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Preface to the Second Edition

After the success of the first edition we felt obliged to catch up with the
rapidly growing literature in financial statistics and econometrics. This sec-
ond edition expands on material that was only briefly covered in the previous
edition. As an example, Chapter 17 on copula is an extensive update of the
literature and describes some of our own research in this area. In the chapter
on time series with stochastic volatility (Chapter 13), we present a critique of
standard stationary GARCH modelling and describe an alternative nonpara-
metric way of modelling based on the idea of a time-varying unconditional
variance, and hence a non-stationary process. This new view of volatility
modelling seems to provide promising results in prediction when compared
with standard GARCH models. We have substantially augmented the section
on risk management (Section 6.3), including the Volga and Vanna coefficients
and the recent work on realised volatility. Another very active part of research
is on multivariate GARCH models, where we provide an updated review in
Section 13.4. We have included a new section on simulation techniques and
an entire chapter on Credit Risk Management. In addition to these changes,
we have eliminated a small number of errors in the first edition. Finally, we
would like to thank Ying Chen, Ekaterina Ignatieva and Kai Detlefsen for
the text management.

Berlin, Kaiserslautern and Louvain-la-Neuve, August 2007



Preface to the First Edition

Until about the 1970s, financial mathematics has been rather modest com-
pared with other mathematical disciplines. This changed rapidly after the
path-breaking works of F. Black, M. Scholes, and R. Merton on derivative
pricing, for which they received the Nobel prize of economics in 1997. Since
1973, the publication year of the famous Black and Scholes article, the im-
portance of derivative instruments in financial markets has not ceased to
grow. Higher risks associated with, for example, flexible instead of fixed
exchange rates after the fall of the Bretton Woods system required a risk
management and the use of hedging instruments for internationally active
companies. More recently, globalization and the increasingly complex depen-
dence of financial markets are reasons for using sophisticated mathematical
and statistical methods and models to evaluate risks.

The necessity to improve and develop the mathematical foundation of ex-
isting risk management was emphasized in the turbulent 1990s with, for
example, the Asian crisis, the hedging disasters of Metallgesellschaft and
Orange County, and the fall of the Long-Term Capital Management hedge
fund (controlled by Merton and Scholes!). This saw the legislator obliged to
take action. In continental Europe, this development is mainly influenced by
the Basel Committee on Banking Supervision, whose recommendations form
the basis in the European Union for legislation, with which financial insti-
tutions are obliged to do a global, thorough risk management. As a result,
there is an increasing demand for experts in financial engineering, who control
risks internally, search for profitable investment opportunities and guarantee
the obligations of legislation. In the future, such risk management is likely
to become obligatory for other, deregulated markets such as telecommunica-
tion and energy markets. Being aware of the increasing price, volume, and
credit risks in these markets, large companies usually have already created
new departments dealing with asset and liability management as well as risk
management.

The present text is supposed to deliver the necessary mathematical and sta-
tistical basis for a position in financial engineering. Our goal is to give a
comprehensive introduction into important ideas of financial mathematics
and statistics. We do not aim at covering all practically relevant details, and
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we also do not discuss the technical subtleties of stochastic analysis. For both
purposes there is already a vast variety of textbooks. Instead, we want to
give students of mathematics, statistics, and economics a primer for the mod-
elling and statistical analysis of financial data. Also, the book is meant for
practitioners, who want to deepen their acquired practical knowledge. Apart
from an introduction to the theory of pricing derivatives, we emphasize the
statistical aspects of mathematical methods, i.e., the selection of appropriate
models as well as fitting and validation using data.

The present book consists of three parts. The first two are organized such
that they can be read independently. Each one can be used for a course of
roughly 30 hours. We deliberately accept an occasional redundancy if a topic
is covered in both parts but from a different perspective. The third part
presents selected applications to current practical problems. Both option
pricing as statistical modelling of financial time series have often been topic
of seminars and lectures in the international study program financial mathe-
matics of Universität Kaiserslautern (http://www.mathematik.uni-kl.de) as
well as in the economics and statistics program of Humboldt-Universität zu
Berlin (http://ise.wiwi.hu-berlin.de). Moreover, they formed the basis of lec-
tures for banking practitioners which were given by the authors in various
European countries.

The first part covers the classical theory of pricing derivatives. Next to
the Black and Scholes option pricing formula for conventional European and
American options and their numerical solution via the approximation us-
ing binomial processes, we also discuss the evaluation of some exotic options.
Stochastic models for interest rates and the pricing of interest rate derivatives
conclude the first part. The necessary tools of stochastic analysis, in partic-
ular the Wiener process, stochastic differential equations and Itô’s Lemma
will be motivated heuristically and not derived in a rigorous way. In order
to render the text accessible to non-mathematicians, we do not explicitly
cover advanced methods of financial mathematics such as martingale theory
and the resulting elegant characterization of absence of arbitrage in complete
markets.

The second part presents the already classical analysis of financial time se-
ries, which originated in the work of T. Bollerslev, R. Engle, and C. Granger.
Starting with conventional linear processes, we motivate why financial time
series rarely can be described using such linear models. Alternatively, we
discuss the related model class of stochastic volatility models. Apart from
standard ARCH and GARCH models, we discuss extensions that allow for an
asymmetric impact of lagged returns on volatility. We also review multivari-
ate GARCH models that can be applied, for example, to estimate and test
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the capital asset pricing model (CAPM) or to portfolio selection problems.
As a support for explorative data analysis and the search and validation
of parsimonious parametric models, we emphasize the use of nonparametric
models for financial time series and their fit to data using kernel estimators
or other smoothing methods.

In the third part of the book, we discuss applications and practical issues
such as option pricing, risk management, and credit scoring. We apply flexi-
ble GARCH type models to evaluate options and to overcome the Black and
Scholes restriction of constant volatility. We give an overview of Value at
Risk (VaR) and backtesting, and show that copulas can improve the estima-
tion of VaR. A correct understanding of the statistical behavior of extremes
such as September 11, 2001, is essential for risk management, and we give
an overview of extreme value theory with financial applications. As a par-
ticularly popular nonparametric modelling tool in financial institutions, we
discuss neural networks from a statistical viewpoint with applications to the
prediction of financial time series. Next, we show how a principal components
analysis can be used to explain the dynamics of implied volatilities. Finally,
we present nonparametric extensions of conventional discrete choice models
and apply them to the credit scoring problem.

We decided to collect some technical results concerning stochastic integration
in the appendix. Here we also present Girsanov’s theorem and the martingale
representation theorem, with which dynamic portfolio strategies as well as
an alternative proof of the Black and Scholes formula are developed. This
appendix is based on work by Klaus Schindler, Saarbrücken.

In designing the book as e-book, we are going new ways of scientific publishing
together with Springer Verlag and MD*Tech. The book is provided with an
individual license key, which enables the reader to download the html and
pdf versions of the text as well as all slides for a 60 to 90 hours lecture
from the e-book server at http://www.quantlet.com. All examples, tables
and graphs can be reproduced and changed interactively using the XploRe
quantlet technology.

The present book would not exist without the cooperating contributions of
P. Č́ıžek, M. Fengler, Z. Hlávka, E. Kreutzberger, S. Klinke, D. Mercurio and
D. Peithmann. The first part of the book arose from an extended vocational
training which was developed together with G. Maercker, K. Schindler and
N. Siedow. In particular, we want to thank Torsten Kleinow, who accom-
panied the writing of the text in all phases, developed the e-book platform
and improved the presentation by various valuable contributions. Important
impulses for an improved presentation were given by Klaus Schindler of the
University of Saarbrücken, which we gratefully acknowledge. The chapter
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on copulae is based on a contribution by Jörn Rank, Andersen Consulting,
and Thomas Siegl, BHF Bank, which we adopted with their kind approval.
The quantlets for multivariate GARCH models were contributed by Matthias
Fengler and Helmut Herwartz. All graphs were created by Ying Chen, who
also led the text management. We would like to express our thanks to these
colleagues. We also benefitted from many constructive comments by our stu-
dents of the universities in Kaiserslautern, Berlin, and Rotterdam. As an
example of their enthusiasm we depict the preparation sheet of a student for
the exam at the front pages of the book. Graphs and formulae are combined
to create a spirit of the ”art of quantitative finance”.

Finally, for the technical realization of the text we want to thank Beate Siegler
and Anja Ossetrova.

Kaiserslautern, Berlin and Rotterdam, April 2004
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Part I

Option Pricing



1 Derivatives

Classic financial mathematics deals first and foremost with basic financial in-
struments such as stocks, foreign currencies and bonds. A derivative (deriva-
tive security or contingent claim) is a financial instrument whose value de-
pends on the value of other, more basic underlying variables. In this chapter
we consider forward contracts, futures contracts and options as well as some
combinations.

Simple derivatives have been known on European stock exchanges since the
turn of the 19th century. While they lost popularity between World War I
and II, they revived in the seventies with the help of work by Black, Scholes
and Merton, who developed a theoretical foundation to price such instru-
ments. Their entrepreneurial approach–which is not only applied to price
derivatives but everywhere in finance where the risk of complex financial in-
struments is measured and controlled, received a Nobel price for economics
in 1997. At the same time, it triggered the development of modern financial
mathematics the basics of which is described in chapter 6 of this book. Since
we have only concentrated on the mathematical modelling ideas, relevant
financial terminology is only introduced when required. Numerous details
which are of practical importance but which are of no interest for mathe-
matical modelling have been left out; and refer to, for example, Hull (2000),
Welcker, Kloy and Schindler (1992).

Particularly simple derivative securities are forward and future contracts.
Both contracts are agreements involving two parties and call for future de-
livery of an asset at an agreed price. Stocks, currencies and bonds, as well as
agricultural products (grain, meat) and raw materials (oil, copper, electric
energy) are underlying in the contract.

Definition 1.1 (Forward contract)
A forward contract is an agreement between two parties in which one of the
parties assumes a long-term position (the other party assumes a short-term
position) and obliges to purchase (sell) the underlying asset at a specified
future date T > t, (expiration date or maturity) for a specified price K
(delivery price).
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At time t, the value VK,T (St, τ) of such a contract depends on the current
value of the underlying St, the time to maturity τ = T − t and of the param-
eters K, T specified in the contract.

Futures contracts closely resemble forward contracts. While the latter do
not entail any further payments until maturity, once the agreement is signed,
futures contracts are traded on an exchange and mark to the market on
a daily basis. Under certain circumstances forward and futures prices are
identical.

Example 1.1
An investor enter into a long-term forward contract on September 1, 2003,
which obliges him to buy 1 000 000 EUR at a specified exchange rate of 1.2
USD/EUR in 90 days. The investor gains if the exchange rate is up to 1.3
USD/EUR on November 30, 2003, since he can sell the 1 000 000 EUR for
USD 1 300 000.
In this case t = September 1, 2003 τ = 90 days, T = November 30, and
K = USD 1 200 000.

Definition 1.2 (Spot Price, Forward Price, Future Price)
The current price of the underlying (stock, currency, raw material) St is often
referred to as the spot price. The delivery price giving a forward contract, a
value of zero is called the forward price and denoted Ft. That is, Ft solves
VFt,T (St, τ) = 0. The future price is defined accordingly.

Later we will compute the value of a forward contract, which determines
the forward price. Since under certain circumstances forward and future
contracts have the same value, their prices are equal. When such a contract
is initiated in time t = 0, often the delivery price is set to K = F0. The
contract has a value of zero for both the seller and the buyer, i.e. no payments
occur. Over time, as additional transactions take place on the exchange, the
delivery price K and the forward price Ft can be different.

Contrary to forward and futures contracts where both parties are obliged to
carry out the transaction, an option gives one party the right to buy or sell
the security. Obviously, it’s important to distinguish whether the buyer or
seller of the option has the right to transact. There are two types of options:
call options and put options. Furthermore, European options are delimited
from American options. While European options are like forward contracts,
American options can be exercised at any date before maturity. These terms
are derived from historical, not geographical roots.
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Definition 1.3 (Call Option, Put Option)
A European call option is an agreement which gives the holder the right to
buy the underlying asset at a specified date T > t, (expiry date or maturity),
for a specified price K, (strike price or exercise price). If the holder does not
exercise, the option expires as worthless.

A European put option is an agreement which gives the holder the right to
sell the underlying asset at a specified date T for a specified price K.

The holder of an American call or put option has the right to exercise the
option at any time between t and T .

The option types defined above are also called plain vanilla options. In
practice, many more complex derivatives exist and numerous new financial
instruments are still emerging. Over-the-counter (OTC) derivatives are tai-
lor made instruments designed by banking institutions to satisfy a particular
consumer need. A compound option, for example, is such an OTC–derivative.
It gives the holder the right to buy or sell at time T an underlying option
which matures in T ′ > T . The mathematical treatment of these exotic op-
tions is particularly difficult, since the current value of this instrument does
not only depend on the value of the underlying St but also on the entire path
of the underlying, St′ , 0 ≤ t′ ≤ t.

Asian, lookback and knock–out options are path-dependent derivatives. While
the delivery price K of an asian option depends on the average value of the
security of a certain period of time, it depends, in the case of a lookback op-
tion, on the minimum or maximum value of the security for a certain period
of time. Knock–out options expire as worthless if the price level ever reaches
a specified level.

To get used to forward and futures contracts, plain vanilla options and simple
combinations of them, it is convenient to have a look at the payoff of an
instrument, i.e. the value of the derivative at maturity T . The payoff of a
long position in a forward contract is just ST − K, with ST the security’s
spot price at expiration date T . The holder of the contract pays K for the
security and can sell it for ST . Thus, he makes a profit if the value of the
security ST at expiration is greater than the delivery price K. Being short
in a forward contract implies a payoff K − ST . Both payoff functions are
depicted in Figure 1.1.

The call option payoff function is denoted:

max{ST −K, 0} = (ST −K)+.

Thus, the option holder only exercises if the delivery price K is less than
the value of the security ST at the expiry date T . In this case, he would
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Figure 1.1: Value of forward contract at maturity

receive the same cash amount as in the case of a forward or future contract.
If K > ST , he will clearly choose not to exercise and the option expires as
worthless. The put option payoff function is:

max{K − ST , 0} = (K − ST )+.

In contrast to forward and future contracts, options need to be bought for
a positive amount C(S0, T ), called the option price or option prime. Often,
the options profit function is defined as (ST −K)+−C(S0, T ). However, this
definition adds cash flows of different points in time. The correct profit is
obtained by compounding the cash outflow in time t = 0 up to time t = T ,
since the investor could have invested the option at the risk–free interest rate
r. Assuming continuous compounding at a constant interest rate r, the profit
function of a call option is denoted: (ST −K)+ − C(S0, T )erT .

Example 1.2
Consider a short call option with delivery price K and option price C0 in
time t = 0. The payoff and profit function are given in Figures 1.2 and 1.3,
respectively.

Example 1.3
Combining a long call and a long put with the same delivery price, K is called
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Figure 1.2: Payoff of a short position in a call option

a straddle. Figure 1.4 shows the straddle profit function. C0 and P0 denote
the call and put option option respectively.

Another fundamental financial instrument which is used in option pricing is
a bond. Apart from interest yields, the bond holder could receive coupon
payments at fixed points in time. In particular, we will consider zero-coupon
bonds, i.e. bonds which promise a single payment at a fixed future date.

Definition 1.4 (Zero coupon Bond, Discount Bond)
A zero coupon bond or discount bond is a bond without coupon payments
which pays interest r. The investor pays in time 0 an amount B0 and receives
at maturity T the amount BT which is the sum of B0 and the interest earned
on B0. The bonds’ value at maturity is termed face value.

Buying a zero–coupon bond corresponds to lending money at a fixed interest
rate for a fixed period of time. Conversely, selling a zero-coupon bond is
equivalent to borrowing money at rate r. Since bonds are traded on an
exchange, they can be sold prior to maturity at price Bt, i.e. B0 plus accrued
interest up to time t.

In practice, interest rates are compounded at discrete points in time, for
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Figure 1.3: Profit of a short position in a call option

example annually, semiannually or monthly. If the interest rate r is com-
pounded annually, the initial investment B0 has (n years later) a value of
B

(1)
n = B0(1 + r)n. If it is compounded k times per annum (p.a.), the in-

vestment pays an interest rate of r
k each 1

k years, and has a terminal value
of B(k)

n = B0(1 + r
k )nk after n years. However, when options and other

complex derivatives are priced, continuous compounding is used, which de-
noted for k → ∞. In this case, the initial investment B0 grows in n years to
Bn = B0 · enr, and r is called short rate. The difference between discrete and
continuous compounding is small when k is large. While an investment of
B0 = 1000 EUR at a yearly rate r = 10% grows to 1100 EUR within a year
when annually compounded, it grows to 1105.17 EUR when continuously
compounded.

In light of this, the continuous compounded rate r can be modified to ac-
count for these deviations. Assuming annual compounding at rate r1, for
both continuous and annual compounding, a continuous compounded rate
r = log(1 + r1) has to be applied, in order to obtain the same terminal value
Bn = B

(1)
n .

If not stated otherwise, continuous compounding will be assumed from here
on. For comparing cash flows occurring at different points in time, they
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Figure 1.4: Profit of a straddle

need to be compounded or discounted to the same point in time. That is,
interest payments are added or subtracted. With continuous compounding,
an investment of B in time t in Δt > 0 is

compounded to time t+ Δt: B erΔt

discounted to time t− Δt: B e−rΔt.

Some more financial terms will be introduced before the end of the chapter.
A portfolio is a combination of one or more financial instruments - its value is
considered as an individual financial instrument. One element of a portfolio
is also called a position. An investor assumes a long position when he buys
an instrument, and a short position when he sells it. A long call results from
buying a call option, a long put from buying a put option, and a short forward
from selling a forward contract.

An investor closes out a position of his portfolio by making the future portfolio
performance independent of the instrument. If the latter is traded on an
exchange, he can sell (e.g. a stock or a bond) or buy (e.g. borrowed money)
it. However, if the instrument is traded, the investor can close out the position
by adding to the portfolio the inverse instrument. Thus, both add up to zero,
and do not influence the portfolio performance any further.
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Example 1.4
Consider an investor who on 1 February bought a 1 000 000 USD forward
contract with a delivery price of 1 200 000 EUR with maturity within one
year. On 1 June, he wishes to close out the position. He can sell another
forward contract of the same size with the same delivery price and the ma-
turity date, namely 31 January. The long and the short positions add up to
zero at any point in time.

Short selling is a trading strategy that involves selling financial instruments,
for example stocks, which an investor does not own. At a later stage, the
investor buys back these objects. In practice, this requires the intervention
of a broker who mediates with another client who owes the objects and is
willing to lend them to the investor. The short selling investor commits to
pay the client any foregone income, (dividends for example), that is earned
in the interim.

Example 1.5
An investor selling short 1000 stocks, lends them from the owner and sells
them immediately for 1000 S0 in the market (St denotes the stock price at
time t). Later, at time t > 0, he closes out the position, by buying back the
stocks for 1000 St and returns them to the owner. The strategy is profitable
if St is clearly below S0. If in time t0, 0 < t0 < t, a dividend D per share
is paid, the investor pays 1000 D to the owner. Short selling is in practice
subject to numerous restrictions. In this example, it is only the possibility of
short selling that will be of any interest.

1.1 Recommended Literature

Basic textbooks on derivatives are, among others, Hull (2000), Jarrow (1992)
and Cox and Rubinstein (1985). Neftci (1996) and Duffie (1996) are more ad-
vanced on a mathematical level. A rather practical but still theoretically well–
founded introduction, is provided by Briys, Bellalah, Mai and de Varenne
(1998).



2 Introduction to Option
Management

2.1 Arbitrage Relations

In this section we consider the fundamental notion of no–arbitrage. An arbi-
trage opportunity arises if it is possible to make a riskless profit. In an ideal
financial market, in which all investors dispose of the same pieces of infor-
mation and in which all investors can react instantaneously, there should not
be any arbitrage opportunity. Since otherwise each investor would try to
realize the riskless profit instantaneously. The resulting transactions would
change the prices of the involved financial instruments such that the arbitrage
opportunity disappears.

Additionally to no–arbitrage we presume in the remaining chapter that the
financial market fulfills further simplifying assumptions which are in this
context of minor importance and solely serve to ease the argumentation. If
these assumptions hold we speak of a perfect financial market.

ASSUMPTION (perfect financial market)
There are no arbitrage opportunities, no transaction costs, no taxes, and
no restrictions on short selling. Lending rates equal borrowing rates and all
securities are perfectly divisible.

The assumption of a perfect financial market is sufficient to determine the
value of future and forward contracts as well as some important relations
between the prices of some types of options. Above all no mathematical
model for the price of the financial instrument is needed. However, in order
to determine the value of options more than only economic assumptions are
necessary. A detailed mathematical modelling becomes inevitable. Each
mathematical approach though has to be in line with certain fundamental
arbitrage relations being developed in this chapter. If the model implies
values of future and forward contracts or option prices which do not fulfill
these relations the model’s assumptions must be wrong.
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An important conclusion drawn from the assumption of a perfect financial
market and thus from no–arbitrage will be used frequently in the proofs to
come. It is the fact that two portfolios which have at a certain time T the
same value must have the same value at a prior time t < T as well. Due
to its importance we will further illustrate this reasoning. We proceed from
two portfolios A and B consisting of arbitrary financial instruments. Their
value in time t will be denoted by WA(t) and WB(t) respectively. For any
fixed point of time T , we assume that WA(T ) = WB(T ) independently of
the prior time T values of each financial instrument contained in A and B.
For any prior point of time t < T we assume without loss of generality that
WA(t) ≤ WB(t). In time t an investor can construct without own financial
resources a portfolio which is a combination of A and B by buying one unit
of every instrument of A, selling one unit of every instrument of B (short
selling) and by investing the difference Δ(t) = WB(t)−WA(t) ≥ 0 at a fixed
rate r. The combined portfolio has at time t a value of

WA(t) −WB(t) + Δ(t) = 0,

i.e. the investor has no initial costs. At time T the part of the combined port-
folio which is invested at rate r has the compounded value
Δ(T ) = Δ(t)er(T−t), and hence the combined portfolio has a value of

WA(T ) −WB(T ) + Δ(T ) = Δ(t)er(T−t) > 0,

if Δ(t) > 0. The investor made a riskless gain by investing in the combined
portfolio which contradicts the no–arbitrage assumption. Therefore, it must
hold Δ(t) = 0, i.e. WA(t) = WB(t).

The previous reasoning can be used to determine the unknown value of a
financial derivative. For this, a portfolio A is constructed which contains
instruments with known price along with one unit of the derivative under
investigation. Portfolio A will be compared to another portfolio B, called
the duplicating portfolio, which contains exclusively instruments with known
prices. Since the duplicating portfolio B is constructed such that for certain
it has the same value at a fixed point of time T as portfolio A the no–
arbitrage assumption implies that both portfolios must have the same value
at any prior point of time. The value of the financial derivative can thus be
computed at any time t ≤ T. We illustrate this procedure in the following
example of a forward contract.

Theorem 2.1
We consider a long forward contract to buy an object which has a price of St
at time t. Let K be the delivery price, and let T be the maturity date. V (s, τ)
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denotes the value of the long forward contract at time t as a function of the
current price St = s and the time to maturity τ = T − t. We assume constant
interest rates r during the time to maturity.

1. If the underlying object does not pay any dividends and does not involve
any costs during the time to maturity τ, then it holds

V (St, τ) = VK,T (St, τ) = St −Ke−rτ (2.1)

The forward price is equal to Ft = Ste
rτ .

2. If during the time to maturity the underlying pays at discrete time points
dividends or involves any costs whose current time t discounted total
value is equal to Dt, then it holds

V (St, τ) = VK,T (St, τ) = St −Dt −Ke−rτ (2.2)

The forward price is equal to Ft = (St −Dt)erτ .

3. If the underlying involves continuous costs at rate b, then it holds

V (St, τ) = VK,T (St, τ) = Ste
(b−r)τ −Ke−rτ (2.3)

The forward price is equal to Ft = Ste
bτ .

Proof:
For simplicity we assume the underlying object to be a stock paying either
discrete dividend yields whose value discounted to time t is Dt or paying
a continuous dividend yield at rate b. In the latter case the stock involves
continuous costs equal to b = r−d. The investor having a long position in the
stock gains dividends (as negative costs) at rate d but simultaneously loses
interests at rate r since he invested his capital in the stock instead of in a
bond with a fixed interest rate. In place of stocks, bonds, currencies or other
simple instruments can be considered as well.

1. We consider at time t the following two portfolios A and B:

Portfolio A: One long forward contract on a stock with delivery price K,
maturing in time T .
One long zero bond with face value K, maturing in time T .

Portfolio B: A long position in one unit of the stock.

At maturity T portfolio A contains a zero bond of value K. Selling this zero
bond for K the obligation to buy the stock for K can be fulfilled. Following
these transactions portfolio A consists as well as portfolio B of one unit of
the stock. Thus both portfolios have at time T the same value and must
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therefore, due to the no–arbitrage assumption, have the same value at any
time t prior to T :

V (St, τ) +Ke−rτ = St , (2.4)

since the value of the zero bond at time t is given by discounting K at rate
r, Ke−rτ . The forward price is by definition the solution of

0 = VFt,T (St, τ) = St − Fte
−rτ .

2. We consider at time t the two portfolios A and B as given above and add
one position to portfolio B :

Portfolio B: A long position in one unit of the stock and one short position
of size Dt in a zero bond with interest rate r (lending an amount of
money of Dt).

At maturity T the dividend yields of the stock in portfolio B, which com-
pounded to time T amount to Dte

rτ , are used to pay back the bond. Thus,
both portfolios A and B consist again of one unit of the stock, and therefore
they must have the same value at any time t < T :

V (St, τ) +Ke−rτ = St −Dt . (2.5)

The forward price results as in part 1 from the definition.

3. If the stock pays dividends continuously at a rate d, then the reasoning
is similar as in part 2. Once again, we consider at time t two portfolios A
and B. And again, A is left unchanged, B is now composed of the following
position:

Portfolio B: A long position in e−dτ stocks.

Reinvesting the dividends yields continuously in the stock portfolio B consists
again of exactly one stock at time T. Heuristically, this can be illustrated as
follows: In the time interval [t, t + δ] the stock pays approximately, for a
small δ, a dividend of d ·δ ·St. Thus, the current total amount of stocks in the
portfolio, e−dτ = e−d(T−t), pays a total dividend yield of d · δ · St · e−d(T−t),
which is reinvested in the stock. Assuming that the stock price does not
change significantly in the interval [t, t+δ], i.e. St+δ ≈ St, portfolio B contains
in time t+ δ

(1 + d · δ) · e−d(T−t) ≈ edδ · e−d(T−t) = e−d(T−t−δ)

stocks. The above reasoning can be done exactly by taking the limit δ → 0,
and it can be shown that portfolio B contains at any time s between t and
T exactly e−d(T−s) stocks. That is, for s = T portfolio B is composed of
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exactly one stock. The same reasoning as in part 1 leads to the conclusion
that portfolio A and B must have the same value at any time t. Thus, we
have

V (St, τ) +Ke−rτ = e−dτSt . (2.6)

where we have to set b = r − d. The forward price results as in part 1 from
the definition. �

Example 2.1 We consider a long forward contract on a 5 year bond which
is currently traded at a price of 900 EUR. The delivery price is 910 EUR,
the time to maturity of the forward contract is one year. The coupon pay-
ments of the bond of 60 EUR occur after 6 and 12 months (the latter shortly
before maturity of the forward contract). The continuously compounded an-
nual interest rates for 6 and 12 months are 9% and 10% respectively. In this
example we have

St = 900 , K = 910 , r = 0.10 , τ = 1 , Dt = 60e−0.09· 12 + 60e−0.10 = 111.65
(2.7)

Thus, the value of the forward contract is given by

V (St, τ) = 900 − 111.65 − 910e−0.10 = −35.05. (2.8)

The value of the respective short position in the forward contract is +35.05.
The price Ft of the forward contract is equal to Ft = (St −Dt)erτ = 871.26.

Example 2.2 Consider a long forward contract to buy 1000 Dollar. If the
investor buys the 1000 Dollar and invests this amount in an American bond,
the American interest rate can be interpreted as a dividend yield d which is
continuously paid. Let r be the home interest rate. The investment involves
costs b = r− d, which are the difference between the American and the home
interest rate. Denoting the dollar exchange rate by St the price of the forward
contract is then given by

Ft = Ste
bτ = Ste

(r−d)τ . (2.9)

While for r > d a report St < Ft results, for r < d a backwardation St > Ft
results. If r > d and the delivery price is chosen to equal the current exchange
rate, i.e. K = St, then the value of the forward contract is

VSt,T (St, τ) = St(e−dτ − e−rτ ) > 0.

Buying the forward contract at a price of St is thus more expensive than
buying the dollars immediately for the same price since in the former case
the investor can invest the money up to time T in a domestic bond paying an
interest rate which is higher than the American interest rate.
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The following result states that forward and future contracts with the same
delivery price and the same time to maturity are equal, if interest rates are
constant during the contract period. We will use the fact that by definition
forward and future contracts do not cost anything if the delivery price is
chosen to be equal to the current price of the forward contract respectively
the price of the future contract.

Theorem 2.2
If interest rates are constant during contract period, then forward and future
prices are equal.

Proof:
We proceed from the assumption that the future contract is agreed on at
time 0, and that is has a time to maturity of N days. We assume that profits
and losses are settled (marked to market) on a daily basis at a daily interest
rate of ρ. While the forward price at the end of day 0 is denoted by F, the
future price at the end of day t, t = 0, 1, · · · , N is denoted by Ft. The goal is
to show that F = F0. For that we construct two portfolios again:

Portfolio A: A long position in eNρ forward contracts with delivery price F
and maturity date N.
A long position in a zero bond with face value FeNρ maturing in N
days.

Portfolio B: A long position in futures contracts with delivery price Ft and
maturity dateN . The contracts are bought daily such that the portfolio
contains at the end of the t–th day exactly e(t+1)ρ future contracts
(t = 0, 1, · · · , N).
A long position in a zero bond with face value F0e

Nρ maturing in N
days.

Purchasing a forward or a future contract does not cost anything since their
delivery prices are set to equal the current forward or future price. Due to
the marking to market procedure the holder of portfolio B receives from day
t − 1 to day t for each future contract an amount of Ft − Ft−1 which can
possibly be negative (i.e. he has to pay).

At maturity, i.e. at the end of day N, the zero bond of portfolio A is sold at
the face value FeNρ to fulfill the terms of the forward contract and to buy
eNρ stocks at a the delivery price F. Then A contains exclusively these stocks
and has a value of SNeNρ. Following, we show that portfolio B has the same
value.

At the beginning of day t portfolio B contains etρ future contracts, and
the holder receives due to the marking to market procedure the amount
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(Ft − Ft−1)etρ which can possibly be negative. During the day he increases
his long position in the future contracts at zero costs such that the portfolio
contains e(t+1)ρ future contracts at the end of the day. The earnings at day
t compounded to the maturity date have a value of:

(Ft − Ft−1)etρ · e(N−t)ρ = (Ft − Ft−1)eNρ. (2.10)

At maturity the terms of the future contracts are fulfilled due to the marking
to market procedure. All profits and losses compounded to day N have a
value of:

N∑

t=1

(Ft − Ft−1)eNρ = (FN − F0)eNρ. (2.11)

Together with the zero bond portfolio B has at day N a value of

(FN − F0)eNρ + F0e
Nρ = FNe

Nρ = SNe
Nρ,

since at maturity the future price FN and the price SN of the underlying are
obviously equal.

Hence, both portfolios have at day N the same value and thus due to the
no–arbitrage assumption their day 0 values must be equal as well. Since the
forward contract with delivery price F has a value of 0 at day 0 due to the
definition of the forward price, the value of portfolio A is equal to the value
of the zero bond, i.e. F (face value FeNρ discounted to day 0). Correspond-
ingly, the eρ futures contained in portfolio B have at the end of day 0 a value
of 0 due to the definition of the future price. Again, the value of portfolio
B reduces to the value of the zero bond. The latter has a value of F0 (face
value F0e

Nρ discounted to day 0). Putting things together, we conclude that
F = F0. �

Now, we want to proof some relationship between option prices using similar
methods. The most elementary properties are summarized in the following
remark without a proof. For that, we need the notion of the intrinsic value
of an option.

Definition 2.1 (Intrinsic Value)
The intrinsic value of a call option at time t is given by max(St −K, 0), the
intrinsic value of a put option is given by max(K − St, 0). If the intrinsic
value of an option is positive we say that the option is in the money. If
St = K, then the option is at the money. If the intrinsic value is negative,
then the option is said to be out of the money.
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Remark 2.1
Options satisfy the following elementary relations. C(s, τ) = CK,T (s, τ) and
P (s, τ) = PK,T (s, τ) denote the time t value of a call and a put with delivery
price K and maturity date T , if τ = T − t is the time to maturity and the
price of the underlying is s, i.e. St = s.

1. Option prices are non negative since an exercise only takes place if it
is in the interest of the holder. An option gives the right to exercise.
The holder is not obligated to do so.

2. American and European options have the same value at maturity T
since in T they give the same rights to the holder. At maturity T the
value of the option is equal to the intrinsic value:

CK,T (ST , 0) = max(ST −K, 0) , PK,T (ST , 0) = max(K − ST , 0).

3. An American option must be traded at least at its intrinsic value since
otherwise a riskless profit can be realized by buying and immediately ex-
ercising the option. This relation does not hold in general for European
options. The reason is that a European option can be exercised only in-
directly by means of a future contract. The thereby involved discounting
rate can possibly lead to the option being worth less than its intrinsic
value.

4. The value of two American options which have different time to matu-
rities, T1 ≤ T2, is monotonous in time to maturity:

CK,T1(s, T1−t) ≤ CK,T2(s, T2−t) , PK,T1(s, T1−t) ≤ PK,T2(s, T2−t).
This follows, for calls, say, using 2., 3. from the inequality which holds
at time t = T1 with s = ST1

CK,T2(s, T2 − T1) ≥ intrinsic value = max(s−K, 0) = CK,T1(s, 0)
(2.12)

Due to the no–arbitrage assumption the inequality must hold for any
point in time t ≤ T1. For European options this result does not hold in
general.

5. An American option is at least as valuable as the identically specified
European option since the American option gives more rights to the
holder.

6. The value of a call is a monotonously decreasing function of the delivery
price since the right to buy is the more valuable the lower the agreed
upon delivery price. Accordingly, the value of a put is a monotonously
increasing function of the delivery price.

CK1,T (s, τ) ≥ CK2,T (s, τ) , PK1,T (s, τ) ≤ PK2,T (s, τ)



2.1 Arbitrage Relations 19

for K1 ≤ K2. This holds for American as well as for European options.

The value of European call and put options on the same underlying with
the same time to maturity and delivery price are closely linked to each other
without using a complicated mathematical model.

Theorem 2.3 (Put–Call Parity for European Options)
For the value of a European call and put option which have the same maturity
date T, the same delivery price K, the same underlying the following holds
(where r denotes the continuous interest rate):

1. If the underlying pays a dividend yield with a time t discounted total
value of Dt during the time to maturity τ = T − t then it holds

C(St, τ) = P (St, τ) + St −Dt −Ke−rτ (2.13)

SFEPutCall

2. If the underlying involves continuous costs of carry at rate b during the
time to maturity τ = T − t then it holds

C(St, τ) = P (St, τ) + Ste
(b−r)τ −Ke−rτ (2.14)

Proof:
For simplicity, we again assume the underlying to be a stock. We consider
a portfolio A consisting of one call which will be duplicated by a suitable
portfolio B containing a put among others.

1. In the case of discrete dividend yields we consider at time t the following
portfolio B :

1. Buy the put.

2. Sell a zero bond with face value K maturing T.

3. Buy one stock.

4. Sell a zero bond at the current price Dt.

The stock in portfolio B pays dividends whose value discounted to time t
is Dt. At time T these dividend yields are used to pay back the zero bond
of position d). Hence this position has a value of zero at time T. Table 2.1
shows the value of portfolio B at time T where we distinguished the situations
where the put is exercised (K ≥ ST ) and where it is not exercised. At time
T portfolio B has thus the same value max(ST −K, 0) as the call. To avoid
arbitrage opportunities both portfolios A and B must have the same value
at any time t prior T, that is it holds

C(St, τ) = P (St, τ) −Ke−rτ + St −Dt (2.15)
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Value at time T
Position K < ST K ≥ ST
long put 0 K − ST

short bond −K −K
long stock ST ST

short bond (Dt) 0 0
Sum ST −K 0

Table 2.1: Value of portfolio B at time T (Theorem 2.3).

2. In the case of continuous dividends at rate d and corresponding costs of
carry b = r − d we consider the same portfolio B as in part 1. but this
time without position d). Instead we buy e−dτ stocks in position c) whose
dividends are immediately reinvested in the same stock. If d is negative, then
the costs are financed by selling stocks. Thus, portfolio B contains exactly
one stock at time T, and we conclude as in part 1. that the value of portfolio
B is at time t equal to the value of the call. �

The proof of the put–call parity holds only for European options. For Amer-
ican options it may happen that the put or call are exercised prior maturity
and that both portfolios are not hold until maturity.

The following result makes it possible to check whether prices of options on
the same underlying are consistent. If the convexity formulated below is
violated, then arbitrage opportunities arise as we will show in the example
following the proof of the next theorem.

Theorem 2.4
The price of a (American or European) Option is a convex function of the
delivery price.

Proof:
It suffices to consider calls since the proof is analogous for puts. The put–call
parity for European options is linear in the term which depends explicitly on
K. Hence, for European options it follows immediately that puts are convex
in K given that calls are convex in K.

For 0 ≤ λ ≤ 1 and K1 < K0 we define Kλ
def= λK1 + (1 − λ)K0. We consider

a portfolio A which at time t < T consists of one call with delivery price Kλ

and maturity date T. At time t we duplicate this portfolio by the following
portfolio B :
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Value at time t′
Position St′ ≤ K1 K1 < St′ ≤ Kλ Kλ < St′ ≤ K0 K0 < St′

B 1. 0 λ(St′ − K1) λ(St′ − K1) λ(St′ − K1)
B 2. 0 0 0 (1 − λ)(St′ − K0)
−A 0 0 −(St′ − Kλ) −(St′ − Kλ)
Sum 0 λ(St′ − K1) (1 − λ)(K0 − St′ ) 0

Table 2.2: Difference in the values of portfolios B and A at time t′ (Theorem
2.4).

Delivery price Option price
K1 = 190 30.6 EUR
Kλ = 200 26.0 EUR
K0 = 220 14.4 EUR

Table 2.3: Data of Example 2.3.

1. A long position in λ calls with delivery price K1 maturing in T .

2. A long position in (1 − λ) calls delivery price K0 maturing in T .

By liquidating both portfolios at an arbitrary point of time t′, t ≤ t′ ≤ T we
can compute the difference in the values of portfolio A and B which is given
in Table 2.2

Since λ(St′ −K1) ≥ 0 und (1 − λ)(K0 − St′)) ≥ 0 in the last row of Table
2.2 the difference in the values of portfolio A and B at time t′ and thus for
any point of time t < t′ is greater than or equal to zero. Hence, denoting
τ = T − t it holds

λCK1,T (St, τ) + (1 − λ)CK0,T (St, τ) − CKλ,T (St, τ) ≥ 0 (2.16)

�

Example 2.3
We consider three European call options on the MD*TECH A.G. having
all the same time to maturity and delivery prices K1 = 190, Kλ = 200,
K0 = 220, i.e. λ = 2

3 . Table 2.3 shows the data of this example. Due to the
last theorem it must hold:

2
3CK1,T (St, τ) + 1

3CK0,T (St, τ) ≥ CKλ,T (St, τ) (2.17)
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Value at time T
Position ST ≤ 190 190 < ST ≤ 200 200 < ST ≤ 220 220 < ST

1. 0 2
3 (ST − 190) 2

3 (ST − 190) 2
3 (ST − 190)

2. 0 0 0 1
3 (ST − 220)

3. 0 0 −(ST − 200) −(ST − 200)
Sum 0 2

3 (ST − 190) 1
3 (220 − ST ) 0

Table 2.4: Portfolio value at time T of Example 2.3.

Since this condition is obviously violated an arbitrage opportunity exists, and
with the following portfolio a riskless gain can be realized:

1. A long position in λ = 2
3 calls with delivery price K1.

2. A long position in 1 − λ = 1
3 calls with delivery price K0.

3. A short position in 1 call with delivery price Kλ
def= 2

3K1 + 1
3K0.

By setting up this portfolio at the current time t we realize an immediate
profit of +0.80 EUR. The portfolio value at options’ maturity T is given by
Table 2.4 from which we can extract that we realize further profits for stock

prices ST between 190 and 220 of at most
20
3

EUR.

We already said that option prices are monotonous functions of the delivery
price. The following theorem for European options is more precise on this
subject.

Theorem 2.5
For two European calls (puts) with the same maturity date T and delivery
prices K1 ≤ K2 it holds at time t ≤ T :

0 ≤ CK1,T (St, τ) − CK2,T (St, τ) ≤ (K2 −K1)e−rτ (2.18)

or
0 ≤ PK2,T (St, τ) − PK1,T (St, τ) ≤ (K2 −K1)e−rτ (2.19)

with τ = T − t and r denoting the time to maturity and the interest rate
respectively. If call (put) option prices are differentiable as a function of the
delivery price, then by taking the limit K2 −K1 → 0 it follows

1 ≤ −e−rτ ≤ ∂C

∂K
≤ 0 bzw. 0 ≤ ∂P

∂K
≤ e−rτ ≤ 1 (2.20)
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Value at time T
Position ST ≤ K1 K < ST < K2 K2 ≤ ST
B 1. 0 0 ST −K2

B 2. K2 −K1 K2 −K1 K2 −K1

−A 0 −(ST −K1) −(ST −K1)
Sum K2 −K1 K2 − ST 0

Table 2.5: Difference in the values of portfolios B and A at time T (Theorem
2.5).

Proof:
We proof the theorem for calls since for puts the reasoning is analogous.
For this we consider a portfolio A containing one call with delivery price K1

which we compare to a duplicating portfolio B. At time t the latter portfolio
consists of the following two positions:

1. A long position in one call with delivery price K2.

2. A long position in one zero bond with face value (K2 −K1) maturing
in T .

The difference of the value of portfolios B and A at time T is shown in Table
2.5. At time T portfolio B is clearly as valuable as portfolio A which given
the no–arbitrage assumption must hold at time t as well. We conclude:

CK2,T (St, τ) + (K2 −K1)e−rτ ≥ CK1,T (St, τ).

�

2.2 Portfolio Insurance

A major purpose of options is hedging, i.e. the protection of investments
against market risk caused by random price movements. An example for
active hedging with options is the portfolio insurance. That is to strike deals
in order to change at a certain point of time the risk structure of a portfolio
such that at a future point of time

• the positive profits are reduced by a small amount (which can be inter-
preted as an insurance premium) and in that way

• the portfolio value does not drop below a certain floor.
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The portfolio insurance creates a risk structure of the portfolio which pre-
vents extreme losses. For illustration purposes we consider at first a simple
example.

Example 2.4
An investor has a capital of 10 500 EUR at his disposal to buy stocks whose
current price is 100 EUR. Furthermore, put options on the same stock with
a delivery price of K = 100 and a time to maturity of one year are quoted at
a market price of 5 EUR per contract. We consider two investment alterna-
tives.

Portfolio A: Buying 105 stocks.

Portfolio B: Buying 100 stocks for 10 000 EUR and buying 100 put options
for 500 EUR.

The price of the put options can be interpreted as the premium to insure the
stocks against falling below a level of 10 000 EUR. Denoting the stock price in
one year by ST the value of the non–insured portfolio is 105·ST . This portfolio
bears the full market risk that the stock price drops significantly below 100
EUR. The insured portfolio, however, is at least as worth as 10 000 EUR
since if ST < 100 the holder exercises the put options and sells the 100 stocks
for 100 EUR each.

Should the stock price increase above 100 EUR the investor does not exercise
the put which thus expires worthless. By buying the put some of the capital of
portfolio B is sacrificed to insure against high losses. But, while the probabil-
ities of high profits slightly decrease, the probabilities of high losses decrease
to zero. Investing in portfolio B the investor looses at most 500 EUR which
he paid for the put. Table 2.6 shows the impact of the stock price ST in one
year on both the insured and the non–insured portfolio values and returns.

The numerous conceivable strategies to insure portfolios can be classified by
the frequency with which the positions in the portfolio have to rebalanced.
Two approaches can be distinguished:

• Static strategies rebalance the portfolio positions at most once before
expiration of the investment horizon.

• Dynamic strategies rebalance the portfolio positions very frequently,
ideally continuously, according to certain rules.

The static strategy sketched in the previous example can be modified. In-
stead of hedging by means of put options the investor can chose between the
following two strategies:
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Non–insured Insured Insured
portfolio portfolio portfolio in %

Stock price ST Value Return Value Return of the non–
[EUR] [EUR] % p.a. [EUR] % p.a. insured portfolio

50 5250 –50 10000 –4.8 190
60 6300 –40 10000 –4.8 159
70 7350 –30 10000 –4.8 136
80 8400 –20 10000 –4.8 119
90 9450 –10 10000 –4.8 106

100 10500 0 10000 -4.8 95
110 11550 +10 11000 +4.8 95
120 12600 +20 12000 +14.3 95
130 13650 +30 13000 +23.8 95
140 14700 +40 14000 +33.3 95

Table 2.6: The effect of portfolio insurance on portfolio value and return.

Strategy 1: The investor buys an equal number of stocks and puts.

Strategy 2: The investor buys bonds with a face value equal to the floor he
is aiming at and with the remaining money buys calls on the stock.

All approaches commonly practiced rely on modifications of the above basic
strategies. While following the first strategy it is the put which guarantees
that the invested capital does not drop below the floor, applying the second
strategy it is the bond which insures the investor against falling prices. The
stocks, followed by the calls make up for the profits in the event of rising
prices. The similarity of both strategies follows from the put–call parity, see
Theorem 2.3.

Before deciding on what kind of portfolio insurance will be used, some points
need to be clarified:

1. Which financial instruments are provided by the market, and what are
their characteristics (coupons, volatilities, correlation with the market
etc.)?

2. What knowledge does the investor have about:

- the composition of the portfolio (which financial instruments),
- the amount of capital to invest,
- the investment horizon,
- the floor (lower bound of the portfolio value) or rather the mini-

mum return he is aiming at the end of the investment. Given the
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Data of Example 2.5:
Current point of time t 0
Available capital V 100 000 EUR
Target floor F 95 000 EUR
Investment horizon T 2 years
Current stock price S0 100 EUR
Continuously compounded annual interest rate r 0.10
Annual stock volatility σ 0.30
Dividends during time to maturity
Case i): continuous dividends d 0.02
Fall ii): dividends with present value D0 5 EUR

Table 2.7: Data of Example 2.5

floor F and the capital invested V the possibly negative minimum
return of a one year investment is given by ρ = F−V

V .

Strategies 1 and 2 (described above) are illustrated in another example.

Example 2.5
Starting with the hypothesis that the investor has decided to invest in stock,
depending on the type of return of the object, we can distinguish two cases
(for negative returns, as storage costs of real values for example, the approach
can be applied analogously):

i) continuous dividend yield d

ii) ex ante known discrete yields with a time 0 discounted total value of D0.

Data relating to the example is shown in Table 2.7. The volatility can be in-
terpreted as a measure of variability of the stock price. The notion of volatility
is an essential part of option pricing and will be looked at extensively later.
Placing our considerations at the beginning, t = 0 of the investment, the time
to maturity is τ = T − t = T. For both strategies the goal is to determine the
number n of stocks and/or (European) options and their delivery price K.

Case i)
The stock pays a continuous dividend at rate d = 2% p.a. which the investor
reinvests immediately. At maturity T , the position in the stock has grown
from n stocks to nedτ with τ = T − 0 = T. Thus, for strategy 1 the investor
needs to buy in t = 0 the same number of put options. Since the amount he



2.2 Portfolio Insurance 27

wants to invest in t = 0 is V it must hold

n · S0 + nedτ · PK,T (S0, τ) = V. (2.21)

The investor chooses the put options delivery price K such that his capital
after two years does not drop below the floor he is aiming for F . That is,
exercising the puts in time T (if ST ≤ K) must give the floor F which gives
the second condition

nedτ ·K = F ⇐⇒ n =
F

K
e−dτ . (2.22)

Substituting equation (2.22) into equation (2.21) gives

e−dτS0 + PK,T (S0, τ) − V

F
·K = 0. (2.23)

Due to the Black–Scholes pricing formula for European options that will be
derived later in Section 6.2 the put price is expressed as a function of the
parameter K. The delivery price which the investor is looking for can be
computed by solving equation (2.23) numerically, for example by means of
the Newton–Raphson method. In this case, K is equal to 99.56. To be sure
that the capital value does not drop below the floor F = 95 000 EUR the
investor buys n = F

K e
−dτ = 916.6 stocks and n · edτ = 954 puts with delivery

price K = 99.56. The price of the put option given by the Black–Scholes
formula is 8.72 EUR/put. SFEexerput

Following the corresponding strategy 2 the investor invests Fe−rτ = 77 779.42
EUR in bonds at time 0 which gives compounded to time T exactly the floor
F = 95 000 EUR. For the remaining capital of V − Fe−rτ = 22 220.58 EUR
the investor buys 954 calls with delivery price K = 99.56 which has a price
of 23.29 EUR/call according to the Black–Scholes formula. From the put–
call parity follows the equivalence of both strategies, i.e. that both portfolios
consisting of stocks and puts respectively zero bonds and calls have at each
time t the same value:

n · St + nedτPK,T (St, τ) = nKe−bτ + nedτCK,T (S0, τ) (2.24)

where τ = T − t, b = r − d and nKe−bτ = Fe−rτ due to equation (2.22).
Table 2.8 shows the risk decreasing effect of the insurance.

Case ii)
Until maturity the stock pays dividends with a time 0 discounted total value
D0 = 5 EUR which, after distribution, are immediately invested in bonds. At
time T the dividend yield has a compounded value of DT = D0e

rτ = 6.107
EUR where τ = T denotes the time to maturity. Reasoning as in case i) and
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Non–insured Insured Insured
portfolio portfolio portfolio in %

Stock price ST Value Return Value Return of the non–
[EUR] [EUR] % p.a. [EUR] % p.a. insured portfolio

70 72857 –27 95000 –5 130
80 83265 –17 95000 –5 114
90 93673 –6 95000 –5 101

100 104081 +4 95400 –5 92
110 114489 +15 104940 +5 92
120 124897 +25 114480 +14 92
130 135305 +35 124020 +24 92
140 145714 +46 133560 +34 92

Table 2.8: The effect of a portfolio insurance in case i) on portfolio value and
return. SFEoptman

taking the dividend DT into account the investor buys n stocks respectively n
puts, and obtains the following equations

n · S0 + nPK,T (S0 −D0, τ) = V (2.25)

and
nK + nDT = F. (2.26)

The substraction of the cash dividend D0 from the stock price S0 in the op-
tion price formula cannot be justified until we introduce the binomial model
(Chapter 7). Briefly, in a perfect market the stock price decreases instanta-
neously by the amount of the distributed dividend. Otherwise, an arbitrage
opportunity arises. Substituting equation (2.26) into equation (2.25) gives:

S0 + PK,T (S0 −D0, τ) − V

F
· (K +DT ) = 0 (2.27)

Solving the equations analogously as in case i) the number n of stocks and
puts and the delivery price K for strategy 1 are obtained:

K = 96.42 und n =
F

K +DT
= 926.55

For strategy 2 the investor buys 926.55 calls at a price of 23.99 EUR/call
with a delivery price K = 96.42. He invests 95 000e−rτ = 77 779.42 in bonds.
For case ii) the effect of the portfolio insurance for both strategies is shown
in Table 2.9 taking into account the time T compounded total dividend.
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Figure 2.1: The effect of a portfolio insurance: While the straight line repre-
sents the value of the insured portfolio as a function of the stock
price, the dotted line represents the value of the non–insured port-
folio as a function of the stock price. SFEoptman

The example shows how a portfolio insurance can be carried out by means
of options in principle. In practice, the following problems frequently occur:

- The number n of stocks and options is not an integer. In a perfect
financial market financial instruments are perfectly divisible, in reality,
however, this is not the case. The error resulting from rounding up or
down to the closest integer can be neglected only in large portfolios.

- Puts and calls traded on the market do not cover the whole range of
delivery prices. Thus, options with the computed delivery price may not
be available. Furthermore, options typically expire in less than one year
which makes static strategies only viable for long–term investments.

- Finally, the market firstly provides American options, which are more
expensive than European options, and which are sufficient to insure the
portfolio. The additional exercise opportunities offered by American
options, are only of interest if the investor might need to close the
portfolio early.

The fact that options are not traded at all delivery prices suggests that they
should be produced by the delta hedge process described in Chapter 6. How-
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Non–insured Insured Insured
portfolio portfolio portfolio in %

Stock price ST Value Return Value Return of the non–
[EUR] [EUR] % p.a. [EUR] % p.a. insured portfolio

70 76107 –24 94996 –5 125
80 86107 –14 94996 –5 110
90 96107 –4 94996 –5 99
96.42 102527 +3 94996 –5 93

100 106107 +6 98313 –2 93
110 116107 +16 107579 +8 93
120 126107 +26 116844 +17 93
130 136107 +36 126110 +26 93
140 146107 +46 135375 +35 93

Table 2.9: The effect of a portfolio insurance in case ii) on portfolio value and
return.

ever, since a dynamic strategy is involved, transaction costs need to be taken
into account and give rise to other problems. Finally, it is worth pointing
out that when insuring large portfolios it is convenient to hedge by means
of index options, i.e. puts and calls on the DAX for example. This is not
only beneficial from a cost saving point of view but also because index op-
tions replace options on a single underlying transaction which are not traded
on the market. To compute the exact effect of an index option hedge, the
correlation of the portfolio with the index is needed. The latter correlation
is obtained from the correlations of each individual stock contained in the
portfolio with the index. Besides detailed model assumptions such as the
Capital Asset Pricing Model (CAPM see Section 11.4.1) which among others
concern the stock, returns are required.

2.3 Binary One-Period Model

The simpliest of the option pricing formulae is the binomial option pricing
formula. Here we take a look at a very simple model: the binary one-period
model. The material in this section is only intended to be introductory. More
details on the use of numerical procedures involving binomial trees are given
in Chapter 7.
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ST = Su

CT = ST −K
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1 − p

Su ≥ K ≥ Sd

Figure 2.2: Stock and option prices in the binary one -period model.

Consider a stock with a price of S0 and a European call option on the stock
with a strike price K where the current price is C0. Assume that the call is
being valued one period before expiration (T=1) and that the interest rate r
is equal to 0 in the one -period model. We let the future stock price be one
of only two values: the stock price can either increase from S0 to Su with
probability p or decrease from S0 to Sd with probability (1− p). If the stock
price moves up to Su, the payoff will be ST − K; if the stock price moves
down to Sd, the payoff will be 0, see Figure 2.2.

Our goal is to determine the value C0 of the call. The following different
investment possibilities exist:

1. zerobond (with interest rate r = 0),

2. S0 the current value of the stock,

3. C0 (CT ) the price of European call at time 0 (T ) with strike price K.

In order to value the call correctly, we examine two strategies. The first one
is simply to buy the call. The second strategy is to choose a certain number
of stocks x and a decisive amount of a zerobond y in a way that ensures the
same payoff as the call at time T . Table 2.10 shows the cash flows for both
strategies.
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Strategy Flow at 0 Flow at T
Su Sd

Call −C0 ST −K 0
Stock + Zerobond −(xSu + y) xSu + y xSd + y

Table 2.10: Cash flow of call and portfolio of stock and zerobond.

In order to duplicate the payoff of the ”buy-a-call” strategy, both cash flows
must match whether the stock price goes up or down:

xSu + y = ru = ST −K (2.28)
xSd + y = rd = 0 (2.29)

Since the desired payoff will be identical for both strategies, the second port-
folio strategy is called hedge strategy. Solving (2.28) - (2.29) we obtain:

x =
ru − rd

Su − Sd
(2.30)

y =
Surd − Sdru

Su − Sd
(2.31)

Now we have the situation that one gets the same financial product (payment
of ru or rd) for the price C0 (option price) or for the price

xS0 + y = S0
ru − rd

Su − Sd
+
Surd − Sdru

Su − Sd
(2.32)

=
(Su − S0)rd + (S0 − Sd)ru

Su − Sd
(2.33)

Because the return of the option equals the return of the hedge strategy, both
strategies must have the same initial cost:

xS0 + y = C0 (2.34)

In fact, this yields the fair price C0 of the call option:

C0 =
(Su − S0)rd + (S0 − Sd)ru

Su − Sd
(2.35)

It is worth noting that the price C0 does not depend on p (probability of rising
stock). This means clearly that we do not need to regard the probabilties of
future up and down movements, because they are already incorporated in the
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current stock prices. In a two-period model the call price ultimately depends
on the current stock price S0, the possible value of the stock at time T (Su

and Sd) and the payoffs of the call at expiration (ru and rd). Simplifying the
last equation we obtain:

C0 =
(Su − S0)rd + (S0 − Sd)ru

Su − Sd

=
Su − S0

Su − Sd
rd +

S0 − Sd

Su − Sd
ru

= (1 − q)rd + qru (2.36)

with

q =
S0 − Sd

Su − Sd
. (2.37)

Another way to look at (2.36) is to say that C0 is the expected value of
CT with respect to the probability measure defined by q. This leads us to a
second approach based on the martingale model. A martingale is a stochastic
process where the expected value of all future values equals the current value.
In the binary one-period model a martingale measure is simply given by a
probability measure q such that the expected return of the share at time T is
0, i.e. the expected future stock price equals the current stock price S0 (for
interest rate r = 0):

S0 = Eq(ST ) = (1 − q)Sd + qSu (2.38)

where Eq indicates an expectation taken with respect to the martingale mea-
sure q. In terms of the one-period binomial tree, q is the probability of an
”up” move and (1 − q) the probability of a ”down” move, see Figure 2.3.

Solving (2.38), we obtain:

q =
S0 − Sd

Su − Sd
. (2.39)

The martingale approach is now to determine the price C0 as the expected
payoff

Eq [max {ST −K, 0}] = Eq [CT ] . (2.40)

Calculating this expected value of CT , we derive the price of the call option:

C0 = (1 − q)rd + qru. (2.41)
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S0

C0

ST = Su

CT = ST −K

ST = Sd

CT = 0

q

1 − q

Su ≥ K ≥ Sd

Figure 2.3: Stock and option prices in the martingale model

This is the same value we concluded from the former duplicating portfolio
approach. In the case of interest rate r > 0 the option price changes to

C0 = (1 + r)−1Eq [CT ] . (2.42)

The martingale measure approach is analogous to Cox and Ross (1976) risk
neutral valuation that one finds in for example Hull (2006).

Example 2.6
Consider the following binary one-period model: a stock with price S0 = 270,
a European call option on a stock with strike K = 270, a zerobond with price
1 · (1 + r)−1 with interest rate r = 5% (i.e. price of zerobond corresponds to
1/1.05). The stock can either increase to 300 or decrease to 250:

����
����270

300

250

In the Hedge portfolio approach on calculates:
(1) ST = 300, CT = 30 i.e. 300x+ y = 30
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(2) ST = 250, CT = 0 i.e. 250x+ y = 0
Solving this linear system we obtain x = 0.6, y = −150. Thus, selling 150
bonds and buying 0.6 stocks duplicates the payoff of the call. Therefore the
price of the call is:

xS0 + y = C0

0.6 · 270 + (−150) · 1
1.05

= 19.14

and the corresponding probability is q = 270−250
300−250 = 0.4.

In the martingale measure approach S has to be a martingale under the mea-
sure q, i.e. the expected value of the discounted process ST /(1 + r) equals
S0:

S0 = 270 = Eq

[
ST

1 + r

]
= q · 300

1.05
+ (1 − q) · 250

1.05

This leads to q = 0.67. The price of the call is therefore

C0 = Eq

[
CT

1 + r

]

= q · 30
1.05

+ (1 − q) · 0
1.05

= 0.67 · 30
1.05

= 19.14

We can see that both approaches provide the same results.

We see from the previous example that there are two different approaches of
calculation for the option price:

• calculation of the hedge strategy, i.e. determine portfolio of stocks and
bonds that duplicates the cash flow of the option;

• martingale measure approach, i.e. calculation of the expected option
payment in the martingale model.

2.4 Recommended Literature

The fundamental arbitrage relations of financial derivatives can be found in
every modern finance textbook, as for example Hull (2000) and Hull (2006).
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In principle each option pricing theory is based on theses relations, as it is
the case for the model of Black and Scholes (1973) for example, see also the
fundamental article of Merton (1973). The idea of portfolio assurance was
introduced by Leland (1980). It is nowadays covered above all by practical
risk management textbooks as Das (1997). The hedge portfolio approach and
the martingale approach used in the binary one-period model for calculation
of option prices are discussed in Elton, Gruber, Brown and Goztmann (2002)
and Ross, Westerfield and Jaffe (2005). The martingale measure approach
analogous to the classic work of Cox and Ross (1976) is presented in Yan
(1999) and Hull (2006).



3 Basic Concepts of Probability
Theory

3.1 Real Valued Random Variables

Thanks to Newton’s laws, dropping a stone from a hight of 10 m, the point
of time of its impact on the ground is known before executing the experi-
ment. Quantities in complex systems (such as stock prices at a certain date,
daily maximum temperature at a certain place) are , however, not determin-
istically predictable, although it is known which values are more likely to
occur than others. Contrary to the falling stone, data which cannot be de-
scribed successfully by deterministic mechanism, can be modelled by random
variables.

Let X be such a random variable that (as a model for stock prices) takes
values on real time. The appraisal of which values of X are more and which
are less likely, is expressed by the probability of events as {a < X < b} or
{X ≤ b}. The set of all probabilities

P(a ≤ X ≤ b) , −∞ < a ≤ b <∞ ,

determines the distribution of X. In other words, the distribution is defined
by the probabilities of all events which depend on X. In the following, we
denote the probability distribution of X by L(X).

The probability distribution is uniquely defined by the cumulative probability
distribution

F (x) = P(X ≤ x) , −∞ < x <∞ .

F (x) monotonously increases and converges for x→ −∞ to 0, and for x→ ∞
to 1. If there is a function p, such that the probabilities can be computed by
means of an integral

P(a < X < b) =
∫ b

a

p(x)dx ,

p is called a probability density, or briefly density of X. Then the cumulative
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distribution function is a primitive of p:

F (x) =
∫ x

−∞
p(y)dy.

For small h it holds:

P(x− h < X < x+ h) ≈ 2h · p(x).
Thus p(x) is a measure of the likelihood that X takes values close to x.

The most important family of distributions with densities, is the normal
distribution family. It is characterised by two parameters μ, σ2. The densities
are given by

ϕμ,σ2(x) =
1√

2πσ2
e−

(x−μ)2

2σ2 =
1
σ
ϕ
(x− μ

σ

)
,

ϕ(x) = ϕ0,1(x) =
1√
2π

e−
x2
2 .

The distribution with density ϕ(x) is called standard normal distribution. “X
a normal random variable with parameters μ, σ2” is commonly abbreviated
by “X is N(μ, σ2) distributed”. The cumulative distribution function of a
standard normal distribution is denoted by Φ and it holds:

Φ(x) =
∫ x

−∞
ϕ(y)dy.

If X is N(μ, σ2) distributed, then the centered and scaled random variable
(X − μ)/σ is standard normal distributed. Therefore, its cumulative distri-
bution function is given by:

F (x) = P(X ≤ x) = P
(X − μ

σ
≤ x− μ

σ

)
= Φ
(x− μ

σ

)
.

A distribution which is of importance in modelling stock prices is the lognor-
mal distribution. Let X be a positive random variable whose natural loga-
rithm log(X) is normally distributed with parameters μ, σ2. We say that X
is lognormally distributed with parameters μ, σ2. Its cumulative distribution
function follows directly from the above definition:

F (x) = P(X ≤ x) = P(logX ≤ log x) = Φ
( log x− μ

σ

)
, x > 0.

Deriving F (x) once, we obtain its density function with parameters μ, σ2:

p(x) =
1√

2πσ2

1
x
e−

(log x−μ)2

2σ2 =
1
σx

ϕ
( log x− μ

σ

)
, x > 0.
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If X is a random variable that takes only finite or countably infinite values
x1, . . . , xn, thenX is said to be a discrete random variable and its distribution
is fully determined by the probabilities:

P(X = xk) , k = 1, . . . , n.

The simplest discrete random variables take only 2 or 3 values, for example
±1 or −1, 0,+1. They constitute the basis of binomial or trinomial trees which
can be used to construct discrete random processes in computers. Such tree
methods are reasonable approximations to continuous processes which are
used to model stock prices.

In this context, binomially distributed random variables appear. Let Y1, . . . , Yn
be independent random variables taking two values, 0 or 1, with probabilities

p = P(Yk = 1) , 1 − p = P(Yk = 0) , k = 1, . . . , n .

We call such random variables Bernoulli distributed with parameter p. The
number of ones appearing in the sample Y1, . . . , Yn , equals the sum X =∑n
k=1 Yk which is binomial distributed with parameters n, p :

X =
n∑

k=1

Yk , P(X = m) =
(
n

m

)
pm(1 − p)n−m , m = 0, . . . , n .

SFEBinomial

Instead of saying X is binomial distributed with parameters n, p, we use the
notation “X is B(n, p) distributed”. Hence, a Bernoulli distributed random
variable is B(1, p) distributed.

If n is large enough, a B(n, p) distributed random variable can be approx-
imated by a N(np, np(1 − p)) distributed random variable Z, in the sense
that

P(a < X < b) ≈ P(a < Z < b) . (3.1)

The central limit theorem is more precise on that matter. In classical statis-
tics it is used to avoid, for large n, the tedious calculation of binomial proba-
bilities. Conversely, it is possible to approximate the normal distribution by
an easy simulated binomial tree. SFEclt

3.2 Expectation and Variance

The mathematical expectation or the mean E[X] of a real random variable X
is a measure for the location of the distribution of X. Adding to X a real
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constant c, it holds for the expectation: E[X+ c] = E[X]+ c, i.e. the location
of the distribution is translated. If X has a density p(x), its expectation is
defined as:

E(X) =
∫ ∞

−∞
xp(x)dx.

If the integral does not exist, neither does the expectation. In practice, this
is rather rarely the case.

Let X1, . . . , Xn be a sample of identically independently distributed (i.i.d.)
random variables (see Section 3.4) having the same distribution as X, then
E[X] can be estimated by means of the sample mean:

μ̂ =
1
n

n∑

t=1

Xt.

A measure for the dispersion of a random variable X around its mean is given
by the variance Var(X):

Var(X) = E[(X − EX)2]
Variance = mean squarred deviation of a random variable

around its expectation.

If X has a density p(x), its variance can be computed as follows:

Var(X) =
∫ ∞

−∞
(x− EX)2p(x)dx.

The integral can be infinite. There are empirical studies giving rise to doubt
that some random variables appearing in financial and actuarial mathematics
and which model losses in highly risky businesses dispose of a finite variance.

As a quadratic quantity the variance’s unity is different from that of X itself.
It is better to use the standard deviation of X which is measured in the same
unity as X:

σ(X) =
√

Var(X) .

Given a sample of i.i.d. variables X1, . . . , Xn which have the same distribu-
tion as X, the sample variance can be estimated by:

σ̂2 =
1
n

n∑

t=1

(Xt − μ̂)2.
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A N(μ, σ2) distributed random variable X has mean μ and variance σ2.
The 2σ area around μ contains with probability of a little more than 95%
observations of X:

P(μ− 2σ < X < μ+ 2σ) ≈ 0.95 .

A lognormally distributed random variable X with parameters μ and σ2 has
mean and variance

E(X) = eμ+ 1
2σ

2
, Var(X) = e2μ+σ2

(eσ
2 − 1).

A B(n, p) distributed variable X has mean np and variance np(1 − p). The
approximation (3.1) is chosen such that the binomial and normal distribution
have identical mean and variance.

3.3 Skewness and Kurtosis

Definition 3.1 (Skewness)
The skewness of a random variable X with mean μ and variance σ2 is defined
as

S(X) =
E[(X − μ)3]

σ3
.

If the skewness is negative (positive) the distribution is skewed to the left
(right). Normally distributed random variables have a skewness of zero since
the distribution is symmetrical around the mean. Given a sample of i.i.d.
variables X1, . . . , Xn, Skewness can be estimated by (see Section 3.4)

Ŝ(X) =
1
n

∑n
t=1(Xt − μ̂)3

σ̂3
, (3.2)

with μ̂, σ̂2 as defined in the previous section.

Definition 3.2 (Kurtosis)
The kurtosis of a random variable X with mean μ and variance σ2 is defined
as

Kurt(X) =
E[(X − μ)4]

σ4
.

Normally distributed random variables have a kurtosis of 3. Financial data
often exhibits higher kurtosis values, indicating that values close to the mean
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and extreme positive and negative outliers appear more frequently than for
normally distributed random variables. Kurtosis can be estimated by

̂Kurt(X) =
1
n

∑n
t=1(Xt − μ̂)4

σ̂4
. (3.3)

Example 3.1 The empirical standard deviation of monthly DAX data from
1979: 1 to 2000: 10 is σ̂ = 0.056, which corresponds to a yearly volatility of
σ̂ · √12 = 0.195. Later in Section(6.4.5), we will explain the factor

√
12 in

detail. The kurtosis of the data is equal to 5.428, i.e. greater than 3 which
suggests a non-normality of the DAX returns.

SFEsumm

3.4 Random Vectors, Dependence, Correlation

A random vector (X1, . . . , Xn) from R

n can be useful in describing the mutual
dependencies of several random variables X1, . . . , Xn, for example several
underlying stocks. The joint distribution of the random variables X1, . . . , Xn

is as in the univariate case, uniquely determined by the probabilities

P(a1 ≤ X1 ≤ b1, . . . , an ≤ Xn ≤ bn) , −∞ < ai ≤ bi <∞ , i = 1, ..., n .

If the random vector (X1, . . . , Xn) has a density p(x1, . . . , xn), the probabil-
ities can be computed by means of the following integrals:

P(a1 ≤ X1 ≤ b1, . . . , an ≤ Xn ≤ bn) =
∫ bn

an

. . .

∫ b1

a1

p(x1, . . . , xn)dx1 . . . dxn.

The univariate or marginal distribution of Xj can be computed from the joint
density by integrating out the variable not of interest.

P(aj ≤ Xj ≤ bj) =
∫ ∞

−∞
. . .

∫ bj

aj

. . .

∫ ∞

−∞
p(x1, . . . , xn)dx1 . . . dxn.

The intuitive notion of independence of two random variables X1, X2 is for-
malised by requiring:

P(a1 ≤ X1 ≤ b1, a2 ≤ X2 ≤ b2) = P(a1 ≤ X1 ≤ b1) · P(a2 ≤ X2 ≤ b2),

i.e. the joint probability of two events depending on the random vector
(X1, X2) can be factorised. It is sufficient to consider the univariate dis-
tributions of X1 and X2 exclusively. If the random vector (X1, X2) has a
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density p(x1, x2), then X1 and X2 have densities p1(x) and p2(x) as well.
In this case, independence of both random variables is equivalent to a joint
density which can be factorised:

p(x1, x2) = p1(x1)p2(x2).

Dependence of two random variables X1, X2 can be very complicated. If
X1, X2 are jointly normally distributed, their dependency structure can be
rather easily quantified by their covariance:

Cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])],

as well as by their correlation:

Corr(X1, X2) =
Cov(X1, X2)
σ(X1) · σ(X2)

.

The correlation has the advantage of taking values between -1 and +1, which
is scale invariant. For jointly normally distributed random variables, in-
dependence is equivalent to zero correlation, while complete dependence is
equivalent to either a correlation of +1 (X1 is large when X2 is large) or a
correlation of -1 (X1 is large when X2 is small).

In general, it holds for independent random variables X1, . . . , Xn

Cov(Xi, Xj) = 0 for i 
= j .

This implies a useful computation rule:

Var
( n∑

j=1

Xj

)
=

n∑

j=1

Var(Xj) .

If X1, . . . , Xn are independent and have all the same distribution:

P(a ≤ Xi ≤ b) = P(a ≤ Xj ≤ b) for all i, j ,

we call them independently and identically distributed (i.i.d.).

3.5 Conditional Probabilities and Expectations

The conditional probability that a random variable Y takes values between
a and b conditioned on the event that a random variable X takes values
between x and x+ Δx, is defined as

P(a ≤ Y ≤ b|x ≤ X ≤ x+ Δx) =
P(a ≤ Y ≤ b , x ≤ X ≤ x+ Δx)

P(x ≤ X ≤ x+ Δx)
, (3.4)
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provided the denominator is different from zero. The conditional probability
of events of the kind a ≤ Y ≤ b reflects our opinion of which values are
more plausible than others, given that another random variable X has taken
a certain value. If Y is independent of X, the probabilities of Y are not
influenced by prior knowledge about X. It holds:

P(a ≤ Y ≤ b|x ≤ X ≤ x+ Δx) = P(a ≤ Y ≤ b) .

As Δx goes to 0 in equation (3.4), the left side of equation (3.4) converges
heuristically to P(a ≤ Y ≤ b|X = x). In the case of a continuous random
variable X having a density pX , the left side of equation (3.4) is not defined
since P(X = x) = 0 for all x. But, it is possible to give a sound mathematical
definition of the conditional distribution of Y given X = x. If the random
variables Y and X have a joint distribution p(x, y), then the conditional
distribution has the density

pY |X(y|x) =
p(x, y)
pX(x)

for pX(x) 
= 0

and pY |X(y|x) = 0 otherwise. Consequently, it holds:

P(a ≤ Y ≤ b|X = x) =
∫ b

a

pY |X(y|x)dy.

The expectation with respect to the conditional distribution can be computed
by:

E(Y |X = x) =
∫ ∞

−∞
y pY |X(y|x)dy def= η(x).

The function η(x) = E(Y |X = x) is called the conditional expectation of Y
given X = x. Intuitively, it is the expectation of the random variable Y
knowing that X has taken the value x.

Considering η(x) as a function of the random variable X the conditional
expectation of Y given X is obtained:

E(Y |X) = η(X).

E(Y |X) is a random variable, which can be regarded as a function having
the same expectation as Y . The conditional expectation has some useful
properties, which we summarise in the following theorem.

Theorem 3.1 Let X,Y, Z be real valued continuous random variables having
a joint density.
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a) If X,Y are independent, then E(Y |X = x) = E(Y )

b) If Y = g(X) is a function of X, then

E[Y |X = x] = E[g(X)|X = x] = g(x).

In general, it holds for random variables of the kind Y = Zg(X) :

E[Y |X = x] = E[Zg(X)|X = x] = g(x) E[Z|X = x].

c) The conditional expectation is linear, i.e. for any real numbers a, b it
holds:

E(aY + bZ|X = x) = aE(Y |X = x) + bE(Z|X = x).

d) The law of iterated expectations: E[E(Y |X)] = E(Y ).

The concept of the conditional expectation can be generalised analogously
for multivariate random vectors Y and X. Let St, t = 0, 1, 2, ... be a sequence
of chronologically ordered random variables, for instance as a model of daily
stock prices, let Y = St+1 and X = (St, ..., St−p+1)�, then the conditional
expectation

E(Y |X = x) = E(St+1|St = x1, ..., St−p+1 = xp)

represents the expected stock price of the following day t+ 1 given the stock
prices x = (x1, ..., xp)� of the previous p days. Since the information available
at time t (relevant for the future evolution of the stock price) can consist of
more than only a few past stock prices, we make frequent use of the notation
E(Y |Ft) for the expectation of Y given the information available up to time
t. For all t, Ft denotes a family of events (having the structure of a σ–
algebra, i.e. certain combinations of events of Ft are again elements of Ft)
representing the information available up to time t. Ft consists of events
of which it is known whether they occur up to time t or not. Since more
information unveils as time evolves, we must have Fs ⊂ Ft for s < t, see
Definition 5.1. Leaving out the exact definition of E(Y |Ft) we confine to
emphasise that the computation rules given in Theorem 3.1, appropriately
reformulated, can be applied to the general conditional expectation.

3.6 Recommended Literature

Durrett (1991), Ross (1994), Pitman (1997), Krengel (2000) and Jacod and
Protter (2000), among others, give an introduction to probability theory. An
introduction to martingale theory which is imperative for the understanding
of advanced mathematical finance is given by Williams (1991).



4 Stochastic Processes in Discrete
Time

A stochastic process or random process consists of chronologically ordered
random variables {Xt; t ≥ 0}. For simplicity we assume that the process
starts at time t = 0 in X0 = 0. In this chapter, we consider exclusively pro-
cesses in discrete time, i.e. processes which are observed at equally spaced
points time t = 0, 1, 2, . . . . Typical examples are daily, monthly or yearly ob-
served economic data as stock prices, rates of unemployment or sales figures.

4.1 Binomial Processes

One of the simplest stochastic processes is an ordinary random walk, a process
whose increments Zt = Xt −Xt−1 from time t− 1 to time t take exclusively
the values +1 or -1. Additionally, we assume the increments to be i.i.d. and
independent of the starting value X0. Hence, the ordinary random walk can
be written as:

Xt = X0 +
t∑

k=1

Zk , t = 1, 2, . . . (4.1)

X0, Z1, Z2, . . . independent and

P(Zk = 1) = p , P(Zk = −1) = 1 − p for all k .

Letting the process go up by u and go down by d, instead, we obtain a more
general class of binomial processes:

P(Zk = u) = p , P(Zk = −d) = 1 − p for all k ,

where u and d are constant (u=up, d=down).

Linear interpolation of the points (t,Xt) reflects the time evolution of the
process and is called a path of an ordinary random walk. Starting in X0 = a,
the process moves on the grid of points (t, bt), t = 0, 1, 2, . . . , bt = a −
t, a − t + 1, . . . , a + t. Up to time t, Xt can grow at most up to a + t (if
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Z1 = . . . = Zt = 1) or can fall at least to a − t (if Z1 = . . . = Zt = −1).
Three paths of an ordinary random walk are shown in Figure 4.1 (p = 0.5),
4.2 (p = 0.4) and Figure 4.3 (p = 0.6).

Binomial processes (p=0.500)

0 25 50 75 100
X

-2
0

-1
0

0
10

20

Y

Figure 4.1: Three paths of a symmetric ordinary random walk. (2σ)–
intervals around the drift (which is zero) are given as well.

SFEBinomp

For generalised binomial processes the grid of possible paths is more compli-
cated. The values which the process Xt starting in a can possibly take up to
time t are given by

bt = a+ n · u−m · d , where n,m ≥ 0 , n+m = t .

If, from time 0 to time t, the process goes up n times and goes down m times
then Xt = a + n · u −m · d. That is, n of t increments Z1, . . . , Zt take the
value u, and m increments take the value −d. The grid of possible paths is
also called a binomial tree.

The mean of the symmetric ordinary random walk (p = 1
2 ) starting in 0

(X0 = 0) is for all times t equal to 0 :

E[Xt] = 0 for all t .

Otherwise, the random walk has a trend or drift, for (p > 1
2 ) it has a positive

drift and for (p < 1
2 ) it has a negative drift. The process grows or falls in
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Binomial processes (p=0.400)
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Figure 4.2: Three paths of an ordinary random walk with p = 0.4. (2σ)–
intervals around the drift (which is the line with negative slope)
are given as well. SFEBinomp

average:
E[Xt] = t · (2p− 1) ,

since it holds for all increments E[Zk] = 2p− 1 . Hence, the trend is linear in
time. It is the upward sloping line in Figure 4.3 (p = 0.6) and the downward
sloping line in Figure 4.2 (p = 0.4).

For the generalized binomial process with general starting value X0 it holds
analogously E[Zk] = (u+ d)p− d and thus:

E[Xt] = E[X0] + t · {(u+ d)p− d} .

As time evolves the set of values Xt grows, and its variability increases. Since
the summands in (4.1) are independent and Var(Zk) = Var(Z1) for all k, the
variance of Xt is given by (refer to Section 3.4):

Var(Xt) = Var(X0) + t · Var(Z1) .

Hence, the variance of Xt grows linearly with time, as does the standard
deviation. For the random walks depicted in Figure 4.1 (p = 0.5), Figure
4.2 (p = 0.4) and Figure 4.3 (p = 0.6) the intervals [E[Xt] − 2σ(Xt); E[Xt] +
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Binomial processes (p=0.600)
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Figure 4.3: Three paths of an ordinary random walk with p = 0.6. (2σ)–
intervals around the drift (which is the line with positive slope)
are given as well. SFEBinomp

2σ(Xt)] are shown as well. For large t , these intervals should contain 95%
of the realisations of processes.

The variance of the increments can be easily computed. We use the following
result which holds for the binomial distribution. Define

Yk =
Zk + d

u+ d
=
{

1 if Zk = u
0 if Zk = −d

or
Zk = (u+ d)Yk − d (4.2)

we obtain the following representation of the binomial process

Xt = X0 + (u+ d)Bt − td (4.3)

where

Bt =
t∑

k=1

Yk (4.4)

is a B(t, p) distributed random variable.
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Given the distribution ofX0, the distribution ofXt is specified for all t. It can
be derived by means of a simple transformation of the binomial distribution
B(t, p). From equations (4.2) to (4.4) we obtain for X0 = 0:

Var(Xt) = t(u+ d)2 p(1 − p)

and for large t the distribution of Xt can be approximated by:

L(Xt) ≈ N(t{(u+ d)p− d}, t(u+ d)2 p(1 − p)).

For p = 1
2 , u = d = Δx, the following approximation holds for L(Xt):

N(0, t · (Δx)2).

Figure 4.4 shows the fit for t = 100.

Distribution of  100 generated Binomial processes

-30 -20 -10 0 10 20
X

0
1

2
3

4

Y
*E

-2

Figure 4.4: The distribution of 100 paths of an ordinary symmetric random
walk of length 100 and a kernel density estimation of 100 normally
distributed random variables. SFEbinomv

4.2 Trinomial Processes

In contrast to binomial processes, a trinomial process allows a quantity to stay
constant within a given period of time. In the latter case, the increments are
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described by:

P(Zk = u) = p , P(Zk = −d) = q , P(Zk = 0) = r = 1 − p− q ,

and the process Xt is again given by:

Xt = X0 +
t∑

k=1

Zk

where X0, Z1, Z2, . . . are mutually independent. To solve the Black–Scholes
equation, some algorithms use trinomial schemes with time and state depen-
dent probabilities p, q and r. Figure 4.5 shows five simulated paths of a
trinomial process with u = d = 1 and p = q = 0.25.

trinomial process (p=0.250, q=0.250, r=0.500)
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-5
0

5
10

15

Y

Figure 4.5: Five paths of a trinomial process with p = q = 0.25. (2σ)–
intervals around the trend (which is zero) are given as well.

SFETrinomp

The exact distribution ofXt cannot be derived from the binomial distribution
but for the trinomial process a similar relations hold:

E[Xt] = E[X0] + t · E[Z1] = E[X0] + t · (pu− qd)
Var(Xt) = Var(X0) + t · Var(Z1), where
Var(Z1) = p(1 − p)u2 + q(1 − q)d2 + 2pq ud .

For large t, Xt is approximately N(E[Xt], Var(Xt))–distributed.
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4.3 General Random Walks

Binomial and trinomial processes are simple examples for general random
walks, i.e. stochastic processes {Xt; t ≥ 0} satisfying:

Xt = X0 +
t∑

k=1

Zk , t = 1, 2, . . .

where X0 is independent of Z1, Z2, . . . which are i.i.d. The increments have
a distribution of a real valued random variable. Zk can take a finite or
countably infinite number of values; but it is also possible for Zk to take
values out of a continuous set.

As an example, consider a Gaussian random walk with X0 = 0, where the
finitely many X1, . . . , Xt are jointly normally distributed. Such a random
walk can be constructed by assuming identically, independently and nor-
mally distributed increments. By the properties of the normal distribution,
it follows that Xt is N(μt, σ2t)–distributed for each t. If X0 = 0 and Var(Z1)
is finite, it holds approximately for all random walks for t large enough:

L(Xt) ≈ N(t · E[Z1], t · Var(Z1)).

This result follows directly from the central limit theorem for i.i.d. random
variables.

Random walks are processes with independent increments. That means, the
increment Zt+1 of the process from time t to time t+1 is independent of the
past values X0, . . . , Xt up to time t. In general, it holds for any s > 0 that
the increment of the process from time t to time t+ s

Xt+s −Xt = Zt+1 + . . .+ Zt+s

is independent of X0, . . . , Xt. It follows that the best prediction, in terms of
mean squared error, for Xt+1 given X0, . . . , Xt is just Xt + E[Zt+1] . As long
as the price of only one stock is considered, this prediction rule works quite
well. As already as one hundred years ago, Bachelier postulated (assuming
E[Zk] = 0 for all k):“The best prediction for the stock price of tomorrow is
the price of today.”

Processes with independent increments are also Markov–processes. In other
words, the future evolution of the process in time t depends exclusively on
Xt, and the value of Xt is independent of the past values X0, . . . , Xt−1. If the
increments Zk and the starting value X0, and hence all Xt, can take a finite
or countably infinite number of values, then the Markov–property is formally
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expressed by:

P(at+1 < Xt+1 < bt+1|Xt = c, at−1 < Xt−1 < bt−1, . . . , a0 < X0 < b0)

= P(at+1 < Xt+1 < bt+1|Xt = c) .

If Xt = c is known, additional information about X0, . . . , Xt−1 does not
influence the opinion about the range in which Xt will probably fall.

4.4 Geometric Random Walks

The essential idea underlying the random walk for real processes is the as-
sumption of mutually independent increments of the order of magnitude for
each point in time. However, economic time series in particular do not sat-
isfy the latter assumption. Seasonal fluctuations of monthly sales figures for
example are in absolute terms significantly greater if the yearly average sales
figure is high. By contrast, the relative or percentage changes are stable
over time and do not depend on the current level of Xt. Analogously to the
random walk with i.i.d. absolute increments Zt = Xt − Xt−1, a geometric
random walk {Xt; t ≥ 0} is assumed to have i.i.d. relative increments

Rt =
Xt

Xt−1
, t = 1, 2, . . . .

For example, a geometric binomial random walk is given by

Xt = Rt ·Xt−1 = X0 · Πt
k=1Rk (4.5)

where X0, R1, R2, . . . are mutually independent and for u > 1, d < 1 :

P(Rk = u) = p , P(Rk = d) = 1 − p .

Given the independence assumption and E[Rk] = (u− d)p+ d it follows from
equation (4.5) that E[Xt] increases or decreases exponentially as the case may
be E[Rk] > 1 or E[Rk] < 1:

E[Xt] = E[X0] · (E[R1])t = E[X0] · {(u− d)p+ d}t.
If E[Rk] = 1 the process is on average stable, which is the case for

p =
1 − d

u− d
.

For a recombining process, i.e. d = 1
u , this relationship simplifies to

p =
1

u+ 1
.
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Taking logarithms in equation (4.5) yields:

logXt = logX0 +
t∑

k=1

logRk .

The process X̃t = logXt is itself an ordinary binomial process with starting
value logX0 and increments Zk = logRk:

P(Zk = log u) = p, P(Zk = log d) = 1 − p .

For t large, X̃t is approximately normally distributed, i.e. Xt = exp(X̃t) is
approximately lognormally distributed.

4.5 Binomial Models with State Dependent
Increments

Binomial processes and more general random walks model the stock price at
best locally. They proceed from the assumption that the distribution of the
increments Zt = Xt − Xt−1 are the same for each value Xt, regardless of
whether the stock price is substantially greater or smaller than X0. Absolute
increments Xt−Xt−1 = (Rt−1) Xt−1 of a geometric random walk depend on
the level of Xt−1. Thus, geometric random walks are processes which do not
have independent absolute increments. Unfortunately, when modelling the
stock price dynamics globally, the latter processes are too simple to explain
the impact of the current price level on the future stock price evolution. A
class of processes which take this effect into account are binomial processes
with state dependent (and possibly time dependent) increments:

Xt = Xt−1 + Zt , t = 1, 2, . . . (4.6)

P(Zt = u) = p(Xt−1, t) , P(Zt = −d) = 1 − p(Xt−1, t) .

Since the distribution of Zt depends on the state Xt−1 and possibly on time
t, increments are neither independent nor identically distributed. The deter-
ministic functions p(x, t) associate a probability to each possible value of the
process at time t and to each t. Stochastic processes {Xt; t ≥ 0} which are
constructed as in (4.6) are still markovian but without having independent
increments.

Accordingly, geometric binomial processes with state dependent relative in-
crements can be defined (for u > 1, d < 1):

Xt = Rt ·Xt−1 (4.7)
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P(Rt = u) = p(Xt−1, t) , P(Rt = d) = 1 − p(Xt−1, t) .

Processes as defined in (4.6) and (4.7) are mainly of theoretic interest, since
without further assumptions it is rather difficult to estimate the probabilities
p(x, t) from observed stock prices. But generalized binomial models (as well
as the trinomial models) can be used to solve differential equations numeri-
cally, as the Black–Scholes equation for American options for example.

4.6 Recommended Literature

Numerous textbooks deal with stochastic processes in discrete time. We
recommend a basic book by Brzezniak and Zastawniak (1999). The classic
reference work is, of course, Gikhman and Skorokhod (1974). There are 3
volumes that are reprinted for today’s applications.



5 Stochastic Integrals and
Differential Equations

This chapter provides the tools needed for option pricing. The field of stochas-
tic processes in continuous time, which are defined as solutions of stochastic
differential equations, has an important role to play. To illustrate these no-
tions we use repeated approximations by stochastic processes in discrete time
and refer to the results from Chapter 4.

A stochastic process in continuous time {Xt; t ≥ 0} consists of chronologi-
cally ordered random variables, but here the variable t is continuous, i.e. t is
a positive real number.

Stock prices are actually processes in discrete time. But to derive the Black-
Scholes equation they are approximated by continuous time processes which
are easier to handle analytically. However the simulation on a computer
of such processes or the numerical computation of say American options, is
carried out by means of discrete time approximations. We therefore switch
the time scale between discrete and continuous depending on what is more
convenient for the actual computation.

5.1 Wiener Process

We begin with a simple symmetric random walk {Xn; n ≥ 0} starting in 0
(X0 = 0). The increments Zn = Xn −Xn−1 are i.i.d. with :

P(Zn = 1) = P(Zn = −1) =
1
2
.

By shortening the period of time of two successive observations we accelerate
the process. Simultaneously, the increments of the process become smaller
during the shorter period of time. More precisely, we consider a stochastic
process {XΔ

t ; t ≥ 0} in continuous time which increases or decreases in a
time step Δt with probability 1

2 by Δx. Between these jumps the process is
constant (alternatively we could interpolate linearly). At time t = n ·Δt the
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process is:

XΔ
t =

n∑

k=1

Zk · Δx = Xn · Δx

where the increments Z1Δx, Z2Δx, . . . are mutually independent and take
the values Δx or −Δx with probability 1

2 respectively. From Section 4.1 we
know:

E[XΔ
t ] = 0 , Var(XΔ

t ) = (Δx)2 · Var(Xn) = (Δx)2 · n = t · (Δx)2

Δt
.

Now, we let Δt and Δx become smaller. For the process in the limit to
exist in a reasonable sense, Var(XΔ

t ) must be finite. On the other hand,
Var(XΔ

t ) should not converge to 0, since the process would no longer be
random. Hence, we must choose:

Δt→ 0, Δx = c ·
√

Δt , such that Var(XΔ
t ) → c2t .

If Δt is small, then n = t/Δt is large. Thus, the random variable Xn of the
ordinary symmetric random walk is approximately N(0, n) distributed, and
therefore for all t (not only for t such that t = n Δt):

L(XΔ
t ) ≈ N(0, n(Δx)2) ≈ N(0, c2t) .

Thus the limiting process {Xt; t ≥ 0} which we obtain from {XΔ
t ; t ≥ 0}

for Δt→ 0, Δx = c
√

Δt has the following properties:

(i) Xt is N(0, c2t) distributed for all t ≥ 0.

(ii) {Xt; t ≥ 0} has independent increments, i.e. for 0 ≤ s < t, Xt − Xs

is independent of Xs (since the random walk {Xn; n ≥ 0} defining
{XΔ

t ; t ≥ 0} has independent increments).

