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Foreword

The book entitled “An Introduction to Nonlinear Analysis and Fixed Point Theory”
by Prof. H. K. Pathak covers both the area of nonlinear analysis and fixed point
theory in great detail. The book begins with the fundamentals of nonlinear func-
tional analysis, e.g. geometry of Banach spaces, differential calculus in Banach
spaces, monotone operator theory, accretive operators and their variants. The book
lays special emphasis on applying techniques of nonlinear analysis to model and to
treat nonlinear phenomena with which nature confronts us. Coverage of applica-
tions includes many branches of science and technology such as control theory,
nonlinear stochastic operator equations, variational methods in Hilbert spaces,
degree theory, k-set contraction and condensing operators, variational methods and
optimization. Applications of monotone operator theory to ODE, integral equations
and solution of nonlinear equations by computational schemes and strong con-
vergence results are presented. Applications of fixed point theorems to geometry of
Banach spaces, system of linear equations, control theory, game theory, differential
equations, nonlinear integral equations, abstract Volterra integrodifferential equa-
tions, surjectivity problems, simultaneous complementarity problems and problems
of integral inclusion for multifunctions are thoroughly discussed.

In my opinion, the book should be very useful to mathematics students in their
final semester course of master’s degree and also for the first semester course for
Ph.D. students, enhancing their capability to gain the desired insight into nonlinear
analysis and fixed point theory.

Jhusi, Allahabad, India Prof. Satya Deo, Ph.D., FNASc.
Formerly Vice Chancellor APS University

Rewa, and RD University, Jabalpur NASI Senior
Scientist, Harish-Chandra Research Institute
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Preface

Nonlinear analysis is the fascinating emerging field of the twenty-first century
characterized by a remarkable mixture of nonlinear functional analysis, nonlinear
operator theory, topology, mathematical modelling and applications. Its scope of
enquiries not only encompasses the geometric theory of infinite dimensional
function spaces and operator-theoretic real-world problems but also widens the
range of interdisciplinary fields ranging from engineering to space science,
hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to
biomechanics and economics to stochastic game theory. The deep-rooted concepts
and techniques provide the tools for developing more realistic and accurate models
for a variety of phenomena encountered in various applied fields. This gives
nonlinear analysis a rather interdisciplinary character. Today, the more theoretically
inclined nonmathematician (engineer, economist, geologist, pharmacologist, biol-
ogist or chemist) needs a working knowledge of at least a part of the nonlinear
analysis in order to be able to conduct a complete qualitative analysis of his models.
This supports a high demand for books on nonlinear analysis. Moreover, the subject
has become so vast that no single book can cover all its theoretical and applied
parts. In this volume, we have focused on those topics of nonlinear analysis which
are pertinent to operator-theoretic fixed point results, especially metric, topological
and lattice-based fixed point theorems and their applications to control theory,
dynamic programming, matrix theory, differential and integral equations, calculus
of variations and many real-world problems such as stochastic modelling of
physical and biological sciences.

The first half of the twentieth century witnessed an extensive theoretical
investigation pertaining to linear functional analysis which deals with infinite
dimensional topological vector spaces that provide a suitable pathway to mix in a
fruitful way the linear (algebraic) structure with topological one and the linear
operators acting between them. This investigation facilitated extending standard
results of the linear analysis to an infinite dimensional context paving the way for
rigorous treatment of linear mathematical models. Systematic efforts to extend the
linear theory to various types of nonlinear operators were started in the early 1960s.
This marks the beginning of what is known today as “nonlinear analysis”.
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However, it is quite interesting to note that well before this period there was a short
period during the 1930s when the notions of the compact operator and the extension
of Brouwer’s degree theory in finite dimension to Leray–Schauder degree theory in
infinite dimensional context came into existence.

On the one hand, with the advent of nonlinear analysis, several theories have
been developed simultaneously in this respect, and today some of them are well
established approaching their limits, while others are still the object of intense
research activity. The appearance of set-valued analysis, nonsmooth analysis, dif-
ferential topology, combinatorics, geometry of manifolds and of computational
mathematics all of which were motivated by concrete needs in applied areas such as
control theory, optimization, game theory and economics is evidence to this effect.
Their development provided nonlinear analysis with new concepts, tools and the-
ories that enriched the subject considerably. On the other hand, fixed point theory
has an enormous number of applications in various fields of mathematics. Keeping
in view the above facts, it is legitimate to introduce the book with the title “An
Introduction to Nonlinear Analysis and Fixed Point Theory”. In this book, I tried to
present most of the significant results in the field of nonlinear analysis, especially
monotone operator, fixed point theory, topological degree theory, variational
methods and optimization, and then to present various related applications.

Chapter 1 is an introduction to some fundamental concepts needed for the
development of the theory of nonlinear functional analysis. We deal with certain
large classes of nonlinear operators which arise often in applications. In particular,
we examine the Nemytskii, Hammerstein and Urysohn operators and their conti-
nuity properties. All these operators are encountered in almost all problems. Finally,
we introduce the concept of Sobolev spaces (the suitable spaces for weak solutions
of elliptic equations) needed for the development of differential equations.

Chapter 2 deals with geometrical structures such as convexity and smoothness of
Banach spaces and of certain broad classes of nonsmooth functions. This chapter
also deals with useful properties of duality mappings that interplay with these
geometrical structures of Banach spaces. We show that the subdifferential of norm
functional is precisely the duality mapping.

Chapter 3 deals with calculus in real Banach spaces. We start with the Gâteaux
and Fréchet derivatives. We discuss the generic differentiability of continuous
convex functions. This chapter also deals with an important concept of nonlinear
analysis—subdifferential of convex functionals. Properties of the derivative are
discussed, and some fundamental theorems of calculus are presented, especially
Taylor’s theorem, inverse function theorem and implicit function theorem.

Chapter 4 deals with monotone and maximal monotone operators and their
properties. We give some results regarding the approximate solvability of operator
equations involving monotone operators with the hope this will help develop
computer algorithms for the approximate solution of operator equations. Monotone
properties of the subdifferential of convex functionals are discussed. We close this
chapter by introducing various generalizations of monotonicity concepts—pseu-
domonotonicity, generalized pseudomonotonicity, etc.
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Chapter 5 deals with metric, topological and lattice-based fixed point theory
along with common fixed point theorems for a family of commuting mappings. We
present some fixed point theorems for multifunctions motivated by their applica-
tions to integral inclusions. In this chapter, we also present common fixed point
theorems for a family of commuting mappings. We conclude this chapter by giving
a discussion on fixed point theorems in ordered Banach spaces. Our treatment is
brief and is motivated by their applications to the system of linear equations, matrix
theory, control theory, differential and integral equations.

Chapter 6 deals with degree theory, k-set contractions and condensing operators.
This chapter is motivated with the fact that topological degree theory has an
important advantage over the fixed point theory in the sense that it gives infor-
mation about the number of distinct solutions, continuous families of solutions and
stability of solutions. Leray–Schauder degree theory is presented. In the sequel, we
present a generalization of Leray–Schauder degree that extended the concept of the
degree to the class of limit-compact operators. Subsequently, this theory was used
to discuss k-set contractions and condensing mapping.

Chapter 7 provides an introduction and use of variational methods and opti-
mization in nonlinear analysis.

Chapter 8 discusses integral equations in the most general setting. We conclude
the chapter by giving computational scheme for the solvability of nonlinear
equations.

Chapter 9 provides applications of fixed point theorems to the system of linear
equations, nonlinear matrix equations, control theory, dynamic programming,
stochastic game theory and existence theorems for nonlinear differential and inte-
gral equations. In most of the illustrated problems, the differential equations are
transformed into equivalent operator equations involving integral operators and
then appropriate fixed point theorems or degree theoretic methods are invoked to
prove the existence of desired solutions by recasting the operator equations into
fixed point equations.

Chapter 10 deals with applications of fixed point theorems for multifunction to
integral inclusions.

A glimpse of fundamentals, exposition of a rich variety of topics, both theoretical
and applied, make nonlinear analysis useful to graduate students and researchers,
working in analysis or its applications to control theory, variational inequalities,
theoretical mechanics, or dynamical systems. An appendix contains requisite
background material needed, and a detailed bibliography facilitates further study.

This book evolved from classes taught by the author at Pt. Ravishankar Shukla
University, Raipur, India, in a course of Master of Philosophy entitled “Nonlinear
Analysis and Topological Structures”. Moreover, the book is self-contained and the
presentation is detailed, to avoid irritating readers by frequent references to details
in other books. The examples are simple, to make the book teachable. We hope that
this book will be extremely useful to students having a background in nonlinear
functional analysis, operator theory and topological properties.
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Chapter 1
Fundamentals

I love mathematics not only because it is applicable to
technology but also because it is beautiful.

Rósza Péter
Mathematics contains much that will never hurt one if one does
not know it nor help one if one does know it.

J. B. Mencken (1715)
What is clear and easy to grasp attracts us; complications deter.

David Hilbert

The main objective of this chapter is to familiarize the reader to some basic con-
cepts and fundamental results needed for the development of the theory of nonlinear
functional analysis.

In Sect. 1.1, we discuss discrete structure needed in subsequent study. In Sect. 1.2,
we introduce mainly metric spaces, topological spaces, linear spaces, normed spaces
and inner product spaces, while in Sect. 1.3, we discuss spaces of bounded linear
operators.

In Sect. 1.4, we discuss the Hahn–Banach theorem, reflexive spaces, weak topolo-
gies and basic properties of weakly convergent sequences in normed spaces, while
in Sect. 1.5, we mainly discuss compact spaces.

In Sect. 1.6, we discuss various forms of continuity - complete continuity, weak
continuity, demicontinuity, hemicontinuity and compactness which are now com-
monly used terms in the literature. Various theorems and counterexamples are given
which illustrate their interrelationships. In Sect. 1.7, we introduce the notion of mea-
sure, measurable function and measure space needed in subsequent chapters.

In Sect. 1.8 by giving definitions of some nonlinear operators, namely the Nemyt-
skiĭ, Hammerstein and Urysohn operators and their continuity properties. These
operators are, at present, widely used in applications. In Sect. 1.9, we introduce the
concept of the Sobolev spaces (the suitable spaces for weak solutions of elliptic
equations) needed for the development of differential equations. In Sect. 1.10, we
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2 1 Fundamentals

discuss optimal control theory while in Sect. 1.11, we introduce nonlinear stochastic
operator equations. Finally, we conclude the chapter in Sect. 1.12 by introducing
some fundamental concepts of variational method in the Hilbert space.

In what follows, we denote the set of natural numbers, the set of real numbers and
the set of complex numbers by N, R and C, respectively.

1.1 Discrete Structure

1.1.1 Partially Ordered Set

Definition 1.1 Let X be a nonempty set. A partial order relation on X is a relation
“�” defined on X which satisfies the following properties:
(P1) Reflexive. For each x ∈ X, x � x ;
(P2) Antisymmetric. If x, y ∈ X , then x � y and y � x =⇒ x = y;
(P3) Transitive. If x, y, z ∈ X , then x � y and y � z =⇒ x � z.

A nonempty set X in which there is defined a partially order relation is called the
partially ordered set or simply poset and is denoted by (X,�).

Sometimes, it is convenient to express x � y by y � x . Let S be a nonempty
subset of a partially ordered set X . An element u ∈ X is called a lower bound of S
if u � x for all x ∈ S; and a lower bound g of S is called the greatest lower bound
(or g.l.b.) of S if g ≥ u for every lower bound u of S. Similarly, an element v ∈ X is
said to be an upper bound of S if v ≥ x for all x ∈ S; and an upper bound � of S is
called the least upper bound (or l.u.b.) of S if � � v for every upper bound of v of S.
The greatest lower bound of S is usually called its infimum and is written as inf S.
The least upper bound of S is called its supremum and is denoted by sup S.

Suppose inf S and sup S both exist and are g and �, respectively. If g ∈ S, then
it is called minimum and is denoted by min S. Similarly, if � ∈ S, then it is called
maximum and is denoted by max S.
(P4) Comparable. Any two elements x, y in a poset (X,�) are said to be comparable
if either x � y or y � x , otherwise they are said to be incomparable.

A partially ordered relation with property (P4) is called a total (or linear) order
relation. A partially ordered set (X,�) whose relation � satisfies condition (P4) is
called totally ordered set or a linearly ordered set.

Example 1.1 (1) The relation≤ in the usual sense “less than or equal to” is a partial
order relation on the set R of real numbers.
(2) If S is a set of any collection of sets, then the relation ⊆ read as “is a subset of”
is a partial order relation on S.
(3) Let N be the set of all positive integers. Let m ≤ n mean that m divides n. This
defines a partial ordering on N.
(4) The relation of divisibility is not partial order relation on the set Z of integers.
In fact, the relation is not antisymmetric because 5| − 5 and −5|5 but 5 	= −5.
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Chain – Let (X,�) be a partially ordered set. A subset C of X is called a chain if
C is a totally ordered set.

An element x in X is said to be maximal if y � x ⇒ y = x . Similarly, an element
x in X is called minimal if y � x ⇒ y = x .
Axiom of choice – Let X be a collection of nonempty sets. Then, we can choose
a member from each set in that collection. In other words, there exists a function c
defined on X with the property that, for each set S in the collection, c(S) is a member
of S. The function c is then called a choice function.

Using the concepts as given in Definition 1.1, we can now formulate Zorn’s lemma,
which we regard as an axiom.1

Theorem 1.1 (Zorn’s lemma) Let (X,�) be a partially ordered set. If every chain
C in X has an upper bound, then X possesses a maximal element.

Observation

• It may be observed that Zorn’s lemma can be derived from the axiom of choice.
Conversely, the axiom of choice follows from Zorn’s lemma, so that Zorn’s lemma
and the axiom of choice can be regarded as equivalent axioms.

• Zorn’s lemma occurs in the proofs of several theorems of crucial importance, for
instance the Hahn–Banach theorem in functional analysis, the theorem that every
vector space has a basis, the Tychonoff theorem in topology stating that every
product of compact spaces is compact, and the theorems in abstract algebra that
in a ring with identity every proper ideal is contained in a maximal ideal and that
every field has an algebraic closure.

Definition 1.2 A system A = 〈A,≤〉 formed by a nonempty set A and a binary
relation ≤ called a lattice, if ≤ establishes a partial order in A and that for any two
elements a, b ∈ A there is a least upper bound (join) a ∪ b and a greatest lower bound
(meet) a ∩ b. The relations ≥,<, and > are defined in the usual way in terms of ≤.

The lattice A = 〈A,≤〉 is called complete if every subset B of A has a least upper
bound

⋃
B and a greatest lower bound

⋂
B. Such a lattice has in particular two

elements 0 and 1 defined by the formulas

0 =
⋂

A and 1 =
⋃

A.

Given any two elements a, b ∈ A with a ≤ b, we denote by [a, b] the interval with
the endpoints a and b, that is, the set of all elements x ∈ A for which a ≤ x ≤ b; in
symbols,

[a, b] = Ex [x ∈ A and a ≤ x ≤ b].

The system 〈[a, b],≤〉 is clearly a lattice; it is a complete if A is complete.

1The term “lemma” is for historical reasons. Zorn’s lemma, also known as the Kuratowski–Zorn
lemma, after mathematicians Max Zorn and Kazimierz Kuratowski, is a proposition of set theory
that states that a partially ordered set containing upper bounds for every chain (i.e. every totally
ordered subset) necessarily contains at least one maximal element. This lemma was proved by
Kuratowski in 1922 and independently by Zorn in 1935.
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1.2 Topological Spaces

The concept of a space is different from the notion of a set. A space is distinguished
from a set by possessing attributes not possessed by a mere collection of well-defined
objects what we call elements of the set, and a subspace is a subset of a space which is
assumed to have inherited such defining attributes. A metric (distance) space suggests
that given two points of the space there should be a real number that measures the
distance between them. To initiate our discussion on the notion of a “metric”, it is
natural to begin with a pair (X, d) where X is a set and d : X × X → R is a mapping
of the cartesian product X × X into the realsR. If d(x, y) is thought of as the distance
between two points x, y ∈ X it is natural to assume that d satisfies for each x, y ∈ X :
(SM1) d(x, y) � 0;
(SM2) d(x, y) = 0 ⇔ x = y; and
(SM3) d(x, y) = d(y, x).

A pair (X, d) satisfying the above assumptions is called a semimetric space. These
assumptions are in some sense minimal when one thinks of a distance. The semimetric
spaces form a subclass of the important class of metric spaces defined below, yet it
is doubtful whether semimetric spaces themselves offer sufficient structure to yield
very deep results. We can introduce very important concept of “limit” in the setting
of semimetric space as follows: a sequence {xn} in a semimetric space X is said to
converge to a point x ∈ X if for each ε > 0 there exists an integer n0 ∈ N such that

n � n0 ⇒ d(xn, x) < ε.

In this case, x is said to be the limit of the sequence {xn} and we simply write
limn→∞ xn = x . However, in general, there is nothing to assure that in a semimetric
space the limit of a given sequence is unique. To remedy this defect, we discuss a
richer structure than a semimetric space what we call a metric space.2

1.2.1 Metric Spaces

Definition 1.3 Let X be a nonempty set. A metric3 on X is a function d : X × X → R

which satisfies the following conditions:
(M1) d(x, y) � 0 for all x, y ∈ X ;
(M2) d(x, y) = 0 if and only if x = y;

2The notion of a metric space was introduced by M. Fréchet in his thesis Sur Quelques Points
Du Calcul Fonctionnel (Rendiconti del Circolo Matematico di Palermo, 22(1906), pp. 1–74) and
called by him spaces of class (E). However, Fréchet and his immediate successors did not develop
the theory. The term metric space was introduced by F. Hausdorff (Grundzüge der Mengenlehre,
Leipzig, 1914).
3A landmark construction of the notion of metric introduced in 1906 by the French mathematician
Maurice René Fréchet.



1.2 Topological Spaces 5

(M3) d(x, y) = d(y, x) for all x, y ∈ X ;
(M4) d(x, y) � d(x, z)+ d(z, y) for all x, y, z ∈ X .

The value of metric d at a point (x, y) of X × X is called distance between x and
y, and the ordered pair (X, d) is called metric space.

The condition (M1) is usually called nonnegativity of distance. The condition
(M2) states that indistancy implies and implied by equality, while condition (M3)

is called symmetry. The condition (M4) is called triangularity.

A function d : X × X → R is called pseudometric on X if it satisfies the following
conditions:
(P-M1) x = y ⇒ d(x, y) = 0;
(P-M2) d(x, y) = d(y, x) for all x, y ∈ X ;
(P-M3) d(x, y) � d(x, z)+ d(z, y) for all x, y, z ∈ X .

The set X together with the pseudometric d; i.e., the pair (X, d) is called pseudo-
metric space.

Pseudometric differs from metric in the sense that

d(x, y) = 0 even if x 	= y.

Thus, for a pseudometric x = y ⇒ d(x, y) = 0 but not conversely.
Notice that every metric space is a pseudometric space but every pseudometric space
is not necessarily a metric space.

Example 1.2 (1) A function f : R× R→ R defined by d(x, y) = |x − y| for all
x, y ∈ R is a metric on R usually called usual metric, and the ordered pair (R, d) is
called usual metric space.
(2) The real line R equipped with a function d : R× R→ R by

d(x, y) =
{

0 if x = y,

1 if x 	= y,

is a metric space on R usually called discrete metric and the ordered pair (R, d) is
called discrete metric space.
(3) Let X be a set of all complex sequences {xi }∞i=1 and let d : X × X → R+ be a
function defined by

d(x, y) =
∞∑

i=1

1

2i

|xi − yi |
1+ |xi − yi | , x = {xi }, y = {yi } ∈ X. (1.1)

Then, d is a metric called Fréchat metric for X .
(4) Let X = R. Define a mapping d : R× R→ R by d(x, y) = |x2 − y2| ∀x, y ∈
R. It is easy to check that d is a pseudometric on R. Evidently, d(x, y) = 0 ⇒ |x2 −
y2| = 0 ⇒ x = ±y. Thus, d(x, y) = 0 does not necessarily imply x = y. Hence
(R, d) is a pseudometric space, but not a metric space.
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Given a metric space (X, d), x ∈ X and r > 0, we denote

Br (x) = {y ∈ X : d(y, x) < r}, the open ball with center x and radius r;
Br (x) = {y ∈ X : d(y, x) � r}, the closed ball with center x and radius r;

∂ Br (x) = {y ∈ X : d(y, x) = r}, the boundary of ball with center x and radius r.

For a subset A of X and a point x ∈ X , the distance between x and A is denoted by
d(x, A) is defined as the smallest distance from x to elements of A. More precisely,

D(x, A) = inf
y∈A

d(x, y).

The distance sup{d(x, y) : x, y ∈ A} is defined as the diameter of the set A and is
denoted by diam(A). If dist(A) is finite, then A is said to be bounded. Otherwise, A
is said to be unbounded.
Convergence, Cauchy sequence and completeness in a metric space are defined as
follows:

Definition 1.4 Let (X, d) be a metric space, {xn} a sequence in X , and let x ∈ X.

Then,

(a) The sequence {xn} is said to be convergent in (X, d) and converges to x0, if
for given ε > 0 there exists n0 ∈ N such that d(xn, x0) < ε for all n ≥ n0 and this
fact is represented by lim

n→∞ xn = x0 or xn → x0 as n →∞.

(b) The sequence {xn} is said to be Cauchy sequence in (X, d) if for given ε > 0
there exists n0 ∈ N such that d(xn, xn+p) < ε for all n ≥ n0, p > 0 or equivalently,
if lim

n→∞ d(xn, xn+p) = 0 for all p > 0.

(c) (X, d) is said to be a complete metric space if every Cauchy sequence in X
converges to some x ∈ X.

1.2.2 Continuity of Mappings

In this section, we discuss continuity of mappings with their properties.

Definition 1.5 Let T be a mapping from a metric space (X, d) to another metric
space (Y, ρ). Then, T is said to be

(i) continuous at x0 ∈ X if for given ε > 0, there exists δ = δ(ε, x0) > 0 such that

ρ(T x, T x0) < ε whenever d(x, x0) < δ for all x ∈ X.

In general, T is said to be continuous at x0 ∈ X if for any sequence {xn} in X such
that xn → x0 implies T xn → T x0 in Y .
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(i i) uniformly continuous on X if for given ε > 0, there exists δ = δ(ε) > 0 such
that

ρ(T x, T y) < ε whenever d(x, y) < δ for all x, y ∈ X.

Example 1.3 (1) Every polynomial function is continuous.
(2) Let X be a discrete metric space and Y be any metric space. Then, any mapping
T : X → Y is uniformly continuous.
(3) Let C be a nonempty subset of a metric space (X, d). Then for each pair x, y ∈ X ,
we have |d(x, C)− d(y, C)| � d(x, y). That is,

|d(·, C)(x)− d(·, C)(y)| � d(x, y) for all x, y ∈ X.

In particular, we see that the function x �→ d(x, C) is uniformly continuous.
(3) No polynomial function of degree greater than 1 is uniformly continuous on the
usual metric space R.
(4) Let X = (0,∞) be with usual metric. Then, one can easily see that any logarith-
mic function on X is not uniformly continuous.
(5) Let X = (0, 1) be a metric space with the metric induced by the usual metric onR
and Y = R with usual metric. Then, the mapping T : X → Y defined by T (x) = 1

x ,
for all x ∈ X , is not uniformly continuous. To see it, let ε = 1

2 and δ be any positive
number. Choose x = 1

n+1 and y = 1
n+2 , where n is a positive integer such that n > 1

δ
.

Then,

|x − y| =
∣
∣
∣

1

n + 1
− 1

n + 2

∣
∣
∣ = 1

(n + 1)(n + 2)
<

1

n
< δ,

but |T (x)− T (y)| = |(n + 1)− (n + 2)| = 1 > ε. Thus, we see that whatever δ >

0 may be, there exist x and y such that

|x − y| < δ but |T (x)− T (y)| > ε.

Observation

• Every uniformly continuous mapping from a metric space X into another metric
space Y is continuous at each point of X , but the converse need not be true
in general. To see it, consider X = [−1, 1] and Y = R with usual metric. Let
T : X → Y be a mapping defined by T (x) = x2 for all x in X . Then, for given
ε > 0, there exists δ = 1

2ε > 0 such that for any x, y ∈ [−1, 1], we have

|T (x)− T (y)| = |x2 − y2| = |x + y||x − y| � 2|x − y| < 2δ = ε

whenever |x − y| < δ. Keeping y fixed at x0, it is easy to see that f is continuous
at x0.
Now, if we consider the same mapping T (x) = x2 defined onR, that is, T : R→ R

such that T (x) = x2. Then, for any x, x0 in R, we have
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|T (x)− T (x0)| = |x2 − x0
2| = |x + x0||x − x0| < ε

whenever |x − x0| < ε
|x+x0| = δ, where δ depends on ε and x0. It follows that T is

only continuous but not uniformly continuous.
• Every uniformly continuous mapping T from a metric space (X, d) into another

metric space(Y, ρ) maps a Cauchy sequence {xn} in X into a Cauchy sequence
{T xn} in Y .

Definition 1.6 Let X be a metric space and x0 a point in X . A function ϕ : X → R

is said to be

(i) upper semicontinuous at x0 if lim sup
x→x0

ϕ(x) � ϕ(x0);

(i i) lower semicontinuous at x0 if lim inf
x→x0

ϕ(x) � ϕ(x0);
(i i i) continuous at x0 if it is both upper semicontinuous and lower semicontinuous
at x0.

In general, ϕ is said to be

(i ′) upper semicontinuous on X if for any sequence {xn} in X such that

xn → x implies lim sup
n→∞

ϕ(xn) � ϕ(x);

(i i ′) lower semicontinuous on X if for any sequence {xn} in X such that

xn → x implies lim inf
n→∞ ϕ(xn) � ϕ(x);

(i i i ′) continuous on X if it is both upper semicontinuous and lower semicontinuous
on X .

Example 1.4 (a) Let ϕ : R→ R be a function defined by

ϕ(x) =
{
−1, if x < 0

1, if x ≥ 0.

Then, it is easy to check that ϕ is upper semicontinuous at x0 = 0 but not lower
semicontinuous.

(b) Let ϕ : R→ R be a function defined by

ϕ(x) =
{
−1, if x � 0

1, if x > 0.

Then, ϕ is lower semicontinuous at x0 = 0 but not upper semicontinuous (Fig. 1.1).
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A mapping T from a metric space(X, d) into another metric space (Y, ρ) is said
to satisfy the Lipschitz condition or is said to be Lipschitz continuous on X if there
exists a constant L > 0 such that

ρ(T x, T y) � Ld(x, y) for all x, y ∈ X.

If L is the least number for which the Lipschitzian condition is satisfied, then L is
called Lipschitz constant. In this case, we say that T is an L-Lipschitz mapping or
simply a Lipschitzian mapping with Lipschitz constant L . Otherwise, it is called
non-Lipschitzian mapping.
Observation

• Every Lipschitz continuous mapping T from a metric space X into another metric
space Y is uniformly continuous (and hence continuous) on X . Indeed, for a given
ε > 0 there exists δ = ε

L > 0 such that for all x, y ∈ X ,

d(x, y) < δ =⇒ ρ(T x, T y) � Ld(x, y) < Lδ = ε.

• There exists non-Lipschitzian mapping that is continuous. To this end, consider
the mapping T : [− 1

π
, 1

π
] → [− 1

π
, 1

π
] defined by

T (x) =
{

x sin
(

1
x

)
, if x 	= 0

0, if x = 0.

Notice that T is continuous, but not Lipschitz continuous.

Fig. 1.1 Upper semicontinuity/lower semicontinuity at x0 = 0
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Theorem 1.2 (The Weierstrass theorem) Let C be a nonempty compact subset of a
metric space X and f : C → R a continuous function. Then, f attains its extremum
(maximum and minimum); i.e., there exist ξ, η ∈ C such that

f (ξ) = inf
x∈C

f (x) and f (η) = sup
x∈C

f (x).

The following proposition guarantees the existence of Lipschitzian mappings.

Proposition 1.1 (Criteria for existence of Lipschitzian mappings) Suppose
T : [a, b] ⊂ R→ R is a differential function on (a, b). Suppose T ′ is continuous
on [a, b]. Then, T is a Lipschitz continuous function.

Proof For all a � x < y � b, we find that
(i) T is continuous on [x, y];
(i i) T is differentiable in (x, y).
Now applying Lagrange’s mean value theorem to T , we have

T (y)− T (x) = T ′(c)(y − x) for some c ∈ (x, y) ⊂ [a, b].

Because T ′ is continuous and the interval [a, b] is compact in R, by the Weierstrass
theorem, there exists η ∈ [a, b] such that |T (η)| = supc∈[a,b] |T ′(c)| = L , say. Thus,
|T (x)− T (y)| � L|x − y| for all x, y ∈ [a, b], which shows that T is Lipschitz
continuous.

Observation

• Lipschitzian mapping need not be differentiable. To see it, consider the mapping
T : R→ R defined by T x = 2|x | + 1 for all x ∈ R. Notice that T is Lipschitz con-
tinuous with Lipschitz constant L = 2; i.e., |T x − T y| � 2|x − y| for all x, y ∈ R,
but T is not differentiable at zero.

Theorem 1.3 (The Weierstrass approximation theorem) Let f : [a, b] → R be a
continuous function. Then, there exists a sequence {pn(x)} of polynomials with real
coefficients that converges uniformly to f on [a, b]; that is, for a given ε > 0, there
exists a positive integer n0 such that for all t ∈ [a, b]

|pn(x)− f (x)| < ε ∀ n � n0.

If f is a complex function, then pn may be taken complex polynomial.

Definition 1.7 ([31]) Let X be a nonempty set and d : X × X → [0,∞) satisfy:
(bM1) d(x, y) = 0 if and only if x = y for all x, y ∈ X ;
(bM2) d(x, y) = d(y, x) for all x, y ∈ X ;
(bM3) there exist a real number s ≥ 1 such that d(x, y) � s[d(x, z)+ d(z, y)]

for all x, y, z ∈ X.

Then, d is called a b-metric on X and (X, d) is called a b-metric space (in short
bMS) with coefficient s.
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Notice that the class of b-metric spaces is effectively larger than that of the class
of metric spaces. The following examples illustrate the above fact.

Example 1.5 (1) Let X = {1, 2, 3}. Define d : X × X → R+ by d(x, y) = d(y, x)

for all x, y ∈ X, d(x, x) = 0, for all x ∈ X and d(1, 2) = 4, d(1, 3) = 2, d(2, 3) = 1.
Then, (X, d) is a b-metric space, but not a metric space because the triangle inequality
is not satisfied. Indeed, we have that

d(1, 3)+ d(3, 2) = 2+ 1 = 3 < 4 = d(1, 2).

It is easy to verify that s = 4
3 .

(2) Let (X, ρ) be a metric space and d(x, y) = (ρ(x, y))p, where p > 1 is a real
number. Then, d is a b-metric with s = 2p−1.

Convergence, Cauchy sequence and completeness in b-metric space are defined
as follows:

Definition 1.8 ([31]) Let (X, d) be a b-metric space, {xn} be a sequence in X and
x ∈ X. Then,

• (a) the sequence {xn} is said to be convergent in (X, d) and converges to x0, if
for given ε > 0 there exists n0 ∈ N such that d(xn, x0) < ε for all n � n0 and this
fact is represented by lim

n→∞ xn = x0 or xn → x0 as n →∞.

• (b) the sequence {xn} is said to be Cauchy sequence in (X, d) if for given ε > 0
there exists n0 ∈ N such that d(xn, xn+p) < ε for all n � n0, p > 0 or equivalently,
if lim

n→∞ d(xn, xn+p) = 0 for all p > 0.

• (c) (X, d) is said to be a complete b-metric space if every Cauchy sequence in X
converges to some x ∈ X.

1.2.3 Topological Spaces

In this section, we give a brief summary of some aspect of topological spaces.4

In particular, we discuss the notions of open sets, closed sets, interior, closure and
boundary of sets. Notions of directed set and net are also introduced.

Definition 1.9 Let X be a nonempty set and T a collection of subsets of X . Then,
T is said to be a topology5 on X if the following conditions are satisfied:

4The word “topology” derives its name from the union of two Greek words, namely topos mean-
ing “surface” and logos meaning “study” or “discourse”. Topology thus literary means the study of
surfaces and is concerned with the properties of space that are preserved under continuous deforma-
tions, such as stretching and bending, but not tearing or gluing. In other words, the study of certain
properties that do not change as geometric figures or spaces undergo continuous deformation is
called topology. These properties include openness, nearness, connectedness, and continuity.
5The term topology was introduced by Johann Benedict Listing in the nineteenth century, although
it was not until the first decades of the twentieth century that the idea of a topological space
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(T 1) ∅, X ∈ T ,
(T 2) T is closed under arbitrary unions,
(T 3) T is closed under finite intersections.
The ordered pair (X,T ) is called topological space. The members of T are called
T -open sets or simply open sets.

Metric topology – The open sets of a metric space (X, d) form a topology, called
metric topology or topology induced by the metric d. Thus, a metric space is a
topological space with the topology of the metric.

In general, the topology of a topological space (X,T ) is not induced by a metric.
If it is induced by a metric, it is called a metrizable space.
Metrizable space – A topological space (X,T ) is said to be a metrizable space if
there exists a metric d which generates the same open sets as the open sets of T ,
i. e., Td = T .

Alternatively, a topological space is said to be metrizable if the topology can be
obtained from a metric on the underlying space.
Interior of a set – Let G be a subset of a topological space X . Then, the interior of
G is the union of all open subsets of G and is denoted by int(G) (or G◦). In other
words, if {Oi : i ∈ I } are all open subsets of G, then

int(G) =
⋃

i∈I

Oi .

Observation

• int(G) is an open set, because it is the union of open sets.
• int(G) is the largest open set of G.
• If U is an open subset of G, then U ⊂ int(G) ⊂ G.

Exterior points and boundary of sets – Let A be a subset of a topological space
X . Then, the exterior of A, written by ext(A), is the interior of the complement of A;
i.e., ext(A) = int(X \ A). The boundary of A is a set of points that do not belong to
the interior or the exterior of A. The boundary of set A is denoted by ∂ A. Obviously,
∂ A = A

⋂
(X \ A) is a closed set.

Closed set – A subset F of a topological space X is said to be closed if its complement
X − F is open.

Theorem 1.4 Let F be a family of all closed sets in a topological space (X,T ).
Then, F has the following properties:
(F1) ∅, X ∈ F,
(F2) F is closed under arbitrary intersection,
(F3) F is closed under finite union.

was developed. By the middle of the twentieth century, topology had become a major branch of
mathematics.
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Closure of a set – Let C be a subset of a topological space X . Then, the closure of
C is the intersection of all closed supersets of C . The closure of C is denoted by C .
In other words, if {Fi : i ∈ I } is a collection of all closed supersets of C in X , then

C = ∩
i∈I

Fi .

Observation

• C is a closed set, because it is the intersection of closed sets.
• C is the smallest closed superset of C .
• If F is a closed superset of C in X , then C ⊂ C ⊂ F .

Theorem 1.5 Let C be a subset of a topological space X. Then, C is closed if and
only if C = C.

Neighborhood – Let (X,T ) be a topological space. A subset N of X is said to
be a neighborhood of a point x0 ∈ X if there exists an open set G ∈ T such that
x0 ∈ G ⊂ N .

Let (X,T ) be a topological space. Then, X is said to be

• a T0- space if for a pair of distinct points in X , there exists an open set that contains
one of them, but not the other;

• a T1- space if x and y are any two distinct points in X , there exists an open set U
containing x but not y, and there exists another open set V containing y, but not
x ;

• a T2- space or the Hausdorff space if x and y are any two distinct points in X , there
exist two open sets U and V such that x ∈ U, y ∈ V and U ∩ V = ∅.

Directed set – Let D be a nonempty set and � a binary relation on D. Then, the
ordered pair (D,�) is said to be directed if

(D1) for all α, β, γ ∈ D, α � β, β � γ =⇒ α � γ ; (Transitivity)
(D2) for all α ∈ D, α � α; (Reflexivity)
(D3) for α, β ∈ D, there exists γ ∈ D such that γ � α, γ � β; (Existence)

Example 1.6 (1) (N,�) is a directed set.
(2) If X is a nonempty set, then (P(X),⊆) and (P(X),⊇) are directed sets, where
P(X) is the power set of X .
(3) If x ∈ X and Nx is the family of all neighbourhoods of x , then (Nx ,⊆) is a
directed set.
(4) Every lattice is a directed set.

Net – A net or a generalized sequence in a set X is a mapping S from a directed set
D into X . The net {xα : α ∈ D} is simply written as {xα}.

A net {xα : α ∈ D} in a topological space X is said to converge to the point x ∈ X ,
if for every neighborhood U of x , there exists α0 ∈ D such that

∀α ∈ D, α � α0 =⇒ xα ∈ U.

In this case, we write xα → x, or lim
α

xα = x .
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1.2.4 Linear Spaces

Definition 1.10 A linear space6 (or vector space) X over the fieldK (RorC) is a set X
equipped with an internal binary operation “+” called vector addition carrying (x, y)
in X × X to x + y in X and an external operation“·” called scalar multiplication
carrying (α, x) in K× X to αx in X satisfying the following for all x, y, x ∈ X and
α, β ∈ K:

1. x + y = y + x ,
2. (x + y)+ z = x + (y + z),
3. there exists an element 0 ∈ X called the zero vector of X such that x + 0 = x

for all x ∈ X ,
4. for each x ∈ X , there exists an element −x ∈ X called the additive inverse or

the negation of x such that x + (−x) = 0,
5. α(x + y) = αx + αy,
6. (α + β)x = αx + βx ,
7. (αβ)x = α(βx),
8. 1 · x = x for every x ∈ X where 1 is the unit element of the field K.

The elements of a vector space X are called vectors, and the elements of the field K

are called scalars. Instead of saying that X is a vector space over field K we say that
X (K) is a vector space. In what follows, unless otherwise stated, X denotes a linear
space over field R.

Example 1.7 (1) R and C are linear spaces over R under usual addition and multi-
plication as vector addition and scalar multiplication, respectively.
(2) All polynomial over a field K is a linear space over field K w.r.t. addition of
polynomials and multiplication of polynomials by any scalar.
(3) For any linear differential equation (and linear partial differential equation), the
set of all solutions is a linear space.
(4) X = {x : x = (x1, x2, . . .)|xi ∈ R} is a linear space over R.

Observation

• A field K can be regarded as a vector space over any subfield F of K.
• Because K is a subfield of itself therefore K is a vector space over K.
• R(Q) is a vector space but Q(R) is not a vector space.

Example 1.8 Let X = C[a, b] (1 � p <∞), the set of all continuous scalar func-
tions and let “+” and “·” denote the operations of vector addition and scalar multi-
plication, respectively, defined by

6Historically, the first ideas leading to linear spaces (also called vector spaces) can be traced back
as far as the seventeenth century’s analytic geometry, matrices, systems of linear equations, and
Euclidean vectors. The modern, more abstract treatment, first formulated by Giuseppe Peano in
1888, encompasses more general objects than Euclidean space, but much of the theory can be seen
as an extension of classical geometric ideas like lines, planes and their higher-dimensional analogs.
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( f + g)(t) = f (t)+ g(t) for all f, g ∈ C[a, b];
(α f )(t) = α f (t) for all f ∈ C[a, b] and scalar α ∈ K.

Then, C[a, b] is a linear space.

A subset S of a linear space X is a linear subspace (or a subspace) of X if S
itself is a linear space. A necessary and sufficient condition for a subset S of a linear
space X to be a subspace of X is that S is closed w.r.t. vector addition and scalar
multiplication.
Linear span of vectors – If x1, x2, . . . , xn are given points of a linear space X , then
the element

x = α1x1 + α2x2 + · · · + αn xn, αi ∈ K

is called linear combination of {x1, x2, . . . , xn}. The set of all linear combinations
of the vectors x1, x2, . . . , xn is called the linear span of these vectors. If S is a
nonempty subset of a linear space X , then the linear combination of S is the set of
all linear combinations of elements of S. It is subspace called the subspace spanned
or generated by these vectors and it is denoted by [S] or L(S).

The vectors x1, x2, . . . , xn in X are said to be linearly independent if the equality
α1x1 + α2x2 + · · · + αn xn = 0 implies α1 = · · · = αn = 0. Otherwise, they are said
to be linearly dependent.
Basis of a Linear Space – If {x1, x2, . . . , xn} is a linearly independent set of n vectors
which spans the whole space X , then {x1, x2, . . . , xn} is said to be a basis (or Hamel
basis) for X , and X is said to have dimension n, written dim X = n.

Hamel basis – A Hamel basis for a linear space X is a linearly independent set which
spans X .

Theorem 1.6 Every nontrivial linear space X has a Hamel basis.

Proof SupposeF denotes the family of all linearly independent subsets of X , partially
ordered by set inclusion. For any x ∈ X, x 	= 0, the set {x} is linearly independent
set so F is nonempty.

Consider a chain, i.e., totally ordered subfamily C in F. Let S = ∪
C∈C

C. Then, it

is clear that S is a linearly independent set in C and is an upper bound of the totally
ordered subfamily C .

By Zorn’s lemma F has a maximal linearly independent set A.
Now for any x � n A it follows that A ∪ {x} is a linearly dependent set in X .

Hence, there exist scalers {λ, λ1, λ2, . . . , λn} and a subset {e1, e2, . . . , en} in A such
that

λx +
n∑

i=1

λi ei = 0.

Notice that λ 	= 0 because {e1, e2, . . . , en} is a linearly independent set, so



16 1 Fundamentals

Fig. 1.2 Illustrative
examples of convex and
nonconvex sets

x = −1

λ

n∑

i=1

λi ei .

Thus, we conclude that A spans X and therefore A is a Hamel basis for X .

Dimension of a Linear Space – A linear space X is said to be finite dimensional if
it has a finite basis; i.e., it is generated by the linear combination of a finite number
of elements which are linearly independent. Otherwise, it is infinite-dimensional.

Example 1.9 (i) The real linear space Rn is finite dimensional and dim Rn = n
because Rn is generated by its n linearly independent elements, namely e1 =
(1, 0, . . . , 0) and e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).
(i i) The complex linear space Cn is finite dimensional and B = {e1, e2, . . . , en}
forms a basis for it.

Observation

• A Hamel basis, or algebraic basis, of a linear space is a maximal linearly indepen-
dent set of vectors. Each element of a linear space may be expressed as a unique
finite linear combination of elements in a Hamel basis.

• Every linear space has a Hamel basis, and any linearly independent set of vectors
may be extended to a Hamel basis by the repeated addition of linearly independent
vectors to the set until none are left (a procedure which is formalized by the axiom
of choice, or Zorn’s lemma, in the case of infinite-dimensional spaces). A Hamel
basis of an infinite-dimensional space is frequently very large.

• In a normed space, we have a notion of convergence, and we may therefore consider
various types of topological bases in which infinite sums are allowed.

Convex set – Let S be a subset of a linear space X . Then, S is said to be convex if

αx + (1− α)y ∈ S for all x, y ∈ S and all scalars α ∈ [0, 1].

A necessary and sufficient condition for a subset S of a linear space X to be a
convex set is stated below (Fig. 1.2).

Proposition 1.2 Let S be a subset of a linear space X. Then, S is convex if and
only if α1x1 + α2x2 + · · · + αn xn ∈ S for any finite set {x1, x2, . . . , xn} ⊂ S and any
scalars αi ≥ 0 with α1 + α2 + · · · + αn = 1.
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Convex hull – Let S be an arbitrary subset (not necessarily convex) of a linear space
X . Then, the convex hull of S in X is the intersection of all convex subsets of X
containing S and is denoted by co(S). Symbolically, we have

co(S) = ∩{C ⊂ X : S ⊆ C, C is convex}.

Thus, it follows that co(S) is the unique smallest convex set containing S. In other
words, co(S) is the set of all finite convex combination of elements of S; that is,

co(S) =
{
α1x1 + α2x2 + · · · + αn xn : xi ∈ S, αi ≥ 0 and

n∑

i=1

αi = 1
}
.

To illustrate the notion of convex hull, let us consider the following: Let X be a
linear space. The line segment or interval joining the two points x, y ∈ X is the set
[x, y] := {t x + (1− t)y : 0 � t � 1}; i.e., [x, y] = co({x, y}) is convex hull of x
and y.
The closure of convex hull of S is

co(S) =
{
α1x1 + α2x2 + · · · + αn xn : xi ∈ S, αi ≥ 0 and

n∑

i=1

αi = 1
}
.

The closed convex hull of S in X is the intersection of all closed convex subsets of
X containing A and is denoted by co(S). Thus,

co(S) = ∩{C ⊂ X : S ⊆ C, C is closed and convex}.

It is easy to observe that closure of convex hull of S is closed convex hull of S; i.e.,
co(S) = co(S). Notice that, in general, co(S) 	= co(S).

Observation

• By convention, the empty set ∅ is convex.
• If A and B are two convex subsets of a linear space X , then

(i) A + B is convex,
(i i) λA is convex for any scalar λ,
(i i i) A ∪ B need not be a convex set.

• If {Ai : i ∈ I } is any family of convex sets in a linear space X , then ∩i∈I Ai is
convex.

• Any translation A + x0 of a convex set A is convex.
• If A is a convex subset of a linear space X , then

(i) the closure C and int(C) are convex,
(i i) co(A) = A.
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1.2.5 Normed Spaces

Definition 1.11 Let X be a linear space over field K(K means R or C) and ‖ · ‖ :
X → R+ a function. Then, ‖ · ‖ is said to be a norm defined on X if the following
properties hold:
(N1) ‖x‖ = 0 if and only if x = 0; (strict positivity)
(N2) ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ K; (absolute homogeneity)
(N3) ‖x + y‖ � ‖x‖ + ‖y‖ for all x, y ∈ X . (triangle inequality or subadditivity)

The ordered pair (X, ‖ · ‖) is called a normed linear space (abbreviated nls) or
simply a normed space.

Observation

• ‖x‖ ≥ 0 and ‖ − x‖ = ‖x‖ for all x in X .
• |‖x‖ − ‖y‖| � ‖x − y‖ and |‖x‖ − ‖y‖| � ‖x + y‖ for all x, y in X .
• ‖ · ‖ is a continuous function; i.e., lim

n→∞ xn = x =⇒ lim
n→∞‖xn‖ = ‖x‖.

• Norm is a convex function; i.e., ‖αx + (1− α)y‖ � α‖x‖ + (1− α)‖y‖ for all
x, y ∈ X and α ∈ [0, 1].

• Every normed space (X, ‖ · ‖) is a metric space with induced metric d defined by

d(x, y) = ‖x − y‖ for all x, y in X.

The induced metric in turn, defines a topology on X called norm topology.
• In every linear space, we can define a function d : X × X → R+ by

d(x, y) =
{

0 if x = y,

1 if x 	= y,

which is a metric space on X . It follows that every linear space (not necessarily a
normed space) is always a metric space.

Example 1.10 Let X = Rn, n > 1 be a linear space. Then, the functions defined by
‖ · ‖1, ‖ · ‖p, ‖ · ‖∞ : X → R+ defined by

‖x‖1 =
n∑

i=1

|xi | for all x = (x1, x2, . . . , xn) ∈ Rn;

‖x‖p =
( n∑

i=1

|xi |p
)1/p

for all x = (x1, x2, . . . , xn) ∈ Rn and p ∈ (1,∞);

‖x‖∞ = max
1�i�n

|xi | for all x = (x1, x2, . . . , xn) ∈ Rn

are norms on Rn .
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Remark 1.1 (a) Rn equipped with the norm defined by ‖x‖p =
( n∑

i=1
|xi |p

)1/p
is

denoted by �n
p for all 1 � p <∞.

(b) Rn equipped with the norm defined by ‖x‖∞ = max
1�i�n

|xi | is denoted by �n∞.

Definition 1.12 A sequence {xi } of scalars (real or complex numbers) is said to be

summable to the sum s if the sequence {sn} of the partial sums of the series
∞∑

i=1
xi

converges to s; i.e.,

|sn − s| → 0 as n →∞, or
∣
∣
∣

n∑

i=1

xi − s
∣
∣
∣→ 0 as n →∞.

In such case, we write s =
∞∑

i=1
xi .

The sequence {xi } of scalars is said to be absolutely summable (or absolutely
convergent) if

∞∑

i=1

|xi | <∞.

The sequence {xi } of scalars is said to be p-summable if

∞∑

i=1

|xi |p <∞.

Example 1.11 (1)Let X = �1, the linear space of all absolutely convergent sequences
{x1, x2, . . . , xi , . . .} of scalars (real or complex numbers), i.e.,

�1 =
{

x : x = (x1, x2, . . . , xi , . . .) and
∞∑

i=1

|xi | <∞
}
.

Then, �1 is a normed space endowed with the norm ‖ · ‖1 : X → R+ defined by

‖x‖1 =
∞∑

i=1

|xi | ∀x = (x1, x2, . . . , xi , . . .) ∈ X.

(2) Let X = �p (1 < p <∞), the linear space of all p-summable sequences {x1, x2,

. . . , xi , . . .} of scalars (real or complex numbers), i.e.,

�p =
{

x : x = (x1, x2, . . . , xi , . . .) and
∞∑

i=1

|xi |p <∞
}
.
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Then, �p is a normed space with the norm ‖ · ‖p : X → R+ defined by

‖x‖p =
( ∞∑

i=1

|xi |p
)1/p

for all x = (x1, x2, . . . , xi , . . .) ∈ X.

(3) Let X = �∞, the linear space of all bounded sequences {x1, x2, . . . , xi , . . .} of
scalars (real or complex numbers), i.e.,

�∞ =
{

x : x = (x1, x2, . . . , xi , . . .), and ∃M > 0 such that |xi | < M ∀i ∈ N
}
.

Then, �∞ is a normed space with the norm ‖ · ‖∞ : X → R+ defined by

‖x‖∞ = sup
i∈N
|xi | ∀x = (x1, x2, . . . , xi , . . .) ∈ X.

(4) Let X = c, the sequence space of all convergent sequences {x1, x2, . . . , xi , . . .}
of scalars (real or complex numbers), i.e.,

c = {x : x = (x1, x2, . . . , xi , . . .), and {xi }∞i=1 is convergent
}
.

Then, c is a normed space with the norm ‖ · ‖∞.
(5) Let X = c0, the sequence space of all convergent sequences {x1, x2, . . . , xi , . . .}
of scalars with limit zero, i.e.,

c0 =
{

x : x = (x1, x2, . . . , xi , . . .), and {xi }∞i=1 converges to zero
}
.

Then, c0 is a normed space with the norm ‖ · ‖∞.
(6) Let X = c00, the sequence space of all sequences {xi }∞i=1 of scalars having only
finite number of nonzero terms, i.e.,

c00 =
{

x = (xi )
∞
i=1 ∈ �∞ : {xi }∞i=1 has only a finite number of nonzero terms

}
.

Then, c00 is a normed space with the norm ‖ · ‖∞.

Observation

It is quite interesting to observe the inclusion relations that hold among sequence
spaces c00, �p, c0, c, �∞ for all 1 � p <∞:

• For all 1 � p <∞, we see that
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(i) x = {xi }∞i=1 ∈ c00 ⇒ {xi }∞i=1 has only a finite number of nonzero terms

⇒
∞∑

i=1

|xi |p <∞

⇒ x = {xi }∞i=1 ∈ �p.

This shows that c00 ⊂ �p.

(i i) x = {xi }∞i=1 ∈ �p ⇒
∞∑

i=1

|xi |p is convergent

⇒ {|xi |p}∞i=1 converges to zero

⇒ {|xi |}∞i=1 converges to zero

⇒ {xi }∞i=1 converges to zero

⇒ x = {xi }∞i=1 ∈ c0.

This shows that �p ⊂ c0,

(i i i) x = {xi }∞i=1 ∈ c0 ⇒ (xi )
∞
i=1 converges to zero

⇒ {xi }∞i=1 is convergent

⇒ x = {xi }∞i=1 ∈ c.

This shows that c0 ⊂ c.

(iv) x = {xi }∞i=1 ∈ c ⇒ {xi }∞i=1 is convergent

⇒ {xi }∞i=1 is bounded

⇒ x = {xi }∞i=1 ∈ �∞.

This shows that c ⊂ �∞. Hence we conclude that

c00 ⊂ �p ⊂ c0 ⊂ c ⊂ �∞ for all 1 � p <∞.

• For all 1 � p < q <∞, we have

x = {xi }∞i=1 ∈ �p ⇒
∞∑

i=1

|xi |p <∞.

Now
∑∞

i=1 |xi |q =∑∞
i=1 |xi |p · |xi |q−p �

∑∞
i=1 |xi |p · sup1�i�∞

(|xi |q−p
)

� M
∑∞

i=1 |xi |p <∞

⇒ x = {xi }∞i=1 ∈ �q . This shows that �p ⊂ �q . Hence we conclude that

c00 ⊂ �p ⊂ �q ⊂ c0 ⊂ c ⊂ �∞ for all 1 � p < q <∞.

• Let x = {(−1)i+1 1
i

}∞
i=1

. Then, in one hand, we see that
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∞∑

i=1

|xi | =
∞∑

i=1

1

i
= ∞,

on the other hand,
∞∑

i=1

|xi |2 =
∞∑

i=1

1

i2
= π2

6
<∞.

Note that x ∈ �1, but x /∈ �2. It follows that the inclusion �1 ⊂ �2 is proper (Fig. 1.3).

Example 1.12 Let X = C[a, b], the linear space of all continuous scalar functions
on [a, b]. Then, the linear space C[a, b] is a normed space with the norms:

‖x‖p =
(∫ b

a
|x(t)|p dt

)1/p

, 1 � p <∞
‖x‖∞ = max

a�t�b
|x(t)|.

Example 1.13 Let X = L p[a, b] (1 � p <∞), the linear space of all equivalence
classes of p-integrable functions on [a, b], i.e., L p[a, b] is the equivalence classes of
Lebesgue measurable functions x on [a, b] such the Lebesgue integral of | f |p over
[a, b] exists and is finite. Then, the linear space L p[a, b] is a normed space with the
norm defined by

‖ f ‖p =
(∫ b

a
| f (t)|pdt

)1/p

<∞.

Notice that the elements of L p[a, b] are equivalent classes of those functions f ,
where f is equivalent to g if the Lebesgue integral of | f − g|p over [a, b] is zero.

Example 1.14 Let X = L∞[a, b], the linear space of all equivalence classes of
essentially bounded functions on [a, b]. Then, the linear space L∞[a, b] is a normed
space with the norm defined by

‖ f ‖∞ = ess sup | f (t)| <∞.

Fig. 1.3 Inclusion relation
of sequence spaces
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For a subset Y ⊂ X , we denote by Y the closure of Y , by Y C (or X − Y ) the
complement of Y , by span(Y ) the linear space generated by Y , and by co(Y ) the
convex hull of Y , that is, the set of all finite convex combinations of elements of Y .
Unit sphere – The sphere with center at the zero vector and radius unity in a normed
space X is called unit sphere. Unit sphere is often denoted by SX or simply by S, i.e.,

SX = {x ∈ X : ‖x‖ = 1}.

InR2, it is easy to observe the shape of the unit closed spheresSp as shown in Fig. 1.4
with norms as defined below:

‖x‖1 = |x1| + |x2|
‖x‖2 = (|x1|2 + |x2|2)1/2

‖x‖4 = (|x1|4 + |x2|4)1/4

‖x‖∞ = max{|x1|, |x2|}.

Open unit ball – The open ball with center at the zero vector and radius unity
in a normed space X is called open unit ball. Unit open ball is usually denoted
by B(0, 1), i.e.,

B(0, 1) = {x ∈ X : ‖x‖ < 1}.

Closed unit ball – The closed ball with center at the zero vector and radius unity in
a normed space X is called closed unit ball. Unit closed ball is often denoted by BX

or simply B, i.e.,
BX = {x ∈ X : ‖x‖ � 1}.

Definition 1.13 A sequence {xn} in a normed space X is said to be convergent to
x ∈ X if lim

n→∞‖xn − x‖ = 0, i.e., given an ε > 0, there exists an integer n0 ∈ N such

that
‖xn − x‖ < ε, ∀n ≥ n0.

Fig. 1.4 Unit spheres for
different norms
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To show that {xn} converges to x , we write xn → x or lim
n→∞ xn = x .

Definition 1.14 (Cauchy sequence) A sequence {xn} in a normed space X is a
Cauchy sequence if lim

m,n→∞‖xm − xn‖ = 0, i.e., given an ε > 0, there exists an integer

n0 ∈ N such that
‖xn − xm‖ < ε, ∀n, m ≥ n0.

Theorem 1.7 Every convergent sequence in a normed space is Cauchy. However,
the converse is not true in general.

Proof Let {xn} be a sequence in a normed space X and let xn → x . Then, for given
ε > 0, there exists n0 ∈ N such that

‖xn − x‖ <
ε

2
for all n ≥ n0.

Hence, for m, n ≥ n0, we have

‖ xm − xn ‖�‖ xm − x ‖ + ‖ x − xn ‖< ε

2
+ ε

2
= ε.

This proves that every convergent sequence is Cauchy in a normed space X .

Conversely, suppose X = C[0, 1] is the space of continuous functions on [0, 1]
with the norm

‖x‖1 =
∫ b

a
|x(t)| dt.

Let {xn} be a sequence in C[0, 1] defined by

xn(t) =
{

0, if 0 � t � 1
2 ,

1, if 1
2 � t � 1,

and between 1
2 and 1

2 + 1
n , xn(t) is given by the line joining the points

(
1
2 , 0

)
and

(
1
2 + 1

n , 1
)
.

Suppose m, n ∈ N are such that m < n, then by the induced metric d1(x, y) =
‖x − y‖1 we see that d1(x, y) is the shaded area in Fig. 1.5b which tends to 0 as
m, n →∞. Thus, {xn} is a Cauchy sequence, but {xn} does not converge to any
continuous function.

Definition 1.15 A normed space is said to be complete if every Cauchy sequence in
it is convergent, i.e., for every Cauchy sequence {xn} in X , there is an element x in
X such that xn → x .

Notice that a normed linear space (X, ‖ · ‖) is a metric space with respect to the
metric d derived from its norm, where d(x, y) = ‖x − y‖.
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Fig. 1.5 Nonconvergence to
any continuous function

Banach space – A Banach space is a normed linear space (X, ‖ · ‖) that is a complete
metric space with respect to the metric d derived from its norm.

A Banach space X is called real (complex) Banach space if X is a linear space
over the field R (C).

Example 1.15 (1) The linear spaces R and C (the real numbers and the complex
numbers) are Banach spaces with the norm ‖ · ‖ given by ‖x‖ = |x |, x ∈ R (or C).
(2) For 1 � p <∞, we define the p-norm on Rn (or Cn) by

‖(x1, x2, . . . , xn)‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p.

For p = ∞, we define the∞, or maximum, norm by

‖(x1, x2, . . . , xn)‖∞ = max{|x1|, |x2|, . . . , |xn|}.

Then, Rn equipped with the p-norm is a finite dimensional Banach space for 1 �
p <∞.
(3) The linear space �p, 1 � p <∞ of all p-summable sequences x = (x1, x2, . . . ,

xi , . . .) of scalars is a Banach space with the norm defined by

‖x‖p =
( ∞∑

i=1

|xi |p
)1/p

.

(4) The linear space �∞ of all bounded sequences x = (x1, x2, . . . , xi , . . .) of scalars
is a Banach space with the norm defined by

‖x‖∞ = sup
1�i<∞

|xi |.

(5) The linear space C[a, b] of all continuous functions defined on [a, b] is a Banach
space under the norm given by

‖x‖∞ = max
a�x�b

|x(t)|
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which induces the uniform metric

d∞(x, y) = max
a�x�b

|x(t)− y(t)|.

More generally, the space C(K ) of continuous functions on a compact metric space
K equipped with the sup norm is a Banach space.

In the linear space C[a, b], another norm is defined by

‖x‖1 =
∫ b

a
|x(t)|dt

which induces the metric

d1(x, y) =
∫ b

a
|x(t)− y(t)|dt.

This metric is not complete. Thus, the space of continuous functions C[a, b] with
this norm is not a Banach space.

In what follows when we refer C[a, b] as a normed space, we shall always mean
the space with norm ‖ · ‖∞, unless otherwise stated.
(6)The space P[a, b]of all polynomials on [a, b]with the norm‖x‖∞ = max

a�x�b
|x(t)|

is another example of a normed space which is not complete. Note that this space is
an incomplete subspace of the complete space C[a, b].
(7) Consider the subspace C1[a, b] of C[a, b] consisting of all continuously differ-
entiable functions with the norm ‖x‖∞ = max

a�x�b
|x(t)|. This space is not complete.

However, C1[a, b] iscomplete in any of the following norms:

‖x‖ = ‖x‖∞ + ‖x ′‖∞;
‖x‖ = |x(a)| + ‖x ′‖∞.

(8) Let � be a domain in Rn , n ∈ N. Then, the space C(�) of continuous functions
on � is a Banach space with the norm

‖u‖C(�) := sup
x∈�

|u(x)|.

(9) The spaces L p(�), 1 � p <∞, of (in the Lebesgue sense) p-integrable func-
tions are Banach spaces with the norms

‖u‖L p(�) :=
(∫

�

|u(x)|pdx

)1/p

.

The space L∞(�) of essentially bounded functions on � is a Banach space with
the norm
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‖u‖L∞(�) := ess supx∈�|u(x)|.

Observation

• c0, c are complete but c00 is not so. To see that c00 is not complete, let us consider
a sequence {xn} in c00 where xn =

(
1, 1

2 , 1
3 , . . . , 1

n , 0, 0, . . .
)
. Then, we see that

{xn} is a Cauchy sequence in c00 in the supremum norm, for n > m, (n, m ∈ N)

‖xn − xm‖ = sup

{
1

m + 1
,

1

m + 2
, . . . ,

1

n

}

→ 0 as m, n →∞.

But lim
n→∞ xn =

(
1, 1

2 , 1
3 , . . .

)
/∈ c00. Thus, a convergent sequence in c00 need not

converge to an element of c00.
• The set of all rational numbers Q is a normed subspace of R with norm ‖x‖ =
|x |, x ∈ Q. Notice that Q is not a Banach space. To see this, let us consider
the sequence {0.1, 0.101, 0.0.1010010001, . . .} which is a Cauchy sequence in
Q whose limit is an irrational number.

Product of normed spaces – Let X and T be two normed spaces with norms ‖ · ‖X

and ‖ · ‖Y , respectively. Then, the product X × Y is a linear space with coordinate-
wise addition and scalar multiplication and it can be normed by any one of the
following:

‖(x, y)‖p =
(‖x‖p

X + ‖x‖p
Y

) 1
p , 1 � p <∞

‖(x, y)‖∞ = max(‖x‖X , ‖y‖Y ).

The space X × Y normed by any one of these is called the product of the normed
spaces X, Y .

In the foregoing discussion we notice that a linear space X has many norms. In
general the space may be complete relative to one norm but not complete relative to
another norm unless the norms are equivalent.
Equivalent norms – Let X be a linear space over K and let ‖ · ‖1 and ‖ · ‖2 be two
norms on X . Then, ‖ · ‖1 is said to be equivalent to ‖ · ‖2 (written as ‖ · ‖1 ∼ ‖ · ‖2)
if there exist two numbers a, b > 0 such that

a‖x‖1 � ‖x‖2 � b‖x‖1 for all x ∈ X,

or
a‖x‖2 � ‖x‖1 � b‖x‖2 for all x ∈ X.

Example 1.16 (1) The following norms on Rn are equivalent:

(i) ‖x‖p =
( ∑

1�i�n
|xi |p

)1/p
, 1 � p <∞,
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(i i) ‖x‖∞ = max
1�i�n

|xi |.

Note that ‖x‖∞ � ‖x‖p � n1/p‖x‖∞. To see this, we observe that

‖x‖∞ = max
1�i�n

|xi | =
(

max
1�i�n

|xi |p
)1/p

�
( ∑

1�i�n

|xi |p
)1/p = ‖x‖p

and

‖x‖p �
(

n max
1�i�n

|xi |p
)1/p

= n1/p max
1�i�n

(|xi |p
)1/p = n1/p max

1�i�n
|xi | = n1/p‖x‖∞.

(2) In the linear space C[0, 1] of all real continuous functions on [0, 1], the norms
‖ · ‖∞ and ‖ · ‖1 are not equivalent. To see this, consider the sequence {xn} where
xn = tn, n ∈ N. Notice that {xn} converges to 0 with respect to ‖ · ‖1 because

‖xn − 0‖1 =
∫ 1

0
tn dt = 1

n + 1
→ 0, as n →∞.

But xn � 0 with respect to norm ‖ · ‖∞. Hence ‖ · ‖∞ is not equivalent to ‖ · ‖1.
(3) In the product of the normed spaces X, Y it is trivial to see that

‖ · ‖∞ � ‖ · ‖p � 21/p‖ · ‖∞.

That is, ‖ · ‖p and ‖ · ‖∞ are equivalent norms.

Observation

• In a finite dimensional normed space X , all norms are equivalent.
• The relation∼ is an equivalence relation on the set of all norms defined on a linear

space X .

A normed space property which holds for a linear space under equivalent norms is
said to be a linear topological invariant property for normed spaces.

Note that completeness and boundedness of sets are linear topological invariant
properties for normed spaces.

Theorem 1.8 Let ‖ · ‖ and ‖ · ‖′ be equivalent norms on a linear space X. Then,
(a) A sequence {xn} is convergent (Cauchy) w.r.t. ‖ · ‖ ↔ {xn} is convergent (Cauchy)
w.r.t. ‖ · ‖′.
(b) X is complete in ‖ · ‖ ↔ X is complete in ‖ · ‖′.
(c) The class of open sets w.r.t. ‖ · ‖ is same as the class of open sets w.r.t. ‖ · ‖′.
(d) A set is bounded in (X, ‖ · ‖) if and only if it is bounded in (X, ‖ · ‖′).
Seminorm – Let X be a linear space over field K (R or C). Then, a function p :
X → R+ is said to be seminorm on X if the following conditions are satisfied:
(SN1) p(λx) = |λ|p(x) for all x ∈ X and λ ∈ K;
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(SN2) p(x + y) � p(x)+ p(y) for all x, y ∈ X .
The ordered pair (X, p) is called seminormed space. Note that a seminorm p is a

norm if p(x) = 0 ⇒ x = 0.

Example 1.17 Let X = R3 and define p : X → R+ by

p(x) = p(x1, x2, x3) = |x1| + |x2|, x = (x1, x2, x3) ∈ X.

Then, p is a seminorm, but not a norm. To see this, we observe that

p(x1, x2, x3) = 0 ⇒ |x1| + |x2| = 0 ⇒ |x1| = 0, |x2| = 0 ⇒ x1 = 0, x2 = 0,

i.e., p(x1, x2, x3) = 0 implies that only first and second components of x are zero.

Definition 1.16 (Absolutely convergent series) Let X be normed space and {xn} a

sequence of elements of X . If
∞∑

n=1
‖xn‖ <∞, then we say that the series

∞∑

n=1
xn is

absolutely convergent in X .

Theorem 1.9 (Cantor’s intersection theorem) A normed space X is a Banach space
if and only if given any descending sequence {Cn} of closed bounded subsets of X,

lim
n→∞ diam(Cn) = 0 implies

∞∩
n=1

Cn 	= ∅.

We now introduce the notion of topological vector space (also called topological
linear space) as follows:

Definition 1.17 A vector space X over fieldK is said to be a topological vector space
(or, in brief, TVS) if on X , there exists a topology T such that X × X and K×K

with the product topology have the property that vector addition + : X × X → X
and scalar multiplication · : K× X → X are continuous functions. Such a topology
T is called a linear topology on X .

Definition 1.18 A linear topology on a topological vector space X is said to be a
locally convex topology if every neighborhood of 0 (the zero vector of X ) contains
a convex neighborhood of 0. Then, X is called a locally convex topological vector
space.

We now have the following interesting result.

Proposition 1.3 Let X be a locally convex topological vector space over field K .
Then, a topology of X is determined by a family of seminorms {pi }i∈I .

1.2.6 Dense Set and Separable Space

Notice that, in general, it is not always possible to find the exact form of Hamel basis
in an arbitrary infinite dimensional linear space, although it does exist (Theorem
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1.6). As a result, the notion of Hamel basis is not so useful as one might expect for
all practical purpose. To overcome this difficulty, another notion of a basis, namely
Schauder basis was introduced in Banach spaces.
Schauder basis7 – A sequence {xn} in a normed space X is said to be a Schauder
basis of X if each x ∈ X has a unique representation

x =
∞∑

n=1

αn xn, (1.2)

for some scalars α1, α2, . . . , αn, . . . . Note that the convergence of the series on the
right of (1.3.2) is in the norm topology of X , i.e.,

lim
n→∞

∥
∥
∥x −

n∑

i=1

αi xi

∥
∥
∥ = 0.

Notice that the concept of a Schauder basis is not as straightforward as it appears
in (1.2). The Banach spaces that arise in applications typically have Schauder bases,
but Enflo showed in 1973 that there exist separable Banach spaces that do not have
any Schauder bases. However, we see that this problem does not arise in the Hilbert
spaces, which always have an orthonormal basis.

Observation

• The unit vectors {en}n∈N, where

en = (0, 0, . . . , 1, 0, . . . , 0)

↑
nthposition

form a basis for spaces c00, c0 and �p (1 � p <∞).
• The unit vectors {en}n∈N is not a Schauder basis for �∞; rather, the space �∞ does

not possess any basis.
• The sequence {e, e1, e2, . . .} is a basis for c, where e = (1, 1, 1, . . .). To observe

this, let us consider an element x = (x1, x2, . . .) ∈ c. Then, lim
n→∞ xn = l ∈ R and

lim
n→∞

n∑

i=1

(xi − l)ei =
∞∑

i=1

(xi − l)ei = (xl − l, x2 − l, . . .) ∈ c0.

Moreover,
∞∑

i=1
(xi − l)ei=x−le, where e=(1, 1, . . .). Thus, x = le +

∞∑

i=1
(xi − l)ei .

It follows that the sequence {ei } along with the vector e provides a basis for c.

7The Schauder basis for the space C[0, 1] was constructed by Schauder himself, while the Haar
system is known to be a Schauder basis for L p[0, 1] with 1 � p <∞.
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• The sequence8 {xn} ⊂ C[0, 1], where

x0(t) ≡ 1

x1(t) = t

x2n+m(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if t /∈
(

2m−2
2n+1 , 2m

2n+1

)
,

1, if t = 2m−1
2n+1 ,

linear in
[

2m−2
2n+1 , 2m−1

2n+1

]
and

[
2m−1
2n+1 , 2m

2n+1

]

(m = 1, 2, . . . , 2n; n = 0, 1, 2, . . .)

form a basis for the Banach space C[0, 1].
• The sequence9 of equivalent classes {x̃n}, where xn are the functions defined on
[0, 1] by

x1(t) ≡ 1

x2n+m(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2n, if t ∈

[
2m−2
2n+1 , 2m−1

2n+1

)
,

−√2n, if t ∈
[

2m−1
2n+1 , 2m

2n+1

)
,

0, for the other t

(m = 1, 2, . . . , 2n; n = 0, 1, 2, . . .)

form a basis for the space L p[0, 1], 1 � p <∞.

Dense set – A subset D of a metric space X is said to be dense in X if D = X . This
means that D is dense in X if and only if any one of the following conditions hold:
(1) D ∩ Br (x) 	= ∅ for all x ∈ X and r > 0;
(2) any open set in X contains a point of D;
(3) for each x ∈ X , there exists a sequence {xn} ⊂ D such that xn → x .

Example 1.18 (1) The set of rational numbers Q is dense in R, i.e., Q = R.
(2) c00 is dense in c0, i.e., c00 = c0.
(3) The space C[a, b] is dense in L p[a, b].
(4) The set P of all polynomials is dense in L p[a, b].
Definition 1.19 A metric space (X, d) is said to be separable if it contains a count-
able dense subset, i.e., there exists a countable set D in X such that D = X .

Example 1.19 (1) R is a separable space. To see this, one may observe that the set
Q of rational numbers is countable and dense in R.
(2) �n

p(1 � p �∞) spaces are separable. The set

D = {x ∈ �n
p : x = (x1, x2, . . . , xn) with each xi rational}

8The sequence {xn} is called the Schauder system for C[0, 1].
9The sequence {xn} is called the Haar system for L p[0, 1], 1 � p <∞.
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is countable and is easily seen to be dense in �n
p.

(3) �p(1 � p <∞) spaces are separable. To see this, consider the set D of
all sequences having finitely many nonzero coordinates each of which is rational.

Clearly, D= ∞∪
i=1

Xi , where Xi={x : x={x1, x2, . . . , xi , . . .}, x1, x2, . . . , xi ∈ Q}. Then,

it is easy to see that there is a one-to-one correspondence between Xi and Qi , where
Q is the set of rational numbers and Qi is the cartesian product of Q with itself i
times. Thus, Xi is countable and the fact that countable union of countable sets is

countable,
∞∪

i=1
Xi is countable. We now show that A is dense in �p(1 � p <∞). Let

x = (x1, x2, . . .) ∈ �p and ε > 0.

Because x ∈ �p, the series
∞∑

i=1
|xi |p is convergent, so that using Cauchy’s criterion

there exists an integer n ∈ N such that

∞∑

i=n+1

|xi |p <
ε p

2
.

As Q is dense in R, we can choose n rational numbers y1, y2, . . . , yn such that

n∑

i=1

|xi − yi |p <
ε p

2
.

Thus, we have y = (y1, y2, . . . , yn, 0, 0, . . .) ∈ A and

dp(x, y) =
( ∞∑

i=1

|xi − yi |p
)1/p =

( n∑

i=1

|xi − yi |p +
∞∑

i=n+1

|xi |p
)1/p

<
( ε p

2
+ ε p

2

)1/p = ε.

(4) �∞ is not a separable space. To see this, consider D ⊂ �∞ consisting of sequences
of zeros and ones. Clearly, D is uncountable and for any x, y ∈ D, d∞(x, y) =
supi |xi | = 1. It follows, therefore, that the familyB of open balls of radius 1

2 centered
at each x ∈ A is an uncountable family of nonintersecting balls. Next, assume that
there exists a dense set D in �∞. Then, each ball in B must contains at least one point
of D which is dense in �∞. Because the balls of the family B are nonintersecting,
this makes D uncountable. Thus, �∞ does not have a countable dense set. Hence �∞
is not separable.
(5) C[a, b] is a separable normed space. This follows from the following observa-
tions:
(i) Let P denote the set of all polynomials defined on [a, b]. Then, we notice
that P is dense in C[a, b]. Indeed, for any x ∈ C[a, b] and ε > 0, by the Weierstrass
approximation theorem, we can find a polynomial p ∈ C[a, b] such that d(x, p) < ε

2 .

(i i) Given a polynomial p(t), there is a polynomial r(t) with rational coefficients
such that

d(p, r) = max
a�t�b

|p(t)− r(t)| < ε

2
.
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It follows, therefore, that

d(x, r) � d(x, p)+ d(p, r) <
ε

2
+ ε

2
= ε.

(i i i) The set of all polynomials with rational coefficients is countable.
Hence, we conclude that C[a, b] is separable.

(6) The linear space X of all infinite sequences of real numbers with metric d defined
by

d(x, y) =
∞∑

i=1

1

2i

|xi − yi |
1+ |xi − yi | , x = {xi }, y = {yi } ∈ X

is a separable complete metric space.

Theorem 1.10 A Banach space with a basis is separable.

Remark 1.2 In 1932, S. Banach [33] raised the question: Is the converse of Theorem
1.10 true, i.e., Does every separable Banach space possess a basis? This is known as
the Basis Problem. This problem was settled in 1973 by P. Enflo [223]. As a matter
of fact, Enflo constructed a separable Banach space without a basis.

Observation

• If (X, d) is a separable metric space and C ⊂ X is endowed with induced metric
d̃ , then (C, d̃) is separable.

• A metric space X is separable if and only if there is a countable family {Gi }∞i=1 of
open sets such that for any open set G ⊂ X , G = ⋃

Gi⊂G
Gi .

• Every finite dimensional normed space is separable.
• Every normed space with basis is separable.
• Every subset of a separable normed space is separable.
• Rn , c00, c0, c, C[0, 1] are separable spaces.
• L∞ is not a separable space.

1.2.7 Inner Product Spaces

Inner product – Let X be a linear space over field C. An inner product on X is a
function 〈·, ·〉 : X × X → C satisfying the following properties:
(IP1) 〈x, x〉 ≥ 0 for all x ∈ X ;
(IP2) 〈x, x〉 = 0 if and only if x = 0;
(IP3) 〈x, y〉 = 〈y, x〉 where the bar denotes complex conjugation;
(IP4) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 for all x, y, z ∈ X .

The ordered pair (X, 〈·, ·〉) is called an inner product space. We call 〈x, y〉 the
inner product of two elements x, y ∈ X .
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Remark 1.3 The defining properties of an inner product exhibit the following:

(1) Property (I P4) implies that for any z ∈ X the mapping 〈·, z〉 : X → C is a
linear functional on X .

(2) From properties (I P3) and (I P4) it follows that for all x, y, z ∈ X ,

〈x, y + z〉 = 〈y + z, x〉 = 〈y, x〉 + 〈z, x〉
= 〈x, y〉 + 〈x, z〉

and 〈x, λy〉 = 〈λy, x〉 = λ̄〈y, x〉
= λ̄〈x, y〉 for all λ ∈ C.

So for any z ∈ X , the mapping 〈z, ·〉 : X → C is not linear but “conjugate linear”.

Example 1.20 Let X = Rn , the set of all n-tuples of real numbers. Then, the function
〈·, ·〉 : Rn × Rn → R defined by

〈x, y〉 =
n∑

i=1

xi yi ∀ x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn

is an inner product on Rn and the ordered pair (Rn, 〈·, ·〉) is called real Euclidean
n-space.

Example 1.21 Let X = Cn , the set of all n-tuples of complex numbers. Then, the
function 〈·, ·〉 : Cn × Cn → C defined by

〈x, y〉 =
n∑

i=1

xi ȳi for all x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn

is an inner product onCn and the ordered pair (Cn, 〈·, ·〉) is called complex Euclidean
n-space or n-unitary space.

Example 1.22 Let X = �2, the set of all sequences of complex numbers x = {xi }∞i=1

with
∞∑

i=1
|xi |2 <∞. Then, the function 〈·, ·〉 : �2 × �2 → C defined by

〈x, y〉 =
∞∑

i=1

xi ȳi ∀ x = {xi }∞i=1, y = {yi }∞i=1 ∈ �2 (1.3)

is an inner product on �2.

Example 1.23 Let X = C[a, b], the linear space of all scalar-valued continuous
functions on [a, b]. Then, the function 〈·, ·〉 : C[a, b] × C[a, b] → C defined by

〈x, y〉 =
∫ b

a
x(t)y(t) dt ∀ x, y ∈ C[a, b] (1.4)

is an inner product on C[a, b].
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Characterizations of Inner Product Spaces

Let (X, 〈·, ·〉) be an inner product space. Then, the function ‖ · ‖ : X → R+ defined
by

‖x‖ = √〈x, x〉, x ∈ X

is a norm on X . This norm is commonly known as Hilbertian norm.

Proposition 1.4 (The Cauchy-Schwarz inequality) Let X be an inner product space.
Then,

|〈x, y〉| � ‖x‖ · ‖y‖ for all x, y ∈ X.

Proposition 1.5 (The parallelogram law) Let X be an inner product space. Then,
the following holds:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X.

Proposition 1.6 (The polarization identity) Let X be an inner product space. Then,
the following holds:

〈x, y〉 = 1

4

{‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2
}

for all x, y ∈ X.

Orthogonality of vectors – Let x and y be two vectors in an inner product space X .
Then, x and y are said to be orthogonal if 〈x, y〉 = 0. If x is orthogonal to y, then
we denote this fact by x⊥y and we say that “x is perpendicular to y”. Given subset
M of X we say that x is orthogonal to M if x is orthogonal to every element of M
and we write x⊥M.

Remark 1.4 From the defining properties of an inner product, we deduce the fol-
lowing properties about the orthogonality relation.

(1) x is orthogonal to y if and only if y is orthogonal to x ; that is, the orthogonality
relation is symmetric

(2) From property (IP4), it follows that if x is orthogonal to a subset M , then x is
orthogonal to span M and conversely every element of span M is orthogonal to
x .

Observation

• The null vector is perpendicular to any x ∈ X , i.e., 0 ⊥ x for all x ∈ X .
• x ⊥ x if and only if x = 0.
• Every inner product space is a normed space with the standard norm ‖ x ‖=√〈x, x〉.
• Every normed space is an inner product space if and only if its norm satisfies the

parallelogram law.
• If x, y ∈ X such that x ⊥ y, then ‖ x + y ‖2=‖ x ‖2 + ‖ y ‖2.
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We now show that the orthogonality defined by inner product is actually identical
to a “best distance” type of orthogonality defined by the norm. Notice that this notion
of orthogonality plays an important role in best approximation problems.

Theorem 1.11 In an inner product space X, for all x, y ∈ X

〈x, y〉 = 0 if and only if ‖x + λy‖ � ‖x‖ for all scalar λ.

Proof If 〈x, y〉 = 0 then

‖x + λy‖‖x‖ � |〈x + λy, x〉| = ‖x‖2 + λ〈y, x〉 = ‖x‖2.

It follows that ‖x + λy‖ � ‖x‖ for all scalar λ (see, for instance, Fig. 1.6).
Conversely, if

‖x + λy‖ � ‖x‖ for all scalar λ,

then
‖x + λy‖2 − ‖x‖‖x + λy‖ � 0

so Re〈x, x + λy〉 + Reλ〈y, x + λy〉 − |〈x, x + λy〉| � 0.
Therefore, Reλ〈y, x + λy〉 � 0 for all scalar λ.
For real λ, we have
Re〈y, x + λy〉 � 0 for λ � 0 and Re〈y, x + λy〉 � 0 for λ � 0.
But 〈y, x + λy〉 = 〈y, x〉 + λ‖y‖2 → 〈y, x〉 as λ→ 0.
From this, we deduce that Re〈y, x〉 = 0.
For λ = iα where α is real, we have

Re[α〈iy, x + αiy〉] � 0 for all real α

so by the same argument we have Re〈y, x〉 = 0 which implies that Im〈y, x〉 = 0.

Hence we conclude that 〈x, y〉 = 0.

The Hilbert space – An inner product space H is called a Hilbert space if it is com-
plete with respect to the induced norm, i.e., if every Cauchy sequence is convergent.
Thus, a Hilbert space is an inner product space that is a Banach space with respect
to the induced norm.

Fig. 1.6 Illustration of “best distance” orthogonality
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More precisely, a Hilbert space10 is aninner product space (H, 〈·, ·〉) such that the
induced Hilbertian norm is complete.

Example 1.24 For p 	= 2, �n
p is a finite dimensional Banach space but it is not a

Hilbert space. Indeed, for x = (1,−1, 1, 0, . . .) and y = (−1, 1, 1, 0, . . .), we have
x + y = (0, 0, 2, 0, . . .) and x − y = (2,−2, 0, 0, . . .). Hence

‖x‖ =
( n∑

i=1

|xi |p
)1/p = (12 + (−1)2 + 12)1/p = 31/p,

‖y‖ = ((−1)2 + 12 + 12)1/p = 31/p,

‖x + y‖ = (2p)1/p, and ‖x − y‖ = (2p + (−2)p)1/p.

If p = 2, then ‖x‖ = √3, ‖y‖ = √3, ‖x + y‖ = (22)1/2 = 2, ‖x − y‖ = (22 +
(−2)2)1/2 = 2 · √2 and so the parallellogram law:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2

is satisfied, which shows that �n
2 is a Hilbert space. If p 	= 2, then the parallellogram

law does not hold good. Therefore, �n
p is not a Hilbert space for p 	= 2.

Observation

• The complex (the real) �n
2, �2, L2[a, b] are Hilbert spaces.

• The complex (the real) �n
p, �p, L p[a, b] (p 	= 2) are not the Hilbert spaces.

• C[a, b] is an inner product space with the inner product defined in (1.4), but not
a Hilbert space.

1.3 Spaces of Bounded Linear Operators

An operator11 maps vectors from one space to vectors in another space. Let X and
Y be two vector spaces over the same field K (K means R or C) and A : X → Y an
operator with domain D(A) and range R(A). Then, A is said to be a linear operator
if the following properties hold:

(i) A is additive : A(x + y) = Ax + Ay for all x, y ∈ X ;
(i i) A is homogenous : A(αx) = αA(x) for all x ∈ X, α ∈ K.

Equivalently, A is a linear operator if and only if

A(αx + βy) = αA(x)+ β A(y) for all x, y ∈ X and α, β ∈ K.

10Complete inner product spaces are known as Hilbert spaces, in honor of David Hilbert.
11An operator is a function from a vector space to another vector space. Indeed, an operator is a
special type of function. Any linear map (i.e. linear function) of vector spaces can be called an
operator; this is most common when the map is thought of as “acting on” a vector space.



38 1 Fundamentals

Otherwise, the operator is called nonlinear. If Y = R, then the operator A is called
a linear functional.

Example 1.25 (1) Let X = Rn, Y = R, and A : Rn → R an operator defined by

Ax =
n∑

i=1

ai xi for all x = (x1, x2, . . . , xn) ∈ X, ai are fixed elements of R.

Then, A is a linear functional on Rn .
(2) Let X = Y = �2 and A : �2 → �2 an operator defined by

Ax =
(

x1,
x2

22
,

x3

32
, . . . ,

xn

n2
, . . .

)
for all x = (x1, x2, x3, . . . , xn, . . .) ∈ �2.

Then, A is a linear operator on �2.
(3) Let X = L2[0, 2π ], Y = R and A : L2[0, 2π ] → R an operator defined by

[Ax](s)=
∫ 2π

0
x(t)y(t)dt for all x∈L2[0, 2π ] and y a fixed element in L2[0, 2π ].

Then, F is a linear functional on L2[0, 2π ].
(4) Let X = Y = C[a, b] and A : C[a, b] → C[a, b] an operator defined by

[Ax](s) = λ

∫ b

a
x(t)dt for all x ∈ C[a, b] and λ a fixed real constant.

Then, A is a linear operator on C[a, b].
Proposition 1.7 Let X and Y be two linear spaces over the same field K and A :
X → Y a linear operator. Then, we have the following:

(i) A0 = 0, 0 being zero element of X and zero element of Y .
(ii) R(A) = {y ∈ Y : y = Ax for some x ∈ X}, the range of A is a linear sub-

space of Y .
(iii) A is one-one iff Ax = 0 ⇒ x = 0.
(iv) If A : X → Y is one-one operator, then A−1 exists on R(A). Moreover, A−1 :

R(A) → X is also a linear operator.
(v) if dim(X) = n <∞ and A−1 exists, then dimR(A) = n.

Theorem 1.12 Let X and Y be two normed spaces and A : X → Y a linear operator.
If A is continuous at a single point on X, then A is continuous throughout space X.

Proof Let the linear operator A be continuous at a point x0 ∈ X and {xn} a sequence
in X such that limn→∞ xn = x ∈ X. By linearity of A, we have

‖Axn − Ax‖ = ‖Axn − Ax + Ax0 − Ax0‖ = ‖A(xn − x + x0)− Ax0‖.
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Also, limn→∞(xn − x + x0) = x0. Because A is continuous at x0 and norm is a
continuous function, it follows that

lim
n→∞‖Axn − Ax‖ = lim

n→∞‖A(xn − x + x0)− Ax0‖ = ‖A( lim
n→∞(xn − x + x0))− Ax0‖ = 0.

Thus, xn → x ⇒ Axn → Ax, as n →∞. Hence, A is a continuous operator at
an arbitrary point x ∈ X . �

Bounded linear operator – Let X and Y be two normed spaces and A : X → Y is a
linear operator. Then, A is said to be bounded if there exists a constant M > 0 such
that

‖Ax‖ � M‖x‖ for all x ∈ X.

According to this definition, the reader may well observe that a bounded operator
does not map the whole space X into a bounded set in Y . Rather, it maps a bounded
set in X into a bounded set in Y . Moreover, the converse is also true : a linear operator
that maps a bounded set a bounded set is bounded.

A linear functional f : X → R is called bounded if there exists a constant M > 0
such that

| f x | � M‖x‖ for all x ∈ X.

Notice that a linear operator need not be bounded. To see this, consider the fol-
lowing:

Example 1.26 Let c00 be the linear space of finitely nonzero real sequences with
“sup” norm ‖ · ‖∞ and A : c00 → R a functional defined by

Ax =
n∑

i=1

i xi for all x = (x1, x2, . . . , xn, 0, 0, . . .) ∈ c00.

Then, A is a linear functional, but it is unbounded.

This example arose a natural question – Under what additional assumption a linear
operator would be bounded? The following example shows that such an additional
assumption is boundedness of the linear operator.

Theorem 1.13 Let X and Y be two normed spaces and A : X → Y a linear operator.
Then, A is bounded if and only if it is continuous.

Proof Suppose the linear operator A is bounded, then there exists a constant M > 0
such that

‖Ax‖ � M‖x‖ for all x ∈ X.

Let there be a sequence {xn} ⊂ X such that xn → 0. Then, we see that

‖Axn‖ � M‖xn‖ → 0 as n →∞
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i.e., ‖Axn − A0‖ � M‖xn − 0‖ → 0 as n →∞.

It follows that A is continuous at zero. By Theorem 1.12, we conclude that A is
continuous on X .

Conversely, suppose A is continuous. Then, we have to show that A is bounded.
Assume, on the contrary, that A is unbounded. Then, there exists a sequence {xn} in
X such that

‖Axn‖ > n‖xn‖ for all n ∈ N.

Because A0 = 0, it follows that xn 	= 0. Set yn = xn
n‖xn‖ , n ∈ N. Then, ‖yn‖ =

‖ xn
n‖xn‖‖ = 1

n → 0 as n →∞ which shows that limn→∞ yn = 0. Next, we observe
that

‖Ayn‖ =
∥
∥
∥A
( xn

n‖xn‖
)∥
∥
∥ = Axn

n‖xn‖ > 1 for all n ∈ N.

This implies that {Ayn} does not converge to zero. Hence A is not continuous at zero,
a contradiction to our supposition. Thus, A is bounded. �

Notice that in a finite dimensional normed space X , all linear operators A : X → Y
are continuous and hence bounded. In general, a linear operator may be discontinuous
in infinite-dimensional normed spaces (see, Example 1.25 above).

1.3.1 Properties of Bounded Linear Operators and the Space
B(X, Y)

Let X and Y be two normed spaces and let B(X, Y ) denote the family of all bounded
linear operators from X into Y . Then, we observe that B(X, Y ) is a linear space
with respect to “addition of operators” and “scalar multiplication of an operator by
a scalar”, respectively, as defined below:

(A1 + A2)(x) = A1x + A2x for all A1, A2 ∈ B(X, Y ) and x ∈ X

(αA)(x) = = αA(x) for all A ∈ B(X, Y ) and x ∈ X.

The space B(X, Y ) becomes a normed space by assigning a norm ‖ · ‖B as defined
below:

‖A‖B = inf
{

M : ‖Ax‖ � M‖x‖, x ∈ X
}

= sup

{‖Ax‖
‖x‖ : x 	= 0, x ∈ X

}

= sup
{‖Ax‖ : ‖x‖ � 1, x ∈ X

}

= sup
{‖Ax‖ : ‖x‖ = 1, x ∈ X

}
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Notice that the normed space B(X, Y ) is a Banach space if Y is a Banach space.

Theorem 1.14 (Uniform boundedness principle) Let X be a Banach space, Y a
normed space, and {Ai }i∈I a family of bounded linear operators of X into Y , where
I is an index set, such that the set {Ai x : i ∈ I } is bounded for each x ∈ X, i.e., for
each x ∈ X, there exists Mx > 0 such that

‖Ai x‖ � Mx for all i ∈ I.

Then, {‖Ai‖}i∈I is a bounded set, i.e., A′′i s are uniformly bounded.

Theorem 1.15 Let X and Y be two Banach spaces and {An} a sequence of bounded
operators from X into Y . If for each x ∈ X, {An x} converges to Ax in Y , then

(a) A is a bounded linear operator, i.e., A ∈ B(X, Y );
(b) ‖A‖B � lim inf

n→∞ ‖An‖B.

Proof (a) Because each An is linear, for all x, y ∈ X and α, β ∈ K we have

A(αx + βy) = lim
n→∞ An(αx + βy) = lim

n→∞ An(αx)+ lim
n→∞ An(βy)

= α lim
n→∞ An x + β lim

n→∞ An y = αAx + β Ay.

Again, since the norm is continuous,

lim
n→∞‖An x‖ = ‖ lim

n→∞ An x‖ = ‖Ax‖ for all x ∈ X,

it follows that for each x ∈ X , {An x} is a bounded set in Y . By the uniform bounded-
ness principle, there exists a positive constant M > 0 such that supn∈N ‖An‖B � M .
Thus, we have

‖An x‖ � ‖An‖B‖x‖ � sup
n∈N
‖An‖B‖x‖ � M‖x‖.

Now taking the limit as n →∞, we obtain

‖Ax‖ = lim
n→∞‖An x‖ � M‖x‖,

which shows that A is bounded. Therefore, A ∈ B(X, Y ). �

The following is an immediate consequence of Theorem 1.15.

Corollary 1.1 Let C be a nonempty subset of a Banach space X. For each f ∈ X∗,
let f (C) = ∪x∈C (x, f ) be a bounded set in R. Then, C is bounded.

Proof For each x ∈ C , define Tx ( f ) = (x, f ). Then, Tx ∈ B(X∗,R). For, a, b ∈ R

and f, g ∈ X∗ we have
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Tx (a f + bg) = (x, a f + bg) = a(x, f )+ b(x, g) = aTx ( f )+ bTx (g).

Because f (C) is bounded, there exists a constant K > 0 such that

sup
x∈C
|Tx ( f )| = sup

x∈C
|(x, f )| � K .

Further, by the uniform boundedness principle, there exists a constant M > 0 such
that

‖Tx‖ � M for all x ∈ C.

1.3.2 Convergence of Sequences in B(X, Y)

Let (X, ‖ · ‖X ) and (Y, ‖ · ‖Y ) be two normed spaces, (B(X, Y ), ‖ · ‖B) the space of
all bounded linear operators from X into Y and let {Tn} be a sequence in B(X, Y ).
Then,
(i) {Tn} is said to be uniformly convergent to T ∈ B(X, Y ) in the norm of B(X, Y )

if
‖Tn − T ‖B → 0 as n →∞,

i.e., for given ε > 0, ∃ an integer n0 ∈ N such that sup
‖x‖X �1

‖Tn x − T x‖Y < ε for all

x ∈ X .
(i i) {Tn} is said to be strongly convergent to T ∈ B(X, Y ) if

‖Tn x − T x‖Y → 0 as n →∞ for all x ∈ X.

(i i i) {Tn} is said to be weakly convergent to T ∈ B(X, Y ) if

| f (Tn x)− f (T x)| → 0 as n →∞ for all x ∈ X and f ∈ Y ∗.

Observation

• If {Tn} is uniformly convergent to T ∈ B(X, Y ), then we notice that

‖Tn x − T x‖Y = ‖(Tn − T )(x)‖Y � ‖Tn − T ‖B‖x‖X , x ∈ X

→ 0 as n →∞,

showing that {Tn} is strongly convergent to T ∈ B(X, Y ).
• If {Tn} is strongly convergent to T ∈ B(X, Y ), then

| f (Tn x)− f (T x)| = | f (Tn x − T x)| � ‖ f ‖‖Tn x − T x‖Y , x ∈ X and f ∈ Y ∗

→ 0 as n →∞,
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showing that {Tn} is weakly convergent to T ∈ B(X, Y ).

With the above observations, we conclude that the sequence of operators in B(X, Y )

follows the following implications

uniform convergence ⇒ strong convergence ⇒ weak convergence

However, we notice that the converse implications are not true.

1.3.3 Banach Algebra

In this subsection, first we introduce the concept of the Banach algebra and then
prove that the Banach space B(X) is, in fact, a Banach algebra.

Definition 1.20 Let A be a linear space over the field K. Define the operation of
multiplication · : A×A→ A in such a way that for every ordered pair of elements
x, y ∈ A, there exists a unique product x · y ∈ A. We usually write x · y as xy. A is
said to be an algebra over K if the following conditions are satisfied:
(i) x(yz) = (xy)z
(i i) x(y + z) = xy + xz
(i i i) (x + y)z = xz + yz
(iv) α(xy) = (αx)y = x(αy)

for all x, y, z ∈ A and α ∈ K.

An algebra A is said to be
(a) real or complex algebra according as K is R or C.
(b) commutative (or abelian) algebra if the multiplication in A is commutative, i.e.,

xy = yx, ∀x, y ∈ A.

(c) an algebra with identity if A contains an element e, called identity element, such
that

xe = x = ex, ∀x ∈ A.

Definition 1.21 An algebra A is said to be a normed algebra if
(i) A is a normed space as a linear space equipped with a norm ‖ · ‖; and
(i i) ‖xy‖ � ‖x‖‖y‖, ∀x, y ∈ A.

Banach algebra – A normed algebra is said to be a Banach algebra, if it is complete
as a metric space.

Example 1.27 (1) R and C are commutative Banach algebra with identity e = 1.

(2) The linear space C[a, b] is a commutative algebra with identity e = 1, the product
xy being defined as

(xy)(t) = x(t)y(t), ∀t ∈ [a, b].
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(3) Let X 	= {0} be a complex Banach space. Then, the space B(X) of all bounded
linear operators on X is a complex Banach algebra. For S, T ∈ B(X), we define

(ST )(x) = S(T (x)), ∀x ∈ X.

1.4 The Hahn–Banach Theorem

The Hahn–Banach theorem is the key ingredient of Functional analysis. Before stat-
ing the Hahn–Banach theorem, we need the following definitions:
Sublinear functional – Let X be a linear space and p : X → R a functional. Then,
p is said to be a sublinear functional on X if
(i) p is subadditive, i.e., p(x + y) � p(x)+ p(y) for all x, y ∈ X ,
(ii) p is positive homogeneous p(αx) = αp(x) for all x ∈ X and α ≥ 0.

Theorem 1.16 (The Hahn–Banach theorem for real linear space) Let Y be subspace
of a real linear space X, p a sublinear functional on X, and f a linear functional
defined on Y satisfying the condition:

f (x) � p(x) for all x ∈ Y.

Then, there exists a linear extension F of f to X such that F(x) � p(x) for all
x ∈ X.

Theorem 1.17 (The Hahn–Banach theorem for normed linear space) Let X be a
real normed linear space and Y a linear subspace of X. If f ∈ Y ∗, then there is a
F ∈ X∗ such that F(x) = f (x) for all x ∈ Y and ‖F‖∗ = ‖ f ‖Y .

In other words, every bounded linear functional defined on a subspace Y of a real
normed linear space X may be extended linearly with preservation of the norm to
the whole of X.

The following corollary gives the existence of nontrivial bounded linear functional
on an arbitrary normed space.

Corollary 1.2 Let x be an element of normed space X. Then, there exists a (nonzero)
j ∈ X∗ such that

j (x) = ‖ j‖∗‖x‖ and ‖ j‖∗ = ‖x‖.

Corollary 1.3 Let x be a nonzero element of normed space X. Then, there exists a
functional j ∈ X∗ such that

j (x) = ‖x‖ and ‖ j‖∗ = 1.

The above Corollary suggests the following:
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Remark 1.5 Let (X, ‖ · ‖) be a normed space and (X∗, ‖ · ‖∗) its first dual space.
Then, for any x ∈ X ,

‖x‖ = sup
‖ j‖∗�1

‖ j (x)‖.

Corollary 1.4 Let X be a normed space, and let x0 ∈ X such that j (x0) = 0 for all
j ∈ X∗, then x0 = 0.

Proof Suppose, if possible, x0 	= 0. By Corollary 1.3, there exists a functional j ∈ X∗
such that

j (x0) = ‖x0‖ and ‖ j‖∗ = 1

which yields j (x0) 	= 0, a contradiction. Hence

j (x0) = 0 for all j ∈ X∗ ⇒ x0 = 0.

Theorem 1.18 Let M be a subspace of a normed space X and x0 an element in X
such that d(x0, M) = d > 0. Then, there exists a bounded linear functional j ∈ X∗
with unit norm such that

j (x0) = d and j (x) = 0 for all x ∈ M.

We now state complex version of the Hahn–Banach theorem, which is due to
Bohnenblust, Sobezyk and Soukhomlinoff.

Theorem 1.19 (The Hahn–Banach theorem for complex linear space) Let X be a
complex linear space and Y a linear subspace of X. If p is a seminorm on X and
f ∈ Y ∗ such that

| f (x)| � p(x) for all x ∈ Y.

Then, there exists a linear extension F of f such that

‖F‖∗ � p(x) for all x ∈ X.

1.4.1 Geometric Forms of the Hahn–Banach Theorem

Hyperplane – A subset H of a linear space X is said to be a hyperplane if there
exists a linear functional f 	= 0 on X such that

H = {x ∈ X : f (x) = α}, α ∈ R

and f (x) = α is called the equation of the hyperplane H .
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Example 1.28 Let X = R, f : X → R a linear functional defined by f (x) = 3
7 x ,

and let α = 4. Then, the set

H = {x ∈ X : f (x) = α} =
{

x ∈ X : 3

7
x = 4

}
=
{28

3

}

is a hyperplane.

1.4.2 Dual Space (or the Conjugate Space)

Definition 1.22 Let X be a normed linear space. The space B(X,K) of all bounded
linear functionals of X into the scalar field K is called the dual or the conjugate space
of X . It is denoted by X∗.

Notice that X∗ is a normed space with norm ‖ · ‖∗ defined by

‖ f ‖∗ = sup
x∈SX

| f (x)|, f ∈ X∗.

Example 1.29 (1) The dual of Rn . The dual of Rn is Rn itself. To see this, let Rn be
a normed space with norm ‖ · ‖2 defined by

‖x‖2 =
( n∑

i=1

x2
i

)1/2
, x = (x1, x2, . . . , xn) ∈ Rn.

Then, for y = (y1, y2, . . . , yn) ∈ Rn , any functional fy : Rn → R of the form

fy(x) =
n∑

i=1

xi yi , x = (x1, x2, . . . , xn) ∈ Rn

is linear. For α = (α1, α2, . . . , αn) ∈ Rn , from Cauchy-Schwarz inequality, we obtain

| fα(x)| =
∣
∣
∣

n∑

i=1

αi xi

∣
∣
∣ �

( n∑

i=1

α2
i

)1/2( n∑

i=1

x2
i

)1/2 =
( n∑

i=1

α2
i

)1/2‖x‖2.

