

− K [1 − Φ(y(t, s))] .

From Theorem 7.5.10, the rational price for the standard European call
option is

C(T, (ST − K)+) = e−rT F (T, S0)

= S0Φ
(
σ
√

T − y(T, S0)
)

− Ke−rT Φ(−y(T, S0))

= S0Φ(d+) − Ke−rT Φ(d−).

Now, from Theorem 7.6.1, the minimal hedge is H1
t = e−r(T−t) ∂F

∂s (T −t, St)
so, after some cancellations when performing the differentiation (see also
Section 7.10), we obtain

H1
t = Φ(σ

√
T − t − y(T − t, St))

= Φ
(

σ
√

T − t − σ−1(T − t)− 1
2

(
log
(

K

St

)
−
(

r − σ2

2

)
(T − t)

))

= Φ

⎛⎝ log
(

St

K

)
+ (T − t)

(
r + σ2

2

)
σ
√

T − t

⎞⎠ .

Now

Vt(φ∗) = e−r(T−t)F (T − t, St)

= StΦ

⎛⎝ log
(

St

K

)
+ (T − t)

(
r + σ2

2

)
σ
√

T − t

⎞⎠
− Ke−r(T−t)Φ

⎛⎝ log
(

St

K

)
+ (T − t)

(
r − σ2

2

)
σ
√

T − t

⎞⎠ .

Then

H0
t = e−rtVt(φ∗) − e−rtH1

t St

= −Ke−rT Φ

⎛⎝ log
(

St

K

)
+
(
r − σ2

2

)
(T − t)

σ
√

T − t

⎞⎠ ,

and the result follows.
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Call-Put Parity

The simple relation between call and put prices was established in Chap-
ter 1 by a basic no-arbitrage argument that was independent of the par-
ticular pricing model used. Recalling that the European put option with
strike K and expiry T has the value

C
(
T,
[
K − S1

T (r)
]+)

= E
(
e−rT

[
K − S1

T (r)
]+)

,

we can give a simple ‘model-dependent’ version of the call-put parity for-
mula in the Black-Scholes model as follows. Since (K −S)+ = (S −K)+ −
S + K, we have

E
(
e−rT

[
K − S1

T (r)
]+)

= E
(
e−rT

(
S1

T (r) − K
)+ − e−rT S1

T (r) + e−rT K
)

= E
(
e−rT

(
S1

T (r) − K
)+)− E

(
e−rT S1

T (r)
)

+ E
(
e−rT K

)
= C

(
T,
(
S1

T (r) − K
)+)− S1

0(r) + Ke−rT .

Thus we can again relate the European put price PT and European call
price CT by the formula (1.2) derived in Chapter 1 as

PT = CT − S0 + Ke−rT .

Exercise 7.6.3. Show that in the one-factor Black-Scholes model the time t
call value C(S, K, T − t) and put value P (S, K, T − t) for European options
with strike K and expiry T are positive-homogeneous in the stock price S
and the strike price K.

Verify that C(Ke−r(T−t), S, T − t) = P (Se−r(T−t), K, T − t).

7.7 Pricing in a Multifactor Model

In Section 7.5, we considered a riskless bond S0
t = ert and a single risky

asset S1
t . Suppose now that we have a vector of risky assets

St =
(
S1

t , . . . , Sd
t

)
whose dynamics are described by stochastic differential equations of the
form

dSi
t = Si

t

⎛⎝µi(t, St)dt +
d∑

j=1

λij(t, St)dW i
t

⎞⎠ for i = 1, 2, . . . , d.

When the µi and λij are constant, we have the familiar log-normal
stock price. To ensure the claim is attainable, the number of sources of
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noise - that is, the dimension of the Brownian motion w - is taken equal
to the number of stocks. Λt = Λ(t, S) = (λij(t, S)) is therefore a d × d
matrix. We suppose Λ is non-singular, three times differentiable in S, and
that Λ−1(t, S) and all derivatives of Λ are bounded. Writing µ(t, S) =(
µ1(t, S), . . . , µd(t, S)

)′, we also suppose µ is three times differentiable in
S with all derivatives bounded.

Again suppose there is a bond S0
t with a fixed interest rate r, so S0

t = ert.

The discounted stock price vector ξt =
(
ξ1
t , . . . , ξd

t

)′ is then ξt = e−rtSt, so

dξi
t = ξi

t

⎛⎝(µi
(
t, ertξt

)
− r
)
dt +

d∑
j=1

λij

(
t, ertξt

)
dW j

t

⎞⎠ . (7.40)

Writing

∆t = ∆(t, ξt) =

⎛⎜⎝ξ1
t 0

. . .
0 ξd

t

⎞⎟⎠
and ρ = (r, r, . . . , r)′, equation (7.40) can be written as

dξt = ∆t((µ − ρ)dt + ΛtdWt). (7.41)

As in Section 7.4, there is a flow of diffeomorphisms x → ξs,t(x) associated
with this system, together with their non-singular Jacobians Ds,t.

In the terminology of Harrison and Pliska [150], the return process
Yt =

(
Y 1

t , . . . , Y d
t

)
is here given by

dYt = (µ − ρ)dt + ΛdWt. (7.42)

The drift term in (7.42) can be removed by applying the Girsanov change
of measure. Write

η(t, S) = Λ(t, S)−1(µ(t, S) − ρ),

and define the martingale M by

Mt = 1 −
∫ t

0
Msη(s, Ss)′dWs.

Then

Mt = exp
{

−
∫ t

0
η′

sdWs − 1
2

∫ t

0
|ηs|2 ds

}
is the Radon-Nikodym derivative of a probability measure Pµ. Further-
more, under Pµ,

W̃t = Wt +
∫ t

0
η(s, Ss)′ds
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is a standard Brownian motion. Consequently, under Pµ, we have

dYt = ΛtdW̃t, dξt = ∆tΛtdW̃t.

Therefore the discounted stock price process ξ is a martingale under Pµ.
Consider a function ψ : Rd → R, where ψ is twice differentiable and ψ

and ψx are of at most linear growth in x. For some future time T > t, we
shall be interested in finding the current price (i.e., the current valuation
at time t) of a contingent claim of the form ψ(ST ). It is convenient to work
with the discounted claim as a function of the discounted stock price, so
we consider equivalently the current value of

ψ(ξT ) = e−rT ψ(erT ξT ) = e−rT ψ(ST ).

The function ψ has linear growth, so we may define the square integrable
Pµ-martingale N by

Nt = Eµ (ψ(ξT ) |Ft ) for 0 ≤ t ≤ T.

As in Section 7.5, the rational price for ψ is Eµ (ψ). Furthermore, if we
can express N in the form

Nt = Ẽ (ψ(ξT )) +
∫ t

0
φ(s)′dξs,

then the vector H1
t =

(
φ1, φ2, . . . , φd

)′ is a hedge portfolio that gener-
ates the contingent claim. Then H0

t = Nt − H1
t · e−rtSt. Applying Theo-

rem 7.3.13, we immediately obtain the following.

Theorem 7.7.1. We have

Nt = Ẽ (ψ(ξT )) +
∫ t

0
φ(s)′dξs,

where

φ(s) = Eµ
[ ∫ T

s

ηξ(u, eruξ0,x(x0))D0,u(x0)dW̃u · ψξ0,T (x0)

+ ψξ(ξ0,T (x0))D0,T (x0) |Fs

]
D−1

0,s(x0).

Proof. From Theorem 7.3.13, under the measure Pµ, we have

Nt = Ẽ (ψ(ξT )) +
∫ t

0
γsdW̃s,

where

γs = Eµ
[ ∫ T

s

ηξD0,u(x0)dW̃u · ψ(ξ0,T (x0))

+ ψξ(ξ0,T (x0))D0,T (x0) |Fs

]
D−1

0,s(x0)∆(ξ0,s(x0))Λs

since dξt = ∆tΛtdW̃t, φ(s) has the stated form.
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Remark 7.7.2. Note that if η is not a function of ξ (which is certainly the
situation in the usual log-normal case where µ and Λ are constant), ηξ is
zero and the first term in φ vanishes.

The bond component H0
t in the portfolio is given by

H0
t = Nt −

d∑
i=1

φi
tξ

i
t, 0 ≤ t ≤ T,

and Nt is the price associated with the contingent claim at time t.

Examples

Stock price dynamics for which the hedging policy φ can be evaluated
in closed form appear hard to find. However, if we consider a vector
of log-normal stock prices, we can re-derive a vector form of the Black-
Scholes results. Suppose, therefore, that the vector of stock prices S =(
S1, S2, . . . , Sd

)′ evolves according to the equations

dSi
t = Si

t

⎛⎝µidt +
d∑

j=1

λijdW j
t

⎞⎠ , (7.43)

where µ =
(
µ1, µ2, . . . , µd

)
and Λ = (λij) are constant. The discounted

stock price ξ is then given by (7.40).
Consider a contingent claim that consists of d European call options

with expiry dates T1 ≤ T2 ≤ · · · ≤ Td and exercise prices c1, c2, . . . , cd,
respectively. Then

ψ (T1, T2, . . . , Td) =
d∑

k=1

ψk (ξ0,Tk
(x0)) =

d∑
k=1

(
ξk
0,Tk

(x0) − cke−rTk
)+

.

From (7.43) we see that, with a = (aij denoting the matrix ΛΛ∗, the
Jacobian D0,t is just the diagonal matrix

D0,t =

⎡⎢⎢⎢⎢⎢⎢⎣
e

∑d
j=1 λ1jW̃ j

t − 1
2 a11t . . . 0

...
...

0 . . . e
∑d

j=1 λdjW̃ j
t − 1

2 addt

⎤⎥⎥⎥⎥⎥⎥⎦
and its inverse is

D−1
0,t =

⎡⎢⎢⎢⎢⎢⎢⎣
e−(∑d

j=1 λ1jW̃ j
t − 1

2 a11t) . . . 0

...
...

0 . . . e−(∑d
j=1 λdjW̃ j

t − 1
2 addt)

⎤⎥⎥⎥⎥⎥⎥⎦ .
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(The explicit, exponential form of the solution shows that D0,t is indepen-
dent of x0). Thus, the trading strategy φk that generates the contingent
claim ψk(ξTk

) is

φk(s)′ = Eµ
(
ψk

ξ (ξ0,Tk
(x0))D0,Tk

|Fs

)
D−1

0,s

=

⎛⎝0, . . . , 0, Ẽ

⎛⎝1{ξ0,Tk
>cke−rTk} exp

⎧⎨⎩
d∑

j=1

λkj(W̃
j
Tk

− W̃ j
s )

−1
2
akk(Tk − s)

}
|Fs

)
, 0, . . . , 0

)
,

for 0 ≤ s ≤ Tk. Note that φk(s) = 0 for s > Tk (i.e., φk(s) stops at Tk).
However, from (7.43), it follows that

ξk
0,Tk

(x0) = xk
0 exp

⎧⎨⎩
d∑

j=1

λkjW̃
j
Tk

− 1
2
akkTk

⎫⎬⎭ > cke−rTk (7.44)

if and only if

d∑
j=1

λkjW̃
j
Tk

> log
(

ck

xk
0

)
+
(

1
2
akk − r

)
Tk = αk,

say; that is, if and only if

d∑
j=1

λkj(W̃
j
Tk

− W̃ j
s ) > αk −

d∑
j=1

λkjW̃
j
s .

Now, under P̃ ,
∑d

j=1 λkj(W̃
j
Tk

−W̃ j
s ) is normally distributed with mean

zero and variance akk(Tk −s) and is independent of Fs. Therefore, the non-
zero component of φk(s) is∫ ∞

αk−∑d
j=1 λkjW̃ j

s

exp
{

x − 1
2
akk(Tk − s)

}
× exp

{ −x2

2akk(Tk − s)

}
dx√

2πakk(Tk − s)

=
∫ ∞

αk−
∑d

j=1 λkjW̃ j
s

exp
{−[x − akk(Tk − s)]2

2akk(Tk − s)

}
dx√

2πakk(Tk − s)

=
∫ ∞

αk−∑
λkjW̃

j
s −akk(Tk−s)√

akk(Tk−s)

e− 1
2 y2 dy√

2π

= Φ

(
−αk +

∑
λkjW̃

j
s − akk(Tk − s)√

akk(Tk − s)

)
.
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Again from (7.44) we have

d∑
j=1

λkjW̃
j
s = log

(
ξk
0,s

xk
0

)
xk

0 +
1
2
akks,

which together with (7.44) gives

φk(x) =

⎛⎜⎜⎝0, . . . , 0, Φ

⎛⎜⎜⎝ log
(

ξk
0,s(X0)

ck

)
− 1

2akk(Tk − s) + rTk√
akk(Tk − s)

⎞⎟⎟⎠ , 0, . . . , 0

⎞⎟⎟⎠
′

or, in terms of the (non-discounted) price Sk
s ,

φk(s) =

⎛⎝0, . . . , 0, Φ

⎛⎝ log
(

Sk
s

ck

)
− 1

2 (akk − r)(Tk − s)√
akk(Tk − s)

⎞⎠ , 0, . . . , 0

⎞⎠′

(7.45)
for 0 ≤ s ≤ Tk. Therefore, the trading strategy φ generating

ψ(T1, T2, . . . , Tk) =
d∑

k=1

ψk(ξTk
)

can be written, by a minor abuse of notation, as φ(s) = (φ1(s), . . . , φd(s))
′
,

where

φk(s) = 1{s≤Tk}Φ

⎛⎝ log
(

Sk
t

ck

)
−
( 1

2akk − r
)
(Tk − s)√

akk(Tk − s)

⎞⎠ . (7.46)

Finally, we calculate the price of the claim

Eµ (ψ (T1, T2, . . . , Td)) =
d∑

k=1

Eµ
(
ψk(ξTk

)
)

similarly. Indeed,

d∑
k=1

Eµ
(
ψk(ξTk

)
)

=
d∑

k=1

Eµ
(
ξk
Tk

− cke−rTk
)+

=
d∑

k=1

Eµ
[
1{∑d

j=1 λkjW̃ j
Tk

>αk

}

×
(
Z0 exp

⎧⎨⎩
d∑

j=1

λkjW̃
j
Tk

− 1
2
akkTk

⎫⎬⎭− cke−rTk

)]
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=
d∑

k=1

Sk
0 Φ

⎛⎝ log
(

Sk
0

ck

)
+ ( 1

2akk + r)Tk
√

akkTk

⎞⎠
− cke−rTkΦ

⎛⎝ log
(

Sk
0

ck

)
+ ( 1

2akk + r)Tk
√

akkTk

−
√

akkTk

⎞⎠
(where we have used ξk

0 = Sk
0 for k = 1, 2, . . . , d). When d = 1, the above

result reduces to the well-known Black-Scholes formula.
The following two exercises serve to introduce two further options closely

related to the call and put.

Exercise 7.7.3. A binary call option with strike K pays $1 if ST > K and
0 otherwise. Show that, under Black-Scholes dynamics for the stock price
S, the value of the binary call at time t ≤ T is given by

BC(S, K, T − t) = e−r(T−t)Φ
(

d2

(
er(T−t)

K

))
.

Hence verify that

∂C

∂S
(S, K, T − t) =

1
S

[C(S, K, T − t) + KBC(S, K, T − t)].

Explain how this provides a hedge for the call.

Exercise 7.7.4. Write Ct,T (K), Pt,T (K) for the Black-Scholes prices at time
t ≤ T of European call and put options with expiry T and strike K. Cal-
culate max[Ct,T (K), Pt,T (K)].

A chooser option gives the holder the right to choose either the call or
the put at time t. What is the rational price (at time 0) of such a chooser
option for the above call and put?

7.8 Barrier Options

Consider a standard Brownian motion (Bt)t≥0 defined on (Ω,F, P ). The
filtration (Ft) is that generated by B. Recall that Bt is normally dis-
tributed, and

P (Bt < x) = Φ
(

x√
t

)
.

Therefore

P (Bt ≥ x) = 1 − Φ
(

x√
t

)
= Φ

(
− x√

t

)
.

For a real-valued process X, we shall write

MX
t = max

0≤s≤t
Xs, mX

t = min
0≤s≤t

Xs.
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Figure 7.1: Reflection principle

If X is defined by
Xt = µt + σBt, (7.47)

then

P (Xt < x) = Φ
(

x − µt

σ
√

t

)
and

−Xt = (−µ)t + σ(−Bt).

The process (−Bt) is also a standard Brownian motion, so −X has the
same form as X but with µ replaced by −µ. Since mX = −M−X , we shall
consider only MX .

Consider the event{
BT < b, MB

T > c
}

for T > 0.

For each path that hits level c before time T and ends up below b at time
T there is, by the ‘reflection principle’ (see Figure 7.1), an equally probable
path that hits level c and ends up above 2c − b at time T. Therefore

P
(
BT < b, MB

T > c
)

= P (BT > 2c − b) = Φ
(

b − 2c√
T

)
.

Let us calculate the joint distribution function of BT and MB
T ,

FB(T, b, c) = P
(
BT < b, MB

T < c
)

= P (BT < b) − P
(
BT < b, MB

T > c
)

= Φ
(

b√
T

)
− Φ

(
b − 2c√

T

)
.
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For c < 0 and b < 0, FB(T, b, c) = 0. For c > 0, B ≥ c, FB(T, b, c) =
Φ
(

c√
T

)
− Φ

(
−c√

T

)
.

Differentiating in (b, c), we find that the random variable (BT , MB
T ) has

the bivariate density

fB(T, b, c) =
2(2c − b)

T
√

T
φ

(
b − 2c√

T

)
. (7.48)

Consider now the process X defined by Xt = µt + Bt. Introduce the
exponential process

Λt = exp
{

−µBt − 1
2
µ2t

}
and define a new measure Pµ by setting

dPµ

dP

∣∣∣∣
Ft

= Λt.

Suppose that c ≥ 0 and b ≤ c. Then, from Girsanov’s theorem, under
Pµ, Xt is a standard Brownian motion and (XT , MX

T ) has the same dis-
tribution under Pµ as (BT , MB

T ) has under P. Then, writing Eµ (·) for
expectation with respect to Pµ and writing A =

{
Xt < b, MX

t < c
}

, we
obtain

FX(T, b, c) = E (1A)

= Eµ
(
Λ−1

T 1A

)
= Eµ

(
exp
{

µXt − 1
2
µ2T

}
1A

)
.

Under Pµ, the process X is a standard Brownian motion, so, if f is given
by (7.48), then

FX(T, b, c) =
∫ c

0

∫ b

−∞
exp
{

µz − 1
2
µ2T

}
f(T, z, y)dzdy

=
∫ b

−∞
exp
{

µz − 1
2
µ2T

}
1√
T

[
φ

(
z√
T

)
− φ

(
z − 2c√

T

)]
dz

=
∫ 0

−∞
exp
{

µ(b + z) − 1
2
µ2T

}
1√
T

[
φ

(
b + z√

T

)
− φ

(
b + z − 2c√

T

)]
dz

= exp
{

µb − 1
2
µ2T

}
· (Ψ(b) − Ψ(b − 2c)) , (7.49)

where

Ψ(b) =
1√
T

∫ 0

−∞
exp {µz} · φ

(
b + z√

T

)
dz
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=
1√
2πT

∫ 0

−∞
exp

{
µz −

(
b + z

T

)2
}

dz

= exp
{

−µb +
1
2
µ2T

}∫ 0

−∞

1√
T

φ

(
b + z − µT√

T

)
dz

= exp
{

−µb +
1
2
µ2T

}
Φ
(

b − µT√
T

)
. (7.50)

Substituting (7.50) into (7.49), we see that

FX(T, b, c) = Φ
(

b − µT√
T

)
− e2µcΦ

(
b − 2c − µT )√

T

)
. (7.51)

Once again, differentiating in (b, c), we find that the random variable
(XT , MX

T ) has the bivariate density

fX(T, b, c) =
2(2c − b)

T
√

T
φ

(
2c − b√

T

)
· eµb− 1

2 µ2T .

Note that the processes (µt + σBt) and (µt − σBt) have the same law.
Hence we consider the process

Yt = µt + σBt for σ > 0.

Write FY (T, b, c) = P
(
YT < b, MY

T < c
)
. Consider

X̂t = σ−1Yt =
µ

σ
t + Bt. (7.52)

Then

P
(
YT < b, MY

T < c
)

= P

(
X̂(T ) <

b

σ
, M X̂(T ) <

c

σ

)
= Φ

(
b − µT

σ
√

T

)
− e2µcσ−2

Φ
(

b − 2c − µT

σ
√

T

)
(7.53)

from (7.51). Furthermore, (YT , MY
T ) has bivariate density

fY (T, b, c) =
2(2c − b)
σT

√
T

φ

(
2c − b

σ
√

T

)
exp
{(

µb − 1
2
µ2T

)
σ−2
}

. (7.54)

These formulas enable us to derive the distribution of the first hitting
time of level y > 0.

Lemma 7.8.1. If τ(y) = inft≥0 {t : Yt ≥ y}, then

P (τ(y) > T ) = Φ
(

y − µT

σ
√

T

)
− exp

{
2µy

σ2

}
Φ
(−y − µT

σ
√

T

)
.
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Proof. Clearly

{ω : τ(y)(ω) > t} =
{
ω : MY

t (ω) < y
}

,

so that

P (τ(y) > T ) = P
(
ω : MY

t (ω) < y
)

= P
(
ω : Yt < y, MY

t < y
)

= FY (t, y, y),

and the result follows.

Barrier Options in the Black-Scholes Model

Consider again the situation with two assets, the riskless bond

S0
t = ert

and a risky asset S1 with dynamics

dS1
t = S1

t (µdt + σdBt) .

(Bt) is a standard Brownian motion on a probability space (Ω,F, P ).
Consider the risk-neutral probability P θ and the P θ-Brownian motion W θ

given by
dW θ

t = θdt + σdBt.

Here θ = r−µ
σ . Under P θ,

dS1
t = S1

t (rdt + σdW θ
t ),

so that

S1
t = S1

0 exp
{(

r − σ2

2

)
t + σW θ

t

}
= S1

0 exp {Yt} ,

where

Yt =
(

r − σ2

2

)
t + σW θ

t .

Write

S
1
T = max

{
S1

t : 0 ≤ t ≤ T
}

, S1
T = min

{
S1

t : 0 ≤ t ≤ T
}

.

Clearly, with

MY
T = max {Yt : 0 ≤ t ≤ T} , mY

T = min {Yt : 0 ≤ t ≤ T} ,

we have

S
1
T = S1

0 exp
{
MY

T

}
, S1

T = S1
0 exp

{
mY

T

}
.
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Lemma 7.8.2. Write, for given H > K > 0,

d1 =
log
(

K
S1

0

)
−
(
r − σ2

2

)
T

σ
√

T
, d2 =

log
(

KS1
0

H2

)
−
(
r − σ2

2

)
T

σ
√

T
.

Then

P θ
(
S1

T ≤ K, S
1
T ≤ H

)
= Φ(d1) −

(
H

S

) 2r
σ2 −1

Φ(d2).

Proof. We have, by continuity,

P θ(S1
T ≤ K, S

1
T ≤ H) = P θ(S1

T < K, S
1
T < H)

= P θ

(
YT ≤ log

(
K

S1
0

)
, MY

T ≤ log
(

H

S1
0

))
.

The result follows from (7.53).

Remark 7.8.3. We assume that H > K because if H ≤ K, then

P θ
(
S1

T ≤ K, S
1
T ≤ H

)
= P θ

(
S1

T ≤ H, S
1
T ≤ H

)
,

which is a special case. Furthermore, if S1
0 > H, this probability is zero.

Lemma 7.8.4. Write

d3 =
log
(

S1
0

K

)
+
(
r − σ2

2

)
T

σ
√

T
, d4 =

log
(

H2

S1
0K

)
+
(
r − σ2

2

)
T

σ
√

T
.

Then

P θ
(
S1

T ≥ K, S1
T ≥ H

)
= Φ(d3) −

(
H

S

) 2r
σ2 −1

Φ(d4).

(Note that d3 = d− as defined in (2.31).)

Proof. We have

P θ(S1
T ≥ K, S1

T ≥ H) = P θ

(
YT ≥ log

(
K

S1
0

)
, mY

T ≥ log
(

H

S1
0

))
= P θ

(
−YT ≤ log

(
S1

0

K

)
, M−Y

T ≤ log
(

S1
0

H

))
.

Now

−Yt =
(

−r +
σ2

2

)
t + σ(−Bt),

and so has the same form as Y, because −B is a standard Brownian motion.
The result follows from (7.53).
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Remark 7.8.5. Here K > H and S1
0 > H. If K ≤ H and S1

0 < H, the same
result is obtained with K = H in (7.53). If S1

0 < H, then the probability
is zero.

Lemma 7.8.6. Write

d5 =
log
(

K
S1

0

)
−
(
r + σ2

2

)
T

σ
√

T
, d6 =

log
(

KS1
0

H2

)
−
(
r + σ2

2

)
T

σ
√

T
.

Then

Eθ
(
S1

T 1{S1
T ≤K,S

1
T ≤H}

)
= S1

0 exp {rT}
(

Φ(d5) −
(

H

S

)1+ 2r
σ2

Φ(d6)

)
.

Proof. Write

Γ(t) = exp
{

σW θ
t − 1

2
σ2t

}
,

and define a new probability P θ by setting

dP σ

dP θ

∣∣∣∣
FT

= Γ(T ).

Girsanov’s theorem states that, under Pσ, the process W σ is a standard
Brownian motion, where

dW σ = dW θ − σdt.

Consequently, under Pσ,

Yt =
(

r +
σ2

2

)
t + σW σ(t).

Therefore, setting

A =
{

S1
t ≤ K, S

1
T ≤ H

}
, B =

{
YT ≤ log

(
K

S1
0

)
, MY

T ≤ log
(

H

S1
0

)}
,

we obtain

Eθ
(
S1

T 1A

)
= S1

0erT Eθ (Γ(T )1B) = S1
0erT Eσ (1B) .

The result follows from Lemma 7.8.2.

Lemma 7.8.7. Write

d7 =
log
(

S1
0

K

)
+
(
r + σ2

2

)
T

σ
√

T
, d8 =

log
(

H2

KS1
0

)
+
(
r + σ2

2

)
T

σ
√

T
.

Then

Eθ
(
S1

T 1{S1
T ≥K,S1

T ≥H}
)

= S1
0erT

(
Φ(d7) −

(
H

S1
0

)1+ 2r
σ2

Φ(d8)

)
.
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(Note that d7 = d+, as defined in (2.31).)

Proof. The proof is similar to that of Lemma 7.8.6.

In the following, we determine the expressions for prices V (0) as func-
tions f(S, T ) of the price S = S1

0 at time 0 of the risky asset and the time
T to expiration. The price at any time t < T when the price is S1

t is then

V (t) = f(S1
t , T − t).

Definition 7.8.8. A down and out call option with strike price K, ex-
piration time T , and barrier H gives the holder the right (but not the
obligation) to buy S1 for price K at time T provided the price S1 at no
time falls below H (in which case the option ceases to exist).

Its price is sometimes denoted Ct,T (K|H ↓ O), and it corresponds to a
payoff

(
K − S1

T

)+
1{S(T )≥H}. The ↓ denotes ‘down’ and the O ‘out’. From

our pricing formula, we obtain, setting U = S1
T ≥ K, S1

T ≥ H,

C0,T (K|H ↓ O)

= e−rT Eθ
((

K − S1
T

)+
1{S1

T ≥H}
)

= e−rT Eθ
(
S1

T 1U

)
− e−rT KEθ (1U )

= S1
0

(
Φ(d7) −

(
H

S1
0

)1+ 2r
σ2

Φ(d8)

)

− e−rT K

(
Φ(d3) −

(
H

S1
0

) 2r
σ2 −1

Φ(d4)

)
(7.55)

by Lemmas 7.8.4 and 7.8.7.

Definition 7.8.9. An up and out call option gives the holder the right
(but not the obligation) to buy S1 for strike price K at time T provided
that the price S1

t does not rise above H (in which case the option ceases
to exist).

Its price is denoted by Ct,T (K|H ↑ O), and it corresponds to payoff(
K − S1

T

)+
1{S

1
T ≤H}. We have, setting V =

{
S1

T ≥ K, S
1
T ≤ H

}
,

C0,T (K|H ↑ O) = e−rT Eθ
((

S1
T − K

)
1V

)
= e−rT Eθ

(
S1

T 1V

)
− e−rT KEθ (1V ) .

Now, with p = 0 or p = 1, we have

Eθ
((

S1
T

)p
1V

)
= Eθ

((
S1

T

)p
1{S

1
T ≤H}

)
− Eθ

((
S1

T
p
)
1{S1

T <K,S
1
T ≥H}

)
,
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and
Eθ
((

S1
T

)p
1{S

1
T ≤H}

)
= Eθ

((
S1

T

)p
1

S1
T ≤H,S

1
T ≤H

)
.

The price C0,T (K|H ↑ O) is therefore again given by the formula of
Lemmas 7.8.4 and 7.8.6.

Definition 7.8.10. An up and in call option gives the holder the right (but
not the obligation) to buy S1 at time T for strike price K provided that at
some time before T the price S1

t becomes greater than H; otherwise, the
option does not yet exist.

Its price is denoted by Ct,T (K|H ↑ I), and it corresponds to a payoff(
K − S1

T

)+
1{S

1
T ≥H}. Now

Ct,T (K|H ↑ I) + Ct,T (K|H ↑ O) = Ct,T (K),

where Ct,T (K) is the usual European call option price given by

Ct,T (K) = S1
t N(d+(t)) − Ke−r(T−t)N(d−(t)).

Here, as before,

d+(t) =
log
(

S1
t

K

)
+
(
r + σ2

2

)
(T − t)

σ
√

T − t
, (7.56)

d−(t) =
log
(

S1
t

K

)
+
(
r − σ2

2

)
(T − t)

σ
√

T − t
. (7.57)

Definition 7.8.11. A down and in call option gives the holder the right
(but not the obligation) to buy S1 for a strike price K at time T provided
that at some time t ≤ T the price S1

t fell below H; otherwise, the option
does not yet exist.

Its price is denoted by Ct,T (K|H ↓ I), and it corresponds to a payoff(
K − S1

T

)+
1{S1

T ≤H}. Again,

Ct,T (K|H ↓ I) + Ct,T (K|H ↓ O) = Ct,T (K).

Remark 7.8.12. All the corresponding put options can be defined and
priced similarly. To give one example, the down and out put has a price
Pt,T (K|H ↓ O) and corresponds to a payoff

(
K − S1

T

)+
1{S1

T ≥H}. Then

(
K − S1

T

)+
1{S1

T ≥H} =
(
S1

T − K
)+

1{S1
T ≥H} −

(
K − S1

T

)
1{S1

T ≥H}

so that

P0,T (K|H ↓ O)
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= C0,T (K|H ↓ O) − e−rT Eθ
(
S1

T 1{S1
T ≥H}

)
+ Ke−rT Eθ

(
1{S1

T ≥H}
)

.

Then we have

Eθ
((

S1
T

)p
1{S1

T ≥H}
)

= Eθ
((

S1
T

)p
1{S1

T ≥H,S1
T ≥H}

)
for p = 0 or p = 1, and the option price follows from Lemmas 7.8.4
and 7.8.6.

Again we have the identity

Pt,T (K|H ↓ O) + Pt,T (K|H ↓ I) = Pt,T (K),

where Pt,T (K) is the usual European put price given by the Black-Scholes
formula. In fact, from call-put parity,

Ct,T (K) − Pt,T (K) = S1
t − e−r(T−t)K

Definition 7.8.13. A lookback call option corresponds to a payoff function
S1

T −S1
T , and a lookback put option corresponds to a payoff function S

1
T −S1

T .

The price of a lookback put at time 0 is

Vp(0) = e−rT Eθ
(
S

1
T − S1

T

)
= e−rT S1

0
(
Eθ
(
exp
{
MY

T

})
− erT

)
,

where

Yt =
(

r − σ2

2

)
t + σW θ

t .

From (7.55) the density of the random variable MY
T is, with µ = r − σ2

2 ,

fM (c) =
∫ ∞

−∞
fY (T, b, c)db

= φ

(
c − µT

σ
√

T

)
− 2µ

σ2 e
2µc

σ2 Φ
(−c − µT

σ
√

T

)
+ e

2µc

σ2 φ

(
c + µT

σ
√

T

)
.

Therefore, the lookback put price at time 0 is

Vp(0) = S1
0

(
e−rT

∫ ∞

−∞
fM (c)dc − 1

)
.

Completing the square and integrating, we obtain, with d = 2r+σ2

2σ
√

T
,

Vp(0) = S1
0

(
Φ(−d) + e−rT Φ

(
−d + σ

√
T
)

+
σ2

2r
e−rT

(
−Φ
(

d − 2r

σ

√
T

)
+ e−rT Φ(d)

))
.