(iii) For 0 ≤ s < t the increment (Xt −Xs) is N(0, c2 · (t− s)) distributed,
i.e. its distribution depends exclusively on the length t− s of the time
interval in which the increment is observed (this follows from (i) and
(ii) and the properties of the normal distribution).

A stochastic process {Xt; t ≥ 0} in continuous time satisfying (i)–(iii) is
called Wiener process or Brownian motion starting in 0 (X0 = 0). The
standard Wiener process resulting from c = 1 will be denoted by {Wt; t ≥ 0}.
For this process it holds for all 0 ≤ s < t

E[Wt] = 0, Var(Wt) = t

Cov(Wt,Ws) = Cov(Wt −Ws +Ws,Ws)
= Cov(Wt −Ws,Ws) + Cov(Ws,Ws)
= 0 + Var(Ws) = s
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delta t = 0.100, var = 1.000 *t
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Figure 5.1: Typical paths of a Wiener process. SFEWienerProcess

As for every stochastic process in continuous time, we can consider a path
or realisation of the Wiener process as a randomly chosen function of time.
With some major mathematical instruments it is possible to show that the
paths of a Wiener process are continuous with probability 1:

P(Wt is continuous as a function of t) = 1 .

That is to say, the Wiener process has no jumps. But Wt fluctuates heavily:
the paths are continuous but highly erratic. In fact, it is possible to show
that the paths are not differentiable with probability 1.

Being a process with independent increments the Wiener process is marko-
vian. For 0 ≤ s < t it holds Wt = Ws + (Wt −Ws), i.e. Wt depends only on
Ws and on the increment from time s to time t:

P(a < Wt < b |Ws = x , information about Wt′ , 0 ≤ t′ < s)
= P(a < Wt < b |Ws = x )

A graphical representation of the above equation is given in Figure 5.2.

Using properties (i)–(iii), the distribution of Wt given the outcome Ws = x
can be formulated explicitly. Since the increment (Wt −Ws) is N(0, t − s)
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Figure 5.2: Graphical representation of P (a < Wt < b |Ws = w).
SFEwienerdens

distributed, Wt is N(x, t− s) distributed given Ws = x :

P(a < Wt < b |Ws = x) =
∫ b

a

1√
t− s

ϕ
( y − x√

t− s

)
dy.

Proceeding from the assumption of a random walk {Xn; n ≥ 0} with drift
E[Xn] = n(2p − 1) instead of a symmetric random walk results in a process
XΔ
t which is no more zero on average, but

E[XΔ
t ] = n · (2p− 1) · Δx = (2p− 1) · t Δx

Δt

Var(XΔ
t ) = n 4p(1 − p) · (Δx)2 = 4p(1 − p) · t · (Δx)2

Δt
.

For Δt→ 0, Δx =
√

Δt, p = 1
2 (1 + μ

√
Δt) we obtain for all t:

E[XΔ
t ] → μt , Var(XΔ

t ) → t.

The limiting process is a Wiener process {Xt; t ≥ 0} with drift or trend μt.
It results from the standard Wiener process:

Xt = μt+Wt.

Hence, it behaves in the same way as the standard Wiener process but it fluc-
tuates on average around μ instead of 0. If (μ > 0) the process is increasing
linearly on average, and if (μ < 0) it is decreasing linearly on average.
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5.2 Stochastic Integration

In order to introduce a stochastic process as a solution of a stochastic dif-
ferential equation we introduce the concept of the Itô–integral: a stochas-
tic integral with respect to a Wiener process. Formally the construction
of the Itô–integral is similar to the Stieltjes–integral. However, instead of
integrating with respect to a deterministic function (Stieltjes–integral), the
Itô–integral integrates with respect to a random function, more precisely, the
path of a Wiener process. Since the integrant itself can be random, i.e. it can
be a path of a stochastic process, one has to analyze the mutual dependencies
of the integrant and the Wiener process.

Let {Yt; t ≥ 0} be the process to integrate and let {Wt; t ≥ 0} be a stan-
dard Wiener process. The definition of a stochastic integral assumes that
{Yt; t ≥ 0} is non-anticipating. Intuitively, it means that the process up
to time s does not contain any information about future increments Wt −
Ws , t > s , of the Wiener process. In particular, Ys is independent of
Wt −Ws .

An integral of a function is usually defined as the limit of the sum of the suit-
ably weighted function. Similarly, the Itô integral with respect to a Wiener
process is defined as the limit of the sum of the (randomly) weighted (ran-
dom) function {Yt; t ≥ 0} :

In =
n∑

k=1

Y(k−1)Δt · (WkΔt −W(k−1)Δt) , Δt =
t

n
(5.1)

∫ t

0

Ys dWs = lim
n→∞ In ,

where the limit is to be understood as the limit of a random variable in terms
of mean squared error, i.e. it holds

E{[
∫ t

0

Ys dWs − In
]2} → 0, n→ ∞.

It is important to note, that each summand of In is a product of two inde-
pendent random variables. More precisely, Y(k−1)Δt, the process to integrate
at the left border of the small interval [(k− 1)Δt, kΔt] is independent of the
increment WkΔt −W(k−1)Δt of the Wiener process in this interval.

It is not hard to be more precise on the non-anticipating property of
{Yt; t ≥ 0}.
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Definition 5.1 (Information structure, non–anticipating)
For each t ≥ 0, Ft denotes a family of events (having the structure of a σ–
algebra, i.e. certain combinations of events contained in Ft are again in Ft)
which contain the available information up to time t. Ft consists of events
from which is known up to time t whether they occurred or not. We assume:

Fs ⊂ Ft for s < t (information grows as time
evolves)

{a < Yt < b} ∈ Ft (Yt contains no information
about events occurring after
time t)

{a < Wt < b} ∈ Ft
Wt −Ws independent of Fs for s < t (the Wiener process is adapted to

the evolution of information)
Then, we call Ft the information structure at time t and the process {Yt; t ≥
0} non–anticipating with respect to the information structure Ft; t ≥ 0.

The process {Yt} is called non–anticipating since due to the second assump-
tion it does not anticipate any future information. The evolving information
structure Ft and the random variables Yt,Wt are adapted to each other.

The integral depends crucially on the point of the interval [(k − 1)Δt, kΔt]
at which the random variable Ys is evaluated in (5.1). Consider the example
Yt = Wt, t ≥ 0, i.e. we integrate the Wiener process with respect to itself.
As a gedankenexperiment (though experiment) we replace in (5.1) (k− 1)Δt
by an arbitrary point t(n, k) of the interval [(k − 1)Δt, kΔt]. If we defined:

∫ t

0

Ws dWs = lim
n→∞

n∑

k=1

Wt(n,k) (WkΔt −W(k−1)Δt)

the expected values would converge as well. Hence by interchanging the sum
with the covariance operator we get:

E [
n∑

k=1

Wt(n,k) (WkΔt −W(k−1)Δt)] =
n∑

k=1

Cov(Wt(n,k), WkΔt −W(k−1)Δt)

=
n∑

k=1

{t(n, k) − (k − 1)Δt} → E[
∫ t

0

Ws dWs] .

For t(n, k) = (k − 1)Δt – which is the case for the Itô–integral – we obtain
0, for t(n, k) = kΔt we obtain n · Δt = t , and for suitably chosen sequences
t(n, k) we could obtain, for the expectation of the stochastic integral, any
value between 0 and t. In order to assign a unique value to

∫ t
0
Ws dWs, we

have to agree on a certain sequence t(n, k).
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To illustrate how Itô–integrals are computed, and also that other than the
usual computation rules have to be applied, we show that:

∫ t

0

Ws dWs =
1
2
(W 2

t −W 2
0 ) − t

2
=

1
2
(W 2

t − t) (5.2)

Summing the differences W 2
kΔt −W 2

(k−1)Δt , all terms but the first and the
last cancel out and remembering that nΔt = t we get

1
2
(W 2

t −W 2
0 ) =

1
2

n∑

k=1

(W 2
kΔt −W 2

(k−1)Δt)

=
1
2

n∑

k=1

(WkΔt −W(k−1)Δt)(WkΔt +W(k−1)Δt)

=
1
2

n∑

k=1

(WkΔt −W(k−1)Δt)2

+
n∑

k=1

(WkΔt −W(k−1)Δt) W(k−1)Δt .

While the second term converges to
∫ t
0
Ws dWs , the first term is a sum

of n independent identically distributed random variables and which is thus
approximated due to the law of large numbers by its expected value

n

2
E[(WkΔt −Wk−1)Δt)2] =

n

2
Δt =

t

2
.

For smooth functions fs, for example continuously differentiable functions, it
holds

∫ t
0
fs dfs = 1

2 (f2
t − f2

0 ). However, the stochastic integral (5.2) contains
the additional term − t

2 since the local increment of the Wiener process over
an interval of length Δt is of the size of its standard deviation – that is

√
Δt.

The increment of a smooth function fs is proportional to Δt, and therefore
considerably smaller than the increment of the Wiener process for Δt→ 0.

5.3 Stochastic Differential Equations

Since the Wiener process fluctuates around its expectation 0 it can be ap-
proximated by means of symmetric random walks. As for random walks we
are interested in stochastic processes in continuous time which grow on av-
erage, i.e. which have a trend or drift. Proceeding from a Wiener process
with arbitrary σ (see Section 5.1) we obtain the generalized Wiener process
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{Xt; t ≥ 0} with drift rate μ and variance σ2 :

Xt = μ · t+ σ ·Wt , t ≥ 0 . (5.3)

The general Wiener process Xt is at time t, N(μt, σ2t)–distributed. For its
increment in a small time interval Δt we obtain

Xt+Δt −Xt = μ · Δt+ σ(Wt+Δt −Wt) .

For Δt→ 0 use the differential notation:

dXt = μ · dt+ σ · dWt (5.4)

This is only a different expression for the relationship (5.3) which we can also
write in integral form:

Xt =
∫ t

0

μds+
∫ t

0

σdWs (5.5)

Note, that from the definition of the stochastic integral it follows directly
that

∫ t
0
d Ws = Wt −W0 = Wt .

The differential notation (5.4) proceeds from the assumption that both the
local drift rate given by μ and the local variance given by σ2 are constant.
A considerably larger class of stochastic processes which is more suited to
model numerous economic and natural processes is obtained if μ and σ2 in
(5.4) are allowed to be time and state dependent. Such processes {Xt; t ≥ 0} ,
which we call Itô–processes, are defined as solutions of stochastic differential
equations:

dXt = μ(Xt, t)dt+ σ(Xt, t)dWt (5.6)

Intuitively, this means:

Xt+Δt −Xt = μ(Xt, t)Δt+ σ(Xt, t)(Wt+Δt −Wt),

i.e. the process’ increment in a small interval of length Δt after time t is
μ(Xt, t)·Δt plus a random fluctuation which is N(0, σ2(Xt, t)·Δt) distributed.
A precise definition of a solution of (5.6) is a stochastic process fulfilling the
integral equation

Xt −X0 =
∫ t

0

μ(Xs, s)ds+
∫ t

0

σ(Xs, s)dWs (5.7)

In this sense (5.6) is only an abbreviation of (5.7). For 0 ≤ t′ < t , it follows
immediately:

Xt = Xt′ +
∫ t

t′
μ(Xs, s)ds+

∫ t

t′
σ(Xs, s)dWs .



5.3 Stochastic Differential Equations 65

Since the increment of the Wiener process between t′ and t does not depen-
dent on the events which occurred up to time t′, it follows that an Itô–process
is Markovian.

Discrete approximations of (5.6) and (5.7) which can be used to simulate
Itô–processes are obtained by observing the process between 0 and t only at
evenly spaced points in time kΔt, k = 0, . . . , n , nΔt = t .

With Xk = XkΔt and Zk = (WkΔt −W(k−1)Δt)/
√

Δt we get

Xk+1 −Xk = μ(Xk, k) · Δt+ σ(Xk, k) · Zk+1 ·
√

Δt

or rather with the abbreviations μk(X) = μ(X, k)Δt , σk(X) = σ(X, k)
√

Δt :

Xn −X0 =
n∑

k=1

μk−1(Xk−1) +
n∑

k=1

σk−1(Xk−1) · Zk

with identical independently distributed N(0, 1)–random variables Z1, Z2, . . . .

Example 5.1
The Ornstein-Uhlenbeck (OU) process, a mean-reverting process, represents
a well-known example of a process with a constant variance σ(Xt, t) = σ and
nonconstant drift μ(Xt, t) = α(μ − Xt). The OU process has the following
form:

dXt = α(μ−Xt)dt+ σdWt, (5.8)

where α, μ and σ are positive constants. The drift term α(μ −Xt) in (5.8)
is negative when Xt > μ and it is positive when Xt < μ; so, even if the
process will never be free of random fluctuations, we can expect Xt to revert
back to μ whenever it has drifted away. In addition, because of the constant
local variance σ2 (not proportional to the level as in the case of geometric
Brownian motion), we expect Xt to fluctuate vigorously and to make many
crossings of the μ-level. The OU process can be approximated on a discrete
grid ti = iΔt, i = 0, 1, . . . by

Xti −Xti−1 = αμΔt− αXti−1Δt+ σ
√

ΔtZi

where (Zi) are independent standard normal random variables. Hence, the
OU process is the limit of AR(1) processes Xi = c+ φXi−1 + εi.

Example 5.2
The Cox-Ingersoll-Ross (CIR) process, also referred to as s square-root diffu-
sion process, represents an example of a stochastic process where the variance
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as well as the drift term are not constant. The CIR Process is given by

dXt = α(μ−Xt)dt+ σ
√
XtdWt, (5.9)

with a drift term μ(Xt, t) = α(μ−Xt) and a local variance σ(Xt, t) = σ
√
Xt;

α, μ, σ are positive constants. Figure 5.3 shows a typical path of a CIR
process.

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1
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1.1

t

S t

CIR process

Figure 5.3: Typical path of a CIR process (α = 5, μ = 1, σ = 0.2).
SFESimCIR

5.4 The Stock Price as a Stochastic Process

Stock prices are stochastic processes in discrete time which only take dis-
crete values due to the limited measurement scale. Nevertheless, stochastic
processes in continuous time are used as models since they are analytically
easier to handle than discrete models, e.g. the binomial or trinomial pro-
cess. However, the latter are more intuitive and prove to be very useful in
simulations.

Two features of the general Wiener process dXt = μdt + σ dWt make it an
unsuitable model for stock prices. First, it allows for negative stock prices,
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and second the local variability is higher for high stock prices. Hence, stock
prices St are modeled by means of the more general Itô–process:

dSt = μ(St, t)dt+ σ(St, t)dWt .

This model, however, does depend on the unknown functions μ(X, t) and
σ(X, t). A useful and simpler variant utilizing only two unknown real model
parameters μ and σ can be justified by the following reflection: The percent-
age return on the invested capital should on average not depend on the stock
price at which the investment is made, and of course, should not depend
on the currency unit (EUR, USD, ...) in which the stock price is quoted.
Furthermore, the average return should be proportional to the investment
horizon, as it is the case for other investment instruments. Putting things
together, we request:

E[dSt]
St

=
E[St+dt − St]

St
= μ · dt .

Since E[dWt] = 0 this condition is satisfied if

μ(St, t) = μ · St ,
for given St. Additionally,

σ(St, t) = σ · St
takes into consideration that the absolute size of the stock price fluctuation is
proportional to the currency unit in which the stock price is quoted. In sum-
mary, we model the stock price St as a solution of the stochastic differential
equation

dSt = μ · St dt+ σ · St · dWt ,

where μ is the expected return on the stock, and σ the volatility. Such a
process is called geometric Brownian motion because

dSt
St

= μdt+ σ dWt .

We can interpret this equation as follows. For small time Δt the change in
the stock can be approximated by

St+Δt − St = μStΔt+ σSt(Wt+Δt −Wt),

where Wt+Δt −Wt represents the change of the Brownian motion over the
time interval Δt. As Δt becomes smaller the approximation becomes more
accurate. A typical path of a geometric Brownian motion is plotted in Figure
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Figure 5.4: Typical path of a geometric Brownian motion (μ = 0.05, σ = 0.2).
SFEGBMProcess

5.4. The rough nature of the path corresponds to the fact that no paths of
a (geometric) Brownian motion are differentiable anywhere. We have chosen
as parameters a mean return of 5% and a volatility of 20% which can be
regarded as realistic values for stock price processes.

By applying Itôs lemma, which we introduce in Section 5.5, it can be shown
that for a suitable Wiener process {Yt; t ≥ 0} it holds

St = eYt bzw. Yt = logSt .

Since Yt is normally distributed, St is lognormally distributed. As random
walks can be used to approximate the general Wiener process, geometric
random walks can be used to approximate geometric Brownian motion and
thus this simple model for the stock price.
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Figure 5.5: Density comparison of lognormally and normally distributed ran-
dom variables. SFELogNormal

5.5 Itô’s Lemma

A crucial tool in dealing with stochastic differential equations is Itôs lemma.
If {Xt, t ≥ 0} is an Itô–process:

dXt = μ(Xt, t)dt+ σ(Xt, t) dWt , (5.10)

one is often interested in the dynamics of stochastic processes which are
functions of Xt: Yt = g(Xt) . Then {Yt; t ≥ 0} can also be described by a
solution of a stochastic differential equation from which interesting properties
of Yt can be derived, as for example the average growth in time t.

For a heuristic derivation of the equation for {Yt; t ≥ 0} we assume that g is
differentiable as many times as necessary. From a Taylor expansion it follows
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that:

Yt+dt − Yt = g(Xt+dt) − g(Xt)
= g(Xt + dXt) − g(Xt) (5.11)

=
dg

dX
(Xt) · dXt +

1
2
d2g

dX2
(Xt) · (dXt)2 + . . .

where the dots indicate the terms which can be neglected (for dt→ 0). Due to
equation (5.10) the drift term μ(Xt, t)dt and the volatility term σ(Xt, t)dWt

are the dominant terms since for dt → 0 they are of size dt and
√
dt respec-

tively.

In doing this, we use the fact that E[(dWt)2] = dt and dWt = Wt+dt −Wt is
of the size of its standard deviation,

√
dt. We neglect terms which are of a

smaller size than dt. Thus, we can express (dXt)2 by a simpler term:

(dXt)2 = (μ(Xt, t)dt+ σ(Xt, t) dWt)2

= μ2(Xt, t)(dt)2 + 2μ(Xt, t) σ(Xt, t) dt dWt + σ2(Xt, t)(dWt)2 .

We see that the first and the second terms are of size (dt)2 and dt · √dt
respectively. Therefore, both can be neglected. However, the third term is
of size dt. More precisely, it can be shown that dt→ 0 :

(dWt)2 = dt.

Thanks to this identity, calculus rules for stochastic integrals can be derived
from the rules for deterministic functions (as Taylor expansions for example).
Neglecting terms which are of smaller size than dt we obtain the following
version of Itôs lemma from (5.11):

Lemma 5.1 (Itôs Lemma)

dYt = dg(Xt)

=
(
dg

dX
(Xt) · μ(Xt, t) +

1
2
d2g

dX2
(Xt) · σ2(Xt, t)

)
dt

+
dg

dX
(Xt) · σ(Xt, t) dWt

or - dropping the time index t and the argument Xt of the function g and its
derivatives:

dg =
(
dg

dX
μ(X, t) +

1
2
d2g

dX2
σ2(X, t)

)
dt+

dg

dX
σ(X, t)dWt .
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Example 5.3
Consider Yt = logSt the logarithm of the geometric Brownian motion. For
g(X) = logX we obtain dg

dX = 1
X , d

2g
dX2 = − 1

X2 . Applying Itôs lemma for the
geometric Brownian motion with μ(X, t) = μX , σ(X, t) = σX we get:

dYt =
( 1
St
μSt − 1

2
1
S2
t

σ2 S2
t

)
dt+

1
St

· σ St dWt

= (μ− 1
2
σ2)dt+ σ dWt

The logarithm of the stock price is a generalised Wiener process with drift
rate μ∗ = μ− 1

2 σ
2 and variance rate σ2. Since Yt is N(μ∗t, σ2t)–distributed

St is itself lognormally distributed with parameters μ∗t and σ2t .

A generalized version of Itôs lemma for functions g(X, t) which are allowed
to depend on time t is:

Lemma 5.2 (Itôs lemma for functions depending explicitly on time)

dg =
(
∂g

∂X
· μ(X, t) +

1
2
∂2g

∂X2
σ2(X, t) +

∂g

∂t

)
dt+

∂g

∂X
σ(X, t)dWt (5.12)

Yt = g(Xt, t) is again an Itô process, but this time the drift rate is augmented
by an additional term ∂g

∂t (Xt, t).

Example 5.4
Consider a forward contract on a non-dividend paying stock. Let S0 denotes
spot price at time 0 and T is the time to maturity of the forward contract.
We assume that the risk-free interest rate r is constant for all maturities.
The forward price at time 0 is then given by

F0 = S0e
rT (5.13)

and at a general time t < T by

Ft = Ste
r(T−t). (5.14)

Assuming that the process {St, t ≥ 0} is given by (5.10), we use Itô’s lemma
to determine the process for Ft. For g(X, t) = Xer(T−t) we obtain:

dg

dX
= er(T−t) d2g

dX2
= 0

dg

dt
= −rXer(T−t).
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Applying (5.12) to the geometric Brownian motion with μ(X, t) = μX , σ(X,
t) = σX we get

dFt =
{
er(T−t)μSt − rSte

r(T−t)
}
dt+ er(T−t)σStdWt.

Substituting Ft = Ste
r(T−t), this becomes

dFt = (μ− r)Ftdt+ σFtdWt.

Like St, the process {Ft, t ≥ 0} follows a geometric Brownian motion, how-
ever with an expected growth rate of μ− r rather than μ.

5.6 Recommended Literature

This chapter briefly summarises results which belong to the main topics of
stochastic analysis. Numerous textbooks, of diverse levels, introduce the
calculus of stochastic integrals and stochastic differential equations, see for
example, von Weizsäcker and Winkler (1990), Mikosch (1998) or Karatzas
and Shreve (1999).



6 Black–Scholes Option Pricing
Model

6.1 Black–Scholes Differential Equation

Simple generally accepted economic assumptions are insufficient to develop
a rational option pricing theory. Assuming a perfect financial market in
Section 2.1 leads to elementary arbitrage relations which options have to ful-
fill. While these relations can be used as a verification tool for sophisticated
mathematical models, they do not provide an explicit option pricing func-
tion depending on parameters such as time and the stock price as well as
the options underlying parameters K, T. To obtain such a pricing function
the value of the underlying financial instrument (stock, currency, ...) has to
be modelled. In general, the underlying instrument is assumed to follow a
stochastic process either in discrete or in continuous time. While the lat-
ter are analytically easier to handle, the former, which we will consider as
approximations of continuous time processes for the time being, are particu-
larly useful for numerical computations. In the second part of this text, the
discrete time version will be discussed as financial time series models.

A model for stock prices which is frequently used and is also the basis of
the classical Black–Scholes approach, is the so–called geometric Brownian
motion. In this model the stock price St is a solution of the stochastic differ-
ential equation

dSt = μStdt+ σStdWt. (6.1)

Equivalently, the process of stock price returns can be assumed to follow a
standard Brownian motion, i.e.

dSt
St

= μdt+ σdWt. (6.2)

The drift μ is the expected return on the stock in the time interval dt. The
volatility σ is a measure of the return variability around its expectation μ.
Both parameters μ and σ are dependent on each other and are important
factors of the investors’ risk preferences involved in the investment decision:
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The higher the expected return μ, the higher, in general, the risk quantified
by σ.

Modelling the underlying as geometric Brownian motion provides a useful
approximation to stock prices accepted by practitioners for short and medium
maturity. In real practice, numerous model departures are known: in some
situations the volatility function σ(x, t) of the general model (5.10) is different
from the linear specification σ ·x of geometric Brownian motion. The Black–
Scholes’ approach is still used to approximate option prices, and its basic idea
to derive option prices can be applied to more general stock price models.

Black–Scholes’ approach relies on the idea introduced in Chapter 2, i.e. du-
plicating the portfolio consisting of the option by means of a second portfolio
consisting exclusively of financial instruments whose values are known. The
duplicating portfolio is chosen in such a way both portfolios have equal values
at the option’s maturity T. It then follows from the assumption of a perfect
financial market, and in particular of the lack of arbitrage opportunities, that
both portfolios must have equal values at any time prior to time T. The du-
plicating portfolio can be created in two equivalent ways which we illustrate
with an example of a call option on a stock with price St:

1. Consider a portfolio consisting of one call of which the price is to be
computed. The duplicating portfolio is composed of stocks and risk–less zero
bonds of which the quantity adapts continuously to changes in the stock
price. Without loss of generality, the zero bond’s nominal value can be set
equal to one since the number of zero bonds in the duplicating portfolio can
be chosen arbitrarily. At time t the two portfolios consist of:

Portfolio A: One call option (long position) with delivery price K and ma-
turity date T.

Portfolio B: nt = n(St, t) stocks and mt = m(St, t) zero bonds with nominal
value BT = 1 and maturity date T.

2. Consider a perfect hedge–portfolio, which consists of stocks and written
calls (by means of short selling). Due to a dynamic hedge–strategy the port-
folio bears no risk at any time, i.e. profits due to the calls are neutralized by
losses due to the stocks. Correspondingly, the duplicating portfolio is also
risk free and consists exclusively of zero bonds. Again, the positions are ad-
justed continuously to changes in the stock price. At time t the two portfolios
are composed of:

Portfolio A: One stock and nt = n(St, t) (by means of short selling) written
call options on the stock with delivery price K and maturity date T.
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Portfolio B: mt = m(St, t) zero bonds with face value BT = 1 and maturity
date T.

Let T ∗ = T be the time when the call option expires as worthless, and
otherwise let T ∗ be the time at which the option is exercised. While for a
European call option it holds T ∗ = T at any time, an American option can
be exercised prior to maturity. We will see that both in 1. the call value is
equal to the value of the duplicating portfolio, and in 2. the hedge–portfolio’s
value equals the value of the risk free zero bond portfolio at any time t ≤ T ∗,
and thus the same partial differential equation for the call value results; this
is called Black–Scholes equation.

The Black–Scholes approach can be applied to any financial instrument U
contingent on an underlying with price St if the latter price follows a geo-
metric Brownian motion, and if the derivatives price Ft is a function only of
the price St and time: Ft = F (St, t). Then, according to the theorem below,
a portfolio duplicating the financial instrument exists, and the approach il-
lustrated in 1. can be applied to price the instrument. Pricing an arbitrary
derivative the duplicating portfolio must not only have the same value as
the derivative at exercising time T ∗, but also the same cash flow pattern,
i.e. the duplicating portfolio has to generate equal amounts of withdrawal
profits or contributing costs as the derivative. The existence of a perfect
hedge–portfolio of approach 2. can be shown analogously.

Theorem 6.1
Let the value St of an object be a geometric Brownian motion (6.1). Let U
be a derivative contingent on the object and maturing in T. Let T ∗ ≤ T be
the time at which the derivative is exercised, or T ∗ = T if it is not. Let the
derivative’s value at any time t ≤ T ∗ be given by a function F (St, t) of the
object’s price and time.

a) A portfolio exists consisting of the underlying object and risk free bonds
which duplicates the derivative in the sense that it generates up to time
T ∗ the same cash flow pattern as U , and that it has the same value as
U at time T ∗.

b) The derivatives value function F (S, t) satisfies Black–Scholes partial
differential equation

∂F (S, t)
∂t

− rF (S, t) + bS
∂F (S, t)
∂S

+
1
2
σ2S2 ∂

2F (S, t)
∂S2

= 0, t ≤ T ∗.

(6.3)
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Proof:
To simplify we proceed from the assumption that the object is a stock paying
a continuous dividend yield d, and thus involving costs of carry b = r − d
with r the continuous compounded risk free interest rate. Furthermore, we
consider only the case where U is a derivative on the stock, and that U does
not generate any payoff before time T ∗.

We construct a portfolio consisting of nt = n(St, t) shares of the stock and
mt = m(St, t) zero bonds with maturity date T and a face value of BT = 1.
Let

Bt = BT e
−r(T−t) = e−r(t−T )

be the zero bond’s value discounted to time t. We denote the time t portfolio
value by

Vt
def= V (St, t) = n(St, t) · St +m(St, t) ·Bt.

It can be shown that nt and mt can be chosen so that at exercise time and
respectively at maturity of U , the portfolio value is equal to the derivative’s
value, i.e. V (ST∗ , T ∗) = F (ST∗ , T ∗). Furthermore, it can be shown that the
portfolio does not generate any cash flow prior to T ∗, i.e. it is neither allowed
to withdraw nor to add any money before time T ∗. All changes in the posi-
tions must be realized by buying or selling stocks or bonds, or by means of
dividend yields.

Firstly, we investigate how the portfolio value Vt changes in a small period of
time dt. By doing this, we use the notation dVt = Vt+dt−Vt, dnt = nt+dt−nt
etc.

dVt = nt+dtSt+dt +mt+dtBt+dt − ntSt −mtBt

= dntSt+dt + ntdSt + dmtBt+dt +mtdBt,

and thus

dVt = dnt(St + dSt) + ntdSt + dmt(Bt + dBt) +mtdBt. (6.4)

Since the stochastic process St is a geometric Brownian motion and therefore
an Itô–process (5.10) with μ(x, t) = μx and σ(x, t) = σx, it follows from the
generalised Itô lemma (5.12) and equation (6.1)

dnt =
∂nt
∂t

dt+
∂nt
∂S

dSt +
1
2
∂2nt
∂S2

σ2S2
t dt, (6.5)

and an analogous relation for mt. Using

(dSt)2 = (μStdt+ σStdWt)2 = σ2S2
t (dWt)2 + O(dt) = σ2S2

t dt+ O(dt),
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dBt = rBtdt, dSt · dt = O(dt) and dt2 = O(dt)

and neglecting terms of size smaller than dt it follows:

dnt(St + dSt) =
(∂nt
∂t

dt+
∂nt
∂S

dSt +
1
2
∂2nt
∂S2

σ2S2
t dt
)
St +

∂nt
∂S

σ2S2
t dt, (6.6)

dmt(Bt+dBt) =
(∂mt

∂t
dt+

∂mt

∂S
dSt+

1
2
∂2mt

∂S2
σ2S2

t dt
)
Bt. (6.7)

The fact that neither the derivative nor the duplicating portfolio generates
any cash flow before time T ∗ means that the terms dnt(St+dSt) and dmt(Bt+
dBt) of dVt in equation (6.4) which correspond to purchases and sales of stocks
and bonds have to be financed by the dividend yields. Since one share of the
stock pays in a small time interval dt a dividend amount of d ·St ·dt, we have

d · ntSt · dt = (r − b) · ntSt · dt = dnt(St + dSt) + dmt(Bt + dBt).

Substituting equations (6.6) and (6.7) in the latter equation, it holds:

0 = (b− r)ntStdt+
(∂mt

∂t
dt+

∂mt

∂S
dSt +

1
2
∂2mt

∂S2
σ2S2

t dt
)
Bt

+
(∂nt
∂t

dt+
∂nt
∂S

dSt +
1
2
∂2nt
∂S2

σ2S2
t dt
)
St +

∂nt
∂S

σ2S2
t dt.

Using equation (6.1) and summarising the stochastic terms with differential
dWt as well as the deterministic terms with differential dt containing the drift
parameter μ, and all other deterministic terms gives:

0 =
(∂nt
∂S

St +
∂mt

∂S
Bt

)
μStdt

+
{(∂nt

∂t
+

1
2
∂2nt
∂S2

σ2S2
t

)
St +

∂nt
∂S

σ2S2
t

+
(∂mt

∂t
+

1
2
∂2mt

∂S2
σ2S2

t

)
Bt + (b− r)ntSt

}
dt

+
(∂nt
∂S

St +
∂mt

∂S
Bt

)
σStdWt. (6.8)

This is only possible if the stochastic terms disappear, i.e.

∂nt
∂S

St +
∂mt

∂S
Bt = 0. (6.9)
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Thus the first term in (6.8) is neutralized as well. Hence the middle term
must also be zero:

(∂nt
∂t

+
1
2
∂2nt
∂S2

σ2S2
t

)
St +

∂nt
∂S

σ2S2
t

+
(∂mt

∂t
+

1
2
∂2mt

∂S2
σ2S2

t

)
Bt + (b− r)ntSt = 0. (6.10)

To further simplify we compute the partial derivative of equation (6.9) with
respect to S :

∂2nt
∂S2

St +
∂nt
∂S

+
∂2mt

∂S2
Bt = 0 (6.11)

and substitute this in equation (6.10). We then obtain

∂nt
∂t

St +
∂mt

∂t
Bt +

1
2
∂nt
∂S

σ2S2
t + (b− r)ntSt = 0. (6.12)

Since the stock price St does not depend explicitly on time, i.e. ∂St/∂t = 0,
the derivative of the portfolio value Vt = ntSt + mtBt with respect to time
gives:

∂Vt
∂t

=
∂nt
∂t

St +
∂mt

∂t
Bt +mt

∂Bt
∂t

=
∂nt
∂t

St +
∂mt

∂t
Bt +mtrBt.

This implies

∂nt
∂t

St +
∂mt

∂t
Bt =

∂Vt
∂t

− rmtBt =
∂Vt
∂t

− r(Vt − ntSt).

Substituting this equation in equation (6.12) we eliminate mt and obtain

1
2
σ2S2

t

∂n

∂S
+
∂Vt
∂t

+ bntSt − rVt = 0. (6.13)

Since the zero bond valueBt is independent of the stock price St, i.e. ∂Bt/∂S =
0, the derivative of the portfolio value Vt = ntSt +mtBt with respect to the
stock price gives (using equation (6.9))

∂Vt
∂S

=
∂nt
∂S

St + nt +
∂mt

∂S
Bt = nt,

and thus
nt =

∂Vt
∂S

. (6.14)

That is, nt is equal to the so–called delta or hedge–ratio of the portfolio (see
Section 6.4.1). Since

mt =
Vt − ntSt

Bt
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we can construct a duplicating portfolio if we know Vt = V (St, t). We can
obtain this function of stock price and time as a solution of the Black–Scholes
differential equation

∂V (S, t)
∂t

− rV (S, t) + bS
∂V (S, t)
∂S

+
1
2
σ2S2 ∂

2V (S, t)
∂S2

= 0 (6.15)

which results from substituting equation (6.14) in equation (6.13). To deter-
mine V we have to take into account a boundary condition which is obtained
from the fact that the cash flows at exercising time, respective maturity,
i.e. at time T ∗, of the duplicating portfolio and the derivative are equal:

V (ST∗ , T ∗) = F (ST∗ , T ∗). (6.16)

Since the derivative has, at any time, the same cash flow as the duplicating
portfolio, F (S, t) also satisfies the Black–Scholes differential equation, and at
any time t ≤ T ∗ it holds Ft = F (St, t) = V (St, t) = Vt. �

Black–Scholes’ differential equation fundamentally relies on the assumption
that the stock price can be modelled by a geometric Brownian motion. This
assumption is only justified, if the theory building on it reproduces the ar-
bitrage relations derived in Chapter 2. For a particular example we verify
this feature. Let V (St, t) be the value of a future contract with delivery price
K and maturity date T . The underlying object involves costs of carry at a
continuous rate b. Since V (St, t) depends only on the price of the underlying
and time it satisfies the conditions of Theorem 6.1. From Theorem 2.1 and
substituting τ = T − t for the time to maturity it follows

V (S, t) = Se(r−b)(t−T ) −Ker(t−T ).

Substituting the above equation into equation (6.3) it can be easily seen that
it is the unique solution of Black–Scholes’ differential equation with boundary
condition V (S, T ) = S −K. Hence, Black–Scholes’ approach gives the same
price for the future contract as the model free noarbitrage approach.

Finally, we point out that modelling stock prices by geometric Brownian
motion gives reasonable solutions for short and medium time spans. Applying
the model to other underlyings such as currencies or bonds is more difficult.
Bond options typically have significant by longer times to maturity than
stock options. Their value does not only depend on the bond price but also
on interest rates which have to be considered stochastic. Modelling interest
rates reasonably involves other stochastic process, which we will discuss in
later chapters.
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Generally exchange rates cannot be modelled by geometric Brownian mo-
tion. Empirical studies show that the performance of this model depends on
the currency and on the time to maturity. Hence, applying Black–Scholes’
approach to currency options has to be verified in each case. If the model is
used, the foreign currency has to be understood as the option underlying with
a continuous foreign interest rate d corresponding to the continuous dividend
yield of a stock. Thus, continuous costs of carry with rate b = r − d equal
the interest rate differential between the domestic and the foreign market. If
the investor buys the foreign currency early, then he cannot invest his capital
at home any more, and thus he loses the domestic interest rate r. However,
he can invest his capital abroad and gain the foreign interest rate d. The
value of the currency option results from solving Black–Scholes’ differential
equation (6.3) respecting the boundary condition implied by the option type.

6.2 Black–Scholes Formula for European Options

In this section we are going to use the Black–Scholes’ equation to compute the
price of European options. We keep the notation introduced in the previous
chapter. That is, we denote

C(S, t) = CK,T (S, t), P (S, t) = PK,T (S, t)

the value of a European call respectively put option with exercise price K
and maturity date T at time t ≤ T, where the underlying, for example a
stock, at time t has a value of St = S. The value of a call option thus satisfies
for all prices S with 0 < S <∞ the differential equation

rC(S, t) − bS
∂C(S, t)
∂S

− 1
2
σ2S2 ∂

2C(S, t)
∂S2

=
∂C(S, t)

∂t
, 0 ≤ t ≤ T, (6.17)

C(S, T ) = max{0, S −K}, 0 < S <∞, (6.18)
C(0, t) = 0, lim

S→∞
C(S, t) − S = 0, 0 ≤ t ≤ T. (6.19)

The first boundary condition (6.18) follows directly from the definition of a
call option, which will only be exercised if ST > K thereby procuring the
gain ST −K. The definition of geometric Brownian motion implies that the
process is absorbed by zero. In other words, if St = 0 for one t < T it follows
ST = 0. That is the call will not be exercised, which is formulated in the
first part of condition (6.19). Whereas the second part of (6.19) results from
the reflection that the probability of the Brownian motion falling below K is
fairly small once it has attained a level significantly above the exercise price.
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If St 
 K for a t < T then it holds with a high probability that ST 
 K.
The call will be, thus, exercised and yields the cash flow ST −K ≈ ST .

The differential equation (6.17) subject to boundary conditions (6.18), (6.19)
can be solved analytically. To achieve this, we transform it into a differential
equation known from the literature. Firstly, we substitute the time variable
t by the time to maturity τ = T − t. By doing this, the problem with final
condition (6.18) in t = T changes to a problem subject to an initial condition
in τ = 0. Subsequently, we multiply (6.17) by 2/σ2 and replace the parameters
r, b by

α =
2r
σ2
, β =

2b
σ2
,

as well as the variables τ, S by

v = σ2(β − 1)2
τ

2
, u = (β − 1) log

S

K
+ v.

While for the original parameters 0 ≤ S < ∞, 0 ≤ t ≤ T, for the new
parameters it holds that:

−∞ < u <∞, 0 ≤ v ≤ 1
2
σ2(β − 1)2T def= vT .

Finally, we set
g(u, v) = erτC(S, T − τ)

and obtain the new differential equation

∂2g(u, v)
∂u2

=
∂g(u, v)
∂v

. (6.20)

with the initial condition

g(u, 0) = Kmax{0, e u
β−1 − 1} def= g0(u), −∞ < u <∞. (6.21)

Problems with initial conditions of this kind are well known from the litera-
ture on partial differential equations. They appear, for example, in modelling
heat conduction and diffusion processes. The solution is given by

g(u, v) =

∞∫

−∞

1
2
√
πv
g0(ξ)e−

(ξ−u)2

4v dξ.

The option price can be obtained by undoing the above variable and parame-
ter substitutions. In the following we denote, as in Chapter 2, by C(S, τ) the
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call option price being a function of the time to maturity τ = T − t instead
of time t. Then it holds

C(S, τ) = e−rτg(u, v) = e−rτ
∞∫

−∞

1
2
√
πv
g0(ξ)e−

(ξ−u)2

4v dξ.

Substituting ξ = (β − 1) log(x/K) we obtain the original terminal condition
max{0, x−K}. Furthermore, replacing u and v by the variables S and τ we
obtain

C(S, τ) = e−rτ
∞∫

0

max(0, x−K)
1√

2πσ
√
τx

exp
{
− [log x− {logS + (b− 1

2σ
2)τ}]2

2σ2τ

}
dx. (6.22)

In the case of geometric Brownian motion ST −St is lognormally distributed,
i.e. log(ST −St) is normally distributed with parameters (b− 1

2σ
2)τ and σ2τ.

The conditional distribution of ST given St = S is therefore lognormal as
well but with parameters logS+ (b− 1

2σ
2)τ and σ2τ. However, the integrant

in equation (6.22) is except for the term max(0, x − K) the density of the
latter distribution. Thus, we can interpret the price of a call as the discounted
expected option payoff max(0, ST−K), which is the terminal condition, given
the current stock price S :

C(S, τ) = e−rτ E[max(0, ST −K) |St = S]. (6.23)

This property is useful when deriving numerical methods to compute option
prices. But before doing that, we exploit the fact that equation (6.22) con-
tains an integral with respect to the density of the lognormal distribution
to further simplify the equation. By means of a suitable substitution we
transform the term into an integral with respect to the density of the normal
distribution and we obtain

C(S, τ) = e(b−r)τSΦ(y + σ
√
τ) − e−rτKΦ(y), (6.24)

where we use y as a abbreviation for

y =
log S

K + (b− 1
2σ

2)τ
σ
√
τ

. (6.25)

Φ denotes the standard normal distribution function

Φ(y) =
1√
2π

∫ y

−∞
e−

z2
2 dz.
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Figure 6.1: Black-Scholes prices C(S, τ) for different times to maturity τ =
0.6 and r = 0.1 and strike price K = 100. Left figure σ = 0.15,
right figure σ = 0.3.

SFEbsprices

Equations (6.24) and (6.25) are called the Black–Scholes Formulae. Figure
6.1 represents the Black-Scholes prices for the European call option C(S, τ)
for different values of times to maturity τ . When τ goes to 0, the price of the
call is approaching to the payoff of the option. The economic reason behind
this is that there is a little probability for fluctuations in the underlying price
within such a small interval τ .

Figure 6.2 displays the Black-Scholes price C(S, τ) as a function of St, which
is modelled as a geometric Brownian motion. The figure shows that the op-
tion price moves according to the price fluctuations of the underlying.

For the limit cases S 
 K and S = 0 it holds:

� If S 
 K then y 
 0 and thus Φ(y+σ
√
τ) ≈ Φ(y) ≈ 1. It follows that the

value of a call option on a non dividend paying stock, b = r, approaches
S − e−rτK. That is, it can be approximated by the current stock price
minus the discounted exercise price.

� If S = 0 then y = −∞ and therefore Φ(y) = 0. Thus the option is
worthless: C(0, τ) = 0.

The corresponding Black–Scholes Formula for the price P (S, τ) of a Euro-
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pean put option can be derived by solving Black–Scholes differential equation
subject to suitable boundary conditions. However, using the put–call parity
(Theorem 2.3) is more convenient:

P (S, τ) = C(S, τ) − Se(b−r)τ +Ke−rτ .

From this and equation (6.24) we obtain

P (S, τ) = e−rτKΦ(−y) − e(b−r)τSΦ(−y − σ
√
τ). (6.26)

As we see the value of European put and call options can be computed by
explicit formulae. The terms in equation (6.24) for, say the value of a call
option, can be interpreted in the following way. Restricting to the case of a
non dividend paying stock, b = r, the first term, SΦ(y + σ

√
τ), represents

the value of the stock which the option holder obtains when he decides to
exercise the option. The other term, e−rτKΦ(y), represents the value of the
exercise price. The quotient S/K influences both terms via the variable y.

Deriving Black–Scholes’ differential equation we saw, in particular, that the
value of a call option had been duplicated by means of bonds and stocks.
The amount of money invested in stocks was ∂C

∂S S with ∂C
∂S being the hedge

ratio. This ratio, also called delta, determines the relation of bonds and
stocks necessary to hedge the option position. Computing the first derivative
of Black–Scholes’ formula in equation (6.24) with respect to S we obtain

∂C(S, t)
∂S

= Φ(y + σ
√
τ).

Thus the first term in equation (6.24) reflects the amount of money of the
duplicating portfolio invested in stocks, the second term the amount invested
in bonds.

6.2.1 Numerical Approximation

Since the standard normal distribution can be evaluated only numerically, the
implementation of Black–Scholes’ formula depending on the standard normal
distribution requires an approximation of the latter. This approximation can
have an impact on the computed option value. To illustrate, we consider
several approximation formulae, see for example Hastings (1955)

a.) The normal distribution can be approximated in the following way:

Φ(y) ≈ 1 − (a1t+ a2t
2 + a3t

3)e−
y2

2 , where t = (1 + by)−1 and
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Figure 6.2: Upper panel: sample path of the price process of the underlying
S, lower panel: Black-Scholes prices C(S, τ) for strike K = 100,
r = 0.05 and expiry at T = 1 where the initial value of the
underlying is taken from the above sample path.
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b = 0.332672527,
a1 = 0.17401209,
a2 = −0.04793922,
a3 = 0.373927817.

The approximating error is independent of y of size 10−5.
SFENormalApprox1

b.)

Φ(y) ≈ 1 − (a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5)e−
y2

2 , where t = (1 + by)−1 and

b = 0.231641888,
a1 = 0.127414796,
a2 = −0.142248368,
a3 = 0.71070687,
a4 = −0.726576013,
a5 = 0.530702714.

The error of this approximation is of size 10−7. SFENormalApprox2

c.) An approximation of the normal distribution, with error size 10−5 is
given by:

Φ(y) ≈
{

0.5 − s, if y < 0
0.5 + s, else

where t = |y|,

s =
1
2
− 1

2(1 + a1t+ a2t2 + a3t3 + a4t4 + a5t5)8

and

a1 = 0.099792714,
a2 = 0.044320135,
a3 = 0.009699203,
a4 = −0.000098615,
a5 = 0.00581551.

SFENormalApprox3
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x norm-a norm-b norm-c norm-d iter

1.0000 0.8413517179 0.8413447362 0.8413516627 0.8413441191 6
1.1000 0.8643435425 0.8643338948 0.8643375717 0.8643341004 7
1.2000 0.8849409364 0.8849302650 0.8849298369 0.8849309179 7
1.3000 0.9032095757 0.9031994476 0.9031951398 0.9031993341 8
1.4000 0.9192515822 0.9192432862 0.9192361959 0.9192427095 8
1.5000 0.9331983332 0.9331927690 0.9331845052 0.9331930259 9
1.6000 0.9452030611 0.9452007087 0.9451929907 0.9452014728 9
1.7000 0.9554336171 0.9554345667 0.9554288709 0.9554342221 10
1.8000 0.9640657107 0.9640697332 0.9640670474 0.9640686479 10
1.9000 0.9712768696 0.9712835061 0.9712842148 0.9712839202 11
2.0000 0.9772412821 0.9772499371 0.9772538334 0.9772496294 12

Table 6.1: Several approximations to the normal distribution

d.) Finally we present the Taylor expansion:

Φ(y) ≈ 1
2

+
1√
2π

(
y − y3

1!213
+

y5

2!225
− y7

3!237
+ · · ·

)

=
1
2

+
1√
2π

∞∑

n=0

(−1)n
y2n+1

n!2n(2n+ 1)
.

By means of this series the normal distribution can be approximated ar-
bitrarily close, depending on the number of terms used in the summation.
Increasing the number of terms increases the number of arithmetic operations
as well.

SFENormalApprox4

Table 6.1 compares all four approximation formulae. The Taylor series was
truncated after the first term where the absolute value was smaller than 10−5.
The last column shows the number of terms used.

Table 6.2 shows the price of a particular European call option computed by
means of the four approximations presented above.

6.3 Simulation

Simulation techniques are essential tools of financial engineering. Their per-
formance depends decisively on the quality of random numbers used, and
today one cannot reply on random numbers generators in software package
to be satisfactory in every respect. For applications, it should be checked that
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Stock price St 230.00 EUR
Exercise price K 210.00 EUR
Time to maturity τ = T − t 0.50000
Continuous interest rate r 0.04545
Volatility σ 0.25000
No dividends

norm-a norm-b norm-c norm-d
Option prices 30.74262 30.74158 30.74352 30.74157

Table 6.2: Prices of a European call option for different approximations of
the normal distribution SFEBSCopt1

the generated random numbers reflect all the important features, depending
on the particular application. Below, we give a short discussion of simulating
random variables.

6.3.1 Linear Congruential Generator

One of the most common pseudo random number generators is the linear
congruential generator which uses a recurrence scheme to generate numbers:

Ni = (aNi−1 + b) mod M (6.27)
Ui = Ni/M (6.28)

whereNi is the sequence of pseudo random numbers and (a, b,M) are generat-
or-specific integer constants. mod is the modulo operation, a the multiplier
and b the increment, a, b,N0 ∈ 0, 1, . . . ,M − 1 with a 
= 0.

The linear congruential generator starts choosing an arbitrary seed N0 and
will always produce an identical sequence from that point on. The maximum
amount of different numbers the formula can produce is the modulus M . The
pseudo random variables Ni/M are uniformly distributed.

The period of a general linear congruential generator Ni is at most M , but
in most cases it is less than that. The period should be large in order to
ensure randomness, otherwise a small set of numbers can make the outcome
easy to forecast. It may be convenient to set M = 232, since this makes the
computation of aNi−1 + b mod M quite efficient.
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In particular, N0 = 0 must be ruled out in case b = 0, otherwise Ni = 0
would repeat. If a = 1, the sequence is easy to forecast and the generated
sets are:

Nn = (N0 + nb) mod M

The linear congruential generator will have a full period if, Knuth (1997):

1. b and M are prime.

2. a− 1 is divisible by all prime factors of M .

3. a− 1 is a multiple of 4 if M is a multiple of 4.

4. M >max(a, b,N0).

5. a > 0, b > 0.

Exactly, when the period is M , a grid point on a lattice over the interval [0,1]
with size 1

M is occupied once.

Once the Ni numbers are generated, they can be arranged in m-tupels
(Ni, Ni+1, ..., Ni+m−1) for i ≥ 1. The corresponding points (Ui, ..., Ui+m−1) ∈
[0, 1]m will lie on (m− 1) dimensional hyperplanes (parallel straight lines for
m = 2). Analysing the case for two planes or m = 2, where the distance
between planes is large, the sequence is:

Ni = (aNi + b) mod M = aNi+1 + b− kM

for kM ≤ aNi−1 + b < (k + 1)M .

For all integers Z0, Z1:

Z0Ni−1 + Z1Ni = Z0Ni−1 + Z1(aNi−1 + b− kM)
= Ni−1(Z0 + aZ1) + Z1b− Z1kM

= M(Ni−1
Z0 + aZ1

M
− Z1k) + Z1b

Hence

Z0Ui−1 + Z1Ui = c+ Z1bM
−1 (6.29)

Therefore, for a given tupel (Z0, Z1) several parallel straight lines in the
(Ui−1, Ui) plane are defined, one for each c = c(i). Moreover, the distri-
bution of the random numbers will be subject to the minimum number of
hyperplanes or the maximum distance between them. That means, if a tupel
exists (Z0, Z1) with only few of its straight lines cutting the square [0, 1]2,
then there will be areas of the square without random points, which will not
satisfy the condition of a uniform distribution of the points in the unit square.
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Notice that the variable c is an integer since only integer tupels are admitted
and they require

Z0 + aZ1 = 0 mod M
The number of straight lines will be defined by solving c in equation (6.29).
Applying Ui ∼ U [0, 1) an interval cmin ≤ c ≤ cmax is obtained. For each c in
that interval, its straight line cuts the square [0, 1]2.

Example 6.1 Consider the sequence Ni = 2Ni−1 mod 11, with values a =
2, b = 0,M = 11. The solutions to equation (6.29) are Z0 = −2 and Z1 = 1.
The family of straight lines in the (Ui−1, Ui) plane looks like:

−2Ui−1 + Ui = c

For Ui ∼ U [0, 1], the variable c is defined over the interval (−2, 1). Since c
is an integer, only c = −1 and c = 0 hold and cut the interior of the square
[0, 1)2. Figure 6.3 shows that the points generated by the algorithm are lying
on the straight lines with c = −1 and c = 0, whose points form a lattice.
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Figure 6.3: The scatterplot of (Ui−1, Ui)
SFErangen1

Example 6.2 Suppose Ni = 1229Ni−1 mod 2048. The values of the tupel
(Z0, Z1) are Z0 = −1 and Z1 = 5, because

−1 + 1229(5) = 6144 = 3(2048)



6.3 Simulation 91

The family of straight lines in the (Ui−1, Ui) plane is

−1Ui−1 + 5Ui = c

and the distance between the straight lines over the vertical Ui axis is 1
Z1

= 1
5 .

Figure 6.4 shows that all the points (Ui−1, Ui) generated are lying on six
straight lines, with c ∈ −1, 0, 1, 2, 3, 4.
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Figure 6.4: The scatterplot of (Ui−1, Ui)
SFErangen2

Pseudo random numbers produced by linear congruential generators are ex-
tremely sensitive to the choice of a, b and M . Historically, poor choices had
ruined implementations of linear congruential generators. A famous example
of this is RANDU, the official IBM U [0, 1] generator for years. It is considered
to be one of the most ill-conceived random number generators. The RANDU
generator is defined as

Ni = aNi−1 mod M

with a = 216 + 3, M = 231 and N0 odd. The defined values were chosen,
because with a 32 bit integer word size the arithmetic of mod 231 and
216 + 3 = 65539 calculations could be done quickly, see Knuth (1997).

This generator fails the spectral test for dimensions greater than 2, which is
a quality test of a linear congruential generators. It is based on the fact that
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if a linear congruential generator is used to choose points in an n-dimensional
space, triples of points will lie on, at most, M

1
n hyperplanes. This is due to

serial correlation between successive values of the sequence Ni. As a result
of the wide use of RANDU in the early 70’s many simulation studies from
that time are seen as suspicious, Press, Teukolsky and Vetterling (1992).

To show the problem with the defined values consider the previous example,
but this time every term should be taken with mod 231. After recursion,
the random points in the cube [0, 1]3 lie on only 15 planes. Figure 6.5 shows
the scatterplot (Ui−2, Ui−1, Ui) for the previous example using RANDU gen-
erator.

1
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3

Figure 6.5: The scatterplot of (Ui−2, Ui−1, Ui)
SFErandu

In practice, many common linear congruential generators fail statistical sig-
nificance tests when exhibiting shorter than expected periods for some seed
states, poor dimensional distribution, dependence between successive values,
some bits being more random than others and lack of uniformity. A dis-
advantage of the linear congruential generators is the restrictedness of the
period M , which is limited to 32 bit size. However, this can be corrected by
shuffling the random numbers in a random way and the period will get close
to infinity.
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6.3.2 Fibonacci Generators

Another example of pseudo random number generators are the Fibonacci gen-
erators, whose aim is to improve the standard linear congruential generator.
These are based on a Fibonacci sequence:

Ni+1 = Ni +Ni−1 mod M

This recursion formula is related to the Golden ratio. The ratio of consecutive
Fibonacci numbers F (n+1)

F (n) converges to the golden ratio γ as the limit, defined

as one solution equal to 1+
√

5
2 = 1.6180 of the equation x = 1 + 1

x .

The original formula is a three term recursion, which is not appropriate for
generating random numbers. The modified approach, the lagged Fibonacci
generator is defined as

Ni+1 = Ni−ν +Ni−μ mod M

for any ν, μ ∈ N.

The quality of the outcome for this algorithm is sensitive to the choice of
the initial values, ν and μ. Any maximum period of the lagged Fibonacci
Generator has a large number of different possible cycles. There are methods
where a cycle can be chosen, but this might endanger the randomness of
future outputs and statistical defects may appear.

Example 6.3 Let ν = 17 and μ = 5 be values in N, the lagged Fibonnaci
generator is:

Ui = (Ui−17 − Ui−5)

if Ui < 0 then set Ui = Ui + 1.0.

This recursion produces random numbers Ui ∈ [0, 1) and requires the gen-
eration of the initial seventeen uniforms by a congruential generator. The
algorithm for Fibonacci generators with seed N0, equal to any number, is
simplified as follows:

Repeat:

ζ = Ui − Uj

if ζ < 0: ζ = ζ + 1

Ui = ζ

i = i− 1
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j = j − 1

if i = 0: i = 17

if j = 0: j = 17

Figure 6.6 shows 10000 random points generated with the Fibonacci Algo-
rithm, where the initial uniforms random variables U1 . . . U17 were calcu-
lated with a linear congruential generator with values M=714025, a=1366,
b=150889. Notice that the points show a random structure.
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Figure 6.6: The scatterplot of (Ui−1, Ui)
SFEfibonacci

6.3.3 Inversion Method

Many programming languages can generate pseudo-random numbers which
are distributed according to the standard uniform distribution and whose
probability is the length b − a of the interval (a, b) ∈ (0, 1). The inverse
method is a method of sampling a random number from any probability
distribution, given its cumulative distribution function (cdf).

Suppose Ui ∼ U [0, 1] and F (x) a strictly increasing continuous distribution
then Xi ∼ F , if Xi = F−1(Ui).



6.3 Simulation 95

Proof:

P (Xi ≤ x) = P
{
F−1(Ui) ≤ x

}
= P {Ui ≤ F (x)} = F (x)

Usually F−1 is often hard to calculate, but the problem can be solved us-
ing transformation methods. Suppose that X is a random variable with
the density function f(x) and the distribution function F (x). Further as-
sume h be strictly monotonous, then Y = h(X) has the distribution function
F
{
h−1(y)

}
. If h−1 is continuous, then for all y the density of h(X) is, Härdle

and Simar (2007):

fY (y) = fX
{
h−1(y)

} ∣∣∣∣
dh−1(y)
dy

∣∣∣∣

Example 6.4 Apply the transformation method in the exponential case. The
density of an exponential function is fY (y) = λ exp {−λy} I(y ≥ 0) with
λ ≥ 0, and its inverse is equal to h−1(y) = exp {−λy} for y ≥ 0. Define y =
h(x) = −λ−1 log x with x > 0. We would like to know whether X ∼ U [0, 1]
leads to an exponentially distributed random variable Y ∼ exp(λ).

Using the definition of the transformation method, we have

fY (y) = fX
{
h−1(y)

} ∣∣∣∣
dh−1(y)
dy

∣∣∣∣ = |(−λ) exp {−λy}| = λ exp {−λy}

Hence fY (y) is exponentially distributed.

6.3.4 Box-Muller Method

The Box-Muller method allows us to transform uniformly distributed ran-
dom variables to a set of independent standard normally distributed random
numbers. Let the unit square be S = [0, 1]2 and fX(x) = 1 the density of the
uniform distribution. The most basic form of the transformation looks like:

y1 =
√

−2 log x1 cos 2πx2 = h1(x1, x2)

y2 =
√

−2 log x2 sin 2πx2 = h2(x1, x2)

where h(x) is defined on the square [0, 1]2. Notice that when x1 is very close
to zero, the transformation can have numerical stability problems, especially
during the generation of numbers in stochastic modelling.

In this method we start with two independent random numbers, x1 and
x2, which are uniformly distributed over (0,1). Then, we apply the above



96 6 Black–Scholes Option Pricing Model

transformations to get two new independent random numbers, which have a
normal distribution with a zero mean and a standard deviation of one.

Following the transformation method approach, the inverse function h(x)−1

is given by

h−1(x) =
{
x1 = exp

{− 1
2 (y2

1 + y2
2)
}

x2 = (2π)−1 arctan y2
y1

The determinant of the Jacobian matrix is

|Jacobian| = det

(
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

)

with
∂x1

∂y1
= exp

{
−1

2
(y2

1 + y2
2)
}

(−y1)

∂x1

∂y2
= exp

{
−1

2
(y2

1 + y2
2)
}

(−y2)

∂x2

∂y1
=

1
2π

⎛

⎝ 1

1 + y2
2
y2
1

⎞

⎠ y2
y2
1

∂x2

∂y2
=

1
2π

⎛

⎝ 1

1 + y2
2
y2
1

⎞

⎠ 1
y1

Then,

|Jacobian| =
1
2π

exp
{
−1

2
(y2

1 + y2
2)
}⎛

⎝−y1 1

1 + y2
2
y2
1

1
y1

− y2
1

1 + y2
2
y2
1

y2
y2
1

⎞

⎠

= − 1
2π

exp
{
−1

2
(y2

1 + y2
2)
}

The last equation states that the determinant of the Jacobian is the density
of the standard normal distribution in R

2. The components of the vector Y
are independent since this density is the product of two univariate densities.
Hence (Y1, Y2) ∼ N2(0, I2).

The next Box-Muller Algorithm simplifies the previous results.
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1. U1 ∼ U [0, 1], U2 ∼ U [0, 1]

2. Θ = 2πU2, ρ =
√−2 logU1

3. z1 = ρ cos θ is N(0, 1)
z2 = ρ sin θ is N(0, 1)

Summarizing, the Box-Muller algorithm provides two standard normal dis-
tributions, when the components of the vector X are ∼ U [0, 1]. Figure 6.7
shows the results.
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Figure 6.7: The scatterplot of (z1, z2)
SFEbmuller

6.3.5 Variant of Marsaglia Method

The variant of Marsaglia method is the polar form of the Box-Muller trans-
formation. It is faster and more robust since it avoids the calculation of the
trigonometric functions in the Box-Muller method.

This method generates uniformly distributed random values V1, V2 over the
interval [-1,1] by transforming U [0, 1] variables. Two values (V1, V2) define
a point in the (V1, V2) plane. The points will be accepted if V 2

1 + V 2
2 < 1

i.e. (V1, V2) are uniformly distributed on the unit circle with the density
f(V1, V2) = π−1.

The transformation that maps the coordinates of the unit circle into the unit
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square S = [0, 1]2 is (
x1

x2

)
=
(

V 2
1 + V 2

2

2π−1 arctan V2
V1

)

Hence (x1, x2) is uniformly distributed on S.

Using the previous results as inputs in the Box-Muller method, the following
relationships hold

cos 2πx2 =
V1√

V 2
1 + V 2

2

sin 2πx2 =
V2√

V 2
1 + V 2

2

and it is no longer necessary to evaluate trigonometric functions.

The Marsaglia (Polar method) Algorithm is described by

1. U1, U2 ∼ U [0, 1]; Vi = 2Ui − 1 with W = V 2
1 + V 2

2 < 1

2. Z1 = V1

√−2 log(W )/W ∼ N(0, 1)
Z2 = V2

√−2 log(W )/W ∼ N(0, 1)

The Marsaglia Polar method, which is a type of rejection sampling, is the
polar equivalent of the Box-Muller method. Typically it is faster, because it
uses only one transcendental function instead of at least two, even though it
throws away 1− π

4 ≈ 21.46% of the total input uniformly distributed random
number pairs per normal pair variable generated, requiring 4

π ≈ 1.2732 input
random numbers per output random number.

6.4 Risk Management and Hedging

Trading options is particularly risky due to the possibly high random com-
ponent. Advanced strategies to reduce and manage this risk can be derived
from the Black–Scholes formula (6.24). To illustrate this issue we consider
an example and some traditional strategies.

Example 6.5
A bank sells a European call option to buy 100 000 shares of a non dividend
paying stock for 600 000 EUR. The details of this option are given in Table
6.3.

Applying Black–Scholes’ formula (6.24) for a non dividend paying stock,
b = r, gives a theoretical value of 480 119 EUR, approximately 480 000 EUR,
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Current time t 6 weeks
Maturity T 26 weeks
Time to maturity τ = T − t 20 weeks = 0.3846
Continuous annual interest rate r 0.05
Annualized stock volatility σ 0.20
Current stock price St 98 EUR
Exercise price K 100 EUR

Table 6.3: Data of the example

of the above option. That is, the bank sold the option about 120 000 EUR
above its theoretical value. But it takes the risk to incur substantial losses.

A strategy to manage the risk due to the option would be to do nothing, i.e. to
take a naked position. Should the option be exercised at maturity the bank
has to buy the shares for the stock price prevailing at maturity. Assume the
stock trades at ST = 120 EUR. Then an options’ exercise costs the bank
100 000 · (ST −K) = 2 000 000 EUR, which is a multiple of what the bank
received for selling the derivative. However, if the stock trades below K = 100
EUR the option will not be exercised and the bank books a net gain of 600 000
EUR. SFEBSCopt2

In contrast to the naked position, it is possible to set up a covered position
by buying 100 000 shares at 100 000 · St = 9 800 000 EUR at the same time
the option is sold. In case ST > K the option will be exercised and the
stocks will be delivered at a price of 100 000 · K = 10 000 000 EUR, which
discounted to time t is about 9 800 000 EUR. Thus the bank’s net gain is
equal to 600 000 EUR, the price at which the option is sold. If the stock price
decreases to ST = 80 EUR then the option will not be exercised. However,
the bank incurs a loss of 2 000 000 EUR due to the lower stock price, which
is as above a multiple of the option price. Note that from put–call parity
for European options (Theorem 2.3) it follows that the risk due to a covered
short call option position is identical to the risk due to naked long put option
position.

Both risk management strategies are unsatisfactory because the cost varies
significantly between 0 and large values. According to Black–Scholes the op-
tion costs on average around 480 000 EUR, and a perfect hedge eliminates
the impact of random events such that the option costs exactly this amount.

An expensive hedging strategy, i.e. a strategy to decrease the risk associated
with the sale of a call, is the so–called stop–loss strategy: The bank selling
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the option takes an uncovered position as long as the stock price is below the
exercise price, St < K, and sets up a covered position as soon as the call is
in–the–money, St > K.

The shares to be delivered in case of options exercise are bought as soon as
the stock St trades above the exercise price K, and are sold as soon as St
falls below the exercise price K.

Since all stocks are sold and bought at K after time 0 and at maturity T
either the stock position is zero, (St < K), or the stocks are sold at K to the
option holder, (St > K), this strategy bears no costs.

Note that playing a stop–loss strategy bears a cost if S0 > K, i.e. stocks are
bought at S0 and sold at K :

costs of a stop–loss hedging strategy: max(S0 −K, 0).

Because these costs are smaller than the Black–Scholes price C(S0, T ) ar-
bitrage would be possible by running a stop–loss strategy. However, this
reasoning ignores some aspects:

• Buying and selling stocks bear transaction costs,

• Buying stocks before time T involves binding capital leading to re-
nounce of interest rate revenue,

• practically it is not possible to buy or sell stocks exactly at K rather
stocks are bought at K + δ if stocks are increasing and stocks are sold
at K − δ if stocks are decreasing, for a δ > 0.

In practice, purchases and sales take place only after Δt time units. The
larger Δt, the greater δ in general, and the less transaction costs have to
be paid. Hull (2000) investigated in a Monte Carlo study with M = 1000
simulated stock price paths the stop–loss strategy’s ability to reduce the risk
associated with the sale of a call option. For each simulated path the costs
Λm,m = 1, ...,M, caused by applying the stop–loss strategy are registered
and their sample variance

v̂2
Λ =

1
M

M∑

m=1

(Λm − 1
M

M∑

j=1

Λj)2

is computed. Dividing the sample standard deviation by the call price mea-
sures the remaining risk of the stop–loss hedged short call position

L =

√
v̂2
Λ

C(S0, T )
.
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Δt (weeks) 5 4 2 1 1
2

1
4

L 1.02 0.93 0.82 0.77 0.76 0.76

Table 6.4: Performance of the stop–loss strategy

Table 6.4 shows the results. A perfect hedge would reduce the risk to zero,
i.e. L = 0.

In order to apply the concept of risk neutral valuation (see Cox and Ross
(1976)) the probability measure has to be transformed such that the price
process under this new measure is a martingale. By doing this the absence
of arbitrage opportunities is guaranteed. In incomplete markets, however,
a multitude of such transformations exist, see Harrison and Kreps (1979).
In contrast to complete markets the trader cannot build up a self–financing
portfolio reproducing the options payoff at maturity when the market is in-
complete. Therefore hedging is no longer risk free, and option prices depend
on risk preferences. In this context we want to point out that the lack of a
perfect hedge is of great importance in practice.

6.4.1 Delta Hedging

In order to reduce the risk associated with option trading, more complex
hedging strategies than those considered so far are applied. Let us look at
the following example. Sell a call option on a stock, and try to make the
value of this portfolio for small time intervals as insensitive as possible to
small changes in the price of the underlying stock. This is what is called
delta hedging. Later on, we consider further Greeks (gamma, theta, vega,
etc.) to fine tune the hedged portfolio.

By the delta or the hedge ratio we understand the derivative of the option
price with respect to the stock price. In a discrete time model we use the
differential quotient of the change in the option price ΔC with respect to a
change in the stock price ΔS :

Δ =
∂C

∂S
oder Δ =

ΔC
ΔS

.

The delta of other financial instruments is defined accordingly. The stock
itself has the value S. Consequently it holds that Δ = ∂S/∂S = 1. A futures
contract on a non dividend paying stock has a value of V = S−K · e−rτ (see
Theorem 2.1) and thus its delta is Δ = ∂V/∂S = 1 as well. Stocks and future
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contracts can therefore be used equivalently in delta hedging strategies. If
the latter are available they are preferable due to lower transaction costs.

Example 6.6
A bank sells calls on 2000 shares of a stock for a price of C = 10 EUR/share
at a stock price of S0 = 100 EUR/share. Let the call’s delta be Δ = 0.4. To
hedge the sold call options Δ · 2000 = 800 shares of the stock are added to the
portfolio. Small changes in the option value will be offset by corresponding
changes in the value of the portfolio’s stock shares. Should the stock price
increase by 1 EUR, i.e. the value of the stock position in the portfolio increases
by 800 EUR, the value of one call on 1 share increases by ΔC = Δ ·ΔS = 0.4
EUR and following the value of the portfolio’s short call position decreases
by 800 EUR. That is, gains and losses offset because the delta of the option
position is neutralised by the delta of the stock position. The portfolio has a
Δ = 0, and the bank takes a delta neutral position.

Since the delta of an option depends on the stock price and time, among
others, the position is only delta neutral for a short period of time. In prac-
tice, the portfolio has to be re–balanced frequently in order to adapt to the
changing environment. Strategies to manage portfolio risk which involve fre-
quent re–balancing are known as dynamic hedging. We point out that the
Black–Scholes differential equation (6.3) can be derived by means of a dy-
namic hedge portfolio whose position is kept continuously delta neutral. This
approach is analogous to reproducing the option by a duplicating portfolio.

Example 6.7
In continuation of Example 6.6, suppose that the underlying stock rises within
a week to 110 EUR. Due to the time delay and the increased stock price, the
option delta increases to Δ = 0.5. In order to re-obtain a delta neutral position
(0.5 − 0.4) · 2000 = 200 shares of the stock have to be bought.

From the Black–Scholes formulae for the value of European call and put
options on non-dividend paying stocks it follows for the delta that:

Δ =
∂C

∂S
= Φ(y + σ

√
τ) (6.30)

bzw. Δ =
∂P

∂S
= Φ(y + σ

√
τ) − 1,

with y being defined in equation (6.25).

Figure 6.8 displays the delta (6.30) as a function of time and stock price. For
an increasing stock price delta converges to 1, for decreasing stock prices it
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converges to 0. Put differently, if the option is deep in–the–money (ITM)
it will be exercised at maturity with a high probability. That is the reason
why the seller of such an option should be long in the underlying to cover
the exercise risk. On the other hand, if the option is far out–of–the–money it
will probably not be exercised, and the seller can restrict themself to holding
a smaller part of the underlying.

Delta
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50.00
70.00

90.00

110.00
130.00

0.20

0.40

0.60
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Figure 6.8: Delta as a function of the stock price (right axis) and time to
maturity (left axis). SFEdelta

Furthermore, the probability p that an out–of–the–money (OTM) option will
be exercised and an ITM option will not be exercised at maturity is higher
the longer the time to maturity. This explains why the delta for longer times
to maturity becomes more flat (linear).

Table 6.5 according to Hull (2000) shows (in the same spirit as Table 6.4) the
performance of the delta hedging strategy contingent on the time increments
Δt between re–balancing trades. If Δt is small enough the risk associated
with a sold call option can be managed quite well. In the limit Δt → 0
continuous re–balancing underlying the derivation of the Black–Scholes for-
mula follows, and the risk is perfectly eliminated (L = 0). The linearity of
the mathematical derivative implies for the delta Δp of a portfolio consist-
ing of w1, . . . , wm contracts of m financial derivatives 1, . . . ,m with deltas
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Δt (weeks) 5 4 2 1 1
2

1
4

L 0.43 0.39 0.26 0.19 0.14 0.09

Table 6.5: Performance of the delta–hedging strategy

Δ1, . . . ,Δm :

Δp =
m∑

j=1

wjΔj .

Example 6.8
Consider a portfolio consisting of the following USD options

1. 200 000 bought calls (long position) with exercise price 1.70 EUR ma-
turing in 4 months. The delta of an option on 1 USD is Δ1 = 0.54.

2. 100 000 written calls (short position) with exercise price 1.75 EUR ma-
turing in 6 months and a delta of Δ2 = 0.48.

3. 100 000 written puts (short position) with exercise price 1.75 EUR ma-
turing in 3 months with Δ3 = −0.51.

The portfolio’s delta is (increases in values of written options have a negative
impact on the portfolio value):

Δp = 200 000 · Δ1 − 100 000 · Δ2 − 100 000 · Δ3

= 111 000

The portfolio can be made delta neutral by selling 111 000 USD or by selling
a corresponding future contract on USD (both have a delta of Δ = 1).

6.4.2 Gamma and Theta

Using the delta to hedge an option position, the option price is locally ap-
proximated by a function which is linear in the stock price S. Should the time
Δt elapsing until the next portfolio re–balancing not be very short, then this
approximation would no longer be adequate (see Table 6.5). That is why a
more accurate approximation, the Taylor expansion of C as a function of S
and t, is considered:

ΔC = C(S+ΔS, t+Δt)−C(S, t) =
∂C

∂S
·ΔS+

∂C

∂t
·Δt+1

2
∂2C

∂S2
(ΔS)2+O(Δt),
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where (as we have already seen in the demonstration of Theorem 6.1) ΔS is
of size

√
Δt and the terms summarized in O(Δt) are of size smaller than Δt.

Neglecting all terms but the first, which is of size
√

Δt, the approximation
used in delta hedging is obtained:

ΔC ≈ Δ · ΔS.

Also taking the terms of size Δt into account it follows that:

ΔC ≈ Δ · ΔS + Θ · Δt+
1
2
Γ(ΔS)2,

where Θ = ∂C/∂t is the option’s theta and Γ = ∂2C/∂S2 is the option’s
gamma. Θ is also called the option’s time decay. For a call option on a
non-dividend paying stock it follows from the Black–Scholes formula (6.24):

Θ = − σS

2
√
τ
ϕ(y + σ

√
τ) − rKe−rτΦ(y) (6.31)

Γ =
1

σS
√
τ
ϕ(y + σ

√
τ), (6.32)

where y is defined in equation (6.25).

Figures 6.9 and 6.10 display theta and gamma given by equation (6.32) re-
spectively (6.32) as a function of stock price and time to maturity. Most
sensitive to movements in stock prices are at–the–money options with a short
time to maturity. Consequently, to hedge such options the portfolio has to
be rebalanced frequently.

Assuming a delta neutral portfolio gamma hedging consists of buying or sell-
ing further derivatives to achieve a gamma neutral portfolio, i.e. Γ = 0, and
thereby making the portfolio value even more insensitive to changes in the
stock price. Note that on the one hand neither stocks nor future contracts
can be used for gamma hedging strategies since both have a constant Δ and
thus a zero gamma Γ = 0. On the other hand, however, those instruments
can be used to make a gamma neutral portfolio delta neutral without af-
fecting the portfolio’s gamma neutrality. Consider an option position with a
gamma of Γ. Using w contracts of an option traded on a stock exchange with
a gamma of ΓB , the portfolio’s gamma is Γ + wΓB . By setting w = −Γ/ΓB
the resulting gamma for the portfolio is 0.

Example 6.9
Let a portfolio of USD options and US–Dollars be delta neutral with a gamma
of Γ = −150 000. A USD–call trade on the exchange with ΔB = 0.52 and
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Figure 6.9: Theta as a function of stock price (right axis) and time to ma-
turity (left axis). SFEtheta

ΓB = 1.20. By adding −Γ/ΓB = 125 000 contracts of this option the portfolio
becomes gamma neutral. Unfortunately, its delta will be 125 000 · ΔB =
65 000. The delta neutrality can be achieved by selling 65 000 USD without
changing the gamma.

Contrary to the evolution of the stock price the expiry of time is deterministic,
and time does not involve any risk increasing the randomness. If both Δ and
Γ are 0 then the option value changes (approximately risk free) at a rate
Θ = ΔC/Δt. The parameter Θ is for most options negative, i.e. the option
value decreases as the maturity date approaches.

From Black–Scholes’s formula (6.24) it follows for a delta neutral portfolio
consisting of stock options

rV = Θ +
1
2
σ2S2Γ,
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Figure 6.10: Gamma as a function of stock price (right axis) and time to
maturity (left axis). SFEgamma

with V denoting the portfolio value. Θ and Γ depend on each other in a
straightforward way. Consequently, Θ can be used instead of Γ to gamma
hedge a delta neutral portfolio.

6.4.3 Rho and Vega

Black–Scholes’ approach proceeds from the assumption of a constant volatil-
ity σ. The appearance of smiles indicates that this assumption does not hold
in practice. Therefore, it can be useful to make the portfolio value insensitive
to changes in volatility. By doing this, the vega of a portfolio (in literature
sometimes also called lambda or kappa) is used, which for a call option is
defined by V = ∂C

∂σ .

For stocks and future contracts it holds V = 0. Thus, in order to set up a vega
hedge one has to make use of traded options. Since a vega neutral portfolio
is not necessarily delta neutral two distinct options have to be involved to
achieve simultaneously V = 0 and Γ = 0.
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From Black–Scholes’ formula (6.24) and the variable y defined in equation
(6.25) it follows that the vega of a call option on a non dividend paying stock
is given by:

V = S
√
τϕ(y + σ

√
τ). (6.33)

Since the Black–Scholes formula was derived under the assumption of a con-
stant volatility it is actually not justified to compute the derivative of (6.24)
with respect to σ. However, the above formula for V is quite similar to an
equation for V following on from a more general stochastic volatility model.
For that reason, equation (6.33) can be used as an approximation to the real
vega.

Figure 6.11 displays the vega given by equation (6.33) as a function of stock
price and time to maturity. When the option is in–the–money, vega is low.
If the stock price approaches the strike price, vega increases and reaches its
peak when the option becomes at–the–money. Further, if the option becomes
out–of–the–money, the sensitivity of the option with respect to volatility is
low again. Thus, at–the–money options with a long time to maturity are
most sensitive to changes in volatility.

In order to protect the portfolio against implied volatility fluctuations, in-
vestors can use a vega hedging strategy. If the vega of a portfolio and of an
option are denoted by VPort and VOpt respectively, one can take a −VP ort

VOpt

position in the option to make a portfolio vega neutral. However, a vega
neutral position is not stable and thus, even small changes in stock prices
might cost investors a lot of money.

Finally, the call option’s risk associated with movements in interest rates can
be reduced by using rho to hedge the position:

ρ =
∂C

∂r
.

For a call on a non dividend paying stock it follows from equation (6.24)

ρ = K τ e−rτΦ(y).

When hedging currency options domestic as well as foreign interest rates
have to be taken into account. Consequently, rho hedging strategies need to
consider two distinct values ρ1 and ρ2.

6.4.4 Volga and Vanna

Volga, also known as volgamma or vomma, is the sensitivity of vega to the
change in implied volatility. Hence, it can also be defined as the second
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Figure 6.11: Vega as a function of stock price (right axis) and time to ma-
turity (left axis). SFEvega

derivative of the option price with respect to volatility:

V olga =
∂V
∂σ

=
∂2C

∂σ2
.

Calculating volga from the Black-Scholes formula, for a call option we obtain:

V olga = S · √τ · y ·
(
y + σ

√
t
)

σ
· ϕ
(
y + σ

√
t
)

(6.34)

Figure 6.12 displays the vanna given by equation (6.34) as a function of stock
price and time to maturity.

If the option approaches at–the–money, volga becomes small, i.e., vega changes
slowly. Consequently, the adjustments to keep a portfolio vega neutral need
to be made relatively infrequently. On the contrary, if the option approaches
in–the–money or out–of–the–money, volga becomes high, i.e., if stock price
approaches strike price, the behaviour of vega is unstable.

The sensitivity of vega with respect to the stock price is given by vanna:

V anna =
∂V
∂S

=
∂2C

∂σ∂S
.
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Figure 6.12: Volga as a function of stock price (right axis) and time to ma-
turity (left axis). SFEvolga

Vanna is derived from the Black-Scholes formula for a call option and takes
the following form:

V anna =

(√
τ +

1
σ

)
· ϕ (y + σ

√
τ
)

(6.35)

Figure 6.13 displays the vanna given by equation (6.35) as a function of stock
price and time to maturity.

6.4.5 Historical and Implied Volatility

A property of the Black–Scholes formulae (6.22), (6.24) is that all option
parameters are known, except the volatility parameter σ. In practical appli-
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Figure 6.13: Vanna as a function of stock price (right axis) and time to
maturity (left axis). SFEvanna

cations σ is estimated from available stock price observations or from prices
of similar products traded on an exchange.

Historical volatility is an estimator for σ based on the variability of the
underlying stock in the past. Let S0, . . . , Sn be the stock prices at times
0,Δt, 2Δt, . . . , nΔt. If the stock price St is modelled as Brownian motion,
the logarithmic relative increments

Rt = log
St
St−1

, t = 1, . . . , n

are independent and identical normally distributed random variables. Rt is
the increment Yt−Yt−1 of the logarithmic stock price Yt = logSt which as we
saw in Section 5.4 is in a small time interval of length Δt a Wiener process
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with variance σ2. Consequently the variance of Rt is given by

v = Var(Rt) = σ2 · Δt.

A good estimator for Var(Rt) is the sample variance

v̂ =
1

n− 1

n∑

t=1

(Rt − R̄n)2

with R̄n = 1
n

∑n
t=1 Rt being the sample average. v̂ is unbiased, i.e. E[v̂] = v,

and the random variable
(n− 1)

v̂

v

is χ2
n−1 distributed (chi-square distribution with n − 1 degrees of freedom).

In particular this implies that the mean squared relative estimation error of
v̂ is given by

E

(
v̂ − v

v

)2

=
1

(n− 1)2
Var
(

(n− 1)
v̂

v

)
=

2
n− 1

.

Since it holds v = σ2Δt an estimator for the volatility σ based on historical
stock prices is

σ̂ =
√
v̂/Δt.

By means of a Taylor expansion of the square root function and by means of
the known quantities E[v̂] and Var(v̂/v) it follows that σ̂ is unbiased neglecting
terms of size n−1 :

E σ̂ = σ + O
(

1
n

)
,

and that the mean squared relative estimation error of σ̂ is given by

E

(
σ̂ − σ

σ

)2

=
1

2(n− 1)
+ O
(

1
n

)
,

again neglecting terms of size smaller than n−1. Thanks to this relationship
the reliability of the estimator σ̂ can be evaluated.

Sample parameter selection:

a) As data daily settlement prices S0, . . . , Sn are often used. Since σ is in
general expressed as an annualized volatility Δt corresponds to one day
on a yearly basis. Working with calender day count convention Δt =
1

365 . Unfortunately, no data is available for weekends and holidays. The
following empirical argument favours ignoring weekends and holidays:
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If the stock dynamics behaved on Saturdays and Sundays as they do
on trading days, even if the dynamics were not observed, then standard
deviation of the change in the stock price from Friday to Monday would
be three times as large as the standard deviation between two trading
days, say Monday to Tuesday. This follows on from the fact that for
the Wiener process Yt = logSt the standard deviation of the increment
Yt+δ−Yt is σ ·δ. Empirical studies of stock markets show, however, that
both standard deviations are proportional, with a constant of around
1 but in any case significantly smaller than 3. Put in other words,
the volatility decreases at the weekend. A conclusion is that trading
increases volatility, and that the stock variability is not solely driven
by external economic influences. Estimating volatility should therefore
be done by exclusively considering trading days. Usually a year is
supposed to have 252 trading days, i.e. Δt = 1

252 .

Concerning monthly data, Δt = 1
12 is applied. In Section 3.3 we calcu-

lated an annual volatility of 19% based on the monthly DAX data.
SFEsumm

b) Theoretically, the larger n the more reliable σ̂. However, empirically
the volatility is not constant over longer periods of time. That is to say
that stock prices from the recent past contain more information about
the current σ as do stock prices from long ago. As a compromise the
closing prices of the last 90 days or 180 days are used respectively. Some
authors advise the use of historical data of a period which has the same
length as the period in the future to which the estimated volatility will
be applied. In other words, if you want to compute the value of a call
expiring in 9 months you should use the closing prices of the past 9
months.

The implied volatility of an option is computed from its market price observed
on an exchange and not from the prices of the underlying as is case for the
historical volatility. Consider a European call on a non-dividend paying stock
(d = 0, b = r), which has a quoted market price of CB , then its implied
volatility σI is given by solving

S Φ(y + σI
√
τ) − e−rτK Φ(y) = CB

with y =
1

σI
√
τ
{log

S

K
+ (r − 1

2
σ2
I )τ}.

σI is the value of the volatility which, if substituted into the Black-Scholes
formula (6.24), would give a price equal to the observed market price CB . σI
is implicitly defined as a solution to the above equation, and has to be com-
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puted numerically due to the fact that the Black–Scholes formula cannot be
inverted.

The implied volatility can be used to get an idea of the market view of
the stock volatility. It is possible to construct an estimator using implied
volatilities of options on the same stock but which are different in time to
maturity τ and exercise price K. A weighting scheme takes the option price
dependence on the volatility into account.

SFEVolSurfPlot

Example 6.10
Consider two traded options on the same underlying. One is at–the-money
(ATM) and the other is deep ITM with volatilities of σI1 = 0.25 respectively
σI2 = 0.21. At–the–money the dependence of option price and volatility is
particulary strong. That is, the price of the first option contains more infor-
mation about the stock volatility and σI1 can be considered a more reliable
volatility estimate. Thus the estimator combining both implied volatilities
should attribute a higher weight to σI1, as for example

σ̃ = 0.8 · σI1 + 0.2 · σI2.

Some authors suggest setting σ̃ = σIm with σIm being the volatility of the
option which is most sensitive to changes in σ, i.e. the option with the highest
vega ∂C/∂σ in absolute terms.

6.4.6 Realised Volatility

Realised volatility is constructed from high-frequency intra-day returns. Most
stochastic volatility models, do not include high-frequency intra-day data for
the calculation of daily volatility, and are inadequate in reflecting reality.
Realised volatility, on the contrary, takes into consideration high-frequency
intraday data for forecasting daily and lower frequency volatility and the
distribution of returns. Based on the theory of quadratic variation, realised
volatility is given by the sum of all intra-period high-frequency squared re-
turns, period by period.

Denote as above Yt = logSt the logarithmic stock price and

Rt = Y (tΔ) − Y {(t− 1)Δ} , t = 1, 2, ..., n

the returns over an interval of length Δ, e.g. 1 day. Let σ2(t) denote the
variance of Rt . We split the time interval [(t − 1)Δ, tΔ] into M small
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sub-intervals of length Δ/M each, corresponding to intra-day observations
during the day t . Then, the realised volatility {Y }1/2

2 is modelled via the
sum of squared intra-day changes over a day:

{Y }t =
M∑

j=1

[
Y

{
(t− 1)Δ +

Δj
M

}
− Y

{
(t− 1)Δ +

Δ(j − 1)
M

}]2
,

{Y }1/2
2 is an estimate of the actual volatility σ(t) = {Var(Rt)}1/2 . For

example, for a 24-hour market, daily realised volatility based on 5minute
underlying returns is defined as the sum of 288 intra-day squared 5minute
returns, taken day by day.

6.5 Recommended Literature

The classic papers of Black and Scholes (1973) and Merton (1973) which es-
tablished modern derivatives pricing theory are worth reading. As does this
book, Wilmott, Howison and Dewynne (1995) present an extensive introduc-
tion to mathematics of financial derivatives without martingale theory. Two
influential works contributing to modern financial mathematics but which ap-
ply more advanced results of the theory of stochastic processes are Harrison
and Pliska (1981) and Delbaen and Schachermayer (1994). A discussion of
the mathematical foundations of absence of arbitrage is given by Jensen and
Nielsen (1996). Korn and Korn (1999) and Korn and Korn (2001) provide
a compact introduction to modern financial mathematics. For the advanced
mathematician Duffie (1996) and Baxter and Rennie (1996) represent good
starts into derivative pricing using martingale theory. Korn (1999) puts the
focus on problems arising in hedging and portfolio optimisation. Crack (2004)
gives a clear explanation of Black-Scholes option pricing theory, by discussing
direct applications of the theory to trading, and the differences between the
theoretical Black-Scholes world and the real world. Hull (2006) derives the
Black-Scholes model for valuing the options on a non-dividend paying stock
and shows how the model can be extended to deal with options on dividend
paying stocks. The explanation of how volatility can be either estimated from
the historical data or implied from option prices is also given by Hull (2006).
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Options

A large range of options exist for which the boundary conditions of the Black-
Scholes differential equation are too complex to solve analytically; an example
being the American option. One therefore has to rely on numerical price
computation. The best known methods for this approximate the stock price
process by a discrete time stochastic process, or, as in the approach followed
by Cox, Ross, Rubinstein, model the stock price process as a discrete time
process from the start. By doing this, the options time to maturity T is
decomposed into n equidistant time steps of length

Δt =
T

n
.

We consider therefore the discrete time points

tj = jΔt, j = 0, ..., n.

By Sj we denote the stock price at time tj . At the same time, we discrete the
set of values the stock price can take, such that it takes on finite many values
Skj , k = 1, ...,mj , with j denoting the point of time and k representing the
value. If the stock price is in time tj equal to Skj , then it can jump in the next
time step to one of mj+1 new states Slj+1, l = 1, ...,mj+1. The probabilities
associated to these movements are denoted by pjkl:

pjkl = P(Sj+1 = Slj+1|Sj = Skj ),

with
mj+1∑

l=1

pjkl = 1, 0 ≤ pjkl ≤ 1.

If we know the stock price at the current time, we can build up a tree of
possible prices up to a certain point in time, for example the maturity date
T = tn. Such a tree is also called stock price tree. Should the option price
be known at the final point in time tn of the stock price tree, for example
by means of the options intrinsic value, the option value at time tn−1 can
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be computed (according to (6.24)) as the discounted conditional expectation
of the corresponding option prices at time tn given the stock price at time
tn−1 :

V (Skn−1, tn−1) = e−rΔtE{V (Sn, tn) |Sn−1 = Skn−1}

= e−rΔt
mn∑

l=1

pn−1
kl V (Sln, tn). (7.1)

V (S, t) again denotes the option value at time t if the underlying has a price
of S. Repeating this step for the remaining time steps tj , j = n−2, n−3, ..., 0,
means that the option prices up to time t = 0 can be approximated.

7.1 Cox–Ross–Rubinstein Approach to Option
Pricing

As the simplest example to price an option, we consider the approach by Cox,
Ross and Rubinstein (CRR) which is based on the assumption of a binomial
model, and which can be interpreted as a numerical method to solve the
Black–Scholes equation. We will look at European options exclusively and
assume, for the time being, that the underlying pays no dividends within the
time to maturity. Again, we discretize time and solely consider the points
in time t0 = 0, t1 = Δt, t2 = 2Δt, ..., tn = nΔt = T with Δt = T

n . The
binomial model proceeds from the assumption that the discrete time stock
price process Sj follows a geometric random walk (see Chapter 4), which is
the discrete analogue of the geometric Brownian motion. The binomial model
has the special feature that at any point in time the stock price has only two
possibilities to move:

• either the price moves at rate u and with probability p in one direction
(for example it moves up)

• or the price moves at rate d and with probability 1 − p in another
direction (for example it moves down).

Using the notation introduced above, if the stock price in time tj is equal to Skj
then in time tj+1 it can take only the values u·Skj and d·Skj . The probabilities
p and q are independent of j. All other probabilities pjkl associated to Slj+1 
=
u · Skj and 
= d · Skj are 0.