Therefore,

‖ fα‖∗ = sup
x∈SX

| fα(x)| �
( n∑

i=1

α2
i

)1/2
,

which shows that fα is bounded. Further, if we take x = (α1, α2, . . . , αn), then we
see that ‖ fα‖∗ = ‖α‖.
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So, let j ∈ B(Rn,R) be any bounded linear functional on Rn . Consider the basis
vectors ei in Rn , where

ei = (0, 0, . . . , 1, 0, . . . , 0)

↑
i thposition

Suppose j (ei ) = αi . Then, in one hand ‖ j‖∗ � ‖α‖ and the other hand ‖α‖ �
‖ j‖∗‖ei‖=‖ j‖∗. It follows that ‖ j‖∗ = ‖α‖. Further, for any x=(x1, x2, . . . , xn) ∈
Rn , we have the following representation of x in terms of basis vectors

x =
n∑

i=1

ei xi .

By the linearity of j , we have

j (x) =
n∑

i=1

j (ei xi ) =
n∑

i=1

j (ei )xi =
n∑

i=1

αi xi .

Thus, we conclude that the dual space X∗ of X = Rn is Rn itself in the sense that

X∗ consists of all functionals of the form f (x) =
n∑

i=1
αi xi and the norm on X∗ is

‖ f ‖∗ = (
n∑

i=1
α2

i )
1/2 = ‖α‖, where α = (α1, α2, . . . , αn) ∈ Rn .

(2) The dual of �p, 1 � p <∞. The dual of �p, 1 � p <∞ is �q ( 1
p + 1

q = 1) in
the sense that there is a one-one correspondence between elements α = {αn}∞n=1 ∈ �q

and bounded linear functional fα on �p, i.e., fα ∈ B(�p,K), (K = R or C) such that

fα(x) =
∞∑

n=1

αn xn, x = {xn}∞n=1 ∈ �p,

where

‖ fα‖∗ = ‖α‖q =

⎧
⎪⎨

⎪⎩

( ∞∑

n=1
|αn|q

)1/q

, if 1 < p <∞,

supn∈N |αn|, if p = 1.

(3) The dual of c0. Consider the Banach space (c0, ‖ · ‖∞) of all real sequences x =
{xi }∞n=1 such that limn→∞ xn = 0 with norm ‖x‖∞ = sup

n∈N
|xn|. The dual of c0 is �1 in

the sense that there is one-one correspondence between elements α = {αn}∞n=1 ∈ �1

and bounded linear functional fα on c0, i.e., fα ∈ B(c0,R) such that
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fα(x);=
∞∑

n=1

αn xn, x = {xn}∞n=1 ∈ c0,

where

‖ fα‖∗;= ‖α‖1 =
∞∑

n=1

|αn|.

(4) The dual of L p[0, 1], 1 � p <∞. The dual of L p[0, 1], 1 � p <∞ is Lq [0, 1]
( 1

p + 1
q = 1) in the sense that there is a one-one correspondence between elements

y ∈ Łq [0, 1] and bounded linear functional fy on L p[0, 1], i.e., fy ∈ B(L p[0, 1],K),

(K = R or C) such that

fy(x) =
∫ 1

0
x(t)y(t)dt and ‖ fy‖∗ = ‖y‖q .

(5) The dual of C(�). The dual of C(�) is the space M(�) of Radon measures μ

with

〈μ, v〉 :=
∫

�

vdμ, v ∈ C(�).

(6) The dual of L p(�), 1 < p <∞. The dual of L p(�), 1 < p <∞, is the space
Lq(�) with q being conjugate to p, i.e., 1/p + 1/q = 1.
(7) The dual of L1(�). The dual of L1(�) is the space L∞(�).
(8) The dual of L∞(�). The dual of L∞(�) is the space of Borel measures.

Definition 1.23 Let X, Y be two normed linear spaces over the same field. A map-
ping f : X → Y is called an isometric isomorphism if it is linear, bijective and pre-
serve the norm; that is, if it is linear, one-one, onto and satisfies ‖ f (x)‖ = ‖x‖ for all
x ∈ X . If such a mapping exists, then X and Y are called isometrically isomorphic.

Remark 1.6 If X and Y are two normed spaces and are isometrically isomorphic,
then we shall mean that they are structurally the same. That is, if two normed spaces
are isometrically isomorphic then they are two images of the same abstract object
and, as such, one can be identified with the other. Dual spaces are identified in this
sense.

Remark 1.7 When we say that the dual of X is Y and write X∗ = Y , we mean that

(i) there exists an isometric isomorphism from X∗ onto Y ;
(i i) each functional f ∈ X∗ represented by a y ∈ Y which is the image of f under
the isomorphism; and
(i i i) the value f (x) of f at any point x ∈ X is given by some rule associating y
with x .
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Observation

• The dual of �n
p is isometrically isomorphic to �n

q for all p, 1 � p �∞, i.e.,
(�n

p)
∗ = �n

q .
• The dual of �p is isometrically isomorphic to �q for all p, 1 � p <∞.
• The dual of �∞ is not �1. Rather �1 is the dual of a subspace of �∞.
• The dual of c is �1. In fact, c, c0, c00 all the three have the same dual �1.

1.4.3 Second Dual, Natural Embedding and Reflexivity

The dual of X∗, i.e., the space (X∗)∗ of all bounded linear functionals on X∗ which
is written as X∗∗, is called the second dual of X .

Definition 1.24 (Duality pairing) Given a normed space X and its dual X∗, we
define the duality pairing as the functional (·, ·) : X × X∗ → K given by

(x, j) = j (x) for all x ∈ X and j ∈ X∗.

At this juncture, we make an interesting observation. Let (X, ‖ · ‖) be a normed
space. Then, (X∗, ‖ · ‖∗) is a Banach space. Let j ∈ X∗. Then, j is regarded as a
function on X because it “acts” on any x ∈ X to give a scalar j (x). We look the
other way round. If we fix x ∈ X and vary j in X∗, we can regard x as a function
on X∗ because it “acts” on j ∈ X∗ to yield the scalar j (x). Thus, each x ∈ X can be
viewed as a functional on X∗ whose value at j is j (x). In a more precise manner,
we can say that each x ∈ X defines a functional Jx on X∗ given by

Jx ( j) = (x, j) j ∈ X∗.

We show that this functional is linear and bounded, and so Jx ∈ X∗∗. It is linear
because

Jx (α j1 + β j2) = (α j1 + β j2)(x) = α j1(x)+ β j2(x) = α Jx ( j1)+ β Jx ( j2).

Moreover, for j ∈ X∗ we have

|Jx ( j)| = | j (x)| � ‖ j‖∗‖x‖.

This shows that Jx is bounded and hence Jx is a bounded linear functional on X∗.
This initiate the following definition.

Definition 1.25 (Natural embedding mapping) A mapping ϕ : X → X∗∗ defined
by ϕ(x) = Jx , x ∈ X is called the natural embedding mapping from X into X∗∗. It
has the following properties:
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Fig. 1.7 Natural embedding mapping

(i) ϕ is linear: ϕ(αx + βy) = αϕ(x)+ βϕ(y) for all x, y ∈ X, α, β ∈ K ;
(i i) ϕ(x) is isometry: ‖ϕ(x)‖ = ‖x‖ for all x ∈ X (Fig. 1.7).

1.4.4 Multilinear Mappings

In the following X1, X2, . . . , Xn and Y are real Banach spaces.

Definition 1.26 A mapping A : X1 × X2 × · · · × Xn → Y is said to be multilinear
if it is linear in each of the variables separately. For n = 2, such a mapping is called
a bilinear mapping.

Definition 1.27 The multilinear mapping A : X1 × X2 × · · · × Xn → Y is said to
be bounded if there exists μ � 0 such that

‖A(x1, x2, . . . , xn)‖ � μ‖x1‖‖x2‖ · · · ‖xn‖.

The infimum of such μ is called the norm of the operator A. One can show that A
is continuous iff A is bounded. L(X1, X2, . . . , Xn; Y ) will denote the Banach space
of n-linear continuous mappings of X1 × X2 × · · · × Xn to Y . If X1 = X2 = · · · =
Xn = X , then we write L(Xn, Y ) for the same.

We have the following theorem immediately from the definition.

Theorem 1.20 There is an isometric isomorphism between L(X1, X2; Y ) and
L(X1,L(X2, Y )).

From the above theorem, we inductively have the following relationship:

L(X1, X2, X3; Y ) = L(X1,L(X2,L(X3, Y ))) and

L(Xn, Y ) = L(X,L(X, . . . ,L(X, Y )) · · · ).
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1.4.5 Reflexive Spaces

A Banach space X is said to be reflexive if the natural embedding J : X → X∗∗ is
onto, that is, J (X) = X∗∗. In other words, X is reflexive if the elements of X represent
all the bounded linear functionals on X∗ and this amounts to saying that for each
ϕ ∈ X∗∗, there is an x ∈ X such that ϕ( f ) = f (x) for each f ∈ X∗. In this case, we
write X ∼= X∗∗ or X = X∗∗.

Notice that any reflexive normed space is complete and, hence, is a Banach space.
Note also that we speak of reflexivity of Banach spaces only because X∗∗ is always
complete. Thus, reflexivity implies that the space is Banach.

Example 1.30 (1) �n
p for 1 � p �∞ are reflexive spaces.

(2) Every finite dimensional space is reflexive. To see this, suppose dim X = n.
Because X is n-dimensional, it follows that X∗ is also n-dimensional and so is X∗∗.
(3) Every Hilbert space H is a reflexive Banach space, i.e., H∗∗ = H.

Observation

• Rn is reflexive.
• �p and L p for 1 < p <∞ are reflexive Banach spaces.
• �1 and �∞ are not reflexive.
• c and c0 are not reflexive Banach spaces.
• C(�), L1(�) and L∞(�) are not reflexive.
• A Hilbert space has a countable orthonormal basis if and only if it is separable.

1.4.5.1 Characterization of the Class of Reflexive Banach spaces

Proposition 1.8 (a) The dual of a reflexive Banach space is reflexive.
(b) A closed subspace of a reflexive Banach space is reflexive.
(c) The Cartesian product of two reflexive Banach spaces is reflexive.

Let X be a Banach space and j ∈ X∗. By definition, ‖ j‖∗ is the supremum of the
values of j over the closed unit ball BX . One may notice that j may or may not attain
this supremum on BX . The following theorem shows that if X is reflexive, then j
does attain this supremum on BX .

Theorem 1.21 (James theorem) If X is a reflexive Banach space, then any f ∈ X∗
attains its norm on the unit ball BX .

Proof Let X be a reflexive Banach space and f ∈ X∗. If f = 0, then its norm 0 is
attained at each vector on the unit ball BX . So, assume that f 	= 0. By the Hahn–
Banach theorem (Cor. 1.3) there exists an F ∈ X∗∗ such that ‖F‖ = 1 and F( f ) =
‖ f ‖. Because X is reflexive, there exists x ∈ X such that Jx = F . Then,

‖x‖ = ‖F‖ = 1 and f (x) = F( f ) = ‖ f ‖.

This completes the proof.



52 1 Fundamentals

Notice that the converse of the above theorem is also true. James has shown that
if X is a Banach space and every f ∈ X∗ attain its norm on BX , then X is reflexive.

Theorem 1.22 A Banach space X is reflexive if and only if any f ∈ X∗ attain its
norm on the unit ball BX .

1.4.6 Weak Topologies

Recall the following: If (X, ‖ · ‖) is a normed linear space, then the topology T
induced from the metric d(x, y) = ‖x − y‖ is called the norm topology, the strong
topology, or the topology induced from ‖ · ‖.

Let X be a Banach space and X∗ its dual. The convergence of a sequence {xn} to
x in a Banach space X is usual norm convergence or strong convergence. That is,
xn → x if lim

n→∞‖xn − x‖ = 0. This is concern with the strong topology on X with

neighborhood base B(0, r) = {x ∈ X : ‖x‖ < r}, r > 0 at the origin.
Notice that there is also a weak topology on X generated by the bounded linear

functionals on X . We say that G ⊂ X is open (or w-open) in the weak topology if
and only if for every x ∈ G, there are bounded linear functionals f1, f2, . . . , fn and
positive real numbers ε1, ε2, . . . , εn such that

{y ∈ X : | fi (x)− fi (y)| < εi , i = 1, 2, . . . , n} ⊂ G.

This shows that a subbase σ for the weak topology on X generated by a base of
neighborhoods of x0 in X is the set

V ( f1, f2, . . . , fn : ε) = {x ∈ X : | fi (x)− fi (x0)| < ε, for every i = 1, 2, . . . , n}.

Notice that, in particular, a sequence {xn} in X converges to x ∈ X for weak
topology σ(X, X∗) on X if and only if (xn, f ) → (x, f ) for all f ∈ X∗.
Observation

• The weak topology of a normed space is a Hausdorff topology.
• The weak topology is not metrizable if X is infinite-dimensional.
• The normed space X with the weak topology T ∗ is a locally convex topological

space.

Weakly convergent – A sequence {xn} in a normed space X is said to converge
weakly to x ∈ X if f (xn)→ f (x) for all f ∈ X∗. We denote this fact by writing
xn ⇀ x or weak-limn→∞ xn = x .

Weak Cauchy sequence – A sequence {xn} in a normed space X is said to be a weak
Cauchy if for each f ∈ X∗, { f (xn)} is a Cauchy sequence in K.
Weakly complete – A normed space X is said to be weakly complete if every weak
Cauchy sequence in X converges weakly to some element in X .
Weakly closed – A subset C of a Banach space X is said to be weakly closed if it is
closed in the weak topology.
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Weakly compact – A subset C of a normed space X is said to be weakly compact
if C is compact in the weak topology.
Weakly sequentially compact – A nonempty subset C of a Banach space X is said
to be weakly sequentially compact if each sequence {xn} in C has a subsequence
{xni } that converges weakly to a point in C .

1.4.7 Basic Properties of Weakly Convergent Sequences in
Normed Spaces

Proposition 1.9 (Uniqueness of weak limit) Let (X, ‖ · ‖) be a normed space and
{xn} a sequence in X such that xn ⇀ x and xn ⇀ y. Then, x = y.

Proof By hypotheses, xn ⇀ x and xn ⇀ y. Therefore, the sequence of scalars { f (xn}
converge to both f (x) and f (y) for every f ∈ X∗. By uniqueness of limit for a
sequence of scalars we must have f (x) = f (y). This implies that f (x)− f (y) = 0,
i.e., f (x − y) = 0. Because f (x − y) = 0 for every f ∈ X∗ it follows that x − y =
0. Therefore, x = y. �

Notice that strong convergence always implies weak convergence.

Proposition 1.10 Let (X, ‖ · ‖) be a normed space and (X∗, ‖ · ‖∗) its first dual
space. Let {xn} be a sequence in X such that xn → x. Then, xn ⇀ x .

Proof By hypotheses, xn → x , i.e., ‖xn − x‖ → 0 as n →∞. Hence for every f ∈
X∗, we have

| f (xn)− f (x)| = | f (xn − x)| � ‖ f ‖∗‖xn − x‖ → 0.

Therefore, xn ⇀ x . �

However, the converse of Proposition 1.10 is not true in general. To see this,
consider the following example.

Example 1.31 Let X = �2 and {xn}∞n=1 be a sequence in �2 such that

x1 = (1, 0, 0, . . . , 0, 0, . . .)

x2 = (0, 1, 0, . . . , 0, 0, . . .)

...

xn = (0, 0, 0, . . . , 1, 0, . . .)

↑
nthposition

...

For any y = (y1, y2, . . . , yn, . . .) ∈ X∗ = �2, we have

(xn, y) = yn → 0 as n →∞.
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Hence xn ⇀ 0. However, we notice that {xn} does not converge strongly because
‖xn‖ = 1 for all n ∈ N. Thus, a weakly convergent sequence need not be convergent
in norm.

To see a necessary and sufficient for the weak convergence in �p spaces, 1 < p <

∞, let us observe the following proposition.

Proposition 1.11 For 1 < p <∞, let {xn} be a sequence in �p, where

xn = (α
(n)
1 , α

(n)
2 , . . . , α

(n)
i , . . .) ∈ �p, n ∈ N

and
x = (α1, α2, . . . , αi , . . .) ∈ �p.

Then, xn ⇀ x if and only if

(i) {xn} is bounded, i.e., ∃M > 0 such that ‖xn‖ � M for all n ∈ N;
(i i) for each i , α

(n)
i → αi as n →∞.

Weak∗ topology – Let (X, ‖ · ‖) be the normed space with norm ‖ · ‖ and let T
be the norm topology of X . Let T ∗ be the norm topology of X∗ generated by the
norm ‖ · ‖∗ of X∗. Then, the weak topology σ(X, X∗) is a subset of the original
norm topology T and there exists a topology denoted by σ(X∗, X) on X∗ such
that σ(X∗, X) ⊂ T ∗. The topology σ(X∗, X) is called the weak∗ topology on X∗.
The notion of weak∗ topology on X∗ facilitate the concepts of strong neighbor-
hood, strongly closed, strongly bounded, weakly convergence in (X∗, ‖ · ‖∗) and
weak∗ neighborhood, weak∗ly closed, weak∗ly bounded, weak∗ly convergence in
(X∗, σ (X∗, X)), respectively.

Observation

• In a finite dimensional normed space, strong convergence is equivalent to weak
convergence.

• Every reflexive normed space is weakly complete.

1.4.8 The Spaces c, c0, �1, �∞ and Schur Property

Notice that the dual spaces of both c and c0 are isometrically isomorphic to �1.
Moreover, the dual space of �1 is isometrically isomorphic to �∞, i.e., �∗1 = �∞.
These facts lead to three interesting questions.

1. If {xn}∞n=1 is a bounded sequence in �1 when does {xn}∞n=1 converge weakly?
2. When does {xn}∞n=1 converge in the weak∗ topology regarding �1 as the dual of

c?
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3. When does {xn}∞n=1 converge in the weak∗ topology regarding �1 as the dual of
c0?

The answer to these questions help us to sort out subtle differences in the concepts.
Moreover, it is quite interesting to note that the answer to the first question is a little
surprising. A bounded sequence {xn}∞n=1 in �1 converges weakly to x ∈ �1 if and only
if lim

n→∞‖xn − x‖ = 0. Spaces which have this property are said to have the Schur

property. Thus, the weakly compact subsets of such spaces coincide with the norm
compact subsets.
Schur property12 – A normed space (X, ‖ · ‖) is said to satisfy Schur property if
every weakly convergent sequences in X converges in norm; that is, if every sequence
{xn} in X such that xn ⇀ x as n →∞ implies lim

n→∞‖xn − x‖ = 0.

To answer the later two questions, we first show that up to isomorphism
c∗ = c∗0 = �. To prove this, suppose y = (y1, y2, . . .) ∈ �1 and x = (x1, x2, . . .) ∈
c0, and define

y(x) =
∞∑

i=1

xi yi .

This defines a linear functional. Also,

|y(x)| �
∞∑

i=1

|xi yi | � sup
i
|xi |

∞∑

i=1

|yi | = ‖x‖∞‖y‖1.

This shows that y is a bounded (continuous) linear functional with ‖y‖∞ � ‖y‖1.
Now let ε > 0 and choose N so that

N∑

i=1

|yi | > ‖y‖1 − ε.

Let
x = (sgny1, sgny2, . . . , sgnyN , 0, . . .) ∈ c0,

where “sgn” denotes the function which assigns to a number 1,−1, or 0 according
to whether the number, respectively, is positive, negative, or zero. Then,

y(x) =
N∑

i=1

|yi | > ‖y‖1 − ε

with ‖x‖∞ = 1. It follows that ‖y‖∞ � ‖y‖1; thus, ‖y‖∞ = ‖y‖1.

12Schur’s property, named after Issai Schur, is the property of normed spaces that is satisfied
precisely if weak convergence of sequences entails convergence in norm.
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On the other hand, if f ∈ c∗0 and x = (x1, x2, . . .) ∈ c0, then since the vectors {ei }
form a basis for c0 we have x = lim

n→∞
n∑

i=1
xi ei . This yields

f (x) = f
(

lim
n→∞

n∑

i=1

xi ei

)
= lim

n→∞

n∑

i=1

xi f (ei ) =
∞∑

i=1

xi f (ei ).

It follows that
∑∞

i=1 |xi f (ei )| exists, i.e., y = ( f (e1), f (e2, . . . ∈ �1. Therefore,
‖y‖1 � ‖ f ‖∗. Further, we have

| f (x)| = |
∞∑

i=1

xi f (ei )| � sup
i
|xi |

∞∑

i=1

| f (ei )| = ‖x‖∞‖y‖1.

This yields ‖ f ‖∗ � ‖y‖1. Hence, ‖y‖1 = ‖ f ‖∗.
Therefore, the mapping ϕ : c∗0 → �1 defined by

ϕ( f ) = ( f (e1), f (e2), . . .)

is an isometry of c∗0 onto �1.
Because the vectors {ei } do not form a basis for c rather {ei } along with the

vector e = (1, 1, . . .) form a basis for c, a subtlety arises when we see that �1 is also
isomorphic to c∗. Note that it can easily be shown that the mapping � : c∗ → �1

defined by

�( f ) =
(

f (e)−
∞∑

i=1

f (ei ), f (e1), f (e2), . . .
)

is an isometry of c∗ onto �1.

Observation

• In the case of c∗ = �1, the convergence of
∞∑

i=1
f (ei ) is assured because f ∈ c∗

implies f ∈ c∗0; hence ϕ( f ) = ( f (e1), f (e2), . . .) ∈ �1.
• By similar reasoning as above we can show that �∗1 = �∞.

Note that the basis vectors ei ∈ c0 ⊂ c, i = 1, 2, . . . . If x = (x1, x2, . . .) ∈ �1,
then the function defined by ei (x) = xi can be thought of as an element of �∗1
which is identified under the natural isomorphism with an element of c0 (or c).
Thus, a necessary condition for a bounded sequence in �1 to converge in the weak∗
topology induced on �1 by either c0 or c is that it converge coordinatewise. In the
case of �1 = c∗, however, coordinatewise convergence is also a sufficient condition
for weak∗ convergence of bounded sequences in �1. This is because {ei } is a basis
for c0.

In the case of �∗1 = �∞, a bounded sequence in �∞ converges in the weak∗ topology
induced by �1 if and only if it converges coordinatewise to an element of �∞. Similarly,
weak convergence of a bounded sequence in �1 implies coordinatewise convergence.



1.4 The Hahn–Banach Theorem 57

We also notice that a bounded sequence {xn} in c0 converges weakly if and
only if it converges coordinatewise to x ∈ c0, while a bounded sequence {xn} in
c converges weakly to x ∈ c if and only if it converges coordinatewise to x and
limn→∞ limi→∞ xn

i = lim→∞ xi .

Lemma 1.1 (Schur’s Lemma) Let {xn} = {(xn
1 , xn

2 , . . .)} be a bounded sequence in
�1 which converges to 0. Then, limn→∞ ‖xn‖1 = 0.

Notice that Schur’s Lemma was instrumental in resolving an early fundamental ques-
tion in functional analysis, namely whether every infinite-dimensional Banach space
must necessarily contain an infinite-dimensional reflexive subspace. The answer is
negative because Schur’s Lemma implies that every reflexive subspace of �1 must
be finite dimensional.

1.4.9 Convergence of Sequences in X∗ w.r.t. Different
Topologies

Let (X, ‖ · ‖) be a normed space, (X∗, ‖ · ‖∗) its dual space and { fn} a sequence in
X∗. Then,
(i) { fn} converges to f in the norm topology on X∗ (denoted by fn → f ) if

‖ fn − f ‖∗ → 0.

(ii) { fn} converges to f in the weak topology on X∗ (denoted by fn ⇀ f ) if

( fn − f, g) → 0 for all g ∈ X∗∗.

(iii) { fn} converges to f in the weak∗ topology on X∗ (denoted by fn → f weak∗ly
or fn ⇀∗ f ) if

(x, fn − f ) → 0 for all x ∈ X.

Notice that the weak topology is weaker than the norm topology, and every weakly
closed set is also norm closed. The following result shows that for convex sets, the
converse is also true.

Proposition 1.12 Let C be a convex subset of a normed space X. Then, C is weakly
closed iff C is closed.

We now state a celebrated theorem in the Hilbert space that is called the Riesz
representation theorem. This theorem, indeed, demonstrates that any bounded linear
functional on a Hilbert space H can be as an inner product with a unique element in
H.

Theorem 1.23 (The Riesz representation theorem) Let (H, 〈·, ·〉) be a Hilbert and
f ∈ H∗. Then, for each x ∈ H, there exists a unique element y ∈ H such that
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f (x) = 〈x, y〉.

Moreover, ‖ f ‖∗ = ‖y‖.
Remark 1.8 In a Hilbert space H and its dual H∗, there is one-one correspondence
between f ∈ H∗ and y ∈ H. It follows, therefore, that H∗ = H.

1.5 Compactness

Let (X, d) be a metric space and let C ⊂ X . A family of sets {Ui }i∈I , I being an
index set, is called a cover (or covering) of C if C ⊂ ⋃

i∈I
Ui . A cover of a metric space

X by open sets of X is called an open cover of X . A subfamily of a cover which
itself form a cover is called a subcover.

Definition 1.28 A metric space X is said to be compact if every open cover of X
has a finite subcover. Equivalently, a subset C of X is compact if every sequence in
C contains a convergent subsequence with a limit in C .

Definition 1.29 A subset C of a metric space X is said to be totally bounded (or
precompact) if for each ε > 0, there exists a finite number of elements x1, x2, . . . , xn

in X such that C ⊂ n∪
i=1

B(xi , ε). The set {x1, x2, . . . , xn} is called a finite ε-net.

Observation

• X = (0, 1) with usual metric is totally bounded, but not compact.
• X = R with usual metric is not totally bounded and hence not compact.
• Every subset of a totally bounded set is totally bounded.
• Every totally bounded set is bounded. However, a bounded set need not be totally

bounded.

Proposition 1.13 A metric space is totally bounded if and only if every infinite
sequence in it has a Cauchy subsequence.

Proposition 1.14 A totally bounded metric space is separable.

Proof Let X be a totally bounded metric space. Then, for any n ∈ N, there is a finite
1
n -net An in X . Then, the countable union of finite 1

n -nets
∞∪

n=1
An is countable. Clearly

it is dense in X . Hence X is separable.

Proposition 1.15 For a metric space X, the following statements are equivalent:

(i) X is compact,
(ii) every sequence in X has a convergent subsequence,

(iii) X is totally bounded and complete.
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A topological space in which every sequence has a convergent subsequence is
called sequentially compact. The above proposition shows that sequential compact-
ness is equivalent to compactness in the case of a metric space.

Proposition 1.16 Let C be a subset of a complete metric space. Then, C is compact
if and only if C is closed and totally bounded.

Theorem 1.24 Continuous image of a compact metric space is compact.

Notice that this result is true for all topological spaces.
A subset C of a topological space is said to be relatively compact if its closure is

compact, i.e., C is compact.

Theorem 1.25 (The Heine–Borel theorem) A subset C of R is compact if and only
if it is closed and bounded.

Corollary 1.5 A subset C of Rn is compact if and only if it is closed and bounded.

Observation

• C = [0, 1] ⊂ R is compact, but (0, 1) ⊂ R is not compact.
• Rn, n ≥ 1 is not compact. However, every closed and bounded subset of Rn is

compact.
• Rn is closed.
• The subset C = {{xn} ∈ �2 : |xn| � 1

n , n ∈ N
}

of �2 is compact.
• C[0, 1] and �2 are not compact.
• The closed unit ballBX = {x ∈ X : ‖x‖ � 1} in a finite dimensional normed space

(X, ‖ · ‖) is compact in the topology induced by the norm ‖ · ‖.
• The closed unit ball BX = {x ∈ X : ‖x‖ � 1} in infinite-dimensional normed

space X = �2 is not compact in the topology induced by ‖ · ‖2 norm defined by

‖x‖2 =
( ∞∑

i=1
|xi |2

)1/2
.

Theorem 1.26 Let T be a continuous mapping from a compact metric space (X, d)

into another metric space (Y, ρ). Then, T is uniformly continuous.

Theorem 1.27 (Mazur’s theorem) The closed convex hull co(C) of a compact set
C of a Banach space is compact.

Proposition 1.17 A normed space X is finite dimensional if and only if every closed
and bounded subset of X is compact.

Observation

In a normed space X it is easy to observe that

• every compact subset of X is closed, but the converse need not be true.
• every compact subset of X is bounded, but the converse need not be true.
• every compact subset of X is complete, but the converse may not be true.
• every compact subset of X is separable.
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Definition 1.30 A subset of a topological space is called relatively compact if its
closure is compact. A topological space is said to be locally compact if each point
of the space has a compact neighborhood.

Theorem 1.28 (The Eberlein–Smulian theorem) Let C be a weakly closed subset of
a Banach space X. Then, C is weakly compact iff C is weakly sequentially compact,
i.e., each sequence {xn} in C has a subsequence that converges weakly to a point in
C.

Theorem 1.29 (Kakutani’s theorem) Let X be a Banach space. Then, X is reflexive
iff the closed unit ball BX = {x ∈ X : ‖x‖ � 1} is weakly compact.

Using Kakutani’s theorem and Proposition 1.12, we obtain the following:

Theorem 1.30 Let X be a Banach space. Then, X is reflexive iff every closed convex
bounded subset of X is weakly compact.

Theorem 1.31 Let X be a reflexive Banach space and C a subset of X. Then, C is
weakly compact (compactness in weak topology) iff C is bounded (boundedness in
strong topology).

Observation

1. If {xn} is a sequence in a Banach space X with xn ⇀ x ∈ X and {αn} a sequence
of scalars such that αn → α, then {αn xn} converges weakly to αx .

2. If C is a nonempty subset of a Banach space X and {xn} a sequence in C such
that xn ⇀ x ∈ X , then x ∈ co(C).

3. A convex subset C of a normed space X is weakly closed if and only if C is
closed.

4. A weakly compact subset C of a Banach space X is bounded.
5. Any closed convex subset of a weakly compact set is itself weakly compact.

We now summarize several properties that characterize reflexivity.

Theorem 1.32 Let X be a Banach space. Then, the following statements are equiv-
alent:

(a) X is reflexive.
(b) BX is weakly compact.
(c) Every bounded sequence in X in strong topology has a weakly convergent sub-

sequence.
(d) X∗ is reflexive.
(e) For any f ∈ X∗, there exists x ∈ BX such that f (x) =‖ f ‖∗
(e) If {Cn} is any descending sequence of nonempty closed convex subset of X, then

∞∩
n=1

Cn 	= ∅.

(f) σ(X∗, X) = σ(X∗, X∗∗), i.e., on X∗ weak topology and weak∗ topology coin-
cide.

The following theorem is the fundamental result concerning the weak∗ topology.

Theorem 1.33 (Banach–Alaoglu’s theorem) Let X be a normed space and X∗ be
its dual. Then, the unit ball BX∗ in X∗ is compact in the weak∗ topology.
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1.6 Sequence of Functions

Definition 1.31 (Uniformly bounded sequence) A sequence { fn}n∈N of continuous
functions on an interval I = [a, b] is called uniformly bounded if there is a number
M such that

| fn(x)| � M

for every function fn belonging to the sequence, and every x ∈ [a, b].
Definition 1.32 (Equicontinuous sequence) A sequence { fn}n∈N is called equicon-
tinuous if, for every ε > 0, there exists δ > 0 such that

| fn(x)− fn(y)| < ε

whenever |x − y| < δ for all functions fn in the sequence.

The Ascoli–Arzelà theorem stated below is a fundamental result of mathematical
analysis giving necessary and sufficient conditions to decide whether every sequence
of a given family of real-valued continuous functions defined on a closed and bounded
interval has a uniformly convergent subsequence.

It may be remarked that the main condition is the equicontinuity of the family
of functions. The theorem is the basis of many proofs in mathematical analysis,
including that of the Peano existence theorem in the theory of ordinary differential
equations, Montel’s theorem in complex analysis, and the Peter–Weyl theorem in
harmonic analysis.

Theorem 1.34 (The Ascoli–Arzelà theorem) If a sequence of real-valued continu-
ous functions { fn}n∈N defined on a closed and bounded interval [a, b] of the real line
is uniformly bounded and equicontinuous, then there exists a subsequence { fnk }∞k=1
that converges uniformly.

Notice that the converse of Theorem 1.34 is also true, in the sense that if every
subsequence of { fn} itself has a uniformly convergent subsequence, then { fn} is
uniformly bounded and equicontinuous.

1.6.1 Lipschitz and Hölder Continuous Functions

Definition 1.33 (Lipschitz continuous function) A sequence { fn} of real-valued
functions on [a, b] is said to be Lipschitz continuous with the same Lipschitz constant
K if:

| fn(x)− fn(y)| � K |x − y| for all x, y ∈ [a, b] and all fn.

Definition 1.34 (Hölder condition function) A set F of functions f on [a, b] is said
to satisfies a Hölder condition of order α, 0 < α � 1, with a fixed constant M, if
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| f (x)− f (y)| � M |x − y|α, x, y ∈ [a, b].

Observation

• If { fn} is a uniformly bounded sequence of real-valued functions on [a, b] such
that each f is Lipschitz continuous with the same Lipschitz constant K , i.e.,

| fn(x)− fn(y)| � K |x − y| for all x, y ∈ [a, b] and all fn,

then there is a subsequence that converges uniformly on [a, b].
• A set F of functions f on [a, b] that is uniformly bounded and satisfies a Hölder

condition of order α, 0 < α � 1, with a fixed constant M, i.e.,

| f (x)− f (y)| � M |x − y|α, x, y ∈ [a, b]

is relatively compact in C([a, b]). In particular, the unit ball of the Hölder space
C0,α([a, b]) is compact in C([a, b]).

1.6.2 Various Forms of Continuity of Mappings

In what follows, X and Y denote real Banach spaces and F is an operator (not
necessarily linear) with Domain in X and range in Y . The domain and the range of
F are denoted by D(F) and R(F), respectively. We say that F is an operator on X
if X = Y , otherwise F is an operator from X into Y . The first and second dual spaces
of X are denoted by X∗ and X∗∗, respectively.

Definition 1.35 (Convergent sequence) A sequence {xn} in a Banach space X is said
to be convergent to x0 if

lim
n→∞‖xn − x0‖ = 0.

If {xn} converges to x0, then this fact is denoted by xn → x0.
{xn} converges weakly to x0 if f (xn) converges to f (x0) in R, i.e.,

lim
n→∞ | f (xn)− f (x0)| = 0,

for every linear functional f ∈ X∗.
If {xn} converges weakly to x0, then this fact is denoted by xn ⇀ x0.

Definition 1.36 Let F : D(F) ⊆ X → Y be a (possibly) nonlinear operator and let
x0 ∈ D(F). Then,
(a) F is said to be continuous at x0 if for any sequence {xn} in D(F) which converges
to x0, the sequence {Fxn} converges to Fx0 in Y . In other words, F is said to be
continuous at x0 if
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xn → x0 =⇒ Fxn → Fx0,

i.e., for given ε > 0, ∃ a δ = δ(ε, x0) > 0 such that ‖Fxn − Fx0‖ < ε whenever
‖x − x0‖ < δ for all x ∈ D(F).
(b) F is said to be weakly continuous at x0 if for any sequence {xn} in D(F) which
converges weakly to x0 the sequence {Fxn} converges weakly to Fx0 in Y . In other
words, F is said to be weakly continuous at x0 if

xn ⇀ x0 =⇒ Fxn ⇀ Fx0.

(c) F is said to be uniformly continuous on D(F) if for given ε > 0, there exists
δ = δ(ε) > 0 such that

‖Fx − Fy‖ < ε whenever ‖x − y‖ < δ for all x, y ∈ D(F).

Example 1.32 Let X = [0, 1] and Y = R, and let X and Y have absolute value
norms. Then, the mapping F : D ⊂ X → Y defined by Fx = 1

x , where D = (0, 1],
is continuous but not uniformly continuous.

Definition 1.37 Let F : D(F) ⊆ X → Y be a (possibly) nonlinear operator. Then,
F is said to be bounded if it maps bounded subsets of D(F) into bounded subsets of
Y .

It is well known that for linear operators boundedness is equivalent to continuity.
But there do exist nonlinear operators which are bounded but not continuous and
vice versa.

Example 1.33 Let F : R2 → R be defined as

F(x1, x2) =
{

x1x2

x2
1+x2

2
, (x1, x2) 	= (0, 0)

0, (x1, x2) = (0, 0)

Then, F is bounded but not continuous. To see this, we notice that

|F(x1, x2)| =
{ |x1||x2|
|x1|2+|x2|2 , (x1, x2) 	= (0, 0)

0, (x1, x2) = (0, 0).

For (x1, x2) 	= (0, 0), we have

|F(x1, x2)| =
{ |x2|2
|x1|2+|x2|2 , if |x1| � |x2|
|x1|2

|x1|2+|x2|2 , if |x2| � |x1|

Thus, for all (x1, x2) ∈ R2 we have

|F(x1, x2)| � 1
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which shows that F is bounded.
To check the continuity, we consider the path of approach to origin along x2 =

mx1. Then, we see that

lim
(x1,x2)→(0,0)

F(x1, x2) = lim
x1→0

mx2
1

(1+ m2)x2
1

= m

1+ m2

which depends upon the choice of m. Hence F is discontinuous at (0, 0).

Example 1.34 Let X be an infinite dimensional Banach space. Because the ball
‖x‖ � 1 is not compact in X , there exists a sequence {xn} with ‖xn‖ = 1 such that
‖xm − xn‖ � ε, 0 < ε < 1. Now define F : X → R as follows

F(x) =

⎧
⎪⎨

⎪⎩

n, x = xn, n = 1, 2, . . .

n − n
ε
‖x − xn‖, ‖x − xn‖ � 1

2ε, n = 1, 2, . . .

0 otherwise.

Then, it is easy to observe that F is continuous but is unbounded in the ball ‖x‖ �
1+ 1

2ε.

Theorem 1.35 Let A : X → Y be a continuous linear operator. Then, F is weakly
continuous.

Proof Let xn ⇀ x0. For a functional g ∈ Y ∗, define a functional fg ∈ X∗ as fg(x) =
g(Ax), x ∈ X . For x, y ∈ X and scalars a, b, we have

fg(ax + by) = g(A(ax + by)) = g(a Ax + bAy)

= ag(Ax)+ bg(Ay) = a fg(x)+ b fg(y)

which shows that fg is linear. It is continuous for

| fg(x)| = |g(Ax)| � ‖g‖‖Ax‖ � ‖g‖‖A‖‖x‖.

Because xn ⇀ x0, fg(xn)→ fg(x0) in R. This in turn implies that

|g(Axn)− g(Ax0)| = | fg(xn)− fg(x0)| → 0 as n →∞,

i.e., g(Axn)→ g(Ax0) in R. Because g ∈ Y ∗ was arbitrary, it follows that

xn ⇀ x0 =⇒ Axn ⇀ Ax0.

This shows that A is weakly continuous and hence the theorem. �
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However, there exists continuous nonlinear operators which are not weakly con-
tinuous as we see in the following example.

Example 1.35 Let F : L2[0, 2π ] → L2[0, 2π ] be defined as

[Fx](s) =
∫ 2π

0
x2(t)dt, s ∈ [0, 2π ].

Continuity of F follows from the following inequality for a sequence {xn} which
converges to x0 in L2[0, 2π ] (Fig. 1.8).

‖Fxn − Fx0‖2 =
∫ 2π

0

(∫ 2π

0
(x2

n (t)− x2
0 (t))dt

)2

ds

�
∫ 2π

0

(∫ 2π

0
(xn(t)+ x0(t))

2dt

)(∫ 2π

0
(xn(t)− (x0(t))

2dt

)

ds

= ‖xn + x0‖2

(∫ 2π

0
(xn(t)− (x0(t))

2dt

)

ds

�
(

sup
n
‖xn + x0‖2

)(∫ 2π

0
(xn(t)− (x0(t))

2dt

)

ds

= M‖xn − x0‖2, where M = sup
n
‖xn + x0‖2.

Fig. 1.8 Graphs of sin nπ t for n = 1, 2, 3, 7
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Because xn → x0, it follows from the above inequality that Fxn → Fx0, as n →∞.

This shows that F is continuous. But F is not weakly continuous. For, if we consider
xn = sin nπ t , then it is easy to observe that xn has increasing number of 0’s in [0, 2π ]
as n goes to infinity, but xn is not zero function for any n. We also notice that {xn}
does not converge to 0 in the L∞ or L2 norms. This dissimilarity is one of the reasons
why this type of convergence is considered to be “weak”.
Note that the integral

∫ 2π

0
xn(t)y(t)dt → 0,

for any square integrable function y on [0, 2π ] as n →∞, i.e., 〈xn, y〉 → 〈0, y〉 = 0
as n →∞. It follows that xn ⇀ 0 but

‖Fxn‖ =
(∫ 2π

0

(∫ 2π

0
sin2 nπ t dt

)2

ds

)1/2

= 1

2

(∫ 2π

0

(∫ 2π

0
(1− cos 2nπ t)dt

)2

ds

)1/2

= 1

2

⎛

⎝
∫ 2π

0

([

t − sin 2nπ t

2nπ

]2π

0

)2

ds

⎞

⎠

1/2

= π

(∫ 2π

0
1 ds

)1/2

= √2π3/2

i.e., ‖Fxn‖ =
√

2π3/2 for all n.

1.6.3 Compact and Completely Continuous Operators

Compact and completely continuous operators occurs in many problems of classi-
cal analysis. Notice that in the nonlinear case, the first comprehensive research on
compact operators with numerous applications to both linear and nonlinear partial
differential equations was due to Schauder [542]. In particular, the approximation
technique for compact operators in Banach spaces goes back to Schauder.

Definition 1.38 Let F : X → Y be an operator. Then, F is said to be compact if it
maps every bounded subset of X into a relatively compact subset of Y . Equivalently,
F is compact if and only if for every bounded sequence {xn} in X, {Fxn} has a
convergent subsequence in Y .

Example 1.36 Let F : X → Y be a bounded operator with finite dimensional range.
Then, F is compact.
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Suppose dim R(F) = k, then there exists a basis of R(F), say, B = {y1, y2, . . . ,

yk} containing k independent vectors y1, y2, . . . , yk such that L(B) = R(F). It fol-
lows that every vector in the range of F can be written as Fx =∑k

j=1 α j y j . If

{xn} is a bounded sequence in X and Fxn =∑k
j=1 αn

j y j , the corresponding {αn
j } are

bounded because F is bounded. As {αn
j } has a convergent subsequence for every j ,

one can extract a convergent subsequence from {Fxn}.
We have the following important characterization of compact operators.

Theorem 1.36 Let F : X → Y be an operator and M a bounded subset of X. F is
compact on M iff for each ε > 0 there exists a bounded operator P (dependent on
ε) with finite dimensional range such that ‖Fx − Px‖ < ε for all x ∈ M.

Proof To prove the necessary condition, let F be a compact operator from X into Y
and M a bounded subset of X . Then, F(M) is relatively compact and hence totally
bounded. That is, there exists a finite set of vectors y1, y2, . . . , yn ∈ Y such that for
any x ∈ M there is a yi which satisfied the inequality ‖Fx − yi‖ < ε. Consider the
linear span S = [y1, . . . , yn]. Define P as

P(x) = 1
∑n

j=1 μ j

n∑

j=1

μ j y j

where μ j =
{

ε − ‖Fx − y j‖, for ‖Fx − y j‖ < ε

0, for ‖Fx − y j‖ � ε.

Then, there exists an i ∈ {1, 2, . . . , n} such that μi = ε − ‖Fx − yi‖ > 0 and μ j =
0 for all j 	= i ,

‖Fx − Px‖ =
∥
∥
∥Fx − 1

∑n
j=1 μ j

n∑

j=1

μ j y j

∥
∥
∥ = ‖Fx − yi‖ < ε.

Thus, the operator P satisfies the required properties with S as its range.
To prove the sufficient criterion assume that there exists an operator P satisfying

the required condition for a given ε > 0. Suppose, if possible, F is not compact. This
implies that there exists an ε1 > 0 and a sequence {xn} in M such that

‖Fxn − Fxm‖ > ε1. (1.5)

For our purpose we take ε = ε1/6. Because P is compact there exists a subsequence
{xnk } and an integer N such that

‖Pxnk − Pxnl‖ <
ε1

6
for k, l � N .

So we get
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‖Fxnk − Fxnl ‖ � ‖Fxnk − Pxnk ‖ + ‖Pxnk − Pxnl ‖ + ‖Pxnl − Fxnl ‖ <
ε1

2
for k, l � N ,

contradicting (1.5). �

Theorem 1.37 Let Fn : X → Y be a sequence of compact operators such that
lim

n→∞‖Fn x − Fx‖ = 0 uniformly for x in every bounded subset of X. Then, F is

also compact.

Proof Let M be any bounded subset of X . Then, there exists a number k such that
‖Fk x − Fx‖ < ε

2 for x ∈ M . Because Fk(M) is relatively compact and hence totally
bounded it follows that it has a finite ε

2 -net. In view of the inequality ‖Fk x − Fx‖ < ε
2

for x ∈ M , this ε
2 -net will be an ε-net for F(M). Because Y is complete, F(M) is

relatively compact. �

Definition 1.39 An operator F : X → Y is said to be completely continuous if for
any sequence {Fxn} converging weakly to x, the sequence {Fxn} converges to Fx .

That is, xn ⇀ x ⇒ Fxn → Fx .

Theorem 1.38 Let F be an operator from a reflexive Banach space X into a Banach
space Y . If F is completely continuous then F is continuous and compact.

Proof Let F : X → Y be completely continuous. We need to show the compactness
of F . Let M be a bounded subset of X and let {xn} be a sequence in M . Reflexivity
of X implies that {xn} has a weakly convergent subsequence {xnk }. Assume that
xnk ⇀ x0. Because F is completely continuous, Fxnk → Fx0. This proves that F(M)

is relatively compact. �

Notice that the converse of Theorem 1.38 need not to be true, as we see in the
following example.

Example 1.37 The operator F on L2[0, 2π ] as defined by

[Fx](s) =
∫ 2π

0
x2(t)dt, s ∈ [0, 2π ]

is continuous and compact, but it is not completely continuous.
It is trivially true that F is continuous (see Example 1.34 above).
For the compactness of F , consider the ball Br = {x ∈ L2[0, 2π ] : ‖x‖ � r}. For
x ∈ Br , we have

|Fx(s)| =
∣
∣
∣
∣

∫ 2π

0
x2(t)dt

∣
∣
∣
∣ �

∣
∣
∣
∣

∫ 2π

0
r2dt

∣
∣
∣
∣ = 2πr2

and

|Fx(s1)− Fx(s2)| =
∣
∣
∣
∣

∫ 2π

0
x2(t)dt −

∫ 2π

0
x2(t)dt

∣
∣
∣
∣ = 0.
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This shows that functions Fx belonging to F(Br ) = {y ∈ L2[0, 2π ] : ‖y‖ � 2πr2}
are uniformly bounded and equicontinuous and hence by the Ascoli–Arzela theorem
F(Br ) contains a uniformly convergent subsequence. This in turn implies that F(Br )

has a convergent subsequence in L2[0, 2π ]. That is, F is a compact operator on
L2[0, 2π ].

Furthermore, we have already proved that F is not weakly continuous and hence
not completely continuous.

Observation

• For continuous linear operators, complete continuity and compactness are equiv-
alent, provided the domain space is reflexive.

Theorem 1.39 Let A : X → Y be a linear operator, where X is a reflexive Banach
space. Then, A is completely continuous iff it is continuous and compact.

Proof It is enough to prove the sufficient criterion. Let xn ⇀ x0 in X . Because A
is compact {Axn} has a subsequence {Axnk } which converges to y0 ∈ Y. As A is a
continuous linear operator, it is also weakly continuous and hence Axnk ⇀ Ax0. By
uniqueness of limit, y0 = Ax0 and hence Axnk → Ax0. Now our result follows by
using a theorem on convergence of sequences which states that: {yn} converges to y0

iff every subsequence of {yn} has in turn a subsequence which converges to y0. �

For more on completely continuous linear operators, refer Rudin [534], Reed and
Simon [507] and Yosida [614].

We now give an example of a class of linear integral operators which are compact.
But first we have the following definitions.
Degenerate integral operator– An integral operator K : C([0, 1]) → C([0, 1])
defined by

K f (x) =
∫ 1

0
k(x, y) f (y)dy

is said to be degenerate if k(x, y) is a finite sum of separated terms of the form

k(x, y) =
n∑

i=1

ϕi (x)ψi (y),

where ϕi , ψi : [0, 1] → R are continuous functions. We may assume without loss of
generality that {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn} are linearly independent.
The Hilbert–Smith kernel– Given a domain (an open and connected set) � in n-
dimensional Euclidean space Rn , a Hilbert–Schmidt kernel is a function k : �×
�→ C with ∫

�

∫

�

|k(x, y)|2dxdy <∞,

that is, the L2(�×�,C) norm of k is finite, and the associated Hilbert–Schmidt
integral operator is the operator K : L2(�,C) → L2(�,C) given by
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(K u)(x) =
∫

�

k(x, y)u(y)dy.

Then, K is a Hilbert–Schmidt operator with the Hilbert–Schmidt norm

‖K‖H S = ‖k‖L2 .

Note that the Hilbert-Schmidt integral operators are both continuous (and hence
bounded) and compact (as with all the Hilbert–Schmidt operators).

Example 1.38 Let A be a linear integral operator of the type

[Ax](s) =
∫

�

k(s, t)x(t) dt, (1.6)

where � is a compact subset of R and K a real-valued function defined on �×�.
Case 1. Let k(s, t) be a degenerate kernel; that is,

k(s, t) =
n∑

j=1

φ j (s)ψ j (t),

where φ j (s), ψ j (t) ∈ L2(�). Then, A is a bounded operator from L2(�) to itself.
For each x ∈ L2(�), we have

[Ax](s) =
∫

�

[ n∑

j=1

φ j (s)ψ j (t)x(t)
]
dt

=
n∑

j=1

c jφ j (s), where c j =
∫

�

ψ j (t)x(t) dt.

This implies that the range of A is finite dimensional and hence it is completely
continuous.
Case 2. Let k(s, t) be Hilbert–Schmidt; that is,

M =
∫

�

∫

�

k2(s, t) dtds <∞.

A is a bounded operator on L2(�) with ‖A‖ � M1/2.

It is easy to show that k(s, t) can be approximated in L2(�×�)norm by separable
kernels kn(s, t) =∑n

i, j=1 ki jφi (s)φ j (t), where {φ j (s)}∞j=1 is an arbitrary orthogonal
set in L2(�) (refer Stakgold [575]). By Case 1, An generated by the kernel kn(s, t),
is completely continuous.
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Because An → A (in operator norm), it follows by Theorem 1.37 that A is com-
pletely continuous. Thus, we have a class of completely continuous integral operators
generated by the Hilbert–Schmidt kernels.

Remark 1.9 One can similarly show that if
∫

�

∫

�

|k(s, t)|p dsdt <∞, then the oper-

ator generated by the kernel k(s, t) is a completely continuous operator from L p(�)

to Lq(�) (1/p + 1/q = 1).

We now give an example of continuous linear integral operator which is not
completely continuous.

Example 1.39 Consider the convolution operator defined by the kernel k(t) as

[Ax](s) =
∫ ∞

−∞
k(s − t)x(t) dt.

If k(t) ∈ L1(−∞,∞), then A is a continuous linear operator from L2(−∞,∞) to
itself and

‖Ax‖ � ‖k‖L1‖x‖.

(for reference, see Okikiolu [435]).

We will show that A is not completely continuous. For this, it suffices to show that
there exists xn ∈ L2(−∞,∞) which converges to 0 weakly while (Axn, xn) does
not converge to 0. Choose a function x(s) ∈ L2(−∞,∞) with support in |s| � a
such that ∫ ∞

−∞

∫ ∞

−∞
x(s)k(s − t)x(t) dtds 	= 0. (1.7)

This is possible because space of continuous functions with compact support is dense
in L2(−∞,∞). Let us now define the sequence xn(s) as xn(s) = x(s − n). Then,
we see that

‖xn‖ = ‖x‖.

Let ϕ be a function ∈ L2(−∞,∞) with support in |s| � b. Then,

∫ ∞

−∞
ϕ(s)xn(s)ds =

∫ ∞

−∞
ϕ(s)x(s − n)ds = 0, i f n > a + b.

Because the space of continuous functions with compact support is dense in
L2(−∞,∞), it follows that xn ⇀ 0. On the other hand, we have

Ax(s) =
∫ ∞

−∞
k(s − t)x(t)dt

and hence
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Axn(s) =
∫ ∞

−∞
k(s − t)x(t − n)dt =

∫ ∞

−∞
k(s − t − n)x(t)dt.

So we get

(Axn, xn) =
∫ ∞

−∞

∫ ∞

−∞
x(s − n)k(s − t − n)x(t)dtds

=
∫ ∞

−∞

∫ ∞

−∞
x(s)k(s − t)x(t) dtds 	= 0 (by (1.7)).

This proves our assertion.

Definition 1.40 Let F : D(F) ⊆ X → Y be a (possibly) nonlinear operator and
x ∈ D(F). Then,
(a) F is called demicontinuous at x if for any sequence {xn} converging to x , the
sequence {Fxn} converges weakly to Fx . That is, xn → x ⇒ Fxn ⇀ Fx .

(b) F is called hemicontinuous at x if for any sequence {xn} converging to x along a
line, the sequence {Fxn} converges weakly to Fx . That is, F(xn) = F(x + tn y) ⇀

Fx as tn → 0 for all y ∈ X .
(c) F is called locally bounded at x if the sequence {Fxn}n∈N is bounded in Y
whenever xn ∈ D(F) and xn → x .

(d) F is called locally hemibounded at x if the sequence {F(x + tn y)}n∈N is bounded
in Y for every y ∈ X and tn → 0 with x + tn y ∈ D(F).

Remark 1.10 It is clear from the definition that F is locally bounded at x ∈ D(F) if
and only if there is an open neighborhood U of x such that F(U ∩D(F)) is bounded
in Y .

Notice that every continuous operator is demicontinuous but the converse need not
be true as we see in the following example.

Example 1.40 Let X ⊂ L2[0, 1] be defined as

X = {x(t) ∈ L2[0, 1] : x is absolutely continuous with x ′(t) ∈ L2[0, 1] and

x(0) = x(1) = 0
}
.

Then, we notice that X is a dense subspace of L2[0, 1]. Define an operator A : X →
L2[0, 1] as

[Ax](t) = x ′(t).

It is well known that A is not a continuous operator from X to L2[0, 1]. However, A
is demicontinuous. Indeed, we have

(Axn, y) =
∫ 1

0
x ′n(t)y(t)dt =

∫ 1

0
xn(t)y′(t)dt for all y ∈ X.
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Because xn → 0 in X , it follows that
∫ 1

0
xn(t)y′(t)dt → 0 and hence (Axn, y) → 0

for all y ∈ X . Furthermore, X is dense in L2[0, 1] it follows that (Axn, y) → 0 for all
y ∈ L2[0, 1]. That is, Axn → 0 for all y ∈ L2[0, 1]. This proves the demicontinuity
of A.

In general we have the following relations

continuity =⇒ demicontinuity =⇒ hemicontinuity

⇓ ⇓
locally bounded =⇒ locally hemibounded

Observation

• In finite dimensional spaces demicontinuity coincides with continuity whereas
hemicontinuity is just the continuity along the lines.

Notice that every demicontinuous operator is hemicontinuous but the converse is
not true as we see in the following example.

Example 1.41 Let F : R2 → R be defined as

F(x1, x2) =
{

x2
1 x2

x4
1+x2

2
, (x1, x2) 	= (0, 0)

0, (x1, x2) = (0, 0).

It may easily be observed that F is hemicontinuous at (0, 0) but is not demicontinuous
there.

Example 1.42 Every linear operator A : X → Y is hemicontinuous.

Observation

• The concepts of demicontinuity and hemicontinuity for nonlinear operators were
first introduced by Browder13 in [104] while studying the properties of monotone
nonlinear operators. In Chap. 4 we discuss their interrelationships in more detail.

• From the application point of view we note that one need to impose less restrictive
growth condition and regularity condition on the set of nonlinear functions gener-
ating the corresponding nonlinear operator to obtain weaker forms of continuity
(refer Chap. 8) and hence the need of such a discussion in this section.

13Felix Earl Browder (July 31, 1927 - December 10, 2016) was an American mathematician known
for his work in nonlinear functional analysis. He received the National Medal of Science in 1999
for his pioneering work in nonlinear functional analysis and its applications to partial differential
equations, and for leadership in the scientific community. He also served as president of the American
Mathematical Society from 1999 to 2000.
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1.7 Measure, Measurable Function and Measure Space

In this section, we briefly review the concepts of abstract measure, measurable func-
tion and measure space. Observe that measurable sets and measurable functions play
a fundamental role in integration theory.

Definition 1.41 (σ -algebra) Let X be a nonempty set. Then, a family A of subsets
of X is called a σ -algebra if

(i) X ∈ A,

(i i) if A ∈ A, then Ac = X − A ∈ A, i.e., A is closed under complementation, and

(i i i) if An ∈ A for n = 1, 2, . . ., then
∞∪

n=1
An ∈ A, i.e., A is closed under countable

union and hence finite union.

Definition 1.42 (Measurable space) Let A be a σ -algebra of subsets of a nonempty
set X . Then, the pair (X,A) is called a measurable space and the elements of A

measurable sets.

Let (X,A) be a measurable space. Then, we observe that

(a) ∅ = Xc ∈ A, because X ∈ A,
(b) if An ∈ A for n = 1, 2, . . ., then since

∞∩
n=1

An = ∞∩
n=1

(Ac
n)

c =
( ∞∪

n=1
Ac

n

)c
,

it follows that A is closed under countable intersection and hence finite intersection,
(c) if A1, A2 ∈ A, then since

A1 − A2 = A1 ∩ Ac
2,

it follows that A1 − A2 ∈ A.

Remark 1.11 If X is any set and E a family of subsets of X , then there exists a
smallest σ -algebra A∗ in X such that E ⊂ A∗.

Definition 1.43 (Borel sets) Let (X,T ) be a topological space. Then, there exists a
smallest σ -algebra B in X which contains all open sets, i.e., T ⊂ B. The members
of B are called Borel sets.

Observation

• All closed sets, all countable unions of closed sets and all countable intersections
of open sets are Borel sets. The last two Borel sets are called respectively Fσ and
Gδ sets.

Definition 1.44 (Measurable function) Let (X,A) be a measurable space and (Y,V )

any topological space. Then, a mapping f : X → Y is a measurable function if
f −1(V ) is a measurable set in X for every open set V in Y .



1.7 Measure, Measurable Function and Measure Space 75

Definition 1.45 (Simple function) Let (X,A) be a measurable space and let s : X →
[0,∞] be a function. Then, s is said to be a simple function if its range is a finite set.
If c1, c2, . . . , cn are the distinct values of a simple functions, if

Ei = {x ∈ X : s(x) = ci } (i = 1, 2, . . . , n),

then we have

s =
n∑

i=1

ciχEi

where χEi is the characteristic function of the set Ei .

From the above definition, it is evident that s is measurable if and only if each Ei

vis measurable.

Definition 1.46 (Measure space) Let X be a nonempty set and A a σ -algebra of X . A
measure μ is a nonnegative extended real-valued function, i.e., μ : A→ [0,∞] that
is countably additive. That is, if {Ai } is a disjoint countable collection of members
of A, then

μ
( ∞⋃

i=1

Ai

)
=

∞∑

i=1

μ(Ai ).

The triplet (X,A, μ) is called a measure space.

• A signed measure is a real-valued countably additive function defined on a σ -
algebra.

• A complex measure is a complex-valued countably additive function defined on a
σ -algebra.

• A measure space (X,A, μ) is said to be finite if μ(X) <∞.

Let (�,A, μ) be a finite measure space and X a Banach space. A function u : �→
X is called strongly measurable if there exists a sequence {un} of simple functions
such that ‖un(x)− u(x)‖X → 0 for almost all x as n →∞.

1.7.1 Integration in Normed Spaces

Definition 1.47 (Bochner integral) Let (�,A, μ) be a finite measure space and X a
Banach space. Then, we define the Bochner integral of a simple function u : �→ X
by

∫

E
u dμ =

n∑

i=1

ciμ(E ∩ Ei )

for any E ∈ A.
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The Bochner integral of a strongly measurable function u : �→ X is the strong
limit (if it exists) of the Bochner integral of an approximating sequence {un} of simple
functions. That is, ∫

E
u dμ == lim

n→∞

∫

E
un dμ.

Remark 1.12 1. The Bochner integral is independent of approximating sequence.
2. If u is strongly measurable, u is Bochner integrable iff |u(·)|X is integrable.

1.7.2 Positive Semidefinite Operator

Let H be a Hilbert space. A closed densely defined operator A : D(A) ⊂ H → H

is said to be normal if A∗A ⊂ AA∗, or what is equivalent, if AA∗ ⊂ A∗A, where A∗
is the adjoint of the operator A in the Hilbert space H.

A linear operator A defined in a Hilbert space H is said to be symmetric if

(x, Ay) = (Ax, y), for all x, y ∈ D(A).

A linear densely defined operator A is said to be self-adjoint if A∗ = A.

Definition 1.48 A linear closed and densely defined operator A is said to be positive
semidefinite if

(Ax, x) � 0 for all x ∈ D(A).

If (Ax, x) > 0, for all x ∈ D(A), x 	= 0, we say that A is positive definite.
If there exists a constant ε > 0 such that (Ax, x) � ε‖x‖2 for all x ∈ D(A),

then A is said to be strongly positive.

1.8 Nonlinear Superposition Operators

Let � be an arbitrary set. Let f = f (s, u) be a function defined on �× R (or �× C),
and taking values in R (respectively C). Given a function x = x(s) on �, by applying
f we get another function y = y(s) on �, defined by y(s) = f (s, x(s)). In this way,
the function f generates an operator

Fx(s) = f (s, x(s)) (1.8)

which is usually called superposition operator (also outer superposition operator,
composition operator, substitution operator or the Nemytskiĭ operator).
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Definition 1.49 Assume that f (s, x) = f : �× R→ R is a given function. For
an arbitrary function x : �→ R denote by Fx the function defined on � by the
formula Fx(s) = f (s, x(s)). The operator F defined in such a way is said to be the
superposition operator generated by the function f .

Another operator which is closely related to the operator (1.8) is the integral
functional

�x =
∫

�

f (s, x(s)) ds, (1.9)

which is of fundamental importance, for example, in variational problems of non-
linear analysis. In this section, we shall be concerned with the operator (1.9) only
marginally and refer to the vast literature on variational methods in Chap. 7.

The superposition operator (1.8) has some remarkable properties. One “algebraic”
property which is called the local determination of F is described in the following:

Lemma 1.2 (Jürgen and Zabreĭko [297]) The superposition operator F has the
following three (equivalent) properties:

(a) For D ⊆ �,

F PD − PD F = P�\D Fθ, (1.10)

where θ is the almost everywhere zero function.
(b) For D ⊆ �,

PD F PDx = PD Fx, P�\D F PD x = P�\D Fθ.

(c) If two functions x1 and x2 coincide on D ⊆ �, then the functions Fx1 and Fx2

also coincide on D.

We suppose that the reader is familiar with the construction and the basic properties
of the (Lebesgue) integral. In what follows, we shall denote by L the set of all
(Lebesgue) integrable functions over �, equipped with the norm

‖x‖ =
∫

�

|x(s)|dμ(s). (1.11)

If the measure μ under consideration is fixed, we shall write simply ds instead of
dμ(s).
The Carathéodory conditions– Let � be a measurable subset of Rn and f (s, x) be
a function of two variables s and x , where−∞ < x <∞, s ∈ �. Then, the function
f is said to satisfy the Carathéodory conditions if

(i) f (s, x) is continuous with respect to x for almost all s ∈ �, and
(i i) f (s, x) is measurable with respect of s for all values of x .
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Carathéodory function– A function f = f (s, u) is called Carathéodory function if
it satisfies the Caratheodory conditions; i.e., if f (s, ·) is continuous on R for almost
all s ∈ �, and f (·, u) is measurable on � for all u ∈ R.

The characteristic properties of the nonlinear superposition operators associated
with a Carathéodory function has been extensively studied by many researcher (see,
e.g., Jügen and Zabreǐko [297], Jürgen and Väth [298], Väth [602] and the references
cited therein). We state these properties established by Väth [602].

In what follows, let U, V be pseudometric spaces, and T be a measure space.

Proposition 1.18 Let f : D ⊆ T ×U → V be a Carathéodory function and let F
be its associated superposition operator. Let F map with a set B of measurable
functions into measurable functions. If f is a Carathéodory function, then F is
sequentially continuous on B with respect to convergence in finite measure.

The question whether a superposition operator maps measurable functions into
measurable functions is a delicate problem, even in the scalar case: Product measur-
ability of f is neither necessary nor sufficient, see, e.g., [297]. In the most important
case D = T × M the Carathéodory condition is sufficient:

Proposition 1.19 If f : T × M → V with M ⊆ U satisfies the Carathéodory con-
dition, then F maps measurable functions with values in M into measurable func-
tions.

The theory of superposition operator received a new impetus after the fundamental
paper of Krasnoslskii [342] who showed a necessary and sufficient condition for the
superposition operator to be continuous from the space L p into Lq .

Theorem 1.40 Let f satisfy the Carathéodory conditions. The superposition oper-
ator F generated by the function f maps continuously the space L p(�) into
Lq(�) (p, q � 1) if and only if

| f (s, x)| � a(s)+ b|x | p
q ,

for all s ∈ � and x ∈ R, where a ∈ Lq(�) and b � 0.

The fundamental property of the superposition operator defined on the space L1

is contained in the following theorem.

Theorem 1.41 Assume that f : �× R→ R satisfies the Carathéeodory conditions.
Then, the superposition operator F generated by f transforms the space L1 into itself
if and only if | f (s, x)| � a(s)+ b|x | for all s ∈ � and x ∈ R, where a(s) is a from
the space L1 and b is a nonnegative constant. Moreover, the superposition F is
continuous on the space L1.

Remark 1.13 It should be noted that the superposition F takes the values in L∞(�)

if and only if the generating function f is independent on x .
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1.8.1 The Nemytskiĭ Operator

In this section, we give definitions of the Nemytskiĭ operator and its continuity
properties. This operator is, at present, widely used in applications.

Definition 1.50 Let (�,A, μ) be a complete σ -finite measure space and f : �×
Rn → R a Carathéodory function (i.e. for all x ∈ Rn , the function s �→ (s, x) is A-
measurable and for μ-almost all s ∈ �, the function x �→ (s, x) is continuous). It
is well known that such functions are jointly measurable, hence superpositionally
too (i.e. x : �→ Rn is A-measurable, then show is s �→ f (s, x(s))). Thus, we can
define the operator

u �→ N f (x)(·) = f (·, x(·)),

which sends A-measurable functions to A-measurable functions; that is,

N f x(s) = f (s, x(s)).

This operator is known as the Nemytskiĭ operator.

We have the following theorem which is due to Nemytskiĭ [421].

Theorem 1.42 Let � be a set of finite measure. Then, the Nemytskiĭ operator
N f transforms every sequence x1(s), x2(s), . . . which converge in measure into a
sequence N f x1(s), N f x2(s), . . . which also converges in measure.

Proof Let xk(s) converges in measure to x0(s). Let ε > 0 be given. Then, define

�k =
{

s ∈ � : |x0(s)− x | < 1

k
⇒ | f (s, x0(s))− f (s, x)| < ε

}
.

It is clear that �1 ⊂ �2 ⊂ · · · . Because f (s, x) is continuous with respect to x for

almost all s ∈ � and � =
∞⋃

k=1
�k , it implies that

lim
k→∞μ(�k) = μ(�). (1.12)

Let η > 0 be given, then in view of (1.12) we can choose a number k0 such that

μ(�k0) > μ(�)− η

2
or equivalently μ(�−�k0) <

η

2
.

Define Fk =
{

x ∈ � : |x0(s)− xk(s)| < 1
k0

}
. Because {xk(s)} converges to x0(s) in

measure, we have lim
k→∞μ(�− Fk) = 0. Hence there exists an integer m such that

μ(�− Fk) <
η

2 for all k � m.
Let Dk = {s ∈ � : |N f xk(s)− N f x0(s)| < ε}. Then, it is clear that (�k0 ∩ Fk) ⊂

Dk . This in turn implies that (�− Dk) ⊂ �− (�k0 ∩ Fk) = (�−�k0) ∪ (�− Fk).
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This gives

μ(�− Dk) � μ(�−�k0)+ μ(�− Fk)

<
η

2
+ η

2
= η for k � m.

The above inequality implies that {N f xk(s)} converges in measure to N f x0(s). This
completes the proof. �

We now have the following continuity property of the Nemytskiĭ operator N f ,
which is due to Krasnoselskii [342]. Following Krasnoselskii, we state and prove the
next theorem.

Theorem 1.43 Suppose that the operator N f maps L p into Lq ( 1
p + 1

q = 1). Then,
N f is continuous and bounded.

Proof To prove the continuity of N f we assume that μ(�) <∞. Without loss in
generality we assure that N f (0) = 0. It is then sufficient to show that N f is continuous
at 0. If this is not so, there exists a sequence of function xn ∈ L p converging to 0 and
a positive number α such that

∫

�

|N f xn(s)|qds > α, n = 1, 2, . . . (1.13)

Because xn → 0 in L p, without loss in generality, we can assume that

∞∑

n=1

∫

�

|N f xn(s)|pds <∞. (1.14)

We now construct a sequence of numbers εk, functions xnk (s) and sets �k ⊂ � (k =
1, 2, . . .) satisfying the following:

(a) εk+1 < εk
2

(b) μ(�k) � εk

(c)
∫

�k

|N f xnk (s)|qds > 2
3α

(d) for any set D ⊂ �,μ(D) � 2εk+1 implies that

∫

D
|N f xnk |qds <

α

3
.

Construction of the sequence εk, xnk (s) and �k (k = 1, 2, . . .) is done by an
inductive process. Suppose that ε1 = μ(�), xn1(s) = x1(s), �1 = �. If εk, xnk (s)
and �k have been constructed, then for εk+1 we select a number which satisfies
condition (d). This is possible because
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∫

�

|N f xnk |qds <∞

and hence absolutely convergent. Because xnk has already been chosen εk+1 will sat-
isfy the condition (a). By Theorem 1.40, since {N f xnk (s)} converges to 0 in measure,
there exists a number nk+1 and a set Fk+1 ⊂ � such that for s ∈ Fk+1.

|N f xnk+1(s)| <
(

α

3μ(�)

)1/q

(1.15)

with μ(�− Fk+1) < εk+1. (1.16)

Let �k+1 = �− Fk+1. Then, (1.16) implies that (b) is fulfilled. The condition (c)
now follows from (1.13) and (1.16) and the following:

∫

�k+1

|N f xnk+1(s)|qds =
∫

�

|N f xnk+1(s)|qds −
∫

Fk+1
|N f xnk+1(s)|qds >

2

3
α

We now consider the sets

Dk = �k −
( ∞∪

j=k+1
� j

)

, k = 1, 2, . . . .

By virtue of conditions (a) and (b)

μ

( ∞∪
j=k+1

� j

)

�
∞∑

j=k+1

ε j < 2εk+1, k = 1, 2, . . . (1.17)

Define a function ψ(s) by the equation

ψ(s) =
⎧
⎨

⎩

xnk (s), i f s ∈ Dk (k = 1, 2, . . .)

0, if s ∈ ∞∪
j=1

D j
(1.18)

From conditions (c), (d) and (1.17), it follows that

∫

Dk

|N f ψ(s)|q =
∫

Dk

|xnk (s)|qds

�
∫

�k

|N f xnk (s)|qds −
∫

�k−Dk

|N f xnk (s)|qds >
α

3
.

By (1.14), ψ ∈ L p, and so by the assumption on N f , N f ψ ∈ Lq . On the other hand,
NFψ Lq since
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∫

�

|N f ψ(s)|qds �
∞∑

k=1

∫

Dk

|N f ψ(s)|q ds = ∞.

This proves the continuity of N f .
To prove the continuity of N f under the assumption that μ(�| = ∞, we proceed

as follows.
It is enough to show that N f is continuous at 0. This implies that there exists a

sequence {xn(s)} ⊂ L p such that

∫

�

N f xn(s)|qds > α (n = 1, 2, . . .) (1.19)

where α is some positive number. We assume that

∞∑

n=1

∫

�

|xn(s)|pds <∞, (1.20)

We construct a sequence of functions {xnk (s)} and subsets {Dk} of � such that
(a) μ(Dk) <∞, Di ∩ D j = ∅, i 	= j

(b)

∫

Dk

|N f xnk |q ds > α/2 (k = 1, 2, . . .).

This is done in a similar inductive way as before.
Now define a function ψ(s) as in (1.18). By virtue of (1.20), ψ ∈ Lq and hence

N f ψ ∈ Lq . But by our construction (b), N f ψ /∈ Lq , a contradiction.
We now proceed to prove the boundedness of N f . Since N f is continuous at 0,

there exists γ > 0 such that

∫

�

|N f x(s)|qds � 1 whenever
∫

�

|x(s)|pds � γ. (1.21)

Suppose that x(s) ∈ L p. Then, there exists an integer n such that

nγ p � ‖x‖p < (n + 1)γ p. (1.22)

We divide � into subsets �1,�2, . . . , �n+1 such that

∫

� j

|x(s)|pds � γ p ( j = 1, 2, . . . , n + 1).

Then, by (1.21),

∫

�

|N f x(s)|qds �
n+1∑

j=1

∫

� j

|N f x(s)|qds � n + 1,
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and hence, ‖N f x‖ =
(∫

�

|N f x(s)|qds

)1/q

�
((

‖x‖
γ

)p + 1
)1/q

This proves the boundedness of N f . �

As an immediate consequence of this result, we have the following corollary.

Corollary 1.6 Let the function f (s, x) satisfy the condition:

| f (s, x)| � a(s)+ b|x |p/q , (1.23)

where b � 0 and a(s) ∈ Lq(�) ( 1
p + 1

q = 1). Then, the corresponding Nemytskiĭ

operator N f is continuous and bounded from L p(�) to Lq(�).

Remark 1.14 Thus, (1.23) is one of the sufficient conditions for the continuity and
boundedness of the Nemytskiĭ operator from L p(�) to Lq(�). This condition was
first studied by Vainberg in [595]. Subsequently, Nemytskiĭ and Vainberg have pro-
posed other forms of sufficient conditions for the continuity of the operator N f . For
more details, see Kransoselskiĭ [344].

However, if one considers the space C of continuous functions defined on a
closed and bounded subset � of Rn , we get the following theorem which is a direct
consequence of the fact that continuous functions on a compact set are uniformly
continuous.

Theorem 1.44 Let the function f (s, x) be continuous as a map from �× R to R.
Then, the Nemytskiĭ operator N f acts on C and is continuous and bounded.

Remark 1.15 The Nemytskiĭ theorem for the Nemytskiĭ operator (refer to Theo-
rems 1.43–1.45) coincides with known Carathéodory lemma for the superposition
operator.

Observation

• The concept of the Carathéodory operator was established in [317], and it was
shown that the theory of the Carathéodory differential equations can be built
up in a similar manner to the classical one, if the right-hand side of differential
equations contains a Carathéodory operator instead of functions which fulfil the
Carathéodory conditions. In connection with this, the problem was posed by Kartàk
(see [317]) whether every Carathéodory operator can be expressed by means of
a function fulfilling the Carathéodory conditions. This problem was solved in
the affirmative for linear Carathéodory operators in [317]. This problem for gen-
eral Carathéodory operators poses the following question: Is every Carathéodory
operator equivalent to some Nemyckiǐ operator? This problem was solved in the
affirmative by Vrkoč for general Carathéodory operators in [603].
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1.8.2 The Hammerstein Operator

In this section, we give definitions of the Hammerstein operator and its continuity
properties. This operator is, at present, widely used in applications.

In what follows, if one considers the space C of continuous functions defined on
a closed and bounded subset � of R, we get the following theorem.

Theorem 1.45 Suppose the function f (s, x) is continuous as a map from �× R to
R. Then, the Nemytskiĭ operator N f acts on C and is continuous and bounded.

Remark 1.16 It may be remarked that N f is compact only when the range of N f is
a singleton (refer Krasanoselskii [344]).

Definition 1.51 Let � be a compact subset of R, k(s, t) a kernel defined on �×�,
and let f (s, x) be as before. Then, the Hammerstein operator F is defined as

[Fx](s) =
∫

�

k(s, t) f (t, x(t))dt.

If K is the linear integral operator defined by the kernel k(s, t):

[K x](s) =
∫

�

k(s, t)x(t) dt,

then F can be written in the form F = K N f .

The following theorem gives a sufficient condition for the Hammerstein operator F
to be continuous and compact on L p(�).

Theorem 1.46 Let the kernel k(s, t) be such that

∫

�

∫

�

|k(s, t)|q dsdt <∞

and f (s, x) be a function as defined before satisfying condition (1.23). Then, the
Hammerstein operator F is continuous and compact on L p.

Proof As observed above, F = K N f where

[K x](s) =
∫

�

k(s, t)x(t)dt and [N f x](s) = f (s, x(s)).

By Corollary 1.6, N f is a continuous and bounded operator from L p(�) to Lq(�).

Also because k(s, t) is Hilbert–Schmidt, it follows that K is a continuous and compact
operator from Lq to L p. Because F is a composition of K and N f , it follows that F
is continuous and compact on L p. �
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1.8.3 The Urysohn Operator

In this section, we give definitions of the Urysohn operator and its continuity prop-
erties. This operator is, at present, widely used in applications.

Definition 1.52 Let K (s, t, x), (s, t ∈ �−∞ < x <∞,� a measurable subset of
Rn) given function of three variables. Then, the operator U defined as

[U x](s) =
∫

�

K (s, t, x(t))dt (1.24)

is called the Urysohn operator.

Again using the fact that continuous functions on a compact set are uniformly contin-
uous, we get the following theorems which give sufficient conditions for the Urysohn
operator U to be continuous and compact on the space C and L p, respectively.

Theorem 1.47 (Ladyzhenskii [354]) Suppose that the function

K (s, t, x) (s, t ∈ �, −∞ < x <∞)

satisfies the following conditions.
(a) K (s, t, x) is continuous with respect to x for almost all s, t ∈ � and measurable
with respect to t for all s ∈ �,−∞ < x <∞,

(b) for every positive number α

∫

�

sup
|x |�α

|K (s, t, x)|dt <∞

lim‖h‖→0

∫

�

sup
|x |�α

|K (s + h, t, x)− K (s, t, x)|dt = 0.

Then, the Urysohn operator U acts on C and is continuous and compact.

Theorem 1.48 (Krasnoselskii and Ladyzenskii [347]) Let the function K (s, t, x)

(s, t ∈ �, −∞ < x <∞, � a bounded closed subset of Rn) be continuous with
respect to x and satisfy the inequality

|K (s, t, x)| � R(s, t)(a + b|x |p/q)

for all s, t ∈ �,−∞ < x <∞ with

∫

�

∫

�

|R(s, t)|pdsdt <∞, a, b > 0.

Then, the Urysohn operator U is a compact and continuous operator on L p.
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1.9 The Sobolev Spaces

Let Rn denote the n-dimensional real Euclidean space and N0 = N ∪ {0}. For any
points x = (x1, x2, . . . , xn) and y = (y1, . . . , yn) ∈ Rn, define

|x | = (x2
1 + · · · + x2

n )1/2, (x, y) = x1 y1 + · · · + xn yn,

where | · | and (·, ·) denote, respectively, the standard 2-norm and inner product in
Rn .

For any x ∈ Rn and α = (α1, . . . , αn), denote

xα = xα1
1 · · · xαn

n , |α| = α1 + · · · + αn,

and Dα = Dα1
n · · · Dαn

n = ∂α1

∂xα1
1

· · · ∂αn

∂xαn
n

.

We consider u : �→ R and denote by

Dαu = ∂ |α|u
∂xα1

1 ∂xα2
2 · · · ∂xαn

n

its partial derivatives of order |α|. Here, α = (α1, . . . , αn)
T ∈ Nn

0 is a multi-index of
modulus |α| =∑n

i=1 αi , and for α = 0, we set D0u = u.
Support – The support of a real or complex function f on Rn , denoted by supp( f ),
is the closure of the set of all points x ∈ Rn at which f (x) 	= 0; that is,

supp( f ) = {x ∈ Rn : f (x) 	= 0}.

Remark 1.17 If f is a continuous function with compact support, suppose I n is any
n-cell which contains the support of f , and define

∫

Rn

f =
∫

I n

f.

Then, the integral so defined is evidently independent of the choice of I n , provided
only that I n contains the support of f .

For an open subset � ⊂ Rn, we define Ck(�), k ∈ N0, the linear space of continuous
functions on � whose partial derivatives Dαu, |α| � k, exist and are continuous.
Ck(�) is a Banach space with respect to the norm

‖u‖Ck (�) := max
0�|α|�k

sup
x∈�

|Dαu(x)|.
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Definition 1.53 Let α be positive number 0 < α < 1. Then, the function u(x) is said
to satisfy Hölder’s condition with exponent α in � or is said to be Hölder continuous
if for x 	= y.

Hα(u) = sup
|u(x)− u(y)|
|x − y|α <∞.

Then, the space Ck,α(�) is defined as

Ck,α(�) = {u| u ∈ Ck(�), Hα(Dβu) <∞, |β| = k
}
.

We note that Ck,α(�) is a Banach space with respect to the norm

‖u‖Ck,α(�) := ‖u‖Ck (�) +max|β|=k
sup

x,y∈�

|Dβu(x)− Dβu(y)|
|x − y|α .

Moreover, Ck
0 (�) and Ck,α

0 (�) are the subspaces of functions with compact support
in �.

Finally, C∞(�) stands for the set of functions with continuous partial derivatives
of any order and

C∞
0 (�) = ∞∩

k=1
Ck

0 (�).

Weak or generalized derivative– Let u ∈ L1(�) and α ∈ Nn
0. The function u is said

to have a weak or generalized derivative Dαu, if there exists a function v ∈ L1(�)

such that for every ϕ ∈ C∞
0 (�) (set of infinitely differentiable functions with compact

support in �), ∫

�

u Dαϕ dx = (−1)|α|
∫

�

vϕdx .

We then set Dαu := v and call v the αth weak or generalized derivative of u. More
precisely, we have the following definition.

Definition 1.54 A function u ∈ L p(�) is said to possess generalized derivatives
Dαu of order up to k if there exists a sequence {un} ⊂ C∞(�) such that

{
Dαun

}
is

Cauchy in L p(�) converging to Dαu for |α| � k and un → u in L p(�).

The notion “weak derivative” suggests that it is a generalization of the classical con-
cept of differentiability and that there are functions which are weakly differentiable,
but not differentiable in the classical sense. To this end, let us consider the following
example.

Example 1.43 Let n = 1 and � := (−1, 1). The function u(x) := |x |, x ∈ �, is not
differentiable in the classical sense. However, one can easily see that it admits a weak
derivative D1u given by

D1u =
{
−1, when x < 0

1, when x > 0.
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Indeed, for ϕ ∈ C∞
0 (�), we obtain by partial integration

∫ 1

−1
u(x)D1ϕ(x)dx =

∫ 0

−1
u(x)D1ϕ(x)dx +

∫ 1

0
u(x)D1ϕ(x)dx

= −
∫ 0

−1
D1u(x)ϕ(x)dx + (uϕ)|0−1 −

∫ 1

0
D1u(x)ϕ(x)dx + (uϕ)|10

= −
∫ 1

−1
D1u(x)ϕ(x)dx + [u(0)]ϕ(0),

where [u(0)] := u(0+)− u(0−) is the jump of u in x = 0. But u is continuous at
x = 0, and hence, [u(0)] = 0 which gives

∫ 1

−1
u(x)D1ϕ(x)dx = (−1)1

∫ 1

−1
v(x)ϕ(x)dx, where D1u = v.

This allows to conclude.

It is easy to show that if u has a weak derivative Dαu, and if Dαu has a weak
derivative Dβ(Dαu), then u has a weak derivative Dβ+αu and Dβ+αu = Dβ(Dαu).
One can also derive other standard properties.

Definition 1.55 The Sobolev space W k,p(�) for p ∈ [1,∞) is the set of all functions
u ∈ L p(�) which have generalized derivatives up to order k such that Dαu ∈ L p(�)

for |α| � k. We set W 0,p(�) = L p(�).
In other words, the Sobolev space W k,p(�) is the closure of C∞(�) with respect to
the norm

‖u‖k,p =
[ ∑

|α|�k

∫

�

|Dαu|pdx
]1/p

. (1.25)

Definition 1.56 (The space H k) In the special case where p = 2, we define the
Hilbert–Sobolev space H k(�) := W k,2(�). The space H k(�) is endowed with the
inner product

〈u, v〉H k :=
∑

|α|�k

∫

�

Dαu Dαv dx .

Similarly, we define
H k

0 (�) := W k,2
0 (�).

Observation

• The space W k,p together with the norm ‖ · ‖k,p =
[∑

|α|�k

∫
�
|Dαu|pdx

]1/p
is a

real Banach space, provided we identify any two functions that differ on a set of
n-dimensional Lebesgue measure zero.

• The space W k,p is separable for p ∈ [1 � p <∞), but for p ∈ (1,∞), it is uni-
formly convex and thus reflexive.

• For p = 2, W k,2(�) is a Hilbert space with inner product
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〈u, v〉k,2 =
∑

|α|�k

∫

�

Dαu Dαv dx .

• W k,p can be considered as the equivalence classes of Cauchy sequences of elements
from C∞. If u ∈ W k,p, then there exists a sequence {un} ⊂ C∞ such that Dαun

is Cauchy in L p, |α| � k and un → u in L p.

The spaces W k,p(�) can be modified to incorporate boundary conditions. The clo-
sure of C∞

0 (�) in W k,p(�) is denoted by W k,p
0 (�) and it contains functions whose

generalized derivatives up to order k vanish on the boundary ∂� of �.
For bounded domain �, a basic inequality of Poincare implies the existence of

an absolute constant c(�) such that for u ∈ W 1,p
0 (�) (1 < p <∞),

‖u‖L p � c(�)‖∇u‖L p .

So, one can define in W k,p
0 (�) a ‘short norm’, given by

‖u‖k,p =
[ ∑

|α|=k

∫

�

|Dαu |pdx
]1/p

.

which is equivalent to the norm given by (1.25).
For bounded domain �, W k,p

0 (�) ⊂ W k,l
0 (�) for k > 1. Thus, each u ∈ W k,p

0 (�)

could be associated with an element in W 1,p
0 (�). This mapping is called an imbedding

of W k,p
0 (�) into W 1,p

0 (�). The following lemma, called Rellich’s lemma, says that
this mapping is actually compact.

Lemma 1.3 Let�be bounded. Then, the imbedding of W k,p
0 (�) into W k,l

0 (�), k > l
is compact.

In general, we have the following imbedding theorem due to Sobolev.

Theorem 1.49 (The Sobolev imbedding theorem) Let � be a bounded open subset
of Rn with smooth boundary. Then,

(i) if 0 � l < k, then W k,p(�) ⊂ W l,r (�) for 1
r ≥ 1

p − 1
n (k − l) with continuous

imbedding mapping. The imbedding is compact if 1
r > 1

p − 1
n (k − l) and r <∞,

(ii) if 0 � l < k and 1
p − 1

n (k − l) < 0, then W k,p(�) ⊂ Cl,α(�) for any α with

0 < α < 1 such that 1
p − 1

n (k − l − α) < 0. The imbedding mapping is always
compact in this case.

1.9.1 Elliptic Operators

We now define elliptic operators. Consider a linear differential operator of the form
A = A(x, D) = �|α|�kaα(x)Dα, where aα(x) are real-valued functions defined on
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� ⊂ Rn . We assume that not all aα vanish on � for |α| = k, k is the order of A and

A′ = A′(x, D) =
∑

|α|=k

aα(x)Dα.

Definition 1.57 A differential operator A is said to be

(i) elliptic at x0 ∈ � if for any real ξ 	= 0, A′(x0, ξ) 	= 0.

(i i) uniformly elliptic if there exists a constant c > 0 such that

c−1|ξ |k � |A′(x, ξ)| � c|ξ |k for x ∈ �, and real ξ 	= 0.

Example 1.44 The Laplace operator � = D2
1 + · · · + D2

n is uniformly elliptic and
so is the biharmonic operator � = (D2

1 + D2
2)

2.

Definition 1.58 Let k = 2l. Then, A is said to be strongly elliptic at x0 ∈ � if
(−1)l Re A′(x0, ξ) > 0 for all real ξ 	= 0.

Notice that −�,�2 are strongly elliptic.
For a more detailed treatment on the Sobolev spaces, refer to Agman [7].

1.9.2 Semilinear Equations of Evolution

Definition 1.59 (Strongly continuous semigroups) Let X be a Banach space. A one-
parameter family S(t)(t � 0) of bounded linear operators on X is said to be a strongly
continuous semigroup (C0-semigroup, for short) if

(a) S(0) = I (identity operator on X );
(b) S(t + s) = S(t)S(s) for every t, s � 0;
(c) lim

t→0
S(t)x = x for every x ∈ X (strong continuity).

Notice that as a direct application of the uniform boundedness theorem, there exist
ω � 0 and M � 1 such that

‖S(t)‖L(X) � Meωt , ∀t � 0.

This in turn entails the continuity of the map t �→ S(t)x from [0, 1) to X , for every
fixed x ∈ X (cf. Pazy [468]).

The linear operator A of domain D(A) =
{

x ∈ X : limt→0
S(t)x−x

t exists
}

defined

by

Ax = lim
t→0

S(t)x − x

t
, ∀x ∈ D(A)

is the infinitesimal generator of the semigroup S(t).
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We now recall some basic facts on A (see, e.g., Pazy [468]).

Proposition 1.20 A is a closed linear operator with dense domain. For every fixed
x ∈ D(A), the map t �→ S(t)x belongs to C1([0,∞),D(A)) and

d

dt
S(t)x = AS(t)x = S(t)Ax .

1.9.3 Principle of Abstract Minimization

Problems of minimizing a finite function over some subset of Rn correspond one-to-
one with problems of minimizing over all ofRn a function f : Rn → R = R ∪ {+∞},
under the identifications:

D( f ) = dom f = set of feasible solutions,

argmin f = set of optimal solutions,

inf f = optimal value.

We use the convention that argmin f = ∅ when f ≡ ∞. This ensures that a problem
is not regarded as having an optimal solution if it does not even have a feasible
solution. A lack of feasible solutions is signalled by the optimal value being∞. The
notation argmin f refers to points x̄ giving a global minimum of f . A local minimum
occurs at x̄ if f (x̄) <∞ and f (x) > f (x̄) for all x ∈ V , where

V ∈ Nx̄ := the collection of all neighborhoods of x̄ .

Then, x̄ is a locally optimal solution to the problem of minimizing f (Fig. 1.9).

Fig. 1.9 Local and global
optimality in classical case
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1.10 Optimal Control Theory

Optimal control is a method of automatic control in which the operating condi-
tions of the controlled object are established and maintained such that the extremum
value (minimum or maximum) of some criterion that characterizes the quality of
the object’s operation is achieved. The criterion of quality usually called the target
function, objective function, or performance index may be a directly measurable
physical quantity, such as temperature, current, voltage or pressure, or it may be
efficiency, throughput or some other parameters. In this context, first we have some
basic terminologies of optimal control theory.
Dynamical system – A dynamical system is a system in which a function describes
the time dependence of a point in a geometrical space. Examples include the math-
ematical models that describe the swinging of a clock pendulum, the flow of water
in a pipe and the number of fish each springtime in a lake.
Trajectory – If the given dynamical system can be solved, given an initial point it
is possible to determine all its future positions, a collection of points known as a
trajectory or orbit.

Optimal control theory deals with optimization problems involving a controlled
dynamical system. A controlled dynamical system is a dynamical system in which
the trajectory can be altered continuously in time by choosing a control parameter
α(t) continuously in time. A deterministic controlled dynamical system is usually
governed by an ordinary differential equation in the following form:

For a given set U called the control set and for t ∈ R+ = [0,∞), the governing
ODE is

ẋ(t) = f (t, x(t), α(t)), t > 0

x(0) = x0 ∈ Rn

}

(1.26)

where α : Rn → U is a function called control, f : R+ × Rn ×U → Rn and the
unknown is the curve x : R+ → Rn , which we interpret as the dynamical evolution
of the state of some “system”.

By choosing the value of α(t), the state trajectory x(t) can be controlled. The
objective of controlling the state trajectory is to minimize a certain cost associated
with (1.26).
Payoffs– Our overall task will be to determine what is the “best” control for our
system. For this, we need to specify a specific payoff (or reward) criterion. Let us
define the payoff functional

P[α(·)] :=
∫ T

0
r(t, x(t), α(t))dt + g(x(T )), (P)

where x(·) solves ODE (1.26) for the control α(·). Here, r : R× Rn ×U and g :
Rn → R are given, and we call r the running payoff and g the terminal payoff. The
terminal time T > 0 is given as well.
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Optimal control– Our aim is to find a control α∗(·), which maximizes the payoff.
In other words, we want

P[α∗(·)] � P[α(·)]

for all controls α(·) ∈ U . Such a control α∗(·) is called optimal.
To illustrate the theory, consider the following important problem studied by

Bushaw and Lasalle in the field of aerospace engineering. Let x(t) represent the
deviation of a rocket trajectory from some desired flight path. Then, provided the
deviation is small, it is governed to a good approximation by

ẋ(t) = A(t)x(t)+ B(t)α(t), t > 0

x(0) = x0, x(T ) = 0, α(t) ∈ [−1, 1]

}

(1.27)

where A and B are appropriate matrix valued functions. The vector x0 is the initial
deviation, α(t) is the rocket thrust at time t and T is the final time. The problem is
that of finding a rocket thrust history to minimize

P[α(·)] :=
∫ T

0
c(t, x(t), α(t)) dt (1.28)

where x(·) solves ODE (1.27) for the control α(·) and c is a certain cost function.
Here, the aim is to reduce the deviation to zero over the time interval [0, T ] and at
the same time to make the value of P[α(·)] as small as possible. The cost function
c is chosen so that J (α) has the interpretation of, say, fuel consumption or (via a
change of independent variable) the time taken to reduce the deviation to zero.

Subsequently, Pontryagin and his collaborator studied the following optimal con-
trol problem : minimize

∫ T

0
c(t, x(t), α(t))+ g(x(T ))

subject to ẋ(t) = f (t, x(t), α(t))

x(0) ∈ C0, x(T ) ∈ C1, u(t) ∈ U

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1.29)

where c, f, g are appropriate functions, and C0 ∈ Rn, C1 ∈ Rn . Minimization is car-
ried out over control functions α(·) and the corresponding solutions to the differential
equations which satisfy the constraints. The importance of the formulation of the opti-
mal control problem cannot be overemphasized. It incorporates a large number of
dynamic optimization problems of practical interest. In particular, it also subsumes
the classical problem of calculus of variations. Indeed, put

f (t, x, u) = u, g = 0.

Then, the above problem reduces to: minimize
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∫ T

0
c(t, x(t), ẋ(t)) dt

subject to x(0) ∈ C0, x(T ) ∈ C1.

Let us consider another example of a moon lander problem. This model asks us
to bring a moon lander to a soft landing on the lunar surface, using the least amount
of fuel.

First of all, we introduce the notation

h(t) = height at time t

v(t) = velocity = ḣ(t)

m(t) = mass of spacecraft (changing as fuel is burned)

α(t) = thrust at time t.

We now assume that 0 � α(t) � 1, and by Newton’s law, we have

mḧ = −gm + α,

the right-hand side being the difference of the gravitational force and the thrust of
the rocket. This system is modelled by the ODE

v̇ = −g + α(t)

m(t)

ḣ(T ) = v(t)

ṁ(t) = −kα(t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1.30)

Summarizing these equations for t ∈ R+, we obtain

ẋ(t) = f (t, x(t), α(t))

where x(t) = (v(t), h(t), m(t)). We want to minimize the amount of fuel used up,
that is, to maximize the amount remaining once we have landed. Let us take a payoff
functional

P[α(·)] = m(τ ),

where τ denotes the first time that h(τ ) = v(τ ) = 0. We have also the extra con-
straints h(t) � 0, m(t) � 0. Because the final time is not given in advance, this is
usually called a variable endpoint problem (Fig. 1.10).
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Fig. 1.10 A moon lander
landing on the moon

1.11 Nonlinear Stochastic Operator Equations

We begin this section reviewing some aspects of random operator. The notion of
random variable plays a crucial role in the formation of nonlinear stochastic equa-
tions. A random variable or stochastic variable is a variable whose possible values
are numerical outcomes of a random phenomenon. As a function, a random variable
is required to be measurable.
Probability space– A probability space is a triple (�,�, P), where � is a set, � a σ -
algebra of subsets of �, P : � → [0, 1] a mapping such that P(∅) = 0, P(�) = 1,
and

P(
∞∪

i=1
Ai ) =

∞∑

i=1

P(Ai ),

provided Ai ∩ A j = ∅ for all i 	= j.
A typical point in � is denoted by ω and is called a sample point. A set A ∈ �

is called an event. We call P a probability measure on �, and P(A) ∈ [0, 1] is
probability of the event A.
Random variable– A random variable X is a mapping X : �→ R such that for all
t ∈ R

{ω|X (ω) � t} ∈ �.

We usually employ capital letters to denote random variables. Often, the dependence
of X on ω is not explicitly displayed in the notation.
Expected value– Let X be a random variable, defined on some probability space
(�,�, P). The expected value of X is

E[X ] :=
∫

�

X d P.

Stochastic process– A stochastic process is a collection of random variables
X (t)(0 � t <∞), each defined on the same probability measure space (�,�, P).

A general dynamical system can be viewed as nonlinear and stochastic and is
represented by the operator equation

Fu = g (1.31)
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where g may be stochastic process or simply a function, and F represents a nonlinear
stochastic operator which may be differential or algebraic operator. Script letter will
denote stochasticity for an operator. Since Fu may have linear and nonlinear parts,
we will write (1.31) in a more general form as

L u +N u = g. (1.32)

Here, L denotes a linear stochastic operator and N is a nonlinear stochastic term.
If both operators are deterministic, (1.32) is written as

Lu + Nu = g (1.33)

where g again may be deterministic or stochastic. In (1.32), the linear operator L
may be decomposed into deterministic and stochastic (linear) operators; thus,

L = L +R. (1.34)

It may be convenient to use L as the average of L ; i.e., L = 〈L 〉. Then, R = L − L
is a zero-mean random operator. Suppose t is our independent variable and L is an
nth-order differential (stochastic) operator given by

L =
n∑

i=0

ai (t, ω)
di

dt i
(1.35)

where ai (t, ω) may be stochastic processes defined on a suitable probability space,
then

L =
n∑

i=0

〈ai (t, ω)〉 di

dt i
(1.36)

and

R =
n−1∑

i=0

αi (t, ω)
di

dt i
(1.37)

where the fluctuation component xi of each coefficient ai is given by

αi (t, ω) = ai − 〈ai 〉. (1.38)

Because it is necessary that L be invertible and the choice of L = 〈L 〉 may make
the decomposition of the Green function difficult, we can choose a simple L more
easily invertible such as L equal to the highest-order derivative only. In this case, we
have

L = L + R +R (1.39)
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where R is again a random operator and the deterministic operator is written as
L + R, where R is simply the remainder operator or remaining part of the operator
where L is specified as the highest-ordered term and R is the term containing random
processes.

Observe that N u, the nonlinear part, may be deterministic written as Nu or it
may also have a stochastic part which we identify as M u; that is,

N u = Nu +M u.

Assume that Nu is a nonlinear function f (u). Later, we will consider expressions
where nonlinear term is a function of u and one or more derivatives of u such as
f (u, u′) and various composite and product functions such as u3u′, uu′′, u2u′′′, uuiv

or f (u, u′, . . . , u(m)). The operator F may involve derivatives with respect to one
or more independent variables such as x, y, z, t or mixed derivatives. We will defer
these cases. We will assume the same probability space for each process; it is easy
enough to make them different, but it obscures notational convenience. We shall
observe the following:
Case I. If the independent variable is t , then L may be d2

dt2 , for example, or d2

dt2 +
α(t) d

dt + β(t).
Case II. If the independent variables are x, y, z, t , then we may have L = Lx +
L y + Lz + Lt , where, for example, Lx = d2

dx2 , L y = d
dy . until treat multidimensional

equations we consider a single independent variable t . Thus, finally we have the
operator equation Fu = g as

Lu + Ru +Ru + Nu +M u = g (1.40)

Note that there are five terms on the LHS of (1.40), among them any one, two, three,
or four may vanish; so we include a very wide range of possibilities in the single
equation (1.40) whose solution we will consider in stochastic system.

1.11.1 Stochastic Control Theory

Now assume f : Rn × A → Rn , and turn attention to the controlled stochastic dif-
ferential equation:

Ẋ(s) = f (X(s), A(s))+ ξ(s) (t � s � T )

X(t) = x0.

}

(SDE)

Definition 1.60 (i) A control A(·) is a mapping of [t, T ] into A, such that for each
time t � s � T, A(s) depends only on s and observations of X(τ ) for τ ∈ [t, s]
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(i i) The corresponding payoff functional is

Px,t [A(·)] = E
( ∫ T

t
r(X(s), A(s))ds + g(X(T ))

)
, (P)

the expected value over all sample paths for the solution of (SDE). As usual, we are
given the running payoff r and terminal payoff g.

Our goal is to find an optimal control A∗(·), such that

Px,t [A∗(·)] = max
A(·)

Px,t [A(·)].

Dynamic programming – To apply dynamic programming method, we firstly define
the value function

v(x, t) := sup A(·)Px,t [A(·)].

The overall plan to find an optimal control A∗(·) will be

(i) to find a Hamilton–Jacobi–Bellman type of PDE that v satisfies, and then
(i i) to utilize a solution of this PDE in designing A∗.

1.12 Variational Method in the Hilbert Space

In this section, we review certain topics in the elementary theory of the Hilbert spaces
which lead directly to abstract variational or weak formulation of boundary value
problems. But, first we introduce the notion of projection operator and some related
basic results.
Projection – Let K be a nonempty closed subset of Rn and x ∈ Rn . A point x̄ ∈ K
is said to be the projection of x on K or best approximation of x on K , denoted by
x̄ = PK (x), if

‖x − x̄‖ = min
y∈K

‖x − y‖.

If x ∈ K , then the projection is unique and x̄ = x . We note that the projection of x
on K may not always exist (e.g. if K is open) and when it exists it may not be unique
(e.g. if K = {x ∈ R2 : ‖x‖ � 1} and x is the origin). However, under closedness and
convexity assumptions, the following assertion holds.