Similarly, it can be shown (see [49]) that the price of the lookback call
option at time 0 is

VC(0) = S1
0

(
Φ(d) − e−rT Φ

(
−d + σ

√
T
)

+
σ2

2r
e−rT

(
Φ
(

−d +
2r

σ

√
T

)
− e−rT Φ(−d)

))
.
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7.9 The Black-Scholes Equation

In the Black-Scholes framework, the riskless bond has a price S0
t = erT and

the risky asset has dynamics

dS1
t = S1

t

(
rdt + σdW θ

t

)
under the risk-neutral measure P θ. Consider a European claim with expi-
ration time T of the form h(ST ). Here h is C2 and |h(S)| ≤ K(1 + |S|β)
for some β > 0.

We have shown that the price of this option at time t is

Vt,T

(
S1

t

)
= Eθ

(
e−r(T−t)h

(
S1

T

)
|Ft

)
= Eθ

(
e−r(T−t)h

(
S1

T

) ∣∣S1
t

)
.

Consequently,

e−rtVt,T

(
S1

t

)
= Eθ

(
e−rT h

(
S1

T

)
|Ft

)
,

and hence
(
e−rtVt,T

(
S1

t

))
is an

(
Ft, P

θ
)
-martingale. Now

S1
T = S1

T exp
{(

r − σ2

2

)
(T − t) + σ(W θ

T − W θ
t )
}

,

and h is C2, so (by differentiating under the expectation) V·,T (·) is a C1,2-
function. Applying the Itô rule, we obtain

e−rtVt,T

(
S1

t

)
= V0,T (S1

0) +
∫ t

0

(
∂V

∂u
+ rS1

u

∂V

∂S
+

σ2

2
(
S1

u

)2 ∂2V

∂S2 − rV

)
(u, S1

u)e−rudu

+
∫ t

0
σS1

u

∂V

∂S
(u, S1

u)dW θ
u . (7.58)

Note that
(
e−rtVt,T

(
S1

t

))
is a martingale; consequently the du-integral

in (7.58) must be the identically zero process.
Consequently, the European option price Vt,T (S) satisfies the partial

differential equation

LV =
∂V

∂t
+ rS

∂V

∂S
+

σ2

2
S2 ∂2V

∂S2 − rV = 0 for t ∈ [0, T ] (7.59)

with terminal condition VT,T (S) = h(ST ). This is often called the Black-
Scholes equation.

The representation of the option price, together with

Vt,T (S) = Eθ
(
e−r(T−t)h

(
S1

T

) ∣∣S1
t = S

)
,

corresponds to the well-known Feynman-Kac formula (see [194]). As the so-
lution (7.59), with the boundary condition VT,T (S) = H(S), is unique, the
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partial differential equation approach to option pricing investigates numer-
ical solutions to this equation. However, for the vanilla European option,
with h(S) = (S − K)+ for a call or (K − S)+ for a put, the exact solution
is given by the Black-Scholes formula.

It is of interest to recall the original derivation of equation (7.59) by
Black and Scholes [27] using a particular replicating portfolio in which the
random component of the dynamics disappears. This approach has become
widely known as delta-hedging . The terminology will become clear shortly.

Suppose, as above, that Vt,T (S) represents the value at time t of a
European call with expiration time T when the value of the underlying S1

at time t is given by S. Consider the portfolio constructed at time t by
buying one call for Vt,T (S) and shorting ∆ units of S. The value of this
portfolio is

π(S, t) = Vt,T (S) − ∆S.

Recall that the underlying stock has dynamics

dS1 = µS1
t dt + σS1

t dBt

under the original measure P. Applying the Itô differentiation rule, we
obtain

dVt,T (S) =
∂V

∂t
dt +

∂V

∂S
dS +

1
2

∂2V

∂S2 σ2S2dt

=
(

∂V

∂t
+

1
2

∂2V

∂S2 σ2S2
)

dt +
∂V

∂S
dS.

If the portfolio π(S, t) is self-financing, we have

dπ =
(

∂V

∂t
+

1
2

∂2V

∂S2 σ2S2
)

dt +
∂V

∂S
dS − ∆dS. (7.60)

The right-hand side contains terms multiplying dt and the term (∂V
∂S −∆)dS,

which represents the random part of the increment dπ. If ∆ is chosen to
equal ∂V

∂S , this random term vanishes and we have

dπ =
(

∂V

∂t
+

1
2

∂2V

∂S2 σ2S2
)

dt. (7.61)

That is, the value of this increment is known. Consequently, to avoid
arbitrage, it must be the same as what we would obtain by putting our
money (of value π) in the bank. In other words,

dπ = rπdt = r(V − ∆S)dt = r

(
V − ∂V

∂S
S

)
dt =

(
∂V

∂t
+

1
2

∂2V

∂S2 σ2S2
)

dt.

(7.62)
Equating the right-hand sides of (7.61) and (7.62) shows that V = Vt,T (S)
must satisfy the partial differential equation

1
2

∂2V

∂S2 σ2S2 + rS
∂V

∂S
+

∂V

∂t
− rV = 0, (7.63)
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with the terminal boundary condition VT,T (S) = (S − K)+.
This is the Black-Scholes equation (7.59). To solve it, and hence derive

the Black-Scholes formula, one can apply a sequence of transformations
to reduce this inhomogeneous linear parabolic equation to the well-known
heat equation. We indicate the main steps in the solution. First write

V (S, t) = e−r(T−t)U(S, t),

so that

∂V

∂t
= e−r(T−t)

(
∂U

∂t
+ rU

)
.

Therefore (7.63) becomes

1
2

∂2U

∂S2 σ2S2 + rS
∂U

∂S
+

∂U

∂t
= 0. (7.64)

Now let τ = T − t, so that ∂U
∂τ = −∂U

∂t ; hence

∂U

∂τ
=

1
2

∂2U

∂S2 σ2S2 + rS
∂U

∂S
.

Setting ξ = log S, so that S = eξ, and hence 1
S = e−ξ, leads to the equation

∂U

∂τ
=

1
2
σ2S2 ∂2U

∂ξ2 +
(

r − 1
2
σ2
)

∂U

∂ξ
.

Note here that S ≥ 0 corresponds to ξ ≥ R and that the final equation
has constant coefficients. The translation x = ξ +

(
r − 1

2σ2
)
τ and writing

U(S, t) = W (x, τ) now suffices to reduce (7.64) to

∂W

∂τ
=

1
2
σ2 ∂2W

∂x2 , (7.65)

which is a variant of the heat equation. Looking for fundamental solu-
tions of this equation in the form W (x, τ) = ταf(η), with η = x−x′

2β and∫
R

ταf(η)dx independent of τ , leads one to α = β = 1
2 and solutions of the

form
Wf (x, τ ; x′) =

1√
2πτσ

e− (x−x′)2
22τ . (7.66)

Here the mean of this normal density has still to be chosen. The function
W behaves as a Dirac δ-function when x = x′ and ‘flattens’ smoothly as
x moves away from x. With a final condition of the form V (S, T ) = h(ST )
for a European claim, we can now write W (x, 0) = h(ex) and show by
differentiation that

W (x, τ) =
∫ ∞

−∞
Wf (x, τ ; x′)h(ex′

)dx′. (7.67)
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Retracing our steps, we then find that, with x′ = log S′,

V (S, t) =

e−r(T − t)
σ
√

2π(T − t)

∫ ∞

0
exp

{
− log S

S′ +
(
r − 1

2σ2
)
(T − t)2

2σ2(T − t)

}
h(S′)

dS′

S′ .

For the European call and put, this value function reduces to the familiar
ones derived earlier.
Remark 7.9.1. Our derivation of option pricing formulas via Itô calculus
was made under the assumption that h is C2. Approximating by C2 func-
tions establishes the result for payoff functions h that are not necessarily
C2 in S. In particular, the European call option Ct,T (K)(S) is a solution
of (7.59) with terminal condition

CT,T (K)(S) = (S − K)+.

Now, if V (t, S) satisfies LV = 0, one may check that L(S2− 2r
σ2 V (t, C

S )) =
0 for any constant C > 0.

The partial differential equation methods can also be applied to barrier
options. From formula (7.55), we see that the price of the down and out
option is, in fact,

Ct,T (K|H ↓ O)(S) = Ct,T (K)(S) −
(

H

S

)−1+ 2r
σ2

Ct,T (K)
(

H2

S

)
.

Consequently, Ct,T (K|H ↓ O)(S) is a solution of (7.59) satisfying appro-
priate boundary conditions.

There are analogous representations for the other barrier options.

7.10 The Greeks

For the European call option, the value function has the form

Vt,T (S) = SΦ(d+(t)) − Ke−r(T−t)Φ(d−(t)), (7.68)

where d+(t) and d−(t) are defined by (7.56) and (7.57), respectively.
The European put price is, similarly,

Pt,T (S) = Ke−r(T−t)Φ(−d−(t)) − SΦ(−d+(t)).

We investigate the sensitivity of these prices with respect to the param-
eters appearing in these equations. The purpose of hedging is to reduce (if
not eliminate) the sensitivity of the value of a portfolio to changes in the
underlying by means of diversifying the position. Thus analysis of the rate
of change in V with respect to the underlying is fundamental. More gen-
erally, we shall add to this by considering the nature of the various partial
derivatives of the value function V with respect to the parameters occur-
ring in the Black-Scholes formulas. We begin by studying the sensitivity
to changes in the underlying, S.



218 CHAPTER 7. CONTINUOUS-TIME EUROPEAN OPTIONS

Delta

Differentiation with respect to S in the above expressions (which must be
done with some care since d+(t) also depends on S!) yields

∆C =
∂V

∂S
(S, t) = Φ(d+(t))

for the delta of the call and

∆P =
∂P

∂S
(S, t) = −Φ(−d+(t)

for the delta of the put with the same strike and expiry.

Exercise 7.10.1. Carry out the differentiation to verify these results. Hint:
Much effort can be avoided by observing that

1
2
(d+(t)2 − d−(t)2) = log

(
St

K

)
+ r(T − t).

Remark 7.10.2. Note that since Φ(−x) = 1 − Φ(x), it follows at once that
∆P = ∆C − 1. This relation is also immediate from call-put parity.

Clearly, each ∆ measures the sensitivity of the value function V with re-
spect to the price of the underlying, S. Delta-hedging is (at least in theory)
the simplest way to eliminate risk: rebalancing the portfolio by adjust-
ing the stock holdings in line with changes in the partial derivative ∂V

∂S
will provide a risk-neutral position at each time point. Perfect hedging is
only possible in idealised markets, but the technique is used in practice
to indicate the direction in which investment decisions should be taken.
Note that we can also use it for a portfolio of options since the linearity
of differentiation will ensure that if ∆i corresponds to the value function
Vi of the ith option, then the whole portfolio V =

∑n
i=1 Vi has ∆ equal to

∂V
∂S =

∑n
i=1 ∆i.

Gamma

The gamma, Γ, of the option value enters into more sophisticated hedging
strategies. It is the second derivative of the option value with respect to the
underlying, i.e., writing φ(x) = 1√

2π
e− x2

2 for the standard normal density,
we have

ΓC =
∂2V

∂S2 =
1

Sσ
√

T − t
φ(d+(t)).

For the European put, we must have ΓP = ΓC since ∆P = ∆C − 1.
Heuristically, the gamma measures ‘how often’ we need to adjust ∆ to

ensure that it will compensate for changes in the underlying, S, and also by
how much. Keeping Γ near 0 helps one to keep the amounts and frequency
of hedging under control, thus reducing the transaction costs associated
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with the hedging strategy. Because ΓC is strictly positive, it also follows
that the price of the call option is a strictly convex function of the price of
the underlying.

Theta

The theta, Θ, measures the sensitivity of the option price to the expiration
time T. For the European call, we have

ΘC =
∂V

∂T
=

−Sφ(y1(T − t))σ
2
√

T − t
− rKe−r(T−t)Φ(d−(t)).

Likewise, for the European put,

ΘP =
∂P

∂T
=

−Sφ(y1(T − t))σ
2
√

T − t
+ rKe−r(T−t)Φ(−d−(t)).

Note that Θ is always negative for European calls. For this reason,
theta is often called the time decay of the option (even though the value of
a put does not necessarily decay over time). This parameter is frequently
expressed in terms of the time to maturity, that is, V is then differentiated
with respect to τ = T − t instead.

Since Φ(−x) = 1 − Φ(x), it follows from the above expressions that

ΘP = ΘC + rKe−r(T−t). (7.69)

We can, again, deduce this relation in much simpler fashion without calcu-
lating these values.
Exercise 7.10.3. Deduce the identity (7.69) from call-put parity.

The decay of the option value as the time to expiry goes to 0, even
when the price of the underlying remains constant, complements the sen-
sitivity of the option value to changes in S. Changes in option value are
thus determined (if volatility and the riskless rate remain constant) by the
phenomenon of time decay and by ∆.

Rho

The sensitivity of the option price to changes in the riskless short rate r is
denoted by ρ. For the European call, it is

ρC =
∂V

∂r
= (T − t)Ke−r(T−t)Φ(d−(t)),

and for the European put,

ρP =
∂P

∂r
= −(T − t)Ke−r(T−t)Φ(−d−(t)).

Thus ρ is always positive for calls and negative for puts. This fits with
the intuition that stock prices will normally rise with rising external interest
rates.
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Vega

The sensitivity of the option price to changes in the volatility σ is called
vega, although there is no such Greek letter. At one time, this derivative
was denoted by kappa, κ. For the European call, we have

∂V

∂σ
= S

√
T − tφ(d+(t)),

while, for the put,

∂P

∂σ
= S

√
T − tφ(−d+(t)).

Note that since φ(−x) = φ(x) these two values are actually equal (i.e.,
the vega of a European put equals that of the European call with the
same strike and expiry). Moreover, vega declines as t approaches T and is
proportional to S. It turns out that vega peaks when the option is at the
money (i.e., S = K) but since the payoff is small for values of ST near K,
it is necessary to normalise vega by the option value (i.e., consider relative
price changes) in order to draw significant conclusions about the sensitivity
of an investment to changes in volatility.

Nevertheless, it is instructive in the Black-Scholes setting to compare
risk and return for options against holdings in the stock, as was done for
the single-period binomial model in Chapter 1. We show that, just as in
the discrete setting, the volatility of the call is proportional to that of the
stock and that the constant of proportionality is again bounded below by
1.

To determine the volatility of the call, we first apply the Itô formula to
the value process V = Vt,T (S) as in (7.68). We obtain

dV =
∂V

∂t
dt +

∂V

∂S
dS +

1
2
σ2S2 ∂2V

∂S2 dt

=
(

∂V

∂t
+

∂V

∂S
µS +

1
2
σ2S2 ∂2V

∂S2

)
dt +

∂V

∂S
σSdB, (7.70)

which shows that the volatility of the call (i.e., the coefficient of the random
term in dV

V ) should be taken to be

σC =
1
V

σS
∂V

∂S
=

S

V
∆σS , (7.71)

where we have written σS for σ, the volatility of the stock price S. This
shows that the two volatilities are proportional, with EC = S

V ∆ as the
constant of proportionality. Clearly, EC > 1, since

Stφ(d+(t))
Stφ(d+(t)) − Ke−r(T−t)φ(d−(t))

> 1.
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Moreover, we can rewrite (7.70) in the form dVt = Vt(µCdt + σCdBt),
where

µC =
1
Vt

(
∂Vt

∂t
+

∂Vt

∂St
µSt +

1
2
σ2S2

t

∂2Vt

∂S2
t

)
.

By the Black-Scholes equation, this can be written as

µC =
1
Vt

(
rVt − rSt

∂Vt

∂St
+ µSt

∂Vt

∂St

)
=

St

Vt

∂Vt

∂St
µ + r

(
1 − St

Vt

∂Vt

∂St

)
.

Hence, writing µS for µ and observing that EC = S
V ∆ = St

Vt

∂Vt

∂St
, we

have
µC − r = EC(µS − r). (7.72)

This is the exact analogue of equation (1.22) obtained for the single-period
binomial model.



Chapter 8

The American Put Option

8.1 Extended Trading Strategies

As in Chapter 7, we suppose there is an underlying probability space
(Ω,F, Q). The time parameter t will take values in [0, T ]. There is a fil-
tration F = (Ft) that satisfies the ‘usual conditions’ as described in Defi-
nition 6.1.1. We assume as before that the market is frictionless; that is,
there are no transaction costs or taxes, no restrictions on short sales and
trading can take place at any time t in [0, T ].

We suppose there is a savings account S0
t with constant interest rate r,

such that
dS0

t = rS0
t dt. (8.1)

As usual, we take S0(0) = 1.

In addition, we suppose there is a risky asset S1
t whose dynamics are

given by the usual log-normal equation:

dS1
t = S1

t (µdt + σdWt). (8.2)

Here, W is a standard Brownian motion on (Ω,F, Q), µ is the appreciation
rate (drift), and σ is the volatility of S1

t .

A trading strategy is an adapted process π = (π0, π1) satisfying∫ T

0

(
πi

u

)2 (
Si

u

)2
du < ∞ a.s.

The amount (πi) is the amount held, or shorted, in units of the savings
account (i = 0) or stock (i = 1). A short position in the savings account is
a loan.

A consumption process is a progressive, continuous non-decreasing pro-
cess C.

223
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What investment and consumption processes are admissible? Such a
triple of processes (π0, π1, C) is admissible if the corresponding wealth pro-
cess is self-financing. The wealth process is

Vt(π) = π0
t S0

t + π1
t S1

t .

We saw in Section 7.4 that this is self-financing if

π0
t S0

t +π1
t S1

t = π0
0 +π1

0S1
0 +
∫ t

0
π0

udS0
u +
∫ t

0
π1

udS1
u −Ct for t ∈ [0, T ] (8.3)

with C0 = 0 a.s. Note that equation (8.3) states that all changes in total
wealth come from changes in the stock price plus interest on the savings
account less the amount consumed, Ct.

For the pricing models we consider throughout this chapter, we shall
assume the existence of an EMM Q̃ without further comment. For the dy-
namics (8.1), (8.2), we have seen that the martingale measure Q̃ is defined
by setting

dQ̃

dQ

∣∣∣∣∣
Ft

= Λt = exp

{
r − µ

σ
Wt − 1

2

(
r − µ

σ

)2

t

}
.

Under Q̃, W̃t is a standard Brownian motion, where

W̃t = Wt −
(

r − µ

σ

)
t, dS1

t = S1
t (rdt + σdW̃t). (8.4)

In the remainder of this chapter we shall work under probability Q̃, so
the stock price has dynamics (8.4) and the wealth process Vt(π) satisfies

Vt(π) = V0(π) +
∫ t

0
rVu(π)du +

∫ t

0
σπ1

uS1
udW̃u − Ct a.s. (8.5)

Definition 8.1.1. A reward function ψ is a continuous, non-negative func-
tion on R+ × [0, T ]. We suppose ψ is in C1,0 and piecewise in C2,1. The
latter condition means there is a partition of R+ into intervals in the inte-
rior of which ψ is C2,1 in x. We require that, where defined, all the functions
ψ, ∂ψ

∂x , ∂2ψ
∂x2 , ∂ψ

∂t have polynomial growth as x → ∞.

Definition 8.1.2. An American option with reward ψ is a security that
pays the amount ψ(St, t) when exercised at time t.

Example 8.1.3. Recall, as in Chapter 1, that examples of American options
are the American call option, with ψ(St, t) = (St −K)+, the American put
option, with ψ(St, t) = (K − St)+, and the American straddle (bottom
version) with ψ(St, t) = |St − K|.



8.1. EXTENDED TRADING STRATEGIES 225

If one sells such a claim, one accepts the obligation to pay ψ(St, t) to
the buyer at any time t ∈ [0, T ]. The final time T is the expiration time.

Having introduced this new financial instrument, the American option,
into the market, it is expedient to extend the notion of a trading strategy.
As we shall concentrate on put options, P (x, t) = P (x) = Pt = P will
denote the value process of the American option.

Definition 8.1.4. For any stopping time τ ∈ T0,T , a buy-and-hold strategy
in the option P is a pair (π2, τ), where π2 is the process

π2(t) = k1[0,τ ](t), t ∈ [0, T ].

The associated position in P is then π2(t)P (x, t). This means that k units
of the American option security are purchased (or shorted if k < 0) at time
0 and held until time τ. Denote by Π+ (resp. Π−) the set of buy-and-hold
strategies in P for which k ≥ 0 (resp. k < 0).

Write π̂ for a triple (π0, π1, π2).
An extended admissible trading strategy in (S0, S1, P ) is then a col-

lection (π0, π1, π2, τ) such that (π0, π1) is an admissible trading strategy
in
(
S0, S1

)
, (π2, τ) is a buy-and-hold strategy in P, and, on the interval

(τ, T ], we have

π0
t = π0

τ +
π1

τS1
τ

S0
τ

+
π2

τψ(Sτ , τ)
S0

τ

, π1
t = π2

t = 0.

This means that, using the extended strategy π̂ = (π0, π1, π2), at time
τ we liquidate the stock and option accounts and invest everything in the
riskless bond (savings account). The buy-and-hold strategy (π̂, τ) is now
self-financing if, with a consumption process C, we have

π0
t S0

t + π1
t S1

t = π0
0 + π1

0S1
0 +
∫ t

0
π0

udS0
u +
∫ t

0
π1

udS1
u − Ct a.s. for t ∈ [0, τ ]

and ∫ t

τ

dCu = 0 a.s. for t ∈ (τ, T ].

That is, C is constant on (τ, T ].

Notation 8.1.5. Denote the set of extended admissible trading strategies in
(S0, S1, P ) by A.

Definition 8.1.6. There is said to be arbitrage in the market if either
there exists (π2, τ) ∈ Π+ with (π0, π1, C) such that

(π, τ) ∈ A, π0
0 + π1

0S1
0 + π2

0V0 < 0, π0
T S0

t ≥ 0 a.s. (8.6)

or, there exists (π2, τ) ∈ Π−, with (π0, π1, C), such that

(π, τ) ∈ A, π0
0 + π1

0S1
0 + π2

0V0 < 0, π0
T S0

t ≥ 0 a.s. (8.7)
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Statement (8.6) means it is possible to hold an American option and
find an exercise policy that gives riskless profits.

Conversely, statement (8.7) means it is possible to sell the American
option and be able to make riskless profits for every exercise policy option
of the buyer.

Statements (8.6) and (8.7) define arbitrage opportunities for the buyer
or seller, respectively, of an American option. Our assumption is that
arbitrage is not possible; the fundamental question is: what price should
be paid today (time t) for such an option?

Our discussion concentrates on the American put option. (We showed in
Chapter 1, using simple arbitrage arguments, that the price of an American
call on a stock that does not pay dividends is equal to the price of the
European call (see [224]).

8.2 Analysis of American Put Options

Notation 8.2.1. Let Tt1,t2 denote the set of all stopping times that take
values in [t1, t2].

Lemma 8.2.2. Consider the process

Xt = ess sup
τ∈Tt,T

Ẽ
(
e−r(τ−t)(K − Sτ )+ |Ft

)
for t ∈ [0, T ]; (8.8)

(Xt is the supremum of the random variables Ẽ
(
e−r(τ−t)(K − Sτ )t |Ft

)
for τ ∈ τt,T in the complete lattice L1(Ω,Ft, Q̃).) Then there are admissible
strategies

(
π0

t , π1
t

)
and a consumption process C such that, with Vt(π) given

by (8.5), we have
Xt = Vt(π).

Proof. Karatzas ( [182])
Define

Jt = ess sup
τ∈Tt,T

Ẽ
(
e−rτ (K − Sτ )+ |Ft

)
a.s.

Then J is a supermartingale, and, in fact, J is the smallest supermartin-
gale dominating the discounted reward (e−rτ (K − Sτ )+). The process J is
called the Snell envelope (see Chapter 5 for the discrete case).

Recall (see Remark 5.3.12, and refer for more details to [109, Chapter
8]) that a right-continuous supermartingale X is said to be of class D if the
set of random variables Xτ is uniformly integrable, where τ is any stopping
time.

Furthermore, J is right-continuous, has left limits, is regular and is
of class D (in fact J is bounded). Consequently, J has a Doob-Meyer
decomposition as the difference of a (right-continuous) martingale M and
a predictable increasing process A;

Jt = Mt − At. (8.9)
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Here M is a
(
Q̃,Ft

)
-martingale and A is a unique, predictable continuous

non-decreasing process with A0 = 0. From the martingale representation
theorem, we can write

Mt = J0 +
∫ t

0
ηudW̃u

for some progressively measurable process η with∫ T

0
η2

udu < ∞ a.s.

Consequently,

Xt = ertJt, dXt = rertJtdt + ertηtdW̃t − ertdAt.

Therefore Xt = Vt(π) if we take

π0
t = ertJt − ertσ−1ηt, π1

t = ertηtσ
−1(S1

t )−1, dCt = ertdAt. (8.10)

Optimal Stopping Times

Remark 8.2.3. Note that

Xt ≥ (K − St)+ a.s. for t ∈ [0, T ], XT = (K − ST )+ a.s. (8.11)

Also, a stopping time τ∗ is said to be optimal if

Jt = Ẽ
(
e−rτ∗

(K − Sτ∗)+ |Ft

)
.

We can now verify that the price X0 of the put option obtained in this
way is the unique price that will preclude arbitrage. First we quote results,
entirely analogous to those established in Chapter 5 for the discrete case,
that characterise optimal stopping times in this model.

Notation 8.2.4. Write

ρt = inf
{
u ∈ [t, T ] : Ju = e−ru(K − Su)+

}
.

That is, ρt is the first time in [t, T ] that J falls to the level of the discounted
reward.

From the work of El Karoui [99], we know the following.

a) ρt is the optimal stopping time on [t, T ].

b) A, in the decomposition (8.9), is constant on the interval [t, ρt].

c) The stopped process Jt∧ρt is a martingale on [t, T ].
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Theorem 8.2.5. Taking the price of the American put option at time t = 0
to be X0 is necessary and sufficient for there to be no arbitrage.

Proof. Suppose the market price of the American put option were Y0 > X0.
Consider the trading strategies π0, π1, and C given by (8.10). For any
stopping time τ ∈ T0,T , and with k = −1, consider the buy-and-hold
strategy

π2
t = −1[0,τ ](t).

Construct the extended trading strategy π̂ = (π̂0
t , π̂1

t , π̂2
t ) by setting

π̂0
t =

{
π0

t if t ∈ [0, τ ],
π0

τ + π1
τe−rτS1

τ − (K − Sτ )+e−rτ if t ∈ (τ, T ],

and

π̂1
t = π1

t 1[0,τ ](t), π̂2
t = π2

t = −1[0,τ ](t),

with a consumption process Ĉt = Ct∧τ . From the hedging property,

Xτ = π0
τerτ + π1

τS1
τ ≥ (K − Sτ )+ a.s.

we see that
erT π̂0

T ≥ 0 a.s.

However, by definition,

π̂0
0 + π̂1

0S0 + π̂2
0Y0 = X0 − Y0 < 0.

We would therefore have an arbitrage opportunity.
Now suppose Y0 < X0. Take π0, π1, and C as in (8.10), and use the op-

timal stopping time ρ0 of Notation 8.2.4. As before, construct an extended
trading strategy by setting

π̂0
t =

{
−π0

t , if t ∈ [0, ρ0],
−π0

ρ0
− π1

ρ0
e−rρ0S1

ρ0
+ (K − Sρ0)

+e−rρ0 , if t ∈ (ρ0, T ].

and

π̂1
t = − π1

t 1[0,ρ0](t), π̂2
t =1[0,ρ0](t),

with the consumption process Ĉt = −Ct∧ρ0 . However, we know C = Ĉ ≡ 0
on [0, ρ0] (see the remarks after Notation 8.2.4) and, from the definition of
ρ0,

π0
ρ0

erρ0 + π1
ρ0

S1
ρ0

= (K − Sρ0)
+.

Therefore π̂0
T S0

t = 0, but

π̂0
0 + π̂1

0S0(0) + π̂2
0Y0 = Y0 − X0 < 0.

Again there is arbitrage.
Finally (see Lemma 8.2.2), we know that Xt = Vt(π) is a martingale

under Q̃ up to time ρ0 so X0 is the fair price at time 0 for the American
put option.
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Continuation and Stopping Regions:
The Critical Price

Definition 8.2.6. For t ∈ [0, T ] and x ∈ R+, define

P (x, t) = sup
τ∈Tt,T

Ẽ
(
e−r(τ−t)(K − Sτ )+ |St = x

)
. (8.12)

Then P (x, t) is the value function and represents the fair, or arbitrage-free,
price of the American put at time t.

From [203, Theorem 3.1.10] we can state the following.

Theorem 8.2.7. The first optimal stopping time after time t is

ρt = inf
{
u ∈ [t, T ] : P (Su, u) = (K − Su)+

}
.

It is important to determine the principal analytical properties of the
process defined in (8.12).

Lemma 8.2.8. For every t ∈ [0, T ], the American put value P (x, t) is
convex and non-decreasing in x > 0. The function P (x, t) is non-increasing
in t for every x ∈ R+. The function P (x, t) is continuous on R+ × [0, T ].

Proof. The convexity of P (·, t) follows from the supremum operation, and
the non-increasing properties of P (·, t) and P (x, ·) are immediate from the
definition.

For (ti, xi) ∈ R+ × [0, T ], i = 1, 2 we have

P (x2, t2) − P (x1, t1) = sup
τ∈Tt2,T

Ẽ
(
e−r(τ−t2)(K − Sτ )+ |St2 = x2

)
− sup

τ∈Tt2,T

Ẽ
(
e−r(τ−t1)(K − Sτ )+ |St1 = x2

)
+ sup

τ∈Tt2,T

Ẽ
(
e−r(τ−t1)(K − Sτ )+ |St1 = x2

)
− sup

τ∈Tt1,T

Ẽ
(
e−r(τ−t1)(K − Sτ )+ |St1 = x1

)
.

Therefore, with t1 ≤ t2,

|P (x2, t2) − P (x1, t1)|

≤ Ẽ

(
sup

t2≤s≤T

∣∣∣e−r(s−t2)
(
K − St2,x2

s

)
− e−r(s−t1)

(
K − St1,x2

s

)+∣∣∣)
+ Ẽ

(
sup

t1≤s≤t2

∣∣∣e−r(s−t1)
(
K − St1,x1

s

)+ − e−r(t2−t1)
(
K − St1,x2

s

)+∣∣∣) ,

and the result follows from the continuity properties of the flow.
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Definition 8.2.9. Consider the two sets

C =
{
(x, t) ∈ R+ × [0, T ) : P (x, t) > (K − x)+

}
,

S =
{
(x, t) ∈ R+ × [0, T ) : P (x, t) = (K − x)+

}
.

C is called the continuation region and S is the stopping region.

Then ρt = inf {u ∈ [t, T ] : Su /∈ C} . We now establish some properties
of P and C.

Lemma 8.2.10. We have P (x, t) > 0 for all x ≥ 0, t ∈ [0, T ].

Proof. Note that (K − x)+ > 0 for x < K. Now fix t and consider the
solution of (8.2) such that S1

t = x. Write τK
2

= inf
{
u ≥ t : S1

u ≤ K
2

}
∧ T.

Then, if x ≥ K, from (8.12)

P (x, t) ≥ K

2
E
(
e−τK/21{τK/2<T}

)
> 0.

The following two results are adapted from Jacka [164].

Lemma 8.2.11. For each t > 0, the t-section of C is given by

Ct = {x : (x, t) ∈ C}
=
{
x : (x, t) ∈ R+ × [0, T ), P (x, t) > (K − x)+

}
= (S∗

t ,∞)

for some S∗
t such that 0 < S∗

t < K.

Proof. Clearly 0 /∈ Ct.
We shall show that if x < y and x ∈ Ct, then y ∈ Ct. Write

τ = inf {s ≥ 0 : (Ss(x), s) /∈ C} ,

so τ is the optimal stopping time for Ss(x). Now τ is also a stopping time
for S(y), so

P (y, t) − P (x, t) = P (y, t) − E
(
e−rτ (K − Sτ (x))+

)
≥ E

(
e−rτ

(
(K − Sτ (y))+ − (K − Sτ (x))+

))
= E

(
e−rτ {(K − Sτ (y)) − (K − Sτ (x))}

)
+ E

(
e−rτ

{
(K − Sτ (y))− − (K − Sτ (x))−

})
. (8.13)

Now

Sτ (y) = y exp
{(

r − σ2

2

)
τ + σW̃τ

}
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and similarly for Sτ (x); therefore the second expectation in (8.13) is non-
negative and

P (y, t) − P (x, t) ≥ E
(
e−rτ (Sτ (x) − Sτ (y))

)
= (x − y)E

(
exp
{

−σ2

2
τ + σW̃τ

})
= (x − y). (8.14)

Therefore,

P (y, t) ≥ (x − y) + P (x, t) > (x − y) + (K − x)+ ≥ K − y

because x ∈ Ct (implying that P (x, t) > (K − x)+). Now P (y, t) > 0, so
P (y, t) > (K − y)+ and y ∈ Ct.

Clearly S∗
t ≤ K for all t > 0 because if x > K, then (K − x)+ = 0,

although P (x, t) > 0.