In order to approximate the Black–Scholes differential equation by means of
the Cox–Ross–Rubinstein approach, the probabilities p, q as well as the rates
u, d have to be chosen such that in the limit Δt → 0 the binomial model
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converges to a geometric Brownian motion. That is, arguing as in (6.22) the
conditional distribution of lnSj+1 given Sj must be asympotically a normal
distribution with expectation parameter lnSj + (b − 1

2σ
2)Δt and variance

parameter σ2Δt. However, the conditional distribution of lnSj+1 given Sj
implied by the binomial model is determined by ln(u ·Sj), ln(d ·Sj) and their
associated probabilities p and q. We set the parameters of the geometric
random walk such that the conditional expectations and variances implied
by the binomial model are equal to their asymptotic values for Δt → 0.
Taking into account that p + q = 1 we obtain three equations for the four
unknown variables p, q, u and d :

p+ q = 1,

E
def= p ln(u · Sj) + q ln(d · Sj) = ln(Sj) + (b− 1

2
σ2)Δt,

p{ln(u · Sj) − E}2 + q{ln(d · Sj) − E}2 = σ2Δt.

Due to the first equation, the current stock price Sj disappears from the
remaining equations. By substituting q = 1−p into the latter two equations,
we obtain, after some rearrangements, two equations and three unknown
variables:

p ln(
u

d
) + ln d = (b− 1

2
σ2)Δt,

(1 − p)p{ln
(u
d

)
}2 = σ2Δt.

To solve this nonlinear system of equations we introduce a further condition

u · d = 1,

i.e. if the stock price moves up and subsequently down, or down and subse-
quently up, then it takes its initial value two steps later. This recombining
feature is more than only intuitively appealing. It simplifies the price tree
significantly. At time tj there are only mj = j + 1 possible values the stock
price Sj can assume. More precisely, given the starting value S0 at time t0
the set of possible prices at time tj is

Skj = S0u
kdj−k, k = 0, ..., j,

because it holds Sk+1
j+1 = u · Skj and Skj+1 = Skj /u. In the general case there

would be mj = 2j possible states since then not only the number of up and
down movements would determine the final state but also the order of the
up and down movements.
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Solving the system of three equations for p, u, d and neglecting terms being
small compared to Δt it holds approximatively:

p =
1
2

+
1
2
(b− 1

2
σ2)

√
Δt
σ

, u = eσ
√

Δt, d =
1
u
. (7.2)

For the option price at time tj and a stock price Sj = Skj we use the abbre-
viation V kj = V (Skj , tj). As in equation (7.1) we obtain the option price at
time tj by discounting the conditional expectation of the option price at time
tj+1 :

V kj = e−rΔt{pV k+1
j+1 + (1 − p)V kj+1}. (7.3)

At maturity T = tn the option price is known. In case of a European option
we have

V kn = max{0, Skn −K}, k = 0, ..., n. (7.4)

Beginning with equation (7.1) and applying equation (7.3) recursively all
option values V kj , k = 0, ..., j, j = n− 1, n− 2, ..., 0 can be determined.

Example 7.1
An example of a call option is given in Table 7.1. First the tree of stock
prices is computed. Since Δt = τ/n = 0.1 it follows from equation (7.2)
that u = 1.0823. Given the current stock price S0 = 230 the stock can either
increase to S1

1 = uS0 = 248.92 or decrease to S0
1 = S0/u = 212.52 after the

first time step. After the second time step, proceeding from state S1 = S1
1

the stock price can take the values S2
2 = uS1 = 269.40 or S1

2 = S1/u = 230,
proceeding from S1 = S0

1 it can move to S1
2 = 230 or S0

2 = 196.36 and so
on. At maturity, after 5 time steps, the stock price S5 can take the following
six values S5

5 = u5S0 = 341.51, S4
5 = u3S0 = 291.56, ..., S0

5 = S0/u
5 = 154.90.

Following, given the tree of stock prices, we compute the option price at matu-
rity applying equation (7.4), for example V 4

5 = V (S4
5 , t5) = S4

5 −K = 81.561
or V 1

5 = 0, since S1
5 = 181.44 < K. Equation (7.2) implies p = 0.50898,

since the cost of carry b are equal to the risk free interest rate r when no
dividends are paid. Proceeding from the option’s intrinsic values at matu-
rity we compute recursively the option values at preceding points of time by
means of equation (7.3). With V 4

5 = 81.561, V 3
5 = 38.921 we obtain the

option value V 3
4 = 60.349 at time t4 = 0.4 corresponding to a stock price

S4 = S3
4 = 269.40 by substituting the known values of p, r,Δt. Analogously

we obtain the option value V 0
0 = 30.378 at time t0 = 0 and current stock

price S0 = 230 by means of equation (7.3) and the time t1 = 0.1 option
values V 1

1 = 44.328, V 0
1 = 16.200.

Using only 5 time steps 30.378 is just a rough approximation to the theoretical
call value. However, comparing prices implied by the Black–Scholes formula
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(6.24) to prices implied by the Cox–Ross–Rubinstein approach for different
time steps n the convergence of the numerical binomial model solution to the
Black–Scholes solution for increasing n is evident (see Table 7.2).

Current stock price St 230.00
Exercise price K 210.00
Time to maturity τ 0.50
Volatility σ 0.25
Risk free rate r 0.04545
Dividend none
Time steps 5
Option type European call

Stock prices Option prices
341.50558 131.506
315.54682 106.497
291.56126 83.457 81.561
269.39890 62.237 60.349
248.92117 44.328 40.818 38.921
230.00000 30.378 26.175 20.951
212.51708 16.200 11.238 2.517
196.36309 6.010 1.275
181.43700 0.646 0.000
167.64549 0.000
154.90230 0.000

Time 0.00 0.10 0.20 0.30 0.40 0.50

Table 7.1: Evolution of option prices (no dividend paying underlying)

SFEBiTree

The numerical procedure to price an option described above does not change
if the underlying pays a continuous dividend at rate d. It is sufficient to set
b = r − d instead of b = r for the cost of carry. Dividends paid at discrete
points of time, however, require substantial modifications in the recursive
option price computation; these will be discussed in the following section.

Example 7.2
We consider a call on US–Dollar with a time to maturity of 4 months, i.e. τ =
1/3 years, a current exchange rate of S = 1.50 EUR/USD and an exercise
price K = 1.50 EUR/USD. The continuous dividend yield, which corresponds
to the US interest rate, is assumed to be 1%, and the domestic interest rate is
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Time steps 5 10 20 50 100 150 Black-Scholes
Option value 30.378 30.817 30.724 30.751 30.769 30.740 30.741

Table 7.2: Convergence of the price implied by the binomial model to the
price implied by the Black–Scholes formula

9%. It follows that the cost of carry being the difference between the domestic
and the foreign interest rate is equal to b = r− d = 8%. Table 7.3 gives as in
the previous example the option prices implied by the binomial model.

Current EUR/USD–price St 1.50
Exercise price K 1.50
Time to maturity τ 0.33
Volatility σ 0.20
Risk free interest rate r 0.09
Continuous dividend d 0.01
Time steps 6
Option type European call

Price Option prices
1.99034 0.490
1.89869 0.405
1.81127 0.324 0.311
1.72786 0.247 0.234
1.64830 0.180 0.161 0.148
1.57240 0.127 0.105 0.079
1.50000 0.087 0.067 0.042 0.000
1.43093 0.041 0.022 0.000
1.36504 0.012 0.000 0.000
1.30219 0.000 0.000
1.24223 0.000 0.000
1.18503 0.000
1.13046 0.000

Time 0.00 0.06 0.11 0.17 0.22 0.28 0.33

Table 7.3: Evolution of option prices (with continuous dividends)

SFEBiTree

7.2 Discrete Dividends

In case where dividend payments are made at discrete points in time, the tree
of stock prices changes. By changing the price tree we have to distinguish
two different cases. In the first case, dividends are paid as a percentage of
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the stock price. In the second case, dividends are paid as a fixed amount of
money. We confine ourselves to the case that dividends are paid only once
during the time to maturity, say, at time t∗, 0 < t∗ ≤ T. Dividends paid at
several points of time can be dealt with analogously. We assume that the
underlying is a stock.

Using no arbitrage arguments it can be shown that the stock price jumps
down by the amount of the dividend at the time the dividend is paid. Let
us consider the following argument to visualise this. At time t∗ − dt, which
is immediately before the dividend is paid, we buy the stock, cash in the
dividend, and sell the stock at time t∗ + dt. By doing this, we make a gain of
D+St∗+dt−St∗−dt, which for dt→ 0 would be without tisk and, therefore,
has to be zero if arbitrage is excluded. This is guaranteed if St jumps down
by D at time t∗.

7.2.1 Dividends as a Percentage of the Stock Price

Suppose that t∗ is contained, say, in the ith time interval, i.e. ti−1 < t∗ ≤
ti. Let the dividend paid at time ti be a percentage δ of the stock price,
that is the dividend amount that is paid is equal to δSi. It follows that the
stock price at time ti is smaller by the dividend amount than the stock price
without the dividend payment. Accordingly, all stock prices in the tree after
time ti change in the same way: all prices Skj , j ≥ i, are multiplied by the
factor (1− δ). Following this correction the option values can be determined
recursively as in the no dividend case.

Example 7.3
We consider a call option on a stock paying a dividend of δ = 1% of the stock
price at time 0.15. All other parameters of this example are those already
given in Table 7.1. The results are shown in Table 7.4. First we ignore the
dividend and compute the stock price tree as shown in Table 7.1. Following,
all stock prices from the dividend date on, i.e. from time t2 = 0.2 on (note that
we have divided the time period into 5 time steps 0 ≤ t ≤ 0.5), are multiplied
by the factor (1 − δ). In Table 7.4 the values in parentheses correspond to
the stock prices that are decreased by the dividend amount, i.e. Skj , j <

i = 2 respectively 0.99 · Skj , j ≥ i = 2. Thus, the option prices at maturity
change due to equation (7.4), for example V 4

5 = V (0.99 · S4
5 , t5) = 0.99 ·

291.56 − K = 78.646. Having determined the option values at maturity the
preceding option values are again computed by recursively applying equation
(7.2). Note, V kj corresponds to the stock price 0.99 · Skj rather than to Skj ,
for j ≥ 2, i.e. tj ≥ t∗. However, the current time t0 = 0 < t∗ = 0.15 is
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not concerned, i.e. V 0
0 = 28.384 is still the option price corresponding to the

current stock price S0 = 230.

Current stock price St 230.00
Exercise price K 210.00
Time to maturity τ 0.50
Volatility σ 0.25
Risk free interest rate r 0.04545
Discrete dividend δ 0.01
Dividend date t∗ 0.15
Time steps 5
Option type European call

Stock prices Option prices
341.50558 128.091
315.54682 103.341 (338.09)
291.56126 80.542 (312.39) 78.646
269.39890 59.543 (288.65) 57.655 (288.65)
248.92117 41.942 (266.70) 38.329 (266.70) 36.432
230.00000 28.384 (248.92) 24.087 (246.43) 18.651 (246.43)
212.51708 (230.00) 14.592 (227.70) 9.547 (227.70) 0.392
196.36309 (212.52) 4.886 (210.39) 0.199 (210.39)
181.43700 (194.40) 0.101 (194.40) 0.000
167.64549 (179.62) 0.000 (179.62)
154.90230 (165.97) 0.000

(153.35)
Time 0.00 0.10 0.20 0.30 0.40 0.50

Dividend 1.00 1.00 0.99 0.99 0.99 0.99

Table 7.4: Evolution of option prices (dividends as a percentage of the stock
price)

SFEBiTree

7.2.2 Dividends as a Fixed Amount of Money

We assume now that at an ex ante fixed point in time t∗ a fixed amount of
money (for example 5.00 EUR) is paid. Now, the stock price jumps down
by an amount which is independent of the stock price. It follows that the
tree is not totally recombining anymore. The stock price tree splits up which
can be visualized in a simple example. Suppose that at time t∗, t1 < t∗ ≤
t2 < T, a fixed dividend of D is paid. Figure 7.1 shows the stock price
tree for this example. Before the dividend payment at time t1 the nodes
correspond to stock prices of the kind uS0 and S0/u. After the dividend
payment, however, stock prices at time t2 are given by u2S0 −D,S0 −D and
S0/u

2−D. Proceeding from these 3 prices the tree consists of 6 possible prices
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in time t3, at time t4 it consists of 9 and so on. The stock price tree gets
very vast the more time steps are considered, and is less useful for practical
computations. To overcome this problem, we use the fact that the dividend
is independent of the stock price and therefore not random anymore. We
decompose the stock price Sj in a random and a deterministic component:

Sj = S̃j +Dj ,

with Dj being the current present value of the dividend payment, i.e. before
dividend payment, it is the time tj ≤ t∗ discounted value of D, afterwards it
is 0 :

Dj =
{
De−r(t

∗−tj) , for tj ≤ t∗,
0 , for t∗ < tj .

(7.5)

In particular, at maturity it holds Dn = 0 and Sn = S̃n. In order to compute
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Figure 7.1: Evolution of the stock price tree (dividends as a fixed amount of
money

the option price we first construct a stock price tree of the random stock
price component S̃n beginning in S̃0 = S0 −D0. Starting at maturity T = tn
we obtain:

Ṽn−1 = e−rΔtE[max(0, S̃n −K)|S̃n−1]

The other option prices are given as in the no dividend case by:

Ṽj−1 = e−rΔtE[Ṽj |S̃j−1].

The original option prices then correspond to Ṽ kj given above. However, they
do not correspond to the stock price S̃kj , rather than to the actual stock price

Skj = S̃kj +Dj .

Example 7.4
In this example, there are two dividend payments at time t∗1 = 0.25 and
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t∗2 = 0.75. Both dividends are D(1) = D(2) = 1.00 EUR. The parameters and
results are given in Table 7.5. First, we compute the time tj present value of
all dividends with equation (7.5): Dj = D(1)e−r(t

∗
1−tj) + D(2)e−r(t

∗
2−tj) for

tj ≤ t∗1, Dj = D(2)e−r(t
∗
2−tj) for t∗1 < tj ≤ t∗2 and Dj = 0 for t∗2 < tj . In

Current stock priceSt 100.00
Exercise price K 100.00
Time to maturity τ 1.00
Volatility σ 0.30
Risk free interest rate r 0.10

Discrete dividend D(1) 1.00
Payment date t∗1 0.25

Discrete dividend D(2) 1.00
payment date t∗2 0.75
Time steps 6
Option type European Put

Prices Option prices
204.55 0.000
180.97 0.000 (204.55)
160.12 0.000 (180.97) 0.000
141.65 0.179 (161.10) 0.000 (160.11)
125.32 1.373 (142.63) 0.394 (141.65) 0.000
110.88 3.906 (126.28) 2.810 (126.32) 0.866 (125.32)
98.10 7.631 (112.81) 6.990 (111.85) 5.720 (110.88) 1.903
86.79 (100) 12.236 (99.06) 12.100 (99.09) 11.567 (98.10)
76.78 (88.72) 18.775 (87.76) 19.953 (86.79) 23.215
67.93 (77.74) 27.211 (77.78) 30.421 (76.78)
60.10 (68.91) 36.631 (67.93) 39.897
53.17 (61.09) 45.178 (60.10)
47.05 (53.17) 52.955

(47.05)
Zeit 0.00 0.17 0.33 0.50 0.67 0.83 1.00

Div. Dj 1.903 1.935 0.960 0.975 0.992 0.00 0.00

Table 7.5: Evolution of option prices (discrete dividends as a fixed money
amount)

SFEBiTree4

particular, it holds that Dj = 0 for tj > t∗2. Below, we construct the stock price
tree as in Table 7.1, but this time we start in S̃0 = S0 −D0 = 98.10 rather
than in S0 = 100. Proceeding from the boundary values Ṽ k6 = K − S̃kn, k =
0, ..., 3, Ṽ k6 = 0, k = 4, ..., 6 we compute once again recursively the put prices
at earlier points in time by means of equation (7.3). We have to take into
account that, for example, the option price Ṽ 2

3 = 2.810 belongs to the stock
price S2

3 = S̃2
3 +D3 = 111.85 and not to S̃2

3 = 110.88, which accounts for the
dividend. It follows that the put option price at a current stock price S0 = 100
is equal to Ṽ 0

0 = 7.631.
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7.3 Recommended Literature

The starting point to price options by means of binomial processes is the
classic work of Cox, Ross and Rubinstein (1979) who introduce this approach
as an independent method rather than only as a numeric approximation to
the Black–Scholes equations. Baxter and Rennie (1996) provide a detailed
and modern description of option pricing with binomial trees. The numerical
aspects are extensively discussed by Dewynne, Howison and Wilmott (1993).



8 American Options

8.1 Arbitrage Relationship for American Options

It is complex to price American options since they can be exercised at any
point in time up to the expiry date. The time the holder chooses to exercise
the options depends on the spot price of the underlying asset St. In this
sense the exercising time is a random variable itself. It is obvious that the
Black-Scholes differential equations still hold as long as the options are not
exercised. However the boundary conditions are so complicated that an an-
alytical solution is not possible. In this section we study American options
in more detail. The numerical procedures of pricing will also be discussed in
the next section.

As shown in Section 2.1, the right to early exercise implies that the value of
an American option can never drop below its intrinsic value. For example
the value of an American put should not go below max(K − St, 0) with the
exercise price K. In contrast this condition does not hold for European
options. Thus American puts would be exercised before expiry date if the
value of the option would drop below the intrinsic value.

Let’s consider an American put on a stock with expiry date T . If the stock
price St∗ at time t∗ is zero, then St = 0 holds for t ≥ t∗ since the price
process follows a geometric Brownian motion. It is then not worth waiting
for a later exercise any more. If the put holder waits, he will lose the interest
on the value K that can be received from a bond investment for example. If
St∗ = 0, the value of the put at t∗ is K which is the same as the intrinsic
value. Since the respective European put cannot be exercised early, e.g. at
time t∗, we can only get K on the expiry date. If we discount it to time t∗

with τ∗ = T − t∗, we only get Ke−rτ
∗

that is the value of the European put
at time t∗. Obviously this value is smaller than the value of an American put
and its intrinsic value. Figure 8.1 shows the put value with a continuous cost
of carry b.

As we can see an early exercise of the put is probably necessary even before
St = 0. For a certain critical stock price S∗∗, the loss of interest on the
intrinsic value, which the holder can receive by exercising it immediately,
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Figure 8.1: European put and early exercise of an American put with a con-
tinuous costs of carry b.

is higher than the possible increase of the option value due to the eventual
underlying fluctuations. That is one of the reasons why the critical underlying
price is dependent on time: S∗∗ = S∗∗(t).

From the derivation of the Black-Scholes differential equation it follows that
it is valid as long as the option is not exercised. Given that there are no
transaction costs in perfect markets, a revenue can be realized from an early
exercise, which equals the intrinsic value of the option. One says in this case
that the option falls back to its intrinsic value by early exercising. The Black-
Scholes differential equation is valid where the underlying S is either higher
than the critical put-price S∗∗ = S∗∗(t) or lower than the critical call-price
S∗ = S∗(t). The boundaries defined through S∗∗(t) and S∗(t) are largely
unknown.

Figure 8.2 shows the regions where the option price C = C(S, t) for an
American call satisfies the Black-Scholes differential equation.

• In the interior {(S, t)|0 ≤ S < S∗(t), t < T} the Black-Scholes differen-
tial equation holds.

• At the boundaries {(S, t)|S = S∗(t), t < T} and {(S, t)|0 ≤ S, t = T}
the call falls back to the intrinsic value max(S −K, 0).

• C(S, t) and
∂C(S, t)
∂S

are continuous in the whole region including the
boundaries.
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Figure 8.2: The exercise boundary S∗(t) for an American call.

The numerical solution for such boundary problems is described in the next
section. Based on the assumptions of perfect markets and the arbitrage
free argument in Section 2.1 we derive some properties of American options
without considering any specific mathematical models for the price process
St.

Theorem 8.1

1. An American call on an asset that does not yield any positive income
before maturity is not early exercised and has the same value as a cor-
responding European call.

2. For an American call on an asset that generates positive income at
discrete time points t1, · · · , tn the optimal exercise time can only lie
just before one of these points. Consequently in the case of continuous
positive payments, any time point can be an optimal exercise time.

Proof:
Let K denote the exercise price, T the expiry date, τ = T − t the time to
maturity of a call and St the price of the underlying asset. Cam(S, τ) and
Ceur(S, τ) denote the value of the respective American and European calls
at time t with time to maturity τ = T − t and current spot price St = S.
Using the put-call parity for European options we get:

1. In the case of discrete dividends D with the discounted value Dt at
time t, there should be costs, i.e. Dt ≤ 0 , by the no gain assumption.
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Therefore, we get from Theorem 2.3:

C(St, τ) = P (St, τ) + St −Dt −Ke−rτ ≥ St −Ke−rτ > St −K (8.1)

where C = Ceur and P is the respective put price.
In the case of continuous dividends with rate d ≤ 0, it follows from
b− r = −d ≥ 0 that:

C(St, τ) = P (St, τ) + Ste
(b−r)τ −Ke−rτ

≥ Ste
(b−r)τ −Ke−rτ > St −K (8.2)

In both cases we verify that C(St, τ) > St−K for European calls. Since
Cam ≥ C, we conclude that:

Cam(St, τ) > St −K,

i.e. the value of an American call is always higher than the intrinsic
value until maturity. Therefore early exercise is avoided.

2. Without any restriction we consider the case where t1 is the next pay-
ment time. t̃ < t1 represents any time earlier. C̃(St, τ̃) with τ̃ = t̃ − t
is the value of a European call with the same exercise price K but with
a different maturity at t̃. Since there are no payments before t̃ at all, it
follows from part 1 that C̃(St, τ̃) > St−K for t < t̃. Due to the longer
time to maturity and the possibility of early exercise of American calls,
it follows that:

Cam(St, τ) ≥ C̃(St, τ̃) > St −K (8.3)

As in part 1, the value of an American call at any time t < t̃ lies strictly
above the intrinsic value, which excludes an early exercise. Since t̃ < t1
can take any value, Cam(St, τ) can fall to the intrinsic value only at
time t1 (or at a respectively later time point).

�

Figure 8.3 shows a graphical representation of the first part of the theorem.

• If b ≥ r which is equivalent to d ≤ 0, then Cam = Ceur.

• If b < r which is equivalent to d > 0, then Cam > Ceur.

It is also possible to derive a formula similar to the put call parity for Amer-
ican options. Given that, without a specific model, the critical prices S∗(t),
S∗∗(t) and consequently the time point for early exercise are unknown, the
formula is just an inequality.
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Figure 8.3: A European call and an early exercised American Call.

Theorem 8.2 (Put-Call Parity for American options)
We consider an American call and an American put with the same maturity
date T and the same exercise price K on the same underlying asset. Let
Cam(S, τ) and Pam(S, τ) denote the option prices at time t when the spot
price is St = S and the time to maturity is τ = T − t. It holds

1. if there are incomes or costs during the time to maturity τ = T − t with
the discounted value Dt at time t, then

Pam(St, τ)+St−Ke−rτ ≥ Cam(St, τ) ≥ Pam(St, τ)+St−Dt−K (8.4)

2. if there are continuous costs of carry with rate b on the underlying asset,
then

Pam(St, τ) + St −Ke−rτ ≥ Cam(St, τ)
≥ Pam(St, τ) + Ste

(b−r)τ −K

if b < r (8.5)
Pam(St, τ) + Ste

(b−r)τ −Ke−rτ ≥ Cam(St, τ)
≥ Pam(St) + St −K if b ≥ r

Proof:
Supposing that, without any restriction, the underlying asset is a stock paying
dividends D1 at time t1.

1. We show firstly, the left inequality. We consider a portfolio consisting of
the following four positions:
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t̃ = t1 − Δt t1 T
early Call is Call is not

exercise exercised early exercised early
Position of the call ST ≤ K ST > K ST ≤ K ST > K

1. ≥ 0 – K − ST 0 K − ST 0
2. St̃ D1 – – ST ST

3. −Ke−r(T−t̃) – −K −K −K −K

4. −(St̃ − K) – Ker(T−t̃) Ker(T−t̃) 0 −(ST − K)
Sum ≥ 0 ≥ 0 ≥ 0 ≥ 0 0 0

Table 8.1: Portfolio value at time t̃, t1 and T .
SFEamerican

1. buy an American put

2. buy a stock

3. sell bonds (i.e. borrow money) with the nominal value K and the
maturity date T

4. sell an American call

In this portfolio, position 1 is held until time T even if this should be subop-
timal, i.e. the put is not exercised early, even when the call holder exercises
it early. Note from Theorem 8.1 that an early exercise of the call is only
possible at time t̃ = t1 − Δt where Δt ≈ 0, i.e. directly before the payment
at time t1. In this case we deliver the stock of the portfolio. The value of the
portfolio at time T is given in the Table 8.1.

Therefore it holds for every time t as claimed:

Pam(St, τ) + St −Ke−rτ − Cam(St, τ) ≥ 0 (8.6)

The proof of the second inequality is analogous but with opposite positions.
Here we allow that the put can be exercised early, see Table 8.2.

1. buy an American call

2. sell a stock

3. buy a bond (i.e. lend money) at present value K + Dt with maturity
date T

4. sell an American put

Therefore we have t for every time as claimed:

Cam(St, τ) − Pam(St, τ) − St +K +Dt ≥ 0 (8.7)
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t̃ = t1 − Δt T
early Put is Put is not

exercise exercised early exercised early
Pos. of a put ST ≤ K ST > K ST ≤ K ST > K
1. ≥ 0 0 ST −K 0 ST −K

2. −St̃ −Dte
r(t̃−t) −ST −ST −ST −ST

−Dte
rτ −Dte

rτ −Dte
rτ −Dte

rτ

3. (Dt +K)er(t̃−t) (Dt +K)erτ (Dt +K)erτ (Dt +K)erτ (Dt +K)erτ

4. −(K − St̃) 0 0 −(K − ST ) 0
Sum ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

Table 8.2: Portfolio value at time t̃, t1 and T .

2. For continuous cost of carry we first consider the case where b ≥ r ⇐⇒
d ≤ 0. We prove the left inequality first:

Pam(St, τ) + Ste
(b−r)τ −Ke−rτ ≥ Cam(St, τ) (8.8)

Consider the following portfolio at time t:

1. buy an American put

2. buy e(b−r)τ stocks

3. sell bonds at nominal value K with date of expiring T

4. sell an American call

As in part 1 it follows that the value of the portfolio at time T is zero if
the call is not exercised early. The continuous costs of carry (d ≤ 0) are
financed through selling part of the stocks so that exactly one stock is left in
the portfolio at time T .

If, on the other hand, the call is exercised early at time t̃, the whole portfolio
is then liquidated and we get:

Pam(St̃, τ) − (St̃ −K) + St̃e
(b−r)(T−t̃) −Ke−r(T−t̃) =

Pam(St̃, τ) +K(1 − e−r(T−t̃)) + St̃(e
(b−r)(T−t̃) − 1) ≥ 0

(8.9)

The value of the portfolio at time t is:

Pam(St, τ) + Ste
(b−r)τ −Ke−rτ − Cam(St, τ) ≥ 0 (8.10)

If b < r ⇐⇒ d > 0 the left inequality is similarly proved,

Pam(St, τ) + St −Ke−rτ ≥ Cam(St, τ) (8.11)

where it is enough to hold one stock in the portfolio as d > 0.
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We now show the right inequality for the case b ≥ r

Cam(St, τ) ≥ Pam(St, τ) + St −K (8.12)

We consider the following portfolio at time t:

1. buy an American call

2. sell an American put

3. sell a stock (short sales)

4. buy a bond with nominal value Kerτ and expiring at time T

If the put is not exercised early, it holds at time T :

0 − (K − ST ) −ST e−(b−r)τ +Kerτ ≥ 0 if ST < K
(ST −K) + 0 −ST e−(b−r)τ +Kerτ ≥ 0 if ST ≥ K

(8.13)
If the put is exercised early at time t̃, the whole portfolio is liquidated and
we get:

Cam(St̃, τ) − (K − St̃) − St̃e
−(b−r)(t̃−t) +Ker(t̃−t) ≥ 0 (8.14)

Thus the value of the portfolio at time t is:

Cam(St, τ) − Pam(St, τ) − St +K ≥ 0 (8.15)

Analogously one gets for the right inequality when b < r

Cam(St, τ) ≥ Pam(St, τ) + Ste
(b−r)τ −K (8.16)

where the position of the stock is reduced to e(b−r)τ stocks. �

8.2 The Trinomial Model for American Options

The American option price can only be determined numerically. Similar to
the European options, the binomial model after Cox-Ross-Rubinstein can be
used. In this section we introduce a slightly more complex but numerically
efficient approach based on trinomial trees, see Dewynne et al. (1993). It is
related to the classical numerical procedures for solving partial differential
equations, which are also used to solve the Black-Scholes differential equa-
tions.

The trinomial model (see Section 4.2) follows the procedure of the binomial
model whereby the price at each time point tj = jΔt, j = 0, ..., n, can change
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to three, instead of two directions, with Δt = T/n, see Figure 8.4. The
value Skj at time tj can attain the values u1 · Skj , u2 · Skj , u3 · Skj at tj+1,
where ui > 0, i = 1, 2, 3, are suitably chosen parameters of the model. The
probability with which the price moves from Skj to ui · Skj is represented as
pi, i = 1, 2, 3. The price process Sj , j = 0, ..., n, in discrete time is also a
trinomial process, i.e. the logarithm of the price Zj = logSj , j = 0, ..., n, is
an ordinary trinomial process with possible increments log ui, i = 1, 2, 3.
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Figure 8.4: Possible price movements in the trinomial model.

As in the binomial model three conditions must be fulfilled: The sum of
the probabilities pi, i = 1, 2, 3, is one, the expectation and variance of the
logarithmic increments Zj must be the same as those of the logarithms of the
geometric Brownian motion over the time interval Δt. From these conditions
we get three equations:

p1 + p2 + p3 = 1, (8.17)

p1 log u1 + p2 log u2 + p3 log u3 = (b− 1
2
σ2)Δt, (8.18)

p1(log u1)2 + p2(log u2)2 + p3(log u3)2 = σ2Δt+(b− 1
2
σ2)2Δt2(8.19)

In the last equation we use E(Z2
j ) = V ar(Zj) + (EZj)2. Since there are 6

unknown parameters in the trinomial model, we have the freedom to intro-
duce three extra conditions in order to identify a unique and possibly simple
solution of the system of equations. For a symmetric price tree, we require
the recombination property

u1u3 = u2
2.

From this, the number of possible prices at time tn is reduced from maximally
3n to 2n+1 and consequently memory space and computation time are saved.
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To determine the parameters of the model we still need two more conditions.
We discuss two approaches of which one is motivated by binomial models
while the other by numeric analysis of partial differential equations.

a.) The first approach requires that a time step of Δt in the trinomial
model corresponds to two time steps in the binomial model: u1 represents
two upwards increments, u3 two downwards increments and u2 one upward
and one downward increment (or reversed). The binomial model fulfills the
recombination condition d = 1/u. Since now that the length of the time step
is Δt/2, it holds following Section 7.1

u = eσ
√

Δt/2

and the probability for the price moving upwards in the binomial model is:

p =
1
2

+
1
2
(b− 1

2
σ2)

√
Δt/2
σ

.

Then we get as conditions for the parameters of the trinomial model

u1 = u2, u2 = 1, u3 = u−2,

p1 = p2, p2 = 2p(1 − p), p3 = (1 − p)2.

With these parameters, the trinomial model performs as well as the corre-
sponding binomial model for the European option, requiring however only
half of the time steps. It converges therefore faster than the binomial model
towards the Black-Scholes solution.

Example 8.1 Given the parameters from Table 7.1, the trinomial model pro-
vides a price of 30.769 for a European call option after n = 50 steps. This
corresponds exactly to the value the binomial model attains after n = 100
steps, see Table 7.2.

SFEBiTree

American options differ from the European options in that the options can
be exercised at any time t∗ , 0 < t∗ ≤ T . Consequently the value of a call
falls back to the intrinsic value if it is early exercised:

C(S, t∗) = max{0, S(t∗) −K}.
Mathematically, we have to solve a free boundary value problem which can
only be done numerically.

V kj denotes the option value at time tj if the spot price of stocks is Sj = Skj .
As in the binomial model for European options we use V kj to denote the
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spot stock price St 230.00
exercise price K 210.00
time to maturity τ 0.50
volatility σ 0.25
interest rate r 0.04545
dividend no
steps 50
option type American call
option price 30.769

Table 8.3: The value of an American call option.

Call Put
European 30.769 6.051
American 30.769 6.212

Table 8.4: The value of an American call and put option.

discounted expectation that is calculated from the prices attainable in the
next time step, V k+1

j+1 , V
k
j+1 and V k−1

j+1 . Different from the European options,
the expectation of American options may not fall under the intrinsic value.
The recursion for the American call price is thus:

Ckj = max{Skj −K , e−rΔt[p1C
k+1
j+1 + p2C

k
j+1 + p3C

k−1
j+1 ]}.

Example 8.2 Table 8.3 gives the parameters and the value of an American
call option determined with steps n = 50 in a trinomial model. Compatible
with Theorem 8.1 it gives the same value 30.769 as a European option because
the underlying stock yields no dividend before maturity.

The American put is on the other hand more valuable than the European.
With the parameters from Table 8.3 one gets Peur = 6.05140 and Pam =
6.21159. These results are presented in Table 8.4.

b.) In the second approach the trinomial parameters pi and ui are determined
through additional conditions. Here a certain upwards trend is shown in the
whole price tree since we replace the condition u2 = 1 by

u2 = u
def= e(b−

1
2σ

2)Δt.
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Furthermore we assume p1 = p3, therefore, the four above-mentioned condi-
tions arise:

p1 = p3 = p, p2 = 1 − 2p, with p =
Δt
Th2

,

u1 = ueσh
√
T/2, u2 = u, u3 = ue−σh

√
T/2,

where h is another yet free parameter. The pi and ui fulfill the equation
system (8.17) - (8.19) exactly. To guarantee that p1, p2, p3 are not trivial
probabilities, i.e they must be between 0 and 1 and 0 < p < 1/2, h must
fulfill the following condition:

h >

√
2Δt
T

. (8.20)

We consider now a European option. Here the trinomial model delivers the
following recursion for the possible option values depending on the probabil-
ities pi and the change rates ui:

V kj = e−rΔt
(

Δt
Th2

V k+1
j+1 + (1 − 2

Δt
Th2

)V kj+1 +
Δt
Th2

V k−1
j+1

)
. (8.21)

We consider Δt = −(T − tj+1) + (T − tj) for all j = 0, ..., n− 1, and we put
h∗ = Δt/T as well as

Zkj = V kj e
−r(T−tj), Zkj+1 = V kj+1e

−r(T−tj+1).

The recursion (8.21) for the option values V kj then becomes

Zkj − Zkj+1

h∗
=

Zk+1
j+1 − 2Zkj+1 + Zk−1

j+1

h2
. (8.22)

This is the explicit difference approximation of the parabolic differential equa-
tion (6.15), see Samaskij (1984). The condition (8.20) corresponds to the
well-known stability requirement for explicit difference schemes. Compared
to the previously discussed approach, the probabilities pi in this variant of
the trinomial model and the calculation in (8.21) are not dependent on the
volatility. The recursion (8.21) depends on σ only through the initial con-
dition Sn = ST , i.e. on the price of a stock following a geometric Brownian
motion with volatility σ .
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8.3 Recommended Literature

American options are classic financial derivative instruments and play a cen-
tral role in the literatures referenced in Chapter 6. The trinomial model as
numerical procedures to approximate the option prices is introduced in detail
in Dewynne et al. (1993) and Wilmott et al. (1995).



9 Exotic Options

A whole series of complex, so-called exotic options exist, and are mainly used
in OTC-trading (over the counter) to meet the special needs of corporate
customers. The most important types of Exotic Options are:

• Compound Options
• Chooser Options
• Barrier Options
• Asian Options
• Lookback Options
• Cliquet Options

Figure 9.1 shows an example for DAX warrants issued by Sal.Oppenheim.
These products payout at maturity a fraction of the value of a barrier op-
tion. The value of a barrier option is given by the value of a corresponding
European option if the barrier was not crossed. As there are European calls
and puts there are two types of warrants: Long and Short. In the exam-
ple, the strike of the European options and the barrier (StopLoss) coincide.
Moreover, the warrants all payoff 1% of the value of the barrier options as
the last but one column shows. The maturity is given in the last column of
the table.

9.1 Compound Options, Option on Option

With a compound option one has the right to acquire an ordinary option at
a later date. To illustrate such a compound option consider a Call-on-a-Call
with the parameters:

maturity dates T1 < T2

strike prices K1,K2.

Such a compound option gives the owner the right at time T1 for the price
K1 to buy a call that has a maturity date T2 and a strike price K2.
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Figure 9.1: Basic information on DAX warrants issued by Sal.Oppenheim.

The value V (S, t) of this option at time t with an actual price St = S can be
calculated by applying the Black-Scholes formula twice:

1) Beginning at time t = T2, calculate (explicitly or numerically) the value
of the call, which can be bought at time T1, at time t = T1. This value
is C(S, T1).

2) The purchasing option of the call at time T1 is only exercised when

C(S, T1) > K1

Thus it holds that

V (S, T1) = max{C(S, T1) −K1, 0}.

Calculate V (S, t) for t < T1 using the Black-Scholes equation with these
restrictions at t = T1 analog to the normal call.

Remark 9.1 Since V (S, t) is only dependent on t and the price St at time
t, this value function fulfills the Black-Scholes equation so that our approach
is justified.

We illustrate the pricing of a compound option in the binomial tree model of
Cox, Ross and Rubinstein. We consider an asset with an initial value of 230
and a volatility of 25%. The corresponding tree for one year with time steps
Δt = 0.2 is shown in table 9.1. The corresponding prices C of a European
call with a strike of K2 = 210 that expires in T2 = 1 year are presented
in table 9.1. The value of a compound option on this call with compound
expiration at T1 = 0.4 and compound strike K1 = 20 is shown in table 9.1.
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402.26
359.71

321.66 321.66
287.63 287.63

257.21 257.21 257.21
230 230 230

205.67 205.67 205.67
183.91 183.91

164.46 164.46
147.06

131.51

Table 9.1: Binomial tree of a stock

192.25
151.60

115.42 111.66
83.75 79.53

58.14 51.99 47.21
38.91 32.30 23.98

19.39 12.18
6.19

Table 9.2: Binomial tree of a call option

63.75
38.32 max{Cuu −K1; 0}

22.49 PV(63.75, 12.30) 12.30
PV(38.32,6.25) 38.32 max{Cud −K1; 0}

PV(12.30, 0) 0
max{Cdd −K1; 0}

Table 9.3: Binomial tree of a call on a call option
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9.2 Chooser Options or “As You Wish” Options

A Chooser Option is a form of the compound option, where the buyer can
decide at a later date which type of option he would like to have. To illustrate
this, consider a regular Chooser Option with the parameters:

maturity dates T1 < T2

strike prices K1,K2.

This option gives the right at time T1 for the price K1 to buy a call or a
put (as preferred), which has a maturity T2 and a strike price K2: in the
language of compound options this is referred to as a Call-on-a-Call or Put.

The value V (S, t) can be found by applying the Black-Scholes formula three
times:

1) Determine the value C(S, T1) and P (S, T1) of a call and a put with a
maturity T2, and strike price K2.

2) Solve the Black-Scholes equation for t < T1 with the restriction

V (S, T1) = max{C(S, T1) −K1, P (S, T1) −K1, 0}

9.3 Barrier Options

A Barrier Option changes its value in leaps as soon as the stock price reaches
a given barrier, which can also be time dependent. As an example consider
a simple European barrier option which at

maturity T , strike price K and
barrier B

gives the holder the right to buy a stock at time T for the price K provided
that

• down-and-out: St > B for all 0 ≤ t ≤ T

• up-and-out: St < B for all 0 ≤ t ≤ T

This type of Knock-out Option is worthless as soon as the price St reaches
the barrier. Figure 9.2 represents the situation for a down-and-out option
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Figure 9.2: Two possible paths of the asset price. When the price hits the
barrier (lower path), the option expires worthless.

with two possible paths of the asset price. When the price hits the barrier
(lower path), the option expires worthless regardless of any further evolution
of the price.

A Knock-in Option is just the opposite to the knock-out option. It is worthless
up until the barrier is reached.

For example, a European Knock-in Call consists of the right to buy stock
provided that

• down-and-in: St ≤ B for some 0 ≤ t ≤ T

• up-and-in: St ≥ B for some 0 ≤ t ≤ T

The value of a barrier option is no longer dependent on a stock price at a
specific point in time, but on the overall development of the stock price during
the option’s life span. Thus in principle it does not fulfill the Black-Scholes
differential equation. The dependence however, is essentially simple enough
to work with the conventional Black-Scholes application. As an example
consider a Down-and-out Call with K > B. As long as St > B, V (S, t)
fulfills the Black-Scholes equation with the restriction:

V (S, T ) = max(ST −K, 0)

In the event that the price reaches the barrier B, the option of course becomes
worthless:

V (B, t) = 0 , 0 ≤ t ≤ T,

is therefore an additional restriction that needs to be taken into account when
solving the Black-Scholes differential equation. The explicit solution is given
as:

V (S, t) = C(S, t) −
(
B

S

)α
C

(
B2

S
, t

)
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with α =
2r
σ2

− 1, where C(S, t) represents the value of a common European

call on the stock in question. The value V̄ (S, t) of a European Down-and-in
Call can be calculated analogously. If one already knows V (S, t), one can
also use the equation

V̄ (S, t) + V (S, t) = C(S, t).

It is fulfilled since a down-and-in and a down-and-out call together have the
same effect as a normal call.

9.4 Asian Options

With Asian options the value depends on the average stock price calculated
over the entire life span of the option. With an Average Strike Option over
the time period 0 ≤ t ≤ T the payoff, for example, has at maturity the form

max
(
St − 1

t

∫ t

0

Ss ds , 0
)
, t = T.

With an American Average Strike Option this is also the payoff when the
option is exercised ahead of time at some arbitrary time t ≤ T.

To calculate the value of an Asian Option consider a general class of European
options with a payoff at time T that is dependent on ST and IT with

It =
∫ t

0

f(Ss, s)ds.

Analogous to the Black-Scholes equation we derive an equation for the value
at time t of such a path dependent option V (S, I, t). At time t with a stock
price St this results in

It + dIt
def= It+dt =

∫ t+dt

0

f(Ss, s)ds

= It +
∫ t+dt

t

f(Ss, s)dt

= It + f(St, t)dt+ O(dt).

Thus the differential of It is equal to dIt = f(St, t)dt.

Using Itôs Lemma it follows for Vt = V (St, It, t) that:

dVt = σSt
∂Vt
∂S

dWt + f(St, t)
∂Vt
∂I

dt
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+
(

1
2
σ2S2 ∂

2Vt
∂S

+
∂Vt
∂t

)
dt

Analogous to the derivation of the Black-Scholes formula continuous delta
hedging produces a risk free portfolio from an option and Δt = ∂Vt/∂S sold
stocks. Together with the restriction of no arbitrage it follows for the case of
no dividends (b = r) that:

∂Vt
∂t

+ f(St, t)
∂Vt
∂I

+
1
2
σ2S2

t

∂2Vt
∂S2

+ rSt
∂Vt
∂S

− r Vt = 0

This is the Black-Scholes equation with an additional term f(St, t)∂Vt

∂I . The
boundary condition in this case is

V (S, I, T ) = g(S, I, T ).

For an Average Strike Call we have:

g(S, I, t) = max(S − 1
t
I, 0) und f(S, t) = S.

For European options an explicit analytic solution of the differential equation
exists in which complicated, specialized functions appear, the so called con-
fluent hypergeometric functions. The numerical solution, however, is easier
and faster to obtain.

The integral
∫ t
0
Ssds in practice is calculated as the sum over all quoted

prices, for example, at 30 second time intervals. Discrete time Asian options
use, in place of this, a substantially larger time scale. It changes only once a
day or once a week:

It =
n(t)∑

j=1

Stj , tn(t) ≤ t < tn(t)+1

with tj+1 − tj = 1 day or = 1 week and closing price Stj .

Such a discrete time Asian option corresponds largely to a common option
with discrete dividend payments at time periods t1, t2, . . . . From the assump-
tion of no arbitrage follows a continuity restriction at tj :

V (S, I, tj−) = V (S, I + S, tj+)

To determine the value of the option one begins as usual at the time of
maturity where the value of the option is known:
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1) T = tn

V (S, I, T ) = max(S − 1
T
IT , 0)

IT =
n∑

j=1

Stj

Solve the Black-Scholes equation backwards to time tn−1 and obtain

V (S, I + S, tn−1+)

2) Calculate using the continuity restriction the new terminal value
V (S, I, tn−1−). Solve the Black-Scholes equation backwards to time
tn−2 and obtain

V (S, I + S, tn−2+)

etc.

9.5 Lookback Options

The value of a lookback option depends on the maximum or minimum of the
stock price over the entire life span of the option, for example, a Lookback
Put over the time period 0 ≤ t ≤ T has at maturity the payoff

max(MT − ST , 0) with Mt = max
0≤s≤t

Ss.

To calculate the value of such an option first consider a path dependent option
with

It(n) =
∫ t

0

Sns ds , i.e. f(S, t) = Sn.

In the sample path of Figure 9.3, we see a simulated price process (St) as
a solid line and the maximum process (Mt) as increasing dotted line. The
value of a lookback put is then given by the difference of the end value of the
increasing curve and the final value of the price process.

With Mt(n) = {It(n)} 1
n it holds that:

Mt = lim
n→∞Mt(n).

From the differential equation for It(n) and n→ ∞ it follows that the value
Vt = V (St,Mt, t) of a European lookback put fulfills the following equation:

∂Vt
∂t

+
1
2
σ2S2

t

∂2Vt
∂S2

+ r St
∂Vt
∂S

− r Vt = 0
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Figure 9.3: Sample paths of price process and corresponding maximum pro-
cess.

This is the normal Black-Scholes equation. M only appears as an argument
of V and in the boundary condition:

V (S,M, T ) = max(M − S, 0)

The solution is for a remaining time period of τ = T − t, α = 2r/σ2:

V (S,M, t) = S

(
Φ(y1) · (1 +

1
α

) − 1
)

+M e−rτ
(

Φ(y3) − 1
α

(
M

S

)α−1

Φ(y2)

)
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with y1 =
1

σ
√
τ
{ln S

M
+ (r +

1
2
σ2)τ}

y2 =
1

σ
√
τ
{ln S

M
− (r +

1
2
σ2)τ}

y3 =
1

σ
√
τ
{ln M

S
− (r +

1
2
σ2)τ}

9.6 Cliquet Options

A cliquet option settles periodically and resets the strike at the level of the
underlying during the time of settlement. It is therefore a series of at-the-
money options, but where the total premium is determined in advance. A
cliquet option can be thought of as a series of ”pre-purchased” at-the-money
options. The payoff on each option can either be paid at the final maturity,
or at the end of each reset period. The number of reset periods is determined
by the buyer in advance. All other equal, more resets make the option more
expensive.

The payoff of the cliquet call at maturity T is given by

max {(St0 , St1 , ..., Stn=T ) − St0}

and the payoff of the cliquet put is given by

max {St0 − (St0 , St1 , ..., Stn=T )} .

Example 9.1
Consider a cliquet call with maturity T = 3 years and strike price K1 = 100
in the first year. If in the first year the underlying were S1 = 90, the cliquet
option would expire worthless in the first year. The new strike price for the
second year will be set to K2 = 90. Assume, in the second year S2 = 120, then
the contract holder will receive a payoff and the strike price would reset to
the new level of K3 = 120 for the third year. Thus, higher volatility provides
better conditions for investors to earn profits. Prices of cliquet options obey
in a Black Scholes model a partial differential equation that has one variable,
in addition to the standard variables of the Black-Scholes partial differential
equation.
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9.7 Recommended Literature

Exotic options such as bond options are discussed in detail in Hull (2000).
The numerical methods necessary for valuing complex path-dependent deriva-
tives are briefly reviewed in Wilmott et al. (1995) and are discussed in more
detail in Dewynne et al. (1993).



10 Models for the Interest Rate
and Interest Rate Derivatives

As discussed in the last chapter, the important features of the Black and
Scholes application are:

• constant risk free domestic interest rate r (approximately fulfilled by
stock options with life spans of ≤ 9 months)

• independence of the price of the option’s underlying from the interest
rate r (empirical research shows that for stocks this is approximately
fulfilled).

Both features are violated for bond options and the longer time periods which
are typically found in the analysis of these options.

A bond produces at the time of maturity T a fixed amount Z, the nominal
value, and if applicable at predetermined dates before T dividend payments
(coupon). If there are no coupons, the bond is referred to as a zero coupon
bond or zero bond for short.

When valuing a bond option, coupons can be treated as discrete dividend
payments when valuing stock options.

10.1 Bond Value with Known Time Dependent
Interest Rate

To begin with we calculate the bond value V (t) at time t with a time depen-
dent but known interest rate r(t).

From the assumption of no arbitrage we conclude that a bond’s change in
value over the time period [t, t + dt] with possible coupon payments K(t)dt
coincides with the change in value of a bank account with a value V (t) and
with an interest of r(t) :

V (t+ dt) − V (t) =
(
dV

dt
+K(t)

)
dt = r(t)V (t) dt
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Together with the boundary restrictions V (T ) = Z it follows that:

V (t) = exp {I(t)} {Z +
∫ T

t

K(s) exp {I(t)} ds} (10.1)

with I(t) = − ∫ T
t
r(s)ds.

For a zero bond this simplifies to: V (t) = Z · exp {I(t)}

10.2 Stochastic Interest Rate Model

Due to the uncertainty associated with the future development of the interest
rate, r(t) is modelled as a random variable. In order to have an unambiguous,
fixed interest rate, one usually considers the interest rate of an investment
over the shortest possible time period:

r(t) = spot rate = interest rate for the shortest possible investment.

r(t) does not follow a geometric Brownian motion so that the Black-Scholes
approach cannot be used. This is shown in Figure 10.1 that presents the 1-
week Euribor rates as approximations for the spot rate. There are a number
of models for r(t), that are special cases of the following general proposal
which models the interest rate as a general Itô Process:

dr(t) = μ{r(t), t}dt+ σ{r(t), t}dWt (10.2)

{Wt} represents as usual a standard Wiener process.

Three most often used models are simple, special cases, where the coefficient
functions of the models are

• Vasicek:

μ(r, t) = a(b− r) , σ(r, t) = σ (10.3)
a, b, σ constants

• Cox, Ingersoll, Ross:

μ(r, t) = a(b− r), σ(r, t) = σ
√
r (10.4)

a, b, σ constants
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Figure 10.1: 1-week Euribor as approximation for the interest rate spot rate.

• Hull, White:

μ(r, t) = δ(t) − ar, σ(r, t) = σ (10.5)
a, σ constants, δ(t) from market data

deducible known function

In general μ(r, t) and σ(r, t) can be conveniently chosen, in order to replicate
empirically observed phenomena in the model. Below we will refer to σ(r, t)
as w(r, t), in order to clearly differentiate between the function w

def= σ and
the constant σ, which appears as a parameter in the three models mentioned
above.

10.3 The Bond Valuation Equation

A stock option can be hedged with stocks, and Black and Scholes use this
in deriving the option pricing formula. Since there is no underlying financial
instrument associated with a bond, bonds with varying life spans have to
be used to mutually hedge each other, in order to derive the equation for
valuation of bonds.
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Consider a portfolio made up of a zero bond with a remaining life time of τ1
and −Δ zero bonds (i.e., Δ sold zero bonds) with a remaining life time of τ2.
The value of the portfolio at time t for the current interest rate r(t) = r is:

Π(r, t) = V1(r, t) − Δ · V2(r, t).

where Vi, i = 1, 2 stands for the value function of both bonds. We write
Πt = Π{r(t), t}, Vit = Vi{r(t), t}, i = 1, 2, μt = μ{r(t), t}, wt = w{r(t), t}.
Using Itôs Lemma it follows that:

dΠt =
∂V1t

∂t
dt+

∂V1t

∂r
dr(t) +

1
2
w2
t ·

∂2V1t

∂r2
dt

−Δ
(
∂V2t

∂t
dt+

∂V2t

∂r
dr(t) +

1
2
w2
t

∂2V2t

∂r2
dt

)

By hedging the risks the random component disappears. This is achieved by
choosing

Δ =
∂V1t

∂r

/
∂V2t

∂r
.

By insertion and by comparison of the portfolio with a risk free investment
and taking advantage of the no arbitrage assumption, that is the equality of
the change in value of portfolio and bond:

dΠt = r(t) · Πt dt,

produces altogether
(
∂V1t

∂t
+

1
2
w2
t

∂2V1t

∂r2
− r(t) V1t

)/
∂V1t

∂r

=
(
∂V2t

∂t
+

1
2
w2
t

∂2V2t

∂r2
− r(t) V2t

)/
∂V2t

∂r
. (10.6)

This is only correct when both sides are independent of the remaining life
times τ1, τ2. V1t, V2t therefore both satisfy the following differential equation

∂Vt
∂t

+
1
2
w2
t

∂2Vt
∂r2

− r(t) Vt = −a{r(t), t} · ∂Vt
∂r

for some function a(r, t) which is independent of the remaining time to ma-
turity. With the economically interpretable variable

λ(r, t) =
μ(r, t) − a(r, t)

w(r, t)
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this produces with the abbreviation λt = λ{r(t), t} the zero bond valuation
equation for V (r, t) :

∂V (r, t)
∂t

+
1
2
w2
t

∂2V (r, t)
∂r2

− (μt − λtwt)
∂V (r, t)
∂r

− r(t) V (r, t) = 0 (10.7)

with the boundary condition V (r, T ) = Z at the time of maturity and with
additional boundary condition dependent on μ,w. It should be noted that
in the equation μt, wt, λt stand for functions of r and t.

The value λ(r, t) has the following interpretation. Consider a risky portfolio,
that is not hedged, consisting of a bond with the value Vt = V {r(t), t}. For
the change in value within the time period dt we obtain using Itôs Lemma
and the zero bond valuation equation:

dVt = r(t) Vt dt+ wt · ∂Vt
∂r

(dWt + λ{r(t), t} dt)

Since E[dWt] = 0, the mean change in value E[dVt] is
(
wt
∂Vt
∂r

)
· λ{r(t), t} dt

above the increase in value r(t) Vt dt of a risk free investment. λ(r, t) dt is
therefore the bonus on the increase in value, which one receives at time t
with a current interest rate r(t) = r for taking on the associated risk. λ(r, t)
is thus interpreted as the market price of risk.

10.4 Solving the Zero Bond Valuation Equation

Consider the special case:

w(r, t) =
√
α(t)r − β(t)

μ(r, t) = −γ(t) · r + η(t) + λ(r, t)w(r, t).

Inserting the solution assumption

V (r, t) = Z · exp {A(t) − rB(t)}

into the zero bond valuation equation results in the two equations

∂A(t)
∂t

= η(t) B(t) +
1
2
β(t) B2(t)
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∂B(t)
∂t

=
1
2
α(t) B2(t) + γ(t) B(t) − 1

with boundary condition A(T ) = B(T ) = 0 (since V (r, T ) = Z).

For time independent α, β, γ, η there is an explicit solution, which with a
remaining life time of τ = T − t has the form

B(t) =
2(eψ1τ − 1)

(γ + ψ1)(eψ1τ − 1) + 2ψ1
, ψ1 =

√
γ2 + α

2
α
A(t) = b2ψ2 ln(b2 −B) + (ψ2 − β

2
)b1 ln(

B

b1
+ 1)

+
1
2
B β − b2ψ2 ln b2

with

b1/2 =
±γ +

√
γ2 + 2α
α

, ψ2 =
η + b2β/2
b1 + b2

Choice of parameters:

1) The spot rate volatility is
√
αr(t) − β. With this relation, α, β can be

estimated from historical data, in a fashion similar to the historical
volatility of stocks.

2) Taking the yield curve (see Section 11.4.3) into consideration, the dis-
cussion of which goes beyond the scope of this section, estimators for
γ and η can be derived.

10.5 Valuation of Bond Options

As an example consider a European call with a strike price K and a maturity
TC on a zero bond with a maturity of TB > TC , i.e., the right is given to buy
the bond at time TC at a price K.

VB(r, t) = value of the bond at time t with the current interest rate r(t) = r

CB(r, t) = value of the call at time t with the current interest rate r(t) = r

CB is only dependent on the random variable r(t) and time t and therefore
itself also satisfies the zero bond’s value equation, but with the boundary
restrictions

CB(r, TC) = max (VB(r, TC) −K, 0) .

This equation, analogous to the corresponding Black-Scholes equation can be
numerically solved.



10.6 Recommended Literature 161

10.6 Recommended Literature

The classical stochastic interest rate models are introduced in Vasicek (1977),
Cox, Ingersoll and Ross (1985) and Hull and White (1990). A standard work
taking a modern point of view of the interest rate in financial mathematics
is Heath, Jarrow and Morton (1992).



Part II

Statistical Models of
Financial Time Series



11 Introduction: Definitions and
Concepts

Financial markets can be regarded from various points of view. First of
all there are economic theories which make assertions about security pricing;
different economic theories exist in different markets (currency, interest rates,
stocks, derivatives, etc.). Well known examples include the purchasing power
parity for exchange rates, interest rate term structure models, the capital
asset pricing model (CAPM) and the Black-Scholes option pricing model.
Most of these models are based on theoretical concepts which, for example,
involve the formation of expectations, utility functions and risk preferences.
Normally it is assumed that individuals in the economy act ‘rationally’, have
rational expectations and are averse to risk. Under these circumstances prices
and returns can be determined in equilibrium models (as, for example, the
CAPM) which clear the markets, i.e., supply equals aggregate demand. A
different Ansatz pursues the arbitrage theory (for example, the Black-Scholes
model), which assumes that a riskless profit would be noticed immediately
by market participants and be eliminated through adjustments in the price.
Arbitrage theory and equilibrium theory are closely connected. The arbitrage
theory can often get away with fewer assumptions, whereas the equilibrium
theories reach more explicitly defined solutions for complex situations.

The classical econometric models are formulated with the economically in-
terpreted parameters. One is interested in the following empirical questions:

1. How well can a specific model describe a given set of data (cross section
or time series)?

2. Does the model help the market participants in meeting the relative
size of assertions made on future developments?

3. What do the empirical findings imply for the econometric model? Will
it eventually have to be modified? Can suggestions actually be made
which will influence the functioning and structural organisation of the
markets?

In order to handle these empirical questions, a statistical inquiry is needed.
Since, as a rule with financial market data, the dynamic characteristics are
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the most important, we will mainly concentrate on the time series analysis.
First of all, we will introduce the concepts of univariate analysis and then
move to the multivariate time series. The interdependence of financial items
can be modelled explicitly as a system.

Certain terms, which are often used in time series analysis and in the analysis
of financial time series, are introduced in a compact form. We will briefly
define them in the next section.

11.1 Some Definitions

First we will need to look closer at stochastic processes, the basic object in
time series analysis.

Definition 11.1 (stochastic process)
A stochastic process Xt, t ∈ Z, is a family of random variables, defined in a
probability space (Ω,F ,P).

At a specific time point t, Xt is a random variable with a specific density
function. Given a specific ω ∈ Ω, X(ω) = {Xt(ω), t ∈ Z} is a realisation or a
path of the process.

Definition 11.2 (cdf of a stochastic process)
The joint cumulative distribution function (cdf) of a stochastic process Xt is
defined as

Ft1,...,tn(x1, . . . , xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn).

The stochastic process Xt is clearly identified, when the system of its density
functions is known. If for any t1, . . . , tn ∈ Z the joint distribution function
Ft1,...,tn(x1, . . . , xn) is known, the underlying stochastic process is uniquely
determined.

Definition 11.3 (conditional cdf)
The conditional cdf of a stochastic process Xt for any t1, . . . , tn ∈ Z with
t1 < t2 < . . . < tn is defined as

Ftn|tn−1,...,t1(xn | xn−1, . . . , x1) = P(Xtn ≤ xn | Xtn−1 = xn−1, . . . , Xt1 = x1).

Next we will define moment functions of the real stochastic process. Here
we will assume that the moments exist. If this is not the case, then the
corresponding function is not defined.
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Definition 11.4 (Mean function)
The mean function μt of a stochastic process Xt is defined as

μt = E[Xt] =
∫

R

xdFt(x). (11.1)

In general μt depends on time t, as, for example, processes with a seasonal
or periodical structure or processes with a deterministic trend.

Definition 11.5 (Autocovariance function)
The autocovariance function of a stochastic process X is defined as

γ(t, τ) = E[(Xt − μt)(Xt−τ − μt−τ )]

=
∫

R2
(x1 − μt)(x2 − μt−τ )dFt,t−τ (x1, x2) (11.2)

for τ ∈ Z.

The autocovariance function is symmetric, i.e., γ(t, τ) = γ(t − τ,−τ). For
the special case τ = 0 the result is the variance function γ(t, 0) = Var(Xt).
In general γ(t, τ) is dependent on t as well as on τ . Below we define the
important concept of stationarity, which will simplify the moment functions
in many cases.

Definition 11.6 (Stationary)
A stochastic process X is covariance stationary if

1. μt = μ, and
2. γ(t, τ) = γτ .

A stochastic process Xt is strictly stationary if for any t1, . . . , tn and for all
n, s ∈ Z it holds that

Ft1,...,tn(x1, . . . , xn) = Ft1+s,...,tn+s(x1, . . . , xn).

For covariance stationary the term weakly stationary is often used. One
should notice, however, that a stochastic process can be strictly stationary
without being covariance stationary, namely then, when the variance (or
covariance) does not exist. If the first two moment functions exist, then
covariance stationary follows from strictly stationary.

Definition 11.7 (Autocorrelation function (ACF))
The autocorrelation function ρ of a covariance stationary stochastic process
is defined as

ρτ =
γτ
γ0
.
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The ACF is normalised on the interval [-1,1] and thus simplifies the inter-
pretation of the autocovariance structure from various stochastic processes.
Since the process is required to be covariance stationary, the ACF depends
only on one parameter, the lag τ . Often the ACF is plotted as a function of
τ , the so called correlogram. This is an important graphical instrument to
illustrate linear dependency structures of the process.

Next we define two important stochastic processes which build the foundation
for further modelling.

Definition 11.8 (White noise (WN))
The stochastic process Xt is white noise if the following holds

1. μt = 0, and

2. γτ =
{
σ2 when τ = 0
0 when τ 
= 0.

SFEtimewr

If Xt is a process from i.i.d. random values with expectation 0 and finite
variance, then it is a white noise. This special case is called independent
white noise. On the contrary the white noise could have dependent third or
higher moments, and in this case it would not be independent.

Definition 11.9 (Random Walk)
The stochastic process Xt follows a random walk, if it can be represented as

Xt = c+Xt−1 + εt

with a constant c and white noise εt.

If c is not zero, then the variables Zt = Xt − Xt−1 = c + εt have a non-
zero mean. We call it a random walk with a drift (see Section 4.1). In
contrast to Section 4.3 we do not require the variables here to be independent.
The random walk defined here is the boundary case for an AR(1) process
introduced in Example 11.1 as α → 1. When we require, as in Section 4.3,
that εt is independent white noise, then we will call Xt a random walk with
independent increments. Historically the random walk plays a special role,
since at the beginning of the last century it was the first stochastic model
to represent the development of stock prices. Even today the random walk
is often assumed as an underlying hypothesis. However the applications are
rejected in their strongest form with independent increments.
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In order to determine the moment functions of a random walk, we will simply
assume that the constant c and the initial value X0 are set to zero. Then,
through recursive substitutions we will get the representation:

Xt = εt + εt−1 + . . .+ ε1.

The mean function is simply:

μt = E[Xt] = 0, (11.3)

and for the variance function, since there is no correlation of εt, we obtain:

Var(Xt) = Var(
t∑

i=1

εi) =
t∑

i=1

Var(εi) = tσ2. (11.4)

The variance of the random walk increases linearly with time. For the auto-
covariance function the following holds for τ < t:

γ(t, τ) = Cov(Xt, Xt−τ )

= Cov(
t∑

i=1

εi,
t−τ∑

j=1

εj)

=
t−τ∑

j=1

t∑

i=1

Cov(εi, εj)

=
t−τ∑

j=1

σ2 = (t− τ)σ2.

For τ < t the autocovariance is thus strictly positive. Since the covariance
function depends on time t (and not only on the lags τ), the random walk is
not covariance stationary. For the autocorrelation function ρ we obtain

ρ(t, τ) =
(t− τ)σ2

√
tσ2(t− τ)σ2

=
(t− τ)√
t(t− τ)

=
√

1 − τ

t
.

Again ρ depends on t as well as on τ , thus the random walk is not covariance
stationary.

As a further illustration we consider a simple, but important stochastic pro-
cess.
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Example 11.1 (AR(1) Process)
The stochastic process Xt follows an autoregressive process of first order,
written AR(1) process, if

Xt = c+ αXt−1 + εt

with a constant parameter α, |α| < 1. The process Xt can also, through
iterative substitutions, be written as

Xt = c(1 + α+ α2 + . . .+ αk−1)
+αkXt−k + εt + αεt−1 + . . .+ αk−1εt−k+1

= c(
k−1∑

i=0

αi) + αkXt−k +
k−1∑

i=0

αiεt−i

= c
1 − αk

1 − α
+ αkXt−k +

k−1∑

i=0

αiεt−i

If Xt−k is given for a particular k (for example, the initial value of the pro-
cess), the characteristics of the process are obviously dependent on this value.
This influence disappears, however, over time, since we have assumed that
|α| < 1 and thus αk → 0 for k → ∞. For k → ∞ a limit in the sense of
squared deviation exists, thus we can write the process Xt as

Xt = c
1

1 − α
+

∞∑

i=0

αiεt−i.

For the moment functions we then have

μt = c
1

1 − α
,

and

γτ =
σ2

1 − α2
ατ .

The ACF is thus simply ρτ = ατ . For positive α this function is strictly
positive, for negative α it alternates around zero. In every case it converges
to zero, but with α = 0.5, for example, convergence is very fast, and with
α = 0.99 it is quite slow. SFEacfar1
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Definition 11.10 (Markov Process)
A stochastic process has the Markov property if for all t ∈ Z and k ≥ 1

Ft|t−1,...,t−k(xt|xt−1, . . . , xt−k) = Ft|t−1(xt|xt−1).

In other words, the conditional distribution of a Markov process at a specific
point in time is entirely determined by the condition of the system at the
previous date. One can also define Markov processes of a higher order, from
which the conditional distribution only depends on the finite number of past
levels. Two examples of the Markov process of the first order are, the above
mentioned random walk with independent variables and the AR(1) process
with independent white noise.

Definition 11.11 (Martingale)
The stochastic process Xt is a martingale if the following holds

E[Xt|Xt−1 = xt−1, . . . , Xt−k = xt−k] = xt−1

for every k > 0.

The martingale is also a frequently used instrument in describing prices in
financial markets. One should notice that for a martingale process only one
statement about the conditional expectation is made, while for a Markov pro-
cess statements on the entire conditional distribution are made. An example
of a martingale is the random walk without a drift. The AR(1) process with
0 < α < 1 is not a Martingale, since E[Xt|xt−1, . . . , xt−k] = c+ αxt−1.

Definition 11.12 (fair game)
The stochastic process Xt is a fair game if the following holds

E[Xt|Xt−1 = xt−1, . . . , Xt−k = xt−k] = 0

for every k > 0.

Sometimes a fair game is also called a martingale difference. If Xt is namely
a martingale, then Zt = Xt −Xt−1 is a fair game.

Definition 11.13 (Lag-Operator)
The operator L moves the process Xt back by one unit of time, i.e., LXt =
Xt−1 and LkXt = Xt−k. In addition we define the difference operator Δ as
Δ = 1 − L, i.e., ΔXt = Xt −Xt−1, and Δk = (1 − L)k.
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After these mathematical definitions we arrive at the more econometric def-
initions, and in particular, at the term return. We start with a time series
of prices P1, . . . , Pn and are interested in calculating the return between two
periods.

Definition 11.14 (simple return)
The simple return Rt is defined as

Rt =
Pt − Pt−1

Pt−1
.

Should the average return Rt(k) need to be calculated over k periods, then
the geometric mean is taken from the simple gross return, i.e.,

Rt(k) =

⎛

⎝
k−1∏

j=0

(1 +Rt−j)

⎞

⎠
1/k

− 1.

In general the geometric mean is not equal to the arithmetic mean
k−1
∑k−1
j=0 Rt−j .

Definition 11.15 (log return)
The log return rt is defined as

rt = ln
Pt
Pt−1

= ln(1 +Rt).

SFEContDiscRet

The log return is defined for the case of continuous compounding. For the
average return over several periods we have

rt(k) = ln{1 +Rt(k)} =
1
k

ln
k−1∏

j=0

(1 +Rt−j)

=
1
k

k−1∑

j=0

ln(1 +Rt−j)

=
1
k

k−1∑

j=0

rt−j ,

i.e., for log returns the arithmetic average return is applied.
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For small price changes the difference of the simple return and log return is
negligible. According to the Taylor approximation it follows that:

ln(1 + x) = ln(1) +
∂ lnx
∂x

(1)x+
∂2 lnx
∂x2

(1)
x2

2!
+ . . .

= x− x2

2!
+
x3

3!
+ . . . .

For x close to zero a first order approximation is sufficient, i.e., ln(1+x) ≈ x.
As a general rule one could say, that with returns under 10% it does not
really matter whether the simple or the log returns are used. This is above
all the case when one is studying financial time series with a high frequency,
as, for example, with daily values.

11.2 Statistical Analysis of German Stock Returns

In this section we describe several classical characteristics of financial time
series using daily returns of German stocks from 1974 to 1996. We will con-
centrate, on the one hand, on the linear, chronological (in)dependence of the
returns, and on the other hand, on the distribution characteristics. Table
11.1 displays the summarised descriptive statistics. The autocorrelation of
first order is for all stock returns close to zero. The largest positive auto-
correlation is with PREUSSAG (0.08), the largest negative autocorrelation
is with ALLIANZ (-0.06). The majority of autocorrelations are positive (14
as compared to 6 negative). This is an empirical phenomenon which is also
documented for the American market.

While the first order autocorrelation of the returns of all stock returns are
all close to zero, the autocorrelations of the squared and absolute returns of
all stocks are positive and significantly larger than zero. Obviously there is
a linear relationship in the absolute values of the chronologically sequential
returns. Since the autocorrelation is positive, it can be concluded, that small
(positive or negative) returns are followed by small returns and large returns
follow large ones again. In other words, there are quiet periods with small
prices changes and turbulent periods with large oscillations. Indeed one can
further conclude that these periods are of relatively longer duration, i.e.,
the autocorrelations of squared returns from mainly very large orders are
still positive. These effects have already been examined by Mandelbrot and
Fama in the sixties. They can be modelled using, among others, the ARCH
models studied in Chapter 13. Furthermore we will consider estimates for
the skewness and kurtosis. Whereas the skewness in most cases is close
to zero and is sometimes positive, sometimes negative, the kurtosis is in
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every case significantly larger than 3. The smallest estimated kurtosis is by
THYSSEN (̂Kurt = 6.1), the largest by ALLIANZ (̂Kurt = 32.4). Under the
null hypothesis of the normal distribution, the estimates in (3.2) and (3.3)
are independent and asymptotically normally distributed with

ρ1(rt) ρ1(r2
t ) ρ1(|rt|) S K BJ

ALLIANZ -0.0632 0.3699 0.3349 0.0781 32.409 207116.0
BASF -0.0280 0.2461 0.2284 -0.1727 8.658 7693.5
BAYER -0.0333 0.3356 0.2487 0.0499 9.604 10447.0
BMW -0.0134 0.3449 0.2560 -0.0107 17.029 47128.0
COMMERZBANK 0.0483 0.1310 0.2141 -0.2449 10.033 11902.0
DAIMLER -0.0273 0.4050 0.3195 0.0381 26.673 134201.0
DEUTSCHE BANK 0.0304 0.2881 0.2408 -0.3099 13.773 27881.0
DEGUSSA 0.0250 0.3149 0.2349 -0.3949 19.127 62427.0
DRESDNER 0.0636 0.1846 0.2214 0.1223 8.829 8150.2
HOECHST 0.0118 0.2028 0.1977 -0.1205 9.988 11708.0
KARSTADT 0.0060 0.2963 0.1964 -0.4042 20.436 72958.0
LINDE -0.0340 0.1907 0.2308 -0.2433 14.565 32086.0
MAN 0.0280 0.2824 0.2507 -0.5911 18.034 54454.0
MANNESMANN 0.0582 0.1737 0.2048 -0.2702 13.692 27442.0
PREUSSAG 0.0827 0.1419 0.1932 0.1386 10.341 12923.0
RWE 0.0408 0.1642 0.2385 -0.1926 16.727 45154.0
SCHERING 0.0696 0.2493 0.2217 -0.0359 9.577 10360.0
SIEMENS 0.0648 0.1575 0.1803 -0.5474 10.306 13070.0
THYSSEN 0.0426 0.1590 0.1553 -0.0501 6.103 2308.0
VOLKSWAGEN 0.0596 0.1890 0.1687 -0.3275 10.235 12637.0

Table 11.1: First order autocorrelation of the returns ρ1(rt), the squared re-
turns ρ1(r2t ) and the absolute returns ρ1(|rt|) as well as skewness
(S), kurtosis (K) and the Bera-Jarque test statistic (BJ) for the
daily returns of German stocks 1974-1996.

SFEReturns

√
nŜ

L−→ N(0, 6)

and √
n(̂Kurt − 3) L−→ N(0, 24).

From this the combined test of the normal distribution from Bera and Jarque
(BJ) can be derived:

BJ = n

(
Ŝ2

6
+

(̂Kurt − 3)2

24

)
.

BJ is asymptotically χ2 distribution with two degrees of freedom. The last
column in Table 11.1 shows, that in all cases the normal distribution hypoth-
esis is clearly rejected by a significance level of 1% (critical value 9.21). This
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is above all caused by the value of the kurtosis. Typically in financial time se-
ries, the kurtosis is significantly larger than 3, which is caused by the frequent
appearance of outliers. Furthermore, there are more frequent appearances of
very small returns than what one would expect under the normal distribu-
tion hypothesis. One says that the empirical distribution of the returns is
leptokurtic, which means that the distribution is more mass around the cen-
tre and in the tails than the normal distribution. The opposite, a weaker
asymmetry or platykurtic distribution rarely appears in financial markets.

11.3 Expectations and Efficient Markets

Market efficiency is a very general concept in economic theory. A market is
called efficient if at every point in time all relevant information is completely
reflected in the price of the traded object. This general definition must be
defined more concretely, in order to say what “completely reflected” means.
To this end we require the concept of rational expectations. In general one
speaks of rational expectations when by the forecast of a stochastic process
Pt all relative and available information Ft−1 (see Definition 5.1) is ‘opti-
mally’ used. Optimal means that the mean squared error of the forecast is
minimised. This is the case when the conditional expectation (see Section
3.5) E[Pt|Ft−1] is used as the forecast.

Theorem 11.1
For every h > 0 using the conditional expectation E[Pt+h | Ft] as a forecast,
P ∗
t+h|t minimises the mean squared error E[(Pt+h−P ∗

t+h|t)
2] given all relevant

information Ft at time t.

Proof:
Given any forecast P ∗

t+h|t, that can be written as a (in general nonlinear)
function of the random variables at time t, which determines the information
set Ft, then the mean squared error can be written as:

E[(Pt+h − P ∗
t+h|t)

2] = E[(Pt+h − E[Pt+h|Ft] + E[Pt+h|Ft] − P ∗
t+h|t)

2]

= E[(Pt+h − E[Pt+h|Ft])2]
+E[(E[Pt+h|Ft] − P ∗

t+h|t)
2], (11.5)
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since the cross product is equal to zero:

2E[(Pt+h − E[Pt+h|Ft]) (E[Pt+h|Ft] − P ∗
t+h|t)] =

2E[E[Pt+h − E[Pt+h|Ft]|Ft](E[Pt+h|Ft] − P ∗
t+h|t)] =

2E[0 · (E[Pt+h|Ft] − P ∗
t+h|t)] = 0.

The second term on the right hand side of (11.5) is non-negative and is equal
to zero when E[Pt+h|Ft] = P ∗

t+h|t.

�

Not all economic variables have sufficient information available to estimate
E[Pt | Ft−1]. This has to do with the type of underlying process that deter-
mines Pt and the relative level of the necessary information for the forecast.
In order to shed light upon this conceptual problem, hypotheses have been
developed in the macro-economic theory, which do not require the use of
mathematical expectations E[Pt | Ft−1]. The hypothesis on adaptive expec-
tations assumes, for instance, that the forecast at time t− 1 of Pt, Eat−1[Pt],
is generated by the following mechanism:

Eat−1[Pt] − Eat−2[Pt−1] = θ(Pt−1 − Eat−2[Pt−1]) (11.6)

with a constant parameter θ, 0 < θ < 1. Changes in the forecast result from
the last forecast error weighted by θ.

Theorem 11.2
The adaptive expectation in (11.6) is optimal in the sense of the mean squared
error exactly when Pt follows the process

Pt = Pt−1 + εt − (1 − θ)εt−1 (11.7)

where εt is white noise.

Proof:
With the Lag-Operator L (see Definition 11.13), (11.6) can be represented as

{1 − (1 − θ)L}Eat−1[Pt] = θPt−1.

Since 0 < θ < 1 and {1 − (1 − θ)z}−1 =
∑∞
i=0(1 − θ)izi this can be written

as

Eat−1[Pt] = θ
∞∑

i=0

(1 − θ)iPt−i−1.



11.3 Expectations and Efficient Markets 177

The process (11.7) can be rewritten as

{1 − (1 − θ)L} εt = Pt − Pt−1

and

εt =
∞∑

j=0

(1 − θ)j(Pt−j − Pt−j−1)

= Pt − θ

∞∑

j=0

(1 − θ)jPt−j−1,

so that Pt − Eat−1[Pt] is white noise. Thus Eat−1[Pt] is the best forecast for Pt
in the sense of the mean squared error.

�

The process (11.7) is also referred to as the integrated autoregressive moving
average process (ARIMA) of order (0,1,1). The family of ARIMA models will
be discussed in more detail in Chapter 12. In general exogenous factors, for
example, supply shocks, could also be involved in determining the equilibrium
prices. In this case adaptive expectations would be suboptimal. If Xt is the
stochastic exogenous factor and Ft is a family of results which are determined
from the observations {pt, pt−1, . . . , xt, xt−1, . . .} available at time t, then the
optimal process E[Pt | Ft−1] is in general a function of {pt, pt−1, . . .} and of
{xt, xt−1, . . .}. Special cases do exist in which adaptive expectations coincide
with rational expectations, for example, in a linear supply/demand system
withXt as an exogenous shock that follows a random walk. IfXt is instead an
AR(1) process, then forecasts with adaptive expectations have a larger mean
squared error than forecasts with rational expectations. If the factor Xt is
common knowledge, i.e., available to the public, then rational expectations
in this example would mean that the price would be optimally forecasted by
using this information.

However, when the factor Xt is not observable for everyone, in principle the
uninformed agent could learn from the prices offered by the informed agent.
This means that through observation of prices they could obtain information
on the status of ω, above and beyond what is in their private information
set Fi. Here it is assumed that the information function of prices is correctly
interpreted.

In order to illustrate what role the price plays in forming expectations, imag-
ine purchasing a bottle of wine. In the store there are three bottles to choose
with the prices EUR 300, EUR 30 and EUR 3. Since the bottle for EUR
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Type P1 P2
I 300 50
II 50 300
III 150 250

Table 11.2: Payments in periods P1 and P2 according to type of investor

300 exceeds the budget, only two bottles for EUR 3 and EUR 30 are consid-
ered. Now assume that someone who is not a wine expert could not evaluate
the quality of the wine from the information on the label. Since one is often
pressed for time, collecting information from other sources is time consuming,
so what remains is the information implied by the price. Assume further that
one has learned through previous shopping experiences that the more expen-
sive wine tends to be better than the cheaper wine. Thus one constructs a
function of the price with respect to the quality, i.e., how good the wine is.
One would choose the wine for EUR 30 if the better quality and more expen-
sive wine was valued more in the utility function than the price advantage
of the cheaper wine. The buyer behaved rationally, since he optimised his
decision (here maximising his utility function) with the help of the available
information and the price function, assuming that the function was right.

In addition let’s take a look at another example of an experimental market
which is taken from the literature. We have a security that is traded in two
periods P1 and P2 and in each period it pays various dividends according to
the type of investor. The trading system is an auction in which at the time
of an offer both bid and ask prices are verbally given. There are three types
of investors and from each type there are three investors, i.e., a total of nine
investors can trade the security, among other instruments. Each investor
has an initial capital of 10 000 Franks (1 ‘Frank’ = 0.002 USD) and two
securities. The initial capital of 10 000 Franks must be paid back at the end
of the second period. Every profit which results from trading the security
may be kept. When the investor is in possession of the security at the end of
P1 or P2, he will receive the dividend with respect to what type of investor
he is. Table 11.2 displays information on the dividend payments.

Every investor knows only his own dividend payment, no one else. The
question is, whether, and if so how fast, the investors ‘learn’ about the pricing
structure, i.e., gain information on the value of the security to the other
investors. There are two underlying hypotheses:

1. Investors tell each other through their bids about their individual div-
idends only in P1 and P2 (‘naive behaviour’).
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2. The investors draw conclusions through the observed price on the value
of the security for the other investors and use this information in their
own bids (‘rational behaviour’).

Since the experiment is over after the period P2, only the individual dividend
payments of each investor are of interest, so that in P2 both hypotheses
coincide: The equilibrium price is 300 Franks, since type II is just willing to
buy at this price and there is competition among the type II investors. At the
beginning of P1, before any trading begins, each investor has information only
on his own dividends, so that at first one applies naive behaviour: type I and
type II would offer a maximum of 350, type III would offer a maximum of 400,
thus the equilibrium price according to the hypothesis of naive behaviour is
400 Franks. This hypothesis performed well in empirical experiments. When
the experiment is repeated with the same dividend matrix, the investors can
learn through the prices of the previous experiment, which value the security
has for the other types of investors in P2. In particular under the hypothesis
of rational behaviour, type I could learn that the equilibrium price in P2 is
higher than what his own dividend would be, thus he could sell the security at
a higher price. The equilibrium price in P1 is under the rational hypothesis
600 Franks. Type I buys at the price in P1 and sells in P2 to type II at a
price of 300.

In repeated experiments it was discovered that the participants actually
tended from naive behaviour to rational behaviour, although the transition
did not occur immediately after the first experiment, it was gradual and took
about 8 repetitions. Other experiments were run, including a forward and
futures market in which in the first period P1 the price of the security in P2
could already be determined. Here it was shown that through the immedi-
ate transparency of the security’s value in future periods the transition to
rational expectations equilibrium was much quicker.

The observed market price is created through the interaction of various sup-
plies and demands an aggregation of the individual heterogenous information
sets. Assume that the price at time t is a function of the state of the econ-
omy, the price function pt(ω), ω ∈ Ω. Below we define an equilibrium with
rational expectations.

Definition 11.16 (RE-Equilibrium)
An equilibrium at t with rational expectations (RE-equilibrium) is an equi-
librium in which every agent i optimises their objective function given the
information set Fi,t and the price function pt(ω).

Definition 11.16 assumes in particular that every agent includes the informa-
tion function of the prices correctly in his objective function.
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The concept of efficient markets is closely related to the concept of rational
expectations. According to the original and general definition, a market
is efficient if at every point in time all relevant information is reflected in
the price. This means, for example, that new information is immediately
incorporated into the price. Below we define efficient markets with respect
to an information set G.

Definition 11.17 (Efficient Markets)
A market is efficient with respect to G = (Gt), t ∈ N, Gt ⊂ Ft, if at every
time t the market is in RE-equilibrium with the price function pt(ω) and if
for every agent i and every time t the following holds

Gt ⊂ {Fi,t ∪ pt(ω)}.

Typically three cases are identified as weak, semi-strong and strong efficiency.

1. The market is weak efficient, when efficiency refers only to historical
prices, i.e., the set G = (Gt),
Gt = {pt, pt−1, pt−2, . . .}. This is, for example, achieved when for all
i it holds that {pt, pt−1, pt−2, . . .} ⊂ Fi,t, that is when the historical
prices are contained in every private information set.

2. The market is semi-strong efficient, when efficiency refers to the set
G = (Gt), (∩iFi,t) ⊂ Gt ⊂ (∪iFi,t), which includes all publicly available
information.

3. The market is strong efficient, when efficiency refers to the set G =
(Gt), Gt = ∪iFi,t, i.e., when all information (public and private) is
reflected in the price function. In this case one speaks of a fully revealing
RE-equilibrium.

An equivalent definition says that under efficient markets no abnormal returns
can be achieved. In order to test it one must first determine what a ‘normal’
return is, i.e., one must define an econometric model. Efficient markets can
then be tested only with respect to this model. If this combined hypothesis
is rejected, it could be that markets are inefficient or that the econometric
model is inadequate.

The following is a brief summary of the typical econometric models that have
been proposed for financial data. For each of the most interesting financial
instruments – stocks, exchange rates, interest rates and options – a corre-
sponding theory will be presented; each is considered to be classic theory in
its respective area. In later chapters we will refer back to these theories when
discussing empirically motivated expansions.
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11.4 Econometric Models: A Brief Summary

11.4.1 Stock Prices: the CAPM

The capital asset pricing model (CAPM), developed independently by various
authors in the sixties, is a classical equilibrium model for the valuation of risky
securities (stocks). It is based on the following assumptions:

1. Homogenous information among the market participants exists. This
belief can be weakened by assuming that under homogenous informa-
tion a rational equilibrium is fully revealing (see the strong version of
Definition 11.17).

2. The market has no friction, i.e., there are no transaction costs, no taxes,
no restrictions on short selling or on the divisibility of stocks.

3. There is complete competition.

4. There are no arbitrage opportunities.

5. There are a finite number of stocks (K) and risk free security with
return r.

6. Every investor has a strictly concave utility function as a function of
risky future cash flow. This means that every investor is risk averse.

7. Every investor maximises their expected utility, which is dependent
only on the expectation and variance of risky future cash flow. This
is the crucial assumption of the CAPM. Sufficient conditions for this
(μ− σ)-criterion are either of the following:

a) Every investor has a quadratic utility function.
b) The stock returns are normally distributed.

Below Xi,t and αi,t represent the price and the number of i-th stock supplied
in equilibrium at time t. We define the market portfolio Xm,t as

Xm,t =
K∑

i=1

αi,tXi,t. (11.8)

The relative weight wi,t of the i-th stock in this portfolio is as follows:

wi,t =
αi,tXi,t∑
k αk,tXk,t

.

Most of the well known stock indices are value weighted indices, nevertheless
often only the largest stocks on the market are included in the index (DAX,
for example, contains only the 30 largest stocks). As in Definition 11.15,
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we define the stock return as Ri,t = ln(Xi,t/Xi,t−1) and the market return
as Rm,t = ln(Xm,t/Xm,t−1). We assume that the underlying process of the
return is covariance stationary. In equilibrium according to the CAPM it
holds for every stock i that

E[Ri,t] = r + βi(E[Rm,t] − r), (11.9)

with the ‘beta’ factor

βi =
Cov(Ri,t, Rm,t)

Var(Rm,t)
.

Equation (11.9) says that in equilibrium the expected return of the i-th stock
is comprised of two components: the return of risk free security and a risk
premium which is specifically determined for each stock through the beta
factor. Stocks that are positively correlated with the market have a positive
risk premium. The larger the correlation of a stock with the market portfolio
is, the larger is the premium in CAPM for portfolio risk.

Since the CAPM can be derived using theories on utilities, it is sometimes
described as a demand oriented equilibrium model. In contrast to this there
are other models that explain the stock returns in terms of various aggregate
variables, so called factors, and are referred to as being supply oriented. In
Section 13.4 we will relax the assumptions of time constant variance and
covariance implicit in equation (11.9).

11.4.2 Exchange Rate: Theory of the Interest Rate Parity

For stocks one can find a large variety of econometric models and for exchange
rates there are even more. There are two standard and quite simple theories.
However they are not sufficient to explain the considerable price movements
in currency markets, especially in the short-run. The purchasing power parity
(PPP) assumes that identical goods in different countries must have the same
relative price, i.e., a relative price given in units of currency. It has been
empirically determined that in the long-run this theory describes reality well,
but in the short-term price movements could not be explained. The second
simple theory, the theory of interest rate parity, performs better as capital
flows faster than goods. The difference in interest rates can thus resemble
the exchange of capital in other currencies, as does the exchange rate. The
theory of interest rate parity assumes that domestic and foreign securities
are perfect substitutes with respect to duration and risk structure.

Assume that along with forward and futures markets currency can be traded
over time. The spot price is calculated by WK

t , the forward and future price
by WT

t , each is given in units of the foreign currency, i.e., EUR/USD. An



11.4 Econometric Models: A Brief Summary 183

internationally acting investor has two choices. Either he holds a domestic
capital investment with the domestic interest rate rit or he chooses a for-
eign investment with the foreign interest rate rat . If he chooses the foreign
investment, he must first exchange his capital into foreign currency at the
spot price and at the end, exchange back again. The uncertainty about the
future developments of the exchange rate can be avoided by purchasing a
forward or future contract. In this case the return on the foreign investment
is (1/WK

t )(1+ rat )W
T
t −1. If this return is not equal to the domestic interest

rate, then an equilibrium has not been reached. Through immediate price
adjustments the interest rate arbitrage disappeares and then equilibrium is
reached. Thus in equilibrium it must hold that

WT
t

WK
t

=
1 + rit
1 + rat

, (11.10)

i.e., the relationship between forward and future markets and spot markets
corresponds exactly to the relationship between domestic and foreign gross
interest rates. The relationship in (11.10) is also called the covered interest
rate parity, since at the time of investment it deals with risk free exchange
and interest rates.

In addition to the interest rate arbitrageur, there are the so-called forward
and future speculators that compare the expected future exchange rate with
the forward and future price and the corresponding risk of purchasing (sell-
ing) currency below or above the equilibrium. Consider a simple case where
forward and future speculators are risk neutral. Then in equilibrium the
expected exchange rate is equal to the forward and future price, i.e.,

WT
t = E[WK

t+1 | Ft], (11.11)

with the information set Ft which contains all relevant and available infor-
mation. Here we assume that the speculators have rational expectations, i.e.,
the true underlying process is known and is used to build the optimal forecast
by the speculators. This can also be written as the relationship:

WK
t+1 = E[WK

t+1 | Ft] + εt+1 (11.12)

which says that the deviations of the speculator’s forecast E[WK
t+1 | Ft] from

the realised exchange rates is white noise εt (see Definition 11.8). The market
is inefficient when the speculators actually are risk neutral and εt is not white
noise. In this case the set Ft does not reflect all of the relevant information in
the expectations of the speculators - they do not have rational expectations.
In order to test for market efficiency (that is, in order to test whether εt is
white noise) we first need a model for E[WK

t+1 | Ft]. This can be formulated
from (11.11) and (11.10).
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Substituting (11.11) into (11.10) we obtain the so called uncovered interest
rate parity,

E[WK
t+1 | Ft]
WK
t

=
1 + rit
1 + rat

. (11.13)

This interest rate parity is risky because future exchange rates are uncertain
and enter the relationship as expectations.

Together with (11.12) the uncovered interest rate parity (11.13) implies that
the following holds

WK
t+1 =

1 + rit
1 + rat

WK
t + εt+1. (11.14)

When the difference in the long-term interest rates is zero on average, then
(11.14) is a random walk (see Definition 11.9). The random walk is the first
model to describe exchange rates.

It should be emphasised that the derivation of this simple model occurred
under the assumption of risk neutrality of the speculators. In the case of
risk aversion, a risk premium must be included. If, for example, we want to
test the efficiency of the currency markets, we could then test the combined
hypothesis of efficiency and uncovered interest rate parity using risk neutral-
ity. A rejection of this hypothesis indicates market inefficiency or that the
interest rate parity model is a poor model for currency markets.

11.4.3 Term Structure: The Cox-Ingersoll-Ross Model

Term structure models are applied to model the chronological development
of bond returns with respect to time to maturity. The classical starting point
is to identify one or more factors which are believed to determine the term
structure. Through specification of the dynamic structure and using specific
expectation hypotheses, an explicit solution can be obtained for the returns.