Proposition 1.21 Let K be a nonempty closed convex subset of Rn and x a point in
Rn with x /∈ K . Then, there exists a unique point x̄ ∈ K such that

‖x − x̄‖ = min
y∈K

‖x − y‖. (1.41)

Also, the unique point x̄ satisfies the following inequality:

〈x − x̄, y − x̄〉 � 0, for all y ∈ K . (1.42)
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The inequality (1.42) shows that x − x̄ and y − x̄ subtend a nonacute angle between
them. The projection PK (x) of x on K can be interpreted as the result of applying
to x the operator PK : Rn → K , which is called the projection onto K .

Corollary 1.7 Let K be a nonempty closed convex subset of Rn. Then, for all x, y ∈
Rn,

‖PK (x)− PK (y)‖ � ‖x − y‖, (1.43)

that is, the projection operator PK is nonexpansive. In particular, PK is continuous
on K .

The geometric interpretation of the nonexpansivity of PK is given in Fig. 1.11b.
We observe that if strict inequality holds in (1.41), then the projection operator PK

reduces the distance. However, if the equality holds in (1.41), then the distance is
conserved.

In what follows, let H denote a Hilbert space with norm ‖ · ‖, scalar product (·, ·)
and dual space H∗. A subset K of H is called closed if {xn} ⊂ K and lim

n→∞ xn = x

imply x ∈ K . The subset K is convex if x, y ∈ K and 0 � t � 1 imply t x + (1−
t)y ∈ K . The following minimization principle is fundamental.

Theorem 1.50 Let K be a closed, convex, nonempty subset of the Hilbert space H,
and let f ∈ H∗. Define ϕ(x) = 1

2‖x‖2 − f (x), x ∈ H. Then, there exists a unique

x ∈ K : ϕ(x) � ϕ(y), for all y ∈ K . (1.44)

Lemma 1.4 For each closed convex nonempty subset K of H, there is a projection
operator PK : H → K for which PK (x) is that point of K closest to x ∈ H; it is
characterized by

PK (x) ∈ K : (PK (x)− x, y − PK (x)) � 0, y ∈ K . (1.45)

It follows from this characterization that the function PK satisfies

Fig. 1.11 a Projection of a point x onto K and b nonexpansiveness of projection operator
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‖PK (x)− PK (y)‖2 � (PK (x)− PK (y), x − y), x, y ∈ H. (1.46)

For, if λ = 〈PK (x)− PK (y), PK (y)− y〉 and μ = 〈PK (y)− PK (x), PK (x)− x〉.
By Lemma 1.4, λ � 0 and μ � 0. Write μ = 〈PK (x)− PK (y), x − PK (x)〉. Then,

λ+ μ = 〈2(PK (x)− PK (y)), x − y + PK (y)− PK (x)〉
= 2

{〈PK (x)− PK (y), x − y)− ‖PK (x)− PK (y)‖2
}
.

Because λ+ μ � 0, this yields (1.46).
But the Cauchy–Schwarz inequality implies

(PK (x)− PK (y), x − y) � ‖PK (x)− PK (y)‖‖x − y‖.

Combining the above inequality with (1.46) yields

‖PK (x)− PK (y)‖2 � ‖PK (x)− PK (y)‖‖x − y‖.

From this, we see that PK is a contraction; i.e.,

‖PK (x)− PK (y)‖ � ‖x − y‖, x, y ∈ H (1.47)

and that, in view of (1.46), PK satisfies the angle condition

(PK (x)− PK (y), x − y) � 0, x, y ∈ H. (1.48)

That is, the operator PK is monotone (cf., Sect. 4.1).

Proposition 1.22 (Zarantonello, [618]) For every element x in H, PK (x) is char-
acterized by the following properties:
(1) 〈PK (x)− x, y〉 � 0 for all y in K ,
(2) 〈PK (x)− x, PK (x)〉 = 0.

Exercises

1.1 Let BC(X) denote the linear space of all bounded continuous scalar-valued
functions defined on a topological space X . Show that BC(X) is a Banach space
under the norm

‖ f ‖ = sup
x∈X
|x |, f ∈ BC(X).
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1.2 Prove that the linear space C[a, b] of real-valued continuous functions defined
on [a, b] is a Banach space under the norm

‖ f ‖ = sup
x∈X
|x |, f ∈ C[a, b].

1.3 Let X be a nonzero normed linear space. Prove that X is a Banach space if and
only if S = {x ∈ X : ‖x‖ = 1} is complete.

1.4 Show that ϕ(x) =
(
(|x1|)1/2 + (|x2|)1/2

)2
does not define a norm on a vector

space of all ordered pairs x = (x1, x2) of real numbers.

1.5 Show that
∞∑

n=1
2−n|xn| defines a norm on �∞ and on �1.

1.6 Show that {e j }, where e j = (0, 0, · · · , 0, 1, 0, · · · ) with 1 in the jth place, is
not a Hamel basis for the space �p, 1 � p <∞, but it is a Schauder basis for these
spaces.

1.7 Let X be a Banach space, and let {xn} be a sequence of elements of X such that
∞∑

n=1
‖xn‖ <∞. Then, show that the infinite series

∞∑

n=1
xn is convergent and defines

an element of X .

1.8 Show that an infinite-dimensional Banach space cannot have a countable basis.

1.9 Show that a Banach space having a Schauder basis is separable.

1.10 Let (X, ‖ · ‖) be a normed linear space. Show that if xn ⇀ x , then lim
n
‖xn‖ ≥

‖x‖, where lim
n
‖xn‖ = lim

k
sup
n>k
‖xn‖.

1.11 Let (X,A, μ) be a measure space, then show that H := L2(X,A, μ) with
inner product

( f, g) =
∫

X
f · ḡ dμ

is a Hilbert space. Show also that every Hilbert space is “equivalent” to a Hilbert
space of this form.

1.12 Show that the spaces c0, �p such that 1 < p <∞ all lack Schur’s property.

1.13 Let (X,A, μ) be a measure space and μ(X) <∞. Prove that for p ≥ q ≥ 1,

L p(X, μ) ⊂ Lq(X, μ).



Chapter 2
Geometry of Banach Spaces and Duality
Mapping

The enchanting charms of this sublime science, mathematics
reveal only to those who have the courage to go deeply into it.

Carl Friedrich Gauss
The study of convex sets is a branch of geometry, analysis and
linear algebra that has numerous connections with other areas
of mathematics and serves to unify many apparently diverse
mathematical phenomena.

Victor Klee (1950)

In this chapter, we are mainly concern with geometrical structures such as convexity
and smoothness of Banach spaces. Indeed, various kind of convexity and smoothness
of Banach spaces play an important role in the existence and approximation of fixed
points of nonlinear mappings. The necessary concepts of the geometry of normed
spaces—strict convexity and uniform convexity—are also discussed. This chapter
also deals with useful properties of duality mappings that interplay with these geo-
metrical structures of Banach spaces. In Sect. 2.1, we deal with strict convexity while
Sect. 2.2 mainly concern with uniform convexity. In Sect. 2.3, we discuss modulus
of convexity. In Sect. 2.4, we mainly concern with smoothness of Banach spaces.
Section 2.5 mainly deals with the concept of duality mapping from a Banach space
X to its dual X∗. A discussion on these is important for a better understanding of the
properties of duality mapping.
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2.1 Strict Convexity

Throughout this section, X denotes a real Banach space endowed with norm ‖ · ‖
and X∗ its dual with norm ‖ · ‖∗. For x ∈ X, j ∈ X∗, the duality pair (x, j) is the
value of j at x . Alternatively, we will also use j (x) for the same.

Note that the basic property of a norm of a Banach space X is that it is always
convex, i.e.

‖λx + (1− λ)‖y‖ � λ‖x‖ + (1− λ)‖y‖ for all x, y ∈ X and λ ∈ [0, 1].

However, we notice that a number of Banach spaces do not have equality when
x �= y, i.e.

‖λx + (1− λ)‖y‖ < λ‖x‖ + (1− λ)‖y‖ for all x, y ∈ X and λ ∈ [0, 1].

This suggests strict convexity of norm.

Definition 2.1 Let C be a subset of X , then e ∈ C is said to be extreme point of C
if e is not an interior point of any segment with endpoints in C . That is,

e �= λx + (1− λ)y where x, y ∈ C and 0 < λ < 1.

Definition 2.2 A Banach space X is said to be strictly convex if every point of the
unit sphere SX = {x ∈ X : ‖x‖ = 1} is an extreme point.

Alternatively, X is strictly convex iff x �= y, ‖x‖ = ‖y‖ = 1 implies that
‖λx + (1− λ)y‖ < 1, 0 < λ < 1.

This means that the mid-point x+y
2 of two distinct points x and y in the unit sphere

SX of X does not lie on SX . In other words, if x, y ∈ SX with ‖x‖ = ‖y‖ =
∥
∥
∥

x+y
2

∥
∥
∥,

then x = y.

Example 2.1 Consider R2 with norm ‖ · ‖2 defined as ‖x‖2 =
√

x2
1 + x2

2 ,

x = (x1, x2) ∈ R2. The space R2, equipped with this norm, is strictly convex. This
is very easily seen by looking at the unit sphere given in Fig. 1.4.

However, one can easily see that R2 is not strictly convex with respect to the
1-norm and∞-norm defined as

‖x‖1 = |x1| + |x2|,

‖x‖∞ = max(|x1|, |x2|).
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Example 2.2 (i) Consider X = Rn, n ≥ 2 with 2- norm ‖ · ‖2 defined by

‖x‖2 =
( n

∑

i=1

x2
i

)1/2
, x = (x1, x2, . . . , xn) ∈ Rn.

Then, X is strictly convex.

(i i) Consider X = Rn, n ≥ 2 with 1-norm ‖ · ‖1 defined by

‖x‖1 =
n

∑

i=1

|xi |, x = (x1, x2, . . . , xn) ∈ Rn.

Then, X is not strictly convex. To see it, let x = (1, 0, 0, . . . , 0) and y = (0, 1, 0, . . . , 0).

It is easy to see that ‖x‖1 = 1 = ‖y‖1 =
∥
∥
∥

x+y
2

∥
∥
∥

1
, but x �= y.

(i i i) Consider X = Rn, n ≥ 2 with∞-norm ‖ · ‖∞ defined by

‖x‖∞ = max
1≤i≤n

|xi |, x = (x1, x2, . . . , xn) ∈ Rn.

Then, X is not strictly convex. To see it, let x = (1, 1, 0, . . . , 0) and y = (0, 1, 0, . . . , 0).

It is easy to see that ‖x‖∞ = 1 = ‖y‖∞ =
∥
∥
∥

x+y
2

∥
∥
∥∞

, but x �= y.

Example 2.3 The spaces �1 and �∞ are not strictly convex.
(i)�1 is not strictly convex; for, let x = (1, 0, 0, . . .) and y = (0, 1, 0, 0, . . .). Then,

‖x‖1 = ‖y‖1 = 1 and also
∥
∥
∥

x + y

2

∥
∥
∥

1
=

∥
∥
∥

(1

2
,

1

2
, 0, 0, . . .

)∥
∥
∥

1
= 1.

(ii)�∞ is not strictly convex; for, let x = (1, 0, 0, . . .) and y = (1, 1, 1, . . .). Then,

‖x‖∞ = ‖y‖∞ = 1 and
∥
∥
∥

x + y

2

∥
∥
∥∞

=
∥
∥
∥

(

1,
1

2
,

1

2
, . . .

)∥
∥
∥∞

= 1.

Example 2.4 The space C[0, 1] is not strictly convex. For, if x = t, y = t2, then we
have

‖x‖ = ‖y‖ = 1 and
∥
∥
∥

x + y

2

∥
∥
∥

1
= 1.

Proposition 2.1 The following assertions are equivalent:

(i) X is strictly convex.
(i i) The boundary of the unit ball BX contains no line segments.
(i i i) If x �= y and ‖x‖ = ‖y‖ = 1, then ‖x + y‖ < 2.

(iv) If for x, y, z ∈ X we have ‖x − y‖ = ‖x − z‖ + ‖z − y‖, then there exists
λ ∈ [0, 1] so that z = λx + (1− λ)y.
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(v) Any j ∈ X∗ assumes its supremum at most in one point of the unit ball BX .

Proof The implications (i) ⇒ (i i), (i) ⇒ (i i i) and (i i i) ⇒ (i i) are straightfor-
ward, so we omit the details.
(i i) ⇒ (i). Let x, y ∈ X, x �= y, ‖x‖ = ‖y‖ = 1 and t0 ∈ (0, 1) such that t0x +
(1− t0)y = 1; we shall prove that the segment line [x, y] is on the unit ball B,
which is impossible.

Let us take t0 < t < 1. Then from the equality

1 = t0x + (1− t0)y = t0
t
[t x + (1− t)y] +

(

1− t0
t

)

y

we obtain

1 = ‖t0x + (1− t0)y‖ � t0
t
‖t x + (1− t)y‖ +

(

1− t0
t

)

.

On simplification, this yields ‖t x + (1− t)y‖ � 1; hence, ‖t x + (1− t)y‖ = 1.
The case, when 0 < t < t0, can be proved analogously.

(i)⇒ (iv). Let x, y, z ∈ X be that ‖x − y‖ = ‖x − z‖ + ‖z − y‖; without loss of
generality, we can suppose that ‖x − z‖ �= 0, ‖z − y‖ �= 0 and ‖x − z‖ � ‖z − y‖.
Then, we have

∥
∥
∥
∥

1

2

x − z

‖x − z‖ +
1

2

z − y

‖z − y‖
∥
∥
∥
∥

�
∥
∥
∥
∥

1

2

x − z

‖x − z‖ +
1

2

z − y

‖x − z‖
∥
∥
∥
∥
−

∥
∥
∥
∥

1

2

z − y

‖x − z‖ −
1

2

z − y

‖z − y‖
∥
∥
∥
∥

= 1

2

‖x − y‖
‖x − z‖ −

1

2

‖z − y‖ − ‖x − z‖
‖x − z‖

= 1

2

‖x − z‖ + ‖z − y‖ − ‖z − y‖ + ‖x − z‖
‖x − z‖ = 1.

Hence,
∥
∥
∥

x−z
‖x−z‖ + z−y

‖z−y‖
∥
∥
∥ = 2. Because X is strictly convex, we must have x−z

‖x−z‖ =
z−y
‖z−y‖ and this after simplification yields

z = ‖z − y‖
‖x − z‖ + ‖z − y‖ x + ‖x − z‖

‖x − z‖ + ‖z − y‖ y

or

z = ‖z − y‖
‖x − z‖ + ‖z − y‖ x +

(

1− ‖z − y‖
‖x − z‖ + ‖z − y‖

)

y

Thus, there exists λ ∈ [0, 1] such that z = λx + (1− λ)y, where λ = ‖z−y‖
‖x−z‖+‖z−y‖ .
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(iv) ⇒ (i i i). Let x, y ∈ X be such that x �= y and ‖x‖ = ‖y‖ = ∥
∥ x+y

2

∥
∥ = 1; then

‖x + y‖ = ‖x‖ + ‖y‖. Comparing this equality with ‖x − y‖ = ‖x − z‖ + ‖z − y‖,
we see that there exists λ ∈ (0, 1) so that z = 0 = λx − (1− λ)y, i.e. x = 1−λ

λ
y.

Hence, λ = 1
2 so that x = y, which is a contradiction.

(i)⇒ (v). Suppose that for j ∈ X∗, there are two vectors x �= y, ‖x‖ = ‖y‖ = 1
with (x, j) = (y, j) = ‖ j‖∗; then for λ ∈ (0, 1), we have

‖ j‖∗ = λ(x, j)+ (1− λ)(y, j) = (λx + (1− λ)y, j)

� ‖λx + (1− λ)y‖‖ j‖∗.

Because X is strictly convex, this inequality yields 1 � ‖λx + (1− λ)y‖ < 1, which
is absurd.
(v)⇒ (i i i). Suppose x, y ∈ X , so that x �= y, ‖x‖ = ‖y‖ = 1 and ‖x + y‖ = 2. By
the Hahn–Banach theorem, there exists an j ∈ X∗ such that ‖ j‖ = 1 and

( x+y
2 , j

) =
∥
∥ x+y

2

∥
∥ = 1 hence (x, j)+ (y, j) = 2. Further, (x, j) � ‖x‖‖ j‖∗ = 1 and (y, j) �

‖y‖‖ j‖∗ = 1, it follows that

(x, j) = (y, j) = ‖ j‖∗ = 1

which contradicts (i i i).

Proposition 2.2 A convex set C in a strictly convex space X has at most one point
of minimum norm.

Proof Suppose ρ = inf y∈C ‖y‖. Then, we need to show that C meets the sphere
S(0, ρ) = {x : ‖x‖ = ρ} in at most one point. Suppose, if possible, there exist two
distinct points x1 and x2 in C such that

ρ = ‖x1‖ = ‖x2‖.

By convexity of C , x1+x2
2 ∈ C . As this point is distinct from both minimum norm

points x1 and x2 in C , it follows that ρ �
∥
∥
∥

x1+x2
2

∥
∥
∥. Moreover,

∥
∥
∥

x1 + x2

2

∥
∥
∥ � 1

2

[

‖x1‖ + ‖x2‖
]

= ρ.

Therefore,
∥
∥ x1+x2

2

∥
∥ = ρ.

Notice that the point x1+x2
2 is an interior point of the sphere S(0, ρ). By strict

convexity of X , x1+x2
2 cannot be an extreme point. It follows that x1 = x2. �

Proposition 2.3 Let X be a Banach space. Then, the following statements are equiv-
alent:

(a) X is strictly convex.
(b) For each nonzero j ∈ X∗, there exists at most one x in X with ‖x‖ = 1 such

that (x, j) = j (x) = ‖ j‖∗.
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Proof (a) =⇒ (b). Let us consider C = {y ∈ X : (y, j) = ‖ j‖∗}. Then, we see
that C is a convex subset of X ; for, if y1, y2 ∈ C and 0 < λ < 1, by linearity of j

(λy1 + (1− λ)y2, j) = j (λy1 + (1− λ)y2)

= λ j (y1)+ (1− λ) j (y1)

= λ‖ j‖∗ + (1− λ)‖ j‖∗
= ‖ j‖∗.

This shows that y1, y2 ∈ C and 0 < λ < 1 ⇒ λy1 + (1− λ)y2.Further, since‖ j‖∗ =
(y, j) � ‖ j‖∗‖y‖, it follows that ‖y‖ � 1 for all y ∈ C . By Proposition 2.2, there
is at most one x ∈ C such that inf y∈C ‖y‖ = ‖x‖, and ‖x‖ = 1.

(b) =⇒ (a). Suppose x, y ∈ SX with x �= y such that
∥
∥ x+y

2

∥
∥ = 1. By Corollary

1.3, there exists a functional j ∈ SX∗ such that

‖ j‖∗ = 1 and

(
x + y

2
, j

)

=
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

.

Because (x, j) � ‖x‖‖ j‖∗ = 1 and (y, j) � ‖y‖‖ j‖∗ = 1, we must have
(x, j) = (y, j). This implies, by hypothesis, that x = y. From this, we conclude
that (b) =⇒ (a) is proved. �
Proposition 2.4 Let X be a strictly convex Banach space. If ‖x + y‖ = ‖x‖ + ‖y‖
for 0 �= x ∈ X and y ∈ X, then there exists λ > 0 such that y = λx.

Proof Let x, y ∈ X \ {0} be such that ‖x + y‖ = ‖x‖ + ‖y‖. From Corollary 1.3,
there exists j ∈ X∗ such that

(x + y, j) = ‖x + y‖, and ‖ j‖∗ = 1.

Because 〈x, j〉 � ‖ j‖∗‖x‖ = ‖x‖ and 〈y, j〉 � ‖ j‖∗‖y‖ = ‖y‖, we must have
〈x, j〉 = ‖x‖ and 〈y, j〉 = ‖y‖. Otherwise, we have

‖x + y‖ = (x + y, j) = 〈x, j〉 + 〈y, j〉 < ‖x | + ‖y‖ = ‖x + y‖,

a contradiction. This means that 〈 x
‖x‖ , j〉 = 〈 y

‖y‖ , j〉 = 1. Because X is strictly con-
vexity of X , it follows from Proposition 2.3 that x

‖x‖ = y
‖y| . Therefore, y = λx where

λ = ‖y‖
‖x‖ . �

Proposition 2.5 Let X be a Banach space. Then, the following statements are equiv-
alent:

(a) X is strictly convex.
(b) For every 1 < p <∞,

‖λx + (1− λ)y‖p < λ‖x‖p + (1− λ)‖y‖p for all x, y ∈ X, x �= y and λ ∈ (0, 1).
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Proof (a) =⇒ (b). Suppose X is strictly convex. Assume that x, y Ą∈ X with
x �= y. By strict convexity of X,

‖λx + (1− λ)y‖p < (λ‖x‖ + (1− λ)‖y‖)p for all λ ∈ (0, 1). (2.1)

If ‖x‖ = ‖y‖, then the above inequality gives

‖λx + (1− λ)y‖p < ‖x‖p = λ‖x‖p + (1− λ)‖y‖p.

We now assume that ‖x‖ �= ‖y‖ and consider the function t �→ t p, for 1 < p <∞.
Then, we see that this is a convex function and ( a+b

2 )p < a p+bp

2 for all a, b � 0 and
a �= b.

Thus, from (2.1) with t = 1
2 , we obtain

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

p

�
(‖x‖ + ‖y‖

2

)p

<
1

2

(‖x‖p + ‖y‖p
)

. (2.2)

We now discuss the problem in the following two cases:
Case 1. If 0 < λ � 1

2 , then we have from (2.1) by using (2.2)

‖λx + (1− λ)y‖p =
∥
∥
∥
∥

2λ
x + y

2
+ (1− 2λ)y

∥
∥
∥
∥

p

�
(

2λ

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
+ (1− 2λ)‖y‖

)p

< 2λ‖ x + y

2
‖p + (1− 2λ)‖y‖p

< λ(‖x‖p + ‖y‖p)+ (1− 2λ)‖y‖p

= λ‖x‖p + (1− λ)‖y‖p.

Case 2. If 1
2 < λ < 1, take μ = 2λ− 1; then, we have from (2.1)

‖λx + (1− λ)y‖p =
∥
∥
∥
∥
μx + (1− μ)

x + y

2

∥
∥
∥
∥

p

�
(

μ‖x‖ + (1− μ)

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

)p

< μ‖x‖p + (1− μ)

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

p

< μ‖x‖p + 1

2
(1− μ)(‖x‖p + ‖y‖p) (by(2.2))

= λ‖x‖p + (1− λ)‖y‖p.

(b) =⇒ (a). It is obvious. �
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2.2 Uniform Convexity

In 1936, Clarkson [146] introduced the notion of uniform convexity of norm in a
Banach space. Stated in geometric terms, a norm is uniformly convex if whenever the
mid-point of a variable chord in the unit sphere of the space approaches the boundary
of the sphere, and the length of the chord approaches zero.

Definition 2.3 A Banach space X is said to be uniformly convex if for given ε >

0, 0 < ε � 2, there exists a δ = δ(ε) > 0 such that

∥
∥
∥

x + y

2

∥
∥
∥ � 1− δ whenever ‖x‖ � 1, ‖y‖ � 1, and ‖x − y‖ � ε.

In other words, a Banach space X is uniformly convex if x and y are in the unit
ball BX = {x ∈ X : ‖x‖ � 1} with ‖x − y‖ � ε > 0, the mid-point of x and y lies
inside the unit ball BX at a distance of at least δ from the unit sphere SX .

Equivalently, X is uniformly convex if whenever xn, yn ∈ X with

‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ → 2, then ‖xn − yn‖ → 0.

In the sequel, as a direct consequence of the definition of uniform convexity, we shall
exploit the following property: minimizing sequences in closed convex subsets are
convergent. That is, if C ⊂ X is nonvoid, closed and convex and xn ∈ C is such that
lim

n→∞ ‖ xn ‖= inf
y∈C

‖ y ‖, then there exists a unique x ∈ C such that

‖ x ‖= inf
y∈C

‖ y ‖ and lim
n→∞ xn = x .

Example 2.5 Every Hilbert space H is a uniformly convex space.

This follows from the parallelogram law:

‖x − y‖2 + ‖x + y‖2 = 2[‖x‖2 + ‖y‖2].

Let us take x, y ∈ BH with x �= y and ‖x − y‖ ≥ ε. Then

‖x + y‖2 � 4− ε2.

It follows from the above inequality that

∥
∥
∥

x + y

2

∥
∥
∥ � 1− δ(ε),

where δ(ε) = 1−√

1− ε2/4. Thus, we conclude that H is uniformly convex.
Alternatively, taking xn for x and yn for y and putting ‖xn‖ = ‖yn‖ = 1, we get
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‖xn − yn‖2 = −[‖xn + yn‖2 − 4].

Thus, if ‖xn + yn‖ → 2 the R.H.S. goes to zero as n →∞. Hence, the result follows.

Example 2.6 The spaces �1 and �∞ are not uniformly convex. To see that �1 is not
uniformly convex, let us take x = (1, 0, 0, 0, . . .), y = (0, 0,−1, 0, . . .) ∈ �1 and
ε = 1. Then,

‖x‖1 = ‖y‖1 = 1 and ‖x − y‖1 = 2 > 1 = ε.

But
∥
∥
∥

x+y
2

∥
∥
∥

1
= 1 and there is no δ > 0 such that ‖ x+y

2 ‖1 � 1− δ. Thus, �1 is not

uniformly convex.
The space �∞ is also not uniformly convex. To see this, let us take

x = (1, 1, 0, 0, . . .), y = (−1, 1, 0, 0, . . .) ∈ �∞ and ε = 1. Then

‖x‖∞ = ‖y‖∞ = 1 and ‖x − y‖∞ = 2 > 1 = ε.

But
∥
∥
∥

x+y
2

∥
∥
∥∞

= 1 and there is no δ > 0 such that
∥
∥
∥

x+y
2

∥
∥
∥∞

� 1− δ. Thus, �∞ is not

uniformly convex.

Example 2.7 L p, �p, 1 < p <∞ are uniformly convex spaces. For the proof of this
fact, refer Day [159].

For the class of uniformly convex Banach spaces, we have the following important
results:

Theorem 2.1 Every uniformly convex space X is strictly convex.

Proof Let X be a uniformly convex Banach space. It is immediate from the Definition
2.3 that every uniformly convex space is strictly convex. �

Observation

• The Banach spaces �p, �
n
p, n being nonnegative integer, and L p[a, b] with 1 <

p <∞ are uniformly convex.
• The Banach spaces �1, c, c0, �∞, L1[a, b], C[a, b] and L∞[a, b] are not strictly

convex.

Theorem 2.2 (Milman’s theorem) Every uniformly convex Banach space X is reflex-
ive.

This theorem, originally due to Milman [399], has been proved by many authors
in different ways (see, for instance, Pettis [487], Kakutani [302] and many others).
However, we give the proof based on James’ characterization of reflexivity. James
has shown that a Banach space is reflexive iff for every f ∈ X∗ attain its norm on
the unit ball. One may observe that this is equivalent to every f ∈ SX∗ attaining its
norm on SX . The proof of Milman’s theorem is prefixed by the following lemma.
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Lemma 2.1 Let X be a uniformly convex Banach space, SX∗ := { f ∈ X∗ : ‖ f ‖∗ = 1}
the unit sphere in X∗, and let f ∈ SX∗ . Let {xn} be a sequence in SX such that
j (xn)→ 1. Then, {xn} is a Cauchy sequence.

Proof Suppose that {xn} is not a Cauchy sequence, then there exists ε > 0 and
two subsequences {xni } and {xn j } of {xn} such that ‖xni − xn j ‖ ≥ ε. The uniform

convexity of X assures that ∃δ = δ(ε) > 0 such that
∥
∥
∥

xni+xn j

2

∥
∥
∥ < 1− δ. We now

observe that
∣
∣
∣
∣

f

(
xni + xn j

2

)∣
∣
∣
∣
� ‖ f ‖∗

∥
∥
∥
∥

xni + xn j

2

∥
∥
∥
∥

< ‖ f ‖∗(1− δ) = 1− δ

and f (xn)→ 1, yield a contradiction. Thus, the sequence {xn}which we call a norm-
ing sequence for f ∈ X∗ is a Cauchy sequence in X .

Proof of Milman’s theorem Let f ∈ X∗ and {xn} a norming sequence in SX for
f , so that f (xn)→ 1. By Lemma 2.1, {xn} is a Cauchy sequence. Because X is a
Banach space and SX is closed, {xn} converges to some x ∈ SX . By continuity of f ,

f (x) = f ( lim
n→∞ xn) = lim

n→∞ f (xn) = 1

so that f attain its norm on SX . Thus, by James’ characterization of reflexivity for
Banach spaces, X is reflexive. �

Combining the above two results, we have the following theorem.

Theorem 2.3 Every uniformly convex space X is strictly convex and reflexive.

But the converse of the above theorem is false. In fact, Day in [158, 159] has proved
that there exists a large class of spaces which are reflexive and strictly convex but are
not isomorphic to any uniformly convex space. We very briefly discuss the example
given by him.

Example 2.8 Let Xn, n = 1, 2, . . .be a sequence of Banach spaces and let 1 < p <∞.
Define a space X as follows:

X =
{

x = (x1, x2, . . .), xn ∈ Xn and ‖x‖ =
( n

∑

j=1

‖xn‖p
n

)1/p
<∞

}

X is a Banach space. It can be shown that X is strictly convex and reflexive iff all Xn

are strictly convex and reflexive. However, it is possible to make a simple choice of
the spaces Xn so that X cannot be given a uniformly convex norm defining the same
topology.
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Observation

• The spaces �1 and L1 are neither reflexive nor strictly convex.
• A reflexive Banach space is not necessarily uniformly convex. For example, con-

sider a finite dimensional Banach space in which the surface of the unit ball has a
“flat” part. We note that such a Banach space is reflexive because of finite dimen-
sion. But the flat portion in the surface of the ball makes it nonuniformly convex.

• It is well known that a Banach space X is reflexive if and only if every bounded
sequence of elements of X contains a weakly convergent sequence.

Definition 2.4 A Banach space X is said to be locally uniformly convex if for given
ε > 0 and x ∈ SX , there exists a δ = δ(x, ε) > 0 such that

‖x − y‖ ≥ ε ⇒
∥
∥
∥

x + y

2

∥
∥
∥ � 1− δ for all y ∈ SX .

Definition 2.5 X is said to be weakly uniformly convex at x∗ ∈ SX∗ , if whenever
xn, yn ∈ X with

‖xn‖ = ‖yn‖ = 1 and 〈x∗, xn + yn〉 → 2, then ‖xn − yn‖ → 0.

X is weakly uniformly convex if it is uniformly convex at any x∗ ∈ SX∗ .

Remark 2.1 It is clear that the uniform convexity implies both local and the weak
uniform convexity.

Observation

• Every uniformly convex Banach space is locally uniformly convex.
• Every locally uniformly convex Banach space is strictly convex.

We now discuss the relationship between uniform convexity of the norm and
differentiability of the norm.

Definition 2.6 Let X be a normed space with norm ‖ · ‖ and BX = {x ∈ X : ‖x‖ � 1},
the closed unit ball in X . Then

(i) the norm in X is said to be weakly differentiable at x0 ∈ X if and only if

lim
t→0

(‖x0 + t x‖ − ‖x0‖
t

)

exists for every x ∈ X.

(i i) If the convergence to the limit is uniform in the closed unit ball BX , the norm
is said to be strongly differentiable at x0.

(i i i) If the norm in X is everywhere differentiable and convergence to the limit is
uniform with respect to x0 and x , when ‖x0‖ = 1 and ‖x‖ � 1, then the norm is
called uniformly strongly differentiable.
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In 1940, Smulian [573] proved the following two theorems giving the necessary
and sufficient condition for the strong differentiability of the norm in a Banach space
X and its dual X∗.

Theorem 2.4 For the strong differentiability of the norm in X∗ at the point f0,

‖ f0‖ = 1, it is necessary and sufficient that the following condition be satisfied:

lim
n→∞ f0(xn) = ‖ f0‖, ‖xn‖ = 1 =⇒ {xn} is convergent.

Theorem 2.5 For the strong differentiability of the norm in X at the point x0, ‖x0‖ = 1,
it is necessary and sufficient that the following condition be satisfied:

lim
n→∞ fn(x0) = ‖x0‖, fn ∈ X∗, ‖ fn‖ = 1 =⇒ { fn} is convergent.

Smulian [573] has further shown that the norm in X is uniformly strongly differ-
entiable if and only if X∗ is uniformly convex.

As an easy consequence of the above fact, we have the following theorem for
uniformly convex Banach spaces.

Theorem 2.6 If X is a uniformly convex Banach space and

xn ⇀ x0 and ‖xn‖ → ‖x0‖, then xn → x0.

In 1955, Lovaglia [374] introduced a weaker type of convexity called local uniform
convexity. Geometrically, this differs from uniform convexity in that it is required
that one endpoint of the variable chord remain fixed.

Definition 2.7 A space X is called locally uniformly convex if and only if given
ε > 0 and an element x with ‖x‖ = 1, there exists δ(ε, x) > 0 such that

∥
∥
∥

x + y

2

∥
∥
∥ � 1− δ(ε, x) whenever ‖x − y‖ � ε and ‖y‖ = 1.

It is clear that uniform convexity implies local uniform convexity and local uniform
convexity implies strict convexity. There exist spaces which are locally uniformly
convex but are not isomorphic to any uniformly convex space.

Example 2.9 Let X be as defined in Example 1.9 (with p = 2) where xn is the
n-dimensional space of vectors xn,

xn = (x1
n , x2

n , . . . , xn
n ), with ‖xn‖n =

( n
∑

j=1

|x j
n |n

)1/n
.

Then, each Xn is uniformly convex and is therefore locally uniformly convex.
Lovaglia [374] has shown that the space X so constructed is locally uniformly convex
and is not isomorphic to any uniformly convex space.
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The following theorem, which is due to Lovaglia, gives the relationship between
local uniform convexity and differentiability of the norm is a Banach space X .

Theorem 2.7 If X∗ is locally uniformly convex, then norm is X is strongly differen-
tiable.

2.3 Modulus of Convexity

Definition 2.8 Let X be a Banach space. Then, a function δX : [0, 2] → [0, 1] is
said to be the modulus of convexity of X if

δX (ε) = inf
{

1−
∥
∥
∥

x + y

2

∥
∥
∥ : ‖x‖ � 1, ‖y‖ � 1, ‖x − y‖ � ε

}

.

Example 2.10 Let H be a Hilbert space. As we see in Example 2.5 that

δH(ε) = 1−
√

1− ε2

4
, ε ∈ (0, 2].

We now give the modulus of convexity for �p(2 � p <∞) spaces. The following
result gives an analogue of the parallelogram law in �p(2 � p <∞) spaces. But
first we recall the useful Lemmas A.1.1 and A.1.4 of Appendix A.

Proposition 2.6 In �p(2 � p <∞) spaces, we have the following inequality:

‖x + y‖p + ‖x − y‖p � 2p−1(‖x‖p + ‖y‖p) for all x, y ∈ �p. (2.3)

Proof For a, b ∈ R and p ∈ [2,∞), applying Lemmas A.1.1 and A.1.4 of Appendix
A, we get

|a + b|p + |a − b|p = [

(|a + b|p + |a − b|p)2/p
]p/2

�
[|a + b|2 + |a − b|2]p/2

(since 2/p � 1)

�
[

2|a|2 + 2|b|2]p/2 = 2p/2
[|a|2 + |b|2]p/2

� 2p/22(p−1)/2
(|a|p + |b|p) = 2p−1

(|a|p + |b|p) .

Hence for x = {xn}∞n=1, y = {yn}∞n=1 ∈ �p, the above inequality yields

∞
∑

n=1

|xn + yn|p +
∞

∑

n=1

|xn − yn|p � 2p−1

( ∞
∑

n=1

|xn|p +
∞

∑

n=1

|yn|p
)

.

Thus, for any points x, y ∈ �p(2 � p <∞), the following analogue of the parallel-
ogram is satisfied:
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‖x + y‖p + ‖x − y‖p � 2p−1(‖x‖p + ‖y‖p) for all x, y ∈ �p.

Example 2.11 For the �p (2 � p <∞) space, the modulus of convexity δ�p (ε) is
given by

δ�p (ε) = 1−
(

1−
(ε

2

)p)1/p
, ε ∈ (0, 2).

To see this, let B denote the closed unit ball in �p, ε ∈ (0, 2) and x, y ∈ B such that
‖x − y‖ ≥ ε. Then from (2.3), we have

‖x + y‖p � 2p−1
(|x |p + |y|p)− ‖x − y‖p � 2p−1(1+ 1)− ε p = 2p − ε p

which implies that

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

�
(

1−
(ε

2

)p)1/p
= 1−

[

1−
(

1−
(ε

2

)p)1/p
]

� 1− δ�p (ε),

where δ�p (ε) � 1− (
ε
2 )p

)1/p
.

Observation

• δX (0) = 0 and δX (ε) � 0 for all ε ≥ 0.

• δ�p (ε) � 0 for all ε > 0 (1 < p <∞).

• δH(ε) = 1−√

1− (ε/2)2,H being Hilbert space.

• δ�p (ε) = 1− (

1− (
ε
2

)p)1/p
(2 � p <∞).

• The modulus of convexity δ�p (ε) for �p (1 < p � 2) satisfies the following implicit
relation ∣

∣
∣1− δ�p (ε)+

ε

2

∣
∣
∣

p +
∣
∣
∣1− δ�p (ε)−

ε

2

∣
∣
∣

p = 2.

• For any Banach space X and Hilbert space H, Hilbert space is the most convex
Banach space, i.e.

δX (ε) � δH(ε) for all ε > 0.

Theorem 2.8 A Banach space X is strictly convex if and only if δX (2) = 1.

Proof Suppose X is a strictly convex Banach space with modulus of convexity δX .
Assume that x, y ∈ X such that x �= −y, ‖x‖ = ‖y‖ = 1 and ‖x − y‖ = 2. By strict
convexity of we have

1 =
∥
∥
∥
∥

x − y

2

∥
∥
∥
∥
=

∥
∥
∥
∥

x + (−y)

2

∥
∥
∥
∥

< 1,

a contradiction. Hence, x = −y. Therefore, the modulus of convexity of X gives
δX (2) = 1.

Conversely, suppose δX (2) = 1.Let x, y ∈ X such that‖x‖ = ‖y‖ = ∥
∥ x+y

2

∥
∥ = 1.

Then
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∥
∥
∥
∥

x − y

2

∥
∥
∥
∥
=

∥
∥
∥
∥

x + (−y)

2

∥
∥
∥
∥

� 1− δX (‖x − y‖) = 1− δX (‖x − (−y)‖) = 1− δX (2) = 0.

This implies that x = y. Thus, ‖x‖ = ‖y‖ and ‖x + y‖ = 2 = ‖x‖ + ‖y‖ imply
that x = y. Therefore, X is strictly convex.

Theorem 2.9 A Banach space X is uniformly convex if and only if δX (ε) > 0 for
all ε ∈ (0, 2].
Proof Suppose X is a uniformly convex Banach space. Then for ε > 0, there exists
δX (ε) > 0 such that

0 < δX (ε) � 1−
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

for all x, y ∈ X with ‖x‖ � 1, ‖y‖ � 1 and ‖x − y‖ � ε. Therefore, δX (ε) > 0.

Conversely, suppose X is a Banach space with modulus of convexity δX such
that δX (ε) > 0 for allε ∈ (0, 2]. Let x, y ∈ X such that ‖x‖ = 1, ‖y‖ = 1 with ‖x −
y‖ � ε for fixed ε ∈ (0, 2]. By the modulus of convexity δX (ε), we have

0 < δX (ε) � 1−
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

,

which implies that
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥

� 1− δ(ε),

where δ(ε) = δX (ε) is independent of x and y. Therefore, X is uniformly convex.

Observation

• The modulus of convexity is a real-valued function defined from [0, 2] to [0, 1]
which is continuous on [0, 2).

• A Banach space X is strictly convex if and only if δX (2) = 1.

• A Banach space X is uniformly convex if and only if δX (ε) > 0 for ε ∈ (0, 2].

2.4 Smoothness of Banach Spaces

Let C be a nonempty closed convex subset of a normed space X such that the belongs
to int C . A linear functional j ∈ X∗ is said to be tangent to C at a point z ∈ ∂C if
j (z) = supx∈C j (x).

If H = {x ∈ X : j (x) = 0} is the hyperplane, then the set H + z = {x + z : x ∈ H}
is called tangent hyperplane to C at z.
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Definition 2.9 A Banach space X is said to be smooth if for each x ∈ SX = {x ∈
X : ‖x‖ = 1}, there exists a unique functional jx ∈ X∗ such that (x, jx ) = ‖x‖ and
‖ jx‖ = 1.

Geometrical meaning of smoothness of a Banach space By smoothness of a
Banach space X , we shall mean that at each point x ∈ SX , there is exactly one
supporting hyperplane { jx = 1}. This means that the hyperplane { jx = 1} is tangent
at x to the unit ball BX , and this unit ball is contained in the half space{ jx � 1}.

2.4.1 Modulus of Smoothness

We now introduce the modulus of smoothness of a Banach space.

Definition 2.10 Let X be a Banach space. Then, a function ρX : R+ → R+ is said
to be modulus of smoothness of X if

ρX (t) = sup
{‖x + y‖ + ‖x − y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = t

}

= sup
{‖x + t y‖ + ‖x − t y‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}

, t � 0.

The following result gives us an important relation between the modulus of X
(respectively, X∗) and that of modulus of smoothness of X∗ (respectively, X ).

Theorem 2.10 Let X be a Banach space. Then, the following equalities hold:
(a) ρX∗(t) = sup{ tε

2 − δX (ε) : 0 � ε � 2} for all t > 0.
(b) ρX (t) = sup{ tε

2 − δX∗(ε) : 0 � ε � 2} for all t > 0.

Proof (a) By the definition of modulus of smoothness of X∗, we have

ρX∗(t) = sup
{‖x∗ + t y∗‖ + ‖x∗ − t y∗‖

2
− 1 : ‖x∗‖ = ‖y∗‖ = 1

}

, t � 0.

Therefore, for t > 0 we have

2ρX∗ (t) = sup
{

‖x∗ + t y∗‖ + ‖x∗ − t y∗‖ − 2 : x∗, y∗ ∈ SX∗
}

= sup
{

‖x‖‖x∗ + t y∗‖ + ‖y‖‖x∗ − t y∗‖ − 2 : x, y ∈ SX , x∗, y∗ ∈ SX∗
}

= sup
{

(x, x∗ + t y∗)+ (y, x∗ − t y∗)− 2 : x, y ∈ SX , x∗, y∗ ∈ SX∗
}

= sup
{

(x, x∗)+ t (x, y∗)+ (y, x∗)− t (y, y∗)− 2 : x, y ∈ SX , x∗, y∗ ∈ SX∗
}

= sup
{

(x, x∗)+ (y, x∗)+ t[(x, y∗)− (y, y∗)] − 2 : x, y ∈ SX , x∗, y∗ ∈ SX∗
}

= sup
{

(x + y, x∗)+ t (x − y, y∗)− 2 : x, y ∈ SX , x∗, y∗ ∈ SX∗
}
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= sup
{

‖x + y‖ + t‖x − y‖ − 2 : x, y ∈ SX

}

, as ‖x∗‖ = 1 = ‖y∗‖
= sup

{

‖x + y‖ + tε − 2 : x, y ∈ SX , ‖x − y‖ � ε, 0 � ε � 2
}

= sup
{

tε − 2δX (ε) : 0 � ε � 2
}

.

Part(b) can be proved using parallel argument as used in Part (a).

Observation

• ρX (0) = 0 and ρX (t) � 0 for all t � 0
• ρX is an increasing continuous convex function.
• ρX (t)

t is an increasing function and ρX (t) � t for all t > 0.

Definition 2.11 A Banach space X is said to be uniformly smooth if

ρ
′
X (0) = lim

t→0

ρX (t)

t
= 0.

Example 2.12 The �p spaces(1 < p � 2) are uniformly smooth. Indeed, we see that

lim
t→0

ρ�p (t)

t
= lim

t→0

(1+ t p)1/p − 1

t
= 0.

Observation

• �p, L p (1 < p <∞), W m Sobolev space are uniformly convex and uniformly
smooth Banach spaces, where m is a positive integer.

• The spaces c0, �1, L1, �∞, L∞ are not smooth.

Having discussed the geometry of Banach spaces, we now define duality mapping.
This notion of duality mapping was first introduced by Beurling and Livingston [57]
and extensively studied by Asplund [24], Browder [89, 90], Kachurovskii [300] in
connection with monotone operators.

2.5 Duality Mappings

Throughout this section, unless stated otherwise, X and X∗ denote a Banach space
and its dual, respectively.

Let T : X → 2X∗ a multivalued mapping. Then domain D(T ), range R(T ),
inverse T−1 and graph G(T ) of T are defined as:

D(T ) = {x ∈ X; T x �= ∅},
R(T ) = ∪x∈D (T )T x,

T−1(y) = {x ∈ X : y ∈ T x},
G(T ) = {(x, y) ∈ X × X∗ : y ∈ T x, x ∈ D(T )}.
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The mapping T is said to be

(i) monotone if (x − y, jx − jy) � 0 for all x, y ∈ D(T ) and jx ∈ J x, jy ∈ J y.

(i i) strictly monotone if (x − y, jx − jy) > 0 for all x, y ∈ D(T ) with x �= y and
jx ∈ J x, jy ∈ J y.

(i i i) α- monotone if there exists a continuous strictly increasing function
α : [0,∞) → [0,∞) with α(0) = 0 and α(t)→∞ as t →∞ such that

(x − y, jx − jy) � α(‖x − y‖)‖x − y‖

for all x, y ∈ D(T ) and jx ∈ J x, jy ∈ J y.

(iv) strongly monotone if for some constant k > 0,

(x − y, jx − jy) � k‖x − y‖2

for all x, y ∈ D(T ) and jx ∈ J x, jy ∈ J y.

(v) injective if T x ∩ T y = ∅ for x �= y.

The mapping T : D(T ) ⊂ X → 2X∗ is said to be coercive on a subset C of D(T ) if
there exists a function c : (0,∞) → [−∞,∞] with c(t)→∞ as t →∞ such that
(x, T x) � c(‖x‖)‖x‖ for all x ∈ C .

In other words, T is coercive on C if lim‖x‖→∞
(x,T x)

‖x‖ = ∞, x ∈ C .

Definition 2.12 A multivalued mapping J : X → 2X∗ is called (normalized) duality
mapping if it satisfies the following property:

J x = { j ∈ X∗ : (x, j) = ‖x‖‖ j‖∗, ‖x‖ = ‖ j‖∗}.

Proposition 2.7 Let X be a Banach space and let J : X → 2X∗ be the normalized
duality mapping. Then, we have the following:

(a) J (0) = 0.
(b) J is homogeneous, i.e. J (λx) = λJ (x) for all x ∈ X and λ ∈ R.
(c) ‖x‖2 − ‖y‖2 � 2(x − y, j) for all x, y ∈ X and jy ∈ J y.

(d) ‖x + y‖2 � ‖x‖2 + 2(y, jx ) for all x, y ∈ X, where jx ∈ J x .

(e) ‖x + y‖2 � ‖y‖2 + 2(x, jx+y) for all x, y ∈ X, where jx+y ∈ J (x + y).

( f ) (x − y, jx − jy) � 0 for all x, y ∈ X, jx ∈ J x and jy ∈ J y.

(g) If X is strictly convex, then J is one-one.

Proof (a) It is obvious.
(b) If λ = 0, then it is obvious that J (0x) = 0J (x). So, we assume that λ �= 0 and
that j ∈ J (λx). First, we show that J (λx) ⊂ λJ (x). By our assumption, we have

(λx, j) = ‖x‖‖ j‖∗ and ‖λx‖ = ‖ j‖∗,

and it follows that (λx, j) = ‖ j‖2∗. Hence
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(x, λ−1 j) = λ−1(λx, λ−1 j) = λ−2(λx, j) = λ−2‖λx‖‖ j‖∗ = ‖λ−1 j‖2
∗ = ‖x‖2,

showing thereby that λ−1 j ∈ J x, i.e., j ∈ λJ x . Thus, we have J (λx) ⊂ λJ x . Sim-
ilarly, we can show that λJ x ⊂ J (λx). Therefore, J (λx) = λJ x .

(c) Suppose that x, y ∈ X and j ∈ J y, then

‖x‖2 − ‖y‖2 − 2(x − y, jy) = ‖x‖2 − ‖y‖2 − 2(x, jy)+ 2(y, jy)

= ‖x‖2 + ‖y‖2 − 2(x, jy) � ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖
= (‖x‖ − ‖y‖)2 � 0.

This implies that
‖x‖2 − ‖y‖2 � 2(x − y, jy). (2.4)

We can similarly show that

‖y‖2 − ‖x‖2 � 2(y − x, jx ) for all x, y ∈ X and jx ∈ J x (2.5)

(d) Replacing y by x + y in (2.5), we obtain the required inequality.
(e) Replacing x by x + y in (2.5), we obtain the required result.
( f ) Suppose that jx ∈ J x and jy ∈ J y for x, y ∈ X , then

(x − y, jx − jy) = (x, jx )− (x, jy)− (y, jx )+ (y, jy)

� ‖x‖x2 + ‖y‖2 − ‖x‖‖ jy‖∗ − ‖y‖‖ jx‖∗
� ‖x‖x2 + ‖y‖2 − 2‖x‖‖y‖ = (‖x‖ − ‖y‖)2 � 0.

(g) Suppose that j ∈ J x ∩ J y for x, y ∈ X . Now

j ∈ J x ∩ J y ⇒ j ∈ J x and j ∈ J y

⇒ ‖ j‖∗ = ‖x‖ = ‖y‖, and so ‖x‖2 = ‖y‖2 = (x, j) = (y, j).

It follows that
‖x‖2 = ((x + y)/2, j) � ‖(x + y)/2‖‖x‖

which yields
‖x‖ = ‖y‖ = ‖(x + y)/2‖ � ‖x‖.

Hence, ‖x‖ = ‖y‖ = ‖(x + y)/2‖. Because X is strictly convex, we must have x =
y. Therefore, J is one-one.

Proposition 2.8 Let X be a Banach space and J : X → 2X∗ be a normalized duality
mapping, then for x, y ∈ X, the following statements are equivalent:
(i) ‖x‖ � ‖x + t y‖ for all t > 0.
(i i) There exists j ∈ J x such that (y, j) � 0.
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Proof (i) ⇒ (i i). For t > 0, suppose that jt ∈ J (x + t y). Then, (x + t y, jt ) =
‖x + t y‖‖ jt‖∗. Define ft = jt

‖ jt‖∗ , so that ‖ ft‖∗ = 1. Because ft ∈ ‖ jt‖−1 J (x + t y),
it follows that

‖x‖ � ‖x + t y‖ = ‖ jt‖−1
∗ (x + t y, jt )

= (x + t y, ft ) = (x, ft )+ t (y, ft )

� ‖x‖ + t (y, ft ).

By the Banach–Alaoglu theorem which states that the unit ball in X∗ is weak*ly
compact, the net { ft } has a limit point f ∈ X∗ such that

‖ f ‖∗ � 1, (x, f ) � ‖x‖ and (y, f ) � 0.

Thus, we have
‖x‖ � (x, f ) � ‖x‖‖ f ‖∗ � ‖x‖,

which gives that
(x, f ) = ‖x‖ and ‖ f ‖∗ = 1.

Now setting j = f ‖x‖, we obtain ‖ j‖∗ = ‖x‖. Therefore, j ∈ J x and (y, j) � 0.

(i i) ⇒ (i). Suppose x, y ∈ X, with x �= 0, there exists j ∈ J x such that (y, j) � 0.

Then for t > 0, we have

‖x‖2 = (x, j) � (x, j)+ (t y, j) = (x + t y, j) � ‖x + t y‖‖x‖.

Thus, we obtain
‖x‖ � ‖x + t y‖ for all t > 0. �

Observation

• D(J ) = X.

• J is bounded.
• If X is strictly convex and x, y ∈ X , then x �= y =⇒ J x ∩ J y = ∅.

• If X is a Hilbert space, J reduces to the canonical isomorphism between X and
X∗.

Example 2.13 In a Hilbert space H, the normalized duality mapping is the identity.
To see this, let x ∈ H with x �= 0. Note that H = H∗ and

〈x, x〉 = ‖x‖ · ‖x‖ ⇒ x ∈ J x .

We now show that J x is singleton. If not, then there exists y( �= x) ∈ J x such that
〈x, y〉 = ‖x‖ · ‖y‖ and ‖x‖ = ‖y‖. Furthermore,

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉 = 0.
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This implies that x = y. Therefore, J x = {x}.
Definition 2.13 A continuous strictly increasing function μ : R+ → R+ is said to
be gauge function if μ(0) = 0 and lim

t→∞μ(t) = ∞.

Remark 2.2 For the gauge function μ, the function 
 : R+ → R+ defined by


(t) =
∫ t

0
μ(s)ds

is a continuous convex strictly increasing function on R+. It follows, therefore, that

 has a continuous inverse function 
−1.

Definition 2.14 Let X be a Banach space and μ a gauge function. Then, the mapping
Jμ : X → 2X∗ defined by

Jμ(x) = { j ∈ X∗ : 〈x, j〉 = ||x || · || j ||∗, || j ||∗ = μ(||x ||)}, x ∈ X

is called the duality mapping with gauge function μ.

In particular, when μ(t) = t , the duality mapping Jμ = J is called the normalized
duality mapping.

In case, μ(t) = t p−1, p > 1, the duality mapping Jμ = Jp is called generalized
duality mapping and is given by

Jpx = {

j ∈ X∗ : 〈x, j〉 = ‖x‖ · ‖ j‖∗, ‖ j‖∗ = ‖x‖p−1
}

, x ∈ X.

Note that for p = 2, Jp = J2 = J is the normalized duality mapping.

Definition 2.15 (Sign function) For a complex number z, the sign function is defined
by

sgn z =
{

z
|z| if z �= 0

0 if z = 0.

Deduction Using the definition of sign function, we can easily deduce the following:

(i) |sgn z| =
{

1 if z �= 0

0 if z = 0.

(i i) z sgn z̄ =
{

zz̄
|z| = |z| if z �= 0

0 if z = 0.

Example 2.14 In the �2 space, the duality mapping is given by

J (x) = (|x1|sgn x1, |x2|sgn x2, . . . , |xi |sgn xi , . . .), x = {xi } ∈ �2.
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Theorem 2.11 Let X be any Banach space with dual X∗. Then, J x is a nonempty
closed convex subset of X∗ for every x ∈ X. If X∗ is strictly convex, then J reduces
to a single-valued mapping and is bounded.

Proof To prove that J x �= ∅, it suffices to find for each x ∈ X with ‖x‖ = 1 an
element j ∈ X∗ with ‖ j‖∗ = 1 such that (x, j) = 1. The existence of such j follows
immediately from the Hahn–Banach theorem. Indeed, if x is a nonzero element in
X then by the Hahn–Banach theorem, there exists f ∈ X∗ such that (x, f ) = ‖x‖
and ‖ f ‖∗ = 1. Set j = ‖x‖ f . Then (x, j) = (x, ‖x‖ f ) = ‖x‖(x, f ) = ‖x‖2 and
‖ j‖∗ = ‖x‖. It follows that J x is nonempty for each x �= 0.
We now show that J is convex. To this end, let j1, j2 ∈ J x . Then

(x, j1) = ‖x‖2 = (x, j2), ‖ j1‖∗ = ‖x‖, ‖ j2‖∗ = ‖x‖

and hence

‖x‖2 = t (x, j1)+ (1− t)(x, j2) = t j1(x)+ (1− t) j2(x)

= (t j1 + (1− t) j2)(x) = (x, t j1 + (1− t) j2)

� ‖x‖‖t j1 + (1− t) j2‖∗ � ‖x‖[t‖ j1‖∗ + (1− t)‖ j2‖∗]
= ‖x‖[t‖x‖ + (1− t)‖x‖] = ‖x‖2.

The above inequality implies that ‖t j1 + (1− t) j2‖∗ = ‖x‖which together with the
fact that (x, t j1 + (1− t) j2) = ‖x‖2 implies t j1 + (1− t) j2 ∈ J x . This proves the
convexity of J x .

Similarly, one can show that J x is a closed subset of X∗. Suppose now X∗ is
strictly convex, then by the dual analogue of Proposition 2.3. there exists exactly one
j ∈ X∗ such that (x, j) = ‖x‖2, ‖x‖ = ‖ j‖∗. This implies that J is single valued.
Boundedness of J follows from the equality ‖J x‖ = ‖x‖. �

Example 2.15 In the L2[0, 1] space, the duality mapping is given by

J x =
{ |x | sgn x

‖x‖ , x �= 0

0, x = 0.

Example 2.16 A duality mapping in L p[0, 1](1 < p <∞) space is given by

J x =
{ |x |p−1sgn x

‖x‖p−2 , x �= 0

0, x = 0.

Notice that Lq [0, 1], the dual space of L p[0, 1], is strictly convex, where 1
p + 1

q = 1,

and so the duality mapping J is single valued.
If x = 0, then (J x, x) = 0 = ‖x‖‖J x‖, ‖x‖ = 0 = ‖J x‖. So, we take x �= 0. In

this case,
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‖J x‖ =
(∫ 1

0

|x |q(p−1)|sgn x |q
‖x‖q(p−2)

dt

) 1
q

= 1

‖x‖p−2

((∫ 1

0
|x |pdt

) 1
p
) p

q

= 1

‖x‖p−2
(‖x‖) p

q = 1

‖x‖p−2
‖x‖p−1 = ‖x‖

and

(J x, x) = 1

‖x‖p−2

∫ 1

0
|x |p−1|sgn x ||x | dt = 1

‖x‖p−2

∫ 1

0
|x |p dt

= ‖x‖p

‖x‖p−2
= ‖x‖2 = ‖x‖‖J x‖.

This shows that J is, indeed, a duality mapping on L p[0, 1].
In the sequel, we discuss the continuity properties of J .

Theorem 2.12 If X is a reflexive Banach space with strictly convex dual X∗, then
duality mapping J is demicontinuous. Further, if X∗ is locally uniformly convex,
then J is continuous.

Proof It suffices to prove the demicontinuity of J on the unit sphere SX = {x ∈ X :
‖x‖ = 1}. Suppose xn → x0 in X with‖xn‖ = 1, n ∈ N.Because ‖J xn‖ = ‖xn‖ = 1
and X is a reflexive Banach space, {J xn} has a weakly convergent subsequence {J xnk }
and let J xnk ⇀ y ∈ X∗. Then, strong convergence of {xnk } and weak convergence
of {J xnk } gives

(y, x0) = lim
k→∞(J xnk , xnk ) = ‖xnk‖2 = 1.

Also since ‖y‖ � (y, x0) = lim
k→∞‖J xnk‖ � ‖y‖, we have

(y, x0) = ‖y‖‖x0‖, ‖y‖ = ‖x0‖.

This implies that y = J x0 and J xnk ⇀ J x0. Because this is true for every weakly
convergent subsequence of {J xn}, it follows that J xn ⇀ J x0 and hence the demi-
continuity of J .

Now suppose that X∗ is locally uniformly convex, then by Theorem 2.7, norm
in X is strongly differentiable. We will show the continuity of J on unit sphere:
‖x‖ = 1.

Let xn → x0 in X with ‖xn‖ = 1. By what we have just proved, J xn ⇀ J x0.
We now show that this convergence is strong. Because J xn ⇀ J x0, it implies that
(J xn, x0)→ (J x0, x0) = ‖x0‖. By Theorem 2.5, it follows that J xn → J x0. �

Remark 2.3 Recently, Troyanski has proved in [591] that every reflexive Banach
space X has an equivalent norm in which both X and X∗ are locally uniformly
convex. Hence, continuity of J is guaranteed on a reflexive Banach space X .
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Remark 2.4 Duality mapping from a Banach space X to its dual X∗ need not be
weakly continuous. In fact, we have the following negative result by Browder [102]
which implies that there exists no weakly continuous duality mapping on L p spaces
of periodic functions on [0, 2π ].
Theorem 2.13 Let 1 < p <∞, p �= 2. Then the Banach space L p[0, 2π ] of peri-
odic functions on [0, 2π ] does not have a weakly continuous duality mapping on
L p.

Remark 2.5 Duality mapping J satisfies many other nice properties. These will be
discussed in detail in Chap. 4 on monotone operators.

Exercises

2.1 Let X be a Banach space. Show that X is strictly convex if and only if the
function f (x) = ‖x‖2 is strictly convex.

2.2 Let X be a strictly convex Banach space and let x, y ∈ X with x �= y. If
‖x − z‖ = ‖x − w‖, ‖z − y‖ = ‖w − y and ‖x − y‖ = ‖x − z‖ + ‖z − y‖, show
that z = w.

2.3 Let X be a uniformly convex Banach space and let x, y, z ∈ X be such
that ‖z − x‖ = t‖x − y‖, ‖z − y‖ = (1− t)‖x − y‖, for some t ∈ [0, 1]. Then z =
(1− t)x + t y.

2.4 Let X be a Banach space. Define a function γ : (0, 2] → R by

γ (t) = inf{(x − y, x∗ − y∗) : x, y ∈ SX , ‖x − y‖ ≥ t, x∗ ∈ J (x), y∗ ∈ J (y)},

for all t ∈ (0, 2]. Show that X is uniformly convex if and only if γ (t) > 0 for all
t ∈ (0, 2].
2.5 Let the two norms ‖ · ‖1 and ‖ · ‖2 be defined on �1, where ‖x‖1 = ∑

n∈N
|xn| and

‖x‖2 =
(

∑

n∈N
|xn|2

)1/2
, x = {xn}n∈N ∈ �1. Consider the norm

‖x‖ = (‖x‖2
1 + ‖x‖2

2)
1/2, x = {xn}n∈N ∈ �1.

Show that the norm ‖ · ‖ is equivalent to the �1-norm and that it is strictly convex.

2.6 Let X be a uniformly convex Banach space and let δ be the modulus of convexity
of X . Let 0 < ε < r � R. Show that δ( ε

R ) > 0 and

‖λx + (1− λ)y‖ � r
{

1− 2λ(1− λ)δ
( ε

R

)}

for all x, y ∈ X with ‖x‖ � r, ‖y‖ � r and ‖x − y‖ � ε and λ ∈ [0, 1].
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2.7 Show that a reflexive locally uniformly convex Banach space is weakly uni-
formly convex.

2.8 Let X be a Banach space, J the duality mapping of X , and let x ∈ X . Show that
J (x) is a bounded closed convex subset of X∗.

2.9 Let X be a Banach space and let J : X → 2X∗ be the normalized duality map-
ping. Show the following:
(a) If X is reflexive with strict convex dual X∗, then J is demicontinuous.
(b) If X is uniformly convex, then for x, y ∈ Br (0), jx ∈ J x, jy ∈ J y

(x − y, jx − jy) � αr (‖x − y‖)‖x − y‖,

where αr : Rn → Rn is a function satisfies the conditions:

αr (0) = 0, αr (t) > 0 for all t > 0 and t � s ⇒ αr (t) � αr (s).



Chapter 3
Differential Calculus in Banach Spaces

Mathematics is not a deductive science-that’s a cliche. When
you try to prove a theorem, you don’t just list the hypotheses,
and then start to reason. What you do is trial-and-error,
experimentation, and guesswork.

Paul Halmos (1985)
It is worth noting that the notation facilitates discovery. This, in
a most wonderful way, reduces the mind’s labors.

Gottfried Wilhelm Leibniz, (1646–1716)
Differentiation means linearlization.

The differential calculus is one of the fundamental techniques of nonlinear functional
analysis. Very often we will use this notion. In this chapter we develop the calculus
in real Banach spaces. Section 3.1 deals with definitions on Gâteaux and Fréchat
derivative with illustrative examples. We also give a variant of mean value theorem.
Properties of the derivative are discussed in Sect. 3.2, while in Sect. 3.3 we discuss
partial derivatives. Section 3.4 deals with higher derivative. Subsequently, we give
Taylor’s theorem, inverse function and implicit function theorems. In Sect. 3.5 we
discuss an important concept of nonlinear analysis-subdifferential of convex func-
tionals. We show that the subdifferential of norm functional is precisely the duality
mapping J . In Sect. 3.6, we discuss about differentiability of norms of Banach spaces.
Finally, we conclude the chapter in Sect. 3.7 in which we discuss about asymptotic
behaviour of generalized nonexpansive sequences.

3.1 Gâteaux and Fréchet Derivatives

In the following, X and Y are real (or complex) Banach spaces, U ⊆ X , U open and
F : U → Y any operator not necessarily linear with D(F) = U .
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3.1.1 Gâteaux Derivative

Definition 3.1 Let X and Y be two (real or complex) Banach spaces. Then an opera-
tor F : X → Y is said to be Gâteaux differentiable at x ∈ X if there exists a continuous
linear operator A : X → Y , i.e. A ∈ L(X , Y ) such that

lim
t→0

F(x + th)− F(x)

t
= Ah for every h ∈ X .

That is,

lim
t→0

∥
∥
∥
∥

1

t
[F(x + th)− F(x)− tAh]

∥
∥
∥
∥
= 0 for every h ∈ X . (3.1)

A is called the Gâteaux derivative of F at x, and its value at h is denoted by dF(x, h).
We shall alternatively write dF(x)h or F ′(x)h for the same.

Equivalently, one can define the Gâteaux derivative of F at x ∈ U ⊆ X , U being
open in X , as follows: writing ϕ(t) = F(x + th) for fixed x ∈ X and h ∈ X , we say
that F has Gâteaux derivative dF(x) at x ∈ X iff

d

dt
ϕ(t)

∣
∣
∣
∣
t=0

= dF(x, h).

We say that f is Gâteaux differentiable, if it is Gâteaux differentiable at every x ∈ X .

Uniqueness of Gâteaux Derivative

As in one-dimensional case, Gâteaux derivative F ′(x) is unique. Suppose, if possible,
there exists another continuous linear operator B for which (3.1) is true, then for t > 0
we have

‖Bh− F ′(x)h‖ � t−1‖F(x + th)− F(x)− tBh‖
+ t−1‖F(x + th)− F(x)− tF ′(x)h‖.

In view of (3.1), the RHS of the above inequality tends to zero as t → 0 and hence

‖Bh− F ′(x)h‖ = 0 for every h ∈ X .

This implies that B = F ′(x).

Observation

• Suppose F : X → Y is an operator, where X = Rn, Y = R and e1 = (1, 0,

0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1) are Hamel basis of Rn,
then dF(x)(ei), i.e. the Gâtaeux derivative of F at x in the direction ei, is the
ith partial derivative of F at x. Note that x = (x1, x2, x3, . . . , xn) = x1e1 + x2e2 +
x3e3 + · · · + xnen, so that
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dF(x)(ei) = lim
t→0

F(x + tei)− F(x)

t

= lim
t→0

F(x1, x2, . . . , xi + t, . . . , xn)− F(x1, x2, . . . , xi, . . . , xn)

t

= ∂F(x)

∂xi
.

• The constant mapping F : X → Y defined by F(x) = a ∀x ∈ X has the derivative
F ′(x) = 0, where 0 denotes null operator.

• The existence of Gâteaux derivative of an operator F : X → Y does not necessarily
imply continuity of the operator F . To observe this, let us consider the following
examples.

Example 3.1 Let F : R2 → R be defined by

F(x) =
{

2x3
1

x2
, if x = (x1, x2) �= (0, 0)

0, if x = (x1, x2) = (0, 0).

Then

dF(0)h = lim
t→0

F(0+ th)− F(0)

t
= lim

t→0

F(th)

t

= lim
t→0

2t3h3
1

th2
= 0 = 0̂h for every h ∈ R2.

Thus, dF(0) exists and being null operator it is a continuous linear operator but F is
discontinuous at 0 = (0, 0).

Example 3.2 Let F : R2 → R be defined by

F(x1, x2) =
{

2x2 exp(−x−2
1 )

x2
2+exp(−2x−2

1 )
, x1 �= 0

0, x1 = 0.

Then it is easy to see that F is Gâteaux differentiable at (0, 0) but is not continuous
at the origin.

Definition 3.2 For a functional f : X → R, the mapping x 	→ f ′(x) is called the
gradient of f and is denoted by ∇f . So ∇f is a mapping from X → X ∗.

Example 3.3 For operators F on finite dimensional spaces, we can give concrete
representation of the Gâteaux derivative F ′(x).

Let F : Rn → Rm be given by F = (f1, f2, . . . , fm) and A = (aij)be a m× n matrix.
We choose h as the jth coordinate vector ej = (0, . . . , 1, . . . , 0). Then
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lim
t→0

∥
∥
∥

1

t
[F(x + th)− F(x)− tAh]

∥
∥
∥ = 0

implies that

lim
t→0

∣
∣
∣
∣

1

t

[

fi(x + tej)− fi(x)− taij
]
∣
∣
∣
∣
= 0; i = 1, 2, . . . , m; j = 1, 2, . . . , n.

This shows that fi has partial derivatives at x and

∂j fi(x) = ∂fi(x)

∂xj
= aij; i = 1, 2, . . . , m; j = 1, 2, . . . , n.

Hence, F ′(x) has the matrix representation

F ′(x) =
⎡

⎢
⎣

∂1f1(x) · · · ∂nf1(x)
...

...

∂1fm(x) · · · ∂nfm(x)

⎤

⎥
⎦ .

This matrix is called Jacobian matrix of F at x ∈ Rn.
In the case when f is a functional, i.e. f : Rn → R, f ′(x), denoted by ∇f is a row
vector (∂1f , ∂2f , . . . , ∂nf ) and is called gradient of f at x ∈ Rn.

Remark 3.1 Let A : X → Y be a continuous linear operator. Then

A(x + th)− A(x)− tAh = A(x)+ A(th)− A(x)− A(th) = 0 for every h ∈ X .

It follows that

lim
t→0

∥
∥
∥

1

t
[A(x + th)− A(x)− tAh]

∥
∥
∥ = 0 for every h ∈ X .

Hence, A′(x) = A for all x ∈ X .

Example 3.4 Let F : Lp[0, 1] → Lp[0, 1] be the Hammerstein operator given by

[Fx](s) =
∫ 1

0
k(s, t)f (t, x(t))dt.

First of all, assume that the kernel k and the function f are such that the derivative
can be taken under the integral sign. Then

[
d

dτ
F(x + τh)

]

(s) = d

dτ

[∫ 1

0
k(s, t)f (t, (x + τh)(t))dt

]

=
∫ 1

0
k(s, t)

d

dτ
f (t, (x + τh)(t))dt
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=
∫ 1

0
k(s, t)fx(t, (x + τh)(t)h(t)dt.

Hence,

[F ′(x)h](s) = d

dτ
F(x + τh)

∣
∣
∣
τ=0

(s)

=
∫ 1

0
k(s, t)fx(t, x(t))h(t)dt. (3.2)

This shows that the Gâteaux derivative F ′(x) of the Hammerstein operator F is the
linear integral operator with kernel k(s, t)fx(t, x(t)) and is given by (3.2).
We have the following mean value theorem for functional f on X .

Theorem 3.1 Let the functional f : X → R has Gâteaux derivative df (x, h) at every
point x ∈ X . Then for points x, x + h ∈ X , there exists a constant τ, 0 < τ < 1 such
that

f (x + h)− f (x) = df (x + τh, h).

Proof Writing ϕ(t) = f (x + th)), then we see that

ϕ′(t) = lim
s→0

[
ϕ(t + s)− ϕ(t)

s

]

= lim
s→0

[
f (x + th+ sh)− f (x + th)

s

]

= df (x + th, h).

Now using the mean value theorem for scalar functions, we get

ϕ(1)− ϕ(0) = ϕ′(τ ), 0 < τ < 1.

This gives
f (x + h)− f (x) = df (x + τh, h).

Remark 3.2 If dim X > 1, then in general there is no equality in the mean value
theorem. To see this, we consider the following examples.

Example 3.5 (1) Let F : R→ C be defined by F(x) = eix for all x ∈ R. Take
h = 2π , then for all x ∈ R,

F(x + h)− F(x) = 0, but F ′(x + th) = ieix+2tπ i �= 0.

(2) Let F : R2 → R2 be defined as F(x1, x2) = (x3
1, x2

2). Then at any point z =
(z1, z2),
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F ′(z) =
[

3z2
1 0

0 2z2

]

.

If we take x = (0, 0) and y = (1, 1), then it is clear that there is no z in the line
joining x and y for which Fy − Fx = F ′(z)(y − x).

However, we have the following variant of the mean value theorem for operator
F : X → Y .

Theorem 3.2 Let F : X → Y has Gâteaux derivative F ′(x) at every point x ∈ X .
Then for points x, x + h ∈ X and e ∈ Y ∗, there exists a constant τ, 0 < τ < 1 such
that

(e, F(x + h)− F(x)) = (e, dF(x + τh, h)).

Further, F satisfies the Lipschitz condition

‖F(x + h)− F(x)‖ � ‖dF(x + τh)‖‖h‖.

Proof For e ∈ Y ∗, define a functional f as

f (x) = (e, F(x)).

Then
f (x + th)− f (x)

t
=

(

e,
F(x + th)− F(x)

t

)

.

Taking the limit as t → 0 and using the continuity of inner product, we get df (x, h) =
(e, dF(x, h)). Because mean value theorem is valid for functional f on x, we get

f (x + h)− f (x) = df (x + τh, h), 0 < τ < 1.

This gives
(e, F(x + h)− F(x)) = (e, dF(x + τh, h)).

For the second part, since e is arbitrary, by Hahn–Banach’s theorem we choose e of
unit norm such that

‖(e, F(x + h)− F(x))‖ = ‖F(x + h)− F(x)‖.

Using the result of the first part, we get

‖F(x + h)− F(x)‖ = |(e, F(x + h)− F(x))|
= |(e, dF(x + τh, h))|
� ‖dF(x + τh, h)‖
� ‖dF(x + τh)‖‖h‖.
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This completes the proof. �

A stronger differentiability notion what we call Fréchet differentiability is given
in the next definition.

3.1.2 Fréchet Derivative

Definition 3.3 Let X and Y be (real or complex) Banach spaces. An operator F :
X → Y is said to be Fréchet differentiable at x ∈ X if there exists a continuous linear
operator A : X → Y , i.e. A ∈ L(X , Y ) such that

F(x + h)− F(x) = Ah+ w(x, h), and lim
‖h‖→0

‖w(x, h)‖
‖h‖ = 0.

A is called the Fréchet derivative of F at x and is denoted by F ′(x). Its value at h
will alternatively be written as dF(x, h) or F ′(x)h.

Observation

• From the context, it will be clear whether F ′(x) is Fréchet or Gâteaux derivative.
• As in the case of Gâteaux derivative, Fréchat derivative is unique.

Example 3.6 Let f : R→ R be differentiable, x a continuous scaler function on
[0, 1], and let F : C[0, 1] → C[0, 1] be defined by

[Fx](t) = f (x(t)), t ∈ [0, 1].

Then F ′(x) : C[0, 1] → C[0, 1] is given by

[F ′(x)u](t) = f ′(x(t)) · u(t), t ∈ [0, 1],

i.e. the Fréchet derivative of F at x is the multiplication operator, which multiplies
each continuous function u by f ′ ◦ x.

Example 3.7 Let f : R3 → R have continuous second-order partial derivatives with
respect to three coordinate variables. Consider the function F : C[a, b] → R defined
by

F(x) =
∫ b

a
f (x(t), ẋ(t), t)dt.

Then the Fréchet derivative of F at x, i.e. F ′(x) and its value at h is given by

F ′(x)h =
∫ b

a

[∂f

∂x
− d

dt

(∂f

∂ ẋ

)]

hdt +
[∂f

∂ ẋ
h
]b

a
, where ẋ ≡ dx

dt
.
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To verify this, we notice that

F(x + h)− F(x) =
∫ b

a
[f (x(t)+ h(t), ẋ(t)+ ḣ(t), t)− f (x(t), ẋ(t), t)]dt

=
∫ b

a

[∂f

∂x
(x(t), ẋ(t), t)h(t)+ ∂f

∂ ẋ
(x(t), ẋ(t), t)ḣ(t)

]

dt + ω(h, h)

where ω(h, h) = o(‖h‖C[a,b]), that is,

|ω(h, h)|
‖h‖C[a,b]

→ 0 as ‖h‖C[a,b] → 0.

Hence,

F ′(x)h =
∫ b

a

[∂f

∂x
(x(t), ẋ(t), t)h(t)+ ∂f

∂ ẋ
(x(t), ẋ(t), t)ḣ(t)

]

dt

=
∫ b

a

[∂f

∂x
− d

dt

(∂f

∂ ẋ

)]

hdt +
[∂f

∂ ẋ
h
]b

a
, after integration by parts.

Example 3.8 Let X , Y be two isomorphic Banach spaces and GL(X , Y ) the space of
all continuous linear operators T from X onto Y , which are continuously invertible.
Then the mapping F : GL(X , Y ) → GL(Y , X ) defined by

F(T ) = T−1 for all T ∈ GL(X , Y )

is differentiable at every point T0 and

F ′(T0)H = −T−1
0 HT−1

0 .

If ‖H‖ < ‖T−1
0 ‖−1, then

‖F(T0 + H )− F(T0)− (−T−1
0 HT−1

0 )‖
= ‖(T0 + H )−1 − T−1

0 + T−1
0 HT−1

0 ‖ = ‖(I + T−1
o H )−1T−1

0 − T−1
0 + T−1

0 HT−1
0 ‖

= ‖
∞
∑

j=0

(−T−1
0 )jT−1

0 − T−1
0 + T−1

0 HT−1
0 ‖ = ‖

∞
∑

j=2

(−T−1
0 )jT−1

0 ‖

� ‖
∞
∑

j=2

(−T−1
0 )j‖‖‖T−1

0 ‖ � ‖H‖2 ‖T−1
0 ‖3

1− ‖T−1
0 H‖ .

Letting ‖H‖ → 0 in the above inequality, we obtain

lim‖H‖→0

‖F(T0 + H )− F(T0)− (−T−1
0 HT−1

0 )‖
‖H‖ = 0.



3.1 Gâteaux and Fréchet Derivatives 137

Thus, the derivative of F at T0 is given by

F ′(T0)H = −T−1
0 HT−1

0 .

Example 3.9 Let X , Y , Z be Banach spaces and the Banach space X × Y endowed
with the norm ‖(u, v)‖ = max(‖u‖, ‖v‖). Let F : X × Y → Z be a continuous bilin-
ear map, i.e.

‖F‖ = sup
‖x‖�1,‖y‖�1

‖F(x, y)‖ <∞.

Let (x0, y0) ∈ X × Y . Then

‖F(u, v)‖ � ‖F‖ · ‖u‖ · ‖v‖ � ‖F‖ · ‖〈u, v〉‖2

yields

lim‖〈u,v〉‖→0

‖F(u, v)‖
‖〈u, v〉‖ = 0.

Therefore, F is Fréchet differentiable and F ′(x0, y0) is the linear map F ′(x0, y0) :
X × Y → Z given by

(u, v) 	→ F(x0, v)+ F(u, y0).

Remark 3.3 It is clear that every Fréchet differentiable operator is Gâteaux differ-
entiable. But the converse is not true. To effect this, consider the following example.

Example 3.10 Let f : R2 → R be defined as

f (x) =
{

x3
1x2

x4
1+x2

2
, x �= (0, 0)

0, x = (0, 0).

f is Gâteaux differentiable at 0 with Gâteaux derivative 0. But it is not Fréchet
differentiable at 0. To see this, let us take h = (h1, h2) �= (0, 0). Then, we have

lim
t→0

f (th)− f (0)

t
= lim

t→0

th3
1h2

(t2h4
1 + h2

2)
= 0 = 0̂(h) for every h ∈ R2

which shows that f is Gâteaux differentiable at 0 with Gâteaux derivative 0. However,
we see that

‖ f (h)− f (0)− 0̂(h)‖
‖h‖ = |h3

1h2|
(h4

1 + h2
2)

1
√

h2
1 + h2

2

= 1

2
√

1+ h2
1

for h2 = h2
1.

Letting h → 0, i.e. h1 → 0, we get
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lim
‖h‖→0

‖w(0, h)‖
‖h‖ = lim

‖h‖→0

‖f (h)− f (0)− 0̂(h)‖
‖h‖ = lim

h1→0

1

2
√

1+ h2
1

= 1

2
.

The following theorem gives a relationship between Gâteaux and Fréchet deriva-
tives.

Theorem 3.3 If the Gâteaux derivative F ′(x) exists in some neighbourhood of the
point x and is continuous at x, then F is also Fréchet differentiable at x and is equal
to F ′(x).

Proof We write
w(x, h) = (Fx + h)− F(x)− F ′(x)h.

Then
(e, w(s, h) = (e, F(x + h)− F(x))− (e, F ′(x)h), e ∈ Y ∗.

By mean value theorem, we get

(e, w(x, h)) = (e, F ′(x + τh)h− F ′(x)h), 0 < τ < 1.

By Hahn–Banach’s theorem, e can be so chosen that

‖w(x, h)‖ = |(e, w(x, h))| and ‖e‖ = 1.

Hence, we get
‖w(x, h)‖ � ‖F ′(x + τh)− F ′(x)‖‖h‖.

This implies that
‖w(x, h)‖
‖h‖ � ‖F ′(x + τh)− F ′(x)‖.

Because F ′(x) is continuous, the RHS of the above inequality goes to zero as h → 0.

This proves our theorem. �

3.2 Properties of the Derivative

The existence of Fréchet derivative at x implies the continuity of F at x. But this result
is not true for Gâteaux derivatives. However, we have the strong hemicontinuity of
Gâteaux differentiable operators. In this section too, we assure that D(F) = X , X
and Y are real Banach spaces.

Theorem 3.4 Let F : X → Y be Fréchet differential at x ∈ X . Then F is continuous
at x. More precisely, there is a δ > 0 and a c � 0 (depending on x) such that
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‖F(x + h)− F(x)‖ � c‖h‖ whenever ‖h‖ � δ. (3.3)

Proof By the definition of Fréchet derivative at x, it follows that there exists a δ > 0
such that

‖F(x + h)− F(x)− F ′(x)h‖ � ‖h‖,

whenever ‖h‖ � δ.

Let ωF(x, h) = F(x + h)− F(x)− F ′(x)h. Then we see that

‖F(x + h)− F(x)‖ = ‖F(x + h)− F(x)− F ′(x)h+ F ′(x)h‖
� ‖F(x + h)− F(x)− F ′(x)h‖ + ‖F ′(x)h‖
� ‖ωF(x, h)‖ + ‖F ′(x)‖‖h‖

Because lim
‖h‖→0

ωF (x,h)

‖h‖ = 0, there exists a δ > 0 such that

‖h‖ � δ ⇒ ‖ωF (x, h)‖ � ‖h‖.

Thus,
‖F(x + h)− F(x)‖ � (1+ ‖F ′(x)‖)‖h‖.

Hence with c = 1+ ‖F ′(x)‖, result holds. Thus, we see that for a given ε > 0 there
exists a δ = ( ε

c ) > 0 such that

‖h‖ < δ ⇒ ‖F(x + h)− F(x)‖ < ε

which shows that F is continuous at x. �
Observation

• Let F : X → Y be an operator and x ∈ X . If F is Gâteaux differentiable at x, then
F need not be continuous at x. To effect this, let F : R2 → R be defined by

F(x1, x2) =
{

x1
x2

(x2
1 + x2

2), x2 �= 0

0, x2 = 0.

For h = (h1, h2) �= (0, 0) and 0̂ ∈ (R2)∗, we have

1

t
[F(0+ th)− F(0)− t0̂(h)] = 1

t
· th1

th2
· t2(h2

1 + h2
2) = t(h2

1 + h2
2).

Hence,

lim
t→0
‖1

t
[F(0+ th)− F(0)− t0̂(h)]‖ = lim

t→0
t(h2

1 + h2
2) = 0



140 3 Differential Calculus in Banach Spaces

which implies that 0̂ is the Gâteaux derivative of F at 0, but F is not continuous at 0.

Definition 3.4 Let F : X → Y be an operator and x ∈ X . F is called strongly hemi-
continuous at x if for every sequence xn converging to x along a line, F(xn) converges
to Fx.

Theorem 3.5 Let F : X → Y be Gâteaux differentiable at x ∈ X . Then F is strongly
hemicontinuous at x.

Proof Let F be Gâteaux differentiable at x and h ∈ X be any fixed element. Then
φ(t) = F(x + th) is differentiable at 0 with φ′(0) = F(x)h. Because φ(t) is a function
of real variable, it follows that it is also continuous at 0. That is, φ(t)→ φ(0)

as t → 0, which in turn implies that F(x + th) → F(x) as t → 0. This proves the
result. �

Example 3.11 Let f : R2 → R be defined as

f (x1, x2) =
{

2x2 exp(−x−2
1 )

x2
2+exp(−2x−2

1 )
, x1 �= 0

0, x1 = 0.

f is Gâteaux differentiable at 0 but is not continuous there.

Many of the properties of the ordinary derivative carry over to the Gâteaux and
Fréchet derivatives. For example:

(i) (cF)′(x) = cF ′(x) for scalars c, and
(ii) (F1 + F2)

′(x) = F ′1(x)+ F ′2(x).

We have the following chain rule for the derivatives.

Theorem 3.6 (Chain rule for derivatives) Suppose X , Y , Z be real Banach spaces
and G : X → Y is Gâteaux differentiable at x and F : Y → Z is Fréchet differen-
tiable at G(x). Then H = FoG is Gâteaux differentiable at x and

H ′(x) = (FoG)′x = F ′(G(x))G ′(x).

If in addition, G(x) is Fréchet differentiable then H ′(x) is the Fréchet derivative.

Proof For t �= 0 we have

1

|t| ‖H (x + th)− Hx − tF ′(Gx)G ′(x)h‖

� 1

|t| ‖F(G(x + th))− F(G(x))− tF ′(Gx)(G(x + th)− G(x))‖
+ ‖F ′(Gx)(G(x + th)− Gx − tG ′(x)h‖. (3.4)
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Because G is Gâteaux differentiable, second term of RHS of (3.4) tends to zero as
t → 0. For any value of t such that G(x + th) �= G(x), the first term may be multiplied
and divided by ‖G(x + th)− G(x)‖. Now, since F is Fréchet differentiable and
‖G(x + th)− Gx‖ → 0 (by hemicontinuity), the first term of RHS of (3.4) tends to
zero. Hence, the LHS of (3.4) tends to zero.

This implies that H is Gâteaux differrentiable. Similarly one can show that H is
Fréchet differentiable, if G is Fréchet differentiable. �

Corollary 3.1 If F : X → Y is a function, which is Gâteaux differentiable at every
point of the interval

[x, x + h] := {u ∈ X : u = λx + (1− λ)(x + h), λ ∈ [0, 1]},

then

F(x + h)− F(x) =
∫ 1

0
F ′(x + th)h dt.

We now discuss the relationship between the compactness of an operator and
compactness of its derivative.

Theorem 3.7 Suppose F : X → Y is compact and continuous and has Fréchet
derivative F ′(x) at x. Then F ′(x) is compact and continuous.

Proof Assume not. Then there exists ε > 0 and a sequence {xn} with ‖xn‖ � 1 such
that

‖F ′(x)xn − F ′(x)xm‖ > 3ε, m �= n.

But
F(x + h)− F(x) = F ′(x)h+ w(x, h)

and
‖w(x, h)‖ � ε‖h‖ if ‖h‖ < δ.

for some δ. Hence,

‖F(x + δxm)− F(x + δxn‖ � δ‖F ′(x)(xm − xn)‖ − ‖w(x, δxm)‖ − ‖w(x, δxn)‖
> 3δε − δε − δε = δε,

which is impossible because F is compact. �
The converse of the above theorem is true, provided F ′ is compact as an operator

from X to L(X , Y ). We state this as a theorem, for details see Vainberg [597].

Theorem 3.8 Suppose
(a) F ′(x) is compact for each x ∈ X ;
(b) F ′ is compact as an operator from X to L(X , Y ).
Then F is a compact and continuous operator from X to Y .
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One can go a step further and ask: Is F completely continuous under the assump-
tions of Theorem 3.8? Answer is yes, in view of the following theorem.

Theorem 3.9 Let F : X → Y and F ′ : X → L(X , Y ) be compact operators. Then
F is completely continuous.

Proof Let xn ⇀ x0 in X . We first show that Fxn ⇀ Fx0 in Y .
If possible, let us assume that Fxn does not converge weakly to Fx0. So there exists

an ε > 0 and a subsequence {xnk } and e0 ∈ Y ∗ such that

|(e0, Fxnk − Fx0)| > ε. (3.5)

In view of mean value theorem, there exists tnk , 0 < tnk < 1 such that

(e0, Fxnk − Fx0) = (e0, F ′(x0 + tnk (xnk − x0))(xnk − x0)). (3.6)

Because F ′ : X → L(X , Y ) is compact, there exists a subsequence tnk of tnk

(which we again denote by tnk such that

lim
k→∞

‖F ′x0 + tnk (xnk − x0))− A‖ = 0 (3.7)

for some A ∈ L(X , Y ).
We have

(e0, F ′(x0 + tnk (xnk − x0))(xnk − x0)) = (e, A(xnk − x0)). (3.8)

Because xnk ⇀ x0 and A is continuous and hence weakly continuous, the firs term of
RHS of (3.8) goes to zero as k →∞. The second term goes to zero in view of (3.7).
So from (3.6) it implies that

lim
k→∞

(e0, Fxnk − Fx0) = 0.

This contradicts (3.5), and hence the weak convergence of Fxn to Fx0.
Now compactness of F gives that {Fxn} has a convergent subsequence {Fxnk }.

Weak convergence of {Fxn} to Fx0 implies that {Fxnk } actually converges to Fx0.
Thus, every subsequence of {Fxn} has in turn a subsequence which converges to Fx0

which implies that {Fxn} converges to Fx0. This proves the main result. �
Observation

• Every Fréchet differentiable function is Gâteux differentiable.
• If the operator F : X → Y is Fréchet differentiable at x ∈ X , then it is continuous

at x. However, if F is Gâteux differentiable at x ∈ X , then it is not necessary that
F is continuous at x.

• If the operator F : X → Y is Gâteux differentiable at x ∈ X , then F(x + ty) →
F(x) as t → 0. That is, if xn → x along a line, then F(xn) → F(x).
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Lemma 3.1 Let X , Y be Banach spaces, let f : BX (0, r) → Y be Fréchet differ-
entiable and ‖f ′(x)‖L(X ,Y ) � α for every x ∈ BX (0, r) and some α � 0. Then f is
Lipschitz continuous with Lipschitz constant less than or equal to α.

Proof Suppose x1, x2 ∈ BX (0, r). By the Hahn–Banach theorem, there is j ∈ Y ∗ of
unit norm such that

‖f (x1)− f (x2)‖Y = |j(f (x1)− f (x2))|.

For t ∈ [0, 1] set ϕ(t) = jf (tx1 + (1− t)x2). Now applying the Lagrange mean value
theorem to ϕ, there exists τ ∈ (0, 1) such that

|jf (x1)− jf (x2)| = |ϕ(1)− ϕ(0)| � |ϕ′(τ )| = |jf ′(τx1 + (1− τ)x2)(x1 − x2)|.

Hence, we obtain

‖f (x1)− f (x2)‖Y � ‖f ′(τx1 + (1− τ)x2)(x1 − x2)‖Y � α‖x1 − x2‖X .

This proves our claim.

3.3 Partial Derivatives

Suppose we have given two Banach spaces X and Y , then one can readily observe
that the vector space X × Y is a Banach space with any of the (equivalent) Euclidean
norms

‖(x, y)‖p =
(

‖x‖p
X + ‖y‖p

Y

)1/p
, ‖(x, y)‖∞ = max

{

‖‖X , ‖y‖Y

}

(p � 1).

For what follows, we always use the∞-norm, so that

BX×Y ((x0, y0), r) = BX (x0, r)× BY (y0, r).

Suppose X , Y , Z are Banach spaces, A ∈ L(X , Z) and B ∈ L(Y , Z), then the
operator T : X × Y → Z defined by

T (x, y) = Ax + By

belongs to L(X × Y , Z). Conversely, any T ∈ L(X × Y , Z) has the above represen-
tation with

Ax = T (x, 0) and By = T (0, y).



144 3 Differential Calculus in Banach Spaces

It is then immediate to observe that L(X , Z)× L(Y , Z) and L(X × Y , Z) are
isomorphic Banach spaces.

Let U be an open set in X × Y , u0 = (x0, y0) ∈ U , and let F : U → Z be Fréchet
differentiable at u0 = (x0, y0) ∈ U . Then one can easily check that the partial deriva-
tives DxF(u0) and DyF(u0) exist (i.e. the Fréchet derivatives of F(·, y0) : X → Z in
x0 and of F(x0, ·) : Y → Z in y0, respectively).

The following result is not very hard to prove. So, we omit the details.

Theorem 3.10 Let F : U → Z be a continuous map from an open set U ⊂ X × Y
into Z. Then F is continuously differentiable in x0, y0) ∈ U if and only if F is partially
differentiable and partial derivatives are continuous mappings, that is,

(x0, y0) 	→ DxF(x0, y0), U 	→ L(X , Z)

and
(x0, y0) 	→ DyF(x0, y0), U 	→ L(Y , Z).

The (total) derivative of F in u0 is given by

F ′(u0)(x, y) = DxF(u0)(x)+ DyF(u0)(y).

3.4 Higher Derivatives

In the following, X and Y are real Banach spaces.
Suppose the operator F : X → Y is Fréchet differentiable, then we define an operator
F1 : X → L(X , Y ) by F1x = dF(x).

Definition 3.5 We say that F : X → Y is twice Fréchet differentiable if the map
F1 : X → L(X , Y ), defined above, is Fréchet differentiable. The second derivative
of F is denoted by d2F and is a map from X to L(X ,L(X , Y )) = L(X 2, Y ). We
shall alternatively denote F ′′(x) for the same. Similarly, we can define the second
Gâteaux derivative of F .

Definition 3.6 d2F(x) is said to be symmetric if D2F((x, x1), x2) = d2F(x, X2),

x1) for all x1, x2 ∈ X . In this case, we write the value of F ′′(x) at (x1, x2) as F ′′(x)x1x2.

Example 3.12 Consider a functional f : Rn → R. We now intend to give the concrete
representation of the second Gâteaux derivative f ′′(x).
If f ′′(x) exists, then by definition

lim
t→0

( 1

|t|
)

‖[ f ′(x + th)− f ′(x)− tf ′′(x)h]‖ = 0.

Because f ′′(x) ∈ L(Rn,L(Rn,R)), we shall evaluate f ′′(x) by finding (f ′′(x)h)k
where h, k ∈ Rn. Choosing h as the ith coordinate vector ei = (0, . . . , 1, . . . , 0) and
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k as the jth coordinate vector ej, we get

lim
t→0

(1/|t|)|f ′(x + tei)ej − f ′(x)ej − tf ′′(x)eiej| = 0, i, j = 1, 2, . . . , n.

This gives

f ′′(x)eiej = lim
t→0

(1/|t|)[∂jf (x + tei)− ∂j f (x)]
= ∂i∂j f (x), i, j = 1, 2, . . . , n.

So if h =∑n
i=1 hiei, k =∑n

j=1 kjej, we get

f ′′(x)hk =
n

∑

i=1

n
∑

j=1

hikjf
′′(x)eiej

=
n

∑

i=1

,

n
∑

j=1

hikj∂i∂j f (x)

= (Hf (x)h, k),

where Hf (x) is the Hessian matrix

Hf (x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂1∂1f (x) · · · ∂i∂1f (x) · · · ∂n∂1f (x)
...

...
...

∂1∂j f (x) · · · ∂i∂j f (x) · · · ∂n∂j f (x)
...

...
...

∂1∂nf (x) · · · ∂i∂nf (x) · · · ∂n∂nf (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

If now F : Rn → Rm is an operator with components f1, f2, . . . , fm then the con-
crete representation of [F ′′(x)hk] ∈ Rm is given by

[F ′′(x)hk]T = ((H1(x)h, k), (H2(x)h, k), . . . , (Hm(x)h, k)),

where H1(x), H1(x), . . . , Hm(x) are the Hessian matrices of f1, f2, . . . , fm at x.

From the above example, it is clear that d2F(x) or F ′′(x) is symmetric iff each
of the Hessian matrices are symmetric for the operator F : Rn → Rm. We have,

however, a more basic result regarding the symmetry of F ′′(x). We state this result
without proof.

Theorem 3.11 If F : X → Y has a second Fréchet derivative d2F(x), then it is
symmetric.

In this manner, dF(x), d2F(x), . . . , dnF(x) are inductively defined and dnF(x)
∈ L(X n, Y ) is symmetric. As in the case of functions of one variable Cn(U ), U
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an open subset of X will denote the space of n-times continuously differentiable
functions. We are now ready to state and prove Taylor’s theorem.

3.4.1 Taylor’s Theorem

In the following theorem, the integral under consideration is the Bochner integral
of Banach space-valued functions.

Theorem 3.12 (Taylor’s Theorem) Suppose F ∈ Cn(U ) where U is an open subset
of X containing the line segment from x0 to x. Then

F(x0 + x) = F(x0)+ dF(x0)x + · · · + 1

n− 1!d
n−1F(x0)x . . . x+

1

n− 1!
∫ 1

0
(1− t)n−1[dnF(x0 + tx)x . . . x]dt

=
n

∑

k=0

1

k! [d
kF(x0)x . . . x] + q(x),

where q(x) is such that ‖q(x)‖ = 0(‖x‖n).

Proof Let e ∈ Y ∗. Set φ(t) = (e, F(x0 + tx)). Then, using Taylor’s theorem for a
function of real variable, we get

φ(t) = φ(0)+ tφ′(0)+ · · · + tn−1

n− 1!φ
n−1(0)+ 1

n− 1!
∫ t

0
(t − s)n−1φn(s)ds.

Now, using the fact that

φk(t) = (e, dkF(x0 + tx)x . . . x),

we get

(e, F(x0 + tx)) = (e, F(x0)+ (e, dF(x0 + tx)x)+ · · · + 1

n− 1! (e, dn−1F(x0 + tx)x...x)

+ 1

n− 1!
(

e,
∫ t

0
(t − x)n−1[dnF(x0 + sx)x · · · x]ds

)

.

Because the above inequality holds true for arbitrary e ∈ Y ∗, we obtain the first part
of the result. For the second part, we first note that

∫ 1

0
(1− t)n−1dt = 1

n
.
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Next, we define

q(x) = 1

n− 1!
∫ 1

0
(1− t)n−1[(dnF(x0 + tx)− dnF(x0))x . . . x]dt.

Because dnF(x) is continuous for every x ∈ U, t → ‖dnF(x0 + tx)− dnF(x0)‖ is
continuous on [0, 1] and hence bounded. So we get

‖q(x)‖ � 1

n! sup
t∈[0,1]

‖dnF(x0 + tx)− dnF(x0)‖‖x‖n.

This proves the theorem. �

3.4.2 Inverse Function Theorem and Implicit Function
Theorem

Next we state and prove two major results of differential calculus. These are the
implicit function theorem and the inverse function theorem. The implicit function
theorem deals with the following situation. Let F(x, y) and suppose that

F(x0, y0) = c.

Can we find a function x 	→ y = ϕ(x), which at least locally satisfies

F(x, ϕ(x)) = c?

We want ϕ to be differentiable provided F is differentiable. Moreover, in the neigh-
bourhood, where

F(x, ϕ(x)) = c

is valid, ϕ(x) should be the unique solution. To better understand this problem,
consider the following simple example.

Example 3.13 Let F : R2 → R be defined by

F(x, y) = x2 + y2 − 4.

Let us consider the 0-level set of F , namely the set of those x, y ∈ R that satisfy
F(x, y) = 0, i.e. x2 + y2 − 4 = 0. This is of course the circle with center at the
origin and of radius 2. We now look for a function ϕ(x), such that

F(x, ϕ(x)) = 0
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for all x in the domain of ϕ. Evidently ϕ(x) = ±√4− x2 and so ϕ need not be
unique unless we restrict its domain. Also we see that near x0 = ±2, ϕ could be
either square root, so it is not uniquely determined. Note that at x0 = ±2, ϕ is not
differentiable and

∂F

∂y
= 0.

Thus, in order to produce a unique differentiable function ϕ, such that

F(x, ϕ(x)) = 0,

we need to look locally and impose some condition like

∂F

∂y
�= 0.

The proof of the implicit function theorem uses the Banach fixed point theorem,
which we state here in the form needed and postpone the proof of the general version
until Sect. 5.2.

Proposition 3.1 (Banach fixed point theorem) Suppose X is a Banach space, C is
a closed subset of X and T : C → C satisfies

‖T (x1)− T (x2)‖X � λ‖x1 − x2‖X ∀x1, x2 ∈ C, for some λ ∈ [0, 1),

then there exists unique x ∈ C, such that x = T (x). Moreover, if we have a
parametrized family {T (v}v∈V (with V being an open subset of a Banach space Y )
satisfying the above contraction condition with λ ∈ [0, 1) independent of v, then the
unique solution x = x(v) of x = T (v)x depends continuously on v.

Theorem 3.13 (Implicit function theorem) Suppose X , Y , Z are Banach spaces,
U ⊂ X × Y is an open set, u0 = (x0, y0) ∈ U, and F : U → Z is a function. Assume
that

(a) F is a continuous differentiable function and F(u0) = 0;
(b) DyF(u) exists for every u = (x, y) ∈ U;
(c) DyF is continuous at u0 and DyF(u0) ∈ L(X , Y ) is invertible, i.e. DyF(u0) is

an isomorphism.

Then there exist neighbourhoods U1 of x0 and U2 of y0, such that U1 ×U2 ⊆ U and
a unique continuously differentiable function ϕ : U1 → U2, such that

F(x, ϕ(x)) = 0 ∀x ∈ U1

and
Dϕ(x) = DyF(x, ϕ(x))−1DxF(x, ϕ(x)) ∀x ∈ U1.



3.4 Higher Derivatives 149

Proof Let T0 = Dyf (x0, y0) ∈ L(Y , Z). By (c) T0 is an isomorphism. Then we see
that the equation F(x, y) = 0 can be equivalently rewritten as

y = y − T−1
0 F(x, y). (3.9)

The advantage of passing to (3.9) is that we can apply Proposition 3.1. Namely for
every x, we look for a fixed point of y 	→ y − T−1

0 F(x, y) and to do this we employ
Proposition 3.1. Let us set

G(x, y) = y − T−1
0 F(x, y)

Because T−1
0 ◦ T0 = IY , we have

G(x, y1)− G(x, y2) = T−1
0 [T0(y1 − y2)− F(x, y1)− F(x, y2)].