Corollary 8.2.12. From (8.14) we see that ∂P (x,t)
∂x ≥ −1 for x, y ∈ Ct.

Proposition 8.2.13. The boundary S∗ is increasing in t and is bounded
above by K.(S∗ is also known as the critical price.)

Proof. Clearly, for 0 ≤ s ≤ t ≤ T, P (x, s) ≥ P (x, t). Therefore

(K −S∗
t+s −ε)+ < P (S∗

t+s +ε, t+s) ≤ P (S∗
t+s +ε, t) for t > 0, s ≥ 0, ε > 0,

so S∗
t+s + ε ∈ Ct and S∗

t ≤ S∗
t+s for ε > 0 and s > 0.

Now (K − x)+ is zero for x ≥ K. But P (x, t) > 0 from Lemma 8.2.10,
so S∗

t < K.

Exercise 8.2.14. Sketch (in three dimensions) the value function and the
continuation and stopping regions for an American put option with strike
K and expiry T in the Black-Scholes model. Indicate the critical boundary
in terms of t-sections and sketch the critical price as a function of t.

8.3 The Perpetual Put Option

We now discuss the limiting behaviour of S∗
t by introducing the ‘perpetual’

American put option; this is the situation when T = ∞. The mathematics
involves deeper results from analysis and optimal stopping, particularly
when we discuss free boundaries and smooth pasting. Perpetual put options
are a mathematical idealisation: no such options are traded in real markets.

Theorem 8.3.1. Consider the function

P (x) = sup
τ∈T0,∞

Ẽx

(
e−rτ (K − Sτ )+1{τ<∞}

)
.
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Then

P (x) =

{
(K − S∗)

(
x

S∗
)−γ if x > S∗,

K − x if x ≤ S∗,

where S∗ = Kγ
1+γ and γ = 2r

σ2 .

Proof. From the definition, it is immediate that P (x) is convex, decreasing
on [0,∞), and satisfies P (x) > (K − x)+. Furthermore,

P (x) ≥ E
(
e−rT (K − ST )+

)
for all T > 0.

This implies that P (x) > 0 for all x ≥ 0.
Write S∗ = sup {x ≥ 0 : P (x) = K − x} . Then clearly

P (x) = K − x for x ≤ S∗, P (x) > (K − x)+ for x > S∗. (8.15)

However, from the results for the Snell envelope, (see [99]), we know
that

P (x) = E
((

Ke−rρx − Sρx

)+
1{ρx<∞}

)
.

Here
ρx = ρ0(x) = inf

{
t ≥ 0 : P (St) = (K − St)+

}
,

with inf ∅ = ∞.
Recall that

St = x exp
{(

r − σ2

2

)
t + σBt

}
.

We have seen that ρx is an optimal stopping time. Now from the inequali-
ties (8.15), ρx is also given by

ρx = inf {t ≥ 0 : St ≤ S∗} = inf
{

t ≥ 0 :
(

r − σ2

2

)
t + σBt ≤ log

(
S∗

x

)}
.

For any z ∈ R+, define the stopping time

τx,z = inf {t ≥ 0 : St ≤ z} .

Then ρx = τx,S∗ . For any fixed x ∈ R+, consider the function

u(z) = E
(
e−rτx,z1{τx,z<∞}

(
K − Sτx,z

)+)
.

As τx,S∗ is an optimal stopping time, the function u is maximized when
z = S∗.

Now, if z > x, clearly τx,z = 0 and u(z) = (K − x)+. If z ≤ x,
then τx,z = inf {t ≥ 0 : St = z}, as the trajectories of S are continuous.
Therefore

u(z) = (K − z)+E
(
e−rτx,z1{τx,z<∞}

)
= (K − z)+E

(
e−rτx,z

)
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(as e−r∞ = 0). Now

τx,z = inf
{

t ≥ 0 :
(

r − σ2

2

)
t + σBt = log

( z

x

)}
= inf

{
t ≥ 0 : γt + Bt =

1
σ

log
( z

x

)}
,

where γ = σ−1
(
r − σ2

2

)
.

For any b ∈ R, write, as in Corollary 7.2.6,

T (b) = inf {t ≥ 0 : γt + Bt = b} .

Then

u(z) =

⎧⎪⎨⎪⎩
(K − x)+ if z > x,

(K − z)E
(
exp
{
− rT

σ log
(

z
x

)})
if z ∈ [0, x] ∩ [0, K],

0 if z ∈ [0, x] ∩ [K, ∞).

The maximum value of u is therefore attained in the interval [0, x]∩ [0, K].
Now, from Corollary 7.2.6,

E
(
e−αT (b)

)
= exp

{
γb − |b|

√
γ2 + 2α

}
.

Therefore

u(z) = (K − z)
( z

x

)λ

for all z ∈ [0, x] ∩ [0, K],

where λ = 2r
σ2 .

This function has derivative

u′(z) =
zλ−1

xλ
(λK − (λ + 1)z).

Therefore, it follows that

max
z

u(z) =

{
u(x) = K − x if x ≤ λK

λ+1 ,

u
(

λK
λ+1

)
if x > λK

λ+1 .

The stated results are then established.

Remark 8.3.2. Consider the free boundary problem

−ru + Sr
du

dS
+

1
2
σ2S2 d2u

dS2 = 0, u(∞) = 0, (8.16)

with free “boundary” S∗ given by

u(S∗) = (K − S∗)+,
∂u

∂S

∣∣∣∣
S=S∗

= −1. (8.17)
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It is known (see [22]) that the American put price P (S) and the critical
price S∗ of Theorem 8.3.1 give the solution of this boundary value problem.
In fact, any solution of the homogeneous equation (8.16) is of the form

a1S
γ1 + a2S

γ2 ,

where γ1, γ2 are the roots of the quadratic equation

1
2
σ2γ(γ − 1) + rγ − r = 0,

i.e.,

γ =
−r + σ2

2 ±
√

r2 + σ4

4 + r σ2

2

σ2 .

Discarding the positive root, because of the condition at S = ∞, we see
the solution is of the form

u(S) = a1S
− 2r

σ2 .

The conditions (8.17) give

S∗ =
2rK

2r + σ2 , a1 = (K − S∗)(S∗)
2r
σ2 ,

in agreement with Theorem 8.3.1.

8.4 Early Exercise Premium

We return to consideration of the general American put option.

Theorem 8.4.1. For t ∈ [0, T ], the Snell envelope J has the decomposition

Jt = Ẽ
(
e−rT (K − ST )+ |Ft

)
+ Ẽ

(∫ T

t

e−rurK1{Su<S∗
u}du |Ft

)
a.s.

Proof. Suppose ρt = inf {u ∈ [t, T ) : Su ≤ S∗
u} ∧ T. Then ρt is the optimal

stopping time in [0, T ], and

Jt = Ẽ
(
e−rρt(K − Sρt)

+ |Ft

)
.

Write Jt in the form

Ẽ
(
e−rT (K − ST )+ |Ft

)
+ Ẽ

(
e−rρt(K − Sρt)

+ − e−rT (K − ST )+ |Ft

)
.

The first term is the value of the associated European option with exercise
time T. The second term is the early exercise premium representing the ad-
vantage the American option has over the European. Using the generalized
Itô rule for convex functions (see [194]), it can be represented as

Ẽ

(∫ T

ρt

e−rurK1{Su<K}du −
∫ T

ρt

e−rudLK
u (S) |Ft

)
.
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Here LK
u (S) is the local time of S at level K in the interval [0, u].

Consider the anticipating right-continuous process of finite variation

Dt =
∫ ρt

ρ0

e−rurK1{Su<K}du −
∫ ρt

ρ0

e−rudLK
u (S).

From [109], we know there is a unique predictable process Dp, the dual
predictable projection of D, such that

Ẽ (DT − Dt |Ft ) = Ẽ (Dp
T − Dp

t |Ft ) .

Consequently,

Jt = Ẽ
(
e−rT (K − ST )+ |Ft

)
+ Ẽ (DT − Dt |Ft )

= Ẽ
(
e−rT (K − ST )+ |Ft

)
+ Ẽ (Dp

T − Dp
t |Ft )

= Ẽ
(
e−rT (K − ST )+ + Dp

T |Ft

)
− Dp

t .

This expresses the supermartingale J as the difference of a martingale and
a predictable process. From the uniqueness of the decomposition of the
special semimartingale J , we see that Dp = A, so Dp is non-decreasing.

Write Dt = At + Bt, where

At =
∫ ρt

ρ0

e−rurK1{Su<K}1{Su≤S∗
u}du −

∫ ρt

ρ0

e−ru1{Su≤S∗
u}dLK

u (S),

Bt =
∫ ρt

ρ0

e−rurK1{Su<K}1{Su>S∗
u}du −

∫ ρt

ρ0

e−ru1{Su>S∗
u}dLK

u (S).

Now S∗
t < K for t ∈ [0, T ) and dLK does not charge {S < K} , that is, the

dLK-measure of this set is zero. Therefore

At =
∫ ρt

ρ0

e−rurK1{Su≤S∗
u}du =

∫ t

0
e−rurK1{Su<S∗

u}du a.s.,

so A is predictable and non-decreasing. Consequently, Ap = A.
The dual predictable projection of B is more difficult to determine.

Although not necessary (see [295]), we shall assume that the critical price
boundary S∗

t is continuous. Write

χ(ω) = {t ∈ [ρ0(ω), T ) : St(ω) > S∗
t }

for the excursion intervals of the stock process into the continuation region.
From the continuity of S∗

t and the a.s.-continuity of St, the random set χ
is a countable union of open sets.

Choose ε > 0 and note that, for every choice, the number of excursions
(Nε) in χ with duration greater than ε is finite. Label these intervals
(an, bn) with an < bn < an+1 < bn+1 and put

Nε
t = sup {1 ≤ n ≤ Nε : an ≤ t} .
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an

bn

Figure 8.1: Excursion intervals

Consider the approximate process

Bε
t =

Nε
t∑

n=1

(∫ bn

an+ε

e−rurK1{Su<K}du −
∫ bn

an+ε

e−rudLK
u (S)

)
.

Using dominated convergence, Bε
t converges to Bt as ε → 0 for almost

every ω and also in L1.
However, Bε is constant off {t ∈ [0, T ) : St ≥ S∗

t }, so its dual predictable
projection (Bε)p is also constant off this set. Now, in [104] it is shown that
because (Ju∧ρt

)t≤u≤T is a martingale, the process (Bε)p is non-increasing.
The limit process Bp inherits both these properties. Now Dp = Ap + Bp

is non-decreasing, so we must have Bp ≡ 0. Consequently,

Ẽ (Dp
T − Dp

t |Ft ) = Ẽ

(∫ T

t

e−rurK1{Su<S∗
u}du |Ft

)
a.s.

and the result follows.

Remark 8.4.2. The supermartingale property of the Snell envelope requires
Bp to be a process with non-decreasing sample paths. On the other hand,
the minimal property of the Snell envelope implies Bp should have non-
increasing sample paths. Consequently, we must have Bp ≡ 0.

Dp can be thought of as the (predictable) hedging process that covers
the non-adapted process D. Also Dp

t =
∫ t

0 rK1{Su<S∗
u}du a.s., so Dp is ab-

solutely continuous, non-decreasing, and constant off {t ∈ [0, T ) : St < S∗
t } .
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Recall P (x, t) = Xt, as defined in (8.8). The following result is imme-
diate.

Corollary 8.4.3. The value P (x, t) of the American put has the decompo-
sition

P (x, t) = p(x, t) + e(x, t) for (x, t) ∈ R+ × [0, T ],

where

p(x, t) = Ẽx

(
e−r(T−t)(K − ST )+

)
,

e(x, t) = Ẽx

(∫ T

t

e−r(u−t)rK1{Su<S∗
u}du

)

with St = x.

Here p(x, t) is the value of the European put with exercise date T , and
e(x, t) is the early exercise premium; it measures the advantage of being
able to stop at any time between t and T.

Indeed, e−r∆rK represents the discounted gain of exercising compared
with continuing when the stock price belongs to the stopping region S over
the time [u, u + ∆].

From the above representation, we can deduce the following result.

Lemma 8.4.4. We have

P (·, t) ∈ C1 (R+) for t ∈ [0, T ).

Remark 8.4.5. We can also consider the effect of delaying exercise of the
option as follows. Write

Jt = e−rt(K − St)+ + Ẽ
(
e−rρt(K − Sρt

)+ − e−rt(K − St)+ |Ft

)
= e−rt(K − St)+

+ Ẽ

(
−
∫ ρt

t

e−ruKr1{Su<K}du +
∫ ρt

t

e−rudLK
u (S) |Ft

)
.

Paralleling the computations of Theorem 8.4.1, we obtain the represen-
tation of P (x, t) in terms of the delayed exercise value:

P (x, t) = (K − x)+

+ Ẽx

(∫ T

t

e−r(u−t)dLK
u (S) −

∫ T

t

e−r(u−t)rK1{S∗
u<Su<K}du

)
.

The delayed exercise value describes the gain relative to stopping now; the
early exercise premium describes the gain relative to stopping at the final
expiration time T.
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8.5 Relation to Free Boundary Problems

McKean [218] and van Moerbeke [295] established the following represen-
tation for P. It relates the value function P of the American option to the
solution of a free boundary problem. Such a problem consists of a partial
differential equation, its Dirichlet conditions, and a Neumann condition
that determines an unknown stopping boundary, or ‘free boundary’, S∗

t .
Write

L =
σ2

2
x2 ∂2

∂x2 + rx
∂

∂x
+

∂

∂t
.

From the martingale property of (Ju∧ρt) and the smoothness of P on the
continuation region C, it can be shown that

L(e−rtP (x, t)) = 0.

For a proof, see [295, Lemma 5]. The Dirichlet and optimality conditions
for P are given in the next result.

Theorem 8.5.1. The American put P (x, t) and the boundary S∗
t satisfy

lim
x↓S∗

t

P (x, t) = K − S∗
t for t ∈ [0, T ),

lim
t→T

P (x, t) = (K − x)+ for x ≥ 0,

lim
x→∞

P (x, t) = 0 for t ∈ [0, T ),

and
P (x, t) ≥ (K − x)+ for (x, t) ∈ [0,∞) × [0, T ).

Proof. The first result follows from the optimality of S∗. The second is a
consequence of the continuity of P.

Write St(x) for the solution of (8.2) with S0(x) = x and define the
stopping time τK by τK = inf {t : St(x) ≤ K} . Now τK → ∞ a.s. as x → ∞
and, for x > K,

0 < P (x, t) ≤ KP (τK ≤ t).

Therefore, limx→∞ P (x, t) = 0.
The final condition restates the hedging property.

These conditions do not determine the free boundary, or critical price,
S∗. An additional ‘smooth pasting’ condition is required.

Proposition 8.5.2. The derivative ∂P (x,t)
∂x is continuous across the free

boundary S∗; i.e.,

lim
x↓S∗

t

∂P (x, t)
∂x

= −1 =
∂(K − S)+

∂S

∣∣∣∣
S=S∗

t

.
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Proof. We adapt McKean’s argument. Lemma 8.5.6 below shows that, in
the sense of distributions,

L(e−rtP (x, t)) ≤ 0 for (x, t) ∈ R+ × [0, T ). (8.18)

Introduce the change of variable ξ = log x, and write

P̂ (ξ, t) = P (eξ, t).

Then (8.18) implies that

σ2

2
P̂ξξ ≤

(
σ2

2
− r

)
P̂ξ − P̂t + rP̂ . (8.19)

In the new variable ξ, the free boundary S∗ becomes ξ∗
t = log(S∗

t ).
Integrate (8.19) over a region R in (ξ, t) space, where R has width ε

on either side of ξt and is over the interval [t1, t2]. Consequently,

σ2

2

∫ t2

t1

(
P̂ξ (ξ∗

t + ε, t) − P̂ξ (ξ∗
t − ε, t)

)
dt

≤
(

σ2

2
− r

)∫ t2

t1

(
P̂ (ξ∗

t + ε, t) − P̂
(
ξ∗
t1 − ε, t

))
dt+
∫

R

(
rP̂ − P̂t

)
dξdt.

For a fixed ξ, consider the horizontal line in R that goes from time
t−(ξ) to time t+(ξ). There is an interval Rξ of ξ-space such that the final
integral can be written∫

R

rP̂ dξdt −
∫

Rξ

(
P̂ (ξ, t∗(ξ)) − P̂

(
ξ, t−(ξ)

))
dξ.

On the (transformed) stopping region S, we have P̂ξ = ε−ξ. Therefore,
from the dominated convergence theorem, using the continuity of P̂ , as
ε ↓ 0 we have ∫ t2

t1

(
lim
ξ↓ξ∗

P̂ξ + eξ∗
)

dt ≤ 0. (8.20)

From Corollary 8.2.12, we know that ∂P (x,t)
∂x ≥ −1 in C. Since

∂P

∂x
=

∂P̂

∂ξ
· ∂ξ

∂x
,

we have P̂ξ ≥ −e−ξ. Consequently, from (8.20) we must have limξ↓ξ∗ P̂ξ +
eξ∗

= 0, and the slope exhibits the smooth pasting condition across ξ∗.

The results of Theorem 8.5.1 and Proposition 8.5.2 show that the Amer-
ican put value P can be expressed as the solution of a free boundary
problem. McKean was the first to discuss the problem and provide this
formulation.

Using the regularity we have now established for P , the following result
can be proved.
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Theorem 8.5.3. We have P = p+e, where p is the European put function
and e is the early exercise premium as in Corollary 8.4.3. The critical price
S∗ is determined by the equation

P (S∗
u, u) = K − S∗

u for u ∈ [t, T )

together with S∗
T = K.

Proof. The function P (x, t) is in C1,0 and piecewise in C2,1 on R+ × [0, T ).
Regularity of the boundary S∗

t implies the derivative Pt is continuous across
S∗ and so, in fact, in all R+ × [0, T ). An extension of the Itô differentiation
rule (due to Krylov [203, Theorem 2.10.1]) implies that

e−r(T−t)P (ST , T ) = P (St, t) +
∫ t

t

e−r(u−t)σSuPx(Su, u)dW̃u

+
∫ T

t

L(e−r(u−t)P )(Su, u)du for t ∈ [0, T ]. (8.21)

We have already noted that L(e−r(u−t)P )(x, u) = 0 when (x, u) ∈ C.
When (x, u) ∈ S, we have

P (x, u) = K − x, L(e−r(u−t)(K − x)) = −e−r(u−t)rK.

Substituting in (8.21), for t ∈ [0, T ],

e−r(T−t)P (ST , T ) = P (St, t) +
∫ T

t

e−r(u−t)σSuPx(Su, u)dW̃u

−
∫ T

t

e−r(u−t)rK1{Su<S∗
u}du.

The derivative Px is bounded, so the stochastic integral is a martingale.
With St = x and P (x, T ) = (K − s)+, we have

P (x, t) = Ẽx

(
e−r(T−t)(K − ST )+

)
+ Ẽx

(∫ T

t

e−r(T−t)rK1{Su<S∗
u}du

)
.

The equation for S∗ follows from the first statement of Theorem 8.5.1.

Definition 8.5.4. A function g(x, t) ∈ C3,1(R × [0, T )) has Tychonov
growth if g, gt, gx, gxx, gxx, and gxxx have growth at most exp(o(x2)) uni-
formly on compact sets as |x| goes to infinity.

If we assume the equation for S∗ has a C1 solution, the following
uniqueness result is a consequence of Theorem 8.5.1; its proof can be found
in [295].
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Theorem 8.5.5. Suppose D ⊂ R+ × [0, T ) is an open domain with a
continuously differentiable boundary c.

Furthermore, suppose f ∈ C3,1, that g(x, t) = f(ex, t) has Tychonov
growth and L (e−rtf(x, t)) = 0 on D, and

f(x, T ) = (K − x)+ for x ∈ R+,

f(x, t) > (K − x)+ for (x, t) ∈ D,

f(x, t) = (K − x)+ for (x, t) ∈ R+ × [0, T ) ∩ Dc,

lim
x↓c(t)

fx(x, t) = −1 for t ∈ [0, T ).

Then f(x, t) = P (x, t), the American put function, D = C, the continuation
region, and c(t) = S∗

t , the optimal stopping boundary.

We require the following extension of the harmonic property of P on C.

Lemma 8.5.6. On R+ × [0, T ], we have L (e−rtP (x, t)) ≤ 0 in the sense of
Schwartz distributions. (This shows that the American put value function
P is ‘r-excessive’.)

Proof. Choose ε > 0, and consider the set of stopping times

Vε =
{

τ : t ≤ τ ≤ T, Ẽ
(
e−r(τ−t)(K − Sτ )+ |St

)
≥ P (St, t) − ε

}
.

For all t ∈ [0, T ), this set is non-empty. Choose τε ∈ Vε and write Ẽx (·)
for the Q̃-expectation given S0 = x. Then

Ẽx

(
e−rτε(K − Sτε

)+
)

= Ẽx

(
e−rtẼ

(
e−r(τε−t) (K − Sτε

)+ |St

))
≥ Ẽx

(
e−rtP (St, t)

)
− εe−rt.

However, by definition,

P (S0, 0) = P (x, 0) ≥ Ẽx

(
e−rτε(K − Sτε)

+) ≥ Ẽx

(
e−rtP (St, t)

)
− εe−rt.

Letting ε ↓ 0 gives
P (x, 0) ≥ Ẽx

(
e−rtP (St, t)

)
.

This inequality implies the result, as any excessive function is the limit
of an increasing sequence of infinitely differentiable excessive functions (see
Port and Stone [243]).

Lemma 8.5.7. The American put function P (x, t) satisfies(
L
(
e−rtP (x, t)

)) (
(K − x)+ − P (x, t)

)
= 0 for (x, t) ∈ R+ × [0, T ].

Proof. In the continuation region, we know that L (e−rtP (x, t)) = 0. In the
stopping region, P (x, t) = (K − x)+.
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Definition 8.5.8. For any m ∈ Z+ and λ > 0, write Hm,λ for the space of
measurable, real-valued functions f on R whose derivatives, in the sense of
distributions, up to and including the mth order, belong to L2(R, e−λ|x|dx).
Write

‖f‖ =

(
m∑

i=0

∫
R

∣∣∂if(x)
∣∣2 e−λ|x|dx

) 1
2

.

The space L2([0, T ], Hm,λ) is the set of measurable functions g : [0, T ] →
Hm,λ such that ∫

[0,T ]
‖g(t)‖2

dt < ∞.

In [169], Jaillet, Lamberton, and Lapeyre extend the work of Bensous-
san and Lions ([24]) to show that the American put value function is char-
acterized by a variational inequality. Their result is as follows.

Theorem 8.5.9. Consider a continuous function f defined on R+ × [0, T ]
that satisfies

f(e·, ·) ∈ L2([0, T ], H2,λ),

ft(e·, ·) ∈ L2([0, T ], H0,λ)
and

f(x, t) ≥ (K − x)+ for (x, t) ∈ R+ × [0, T ),

f(x, T ) = (K − x)+ for x ∈ R+,

L
(
e−rtf(x, t)

)
≤ 0(

L
(
e−rtf(x, t)

)) (
f(x, t) − (K − x)+

)
= 0

where (x, t) ∈ R+ × [0, T ].
Then f is unique and equals the American put value function P .

Remark 8.5.10. The application of variational inequalities gives rise to a
numerical algorithm. In fact, the early numerical work of Brennan and
Schwartz [33] was justified for the American put, using variational inequal-
ities, by Jaillet, Lamberton, and Lapeyre [169].

The most widely used numerical technique for calculating the American
option value is dynamic programming. The risky asset price S is modelled
as evolving on a binomial tree in discrete time. The Bellman equation is
then solved recursively by evaluating

Pi = max
{

(K − Si)+, e−r∆Ẽ (Pi+1 |Fi )
}

with final condition PT = (K − ST )+.
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8.6 An Approximate Solution

We have seen that the American put function P (x, t) can be written

P (x, t) = p(x, t) + e(x, t),

where
p(x, t) = Ẽx

(
e−r(T−t)(K − ST )+

)
is the European put value, and

e(x, t) = Ẽx

(∫ T

t

e−r(u−t)rK1{Su<S∗
u}du

)

is the ‘early exercise’ premium.
The early exercise premium involves the critical price, or free boundary,

S∗, and is consequently difficult to evaluate.
Allegretto, Barone-Adesi, and Elliott [5] proposed an approximation for

e(x, t) of the form

ε(x, t) = A(t)
(

x

S∗
t

)q(t)

,

where A and q are functions of t that are to be determined.
Now we know that, in the continuation region C, we have

L[ertP (x, t)] = 0, L
(
e−rtP (x, t)

)
= 0. (8.22)

Also, at the critical price,

P (S∗
t , t) = (K − S∗

t )+,
∂P

∂x

∣∣∣∣
x=S∗

t

= −1. (8.23)

Now LP (x, t) = 0 in C and LP (x, t) = 0 in C, so

L[e−rte(x, t)] = 0, (8.24)

in C. Substituting P = p + A(t)
(

S
S∗

t

)q(t)
in (8.23), we have

p(S∗
t , t) + A(t) = K − S∗

t

and
A(t)q(t)

S∗
t

− e−(µ−r)(T−t)Φ(−d1(S∗
t , t)) = −1, (8.25)

where Φ is the standard normal distribution and

d1(x, t) =
log
(

x
S∗

t

)
+
(
µ + σ2

2

)
(T − t)

σ
√

T − t
.
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However, we also would like L[e−rtε(x, t)] = 0. This is the case if

1
2
σ2q(t)(q(t) − 1)A(t)

(
x

S∗
t

)q(t)

− rA(t)
(

x

S∗
t

)q(t)

+ A(t)µq(t)
(

x

S∗
t

)q(t)

+
∂

∂t

(
x

S∗
t

)q(t)

= 0. (8.26)

Now

∂

∂t

(
A(t)

(
x

S∗
t

)q(t)
)

=
dA(t)

dt

(
x

S∗
t

)q(t)

− dS∗
t

dt

(
A(t)q(t)

x

)(
x

S∗
t

)q(t)+1

+
dq(t)
dt

A(t)
(

x

S∗
t

)q(t)

log
(

x

S∗
t

)
.

Substituting this into (8.26) and dividing by A(t)
(

x
S∗

t

)q(t)
implies that

1
2
σ2q(t)(q(t) − 1) − r + µq(t) +

(
1

A(t)
dA(t)

dt
− q(t)

S∗
t

dS∗
t

dt

)
+ log

(
x

S∗
t

)
dq(t)
dt

= 0. (8.27)

However, this equation indicates that q is not independent of x, and so
e(x, t) is not of the form given by ε(x, t). Nonetheless, a useful approxima-
tion is obtained by neglecting the last term of (8.27). That is, we suppose
q(t) is a solution of

1
2
σ2q(t)(q(t) − 1) − r + µq(t) +

(
1

A(t)
dA(t)

dt
− q(t)

S∗
t

dS∗
t

dt

)
= 0. (8.28)

This approximation is reasonable when log
(

x
S∗

t

)
· dq(t)

dt is small. This is the

case when x is in a neighbourhood of S∗
t or when dq(t)

dt is small (at long
maturities).

From equation (8.25), we have

dA(t)
dt

=
(
e(µ−r)(T−t)Φ (−d1(S∗

t , t)) − 1
) dS∗

t

dt
− ∂p(x, t)

∂t
.

From the second equation of (8.25),

1
A(t)

dA(t)
dt

− q(t)
S∗

t

dS∗
t

dt
= − 1

A(t)
· ∂p(S∗

t , t)
∂t

.

Writing

g(t) =
1

A(t)
∂p(S∗

t , t)
∂t

, M =
2r

σ2 , N =
2b

σ2 , G(t) =
2q(t)
σ2 ,



8.6. AN APPROXIMATE SOLUTION 245

equation (8.28) becomes

q(t)2 + (N − 1)q(t) − (M − G(t)) = 0.

To satisfy the boundary condition of zero at x = ∞, we consider only the
root

q(t) =
1
2

(
1 − N −

√
(1 − N)2 + 4(M + G(t))

)
.

With this value of q(t), an approximation for the early exercise premium is

ε(x, t) = A(t)
(

x

S∗
t

)q(t)

.

To summarise, we have the following system of three equations in three
unknowns A(t), q(t), and S∗

t :

S∗
t =

(K − p(S∗
t , t))q(t)

−1 + q(t) + e(µ−r)(T−t)Φ(−d1(S∗
t , t))

, (8.29)

A(t) = −p(S∗
t , t) − S∗

t + K, (8.30)

0 = q(t)2 + (N − 1)q(t) − M + G(t). (8.31)

For a fixed value of t, these equations can be solved using the following
iterative procedure.

(i) Give a trial value of S∗
t .

(ii) Calculate A(t) from (8.30).

(iii) Calculate q(t) from (8.31).

(iv) Calculate a new value of S∗
t from (8.29).

Using the new value for S∗
t , steps (ii)-(iv) are repeated.

This algorithm was investigated numerically in [5] and shown to give
satisfactory results.



Chapter 9

Bonds and Term
Structure

9.1 Market Dynamics

Suppose (Ω,F, P ) is a probability space, (Bt)0≤t≤T is a Brownian motion,
and (Ft) is the (complete, right-continuous) filtration generated by B. We
first review the martingale pricing results of Chapter 7.

Consider again the case of a bond S0 and a single risky asset S1. We
suppose

S0
t = exp

{∫ t

0
rudu

}
, S1

t = S1
0 +
∫ t

0
µ(u)S1

udu +
∫ t

0
σ(u)S1

udBu.

Here r, µ and σ are adapted (random) processes. In particular, r is a
stochastic interest rate in general. Consider a self-financing trading strat-
egy (H0, H1). The corresponding wealth process is

Xt = H0
t S0

t + H1
t S1

t ,

and
dXt = rH0

t S0
t dt + H1

t dS1
t = r

(
Xt − H1

t S1
t

)
dt + H1

t dS1
t .

With θt = µ(t)−rt

σ(t) (which requires σ �= 0), the process W θ, where

dW θ
t = θtdt + dBt,

is a Brownian motion under the measure P θ. Consequently, under P θ the
discounted wealth process is Xt

S0
t
, and

d

(
Xt

S0
t

)
= H1

t σ(t)
S1

t

S0
t

dW θ
t .

247
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That is, for any self-financing strategy, the discounted wealth process
(

Xt

S0
t

)
is a martingale under the martingale measure P θ.

Consider a contingent claim h ∈ L2(Ω,FT ). Then

Mt = Eθ

(
h

S0
t

|Ft

)
is a martingale. Using the martingale representation result Theorem 7.3.9,

Mt = M0 +
∫ t

0
φudW θ

u .

If we take

H1
t =

S0
t φt

σ(t)S1
t

, X0 = M0 = Eθ

(
h

S0
t

)
,

and write

Mt =
Xt

S0
t

= X0 +
∫ t

0
H1

uσ(t)
S1

u

S0
u

dW θ
u ,

then, with

H0
t =

Xt

S0
t

− H1
t

S1
t

S0
t

,

the pair (H0, H1) is a self-financing strategy that hedges the claim h. That
is,

XT = H0
T S0

t + H1
T S1

T = h.

The fair price for the claim at time 0 is Eθ
(

h
S0

t

)
; the price at time t ∈ [0, T ]

is Xh(t) = Xt, and this equals

S0
t Eθ

(
h

S0
t

|Ft

)
= S0

t Eθ

(
XT

S0
T

|Ft

)
because

(
Xt

S0
t

)
is a martingale under P θ.

Suppose we have a market with several risky assets S0
t , S1

t , . . . , SN (t)
with dynamics

dS0
t = rtS

0
t dt, S0

0 = 1,

dSi
t = Si

t

⎛⎝µi(t)dt +
m∑

j=1

σij(t)dWj(t)

⎞⎠ , Si
0 = si for i = 1, 2, . . . , n.

Here (Wt) = (W1(t), . . . , Wm(t)) is an m-dimensional Brownian motion
on (Ω,F, P ). The risk-neutral pricing formula holds as long as there is a
unique risk-neutral measure P θ, as introduced in Chapter 7. In such an
example the price at time t ≤ T of a claim h ∈ L2(FT ) is

Xt = S0
t Eθ

(
h · (S0

T )−1 |Ft

)
.
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Notation 9.1.1. From now on in this chapter, we assume we are working in
a market where there is a unique risk-neutral measure P θ. The superscript
θ will be dropped. For simplicity, we suppose there is a single risky asset
that has dynamics (under P θ = P )

dS1
t = rtS

1
t dt + σ(t)S1

t dWt.

Further, we suppose the martingale representation result holds, so that
every (Ft, P )-martingale has a representation as a stochastic integral with
respect to W.

Definition 9.1.2. A zero coupon bond maturing at time T is a claim that
pays 1 at time T.

From the pricing formula, its value at time t ∈ [0, T ] is

B(t, T ) = S0
t E

(
1

S0
T

|Ft

)
.

As S0
t = exp

{∫ t

0 rudu
}

, this is

B(t, T ) = E

(
exp

{
−
∫ T

t

rudu

}
|Ft

)
.