As a typical example we briefly introduce the Cox, Ingersoll and Ross (CIR)
model, which has already been mentioned in Section 10.2. The price of a
Zero Coupon Bond with a nominal value of 1 EUR is given by PT (t) at time
t, i.e., a security with no dividend payments that pays exactly one EUR
at maturity date T . The log return of the zero coupon bond is given by
YT (t). We assume that continuous compounding holds. The process YT (t)
is frequently referred to as the yield to maturity . The relationship between
the price and the return of the zero coupon bond is:

PT (t) = exp{−YT (t)τ}
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with the remaining time to maturity τ = T − t. This can be easily seen from
the definition of a log return (Definition 11.15). For very short time intervals
the short rate r(t) is defined as:

r(t) = lim
T→t

YT (t).

In practice the short rate corresponds to the spot rate, i.e., the interest rate
for the shortest possible investment (see Section 10.2). Consider, intuitively,
the choice between an investment in a zero bond with the return YT (t) and
repeatedly investing at a (risky) short-term interest rate in future periods.
An important expectation hypothesis says that the following holds

PT (t) = E

[
exp(−

∫ T

t

r(s)ds)|Ft
]

(11.15)

(also see equation (10.1) for variable but deterministic interest). The short
rate is frequently seen as the most important predicting factor of the term
structure. As the CIR model, most one factor models use the short rate as a
factor. The CIR model specifies the dynamic of the short rate as a continuous
stochastic process

dr(t) = a{b− r(t)}dt+ σ
√
r(t)dWt (11.16)

with a Wiener process Wt and constant parameters a, b and σ - see also
Section 10.2. The process (11.16) has a so called mean reversion behaviour,
i.e., once deviations from the stationary mean b occurs, the process is brought
back to the mean value again through a positive a. The volatility, written
as σ
√
r(t), is larger whenever the interest level is higher, which can also be

shown empirically.

Since in the equation (11.16) r(t) is specified as a Markov process, PT (t) is,
as a consequence of equation (11.15), a function of the actual short rate, i.e.,

PT (t) = V {r(t), t}.
With Itô’s lemma (5.12) and (10.7) we obtain from (11.16) the differential
equation

a(b− r)
∂V (r, t)
∂r

+
1
2
σ2r

∂2V (r, t)
∂r2

+
∂V (r, t)
∂t

− rV (r, t) = 0.

With the bounding constraint V (r, T ) = PT (T ) = 1 the following solution is
obtained:

PT (t) = V {r(t), t} = exp {A(T − t) +B(T − t)r(t)} , (11.17)
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where (see Section 10.4)

A(τ) =
2ab
σ2

ln
2ψ exp {(a+ ψ)τ/2}

g(τ)
,

B(τ) =
2 {1 − exp(ψτ)}

g(τ)

ψ =
√
a2 + 2σ2

g(τ) = 2ψ + (a+ ψ) {exp(ψτ) − 1} .

For increasing time periods T − t the term structure curve YT (t) converges
to the value

Ylim =
2ab
ψ + a

.

If the short-term interest lies above b, then the term structure decreases, see
Figure 11.1; if it lies below Ylim, then the term structure increases, see Figure
11.2. If the short-term interest rate lies between b and Ylim, then the curve
could first rise and then fall.

11.4.4 Options: The Black-Scholes Model

Since we have thoroughly covered the Black-Scholes model on option pricing
in the first part of this book, only a brief summary of the model will be covered
here. Options are not only theoretically interesting for financial markets,
but also from an empirical point of view. Just recently there have been
indications of a systematic deviation of actual market prices from the Black-
Scholes prices. These deviations will be discussed in more detail in later
chapters, specifically in dealing with ARCH models.

As an example let’s consider a European call option on a stock which receives
no dividends in the considered time periods and has the spot price St at time
t. C(S, t) is the option price at time t, when the actual price is St = S. The
payoff at the time to maturity T is C(ST , T ) = max(0, ST − K), where K
is the strike price. The option price is determined from general no arbitrage
conditions as

C(St, t) = E[e−rτC(ST , T )|Ft],
where expectations are built on an appropriate risk neutral distribution - see
also (6.23). r is the fixed riskless interest rate.

Special results can only be derived when the dynamics of the stock prices
are known. The assumptions made by Black and Scholes are that the stock
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Yield Curve, Cox/Ingersoll/Ross Model
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Figure 11.1: Term structure curve according to the Cox-Ingersoll-Ross model
with a short rate of rt=0.2, a = b = σ = 0.1 and Ylim = 0.073
(dotted line). SFEcir

prices St are geometric Brownian motion, i.e.,

dSt = μStdt+ σStdWt. (11.18)

The option price C(S, t) thus satisfies the Black-Scholes differential equation
(6.3) as a function of time and stock prices

1
2
σ2S2 ∂

2C

∂S2
+ rS

∂C

∂S
+
∂C

∂t
= rC

Black and Scholes derive the following solutions (see Section 6.2):

C(S, t) = SΦ(y + σ
√
τ) − e−rτKΦ(y), (11.19)

where τ = T−t is the time to maturity for the option and y is an abbreviation
for

y =
ln S

K + (r − 1
2σ

2)τ
σ
√
τ

.
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Yield Curve, Cox/Ingersoll/Ross Model
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Figure 11.2: Term structure curve according to the Cox-Ingersoll-Ross model
with a short rate of rt=0.01, a = b = σ = 0.1 and Ylim = 0.073
(dotted line). SFEcir

11.4.5 The Market Price of Risk

In a risk neutral world the market price of risk, see Section 10.3, is equal
to zero. In the following section, we will consider the market price of risk
and derive once again the Black-Scholes formula. To do this we will consider
derivatives of financial instruments that are determined by a single random
process θt. We will assume that the process θt is geometric Brownian motion:

dθt = mθtdt+ sθtdWt . (11.20)

The variable θt does not necessarily represent a financial value. It could be
the state of the market, a measure of the popularity of a politician or the
frequency of an ad-hoc announcement at time t. Assume that V1t and V2t are
the prices for two derivatives of financial instruments that depend only on θt
and t. As a simplification, no payments are allowed during the observed time
period. This process Vjt = Vj(θ, t), j = 1, 2 also follows the schema (11.20)



11.4 Econometric Models: A Brief Summary 189

with the same Wiener process Wt

dVjt = μjtVjtdt+ σjtVjtdWt, j = 1, 2 (11.21)

where μjt, σjt could be functions of θt and t. The random process Wt in
(11.20) and (11.21) is always the same since we assume that this is the only
source that creates uncertainty.

The observation of (11.21) in discrete time leads to:

ΔV1t = μ1tV1tΔt+ σ1tV1tΔWt (11.22)
ΔV2t = μ2tV2tΔt+ σ2tV2tΔWt (11.23)

We could “eliminate the random variable ΔWt” by constructing a risk free
portfolio that continually changes. To do this we take σ2tV2t units of the
first instrument and −σ1tV1t of the second instrument, i.e., we short sell the
second instrument. Letting Πt be the total value of the portfolio at time t
we have:

Πt = (σ2tV2t)V1t − (σ1tV1t)V2t (11.24)

and
ΔΠt = (σ2tV2t)ΔV1t − (σ1tV1t)ΔV2t (11.25)

Substituting in (11.22) and (11.23) we have:

ΔΠt = (μ1tσ2tV1tV2t − μ2tσ1tV1tV2t)Δt. (11.26)

This portfolio should be risk free, thus in time period Δt it must produce the
risk free profit rΔt:

ΔΠt

Πt
= rΔt. (11.27)

Substituting (11.24) and(11.26) into this equation produces:

(μ1tσ2tV1tV2t − μ2tσ1tV1tV2t)Δt = (σ2tV1tV2t − σ1tV1tV2t)rΔt
μ1tσ2t − μ2tσ1t = rσ2t − rσ1t

μ1t − r

σ1t
=

μ2t − r

σ2t

Equating this as in (10.3) to λt we see that the price Vt of a derivative in-
strument, an instrument that depends only on θt and t, follows the dynamics

dVt = μtVtdt+ σtVtdWt, (11.28)

the value

λt =
μt − r

σt
=
μ(θt, t) − r

σ(θt, t)
(11.29)
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represents the market price of risk . This market price of risk can depend on
θt (using μt, σt), but not on the actual price of the instrument Vt! We can
rewrite the equation (11.29) as:

μt − r = λtσt (11.30)

Furthermore we can interpret σt, which in this interpretation can also be
negative, as the level of the θt-risk in Vt. Equation (11.30) has strong ties to
the CAPM model, which we discussed in Section (11.4.1) - for further details
see also Hafner and Herwartz (1998).

Example 11.2 Assume that there are two objects, both are dependent on a
90 day interest rate. The first instrument has an expected return of 6% per
year and a volatility of 20% per year. For the second instrument a volatility
of 30% per year is assumed. Furthermore, r = 3% per year. The market
price of risk for the first instrument according to (11.29) is:

0.06 − 0.03
0.2

= 0.15 (11.31)

By substituting into equation (11.30) for the second object we obtain:

0.03 + 0.15 · 0.3 = 0.075 (11.32)

or 7.5% expected value.

Since Vt is a function of θt and t, we can determine the dependence on θt
using Itô’s lemma. The direct application of Itô’s lemma (5.12) on V (θ, t)
gives, in comparison to (11.28), the parameters in this equation

μtVt = mθt
∂Vt
∂θt

+
∂Vt
∂t

+
1
2
s2θ2t

∂2Vt
∂θ2

σtVt = sθt
∂Vt
∂θ

.

Due to equation (11.30) we have μtVt − λtσtVt = rVt, so that we obtain the
following differential equation for Vt:

∂Vt
∂t

+ (m− λts)θt
∂Vt
∂θ

+
1
2
s2θ2t

∂2Vt
∂θ2

= r · Vt (11.33)

This equation (11.33) is very similar to the Black-Scholes differential equa-
tion and is in fact identical to (6.3) for θt = St, where St denotes the stock
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price with no dividends. In this case θt itself is the price of the risk bear-
ing instrument and must therefore satisfy (11.30), like the price Vt of any
derivative based on the stock. Thus we obtain

m− r = λts, (11.34)

so that the second term in (11.33) is equal to

rθt
∂Vt
∂θ

. (11.35)

Thus we have a differential equation:

1
2
s2θ2t

∂2Vt
∂θ2

+ rθt
∂Vt
∂θ

− rVt +
∂Vt
∂t

= 0 (11.36)

which is identical to (6.3) after renaming the variables. More explicitly, let
St = θt, b = r (since there are no dividends) and let σ = s using the notation
in Section 6.1.

11.5 The Random Walk Hypothesis

We have seen that econometric models, at least with stock prices and ex-
change rates, motivate using a random walk as a statistical model. With
exchange rates we saw that as a consequence of the uncovered interest rate
parity and the assumption of risk neutrality of forward and future speculators
the model in (11.14) follows a random walk. Assuming a geometric Brownian
motion for stock price as in (11.18), it then follows from Itô’s lemma that the
log of stock price follows a Wiener process with a constant drift rate:

d lnSt = μ∗dt+ σdWt (11.37)

where μ∗ = μ − σ2/2. If one observes (11.37) in time intervals of length
Δ > 0, i.e., at discrete points in time 0,Δ, 2Δ, ..., then one obtains

lnStΔ = lnS(t−1)Δ + Δμ∗ +
√

Δσξt (11.38)

with independent, standard normally distributed ξt, t = 1, 2, .... The process
(11.38) is a random walk with a drift for the logged stock prices. The log
returns (see Definition 11.15) over the time interval of length Δ are also
independently normally distributed with expected value Δμ∗ and variance
Δσ2.

With long interest rate time series the random walk appears to be less plausi-
ble, since it is assumed that in the long-run there is a stationary level around
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which interest rates fluctuate in the short run. Let’s consider once again the
process for the short rate in (11.16), the Cox-Ingersoll-Ross (CIR) model. A
discrete approximation is

rt − rt−1 = α+ βrt−1 + σ
√
rt−1ξt

or
rt = α+ (1 + β)rt−1 + σ

√
rt−1ξt. (11.39)

If β in (11.39) is negative (and larger than -2), then the process is a sta-
tionary AR(1) process with heteroscedastic error terms. In Example 11.1 we
encountered such a process with heteroscedastic error terms.

There is also the interpretation that interest rates are, at least in the short-
term, explained well by a random walk. It is therefore of general interest
to test whether a random walk exists. Below we show the distinguishing
features of the three versions of the random walk hypothesis. In general we
consider a random walk with a drift:

Pt = μ+ Pt−1 + εt. (11.40)

1. The stochastic errors in (11.40) are independent and identically dis-
tributed (i.i.d.) with expectation zero and variance σ2. This hypoth-
esis has already been tested on multiple data sets in the sixties and
was empirically determined to be unsupported. For example, distinct
volatility clusters were discovered which under the i.i.d. hypothesis are
statistically not expected.

2. The stochastic errors in (11.40) are independent but not necessarily
identically distributed with an expectation of zero. This hypothesis is
weaker than the first one since, for example, it allows for heteroscedas-
ticity. Nonetheless, even here the empirical discoveries were that a
dependence between the error terms must be assumed.

3. The stochastic errors in (11.40) are uncorrelated, i.e., γτ (εt) = 0 for
every τ 
= 0. This is the weakest and most often discussed random walk
hypothesis. Empirically it is most often tested through the statistical
(in)significance of the estimated autocorrelations of εt.

The discussion of the random walk hypotheses deals with, above all, the pred-
icability of financial time series. Another discussion deals with the question
of whether the model (11.40) with independent, or as the case may be, with
uncorrelated, error terms is even a reasonable model for financial time series
or whether it would be better to use just a model with a deterministic trend.
Such a trend-stationary model has the form:

Pt = ν + μt+ εt (11.41)



11.6 Unit Root Tests 193

with constant parameters ν and μ. The process (11.41) is non-stationary
since, for example, E[Pt] = ν + μt, the expected value is time dependent. If
the linear time trend is filtered from Pt, then the stationary process Pt − μt
is obtained.

To compare the difference stationary random walk with a drift to the trend
stationary process (11.41) we write the random walk from (11.40) through
recursive substitution as

Pt = P0 + μt+
t∑

i=1

εi, (11.42)

with a given initial value P0. One sees that the random walk with a drift
also implies a linear time trend, but the cumulative stochastic increments
(
∑t
i=1 εi) in (11.42) are not stationary, unlike the stationary increments (εt)

in (11.41). Due to the representation (11.42) the random walk with or without
a drift will be described as integrated, since the deviation from a determin-
istic trend is the sum of error terms. Moreover, every error term εt has a
permanent influence on all future values of the process. For the best forecast
in the sense of the mean squared error it holds for every k > 0,

E[Pt+k | Ft] = P0 + μ(t+ k) +
t∑

i=1

εi.

In contrast, the impact of a shock εt on the forecast of the trend-stationary
process (11.41) could be zero, i.e.,

E[Pt+k | Ft] = ν + μ(t+ k).

It is thus of at most importance to distinguish between a difference stationary
and a trend-stationary process. It is worth emphasising here that the random
walk is only a special case of a difference stationary process. If, for example,
the increasing variables in (11.40) are stationary but are autocorrelated, then
we have a general difference stationary process. There are many statistical
tests which test whether a process is difference stationary or not. Two such
tests are discussed in the next section.

11.6 Unit Root Tests

In Example 11.1 we discussed that the AR(1) process is:

Xt = c+ αXt−1 + εt. (11.43)
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Given |α| < 1, the process is stationary when E[X0] = c
1−α or after the

“decaying process”. The case where α = 1 corresponds to the random walk
which is non-stationary. The relationship between a stationary AR(1) process
and α close to one is so similar to a random walk that it is often tested whether
we have the case α = 1 or α < 1. To do this the so called unit root tests have
been developed.

11.6.1 Dickey-Fuller Tests

The unit root test developed by Dickey and Fuller tests the null hypothesis
of a unit root, that is, there is a root for the characteristic equation (12.6)
of the AR(1) process with z = 1, against the alternative hypothesis that the
process has no unit roots. As a basis for the test the following regression
used is:

ΔXt = (α− 1)Xt−1 + εt, (11.44)

which is obtained by rearranging (11.43) with c = 0. If Xt is a random walk,
then the coefficient of Xt−1 is equal to zero. If, on the other hand, Xt is
a stationary AR(1) process, then the coefficient is negative. The standard
t-statistic is formed

t̂n =
1 − α̂√

σ̂2(
∑n
t=2X

2
t−1)−1

, (11.45)

where α̂ and σ̂2 are the least squares estimators for α and the variance σ2 of
εt. For increasing n the statistic (11.45) converges not to a standard normal
distribution but instead to the distribution of a functional of Wiener process,

t̂n
L−→ W 2(1) − 1

2
{∫ 1

0
W 2(u)du

}1/2
,

where W is a standard Wiener process. The critical value of the distribution
are, for example, at the 1%, 5% and 10% significance levels, -2.58, -1.95, and
-1.62 respectively.

A problem with this test is that the normal test significance level (for example
5%) is not reliable when the error terms εt in (11.44) are autocorrelated. The
larger the autocorrelation of εt, the larger the distortion in general will be of
the test significance. Ignoring then that autocorrelations could lead to the
rejection of the null hypothesis of a unit root at low significance levels of 5%,
when in reality the significance level lies at, for example, 30%. In order to
prohibit these negative effects, Dickey and Fuller suggest another regression
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β
α p -0.99 -0.9 0 0.9
1 3 0.995 0.722 0.045 0.034

11 0.365 0.095 0.041 0.039
0.9 3 1.000 0.996 0.227 0.121

11 0.667 0.377 0.105 0.086

Table 11.3: ADF-Test: Simulated rejection probabilities for the process
(11.48) at a nominal significance level of 5% (according to Fried-
mann (1992)).

which contains lagged differences. The regression of this augmented Dickey
Fuller Test (ADF) is thus:

ΔXt = c+ (α− 1)Xt−1 +
p∑

i=1

αiΔXt−i + εt (11.46)

where as with the simple Dickey-Fuller Test the null hypothesis of a unit
root is rejected when the test statistic (11.45) is smaller than the critical
value (which are summarised in table 11.3). Naturally the choice of p is
problematic. In general it holds that the size of the test is better when p
gets larger, but which causes the test to lose power. This is illustrated in a
simulated process. The errors εt are correlated through the relationship:

εt = βξt−1 + ξt

where ξt are i.i.d. (0, σ2). In the next chapter these processes will be referred
to as moving average processes of order 1, MA(1). It holds that Var(εt) =
σ2(1 + β2), γ1(εt) = Cov(εt, εt−1) = βσ2, and γτ (εt) = 0 for τ ≥ 2. For the
ACF of εt we then get

ρτ (εt) =
{ β

1+β2 wenn τ = 1
0 wenn τ ≥ 2.

(11.47)

For the process
Xt = αXt−1 + βξt−1 + ξt (11.48)

simulations of the ADF Tests were done and are summarised in an abbrevi-
ated form in Table 11.3.

As one can see, the nominal significance level of 5% under the null hypothesis
(α = 1) is held better, if p is larger. However the power of the test decreases,
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i.e., the test is no longer capable of distinguishing between a process with
unit roots and a stationary process with α = 0.9. Thus in choosing p there
is also the conflict between validity and power of the test.

If Xt is a trend-stationary process as in (11.41), the ADF test likewise does
not often enough reject the (false) null hypothesis of a unit root. Asymptot-
ically the probability of rejecting goes to zero. The ADF regression (11.46)
can be extended by a linear time trend, i.e., run the regression

ΔXt = c+ μt+ (α− 1)Xt−1 +
p∑

i=1

αiΔXt−i + εt (11.49)

and test the significance of α. The critical values are contained in tables. The
ADF test with a time trend (11.49) has power against a trend-stationary pro-
cess. On the other hand, it loses power as compared to the simple ADF test
(11.46), when the true process, for example, is a stationary AR(1) process.

As an empirical example, consider the daily stock prices of the 20 largest
German stock companies from Jan. 2, 1974 to Dec. 30, 1996. Table 11.4
displays the ADF test statistics for the logged stock prices for p = 0 and
p = 4. The tests were run with and without a linear time trend. In every
regression a constant was included in estimation.

Only for RWE with a linear time trend does the ADF test reject the null
hypothesis of a unit root by a significance level of 10%. Since in all other
cases no unit root is rejected, it appears that taking differences of stock prices
is a necessary operation in order to obtain a stationary process, i.e., to get
log returns that can be investigated further. These results will be put into
question in the next section using another test.

11.6.2 The KPSS Test of Stationarity

The KPSS Test from Kwiatkowski, Phillips, Schmidt and Shin (1992) tests
for stationarity, i.e., for a unit root. The hypotheses are thus exchanged
from those of the ADF test. As with the ADF test, there are two cases to
distinguish between, whether to estimate with or without a linear time trend.
The regression model with a time trend has the form

Xt = c+ μt+ k
t∑

i=1

ξi + ηt, (11.50)

with stationary ηt and i.i.d. ξt with an expected value 0 and variance 1.
Obviously for k 
= 0 the process is integrated and for k = 0 trend-stationary.
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ADF KPSS
without with without with

time trend time trend time trend time trend
p and T 0 4 0 4 8 12 8 12
ALLIANZ -0.68 -0.62 2.44 2.59 24.52** 16.62** 2.36** 1.61**
BASF 0.14 0.34 2.94 3.13 23.71** 16.09** 1.39** 0.95**
BAYER -0.11 0.08 2.96 3.26 24.04** 16.30** 1.46** 1.00**
BMW -0.71 -0.66 2.74 2.72 23.92** 16.22** 2.01** 1.37**
COMMERZ- . . . .
BANK -0.80 -0.67 1.76 1.76 22.04** 14.96** 1.43** 0.98**
DAIMLER -1.37 -1.29 2.12 2.13 22.03** 14.94** 3.34** 2.27**
DEUTSCHE . . . .
BANK -1.39 -1.27 2.05 1.91 23.62** 16.01** 1.70** 1.16**
DEGUSSA -0.45 -0.36 1.94 1.88 23.11** 15.68** 1.79** 1.22**
DRESDNER -0.98 -0.94 1.90 1.77 22.40** 15.20** 1.79** 1.22**
HOECHST 0.36 0.50 3.24 3.37 23.80** 16.15** 1.42** 0.97**
KARSTADT -1.18 -1.17 1.15 1.15 20.40** 13.84** 3.33** 2.26**
LINDE -1.69 -1.44 2.74 2.70 24.40** 16.54** 3.14** 2.15**
MAN -1.78 -1.58 1.66 1.61 21.97** 14.91** 1.59** 1.08**
MANNES- . . . .
MANN -0.91 -0.80 2.73 2.55 21.97** 14.93** 1.89** 1.29**
PREUSSAG -1.40 -1.38 2.21 2.03 23.18** 15.72** 1.53** 1.04**
RWE -0.09 -0.04 2.95 2.84 24.37** 16.52** 1.66** 1.14**
SCHERING 0.11 0.04 2.37 2.12 24.20** 16.40** 2.35** 1.60**
SIEMENS -1.35 -1.20 2.13 1.84 23.24** 15.76** 1.69** 1.15**
THYSSEN -1.45 -1.34 1.92 1.90 21.97** 14.90** 1.98** 1.35**
VOLKS- . . . .
WAGEN -0.94 -0.81 1.89 1.73 21.95** 14.89** 1.11** 0.76**

Table 11.4: Unit root tests: ADF Test (Null hypothesis: unit root) and KPSS
Test (Null hypothesis: stationary). The augmented portion of the
ADF regression as order p = 0 and p = 4. The KPSS statistic
was calculated with the reference point T = 8 and T = 12. The
asterisks indicate significance at the 10% (*) and 1% (**) levels.

SFEAdfKpss

The null hypothesis is H0 : k = 0, and the alternative hypothesis is H1 : k 
=
0.

Under H0 the regression (11.50) is run with the method of the least squares
obtaining the residuals η̂t. Using these residuals the partial sum

St =
t∑

i=1

η̂i,

is built which under H0 is integrated of order 1, i.e., the variance St increases
linearly with t. The KPSS test statistic is then

KPSST =
∑n
t=1 S

2
t

n2ω̂2
T

, (11.51)
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where

ω̂2
T = σ̂2

η + 2
T∑

τ=1

(1 − τ

T − 1
)γ̂τ

is an estimator of the spectral density at a frequency of zero where σ̂2
η is

the variance estimator of ηt and γ̂τ = 1/n
∑n
t=τ+1 η̂tη̂t−τ is the covariance

estimator. The problem again is to determine the reference point T : for T
that are too small the test is biased when there is autocorrelation, for T that
is too large it loses power.

The results of the KPSS tests in Table 11.4 clearly indicate that the investi-
gated stock prices are not stationary or trend-stationary, since in every case
the null hypothesis at a significance level of 1% was rejected. Even RWE,
which was significant under the ADF test at a significance level of 10 %, im-
plies a preference of the hypothesis of unit roots here at a lower significance
level.

11.6.3 Variance Ratio Tests

If one wants to test whether a time series follows a random walk, one can take
advantage of the fact that the variance of a random walk increases linearly
with time, see (11.4). Considering the log prices of a financial time series,
lnSt, the null hypothesis would be

H0 : rt = μ+ εt, εt ∼ N(0, σ2)

with log returns rt = lnSt − lnSt−1, constant μ and εt white noise. An al-
ternative hypothesis is, for example, that rt is stationary and autocorrelated.
The sum over the returns is formed

rt(q) = rt + rt−1 + . . .+ rt−q+1

and the variance of rt(q) is determined. For q = 2 it holds that, for example,

Var{rt(2)} = Var(rt) + Var(rt−1) + 2 Cov(rt, rt−1)
= 2 Var(rt) + 2γ1

= 2 Var(rt)(1 + ρ1),

where taking advantage of the stationarity of rt, generally

Var{rt(q)} = qVar(rt)

(
1 + 2

q−1∑

τ=1

(1 − τ

q
)ρτ

)
. (11.52)
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Under H0 it holds that ρτ = 0 for all τ > 0, so that under H0

Var{rt(q)}
qVar(rt)

= 1.

A test statistic can now be constructed where the consistent estimator

μ̂ =
1
n

(lnSn − lnS0)

for μ,

γ̂0 =
1

n− 1

n∑

t=2

(lnSt − lnSt−1 − μ̂)2

for Var(rt) and

γ̂0(q) =
n

q(n− q)(n− q + 1)

n∑

t=q+1

(lnSt − lnSt−q − qμ̂)2

for 1
q Var{rt(q)} are substituted into (11.52). The test statistic is then

V Q(q) =
γ̂0(q)
γ̂0

− 1.

It can be shown that the asymptotic distribution is

√
nV Q(q) L−→ N

(
0,

2(2q − 1)(q − 1)
3q

)
.

The asymptotic variance can be established through the following approxi-
mation: Assume that μ̂ = 0 and n
 q. Then we have that lnSt − lnSt−q =∑q−1
j=0 rt−j and

V Q(q) ≈ 1
qn

n∑

t=q+1

⎛

⎝(
q−1∑

j=0

rt−j)2 − qγ̂0

⎞

⎠ /γ̂0

=
1
qn

n∑

t=q+1

1
γ̂0

⎛

⎝
q−1∑

j=0

r2t−j + 2
q−2∑

j=0

rt−jrt−j−1 + . . .+ 2rtrt−q+1 − qγ̂0

⎞

⎠

≈ 1
q

(qγ̂0 + 2(q − 1)γ̂1 + . . .+ 2 ˆγq−1 − qγ̂0) /γ̂0

= 2
q−1∑

j=1

q − j

q
ρ̂j .
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Since under H0 the estimated autocorrelation ρ̂j scaled with
√
n is asymptot-

ically standard normal and is independent, see Section 12.5, the asymptotic
variance is thus:

Varas{
√
nV Q(q)} = Varas(2

q−1∑

j=1

q − j

q

√
nρ̂j)

= 4
q−1∑

j=1

(q − j)2

q2
Varas(

√
nρ̂j)

= 4
q−1∑

j=1

(q − j)2

q2

= 4(q − 1) − 8
q

q−1∑

j=1

j +
4
q2

q−1∑

j=1

j2.

With the summation formulas
q−1∑

j=1

j = (q − 1)q/2

and
q−1∑

j=1

j2 = q(q − 1)(2q − 1)/6

we finally obtain

Varas{
√
nV Q(q)} =

2(2q − 1)(q − 1)
3q

.

11.7 Recommended Literature

Four current Textbooks in the area of empirical financial market analysis are
Mills (1993), Gouriéroux (1997), Campbell, Lo and MacKinlay (1997) and
Gouriéroux and Jasiak (2002). The focus of Gouriéroux and Mills is more
towards the econometric/time series analysis applications (which will also be
followed in this book), whereas Campbell, Lo and MacKinlay discuss many
economic applications that do not always end with statistical or econometric
models. As an introduction and yet a comprehensive book on time series
analysis Schlittgen and Streitberg (1995) is recommended. The same can be
found with Copeland and Weston (1992), an introductory book on finance
theory.
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The experiment of the expectation hypotheses comes from Forsythe, Palfrey
and Plott (1982). The definition of expectations and efficient markets is
based on Jarrow (1992). The CAPM is developed in Sharpe (1964), Lintner
(1965) and Mossin (1966). The discussion on the interest rate parity follows
Jarchow and Rühmann (1994)[pp.236] and that of the term structure models
of Cox-Ingersoll-Ross follow Ingersoll (1987). The standard option pricing
model originated in Black and Scholes (1973). The market price of risk is
discussed in Hull (2000),

A good overview of unit root tests is given in Hassler (1994). The ADF test
is taken from Dickey and Fuller (1979).
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In this chapter we will deal with classic, linear time series analysis. At first
we will define the general linear process.

Definition 12.1 (Linear Process)
If the process Xt has the representation

Xt = μ+
∞∑

i=−∞
aiεt−i

with white noise εt and absolute summability of the filter (ai) :
∑∞
i=−∞ |ai| <

∞, then it is a linear process.

The linear process Xt is covariance stationary, since E(Xt) = μ and

Cov(Xt, Xt+τ ) = σ2
∞∑

i=−∞

∞∑

j=−∞
aiaj1(τ = i− j) = σ2

∞∑

i=−∞
aiai−τ

with Var(εt) = σ2.

In general in econometrics, especially in the area of financial markets, se-
ries are observed which indicate non-stationary behaviour. In the previous
chapter we saw that econometric models, which are based on assumptions of
rational expectations, frequently imply that the relevant levels of, for exam-
ple, prices, follow a random walk. In order to handle these processes within
the framework of the classic time series analysis, we must first form the dif-
ferences in order to get a stationary process. We generalise the definition of
a difference stationary process in the following definition.

Definition 12.2 (Integrated process)
We say that the process Xt is integrated of order d, I(d), when (1−L)d−1Xt

is non-stationary and (1 − L)dXt is stationary.

White noise is, for example, I(0), a random walk I(1). In only a few cases
processes are observed that are I(d) with d > 1. This means that in most cases
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first differences are enough to form a stationary process. In the following we
assume that the observed process Yt is I(d) and we consider the transformed
process Xt = (1 − L)dYt, i.e., we will concentrate on stationary processes.

12.1 Moving Average Processes

The moving average process of order q, MA(q), is defined as

Xt = β1εt−1 + . . .+ βqεt−q + εt (12.1)

with white noise εt. With the Lag-Operator L (see Definition 11.13) instead
of (12.1) we can write

Xt = β(L)εt (12.2)

with β(L) = 1+β1L+ . . .+βqL
q. The MA(q) process is stationary, since it is

formed as the linear combination of a stationary process. The mean function
is simply E(Xt) = 0. Let β0 = 1, then the covariance structure is

γτ = Cov(Xt, Xt+τ )

= Cov(
q∑

i=0

βiεt−i,
q∑

j=0

βjεt+τ−j)

=
q∑

i=0

q∑

j=0

βiβj Cov(εt−i, εt+τ−j)

=
q−|τ |∑

i=0

βiβi+|τ |σ2, |τ | ≤ q.

For the ACF we have for |τ | ≤ q

ρτ =
∑q−|τ |
i=0 βiβi+|τ |∑q

i=0 β
2
i

, (12.3)

and ρτ = 0 for |τ | > q, i.e., the ACF breaks off after q lags.

As an example consider the MA(1) process

Xt = βεt−1 + εt,

which according to (12.3) holds that ρ1 = β/(1 + β2) and ρτ = 0 for τ > 1.
Figure 12.1 shows the correleogram of a MA(1) process.

Obviously the process
Xt = 1/βεt−1 + εt
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Figure 12.1: ACF of a MA(1) process with β = 0.5 (left) and β = −0.5
(right). SFEacfma1

has the same ACF, and it holds that

ρ1 =
1/β

1 + (1/β)2
=

β

1 + β2
.

In other words the process with the parameter β has the same stochastic
properties as the process with the parameter 1/β. This identification problem
can be countered by requiring that the solutions of the characteristic equation

1 + β1z + . . .+ βqz
q = 0 (12.4)

lie outside of the complex unit circle. In this case the linear filter β(L) is
invertible, i.e., a polynomial β−1(L) exists so that β(L)β−1(L) = 1 and

β−1(L) = b0 + b1L + b2L
2 + . . . . Figure 12.2 displays the correlogram of a

MA(2) process Xt = β1εt−1 +β2εt−2 + εt for some collections of parameters.

12.2 Autoregressive Process

The linear autoregressive process of order p, (AR(p)), is defined as

Xt = ν + α1Xt−1 + . . .+ αpXt−p + εt (12.5)
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Figure 12.2: ACF of a MA(2) process with (β1 = 0.5, β2 = 0.4) (top left),
(β1 = 0.5, β2 = −0.4) (top right), (β1 = −0.5, β2 = 0.4) (bottom
left) and (β1 = −0.5, β2 = −0.4) (bottom right). SFEacfma2

Using the definition of the lag-operator L (see Definition 11.13), (12.5) can
also be written as

α(L)Xt = ν + εt,

with the lag-polynomial α(L) = 1 − α1L − . . . − αpL
p. The process Xt is

stationary if all roots of the characteristic equation

α(z) = 1 − α1z − . . .− αpz
p = 0. (12.6)

lie outside of the complex unit circle, that is, if for all z with |z| ≤ 1 it holds
that

α(z) 
= 0. (12.7)

In this case there is an inverted filter α−1(L) for the linear filter α(L), such
that the following holds,

α(L)α−1(L) = 1
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and

α−1(L) = a0 + a1L+ a2L
2 + . . . =

∞∑

i=0

aiL
i.

The process (12.5) can also be written under the condition (12.7)

Xt = α−1(1)ν + α−1(L)εt

=
∞∑

i=0

aiν +
∞∑

i=0

aiL
iεt,

as a MA(∞) process.

A simple way to find and invert the autocovariance of an AR(p) process with
given parameters is to use the Yule-Walker equations. They are derived from
the definition of an AR(p) process in (12.5) by multiplying by Xt−τ and
taking expectations.

E[XtXt−τ ] = α1 E[Xt−1Xt−τ ] + . . .+ αp E[Xt−pXt−τ ]. (12.8)

Since E[XtXt−τ ] is the definition of the autocovariance function γτ for ν = 0,
it can even be written simpler for τ = 1, . . . , p

α1γ0 + α2γ1 + · · · + αpγp−1 = γ1

α1γ1 + α2γ0 + · · · + αpγp−2 = γ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
α1γp−1 + α2γp−2 + · · · + αpγ0 = γp

(12.9)

or by dividing by the variance γ0

ρ = Rα (12.10)

with ρ = (ρ1ρ2 . . . ρp)�, α = (α1α2 . . . αp)�, and the p × p-autocovariance
matrix

R =

⎛

⎜⎜⎜⎝

1 ρ1 · · · ρp−1

ρ1 1 · · · ρp−2

...
...

. . .
...

ρp−1 ρp−2 · · · 1

⎞

⎟⎟⎟⎠ .

Yule-Walker equations are useful in determining the ACF for given param-
eters or, vice versa, in determining the estimated parameters for the given
(empirical) autocorrelation.

Example 12.1 (AR(1))
The AR(1) process from Example 11.1 with ν = 0 has the characteristic
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equation 1−αz = 0. The explicit solution z = 1/α and |z| > 1 occurs exactly
when |α| < 1. The inverse filter of α(L) = 1−αL is thus α−1(L) =

∑∞
i=0 α

iLi

and the MA(∞) representation of the AR(1) process is

Xt =
∞∑

i=0

αiεt−i.

The ACF of the AR(1) process is ρτ = ατ . For α > 0 all autocorrelations are
positive, for α < 0 they alternate between positive and negative, see Figure
12.3.
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Figure 12.3: ACF of an AR(1) process with α = 0.9 (left) and α = −0.9
(right). SFEacfar1

Example 12.2 (AR(2))
The AR(2) process with ν = 0,

Xt = α1Xt−1 + α2Xt−2 + εt

is stationary when given the roots z1 and z2 of the quadratic equation

1 − α1z − α2z
2 = 0,

it holds that |z1| > 1 and |z2| > 1. We obtain solutions as

z1,2 = − α1

2α2
±
√

α2
1

4α2
2

+
1
α2
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and z1z2 = −1/α2. Due to |z1| > 1 and |z2| > 1 it holds that |z1z2| =
1/|α2| > 1 and

|α2| < 1. (12.11)

From the Yule-Walker equations in the case of an AR(2) process

ρ1 = α1 + α2ρ1 (12.12)
ρ2 = α1ρ1 + α2 (12.13)

it follows that ρ1 = α1/(1−α2). The case ρ1 = ±1 is excluded because a root
would lie on the unit circle (at 1 or -1). Thus for a stationary AR(2) process
it must hold that

|ρ1| = |α1/(1 − α2)| < 1,

from which, together with (12.11), we obtain the ‘stationarity triangle’

α1 + α2 < 1 (12.14)
α2 − α1 < 1 (12.15)

i.e., the region in which the AR(2) process is stationary.

The ACF of the AR(2) process is recursively given with (12.12), (12.13) and
ρτ = α1ρτ−1 + α2ρτ−2 for τ > 2. Figure (12.4) displays typical patterns.

12.3 ARMA Models

The ARMA(p, q) model is defined as

Xt = ν + α1Xt−1 + . . .+ αpXt−p + β1εt−1 + . . .+ βqεt−q + εt, (12.16)

or as
α(L)Xt = ν + β(L)εt

with the moving average lag-polynomial β(L) = 1+β1L+ . . .+βqL
q and the

autoregressive lag-polynomial α(L) = 1 − α1L − . . . − αpL
p. In order that

the process (12.16) can have explicit parameterisation, it is required that the
characteristic polynomials α(z) and β(z) do not have any common roots. The
process (12.16) is stationary when all the roots of the characteristic equation
(12.6) lie outside of the unit circle. In this case (12.16) has the MA(∞)
representation

Xt = α−1(L)β(L)εt.
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Figure 12.4: ACF of a AR(2) process with (α1 = 0.5, α2 = 0.4) (top left),
(α1 = 0.9, α2 = −0.4) (top right), (α1 = −0.4, α2 = 0.5) (bot-
tom left) and (α1 = −0.5, α2 = −0.9) (bottom right). SFEac-
far2

The process Xt in (12.16) is invertible when all the roots of the characteristic
equation (12.4) lie outside of the unit circle. In this case (12.16) can be
written as

β−1(L)α(L)Xt = εt,

that is an AR(∞) process. Thus we can approximate every stationary, in-
vertible ARMA(p, q) process with a pure AR or MA process of sufficiently
large order. Going in the other direction, an ARMA(p, q) process offers the
possibility of parsimonious parameterisation.
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12.4 Partial Autocorrelation

For a given stochastic process one is often interested in the connection be-
tween two random variables of a process at different points in time. One
way to measure a linear relationship is with the ACF, i.e., the correlation
between these two variables. Another way to measure the connection be-
tween Xt and Xt+τ is to filter out of Xt and Xt+τ the linear influence of the
random variables that lie in between, Xt+1, . . . , Xt+τ−1, and then calculate
the correlation of the transformed random variables. This is called the partial
autocorrelation.

Definition 12.3 (Partial autocorrelation)
The partial autocorrelation of k−th order is defined as

φkk = Corr(Xt − P(Xt | Xt+1, . . . , Xt+k−1),
Xt+k − P(Xt+k | Xt+1, . . . , Xt+k−1)) (12.17)

where P(W | Z) is the best linear projection of W on Z, i.e., P(W | Z) =
ΣWZΣ−1

ZZZ with ΣZZ = Var(Z) as the covariance matrix of the regressors
and ΣWZ = Cov(W,Z) as the matrix of covariances between W and Z.

The ‘best linear projection’ is understood in the sense of minimising the mean
squared error.

An equivalent definition is the solution to the system of equations

Pkφk = ρ(k)

with

Pk =

⎛

⎜⎜⎜⎝

1 ρ1 · · · ρk−1

ρ1 1 · · · ρk−2

...
...

. . .
...

ρk−1 ρk−2 · · · 1

⎞

⎟⎟⎟⎠

φk = (φk1, . . . , φkk)� and ρ(k) = (ρ1, . . . , ρk)�. These are the Yule-Walker
equations for an AR(k) process. The last coefficient, φkk, is the partial
autocorrelation of order k, as defined above. Since only this coefficient is of
interest in this context, the system of equations can be solved for φkk using
the Cramer-Rule. We get

φkk =
|P ∗
k |

|Pk|
where P ∗

k is equal to the matrix Pk, in which the k−th column is replaced with
ρ(k). Here |.| indicates the determinant. Since this can be applied to various



212 12 ARIMA Time Series Models

orders k, in the end we obtain a partial autocorrelation function (PACF). The
PACF can be graphically displayed for a given stochastic process, similar to
the ACF as a function of order k. This is called the partial autocorrelogram.

From the definition of PACF it immediately follows that there is no difference
between PACF and ACF of order 1:

φ11 = ρ1.

For order 2 we have

φ22 =

∣∣∣∣
1 ρ1

ρ1 ρ2

∣∣∣∣
∣∣∣∣

1 ρ1

ρ1 1

∣∣∣∣
=
ρ2 − ρ2

1

1 − ρ2
1

(12.18)

Example 12.3 (AR(1))
The AR(1) process Xt = αXt−1 + εt has the ACF ρτ = ατ . For the PACF
we have φ11 = ρ1 = α and

φ22 =
ρ2 − ρ2

1

1 − ρ2
1

=
α2 − α2

1 − α2
= 0,

and φkk = 0 for all k > 1. This is plausible since the last coefficient of an
AR(k) model for this process is zero for all k > 1. For k = 2 we illustrate the
equivalence with Definition 12.3: From Xt = αXt−1 + εt we directly obtain
P(Xt+2|Xt+1) = αXt+1 with

α =
Cov(Xt+2, Xt+1)

Var(Xt+1)
.

From the ’backward regression’ Xt = α′Xt+1+ηt with white noise ηt it further
follows that P(Xt|Xt+1) = α′Xt+1 with

α′ =
Cov(Xt, Xt+1)

Var(Xt+1)
.

For |α| < 1 the process is covariance-stationary and it holds that
Cov(Xt+2, Xt+1) = Cov(Xt, Xt+1) = γ1 and α = α′ = ρ1. We obtain

Cov{Xt − P(Xt|Xt+1), Xt+2 − P(Xt+2|Xt+1)}
= Cov(Xt − ρ1Xt+1, Xt+2 − ρ1Xt+1)
= E[(Xt − ρ1Xt+1)(Xt+2 − ρ1Xt+1)]
= γ2 − 2ρ1γ1 + ρ2

1γ0
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and

Var{Xt+2 − P(Xt+2|Xt+1)} = E[(Xt+2 − ρ1Xt+1)2]
= γ0(1 + ρ2

1) − 2ρ1γ1

= E[(Xt − ρ1Xt+1)2]
= Var[Xt − P(Xt|Xt+1)].

With this we get for the partial autocorrelation of 2nd order

φ22 = Corr{Xt − P(Xt|Xt+1), Xt+2 − P(Xt+2|Xt+1)}
=

Cov{Xt − P(Xt|Xt+1), Xt+2 − P(Xt+2|Xt+1)}√
Var{Xt+2 − P(Xt+2|Xt+1)}

√
Var(Xt − P(Xt|Xt+1))

=
γ2 − 2ρ1γ1 + ρ2

1γ0

γ0(1 + ρ2
1) − 2γ1ρ1

=
ρ2 − ρ2

1

1 − ρ2
1

which corresponds to the results in (12.18). For the AR(1) process it holds
that ρ2 = ρ2

1 and thus φ22 = 0.

It holds in general for AR(p) processes that φkk = 0 for all k > p. In Figure
12.5 the PACF of an AR(2) process is displayed using the parameters as in
Figure 12.4.

Example 12.4 (MA(1))
For a MA(1) process Xt = βεt−1 + εt with Var(εt) = σ2 it holds that γ0 =
σ2(1 + β2), ρ1 = β/(1 + β2) and ρk = 0 for all k > 1. For the partial
autocorrelations we obtain φ11 = ρ1 and

φ22 =

∣∣∣∣
1 ρ1

ρ1 0

∣∣∣∣
∣∣∣∣

1 ρ1

ρ1 1

∣∣∣∣
= − ρ2

1

1 − ρ2
1

(12.19)

For a MA(1) process it strictly holds that φ22 < 0. If one were to continue the
calculation with k > 2, one could determine that the partial autocorrelations
will not reach zero.

Figure 12.6 shows the PACF of a MA(2) process. In general for a MA(q)
process it holds that the PACF does not decay, in contrast to the autoregres-
sive process. Compare the PACF to the ACF in Figure 12.2. This is thus a
possible criterion for the specification of a linear model.
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Figure 12.5: PACF of an AR(2) process with (α1 = 0.5, α2 = 0.4) (top
left), (α1 = 0.9, α2 = −0.4) (top right), (α1 = −0.4, α2 = 0.5)
(bottom left) and (α1 = −0.5, α2 = −0.9) (bottom right).

SFEpacfar2

12.5 Estimation of Moments

Below we assume a stationary stochastic process Xt, i.e., E[Xt] = μ and
Cov(Xt, Xt+τ ) = γτ . In the previous sections, we have assumed that we knew
the process and thus the moment that generating function was also known.
In practice one observes only a realisation of the process, X1, . . . , Xn, and
thus there is the problem of estimating the moment generating function.
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Figure 12.6: PACF of a MA(2) process with (β1 = 0.5, β2 = 0.4) (top
left), (β1 = 0.5, β2 = −0.4) (top right), (β1 = −0.5, β2 = 0.4)
(bottom left) and (β1 = −0.5, β2 = −0.4) (bottom right).

SFEpacfma2

12.5.1 Estimation of the Mean Function

The parameter μ = E[Xt] can be estimated with the simple arithmetic sample
mean:

X̄n = 1/n
n∑

i=1

Xi. (12.20)
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The estimator X̄n is unbiased since it holds that E[X̄n] = μ, and its variance
is

Var(X̄n) = Var(1/n
n∑

i=1

Xi)

= 1/n2
n∑

t=1

n∑

s=1

Cov(Xt, Xs)

= 1/n2
n∑

t=1

n∑

s=1

γt−s

= 1/n
n−1∑

τ=−(n−1)

n− |τ |
n

γτ

When the autocovariance function γτ is absolutely summable, it holds that
Var(X̄n) < ∞ and limn→∞ Var(X̄n) = 0. The estimator X is then also a
consistent estimator for μ. In many cases there are more efficient estimators
which take advantage of the correlation structure of the process.

The asymptotic variance

lim
n→∞nVar(X̄n) = γ0 + 2

∞∑

τ=1

γτ

is denoted as f(0), since this is exactly the spectral density at frequency zero.
Under the absolute summability of γτ the following asymptotic distribution
for the estimator holds:

√
n(X̄n − μ) L−→ N(0, f(0)). (12.21)

12.5.2 Estimation of the Covariance Function

A possible estimator of the covariance function γτ is

γ̂τ,n =
1
n

n−τ∑

t=1

(Xt − X̄n)(Xt+τ − X̄n) (12.22)

with the mean estimator X̄n from (12.20). Instead of dividing by n in (12.22)
one could also divide by n− τ , although the estimator would then have less
favorable properties. The estimator γ̂τ,n is no longer unbiased, since the
following can be shown.

E[γ̂τ,n] =
(
1 − τ

n

)
γτ −

(
1 − τ

n

)
Var(X̄n) + O(n−2).
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Positive autocovariances are in general underestimated with γ̂τ,n. Asymptot-
ically γ̂τ,n is nevertheless unbiased: limn→∞E[γ̂τ,n] = γτ . For the variance
when terms of higher order are ignored it holds that:

Var(γ̂τ,n) =
1
n

∞∑

j=−∞
(γ2
j + γj−τγj+τ ) + O(n−1) =

1
n
σ2
τ,∞ + O(n−1)

and since limn→∞ Var(γ̂τ,n) = 0 holds, γ̂τ,n is a consistent estimator for
γτ . Furthermore, it can be shown that the covariance estimator behaves
asymptotically like a normally distributed random variable:

√
n(γ̂τ,n − γτ )

L−→ N(0, σ2
τ,∞).

12.5.3 Estimation of the ACF

An obvious estimator for the ACF ρτ is

ρ̂τ,n =
γ̂τ,n
γ̂0,n

. (12.23)

Once again we have a bias of order 1/n, i.e.,

E(ρ̂τ,n) = ρτ + O(n−1)

and ρ̂τ,n is asymptotically unbiased. For the variance it holds that

Var(ρ̂τ,n) =
1
n

Σρ,ττ + O(n−2).

The estimator ρ̂τ,n is consistent, since limn→∞ Var(ρ̂τ,n) = 0. For the asymp-
totic distribution of the vector ρ̂(k),n = (ρ̂1,n, . . . , ρ̂k,n)� it can be shown that

√
n(ρ̂(k),n − ρ(k))

L−→ N(0,Σρ)

with the covariance matrix Σρ with the typical element

Σρ,kl =
∞∑

j=−∞
ρjρj+k+l +

∞∑

j=−∞
ρjρj+k−l

+ 2ρkρl
∞∑

j=−∞
ρ2
j − 2ρl

∞∑

j=−∞
ρjρj+k − 2ρk

∞∑

j=−∞
ρjρj+l.
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In particular for the asymptotic variance of
√
n(ρ̂τ,n − ρτ ), it holds that

Σρ,ττ =
∞∑

j=−∞
ρjρj+2τ +

∞∑

j=−∞
ρ2
j

+ 2ρ2
τ

∞∑

j=−∞
ρ2
j − 4ρτ

∞∑

j=−∞
ρjρj+τ .

Example 12.5 (MA(q))
For the MA(q) process in (12.1) we know that ρτ = 0 for all τ > q. Thus the
asymptotic variance can be simplified from

√
n(ρ̂τ,n − ρτ ) for τ > q to

Σρ,ττ = 1 + 2
q∑

i=1

ρ2
i .

Example 12.6 (white noise)
If Xt is white noise, it holds that

E(ρ̂τ,n) = − 1
n

+ O(n−2)

and
Var(ρ̂τ,n) =

1
n

+ O(n−2)

for τ 
= 0. The asymptotic covariance matrix of
√
n(ρ̂(k),n−ρ(k)) is the iden-

tity matrix. Using this we can build approximately 95% confidence intervals
for the ACF: [− 1

n ± 2√
n
].

12.6 Portmanteau Statistics

With the help of the knowledge about the asymptotic distribution of the
autocorrelations we can derive a statistic to test the hypothesis of white noise.
One can either test the original series Xt or the residuals of an ARMA(p, q)
process. The number of estimated parameters is in the first case k = 0 and
in the second case k = p+ q.

Under the null hypothesis it holds for every m

ρ1 = 0, . . . , ρm = 0.
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The alternative hypothesis is accordingly, that at least one ρi, 1 ≤ i ≤ m
is not equal to zero. Under the null hypothesis

√
nρ̂τ,n is asymptotically

standard normally distributed. The statistic

Qm = n
m∑

j=1

ρ̂2
j,n

has an asymptotic χ2 distribution with m−k degrees of freedom. One would
reject the null hypothesis at a significance level of α, as long as Qm > χ2

m−k;α,
the (1 − α)-quantile of the Chi-squared distribution with m − k degrees of
freedom.

Studies show that Qm in small samples poorly approximates the asymptotic
distribution. This results from the fact that ρ̂τ,n is a biased estimator for
ρτ . The bias is stronger for small τ , and thus an asymptotically equivalent
statistic can be defined as

Q∗
m = n(n+ 2)

m∑

j=1

1
n− j

ρ̂2
j,n

which weights the empirical autocorrelations of smaller order less than those
of larger order. The modified Portmanteau statistic Q∗

m is therefore in small
samples frequently closer to the asymptotic χ2 distribution. For large n, both
statistics performs equally well.

12.7 Estimation of AR(p) Models

A simple way to estimate the parameters of the autoregressive model

Xt = α1Xt−1 + . . .+ αpXt−p + εt

with Var(εt) = σ2, is to use the Yule-Walker equations from (12.10), where
the theoretical autocorrelation is replaced with the empirical:

⎛

⎜⎜⎜⎝

1 ρ̂1 · · · ρ̂p−1

ρ̂1 1 · · · ρ̂p−2

...
...

. . .
...

ρ̂p−1 ρ̂p−2 · · · 1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

α̂1

α̂2

...
α̂p

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

ρ̂1

ρ̂2

...
ρ̂p

⎞

⎟⎟⎟⎠ .
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Solving for α̂ gives the Yule-Walker estimator. It is consistent and has an
asymptotic normal distribution with covariance matrix σ2Γ−1,

Γ =

⎛

⎜⎜⎜⎝

γ0 γ1 · · · γp−1

γ1 γ0 · · · γp−2

...
...

. . .
...

γp−1 γp−2 · · · γ0

⎞

⎟⎟⎟⎠ , (12.24)

The Yule-Walker estimators are asymptotically equivalent to other estimators
such as the least squares estimator, in the special case of normally distributed
εt and the maximum likelihood estimator for the normally distributed Xt.
In this case, these estimators are also asymptotically efficient.

12.8 Estimation of MA(q) and ARMA(p, q)
Models

As soon as moving average coefficients are included in an estimated model,
the estimation turns out to be more difficult. Consider the example of a
simple MA(1) model:

Xt = βεt−1 + εt (12.25)

with |β| < 1 and Var(εt) = σ2. A simple estimator for the parameter β is
obtained from the Yule-Walker equations γ0 = σ2(1 + β2) and γ1 = βσ2. By
dividing both equations we get ρ1 = γ1/γ0 = β/(1 + β2) and the solution to
the quadratic equation is:

β =
1

2ρ1
±
√

1
4ρ2

1

− 1. (12.26)

The Yule-Walker estimator replaces in (12.26) the theoretical autocorrelation
of 1st order ρ1 with the estimator ρ̂1. The estimator is quite simple, but has
the disadvantage that it is asymptotically inefficient.

The least squares estimator leads to non-linear systems of equations that can
only be solved with iterative numerical algorithms. Using the example of a
MA(1) process (12.25) this is illustrated: The LS estimator is defined by

β̂ = arg min
β

n∑

t=2

ε2t = arg min
β

n∑

t=2

(Xt − βεt−1)2 (12.27)
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Given that εt is not observed, one must turn to the AR(∞) representation
of the MA(1) process in order to find the solution, i.e.,

εt = Xt +
∞∑

k=1

(−β)kXt−k. (12.28)

Given X1, . . . , Xn, (12.28) can be approximated by

εt = Xt +
t−1∑

k=1

(−β)kXt−k.

Solving the first order conditions

∂

∂β

n∑

t=2

ε2t = 0,

we obtain a non-linear equation for β, which cannot be explicitly solved.
For the minimisation problem (12.27) one usually implements numerical op-
timisation methods. The least squares estimator is asymptotically efficient
and has asymptotically the same properties as the maximum likelihood (ML)
estimator.

In the following we assume a stationary and invertible ARMA(p, q) process
with the AR(∞) representation

Xt =
∞∑

j=1

πjXt−j + εt.

Maximum likelihood estimation allude to the distribution assumptions

εt ∼ N(0, σ2),

under which X = (X1, . . . , Xn)� have multivariate normal distributions with
a density

p(x | θ) = (2πσ2)−n/2|Γ|−1/2 exp
(
− 1

2σ2
x�Γ−1x

)

with covariance matrix Γ, which is given in (12.24), and the parameter vector

θ = (α1, . . . , αp, β1, . . . , βq;σ2)�.

The likelihood function L is then a density function interpreted as a function
of the parameter vector θ for given observations, i.e., L(θ | x) = p(x | θ).
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One chooses the respective parameter vector that maximizes the likelihood
function for the given observations, i.e., the ML estimator is defined by

θ̂ = arg max
θ∈Θ

L(θ | x).

Under the assumption of the normal distribution the logarithm of the likeli-
hood function

logL(θ | x) = −n
2

log(2πσ2) − 1
2

log |Γ| − 1
2σ2

x�Γ−1x (12.29)

takes on a simple form without changing the maximizer θ̂. The log-likelihood
function (12.29) is also called the exact log-likelihood function. One notices
that, in particular, the calculation of the inverse and the determinant of
the (n × n) matrix Γ is quite involved for long time series. Therefore one
often forms an approximation to the exact likelihood, which are good for
long time series. One possibility is use the conditional distribution p(Xt |
Xt−1, . . . , X1; θ):

L(θ | x) =
n∏

t=1

p(Xt | Xt−1, . . . , X1; θ)

Under the assumption of normal distributions the conditional distributions
are normal with an expected value

E[Xt | Xt−1, . . . , X1]

and variance
Var(Xt | Xt−1, . . . , X1).

The larger t is, the better the approximation of

E[Xt | Xt−1, . . . , X1, . . .] =
∞∑

j=1

πjXt−j

by
∑t−1
j=1 πjXt−j becomes. The conditional log-likelihood function

logLb(θ | x) = −n
2

log(2πσ2)− 1
2

log σ2− 1
2σ2

n∑

t=1

(Xt−
t−1∑

j=1

πjXt−j)2 (12.30)

can be calculated from the data X1, . . . , Xn and optimised with respect to
the parameter θ. As an initial value for the numerical optimisation algorithm
the Yule-Walker estimators, for example, can be used (except in specific cases
of asymptotic inefficiency).
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To compare the exact and the conditional likelihood estimators consider a
MA(1) process (12.25) with β = 0.5 and εt ∼ N(0, 1). The matrix Γ is band
diagonal with elements 1+β2 on the main diagonal and β on diagonals both
above and below it. Two realisations of the process with n = 10 and n = 20
are shown in Figure 12.7. Since the process has only one parameter, one can
simply search in the region (-1,1). This is shown for both estimators in Figure
12.8 (n = 10) and 12.9 (n = 20). For the process with n = 10 one still sees a
clear discrepancy between both likelihood functions, which for n = 20 can be
ignored. Both estimators are in this case quite close to the true parameter
0.5.

MA(1) Process, n=10

2 4 6 8 10

X

-1
0

1

Y

MA(1) Process, n=20

5 10 15 20

X

-1
0

1

Y

Figure 12.7: Two realisations of a MA(1) process with β = 0.5, εt ∼ N(0, 1),
n = 10 (above) and n = 20 (below). SFEplotma1

Under some technical assumptions the ML estimators are consistent, asymp-
totically efficient and have an asymptotic normal distribution:

√
n(θ̂ − θ) L−→ N(0, J−1)

with the Fisher Information matrix

J = E

[
−∂

2 logL(θ, x)
∂θ∂θ�

]
. (12.31)

For the optimisation of the likelihood function one frequently uses numerical
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likelihood function of an MA(1) Process
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Figure 12.8: Exact (solid) and conditional (dashed) likelihood functions for
the MA(1) process from figure 12.7 with n = 10. The true
parameter is β = 0.5. SFElikma1

methods. The necessary condition for a maximum is

grad lb(θ) = 0

with lb = logL(θ | x). By choosing an initial value θ0 (for example, the
Yule-Walker estimator), and the Taylor approximation

grad lb(θ) ≈ grad lb(θ0) + Hess lb(θ0)(θ − θ0)

one obtains the following relation:

θ = θ0 − Hess lb(θ0)−1grad lb(θ0).

Since generally one does not immediately hit the maximising parameter, one
builds the iteration

θj+1 = θj − Hess lb(θj)−1grad lb(θj)

with j = 1, 2, . . . until a convergence is reached, i.e., θj+1 ≈ θj . Often it is
easier to use the expectation of the Hessian matrix, that is, the information
matrix from (12.31):

θj+1 = θj + J(θj)−1grad lb(θj). (12.32)

The notation J(θj) here means that (12.31) is evaluated at θj . The iteration
(12.32) is called the score-algorithm or Fisher scoring.
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Figure 12.9: Exact (solid) and conditional (dashed) likelihood functions for
the MA(1) process from figure 12.7 with n = 20. The true
parameter is β = 0.5. SFElikma1

12.9 Recommended Literature

Comprehensive textbooks on classic time series analysis are, for example,
Schlittgen and Streitberg (1995), Brockwell and Davis (1991), Gouriéroux
and Monfort (1996). In addition, classic books are Box and Jenkins (1976)
and Hamilton (1994).



13 Time Series with Stochastic
Volatility

In the previous chapters we have already discussed that volatility plays an
important role in modelling financial systems and time series. Unlike the
term structure, volatility is unobservable and thus must be estimated from
the data.

Reliable estimations and forecasts of volatility are important for large credit
institutes where volatility is directly used to measure risk. The risk premium,
for example, is often specified as a function of volatility. It is interesting to
find an appropriate model for volatility. The capability of macroeconomic
factors to forecast volatility has already been examined in the literature.
Although macroeconomic factors have some forecasting capabilities, the most
important factor seems to be the lagged endogenous return. As a result recent
studies are mainly concentrated on time series models.

Stock, exchange rates, interest rates and other financial time series have styl-
ized facts that are different from other time series. A good candidate for
modelling financial time series should represent the properties of stochastic
processes. Neither the classic linear AR or ARMA processes nor the nonlin-
ear generalisations can fulfil this task. In this chapter we will describe the
most popular volatility class of models: the ARCH (autoregressive conditional
heteroscedasticity) model that can replicate these stylised facts appropriately.

Stylised fact 1: Time series of share prices Xt and other basic financial
instruments are not stationary time series and possess a local trend at least.

Similar to the ARIMA model in Chapter 12, we transform the original data
by first taking differences to get a stationary time series. Here we consider
the log return (see Definition 11.15) instead of the original share prices. We
simply call it return in this chapter. One could consider the simple return
Rt as well (see Definition 11.14).

Stylised fact 2: Returns rt have a leptokurtic distribution. The empirically
estimated kurtosis is mostly greater than 3.

We have discussed the properties of the return’s distribution in Section 3.3
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and Section 11.2. The leptokurtosis can be illustrated in a comparison of the
density of a normal distribution and a kernel estimator of the adjusted data
(see Figure 15.1). We can see in Theorem 13.3 that an ARCH process has a
kurtosis greater than 3 even if the innovation of the process itself is normally
distributed.

Stylised fact 3: The return process is white noise (Definition 11.8) since
the sample autocorrelation ρ̂τ,n, k 
= 0 (12.23) is not significantly different
from 0. Furthermore the white noise is not independent since the sample
auto-correlations of squared and absolute returns are clearly greater than 0.

ARCH models possess the characteristic (Theorem 13.1) that we have already
described in Section 11.2. A stronger condition than pairwise uncorrelation
of returns is that returns are unpredictable, which is connected to the no
arbitrage condition. As in Section 11.3 Ft denotes the information set at time
t. The best prediction of return rt+1 at day t for day t+ 1 is the conditional
expectation rt+1|t = E[rt+1|Ft] (Theorem 11.1) based on the information set
Ft. The time series of the return is called unpredictable if

rt+1|t = E[rt+1|Ft] = E[rt+1],

i.e. the best prediction of the next return is simply its unconditional mean.
The information set Ft gives no hints for predicting future prices. ARCH
processes are automatically unpredictable (Definition 13.1).

An unpredictable time series is always white noise because the auto-correlation
is equal to 0. It is even possible that a linear prediction is better than the
expectation estimated only by the unpredictable time series (see the proof
of Theorem 13.1). The condition of unpredictability is actually stronger
than pairwise uncorrelation. A predictable white noise is, for example εt =
ηt + γηt−1ηt−2, where ηt is independent white noise with expectation of
0. This bilinear process has vanishing auto-correlations but E[εt+1|Ft] =
γηtηt−1 
= 0 = E[εt+1].

If the returns were predictable we could develop a trading strategy based
on the resulting predictions of price, which would give us a positive profit.
The existence of a stochastic arbitrage probability obviously contradicts the
assumption of a perfect financial market (Section 2.1).

Stylised fact 4: Volatility tends to form clusters: After a large (small) price
change (positive or negative) a large (small) price change tends to occur. This
effect is called volatility clustering.

We will consider the properties of financial time series in more detail in the
following section. According to the stylised fact 4, the squared returns are
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positively correlated. Thus returns are conditionally heteroscedastic i.e.

Var[rt+1|Ft] 
= Var[rt+1].

The returns rt are not independent but their variability depends on recent
changes of price.

13.1 ARCH and GARCH Models

Following the introduction of ARCH models in the eighties there were enor-
mous theoretical and practical developments in financial econometrics. It
became clear that ARCH models could efficiently and quite easily represent
the typical empirical findings in financial time series, e.g. the conditional
heteroscedasticity. In particular after the collapse of the Bretton Woods sys-
tem and the implementation of flexible exchange rates in the seventies ARCH
models became increasingly used by researchers and practitioners.
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Figure 13.1: Normally distributed white noise. SFEtimewr

In addition a far-reaching agreement was formed, that returns cannot be
regarded as i.i.d. and at most as being uncorrelated. This argument holds
at least for financial time series of relatively high frequency, for example
for daily data. In Figure 13.1 we show a normally distributed white noise,
a GARCH(1,1) process in Figure 13.2 and the DAFOX index (1993-96) in
Figure 13.3, see http://finance.wiwi.uni-karlsruhe.de/Forschung/dafox.html.
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Figure 13.2: A GARCH(1,1) process (α = 0.15, β = 0.8). SFEtimegarc

It can be seen from the figure that the GARCH process is obviously more
appropriate for modelling stock returns than white noise.

However the ARCH model is only the starting point of the empirical study
and relies on a wide range of specification tests. Some practically relevant
disadvantages of the ARCH model have been discovered recently, for example,
the definition and modelling of the persistence of shocks and the problem of
modelling asymmetries. Thus a large number of extensions of the standard
ARCH model have been suggested. We will discuss them in detail later.

Let Xt be a discrete stochastic process and from Definition 11.15
rt = logXt/Xt−1 the relative increase or the return of the process Xt. If
the returns are almost independent and identically distributed, then Xt fol-
lows a geometric random walk. It is assumed in ARCH models that the
returns depend on past information with a specific form.

As mentioned before Ft denotes the information set at time t, which encom-
passes Xt and all the past realisations of the process Xt. This means in a
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Figure 13.3: DAFOX returns from 1993 to 1996. SFEtimedax

general model
rt = μt + εt (13.1)

with E[εt | Ft−1] = 0. Here μt can represent the risk premium which results
from the econometric models and is time dependent. The stochastic error
term εt is no longer independent but centred and uncorrelated. In ARCH
models the conditional variance of εt is a linear function of the lagged squared
error terms.

13.1.1 ARCH(1): Definition and Properties

The ARCH model of order 1, ARCH(1), is defined as follows:

Definition 13.1 (ARCH(1))
The process εt, t ∈ Z, is ARCH(1), if E[εt | Ft−1] = 0,

σ2
t = ω + αε2t−1 (13.2)



232 13 Time Series with Stochastic Volatility

with ω > 0, α ≥ 0 and

• Var(εt | Ft−1) = σ2
t and Zt = εt/σt is i.i.d. (strong ARCH)

• Var(εt | Ft−1) = σ2
t (semi-strong ARCH),

• P(ε2t | 1, εt−1, εt−2, . . . , ε
2
t−1, ε

2
t−2, . . .) = σ2

t (weak ARCH),

where P is the best linear projection described in Section 12.4. Obviously
a strong ARCH(1) process is also semi-strong and a semi-strong also weak.
On the other hand the conditional variance of a weak ARCH(1) process can
be non-linear (unequal to σ2

t ). In this case it cannot be a semi-strong ARCH
process.

Setting Zt = εt/σt, it holds for the semi-strong and the strong ARCH models
that E[Zt] = 0 and Var(Zt) = 1. In strong ARCH models Zt is i.i.d. so that
no dependence can be modelled in higher moments than the second moment.
It is frequently assumed that Zt is normally distributed, which means εt is
conditionally normally distributed:

εt|Ft−1 ∼ N(0, σ2
t ). (13.3)

Under (13.3) the difference between the strong and the semi-strong ARCH
models disappears.

Originally only strong and semi-strong ARCH models are discussed in the
literature. Weak ARCH models are important because they are closed under
temporal aggregation. If, for example, daily returns follow a weak ARCH
process, then the weekly and monthly returns are also weak ARCH with
corresponding parameter adjustments. This phenomenon holds in general
for strong and semi-strong models.

According to Definition 13.1 the process εt is a martingale difference and
therefore white noise.

Theorem 13.1
Assume that the process εt is a weak ARCH(1) process with Var(εt) = σ2 <
∞. Then it follows that εt is white noise.

Proof:
From E[εt | Ft−1] = 0 it follows that E[εt] = 0 and Cov(εt, εt−k) = E[εtεt−k] =
E[E(εtεt−k | Ft−1)] = E[εt−k E(εt | Ft−1)] = 0. �

Note that εt is not an independent white noise.

Theorem 13.2 (Unconditional variance of the ARCH(1))
Assume the process εt is a semi-strong ARCH(1) process with Var(εt) = σ2 <
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∞. Then it holds that
σ2 =

ω

1 − α
.

Proof:
σ2 = E[ε2t ] = E[E(ε2t | Ft−1)] = E[σ2

t ] = ω + αE[ε2t−1] = ω + ασ2. It holds
then σ2 = ω/(1 − α) when α < 1. �

α < 1 is the necessary and sufficient condition for a weak stationarity of a
semi-strong process.

If the innovation Zt = εt/σt is symmetrically distributed around zero, then
all odd moments of εt are equal to zero. Under the assumption of normal
distribution (13.3) the conditions for the existence of higher even moments
can be derived.

Theorem 13.3 (Fourth Moment)
Let εt be a strong ARCH(1) process, Zt ∼ N(0, 1) and E[ε4t ] = c <∞. Then

1.

E[ε4t ] =
3ω2

(1 − α)2
1 − α2

1 − 3α2

with 3α2 < 1.

2. the unconditional distribution of εt is leptokurtic.

Proof:

1. c = E[ε4t ] = E[E(ε4t | Ft−1)] = E[σ4
t E(Z4

t | Ft−1)] = E[Z4
t ] E[(ω +

α1ε
2
t−1)

2] = 3(ω2 +2ωαE[ε2t−1]+α2 E[ε4t−1]). Since E[ε2t−1] = ω/(1−α)
and E[ε4t−1] = c, after rearranging the claim follows.

2.

Kurt(εt) =
E[ε4t ]
E[ε2t ]2

= 3
1 − α2

1 − 3α2
≥ 3.

�

For the boundary case α = 0 and the normally distributed innovations
Kurt(εt) = 3, while for α > 0 it holds that Kurt(εt) > 3. The uncondi-
tional distribution is also leptokurtic under conditional heteroscedasticity,
i.e., the curvature is high in the middle of the distribution and the tails are
fatter than those of a normal distribution, which is frequently observed in
financial markets.
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The thickness of the tails and thus the existence of moments depend on the
parameters of the ARCH models. The variance of the ARCH(1) process is
finite when α < 1 (Theorem 13.2), while the fourth moment in the case of
normally distributed error terms exists when 3α2 < 1 (Theorem 13.3). As
early as the sixties Mandelbrot questioned the existence of the variance of
several financial time series. Frequently empirical distributions have so fat
tails that one cannot conclude a finite variance. In order to make empirical
conclusions on the degree of the tail’s thickness of the unconditional distri-
bution, one can assume, for example, that the distribution is a Pareto type,
i.e., for large x:

P(x) = P(Xt > x) ∼ kx−a

for a > 0. When a > c, it holds that E[|Xt|c] <∞. The question is, how can
we estimate the tail index a? A simple method follows from the conclusion
that for large x the log function P(x) is linear, i.e.,

log P(x) ≈ log k − a log x. (13.4)

Therefore we can build the order statistics X(1) > X(2) > . . . > X(n) and
estimate the probability P(x) for x = X(i) using the relative frequency

#{t;Xt ≥ X(i)}
n

=
i

n
.

In (13.4) P(X(i)) is replaced with the estimator i/n:

log
i

n
≈ log k − a logX(i), (13.5)

from which a can be estimated from the regression of i/n on X(i), i = 1, ..., n,
using the least squares method. In general only a small part of the data
will be used for the regression, since the linear approximation of log P(x) is
only appropriate in the tail. Thus only the largest order statistics are used
to estimate the regression (13.5). Figure 13.4 shows the regression (13.5) for
the DAFOX from 1974 to 1996 with m = 20, i.e. we choose the 20 largest
observations. The slope of the least squares (LS) line is -3.25. It indicates
that the variance and the third moment of this time series are finite whereas
the fourth moment and the kurtosis are not finite.

Hill (1975) has suggested an estimator using the maximum likelihood method:

â =

(
1

m− 1

m∑

i=1

logX(i) − logX(m)

)−1

, (13.6)

where m is the number of observations taken from the tail and used in the
estimation. How to choose m obviously raises a problem. When m is too
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Tail Index Regression DAFOX
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Figure 13.4: The right side of the logged empirical distribution of the
DAFOX returns from 1974 to 1996. SFEtaildax

large, the approximation of the distribution is no longer good; when m is too
small, the bias and the variance of the estimator could increase. A simple
rule of thumb says that m/n should be around 0.5% or 1%. Clearly one
requires a large amount of data in order to estimate a well. As an example
we can consider again the daily returns of German stocks from 1974 to 1996,
a total of 5747 observations per stock. The results of the ordinary least
squares estimator and the Hill estimator with m = 20 and m = 50 are given
in Table 13.1. In every case the estimators are larger than 2, which indicates
the existence of variances. The third moment may not exist in some cases,
for example, for Allianz and Daimler.

Theorem 13.4 (Representation of an ARCH(1) process)
Let εt be a strong ARCH(1) process with Var(εt) = σ2 <∞. It holds that

ε2t = ω
∞∑

k=0

αk
k∏

j=0

Z2
t−j

and the sum converges in L1.

Proof:
Through the recursive substitution of ε2s = σ2

sZ
2
s and σ2

s = ω + αε2s−1. The
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convergence follows from

E[ε2t − ω

m∑

k=0

αk
k∏

j=0

Z2
t−j ] = αm+1 E[ε2t−m−1

m∏

j=0

Z2
t−j ]

= αm+1 E[ε2t−m−1] −→ 0

for m −→ ∞, since Zt is independent with E(Z2
t ) = 1. �

Theorem 13.5
Let εt be a stationary strong ARCH(1) process with E(ε4t ) = c < ∞ and
Zt ∼ N(0, 1). It holds that

LS Hill
m 20 50 20 50
DAFOX 3.25 2.94 3.17 2.88
ALLIANZ 2.29 2.44 2.28 2.26
BASF 4.19 4.29 4.58 4.01
BAYER 3.32 3.20 3.90 3.23
BMW 3.42 3.05 3.05 2.89
COMMERZBANK 6.58 4.67 7.14 5.19
DAIMLER 2.85 2.85 2.43 2.56
DEUTSCHE BANK 3.40 3.26 3.41 3.29
DEGUSSA 3.03 4.16 2.93 3.30
DRESDNER 5.76 4.08 4.20 4.32
HOECHST 4.77 3.68 5.66 4.05
KARSTADT 3.56 3.42 3.11 3.16
LINDE 3.30 3.35 3.87 3.37
MAN 3.83 3.66 3.17 3.45
MANNESMANN 3.19 3.85 2.84 3.22
PREUSSAG 3.52 4.11 3.57 3.68
RWE 3.87 3.78 3.51 3.54
SCHERING 3.34 4.82 3.22 3.64
SIEMENS 6.06 4.50 5.96 5.23
THYSSEN 5.31 5.36 4.67 4.97
VOLKSWAGEN 4.59 3.31 4.86 4.00

Table 13.1: Least Square (LS) and Hill estimators of the tail index a with
m observations used for the estimation.

1.

ε2t = ω
∞∑

k=0

αk
k∏

j=0

Z2
t−j

and the sum converges in L2.
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2. ηt = σ2
t (Z

2
t − 1) is white noise.

3. ε2t is an AR(1) process with ε2t = ω + αε2t−1 + ηt.

Proof:

1. As in Theorem 13.4. The convergence is L2 follows from

E[(ε2t − ω
m∑

k=0

αk
k∏

j=0

Z2
t−j)

2] = E[(αm+1ε2t−m−1

m∏

j=0

Z2
t−j)

2]

= α2(m+1)3m+1 E[ε4t−m−1]

= α2(m+1)3m+1c −→ 0

for m −→ ∞, since 3α2 < 1 due to the assumption that E(ε4t ) is finite
and since Zt is independent with Kurt(Zt) = 3.

2. a) E[ηt] = E[σ2
t ] E[Z2

t − 1] = 0
b)

Var(ηt) = E[σ4
t ] E[(Z2

t − 1)2] = 2 E[(ω + αε2t−1)
2]

= 2(ω2 + 2αω E[ε2t−1] + α2 E[ε4t−1]) = const.

is independent of t.
c)

Cov(ηt, ηt+s) = E[σ2
t (Z

2
t − 1)σ2

t+s(Z
2
t+s − 1)]

= E[σ2
t (Z

2
t − 1)σ2

t+s] E[(Z2
t+s − 1)]

= 0 for s 
= 0.

3. It follows from rearranging: ε2t = σ2
tZ

2
t = σ2

t +σ2
t (Z

2
t −1) = ω+αε2t−1+

ηt.

�

Remark 13.1
Nelson (1990a) shows that the strong ARCH(1) process εt is strictly station-
ary when E[log(αZ2

t )] < 0. If, for example, Zt ∼ N(0, 1), then the condition
for strict stationarity is α < 3.5622, which is weaker than the condition for
covariance-stationarity with α < 1 due to the assumption that the variance
is finite.
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The dynamics of the volatility process in the case of ARCH(1) is essentially
determined by the parameter α. In Theorem 13.5 it was shown that the
square of an ARCH(1) process follows an AR(1) process. The correlation
structure of the empirical squared observations of returns are frequently more
complicated than a simple AR(1) process. In Section 13.1.3 we will consider
an ARCH model of order q with q > 1, which allows a more flexible modelling
of the correlation structure.

The volatility is a function of the past squared observations in ARCH models
in a narrow sense. In the more general GARCH models (Section 13.1.5) it
may depend on the past squared volatilities in addition. These models belong
to the large group of unpredictable time series with stochastic volatility. In
the strong form, they have εt = σtZt where σt is Ft−1-measurable, i.e. the
volatility σt depends only on the information to the time point t− 1 and the
i.i.d. innovations Zt with E[Zt] = 0,Var(Zt) = 1. For such a time series it
holds E[εt|Ft−1] = 0,Var(εt|Ft−1) = σ2

t , i.e. εt is unpredictable and, except
in the special case that σt

def= const., conditionally heteroscedastic. The
stylised facts 2-4 are only fulfilled under certain qualitative assumptions.
For example, in order to produce volatility cluster σt must tend to be large
when the squared observations or volatilities of the recent past observations
are large. The generalisations of the ARCH models observed in this section
fulfill the corresponding conditions.

Remark 13.2
At first glance stochastic volatility models in discrete time deliver a different
approach in modelling the financial data compared with diffusion processes, on
which the Black-Schole model and its generalisation are based (Section 5.4).
Nelson (1990b) has however shown that ARCH and also the more general
GARCH processes converge in the limit to a diffusion process in continuous
time when the difference of the time points of the successive observations goes
against zero.

This result is often used reversely in order to estimate the parameter of finan-
cial models in the continuous time where one approximates the corresponding
diffusion processes through discrete GARCH time series and estimates its
parameter. Nelson (1990b) shows only the convergence of GARCH processes
against diffusion processes in a weak sense (convergence on the distribution).
A recent work by Wang (2002) however, shows that the approximation does
not hold in a stronger sense, in particular the likelihood process is not asymp-
totically equivalent. In this sense the maximum likelihood estimators for the
discrete time series do not converge against the parameters of the diffusion
limit process.
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13.1.2 Estimation of ARCH(1) Models

Theorem 13.5 says that an ARCH(1) process can be represented as an AR(1)
process in X2

t . A simple Yule-Walker estimator uses this property:

α̂(0) =
∑n
t=2(ε

2
t − ω̂(0))(ε2t−1 − ω̂(0))∑n
t=2(ε

2
t − ω̂(0))2

with ω̂(0) = n−1
∑n
t=1 ε

2
t . Since the distribution of ε2t is naturally not normal,

the Yule-Walker estimator is inefficient. However it can be used as an initial
value for iterative estimation methods.

The estimation of ARCH models is normally done using the maximum like-
lihood (ML) method. Assuming that the returns εt have a conditionally
normal distribution, we have:

p(εt | Ft−1) =
1√

2πσt
exp
{
−1

2
ε2t
σ2
t

}
, (13.7)

The log-likelihood function l(ω, α) can be written as a function of the param-
eters ω and α:

l(ω, α) =
n∑

t=2

lt(ω, α) + log pε(ε1) (13.8)

=
n∑

t=2

log p(εt | Ft−1) + log pε(ε1)

= −n− 1
2

log(2π) − 1
2

n∑

t=2

log(ω + αε2t−1)

−1
2

n∑

t=2

ε2t
ω + αε2t−1

+ log pε(ε1),

where pε is the stationary marginal density of εt. A problem is that the
analytical expression for pε is unknown in ARCH models thus (13.8) cannot
be calculated. In the conditional likelihood function lb = log p(εn, . . . , ε2 | ε1)
the expression log pε(ε1) disappears:

lb(ω, α) =
n∑

t=2

lt(ω, α) (13.9)

=
n∑

t=2

log p(εt | Ft−1)

= −n− 1
2

log(2π) − 1/2
n∑

t=2

log(ω + αε2t−1) − 1/2
n∑

t=2

ε2t
ω + αε2t−1

.



240 13 Time Series with Stochastic Volatility

Likelihoodfunction of an ARCH(1) Process
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Figure 13.5: Conditional likelihood function of a generated ARCH(1) process
with n = 100. The true parameter is α = 0.5. SFElikarch1

For large n the difference l − lb is negligible.

Figure 13.5 shows the conditional likelihood of a generated ARCH(1) process
with n = 100. The parameter ω is chosen so that the unconditional variance
is constant everywhere, i.e., with a variance of σ2, ω = (1 − α)σ2. The opti-
misation of the likelihood of an ARCH(1) model can be found by analysing
the graph. Most often, we would like to know the precision of the estimator
as well. Essentially it is determined by the second derivative of the likelihood
at the optimisation point by the asymptotic properties of the ML estimator
(see Section 13.1.6). Furthermore one has to use numerical methods such as
the score algorithm introduced in Section 12.8 to estimate the parameters
of the models with a larger order. In this case the first and second partial
derivatives of the likelihood must be calculated.

With the ARCH(1) model these are:

∂lbt
∂ω

=
1

2σ2
t

(
ε2t
σ2
t

− 1
)

(13.10)

∂lbt
∂α

=
1

2σ2
t

ε2t−1

(
ε2t
σ2
t

− 1
)

(13.11)

∂2lbt
∂ω2

= − 1
2σ4

t

(
2
ε2t
σ2
t

− 1
)

(13.12)
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∂2lbt
∂ω2

= − 1
2σ4

t

(
2
ε2t
σ2
t

− 1
)

(13.13)

∂2lbt
∂α2

= − 1
2σ4

t

ε4t−1

(
2
ε2t
σ2
t

− 1
)

(13.14)

∂2lbt
∂ω∂α

= − 1
2σ4

t

ε2t−1

(
2
ε2t
σ2
t

− 1
)
. (13.15)

The fist order conditions are
∑n
t=2 ∂l

b
t/∂ω = 0 and

∑n
t=2 ∂l

b
t/∂α = 0. The

expected value of the second derivative has to be calculated for the same
algorithm. It is assumed that E[Z2

t ] = E[(εt/σt)2] = 1, so that the expression
in the parentheses (2ε2t/σ

2
t − 1) has an expected value of one. From this it

follows that:

E

[
∂2lbt
∂ω2

]
= −1

2
E

[
1
σ4
t

]
.

The expectation of σ−4
t is consistently estimated by (n − 1)−1

∑n
t=2(ω +

αε2t−1)
−2, so that for the estimator of the expected value of the second deriva-

tive we have:

Ê
∂2lbt
∂ω2

= − 1
2(n− 1)

n∑

t=2

1
σ4
t

.

Similarly the expected value of the second derivative with respect to α follows
with:

E

[
∂2lbt
∂α2

]
= −1

2
E

[
ε4t−1

σ4
t

]

and the estimator is:

Ê
∂2lbt
∂α2

= − 1
2(n− 1)

n∑

t=2

ε4t−1

σ4
t

.

Theorem 13.6
Given Zt ∼ N(0, 1), it holds that:

E

[(
∂lbt
∂ω

)2
]

= −E

[
∂2lbt
∂ω2

]

Proof:

This follows immediately from E

[(
∂lbt
∂ω

)2
]

= E
[

1
4σ4

t
(Z4

t − 2Z2
t + 1)

]

= E
[

1
4σ4

t

]
(3 − 2 + 1). �
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Obviously Theorem 13.6 also holds for the parameter α in place of ω. In ad-
dition it essentially holds for more general models, for example the estimation
of GARCH models in Section 13.1.6. In more complicated models one can
replace the second derivative with the square of the first derivative, which
is easier to calculate. It is assumed, however, that the likelihood function is
correctly specified, i.e., the true distribution of the error terms is normal.

Under the two conditions

1. E[Zt | Ft−1] = 0 and E[Z2
t | Ft−1] = 1

2. E[log(αZ2
t ) | Ft−1] < 0 (strict stationarity)

and under certain technical conditions, the ML estimators are consistent. If
E[Z4

t | Ft−1] < ∞ and ω > 0, α > 0 hold in addition, then θ̂ = (ω̂, α̂)� is
asymptotically normally distributed:

√
n(θ̂ − θ) L−→ N(0, J−1IJ−1) (13.16)

with

I = E

(
∂lt(θ)
∂θ

∂lt(θ)
∂θ�

)

and

J = −E

(
∂2lt(θ)
∂θ∂θ�

)
.

If the true distribution of Zt is normal, then I = J and the asymptotic covari-
ance matrix is simplified to J−1, i.e., the inverse of the Fischer Information
matrix. If the true distribution is instead leptokurtic, then the maximum of
(13.9) is still consistent, but no longer efficient. In this case the ML method
is interpreted as the ‘Quasi Maximum Likelihood’ (QML) method.

In a Monte Carlo simulation study in Shephard (1996) 1000 ARCH(1) pro-
cesses with ω = 0.2 and α = 0.9 were generated and the parameters were
estimated using QML. The results are given in Table 13.2. Obviously with
the moderate sample sizes (n = 500) the bias is negligible. The variance,
however, is still so large that a relatively large proportion (10%) of the es-
timators are larger than one, which would imply covariance nonstationarity.
This, in turn, has a considerable influence on the volatility prediction.

13.1.3 ARCH(q): Definition and Properties

The definition of an ARCH(1) model will be extended for the case that q > 1
lags, on which the conditional variance depends.
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n k−1
∑k

j=1 α̂j

√
k−1
∑k

j=1(α̂j − α)2 #(αj ≥ 1)

100 0.852 0.257 27%
250 0.884 0.164 24%
500 0.893 0.107 15%
1000 0.898 0.081 10%

Table 13.2: Monte Carlo simulation results for QML estimates of the param-
eter α = 0.9 from an ARCH(1) model with k = 1000 replications.
The last column gives the proportion of the estimator that are
larger than 1 (according to Shephard (1996)).

Definition 13.2 (ARCH(q))
The process (εt), t ∈ Z, is ARCH(q), when E[εt | Ft−1] = 0,

σ2
t = ω + α1ε

2
t−1 + . . .+ αqε

2
t−q (13.17)

with ω > 0, α1 ≥ 0, . . . , αq ≥ 0 and

• Var(εt | Ft−1) = σ2
t and Zt = εt/σt is i.i.d. (strong ARCH)

• Var(εt | Ft−1) = σ2
t (semi-strong ARCH), or

• P(ε2t | 1, εt−1, εt−2, . . . , ε
2
t−1, ε

2
t−2, . . .) = σ2

t (weak ARCH)

The conditional variance σ2
t in an ARCH(q) model is also a linear function

of the q squared lags.

Theorem 13.7
Let εt be a semi-strong ARCH(q) process with Var(εt) = σ2 <∞. Then

σ2 =
ω

1 − α1 − . . .− αq

with α1 + · · · + αq < 1.

Proof:
as in Theorem 13.2. �

If instead α1 + · · · + αq ≥ 1, then the unconditional variance does not exist
and the process is not covariance-stationary.

Theorem 13.8 (Representation of an ARCH(q) Process)
Let εt be a (semi-)strong ARCH(q) process with E[ε4t ] = c <∞. Then
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1. ηt = σ2
t (Z

2
t − 1) is white noise.

2. ε2t is an AR(q) process with ε2t = ω +
∑q
i=1 αiε

2
t−i + ηt.

Proof:
as in Theorem 13.5. �

It is problematic with the ARCH(q) model that for some applications a larger
order q must be used, since large lags only lose their influence on the volatility
slowly. It is suggested as an empirical rule of thumb, that a minimum order
of q = 14 should be used. The disadvantage of a large order is that many
parameters have to be estimated under restrictions. The restrictions can be
categorised as conditions for stationarity and the strictly positive parameters.
If efficient estimation methods are to be used, for example, the maximum
likelihood method, the estimation of large dimensional parameter spaces can
be numerically quite complicated to obtain.

One possibility of reducing the number of parameters while including a long
history is to assume linearly decreasing weights on the lags, i.e.,

σ2
t = ω + α

q∑

i=1

wiε
2
t−i,

with

wi =
2(q + 1 − i)
q(q + 1)

,

so that only two parameters need to be estimated. In Section 13.1.5 we de-
scribe a generalised ARCH model, which on the one hand, has a parsimonious
parameterization, and on the other hand a flexible lag structure.

13.1.4 Estimation of an ARCH(q) Model

For the general ARCH(q) model from (13.17) the conditional likelihood is

lb(θ) =
n∑

t=q+1

lt(θ)

= −n− 1
2

log(2π) − 1/2
n∑

t=2

log σ2
t − 1/2

n∑

t=q+1

εqt + 1
σ2
t

(13.18)

with the parameter vector θ = (ω, α1, . . . , αq)�. Although one can find the
optimum of ARCH(1) models by analysing the graph such as Figure 13.5, it
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is complicated and impractical for a high dimensional parameter space. The
maximisation of (13.18) with respect to θ is a non-linear optimisation prob-
lem, which can be solved numerically. The score algorithm is used empirically
not only in ARMA models (see Section 12.8) but also in ARCH models. In
order to implement this approach the first and second derivatives of the (con-
ditional) likelihood with respect to the parameters need to be formed. For
the ARCH(q) model the first derivative is:

∂lbt
∂θ

=
1

2σ2
t

∂σ2
t

∂θ

(
ε2t
σ2
t

− 1
)

(13.19)

with
∂σ2

t

∂θ
= (1, ε2t−1, . . . , ε

2
t−q)

�.

The first order condition is
∑n
t=q+1 ∂lt/∂θ = 0. For the second derivative

and the asymptotic properties of the QML estimator see Section 13.1.6.

13.1.5 Generalised ARCH (GARCH)

The ARCH(q) model can be generalised by extending it with autoregressive
terms of the volatility.

Definition 13.3 (GARCH(p, q)) The process (εt), t ∈ Z, is GARCH(p, q),
if E[εt | Ft−1] = 0,

σ2
t = ω +

q∑

i=1

αiε
2
t−i +

p∑

j=1

βjσ
2
t−j , (13.20)

and

• Var(εt | Ft−1) = σ2
t and Zt = εt/σt is i.i.d. (strong GARCH)

• Var(εt | Ft−1) = σ2
t (semi-strong GARCH), or

• P(ε2t | 1, εt−1, εt−2, . . . , ε
2
t−1, ε

2
t−2, . . .) = σ2

t (weak GARCH).