Because f is C1 at (x0, y0) and T0 is an isomorphism, we can find r1 > 0 and δ > 0,
such that if ‖x − x0‖X � r1, ‖y1 − y0‖Y � δ, ‖y2 − y0‖Y � δ, then

‖G(x, y1)− G(x, y2)‖Y � 1

2
‖y1 − y2‖Y . (3.10)

Also because of the continuity of G(·, y0), we can find r2 > 0, such that if ‖x −
x0‖X � r2, then

‖G(x, y0)− G(x0, y0)‖Y <
δ

2
. (3.11)

Therefore, from (3.10) and (3.11), if r = min{r1, r2} and ‖x − x0‖X � r, ‖y1 −
y0‖Y � δ, we have

‖G(x, y)− y0‖Y = ‖G(x, y)− G(x0, y0)‖Y

� ‖G(x, y)− G(x, y0)‖Y + ‖G(x, y0)− G(x0, y0)‖Y

� 1

2
‖y − y0‖Y + δ

2
� δ. (3.12)

Thus, we see that G(x, ·) maps Bδ(y0) = {y ∈ Y : ‖y − y0‖Y � δ} onto itself as
well as Bδ(y0) = {y ∈ Y : ‖y − y0‖Y < δ} onto itself (see (3.11) and (3.12)), for
all x ∈ Br(x0) = {x ∈ X : ‖x − x0‖X � r}. We can apply Proposition 3.1 to obtain
the parametric family {y 	→ G(x, y)}x∈Br(x0)

. So for every x ∈ Br(x0), we can find
unique y = y(x) ∈ Bδ(y0), such that

G(x, y) = y,
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hence F(x, y) = 0 and the function ϕ(x) = y(x) is continuous. Let U1 = Br(x0) and
U2 = Bδ(y0). By choosing r > 0 and δ > 0 small enough, it is evident that we can
have that U1 ×U2 ⊂ U. We claim that the function ϕ : Br(x0)→ Y is continuously
differentiable. To this end, let (x1, y1) ∈ U1 ×U2, y1 = ϕ(x1) (recall that F(x, ·)
maps U2 into itself ). Exploiting the differentiability of F at (x1, y1), we have

F(x, y) = A(x − x1)+ B(y − y1)+ ω(x, y) ∀ (x, y) ∈ U,

with A = DxF(x1, y1), B = DyF(x1, y1) and

lim
(x,y)→(x1,y1)

‖ω(x, y)‖Z

‖(x − x1, y − y1)‖X×Y
= 0.

We now see that
F(x, ϕ(x)) = 0 ∀ x ∈ U1.

Hence,
ϕ(x) = −B−1A(x − x1)+ y1 − B−1ω(x, ϕ(x)). (3.13)

Also we can find δ1, δ2 > 0, such that if ‖x − x1‖X � δ1, ‖y − y1‖Y � δ2, then

‖ω(x, y)‖Z � 1

2‖B−1‖L
(‖x − x1‖X + ‖y − y1‖Y ),

whence

‖u(x, ϕ(x))‖Z � 1

2‖B−1‖L
(‖x − x1‖X + ‖ϕ(x)− ϕ(x1)‖Y ). (3.14)

From (3.13) and (3.14), it follows that

‖ϕ(x)− ϕ(x1)‖Y � ‖B−1A‖L‖x − x1‖X + 1

2
‖x − x1‖X + 1

2
‖ϕ(x)− ϕ(x1)‖Y .

Simplifying the above inequality, we obtain

‖ϕ(x)− ϕ(x1)‖Y � α‖x − x1‖X , (3.15)

where α = 2‖B−1A‖L + 1. Define

u(x) = −B−1ω(x, ϕ(x)).

From (3.13), we have

ϕ(x)− ϕ(x1) = B−1A(x − x1)+ u(x) (3.16)
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and since
‖u(x)‖Y � ‖B−1‖L‖ω(x, ϕ(x)‖Z

and ϕ is continuous, we have

lim
x→x1

‖u(x)‖Y

‖x − x1‖X
= 0. (3.17)

From (3.16) and (3.17), it follows that ϕ is Fréchet differentiable at x1 ∈ U1 and

ϕ′(x1) = −B−1A = −(DyF(x1, y1))
−1DxF(x1, y1),

which means that ϕ is continuously differentiable.
Using the implicit function theorem (see Theorem 3.13), we can prove the inverse

function theorem.

Theorem 3.14 (Inverse Function Theorem) Suppose X , Y are Banach spaces, U ⊆
Y is an open set, y0 ∈ U and F : U → X such that
(i) F is a continuously differentiable function, and
(ii) F ′(y0) ∈ L(Y , X ) is an isomorphism.

Then there exists a neighbourhood U0 of y0, U0 ⊆ U and V0 a neighbourhood of
x0 = F(y0), such that F : U0 → V0 is a diffeomorphism and

(F−1)′(x0) = [F ′(y0)]−1.

(The derivative of the inverse is the inverse of the derivative.)

Proof Define
G(x, y) = F(y)− x.

Then DyG(x0, y0) = F ′(y0), which by hypothesis is an isomorphism. So by virtue of
Theorem 3.13, we can find a neighbourhood V0 of x0 and a continuously differentiable
map ϕ : V0 → Y , such that ϕ(V0) ⊆ U0 for a neighbourhood U0 of y0,

G(x, ϕ(x)) = 0 ∀x ∈ V0,

i.e. Fϕ(x) = x for all x ∈ V0 and ϕ(x0) = y0.

We now consider F restricted to ϕ(V0). Since Fϕ(x) = x, we see that ϕ is injective
on V0, hence a bijection from V0 onto ϕ(V0). In addition, ϕ(V0) = F−1(V0) is open
because F is continuous. So we set

U0 = ϕ(V0)

and we have that F : U0 → V0 is a bijection.
Finally since

ϕ′(x0) = −(DyG(x0, ϕ(x0))
−1DxG(x0, ϕ(x0)),
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we have
F ′(x0) ◦ ϕ′(x0) = IX ,

hence
ϕ′(x0) = (F−1)′(x0).

It follows that
(F−1)′(x0) = [F ′(y0)]−1.

3.5 Subdifferential of Convex Functions

We consider function f : X → (−∞,∞], where X is a normed linear space. We
define the domain D(f ), range R(f ) and epigraph epi(f ) as follows:

D(f ) = {x ∈ X : f (x) <∞}
R(f ) = {f (x) : x ∈ D(f )}

epi(f ) = {(x, ρ) ∈ D(f )× R : f (x) � ρ}.

Definition 3.7 Let X be a normed linear space and f : X → (−∞,∞] a function.
The f is said to be a convex function if

f [λx + (1− λ)y] � λf (x)+ (1− λ)f (y), 0 < λ < 1 (3.18)

for all x, y ∈ X .f is strictly convex if we have strict inequality in (3.18).

We have the following characterization of convexity of f , through the convexity
of epigraph epi(f ).

Proposition 3.2 Let X be a linear space and f ;X → (−∞,∞] a function. Then f
is convex iff epi(f ) is a convex subset of X × R.

Proof Suppose f is convex and (x, ρ) and (y, μ) ∈ epi(f )). Then we see that

λ(x, ρ)+ (1− λ)(y, μ) = (λx + (1− λ)y, λρ + (1− λ)μ)

and

f (λx + (1− λ)y) � λf (x)+ (1− λ)f (y)

� λρ + (1− λ)μ for all λ ∈ (0, 1).

This implies that λ(x, ρ)+ (1− λ)(y, μ) ∈ epi(f ).
Conversely, suppose that epi(f ) is convex. Then for x, y ∈ D(f ) and (x, ρ), (y, μ) ∈
epi(f ), we have
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λ(x, ρ)+ (1− λ)(y, μ) = (λx + (1− λ)y, λf (x)+ (1− λ)f (y)) ∈ epi(f ) for all λ ∈ (0, 1).

Thus, by the definition of epi(f ), it follows that

f (λx + (1− λ)y) � λf (x)+ (1− λ)f (y).

This shows that f is convex and hence the proposition. �

Proposition 3.3 Let C be a nonempty closed convex subset of a Banach space X and
f ;C → (−∞,∞] a convex function. Then f is lower semicontinuous in the norm
topology iff f is lower semicontinuous in the weak topology.

Proof By setting Dρ = {x ∈ C : f (x) � ρ}, ρ ∈ R, we see that Dρ is convex. Indeed,
for all x, y ∈ Dρ, 0 < λ < 1,

f (λx + (1− λ)y) � λf (x)+ (1− λ)f (y)

� λρ + (1− λ)ρ = ρ.

It follows from Proposition 1.2 that Dρ is closed if and only if Dρ is weakly closed,
i.e. Dρ is closed in weak topology. Thus, by Proposition 3.2, it follows that f is l.s.c
in the norm topology iff f is l.s.c. in the weak topology. �

Definition 3.8 A convex function is said to be proper if its epigraph is nonempty
and contains no vertical lines. Thus, f is proper iff D(f ) is nonempty and f |D (f ) is
finite. So if f0 is a proper convex function on a convex set C, then one can extend it
to f in the entire space X by defining

f (x) =
{

f0(x), x ∈ C,

∞, x /∈ C.

Here, we notice that D(f ) = C.

Example 3.14 One of the most important convex functions is the norm functional

f (x) = ‖x‖, x ∈ X .

Example 3.15 To each subset C of X , we associate the indicator function IC of C
defined as

IC(x) =
{

0, x ∈ C,

∞, x /∈ C.

Observation

• IC is convex iff C is convex.
• epi(IC) is half cylinder with cross section C.
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• IC is proper iff C is nonempty.
• D(IC) = C.

Example 3.16 The support function δ∗(.|C) of a convex subset C of X is defined as

δ∗(x∗|C) = sup
x∈C

(x∗, x).

δ∗(.|C) is a convex function on X ∗.

Example 3.17 Let C be a convex subset of a Hilbert space X . Define the distance
function D(x, C) = inf{‖x − y‖, y ∈ C}. Then D(x, C) is a convex function.

Example 3.18 For a convex subset C of X , define the gauze functional χ(x|C) =
inf{λ � 0 : x ∈ λC}. Then χ(x|C) is a convex function.

Example 3.19 Let A be a self adjoint continuous operator on a Hilbert space X . Con-
sider the quadratic functional ϕ(x) = 1

2 (Ax, x). Then ϕ is differentiable and∇ϕ = A.

It can be shown that ϕ is convex iff A is positive semidefinite.

Remark 3.4 For Gâteaux differentiable functions ϕ, we will derive an important
relation between the monotonicity and convexity in Chap. 4.

Remark 3.5 Indicator function IC plays a very important role in convex analysis
while the quadratic functional of Example 3.19 is important in variational analysis.

Let X be a topological space and f : X → (−∞,∞] a proper function. Then f
is said to be lower semicontinuous (l.s.c.) at x0 ∈ X if

f (x0) � lim inf
x→x0

f (x) = sup
V∈Ux0

inf
x∈V

f (x),

where Ux0 is a base of neighbourhoods of the point x0 ∈ X . f is said to be lower
semicontinuous on X if it is lower semicontinuous at each point of X , i.e. for each
x ∈ X

xn → x ⇒ f (x) � lim inf
n→∞ f (xn).

Proposition 3.4 Let X be a topological space and f ;X → (−∞,∞] a function.
Then the following statements are equivalent: Let X be a linear space and f ;X →
(−∞,∞] a function. Then

(1) f is lower semicontinuous.
(2) For each ρ ∈ R, the level set {x ∈ X : f (x) � ρ} is closed.
(3) The epigraph of the function f is closed.

Proof (1) ⇒ (2). Let ρ ∈ R and let x0 ∈ X with f (x0) > ρ. Because f is lower
semicontinuous at x0, we must have
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f (x0) � sup
V∈Ux0

inf
x∈V

f (x).

This implies that there exists V0 ∈ Ux0 such that infx∈V0 f (x) > ρ, i.e. f (x) >

ρ for all x ∈ V0. It follows that V0 ⊂ {x ∈ X : f (x) > ρ} which shows that {x ∈
X : f (x) > ρ} is open and hence {x ∈ X : f (x) � ρ} is closed.

(2)⇒ (1). Let x0 ∈ D(f ), ε > 0, and let Ux0 denote a base for neighbourhood
of the point x0. Set Vε = {x ∈ X : f (x) > f (x0)− ε}. Because each level set of f is
closed, the set {x ∈ X : f (x) � f (x0)− ε} must be closed. It follows that Vε ∈ Vx0 .
Furthermore, f (x) > f (x0)− ε for all x ∈ Vε. Therefore, f (x) ≥ f (x0)− ε and hence
sup

V∈Ux0

inf
x∈V

f (x) ≥ f (x0)− ε. As ε is arbitrarily chosen positive number, so letting

ε → 0 we obtain lim inf
x→x0

f (x) � f (x0) and so we conclude that (1) holds.

(1) ⇔ (3). To see this, let us define ϕ : X × R → (−∞,∞] by ϕ(x, ρ) = f (x)−
ρ. Then

f is l.s.c. on X ⇔ f (x0) � lim inf
x→x0

f (x)

⇔ f (x0)− ρ � lim inf
x→x0

f (x)− ρ = lim inf
x→x0

(f (x)− ρ)

⇔ ϕ(x0, ρ) � lim inf
x→x0

ϕ(x, ρ)

⇔ ϕ is l.s.c. on X × R.

Because epi(f ) is a level set of ϕ, we conclude that the conclusion holds.
We now discuss some regularity properties of convex functions. By virtue of

Proposition 3.3, the lower semicontinuity of f : X → (−∞,∞] can alternatively be
defined as follows:

f is lower semicontinuous if the level set {x ∈ X : f (x) � ρ} is a closed subset
of X for all ρ ∈ R.

We now ready to discuss some regularity properties of convex functions. It may
easily be observed that we immediately have the following theorem regarding the
lower semicontinuity of f .

Theorem 3.15 The convex function f is lower semicontinuous on its domain if epi(f )

is closed.

We give below an important continuity result of convex functions.

Theorem 3.16 The convex function f is continuous in int D(f ) iff f is bounded on
some open subset U of D(f ).

Proof If f is continuous in int D(f ), it trivially follows that f is bounded on some
open subset of D(f ).

Let us now assume that f is bounded on an open subset U of X . If x0 ∈ U is
arbitrary, we will show that f is continuous there. Without loss in generality, we may
assure that x0 = 0 and f (x0) = 0 and U an open ball {x : ‖x‖ < r}.



156 3 Differential Calculus in Banach Spaces

Let Uε denote that ball {x : ‖x‖ < rε}. For 0 < ε < 1 and x ∈ Uε,
x
ε
∈ U and so

convexity of f gives

f (x) = f
(

ε
x

ε
+ (1− ε)0

)

� εf
(x

ε

)

+ (1− ε)f (0)

� εk + (1− ε)f (0) = εk, (k is the bound for f on U ).

Also

0 = f

(
x

1+ ε
+ ε

1+ ε

(

−x

ε

))

� f (x)

1+ ε
+ ε

1+ ε
f

(

− x

1+ ε

)

� f (x)

1+ ε
+ εk

1+ ε
,

which implies that
f (x) � −εk.

So−εk � f (x) � εk for x ∈ Uε and hence the continuity of f at 0 and consequently
at x0.

For any arbitrary point x0 ∈ int D(f ), there exists ρ < 1 such that ρx0 ∈ int D(f ).

Again, by convexity of f , for all
(

1− 1
ρ

)

x + x0 ∈
(

1− 1
ρ

)

U + x0 we get

f

((

1− 1

ρ

)

x + x0

)

= f

((

1− 1

ρ

)

x + 1

ρ
ρx0

)

�
(

1− 1

ρ

)

f (x)+ 1

ρ
f (ρx0)

�
(

1− 1

ρ

)

k + 1

ρ
f (ρx0).

This implies that f is bounded on
(

1− 1
ρ

)

U + x0 containing x0 and now result

follows by what we have just proved. �
We immediately get the following two corollaries:

Corollary 3.2 The convex function f is continuous in int D(f ) iff epi(f ) has
nonempty interior.

Corollary 3.3 Every real-valued convex function on X is continuous.

It is interesting to note that convex functions defined on X are differentiable
except on a countable subset of its domain of continuity. More precisely we have the
following result due to Asplund [23].

Theorem 3.17 Every continuous convex function on a Banach space X is Fréchet
differentiable on a dense Gδ subset of its domain of continuity.

For more on the regularity properties of the convex functions, refer to Fenchel
[229], Moreau [407] and Rockfeller [523, 524]. For Gâteaux differentiable convex
functions, we have the following inequality.
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Theorem 3.18 If the convex function f (x) has the Gâteaux derivative df (x0) at some
point x0 ∈ intD(f ), then

f (x) � f (x0)+ (df (x0), x − x0) for all x ∈ X .

Proof Because f is convex, we have

f (x0 + t(x − x0)− f (x0) � tf (x)+ (1− t)f (x0)− f (x0)

= t[f (x)− f (x0)], 0 < t < 1.

This implies that

f (x)− f (x0) � lim
t→0+

[f (x0 + t(x − x0))− f (x0)]
t

= (df (x0), x − x0).

Thus, we conclude that f (x) � f (x0)+ (df (x0), x − x0) for all x ∈ X . �
The above inequality leads us to the following definition.

Definition 3.9 An element x∗0 ∈ X ∗ is said to be a subgradient of f at x0 if f (x) �
f (x0)+ (x∗0, x − x0) for all x ∈ X . The set of all subgradients at x0 is denoted by
∂f (x0).

Example 3.20 For the function f (x) = |x|, x ∈ R, we have

∂f (x) =

⎧

⎪⎨

⎪⎩

{−1}, if x < 0,

[−1, 1], if x = 0,

{1}, if x > 0.

In this example, we see that at points where f only has one subgradient, it coincides
with the Gâteaux derivative. This property holds true in general.

Definition 3.10 The multivalued ∂f : X → 2X ∗
, where ∂f (x) is the set of all sub-

gradients of f at x is called subdifferential of f at x. If ∂f (x) �= ∅, then f is said to
be subdifferentiable at x. We denote by D(∂f ) the set {x ∈ X : ∂f (x) �= ∅}.
Observation

• The notion of subdifferentiability allows us to consider optimization problems for
subdifferentiable functions:

inf
v∈X

f (v).

Obviously, a necessary optimality condition for u ∈ X to be a minimizer of f is

0 ∈ ∂f (u).
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Another important example is that of a constrained optimization problem for a
Gâteaux differentiable function

f : inf
v∈C

f (v),

where C ⊂ X is supposed to be a closed convex set. Then, we can restate the
constrained as an unconstrained problem by means of the indicator function IC

of C:
inf
v∈X

(

f (v)+ IC(v)
)

and get the necessary optimality condition

0 ∈ f ′(u)+ ∂IC(u).

• For Gâteaux differentiable convex functions, subdifferential reduces to the gradient
mapping ∇f .

• The concept of subdifferentiability is of recent origin. For a more explicit treatment
on it, refer Moreau [408, 409].

Theorem 3.19 Let f be a real-valued convex function on X which is every where
Gâteaux differentiable. Then ∂f reduces to single-valued mapping ∇f : X → X ∗.

Proof It suffices to show that ∂f (x0) ⊂ {∇f (x0)}, that is, if x∗0 ∈ ∂f (x0) then

(x∗0, h) = (∇f (x0), h) for all h ∈ X .

By definition
(x∗0, th)

t
� f (x0 + th)− f (x0)

t
, t > 0.

Taking limit as t → 0, we get

(x∗0, h) = (x∗0, th)

t
� lim

t→0+

[
f (x0 + h)− f (x0)

t

]

= (∇f (x0), h).

Now, taking −t for t we get

(x∗0, h) � (∇f (x0), h)

and hence the result. �
From the definition of subdifferential, we immediately get the following theorem.
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Theorem 3.20 ∂f (x) is a weak* closed convex subset of X ∗ for each x ∈ X and
D(∂f ) ⊂ D(f ). Further, subdifferential is a homogeneous operator, that is ∂f (λx) =
λ∂f (x).

In view of the above theorem, it is interesting to determine how big is D(∂f ) with
respect to D(f ). In this respect, we have the following theorem which is due to
Moreau [407]. We only state this.

Theorem 3.21 D(∂f ) = {x ∈ D(f ) : f is continuous at x}.
We now define the concept of conjugate functional. It is helpful in investigating

the subdifferentiability of lower semicontinuous functions though we will not be
needing this in subsequent chapters.

Definition 3.11 Let f be a function on X . Then conjugate functional f ∗ of f is
defined by

f ∗(x∗) = sup{(x∗, x)− f (x) : x ∈ X }.

One can show that if f is a proper lower semicontinuous function so is f ∗ and
f ∗∗ = f , that is,

f (x) = sup{(x∗, x)− f ∗(x∗) : x∗ ∈ X ∗}.

From the definition of subgradient it follows that if x∗0 ∈ ∂f (x0), then

f (x) � f (x0)+ (x∗0, x − x0) for all x ∈ X .

That is
(x∗0, x0) � f (x0)+ (x∗0, x)− f (x) for all x ∈ X ,

which gives
(x∗0, x0) � f (x0)+ f ∗(x∗0).

Also from the definition of conjugate functional, it follows that

f ∗(x∗0) � (x∗0, x0)− f (x0),

which gives
(x∗0, x0) � f (x0)+ f ∗(x∗0).

Combining these two inequalities, we obtain

(x∗0, x0) = f (x0)+ f ∗(x∗0).

Conversely if (x∗0, x0) = f (x0)+ f ∗(x∗0), it follows that

((x∗0, x0) � f (x0)+ (x∗0, x)− f (x) for all x ∈ X .
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This gives that x∗0 ∈ ∂f (x0). Similarly one can show x0 ∈ ∂f ∗(x∗0). Thus, we have
proved that

x∗0 ∈ ∂f (x0) and x0 ∈ ∂f ∗(x∗0) iff (x∗0, x0) = f (x0)+ f ∗(x∗0).

This notion of conjugacy is due to Fenchel [230]. For more detail treatment on it,
refer Moreau [410] and Rockafellar [525].

We now state without proof a theorem on the subdifferentiability of a convex
function which is due to Brφndsted and Rockafellar [85].

Theorem 3.22 Let f be a lower semicontinuous function on a Banach space X ,
then D(∂f ) = D(f ).

Remark 3.6 Monotone properties of the subdifferential of convex functions will be
discussed in detail in Chap. 4 on monotone operators, �-accretive operators and their
generalizations.

Example 3.21 Let X be a real Hilbert space. Define a functional f (x) as f (x) =
‖x‖ ∀x ∈ X . Then we observe the following:

• At x �= 0, f is Gâteaux differentiable with ∇f (x) = x
‖x‖ .

• At x = 0, f is not differentiable but it is subdifferentiable. In fact, the set ∂f (0)

consists of all vectors x∗ such that ‖x‖ � (x∗, x) for all x ∈ X . This implies that
∂f (0) = {x∗ ∈ X : ‖x∗‖ � 1}.

Example 3.22 Let f (x) =
{

−[1− ‖x‖2]1//2, ‖x‖ � 1

∞, otherwise.

By definition, we find that D(f ) = {x : ‖x‖ � 1}.
Now we observe that f is subdifferentiable at x, ‖x‖ < 1. But ∂f (x) = ∅ for ‖x‖ � 1.

Thus,
D(∂f ) �= D(f ).

Example 3.23 Let us consider the indicator function IC of a convex subset C of a
Hilbert space X . x∗0 ∈ ∂IC(x0) iff

IC(x) � IC(x0)+ (x∗0, x − x0) for all x ∈ X .

This implies that x ∈ C and (x∗0, x − x0) � 0 for every x ∈ C, which implies that
x∗0⊥C at x. So ∂IC(x0) is the normal cone to C at x.

We finally give the following theorem for the subdifferentiability of the norm
functional j(x) = ‖x‖2

2 on a Banach space X .

Theorem 3.23 The subdifferential of the norm functional j is precisely the duality
mapping J .
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Proof By definition

∂j(x0) = {x∗0 : j(x) � j(x0)+ (x∗0, x − x0) for all x ∈ X }.

Let ε > 0 be arbitrary, then writing x = (1± ε)x0, for x∗0 ∈ ∂j(x0) we have

1

2
(1± ε)2‖x0‖2 � 1

2
‖x0‖2 ± ε(x∗0, x).

That is
1

2
(1+ ε2 ± 2ε)‖x0‖2 � 1

2
‖x0‖2 ± ε(x∗0, x0)

or

±ε(x∗0, x0) � ±ε‖x0‖2 + 1

2
ε2‖x0‖2.

This gives

‖x0‖2 − ε

2
‖x0‖2 � (x∗0, x0) � ‖x0‖2 + ε

2
‖x0‖2.

Taking the limit with ε → 0, we get

(x∗0, x0) = ‖x0‖2

and this also gives
‖x∗0‖ � ‖x0‖. (3.19)

For ‖x0‖ = 1, using the definition of ∂j(x0) we get that for

x∗0 ∈ ∂j(x0), (x∗0, x)− ‖x0‖2 � 1

2
[‖x‖2 − ‖x0‖2].

This gives (x∗0, x) � 1 for all x with ‖x‖ = 1 and hence ‖x∗0‖ � 1 for ‖x0‖ = 1.
Now, since ∂j is a homogeneous operator, we have

∂j(x0) = ‖x0‖∂j

(
x0

‖x0‖
)

and hence we get the inequality

‖x∗0‖ � ‖x0‖ for arbitrary x∗0 ∈ ∂j(x0). (3.20)

Combining (3.19) and (3.20), we get that for x∗0 ∈ ∂j(x0),

‖x∗0‖ = ‖x0‖2.
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We have already proved that
(x∗0, x0) = ‖x0‖2.

So we have

∂j(x0) =
{

x∗0 : (x∗0, x0) = ‖x0‖2 and ‖x∗0‖ = ‖x0‖
} = J (x0).

This completes the proof. �
Observation

Let X be a Banach space and f : X → (−∞,∞] a proper convex function. Then we
observe the following:

• If f is continuous, then ∂f (x) �= ∅ for every x ∈ X .
• For every x ∈ X , ∂f (x) is always a closed convex set in X ∗.
• ∂f (x) is a homogeneous operator, i.e. ∂(λf (x)) = λ∂f (x) for every x ∈ X and

λ ∈ R.
• If f is lower semicontinuous on X , then D(∂f ) = D(f ).
• f has a maximum value at x0 ∈ D(∂f ) if and only if 0 ∈ ∂f (x0).

3.6 Differentiability of Norms of Banach Spaces

Definition 3.12 Let X be a Banach space endowed with norm ‖ · ‖ and let SX = {x ∈
X : ‖x‖ = 1} be the unit sphere of X . Then the norm ‖ · ‖ is Gâteaux differentiable
at point x ∈ SX if for y ∈ SX

d

dt
‖x + ty‖

∣
∣
∣
t=0
= lim

t→0

‖x + ty‖ − ‖x‖
t

(3.21)

exists and it is customary to denote this fact by 〈y,∇‖x‖〉.
(a) ∇‖x‖ is called the gradient of ϕ(x) = ‖x‖ at x ∈ SX .
(b) The norm of X is said to be Gâteaux differentiable if it is Gâteaux differentiable
at each point of SX .
(c) The norm of X is said to be uniformly Gâteaux differentiable if for each y ∈ SX ,
the limit (3.21) is approached uniformly for x ∈ SX .

Definition 3.13 A Banach space X is said to be smooth if the limit (3.21) exists
for all x, y ∈ SX . It is also said to be uniformly smooth if the limit (3.21) is attained
uniformly for x, y ∈ SX .

Definition 3.14 Let SX = {x ∈ X :‖ x ‖= 1}. Then the norm of X is called Fréchet
differentiable if for each x ∈ SX , the limit

lim
t→0

‖ x + ty ‖ − ‖ x ‖
t
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exists uniformly for each y ∈ SX .

Example 3.24 Let H be a Hilbert space. Then the norm of H is Gâteaux differen-
tiable with ∇‖x‖ = x

‖x‖ , x �= 0. Indeed, for each x ∈ H with x �= 0, we have

lim
t→0

‖x + ty‖ − ‖x‖
t

= lim
t→0

‖x + ty‖2 − ‖x‖2

t(‖x + ty‖ + ‖x‖)
= lim

t→0

2t〈y, x〉 + t2‖y‖2

t(‖x + ty‖ + ‖x‖) =
〈

y,
x

‖x‖
〉

.

Therefore, the norm of H is Gâteaux differentiable with ∇‖x‖ = x
‖x‖ .

Remark 3.7 It may be remarked that at x �= 0, ϕ(x) = ||x|| is Gâteaux differentiable
with ∇‖x‖ = x

‖x‖ . However, we see that at x = 0, ϕ(x) = ||x|| is not differentiable,
but it is subdifferentiable. Indeed, for the Hilbert space H we have H∗ = H and so

∂ϕ(0) = ∂||0|| = {j ∈ H : 〈x, j〉 � ||x|| ∀x ∈ H}
= {j ∈ H : ||j||∗ � 1}.

Notice that a proper convex continuous function ϕ is Gâteaux differentiable if and
only if it has a unique subgradient. Using this fact, we establish a relation between
smoothness and Gâteaux differentiability of the norm.

Theorem 3.24 A Banach space X endowed with norm || · || is smooth if and only if
the norm is Gâteaux differentiable on X \ {0}.
Proof We have

the norm || · || isGâteaux differentiable at x ∈ SX

⇔ ∂||x|| = {j ∈ X ∗ : 〈x, j〉 = ||x||||j||∗ = ||x||2 = 1} is singleton
⇔ ∃ a unique j ∈ X ∗ such that 〈x, j〉 = ||x|| and ||j||∗ = 1
⇔ X is smooth. �

Theorem 3.25 Let X be a Banach space . Then we have the following:

(a) If X ∗ is strictly convex, then X is smooth.
(b) If X ∗ is smooth, then X is strictly convex.

Proof We prove these two results contrapositively as follows:
(a) Suppose, if possible, X not smooth. Then there exist x0 ∈ SX and j1, j2 ∈ SX ∗ with
j1 �= j2 such that 〈x0, j1〉 = 〈x0, j2〉 = 1. It follows that x0 determines a continuous
linear functional on X ∗ that takes the maximum value on SX ∗ at two distinct points
j1 and j2. This shows that X ∗ is not strictly convex.
(b) Suppose, if possible, X not strictly convex. Then there exist j ∈ SX ∗ and
x1, x2 ∈ SX with x1 �= x2 such that 〈x1, j〉 = 〈x2, j〉 = 1. It follows that two supporting
hyperplanes pass through a single element j ∈ SX ∗ such that

〈x1, j〉 = 〈x2, j〉 = 1, j ∈ X ∗.
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Therefore, X ∗ is not smooth. �
Suppose that X is a reflexive Banach space, then the dual spaces X and X ∗ can

be equivalently renormed as strictly convex spaces such that the duality is preserved.
We can make use of these facts to prove the following result.

Theorem 3.26 Let X be a reflexive Banach space. Then we have the following:
(a) X is smooth if and only if X ∗ is strictly convex.
(b) X is strictly convex if and only if X ∗ is smooth.

The following result establishes a relation between smoothness of a Banach space
and a property of the duality mapping with gauge function μ.

Theorem 3.27 Let X be a Banach space. Then X is smooth if and only if Jμ with
gauge function μ is single-valued and

d

dt
�(‖x + ty‖)

∣
∣
∣
t=0
= 〈y, Jμ(x)〉 ∀x, y ∈ X . (3.22)

Corollary 3.4 Let X be a Banach space and J : X → 2X ∗
a duality mapping. Then

the following statements are equivalent :
(a) X is smooth.
(b) J is single-valued.
(c) The norm of X is Gâteaux differentiable with ∇‖x‖ = Jx

‖x‖ .

The following result shows that uniform smoothness has a close relation with
differentiability of norm.

Theorem 3.28 Every uniformly smooth Banach space is smooth.

Proof Suppose X is a uniformly smooth Banach space. Then we intend to so that X is
smooth. Suppose, on the contrary, that X is not smooth. Then there exist x ∈ X \{0},
and i, j ∈ X ∗ such that i �= j, ‖i‖∗ = ‖j‖∗ = 1 and (x, i) = (x, j) = ‖x‖. Suppose
y ∈ X is such that ‖y‖ = 1 and (y, i − j) > 0. Then, for each t > 0, we have

0 < t(y, i − j) = t(y, i)− t(y, j)

= (x + ty, i)+ (x − ty, j)

2
− 1

� ‖x + ty‖ + ‖x − ty‖
2

− 1.

It follows, therefore, that

0 < (y, i − j) � ρX (t)

t
for each t > 0.

Hence, X is not uniformly smooth.
We now establish the result concerning Fréchet differentiability of the norm of

Banach spaces.
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Theorem 3.29 Let X be a Banach space with a Fréchet differentiable norm. Then
the duality mapping J : X → X ∗ is norm-to-norm continuous.

Proof Let {xn} be a sequence in SX such that xn → x. Then it suffices to show that
Jxn → Jx. Because X has a Fréchet differentiable norm,

lim
t→0

‖x + ty‖ − ‖x‖
t

= (y, Jx) uniformly in y ∈ SX .

That is, for any given ε > 0, there exists δ > 0 such that

∣
∣
∣
∣

‖x + ty‖ − ‖x‖
t

− (y, Jx)

∣
∣
∣
∣
<

ε

6
for all y ∈ BX and all t with 0 < |t| � δ.

This implies that

‖x + ty‖ − ‖x‖ < t
(

(y, Jx)+ ε

6

)

and ‖x − ty‖ − ‖x‖ < −t
(

(y, Jx)− ε

6

)

.

Thus, we have

‖x + ty‖ − 1 < t
(

(y, Jx)+ ε

6

)

and ‖x − ty‖ − 1 < −t
(

(y, Jx)− ε

6

)

.

Note that

0 � 1− (x, Jxn) = (xn, Jxn)− (x, Jxn) = (xn − x, Jxn)

= ‖xn − x‖‖Jxn‖∗ = ‖xn − x‖ → 0,

i.e. (x, Jxn)→ 1 as n →∞. Then there exists n0 ∈ N such that

|(x, Jxn)− 1| � tε/6 for all n � n0.

This gives
1 � (x, Jxn)+ tε/6 for all n � n0.

For all n � n0, we have

1− tε/6 � (x, Jxn) = (x, Jx + Jxn)− 1 (as (x, Jx) = ‖x‖2 = 1)

= (x + ty, Jx)+ (x − ty, Jxn)− t(y, Jx − Jxn)− 1

� ‖x + ty‖‖Jx‖∗ + ‖x − ty‖‖Jxn‖∗ − t(y, Jx − Jxn)− 1

� 1+ t
(

(y, Jx)+ ε

6

)

+ 1− t
(

(y, Jx)− ε

6

)

− t(y, Jx − Jxn)− 1

= t
ε

3
− t(y, Jx − Jxn)+ 1.

The above inequality yields
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(y, Jx − Jxn) � ε

2
for all n � n0 and y ∈ SX .

Similarly, we can show that

(y, Jxn − Jx) � ε

2
for all n � n0 and y ∈ SX .

Thus,
|(y, Jxn − Jx)| � ε

2
for all n � n0 and y ∈ SX .

It follows that
‖Jxn − Jx‖ � ε

2
< ε for all n � n0.

Hence, we conclude that xn → x in X implies that Jxn → Jx in X ∗.
The following result easily follows.

Theorem 3.30 Let X be a Banach space. Then the following two statements are
equivalent:
(a) X has uniformly Fréchet differentiable norm.
(b) X ∗ is uniformly smooth.

Next, we state the result without proof showing the duality between uniform
convexity and uniform smoothness.

Theorem 3.31 Let X be a Banach space. Then
(i) X is uniformly smooth if and only if X ∗ is uniformly convex.
(ii) X is uniformly convex if and only if X ∗ is uniformly smooth.

3.7 Asymptotic Behaviour of Generalized Nonexpansive
Sequences

In this section, we consider a generalized nonexpansive sequence and we use the
mean point to obtain the weak convergence of { xn

n }, in the case when E is reflexive
and strictly convex. In addition, we obtain the strong convergence of { xn

n }, in the case
when E∗ has a Fréchet differentiable norm.

Let E be a real Banach space; the norms of both E and its dual E∗ will be denoted
by ‖.‖. The duality pairing between E and E∗ will be denoted by (·, ·). The duality
mapping J from E into the family of nonempty closed convex subsets of E∗ is denoted
by

J (x) =
{

x∗ ∈ E∗ : (x, x∗
) =‖ x‖2 = ∥

∥x∗
∥
∥

2
}

.

It may be observed that for x, y ∈ E and j ∈ J (x),
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(x − y, j) = ‖x‖2 − (y, j) ≥ ‖x‖2 − 1

2

(‖y‖2 + ‖j‖2
) = 1

2

(‖x‖2 − ‖y‖2
)

.

Observation

• If E is reflexive and strictly convex and K is a nonempty closed convex subset of
E, then the nearest point projection mapping PK of E onto K is well defined, i.e.
K is a Chebyshev set (see [39, 249]).

We denote weak convergence and strong convergence in E, respectively, by ⇀

and −→ and let {xn}n≥0 be a generalized nonexpansive sequence in E. Let K =
∞⋂

n=1
co

{{xi − xi−1}i≥n

}

. Djafari Rouhani [189] considered nonexpansive sequences

and obtained an interesting result on the weak convergence of { xn
n } under the assump-

tion that E is reflexive and strictly convex. Recently, Jung and Park [295] dropped
the strict convexity requirement in the result of Djafari Rouhani, that is, instead of
the weak limit of { xn

n } , they dealt with the mean point of { xn
n } concerning a Banach

limit under the assumption that E is reflexive.

Definition 3.15 A sequence {xn}n≥0 ⊂ E is said to be a generalized nonexpansive
sequence if it satisfies

‖ xi+1 − xj+1 ‖2 � ‖ xi − xj ‖2 + ε2(i, j) (3.23)

for all i, j ≥ 0, where ε(i, j) � 1 for all i, j ≥ 0 and for any given ε > 0, there exists
a j0 ≥ 0 such that lim sup

n→∞
ε(n, j) � ε for any j ≥ j0, i.e. lim

j→∞ lim sup
n→∞

ε(n, j) = 0.

Let μ be a mean on the integers N, i.e. a linear functional μ defined on �∞ such
that
(a) μ(a) ≥ 0 if an ≥ 0 ∀ n,

(b) μ(a) = μ(σa) where σ denotes the right shift

σa = σ(a1, a2, a3, . . .) = (a2, a3, a4, . . .),

(c) μ(a) = 1 if a = (1, 1, 1, . . .).

Then we know that μ is a mean on N if and only if

inf {an : n ∈ N} � μ(a) � sup {an : n ∈ N}

for every a = (a1, a2, . . .) ∈ �∞. For convenience we use μn(an) instead of μ(a). A
mean μ on N is called a Banach limit ( see, [534]) if

μn(an) = μn(an+1)
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for every a = (a1, a2, . . .) ∈ �∞ . The Hahn–Banach theorem guarantees the exis-
tence of a Banach limit [584]. We know that if μ is a Banach limit, then

lim inf
n→∞ an � μn(an) � lim sup

n→∞
an

for every a = (a1, a2, . . .) ∈ �∞ . Let E be a reflexive Banach space and let {xn} be
a bounded sequence in E. We now show for a Banach limit μ , there exists a point
x0 in E such that

μn(xn, x∗) = (x0, x∗) ∀ x∗ ∈ E∗.

In fact, the function μn(xn, x∗) is linear in x∗. Also since

∣
∣μn

(

xn, x∗
)∣
∣ �

(

sup
n
‖xn‖

)

· ∥∥x∗
∥
∥ ,

it follows that the function μn(xn, x∗) is also bounded in x∗. Thus, there is a x∗∗0 ∈ E∗∗
such that μn(xn, x∗) = (x∗∗0 , x∗) for every x∗ ∈ E∗. Because E is reflexive, we can
find a point x0 in E such that μn(xn, x∗) = (x0, x∗) for every x∗ ∈ E∗. This point x0

is called a mean point of {xn} concerning μ. Furthermore [295], we also know that

this mean point x0 ∈
∞⋂

n≥1
co {xn} .

Lemma 3.2 Let {an}n≥0 be a sequence of nonnegative real numbers with a0 = 0, the
series of nonnegative terms

∑

i,j ε(i, j) be convergent, and satisfying an+p � an +
ap + n · ε(n+ p, n), ∀ n ≥ 0, p ≥ 1. Then the sequence { an

n } converges as n →∞
and lim

n→∞
an
n = inf

n≥1

an
n .

Proof Let p ≥ 1 be fixed. Then by the division algorithm, for all n ≥ p, there exists
k ≥ 1 such that n = kp+ i; 0 � i < p.

Because the series of nonnegative terms
∑

i,j ε(i, j) converges, there exists η > 0

such that
∑

i,j ε(i, j) � η. Now, for any p ≥ 1 (for notational purposes
∑1

2 = 0), we
have

akp � k · ap +
k

∑

j=2

ε(jp, (j − 1)p)

� k · ap +
∑

l,m

ε(l, m) � k · ap + η.

Thus, we have
akp

kp+ i
≤ k · ap + η

kp+ i
� ap

p
+ η

k
∀ p ≥ 1.
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Hence, we have

an

n
= akp+i

kp+ i
� akp + ai + ε(kp+ i, kp)

kp+ i
� ap

p
+ 2 · η

k
+ ai

k

� ap

p
+ 2 · η

k
+

max
0�i<p

ai

k
.

Now letting n →∞, we have k →∞ and so for all p ≥ 1, we have lim sup
n→∞

an
n � ap

p .

Therefore,

lim sup
n→∞

an

n
� inf

p�1

ap

p
� lim inf

n→∞
an

n
.

Hence,
lim

n→∞
an

n
= inf

n�n0

an

n
.

The following well-known lemma will be useful later (cf. [189]).

Lemma 3.3 E∗ has a Fréchet differentiable norm if and only if E is reflexive and
strictly convex, and has the following property: if xn ⇀ x and ‖ xn ‖→‖ x ‖ for a
sequence {xn} in E, then {xn} converges strongly to x.

Let D be a subset of E. Then we denote the closure of D by D and the closed
convex hull of D by coD, respectively. For a point x in E, we denote its distance from
D by d (x, D) = infy∈D ‖x − y‖ .

We now deal with a generalized nonexpansive sequence {xn} in E and study the
mean point of { xn

n } concerning a Banach limit. We begin with the following lemmas
which will play crucial roles in the proof of our main result. We shall also use the
following basic inequality (see Lemma A.1.1)

(a + b)q � aq + bq (3.24)

for 0 < q � 1 and a, b ≥ 0.

Lemma 3.4 Let E be a Banach space and let {xn} be a generalized nonexpansive
sequence in E. Then lim

n→∞‖
xn
n ‖ exists and

lim
n→∞

∥
∥
∥

xn

n

∥
∥
∥ = inf

n�1
‖xn − x0‖.

Proof Let an =‖ xn − x0 ‖ ∀ n ≥ 1. Now applying (3.24) to the generalized nonex-
pansive sequence {xn} successively, we obtain for all p ≥ 1 that
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an+p =‖ xn+p − x0 ‖�‖ xn+p − xn ‖ + ‖ xn − x0 ‖

�‖ xp − x0 ‖ +
n

∑

j=1

[ε(j + p, j)− ε(j − 1+ p, j − 1)]+ ‖ xn − x0 ‖

� an + ap + ε(n+ p, n).

Hence, the result follows from Lemma 3.2. �
Lemma 3.5 Let {an}n�1 be a sequence of positive real numbers (i.e. an > 0 for

each n) and bn =
n∑

i=1
an. Assume that bn ↑

∞∑

i=1
ai = ∞. If {xn} is a sequence of real

numbers such that xn → x, then we have

lim
n→∞

1

bn

n
∑

i=1

aixi = x.

Proof Let ε > 0. Choose some k such that |xn − x| < ε
2 for each n � k. Put M =

max{|xi − x| : i = 1, . . . , k}, and then select l > k such that Mbk
bn

< ε
2 for all n ≥ l.

Now notice that if n � l, then

∣
∣
∣
∣
∣

1

bn

n
∑

i=1

aixi − x

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1

bn

n
∑

i=1

aixi − 1

bn

n
∑

i=1

aix

∣
∣
∣
∣
∣

� 1

bn

k
∑

i=1

ai|xi − x| + 1

bn

k
∑

i=k+1

ai|xi − x|

� Mbk

bn
+ ε

2
<

ε

2
+ ε

2
= ε

and the conclusion follows.

Lemma 3.6 Let E be a reflexive Banach space and let {xn} be a generalized nonex-
pansive sequence in E. Let

K =
∞
⋂

n=1

co
{{xi − xi−1}i�n

}

.

Then lim
n→∞ ‖

xn
n ‖ = d(0, K) = inf

n�1
‖ xn−x0

n ‖ .

Proof Let k � 1 be fixed and jn ∈ J (xn − xk−1) for n ≥ k. Now the generalized
sequence {xn} yields for n ≥ k that

(xk − xk−1, jn) � 1

2
‖ xn − xk−1 ‖2 −1

2
‖ xn − xk ‖2

� 1

2
‖ xn − xk−1 ‖2 −1

2
‖ xn−1 − xk−1 ‖2 −1

2
(ε(n, k)− ε(n− 1, k − 1))2.
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Hence, we obtain

2

n2

(

xk − xk−1,

n
∑

i=k

ji

)

≥
∥
∥
∥
∥

xn − xk−1

n

∥
∥
∥
∥

2

− 1

n2

n
∑

i=k

(ε(i, k)− ε(i − 1, k − 1))2

≥
∥
∥
∥
∥

xn − xk−1

n

∥
∥
∥
∥

2

− 1

n2
· 2

∑

i,j

ε2(i, j) ∀k ≥ 1. (3.25)

Let Sn = 2
n2

n∑

i=k
ji for n � k. Then we have

‖ Sn ‖� 2

n2

n
∑

i=k

‖ xi − xk−1 ‖= 2

n2

n
∑

i=k

i

∥
∥
∥
∥

xi − xk−1

i

∥
∥
∥
∥

.

Because { xn
n } is bounded by Lemma 3.4, it then follows that {Sn} is bounded. Hence,

by weak* compactness of the closed unit ball of E∗ the sequence {Sn} has weak*
cluster point j ∈ E∗ (obviously independent of k ≥ 1). Since

∑

i,j ε (i, j) is bounded
∀ k ≥ 1, we obtain from Lemma 3.4 and (3.25)

(xk − xk−1, j) ≥ lim
n→∞

∥
∥
∥

xn

n

∥
∥
∥

2 ∀ k ≥ 1.

Hence, for any n ≥ 1, we have

(xn − x0

n
, j
)

≥ lim
n→∞

∥
∥
∥

xn

n

∥
∥
∥

2
. (3.26)

From Lemma 3.5, replacing ai by i, bn by
∑n

i=1 i = n(n+1)

2 and note that limn→∞ bn =
∞, we obtain

lim sup
n→∞

2

n2

n
∑

i=k

i

∥
∥
∥
∥

xi − xk−1

i

∥
∥
∥
∥
= lim sup

n→∞

[

n(n+ 1)

n2
· 2

n(n+ 1)

n
∑

i=k

i

∥
∥
∥
∥

xi − xk−1

i

∥
∥
∥
∥

]

= lim
n→∞

(

1+ 1

n

)

· lim sup
n→∞

2

n(n+ 1)

n
∑

i=k

i

∥
∥
∥
∥

xi − xk−1

i

∥
∥
∥
∥

= lim
n→∞

∥
∥
∥
∥

xn − xk−1

n

∥
∥
∥
∥

.

Now using above inequality, we also have
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‖ j ‖ � lim inf
n→∞ ‖ Sn ‖� lim inf

n→∞
2

n2

n
∑

i=k

i

∥
∥
∥
∥

xi − xk−1

i

∥
∥
∥
∥

� lim sup
n→∞

2

n2

n
∑

i=k

i

∥
∥
∥
∥

xi − xk−1

i

∥
∥
∥
∥
= lim

n→∞

∥
∥
∥
∥

xn − xk−1

n

∥
∥
∥
∥
= lim

n→∞

∥
∥
∥

xn

n

∥
∥
∥

and so it follows that

(xk − xk−1, j) ≥ lim
n→∞

∥
∥
∥

xn

n

∥
∥
∥

2 ≥‖ j‖2 ∀ k ≥ 1.

Hence, for any z ∈ co
{{xi+1 − xi}i≥0

}

1

2
lim

n→∞

∥
∥
∥

xn

n

∥
∥
∥

2 + 1

2
‖ z‖2 ≥ 1

2
‖ j‖2 + 1

2
‖ z‖2

≥ (z, j) ≥ lim
n→∞

∥
∥
∥

xn

n

∥
∥
∥

2 ≥‖ j‖2. (3.27)

Because K ⊂ co
{{xi+1 − xi}i≥0

}

, it follows from (3.27) that

‖ j ‖� lim
n→∞ ‖

xn

n
‖� inf

z∈K
‖ z ‖= d(0, K).

Because { xn
n } is bounded, it follows that { xn−x0

n } and E is reflexive, therefore, by
Eberlein–Smulian’s theorem the sequence { xn−x0

n } contains a weakly convergent sub-

sequence { xni−x0

ni
}. Suppose

xni−x0

ni
⇀ q for some q ∈ K . Then we have

‖q‖ ≤ lim inf
i→∞

∥
∥
∥
∥

xni − x0

ni

∥
∥
∥
∥
= lim

n→∞

∥
∥
∥

xn

n

∥
∥
∥ .

Hence,
lim

n→∞

∥
∥
∥

xn

n

∥
∥
∥ = d(0, K).

This completes the proof. �
In 2004, Pathak et al. [467] used Lemmas 3.4 and 3.6 to prove the following result.

Theorem 3.32 Let E be a reflexive Banach space and let {xn} be a generalized
nonexpansive sequence in E. Let

K =
∞
⋂

n=1

co
{{xi − xi−1}i≥n

}
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and d = d(0, K). Then, d = d
(

0, co
{ xn−x0

n

})

, and there exists a point z0 with
‖ z0 ‖= d such that z0 ∈ co{ xn−x0

n } .

Proof In view of Lemma 3.3, we may assume that { xn−x0
n }n≥1 is bounded. So, it

follows from reflexiveness of E that for a Banach limit μ, there exists z0 ∈ co{ xn−x0
n }

such that
μn

(xn − x0

n
, x∗

)

= (z0, x∗) ∀ x∗ ∈ E∗. (3.28)

Now, for j0 ∈ J (z0) we have

‖ z0 ‖2 = (z0, j0) = μn

(xn − x0

n
, j0

)

� μn

(∥
∥
∥

xn − x0

n

∥
∥
∥

)

· ‖ j0 ‖= d · ‖ j0 ‖= d · ‖ z0 ‖,

and hence ‖ z0 ‖� d . By the proof of Lemma 3.6 and (3.26), there exists a functional
j ∈ E∗ with ‖ z0 ‖� d such that

(xn − x0

n
, j
)

≥ d2 ∀ n ≥ 1. (3.29)

As a result, we have (z0, j) ≥ d2. Because ‖ j ‖� d , we obtain

d2 ≥‖ z0 ‖ · ‖ j ‖≥ (z0, j) ≥ d2

and hence ‖ z0 ‖=‖ j ‖= d . From (3.29), it follows that (z0, j) ≥ d2 for every z ∈
co{ xn−x0

n } and so
‖ z ‖ ·d =‖ z ‖ · ‖ j ‖≥ (z, j) ≥ d2.

Hence, ‖ z ‖≥ d for every z ∈ co{ xn−x0
n }. As a result, we obtain

d = d

(

0, co

{
xn − x0

n

})

Now suppose that there is another point w0 satisfying (3.28). Then for j ∈ J (z0 − w0),
we have

‖ z0 − w0 ‖2= (z0 − w0, j) = μn

(xn − x0

n
− xn − x0

n
, j
)

= 0,

and hence z0 = w0 . This completes the proof. �

Corollary 3.5 Suppose E, {xn}, K and d are as in Theorem 3.32. Then we have the
following:
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(i) If E is strictly convex, then the weak lim
n→∞

xn
n exists and coincides with PK 0 with

‖ PK 0 ‖= d .

(ii) E∗ has a Fréchet differentiable norm, strong lim
n→∞

xn
n exists and coincides with

PK 0.

Proof (i) Because a reflexive Banach space E is strictly convex, the set

{

z ∈ co
{xn − x0

n

}

:‖ z ‖= d
}

consists of exactly one point and d(0, K) =‖ PK 0 ‖. It may be observed that this
point equals z0 in Theorem 3.32. Let { xni

ni
} be a subsequence of { xn

n } such that { xni
ni
}

weakly to p ∈ K . Then since

‖p‖ ≤ lim inf
i→∞

∥
∥
∥
∥

xni

ni

∥
∥
∥
∥
= lim

n→∞

∥
∥
∥

xn

n

∥
∥
∥ =‖ PK 0 ‖

we have p = z0 = PK 0. It follows that { xn
n } converges weakly to PK 0. This completes

the proof.
(ii) This is an immediate consequence of (i) and Lemma 3.3. �
Remark 3.8 (1) Let {xn}n≥0 be a nonexpansive sequence in E (i.e. ‖ xi+1 − xj+1 ‖�‖
xi − xj ‖ for all i, j ≥ 0). Then lim

n→∞
∥
∥ xn

n

∥
∥ ([188], Theorem 3.1) and {xn}n≥0 also

satisfies (3.23). Thus, Theorem 3.32 is a partial generalization of Theorem 3.3 in
[295].
(2) Because our studies are equivalent to the study of the asymptotic behaviour of
the sequence

{
T nx

n

}

n≥1 in E, T is a nonexpansive mapping from an arbitrary set K
of E into itself and x ∈ K , Theorem 3.32 is a partial improvement of Theorem 5 in
[515].
(3) Let {xn}n≥0 be an almost nonexpansive sequence in E (i.e. ‖ xi+1 − xj+1 ‖�‖ xi −
xj ‖ +ε(i, j), where {ε (i, j)}i,j≥0 is bounded and lim

i,j→∞ ε (i, j) = 0. Then lim
n→∞

∥
∥ xn

n

∥
∥

exists and {xn}n≥0 also satisfies (3.23). For the proof of this fact, see Propositions
3.3 and 3.4 in [190]. Thus, all the conditions of Theorem 3.32 and Corollary 3.5 are
satisfied for almost nonexpansive sequences {xn}n≥0 in E.

(4) We need the condition d = d
(

0, co
{ xn−x0

n

})

in Corollary 3.5, however, it is of
interest in view of using the mean point.
(5) Our result may also be applied to the asymptotic behaviour of curves in E, and
thus to the asymptotic behaviour of unbounded trajectories for the quasi-autonomous
dissipative system

du

dt
+ Au � f

where A is an accretive (possibly multivalued) operator in E × E; see [188] for the
case E is a Hilbert space.
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A Simple Application

We now illustrate potential application of our methods to obtain solution of certain
inequality.

Theorem 3.33 Let f1, f2 ∈ L2 ([0, 1]) satisfy the following inequality for all g1, g2

∈ L2 ([0, 1]) such that

∣
∣
∣
∣

∫ 1

0
g1 (t) dt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

∫ 1

0
g2 (t) dt

∣
∣
∣
∣

2

�
∣
∣
∣
∣

∫ 1

0
(f1 (t) g1 (t)+ f2 (t) g2 (t)) dt

∣
∣
∣
∣

2

�
∫ 1

0
(|g1 (t)| + |g2 (t)|)2 dt.

Then f1 = λ and f2 = μ for some λ,μ ∈ [−1, 1].
Proof Let E = L2

(

[0, 1] ;R2∞
)

, where R2∞ denotes R2 endowed with the sup
norm. Then E is reflexive and E∗ = L2

(

[0, 1] ;R2
1

)

. We now consider the gener-
alized nonexpansive sequence {xn}n≥0 ⊂ E defined by x2k =

(

2k, 1
2k

)

and x2k+1 =
(

2k, 1
2k+1

)∀ k ≥ 0. Finally, we apply Theorem 3.32. �

Exercises

3.1 Let f : R2 → R be defined by

f (x1, x2) =
{

x3
1x2

x4
1+x2

, if (x1, x2) �= (0, 0)

0, if (x1, x2) = (0, 0).

Show that f has Gâteaux differentiable at the origin.

3.2 Let a functional f : �1 → R be defined by

f ({xn}) =
∞
∑

n=1

|xn|.

Show that f is not Fréchet differentiable at any point of �1 but is Gâteaux differentiable
at those points of the unit sphere for which {xn} has all nonzero coordinates.

3.3 Let a functional F : C[0, 1] → R be defined by

F(y) =
∫ 1

0
(ty(t)++y2(t))dt.

Find the value of y which gives the minimum value of F .

3.4 Let K(s, t) be a real-valued function in the square reason 0 � s � t, 0 � t �
1, and the norm functional F(f ) = sup0�t�1 |f (t)| on C[0, 1] be defined by the
following relation:
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F(f ) =
∫ 1

0
f 2(t)dt − λ

∫ 1

0

∫ 1

0
K(s, t)f (s)f (t)dsdt − 2

∫ 1

0
f (t)g(t)dt

where g is a fixed of C[0, 1]. Show that F is Fréchet differentiable.

3.5 Let f : R→ R be a convex function. Show that for any reals t1 < t2 < t3

f (t2)− f (t1)

t2 − t1
� f (t3)− f (t1)

t3 − t1
� f (t3)− f (t2)

t3 − t2
.

3.6 Show that the functions defined on R into itself have subdifferentiable as indi-
cated below:
(i) F(x) = x2, ∂F(x) = 2x, x ∈ R,

(ii) F(x) = ex, ∂F(x) = ex, x ∈ R,

(iii) F(x) = |x|, ∂F(x) =

⎧

⎪⎨

⎪⎩

−1, x < 0,

[−1, 1], x = 0

1, x > 0.

3.7 If f : X → R is continuous and convex, then show that its subdifferential map
is norm-to-weak∗ upper semicontinuous.

3.8 Let ϕ : R→ R be convex, even and lower semicontinuous and f (x) = ϕ(‖x‖),
x ∈ R. Show that f is convex, lower semicontinuous and f ∗(x∗) = ϕ∗(‖x∗‖), x∗ ∈
X ∗. In particular if p > 1, 1

p + 1
q = 1 and f (x) = 1

p‖x‖p, then

f ∗(x∗) = 1

q
‖x∗‖q.

3.9 Let X be a Banach space with a uniform Gâteaux differentiable norm, J the
duality mapping of X , and let M be any bounded subset of X . Show that J is norm-
to-weak∗ uniformly continuous on M .



Chapter 4
Monotone Operators, Strongly
φ-Accretive Operators and Their
Variants

Pure mathematicians just love to try unsolved problems—they
love a challenge.

Andrew Wiles
Mathematics is an organ of knowledge and an infinite refinement
of language. It grows from the usual language and world of
intuition as does a plant from the soil, and its roots are the
numbers and simple geometrical intuitions. We do not know
which kind of content mathematics (as the only adequate
language) requires; we cannot imagine into what depths and
distances this spiritual eye (mathematics) will lead us.

Erich Kahler (1941)
Pure mathematics is, in its way, the poetry of logical ideas.

Albert Einstein

In this chapter we introduce the reader to the theory of monotone operators, φ-
accretive operators and their generalizations. The concept of monotone operator was
first introduced by Minty in his paper of 1962 [400], wherein he gave a surjectivity
theorem for such operators. Since then this theory is widely developed and has
found useful applications in the investigation of the solvability of nonlinear operator
equations and in particular of partial differential equations and integral equations.
Our purpose is to give a systematic treatment (with historical development) of various
topics in the theory of monotone operators needed for such an investigation.

Sections 4.1 and 4.2 deal with monotone and maximal monotone operators and
their properties. Section 4.3 gives surjectivity results for such operators. These are
in turn applied to get existence and uniqueness results for operator equations. We
mainly discuss the work of Browder and Minty. There is a brief discussion regarding
the range of the sum of maximal monotone operators encompassing the results of
Browder and Rockfeller.
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In Sect. 4.4, we give some results regarding the approximate solvability of operator
equations involving monotone operators. These are on the lines of Petryshyn and
Bruck, Jr. These results will help the reader to develop computer algorithms for the
approximate solution of operator equations.

Section 4.5 deals with monotone properties of the subdifferential of convex func-
tionals. As a corollary, we deduce the maximal monotonicity of the duality map-
ping J . In Sect. 4.6, we introduce various generalization of monotonicity concepts,
pseudomonotonicity, generalized pseudomonotonicity, etc., introduced by Brezis,
Browder, Hess and Petryshyn.

We conclude the Chapter in Sect. 4.7 by introducing the concept of φ-accretive
operator and its generalizations. Some surjectivity results are also presented in the
setting of Banach spaces.

4.1 Monotone Operators

To begin with, firstly, we notice that the concept of monotonicity is relatively old, for
as early as 1935 Golomb [254, pp. 66–72] used monotonicity conditions for operators
of a Hilbert space when he examined a nonlinear Hammerstein integral equation.
Further, this notion was used by Vainberg [596] and Zarantonello [617] in 1960 to
solve many problems of nonlinear equations and functional equations, respectively.
Secondly, we observe that there exist a number of different monotonicity notions, but
we restrict ourselves to the notions of monotonicity in the sense of Kachurovskiı̆ [299,
300]. So, we start our discussion with the introduction of the notion of monotone
operators in Hilbert spaces.

Let H be a real Hilbert space with inner product and norm 〈·, ·〉 and ‖ · ‖, respec-
tively. A map F : D(F) ⊂ H → H(not necessarily continuous) is said to be

• monotone if 〈Fx − Fy, x − y〉 � 0 for all x, y ∈ D(F);
• strictly monotone if 〈Fx − Fy, x − y〉 � 0 for all x, y ∈ D(F) with, x �= y;
• strongly monotone if 〈Fx − Fy, x − y〉 � c‖x − y‖2 for some c > 0 and for all

x, y ∈ D(F), and
• F is dissipative if −F is monotone.

Evidently, every strongly monotone map is injective. If F and G are monotone and
c > 0, then F + G is monotone and F + cI is strongly monotone.

We now discuss the notion of generalized monotonicity that appears in the works
of Browder [104], Brezis [79], Minty [400, 401, 403], Webb [606] and Skrypnik
[563]. In 1960, R. I. Kachurovskiı̆ [299] introduced the concept of monotonicity for
mappings which map a Banach space into its dual space as follows:

Let X be a real Banach space with dual X∗. For x ∈ X, y ∈ X∗, (y, x) denotes
the evaluation of y at x .
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Definition 4.1 Let T : D(T ) ⊂ X → X∗ be any operator (possibly nonlinear).
Then,

(i) T is said to be monotone if

(T x − T y, x − y) ≥ 0 for all x, y ∈ D(T ). (4.1)

(ii) T is called strictly monotone if the above inequality is strict, i.e.,

(T x − T y, x − y) > 0 for all x, y ∈ D(T ) with x �= y. (4.2)

(iii) T is called strongly monotone if there exists a constant c > 0 such that

(T x − T y, x − y) � c‖x − y‖2 for all x, y ∈ D(T ). (4.3)

(iv) T is dissipative if −T is monotone.

Remark 4.1 If the Banach space X under consideration is complex, then for the LHS
of the inequality in (4.1), we consider only the real part.

Suppose H is a Hilbert space and T an operator on H, then for x, y ∈ H, (y, x)

will denote the inner product in H and again (4.1) will define the monotonicity of
T in H. In tune with this argument, without loss in generality, we assume that the
Banach space X or Hilbert space H is real.

Example 4.1 Let f : R → R be a monotone increasing function. Then, it follows
that f is a monotone operator in the sense of Definition 4.1.

Example 4.2 Let H be a Hilbert space. Let A : H → H be a compact and self-
adjoint linear operator. Then, by virtue of the spectral theorem for compact self-
adjoint operators, A is monotone if all the eigenvalues of A are nonnegative.

Example 4.3 A : L2[0, 1] → L2[0, 1] be the differential operator − d2

dt2 with domain
D(A) defined as

D(A) = {
x ∈ L2[0, 1] : x ′(t), x ′′(t) ∈ L2[0, 1] : x(0) = 0 = x(1)

}
.

Then, A is a demicontinuous monotone operator.

Example 4.4 Consider the integral operator of convolution type (discussed in Exam-
ple 1.38) defined by the kernel k(t):

[K x](t) =
∫ ∞

−∞
k(t − τ)x(τ )dτ = k ∗ x .

If k ∈ L1(−∞,∞), then K is a continuous noncompact linear operator from
L2(−∞,∞) to itself. Let k̂(iw) denote the Fourier transform of k(t), then by
Parseval’s equality, we have
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(K x, x) = (k ∗ x, x) = Re(k̂(iw)x̂(iw), x̂(iw))

= Re
∫ ∞

−∞
k̂(iw)|x̂(iw)|2dw. (4.4)

From (4.4), it follows that K is monotone iff k̂(iw) � 0 for almost all w ∈ R.

Example 4.5 Let H be a Hilbert space and T : H → H a nonexpansive operator:

‖T x − T y‖ � ‖x − y‖ for all x, y ∈ H.

Then, I − T is monotone. Indeed, using Cauchy–Schwarz inequality, we have

〈(I − T )x − (I − T )y, x − y〉 = 〈x − y, x − y〉 − 〈T x − T y, x − y〉
� ‖x − y‖2 − ‖T x − T y‖‖x − y‖
� ‖x − y‖2 − ‖x − y‖2 = 0 for all x, y ∈ H.

Example 4.6 For a closed convex subset K of a Hilbert space H, let PK x denote the
point of minimum distance of K from x :

PK x = {z ∈ K : ‖z − x‖ = inf
y∈K

‖y − x‖}.

Then, PK is a monotone operator on H. This can be seen as follows. By definition,
we have

‖PK x1−x1‖2 � ‖PK x2−x1‖2 and ‖PK x2−x2‖2 � ‖PK x1−x2‖2 for all x1, x2 ∈ H.

Expanding the norm in terms of inner product, we get

〈PK x1 − PK x2, x1〉 � 1

2

[
‖PK x1‖2 − ‖PK x2‖2

]

and

〈PK x2 − PK x1, x2〉 � 1

2

[
‖PK x2‖2 − ‖PK x1‖2

]
.

Combining the above two inequalities, we get

〈PK x1 − PK x2, x1 − x2〉 � 〈PK x1 − PK x2, x1〉 + 〈PK x1 − PK x2,−x2〉
� 1

2

[
‖PK x1‖2 − ‖PK x2‖2

]
+ 1

2

[
‖PK x2‖2 − ‖PK x1‖2

]

� 0,

which is the required inequality needed for the monotonicity.
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Example 4.7 (i) Let f (s, x) be a function defined on [0, 1]×R toR, which satisfies
Carathéodory condition. Let N f be the Nemytskiĭ operator defined by f :

[N f x](s) = f (s, x(s))

is monotone.
(ii) Let J = [0.T ] ⊂ R, f : J × Rn → Rn measurable in t ∈ J and continuous in

x ∈ Rn, f (·, 0) ∈ X = L2(J ) and

( f (t, x) − f (t, y) · (x − y) � 0 for t ∈ J and x, y ∈ R,

where the dot indicates the inner product of Rn while (u, v) =
∫

J
u(t) · v(t) dt

for u, v ∈ X . Let

D(F) = {u ∈ X : f (·, u(·)) ∈ X} and (Fu)(t) = f (t, u(t)).

Then, the superposition operator F : D(F) → X is monotone.

In Sect. 1.9, we have given sufficient conditions for N f to map L2[0, 1] into itself.
If, in addition, f is monotone increasing with respect to the second variable, then
the Nemytskiĭ operator N f is monotone.

Example 4.8 Consider the duality mapping J : X → X∗. We assume that X∗ is
strictly convex so that J is single valued. This mapping J is monotone:

(J x1 − J x2, x1 − x2) = (J x1, x1) + (J x2, x2) − (J x1, x2) − (J x2, x1)

� ‖x1‖‖J x1‖ + ‖J x2‖‖x2‖ − ‖x2‖‖J x1‖ − ‖x1‖‖J x2‖
= (‖x1‖ − ‖x2‖)(‖J x1‖ − ‖J x2‖)
= (‖x1‖ − ‖x2‖)2 � 0.

Let us now assume that X is strictly convex. Then following Browder [89], we
get the identity

(J x1 − J x2, x1 −x2) = (‖x1‖−‖x2‖)2 +(‖J x1‖‖x2‖−(J x1, x2))+(‖x1‖‖J x2‖−(J x2, x1)).

Because each term in the identity is nonnegative, it follows that if J is not strictly
monotone, then there exists ‖x1‖ = ‖x2‖ such that

(J x1, x2)

x2
= ‖J x1‖ = (J x1, x1)

x1

which is equivalent to the statement

(
J x1,

x2

‖x2‖
)

=
(

J x2,
x1

‖x1‖
)

= ‖J x1‖ = ‖x1‖ = ‖x2‖.
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Thus, there exists an element x∗
1 = J x1 which attains its maximum at two different

points of the unit sphere, contradicting the strict convexity of X . Thus, if X is strictly
convex, then J is strictly monotone.

Example 4.9 Suppose � ⊂ Rn is a bounded domain and p � 2. Consider the
Sobolev space H 1,p(�) = { f : Di ( f ) ∈ L p(�), 0 � i � n} with the norm

‖ f ‖1,p = (∑n
0 ‖Di f ‖p

p
)1/p

(we shall denote D0 f ≡ f and Di f the derivative of f
w.r.to the ith variable).

Suppose H 1,p
0 (�) denotes the closure of Cm

0 (�) in the norm ‖ · ‖1,p. Assume that

H 1,p
0 (�) is endowed with the equivalent norm ‖ f ‖0

1,p = (∑n
i=1 ‖Di f ‖p

p
)1/p

. Let us

consider the pseudo-Laplacian operator T : H 1,p
0 (�) → H 1,p

0 (�)∗ defined by

T ( f ) = −
n∑

i=1

Di
(|Di f |p−2 Di f

)
, f ∈ H 1,p

0 (�).

We now show that the operator T is well defined and bounded. To this end, for
f, g ∈ H 1,p

0 (�), we have

|〈T f, g〉| =
∣∣∣∣∣

n∑

i=1

∫

�

|Di f |p−2 Di f · Di g dx

∣∣∣∣∣

�
n∑

i=1

∥∥|Di f |p−1
∥∥

q
‖Di g‖p

�
(

n∑

i=1

∥∥|Di f |p−1
∥∥q

q

)1/q

·
(

n∑

i=1

∥∥|Di g|p
p

∥∥
)1/p

=
(

n∑

i=1

‖Di f ‖p
p

)1/q

·
(

n∑

i=1

‖Di g‖p
p

)1/p

= (‖ f ‖0
1,p)

p−1 · ‖g‖0
1,p.

It follows that T is well defined and it is bounded. Moreover,

〈T f − T g, f − g〉 � (‖ f ‖0
1,p)

p · (‖g‖0
1,p)

p − (‖ f ‖0
1,p)

p−1 · ‖g‖0
1,p − (‖g‖0

1,p)
p−1 · ‖ f ‖0

1,p

�
[
(‖ f ‖0

1,p)
p−1 − (‖g‖0

1,p)
p−1

] (
‖ f ‖0

1,p − ‖g‖0
1,p

)

� 0.

This entails that the operator T is strictly monotone.

We now give some sufficient conditions for the monotonicity of an operator. The
following theorem, due to Minty [400], shows that monotonicity is essentially a local
property.
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Theorem 4.1 Let C be a convex subset of a Banach space and T : X → X∗ with
D(T ) = C be any nonlinear operator. Then, T is monotone iff to each x ∈ C there
exists a ball B(x) such that T is monotone on C ∩ B(x).

Proof Suppose x1, x2 are two distinct points of C , then the line segment t x1+(1−t)x2

is compact and is contained in C . It follows that there exists a finite subcovering of
neighbourhoods ({B(x) : x ∈ C}) of the hypothesis. We now choose ε > 0 to be
smaller than their smallest radius and such that ‖x1 − x2‖/ε is an integer n.

Suppose tm = mε
‖x1−x2‖ , m = 0, 1, . . . , n, then ym = tm x1 + (1 − tm)x2 lie on the

line segment joining y0 = x2 and yn = x1 and ym − ym−1 = �y is independent of
m. For each m, ym and ym−1 lie in one of the balls B(x) and consequently

(T ym − T ym−1,�y) � 0.

Summing over m, we get
(T yn − T y0,�y) � 0.

But n�y = x1 − x2. So multiplying throughout by n, we get

(T x1 − T x2, x1 − x2) � 0.

This completes the proof. �

Theorem 4.2 Let X be any real Banach space and T : X → X∗ be a nonlinear
operator. If the Gâteaux derivative T ′(x) exists for every x ∈ X and is positive
semidefinite, then T is monotone.

Proof By Theorem 4.1, we have

(T x1 − T x2, x1 − x2) = (T ′(x2 + τ(x1 − x2))(x1 − x2), x1 − x2)

= (T ′(x)(x1 − x2), x1 − x2),

where x = x2 + τ(x1 − x2), 0 < τ < 1.

Because T ′(x) is positive semidefinite, our result follows. �

Definition 4.2 Let X be a Banach space and T : D(T ) ⊆ X → X∗ an operator.
Then, T is said to be

(i) accretive if for each x, y ∈ D(T ) and t > 0, the following inequality holds:

‖x − y‖ � ‖x − y + t (T x − T y)‖. (4.5)

(ii) dissipative if I − T is accretive, I being identity operator.
(iii) expansive if ‖T x − T y‖ � ‖x − y‖ for all x, y ∈ D(T ).
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Observation

• This definition of accretivity is due to Kato [320].
• The notion of monotone operators could be considered as a generalization of the

concept of accretive operators in view of the following theorem on a Hilbert space
H.

Theorem 4.3 Let H be a Hilbert space. Then, T : H → H is monotone iff (I +λT )

is accretive for every λ > 0.

Proof For x, y ∈ D(T ), we have

‖(x − y) + λ(T x − T y)‖2 = ‖x − y‖2 + 2λ(T x − T y, x − y)

+ λ2‖T x − T y‖2. (4.6)

If T is monotone, from (4.6), it trivially follows that (I + λT ) is accretive. Con-
versely, if (I + λT ) is accretive, then we have

2λ(T x − T y, x − y) + λ2‖T x − T y‖2 � 0

for every λ > 0. This gives

(T x − T y, x − y) � −λ‖T x − T y‖2 for λ > 0.

Taking the limit λ → 0, we get the required inequality needed for monotonicity. �

We now discuss the continuity and boundedness property of monotone operators.

Definition 4.3 T : D(T ) ⊆ X → X∗ is said to be locally bounded at x ∈ D(T )

if xn → x implies that {T xn} is bounded in X∗. T is called hemibounded at x if xn

converging to x along a line implies that {T xn} is bounded in X∗.

Recall the definitions of demicontinuity and hemicontinuity defined in Sect. 1.6.3.
In the context of these definitions of T : X → X∗, convergence of T xn to T x refers
to the convergence in the weak* topology of X∗. So T : X → X∗ is said to be
demicontinuous if xn → x in X implies that T xn converges to T x in the weak*
topology of X∗. Similarly, we can redefine hemicontinuity of T .

Theorem 4.4 Let X be Banach space and T : X → X∗ be monotone with D(T ) =
X. Then, T is hemibounded at x0 ∈ X.

Proof Let xn = x0 + tn x, 0 � tn � 1. Then, xn → x0 along line. By monotonicity
of T , we get

(T (x0 + x) − T xn, x0 + x − xn) = (T (x0 + x) − T xn, x(1 − tn))

= (1 − tn)(T (x0 + x) − T xn, x) � 0.
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This implies that (T xn, x) � (T (x0 + x), x). By the principle of uniform bounded-
ness, it suffices to show that |(T xn, z)| � Mz for every z ∈ X. We have

(T xn, z) � tn(T xn, x) − tn(T (x0 + z), x) + (T (x0 + z), z)

� tn(T (x0 + x), x) − tn(T (x0 + z), x) + (T (x0 + z), z),

which gives

(T xn, z) � tn(T xn,x) − tn(T x0 + z), x) + (T (x0 + z), z)

tn(T (x0 + x), x) − tn(T (x0 + z), x) + (T (x0 + z), x),

which gives

(T xn, z) � |(T (x0 + x), x)| + |(T (x0 + z), x)| + |(T (x0 + z), z)|.

Taking −z for z, we get the required boundedness of {T xn, z)} and hence the
theorem. �

Observation

• Theorem 4.4 is also true if D(T ) is just dense in X .
• If D(T ) is not dense in X in Theorem 4.4, then one can show that T is hemibounded

at an interior point of D(T ).
• Theorem 4.4 is due to Kato [321]. For reference, also see Rockfeller [526] and

Showalter [554]. Kato, in fact, proved that if D(T ) is open, then hemiboundedness
is equivalent to local boundedness.

In view of the above observation and Theorem 4.4, we get the following important
result of monotone operators which we separately state.

Theorem 4.5 Let X be a Banach space and T : D(T ) ⊆ X → X∗ be monotone.
Then, T is locally bounded at x ∈ int D(T ).

Let us now consider a demicontinuous monotone operator T : X → X∗ with
dense domain. Then, by what we have just proved it follows that T is hemicontinuous
and locally bounded. It turns out that the converse is also true. We now state and prove
this result, which is due to Kato [321].

Theorem 4.6 Let X be a Banach space and T : D(T ) ⊆ X → X∗ be monotone with
D(T ) dense in X. Then, T is demicontinuous at x ∈ int D(T ) iff it is hemicontinuous
and locally bounded.

Proof We need only to show that hemicontinuity and local boundedness of T imply
demicontinuity. Let xn → x, xn ∈ D(T ). Put tn = ‖xn − x‖1/2 and define

zn = x + tn y, y ∈ D(T ).
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Then, since tn → 0, hemicontinuity of T implies that T zn → T x in the weak*
topology of X∗. By monotonicity of T , we have

(T xn − T zn, xn − x − tn y) � 0. (4.7)

Because T is locally bounded, {T xn} as well as {T zn} are bounded.

t−1
n (T xn − T zn, xn − x) → 0,

since
‖t−1

n (xn − x)‖ = t−1
n ‖xn − x‖ = t−1

n t2
n = tn → 0 as n → ∞.

Also, (T zn, y) → (T x, y). Hence, dividing by tn and letting n → ∞ in (4.7), we
get

lim inf
n→∞ (T xn − T x, y) � 0 for every y ∈ D(T ). (4.8)

Because D(T ) is dense in X , it follows that (4.8) is true for all y ∈ X . Replacing y
by −y, we have

lim
n→∞(T xn − T x, y) = 0 for all y ∈ X.

This implies the demicontinuity of T . �

The above theorem shows that the notion of monotone hemicontinuous bounded
operator is stronger than the notion of demicontinuous operator.

Observation

• For monotone operators on finite dimensional spaces with dense domain, conti-
nuity is equivalent to hemicontinuity (refer Kato [321]).

• For infinite dimensional case, in view of Theorem 4.5, the assumption of local
boundedness is redundant at x ∈ int D(T ).

In view of above observation, we have the following theorem.

Theorem 4.7 Let X be a Banach space and T : D(T ) ⊆ X → X∗ be monotone.
Then, T is demicontinuous at x ∈ int D(T ) iff it is hemicontinuous there.

Remark 4.2 One can extend the definition of monotonicity for operators on locally
convex spaces without much difficulty. For continuity properties of monotone oper-
ators on locally convex spaces, refer Kravvaritis [348].

We now define J -monotonicity for mappings from a normed space X into itself.
This definition was first introduced by Browder and de Figueredo [116].
J-monotone mapping − Let X be a normed space and T : D(T ) ⊆ X → X a
mapping. Then, T is said to be J -monotone if

(T x − T y, J (x − y)) � 0 for all x, y ∈ D(T ).
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In view of a result of Kato [321], we have the following boundedness and continuity
result for J -monotone operators. Let T : D(T ) ⊆ X → X be J -monotone. Then,

(i) T is locally bounded at x ∈ int D(T ) iff it is locally hemibounded at x ;
(ii) T is demicontinuous at x ∈ int D(T ) iff it is hemicontinuous at x .

In what follows X and Y are real Banach spaces and X∗, Y ∗ their duals. Consider
the operator f : X → Y,D( f ) = X.

Definition 4.4 An operator T : D(T ) ⊆ X → Y ∗ is said to be f -monotone if

(T x − T y, J (x − y)) � 0 for all x, y ∈ D(T ).

If X = Y and f = I , then an I -monotone operator is called monotone. Note that for
a linear operator T : X → X∗, the monotonicity is equivalent to the nonnegativity,
i.e. (T x, x) � 0, for all x ∈ D(T ).

Theorem 4.8 Let T : D(T ) ⊆ X → Y ∗ be J -monotone, where f : X → Y is
positively homogeneous, surjective and uniformly continuous on the unit ball of X.
Then,

(i) T is locally bounded at x ∈ int D(T ) iff it is locally hemibounded at x;
(ii) T is demicontinuous at x ∈ int D(T ) iff it is hemicontinuous at x.

4.2 Maximal Monotone Operator and Its Properties

In this section, we shall be mainly concerned with this multivalued mapping T :
X → 2X∗

where X is a real Banach space.
Recall that a graph G(T ) of F is a subset of X × X∗ given by

G(T ) = {[x, y] ∈ X × X∗ : y ∈ T x, x ∈ D(T )
}
.

We say that T ⊆ T1 iff G(T ) ⊆ G(T1).

Definition 4.5 A multivalued operator T : X → 2X∗
is called monotone if

(y1 − y2, x1 − x2) � 0 for all x1, x2 ∈ D(T ) and y1 ∈ T x1, y2 ∈ T x2.

Similarly, one can define strict monotonicity and strong monotonicity for T .

Definition 4.6 Let G be any nonempty subset of X × X∗. G is called monotone if

(y1 − y2, x1 − x2) � 0 for all [x1, y1], [x2, y2] ∈ G.
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Definition 4.7 A monotone operator T : D(T ) ⊂ X → 2X∗
is called maximal

monotone if it has no proper monotone extensions. That is, if for [x, y] ∈ X × X∗,
we have

(y − v, x − u) � 0 for all u ∈ D(T ) and v ∈ T u, then y ∈ T x .

Similarly, we say that G ⊂ X × X∗ is maximal monotone if for every monotone
G1 such that G ⊂ G1, we have G = G1.

Proposition 4.1 Let X be a real reflexive Banach space. Let T : X → 2X∗
be a

multivalued operator. Then,

(i) T is monotone (maximal) iff G(T ) is monotone (maximal);
(ii) T is monotone (maximal) iff T −1 is monotone (maximal).

We first give the characterization of maximality for single-valued monotone
operators—linear as well as nonlinear, which is due to Browder [63].

Theorem 4.9 Let T : X → X∗ be a single-valued hemicontinuous monotone oper-
ator. Suppose that D(T ) is dense in X, with respect to weak topology. Then, T
is maximal monotone iff T is not the restriction of any properly larger monotone
single-valued mapping with domain in X and range in X∗.

Proof One way is obvious. So now assume that T is maximal in the family of single-
valued monotone operators from X to X∗. Let [x0, y0] ∈ X × X∗ such that for all
x ∈ D(T ), we have (T x − y0, x − x0) � 0. It suffices to show that y0 = T x0.

We claim that x0 ∈ D(T ). If not, then T could be extended to T1 by setting
T1x0 = y0. Suppose now T x0 − y0 �= 0. Because D(T ) is dense in X with respect to
the weak topology of X , there exists an x1 ∈ D(T ) such that (T x0 − y0, x1 −x0) < 0.

Set xt = (1 − t)x0 + t x1 ∈ D(T ), 0 < t < 1. Then, 0 � (T xt − y0, xt − x0) =
t (T xt − y0, x1 − x0) which implies that (T xt − y0, x1 − x0) � 0. As t → 0, xt → x0

and hence T xt → T x0 in the weak* topology and so we get (T x0 − y0, x1 −x0) � 0,

contradicting the choice of x1. Hence, y0 = T x0. �

From this theorem, we immediately get the following two important corollaries.

Corollary 4.1 Let T be a hemicontinuous monotone single-valued operator with
D(T ) = X, Then, T is maximal monotone.

Corollary 4.2 Let T : X → X∗ be monotone and suppose that the range of T is all
of X∗ and T −1 is single valued and hemicontinuous. Then, T is maximal monotone.

Theorem 4.10 Let L : X → X∗ be a single-valued monotone linear mapping from
a dense subspace D(L) of X into X∗. Then, L is maximal monotone iff L is maximal
among all single-valued monotone linear mappings L from X to X∗.
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Proof Suppose [x0, y0] ∈ X × X∗ be such that for all x ∈ D(L), we have (Lx −
y0, x − s0) � 0. Then, x0 ∈ D(L). If not, then the operator L1 : x + λx0 →
Lx + λy0, λ ∈ R, is a proper linear monotone extension of L . We then have

(L(x0 + t x) − y0, (x0 + t x) − x0) � 0 for x ∈ D(L) and t > 0.

This gives (Lx0 − y0, x) � −t (Lx, x) for all t > 0. Taking limit as t → 0 and
using the fact that D(L) is dense in X , we get (Lx0 − y0, x) = 0 for all x ∈ X . This
implies that Lx0 = y0, hence the result. �

We now give a sufficient criterion for the maximal monotonicity of a multivalued
monotone operator. This result is due to Browder [90]. In the next section, we shall
characterize maximal monotonicity of multivalued operators.

Theorem 4.11 Let T : X → 2X∗
be a multivalued hemicontinuous monotone oper-

ator with D(T ) = X. If T (x) is a closed convex subset of X∗ for each x ∈ X, then
T is maximal monotone.

Proof Suppose that there exists an extension T1 of T such that T is monotone and
y0 ∈ T1(x0). We must show that y0 ∈ T (x0). Suppose this is not so. Because T (x0)

is a closed convex subset of X∗, there exists z in X such that

(y0, z) > (y, z) for all y ∈ T (x0). (4.9)

Let xt = x0 + t z, t > 0. Then, in view of monotonicity of T1, we have

t (yt − y0, z) � 0 for all yt ∈ T xt .

This gives
(yt − y0, z) � 0 for all yt ∈ T xt . (4.10)

Because xt → x0 along a line, hemicontinuity of T gives that yt → y1 in weak*
topology of X∗ for some y1 ∈ T x0. So in view of (4.10), we get

(y1 − y0, z) = lim
t→0

(yt − y0, z) � 0,

which is a contradiction to (4.9). �

Now we begin with the convexity property of the domain and range of a maximal
monotone operator. In the following, for any subset D of X , coD, intD and D will
denote convex hull, interior and (strong) closure of D, respectively.

Definition 4.8 D ⊂ X is called almost convex if int co(D) ⊂ D.

Definition 4.9 D ⊂ X is called virtually convex if for each relatively compact
subset K of co D and each ε > 0, there exists a continuous mapping P : K → D
such that ||P(x) − x‖ < ε for every x ∈ K .
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It follows from the definition that if D is almost convex, then cl D is convex. We
have the following relationship between almost convexity and virtual convexity; see
Rockfeller [527].

Proposition 4.2 If X is a finite dimensional space, then D ⊂ X is virtually convex
iff D is almost convex.

We now state and prove the following important convexity result for maximal
monotone operators on finite dimensional spaces. This is due to Minty [401].

Theorem 4.12 If T is a maximal monotone operator on finite dimensional Hilbert
space X, then D(T ) is almost convex.

We first state the following lemma which was proved by Minty in [402].

Lemma 4.1 Let x1, x2, . . . , xn and y1, y2, . . . , yn in X be such that

(yi − y j , xi − x j ) � 0, 1 � i, j � n (4.11)

and let x ∈ X be any point. Then, there exists a point y ∈ X such that (yi−y, xi −x) �
0 for all i = 1, 2, . . . , n.

Proof of the Theorem It suffices to show that if 0 ∈ int co D(T ), then 0 ∈ D(T ).
Consider an open ball S such that 0 ∈ X ⊂ co D(T ). There exists a finite set of vectors
of S which generate X and since each vector in co D(T ) is a finite linear combination,
with positive coefficients, of vectors of D(T ), we can find a set {x1, . . . , xn} which
generates X . Consider the family Cα of subsets of X defined as

Cα = {y : (yα − y, xα) � 0 for all xα ∈ D(T ) and yα ∈ T xα}

We intend to show that
⋂

α Cα �= ∅, since gan.maths@gmail.com then the maxi-
mality of T would imply that y ∈ T (0), that is, 0 ∈ D(T ).

It is clear that {Cα} is a family of closed sets and since T is monotone, the previous
lemma implies that this family has finite intersection property. Hence, in order to show
that

⋂
α Cα �= ∅, it is enough to show that there exists a finite subfamily which is

compact. So consider

C =
n⋂

i=1

{y : (yi − y, xi ) � 0, yi ∈ T xi }

where x1, x2, . . . , xn are as defined before. The set

C∗ =
n⋂

i=1

{y : (y, x1) � 0}

consists of zero vector, for if y �= 0 ∈ C∗ then
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y =
n∑

i=1

ci xi , ci � 0 and 0 < ‖y‖2 =
n∑

i=1

(y, ci xi ) =
n∑

i=1

ci (y, xi ).

So that at least one of the (y, zi ) is positive. Hence, by the resolution theorem
for polyhedra of convex sets (refer Goldman [253], Theorem 1), C is the sum of
bounded polyhedra set and the vector 0. So C is bounded: being closed, it follows
that C is compact. This completes the proof. �

Remark 4.3 Since T is maximal monotone iff T −1 is maximal monotone, it also
follows that the range of a maximal monotone operator is almost convex on a finite
dimensional Hilbert space X .

In 1970, Rockfeller [527] generalized the above result to certain infinite dimen-
sional Banach spaces.

Definition 4.10 X is said to be smoothly reflexive if X has an equivalent norm which
is everywhere Fréchet differentiable except at the origin and whose dual norm in X∗
is everywhere Fréchet differentiable except at the origin.

It is known fact that every smoothly reflexive space is reflexive. In 1971, Troyanskii
[591] proved that every reflexive Banach space is smoothly reflexive. We state the
Rockfeller’s result.

Theorem 4.13 If X is a reflexive Banach space and T : X → X∗ is maximal
monotone, then D(T ) and R(T ) are virtually convex.

Remark 4.4 In view of Proposition 4.2, the result of Theorem 4.10 follows as a simple
corollary of Theorem 4.13. Also, in view of our earlier observation, it follows that
cl D(T ) and cl R(T ) are convex sets for maximal monotone operator T : X → X∗.

We now discuss boundedness and continuity properties of a maximal monotone
operator. The following theorem generalizes Theorems 4.5 and 4.7 to multivalued
case. This theorem is due to Rockfeller [527]. We state this theorem along with some
important corollaries.

Theorem 4.14 Let X be a Banach space and T : X → 2X∗
a maximal monotone

multivalued operator. Suppose int co D(T ) �= ∅ or that X is reflexive and there exists
a point of D(T ) at which T is locally bounded. Then, int D(T ) is a nonempty convex
set whose closure is cl D(T ). Further T is locally bounded at each point of D(T ),
whereas T is not locally bounded at any boundary point of D(T ).

Corollary 4.3 Suppose the hypothesis of Theorem 4.14 are satisfied and D ⊂ D(T )

where T is single valued. Then, D ⊂ int D(T ) and T is demicontinuous on D.

Corollary 4.4 Suppose the hypothesis of Theorem 4.14 are satisfied. Then, D(T ) is
virtually convex and, in particular, cl D(T ) is convex. If in addition D(T ) is dense
in X, then D(T ) is all of X.
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We now discuss the topological properties of G(T ) where T is a maximal
monotone multivalued operator with D(T ) = X . The following theorem is due
to Kenderov [317], and it generalizes earlier results of Browder [89].

Theorem 4.15 Let T be a maximal monotone operator from a Banach space X to
2X∗

with D(T ) = X. Then, G(T ) is a closed subset of X × X∗ with respect to strong
topology of X and weak* topology of X∗.

Proof Let [xn, yn] ∈ G(T ) converges to [x0,y0] in the appropriate topology. By
Theorem 4.14, T is locally bounded and hence there exists c > 0 such that ‖yn‖ � c.
For [x, y] ∈ X × X∗, we have

|(yn − y, xn − x) − (y0 − y, x0 − x)| � |(yn − y, xn − x0)| + |(yn − y0, x − x0)|
� ‖xn − x0‖(c + ‖y‖) + |(yn − y0, x − x0)|
→ 0 as n → ∞.

Therefore, (y0 − y, x0 − x) = limn→∞(yn − y, xn − x) � 0, for [x, y] ∈ G(T ),
and so by maximal monotonicity of T , we get [x0, y0] ∈ G(T ). This proves the
theorem. �

Corollary 4.5 Let T : X → 2X∗
abe a maximal monotone operator with D(T ) = X.

Then, the set T x, x ∈ X is a weak* compact and convex subset of X∗.

Proof We have by the above theorem, T x as a weak* closed subset of X∗ and is
bounded by Theorem 4.14, and hence, it is weak* compact. To prove that it is convex,
we observe that for yi ∈ T x, i = 1, 2 we have

(t y1 + (1 − t)y2 − v, x − u) = t (y1 − v, x − u) + (1 − t)y2 − v, x − u)

� 0 for all [u, v] ∈ G(T ).

So, by the maximal monotonicity, it implies that t y1 + (1 − t)y2 ∈ T x . �

Definition 4.11 T is called upper (lower) semicontinuous if for any closed (open)
subset C of X, T −1(C) is closed (open.) T is, called continuous if T is both upper
and lower semicontinuous.

Theorem 4.16 Let T : X → 2X∗
be a maximal monotone operator with D(T ) = X.

Then, T is upper semicontinuous.

Proof Let x0 ∈ X and V be a weak* neighbourhood of T x0 in X∗. Since T is locally
bounded at x0, there exists a neighbourhood U of x0 such that T is bounded on U .
Result now follows from Theorem 4.15 which implies that G(T ) is closed in X × X∗
with respect to strong topology of X and weak* topology of X∗. �

Definition 4.12 A property P is said to be satisfied almost every where on X if it
is satisfied on X except on a set of first category. That is, P is true on X except on a
countable subset of nowhere dense set.
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We have the following interesting result due to Kenderov [324] which states that
a multivalued maximal monotone operator is almost single valued.

Theorem 4.17 Let X be a Banach space with strictly convex dual X∗. Assume that
T : X → 2X∗

is maximal monotone with D(T ) = X. Then, the set {x ∈ X :
T x has more than one element} is of first category.

4.3 Surjectivity Theorems

In this section, we shall be interested in the solvability of the operator equation
y ∈ Fx , where F : X → 2X∗

is a multivalued monotone operator and y ∈ X∗. As a
special case, we will obtain solvability of the single-valued operator equation.

To begin with, we introduce Kirzbraun theorem which is of interest by itself. This
will then be used to obtain a surjectivity result for monotone operators. The classical
Kirzbraun theorem in finite dimensional spaces is the following.

Theorem 4.18 Let Bi and B ′
i be closed balls in a finite dimensional space Rn:

Bi = {x : ‖x − xi‖ � ρi },
B ′

i = {x : ‖x − x ′
i‖ � ρi }, 1 � i � m.

If balls are such that

‖x ′
i − x ′

j‖ � ‖xi − x j‖, 1 � i, j � m (4.12)

then
m⋂

i=1
Bi �= ∅ implies that

m⋂

i=1
B ′

i �= ∅.

Theorem 4.19 Let xi , x ′
i (i = 1, 2, . . . , m) be points in Rn satisfying (4.12). Let p

be a given point, then there exists a point p′ such that

‖p′ − x ′
i‖ � ‖p − xi‖, 1 � i � m. (4.13)

Proof Without loss in generality, we assume that p �= xi , i = 1, . . . , m. Consider
the function

f (x) = max
1�i�m

‖x − xi‖
‖p − xi‖ .

This is a continuous function on Rn and f (x) → ∞ as ‖x‖ → ∞, and hence, it
attains its minimum at a point x = p′ :

f (p′) = min f (x) = λ.
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We will show that p′ satisfies (4.13). If λ = 0, then we are done; therefore, assume
that λ > 0.

Let
‖p′ − x ′

i‖
‖p − xi‖ = λ, if 1 � i � k

(1 � k � m) (4.14)

< λ, if k + 1 � i � m.

We claim that p′ ∈ co(x ′
1, . . . , x ′

k), otherwise by displacing p, we can change
the ratio ‖p′−xi ‖

‖p−xi ‖ so that it becomes less than λ, contradicting the definition of λ.
In view of (4.14), we are done if we can show that λ � 1. If possible let λ < 1.

Putting R1 = (x1 − p), R′
i = (x ′

i − p′) in (4.14), we get

(R′
i , R′

i ) < (Ri , Ri ), 1 � i � k. (4.15)

Also, writing (4.12) in equivalent form, we get

(Ri − R j , Ri − R j ) � (R′
i − R′

j , R′
i − R′

j ), 1 � i, j � k. (4.16)

Subtracting (4.16) from (4.15), we get

(R′
i , R′

j ) > (Ri , R j ), 1 � i, j � k. (4.17)

But since p′
i ∈ co(x ′

1, x ′
2, . . . , x ′

k) we can write

p′ =
k∑

i=1

ci xi ,

k∑

i=1

ci = 1, ci � 0.

This gives

0 =
k∑

i=1

ci x
′
i − p′ =

k∑

i=1

ci x
′
i −

k∑

i=1

ci p′,

that is
k∑

i=1

ci R′
i = 0. (4.18)

Multiplying (4.17) by ci c j and summing over for i, j , we obtain the inequality

∥∥∥
k∑

i=1

ci R′
i

∥∥∥
2

>

∥∥∥
k∑

i=1

ci Ri

∥∥∥
2
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which is a contradiction because LHS vanishes in view of (4.18) and RHS is always
nonnegative. �

The above result was first obtained by Kirzbraun in 1934 [336]. It was rediscovered
by Valentine [600] in 1943. We have presented here the proof due to Schoenberg
[543]. There is an infinite dimensional extension of the above theorem to Hilbert
spaces.

Theorem 4.20 Let {xα}, {yα}, α ∈ I, an index set, be arbitrary subsets of a Hilbert
space H such that

‖xα − xβ‖ � ‖yα − yβ‖, α, β ∈ I.

Then, for every y ∈ H, there exists and x ∈ H such that

‖x − x2‖ � ‖y − yα‖, α ∈ I.

Proof Let Sα = {x : ‖x−xα‖ � ‖y−yα‖, α ∈ I }. We need to show that∩α∈I Sα �= ∅.
{Sα}α∈I is a family of weakly compact subsets of H, and so by Smulian’s theorem,
it suffices to show that every finite subfamily {Sn} has nonempty intersection. This
follows from the previous theorem by considering {Sn} in a finite dimensional space
generated by {xn} and {yn}.

Recall that a multivalued mapping T : H → 2H is called accretive if

‖xα − xβ‖ � ‖yα − yβ‖ for all xα, xβ ∈ H and yα ∈ T xα, yβ ∈ T xβ.

This completes the proof. �

The above theorem implies that an accretive mapping T can always be extended
to T1 such that T ⊂ T1. Consequently, we get the following surjectivity result.

Theorem 4.21 Suppose T : H → 2H is a maximal accretive mapping. Then,
R(T ) = H and T −1 is nonexpansive.

If T : H → 2H is maximal monotone, then in view of Theorem 4.3, (I + λT )

is maximal accretive for every λ > 0, and so we immediately get the following
surjectivity theorem due to Minty [400].

Theorem 4.22 Suppose T : H → 2H is a maximal monotone operator. Then,
R(I + λT ) = H and (I + λT )−1 is nonexpansive and maximal monotone.

The converse of the above theorem is also true. In fact, we have the following
characterization of maximal monotonicity which is of fundamental importance for
the study of such operators; refer Brezis [76].

Theorem 4.23 Let T : H → 2H be an operator. Then, the following are equivalent:

(a) T is maximal monotone;
(b) T is monotone and (I + T )(H) = H;
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(c) for every λ > 0, (I + λT )−1 is a nonexpansive mapping defined on the whole
space H.

Because every single-valued hemicontinuous monotone mapping defined on the
whole space is maximal monotone, we immediately get the following important
theorem as a simple corollary.

Theorem 4.24 Let T : H → H be a single-valued hemicontinuous monotone
mapping with D(T ) = H. Then, (I + T )(H) = H with (I + T )−1 continuous.

In terms of strongly monotone operators, Theorem 4.24 is reformulated as follows.
Let T : H → H be a hemicontinuous strongly monotone operator with D(T ) =

H. Then, T is 1 − 1 and onto with T −1 continuous.

Observation

• The reformulated Theorem 4.24 was first proved by Browder in [92] and is a
natural generalization of Lax–Milgram lemma for linear operators.

For the sake of completeness, we state this lemma as a corollary.

Corollary 4.6 (Lax–Milgram lemma) Let A be a strongly positive definite continu-
ous linear operator from H into itself, then A is 1−1 and onto with A−1 continuous.

If we merely assume monotonicity on T , we can still get the surjectivity of T
provided we impose some infinity condition on T . In this direction, we first state and
prove the existence result by Minty [400]. To prove this result we need the following
lemma.

Lemma 4.2 Let X be a Banach space and B0 an open ball containing 0. Let T :
B0 → X∗ be hemicontinuous at x0 ∈ B0. If

(T x − y0, x − x0) � 0 for all x ∈ B0,

then T x0 = y0.

Proof For every x ∈ X, x0 + t x ∈ B0, if t is sufficiently small. So for t > 0, we
have

(T (x0 + t x) − y0, x) � 0.

Let now t → 0+, then by hemicontinuity of T, T (x0 + t x) → T x0, and so we have

(T x0 − y0, x) � 0 for all x ∈ X.

Taking −x for x , we obtain the reverse inequality and hence

(T x0 − y0, x) = 0 for all x ∈ X.

This implies that T x0 = y0. �
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Theorem 4.25 Let X be a reflexive Banach space and B0 an open ball containing
0 and B1 a closed ball contained in B0. Let T : B0 → X∗ be a hemicontinuous
singlevalued monotone operator for which (T x, x) > 0 for x ∈ ∂ B1. Then, T x = 0
has a solution in B1.

Proof By Lemma 4.2 it suffices to show that

{x0 ∈ B0 : (T x, x − x0) � 0 for all x ∈ B0} �= ∅.

We first show that ⋂

x∈B0

{x0 ∈ X : (T x, x − x0) � 0} �= ∅.

This follows from Lemma 4.1 and an argument similar to that used in the Theorem
4.12. We now claim that x0 ∈ B0. Suppose not, then choose z0 ∈ ∂ B1 such that
x0 = λz0, λ > 1 and hence (T z0, (1 − λ)z0) � 0. This gives (T z0, z0) � 0, which
is a contradiction to our assumption on T . Hence the theorem. �

Definition 4.13 T : X → X∗ is called coercive if lim‖x‖→∞
(T x,x)

‖x‖ = ∞.