Consequently, given B(t, T ) dollars at time t, one can construct a self-
financing hedging strategy (H0

t , H1
t ) such that the corresponding wealth

process
Xt = H0

t S0
t + H1

t S1
t

has value 1 at time T.
If the instantaneous rate rt is deterministic, then

B(t, T ) = exp

{
−
∫ T

t

rudu

}

and
dB(t, T ) = rtB(t, T )dt,

so H1
t is identically 0.

Definition 9.1.3. The T -forward price F (t, T ) for the risky asset S1 is a
price agreed at time t ≤ T (and thus Ft-measurable) that will be paid for
S1 at time T.

Such a price F (t, T ) is characterised by requiring that the claim S1
T −

F (t, T ) has (discounted) value 0 under the risk-neutral (martingale) mea-
sure P. Therefore,

0 = E

(
S1

T − F (t, T )
S0

T

|Ft

)
= E

(
S1

T

S0
T

|Ft

)
− F (t, T )

S0
t

E

(
S0

t

S0
T

|Ft

)
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=
S1

t

S0
t

− F (t, T )
S0

t

B(t, T )

because the discounted price S1

S0 is a martingale under the measure P.

Therefore F (t, T ) = S1
t

B(t,T ) .

Remark 9.1.4. The forward price can be defined for other claims. Indeed,
suppose h ∈ L2(Ω,FT ) is a contingent claim with exercise date T. The
T -forward price for h, denoted by F (h, t, T ), is the Ft-measurable random
variable that has the property that

E

(
h − F (h, t, T )

S0
T

|Ft

)
= 0.

Consequently,

F (h, t, T ) =
S0

t E
((

S0
T

)−1
h |Ft

)
B(t, T )

=
Xh(t)
B(t, T )

,

where Xh(t) is, from the pricing discussion, the fair price for h at time t.
In particular, h could be the zero coupon bond of maturity T ∗ ≥ T.

Then

F (B(T, T ∗), t, T ) =
B (t, T ∗)
B(t, T )

.

Definition 9.1.5. Define a new probability measure QT , equivalent to P,
on (Ω,FT ) by setting

dQT

dP

∣∣∣∣
FT

=

(
S0

T

)−1

E
(
(S0

T )−1
) =

1
S0

T B(0, T )
.

The measure QT is called the forward measure for the settlement date
T. It was introduced in [140] and [170]. Define

Γt = E

(
dQT

dP
|Ft

)
= E

(
1

S0
T B(0, T )

|Ft

)
=

B(t, T )
S0

t B(0, T )
.

The process Γ is a (P,Ft)-martingale, so there is an integrand γ(s, T ) such
that

Γt = 1 +
∫ t

0
γ(s, T )dWs.

Now Γs > 0 a.s. for all s; define

β(s, T ) = Γ−1
s γ(s, T ).

Then

Γt = 1 +
∫ t

0
Γsβ(s, T )dWs,
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and so

Γt = exp

{∫ T

0
β(s, T )dWs − 1

2

∫ T

0
β(s, T )2ds

}
.

The next lemma shows how the forward price can be expressed in terms
of the forward measure.

Lemma 9.1.6. Suppose that h ∈ L2(Ω,FT ) is a contingent claim with
exercise time T. Then

F (h, t, T ) = EQT
(h |Ft ) .

Consequently, the forward price of h is a QT -martingale.

Proof. Using Bayes’ rule, we have

EQT
(h |Ft ) =

E (ΓT h |Ft )
E (ΓT |Ft )

= E
(
Γ−1

t ΓT h |Ft

)
.

Substituting the expressions for Γ, the result follows.

Remark 9.1.7. Consider the T -forward price for the contingent claim h ∈
L2(Ω,FT ) at time 0,

F (h, 0, T ) =
Xh(0)
B(0, T )

.

By definition, F (h, 0, T ) is the price, agreed at time 0, that one will pay
at time T for the claim h. The related claim V = h − F (h, 0, T ) has price
0 at time 0. However, at later times t ∈ [0, T ], this claim V does not have
value 0. Indeed, using the pricing formula, at time t it has value

Vt = S0
t E

(
h − F (h, 0, T )

S0
T

|Ft

)
= Xh(t) − F (h, 0, T )

B(t, T )
.

One can hedge this claim as follows. At time 0, one shorts F (h, 0, T )
zero coupon bonds with maturity T. This provides an amount

F (h, 0, T )
B(0, T )

=
Xh(0)
B(0, T )

· B(0, T ) = Xh(0),

where Xh(0) is the price of the claim h at time 0. Consequently, this amount
Xh(0) can be used at time 0 to buy the claim h. This strategy requires no
initial investment. If this position is held until time T , it is then worth

Xh(T ) − F (h, 0, T )
B(T, T )

= h − F (h, 0, T ).
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9.2 Future Price and Futures Contracts

Suppose a contingent claim h has a price $h at time T. (By abuse of nota-
tion, we write h for the claim and its price at time T.)

Clearly, at time T , one need not pay anything for the right to buy the
claim for $h. Therefore, at time T , the price of the claim is G(h, T, T ) = h.
(Note that this assumes there are no transaction costs, and we are not
discussing problems of delivering the claim itself-we are thinking of a cash
settlement.)

Suppose initially there are only a finite number of trading times t0, . . . , tn
with 0 = t0 < t1 < · · · < tn = T . Furthermore, suppose that ru is constant
on each interval [ti, ti+1). Then

S0
tj+1

= exp
∫ tj+1

0
rudu = exp

{
n∑

i=0

rti(ti+1 − ti)

}
,

and S0
tj+1

is Ftj
-measurable.

Consider the time tn−1 and suppose the price agreed at time tn−1 for
the claim, (to be delivered at time tn = T ) is

G(h, tn−1, T ).

Then the difference in the price agreed at time tn−1 and the price at tn = T
is

G(h, tn, T ) − G(h, tn−1, T ).

At time tn−1, one estimates G(h, tn−1, T ), given the information Ftn−1 , so
that this difference, discounted and conditioned on Ftn−1 , is zero; that is,
so that the claim G(h, tn, T ) − G(h, tn−1, T ) has value zero at time tn−1,
namely

S0
tn−1

E

(
G(h, tn, T ) − G(h, tn−1, T )

S0
tn

∣∣Ftn−1

)
= 0.

Similarly, at time tn−2, one estimates G(h, tn−2, T ) so that

S0
tn−2

E

(
G(h, tn−1, T ) − G(h, tn−2, T )

S0
tn−1

∣∣Ftn−2

)
= 0.

Here G(h, tn−2, T ) is the estimate at time tn−2 of the price of the claim h
at time T.

Consequently, the value at time t = tk of the sum of future adjustments
is

S0
tk

E

⎛⎝n−1∑
j=k

G(h, tj+1, T ) − G(h, tj , T )
S0

tj+1

|Ftk

⎞⎠ = 0.

The continuous-time version of this condition gives

S0
t E

(∫ T

t

(
S0

u

)−1
dG(h, u, T ) |Ft

)
= 0 for t ∈ [0, T ]. (9.1)
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Write

Mt =
∫ t

0

(
S0

u

)−1
dG(h, u, T ).

Then (9.1) implies that

E (Mt |Fs ) = Ms for 0 ≤ s ≤ t ≤ T.

That is, M is an (Ft, P )-martingale. Consequently,∫ t

0
S0

udMu = G(h, t, T ) − G(h, 0, T )

is an (Ft, P )-martingale. Therefore, as G(h, T, T ) = h,

G(h, t, T ) = E (h |Ft )

is the ‘future price’ at time t for the claim h. This motivates the following
definition.

Definition 9.2.1. The T -future price G at time t of the FT -measurable
contingent claim h is

G(h, t, T ) = E (h |Ft ) .

By definition, G(h, t, T ) is a martingale under P.

Lemma 9.2.2. a)
(
S0

T

)−1 and h are (conditionally) uncorrelated if and
only if F (h, t, T ) = G(h, t, T ).

b) If
(
S0

T

)−1 and h are positively correlated conditional on Ft, then

G(h, t, T ) ≤ F (h, t, T ).

Proof. The T -future price is

G(h, t, T ) = E (h |Ft ) .

The T -forward price is

F (h, t, T ) =
Xh(t)
B(t, T )

= EQ (h |Ft ) =
E
(

h
S0

T
|Ft

)
E
(
(S0

T )−1 |Ft

) .

Part (a) follows immediately. Part (b) states that

E
[ (

(S0
t )−1 − E(S0

t
−1 |Ft )

)
(h − E (h |Ft )) |Ft

]
≥ 0,

and the result follows.

Remark 9.2.3. The hypothesis of the second part of the lemma arises when
the stock price tends to rise with a fall in the interest rate and conversely.
Holding a futures contract is not advantageous if there is a positive corre-
lation between

(
S0

t

)−1 and h. Therefore, a buyer of a futures contract is
compensated by the lower future price compared with the forward price.
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Futures Contracts

We have noticed that forward contracts possibly have non-zero value. In
contrast, a futures contract is constructed so that the risk of default inher-
ent in a forward contract is eliminated.

The value at time 0 of a forward contract, entered into at time 0, is 0.
However, at later times t ∈ [0, T ] it has value

Vt = Xh(t) − F (h, 0, T )
B(t, T )

.

In contrast to a forward contract, the value of a futures contract is
maintained at zero at all times. Consequently, either party to the contract
can close his or her position at any time. This is done by marking to
market .

To describe this process, suppose again that trading takes place only at
the finite number of times t0, . . . , tn with 0 = t0 < t1 < · · · < tn = T and
that ru is constant on each interval [ti, ti+1).

At time tk, the future price of the claim h is G(h, tk, T ) = E (h |Ftk
) .

Suppose we buy a futures contract at this price. At the time tk+1, the
future price of h is G(h, tk+1, T ).

If G(h, tk+1, T ) > G(h, tk, T ), the buyer of the futures contract receives
a payment of

G(h, tk+1, T ) − G(h, tk, T ).

If G(h, tk+1, T ) < G(h, tk, T ), then the buyer of the futures contract makes
a payment of

G(h, tk, T ) − G(h, tk+1, T ).

To make or receive these payments, a margin account is held by the broker.
At the final time T = tn, the buyer of the futures contract will have

received payments

G(h, tk+1, T ) − G(h, tk, T ), G(h, tk+2, T ) − G(h, tk+1, T ),
. . . , G(h, tn, T ) − G(h, tn−1, T )

at times tk+1, . . . , tn = T. The value at time t = tk of this sequence of
payments is

S0
t E

(
n−1∑
i=k

G(h, ti+1, T ) − G(h, ti, T )
S0

ti+1

|Ft

)
.

The future price G(h, t, T ) is such that the cost of entering a futures con-
tract at any time is zero. Consequently, the value of this sequence of
payments at time t must be 0.

With a continuum of trading times, the sum above becomes a stochastic
integral and the condition is

S0
t E

(∫ T

t

(
S0

u

)−1
dG(h, u, T ) |Ft

)
= 0.
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Now by definition G(h, t, T ) = E (h |Ft ) is a martingale. This integral is
therefore a stochastic integral with respect to a martingale and so, under
standard conditions, has conditional expectation zero.

With a T -forward contract, the only payment is at time T : the buyer
agrees at time 0 to pay F (h, 0, T ) for the claim h at time T.

With a T -futures contract, the buyer receives a (positive or negative)
cash flow from time 0 to time T. If he still holds the contract at time T ,
he pays an amount h at time T for the claim, which has value h. Between
time 0 and time T , the buyer has received an amount∫ T

0
dG(h, u, T ) = G(h, T, T ) − G(h, 0, T ) = h − G(h, 0, T ).

Therefore, at time T he has paid an amount −(h − G(h, 0, T )) + h =
G(h, 0, T ) for the claim that has value h at time T .

9.3 Changing Numéraire

Consider again the situation described in Notation 9.1.1, where, under a
risk-neutral measure P, there is a risky asset S1 with dynamics

dS1
t = rtS

1
t dt + σ(t)S1

t dWt.

Here W is a Brownian motion on a probability space (Ω,F, P ) with a
filtration (Ft)0≤t≤T ∗ . In general, (Ft) may be larger than the filtration
generated by W. The short-term rate r and volatility σ are adapted (ran-
dom) processes. The value of a dollar in the money market is, as before,
S0

t = exp
{∫ t

0 rudu
}

. We note that

d

(
S1

t

S0
t

)
=

S1
t

S0
t

σ(t)dWt,

so the discounted asset price is a martingale.
When we consider the discounted price S1

t

S0
t
, we are saying that, at time t,

one unit of stock is worth S1
t

S0
t

units of the money market account. Similarly,
from the expression after Definition 9.1.2 at time t, with T ≤ T ∗, the T -
maturity bond is worth B(t,T )

S0
t

units of the money market account; again

this discounted price is E
((

S0
t

)−1 |Ft

)
and so is a martingale.

Now any strictly positive price process could play the role of S0, and
other assets can be expressed in terms of this process. As in the discrete-
time setting, we have the following

Definition 9.3.1. A strictly positive process Z is the numéraire of the
model if all asset prices are expressed in terms of Z.
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For example, the T -maturity bond price B(t, T ) could be taken as the
numéraire for t ≤ T. In terms of B(t, T ), at time t, the risky asset is worth

S1
t

B(t,T ) = F (t, T ) units of B(t, T ), where B(t, T ) is the forward price of
Definition 9.1.3. Of course, the price of the bond itself in terms of the
numéraire B(t, T ) is just B(t,T )

B(t,T ) = 1 unit.
We could also, for example, take S1 to be the numéraire. Then the

price at time t of a T -maturity bond in units of S1
t is B(t,T )

S1
t

= 1
F (t,T ) .

Definition 9.3.2. Suppose Z is a strictly positive process so Z can be
taken as a numéraire. A probability measure PZ on (Ω,F, P ) is said to be
risk-neutral for Z if the price of any asset divided by Z (i.e., expressed in
units of Z) is a martingale under PZ .

We assumed in Notation 9.1 that the original measure P was risk-
neutral for the numéraire S0.

Theorem 9.3.3. Suppose Z is a numéraire, so it is the strictly posi-
tive price process of some asset. Define a new probability measure PZ on
(Ω,F, P ) by putting for any A ∈ FT ∗

PZ(A) =
1
Z0

∫
A

ZT

S0
T

dP.

Then PZ is equivalent to P and is a risk-neutral measure for the numéraire
Z.

Proof. Note that, for A ∈ FT ∗ ,

P (A) = Z0

∫
A

S0
T Z−1

T dPZ ,

so P and PZ have the same null sets.
From the definition of P, Z

S0 is a martingale under P. Consequently,

PZ(Ω) =
1
Z0

∫
Ω

ZT

S0
T

dP =
1
Z0

E

(
ZT

S0
T

)
=

Z0

Z0S0
0

= 1

because Z
S0 is a P -martingale. Consequently, PZ is a probability measure.

Now suppose X is an asset price process, so X
S0 is a P -martingale. We

shall show that X
Z is then a PZ-martingale. We have

Mt =
Zt

Z0S0
t

=
1
Z0

E

(
ZT ∗

S0(T ∗)
|Ft

)
because Z

S0 is a P -martingale. From Lemma 7.2.2, X
Z is a PZ-martingale if

and only if X
Z M = 1

Z0

X
Z

Z
S0 is a P -martingale. The result follows.
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Remark 9.3.4. Note that, if we take the numéraire Z to be the bond price
B(t, T ) for 0 < T ≤ T ∗, then the risk-neutral measure PB(t,T ) for this bond
has a density

B(T, T )
B(0, T )S0

T

=
1

B(0, T )S0
T

.

Consequently, the risk-neutral measure for the bond B is just the forward
measure given in Definition 9.1.5. Note that, as the bond is not defined
after time T, the measure change is defined only on FT , that is, only up to
time T.

With the T -maturity bond as numéraire, we have seen that the price of
the risky asset S1 is given by its forward price

F (t, T ) =
S1

t

B(t, T )
for 0 ≤ t ≤ T.

Now F (t, T ) must be a martingale under the risk-neutral measure PB(t,T )
for B and consequently the differential dF (t, T ) must be of the form

dF (t, T ) = σF (t, T )F (t, T )dWB(t) for 0 ≤ t ≤ T. (9.2)

We note that this is a differential without any bounded variation dt
terms and WB(t), 0 ≤ t ≤ T, is a process that is a standard Brownian
motion under the measure PB(t, T ). As usual, σF (t, T ) can be taken to be
non- negative.

Suppose now the price S1 of the risky asset is taken as the numéraire.
Of course, in terms of S1, the price of the risky asset S1 is always 1 unit.
The risk-neutral measure for the numéraire S1 is defined by

PS(A) =
1
S1

0

∫
A

S1(T ∗)
S0(T ∗)

dP for A ∈ FT ∗ .

In terms of units of S1, the value of a T -maturity bond is just

B(t, T )
S1

t

=
1

F (t, T )
for 0 ≤ t ≤ T ≤ T ∗.

However, this is to be a martingale under PS , so it has a differential

d

(
1

F (t, T )

)
= σF −1(t, T )

(
1

F (t, T )

)
dWS(t) for 0 ≤ t ≤ T ≤ T ∗. (9.3)

Again there will be no dt terms in the differential, and (WS(t))0≤t≤T is
a standard Brownian motion under PS . Again, σF −1(t, T ) can be taken as
non-negative.

Theorem 9.3.5. σF (t, T ) = σF −1(t, T ).
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Proof. Applying the Itô rule to (9.3), we have

d

(
1

F (t, T )

)
= − 1

F (t, T )2
σF (t, T )F (t, T )dWB(t)

+
1

F (t, T )3
σF (t, T )2F (t, T )2dt

= σF (t, T )
(

1
F (t, T )

)
(−dWB(t) + σB(t, T )dt) . (9.4)

We know that (WB(t)) is a standard Brownian motion under PB(t,T ), as
is (−WB(t)). Therefore, under PB(t,T ) the process 1

F (t,T ) has volatility
σF (t, T ) and mean rate of return σF (t, T )2. Changing the measure from
PB(t,T ) to PS transforms 1

F (t,T ) into a PS-martingale. Consequently, un-
der PS the mean rate of return of 1

F (t,T ) is zero, but the volatility is not
changed. In fact, from (9.4)

d

(
1

F (t, T )

)
= σF −1(t, T )

1
F (t, T )

dWS(t) for 0 ≤ t ≤ T ≤ T ∗. (9.5)

Comparing (9.4) and (9.5), we see that

σF (t, T ) = σF −1(t, T ), WS(t) = −WB(t) +
∫ t

0
σF (s, T )ds.

9.4 A General Option Pricing Formula

Following El Karoui, Geman, and Rochet [102] the risk-neutral measures
for the numéraires S1 and B can be used to express the price of a European
call option:

V0 = E
((

S0
T

)−1 (
S1

T − K
)+)

= E
((

S0
T

)−1
S1

T 1{S1
T >K}

)
− KE

((
S0

T

)−1
1{S1

T >K}
)

= S1
0

∫
{S1

T >K}
S1

T

S1
0S0

T

dP − KB(0, T )
∫
{S1

T >K}
1

B(0, T )S0
T

dP

= S1
0PS

(
S1

T > K
)

− KB(0, T )PB

(
S1

T > K
)

= S1
0PS (F (T, T ) > K) − KB(0, T )PB (F (T, T ) > K)

= S1
0PS

(
1

F (T, T )
<

1
K

)
− KB(0, T )PB (F (T, T ) > K) .

Let us suppose that σF (t, T ) is a constant σF . Then, from (9.3), recalling
that σF = σF −1 , we have

1
F (T, T )

=
B(0, T )

S1
0

exp
{

σF WS(T ) − 1
2
σ2

F T

}
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where WS is a standard Brownian motion under PS . Consequently,

PS

(
1

F (T, T )
<

1
K

)
= PS

(
σF WS(T ) − 1

2
σ2

F T < log
(

S1
0

KB(0, T )

))
= PS

(
WS(T )√

T
<

1
σF

√
T

log
(

S1
0

KB(0, T )

)
+

1
2
σF

√
T

)
.

Now WS(T )√
T

is a standard normal random variable. Writing, as usual,
Φ for the standard normal distribution, we have

PS

(
1

F (T, T )
<

1
K

)
= Φ(h1),

where

h1 =
1

σF

√
T

(
log
(

S1
0

KB(0, T )

)
+

1
2
σ2

F T

)
.

From (9.2), we have that, with PB = PB(t, T ),

F (T, T ) =
S1

0

B(0, T )
exp
{

σF WB(T ) − 1
2
σ2

F T

}
,

where WB is a standard Brownian motion under PB . Therefore

PB (F (T, T ) > K) = PB

(
σF WB(T ) − 1

2
σ2

F T > log
(

KB(0, T )
S1

0

))
= PB

(
WB(T )√

T
<

1
σF

√
T

(
log
(

KB(0, T )
S1

0

)
+

1
2
σ2

F T

))
= PB

(
−WB(T )√

T
<

1
σF

√
T

(
log
(

S1
0

KB(0, T )

)
− 1

2
σ2

F T

))
.

Again, WB(T )√
T

is a standard normal random variable, so that

PB (F (T, T ) > K) = Φ(h2),

where

h2 =
1

σF

√
T

(
log
(

S1
0

KB(0, T )

)
− 1

2
σ2

F T

)
.

Consequently, the price of the European call is

V0 = S1
0Φ(h1) − KB(0, T )Φ(h2).

If r is constant, then B(0, T ) = e−rT and this formula reduces to the
Black-Scholes formula of Theorem 7.6.2.

A modification of this argument shows that for any intermediate time
0 ≤ t ≤ T, the value of the European call, with strike price K and expiration
time T, is

Vt = S1
t Φ(h1(t)) − KB(0, T )Φ(h2(t)), (9.6)
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where now, recalling that F (t, T ) = S1
t

B(t,T ) ,

h1(t) =
1

σF

√
T − t

(
log
(

F (t, T )
K

)
+

1
2
σ2

F (T − t)
)

,

h2(t) =
1

σF

√
T − t

(
log
(

F (t, T )
K

)
− 1

2
σ2

F (T − t)
)

.

Formula (9.6) suggests the European call can be hedged, at each time t, by
holding Φ(h1(t)) units of S1 and shorting KΦ(h2(t)) bonds.

We shall establish that this is a self-financing strategy. However, first
we show that a change of numéraire does not change a trading strategy.

Lemma 9.4.1. Suppose S1, S2, . . . , Sd are the price processes of k assets.
Consider a self-financing strategy (θ1, θ2, . . . , θd), where θi

t represents the
number of units of asset i held at time t. Suppose Z is a numéraire and
Ŝi = Si

Z , 1 ≤ i ≤ d, is the price of asset i in units of Z. Then θi represents
the number of units of Ŝi in the portfolio, evaluated in terms of the new
numéraire (there are no other riskless assets).

Proof. The wealth process is

Xt =
d∑

i=1

θi
tS

i
t .

As the strategy is self-financing, we have

dXt =
d∑

i=1

θi
tdSi

t .

Write X̂t = Xt

Zt
for the wealth process expressed in terms of the numéraire

Z. Then

dX̂ = Z−1dX + Xd

(
1
Z

)
+ d

〈
X,

1
Z

〉
=

1
Z

d∑
i=1

θidSi +

(
d∑

i=1

θiSi

)
d

(
1
Z

)
+

d∑
i=1

θid

〈
Si,

1
Z

〉

=
d∑

i=1

θidŜi.

Corollary 9.4.2. In Lemma 9.4.1, the strategy
(
θ1, θ2, . . . , θd

)
determined

the wealth process X. Suppose now that components θ1, θ2, . . . , θd−1 are
given, together with the wealth process X. Then

θd
t =

1
Sd

t

(
Xt −

d−1∑
i=1

θi
tS

i
t

)
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and

dXt =
d∑

i=1

θi
tdSi

t =
d−1∑
i=1

θi
tdSi

t +
1
Sd

t

(
Xt −

d−1∑
i=1

θi
tS

i
t

)
dSd

t .

In terms of the numéraire Z, we still have

θd
t =

1
Sd

t

(
Xt −

d−1∑
i=1

θi
tS

i
t

)
=

1

Ŝd
t

(
X̂t −

d−1∑
i=1

θi
tŜ

i
t

)
and

dX̂t =
d−1∑
i=1

θi
tdŜi

t +
1

Ŝd
t

(
X̂t −

d−1∑
i=1

θi
tŜ

i
t

)
dŜd

t .

Let us return to the price (9.6) at time t for a European call option.

Theorem 9.4.3. Holding Φ(h1(t)) units of S1 and shorting KΦ(h2(t))
bonds at each time t ∈ [0, T ] is a self-financing strategy for the European
call option with strike price K and expiration time T.

Proof. This result could be established using Theorem 9.4.1. Alternatively,
suppose we start with an initial investment of $V0 and hold Φ(h1(t)) units
of S1 at each time t. To maintain this position, we short as many bonds as
necessary.

If we can show that the number of bonds we must short at time t is
KΦ(h2(t)), then the value of our portfolio is indeed

Φ(h1(t))S1
t − KB(t, T )Φ(h2(t)),

which equals Vt, the price of the call option at time t ∈ [0, T ], and we have
a hedge.

Let us write θ1
t = Φ(h1(t)) so that at time t we hold θ1

t units of S1.
Suppose Xt is the value of our portfolio at time t. Then we invest

Xt − θ1
t S1

t in the bond and the number of bonds in the portfolio is

θ2
t =

Xt − θ1
t S1

t

B(t, T )
.

Then

dXt = θ1
t dS1

t + θ2
t dB(t, T ) = θ1

t dS1
t +

Xt − θ1
t S1

t

B(t, T )
dB(t, T ).

We must show that, if X0 = V0, then

Xt = Vt for 0 ≤ t ≤ T.

To establish this, it is easier to work with B(t, T ) as numéraire. In terms
of this zero coupon bond, the asset values S1, B, and X become

Ŝ1
t =

S1
t

B(t, T )
= F (t, T ),
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B̂(t, T ) = 1,

X̂t = Φ(h1(t))F (t, T ) + X̂t − θ1
t S1

t ,

and dX̂t = Φ(h1(t))dF (t, T ).
The option value is

Vt = Φ(h1(t))S1
t − KB(t, T )Φ(h2(t)),

and in terms of the numéraire B(t, T ) this becomes

V̂t = Φ(h1(t))F (t, T ) − KΦ(h2(t)).

Consequently,

dV̂t = Φ(h1(t))dF (t, T ) + F (t, T )dΦ(h1(t)) − KdΦ(h2(t))
+ d 〈Φ(h1(t)), F (t, T )〉 .

Recall the dynamics (9.2) given by

dF (t, T ) = σF F (t, T )dWB(t).

Now consider (Φ(h1(t))), where

h1(t) =
1

σF

√
T − t

(
log
(

F (t, T )
K

)
+

1
2
σ2

F (T − t)
)

.

The Itô rule gives, after some cancellation, with φ as the standard normal
density,

dΦ(h1(t)) = φ(h1) · 1
σF

√
T − t

· 1
F

dF − φ(h1)
σF

2
√

T − t
dt,

where φ is the standard normal density function.
Also, Fφ(h1) = Kφ(h2), and some elementary but tedious calculations

confirm that

FdΦ(h1) − KdΦ(h2) + d 〈Φ(h1), F 〉 = 0.

The result follows.

9.5 Term Structure Models

Again let W be a standard Brownian motion on (Ω,F, P ) and (Ft)0≤t≤T

the (completed) filtration generated by W.
The instantaneous interest rate rt is an adapted, measurable process

and the numéraire asset S0
t has value

S0
t = exp

{∫ t

0
rudu

}
for 0 ≤ t ≤ T.
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We have seen that the price at time t ∈ [0, T ] of a zero coupon bond
maturing at time T is

B(t, T ) = S0
t E
((

S0
t

)−1 |Ft

)
.

If r is non-random, then

B(t, T ) = exp

{
−
∫ T

t

rudu

}
.

Zero coupon bonds are traded in the market, and their prices can be
used to calibrate the model. They are known as ‘zeros’.

Definition 9.5.1. A term structure model is a mathematical model for the
prices B(t, T ) for all t and T with 0 ≤ t ≤ T ≤ T2.

The yield R(t, T ) = log B(t,T )
T−t provides a yield curve for each fixed time

t as the graph of R(t, T ) against T , which displays the average return
of bonds after elimination of the distorting effects of maturity. We expect
different yields at different maturities, reflecting market beliefs about future
changes in interest rates. While greater uncertainty about interest rates
in the distant future will tend to lead to increases in yield with maturity,
high current rates (which may be expected to fall) can produce ‘inverted’
yield curves, in which long bonds will have a lower yield than short ones. A
satisfactory term structure model should be able to handle both situations.

Remark 9.5.2. Recall that we are working under a martingale, or risk-
neutral, measure P and that

B(t, T ) = S0
t E
((

S0
t

)−1 |Ft

)
.

That is,
B(t, T )

S0
t

= E
((

S0
t

)−1 |Ft

)
,

and so
(

B(t,T )
S0

t

)
is a martingale under P.

If the market measure P does not have the property that all processes(
B(t,T )

S0
t

)
are martingales, then the term structure model is free of arbitrage

only if there is an equivalent measure P̃ such that, under P̃ , all processes(
B(t,T )

S0
t

)
are martingales for all maturity times T.

B(t, T ) is a positive process for all T , so that, using the martingale
representation theorem, dynamics for B(t, T ) can be expressed in a log-
normal form

dB(t, T ) = µ(t, T )B(t, T )dt + σ(t, T )B(t, T )dWt for t ∈ [0, T ].
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Consequently,

d

(
B(t, T )

S0
t

)
= (µ(t, T ) − rt)

B(t, T )
S0

t

dt + σ(t, T )
B(t, T )

S0
t

dWt

and
(

B(t,T )
S0

t

)
is a martingale under P if and only if µ(t, T ) = rt.

The statement that

B(t, T ) = E

(
exp

{
−
∫ T

t

rudu

}
|Ft

)
is sometimes called the Local Expectations Hypothesis.

The assumption that holding a discount bond to maturity gives the
same return as rolling over a series of single-period bonds is called the
Return to Maturity Expectations Hypothesis. In continuous time, it would
state that, under some probability P ′,

1
B(t, T )

= EP ′

(
exp

{∫ T

t

rudu

}
|Ft

)
.

The Yield to Maturity Expectations Hypothesis states that the yield
from holding a bond equals the yield from rolling over a series of single-
period bonds. In continuous time, this would imply

B(t, T ) = exp

{
−EP ′

(∫ T

t

rudu |Ft

)}

for some probability P ′. A fuller discussion of these concepts can be found
in the papers of Frachot and Lesne [137], [138].

9.6 Short-rate Diffusion Models

Vasicek’s Model

Vasicek [296] proposed a mean-reverting version of the Ornstein-Uhlenbeck
process for the short term rate r. Specifically, under the risk-neutral mea-
sure P , r is given by

drt = a(b − rt)dt + σdWt

for r0 > 0, a > 0, b > 0, and σ > 0. Then

rt = e−at

(
r0 + b

(
eat − 1

)
+ σ

∫ t

0
eaudWu

)
.

Consequently, rt is a normal random variable with mean

E (rt) = e−at
(
r0 + b

(
eat − 1

))
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and variance

Var(rt) = σ2
(

1 − e−2at

2a

)
.

However, a normal random variable can be negative with positive proba-
bility so this model for r is not too realistic (unless the probability of being
negative is small). Nonetheless, its simplicity validates its discussion.

As t → ∞, we see that rt converges in law to a Gaussian random
variable with mean b and variance σ2

2a .
The price of a zero coupon bond in the Vasicek model is therefore

B(t, T ) = E

(
exp

{
−
∫ T

t

rudu

}
|Ft

)

= e−b(T−t)E

(
exp

{
−
∫ T

t

Xudu

}
|Ft

)
, (9.7)

where Xu = ru − b. Now X is the solution of the classical Ornstein-
Uhlenbeck equation

dXt = −aXtdt + σdWt, (9.8)

with X0 = r0 − b. Write

Z(t, x) = E

(
exp
{

−
∫ t

0
X(u, x)du

})
, (9.9)

where X(u, x) is the solution of (9.2) with X(0, x) = x. Now

X(u, x) = e−au

(
x +
∫ u

0
σeasdWs

)
,

so X(u, x) is a Gaussian process with continuous sample paths. Conse-
quently,

(∫ t

0 X(u, x)du
)

is a Gaussian process; this can be established by
considering moment-generating functions exp {u1X(t1) + · · · + unX(tn)}.

If Y is a Gaussian random variable with E (Y ) = m and Var(Y ) = γ2,
we know that

E
(
eY
)

= e−m+ 1
2 γ2

.