The sufficient but not necessary conditions for

σ2
t > 0 a.s., ( P[σ2

t > 0] = 1 ) (13.21)
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are ω > 0, αi ≥ 0, i = 1, . . . , q and βj ≥ 0, j = 1, . . . , p. In the case of the
GARCH(1,2) model

σ2
t = ω + α1ε

2
t−1 + α2ε

2
t−2 + β1σ

2
t−1

=
ω

1 − β
+ α1

∞∑

j=0

βj1ε
2
t−j−1 + α2

∞∑

j=0

βj1ε
2
t−j−2

=
ω

1 − β
+ α1ε

2
t−1 + (α1β1 + α2)

∞∑

j=0

βj1ε
2
t−j−2

with 0 ≤ β1 < 1. ω > 0, α1 ≥ 0 and α1β1+α2 ≥ 0 are necessary and sufficient
conditions for (13.21) assuming that the sum

∑∞
j=0 β

j
1ε

2
t−j−2 converges.

Theorem 13.9 (Representation of a GARCH(p, q) process)
Let εt be a (semi-)strong GARCH(p, q) process with E[ε4t ] = c <∞. Then

1. ηt = σ2
t (Z

2
t − 1) is white noise.

2. ε2t is an ARMA(m, p) process with

ε2t = ω +
m∑

i=1

γiε
2
t−i −

p∑

j=1

βjηt−j + ηt, (13.22)

with m = max(p, q), γi = αi + βi. αi = 0 when i > q, and βi = 0 when
i > p.

Proof:
as in Theorem 13.5. �

If εt follows a GARCH process, then from Theorem 13.9 we can see that
ε2t follows an ARMA model with conditional heteroscedastic error terms ηt.
As we know, if all the roots of the polynomial (1 − β1z − . . . − βpz

p) lie
outside the unit circle, then the ARMA process (13.22) is invertible and can
be written as an AR(∞) process. Moveover it follows from Theorem 13.8 that
the GARCH(p, q) model can be represented as an ARCH(∞) model. Thus
one can deduce analogous conclusions from the ARMA models in determining
the order (p, q) of the model. There are however essential differences in the
definition of the persistence of shocks.
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Theorem 13.10 (Unconditional variance of a GARCH(p, q) process)

Let εt be a semi-strong GARCH(p, q) process with Var(εt) = σ2 <∞. Then

σ2 =
ω

1 −∑q
i=1 αi −

∑p
j=1 βj

,

with
∑q
i=1 αi +

∑p
j=1 βj < 1.

Proof:
as in Theorem 13.2. �

General conditions for the existence of higher moments of the GARCH(p, q)
models are given in He and Teräsvirta (1999). For the smaller order models
and under the assumption of distribution we can derive:

Theorem 13.11 (Fourth moment of a GARCH(1,1) process)
Let εt be a (semi-)strong GARCH(1,1) process with Var(εt) = σ2 < ∞ and
Zt ∼ N(0, 1). Then E[ε4t ] <∞ holds if and only if 3α2

1 +2α1β1 +β2
1 < 1. The

Kurtosis Kurt(εt) is given as

Kurt[εt] =
E[ε4t ]

(E[ε2t ])
2 = 3 +

6α2
1

1 − β2
1 − 2α1β1 − 3α2

1

. (13.23)

Proof:
It can be proved that E[ε4t ] = 3 E[(ω+α1ε

2
t−1 +β1σ

2
t−1)

2] and the stationarity
of εt. �

The function (13.23) is illustrated in Figure 13.6 for all α1 > 0, Kurt[εt] > 3,
i.e., the distribution of εt is leptokurtic. We can observe that the kurtosis
equals 3 only in the case of the boundary value α1 = 0 where the conditional
heteroscedasticity disappears and a Gaussian white noise takes place. In
addition it can be seen in the figure that the kurtosis increases in β1 slowly
for a given α1. On the contrary it increases in α1 much faster for a given β1.

Remark 13.3
Nelson (1990a) shows that the strong GARCH(1,1) process Xt is strictly
stationary when E[log(α1Z

2
t + β1)] < 0. If Zt ∼ N(0, 1), then the conditions

for strict stationarity are weaker than those for covariance-stationarity: α1 +
β1 < 1.
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Kurtosis of a GARCH(1,1) Process
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Figure 13.6: Kurtosis of a GARCH(1,1) process according to (13.23). The
left axis shows the parameter β1, the right α1. SFEkurgarch

In practical applications it is frequently shown that models with smaller order
sufficiently describe the data. In most cases GARCH(1,1) is sufficient.

A substantial disadvantage of the standard ARCH and GARCH models exists
since they cannot model asymmetries of the volatility with respect to the sign
of past shocks. This results from the squared form of the lagged shocks in
(13.17) and (13.20). Therefore they have an effect on the level but no effect
on the sign. In other words, bad news (identified by a negative sign) has the
same influence on the volatility as good news (positive sign) if the absolute
values are the same. Empirically it is observed that bad news has a larger
effect on the volatility than good news. In Section 13.2 and 14.1 we will take
a closer look at the extensions of the standard models which can be used to
calculate these observations.

13.1.6 Estimation of GARCH(p, q) Models

Based on the ARMA representation of GARCH processes (see Theorem
13.9) Yule-Walker estimators θ̃ are considered once again. These estimators
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are, as can be shown, consistent and asymptotically normally distributed,√
n(θ̃ − θ) L−→ N(0, Σ̃). However in the case of GARCH models they are

not efficient in the sense that the matrix Σ̃ − J−1IJ−1 is positively definite,
where J−1IJ−1 is the asymptotic covariance matrix of the QML estimator,
see (13.26). In the literature there are several experiments on the efficiency
of the Yule-Walker and QML estimators in finite samples, see Section 13.5.
In most cases maximum likelihood methods are chosen in order to get the
efficiency.

The likelihood function of the general GARCH(p, q) model (13.20) is identical
to (13.18) with the extended parameter vector θ = (ω, α1, . . . , αq, β1, . . . , βp)�.
Figure 13.7 displays the likelihood function of a generated GARCH(1,1) pro-
cess with ω = 0.1, α = 0.1, β = 0.8 and n = 500. The parameter ω was
chosen so that the unconditional variance is constant everywhere, i.e., with
a variance of σ2, ω = (1 − α − β)σ2. As one can see, the function is flat on
the right, close to the optimum, thus the estimation will be relatively impre-
cise, i.e., it will have a larger variance. In addition, Figure 13.8 displays the
contour plot of the likelihood function.

Likelihood function of a GARCH (1,1) Process
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Figure 13.7: Likelihood function of a generated GARCH(1,1) process with
n = 500. The left axis shows the parameter β, the right α. The
true parameters are ω = 0.1, α = 0.1 and β = 0.8. SFElik-
garch
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Contour Plot of Likelihood
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Figure 13.8: Contour plot of the likelihood function of a generated
GARCH(1,1) process with n = 500. The perpendicular axis dis-
plays the parameter β, the horizontal α. The true parameters
are ω = 0.1, α = 0.1 and β = 0.8. SFElikgarch

The first partial derivatives of (13.18) are

∂lt
∂θ

=
1

2σ2
t

∂σ2
t

∂θ

(
ε2t
σ2
t

− 1
)

(13.24)

with
∂σ2

t

∂θ
= ϑt +

p∑

j=1

∂σ2
t−j
∂θ

.

and ϑt = (1, ε2t−1, . . . , ε
2
t−q, σ

2
t−1, . . . , σ

2
t−p)

�. The first order conditions are∑n
t=q+1 ∂lt/∂θ = 0. The matrix of the second derivatives takes the following

form:

∂2lt(θ)
∂θ∂θ�

=
1

2σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ�
− 1

2σ2
t

∂2σ2
t (θ)

∂θ∂θ�

− ε2t
σ6
t

∂σ2
t

∂θ

∂σ2
t

∂θ�
+

ε2t
2σ4

t

∂2σ2
t (θ)

∂θ∂θ�
(13.25)

Under the conditions
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1. E[Zt | Ft−1] = 0 and E[Z2
t | Ft−1] = 1,

2. strict stationarity of εt

and under some technical conditions the ML estimator is consistent. If in
addition it holds that E[Z4

t | Ft−1] < ∞, then θ̂ is asymptotically normally
distributed: √

n(θ̂ − θ) L−→ Np+q+1(0, J−1IJ−1) (13.26)

with

I = E

(
∂lt(θ)
∂θ

∂lt(θ)
∂θ�

)

and

J = −E

(
∂2lt(θ)
∂θ∂θT

)
.

Theorem 13.12 (Equivalence of I and J)
If Zt ∼ N(0, 1), then it holds that I = J .

Proof:
Building the expectations of (13.25) one obtains

E

[
∂2lt(θ)
∂θ∂θ�

]
= −E

1
2σ4

t

∂σ2
t

∂θ

∂σ2
t

∂θ�
.

For I we have

E

[
∂lt(θ)
∂θ

∂lt(θ)
∂θT

]
= E

[
1

4σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θT
(Z4

t − 2Z2
t + 1)

]
(13.27)

= E

[
1

4σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ�

]
{Kurt(Zt | Ft−1) − 1}

From the assumption Zt ∼ N(0, 1) it follows that Kurt(Zt | Ft−1) = 3 and
thus the claim. �

If the distribution of Zt is specified correctly, then I = J and the asymptotic
variance can be simplified to J−1, i.e., the inverse of the Fisher Information
matrix. If this is not the case and it is instead leptokurtic, for example, the
maximum of (13.9) is still consistent but no longer efficient. In this case
the ML method is interpreted as the ‘Quasi Maximum Likelihood’ (QML)
method.

Consistent estimators for the matrices I and J can be obtained by replacing
the expectation with the simple average.
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13.2 Extensions of the GARCH Model

Standard GARCH models assume that positive and negative error terms have
a symmetric effect on volatility. In other words, good and bad news have
the same effect on the volatility in this model. In practice this assumption
is frequently violated, in particular by stock returns, in that the volatility
increases more after bad news than after good news. This so called Leverage
Effect appears firstly in Black (1976), who noted that:

“a drop in the value of the firm will cause a negative return on
its stock, and will usually increase the leverage of the stock. [...]
That rise in the debt-equity ratio will surely mean a rise in the
volatility of the stock”.

A very simple but plausible explanation for the leverage effect: Negative re-
turns imply a larger proportion of debt through a reduced market value of
the firm, which leads to a higher volatility. The risk, i.e. the volatility reacts
first to larger changes of the market value, nevertheless it is empirically shown
that there is a high volatility after smaller changes. On the other hand, Black
said nothing about the effect of positive returns on the volatility. Although
the positive returns cause smaller increases, they do cause an increase in the
volatility. From an empirical point of view the volatility reacts asymmet-
rically to the sign of the shocks and therefore a number of parameterized
extensions of the standard GARCH model have been suggested recently. Be-
low we will discuss two of the most important ones: the exponential GARCH
(EGARCH) and the threshold GARCH (TGARCH) model.

13.2.1 Exponential GARCH

Let Zt further denote a series of i.i.d. standardised random variables with
expectation 0 and variance 1. The general exponential GARCH (EGARCH)
model is given by Nelson (1991):

log σ2
t = ωt +

∞∑

k=1

βkg(Zt−k), (13.28)

where ωt, βk are deterministic coefficients and

g(Zt) = θZt + γ(|Zt| − E|Zt|). (13.29)

It can be directly seen that E [g(Zt)] = 0.

The EGARCH model in (13.28) shows some differences from the standard
GARCH model:
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• Volatility of the EGARCH model, which is measured by the conditional
variance σ2

t , is an explicit multiplicative function of lagged innovations.
On the contrary, volatility of the standard GARCH model is an addi-
tive function of the lagged error terms εt, which causes a complicated
functional dependency on the innovations; for example the ARCH(1)
in Theorem 13.4.

• Volatility can react asymmetrically to the good and the bad news.

• For the general distributions of Zt the parameter restrictions for strong
and covariance-stationarity coincide.

• The parameters in (13.28) and (13.29) are not restricted to positive
values.

The function g(·) in (13.29) is piecewise linear. It contains two parameters
which define the ‘size effect’ and the ‘sign effect’ of the shocks on volatility.
The first is a typical ARCH effect while the second is an asymmetrical effect,
for example, the leverage effect. The term γ(|Zt|−E|Zt|) determines the size
effect and the term θZt determines the sign effect. The parameter γ is thus
typically positive and θ is negative.

To estimate EGARCH models instead of the general MA(∞) representation
(13.28), an ARMA(p, q) model is applied, i.e.,

Δ(L) log σ2
t = ω + Ψ(L)g(Zt), (13.30)

with lag-polynomial Δ(L) and Ψ(L) of order p and q respectively.

EGARCH models benefit from no parameter restrictions, thus the possible
instabilities of optimisation routines are reduced. On the other hand the the-
oretical properties of QML estimators of EGARCH models are not clarified
to a great extent.

Let ωt = ω = 0 and
∑∞
k=1 β

2
k <∞. Then σ2

t is strictly stationary and ergodic,
see Theorem 2.1 in Nelson (1991). Furthermore, under these conditions the
unconditional variance exists when Zt has a generalised error distribution
(GED) with parameter ζ > 1, which determines the thickness of the tails,
see Theorem 2.2 in Nelson (1991). The GED is leptokurtic when ζ < 2.

The normal distribution is a special case of the GED (ζ = 2). In addition,
Nelson gives complicated formulas for the unconditional moments. One prob-
lem is that under other leptokurtic distributions such as the Student-t, the
unconditional variance does not exist. The reason is that exponential growth
of the conditional variance changes with the level of the shocks, which leads
to the explosion of the unconditional variance when the probability for ex-
treme shocks is sufficiently large. Therefore the existence of the unconditional
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moments depends on the choice of the distribution of the innovations, which
is an undesirable property of the EGARCH models. In empirical studies it
has been found that EGARCH often overweighs the effects of larger shocks
on volatility and thus results in poorer fits than standard GARCH models,
see the empirical studies of Engle and Ng (1993).

13.2.2 Threshold ARCH Models

The idea of the Threshold ARCH (TARCH) models is to divide the distri-
bution of the innovations into disjointed intervals and then approximate a
piecewise linear function for the conditional standard deviation, see Zakoian
(1991), and the conditional variance respectively, see Glosten, Jagannathan
and Runkle (1993). If there are only two intervals, the division is normally at
zero, i.e., the influence of positive and negative innovations on the volatility
is differentiated. In this case the TARCH model of order q can be written as:

σδt = ω +
q∑

i=1

αiε
δ
t−i +

q∑

i=1

α−
i ε

δ
t−iI(εt−i < 0), (13.31)

with the indicator function I(·) and δ = 1 as in Zakoian (1991) or δ = 2 as
in Glosten et al. (1993).

Rabemananjara and Zakoian (1993) extend this model by including the lagged
conditional standard deviations (variance respectively) as a regressor, which
is known as the TGARCH model. They also give conditions for covariance-
stationarity in their study.

Instead of a piecewise linear function Gouriéroux and Monfort (1992) use
a stepwise function (piecewise constant) as a model for the volatility. Let
Aj , j = 1, . . . , J be a partition of the distribution of the innovation. Then a
qualitative threshold ARCH model (QTARCH) of order 1 is given by:

yt =
J∑

j=1

mjI(yt−1 ∈ Aj) +
J∑

j=1

sjI(yt−1 ∈ Aj)Zt, (13.32)

where mj and sj are scalars. In (13.32) conditional expectations and condi-
tional standard deviations are modelled as stepwise functions. One notices
that (13.32) is a homogenous Markov Chain of order one. Models of higher
order can be easily derived. Gouriéroux and Monfort (1992) give a detailed
discussion of the statistical properties of (13.32). Moreover the consistency
and asymptotic normal distribution of the QML estimators are also discussed
by them.
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The threshold models are identified by an abrupt transition between two
regimes when the generating innovation crosses a threshold value. If a smooth
transition is preferred in the model, then the indicator function in (13.31)
can be replaced with the desired continuous function, which tends to zero
if the values are close to εt−i and tends to one for the values further away.
Frequently, the logistic function is chosen. The model is thus:

σδt = ω +
q∑

i=1

αiε
δ
t−i +

q∑

i=1

α−
i ε

δ
t−iFγ(εt−i) (13.33)

Fγ(u) =
1

1 + exp(−γu) , (13.34)

with the parameter γ > 0. The indicator function is a limiting case of the
logistic function for γ −→ ∞.

Finally, another model class needs to be mentioned, which is very general and
can replicate the asymmetries: the Asymmetric Power ARCH (APARCH)
model from Ding, Granger and Engle (1993),

σδt = ω +
q∑

i=1

αi(|εt−i| − γiεt−i)δ +
p∑

j=1

βjσ
δ
t−j , (13.35)

where δ > 0 is a parameter to be estimated. However, note that the EGARCH
model is not included in this model class, a direct test between GARCH
and EGARCH models is thus impossible. A very general ARCH model, the
augmented GARCH model from Duan (1997), also includes the EGARCH
model.

13.2.3 Risk and Returns

In finance theory the relationship between risk and returns plays an impor-
tant role. Many theoretical models such as CAPM, imply a linear relationship
between the expected returns of a market portfolio and the variance. If the
risk (i.e. the variance) is not constant over time, then the conditional expec-
tation of the market returns is a linear function of the conditional variance.
The idea from Engle, Lilien and Robins (1987) was consequently used to es-
timate the conditional variances in GARCH and then the estimations used
in the conditional expectations’ estimation. This is the so called ARCH in
Mean (ARCH–M) model.

Let yt be a covariance-stationary return process of a broad market index
and σ2

t be the conditional variance specified in an ARCH(1) model. The
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ARCH-M model is

yt = ν + λg(σ2
t ) + εt (13.36)

σ2
t = ω + αε2t−1,

where g(·) is a known parameter function. The CAPM implies that g(x) = x,
although in most empirical applications the square root or the logarithm is
used. The expression λg(σ2

t ) can be interpreted as the risk premium.

13.2.4 Estimation Results for the DAX Returns

We applied various ARCH models discussed previously to the returns of the
German stock index (DAX). Here we didn’t use the DAX as quoted on the
stock exchange, but instead the DAFOX from the capital market database
in Karlsruhe, which was created for analytical purposes and is adjusted for
dividends and inflation. We consider daily returns from 1974 to 1996 (5748
observations).

The returns indicate a clear auto-correlation of first order. There are various
possibilities to model these auto-correlations. The two most important mod-
els, which we have discussed, are the AR models and the ARCH-M models.
The latter is easy to interpret economically, i.e., a time dependent risk pre-
mium implying an auto-correlation of the returns. This economic motivation
is missing for the AR models: the AR term cannot be interpreted as the risk
premium, since it can be negative, which contradicts the usual assumption
of a risk averse agent. However the AR models frequently offer a better fit
to the data than the ARCH-M model. The basic model is thus:

yt = μt + σtZt

with μt = ν + φyt−1 (AR(1)) respectively μt = ν + λσt (ARCH-M), and σt
can be GARCH, TGARCH or EGARCH.

The estimation results are given in Table 13.3. They can be summarised as
follows:

• The parameter ν is significantly positive for all AR models, which is
reflected in the long-run increasing trend of the stock price. For the
ARCH-M model the sign of the trends is not only given in ν but also in
λ. The effect of a negative ν can be dominated by a positive λ, which
is the case in the GARCH-M and the EGARCH-M models.

• The ARCH effects are very pronounced, i.e., the parameter α in the
GARCH model is significant.
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AR-G AR-TG AR-EG GARCH-M TGARCH-M EGARCH-M
λ 0.107 0.051 0.338

(2.14) (1.09) (3.31)
ν 3.75E-04 3.03E-04 2.57E-04 -2.84E-04 4.71E-05 -0.002

(4.414) (3.290) (2.608) (-0.79) (0.14) (-2.72)
φ 0.131 0.137 0.136

(6.808) (8.079) (5.940)
ω 8.42E-07 8.22E-07 -5.259 8.81E-07 8.78E-07 -3.086

(5.312) (5.444) (-3.692) (5.28) (5.45) (-4.79)
α 0.079 0.045 0.076 0.049

(3.004) (2.073) (2.74) (1.94)
α− 0.058 0.044

(1.752) (1.77)
β 0.914 0.918 0.490 0.917 0.919 0.711

(44.07) (38.18) (3.41) (41.43) (36.57) (10.87)
γ 0.431 0.388

(13.95) (11.25)
θ -0.171 -0.085

(-3.65) (-1.97)
logL 20030.86 20049.18 19713.81 19996.19 20008.22 19827.41

Table 13.3: Estimation results of various ARCH models, applied to DAFOX
returns 1974–1996. Parenthesis show the t-statistic based on the
QML asymptotic standard error.

• There is a high persistence of shocks in the volatility. This persistence
is measured in the GARCH case by the sum of α and β and is in each
case close to 1.

• Except for the EGARCH specification of the volatility the AR(1) model
describes the data better than the ARCH-M models.

• A leverage effect exists: the corresponding parameters in the TGARCH
and the EGARCH models have the appropriate signs. In the TGARCH
case the t-statistic for α− is 1.75 and 1.77 respectively, and in the
EGARCH case the t-statistic for θ is -3.65 and -1.97 respectively. Neg-
ative shocks increase the volatility more than positive shocks.

• The TGARCH and the EGARCH models have a priority for asymme-
try, since they have a better fit to the data when the same number of
parameters are considered.
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13.3 Shortfalls of GARCH

The purpose of this section is to examine some shortfalls uncovered in previ-
ous academic literature, primarily GARCH’s inability to function as a true
data generating process and accurate forecasting tool. Furthermore, this sec-
tion provides an explanation of these problems which include GARCH’s over-
estimation of the unconditional variance and the existence of the IGARCH
effect. Section 13.3.1 discusses analysis of returns of the S&P 500 stock mar-
ket index from Starica (2003). Section 13.3.2 presents original analysis of
DAX returns for comparison.

13.3.1 Recent Challenges to GARCH Models

One of the main sources criticising the ability of GARCH models to accurately
model financial time series is the paper by Starica (2003) which discusses how
well the endogenous dynamics created by the GARCH (1,1) model replicate
the actual dynamics of main financial indices. Specifically, Starica tests the
GARCH model’s performance in describing and forecasting the dynamics of
returns of the S&P 500 stock market index.

Modelling S&P 500 Data

Fitting a conditionally normal GARCH (1,1) process σ2
t = ω+αε2t−1 +βσ2

t−1

to the S&P 500 daily logarithmic returns (first differences of the logarithms of
daily closing prices) from 16 May, 1995 to 29 April, 2003, a range containing
exactly 2000 observations, yields the estimated parameters:

ω̂ = 1.4264 × 10−6, α̂ = 0.0897, β̂ = 0.9061. (13.37)

As α + β = 0.995, a value very close to 1, the integrated GARCH (IGARCH)
effect is present.

IGARCH Effect

When estimating the parameters in GARCH models, it is observed that for
shorter samples, the estimated parameters α and β sum up to values sig-
nificantly different from 1 while for longer samples, their sum approaches
1. The combination of these phenomenon is called the integrated GARCH
(IGARCH) effect of return data.

Stationarity of the data is one of the basic assumptions of GARCH models.
The IGARCH effect occurs due to non-stationarity of the data as a result of
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structural breaks, i.e. changes in the unconditional mean or variance. For
a GARCH (1,1) process, when α + β approaches 1, this signals a presence
of an IGARCH effect. The larger the absolute difference in the variance
(the greater the degree of non-stationarity) of sub-samples having differing
unconditional variances, the closer α+ β gets to 1.

Structural breaks in unconditional variance resulting in IGARCH effects pose
problems when using GARCH models to estimate volatilities. IGARCH is
likely to cause an explosion of the estimated unconditional variance of the
GARCH processes.

Next-day Volatility Forecasting

In practice, one of GARCH’s main applications is to provide next-day volatil-
ity forecasts. When estimated innovations, or residuals, defined as

Ẑt = εt/σ̂t, σ̂2
t = ω̂ + α̂ε2t−1 + β̂σ̂2

t−1, t = 1, ....n (13.38)

are almost independent, this is taken as evidence of accurate next-day volatil-
ity forecasts.

GARCH (1,1) volatility can be found using previously estimated parameters
applied to the GARCH (1,1) model. However, for the S&P 500 data, the
following infinite moving-average approximation also provides an accurate
estimate.

σ̂2
t = ω̂ + α̂ε2t−1 + β̂σ̂2

t−1

= ω̂ + α̂ε2t−1 + β̂(ω̂ + α̂ε2t−2 + β̂σ̂2
t−2)

= ω̂(1 + β̂) + α̂(ε2t−1 + β̂ε2t−2) + β̂2σ̂2
t−2

≈ ω̂(1 + β̂) + (1 − β̂)(ε2t−1 + β̂ε2t−2) + β̂2σ̂2
t−2 (13.39)

≈ ...

≈ ω̂(1 + β̂ + β̂2 + ...) + (1 − β̂)(ε2t−1 + β̂ε2t−2 + β̂2ε2t−3...)

≈ ω̂

1 − β̂
+
ε2t−1 + β̂ε2t−2 + β̂2ε2t−3 + ...

1 + β̂ + β̂2 + ...
(13.40)

≈ ε2t−1 + β̂ε2t−2 + β̂2ε2t−3 + ...

1 + β̂ + β̂2 + ...
(13.41)

where (13.39) substitutes 1 − β̂ for α̂ since α̂ + β̂ ≈ 0.995, (13.40) uses the
fact that 1 + β̂ + β̂2 + ... = 1/(1 − β̂) while (13.41) neglects the constant
ω̂/(1 − β̂), since ω̂ is very small.
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The approximation (13.41) is in fact an exponential smoother, the exponen-
tially weighted moving average (EWMA) applied to ε2t . Forecasting with
EWMA is optimal in the mean-square error sense for the state space model

xt = μt + ηt (13.42)
μt = μt−1 + νt (13.43)

where

• ηt and νt are i.i.d. sequences

• E [η] = 0 and E [ν] = 0.

Assuming

rt = σtZt, E [Zt] = 0, E
[
Z2
t

]
= 1, (13.44)

the GARCH (1,1) model can be written in the form of (13.42):

r2t = σ2
t + σ2

t (Z
2
t − 1) = σ2

t + ηt with E [ηt] = 0. (13.45)

where σt is a deterministic, smooth function of time. Here, we assume the
unconditional variance is time-varying and that the returns are independent
but not i.i.d. Equation (13.43) incorporates the uncertainty about the form
of the model.

Similarly, the non-parametric regression model shares a closely-related setup,
sharing the state model representation and ability to incorporate uncertainty
about the form of the model. In this case, the uncertainty is handled by
modelling the signal μ as a deterministic function of time.

From non-parametric regression literature, the time-varying unconditional
variance is estimated as:

σ̂2
t;h =

n∑

k=1

Wk(t;h)r2k (13.46)

where h is the bandwidth, K a kernel and

Wk(t;h) = K

(
t− k

h

)
/

n∑

k=1

K

(
t− k

h

)
. (13.47)

Together, these two equations are from Nadaraya-Watson (zero-degree local
polynomial) kernel estimate of σ2

t .

Empirical tests of the S&P 500 data from 16 May, 1995 to 29 April, 2003
find that the paths of the GARCH (1,1) estimate σ̂2

t and the non-parametric
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estimate (13.46) closely follow each other. Furthermore, there were no sta-
tistically significant differences between GARCH (1,1) and a non-stationary,
non-parametric regression approach to next-day volatility forecasting.

However, one possible critique of the non-parametric approach is that it lacks
any dynamics. It is assumed that volatility is driven by unstructural, ex-
ogenous factors. Since not much is known about these factors, the current
volatility level is forecasted to be the return volatility for the close future.
Near future returns are modelled as i.i.d. with a variance equal to today’s
estimate.

In contrast, the GARCH (1,1) model contains an endogenous mechanism for
the volatility process which is capable of foreseeing future developments in
the movements of prices. Therefore, it can be argued that GARCH (1,1)’s
vision of the future makes it a preferable choice.

Modelling Performance

As previously mentioned, the GARCH (1,1) process is assumed to be a re-
alistic data generating process for financial returns. According to this as-
sumption, given a sample of data with parameters estimated on a reasonable
long sub-sample, these parameters should provide a good model for the entire
sample. However, when using the estimated parameters from the S&P 500
returns from 16 May, 1995 to 29 April, 2003 to describe the data of the entire
11 727 observation sample from March 1957 to October 2003, the GARCH
(1,1) model’s simulated samples differ vastly from the real data. In fact, the
GARCH (1,1) model greatly overestimates the variance for the long series
of S&P returns. In 25 000 simulated samples, GARCH (1,1) produced an
interval of variances [0.00014, 0.01526] while the true variance of the returns
is 0.00008, see Starica (2003).

The inaccurate results of these simulations require a closer look at the GARCH
(1,1) model’s estimated unconditional variance. Under the assumption of
weak stationarity (α + β < 1), the unconditional variance of the GARCH
(1,1) model is

σ2 = ω/(1 − α− β). (13.48)

Using this formula for the sub-sample of S&P 500 returns from 16 May, 1995
to 29 April, 2003, the standard deviation of the GARCH (1,1) estimated un-
conditional variance ranges from 1.5 to 5 times larger than the sample’s true
standard deviation. Hence, the issue of the GARCH (1,1) model’s inability to
produce accurate unconditional point estimates has implications in its data
forecasting abilities.
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Forecasting Performance

Assuming that GARCH (1,1) is a data generating process with α+β < 1, the
Mean Square Error (MSE) forecast for E[r2t+p], the return variance p steps
ahead, is:

σ2,GARCH
t+p = Et[r2t+p] = σ2 + (α+ β)p(σ2

t − σ2), (13.49)

where σ2 is the unconditional variance defined in (13.48). Since α+β < 1, for
large values of p, the second term on the right-hand side of the equation goes
to zero so that the forecast σ2,GARCH

t+p is equal to the unconditional variance
σ2. The minimum MSE forecast for the variance of the next p aggregated
returns is:

σ2,GARCH
t,p = E[rt+1 + ...+ rt+p]2 = σ2,GARCH

t+1 + ...+ σ2,GARCH
t+p . (13.50)

As a benchmark (BM) for volatility forecasting, a simple non-stationary
model (13.44) is used. As previously discussed, since this model does not
specify any dynamics for the variance, future observations are modelled as
i.i.d. with constant variance σ̂2

t , which is an estimate of σ2
t . Here, the sample

variance of the previous year of returns will be used to estimate σ2
t :

σ̂2
t =

1
250

250∑

i=1

r2t−i+1. (13.51)

Therefore, the forecast for E[r2t+p] is

σ2,BM
t+p = σ̂2

t . (13.52)

The forecast for the variance of the next p aggregated returns, E[rt+1 + ...+
rt+p]2, is

σ2,BM
t,p = p σ̂2

t =
p

250

250∑

i=1

r2t−i+1. (13.53)

In order to evaluate forecasting performance, realised volatility rt,p in the
interval [t+ 1, t+ p] is defined by

r2t,p =
p∑

i=1

r2t+i. (13.54)



13.3 Shortfalls of GARCH 263

The following formula is preferred for calculating an accurate measure of
mean square error (MSE)

n∑

t=1

(r2t+p − σ2,∗
t+p)

2 (13.55)

where * represents BM or GARCH.

By initially estimating the GARCH (1,1) model on the first number of data
points and then continuously re-estimating using a specified interval of time,
simultaneously estimating σ2

t using (13.51), (13.50) and (13.53) can be used
to forecast volatility for the year to come (p = 1, . . . , 250). When forecast-
ing the GARCH (1,1) volatility of S&P returns between 3 May, 1999 and 29
April, 2003, the effects of the over-estimation of conditional variance shown
above are evident as GARCH (1,1) provides poor longer horizon forecasts for
this period. In fact, the simple non-parametric, non-stationary model pro-
duced better forecasting results. Moreover, MSE analysis shows an increasing
MSEGARCH/MSEBM ratio over the forecast horizon. These results lead one
to wonder if GARCH (1,1) always over-estimates unconditional variance or
if the S&P sample used here is unique in some way. The following sections
investigate this issue as the GARCH (1,1) model is applied to a longer sample
of S&P data.

Forecasting Performance of a Longer Sample of S&P Data

At this point, it is important to examine the options that one has when using
the stationary GARCH (1,1) model. These choices depend on the working
assumptions made about the data to be modelled. If the data is assumed to
be stationary, a GARCH (1,1) process would be used as a true data generating
process for the entire data set. In this case, it is best to use as much data as
possible in order to draw any statistical conclusions or to make any forecasts.

However, if the data if assumed to be non-stationary, then the GARCH (1,1)
process might be used as a local approximation for a true data generating
process. Given this condition, the parameters of the model should be peri-
odically re-estimated on a moving window. Only data from the recent past
should be used to calibrate the model to be used for forecasting. Making any
statistical statements based on long samples should be avoided. In the situa-
tion of non-stationary data, it is unclear whether GARCH (1,1) can produce
accurate long-horizon forecasts.
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Hypothesis: Returns are Stationary

Under the working assumption of stationary data, GARCH (1,1) estimated
parameters should be unchanging if they are estimated on an increasing sam-
ple size or on a window that moves through the data. When testing a hy-
pothesis of stationarity, if significant changes in the estimated parameters
outside of the confidence interval are detected, then the hypothesis should be
rejected and the model should not be considered to be a true data generating
process.

For this hypothesis testing, Starica uses a much longer sample of S&P data
from 4 March, 1957 to 9 October, 2003, re-estimating the data every 50
observations, both on a moving window of 2000 past observations and on an
increasing sample containing all past observations. However, the hypothesis
of stationarity was strongly rejected as the estimated parameters changed
significantly over time and did a poor job of remaining in their confidence
intervals. A similar analysis was performed on returns from the Dow Jones
Industrial index for the same period. The hypothesis was also rejected for the
Dow Jones series. From this evidence, it can be concluded that the GARCH
(1,1) process is not a data generating process for the returns of the S&P 500
index between 4 March, 1957 to 9 October, 2003.

The significant changes in the value of the estimated parameters suggests
that the data is not stationary, particularly that the unconditional variance
might be time-varying. This issue will be examined as a hypothesis of non-
stationarity next.

Hypothesis: Returns are Non-stationary

The assumption that long range S&P data may be non-stationary due to a
time-varying unconditional variance might explain the poor point estimates
described above. Under closer examination of the sum α+β, estimated from
a moving window of 2000 S&P returns from 1957 to 2003, IGARCH effects
are present in the period from 1997 to 2003 as α + β < 1 for this period.
An IGARCH effect is likely to cause an explosion of estimated unconditional
variance when fitting GARCH (1,1) processes to samples that end in this
time period, see equation (13.50).

In fact, a comparison of the GARCH(1,1) and sample standard deviations
reveals a good agreement between the two estimates for the entire period
except from 1997 to 2003 when the IGARCH effect becomes strongly statis-
tically significant. Analysis of the Dow Jones Industrial Index shows similar
findings, see Starica (2003).

The strong IGARCH effect in the late 1990’s can be attributed to a sharp
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change in unconditional variance. In the paper by Mikosch and Starica
(2004), it is proved, theoretically and empirically, that sharp changes in un-
conditional variance can cause the IGARCH effect. Similarly, non-parametric
modelling of the unconditional standard deviation of both the S&P 500 and
Dow Jones also reveal that the level of volatility triples from 5% in 1993-1994
to 15% in 2000-2003.

Implications on Long Horizon Volatility Forecasting

As discussed above, the coefficients of a GARCH (1,1) model can change
significantly over time. Moreover, these parameters vary greatly when looking
at the S&P 500 and Dow Jones Industrial Index, both of which are major
financial indices.

In order to take a closer look at this issue, one can look at a comparison of the
forecasting performances of GARCH (1,1) versus a simple approach based on
historical volatility, using a similar approach as described above, see Starica
(2003). From analysis of MSEGARCH and MSEBM , it is evident that for
shorter horizons (60 days ahead for the locally estimated model and 40 days
ahead for the model using all past observations) MSEGARCH < MSEBM ,
however beyond this short forward-looking horizon, MSEGARCH > MSEBM ,
meaning that for longer horizons, the approach based on historical volatility
performed better. The GARCH (1,1) approach becomes significantly more
volatile during the late 1990’s, the period in which the IGARCH effect is
present, than does the historical volatility method. GARCH (1,1)’s poor
performance is also seen for the Dow Jones series of returns, leading one to
question its applicability in long-term volatility forecasting.

13.3.2 Next-Day Volatility Forecasting for DAX Returns

Based on Starica’s example, this section compares GARCH (1,1) next-day
volatility forecasting with a non-parametric estimation very similar to the
method described in Section 13.3.1 for DAX returns from 1 January, 1992 to
31 December, 2004. Figure 13.9 shows a plot of the daily logarithmic DAX
returns (first differences of the logarithms of the daily closing prices).

Next, a GARCH (1,1) process (13.38) was fitted to the DAX data to provide
a next-day volatility forecast as seen in Figure 13.10. The estimated GARCH
(1,1) parameters are

ω̂ = 1.4436 × 10−6, α̂ = 0.076342, β̂ = 0.91711. (13.56)
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Figure 13.9: DAX returns from 1992 to 2004.
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This indicates the presence of an IGARCH effect which can most likely be
attributed to this DAX data being non-stationary with a changing and overes-
timated unconditional variance. However, to confirm this assumption, further
analysis of the unconditional variance is necessary.

Figure 13.11 shows the estimated volatility resulting from using the non-
parametric model based on historical volatility. This non-parametric esti-
mate was calculated using a Nadaraya-Watson kernel estimate. The optimal
bandwidth was calculated by choosing the value of h that minimises the fi-
nal prediction error, see Härdle, Müller, Sperlich and Werwatz (2004). It
is evident when comparing the non-parametric estimate in Figure 13.11 to
the GARCH (1,1) estimate in Figure 13.10, that the paths of these volatility
processes are quite similar.

From this analysis of DAX returns, it is observed that the late 1990’s as
well as 2002-2004 were all periods of high volatility. This can be seen in the
plot of the DAX returns, and it is captured by both the GARCH (1,1) and
non-parametric next-day volatility estimates. Moreover, these results are
very similar to Starica’s study of the S&P 500 returns, demonstrating the
correlation between the returns of the securities represented by both indices.
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Figure 13.10: Estimated GARCH next-day volatility for DAX returns from
1992-2004.

SFEgarchest

Figure 13.11: Estimated volatility of DAX returns from 1992-2004 using a
non-parametric model based on historical volatility.
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13.4 Multivariate GARCH Models

The generalisation of univariate GARCH models to the multivariate case is
straightforward. For the error term εt of a d-dimensional time series model
we assume that the conditional mean is zero and the conditional covariance
matrix is given by the positive definite (d× d) matrix Ht, i.e.,

εt = H
1/2
t ξt (13.57)

with i.i.d. innovation vector ξt, whose mean is zero and covariance matrix
equals the identity matrix Id. As in the univariate case, Ht depends on lagged
error terms εt−i, i = 1, . . . , q, and on lagged conditional covariance matrices
Ht−i, i = 1, . . . , p,. As we will see shortly, the general case with arbitrary
dependencies can lead to very complex structures that may be too difficult
to deal with in practice. The reduction of the dimension of the parameter
space is therefore often tried. Below, we first discuss a general specification
and then a popular restriction, the BEKK model. We will also briefly sketch
a model that assumes constant conditional correlations.

13.4.1 The Vec Specification

Let vech(·) denote the operator that stacks the lower triangular part of a
symmetric d× d matrix into a d∗ = d(d+ 1)/2 dimensional vector. Further-
more we will use the notation ht = vech(Ht) and ηt = vech(εtε�t ). The Vec
specification of a multivariate GARCH(p, q) model is then given by

ht = ω +
q∑

i=1

Aiηt−i +
p∑

j=1

Bjht−j , (13.58)

where Ai and Bj are parameter matrices with each one containing (d∗)2

parameters. The vector ω represents constant components of the covariances
and contains d∗ parameters.

For the bivariate case and p = q = 1 we can write the model explicitly as
⎛

⎝
h11,t

h12,t

h22,t

⎞

⎠ =

⎛

⎝
ω1

ω2

ω3

⎞

⎠+

⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠

⎛

⎝
ε21,t−1

ε1,t−1ε2,t−1

ε22,t−1

⎞

⎠

+

⎛

⎝
b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞

⎠

⎛

⎝
h11,t−1

h12,t−1

h22,t−1

⎞

⎠
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By rearranging terms, we can write the second order process ηt as a vector
autoregressive moving average (VARMA) process of order (max(p, q), p),

ηt = ω +
max(p,q)∑

i=1

(Ai +Bi)ηt−i −
p∑

j=1

Bjut−j + ut, (13.59)

where ut = ηt−ht is a vector white noise process, i.e., E[ut] = 0, E[utu�t ] = Σu
und E[utu�s ] = 0, s 
= t. In (13.59) we set Aq+1 = . . . = Ap = 0 if p > q and
Bp+1 = . . . = Bq = 0 if q > p. Often the VARMA representation of multi-
variate GARCH models simplifies the derivation of stochastic properties, as
one can refer to known results of the VARMA literature.

In the Vec representation (13.58), the multivariate GARCH(p, q) process εt
is covariance stationary if, and only if, all eigenvalues of the matrix

max(p,q)∑

i=1

(Ai +Bi)

are smaller than one in modulus, see Engle and Kroner (1995). In that case,
the unconditional covariance matrix is given by

σ = vech(Σ) =

⎛

⎝Id∗ −
max(p,q)∑

i=1

(Ai +Bi)

⎞

⎠
−1

ω. (13.60)

In order to illustrate the prediction of volatility, let us consider the following
often used GARCH(1,1) model. The optimal prediction with respect to the
mean squared prediction error is the conditional expectation of volatility. Due
to the law of iterated expectations, the k-step prediction of ηt+k is identical
to the k-step prediction of ht+k, that is,

E[ηt+k | Ft] = E[E(ηt+k | Ft+k−1) | Ft] = E[ht+k | Ft].
Having information up to time t, the predictions for the next three time
periods are given by

E[ηt+1 | Ft] = ht+1

E[ηt+2 | Ft] = ω + (A+B)ht+1

E[ηt+3 | Ft] = (Id∗ +A+B)ω + (A+B)2ht+1,

and it can be seen that in general, the k-step prediction with k ≥ 2 is given
by

E[ηt+k | Ft] =
{
Id∗ + (A+B) + . . .+ (A+B)k−2

}
ω + (A+B)k−1ht+1.
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This converges to the unconditional covariance matrix σ = (Id∗ −A−B)−1ω
if, and only if, the process is covariance stationary.

In the bivariate case (d = 2) and with p = q = 1, there are already 21 parame-
ters that characterise the dynamics of volatility. In order to obtain a feasible
model for empirical work, one often imposes restrictions on the parameter
matrices of the Vec model. Bollerslev, Engle and Wooldridge (1988) propose
using diagonal parameter matrices such that the conditional variance of one
variable only depends on lagged squared values of the same variable, and the
conditional covariances between two variables only depend on lagged values
of the cross-products of these variables. This model substantially reduces
the number of parameters (in the above case from 21 to 9), but potentially
important causalities are excluded.

For parameter estimation the Quasi Maximum Likelihood Method (QML) is
suitable. The conditional likelihood function for a sample time series of n
observations is given by logL =

∑n
t=1 lt with

lt = −d
2

log(2π) − 1
2

log{det(Ht)} − 1
2
ε�t H

−1
t εt. (13.61)

If the conditional distribution of εt is not normal, then (13.61) is interpreted
as a quasi likelihood function, which serves merely as a target function in
the numerical optimisation, but which does not say anything about the true
distribution. In the multivariate case, the QML estimator is consistent and
asymptotically normal under the main assumptions that the considered pro-
cess is strictly stationary and ergodic with a finite eighth moment. Writing
all parameters in one vector, θ, we obtain the following standard result.

√
n(θ̂ − θ) L→ N(0, J−1IJ−1), (13.62)

where I is the expectation of outer product of the score vector (i.e., the vector
∂lt/∂θ), and J the negative expectation of the Hessian (i.e., the matrix of
second derivatives). In the case of a normal distribution, we have I = J and
the asymptotic distribution simplifies to

√
n(θ̂ − θ) L→ N(0, J−1). (13.63)

In other words, these results are completely analogous to the univariate case,
but the analytical expressions for I and J become much more complicated.
Of course one can also determine I and J numerically, but this can lead to
unreliable results, especially for J , in the multivariate case.

In empirical work one often finds that estimated standardised residuals are
not normally distributed. In this case the QML likelihood function would be
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mis-specified and provides only consistent, not efficient parameter estimators.
Alternatively, one can assume that the true innovation distribution is given
by some specific non-normal parametric distribution, but in general this does
not guarantee that parameter estimates are consistent in the case that the
assumption is wrong.

13.4.2 The BEKK Specification

Engle and Kroner (1995) discuss the following specification of a multivariate
GARCH model.

Ht = C0C
�
0 +

K∑

k=1

q∑

i=1

A�
kiεt−iε

�
t−iAki +

K∑

k=1

p∑

j=1

B�
kjHt−jBkj . (13.64)

In (13.64), C0 is a lower triangular matrix and Aki and Bki are d×d parameter
matrices. For example, in the bivariate case with K = 1, p = 1 and q = 0,
the conditional variance of ε1t can be written as

h11,t = c211 + a2
11ε

2
1t + a2

12ε
2
2t + 2a11a12ε1tε2t

and the conditional covariance as

h12,t = c11c21 + a11a21ε
2
1t + a12a22ε

2
2t + (a12a21 + a11a22)ε1tε2t

The so-called BEKK specification in (13.64) guarantees under weak assump-
tions that Ht is positive definite. A sufficient condition for positivity is for
example that at least one of the matrices C0 or Bki have full rank and the
matrices H0, . . . , H1−p are positive definite. The BEKK model allows for
dependence of conditional variances of one variable on the lagged values of
another variable, so that causalities in variances can be modelled. For the
case of diagonal parameter matrices Aki and Bki, the BEKK model is a
restricted version of the Vec model with diagonal matrices.

Due to the quadratic form of the BEKK model, the parameters are not
identifiable without further restriction. However, simple sign restrictions will
give identifiability. For example, in the often used model K = 1 and p =
q = 1, it suffices to assume that the upper left elements of A11 and B11

are positive. The number of parameters reduces typically strongly when
compared to the Vec model. For the above mentioned case, the number of
parameters reduces from 21 to 11.

For each BEKK model there is an equivalent Vec representation, but not vice
versa, so that the BEKK model is a special case of the Vec model. To see this,
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just apply the vech operator to both sides of (13.64) and define ω = Ld(C0 ⊗
C0)�Ddvech(Id), Ai =

∑K
k=1 Ld(Aki ⊗ Aki)�Dd, and Bj =

∑K
k=1 Ld(Bkj ⊗

Bkj)�Dd. Here ⊗ denotes the Kronecker matrix product, and Ld and Dd

are the elementary elimination and duplication matrices. Therefore, one can
derive the stochastic properties of the BEKK model by those of the Vec
model. For the empirical work, the BEKK model will be preferable, because
it is much easier to estimate while being sufficiently general.

13.4.3 The CCC Model

Bollerslev (1990) suggested a multivariate GARCH model in which all condi-
tional correlation are constant and the conditional variances are modelled by
univariate GARCH models. This so-called CCC model (constant conditional
correlation) is not a special case of the Vec model, but belongs to another,
nonlinear model class. For example, the CCC(1,1) model is given by

hii,t = ωi + αiε
2
i,t−1 + βihii,t−1,

hij,t = ρij
√
hii,thjj,t

for i, j = 1 . . . , d, and ρij equal to the constant correlation between εit and
εjt, which can be estimated separately from the conditional variances. The
advantage of the CCC model is in the unrestricted applicability for large
systems of time series. On the other hand, the assumption of constant cor-
relation is possibly quite restrictive. For example, in the empirical analysis
of financial markets one typically observes increasing correlation in times of
crisis or in crash situations.

13.4.4 The DCC Model

Engle (2002) has introduced a generalisation of the CCC model that allows
for time-varying correlations in a straightforward way. Similar to the CCC
model the idea is to separate the modelling of volatilities and correlations and
render estimation feasible in high dimensions. Again, volatilities hii,t could
be modelled in a first step by univariate GARCH(1,1) models as discussed
in the previous section for the CCC model. Rather than assuming that the
conditional correlation ρij between the i-th and j-th component is constant,
it is now the ij-th element of the matrix

Rt = diag(Qt)−1/2Qt diag(Qt)−1/2

with
Qt = Ω + γvt−1v

′
t−1 + δQt−1,
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Min. Max. Mean Median Std.Error
DEM/USD −0.040 0.032 −4.718e− 06 0 0.0071
GBP/USD −0.047 0.039 0.000110 0 0.0070

Table 13.4: SFEmvol01

where vt = (ε1,t/
√
h11,t, . . . , εd,t/

√
hdd,t)′, Ω is a symmetric positive definite

parameter matrix and γ and δ are positive scalars. Note that by construc-
tion, Qt is positive definite and hence Rt is a correlation matrix, i.e. it is
positive definite and all elements on the diagonal are equal to one. A similar
specification has been suggested by Tse and Tsui (2002).

13.4.5 An Empirical Illustration

We consider a bivariate exchange rates example, two European currencies,
DEM and GBP, with respect to the US Dollar. The sample period is 01/01/
1980 to 04/01/1994 with altogether n = 3720 observations. Figure 13.12
shows the time series of returns on both exchange rates. Table 13.4 provides
some simple descriptive statistics of returns εt. Apparently, the empirical
mean of both processes is close to zero.

As can be seen in Figure 13.12, the exchange rate returns follow a pattern
that resembles a GARCH process: there is a clustering of volatilities in both
series, and the clusters tend to occur simultaneously. This motivates an
application of a bivariate GARCH model.

A first simple method to estimated the parameters of a BEKK model is
the BHHH algorithm. This algorithm uses the first derivatives of the QML
likelihood with respect to the 11 parameters that are contained in C0, A11 and
G11, recalling equation (13.64). As this is an iterative procedure, the BHHH
algorithm needs suitable initial parameters. For the diagonal elements of the
matrices A11 and B11, values between 0.3 and 0.9 are sensible, because this is
the range often obtained in estimations. For the off-diagonal elements there
is no rule of thumb, so one can try different starting values or just set them
to zero. The starting values for C0 can be obtained by the starting values for
A11 and B11 using the formula for the unconditional covariance matrix and
matching the sample covariance matrix with the theoretical version.
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Figure 13.12: Exchange rate returns. SFEmvol01

For the bivariate exchange rate example, we obtain the following estimates:

θ̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00115
0.00031
0.00076
0.28185

−0.05719
−0.05045

0.29344
0.93878
0.02512
0.02750
0.93910

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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n∑

t=1

lt = −28599

SFEmvol02

the previous value represents the computed minimum of the negative log like-
lihood function. The displayed vector contains in the first three components
the parameters in C0, the next four components are the parameters in A11,
and the last four components are the parameters in B11.

In this example we thus obtain as estimated parameters of the BEKK model:

C0 = 10−3

(
1.15 0.31
0.00 0.76

)
,

A11 =
(

0.282 −0.050
−0.057 0.293

)
, B11 =

(
0.939 0.028
0.025 0.939

)
. (13.65)

Estimates for the conditional covariances are obtained by applying succes-
sively the difference equation (13.64), where the empirical covariance matrix

Ĥ0 =
1
n

n∑

t=1

εtε
�
t

of the observations εt is taken as initial value.

In Figure 13.13 estimated conditional variance and covariance processes are
compared. The upper and lower plots show the variance of the DEM/USD
and GBP/USD returns and the plot in the middle shows the estimated con-
ditional covariance process. Apart from a very short period at the beginning
of the sample, the covariance is positive and of significnat magnitude. This
confirms our intuition of mutual dependence in exchange markets which mo-
tivated the use of the bivariate GARCH model.

SFEmvol03

The estimated parameters can also be used to simulate volatility. This can
be done by drawing one realisation of a multivariate normal distribution with
mean zero and variance Ĥt at every time step. With these realisations one
updates Ĥt according to equation (13.64). Next, a new realisation is obtained
by drawing from N(0, Ĥt+1), and so on. We will now apply this method with
n = 3000. The results of the simulation in Figure 13.14 show similar patterns
as in the original process (Figure 13.13). For a further comparison, we include
two independent univariate GARCH processes fitted to the two exchange
rate return series. This corresponds to a bivariate Vec representation with
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Figure 13.13: Estimated variance and covariance processes, 105Ĥt.
SFEmvol02

diagonal parameter matrices. Obviously, both methods capture the clustering
of volatilities. However, the more general bivariate model also captures a
spill over effect, that is, the increased uncertainty in one of the returns due
to increased volatility in the other returns. This has an important impact on
the amplitude of volatility.
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13.5 Recommended Literature

The empirical properties of financial market data, in particular the leptokur-
tosis and clustering of volatilities, have been investigated systematically by
Mandelbrot (1963) and Fama (1965). ARCH Models were introduced by En-
gle (1982) and generalised to GARCH by Bollerslev (1986). For an excellent
overview of ARCH models we refer to Gouriéroux (1997). An extensive dis-
cussion of the estimation of the tail exponent and the Hill estimator can be
found in Embrechts, Klüppelberg and Mikosch (1997). A comparison of the
efficiency of the Yule Walker estimator with ML estimators of ARCH and
GARCH models is given in Maercker (1997).

The theory of QML estimation was developed by White (1982) and
Gouriéroux, Monfort and Trognon (1984). Weiss (1986) applied the theory
to ARCH models, Lee and Hansen (1994) and Lumsdaine (1996) to GARCH
models. Bollerslev and Wooldridge (1992) considered QML estimation for
general conditionally heteroscedastic models. The idea of the smooth transi-
tion specification stems from Teräsvirta (1994) who used it for AR models.
It was applied to GARCH models by Lubrano (1998). Hafner and Herwartz
(2000) discussed various methods to test for the significance of the AR param-
eter under conditional heteroscedasticity. Moreover, they compare empirical
results of AR models versus ARCH-M models, applied to several German
stock returns.

Starica (2003) examines some shortfalls of GARCH, primarily its inability
to function as a true data generating process and accurate forecasting tool
as well as GARCH’s overestimation of the unconditional variance and the
existence of the IGARCH effect.

GARCH(1,1) model can be written in the form of the state space model. A
closely related set-up, which shares with the state model representation the
ability to incorporate our uncertainty about the form of the model is that of
the non-parametric regression, which is discussed in Wand and Jones (1995).

In the multivariate case, Jeantheau (1998) has shown the consistency of the
QML estimator, and Comte and Lieberman (2003) derived asymptotic nor-
mality. Analytical expressions for the score and Hessian matrices are provided
by Hafner and Herwartz (2003). A recent survey of multivariate GARCH
models is provided by Bauwens, Laurent and Rombouts (2005). It discusses
the various specifications, estimation, inference, and applications.
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Figure 13.14: Simulated variance and covariance processes with a bivari-
ate (blue) and two univariate (green) GARCH processes,
105Ĥt. SFEmvol03



14 Non-parametric Concepts for
Financial Time Series

With the analysis of (financial) time series, one of the most important goals is
to produce forecasts. Using past observed data one can make some statements
about the future mean, the future volatility, etc., for example, one would like
to estimate the expectation and variance of the underlying process conditional
on the past. One method of producing such estimates will be introduced in
this chapter.

Let (Yt), t = 0, 1, 2, . . . , be a time series. We consider a nonlinear autore-
gressive heteroscedastic model of the form

Yt = f(Yt−1) + s(Yt−1)ξt, t = 1, 2, . . . (14.1)

Here the innovations ξt are i.i.d. random variables with E[ξt] = 0 and E[ξ2t ] =
1, f : R −→ R and s : R −→ (0,∞) are unknown functions, and Y0 is
independent of (ξt). Under these assumptions and according to Theorem 3.1
it holds that:

E[Yt |Yt−1 = x] = f(x) + E[s(Yt−1)ξt |Yt−1 = x] = f(x) + s(x)E[ξt] = f(x),

where in the second to last equation the independence of ξt and Yt−1 is
used. A similar calculation gives s2(x) = Var[Yt |Yt−1 = x]. The unknown
functions f and s describe the conditional mean and the conditional volatility
of the process, which we want to estimate.

With the specific choice f(x) = αx and s = σ > 0 the process Yt is an AR(1)
process. Every strong ARCH(1) process (Yi) satisfies the model (14.1). In
this case f = 0, and it holds that s(x) =

√
ω + αx2 with the parameters ω > 0

and α ≥ 0, compare Definition 13.1. With respect to the structure of the
conditional mean and the conditional variance, the model above is another
broad generalisation of the (strong) ARCH models. The advantage of this
nonparametric Ansatz is that the model contains no structural assumptions
about the functions f and s, since such assumptions are often not supported
by observations in the data.

Closely related to our model is the Qualitative Threshold ARCH model
(QTARCH) studied in Gouriéroux and Monfort (1992), which for the case of
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one lag (QTARCH(1)) is a special case of (14.1), where the unknown func-
tions f : R −→ R and s : R −→ (0,∞) take the form of step functions - see
(13.32). On the other hand (14.1) can also be described under certain regu-
larity assumptions on f and s as a limit model of the QTARCH(1) models
when J → ∞, in that f and s are approximated with elementary functions.

The work of Gouriéroux and Monfort is the first to consider the conditional
mean and the conditional variance together in a nonparametric model. The
applications of this idea introduced here are taken from Härdle and Tsybakov
(1997), and are also considered independently in Franke, Kreiss and Mammen
(2002). In the following we will construct a class of estimators based on the
local polynomial regression for the conditional volatility v(x) = s2(x) and the
conditional mean f(x) of the time series (Yi) under the model assumptions
(14.1).

In addition to the model assumptions (14.1) certain regularity assumptions,
although no structural assumptions, on f and s will be made. As the main
result of this chapter we will show, this combined estimation of the condi-
tional expectation and the conditional volatility is asymptotically normally
distributed.

14.1 Nonparametric Regression

In this section we introduce several basic terms and ideas from the theory
of nonparametric regressions and explain in particular the method of local
polynomial regression. To conclude we explain how this can be applied to
(financial) time series. A detailed representation can be found in Härdle et al.
(2004).

In nonparametric regression one is interested in the (functional) relationship
between an explanatory variable X and a dependent variable Y , i.e., one
is interested in obtaining an estimation for the unknown function m(x) =
E[Y |X = x]. In doing this, in contrast to parametric statistics, no special
assumptions on the form of the function m is made. Only certain regularity
and smoothing assumptions are made about m.

One way to estimate m is to use the method of local polynomial regression
(LP Method). The idea is based on the fact that the functionm can be locally
approximated with a Taylor polynomial, i.e., in a neighborhood around a
given point x0 it holds that

m(x) ≈
p∑

k=0

m(k)(x0)
k!

(x− x0)k. (14.2)
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In order to find an estimate for m at point x0, one therefore tries to find
a polynomial based on observations (X1, Y1), . . . , (Xn, Yn) that is a good
approximation of m around x0. As a measure of the quality of the approx-
imation one usually chooses a LS criterion, i.e., one wants to minimise the
expression

n∑

i=1

{
Yi −

p∑

j=0

βj(Xi − x0)j
}2

(14.3)

with respect to β = (β0, . . . , βp)�. Since the representation (14.2) holds only
locally, one still has to take into consideration that some of the observations
Xi may not lie close enough to x0 and thus (14.2) no longer applies to them.
One must then sufficiently localise the observations, i.e., only consider those
observations that lie close enough to x0.

One of the classical methods for localisation is based on weighting the data
with the help of a kernel. A kernel is a function K : R −→ [0,∞) with∫
K(u) du = 1. The most useful kernels are also symmetric and disappear

outside of a suitable interval around the zero point.

If K is a kernel and h > 0, then the kernel Kh

Kh(u) =
1
h
K
(u
h

)

is re-scaled with the bandwidth h, which again integrates to 1. If, for exam-
ple, the initial kernel K disappears outside of the interval [−1, 1], then Kh

is zero outside of the interval [−h, h]. By weighting the i−th term in (14.3)
with Kh(x−Xi), one has a minimisation problem which, due to the applied
localisation, can be formulated to be independent of the point x0. The coeffi-
cient vector β̂ = β̂(x) = (β̂0(x), . . . , β̂p(x))� that determines the polynomial
of the point x is thus given by

β̂ = arg min
β

n∑

i=1

{
Yi −

p∑

j=0

βj(x−Xi)j
}2

Kh(x−Xi). (14.4)

It is obvious that β̂ depends heavily on the choice of kernel and the band-
width. Different methods for determining K and h are introduced in Härdle
et al. (2004).
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With the representation

X =

⎛

⎜⎝
1 X1 − x (X1 − x)2 . . . (X1 − x)p
...

...
...

. . .
...

1 Xn − x (Xn − x)2 . . . (Xn − x)p

⎞

⎟⎠ ,Y =

⎛

⎜⎝
Y1

...
Yn

⎞

⎟⎠ ,

W =

⎛

⎜⎝
Kh(x−X1) 0

. . .
0 Kh(x−Xn)

⎞

⎟⎠

the solution β̂ to the weighted least squares problem (14.4) can be explicitly
written as

β̂(x) =
(
X�WX

)−1
X�WY (14.5)

The estimation m̂(x) for m(x) can be obtained only by calculating the ap-
proximating polynomial at x:

m̂(x) = β̂0(x). (14.6)

The remaining components of β̂(x), due to equations (14.2) and (14.3) deliver
estimators for the derivatives of m: m̂(j)(x) = j! β̂j(x), j = 1, ..., p, which will
not be discussed in further detail here. In the special case where p = 0, m̂(x)
is a typical kernel estimator of Nadaraya-Watson type, see Härdle (1990).

The similarly derived method of local polynomial approximation, or LP
method for short, will now be applied to a time series (Yi). As mentioned
before, one is most interested in creating forecasts.

For the simplest case a one-step ahead forecast means that the functional
relationship between Yi−1 and a function λ(Yi) of Yi will be analysed, i.e.,
we want to obtain an estimate for the unknown function

m(x) = E
[
λ(Yi) |Yi−1 = x

]
.

In order to apply the LP Method mentioned above, consider a given sample
Y0, . . . , Yn as observations of the form (Y0, Y1), . . . , (Yn−1, Yn). The process
(Yi) must fulfil certain conditions, so that these observations are identically
distributed and in particular so that the functionm is independent of the time
index i. Such is the case when (Yi) is stationary. By substituting Xi = Yi−1

into (14.4) and replacing Yi with λ(Yi), we obtain in this situation

β̂ = arg min
β

n∑

i=1

{
λ(Yi) −

p∑

j=0

βj(x− Yi−1)j
}2

Kh(x− Yi−1), (14.7)

and the estimate for m(x) is again given by β̂0(x).
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14.2 Construction of the Estimator

The LP method introduced in the previous section will now be applied under
the assumption of a nonparametric autoregressive model of the form (14.1)
to estimate the volatility function s(x) of the process (Yi) based on the ob-
servations Y0, . . . , Yn.

The conditional volatility si(x) and the conditional variance vi(x) respec-
tively at time i is defined by

vi(x) = s2i (x) = E[Y 2
i |Yi−1 = x] − E2[Yi |Yi−1 = x]. (14.8)

Included in the assumptions of the model (14.1) is the independence from
the time index i. An estimate for v(x) = s2(x) using the LP Method is
based on the fact that the two dimensional marginal distribution (Yi−1, Yi)
is independent of i. In the following we will see that (Yi) approach is a
stationary process, with which the following application is justified.

Referring back to the representation (14.8) of the conditional variance v(x)
we search for an estimator v̂n for v with the form

v̂n(x) = ĝn(x) − f̂2
n(x), (14.9)

i.e., we are looking for an estimator ĝn(x) for g(x) = f2(x) + s2(x) and an
estimator f̂n(x) for f(x).

In order to define these two estimators with the LP Method, after applying
the steps discussed in the previous section we have to solve both of the
following minimisation problems:

c̄n(x) = arg minc∈Rp+1
∑n
i=1(Y

2
i − c�Uin)2K

(
Yi−1−x
hn

)
,

cn(x) = arg minc∈Rp+1
∑n
i=1(Yi − c�Uin)2K

(
Yi−1−x
hn

)
.

(14.10)

Here K : R −→ R is a kernel and {hn} a series of positive numbers (band-
width) with limn→∞ hn = 0. The vectors Uin from (14.10) are defined by

Uin = F (uin), uin =
Yi−1 − x

hn
. (14.11)

with R

p+1 valued function F (u) = {F0(u), ..., Fp(u)}� given by

Fk(u) =
uk

k!
.

According to the LP Method we define ĝn and f̂n with

ĝn(x) = c̄n(x)�F (0) and f̂n(x) = cn(x)�F (0),
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which the above mentioned application ensures that

v̂n(x) = c̄n(x)�F (0) − {cn(x)�F (0)
}2
. (14.12)

This estimate is a direct modification of the estimator from the local poly-
nomial, nonparametric regression in Tsybakov (1986).
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Figure 14.1: DEM/USD Exchange rate and its returns SFEdmusrate

To illustrate the estimator we consider an example. Figure 14.1 above dis-
plays the DEM/USD exchange rate from 1 October, 1992 to 30 September,
1993 in 20 minute intervals (volatility time scale). There are n = 25434 obser-
vations. We have calculated the returns of this series (see Figure 14.1 below)
and applied the estimator (14.12) to the time series of the returns. Under the
model for the geometric Brownian motion for the price, which is based on the
Black-Scholes method (see Section 6.1), the returns must follow an ordinary
Brownian motion. Their volatilities v(x) are thus constant and independent
of x. The estimated conditional variance functions (see Figure 14.2) show
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a U shaped structure, which is called a “smiling face” structure or smile.
The estimated volatility functions ŝ(x) =

√
v̂(x) appear to be qualitatively

analogous. This means that the expected risk of the returns is significantly
higher when extreme values were observed in the period previously.

FX Volatility Function
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Figure 14.2: The estimated conditional variance function v̂(x) of the
DEM/USD returns SFEdmusvol

As an alternative to equation (14.9) it is also possible to first determine the
sample residuals

Ẑi = Yi − f̂n(Yi−1), i = 1, ..., n, .

They approximate the true residuals Zi = Yi − f(Yi−1), which under the
assumptions of model (14.1) satisfy

E[Zi|Yi−1 = x] = 0, E[Z2
i |Yi−1 = x] = v(x).

The volatility can be estimated as in the previous section directly from the
nonparametric regression of Ẑ2

i on Yi−1. Fan and Yao (1998) have shown
that this process has advantages in heteroscedastic regression models. In
estimating f(x) and v(x) = s2(x), various bandwidths may be used that do
not encounter the danger of the variance estimator taking on negative values.
This makes sense when it is expected that the local fluctuations of f and s
are of very different proportions.
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14.3 Asymptotic Normality

We will now show that the estimator v̂n(x) defined by (14.12) is asymptot-
ically normally distributed. For this we will assume several technical condi-
tions for the model. These will ensure, among other things, that the process
(Yi) is ergodic. It holds that:

(A1) E[ξ21 ] = 1, E[ξ1] = E[ξ31 ] = 0, and

m4 = E
[
(ξ21 − 1)2

]
<∞.

(A2) ξ1 has a probability density p, that

inf
x∈K

p(x) > 0

for every compact subset K ⊂ R.

(A3) There exist constants C1, C2 > 0, such that

|f(y)| ≤ C1(1 + |y|), (14.13)
|s(y)| ≤ C2(1 + |y|), y ∈ R. (14.14)

(A4) For the function s it holds that

inf
y∈K

s(y) > 0,

for every compact subset K ⊂ R.

(A5) C1 + C2E|ξ1| < 1.

With (A2) and (A4) it is certain that the process (Yi) does not die out,
whereas conditions (A3) and (A5) ensure that (Yi) does not explode. These
simply formed conditions can be relaxed at a large technical cost as in Franke,
Kreiss, Mammen and Neumann (2003). In particular the linear growth con-
dition (A3) must only hold asymptotically for |y| → ∞.

The model (14.1) implies that (Yi) is a Markov chain. From the following
lemma from Ango Nze (1992) it follows that the chain is ergodic. It is based
on applications of the results given in Nummelin and Tuominen (1982) and
Tweedie (1975).

Lemma 14.1 Under conditions (A1) - (A5) the Markov chain (Yi) is geo-
metrically ergodic, i.e., (Yi) is ergodic with a stationary probability density
π, and a ρ ∈ [0, 1) exists, so that for almost all y it holds that

‖Pn( · |y) − π‖TV = O(ρn).
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Here
Pn(B | y) = P (Yn ∈ B |Y0 = y), B ∈ B,

represents the conditional distribution of Yn given Y0 = y, and

‖ ν ‖TV = sup

{
k∑

i=1

|ν(Bi)| ; k ∈ N, B1, . . . , Bk ∈ B pairwise disjunct

}

is the total variation of a signed measure ν of the Borel σ-Algebra B on R.

To derive the asymptotic normality from v̂n(x) at a fixed point x ∈ R we
require additional conditions. To simplify notation l = p+ 1.

(A6) The functions f and s are at the point x (l − 1)-times continuously
differentiable, and the one sided derivative f l±(x), sl±(x) of l-th order
exists.

(A7) The stationary distribution π has a bounded, continuous probability
density γ, which is strictly positive in a small region around x.

(A8) The kernel K : R −→ R

+ is bounded with compact support and it
holds that K > 0 for a set of positive Lebesgue measures.

(A9) The bandwidth hn is of the form hn = βn−1/(2l+1), where β > 0.

(A10) The initial value Y0 is a real number and is constant.

According to lemma 1 in Tsybakov (1986) it follows from (A8), that the
matrices

A =
∫
F (u) F (u)� K(u) du and

Q =
∫
F (u) F (u)� K2(u) du

are positive definite. Let

D = A−1QA−1 and

f (l)(x;u) =

{
f

(l)
+ (x), u ≥ 0,
f

(l)
− (x), u < 0,

With this we define the asymptotic errors

bf (x) = A−1 β
l

l!

∫
F (u)ul K(u) f (l)(x;u) du and

bg(x) = A−1 β
l

l!

∫
F (u)ul K(u) g(l)(x;u) du.
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Furthermore, let

c(x) =

⎛

⎜⎜⎜⎜⎝

f(x)
f ′(x)hn

...
f (l−1)(x) hl−1

n

(l−1)!

⎞

⎟⎟⎟⎟⎠
and c̄(x) =

⎛

⎜⎜⎜⎜⎝

g(x)
g′(x)hn

...
g(l−1)(x) hl−1

n

(l−1)!

⎞

⎟⎟⎟⎟⎠
.

The assertions of the following theorem is the central result of this chapter.

Theorem 14.1 Under assumptions (A1) - (A10) it holds that
{
c̄n(x) − c̄(x)

}�
F (0) P−→ 0,

{
cn(x) − c(x)

}�
F (0) P−→ 0 (14.15)

and

nl/(2l+1)

(
c̄n(x) − c̄(x)
cn(x) − c(x)

)
L−→ N {b(x),Σ(x)} (14.16)

for n→ ∞, where

b(x) =
(
bg(x)
bf (x)

)

and

Σ(x) =
s2(x)
βγ(x)

(
4f2(x) + s2(x)m4 2f(x)

2f(x) 1

)
⊗D.

Here D′ ⊗D represents the Kronecker product of matrices D′ and D.

Proof:
The normal equation for the first least squares problem in (14.10) is given by

n
l

2l+1Bnc̄n(x) = n− l
2l+1

n∑

i=1

Y 2
i UinK(uin) (14.17)

with the matrix

Bn = n−
2l

2l+1

n∑

i=1

Uin U
�
inK(uin).

On the other hand it holds under the definition of Bn

n
l

2l+1Bnc̄(x) = n− l
2l+1

n∑

i=1

Uin U
�
in c̄(x)K(uin), (14.18)

from which together with (14.17) we get

n
l

2l+1Bn
{
c̄n(x) − c̄(x)

}
= n− l

2l+1

n∑

i=1

{
Y 2
i − U�

in c̄(x)
}
UinK(uin). (14.19)
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From the model assumptions (14.1) it follows that

Y 2
i =
{
f
(
Yi−1

)
+ s
(
Yi−1

)
ξi

}2

= f2
(
Yi−1

)
+ 2f

(
Yi−1

)
s
(
Yi−1

)
ξi +
(
ξ2i − 1

)
s2
(
Yi−1

)
+ s2
(
Yi−1

)

= g(Yi−1) + αi
(14.20)

with
αi = 2f(Yi−1) s(Yi−1) ξi + s2(Yi−1)(ξ2i − 1).

According to the definition of Uin and c̄(x) it holds that
U�
in c̄(x) =

∑l−1
j=0

1
j!g

(j)(x)
(
Yi−1 − x

)j . Through a Taylor expansion of g =
f2 + s2 we obtain by using the integral representation of the remainder

g(Yi−1) − U�
in c̄(x) =

(Yi−1 − x)l

(l − 1)!

∫ 1

0

g(l) {x+ t(Yi−1 − x)} (1 − t)l−1 dt

= rg(Yi−1, x).
(14.21)

From (14.19), (14.20) and (14.21) we obtain

n
l

2l+1Bn {c̄n(x) − c̄(x)}

= n− l
2l+1

n∑

i=1

{
g(Yi−1) − U�

in c̄(x)
}
UinK(uin)

+ n− l
2l+1

n∑

i=1

{
2f(Yi−1) s(Yi−1) ξi + (ξ2i − 1)s2(Yi−1)

}
UinK(uin)

= b̄n(x) + q̄n(x)
(14.22)

with

b̄n(x) = n−
l

2l+1

n∑

i=1

rg(Yi−1, x)UinK(uin)

and

q̄n(x) = n−
l

2l+1

n∑

i=1

αi UinK(uin),

In an analogous fashion one obtains

n
l

2l+1Bn
{
cn(x) − c(x)

}
= bn(x) + qn(x) (14.23)
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with

bn(x) = n− l
2l+1

n∑

i=1

rf (Yi−1, x)UinK(uin)

and

qn(x) = n−
l

2l+1

n∑

i=1

βi UinK(uin),

where βi = s(Yi−1)ξi has been substituted in.

Referring back to the representations (14.22) and (14.23) the remaining steps
of the proof of Theorem 14.1 are as follows:

a) First we show that

Bn
P−→ B for n→ ∞ (14.24)

is fulfilled for each element. Here the matrix B = β γ(x)A is positive
definite.

b) Next we prove the relationships

b̄n(x)
P−→ B bg(x) for n→ ∞ (14.25)

and
bn(x)

P−→ B bf (x) for n→ ∞. (14.26)

c) The common random vector
(
q̄n(x), qn(x)

)� is asymptotically normally
distributed:

(
q̄n(x)
qn(x)

)
L−→ N(0,Σ0) for n→ ∞ (14.27)

with the covariance matrix

Σ0 = s2(x)βγ(x)
(

4f2(x) + s2(x)m4 2f(x)
2f(x) 1

)
⊗Q.

d) It holds that
n−l/(2l+1)q�n (x)F (0) P−→ 0 and

n−l/(2l+1)q̄�n (x)F (0) P−→ 0
(14.28)

for n→ ∞.
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With statements a) to d) proven, the statement of the theorem can be shown
in the following way:
from b) and d) it follows that

Bn
{
c̄n(x) − c̄(x)

}�
F (0) (14.29)

= n−l/(2l+1)b̄n(x)F (0) + n−l/(2l+1)q̄n(x)F (0) P−→ 0

for n → ∞. Because of a) and the definite results of the boundary matrix
this implies that

{
c̄n(x) − c̄(x)

}�
F (0) P−→ 0. Similarly one can show that

{
cn(x) − c(x)

}�
F (0) P−→ 0.

The asymptotic Normality (14.16) can be seen in a similar way:
because of b) and c) it holds that

n
l

2l+1 Bn

(
c̄n(x) − c̄(x)
cn(x) − c(x)

)
=

(
b̄n(x)
bn(x)

)
+
(
q̄n(x)
qn(x)

)

L−→ N
((

B bg(x)
B bf (x)

)
,Σ0

)
,

from which, according to a) the validity of (14.16) follows.
�

a) to d) remains to be proven. To do this we need a couple of helpful results.

Lemma 14.2 (Davydov (1973))

Let (Yi) be a geometric ergodic Markov chain, so that Y0 is distributed accord-
ing to the stationary measures π of the chain. The chain is geometric and
strongly mixed, i.e., it is strongly mixing (α-mixing) with mixing coefficients
α(n), where α(n) ≤ c0 ρ

n
0 for particular 0 < ρ0 < 1 and c0 > 0 is fulfilled.

Let (Fk) be the canonical filter of the process (Yk), i.e.
Fk = σ(Yk, Yk−1, . . . , Y0) represents the generated σ-algebra from Y0, . . . , Yk.

Lemma 14.3 (Liptser and Shirjaev (1980), Corollary 6)

For every n > 0 the series (ηnk,Fk) is a quadratic integrable Martingale
difference, i.e.,

E[ηnk | Fk−1] = 0, E[η2
nk] <∞, 1 ≤ k ≤ n, (14.30)

and it holds that
n∑

k=1

E[η2
nk] = 1, ∀ n ≥ n0 > 0. (14.31)
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Then the conditions
n∑

k=1

E[η2
nk | Fk−1]

P−→ 1 for n→ ∞, (14.32)

n∑

k=1

E
[
η2
nk1(|ηnk| > ε) | Fk−1

]
P−→ 0 for n→ ∞, ∀ε > 0 (14.33)

are sufficient for the distribution convergence

n∑

k=1

ηnk
L−→ N(0, 1) for n→ ∞.

Lemma 14.4 Let φ1 be a continuous, bounded function and let φ2 be a
bounded function. Under conditions (A1) through to (A10) it holds for every
process that Yi, i ≥ 0, which fulfils (14.1)

n− 2l
2l+1

n∑

i=1

φ1(Yi−1)φ2(uin)K(uin)

P−→ βγ(x)φ1(x)
∫
φ2(u)K(u) du (14.34)

n−
2l

2l+1

n∑

i=1

E
[
φ1(Yi−1)φ2(uin)K(uin)

]

−→βγ(x)φ1(x)
∫
φ2(u)K(u) du

for n→ ∞.

Proof:
We will first prove this for the case where the Markov chain begins in equi-
librium and then work our way back to the general case.

For this let (Y ∗
i ) be a Markov chain, which fulfils (14.1) and which for Y ∗

0 has
the stationary distribution π of (Yi) introduced in Lemma 14.1. This chain is
constructed to be stationary, and by applying Lemma 14.2 we get that (Y ∗

i )
is a geometric strong mixing process. From this it follows that

n−
2l

2l+1

n∑

i=1

φ1(Y ∗
i−1)φ2(u∗in)K(u∗in) − n

1
2l+1 E

[
φ1(Y ∗

1 )φ2(u∗1n)K(u∗1n)
] P−→ 0

(14.35)
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for n → ∞, where u∗in = (Y ∗
i−1 − x)/hn was substituted in. For the second

term in (14.35) it holds that

n
1

2l+1 E
[
φ1(Y ∗

1 )φ2(u∗1n)K(u∗1n)
]

= β
1
hn

∫
φ1(y)φ2

(
y − x

hn

)
K

(
y − x

hn

)
γ(y) dy

= βγ(x)φ1(x)
∫
φ2(u)K(u) du {1 + O(1)} (14.36)

for n→ ∞. Together with (14.35) it follows that for (Y ∗
i ) (14.34) is fulfilled.

Define

ζi = φ1(Yi−1)φ2(uin)K(uin), ζ∗i = φ1(Y ∗
i−1)φ2(u∗in)K(u∗in),

and choose a series {δn} with δn = O(n
2l

2l+1 ) and limn→∞ δn = ∞. It follows
that

n−
2l

2l+1

n∑

i=1

∣∣E[ζi − ζ∗i ]
∣∣ ≤ n− 2l

2l+1

[ δn−1∑

i=1

∣∣E[ζi − ζ∗i ]
∣∣+

n∑

i=δn

∣∣E[ζi − ζ∗i ]
∣∣
]

≤ 2n−
2l

2l+1 δn ‖φ1φ2K‖∞ + n−
2l

2l+1

n∑

i=δn

∣∣E[ζi − ζ∗i ]
∣∣

= n−
2l

2l+1

n∑

i=δn

∣∣E[ζi − ζ∗i ]
∣∣+ O(1) (14.37)

for n→ ∞. From the geometric ergodicity of (Yi), according to Lemma 14.1
we obtain for the left hand side of the last expression

n− 2l
2l+1

n∑

i=δn

∣∣E[ζi − ζ∗i ]
∣∣ = n− 2l

2l+1

n∑

i=δn

∣∣E
[
φ1(Yi−1)φ2(uin)K(uin)

−φ1(Y ∗
i−1)φ2(u∗in)K(u∗in)

]∣∣

≤ n− 2l
2l+1

n∑

i=δn

‖φ1φ2K‖∞
∫ ∣∣γi(y) − γ(y)

∣∣ dy

= O
(
n− 2l

2l+1

n∑

i=δn

ρi

)
= O(1) (14.38)

for n→ ∞, where γi represents the density of Yi−1. Thus is holds that

lim
n→∞n−

2l
2l+1

n∑

i=1

∣∣E[ζi − ζ∗i ]
∣∣ = 0.
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From this it follows with the help of the Markov inequality that (14.34) also
applies to (Yi). �

Proof:
(for Theorem 14.1, continuation)
Conditions a) to d) remains to be proven.

a) Using the definition of Bn it holds for the elements of this matrix

(Bn)j, k = n−
2l

2l+1

n∑

i=1

uk+j−2
in

(k − 1)!(j − 1)!
K(uin).

These take on the form defined in Lemma 14.4, and it follows that:

(Bn)j,k
P−→ β γ(x)

(k − 1)!(j − 1)!

∫
uk+j−2K(u) du,

according to the definition of matrix A this is the same as Bn
P−→

βγ(x)A = B. The definiteness of A carries over to B.

b) With f and s fulfilled, g = f2 + s2 holds, condition (A6). For the
remainder from the Taylor expansion of g it holds that:

rg(Yi−1, x) = ulinh
l
n

1
(l − 1)!

∫ 1

0

g(l) {x+ t(Yi−1 − x)} (1 − t)l−1 dt

= ulin n
− l

2l+1 φ3(Yi−1)

with

φ3(Yi−1) =
βl

(l − 1)!

∫ 1

0

g(l) {x+ t(Yi−1 − x)} (1 − t)l−1 dt.

With this b̄n(x) can be rewritten as

b̄n(x) = n− 2l
2l+1

n∑

i=1

φ3(Yi−1)ulin UinK(uin),

i.e., the elements of b̄n(x) fulfil the requirements of Lemma 14.4.

Once again we choose (Y ∗
i ) as in the proof to Lemma 14.4 and set

U∗
in = F (u∗in). From (14.37) and (14.38) we obtain

b̄n(x) − n− 2l
2l+1

n∑

i=1

φ3(Y ∗
i−1) (u∗in)

l U∗
inK(u∗in)

P−→ 0 (14.39)
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for n→ ∞. Since (Y ∗
i ) is α-mixing, as in (14.35) we get

n−
2l

2l+1

n∑

i=1

φ3(Y ∗
i−1) (u∗in)

l U∗
inK(u∗in) −

n
1

2l+1 E
[
φ3(Y ∗

1 ) (u∗1n)
l U∗

1nK(u∗in)
]

P−→ 0

for n→ ∞. The right term of this expression can be rewritten as

n
1

2l+1 E
[
φ3(Y ∗

1 ) (u∗1n)
l U∗

inK(u∗in)
]

= β

∫
φ3(x+ uhn)ulF (u)K(u) γ(x+ uhn) du.

Furthermore, it holds that

lim
n→∞φ3(x+ uhn) = βl g(l)(x;u)/l (14.40)

for every u ∈ R. Together with (14.40) and (A7), it follows that

lim
n→∞β

∫
φ3(x+ uhn)ulF (u)K(u) γ(x+ uhn) du

=
βl+1

l!

{∫
F (u)ulK(u) g(l)(x;u) du

}
γ(x)

= Aγ(x)β bg(x) = B bg(x).

With this (14.25) has been shown. The proof for (14.26) follows anal-
ogously.

c) We define the matrices

Σ11
n = n−

2l
2l+1

n∑

i=1

E[α2
i | Fi−1]Uin U�

inK
2(uin),

Σ12
n = n−

2l
2l+1

n∑

i=1

E[αiβi | Fi−1]Uin U�
inK

2(uin),

Σ22
n = n−

2l
2l+1

n∑

i=1

E[β2
i | Fi−1]Uin U�

inK
2(uin)

and construct the block matrix

Σn =
(

Σ11
n Σ12

n

Σ12
n Σ22

n

)
.
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The elements of Σ11
n , Σ12

n and Σ22
n fulfil the requirements of Lemma 14.4.

In particular, the combined functions φ1(Yi−1) that appear there are
in this case given by

E[α2
i | Fi−1] = 4f2(Yi−1) s2(Yi−1) + s4(Yi−1)m4,

E[αiβi | Fi−1] = 2f(Yi−1) s2(Yi−1) respectively
E[β2

i | Fi−1] = s2(Yi−1),

for which (A1) has been used. One observes that the corresponding
functions φ1 are, due to (A6), continuous and restricted in a small
region around x. Since K disappears outside of a compact set, this is
sufficient for Lemma 14.4. With this we obtain:

Σn
P−→ Σ0 and E[Σn] −→ Σ0 (14.41)

for n→ ∞.

To prove (14.27) it is sufficient to show, using the theorem from Cramér-
Wold, that

a�
(
q̄n(x)
qn(x)

)
L−→ N(0, a�Σ0a) for n→ ∞ (14.42)

for every vector a ∈ R

2l with a Euclidian norm ‖a‖ = 1 is fulfilled.
In addition in accordance with (14.41) we choose a n0 ∈ N, so that
E[Σn] > 1

2Σ0 holds for all n ≥ n0, and substitute in for n ≥ n0,

ηni =
n−

l
2l+1

√
a�E[Σn]a

a�
(
αi Uin
βi Uin

)
K(uin).

Then
n∑

i=1

ηni =
1√

a�E[Σn]a
a�
(
q̄n(x)
qn(x)

)
,

and (14.42) is equivalent to
n∑

k=1

ηnk
L−→ N(0, 1) for n→ ∞. (14.43)

We will now show that (ηnk) fulfills the requirements (14.30) to (14.33)
from Lemma 14.3, from which (14.43) follows.

First notice that E[αi | Fi−1] = 0 a.s. and E[βi | Fi−1] = 0 a.s. hold,
from which (14.30) follows. Furthermore, one can easily show that

n∑

k=1

E[η2
nk | Fk−1] =

a�Σna
a�E[Σn]a

.
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Therefore (14.31) if fulfilled and from (14.41) we obtain (14.32).

We still have to show (14.33). For n ≥ n0,

η2
nk ≤ n−

2l
2l+1

a�E[Σn]a
(a�Znk)2 ≤ 2n−

2l
2l+1

a�Σ0a
(a�Znk)2 ≤ κ1n

− 2l
2l+1 |Znk|2,

with an appropriate constant κ1 > 0 and

Znk =
(
αk Ukn
βk Ukn

)
K(ukn).

Since K is restricted and has compact support, and since f and s are
locally bounded, a constant κ2 > 0 exists, so that

η2
nk ≤ κ1n

− 2l
2l+1 (α2

k + β2
k) |Ukn|2K2(ukn)

≤ κ2n
− 2l

2l+1 (1 + |ξk|4)K(ukn).

From this it follows that

E[η2
nk 1(|ηnk| ≥ ε) | Fk−1]

≤ κ2n
− 2l

2l+1 K(ukn)

E
[
(1 + |ξ1|4) 1

(√
1 + |ξ1|4 ≥ ε n

l
2l+1 κ−1

2 ‖K‖−1
∞
)]

= κ2n
− 2l

2l+1 K(ukn)·O(1)

for n→ ∞, where O(1) is independent of k. With this we have

n∑

k=1

E[η2
nk 1(|ηnk| ≥ ε) | Fk−1] ≤ O(1)

n∑

k=1

n−
2l

2l+1 K(ukn) for n→ ∞.

(14.44)
According to Lemma 14.4 it holds for the last term that

n−
2l

2l+1

n∑

k=1

K(ukn)
P−→ βγ(x)

∫
K(u) du for n→ ∞. (14.45)

From (14.44) and (14.45), (14.33) follows, i.e., the requirements of
Lemma 14.3 are actually fulfilled, and thus (14.42) is also shown.
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d) It is

n−l/(2l+1)q�n (x)F (0) = n−2l/(2l+1)
n∑

i=1

βi U
�
in F (0)K(uin)

= n−2l/(2l+1)
n∑

i=1

βi uinK(uin)

= n−2l/(2l+1)
n∑

i=1

(
βi − E[βi | Fi−1]

)
uinK(uin).

According to (A8) the kernel K is bounded, and it holds that d∗ =
max{|u| : u ∈ suppK} <∞. Thus a constant κ0 > 0 exists, such that

E
[
(n−l/(2l+1)q�n (x)F (0))2

]

= n−
4l

2l+1 E
[( n∑

i=1

(βi − E[βi | Fi−1]) uinK(uin)
)2]

≤ κ0n
− 4l

2l+1

n∑

i=1

E
[(
βi − E[βi | Fi−1]

)2
1(|uin| ≤ d∗)

]
.

If n is sufficiently large, then for the last term in the last sum it holds
that

E
[(
βi − E[βi | Fi−1]

)2
1(|uin| ≤ d∗)

]

= E

[
s2(Yi−1) ξ2i 1

( |Yi−1 − x|
hn

≤ d∗
)]

= E

[
s2(Yi−1)1

( |Yi−1 − x|
hn

≤ d∗
)]

≤ sup
|y−x|≤hnd∗

s2(y) <∞.

Thus n−l/(2l+1)q�n (x)F (0) P−→ 0 is shown. Similarly it can be shown
that

n−l/(2l+1)q̄�n (x)F (0) P−→ 0.

�

As a direct consequence of Theorem 14.1 we have:

Theorem 14.2 Under conditions (A1) through (A10) it holds that

nl/(2l+1)
{
v̂n(x) − v(x)

} L−→ N
(
bv(x), σ2

v(x)
)

for n→ ∞,
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where

bv(x) = F�(0) (bg(x) − 2f(x) bf (x)) and

σ2
v(x) =

s4(x)m4

βγ(x)
F�(0)D F (0).

Proof:
From g(x) = c̄(x)� F (0), f(x) = c(x)� F (0), v(x) = g(x) − f2(x) and the
construction of v̂n we obtain

v̂n(x) − v(x) = {c̄n(x) − c̄(x)}� F (0)

−
[
2c(x)� F (0) + {cn(x) − c(x)}� F (0)

]

[
{cn(x) − c(x)}� F (0)

]
.

It also holds that

nl/(2l+1)
(
v̂n(x) − v(x)

)
= nl/(2l+1) Ψ(x)

(
c̄n(x) − c̄(x)
cn(x) − c(x)

)
(14.46)

+ nl/(2l+1)
(
(cn(x) − c(x))� F (0)

)2

with the transformations matrix

Ψ(x) =
(

F (0)
−2f(x)F (0)

)�
.

According to (14.15) it holds that {cn(x)−c(x)}� F (0) P−→ 0 for n→ ∞, from
which together with (14.16) nl/(2l+1)

{
[cn(x) − c(x)]� F (0)

}2 P−→ 0 follows.
The limiting distribution of nl/(2l+1)

{
v̂n(x)− v(x)

}
is thus given by the first

term of the right side of (14.46). For this we use (14.16) that

nl/(2l+1)
{
v̂n(x) − v(x)

} L−→ N
{
Ψ(x)b(x),Ψ(x)Σ(x)Ψ(x)�

}

for n → ∞. A simple calculation gives Ψ(x)b(x) = bv(x) as well as
Ψ(x)Σ(x)Ψ(x)� = σ2

v(x), with which the claim is shown. �

Going beyond the asymptotic normality shown in Theorem 14.2, Franke et al.
(2002) have shown that bootstrap methods for nonparametric volatility es-
timators can also be used. They consider routine kernel estimators, i.e., the
special case LP estimator with p = 0 in (14.4), but the results can be directly
applied to the general LP estimators, see also Kreiss (2000).
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To illustrate, consider the case where l = 2. We assume that f and s are
twice differentiable and that the kernel K satisfies the condition

∫
K(u) du = 1 and K(u) = K(−u).