For a function f defined on R, this corresponds to the conditions:

lim
x→∞ f (x) = +∞, lim

x→−∞ f (x) = −∞ (4.19)

It is a known fact that if f is monotone increasing and continuous function on R

satisfying (4.19), then f maps R ontoR. We have a generalization of this to operators
defined on reflexive Banach Spaces.

Theorem 4.26 Let X be a reflexive Banach space and T : X → X∗ be a hemicon-
tinuous, monotone, coercive mapping with D(T ) = X. Then, R(T ) = X∗.

Proof Let y ∈ X∗ and define Gx = T x − y. Then, G is hemicontinuous and
monotone and

(Gx, x) = (T x, x) − (y, x)

� (T x, x) − ‖x‖ ‖y‖. (4.20)

Since T is coercive, there exists a constant ρ � 0 such that

(T x, x) > ‖x‖ ‖y‖ for ‖x‖ � ρ.

So (4.20) gives

(Gx, x) > ‖x‖ ‖y‖ − ‖x‖ ‖y‖ = 0 for ‖x‖ � ρ.

So (Gx, x) > 0 on ∂ Bρ. Hence, by the previous theorem, there exists x0 such that
Gx0 = 0. This proves the theorem. �
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We now state and prove two theorems (due to Rockfeller), which generalize
Theorems 4.25 and 4.26, respectively. They are obtained as easy consequences of
Theorem 4.14.

Theorem 4.27 Let X be a reflexive Banach space and let T : X → 2∗ be a maximal
multivalued monotone operator. Suppose there exists a subset C ⊂ X such that 0 ∈
int co T (C). Then, there exists an x ∈ X such that 0 ∈ T (x).

Proof Since T (C) ⊂ R(T ) = R(T −1), this theorem follows immediately from
Theorem 4.14 if applied to T −1.

Theorem 4.28 Let X be a reflexive Banach space and let T : X → 2X∗
be a maximal

monotone multivalued operator. In order that R(T ) be all of X∗, it is necessary and
sufficient that the sequence {yn} ⊂ X∗ has no convergent subsequence whenever

yn ∈ T (xn) (n = 1, 2, . . .) and lim
n→∞ ‖xn‖ = ∞.

Proof The stated condition says that T −1 is locally bounded at every point of X∗. By
Theorem 4.14 applied to T −1, this is equivalent to D(T −1) being an open, convex
subset of X∗ with no boundary points and the only such nonempty subset is X∗ itself,
i.e. R(T ) = X∗. This completes the proof. �

Remark 4.5 The necessary and sufficient condition in the above theorem is satisfied
if the following condition (c) is satisfied:

(c) If yn ∈ T (xn) and lim
n→∞ ‖xn‖ = ∞ then lim

n→∞ ‖yn‖ = ∞.

One of the sufficient conditions for (c) to be satisfied is that T be coercive.
In applied problem, one encounters operators F of the type T = L + T0 when L

is densely defined linear operator and F0 is a monotone nonlinear operator defined
on all of X . We state the following perturbation theorem, which is due to Browder
[92].

Theorem 4.29 Let X be a reflexive Banach space, T1 a maximal monotone opera-
tor from X to 2X∗

with dense domain containing 0. Assume that T2 is a monotone
single-valued operator from X to X∗ defined on the whole space such that it is
hemicontinuous, bounded and coercive. Then, R(T ) = X∗ where T = T1 + T2.

As a direct consequence of this theorem, we obtain the following result regarding
the maximal monotonicity of the sum, which is of interest by itself. We present
Browder’s proof.

Remark 4.6 In the remaining part of this section, we can assume without loss in
generality that the duality mapping J : X → X∗ is singlevalued. This follows from
our earlier mentioned result in Sect. 2.3 which states that in a reflexive Banach space,
one can redefine the norm with respect to which X is locally uniformly convex and
hence the duality mapping J is singlevalued.
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Theorem 4.30 Let X be a strictly convex reflexive Banach space. Let T1 : X → 2X∗

be as defined in Theorem 4.29 and T2 : X → X∗ be hemicontinuous, bounded and
monotone with D(T2) = X. Then, T = T1 + T2 is maximal monotone.

Lemma 4.3 Let T, T1, T2 (single valued) be monotone operators from X to 2X∗
with

D(T2) = X,D(T ) = D(T1) and T = T1 + T2. If T is maximal monotone then T1 is
also maximal monotone.

Proof Suppose [x0, y0] ∈ X ×X∗ be such that (y1−y0, x−x0) � 0 for all x ∈ D(T1)

and y1 ∈ T1(x). Let z0 = T2(x0) and y2 = T2(x). Then, y = y1 + y2 ∈ T (x) and for
such a choice of y we have

(y − z0 − y0, x − x0) = (y1 + y2 − z0 − y0, x − x0)

= (y1 − y0, x − x0) + (y2 − z0, x − x0) � 0,

by monotonicity of T and our earlier assumption. So maximal monotonicity of F
gives that x0 ∈ D(T ) and z0 + y ∈ T (x0). Since z0 = T2(x0), we have y0 ∈ T1(x0),

thereby providing the maximal monotonicity of T1.

Proof of the Theorem We first observe that the duality mapping J : X → X∗ is
a singlevalued, strictly monotone, continuous, bounded and coercive mapping with
domain equal to X . So T1 and T2 + J satisfy all conditions of Theorem 4.29, and
hence, R(T1 + T2 + J ) = X∗. We now claim that if for a sequence {xn} in X we
have

(J xn J x, xn − x) → 0,

then {xn} converges weakly to x . To prove this, we first observe that the following
identity

(J xn − J x, xn − x) = (‖xn‖ − ‖x‖)2 + (‖J xn‖‖x‖ − (J xn,x)) + (‖xn‖‖J x‖ − (J x, xn)).

Since each term in the above identity is nonnegative, (J xn − J x, xn − x) → 0
implies that ‖xn‖ → ‖x‖. This in turn implies that (J x, xn) → (J x, x) in view of
the following inequality

(J x, xn) − (J x, x) � ‖J x‖‖xn‖ − ‖x‖2 = ‖xn‖‖x‖ − ‖x‖2 = ‖x‖[‖xn‖ − ‖x‖].

Again, since {xn} is a bounded sequence in a reflexive Banach space, it has a subse-
quence (which we do not differentiate) converging weakly to some element y ∈ X .
We are through if we can show that x = y.

Since {xn} converges weakly to y, we have (J x, xn) → (Js, y). But (J x, xn) →
(J x, x), and hence, (J x, x) = (J x, y). Strict convexity of X gives x = y.

We now show that (T1 + T2 + J )−1 is demicontinuous. For this consider yn → y,
where yn = (T1 +T2 + J )xn and y = (T1 +T2 + J )x . In view of the duality mapping
J, (T1 + T2 + J ) is coercive and hence (T1 + T2 + J )−1 is bounded. This gives that
{xn} is a bounded sequence. So we have
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((T1 + T2 + J )xn − (T1 + T2 + J )x, xn − x)

= ((T1 + T2)xn − (T1 + T2)x, xn − x) + (J xn − J x − x).

Since both sums on RHS are nonnegative, it follows that (J xn − J x, Xn − x) → 0.
So by our earlier observation regarding the duality mapping xn → x in X . Also,
(T1 + T2 + J )−1 is single valued because (T1 + T2 + J ) is strictly monotone, and
therefore, by Corollary 4.1, it follows that (T1 + T2 + J ) is a maximal monotone. So
by Lemma 4.3, we conclude that T = T1 + T2 is maximal monotone. �

We now deduce a surjectivity result from Theorem 4.29.

Theorem 4.31 Let T be a maximal monotone operator from a reflexive Banach
space X to 2X∗

. Further, let T be coercive with 0 ∈ D(T ). Then, R(T ) = X∗.

Proof We apply Theorem 4.29 to T and εJ, ε > 0 and get that R(T + εJ ) = X∗.
So for a given w0 ∈ X∗, there exists xε X such that (T + εJ )xε → w0. Moreover,
this xε is unique as (T + εJ ) is strictly monotone. Taking inner product with xε, we
get

(w0, xε) = (yε, xε) + ε‖xε‖2, yε ∈ Fxε.

Coercivity of F implies that

(w0, xε) � c(‖xε‖)‖xε‖ with c(r) → ∞ as r → ∞.

This gives
‖w0‖‖xε‖ � c(‖xε‖)‖xε‖,

which in turn implies that ‖xε‖ � M for all ε. So {xε : ‖xε‖ � M} is a bounded set
in a reflexive Banach space, and hence, there exists a subsequence of it which we
again denote by {xε} such that xε → x0 in X as ε → 0. Also,

yε = w0 − εJ xε → w as ε → 0.

So for each x ∈ D(T ), we have

(y − yε, x − xε) � 0 for all y ∈ T x .

Taking limit we get
(y − w0, x − x0) � 0.

Maximal monotonicity of T implies that x0 ∈ D(T ) and w0 ∈ T x0. This completes
the proof. �

We now state and prove two theorems which generalize Theorems 4.22 and 4.23
to operators on Banach spaces.
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Theorem 4.32 Let X be a reflexive Banach space and T : X → 2X∗
maximal

monotone. Then, for any λ > 0, R(J +λT ) = X∗ and (J +λT )−1 is single-valued
demicontinuous maximal monotone operator from X∗ to X.

Proof If 0 ∈ D(T ), then the first part of the result follows from Theorem 4.29. If
0 ∈ D(T ), let a ∈ D(T ). Now define operators T1 and T2 as

T1x = λT (x + a) and T2x = J (x + a).

Now 0 ∈ D(T1) and T1, T2 satisfy the hypothesis of Theorem 4.29 and hence R(T1 +
T2) = X∗, and this in turn implies that R(λT + J ) = X∗.

Also by Theorem 4.30, (λT + J ) is maximal monotone and so is (λT + J )−1.
Since (λT + J )−1 is single valued with D(λT + J )−1 = X∗, it follows by Corollary
4.4 that it is a demicontinuous maximal monotone operator. �

Theorem 4.33 Let X be a reflexive Banach space and T : X → 2X∗
abe monotone.

In order that T is maximal monotone, it is necessary and sufficient that R(J + T ) =
X∗.

Proof By Zorn’s lemma, there exists a maximal monotone operator T ′ such that
T ⊂ T ′. By the previous theorem for every u∗ ∈ X∗, there exists x ∈ X and
x∗ ∈ X∗, such that x∗ ∈ T ′(x) and x∗ + J x = u∗. So T = T ′ iff every u∗ ∈ X∗ can
be written as x∗ + J x for some x ∈ X, x∗ ∈ T x, that is iff R(T + J ) = X∗. �

We terminate this section by stating a surjectivity result for J -monotone operators
from a Banach space X into itself. This result is due to Browder and de Figueredo
[116].

Theorem 4.34 Let X be a reflexive Banach space and T : X → X a J-monotone
operator. Further, let there exists ρ > 0 such that (J x, T x) > 0 for ‖x‖ � ρ. Then,
R(T ) = X.

4.4 Solutions of Operator Equations Using Constructive
Method

In the previous section, we discussed a number of general existence theorems for
operator equations involving monotone operators. These results do not give a con-
structive procedure for the generation of the solutions which are proved to exist. In
this section, we intend to dwell on the constructive solutions. We shall mainly be
concerned with approximation schemes developed by Petryshyn more than decade
ago and some recent results of Bruck, Jr.

In the following, unless otherwise stated, X is a real reflexive Banach space

Definition 4.14 A Banach space X is said to posses a property (π)c if there exists a
sequence {Xn} of finite dimensional subspaces of X , a sequence of linear projections
{Pn} defined on X and a constant c > 0 such that
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Pn X = Xn, Xn ⊂ Xn+1 n = 1, 2, . . . ,
∞∪

n=1
Xn = X,

‖Pn‖ � c, n = 1, 2, 3, . . . , Pn Pj = P j, n � j.

Example 4.10 Every separable Hilbert space has the property (π)1.

Example 4.11 Let X be a Banach space with Schauder basis {φ j }∞j=1. Then,

x =
∞∑

j=1

α jφ j , α j = (φ∗
j , x)

where φ∗
j ,∈ X∗ and (φ∗

j , φi ) = δi j . Define Xn as

Xn = [φ1,, φ2, . . . , φn] and Pn : X → Xn as

Pn x =
n∑

j=1

α jφ
∗
j P2

n = P and ‖Pn‖ � 1.

Thus, X has the property (π)1.

We shall be interested in the constructive results regarding the existence and
uniqueness of the ‘exact’ equation

T x = y, y ∈ X (4.21)

as a strong or weak limit of solutions xn ∈ Xn of the ‘approximate’ equations

Tn xn = Pn y. (4.22)

Here, F is an operator from X into itself and Fn = Pn F Pn .

Definition 4.15 Equation (4.21) is said to be projectionally and strongly solvable
or P S-solvable if there exists an integer N > 0 such that for each n � N and given
y ∈ X, (4.22) has a unique solution xn ∈ Xn such that xn → x in X and x is the
unique solution of (4.21).

We now state and prove an approximate solvability result obtained by Petryshyn
[477].

Theorem 4.35 Suppose that there exist a continuous monotonically increasing real
function α(r) defined for r � 0 with α(0) = 0 and lim

r→∞ α(r) = ∞ and an integer

N > 0 such that the following conditions are satisfied:

(a) Tn is continuous in Xn for each n � N and Tn x → GT x for each x in X,

(b) for each n � N and all x, ly ∈ Xn, ‖Tn x − Tn y‖ � α(‖x − y‖),
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(c) if {xnk } is any arbitrary subsequence of {xn} and {xnk } is a sequence in X with
xnk ∈ Xnk , xnk → x and Tnk xnk → y, then T x = y.

Then, the Eq. (4.21) is P S-solvable.

Proof First of all we show the existence of the approximate solution xn ∈ Xn of
(4.22). We note that R(Tn) is closed. For this, consider {ym} ⊂ R(Tn) such that
ym → y. Then, ym = Tn xm,xm ∈ Xn and so (b) gives

‖yl − ym‖ = ‖Tn xl − Tn xm‖ � α(‖xl − xm‖), n � N .

Since {ym} is Cauchy, α(‖xl , xm‖) → 0 as l, m → ∞.
Let β(r) be the inverse of α(r), then

‖xl − xm‖ � β(‖yl − ym‖) → 0 as l, m → ∞.

Since Xn is complete, there exists x ∈ Xn such that xm → x and hence Tn xm →
Tn x = y ∈ R(Tn) and so R(Tn) is closed.

On the other hand, Tn is clearly one to one and continuous for each n � N and
hence by Brouwer’s theorem on invariance of domain, Tn is an open mapping and
R(Tn) is an open set in Xn .

Because Xn is connected and R(Tn) is a nonempty set in Xn which is both open
and closed, it must be the full space Xn . In view of (b), we also get the uniqueness
of the solution.

Thus, for each n � N and each given y ∈ X , there exists a unique solution
xn ∈ Xn such that Tn xn = Pn y. For such a sequence {xn}, we have, in view of (b),

‖Pn y‖ = ‖Tn xn‖ � ‖Tn xn − Tn(0)‖ − ‖Tn(0)‖
� α(‖xn‖) − c‖T (0)‖.

Hence,

α(‖xn‖) � ‖Pn y‖ + c‖T (0)‖ � c(‖y‖ + ‖T (0)‖),

which gives
‖xn‖ � β(c‖y‖ + c‖T (0)‖) = M.

Since X is reflexive and {xn} is a bounded sequence in X , there will exist a subse-
quence {xnk } of {xn} which converges weakly to x ∈ X. Further, in view of (4.22),
Tnk xnk → y as k → ∞ and so (c) implies that Fx = y and this solution is unique.
Since the solution is unique, we conclude that the selection of subsequence was
unnecessary and the entire sequence {xn} converges weakly to x .

We now show that xn → X . To effect this, consider α(‖xn − x‖). We have
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α(‖xn − x‖) � ‖Tn xn − Tn x‖
= ‖(Pn y − y) + (T x − Tn x)‖
� ‖Pn y − y‖ + ‖Tn x − T x‖,

which gives
‖xn − x‖ � β(‖Pn y − y‖ + ‖Tn x − T x‖).

Since Pn y → y and Tn x → T x , we get the required result. �

From the above result, we now derive an approximate solvability result involving
monotone operators on a Hilbert space.

Lemma 4.4 Let T be a demicontinuous monotone operator on a Hilbert space X.
Then, it satisfies condition (c) of the above theorem. Further, if it is continuous, it
satisfies condition (a) also.

Proof Let n be a fixed integer and x ∈ Xn so that Pn x = x . Then, using monotonicity
of T , we get

(T xm − T (Pn x), xm − Pn x) � 0. (4.23)

Let now xm ⇀ x0, this gives

(T (Pn x), xm − Pn x) → (T (Pn x), x0 − Pn x). (4.24)

Since xm ∈ Xm, Pm xm = xm and for m � n, Pm Pn = Pn; we get

(T xm, xm − Pn x) = (T xm, Pm xm − Pm Pn x)

= (Pm T xm,, xm − Pn x)

= (Tm xm, xm − Pn x).

Now as xm ⇀ x0 and Tm xm → y, the above equality gives

(Tm xm, xm − Pn x) → (y, x0 − Pn x),

which in turn implies that

(T xm,xm − Pn x) → (y, x0 − Pn x). (4.25)

Combining (4.24) and (4.25), we get

(T xm − T (Pn x), xm − Pn x) → (y − Pn x, x0 − Pn x) as m → ∞.

In view of (4.23), this gives us

(y − T x, x0 − x) � 0 for each x ∈ Xn.
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Since c is arbitrary, we get

(y − T x, x0 − x) � 0 for all x ∈ ∞∪
n=1

Xn.

Again, since
∞∪

n=1
Xn is dense in X and T is demicontinuous, it follows that

(y − T x, x0 − x) � 0 for all x ∈ X.

Also, F is a demicontinuous monotone operator defined on the whole space, and
hence, it is maximal monotone and so we get T x0 = y.

For the second part of the lemma we first note that Pn Fx → Fx for all x ∈ X.

Choosing X = X j and noting that Pj x j = x j and Pn Pj = Pj , n � j , we get

PnT Pn x → T x for all x ∈ X j . This gives Tn x → T x for all x ∈ ∞∪
j=1

X j . Now

continuity of T and the fact that
∞∪
j=1

X j is dense in X proves the second part of the

lemma.

From this lemma, we immediately obtain the following approximate solvability
result for monotone operators.

Theorem 4.36 Let T be a continuous and strongly monotone operator from a Hilbert
space X into itself, then the Eq. (4.21) is P S-solvable.

There is a direct generalization of Lemma 4.4 to J -monotone operators defined
on a Banach space X which is such that the duality mapping J : X → X∗ is weakly
continuous.

Lemma 4.5 Let X be a Banach space with strictly convex dual X∗ and satisfying
property (π)1. Let T : X → X∗ be J -monotone. If {xn} is a sequence in X with
xn ∈ Xn such that xn ⇀ x0 and PnT xn → y. Then, T x0 = y provided that T is
demicontinuous and J is continuous or T is continuous.

This lemma gives us the following theorem, due to Petryshyn [474], for the approx-
imate solvability of operator equations involving J -monotone operators.

Theorem 4.37 Suppose that X satisfies the conditions of Lemma 4.5. Let T be a
continuous mapping of X into itself such that

(J (x − y), T x − T y) � α(‖x − y‖)‖J (x − y)‖, for x, y ∈ X.

Then, the Eq. (4.21) is P S-solvable.

There is a direct generalization of the approximate solvability result for operators
from a space X into its dual X∗. For this, we need to define first an approximation
scheme.
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Let X be a Banach space with dual X∗ and {xn} ⊂ X and {X∗
n} ⊂ X∗ be sequence

of finite dimensional spaces. Let T be an operator from X to X∗, Pn : X → Xn

and Qn : X∗ → X∗
n be sequence of linear projections. Corresponding to the ‘exact’

equation
T x = y, y ∈ X∗, (4.26)

We define ‘approximate’ equations

Tn xn = Qn y (4.27)

where
Tn = Qn F Pn.

Definition 4.16 A quadruple {{xn}, {x∗
n }, {Pn}, {Qn}} is called an approximation

scheme for the Eq. (4.26) if Pn and Qn are continuous and for each x ∈ X, x∗ ∈
X∗, Pn x → x and Qn x∗ → x∗.

Definition 4.17 Equation (4.26) is said to be P S-solvable if there exists an integer
N > 0 such that for n � N , y ∈ X∗, (4.27) has a unique solution xn and xn → x in
X and x is the unique solution of (4.26).

We have a theorem similar to Theorem 4.35. We state this without proof (refer
Petryshyn [475] for a proof).

Theorem 4.38 Let X be Banach space with dual X∗ and let

� = {{Xn}, {X∗
n}, {Pn}{Qn}}

be an approximation scheme for Eq. (4.26). Suppose there exist an N � 0 and
continuous function α(r) : R+ → R+ with α(0) = 0 and limr→∞ α(r) = ∞ such
that Tn is continuous from Xn to Xn and for n � N , Qn x → Qx for each x ∈ X
and ‖Tn x − Tn y‖ � α(‖x − y‖) for all x, y ∈ Xn.

Then, the Eq. (4.26) is P S-solvable iff the operator T satisfies the condition: If
Xm is an arbitrary subsequence of Xn and {xm} is a bounded sequence in X with
xm ∈ Xm and Tm xm → y, then there exists a subsequence {xmk } of {xm} and an
element x0 ∈ X such that

xmk → x0 and Tmk xmk → T x0(= y) as k → ∞.

As before, as a corollary, we can obtain a theorem similar to Theorem 4.38 for
monotone operators defined from X to X∗.

These constructive schemes suffer from one handicap—lack of effective control
for the error at each stage of the approximation. We now discuss some recent results
of Bruck Jr. which arrest this handicap.

In what follows, F is a multivalued monotone operator on a Hilbert space X with
domain D(T ).
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Definition 4.18 A single-valued section T0 of T is defined as

T0x = T x, x ∈ D(T ) and {T0x} is a singleton.

The following theorem, due to Bruck Jr. [122], gives the iterative solution of the
equation y ∈ x + T x with explicit error estimate.

Theorem 4.39 Suppose T is a multivalued monotone operator with D(T ) an open
subset of a Hilbert space H and y ∈ R(I + T ). Then, there exists a neighbourhood
N ⊂ D(T ) of x̄ = (I + T )−1 y and a real number σ1 > 0 such that for any σ � σ1,

any initial guess x1 ∈ N and a single-valued section T0 of T , the sequence {xn}
generated from x1 by

xn+1 = xn − (n + σ)−1(xn + T0xn − y) (4.28)

remains in D(T ) and converges to x̄ with estimate ‖xn − x̄‖ = O(n−1/2). The
sequence {xn + T0xn} converges (C, 1) to y.

Proof First, we note that (I + T )−1 is single valued and so x̄ = (I + T )−1 y is
uniquely defined. Choose ū ∈ T x̄ such that y = x̄ + ū.

Now, as T is monotone and D(T ) is open, it is locally bounded at x̄ (refer Theorem
4.9). So there exists a neighbourhood N = B(x̄, d) such that N ⊂ D(T ) and T (N )

is bounded. Put σ1 = [diam T (N )/d]2. Then,

σ1 > 0 and diam T (N ) � dσ 1/2 i f σ � σ1. (4.29)

Put tn = (n + σ)−1, dn = (n + σ − 1)−1/2. Let x1 be an initial guess, then define xn

by (4.28). We will show that {xn} is well defined and satisfies.

‖xn − x̄‖ � dndσ 1/2. (4.30)

This is proved by induction. For n = 1, x1 is well defined and

‖x1 − x̄‖ < d1dσ 1/2 = d

(follows from the definition of dn). Next, we assume that (4.29) is true for a particular
value of n, and then,

‖xn − x̄‖ � dndσ 1/2 � d1dσ 1/2 = d

and so xn ∈ N ⊂ D(T ) = D(T0). This implies that xn+1 is well defined and also
since y = x̄ + ū, (4.28) gives

xn+1 − x̄ = (1 − tn)(xn − x̄) − tn(T0xn − ū).
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Therefore,

‖xn+1 − x̄‖2 = (1 − tn)2‖xn − x̄‖2 − 2tn(1 − tn)(T0xn − ū, xn − x̄) + t2
n ‖T0xn − ū‖2

� (1 − tn)2‖xn − x̄‖2 + t2
n ‖T0xn − ū‖2 (4.31)

using the fact that T0xn ∈ T xn, u ∈ T x, T is monotone and tn(1 − tn) > 0. But
we also have ‖T0xn − ū‖ � diam T (N ), since T0xn and ū ∈ T (N ), and hence, by
combining (4.29) and (4.31) and the induction hypothesis ‖xn − x̄‖ � dndσ 1/2, we
get

‖xn+1 − x̄‖2 � [(1 − tn)
2d2

n + t2
n ]d2σ

= d2
n+1d2σ,

which completes the induction process. Since dn = 0(n−1/2), we have the error
estimate.

For the second part of the theorem, we first observe that we have the identity

xn+1 = σ

n + σ
x1 − 1

n + σ

n∑

t=1

(T0xi − y).

This gives

n−1
n∑

t=1

T0xi = y − xn+1 + σn−1(x1 − xn+1)

and this in turn implies that

(C, 1) lim
n→∞ T0xn = y − x̄ .

Since xn → x̄ strongly, also notice that (C, 1) lim
n→∞ xn = x̄ , so finally, we have

(C, 1) lim
n→∞(xn + T0xn) = y.

This completes the proof. �

As a corollary, we immediately get the following result for continuous single-valued
monotone operators.

Corollary 4.7 Suppose T is a continuous single-valued monotone operator with
open domain and y ∈ R(I + T ). Then, there exists a neighbourhood N ⊂ D(T ) of
(I + T )−1 y such that for any initial guess x1 ∈ N the sequence xn generated as

xn+1 = n

n + 1
xn − 1

n + 1
(T xn − y)

remains in D(T ) and converges to x̄ with estimate ‖xn − x̄‖ = O(n−1/2).
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In his subsequent paper [123], Bruck Jr. has generalized the above result. He
proves that if T is a maximal strongly monotone operator and x is a given point of
a Hilbert space H, then under appropriate conditions on the nonnegative sequences
{λn}, {θn} the iteration

xn+1 = xn − λn(T xn + θn(xn − x0))

converges strongly to T −1(0), provided that {xn} remains bounded and certain bound-
edness conditions are satisfied.

If θn = 0, the above iteration scheme reduces to the previous one, where λn is of
the form λn = (cn − σ)−1, c is a constant of strong monotonicity. But these results
are local in the sense that the convergence is guaranteed only when the initial value
is chosen close enough to the solution.

We now state a global version of this result, which is due to Nevanlinna [422].
Let T be a maximal monotone operator on a Hilbert space H. Nevanlinna has

shown that if T is defined on the whole space and is either continuous or grows only
linearly at infinity, then we can find sequences {λn}, {θn} such that if {xn} is defined
recursively as

xn+1 ∈ xn − λn(T xn + θn xn), (4.32)

then xn converges strongly to a solution of T x � 0, if there exists any, otherwise
it tends to infinity. Following Nevanlinna, we now precisely define how sequence
{λn}, {θn} are to be selected.

Definition 4.19 Two sequences {λn}, {θn} of positive real numbers are acceptable
paired if {θn} is nonincreasing, limn→∞ θn = 0, and there exists an increasing
sequence {N (i)} of integers such that

lim inf θN (i)

N (i+1)−1∑

j=N (i)

λ j > 0, lim sup θN (i)

N (i+1)−1∑

j=N (i)

λ j < ∞

and

lim(θN (i) − θN (i+1))

N (i+1)−1∑

j=N (i)

λ j = 0.

An example of acceptably paired sequences is

λn = n−1, θn = (log log n)−1, N (i) = i i .

We state Nevanlinna’s result, without proof.

Theorem 4.40 Let T be a maximal monotone operator in a Hilbert space H with
D(T ) = H. Let it satisfies a growth condition of the type
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‖y‖ � c(1 + ‖x‖) for all x, y ∈ T x . (4.33)

Assume that {λn} ∈ l2 and that {λn}, {θn} are acceptable paired and {xn} satisfies
(4.32) with any initial value x0 ∈ H. If T −1(0) �= ∅, then xn converges strongly
to x where x is the element in T −1 with minimum norm and if T −1(0) = ∅, then
‖xn‖ → ∞ as n → ∞ in such a way that θn xn

n converges to −a0 where a0 is the

element in R(T ) with minimum norm.

If T is strongly monotone, that is, T = bI + T0, where T0 is maximal monotone,
we get the following simple result.

Theorem 4.41 Let T0 be a maximal monotone operator with D(T0) = H and
assume that T0 satisfies the growth condition (4.33). Assume that b > 0 and
{λn} ∈ l2 − l1. Then, {xn} defined by

xn+1 ∈ xn − λn(T0xn + bxn),

converges to the unique solution of bx + T0x = 0.

Remark 4.7 This theorem generalizes the result of Zarantonello [617], who proved
the existence of solution of the equation bx + T0x = 0 with Lipschitz continuity on
T0 in addition to monotonicity.

Observation

• Browder in [93] obtained an error estimate for an iteration procedure for J -
monotone operators defined on a Banach space with uniformly convex dual X∗.
The duality mapping in such spaces is uniformly continuous from bounded subsets
of X to X∗. In particular, let R > 0 be given, then there exists a nonnegative real
valued continuous function w on B(0, 2R) with w(0) = 0 such that

‖Ju − Jv‖ � w(‖u − v‖) for each u, v in B(0, 2R).

Theorem 4.42 Let X be a Banach space with a uniformly convex dual X∗, T be a
J-monotone, bounded, continuous mapping from a ball B(0, R) to X such that

(i) there exists R1 with 0 < R1 < R such that for all u in X with R1 � ‖u‖ �
R, (Ju, T u) � 0 and

(ii) there exists δ > 0 and a continuous function q : R+ → R+ with q(0) = 0 such
that if u and v are pair of elements with ‖T u‖ � δ, for v0 ∈ B(0, R1), define a
sequence {Vrn} = {Vk} as

Vk = (1 − (n + k)−1)Vk−1 − n−1T (Vk−1), 1 � k � rn,

where n and r are so chosen that

n−1(M + R) � R − R1,
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(M + R)(r + 1)w(n−1(M + R)) < (R − n−1(M + R))2.

Then, {Vrn} converges to the unique solution u0 of the equation T (u0) = 0 as
r → ∞ and n → ∞ and (r + 1)w(n−1(M + R)) → 0. Further, we have the
error estimate

‖Vrn − u0‖ � [k1(r + 1)w(r−1(M + R)) + k2n−1]1/2 + q(k3r−1(log r + 1))

for suitable constants k1, k2 and k3.

4.5 Subdifferential and Monotonicity

In this section, we shall be concerned with the monotone property of the derivative of
a convex functional and its subdifferential. As a corollary of this property, we derive
the maximal monotonicity of the duality mapping J : X → 2X∗

.

In the following, f will denote a convex function f : X → (−∞,∞] and ∇ f
its gradient, and X is a Banach space.

Theorem 4.43 Let f be a proper convex function defined on X. If f is differentiable,
then ∇ f is monotone.

Proof Let x1, x2 ∈ X. Let φ be the convex function defined by

φ(t) = f (x1 + t (x2 − x1)).

Then,
φ′(t) = (∇ f (x1 + t (x2 − x1)), x2 − x1).

This gives
(∇ f (x2) − ∇ f (x1), x2 − x1) = φ′(1) − φ′(0) � 0,

thereby proving the monotonicity of ∇ f.

Theorem 4.44 Let f be a proper differentiable function defined on X. If ∇ f is
monotone, then f is convex.

Proof We have

[λ f (x) + (1 − λ) f (y)] − f (λx + (1 − λ)y)

= λ[ f (x) − f (λx + (1 − λ)y)] + (1 − λ)[ f (y) − f (λx + (1 − λ)y)]
= λ(∇ f (λx + (1 − λ)y + t1(1 − λ)(y − x)),

(1 − λ)(y − x)) + (1 − λ)(∇ f (λx + (1 − λ)y + t2(1 − λ)(x − y)), λ(x − y)),

for some 0 < t1, t2 < 1, in view of Lagrange theorem for functionals.
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Rearranging the above equality, we get

[λ f (x) + (1 − λ) f (y)] − [ f (λx + (1 − λ)y)]

= λ

t1 + t2
[(∇ f (z1) − ∇ f (z2), z1 − z2)],

where

z1 = λx + (1 − λ)y + t1(1 − λ)(y − x), z2 = λx + (1 − λ)y + t2(1 − λ)(y − x).

Using monotonicity of ∇ f, we get our result. �

Combining the above two theorems, we get the following.

Theorem 4.45 A differentiable function f on X with D( f ) = X is convex iff ∇ f
is monotone.

There is a generalization of the above theorem to subdifferentials. In this direction,
we have the following result due to Rockfeller [529].

Theorem 4.46 Let X be a Banach space and f be a lower semicontinuous proper
convex function on X. Then, ∂ f is a maximal monotone operator on X.

Proof Let y ∈ ∂ f (x1) and y2 ∈ ∂ f (x2). Then,

f (x) − f (x1) � (y1, x − x1) and f (x) − f (x2) � (y2, x − x2)

for all x ∈ X.

If we take x = x2 in the first inequality and x = x1 in the second inequality
and add, we get the monotonicity of ∂ f . Now suppose that x0 ∈ X and y0 ∈ X∗
have the property that (y − y0, x − x0) � 0 whenever y ∈ ∂ f (x). We must show
that y0 ∈ ∂(x0). Replacing f by h(x) = f (x + x0) − (y0, x), if necessary, we may
assume that x0 = 0 and y0 = 0. So it suffices to show that if 0 ∈ ∂ f (0), then there
exist some x and y such that y ∈ ∂ f (x) and (y, x) < 0.

Because 0 ∈ ∂ f (0), it follows by definition that f (0) is not the minimum of
f on X . Thus, there exists some x0 with f (0) � f (x0). Let Q(λ) = f (λx0) for
all λ ∈ R. Then, Q is a lower semicontinuous proper convex function on a real
line and Q(0) > Q(1). Hence, by the theory of one-dimensional convex functions
(refer Rockfeller [529]), it follows that there exists some λ0, 0 < λ � 1 such that
Q(λ0) < ∞, Q′(λ0) < 0, where Q′ is the left hand derivative of Q. In terms of the
derivative d f of f , it implies that

f (λ0x0) < ∞, − (d f (λ0x0),−x0) < 0.
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Putting x = λ0x0, we get

f (x) < ∞, (d f (x),−x0) > 0.

Let ε > 0, then by Theorem 2 of Rockfeller [529] and the above inequality, there
exists some x∗ with x∗ ∈ ∂ε f (x) and (x∗,−x) > 0. Here, ∂ε is the approximate
subdifferential defined as

∂ε f (x) = {x∗ ∈ X∗ : f (y) � [ f (x) − ε] + (x∗, y − x) for all y ∈ X}.

Since ∂ε f approximates ∂ f (refer Brφsted and Rockfeller [85]), it follows that there
exists x and y such that

‖x − x‖ � ε1/2, ‖y − x∗‖ � ε1/2, y ∈ ∂ f (x).

Since (x∗, x) < 0, we also have (y, x) < 0 when ε is sufficiently small. This proves
the theorem. �

Since the duality mapping J is the subdifferential of the norm functional j (x) =
‖x‖2

2 with D( j) = X , we get the following monotonicity result for J .

Theorem 4.47 The duality mapping J : X → 2X∗
is a maximal monotone operator.

We can now combine the above theorem with the results of Sect. 2.1 and get
the following theorem which completely describes the properties of the duality
mapping J .

Theorem 4.48 The duality mapping J : X → 2X∗
is a maximal monotone operator

with D(J ) = X. For each x ∈ X, J x is closed convex set. If X is reflexive with
X and X∗ strictly convex, then J is a single valued, bounded, continuous, strictly
monotone and coercive mapping.

We now examine the converse of Theorem 4.46. Does every monotone operator
arise from a convex function? Answer is no. For if A is positive semidefinite operator
on a Hilbert space X and f (x) is a quadratic functional (Ax, x), then f (x) is convex
iff A is self-adjoint.

Definition 4.20 T : X → 2X∗
is said to be cyclically monotone if for every cyclic

sequence x0, x1, . . . , xn ∈ D(T ) and for every y1 ∈ T xi , i = 1, 2, . . . , n, we have

n∑

i=1

(y1, x1 − xi−1) � 0.

It is clear that every cyclically monotone operator is monotone. In the one-dimensional
cases, the converse is also true. But in general, every monotone one-dimensional
operator need not be cyclically monotone.



214 4 Monotone Operators, Strongly φ-Accretive Operators and Their Variants

Example 4.12 Let f be a proper convex function on a Hilbert space H. Then, ∂ f
is a cyclically monotone operator. For this, consider x0, x1, . . . , xn = x0 ∈ H and
y1, 2, . . . , n. Then, the definition of ∂ f implies that

f (xi ) − f (xi−1) � (yi , xi − xi−1), i = 1, 2, . . . , n.

By adding, we get
n∑

i=1

(y1, x1 − xi−1) � 0,

which proves the result.

Observation

• Every monotone mapping T : R → 2R is cyclically monotone.
• Any maximal monotone map T : R → 2R is the subdifferential of a proper convex

l.s.c. function.

We now show that if T is a cyclically monotone operator, then T can be embedded
into a subdifferential of some proper convex function on X . We state and prove the
theorem due to Rockfeller [529].

Theorem 4.49 Let T : X → 2X∗
be a cyclically monotone operator. Then, there

exists a proper convex function f on X such that T ⊂ ∂ f.

Proof Consider x0 ∈ D(T ) and y0 ∈ T x0. For each x ∈ X , let

f (x) = sup{(yn, x − xn) + · · · + (y0, x1 − x0)}

where yi ∈ T (xi ), i = 1, 2, . . . , n and the supremum is taken over all possible
finite sets of such pairs(yi , xi ). We will show that f is a proper convex function
with F ⊂ ∂ f. We first note that f is a supremum of a nonempty collection of linear
functions one for each choice of (y1, x1), (y2, x2), . . . , (yn, xn). Hence, f (x) > −∞
for all x and also convexity condition is satisfied. Furthermore, f (x0) = 0 because
T is cyclically monotone. Hence, f is a proper convex function.

Now choose any x and y with y ∈ T (x). We will show that y ∈ ∂ f (x). It is
enough to show that for each α < f (x), we have

f (x) � α + (y, x − x) for all x . (4.34)

Given α < f (x), we can choose pairs (yi , xi ) with yi ∈ T (xi ), i = 1, 2, . . . , k and

α < (yk, x − xk) + · · · + (y0, x1 − x0). (4.35)

Let xk+1 = x, yk+1 = y. Then,

f (x) � (yk+1, x − xk+1) + (yk, xk+1 − xk) + · · · + (y0, x1 − x0).
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Using (4.35) and the above inequality, we get (4.34) and hence the theorem. �

We have the following corollary from the above theorem.

Corollary 4.8 If T is a maximal cyclically monotone operator, then T = ∂g for
some lower semicontinuous proper convex function g.

Proof From the above theorem, it is clear that there exists some proper convex
function f such that T = ∂ f. Define the function g as

g(x) = lim inf
y→x

f (y) for all x .

g is lower semicontinuous proper convex function with ∂g(x) � ∂ f (x) for all x .
Since T = ∂ f is maximal, it follows that T = ∂ f = ∂g. �

As a matter of fact, we have a stronger theorem due to Rockfeller, which com-
pletely characterizes the subdifferential of a lower semicontinuous function. We state
this without proof.

Theorem 4.50 Let X be a Banach space, and let T be a multivalued operator from
X to 2X∗

. In order that there exists a lower semicontinuous proper convex function f
on X such that ∂ f = T , it is necessary and sufficient that T be a maximal cyclically
monotone operator. Moreover, the function f is unique up to an arbitrary constant.

We finally give an easy application of Theorem 4.38 to obtain the solvability of
the operator equation x + T x = y.

Theorem 4.51 Let T : X → X∗ be the Gâteaux derivative of some lower semicon-
tinuous convex function f with D(T ) = X. Then, the operator equation x +T x = y
has a unique solution x, and this solution depends continuously on y.

Proof By the previous theorem, T = ∇ f is maximal monotone. Now the result
follows by a surjectivity theorem of Sect. 4.3. �

The following proposition gives some basic properties of duality mapping:

Proposition 4.3 Let X be a real Banach space. For 1 < p < ∞, the duality
mapping Jp : X → 2X∗

has the following properties:

(1) Jp(x) �= φ for all x ∈ X and D(Jp)(: the domain of Jp) = X,

(2) Jp(x) =‖ x ‖p−2 ·J2x for all x ∈ X (x �= 0),

(3) Jp(αx) = α p−1 · J2x for all α ∈ [0,∞),

(4) Jp(−x) = −Jp(x),

(5) ‖ x ‖p − ‖ y ‖p≥ p〈x − y, j〉 for all x, y ∈ X and j ∈ Jp y;
(6) if X is smooth, then Jp is norm-to-weak∗ continuous;
(7) if X is uniformly smooth, then Jp is uniformly norm-to-norm continuous on

each bounded subset of X,
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(8) Jp is bounded; i.e., for every bounded subset A ⊂ X, Jp(A) is a bounded
subset in X∗,

(9) Jp can be equivalently defined as the subdifferential of the functional ψ(x) =
p−1. ‖ x ‖p (Asplund [24]); i.e.,

Jp(x) = ∂ψ(x) = { f ∈ X∗ : ψ(y) − ψ(x) � 〈y − x, f 〉∀ y ∈ X},

(10) X is a uniformly smooth Banach space (equivalently, X∗ is a uniformly convex
Banach space) if and only if Jp is single valued and uniformly continuous on
any bounded subset of X (Xu and Roach [611], Browder [94]).

Proposition 4.4 Let X be a real Banach space and Jp : E → 2X∗
, 1 < p < ∞, be

a duality mapping. Then, for any given x, y ∈ X, we have

‖x + y‖p � ‖x‖p + p〈y, jp〉

for all jp ∈ Jp(x + y).

Proof From Proposition 4.3(9), it follows that Jp(x) = ∂ψ(x) (subdifferential of the
functional ψ(x)), where ψ(x)) = p−1. ‖ x ‖p. Also, the definition of subdifferential
of ψ yields

ψ(x) − ψ(x + y) � 〈x − (x + y), jp〉

for all jp ∈ Jp(x + y). Now substituting ψ(x) by p−1· ‖ x ‖p, we have

‖ x + y ‖p � ‖ x ‖p +p〈y, jp〉

for all jp ∈ Jp(x + y). This completes the proof. �

Remark 4.8 If X is a uniformly smooth Banach space, it follows from Proposition
4.3(10) that Jp, 1 < p < ∞, is a single-valued mapping. We now define functions
�,ψ : X × X → R by

�(x, y) = ‖x‖p − p〈x − y, Jp(y)〉 − ‖y‖p

�(x, y) = ψ(x, y)+ ‖ x − y ‖ (4.36)

for all x, y ∈ X.

It is obvious from the definition of � and Proposition 4.3(5) that

�(x, y) � 0 (4.37)

for all x, y ∈ X.
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Also, we see that

�(x, y) =‖ x ‖p −p〈x, Jp(y)〉 + (p − 1) ‖ y ‖p

� ‖ x ‖p −p ‖ x ‖‖ Jp(y) ‖ +(p − 1) ‖ y ‖p

=‖ x ‖p −p ‖ x ‖‖ y ‖p−1 +(p − 1) ‖ y ‖p . (4.38)

In particular, for p = 2, we have �(x, y) ≥ (‖x‖−‖y‖)2. Further, we can show the
following two propositions.

Proposition 4.5 Let X be a smooth Banach space, and let {yn}, {zn} be two
sequences of X. If �(yn, zn) → 0 and if either {zn} or {yn} is bounded, then {yn} or
{zn} is also bounded and yn − zn → 0.

Proof It follows from �(yn, zn) → 0 that ψ(yn, zn) → 0 and |‖yn‖ − ‖zn‖| �
‖yn − zn‖ → 0 because of (4.36) and (4.37). Therefore, if {zn} is bounded, then {yn}
(and also if {yn} is bounded, then {zn}) is also bounded and yn − zn → 0. �

Proposition 4.6 Let X be a reflexive, strictly convex and smooth Banach space, let
C be a nonempty closed convex subset of X, and let x ∈ X. Then, there exists a
unique element x0 ∈ C such that

�(x0, x) = inf{�(z, x) : z ∈ C}. (4.39)

Proof Since X is reflexive and ‖zn‖ → ∞ implies �(zn, x) → ∞, there exists
x0 ∈ C such that �(xo, x) = inf{�(z, x) : z ∈ C}. Since X is strictly convex, ‖.‖p

is a strictly convex function, that is, ‖λx1 + (1 − λ)x2‖p < λ‖x1‖p + (1 − λ)‖x2‖p

for all x1, x2 ∈ X with x1 �= x2, 1 � p < ∞ and λ ∈ (0, 1). Then, the function
�(., y) is also strictly convex. Therefore, x0 ∈ C is unique. �

For each nonempty closed convex subset C of a reflexive, convex and smooth
Banach space X , we define the mapping RC of X onto C by RC x = x0, where x0 is
defined by (4.39). For the case p = 2, it is easy to see that the mapping is coincident
with the metric projection in the setting of Hilbert space,. In our discussion, instead
of the metric projection, we make use of the mapping RC . Finally, we shall prove
two results concerning Proposition 4.6 and the mapping RC . The first one is the usual
analogue of a characterization of the metric projection in a Hilbert space.

Proposition 4.7 Let X be a smooth Banach space, let C be a convex subset of E,
let x ∈ E and let x0 ∈ C. Then,

�(x0, x) = inf{�(z, x) : z ∈ C} (4.40)

if and only if
〈z − x0, Jp(x0) − Jp(x)〉 � 0 ∀z ∈ C. (4.41)
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Proof First, we shall show that (4.40) ⇒ (4.41). Let z ∈ C , and let λ ∈ (0, 1). It
follows from �(x0, x) � �((1 − λ)x0 + λz, x) that

0 � ‖(1 − λ)x0 + λx‖p − p〈(1 − λ)x0 + λz − x, Jp(x)〉
− ‖x‖p − ‖x0‖p + p〈x0 − x, Jp(x)〉 + ‖x‖p

= ‖(1 − λ)x0 + λz‖p − ‖x0‖p − pλ〈z − x0, Jp(x)〉
� pλ〈z − x0, Jp((1 − λ)x0 + λz)〉 − pλ〈z − x0, Jp(x)〉
= pλ〈z − x0, Jp((1 − λ)x0 + λz) − Jp(x)〉,

which implies
〈z − x0, Jp((1 − λ)x0 + λz) − Jp(x)〉 ≥ 0.

Tending λ ↓ 0, since Jp is norm-to-weak* continuous, we obtain

〈z − x0, Jp(x0) − Jp(x)〉 ≥ 0

which shows (4.41).
Next, we shall show that (4.41) ⇒ (4.40). For any z ∈ C , we have

�(z, x) − �(x0, x) = ‖z‖p − p〈z − x, Jp(x)〉 − ‖x‖p

− ‖x0‖p + p〈x0 − x, Jp(x)〉 + ‖x‖p

= ‖z‖p − ‖x0‖p − p〈z − x0, Jp(x)〉
� p〈z − x0, Jp(x0)〉 − p〈z − x0, Jp(x)〉
= p〈z − x0, Jp(x0) − Jp(x)〉 ≥ 0

which proves (4.40). �

Proposition 4.8 Let X be a reflexive, strictly convex and smooth Banach space,
let C be a nonempty closed convex subset of X, let x ∈ X, let RC x ∈ C, and let
‖y − x‖ = ‖y − RC x‖ + ‖RC x − x‖ for all y ∈ L[x, RC x] ∩ C. Then,

�(y, RC x) + �(RC x, x) � �(y, x) (4.42)

for all y ∈ L[x, RC x] ∩ C.

Proof It follows from Proposition 4.7 that

�(y, x) − �(y, RC x) − �(RC x, x)

= ‖y‖p − p〈y − x, Jp(x)〉 − ‖x‖p + ‖y − x‖ − ‖y‖p

+ p〈y − RC x, Jp(RC x)〉 + ||RC x ||p − ||y − RC x || − ||RC x ||p

+ p〈RC x − x, Jp(x)〉 + ||x ||p − ||RC x − x ||
= −p〈y − x, Jp(x)〉 + p〈y − RC x, Jp(RC x)〉 + p〈RC x − x, Jp(x)〉
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= p〈y − RC x, Jp(RC x) − Jp(x)〉 � 0

for all y ∈ L[x, RC x] ∩ C . This completes the proof. �

4.6 Pseudomonotone Operator and Its Generalizations

In this section, we consider some useful generalizations of monotone operators—
pseudomonotone operators, generalized pseudomonotone operators and mappings
of type S+ and (M). The original definition of pseudomonotonicity for a mapping
T : X → 2X∗

as given by Brezis [77] involves the following two conditions.

(i) T is finitely continuous(continuous from finite dimensional subspace of X into
2X∗

and for any closed bounded filter {uα} of elements of X such that {uα}
converges to u in X while limα sup(T uα, uα − u) � 0, the relation limα inf
(T uα, uα − u) � (T u, u − v) holds for each v ∈ X .

(ii) The function gv(u) = (T u, u − v) is bounded from below on X , uniformly for
bounded v in X .

For the case, when X is a reflexive Banach space, we can dispense with filters and
consider only ordinary sequences. For our purpose, we shall consider the definition
of pseudomonotonicity and generalized pseudomonotonicity given by Browder and
Hess [118].

Definition 4.21 Let T : X → 2X∗
be a multivalued operator. Then, T is said to be

pseudomonotone if the following conditions hold:

(a) The set T x is a nonempty, bounded, closed and convex subset of X for all x in
X .

(b) F is upper semicontinuous from each finite dimensional subspace Y to X to the
weak topology on X∗.

(c) If {xn} is a sequence in X converging weakly to x and if yn ∈ T xn is such that
lim sup

n→∞
(yn, xn − x) � 0, then to each element v ∈ X , there exists w(v) ∈ T x

such that lim inf
n→∞ (yn, xn − v) � (w(v), x − v).

Definition 4.22 T : X → 2X∗
is called generalized pseudomonotone if the follow-

ing is satisfied:
For any sequence {xn} in X and a corresponding sequence {yn} in X∗ with yn ∈

T xn, converging weakly to x, {yn} converging weakly to y such that lim sup
n→∞

(yn, xn −
x) � 0, the element y belongs to T x and (yn,xn) converges to (y, x) and n → ∞.

Definition 4.23 T : X → 2X∗
is said to be of type S+ if each sequence {xn} in

X converging weakly to x in X, yn ∈ T xn for which lim sup
n→∞

(yn,xn − x) � 0, xn

converges to x and yn → y ∈ T x .
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We immediately get the following proposition from the Definition 4.22.

Proposition 4.9 Let T : X → 2X∗
be a multivalued operator. Then, T is generalized

pseudomonotone iff T −1 is generalized pseudomonotone from X∗ to 2X .

We have the following two theorems due to Browder and Hess [118], relating gen-
eralized pseudomonotonicity with pseudomonotonicity and maximal monotonicity.

Theorem 4.52 A maximal monotone mapping T : X → 2X∗
is generalized pseu-

domonotone.

Proof Recall that the mapping T : X → 2X∗
is monotone if for any x, u ∈ D(T )

and y ∈ T x and w ∈ T u, we have

(y − w, x − u) � 0. (4.43)

Let {xn} be a sequence in X converging weakly to x ∈ X, {yn} a sequence in X∗ with
yn ∈ T xn and with yn ⇀ y in X∗. Suppose that lim sup

n→∞
(yn,xn − x) � 0. That is,

lim sup
n→∞

(yn,xn) � (y, x). Let [u, w] be an arbitrary element of the graph G(T ). By

the monotonicity of T, (yn − w, xn − u) � 0 for each n. Further,

(yn, xn) = (yn − w, xn − u) + (yn, u) + (w, xn) − (w, u),

where

(yn, u) + (w, xn) − (w, u) → (y, u) + (w, x) − (w, u).

Hence, (y, x) � lim sup
n→∞

(yn,xn) � (y, u) + (w, x) − (w, u), which implies that

(y − w, x − u) � 0. Since the last relation holds for [u, w] ∈ G(T ) and F is
maximal monotone, y ∈ T x . Consequently, (yn − y, xn − x) � 0 for all n. That is,

lim inf
n→∞ (yn,xn) � lim

n→∞[(yn,x) + (y, xn − x)] = (y, x).

This implies that (yn, xn) → (y, x), which proves that T is generalized
pseudomonotone.

Theorem 4.53 Let X be a reflexive Banach space and T : X → 2X∗
a pseudomono-

tone mapping. Then, T is generalized pseudomonotone.

Proof Let [xn,, yn] be a sequence in G(T ) converging weakly to [x, y] in X × X∗
while lim sup

n→∞
(yn, xn − x) � 0. Since T is pseudomonotone, for each v ∈ X , there

exists w(v) ∈ T x such that

lim inf
n→∞ (yn,xn − v) � (w(v), x − v).
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By passing over to an infinite subsequence, we may assume that (yn, xn) → p for
some real number p. Then,

lim sup
n→∞

(yn,, xn − x) = p − (y, x) � 0, that is p � (y, x).

Furthermore,

p − (y, v) � lim inf
n→∞ (yn,xn − v) � (w(v), x − v).

That is,
(y, x − v) � (w(v), x − v), for all v ∈ X. (4.44)

We assert that y ∈ T x . By condition(a) in the definition of pseudomonotonicity, T x
is a closed, convex subset of X∗. If y ∈ T x, there would exist an element u ∈ X
such that

(y, u) < inf
z∈T (x)

(z, u).

Choosing v = x − u in (4.44), we obtain a contradiction. Finally, we note that
lim inf

n→∞ (yn,xn − x) � (y, x − x) = 0, that is lim inf
n→∞ (yn,xn) � (y, x). Since we

already know that lim sup
n→∞

(yn,xn) � (y, x), it follows that (yn,, xn) → (y, x). �

We have the converse of the above theorem which is as follows.

Theorem 4.54 Let X be a reflexive Banach space and T : X → 2X∗
a bounded gen-

eralized pseudomonotone mapping. Assume that for each x ∈ X, T x is a nonempty
closed convex subset of X∗. Then, T is pseudomonotone.

We now show that in the definition of pseudomonotonicity conditions (a) and (c)
together with a weaker condition (b′), defined as follows, imply the condition (b) in
a reflexive Banach space.

(b′) T is locally bounded on each finite dimensional subspace Xn of X .
Let {xn} be a sequence in a finite dimensional subspace y of X converging to

x ∈ Y . Let yn ∈ T xn , and suppose that for a given weak neighbourhood V of T x, yn

lies outside V for each n. By the local boundedness of T on Y, {yn} is bounded and
since X is reflexive, it converges (by passing over to subsequences of {yn} which we
again denote by {yn}) to some element y ∈ X∗. Then,

lim
n→∞ (yn,xn − x) = (y, x − x) = 0

and hence, (y, x − v) = limn→∞ (yn,xn − v) � (w(v), x − v) for each element
v ∈ X with w(v) ∈ T u. Using the separation argument for convex sets, it follows
that all yn lie outside the neighbourhood V of Fx in the weak topology of X∗.

In view of the local behaviour of a maximal monotone operator in the interior of
D(T ) (refer Sect. 4.3), we have the following theorem.
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Theorem 4.55 Let X be a reflexive Banach space and T : X → 2X∗
a maximal

monotone operator with D(T ) = X. Then, T is pseudomonotone.

Proof (a) In view of theorems of Sect. 4.3 on maximal monotone operators, it follows
that T x is a closed and convex subset of X∗. Also, since T is locally bounded at each
x ∈ int D(T ) = X , it implies that Fx is bounded.
(b) This follows from the Theorem 4.14.
(c) Let now {xn} be a sequence in X with xn ⇀ x , and let yn ∈ T xn such that
lim sup

n→∞
(yn,xn−x) � 0. Let y denote an arbitrary element of T x . Then, monotonicity

of T gives
(y, xn − x) � (yn,xn − x),

where the LHS of the above inequality tends to zero. Hence,

(yn,, xn − x) → 0 as n → ∞.

Let now [u, w] ∈ G(T ) be arbitrary. Since

(yn, xn − u) = (yn,xn − x) + (yn,x − u),

it follow that
lim inf

n→∞ (yn,xn − u) = lim inf
n→∞ (yn,x − u).

But(w, xn − u) � (yn,xn − u) with the LHS converging to (y, x − u). Consequently,

(w, x − u) � lim inf
n→∞ (yn,x − u). (4.45)

For a given v ∈ X and t � 0 set ui − x + t (v − x). Let wi ∈ T ui , and then, using
[ui , wi ] for [u, w] in (4.45), we get

(wi , x − v) � lim inf
n→∞ (yn, x − v).

By the local boundedness of F at x , we can assume the existence of sequence
tk → 0+, utk → x and wtk ⇀ w(v). Using the maximal monotonicity of T , we get
w(v) ∈ T x and further

(w(v), x − v) � lim inf
n→∞ (yn,x − v)

� lim inf
n→∞ (yn,xn − v),

which proves the theorem. �
In the following two theorems, we investigate the sum of two generalized pseu-

domonotone and pseudomonotone mappings. We state the theorems without proof.
But first, we have the following definition.
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Definition 4.24 Let T : X → 2X∗
be a multivalued mapping, then T is said to

be quasi-bounded if for each M > 0 there exists K (M) > 0 such that whenever
[u, w] ∈ G(T ) and (w, u) � M‖u‖, ‖u‖ � M , then ‖w‖ � K (M).

Theorem 4.56 Let X be a reflexive Banach space, T1 and T2 be generalized pseu-
domonotone mappings from X into 2X∗

. Suppose that T1 is quasi-bounded and that
there exists a continuous function h : R+ → R+ such that

(w, u) � −h(‖u‖)‖u‖ for all [u, w] ∈ G(T2).

Then, T1 + T2 is generalized pseudomonotone.

The class of pseudomonotone operators is invariant under addition of operators
without any further restriction.

Theorem 4.57 Let X be a reflexive Banach space, and T1 and T2 be pseudomonotone
mappings from X into 2X∗

. Then, T1 + T2 is pseudomonotone.

In the following theorem, we investigate the compact perturbation of monotone
operators. But first, we have the following definition.

Definition 4.25 A multivalued operator T : X → 2X∗
is said to be compact if for

every bounded sequence {xn} in D(T ) every yn ∈ T xn has a subsequence which
converges in X∗.

Theorem 4.58 Let X be a reflexive Banach space T : X → 2X∗
a multivalued

mapping such that T = T1 + T2, where T1 satisfies the condition

(y1 − y2, x1 − x2) � ϕ(‖x1 − x2) for all x1, x2 ∈ D(T1)

and y1 ∈ T x1, y2 ∈ T x2. where ϕ : R+ → R+ a continuous increasing function
with ϕ(0) = 0. If T2 is compact, then T is of type S+.

Proof Let x ⇀ x and wn ∈ T xn and lim sup
n→∞

(wn, xn − x) � 0. Then, we have

ϕ(‖xn − x‖) � (yn − y, xn − x)

= (wn − w, xn − x) − (zn − z, xn − z)

= (wn,xn − x) − (w, xn − x) − (zn,xn − x) + (z, xn − x), (4.46)

where wn = yn + zn,w = y + z; wn ∈ T xn, yn ∈ T1xn,, w ∈ T x, y ∈ T1x, and z ∈
T2x .

Because xn ⇀ x and T2 is compact, there exists a subsequence of {zn}, which is
in turn denoted by {zn} such that zn → z0. So we get (from (4.46)) that

lim sup
n→∞

ϕ(‖xn‖) � lim sup
n→∞

(wn,xn − x) � 0,
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thereby implying that xn → x . Since T is demicontinuous, it follows that wn ⇀ w ∈
T x . Also, we have (wn,, xn) → (w, x). This proves that T is of type S+. �

We now state without proof a surjectivity theorem for pseudomonotone operators.

Theorem 4.59 Let X be a reflexive Banach space and T a pseudomonotone mapping
from X into 2X∗

. Suppose that T is coercive then R(T ) = X∗.

Because the proof of this theorem is quite involved, we skip it. Interested readers
may refer Browder and Hess [118] for its proof.

We now introduce the concept of operators of type (M) for single-valued map-
pings, which is originally due to Brezis [77].

Definition 4.26 A mapping T : X → X∗ is said to be of type (M) if the following
conditions hold:

(a) If a sequence {xn} in X converges weakly to x in X and {T xn} converges weakly
to y in X∗ and lim sup

n→∞
(T xn,, xn) � (y, x), then T x = y.

(b) T is continuous from finite dimensional subspaces of X into X∗ endowed with
weak∗ topology.

Now we shall present the notion of pseudomonotone introduced by Karamardian
[314].

Definition 4.27 A multivalued operator T : X → 2X∗
with domain D(T ) and range

R(T ) is said to be pseudomonotone if 〈x1 − x2, y2〉 ≥ 0 implies 〈x1 − x2, y1〉 ≥ 0
for each xi ∈ D(T ) and yi ∈ T xi , i = 1, 2.

It is obvious that each monotone operator is pseudomonotone, but the converse is
not true.

In 2012, Pathak and Cho [453] introduced the concept of occasionally pseu-
domonotone operator as follows:

Definition 4.28 A multivalued operator T : X → 2X∗
is said to be occasionally

pseudomonotone if, for any xi ∈ D(T ), there exist yi ∈ T xi , i = 1, 2 such that
〈x1 − x2, y2〉 ≥ 0 implies 〈x1 − x2, y1〉 ≥ 0.

It is clear that every monotone operator is pseudomonotone and every pseu-
domonotone operator is occasionally pseudomonotone, but the converse implications
need not be true. To this end, we observe the following examples.

Example 4.13 Let X = R3 and T : X → 2X∗
be a multivalued operator defined by

T x = {y = Ar x : r ∈ R} ∀ x ∈ X

where

Ar =
⎛

⎝
0 0 −1
0 −r 0
1 0 0

⎞

⎠ .
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Then, for any x1 = (x (1)
1 , x (1)

2 , x (1)
3 )T , x2 = (x (2)

1 , x (2)
2 , x (2)

3 )T in R3, y1 = Ar x1 and
y2 = Ar x2, we have

〈x1 − x2, y1 − y2〉 = −r(x (1)
2 − x (2)

2 )2.

Thus, if r � 0, then T is monotone. However, if r > 0, then T is neither monotone
nor pseudomonotone. Indeed, for x1 = (0, 1, 0), y1 = Ar x1 = (0,−r, 0), x2 =
(0, 0, 0), we have 〈x1 − x2, y2〉 = 0 ≥ 0 but 〈x1 − x2, y1〉 = −r < 0.

Further, we see that T is occasionally pseudomonotone. To effect this, consider
x1 = (x (1)

1 , x (1)
2 , x (1)

3 )T and x2 = (x (2)
1 , x (2)

2 , x (2)
3 )T in R3, yi = A0xi , i = 1, 2, and

then, we have

〈x1 − x2, y2〉 = 0 ≥ 0 implies 〈x1 − x2, y1〉 = 0 ≥ 0.

Example 4.14 The rotation operator on R2 given by

A =
(

0 1
−1 0

)

is monotone, and hence, it is pseudomonotone. Thus, it follows that A is also occa-
sionally pseudomonotone.

Maximality of a pseudomonotone and occasionally pseudomonotone operators
are defined as similar to maximality of monotone operator.

Notice that the class of mappings of type (M) includes in it the class of hemi-
continuous monotone mappings and the class of pseudomonotone mappings(refer
Brezis [77]).

We now state and prove the following important proposition regarding linear
mappings from X to X∗, due to de Figueiredo and Gupta [163].

Proposition 4.10 Let A be a linear mapping from X to X∗. Then, A is bounded iff
A satisfies condition (a) of the above definition.

Proof If A is bounded, then (a) is trivially satisfied since every continuous linear
operator is also weakly continuous. Suppose now A satisfies (a), and let {xn} be any
sequence in X such that xn → x and Axn → y. This gives (Axn,xn) → (y, x), and
so by (a), we have Ax = y. Thus, the graph of A is closed, and hence, by closed
graph theorem, A is bounded. �

For nonlinear mappings, we first observe that compact operator need not be of
type (M) as we see in the following example.

Example 4.15 Define T : �2 → �2 as T (x) = (1 − ‖x‖, 0, 0, . . .). Then, T is
compact. Let {xn} be the sequence defined as

x j
n = 1

2
δ j

n, δ j
n = 1, if n = j and δ j

n = 0, if n �= j.
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Since T xn = ( 1
2 , 0, . . .) for all n, we see that xn ⇀ 0, T xn → ( 1

2 , 0, . . .) = g and
lim sup

n→∞
(T xn,, xn) = 0 = (g, 0). Since T (0) �= g, we see that T is not of type (M).

However, compact perturbation of strongly monotone operator (or in particular
identity operator on a Hilbert space) is of type (M). This sum of two operators of
type (M) need not be of type (M). However, we have the following result.

Proposition 4.11 Let T1 : X → X∗ be a mapping of type (M) and T2 : X → X∗
be a bounded linear monotone mapping or a completely continuous mapping. Then,
the mapping T1 + T2 is also of type (M).

Proof Let {xn} ⊂ X be such that xn ⇀ x, (T1 + T2)(xn) ⇀ y and

lim sup
n→∞

((T1 + T2)(xn), xn) � (y, x).

If T2 is a bounded linear monotone operator, then the functional f : X → R defined
by f (x) = (T2x, x) is weakly lower semicontinuous.

We have (T2(xn), xn − x) � (T2x, xn − x).
Hence,

lim inf
n→∞ (T2(xn), xn − x) � lim inf

n→∞ (T2(x), xn − x) = 0.

Since
lim inf

n→∞ (T2(xn), xn − x) = lim inf
n→∞ (T2(xn), xn) − (T2(x), x),

it follows that lim inf
n→∞ f (xn) � f (x). That is, f is weakly lower semicontinuous.

Similarly, if T2 is completely continuous, the mapping f defined as before is
weakly lower semicontinuous.

Now

lim sup
n→∞

(T1xn,xn) = lim sup
n→∞

(T1 + T2)xn,, xn) − (T2(xn), xn)

= lim sup
n→∞

((T1 + T2)(xn), xn) − lim inf
n→∞ (T2(xn), xn)

� (y − T2(x), x).

Since T is of type (M), it follows that T1x = y −T2x and consequently (T1 +T2)x =
y. This proves the proposition. �

We now state and prove surjectivity theorem due to de Figueiredo and Gupta
[163]. This is similar to Theorem 4.59.
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Theorem 4.60 Let X be a Banach space and T : X → X∗ be a mapping of type
(M). If T is coercive, then the range of T is all of X∗.

Proof Since for any w ∈ X∗, the mapping Tw defined by

Tw(x) = T (x) − w

is a bounded coercive mapping of type (M) it suffices to show that 0 ∈ R(T ). Let
� = {D| is a finite subset of X such that 0 ∈ D} and co D denote the convex hull of
D.

Since the mapping T is coercive and finitely continuous, it follows by Proposition
7.3 of Browder [94] that there exists a constant R > 0 and an element xD ∈ co D,

for each D ∈ �, such that ‖xD‖ � R and (T xD, x − xD) � 0. Suppose now,

M = inf
D∈�

{(T xD, xD)}.

Clearly, M > −∞, since the subset {xD|D ∈ �} is a bounded subset of X and the
mapping T is bounded.

For D0 ∈ �, set VD0 = ⋃{xD|D ∈ �, D ⊃ D0}. We observe the following:

(i) VD0 is contained in the ball of radius R in X for each D0 in �.
(ii) The family {V D0 |D0 ∈ �}(where V D0 denotes the weak closure of VD0 in X ) is

a family of weakly closed subsets of X , since the Banach space X is reflexive.
But the family{V D0 |D0 ∈ �} has finite intersection property, and hence,

⋂
{V D0 |D0 ∈ �} �= ∅.

Let now, x0 ∈ ⋂{V D0 |D0 ∈ �}. We assert that T x0 = 0. Suppose on the contrary
T x0 �= 0, and let x ∈ X such that (T x0, x) < M. Let D1 ∈ � be such that x ∈ D,

and x0 ∈ D1. Since x0 ∈ V D1,
it follows by Proposition 7.2 of Browder [94] that there

exists an infinite sequence {Di }∞i=2, Di ∈ �, Di ⊃ D1 for each i such that xDi ⇀ x0.
We may assume that there exists an element y0 ∈ X∗ such that T xDi ⇀ y0. It then
follows from the relation (T xD, xDi ) � (y0, u) for every u ∈ co D1.

Taking u = x0 and using the condition (a) of the Definition 4.27, we get T x0 = y0.
Again, taking u = x ∈ D1 ⊂ coD1, this relation gives M � lim sup

i→∞
(T xDi , xDi ) �

(y0, x) = (T x0, x) < M , a contradiction. Thus, T x0 = 0 and hence the proof of the
theorem is complete. �

For a separate treatment on the theory of monotone operators, refer Kachurovskiı̆
[300], Brezis [76] or Pascali and Sburlan [445].
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4.7 Strongly φ-Accretive Operator and Surjectivity
Theorems

Let X and Y be Banach spaces with Y ∗ the dual of Y , and let φ : X → Y ∗ be a
mapping satisfying:

(i) φ(X) is dense in Y ∗
(ii) for each x ∈ X and each α ≥ 0, ‖φ(x)‖ � ‖x‖, ‖φ(αx)‖ = α‖φ(x)‖.

The following notion of strongly φ-accretive mappings is due to Browder [94].

Definition 4.29 A mapping P : X → Y is said to be strongly φ-accretive if there
exists a constant c > 0 such that, for all u, v ∈ X ,

〈Pu − Pv, φ(u − v)〉 ≥ c‖u − v‖2. (4.47)

We note that φ-accretive mappings were introduced in an effort to unify the theories
for monotone mappings (when Y = X∗) and for accretive mappings (when Y = X ).
These mappings have been studied by Browder [94, 107, 108, 114], Kirk [328] and
Ray [502].

The following result of Browder [114] is of fundamental importance..

Theorem 4.61 Let X and Y be Banach spaces and P : X → Y a strongly φ-
accretive mapping. If Y ∗ is uniformly convex and P is locally Lipschitzian, then
P(X) = Y .

A mapping P : X → Y is said to be locally strongly φ-accretive (cf. [328]) if for
each y ∈ Y and r > 0, there exists a constant c > 0 such that: if ‖Px − y‖ � r ,
then, for all u ∈ X sufficiently near to x , we have

〈Pu − Px, φ(u − x)〉 ≥ c‖u − x‖2. (4.48)

Ray [502] extended Browder’s theorem [114] by applying a theorem of Ekeland
[221] and showed that a localized class of strongly φ-accretive mappings must be
surjective under appropriate geometric assumptions on Y and continuity assumptions
on P . Indeed, he proved the following.

Theorem 4.62 Let X and Y be Banach spaces and P : X → Y a locally Lipschitzian
and locally strongly φ-accretive mapping. If Y ∗ is strictly convex and J is continuous,
and if P(X) is closed in Y , then P(X) = Y .

Park and Park [443] proved the following surjectivity theorem.

Theorem 4.63 ([443], Theorem 2). Let X and Y be Banach spaces and P : X → Y a
locally Lipschitzian and locally strongly φ-accretive mapping. If the duality mapping
J of Y is strongly upper semicontinuous and P(X) is closed, then P(X) = Y .
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Note that if P is strongly φ-accretive, then P(X) is closed in Y . Therefore, as a
consequence of Theorem 4.63, we have the following:

Corollary 4.9 ([443], Theorem 1). Let X and Y be Banach spaces and P : X → Y
a locally Lipschitzian and strongly φ-accretive mapping. If the duality mapping J of
Y is strongly upper semicontinuous and P(X) is closed, then P(X) = Y .

Exercises

4.1 Let F be a nonexpansive mapping from a Hilbert space H into itself. Show that
the operator T = I − F is monotone.

4.2 Let H be a Hilbert space and T : D(T ) ⊆ H → H be such that

‖x − y‖ � ‖T x − T y‖

for all x, y ∈ D(T ). Show that T is monotone if and only if I + λT is accretive for
every λ > 0.

4.3 Let H be a Hilbert space. Show that a mapping T : H → 2H is monotone if
and only if

‖x − y + t (u − v)‖ ≥ ‖x − y‖ ∀u ∈ T x, v ∈ T y and t ≥ 0.

4.4 Let X be Banach space and T : D(T ) ⊆ X → X∗ be monotone with D(T )

dense in X . Then, prove that T is hemibounded at x0 ∈ X.

4.5 Let X be a real reflexive Banach and T : X → 2X∗
a maximal monotone and

coercive mapping, then show that T is surjective.

4.6 Let X be a real reflexive Banach and T : X → 2X∗
a maximal monotone

mapping, then show that T is surjective if and only if T −1 is locally bounded.

4.7 Let X be a real reflexive Banach and T : X → 2X∗
a maximal monotone

mapping, then show that T is maximal monotone if and only if T + J is surjective.

4.8 Let X be a real reflexive Banach and T : X → 2X∗
a maximal monotone

mapping, then show that D(T ) and R(T ) are convex.

4.9 Let X be a Banach space. Prove that a mapping T : X → 2X∗
is cyclically

maximal monotone if and only if T is the subdifferential of a proper convex l.s.c.
function.

4.10 Let H be a Hilbert space and A : H → H a linear maximal monotone operator.
Show that A is cyclically maximal monotone if and only if A is self-adjoint.

4.11 Let X be a reflexive Banach space and A1, A2 two maximal monotone map-
pings. If Int D(A1) ∩ D(A2) �= ∅, then show that A1 + A2 is maximal monotone.
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4.12 Let X be a Banach space, A1 : X → 2X∗
a monotone mapping and A2 : X →

X∗ a monotone operator with D(A2) = X . If the sum A = A1 + A2 is maximal
monotone, then prove that A1 is also maximal monotone.

4.13 LetH be a Hilbert space, A : H → 2H be maximal monotone and B : H → H

be monotone with D(B) closed and such that

‖Bx − By‖ � α‖x − y‖, ∀x, y ∈ D(B),

for some α ∈ (0, 1), then prove that A + B is maximal monotone.



Chapter 5
Fixed Point Theorems

The goal of this work, which was submitted to the University of
Lwow as a dissertation in 1920, is to define a class of abstract
function spaces, and to prove some theorems about them (e.g. a
fixed point theorem).

Stefan Banach (1922)

Everything should be made as simple as possible, but not
simpler.

Albert Einstein

In Sect. 5.1 we discuss the Banach’s contraction mapping theorem and some con-
sequences of this theorem. We also deal with contractive mappings considered by
Edelstein [212] and certain generalizations of contraction mapping theorem, mainly
the ones obtained by Boyd and Wongs [75], Kannan [308, 309], Reich [509] and
Husain and Sehgal [283] and others. This section ends with a recent fixed point the-
orem due to Caristi [128, 129]. Caristi’s theorem finds many applications in the field
of nonlinear functional analysis.

Section 5.2 deals with nonexpansive mappings. We present fixed point theorems
concerning nonexpansive mappings obtained by Browder [96], Göhde [251] and
Kirk [326, 327]. We also discuss approximations of fixed points of nonexpansive
mappings and generalized nonexpansive mappings. In this direction, we concentrate
on the work of Dotson, Jr. [198], Bose and Mukherjee [69] and Reich [512]. We also
introduce the concepts of asymptotic center and asymptotic radius, which are due
to Edelstein. In Sect. 5.3, we discuss Brouwer’s fixed point theorem and Schauder’s
fixed point theorems. We also deal with several important consequences of Schauder’s
fixed point theorem.

Section 5.4 deals with fixed point theorems for multifunctions. We give the fixed
point theorems obtained by Himmelberg [273], Sehgal and Morrison [549], Naddler,
Jr. [416] and others. We also present fixed point theorems for H+-type multivalued
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contraction mapping and H+-type weak contraction mapping obtained by Pathak
and Shahzad [465, 466] and is motivated by their applications to differential and
integral equations. We conclude this section with a discussion on the multivalued
version of Caristi’s fixed point theorem.

In Sect. 5.5, we discuss common fixed point theorems for family of commuting
mappings. We mainly concentrate on the works of Markov [387], Kakutani [301], de
Marr [165] and Browder [106]. Section 5.6 deals with the behaviour of fixed points
sets of different types of mappings.

In Sect. 5.7, we discuss some fixed point theorems in ordered Banach spaces. We
are mainly concerned on the works of Krasnoselski [345], Amannn [17], Leggett
and Williams [363], Williams and Leggett [607], Gatica and Smith [241], Harjani
and Sadarangani [267], Dhage [172, 177] and Agarwal and Regan [6].

In Sect. 5.8, we focus our discussion on fixed point theorems in Banach algebra.
We dwell on the main results of Krasnoselski [346], Burton [126], Dhage [169, 171,
173], Pathak and Deepmala [456]. Our treatment is brief and is motivated by their
applications to differential and integral equations. Finally, we conclude this chapter
in Sect. 5.9 by presenting some well-known lattice-theoretic fixed point theorems.

5.1 Fixed Point Theorems

Fixed point- Let T : X → X be a mapping of a set X into itself. An element x ∈ X
is said to be a fixed point or invariant point of the mapping T if T x = x .

The knowledge of the existence of fixed points has relevant applications in many
branches of analysis, topology, economic, biological science, and many other applied
sciences. Let us show for instance the following simple but indicative example.

Example 5.1 Suppose we are given a system of n equations in n unknowns of the
form

g j (x1, x2, . . . , x j , . . . , xn) = 0, j = 1, 2, . . . , n (5.1)

where g j : Rn → R are continuous real-valued functions of the real variables x j . Let
h j (x) = g j (x)+ x j , j = 1, 2, . . . , n. Define h : Rn → Rn by

h(x) = (h1(x), h2(x), . . . , hn(x)) for all x ∈ Rn.

Assume now that h has a fixed point x̄ ∈ Rn . Then it is easily seen that x̄ is the
solution of the system of Eq. (5.1).

Fixed point theorem- By a fixed point theorem, we shall understand a statement
which asserts that under certain conditions (on the mapping T and on the space X)

a mapping T of X into itself admits one or more fixed points.
Fixed point space- A space X is called a fixed point space provided every continuous
function T : X → X has a fixed point.

Example 5.2 (i) Any bounded and closed interval J = [a, b] ⊂ R is a fixed point
space. Indeed, for any given continuous function T : J → J , we have a − T (a) � 0
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and b − T (b) � 0; the intermediate value theorem ensures that the equation x −
T (x) = 0 has a solution in J , and therefore T has a fixed point.
(i i) Let X = R and T : X → X be a mapping defined by T x = x + a for some fixed
element a �= 0. Then T has no fixed point. Thus, the real line R is not a fixed point
space.
(i i i) Let X = R and T : X → X be a mapping defined by T x = 1

3 x . Then x = 0 is
the only fixed point of T .
(vi) Let X = R and T : X → X be a mapping defined by T x = x2. Then T has 0
and 1 as fixed points.
(v) Let X = R and T : X → X be a mapping defined by T x = x . Then T has
infinitely many fixed points. Indeed, every point of X is a fixed point of T .
(vi) Let X = C[0, 1], the space of complex-valued continuous functions on the
closed interval [0, 1]. Let T be defined as

(T x)(t) = x(0)+
∫ t

0
x(s) ds.

Any function x(t) = ket , t ∈ [0, 1], k a real constant, is a fixed point of T .

Observation

• The property of being a fixed point space is topologically invariant. To see this,
let us consider the graph of any continuous function T : [a, b] → R, for example,
the graph of

T (x) =
{

x sin(1/x) if 0 < x � 1,

0 if x = 0,

being a homeomorphic to [a, b], is a fixed point space.
• If X is not a fixed point space, it may still be true that every map having some

well-defined general property will have a fixed point. For example, the Banach
contraction principle asserts that every complete metric space is a fixed point
space for contraction maps.

• We have seen that R is not a fixed point space. However, R can be made a fixed
point space relative to the class of compact maps. For let T : R→ R be compact;
then T (R) is contained in some finite interval [a, b]; in particular, T maps [a, b]
into itself, so has a fixed point.

Fixed point theory is broadly divided into three major areas: (i) topological fixed point
theory, (ii) metric fixed point theory and (iii) lattice-theoretic fixed point theory.

I. Topological Fixed Point Theory

Historically, the first theorem of this type involves a space X which is a topologi-
cally simple subset of Rn and a mapping of X into itself which is continuous. This is
Brouwer’s fixed point theorem which asserts the existence of a fixed point whenever
X is the unit ball in Rn and T is continuous. In this theorem X can be replaced by
any homeomorph thereof. Such theorems, where the spaces are subsets of Rn , are
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not of much use in nonlinear functional analysis where one is generally concerned
with infinite dimensional subsets of some function spaces. This was first investi-
gated by Birkhoff and Kellogg [59] in 1922. Subsequently, Schauder [542] extended
Brouwer’s theorem to the case where X is a compact and convex subset of a normed
linear space. This theorem was extended to locally convex topological vector space
by Tychonoff [593].

II. Metric Fixed Point Theory

The celebrated contraction principle due to S. Banach, which appeared in the lit-
erature in 1922, is one of the most important and useful result in the metric fixed
point theory that too with an elegant proof. It is, indeed, one of the most widely
used fixed point theorems in a large variety of problems in analysis, metric theory,
fractal theory, integration theory and many others. An important generalization of
Banach contraction theorem, obtained by Boyd and Wong [75], is worth recogniz-
able. Caristi’s fixed point theorem [128] is also one of the most important results
in metric fixed point theory because of its applications in different areas of science,
economics, engineering and social sciences.

III. Lattice-Theoretic Fixed Point Theory

In 1955, Taraski [588] formulated and proved an elementary fixed point theorem
which holds in arbitrary complete lattices. It is one of the important results in lattice-
theoretic fixed point theory because of its wide range of applications in theories of
simply ordered sets, real functions, Boolean algebra as well as general set theory and
topology.

Observe that Banach [32] obtained a fixed point theorem for contraction mappings.
Edelstein [212] considered contractive mapping and proved a fixed point theorem for
such mapping. In 1970s, Kannan [308, 309], Husain and Sehgal [283] and Caristi
[128] have considered several generalizations of contraction mapping.

Definition 5.1 Let (X, d) and (Y, ρ) be metric spaces and T : X → Y be a mapping.
Then T is said to be Lipschitz continuous if there is L > 0 such that

ρ(T x, T y) � Ld(x, y) for all x, y ∈ X.

(a) If L = 1, T is said to be nonexpansive.
(b) If L < 1, T is said to be a contraction.
(c) T is said to be contractive if for all x, y in X and x �= y, we have

ρ(T x, T y) < d(x, y).

Notice that a contractive mapping can have at most one fixed point. Note also that

contraction ⇒ contractive ⇒ nonexpansive ⇒ Lipschitz

but the converse implications are not true in general. Moreover, all such mappings
are continuous.
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Fig. 5.1 T is continuous, but not Lipschitz continuous

We now furnish an example of a non-Lipschitzian mapping that is continuous.

Example 5.3 Let T : [− π
10 , π

10 ] → [− π
10 , π

10 ] be a mapping defined by

T (x) =
{

2x sin(1/x) if x �= 0

0 if x = 0

Then we see that T is continuous, but not Lipschitz continuous (see Fig. 5.1).

Example 5.4 Let T : C[0, 1] → C[0, 1] be defined as

(T x)(t) = x(0)+ λ

∫ t

0
x(s)ds, λ ∈ R.

T is a contraction map if |λ| < 1.

Definition 5.2 Let X be a Banach space and let A ⊂ X . A retraction of X onto A is
a continuous map � : X → A such that �|A is the identity map of A. If such a map
� exists, we say that A is a retract of X .

Example 5.5 (i) Let X be a Banach space and let Br = {x : ‖x‖ � r}. The mapping
�r defined as

�r (x) =
{

x i f x ∈ Br
r x
‖x‖ i f x /∈ Br

is a retraction mapping.
(i i) If X is a Banach space, then the mapping �r is Lipschitz with Lipschitz

constant 2.
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Observation

1. In 1931, Borsuk [65] observed that if X is a fixed point space, so also is every
retract of X . Notice that the product of two compact fixed point spaces need not
be a fixed point space. For example, there is a finite polyhedron P that is a fixed
point space while P × [0, 1] is not a fixed point space.

2. In contrast with finite products, an infinite product of compact nonempty fixed
point spaces is a fixed point space whenever every finite product of those spaces
is a fixed point space. Thus by the Brouwer theorem, the Hilbert cube I∞ and
in fact any Tychonoff cube are fixed point spaces.

5.1.1 Banach’s Contraction Principle and Its Generalizations

The following constructive fixed point theorem was proved by S. Banach [32] and
is known as Banach’s contraction principle.

Theorem 5.1 (Banach’s contraction principle) Let (X, d) be a complete metric
space and T : X → X is a contraction mapping with Lipschitz constant α ∈ (0, 1).
Then

(i) T has a unique fixed point u in X.
(ii) For an arbitrary point x0 in X, the sequence {xn} generated by the Picard

iteration process as defined by xn+1 = T xn, n ∈ N ∪ {0} converges to u.
(iii) d(xn, u) � αn

1−α
d(x0, x1) for all n ∈ N ∪ {0}.

Proof (i) Choose any x0 ∈ X and define the iterate sequence xn+1 = T xn for all n ∈
N ∪ {0}. We have

d(xr+1,xs+1) = d(T xr,, T xs) � αd(xr , xs), r �= s, r, s ∈ N ∪ {0}

and hence by induction on n,

d(xn+1, xn) � αnd(x1, x0).

If n ∈ N ∪ {0} and m ≥ 1,

d(xn+m, xn) � d(xn+m, xn+m−1)+ · · · + d(xn+1, xn)

� (αn+m−1 + · · · + αn)d(x1, x0)

� (αn + αn+1 + αn+2 + · · · )d(x1, x0)

� αn

1− α
d(x1, x0). (5.2)

The RHS of (5.2) tends to zero as n →∞. Hence, the sequence {xn} is Cauchy and
since X is complete, {xn} converges to an element u of X .
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As d(xn+1, T u) = d(T xn, f u) � αd(xn, u) and d(xn, u) → 0 as n →∞, we
have

T u = lim
n→∞ xn+1 = u,

i.e. u is a fixed point of T .
(i i) Fur uniqueness, suppose v is another fixed point of T , v( �= u) ∈ X and v =

T v, then d(u, v) > 0 and

d(u, v) = d(T u, T v) � αd(u, v) < d(u, v),

a contradiction. Hence d(u, v) = 0, that is u = v.
(i i i) By the triangle inequality, we have

d(xn, u) � d(xn, x p)+ d(x p, u) � αn

1− α
d(x1, x0)+ d(x p, u)

for n < p by (5.2). Letting p →∞, we obtain

d(xn, u) � αn

1− α
d(x1, x0)

which provides a control on the convergence rate of {xn} to the fixed point u. �

Example 5.6 (i) Let X = R and T : R→ R a mapping defined by T x = 2
3 x +

1, x ∈ R. Then T is a contraction and F(T ) = {3}.
(i i) Let X = C and T : C→ C a mapping defined by T (z) = az, for |a| < 1 is a
contraction mapping and F(T ) = {0}.
Observation

1. Brouwer’s fixed point theorem is existential by its nature.
2. The elegant Banach’s fixed point theorem solves:

(1◦) the problem on the existence of a unique solution to an equation,
(2◦) gives a practical method to obtain approximate solutions and
(3◦) gives an estimate of such solutions.

3. There exists a mapping that is not a contraction, but it has a unique fixed point.
To this end, consider X = [0, 1] and T : X → X a mapping defined by T x =
1− x, x ∈ X . Then T has a unique fixed point 1

2 , but it is not a contraction.

Notice that the applications of the Banach’s fixed point theorem and its generaliza-
tions are very important in diverse disciplines of mathematics, statistics, engineering
and economics. Some examples of applications of Banach contraction principle are
given below:

Example 5.7 Let X = R be the Banach space of real numbers endowed with the
norm ‖ · ‖ given by ‖x‖ = |x | and [a, b] ⊂ R; f : [a, b] → [a, b], a differentiable
function such that
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| f ′(x)| < c < 1.

Suppose we wish to find solution of the equation f (x) = x .

For any x, y ∈ [a, b], we have by Lagrange’s mean value theorem that

f (x)− f (y) = (x − y) f ′(z), y < z < x .

It follows that

| f (x)− f (y)| = |x − y|| f ′(z)|
� c|x − y|, 0 < c < 1.

Thus, f is a contraction on [a, b] into itself. Since [a, b] is a closed subset of R, it
follows that [a, b] is complete and so by Theorem 5.1, there exists a unique fixed
point x̄ ∈ [a, b], i.e. f (x̄) = x̄ .

Example 5.8 Let T be an operator on a Banach space X that satisfies the condition
‖T ‖ < 1. Such an operator is a contraction since

d(T x, T y) = ‖T x − T y‖ � ‖T ‖‖x − y‖ = ‖T ‖d(x, y).

We now intend to obtain the solution the equation

x = u + T x (†)

where u ∈ X is given and x is unknown. Set φ(x) = u + T x, x ∈ X . Then we see
that x̄ is a solution of (†) if and only if x̄ is a fixed point of φ. Since

‖φ(x)− φ(y)‖ � ‖T ‖‖x − y‖

so φ is a contraction. Then Theorem 5.1 yields a unique solution x̄ of (†). Further-
more, it gives an iterative procedure for obtaining the solution. If the initial choice
x0 = 0 and xn defined by

xn+1 = u + T xn, n ≥ 0,

then by the prior error estimates in the m-th approximation, we have

‖xm − x̄‖ � ‖T ‖m‖u‖
1− ‖T ‖ .

Remark 5.1 The completeness of X plays here a crucial role. Indeed, contractions
on incomplete metric spaces may fail to have fixed points. To see it, consider the
following example.
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Example 5.9 Let X = (0, 1] with the usual distance. Define T : X → X as T (x) =
x
2 for all x ∈ X .

Theorem 5.1 gives a sufficient condition for T in order to have a unique fixed
point.

Example 5.10 Consider the mapping T : [0, 4] → [0, 4] defined by

T (x) =

⎧⎪⎨
⎪⎩

1
2 + 4x, x ∈ [0, 1

2 ]
3
2 + x, x ∈ ( 1

2 , 3
2 )

2, x ∈ ( 3
2 , 4].

Notice that T is not even continuous, but it has a unique fixed point (x = 2).

The next corollary takes into account the above situation and provides existence
and uniqueness of a fixed point under more general conditions. Indeed, the following
result shows that when some power of T , say T k , is a contraction mapping of X for
some positive integer k, then T has a unique fixed point.

Corollary 5.1 Let T be a continuous mapping of a complete metric space X into
itself such that T k is a contraction mapping of X for some positive integer k. Then
T has a unique fixed point.

Proof By Theorem 5.1, T k has a unique fixed point u in X and u = limn→∞(T k)n x0,
x0 being arbitrary point in X. Also limn→∞(T k)n(T x0) = u. Hence

u = lim
n→∞(T k)n(T x0) = lim

n→∞ T (T k)n x0 = T ( lim
n→∞(T k)n x0) = T u.

Since each fixed point of T is also a fixed point of T k , the uniqueness of the fixed
point of T follows from the uniqueness of the fixed point of T k . �

Remark 5.2 The continuity condition of T in Corollary 5.1 is not necessary. The
following example illustrate the contention.

X = R, T (x) =
{

1, x is rational

0, x is irrational,

T is not continuous and hence not a contraction mapping.

T 2(x) =
{

T (1) = 1, x is rational

T (0) = 1, x is irrational,

T 2 is a contraction and hence continuous. Notice that T 2 and T both have the same
fixed point 1.



240 5 Fixed Point Theorems

Theorem 5.2 Let T be a mapping of a complete metric space X into itself such that
T k is a contraction mapping of X for some positive integer k. Then T has a unique
fixed point in X.

Proof Let u ∈ X such that u = T ku, i.e. u is the unique fixed point of T k . Applying
T to this (u = T ku), we have

T u = T k+1(u) = T k(T u).

This implies that T u is the fixed point of T k . By uniqueness we have u = T u, i.e. u
is a fixed point of T also. Further to prove the uniqueness of the fixed point of T , let
v be another fixed point of T . Then

v = T v = T (T v) = · · · = T k(v),

i.e. v is also a fixed point of T k . Therefore, u = v. Thus, u is a unique fixed point
of T . �

Now we give an example of a mapping T which is not a contraction but T k is a
contraction for some k.

Example 5.11 Let T : C[a, b] → C[a, b], (∞ < a < b < ∞) with uniform norm,
be defined as

[T ( f )](t) =
∫ t

a
f (x)dx .

Then, using integral formula of A-2, it can be shown that

[T k( f )](t) = 1

(k − 1)!
∫ t

a
(t − x)k−1 f (x)dx

For sufficiently large values of k, the mapping T k is a contraction, whereas T is not
a contraction if (b − a) > 1.

Observation

• From Banach’s contraction (BC), it follows that the mapping T is continuous.
Further, we use the continuity of the mapping T to prove Banach’s fixed point
theorem. Thus, it is natural to consider the following question:
Do there exist some contractive conditions which do not force the mapping T to
be continuous?

In 1968, Kannan [308] answered this question affirmatively and proved a fixed point
theorem for the following contractive condition, which is called Kannan’s contraction
(KC):
Theorem K. Let (X, d) be a complete metric space and T : X → X be a mapping
such that there exists a number r ∈ [0, 1

2 ) such that
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d(T x, T y) � r [d(T x, x)+ d(T y, y)] (KC)

for all x, y ∈ X . Then, T has a unique fixed point in X .
We now illustrate the fact that there exists a mapping T which is not continuous,

but the mapping T is Kannan’s contraction. To this end, let us consider the following
example: Let X = R be a usual metric space and T : X → X be a mapping defined
by

T (x) =
{

0 if x ∈ (−∞, 2],
1
2 if x ∈ (2,+∞).

Clearly, T is not continuous at x = 2 ∈ R. Further, it is easy to see that T satisfies
Kannan’s contraction (KC) with k = 1

5 .
In 1972, Chatterjea [140] proved a fixed point theorem for the following contrac-

tive condition, which is called Chatterjea’s contraction (CHC):
Theorem C. Let (X, d) be a complete metric space and T : X → X be a mapping
such that there exists a number r ∈ [0, 1

2 ) such that

d(T x, T y) � r [d(T x, y)+ d(T y, x)] (CHC)

for all x, y ∈ X . Then, T has a unique fixed point in X .
In 1977, Rhoades [519] observed that Banach’s contraction (BC), Kannan’s con-

traction (KC) and Chatterjea’s contraction (CHC) are independent.
In what follows, let (X, d) denote a complete metric space. In the last five

decades, one may observe that many authors have improved, extended and gen-
eralized Banach’s fixed point theorem in metric spaces as follows:
(1) In 1969, Meir and Keeler [393] introduced the following contractive condition:
For any ε > 0, there exists δ > 0 such that

ε � d(x, y) < ε + δ =⇒ d(T x, T y) < ε (MK)

Note that if T satisfies Meir–Keeler’s contraction (MK), then T is contractive, i.e.

d(T x, T y) < d(x, y) for all x, y ∈ X with x �= y.

(2) In 1971, Reich [508] introduced the following contractive condition: there exist
nonnegative numbers a, b, c ∈ [0, 1) such that a + b + c < 1 and

d(T x, T y) � ad(x, y)+ bd(x, T x)+ cd(y, T y) (RC)

for all x, y ∈ X .
(3) In 1971, Ćirić [142] introduced the following contractive condition: there exist
nonnegative numbers a, b, c, e ∈ [0, 1) such that a + b + c + 2e < 1 and
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d(T x, T y) � ad(x, y)+ bd(x, T x)+ cd(y, T y)+ e[d(x, T y)+ d(y, T x)]
(CRC1)

for all x, y ∈ X .
(4) In 1972, Zamfirescu [616] introduced the following contractive condition:

d(T x, T y) � max{d(x, y),
1

2
[d(x, T x)+ d(y, T y)], 1

2
[d(x, T y)+ d(y, T x)]}

(ZC)

for all x, y ∈ X .
(5) In 1973, Hardy and Rogers [266] introduced the following contractive condition:
There exist nonnegative numbers a1, a2, a3, a4, a5 ∈ [0, 1) such that a1 + a2 + a3 +
a4 + a5 < 1 and

d(T x, T y) � a1d(x, T x)+ a2d(y, T y)+ a3d(x, T y)+ a4d(y, T x)+ a5d(x, y)

(HRC)

for all x, y ∈ X .
(6) In 2004, Berinde [54] introduced the following contractive condition: There exist
r ∈ [0, 1) and L � 0 such that, for all x, y ∈ X ,

d(T x, T y) � rd(x, y)+ Ld(y, T x)]. (VBC)

5.1.2 A Converse to the Banach Contraction Mapping
Principle

Let (X, d) be a complete metric space and let T : X → X be a contraction mapping.
From the Banach fixed point theorem, we infer the following properties:

(i) each iteration T n (n = 1, 2 · · · ) of T has a unique fixed point, say u ∈ X ,
(i i) the sequence of iterates {T n x} converges to u for all x ∈ X . Moreover, one can
easily show that
(i i i) there exists an open neighbourhood U of u with the property that given any
open set V containing u there exists a positive integer n0 such that

T n(U ) ⊂ V ∀n � n0.

We are interested to find a metric d on X such that (X, d) is a complete metric
space and T is a contraction on X . Clearly, in the light of Theorem 5.1, a necessary
condition is that each iterate T n has a unique fixed point. Consider now the situation
when we know only that T has property (i). Surprisingly enough, as noted by Polish
mathematician C. Bessaga in 1959, the condition turns out to be sufficient as well.

Theorem 5.3 (Bessaga [56]) Let X be an arbitrary set, and let T : X → X be a
map such that T n has a unique fixed point u ∈ X for every n � 1. Then for every
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λ ∈ (0, 1), there is a metric d = dλ on X that makes X a complete metric space, and
T is a contraction on X with Lipschitz constant equal to λ.

Proof Firstly, we choose λ ∈ (0, 1). Let Z be the subset of X consisting of all
elements z such that T n(z) = u for some n ∈ N. Secondly, we define the following
equivalence relation on X \ Z : we say that

x ∼ y if and only if T n(x) = T m(y) for some n, m ∈ N.

For arbitrary x ∈ X , a corresponding equivalence class is denoted by [x], i.e.

[x] = {y ∈ X : y ∼ x}.

In each equivalence class, we choose a fixed element x̂ called representative element.
Notice that if T n(x) = T m(y) and T n′(x) = T m ′

(y), then T n+m ′
(x) = T m+n′(x).

But since x /∈ Z , this yields n + m ′ = m + n′, that is, n − m = n′ − m ′. At this point,
by means of the axiom of choice, we select an element from each equivalence class.
We now proceed defining the distance of u from a generic x ∈ X by setting d(u, u) =
0, d(x, u) = λ−n if x ∈ Z with x �= u, where n = min{m ∈ N : T m(x) = u}, and
d(x, u) = λn−m if x /∈ Z , where n, m ∈ N are such that T n(x̂) = T m(x), x̂ being
the selected representative of the equivalence class [x]. From the above discussion,
it is clear that d is well defined.

Finally, for any x, y ∈ X, we set

d(x, y) =
{

d(x, u)+ d(y, u) if x �= y,

0 if x = y,

We now observe the following:

1. It is straightforward to verify that d is a metric on X .
2. d is complete. To see this, we observe that the only Cauchy sequences which do

not converge to u are ultimately constant.
3. We are left to show that T is a contraction with Lipschitz constant equal to λ. To

this end, let x ∈ X, x �= u.

(i) If x ∈ Z , we have

d(T (x), T (u)) = d( f (x), u) � λ−n = λλ−(n+1) = λd(x, u).

(i i) If x /∈ Z , we have

d(T (x), T (u)) = d( f (x), u) = λn−m = λλn−(m+1) = λd(x, u)

since x ∼ T (x).

Finally, the thesis follows directly from the definition of the distance. �
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5.1.3 Fixed Point Theorems for (ε, k)-Uniformly Locally
Contractive Mappings

We now focus on another class of mappings related to contraction mappings which
are defined on some special classes of metric spaces.

Definition 5.3 Let (X, d) be a metric space and ε > 0. A finite sequence x0, x1,

. . . , xn of points of X is called on ε-chain joining x0 and xn if

d(xi−1,, xi ) < ε (i = 1, 2, . . . , n).

The metric space (X, d) is said to be ε-chainable if for each pair (x, y) of its points,
there exists an ε-chain joining x and y.

Definition 5.4 A mapping T : X → X is called (ε, k)-uniformally locally contrac-
tive if there exists ε > 0 and k with 0 � k < 1 such that

d(x, y) < ε ⇒ d(T x, T y) � kd(x, y) for each x, y ∈ X.

The following theorem gives a generalization of contraction mapping principle
to a class of mappings on ε-chainable spaces.

Theorem 5.4 (Edelstein [212]) Let (X, d) be a complete ε-chainable metric space
and T : X → X be an (ε, k)-uniformly locally contractive mapping. Then T has a
unique fixed point u in X and u = lim

n→∞ T n x0 where x0 is an arbitrary element of X.

Proof Since (X, d) is ε-chainable, we define

dε(x, y) = inf
n∑

i−1

d(xi−1 , xi ) for x, y ∈ X.

where the infimum is taken over all ε-chains x0, . . . , xn joining x0 = x and xn = y.

Then the metric dε on X satisfies

(i) d(x, y) � dε(x, y)

(ii) d(x, y) = dε(x, y) for d(x, y) < ε.

From the above, it follows that a sequence is Cauchy with respect to dε if any only if
it is Cauchy with respect to d and is convergent with respect to dε if any only if it is
convergent with respect to d. So (X, dε) is complete whenever (X, d) is complete.
With given x, y ∈ X and any ε-chain x0, x1, . . . , xn with x0 = x, xn = y, we have

d(xi−1, xi ) < ε (i = 1, 2, . . . , n)

and hence
d(T xi−1, T xi ) � kd(xi−1, xi ) < ε (i = 1, 2, . . . , n).
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So T x0, T x1, . . . , T xn is an ε-chain joining f x and f y and

dε(T x, T y) �
n∑

i=1

d(T xi−1, T x1) � k
n∑

i=1

d(xi−1, xi ).

Furthermore, x0, x1, . . . , xn being an arbitrary ε-chain, we have

dε(T x, T y) � k dε(x, y).

Hence, f has a unique fixed point u ∈ X given by

lim
n→∞ dε(T

n x0,u) = 0 for any x0 ∈ X. (by Theorem 5.1) (5.3)

But by (i) we have limn→∞ d(T n x0, u) = 0. This completes the proof. �

The following example illustrates the application of the above theorem.