Now

E (X(u, x)) = xe−au, E

(∫ t

0
X(u, x)du

)
=

x

a

(
1 − e−at

)
,

and

Cov[X(t, x), X(u, x)] = σ2e−a(u+t)E

(∫ t

0
easdWs

∫ u

0
easdWs

)
= σ2e−a(u+t)

∫ u∧t

0
e2asds
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=
σ2

2a
e−a(u+t)

(
e2a(u∧t) − 1

)
. (9.10)

Therefore,

Var
(∫ t

0
X(u, x)du

)
= Cov

(∫ t

0
X(u, x)du,

∫ t

0
X(s, x)ds

)
=
∫ t

0

∫ t

0
Cov[X(u, x), X(s, x)]duds

=
∫ t

0

∫ t

0

σ2

2a
e−a(u+s)

(
e2a(u∧s) − 1

)
duds

=
σ2

2a3

(
2at − 3 + 4e−at − e−2at

)
.

Consequently,

Z(t, x) = E

(
exp
{

−
∫ t

0
X(u, x)du

})
= exp

{
−x

a

(
1 − e−at

)
+

1
4

σ2

a3

(
2at − 3 + 4e−at − e−2at

)}
.

Using the time homogeneity of the X process,

B(t, T ) = e−b(T−t)Z(T − t, rt − b).

This can be written as

B(t, T ) = exp {−(T − t)R(T − t, rt)} ,

where R(T − t, rt) can be thought of as the interest rate between times t

and T. With R∞ = b − σ2

2a2 , we can write

R(t, r) = R∞ − 1
at

(
(R∞ − r)

(
1 − e−at

)
− σ2

4a2

(
1 − e−at

)2)
.

Note that R∞ = limt→∞ R(t, r), so R∞ can be thought of as the long-
term interest rate. However, R∞ does not depend on the instantaneous
rate rt. Practitioners consider this to be a weakness of the Vasicek model.

Exercise 9.6.1. Let 0 ≤ t ≤ T ≤ T ∗ and consider a call option with expiry
T and strike K on the zero coupon bond B(t, T ∗). Show that this option
will be exercised if and only if r(T ) < r∗, where, with R∞ as above,

r∗ = R∞

(
1 − α(T ∗ − T )

1 − e−α(T ∗−T )

)
− σ2[1 − e−α(T ∗−T )]

4α2

− log(K)
(

α

1 − e−α(T ∗−T )

)
. (9.11)
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The Hull-White Model

In its simplest form this model is a generalisation of the Vasicek model using
deterministic, time-varying coefficients. It is popular with practitioners.
Its more general form includes a term rβ

t in the volatility, in which case it
generalises the Cox-Ingersoll-Ross model discussed in the next section.

In this model, the short rate process is supposed given by the stochastic
differential equation

drt = (α(t) − β(t)rt) dt + σ(t)dWt (9.12)

for r0 > 0. Here, α, β, and σ are deterministic functions of t.
Write b(t) =

∫ t

0 β(u)du, so b is also non-random. We solve (9.12) by
variation of constants to obtain

rt = e−b(t)
(

r0 +
∫ t

0
eb(u)α(u)du +

∫ t

0
eb(u)σ(u)dWu

)
.

Again, rt is a deterministic quantity plus the stochastic integral of a deter-
ministic function.

Consequently, rt is a Gaussian Markov process with mean

E (rt) = m(t) = e−b(t)
(

r0 +
∫ t

0
eb(u)α(u)du

)
and covariance

Cov(rt, rs) = e−b(s)−b(t)
∫ s∧t

0
e2b(u)σ2(u)du.

Again we can argue that
∫ T

0 rtdt is normal. Its mean is

E

(∫ T

0
rtdt

)
=
∫ T

0
e−b(t)

(
r0 +

∫ t

0
eb(u)α(u)du

)
dt

and its variance is

Var

(∫ T

0
rtdt

)
=
∫ T

0
e2b(u)σ2(u)

(∫ T

u

e−b(s)ds

)2

du.

The price of a zero coupon bond for this model is

B(0, T ) = E

(
exp

{
−
∫ T

0
rtdt

})
.

The quantity in the exponential is Gaussian, so we have

B(0, T ) = exp

{
−E

(∫ T

0
rtdt

)
+

1
2
Var

(∫ T

0
rtdt

)}
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= exp

{
−r0

∫ T

0
e−b(t)dt −

∫ T

0

∫ t

0
e−b(t)+b(u)α(u)dudt

+
1
2

∫ T

0
e2b(u)σ2(u)

(∫ T

u

e−b(s)ds

)2

du

⎫⎬⎭
= exp[−r0C(0, T ) − A(0, T )],

where

C(0, T ) =
∫ T

0
e−b(t)dt

and

A(0, T ) =
∫ T

0

∫ t

0
e−b(t)+b(u)α(u)dudt

− 1
2

∫ T

0
e2b(u)σ2(u)

(∫ T

u

e−b(s)ds

)2

du.

Note that the first term in A can be written, using Fubini’s theorem, as∫ T

0

∫ T

u

e−b(t)+b(u)α(u)dudt =
∫ T

0
eb(u)α(u)

(∫ T

u

e−b(s)ds

)
du.

Therefore

A(0, T ) =
∫ T

0

(
eb(u)α(u)γ(u) − 1

2
e2b(u)σ2(u)γ2(u)

)
du,

where

γ(u) =
∫ T

u

e−b(s)ds.

The price at time t of a zero coupon bond is

B(t, T ) = E

(
exp

{
−
∫ T

t

rudu

}
|Ft

)
= E

(
exp

{
−
∫ T

t

rudu

}
|rt

)
,

where the final step follows because r is Markov. Write

C(t, T ) = eb(t)
∫ T

t

e−b(u)du = eb(t)γ(t)

and

A(t, T ) =
∫ T

t

(
eb(u)α(u)γ(u) − 1

2
e2b(u)σ2(u)γ2(u)

)
du.

Then it can be shown that

B(t, T ) = exp {−rtC(t, T ) − A(t, T )} . (9.13)
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Now α, β, and γ are deterministic functions of time, t; consequently
C(t, T ) and A(t, T ) are also functions only of t. Write Ct(t, T ) and At(t, T )
for their derivatives in t. From (9.13), we have

dB(t, T ) = B(t, T )
[

− C(t, T ) (α(t) − β(t)rt) dt

− C(t, T )σ(t)dWt − 1
2
C2(t, T )σ2(t)dt − rtCt(t, T )dt − At(t, T )dt

]
.

(9.14)

We are working under the risk-neutral measure, so

dB(t, T ) = rtB(t, T )dt + ∆(t)dWt, (9.15)

where ∆ is some coefficient function. Comparing (9.14) and (9.15), we see
that we must have

rt = −C(t, t) (α(t) − β(t)rt)−
1
2
C2(t, T )σ2(t)−rtct(t, T )−A(t, T ). (9.16)

Consequently,

dB(t, T ) = rtB(t, T )dt − B(t, T )σ(t)C(t, T )dWt.

The volatility of the zero coupon bond is σ(t)C(t, T ).

Some Normal Densities

Consider times 0 ≤ t ≤ T1 < T2. In the Hull-White framework, we have
seen that r(T1) is Gaussian with

E (r(T1)) = m1 = e−b(T1)

(
r0 +

∫ T1

0
eb(u)α(u)du

)
,

Var[r(T1)] = σ2
1 = e−2b(T1)

(∫ T1

0
e2b(u)σ2(u)du

)
.

Also,
∫ T1

0 rudu is Gaussian with

E

(∫ T1

0
rudu

)
= m2 =

∫ T1

0
e−b(v)

(
r0 +

∫ v

0
eb(u)α(u)du

)
dv,

Var
∫ T1

0
rudu = σ2

2 =
∫ T1

0
e2b(u)σ2(u)

(∫ T1

u

e−b(s)ds

)2

du.

The covariance of r(T1) and
∫ T1

0 rudu is

E

((∫ T1

0
(ru − E (ru)) du

)
(r(T1) − E (r(T1)))

)
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=
∫ T1

0
E ((ru − E (ru)) (r(T1) − E (r(T1)))) du

=
∫ T1

0
Cov (ru, r(T1)) du

=
∫ T

0

(
e−b(u)−b(T1)

∫ T

0
e2b(s)σ2(s)ds

)
du

= ρσ1σ2,

say.

Bond Options

Consider a European call option on the zero coupon bond that has strike
price K and expiration time T1. The bond matures at time T2 > T1.

The calculations above imply that (r(T1),
∫ T1

0 rudu) is Gaussian with
density

f(x, y) =
1

2πσ1σ2
√

1 − ρ2

× exp
{

− 1
2(1 − ρ2)

(
(x − m1)2

σ2
1

− 2ρ(x − m1)(y − m2)
σ1σ2

+
(y − m2)2

σ2
2

)}
.

The price of the European option on B with expiration time T1 and
strike K at time 0 is

V0 = E
(
e−

∫ T1
0 rudu (B(T1, T2) − K)+

)
= E

(
e−

∫ T1
0 rudu (exp {−r(T1)C(T1, T2) − A(T1, T2)} − K)+

)
=
∫ ∞

−∞

∫ ∞

−∞
e−y (exp {−xC(T1, T2) − A(T1, T2)} − K)+ f(x, y)dxdy.

To determine the price of the bond option at time t ≤ T1 < T2, we note
that the random variable

(
r(T1),

∫ T1

t
rudu

)
is Gaussian with a density

similar to f(x, y), except that m1, m2, σ2, σ2, and ρ are replaced by

m1(t) = E (r(t1) |rt ) = e−b(T1)

(
eb(t)rt +

∫ T1

t

eb(u)α(u)du

)
,

σ2
1(t) = E

(
(r(T1) − m1(t))

2 |rt

)
= e−2b(T1)

∫ T1

t

e2b(u)σ2(u)du,

m2(t) = E

(∫ T1

t

rudu |rt

)

=
∫ T1

t

(
rte

−b(v)+b(t) + e−b(v)
∫ v

t

eb(u)α(u)du

)
dv,
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σ2
2(t) = E

⎛⎝(∫ T1

t

rudu − m2(r)

)2

|rt

⎞⎠
=
∫ T1

t

e2b(v)σ2(v)

(∫ T1

v

e−b(s)ds

)2

dv,

and

ρ(t)σ1(t)σ2(t) = E

((∫ T1

t

rudu − m2(t)

)
(r(T1) − m1(t)) |rt

)

=
∫ T1

t

e−b(u)−b(T1)
∫ u

t

e2b(s)σ2(s)dsdu.

These quantities now depend on rt and so are stochastic as is, therefore,
the corresponding option price

E
(
e−

∫ T1
t rudu (B(T1, T2) − K)+ |Ft

)
= E

(
e−

∫ T1
t rudu (exp {−r(T1)C(T1, T2) − A(T1, T2)} − K)+ |rt

)
.

This price can be expressed in terms of an integration with respect to
a density analogous to ft(x, y) in which m1, σ1, m2, σ2, ρ are replaced by
m1(t), σ1(t), m2(t), σ2(t), ρ(t), respectively.

The Hull-White model leads to a closed form expression for the option
on the bond. Also, the parameters of the model can be estimated so the
initial yield curve is matched exactly. However, it is a ‘one-factor’ model
and

B(t, T ) = exp {−rtC(t, T ) − A(t, T )} ,

so all bond prices for all T are perfectly correlated. Further, the short rate
rt is normally distributed. This means it can take negative values with
positive probability, and the bond price can exceed 1.

The Cox-Ingersoll-Ross Model

We have noted in the Vasicek and Hull-White models for rt that, because
rt is Gaussian, there is a positive probability that rt < 0.

The Cox-Ingersoll-Ross model for rt provides a stochastic differential
equation for rt, the solution of which is always non-negative. To describe
this process, recall the Ornstein-Uhlenbeck equation (9.8)

dXt = −aXtdt + σdWt (9.17)

with solution

X(t, x) = e−at

(
x +
∫ t

0
σeasdWs

)
.
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Here W is a standard Brownian motion on a probability space (Ω,F, P ).
In fact, suppose we have n independent Brownian motions W1, . . . , Wn

on (Ω,F, P ) and n Ornstein-Uhlenbeck processes X1, . . . , Xn given by equa-
tions

dXi(t) = −1
2
αXi(t)dt +

1
2
σdWi(t),

so that

Xi(t) = e− 1
2 αt

(
Xi(0) +

1
2
σ

∫ t

0
e

1
2 βsdWi(s)

)
.

Consider the process

rt = X2
1 (t) + X2

2 (t) + · · · + X2
n(t).

From Itô’s differential rule,

drt =
n∑

i=1

2Xi(t)
(

−1
2
αXi(t)dt +

1
2
σdWi(t)

)
+

n∑
i=1

1
4
σ2dt

= −αrtdt + σ

(
n∑

i=1

Xi(t)dWi(t)

)
+

nσ2

4
dt

=
(

nσ2

4
− αrt

)
dt + σ

√
rt

n∑
i=1

Xi(t)√
rt

dWi(t).

Consider the process

Wt =
n∑

i=1

∫ t

0

Xi(u)√
ru

dWi(u).

Then W is a continuous martingale and

W 2
t = 2

∫ t

0
WudWu +

n∑
i=1

∫ t

0

X2
i (u)
ru

du = 2
∫ t

0
WudWu + t,

so W 2
t − t is a martingale. From Lévy’s characterisation, therefore, W is a

standard Brownian motion and we can write

drt =
(

nσ2

4
− αrt

)
dt + σ

√
rtdWt.

It is known (see [240], for example) that if n = 1, then P (rt > 0) = 1
but

P (there are infinitely many times t > 0 for which rt = 0) = 1.

However, if n ≥ 2, then

P (there is at least one time t > 0 for which rt = 0) = 0.
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Definition 9.6.2. A Cox-Ingersoll-Ross (CIR) process is the process de-
fined by an equation of the form

drt = (a − brt)dt + σ
√

rtdWt, (9.18)

where a > 0, b > 0, and σ > 0 are constant. With n = 4a
σ2 , we can interpret

rt as
∑n

i=1 X2
i (t) for Ornstein-Uhlenbeck processes Xi as above. However,

equation (9.18) makes sense whether or not n is an integer.

Remark 9.6.3. Geman and Yor [142] explore the relationship between the
Vasicek and CIR models and show in particular that the CIR process is a
Bessel process.

Similarly to the results for integer n, we quote the following ([240]). If
a < σ2

2 , so n < 2, then

P (there are infinitely many times t > 0 for which rt = 0) = 1.

Consequently, this range for a is not too useful. If a ≥ σ2

2 , so n ≥ 2, then

P (there is at least one time t > 0 for which rt = 0) = 0.

Write r0,t(x) for the solution of (9.18) for which r0 = x. The next result

describes the law of the pair of random variables
(
r0,t(x),

∫ t

0 r0,u(x)du
)
.

Note that φ and ψ are functions of t only, reminiscent of the A and C
functions in the Hull-White model.

Theorem 9.6.4. For any λ > 0 and µ > 0, we have

E
(
e−λr0,t(x)e−µ

∫ t
0 r0,u(x)du

)
= e−aφλ,µ(t)e−xψλ,µ(t),

where

φλ,u(t) = − 2
σ2 log

(
2γet(b+γ)/2

σ2λ(eγt − 1) + γ − b + eγt(γ + b)

)
,

ψλ,u(t) =
λ(γ + b) + eγt(γ − b) + 2µ(eγt − 1)
σ2λ(eγt − 1) + γ − b + eγt(γ + b)

and γ =
√

b2 + 2σ2µ.

Proof. Suppose 0 ≤ t ≤ T. From the uniqueness of solutions of (9.18), we
have the following ‘flow’ property:

r0,T (x) = rt,T (r0,t(x)).

Consider the expectation

E
(
e−λrt,T (r0,t(x))e−µ

∫ T
t

r0,u(x)dµ |Ft

)
.
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From the Markov property, this is the same as conditioning on r0,t(x), so
write

V (t, r0,t(x)) = E
(
e−λr0,T (x)e−µ

∫ T
t

r0,u(x)du |r0,t(x)
)

.

Now

e−µ
∫ t
0 r0,u(x)duV (t, r0,t(x)) = E

(
e−λr0,T (x)e−µ

∫ T
0 r0,u(x)du |Ft

)
and so is a martingale. However, applying the Itô differentiation rule, we
obtain

e−µ
∫ t
0 r0,uduV (t, r0,t(x))

= V (0, x) +
∫ t

0

(∂V

∂u
(u, r0,u(x)) − µr0,u(x)V (u, r0,u(x))

+
∂V

∂ξ
(u, r0,u(x)) (a − br0,u(x))

+
1
2

∂2V

∂ξ2 (u, r0,u(x)) σ2r0,u(x)
)
e−µ

∫ u
0 r0,s(x)dsdu

+
∫ t

0
e−µ

∫ u
0 r0,s(x)ds ∂V

∂ξ
(u, r0,u(x)) σ

√
r0,u(x)dWu.

As the left-hand side is a martingale and the right-hand side is an Itô
process, the du integral must be the zero process. Consequently,

∂V

∂t
(t, y) − µyV (t, y) +

∂V

∂y
(t, y)(a − by) +

1
2

∂2V

∂y2 (t, y)σ2y = 0

with
V (t, y) = E

(
e−λrt,T (y)e−µ

∫ T
t

rt,u(y)du
)

.

Because the coefficients of (9.18) are independent of t, the solution
of (9.18) is stationary and we can write

V (t, y) = E
(
e−λr0,T −t(y)e−µ

∫ T −t
0 r0,u(y)du

)
.

Define

F (t, y) = E
(
e−λr0,t(y)e−µ

∫ t
0 r0,u(y)du

)
,

so that V (t, y) = F (T − t, y) and F satisfies

∂F

∂t
=

∂F

∂y
(a − by) − µyF +

1
2
σ2y

∂2F

∂y2 (9.19)

with F (0, y) = e−λy.
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Motivated by the formula of the Hull-White model, we look for a solu-
tion of (9.19) in the form

F (t, y) = e−aφ(t)−xψ(t).

This is the case if φ(0) = 0 and ψ(0) = λ with

φ′(t) = ψ(t), −ψ′(t) =
σ2

2
ψ2(t) + bψ(t) − µ.

Solving these equations gives the expressions for φ and ψ.

Remark 9.6.5. Taking µ = 0, we obtain the Laplace transform of rt(x):

E
(
eλrt(x)

)
= (2λK + 1)−2a/σ2

exp
{ −λKz

2λK + 1

}
,

where

K =
σ2

4b

(
1 − e−bt

)
, z =

4bx

σ2(ebt − 1)
.

Consequently, the Laplace transform of rt(x)
K is given by g 4a

σ2 ,z, where

gδ,z =
1

(2λ + 1)δ/2 exp
{

− λz

2λ + 1

}
.

However, consider the chi-square density fδ,z, having δ degrees of freedom
and decentral parameter z, given by

fδ,z(x) =
e−z/2

2z
δ
4 − 1

2
e−x/2x

δ
4 − 1

2 I δ
2 −1(

√
xz) for x > 0.

Here Iν is the modified Bessel function of order ν, given by

Iν(x) =
(x

2

)ν ∞∑
n=0

(
x
2

)2n

n!Γ(ν + n + 1)
.

Then it can be shown that gδ,z is the Laplace transform of the law of a
random variable having density fδ,z(x). Consequently, rt(x)

K is a random
variable having a chi-square density with δ degrees of freedom.

Recall that we are working under the risk-neutral probability P. The
price of a zero coupon bond at time 0 is

B(0, T ) = E

(
exp

{
−
∫ T

0
ru(x)du

})
= e−aφ0,1(0,T )−r0(x)ψ0,1(0,T ).

Here

φ0,1(T ) = − 2
σ2 log

(
2γeT (γ+b)/2

γ − b + eγT (γ + b)

)
, ψ0,1(T ) =

2(eγT − 1)
γ − b + eγT (γ + b)
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with γ =
√

b2 + 2σ2. The price of a zero coupon bond at time t is similarly,
because of stationarity,

B(t, T ) = e−aφ0,1(T−t)−rt(x)ψ0,1(T−t).

Suppose 0 ≤ T ≤ T ∗. Consider a European call option with expiration
time T and strike price K on the zero coupon bond B (t, T ∗) . At time 0,
this has a price

V0 = E
(
e−

∫ T
0 ru(x)du (B(T, T ∗) − K)+

)
= E

(
E
(
e−

∫ T
0 ru(x)du (B(T, T ∗) − K)+ |Ft

))
= E

(
e−

∫ T
0 ru(x)du

(
e−aφ0,1(T ∗−T )−rT (x)ψ0,1(T ∗−T ) − K

)+
)

.

Write

r∗ =
−aφ0,1(T ∗ − T ) + log K

ψ0,1(T ∗ − T )
.

Then

V0 = E
(
e−

∫ T
0 ru(x)duB(T, T ∗)1{rT (x)<r∗}

)
− KE

(
e−

∫ T
0 ru(x)du1{rT (x)<r∗}

)
.

Now

E
(
e−

∫ T
0 ru(x)duB(T, T ∗)

)
= B(0, T ∗), E

(
e−

∫ T
0 ru(x)du

)
= B(0, T ).

Define two new probability measures P1 and P2 by setting

dP1

dP

∣∣∣∣
FT

=
e−

∫ T
0 ru(x)duB(T, T ∗)

B(0, T ∗)
,

dP2

dP

∣∣∣∣
FT

=
e−

∫ T
0 ru(x)du

B(0, T )
.

Then

V0 = B(0, T ∗)P1 (rT (x) < r∗) − KB(0, T )P2 (rT (x) < r∗) .

Write

K1 =
δ2

2
· eγT − 1
γ (eγT + 1) + (σ2ψ0,1(T ∗ − T ) + b) (eγT − 1)

,

K2 =
σ2

2
· eγT − 1
γ (eγT + 1) + b (eγT − 1)

.

Then it can be shown that the law of rT (x)
K1

under P1 (resp. the law of
rT (x)

K2
under P2) is a decentral chi-square with 4a

σ2 degrees of freedom and
decentral parameter ξ1 (resp. ξ2), where

ξ1 =
8r0(x)γ2eγT

σ2 (eγT − 1) (γ (eγT + 1)) + (σ2ψ0,1(T ∗ − T ) + b) (eγT − 1)
,
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ξ2 =
8r0(x)γ2eγT

σ2 (eγT − 1) (γ (eγT + 1) + b (eγT − 1))
.

Consequently, if Fδ,z is the probability distribution function for a chi-square
random variable with δ degrees of freedom and decentral parameter z, then

V0 = B(0, T ∗)F 4a
σ2 ,ξ1

(
r∗

K1

)
− KB(0, T )F 4a

σ2 ,ξ2

(
r∗

K2

)
.

9.7 The Heath-Jarrow-Morton Model

Forward Rate Agreement

Suppose 0 ≤ t ≤ T < T + ε ≤ T ∗. ‘Today’ is time t. We wish to enter a
contract to borrow $1 at the future time T and repay it (with interest) at
the time T + ε. The rate of interest to be paid between T and T + ε is to
be agreed today and so must be Ft-measurable.

We could approximate this transaction by buying today a T -maturity
zero for B(t, T ) and shorting an amount B(t,T )

B(t,T+ε) of (T +ε)-maturity zeros.
The cost of this portfolio at time t is

B(t, T ) − B(t, T )
B(t, T + ε)

· B(t, T + ε) = 0.

Now at the future time T we receive $1 for the T -maturity zero. Then, at
the time (T + ε), we must pay B(t,T )

B(t,T+ε) for the (T + ε)-maturity zeros.
In effect, we are looking at borrowing $1 at the future time T and paying

$ B(t,T )
B(t,T+ε) at time T + ε. Consequently, the interest rate we are paying on

the dollar received at time T is R(t, T, T + ε), where

B(t, T )
B(t, T + ε)

= exp {εR(t, T, T + ε)}

so
R(t, T, T + ε) = −1

ε
[log B(t, T + ε) − log B(t, T )].

Definition 9.7.1. The instantaneous interest rate for money borrowed at
time T, agreed upon at time t ≤ T, is the forward rate f(t, T ).

In fact,

f(t, T ) = lim
ε↓0

R(t, T, T + ε) =
−∂

∂T
log B(t, T ).

Then, as B(t, t) = 1,

log B(t, T ) =
∫ T

t

∂

∂T
log B(t, u)du = −

∫ T

t

f(t, u)du.
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Therefore, B(t, T ) = exp(−
∫ T

t
f(t, u)du).

We note that this is an alternative representation for B(t, T ), in contrast
to its expression in terms of the short-rate process r:

B(t, T ) = E

(
exp

{
−
∫ T

t

rudu

}
|Ft

)
.

Agreeing at time t on the forward rate f(t, u) means one agrees, at time t,
that the instantaneous interest rate at time u ∈ [t, T ] will be f(t, u).

Thus one agrees that investing $1 at time t will give $ exp
∫ T

t
f(t, u)du

at time T ; investing $B(t, T ) at time t will give

$B(t, T ) · exp

{∫ T

t

f(t, u)du

}
= $1

at time T.

Lemma 9.7.2. We have rt = f(t, t).

Proof. We have two representations:

B(t, T ) = E

(
exp

{
−
∫ T

t

rudu

}
|Ft

)
, (9.20)

B(t, T ) = exp

{
−
∫ T

t

f(r, u)du

}
. (9.21)

From (9.20),

∂B(t, T )
∂T

= E

(
−r(T ) exp(−

∫ T

t

rudu) |Ft

)
.

Evaluating at T = t, we have

∂B(t, T )
∂T

∣∣∣∣
T=t

= −rt.

From (9.21),

∂B(t, T )
∂T

= −f(t, T ) exp

(
−
∫ T

t

f(t, u)du

)

and
∂B(t, T )

∂T

∣∣∣∣
T=t

= −f(t, t).
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The Heath-Jarrow-Morton model

The Heath-Jarrow-Morton (HJM) model for term structure describes a
system of stochastic differential equations for the evolution of the forward
rate f(t, T ). For each T ∈ (0, T ∗], suppose the dynamics of f are given by

df(t, T ) = α(t, T )dt + σ(t, T )dWt. (9.22)

Here the coefficients α(u, T ) and σ(u, T ), for 0 ≤ u ≤ T, are measurable
(in (u, ω)) and adapted. The integral form of (9.22) is

f(t, T ) = f(0, T ) +
∫ t

0
α(u, T )du +

∫ t

0
σ(u, T )dWu. (9.23)

Note that we have two time parameters and recall

B(t, T ) = exp

{
−
∫ T

t

f(t, u)du

}
.

With d denoting a differential in the t variable,

d

(
−
∫ T

t

f(t, u)du

)
= f(t, t)dt −

∫ T

t

(df(t, u)) du

= rtdt −
∫ T

t

[α(t, u)dt + σ(t, u)dWt]du

= rtdt − α∗(t, T )dt − σ∗(t, T )dWt, (9.24)

where

α∗(t, T ) =
∫ T

t

α(t, u)du, σ∗(t, T ) =
∫ T

t

σ(t, u)du.

Recall, that by definition, f(t, u) is an (Ft)-adapted process. Therefore,

Xt = −
∫ T

t

f(t, u)du

is an Ft-adapted process. In fact, it is an Itô process with, as in (9.24),

dXt = (rt − α∗(t, T )) dt − σ∗(t, T )dWt.

Also, B(t, T ) = eXt , so

dB(t, T ) = eXt

(
rt − α∗(t, T ) +

1
2
σ∗(t, T )2

)
dt − eXtσ∗(t, T )dWt

= B(t, T )
((

rt − α∗(t, T ) +
1
2
σ∗(t, T )2

)
dt − σ∗(t, T )dWt

)
.



280 CHAPTER 9. BONDS AND TERM STRUCTURE

Now, the discounted B(t, T ) will be a martingale under P (so P is a
risk-neutral measure) if

α∗(t, T ) =
1
2

(σ∗(t, T ))2 for 0 ≤ t ≤ T ≤ T ∗.

From the definitions of α∗ and σ∗, this means that∫ T

t

α(t, u)du =
1
2

(∫ T

t

σ(t, u)du

)2

.

This is equivalent to

α(t, T ) = σ(t, T )
∫ T

0
σ(t, u)du.

If P itself is not a risk-neutral measure, there may be a probability P θ

under which
(

B(t,T )
S0

t

)
is a martingale. This is the content of the following

result due to Heath, Jarrow, and Morton [153].

Theorem 9.7.3. For each T ∈ (0, T ], suppose α(u, T ) and σ(u, T ) are
adapted processes. We assume σ(u, T ) > 0 for all u, T, and f(0, T ) is
a deterministic function of T. The instantaneous forward rate f(t, T ) is
defined by

f(t, T ) = f(0, T ) +
∫ t

0
α(u, T )du +

∫ t

0
σ(u, t)dWu.

Then the term structure model determined by the processes f(t, T ) does not
allow arbitrage if and only if there is an adapted process (θt) such that

α(t, T ) = σ(t, T )
∫ T

t

σ(t, u)du + σ(t, T )θt for all 0 ≤ t ≤ T ≤ T ∗,

and the process

Λθ
t = exp

{
−
∫ t

0
θudWu − 1

2

∫ t

0
θ2

udu

}
is an (Ft, P )-martingale.

Proof. Suppose θ is an adapted process such that Λθ(t) is an (Ft, P )-
martingale, and define a new probability measure P θ by setting

dP θ

dP

∣∣∣∣
FT ∗

= Λθ(T ∗).

By Girsanov’s theorem, W θ is a Brownian motion under P θ, where

W θ
t =

∫ t

0
θudu + Wt,
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and

dB(t, T ) = B(t, T )
((

rt − α∗(t, T ) +
1
2
σ∗(t, T )2 + σ∗(t, T )θt

)
dt

−σ∗(t, T )dW θ
t

)
.

where, as before, α∗(t, T ) =
∫ T

t
α(t, u)du and σ∗(t, T ) =

∫ T

t
σ(t, u)du.

For B(t, T ) to have a rate of return rt under P θ, θ must satisfy

α∗(t, T ) =
1
2
σ∗(t, T )2 + σ∗(t, T )θt.

This must hold for all maturities T. Differentiating with respect to T, that
is

α(t, T ) = σ(t, T )σ∗(t, T ) + σ(t, T )θt for 0 ≤ t ≤ T ≤ T ∗.

Remark 9.7.4. The point to note is that, if there is such a process θt, it is
independent of the time T maturity of the bond B(t, T ), and

θt = −
(−α∗(t, T ) + 1

2σ∗(t, T )2

σ∗(t, T )

)
.

Now, under the ‘market’ probability P , the rate of return of the bond
is

rt − α∗(t, T ) +
1
2
σ∗(t, T )2.

The rate of return above the interest rate rt is therefore

−α∗(t, T ) +
1
2
σ∗(t, T )2,

and the market price of risk is just

−α∗(t, T ) + 1
2σ∗(t, T )2

σ∗(t, T )
= −θt.

The requirement of the theorem therefore is that the market price of
the risk be independent of the maturity times T. Substituting for θ, we
have that, under P θ,

dB(t, T ) = B(t, T )
(
rtdt − σ∗(t, T )dW θ

t

)
,

df(t, T ) = σ(t, T )σ∗(t, T )dt + σ(t, T )dW θ
t .
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9.8 A Markov Chain Model

Elliott, Hunter, and Jamieson ([117]) introduced a self-calibrating model
for the short-term rate. It is supposed that the short-term rate rt is a
finite state space Markov chain defined on a probability space (Ω,F, P )
taking (positive) values r1, r2, . . . , rN . Each of these values can be identified
with one of the canonical unit vectors ei in RN , ei = (0, . . . , 0, 1, 0, . . . , 0).
(In effect, we are considering an indicator function 1{ri}(r) on the set
{r1, r2, . . . , rN}). Without loss of generality, we can take the state space
of our Markov chain (Xt)t≥0 to be the set S = {e1, e2, . . . , eN} . Writing
r = (r1, r2, . . . , rN ) ∈ RN , we then have

rt = r · Xt = r(Xt),

where the central dot denotes the scalar product in RN . Considering the
Markov chain to have state space S simplifies the notation.

The unconditional distribution of Xt is E (Xt) = pt = (p1
t , . . . , p

N (t)),
where

pi
t = P (Xt = ei) = E (ei · Xt) = P (rt = ri) .

Suppose this distribution evolves according to the Kolmogorov equation

dpt

dt
= Apt.

Here A is a ‘Q-matrix’; that is, A = (aji)1≤i,j≤N with
∑N

j=1 aij = 0 and
aji ≥ 0 if i �= j. The components aji could be taken to be time-varying,
though this would complicate their estimation.

The price of a zero coupon bond at time t, with maturity T, in this
model is

B(t, T ) = E

(
exp

{
−
∫ T

t

r(Xs)ds

}
|Ft

)
,

where (Ft) is the filtration generated by X (or, equivalently, by r).
Because of the Markov property, this is

E

(
exp

{
−
∫ T

t

r(Xs)ds

}
|Xt

)
= B(t, T, Xt),

say, and so is a function of Xt ∈ S. Any (real) function of Xt ∈ S is given
as the scalar product of some function φt = (φ1

t , φ
2
t , . . . , φ

N (t))′ ∈ RN with
Xt. That is, we can write

B(t, T, Xt) = φt · Xt,

where φi
t = B(t, T, ei).

Now

e−
∫ t
0 r(Xs)dsB(t, T, Xt) = e−

∫ t
0 r(Xs)dsφt · Xt
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= E
(
e−

∫ t
0 r(Xs)ds |Ft

)
and so is a martingale.