Then it holds that

A =
(

1 0
0 σ2

K

)
mit σ2

K =
∫
u2K(u) du,

Q =
( ∫

K2(u) du 0
0

∫
u2K2(u) du

)
,

bf (x) = A−1 β
2 f ′′(x)

2

(
σ2
K

0

)
=
(
σ2
Kβ

2f ′′(x)/2
0

)
,

bg(x) = A−1 β
2 g′′(x)

2

(
σ2
K

0

)
=
(
σ2
Kβ

2g′′(x)/2
0

)
,

D =
( ∫

K2(u) du 0
0 1

σ4
K

∫
u2K2(u) du

)
,

and thus

bv(x) =
σ2
Kβ

2

2

{(
f2(x)+s2(x)

)′′−2f(x) f ′′(x)
}

=
σ2
Kβ

2

2

[
v′′(x)+2

{
f ′(x)

}2]

and

σ2
v(x) =

s4(x)m4

βγ(x)

∫
K2(u) du =

v2(x)m4

βγ(x)

∫
K2(u) du.

In particular, from the normalised quadratic errors of v̂n that are calculated
from the asymptotic distribution, we have

E
[
n2l/2l+1

(
v̂n(x) − v(x)

)2] ≈ b2v(x) + σ2
v(x)

=
v2(x)m4

βγ(x)

∫
K2(u) du

+
σ4
Kβ

4

4

{
v′′(x) + 2

(
f ′(x)

)2}2

.

Minimizing these expressions with respect to K and β results in the Epanech-
nikov-Kernel

K(u) = K∗(u) =
3
4
1(1 − u2 > 0)
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and the following values for β:

β(K) =

(
v2(x)m4

∫
K2(u) du

γ(x)σ4
K

[
v′′(x) + 2{f ′(x)}2

]2

)1/5

.

With this we obtain

β∗ = β(K∗) =

(
125 v2(x)m4

4γ(x)
[
v′′(x) + 2{f ′(x)}2

]2

)1/5

.

14.4 Recommended Literature

The model (14.1) is thoroughly studied together with financial time series,
in particular under the assumptions of the ARCH structure, in Engle (1982).
Until recently academic research focused mainly on the (linear) conditional
mean, or it was assumed that the conditional variance was constant or, as
in the ARCH models, that it had a special form. At the beginning of the
eighties this deficit in the literature was corrected by Engle (1982), and Robin-
son (1983; 1984) and in the statistic literature by Collomb (1984) and Vieu
(1995). There have also been nonparametric and semi-parametric approxima-
tions suggested in Gregory (1989), Engle and Gonzalez-Rivera (1991). Since
then the interest in the nonparametric situation discussed here, in which the
form of the functions f and s is not identified ahead of time, has clearly
grown in the economics and statistics literature, see Fan and Yao (2003).

The QTARCH models (13.32) in Gouriéroux and Monfort (1992) create a gen-
eralisation of the threshold models for the conditional mean in Tong (1983).
The methods from Gouriéroux and Monfort (1992) and McKeague and Zhang
(1994) are based on histogram estimations of the volatility. The works from
Chen and Tsay (1993a; 1993b) concentrate on additive modelling of the mean
function f . Additive or multiplicative structures of volatility are considered
in Härdle, Lütkepohl and Chen (1997), Yang, Härdle and Nielsen (1999)
and Hafner (1998). The general nonparametric ARCH model is handled in
Härdle, Tsybakov and Yang (1996). Franke (1999) discusses the connection
between the nonparametric AR-ARCH model and the discrete version of ge-
ometric Brownian motion which is used as a foundation for the Black-Scholes
applications. Franke, Härdle and Kreiss (2003) study, in connection with a
special stochastic volatility model, a nonparametric de-convolution estima-
tor for the volatility function as the first step towards the nonparametric
handling of general GARCH models.
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The idea of the local polynomial estimation originates in Stone (1977), Cleve-
land (1979) and Katkovnik (1979; 1985), who have all used it on nonpara-
metric regression models. Statistical properties of LP estimators by non-
parametric regression models (convergence, convergence rate and pointwise
asymptotic normality) are derived in Tsybakov (1986). References to more
recent studies in this area can be found in Fan and Gijbels (1996).

Apart from the statistical studies of the model (14.1), the utilised theoretical
probability properties of the constructed process (Yi) are also of importance.
This is studied in the works of Doukhan and Ghindès (1981), Chan and Tong
(1985), Mokkadem (1987), Diebolt and Guégan (1990) and Ango Nze (1992).
In these articles the ergodicity, geometric ergodicity and mixture properties
of the process (Yi) are derived.
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15 Pricing Options with Flexible
Volatility Estimators

Since their introduction by Engle and Bollerslev, models with autoregres-
sive, conditional heteroscedasticity (autoregressive conditional heteroscedas-
ticity models or ARCH) have been successfully applied to financial market
data. Thus, it is natural to discuss option pricing models where the un-
derlying instrument follows an ARCH process. From an empirical point of
view the form of the news impact curve, which is defined as a function of
the current volatility dependent on yesterday’s returns, is the dominant fac-
tor in determining the price. It is important, for example, to know whether
the news impact curve is symmetric or asymmetric. In order to avoid in-
accurate pricing due to asymmetries it is necessary to use flexible volatility
models. In this way EGARCH models (see Section 13.2) can be used when
stock prices and volatility are correlated. This model however has a weak-
ness in that the problem of the stationarity conditions and the asymptotic
of the Quasi-Maximum-Likelihood-Estimator (QMLE) is not yet completely
solved. Another Ansatz, as in the Threshold GARCH-Models, is to introduce
thresholds in the news impact curve to create flexible asymmetry.

In this chapter we concentrate on the specification of the volatility. We
present the TGARCH process and perform Monte Carlo simulations for three
typical parameter groups. In particular we compare the simulated GARCH
option prices with option prices based on the simulations from TGARCH
and Black-Scholes models. In the empirical section of the chapter we show
that the market price of call options indeed reflect the asymmetries that were
discovered in the news impact curve of the DAX time series.

15.1 Pricing Options with ARCH-Models

Consider an economy in discrete time in which interest and proceeds are
paid out at the end of every constant, equally long time interval. Let St, t =
0, 1, 2, . . . be the price of the stock at time t and Yt = (St − St−1)/St−1 the
corresponding one period return without dividends. Assume that a price for
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risk exists in the form of a risk premium which is added to the risk free interest
rate r to obtain the expected return of the next period. It seems reasonable
to model the risk premium dependent on the conditional variance. As a basis
we assume an ARCH-M-Model (see Section 13.2.3) with a risk premium,
which is a linear function of the conditional standard deviation:

Yt = r + λσt + εt (15.1)
L(εt | Ft−1) = N(0, σ2

t ) (15.2)
σ2
t = ω + αε2t−1 + βσ2

t−1. (15.3)

In (15.3) ω, α and β are constant parameters that satisfy the stationarity
and non-negativity conditions. The constant parameter λ can be understood
as the price of one unit of risk. Ft indicates, as usual, the set of information
available up to and including time t. In order to simplify the notation, our
discussion will be limited to the GARCH(1,1) case.

The above model is estimated under the empirical measure P . In order to
deal with a valuation under no arbitrage, similar to Black-Scholes in contin-
uous time (see Section 6.1), assumptions on the valuation of risk must be
made. Many studies have researched option pricing with stochastic volatility
under the assumption that the volatility has a systematic risk of zero, that is,
the risk premium for volatility is zero. Duan (1995) has identified an equiva-
lent martingale measure Q for P under the assumption that the conditional
distribution of the returns are normal, and in addition it holds that

VarP (Yt | Ft−1) = VarQ(Yt | Ft−1) (15.4)

P a.s.. He shows that under this assumption a representative agent with,
for example, constant relative risk aversion and a normally distributed rel-
ative change of aggregate consumption maximises his expected utility. The
assumption (15.4) contains a constant risk premium for the volatility that
directly enters its mean.

In order to obtain a martingale under the new measure a new error term,
ηt, needs to be introduced that captures the effect of the time varying risk
premium. When we define ηt = εt + λσt, (15.4) it leads to the following
model under the new measure Q:

Yt = r + ηt (15.5)
LQ(ηt | Ft−1) = N(0, σ2

t ) (15.6)
σ2
t = ω + α(ηt−1 − λσt−1)2 + βσ2

t−1. (15.7)

In the case of a GARCH(1,1) model according to Theorem 13.10 the variance
of the stationary distribution under the empirical measure P is VarP (εt) =
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ω/(1 − α − β). For the Duan measure Q the variance of the stationary
distribution increases to VarQ(ηt) = ω/{1 − α(1 + λ2) − β}, because the
volatility process under the new measure is determined by the innovations
from an asymmetric and a non-symmetric Chi squared distribution. Later on
we will see that changes in the unconditional variance depend, in a critical
way, on the specification of the news impact curve.

The restriction to a quadratic or symmetric news impact curve is not always
optimal, as many empirical studies of stock returns have indicated. Within
the framework of the above mentioned model these assumptions can lead
to a non-linear news impact function g(·). The following model is a semi-
parametric analogue to the GARCH model. Under the empirical measure P
we obtain

Yt = r + λσt + εt

LP (εt | Ft−1) = N(0, σ2
t )

σ2
t = g(εt−1) + βσ2

t−1.

Under the Duan martingale measure Q the model changes to

Yt = r + ηt

LQ(ηt | Ft−1) = N(0, σ2
t )

σ2
t = g(ηt−1 − λσt−1) + βσ2

t−1.

One notices that as soon as an estimator of g(·) under P is known it can
immediately be substituted under the measure Q.

In this general specification the estimation without additional information
on g(·) is a difficult matter, since iterative estimation procedures would be
necessary in order to estimate the parameters λ, β and the non-parametric
function g at the same time. Therefore we will consider a specific, flexible
parametric model: the Threshold GARCH Model, see Section 13.2. With
this model the news impact function can be written as:

g(x) = ω + α1x
21(x < 0) + α2x

21(x ≥ 0)

To motivate this model consider fitting a very simple non-parametric model
Yt = σ(Yt−1)ξt to the returns of a German stock index, the DAX, where ξt is
independent and identically distributed with mean 0 and variance 1. The es-
timator of the news impact curve σ2(·) is given in Figure 15.2. To get an idea
of the underlying distribution of the returns a non-parametric estimator of
the return distribution has been added in Figure 15.1 over a smoothed normal
distribution. Obviously g(·) is not symmetric around zero. The TGARCH
model captures this phenomenon when α1 > α2. Other parametric models
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can describe these properties as well but the TGARCH model in the case of
stock returns has proven to be extremely flexible and technically manageable
as claimed, for example, in Rabemananjara and Zakoian (1993).

 DAX Density versus Normal Density

-4 -2 0 2 4

Returns*E-2

0
5

10
15

20

D
en

si
ty

Figure 15.1: Kernel estimation of the density of DAX returns (solid line)
against a kernel estimation of a normal distribution (dotted line)
with the same mean and variance. A bandwidth of 0.03 is used
and a quadratic kernel function K(u) = 15/16(1 − u2)21(|u| <
1). The tails have been eliminated from the figure.

SFEDaxReturnDistribution

Remember that the innovations are normally distributed. Thus it follows for
the TGARCH model that the unconditional variance, similar to Theorem
13.10, under the measure P is VarP (εt) = ω/(1 − ᾱ − β), where ᾱ = (α1 +
α2)/2. The following theorem gives the unconditional variance for ηt =
εt + λσt under Q.

Theorem 15.1 The unconditional variance of the TGARCH(1,1) model un-
der the equivalent martingale measure Q from Duan is

VarQ(ηt) =
ω

1 − ψ(λ)(α1 − α2) − α2(1 + λ2) − β
(15.8)

where
ψ(u) = uϕ(u) + (1 + u2)Φ(u)

and ϕ(u),Φ(u) are the density and the distribution function of the standard
normal distribution.
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DAX News Impact Curve
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Figure 15.2: Local linear estimation of the news impact curve for the DAX.
The model is Yt = σ(Yt−1)ξt. The estimator of the function
σ2(y) with a bandwidth of 0.03 is shown. The tails have been
eliminated from the figure.
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Proof:
Let Zt = ηt/σt−λ. Under measure Q it holds that L(Zt | Ft−1) = N(−λ, 1).
The conditional variance σ2

t can be written as

σ2
t = ω + α1σ

2
t−1Z

2
t−11(Zt−1 < 0) + α2σ

2
t−1Z

2
t−11(Zt−1 ≥ 0) + βσ2

t−1.

By calculating the expected value it can be shown that for the integral over
the negative values it follows that:

EQ[Z2
t 1(Zt < 0) | Ft−1] =

1√
2π

∫ 0

−∞
z2e−

1
2 (z+λ)2dz

=
1√
2π

∫ λ

−∞
(u− λ)2e−

1
2u

2
du

=
λ√
2π
e−

1
2λ

2
+ (1 + λ2)Φ(λ)

def= ψ(λ). (15.9)

Because of

EQ[Z2
t | Ft−1] =

1√
2π

∫ ∞

−∞
z2e−

1
2 (z+λ)2dz = 1 + λ2
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it follows for the positive values that

EQ[Z2
t 1(Zt ≥ 0) | Ft−1] = 1 + λ2 − ψ(λ). (15.10)

Thus we obtain

EQ[σ2
t ] = ω + α1ψ(λ)EQ[σ2

t−1] + α2[1 + λ2 − ψ(λ)]EQ[σ2
t−1] + βEQ[σ2

t−1].
(15.11)

Since the unconditional variance is independent of t, the theorem follows. �

The function ψ is positive and ψ(λ) > 1/2 for the realistic case λ > 0. We
can make the following statement about the changes in the unconditional
variance: for α1 = α2 in (15.8), one obtains the GARCH(1,1) results. For
α1 > α2 (the case of the leverage effect) the increase in the unconditional
variance is even stronger than the symmetric GARCH case. For α1 < α2,
the unconditional variance is smaller as in the leverage case, and we can
distinguish between two cases: when the inequality

α1 < α2
2ψ(λ) − 1 − 2λ2

2ψ(λ) − 1
(15.12)

is fulfilled then the unconditional variance under Q is actually smaller than
under P . If (15.12) is not fulfilled, then we obtain, as above, VarP (εt) ≤
VarQ(ηt). Indeed the quotient on the right hand side of (15.12) takes on
negative values for realistic values of a unit of the risk premium, (for example
for small positive values), so that in most empirical studies (15.12) can not
be fulfilled.

Naturally the stationary variance has an effect on an option’s price: the larger
(smaller) the variance is, the higher (lower) the option price is. This holds
in particular for options with a longer time to maturity where the long-run
average of the volatility is the most important determinant of the option’s
price. Therefore, an option can be undervalued when a GARCH model is
used and at the same time a leverage effect is present.

A second feature of the Duan approach is that under Q and with positive risk
premia, the current innovation is negatively correlated with the next period’s
conditional variance of the GARCH risk premium, whereas under P the corre-
lation is zero. More precisely, we obtain CovQ(ηt/σt, σ2

t+1) = −2λαVarQ(ηt)
with the GARCH parameter α. It is obvious that small forecasts of the
volatility under Q (that influences the option’s price) depend not only on the
past squared innovations, but also on their sign. In particular a negative (pos-
itive) past innovation for λ > 0 leads to the fact that the volatility increases



15.1 Pricing Options with ARCH-Models 311

(falls) and with it, the option price. The following theorem claims that the
covariance is dependent on the asymmetry of the news impact function when
a TGARCH instead of a GARCH model is used.

Theorem 15.2 For the TGARCH(1,1) model the covariance between the
innovation in t and the conditional variance in t + 1 under the equivalent
martingale measure Q from Duan is given by

CovQ(
ηt
σt
, σ2
t+1) = −2VarQ(ηt)[λα2 + {ϕ(λ) + λΦ(λ)}(α1 − α2)], (15.13)

where VarQ(ηt) follows from the previous theorem.

Proof:
First the conditional covariance is deterimined:

CovQt−1(
ηt
σt
, σ2
t+1) = EQt−1

[
ηt
σt
σ2
t+1

]
= ωEQt−1

[
ηt
σt

]

+ α1E
Q
t−1

[
ηt
σt

(ηt − λσt)21(ηt − λσt < 0)
]

+ α2E
Q
t−1

[
ηt
σt

(ηt − λσt)21(ηt − λσt ≥ 0)
]

+ βσtE
Q
t−1 [ηt] , (15.14)

where Et(·) and Covt(·) are abbreviations of E(· | Ft) and Cov(· | Ft) respec-
tively. Due to (15.6) the first and the fourth expectation values on the right
side of (15.14) are zero. The second conditional expected value is

EQt−1

[
ηt

σt
(ηt − λσt)21(ηt − λσt < 0)

]

= −2σ2
t

[
1√
2π

exp(− 1
2λ

2) + λΦ(λ)
]
. (15.15)

Since EQt−1

[
ηt

σt
(ηt − λσt)2

]
= −2λσ2

t , we can write for the third conditional
expected value in (15.14):

EQt−1

[
ηt

σt
(ηt − λσt)21(ηt − λσt ≥ 0)

]

= −2σ2
t

[
λ− 1√

2π
exp(− 1

2λ
2) − λΦ(λ)

]
. (15.16)

Inserting (15.15) and (15.16) into (15.14), it follows that

CovQt−1(
ηt
σt
, σ2
t+1) = −2σ2

t [λα2 + {ϕ(λ) + λΦ(λ)}(α1 − α2)]. (15.17)
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One notices that CovQ(ηt/σt, σ2
t+1) = EQ[CovQt−1(ηt/σt, σ

2
t+1)], thus the claim

follows immediately. �

In the following we assume that a positive risk premium λ exists per unit.
Three cases can be identified: for α1 = α2 (in the symmetric case) we obtain
CovQ(ηt/σt, σ2

t+1) = −2λα2VarQ(ηt), i.e., the GARCH(1,1) result. For α1 <
α2 (the case of the reverse leverage effect) the covariance increases, and when

λα2 +
[

1√
2π

exp(−1
2
λ2) + λΦ(λ)

]
(α1 − α2) < 0, (15.18)

the correlation is positive. In the last case, α1 > α2 (the leverage case), the
covariance is negative and increases with the total.

This also shows that the return of the volatility to a stationary variance under
Q is different from the symmetric GARCH case. The negative covariance in
the leverage case is actually larger. This could indicate that options are
over (under) valued when for positive (negative) past innovation a TGARCH
process with α1 > α2 is used for the price process and then mistakenly a
GARCH model (α1 = α2) is used for the volatility forecast.

15.2 A Monte Carlo Study

Since the discounted price process is a martingale under the equivalent mar-
tingale measure Q, we can utilise the method of risk neutral valuation ac-
cording to Cox and Ross (1976). The Q price, Ct, of a call at time t is given
by the discounted conditional expectation of the payments due at maturity,
see (6.23)

Ct = (1 + r)−τEQ[max(ST −K, 0) | Ft] (15.19)

where T is the maturity date, τ = T − t is the time to maturity and K is the
strike price. For European options the arbitrage free price Pt of a put follows
from the Put-Call-Parity (Theorem 2.3), i.e., Pt = Ct−St+(1+r)−τK. Since
there is no analytical expression in a GARCH or TGARCH model for the
expectation in (15.19), we have to calculate the option price numerically. The
distribution of the payment function max(ST −K, 0) at maturity is simulated
in that m stock processes

ST,i = St

T∏

s=t+1

(1 + Ys,i), i = 1, . . . ,m, (15.20)

are generated, where Ys,i is the return of the i−th replication at time s. Fi-
nally the mean of the payment function is discounted by the risk free interest
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Type α β α+ β ρ1

1 0.1 0.85 0.95 0.1791
2 0.5 0.45 0.95 0.8237
3 0.1 0.5 0.6 0.1077

Table 15.1: Characterisation of the types of GARCH(1,1) models

rate

Ct = (1 + r)−τ
1
m

m∑

i=1

max(ST,i −K, 0). (15.21)

In the simulation study we used the following parameters: r = 0, S0 = 100,
τ = 30 days, m = 400 000, λ = 0.01. The Moneyness S0/K varies between
0.85 and 1.15, which corresponds to the usual bandwidth of the traded option.
We are not comparing here the effect of various maturity dates, T , since many
characteristics such as the smile in the stochastic volatility disappear with
increasing time periods. In general the effects remain qualitatively equal,
but, from a quantitative point of view, become less important. This has been
shown in numerous experiments; thus we will concentrate on shorter time
periods.

The effect of an asymmetric news impact function on the price of an option
is studied in three different situations which are characterised by the degree
of the short-run autocorrelation of the squared returns and the persistence,
i.e., the value from α+β. For the GARCH(1,1) process it can be shown that
the autocorrelation ρ1 of first order of the squared residuals is given by

ρ1 = α(1 − αβ − β2)/(1 − 2αβ − β2), (15.22)

and ρj = (α+β)ρj−1, j ≥ 2. These are the autocorrelations of an ARMA(1,1)
process, since the quadratic GARCH(1,1) process satisfy a ARMA(1,1) model
(see Theorem 13.9). Table 15.1 lists the parameter groups and characteristics
of the three types.

Type 1 is characterised by a high persistence and a low first order corre-
lation; type 2 is characterised by a high persistence and a high first order
autocorrelation and type 3 has a low persistence and a small first order au-
tocorrelation. Type 1 is typical for financial time series (for daily as well as
intra day data), since one usually observes that the autocorrelation function
of the squared returns diminishes quickly in the first few lags and then slowly
after that. Type 2 describes a situation with a very strong ARCH effect, and
type 3 is similar to the behaviour of heavily aggregated data such as monthly
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GARCH TGARCH
Leverage Effect Inv. Lev. Eff.

Type Moneyness % diff SE % diff SE % diff SE

0.85 35.947 1.697 0.746 1.359 75.769 2.069
0.90 -0.550 0.563 -12.779 0.498 11.606 0.631
0.95 -6.302 0.261 -9.786 0.245 -3.153 0.278

Type 1 1.00 -3.850 0.132 -4.061 0.125 -3.806 0.139
1.05 -1.138 0.057 -0.651 0.052 -1.692 0.061
1.10 -0.020 0.025 0.347 0.022 -0.400 0.028
1.15 0.162 0.012 0.347 0.010 -0.013 0.014

0.85 199.068 5.847 104.619 4.433 293.704 7.884
0.90 0.489 1.136 -23.964 0.891 22.140 1.469
0.95 -30.759 0.370 -39.316 0.305 -24.518 0.454

Type 2 1.00 -20.975 0.167 -22.362 0.141 -20.804 0.198
1.05 -6.038 0.077 -5.427 0.063 -7.148 0.095
1.10 -0.302 0.042 0.202 0.033 -0.966 0.054
1.15 0.695 0.027 0.991 0.021 0.351 0.037

0.85 -2.899 1.209 -11.898 1.125 6.687 1.297
0.90 -5.439 0.496 -8.886 0.479 -1.982 0.513
0.95 -4.027 0.249 -4.970 0.245 -3.114 0.254

Type 3 1.00 -2.042 0.128 -2.077 0.126 -2.025 0.130
1.05 -0.710 0.055 -0.559 0.053 -0.867 0.056
1.10 -0.157 0.023 -0.047 0.022 -0.267 0.023
1.15 -0.009 0.010 0.042 0.010 -0.059 0.011

Table 15.2: Simulation results for selected values of moneyness. Shown are
the proportional differences between the GARCH and TGARCH
option prices and the Black-Scholes price and the corresponding
standard error (SE) of the simulation.

or quarterly. In every case the parameter ω is set so that σ2 = 0.0002, i.e.
the unconditional variance remains constant.

In view of the non-linear news impact function g(·) we choose the Threshold
ARCH model with two asymmetrical cases. In the first case, which we call
the leverage case,

g1(x) = ω + 1.2αx21(x < 0) + 0.8αx21(x ≥ 0)

and in the second case, that of the inverse leverage effect,

g2(x) = ω + 0.8αx21(x < 0) + 1.2αx21(x ≥ 0).
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For type 1 and the leverage effect case the simulation results are given in
Figure 15.3. We have removed the absolute and the relative difference of
the GARCH and the TGARCH prices from the corresponding Black-Scholes
price. The relative difference is defined as the absolute difference divided
by the Black-Scholes price. Because of the small step length (we assume a
step length of 0.01 for moneyness) the functions appear quite smooth. For
the GARCH case we obtain the well known result that the price difference
to the Black-Scholes displays a U-shape with respect to moneyness. Due to
the monotone increase in moneyness of the call price, the relative difference
is the largest for options out of the money. The relative difference becomes
insignificantly smaller, the more it is in the money. This could explain the
frequently observed skewness of the smile effect. For the TGARCH option
price we observe in principle a similar deviation from Black-Scholes, although
with an important difference: in the case of the leverage effect the price of
the out of the money options is lower and the price of those in the money is
higher than in the GARCH model. This is also plausible: when an option is
way out of the money and the maturity date is close, the only way to achieve a
positive payment at maturity is when the price of the underlying instrument
consecutively increases in value in large jumps. This is, however, less likely in
the leverage case, since positive returns have a smaller effect on the volatility
than they do in the symmetric case, assuming that the parameter groups
named above hold.

Table 15.2 shows the results for the type 2 and 3 and the case of the inverse
leverage effect and for chosen values of moneyness. For the leverage effect
case the described deviation of the TGARCH price from each GARCH price
is visible even for type 2 and 3. In the case of the inverse leverage effect
the arguments are reverse: it is more probable that an out of the money
option can still end up in the money so that TGARCH prices of out of the
money options are higher than the GARCH prices. As one would expect, the
deviations of the simulated GARCH and TGARCH prices from the Black-
Schole prices are the largest for type 2, i.e., for strong short-run ARCH effects,
and are the smallest for the type with the lowest persistence, type 3. This
last statement is to be expected, since the differences should disappear the
closer we get to the homoscedastic case.

15.3 Application to the Valuation of DAX Calls

The valuation method with GARCH is applied to the German stock index and
options data. For the stock index we use the daily closing values of the DAX
from 1 January, 1988 to 31 March, 1992. The closing values are usually set
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Figure 15.3: The difference between the simulated GARCH (solid line) and
TGARCH (dotted line) option prices from the BS prices is given
as a function of the moneyness for type 1 and the leverage case.
The figure above shows the absolute differences, the figure below
shows the absolute differences divided by the BS price.

SFEoptpricesim

at 13:30 (Frankfurt time). For the options data on this index we have taken
the recorded values of the transaction prices from the German derivative
exchange (DTB) from January to March 1992. In order to synchronise the
observation time periods of the index and options we interpolate between the
last option price before 13:30 and the first price after, as long as the difference
is no more than two hours.

No evidence for autocorrelated DAX returns was found but the squared and
absolute returns are highly autocorrelated. We estimate a GARCH(1,1)-M
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GARCH TGARCH
ω 1.66E-05 (1.04E-06) 1.91E-05 (1.359E-06)
α 0.144 (0.006)
α1 0.201 (0.008)
α2 0.045 (0.011)
β 0.776 (0.012) 0.774 (0.016)
λ 0.069 (0.018) 0.039 (0.018)

−2logL -7698 -7719

Table 15.3: The GARCH and TGARCH estimation results for DAX returns,
1 January, 1988 to 30 December, 1991 (QMLE standard error in
parentheses)

model

Yt = λσt + εt (15.23)
L(εt | Ft−1) = N(0, σ2

t ) (15.24)
σ2
t = ω + αε2t−1 + βσ2

t−1 (15.25)

for the DAX with the Quasi-Maximum-Likelihood-Method - see Section 13.1.6.
A possible constant in (15.23) is not significant and is thus ignored from
the very beginning. Table 15.3 shows the results of the estimation. All
parameters are significantly different from zero. The degree of persistence
α + β = 0.9194 is significantly smaller than 1 and thus the unconditional
variance is finite, see Theorem 13.10. The parameter of the risk premium λ
is positive, as is expected from economic theory.

The Quasi-Maximum-Likelihood-Estimator of the TGARCH model

σ2
t = ω + α1ε

2
t−11(εt−1 < 0) + α2ε

2
t−11(εt−1 ≥ 0) + βσ2

t−1 (15.26)

is also given in Table 15.3. Taking the value of the log-likelihood into con-
sideration, the ability of the TGARCH model is better than that of GARCH
model. A likelihood quotient test rejects the GARCH model at every rational
confidence level. α1 and α2 are significantly different; thus the asymmetry of
the news impact function is significant. Since α1 > α2 we observe the usual
leverage effect for financial time series.

After the model was fitted to the data from 1988 to 1991, the next step
in calculating the option price for the observed time period from January
to March 1992 is to use the simulation method described above and then
compare this to the market prices. Here we will concentrate on call options.
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Since the DAX option, which is traded on the DTB, is a European option,
the results for put options can be calculated as usual from the put-call-parity.
We consider nine call options with maturity dates 17 January, 20 March, and
19 June, 1992. In order to distinguish the case of in, out and at the money,
we have chosen the strike prices 1550, 1600 and 1650 for the January option
1600, 1650 and 1700 for the March and June options. We simulate the price
of the January option from January 3rd to the 16th (10 days), for the March
option from January 3rd to the 19th (57 days) and for the June option from
January 3rd to the 31st of March (64 days). The June option with a strike
price of 1700 began on 16 January so that there are no observations for the
first 10 trading days. Due to low trading volume not all market prices are
available thus we reduced the number of observations, k in Table 15.4, even
further.

A remaining question is how to choose the starting value of the volatility
process. We set the starting value equal to the running estimator of the
volatility (GARCH or TGARCH), in which the volatility process is extrap-
olated and the parameters are held constant. Alternatively one can use the
implied volatility, see Section 6.4.5.

To calculate the Black-Scholes price at time t the implied volatility at time
t − 1 is used. To obtain a measure of the quality of the estimate, we define
the relative residuals as

ut
def=

Ct − CMarket,t

CMarket,t

where Ct is either the Black-Scholes or the GARCH or the TGARCH price
and CMarket,t is the price observed on the market. Residuals should be
considered as relative values, since a trader would always prefer the cheaper
option, which is undervalued by the same amount as a more expensive option,
simply because he can multiply his position in the cheaper option. A similar
argument holds for the sale of an overvalued option. For reasons of symmetry
we use a squared loss criterion, i.e.,

U =
k∑

t=1

u2
t .

The results for the three models are given in Table 15.4.

Overall the GARCH as well as the TGARCH options valuation model per-
forms substantially better than the Black-Scholes model. For options in and
at the money the improvement of the TGARCH forecast compared to the
GARCH model is small. When the option, however, is out of the money
there is a large reduction in the loss criterion. In the simulation study out
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T K k BS GARCH TGARCH
1550 10 0.017 0.014 0.014

Jan 1600 10 0.099 0.029 0.028
1650 10 4.231 1.626 1.314
1600 47 1.112 0.961 0.954

Mar 1650 53 1.347 1.283 1.173
1700 56 1.827 1.701 1.649
1600 53 1.385 1.381 1.373

Jun 1650 56 2.023 1.678 1.562
1700 51 2.460 2.053 1.913

Sum 346 14.500 10.725 9.980

Table 15.4: The loss criterium U for the DAX calls with maturity at T and
a strike price K using BS, GARCH and TGARCH option prices.
The number of observations is given by k.

of the money options react the most sensitive to stochastic volatility and the
leverage effect. In the situation with real data this is most obvious for the
January-1650 option, where Black-Scholes performs poorly and TGARCH
performs better than GARCH. For the March and June options the differ-
ence is not so obvious. This can be explained by the fact that the index
increased to a level of 1736 points on 20 March of 1717 points on 30 March,
so that the option with a strike price of 1700 became in the money. This is
also the explanation for the fact that U is the highest for the January-1650
option. There were only 10 trading days, but the option was out of the money
for several days. For example, the DAX closed on 8 January at 1578 points.

Since in every case TGARCH performs better than GARCH, we conclude
that the market follows the asymmetry of the volatility. Therefore, specifying
the volatility model correctly plays an important role in determining option
prices.

15.4 Recommended Literature

The presentation of this chapter closely follows the work of Härdle and Hafner
(2000). The standard ARCH model originated in Engle (1982), the devel-
opment of EGARCH in Nelson (1991) and TGARCH in Zakoian (1994) (for
the standard deviation) and Glosten et al. (1993) (for the variance). Non-
parametric and semi-parametric variants of the ARCH model were suggested



320 15 Pricing Options with Flexible Volatility Estimators

and studied by Carroll, Härdle and Mammen (2002) and Hafner (1998). The
classic option pricing model with stochastic volatility originated in Hull and
White (1987). Hull and White implicitly assume that the market price of
the risk of the volatility is zero, whereas in Melino and Turnbull (1990) it is
different from zero, constant and exogenous. Empirical evidence for the val-
uation of risk of the volatility is given in Wiggins (1987). Renault and Touzi
(1996) generalise the model from Hull and White (1987), in that they allow
a market price of the risk for the volatility, which itself can vary over time.
The concept of minimising the quadratic loss of a hedge portfolio is given
in Föllmer and Sondermann (1991) and Föllmer and Schweizer (1991). The
practical procedure to implement “15 minute old” implied volatility into the
Black/Scholes formula, was successfully used in Bossaerts and Hillion (1993).



16 Value at Risk and Backtesting

The Value-at-Risk (VaR) is probably the most known measure for quantifying
and controlling the risk of a portfolio. The establishment of the VaR is of
central importance to a credit institute, since it is the basis for a regulatory
notification technique and for required equity investments. The description
of risk is done with the help of an “internal model”, whose job is to reflect
the market risk of portfolios and similar risky investments over time. This
often occurs though the choice of suitable portfolios of a specific risk factor,
i.e., through principal components analysis (Chapter 20). With risks from
option trading a linear transformation is often applied using the “Greeks”
(Chapter 6).

The objective parameter in the model is the probability forecasts of portfo-
lio changes over a given time horizon. Whether the model and its technical
application correctly identify the essential aspects of the risk, remains to be
checked. The backtesting procedure serves to evaluate the quality of the
forecast of a risk model in that it compares the actual results to those gen-
erated with the VaR model. For this the daily VaR estimates are compared
to the results from hypothetical trading that are held from the end-of-day
position to the end of the next day, the so called “clean backtesting”. The
concept of clean backtesting is differentiated from that of “mark-to-market”
profit and loss (“dirty P&L”) analyses in which intra-day changes are also
observed. In judging the quality of the forecast of a risk model it is advisable
to concentrate on the clean backtesting.

The interest of an institute in a correct VaR calculation can be traced back
to a rule of equity investing, which we will briefly describe here. Since 1997
(modification of the Basle market risk paper) institutes have been allowed
to replicate specific risks using internal models. Included here under specific
risks are those associated with daily price developments (“residual risks”) and
others realised from rare occurrences (“event risks” such as rating changes).
Models that only consider residual risks are called “surcharge model”, and
those that consider event risks are called “non-surcharge model”. For calcu-
lating capital investments the institutes have to use the following formula,
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Exceedances Increase of M Zone
0 bis 4 0 green

5 0.4 yellow
6 0.5 yellow
7 0.65 yellow
8 0.75 yellow
9 0.85 yellow

More than 9 1 red

Table 16.1: Traffic light as a factor of the exceeding amount.

Graumert and Stahl (2001):

EMUt = max{V aRt−1 + d · SRt−1;M · 1
60

60∑

i=1

V aRt−i + d · 1
60

60∑

i=1

SRt−i}
(16.1)

• EMUt = Capital investment for the price risks determined by the risk
model at day t

• V aRt−i = VaR estimation at day t− i for the general and the specific
price risk

• d = Indicator variable with d = 1 for surcharge models and d = 0 for
non-surcharge models and for models that only model general risk

• M = Multiplier with M = 3 + ZBT + ZQM

• ZBT = Backtesting surcharge factor according to § 37 II GI (0 ≤
ZBT ≤ 1)

• ZQM = Surcharge factor for qualitative deficiencies (0 ≤ ZQM ≤ 1)

• SRt−i = Surcharge for not modelling event risk in surcharge models on
day t− i

The multiplier M in (16.1) contains the backtesting surcharge factor which is
calculated from the so called “traffic light”. According to the “traffic light”
the value M increases with the number of years the VaR values exceeds the
actual loss. Table 16.1 explains the “traffic light” zones.
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16.1 Forecast and VaR Models

Value at Risk (VaR) models are used in many financial applications. Their
goal is to quantify the profit or loss of a portfolio which could occur in the
near future. The uncertainty of the development of a portfolio is expressed
in a “forecast distribution” Pt+1 for period t+ 1.

Pt+1 = L(Lt+1|Ft)
is the conditional distribution of the random variable Lt+1, which represents
the possible profits and losses of a portfolio in the following periods up to
date t+ 1, and Ft stands for the information in the available historical data
up to date t. An estimator for this distribution is given by the forecast model.
Consequently the possible conditional distributions of Lt+1 come from a pa-
rameter class Pt+1 = {P θ(t)t+1 | θ(t) ∈ Θ}. The finite-dimensional parameter
θ(t) is typically estimated from n = 250 historical return observations at time
t, that is approximately the trading days in a year. Letting θ̂(t) stand for

this estimator then L(Lt+1|Ft) can be approximated with P θ̂(t)t+1 .

An important example of Pt+1 is the Delta-Normal Model, RiskMetrics
(1996). In this model we assume that the portfolio is made up of d lin-
ear (or linearised) instruments with market values Xk,t, k = 1, ..., d, and that
the combined conditional distribution of the log returns of the underlying

Yt+1 ∈ R

d, Yk,t+1 = lnXk,t+1 − lnXk,t, k = 1, ..., d,

given the information up to time t is a multivariate normal distribution, i.e.,

L(Yt+1|Ft) = Nd(0,Σt) (16.2)

where Σt is the (conditional) covariance matrix of the random vector Yt+1.
We consider first a single position (d = 1), which is made up of λt shares
of a single security with an actual market price Xt = x. With wt = λtx
we represent the exposure of this position at time t, that is its value given
Xt = x. The conditional distribution of the changes to the security’s value
Lt+1 = λt(Xt+1 −Xt) is approximately:

L(Lt+1|Ft) = L(λt(Xt+1 − x) | Ft)
= L(wt

Xt+1 − x

x
| Ft)

≈ L(wtYt+1 | Ft) = N(0, w2
t σ

2
t ) (16.3)

with σ2
t = Var(Yt+1 | Ft). Here we have used the Taylor approximation

lnXt+1 − lnx =
Xt+1 − x

x
+ O(Xt+1 − x). (16.4)
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The generalisation to a portfolio that is made up of λ1
t , · · · , λdt shares of d

(linear) instruments is quite obvious. Let wt be the d-dimensional exposure
vector at time t

wt = (w1
t , · · · , wdt )� = (λ1

tx
1, · · · , λdtxd)�. (16.5)

Lt+1 =
d∑

k=1

λkt (Xk,t+1 −Xk,t)

is the change in the value of the portfolio. For a single position the conditional
distribution of Lt+1 given the information Ft is approximately equal to the
conditional distribution of

w�
t Yt+1 =

d∑

k=1

wkt Yk,t+1.

In the framework of Delta-Normal models this distribution belongs to the
family

Pt+1 = {N(0, σ2
t ) : σ2

t ∈ [0,∞)}, (16.6)

with σ2
t = w�

t Σtwt. The goal of the VaR analysis is to approximate the
parameter θ(t) = σt and thus to approximate the forecast distribution of
Pt+1.

Now consider the problem of estimating the forecast distribution from the
view point of the following model’s assumptions. The change in the value of
the portfolio is assumed to be of the form

Lt+1 = σt Zt+1 (16.7)
σ2
t = w�

t Σtwt, (16.8)

where Zt is i.i.d. N(0,1) distributed random variable, wt is the exposure vec-
tor at time t and Σt is the (conditional) covariance matrix of the vector Yt+1

of the log returns. We combine the last n realisations of Yt = yt, . . . , Yt−n+1 =
yt−n+1 from the log return vector with a (n×d) matrix Yt = (y�i )i=t−n+1,...,t.
From these observations we calculate two estimators from Σt; first the naive
RMA, i.e., rectangular moving average:

Σ̂t =
1
n
Y�
t Yt. (16.9)

Since the expected value of the vector of returns Yt is zero according to the
Delta-Normal model, this is exactly the empirical covariance matrix. The
second so called EMA estimator, i.e., exponentially moving average, is based
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on an idea from Taylor (1986) and uses an exponential weighting scheme.
Define for γ, 0 < γ < 1

ỹt−k = γkyt−k, k = 0, ..., n− 1, Ỹt = (ỹ�i )i=t−n+1,...,t

a log return vector is exponentially weighted over time and a (n× d) matrix
is constructed from this, then Σt is estimated with

Σ̂t = (1 − γ)−1Ỹ�
t Ỹt. (16.10)

This normalisation makes sense, since the sum
∑n
i=1 γ

i−1 = 1−γn

1−γ for γ → 1
converges to n, thus the RMA estimator is the boundary case of the EMA
estimator. Both estimators can be substituted in (16.7) and (16.8), and we
obtain with

P̂t+1 = N(0, σ̂2
t ), σ̂2

t = w�
t Σ̂twt

an approximation of the forecast distribution, i.e., the conditional distribu-
tion of Lt+1. It should be noted that the Bundesanstalt für Finanzdienstleis-
tungsaufsicht (http://www.bafin.de) currently dictates the RMA technique.

The Value at Risk VaR is determined for a given level α by

V aRt = F−1
t+1(α) def= inf{x;Ft+1(x) ≥ α} (16.11)

and estimated with

̂V aRt = F̂−1
t+1(α) def= inf{x; F̂t+1(x) ≥ α}. (16.12)

Here Ft+1, F̂t+1 represent the distribution function of Pt+1, P̂t+1. The quality
of the forecast is of particular interest in judging the VaR technique. It can
be empirically checked using the realised values (P̂t, Lt), t = 1, ..., N,. In the
event that the model assumptions, for example, (16.7) and (16.8), are correct
for the form of the forecast’s distribution, then the sample Ut = Ft(Lt), t =
1, ..., N, should have independent uniformly distributed random values over
the interval [0, 1] and Ût = F̂t(Lt), t = 1, ..., N, approximately independent
identically uniformly distributed random values. Then the ability of the
forecasts distribution to fit the data is satisfied.

16.2 Backtesting with Expected Shortfall

Below we consider the expected shortfall from Lt+1 as an alternative to the
VaR and develop a backtesting method for this risk measurement. The ex-
pected shortfall, also called the Tail-VaR, is in the Delta-Normal Model, i.e.



326 16 Value at Risk and Backtesting

under the assumptions from (16.7) and (16.8), defined by

E(Lt+1 | Lt+1 > V aRt) = E(Lt+1 | Lt+1 > zα σt)
= σt E(Lt+1/σt | Lt+1/σt > zα). (16.13)

Here zα = Φ−1(α) represents the α quantile of the standard normal distri-
bution, where Φ is the standard normal distribution function.

Under this model (16.7) and (16.8) Zt+1 = Lt+1/σt has a standard normal
distribution. For a defined threshold value u we obtain

ϑ = E(Zt+1 | Zt+1 > u) =
ϕ(u)

1 − Φ(u)
(16.14)

ς2 = V ar(Zt+1 | Zt+1 > u) = 1 + u · ϑ− ϑ2, (16.15)

where ϕ is the standard normal density. For given observations from a fore-
cast distribution and its realisations (F̂t+1(·/σ̂t), Lt+1/σ̂t) we consider (16.14)
as the parameter of interest. Replacing the expected value with a sample
mean and the unobservable Zt+1 with

Ẑt+1 =
Lt+1

σ̂t
, (16.16)

where σt in (16.8) is estimated with (16.9) or (16.10), we obtain an estimator
for ϑ

ϑ̂ =
1

N(u)

n∑

t=0

Ẑt+1 1(Ẑt+1 > u). (16.17)

N(u) is the random number of times that the threshold value u is exceeded:

N(u) =
n∑

t=1

1(Ẑt+1 > u).

Inferencing on the expected shortfall, i.e., on the difference ϑ̂− ϑ, we obtain
the following asymptotical result:

√
N(u)

( ϑ̂− ϑ

ς̂

) L−→ N(0, 1) (16.18)

(16.18) can be used to check the adequacy of the Delta-Normal model.

16.3 Backtesting in Action

The data used in this section is a bond portfolio of a German bank from 1994
to 1995. The portfolio is not adjusted so that the exposure vector wt = w is
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time dependent. We assume that (16.7) and (16.8) hold. The VaR forecast
is based on both prediction rules introduced in Section 16.1 that are used to
estimate the parameters σt of the forecast distribution in RMA and EMA
given γ = 0.94. In light of the bond crisis in 1994 it is interesting how both
techniques respond to this stress factor.

Time plot of VaRs and P&L
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Figure 16.1: The dots show the observed changes Lt in the value of the
portfolio. The dashed line represents the forecasted VaRs based
on RMA (99% and 1%). The solid line represents the same for
EMA. SFEVaRbank SFEVaRtimeplot

The significance level under consideration is α = 1% for large losses and
α = 99% for large profits. To investigate we include plots of time series
from the realised P/L (i.e., profit-loss) data Lt as compared to the respective
VaR estimator ̂V aRt calculated with (16.12). If the model and the estima-
tion of the parameter σt based on forecast distribution are adequate, then
approximately 1% of the data should lie below the 1% and above the 99%
VaR Estimators. In addition in Figure 16.1 the crossings for the case where
VaR is estimated with EMA are marked. We recognise that in 1994 (1995)
there were a total of 10 (9) crossings determined for the EMA method. This
strongly contrasts the 17 (3) observed values for the RMA Method. It is clear
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that the RMA technique leads to, above all during the bond crisis in 1994,
too many crossings for the 1% VaR estimator, which means that the proba-
bility of larger losses is underestimated. This tendency to underestimate the
risk is produced from the observation width of 250 days, when the market is
moving towards a more volatile phase. The opposite is true when moving in
the other direction; RMA overestimates risk. The EMA adapts more quickly
to market phases since data in the past has less influence on the estimator
due to the exponentially deteriorating weights. With SFEVaRtimeplot we
have calculated the estimated VaRs for another bank using the EMA and
RMA respectively.

The poor forecast quality of the RMA, in particular for the left side of the dis-
tribution, can also be seen in that for a particular day the VaR was exceeded
by 400%. If the model (16.7) - (16.8) is correct, then the variable (16.19)
must have a standard deviation of about 0.41. The empirical standard de-
viation calculated from the data is about 0.62. According to the volatility
scale of the RMA the risk is underestimated on average by 0.62−0.41

0.41 ≈ 50%.
The EMA plot in Figure 16.1 shows a better calibration. The empirical stan-
dard deviation of (16.19) is in this case around 0.5, which corresponds to an
underestimation of risk by approximately 25%.

All other diagnostic measurements are entered into the QQ plot of the vari-
able

Lt+1

̂V aRt
=

Lt+1

2.33σ̂t
, (16.19)

see Figure 16.2 and Figure 16.3. If the VaR forecast ̂V aRt was perfect, the
QQ plot would produce a straight line and fill out the area in [−1, 1].

A comparison of the graphs in Figure 16.2 and Figure 16.3 show that the
EMA method is calibrated better than the RMA method. The RMA method
clearly shows outliers at both ends. The interval boundaries of [−1, 1] are
in both cases clearly exceeded. This indicates a possible inadequacy of an
assumed normal distribution. QQ plots for the year 1995 are not shown,
which also clearly show the dominance of EMA over RMA.

Another important assumption of our model is the independence of the re-
scaled random variable Zt. Figure 16.4 shows the outliers of another bank

{t,1(Lt+1 > ̂V aRt)}, t = 1, ..., 750, (16.20)

as a function of t. The contradictory temporal non-uniform distribution of
the outliers from the independence of Zt is clearer to see by the RMA method
than by the EMA method.

The exploratory analysis clearly shows the differences between RMA and
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Figure 16.2: QQ plot of Lt+1/̂V aRt for RMA in 1994. SFEVaRqqplot

EMA. As a supplement we now compare both estimation techniques with
an appropriate test within the framework of the model (16.7) - (16.8). We
again consider the sample residuals Ẑt+1 from (16.16) and set the threshold
value in (16.14) to u = 0.8416, i.e., to the 80% quantile of the distribution
of Zt+1 = Lt+1

σt
. From this we obtain ϑ = 1.4 according to (16.14). Due

to the asymptotic distribution (16.18) we can check the significance of the
hypothesis

H0 : ϑ
(<)
= 1.4. (16.21)

A better approximation than the standard normal distribution for the sample
is the Student t(20) distribution, if we generalise the degrees of freedom.

L(Ẑt+1) = L(Lt+1

σ̂t

) ≈ t(20). (16.22)

The value of ϑ obtained differs from the value given above by 5%, the cor-
responding variances ς2 by 18%. Therefore, we also consider the hypothesis

H0 : ϑ
(<)
= 1.47. (16.23)

The following Table 16.2 to Table 16.5 summarises our results.
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VaR reliability plot
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Figure 16.3: QQ plot of Lt+1/̂V aRt for EMA in 1994. SFEVaRqqplot

From Table 16.2 and Table 16.3 it is obvious that the observed outliers for
EMA are calibrated better than for the RMA method. For a random sam-
ple of 260 values we expect 52 outliers (standard deviation 6.45). For EMA
we observe 61 (61 − 52 ≈ 1.5 · standard deviation) outliers and for RMA
68 (68 − 52 ≈ 2.5 · standard deviation). Naturally the outliers influence the
test considerably. We can therefore repeat the analysis excluding the outliers
and obtain (16.4) and (16.5).

To conclude we can say that the EMA method gives better calibrated results

Method ϑ = 1.4 ς = 0.46
√
N(u) ϑ̂−ϑς̂ significance N(u)

EMA ϑ̂ = 1.72 ς̂ = 1.01 2.44 0.75% 61
RMA ϑ̂ = 1.94 ς̂ = 1.3 3.42 0.03% 68

Table 16.2: H0 : ϑ
(<)
= 1.4
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Figure 16.4: Time diagram of the exceedances at the 80% significance level
from VaR for RMA (left) and EMA. The superiority of EMA is
obvious. SFEVaRtimeplot2

Method ϑ = 1.47 ς = 0.546
√
N(u) ϑ̂−ϑς̂ significance N(u)

EMA ϑ̂ = 1.72 ς̂ = 1.01 2.01 2.3% 61
RMA ϑ̂ = 1.94 ς̂ = 1.3 3.04 0.14% 68

Table 16.3: H0 : ϑ
(<)
= 1.47

than the RMA method. Both methods are extremely sensitive to outliers and
should both be considered. Even the EMA method suffers from the assump-
tions (16.7) - (16.8), which are based on the Delta-Normal Model, can only
be approximately fulfilled. The residuals Zt are neither normally distributed
nor independent, although the EMA method is not strongly effected by the
independence assumption due to its exponentially decreasing memory.

16.4 Recommended Literature

The classical start to Value at Risk (VaR) estimation lies in the consideration
of linear or linearised portfolios, see RiskMetrics (1996). The linear structure
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Method ϑ = 1.4 ς = 0.46
√
N(u) ϑ̂−ϑς̂ significance N(u)

EMA ϑ̂ = 1.645 ς̂ = 0.82 2.31 1% 60
RMA ϑ̂ = 1.83 ς̂ = 0.93 3.78 0.00% 67

Table 16.4: H0 : ϑ
(<)
= 1.4 largest outlier excluded

Method ϑ = 1.47 ς = 0.546
√
N(u) ϑ̂−ϑς̂ significance N(u)

EMA ϑ̂ = 1.645 ς̂ = 0.82 1.65 5% 60
RMA ϑ̂ = 1.83 ς̂ = 0.93 3.1 0.15% 67

Table 16.5: H0 : ϑ
(<)
= 1.47 largest outlier excluded

transforms the multi-dimensional normally distributed random variables into
one dimensional Gaussian values whose quantile can be estimated. An in-
troduction to the asymptotic distributions of extreme values can be found in
Leadbetter, Lindgren and Rootzen (1983) and Embrechts et al. (1997). McAl-
lister and Mingo (1996) describe the advantages from (16.13) in a RAROC
(risk-adjusted return on capital) setup. Artzner and Heath (1997) claim that
the expected shortfall is a coherent measurement of risk. Jaschke and Küchler
(1999) show that (16.13) is a reasonable approximation for a worst case sce-
nario. Leadbetter et al. (1983) show how (16.13) can be used in the context
of the theory of extreme values. A good overview of the VaR problems is
given in Jorion (2000). The majority of the German laws can be found under
http://www.bafin.de. Taleb (2001) is a critic of specific VaR definitions and
gives several examples in which Value at Risk definitions can be “blinding”
given certain trading strategies (“Peso Problem Traders”). A complete lit-
erature review can be found in Franke, Härdle and Stahl (2000). The VaR
calculations from Overbeck (2000) based on the ability to pay process are
discussed and country risk is evaluated in Lehrbass (2000).



17 Copulae and Value at Risk

The capital requirement from financial institutions is based on the amount
of risk carried in their portfolios. The risk associated with a portfolio may
originate from:

1. fluctuations in the value of financial assets composing the portfolio
(market risk),

2. fluctuations in the credibility of debtors (credit risk),

3. uncertainty connected with technical, personal and natural factors that
may influence the portfolio value (operational risk).

In order to investigate the risk of a portfolio, the assets subjected to risk (risk
factors) should be identified and the changes in the portfolio value caused by
the risk factors evaluated. Especially relevant for risk management purposes
are negative changes - the portfolio losses.

The Value-at-Risk (VaR) is a measure that quantifies the riskiness of a port-
folio. This measure and its accuracy are of crucial importance in determining
the capital requirement from financial institutions. That is one of the reasons
why increasing attention has been paid to VaR computing methods.

The losses and the probabilities associated with them (the distribution of
losses) are necessary to describe the degree of portfolio riskness. The riskier
the portfolio, the higher the probability of losses being larger than a certain
amount is. In other words, the riskier the portfolio, the larger are the minimal
losses for a certain probability (also called level). That is the precise of VaR
definition: VaR is a quantile of the distribution of portfolio losses representing
the minimal losses for a certain level.

Looking carefully at the distribution of losses, one verifies that large losses
are influenced by simultaneous losses in risk factors. Hence, the distribution
of losses depends on joint distribution of risk factors.

Understanding the joint distribution of risk factors is fundamental in inves-
tigating and computing the Value-at-Risk. The conventional procedure to
model joint distributions of financial returns is to approximate them with
multivariate normal distributions.
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That implies, however, that the dependence structure of the returns is re-
duced to a fixed type. Even if the autocorrelation structure is neglected,
predetermining a multivariate normal distribution means that the following
assumptions hold:

1. symmetric distribution of returns,

2. the tails of the distribution are not too heavy,

3. linear dependence.

Empirical evidence for these assumptions are barely verified and an alterna-
tive model is needed, with more flexible dependence structure and arbitrary
marginal distributions. These are exactly the characteristics of copulae.

Copulae are very useful for modelling and estimating multivariate distribu-
tions. The flexibilty of copulae basically follows on from Sklar’s Theorem,
which says that each joint distribution can be“decomposed” into its marginal
distributions and a copula C ”responsible” for the dependence structure:

F (x1 . . . , xd) = C{F1(x1), . . . , Fd(xd)}.

Two important facts for practical applications rely on this theorem:

1. the construction of multivariate distributions may be done in two inde-
pendent steps: the specification of marginal distributions - not neces-
sarily identical - and the specification of a dependence structure. Cop-
ulae “couple together” the marginal distributions into a multivariate
distribution with the desired dependence structure.

2. joint distributions can be separately estimated from a sample of obser-
vations: the marginal distributions are estimated first, the dependence
structure later.

The copula approach gives us more freedom than the normality assumptions:
marginal distributions with asymmetric heavy tails (typical for financial re-
turns) can be combined with different dependence structures, resulting in
multivariate distributions (far different from the multivariate normal) that
better describe the empirical characteristics of financial returns distribution.

Moreover, copulae allow for dynamical modelling and adaption to portfolios:
different copulae with distinct properties can be associated to different port-
folios according to their specific dependence structures. Furthermore, copu-
lae may change as time evolves, reflecting the evolution of the dependence
between financial assets. To summarise, the Value-at-Risk estimation with
copulae is more efficient and flexible than any method based on normality
assumption.
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17.1 Copulae

This section presents the basic copulae definitions and theorems. The most
important copulae, together with their standard construction and simulation
methods are also discussed.

Definition 17.1 (Copula)
A d-dimensional copula is a function C : [0, 1]d → [0, 1] satisfying the follow-
ing properties for every u = (u1, . . . , ud)� ∈ [0, 1]d and j ∈ {1, . . . , d}:

1. if uj = 0 then C(u1, . . . , ud) = 0

2. C(1, . . . , 1, uj , 1, . . . , 1) = uj

3. for every v = (v1, . . . , vd)� ∈ [0, 1]d, vj ≤ uj

VC(u, v) ≥ 0

where VC(u, v) is given by

2∑

i1=1

. . .
2∑

id=1

(−1)ii+...+idC(g1i1 , . . . , gdid)

and gj1 = vj and gj2 = uj.

The first and third properties state that copulae are grounded functions and
that all d-dimensional boxes with vertices in [0, 1]d have non-negative C-
volume. Together they guarantee that copulae are distribution functions on
the d−dimensional unit cube, while the second property reveals that copulae
have uniform marginal distributions.

Note that by considering random variables X1, . . . , Xd with univariate dis-
tribution functions FX1 , . . . , FXd

and the random variables Ui = FXi(Xi),
i = 1, . . . , d uniform distributed in [0, 1], a copula may be interpreted as the
joint distribution of the marginal distributions.

For all u = (u1, . . . , ud)� ∈ [0, 1]d, every copula C satisfies

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤M(u1, . . . , ud)

where
M(u1, . . . , ud) = min(u1, . . . , ud) (17.1)

and

W (u1, . . . , ud) = max

(
d∑

i=1

ui − d+ 1, 0

)
. (17.2)
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M(u1, . . . , ud) is called Fréchet-Hoeffding upper bound and W (u1, . . . , ud) the
Fréchet-Hoeffding lower bound. While M is not a copula for d > 2, W is a
copula for all d. Besides the Fréchet-Hoeffding bounds, the product copula
Π(u1, . . . , ud) is of fundamental importance. The product copula is given by:

Π(u1, . . . , ud) =
d∏

j=1

uj . (17.3)

Figure 17.1 illustrates the Fréchet-Hoeffding bounds and the product copulae.

The following theorem connects copulae with distribution functions and shows
that:

• every distribution function can be ”decomposed” into its marginal dis-
tribution and (at least) one copula.

• a (unique) copula is obtained from ”decoupling” every (continuous)
multivariate distribution function from its marg-
inal distributions.

Theorem 17.1 (Sklar’s theorem)
Let F be a d-dimensional distribution function with marginals F1 . . . , Fd.
Then a copula C with

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (17.4)

can exist for every x1, . . . , xd ∈ R. If F1, . . . , Fd are continuous, then C is
unique. On the other hand, if C is a copula and F1, . . . , Fd are distribution
functions, then the function F defined in (17.4) is a joint distribution function
with marginals F1, . . . , Fd.

Hence, for a joint distribution F with continuous marginals F1, . . . , Fd the
unique copula C can be obtained from (17.4) for all u = (u1, . . . , ud)� ∈ [0, 1]d

as

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F−1

d (ud)}. (17.5)

Definition 17.2 (Copula of a random variable)
Let X = (X1, . . . , Xd)� be a random vector with distribution X ∼ FX and
continuous marginals Xj ∼ FXj . The copula of X is the distribution function
CX of u = (u1, . . . , ud)� where uj = FXj (xj):

CX(u1, . . . , ud) = FX{F−1
X1

(u1), . . . , F−1
Xd

(ud)}. (17.6)
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Figure 17.1: Fréchet-Hoeffding upper bound W (u1, u2) (upper panel), prod-
uct copula Π(u1, u2) (middle panel), Fréchet-Hoeffding lower
bound M(u1, u2) (lower panel).
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For independent random variables X1, . . . , Xd the copula of X is the product
copula defined in (17.3):

CX(u1, . . . , ud) = FX(x1, . . . , xd)

=
d∏

j=1

FXj
(xj)

= Π{FX1(x1), . . . , FXd
(xd)}

= Π(u1, . . . , ud).

Note that the product copula is the same for any marginal distribution, i.e.,
it determines the dependence structure between the univariate variables for
arbitrary marginals. The next theorem shows that copulae are invariant
under monotone increasing transformations. This property is very useful for
obtaining copula families in subsequent sections.

Theorem 17.2
Let X = (X1, . . . , Xd)� be a random vector with continuous marginals and
copula CX and T1, . . . , Td be strictly increasing functions on range(X1),. . .,
range(Xd). Let Y = (Y1, . . . , Yd)�, Yi = Ti(Xi) be a random vector with
copula CY . Then CX = CY almost everywhere.

A d-dimensional random variable determines a copula through its joint and
marginal distributions. Moreover, monotone increasing transformations on
the random variable do not affect the copula. These are the main ideas used
to obtain the Gaussian copula: the random variable X = (X1, . . . , Xd)�

with multivariate normal distribution and copula CX is transformed into the
standardised variable Z = (Z1, . . . , Zd)�, Zj ∼ N(0, 1). The copula of the
random variable Z is CX .

A copula density exists for an absolute continuous copula there. Copula
densities are essential for estimation procedures, as seen in Section 17.2.

Definition 17.3 (Copula density)
For an absolutely continuous copula C, the copula density is defined as

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)
∂u1 . . .∂ud

. (17.7)

Given a random variable X = (X1, . . . , Xd)�, with absolute continuous dis-
tribution function F and copula CX , the density cX is obtained by differen-
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tiating (17.6):

cX(u1, . . . , ud) =
f{F−1

X1
(u1), . . . , F−1

Xd
(ud)}

∏d
j=1 fj{F−1

Xj
(uj)}

(17.8)

where f is the joint density of FX and fj the density of FXj
. The density

from the copula of X can be determined from its joint density and inverse
marginal distributions.

17.1.1 Gaussian Copula

The Gaussian copula represents the dependence structure of the multivariate
normal distribution, that means, normal marginal distributions are combined
with a Gaussian copula to form multivariate normal distributions. The com-
bination of non-normal marginal distributions with a Gaussian copula results
in meta-Gaussian distributions, i.e., distributions where only the dependence
structure is Gaussian.

To obtain the Gaussian copula, let X = (X1, . . . , Xd)� ∼ Nd(μ,Σ) with
Xj ∼ N(μj , σj) for j = 1, . . . , d. From Sklar’s Theorem there exists a copula
CX such that:

FX(x1, . . . , xd) = CX{FX1(x1), . . . , FXd
(xd)}

where FXj
is the distribution function of Xj and FX the distribution function

of X.

Let Yj = Tj(Xj), where Tj(x) is the transformation

Tj(x) =
x− μj
σj

.

Then Yj ∼ N(0, 1) and Y = (Y1, . . . , Yd)� ∼ Nd(0,Ψ) where Ψ is the cor-
relation matrix associated with Σ. Moreover, a copula CGaΨ , called Gaussian
copula exists as follows:

FY (y1, . . . , yd) = CGaΨ {Φ(y1), . . . ,Φ(yd)} (17.9)

where Φ is the standard Normal cdf of Yj and FY the distribution function
of Y . An explicit expression for the Gaussian copula is obtained by rewriting
(17.9) with uj = Φ(yj):

CGaΨ (u1, . . . , ud) = FY {Φ−1(u1), . . . ,Φ−1(ud)}
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=
∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
(2π)−

d
2 | Ψ |− 1

2 exp (−1
2
r�Ψ−1r)dr1 . . . drd.

As Tj(x) = x−μj

σj
is increasing, it follows from Theorem 17.2 that

CX = CGaΨ .

Thus, any multivariate normal distribution can be constructed from its marg-
inal distributions and the Gaussian copula CGaΨ with the desired correlation
matrix Ψ.

Remark 17.1
If Ψ = Id the Gaussian copula becomes the product copula as

CGaId
(u1, . . . , ud) =

∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
(2π)−

d
2 exp (−1

2

d∑

j=1

r2j )dr1 . . . drd

=
∫ Φ−1(u1)

−∞

1√
2π

exp(−1
2
r21)dr1 . . .

∫ Φ−1(ud)

−∞

1√
2π

exp (−1
2
r2d)drd

= Φ{Φ−1(u1)} . . .Φ{Φ−1(ud)}

= Π(u1, . . . , ud).

The density of the Gaussian copula (Figure 17.2) is obtained by differentiat-
ing (17.9),

| 2πΨ |− 1
2 exp

(
−1

2
x�Ψ−1x

)
= cGaΨ {Φ(x1), . . . ,Φ(xd)}

×
d∏

j=1

(2π)−
1
2 exp

(
−1

2
x2
j

)

rearranging terms and defining ζj = Φ−1(uj), ζ = (ζ1, . . . , ζd)�:

cGaΨ (u1, . . . , ud) = | Ψ |− 1
2 exp

{
−1

2
ζ�(Ψ−1 − Id)ζ

}
. (17.10)
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Figure 17.2: Density of the Gaussian copula, cGaΨ (u1, u2), ψ12 = 0.5.
SFEgausscop

17.1.2 Student’s t-Copula

The t-copula, containing the dependence structure form the multivariate t-
distribution, may be obtained in a similar way.

Let X = (X1, . . . , Xd)� ∼ td(ν, μ,Σ) and Y = (Y1, . . . , Yd)� ∼ td(ν, 0,Ψ)
where Ψ is the correlation matrix associated with Σ. The unique copula
from Y is the Student’s t-copula Ctν,Ψ. Moreover, it follows from Theorem
17.2 that CX = Ctν,Ψ.

For u = (u1, . . . , ud)� ∈ [0, 1]d, the Student’s t-copula is given by

Ctν,Ψ(u1, . . . , ud) = tν,Ψ{t−1
ν (u1), . . . , t−1

ν (ud)}

where t−1
ν is the quantile function from the univariate t-distribution and tν,Ψ

the distribution function of Y .

The density of the t-copula (Figure 17.3) is given by

ctν,Ψ(u1, . . . , ud) =
tν,Ψ{t−1

ν (u1), . . . , t−1
ν (ud)}∏d

j=1 tν,Ψ{t−1
ν (uj)}

. (17.11)
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Figure 17.3: Density of t-copula, ctν,Ψ(u1, u2), ψ12 = 0.2, ν = 3.
SFEtcop

With ζj = t−1
ν (uj) the density of the t-copula can be expressed as:

ctν,Ψ(u1, . . . , ud) = | Ψ |− 1
2
Γ(ν+d2 )

{
Γ(ν2 )

}d−1 (1 + 1
ν ζ

�Ψ−1ζ
)− ν+d

2

{
Γ(ν+1

2 )
}d∏d

j=1

(
1 + 1

ν ζ
2
j

)− ν+1
2

. (17.12)

17.1.3 Archimedean Copulae

Definition 17.4
Let φ : [0, 1] → [0,∞] be a continuous, strictly decreasing function with φ(1) =
0. The pseudo inverse of φ is the function φ[−1] such that

φ[−1] =
{
φ−1(t), 0 ≤ t ≤ φ(0)
0, φ(0) ≤ t ≤ ∞

Theorem 17.3
Let φ : [0, 1] → [0,∞] be a convex, strictly decreasing continuous function
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with φ(1) = 0. Then the function C : [0, 1]2 → [0, 1]

C(u1, u2) = φ[−1]{φ(u1) + φ(u2)} (17.13)

is a copula.

Copulae of the form (17.13) are called Archimedean copulae and the functions
φ their generators. If in addition φ(0) = ∞, φ is called a strict generator and
φ[−1] = φ−1.

Example 17.1 (Gumbel copula)
The function φ(t) = (− log t)θ, θ ∈ [1,∞) is convex, strictly decreasing and
continuous in [0, 1] with φ(0) = ∞ and φ(1) = 0, thus it is a strict generator
and φ−1(t) = e−tθ

−1
. The function C : [0, 1]2 → [0, 1]

C(u1, u2) = exp
[
−{(− log u1)θ + (− log u2)θ}θ−1

]

is the Gumbel copula . For θ = 1 we obtain the product copula: C(u1, u2) =
Π(u1, u2), for θ → ∞ we obtain the Fréchet-Hoeffding upper bound:

Cθ(u1, u2) −→ min(u1, u2) as θ → ∞.

17.1.4 Multivariate Archimedean Copulae

The next theorem generalizes the concepts of Archimedean copulae for the
d-dimensional case.

Definition 17.5
A function f(t) is completely monotonic in an interval [a, b] if for t ∈ [a, b]
and k ∈ N it satisfies

(−1)k
dk

dtk
f(t) ≥ 0

Theorem 17.4
Let φ be a strict generator. The function Cd : [0, 1]d → [0, 1]

Cd(u1, . . . , ud) = φ−1{φ(u1) + . . .+ φ(ud)}
is a copula for all d ≥ 2 if and only if φ−1 is completely monotonic in [0,∞).

Some d-dimensional Archimedean copulae are presented below.
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1. Frank copula, 0 < θ ≤ ∞

Cθ(u1, . . . , ud) = −1
θ

log

⎡

⎢⎢⎢⎢⎢⎣
1 +

d∏

j=1

{exp(−θuj) − 1}

{exp(−θ) − 1}d−1

⎤

⎥⎥⎥⎥⎥⎦
.

The dependence becomes maximal when θ tends to infinity and inde-
pendence is achieved when θ = 0.

2. Gumbel copula, 1 ≤ θ ≤ ∞

Cθ(u1, . . . , ud) = exp

⎡

⎢⎣−
⎧
⎨

⎩

d∑

j=1

(− log uj)θ

⎫
⎬

⎭

θ−1⎤

⎥⎦ .

For θ > 1 this copula allows for the generation of dependence in the
upper tail. For θ = 1, the Gumbel copula reduces to the product copula,
i.e.

C1(u1, . . . , ud) =
d∏

j=1

uj .

For θ → ∞we obtain the Fréchet-Hoeffding upper bound:

C∞(u1, . . . , ud) = min(u1, . . . , ud).

3. Ali-Mikhail-Haq copula, −1 ≤ θ < 1

Cθ(u1, . . . , ud) =

d∏

j=1

uj

1 − θ

⎧
⎨

⎩

d∏

j=1

(1 − uj)

⎫
⎬

⎭

.

If θ = 0, then we have independence:

C0(u1, . . . , ud) =
d∏

j=1

uj .

4. Clayton copula, θ > 0
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Cθ(u1, . . . , ud) =

⎧
⎨

⎩

⎛

⎝
d∑

j=1

u−θj

⎞

⎠− d+ 1

⎫
⎬

⎭

−θ−1

where the density of the Clayton copula is given by

cθ(u1, . . . , ud) =
d∏

j=1

{1 + (j − 1)θ}u−(θ+1)
j

⎛

⎝
d∑

j=1

u−θj − d+ 1

⎞

⎠
−(θ−1+d)

.

As the parameter θ tends to infinity, dependence becomes maximal and
as θ tends to zero, we have independence. As θ → 1, the distribution
tends to the lower Fréchet bound. The Clayton copula allows for the
generation of asymmetric dependence and lower tail dependence, but
no upper tail dependence.

17.1.5 Distributions Constructed with Copulae

Joint distributions with different dependence between the marginal distribu-
tions can be easily constructed with copulae. As an example, the standard
normal and t3 marginal distributions are coupled with 4 distinct copulae C
to form the joint distribution F given by

F (x1, x2) = C{Φ(x1), t3(x2)}.

The density function of F is

f(x1, x2) = c{Φ(x1), t3(x2)}ϕ(x1)ft,3(x2)

where ϕ(x) is the density function from the standard normal distribution and
ft,3(x) from the t-distribution with 3 degrees of freedom. The contour plots
from f(x1, x2) are shown in Figure 17.4 for the respective copula choices.

17.1.6 Monte Carlo Simulation

The simulation from d pseudo random variables with joint distribution de-
fined by a copula C and d marginal distributions Fj , j = 1, . . . , d, may follow
different techniques.
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Figure 17.4: pdf contour plots, F (x1, x2) = C{Φ(x1), t3(x2)} with (clock-
wise) Gaussian (ρ = 0), Clayton (θ = 0.9), Frank (θ = 8) and
Gumbel (θ = 2) copulae.

SFEplotCop

Defining the copula j-dimensional marginal distribution Cj for j = 2, . . . , d−1
as

Cj(u1, . . . , uj) = C(u1, . . . , uj , 1, . . . , 1)

and the derivative of Cj with respect to the first j − 1 arguments as

cjj−1(u1, . . . , uj) =
∂j−1Cj(u1, . . . , uj)
∂u1, . . . , ∂uj−1
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Figure 17.5: Monte Carlo sample of 10.000 realisations of pseudo random
variable with uniform marginals in [0, 1] and dependence struc-
ture given by Clayton copula, θ = 0.79.

SFEclaytonMC

the probability P (Uj ≤ uj , U1 = u1, . . . , Uj−1 = uj−1) can be written as

lim
Δu1,...,Δuj−1→0

Cj(u1 + Δu1, . . . , uj−1 + Δuj−1, uj) − Cj(u1, . . . , uj)
Δu1, . . . ,Δuj−1

= cjj−1(u1, . . . , uj).

Thus, the conditional distribution Λ(uj) (given fixed u1, . . . , uj−1) is a func-
tion of the ratio of derivatives:

Λ(uj) = P (Uj ≤ uj | U1 = u1, . . . , Uj−1 = uj−1)

=
P (Uj ≤ uj , U1 = u1, . . . , Uj−1 = uj−1)

P (U1 = u1, . . . , Uj−1 = uj−1)

=
cjj−1(u1, . . . , uj)

cj−1
j−1(u1, . . . , uj−1)

.

The generation of d pseudo random numbers with given marginal distribu-
tions Fj , j = 1, . . . , d and dependence structure given by the copula C follows
the steps:
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1. generate pseudo random numbers v1, . . . , vd independent and uniformly
distributed in [0, 1].

2. for j = 1, . . . , d generate the pseudo random numbers as uj = Λ−1(vj).
The pseudo random numbers u1, . . . , ud have uniform marginal distri-
butions in [0, 1] and dependence structure given by the copula C (Figure
17.5).

3. set xj = F−1
j (uj). The pseudo random numbers x1, . . . , xd are dis-

tributed with the desired marginal distributions and dependence struc-
ture (Figure 17.6).

If C is the Gaussian copula, the simulation is as follows:

1. generate pseudo random numbers v1, . . . , vd distributed as N(0,Ψ)

2. set uj = Φ(vj), j = 1, . . . , d. The pseudo random numbers u =
(u1, . . . , ud) have uniform marginal distributions in [0, 1] and depen-
dence structure given by CGaΨ .

3. set xj = F−1
j (uj). The pseudo random numbers x1, . . . , xd are dis-

tributed with the desired marginal distributions and dependence struc-
ture.

If the marginal distributions are normal, the pseudo random numbers are
multivariate normal distributed. Otherwise their distribution is called Meta-
Gaussian distribution.

If C is the t-copula, the simulation is as follows:

1. generate pseudo random numbers v1, . . . , vd distributed as td(ν, 0,Ψ)

2. set uj = tν(vj), j = 1, . . . , d where tν is the univariate t distribu-
tion with ν degrees of freedom. The pseudo random numbers u =
(u1, . . . , ud) have uniform marginal distributions in [0, 1] and depen-
dence structure given by Ctν,Ψ.

3. set xj = F−1
j (uj). The pseudo random numbers x1, . . . , xd are dis-

tributed with the desired marginal distributions and dependence struc-
ture.

If the marginal distributions are tν , the pseudo random numbers are multi-
variate t distributed. Otherwise their distribution is called Meta-t distribu-
tion.

Repeating one of the procedures above T times yields a Monte Carlo sample
{xj,t}Tt=1, for j = 1, . . . , d of a random variable distributed as desired.

Scatterplots of Monte Carlo sample of pseudo random variable with uniform
and t3 marginal distributions and dependence structure given by t-copula are
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Figure 17.6: Monte Carlo sample of 10.000 realisations of pseudo random
variable with standard normal marginals and dependence struc-
ture given by Clayton copula with θ = 0.79.

SFEclaytonMC

plotted in Figure 17.7.

17.2 Copula Estimation

LetX be a d-dimensional random variable with parametric univariate margin-
al distributions FXj (xj ; δj), j = 1, . . . , d. Further let a copula belong to a
parametric family C = {Cθ, θ ∈ Θ}. From Sklar’s Theorem the distribution
of X can be expressed as

FX(x1, . . . , xd) = C{FX1(x1; δ1), . . . , FXd
(xd; δd); θ}

and its density as

f(x1, . . . , xd; δ1, . . . , δd, θ) = c{FX1(x1; δ1), . . . , FXd
(xd; δd); θ}

d∏

j=1

fj(xj ; δj)

where

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)
∂u1 . . .∂ud

.

For a sample of observations {xt}Tt=1, xt = (x1,t, . . . , xd,t)� and a vector of
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Figure 17.7: Scatterplots of Monte Carlo sample (5.000 realisations) of

pseudo random variable X = (X1, X2, X3)� with uniform
(above) and t3 marginal distributions (below). Dependence
structure given by t-copula with ν = 3 and ψi,j = 0.5, i, j =
1, 2, 3, i 
= j.

SFEtMC

parameters α = (δ1, . . . , δd, θ)� ∈ R

k+1 the likelihood function is given by

L(α;x1, . . . , xT ) =
T∏

t=1

f(x1,t, . . . , xd,t; δ1, . . . , δd, θ)

and the log-likelihood function by

�(α;x1, . . . , xT ) =
T∑

t=1

log c{FX1(x1,t; δ1), . . . , FXd
(xd,t; δd); θ}

+
T∑

t=1

d∑

j=1

log fj(xj,t; δj).

The vector of parameters α = (δ1, . . . , δd, θ)� contains d parameters δj from
the marginals and the copula parameter θ. All these parameters can be esti-
mated in one step. For practical applications, however, a two step estimation
procedure is more efficient.
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17.2.1 Maximum Likelihood Estimation

In the Maximum Likelihood estimation method (also called full maximum
likelihood), the vector of parameters α is estimated in one single step through

α̃FML = arg max
α

�(α)

The estimates α̃FML = (δ̃1, . . . , δ̃d, θ̃)� solve

(∂�/∂δ1, . . . , ∂�/∂δd, ∂�/∂θ) = 0.

17.2.2 IFM - Inference for Margins

In the IFM (inference for margins) method, the parameters δj from the
marginal distributions are estimated in the first step and used to estimate
the dependece parameter θ in the second step:

1. for j = 1, . . . , d the log-likelihood function for each of the marginal
distributions are

�j(δj) =
T∑

t=1

log fj(xj,t; δj)

and the estimated parameters

δ̂j = arg max
δ

�j(δj)

2. the pseudo log-likelihood function

�(θ, δ̂1, . . . , δ̂d) =
T∑

t=1

log c{FX1(x1,t; δ̂1), . . . , FXd
(xd,t; δ̂d); θ}

is maximised over θ to get the dependence parameter estimate θ̂.

The estimates α̂IFM = (δ̂1, . . . , δ̂d, θ̂)� solve

(∂�1/∂δ1, . . . , ∂�d/∂δd, ∂�/∂θ) = 0.

17.2.3 CML - Canonical Maximum Likelihood

In the CML (canonical maximum likelihood) method, the univariate marginal
distributions are estimated through the empirical distribution function F̂ .
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For j = 1, . . . , d

F̂j(x) =
1

T + 1

T∑

t=1

1(xj,t ≤ x).

The pseudo log-likelihood function is

�(θ) =
T∑

t=1

log c{F̂1(x1,t), . . . , F̂d(xd,t); θ}

and the copula parameter estimator θ̂CML is given by

θ̂CML = arg max
θ

�(θ).

Notice that the first step of the IMF and CML methods estimates the marginal
distributions. After marginals are estimated, a pseudo sample {ut} of obser-
vations transformed in the unit d-cube is obtained and used in the copula
estimation.

17.2.4 Gaussian Copula Estimation

From a sample {ut}Tt=1 where u = (u1, . . . , ud)� ∈ [0, 1]d, the density of the
Gaussian copula is given by

cGaΨ (u1, . . . , ud) = | Ψ |− 1
2 exp

{
−1

2
ζ�(Ψ−1 − Id)ζ

}

and the pseudo log-likelihood function by

�(Ψ;u1,t, . . . , ud,t) = −T
2

log | Ψ | −1
2

T∑

t=1

ζ�t (Ψ−1 − Id)ζt

where ζt = (ζ1,t, . . . , ζd,t)� and ζj,t = Φ−1(uj,t).

The maximum-likelihood estimator for Ψ is

Ψ̂ = arg max
Ψ∈P

�(Ψ)

where P is the set of all lower-triangular matrices with one in the diagonal.
The maximisation is feasible but very slow for high dimensions, see Em-
brechts, Frey and McNeil (2005). An approximate solution can be obtained
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using the ML estimator for the covariance matrix Σ as

Σ̂ = arg max
Σ

�(Σ).

The estimator is then

Σ̂ =
1
T

T∑

t=1

ζtζ
�
t

and defining
Λ = diag(Σ̂ii)

we obtain
Ψ̂ = Λ−1Σ̂Λ−1.

17.2.5 t-Copula Estimation

One possible estimation method for the Student’s t-copula is based on the
estimation of Kendall’s tau with method of moments, as in Embrechts (2005).
For a pseudo sample {ut}Tt=1 where u = (u1, . . . , ud)� ∈ [0, 1]d, the Kendall’s
tau coefficient for each pair of observations i, j = 1, . . . , d is given by

ρ̂τ (ui, uj) =
(
T

2

)−1 ∑

1≤t1≤t2≤T
sign(ui,t1 − ui,t2)(uj,t1 − uj,t2).

Each element from the correlation matrix Ψ is estimated as

ψ̂ij = sin
{π

2
ρ̂τ (ui, uj)

}
.

The parameter ν is estimated through maximum-likelihood with the esti-
mated matrix Ψ̂ held fixed. In this case the pseudo log-likelihood function is
given by

�(ν;u1,t, . . . , ud,t) =
T∑

t=1

log{ct
ν,Ψ̂

(u1,t, . . . , ud,t)}

where ct
ν,Ψ̂

(u1,t, . . . , ud,t) is defined in equation (17.11). The estimator for
the number of degrees of freedom is then

ν̂ = arg max
ν∈N+

�(ν).



354 17 Copulae and Value at Risk

17.3 Value-at-Risk and Copulae

This section introduces the main assumptions and steps necessary for esti-
mating the VaR from a linear portfolio using copulae. Static and time-varying
methods as well as their VaR performance evaluation through backtesting are
described below.

17.3.1 Value-at-Risk

Let w = (w1, . . . , wd)� ∈ R

d denote a portfolio of positions on d assets
and St = (S1,t, . . . , Sd,t)� be a non-negative random vector representing the
prices of the assets at t, where t is a time index. The value Vt of the portfolio
w is given by

Vt =
d∑

j=1

wjSj,t (17.14)

and the random variable

Lt+τ = (Vt+τ − Vt) (17.15)

also called profit and loss (P&L) function, expresses the change in the port-
folio value between τ periods.

Defining the log-returns Xt+τ in τ periods as Xt+τ = logSt+τ − logSt and
considering τ = 1, (17.15) can be written as

Lt+1 =
d∑

j=1

wjSj,t {exp(Xj,t+1) − 1} . (17.16)

The distribution function from L, dropping the time index, is given by

FL(x) = P (L ≤ x). (17.17)

The Value-at-Risk at level α from a portfolio w is defined as the α-quantile
from FL:

V aR(α) = F−1
L (α). (17.18)

It follows from (17.16) and (17.17) that FL depends on the d-dimensional
distribution of log-returns FX . In general, the loss distribution FL depends
on a random process representing the risk factors influencing the P&L from
a portfolio. In the present case log-returns are a suitable risk factor choice.
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Thus, modelling their distribution is essential to obtain the quantiles from
FL.

A log-returns process {Xt} can be modelled as

Xj,t = μj,t + σj,tεj,t

where εt = (ε1,t, . . . , εd,t)� are standardised i.i.d. innovations with E[εj,t] = 0
and E[ε2j,t] = 1 for j = 1, . . . , d; Ft is the available information at time t;

μj,t = E[Xj,t | Ft−1]

is the conditional mean given Ft−1 and

σ2
j,t = E[(Xj,t − μj,t)2 | Ft−1]

is the conditional variance given Ft−1. The innovations ε = (ε1, . . . , εd)�

have joint distribution Fε and εj has continuous marginal distributions Fj ,
j = 1, . . . , d.

17.3.2 VaR Estimation with Copulae

The innovations ε have distribution function described by

Fε(ε1, . . . , εd) = Cθ{F1(ε1), . . . , Fd(εd)} (17.19)

where Cθ is a copula belonging to a parametric family C = {Cθ, θ ∈ Θ}. To
obtain the Value-at-Risk in this set up, the dependence parameter and dis-
tribution function from residuals are estimated from a sample of log-returns
and used to generate P&L Monte Carlo samples. Their quantiles at differ-
ent levels are the estimators for the Value-at-Risk. The whole procedure is
summarised below.

For a portfolio w on d assets and a sample {xj,t}Tt=1, j = 1, . . . , d of log-
returns, the Value-at-Risk at level α is estimated according to the following
steps:

1. estimation of residuals ε̂t
2. specification and estimation of marginal distributions Fj(ε̂j)

3. specification of a parametric copula family C and estimation of depen-
dence parameter θ

4. generation of Monte Carlo sample of innovations ε and losses L

5. estimation of ̂V aR(α), the empirical α-quantile from L.
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17.3.3 Time-Varying Copulae and Backtesting

The application of the (static) procedure described above on sliding windows
of time series {xj,t}Tt=1 delivers a sequence of parameters for a copula family.
Hence the denomination time-varying copulae.

Using subsets of size w scrolling in time t (i.e., a moving window of size w),

{xt}st=s−w+1

for s = w, . . . , T , the procedure described in Section 17.3.2 generates the
time series {̂V aRt}Tt=w of Value-at-Risk and {θ̂t}Tt=w dependence parameters
estimates.

Backtesting is used to evaluate the performance of the specified copula family
C. The estimated values for the VaR are compared with the true realisations
{lt} of the P&L function, an exceedance occuring for each lt smaller than
̂V aRt(α). The ratio of the number of exceedances to the number of observa-
tions gives the exceedances ratio α̂:

α̂ =
1

T − w

T∑

t=w

1{lt < ̂V aRt(α)}.

17.4 Empirical Results

The estimation methods described in the preceeding section are used on two
exchange rates portfolio, the first composed of 2 positions, the second of 5
positions. Different copulae are used in static and dynamic set up and their
VaR performance is compared based on backtesting.

17.4.1 An Exchange Rate Portfolio

In this section, the Value-at-Risk of portfolios on exchange rates (DEM/USD
and GBP/USD from 01.12.1979 to 01.04.1994) is computed using different
copulae. Assuming the log-returns {Xj,t} follow a GARCH(1,1) process we
have

Xj,t = μj,t + σj,tεj,t

where
σ2
j,t = ωj + αjσ

2
j,t−1 + βj(Xj,t−1 − μj,t−1)2
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ω̂j α̂j β̂j

j = 1 0.00 0.07 0.89
j = 2 0.00 0.05 0.93

Table 17.1: GARCH(1,1) parameters, 2-dimensional portfolio.

μ̂j σ̂j

j = 1 0.0081 0.9987
j = 2 0.1887 0.9991

Table 17.2: Parameters from marginal distributions.

and ω > 0, αj ≥ 0, βj ≥ 0, αj + βj < 1.

The fit of a GARCH(1,1) model to the sample of log returns {xt}Tt=1, xt =
(x1,t, x2,t)�, T = 3718, gives the estimates ω̂j , α̂j and β̂j , as in Table 17.1,
and empirical residuals {ε̂t}Tt=1, where ε̂t = (ε̂1,t, ε̂2,t)�. The scatterplot of
the empirical residuals is depicted in Figure 17.8.

The marginal distributions are specified as normal, i.e., ε̂j ∼ N(μ̂j , σ̂j) with
parameters δ̂j = (μ̂j , σ̂j) estimated from the data as in Table 17.2.

Figure 17.9 displays the Kernel density estimator of the residuals and of the
normal density, estimated with a Quartic kernel.

Static Copulae

The dependence parameters are estimated (Table 17.3) for different copula
families (Gaussian, Clayton and Gumbel). Various portfolios are used to
generate the P&L samples and the estimated Value-at-Risk for each of them
are in Table 17.4. Residuals ε̂ and fitted copulae (Gaussian, Clayton and
Gumbel) are plotted in Figure 17.10.
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Copula θ̂

Gaussian 0.767
Clayton 1.861
Gumbel 2.283

Table 17.3: Dependence parameter for different static copulae.
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Figure 17.8: Scatterplot from residuals ε̂1 and ε̂2.
SFEresGarch

Time-varying Copulae

In the dynamic approach, the empirical residuals are sampled in moving
windows with fixed size w = 250, {ε̂t}st=s−w+1, for s = w, . . . , T . The time
series from estimated dependence parameters for each copula family are in
Figure 17.11.

The same portfolio compositions as in the static case are used to generate
P&L samples. The series of estimated Value-at-Risk and the P&L function
for selected portfolios are plotted in Figure 17.12, 17.13. and 17.14. Backtest-
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Figure 17.9: Kernel density estimator of the residuals and of the normal
density from DEM/USD (left) and GBP/USD (right). Quartic
kernel, ĥ = 2.78σ̂n−0.2.
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Figure 17.10: Residuals ε̂ and fitted copulae: Gaussian (ρ̂ = 0.76898), Clay-
ton (θ̂ = 1.8611), Gumbel (θ̂ = 2.2833).
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α(×102)
Portfolio 5 1 0.5 0.1

(1, 1) -0.030 -0.042 -0.046 -0.055
-0.026 -0.038 -0.042 -0.049
-0.026 -0.043 -0.051 -0.078

(1, 2) -0.031 -0.044 -0.049 -0.058
-0.029 -0.043 -0.048 -0.056
-0.028 -0.048 -0.056 -0.089

(1, 3) -0.033 -0.046 -0.052 -0.062
-0.033 -0.048 -0.054 -0.064
-0.031 -0.053 -0.062 -0.099

(2, 1) -0.058 -0.083 -0.091 -0.109
-0.049 -0.071 -0.079 -0.093
-0.049 -0.082 -0.097 -0.147

(2, 3) -0.061 -0.086 -0.095 -0.113
-0.056 -0.081 -0.091 -0.106
-0.054 -0.090 -0.108 -0.168

(3, 2) -0.061 -0.086 -0.095 -0.113
-0.075 -0.109 -0.122 -0.143
-0.074 -0.125 -0.149 -0.226

(−1, 1) -0.027 -0.039 -0.043 -0.052
-0.026 -0.031 -0.034 -0.041
-0.020 -0.028 -0.031 -0.037

(−1, 2) -0.026 -0.037 -0.040 -0.050
-0.020 -0.029 -0.034 -0.040
-0.017 -0.024 -0.026 -0.030

(−1, 3) -0.025 -0.035 -0.039 -0.048
-0.019 -0.029 -0.032 -0.040
-0.015 -0.021 -0.023 -0.025

(−2, 1) -0.056 -0.080 -0.088 -0.106
-0.044 -0.064 -0.070 -0.084
-0.043 -0.062 -0.069 -0.082

(−2, 3) -0.054 -0.075 -0.083 -0.102
-0.042 -0.061 -0.068 -0.081
-0.037 -0.052 -0.058 -0.069

(−3, 2) -0.084 -0.118 -0.132 -0.159
-0.066 -0.096 -0.105 -0.125
-0.063 -0.090 -0.100 -0.119

Table 17.4: ̂V aR(α) for different portfolios and α values (static copulae). For
each portfolio estimated with Gaussian, (first row), Clayton (sec-
ond row) and Gumbel copula (third row).



17.4 Empirical Results 361

α(×102)
Portfolio 5 1 0.5 0.1

(1, 1) 4.81 1.58 1.00 0.37
(1, 2) 4.61 1.41 0.92 0.34
(1, 3) 4.75 1.41 0.95 0.37
(2, 1) 5.07 1.81 1.03 0.43
(2, 3) 4.61 1.44 0.92 0.34
(3, 2) 4.98 1.64 1.03 0.43

(−1, 1) 3.51 0.72 0.34 0.14
(−1, 2) 1.84 0.37 0.23 0.11
(−1, 3) 1.96 0.46 0.23 0.11
(−2, 1) 4.18 1.06 0.72 0.20
(−2, 3) 2.76 0.43 0.17 0.14
(−3, 2) 3.83 0.89 0.57 0.17

avg 3.91 1.10 0.68 0.27
std.dev. 1.15 0.52 0.35 0.12

Table 17.5: Clayton copula, exceedances ratio α̂(×102) for different portfo-
lios.

ing results for each copula, portfolio and quantiles at levels α for α1 = 0.05,
α2 = 0.01, α3 = 0.005 and α4 = 0.001 are in Tables 17.5, 17.6 and 17.7. One
can observe, that the Gumbel copula produces better Backtesting results at
levels α1 = 0.05 and α2 = 0.01, whereas Clayton copula performs better
for smaller quantiles at levels α3 = 0.005 and α4 = 0.001. In addition, we
can verify that on average the Clayton and the Gaussian copula overestimate
overestimate VaR.