Example 5.12 Let C be a connected compact subset of a domain D in the complex
plane. Let T be a complex analytic function in D which maps C in to itself and
satisfies |T ′(x)| < 1 for every z in C . Then there is a unique point z in C with
T (z) = z.

Since T ′ is continuous and C is compact, there is a constant k with 0 < k < 1
such that |T ′(z)| < k for all z ∈ C . For each point w ∈ C , there exists rw > 0 such
that T (z) is analytic in the disc B2rwi

(w) of center w and radius 2rw and satisfies
|T ′(z)| < k in it. By compactness of C, we can choose w1,w2, . . . , wn ∈ C such that
{B2rwi

(wi )}, i = 1, 2, 3, . . . , n covers C .
Let ε = min{rwi ,i = 1, 2, . . . , n}. We show that T is an ε-contractive mapping.

For any two points z1, z2 in C , with |z1 − z2| < ε, are in some B2rwi
(w1) and thus

|T (z2)− T (z1)| =
∣∣∣∣
∫ z2

z1

T ′(w)dw

∣∣∣∣ � k|z2 − z1|.

Hence, T (z) = z has a unique solution.

5.1.4 Fixed Point Theorems for Contractive Mappings

Definition 5.5 A mapping T of a metric space X into itself is said to be contractive
if

d(T x, T y) < d(x, y), x, y ∈ X (x �= y)

and is said to be ε-contractive if

0 < d(x, y) < ε ⇒ d(T x, T y) < d(x, y).
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Theorem 5.5 (Edelstein [213]) Let T be an ε-contractive mapping of a metric space
X into itself, and let x0 be a point of X such that the sequence {T n x0} has a subse-
quence convergent to a point u of X. Then u is a periodic point of T , i.e. there exists
a positive integer k such that T ku = u.

Proof Let {T ni x0}be a convergent subsequence converging to u, i.e. limi→∞ T ni x0 =
u where {ni } is a strictly increasing sequence and let x1 = T ni x0. Given ε > 0 there
exists N such that

d(x1, u) <
ε

4
for i � N .

Choose any i � N and let k = ni+1 − ni . Then

d(xi+1, T ku) = d(T k xi , T ku) � d(xi , u) <
ε

4

and
d(T ku, u) � d(T ku, xi+1,

)+ d(xi+1,
u) <

ε

2
.

Suppose that v = T ku �= u. Then T being ε-contractive,

d(T u, T v) < d(u, v) or
d(T u, T v)

d(u, v)
< 1.

The function (x, y) → d(T x,T y)

d(x,y)
is continuous at (u, v). So there exist δ, α > 0 with

0 < α < 1 such that

d(x, u) < δ, d(y, v) < δ ⇒ d(T x, T y) < αd(x, y).

As lim r →∞ T k xr = T ku = v, there exists N ′ � N such that d(xr,u) < δ, d(T k

xr,v) < δ for r � N ′and so

d(T xr,T (T k xr ) < αd(xr,T
k xr ). (5.4)

Also d(xr,T k xr ) � d(xr,u)+ d(u, T ku)+ d(T ku, T k xr )

<
ε

4
+ ε

2
+ ε

4
= ε for r ≥ N ′ > N . (5.5)

From (5.4) and (5.5), we have

d(T xr,T (T k xr )) < αd(xr , T k xr ) < αε < ε for r � N ′.

Since T is ε-contractive, we have

d(T q xr , T q(T k xr )) < αd(xr,T
k xr ) for r � N ′, q > 0. (5.6)
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Setting q = nr+1 − nr in (5.6) we have

d(xr+1,T
k xr+1) < εd(xr,T

k xr ) for any r � N ′.

Hence d(xs, T k xs) < αs−r d(xr , T k xr ) < αs−rε.

Finally, by triangular inequality we have

d(u, v) � d(u, xs)+ d(xs, T k xs)+ d(T k xs, v) → 0 as s →∞.

This contradicts the assumption that d(u, v) > 0. Thus

u = v = T ku.

This completes the proof. �

Remark 5.3 A contractive mapping is clearly continuous, and if such a mapping has
a fixed point, then this fixed point is obviously unique. However, we notice that a
contractive mapping of a complete metric space into itself need not have a fixed
point. It can be seen from the following examples.

Example 5.13 (i) Let X = [1,∞) with the usual metric d(x, y) = |x − y|. Let T :
X → X be given by T x = x + 1/x . Then X is a complete metric space but T is not
a contraction mapping. Indeed, one may observe that

|T x − T y| = xy − 1

xy
|x − y| < |x − y| for all x, y ∈ X

and so T is contractive but has no fixed point. Note that T is not a contraction because
although the ratio xy−1

xy is less than 1 for all x, y ∈ X , it approaches 1 as x, y become
large.
(i i) Let X = R with the usual metric d(x, y) = |x − y|. Let T : X → X be given

Fig. 5.2 T is contractive,
but has no fixed point
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by T x = π
2 + x − tan−1 x . Then X is a complete metric space and T is a contractive

mapping, i.e.

|T x − T y| < |x − y| for all x, y ∈ X with x �= y,

but T has no fixed point (Fig. 5.2).
(i i i) Let X = c0, the space of all real sequences x = {xn} with lim

n→∞ xn = 0 and

d(x, y) = ‖x − y‖ = sup
n∈N

|xn − yn|, x = {xn}, y = {yn} ∈ c0. Let BX = {x ∈ c0 :
‖x‖ � 1}. For each x ∈ BX , define T : BX → BX by

T (x) = ((1+ ‖x‖)/2, (1− 1/22)x1, (1− 1/23)x2, . . . , (1− 1/2n)xn−1, . . .).

For any two distinct points x, y ∈ BX , we have

‖T x − T y‖ = sup

{‖x‖ − ‖y‖
2

,

(
1− 1

2n

)
|xn−1 − yn−1| : n = 2, 3, . . .

}

� sup

{‖x − y‖
2

,

(
1− 1

2n

)
|xn−1 − yn−1| : n = 2, 3, . . .

}

< ‖x − y‖.

We now show that T has no fixed point in BX . Suppose, on the contrary, there exists
a point u ∈ BX such that T u = u. Then u1 = (1+ ‖u‖)/2 > 0, and for n � 2, we
have

|un| =
(

1− 1

2n

)
|un−1|.

This yields for n � 2,

|un| =
(

1− 1

2n

)
|un−1| =

(
1− 1

2n

)(
1− 1

2n−1

)
|un−2|

=
n−2∏
i=0

(
1− 1

2n−i

)
|u1| �

(
1−

n−2∑
i=0

1

2n−i

)
|u1|

=
(

1−
n∑

j=2

1

2 j

)
|u1| > 1

2
|u1|.

This is an absurdity, because un → 0 as n →∞. Thus, T has no fixed point in BX .

Notice that completeness and boundedness of a metric space do not ensure the
existence of fixed points of contractive mappings. To ensure existence of fixed point
for T , Edelstein in 1962 [213] observed that an additional condition, i.e. compactness
of the metric space is required.
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Theorem 5.6 (Edelstein [213]) Let T be a contractive mapping of a metric space X
into itself, and let x0 be a point of X such that the sequence {T n x0} has a convergent
subsequence which converges to a point u ∈ X. Then u is a unique fixed point of T .

Corollary 5.2 If T is a contractive mapping of a metric space X into a compact
subset of X, then T has a unique fixed point u in X. Moreover, for any x ∈ X, and
lim

n→∞ T n x = u.

The following theorem guarantees the existence of a fixed point for a contractive
mapping.

Theorem 5.7 Let T be a self-mapping on a compact metric space (X, d). Suppose
T is contractive, then T has a unique fixed point u in X and {T n x} converges to u
for all x in X.

Proof Define a mapping ϕ : X → R+ by

ϕ(x) = d(x, T x) ∀x ∈ X.

Then we notice that ϕ is continuous. Indeed, by contractiveness of T , we have

|ϕ(x)− ϕ(y)| = |d(x, T x)− d(y, T y)|
� |d(x, T x)− d(y, T x)| + |d(T x, y)− d(T y, y)|
� d(x, y)+ d(T x, T y) < 2d(x, y).

Let ε > 0 be given. Then there exists a δ = ε
2 > 0 such that

d(x, y) < δ ⇒ |ϕ(x)− ϕ(y)| < 2δ = ε.

Therefore, ϕ is continuous. Clearly, ϕ is bounded below. Because X is compact and
ϕ : X → R+ is continuous, there exists a minimizer u ∈ X , i.e. there exists u ∈ X
such that

ϕ(u) � ϕ(x) ∀x ∈ X.

We show that u is a fixed point of T . Suppose contrary that u is not a fixed point of
T . Then T u �= u. By contractiveness of T , we have

ϕ(T u) = d(T u, T 2u) < d(u, T u) = ϕ(u)

which contradicts that u is a minimizer of ϕ. Hence, u is a fixed point of T . The
uniqueness of u follows on the lines of the proof of Theorem 5.1.

For the second part, let x be an arbitrary point of X . If T n x �= u, then

d(T n+1x, u) = d(T (T n x), T u) < d(T n x, u) ∀n ∈ N.



250 5 Fixed Point Theorems

This shows that {d(T n+1x, u)} is a strictly decreasing sequence of nonnegative real
numbers. It follows that the sequence {d(T n+1x, u)} converges to its infimum. Sup-
pose that limn→∞ d(T n+1x, u) = γ, for some γ ≥ 0.

Because {T n x} is a sequence of points of a compact metric space, there exists a
subsequence {T ni x} which converges to some point, say, v ∈ X .

d(v, u) = lim
i→∞ d(T ni x, u) = lim

i→∞ d(T ni+1x, u) = γ.

If γ �= 0, then v �= u and so we have

γ = d(v, u) > d(T v, T u) = d(T v, u)

= lim
i→∞ d(T (T ni x), u) = lim

i→∞ d(T ni+1x, u) = γ,

a contradiction. Thus, γ = 0 and therefore, limn→∞ T n x = u.

The following example shows that in general, even in a Hilbert space for a con-
tractive mapping T we cannot have that T n x → u for every x ∈ BX and T u = u.

Example 5.14 Let X = �2 = {x1, x2, . . . , xi , . . .), xi is real for each i ∈ N and∑∞
i=1 |xi |2 < ∞.}. Let BX = {x ∈ X : ‖x‖2 = (

∑∞
i=1 |xi |2)1/2 � 1}. For each x =

(x1, x2, . . . , xi , · · · ) ∈ BX , define a mapping T : B→ B by

T (x) = (0, a1x1, a2x2, . . . , ai xi , . . .),

where a1 = 1, ai = (1− 1/ i2), i = 2, 3, . . . . Now we can easily show that T is
contractive with fixed point (0, 0, . . . , 0, . . .). Consider x = (1, 0, . . . , 0, . . .) ∈ BX ,

then

T n x =
(

0, 0, . . . ,

n∏
i=1

ai , 0, . . .
)

for all n ∈ N.

Thus, we find that ∥∥T n x
∥∥ = n + 1

2n
→ 1

2
as n →∞,

which shows that T n x � 0.

Observation

• In Theorem 5.7, we can relax the compactness of X by requiring that T (X) be
compact (just applying the theorem on the restriction of T on T (X)).

Arguing like in Corollary 5.1, it is also immediate to prove the following:

Corollary 5.3 Let X be a compact metric space and let T : X → X. If T n is a
contractive, for some n ≥ 1, then T has a unique fixed point x ∈ X.
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Observation

• The problem of defining a family of functions F = {λ(x, y)} satisfying 0 �
λ(x, y) < 1, sup λ(x, y) = 1 and such that Banach’s theorem holds when the
constant λ is replaced with any λ(x, y) ∈ F , was suggested to Rakotch1 [497] by
Professor H. Hanani.

• It is quite interesting to observe that the condition d(T x, T y) � λ(x, y) d(x, y)

with λ(x, y) < 1 does not guarantee the existence of a fixed point. Indeed, let
X = [1,∞) be the set of real numbers with usual metric d(x, y) = |x − y| and
let T : X → X be defined by T x = x + 1

2x . Then

d(T x, T y) = λ(x, y) d(x, y); λ(x, y) = 1− 1

2xy
< 1,

but there is no x ∈ X such that T x = x .

In 1962, E. Rakotch introduced and studied a class of mappings satisfying the
condition d(T x, T y) � λ(x, y) d(x, y), where λ(x, y) = λ(d(x, y)), i.e. λ depends
on the distance between x and y only. Indeed, Rakotch proved the following:

Theorem 5.8 (Rakotch [497]) Let (X, d) be a complete metric space and T : X →
X be a self-mapping of X satisfying

d(T x, T y) � λ(x, y) d(x, y) for all x, y ∈ X, (5.7)

where (i) λ(x, y) = λ(d(x, y)), (ii) 0 � λ(t) < 1 for every t > 0 and (iii) λ(t) is a
monotonically decreasing function of t , then there exists a unique fixed point of T .

Sehgel [547] obtained an interesting generalization of Theorem 5.6 which we discuss
now.

Theorem 5.9 Let T be a continuous mapping from a metric space X into itself such
that for all x, y in X with x �= y, we have

d(T x, T y) < max {d(x, T x), d(y, T y), d(x, y)}. (5.8)

Suppose that, for some z in X, the sequence {T nz} has a cluster point u. Then the
sequence {T nz} converges to u and u is the unique fixed point of T .

Proof If T nz = T n+1z for some nonnegative integer n, then it is obvious that
limn→∞ T nz = u and by (5.8), u is the unique fixed point of T . Hence, we
may assume that for all nonnegative integers n, d(T nz, T n+1z) > 0. Let U (y) =
d(y, T y). Then U is a continuous function and U (T nz) < U (T n−1z) < U (z) for
all positive integers n by condition (5.8). Let r = limn→∞ U (T nz). Let {ni } be
a sequence of positive integers such that T niz converges to u. Then we have

1Rakotch’s thesis for the degree of Master of Science, submitted to the Department of Mathematics
of the Technion, Israel Institute of Technology, Haifa.
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U (u) = U (T u) = r. By (5.8) we have u = T u and r = 0. Now we prove that the
sequence {T nz} converges to u. Given ε > 0, there exists a positive integer k such
that

max {U (T k z), d(T k z, u)} < ε.

By condition (5.8), we have for all positive integers n � k

d(T nz, u) = d(T nz, T nu) < max {U (T n−1z, d(T n−1z, u)}
< max {U (T n−1z, d(T n−2z, u)} < max {U (T k z), d(T k z, u)}
< ε.

Hence, limn→∞ T nz = u, and this concludes the proof. �

Remark 5.4 For more on contractive mappings and its generalization, see Rhoades
[519].

The following example shows that a contractive mapping T satisfies condition (5.8)
but the converse is not true in general.

Example 5.15 Let T : [0, 5] → [0, 5] be defined as follows:

T x =
{

x
2 if x ∈ [0, 4]
−2x + 10 if x ∈ [4, 5].

Then T (4)− T (5) = 2 showing that T is not contractive. But one can check that T
satisfies (5.8).

We now state an easy consequence of Banach’s contraction theorem as follows.

Theorem 5.10 Let X be a Banach space, x0 a point in X, and let Bx0,ρ = {x ∈ X :
‖x − x0‖ � ρ} the closed ball in X with center at x0 and radius ρ. Let F : Bx0,ρ → X
be given by

Fx = x + ϕ(x) for all x ∈ Bx0,ρ,

where ϕ is a Lipschitz continuous function with constant α < 1. Then Fx = y has
a unique solution for every y ∈ BF(x0),(1−α)ρ and F−1 satisfies Lipschitz conditions
with constant 1/(1− α).

Recently there have been numerous generalization of the Banach contraction
theorem by weakening its hypothesis while retaining the convergence property of
the successive iterates to the unique fixed point of the mapping.

The following theorem was obtained by Boyd and Wong [75].

Theorem 5.11 Let X be a complete metric space, and let T : X → X be a mapping.
Suppose there exists a function ϕ : R+ → R+ upper semicontinuous from the right
such that

d(T x, T y) � ϕ(d(x, y)) for all x, y ∈ X. (5.9)
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If ϕ(t) < t for each t > 0, then

(i) T has a unique fixed point u in X,
(ii) {T n x} converges to u for every x in X.

Proof For any x in X , let xn = T n x, n = 1, 2, . . . and dn = d(xn, xn+1) = d(T n x,

T n+1x). We may presume that dn > 0 for n � 0. Then for n > 1,

dn = d(T xn−1,
T xn) � ϕ(dn−1) < dn−1 .

Thus, the sequence {dn} is monotonically decreasing and bounded below so it is
convergent. Let lim

n→∞ dn = d. We show that d = 0. If d > 0, then dn+1 � ϕ(dn). By

the upper semicontinuity from the right of the function ϕ, we obtain

d = lim
n→∞ dn+1 � lim sup

n→∞
ϕ(dn) � ϕ(d)

which contradicts the property of ϕ. Thus, d = 0 and dn → 0 as n →∞.
We now claim that the sequence {xn} is Cauchy. Suppose, on the contrary, that

{xn} is not a Cauchy sequence. Then there exists ε > 0 and for each positive integer k
there exist integers n(k) and m(k) with n(k) > m(k) ≥ k such that d(xm(k),xn(k)) � ε.
Without loss of generality, we can assume that n(k) is the smallest integer greater
than m(k) satisfying the above inequality. Let rk = d(xm(k), xn(k)). Then

ε � rk � d(xm(k), xn(k)−1 + d(xn(k)−1, xn(k)) � ε + dn(k)−1.

This implies that lim
k→∞ rk = ε. Also we have

ε � rk � d(xm(k),xm(k)+1)+ d(xm(k)+1,xn(k))+1)+ d(xn(k)+1,, xn(k))

� dm(k) + ϕ(rk)+ dn(k) → ϕ(ε) as k →∞.

Thus ε � ϕ(ε) which is a contradiction. Thus, {T n x} is a Cauchy sequence for any
x ∈ X .

Since {T n x} is a Cauchy sequence and X is complete, limn→∞ T n x = u ∈ X .
Since T is continuous, T (u) = T (limn→∞ T n x) = limn→∞ T (n+1)x = u. Unique-
ness of u follows from condition (5.9). �

Remark 5.5 The condition ϕ(t) < t for all t > 0 cannot be dispensed with in The-
orem 5.11. Even if condition ϕ(t) < t does not hold for at least one value of t > 0,
then T may have no fixed point or else more than one fixed point.

Example 5.16 Let X = (−∞,−1] ∪ [1,∞) be a metric space with the absolute
value metric. Define T : X → X by

T x =
{

1
2 (x + 1) if x ≥ 1
1
2 (x − 1) if x � −1.
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and Sx = −T x for all x ∈ X.

Then T and S satisfy condition (5.9) with

ϕ(t) =
{

1
2 t if t < 2
1
2 t + 1 if t ≥ 2.

Notice that the function ϕ satisfies all the conditions of Theorem 5.11 except that
ϕ(2) = 2. It may be observed that T has two fixed points −1 and 1, while S has no
fixed points.

The following is a fixed point theorem concerning Kannan–Reich-type mapping
proved by Hardy and Rogers [266].

Theorem 5.12 Let T be a mapping from a complete metric space X into itself
satisfying the following:

d(T x, T y) � a[d(x, T x)+ d(y, T y)] + b[d(y, T x)+ d(x, T y)] + cd(x, y),

(5.10)
for any x, y in X where a, b and c are nonnegative numbers such that 2a + 2b + c <

1. Then T has a unique fixed point u in X. In fact for any x ∈ X, the sequence {T n x}
converges to u.

The following is an example of discontinuous mapping which satisfies Kannan–
Reich-type condition (5.10).

Example 5.17 Let T : [−2, 1] → [−2, 1] be defined as

T x =

⎧⎪⎨
⎪⎩

x
2 if x ∈ [0, 1)

− 1
8 if x = 1

− x
2 if x ∈ [−2, 0).

Remark 5.6 Take c �= 0, a = b = 0 in Theorem 5.11 above. Then we get Banach
contraction mapping theorem as a special case.

Corollary 5.4 (Kannan, Theorem 1 [308, 309]) Let T be a mapping of a complete
metric space X into itself. Suppose that there exists a number r ∈ [0, 1

2 ) such that

d(T x, T y) � r [d(x, T x)+ d(y, T y)], for all x, y ∈ X. (5.11)

Then T has a unique fixed point in X.

Corollary 5.5 (Chatterjea, Theorem 1 [140]) Let T be a mapping of a complete
metric space X into itself. Suppose that there exists a number r ∈ [0, 1

2 ) such that

d(T x, T y) � r [d(x, T y)+ d(y, T x)], for all x, y ∈ X. (5.12)
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Then T has a unique fixed point in X.

Notice that Banach contraction mappings are continuous.We now furnish an exam-
ple to show that Kannan’s mappings are not necessarily continuous.

Example 5.18 Let X = [0, 4] be endowed with the usual metric d(x, y) = |x − y|.
Define T : X → X by

T (x) =
{

x
3 , if x � 3
x
4 , if 3 < x � 4.

For x, y ∈ [0, 3] we have

d(T (x), T (y)) = 1

3
|x − y| = 1

3
|x − T (x)+ T (x)− T (y)+ T (y)− y|

� 1

3
(d(x, T (x))+ d(T (x), T (y)))+ d(y, T (y))

The above inequality reduces to

d(T (x), T (y)) � 1

2
(d(x, T (x))+ d(y, T (y)).

Similarly, we can obtain the same inequality for x, y ∈ (3, 4].
For x ∈ [0, 3] and y ∈ (3, 4], we have

d(T (x), T (y)) =
∣∣∣ x
3
− y

4

∣∣∣ � 1 <
9

8
� 1

2
d(y, T (y)).

It can easily be observed that the similar inequality hold for x ∈ (3, 4] and y ∈ [0, 3].
Thus, T satisfies (5.10), but T is discontinuous.

We state without proof the following extension of Theorem 5.1 due to Č irič
appeared in 1974 in [144].

Theorem 5.13 Let X be a complete metric space, and let T : X → X be such that

d(T x, T y) � max{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)}

for some λ < 1 and every x, y ∈ X. Then T has a unique fixed point u ∈ X. Moreover,
d(T n x0, u) = O(λn) for any x0 ∈ X.

Example 5.19 Let X = [0, 1] be endowed with usual metric d. Consider the map
T : X → X defined by

T (x) =
{

1
2 + 2x, if x ∈ [0, 1

4 ]
1
2 , if x ∈ ( 1

4 , 1].
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Here we notice that T is not continuous. However, it is easy to check that it is
continuous at the fixed point (x = 1/2). Also notice that the mapping T fulfills the
hypotheses of Theorem 5.11 with λ = 2/3.

In 1975, Hussain and Sehgal [283] proved a fixed point theorem which generalizes
the Kannan–Reich and Č irič type of generalized contraction mapping theorems. An
extension of Hussain and Sehgal’s result was obtained by Singh and Meade [562]
in 1977. Both results deal with common fixed point theorems of a pair of mappings.
We state below a theorem of Hussain and Sehgal for a fixed point of a mapping.

Theorem 5.14 Let (X, d) be a complete metric space and T be a mapping of X into
itself. Let φ : (R+)5 → R+ be continuous and nondecreasing in each coordinate
variable and let T satisfies the following condition:

d(T x, T y) � φ{d(x, T x), d(y, T y), d(x, T y), d(y, T x), d(x, y)} for all x, y ∈ X.

If φ(t, t, a1t, a2t) < t, for t > 0 and a1 ∈ {0, 1, 2} with a1 + a2 = 2, then there
exists a unique u such that f u = u.

Remark 5.7 Singh and Meade [562] proved the above theorem under the assumption
that φ is upper semicontinuous and a1 + a2 = 3.

The following theorem is due to Guseman Jr. [259]. It was first proved by Sehgal
[548]. This class of mappings have at each point an iterate that is contraction and yet
none of the iterates of F is a contraction.

Definition 5.6 Let (X, d) and (Y, d) be metric spaces and T : X → Y be a mapping
from X in to Y . The mapping T is called a local power contraction mapping if
there exists a constant 0 < k < 1 and for each x ∈ X , there exists a positive integer
n = n(x) such that d(T n x, T n y) � kd(x, y) for all y in X .

Theorem 5.15 Let T be a mapping from a complete metric space X into itself.
Suppose there exists K ⊂ X such that the following conditions are satisfied.

(i) T (K ) ⊂ K ,

(ii) T is a local power contraction mapping on K ,
(iii) For some z ∈ K , {T nz : n � 1} ⊂ K .

Then T has a unique fixed point u and T n x → u as n →∞ for each x ∈ K .

Proof First we prove that for each x ∈ K , the number r(x) = sup
n
{d(x, T n x)} < ∞.

For each x ∈ K , let m(x) = sup{d(x, T n x) : 1 � n � n(x)]. Now if n is an arbitrary
positive integer, there is an integer s � 0 such that sn(x) < n � (s + 1)n(x), and
this gives

d(T n x, x) � d(T n(x)(T n−n(x)x), T n(x)x)+ d(T n(x)x, x)

� kd(T n−n(x)x, x)+ m(x)

� m(x)+ km(x)+ · · · + ksm(x) <
m(x)

1− k
.
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Thus, the above inequality yields

sup
n
{d(x, T n x)} � m(x)

1− k
< ∞.

This proves that r(x) < ∞.

Let z1 = T n(z)z and zi+1 = T n(zi )zi . Then we have
d(zi+1, zi ) � ki d(T n(zi ), z) � kir(z)

and d(z j,zi ) �
j−1∑
k=1

d(zk+1, zk) � ki

1− k
r(z) for j > i.

This shows that {zi } is Cauchy. By completeness of X and conditions (iii), zi → u ∈
K as i →∞. Obviously T n(u)zi → T n(u)u as i →∞. But

d(T n(u)zi , zi ) = d(T n(zi−1)(T n(u)zi−1), T n(zi−1)zi−1)

� kd(T n(u)zi−1, zi−1)

� ki d(T n(u)z, z) (by repeatedly using the above inequality)

→ 0 as i →∞.

Thus, d(T n(u)u, u) = lim
i→∞ d(T n(u)zi , zi ) = 0.

Hence, u is the unique fixed point of T n(u) in K . Since

T (u) = T (T n(u)u) = T n(u)(T u), we have T u = u.

Now let t (x) = sup{d(T m x, u) : 1 � m � n(u)− 1}. If n = an(u)+ s with inte-
gers a and s such that a > 0, 0 � s < n(u), then

d(T n x, u) = d(T an(u)+s x, T n(u)u) � kad(T s, u) � kat (x).

Above inequality implies that T n x → u as n →∞. �

The following example illustrates that there exists a continuous mapping on a
metric space satisfying the condition of the above theorem where no iterate of the
mapping is a contraction.

Example 5.20 Let X = [0, 1] with the metric d(x, y) = |x − y|. We note that X is
of the form

X =
{ ∞⋃

n=1

[ 1

2n,

1

2n−1

]}⋃{
0
}
.
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T x =
⎧⎨
⎩

n+2
n+3

(
x − 1

2n−1

)+ 1
2n , x ∈

[
3n+5

2n+1(n+2)
, 1

2n−1

]

1
2n+1 , x ∈

[
1
2n ,

3n+5
2n+1(n+2)

]
,

and T (0) = 0.

From the definition, it follows that T is a nondecreasing continuous function on
[0, 1] with values in [0, 1] and 0 is the unique fixed point of T . We show that T is a
local power contraction but not a power contraction.

For x ∈ [ 1
2n ,

1
2n−1

] = In and for any y in X ,

|T x − T y| � n + 3

n + 4
|x − y|

and hence

|T n+3x − T n+3 y| � 1

2
|x − y|.

Also |T n(0)− T n y| � 1
2 |0− y|.

Let 0 � k � 1 and N be a given positive integer. Let n >
(

Nk
1−k

)− 2. By the
uniform continuity of the iterates of T , there is a δ > 0 such that

|T i x − T i y| < n + N + 3

2n+N+1(n + N + 2)

for |x − y| < δ and 1 � i � N . Taking x = 1
2n−1 and y any member of In such that

0 < |x − y| < δ, it can be shown that T i x and T i y are both member of

[
3(n + i)+ 5

2n+i+1(n + i + 2)
,

1

2n+i+1

]
, i = 1, 2, . . . , N .

Then we have

|T x − T y| = n + 2

n + 3
|x − y|

|T 2x − T 2 y| = n + 2

n + 4
|x − y|

...

|T N x − T N y| = n + 2

n + 2+ N
|x − y| > k|x − y|.
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5.1.5 Caristi–Kirk’s Fixed Point Theorem
and Generalizations

In 1976, Caristi [128, 129] proved the following fixed point theorem.

Theorem 5.16 (Caristi [128, 129]) Let (X, d) be a complete metric space, and let
T : X → X an arbitrary map of X into itself (with T not necessarily continuous).
Assume there exists a lower semicontinuous function ϕ : X → [0,∞) such that

d(x, T (x)) � ϕ(x)− ϕ(T (x)), for all x ∈ X. (5.13)

Then T has (at least) a fixed point in X.

Proof For x, y ∈ X, define the relation x � y iff d(x, y) � ϕ(x)− ϕ(y). Then
(X,≤) is a partially ordered set. Let x0 ∈ X be an arbitrary element of X . Using
Zorn’s lemma , we obtain a maximal totally ordered subset E of X containing x0.
Assume E = {xα}α∈I , where I is totally ordered and

xα � xβ ⇔ α � β, (α, β ∈ I ).

Now {ϕ(xα)}α∈I is a decreasing net in R+, so there exists r � 0 such that ϕ(xα) →
r as α ↑ . Let ε > 0. Then there exists an α0 ∈ I such that

α � α0 ⇒ r � ϕ(xα) � r + ε.

Let β � α � α0. Then

d(xα, xβ) � ϕ(xα)− ϕ(xβ) � ε.

This implies that {xα}α∈I is a Cauchy net in X . Since X is complete, there exists
x ∈ X such that xα → x as α ↑. But, ϕ is lower semicontinuous, and hence ϕ(x) � r.
If β � α, then

d(xα, xβ) � ϕ(xα))− ϕ(xβ).

Letting β ↑, we have d(xα, x) � ϕ(xα)− r � ϕ(xα)− ϕ(x); giving us xα � x, α ∈
I. In particular, x0 ≤ x . Now E is maximal and thus x ∈ E . But we have

d(x, T x) � ϕ(x)− ϕ(T x),

implying that xα � x � T x, α ∈ I. Again by maximality T x ∈ E . Therefore, T x �
x and thus x = T x . �

If we assume the continuity of T , we obtain a slightly stronger result, even relaxing
the continuity hypothesis on ϕ.
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Theorem 5.17 Let (X, d) be a complete metric space, and let T : X → X be a
continuous map of X into itself (with T not necessarily continuous). Assume there
exists a function ϕ : X → [0,∞) such that

d(x, T (x)) � ϕ(x)− ϕ(T (x)), for all x ∈ X.

Then f has a fixed point in X. Moreover, for any x0 ∈ X the sequence {T n(x0)}
converges to a fixed point of T .

Proof Choose x0 in X , and let xn = T n(x0). Then

d(xn+1,
xn) � ϕ(xn)− ϕ(xn+1). (5.14)

This implies that {ϕ(xn)} is a decreasing sequence. Summing (5.14) from 0 to N ,
we have

N∑
n=0

d(xn,xn+1) � ϕ(x0)− ϕ(xN+1) � ϕ(x0).

Hence,
N∑

n=0

d(xn,xn+1) � ϕ(x0).

This implies that {xn} is a Cauchy sequence in X . By completeness of X , there exists
u ∈ X such that xn → u. By continuity of T , it follows that T (u) = u.

Remark 5.8 Theorem 5.1 is a particular case, obtained for ϕ(x) = d(x, T (x))/(1−
k), k ∈ (0, 1).

Observation

1. Caristi’s theorem is equivalent to a theorem of Ekeland [221] which turned out
to be an abstraction of a lemma of Bishop and Phelps [60]. For applications, one
may refer to Kirk and Caristi [333], Kirk [328] and Downing and Kirk [201, 202].

2. Caristi’s proof involves transfinite induction. The proof given above is by Kirk
[329] and implicit in a paper by Brφnstedt [83].

The following theorem due to Downing and Kirk [202] is a generalization of the
Caristi’s fixed point theorem.

Theorem 5.18 (Downing and Kirk [202]) Let X and Y be complete metric spaces
and f : X → X an arbitrary mapping. Suppose there exists a closed mapping g :
X → Y , a lower semicontinuous mapping ϕ : g(X) → R+, and a constant c > 0
such that for each x ∈ X,

d(x, f (x)) � ϕ(g(x))− ϕ(g( f (x)))

and cd(g(x), g( f (x))) � ϕ(g(x))− ϕ(g( f (x))). (5.15)
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Then there exists u ∈ X such that f (u) = u.

Proof For x, y ∈ X , define x � y provided that

d(x, y) � ϕ(g(x))− ϕ(g(y))

and cd(g(x), g(y)) � ϕ(g(x))− ϕ(g(y)).

Let {xα}α∈I be any chain, that is, (I,�) be a totally ordered set with xα � xβ iff
α � β. Then {ϕ(g(xα))}α∈I is a decreasing net in R+. Hence, there exists r � 0 such
that ϕ(g(xα)) ↓ r. Let ε > 0. Then there exists α0 ∈ I such that

r � ϕ(g(xα)) � r + ε for α � α0.

Hence, for β � α � α0,

d(xα, xβ) � ϕ(g(xα))− ϕ(g(xβ)) � ε,

and cd(g(xα), g(xβ)) � ϕ(g(xα))− ϕ(g(xβ)) � ε.

Above inequalities imply that {g(xα)} is a Cauchy net in Y and {xα} is a Cauchy
net in X . By completeness of X and Y , there exists u ∈ X and v ∈ Y such that
xα → u and g(xα) → v. Since g is a closed mapping, we have g(u) = v. By lower
semicontinuity of ϕ, we have ϕ(g(u)) � r. Furthermore, if α, β ∈ I with α � β,

then
d(xα, xβ) � ϕ(g(xα))− ϕ(g(xβ)) � ϕ(g(xα))− r

and cd(g(xα), g(xβ)) � ϕ(g(xα))− r.
By taking limits with respect to β, we have

d(xα, u) � ϕ(g(xα))− r � ϕ(g(xα))− ϕ(g(u))

and cd(g(xα), g(u)) � ϕ(g(xα))− ϕ(g(u)).

This shows that xα � u, α ∈ I , and thus every totally ordered set (a chain) in
(X,≤) has an upper bound. By Zorn’s lemma, there exists a maximal element
x ∈ X. By (5.15), we have x � f (x), and hence x = f (x). �
Remark 5.9 The above theorem reduces to the Theorem 5.16 if

X = Y, f = T, g = I, the identity mapping and c = 1.

5.1.6 Fixed Points via Generalized Contractions

In this section, we present some global and local fixed point results for a self-mapping
on a topologically complete/complete metric spaces by relaxing the requirement of
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compactness of the space as required in Theorem 2.2 of Tarafdar and Yuan [587].
Our results on metric space structures are motivated with relaxing the dependency
of the function λ(x, y) as well as the contraction principle on two arbitrary points of
the space. In fact, our contraction conditions are so designed that it depends only on
one arbitrary point of the space.

Let (X, d) be a metric space and let T be a mapping of X into itself. An orbit of
T at a point x of X is the set

O(x, T ) := {x, T x, . . . , T n x, . . .}.

Recall that a mapping T : X → X is said to be a Banach contraction mapping if
it satisfies the following inequality

d(T (x), T (y)) � λ d(x, y), (5.16)

for all x, y in X , where 0 < λ < 1.

Observation

• It is well known that a Banach contraction mapping T on a complete metric space
X has a unique fixed point. Following the Banach contraction principle, many
researchers introduced various concepts of locally contraction mappings, or of
weakly contraction mappings, replacing the constant coefficient λ by a function
λ(x, y) satisfying 0 � λ(x, y) < 1, sup λ(x, y) = 1 and such that the Banach
theorem still holds. Significant initial results in this area were obtained by Edelstein
[212] and Rakoch [498], and then by Boyd and Wong [75], Meir and Keeler [393],
Ćirić [143] and many other authors.

• Pathak and Shahzad [464] provide one more affirmative answer to an open question
of Rhoades [520, p. 242], whether or not there exists a contractive definition
which is strong enough to generate a fixed point but which does not force the
map to be continuous at the fixed point. It may be observed that in most of the
fixed point theorems in the literature either explicitly assume continuity or, as
shown by Rhoades [520] and Hicks and Rhoades [271], the contractive definitions
themselves imply continuity at the fixed point. However, an affirmative answer
was given by Pathak et al. in [455, Example 2.1].

Let X be a topological space and Y ⊂ X be equipped with relativised topology.

Definition 5.7 A mapping T : Y ⊂ X → X is said to be a weak topological con-
traction, if Y is T -invariant and T is continuous and closed such that for each
nonempty and closed subset A of Y with T (A) = A, A is a singleton set. Further,
if δ(T n(Y )) → 0 as n →∞ then the mapping T is said to be a strong topological
contraction.

Remark 5.10 If X is a bounded metric space (i.e. δ(X), the diameter of X is finite)
and T is a Banach contraction, then clearly T is a weak topological contraction.

We now introduce a concept that is more general, refined, viable and productive
than the celebrated Banach contraction principle in the following definition.
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Definition 5.8 Let (X, d) be a metric space. A mapping T : Y ⊂ X → X is said to
be a metric p-contraction (or simply p-contraction) mapping if Y is T -invariant and
it satisfies the following inequality

d(T (x), T 2(x)) � p(x)d(x, T (x)) (5.17)

for all x in Y , where p : Y → [0, 1] is a function such that p(x) < 1 for all
x ∈ Y and supx∈Y p(T x) = λ < 1. Further, if

⋂∞
n=0 T n(Y ) is a singleton set, where

T n(Y ) := T (T n−1(Y )) for each n ∈ N and T 0(Y ) := Y , then T is said to be strongly
p-contraction.

If p(x) = α < 1 for all x in Y , then the p-contraction mapping is said to be a
fundamental contraction. A fundamental contraction is also known as a Banach
operator. Note that when Y = X and y = T (x), the Banach contraction principle
satisfies the fundamental contraction. If p(x) � 1 for all x ∈ Y and supx∈Y p(T x) =
1, then the p-contraction mapping is said to be fundamentally p-nonexpansive.

Especially when p(x) = 1 for all x in Y , then the fundamental p-nonexpansive
mapping is said to be a fundamentally nonexpansive. Notice that if supx∈Y p(x) < 1
(or � 1), then supx∈Y p(T x) < 1 (or � 1) since T (Y ) ⊆ Y .

We now convince the reader that the concept of p-contraction is more general
than the Banach contraction principle. To see this, we observe the following very
simple example.

Example 5.21 Let X = [0, 0.6] equipped with metric topology �d , d being usual
metric on X . Let T : X → X be a mapping defined by T (x) = x2 ∀x ∈ X. Let
p : X → [0, 1] be a function defined by p(x) = x(1+ x) ∀ x ∈ X. Then, for all x
in X we have

d(T (x), T 2(x)) =
∣∣∣x2 − x4

∣∣∣ = x(1+ x) · x(1− x) = p(x) · x(1− x) = p(x) · d(x, T (x)).

Note that supx∈X p(x) = 0.96 < 1. Also, A = {0} is the only closed subset of X
such that T (A) = A and A is singleton. Moreover, δ(T n(X)) → 0 as n →∞. Thus,
T is a strong p-contraction. However, one can easily check that T is not a Banach
contraction. To see this, let us consider x = 0.5 and y = 0.6 in (5.16).

The following example shows that a p-contraction mapping need not be continuous.

Example 5.22 Let X be a circumference:

X = {(x, y) : x = cos t, y = sin t, 0 � t � 2π}

equipped with usual metric d. Let T : X → X be a mapping defined by T (t) = 1
2 t , if

t ∈ [0, π
2 )
⋃

(π, 2π ], T (t) = t − π
2 , if t ∈ [π2 , π ]. Let p : X → [0, 1] be a function

defined by p(t) = 1
2 , if t ∈ [0, π

2 )
⋃

(π, 2π ], p(t) = |t− π
2 |

π
, if t ∈ [π2 , π ]. Note that

T and p both are discontinuous at t = π
2 . Also, supt∈[0,2π] p(t) = 1

2 . Further, we can
easily check that T is a p-contraction on X .
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Remark 5.11 It is interesting to note that a p-contraction, in general, does not sat-
isfy Caristi’s condition (5.13) but every fundamental contraction does. However,
if p(T x) � p(x) for all x ∈ X , then a p-contraction T : X → X satisfies Caristi’s
condition.

Let X be a nonempty set. We shall denote by 2X the family of all nonempty subsets
of X . Suppose f : X → 2X is a set-valued mapping, then a point x0 ∈ X is said to
be an end point of f if x0 is fixed point of f and f (x0) = {x0}. Let R+ and N denote
[0,∞) and the set of all natural numbers, respectively, throughout this section.

Tarafdar and Yuan [587] introduced the following definition of set-valued topo-
logical contraction.

Definition 5.9 Let X be a topological space. Then f : X → 2X is said to be a (set-
valued) topological contraction if f is upper semicontinuous with closed values such
that for each nonempty closed subset A of X with f (A) = A, A is a singleton set;
i.e. A is an endpoint of f .

In [587], the following theorem was proved.

Theorem 5.19 Let X be a compact Hausdorff topological space and f : X → 2X

be (set-valued) topological contraction with closed values. Then f has a unique
endpoint x0 ∈ X such that {x0} =⋂∞

n=0 f n(X), where f n(x) := f ( f n−1(X)) for
each n ∈ N and f 0(X) :≡ X.

Definition 5.10 (Ćirić [143]) A metric space (X, d) is said to be T -orbitally com-
plete if T is a self-mapping of X and if any Cauchy subsequence {T ni x} in orbit
O(x, T ), x ∈ X, converges in X .

Definition 5.11 (Ćirić [143]) An operator T : X → X on X is said to be orbitally
continuous if T ni x → u then T (T ni x) → T u as i →∞.

Definition 5.12 (Ćirić [143]) An operator T : X → X on X is said to be weakly
orbitally continuous if T ni x → u then d(T ni x, T (T ni x)) → d(u, T u) as i →∞.

It is obvious that a complete metric space is orbitally complete with respect to any
self-mapping of X , and that a continuous mapping is always orbitally continuous
and an orbitally continuous mapping is always weakly orbitally continuous, but the
converse implications need not be true. To see this, one may observe the following
simple example that a discontinuous mapping T : X → X on a noncomplete metric
space X can be orbitally continuous and that X can be T -orbitally complete.

Example 5.23 Let X be the set of all negative reals and all nonnegative rationals
with the discrete metric. Define T : X → X as follows:

T x =
⎧⎨
⎩

x
3 , if x is nonzero rational
1, if x = 0
x
4 , if x is irrational.
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In 2008, Pathak and Shahzad [464] proved the following generalized contraction
principle.

Theorem 5.20 (Pathak and Shahzad [464]) Let (X,Td) be a topologically complete
space endowed with metric topology Td , and let T : X → X be a strong topological
contraction mapping. Then T has precisely one fixed point w in X such that {w} =⋂∞

n=0 T n(X), where T n(X) := T (T n−1(X)) for each n ∈ N and T 0(X) := X.

Proof LetF be the family of all nonempty closed subsets F of X such that T (F) ⊂ F .
Since T is a strong contraction, it follows that δ(T n(F)) → 0 as n →∞. Clearly, F
is nonempty as X ∈ F. Partially order F partially by set inclusion relation. Let C be a
chain in F. Then M :=⋂

F∈C F is a lower bound of C as T (M) ⊂ M , M is a closed
set in X and M �= ∅ by the Cantor’s intersection theorem. By Zorn’s lemma, there
is a minimal element U ∈ F. Now we claim that T (U ) = U . If not, then S := T (U )

is a proper subset of U . As T is closed mapping so that S is also closed. Hence,
T (S) ⊂ T (U ) = S, which contradicts the minimality of U . Therefore, T (U ) = U .
Since T is a strong topological contraction mapping, we must have U = {w} for
some w ∈ X and T (w) = w. Thus, T has precisely one fixed point.

For each n ∈ N, let An := T n(X) and A0 := X . Then the sequence {An :=
T n(X)}∞n=0 is closed and decreasing by virtue of T (X) ⊂ X and the fact that T is
a closed mapping. Therefore, Ŝ =⋂∞

n=0 An �= ∅. Now we claim that T (Ŝ) = Ŝ;
i.e. T (

⋂∞
n=0 T n(X)) =⋂∞

n=0 T n(X). Further, it is obvious that T (Ŝ) ⊂ Ŝ. We
shall now prove the converse. Take any x ∈ Ŝ and Bn := T−1(x)

⋂
An for each

n ∈ N, where B0 := X and T−1(x) := {y ∈ X : x = T (y)}. Then Bn �= ∅. Indeed,
since x ∈⋂∞

n=0 An ⊂ T n+1(X), there exists z ∈ An such that x = T (z), so that
z ∈ T−1(x)

⋂
An . Since T is continuous and a closed mapping, the graph of T

is closed [337, Theorem 7.3.8]. Hence, T−1(x) is closed in X and Bn is closed due
to closedness of X . Therefore, the decreasing sequence {Bn}∞n=0 has nonempty inter-
section; i.e.

⋂∞
n=0 Bn �= ∅. Let z ∈⋂∞

n=0 Bn; i.e. z ∈ T−1(x)
⋂

(
⋂∞

n=0 An), so that
z ∈ T−1(x). Then it follows that x = T (z) ∈ T (

⋂∞
n=0 Bn). Therefore, Ŝ ⊂ T (Ŝ) and

we have T (Ŝ) = Ŝ; i.e.

T

( ∞⋂
n=0

T n(X)

)
=

∞⋂
n=0

T n(X).

Since T is a strong topological contraction, we must have S = {w} which is the
unique fixed point of T . �
Remark 5.12 The first part of the proof in Theorem 5.20 shows the existence of fixed
points for T by using Zorn’s lemma, and the second part of the proof in Theorem
5.20 also shows that we can prove the existence of fixed points for T without Zorn’s
lemma.

Theorem 5.21 (Pathak and Shahzad [464]) Let (X, d) be a metric space, and let
T : X → X be a strongly p-contraction mapping. Suppose T is orbitally complete,
then T has a unique fixed point.
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Proof Let x be an arbitrary point of X . Construct an iterative sequence {xn}∞n=0
defined by x0 = x, xn = T (xn−1) for n ∈ N. Now using (5.17), we observe that
d(x1, x2) � p(x0)d(x0, x1), d(x2, x3) � p(x1)d(x1, x2), i.e.d(x2, x3) � p(x0)p(x1)

d(x0, x1). Continuing this process, we obtain

d(xn, xn+1) �
n∏

i=1

pi d(x0, x1) (5.18)

where pi = p(xi−1)= p(T i−1(x0)), i ∈ N. Since max{p(x0), supx∈X p(T x)} � λ <

1, it follows from (5.18) that

d(xn, xn+1) � λn d(x0, x1) ∀ n ∈ N. (5.19)

For m > n(m, n ∈ N), we have

d(xm, xn) � d(xn, xn+1)+ d(xn+1, xn+2)+ · · · + d(xm−1, xm)

� [λn + λn+1 + · · · + λm−n] d(x0, x1)

� [λn + λn+1 + · · · ] d(x0, x1)

<
λn

1− λ
d(x0, x1).

It follows that the sequence {xn}∞n=0 is a Cauchy sequence in X . Since X is T -
orbitally complete, it follows that there exists a Cauchy subsequence {T ni (x)} of
{xn} in orbit 0(x, T x), x ∈ X, which converges to a point z in X . We now show that
z is, indeed, fixed point of T . To effect this, suppose that z �= T (z). Since T is a
p-contraction, it follows that

d(T (xni ), T 2(xni )) � p(xni )d(xni , T (xni )) � sup
x∈X

p(T x)d(xni , T (xni )).

Now taking limit superior, we get

d(z, T (z)) = lim sup
i→∞

d(T (xni ), T 2(xni )) � sup
x∈X

p(T x) lim sup
i→∞

d(xni , T (xni ))

= sup
x∈X

p(T x)d(z, T (z)) < d(z, T (z)),

a contradiction. Thus, z is a fixed point of T . Note that so far we have not used the
strongly p-contractiveness of T in its full generality as in Theorem 5.20 instead we
have used only p-contractiveness of T . Now we shall use the strongly p-contraction
of T in its full strength to prove the existence of uniqueness of fixed point of T . To
this end, we see that

⋂∞
n=0 T n(X) is a singleton set, say {w}, for some w in X , then

since limi→∞ T (T ni x) = z for any arbitrary x in X , it follows that z = w. Thus, T
has precisely one fixed point. �
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If T is a p-contraction with supx∈Y p(T x) = λ < 1 replaced by supx∈Y p(x) =
λ < 1, then we have

Corollary 5.6 Let (X, d) be a metric space, and let T : X → X be a strongly p-
contraction mapping with supx∈Y p(x) = λ < 1. Suppose T is orbitally complete.
Then T has a unique fixed point.

Remark 5.13 We observe that Corollary 5.6 (without uniqueness) follows from the
following Theorem A on setting φ(x) = (1− supx∈X p(x))−1d(x, T x).

Theorem A (see Bollenbacher and Hicks [63]). Suppose that T : X → X and φ :
X → [0,∞) where X is a metric space. If there exists an x ∈ X such that X is
T -orbitally complete at x and

d(y, T y) � φ(y)− φ(T y) for all y ∈ O(x, T )

then the following hold:
(a) lim T n x = x̂ exists;
(b) T x̂ = x̂ if and only if f (x) = d(x, T x) is T -orbitally lower semicontinuous at x
(i.e. if {xn} ⊂ O(x, T ) and lim xn = x̂ imply that f (x̂) � lim inf f (xn)).

The following result was obtained in [271]
Corollary B. Suppose that X is a complete metric space and that 0 < k < 1. If
T : X → X and there exists an x ∈ X such that

d(T y, T 2 y) � k d(y, T y) for all y ∈ O(x, T ),

then the following hold:
(a) lim

n→∞ T n x = x̂ exists;

(b) T x̂ = x̂ if and only if f (x) = d(x, T x) is T -orbitally lower semicontinuous at
x (i.e. if {xn} ⊂ O(x, T ) and lim xn = x̂ imply that f (x̂) � lim infn→∞ f (xn)).

We now illustrate that the set of fixed point of T is, indeed, nonempty in a complete
metric space.

Example 5.24 Let X = [1, 4] equipped with usual metric d. Let T : X → X be a

mapping defined by T (x) = 1
2

(
x + 1

x

)
∀x ∈ X. Let p : X → [0, 1] be a function

defined by p(x) = 1
4 (x − 1

x ) ∀x ∈ X. Then for all x in X , we have

d(T (x), T 2(x)) =
∣∣∣1
2

(
x + 1

x

)
−
(1

4

(
x + 1

x

)
+ 1

x + 1
x

)∣∣∣

=
∣∣∣1
4

(
x + 1

x

)
− 1

x + 1
x

∣∣∣ = 1

4

∣∣∣ (x + 1
x )2 − 4

x + 1
x

∣∣∣

� 1

8

∣∣∣
(

x + 1

x

)2 − 4
∣∣∣ = 1

8

(
x − 1

x

)2

= 1

4

(
x − 1

x

)
· 1

2

(
x − 1

x

)
= p(x) · d(x, T (x)).
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We observe that the iterative sequence {xn} initialized at any point x0 has a Cauchy
subsequence {xni } in orbit 0(x, T x), x0 ∈ X, converges to a point 1 in X . Clearly,
supx∈X p(x) = 15

16 < 1. Further, we see that
⋂∞

n=0 T n(X) = {1}. Thus all the condi-
tions of Theorem 5.20 are satisfied and 1 is the unique fixed point of T .

Remark 5.14 We cannot relax the condition supx∈X p(T x) = λ < 1 in Theorem
5.20. To see this, we observe the following simple example.

Example 5.25 Let X = [0,∞) equipped with usual metric d. Let T : X → X be a
mapping defined by T (x) = 2 for x ∈ [0, 1] and T (x) = x + 1

x for x ∈ (1,∞).

Let p : X → [0, 1] be a function defined by p(x) = 1
2 if x ∈ [0, 1] and p(x) = x2

x2+1
if x ∈ (1,∞). For x ∈ [0, 1] we have

d(T (x), T 2(x)) = 1

2
� 1

2
· |x − 2| = p(x) · d(x, T (x))

where p(x) = 1
2 , and for x in (1,∞) we have

d(T (x), T 2(x)) =
∣∣∣
(

x + 1

x

)
−
((

x + 1

x

)
+ 1

x + 1
x

)∣∣∣

= 1

x + 1
x

= x2

x2 + 1
· 1

x
= p(x) · d(x, T (x))

where p(x) = x2

x2+1 . Thus, supx∈X p(x) = 1. Hence, the rate of contractivity p does
not satisfy the requirement of p-contraction. As a consequence, one may see that
there exists no x in (1,∞) such that x + 1

x = x .

Note that even if p : X → [0, 1] is a continuous mapping in a complete metric
space X , we cannot relax the condition supx∈X p(T x) = λ < 1 in Theorem 5.20. To
see this, we observe the following simple example.

Example 5.26 Let X = R be equipped with discrete/usual metric d. Define T : X →
X by T (x) = x + 1 and p(x) = 1 ∀ x ∈ X, then we have

d(T (x), T 2(x)) = d(x, T (x)) ∀ x ∈ X.

Thus, all the conditions of Theorem 5.20 except supx∈X p(x) = λ < 1 are satisfied.
Clearly T has no fixed point in the complete metric space R.

We also note that a fundamentally p-contraction mapping need not be continuous,
even at a point z to which all sequences{T n x}, x ∈ X, converge. To see this, we
observe the following simple example.

Example 5.27 Let X = [−1, 1] equipped with usual metric d. Let T : X → X be a
mapping defined by T (x) = 2x

3 for x ≥ 0; T (x) = 1 f or x < 0. Let p : X → [0, 1]
be a function defined by p(x) = 2

3 ∀x ∈ X. Clearly, the mapping T is a fundamentally
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p-contraction which has a unique fixed point x = 0 and is T -orbitally continuous.
Note that x = 0 is the point of discontinuity of T .

The p-contraction principle has a very useful local version that involves an open
ball B in a metric space X and a nonself-p-contraction mapping T : B → X of B
into X which does not displace the center of the ball too.

Corollary 5.7 Let (X, d) be a metric space, x0 a point in X, B = B(x0, r) =
{x | d(x, x0) < r} and let T : B → X be a p-contraction mapping. Let q : {x0} ×
B → [0, 1] be a function such that supx∈B q(x0, x) = β < 1 and d(T (x), T (x0)) �
q(x0, x) d(x0, x) ∀x ∈ B. Suppose B is T -orbitally complete and T is orbitally
continuous. If d(T (x0), x0) < (1− β)r, then T has a fixed point in B. Further, if⋂∞

n=0 T n(B) is a singleton set, where T n(B) := T (T n−1(B)) for each n ∈ N and
T 0(B) := B, then T has a unique fixed point.

Proof Choose ε < r so that d(T (x0), x0) � (1− β)ε < (1− β)r. We note that T
maps the closed ball B = {x |d(x, x0) � ε} into itself; for if x ∈ B, then

d(T (x), x0) � d(T (x), T (x0))+ d(T (x0), x0)

� q(x0, x) d(x0, x)+ (1− β)ε

� sup
x∈B

q(x0, x) · d(x0, x)+ (1− β)ε

� β ε + (1− β)ε = ε.

Therefore, T is a p-contraction mapping from B into itself. Since B is T -orbitally
complete and T is orbitally continuous, it follows from p-contraction that there exists
a z in B such that z = T z. Now using the same arguments as in Theorem 5.20, the
uniqueness of z follows. �

Now we shall show how Theorem 5.20 can be applied for investigation of solv-
ability of an integral equation of the form

y(x) = λ

∫ x

a
K [x, t, y(t)]dt + f (x) (5.20)

by successive approximation, where λ is an arbitrary parameter, f (x) is a given con-
tinuous function on [a, b], K (x, t, s) is continuous for x ∈ [a, b], y(x) is unknown
continuous function on [a, b] and satisfies the following generalized Lipschtzian
condition

(i) |K (x, t, s2)− K (x, t, s1)| � L · |s2 − s1|1+δ, δ ≥ 0,

where L is a constant. Note that when K [x, t, y(t)] = K1(x, t) · y(x), the above
equation becomes an integral equation of Volterra type.

Define an operator T : C[a, b] → C[a, b] of a space of continuous functions on
[a, b] into itself as follows:



270 5 Fixed Point Theorems

T [y(x)] = λ

∫ x

a
K [x, t, y(t)]dt + f (x) (5.21)

which satisfies the following condition:
(i i)

⋂∞
n=0 T n(C[a, b]) is a singleton set, where T n(C[a, b]) := T (T n−1(C[a, b]))

for each n ∈ N and T 0(C[a, b]) := C[a, b].
For y ∈ C[a, b] we obtain

d(T (y), T 2(y)) = max
x∈[a,b] |T [y(x)] − T [T (y(x))]|

� |λ| · L · (x − a). max
x∈[a,b] |y(x)− T (y(x))|δ max

x∈[a,b] |y(x)− T (y(x))|

= |λ| · L · (x − a). max
x∈[a,b] |y(x)− T (y(x))|δ · d(y, T (y)).

Hence, for |λ|< 1
L·(b−a).supy∈C[a,b]maxx∈[a,b]|y(x)−T (y(x))|δ , the mapping T is a p-contraction

and by Theorem 5.20 the equation T [y(x)] = y(x); i.e. the Eq. (5.20) has a solution,
say, w in C[a, b]. Now using (i i), the uniqueness of w follows.

5.1.7 p-Contraction Mappings on Compacta and Localized
Meir–Keeler-Type Theorem

Recall that a mapping T : (X, d) → (X, d) is d-continuous if F : X → R defined
by F(x) = d(x, T x) is continuous on X . For p-contraction mappings on compact
metric space, we prove the following result:

Theorem 5.22 (Pathak and Shahzad [464]) Let T be a d-continuous p-contraction
mapping with supx∈X p(x) < 1 on a compact metric space (X, d). Then T has a fixed
point z in X. Further, if

⋂∞
n=0 T n(X) is a singleton set, where T n(X) := T (T n−1(X))

for each n ∈ N and T 0(X) := X, then T has a unique fixed point.

Proof Define a function F : X → R+ by

F(x) = d(x, T (x)).

Since T is d-continuous, it follows that F is continuous. So, as X is compact, ∃ a
point z ∈ X such that

F(z) = d(z, T (z)) = min
x∈X

{d(x, T (x))}.

Assume that z �= T (z), then we have

FT (z) = d(T (z), T 2(z)) = p(z) d(z, T (z)) � sup
x∈X

p(x) d(z, T (z)) < d(z, T (z)) = F(z),
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a contradiction. Hence, z is a fixed point of T . The uniqueness of z follows as in
Theorem 5.20. �

To justify the above result, one may consider Example 5.20 again; then we see
that F(x) = d(x, T (x)) attains its minimum at x = 1 in X . Clearly, T has a unique
fixed point 1 in X .

We shall denote
A. M(x, y) = max{d(x, y), d(x, T x), d(y, T y), 1

2 [d(x, T y)+ d(y, T x)]}; and
A′. m(x, T (x)) = max{d(x, T (x)), 1

2 d(x, T 2(x))}.
Let φ : R+ → R+ be a nondecreasing function such that 0 < φ(t) < t for all t ∈
R+ − {0}.

In [290], Jachymski proved the following:
Theorem C . Let T be a self-mapping of a metric space (X, d). If T satisfies condi-
tions: (B) for any ε > 0 there exists a δ > 0 such that, for any x, y ∈ X ,

ε < M(x, y) < ε + δ ⇒ d(T x, T y) � ε; and

(C) d(T x, T y) < M(x, y), for any x, y ∈ X with M(x, y) > 0.

Then, for any x ∈ X, the sequence {Tn x} is Cauchy. Hence, if (X, d) is complete
and T is continuous, then T has a unique fixed point z and T n x → z, for any x ∈ X.

In 2008, Pathak and Shahzad [464] give some new localized Meir–Keeler-type
conditions ensuring convergence of the successive approximations. In fact, they
dropped the continuity requirements of the mapping T in Theorem C by induction
of a certain function, which is not necessarily continuous, and modifying conditions
(B) and (C) appropriately. They also obtain some fixed point theorems based on an
asymptotic regularity condition which generalize previously known results.

Theorem 5.23 Let (X, d) be a metric space and T a self-mapping of X onto itself
such that for any x ∈ X

(i) d(T (x), T 2(x)) � φ(m(x, T (x))),

(ii) if d(T (x), T 2(x)) < φ(m(x, T (x))) then for any ε > 0 with ε � m(x, T (x))−
φ(m(x, T (x))), there exists a δ > 0 with δ < ε such that

m(x, T (x)) < ε + δ implies d(T (x), T 2(x)) � ε.

Suppose X is T -orbitally complete and T is weakly orbitally continuous. Then T
has a fixed point, say z in X. Further, if

⋂∞
n=0 T n(X) is a singleton set, where

T n(X) := T (T n−1(X)) for each n ∈ N and T 0(X) := X, then T has a unique fixed
point. Moreover, T is continuous at z if and only if for any sequence {xn} in X
converging to z, limn→∞ m(xn, T (xn)) = 0.

Proof Observe that (i i) implies

d(T (x), T 2(x)) � m(x, T (x))− φ(m(x, T (x))) (5.22)
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for x, y ∈ X with m(x, T (x)) > 0. Moreover, if m(x, T (x)) = 0, then T (x) =
T 2(x) for each x ∈ X ; that is, T (x) is a fixed point of T for each x in X . Let x0 be
an arbitrary point in X . Define xn+1 := T xn and dn := d(xn, xn+1) for n ∈ N. We
shall now show that dn → 0. We shall restrict to the case when dn > 0. Then it fol-
lows from (i i i) that dn+1 < m(xn, xn+1)− φ(m(xn, xn+1)); i.e. dn+1 < m(xn, xn+1).
Assume that dn+1 � dn; then

dn+1 < max{d(xn, xn+1),
1

2
d(xn, xn+2)}

� max{d(xn, xn+1),
1

2
[d(xn, xn+1)+ d(xn+1, xn+2)]}

� max{d(xn, xn+1), d(xn+1, xn+2)} = max{dn, dn+1} = dn+1,

a contradiction. Thus, dn+1 < dn , so {dn} converges to some d in R+. We now show
that d = 0. Suppose the contrary, that d > 0. Then there exists j in N such that

d < dn < d + δ for all n � j.

It follows from (5.22) that dn+1 � d, for all n � j , which contradicts the above
inequality. Thus, we get d = 0. Now fix an ε > 0 with ε < m(x, T (x))− φ(m(x,

T (x))) for any x ∈ X. By our hypothesis δ < ε. Since limn→∞ dn = 0, there exists
j in N such that dn < 1

2δ, for all n � j . We now apply induction to show that, for
any n ∈ N,

d(x j , x j+n) < ε + 1

2
δ. (5.23)

Clearly, (5.23) holds for n = 1. Assume that (B) holds for some n. We shall claim
that it holds for n + 1 as well. Using the triangle inequality, (5.23) and noting the
fact that dn < 1

2δ, for all n � j we have d(x j , x j+n+1) � d(x j , x j+n)+ d j+n < ε +
1
2δ + 1

2δ = ε + δ. This proves our claim. Observe that (5.23) implies that {xn} is
a Cauchy sequence. Since X is T -orbitally complete, there exists z ∈ X such that
limn→!∞ xn = z. Also, limn→∞ T (xn) = limn→∞ xn+1 = z. Now we shall show that
z = T z. Suppose, on the contrary, that z �= T z. Then using (i) and weak orbital
continuity of T , for sufficiently large values of n we have

d(xn+1, T (xn+1)) = d(T (xn), T 2(xn))

� φ
(

max
{
d(xn, T (xn)),

1

2
d(xn, T 2(xn)

})

� φ
(

max
{
d(xn, T (xn)),

1

2
[d(xn, T (xn))+ d(xn+1, T (xn+1))]}).

On letting n →∞ this yields d(z, T z) < φ(d(z, T z)) < d(z, T z), a contradic-
tion. Hence, z = T z. The uniqueness of z follows from the same arguments as were
applied in Theorem 5.20. For the second part of the theorem, let T be continu-
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ous at the fixed point z and {xn} a sequence in X converging to z. Then T (xn) →
T z= z, T 2(xn)= T (xn+1) → T z = z, d(xn, T (xn)) → 0, and d(xn, T 2(xn)) → 0.
Hence, we have

lim
n→∞m(xn, T (xn)) = 0. (5.24)

For the converse part, assume that {xn} is a sequence in X converging to z such
that (5.24) holds. Then d(xn, T (xn)) → 0 and d(T (xn), z) → 0 as n →∞. This
implies that T (xn) → z = T z; i.e. T is continuous at z. �

We now see in the following example that our Meir–Keeler-type (ε, δ) contraction
is localized in the sense that our choices of ε, δ are localized; i.e. ε = ε(x) and
δ = δ(x, ε).

Example 5.28 Let X = [0, 4], equipped with usual metric d. Define T : X → X by

T x = 1

4
if x � 1, T x = 0 if x > 1.

d(T (x), T 2(x)) = 0 and 0 � m(x, T (x)) � 3

4
when x � 1,

d(T (x), T 2(x)) = 1

4
and 1 < m(x, T (x)) � 4 when x > 1.

Hence, T satisfies the contractive condition (i) with φ(t) = t/4 for t > 1 and
φ(t) = t/3 for t � 1. Also, T satisfies the contractive condition (i i). To this end, we
observe that:

(1) When x � 1, then ε � m(x, T x)− φ(m(x, T x)) = m(x, T x)− 1
3 m(x, T x) =

2
3 m(x, T x) so we may choose δ in the interval 1

3 m(x, T x) < δ < 2
3 m(x, T x)

for ε = 2
3 m(x, T x).

(2) When x > 1, then ε � m(x, T x)− φ(m(x, T x)) = m(x, T x)− 1
4 m(x, T x) =

3
4 m(x, T x) so we may choose δ in the interval 1

4 m(x, T x) < δ < 3
4 m(x, T x)

for ε = 3
4 m(x, T x). However, φ(t) is neither upper semicontinuous at t = 1

nor nondecreasing in R+ − {0}. Moreover, δ(ε) is not lower semicontinuous at
ε = 1. It may also be observed that limn→∞ m(xn, T (xn)) = 0 for any sequence
{xn} converging to 1

4 and that T is continuous at the fixed point 1
4 .

Remark 5.15 (1) It follows from the second part of Theorem 5.23 that T is discon-
tinuous at the fixed point z if and only if for any sequence {xn} in X converging to z,
limn→∞ m(xn, T (xn)) �= 0.

(2) In contrast to the Meir–Keeler-type (ε, δ) condition, our choices of ε, δ are
localized; i.e. ε = ε(x) and δ = δ(x, ε).

(3) The condition δ < ε in our Theorem 5.23 cannot be dispensed with. To see
this, we illustrate this fact in Example 5.29 given below.

It is well known that a Meir–Keeler-type (ε, δ) condition is not sufficient to ensure
the existence of a fixed point of a contractive-type mapping. To show it, we consider
the following example.
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Example 5.29 Let X = [0, 2] and d be the usual metric on X . Define T : X → X
by

T x = 1+ x2 if x < 1, T x = 0 if x � 1.

Then T satisfies the contractive condition

ε < m(x, y) < ε + δ implies d(T x, T y) < ε

with δ(ε) = 1 for ε � 1 and δ(ε) = 1− ε when ε < 1 but T does not have a fixed
point. Observe that the above contractive condition is slightly stronger than the con-
tractive condition (i i) of Theorem 5.23, but weaker than the joint conditions (i) and
(i i) of the same theorem. To see this, we observe that:

For x < 1, we have m(x, T (x)) = 1
2 |x − 1| and d(T (x), T 2(x)) = 1

4 |x − 1|.
Define φ(t) = t/2; then for any given ε > 0 with ε � m(x, T (x))− φ(m(x, T (x))),
we see that the contraction condition

ε < m(x, T (x)) < ε + δ implies d(T (x), T 2(x)) � ε

is satisfied for some δ > ε.

Corollary 5.8 Let T be a self-mapping of a metric space (X, d) such that:

(i) d(T (x), T 2(x)) � φ(d(x, T (x))) for all x ∈ X,

(ii) if d(T (x), T 2(x)) < φ(d(x, T (x))) then for any ε > 0 with ε � d(x, T (x))−
φ(d(x, T (x))), there exists a δ > 0 with δ < ε such that

d(x, T (x)) < ε + δ implies d(T (x), T 2(x)) � ε.

Suppose X is T -orbitally complete and T is weakly orbitally continuous. Then T
has a fixed point, say z in X. Further, if

⋂∞
n=0 T n(X) is a singleton set, where

T n(X) := T (T n−1(X)) for each n ∈ N and T 0(X) := X, then T has a unique fixed
point. Moreover, if T is continuous then for any sequence {xn} in X converging to
z, limn→∞ d(xn, T (xn)) = 0.

Proof The first part can be immediately extracted from Theorem 5.23, simply by
replacing m(x, T (x)) with d(x, T (x)) in (∗) and the rest of the proof. For the second
part, we observe that T is continuous and so it follows that limn→∞ d(xn, T (xn)) = 0.

This completes the proof. �
Remark 5.16 Our Corollary 5.8 unifies Boyd and Wong’s theorem [75] and Theorem
1.2 of Matkowski [390]. It may be observed that in both cases φ has, among others,
the following properties:

φ(t) < t and lim
n→∞φn(t) = 0, for any t > 0.

Matkowski and Mis [391] observe that these conditions are not sufficient for the
existence of a fixed point. However, the existence of a fixed point can be guaranteed
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if some additional conditions are assumed for φ; e.g. φ is right upper semicontinuous
[75] or nondecreasing [390]. Furthermore, our condition (φ) seems weaker than the
corresponding condition of Jachymski [290] because our choices of ε, δ are localized;
i.e. ε = ε(x) and δ = δ(x, ε).

5.2 Nonexpansive Mappings

Nonexpansive maps appear for the first time in the work of Kolmogoroff [339],
where they were used in the axiomatic treatment of measure theory. Pontrjagin and
Schnirelmann [490] used the notion in dimension theory and established the fol-
lowing result: if X is a compact metric space and dim X ≥ r, then there exists a
nonexpansive map ϕ : X → Rr such that dim ϕ(X) = r . In 1965, the first fixed
point theorems of a general nature for nonlinear nonexpansive mappings in noncom-
pact settings were proved by Browder [96] and Göhde [251] independently. They
proved that a nonexpansive self-mapping of a bounded, closed and convex subset
K of a uniformly convex Banach space X has a fixed point. Later on, Kirk [326,
327] proved the same result under slightly weaker assumptions that the space X is
reflexive and K is a bounded, closed and convex subset of X which has “normal
structure”. Other recent works include papers of Browder [101, 103], dealing with
the relationship of nonexpansive mappings to the theory of monotone operators in
Hilbert space and, in more general setting to the theory of J−monotone operators
and accretive operators. Theorems for approximating fixed points using interactive
techniques for general nonexpansive mappings are given by Browder and Petryshyn
[120, 121]. Senter and Dotson, Jr. [551]. Weak convergence of successive approxi-
mations is dealt by Opial [436]. The generalizations of nonexpansive mappings have
been dealt with by Kannan [310], Wong [608], Goebel, Kirk and Shimmi [248].

In this section, we discuss the results of Browder and Kirk. Also we shall briefly
deal with the works of Senter and Dotson, Jr. [551], Dotson, Jr. [197] and Goebel,
Kirk and Shimmi [248]. We also discuss the iteration schemes for nonexpansive
mappings due to Reich [512].

Definition 5.13 Let X be a Banach space, K a closed, bounded and convex subset
of X . Let T : K → K be a mapping. Then T is said to be nonexpansive if for each
pair of elements x and y of K we have

‖T x − T y‖ � ‖x − y‖.

Example 5.30 If H is a Hilbert space, then the retraction mapping Rr is nonexpan-
sive.

The following example (Sadovski [536]) shows that nonexpansive mapping may fail
to have fixed points in general Banach space. This implies that we have to impose
some restriction on the mapping or on the space to obtain fixed points.
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Example 5.31 Let B be the unit ball of the sequence space c0 (the Banach space
of all sequences converging to zero with norm ‖x‖ = sup

i
|xi |). Then B is a closed,

convex and bounded set in c0. Put

T x = T (x1, x2, . . .) = (1, x1, x2, . . .).

Then ‖T x − T y‖ = ‖x − y‖. Notice that the equation T x = x is satisfied only if
x = (1, 1, 1, . . .) which is not in c0.

Example 5.32 Consider the translation mapping T : X → X defined by T x = x +
a where a �= 0 is a given element in the Banach space X . This is a nonexpansive and
fixed point free mapping. This shows that a nonexpansive mapping of a Banach space
into itself need not have a fixed point. Also by considering the identity mapping, we
conclude that the fixed point of a nonexpansive mapping need not be unique.

5.2.1 Fixed Point Theorems for Nonexpansive Mappings

Theorem 5.24 Let X be a Banach space and let K be a closed, convex and bounded
subset of X. If T : K → K is nonexpansive and (I − T )(K ) is a closed subset of
X, then T has a fixed point in K .

Proof We assume without loss of generality that 0 ∈ K and that K is contained in a
ball of radius r centerd at 0, so that ||T x || � r for all x ∈ K . Let tn < 1 be a sequence
of positive numbers tending to 1. Consider the mapping Tn x = tnT x . Let xn ∈ K be
the fixed point of the contraction mapping Tn. We have

‖T xn − xn‖ = ‖T xn − tnT xn‖ = (1− tn)‖T xn‖ � (1− tn)r.

Thus, ‖T xn − xn‖ → 0 as tn → 1. Hence, 0 ∈ (I − T )(K ) and u = T u for some
u ∈ K . This completes the proof. �

In 1965, Browder [106] (for further reference, see also Browder- Petryshyn [121]))
proved the following result:

Theorem 5.25 Let H be a Hilbert space and K be a closed, bounded and convex
subset of H. If F : K → K is a nonexpansive mapping then F has a fixed point.

Proof It can be shown that I − F is a restriction of a monotone operator I − F R
where R is the retraction of H onto K . Further we claim that for any continuous
monotone operator T on H, T (K ) is closed. Combining these two results, we con-
clude that (I − F)(K ) is closed. Then the assertion of the theorem follows from
Theorem 5.24 above (refer to Smart [571]). �

In 1965, Browder [106] and Göhde [251] (independently) generalized the above
result to uniformly convex Banach spaces. Indeed, they proved the following result:
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Theorem 5.26 Let X be a uniformly convex Banach space, F is a nonexpansive
mapping of the bounded, closed and convex subset K of X into K . Then F has a
fixed point.

Proof Let K be a closed, bounded and convex subset of a uniformly convex
Banach space X , F : K → K a nonexpansive mapping, and let F be a family
of nonempty, closed and convex subsets of K which are invariant under F, i.e.
F(Kα) ⊂ Kα, for Kα ∈ F. F is nonempty since K is an element of F.

Let us order the set F by defining K1 � K2 if K1 ⊆ K2,F becomes a partially
ordered set which is inductive since the intersection of the elements Kα of a linearly
ordered subfamily of F is also a closed and convex subset of K . This subset is
invariant under F and is nonempty, since all the sets Kα are weakly compact subsets
of the reflexive Banach space X . Hence, F has a minimal element K0. Also K0 is the
convex closure of F(K0) since if K1 is the convex closure, K1 is a closed and convex
subset of K0 which is nonempty and invariant under F and by the minimality of K0

in F, we have K0 = K1.

We will be through if we can show that K0 has exactly one element. Since K0

is nonempty, it suffices to show that K0 does not contain two distinct points in it.
Suppose it does and let r0 be the diameter of K0. Choose two points x1 and x2 in K0

such that ‖x1 − x2‖ ≥ r0
2 . Let x ∈ K0 be the midpoint of the segment joining x1 to x2

and then x − y is the midpoint of the segment joining x1 − y to x2 − y, y ∈ K0 and
‖x1 − y‖ and ‖x2 − y‖ are both < r0. By the uniform convexity of the space X , there
exists a constant s > 0 such that ‖x − y‖ � (1− s)r0 < r0. Let r1 = (1− s)r0 < r0

and let K2 = ∩y∈K0{u : u ∈ K0, ‖u − y‖ � r1}. K2 is a nonempty, closed and convex
subset of K0 since it is the intersection of closed and convex sets, and x lies in K2.
K2 is a proper subset of K0 since r1 is less than the diameter of K0. Finally, K2 is
invariant under F . Indeed, suppose u ∈ K2, y ∈ K0. For any ε > 0, we can find a
convex linear combination Fz j , z j ∈ K0, such that

∥∥∥y −
k∑

j=1

λ j Fz j

∥∥∥ < ε
(

0 � λ j � 1,

k∑
j=1

λ j = 1
)
.

Thus

‖Fu − y‖ �
∥∥∥Fu −

k∑
j=1

λ j Fz j

∥∥∥+ ε �
k∑

j=1

λ j‖Fu − Fz j‖ + ε,

while ‖Fu − Fz j‖ � ‖u − z j‖ � r1, since F is nonexpansive and u lies in K2. But
K0 is a minimal element of F. So we have reached a contradiction to the assumption
that K0 has at least two points. Hence, K0 = {x0} and Fx0 = x0. �

Remark 5.17 If K is compact or F is compact, Theorem 5.24 is a consequence of
Schauder fixed point theorem (see the next section), while if F is weakly continuous,
it is a special case of the Tychonoff fixed point theorem, since in a reflexive Banach
space, every bounded, closed and convex set K is weakly compact.
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We now state and prove a theorem due to Kirk [326] who used a characterization
of reflexivity due to Smulian [573] and a concept (normal structure) of Brodski and
Milman [82] to prove the fixed point theorem for mappings which do not increase
distances.

Smulian proved that a necessary and sufficient condition that a Banach space X be
reflexive is that: (P) Every bounded descending sequence (transfinite) of nonempty,
closed and convex subsets of X has a nonempty intersection.

Definition 5.14 Let X be a Banach space. For K ⊂ X, let δ(K ) denote the diameter
of K . Then

(i) A point x ∈ K is a diametral point of K if sup {‖x − y‖ : y ∈ K } = δ(K ).
(i i) A convex set K ⊂ X is said to have normal structure if for each bounded convex
subset H of K which contains more than one point, there is some point x ∈ H which
is not a diametral point of H , i.e. there exists x ∈ H such that

sup{‖x − y‖ : y ∈ H} < δ(H).

Theorem 5.27 Every compact convex set K in a Banach space has normal structure.

Proof Assume that K does not have normal structure. Without loss of generality,
we assume that diam K > 0. For any x1 ∈ K , there exists x2 ∈ K such that diam
K = ‖x1 − x2‖. Then 1

2 (x1 + x2) ∈ K as K is convex. Next we find x2 in K such
that

diam K =
∥∥∥∥x3 − x1 + x2

2

∥∥∥∥
and proceeding in this manner we obtain a sequence {xn} such that

diam K =
∥∥∥∥xn+1 − x1 + x2 + · · · + xn

n

∥∥∥∥ , n � 2.

Then

diam K � 1

n

n∑
i=1

‖xn+1 − xi‖ � diam K .

This implies that diam K = ‖xn+1 − xi‖, 1 � i � n.

Thus, the sequence {xn} has no convergent subsequences, and this contradicts the
compactness of K . �

Theorem 5.28 Every closed, convex and bounded subset K of a uniformly convex
Banach space X has normal structure.

Proof Without loss of generality, we assume that K is contained in the unit ball
{x : ‖x‖ � 1}. Let K1 be a closed and convex subset of K . Let x1 be any element in
K1 and ε = 1

2 . Take x2 ∈ K1 such that ‖x2 − x1‖ � diam K1
2 . Then for any x ∈ K1,

we have
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∥∥∥∥x − x1 + x2

2

∥∥∥∥ =
∥∥∥∥ x − x1

2
+ x − x2

2

∥∥∥∥
= √

{
2

[∥∥∥∥ x − x1

2

∥∥∥∥
2

+
∥∥∥∥ x − x2

2

∥∥∥∥
2
]
−
∥∥∥∥ x − x1

2
+ x − x2

2

∥∥∥∥
2
}

� √{
2

[
(diam K1)

2

2

]
− ‖x2 − x1‖2

4

}

= diam K1
√
⎛
⎝1−

(
diam K1

2 /diam K1

2

)2
⎞
⎠

= diam K1

⎡
⎣1−

⎛
⎝1−√

⎛
⎝1−

(
diam K1

2 /diam K1

2

)2
⎞
⎠
⎞
⎠
⎤
⎦

� diam K1

[
1− δX

(
diam K1

2

/
diam K1

)]

= diam K1

[
1− δX

(
1

2

)]
,

where δX (ε) is the modulus of convexity of X . This proves the assertion of the
theorem since δX (ε) > 0. �

In 1965, Kirk further generalized the result of Browder (see Theorem 5.25 above)
to all reflexive spaces with normal structure: those spaces such that all non-trivial
closed, bounded, convex sets C have a smaller radius than diameter of the space.

Theorem 5.29 Let K be a nonempty, bounded, closed and convex subset of a reflex-
ive Banach space X, and suppose that K has a normal structure. If F is a nonex-
pansive mapping of K into itself, then F has a fixed point.

The following two lemmas are crucial for the proof of Theorem 5.29. Let K denote
a nonempty, bounded, closed and convex subset of the Banach space X . Then define
rx (K ), r(K ) and K0 as follows:

rx (K ) = sup{‖x − y‖ : y ∈ K }
r(K ) = inf{rx (K ) : x ∈ K } and

K0 = {x ∈ K : rx(K ) = r(K )}.

Lemma 5.1 If X is reflexive, then K0 is nonempty and convex.

Proof Let K (x, n) = {
y ∈ K : ‖x − y‖ � r(K )+ 1

n

}
. It is easily seen that the sets

Cn = ∩x∈K K (x, n) form a decreasing sequence of nonempty, closed and convex
sets, and hence K0 = ∩∞n=1Cn is closed and convex, and by (P) is nonempty.

Lemma 5.2 Let K be a closed and convex subset of X which contains more than
one point. If K has normal structure, then δ(K0) < δ(K ).



280 5 Fixed Point Theorems

Proof By normal structure, K contains at least one nondiametral point x . Hence,
rx (K ) < δ(K ). If z and w are any two points of K0, then ‖z − w‖ � rx (K ) = r(K ).

Hence,

δ(K0) = sup{‖z − w‖ : w, z ∈ K0} � r(K ) � rx (K ) < δ(K ).

Proof of Theorem 5.29 Let F denote the collection of all nonempty, closed and
convex subsets of K each of which is mapped into itself by the mapping F . By
property (P) and Zorn’s lemma F has a minimal element which is denoted by K .

The proof is completed by showing that K consists of a single point. Suppose it
is not true.

Let x ∈ K0. Then ‖Fx − Fy‖ � ‖x − y‖ � r(K ) for all y ∈ K , and hence F(K )

is contained in the spherical ball U centerd at Fx with radius r(K ). Since F(K ∩
U ) ⊂ K ∩U , the minimality of K implies that K ⊂ U . Hence, Fx ∈ K0 and K0 is
mapped into itself by F . By Lemma 5.1, K0 ∈ F. If δ(K ) > 0, then by Lemma 5.2,
K0 is properly contained in K . Since this contradicts the minimality of K , δ(K ) = 0
and K consists of a single point. �

Corollary 5.9 If the condition that K be bounded is replaced by the requirement
that the sequence {Fn p} be bounded for some p ∈ K , then F has a fixed point.

Remark 5.18 Theorem 5.26 follows from the above theorem since a uniformly con-
vex Banach space is reflexive and K , being a closed, convex and bounded subset of
a uniformly convex Banach space, has a normal structure.

Theorem 5.29 can be restated as:
Let K be a nonempty, weakly compact, convex subset of a Banach space X and

suppose K has normal structure. Then every nonexpansive mapping F : K → K
has a fixed point.

Remark 5.19 The following example due to Kirk shows that in Theorem 5.3.6,
reflexivity of X cannot be dispensed with. To observe this, let us consider C[0, 1],
the space of continuous function on [0, 1]. C[0, 1] is not reflexive. Let

K = { f ∈ C[0, 1] : f (0) = 0, f (1) = 1, 0 � f (x) � 1}.

Notice that K is bounded, closed and convex. Define

F( f (x)) = x f (x).

Clearly, F maps K into itself and F is nonexpansive. But F has no fixed point.

Concerning Kirk’s theorem, there arises a natural question what further generaliza-
tions are possible? After five decades, it remains an open question as to whether or not
every reflexive Banach space (X, ‖ · ‖) has the fixed point property for nonexpansive
maps.

Very recently, in 2009, Benavides [48] proved the following intriguing result:
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Theorem 5.30 Given a reflexive Banach space(X, ‖ · ‖), there exists an equivalent
norm ‖ · ‖∼ on X such that (X, ‖ · ‖∼) has the fixed point property for nonexpansive
mappings.

Notice that Theorem 5.30 improves a theorem of van Dulst [208] for separable
reflexive Banach spaces.

In contrast to this result, the non-reflexive Banach space (�1, ‖ · ‖1), the space of
all absolutely summable sequences, with the absolute sum norm ‖ · ‖1, fails the fixed
point property for nonexpansive mappings. To see this, let

K :=
{
(tn)n∈N : each tn � 0 and

∞∑
n=1

tn = 1
}
.

This is a bounded, closed and convex subset of �1. Let T : K → K be the right
shift map on K; i.e.,

T (t1, t2, t3, · · · ) := (0, t1, t2, t3, · · · ).

Clearly, T is ‖ · ‖1-nonexpansive (being an isometry) and fixed point free on K .
In 2008, in another significant development, Lin [370] provided the first example

of a non-reflexive Banach space (X, ‖ · ‖) with the fixed point property for non-
expansive mappings. Lin verified this fact for (�1, ‖ · ‖1) with the equivalent norm
‖ · ‖∼ given by

‖ · ‖∼ = sup
k∈N

8k

1+ 8k

∞∑
n=k

|xn|, for all x = (xn)n∈N ∈ �1.

Notice that the Banach space (c0, ‖ · ‖∞) of real-valued sequences that converge to
zero, with the absolute supremum norm ‖ · ‖∞ is another nonreflexive Banach space
of great importance in Banach space theory. It also fails the fixed point property for
nonexpansive mappings. To see this, let us consider

K := {(tn)n∈N : each tn � 0; 1 = t1 � t2 � · · · � tn � tn+1 → 0, as n →∞}.

Let T : K → K be the natural right shift map given by

T (t1, t2, t3, · · · ) := (1, t1, t2, t3, · · · ).

Then T is a ‖ · ‖1-nonexpansive (isometric, actually) map with no fixed points in the
closed, bounded and convex set K .
We now discuss the theorems proved by Dotson, Jr. [197] concerning the existence
of fixed points of nonexpansive mappings on a certain class of nonconvex sets.
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Definition 5.15 Let K be a subset of a Banach space X , and let F = { fα}α∈K be a
family of functions from [0, 1] into K , having the property that for each α ∈ K we
have fα(1) = α. Such a family F is said to be contractive provided there exists a
function ϕ : (0, 1) → (0, 1) such that for all α and β in K and for all t in (0, 1), we
have

‖ fα(t)− fβ(t)‖ � ϕ(t)‖α − β‖,

such a family is said to be jointly continuous if t → t0 in [0, 1] and α → α0 in K
then fα(t) → fα0(t0) in K .

Theorem 5.31 Let K be a compact subset of a Banach space X, and suppose there
exists a contractive, jointly continuous family of functions associated with K as
described in Definition 5.15. Then any nonexpansive mapping T of K into itself has
a fixed point in K .

Proof For each n = 1, 2, 3, . . ., let kn = n
n+1 , and define a self-mapping Tn : K →

K by
Tn(x) = fT x (kn) for all x ∈ K .

Since T (K ) ⊂ K and kn < 1, each Tn is a well-defined map from K into itself.
Moreover, for each n and for all x, y ∈ K we have

‖Tn x − Tn y‖ = ‖ fT x (kn)− fT y(kn)‖ � ϕ(kn)‖x − y‖.

So, for each n, Tn is a contraction mapping on K . As a compact subset of the Banach
space X, K is a complete metric space. Therefore, each Tn has a unique fixed point
xn ∈ K . Since K is compact, there exists a subsequence {xni } of {xn} such that
xni → u ∈ K . Since Tni xni = xni , we have Tni xni → u. By the continuity of T , we
have T xni → T u. Also by the joint continuity of the family, we have

Tni xni = fT xni
(kni ) → fT u(1) = T u.

This gives u = T u. �

Corollary 5.10 Let K be star-shaped (with p as star center) compact subset of a
Banach space X and let T be a nonexpansive mapping of K into itself. Then T has
a fixed point in K .

Proof A set K is said to be star-shaped or star convex with p as star center if all line
segments joining p to other points of K lie in K i.e. if

x ∈ K , αp + (1− α)x ∈ K , 0 � α � 1.

We are through if we can find a family described in Definition 5.15. Define fα(t) =
(1− t)p + tα so that
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Tn x = fT x (kn) = (1− kn)p + dnT x where kn = n

n + 1
.

It can be checked that ‖ fα(t)− fβ(t)‖ � t‖α − β‖.

So we can take φ(t) = t for 0 < t < 1. Also it is obvious that fα(t) is jointly
continuous in t and α. Now the result follows from the above theorem. �

Remark 5.20 Theorem 5.26 remains valid (Bose and Mukherjee [68]) if K is a
compact subset of a complete metric space X and if there is an associated family as
described in Definition 5.15.

Definition 5.16 A family F = { fα}α∈K of functions from [0, 1] into a set K will be
called jointly weakly continuous provided that if

t → t0 in [0, 1] and α → α0 in K ⇒ fα(t) ⇀ fα0(t0) in K .

Now we state a theorem due to Dotson Jr. without proof.

Theorem 5.32 Suppose K is a weakly compact subset of Banach space X,and sup-
pose there exists a contractive, jointly weakly continuous family F of functions asso-
ciated with K . Then any nonexpansive weakly continuous self-mapping F of K has
a fixed point in K .

We now briefly give some results concerning the approximation of fixed points
of some class of mappings.

Definition 5.17 Let X be a Banach space and let C be a convex subset of X . A
self-mapping T of C is said to be quasi-nonexpansive provided T has a fixed point
in C and if p ∈ C is a fixed point of T , then

‖T x − p‖ � ‖x − p‖ for all x ∈ C.

The class of nonexpansive mappings is strictly contained in this class as the following
example illustrates.

Example 5.33 Let f : R→ R be defined as

f (x) =
{

0 if x = 0

x sin 1
x if x �= 0.

Obviously x = 0 is the only fixed point of f . Moreover, f is quasi-nonexpansive as

| f (y)− 0| =
∣∣∣∣y sin

1

y

∣∣∣∣ � |y| = |y − 0|

But f is not nonexpansive. To see it, let x = 2
π

and y = 2
3π

. Then
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| f (x)− f (y)| = 8

3π
>

4

3π
= |x − y|.

Now we prove a theorem concerning the quasi-nonexpansive mapping due to
Petryshyn and Williamson [485, 486].

Theorem 5.33 Let C be a closed subset of a Banach space X and T : C → X
be a quasi-nonexpansive mapping. Suppose there exists a point x0 in C such that
xn = T n x0 ∈ C. Then the sequence {xn} converges to a fixed point of T in C if and
only if lim

n→∞ d(xn,F(T )) = 0 where F(T ) denotes the set of fixed points of T .

Proof The necessity of the condition is obvious. Suppose lim
n→∞ d(xn,F(T )) = 0. We

prove first that the sequence {xn} is Cauchy. Let ε > 0 and N be such that

d(xn,F(T )) � ε

2
for all n � N .

For m, n � N and any point p ∈ F(T ) we have

‖xn − xm‖ � ‖xn − p‖ + ‖p − xm‖ = ‖T n(x0)− p‖ + ‖T m(x0)− p‖
� 2‖T N (x0)− p‖ by quasi-nonexpansivity of T

� 2‖xN − p‖.

This implies that ‖xn − xm‖ � 2d(xN ,F(T )). This shows that {xn} is a Cauchy
sequence. Let {xn} converges to u in C . Then d(u,F(T )) = 0. Since F(T ) is closed
due to quasi-nonexpansiveness of T , we have u ∈ F(T ), i.e. u = T u. �

In a uniformly convex Banach space, Senter and Dotson, Jr. have given conditions
under which certain types of iterates (Mann type [384]) of a quasi-nonexpansive
mapping converge to a fixed point of the mapping.

Definition 5.18 A mapping T : C → C with nonempty fixed point set F(T ) in C
is said to satisfy

Condition I. If there is a nondecreasing function f : [0,∞] → [0,∞] with f (0) =
0, f (r) > 0 forr ∈ (0,∞) such that ‖x − T x‖ < f (d(x,F(T )) for all x ∈ C, where
D(x,F(T )) = inf{‖x − z‖ : z ∈ F(T )}. Similarly, the above mapping T is said to
satisfy
Condition II. If there is a real number α > 0 such that ‖x − T x‖ � αD(x,F(T ))

holds for all x ∈ C . It can be easily shown that a mapping which satisfies condition
II also satisfies condition I.

We now state a key theorem of Senter and Dotson, Jr. Let Z+ denote the set of
positive integers. Let x1 ∈ C and let M(x1, tn, T ) be a sequence {xn} defined by
xn+1 = (1− tn)xn + tnT (xn) where tn ∈ [β, γ ], 0 < β < γ < 1 and n ∈ Z+.

Theorem 5.34 Suppose X is a uniformly convex Banach space, C is a closed and
convex subset of X and T is a quasi-nonexpansive mapping of C into itself. If F
satisfies condition I, then for arbitrary x1 ∈ C, M(x1, tn, T ) converges to a member
of F(T ).
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Corollary 5.11 Suppose X is a uniformly convex Banach space, C is a closed,
convex and bounded subset of X and T is a nonexpansive mapping of C into itself.
If T satisfies condition I , then for arbitrary x1 ∈ C, M(x1, tn, T ) converges to a
member of F(T ).

Proof Notice that F(T ) is nonempty by Theorem 5.26. Let p be a fixed point of T .
Then

‖T x − p‖ = ‖T x − T p‖ � ‖x − p‖, x ∈ C.

Hence, T is quasi-nonexpansive. The result follows from the theorem.

A notion more general than the class of nonexpansive mappings, what we call
generalized nonexpansive mappings, has been considered by Bose and Mukherjee
[68] and Shimi [552] and many others. Approximation of fixed points of such
mappings has been studies by Bose and Mukherjee [68] and Shimi [552]. We state
below the theorem of Goebel, Kirk and Shimi and that of Bose and Mukherjee without
proof.

Theorem 5.35 Let X be a uniformly convex Banach space, C a nonempty, bounded,
closed and convex subset of X and T : C → C a continuous mapping such that

‖T x − T y‖ � a‖x − y‖ + b[‖x − T x‖ + ‖y − T y‖] + c[‖x − T y‖ + ‖y − T x‖]

for all x, y ∈ C where a + 2b + 2c � 1, a, c � 0 and b > 0. Then the sequence
{xn}, defined by xn+1 = (1− tn)xn + tnT xn, n = 1, 2, . . . where x1 ∈ C and tn ∈
[β, γ ], 0 < β < γ < 1 converges to a fixed point of T .

Remark 5.21 Browder [101] has generalized Theorem 5.26 to mappings which he
calls semicontractive. On the other hand, Kirk [207, 209] concentrated his efforts on
weakening the condition of uniform convexity on X . Nussbaum [428] has obtained
more general results for locally almost nonexpansive mappings.

Now we state the theorems of Reich [512] concerning the iteration scheme for
nonexpansive mappings in uniformly convex Banach space X with a Fréchet differ-
entiable norm.

Definition 5.19 A sequence {xn} in a Banach space X is weakly almost convergent

to y ∈ X if 1
p

p−1∑
k=0

xn+k ⇀ y uniformly in n ∈ N.

Definition 5.20 A multivalued operator T : X → 2X is said to be m-accretive
if R(I + T ) = X and ‖x1 − x2‖ � ‖x1 − x2 + r(y1 − y2)‖ for all yi ∈ T xi , i =
1, 2, and r > 0.

Theorem 5.36 Let K be a closed and convex subset of a uniformly convex Banach
space X with a Fréchet differentiable norm. If T : K → K is a nonexpansive map-
ping with a fixed point, then {T n x} is weakly almost convergent to a fixed point of T
for each x ∈ K .
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Theorem 5.37 Let X be a uniformly convex Banach space with a Fréchet differen-
tiable norm, Tr (r > 0) the resolvent of an m−accretive operator T : X → 2X with
0 ∈ R(T ), and {rn} a positive sequence. Suppose that either

(a) {rn}is bounded away from zero, or
(b) the modulus of convexity of X satisfy δ(ε) � Mε p for some M > 0 and p � 2,

and
∞∑

n=1
r p

n = ∞.

If x j ∈ X and xn+1 = Trn xn for n � 1, then {xn} converges weakly to a zero of T .

Theorem 5.38 Let K be a closed and convex subset of a uniformly convex Banach
space X with a Fréchet differentiable norm, T : K → K a nonexpansive mapping
with a fixed point, and {cn} a real sequence such that

(i) 0 � cn � 1,

(ii)
∞∑

n=1
cn(1− cn) = ∞.

If x1 ∈ K and xn+1 = cnT xn + (1− cn)xn for n � 1, then {xn} converges weakly to
a fixed point of F.

The original notion of asymptotic center was given by Edelstein [214] in 1972.
He proved some of its properties and used it to prove a fixed point theorem for a
class of mappings which includes nonexpansive mapping. Subsequently, Lim [366,
367], Yanagi [612] and others dealt with it extensively. Caristi [128, 129], Lim [366,
367], Downing and Kirk [202], and Yanagi [612] considered inward mappings and
proved fixed point theorem for such mappings (both single-valued and multivalued).
Here we present a fixed point theorem obtained by Lim [367] after giving some
preliminaries.

Definition 5.21 Let K be a subset of a Banach space X and let {xn} be a bounded
sequence in X . We define

AR(K , {xn}) = inf{ lim
n→∞ sup ‖y − xn‖ : y ∈ K } and

A(K , {xn}) = {z ∈ K : lim
n→∞ sup ‖z − xn‖ = AR(K , {xn})}.

The set A(K , {xn}) is called the asymptotic center of {xn} relative to K . The
number AR(K , {xn}) is called the asymptotic radius of {xn} relative to K . Let
r(y) = lim

n→∞ sup‖y − xn‖. Then

r = AR(K , {xn}) = inf{r(y) : y ∈ K } and A(K , {xn}) = {z ∈ K : r(z) = r}.

We list below some important properties of asymptotic radius and asymptotic
centers. The notion of asymptotic center is a generalization of the notion of Cheby-
shev center. For Chebyshev center and Chebyshev radius, one may refer to Garkavi
[239].

Let K be a nonempty subset of a Banach space X .
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(a) If r(x) � d, r(y) � d and ‖x − y‖ � ε, then r
(

x+y
2

)
� d

[
1− δ

(
ε
d

) ]
.

(b) (i) r(x) is convex and nonexpansive
(ii)|r(x)− r(y)| � ‖x − y‖ � r(x)+ r(y).

(c) If K is convex, then A(K , {xn}) is a convex set.
(d) If K is closed, then A(K , {xn}) is closed.
(e) If K is weakly compact, then A(K , {zn}) is a nonempty set.
( f ) If X is uniformly convex and K is bounded, closed and convex, then A(K , {xn})
consists of exactly one point, i.e. the asymptotic center is unique.
(g) A(K , {Xn}) ⊂ ∂K ∪ A(X, {zn}).
(h) There exists a subsequence {xni } of {xn} such that

AR(K , {xni j
}) = AR(K , {xni })

and A(K , {xni ) ⊂ A(K , {xni j
})

for any subsequence {xni j
} of {xni }.

(i) If K is a weakly compact subset of a Banach space or a closed and convex subset
of a reflexive Banach space, then the asymptotic center A(K , {xn}) is a nonempty,
closed, convex and bounded. ( j) If X is uniformly convex, then asymptotic center
is unique.

Next we define inward mapping. For a historical account of fixed point theorems
for inward mappings, one may refer to Downing and Kirk [202]. Halpern [264] first
considered this type of mapping in his Ph.D. thesis.

Definition 5.22 Let K be a nonempty and convex subset of X . If x ∈ K , we define
the inward set of x relative of K , denoted IK (x) as follows:

IK (x) = {(1− α)x + αy : y ∈ K , α � 1}.

A mapping T : K → X is said to be inward if T x ∈ IK (x) for every x ∈ K . T is
said to be weakly inward if T x ∈ IK (x) for every x ∈ K .

Proposition 5.1 (Lim [367]) Let K be a closed and convex subset of a uniformly
convex Banach space X and {xn} a bounded sequence in K . If x is the asymptotic
center of {xn} with respect to K , then it is also the asymptotic center with respect to
IK (x).

Proof Let u be the asymptotic center of {xn} with respect to IK (x) and assume that
u �= x . Since K ⊆ IK (x), we have u ∈ IK (x)− K and r(u) < r(x) by the unique-
ness of the asypmtotic center (property (j)). By continuity of r(·) (property (b)),
there exists z ∈ IK (x)− K such that r(z) < r(x). Hence, z = (1− α)x + αy for
some y ∈ K and α > 1. Since r(·) is a convex function



288 5 Fixed Point Theorems

r(y) = r
[ 1

α
z +

(
1− 1

α

)
x
]

� 1

α
r(z)+

(
1− 1

α

)
r(x)

� 1

α
r(x)+

(
1− 1

α

)
r(x) = r(x),

contradicting the definition of x . Hence, u = x . �
We now state a result due to Caristi.

Proposition 5.2 Let K be a nonempty, closed and convex subset of a Banach space
X and let T : K → X be a contraction and weakly inward mapping. Then T has a
unique fixed point.

Theorem 5.39 Let K be a closed, convex and bounded subset of a uniformly convex
Banach space X and let T : K → X be a nonexpansive weakly inward mapping.
Then T has a unique fixed point.

Proof Let x0 ∈ K . Define Tn by

Tn(x) = (1− αn)x0 + αnT x where 0 < αn < 1.

and lim
n→∞αn = 1. Each Tn is clearly a contraction with Lipschitz constant αn < 1

and so Tn has a unique fixed point xn, in view of Proposition 5.2.

Moreover ‖xn − T xn‖ =
∥∥∥∥xn − xn

αn
−
(

1

αn
− 1

)
x0

∥∥∥∥
=
(

1

αn
− 1

)
‖xn − x0‖ → 0 as n →∞.

Since K is bounded. Let x be the asymptotic center of {xn} with respect to K . Then

r(T x) = lim sup
n

‖T x − xn‖
� lim sup

n
‖T x − T xn‖

� lim sup
n

‖x − xn‖ = r(x) as T is nonexpansive.