Lemma 9.8.1. Define the RN -valued process M by

Mt = Xt − X0 −
∫ t

0
AXsds.

Then M is an (Ft, P )-martingale.

Proof. Consider the matrix exponential eA(t−s). By the Markov property,

E (Xt |Xs ) = eA(t−s)Xs

for t ≥ s. (In effect, one solves the Kolmogorov equation with initial con-
dition Xs.) Now, for t ≥ s, if I is the N × N identity matrix,

E (Mt − Ms |Fs ) = E (Xt − Xs |Fs ) − E

(∫ t

s

AXudu |Fs

)
= eA(t−s)Xs − Xs −

∫ t

s

AeA(u−s)Xsdu

=
(

eA(t−s) − I −
∫ t

s

AeA(u−s)du

)
Xs

=
(
eA(t−s) − I − [eA(u−s)]ts

)
Xs = 0.

Corollary 9.8.2. The semimartingale representation of Xt is therefore

Xt = X0 +
∫ t

0
AXsds + Mt.

Theorem 9.8.3. The process φt ∈ RN has dynamics

dφt

dt
= (diag r − A∗)φt

with terminal condition φT = 111 = (1, 1, . . . , 1)′ ∈ RN .

Proof. We have seen that

e−
∫ t
0 r(Xs)dsB(t, T, Xt) = e−

∫ t
0 r(Xs)dsφt · Xt

is an (Ft, P )-martingale. Consequently, the dt term in its Itô process (or
semimartingale) representation must be identically zero. Now
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e−
∫ t
0 r(Xs)dsφt · Xt = B(0, T, X0) −

∫ t

0
r(Xs)e−

∫ s
0 r(Xu)duφs · Xsds

+
∫ t

0
e−

∫ s
0 r(Xu)du

(
dφs

ds
· Xs + φs · (AXs)

)
ds+
∫ t

0
e−

∫ s
0 r(Xu)duφs ·dMs.

Consequently,

e−
∫ s
0 r(Xu)du

(
−r(Xs)φs · Xs +

dφs

ds
· Xs + φs · (AXs)

)
= 0.

Now r(Xs) = r · Xs, where r = (r1, rs, . . . , rs)′, and r(Xs)φs · Xs =
(diag r)φs ·Xs, where diag r is the matrix with r on its diagonal. Therefore

dφs

ds
· Xs + A∗φs · Xs − ((diag r)φs) · Xs = 0 for all Xs.

Consequently, φ is given by the vector equation

dφt

dt
= (diag r − A∗)φt

with terminal condition φT = (1, . . . , 1)′ = 111.

Corollary 9.8.4. Write B = diag r − A∗. Then φt = e−B(T−t)111, and the
price at time t of a zero coupon bond is

B(t, T, Xt) = φt · Xt = (e−B(T−t) · Xt)111.

The yield for such a bond is

yt,T = − 1
T − t

log B(t, T, Xt).

Yield values are quoted in the market.
In [117] it is supposed that yield values give noisy information about

such a Markov chain term structure model. The techniques of filtering from
Hidden Markov models (see [110]), are then applied to estimate the state
of X and the model parameters.



Chapter 10

Consumption-Investment
Strategies

10.1 Utility Functions

The results of this chapter are a presentation of the comprehensive, fun-
damental, and elegant contributions of Karatzas, Lehoczky, Sethi, Shreve
and Xu. See, for example, the papers [186] through [190].

We first review in the multi-asset situation concepts relating to trading
strategies, consumption processes, and utility functions.

On a probability space (Ω,F, P ), consider a market that includes a
bond S0 and n risky assets S1, . . . , SN . Their dynamics are given by the
equations

dS0
t = S0

t rtdt, S0
0 = 1, (10.1)

dSi
t = Si

t

⎛⎝µi(t)dt +
n∑

j=1

σij(t)dWj(t)

⎞⎠ , Si
0 = si for i = 1, 2, . . . , n.

(10.2)

Here W (t) = (W1(t), . . . , Wd(t)) is an n-dimensional Brownian motion
defined on (Ω,F, P ) and (Ft) will denote the completion of the filtration

σ {W (u) : 0 ≤ u ≤ t} = σ {Su : 0 ≤ u ≤ t} .

The interest rate rt, mean rate of return µ(t) = (µ1(t), . . . , µn(t))′, and
the volatility σ(t) = (σij(t))1≤i,j≤d are taken to be measurable, adapted,
and bounded processes. Note that we have taken the dimension, n, of the
Brownian motion equal to the number of risky assets.

Write a(t) = σ(t)σ∗(t). We assume there is an ε > 0 such that, with |.|
denoting the Euclidean norm in Rn,

ξ∗a(t)ξ ≥ ε |ξ|2 for all ξ ∈ Rn and (t, ω) ∈ [0,∞) × Ω.

285
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Consequently, the inverses of σ and σ∗ exist and are bounded:∣∣σ(t, ω)−1ξ
∣∣ ≤ ε− 1

2 |ξ| ,
∣∣σ∗(t, ω)−1ξ

∣∣ ≤ ε− 1
2 |ξ| for all ξ ∈ Rn. (10.3)

The filtration is then equivalently given as the completion of the filtration
generated by the process S.

Therefore in this situation the market price of risk defined by equa-
tion (7.34) has the unique solution

θt = σ(t)−1 (b(t) − rt111) ;

furthermore, θ is bounded and progressively measurable.
As in Chapter 8, introduce

Λt = exp
{

−
∫ t

0
θ′

sdW (s) − 1
2

∫ t

0
|θ′

s|
2
ds

}
and define a new probability measure P θ by setting

dP θ

dP

∣∣∣∣
Ft

= Λt.

We know from Girsanov’s theorem that W θ is a Brownian motion under
P θ, where

W θ
t = W (t) +

∫ t

0
θsds.

Furthermore, under P θ,

dSi
t = Si

t

⎛⎝rtdt +
n∑

j=1

σij(t)dW θ
j (t)

⎞⎠ for i = 1, 2, . . . , n.

That is, in this situation, P θ is the unique risk-neutral, or martingale,
measure.

Definition 10.1.1. A utility function U : [0,∞) × (0,∞) → R is a C0,1

function such that:

a) U(t, ·) is strictly increasing and strictly concave.

b) The derivative U ′(t, c) = ∂
∂cU(t, c) is such that, for every t > 0,

lim
c→∞

U ′(t, c) = 0, lim
c↓0

U ′(t, c) = U ′(t, 0+) = ∞.

These conditions have natural economic interpretations. The increasing
property of U represents the fact that the investor prefers higher levels of
consumption or wealth. The strict concavity of U(t, c) in c implies U ′(t, c)
is decreasing in c; this models the concept that the investor is risk averse.
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The condition that U ′(t, 0+) = ∞ is not strictly necessary, but it simplifies
some of the proofs.

U ′(t, c) is strictly decreasing in c; therefore, there is an inverse map
I(t, c) so that

I (t, U ′(t, c)) = c = U ′(t, I(t, c))

for c ∈ (0,∞). The concavity of U implies that

U(t, I(t, y)) ≥ U(t, c) + y(I(t, y) − c) for all c, y. (10.4)

For some later results, we require that U(t, c) is C2 in c ∈ (0,∞) for all
t ∈ [0, T ] and U ′′(t, c) = ∂2U

∂c2 is non-decreasing in c for all t ∈ [0, T ]. These
two conditions imply that I(t, c) is convex and of class C1 in c ∈ (0,∞),
and

∂

∂y
U(t, I(t, y)) = y

∂

∂y
I(t, y).

10.2 Admissible Strategies

The definitions in this section are the natural counterparts of the discrete-
time notions introduced and discussed briefly in Section 5.6.

We recall that in the continuous-time setting a portfolio process or
trading strategy H =

(
H1, . . . , Hn

)′ is a measurable Rn-valued process
that is adapted (Ft) and is such that∫ T

0
|Hs|2 ds < ∞ a.s.

A consumption process (ct)0≤t≤T is a non-negative, measurable, adapted
process (with respect to (Ft)) such that∫ T

0
ctdt < ∞ a.s.

The adapted condition means the investor cannot anticipate the future, so
‘insider trading’ is not allowed.

The wealth of the investor at time t is then

Xt =
n∑

i=0

Hi
tS

i
t −
∫ t

0
csds.

Here Hi
tS

i
t represents the amount invested in asset i = 0, 1, . . . , n, and∫ t

0 csds represents the total amount consumed up to time t.
If the strategy H is self-financing, changes in the wealth derive only from

changes in the asset prices, interest on the bond, and from consumption,
and then

dXt =
d∑

i=1

Hi
tdSi

t +

(
1 −

n∑
i=1

Hi
t

)
dS0

t − ctdt.
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From (10.1) and (10.2), this is

(rtXt − ct) dt + H ′
t (µ(t) − rt111) dt + H ′

tσ(t)dW (t)

= (rtXt − ct) dt + H ′
tσ(t)dW θ

t .

Writing βt =
(
S0

t

)−1 = exp
{

−
∫ t

0 rsds
}

, we see that

βtXt = x −
∫ t

0
βscsds +

∫ t

0
βsH

′
sσ(s)dW θ(s), (10.5)

where x = X0 is the initial wealth of the investor.
Consequently,

Dt = βtXt +
∫ t

0
βscsds = x +

∫ t

0
βsH

′
sσ(s)dW θ(s),

which is the present discounted wealth plus the total discounted consump-
tion so far, is a continuous local martingale under P θ.

Definition 10.2.1. The deflator for the market is the process ξ defined by

ξt = βtΛt.

This equals the discount factor β modified by the Girsanov density Λ to
take account of the financial market.

Now

ΛtDt = Λt

(
βtXt +

∫ t

0
βscsds

)
= Λt

(
x +
∫ t

0
βsH

′
sσ(s)dW θ(s)

)
= ξtXt +

∫ t

0
ξscsds −

∫ t

0
CsΛsθ

′
sdW (s),

where Cs =
∫ s

0 βucudu. For any F-measurable, P θ-integrable random vari-
able Ψ, Bayes’ rule states that

Eθ (Ψ |Fs ) =
E (ΛtΨ |Fs )

Λs
.

Therefore, ΛD is a continuous local martingale under P . Moreover, so is(∫ t

0 CsΛsθ
′
sdW (s)

)
. Consequently,

Nt = ξtXt +
∫ t

0
ξscsds (10.6)

is a continuous local martingale under P. Furthermore, from Bayes’ rule, we
see that N is a P -supermartingale if and only if D is a P θ-supermartingale.
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Definition 10.2.2. Similarly to the set of trading strategies SF (ξ) of
Chapter 8, we introduce the set SF (K, x).

A portfolio process H =
(
H1

t , . . . , Hn
t

)′ and a consumption process c
belong to SF (K, x) if, for initial capital x ≥ 0 and some non-negative,
P -integrable random variable K = K(H, c), the corresponding wealth pro-
cess satisfies

XT ≥ 0 a.s., ξtXt ≥ −K(ω) for all 0 ≤ t ≤ T.

Here ξt is the deflator process of Definition 10.2.1.

Consequently, for every (H, c) ∈ SF (K, x), the P -local martingale N
of (10.6) is bounded from below. Using Fatou’s lemma as in Chapter 8, we
deduce that N is a P -supermartingale; therefore, D is a P θ supermartin-
gale.

Write Tu,v for the set of stopping times with values in [u, v]. Using the
Optional Stopping Theorem on N (or D), for any τ ∈ T0,T , for (H, c) ∈
SF (K, x),

E

(
ξτXτ +

∫ τ

0
ξscsds

)
≤ x

or, equivalently,

Eθ

(
βτXτ +

∫ τ

0
βscsds

)
≤ x. (10.7)

These inequalities state that the expected value of current wealth at any
time τ, and consumption up to time τ, deflated to time 0, should not exceed
the initial capital x.

We now introduce consumption rate processes and final claims whose
(deflated) expected value is bounded by the initial investment x ≥ 0.

Definition 10.2.3. a) Write C(x) for the consumption rate processes c
that satisfy

Eθ

(∫ T

0
cse

−
∫ s
0 rududs

)
≤ x.

b) Write L(x) for the non-negative FT -measurable random variables B
that satisfy

Eθ
(
Be−

∫ T
0 rudu

)
≤ x.

From the inequality (10.6), we see that (H, c) ∈ SF (0, x) implies c ∈
C(x) and XT ∈ L(x).

We now investigate to what extent we can deduce the opposite impli-
cations.

Theorem 10.2.4. For every c ∈ C(x) there is a portfolio H such that
(H, c) ∈ SF (0, x). Furthermore, if c belongs to the class

D(x) =

{
c ∈ C(x) : Eθ

(∫ T

0
βscsds

)
= x

}
,
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then the corresponding wealth process X satisfies XT = 0 and the process
M is a martingale.

Proof. For c ∈ C(x), write

C = CT =
∫ T

0
βscsds

and define the martingale

mt = Eθ (C |Ft ) − Eθ (C) .

Then, from the martingale representation result, m can be expressed as

mt =
∫ t

0
φ′

sdW θ(s), 0 ≤ t ≤ T,

for some (Ft)-adapted, measurable Rd-valued process φ, with∫ T

0
|φs|2 ds < ∞ a.s.

Now the process

Xt =

(
Eθ

(∫ T

0
e−

∫ s
0 ruducsds |Ft

)
+ (x − Eθ (C))

)
β−1

t (10.8)

is non-negative because c ∈ C(x). As βt = (S0
t )−1 = exp

{
−
∫ t

0 rudu
}

,

Xtβt = x + mt −
∫ t

0
βscsds = x +

∫ t

0
φ′

sdW θ(s) −
∫ t

0
βscsds.

Write Ht = (H1
t , . . . , Hn

t ) = e
∫ t
0 rudu (σ′(t))−1

φt. From (10.3), this is a
portfolio process, so

Xtβt = x +
∫ t

0
βsH

′
sσ(s)dW θ(s) −

∫ t

0
βscsds,

and we see from (10.4) that X is a wealth process corresponding to (H, c) ∈
SF (0, x).

Now if, furthermore, c ∈ D(x), then XT = 0 from (10.8), so DT =∫ T

0 βscsds. We have seen that the process D is a P θ-supermartingale and,
in this situation, it has a constant expectation

x = E (DT ) = E

(∫ T

0
ξscsds

)
= E (D0) .

Therefore, D is a P -martingale.
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The next result describes the levels of terminal wealth attainable from
an initial endowment x.

Theorem 10.2.5. a) If B ∈ L(x), there is a pair (H, c) ∈ SF (0, x)
such that the corresponding wealth process X satisfies XT = B a.s.

b) Write M(x) =
{
B ∈ L(x) : Eθ (βT B) = x

}
. Then, if B ∈ M(x), we

can take c ≡ 0 and the process (Xtβt)0≤t≤T is a P θ-martingale.

Proof. For B ∈ L(x), we define the non-negative process Yt by

Ytβt = Eθ
(
B |Ft

)
+
(
x − Eθ

(
B
))(

1 − t

T

)
= x + vt − ρt,

where

B = βT B, ρ = T−1 (x − Eθ
(
B
))

, vt = Eθ
(
B |Ft

)
− Eθ

(
B
)
.

Take the consumption rate process to be

ct = ρβ−1
t ,

and represent vt as∫ t

0
ψ′

sdW θ(s) =
∫ t

0
βsĤ

′
sσ(s)dW θ(s),

where Ĥ ′
s = e

∫ s
0 rudu (σ′(s))−1

ψs. The result follows as in Theorem 10.2.4.

Remark 10.2.6. Minor modifications show that Theorem 10.2.5 still holds
when T is replaced by a stopping time τ ∈ T0,T .

10.3 Maximising Utility of Consumption

We consider an investor with initial wealth x > 0. The problem discussed
in this section is how the investor should choose his trading strategy H1(t)
and consumption rate c1(t) in order to remain solvent and also to maximise
his utility over [0, T ], with (H1, c1) ∈ SF (0, x).

As above, prices will be discounted by βt = (S0
t )−1 = exp

{
−
∫ t

0 rudu
}

.

Consider a utility function U1.
The problem then is to maximise the expected discounted utility from

consumption,

J1(x, H1, c1) = E

(∫ T

0
U1(c1(s))ds

)
,

over all strategies (H1, c1) ∈ SF (0, x) satisfying

E

(∫ T

0
U−

1 (c1(s))ds

)
< ∞.
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Write SFB(x) for the set of such strategies. Following Definition 10.2.3,
we have seen that (H1, c1) ∈ SF (0, x) implies c1 ∈ C(x). Therefore,

Eθ

(∫ T

0
βsc1(s)ds

)
≤ x.

In this situation, utility is coming only from consumption, so it is easily
seen that one should increase consumption up to the limit imposed by the
bound. Consequently, we should consider only consumption rate processes
for which

Eθ

(∫ T

0
βsc1(s)ds

)
= E

(∫ T

0
Λsβsc1(s)ds

)
= x.

That is, we consider c1 ∈ D(x). In other words, if we define the value
function

V1(x) = sup
(H1,c1)∈SFB(x)

J1(x, H1, c1),

then

V1(x) = sup
(H1,c1)∈SFB(x)

c1∈D(x)

J1(x, H1, c1). (10.9)

For this constrained maximisation problem, we consider the Lagrangian

Γ(c1, y) = E

(∫ T

0
U1(c1(s))ds

)
− y

(
E

(∫ T

0
Λsβsc1(s)ds

)
− x

)
.

The first-order conditions imply that the optimal consumption rate c∗
1(s)

should satisfy

U ′
1 (c∗

1(s)) = yΛsβs, E

(∫ T

0
Λsβsc

∗
1(s)ds

)
= x. (10.10)

Therefore, with I1 the inverse function of the strictly decreasing map U ′
1,

c∗
1(s) = I1(s, yΛsβs),

and y is determined by the condition (10.10). In fact, write

L1(y) = E

(∫ T

0
ΛsβsI1(s, yΛsβs)ds

)
for 0 < y < ∞.

Assume that L1(y) < ∞ for 0 < y < ∞. Then, from the corresponding
properties of I1, L1 is continuous and strictly decreasing, with

L1(0+) = ∞, L1(∞) = 0.
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Consequently, there is an inverse map for L1, which we denote by G1, so
that

L1(G1(y)) = y.

That is, for any x > 0, there is a unique y such that

y = G1(x).

Differentiating, we also see that L′
1(G1(y))G′

1(y) = 1. The corresponding
optimal consumption process is therefore

c∗
1(s) = I (s, G1(x)Λsβs) for 0 ≤ t ≤ T. (10.11)

By construction, c∗
1 ∈ D(x). From Theorem 10.2.4, there is a unique port-

folio process H∗
1 (up to equivalence) such that (H∗

1 , c∗
1) ∈ SF (0, x). The

corresponding wealth process is then X1, where

βtX1(t) = Eθ

(∫ T

t

βsc
∗(s)ds |Ft

)

= x −
∫ t

0
βsc

∗(s)ds +
∫ t

0
βsH

∗(s)′σ(s)dW θ(s).

Note that X1(t) > 0 on [0, T ) and X1(T ) = 0 a.s.

Theorem 10.3.1. Assume L1(y) < ∞ for 0 < y < ∞. Then, for any
x > 0, with c∗

1 given by (10.11), the pair (H∗
1 , c∗

1) belongs to SFB(x) and is
optimal for the problem (10.9). That is,

V1(x) = J1(x, H∗
1 , c∗

1).

Proof. Consider any other c ∈ C(x). From the concavity of U1, inequal-
ity (10.4) implies that

U1 (t, c∗
1(t)) ≥ U1(t, ct) + G1(x)Λtβt (I(t, G1(x)Λtβt) − ct) . (10.12)

Write ĉt = x
(
E
(∫ T

0 Λuβudu
))−1

. Then ĉ is a constant rate of con-
sumption and

Eθ

(∫ T

0
βuĉudu

)
= E

(
ΛT

∫ T

0
βuĉudu

)
= x,

so that ĉ ∈ D(x). Also, substituting ĉ in the right-hand side of (10.12) and
integrating, we obtain

E

(∫ T

0
U1 (t, ĉt) dt

)
+ G1(x) (L1(G1(x)) − x) = E

(∫ T

0
U1 (t, ĉt) dt

)
.



294 CHAPTER 10. CONSUMPTION-INVESTMENT STRATEGIES

Thus, integrating both sides of (10.12) yields E
(∫ T

0 U−
1 (c∗(s)) ds

)
< ∞.

Finally, consider c ∈ C(x). Integrating both sides of (10.12), we have

E

(∫ T

0
U1 (t, c∗

1(t)) dt

)
≥

E

(∫ T

0
U1(t, ct)dt

)
+ G1(x)

(
x − E

(∫ T

0
Λtβtctdt

))
.

The final bracket equals

E

(
ΛT

∫ T

0
βtctdt

)
= Eθ

(∫ T

0
βtctdt

)

and so is non-negative. Therefore, c∗
1 is optimal.

Remark 10.3.2. From the optimality conditions we have seen that the op-
timal consumption rate c∗

1(t) is of the form

c∗
1(t) = I1 (t, yξt) for some y > 0.

Here ξt = βtΛt is the market deflator of Definition 10.2.1. Let us consider
the expected utility function associated with a consumption rate process
of this form:

K1(y) = E

(∫ T

0
U1 (t, I1(t, yξt)) dt

)
for 0 < y < ∞. (10.13)

We require

E

(∫ T

0
|U1 (t, I(t, yξt))| dt

)
< ∞ for all y ∈ (0,∞). (10.14)

Then K1 is continuous and strictly decreasing in y. We have proved in
Theorem 10.3.1 that

V1(x) = K1 (G1(x)) .

Under the assumption, for example, that U1(t, y) is C2 in y > 0 and
∂2U1(t,y)

∂y2 is non-decreasing in y for all t ∈ [0, T ], we can perform the differ-
entiations of L1(y) and K1(y) to obtain

L′
1(y) = E

(∫ T

0
ξ2
t

∂

∂z
I1 (t, yξt) dt

)
.

Recalling that
∂U1

∂z
(t, I1(t, z)) = z

∂

∂z
I1(t, z),
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we have, with z = yξt, that

K ′
1(y) = E

(∫ T

0
ξt

∂U1

∂z
(t, I1(t, yξt)) dt

)

= E

(∫ T

0
yξ2

t

∂

∂z
I1 (t, yξt) dt

)
= yL′

1(y).

We can therefore state the following result.

Theorem 10.3.3. Under the integrability conditions that L1(y) < ∞
and (10.4) holds, the value function is given by

V1(x) = K1 (G1(x)) . (10.15)

Also, if the utility function U1(t, y) is C2 in y and ∂2U
∂y2 (t, y) is non-

decreasing in y, then the strictly decreasing functions L1 and K1 are con-
tinuously differentiable and

K ′
1(y) = yL′

1(y).

Furthermore, from (10.15),

V ′
1(x) = K ′

1 (G1(x)) G′
1(x) = G1(x)L′

1 (G1(x)) G′
1(x) = G1(x).

In addition, note that V1 is strictly increasing and concave.

Example 10.3.4. Suppose U1(t, c) = exp
{

−
∫ t

0 ρ(u)du
}

log c, where ρ :
[0, T ] → R is measurable and bounded. Then

U ′
1(t, c) = exp

{
−
∫ t

0
ρ(u)du

}
c−1, I1(t, c) = exp

{
−
∫ t

0
ρ(u)du

}
c−1,

L1(y) =
a1

y
, K1(y) = −a1 log y + b1,

so

V1(x) = a1 log
(

x

a1

)
+ b1,

where

a1 =
∫ T

0
exp
{

−
∫ t

0
ρ(u)du

}
dt

and

b1 = E

(∫ T

0
exp
{

−
∫ t

0
ρ(u)du

}(∫ t

0

(
ru +

1
2

|θu|2 − ρ(u)
)

du

)
dt

)
.



296 CHAPTER 10. CONSUMPTION-INVESTMENT STRATEGIES

Example 10.3.5. Suppose U1(t, c) = − exp
{

−
∫ t

0 ρ(u)du
}

c−1. Then

L1(y) = d1y
− 1

2 , G1(y) = −d1y
1
2 ,

so

V1(x) = −d2
1

x
,

where

d1 = E

(∫ T

0
exp
{

−1
2

∫ t

0
(ρ(u) + ru)du

}
Λ

1
2
t dt

)
.

Note that conditions L1(y) < ∞ and (10.14) are both satisfied in these
examples.

10.4 Maximisation of Terminal Utility

The previous section discussed maximisation of consumption. This section
considers the dual problem of maximization of terminal wealth. That is,
for any (H2, c2) ∈ SF (0, x), we consider

J2(x, H2, c2) = E (U2 (XT ))

for a utility function U2.
We restrict ourselves to the subset SFC(0, x) consisting of those (H, c)

such that
E
(
U−

2 (XT )
)

< ∞.

Define the value function

V2(x) = sup
(H2,c2)∈SFC(0,x)

J2(x, H2, c2). (10.16)

The expected terminal wealth discounted to time 0 should not exceed the
initial investment x; that is,

Eθ (βT XT ) = E (ξtXT ) ≤ x.

The methods are similar to those of Theorem 10.3.1, so we sketch the
ideas and proofs. Define

L2(y) = E (ξT I2 (T, yξT )) for y > 0.

We assume L2(y) < ∞ for y ∈ (0,∞). Again L2 is continuous and strictly
decreasing with L2(0+) = ∞ and L2(∞) = 0.

Write G2 for the inverse function of L2. For an initial capital x2, consider

X2(T ) = I2 (T,G2(x2)ξT ) . (10.17)
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This belongs to the class M(x2) of Theorem 10.2.5 because

Eθ (X2(T )βT ) = E (ξT X2(T )) = E (ξT I2 (T,G2(x2)ξT )) = x2.

Hence, by Theorem 10.3.1, there is a trading strategy (H2, c2) ∈ SF (0, x2)
that attains the terminal wealth X2(T ). This strategy is unique up to equiv-
alence, and for this pair c2 ≡ 0. Consequently, the corresponding wealth
process is given by

βtX2(t) = Eθ (βT X2(T ) |Ft )

= x2 +
∫ t

0
βsH

′
2(s)σ(s)dW θ(s) for 0 ≤ t ≤ T. (10.18)

Using again the inequality (10.4) for utility functions, we can parallel
the proof of Theorem 10.3.1 to show that X2(T ), defined by (10.17), satisfies

E
(
U−

2 (X2(T ))
)

< ∞, E (U2 (X2(T ))) ≥ E (U2 (XT )) , (10.19)

where XT is any other random variable satisfying (10.19).
Consequently, we have proved the following result.

Theorem 10.4.1. If L2(y) < ∞ for all y ∈ (0,∞), consider any x2 > 0
and the random variable

X2(T ) = I2 (T,G2(x2)ξT ) .

Then the trading strategy (H2, 0) belongs to SFC(0, x2) and

V2(x2) = E (U2 (T,X2(T ))) .

That is, (H2, 0) achieves the maximum in (10.16).

Similarly to Theorem 10.3.3, we can also establish the following.

Theorem 10.4.2. If L2(y) < ∞ and if

E (|U2 (I2(T, yξT ))|) < ∞

for all y ∈ (0,∞), then the value function V2 is given by

V2(x) = K2 (G2(x)) ,

where
K2(y) = E (U2 (T, I2(T, yξT ))) . (10.20)

Note that K2 is continuous and strictly decreasing for 0 < y < ∞.

Also, if U2(t, y) belongs to C2(0,∞) and ∂2U(t,y)
∂y2 is non-decreasing in

y, then the functions L2, K2 are also in C2(0,∞) and K ′
2(y) = yL′

2(y) for
0 < y < ∞.

Furthermore,
V ′

2 = G2,

implying that V2 is strictly increasing and strictly concave.
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Example 10.4.3. Again consider the utility function

U(T, c) = exp

(
−
∫ T

0
ρ(u)du

)
log c,

where ρ is bounded, real, and measurable. In this case,

L2(y) =
a2

y
, G2(y) = −a2 log y + d2, V2(x) = a2 log

(
x

a2

)
+ d2,

with

a2 = exp

{∫ T

0
ρ(u)du

}
and

d2 = E

(
exp

{
−
∫ T

0
ρ(u)du

}(∫ T

0

(
ru +

1
2

|θu|2 − ρ(u)
)

du

))
.

With ρ(u) ≡ 0, we have

I2(T, y) = L2(y) = y−1.

Consequently, from (10.17),

X2(T ) = (G2(x2)ξT )−1
.

In this example, G2(x2) = x−1
2 and

ξT = ΛT βT , ΛT = exp

{
−
∫ T

0
θudW (u) − 1

2

∫ T

0
|θu|2 du

}
.

Then

βT X2(T ) = x2 exp

{∫ T

0
θudW (u) +

1
2

∫ T

0
|θu|2 du

}
.

Recalling dW (t) = dW θ
t − θtdt, we have

βT X2(T ) = x2 exp

{∫ T

0
θudW θ

u − 1
2

∫ T

0
|θu|2 du

}

and, since the right-hand side is the final value of a P θ-martingale, (10.18)
yields

βtX2(t) = Eθ (βT X2(T ) |Ft )

= x2 exp
{∫ t

0
θudW θ

u − 1
2

∫ t

0
|θu|2 du

}
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= x2 +
∫ t

0
βuX2(u)dW θ

u .

Comparing this with (10.18), we see

H2(t) = X2(t)σ′(t)−1θt.

Example 10.4.4. For the utility function

U2(T, c) = − exp

{
−
∫ T

0
ρ(u)du

}
c−1,

we can show that

L2(y) = a2y
− 1

2 , G2(y) = −a2y
1
2 , V2(x) = −a2

2

x
,

with

a2 = E

(
exp

{
−1

2

∫ T

0
(ρ(u) + ru) du

}
Λ

1
2
T

)
.

10.5 Consumption and Terminal Wealth

We consider now an investor who wishes to both live well (consume) and
also acquire terminal wealth at time T > 0. These two objectives conflict,
so we determine the investor’s best policy.

Consider two utility functions U1 and U2. As in Section 10.3, the in-
vestor’s utility from consumption is given by

J1(x, H, c) = E

(∫ T

0
U1 (cu) du

)
.

The investor’s terminal utility, as in Section 10.4, is

J2(x, H, c) = E (U2(T,Xt)) .

Write SFD(0, x) = SFB(0, x)∩SFC(0, x) for the set of admissible trad-
ing and consumption strategies. Then, with

J(x, H, c) = J1(x, H, c) + J2(x, H, c),

the investor aims to maximise J(x, H, c) over all strategies

(H, c) ∈ SFD(0, x).

It turns out that the optimal policy for the investor is to split his initial
endowment x into two parts, x1 and x2, with x1 + x2 = x, and then to
use the optimal consumption strategy (H1, c1) of Section 10.3 with initial
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investment x1 and the optimal investment strategy (H2, 0) of Section 10.4
with initial investment x2.

Thus, consider an initial endowment x and a pair (H, c) ∈ SFD(0, x).
Write

x1 = Eθ

(∫ T

0
βucudu

)
, x2 = x − x1.

If Xt is the wealth process for (H, c), then

Xt = β−1
t

(
x −
∫ t

0
βucudu +

∫ t

0
βuH ′(u)σ(u)dW θ

u

)
,

J(x, H, c) = E

(∫ T

0
U1 (s, cs) dt + U2 (T,XT )

)
.

By definition, c ∈ D(x1) and XT ∈ L(x2).
Now, from Theorem 10.3.1 there is an optimal strategy (H1, c1) ∈

SFB(0, x1) that attains the value

V1(x1) = sup
(H,c)∈SFB(0,x1)

J1(x1, H, c).

Also, from Theorem 10.4.1 there is an optimal strategy (H2, 0) ∈ SFC(0, x2)
that attains the value

V2(x2) = sup
(H,c)∈SFC(0,x2)

J2(x2, H, c).

Now suppose X1(t) is the wealth process corresponding to (H1, c1) and
X2(t) is the wealth process corresponding to (H2, 0). Then

X1(t) = β−1
t

(
x1 −

∫ t

0
βuc1(u)du +

∫ t

0
βuH ′

1(u)σ(u)dW θ
u

)
,

with X1(T ) = 0 and

X2(t) = β−1
t

(
x2 +

∫ t

0
βuH ′

2(u)σ(u)dW θ
u

)
.

Consider, therefore, the wealth process X, which is the sum of X1
and X2 and corresponds to an investment strategy H = H1 + H2 and
consumption process c = c1. Then, with x = x1 + x2,

Xt = X1(t) + X2(t) = β−1
t

(
x −
∫ t

0
βucudu +

∫ t

0
βuHuσ(u)dW θ

u

)
.

However, for any initial endowment x, any decomposition of x into
x = x1 + x2, and any strategy (H, c) ∈ SFD(0, x), we must have, because
of the optimality of V1(x1) and V2(x2), that

J(x, H, c) ≤ V1(x1) + V2(x2).
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Consequently,

V (x) = sup
(H,c)∈SFD(0,x)

J(x, H, c) ≤ V ∗(x) = max
x1+x2=x

x1≥0,x2≥0

[V1(x1) + V2(x2)].