17.4.2 5-dimensional Exchange Rate Portfolio

In this section, the Value-at-Risk of exchange rate portfolios composed of 5
positions (USD value of GBP, FRF, CHF, DEM and AUD from 04.01.1994
to 15.08.1997) is computed using a time-varying Clayton copula.

The fit of a GARCH(1,1) model to the sample of log returns {xt}Tt=1, xt =
(x1,t, . . . , x5,t)�, T = 907, gives the estimates ω̂j , α̂j and β̂j , as in Table
17.8, and empirical residuals {ε̂t}Tt=1, where ε̂t = (ε̂1,t, . . . , ε̂5,t)�, as in upper
right part of Figure 17.15. The marginal distributions are specified as normal,
ε̂j ∼ N(μ̂j , σ̂j), the estimated parameters δ̂j = (μ̂j , σ̂j) are in Table 17.9.
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Figure 17.11: Dependence parameter θ̂, estimated using IFM method, Gaus-
sian (upper panel), Clayton (middle panel) and Gumbel (lower
panel) copulae, moving window (w = 250).
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VaR - Clayton Copula

1983 1986 1989 1992

time

-0
.4

-0
.2

0
0.

2

P&
L

Figure 17.12: ̂V aR(α) (solid line), P&L (dots) and exceedances (crosses),
α = 0.05, α̂ = 0.04987, w = (3, 2)�. P&L samples generated
with Clayton copula.
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α(×102)
Portfolio 5 1 0.5 0.1

(1, 1) 5.21 1.09 0.43 0.09
(1, 2) 5.16 1.03 0.43 0.09
(1, 3) 4.92 0.98 0.49 0.09
(2, 1) 5.21 1.03 0.49 0.12
(2, 3) 5.16 1.00 0.49 0.09
(3, 2) 5.21 1.06 0.46 0.12

(−1, 1) 5.21 1.90 1.33 0.58
(−1, 2) 5.96 1.67 1.04 0.46
(−1, 3) 4.64 1.09 0.52 0.26
(−2, 1) 5.10 1.67 1.12 0.52
(−2, 3) 5.53 2.07 1.30 0.55
(−3, 2) 5.01 1.72 1.15 0.52
avg. 5.20 1.36 0.77 0.29

std.dev. 0.32 0.41 0.38 0.22

Table 17.6: Gumbel copula, exceedances ratio α̂(×102) for different portfo-
lios.
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VaR - Gumbel Copula
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Figure 17.13: ̂V aR(α) (solid line), P&L (dots) and exceedances (crosses), α =
0.05, α̂ = 0.0521, w = (3, 2)�. P&L samples generated with
Gumbel copula.
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α(×102)
Portfolio 5 1 0.5 0.1

(1, 1) 3.72 1.09 0.66 0.23
(1, 2) 5.13 1.64 1.21 0.52
(1, 3) 6.14 1.96 1.55 0.75
(2, 1) 3.29 0.78 0.58 0.14
(2, 3) 4.32 1.47 0.92 0.43
(3, 2) 3.34 0.86 0.63 0.20

(−1, 1) 1.28 0.23 0.14 0.09
(−1, 2) 0.84 0.17 0.12 0.01
(−1, 3) 1.04 0.32 0.20 0.01
(−2, 1) 1.99 0.35 0.17 0.09
(−2, 3) 0.98 0.23 0.14 0.09
(−3, 2) 1.76 0.32 0.14 0.09
avg. 2.81 0.80 0.54 0.23

std.dev. 1.75 0.63 0.48 0.21

Table 17.7: Gaussian copula, exceedances ratio α̂(×102) for different portfo-
lios.
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Figure 17.14: ̂V aR(α) and P&L (dots), α = 0.01, estimated with Gumbel
copula, α̂ = 0.0167, Clayton copula, α̂ = 0.0106, and Gaussian
copula, α̂ = 0.0034, w = (−2, 1)�.
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The estimated Value-at-Risk at level α together with the P&L function are
plotted in Figure 17.16. Backtesting results for each portfolio for α1 = 0.05,
α2 = 0.01, α3 = 0.005 and α4 = 0.001 are in Table 17.10.

To conclude, a summary of the main findings of this chapter. Three different
copulae - Gumbel, Clayton and Gaussian - were used to estimate the Value-
at-Risk from the 2-dimensional portfolio (DEM/USD, GBP/USD). From the
time series of estimated dependence parameters, we can verify that the de-
pendence structure is represented in a similar form with all copula families,
as in Figure 17.11.

Using backtesting results to compare the performance in the VaR estimation,
we remark that on average the Clayton and Gaussian copulae overestimated
the VaR. In terms of capital requirement, a financial institution computing
VaR with those copulae would be requested to keep more capital aside than
necessary to guarantee the desired confidence level.

The estimation with Gumbel copula, on another side, produced results close
to the desired level. Gumbel copulae seems to represent specific data depen-
dence structures (like lower tail dependencies, relevant to explain simultane-
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ω̂ α̂ β̂

x1 0.000 0.043 0.931
x2 0.000 0.047 0.932
x3 0.000 0.099 0.813
x4 0.000 0.043 0.940
x5 0.000 0.002 0.000

Table 17.8: GARCH(1,1) parameters, 5-dimensional portfolio.

μ̂(×102) σ̂

j = 1 2.52 1.00
j = 2 -0.46 0.99
j = 3 -0.36 1.00
j = 4 -0.86 1.00
j = 5 2.28 1.00

Table 17.9: Parameters from marginal distributions.

α(×102)
Portfolio 5 1 0.5 0.1

(1, 1, 1, 1, 1) 5.02 0.61 0.47 0.15
(1, 2, 3, 2, 1) 5.78 0.91 0.47 0.47
(1, 3, 1, 2, 3) 3.96 0.47 0.47 0.30
(2, 1, 2, 3, 1) 5.33 0.91 0.61 0.47
(2, 1, 3, 2, 1) 5.63 0.91 0.47 0.47
(2, 3, 1, 1, 2) 3.96 0.76 0.61 0.15
(2, 3, 3, 2, 1) 5.78 0.91 0.47 0.47
(3, 1, 2, 1, 3) 3.96 0.76 0.61 0.15
(3, 1, 2, 2, 2) 4.87 0.76 0.61 0.15
(3, 2, 3, 2, 3) 4.57 0.61 0.61 0.15

avg. 4.79 0.75 0.50 0.38
std.dev. 0.77 0.15 0.07 0.08

Table 17.10: Clayton copula, exceedances ratio α̂ for different portfolios.
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Figure 17.15: Scatterplots from GARCH residulas (upper triangular) and
from residuals mapped on unit square by the cdf (lower tri-
angular).
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Figure 17.16: ̂V aR(α) and P&L (dots), estimated with Clayton copula, α1 =
0.05, α2 = 0.01, α3 = 0.005 and α4 = 0.001, w = (3, 1, 2, 1, 3)�.
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ous losses) better than Gaussian and Clayton copulae.

17.5 Recommended Literature

The term copula goes back to the works of Sklar (1959) and Sklar (1996).
A detailed discussion with proofs and deep mathematical treatment can be
found in Joe (1997) and Nelsen (1999).

Nelsen (1999) features a theoretical introduction to copulae. Further, Nelsen
(1999) generalises the concepts of Archimedean copulae for the d-dimensional
case. For more copula families and respective properties, refer to Joe (1997).

A practical introduction is given in Deutsch and Eller (1999). Embrechts,
McNeil and Straumann (1999b) discuss restrictions of the copula technique
and their relation to the classical correlation analysis.

Different techniques for the simulation from d pseudo random variables with
joint distribution defined by a copula C and d marginal distributions are
used. A standard method for Archimedean copulae (the conditional distri-
bution method) as well as other different methods are described in Bouyé,



17.5 Recommended Literature 369

Durrleman, Nikeghbali, Riboulet and Roncalli (2000), Devroye (1986) and
Embrechts et al. (2005).

Detailed description of the VaR estimation procedure at prescribed level α is
to be found in Giacomini and Härdle (2005).

The theory for copula model selection tests is developed in Chen and Fan
(2006), Chen and Fan (2004) and Chen, Fan and Tsyrennikov (2004) for
static set up.



18 Statistics of Extreme Risks

When we model returns using a GARCH process with normally distributed
innovations, we have already taken into account the second stylised fact (see
Chapter 13). The distribution of the random returns automatically has a
leptokurtosis and larger losses occurring more frequently than under the as-
sumption that the returns are normally distributed. If one is interested in
the 95%-VaR of liquid assets, this approach produces the most useful results.
For the extreme risk quantiles such as the 99%-VaR and for riskier types of
investments the risk is often underestimated when the innovations are as-
sumed to be normally distributed, since a higher probability of particularly
extreme losses than a GARCH process εt with normally distributed Zt can
produce.

Thus procedures have been developed which assume that the tails of the in-
novation’s distribution are heavier. The probability of extreme values largely
depends on how slowly the probability density function fZ(x) of the innova-
tions goes to 0 as |x| → ∞. The rate at which it diminishes must be estimated
from the data. Since extreme observations are rare, this produces a difficult
estimation problem. Even large data sets contain only limited information on
the true probability of an extreme loss (profit). In such a situation methods
from extreme value statistics produce a more realistic estimate of the risk.
In this chapter a short overview of the basic ideas and several of the latest
applications are given.

18.1 Limit Behaviour of Maxima

Consider the stochastic behaviour of the maximum Mn = max(X1, . . . , Xn)
of n identically distributed random variables X1, . . . , Xn with cumulative
distribution function (cdf) F (x). From a risk management perspective Xt =
−Zt is the negative return at day t. The cdf of Mn is

P(Mn ≤ x) = P(X1 ≤ x, . . . ,Xn ≤ x) =
n∏

t=1

P(Xt ≤ x) = Fn(x). (18.1)
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We are only considering unbounded random variables Xt, i.e. F (x) < 1 for
all x < ∞. Obviously it holds that Fn(x) → 0 for all x, when n → ∞, and
thus Mn

P−→ ∞. The maximum of n unbounded random variables increases
over all boundaries. In order to achieve a non-degenerate behaviour limit,
Mn has to be standardised in a suitable fashion.

Definition 18.1 (Maximum Domain of Attraction)
The random variable Xt belongs to the maximum domain of attraction (MDA)
of a non-degenerate distribution G, if for suitable sequences cn > 0, dn it holds
that:

Mn − dn
cn

L−→ G for n→ ∞,

i.e. Fn(cnx+ dn) → G(x) at all continuity points x of the cdf G(x).

It turns out that only a few distributions G can be considered as the asymp-
totic limit distribution of the standardised maximum Mn. They are referred
to as the extreme value distriubtions. These are the following three distribu-
tion functions:

Fréchet: G1,α(x) = exp{−x−α}, x ≥ 0 , for α > 0,

Gumbel: G0(x) = exp{−e−x}, x ∈ R,

Weibull: G2,α(x) = exp{−|x|−α}, x ≤ 0 , for α < 0.

The Fréchet distributions are concentrated on the non-negative real num-
bers [0,∞), while the Weibull distribution, on the other hand, on (−∞, 0],
whereas the Gumbel distributed random variables can attain any real num-
ber. Figure 18.1 displays the density function of the Gumbel distribution,
the Fréchet distribution with parameter α = 2 and the Weibull distribution
with parameter α = −2. All three distributions types can be displayed in a
single Mises form:

Definition 18.2 (Extreme Value Distributions)
The generalised extreme value distribution (GEV = generalised extreme
value) with the form parameter γ ∈ R has the distribution function:

Gγ(x) = exp{−(1 + γx)−1/γ}, 1 + γx > 0 for γ 
= 0
G0(x) = exp{−e−x}, x ∈ R

G0 is the Gumbel distribution, whereas Gγ , γ 
= 0 is linked to the Fréchet-
and Weibull distributions by the following relationships:

Gγ(
x− 1
γ

) = G1,1/γ(x) for γ > 0,
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Figure 18.1: Fréchet (red), Gumbel (black) and Weibull distributions
(blue). SFEevt1

Gγ(−x+ 1
γ

) = G2,−1/γ(x) for γ < 0.

This definition describes the standard form of the GEV distributions. In
general we can change the centre and the scale to obtain other GEV distri-
butions: G(x) = Gγ(x−μσ ) with the form parameter γ, the location parameter
μ ∈ R and the scale parameter σ > 0. For asymptotic theory this does not
matter since the standardised sequences cn, dn can be always chosen so that
the asymptotic distribution G has the standard form (μ = 0, σ = 1). An
important result of the asymptotic distribution of the maximum Mn is the
Fisher-Tippett theorem:

Theorem 18.1
If sequences cn > 0, dn exist and a non-degenerate distribution G, so that

Mn − dn
cn

L−→ G for n→ ∞,
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then G is a GEV distribution.

Proof:
As a form of clarification the basic ideas used to prove this central result are
outlined. Let t > 0, and [z] represent the integer part of z. Since F [nt] is
the distribution function of M[nt], due to our assumptions on the asymptotic
distribution of Mn it holds that

F [nt](c[nt]x+ d[nt]) −→ G(x) for [nt] → ∞, i.e. n→ ∞.

On the other hand it also holds that

F [nt](cnx+ dn) = {Fn(cnx+ dn)}
[nt]

n −→ Gt(x) for n→ ∞.

In other words this means that

M[nt] − d[nt]

c[nt]

L−→ G ,
M[nt] − dn

cn

L−→ Gt

for n → ∞. According to the Lemma, which is stated below, this is only
possible when

cn
c[nt]

−→ b(t) ≥ 0,
dn − d[nt]

c[nt]
−→ a(t)

and
Gt(x) = G(b(t)x+ a(t)), t > 0, x ∈ R. (18.2)

This relationship holds for arbitrary values t. We use it in particular for
arbitrary t, s and s · t and obtain

b(st) = b(s) b(t), a(st) = b(t)a(s) + a(t). (18.3)

The functional equations (18.2), (18.3) for G(x), b(t), a(t) have only one so-
lution, when G is one of the distributions G0, G1,α or G2,α, that is, G must
be a GEV distribution.

�

Lemma 18.1 (Convergence Type Theorem)
Let U1, U2, . . . , V,W be random variables, bn, βn > 0, an, αn ∈ R. If

Un − an
bn

L−→ V
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in distribution for n→ ∞, then it holds that:

Un − αn
βn

L−→W if and only if
bn
βn

−→ b ≥ 0,
an − αn
βn

−→ a ∈ R.

In this case W has the same distribution as bV + a.

Notice that the GEV distributions are identical to the so called max-stable
distributions, by which for all n ≥ 1 the maximumMn of n i.i.d. random vari-
ables X1, . . . , Xn have the same distribution as cnX1 + dn for appropriately
chosen cn > 0, dn.
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Figure 18.2: PP plot for the normal distribution and pseudo random variables
with extreme value distributions. Fr’echet (upper left), Weibull
(upper right) and Gumbel (below). SFEevt2

Figure 18.2 shows the so called normal plot, i.e., it compares the graph of the
cdf of the normal distribution with the one in Section 18.2 for the special case
F (x) = Φ(x) with computer generated random variables that have a Gum-
bel distribution, Fréchet distribution with parameter α = 2 and a Weibull
distribution with parameter α = −2 respectively. The differences with the
normally distributed random variables, which would have approximately a
straight line in a normal plot, can be clearly seen.
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If the maximum of i.i.d. random variables converges in distribution after
being appropriately standardised, then the question arises which of the three
GEV distributions is the asymptotic distribution. The deciding factor is
how fast the probability for extremely large observations decreases beyond
a threshold x, when x increases. Since this exceedance probability plays
an important role in extreme value theory, we will introduce some more
notations:

F (x) = P(X1 > x) = 1 − F (x).

The relationship between the exceedance probability F (x) and the distribu-
tion of the maxima Mn will become clear with the following theorem.

Theorem 18.2
a) For 0 ≤ τ ≤ ∞ and every sequence of real numbers un, n ≥ 1, it holds for
n→ ∞ that

nF (un) → τ if and only if P(Mn ≤ un) → e−τ .

b) F belongs to the maximum domain of attraction of the GEV distribution
G with the standardised sequences cn, dn exactly when n→ ∞

nF (cnx+ dn) → − logG(x) for all x ∈ R.

The exceedance probability of the Fréchet distribution G1,α behaves like 1/xα

for x → ∞, because the exponential function around 0 is approximately
linear, i.e.,

G1,α(x) =
1
xα

{1 + O(1)} for x→ ∞.

Essentially all of the distributions that belong to the MDA of this Fréchet
distribution show the same behaviour; xαF (x) is almost constant for x→ ∞,
or more specifically: a slowly varying function.

Definition 18.3
A positive measurable function L in (0,∞) is called slowly varying, if for all
t > 0

L(tx)
L(x)

→ 1 for x→ ∞.

Typical slowly varying functions are, in addition to constants, logarithmic
growth rates, for example L(x) = log(1 + x), x > 0.

Theorem 18.3
F belongs to the maximum domain of attraction of the Fréchet distribution
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G1,α for some α > 0, if and only if xαF (x) = L(x) is a slowly varying
function. The random variables Xt with the distribution function F are un-
bounded, i.e., F (x) < 1 for all x <∞, and it holds that

Mn

cn

L−→ G1,α

with cn = F−1(1 − 1
n ).

For the description of the standardised sequence cn we have used the following
notation. cn is an extreme quantile of the distribution F , and it holds that
F (cn) = P(Xt > cn) = 1/n.

Definition 18.4 (Quantile Function)
If F is a distribution function, we call the generalised inverse

F−1(γ) = inf{x ∈ R; F (x) ≥ γ}, 0 < γ < 1,

the quantile function. It then holds that P(X1 ≤ F−1(γ)) = γ, i.e., F−1(γ)
is the γ-quantile of the distribution F .

If F is strictly monotonic increasing and continuous, then F−1 is the gener-
alised inverse of F .

There is a corresponding criterion for the Weibull distribution that can be
shown using the relationship G2,α(−x−1) = G1,α(x), x > 0,. Random vari-
ables, whose maxima are asymptotically Weibull distributed, are by all means
bounded, i.e., a constant c < ∞ exists, such that Xt ≤ c with probability
1. Therefore, in financial applications they are only interesting in special
situations where using a type of hedging strategy, the loss, which can result
from an investment, is limited. In order to prohibit continuous differentia-
tions in various cases, below we will mainly discuss case where the losses are
unlimited. Cases in which losses are limited can be dealt with in a similar
fashion.

Fréchet distributions appear as asymptotic distributions of the maxima of
those random variables whose probability of values beyond x only slowly de-
creases with x, whereas only bounded random variables belong to the max-
imum domain of attraction of Weibull distributions. Many known distribu-
tions such as the exponential or the normal distribution do not belong to
either one of the groups. It is likely that in such cases the distribution of the
appropriate standardised maxima converges to a Gumbel distribution. The
general conditions needed for this are however more complicated and more
difficult to prove than they were for the Fréchet distribution.
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Theorem 18.4
The distribution function F of the unbounded random variables Xt belongs to
the maximum domain of attraction of the Gumbel distribution if measurable
scaling functions c(x), g(x) > 0 as well as an absolute continuous function
e(x) > 0 exist with c(x) → c > 0, g(x) → 1, e′(x) → 0 for x→ ∞ so that for
z <∞

F (x) = c(x) exp{−
∫ x

z

g(y)
e(y)

dy}, z < x <∞.

In this case it holds that
Mn − dn

cn

L−→ G0

with dn = F−1(1 − 1
n ) and cn = e(dn).

As a function e(x), the average excess function can be used:

e(x) =
1

F (x)

∫ ∞

x

F (y) dy, x <∞,

which will be considered in more detail in the following.

The exponential distribution with parameter λ has the distribution function
F (x) = 1−e−λx, x ≥ 0, so that F (x) = e−λx fulfills the conditions stipulated
in the theorem with c(x) = 1, g(x) = 1, z = 0 and e(x) = 1/λ. The
maximum Mn of n independent exponentially distributed random variables
with parameter λ thus converges in distribution to the Gumbel distribution:

λ(Mn − 1
λ

log n) L−→ G0 for n→ ∞.

In general, however, the conditions are not so easy to check. There are other
simple sufficient conditions with which it can be shown, for example, that the
normal distribution also belongs to the maximum domain of attraction of the
Gumbel distribution. If, for example, Mn is the maximum of n independent
standard normally distributed random variables, then it holds that

√
2 log n(Mn − dn)

L−→ G0 for n→ ∞
with dn =

√
2 log n− log log n+ log(4π)

2
√

2 log n
.

SFEevtex1

Another member of the distributions in the maximum domain of attraction of
the Fréchet distribution G1,α is the Pareto distribution with the distribution
function

W1,α(x) = 1 − 1
xα
, x ≥ 1, α > 0,
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as well as all other distributions with Pareto tails, i.e., with

F (x) =
κ

xα
{1 + O(1)} for x→ ∞.

Since F
−1

(γ) for γ ≈ 1 behaves here like (κ/γ)1/α, cn for n→ ∞ is identical
to (κn)1/α, and

Mn

(κn)1/α
L−→ G1,α for n→ ∞.

There is a tight relationship between the asymptotic behaviour of the maxima
of random variables and the distribution of the corresponding excesses which
builds the foundation for an important estimation method in the extreme
value statistic, which is defined in the next section. In general it deals with
observations crossing a specified threshold u. Their distribution Fu is defined
as follows:

Definition 18.5 (Excess Distribution)
Let u be an arbitrary threshold and F a distribution function of an unbounded
random variable X.

a) Fu(x) = P{X−u ≤ x | X > u} = {F (u+x)−F (u)}/F (u), 0 ≤ x <∞
is called the excess distribution beyond the threshold u.

b) e(u) = E{X − u | X > u}, 0 < u <∞, is the average excess function.

With partial integration it follows that this definition of the average excess
function together with the following Theorem 18.4 agrees with:

e(u) =
∫ ∞

u

F (y)
F (u)

dy.

If Δu is a random variable with the distribution function Fu, then its expec-
tation is EΔu = e(u).

Theorem 18.5
X is a positive, unbounded random variable with an absolutely continuous
distribution function F .
a) The average excess function e(u) identifies F exactly:

F (x) =
e(0)
e(x)

exp{−
∫ x

0

1
e(u)

du}, x > 0.

b) If F is contained in the MDA of the Fréchet distribution G1,α, then e(u)
is approximately linear for u→ ∞: e(u) = 1

α−1 u{1 + O(1)}.
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Definition 18.6 (Pareto Distribution)
The generalised Pareto distribution (GP = generalised Pareto) with param-
eters β > 0, γ has the distribution function

Wγ,β(x) = 1 − (1 +
γx

β
)−

1
γ for

{
x ≥ 0 if γ > 0
0 ≤ x ≤ −β

γ if γ < 0,

and
W0,β(x) = 1 − e−

1
β x, x ≥ 0.

Wγ(x) = Wγ,1(x) is called the generalised standard Pareto distribution or
standardised GP distribution.

Figure 18.3 shows the generalised standard Pareto distribution with param-
eters γ = 0.5, 0 and −0.5 respectively.

For γ = 0 the standardised GP distribution is an exponential distribution
with parameter 1. For γ > 0 it is a Pareto distribution W1,α with the pa-
rameter α = 1/γ. For γ < 0 the GP distribution is also referred to as a Beta
distribution and has the distribution function W2,α = 1 − (−x)−α,−1 ≤ x ≤
0, α < 0.

Theorem 18.6
The distribution F is contained in the MDA of the GEV distribution Gγ with
the form parameter γ ≥ 0, exactly when for a measurable function β(u) > 0
and the GP distribution Wγ,β it holds that:

sup
x≥0

|Fu(x) −Wγ,β(u)(x)| → 0 for u→ ∞.

A corresponding result also holds for the case when γ < 0, in which case the
supremum of x must be taken for those 0 < Wγ,β(u)(x) < 1.

For the generalised Pareto distribution F = Wγ,β it holds for every finite
threshold u > 0

Fu(x) = Wγ,β+γu(x) for
{
x ≥ 0 if γ ≥ 0
0 ≤ x < −β

γ − u if γ < 0,

In this case β(u) = β + γ u.

18.2 Statistics of Extreme Events

Throughout the entire section X,X1, . . . , Xn are unbounded, i.i.d. random
variables with distribution function F .
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Figure 18.3: Standard pareto distribution (β = 1) with parameter γ = 0.5
(red), 0 (black) and −0.5 (blue). SFEgpdist

Notation: X(1) ≤ . . . ≤ X(n) and X(1) ≥ . . . ≥ X(n) represent the order
statistics, that is, the data is sorted according to increasing or decreasing
size. Obviously then X(1) = X(n), X(n) = X(1) etc.

Definition 18.7 (Empirical Average Excess Function)
Let Kn(u) = {j ≤ n; Xj > u} be the index of the observations outside of the
threshold u, and let N(u) = #Kn(u) be their total number and

F̂n(x) =
1
n

n∑

j=1

1(Xj ≤ x)
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the empirical distribution function, F̂n = 1 − F̂n.

en(u) =
∫ ∞

u

F̂n(y)dy/F̂n(u) =
1

N(u)

∑

j∈Kn(u)

(Xj − u)

=
1

N(u)

n∑

j=1

max{(Xj − u), 0}

is called the empirical average excess function.

en(u) estimates the average excess function e(u) from Section 18.1.

As an explorative data analysis the following graphs will be considered:

Plot of the probability distribution function
{
F (X(k)), n−k+1

n+1

}n
k=1

,

Quantile plot
{
X(k), F−1(n−k+1

n+1 )
}n
k=1

,

Average excess plot
{
X(k), en(X(k))

}n
k=1

.

If the original model assumptions, that F is the distribution of the data, is
correct, then the first two graphs should be approximately linear. If this is
not the case, then the distribution assumptions must be changed. On the
other hand, due to Theorem 18.5, b) the average excess plot for size k is
approximately linear with a slope 1/(α − 1) if F belongs to the maximum
domain of attraction of a Fréchet distribution G1,α for α > 1, i.e. with a
finite expectation.

As an example consider the daily returns of the exchange rate between the
Yen and the U.S. dollar from 1 December, 1978 to 31 January, 1991 in Figure
18.4. Figure 18.5 shows the plot of the probability distribution function and
the quantile plot for the pdf F (x) = Φ(x) of the standard normal. The
deviations from the straight line clearly shows that the data is not normally
distributed. Figure 18.6 again shows the average excess plot of the data.

18.2.1 The POT (Peaks-Over-Threshold) Method

In this section and in the following one we will take a look at estimators for
extreme value characteristics such as the exceedance probabilities F (x) =
1 − F (x) for values x or the extreme quantile F−1(q) for q ≈ 1.

First, we only consider distributions F that are contained in the MDA of a
GEV distribution Gγ , γ ≥ 0,. The corresponding random variables are thus
unbounded.
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Figure 18.4: Daily log-return of JPY/USD exchange rate. SFEjpyusd

Definition 18.8 (Excess)
Let Kn(u) and N(u) be, as before, the index and total number of observations
beyond the threshold u respectively. The excess beyond the threshold u is
defined as the random variables Yl, l = 1, . . . ,N(u), with

{Y1, . . . , YN(u)} = {Xj − u; j ∈ Kn(u)} = {X(1) − u, . . . ,X(N(u)) − u}.

The excesses Yl, l ≤ N(u) describe by how much the observations, which
are larger than u, go beyond the threshold u. The POT method (peaks-
over-threshold method) assumes that these excesses are the basic information
source for the initial data. From the definition it immediately follows that
Y1, . . . , YN(u) are i.i.d. random variables with distribution Fu given their
random total number N(u), i.e., the excess distribution from Definition 18.5
is the actual distribution of the excesses. Due to Theorem 18.6 it also holds
that Fu(y) ≈ Wγ,β(u)(y) for a GP distribution Wγ,β(u) and all sufficiently
large u.

Let’s first consider the problem of estimating the exceedance probability F (x)
for large x. A natural estimator is F̂n(x), the cdf at x is replaced with the em-
pirical distribution function. For large x, however, the empirical distribution
function varies a lot because it is determined by the few extreme observations
which are located around x. The effective size of the sub-sample of extreme,
large observations is too small to use a pure non-parametric estimator such
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Figure 18.5: PP plot and QQ plot. SFEjpyusd

as the empirical distribution function. We therefore use the following re-
lationship among the extreme exceedance probability F (x), the exceedance
probability F (u) for a large, but not extremely large threshold and the excess
distribution. Due to Definition 18.5 the excess distribution is

Fu(y) = P(X − u > y | X > u) = F (y + u)/F (u), i.e.
F (x) = F (u) · Fu(x− u), u < x <∞. (18.4)

For large u and using Theorem 18.6 we can approximate Fu with Wγ,β for
appropriately chosen γ, β. F (u) is replaced with the empirical distribution
function F̂n(u) at the threshold u, for which due to the definition of N(u) it
holds that

F̂n(u) =
n− N(u)

n
= 1 − N(u)

n
.

For u itself this is a useful approximation, but not for the values x, which are
clearly larger than the average sized threshold u. The estimator 1− F̂n(x) of
F (x) for extreme x only depends on a few observations and is therefore too
unreliable. For this reason the POT method uses the identity (18.4) for F (x)
and replaces both factors on the right hand side with their corresponding
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Figure 18.6: Empirical mean excess function (solid line), GP mean excess
function for Hill estimator (dotted line) and moment estimator
(broken line). SFEjpyusd

approximations, whereby the unknown parameter of the generalised Pareto
distribution is replaced with a suitable estimator.

Definition 18.9 (POT Estimator)
The POT estimator F

∧
(x) for the exceedance probability F (x), for large x,

is

F
∧
(x) =

N(u)
n

W γ̂,β̂(x− u) =
N(u)
n

{
1 +

γ̂(x− u)

β̂

}−1/γ̂

, u < x <∞,

whereby γ̂, β̂ are suitable estimators for γ and β respectively.

γ̂, β̂ can be, for example, calculated as maximum likelihood estimators from
the excesses Y1, . . . , YN(u). First let’s consider the case where N(u) = m is
a constant and where Y1, . . . , Ym is a sample of i.i.d. random variables with
the distribution Wγ,β , γ > 0,. Thus Wγ,β is literally a Pareto distribution
and has the probability density

p(y) =
1
β

(1 +
γy

β
)−

1
γ −1, x ≥ 0.
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Therefore, the log likelihood function is

�(γ, β | Y1, . . . , Ym) = −m log β − ( 1
γ

+ 1
) m∑

j=1

log(1 +
γ

β
Yj).

By maximising this function with respect to γ, β we obtain the maximum
likelihood (ML) estimator γ̂, β̂. Analogously we could also define the ML
estimator for the parameter of the generalised Pareto distribution using γ ≤
0.

Theorem 18.7
For all γ > − 1

2 it holds for m→ ∞
√
m(γ̂ − γ,

β̂

β
− 1) L−→ N2(0, D−1),

with D = (1 + γ)
(

1 + γ −1
−1 2

)
, i.e. (γ̂, β̂) are asymptotically normally

distributed. In addition they are asymptotically efficient estimators.

In our initial problem m = N(u) was random. Here the estimators we have
just defined, γ̂ and β̂, are the conditional ML estimators given N(u). The
asymptotic distribution theory is also known in this case; in order to avoid
an asymptotic bias, F must fulfill an additional regularity condition. After
we find an estimator for the exceedance probability and thus a cdf for large
x, we immediately obtain an estimator for the extreme quantile.

Definition 18.10 (POT Quantile Estimator)
The POT Quantile estimator x̂q for the q-quantile xq = F−1(q) is the solution
to F

∧
(x̂q) = 1 − q, i.e.

x̂q = u+
β̂

γ̂

[{
n

N(u)
(1 − q)

}−γ̂
− 1

]
.

SFEpotquantile

We can compare these estimators with the usual sample quantiles. To do this
we select a threshold value u so that exactly k excesses lie beyond u, that is
N(u) = k > n(1− q) and thus u = X(k+1). The POT quantile estimator that
is dependent on the choice of u respectively k is

x̂q,k = X(k+1) +
β̂k
γ̂k

[{n
k

(1 − q)
}−γ̂k − 1

]
,
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where γ̂k, β̂k is the ML estimator, dependent on the choice of k, for γ and β.
The corresponding sample quantile is

x̂sq = X([n(1−q)]+1).

This is in approximate agreement with x̂q,k when the minimal value k =
[n(1− q)] + 1 is chosen for k. Simulation studies show that the value k0 of k,
which minimises the mean squared error MSE(x̂q,k) = E(x̂q,k−xq)2, is much
larger than [n(1 − q)] + 1, i.e., the POT estimator for xq differs distinctly
from the sample quantile x̂sq and is superior to it with respect to the mean
squared error when the thresholds u or k are respectively chosen.

We are interested in threshold u, for which the mean squared error of x̂q is
as small as possible. The error can be split into the variance and the squared
bias of x̂q:

MSE(x̂q) = E(x̂q − xq)2 = Var(x̂q) + {E(x̂q) − xq}2.

Unfortunately the two components of the mean squared error move in op-
posite directions when we vary the threshold u used in calculating the POT
quantile estimators. We are therefore confronted with the following bias vari-
ance dilemma:

- when u is too large, there are few excesses Yl, l ≤ N(u), and the
estimator’s variance is too large,

- when u is too small, the approximation of the excess distribution using a
generalised Pareto distribution is not good enough, and the bias E(x̂q)−
xq is no longer reliable.

An essential aid in selecting an appropriate threshold u is the average ex-
cess plot, which is approximately linear beyond the appropriate threshold.
This has already been discussed in Theorem 18.5, when one considers the
relationship between the Fréchet distribution as the asymptotic distribution
of the maxima and the Pareto distribution as the asymptotic distribution
of the excesses. It is supported by the following result for the Pareto and
exponential distributions Wγ,β , γ ≥ 0,.

Theorem 18.8
Let Z be a Wγ,β distributed random variable with 0 ≤ γ < 1. The average
excess function is linear:

e(u) = E{Z − u|Z > u} =
β + γu

1 + γ
, u ≥ 0, for 0 ≤ γ < 1.

With the usual parametrization of the Pareto distribution γ = 1
α , i.e., the

condition γ < 1 means that α > 1 and thus E|Z| <∞.
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This result motivates the following application in choosing the threshold:
select the threshold u of the POT estimator so that the empirical average
excess function en(v) for values v ≥ u is approximately linear. An appropriate
u is chosen by considering the average excess plots, where it is recommended
that the largest points (X(k), en(X(k))), k ≈ n, along the righthand edge of
the plot be excluded, since their large variability for the most part distorts
the optical impression.

18.2.2 The Hill Estimator

The POT method for estimating the exceedance probability and the extreme
quantiles can be used on data with cdf that is in the MDA of a Gumbel or a
Fréchet distribution, as long as the expected value is finite. Even for extreme
financial data, this estimator seems reasonable based on empirical evidence.
A classic alternative to the POT method is the Hill estimator, which has
already been discussed in Chapter 13 in connection with the estimation of
the tail exponents of the DAX stocks. It is of course only useful for distri-
butions with slowly decaying tails, such as those in the MDA of the Fréchet
distribution, and in simulations often performs worse in comparison to the
POT estimator. The details are briefly introduced in this section.

In this section we will always assume that the data X1, . . . , Xn are i.i.d.
with a distribution function F in the MDA of G1,α for some α > 0. Due to
Theorem 18.3 this is the case when F (x) = x−αL(x) with a slowly varying
function L. The tapering behaviour of F (x) = P(Xt > x) for increasing x is
mainly determined by the so called tail exponents α. The starting point of
the Hill method is the following estimator for α.

Definition 18.11 (Hill estimator)
X(1) ≥ X(2) ≥ . . . ≥ X(n) are the order statistics in decreasing order. The
Hill estimator α̂H of the tail exponents α for a suitable k = k(n) is

α̂H = {1
k

k∑

j=1

log X(j) − log X(k)}−1.

The form of the estimator can be seen from the following simple special case.
In general it holds that F (x) = L(x)/(xα), but we now assume that with a
fixed c > 0 L(x) = cα is constant. Set Vj = log(Xj/c), it holds that

P(Vj > v) = P(Xj > cev) = F (cev) =
cα

(cev)α
= e−αv, y ≥ 0,
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V1, . . . , Vn are therefore independent exponentially distributed random vari-
ables with parameter α. As is well known it holds that α = (EVj)−1, and the
ML estimator α̂ for α is 1/V n, where V n stands for the sample average of
V1, . . . , Vn, thus,

α̂ =
1
V n

= { 1
n

n∑

j=1

log(Xj/c)}−1 = { 1
n

n∑

j=1

log X(j) − log c}−1,

where for the last equation only the order of addition was changed. α̂ is
already similar to the Hill estimator. In general it of course only holds that
F (x) ≈ cα

xα for sufficiently large x. The argument for the special case is
similar for the largest observations X(1) ≥ X(2) ≥ . . . ≥ X(k) ≥ u beyond
the threshold u, so that only the k largest order statistics enter the definition
of the Hill estimator.

The Hill estimator is consistent, that is it converges in probability to α when
n, k → ∞ such that k/n → 0. Under an additional condition it can also be
shown that

√
k(α̂H − α) L−→ N(0, α2), i.e., α̂H is asymptotically normally

distributed.

Similar to the POT estimator when considering the Hill estimator the ques-
tion regarding the choice of the threshold u = X(k) comes into play, since
the observations located beyond it enter the estimation. Once again we have
a bias variance dilemma:

- When k is too small, only a few observations influence α̂H , and the
variance of the estimator, which is α2/k asymptotically, is too large,

- when k is too large, the assumption underlying the derivation of the
estimator, i.e., that L(x) is approximately constant for all x ≥ X(k), is
in general not well met and the bias Eα̂H − α becomes too large.

Based on the fundamentals of the Hill estimator for the tail exponents α
we obtain direct estimators for the exceedance probability F (x) and for the
quantiles of F . Since F (x) = x−αL(x) with a slowly varying function L, it
holds for large x ≥ X(k) that:

F (x)
F (X(k))

=
L(x)

L(X(k))

(
X(k)

x

)α
≈
(
X(k)

x

)α
, (18.5)

Because exactly one portion k/n of the data is larger or equal to the order
statistic X(k), this is the (1− k/n) sample quantile. Therefore, the empirical
distribution function takes on the value 1 − k/n at X(k), since it uniformly
converges to the distribution function F , for sufficiently large n, a k that is not
too large in comparison to n yields: F (X(k)) ≈ 1− k/n, i.e., F (X(k)) ≈ k/n.
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Substituting this into (18.5), we obtain a Hill esitmator for the exceedance
probability F (x) :

F
∧
H(x) =

k

n

(
X(k)

x

)α̂H

By inverting this estimator we have the Hill quantile estimator for the q−
quantile xq with q ≈ 1 :

x̂q,H = X(k)
{n
k

(1 − q)
}−1/α̂H

= X(k) +X(k)

[{n
k

(1 − q)
}−γ̂H − 1

]

with γ̂H = 1/α̂H , where the second representation clearly shows the similar-
ities and differences to the POT quantile estimator.

SFEhillquantile

18.3 Estimators for Risk Measurements

The value at risk discussed in the previous chapter is not the single measure
of the market risk. In this section we introduce an alternative risk measure.
In addition we discuss how to estimate the measure given extremely high
loss.

Definition 18.12 (Value-at-Risk and Expected Shortfall)
Let 0 < q < 1, and let F be the distribution of the loss X of a financial
investment within a given time period, for example, one day or 10 trading
days. Typical values for q are q = 0.95 and q = 0.99.
a) The Value-at-Risk (VaR) is the q-quantile

V aRq(X) = xq = F−1(q).

b) The expected shortfall is defined as

Sq = E{X|X > xq}.

Value-at-Risk is today still the most commonly used measurement, which can
quantify the market risk. It can be assumed, however, that in the future the
expected shortfall will play at least an equal role.

Definition 18.13 (Coherent Risk Measure)
A coherent risk measure is a real-valued function ρ : R → R of real-valued
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random variables, which model the losses, with the following characteristics:

(A1) X ≥ Y a.s. =⇒ ρ(X) ≥ ρ(Y ) (Monotonicity)

(A2) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (Subadditivity)

(A3) ρ(λX) = λρ(X) for λ ≥ 0 (Positive homogeneity)

(A4) ρ(X + a) = ρ(X) + a (Translation equivariance)

These conditions correspond to intuitive obvious requirements of a market
risk measurement:
(A1) When the loss from investment X is always larger than that from in-
vestment Y , then the risk from investment X is also larger.
(A2) The risk of a portfolio consisting of investments in X and Y is at most
as large as the sum of the individual risks (diversification of the risk).
(A3) When an investment is multiplied, then the risk is also multiplied ac-
cordingly.
(A4) By adding a risk free investment, i.e., a non-random investment with
known losses a (a < 0, when the investment has fixed payments), to a port-
folio, the risk changes by exactly a.

The VaR does not meet condition (A2) in certain situations. LetX and Y , for
example, be i.i.d. and both can take on the value 0 or 100 with probability
P(X = 0) = P(Y = 0) = p and P(X = 100) = P(Y = 100) = 1 − p.
Then X + Y can be 0, 100 and 200 with probability P(X + Y = 0) = p2,
P(X + Y = 100) = 2p(1 − p) and P(X + Y = 200) = (1 − p)2 respectively.
For p2 < q < p and q < 1 − (1 − p)2, for example, for p = 0.96, q = 0.95, it
holds that

V aRq(X) = V aRq(Y ) = 0, but V aRq(X + Y ) = 100.

The expected shortfall, on the other hand, is a coherent risk measure that
always fulfills all four conditions. It also gives a more intuitive view of the
actual risk of extreme losses than the Value-at-Risk. The VaR only depends
on the probability of losses above the q-quantile xq, but it doesn’t say any-
thing about whether these losses are always just a little above the threshold
xq or whether there are also losses that are much larger than xq that need
to be taken into account. In contrast the expected shortfall is the expected
value of the potential losses from xq and depends on the actual size of the
losses.

The Value-at-Risk is simply a quantile and can be, for example, estimated
as a sample quantile F̂−1

n (q), where F̂n(x) is the empirical distribution of a
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sample of negative values, i.e., losses, from the past. As was discussed at the
beginning of the chapter, this particular estimator of q ≈ 1, which is for the
typical VaR-level of 0.95 and 0.99, is often too optimistic. An alternative
VaR estimator, which has the possibility of reflecting extreme losses better,
is the POT or the Hill quantile estimator.

Analogous estimators for the expected shortfall are easy to derive. This risk
measure is closely related to the average excess function when u = xq, as
immediately can be seen from the definition:

Sq = e(xq) + xq.

Here we only consider the POT estimator for Sq. Since Fu(x) ≈Wγ,β(x) for
a sufficiently large threshold u, it holds from Theorem 18.5, b) with α = 1/γ

e(v) ≈ β + (v − u)γ
1 − γ

for v > u.

Therefore, for xq > u we have

Sq
xq

= 1 +
e(xq)
xq

≈ 1
1 − γ

+
β − γu

xq(1 − γ)
.

The POT estimator for the expected shortfall Sq is thus

Ŝq,u =
x̂q

1 − γ̂
+
β̂ − γ̂u

1 − γ̂
,

where x̂q is the POT quantile estimator.

18.4 Extreme Value Theory for Time Series

Let Zt, −∞ < t < ∞, be a strictly stationary time series, as defined
in Definition 11.6, that is the distribution of the data and its probabil-
ity structure does not change over time. Each single observation Zt has,
among other things, the same distribution function F . To compare consider
the i.i.d. random variables X1, X2, . . . with the same distribution F . Let
Mn = max{Z1, . . . , Zn}, Mx

n = max{X1, . . . , Xn} be the maxima of n values
from the time series respectively from n independent observations. A simple
but basic relationship for the previous sections is (18.1), i.e.,

P(Mx
n ≤ y) = {P(Xj ≤ y)}n = Fn(y),

where the independence of Xt is used. For dependent data this relationship
does not hold and the distribution of the maximum Mn is not determined by
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F alone, but rather from the complete distribution of the time series. Luckily
in many cases there is at least one comparable, approximate relationship:

P(Mn ≤ y) ≈ Fnδ(y) ≥ Fn(y) for large n,

where δ ∈ [0, 1] is the so called extremal index. In order to find an exact
definition, recall Theorem 18.2 for the independent case, whereby

nF (un) → τ

if and only if P(Mx
n ≤ un) → e−τ .

Definition 18.14 (Extremal Index)
δ ∈ [0, 1] is called the extremal index of the time series Zj , −∞ < j < ∞,
when for certain τ, un

nF (un) → τ and P(Mn ≤ un) → e−δτ .

(If δ exists, then the value does not depend on the specific choice of τ, un).

From the definition the above claimed approximate relationship between the
distribution of the maximum and the exceedance probability immediately
follows:

P(Mn ≤ un) ≈ e−δτ ≈ e−δnF (un) = (e−F (un))nδ ≈ (1− F (un))nδ = Fnδ(un),

when un is large and thus F (un) ≈ 0.

Pure white noise automatically has the extremal index δ = 1, since Zt here
are independent. It is not obvious that all ARMA(p, q) processes (see Chapter
12) with normally distributed innovations also have an extremal index δ = 1,
its maxima thus behave like maxima from independent data. Intuitively this
comes from, on the one hand, ARMA processes having an exponentially de-
creasing memory, i.e., the observations Zt, Zt+τ are for sufficiently large time
periods τ practically independent, and, on the other hand, the probability
of two extreme observations occurring within the same time interval (which
is not too long) is low. These qualitative statements can be formulated as
two precise criteria of time series that have an extremal index of 1, the exact
formulation of which will not be given here.

For financial time series models the second condition is not fulfilled, because
they contradict the presence of volatility clusters (see Chapter 13), i.e., the
local frequency of extreme observations. The extremal index of an ARCH(1)
process with parameters ω, α (see Definition 13.1) is, for example, always
δ = δ(α) < 1. It can be approximated for α = 0.5, for example, δ ≈ 0.835.
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Finally note that not every time series has an extremal index. A simple
counter example is Zt = A · Xt with i.i.d. random variables Xt, which are
modelled by a random factor A > 0 that is independent of Xt. Since the
factor A is contained in all observations, even in the most distant past, this
time series has no decreasing memory. If the distribution of Xt has slowly
decaying tails, i.e., they belong to the MDA of a Fréchet distribution, then
it can be shown that Zt can not have an extremal index.

The extreme theory for time series is still developing. The Fisher-Tippett
theorem, however, exists as a central result in the following modified form:

Theorem 18.9
Let {Zt} be a strictly stationary time series with the distribution function F
and an extremal index δ > 0. Let X1, X2, . . . be i.i.d. with the same distribu-
tion function F. Mx

n = max{X1, . . . , Xn}. Let Gγ be a general extreme value
distribution. We have

P
(
Mx

n−dn

cn
≤ x
)
→ Gγ(x)

if and only if P
(
Mn−dn

cn
≤ x
)
→ Gδγ(x)

for all x with 0 < Gγ(x) < 1.

The maxima of the time series are standardised by the same series cn, dn
and converge in distribution to the same type of asymptotic distribution
as the maxima of the corresponding independent data, since Gδγ is itself a
general extreme value distribution with the same form parameters as Gγ . For
example, for γ > 0 it holds that

Gδγ(x) = exp{−δ(1 + γx)−1/γ} = Gγ(
x− μ

σ
), 1 + γx > 0

with σ = δγ and μ = −(1 − δγ), i.e., except for the location and scale
parameters the distributions are identical.

Many of the techniques used in extreme value statistics, that were developed
for independent data can be used on time series. To do this, however, one
needs to have more data, because the effective size of the sample is only nδ
instead of n. Besides that, additional problems appear: the POT method is
perhaps in theory still applicable, but the excesses are no longer independent,
especially when a financial time series with volatility clusters is considered.
For this reason the parameters of the generalised Pareto distribution, with
which the excess distribution is approximated, cannot be estimated by sim-
ply taking the maximum of the likelihood function of independent data. One
way out of this is to either use special model assumptions, with which the
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likelihood function of the dependent excesses can be calculated, or by using
a reduction technique, with which the data is made more ”independent” at
the cost of the sample size. One application, for example, replaces the cluster
of neighbouring excesses with a maximum value from the cluster, whereby
the cluster size is so chosen that the sample size of the excesses is approxi-
mately reduced by the factor δ. Afterwards the POT estimators, which were
developed for independent data, can be calculated from the reduced excesses.

Another problem is that the extremal index needs to be estimated in order
to be able to use applications like the one just described. In the literature
several estimation techniques are described. We will introduce only one here;
one that can be described without a lot of technical preparation, the so called
Block method. First the time series data Z1, . . . , Zn is divided into b blocks,
each has a length l (size n = bl, b, l large). Let M (k)

l be the maximum of
the observations in the k-th block:

M
(k)
l = max(Z(k−1)l+1, . . . , Zkl), k = 1, . . . , b.

For a large threshold value u, let N(u) = #{t ≤ n; Zt > u} be the number
of observations beyond the threshold and let B(u) = #{k ≤ b; M (k)

l > u}
be the number of blocks with at least one observation beyond the threshold
u. The estimator for the extremal index is then

δ̂ =
1
l

log (1 − B(u)
b )

log (1 − N(u)
n )

.

Heuristically this estimator can be derived from the following three observa-
tions:

(i) From the definition of the extremal index it follows that P(Mn ≤ u) ≈
F δn(u), when n, u → ∞, so that nF (u) → τ. Solving for δ it follows
that

δ ≈ log P(Mn ≤ u)
n log F (u)

.

(ii) F can be estimated using the empirical distribution function F̂n, so
that F (u) = 1 − P(Zt > u) ≈ 1 − N(u)

n .

(iii) With n = bl it follows that

P(Mn ≤ u) ≈
b∏

k=1

P(M (k)
l ≤ u) ≈ {P(M (1)

l ≤ u)}b

≈ {1
b

b∑

k=1

1(M (k)
l ≤ u)}b = (1 − B(u)

b
)b.
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By combining the three observations we have

δ ≈ b log (1 − B(u)
b )

n log (1 − N(u)
n )

= δ̂.

18.5 Recommended Literature

Both of the basic theorems, Theorem 18.1 and Theorem 18.6, of this section
go back to Fisher and Tippett (1928) respectively Pickands (1975). The
essential notion of quantifying risk by coherent risk measures was introduced
by Artzner and Heath (1997).

A comprehensive summary of the modelling and statistical analysis of ex-
treme results is given in the monograph from Embrechts et al. (1997). There
one finds proofs as well as detailed mathematical and practical considerations
of the content of this section and an extensive bibliography. Another actual
and recommendable book on extreme value statistic is Reiss and Thomas
(1997). A more in depth implementation of the method in the form of
quantlets discussed in this last reference, which goes beyond the selection
introduced in this section, can be found in Reiss and Thomas (2000).

A substantial problem that occurs when applying the methods of extreme
value statistics such as the POT or the Hill estimators is the choice of the
threshold value u or the corresponding number k of large order statistics. We
have already mentioned how this choice can be made with the help of graph-
ical representations. A more in depth discussion including the corresponding
quantlet can be found in Reiss and Thomas (2000). Polzehl and Spokoiny
(2003) and Grama and Spokoiny (2003) describe current procedures used for
estimating the tail exponents, for which the choice of u or k respectively,
given the available data, can be adaptively and thus automatically chosen.

The methods described in this chapter give estimators for the Value-at-Risk
as unconditional quantiles. Often one wishes to include financial data from
the recent past when estimating risk, for example in a GARCH(1,1) model
the last observation and the last volatility. In this case the Value-at-Risk
is a conditional quantile given the available information. One possibility of
using extreme value statistics in such cases is based on the assumptions of
a specific stochastic volatility model which is parametric as in McNeil and
Frey (2000) or nonparametric as in Chapter 14.

Given the assumptions of the model a conditional volatility σt is estimated
given the past, which together with the data results in an estimator for the
innovations Zt. In calculating the conditional quantile it is not assumed that
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the Zt are standard normally distributed, but instead the needed uncondi-
tional quantile of the innovations is estimated from the estimated innovations
with, for example, the POT estimator. Alternatively one can estimate the
conditional quantile also direct as nonparametric, in which the conditional
distribution function is first estimated with a kernel estimator and then the
inverse is taken. With moderately large quantiles, for example, with a 95%
VaR, the method from Franke and Mwita (2003) gives good results, even
for innovation distributions with heavy tails and infinite variance. For ex-
treme quantiles such as the 99% VaR a semi-parametric method must be
considered, as is the case with the POT method, in order to obtain useful
results. Mwita (2003) estimates first a nonparametric, medium-sized condi-
tional quantile and modifies this estimator through the fitting of a Pareto
distribution to the extreme excesses.
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A neural network is a non-linear system that converts a series of real input
values x1, . . . , xp over several intermediary steps to one or more terminal
variables y1, . . . , yq. It represents a function ν : R

p → R

q:

(y1, . . . , yq)� = ν(x1, . . . , xp),

that has a special form given by the network structure. This is graphically

Input layer Hidden layer Output layer
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Figure 19.1: Neural feed forward network with a hidden layer

displayed in Figure 19.1 in the form of a directed graph whose nodes are
grouped in various levels. In the input layer each node represents an input
variable; in the output layer each node represents an output variable. In
between there are one or more hidden layers, whose nodes are neither sources
nor layers of the graph. The network in Figure 19.1 contains only one hidden
layer. In additional it is a feed forward network, since it contains no edges
that begin in a node and end in the same node or in a different node from
the same or a previous layer.
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Input layer 1. Hidden layer 2. Hidden layer Output layer
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Figure 19.2: Neural feedback network with two hidden layers

Figure 19.2 displays a feedback network, in that there is feedback among the
nodes of the two hidden layers. In the following we will concentrate on the
feed forward network.

Neural networks are used in financial statistics to represent functions, which,
for example, can represent the default probability of a credit, the forecast of
an exchange rate or the volatility of a stock. Here the emphasis is on non-
parametric applications, which in comparison to the local smoothing function
discussed in Chapter 14 require advanced modelling and can be quite involved
to calculate. On the other hand it is still practical when numerous variables
need to be considered in forecasts or quantifying risk, i.e., when the dimension
p of the function arguments is large.

Since neural networks are still relatively unknown tools in statistics, in the
first section we will give an elementary introduction in the structure of a neu-
ral network. It allows for the construction of complex functions using simple
elements. In the second section we describe the popular numerical applica-
tion for fitting neural networks to the data, before we conclude with various
applications to financial problems and introduce the underlying assumptions.

19.1 From Perceptron to Non-linear Neuron

The perceptron is a simple mathematical model of how a nerve cell functions
in receiving signals from sense cells and other nerve cells (the input variables)
and from this sends a signal to the next nerve cell or remains inactive. In
spite of all of the disadvantages the perceptron is very influential on the way
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of thinking with respect to neural networks, so that it is a good starting point
for the discussion of components from which neural networks are constructed.
The perceptron works in two steps:

– the input variables x1, . . . , xp are multiplied and added with weights
w1, . . . , wp,

– a threshold operation is applied to the result.

x = (x1, . . . , xp)�, w = (w1, . . . , wp)� represent the input vector and weight
vector respectively, and for a given b let ψ(u) = 1(u > b) be the corresponding
threshold function. The output variables y = ψ(w�x) of the perceptron is 1
(the nerve cell ”fires”), when the sum of the weighted input signals lies above
the threshold and is 0 otherwise (the nerve cells remain inactive). The effect
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···
···

y = 1(w�x > b)
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Figure 19.3: The perceptron

of the perceptron depends on the weights w1, . . . , wp and the threshold value
b. An equivalent representation can be obtained by including the constant
x0

def= 1 as an additional input variable, which has the weight w0 = −b and a
threshold value of 0 is chosen since then

1

(
p∑

i=1

wixi > b

)
= 1

(
p∑

i=0

wixi > 0

)
.

This representation is often more comfortable since with the system param-
eters that can be freely chosen one does not have to differentiate between
weights and threshold values.

A perceptron can be trained to solve classification problems of the following
type: Given are objects which belong to one of two classes, C0 or C1. De-
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cisions are made based on observations of the object x1, . . . , xp, whether it
belongs to C0 or C1.

The perceptron characterised by the weights w0, . . . , wp classifies an object as
belonging to C0 respectively C1 when the output variable y = y(x1, . . . , xp)
is 0 respectively 1. So that the classification problem ”may be” solved, the
weights w0, . . . , wp must be ”learned”. To do this there is a training set

(x(1), z(1)), . . . , (x(T ), z(T ))

from T input vectors
x(t) = (x(t)

1 , . . . , x(t)
p )�

available whose correct classification

z(1), . . . , z(T ) ∈ {0, 1}

is known. With the help from learning rules suitable weights ŵ0, . . . , ŵp are
determined from the training set.

In statistical terms the problem is to estimate the parameters of the percep-
tron from the data (x(t), z(t)), t = 1, . . . , T . A learning rule is an estimation
method which produces estimates ŵ0, . . . , ŵp.

A learning rule is, for example, the Delta or Widrow-Hoff learning rule: The
input vectors x(t), t = 1, . . . , T, are used consecutively as input variables of
the perceptron and the output variables y(t), t = 1, . . . , T, are compared to
the correct classification z(t), t = 1, . . . , T. If in one step y(t) = z(t), then the
weights remain unchanged. If on the other hand y(t) 
= z(t), then the weight
vector w = (w0, . . . , wp)� is adjusted in the following manner:

wnew = w + η(z(t) − y(t))x(t)

η is a small relaxation factor which must eventually slowly approach zero in
order to ensure convergence of the learning algorithm. The initial value of w
is arbitrarily given or randomly chosen, for example, uniformly distributed
over [0, 1]p+1.

The learning does not end when all of the input vectors are presented in
the network, but rather after x(T ) has been entered, x(1) is used again as
the next input variable. The training set is tested multiple times until the
network of all objects in the training set have been correctly identified or
until a given quality criterion for measuring the error in classification is low
enough.
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The weights w0, . . . , wp can be identified up to a positive scale factor, i.e., for
α > 0, αw0, . . . , αwp lead to the same classification. By applying the learning
rule, for example, the Widrow-Hoff, it is possible that ||w|| will continuously
increases; this can lead to numerical problems. In order to prohibit this, one
uses the so called weight decay technique, i.e., a modified learning rule in
which ||w|| remains stable.

Example 19.1 (Learning the OR-Function)
Let p = 2 and x1, x2 ∈ {0, 1}. The classifications that needs to be learned is
the logical OR:

z = 1, if x1 = 1 or x2 = 1,
z = 0, if x1 = 0 and x2 = 0.

The following input vectors, including the first coordinate x0 = 1

x(1) =

⎛

⎝
1
1
0

⎞

⎠ , x(2) =

⎛

⎝
1
0
1

⎞

⎠ , x(3) =

⎛

⎝
1
1
1

⎞

⎠ , x(4) =

⎛

⎝
1
0
0

⎞

⎠

are used as the training set with the correct classification z(1) = z(2) = z(3) =
1, z(4) = 0. The perceptron with the weights w0, w1, w2 classifies an object as
1 if and only if

w0x0 + w1x1 + w2x2 > 0 ,

and as 0 otherwise. For the starting vector we use w = (0, 0, 0)�, and we set
η = 1. The individual steps of the Widrow-Hoff learning take the following
form:

1. w(1) gives y(1) = 0 
= z(1). The weights are changed:
wnew = (0, 0, 0)� + (1 − 0)(1, 1, 0)� = (1, 1, 0)�

2. x(2) is correctly classified with the weight vector.

3. x(3) is correctly classified with the weight vector.

4. For x(4) is w�x(4) = 1, so that the weights are again changed:
wnew = (1, 1, 0)� + (0 − 1)(1, 0, 0)� = (0, 1, 0)�

5. x(1) is now used as input and is correctly classified.

6. Since w�x(2) = 0 :
wnew = (0, 1, 0)� + (1 − 0)(1, 0, 1)� = (1, 1, 1)�

7. Since w�x(3) = 3 > 0, x(3) is correctly classified.

8. x(4) is incorrectly classified so that
wnew = (1, 1, 1)� + (0 − 1)(1, 0, 0)� = (0, 1, 1)�
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Thus the procedure ends since the perceptron has correctly identified all the
input vectors in the training set with these weights. The perceptron learned
the OR function over the set {0, 1}2.

One distinguishes different types of learning for neural networks:

Supervised Learning: Compare the network outputs y = y(x1, . . . , xp) with
the correct z = z(x1, . . . , xp). When y 
= z, the weights are changed according
to the learning rule.

Reinforcement Learning: From every network output y = y(x1, . . . , xp) one
discovers, whether it is “correct” or “incorrect” - in the latter case though
one does not know the correct value. When y is “incorrect”, the weights are
changed according to the learning rule.

Unsupervised Learning: There is no feedback while learning. Similar to the
cluster analysis, random errors are filtered from the data with the help of
redundant information.

For y ∈ {0, 1} supervised and reinforcement learning are the same. Included
in this type is the Widrow-Hoff learning rule for the perceptron.

The perceptron cannot learn all of the desired classifications. The classi-
cal counter example is the logical argument XOR = “exclusive or”:

z = 1, if either x1 = 1 or x2 = 1,
z = 0, if x1 = x2 = 0 or x1 = x2 = 1.

A perceptron with weights w0, w1, w2 corresponds to a hyperplane w0+w1x1+
w2x2 = 0 in R

2 space of the inputs (x1, x2)�, which separates the set using
the perceptron of 0 classified objects from those classified as 1. It is not hard
to see that no hyperplane exists for “exclusive or” where inputs should be
classified as 1

(
1
0

)
,
(
0
1

)
can be separated from those to be classified as 0

(
0
0

)
,
(
1
1

)
.

Definition 19.1 (linearly separable)
For p ≥ 1 to subsets X0,X1 ⊆ R

p are called linearly separable if w ∈ R

p, w0 ∈
R exists with

w0 + w�x > 0 for x ∈ X1,
w0 + w�x ≤ 0 for x ∈ X0.

The perceptron with p input variables x1, . . . , xp (with respect to the con-

stant x0
def= 1) can learn the classification exactly that is consistent with the
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linearly separable sets of inputs.

If no perfect classification is possible through a perceptron, then one can
at least try to find a “good” classification, that is, to determine the weights
w0, . . . , wp so that a measurement for the amount of incorrectly identified
classifications can be minimised. An example of such an application is given
by the least squares (LS) classification:

Assuming that the training set (x(1), z(1)), . . . , (x(T ), z(T )) is given. Deter-
mine for some given weight w0 the weights w1, . . . , wp so that

Q(w) = Q(w1, . . . , wp) =
T∑

i=1

(z(i) − y(i))2 = min !

with y(i) = 1(w0 + w�x(i) > 0), w = (w1, . . . , wp)�

w0 can be arbitrarily chosen since the weights w0, . . . , wp described above are
only determined up to a scale factor. In the case of the perceptron, which
takes on a binary classification, Q(w) is simply the number of incorrectly
defined classifications. The form mentioned above can also be directly applied
to other problems. The attainable minimum of Q(w) is exactly 0 (perfect
classification of the training set) when both sets

X (T )
0 = {x(i), i ≤ T ; z(i) = 0}, X (T )

1 = {x(i), i ≤ T ; z(i) = 1}
are linearly separable.

The Widrow-Hoff learning rule solves the LS classification problem; there
are, however, a series of other learning rules or estimation methods which
can also solve the problem. The perceptron has proven to be too inflexible
for many applications. Therefore, one considers general forms of neurons as
components used to build a neuron network:

Let x = (x1, . . . , xp)�, w = (w1, . . . , wp)� be input and weight vectors re-
spectively. For β, β0 ∈ R

ψβ(t) =
1

1 + exp(− t+β
β0

)

is the logistic function, which due to its form is often referred to as “the”
sigmoid function. One can also use other functions with sigmoid forms, for
example, the density function of a normal distribution. The output variable
of the neuron is y = ψβ(w�x).

For β0 → 0+ ψβ(t) approaches a threshold function:

ψβ(t) −→ 1(t+ β > 0) for β0 −→ 0+ ,
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Figure 19.4: Error surface of Q(w) given weight w = (w1, w2)� with trans-
form function: threshold function (left) and sigmoid function
(right) SFEerrorsurf

so that the preceptron is a boundary of the neuron with a logistic activa-
tion function. An example of Q(w) for neurons with threshold function and
sigmoid function as activation function is shown in Figure 19.4. The corre-
sponding method is presented in Figure 19.5.

β0 is often not explicitly chosen, since it can be integrated as a scale factor
in the other parameters w1, . . . , wp, β of the neurons. If one also sets w0 = β

and x0
def= 1,, then the output variables can also be written in the form:

y = ψ(w0 + w�x) = ψ(
p∑

k=0

wkxk) withψ(t) =
1

1 + e−t
.

By combining multiple neurons with sigmoid or - in the limit case - threshold
activation functions with a feed forward network one obtains a so called
multiple layer perceptron (MLP) neural network. Figure 19.6 shows such a
neural network with two input variables with respect to the constant x0

def=
1, two sigmoid neurons in the hidden layer that are connected by another
sigmoid neuron to the output variables, where ψ(t) = {1 + e−t}−1 as above.

Neural networks can also be constructed with multiple hidden layers that give
multiple output variables. The connections do not have to be complete, i.e.,



19.1 From Perceptron to Non-linear Neuron 407

x1

x2

xp

w1

w2

wp

···
···

y = 1
1+exp(− t+β

β0
)

�

�

�

��

�	

�
�

�
�

�
�

�
���
�

���������� �

Figure 19.5: Neuron with a sigmoid transformation function
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Figure 19.6: Multiple layer perceptron with a hidden layer

edges between the nodes of consecutive layers may be missing or equivalently
several weights can be set to 0. Instead of the logical function or similar
sigmoid functions, threshold functions may also appear in some neurons.
Another probability is the so called radial basis functions (RBF). To the
former belongs the density of the standard normal distribution and similar
symmetrical kernel functions. In this situation one no longer speaks of an
MLP network, but of an RBF network.

Figure 19.7 shows an incomplete neural network with two output variables.
The weights w13, w22, w31, v12 and v31 are set to 0, and the corresponding
edges are not displayed in the network graphs. The output variable y1 is, for
example

y1 = v11ψ(w01 + w11x1 + w21x2) + v21ψ(w02 + w12x1 + w32x3),

a linear combination of the results of the two upper neurons of the hidden
layers.

Until now we have only discussed those cases that are most often handled
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Figure 19.7: Multiple layer perceptron with two hidden layers

in the literature, where a neuron has an effect on the linear combination of
variables from the previous layer. Occasionally the case where the output of a
neural of the form ψ (Πp

i=1wixi) respectively ψ (maxi=1,...,p xi) is considered.

Neural networks of MLP types can be used for classification problems as
well as for regression and forecast problems. In order to find an adequate
network for each problem, the weights have to be learned through a training
set, i.e., the network parameters are estimated from the data. Since we
are restricting ourselves to the case of supervised learning, this means that
(x(1), z(1)), . . . , (x(T ), z(T )) are given for the training set. The x(i) ∈ R

p are
input vectors, the z(i) ∈ R

q are the corresponding desired output values from
the network. The vectors z(i) are compared to the actual output vectors
y(i) ∈ R

q of the network. The weights are determined so that the deviations
between z(i) and y(i) are small. An example of this is the least squares (LS)
application already mentioned in the analysis of the perceptron:

Assuming that the training set (x(1), z(1)), . . . , (x(T ), z(T )) is given. The
weights w0l, l = 1, . . . , r, x0

def= 1 are given, where r is the number of neurons
in the first hidden layer. The weights of all the other edges in the network
(between the input layer, the hidden layers and the output layer) are deter-
mined so that

T∑

k=1

||z(k) − y(k)||2 = min !

In the network given in Figure 19.7 the minimisation is carried out with
respect to the weights w11, w12, w21, w23, w32, w33, v11, v21, v22, v32. As for
the perceptron the weights w01, w02, w03 can be set in order to avoid the
arbitrary choice of scale factors.

Instead of the LS method, other loss functions can also be minimised, for
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example, weighted quadratic distances or, above all in classification, the
Kullback-Leibler distance:

T∑

k=1

∑

i

{
z
(k)
i log

z
(k)
i

y
(k)
i

+ (1 − z
(k)
i ) log

1 − z
(k)
i

1 − y
k)
i

}
= min !

Since only the y(k)
i depend on the weights, it is equivalent to minimise the

cross-entropie between zi and yi, which are both contained in (0, 1):

−
T∑

k=1

∑

i

{
z
(k)
i log y(k)

i + (1 − z
(k)
i ) log(1 − y

(k)
i )
}

= min !

19.2 Back Propagation

The most well known method with which the feed forward network learns its
weights from the training set is the back propagation. The basic idea is non
other than a numerical method to solve the (nonlinear) least squares problem
that saves on memory, at the cost however, of possible slower convergence
and numerical instabilities.

To illustrate, consider a neural network with an output variable y (i.e. q = 1)
and a hidden layer with only one neuron:

y = ψ(w0 + w�x).

ψ can be a logistic function, or some other transformation function. The
training set is (x(1), z(1)), . . . , (x(T ), z(T )). The weight w0 is held constant in
order to avoid the arbitrary scale factor. The function to be minimised

Q(w) =
T∑

k=1

(z(k) − y(k))2

is thus only dependent on the weights w1, . . . , wp of the input variables.

An elementary numerical method for minimizing Q is the decreasing gra-
dient method. Given a weight w(N) one calculates the next approximation
by moving a small step in the direction of the steepest decline of Q:

w(N + 1) = w(N) − η grad Q(w(N)),

grad Q(w) = −
T∑

k=1

2(z(k) − y(k))ψ′(w�x(k))x(k).
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Figure 19.8: Gradients descent proceedings with goal vector z = (0, 1, 0, 1)�.
SFEdescgrad

To accelerate the convergence, the small constant η > 0 can also converge
to 0 during the iteration process. Figure 19.8 shows the path of optimising
Q(w) evaluated in i-steps at w1, ..., wi, where each w is corrected according
to the back propagation rule.

With the decreasing gradient method the quality of the weight w(N), that
is the actual network, is evaluated simultaneously using all the data in the
training set. The network is applied to all x(1), . . . , x(T ), and only after this
the weight vector changed.

Back propagation is also a form of the decreasing gradient method with the
difference that the network is repeatedly applied to the single x(k) and after
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every single step the weights are already changed in the direction of the
steepest decline of the function Qk(w) = (z(k) − y(k))2 :

w(N + 1) = w(N) − η grad Qk(w(N)) , k = 1, . . . , T,
grad Qk(w) = −2(z(k) − y(k))ψ′(w�x(k))x(k).

If in this process the training set has been gone through once, the iteration
starts again from the beginning. T steps in the back propagation correspond
then roughly to one step in the decreasing gradient method. Also by the back
propagation algorithm it may be necessary to allow η to converge slowly to
0.

The Widrow-Hoff learning rule is in principle a back propagation algorithm.
The threshold function ψ(t) = 1(w0 + t > 0) is non-differentiable, but after
the presentation of x(k) the weights are changed in the direction of the steep-
est decline of Qk(w), i.e., in the direction of x(k) for z(k) = 1, y(k) = 0 and
in the direction of −x(k) for z(k) = 0, y(k) = 1. By correct classifications the
weights here remain unaltered.

Naturally one can apply every numerical algorithm that can calculate the
minimum of a non-linear function Q(w) to determine the weights of a neural
network. By some applications, for example, the conjugate gradient method
has proven to be the fastest and most reliable method. All of these algorithms
have the danger of landing in a local minimum of Q(w). In the literature
on neural networks it is occasionally claimed that with the combination of
training, the networks, such as local minima do not occur. Based on expe-
rience of statistics with maximum likelihood estimators of large dimensional
parameters, this is to be expected since the training of neural networks for
applications of regression analysis, for example, can be interpreted under the
appropriate normality assumptions as the maximum likelihood estimation
technique.

19.3 Neural Networks in Non-parametric
Regression Analysis

Neural networks of type MLP describe a mapping of the input variables
x ∈ R

p onto the output variables y ∈ R

q. We will restrict ourselves in this
section to the case where the network has only one hidden layer and the
output variable is univariate (q = 1). Then y ∈ R as a function of x has the
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form

y = v0 +
H∑

h=1

vhψ(w0h +
p∑

j=1

wjhxj)
def= νH(x;ϑ) (19.1)

where H is the number of neurons in the hidden layer and ψ is the given
transformation function. The parameter vector

ϑ = (w01, . . . , wp1, w02, . . . , wpH , v0, . . . , vH)� ∈ R

(p+1)H+H+1

contains all the weights of the network. This network with one hidden layer
already has a universal approximation property: every measurable function
m : R

p → R can be approximated as accurately as one wishes by the function
νH(x, ϑ) when ψ is a monotone increasing function with a bounded range.
More precisely, the following result holds, Hornik, Stinchcombe and White
(1989):

Theorem 19.1
Let ψ : R → [0, 1] be monotone increasing with limu→−∞ ψ(u) = 0,
limu→∞ ψ(u) = 1, and let J = {νH(x;ϑ); H ≥ 1, ϑ ∈ R

(p+1)H+H+1} be
the set which is mapped by a MLP function with a hidden layer from R

p to
R.

a) For every Borel measurable function f : R

p → R there a series νn ∈
J, n ≥ 1 exists, with μ(x; |f(x) − νn(x)| > ε) −→ 0 for n→ ∞, ε > 0,
where μ is an arbitrary probability measure of the Borel-σ-Algebra from
R

p.

b) For every increasing function f : R

p → R there a series νn ∈ J, n ≥ 1
exists, with supx∈C |f(x) − νn(x)| −→ 0 for n → ∞, where C is an
arbitrary compact subset of R

p.

The range of ψ can be set to any bounded interval, not only [0, 1], without
changing the validity of the approximation properties.

The weight vector ϑ is not uniquely determined by the network function νH .
If, for example, the transformation function is asymmetric around 0, i.e.,
ψ(−u) = −ψ(u), then νH(x;ϑ) does not change when
a) the neurons of the hidden layer are interchanged, which corresponds to a
substitution of the coordinates of ϑ, or when
b) all input weights w0h, . . . , wph and the output weight vh of the neural are
multiplied by −1.

In order to avoid this ambiguity we will restrict the parameter set to a funda-
mental set in the sense of Rüeger and Ossen (1997), which for every network
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function νH(x;ϑ) contains exactly one corresponding parameter vector ϑ. In
the case of asymmetric transformation functions we restrict ourselves, for ex-
ample, to weight vectors with v1 ≥ v2 ≥ . . . ≥ vH ≥ 0. In order to simplify
the following considerations we also assume that ϑ is contained in a suffi-
ciently large compact subset ΘH ⊂ R

(p+1)H+H+1 of a fundamental range.

Due to their universal approximation properties neural networks are a suit-
able tool in constructing non-parametric estimators for regression functions.
For this we consider the following heteroscedastic regression model:

Zt = f(Xt) + εt , t = 1, . . . , n,

where X1, . . . , Xn are independent, identically distributed d-variate random
variables with a density of p(x), x ∈ R

d. The residuals ε1, . . . , εn are inde-
pendent, real valued random variables with

E(εt|Xt = x) = 0, E(ε2t |Xt = x) = s2ε(x) <∞.

We assume that the conditional mean f(x) and the conditional variance s2ε(x)
of Zt are, given Xt = x, continuous functions bounded to R

d. In order to
estimate the regression function f , we fit a neural network with a hidden
layer and a sufficiently large number, H, of neurons to the input variables
X1, . . . , Xn and the values Z1, . . . , Zn, i.e., for given H we determine the
non-linear least squares estimator ϑ̂n = argminϑ∈ΘH

Dn(ϑ) with

D̂n(ϑ) =
1
n

n∑

t=1

{Zt − νH(Xt;ϑ)}2
.

Under appropriate conditions ϑ̂n converges in probability for n → ∞ and a
constant H to the parameter vector ϑ0 ∈ ΘH , which corresponds to the best
approximation of f(x) by a function of type νH(x;ϑ), ϑ ∈ ΘH :

ϑ0 = argmin
ϑ∈ΘH

D(ϑ) with D(ϑ) = E{f(Xt) − νH(Xt;ϑ)}2.

Under somewhat stronger assumptions the asymptotic normality of ϑ̂n and
thus of the estimator f̂H(x) = νH(x; ϑ̂n) also follows for the regression func-
tion f(x).

The estimation error ϑ̂n − ϑ0 can be divided into two asymptotically in-
dependent sub-components: ϑ̂n−ϑ0 = (ϑ̂n−ϑn)+(ϑn−ϑ0), where the value

ϑn = argmin
ϑ∈ΘH

1
n

n∑

t=1

{f(Xt) − νH(Xt;ϑ)}2

minimises the sample version of D(ϑ), Franke and Neumann (2000):
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Theorem 19.2
Let ψ be bounded and twice differentiable with a bounded derivative. Suppose
that D(ϑ) has a unique global minimum ϑ0 in the interior of ΘH , and the
Hesse matrix ∇2D(ϑ0) of D at ϑ0 is positive definite. In addition to the
above mentioned conditions for the regression model it holds that

0 < δ ≤ s2ε(x) ≤ Δ <∞ for all x,
E(|εt|γ |Xt = x) ≤ Cγ <∞ for all x, γ ≥ 1

with suitable constants δ,Δ, Cn, γ ≥ 1. Then it holds for n→ ∞ :

√
n

(
ϑ̂n − ϑn
ϑn − ϑ0

)
L−→ N

(
0,
(

Σ1 0
0 Σ2

))

with covariance matrices

Σi = {∇2D(ϑ0)}−1Bi(ϑ0){∇2D(ϑ0)}−1, i = 1, 2,

B1(ϑ) = 4
∫
s2ε(x) ∇νH(x;ϑ)∇νH(x;ϑ)� p(x)dx

B2(ϑ) = 4
∫
{f(x) − νH(x;ϑ)}2∇νH(x;ϑ)∇νH(x;ϑ)�p(x)dx

where ∇νH represents the gradient of the network function with respect to the
parameter ϑ.

From the theorem it immediately follows that
√
n(ϑ̂n−ϑ0) is asymptotically

N(0, Σ1 + Σ2) distributed. Σ1 here stands for the variability of the estima-
tor ϑ̂n caused by the observational error εt. Σ2 represents the proportion of
asymptotic variability that is caused by the mis-specification of the regression
function, i.e., from the fact that f(x) is of the form νH(x;ϑ) for a given H
and no ϑ. In the case that it is correctly specified, where f(x) = νH(x;ϑ0),
this covariance component disappears, since B2(ϑ0) = 0 and Σ2 = 0.

Σ1,Σ2 can be estimated as usual with the sample covariance matrices. In
order to construct tests and confidence intervals for f(x) a couple of alterna-
tives to the asymptotic distribution are available: Bootstrap, or in the case of
heteroscedasticity, the Wild Bootstrap method, Franke and Neumann (2000).

Theorem 19.2 is based on the theoretical value of the least squares estima-
tor ϑ̂n, which in practice must be numerically determined. Let ϑ̃n be such
a numerical approximation of ϑ̂n. The quality of the resulting estimator ϑ̃n
can depend on the numerical method used. White (1989b) showed in partic-
ular that the back propagation algorithm leads, under certain assumptions,
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to an asymptotically inefficient estimator ϑ̃n, i.e., the asymptotic covariance
matrix of

√
n(ϑ̃n − ϑ0) is larger than that of

√
n(ϑ̂n − ϑ0) in the sense that

the difference of the two matrices is positive definite. Nevertheless White
also showed that by joining a single global minimisation step, the estimator
calculated from the back propagation can be modified so that for n → ∞ it
is as efficient as the theoretical least squares estimator ϑ̂n.

Until now we have held the number of neurons H in the hidden layer of
the network and thus the dimension of the parameter vector ϑ constant. The
estimator based on the network, f̂H(x) = νH(x; ϑ̂n) converges to νH(x;ϑ0),
so that in general the bias E{f̂H(x)} −m(x) for n→ ∞ does not disappear,
but rather converges to νH(x;ϑ0) − f(x). With standard arguments it di-
rectly follows from Theorem 19.2 that:

Corollary 19.1 Under the assumptions from Theorem 19.2 it holds for n→
∞ that √

n
{
νH(x; ϑ̂n) − νH(x;ϑ0)

} L−→ N(0, σ2
∞)

with σ2
∞ = ∇νH(x;ϑ0)�(Σ1 + Σ2)∇νH(x;ϑ0).

In order to obtain a consistent estimator for f(x), the number of neurons H,
which by the non-parametric estimator f̂H(x) play the role of a smoothing
parameter, must increase with n. Due to the universal approximation prop-
erties of the neural network νH(x;ϑ0) thus converges to f(x), so that the bias
disappears asymptotically. Since with an increasing H the dimension of the
parameter vector ϑ increases, H should not approach ∞ too quickly, in order
to ensure that the variance of f̂H(x) continues to converge to 0. In choosing
H in practice one uses a typical dilemma for non-parametric statistics, the
bias variance dilemma: a small H results in a smooth estimation function f̂H
with smaller variance and larger bias, whereas a large H leads to a smaller
bias but a larger variability of a then less smoothing estimator f̂H .

White (1990) showed in a corresponding framework that the regression esti-
mator f̂H(x) based on the neural network converges in probability to f(x)
and thus is consistent when n→ ∞, H → ∞ at a slower rate.

From this it follows that neural networks with a free choice of H neurons
in the hidden layer provides useful non-parametric function estimators in re-
gression, and as we will discuss in the next section, in time series analysis.
They have the advantage that the approximating function νH(x;ϑ) of the
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form (19.1) is a combination of the neurons, which are composed of only a
given non-linear transformation of an affine-linear combination of the vari-
ables x = (x1, . . . , xd)�. This makes the numerical calculation of the least
squares estimator for ϑ possible even when the dimension d of the input
variables and the number H of neurons are large and thus the dimension
(d + 1)H + H + 1 of the parameter vector is very large. In contrast to the
local smoothing technique introduced in Chapter 14, the neural networks can
also be applied as estimators of functions in large dimensional spaces. One
reason for this is the non-locality of the function estimator f̂H(x). This es-
timator does not dependent only on the observations (Xt, Zt) with a small
norm ||Xt − x|| and thus in practice it is not as strongly afflicted by the
imprecation of dimensionality, i.e., even for large n there is a smaller local
density of the observation Xt in large dimensional spaces.

Theoretically it is sufficient to consider neural networks of type MLP with one
hidden layer. In practice, however, one can sometimes achieve a comparably
good fit to the data with a relatively more parsimonious parameterization by
creating multiple hidden layers. A network function with two hidden layers
made up of H and G neurons respectively has, for example, the following
form

ν(x;ϑ) = v0 +
G∑

g=1

vgψ

⎛

⎝w′
0g +

H∑

h=1

w′
hgψ(w0h +

d∑

j=1

wjh xj)

⎞

⎠ ,

where ϑ represents the vector of all the weights vg, w′
hg, wjh. Such a function

with small H,G can produce a more parsimonious parameterized approxima-
tion of the regression function f(x) than a network function with only one
hidden layer made up of a large number of neurons. In a case study on the
development of trading strategies for currency portfolios Franke and Klein
(1999) discovered, that with two hidden layers a significantly better result
can be achieved than with only one layer.

In addition the number of parameters to be estimated can be further re-
duced when several connections in the neural network are cut, i.e., when
the corresponding weights are set to zero from the very beginning. The large
flexibility that the neural network offers when approximating regression func-
tions creates problems when creating the model, since one has to decide on
a network structure and thus ask:

1. How many hidden layers does the network have?

2. How many neurons does each hidden layer have?

3. Which nodes (inputs, hidden neurons, outputs) of the network should
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be connect, i.e., which weights should be set to zero from the very
beginning?

Through this process one is looking for a network which makes it possible to
have a network function ν(x;ϑ) that is parsimoniously parameterized and at
the same time for a suitable ϑ that is a sufficiently good approximation of
the regression function f(x).

Similar to the classical linear regression analysis there are a comprehensive
number of instruments available for specifying a network structure consistent
with the data. For simplicity we will concentrate on the feed forward network
with only one hidden layer made up of H neurons.

a) Repeated Significance Tests: As with the stepwise construction of a linear
regression model we start with a simple network assuming that one addi-
tional neuron with the number H and vH output weights has been added.
Whether in doing this the quality of the fit of the network has significantly
improved is determined by testing the hypothesis H0 : vH = 0 against the
alternative H1 : vH 
= 0. Since under H0 the input weights w0H , ..., wpH of
the neurons in question are not identifiable, i.e., they have no influence on
the value of the network function νH , this is not a standard testing problem.
White (1989a), Teräsvirta, Lin and Granger (1993) have developed Lagrange
multiplier tests that are suitable for testing the significance of an additional
neuron. Going in the other direction it is also possible to start with a complex
network with large H assumed neurons and successively removing them until
the related test rejects the hypothesis H0 : vH = 0. To reduce the number of
parameters it makes sense to cut individual input connections, i.e., to set the
corresponding weight to zero. For the test of the hypothesis H0 : wjh = 0
against the alternative H1 : wjh 
= 0 classical Wald Tests can be applied due
to the asymptotical results such as 19.2 (see for example Anders (1997) for
applications in financial statistics).

b) Cross Validation and Validation: The resulting cross validation is usu-
ally eliminated due to the extreme amount of calculations to determine the
order of the model, i.e., first of all the number H of neurons in the hidden
layer. In order to calculate the leave-one-out estimator for the model param-
eters one must fit the neural network to the corresponding sample that has
been reduced by one observation a total of n times, and this must be done
for every network structure under consideration. A related and more known
procedure from the application of neural networks in the regression and time
series analysis is to take a portion of the data away from the sample in order
to measure the quality of the model based on this so called validation set. In
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addition to the data (Xt, Zt), t = 1, . . . , n, used to calculate the least squares
estimator ϑ̂n a second independent subsample (Xt, Zt), t = n+1, . . . , n+M,
is available. By minimising measurements of fit, such as,

V (H) =
1
M

n+M∑

t=n+1

{
Zt − νH(Xt; ϑ̂n)

}2

the order of the model H and the quality of the incomplete network structure
can be determined, in which individual input weights have been set to zero.

c) Network Information Criteria: To compare the network structures some
well known applications for determining order, such as the Akaike Informa-
tion Criterion (AIC), can be used. The application from Murata, Yoskizawa
and Amari (1994) called the Network Information Criterion (NIC) is special-
ized for the case of neural networks. Here it is implicitly assumed that the
residuals εt are normally distributed with a common variance σ2

ε .

19.4 Forecasts of Financial Time Series with
Neural Networks

To forecast the future development of financial time series an autoregressive
model is particularly suitable. The value of the time series at date t + 1
is a function of many infinite observations from the past, in addition to an
innovation independent of the past:

Zt+1 = f(Zt, . . . , Zt−p+1) + εt+1, −∞ < t <∞, (19.2)

where εt, −∞ < t < ∞, is independently and identically distributed with
E(εt) = 0, Var(εt) = σ2

ε < ∞. The analogy of this formula for this non-
linear autoregressive model of order p (NLAR(p)) to the regression model
considered in a previous section is obvious, where the p-variate random vector
(Zt, . . . , Zt−p+1)� takes the place of the d-variate independent variable Xt.
The autoregression function f : R

p → R in this model immediately gives the
best forecast for Zt+1 given the value of the time series up to date t:

Ẑ0
t+1|t = f(Zt, . . . , Zt−p+1).

Since f is in general not known, it seems obvious in view of the last section to
approximate the autoregression function with a neural network when observa-
tions of the times series Z1, . . . , Zn+1 are available. For training the network,
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i.e., for estimating the network weights, the vector (Zt, . . . , Zt−p+1)� is used
as input values and as output values Zt+1 for t = p, . . . , n, is used. We will
restrict ourselves for simplicity to the MLP with one hidden layer. ϑ̂n again
represents the least squares estimator for the weight vector:

ϑ̂n = argmin
ϑ∈ΘH

1
n− p+ 1

n∑

t=p

{Zt+1 − νH (Zt, . . . , Zt−p+1;ϑ)}2

where νH is defined as in the previous section. We thus obtain a non-
parametric forecast based on a neural network for Zt+1 :

Ẑt+1|t = νH(Zt, . . . , Zt−p+1; ϑ̂n).
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Figure 19.9: Approximation of exchange rate JPY/USD (red) through RBF
neural network (blue): Training set(above) and forecasts(below)

SFEnnjpyusd

The result of this procedure is illustrated in Figure 19.9: it shows the fore-
casting of the exchange rate time series JPY/USD using neural networks
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considering 3 periods of time dependency.

The asymptotic normality of the parameters and of the function estimators
and the consistency of νH(·; ϑ̂n) as an estimator of f for an increasing H
remain robust even in the event where the stochastic process {Zt, −∞ <
t <∞} is α-mixing with exponentially decreasing mixing coefficients, White
(1989b) and White (1990). Franke, Kreiss, Mammen and Neumann (2003)
have formulated conditions for the case where p = 1 for the autoregression
function f and for the distribution of the innovations εt, which guarantee
for the NLAR(1) process the strongest β-mix properties with exponentially
decreasing coefficients. Next to technical details it is essential that

lim
|x|→∞

|f(x)/x| < 1

is fulfilled, because it is sufficient for the innovation distribution that the
density does not vanish anywhere. The last condition can be considerably
weakened.

The conditions on the autoregression function is comparatively weak and
obvious when one considers the stationarity conditions |α| < 1 for linear
AR(1) processes Zt+1 = αZt + εt+1, where f(x) = αx. Accordingly also
for NLAR(p) process of large order (p > 1) it is sufficient to use weaker
conditions on f , which above all guarantees stationarity in order to make the
neural network a useful tool as a non-parametric estimator of f .

For the practical forecast one not only wants to use the last values in the
time series, but also economic data available at time t such as exchange
rates, index values, oil prices or the non-linear transformation of prices. To
do this the non-linear autoregressive process with exogenous components of
order p (NLARX(p)) process is suitable:

Zt+1 = f(Zt, . . . , Zt−p+1, Xt) + εt, −∞ < t <∞, (19.3)

where the innovations εt, −∞ < t <∞, are again independently and identi-
cally distributed with E(εt) = 0, Var(εt) = σ2

ε < ∞, and Xt is the value of
a d-variate stochastic process that contains all external information available
at date t, which is used in the forecast.

The practical application of the forecast on financial time series with neural
networks is illustrated with a pilot study that was carried out in cooperation
with Commerzbank AG, Franke (1999). The goal was to develop a trading
strategy for a portfolio made up of 28 of the most important stocks from
the Dutch CBS-Index. We will restrict ourselves here to the buy-and-hold
strategy with a time horizon of a quarter of a year (60 trading days), i.e.,
the portfolio is created at the beginning of a quarter and then held for three
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months with no alterations. At the end of the three months the value of the
portfolio should be as large as possible.

As a basis for the trading strategy a three month forecast of the stocks is
used. St represents the price of one of the 28 stocks. To model the time
series St we use a NLARX process of the form (19.3); the system function
f is approximated with a network function νH(St, At, Xt;ϑ). Here At is a
vector made up of constant non-linear transformations of St, ..., St−p+1 that
were taken from the technical market analysis, for example, a moving average,
momentum or Bollinger-intervals, Müller and Nietzer (1993), Welcker (1994).
The random vectorXt represents the chosen market data such as index prices,
exchange rates, international interest rates, etc. As is expected with a forecast
horizon of 60 units of time into the future, the actual forecasts of the stock
prices in 60 days,

Ŝt+60|t = νH(St, At, Xt; ϑ̂n),

is not very reliable. For making the decision as to whether a stock should be
included in the portfolio or not, the general trend of the price developments
are most important instead of the actual price of the stock at the end of the
holding period. To realise this aspect in formulating the portfolio, it should
be considered whether based on the network based forecast, Ŝt+60|t, the price
is expected to increase considerably (more than 5 %), decrease considerably
(more than 5 %) or whether it is essentially expected to stay at the same
level. The network based portfolio is composed of those stocks (with relative
proportions that are taken from the stock’s corresponding weight in the CBS
Index) for which (Ŝt+60|t − St)/St > 0.05. Here the same network function
νH(St, At, Xt;ϑ) is used for all 28 stocks taken into consideration whose price
dependent arguments St actually take on the stock specific values.

In choosing a suitable network and in estimating the network weight vector
ϑ the data from 1993 to 1995 is used. In choosing the network structure a
statistical model selection technique and the experience of experts was used.
The resulting network is a multiple layered perceptron with one hidden layer
made up of H = 3 neurons. The input vector (St, At, Xt) has the dimension
25, so that a parameter vector ϑ ∈ R

82 needed to be estimated.