Since T x ∈ IK (x) and by Proposition 5.1. x is the asymptotic center of {xn} with
respect to IK (x), we conclude that T x = x by the uniqueness of the asymptotic
center. This completes the proof. �

5.2.2 Fixed Point Theorems for Pseudocontractive Mappings

We now discuss fixed point theorems for pseudocontractive mappings. This class of
mappings includes the class of nonexpansive mappings.
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Definition 5.23 Let K be a nonempty subset of a normed linear space X . A mapping
F : K → X is said to be pseudocontractive if for each k > 0 and for all x, y ∈ K ,

‖x − y‖ � ‖(1+ k)(x − y)− k(Fx − Fy)‖.

In a real Hilbert space with the corresponding norm, this is equivalent to

‖Fx − Fy‖2 � ‖x − y‖2 + ‖(I − F)(x)− (I − F)(y)‖2 for all x, y ∈ K

and this in turn is equivalent to

(Fx − Fy, x − y) � ‖x − y‖2 for all x, y ∈ X.

Notice that fixed point theorems for pseudocontractive mappings play an impor-
tant role in the theory of nonlinear mappings because of their connection with the
accretive operators (refer Kirk and Schoneberg [335]). Browder [103] and Kato
[320], independently of each other, characterized pseudocontractive mappings as
those mapping F for which the mapping T = I − F is accretive, i.e.

Re〈 j, T x − T y〉 � 0 for some j ∈ J (x − y)

where J : X → 2X∗
is the normalized duality mapping.

Before discussing the theorems proved by Reinermann and Schoneberg [517,
518] and Kirk and Ray [334], we give the following Lemma, due to Crandall and
Pazy [151].

Lemma 5.3 Let H be a real Hilbert space, let {xn} be a bounded sequence in H

and {rn} ⊂ R+ be strictly decreasing sequence such that

(rn xn − rm xm, xn − xm) � 0 for all m, n.

Then there exists x ∈ H such that xn → x .

Lemma 5.4 Let H be a real Hilbert space and K a nonempty subset of H. Let
F : K → H be continuous and pseudocontractive. Further let {xn} be a bounded
sequence in K and {kn}, 0 < kn < 1 for all n, be strictly increasing with kn → 1 and
kn F(Xn) = xn for all n. Then F has a fixed point.

Proof Define rn = 1
kn
− 1. Then

(rn xn − rm xm, xn − xm) =
((

1

kn
− 1

)
xn −

(
1

km
− 1

)
xm, xn − xm

)

= (Fxn − Fxm, xn − xm)− ‖xn − xm‖2 � 0.

Then by Lemma 5.3, xn → x . Since Fxn − xn = (1− kn)Fxn by taking limit as
n →∞, we have Fx − x = 0. This entails Fx = x . �
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Theorem 5.40 Let H be a real Hilbert space and let K be a closed star-shaped
subset of H. Suppose F : K → H is a nonexpansive such that F(∂K ) ⊂ K and
there exists x0 ∈ K with bounded iterative sequence {Fn(x0)}. Then F has a fixed
point.

Proof We may assume 0 to be a star center of K . Let {kn}, be a sequence with
0 < kn < 1 such that kn → 1. Then kn F is a contraction satisfying kn F(∂K ) ⊂ K .
By Assad and Kirk [25], there exists xn such that kn Fxn = xn for each n. Next we
show that {xn} is bounded. Let S = {Fn x0 : n = 1, 2, . . .} and B be a closed ball about
the origin with x ⊂ B. We prove that xn ∈ B for each n. Let ε > 0, x ∈ (K ∩ H)− B
and F(x) = (1+ ε)x . By straightforward computation, we have for every y ∈ S,

‖Fx − Fy‖2 � dist(x, S)2 + ε2‖x‖2.

Then choosing y ∈ S with dist(x, S)2 � ‖x − y‖2 − ε2

2 ‖x‖2, we find

‖Fx − Fy‖2 � ‖x − y‖2 + ε2

2
‖x‖2.

This contradicts the nonexpansiveness of F . Hence, xn ∈ B for every n. Now the
result follows by Lemma 5.4. �

Theorem 5.41 (Kirk and Ray [334]) Let K be a closed and convex subset of a uni-
formly convex Banach space X. Let F : K → K be a Lipschitzian pseudocontractive
mapping. Suppose for some a ∈ K , the set

G(a, Fa) = {z ∈ K : ‖z − a‖ � ‖z − Fa‖}

is bounded. Then F has a fixed point in K .

Proof Let k be the Lipschitz constant and chose α ∈ (0, 1) such that αk < 1. For
each y ∈ K let Fy : K → K be defined as Fy(x) = (1− α)y + αF(x). Since Fy is
a contraction, it has a fixed point Tα(y) for each y ∈ K , that is

Tα(y) = (1− α)y + αF(Tα(y)), y ∈ K .

If r > 0 then ‖u − v‖ � ‖(1+ r)(u − v)− r(Fu − Fv)‖. Also if r is chosen so
small that α(1+ r) > r, then it can be shown that

‖Tα(u)− Tα(v)‖ � ‖u − v‖.

Thus, Tα : K → K is nonexpansive on K .
The existence of a fixed point of Tα gives the fixed point of F . This is accomplished

by showing that G(a, Tα(a)) is bounded for some a ∈ K , then Tα has a fixed point
in K (by an earlier result of Kirk and Ray [334]). �
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5.2.3 Fixed Point Theorems for Asymptotically Nonexpansive
Mappings

We now discuss some fixed point theorems for asymptotically nonexpansive map-
pings due to Goebel and Kirk [246].

Definition 5.24 Let K be a nonempty subset of a Banach space X . A mapping
T : K → K is said to be asymptotically nonexpansive if

‖T n x − T n y‖ � kn‖x − y‖ for all x, y ∈ K and lim
n→∞ kn = 1.

Concerning Lin’s theorem about �1 there arises a natural question whether there
is a c0- analogue of �1. It remains an open question as to whether or not there
exists an equivalent norm ‖ · ‖∼ on (c0, ‖ · ‖∞) such that (c0, ‖ · ‖∼) has the fixed
point property for nonexpansive mappings. However, if we weaken the nonexpansive
condition to “asymptotically nonexpansive", then the answer is “no".

In 2000, Dowling, Lennard and Turett [200] showed that for every equivalent
renorming ‖ · ‖∼ of (c0, ‖ · ‖∞), there exists a closed, bounded, convex set K and an
asymptotically nonexpansive mapping T : K → K such that T has no fixed point.

In contrast to this, note that in 1972, Goebel and Kirk [246] proved the following:

Theorem 5.42 Let K be a nonempty, closed, convex and bounded subset of a uni-
formly convex Banach space and let T be a asymptotically nonexpansive mapping
of K into itself. Then T has a fixed point in K .

Proof For each x ∈ K and r > 0, let Br (x) denote the spherical ball centerd at x
with radius r . Let y be a fixed element of K and suppose Ry consist of those numbers
r for which there exists an integer k such that

K
⋂[ ∞⋃

i=k

Br (T
i y)

]
�= ∅.

If d is the diameter of K , then d ∈ Ry . Hence, Ry �= ∅. Let r0 = glb Ry and for
each ε � 0 we define

Cε =
∞⋃

k=1

[ ∞⋂
i=k

Br0+ε(T
i y)

]
.

Thus, for each ε > 0, the sets Cε ∩ K are nonempty and convex. By reflexivity of
X , we have

C =
⋂
ε>0

[
Cε ∩ K

] �= ∅.

We note that for x ∈ C and η > 0, there exists an integer N such that ‖x − T i y‖ �
r0 + η for i � N . Let x ∈ C and suppose {T n x} does not converge to x , that is,
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T x �= x . Then there exists ε > 0 and a subsequence {T ni x} of {T n x} such that
‖T ni x − x‖ � ε, i = 1, 2, . . . .For m > n, we have‖T n x − T m x‖ � kn‖x − T m−n x‖,
since T is asymptotically nonexpansive. Assume r0 > 0 and choose α > 0 so that

[
1− δ

(
ε

r0 + α

)]
(r0 + α) < r0.

Select n such that

‖x − T n x‖ � ε and kn

(
r0 + α

2

)
� r0 + α.

If N � n is sufficiently large, then m > N implies

‖x − T m−n y‖ � r0 + α

2
.

Also we have

‖T n x − T m y‖ � kn‖x − T m−n y‖ � r0 + α, ‖x − T m y‖ � r0 + α.

By uniform convexity of X , if m > N , we have

∥∥∥∥1

2
(x + T n x)− T m y

∥∥∥∥ �
[

1− δ

(
ε

r0 + α

)]
(r0 + α) < r0

and this contradicts the definition of r0. Thus, we arrive at the conclusion that r0 = 0
and T x = x . But r0 = 0 implies that {T n y} is a Cauchy sequence giving T n y →
x = T x as n →∞. Therefore, C is a singleton set and this point is the fixed point
of T . �

Definition 5.25 A mapping T : K → K is said to be asymptotically regular if for
any x ∈ K , ‖T n x − T n+1x‖ → 0 as n →∞.

Bose [71] proved the following theorem as an extension of Opial’s convergence
theorem (for nonexpansive mappings) to the class of asymptotically nonexpansive
mappings.

Theorem 5.43 Let X be a uniformly convex Banach space having weakly continuous
duality mapping and K a nonempty, bounded, closed and convex subset of X. Suppose
T : K → K is asymptotically nonexpansive and asymptotically regular. Then for any
x ∈ K , the sequence {T n x} converges weakly to a fixed point of T .

Before giving the proof of this theorem, we deal with a few preliminaries.

Definition 5.26 Let X be a Banach space. X satisfies Opial’s condition if for each
x0 in X and each sequence {xn} weakly converging to x0, the inequality

lim inf
n→∞ ‖xn − x‖ > lim inf

n→∞ ‖xn − x0‖
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holds for all x �= x0.

An equivalent definition is obtained by replacing the above inequality by

lim sup
n→∞

‖xn − x‖ > lim sup
n→∞

‖xn − x0‖ for all x �= x0.

Weak Opial’s condition A Banach space X is said to satisfy weak Opial’s condition
if the following holds: If a sequence {xn} is weakly convergent to x0 in X , then for
every x in X ,

lim inf
n→∞ ‖xn − x‖ � lim inf

n→∞ ‖xn − x0‖;

equivalently
lim sup

n→∞
‖xn − x‖ � lim sup

n→∞
‖xn − x0‖.

Observation

• Every Hilbert space and �p(1 � p < ∞) spaces satisfy Opial’s condition.
• Every Banach spaces with weakly continuous duality mappings satisfy weak

Opial’s condition.
• Opial [436] has, in fact, proved that on a uniformly convex Banach space having

weakly continuous duality mapping (or a Hilbert space), the above inequality is
strict for x �= x0.

Lemma 5.5 Let K be a nonempty, bounded, closed and convex subset of a uniformly
convex Banach space having weakly continuous duality mapping. If a sequence
{xn} ⊂ K converges weakly to a point x0, then x0 is the asymptotic center of {xn} in K .

Bose [72] has also proved that in a uniformly convex Banach space if T : K → K
is asymptotically nonexpansive, then the asymptotic center of {T n x} in K for any
x ∈ K is a fixed point of T .

Lemma 5.6 Let K and X be as in Lemma 5.5 and let T : K → K be an asymptot-
ically nonexpansive mapping. Suppose x0 is the asymptotic center of the sequence
{T n x} for some x ∈ K . If the weak limit u0 of a subsequence {T ni x} is a fixed point
of T, then it must coincide with x0 which is a fixed point of T .

Proof Let r and r ′ be the asymptotic radii, respectively, of {T n x} and {T ni x}. We
have r ′ < r . By Lemma 5.5, u0 is the asymptotic center of {T ni x} in K . Hence, given
any ε > 0 we can choose an integer i0 such that

‖u0 − T ni0 x‖ � r ′ + ε

2
.

Since u0 is a fixed point of T and T is asymptotically nonexpansive, we can choose
an integer N such that

‖u0 − T ni0+ j x0‖ ≤ k j

(
r ′ + ε

2

)
� r ′ + ε � r + ε for all j > N .
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Thus, lim sup
n→∞

‖u0 − T n x‖ = r and by uniqueness of the asymptotic center we have

u0 = x0.

We now present the proof of the main theorem (Theorem 5.43).
Proof of Theorem 5.43 First of all we show that asymptotic regularity of T implies
that every weak cluster point of {T n x} is a fixed point of T . Then by Lemma 5.6 all
weak cluster points of {T n x} coincide with the asymptotic center x0 of {T n x} in K .
But we know that x0 is a fixed point of T . Hence, {T n x} converges weakly to a fixed
point of T .

Suppose {T ni x} converges weakly to u0. Then by Lemma 5.5, u0 is the asymptotic
center of {T ni x} in K . Let the asymptotic radius be r . We have (I − T )T ni x → 0
as i →∞ by asymptotic regularity of T . For any integer k, the sequence {T ni+k x}
converges weakly to u0 and thus all such sequences have the same asymptotic center
u0 in K . We now show that all these sequences have the same asymptotic radius r .
By asymptotic regularity of T , we have

‖u0 − T ni+1x‖ − ‖u0 − T ni x‖ � ‖(u0 − T ni+1x)− (u0 − T ni x)‖

= ‖T ni x − T ni+1x‖ → 0 as i →∞.

Hence, lim sup
i→∞

‖u0 − T ni+1 x‖ = lim sup
i→∞

‖u0 − T ni x‖ = r .

Next we show that u0 is a fixed point of T by proving that T j u0 → u0 as j →
∞. Then by continuity of T, u0 is a fixed point of F . Assume that {T j u0} does
not converge to u0. Then there is α > 0 and a sequence { jm} of integers so that
‖u0 − T jm u0‖ � α for all m. Since X in uniformly convex, one can choose ε > 0
such that

(r + ε)

[
1− δ

(
α

r + ε

)]
< r

where δ is the modulus of convexity. Since all the sequences

{T ni+k x}, k = 0, 1, 2, . . .

have the same asymptotic center u0 and the same asymptotic radius r , there exist
integers N (k) such that

‖u0 − T ni+k x‖ � r + ε

2
for all i � N (k). (5.25)

For any m

‖T jm u0 − T ni+ jm x‖ � k jm‖u0 − T ni x‖ � k jm

(
r + ε

2

)

for i � N (0). Let M be an integer such that
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k jm

(
r + ε

2

)
� r + ε

for all m � M. Then we have

‖T jm u0 − T ni+ jm x‖ � r + ε for all i � N (0) and all m > M, (5.26)

and
‖u0 − T ni+ jm x‖ � r + ε for i � N ( jm). (5.27)

Since ‖u0 − T jm u0‖ � α, (5.26) and (5.27) and uniform convexity of X imply that

∥∥∥∥u0 + T jm u0

2
− T ni+ jm x

∥∥∥∥ � (r + ε)

[
1− δ

(
α

r + ε

)]
< r, for all i � max{N (0), N ( jM )},

a contradiction to the fact that the sequence {T ni+ jm x}∞i=1 has asymptotic radius r in
K . This completes the proof. �

Next we consider the theorem proved by Passty [447] which extends Theorem
5.44. The proof of the Theorem 5.44 depends on Opial’s Lemma [436] which does
not carry over to L p(p �= 2). So new techniques are required to deal with mapping
on such spaces. These techniques were provided by Baillon [30] and simplified
by Bruck, Jr. [124] when the space has Fréchet differentiable norm. Passty [447]
extended the Definition 5.24 to sequences of mapping which are not necessarily
powers of a given mapping. We state his general theorem without proof and obtain
the result in which we are interested, as a corollary.

Definition 5.27 The sequence {Tn} of self-mappings of K is said to be asymptoti-
cally nonexpansive if

‖Tn x − Tn y‖ � kn‖x − y‖ for all x, y ∈ K with lim
n→∞ kn = 1.

We denote the set of fixed points of the mapping T by F(T ).

Theorem 5.44 Let X be a uniformly convex Banach space with a Fréchet differenti-
able norm and K a closed and convex subset of X. Let C be a subset of K and
S={Tn}∞n=1,an asymptotically nonexpansive sequence of self-mappings of K such that

(a) C ⊂
∞⋂

n=1
F(Tn).

Assume also that there exists x0 in K for which
(b) Tni x0 ⇀ z implies that z ∈ C, and
(c) TnTm x0 − Tn x0 → 0 as n →∞ for all (fixed) m. Then either

(i) C = ∅ and ‖Tn x0‖ → +∞ or
(i i) C �= ∅ and Tn x0 converges weakly to an element of C.

Note that the hypothesis (c) may be interpreted as asymptotic regularity of X at x0.
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Corollary 5.12 Let K be a closed, convex and bounded subset of X and let T : K →
K be weakly continuous and asymptotically nonexpansive. If T is asymptotically
regular at x0 ∈ K , then {T n x0} converges weakly to a fixed point of T .

Proof In order to apply the above theorem, take C = F(T ) and S = {T n}. It is clear
that conditions (a) and (c) hold. It suffices to prove that condition (b) holds. Note
that T n j x0 ⇀ z and weak continuity implies that T n j+1x0 ⇀ T z. But asymptotic
regularity implies that {T n j+1x0} and {T n j x0} must have the same limit, namely
z. Hence, T z = z ∈ C �= ∅ by Goebel and Kirk [246]. So {T n x0} must converge
weakly to an element of C .

Finally we show by an example due to Goebel and Kirk [246] that the class
of asymptotically nonexpansive mappings is wider than the class of nonexpansive
mappings. To see this, let B denote the unit ball in the Hilbert space �2 and let T be
defined as follows:

T (x1, x2, x3, · · · ) → (0, x2
1 , a2x2, a3x3, · · · )

where (ai ) is a sequence of numbers such that 0 < ai < 1 and
∏∞

i=2 ai = 1
2 .

Then it is easy to see that T is Lipschitzian and ‖T x − T y‖ � 2‖x − y‖, x, y ∈ B.
Moreover, ‖T i x − T i y‖ � 2

∏∞
i=2 ai‖x − y‖ for i = 2, 3, · · · . Thus

lim
i→∞ ki = lim

i→∞ 2
i∏

j=2

a j = 1.

Clearly the transformation T is not nonexpansive.

5.3 Fixed Point Theorems of Brouwer and Schauder

Brouwer’s fixed point theorem is basic for many fixed point theorems. It states that
a continuous map, which maps a convex, bounded and closed set in Rn into itself,
has a fixed point. Though Brouwer2 obtained his result in 1910, Poincare proved a
slightly different version of it in 1886 which was subsequently rediscovered by Bhol
in 1904.

There are several proofs of Brouwer’s theorem-topological, analytical and degree
theoretic. We give the proof of this theorem only in the next chapter by using degree
theoretic arguments. In this section, we dwell on some of its important consequences.
However Schauder’s theorem is discussed in detail.

Unlike contraction mapping theorem, Brouwer’s theorem does not give any com-
putational scheme for obtaining a fixed point. However in 1967 Scarf [546] gave

2Brouwer’s theorem has a long history. Ideas leading to the proof of Brouwer’s theorem were
discovered by Henri Poincaré as early as 1886. Brouwer himself proved the theorem for n = 3
in 1909. In 1910, Hadamard gave the first proof for arbitrary n, and Brouwer gave another proof
in 1912. However in 1904, a result which is equivalent to Brouwer’s theorem was published by
P. Bohl.
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some sort of algorithm for computing a fixed point of a mapping with some addi-
tional conditions. Since then many algorithms have been devised. We do not discuss
these algorithms in this book, and interested readers may refer to the book edited by
Karamardian [315].

Definition 5.28 A topological space X is said to possess the fixed point property if
every continuous function of X into itself has a fixed point.

It is easy to prove that the unit closed interval [0, 1], a finite closed interval [a, b]
and the closed unit disk in the plane has the fixed point property. In all other important
cases, it is rather difficult to establish the existence of the fixed point property.

Theorem 5.45 Let X and Y be topological spaces. If X is homeomorphic to Y and
X has the fixed point property, then Y has the fixed point property.

Definition 5.29 (Partition of the unity) Suppose V1, . . . , Vn are open subsets of a
locally compact Hausdorff space X, K ⊂ X is compact, and

K ⊂ V1 ∪ · · · ∪ Vn.

Then for every j = 1, . . . , n there exists ϕ j ∈ C(X), 0 � ϕ j � 1, supported on Vj

such that
ϕ1(x)+ · · · + ϕn(x) = 1, ∀x ∈ K .

The collection ϕ1, . . . , ϕn is said to be a partition of the unity for K subordinate to
the open cover {V1, . . . , Vn}.
The existence of a partition of the unity is a straightforward consequence of the
Urysohn lemma (see, for instance, Munkre [414], p. 225). We are often interested to
find partitions of the unity for a compact set K ⊂ X whose members are continuous
functions defined on K . Clearly, in this case X need not be locally compact.

Theorem 5.46 Any nonempty, closed and convex subset K of Rn or of a Hilbert
space H or of a Banach space X is a retract of any larger subset.

For a proof of this theorem, refer to Bourbaki [73] or Dugundji [207].

Theorem 5.47 If Y has the fixed point property and X is a retract of Y , then X has
the fixed point property.

Proof Let R be a retraction mapping of Y onto X . Let F be a continuous mapping
of X into itself. Then F R is a continuous mapping of Y into X . Since F R maps Y
into itself, there is a fixed point u such that F Ru = u. But u ∈ X and hence Ru = u
and this implies that Fu = u. �
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5.3.1 Brouwer’s Fixed Point Theorem

LetBn = {x ∈ Rn : ‖x‖ � 1} andSn−1 = {x ∈ Rn : ‖x‖ = 1} denote the closed unit
ball and (n-1)-sphere of Rn , respectively.

Lemma 5.7 The set Sn−1 is not a retract of Bn.

Proof The lemma can be easily proved by means of algebraic topology tools. Indeed,
we may observe that a retraction r induces a homomorphism r∗ : Hn−1(B

n) →
Hn−1(S

n−1), where Hn−1 denotes the (n − 1)-dimensional homology group (see,
e.g. Massy [392]). The natural injection j : Sn−1 → Bn induces in turn a homomor-
phism j∗ : Hn−1(S

n−1) → Hn−1(B
n), and the composition r ◦ j is the identity map

on Sn−1. Hence, (r ◦ j)∗ = r∗ ◦ j∗ is the identity map on Hn−1(S
n−1). But since

Hn−1(B
n) = 0, j∗ is the null map. On the other hand, Hn−1(B

n) = Z if n �= 1, and
H0(S

0) = Z⊕ Z. This leads to a contradiction. �

In the following result, we illustrate the analytic proof which is less evident, and
make use of differential forms. However, it provides a weaker result, namely, it shows
that there exist no retraction of class C2 from Bn to Sn−1. But, one may note this
will be enough for our scopes.

Proof First of all, we associate to a C2 function h : Bn → Bn the differential (exte-
rior) form given by

ωh = h1dh2 ∧ · · · ∧ dhn.

Then the Stokes theorem (cf. Rudin [533], Chap.10) entails

Dh :=
∫
Sn−1

Sn−1ωh =
∫

Bn

dωh =
∫

Bn

dh1 ∧ · · · ∧ dhn =
∫

Bn

det[Jh(x)]dx

where Jh(x) denotes the (n × n)-Jacobian matrix of h at x . Assume now that there is
a retraction r of class C2 from Bn to Sn−1. From the above formula, we see that Dr is
determined only by the values of r on Sn−1. But r |Sn−1 = i |Sn−1 , where i : Bn → Bn

is the identity map. Thus, Dr = Di = vol(Bn). On the other hand ‖r‖ ≡ 1, and this
implies that the vector Jr (x)r(x) is null for every x ∈ Bn . So 0 is an eigenvalue of
Jr (x) for every x ∈ Bn, and therefore det[Jr ] ≡ 0 which implies Dr = 0. �

Theorem 5.48 (Brouwer’s fixed point theorem) The closed unit ball Bn of Rn has
the fixed point property.

Alternatively, we can state as follows:
Let f : Bn → Bn be a continuous function. Then f has a fixed point x̄ ∈ Bn.

Proof We shall rely on the analytic proof. So, let f : Bn → Bn be of class C2.
Suppose, if possible, f had no fixed point, then

r(x) = t (x) f (x)+ (1− t (x))x
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where

t (x) = ‖x‖2 − 〈x, f (x)〉 −√(‖x‖2 − 〈x, f (x)〉)2 + (1− ‖x‖2)‖x − f (x)‖2

‖x − f (x)‖2

is a retraction of class C2 from Bn to Sn−1, against the conclusion of Lemma 5.7.
Graphically speaking, r(x) is the intersection with Sn−1 of the line obtained extend-
ing the segment connecting f (x) to x . Hence, such an f has a fixed point. Finally, let
f : Bn → Bn be continuous. Appealing to the Stone–Weierstrass theorem, we find
a sequence f j : Bn → Bn of functions of class C2 converging uniformly to f on Bn .
Denote x̄ j the fixed point of f j . Then there is x̄ ∈ Bn such that, up to a subsequence,
x j → x̄ . Therefore,

‖ f (x̄)− x̄‖ � ‖ f (x̄)− f (x̄ j )‖ + ‖ f (x̄ j )− f j (x̄ j )‖ + ‖x̄ j − x̄‖ → 0 as j →∞,

which yields f (x̄) = x̄ .

Remark 5.22 An alternative approach to prove Brouwer’s fixed point theorem makes
use of the concept of topological degree as depicted in the next chapter.

We now prove the following version of Brouwer’s F PT .

Theorem 5.49 Every nonempty, compact and convex subset of K of Rn (a finite
dimensional normed linear space) has the fixed point property.

Proof For r sufficiently large, the ball Br of radius r contains K . Then by Theorem
5.46, K is a retract of Br . Since Br is homeomorphic to Bn , Theorem 5.45 asserts
that Br has the fixed point property. Then Theorem 5.47 proves that K has the fixed
point property. �

The following theorem establishes a connection between Brouwer’s F PT and
retraction. For its proof refer to Istratescu [288].

Theorem 5.50 The Brouwer’s F PT is equivalent to the following assertion: there
exists no retraction ofBn on to the boundary ∂Bn which is continuously differentiable.

Theorem 5.51 Let F : Rn → Rn be a continuous mapping and suppose that for
some r > 0 and all η > 0,

F(x)+ ηx �= 0 for any x with ‖x‖ = r.

Then there exists a point x0, ‖x0‖ � r such that F(x0) = 0.

Proof Suppose there is no such point x0 with ‖x0‖ � r such that F(x0) = 0. Then
define the mapping G : Br → Br by

G(x) = − r F(x)

‖F(x)‖ .
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Since ‖Gx‖ = r and F is continuous on Br , G is a continuous mapping of Br into
itself. Hence, by Brouwer’s F PT there exists a point y such that G(y) = y and
‖y‖ = r), that is,

F(y)+ ‖F(y)‖
r

y = 0.

But this contradicts the property of F . Hence, there exists a point x0 with ‖x0‖ � r
such that F(x0) = 0. �

Definition 5.30 The Hilbert cube H0 is the subset of �2 consisting of all points
x = (x1, x2, . . .) such that ‖xk‖ � 1/k for all k.

Theorem 5.52 Every compact convex subset K of a Banach space X is homeomor-
phic under a linear mapping to a compact convex subset of H0.

Proof Without loss of generality, we assume that K is a subset of the unit ball in X .
Let {xn} be a dense sequence spanning the linear span of K . Let us choose fk in X∗
such that

fk(xk) = ‖xk‖
k

, ‖ fk‖ = 1

k
, k = 1, 2, . . . .

Then the mapping F : X → �2 defined by Fx = ( f1(x), f2(x), . . .) maps K into
H0. F is a bounded linear mapping from X into �2 and is one-to-one on span of K .
Because if x �= y in span K , we have

| fk(x)− fk(y)| � | fk(xk)| − | fk(x − y − xk)|
� ‖xk‖

k
− ‖(x − y)− xk‖

k
> 0,

if xk is sufficiently close to x − y. Hence, F is a homeomorphism of K onto F(K ),
as it is one-to-one and continuous on the compact set K . So F(K ) is compact and
convex as linear homeomorphism preserves these properties. �

Theorem 5.53 The Hilbert cube H0 has the fixed point property.

Proof Let Pn : H0 → H0 be the mapping defined by

Pn(x1, x2, . . .) = (x1, x2, . . . , xn, 0, 0, . . .).

For n sufficiently larger, we have

‖Pn x − x‖ �
( ∞∑

k=n+1

1

k2

)1/2

< ε for all x ∈ H0.

H0 is compact since PnH0 is compact. The set Cn = PnH0 is homeomorphic to the
closed unit ball in Rn and hence can be considered as a compact convex subset of
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Rn . Since the mapping Pn F : Cn → Cn, where F is any continuous mapping of H0

into itself, is continuous, Pn F has a fixed point yn ∈ Cn ⊂ H0 by Brouwer’s F PT ,
such that

‖yn − Fyn‖ �
( ∞∑

k=n+1

1

k2

)1/2

.

Since H0 is compact, {yn} has a convergent subsequence. The limit of this sequence
is a fixed point of F (Refer Smart [571]). �

Theorem 5.54 Any convex and closed subset K of the Hilbert cube H0 has the fixed
point property.

Proof K is a retract of H0 by Theorem 5.46. By Theorems 5.47 and 5.52, K has the
fixed point property. �

5.3.2 The Schauder Fixed Point Theorem

Theorem 5.55 (Schauder’s fixed point theorem) Let K be a nonempty, closed and
convex subset of a normed linear space X. Let T be a continuous mapping of K into
a compact subset of K . Then T has a fixed point in K .

Proof Let A be a compact subset of K and T : K → A a continuous map, so that
T (K ) ⊂ A. A is contained in a closed, convex and bounded subset B of X . We have
T (B ∩ K ) ⊂ T (K ) ⊂ A ⊂ B. Thus, T (B ∩ K ) is contained in a compact subset of
B ∩ K , and so there is no loss of generality if K is assumed to be bounded. If A0

is countable dense subset of the compact metric space A, then the set of all rational
linear combinations of elements of A0 is a countable dense subset of the closed linear
subspace E0 spanned by A0 and A ⊂ E0. Then T (K ∩ E0) ⊂ T (K ) ⊂ A, a compact
subset of E0 and K ∩ E0 is closed and convex. Hence, without loss of generality,
we may assume that K is bounded, closed and convex subset of a separable normed
linear space X with a strictly convex norm. Given a positive integer n, there exists a
1
n -net T x1, T x2, . . . , T xn say in T (K ), such that

min
1�k�n

‖T x − T xk‖ <
1

n
, x ∈ K . (5.28)

Let En denote the convex hull of T x1, . . . , T xn . Then Kn"K ∩ En is a closed
bounded subset of En and therefore compact. Since the norm is strictly convex, the
metric projection Pn of X onto the convex compact subset Kn exists. Then Tn"PnT
is a continuous mapping of the nonempty, convex and compact subset Kn into itself.
By the Brouwer’s fixed point theorem, Tn has a fixed point un ∈ Kn, i.e.

Tnun = un. (5.29)
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By (5.28), since T xk ∈ Kn(k = 1, 2, . . . , n) we have

‖T x − Tn x‖ <
1

n
as Tn x = PnT x . (5.30)

The sequence {T un} of T (K ) has a subsequence {T unk } converging to a point u ∈ K .

By (5.29) and (5.30), we have

‖unk − u‖ = ‖Tnk unk − u‖ � ‖Tnk unk − Tnk‖ + ‖T unk − u‖

� 1

n
+ ‖T unk − u‖.

Taking limit k →∞, we have lim
k→∞ unk = u. By the continuity of T , we have

lim
k→∞ T unk = T u.

Since {T unk } converges to u as k →∞, T u = u. �

As a consequence of Schauder’s theorem, we get the following result.

Theorem 5.56 Let K be a nonempty, compact and convex subset of a normed linear
space X and let T be a continuous mapping of K into itself. Then T has a fixed point
in K .

Proof K is homeomorphic to a compact convex subset C of H0 (by Theorem 5.52).
By Theorem 5.54, C has the fixed point property. So, in view of Theorem 5.45, K
has the fixed point property. Thus, T has a fixed point in K . �

Remark 5.23 (a) Theorem 5.54 with additional hypothesis that K be complete fol-
lows from Theorem 5.55. Because, if K is complete convex subset and T (K ) is
contained in compact subset A of K , then the closed and convex hull of A is a com-
pact convex subset K0 of K , and T K0 ⊂ K0.

(b) Schauder’s fixed point theorem was generalized to locally convex topological
vector space by Tychonoff [593], and this generalization is known as Schauder–
Tychonoff theorem.

Theorem 5.57 Let T be a compact and continuous mapping of a normed linear
space X into itself and let T (X) be bounded. Then T has a fixed point.

Proof Let K be the closed and convex hull of T (X). Then K is bounded and T (K )

is contained in a compact subset of K . By Theorem 5.55 T has a fixed point. �

Theorem 5.58 Let X be a reflexive Banach space, K a closed and convex subset of
X and T a weakly continuous mapping of K into a bounded subset of K . Then T
has a fixed point K .
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Proof Since K is closed and convex, it is also weakly closed. As X is reflexive, each
bounded weakly closed subset of X is weakly compact. Hence, the weakly closed
and convex hull of T (K ) is weakly compact. The result follows by Theorem 5.55. �

Theorem 5.59 Let X be a normed linear space. Suppose that K is a nonempty,
closed, and convex subset of X, and T a continuous mapping of K into itself such
that T (K ) is relatively compact in X. Then T has a fixed point.

Proof Let B be the convex hull of T (K ) in X , and let S be the closure of B in X .
Then S ⊂ K . Since T (K ) is relatively compact, it follows that S is compact. S is
also nonempty and convex. As T is continuous on K , we have

T (S) = T (B) = T (B ∩ K ) ⊂ T (K ) = B = S.

By application of Theorem 5.56 to the restriction of T to X , we get the desired
result. �

Let X be a Banach space and T a mapping of X into itself. It is useful to know
condition under which I + T maps X onto itself. If T is a linear mapping, a sufficient
condition for above to hold is that ‖T ‖ < 1. For, if y is any element of X , the series∑∞

n=0(−1)nT n y is convergent in X and has a sum say x ∈ X. Then x satisfies the
equation x + T x = y. But for nonlinear mapping T , we have to depend on Schauder’s
theorem to prove the following.

Theorem 5.60 Let T be a weakly continuous mapping transforming bounded sets
into weakly relatively compact set, and let it satisfies lim‖x‖→∞ sup ‖T x‖

‖x | < 1. Then

I + T maps X onto itself.

Proof Let y be any point in X . It suffices to show that the mapping P defined by
P(x) = y − T x has a fixed point in X . Let Br = {x : ‖x‖ � r}with r suitably chosen
Whatever be the value of r, P restricted to Br is continuous and P(Br ) is relatively
compact due to our hypothesis on T . It remains to show that P(Br ) is contained in
Br . Let M(r) denote the supremum of ‖T x‖ for ‖x‖ � r . Then lim‖x‖→∞ sup ‖T x‖

‖x | < 1

and the fact that T is locally bounded shows that lim
r→∞ sup M(r)

r < 1. On the other

hand, if ‖x‖ � r, then ‖Px‖ � ‖y‖ + M(r). So, if r be chosen large enough, P(x)

will belong to B, whenever x has that property. Our result follows by an application
of Theorem 5.54 in X (with respect to the weak topology of X ). �

Remark 5.24 The above result is simplified if we assume that X is a reflexive Banach
space. Because, the weak continuity of T itself ensures that T transforms bounded
sets into weakly relatively compact sets (each bounded set being weakly relatively
compact as a consequence of the reflexivity of the space).

Theorem 5.61 (Krasnoselski fixed point theorem) Let K be a nonempty, complete
and convex subset of a normed linear space X. Let T be a continuous mapping of
K into a compact subset of X. Let S : K → X be a contradiction mapping with
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Lipschitz constant α and let T x + Sy ∈ K for all x, y ∈ K for all x, y ∈ K . Then
there is a point u ∈ K such that T u + Su = u.

Proof Define F : K × K ⇀ K by F(x, y) = T x + Sy. Then we have

‖F(x, y)− F(x, y′)‖ = ‖Sy − Sy′‖ � α‖y − y′‖; x, y, y′ ∈ K . (5.31)

Also
‖F(x, y)− F(x ′y)‖ = ‖T x − T x ′‖; x, x ′, y ∈ K .

Hence, for each fixed x , the mapping y → F(x, y) is a contraction mapping of the
complete metric space K into itself. Therefore, it has a unique fixed point in K which
is denoted by Ax . That is, Ax = F(x, Ax), (x ∈ K ). Then we have

‖Ax − Ax ′‖ = ‖F(x, Ax)− F(x ′, Ax)‖
= ‖F(x, Ax)− (F(x ′Ax)+ F(x ′, Ax)− F(x ′, Ax ′)‖
� ‖T x − T x ′‖ + α‖Ax − Ax ′‖.

Therefore, ‖Ax − Ax ′‖ � 1
1−α

‖T x − T x ′‖.
This shows that the mapping A is continuous and that A(K ) ⊂ K is precompact

since T K is compact. Since K is complete, A(K ) ⊂ K is compact. By Schauder’s
theorem, A has a fixed point u in K , i.e. Au = u. But this implies that

u = Au = F(u, Au) = F(u, u) = T u + Su.

This completes the proof. �

Under the conditions of Schauder’s theorem, we have no method for approxiamt-
ing a fixed point of mapping. However in a special situation, this can be done as we
see in the following theorem due to Krasnoselski [343].

Theorem 5.62 Let K be a bounded, closed and convex subset of a uniformly convex
Banach space X. Let T be a nonexpansive mapping of K into a compact subset of
K . Let x0 be an arbitrary point of K . Then the sequence defined by

xn+1 = 1

2
(xn + T xn) (n = 0, 1, 2, . . .)

converges to a fixed point of T in K .

Proof Let F(T ) denote the set of fixed points of T in K . By Schauder’s theorem the
set F(T ) is nonempty. First we show that

‖xn+1 − y‖ � ‖xn − y‖, (y ∈ F(T ), n = 0, 1, 2, . . .) (5.32)

Since y = T y, we have
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‖xn+1 − y‖ = 1

2
(xn + T xn)− 1

2
(y + T y)‖ =

∥∥∥∥1

2
(xn − y)+ 1

2
(T xn − T y)

∥∥∥∥
� 1

2
‖xn − y‖ + 1

2
‖T xn − T y‖ = 1

2
‖xn − y‖ + 1

2
‖xn − y‖ = ‖xn − y‖.

Suppose there exists an ε > 0 and a positive integer N such that

‖xn − T xn‖ � ε ∀ n � N . (5.33)

Then ‖xn − y − (T xn − T y)‖ � ε ∀ n � N , y ∈ F(T ).

Also ‖T xn − T y‖ � ‖xn − y‖ � ‖x0 − y‖.
Since the space is uniformly convex, there exists a constant δ, 0 < δ < 1, such that

‖xn+1 − y‖ =
∥∥∥∥1

2
(xn − y)+ 1

2
(T xn − T y)

∥∥∥∥
� δ max {‖xn − y‖, ‖T xn − T y‖}
< ‖xn − y‖ ∀ n � N .

Therefore lim
n→∞ xn = y where T y = y.

If there does not exist an ε > 0 for which (5.33) holds, there exists a subsequence
such that lim

k→∞(xnk − T xnk ) = 0, and such that {T xnk } converges. But this implies

that lim
k→∞ xnk = u = lim

k→∞ T xnk and hence T u = u. So

‖xn+1 − u‖ � ‖xn − u‖.

As lim
k→∞‖xnk − u‖ = 0, we have lim

n→∞‖xn − u‖ = 0. �

The following theorem, due to Altman [10, 11], is proved by Schauder’s theorem.
A proof of this theorem using the concept of degree theory can be found in Berger
and Berger [53].

Theorem 5.63 Let X be a normed linear space. Let T be a continuous mapping of
Br = {x : ‖x‖ � r} into a compact subset of X such that

‖T x − x‖2 � ‖T x‖2 − ‖x‖2, for all x such that ‖x‖ = r. (5.34)

Then T has a fixed point in Br .

Proof Suppose T has no fixed point in Br , then we have

‖T x − x‖ + ‖x‖ � ‖T x‖, (‖x‖ = r). (5.35)

The above inequality (5.35) follows because
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(‖T x − x‖ + ‖x‖)2 − ‖T x‖2 = ‖T x − x‖2 + ‖x‖2 − ‖T x‖2 + 2‖x‖‖T x − x‖
� 2‖x‖‖T x − x‖ > 0.

Let P be the mapping defined by

Px =
{

x, x ∈ Br
r x
‖x‖′ x /∈ Br .

Then P is a continuous projection of X onto Br . Let T̃ �PT . Then T̃ maps Br

continuously into a compact subset of Br i.e. PT u = u. If T u ∈ Br , then PT u = T u,
and T u = u. If T u /∈ Br (T has no fixed point in Br ), then

‖T u‖ > r and u = PT u = r

‖T u‖T u.

It follows that ‖u‖ = r and we have

‖T u − u‖ + ‖u‖ =
∥∥∥∥‖T u‖

r
u − u

∥∥∥∥+ ‖u‖

=
[‖T u‖

r
− 1+ 1

]
‖u‖ = ‖T u‖.

This contradicts (5.34), and hence the proof. �

Theorem 5.64 (Rothe [530]) Let X be a normed linear space and T be a continuous
mapping of Br into a compact subset of X such that

T (∂ Br ) ⊂ Br i.e. ‖T x‖ � ‖x‖ ∀x ∈ ∂ Br .

Then T has a fixed point.

Proof We show that Rothe’s condition:‖T x‖ � ‖x‖for all x ∈ ∂ Br implies Alt-
man’s condition on the boundary:

‖T x − x‖2 � ‖T x‖2 − ‖x‖2.

For x ∈ ∂ Br , we have

‖T x − x‖2 � [‖x‖ − ‖T x‖]2 = ‖x‖2 − 2‖x‖ ‖T x‖ + ‖T x‖2

� ‖x‖2 − 2‖x‖2 + ‖T x‖2 = ‖T x‖2 − ‖x‖2.

Hence, the proof follows from Altman’s theorem (Theorem 5.63). �

This theorem is also true if we replace Br by any closed and convex subset of a
normed linear space X .



5.3 Fixed Point Theorems of Brouwer and Schauder 307

Theorem 5.65 (Potter [491]) Let X be a normed linear space. Let K be any closed
and convex subset of X and T be a continuous mapping of K into a compact subset
of X such that T (∂K ) ⊂ K . Then T has a fixed point.

Proof We note that the result is trivial if int K = ∅. Assume without loss of gener-
ality, that 0 ∈ int K . Define radial retraction R of X onto K by

Rx = x

max(1, ρ(x))
,

where ρ(x) = inf{α : x ∈ αK } is the Minkowski functional. Then R is a continuous
retraction of X onto K and if Rx ∈ int K then Rx = x and if x /∈ K , then Rx ∈ ∂K .

Consider the mapping RT = T̃ . Then T̃ maps K continuously into a compact subset
of K . Hence, by Schauder’s theorem, T̃ has a fixed point u ∈ K i.e. T̃ u = u. If
u ∈ ∂K , then T u ∈ K and u = RT u = T u. If u ∈ int K , then RT u is in int K .
That is,

u = RT u = T u.

This completes the proof. �

5.3.3 The Schauder–Tychonoff Fixed Point Theorem

We first extend Brouwer’s fixed point theorem to a more general situation.

Lemma 5.8 Let K be a nonvoid, compact and convex subset of a finite dimensional
real Banach space X. Then every continuous function f : K → K has a fixed point
x̄ ∈ K .

Proof Without loss of generality, we may assume that X is homeomorphic to Rn for
some n ∈ N. Also, we can assume K ⊂ Bn . For every x ∈ Bn , let p(x) ∈ K be the
unique point of minimum norm of the set x − K . Notice that p(x) = x for every
x ∈ K . Moreover, p is continuous on Bn . Indeed, given xn, x ∈ Bn , with xn → x,

we have

‖x − p(x)‖ � ‖x − p(xn)‖ � ‖x − xn‖ + inf
k∈K

‖xn − k‖ −→ ‖x − p(x)‖

as n →∞. Thus, x − p(xn) is a minimizing sequence as xn → x in x − K , and
this implies the convergence p(xn) → p(x). Define now g(x) = f (p(x)). Then
g maps continuously Bn onto K . From Theorem 5.48, there is x̄ ∈ K such that
g(x̄) = x̄ = f (x̄). �

Remark 5.25 If there is a compact and convex set K ⊂ Rn such that h(K ) ⊂ K ,

then h has a fixed point x̄ ∈ K .
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Theorem 5.66 (Schauder–Tychonoff fixed point theorem) Let X be a locally convex
space, K ⊂ X nonvoid and convex, K0 ⊂ K , K0 compact. Given a continuous map
f : K → K0, there exists x̄ ∈ K0 such that f (x̄) = x̄ .

Proof Let B denote the local base for the topology of X generated by the separating
family of seminorms P on X . Given U ∈ B, from the compactness of K0, there
exist x1, . . . , xn ∈ K0 such that

K0 ⊂
n⋃

j=1

(x j +U ).

Let ϕ1, . . . , ϕn ∈ C(K0) be a partition of the unity for K0 subordinate to the open
cover {x j +U }, and define

fU (x) =
n∑

j=1

ϕ j ( f (x))x j , ∀x ∈ K

then
fU (K ) ⊂ KU := co({x1, . . . , xn}) ⊂ K

and Lemma 5.8 yields the existence of xU ∈ KU such that fU (xU ) = xU . Then

xU − f (xU ) = fU (xU )− f (xU ) =
n∑

j=1

ϕ j ( f (xU ))(x j − f (xU )) ∈ U (5.36)

for ϕ j ( f (xU )) = 0 whenever x j − f (xU ) /∈ U . Appealing again to the compactness
of K0, there exists

x̄ ∈
⋂

W∈B

{ f (xU ) : U ∈ B, U ⊂ W } ⊂ K0. (5.37)

Select now p ∈ P and ε > 0, and let

V = {x ∈ X : p(x) < ε} ∈ B.

Since f is continuous on K , there is W ∈ B, W ⊂ V , such that

f (x)− f (x̄) ∈ V

whenever x − x̄ ∈ 2W, x ∈ K . Moreover, by (5.37), there exists U ∈ B, U ⊂ W,

such that
x̄ − f (xU ) ∈ W ⊂ V . (5.38)

Combining (5.36) and (5.38) we get
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xU − x̄ = xU − f (xU )+ f (xU )− x̄ ∈ U + W ⊂ W + W = 2W

which yields
f (xU )− f (x̄) ∈ V . (5.39)

Hence, (5.38) and (5.39) entail

p(x̄ − f (x̄)) � p(x̄ − f (xU ))+ p( f (xU )− f (x̄)) < 2ε.

Being p and ε arbitrary, we conclude that p(x̄ − f (x̄)) = 0 for every p ∈ P , which
implies the equality f (x̄) = x̄ .

Remark 5.26 In general, it is not possible to extend Theorem 5.65 to noncompact
settings. This fact was already envisaged in our previous discussion about nonex-
pansive maps. Let us recall another famous example in Hilbert spaces.

Example 5.34 (Kakutani) Consider the Hilbert space �2. For a fixed ε ∈ (0, 1], let
fε : B�2(0, 1) → B�2(0, 1) be given by

fε(x) = (ε(1− ‖x‖), x0, x1, . . .), ∀x = (x0, x1, x2, . . .) ∈ �2.

Then it is clear that fε has no fixed points in B�2(0, 1), but it is Lipschitz continuous
with Lipschitz constant slightly greater than 1. Indeed, we observe that

‖ f�2(x)− fε(y)‖ �
√

1+ ε2 ‖x − y‖ ∀x, y ∈ B�2(0, 1).

We now recall the well-known definition of lower and upper semicontinuous real
functions.

Definition 5.31 Let X be a topological space. A function f : X → (−∞,∞] is
said to be lower semicontinuous if f −1((α,∞]) is open for every α ∈ R. Similarly,
a function g : X → [−∞,∞) is said to be upper semicontinuous if −g is lower
semicontinuous.

Observation

• As a direct consequence of the definition (refer to Definition 5.31 above), we
observe that the supremum of any collection of lower semicontinuous func-
tions is lower semicontinuous. Moreover, if f is lower semicontinuous and X
is compact, then f attains its minimum on X . Indeed, if it is not so, denoting
m = inf x∈X f (x) ∈ [−∞,∞), the sets f −1((α,∞]) with α > m form an open
cover of Y that admits no finite subcovers.

The next result is the famous Ky Fan inequality.

Theorem 5.67 (Ky Fan [225]) Let K ⊂ X be a nonvoid, compact and convex. Let
� : K × K → R be map such that
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(a) �(·, y) is lower semicontinuous ∀y ∈ K ;
(b) �(x, ·) is concave ∀x ∈ K .

Then there exists x0 ∈ K such that supy∈K �(x0, y) � supy∈K �(y, y).

Proof Let us fix ε > 0. In correspondence with every x ∈ K , there are yx ∈ K and
an open neighbourhood Ux of x such that

�(z, yx ) > sup
y∈K

�(x, y)− ε,∀z ∈ Ux ∩ K .

Since K compact, there exist some x1, . . . , xn ∈ K there holds

K ⊂ Ux1 ∪ · · · ∪Uxn .

Let ϕ1, . . . , ϕn ∈ C(K ) be a partition of the unity for K subordinate to the open
cover {Ux j }. We now define

f (x) =
n∑

j=1

ϕ j (x)yx j ,∀x ∈ K .

Then it is clear that the map f is continuous, and

f (co({yx1 , . . . , yxn })) ⊂ co({yx1 , . . . , yxn }).

Hence, by Lemma 5.8 f admits a fixed point x̄ ∈ K . Therefore,

sup
y∈K

�(y, y) � �(x̄, x̄) �
n∑

j=1

ϕ j (x̄)�(x̄, yx j )

�
n∑

j=1

ϕ j (x̄)(sup
y∈K

�(x j , y)− ε)

� inf
x∈K

sup
y∈K

�(x, y)− ε

= sup
y∈K

�(x0, y)− ε

for some x0 ∈ K . Letting ε → 0 we obtain

sup
y∈K

�(y, y) � sup
y∈K

�(x0, y).

This yields the desired inequality. �
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5.3.4 Extension of Continuous Mappings

We begin this section with the statement of a theorem on the extension of continuous
mappings.

Theorem 5.68 Let X be a Banach space, A ⊂ X a closed subset and T : A → Y
a continuous map from A into the Banach space Y . Then there exists a continuous
extension T̃ of T with T̃ : X → Y, T̃ |A = T and

T̃ (X) ⊂ coT (A).

Corollary 5.13 Let C be a closed and convex subset of X. Then there exists a
mapping R : X → C such that R|C = id.

Proof Take T = id|C . Now apply the extension Theorem 5.68.

Corollary 5.14 (Brouwer’s fixed point theorem) Let C be a compact convex set in
Rn, f : C → C a continuous mapping. Then f has a fixed point.

Proof Choose r > 0 such that B(0, r) ⊃ C . Let f̃ : Rn → Rn be an extension of f
with f̃ (Rn) ⊂ coC . Then

f̃ (B(0, r)) ⊂ coC ⊂ C ⊂ B(0, r).

Thus, f̃ has a fixed point x̃ ∈ C . Therefore, f (x̃) = x̃ ∈ C .

Corollary 5.15 (Schauder’s fixed point theorem) Let K be a compact convex subset
of X, and T : K → K a continuous mapping. Then T has a fixed point.

5.4 Fixed Point Theorems for Multifunctions

In this section, we discuss fixed point theorems concerning multivalued mappings or
multifunctions. The study of fixed point problems of such mappings was initiated by
Kakutani in 1941 in finite dimensional spaces. It was extended to infinite dimensional
Banach spaces by Bohnenblust and Karlin in 1950 and to locally convex spaces by
Fan [225, 226] in 1952. Fan’s result also generalizes Schauder–Tychonoff’s theorem.

Fixed point theorems for multifunctions provide natural setting for many problems
in control theory (refer Dauer [156]) involving differential equations. Also they have
been effectively used in tackling problems in economics and game theory, we shall
state relevant results in this direction.

The developments of geometric fixed point theory for multifunctions were initi-
ated by Nadler, Jr. [416] and subsequently pursued by Markin [385, 386], Assad and
Kirk [25]. Browder [98], Goebel [245], Lami-Dozo [356], Reich [514] and others.
Since then fixed point theorems for multifunctions have been extensively studied,
we shall cover these developments in detail.
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We recall the definition of upper semicontinuous function for a multivalued
mapping.

Definition 5.32 A multifunction T : X → 2Y is said to be upper semicontinuous
(u.s.c.) if and only if the set {x ∈ X |T (x) ∩ B �= ∅} is closed for each closed subset
B of Y .

If Y is a compact Hausdorff space, and if T (x) is closed for each x, then T is
u.s.c. if and only if T has a closed graph. If A ⊆ X, then T (A) = ⋃

x∈A
T (x) and

if B ⊆ Y, T−1(B) = {x ∈ X : T (x) ∩ B �= ∅}. It is obvious that if B =⋃
i

Bi ⊆ Y,

then T−1(B) =⋃
i

T−1(Bi ). Also the multifunction T is upper semicontinuous if and

only if for each closed set A ⊆ Y, T−1(A) is a closed subset of X . It is point closed
(convex, compact) if and only if for each x ∈ X, T (x) is closed (convex, compact)
subset of Y .

Definition 5.33 A point x0 ∈ X is said to be a fixed point of the multifunction
T : X → 2X if x0 ∈ T (x0).

We state below, without proof, a theorem due to Fan [225].

Theorem 5.69 Let X be a normed linear space, K a nonempty, compact and convex
subset of X, and T a mapping that assigns to each x ∈ K a nonempty, closed and
convex subset T (x) of K . Suppose T is upper semicontinuous, then there exists a
fixed point of T in K .

Kakutani in 1941 [301] proved the above theorem for X = Rn . Recently
Himmelberg [273] generalized Fan’s result, and Sehgal and Morrison [549] have
further generalized Himmelberg’s work.

Theorem 5.70 (Himmelberg [273]) Let K1 be a nonempty and convex subset of a
normed linear space X. Let T : K1 → K1 be an u.s.c. multifunction such that T (x) is
closed and convex for each x ∈ K1 and T (K1) is contained in some compact subset
C of K1. Then T has a fixed point in K1.

For the proof of Theorem 5.70, we need the following result.

Theorem 5.71 Let K be a nonempty and compact subset of a normed linear space
X, and T : K → K be an u.s.c. multifunction such that T (x) is closed for all x ∈ K
and convex for all x in some dense almost convex subset A of K . Then T has a fixed
point.

Proof of Theorem 5.70 Without loss of generality, we may assume that X is complete
(conditions on K1 and T remain unchanged).

Let A = co C and K = Ā. Then K is compact, A ⊂ K1 and T (A) ⊂ C ⊂ A.

Let H = T
⋂

(A × A). Evidently, H is a relatively closed subset of A × A and has
the same values on A and T . Consider the relation H̄ ⊂ X × X with closure relative
to K × K .
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Note that H̄ is a multifunction from K onto K , i.e. H̄−1(K ) = K , because
H̄−1(K ) is closed and contains A. Moreover, H̄(K ) ⊂ C ⊂ A and H = H̄ ∩ (A ×
A). So H̄(x) = H(x) = F(x) for all x ∈ A. Thus, by Theorem 5.71, H̄ has a fixed
point, say x , in K . But x ∈ H̄(x) ⊂ C ⊂ A. So x ∈ T (x).

Remark 5.27 Theorem 5.69 is also true if the space under consideration is a locally
convex linear topological space. The Himmelberg’s proof is in that setting.

As a consequence of the above theorem, we get the following min-max theorem.

Theorem 5.72 Let K1 and K2 be compact subsets of the normed linear spaces X1

and X2, respectively. Let A1 and A2 be dense almost convex subsets of K1 and K2,
respectively. Let f be a continuous real-valued function on K1 × K2. If for any x0 ∈
A1 y0 ∈ A2, the sets {x ∈ K1 : f (x, y0) = max

ξ∈K1

f (ξ, y0)} and {y ∈ K2 : f (x0, y) =
min
η∈K2

f (x0, η)} are convex. Then

max
x∈K1

min
y∈K2

f (x, y) = min
y∈K2

max
x∈K1

f (x, y)

The following theorem of Sehgal and Morrison [549] is a generalization of the
theorem of Himmelberg.

Theorem 5.73 Let S be a nonempty and convex subset of a normed linear space
X and K a compact subset of S. Let Y be a regular separated topological space
and f : X → Y be a point closed, u.s.c. and g : K → Y be a point compact, u.s.c.
multifunctions. If for x ∈ S

(i) f (x) ∩ g(K ) �= ∅,
(ii) g−1( f (x)) is convex,

then there is an x ∈ K such that f (x) ∩ g(x) �= ∅.

Remark 5.28 Theorem 5.70 comes out as a particular case of Theorem 5.73 by taking
X = Y and g as the identity mapping of K onto itself.

Plunket [488], Ward [605] and others have shown that the spaces which have
the fixed point property for continuous compact multivalued mappings constitute a
fairly small subclass of those spaces which have fixed point property for continuous
single-valued mappings.

5.4.1 Fixed Point Theorems for Multivalued Contraction
Mappings

Now we discuss some fixed point theorems for multivalued contraction mappings,
due to Nadler, Jr. [416]. These theorems do not place severe restrictions on the images
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of points and, in general, the space is required to be a complete metric space. We also
briefly touch upon the works of Assad and Kirk [25] and Markin [381] on multivalued
contraction, and of Smithson [572] on contractive multifunctions.

Let (X, d) be a metric space. Let CB(X) denote the set of nonempty, closed and
bounded subsets of X and K(X) denote the set of nonempty and compact subsets of
X . Denote

d(a, B) = inf{d(a, b) : b ∈ B ⊂ X}, a ∈ X,

ρ(A, B) = sup
a∈A

d(a, B),

H(A, B) = max{ρ(A, B), ρ(B, A)},
H+(A, B) = 1

2
{ρ(A, B)+ ρ(B, A)}

for all A, B ∈ CB(X). It is well known that H is a metric on CB(X) and is called
the Hausdorff–Pompeu metric induced by d. In Proposition 5.3 below, we show that
H+ is also a metric on CB(X).

Alternatively, we may define Hausdorff–Pompeu metric H on CB(X) as follows.

Definition 5.34 The Hausdorff–Pompeu metric H on CB(X) induced by d is given
by

H(A, B) = inf{ε|A ⊂ N (ε, B) and B ⊂ N (ε, A)} for A, B ∈ C B(X)

where N (ε, C) = {x ∈ X |d(x, c) < ε for some c ∈ C}, ε > 0 and C ∈ CB(X).

Proposition 5.3 H+ is a metric on C B(X).

Proof Let A, B ∈ CB(X) such that H+(A, B) = 0. Then this is equivalent to
ρ(A, B) = 0 and ρ(B, A) = 0; i.e. inf y∈B d(x, y) = 0 for any x ∈ A and inf x∈A

d(y, x) = 0 for any y ∈ B. Therefore, these are equivalent to x ∈ B = B for any
x ∈ A, and y ∈ A = A for any y ∈ B, B being closure of B. It follows that A ⊂ B
and B ⊂ A. Hence, A = B.

The symmetry of the function H+ follows directly from the definition.
To show the triangle inequality, let A, B, C ∈ CB(X). Then for any (x, y, z) ∈

A × B × C , we have
d(x, z) � d(x, y)+ d(y, z),

whence
inf
z∈C

d(x, z) � d(x, y)+ inf
z∈C

d(y, z) � d(x, y)+ ρ(B, C).

Since the above inequality holds for any y ∈ B, we get

inf
z∈C

d(x, z) � inf
y∈B

d(x, y)+ ρ(B, C) � ρ(A, B)+ ρ(B, C).
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Hence,
ρ(A, C) � ρ(A, B)+ ρ(B, C). (5.40)

Interchanging the roles of A and C , we get

ρ(C, A) � ρ(C, B)+ ρ(B, A). (5.41)

Adding (5.40) and (5.41), and then dividing by 2, we get

H+(A, C) � H+(A, B)+ H+(B, C). (5.42)

Notice that the two metrics H and H+ are equivalent [352] since

1

2
H(A, B) � H+(A, B) � H(A, B).

In the light of this equivalence and referring to Kuratowski [352], we conclude
that (CB(X), H+) is complete whenever (X, d) is complete. Indeed, it is a simple
consequence of the completeness of the Hausdorff–Pompeu metric H . Moreover,
K(X) is a closed subspace of (CB(X), H+).

Notice also that H+ : CB(X)× CB(X) → R is a continuous function. To see this,
we observe that the inequality

H+(A, B) � H+(A, C)+ H+(C, B)

holds for any A, B, C ∈ CB(X). Now pick any (A0, B0) ∈ CB(X)× CB(X). Then
for a given ε > 0, we can choose a positive number δ = ε

2 such that

∣∣H+(A, B)− H+(A0, B0)
∣∣ � H+(A, A0)+ H+(B0, B) < δ + δ = 2δ = ε

whenever H+(A, A0) < δ, H+(B0, B) < δ. This shows that H+ is continuous at
(A0, B0).

Observation

• The metric H depends on the metric d of X .
• By definitions of ρ and H it is easy to see that

d(a, B) � ρ(A, B) � H(A, B)

for all a ∈ A and A, B ∈ CB(X).
• One can easily see that for a given a ∈ A and an ε > 0, there exists b ∈ B such

that
d(a, b) � d(a, B)+ ε.
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• Two equivalent metrics on X may not generate equivalent Hausdorff–Pompeu
metrics for CB(X) (Kelley) [323].

In a classical approach, one can easily prove Propositions 5.4 and 5.5 stated below.

Proposition 5.4 If a, b ∈ X and A, B ∈ C B(X), then the relations:

(1) d(a, b) = H+({a}, {b}),
(2) A ⊂ S(B; r1), B ⊂ S(A; r2) ⇒ H+(A, B) � r where r = (r1 + r2)/2, and
(3) H+(A, B) < r ⇒ ∃r1, r2 > 0 such that (r1 + r2)/2 = r and A ⊂ S(B; r1),

B ⊂ S(A; r2) hold.

Proof The relation (1) follows immediately from the definition of the function H+.
To proof relation (2), from the inclusions A ⊂ S(B; r1), B ⊂ S(A; r2), it follows
that

∀x ∈ A, ∃yx ∈ B such that d(x, yx ) � r1

and
∀y ∈ B, ∃xy ∈ A such that d(xy, y) � r2.

From here it follows that

inf
y∈B

d(x, y) � r1 for every x ∈ A, and inf
x∈A

d(x, y) � r2 for every y ∈ B.

Hence,
sup
x∈A

(
inf
y∈B

d(x, y)
)

� r1 and sup
y∈B

(
inf
x∈A

d(x, y)
)

� r2.

Therefore H+(A, B) � r where r = r1+r2
2 .

To proof relation (3), let H+(A, B) = k < r. Then there exist k1, k2 > 0 such that
k = k1+k2

2 and
sup
x∈A

(inf
y∈B

d(x, y)) = k1, sup
y∈B

(inf
x∈A

d(x, y)) = k2.

As 0 < k < r , it follows that there exist r1, r2 > 0 such that k1 < r1, k2 < r2 and
r = r1+r2

2 . Then from the above inequalities, it follows that

inf
y∈B

d(x, y)�k1 < r1 for every x ∈ A and inf
x∈A

d(x, y))�k2 < r2 for every y ∈ B.

Then, for any x ∈ A there exists yx ∈ B such that

d(x, yx ) < inf
y∈B

d(x, y)+ r1 − k1 � r1.

and, for any y ∈ B there exists xy ∈ A such that

d(xy, y) < inf
x∈A

d(x, y)+ r2 − k2 � r2.
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Hence, for any x ∈ A and y ∈ B it follows that

x ∈
⋃
y∈B

S(y; r1) and y ∈
⋃
x∈A

S(x; r2),

that is,
A ⊂ S(B; r1) and B ⊂ S(A; r2).

Remark 5.29 From the relations (2) and (3), it follows immediately that the relations

(2′) A ⊂ S(B; r1), B ⊂ S(A; r2) ⇒ H+(A, B) � r where r = (r1 + r2)/2, and
(3′) H+(A, B) < r ⇒ ∃r1, r2 > 0 such that (r1 + r2)/2 = r and A ⊂ S(B; r1),
B ⊂ S(A; r2) hold.

Proposition 5.5 If A, B ∈ C B(X), then the equalities

(4) H+(A, B) = inf{r > 0 : A ⊂ S(B; r1), B ⊂ S(A; r2), r = (r1 + r2)/2},
(4′) H+(A, B) = inf{r > 0 : A ⊂ S(B; r1), A ⊂ S(B; r2), r = (r1 + r2)/2}hold.

Proof From the relation (2′), it follows that

H+(A, B) � inf

{
r > 0 : A ⊂ S(B; r1), A ⊂ S(B; r2), r = r1 + r2

2

}
.

To prove the opposite inequality, let H+(A, B) = k, and let t > 0. Then H+(A, B) <
k + t. From (3) it follows that ∃t1, t2 > 0 with t1+t2

2 = t such that A ⊂ S(B; k + t1)
and B ⊂ S(A; k + t2). Hence,

{r > 0 : A ⊂ S(B; r1), B ⊂ S(A; r2)} ⊃ {k + t : t > 0, A ⊂ S(B; k + t1), B ⊂ S(A; k + t2)}.

From this inclusion relation, it follows that

inf{r > 0 : A ⊂ S(B; r1), B ⊂ S(A; r2)} � inf{k + t : t > 0} = k = H+(A, B).

In conclusion, we have

H+(A, B) = inf

{
r > 0 : A ⊂ S(B; r1), B ⊂ S(A; r2), r = r1 + r2

2

}
.

Theorem 5.74 If the metric space (X, d) is complete, then so is (C B(X), H+) and
also K(X) is a closed subspace of (C B(X), H+).

Proof Let (X, d) be a complete metric space and let {An}n∈N be a Cauchy sequence
in C B(X). We claim that the sequence {An}n∈N is convergent to the set B = Ls An =
{x ∈ X : ∀ε > 0,∀m ∈ N, ∃n ∈ N, n ≥ m such that S(x; ε) ∩ An �= ∅}.

Since the sequence {An}n∈N is Cauchy, for any ε > 0 there exists m(ε) ∈ N such
that

H+(An, Am(ε)) < ε for any n ∈ N, n ≥ m(ε).
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Hence, by relation (4), it follows that ∃ ε1, ε2 > 0 with ε1+ε2
2 = ε and m(ε1), m(ε2) ∈

N such that min{m(ε1), m(ε2)} ≥ m(ε), An ⊂ S(Am(ε1); ε1) for any n ∈ N, n ≥
m(ε1) and Am(ε2) ⊂ S(An; ε2) for any n ∈ N, n ≥ m(ε2).

From the properties of upper topological limit Ls it follows that B ⊂ ⋃
k≥n

Ak for

any n ∈ N. Therefore B ⊂ S(Am(ε1); ε1), whence the relation
(i) B ⊂ S(Am(ε1); 4ε1) holds.

On the other hand, taking εk = ε1
2k , k ∈ N, it follows that there exists nk = m(εk) ∈

N such that
H+(An, Ank ) < εk, ∀n ≥ nk .

Next, we choose nk such that the sequence {nk}k∈N to be strictly increasing.
Let p ∈ An0 = Am(ε1) arbitrarily, and let there be the sequence {pnk }k∈N such that
pn0 = p and pnk ∈ Ank with the property that d(pnk , pnk−1) < ε1

2k−2 . It follows that
the sequence {pnk }k∈N is a Cauchy sequence in the complete metric space (X, d).
Hence, it is convergent to a point l ∈ X .

Since d(pnk , pn0) < 4 ε1, it follows that d(l, p) � 4 ε1. Therefore, inf
y∈B

d(p, y) �

4 ε1; that is, p ∈ S(B; 4ε1), which implies that
(i i) An0 ⊂ S(B; 4ε1).

Keeping in view the relations (i) and (ii), (3) yields H+(An0 , B) � 4 ε1. Taking into
account the fact that H+ is a metric on CB(X), we get

H+(An, B) � H+(An, An0)+ H+(An0 , B) < 5 ε1,

for any n � m(ε1) = n0. Thus, the sequence {An}n∈N converges to B = Ls An; that
is, (C B(X), H+) is a complete metric space. This proves the first assertion of our
theorem.

To prove the second assertion, we just require to show that C(X) is a complete
subspace of (C B(X), H+). Let {An}n∈N be a Cauchy sequence in C(X). Then,
{An}n∈N is a Cauchy sequence in CB(X). Let A ∈ C B(X) be such that A = lim

n→∞ An .

Then for any ε > 0, there exists m(ε) ∈ N such that

H+(An, A) <
ε

2
∀n � m(ε), n ∈ N.

Hence, by relation (4), it follows that ∃ ε1, ε2 > 0 with ε1+ε2
2 = ε and m(ε1), m(ε2) ∈

N such that min{m(ε1), m(ε2)} ≥ m(ε), An ⊂ S(A; ε1
2 ) for any n ∈ N, n � m(ε1)

and A ⊂ S(An; ε2
2 ) for any n ∈ N, n � m(ε2).

Suppose n0 � m(ε2) is a fixed natural number. Then A ⊂ S(An0; ε2
2 ). Since An0

is compact in X , it follows that it is totally bounded. Hence, there exist xε2
i , i ∈ 1, p

such that An0 ⊂
p⋃

i=1
S(xε2

i ; ε2
2 ), whence A ⊂

p⋃
i=1

S(xε2
i ; ε2). Therefore A ∈ K(X).
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Definition 5.35 Let (X, d1) and (Y, d2) be two metric spaces. Let F : X → C B(Y ).

T is said to be a multivalued contraction mapping if and only if

H(T x, T y) � k d1(x, y), x, y ∈ X, (5.43)

where 0 � k < 1 is a fixed real number.

The following is a simple consequence of the definition of the Hausdorff–Pompeu
metric H . Let A, B ∈ C B(X) and a ∈ A. If ε > 0, then there exists b = b(a) ∈ B
such that

d(a, b) � H(A, B)+ ε, (5.44)

that can easily be transformed to

hd(a, b) � H(A, B) where h ∈ (0, 1). (5.45)

Indeed, if H(A, B) = 0, then a ∈ B and so (5.45) holds for b = a. If H(A, B) > 0,
then

ε = (h−1 − 1)H(A, B) > 0. (5.46)

As observed above, for any ε > 0 there exists b ∈ B such that

d(a, b) � d(a, B)+ ε � H(A, B)+ ε. (5.47)

By inserting the value of ε from (5.46) in (5.47), we obtain (5.45).
Notice also that if A, B ∈ K(X) and a ∈ A, then there exists b ∈ B such that

d(a, b) � H(A, B).

Example 5.35 Let X = [0, 1] and ψ : X → X such that

ψ(x) =
{

1
2 x + 1

2 , 0 � x � 1
2

− 1
2 x + 1, 1

2 � x � 1.,

Define T : X → 2X by T (x) = {0} ∪ {ψ(x)} for each x ∈ X . Then one can easily
check that T is multivalued contraction mapping and the set of fixed points of T is
{0, 2

3 }.
Theorem 5.75 (Nadler [416]) Let (X, d) be a complete metric space. If T : X →
C B(X) is a multivalued contraction mapping, then T has a fixed point.

Proof Construct a sequence {xn} in X in the following way. Set h = √
k. Choose

x0 ∈ X . Denote by x1 any fixed element in T x0. Since T x0, T x1 ∈ C B(X) and
x1 ∈ T x0, there is a point x2 ∈ T x1 such that

hd(x1, x2) � H(T x0, T x1).
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In general, if xn is chosen, then we choose xn+1 ∈ T xn such that

hd(xn, xn+1) � H(T xn−1, T xn).

Thus, from (5.40) we have

hd(xn, xn+1) � k d(xn−1, xn) = h2d(xn−1, xn).

Hence, we obtain
d(xn, xn+1) � hd(xn−1, xn).

Repeating the above argument n-times we get

d(xn, xn+1) � hnd(x0, x1).

For m > n ≥ 1, we have

d(xn, xm) � d(xn, xn+1)+ d(xn+1, xn+2)+ · · · + d(xm−1, xm)

� (hn + hn+1 + · · · + hm)d(x0, x1)

� (hn + hn+1 + · · · )d(x0, x1)

= hn

1− h
d(x0, x1).

As h ∈ (0, 1), for a given ε > 0, we can choose N ∈ N so large that hn

1−h d(x0, x1) < ε.

Thus, we have
d(xn, xm) < ε for all m, n ≥ N .

From this inequality, we conclude that {xn} is a Cauchy sequence. Since X is com-
plete, the sequence {xn} converges to some point u ∈ X.

From (5.45) and by triangle inequality, we have

d(u, T u) � d(u, xn+1)+ d(xn+1, T u)

� d(u, xn+1)+ H(T xn, T u)

� d(u, xn+1)+ kd(xn, u) → 0 as n →∞.

Hence, d(u, T u) = 0. Since T u is closed, it follows that u ∈ T u.

Pathak and Shahzad [466] introduce the notion of H+-contraction for multifunc-
tions.

Definition 5.36 Let (X, d) be a metric space. A multivalued map T : X → C B(X)

is called H+-contraction if
(1◦) there exists k in (0, 1) such that
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H+(T x, T y) � kd(x, y) for every x, y ∈ X,

(2◦) for every x in X, y in T (x) and ε > 0, there exists z in T (y) such that

d(y, z) � H+(T (y), T (x))+ ε.

In [465], Pathak and Shahzad introduced the notion of H+-type multivalued weak
contractive mapping.

Definition 5.37 Let (X, d) be a metric space. A mapping T : X → C B(X) is called
an H+-type multivalued weak contractive mapping if the condition (2◦) holds and
there exists 0 < k < 1 such that
(3◦)H+(T x, T y) � k max{d(x, y), d(x, T x), d(y, T y), [d(x, T y)+ d(y, T x)]/2},

for all x, y in X .

In [466], Pathak and Shahzad proved the following result.

Theorem 5.76 Every H+-type multivalued contraction mapping T : X → C B(X)

with Lipschitz constant 0 < k < 1 has a fixed point.

Proof Let x0 ∈ X be arbitrary. Fix an element x1 in T x0. From (2◦) it follows that
we can choose x2 ∈ T x1 such that

d(x1, x2) � H+(T x0, T x1)+ ε (5.48)

In general, if xn be chosen, then we choose xn+1 ∈ T xn such that

d(xn, xn+1) � H+(T xn−1, T xn)+ ε. (5.49)

Set ε = ( 1√
k
− 1)H+(T xn−1, T xn). Then from (2◦), it follows that

d(xn, xn+1) � H+(T xn−1, T xn)+
( 1√

k
− 1

)
H+(T xn−1, T xn) = 1√

k
H+(T xn−1, T xn).

Thus, we have √
k d(xn, xn+1) � H+(T xn−1, T xn). (5.50)

Now, from (1◦) we have

√
k d(xn, xn+1) � k d(xn−1, xn) = (

√
k)2 d(xn−1, xn).

Hence, for all n ∈ N we have

d(xn, xn+1) �
√

k d(xn−1, xn).

Repeating the same argument n-times, we get
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d(xn, xn+1) � k
n
2 d(x0, x1).

This implies that {xn} is a Cauchy sequence. Since X is complete, there exists u ∈ X
such that limn→∞ xn = u.

Since

1

2

{
ρ(T xn, T u)+ ρ(T u, T xn)

}
= H+(T xn, T u) � k d(xn, u),

it follows that
lim inf

n→∞

{
ρ(T xn, T u)+ ρ(T u, T xn)

}
= 0.

Since

lim inf
n→∞ ρ(T xn, T u)+ lim inf

n→∞ ρ(T u, T xn) � lim inf
n→∞ {ρ(T xn, T u)+ ρ(T u, T xn)} ,

we have
lim inf

n→∞ ρ(T xn, T u)+ lim inf
n→∞ ρ(T u, T xn) = 0.

This implies that
lim inf

n→∞ ρ(T xn, T u) = 0.

Since limn→∞ d(xn+1, u) = 0 exists, and

d(u, T u) � ρ(T xn, T u)+ d(xn+1, u),

it follows that

d(u, T u) � lim inf
n→∞ [ρ(T xn, T u)+ d(xn+1, u)]

= lim inf
n→∞ ρ(T xn, T u)+ lim

n→∞ d(xn+1, u) = 0.

This implies that d(u, T u) = 0, and since T u is closed it must be the case that
u ∈ T u.

Remark 5.30 As max{a, b} ≥ 1
2 {a + b} ∀ a, b ≥ 0, it follows that multivalued

contraction (5.43) always implies multivalued H+-contraction but the converse
implication need not be true. To see this, we observe the following.

Example 5.36 Let X = {
0, 1

4 , 1
}

and d : X × X → R be a standard metric. Let T :
X → C B(X) be such that

T (x) =
⎧⎨
⎩
{0}, for x = 0,

{0, 1
4 }, for x = 1

4 ,

{0, 1}, for x = 1,
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It is routine to check that multivalued H+-contraction (1◦) is satisfied for all
x, y ∈ X and for any k ∈ [ 2

3 , 1). Further, we see that for every x in X, y in T (x) and
ε > 0, there exists z in T (y) such that d(y, z) � H+(T (y), T (x))+ ε. Indeed,
(i) if x = 0, y ∈ T (0) = {0}, ε > 0, there exists z ∈ T (y) = {0} such that

0 = d(y, z) � H+(T (y), T (x))+ ε,

(iia) if x = 1
4 , y ∈ T (x) = T ( 1

4 ) = {0, 1
4 }, say y = 0, ε > 0, there exists z ∈ T (y) =

{0} such that

0 = d(y, z) <
1

8
+ ε = H+(T (y), T (x))+ ε,

(iib) if x = 1
4 , y ∈ T (x) = T ( 1

4 ) = {0, 1
4 }, say y = 1

4 , ε > 0, there exists z(= 1
4 ) ∈

T (y) = {0, 1
4 } such that

0 = d(y, z) < 0+ ε = H+(T (y), T (x))+ ε,

(iiia) if x = 1, y ∈ T (x) = T (1) = {0, 1}, say y = 0, ε > 0, there exists z ∈ T (y) =
{0} such that

0 = d(y, z) <
1

2
+ ε = H+(T (y), T (x))+ ε,

(iiib) if x = 1, y ∈ T (x) = T (1) = {0, 1}, say y = 1, ε > 0, there exists z(= 1) ∈
T (y) = {0, 1} such that

0 = d(y, z) < 0+ ε = H+(T (y), T (x))+ ε.

Thus, the condition (2◦) is also satisfied. Clearly, 0, 1
4 , 1 are fixed points of T . How-

ever, we observe that the map T does not satisfy the assumptions of Theorem 5.75.
Indeed, for x = 0 and y = 1, we have

H(T (0), T (1)) = H({0}, {0, 1}) = 1 > k d(0, 1),

for all k ∈ (0, 1).

Example 5.37 Let X =
[
0, 2

√
2

3

]⋃ {1} and d : X × X → R be a standard metric.

Let T : X → C B(X) be such that

T (x) =
{[

11x
50(x+1)

, 11
50

]
, for x ∈

[
0, 2

√
2

3

]
{ 11

50 }, for x = 1.

Set k = 0.99. We discuss the following cases:

Case 1. When x, y ∈
[
0, 2

√
2

3

]
, y > x , we note that

H+(T x, T y) = 11

100
· y − x

1+ x + y + xy
� 11

100
· y − x

1+ y − x
< 0.99

y − x

1+ y − x
� 0.99 d(x, y).
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Case 2. When x ∈
[
0, 2

√
2

3

]
and y = 1, we note that H+(T x, T y) = 11

100

∣∣∣1− x
1+x

∣∣∣ �
0.99(1− x) is true if 11

100 · 1
1+x � 0.99(1− x) i.e. if 1

9 ≤ 1− x2 i.e. if 0 � x � 2
√

2
3 .

To check the condition (2◦), we consider the following cases:

Case (i). For any x ∈
[
0, 2

√
2

3

]
, y ∈ T x =

[
11x

50(x+1)
, 11

50

]
and ε > 0, there exists z(=

y) ∈ T y = [ 11y
50(y+1)

, 11
50 ] such that 0 = d(y, z) � 11

100 · y−x
1+x+y+xy + ε = H+(T (y),

T (x))+ ε. Note that 11y
50(y+1)

� 11y
50 � y � 11

50 i.e. y ∈ T y.

Case (ii). For x = 1, y ∈ T x = {
11
50

}
, i.e. y = 11

50 and ε > 0, there exists z(= 792
6100 )

∈ T y = [
121

3050 , 11
50

]
such that

d(y, z) = 11

122
<

11

122
+ ε = H+(T (y), T (x))+ ε.

This proves the condition (2◦). Thus, all the requirements of Theorem 5.76 are
satisfied and 0 ∈ T 0 is the unique fixed point of T . However, we note that when
y = 1 and x → 2

√
2

3 from the left, then

H(T x, T y) = 11x

50(1+ x)
> 1− x .

Thus, T does not satisfy the assumptions of Theorem 5.75.

Proposition 5.6 Suppose X and CB(X) are as in the preceding theorem, and let
Ti : X → C B(X), i = 1, 2, be two H+-type multivalued contraction mappings with
Lipschitz constant k < 1. Then if Fix(T1) and Fix(T2) denote the respective fixed point
sets of T1 and T2,

H+(Fix(T1), Fix(T2)) � 1

1−√k
sup
x∈X

H+(T1x, T2x).

Proof Let ε > 0 be given. Select x0 ∈ Fix(T1), and then select x1 ∈ T2x0. From (2◦)
it follows that we can choose x2 ∈ T2x1 such that

d(x1, x2) � H+(T2x0, T2x1)+ ε.

Now define {xn} inductively so that xn+1 ∈ T2(xn) and

d(xn, xn+1) � H+(T2xn−1, T2xn)+ ε. (5.51)

Set ε = ( 1√
k
− 1)H+(T2xn−1, T2xn). Then from (5.51), it follows that

d(xn, xn+1) � H+(T2xn−1, T2xn)+
(

1√
k
− 1

)
H+(T2xn−1, T2xn) = 1√

k
H+(T2xn−1, T2xn).
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Thus, we have √
k d(xn, xn+1) � H+(T2xn−1, T2xn). (5.52)

Now applying (1◦) for T2, we have

√
k d(xn, xn+1) � k d(xn−1, xn) = (

√
k)2 d(xn−1, xn).

Hence, for all n ∈ N, we have

d(xn, xn+1) �
√

k d(xn−1, xn).

Repeating the same argument n-times, we get

d(xn, xn+1) � k
n
2 d(x0, x1).

This implies that {xn} is a Cauchy sequence with limit, say z. Since T2 is continuous,
we have

lim
n→∞ H(T2xn, T2z) = 0.

Also, since xn+1 ∈ T2(xn) it must be the case that z ∈ T2z; that is, z ∈ Fix(T2). Fur-
thermore, using (5.52) we have

d(x0, z) �
∞∑

n=0

d(xn+1, xn) � (1+√k + (
√

k)2 + · · · )d(x1, x0) � 1

1−√k
(H+(T2x0, T1x0)+ ε).

Reversing the roles of T1 and T2 and repeating the argument as above lead to the
conclusion that for each y0 ∈ Fix(T2), there exist y1 ∈ T1 y0 and w ∈ Fix(T1) such
that

d(y0, w) � 1

1−√k
(H+(T1 y0, T2 y0)+ ε).

Since ε > 0 is arbitrary, the conclusion follows.

Theorem 5.77 Suppose X and C B(X) are as in the preceding theorem, and let
Ti : X → C B(X), i = 1, 2, . . . be a sequence of H+-type multivalued contraction
mappings with Lipschitz constant k < 1. If limn→∞ H+(Tn x, T0x) = 0 uniformly
for x ∈ X, then

lim
n→∞ H+(Fix(Tn), Fix(T0)) = 0.

Proof Let ε > 0 be given. Since limn→∞ H+(Tn x, T0x) = 0 uniformly for x ∈ X , it
is possible to choose N ∈ N so that for n ≥ N , supx∈X H+(Tn x, T0x) < (1−√k)ε.
By Proposition 5.6, H+(Fix(Tn), Fix(T0)) < ε for all n ≥ N . Hence, the conclusion
follows.
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Theorem 5.78 (Pathak and Shahzad [465]) Let (X, d) be a complete metric space.
Let T : X → C B(X) be an H+-type k-multivalued weak contractive mapping with
0 < k < 1. Then, T has a fixed point.

Proof Notice first that for each A, B ∈ C B(X), a ∈ A and α > 0 with H+(A, B) <

α,, there exists b ∈ B such that max{d(a, b), d(a, T a), d(b, T b), 1
2 [d(a, T b)+

d(b, T a)]} < α. Now, let L > 0 be such that k < L < 1. Then

H+(T x, T y) < L max{d(x, y), d(x, T x), d(y, T y), [d(x, T y)+ d(y, T x)]/2},
(5.53)

for any x, y ∈ X, x �= y.
Now we choose a sequence {xn} recursively in X in the following way. Let x0 ∈ X

be arbitrary. Fix an element x1 in T x0. From (2◦) it follows that we can choose
x2 ∈ T x1 such that

d(x1, x2) � H+(T x0, T x1)+ ε (5.54)

In general, if xn be chosen, then we choose xn+1 ∈ T xn such that

d(xn, xn+1) � H+(T xn−1, T xn)+ ε. (5.55)

Set ε = ( 1√
L
− 1)H+(T xn−1, T xn). Then from (5.55), it follows that

d(xn, xn+1) � H+(T xn−1, T xn)+
(

1√
L
− 1

)
H+(T xn−1, T xn) = 1√

L
H+(T xn−1, T xn).

Thus, we have √
L d(xn, xn+1) � H+(T xn−1, T xn) (5.56)

for each n ∈ N.
Thus, from (5.53) we have

√
L d(xn, xn+1) < L max{d(xn−1, xn), d(xn−1, T xn−1), d(xn, T xn),

[d(xn−1, T xn)+ d(xn, T xn−1)]/2}
� (

√
L)2 max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1)/2}

� (
√

L)2 max{d(xn, xn−1), d(xn, xn+1), [d(xn−1, xn)+ d(xn, xn+1)]/2}
= (

√
L)2 max{d(xn, xn−1), d(xn, xn+1)}.

It follows that

d(xn, xn+1) <
√

L max{d(xn, xn−1), d(xn, xn+1)} (5.57)

for each n ∈ N. Note that if xn = xn+1 for some n ∈ N then, xn = xn+1 ∈ T xn, that is,
xn is a fixed point of T and we are finished. So, we may assume that d(xn+1, xn) >

0 for each n ∈ N. Suppose that d(xn−1, xn) < d(xn, xn+1) for some n ∈ N, then
inequality (5.57) gives
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d(xn, xn+1) <
√

L d(xn, xn+1),

a contradiction. So we must have d(xn−1, xn) ≥ d(xn, xn+1) for each n ∈ N. Hence,
for all n ∈ N, (5.57) yields

d(xn, xn+1) < c d(xn−1, xn), (5.58)

where c = √
L . Repeating the same argument n-times as in (5.58), we obtain

d(xn, xn+1) < cn d(x0, x1). (5.59)

It is obvious that {xn} is bounded. Indeed, for any n ∈ N, we have

d(x0, xn) �
n−1∑
i=0

d(xi , xi+1) < (1+ c + c2 + · · · cn)d(x0, x1)

< (1+ c + c2 + · · · )d(x0, x1) = 1

1− c
d(x0, x1) < ∞.

Further, by virtue of (5.59), one may observe that {xn} is a Cauchy sequence. Since
X is complete, there exists u ∈ X such that limn→∞ xn = u. Assume that u �= T u,
i.e. d(u, T u) > 0. Now using (5.53) we have

1

2

{
ρ(T xn, T u)+ ρ(T u, T xn)

}

= H+(T xn, T u)

< L max{d(xn, u), d(xn, T xn), d(u, T u), [d(xn, T u)+ d(u, T xn)]/2}
� L max{d(xn, u), d(xn, xn+1), d(u, T u), [d(xn, T u)+ d(u, xn+1)]/2},

it follows that

1

2
lim inf

n→∞

{
ρ(T xn, T u)+ ρ(T u, T xn)

}
� L d(u, T u)).

Since limn→∞ d(xn+1, u) = 0 exists, and

d(u, T u) = 1

2
[d(u, T u)+ d(T u, u)] � 1

2
[ρ(T xn, T u)+ ρ(T u, T xn)] + d(xn+1, u),

it follows that

d(u, T u) � 1

2
lim inf

n→∞ [ρ(T xn, T u)+ ρ(T u, T xn)] + lim inf
n→∞ d(xn+1, u)

� L d(u, T u))+ lim
n→∞ d(xn+1, u) = L d(u, T u)) < d(u, T u)),

a contradiction. This implies that d(u, T u) = 0, and since T u is closed it must be
the case that u ∈ T u.
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Notice that every multivalued contraction mapping with respect to Pompeu–
Hausdorff metric H is an H+-type multivalued weak contractive mapping, but
the converse implication need not be true. To effect this, we observe the following
example:

Example 5.38 Let X = [−2, 2] and d : X × X → R be a standard metric. Let T :
X → C B(X) be defined by T x = { x

4 }, if x ∈ [−1, 2] and T x = {2}, otherwise. It
is clear that if x, y ∈ [−1, 2] or x, y ∈ [−2,−1), then

H+(T x, T y) � 1

4
d(x, y).

If x ∈ [−1, 2] and y ∈ [−2,−1), then we have

H+(T x, T y) = 1

2

[∣∣∣2− x

4

∣∣∣+
∣∣∣2− x

4

∣∣∣
]
= |2− x

4
| � 2+ 1

4
= 3

4
· 3 � 3

4
·max{d(y, T y), d(x, T x)}.

It follows that

H+(T x, T y) � k max{d(x, y), d(x, T x), d(y, T y), [d(x, T y)+ d(y, T x)]/2}

for all x, y ∈ X and k ∈ [ 3
4 , 1). To check the condition (2◦), we consider the following

cases:
Case 1. If x ∈ [−2,−1), then for any y ∈ T x = {2} there exists z ∈ T y = { 1

2 } such
that for any ε > 0

d(y, z) = 3

2
� 3

2
+ ε = H+(T y, T x)+ ε.

Case 2. If x ∈ [−1, 2], then for any y ∈ T x = { x
4 } there exists z ∈ T y = { x

16 } such
that for any ε > 0

d(y, z) = 3|x |
16

� 3|x |
16

+ ε = H+(T y, T x)+ ε.

Thus, all the conditions of Theorem 5.78 are satisfied. Moreover, 0 ∈ T 0 = {0} is a
fixed point of T .

Notice that the map T does not satisfy the assumptions of Theorems 5.75 and
5.76. Indeed, for x = −1 and y →−1 from the left, we have

H(T (−1), T (y)) = H+(T (−1), T (y)) = 2+ 1

4
> k d(−1, y),

for all k ∈ (0, 1).
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We also notice that since

[d(x, T y)+ d(y, T x)]/2 � max{d(x, T y), d(y, T x}

for all x, y ∈ X , it follows that every weak contractive mapping is quasi-contraction.
Using the technique of the proof of Theorem 5.78, one can easily prove the fol-

lowing result.

Theorem 5.79 Let (X, d) be a complete metric space. Let T : X → C B(X) be a
H+-type k-multivalued quasi-contraction mapping with 0 < k < 1

2 . Then, T has a
fixed point.

Next we state a theorem concerning multivalued contraction mapping in a com-
plete metric space which is metrically convex. Due to the last assumption, significant
weakening can be made regarding the domain and range of the mappings.

Definition 5.38 Let (X, d) be a complete metric space. X is said to be metrically
convex if for each x, y ∈ X with x �= y there exists z ∈ X, x �= z �= y such that

d(x, z)+ d(z, y) = d(x, y).

Menger and Blumenthal [395] have shown that in such a space every two points are
the endpoints of at least one metric segment.

Remark 5.31 If K is a closed subset of a complete and metrically convex space X
and if X ∈ K , y /∈ K , then there exists a point z in the boundary of ∂K such that

d(x, z)+ d(z, y) = d(x, y).

The following theorem was proved by Assad and Kirk [25].

Theorem 5.80 Let (X, d) be a complete and metrically convex space, K a nonempty
and closed subset of X and F a multivalued contraction mapping from X into C B(X).
If F(x) ⊂ K for each x ∈ ∂K , then there exists a fixed point of F in K .

For application purpose, we need the contraction mapping theorem in a convex
setting. Some new fixed point theorems in Banach spaces are obtained by the appli-
cation of Theorem 5.80. For example, if H is a closed and convex subset of a Banach
space X and F is a contraction mapping of K into H where K is a nonempty and
closed subset of H , then F has a fixed point if F maps the boundary of K relative
to H back into K . Such hypothesis are not new in analysis. For mappings which
are compact and continuous, H is often taken as a positive cone in X and K the
intersection of H with the closed unit ball.

We now discuss contractive multifunctions and state a theorem, proved by
Smithson [572], which extends Edelstein’s F PT for contractive single-valued map-
pings to multifunctions.
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Definition 5.39 An orbit O(x) of a multifunction F : X → C B(X) at the point x
is a sequence {xn : xn ∈ F(xn−1)} where x0 = x .

An orbit O(x) of a multifunction F is called regular iff

d(xn+1, xn+2) � d(xn, xn+1) and d(xn+1, xn+2) � H(F(xn), F(xn+1)).

Definition 5.40 A multifunction F : X → C B(X) is said to be contractive iff for
each x1, x2 ∈ X with x1 �= x2, H(F(x1), F(x2)) < d(x1, x2).

An immediate consequence of the definition is the following : If y1 ∈ F(x1), then
there is an element y2 ∈ F(x2) such that d(y1, y2) < d(x1, x2).

Remark 5.32 Let F be a point compact, contractive multifunction. Define an orbit
O(x) by choosing xn ∈ F(xn−1) such that

d(xn−1, xn) = d(xn−1, F(xn−1)) = inf{d(xn−1, y) : y ∈ F(xn−1)}.

Since F is contractive, the orbit O(x) is regular.

Theorem 5.81 Let F be a point closed, contractive multifunction. If there is a regu-
lar orbit O(x) for F which contains a subsequence {xni } converging to y0 such that
xni+1 → y1, then y1 = y0, i.e. F has a fixed point.

Corollary 5.16 If F is point closed, contractive multifunction on the compact metric
space X into itself, then F has a fixed point.

Remark 5.33 Reich [509] and Bose and Mukherjee [66] have extended the work of
Nadler, Jr. and obtained fixed point theorems for generalized multivalued contraction
mappings. We shall discuss these in Sect. 5.5 (common fixed point theorems) as
corollaries of common fixed point theorems concerning such mappings.

Definition 5.41 A mapping F : X → C B(X) is said to be nonexpansive if

H(Fx, Fy) � ‖x − y‖ for all x, y ∈ X.

In the following, K is a nonempty, convex and weakly compact subset of a Banach
space X , and K(X) denotes the family of nonempty and compact subsets of X . We
will say that a mapping F : X → 2X is demiclosed if

xn ⇀ x and yn ∈ Fxn → y ⇒ y ∈ Fx .

Proposition 5.7 (Lami Dozo [356]) Let F : K → K(X) be nonexpansive and let
X satisfy Opial’s condition. Then I − F is demiclosed.

Proof Since the domain of I − F is weakly compact, it is enough to prove that the
graph of I − F is sequentially closed. Let (xn, yn) ∈ G(I − F) where G(I − F)

denotes the graph of I − F such that xn ⇀ x, yn → y. Then x ∈ K and we have to
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prove that y ∈ (I − F)(x). Since yn ∈ xn − Fxn, yn = xn − zn for some zn ∈ Fxn.

As F is nonexpansive, there exists z′n ∈ Fx such that

‖zn − zn′ ‖ � ‖xn − x‖. (5.60)

In (5.60) taking limits, we have

lim inf
n→∞ ‖xn − x‖ � lim inf

n→∞ ‖zn − z′n‖
� lim inf

n→∞ ‖xn − yn − x ′n‖. (5.61)

But Fx is compact and yn → y. Hence, there exists a subsequence of {z′n}, again
denoted by {z′n}, converging to z ∈ Fx . So from (5.61), we get

lim inf
n→∞ ‖xn − x‖ � lim inf

n→∞ ‖xn − y − z‖.

By Opial’s condition , we have y + z = x . Thus, y = x − z ∈ x − Fx . �

Theorem 5.82 (Lami Dozo [366]) Let X be a Banach space which satisfies Opial’s
condition. If K is a nonempty, convex and weakly compact subset of X and F : K →
K(K ) is a nonexpansive mapping, then F has a fixed point in K .

Proof Let x0 ∈ K be a fixed element and let {kn}; 0 < kn < 1 and kn → 1. Define
mappings

Fn x = kn Fx + (1− kn)x0. (5.62)

Then Fn : K → C(K ) and each Fn is a contraction. By Theorem 5.74, there exists
xn ∈ K such that xn ∈ Fn xn . Since K is weakly compact, there exists a subsequence
of {xn}, again denoted by {xn}, converging weakly to x ∈ K . From (5.62), we have

xn = knzn + (1− kn)x0 where zn ∈ Fxn.

So‖xn − zn‖ = (1− kn)‖x0 − zn‖. Hence, yn = xn − zn ∈ (I − F)xn and yn → 0.

This means that xn, yn) ∈ G(I − F) and xn ⇀ x, yn → 0. So by demiclosedness of
(I − F), 0 ∈ (I − F)x, that is x ∈ Fx . �

In the following, we discuss some F PT of multivalued nonexpansive mappings
on nonconvex domain, more precisely on star-shaped domains. First we present the
results of Itoh and Takahasi [289] and then the result of Yanagi [612].

Theorem 5.83 Let K be a weakly compact star-shaped subset of a Banach space
X which satisfies Opial’s condition. Let F be a nonexpansive mapping from K into
K(X) and for each x ∈ ∂K , let Fx ⊂ K . Then F has a fixed point in K .

Proof Let x0 be the star-center of K . Choose a sequence {kn} such that 0 < kn < 1
and kn → 0 as n →∞. Define mappings Fn from K into C(X) by
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Fn x = kn x0 + (1− kn)Fx, x ∈ K .

Then each Fn is a (1− kn)-contradiction and Fn x ⊂ K for each x ∈ ∂K . By Theorem
5.75, there exists xn ∈ K such that xn ∈ Fn xn. This implies that there is a yn ∈
Fxn such that xn = kn x0 + (1− kn)yn. By weak compactness of K , we can assume
without loss in generality, that {xn} converges weakly to some element x ∈ K .

Since ‖xn − y‖ → 0 asn →∞ and I − F is demiclosed, we have 0 ∈ (I − F)x ,
i.e. x ∈ Fx . �

We get the following corollary for single-valued mappings.

Corollary 5.17 Let K be a weakly compact star-shaped subset of a Banach space
X which satisfies Opial’s condition. Let F be a nonexpansive mapping of K into X
such that F(∂K ) ⊂ K . Then F has a fixed point in K .

In the following theorem, we can drop the Opial’s condition on X provided the
set K is assumed to be compact.

Theorem 5.84 Let K be a compact star-shaped subset of a Banach space X and let
F : K → K(X) be a nonexpansive mapping such that F(∂K ) ⊂ K . Then F has a
fixed point in K .

Corollary 5.18 If K is as in the above theorem and F : K → X nonexpansive such
that F(∂K ) ⊂ K , then F has a fixed point.

Theorem 5.85 (Yanagi [612]) Let K be a nonempty, weakly compact and star-
shaped subset of a uniformly convex Banach space X and let F : K → K(X) be
nonexpansive. If for each x ∈ ∂K , Fx ⊂ K , and ηx + (1− η)Fx ⊂ K for some
η ∈ (0, 1) for Fx ⊂ int (K ), then there exists a fixed point of F in K .

Proof Define Fn = kn x0 + (1− kn)Fx as in Theorem 5.78, where x0 is the star-
center of K . By Theorem 5.75 each Fn has a fixed point xn , i.e. xn ∈ Fxn for each
n. Also there exists yn ∈ Fxn such that

xn = kn x0 + (1− kn)yn. (5.63)

Since {xn} is bounded, by property of asymptotic center and radius, we have

AR(K , {xni }) = AR(K , {xn}) and

A(K , {xn}) ⊂ A(K , {xni )(refer Definition 5.20(h)).

Let z ∈ A(K , {xn}). Since Fz is compact, there exists zn ∈ Fz such that

‖zn − yn‖ � H(Fz, Fxn) � ‖z − xn‖. (5.64)

Also we can extract a subsequence {zni } of {zn} such that
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zni → z0 ∈ Fz. (5.65)

Since A(K , {xn}) ⊂ A(K , {xni }), we have z ∈ A(K , {xni ).

Now ‖xni − yni‖ =
kni

1− kni

‖x0 − xn‖ → 0, as n →∞. (5.66)

Thus

lim sup
i→∞

‖z0 − xni‖ � lim sup
i→∞

‖z0 − zni‖ + lim sup
i→∞

‖zni − yni‖
+ lim sup

i→∞
‖yni − xni‖

= lim sup
i→∞

‖zni − yni‖ by (5.65) and (5.66)

� lim sup
i→∞

‖z − xni‖ by (5.43)

= inf{lim sup
i→∞

‖y − xni‖ : y ∈ K }. (5.67)

If z ∈ ∂K , then
w = ηz + 1(1− η)z0 ∈ K

for some η ∈ (0, 1) by hypothesis and so by uniform convexity of X, we have for
some δ ∈ (0, 1),

lim sup
i→∞

‖w − xni‖ = ‖ηz + (1− η)z0 − xni‖
� η‖z − xni‖ + (1− η)‖z0 − xni‖.

We have

lim sup
i→∞

‖w − xni‖ � η [inf {lim sup
i→∞

‖y − xni‖ : y ∈ K }]
+ (1− η)[inf {lim sup

i→∞
‖y − xni ‖ : y ∈ K }

= inf {lim sup
i→∞

‖y − xni‖ : y ∈ K }.

This gives z = z0 ∈ Fz. Again if z ∈ A(X, {xni }), we have
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Fig. 5.3 The inward set
IK (x) of x relative to
K , x ∈ K

AR(X, {xni }) � lim sup
i→∞

‖z0 − xni‖
� lim sup

i→∞
‖z0 − zni‖ + lim sup

i→∞
‖zni − yni‖

+ lim sup
i→∞

‖yni − xni ‖
= lim sup

i→∞
‖zni − yni‖

� lim sup
i

‖z − xni‖ (by 5.64))

= AR(X, {xni }).

Thus, AR(X, {xni })� lim sup
i→∞

‖z0−zni‖�AR(X, {xni }), and hence z0∈A(X, {xni }).

Uniform convexity of X gives us z = z0 ∈ Fz.