We shall show that the maximum on the right-hand side can be achieved
by an appropriate choice of x1 and x2. For such x1 and x2, there are optimal
strategies (H1, c1) and (H2, 0), so the strategy (H, c) is then optimal for
the combined consumption and investment problem. In fact, the maximum
on the right-hand side is found by considering

γ(x1) = V1(x1) + V2(x − x1).

The critical point of γ arises when γ′(x1) = 0; i.e., when V ′
1(x1) = V ′

2(x −
x1). This means we are looking for the values x1, x2, x1 +x2 = x such that
the marginal expected utilities from the consumption problem and terminal
wealth problem are equal. From Theorems 10.3.3 and 10.4.2, V ′

i = Gi, so
this is when

G1(x1) = G2(x2).

Write z for this common value. The inverse function of Gi is Li, i = 1, 2,
so

x1 = L1(z), x2 = L2(z).

For any y ∈ (0,∞), consider the function

L(y) = L1(y) + L2(y) = E

(∫ T

0
ξtI1(t, yξt)dt + ξT I2(T, yξT )

)
.

Here ξ is the ‘deflator’ of Definition 10.2.1.
Then L is continuous, strictly decreasing, and L(0+) = ∞, L(∞) = 0.

Write G for the inverse function of L. Then, for the optimal decomposition,

x = x1 + x2 = L1(z) + L2(z) = L(z), z = G(x).

Consequently, the optimal decomposition of the initial endowment x is
given by

x1 = L1 (G(x)) , x2 = L2 (G(x)) .

Consider the function

K(y) = K1(y)+K2(y) = E

(∫ T

0
U1 (t, I1(t, yξt)) dt + U2 (T, I2(T, yξT ))

)
.

K is continuous and decreasing on (0, ∞). From (10.15) and (10.20)

V (x) = V ∗(x) = K (G(x)) .

Summarizing the above discussion we state the following theorem.
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Theorem 10.5.1. For an initial endowment x > 0, the optimal consump-
tion rate is

c = I1 (t, G(x)ξt) for 0 ≤ t ≤ T,

and the optimal terminal wealth level is

XT = I2 (T,G(x)ξT ) .

There is an optimal portfolio process H such that (H, c) ∈ SFD(0, x),
and the corresponding wealth process X is

Xt = β−1
t Eθ

(∫ T

t

βuI1 (u, G(x)ξ(u)) du + βT I2 (T,G(x)ξT ) |Ft

)

for 0 ≤ t ≤ T. Furthermore, the value function of the problem is given by

V (x) = K (G(x)) .

Example 10.5.2. Suppose U1(t, c) = U2(t, c) = exp
{

−
∫ t

0 ρ(u)du
}

log c.

Then

L(y) =
a

y
, K(y) = −a log y + b, V (x) = a log

(x

a

)
+ b for 0 < x < ∞.

Here a = a1 + a2, b = b1 + b2, where a1, b1 (resp., a2, b2) are given in
Example 10.3.4 (resp. Example 10.4.3).

Example 10.5.3. Suppose U1(t, c) = U2(t, c) = −1
c exp

{
−
∫ t

0 ρ(u)du
}

.

Then

L(y) = ay− 1
2 , K(y) = −ay− 1

2 , V (x) = −a2

x
,

where a = a1+a2 with a1 as in Example 10.3.5 and a2 as in Example 10.4.4.

Remark 10.5.4. In the case when the coefficients r, µi, and σ = (σij) in the
dynamics (10.1), (10.2) are constant, more explicit closed form solutions
for the optimal strategies, in terms of feedback strategies as functions of
the current level of wealth, can be obtained.

The solution of the dynamic programming equation can be obtained in
terms of a function that is the value function of a European put option.
Details can be found in [186] through [189].



Chapter 11

Measures of Risk

Trading in assets whose future outcomes are uncertain necessarily involves
risk for the investor. The management of such risk is of fundamental con-
cern for the operation of financial markets. For example:

• Financial regulators seek to minimise the occurrence and impact of
the collapse of financial institutions by placing restrictions on the
types and sizes of permitted trades, such as limits on short sales;

• Risk managers in investment firms place restrictions on the activities
of individual traders, seeking to avoid levels of exposure that the firm
may not be able to meet in extreme circumstances;

• Individual investors seek to diversity their holdings, so as to avoid
undue exposure to sudden moves in particular stocks or sectors of
the market.

The mathematical analysis of measures of risk has also been a principal
concern of the actuarial and insurance professions since their inception.
Equally, it plays a fundamental role in the theory of portfolio selection
(which is not covered in this book - see, for example, [217],[36]).

At its simplest, the standard deviation σK of the return K on a risky
investment provides a measure of the deviation of the values of K from their
mean E (K). We saw in Chapters 1 and 7 that in the binomial and Black-
Scholes pricing models, a European call option C on a stock S satisfies
σC ≥ σS for the standard deviations of the return on the option and stock,
respectively, and the same inequality holds for their excess mean returns.
We interpreted this as indicating that the option is inherently riskier than
the stock, although potentially more profitable.

In portfolio selection, the objective is to find a portfolio that maximises
expected return while minimising risk; i.e., given portfolios V1 and V2 with
mean returns µ1, µ2 and standard deviations σ1, σ2, respectively, it is
assumed that investors will prefer V1 to V2 provided that µ1 ≥ µ2 and

303
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σ1 ≤ σ2. V1 is said to dominate V2 in this event. An efficient portfolio is
one that is not dominated by any other, and the set of these (among all
attainable portfolios) is the efficient frontier. Elementary properties of the
variance show that, in the absence of short sales, when (positive) fractions
of the investor’s wealth are placed in a portfolio comprising two stocks,
the variance of the return on this portfolio will be no greater than the
larger of the variances of the return on the individual stocks. This simple
result is easily generalised to general portfolios and underlies the claim that
‘diversification reduces risk’, which lies at the heart of the Capital Asset
Pricing Model (CAPM) - see [36] for an elementary account. It is reasonable
to expect more sophisticated measures of risk to retain this property, and
this informs many of the more recent developments that seek to provide an
axiomatic basis for measures of risk.

Variance is symmetric, while in risk management one is primarily con-
cerned with containing the downside risk (i.e., to place bounds on the
amount of potential loss, or the amount by which the final position may
fall short of an expected return). This leads to the definition of measures of
risk that focus on the lower tail of the distribution of the random variable
representing the final position. Currently the most widely used measure
of exposure in risk management is Value at Risk, usually abbreviated to
V aR. Value at Risk was developed and adopted in response to the financial
disasters, such as those at Baring’s Bank, Orange County, and Metallge-
sellschaft, of the early 1990s.

We shall give a precise definition of V aR and show that there are pos-
sible problems with this measure of risk. Continuing to work in a single-
period framework, we then introduce the definition of coherent risk measure
proposed by Artzner et al. [9], which leads to possible refinements of V aR.

11.1 Value at Risk

A standard treatment of V aR can be found in the book by Jorion [180].
It is noted that risk management has undergone a revolution since the
mid-1990s, generated largely by the use of V aR. In fact, V aR has become
the standard benchmark for measuring financial risks. JP Morgan has
developed Risk MetricsTM based on V aR.

In practice, given sufficient data, V aR is easy to apply. The idea is
to determine the level of exposure in a position (portfolio) that we can be
‘reasonably sure’ will not be exceeded. For example, suppose one knows the
monthly returns on US Treasury notes over a certain time period - some
returns will be positive, others negative. A confidence level of (say) 95% is
chosen. One then wishes to determine the loss that will not be exceeded in
95% of the cases, or, put another way, so that only 5% of the returns are
lower than this level.

That level of return can be determined from the data. Suppose, for
example, it is a return of −2.25%. If an investor holds $100 million of such
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Treasury notes, based on previous data he or she can be 95% sure that the
portfolio will not fall by more than 2.25% of its holdings (i.e., by more than
$2.25 million) over the next month.

Clearly, the confidence level of 95% could be changed, as could the time
period of one month.

The idea behind V aR is therefore that some threshold probability level
α (say 5%) is given. If the random variable representing some position,
which may suffer a possible loss, is denoted by X, then there is a smallest
x such that P (X > x) < α. Here x represents an ‘acceptable’ level of loss.
To make this more precise, we first have the following definition.

Definition 11.1.1. Suppose X is a real random variable defined on a
probability space (Ω,F, P ) and α ∈ [0, 1]. The number q is an α-quantile if

P (X < q) ≤ α ≤ P (X ≤ q).

The largest α-quantile is

qα(X) = inf{x : P (X ≤ x) > α}. (11.1)

The smallest α-quantile is

qα(X) = inf{x : P (X ≤ x) ≥ α}. (11.2)

Note that qα ≤ qα. Moreover, q is an α-quantile if and only if qα ≤ q ≤
qα.

It is helpful to describe qα(X) in terms of the distribution FX(x) =
P (X ≤ x) of X. As a function of α, qα(X) is the right-continuous inverse
of FX ; i.e.,

qα(X) = inf{x ∈ R : FX(x) > α}. (11.3)

The function q(α) = qα(X) is then increasing and right-continuous in the
variable α on (0, 1) and satisfies the inequalities

FX(q(α)−) ≤ α ≤ FX(q(α)), q(FX(x)−) ≤ x ≤ q(FX(x)), (11.4)

where g(s+) = limt↓s g(t) and g(s−) = limt↑s g(t) for any real function g.
We also have

FX(x) = inf{α ∈ (0, 1) : q(α) > x}. (11.5)

These results are elementary, and the proofs are left to the reader. (See,
e.g. , [132, Lemma 2.72].)

Note that Figure 11.1 illustrates clearly that qα = qα unless the distribu-
tion function FX has a ‘flat’ piece, and then the set Jα = {x : FX(x) = α}
is a non-trivial left-closed interval with endpoints qα and qα. In that case,

Jα = [qα, qα] if P (X = qα) = 0, Jα = [qα, qα) if P (X = qα) > 0.
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Figure 11.1

It is easily seen from Figure 11.1 that qα(X) = sup {x : P (X < x) ≤ α} .
It follows that for any X

q1−α(−X) = inf {x : P (−X ≤ x) ≥ 1 − α}
= inf {x : 1 − P (X < −x) ≥ 1 − α}
= inf {x : P (X < −x) ≤ α}
= − sup {y : P (X < y) ≤ α}
= −qα(X). (11.6)

We are now ready to define V aR as follows.

Definition 11.1.2. Given a position described by the random variable X
and a number α ∈ [0, 1], define

V aRα(X) = −qα(X) = q1−α(−X).

X is then said to be V aRα-acceptable if

qα(X) ≥ 0 or, equivalently, V aRα(X) ≤ 0.

The choice of qα instead of qα is somewhat arbitrary, and the discussion
above shows that it only yields different results when the distribution FX

is ‘flat’ at α, so that Jα is a non-trivial interval. However, this occurs
frequently in practical situations: for example, with discrete probability
distributions. The significance of our choice will become clearer when we
discuss ‘expected shortfall’, which is also known as ‘conditional value at
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risk’ and is prominent among the candidate risk measures proposed in
recent years as potential replacements for V aR.

V aR can be considered as the amount of extra capital a firm needs
to reduce to α the probability of bankruptcy, or the extra capital needing
to be added (as a risk-free investment) to a given position to make an
investing agency’s financial exposure acceptable to an external regulator.
A negative V aR implies that the firm could return some of its capital to
shareholders or that it (or the investing agency) could accept more risk.
Writing m instead of x in the third line of equations (11.6), we can express
this by

V aRα(X) = inf {m ∈ R : P (X + m < 0) ≤ α} . (11.7)

This formulation provides an immediate proof of the following result.

Lemma 11.1.3. V aR has the following properties:

(i) if X ≥ 0, then V aRα(X) ≤ 0;

(ii) if X ≥ Y , then V aRα(X) ≤ V aRα(Y );

(iii) if λ ≥ 0, V aRα(λX) = λV aRα(X);

(iv) V aRα(X + k) = V aRα(X) − k for any real number k.

Note that (iv) implies that

V aRα(X + V aRα(X)) = 0. (11.8)

Thus we can interpret V aR as the minimum amount that will ensure
that the probability that the absolute loss that could be suffered will be no
more than this amount is at least 1 − α.

Remark 11.1.4. We observe that the properties (ii) and (iv), which are
similar to those considered in an axiomatic context below, already suffice
to make V aR Lipschitz-continuous with respect to the L∞-norm. To see
this, let X and Y be bounded random variables, and note that X = Y +
(X − Y ) ≤ Y + ‖X − Y ‖∞ a.s. By properties (ii) and (iv), this yields, for
any α, that

V aRα(X) ≥ V aRα(Y + ‖X − Y ‖∞) = V aRα(Y ) − ‖X − Y ‖∞ ,

so that
V aRα(Y ) − V aRα(X) ≤ ‖X − Y ‖∞ .

Reversing the roles of X and Y , we also obtain

V aRα(X) − V aRα(Y ) ≤ ‖Y − X‖∞ = ‖X − Y ‖∞ .

Therefore
|V aRα(Y ) − V aRα(X)| ≤ ‖X − Y ‖∞ . (11.9)
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However, a serious problem with V aR is that it is not subadditive, as
the following simple example shows.

Example 11.1.5. Suppose a bank loans $100, 000 to a company that will
default on the loan with probability 0.008 (i.e., 0.8%). We are supposing the
company either defaults on the whole amount or not at all. Writing X for
the default amount, we have that X = −$100, 000 with probability 0.8%,
and otherwise X = $0. Therefore, with α = 0.01 we see that V aRα(X) ≤ 0.
Suppose now that the bank makes two loans each of $50, 000 to two different
companies, each of which may default with probability 0.8%. Suppose the
probabilities of default are independent. Then, with α = 0.01, the V aRα

for the bank’s diversified position is $50, 000. While the probability of both
companies defaulting remains below α = 0.01, the probability of at least
one default of $50000 is 0.016 > α.

Diversification is usually thought to reduce risk. However in this ex-
ample it increases V aR. Moreover, as the next example, taken from [9],
shows, V aR is also ineffective in recognising the dangers of concentrating
credit risk.

Example 11.1.6. Consider the issue of corporate bonds in a market with
zero base rate, all corporate bond spreads equal to 2%, and default by
any company set at 1%. At a 5% quantile, V aR for a loan of $1, 000, 000
invested in bonds with a single company is −$20, 000; thus this measure
indicates that there is no risk. On the other hand, suppose instead that the
loan is placed in bonds issued independently by 100 companies at $10, 000
each. The probability that two companies will default is

(100
2

)
(.01)2(.99)98,

which is approximately 0.184865, so the probability of at least 2 defaults is
certainly greater than 0.18. Hence a positive V aR results at the 5% level;
i.e., again diversification has increased risk as measured by V aR.

Finally, V aR does not give us any indication of the severity of the
economic consequences of exposure to the rare events that it excludes from
consideration. Consequently, in spite of its widespread use and its adoption
by the Basel committee (see [9]), there are good reasons for rejecting V aR
as an adequate measure of risk.

11.2 Coherent Risk Measures

The examples above show that, although it is widely used in practice as a
management tool, there are problems with V aR: the V aR of a diversified
position can be greater than the V aR of the original position; if a large
loss occurs, V aR does not measure the actual size of the loss; and, because
V aR is a single number, V aR does not indicate which item in a portfolio
is responsible for the largest risk exposure.

In this section, we shall define and discuss coherent measures of risk.
These have been introduced by Artzner et al. [9]. This paper discusses why
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such measures should have the properties stated in the definition given be-
low. Here we concentrate on their mathematical properties. Our discussion
is largely based on the notes by Delbaen [74] and the paper of Nakano [235].

We work on a probability space (Ω,F, P ). Our time parameter t takes
values 0 (now) and 1, which may represent tomorrow or some date next
month or next year. We thus restrict attention to a single-period model,
where Ω represents the possible states at time t = 1 of our economic model.

As before, write L∞ = L∞(Ω) for the space of essentially bounded real-
valued functions on Ω, and L1 = L1(Ω). We again denote by L1

+ the cone
of non-negative functions in L1. Although risk measures can be defined
more generally on the space L0 of all real-valued random variables on Ω,
we choose to restrict attention to L1, which is large enough for interesting
applications and remains more tractable mathematically.

Definition 11.2.1. A coherent risk measure is a function ρ : L1 → R such
that

(i) if X ≥ 0, then ρ(X) ≤ 0;
(ii) if k ∈ R, then ρ(X + k) = ρ(X) − k;
(iii) if λ ≥ 0 in R, then ρ(λX) = λρ(X);
(iv) ρ(X + Y ) ≤ ρ(X) + (Y ).

Remark 11.2.2. In [9], the above definition is stated in terms of the actual
final value of the position X at time 1, whereas our definition follows the
more recent literature in assuming that X represents the discounted value of
the position, or, alternatively, sets the discount rate to 0. This simplifies the
formulation without loss of generality: working with a discount rate β and
final position X ′, so that X = βX ′ is the discounted value, one can express
a risk measure ρ′ in terms of X ′ by modifying (ii) to ρ′(X ′ + β−1m) =
ρ′(X ′) − m. The remaining axioms remain unchanged. Conversely, given
such a risk measure ρ′ defined on the set of undiscounted positions X ′,
a coherent risk measure defined on discounted values is given by ρ(X) =
ρ′(β−1X) = ρ′(X ′). Thus we shall assume throughout that X represents
the discounted values.

Note that, while V aR satisfies properties (i)-(iii) (see Lemma 11.1.3),
it fails to have the subadditivity property (iv), as the earlier examples
illustrate.

It is easy to see that, in the presence of (iii), the subadditivity property
(iv) is equivalent to convexity: let X, Y and 0 ≤ λ ≤ 1 be given and note
that, if a risk measure ρ satisfies (iii) and (iv), then

ρ(λX + (1 − λ)Y ) ≤ ρ(λX) + ρ((1 − λ)Y ) = λρ(X) + (1 − λ)ρ(Y )

so that ρ is convex. Conversely, still assuming that (iii) holds, if ρ is convex,
then for any X, Y

ρ(X + Y ) = 2ρ
(

1
2
(X + Y )

)
≤ 2
(

1
2
ρ(X) +

1
2
ρ(Y )

)
= ρ(X) + ρ(Y ),
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so that ρ has the subadditivity property (iv).
Convexity provides a more general statement that diversification of the

investor’s portfolio does not increase risk, while the subadditivity property
is important for risk managers in banks, as it ensures that setting risk limits
independently for different trading desks (i.e., risk allocation) will not lead
to a greater overall risk for the bank.

Convex risk measures (for which the property (iii) is typically not as-
sumed, thus allowing risk to grow non-linearly as the position increases)
were introduced by Foellmer and Schied and are studied extensively in
[132]. However, we shall not pursue this and restrict our analysis to coher-
ent risk measures.

Following Nakano, [235] we consider coherent risk measures that are
lower semi-continuous in the L1-norm; i.e., given X ∈ L1 and ε > 0, we
have

ρ(Y ) > ρ(X) − ε when ‖X − Y ‖1 < ε.

Equivalently,
lim inf

Y →X
ρ(Y ) ≥ ρ(X). (11.10)

In particular, (11.10) holds if the sequence (Xn) converges to X in L1-norm.

Remark 11.2.3. In [74], coherent risk measures are initially defined on L∞.
Lower semi-continuity with respect to the topology of convergence in prob-
ability is assumed in this context and is then referred to as the Fatou
property.

Lemma 11.2.4. Let ρ be a coherent risk measure. Then

(i) if a ≤ X ≤ b, then −b ≤ ρ(X) ≤ −a;

(i) ρ(X + ρ(X)) = 0.

Proof. As the random variable X−a ≥ 0, ρ(X−a) ≤ 0 by (i) and ρ(X−a) =
ρ(X) + a by (ii). Hence ρ(X) ≤ −a. Taking X = 0 and λ = 0 in (iii)
yields ρ(0) = 0. Taking X = 0 in (ii), we obtain ρ(k) = −k. As X ≤ b,
b − X ≥ 0, so ρ(−X + b) = ρ(−X) − b ≤ 0 using (ii) and (i). Therefore,
ρ(−X) ≤ b. Now ρ(X − X) = ρ(0) = 0 ≤ ρ(X) + ρ(−X) by (iv), so that
−ρ(X) ≤ ρ(−X) ≤ b, giving ρ(X) ≥ −b.

Taking k = ρ(X), the second assertion follows immediately from (ii).

Example 11.2.5. Suppose that the probability space (Ω,F, P ) is equipped
with a family P of probability measures, each of which is absolutely con-
tinuous with respect to P. Write

ρP(X) = sup {EQ (−X) : Q ∈ P} . (11.11)

Then ρP is a coherent risk measure.

Exercise 11.2.6. Prove this assertion.
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This example is fundamental. We shall show in Theorem 11.2.19, that
under quite mild assumptions every coherent risk measure has this form.
We give two examples of such risk measures for extreme choices of the
family P that show that the choice of P needs to be made with some care
in order to obtain ‘sensible’ risk measures: the family P should be neither
too big nor too small.
Example 11.2.7. Suppose that P = {P} . Then ρP(X) = EP (−X) . Thus
a portfolio or position X is acceptable under this risk measure if and only
if EP (X) ≥ 0.

This risk measure is too tolerant. It makes insufficient demand on the
probability that the position X is positive.
Example 11.2.8. Suppose now that P is the set of all probability measures
on (Ω,F) that are absolutely continuous with respect to P. In this case, we
simply have sup {EQ (X) : Q ∈ P} = ess supX, so that ρP(X) ≤ 0 if and
only if X ≥ 0 a.s. (P ).

For this choice of P, a position is acceptable if and only if it is almost
surely non-negative. This risk measure is too strict. We thus seek families
P that avoid these two extremes. Restrictions on the Radon-Nikodym
derivatives dQ

dP will ensure this.
Notation 11.2.9. Given the probability space (Ω,F, P ) and k ∈ N, write

Pk =
{

Q : Q is a probability measure, Q � P and
dQ

dP
≤ k

}
. (11.12)

Note that as Q is a probability measure, we must have dQ
dP ≥ 0 a.s. (P ).

Moreover, we have the following.
Exercise 11.2.10. Show that if Q is a probability measure and dQ

dP ≤ 1 a.s.,
then Q = P.

Consequently, we shall assume that k > 1. The following important
result shows that when the distribution of the integrable random variable
X does not have a jump at qα(X), the family Pk provides us with a coherent
risk measure that dominates V aR.

Theorem 11.2.11. Suppose X ∈ L1 and X has a continuous distribution
function FX . For k > 1, write α = 1

k . Then

ρPk
(X) = EP (−X |X ≤ qα(X) ) ≥ −qα(X) = V aRα(X).

Proof. As FX is continuous, (11.4) shows that

P [X ≤ qα(X)] = FX(qα(X)) = α =
1
k

.

Write A = {X ≤ qα(X)} and consider the measure Qα defined by dQα

dP =
k1A. Then Qα ∈ Pk and

EQα (−X) = EP

(
−X

(
1
α
1A

))
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=
1

P (A)
EP (−X1A)

= EP (−X |A ) ≥ −qα(X) = V aRα(X).

Consider an arbitrary Q ∈ Pk. Since dQ
dP ≤ k, A = {X ≤ qα(X)} and

k = 1
P (A) , we obtain

EQ (−X) =
∫

A

(−X)
dQ

dP
dP +

∫
Ac

(−X)
dQ

dP
dP

= k

∫
A

(−X)dP +
∫

A

(−X)
(

dQ

dP
− k

)
dP +

∫
Ac

(−X)
dQ

dP
dP

≤ k

∫
A

(−X)dP − qα(X)
∫

A

(
dQ

dP
− k

)
dP + (−qα(X))

∫
Ac

dQ

dP
dP

= k

∫
A

(−X)dP − qα(X)[Q(A) − kP (A) + Q(Ac)]

= k

∫
A

(−X)dP = EQα (−X) .

Remark 11.2.12. However, it was shown in [4] that for general distribu-
tions the quantity EP (−X |A ) does not define a subadditive function of
X. Hence the risk measure so defined, which is known as the tail condi-
tional expectation at level α and is sometimes written as TCEα(X), can in
particular circumstances suffer the same shortcomings as V aR.

Nonetheless, TCEα(X) has been proposed in the literature as a possible
improvement upon V aR. To illustrate some of its advantages, we have the
following example, which is taken from [74].

Example 11.2.13. A bank has 150 clients, labelled C1, C2, . . . , C150. Write
Di for the random variable, which equals 1 if client i defaults on a loan
and equals 0 if client i does not default. Suppose the bank lends $1000
to each client C1, C2, . . . , C150. Initially we suppose that all the defaults
are independent and that P (Di = 1) = 1.2%. The number Σ150

i=1Di thus
represents the total number of defaults, and the bank’s total loss is therefore
1000(Σ150

i=1Di) dollars.

Now D = Σ150
i=1Di has a binomial distribution and

P (D = k) =
150!

k!(150 − k)!
(0.012)k(0.988)150−k.

If we take α = 1%, it can be shown that V aRα(D) = 5 and E (D |D ≥ 5) =
6.287.

Suppose, however, that the defaults are dependent. This can be mod-
elled by introducing a probability Q, where dQ

dP ceεD2
. Here D and P are

as above, ε > 0, and c is a normalising constant chosen so that Q is a
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probability measure. Then Q[Di = 1] increases as ε increases. Choosing
ε = 0.03029314, α = 1%, and p = 0.01 (recalling that D is binomial), we
obtain Q[Di = 1] = 1.2% and V aRα(D) = 6, but E (D |D ≥ 6) = 14.5.

Consequently, V aR does not distinguish between the two cases, while
the tail conditional expectation E (D |D ≥ V aRα(D) ) distinguishes clearly
between them.

The probability Q can model the situation where, if a number of clients
default, there is a higher conditional probability that other clients will
also default. We note that V aR is only a quantile and thus does not
provide information about the size of the potential losses, whereas the tail
conditional expectation is an average of all the worse cases and so provides
better information about the tail distribution of the losses. It is, however,
more difficult to calculate in many practical examples. The amendment
required to rescue the proof of Theorem 11.2.11 is as follows (compare the
definition of CV aR Section 11.3).

Corollary 11.2.14. If the distribution of X has a discontinuity at qα, the
proof of Theorem 11.2.11 applies with the modification

dQα

dP
= k1{X<qα} + β1{X=qα},

where k = 1
P (X<qα) and β = 1

P (X=qα) .

Remark 11.2.15. The complications introduced by the presence of jumps in
the distribution function FX have led to a proliferation of proposals for risk
measures that dominate V aR. We shall not examine them further but refer
the reader to [4] for a clear account of their main features. For our purposes,
it suffices to note that if FX is continuous, then Theorem 11.2.11 shows
that the tail conditional expectation TCEα(X) coincides with the so-called
worst conditional expectation WCEα(X), which can equivalently be defined
as − inf {EQ (−X) : P (A) > α}. Moreover, in this case these measures are
the same as the so-called conditional value at risk, CV aRα(X), although
this description is really a misnomer since in the general case this quantity,
which has also become known as expected shortfall, cannot be expressed as
a conditional expectation of a quantity defined solely in terms of X. We
shall return briefly to a consideration of the properties of expected shortfall
in the next section.

Polar Sets and the Bipolar Theorem

In this brief subsection, we introduce definitions and results from functional
analysis, which we state without proof. More details and proofs of the
quoted results can be found in standard texts such as [264], [97].

Recall that the dual E∗ of a real Banach space E is the vector space of
all continuous linear functionals f : E → R on E, and that E∗ is a Banach
space under the norm |f | = sup {|f(x)| : |x| ≤ 1} . We shall need to consider
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various topologies on E and E∗. The weak∗ topology on E∗ is the locally
convex topology induced by the family of seminorms S = {px : x ∈ E} ,
where px(f) = |f(x)| for f ∈ E∗. Thus the sets

{{f : px(f − f0) < ε} : px ∈ S, f0 ∈ E∗, ε > 0}

form a subbase for the weak∗ topology σ(E∗, E) on E∗. It is traditional to
write x∗ for elements of E∗, and we do so below.

Our first result is commonly known as the Krein-Smulian theorem.

Theorem 11.2.16. Suppose E is a Banach space with dual space E∗.
A convex set S ⊂ E∗ is weak∗-closed if and only if for each n ∈ N its
intersection with the closed ball Bn = {e∗ : ‖e∗‖ ≤ n} is weak∗-closed; i.e.,
each set Sn = S ∩ Bn is weak∗-closed.

We shall also need the Bipolar theorem, which describes the closed
convex balanced hull (see below) of a set A ⊂ E in terms of the dual E∗ of
E. First, define the polar of A ⊂ E by A◦ = {x∗ ∈ E∗ : |x∗(a)| ≤ 1∀a ∈ A} .
This set is convex (i.e., closed under convex combinations) and balanced
(i.e., if x∗ ∈ A◦, |λ| ≤ 1 then λx ∈ A◦).

Note in particular that when A is itself closed under multiplication
by positive scalars (e.g., when A is a cone), then the polar cone A◦ may
equivalently be defined as {x∗ ∈ E∗ : x∗(a) ≥ 0∀a ∈ A}. The operation
may equally be applied to A◦ to define the bipolar A◦◦ = (A◦)◦. The
Bipolar theorem then states the following.

Theorem 11.2.17. In any locally convex space E, the bipolar of a set
A ⊂ E is its closed convex balanced hull (i.e., the smallest set with these
properties containing A).

This is a consequence of the Hahn-Banach theorem. For the dual pair
(L1, L∞), we note in particular that if A ⊂ L1 is a closed convex cone
and Z ∈ L1 \ A, then we can find Y ∈ L∞ such that E (ZY ) < 0
and E (XY ) ≥ 0 for all X in A. But then the polar A◦ of A is the set
{Y ∈ L∞ : E (XY ) ≥ 0 for X ∈ A} so that Z cannot be in the polar of
A◦. Since trivially A ⊂ A◦◦, it follows that A = A◦◦.

Definition 11.2.18. Let (Ω,F, P ) be a probability space and ρ : L1(Ω) →
R a coherent risk measure. Write A =

{
X ∈ L1(Ω) : ρ(X) ≤ 0

}
. We call

A the set of acceptable positions, or the acceptance set for ρ.

Note that because ρ is subadditive and positive homogeneous, A is a
convex cone.

Representation of Coherent Risk Measures

We now have the following result, specifying conditions under which we can
represent every coherent risk measure in the form given in Example 11.2.5.
Write Q for the set of all probability measures on (Ω,F) that are absolutely
continuous with respect to P. Write ZQ = dQ

dP for Q ∈ Q.
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Theorem 11.2.19. Suppose ρ : L1 → R. The following are equivalent.

(i) The function ρ is a lower semi-continuous coherent risk measure.

(ii) There is a subset Q̃ of Q such that
{

ZQ : Q ∈ Q̃
}

is a weak∗-closed

convex subset of L∞ and for X ∈ L1

ρ(X) = sup
Q∈Q̃

EQ (−X) . (11.13)

Proof. That the second statement implies the first is immediate. For the
converse, write φ(X) = −ρ(X) and recall that A =

{
X ∈ L1 : ρ(X) ≤ 0

}
={

X ∈ L1 : φ(X) ≥ 0
}

is the set of acceptable positions. Then A is clearly a
convex cone. As φ is upper semi-continuous, the set A is also closed in the
L1-norm. To see this, let (Xn) be a sequence in L1 with ‖Xn − X‖1 → 0.
By lower semi-continuity, ρ(X) = ρ(limn Xn) ≤ lim infn ρ(Xn) ≤ 0, so that
X ∈ A. Applying the comments following the Krein-Smulian theorem to
the cone A, we see that

A◦ = {Y ∈ L∞ : E (XY ) ≥ 0 for all X ∈ A} .

Thus A◦ is a weak∗-closed convex cone in L∞, and, writing

C = {Y ∈ A◦ : E (Y ) = 1} ,

it follows that A◦ = ∪λ≥0λC. In fact, if A ∈ A◦ and E (Y ) > 0, then
Y = λỸ for Ỹ = Y

E(Y ) ∈ C, and λ = E (Y ) . Further, we have L1
+ ⊂ A since

all indicator functions 1A (A ∈ F) belong to L1
+, so that if E (Y 1A) ≥ 0

for all A ∈ F, then Y ≥ 0 a.s. Hence, if Y ∈ A◦ and E (Y ) = 0, then
Y = 0 a.s.

The bipolar theorem now implies that

A =
{
X ∈ L1 : E (XY ) ≥ 0 for all Y ∈ C

}
.

Consequently, φ(X) ≥ 0 if and only if E (XY ) ≥ 0 for all Y ∈ C.
Now φ(X − φ(X)) = 0, so E (X − φ(X)Y ) ≥ 0 for all Y ∈ C. This

implies that infY ∈CE (XY ) ≥ φ(X).
For any ε > 0, we have φ(X − φ(X)) − ε < 0, so there is a Y in C such

that E (X − φ(X) − ε) < 0, or E (XY ) ≤ φ(X) + ε. But ε is arbitrary, so
infY ∈C E (XY ) ≤ φ(X). Hence they are equal.