To check the quality of the network based trading strategy, it is applied to
the data from 1996. At the beginning of every quarter a portfolio made up
of 28 stocks is created based on the network based forecast. At the end of
the quarter the percentage increase in value is considered. As a compari-
son the increase in value of a portfolio exactly replicating the CBS Index is
considered. Since in the years considered the market was of the most part
in an increasing phase, it is known from experience that it is hard to beat
an index. As Table 19.1 shows, the network portfolio achieved a higher per-
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centage increase in value in every quarter than the index portfolio, that is in
the quarters, such as the first and fourth, where the index had substantially
increased, as well as in the quarters, such as the second, where the index had
minimally decreased. Nevertheless the results need to be interpreted with a
bit of caution. Even in the training phase (1993-1995) the CBS Index tended
to increase, so that the network was able to specialise in a trend forecast in
a generally increasing market. Presumably one would need to use a different
network as a basis for the trading strategy, when the market fluctuates within
a long-term lateral motion or when the index dramatically decreases.

Quarterly returns
I. II. III. IV.

Network portfolio 0.147 0.024 0.062 0.130
Index portfolio 0.109 -0.004 0.058 0.115

Table 19.1: Quarterly returns of a network portfolio and the index portfolio
in 1996.

19.5 Quantifying Risk with Neural Networks

The previous chapters introduced the most popular measurements of risk,
volatility and Value-at-Risk. Both are most often defined as conditional
standard deviations or as conditional quantiles respectively, based on a given
historical information set. As with other non-parametric methods the neu-
ral network can also be used to estimate these measurements of risk. The
advantage of the neural network based volatility and VaR estimators lies in
the fact that the information used for estimating the risk can be represented
by a large dimensional data vector without hurting the practicality of the
method. It is possible, for example, to estimate the conditional 5% quantile
of the return process of a stock from the DAX given the individual returns
of all of the DAX stocks and additional macroeconomic data such as inter-
est rates, exchange rates, etc. In the following section we briefly outline the
necessary procedure.

As in (14.1) we assume a model of the form

Zt+1 = f(Zt, . . . , Zt−p+1, Xt) + s(Zt, . . . , Zt−p+1, Xt) ξt+1 (19.4)



19.5 Quantifying Risk with Neural Networks 423

to estimate the volatility, where ξt are independent, identically distributed
random variables with E(ξt) = 0, E(ξ2t ) = 1. Xt ∈ R

d represents, as in the
previous section, the exogenous information available at date t which we will
use in estimating the risk of the time series Zt. The time series given by
(19.4) is a non-linear AR(p) ARCH(p) process with exogenous components.

To simplify we use Zt(p) = (Zt, . . . , Zt−p+1)� ∈ R

p. It then holds for z ∈
R

p, x ∈ R

d that

E[Zt+1|Zt(p) = z, Xt = x] = f(z, x)
Var [Zt+1|Zt(p) = z,Xt = x] = s2(z, x)

= E[Z2
t+1|Zt(p) = z,Xt = x] − f2(z, x).

The conditional expectation function f(z, x) is approximated as in the previ-
ous section by a neural network function νH(z, x;ϑ) of the form (19.1). With
the non-linear least squares estimator ϑ̂n we obtain for ϑ an estimator for f :

f̂H(z, x) = νH(z, x; ϑ̂n).

Analogously we could estimate the conditional mean

E[Z2
t+1|Zt(p) = z, Xt = x] = g(z, x)

by approximating the function with a neural network with output function
νG(z, x; δ) and estimate its parameter δ with a least squares estimator δ̂
within a sufficiently large compact subset ΔG ⊂ R

(p+d+1)G+G+1, such as
ΘH , chosen from a fundamental range:

δ̂n = argmin
δ∈ΔG

1
n− p+ 1

n∑

t=p

{
Z2
t+1 − νG(Zt(p), Xt; δ)

}2
,

ĝG(z, x) = νG(z, x; δ̂n).

As an estimator for the conditional volatility we immediately obtain:

ŝ2H,G(z, x) = ĝG(z, x) − f̂2
H(z, x).

This estimator is in general guaranteed to be positive only for G = H. In
order to avoid this restriction one can follow the procedure used by Fan and
Yao (1998), who have studied a similar problem for the kernel estimator of
the conditional variance in a heteroscedastic regression model. Using this
application the residuals

εt+1 = Zt+1 − f(Zt(p), Xt) = s(Zt(p), Xt) ξt+1
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are approximated by the sample residuals

ε̂t+1 = Zt+1 − f̂H(Zt(p), Xt), t = p, . . . , n,

Since the ξt+1 has mean 0 and variance 1,

E[ε2t+1|Zt(p) = z, Xt = x] = s2(z, x).

We could approximate this function directly with a neural network with G
neurons and the output function νG(z, x; δ), whose parameter are estimated
by

δ̂n = argmin
δ∈ΔG

1
n− p+ 1

n∑

t=p

{
ε̂2t+1 − νG(Zt(p), Xt; δ)

}2
.

The resulting estimators for the conditional volatility, which through the ε̂t
is also dependent on H, is then

ŝH,G(z, x) = νG(z, x; δ̂n).

Figure 19.10 shows the conditional volatilities estimated from the log returns
of the exchange rate time series BP/USD together with some financial indi-
cators using the procedure described above (3 periods are considered as time
dependency and radial basis functions networks are used).

It is for arbitrary G,H automatically non-negative. Since the number of
neurons essentially determines the smoothness of the network function, it
can make sense when approximating f and s2 to choose different networks
withH 
= G neurons when it is believed that the smoothness of both functions
are quite different from each other.

When the distribution of the innovations ξt is additionally specified in the
model (19.4), we immediately obtain together with the estimators of f and
s2 an estimator of the conditional Value-at-Risk. If the distribution of ξt
is, for example, N(0, 1), then the conditional distribution of Zt+1 given the
information Zt(p) and Xt at date t is also a normal distribution with mean
f(Zt(p), Xt) and variance s2(Zt(p), Xt). If q◦α is the α quantile of the stan-
dard normal distribution, then the VaR process {Zt}, i.e., the conditional α
quantile of Zt+1 given Zt(p), Xt is:

V aRt+1 = f(Zt(p), Xt) + s(Zt(p), Xt)q◦α.

An estimator for this conditional Value-at-Risk based on a neural network
can be obtained by replacing f and s with the appropriate estimator:

̂V aRt+1 = f̂H(Zt(p), Xt) + ŝ2H,G(Zt(p), Xt)q◦α. (19.5)
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Figure 19.10: Log-returns of exchange rate BP/USD and the estimated con-
ditional variances by RBF neutral network. SFEnnarch

In doing this we can replace the standard normal distribution with another
distribution, for example, with a standardised t-distribution with mean 0 and
variance 1. q◦α is then the corresponding α quantile of the innovation distri-
bution, i.e., the distribution of ξt.

The estimator (19.5) for the Value-at-Risk assumes that Zt is a non-linear
ARX-ARCHX process of the form (19.4). Above all, however, it has the dis-
advantage of depending on the critical assumption of a specific distribution
of ξt. Above all the above mentioned procedure, in assuming a stochastic
volatility model from the standard normal distribution, has recently been
criticised in financial statistics due to certain empirical findings. The thick-
ness of the tails of a distribution of a financial time series appears at times to
be so pronounced that in order to adequately model it, even the distribution
of the innovations must be assumed to be leptokurtic. Due to the simplicity
of the representation a t-distribution with only a few degrees of freedom is
often considered. In order to avoid the arbitrariness in the choice of the dis-
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tribution of the innovations, it is possible to estimate the conditional quantile
directly without relying on a model of the form (19.4). This application goes
back to the regression quantile from Koenker and Bassett and has been ap-
plied by Abberger (1997) to time series in connection with kernel estimation.
We assume that Zt is a stationary time series. As in Chapter 18 Pt+1 repre-
sents the forecast distribution, i.e., the conditional distribution of Zt+1 given
Zt(p), Xt. With Ft+1 we depict the corresponding conditional distribution
function

Ft+1(y|z, x) = P(Zt+1 ≤ y|Zt(p) = z,Xt = x)

for y ∈ R, z ∈ R

p, x ∈ R

d. qα(z, x) is the conditional α quantile, i.e., the
solution to the equation Ft+1(qα(z, x)|z, x) = α. The conditional quantile
function qα(z, x) solves the minimisation problem

E{α(Zt+1 − q)+ + (1 − α)(Zt+1 − q)−|Zt(p) = z, Xt = x} = min
q∈R

! (19.6)

where y+ = y − 1(y ≥ 0) and y− = |y| · 1(y ≤ 0) represent the positive
and negative parts of y ∈ R. In order to estimate the quantile function di-
rectly with a neural network with H neurons, we approximate qα(z, x) with
a network function νH(z, x; γ) of the form (19.1), whose weight parameter
γ lies in a fundamental range ΓH ⊂ R

(p+d+1)H+H+1. γ is estimated, how-
ever, not with the least squares method, but with the minimisation of the
corresponding sample values from (19.6):

γ̂n = argmin
γ∈ΓH

1
n− p+ 1

n∑

t=p

{α[Zt+1 − νH(Zt(q), Xt)]+

+(1 − α)[Zt+1 − νH(Zt(q), Xt)]−}.
As an estimator for the quantile function we obtain

q̂Hα(z, x) = νH(z, x; γ̂n)

and with this the estimator for the conditional Value-at-Risk given Zt, . . . ,
Zt−p+1, Xt

̂V aRt+1 = q̂Hα(Zt, . . . , Zt−p+1, Xt).

White has shown that under suitable assumptions the function estimators
q̂Hα(z, x) converge in probability to q(z, x) when the sample observations
n → ∞ and when at the same time the number of neurons H → ∞ at a
suitable rate.
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19.6 Recommended Literature

One for mathematicians, statisticians and economists as well, an accessi-
ble introduction to the area of the neural network is, e.g., Refenes (1995a).
Haykin (1999) offers a comprehensive and effective overview about different
forms and applications of neural network. Anders (1997) introduces neural
networks from econometrical and statistical view and discusses applications
from the finance mathematical areas such as option pricing and insolvency
prediction. Ripley (1996) discusses the application of neural network to clas-
sification problems in detail and puts them in the context of the classic dis-
criminant analysis. Numerous practical applications of neural network in the
finance area are introduced in Rehkugler and Zimmermann (1994), Refenes
(1995b), Bol, Nakhaeizadeh and Vollmer (1996) and Franke (2000). The ap-
plication described in the previous section, calculating the Value-at-Risk by
adaptation of a non-linear ARCHX process based on DAX stocks is described
in Franke and Diagne (2002).



20 Volatility Risk of Option
Portfolios

In this chapter we analyse the principal factors in the dynamic structure of
implied volatility at the money (ATM). The data used are daily Volatility-
DAX (VDAX) values. By using principal component analysis we consider a
method of modelling the risk of option portfolios on the basis of “Maximum
Loss”.

There is a close connection between the value of an option and the volatility
process of the financial underlying. Assuming that the price process follows a
geometric Brownian motion we have derived the Black-Scholes formula (BS)
for pricing European options in Chapter 6. With this formula the option
price is, at a given time point, a function of the volatility parameters when
the following values are given: τ (time to maturity in years), K (strike price),
r (risk free, long-run interest rate) and S (the spot price of the financial
underlying).

Alternatively one can describe the observed market price of an option at
a specific time point with the help of the BS formula using the so called
“implied” volatility (see Chapter 6). In doing this one typically finds a U-
shaped form for the resulting surface of the volatility over different times
to maturity and strike prices. This phenomenon is also referred to as the
“Volatility Smile”. Figure 20.1 illustrates the typical form of a volatility
surface using DAX options. Shown is the implied volatility as a function of the
moneyness and the remaining time to maturity τ . Here the term moneyness
S
K refers to the ratio of the actual price S of the financial underlying and the
strike price K of the respective option. It should be noted that options are
only traded on the market on a discrete price basis and a discrete time to
maturity. In determining the volatility surface, as in Chapter 14, a smoothing
technique needs to be applied.

By observing the volatility surface over time, distinct changes in the loca-
tion and structure become obvious. Identifying the temporal dynamics is of
central importance for a number of financially oriented applications. This is
of particular importance for the risk management of option portfolios. To
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Figure 20.1: Implied volatility surface of the DAX option on 18 July 1998
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determine the volatility’s dynamics, an application of principal component
of analysis is quite suitable. The total temporal structure can be sufficiently
represented by a small number of principal components so that the dimen-
sions of the factor space for the purpose of risk analysis can be significantly
reduced.

20.1 Description of the Data

DAX options belong to the most frequently traded derivatives of the Ger-
man/Swiss derivative market “EUREX”. On every trading day one can find
a significant number of liquid time series with varying strike prices and ma-
turities (K, τ) on the market, which, in principle, can be used to calculate
implied volatilities. In view of the often limited data processing capacities,
an updated calculation of numerous volatilities and partial derivatives of an
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extensive option portfolio is still not feasible. Even with the appropriate
available information the isolated consideration of each implied volatility as
a separate source of risk is problematic, since it results in an unstructured
or “uneven” volatility surface. If one were to use generated volatilities in
calibrating option prices, respective risk models, it could lead to serious spec-
ification errors and significantly deteriorate the results of the corresponding
trading and hedging strategies. As a result of principal component analysis
a “smooth” volatility surface, in contrast to the one outlined above, can be
generated with a manageable amount of information. This allows for a better
calibration of the model and a more precise estimate of portfolio sensitivities.

For our study of the dynamics of implied volatility we use the volatility
index (VDAX) made available by the German Stock Exchange (Deutsche
Börse AG) respectively the closing prices of the corresponding VDAX sub-
indices. These indices reflect the implied volatility of the DAX options “at
the money” for times to maturity from one to 24 months. The corresponding
values are determined by applying the Black-Scholes formula (6.23) using
prices observed on the market:

C(S, τ) = e(b−r)τSΦ(y + σ
√
τ) − e−rτKΦ(y),

where Φ is the distribution function of the standard normal distribution and

y =
ln S

K + (b− 1
2σ

2)τ
σ
√
τ

,

The only parameter from the BS formula that cannot be immediately ob-
served on the market is the actual volatility σ of the price process. In principle
the volatility of the process can be estimated from historical financial market
data, see Section 6.4.5, however, it is commonly known that the assumption
of the BS model, that the financial underlying has a geometric brownian mo-
tion, is in reality only approximately fulfilled. Alternatively the BS formula
is also used in order to calculate the σ value as the implied volatility for a
given market price of a specific option. This does not mean that the market
participant should accept the assumption of the Black-Scholes method. On
the contrary they use the BS formula as a convenient possibility to quote and
price options with these parameters.

Given the observed implied volatilities from varying times to maturity τ at
a specific time point and from a strike price K, the expectations of the mar-
ket participants with respect to the future actual volatility of the underlying
financial instrument can be estimated. In doing so one must remember that
the implied volatility of the BS model does not directly apply to the actual
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variance of the price’s process. Although the implied BS volatility reflects
a market expectation, the theoretical relationship between it and the actual
volatility can only be determined using specific assumptions, see Schönbucher
(1999), Härdle and Hafner (2000).

Implied volatility for ATM-DAX options are calculated for various lengths of
maturity by the German Stock Exchange AG. A detailed description of how
the VDAX and its sub-indices are calculated can be found in Redelberger
(1994). Since 18 March 1996 maturities of 1, 2, 3, 6, 9, 12, 18 and 24 months
have been considered in the calculation. On this date the trading of so called
“Long Term Options”, i.e., trading of options with maturities of over 12
months, were added to the EUREX. Using closing prices the German Stock
Exchange AG calculates a total of eight VDAX sub-indices for the maturities
mentioned above for every trading day. These sub-indices reflect the volatility
of the respective DAX option “at the money”. The time to maturity structure
for DAX options that are “at the money” can be determined for every trading
day using the VDAX indices. Figure 20.2 illustrates a typical development
of the structure, which shows strong changes in the positioning and form of
the structure over time.
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Figure 20.2: Time to maturity structure of implied DAX volatilities “at the
money” SFEVolaTermStructure



20.1 Description of the Data 433

The analysis carried out here is not only restricted to specific maturities of
liquid options, which are represented by the first four VDAX sub-indices. On
the contrary, we include all eight sub-indices in the analysis for the following
reasons:

First of all a brisk trade in even the “most distant” option contracts (i.e.,
the contracts with a remaining time of more than one year) take place on
numerous trading days, so that excluding the pertaining sub-indices from
the analysis would result in a loss of information. VDAX sub-indices for
long maturities have been calculated by the German Stock Exchange since
18 March, 1996. After 19 December, 1997 the quality of the data available
to us declined considerably. In addition to the daily often unchanged prices,
the entries corresponding to the removed sub-indices were usually missing.
Given this we have restricted our analysis to the period from 18 March, 1996
to 19 December, 1997.

Including relatively non-liquid DAX options with long maturities appears to
make sense for another reason: For our analysis we require constant option
maturities, since the daily shortening of the time to maturity can lead to
enormous biases in the analysis results with data that has not been corrected.
This especially holds for options with a very short time to maturity. Thus we
find it utterly necessary to use interpolated volatilities with corresponding
constant time to maturities of the underlying option. Referring back to the
calculation of the VDAX used by the German Stock Exchange AG we use
the following linear interpolation:

For a fixed time to maturity of τ∗1 = 30, τ∗2 = 60, τ∗3 = 90, τ∗4 = 180, τ∗5 =
270, τ∗6 = 360, τ∗7 = 540, τ∗8 = 720 calendar days we calculate daily volatil-
ity indices σ̂I,t(τ∗j ), j = 1, ..., 8, using the VDAX sub-indices with the next
shorter respectively longer maturity σ̂I,t(τ−j ) and σ̂I,t(τ+

j ) with

σ̂I,t(τ∗j ) = σ̂I,t(τ−j )

[
1 − τ∗j − τ−j

τ+
j − τ−j

]
+ σ̂I,t(τ+

j )

[
τ∗j − τ−j
τ+
j − τ−j

]
. (20.1)

This way, we obtain 8 volatility time series each with constant maturities.
Every time series represents a weighted average of two consecutive VDAX
sub-indices and is based on n = 441 daily observations of the implied DAX
volatilities “at the money”.
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Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8
20.8 9.06 6.66 6.84 4.29 2.48 2.11 1.38
9.06 9.86 6.67 4.44 3.21 1.72 1.11 0.92
6.66 6.67 6.43 3.87 2.63 1.49 1.01 0.53
6.84 4.44 3.87 4.23 2.66 1.39 1.38 0.68
4.29 3.21 2.63 2.66 2.62 1.03 1.02 0.51
2.48 1.72 1.49 1.39 1.03 2.19 0.63 0.33
2.11 1.11 1.01 1.38 1.02 0.63 1.76 0.43
1.38 0.92 0.53 0.68 0.51 0.33 0.43 1.52

Table 20.1: Empirical covariance matrix Ω̂ of the first differences (all values
have been multiplied by 105) SFEVolaCov

20.2 Principal Component Analysis of the
VDAX’s Dynamics

We will first check the data with the help of the “Augmented Dickey-Fuller”
Tests (ADF-Test - see (11.46)) for stationarity. The null hypothesis of a
unit root for the individual VDAX sub-indices σ̂I(τ∗j ) cannot be rejected at
the 90% significance level. Obviously due to this result the first differences
xjt = Δ[σ̂I,t(τ∗j )] = σ̂I,t+1(τ∗j ) − σ̂I,t(τ∗j ), t = 1, ...., n − 1, of the implied
volatility indices will be used for further analysis. Additional ADF tests sup-
port the assumption of stationarity for the first differences. SFEAdfKpss

Let x̄j be the respective sample mean of the first differences xjt. Table
20.1 contains the empirical covariance matrix Ω̂ used as an estimator for the
8 × 8 matrix Ω of the covariance Cov(xit, xjt), i, j = 1, ..., 8. With help of
the Jordan decomposition we obtain Ω̂ = Γ̂Λ̂Γ̂�. The diagonal matrix Λ̂
contains the eigenvalues λ̂k, k = 1, ..., 8 of Ω̂, Γ̂ are the eigenvectors. Time
series of the principal components can be obtained with the help of Y = XC Γ̂,
where XC represents the 440×8 matrix of the centered first differences xcjt =
xjt − x̄j , j = 1, ..., 8, t = 1, ..., 440,. The 440× 8 matrix Y = (Y1, ..., Y8), Yj =
(y1j , y2j , ..., y440,j)� contains the principal components.

How accurately the first l principal components have already determined
the process of the centered first differences can be measured using the pro-
portion of variance ϕl with respect to the total variance of the data. The
proportion of explained variance corresponds to the relative proportion of the
corresponding eigenvalue, i.e.,
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Principal Explaining proportion cumulative
Component of variance proportion

1 70.05 70.05
2 13.06 83.12
3 5.57 88.69
4 3.11 91.80
5 3.06 94.86
6 2.12 96.97
7 1.93 98.90
8 1.10 100.00

Table 20.2: Explained sample variance using principal components in per-
centage SFEVolaPCA

ϕl =
∑l
k=1 λk∑8
k=1 λk

=
∑l
k=1 Var(ytk)∑8
k=1 Var(ytk)

, (20.2)

where λk, k = 1, ..., 8 are the eigenvalues of the true covariance matrix Ω. An
estimator for ϕl is

ϕ̂l =
∑l
k=1 λ̂k∑8
k=1 λ̂k

.

In Table 20.2 the individual proportions of the variance λ̂l/
∑8
k=1 λ̂k as well as

the cumulative variance from the l decomposed proportions from the principal
components, ϕ̂l, are displayed. It is obvious that the first principal component
already describes 70% of the total variance of the underlying data. With the
second principal component an additional 13% of the total variance within
the observed time period can be explained. Together 83% of the variance
of the analysed first differences of our VDAX sub-indices can be explained
with the help of the first and second principal components. Obviously the
explaining power of the principal components significantly declines from the
third principal component onwards.

By displaying the eigenvalues in a graph, a form with a strong curvature
at the second principal component is shown. In accordance with the well
known “elbow” criterion, using the first two principal components with an
explanation power of over 80% of the total variance is considered to be suf-
ficient in describing the data set. The remaining variance can be interpreted
for analytical purposes as the effect of an unsystematic error term. Figure
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20.3 contains the factor loading of the first two principal components. Based
on the orthogonality of the components the loading factors can be estimated
using the least squares regression of the individual equations

xcjt =
2∑

l=1

bjlylt + εt, (20.3)

Here εt is an independent error term.

factor loadings

2 4 6 8

Time

-0
.5

0
0.

5

pe
rc

en
ta

ge
 [

%
]

Figure 20.3: Factor loadings of the first and second principal components
SFEPCA

Based on the factor loadings it is clear that a shock to the first factor would
affect the implied volatility of all times to maturity considered in a similar
way, or would cause a non-parallel shift in the maturities’ structure. A shock
to the second principal component, on the other hand, causes a tilt of the
structure curve: while at short times to maturity it causes a positive change,
the longer time to maturities are influenced negatively. The absolute size of
the effect of a shock decreases in both factors with the time to maturity.
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Principal
Components: 1 2 3 4 5 6 7 8

Weekly data
18.03.96-19.12.97 73.85 91.59 95.09 97.38 98.80 99.61 99.88 100

Daily data
18.03.96-19.12.97 70.05 83.12 88.69 91.80 94.86 96.97 98.90 100

Sub-period 1
18.03.96-05.02.97 83.36 91.84 94.65 96.39 97.76 98.78 99.52 100

Sub-period 2
05.02.97-19.12.97 68.22 82.21 87.99 91.35 94.64 96.93 98.86 100

Table 20.3: Explained portion of the variance (in percentage) in different sub-
periods

20.3 Stability Analysis of the VDAX’s Dynamics

In order to sensibly apply the principal factors in measuring the risk of port-
folios we have to study their stability over time. When the principal compo-
nents and the factor loadings change significantly over time, a global analysis
would not be suitable to illustrate the future variance of the implied volatility
nor to judge the risks of the option portfolios with sufficient accuracy.

Our procedure considers two aspects: first whether the random portion in
daily data is possibly significantly higher than in weekly data. A possible
cause for this is the non-synchronous trading caused by frequent realisations
of the quotes in the liquid contracts with a short time to maturity and sparsely
available prices in the long running contracts. In order to distinguish the
possible influences of this effect, we run our analysis analogously based on
weekly data. By sufficient stability in the principal components the use of
daily, and respectively, weekly data should lead to similar results.

For the second aspect we divide our data into two non-overlapping periods
of equal length. Each sub-period contains m = 220 daily observations of
the process of the differences. For each sub-period we run a principal com-
ponent analysis as described above and compare the respective sizes of the
eigenvalues λ̂ik, k = 1, 2, in both sub-periods i = 1, 2.

As already mentioned the effect of non-synchronous trading that appears
in daily data can be eliminated by using weekly data. From Table 20.3
it emerges that the explanatory power of the first principal component is
slightly higher in weekly data. This is not surprising given the expected
size of the error terms proportion in daily data. Overall the explanatory
proportions of the variance have similar values when using weekly data. This
supports the stability of the analysis method used here w.r.t. the bias due
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to non-synchronous trading in daily data.

From Table 20.3 it emerges that the proportion of the variance explained by
the first two principal components declines in the second sub-period. Based
on this a stability test is necessary: A two sided confidence interval for the
difference of the eigenvalues from both sub-periods is

ln λ̂1
k − 2qα

√
2

m− 1
≤ ln λ̂2

k ≤ ln λ̂1
k + 2qα

√
2

m− 1
, (20.4)

where qα represents the α quantile of a standard normal distribution, see
Härdle and Simar (2007). From this it follows that

| ln λ̂1
k − ln λ̂2

k |≥ 2qα

√
2

m− 1
(20.5)

is a second test for H0 : λ1
k = λ2

k. Under the null hypothesis the respective
eigenvalues are the same in both periods. The null hypothesis is rejected
when the inequality is fulfilled for a corresponding critical value q. This
would indicate an instability of the principal components over time.

Critical values for rejecting the null hypothesis are 0.313 (probability of error
10%), 0.373 (probability of error 5%) and 0.490 (probability of error 1%). The
differences of the estimated eigenvalues are 0.667 and 1.183. Both differences
are significantly larger than zero with an error probability of 1%. These
results prove that the determining factors of the volatility dynamics change
over time. By the determination of the risk of option portfolios it therefore
appears necessary to use an adaptive method of the principal components.
Here the estimation is periodically done over a moving time window and the
length of the time window is adaptively set, see Cizek, Härdle and Weron
(2005).

20.4 Measure of the Implied Volatility’s Risk

The market value Pt of a portfolio consisting of w different options is depen-
dent on changes of the risk free interest rate rt, the prices St of the financial
underlying, the time to maturity τ and the individual implied volatilities σI .
Changes in the portfolio value can be analytically approximated using the
following Taylor approximation, where it is assumed that the options are all
based on the same underlying.
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ΔPt =
w∑

u=1

{∂Vut
∂σI

ΔσI,t +
∂Vut
∂t

Δt+
∂Vut
∂r

Δrt

+
∂Vut
∂S

ΔSt +
1
2
∂2Vut
∂S2

(ΔSt)2
}

ΔPt =
w∑

u=1

{
∂Vut
∂σI

ΔσI,t + ΘuΔt+ ρuΔrt + ΔuΔSt +
1
2
Γu(ΔSt)2

}

Here Vut describes the price of the u-th option with a time to maturity
τu at date t, and Θu, ρu,Δu,Γu are the characteristic values described in
Section 6.4 of the u-th option. In practice option traders often insert “Vega”
positions directly. In doing so they create portfolios whose profit and loss
profile can be determined by the changes in the implied volatilities of the
respective options, see Taleb (1997). Portfolios of this kind are called (Δ,Γ)
and Θ neutral. The sensitivity of the option price under consideration to the
changes in the volatilities is measured by the variable V (“Vega” - see (6.33)).

A well known strategy in utilising the forecasted changes in the maturity
structure of implied volatilities consists of buying and selling so called “Strad-
dles” with varying maturities. A straddle is constructed by simultaneously
buying (“Long Straddle”) or selling (“Short Straddle”) the same number of
ATM Call and Put options with the same time to maturity. If a trader expects
a relatively strong increase in the implied volatility in the short maturities
and a relatively weaker increase in the longer maturities, then he will buy
straddles with a short time to maturity and sell longer maturity straddles at
a suitable ratio. The resulting option portfolio is (Δ,Γ) neutral and over a
short time frame Θ neutral, i.e., it is insensitive with respect to losing value
over time. The Taylor series given above can thus be reduced to:

ΔPt ≈
w∑

u=1

{
∂Vut
∂σI

Δσ(t)
I,t

}
(20.6)

The first differences of the implied volatilities can now be given as linear
combinations of the principal components. By substituting the volatility
indices σI,t, which are temporally next to the actual implied volatility σ̂I(τ∗u),
one obtains the following representation given (20.3):

ΔPt ≈
w∑

u=1

{
∂Vut
∂σI

(
2∑

l=1

bjlylt

)}
(20.7)

The number of principal components used in the previous expression can be
reduced to the first two without any significant loss of information.
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The following “Maximum Loss” (ML) concept describes the probability dis-
tribution of a short-term change in the portfolio value dependent on changes
in the value of the underlying factors. The change in value of a (Δ,Γ) neu-
tral option portfolio is substantially determined by the changes in the implied
volatilities of the options contained in the portfolio. To determine the “Max-
imum Loss” it is necessary to have an adequate exact representation of the
future distribution of the changes to the volatility of the options with varying
time to maturity.

The “Maximum Loss” is defined as the largest possible loss of a portfolio that
can occur over a specific factor space At and over a specific holding period
τ . The factor space At is determined by a closed set with P(At) = α. Here
α is set to 99% or 99.9%. The ML definition resembles at first sight the
“Value-at-Risk” Definition (see Chapter 16). There is, however, an impor-
tant difference between the two concepts: In calculating the “Value-at-Risk”
the distribution of the returns of the given portfolio must be known, whereas
the ML is defined directly over the factor space and thus has an additional
degree of freedom, see Studer (1995).

In our analysis we have divided the maturity structure of the implied volatil-
ities into two principal components, which explain a considerable portion of
the variability of the structure curve. Thus the first two principal components
represent the risk factors used in the ML model. The profit and loss profile
of each portfolio held is determined by the corresponding changes in the risk
factors using a suitable valuation model. In order to obtain this, a valuation
of the underlying portfolios must theoretically occur for every point in the
factor space. In the practical application the factor space is probed over a
sufficiently small grid of discrete data points yz1(z = 1, ..., N1), during which
the other risk factor is held constant in each case. Due to the orthogonality
properties of the principal components, the profit and loss function PL() is
additive with PL(yz11 , y

z2
2 ) = PL(yz11 ) + PL(yz22 ).

Under the assumption of multivariate, normally distributed principal compo-
nents confidence intervals can be constructed for the “Maximum Loss” over
the total density

ϕ2(y) =
1

(2π)
√

det Λ2

exp(−1
2
y�Λ−1

2 y), (20.8)

with y = (y1, y2)�. Here the matrix Λ2 represents the 2 × 2 diagonal matrix
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of the eigenvalues λk, k = 1,2. The random variable y�Λ−1
2 y = X2

1 +X2
2 has

a Chi-square distribution. The confidence interval for an existing portfolio
is then At = {y; y�Λ−1

2 y ≤ cα}, cα, where cα is the α quantile of a random
variable with a Chi-square distribution and 2 degrees of freedom.

20.5 Recommended Literature

The presentation of this chapter closely follows the work of Fengler, Härdle
and Schmidt (2002). The principal components analysis is applied to the
changes of implied volatilities for fixed ranges of days to maturity by Ski-
adopoulos, Hodges and Clewlow (1998) who find two principal components
can already sufficiently explain the dynamics of smiles. The conditions
to ensure the absence of arbitrage in the volatility models are derived by
Schönbucher (1999). Furthermore, Härdle and Hafner (2000) show that the
prices of out-of-the-money options strongly depend on volatility features such
as asymmetry.

Cizek et al. (2005) develop an adaptive method of estimation which does not
use any information about the time homogeneity of the observed process.
It can be used to estimate the principal components. For the effect of the
implied volatilities changes on the dynamic hedging of exotic and complex
options we refer to Taleb (1997).



21 Nonparametric Estimators for
the Probability of Default

The estimation of the probability of default based on information on the in-
dividual customer or the company is an important part of credit screening,
i.e., judging the credit standing. It is essential for the establishment of a rat-
ing or for measuring credit risk to estimate the probability that a company
will end in financial difficulties within a given period, for example, one year.
Also, here nonparametric applications prove to be flexible tools in estimat-
ing the desired default probability without arbitrary assumptions. In this
chapter we will give a brief overview of the various approaches for non- and
semiparametric estimates of conditional probabilities.

21.1 Logistic Regression

In order to judge the credit standing of a customer a series of data are in gen-
eral available. For consumer credit there are, for example, in Müller (2000):
level of credit, age of the customer, duration of credit as well as information
on whether the customer is unemployed or not and whether there were prob-
lems in the past with repaying loans. For the insolvency prognoses for a small
company relevant information would, for example, be in Anders (1997): age
of the business, sales development from the recent past, educational degree of
the entrepreneur, type of business and information on liability.

Some influential values are quantitative, such as credit volume and sales de-
velopment. Others are qualitative in nature and must be transformed into
numbers for estimating the default probability. For dichotomic character-
istics (unemployed, employed, limited liability, unlimited liability) indicator
variables are set with values of 0 and 1. For characteristics with d > 2 pos-
sibilities and for categorical values d − 1 dummy variables are introduced,
which also take on the value of 0 or 1. Coding the characteristics numerically
the type of business and three clarifying variables trade, processed business,
other are considered for which two Dummy variables, Z1, Z2, are used where
Z1 = 1 (Z2 = 1) if and only if the type of business is trade (processed busi-
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ness). When Z1 = Z2 = 0, the firm considered belongs to one of the other
types of business, for example, services. The case Z1 = Z2 = 1 cannot occur.

If the values of the qualitative characteristics are hierarchically ordered, then
it is possible to represent them with an integer valued random variable. The
personal impression of the processor in the bank of the economic situation of
a company: very good, good, satisfactory, poor, very poor can, for example,
be transformed into a number scale: 1, 2, 3, 4, 5. Here one must be certain
that every monotone transformation, i.e., where the order remains consis-
tent, produces a different numerical code that can be used with the same
justification. Instead of 1, 2, 3, 4, 5 one could also use 0, 1, 3, 6, 10 for
instance. Using parametric applications such as the logistic regression one
should specify the arbitrary setting of a numerical scale for the hierarchical
characteristics. Through a monotone transformation of the scale better es-
timates can eventually be obtained for the default probabilities. Adequately
flexible nonparametric and semi-parametric applications, in contrast, auto-
matically choose a suitable scale.

In order to estimate the default probability of a credit, given the informa-
tion available at the time the decision is made, we assume a random sam-
ple (X1, Y1), . . . , (Xn, Yn) is independent, identically distributed. Xj ∈ R

d

stands for the information available at the time the credit is issued to the
j-th customer, where qualitative characteristics are already transformed into
numerical values as described above. Yj ∈ {0, 1} is the indicator variable
of the credit: it has a value of 0 when the loan can be paid back without
any problems and 1 when the credit partially or completely defaulted. The
default probability that is to be estimated is the conditional probability that
Yj = 1, given Xj = x :

π(x) = P(Yj = 1|Xj = x), x ∈ X ,

where X ⊂ R

d represents the value space of Xj .

Since π(x) only takes on the values between 0 and 1 given that it is a probabil-
ity, linear regression models cannot be used for the function estimator. The
class of generalised linear models (GLM) can, however, be used to estimate
the probabilities. Here it is assumed that

π(x) = G(β0 +
d∑

i=1

xiβi) = G(β0 + β�x).

G : R → [0, 1] is a known function that only takes on a value between 0 and 1,
the real valued parameters β0, . . . , βd are unknown and need to be estimated.
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For the special case that G is chosen to be a logistic function ψ:

G(t) = ψ(t) =
1

1 + e−t
,

we obtain the model of the logistic regression: Given X1, . . . , Xn, the credit
indicators Y1, . . . , Yn are independent Bernoulli random variables with pa-
rameters ψ(β0 + β�X1), . . . , ψ(β0 + β�Xn). The conditional likelihood func-
tion is thus

L(β0, . . . , βd) = Πn
j=1[Yjψ(β0 + β�Xj) + (1 − Yj){1 − ψ(β0 + β�Xj)}].

Since Yj only takes on a value between 0 and 1, the corresponding conditional
log-likelihood function is

logL(β0, . . . , βd) =
n∑

j=1

[Yj logψ(β0+β�Xj)+(1−Yj) log{1−ψ(β0+β�Xj)}].

Through maximising L or logL one obtains the maximum likelihood estima-
tor β̂0, . . . , β̂d of β0, . . . , βd and thus the maximum likelihood estimator for
the default probability in the logistic regression model:

π̂(x) = ψ(β̂0 + β̂�x).

21.2 Semi-parametric Model for Credit Rating

The logistic regression model for the estimate of the conditional probabil-
ity suffers under the same restrictions as the linear regression model when
estimating the general functions. In order to avoid the dependence on the
special parametric form of the model and to gain more flexibility in the func-
tion estimation it is recommended that π(x) is estimated nonparametrically,
for example, with the LP-method given in (14.4) and (14.7). In doing this,
however, it is not guaranteed that the function estimator will lie between 0
and 1. In order to enforce this possible, as was carried out in the previous
section, we transform the value space of the estimated function to the interval
[0,1] using a given function G:

π(x) = G(m(x))

where m(x) is an arbitrary real valued function that can be estimated non-
parametrically. For the estimate of the default probabilities the local smooth-
ing methods are less suitable for two reasons. First of all x is often high di-
mensional in the application, for example, after adding the necessary dummy
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variables in the example considered by Müller and Rönz (2000) it has a di-
mension of 61, that even by larger local neighbourhoods of x of the random
sample, over which the estimation occurs, there are either too few observa-
tions or too large to produce a reliable estimate of m(x). This problem can
be solved by restricting ourselves to additive models

π(x) = G(
d∑

i=1

mi(xi)),

where m1(u), . . . ,md(u) are arbitrary functions of the one-dimensional vari-
able u. It is however more critical that many of the coordinates of x take on a
value of 0 or 1 in the credit rating, since they represent, from the very begin-
ning, dichotomic characteristics or have been added as dummy variables for
the unordered qualitative characteristics. Local smoothing functions would
be suitable based on their underlying philosophy, but mainly for estimating
functions with continuous arguments.

A combination of nonparametric and parametric applications offers the pos-
sibility of using the flexibility of the nonparametric method by credit rating,
Müller and Rönz (2000). In doing so the influential variables are not com-
bined in a random vector Xj , but are separated into two random vectors
Xj ∈ R

p, Zj ∈ R

q. The coordinates of Zj represent several chosen exclusive
quantitative characteristics and eventual hierarchical qualitative characteris-
tics with sufficiently accurate subdivided value spaces. All remaining char-
acteristics, especially the dichotomic and the dummy variables of unordered
qualitative characteristics, are combined in Xj . In order to estimate the de-
fault probability we consider a generalised partial linear model (GPLM =
generalised partial linear model) :

P(Yj = 1|Xj = x, Zj = z) = π(x, z) = G(β�x+m(z)).

G is again a known function with values between 0 and 1, for example, the
logistic function ψ. β1, . . . , βp are unknown parameters, m is an arbitrary,
unknown function that can contain an additive constant and thus can make
an additional parameter β0 superfluous. In an extensive case study Müller
(2000) has shown that the additional flexibility from the nonparametric part
m(z) of the model results in a better estimate of the default probability than
a pure parametric logistic regression.

There are various algorithms for estimating β and m(z), for example the
profile likelihood method from Severini and Wong (1992) and Severini and
Staniswallis (1994) or the back-fitting method from Hastie and Tibshirani
(1990). Essentially they use the fact that for the known function m(z) of



21.2 Semi-parametric Model for Credit Rating 447

the parameter vector β can be estimated through maximisation of the log-
likelihood function analog to the logistic regression

logL(β) =
n∑

j=1

[Yj logG(β�Xj+m(Zj))+(1−Yj) log{1−G(β�Xj+m(Zj))}]

and for known β the function m(z) can be estimated with local smoothing
analog to the LP-Method (14.4), (14.7). Both of these optimisation problems
are combined in an iterative numerical algorithm.

Example 21.1
As an example we consider the rating of consumer credit already referred to
above that Müller (2000) had carried out with a GPLM method. The data
represent a part of the extensive random sample, which is described in detail
by Fahrmeir and Tutz (1994). We use a total of n = 564 observations,
in which 24.3% of the cases have a problem with repaying the credit (Yj =
1). From the 5 influential variables considered, two are dichotomic; they
indicate whether the customer is unemployed or not (Xj1) and whether the
customer has had credit problems in the past or not (Xj2). The remaining
three variables are quantitative: the duration of the credit (Xj3 with values
between 4 and 72 months), the level of the credit (between DM 338 and DM
15653) and the age of the customer (between 19 and 75 years). We will take
the logarithm of the last two variables and transform them linearly so that
they take on a value in the interval [0, 1]. The data points, as can be seen
in Figure 21.1, are dispersed comparatively homogenous over a part of the
plane, which makes the local smoothing easier. These transformed variables
are called Zj1 and Zj2. We fit a GPLM

P(Yj = 1 | Xj1 = x1, Xj2 = x2, Xj3 = x3, Zj1 = z1, Zj2 = z2)

= ψ(
3∑

k=1

βkxk +m(z1, z2))

to the data and obtain the estimates (the corresponding standard deviation is
given in parentheses)

β1 = 0.965 (0.249), β2 = 0.746 (0.237), β3 = −0.0498 (0.0115).

The probability of default on the credit increases when the customer is un-
employed or if the customer has had repayment problems in the past; this
however decreases with the duration of the credit. The dependence on the
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Figure 21.1: The scatter plot of the transferred variables: level of credit and
age of the customers. SFEgplm

transformed credit levels and ages are nonparametrically estimated. From
Figure 21.2 it is obvious that the estimated function m̂(z1, z2) is clearly non-
linear with a maximum by the average value of the credit level and age. The
decrease in the probability of default by high levels of credit can be explained by
the fact that the random sample contains only those credits that have actually
been given and that the processor was essentially reluctant to grant high lev-
els of credit when the customer appeared to be unreliable. This effect, which
is caused by credit ratings from the past, occurs on a regular basis in credit
assessment, even if a systematic, model based method is not used, which ex-
cludes the credit screening of extreme risks from the very beginning and thus
mean that these ratings no longer appear in the data. This must therefore be
considered when interpreting and applying a model.
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Figure 21.2: The estimated function with respect to level of credit and age of
the customers. SFEgplm

21.3 Credit Ratings with Neural Networks

As with nonparametric fitting of financial time series models to data, the
neural network also provides an alternative to local smoothing, as with the LP
method, in estimating default probabilities. The logistic regression function
π(x) = ψ(β0 + β�x) is nothing more than a function defined by a neural
network with only one neuron in a hidden layer, when the logistic function ψ
is chosen as a transfer function. Through the combination of several neurons
in one or more hidden layers default probabilities can be estimated, as with
the nonparametric regression analysis, with flexibility. In order to obtain
estimates between 0 and 1, it is necessary to represent the function νH(x; δ)
given by (19.1), for example, with a function G over the interval [0,1]. We
restrict ourselves to one hidden layer with H neurons and choose G = ψ, so
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that the default probability given by the neuron network has the form

πH(x;ϑ) = ψ(v0 +
H∑

h=1

vh ψ(woh +
d∑

j=1

wihxi)),

where ϑ once again represents the parameter vector built from vh and wih, 0 ≤
i ≤ d, 0 ≤ h ≤ H. To estimate the network weights from the data we
will not use the least squares method, which makes sense for the regression
model with normally distributed residuals, but instead we will maximise the
log-likelihood function

logL(ϑ) =
n∑

j=1

[Yj log πH(Xj ;ϑ) + (1 − Yj) log{1 − πH(Xj ;ϑ)}]

following the procedure used in the logistic regression. By substituting ϑ̂n in
the estimator we obtain an estimator for the default probability

π̂(x) = πH(x; ϑ̂n).

In order to obtain an especially simple model with fewer parameters, Anders
(1997) trivially modified the method for the insolvency prognoses for small
and middle sized firms and assumed a default probability of the form

πlH(x;ϑ) = ψ(β�x+ v0 +
H∑

h=1

vhψ(woh +
d∑

i=1

wihxi)),

which has obvious similarities to the general partial linear model, besides
the fact that here a part of or all of the influential variables, i.e., the co-
ordinates of x, can appear in linear as well as in nonparametric portions.
The linear term β�x can be interpreted as the value of an additional neu-
ron whose transfer function is not the logistic function ψ(t), but the identity
f(t) def= t. Estimating the network from the application of a model selection
technique, utilised to find the insolvency probability, is surprisingly easy. In
addition to a linear term it contains only one single neuron (H = 1). From
the 6 input variables only 4 contribute to the linear part (age of the business,
sales development, indicator for limited liability, dummy variable for pro-
cessed business); this means the other two coefficients βi are 0, and only 3
(Dummy variables for processed business and for trade, indicator variable for
educational degree of entrepreneur) contribute to the sigmoid part, meaning
that the corresponding weights wi1 are 0. With this simple model using a
validation data set, which is not used to estimate the parameters, a ratio of
the correct identifications of 83.3% was obtained for the insolvencies and of
63.3 % for the solvent companies.
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Credit risk management is an important issue in banking. In this chapter we
give an overview of the models for calculating the default risk exposure of a
credit portfolio. The primary goal of these models is to help credit analysts
define whether the loan should be issued, which risk premia is appropriate,
and how much capital should be directed to the loss reserve account. We
follow closely the presentation of Bluhm, Overbeck and Wagner (2002).

22.1 Basic Concepts

Definition 22.1 (Loss function)
The loss fraction in case of default is called loss given default (LGD). The
exposure at default in a considered time period is abbreviated to EAD. The
loss of an obligor is thus defined by the following loss function:

L̃ = EAD × LGD × L

with L = 1(D). Here D stands for the default event of an obligor in a given
time period, (e.g. one year). P (D) is the probability of the event D.

Definition 22.2 (Expected Loss)
The expected loss (EL) is defined as:

EL = E(L̃) = EAD × LGD × P(D).

For the sake of simplicity we assume here (and thereafter) that EAD and LGD
are deterministic, therefore implying their independence from the default
event. However violating these assumptions leads to a more specific and
realistic model.

To calculate EL we need to find default probabilities which could be in-
ferred either from credit ratings or from market prices of defaultable bonds
or credit derivatives. According to the first approach we use data on default
frequencies for different rating classes to perform a mapping from the ratings’
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space into the default probabilities’ space. For further details please refer to
Bluhm et al. (2002). A good description of the market data approach can be
found in Li (1998).

The expected loss EL defines the necessary loss reserve that a bank must
hold as insurance against a default. In addition to the expected loss the bank
should have a cushion to cover unexpected losses.

Definition 22.3 (Unexpected Loss)
The unexpected loss (UL) is defined as:

UL =
√

Var(L̃) =
√

Var(EAD × LGD × L)

with Var(L) = P(D)(1 − P(D)).

So far we have considered the loss estimates for a single obligor. Now assume
we have a credit portfolio consisting of m loans.

Definition 22.4 (Portfolio Loss)
The expected portfolio loss is defined by the following random variable:

L̃PF =
m∑

i=1

L̃i =
m∑

i=1

EADi × LGDi × Li

with Li = 1(Di).

Analogously to the single obligor case we can calculate ELPF and ULPF :

ELPF =
m∑

i=1

ELi =
m∑

i=1

EADi × LGDi × P(Di)

ULPF =

√√√√
m∑

i,j=1

EADi × EADj × LGDi × LGDj × Cov(Li, Lj).

It is possible to rewrite the covariance term as following: Cov(Li, Lj) =√
Var(Li) × Var(Lj) × ρij . We now obviously face the problem of the un-

known default correlations ρij . One could assume that loss variables are un-
correlated but this severely contradicts our empirical observations; defaults
are likely to happen jointly so that the correlation between obligors becomes
the main driver of credit risk and the key issue in credit modelling. Addition-
ally we will introduce the models which incorporate the statistical techniques
for calibrating default correlations.
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22.2 The Bernoulli Model

In the preceding section we implicitly introduced the Bernoulli loss variable
defined as Li ∼ B(1; pi) , with Li being the default variable of obligor i,
i.e. loss is generated with probability pi and not generated with probability
(1 − pi). The fundamental idea in the modelling of joint defaults is the
randomisation of the involved default probabilities. While in our previous
analysis we considered extracted market data or ratings default probabilities,
now we assume that the loss probabilities are random variables that follow
some distribution F within [0, 1]m: P = (P1, . . . , Pm) ∼ F .

We assume that Bernoulli loss variables L1, . . . , Lm are independent condi-
tional on a realisation p = (p1, . . . , pm) of vector P . The joint distribution
of the loss function is then:

P(L1 = l1, ..., Lm = lm) =

∫

[0,1]m

m∏

i=1

plii (1 − pi)1−li dF(p1, ..., pm), (22.1)

where li ∈ {0, 1}. The first and second moments of the single losses Li are:

E(Li) = E(Pi), Var(Li) = E(Pi){1 − E(Pi)}

The covariance of single losses is given by:

Cov(Li, Lj) = E(Li, Lj) − E(Li) E(Lj) = Cov(Pi, Pj) (22.2)

The correlation for two counterparties’ default is:

Corr(Li, Lj) =
Cov(Pi, Pj)√

E(Pi) {1 − E(Pi)}
√

E(Pj) {1 − E[Pj ]}
. (22.3)

Thus we have succeeded in expressing the unknown default correlations in
terms of covariances of the F distribution. Later in this chapter (p. 457) we
will illustrate how to obtain an appropriate specification for the distribution
of default probabilities and consequently solve the default correlations.

A major simplification is possible if one assumes an equal default probability
Pi for all obligors. It is suitable for the uniform portfolios with loans of
comparable size and with similiar risk characteristics. In this case (22.1)
simplifies to

P(L1 = l1, ..., Lm = lm) =
∫ 1

0

pk(1 − p)m−k dF (p) (22.4)
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where k =
∑m
i=1 li is the number of defaults in the credit portfolio. Note

that EL equals:

p =
∫ 1

0

p dF (p) (22.5)

Therefore the default correlation between two different counterparties equals:

ρij = Corr(Li, Lj) =

P(Li = 1, Lj = 1) − p2

p(1 − p)
=

∫ 1

0
p2dF (p) − p2

p(1 − p)
. (22.6)

Formula (22.2) shows that the higher volatility of P corresponds to the higher
default correlation. Since the numerator of (22.2) equals Var(P ) ≥ 0 the
default correlation in the Bernoulli model is always positive and cannot mimic
negative default correlation.

22.3 The Poisson Model

Another common approach to joint default modelling is the assumption of
the Poisson-distributed loss variable Li with intensity Λi. This means that
Li ∼ Pois(λi), pi = P(Li ≥ 1), Li ∈ {0, 1, 2, . . .} modelling the fact that
multiple defaults of one obligor i may occur. Analogously to the Bernoulli
mixture model we not only assume the loss variable vector L but also the
intensity vector Λ = (Λ1, . . . ,Λm) to be random: Λ ∼ F within [0,∞)m. Also
assume that L1, . . . Lm (conditional on a realisation of Λ) are independent.
The joint distribution of Li is given:

P(Li = li, ..., Li = li)

=
∫

[0,∞)m

e−(λ1+...+λm)
m∏

i=1

λlii
li!

dF(λ1, ..., λm), (22.7)

Similar to the Bernoulli case, we have for i = 1, ...,m :

E(Li) = E(Λi)

Var(Li) = Var {E(Li|Λ)} + E {Var(Li|Λ)} = Var(Λi) + E(Λi). (22.8)
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The correlation is then given:

Corr(Li, Lj) =
Cov(Λi,Λj)√

Var(Λi) + E[Λi]
√

Var(Λj) + E[Λj ]
. (22.9)

Like in the Bernoulli Model we can express the default correlation through the
covariances of the intensity vector distribution F . For the uniform portfolios
we could assume a single distribution for all obligors. The analogue of (22.2)
is then:

Corr(Li, Lj) =
Var(Λ)

Var(Λ) + E(Λ)
. (22.10)

This formula is especially intuitive if we look at it from a dispersion point
of view. The dispersion of a distribution is its variance to mean ratio. The
dispersion of a Poisson distribution is equal to 1. Using dispersion, we get
the following formula:

Corr(Li, Lj) =
D[Λ]

D[Λ] + 1
. (22.11)

We therefore conclude: an increase in dispersion will increase the mixture
effect, which strengthens the dependence between obligor’s defaults.

Bernoulli vs. Poisson
Comparing Bernoulli with Poisson distribution of the default risk, we see
that a higher default correlation in Bernoulli distribution than in Poisson
distribution always exists. In other words even in cases where the mean of
Bernoulli matches the Poisson distribution, the Poisson variance will always
exceed the variance of Bernoulli. The higher default correlations result in
fatter tails of the corresponding loss distributions.

22.4 The Industrial Models

CreditMetricsTM and KMV Models
Two well-known factor models applied to the major financial institutions are
CreditMetricsTM and KMV. Both models belong to the Bernoulli class and
imply only two possible outcomes — default or survive. Default of an obligor
i occurs if the value of the obligor’s assets A(i)

T in a valuation horizon T falls
below a threshold value Ci, often interpreted as the value of the obligor’s
liabilities.
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Li = 1{A(i)
T < Ci} ∼ B{1;P (A(i)

T < Ci)} (22.12)

Thus AT can be regarded as a latent variable, which drives the default event
implicitly replacing the notion of default correlation for the asset correlation.
How is the correlation matrix of the latent variables defined? The answer lies
in the basic assumption of both models, according to which the asset value
dynamics relate to the changes in some common factors reflecting economic
issues. Therefore asset correlations between obligors are induced exclusively
by the correlation between the respective composite factors denoted by Yi.
In the typical model parametrization the latent variables are presented in the
form of standardised asset log-returns:

ri =
r̃i − E(r̃i)√

Var(r̃i)
with r̃i = log(A(i)

T /A
(i)
0 ).

Suppose that the standardised log return of the asset value can be written
as:

ri = RiYi + εi. (22.13)

Here Yi represents a weighted sum of many industry and country indices
(composite factor). From the simple regression analysis we conclude that R2

i

defines how much the volatility of ri can be explained by the volatility of Yi
and therefore it stands for the systematic risk of the obligor i. Respectively
εi is the firm-specific effect.

The core assumption of CreditMetricsTM and KMV models is the multi-
variate normal (Gaussian) distribution of the latent variables ri:

ri ∼ N(0, 1)
Yi ∼ N(0, 1)
εi ∼ N(0, 1 −R2

i )

In this case we can rewrite (22.12) as:

Li = 1 {ri < ci} (22.14)

where ci is the threshold corresponding to Ci after replacing AT for the stan-
dardised log returns ri . Using (22.13) we can rewrite the threshold condition
ri < ci as εi < ci − RiYi . Because ri ∼ N(0, 1), from pi = P(ri < ci) we
obtain

ci = Φ−1(pi).
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After standardising of εi the threshold condition changes to:

εi√
1 −R2

i

<
Φ−1(pi) −RiYi√

1 −R2
i

. (22.15)

On the right hand side of (22.15) Yi is the only stochastic element. We
therefore obtain (conditional on Yi = y )

pi(y) = Φ{Φ−1(pi) −Riy√
1 −R2

i

}. (22.16)

Transforming this into the Bernoulli mixture setting yields

P (L1 = l1, . . . , Lm = lm)

=
∫

[0,1]m

m∏

i=1

qlii (1 − qi)1−lidF(q1, ..., qm).

Now we are able to specify the probability distribution function:

F (q1, ..., qm) = Nm(μ,Γ)

where μ = (p−1
1 (q1), . . . , p−1

m (qm))� and Γ is the asset correlation matrix of
the log returns r̃i.

The described modelling framework belongs to the KMV model. Though
being based on the same assumptions, CreditMetricsTM differs from the
KMV mainly in two issues: it uses equity instead of asset value process and
it incorporates a slightly different approach to defining composite factors. For
further information on the model please refer to CreditMetricsTM Technical
Document.

CreditRisk+ Model
In contrast to the KMV and CreditMetricsTM the CreditRisk+ represents
the class of Poisson mixture models. Also instead of common factors it intro-
duces the notion of sectors and is therefore sometimes called ”sector model”.
A sector plays a similiar role in the model as compared to the factor but
unlike the factor which has a certain economic interpretation, the sector may
reflect any issues that have a systematic effect on the obligor’s economic per-
formance. Each sector is assumed to be Poisson distributed random variable
with gamma distributed intensity Λ(s) , where the variables Λ(1), . . . ,Λ(mS)

are assumed to be independent. For the reader’s convenience the gamma
distribution pdf is stated here:

{βαΓ(α)}−1xα−1 exp(−x/β).
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The mean and variance of a gamma distributed random variable Λ are:

E Λ = αβ (22.17)
Var(Λ) = αβ2.

Consider a credit portfolio of m loans of m different obligors. In CreditRisk+

a weight ωis of default intensity of obligor i to the systematic default risk of
sector s is given, with

∑S
s=1 ωis = 1. The basic idea is that the risk of the

sector s ∈ {1, . . . ,mS} is driven by two factors. The first driver is the mean
default intensity:

λ(s) = E(Λ(s)) = αsβs. (22.18)

The second driver is the default intensity’s volatility:

σ2
(s) = Var(Λ(s)) = αsβ

2
s . (22.19)

The default risk of obligor i is modelled as well by a mixed Poisson variable
L with the default intensity Λi with mean value E(Λi) = λi. From the
probability theory we know that for Poisson distributed variables with small
intensity λi the following expression is true:

pi = P(Li ≥ 1) = 1 − e−λi ≈ λi. (22.20)

Thus we can calibrate the default intensity from the obligor’s one-year default
probability. The sector parametrization of Λi is given:

Λi =
S∑

s=1

ωisλi
Λ(s)

λ(s)
(22.21)

This means that obligors admit a common source of systematic default risk
(i.e. they are correlated), if and only if there is at least one sector with a
positive weight with respect to the considered obligors. The formula (22.21)
is consistent with the assumption that λi equals the expected default intensity
of obligor i.

According to the formula (22.20), the conditional default intensity of obligor
i that arises from the realisations θ1, ..., θmS

of the sector default intensities
Λ(1), ...,Λ(mS) generates a conditional one-year default probability:

pi(θ1, ..., θmS
) = P(Li ≥ 1|Λ(1) = θ1, ...,ΛmS = θmS

)

= 1 − exp(−λi
mS∑

s=1

wisθs/λ(s)) (22.22)
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To make the idea behind this model more pellucid, we can relate the notion of
sector to the notion of factor and the obligor’s default intensity Λi — to the
default probability pi in the respective factor models. The latter expression
could be related then to the formula (22.16) in the Bernoulli framework of
the KMV model. As in the previous section, we will proceed now to the
problem of the portfolio loss distribution specification. Assuming we know
the distribution of defaults in every single sector we can obtain the portfolio’s
default distribution as the convolution of the sector distributions due to the
independence of the sector variables Λ(1), . . . ,Λ(mS). For details on how to
find the sectors’ default distributions please refer to Bluhm et al. (2002) or
directly to CreditRisk+ Technical Document.

Other Models
Among other ”best-practice” industrial models is the CreditPortfolioView
(CPV) generated from a macroeconomic approach. Before moving on we
should explain the notion of migration matrix used in the model. Migration
matrix contains probabilities for the rated bonds of being downgraded, up-
graded or retaining the same grade in a set time period. For every rating class
the number of transitions and respectively the probabilities of these transi-
tions will sum up to the total number of possible ratings within a certain
rating system.

CPV is a rating-based portfolio model that incorporates the dependence of
default and migration probability on business cycles. The model uses Monte-
Carlo simulation to generate migration matrices and thus generates macro-
scenarios. The losses arising in every possible economic environment are
then tabulated and, based on these losses the portfolio loss distribution is
constructed. A significant advantage of this model is in its ability to allow
for the fat tails in loss distribution, which can be observed emirically in the
periods of deep depressions.

Another effort to model fat-tailed loss distribution was undertaken by the so-
called credit risk contagion models. The intuitive assumption is that a credit
event at one company affects the solvency of related companies directly, thus
increasing the concentration of loss events. Contagion models implement the
framework of factor models adding contagion as changes to asset values of
related companies as a result of defaults. The strength of a contagion is usu-
ally measured as a function of the percentage of sales from each company to
each of the other companies. Unfortunately, this approach requires data that
is seldom available. For details please refer to Egloff et al. (2004), Giesecke
and Weber (2004).

A fundamentally different approach to credit risk modelling is provided by
the dynamic intensity models. The theory underlying these models is math-
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ematically complex and beyond the scope of this chapter. The basic idea
is that an intensity process λ(t) described by a stochastic differential equa-
tion exists. This process λ(t) drives the default times. By definition default
in these models happens if the corresponding default time is less than the
planning horizon T. More details can be found in Duffie and Singleton (1997).

22.5 One Factor Models

The multiple factor model was introduced in (22.13). A one factor model
simplifies the analysis since there is only one driving factor common to all
obligors: Y ∼ N(0, 1). In our discussion we concentrate on the KMV-Model.
In a one factor setup we model the (standardised) log returns:

ri =
√
ωY +

√
1 − ωZi (22.23)

with idiosyncratic Zi ∼ N(0, 1). The uniform asset correlation is denoted ω.
As before Zi is assumed to be independent from the factor Y. Given a single
factor and identical for all obligors ω, we can rewrite equation (22.16) as:

pi(y) = Φ
{

Φ−1(pi) −
√
ωy√

1 − ω

}
(22.24)

In order to demonstrate the dependence of pi(y) on the default probability
given default y values, let us fix ω = 20% and y ∈ {−3, 0, 3}. The variable
y ∼ N(0, 1) can be interpreted as the state of the economy, y = −3 corre-
sponds to a bad state, y = 0 means a typical state and y = 3 indicates a
good state of the economy. See Figure 22.1. The joint default probability is
given in the following proposition.

Proposition 22.1
In a one-factor portfolio model with Li ∼ B(1, pi), pi from (22.24), the joint
default probability (JDP) of two obligors is:

JDPij = P (Li = 1, Lj = 1) = Φ2

{
Φ−1(pi),Φ−1(pj);ω

}
,

where Φ2[·, ·;ω] denotes the bivariate normal cdf with correlation ω.

For a portfolio of m obligors, the portfolio loss relative to the portfolio’s total
exposure is given by:

L(m) =
m∑

i=1

wiLGDiLi, wi =
EADi∑m
j=1EADj

. (22.25)
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Figure 22.1: The default probability p(y) as a function of the state of the
economy.
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Bluhm et al. (2002) illustrate that for m→ ∞ the randomness of the port-
folio loss L(m) solely depends on the randomness of the factor Y :

P(limm→∞{L(m) − E(L(m)|Y )} = 0) = 1. (22.26)

Thus by increasing the number of obligors in the portfolio, the specific risk is
completely removed and only the systematic risk arising from the volatility
of the common factor remains in the portfolio.

Assuming uniform default probabilities pi for all obligors i and applying KMV
framework to our analysis we infer:

E(L(m)|Y ) =
m∑

i=1

wi E(Li|Y ) = Φ
{

Φ−1(pi) −
√
ωy√

1 − ω

}
=: p(Y ),

so that from the formula (22.26) it follows that

L(m) m→∞−→ p(Y ) = Φ
{

Φ−1(pi) −
√
ωy√

1 − ω

}
almost surely. (22.27)
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We have established that for sufficiently large portfolios the percentage of
defaulted loans given a certain state of economy Y = y is approximately
equal to the conditional default probability p(Y ). Now we want to derive the
cdf of the limit loss variable p(Y ) and thus define the loss distribution. We
denote here the limit of L(m) by L. For every 0 ≤ x ≤ 1 we then have:

P(L ≤ x) = P(p(Y ) ≤ x) (22.28)

= P
{
−Y ≤ 1√

ω

(
Φ−1(x)

√
1 − ω − Φ−1(p)

)}

= Φ
{

1√
ω

(
Φ−1(x)

√
1 − ω − Φ−1(p)

)}
.

Thus we can now calculate the corresponding pdf and find such portfolio loss
characteristics such as expected and unexpected losses. Obviously, we first
need a factor model to define asset correlation ω and some market data to
calibrate the default probability p.

22.6 Copulae and Loss Distributions

It could be shown that even holding the asset correlations and default prob-
abilities fixed we can develop alternative models which lead to heavier-tailed
loss distributions as compared to those induced by the assumptions of factor
and sector models. In this section we will describe how to use copulae for
constructing such loss distributions. For details on the concept of copulae
please refer to chapter 17.

Copula presents an elegant way of understanding how a multivariate latent
variable (e.g. asset returns) distribution determines the portfolio default dis-
tribution. From Sklar‘s Theorem we know that it is possible to extract copu-
lae from known multivariate distribution functions or create new multivariate
distributions by joining arbitrary marginal distributions in a known depen-
dence structure, i.e. copula. In the factor models we assumed latent variables
r to have multivariate Gaussian distribution with correlation matrix Γ that
lead to the following copula of r:

Cr,Ga(u1, ..., um) = Φm
{
Φ−1
n (u1), ...,Φ−1

n (um)
}

(22.29)

Cr,Ga is a well-known Gaussian copula, which represents the dependence
structure underlying CreditMetricsTM and KMV models. Replacing a nor-
mal dependency with a t-dependency will significantly shift mass into the
tails of loss distribution as t-distributions possess fatter tails compared to
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normal. Fatness of tails is highly sensitive to the chosen degrees of freedom,
however the problem of calibrating copulae is beyond the scope of this book.
Let n ≥ 3 and Fn be a t-distribution function with n degrees of freedom.
We denote the multivariate t-distribution function as Fn,Γ where Γ is the
correlation matrix. The t-copulae is:

Cn,Γ(u1, ..., um) = Fn,Γ
{
F−1
n (u1), ..., F−1

n (um)
}

(22.30)

where u1,..., um ∈ [0,1]. A new multivariate loss distribution can be created
by combining the t-copulae Cn,Γ with different marginal distributions. Below
are a few examples of the two dimensional case.

• Bivariate Gaussian copulae with normal marginals. We generate pairs
(X1, X2) with:

Xi =
√
ωY +

√
1 − ωZi

where Y , Z1, Z2 ∼ N(0,1) i.i.d.

• Bivariate t-copulae with t-distributed margins. Generate (X1, X2) with

Xi =
√

3(
√
ωY +

√
1 − ωZi)/

√
W

where Y , Z1, Z2 ∼ N(0,1) i.i.d. W ∼ χ2(3)

• Bivariate t-copulae with normal margins. Generate (X1, X2) with

Xi = Φ−1[F3

{√
3(
√
ωY +

√
1 − ωZi)/

√
W
}

]

where Y , Z1, Z2 ∼ N(0,1) i.i.d. W ∼ χ2(3), W independent of Y,
Z1, Z2, and F3 denoting the t-distribution function with 3 degrees of
freedom.

In order to study the goodness-of-fit of different copulae on the default models
we recall (22.23) and rewrite it in the form of a t-distributed log return:

ri =
√
n/W

√
ωY +

√
n/W

√
1 − ωZi ∼ t(n)

for i = 1, ...,m. The loss function is Li = 1{r̃i < F−1
n (p)}, and the default

probability conditional on Y and W turns into:

p(y, w) = P (ri ≤ F−1
n (p)|Y = y,W = w)

= P (
√
n/W

√
ωY +

√
n/W

√
1 − ωZi ≤ F−1

n (p)|Y = y,W = w)

= Φ{
√
w/nF−1

n (p) −√
ωy√

1 − ω
} (22.31)
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Bluhm et al. (2002) simulated the portfolio loss in such a t-copulae model by
looking at the distribution of (22.31) with independent {Yi}Ni=1 ∼ N(0, 1) ,
{Wi}Ni=1 ∼ X2(n) , N = 100000 , n = 10, 40, 10000 . They concluded that for
large n the t -copulae resemble the Gaussian copulae. For small n though
there may be a big difference in the 99% quantiles.

To conclude this chapter we will show how to estimate asset corelation from
historic default frequencies using one factor model. Our first step is to cal-
ibrate default probabilities. Table 22.1 presents Moody’s historic corporate
bond default frequencies from 1970 to 2004. For each rating class Ri we
calculate the mean and the standard error of the historic default frequencies.
Then we use simple regression to fit the mean by an exponential function.
As a result we can obtain fitted default probabilities μ1, . . . , μ6 for all rat-
ing classes (see table 22.2), and we can then fit the volatilies of the default
frequencies analogously.

The second step includes calculating the asset correlations. We refer to the
formula (22.24) from the uniform factor model, in which we replace true
default probability pi for the fitted mean default rate μi. It can be shown
that the following expression is true for the considered model:

Var(P(Y )) = Φ2{Φ−1(p),Φ−1(p);ω} − p2 (22.32)

where we again replace the true unknown variance of default rate for the
fitted default volatility σ. Thus, the asset correlation ω is the only unknown
parameter in (22.32). The calibrated correlations are showed in the last
column of table (22.2).
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Year Aaa Aa A Baa Ba B
1970 0.00 0.00 0.00 0.27 4.12 20.78
1971 0.00 0.00 0.00 0.00 0.42 3.85
1972 0.00 0.00 0.00 0.00 0.00 7.14
1973 0.00 0.00 0.00 0.46 0.00 3.77
1974 0.00 0.00 0.00 0.00 0.00 10.00
1975 0.00 0.00 0.00 0.00 1.02 5.97
1976 0.00 0.00 0.00 0.00 1.01 0.00
1977 0.00 0.00 0.00 0.28 0.52 3.28
1978 0.00 0.00 0.00 0.00 1.08 5.41
1979 0.00 0.00 0.00 0.00 0.49 0.00
1980 0.00 0.00 0.00 0.00 0.00 4.94
1981 0.00 0.00 0.00 0.00 0.00 4.49
1982 0.00 0.00 0.26 0.31 2.72 2.41
1983 0.00 0.00 0.00 0.00 0.91 6.31
1984 0.00 0.00 0.00 0.36 0.83 6.72
1985 0.00 0.00 0.00 0.00 1.40 8.22
1986 0.00 0.00 0.00 1.33 2.03 11.73
1987 0.00 0.00 0.00 0.00 2.71 6.23
1988 0.00 0.00 0.00 0.00 1.24 6.36
1989 0.00 0.61 0.00 0.59 2.98 8.95
1990 0.00 0.00 0.00 0.00 3.35 16.18
1991 0.00 0.00 0.00 0.27 5.35 14.56
1992 0.00 0.00 0.00 0.00 0.30 9.03
1993 0.00 0.00 0.00 0.00 0.56 5.71
1994 0.00 0.00 0.00 0.00 0.24 3.82
1995 0.00 0.00 0.00 0.00 0.69 4.81
1996 0.00 0.00 0.00 0.00 0.00 1.44
1997 0.00 0.00 0.00 0.00 0.19 2.12
1998 0.00 0.00 0.00 0.12 0.63 4.26
1999 0.00 0.00 0.00 0.10 1.01 5.85
2000 0.00 0.00 0.00 0.38 0.89 5.49
2001 0.00 0.00 0.16 0.19 1.57 9.36
2002 0.00 0.00 0.16 1.21 1.54 4.97
2003 0.00 0.00 0.00 0.00 0.95 2.66
2004 0.00 0.00 0.00 0.00 0.19 0.65

Table 22.1: Moody’s Corporate Bond Historic Default Frequency 1970-2004.
All numbers are percentages values.
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Rating Mean Stand.Dev. μ σ ρ
Aaa 0.000% 0.000% 0.0124% 0.1326% 42%
Aa 0.017% 0.103% 0.0413% 0.2546% 37%
A 0.922% 3.766% 0.1374% 0.4890% 31%
Baa 0.168% 0.319% 0.4565% 0.9390% 23%
Ba 1.170% 1.267% 1.5171% 1.8031% 15%
B 6.271% 4.643% 5.0417% 3.4627% 11%
Mean 1.425% 1.683% 1.2011% 1.1802% 26%

Table 22.2: Calibration Results due to exponential function fitting.
SFEdefault

Figure 22.2: Mean default rate and default rate volatility. The red and blue
lines represent the historic default and the regression by expo-
nential function fitting correspondingly. All values are logged
data.

SFEdefault
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A.1 Integration Theory

Definition A.1
A decomposition Z of the interval [a, b] is understood to be a set
Z def= {t0, t1, . . . , tn} of points tj with a = t0 < t1 < . . . < tn = b. Through
this the interval [a, b] is decomposed into n sub-intervals [tk, tk+1], where
k = 0, 1, 2, . . . , n−1. |Z| def= maxk(tk+1 − tk), that is, the length of the largest
resulting sub-interval and is referred to as the refinement of the decomposition
Z.

Definition A.2
For a function w : [a, b] −→ R and a decomposition Z def= {t0, t1, . . . , tn} one
defines the variation of w with respect to Z as:

V (Z) def=
n−1∑

k=0

|w(tk+1) − w(tk)|

V
def= sup

Z
V (Z) is called the total variation of w on [a, b]. If V < ∞ holds,

then w is of finite variation on [a, b].

Theorem A.1
For a function w : [a, b] −→ R it holds that:

1. w is of finite variation when w is monotone,

2. w is of finite variation when w is Lipschitz continuous,

3. w is bounded when w is of finite variation.

Moreover, sums, differences and products of functions of finite variation are
themselves of finite variation.

Definition A.3
Given the functions f, w : [a, b] → R and a decomposition Z, choose for
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k = 0, 1, . . . , n− 1 partitions τk ∈ [tk, tk+1] and form:

I(Z, τ ) def=
n−1∑

k=0

f(τk) · {w(tk+1) − w(tk)}

If I(Z, τ ) converges for |Z| → 0 to a limiting value I, which does not depend
on the chosen decomposition Z nor on the choice of the partitions τk, then I
is called the Riemann-Stieltjes integral of f . One writes:

I =
∫ b

a

f(t)dw(t).

For w(t) = t we get the Riemann Integral as a special case of the Stieltjes
Integrals.

Theorem A.2 (Characteristics of the Riemann-Stieltjes Integral)

1. If the corresponding integrals on the right hand side exist, then the
linearity characteristics hold:

∫ b

a

(α · f + β · g) dw = α

∫ b

a

f dw + β

∫ b

a

g dw (α, β ∈ R)

∫ b

a

f d(α · w + β · v) = α

∫ b

a

f dw + β

∫ b

a

f dv (α, β ∈ R)

2. If the integral
∫ b
a
fdw and the integrals

∫ c
a
fdw exist, then for

∫ b
c
fdw,

a < c < b it holds that:
∫ b

a

fdw =
∫ c

a

fdw +
∫ b

c

fdw

3. If f is continuous on [a, b] and w is of finite variation, then
∫ b
a
fdw

exists.

4. If f is continuous on [a, b] and w is differentiable with a bounded deriva-
tive, then it holds that:

∫ b

a

f(t)dw(t) =
∫ b

a

f(t) · w′(t)dt
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5. Partial integration: If
∫ b
a
fdg or

∫ b
a
gdf exist, so does the other respec-

tive integral and it holds that:

∫ b

a

fdg +
∫ b

a

gdf = f(b)g(b) − f(a)g(a)

6. If w is continuous, it holds that
∫ b
a
dw(t) = w(b) − w(a)

7. If f is continuous on [a, b] and w is step-wise constant with discontinuity
points {ck, k = 1, . . . ,m}, then:

∫ b

a

fdw =
m∑

k=1

f(ck) ·
{
w(c+k ) − w(c−k )

}

where c+k (c−k ) is the right (left) continuous limit and w(c+k )−w(c−k ) is
the step height of w on {ck}.

Theorem A.3 (Radon-Nikodym)
Let λ and μ be positive measures on (Ω,F) with

1. 0 < μ(Ω) <∞ and 0 < λ(Ω) <∞
2. λ is absolutely continuous with respect to μ, then from μ(A) = 0 it

follows that λ(A) = 0 for all A ∈ F (written: λ� μ).

When a non-negative F-measurable function h exists on Ω, then it holds that:

∀A ∈ F : λ(A) =
∫
A
hdμ;

In particular, for all measurable functions f it holds that:
∫
fdλ =

∫
f · h dμ.

Remark A.1
One often uses the abbreviation λ = h ·μ in the Radon-Nikodym theorem and
refers to h as the density of λ with respect to μ. Due to its construction h
is also referred to as the Radon-Nikodym derivative. In this case one writes
h = dλ

dμ .

An important tool in stochastic analysis is the transformation of measure,
which is illustrated in the following example.
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Example A.1
Let Z1, . . . , Zn be independent random variables with standard normal distri-
butions on the measurable space (Ω,F ,P) and μ1, . . . , μn ∈ R. Then by

Q(dω) def= ξ(ω) · P(dω) with ξ(ω) def= exp{
n∑

i=1

μiZi(ω) − 1
2
μ2
i }

an equivalent probability measure Q for P is defined. For the distribution of
the Z1, . . . , Zn under the new measure Q it holds that:

Q(Z1 ∈ dz1, . . . , Zn ∈ dzn)

= exp{
n∑

i=1

(μizi − 1
2
μ2
i )} · P(Z1 ∈ dz1, . . . , Zn ∈ dzn)

= exp{
n∑

i=1

(μizi − 1
2
μ2
i )} · (2π)−

n
2 exp{−1

2

n∑

i=1

z2
i }dz1 . . . dzn

= (2π)−
n
2 exp{−1

2

n∑

i=1

(zi − μi)2}dz1 . . . dzn,

in other words Z1, . . . , Zn are, with respect to Q, independent and normally
distributed with expectations EQ(Zi) = μi and EQ[(Zi − μi)2] = 1. Thus

the random variables Z̃i
def= Zi − μi are independent random variables with

standard normal distributions on the measurable space (Ω,F ,Q).

Going from P to Q by multiplying by ξ changes the expectations of the
normally distributed random variables, but the volatility structure remains
notably unaffected.

The following Girsanov theorem generalises this method for the continuous
case, that is, it constructs for a given P-Brownian motion Wt an equivalent
measure Q and an appropriately adjusted process W ∗

t , so that it represents
a Q-Brownian motion. In doing so the (”arbitrarily” given) expectation μi
is replaced by an (”arbitrarily” given) drift, that is, a stochastic process Xt.

Theorem A.4 (Girsanov)
Let (Ω,F ,P) be a probability space, Wt a Brownian motion with respect to
P, Ft a filtration in F and Xt an adapted stochastic process. Then

ξt
def= exp(

∫ t

0

XudWu − 1
2

∫ t

0

X2
udu)

defines a martingal with respect to P and Ft. The process W ∗
t defined by

W ∗
t

def= Wt −
∫ t

0

Xudu
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is a Wiener process with respect to the filtration Ft and

Q def= ξT · P (A.1)

is a P equivalent probability measure Q.

The Girsanov theorem thus shows that for a P-Brownian motionWt an equiv-
alent probability measure Q can be found such that W ∗

t , as a Q-Brownian
motion at time t, contains the drift Xt. In doing so (A.1) means that:∫
Ω

1(ω ∈ A)dQ(ω) = Q(A) def=
∫
Ω

1(ω ∈ A)ξT dP(ω) = EP[1(ω ∈ A)ξT ]
for all A ∈ F .

Remark A.2
With the relationships mentioned above ξt is by all means a martingale with
respect to P and Ft when the so-called Novikov Condition

EP

[
exp(
∫ t

0

X2
udu)
]
<∞ for all t ∈ [0, T ]

is met, that is, when Xt does not vary too much.

Another important tool used to derive the Black-Scholes formula by means
of martingale theory is the martingale representation theory. It states that
every Q-martingale under certain assumptions can be represented by a pre-
determined Q-martingale by means of a square-integrable process.

Theorem A.5 (Martingale Representation theorem)
Let Mt be a martingale with respect to the probability measure Q and the
filtration Ft, for which the volatility process σt of Q almost surely σt 
= 0 for
all t ∈ [0, T ], where σ2

t = EQ[M2
t |Ft]. If Nt is another martingale with respect

to Q and Ft, then (uniquely defined) on Ft an adapted stochastic process Ht

exists with
∫ T
0
H2
t σ

2
t dt <∞ with:

Nt = N0 +
∫ t

0

HsdMs.

Example A.2
It is easy to show that the standard Wiener process Wt with respect to the
probability measure P is a martingale with respect to P and its corresponding
filtration Ft. If Xt is another martingale with respect to P and Ft, then
according to the previous theorem a Ft adapted stochastic process Ht exists,
so that

Xt = X0 +
∫ t

0

HsdWs.
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Remark A.3
Writing the last expression in terms of derivatives:

dXt = HtdWt.

The example shows once again that a martingale cannot possess a drift.

A.2 Portfolio Strategies

The portfolio of an investor at time t, i.e., the market value of the single
equities (contracts) in his portfolio at time t, is dependent on the development
of the price {Ss; s < t}, Ss = (S1

s , . . . , S
d
s )

� ∈ R

d up to time t, that is, on
the information that is available at that particular time point. Given this, it
is obvious that his strategy, i.e., the development of his portfolio’s value over
time, should be modelled as a Ft adapted d-dimensional stochastic process
φt. In doing so φit(ω) represents how much in state ω of the security i is
in his portfolio at time t , where negative values indicate a short sell of the
corresponding contract.

Definition A.4
Assume the following market model: M = (Ω,F ,P,Ft,S t). A d-dimensional
stochastic process φt adapted on the filtration Ft is called a portfolio strategy.

The stochastic process V (φt) with V (φt)
def=

d∑
i=1

φitS
i
t is called the value of the

strategy φ.

Example A.3
In the Black-Scholes model two financial instruments are traded on the mar-
ket: a risky security S (stock) and a riskless security B (zero bond). As
in Chapter 5, the stock price St is assumed to follow a geometric Brownian
motion, so that the following stochastic differential equation is satisfied:

dSt = St(μdt+ σdWt) (A.2)

The price of the zero bond Bt satisfies the differential equation:

dBt = rBtdt

with a constant r. Without loss of generality it can be assumed that B0 = 1,
which leads to Bt = exp(rt).

The corresponding market model is thus MBS = (Ω,F ,P,Ft,S t), where
S t

def= (St, Bt)� ∈ R

2.
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The two-dimensional stochastic process φt = (at, bt)� now describes a port-
folio strategy in which at(ω) gives the number of stocks and bt(ω) gives the
number of bonds in the portfolio at time t in state ω. The value of the portfolio
at time t is then a random variable

V (φt) = atSt + btBt.

A particularly important portfolio strategy is that once it is implemented
it does not result in any cash flows over time, i.e., when the portfolio is
re-balanced no payments are necessary. This means that eventual income
(through selling securities, receiving dividends, etc.) is exactly offset by
required payments (through buying additional securities, transaction costs,
etc.) This is referred to as a self-financing strategy. One gets the impres-
sion that the change in value of the portfolio only occurs as the price of the
participating securities changes.

Definition A.5
Let M = (Ω,F ,P,Ft,S t) be a market model and φ a portfolio strategy with
the value V (φt). Then φ is called

1. self-financing, when dV (φt) =
d∑
i=1

φitdS
i
t holds (P-a.s.),

2. admissible, when V (φt) ≥ 0 holds (P-a.s.).

Below the Black-Scholes model will be considered. The subsequent specifi-
cation shows that arbitrage is not possible in such a market: There is no
admissible self-financing strategy with a starting value of V (φ0) = 0, whose
end value V (φT ) is positive with a positive probability.

Lemma A.1
In the Black-Scholes model MBS = (Ω,F ,P,Ft,S t),S t = (St, Bt)�, the
portfolio strategy φt = (at, bt)� is exactly self-financing when the discounted
process Ṽt with Ṽt = e−rtVt satisfies the stochastic differential equation

dṼt = atdS̃t,

where S̃t = e−rtSt describes the discounted stock price.

The explicit specification of the corresponding strategy can be left out when
it is clear from the context and we write Vt = V (φt). With the help of the
Girsanov theorem a P equivalent measure Q can be constructed, under which
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the process of the discounted stock prices is a martingale. Using (A.2) one
obtains

dS̃t = S̃t{(μ− r)dt+ σdWt}. (A.3)

By setting

Xt
def= −μ− r

σ

the Novikov condition (see Remark A.2) is obviously fulfilled. Therefore, for
Q with

dQ
dP

= ξT = exp(
∫ T

0

XudWu − 1
2

∫ T

0

X2
udu)

= exp{−μ− r

σ
WT − 1

2
(
μ− r

σ
)2T}

W ∗
t

def= Wt+μ−r
σ t is a Q-Brownian Motion according to the Girsanov theorem.

Because of (A.3) and using the definition of W ∗
t it holds that

dS̃t = S̃tσdW
∗
t . (A.4)

According to Itô’s lemma this becomes

S̃t = S̃0 exp
(∫ t

0

σdW ∗
u − 1

2

∫ t

0

σ2du

)

and solves the stochastic differential equation. Since σ is constant, for all t
the Novikov condition holds

E

[
exp
(∫ t

0

σ2du

)]
<∞.

According to Remark A.2

exp
(∫ t

0

σdW ∗
u − 1

2

∫ t

0

σ2du

)
,

that is S̃t, is also a Q-martingale.

Q represents with respect to S̃t a P equivalent martingale measure. It can
be shown that given this form, it can be uniquely determined.

From the Definition of W ∗
t and with the help of (A.2) one obtains

dSt = St(rdt+ σdW ∗
t ),

i.e., under the measure Q the expected value of the risky securities is equiva-
lent to the certain value of the riskless bonds. Because of this the martingale
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measure Q is also called the risk neutral probability measure and contrary
to this P is called the objective or physical probability measure of the Black-
Scholes markets.

As a result of the Q-martingale properties of S̃t, due to Lemma A.1, the
discounted value of a self-financing strategy Ṽt is itself a Q-martingale. Con-
sequently it holds that: If the starting value of an admissible self-financing
strategy is equal to zero, then its value at all later time points t must also be
equal to zero. Thus in using an admissible self-financing strategy, there is no
riskless profit to be made: The Black-Scholes market is free of arbitrage.

The following theorem represents the most important tool used to value Eu-
ropean options with the help of the Black-Scholes model. It secures the
existence of an admissible self-financing strategy that duplicates the option,
thus the value of which can be calculated using martingale theory.

Theorem A.6
Assume that the Black-Scholes model MBS is given. The function X de-
scribes the value of an European option at the time to maturity T and is
Q-integrable.

a) Then an admissible self-financing strategy (at, bt)� exists, which dupli-
cates X and whose value Vt for all t is given by

Vt = EQ[e−r(T−t)X | Ft]. (A.5)

b) If the value Vt in a) is dependent on t and St and is written as a
function Vt = F (t, St) with a smooth function F , then it holds for the
corresponding strategy that

at =
∂F (t, St)
∂St

.

Proof:

1. One defines Vt by (A.5), where the function defined follows from the
Q-integrability of X. Due to

Ṽt = e−rtVt = EQ[e−rTX | Ft]

one identifies Ṽt as Q-martingale. One should notice that e−rTX, ex-
actly like X, is only dependent on the state at date T and thus it can
be classified as a random variable on (Ω,Ft,Q).
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Ft represents, at the same time, the natural filtration for the process
W ∗, which, as was seen above, is also a Q-martingale. Therefore, ac-
cording to Theorem A.5 using the martingale representation, a process
Ht exists, adapted on Ft with

∫ T
0
H2
t σ

2dt < ∞ Q-almost sure, so that
for all t it holds that:

Ṽt = Ṽ0 +
∫ t

0

HsdW
∗
s = V0 +

∫ t

0

HsdW
∗
s .

Thus one sets:
at

def=
Ht

σ · S̃t
, bt

def= Ṽt − atS̃t.

Then after a simple calculation it holds that:

atSt + btBt = Vt

and (at, bt)� is a X duplicating strategy. Furthermore, with (A.4) it
holds for all t:

atdS̃t = atS̃tσdW
∗
t = HtdW

∗
t = dṼt,

i.e., (at, bt)� is according to Lemma A.1 self-financing. Due to the non-
negativity of X and the definition of Vt, (at, bt)� is also admissible.

2. For Vt = F (t, St) it holds using Itô’s lemma:

dṼt = d{e−rtF (t, St)}
=

∂{e−rtF (t, St)}
∂St

dSt +A(t, St)dt

=
∂F (t, St)
∂St

e−rtSt(rdt+ σdW ∗
t ) +A(t, St)dt

=
∂F (t, St)
∂St

S̃tσdW
∗
t + Ã(t, St)dt

=
∂F (t, St)
∂St

dS̃t + Ã(t, St)dt.

Since not only Ṽt but also S̃t are Q-martingales, the drift term Ã(t, St)
must disappear. According to part a) of the theorem the corresponding
strategy is self-financing and thus using Lemma A.1 the claim follows.

�

Remark A.4 With the relationships of the preceding theorems, Vt is called
the fair price for option X at date t, because at this price, according to the
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previous arguments, there is no arbitrage possible for either the buyer or the
seller of the option. Equation (A.5) is called the risk neutral valuation for-
mula, since it gives the fair price of the option as the (conditional) expectation
of the (discounted) option value at maturity with respect to the risk neutral
measure of the Black-Scholes model.

The result obtained from the last theorem has already been formulated in
Chapter 6 as equation (6.24).

Corollary A.1
The relationships of the preceding theorems hold. If the value X of the Euro-
pean option at date T is a function X = f(ST ) dependent on the stock price
ST , then it holds that Vt = F (t, St), where F for x ∈ [0,∞[ and t ∈ [0, T ] is
defined by:

F (t, x) = e−r(T−t)
∫ +∞

−∞
f
{
xe(r−

σ2
2 )(T−t)+σy√T−t

} e− y2

2√
2π

dy . (A.6)

Proof:
With respect to Q, St contains the drift r and thus it holds that

St = S0 exp{(r − σ2

2
)t+ σW ∗

t }.
Thus ST can be written in the following form:

ST = St(STS−1
t ) = St exp{(r − σ2

2
)(T − t) + σ(W ∗

T −W ∗
t )}.

Since St is measurable with respect to Ft and W ∗
T −W ∗

t is independent of
Ft, one obtains

Vt = EQ[e−r(T−t)f(ST ) | Ft]
= EQ

[
e−r(T−t)f(Ste(r−

σ2
2 )(T−t)+σ(W∗

T −W∗
t )) | Ft

]

= EQ

[
e−r(T−t)f(xe(r−

σ2
2 )(T−t)+σ(W∗

T −W∗
t ))
]

x=St

From this it can be calculated that Vt = F (t, St). �

Example A.4
Consider a European call X = max{0, ST − K}. Using (A.6) the value at
date t is exactly the value given by the Black-Scholes formula in Chapter 6.

C(t, St)
def= Vt = STΦ(d1) −Ke−r(T−t)Φ(d2)
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with

d1
def=

ln(ST

K ) + (r + σ2

2 )(T − t)
σ
√
T − t

, d2
def=

ln(ST

K ) + (r − σ2

2 )(T − t)
σ
√
T − t

.



Frequently Used Notations

x
def= . . . x is defined as ...

R real numbers
R

def= R ∪ {∞,∞}
A� transpose of matrix A
X ∼ D the random variable X has distribution D
E[X] expected value of random variable X
Var(X) variance of random variable X
Cov(X,Y ) covariance of two random variables X and Y
N(μ,Σ) normal distribution with expectation μ and covariance matrix Σ, a
similar notation is used if Σ is the correlation matrix
Φ standard normal cummulative distribution function
ϕ standard normal density function
χ2
p chi-squared distribution with p degrees of freedom
tp t-distribution (Student’s) with p degrees of freedom
Wt Wiener process
P[A] or P(A) probability of a set A
1 indicator function
(F ◦G)(x) def= F{G(x)} for functions F and G
x ≈ y x is approximately equal to y
αn = O(βn) iff αn

βn
−→ constant, as n −→ ∞

αn = O(βn) iff αn

βn
−→ 0, as n −→ ∞

Ft is the information set generated by all information available at time t
Let An and Bn be sequences of random variables.
An = Op(Bn) iff ∀ε > 0 ∃M, ∃N such that P[|An/Bn| > M ] < ε, ∀n > N .
An = Op(Bn) iff ∀ε > 0 : limn→∞ P[|An/Bn| > ε] = 0.
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Monetäre Außenwirtschaftstheorie, Vandenhoeck & Ruprecht, Göttin-
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