If we write

Q̃ = {Q ∈ Q : ZQ = Y for some Y ∈ C} ,

then the identity
φ(X) = inf

Y ∈C
E (XY )

implies that Q̃ is a weak∗-closed subset of L∞. But C =
{

ZQ : Q ∈ Q̃
}

, so
this is the required representation for ρ.
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11.3 Deviation Measures

An alternative approach to risk measures has been proposed in [246], [293].
This is based on the concept of a deviation measure and is related to gener-
alisations of standard deviation or variance. We give an axiomatic descrip-
tion and derive the most basic properties, while briefly relating deviation
measures to coherent risk measures.

As we have seen, the minimisation of standard deviation or variance is
a familiar objective in portfolio optimisation. Problems with this approach
are that it penalises up and down deviations equally and that it does not
take account of ‘fat tails’ in loss distributions.

A related criticism of coherent risk measures and V aR is that they
measure a negative outcome of the position X. For practitioners, ‘loss’ often
refers to the shortfall relative to expectation. That is, for practitioners, risk
measures usually refer to X − E (X) .

Working on the probability space (Ω,F, P ) we shall define a deviation
measure on the space L2(Ω).

Definition 11.3.1. A deviation measure is a functional D : L2(Ω) →
[0,∞] satisfying:

D1. D(X + C) = D(X) for X ∈ L2(Ω) and C ∈ R;
D2. D(λX) = λD(X) for λ > 0;
D3. D(X + Y ) ≤ D(X) + D(Y ) for X, Y ∈ L2(Ω);
D4. D(C) = 0 for C ∈ R, and D(X) > 0 if X is non-constant.

Note that D(X − E (X)) = D(X) from D1. It follows from D4 that
D(X) = 0 if and only if X −E (X) = 0 since D(Y ) = 0 if and only if Y = c
is constant. But X − E (X) = c implies c = 0 since E (X − E (X)) = 0.
However, in general, D may not be symmetric; that is, it is possible that
D(−X) �= D(X).

Note that if D is a deviation measure, then its reflection C, given by
C(X) = D(−X), is also a deviation measure, and its symmetrisation, D̃,

given by D̃(X) = 1
2 [D(X) + C(X)], is a deviation measure.

Example 11.3.2. Standard deviation σ(X) = (E ((X − E (X)))2)
1
2 is a de-

viation measure, as are

σ+(X) =
(
E
(
(max {X − E (X) , 0})2

)) 1
2

and

σ−(X) =
(
E
(
(max {E (X) − X, 0})2

)) 1
2

.

To relate deviation measures and coherent risk, expectation-bounded
risk measures are introduced in [246].

Definition 11.3.3. An expectation-bounded risk measure on L2(Ω) is a
functional R : L2(Ω) → (−∞,∞] satisfying:
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R1. R(X + C) = R(X) − C for X ∈ L2(Ω) and C ∈ R;
R2. R(0) = 0 and R(λX) = λR(X) for X ∈ L2(Ω) and λ > 0;
R3. R(X + Y ) ≤ R(X) + R(Y ) for X, Y ∈ L2(Ω);
R4. R(X) > E (−X) for non-constant X and R(X) = −X for constant

X.
An expectation-bounded risk measure is coherent if, further,
R5. R(X) ≤ R(Y ) when X ≥ Y.

From R1 and R2 it is clear that R(C) = −C.
Property R4 is described as expectation-boundedness.
Property R5 is again monotonicity. Although R5 is apparently stronger

than condition (i) of Definition 11.2.1, we see that if X ≤ Y a.s., then
Y = X + (Y − X) where (Y − X) ≥ 0. Consequently, if ρ satisfies (i) and
(iv) of Definition 11.2.1, then ρ(Y ) ≤ ρ(X) + ρ(Y − X) ≤ ρ(X). That is,
a coherent risk measure satisfies condition R5.

Note that if R is a functional satisfying R1-R4, then, on L2(Ω), it
satisfies the conditions of Definition 11.2.1 and so is a coherent risk measure.

The next result relates deviation measures to expectation-bounded risk
measures.

Theorem 11.3.4. Suppose D : L2(Ω) → [0,∞] is a deviation measure.
Then R(X) = D(X) − E (X) is an expectation-bounded risk measure.
Conversely, if R is this expectation-bounded risk measure, then D(X) =
R(X − E (X)).

Proof. Suppose D is a deviation measure. The properties R2 and R3 follow
from D2 and D3. Also,

R(X + C) = D(X + C) − E (X) − C

= D(X) − E (X) − C

= R(X) − C,

so R satisfies R1.
From D4, if X is non-constant,

D(X) = R(X) + E (X) > 0,

and R4 follows.
Conversely, if D(X) = R(X − E (X)), then

D(X + C) = R((X + C) − E (X) − C)
= R(X) + E (X)
= D(X),

so D1 is satisfied. Again, D2 and D3 follow from R2 and R3. Also, for
non-constant X, R1 and R4 imply

R(X − E (X)) = R(X) + E (X) > 0.

Therefore D4 is satisfied. This completes the proof.
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Example 11.3.5. For X ∈ L2(Ω), write

D(X) = E (X) − ess inf X = ess sup {E (X) − X} .

This is a deviation measure describing the lower range of X. R(X) =
ess sup(−X) is the corresponding risk measure. Both D and R are co-
herent, and R is expectation-bounded.

Conditional Value at Risk, or Expected Shortfall

A popular risk measure is conditional value at risk, CV aR. If we assume
that there is a zero probability that X = V aRα(X), we can define this as
a true conditional expectation: for α ∈ (0, 1) and X ∈ L2(Ω),

CV aRα(X) = −E (X |X ≤ V aRα(X) ) .

When X has a general distribution (i.e., possibly with jumps), this breaks
down. Thus we define CV aR as follows: let U = {X ≤ qα(X)} and write

CV aRα(X) = −α−1E(X1U ) + qα(X)(α − P (U)).

This quantity is also called the expected shortfall by some authors and has
other attractive features, such as continuity in the quantile level α, which
can be seen immediately from its representation in integral form; see [4] for
a derivation:

CV aRα(X) = − 1
α

∫ α

0
qβ(X)dβ. (11.14)

We introduce the following notation.

Notation 11.3.6. For α ∈ (0, 1), write

1α
{X≤x} =

{
1{X≤x} + α−P (X≤x)

P (X=x) 1{X=x} if P (X = x) > 0,

1{X≤x} if P (X = x) = 0.

Then
1α

{X≤qα(X)} ∈ [0, 1], (11.15)

E
(
1α

{X≤qα(X)}

)
= α − α−1E

(
X1α

X≤qα(X)

)
= CV aRα(X). (11.16)

We now show that CV aR is a coherent risk measure.

Theorem 11.3.7. Suppose α ∈ (0, 1). Write ρ : L2(Ω) → R for ρ(X) =
CV aRα(X). Then:

(i) if X ≥ 0, ρ(X) ≤ 0;

(ii) if λ ≥ 0, then ρ(λX) = λρ(X);
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(iii) if k ∈ R, then ρ(X + k) = ρ(X) − k;

(iv) if X, Y ∈ L2(Ω), then ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Proof. (i) From the definition, if X ≥ 0, then ρ(X) = CV aRα(X) ≤ 0.
(ii) For λ ≥ 0, P (λX ≤ λx) = P (X ≤ x), so

qα(λX) = inf{λx : P (λX ≤ λx) ≥ α}
= λ inf{x : P (X ≤ x) ≥ α}
= λqα(X).

Therefore, setting D(U) = {U ≤ qα(U)} for any random variable U , we
have

ρ(λX) = CV aRα(X)

= −α−1 (E (λX1D(λX)
)

+ qα(X)(α − P (D(λX)))
)

= −α−1λ
(
E
(
X1D(λX) + qα(X)(α − P (D(λX)))

))
= λCV aRα(X) = λρ(X).

(iii) For k ∈ R, P (X + k ≤ x + k) = P (X ≤ x), so that

qα(X + k) = inf
x

{x + k : P (X + k ≤ x + k) ≥ α}

= k + inf
x

{x : P (X ≤ x) ≥ α}

= k + qα(X).

Therefore

ρ(X + k) = CV arα(X + k)

= −α−1 (E ((X + k)1{D(X+k)}
)

+ qα(X + k)(α − P (D(X + k)))
)

= −α−1 (E (X1{D(X)}
)

+ qα(X)(α − P (D(X)))
)

− α−1k
(
E
(
1{D(X+k)}

)
+ α − P (D(X + k))

)
= ρ(X) − k.

(iv) Using the notation introduced above, we prove that ρ is subadditive.
Suppose that X, Y ∈ L2(Ω) and write Z = X + Y. Then, from (11.7),

α(ρ(X) + ρ(Y ) − ρ(Z))

= E
(
Z1α

{D(Z)} − X1α
{D(X)} − Y 1α

{D(Y )}

)
= E

(
X(1α

{D(Z)} − 1α
{D(X)})

)
+ E

(
Y
(
1α

{D(Z)} − 1α
{D(Y )}

))
≥ qα(X)E

(
1α

{D(Z)} − 1α
{D(X)}

)
+ qα(Y )E

(
1α

{D(Z)} − 1α
{D(Y )}

)
= qα(X)(α − α) + qα(Y )(α − α) = 0.
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We have used the facts that

1α
{Z≤qα(Z)} − 1α

{X≤qα(X)} ≥ 0 if X > qα(X)

and

1α
{Z≤qα(Z)} − 1α

{{X≤qα(X)} ≤ 0 if X < qα(X).

This follows from the definition of 1α.

Remark 11.3.8. This brief review of various approaches to measuring risk,
including V aR and deviation measures, has only skimmed the surface of re-
cent work in this very active field of research. Importantly, this research has
revealed deficiencies of V aR, which is still the dominant risk-management
tool used in practice. The concept of coherent risk measure was created
to address this situation, and to aid computation and the construction
of concrete examples for particular needs, a representation result for such
measures was established. In particular, conditional value at risk, CV aR,
has been shown to be a coherent measure of risk. Deviation measures and
the related bounded expectation measures were introduced with similar
objectives in view, and we have shown how relationships with coherent risk
measures can be established. Though this field is one of intense current
research, it may take time for the newer concepts touched upon here to
settle down and become common in financial practice.

An area of much current work is the extension of these ideas to a multi-
period setting, where martingales and generalised Snell envelopes come to
the fore. The interested reader is referred to the recent papers [10], [11] for
this material, which is beyond the scope of this book.

11.4 Hedging Strategies with Shortfall Risk

This final section outlines how risk measures can be applied to the construc-
tion of hedging strategies for financial assets, which is one of the principal
topics covered in this book. We have seen how, in a viable financial market
model, derivative securities can be priced by arbitrage considerations alone,
and that this price, as well as the replicating strategy, are uniquely deter-
mined when the market is complete. For incomplete markets, we were able
to reproduce these results for attainable claims, but in the general case the
buyer’s and seller’s prices represent the limits of an arbitrage interval of
possible prices for the claim, and additional optimality criteria are needed
to identify both the optimal price and optimal hedging strategy.

An investor can always play safe by employing a ‘superhedging strategy’
- an approach outlined in Chapters 2 and 7 for discrete and continuous-time
pricing models, respectively (also see [184] for a fuller account). However,
the initial capital required to eliminate all risk may be considered too high
by the investor, who may be willing instead to accept the risk of loss at
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a specified level. The question then becomes: how much initial capital
can be saved by accepting the risk of having to find additional capital at
maturity in (say) 1% of all possible outcomes? A second question is then:
by what criteria should the shortfall risk be measured, or what measure of
risk should be employed?

In [128],[129] Föllmer and Leukert introduced these ideas and showed
how the problem of such ‘quantile hedging’ against a given contingent claim
H can be reduced to consideration of an optimisation problem for the
modified claim φH, where φ ranges over the class of ‘randomised tests’
(i.e., FT -measurable random variables with values in the interval [0, 1]).
This allows an application of the Neyman-Pearson lemma from the theory
of hypothesis testing to provide an optimal solution (see, e.g., [303] for a
detailed treatment). Here we confine attention to integrable claims, and,
in particular, adapt the treatment given in [235] using coherent measures
of risk.

Quantile Hedging in a Complete Market

Assume that the price process (St)t∈[0,T ] is given as a semimartingale de-
fined on a probability space (Ω,F , P ) adapted to a filtration F = (Ft)t∈[0,T ],
where F0 is assumed to be trivial and FT = F . We assume that this mar-
ket model is viable, so that the set P of equivalent martingale measures is
non-empty. In this market, a self-financing strategy (V0, θ) is determined
by the initial capital V0 and a predictable process θ such that the resulting
value process V = (Vt) satisfies, P -a.s. for all t,

Vt = Vt(θ) = V0 +
∫ t

0
θudSu, (11.17)

where we shall assume the usual integrability conditions without further
mention (see Chapter 7). The strategy is admissible if also Vt ≥ 0 P -a.s.
for all t.

In a complete market, there is a unique measure Q ∼ P under which the
(discounted) price process is a martingale. For simplicity, we shall assume
that the discount rate is 0, so that St already represents the discounted
asset price. Now let H ∈ L1

+(Q) be a contingent claim. There is a perfect
hedging strategy θH such that for all t, P -a.s.,

EQ(H|Ft) = H0 +
∫ t

0
θH

u dSu. (11.18)

Thus the claim H is replicated by the strategy (H0, θ
H), provided the

investor allocates initial capital H0 = EQ(H) to the hedge. However,
suppose the investor is willing to allocate initial capital at most V ∗

0 to
hedge against the claim H. We may then seek the strategy that provides
maximum probability that the hedge will be successful (i.e., will suffice to
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cover the liability of the claim at time T ). In other words, we seek the
strategy (V0, θ) that maximises the probability of the set

A(H, θ) = {VT ≥ H} =

(
ω : V0 +

∫ T

0
θu(ω)dSu(ω) ≥ H(ω)

)
(11.19)

subject to the constraint
V0 ≤ V ∗

0 . (11.20)

In [128], A(H, θ) is called the success set for the claim and the resulting
strategy. For any measurable set B, we can consider the knockout option
HB = H1B , which, at time T, pays out H(ω) if ω ∈ B and 0 otherwise.
Note that with our assumptions HB ∈ L1

+(Q). As the market model is com-
plete, this contingent claim can be hedged perfectly by a unique admissible
strategy. Now let A∗ be a success set for H with maximal probability; i.e.,
such that

P (A∗) = maxP (A(H, θ)) (11.21)

subject to the constraint

EQ(H1A(H,θ)) ≤ V ∗
0 . (11.22)

Denote the perfect hedging strategy for the knockout option HA∗ = H1A∗

by θ∗. Thus we have P -a.s for all t ≤ T ,

EQ(H1A∗ |Ft) = EQ(H1A∗) +
∫ t

0
θ∗

udSu. (11.23)

This allows us to reduce the original optimisation problem to the ques-
tion of constructing a success set of maximal probability.

Proposition 11.4.1. Suppose that, as defined above, A∗ is a success set
with maximal probability under the constraint (11.22). Then the perfect
hedging strategy (V ∗

0 , θ∗) for the knockout option HA∗ solves the optimisa-
tion problem defined by (11.19),(11.20), and its success set is P -a.s. equal
to A∗.

Proof. First consider any admissible strategy (V0, θ) with V0 ≤ V ∗
0 . The

process Vt = V0 +
∫ t

0 θudSu is a non-negative local martingale and hence
a supermartingale (see Lemma 7.5.3) under Q. Since VT ≥ 0 P -a.s., the
success set A = A(H, θ) for this strategy satisfies VT ≥ H1A P -a.s., so that

V ∗
0 ≥ V0 ≥ EQ(VT ) ≥ EQ(H1A).

This shows that A satisfies the constraint (11.22), and therefore, by the
definition of A∗, we conclude that P (A) ≤ P (A∗).
We will show that any strategy (V0, θ

∗) satisfying EQ(H1A∗) ≤ V0 ≤ V ∗
0 is
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optimal. Such a strategy is admissible since, P -a.s., H1∗
A ≥ 0, so that by

(11.23),

V0 +
∫ t

0
θ∗

udSu ≥ EQ(H1A∗) +
∫ t

0
θ∗

udSu = EQ(H1A∗ |Ft) ≥ 0. (11.24)

Consider the success set A(H, θ∗) for the strategy (V0, θ
∗). We have

A∗ ⊂ {H1A∗ = H} ⊂ A(H, θ∗)

since V0 ≥ EQ(H1A∗) and (11.23) imply that VT (θ∗) ≥ H a.s. on A∗.
On the other hand, A∗ has maximal P -measure among success sets, so it
follows that A∗ = A(H, θ∗) P -a.s. Hence the strategy (V0, θ

∗) is an optimal
solution of the original problem (11.19), (11.20), as required.

Remark 11.4.2. Having reduced the problem to that of finding a maximal
success set, we briefly recall the basic elements of the Neyman-Pearson
theory of hypothesis testing: to discriminate between two given probability
measures P and P ∗, one may try to devise a pure test (i.e., a random
variable φ : Ω → {0, 1}), under which we reject P ∗ if the event {φ = 1}
occurs. This allows for two kinds of erroneous conclusions: P ∗(φ = 1) is
the probability that we reject P ∗ in error, and P (φ = 0) = 1 − P (φ = 1) is
the probability that P ∗ is accepted in error. In general, it is not possible
to minimise both probabilities simultaneously. However, one can accept a
tolerance level α (e.g., α = .01) for the first kind of error - much as is done
for V aR - and seek instead to solve a constrained optimisation problem
for the second kind, i.e., we seek to maximise P (φ = 1) subject to the
constraint

P ∗(φ = 1) ≤ α. (11.25)

A solution for this optimisation problem can be found by choosing a
third probability measure Q such that P and P ∗ are both absolutely con-
tinuous with respect to Q, with densities ZP and ZP ∗ , respectively. The
key quantity is then the likelihood ratio ZP /ZP ∗ : the optimal test is the
function

φ∗ = 1{a∗ZP ∗ <ZP }, (11.26)

where a∗ ∈ (0,∞) is chosen so that P ∗(a∗ZP ∗ < ZP ) = α. Thus the test
φ∗ rejects P ∗ if and only if the likelihood ratio exceeds the level a∗.

To construct a maximal success set in the family A(H, θ), we therefore
introduce the measure P ∗ � Q with Radon-Nikodym derivative

dP ∗

dQ
=

H

EQ(H)
=

H

H0
. (11.27)

The constraint EQ(H1A) ≤ V ∗
0 becomes

P ∗(A) = EP ∗(1A∗) =
1

H0
EQ(H1A) ≤ V ∗

0

H0
. (11.28)
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Write α = V ∗
0

H0
and define the set

Ã =
(

dP

dQ
> aH

)
. (11.29)

Define the level a∗ by

a∗ = inf{a : P ∗[Ã] ≤ α}. (11.30)

The Neyman-Pearson lemma now allows us to deduce that Ã is a success
set of maximal measure as follows.

Theorem 11.4.3. Suppose that P ∗(Ã) = α. Then the optimal strategy
solving (11.19), (11.20) is the unique replicating strategy (V ∗

0 , θ∗) for the
knockout option H1Ã.

Proof. Both P and P ∗ are absolutely continuous with respect to the unique
EMM Q, and the set Ã consists precisely of the points ω ∈ Ω at which
dP
dQ (ω) > ãH0

dP ∗
dQ (ω), so that the likelihood ratio is bounded below by the

constant ãH0. Then the Neyman-Pearson lemma states that for any mea-
surable set A, P ∗(A) ≤ P ∗(Ã) implies P (A) ≤ P (Ã). Hence the constraint
(11.22) is satisfied and Ã is a success set of maximal measure, so that, by
Proposition 11.4.1, the strategy (V ∗

0 , θ∗) solves the original optimisation
problem.

Remark 11.4.4. These ideas are taken much further in [128], where explicit
results are given for the Black-Scholes model and the theory is developed
further for incomplete markets. We do not pursue this here but will instead
sketch briefly how the same ideas may be used in the context of coherent
risk measures.

However, in the more general situation, we need to extend the class
of ‘tests’ that allows us to discriminate between alternative hypotheses
since the ‘level’ a∗ defined in (11.30) need not exist in general. To deal
with this, we replace the {0, 1}-valued test function φ∗ by a more general
‘randomised’ test φ with possible values ranging through the interval [0, 1].
The interpretation of these tests is that, in the event that the outcome
ω ∈ Ω is observed, then P ∗ is rejected with probability φ(ω) and rejected
with probability 1 − φ(ω). This means that EP (φ) provides for us the
probability of rejecting the hypothesis P ∗ when it is false (and thus defines
the power of the test φ), while EP ∗(φ) gives the probability of error of
the first kind (rejecting P ∗ when it is true). The optimisation problem to
be solved is therefore to maximise EP (φ) over all tests φ that satisfy the
constraint E∗

P (φ) ≤ α. This problem again has an explicit solution, as will
be seen in the general situation outlined in the next subsection.

Efficient Hedging with Coherent Risk Measures

We outline the results obtained in [235]. As in the previous subsection,
assume as given a viable market model (Ω,F , P, (Ft)t∈[0,T ], (St)t∈[0,T ]) and
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denote the non-empty set of equivalent martingale measures by P. Assume
further that the integrable contingent claim H satisfies supQ∈P EQ(H) <
∞.

Now let ρ : L1 → R denote a coherent risk measure that is lower semi-
continuous in the L1-norm. We wish to minimise the shortfall risk when
using admissible hedging strategies with given initial capital V ∗

0 , so that
we seek the admissible strategy (V0, θ) that minimises

ρ(min[(VT − H), 0]) = ρ

(
min

((
V0 +

∫ T

0
θudSu − H

)
, 0

))
(11.31)

subject to the constraint
V0 ≤ V ∗

0 . (11.32)

Defining the set of ‘randomised tests’ (see [67] for an explanation of the
terminology, which comes from the theory of hypothesis testing) by

R = {φ : Ω → [0, 1] : φ is F-measurable}

and the constrained set of tests

R0 = {φ ∈ R : sup
Q∈P

EQ(φH) ≤ V ∗
0 }, (11.33)

we can use the representation theorem for coherent risk measures to prove
the following proposition.

Proposition 11.4.5. There exists a randomised test φ∗ in R0 such that

inf
φ∈R0

ρ(−(1 − φ)H) = ρ(−(1 − φ∗)H). (11.34)

Proof. The set R is σ(L∞, L1)-compact in L∞, and the map

φ → sup
Q∈P

EQ(φH)

is lower semi-continuous in the weak∗ topology on L∞. Hence the set R0
is weak∗-closed and hence also weak∗-compact.

We recall the essential features of the proof of Theorem 11.2.19: if
Q denotes the set of all probability measures absolutely continuous with
respect to P, and C = {Y ∈ A◦ : E[Y ] = 1}, where A denotes the set of
acceptable positions for ρ, then the subset of Q given by

Q̃ = {Q ∈ Q : ZQ = Y for some Y ∈ C}

satisfies, for any X ∈ L1,

ρ(X) = sup
Q∈Q̃

EQ(−X) (11.35)
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and the set {dQ
dP : Q ∈ Q̃} is convex and weak∗-closed in L1.

But the L∞-functional

φ → sup
Q∈Q̃

EQ[(1 − φ)H]

is also lower semi-continuous in the weak∗ topology, so its infimum over R0
is attained.

This again reduces the original optimisation problem of finding an ad-
missible strategy that solves (11.31), (11.32) to the question of finding an
optimal randomised test φ∗. However, we first need to generalise the con-
cept of ‘success set’, which applies when φ is an indicator function, to this
more general context.

Definition 11.4.6. For any admissible strategy (V0, θ), the success ratio is
the function

φ(V0, θ) = 1{VT ≥H} +
VT

H
1{VT <H}. (11.36)

The role of the simple knockout option is now taken by φ∗H. We denote
by V ∗ the right-continuous version of the process

V ∗
t = ess sup

Q∈P
EQ(φ∗H|Ft).

This is a supermartingale for every Q in P, and thus the optional decom-
position theorem (see [201], [129]) applies to provide an admissible strategy
(V ∗

0 , θ∗) and an increasing optional process C∗ with C∗
0 = 0 such that

V ∗
t = V ∗

0 +
∫ t

0
θ∗

udSu − C∗
t .

Remark 11.4.7. The force of the optional decomposition theorem is to pro-
vide a characterisation of the wealth processes defined in Chapters 7 and
10. The collection of processes V defined by Vt = V0+

∫ t

0 θudSu−Cu, where
C = (Cu)u∈[0,T ] is adapted and increasing, with C0 = 0, is identical with
the collection of P- supermartingales (i.e., processes that are supermartin-
gales for every EMM Q). The decomposition is non-unique, unlike the
Doob-Meyer decomposition of the P -supermartingale Vt = V0 + Mt − At,
where A is increasing and predictable, with A0 = 0. However, under the
stronger condition that V is a supermartingale for each EMM Q the mar-
tingale M can be taken to be the stochastic integral (i.e., a gains process)
generated by some admissible strategy θ at the cost of relaxing the require-
ments on the ‘compensator’ C.

The strategy (V ∗
0 , θ∗) provides the solution to our original optimisa-

tion problem whenever the randomised test has the minimisation property
described in Proposition 11.4.5.
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Theorem 11.4.8. Suppose that φ∗ solves the minimisation problem posed
in Proposition 11.4.5 and (V ∗

0 , θ∗) is the admissible strategy for the claim
φ∗H determined by its optional decomposition, then this strategy solves the
optimisation problem (11.31), (11.32), and its success ratio is φ∗ P -a.s.

Proof. The proof follows the same pattern as for the quantile hedging case.
Take an admissible strategy (V0, θ) satisfying the constraint V0 ≤ V ∗

0 and
with success ratio φ. Since φH = VT ∧ H, we have

(VT − H) ∧ 0 = −(VT − H)+ = −(H − VT ∧ H) = −(1 − φ)H.

Also, the supermartingale property of V implies that

EQ(φH) ≤ EQ(VT ) ≤ V0 ≤ V ∗
0 .

Hence the success ratio φ is in R0 and so

ρ((VT − H) ∧ 0) = sup
Q∈Q̃

EQ((1 − φ)H) ≥ sup
Q∈Q̃

E((1 − φ∗)H). (11.37)

In particular, the success ratio φ(V ∗
0 , θ∗) satisfies this inequality, while

on the other hand

φ(V ∗
0 , θ∗)H = V ∗

T ∧ H ≥ φ∗H,

so that, for all Q ∈ Q̃ ,

EQ[(1 − φ(V ∗
0 , θ∗)H)] ≤ EQ[(1 − φ∗)H].

This shows that the two quantities are equal, and so

ρ((V ∗
T − H) ∧ 0) = sup

Q∈Q̃
EQ((1 − φ(V ∗

0 , θ∗)H)) = sup
Q∈Q̃

E((1 − φ∗)H).

Remark 11.4.9. In [235] and [129], these general results are applied to
particular examples of coherent risk measures. In the context of the Black-
Scholes model, for example, that with ρ as the worst conditional expecta-
tion, the amount of capital ‘saved’ by accepting a given level of loss can be
computed explicitly. For a European call option H, where in the present
setting, with Φ denoting the cumulative normal distribution function, the
cost of replication is

EQ(H) = S0Φ(d+) − KΦ(d−),

let V ∗
0 ≤ EQ(H) be a given level of initial capital, and assume further that

the drift µ ≥ 0 and that

P (H > 0) = Φ(µ
√

T + d−) ≤ α.



328 CHAPTER 11. MEASURES OF RISK

Then it is shown in [235] that the minimisation problem for φ is solved by
the most powerful randomised test φ∗ = 1{ST >c}, so that

V ∗
0 = EQ(H1{ST >c}

and the constant c can be determined from the identity

EQ(H1{ST >c}

= S0Φ
(

1
σ
√

T
log
(

S0

c

)
+

1
2
σ
√

T

)
− KΦ

(
1

σ
√

T
log
(

S0

c

)
− 1

2
σ
√

T

)
.
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décomposition de Föllmer-Schweizer. Ann. Inst. H. Poincaré Probab.
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[131] H. Föllmer and A. Schied. Robust preferences and measures of risk.
In K. Sandmann and P. Schonbucher, editors, Advances in Finance
and Stochastics. Springer Verlag, New York, 2002.
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Probab. Statist., 26:451–460, 1990.

[289] M. Taksar, M.J. Klass, and D. Assaf. A diffusion model for optimal
portfolio selection in the presence of brokerage fees. Math. Oper.
Res., 13:277–294, 1988.

[290] M.S. Taqqu and W. Willinger. The analysis of finite security markets
using martingales. Adv. Appl. Probab., 19:1–25, 1987.

[291] S.J. Taylor. Modeling stochastic volatility: A review and comparative
study. Math. Finance, 4:183–204, 1994.

[292] S.M. Turnbull and F. Milne. A simple approach to the pricing of
interest rate options. Rev. Finan. Stud., 4:87–120, 1991.

[293] S. Uryasev. Conditional value-at-risk: Optimisation, algorithms and
applications. Finan. Eng. News, 2(3):21–41, 2000.

[294] Van der Hoek, J. and E. Platen. Pricing contingent claims in the
presence of transaction costs. Working paper, 1995.

[295] P. Van Moerbeke. On optimal stopping and free boundary problem.
Arch. Rational Mech. Anal., 60:101–148, 1976.



348 BIBLIOGRAPHY

[296] O. Vasicek. An equilibrium characterisation of the term structure. J.
Finan. Econ., 5:177–188, 1977.

[297] R. Whaley. Valuation of American call options on dividend-paying
stocks: Empirical tests. J. Finan. Econ., 10:29–58, 1982.

[298] R. Whaley. Valuation of American futures options: Theory and em-
pirical tests. J. Finance, 41:127–150, 1986.

[299] D. Williams. Probability with Martingales. Cambridge University
Press, Cambridge, 1991.

[300] W. Willinger and M.S. Taqqu. Pathwise stochastic integration and
applications to the theory of continuous trading. Stochastic Process.
Appl., 32:253–280, 1989.

[301] W. Willinger and M.S. Taqqu. Toward a convergence theory for
continuous stochastic securities market models. Math. Finance, 1:55–
99, 1991.

[302] P. Wilmot, J. Dewynne, and S. Howison. Option Pricing: Mathe-
matical Models and Computation. Oxford University Press, Oxford,
1994.

[303] H. Witting. Mathematische Statistik I. B.G. Teubner, Stuttgart,
1985.

[304] J.A. Yan. Characterisation d’une classe d’ensembles convexes de l1

ou h1. Lecture Notes in Mathematics, 784:220–222, 1980.

[305] P.G. Zhang. Exotic Options: A Guide to Second Generation Options.
World Scientific, Singapore, 1997.



Index

T -forward price, 249
T -future price, 253

acceptable position, 314
acceptance set, 314
adapted, 35
affine hull, 65
American call option, 25
American put option, 224

continuation region, 230
critical price, 231
early exercise premium, 234
stopping region, 230
value function, 229

arbitrage, 8, 225
arbitrage opportunity, 32, 187
arbitrage price, 34
arbitrage-free, 73
arbitrageurs, 4

barrier option, 208
down and in, 212
down and out, 211
up and in, 212
up and out, 211

Bessel function, 275
beta, 17
Black-Scholes

equation, 214
formula, 54
model, 51
price, 50
risk premium, 191

bond, 7, 28
Brownian motion, 135

reflection principle, 205
buy-and-hold strategy, 225

buyer’s price, 43

call-put parity, 8
Capital Asset Pricing Model, 304
central limit theorem, 53
contingent claim, 2, 41

attainable, 34, 41, 87
convex set, 57
cost function, 12

deflator, 288
delivery date, 3
Delta, 218
delta-hedging, 215
deviation measure, 316

expectation-bounded, 316
discount factor, 10, 29
Doob

Lp-inequality, 140
decomposition of a process, 115
maximal theorem, 138

Doob-Meyer decomposition, 116
dynamic programming, 242

early exercise premium, 237
endowment, 29, 30
equivalent martingale measure, 38
equivalent measures, 38
essential supremum, 123
European call option, 6, 186
European option, 6
European put option, 6, 186
excess mean return, 17
excessive function, 241
excursion interval, 235
exotics, 6
Expectations Hypothesis

349



350 INDEX

Local, 264
Return to Maturity, 264
Yield to Maturity , 264

expected shortfall, 313
expiry date, 6

Farkas’ lemma, 66
filtration, 28, 96, 131

minimal, 96
usual conditions, 131

first fundamental theorem, 60
forward

contract, 2
measure, 250
price, 3
rate, 277

free boundary problem, 238
smooth pasting, 238

function
lower semi-continuous, 310

futures contract, 4
futures price, 5

gamma, 218
Greeks, 217
Gronwall’s lemma, 158

hedge, 187
hedge portfolio, 8

for American option, 106
minimal, 106

hedging, 4
hedging constraints, 106
hedging strategy, 118

minimal, 124
hitting time of a set, 108

interest rate, 6
instantaneous, 167
riskless, 6

investment price, 188
Itô
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