Definition 5.42 Let K be a nonempty subset of a Banach space X . We recall that
the inward set of x relative to K , x ∈ K is the set

Ik(x) = {(1− k)x + ky : y ∈ K , k � 0}.

A mapping F : K → C B(X) is said to be inward if Fx ⊆ IK (x) for all x ∈ K
and weakly inward if Fx ⊆ I K (x) for all x ∈ K (Fig. 5.3).

Theorem 5.86 (Downing and Kirk [202]) Let K be a nonempty, closed and convex
of a Banach space X. Suppose F is an upper semicontinuous mapping of K into the
family of nonempty and closed subsets of X, satisfying the following conditions (for
a fixed k ∈ (0, 1)) :
(a) For each x ∈ K , there exists δ = δ(x) > 0 such that

y ∈ Bδ(x) ∩ K ⇒ d(y, Fy) � d(y, Fx)+ k‖x − y‖

(b) F1(x) ∩ I K (x) �= ∅ for each x ∈ K where given x ∈ K and

α � 1, Fα(x) = {z ∈ Fx : ‖x − z‖ � αd(x, Fx)} or
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(b′) corresponding to each x ∈ K , there exist constants

α = α(x) > 1, β = β(x) ∈ (0, 1) such that (1− β)x + βFα(x) ⊂ K .

Then there exists x0 ∈ K such that x0 ∈ Fx0.

Corollary 5.19 Let K and X be as defined before and F : K → C B(X) be a multi-
valued contraction mapping which satisfies either condition (b) or (b′). Then F has
a fixed point.

Proof In this case, F is automatically upper semicontinuous. Further, we have

d(y, Fy) � d(y, Fx)+ H(Fx, Fy)

� d(y, Fx)+ k‖x − y‖ for all x, y ∈ K .

So condition (a) is satisfied and hence the result.

Corollary 5.20 Let K and X be as defined before and F : K → C B(X) be a mul-
tivalued contraction mapping for which Fx ∈ I K (x), x ∈ K . Then F has a fixed
point.

Proof Under the stated assumptions, (b) is automatically satisfied and hence the
result.

Corollary 5.21 Let K and X be as defined before. Suppose the mapping F : K →
X is continuous, weakly inward and satisfies the following condition for a fixed
k ∈ (0, 1) : for each x ∈ K there exists δ = δ(x) > 0 such that

y ∈ Bδ(x) ∩ K ⇒ ‖y − Fy‖ � ‖y − Fx‖ + k‖x − y‖.

Then F has a fixed point in K .

The following theorem was proved by Downing and Kirk using Corollaries 5.19–
5.21 of Theorem 5.86 in conjunction with an elegant approach of Goebel [245].
Before discussing the theorem, we state the following lemmas needed for its proof.

Definition 5.43 A sequence {xn} is said to be regular if all its subsequences {xni }
have the same asymptotic radius and a sequence {xn} is said to be almost convergent
if all its subsequences {xni } have the same asymptotic center.

Lemma 5.9 (Goebel [245]) In a uniformly convex space, each regular sequence is
almost convergent.

Lemma 5.10 (Goebel [245]) Any bounded sequence in a Banach space contains a
regular subsequence.

Lemma 5.11 Let X be uniformly convex, K a bounded, closed and convex subset
of X. Let {xi } be a sequence in K with asymptotic center y ∈ K and asymptotic
radius r . For α ∈ (0, 1), let zi = (1− α)y + αxi , i = 1, 2, . . . . Then A(K , {zi }) =
y and AR(K , {zi }) = αr.
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Theorem 5.87 Let X be a uniformly convex Banach space, K a nonempty, bounded,
closed and convex subset of X, and F a nonexpansive set-valued mapping from K
into K(x). If Fx ⊂ IK (x) for all x ∈ K , then F has a fixed point in K .

Proof Let x0 ∈ K and {kn} ⊂ (0, 1) with kn → 0. For each n, define Fn by Fn x =
kn x0 + (1− kn)Fx, x ∈ K . Then Fn is a setvalued contraction with Lipschitz con-
stant 1− kn. Since IK (x) is convex for each x ∈ K ,

Fn x ⊂ IK (x), x ∈ K . (5.68)

It can be shown that F(K ) = ∪x∈K Fx is a bounded set. �

By Corollary 5.20, each Fn has a fixed point xn in K . Since xn ∈ Fn x, d(xn, Fxn) �
H(Fn xn, Fxn) and by uniform convergence of {Fn}, we have

d(xn, Fxn) → 0 as n →∞. (5.69)

By Lemmas 5.9 and 5.10 (passing to a subsequence if necessary), we may assume
that {xn} is regular and almost convergent. Let z = A(K , {xn}) and r = AR(K , {xn}).
For each n choose yn ∈ Fxn such that

‖xn − yn‖ = d(xn, Fxn). (5.70)

Since F is compact-valued, select again zn ∈ Fz such that

‖zn − yn‖ � H(Fz, Fxn) � ‖z − xn‖. (5.71)

Let {xni } converges to z0 ∈ Fz as i →∞. Since Fz ⊂ IK (z) there exists α ∈ (0, 1)

such that (1 α)z + αz0 ∈ K . Also z = A(K , {xni }) and r = AR(K , {xni }), since
{xn} is regular and almost convergent. If wi = (1− α)z + αxni , i = 1, 2, . . . , then
by Lemma 5.11, we have

z = A(K , {wi }) and αr = AR(K , {wi }).

Let w = (1− α)z αz0, ui = (1− α)z + αzni and vi = (1− α)z + αyni . Then for
each i , we have

‖wi − w‖ � ‖w − ui‖ + ‖ui − vi‖ + ‖vi − wi‖
= α‖z0 − zni‖ + α‖zni − yni‖ + α‖yni − xni‖.

By (5.69)–(5.71), we obtain
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lim sup
i→∞

‖wi − w‖ � α lim sup
i→∞

‖zni − yn−i‖
� α lim sup

i→∞
‖z − xni‖

= αr.

Since AR(K , {wi }) = αr, z = w = (1− α)z + αz0 by uniqueness of the asymptotic
center. Hence, z = z0 ∈ Fz. This completes the proof.

The following theorem of Lim [366] generalizes Theorem 5.87.

Theorem 5.88 Let K be a closed, convex and bounded subset of a uniformly convex
Banach space X and let F : K → K(X) be a nonexpansive mapping such that

Fx ⊂ I K (x) for every x ∈ K .

Then there exists a fixed point of F in K .

Definition 5.44 Let K be a convex subset of X . The mapping F : K → C B(X) is
said to be semiconvex on K if for any x, y ∈ K , z = kx + (1− k)y, where 0 � k �
1, and any x1 ∈ Fx, y1 ∈ Fy, there exists z1 ∈ Fz such that ‖z1‖ � max {‖x1‖,
‖y1, ‖}.
Definition 5.45 The mapping F : K → C B(X)(K ∈ C B(X)) is said to be a gen-
eralized contraction if for each x ∈ K , there is a number α(x) < 1 such that

H(Fx, Fy) � α(x)‖x − y‖ for each y ∈ K .

Theorem 5.89 (Yanagi [612]) Let K be a nonempty, weakly compact and convex
subset of a Banach space X and let F : K → K(X) be a nonexpansive and weakly
inward mapping. If I − F is demiclosed or semiconvex on K , then F has a fixed
point.

Proof Let x0 ∈ K . Choose a sequence {km} such that 0 < kn < 1 and kn → 0. Define
the mapping Fn x = kn x0 + (1− kn)Fx for all x ∈ K . Then by Theorem 5.80 for
each n, Fn has a fixed point xn . Hence, there exists yn ∈ Fxn such that

xn = kn x0 + (1− kn)yn.

If I − F is demiclosed on K , then by weak compactness of K there exists a subse-
quence {xni } of {xn} which converges in K weakly to an element z in K . Further, we
have

‖xni − yni‖ =
kni

1− kni

‖x0 − xni‖ → 0 as i →∞.

Thus, 0 ∈ (I − F)(x), that is, z ∈ Fz. Suppose I − F is semiconvex on K , then we
have

d(xn, Fxn) � ‖xn − yn‖ � kn

1− kn
‖x0 − xn‖ → 0 as n →∞,
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and so inf{d(x, Fx) : x ∈ K } = 0. Define Hr = {x ∈ K : d(x, Fx) � r} where
r > 0. It can be seen due to semiconvexity that Hr are weakly closed and convex
subsets for every r > 0 (See, Ko [338]). The family {Hr : r > 0} has the finite inter-
section property. Hence, by weak compactness of K , we have

⋂{Hr : r > 0} �= ∅.

It follows, therefore, that any point in
⋂{Hr : r > 0} is a fixed point of F . �

This theorem has the following interesting corollaries:

Corollary 5.22 Let K be a nonempty, weakly compact and convex subset of a
Banach space X which satisfied Opial’s condition (or weak Opial’s condition). If
F : K → K(X) is nonexpansive (or a generalized contraction) mapping which is
also weakly inward, then F has a fixed point.

Proof Since X satisfies Opial’s condition and F is nonexpansive, by Proposition
5.7, it follows that I − F is demiclosed. Hence, the result follows from the above
theorems. Similarly, if X satisfies weak Opial’s condition and F is a generalized
contraction, then I − F is demiclosed. �

Corollary 5.23 Let K be a nonempty, compact and convex subset of a Banach space
X and let F : K → K(X) be nonexpansive and weakly inward. Then F has a fixed
point.

Definition 5.46 Let K be a nonempty subset of a Banach space X . Then a mapping
F : K ⊂ X → 2X is called a pseudocontraction (Browder [94]) if, for each r > 0,

each x, y ∈ K and each u ∈ Fx, v ∈ Fy, we have

‖x − y‖ � ‖(1+ r)(x − y)− r(u − v)‖.

If F is pseudocontraction, then T = I − F is accretive.

Observation

• For single-valued mappings, it is known that a nonexpansive mapping is a pseudo-
contraction. Following example of Downing and Ray [203] shows that the same
is not true in the setvalued case: Let F : R2 → C(R2) be defined by

F(x, y) = {(a, 0) : x − 1 � a � x + 1}

F is a setvalued nonexpansive mapping which is not a pseudocontraction since
I − F is not accretive. This indicates that there may not be any firm connection
between fixed point theory of nonexpansive mappings and pseudocontractions in
the setvalued case as it exists in the single-valued case. However, the following
theorem of Downing and Ray [203] is of interest.

Theorem 5.90 Let K be a closed and convex subset of Banach space X having the
fixed point property for single-valued nonexpansive mappings. Suppose F : K →
C B(K ) is a Lipschitzian pseudocontraction. Then F has a fixed point in K .
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Finally we conclude this section with a few results obtained by Aubin and Siegel
[27] recently. Let X be a complete metric space and F a setvalued mapping from
X into the family of nonempty subsets of X . We discuss the problem of existence
of fixed points x ∈ Fx and the existence of stationery points {x∗} = Fx∗. This has
relevance in control theory. We merely state the theorems of our interest after giving
required definitions.

Definition 5.47 A function φ : X → R+ is called a weak entropy of F if for all
x ∈ X, there exists y ∈ Fx such that

d(x, y) � φ(x)− φ(y). (5.72)

A mapping F : X → 2X with R(F) �= ∅ is said to be weakly dissipative if there
exists a weak entropy of F .

Definition 5.48 A sequence {xn} of elements in X is called a trajectory (or orbit)
starting at x if x0 = x and xn+1 ∈ Fxn, n � 0. The set of all such trajectories is
denoted by F (F, x).

Theorem 5.91 A weakly dissipative closed mapping F from X into family of
nonempty subsets of X has a fixed point. Furthermore, for any x0 ∈ X, there exists
a trajectory starting at x0 and converging to a fixed point.

Proof Let φ be a weak entropy of F . Given any x ∈ X we can use (5.72) to construct
a sequence {xi } ∈ F (F, x) such that

d(x p, xq) �
q−1∑
n=p

d(xn, xn+1) � φ(x p)− φ(xq), q � p.

The sequence {xi } is a Cauchy sequence since {φ(xi )} is nonincreasing and bounded
from below. Let it converge to u. Since xn+1 ∈ Fxn, (u, u) is in the closure of the
graph of F . So by assumption on F, u ∈ Fu. �
Theorem 5.92 Let F : X → K(X) be Lipschitz with Lipschitz constant 0 < k < 1.

Then it is weakly dissipative and hence it has a fixed point when X is complete.

Definition 5.49 Given a mapping F from X into the family of nonempty subsets of
X , a function φ : X → R+ is called an entropy of F if

d(x, y) � φ(x)− φ(y) for all x ∈ X and all y ∈ Fx .

A mapping F is called dissipative if it has an entropy.

The following theorem gives the stationary point (Fx = {x}) for dissipative map-
pings. This generalizes Theorem 5.16 to multifunctions.

Theorem 5.93 Let F be a mapping of X (a complete metric space) into the family
of nonempty subsets of X. Let F be dissipative with lower semicontinuous entropy
∅. Then F has a stationary point.



340 5 Fixed Point Theorems

5.4.2 Coincidence and Fixed Points for Multivalued
Mappings

In this section, we consider some problems on coincidence point and fixed point
theorems for multivalued mappings. Applying the characterizations of P-functions,
some existence theorems are presented for coincidence point and fixed point dis-
tinct from Nadler’s fixed point theorem, Berinde–Berinde’s fixed point theorem,
Mizoguchi–Takahashi’s fixed point theorem and Du’s fixed point theorem for non-
linear multivalued contractive mappings in complete metric spaces.

Definition 5.50 A function ϕMT : (0,∞) → [0, 1) is said to be an MT-function if
it satisfies Mizoguchi–Takahashi’s condition; that is,

lim sup
r→t+

ϕMT(r) < 1 for each t ∈ [0,∞).

Definition 5.51 A function ϕ : (0,∞) → [0, 1
2 ) is said to be a P-function if it sat-

isfies the following condition:

lim sup
r→t+

ϕ(r) <
1

2
for each t ∈ [0,∞).

Let X be a metric space and T : X → C B(X) a multifunction. Throughout this
section, F(T ) denotes the set of fixed points of T .

Theorem 5.94 (Nadler [416]) Let (X, d) be a complete metric space and T : X →
C B(X) be a k-contraction, i.e. assume that there exists a nonnegative number k < 1
such that

H(T x, T y) � kd(x, y) for all x, y ∈ X.

Then F(T ) �= ∅.

In 2007, M. Berinde and V. Berinde [55] proved the following fixed point theorem.

Theorem 5.95 (Berinde and Berinde [55]) Let (X, d) be a complete metric space,
T : X → C B(X) be a multivalued map, ϕMT : (0,∞) → [0, 1) be an MT-function
and L ≥ 0. Assume that

H(T x, T y) � ϕMT(d(x, y)) d(x, y)+ L d(y, T x) for all x, y ∈ X.

Then F(T ) �= ∅.

Notice that if we let L = 0 in Theorem 5.95, then we can obtain Mizoguchi–
Takahashi’s fixed point theorem [406] which is a partial answer of Problem 9 in
Reich [516]. Indeed, S. Reich established the following:
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Theorem 5.96 (Reich [510]) Let (X, d) be a complete metric space, T : X →
K (X) be a multivalued map, ϕMT : (0,∞) → [0, 1) be an MT-function. Assume
that

H(T x, T y) � ϕMT(d(x, y)) d(x, y) for all x, y ∈ X, x �= y.

Then F(T ) �= ∅.

Reich [511] posed the question whether Theorem 5.96 above is also true for the
map T : X → C B(X). Mizoguchi and Takahashi [406] in 1989 responded to this
conjecture and proved the following theorem which additionally is more general than
the Nadler’s theorem.

Theorem 5.97 (Mizoguchi and Takahashi [406]) Let (X, d) be a complete metric
space, T : X → C B(X) be a multivalued map, ϕMT : (0,∞) → [0, 1) be an MT-
function. Assume that

H(T x, T y) � ϕMT(d(x, y)) d(x, y) for all x, y ∈ X.

Then F(T ) �= ∅.

Recently, W.-S., Du [206] proved an interesting result as follows:

Theorem 5.98 (Du [206]) Let (X, d) be a complete metric space, T : X → C B(X)

be a multivalued map, g : X → X be a continuous self-map and ϕMT : (0,∞) →
[0, 1) be an MT-function. Assume that
(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X;
(b) there exists h : X → [0,∞) such that

H(T x, T y)) � ϕMT(d(x, y)) d(x, y)+ h(gy)d(gy, T x) for all x, y ∈ X.

Then COP(g, T ) ∩ F(T ) �= ∅.

It may be observed that Mizoguchi–Takahashi’s fixed point theorem is a gener-
alization of Nadler’s fixed point theorem, but its primitive proof in [406] is difficult.
Another proof in [154] is not yet simple. Recently, Suzuki [581] gave a very simple
proof of Theorem 3.6. Several characterizations of P-functions are first given in this
work. Applying the characterizations of P-functions, we establish some existence
theorems for coincidence point and fixed point in complete metric spaces. From these
results, we can obtain new results which are different from Berinde–Berinde’s fixed
point theorem, Mizoguchi–Takahashi’s fixed point theorem and Du’s for nonlinear
multivalued contractive maps.

Inspiring from the characterization of MT-functions studied by W.-S. Du [206],
Pathak, Agarwal and Cho [454] establish some characterizations of P-function. The
proof of the following Lemma 5.5.4 is essentially same as that of Lemma 2.1 of Du
[206]. However, for the sake of completeness we give the proof sketch briefly.



342 5 Fixed Point Theorems

Lemma 5.12 Let ϕ : [0,∞) → [0, 1
2 ) be a function. Then the following statements

are equivalent.

(a) ϕ is a P-function.
(b) For each t ∈ [0,∞), there exist r (1)

t ∈ [0, 1
2 ) and ε

(1)
t > 0 such that ϕ(s) � r (1)

t

for all s ∈ (t, t + ε
(1)
t ).

(c) For each t ∈ [0,∞), there exist r (2)
t ∈ [0, 1

2 ) and ε
(2)
t > 0 such that ϕ(s) � r (2)

t

for all s ∈ [t, t + ε
(2)
t ].

(d) For each t ∈ [0,∞), there exist r (3)
t ∈ [0, 1

2 ) and ε
(3)
t > 0 such that ϕ(s) � r (3)

t

for all s ∈ (t, t + ε
(3)
t ].

(e) For each t ∈ [0,∞), there exist r (4)
t ∈ [0, 1

2 ) and ε
(4)
t > 0 such that ϕ(s) � r (4)

t

for all s ∈ [t, t + ε
(4)
t ).

(f) For any nonincreasing sequence {xn}n∈N ∈ [0,∞),we have 0 � supn∈N ϕ(xn) <
1
2 .

(g) ϕ is a function of contractive factor [205]; that is, for any strictly decreasing
sequence {xn}n∈N ∈ [0,∞), we have 0 � supn∈N ϕ(xn) < 1

2 .

Proof (i) (a) ⇔ (b).
We first show (a) ⇒ (b). Suppose that ϕ is a P-function. Then for each t ∈ [0,∞),

there exists εt > 0 such that

sup
t<s<t+εt

ϕ(s) <
1

2
.

By the denseness of R, there also exists rt ∈ [0, 1
2 ) such that

sup
t<s<t+εt

ϕ(s) � rt <
1

2

which says that ϕ(s) � rt for all s ∈ (t, t + εt ). The converse part (i.e. (b) ⇒ (a))
is obvious.
(b) ⇒ (c).

Clearly, (c) ⇒ (b) is true for r (1)
t := r (2)

t and ε
(1)
t := ε

(2)
t . Conversely, assume (b)

holds. Let t ∈ [0,∞) be given. Then, by our hypothesis, there exist r (1)
t ∈ [0, 1

2 ) and

ε
(1)
t > 0 such that ϕ(s) � r (1)

t for all s ∈ (t, t + ε
(1)
t ). Put ε

(2)
t = ε

(1)
t and

r (2)
t = max{r (1)

t , ϕ(t), ϕ(t + r (1)
t )}.

Then r (2)
t ∈ [0, 1

2 ) and ϕ(s) � r (2)
t for all s ∈ [t, t + ε

(2)
t ]. So we prove (b) ⇒ (c).

(i i i) The implications (c) ⇒ (d) ⇒ (b) and(c) ⇒ (e) ⇒ (b).
(iv) Let us prove (e) ⇒ ( f ). Suppose that (e) holds. Let {xn}n∈N be a nonincreas-

ing sequence in [0,∞). Then t0 := limn∈N xn = infn∈N xn exists. By our hypothesis,
there exist rt0 ∈ [0, 1

2 ) and εt0 > 0 such that ϕ(s) � rt0 for all s ∈ [t0, t0 + εt0). On
the other hand, there exists N ∈ N, such that
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t0 � xn < t0 + εt0 .

for all n ∈ N with n ≥ N . Hence, ϕ(xn) � rt0 for all n n ≥ N . Let

η := max{ϕ(x1), ϕ(x2), . . . , ϕ(xN−1), rt0} <
1

2
.

Then ϕ(xn) � η for all n ∈ N. Hence, 0 � supn∈N ϕ(xn) � η < 1
2 and (f) holds.

(v) The implication ( f ) ⇒ (g) is obvious.
(vi) Finally, we prove (g) ⇒ (e).

Assume that ϕ is a function of contractive factor. On the contrary, suppose that
there exists t̂ ∈ [0,∞) such that for each r ∈ [0, 1

2 ) and each ε > 0 there is s ∈
[t̂, t̂ + ε) with the property ϕ(s) > r. So, for r1 := ϕ(t̂) ∈ [0, 1

2 ) and for ε1 := 1 > 0
it must exists s1 ∈ [t̂, t̂ + ε1) with the property ϕ(s1) > r1. The last inequality also
implies that s1 �= t̂ and thus t̂ < s1. Choose ε2 > 0 satisfying t̂ + ε2 � s1, and set

r2 := max

{
ϕ(s1),

1

2
− 1

4

}
.

Then, for r2 and for ε2 as indicated, we can find s2 ∈ [t̂, t̂ + ε2) with ϕ(s2) > r2.
This also entails that t̂ < s2 < s1. Continuing this process, we can construct a strictly
decreasing sequence {sn} ⊂ [t̂,∞) ⊂ [0,∞) such that

ϕ(sn) > rn := max

{
ϕ(sn−1,

1

2
− 1

n

}
≥ 1

2
− 1

n

for all n ∈ N. This yields supn∈N ≥ 1
2 which contradicts that ϕ is a function of

contractive factor. Therefore, we show that (g) ⇒ (e) is true. By (i)− (vi), we
complete the proof.

Notice that if we define ϕMT(t) = 2ϕ(t) for all t ∈ [0,∞), then ϕMT(t) is essen-
tially an MT-function.

In 2015, Pathak, Agarwal and Cho [454] proved the following result.

Theorem 5.99 Let (X, d) be a complete metric space, T : X → C B(X) be a mul-
tivalued map, f, g : X → X be continuous self-maps and ϕ : (0,∞) → [0, 1

2 ) be a
P-function. Assume that
(a1) for each x ∈ X, { f y = gy : y ∈ T x} ⊆ T x .

(b1) there exists ĥ, k̂ : X → [0,∞) such that

H(T x, T y) � ϕ(d(x, y)) [d(x, T y)+ d(y, T x)]
+ ĥ( f y)(d( f y, T x)+ k̂(gy)(d(gy, T x) for all x, y ∈ X.

Then COP( f, g, T ) ∩ F(T ) �= ∅.
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Proof By (a1), we note that for each x∈X , we have d( f y, T x)= 0 and d(gy, T x)= 0
for all y ∈ T x . Then for each x ∈ X , we get from (b1) and (i) that

H(T x, T y) � ϕ(d(x, y)) d(x, T y) for all y ∈ T x . (5.73)

Further, for each y ∈ T x , d(y, T y) � H(T x, T y). Therefore, form (5.73), for
each x ∈ X we have

d(y, T y) � ϕ(d(x, y)) d(x, T y) for all y ∈ T x .

Let x0 ∈ X be arbitrary and fixed. Since T x0 �= ∅, there exists x1 ∈ X such that
x1 ∈ T x0. If d(x0, x1) = 0, then x0 = x1 ∈ F(T ). Hence, x0 ∈ F(T ) and we are done.
Otherwise, if x0 �= x1, let κ : [0,∞) → [0, 1

2 ) be defined by κ(t) = 1/2+ϕ(t)
2 . Clearly,

0 � ϕ(t) < κ(t) < 1/2 for all t ∈ [0,∞), it follows that

d(x1, T x1) < κ(d(x0, x1)) [d(x0, T x1)+ d(x1, T x0)]
= κ(d(x0, x1)) d(x0, T x1)

� κ(d(x0, x1)) [d(x0, x1)+ d(x1, T x1)].

This implies that
d(x1, T x1) < ψ(d(x0, x1)) d(x0, x1). (5.74)

where ψ(d(x0, x1)) = κ(d(x0,x1))

1−κ(d(x0,x1))
< 1. We claim that there exists x2 ∈ T x1 such

that
d(x1, x2) < ψ(d(x0, x1)) d(x0, x1). (5.75)

If this claim is false; i.e.

d(x1, x2) � ψ(d(x0, x1)) d(x0, x1),

then we have

d(x1, x2) � inf
y∈T x1

d(x1, y) ≥ ψ(d(x0, x1)) d(x0, x1),

i.e.
d(x1, T x1) � ψ(d(x0, x1)) d(x0, x1),

a contradiction to (5.74).
If d(x1, x2) = 0, then x1 = x2 ∈ F(T ) and hence x1 ∈ F(T ). Otherwise there

exists x3 ∈ T x2 such that

d(x2, x3) < ψ(d(x1, x2)) d(x1, x2). (5.76)
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Let dn = d(xn−1, xn), n ∈ N. Proceeding with the same argument as above and
assuming that xn−1 �= xn , for otherwise xn−1 is a fixed point of T , we obtain a
sequence {xn}n∈N in X such that

dn+1 < ψ(dn) dn. (5.77)

where xn ∈ T xn−1 for each n ∈ N.
Since ϕ is a P-function, by Lemma 5.12, 0 � sup

n∈N
ϕ(dn) � sup

n∈N
κ(dn) < 1/2. Then

it follows that

0 < sup
n∈N

ψ(dn) = supn∈N κ(dn)

1− supn∈N κ(dn)
< 1.

Let α := supn∈N ψ(dn). So α ∈ (0, 1). Since ψ(t) < 1 for all t ∈ [0,∞), by
(2.6), the sequence {dn}∞n=1 is a strictly decreasing sequence of positive real numbers
bounded below by 0, and thus convergent. By (5.77), we get

dn+1 < ψ(dn)dn � α dn for each n ∈ N. (5.78)

Further, we claim that {dn}∞n=1; i.e. {d(xn, xn+1)}∞n=1 converges to 0. Suppose that
limn→∞ d(xn, xn+1) = γ > 0. Then for 0 < ε < γ , there exists a natural number n0

such that
0 < δ = γ − ε < d(xn, xn+1) ∀ n ≥ n0,

which is a contradiction, since θ(d(xn, xn+1)) → 0. From (5.78), we get

d(xn, xn+1) � αn d(x0, x1). (5.79)

For any m > n > n0, by (5.79), we have

d(xm, xn) �
m−1∑
j=n

d(x j , x j+1) �
m−1∑
j=n

α j d(x0, x1) =
( m−1∑

j=n

α j
)

d(x0, x1)

<
αn

1− α
d(x0, T x0) → 0, as n →∞.

Therefore, lim
n→∞ sup{d(xm, xn) : m > n} = 0. Hence, {xn} is a Cauchy sequence in

X . Since X is complete, there exists ξ ∈ X such that xn → ξ as n →∞. Since,
xn+1 ∈ T xn , we have from (a) that

f xn+1 = gxn+1 ∈ T xn, for each n ∈ N. (5.80)

Since f and g are continuous and limn→∞ xn = ξ , we have

lim
n→∞ f xn+1 = lim

n→∞ gxn+1 = f ξ = gξ. (5.81)
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From (i i) and (b1), we have

d(xn+1, T ξ) � H(T xn, T ξ)

� ϕ(d(xn, ξ)) {d(xn, T ξ)+ d(ξ, T xn)}
+ ĥ( f ξ)(d( f ξ, f xn+1)+ k̂(gξ)d(gξ, gxn+1)

� ϕ(d(xn, ξ)) {d(xn, T ξ)+ d(ξ, xn+1)}
+ ĥ( f ξ)(d( f ξ, f xn+1)+ k̂(gξ)d(gξ, gxn+1)

<
1

2
{d(xn, T ξ)+ d(ξ, xn+1)} + ĥ( f ξ)(d( f ξ, f xn+1)+ k̂(gξ)d(gξ, gxn+1).

(5.82)

We claim that ξ ∈ T ξ ; that is, d(ξ, T ξ) = 0. If not, then using the continuity of the
function x %→ d(x, T ξ), we obtain from (5.82) that

lim
n→∞ d(xn+1, T ξ)

� lim
n→∞

[1

2
{d(xn, T ξ)+ d(ξ, xn+1)} + ĥ( f ξ)(d( f ξ, f xn+1)+ k̂(gξ)d(gξ, gxn+1)

]
.

Therefore, d(ξ, T ξ) � 1
2 d(ξ, T ξ), a contradiction. Hence, d(ξ, T ξ) = 0, and since

T ξ is closed it must be the case that ξ ∈ T ξ . By (a), f ξ = gξ ∈ T ξ . Therefore,
ξ ∈ COP( f, g, T ) ∩ F(T ) and the proof is complete.

The single-valued version of Theorem 5.99 may be stated as follows:

Theorem 5.100 Let (X, d) be a complete metric space, T : X → X be a single-
valued map, f, g : X → X be continuous self-maps and ϕ : (0,∞) → [0, 1

2 ) be a
P-function. Assume that
(a′1) for each x ∈ X, T x(= y) is a coincidence point of f and g i.e. f y = gy for
y = T x .

(b′1) there exists ĥ, k̂ : X → [0,∞) such that

d(T x, T y) � ϕ(d(x, y)) [d(x, T y)+ d(y, T x)]
+ ĥ( f y)(d( f y, T x)+ k̂(gy)(d(gy, T x) for all x, y ∈ X.

Then COP( f, g) ∩ F(T ) �= ∅.

The following example shows the generality of Theorem 5.99 over Nadler’s fixed
point theorem.

Example 5.39 Let X = {0, 3
4 , 1} and d : X × X → R be a standard metric. Let

T : X → C B(X) be a multivalued mapping and f, g : X → X be two mappings
defined by

T x =

⎧⎪⎨
⎪⎩
{0}, if x = 0

{0, 3
4 }, if x = 3

4

{0, 1}, if x = 1,
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and f, g = IX (: the identity mapping on X ). Define a function ϕ : [0,∞) → [0, 1
2 )

by ϕ(t) := 1
3 for all t ∈ [0,∞) and two mappings ĥ, k̂ : X → [0,∞) by ĥ(x) := 1

and k̂(x) := 0 for all x ∈ X . Then we observe that the following hold:

(a1) for each x ∈ X, { f y = gy : y ∈ T x} ⊆ T x ;
(b1) COP( f, g, T )

⋂
F(T ) = {0, 3

4 , 1};
(c) f and g are continuous.

Observe that lim sups→t+ ϕ(s) = 1
3 < 1

2 for all t ∈ [0,∞) and so ϕ is a P-function.
Moreover, it is routine to check that all the conditions of Theorem 5.99 are satisfied
for all x, y ∈ X . Moreover, COP( f, g) ∩ F(T ) �= ∅.

Notice that the mapping T does not satisfy the assumptions of Theorem 5.94.
Indeed, by taking 0 � k < 1, x = 0 and y = 1, we have

H(T 0, T 1) = H({0}, {0, 1}) = 1 > kd(0, 1),

a contradiction.

By applying the same arguments as in Theorem 5.99, we can obtain generalized
version of Kannan-type fixed point theorem for multivalued mappings as follows:

Theorem 5.101 Let (X, d) be a complete metric space, T : X → C B(X) be a mul-
tivalued map, f, g : X → X be continuous self-maps and ϕ : (0,∞) → [0, 1

2 ) be a
P-function. Assume that
(a◦) for each x ∈ X, { f y = gy : y ∈ T x} ⊆ T x .

(b◦) there exists ĥ, k̂ : X → [0,∞) such that

H(T x, T y) � ϕ(d(x, y)) [d(x, T x)+ d(y, T y)]
+ ĥ( f y)(d( f y, T x)+ k̂(gy)(d(gy, T x) for all x, y ∈ X.

Then COP( f, g, T ) ∩ F(T ) �= ∅.

A slight variant of Example A of Du [205] given below illustrates the generality
of Theorem 5.101 over Mizoguchi–Takahashi’s fixed point theorem and Du’s fixed
point theorem.

Example 5.40 Let �∞ be the Banach space consisting of all bounded real sequences
with supremum norm ‖ · ‖∞ and let {en} be the canonical basis of �∞. Let {τn}
be a sequence of positive real numbers satisfying τ2 = τ107 and 2τn+2 < τn for
n ∈ N \ {2}(e.g. let τ2 = τ107 , 2τn+2 < τn and τn = 1

2n for n ∈ N \ {2}). Thus, the
sequence {τn} convergent. Put vn = τnen for all n ∈ N and let X = {vn}n∈N be a
bounded and complete subset of �∞. Then (X, ‖ · ‖∞) be a complete metric space
and ‖vn − vm‖∞ = τn if m > n.

Let T : X → C B(X) and f, g : X → X be defined by

T vn :=
{
{v1, v2, v107}, if n ∈ {1, 2, 107},
X \ {v1, v2, . . . , vn, vn+1}, if n ≥ 3 and n �= 107
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and

f vn = gvn :=
{

v2, if n ∈ {1, 2, 107},
vn+1, if n ≥ 3 and n �= 107

respectively. Then we observe that the following hold:
(a) for each x ∈ X, { f y = gy : y ∈ T x} ⊆ T x .

(b1) COP( f, g, T ) ∩ F(T ) = {v1, v2, v107}.
(c) f and g are continuous.

Since

1. ‖ f v1 − f v2‖∞ = 0 < τ1 = ‖v1 − v2‖∞
2. ‖ f v1 − f v107‖∞ = 0 < τ1 = ‖v1 − v107‖∞
3. ‖ f v1 − f vm‖∞ = τm < τ1 = ‖v1 − vm‖∞ for any 3 � m < 107 − 1

4. ‖ f v1 − f vm‖∞ = 0 < τ1 = ‖v1 − vm‖∞ for m = 107 − 1

5. ‖ f v1 − f vm‖∞ = τ107 < τ1 = ‖v1 − vm‖∞ for any m > 107

6. ‖ f v2 − f vm‖∞ = τm+1 < τm = ‖v2 − vm‖∞ for any 3 � m < 107 − 1

7. ‖ f v2 − f vm‖∞ = 0 < τm = ‖v2 − vm‖∞ for m = 107 − 1

8. ‖ f v2 − f vm‖∞ = 0 = ‖v2 − vm‖∞ for m = 107

9. ‖ f v2 − f vm‖∞ = τ2 = ‖v2 − vm‖∞ for any m > 107

10. ‖ f v107 − f vm‖∞ = τm+1 < τm = ‖v107 − vm‖∞ for any 3 � m < 107 − 1

11. ‖ f v107 − f vm‖∞ = 0 < τ107−1 = ‖v107 − vm‖∞ for m = 107 − 1

12. ‖ f v107 − f vm‖∞ = τ107 = ‖v107 − vm‖∞ for any m > 107

13. ‖ f vn − f vm‖∞ = τn+1 < τn = ‖vn − vm‖∞ for any 3 � n < 107 − 1, n > 107

and m > n.

Since f is nonexpansive and f = g on X , it follows that f and g both are con-
tinuous on X .

Define ϕ : [0,∞) → [0, 1
2 ) by

ϕ(t) :=
{

τn+2

τn
, if t = τn for some n ∈ N

0, otherwise.
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Also define ĥ, k̂ : X → [0,∞) by

ĥ(vn) = k̂(vn) :=
{

0, if n ∈ {1, 2, 107}
τ1

2τn
, if n ≥ 3 and n �= 107.

Notice that lim sups→t+ ϕ(s) = 0 < 1
2 for all t ∈ [0,∞), therefore ϕ is a P-function.

We claim that

H∞(T x, T y) � ϕ(‖x − y‖∞){‖x − T x‖∞ + ‖y − T y‖∞}
+ ĥ( f y)‖ f y − T x‖∞ + k̂(gy)‖gy − T x‖∞ for all x, y ∈ X (∗)

where H∞ is the Hausdorff metric induced by ‖ · ‖∞. In order to verify that T satisfies
(∗), we consider the following thirteen possible cases:

Case 1. ϕ(‖v1 − v2‖∞){‖v1 − T v1‖∞ + ‖v2 − T v2‖∞)} + ĥ( f v2)‖ f v2 − T v1

‖∞ + k̂(gv2)‖gv2 − T v1‖∞ = 0 = H∞(T v1, T v2).

Case 2. ϕ(‖v1 − v107‖∞){‖v1 − T v1‖∞ + ‖v107 − T v107‖∞} + ĥ( f v107‖ f v107 −
T v1‖∞)+ k̂(gv107‖gv107 − T v1‖∞) = 0 = H∞(T v1, T v107).

Case 3. For any m with 3 � m < 107 − 1, we have
ϕ(‖v1 − vm‖∞){‖v1 − T v1‖∞ + ‖vm − T vm‖∞} + ĥ( f vm)‖ f vm − T v1‖∞ +
k̂(gvm)‖gvm − T v1‖∞ = τ3τm

τ1
+ 2( τ1

2τm+1
)τm+1 = τ3τm

τ1
+ τ1 > τ1 = H∞(T v1, T vm).

Case 4. For m = 107 − 1, we have
ϕ(‖v1 − vm‖∞){‖v1 − T v1‖∞ + ‖vm − T vm‖∞} + ĥ( f vm)‖ f vm − T v1‖∞ +
k̂(gvm)‖gvm − T v1‖∞ = τ3τ107−1

τ1
+ 2( τ1

2τ107
)τ107 = τ3τ107−1

τ1
+ τ1 > τ1 = H∞

(T v1, T vm).

Case 5. For any m > 107, we have
ϕ(‖v1 − vm‖∞){‖v1 − T v1‖∞ + ‖vm − T vm‖∞} + ĥ( f vm)‖ f vm − T v1‖∞ +
k̂(gvm)‖gvm − T v1‖∞ = τ3τm

τ1
+ 2( τ1

2τm+1
)τ107 > τ3τm

τ1
+ τ1 > τ1 = H∞(T v1, T vm).

Case 6. For any m with 3 � m < 107 − 1, we have
ϕ(‖v2 − vm‖∞){‖v2 − T v2‖∞ + ‖vm − T vm‖∞} + ĥ( f vm)‖ f vm − T v2‖∞ +
k̂(gvm)‖gvm − T v2‖∞ = τm+2τm

τm
+ 2( τ1

2τm+1
)τm+1 = τm+2 + τ1 > τ1 = H∞

(T v2, T vm).

Case 7. For m = 107 − 1, we have
ϕ(‖v2 − vm‖∞){‖v2 − T v2‖∞ + ‖vm − T vm‖∞} + ĥ( f vm)‖ f vm − T v2‖∞ +
k̂(gvm)‖gvm − T v2‖∞ = τm+2τm

τm
+ 2( τ1

2τ107
)τ107 = τ107+1 + τ1 > τ1 = H∞

(T v2, T vm).

Case 8. For m = 107, we have
ϕ(‖v2 − vm‖∞){‖v2 − T v2‖∞ + ‖vm − T vm‖∞} + ĥ( f vm)‖ f vm − T v2‖∞ +
k̂(gvm)‖gvm − T v2‖∞ = τm+2τm

τm
+ 2( τ1

2τ107+1
)τ107) > τ107+2 + τ1 > τ1 = H∞

(T v2, T vm).
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Case 9. For any m > 107, we have
ϕ(‖v2 − vm‖∞){‖v2 − T v2‖∞ + ‖vm − T vm‖∞} + ĥ( f vm)‖ f vm − T v2‖∞ +
k̂(gvm)‖gvm − T v2‖∞ = τ107+2τm

τ107
+ 2( τ1

2τm+1
)τ107 >

τ107+2τm

τ107
+ τ1 > τ1 = H∞

(T v1, T vm).

Case 10. For any m with 3 � m < 107 − 1, we have
ϕ(‖v107 − vm‖∞){‖v107 − T v107‖∞ + ‖vm − T vm‖∞)} + ĥ( f vm)‖ f vm − T v107

‖∞ + k̂(gvm)‖gvm − T v107‖∞ = τ107+2τm

τ107
+ 2( τ1

2τm+1
)τm+1 = τ107+2τm

τ107
+ τ1 > τ1 =

H∞(T v107 , T vm).

Case 11. For m = 107 − 1, we have
ϕ(‖v107 − vm‖∞){‖v107 − T v107‖∞ + ‖vm − T vm‖∞)} + ĥ( f vm)‖ f vm − T v107

‖∞ + k̂(gvm)‖gvm − T v107‖∞ = τ107+1τm

τ107−1
+ 2( τ1

2τ107
)τ107 = τ107+1 + τ1 > τ1 = H∞

(T v107 , T vm).

Case 12. For any m > 107, we have
ϕ(‖v2 − vm‖∞){‖v2 − T v2‖∞ + ‖vm − T vm‖∞} + ĥ( f vm)‖ f vm − T v2‖∞ +
k̂(gvm)‖gvm − T v2‖∞ = τ107+2τm

τ107
+ 2( τ1

2τm+1
)τ107 >

τ107+2τm

τ107
+ τ1 > τ1 = H∞

(T v2, T vm).

Case 13. For any n with 3 � n < 107 − 1, n > 107 and m > n, we have
ϕ(‖vn − vm‖∞){‖vn − T vn‖∞ + ‖vm − T vm‖∞)} + ĥ( f vm)‖ f vm − T vn‖∞ +
k̂(gvm)‖gvm − T vn‖∞ = τn+2

τn
{τn + τm} = τn+2 + τn+2τm

τn
> τn+2 = H∞

(T vn, T vm).

Hence, by Cases 1–13 we prove that T satisfies (∗). Therefore, all assumptions
of Theorem 5.101 are satisfied. Further, Theorem 5.101 claims that COP( f, g, T ) ∩
F(T ) �= ∅. Notice that if we consider a convergent sequence {τn}∞n=1 defined by τ2 =
τ107 , 4τn+2 < τn, τn = 1

5n for all n ∈ N \ {2} then we observe by defining ϕMT(t) =
2ϕ(t) for all t ∈ [0,∞) that
(i) H∞(T v1, T vm) = τ1 > 2τ3 + ( τ1

2τm+1
)τm+1 = 2τ3 + τ1

2

> ϕMT(‖v1 − vm‖∞)‖v1 − vm‖∞ + k̂(gvm)‖gvm − T v1‖∞
for any m with 3 � m < 107 − 1, so Du’s fixed point theorem is not applicable

here.
(i i) H∞(T v1, T vm) = τ1 > 2τ3 = ϕMT(‖v1 − vm‖∞)‖v1 − vm‖∞

for any m with 3 � m < 107 − 1, so Mizoguchi–Takahashi’s fixed point theorem
is not applicable here.

Theorem 5.102 Let (X, d) be a complete metric space, T : X → C B(X) be a mul-
tivalued map, g : X → X be a continuous self-map and ϕ : (0,∞) → [0, 1

2 ) be a
P-function. Assume that
(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X;
(b′′1) there exists k̂ : X → [0,∞) such that

H(T x, T y) � ϕ(d(x, y)) [d(x, T x)+ d(y, T y)] + k̂(gy)(d(gy, T x) for all x, y
∈ X.

Then COP(g, T ) ∩ F(T ) �= ∅.
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Proof Define ĥ(t) = 0 for all t ∈ [0,∞). So (b◦) implies(b′′1) and hence the conclu-
sion follows from Theorem 5.101.

As a direct consequence of Theorem 5.101, we obtain the following result.

Theorem 5.103 Let (X, d) be a complete metric space, T : X → C B(X) be a mul-
tivalued map, g : X → X be continuous self-maps and ϕ : (0,∞) → [0, 1

2 ) be a
P-function. Assume that
(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X;
(b2) there exists L ≥ 0 and a function k : X → [0, L] such that

H(T x, T y) � ϕ(d(x, y)) [d(x, T x)+ d(y, T y)] + k(gy)(d(gy, T x) for all x,

y ∈ X.

Then COP(g, T ) ∩ F(T ) �= ∅.

Example 5.41 Let �∞, ‖ · ‖∞,H∞, {en}, {τn}, X, T, f, g, θ and ϕ be the same as in
Example 5.40. Let {τn} be a sequence of positive real numbers satisfying τ1 = τ2 =
τ3, τn+1 < τn for all n ≥ 3 and L ′ = L + τ � τn for all n ∈ N and for some τ > 0
(e.g. let τ1 = L ′ + 1

2 = τ2 = τ3, τn = L ′ + 1
n+2 for n ≥ 3). Thus, the sequence {τn}

is convergent. Put vn = τnen for all n ∈ N and let X = {vn}n∈N be a bounded and
complete subset of �∞. Then (X, ‖ · ‖∞) be a complete metric space and ‖vn −
vm‖∞ = τn if m > n.

Let T : X → C B(X) and g : X → X be defined by

T vn :=
{
{v1, v2, v3}, if n ∈ {1, 2, 3}
X \ {v1, v2, . . . , vn, vn+1}, if n ≥ 4

and

gvn :=
{

v2, if n ∈ {1, 2, 3}
vn+1, if n ≥ 4

respectively. Then we observe that the following hold.
(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X ;
(b1) COP(g, T ) ∩ F(t) = {v1, v2, v3}.
(c) g is continuous.
Since

1. ‖gv1 − gv2‖∞ = 0 < τ1 = ‖v1 − v2‖∞
2. ‖gv1 − gv3‖∞ = 0 < τ1 = ‖v1 − v3‖∞
3. ‖gv1 − gvm‖∞ = τ2 = τ1 = ‖v1 − vm‖∞ for any m ≥ 4

4. ‖gv2 − gv3‖∞ = 0 < τ2 = ‖v2 − v3‖∞
5. ‖gv2 − gvm‖∞ = τ2 = ‖v2 − vm‖∞ for any m ≥ 4
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6. ‖gv3 − gvm‖∞ = τ2 = τ3 = ‖v3 − vm‖∞ for any m ≥ 4

7. ‖gvn − gvm‖∞ = τn+1 < τn = ‖vn − vm‖∞ for any n ≥ 4 and m > n

Since g is nonexpansive, it follows that g is continuous on X .
Define ϕ : [0,∞) → [0, 1

2 ) by

ϕ(t) :=

⎧⎪⎨
⎪⎩

τn
L ′ , if t = τn for n ∈ {1, 2, 3}
τn+2

L ′ , if t = τn for n ≥ 4

0, otherwise.

Define k : X → [0, L] by

k(vn) :=
{

L√
2
, if n ∈ {1, 2, 3}

L(1− τn
τ1

), if n ≥ 4.

Notice that lim sup
s→t+

ϕ(s) = 0 < 1
2 for all t ∈ [0,∞), therefore ϕ is a P-function.

In order to verify that T satisfies

H∞(T x, T y) � ϕ(‖x − y‖∞){‖x − T x‖∞ + ‖y − T y‖∞}
+ k(gy)‖gy − T x‖∞ for all x, y ∈ X (∗∗)

we need to consider the following thirteen cases:
Case 1. ϕ(‖v1 − v2‖∞){‖v1 − T v1‖∞ + ‖v2 − T v2‖∞)} + k(gv2)‖gv2 − T v1‖∞

= 0 = H∞(T v1, T v2).

Case 2. ϕ(‖v1 − v3‖∞){‖v1 − T v1‖∞ + ‖v3 − T v3‖∞} + k(gv3)‖gv3 − T v1‖∞
= 0 = H∞(T v1, T v3).

Case 3. For any m ≥ 4, we have
ϕ(‖v1 − vm‖∞){‖v1 − T v1‖∞ + ‖vm − T vm‖∞} + k(gvm)‖gvm − T v1‖∞

= τ1τm
L ′ + L(τ1 − τm+1) ≥ τ1 + L(τ1 − τm+1) > τ1 = H∞(T v1, T vm).

Case 4. ϕ(‖v2 − v3‖∞){‖v2 − T v2‖∞ + ‖v3 − T v3‖∞} + k(gv3)‖gv3 − T v2‖∞
= 0 = H∞(T v2, T v3).

Case 5. For any m ≥ 4, we have
ϕ(‖v2 − vm‖∞){‖v2 − T v2‖∞ + ‖vm − T vm‖∞} + k(gvm)‖gvm − T v2‖∞

= τ2τm
L ′ + L(τ1 − τm+1) ≥ τ2 + L(τ1 − τm+1) > τ2 = H∞(T v2, T vm).

Case 6. For any m ≥ 4, we have
ϕ(‖v3 − vm‖∞){‖v3 − T v3‖∞ + ‖vm − T vm‖∞} + k(gvm)‖gvm − T v3‖∞

= τ3τm
L ′ + L(τ1 − τm+1) ≥ τ3 + L(τ1 − τm+1) > τ3 = H∞(T v3, T vm).
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Case 7. For any n ≥ 4 and m > n, we have
ϕ(‖vn − vm‖∞){‖vn − T vn‖∞ + ‖vm − T vm‖∞} + k(gvm)‖gvm − T vn‖∞

= τn+2(τn+τm )

L ′ ≥ τn+2 + τn+2τm

L ′ > τn+2 = H∞(T vn, T vm).

Hence, we conclude that T satisfies (∗∗). Applying Theorem 5.99, we have

COP( f, g, T ) ∩ F(T ) �= ∅.

The following result easily follows from Theorem 5.103.

Theorem 5.104 Let (X, d) be a complete metric space, T : X → C B(X) be a mul-
tivalued map, g : X → X be continuous self-maps and ϕ : (0,∞) → [0, 1

2 ) be a
P-function. Assume that
(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X;
(b3) there exists L ≥ 0 such that

H(T x, T y) � ϕ(d(x, y)) [d(x, T x)+ d(y, T y)] + L(d(gy, T x) for all
x, y ∈ X.

Then COP(g, T ) ∩ F(T ) �= ∅.

Proof Define k : X → [0, L] by k(x) = L for all x ∈ X . Then, we see that (b3)

implies (b2) and hence the conclusion follows from Theorem 5.103.

Remark 5.34 Since (b2) implies k(x) � L for all x ∈ X , it follows that (b2) implies
(b3). As a consequence, we find that (b2) and (b3) are indeed equivalent.

The following intersection theorem is also immediate from Theorem 5.101.

Theorem 5.105 Let (X, d) be a complete metric space, T : X → C B(X) be a mul-
tivalued map, g : X → X be a continuous self-map and ϕ : (0,∞) → [0, 1

2 ) be a
P-function. Assume that
(a) T x is g-invariant (i.e. g(T x) ⊆ T x) for each x ∈ X;
(b4) there exists L ≥ 0 and a function k̄ : X → [L ,∞) such that
H(T x, T y) � ϕ(d(x, y)) [d(x, T x)+ d(y, T y)] + k̄(gy)(d(gy, T x) for all
x, y ∈ X.

Then COP(g, T ) ∩ F(T ) �= ∅.

By applying Theorem 5.99, we can obtain generalized version of primitive Chat-
terjea’s fixed point theorem [140] for multivalued mappings as follows:

Theorem 5.106 Let (X, d) be a complete metric space, T : X → C B(X) be a mul-
tivalued map and ϕ : (0,∞) → [0, 1

2 ) be a P-function and k̃ : X → [0,∞) be a
function. Assume that
H(T x, T y)�ϕ(d(x, y)) [d(x, T y)+d(y, T x)] + k̃(y)(d(y, T x) for all x, y ∈ X.

Then F(T ) �= ∅.

By applying Theorem 5.101, we can obtain generalized version of primitive Kan-
nan’s fixed point theorem [308] for multivalued mappings as follows:

Theorem 5.107 Let (X, d) be a complete metric space, T : X → C B(X) be a mul-
tivalued map and ϕ : (0,∞) → [0, 1

2 ) be a P-function and k̃ : X → [0,∞) be a
function. Assume that
H(T x, T y)�ϕ(d(x, y)) [d(x, T x)+ d(y, T y)] + k̃(y)(d(y, T x) for all x, y ∈ X.

Then F(T ) �= ∅.
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5.4.3 Coincidence and Common Fixed Points of Nonlinear
Hybrid Mappings

The concept of commutativity of single-valued mappings [296] was extended in
[306] to the setting of a single-valued mapping and a multivalued mapping on a
metric space. This concept of commutativity has been further generalized by different
authors, viz. weakly commuting [307], compatible [561] and weakly compatible
[449]. It is interesting to note that in all the results obtained so far, concerning common
fixed points of hybrid mappings, the (single-valued and multivalued) mappings under
consideration satisfy either the commutativity condition or one of its generalizations
(see, for instance, [42, 420, 449, 459, 460]).

In this section, we present some existence results of fixed points of hybrid contrac-
tions which do not satisfy any of the commutativity conditions or its above-mentioned
generalizations in the field of hybrid fixed point theory.

For a metric space (X, d), let (C B(X), H) and (C L(X), H) denote, respectively,
the hyperspace of nonempty, closed, bounded and nonempty, closed subsets of X,
where H is the Hausdorff metric induced by d. For f : X → X and T : X → C L(X)

we shall use the following notations:

L(x, y) = max{d( f x, f y), d( f x, T x), d( f y, T y),
1

2
(d( f x, T y)+ d( f y, T x))},

N (x, y) = [max{d2( f x, f y), d( f x, T x) · d( f y, T y), d( f x, T y) · d( f y, T x),

1

2
d( f x, T x) · d( f y, T x),

1

2
d( f x, T y) · d( f y, T y)}] 1

2 .

We recall some definitions.

Definition 5.52 Mappings f and T are said to be commuting at a point x ∈ X if
f T x ⊆ T f x . The mappings f and T are said to be commuting on X if f T x ⊆ T f x
for all x ∈ X.

Definition 5.53 Mappings f and T are said to be weakly commuting at a point
x ∈ X if

H( f T x, T f x) � d( f x, T x).

The mappings f and T are said to be weakly commuting on X if

H( f T x, T f x) � d( f x, T x)

for all x ∈ X.

Definition 5.54 The mappings f and T are said to be compatible if f T x ∈ C B(X)

for all x ∈ X and limn→+∞ H(T f xn, f T xn) = 0, whenever {xn} is a sequence in
X, such that T xn → M ∈ C B(X) and f xn → t ∈ M, as n →+∞.
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Definition 5.55 The mappings f and T are said to be f-weak compatible if f T x ∈
C B(X) for all x ∈ X and the following limits exist and satisfy the inequalities:
(i) limn→∞ H(T f xn, f T xn) � limn→∞ H(T f xn, T xn), (i i) limn→∞ d( f T xn,

f xn) � limn→∞ H(T f xn, T xn),

whenever {xn} is a sequence in X, such that T xn → M ∈ C B(X) and f xn → t ∈ M
as n →∞.

Let C(T, f ) denote the set of all coincidence points of the mappings f and T , that
is C(T, f ) = {u : f u ∈ T u}.
Definition 5.56 The mappings f and T are said to be coincidentally commuting if
they commute at their coincidence points.

Definition 5.57 Mappings f and T are said to be coincidentally idempotent if
f f u = f u for every u ∈ C(T, f ), that is, if f is idempotent at the coincidence
points of f and T .

Definition 5.58 Mappings f and T are said to be occasionally coincidentally idem-
potent (or, in brief, oci) if f f u = f u for some u ∈ C(T, f ).

It should be remarked that coincidentally idempotent pairs of mappings are occa-
sionally coincidentally idempotent, but the converse is not necessarily true as shown
in Example 5.46 of this section.

We recall the following lemma:

Lemma 5.13 ([449]) Let T : Y → C B(X) and f : Y → X be f -weak compati-
ble. If { f w} = T w for some w ∈ Y and H(T x, T y) � h (a · L(x, y)+ (1− a) ·
N (x, y)) for all x, y in Y , where 0 < h < 1, 0 � a � 1, then f T w = T f w.

We remark that the above-mentioned lemma has been used in [449, 459, 460], to
prove the existence of fixed points of hybrid mappings.

In 2013, Pathak and Rodríguez-López [463] proved a fixed point result for hybrid
mappings under a general integral-type contractivity condition for occasionally coin-
cidentally idempotent mappings.

Theorem 5.108 Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y → X and T : Y → C B(X) be such that

T (Y ) ⊆ f (Y ), (5.83)

that is, ∪y∈Y T (y) ⊆ f (Y ),

∃q ∈ (0, 1) such that
∫ H(T x,T y)

0
ψ(t) dt � q

∫ L(x,y)

0
ψ(t) dt, ∀ x, y ∈ Y, (5.84)

f (Y ) is complete, (5.85)
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ψ : R+ → R+ is a Lebesgue measurable mapping which is nonnegative, summable
on each compact interval, and such that

ψ(x) > 0, ∀x > 0, (5.86)

which trivially implies that

∫ ε

0
ψ(t) dt > 0 for each ε > 0 (5.87)

and

∫ ε

0
ψ(t) dt <

∫ ε̃

0
ψ(t) dt for each 0 < ε < ε̃. (5.88)

Suppose also that

∫ με

0
ψ(t) dt � γ (μ)

∫ ε

0
ψ(t) dt, for each μ > 1 and ε > 0, (5.89)

where γ : (1,+∞) −→ R+ is such that

0 < γ (q−1/2) · q < 1 (5.90)

and

γ (q−1/2) · q · γ
(

1

γ (q−1/2) · q

)
� 1. (5.91)

Then T and f have a coincidence point. Further, if f and T are occasionally coin-
cidentally idempotent, then f and T have a common fixed point.

Proof In view of (5.83) and Nadler’s Remark in [416], given the point x0 ∈ Y , we
can construct two sequences {xn} in Y and {yn} in X such that, for each n ∈ N,

yn = f xn ∈ T xn−1 and d(yn, yn+1) � q−1/2 · H(T xn−1, T xn).

Indeed, since T x0 ⊆ f (Y ), there exists x1 ∈ Y such that f x1 = y1 ∈ T x0. Besides,
given y1 ∈ T x0, by Nadler’s Remark in [416] and using that q−1/2 > 1, we can
choose y2 ∈ T x1 ⊆ f (Y ) such that d(y1, y2) � q−1/2 · H(T x0, T x1) and y2 = f x2

for a certain x2 ∈ Y . The continuation of this process allows to construct the two
above-mentioned sequences {xn} and {yn} inductively.

We claim that {yn} is a Cauchy sequence. Using the inequality in (5.84) and also
property (5.89), which is trivially valid for ε = 0, it follows, for n ≥ 2, that
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∫ d( f xn−1, f xn)

0
ψ(t) dt �

∫ q−1/2 H(T xn−2,T xn−1)

0
ψ(t) dt

� γ (q−1/2)

∫ H(T xn−2,T xn−1)

0
ψ(t) dt

� γ (q−1/2) · q
∫ L(xn−2,xn−1)

0
ψ(t) dt,

where

L(xn−2, xn−1)

= max{d( f xn−2, f xn−1), d( f xn−2, T xn−2), d( f xn−1, T xn−1),

1

2
(d( f xn−2, T xn−1)+ d( f xn−1, T xn−2))}

� max{d( f xn−2, f xn−1), d( f xn−2, f xn−1), d( f xn−1, f xn),
1

2
d( f xn−2, f xn)}

� max{d( f xn−2, f xn−1), d( f xn−1, f xn),
1

2
(d( f xn−2, f xn−1)+ d( f xn−1, f xn))}

= max{d( f xn−2, f xn−1), d( f xn−1, f xn)}.

Suppose that

d( f xn−1, f xn) > λ · d( f xn−2, f xn−1), for some n ∈ N with n ≥ 2,

where λ = γ (q−1/2) · q ∈ (0, 1), hence d( f xn−1, f xn) > 0 and

0 < max{d( f xn−2, f xn−1), d( f xn−1, f xn)} <
1

λ
d( f xn−1, f xn),

so that

∫ d( f xn−1, f xn)

0
ψ(t) dt � γ (q−1/2) · q

∫ max{d( f xn−2, f xn−1),d( f xn−1, f xn)}

0
ψ(t) dt

< γ (q−1/2) · q
∫ 1

λ
d( f xn−1, f xn)

0
ψ(t) dt

� γ (q−1/2) · q · γ
(

1

λ

)∫ d( f xn−1, f xn)

0
ψ(t) dt

�
∫ d( f xn−1, f xn)

0
ψ(t) dt,

where we have also used (5.88) (a consequence of (5.86)), (5.89)–(5.91). The previous
inequalities imply that
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∫ d( f xn−1, f xn)

0
ψ(t) dt <

∫ d( f xn−1, f xn)

0
ψ(t) dt,

which is a contradiction. In consequence,

d( f xn−1, f xn) � λ · d( f xn−2, f xn−1), for every n ∈ N, n ≥ 2,

where λ = γ (q−1/2) · q ∈ (0, 1), by hypothesis, and hence { f xn} is a Cauchy
sequence in f (Y ). This is clear from the following inequality, valid for n, m ∈ N,
n > m,

d( f xn, f xm) �
n∑

j=m+1

d( f x j , f x j−1)

�
n∑

j=m+1

λ j−1d( f x1, f x0) = λm − λn

1− λ
d( f x1, f x0)

� λm

1− λ
d( f x1, f x0),

which tends to zero as m →+∞.
Since f (Y ) is complete, then the sequence { f xn} has a limit in f (Y ), say u. Let

w ∈ f −1(u) and prove that f w ∈ T w.
Suppose that f w /∈ T w, then, by (5.84), we have

∫ d( f xn+1,T w)

0
ψ(t) dt �

∫ H(T xn ,T w)

0
ψ(t) dt � q

∫ L(xn ,w)

0
ψ(t) dt,

where

L(xn, w) = max{d( f xn, f w), d( f xn, T xn), d( f w, T w),
1

2
(d( f xn, T w)+ d( f w, T xn))}

= d( f w, T w), for n large.

Here, we have used that d( f xn, f w) = d( f xn, u) → 0, as n →+∞, d( f xn,

T xn) � d( f xn, f xn+1) → 0, as n →+∞, d( f w, T w) > 0 due to f w /∈ T w and
T w closed, and

1

2
(d( f xn, T w)+ d( f w, T xn)) � 1

2
(2d( f xn, f w)+ d( f w, T w)+ d( f xn, T xn))

→ 1

2
d( f w, T w), as n →+∞.

Hence, for n large enough, we have
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∫ d( f xn+1,T w)

0
ψ(t) dt � q

∫ d( f w,T w)

0
ψ(t) dt.

Making n tend to +∞ in the previous inequality, we have

∫ d( f w,T w)

0
ψ(t) dt � q

∫ d( f w,T w)

0
ψ(t) dt

and, therefore, since q < 1 and d( f w, T w) > 0, we get

∫ d( f w,T w)

0
ψ(t) dt <

∫ d( f w,T w)

0
ψ(t) dt,

which is a contradiction. Hence, f w ∈ T w, that is, w is a coincidence point for T
and f .

Although this fact is not relevant to the proof, we note that H(T xn−1, T xn) → 0,
since limn→∞ d(yn−1, yn) = 0. Indeed,

∫ H(T xn−1,T xn)

0
ψ(t) dt � q

∫ L(xn−1,xn)

0
ψ(t) dt,

where

L(xn−1, xn) � max{d( f xn−1, f xn), d( f xn, f xn+1)}
� max{d( f xn−1, f xn), λd( f xn−1, f xn)}
= d( f xn−1, f xn),

therefore ∫ H(T xn−1,T xn)

0
ψ(t) dt � q

∫ d( f xn−1, f xn)

0
ψ(t) dt.

Then limn→+∞
∫ H(T xn−1,T xn)

0 ψ(t) dt = 0 and, by the properties of ψ , we get
H(T xn−1, T xn) → 0 as n →+∞. From the definition of {yn}, we deduce that
d( f xn, T xn) � H(T xn−1, T xn), for every n and, therefore, limn→∞ d( f xn, T xn) =
0, so that {xn} is asymptotically T -regular with respect to f . However, this property
can be deduced directly from the fact that

0 � d( f xn, T xn) � d( f xn, f xn+1) → 0, as n →+∞.

Now, if f and T are occasionally coincidentally idempotent, then f f w = f w for
some w ∈ C(T, f ). Then, we have

∫ H(T f w,T w)

0
ψ(t) dt � q

∫ L( f w,w)

0
ψ(t) dt, (5.92)
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where

L( f w, w) = max{d( f f w, f w), d( f f w, T f w), d( f w, T w),

1

2
(d( f f w, T w)+ d( f w, T f w))}

= max{d( f w, f w), d( f w, T f w), d( f w, T w),
1

2
(d( f w, T w)+ d( f w, T f w))}

= d( f w, T f w) � H(T w, T f w).

If T f w �= T w, then from inequality (5.92) and using (5.87) (which is guaranteed
by (5.86)), we have that

∫ H(T f w,T w)

0
ψ(t) dt � q

∫ H(T f w,T w)

0
ψ(t) dt <

∫ H(T f w,T w)

0
ψ(t) dt,

which is a contradiction. Hence, T f w = T w. Thus, we have f w = f f w and f w ∈
T w = T f w, i.e. f w is a common fixed point of f and T . �

Let � denote the family of maps φ from the set R+ of nonnegative real numbers
to itself such that

φ(t) � qt for all t ≥ 0 and for some q ∈ (0, 1). (5.93)

Corollary 5.24 Let Y be an arbitrary nonempty set, (X, d) be a metric space, f :
Y → X and T : Y → C B(X) be such that T (Y ) ⊆ f (Y ),

∫ H(T x,T y)

0
ψ(t) dt � φ

( ∫ L(x,y)

0
ψ(t) dt

)
(5.94)

for all x, y in Y , where φ ∈ � (satisfying (5.93) for a certain q ∈ (0, 1)),

f (Y ) is complete,

ψ : R+ → R+ is a Lebesgue measurable mapping which is nonnegative, summable
on each compact interval, and such that (5.86) holds. Suppose also that (5.89)–
(5.91) hold for a certain γ : (1,+∞) −→ R+ and q determined by (5.93). Then T
and f have a coincidence point. Further, if f and T are occasionally coincidentally
idempotent, then f and T have a common fixed point.

Proof It is a consequence of Theorem 5.108 since (5.93) and (5.94) imply that

∫ H(T x,T y)

0
ψ(t) dt � φ

( ∫ L(x,y)

0
ψ(t) dt

)
� q

∫ L(x,y)

0
ψ(t) dt,

for all x, y in Y and q ∈ (0, 1). �



5.4 Fixed Point Theorems for Multifunctions 361

Remark 5.35 Condition
∫ με

0
ψ(t) dt � μ

∫ ε

0
ψ(t) dt, for each μ > 1, and ε > 0, (5.95)

implies the validity of hypothesis (5.89) in Theorem 5.108 for the particular case of
γ the identity mapping. Moreover, for 0 < q < 1, hypotheses (5.90) and (5.91) are
trivially satisfied for this choice of γ . Indeed, using that 0 < q < 1, we get

0 < γ (q−1/2) · q = q−1/2 · q = q1/2 < 1,

and

γ (q−1/2) · q · γ
(

1

γ (q−1/2) · q

)
= q−1/2q

1

q−1/2q
= 1.

Remark 5.36 Assuming (5.90), condition (5.91) is trivially valid if λ · γ ( 1
λ
) � 1, for

every λ ∈ (0, 1), or, equivalently, γ ( 1
λ
) � 1

λ
, for every λ ∈ (0, 1), that is, γ (z) � z,

for every z > 1. Note that this last condition is trivially valid for γ the identity
mapping. Moreover, if γ (z) � z, for every z > 1, then γ (z) < z2, for every z > 1
and, therefore, if q ∈ (0, 1), then γ (q−1/2) < q−1, obtaining (5.90) if γ (q−1/2) > 0.

Remark 5.37 According to Remark 5.36, for q ∈ (0, 1) fixed and ψ satisfying (5.86),
an admissible function γ can be obtained by taking

γ (z) ≥ sup
ε>0

∫ zε
0 ψ(t) dt∫ ε

0 ψ(t) dt
, z > 1,

provided that γ (q−1/2) > 0 and γ (z) � z, for every z > 1.

Example 5.42 Taking ψ as the constant function ψ(t) = K > 0, t > 0, in the state-
ment of Theorem 5.108, condition (5.89) is reduced to

Kμε � γ (μ)K ε, for each μ > 1 and ε > 0,

so that we must choose γ as a nonnegative function satisfying that γ (z) = z for
z > 1 (obviously, γ (q−1/2) > 0 since q ∈ (0, 1)), in order to guarantee conditions
(5.89)–(5.91).

Example 5.43 A simple calculation provides that, for function ψ(t) = t , t > 0, con-
dition (5.89) is written as γ (z) ≥ z2 for z > 1 and, therefore, in this case, condition
(5.90) is never fulfilled. If we take ψ(t) = K tm , t > 0, for K > 0 and m > 0 fixed,
then (5.89) implies that γ (z) ≥ zm+1 > z, for z > 1.

Example 5.44 Now, we choose ψ(t) = K tm , t > 0, where K > 0 and−1 < m < 0
are fixed. Note that the case m = 0 has already been studied in Example 5.42. In this
case −1 < m < 0, condition (5.89) is reduced to
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K
(με)m+1

m + 1
� γ (μ)K

εm+1

m + 1
, for μ > 1 and ε > 0,

which is equivalent to γ (z) ≥ zm+1, for z > 1. Note that this inequality implies, for
0 < q < 1, that γ (q−1/2) > 0. If we add the hypothesis γ (z) � z, for z > 1, then we
guarantee the validity of conditions (5.90) and (5.91) due to Remark 5.36. Hence,
we can take any nonnegative function γ satisfying that

zm+1 � γ (z) � z, for z > 1.

Of course, γ (z) = z and γ (z) = zm+1 are valid choices.

Example 5.45 Take ψ(t) = e−t , t > 0. Condition (5.89) is equivalent to

1− e−με � γ (μ)(1− e−ε), for μ > 1 and ε > 0,

that is,

γ (μ) ≥ 1− e−με

1− e−ε
, for μ > 1 and ε > 0.

Now, for each z > 1 fixed, we calculate sup
ε>0

1− e−zε

1− e−ε
, which is obviously positive

and we check that its value is equal to z.
It is easy to prove that, for z > 1 fixed, the function ε ∈ (0,+∞) −→ Rz(ε) =

1− e−zε

1− e−ε
is decreasing on (0,+∞). Indeed, the sign of its derivative coincides

with the sign of the function ν(ε) = ze−zε(1− e−ε)− (1− e−zε)e−ε and also with
the sign of τ(ε) = ze−zε(eε − 1)+ e−zε − 1, for ε ∈ (0,+∞). Now, function τ is
strictly negative on (0,+∞), since τ(0) = τ(0+) = 0 and τ ′(ε) = z(1− z)e−zε(eε −
1) < 0, for ε > 0.

Moreover, limε→0+ Rz(ε) = z, for each z > 1, in consequence, sup
ε>0

Rz(ε) = z,

for every z > 1. Therefore, if γ (z) ≥ z, for every z > 1, then (5.89) follows. Note
also that, if q ∈ (0, 1), then γ (q−1/2) > 0. Finally, for q ∈ (0, 1), if we take γ :
(1,+∞) −→ R+ such that γ (z) = z, for z > 1, we deduce the validity of (5.89)–
(5.91).

The following example shows that Theorem 5.108 is a proper generalization of
the fixed point results in [420, 449, 459, 460].

Example 5.46 Let X = R+ be endowed with the Euclidean metric, f : X → X and
T : X → C B(X) be defined by

f x = 4(x2 + x) and T x = [0, x2 + 7] ∀x ∈ X.

Let φ : R+ → R+ be defined by φ(t) = 1
4 t , for all t ∈ R+. Then mappings f and

T are not commuting and also do not satisfy any of its generalizations, viz. weakly
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commuting, compatibility, weak compatibility. Also the mappings f and T are non-
coincidentally commuting. Note that f 1 ∈ T 1, but f f 1 �= f 1 and so f and T are
not coincidentally idempotent, but f 0 ∈ T 0 and f f 0 = f 0 thus f and T are occa-
sionally coincidentally idempotent. For all x and y in X , we have

∫ H(T x,T y)

0
ψ(t) dt =

∫ |x2−y2|
0

ψ(t) dt =
∫ (

x+y
4 )· 1

(x+y+1)
·(4 |x−y|.(x+y+1))

0
ψ(t) dt

=
∫ (

x+y
4 )· 1

(x+y+1)
·(4 |x2−y2+x−y|)

0
ψ(t) dt �

∫ 1
4 d( f x, f y)

0
ψ(t) dt

� 1

4

∫ d( f x, f y)

0
ψ(t) dt � 1

4

∫ L(x,y)

0
ψ(t) dt = φ

( ∫ L(x,y)

0
ψ(t) dt

)
.

Note that these inequalities are valid if

∫ 1
4 d( f x, f y)

0
ψ(t) dt � 1

4

∫ d( f x, f y)

0
ψ(t) dt,

which is satisfied taking, for instance, the constant function ψ ≡ 1. On the other
hand, γ is chosen as the identity map and it satisfies (5.90) and (5.91).

Note that 0 is a common fixed point of f and T . We remark that the results of
[420, 449, 459] and [460] cannot be applied to these mappings f and T .

Theorem 5.109 In Theorem 5.108, we can assume instead of condition (5.84) one
of the inequalities

∫ H(T x,T y)

0
ψ(t) dt � q

(
a
∫ L(x,y)

0
ψ(t) dt + b

∫ N (x,y)

0
ψ(t) dt

)
, ∀ x, y ∈ Y, (5.96)

or

∫ H(T x,T y)

0
ψ(t) dt � q

∫ aL(x,y)+bN (x,y)

0
ψ(t) dt, ∀ x, y ∈ Y, (5.97)

where a, b ≥ 0, a + b � 1 and q ∈ (0, 1).
Similarly, in Corollary 5.24, we can consider one of the contractivity conditions

∫ H(T x,T y)

0
ψ(t) dt � φ

(
a
∫ L(x,y)

0
ψ(t) dt + b

∫ N (x,y)

0
ψ(t) dt

)
, ∀ x, y ∈ Y, (5.98)

or

∫ H(T x,T y)

0
ψ(t) dt � φ

( ∫ aL(x,y)+bN (x,y)

0
ψ(t) dt

)
, ∀ x, y ∈ Y, (5.99)

where a, b ≥ 0, a + b � 1 and φ ∈ � (satisfying (5.93) for a certain q ∈ (0, 1))
and the conclusion follows.
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Proof It follows from the inequality

N (x, y) � L(x, y), for every x, y

and the nonnegative character of a, b and ψ . Indeed, d2( f x, f y) � [L(x, y)]2,

d( f x, T x) · d( f y, T y) � [L(x, y)]2,

d( f x, T y) · d( f y, T x) � 1

4
(d( f x, T y)+ d( f y, T x))2 � [L(x, y)]2,

1

2
d( f x, T x) · d( f y, T x) � [max{d( f x, T x),

1

2
(d( f x, T y)+ d( f y, T x))}]2 � [L(x, y)]2,

1

2
d( f x, T y) · d( f y, T y) � [max{d( f y, T y),

1

2
(d( f x, T y)+ d( f y, T x))}]2 � [L(x, y)]2,

hence, for instance,

a
∫ L(x,y)

0
ψ(t) dt + b

∫ N (x,y)

0
ψ(t) dt � (a + b)

∫ L(x,y)

0
ψ(t) dt �

∫ L(x,y)

0
ψ(t) dt.

Note that, in cases (5.98) and (5.99), it is not necessary to assume the nondecreasing
character of the function φ since, using that φ ∈ �, we deduce (5.96) and (5.97),
respectively. �

Of course, function φ ≡ 0 is admissible in the results of this section. Note that,
taking a = 1 and b = 0 in the inequalities of Theorem 5.109, we obtain the cor-
responding contractivity conditions of Theorem 5.108 and Corollary 5.24. On the
other hand, taking a = 0 and b = 1 in Theorem 5.109, we have the following results,
which are also Corollaries of Theorem 5.108.

Corollary 5.25 Let Y be an arbitrary nonempty set, (X, d) be a metric space, f :
Y → X and T : Y → C B(X) be such that conditions (5.83), (5.85) hold and

∫ H(T x,T y)

0
ψ(t) dt � q

∫ N (x,y)

0
ψ(t) dt, ∀ x, y ∈ Y, (5.100)

where 0 < q < 1 and ψ : R+ → R+ is a Lebesgue measurable mapping which is
nonnegative, summable on each compact interval, and such that (5.86) holds. Assume
also that (5.89)–(5.91) are fulfilled for a certain γ : (1,+∞) −→ R+. Then f and
T have a coincidence point. Further, if f and T are occasionally coincidentally
idempotent, then f and T have a common fixed point.
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Corollary 5.26 Let Y be an arbitrary nonempty set, (X, d) be a metric space, f :
Y → X and T : Y → C B(X) be such that conditions (5.83), (5.85) hold and

∫ H(T x,T y)

0
ψ(t) dt � φ

( ∫ N (x,y)

0
ψ(t) dt

)
, ∀ x, y ∈ Y, (5.101)

where φ ∈ � (satisfying (5.93) for q ∈ (0, 1)) and ψ : R+ → R+ is a Lebesgue
measurable mapping which is nonnegative, summable on each compact interval,
and such that (5.86) holds. Assume also that (5.89)–(5.91) are fulfilled for a certain
γ : (1,+∞) −→ R+. Then f and T have a coincidence point. Further, if f and
T are occasionally coincidentally idempotent, then f and T have a common fixed
point.

Letη : [0,∞) → [0, 1)be a function having the following property (see, for instance,
[42, 279]):

(P) For t ≥ 0, there exist δ(t) > 0, s(t) < 1, such that 0 � r − t < δ(t) implies
η(r) � s(t).

This property obviously holds if η is continuous since η attains its maximum (less
than 1) on each compact [t, t + δ(t)].
Definition 5.59 A sequence {xn} is said to be asymptotically T -regular with respect
to f if limn→∞ d( f xn, T xn) = 0.

The following theorem is related to the main results of Hu [279, Theorem 2],
Jungck [296], Kaneko [306, 307], Nadler [416, Theorem 5] and Beg and Azam [42,
Theorem 5.4 and Corollary 5.5].

Theorem 5.110 Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y → X and T : Y → C L(X) be such that condition (5.83) holds and

∫ H(T x,T y)

0
ψ(t) dt < η(d( f x, f y))

∫ d( f x, f y)

0
ψ(t) dt, (5.102)

for all x, y ∈ Y , where η : [0,∞) → [0, 1) satisfies (P) and ψ ≥ 0 is nonincreas-
ing. Suppose also that T x is a compact set, for every x ∈ Y . If f (Y ) is complete,
then
(i) there exists an asymptotically T -regular sequence {xn} with respect to f in Y .
(i i) f and T have a coincidence point.
Further, if f and T are occasionally coincidentally idempotent, then f and T have
a common fixed point.

Proof For some x0 in Y, let y0 = f x0 and choose x1 in Y such that y1 = f x1 ∈ T x0.
Then, by (5.102), we have

∫ H(T x0,T x1)

0
ψ(t) dt < η(d( f x0, f x1))

∫ d( f x0, f x1)

0
ψ(t) dt.
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Using (5.83), we can choose x2 ∈ Y such that y2 = f x2 ∈ T x1 and satisfying that

d(y1, y2) = d( f x1, y2) = d( f x1, T x1) � H(T x0, T x1),

hence

∫ d(y1,y2)

0
ψ(t) dt =

∫ d( f x1, f x2)

0
ψ(t) dt

< η(d( f x0, f x1))

∫ d( f x0, f x1)

0
ψ(t) dt

�
∫ d( f x0, f x1)

0
ψ(t) dt.

Note that, in the previous inequalities, we have used that d( f x0, f x1) > 0. If
d( f x0, f x1) = 0, then f x0 = f x1 ∈ T x0 and {xn} is asymptotically T -regular with
respect to f .

By induction, we construct a sequence {xn} in Y and {yn} in f (Y ), such that, for
every n,

d( f xn−1, yn) = d( f xn−1, T xn−1) = min
y∈T xn−1

d( f xn−1, y) � H(T xn−2, T xn−1),

and yn = f xn ∈ T xn−1.
Also, we have

∫ d(yn+1,yn+2)

0
ψ(t) dt =

∫ d( f xn+1, f xn+2)

0
ψ(t) dt

=
∫ d( f xn+1,T xn+1)

0
ψ(t) dt �

∫ H(T xn ,T xn+1)

0
ψ(t) dt

� η(d( f xn, f xn+1))

∫ d( f xn , f xn+1)

0
ψ(t) dt

<

∫ d( f xn , f xn+1)

0
ψ(t) dt =

∫ d(yn ,yn+1)

0
ψ(t) dt.

It follows that the sequence {d(yn, yn+1)} is decreasing and converges to its greatest
lower bound, say t . Clearly t ≥ 0. If t > 0, then by property (P) of η, there will
exist δ(t) > 0, and s(t) < 1 such that

0 � r − t < δ(t) implies η(r) � s(t).
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For this δ(t) > 0 there exists N ∈ N such that 0 � d(yn, yn+1)− t < δ(t), whenever
n ≥ N .Hence,η(d(yn, yn+1)) � s(t),whenever n ≥ N .Let K = max{η(d(y0, y1)),

η(d(y1, y2)), . . . , η(d(yN−1, yN )), s(t)}. Then for n = 1, 2, 3, . . . , we have

∫ d(yn ,yn+1)

0
ψ(t) dt < η(d(yn−1, yn))

∫ d(yn−1,yn)

0
ψ(t) dt

� K
∫ d(yn−1,yn)

0
ψ(t) dt

� K n
∫ d(y0,y1)

0
ψ(t) dt → 0, as n →∞,

which contradicts the assumption that t > 0. Thus, limn→∞ d(yn, yn+1) = 0; i.e.
d( f xn, T xn) → 0, as n →+∞. Hence, the sequence {xn} is asymptotically T -
regular with respect to f.

We claim that { f xn} is a Cauchy sequence. Let n, m ∈ N with n < m, then, by
the nonincreasing character of ψ , we get

∫ d(yn ,ym )

0
ψ(t) dt �

∫ d(yn ,yn+1)+d(yn+1,yn+2)+···+d(ym−1,ym )

0
ψ(t) dt

=
∫ d(yn ,yn+1)

0
ψ(t) dt +

∫ d(yn ,yn+1)+d(yn+1,yn+2)

d(yn ,yn+1)

ψ(t) dt

+ · · · +
∫ d(yn ,yn+1)+d(yn+1,yn+2)+···+d(ym−1,ym )

d(yn ,yn+1)+d(yn+1,yn+2)+···+d(ym−2,ym−1)

ψ(t) dt

�
∫ d(yn ,yn+1)

0
ψ(t) dt +

∫ d(yn+1,yn+2)

0
ψ(t) dt

+ · · · +
∫ d(ym−1,ym )

0
ψ(t) dt

=
m−1∑
i=n

∫ d(yi ,yi+1)

0
ψ(t) dt.

Now, we recall that

∫ d(yn+1,yn+2)

0
ψ(t) dt � η(d(yn, yn+1))

∫ d(yn ,yn+1)

0
ψ(t) dt,

for every n, which implies that
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∫ d(yn+2,yn+3)

0
ψ(t) dt � η(d(yn+1, yn+2))

∫ d(yn+1,yn+2)

0
ψ(t) dt

� η(d(yn+1, yn+2))η(d(yn, yn+1))

∫ d(yn ,yn+1)

0
ψ(t) dt.

Following this procedure, we prove that

∫ d(y j ,y j+1)

0
ψ(t) dt �

j−1∏
i=n

η(d(yi , yi+1))

∫ d(yn ,yn+1)

0
ψ(t) dt, for every j = n + 1, . . . , m − 1.

Therefore,

∫ d(yn ,ym )

0
ψ(t) dt �

m−1∑
i=n

∫ d(yi ,yi+1)

0
ψ(t) dt

=
∫ d(yn ,yn+1)

0
ψ(t) dt +

m−1∑
i=n+1

∫ d(yi ,yi+1)

0
ψ(t) dt

�
[

1+
m−1∑

i=n+1

i−1∏
l=n

η(d(yl , yl+1))

]∫ d(yn ,yn+1)

0
ψ(t) dt.

We check that the right-hand side in the last inequality tends to 0 as n, m →+∞.
Since

∫ d(yn ,yn+1)

0 ψ(t) dt → 0, as n →+∞, it suffices to show that

m−1∑
i=n+1

i−1∏
l=n

η(d(yl , yl+1)) is bounded (uniformly on n, m).

Indeed, we check that
∑m−1

i=n+1

∏i−1
l=n η(zl) is bounded, for any sequence {zl} with

nonnegative terms and tending to 0 as l →+∞, using the property (P) of the
function η. Given t = 0, by (P), there exist δ(0) > 0, s0 < 1, such that 0 � r < δ(0)

implies η(r) � s0. Since {zl} → 0, given δ(0) > 0, there exists l0 ∈ N such that, for
every l ≥ l0, we have 0 � zl < δ(0). This implies that η(zl) � s0, for every l ≥ l0.

In consequence, for n ≥ l0, we get

0 �
m−1∑

i=n+1

i−1∏
l=n

η(zl) �
m−1∑

i=n+1

i−1∏
l=n

s0 =
m−1∑

i=n+1

(s0)
i−n = s0 − (s0)

m−n

1− s0
<

s0

1− s0
,

and this expression is bounded independently of m, n.
Hence, { f xn} is a Cauchy sequence in f (Y ). Since f (Y ) is complete, { f xn}

converges to some p in f (Y ). Let z ∈ f −1(p). Then f z = p. Next, we have
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∫ d( f z,T z)

0
ψ(t) dt �

∫ d( f xn+1, f z)+d( f xn+1,T z)

0
ψ(t) dt

=
∫ d( f xn+1,T z)

0
ψ(t) dt +

∫ d( f xn+1,T z)+d( f z, f xn+1)

d( f xn+1,T z)
ψ(t) dt

�
∫ d( f xn+1,T z)

0
ψ(t) dt +

∫ d( f z, f xn+1)

0
ψ(t) dt

�
∫ H(T xn ,T z)

0
ψ(t) dt +

∫ d( f z, f xn+1)

0
ψ(t) dt

� η(d( f xn, f z))
∫ d( f xn , f z)

0
ψ(t) dt +

∫ d( f z, f xn+1)

0
ψ(t) dt.

Letting n →∞, we get
∫ d( f z,T z)

0 ψ(t) dt � 0. Thus, we have d( f z, T z) = 0. Hence,
f z ∈ T z.

Now, if f and T are occasionally coincidentally idempotent, then f f w = f w for
some w ∈ C(T, f ). Then we have

∫ H(T f w,T w)

0
ψ(t) dt � η(d( f f w, f w))

∫ d( f f w, f w)

0
ψ(t) dt = 0.

Thus, T f w = T w. It follows that f f w = f w ∈ T w = T f w. Hence, f w is a com-
mon fixed point of T and f . �

Now we state some fixed point theorems for Kannan type multivalued mappings
which extend and generalize the corresponding results of Shiau, Tan and Wong [553]
and Beg and Azam [41, 42]. A proper blend of the proof of Theorem 5.108 and those
of [460, Theorem 6, Theorem 7, Theorem 8 respectively] and [459, Theorems 3.1,
3.2, 3.3] will complete the proof.

Theorem 5.111 Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y → X and T : Y → C B(X) be such that (5.83) holds and

∫ Hr (T x,T y)

0
ψ(t) dt

� α1(d( f x, T x))

∫ dr ( f x,T x)

0
ψ(t) dt + α2(d( f y, T y))

∫ dr ( f y,T y)

0
ψ(t) dt,

(5.103)

for all x, y ∈ Y , where αi : R+ → [0, 1)(i = 1, 2) are bounded on bounded sets,
r is some fixed positive real number and ψ : R+ → R+ is a Lebesgue measurable
mapping which is summable on each compact interval, and

∫ ε

0 ψ(t) dt > 0, for
each ε > 0. Suppose that there exists an asymptotically T -regular sequence {xn}
with respect to f in Y . If T (Y ) is complete or

∃k ∈ N such that f xn+k ∈ T xn, for every n ∈ N, and f (Y ) is complete, (5.104)
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then f and T have a coincidence point. Further, if f and T are occasionally coin-
cidentally idempotent, then f and T have a common fixed point.

Proof By hypotheses,

∫ Hr (T xn ,T xm )

0
ψ(t) dt

� α1(d( f xn, T xn))

∫ dr ( f xn ,T xn)

0
ψ(t) dt + α2(d( f xm , T xm))

∫ dr ( f xm ,T xm )

0
ψ(t) dt.

Since {xn} is asymptotically T -regular with respect to f in Y , then {α1(d( f xn, T xn))}n
and {α2(d( f xm, T xm))}m are bounded sequences and

∫ dr ( f xn ,T xn)

0
ψ(t) dt → 0,

∫ dr ( f xm ,T xm )

0
ψ(t) dt → 0, as n, m →+∞.

This provides the property H(T xn, T xm) → 0 as n, m →+∞, so that {T xn} is a
Cauchy sequence in (C B(X), H).

If T (Y ) is complete, there exists K ∗ ∈ T (Y ) ⊆ f (Y ) such that H(T xn, K ∗) → 0
as n →+∞. Let u ∈ Y be such that f (u) ∈ K ∗. Then

∫ dr ( f u,T u)

0
ψ(t) dt

�
∫ Hr (K ∗,T u)

0
ψ(t) dt

�
∫ (H(K ∗,T xn)+H(T xn ,T u))r

0
ψ(t) dt

=
∫ Hr (T xn ,T u)

0
ψ(t) dt +

∫ Hr (T xn ,T u)+ terms containing H(K ∗,T xn)

Hr (T xn ,T u)

ψ(t) dt

� α1(d( f xn, T xn))

∫ dr ( f xn ,T xn)

0
ψ(t) dt + α2(d( f u, T u))

∫ dr ( f u,T u)

0
ψ(t) dt

+
∫ Hr (T xn ,T u)+ terms containing H(K ∗,T xn)

Hr (T xn ,T u)

ψ(t) dt,

where the number of terms containing H(K ∗, T xn) is a finite number depending on
r , and therefore fixed. Calculating the limit as n →+∞, and taking into account
that the length of the intervals in the last integral tends to zero, we get

∫ dr ( f u,T u)

0
ψ(t) dt (1− α2(d( f u, T u))) � lim

n→+∞α1(d( f xn, T xn))

∫ dr ( f xn ,T xn )

0
ψ(t) dt

= 0.
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Therefore, ∫ dr ( f u,T u)

0
ψ(t) dt � 0

and, by the properties of ψ , we get dr ( f u, T u) = 0, which implies that f u ∈ T u
and u is a coincidence point.

Now, suppose that f (Y ) is complete. Note that T xn is closed and bounded for
every n ∈ N. Take k > 1 fixed. By the results in [416], we can affirm that for every
y1 ∈ T xn , there exists y2 ∈ T xm such that d(y1, y2) � k H(T xn, T xm).

Given n, m ∈ N, we choose y1 ∈ T xn and, for this y1 ∈ T xn fixed, we choose
y2 ∈ T xm such that d(y1, y2) � k H(T xn, T xm). Then

d( f xn, f xm) � d( f xn, y1)+ d(y1, y2)+ d(y2, f xm)

� d( f xn, T xn)+ k H(T xn, T xm)+ d(T xm, f xm).

By the hypothesis on {xn} and the Cauchy character of {T xn}, we deduce that { f xn}
is a Cauchy sequence. Since f (Y ) is complete, there exists f (u) ∈ f (Y ) such that
{ f (xn)} → f (u). By hypotheses, d( f xn+k, T u) � H(T xn, T u), for every n, hence

∫ dr ( f xn+k ,T u)

0
ψ(t) dt �

∫ Hr (T xn ,T u)

0
ψ(t) dt

� α1(d( f xn, T xn))

∫ dr ( f xn ,T xn)

0
ψ(t) dt

+ α2(d( f u, T u))

∫ dr ( f u,T u)

0
ψ(t) dt,

and taking the limit as n →+∞, we get

∫ dr ( f u,T u)

0
ψ(t) dt � α2(d( f u, T u))

∫ dr ( f u,T u)

0
ψ(t) dt.

In this case,

(1− α2(d( f u, T u)))

∫ dr ( f u,T u)

0
ψ(t) dt � 0

and d( f u, T u) = 0, which implies that f u ∈ T u. Now, if f and T are coincidentally
idempotent, then f f w = f w for some w ∈ C(T, f ). Hence,
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∫ Hr (T f w,T w)

0
ψ(t) dt

� α1(d( f f w, T f w))

∫ dr ( f f w,T f w)

0
ψ(t) dt + α2(d( f w, T w))

∫ dr ( f w,T w)

0
ψ(t) dt

= α1(d( f w, T f w))

∫ dr ( f w,T f w)

0
ψ(t) dt.

Since f f w = f w ∈ T w, we get

∫ dr ( f w,T f w)

0
ψ(t) dt �

∫ Hr (T w,T f w)

0
ψ(t) dt � α1(d( f w, T f w))

∫ dr ( f w,T f w)

0
ψ(t) dt.

Therefore ∫ dr ( f w,T f w)

0
ψ(t) dt (1− α1(d( f w, T f w))) � 0,

obtaining d( f w, T f w) = 0 and f w ∈ T f w. Since 0 �
∫ Hr (T f w,T w)

0 ψ(t) dt � 0,
we deduce that H(T f w, T w) = 0 and T f w = T w. In consequence, f f w = f w ∈
T w = T f w and f w is a common fixed point of T and f . �

Remark 5.38 In the statement of Theorem 5.111, condition (5.104) can be replaced
by the more general one

f (Y ) is complete.

To complete the proof with this more general hypothesis, take into account that,
for y ∈ Y , T (y) is a closed set in X and T (Y ) ⊆ f (Y ). Using that f (Y ) is com-
plete, we deduce that (C L( f (Y )), H) is complete. Hence, {T xn} is a sequence in
C L( f (Y )) and it is a Cauchy sequence in (C L( f (Y )), H). Therefore, there exists
K ∗ ∈ C L( f (Y )) such that H(T xn, K ∗) → 0 as n →+∞. Note also that K ∗ is a
closed set in the complete space f (Y ), then K ∗ is complete and, therefore, a closed
set, then K ∗ ∈ C L(X). Once we have proved that H(T xn, K ∗) → 0 as n →+∞
in (C L( f (Y )), H), the proof follows analogously.

Theorem 5.112 In addition to the hypotheses of Theorem 5.111, suppose that T xn

is compact, for all n ∈ N. If f (z) is a cluster point of { f xn}, then z is a coincidence
point of f and T .

Proof Let yn ∈ T xn be such that d( f xn, yn) = d( f xn, T xn) → 0, this is possible
since T xn is compact. It is obvious that a cluster point of { f xn} is a cluster point
of {yn}. Let f (z) be a cluster point of { f xn} and {yn}, then we check that f z ∈ T u,
where u is obtained in the proof of Theorem 5.111. Note that, for every y ∈ T u,

d( f z, y) � d( f z, f xn)+ d( f xn, yn)+ d(yn, y) = d( f z, f xn)+ d( f xn, T xn)+ d(yn, y),

hence
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d( f z, T u) = inf
y∈T u

d( f z, y) � d( f z, f xn)+ d( f xn, T xn)+ inf
y∈T u

d(yn, y)

= d( f z, f xn)+ d( f xn, T xn)+ d(yn, T u)

� d( f z, f xn)+ d( f xn, T xn)+ H(T xn, T u).

In consequence,

∫ dr ( f z,T u)

0
ψ(t) dt �

∫ (d( f z, f xn)+d( f xn ,T xn)+H(T xn ,T u))r

0
ψ(t) dt.

Using this, there exists a subsequence f xnk converging to f z, the properties of {xn},
and the inequality

∫ Hr (T xnk ,T u)

0
ψ(t) dt

� α1(d( f xnk , T xnk ))

∫ dr ( f xnk ,T xnk )

0
ψ(t) dt + α2(d( f u, T u))

∫ dr ( f u,T u)

0
ψ(t) dt

k→+∞−→ 0,

then, taking the limit when nk →+∞, we get
∫ dr ( f z,T u)

0 ψ(t) dt � 0, and f z ∈ T u.
To prove that f z ∈ T z, using that f u ∈ T u, we get

∫ dr ( f z,T z)

0
ψ(t) dt �

∫ Hr (T u,T z)

0
ψ(t) dt

� α1(d( f u, T u))

∫ dr ( f u,T u)

0
ψ(t) dt + α2(d( f z, T z))

∫ dr ( f z,T z)

0
ψ(t) dt

= α2(d( f z, T z))
∫ dr ( f z,T z)

0
ψ(t) dt.

This implies that

(1− α2(d( f z, T z)))
∫ dr ( f z,T z)

0
ψ(t) dt � 0

and, by the properties of α2 and ψ , we deduce that d( f z, T z) = 0, which proves
that z is a coincidence point of f and T . �

The following result extends [460, Theorem 3.3].

Theorem 5.113 Let Y be an arbitrary nonempty set, (X, d) be a metric space,
f : Y → X and T : Y → C B(X) be such that (5.83) and (5.103) hold, where αi :
R+ → [0, 1)(i = 1, 2) are bounded on bounded sets, and such that

α1(d( f x, T x))+ α2(d( f y, T y)) � 1, for every x, y,
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r is some fixed positive real number and ψ : R+ → R+ is a Lebesgue measurable
mapping which is summable on each compact interval, and ψ(x) > 0, for each
x > 0. Suppose that

inf{d( f zn, T zn) : n ∈ N} = 0, for every sequence {zn}inY

with f zn ∈ T zn−1,∀n. (5.105)

If T (Y ) is complete or f (Y ) is complete, then f and T have a coincidence point.
Further, if f and T are occasionally coincidentally idempotent, then f and T have
a common fixed point.

Proof Using Theorem 5.111, it suffices to prove that there exists an asymptotically
T -regular sequence {xn} with respect to f in Y . Let x0 ∈ Y and take {xn} in Y such
that f xn ∈ T xn−1, for every n ∈ N. Then

∫ dr ( f xn ,T xn)

0
ψ(t) dt �

∫ Hr (T xn−1,T xn)

0
ψ(t) dt

� α1(d( f xn−1, T xn−1))

∫ dr ( f xn−1,T xn−1)

0
ψ(t) dt

+ α2(d( f xn, T xn))

∫ dr ( f xn ,T xn)

0
ψ(t) dt.

Hence,

(1− α2(d( f xn, T xn)))

∫ dr ( f xn ,T xn)

0
ψ(t) dt

� α1(d( f xn−1, T xn−1))

∫ dr ( f xn−1,T xn−1)

0
ψ(t) dt,

or also, using the hypothesis on α1 and α2,

∫ dr ( f xn ,T xn)

0
ψ(t) dt � α1(d( f xn−1, T xn−1))

(1− α2(d( f xn, T xn)))

∫ dr ( f xn−1,T xn−1)

0
ψ(t) dt

�
∫ dr ( f xn−1,T xn−1)

0
ψ(t) dt.

The properties of ψ imply that dr ( f xn, T xn) � dr ( f xn−1, T xn−1), for every n ∈ N,
and {d( f xn, T xn)}n∈N is nonincreasing and bounded below, therefore it is convergent
to the infimum, that is

d( f xn, T xn) → inf{d( f xn, T xn) : n ∈ N} = 0,

and {xn} is asymptotically T -regular with respect to f in Y . �
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Remark 5.39 Note that condition (5.105) in Theorem 5.113 cannot be replaced by

inf{d( f x, T x) : x ∈ Y } = 0,

since the infimum taking the sequence {zn} could be positive (we calculate the infi-
mum in a smaller set).

Remark 5.40 In Theorem 5.113, condition (5.105) can be replaced by the following:

inf{H(T zn−1, T zn) : n ∈ N} = 0, for every sequence {zn} in Y

with f zn ∈ T zn−1,∀n. (5.106)

Indeed, since
d( f zn, T zn) � H(T zn−1, T zn), ∀n,

then

0 � inf{d( f zn, T zn) : n ∈ N} � inf{H(T zn−1, T zn) : n ∈ N} = 0,

and d( f zn, T zn) → 0.

Remark 5.41 In Theorem 5.113, if we are able to obtain a sequence {xn} with an
infinite number of terms which are different, then we can relax condition (5.105) to
the following:

inf{d( f x, T x) : x ∈ B} = 0, for every infinite set B of Y . (5.107)

5.4.4 Common Fixed Points of Asymptotically I-Contractive
Mappings

In this section, we extend and generalize a famous result by Browder [96] Göhde
[251] and Kirk [326] recently extended by Luc in [376] and a recent result of Penot
[472] by using the notion of asymptotically I -compact subset of a Banach space.
However, it may be remarked that here no compactness assumption is involved.
Instead we use asymptotic contractiveness concepts; a comparison of this concept
with other notions of asymptotic conditions (e.g. uniform asymptotic introduced in
[471] and asymptotic contractiveness for single map introduced in [376]) will be
made later on. Note that the meaning of the word “asymptotic” is subtle. Indeed,
the word “asymptotic” is not related to the iterations of the map, but refers to the
behaviour of the map at infinity.

Recall that a subset C of a linear space X is star-shaped with respect to q (or,
briefly, star-shaped) if there exists a q ∈ C such that
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kx + (1− k)q ∈ C

for any k ∈ [0, 1] and x ∈ C . Of course, if C is convex, then it is star-shaped with
respect to any q ∈ C . Here q is called the star center of C .

Definition 5.60 Let C be a subset of a linear space X and let T, I : C → X . Then
C is said to be (I, T )-star-shaped with respect to q ( or, briefly, (I, T )-star-shaped)
if there exists a q ∈ C such that

kT (x)+ (1− k)q ∈ I (C)

for any k ∈ [0, 1] and x ∈ C .

If I and T both are identity maps on C , then the definition of (I, T )-star-shaped
reduces to the ordinary definition of star-shaped.

Definition 5.61 Let X be a Banach space and let C be a subset of X . Let T, I :
C → X . Let C be an (I, T )-star-shaped subset of X . We say that T is asymptotically
I -contractive on C if, for some q ∈ C ,

lim
n→∞ sup

x∈C, ‖x‖>n, ‖I (x)‖>n

‖T (x)− T (q)‖
‖I (x)− I (q)‖ < 1. (5.108)

Note that this condition is independent of the choice of q ∈ C . To see this, let us
consider q ′ ∈ C such that q ′ �= q, then

lim
n→∞ sup

x∈C, ‖x‖>n, ‖I (x)‖>n

‖T (x)− T (q ′)‖
‖I (x)− I (q ′)‖

� lim
n→∞ sup

x∈C, ‖x‖>n, ‖I (x)‖>n

[‖T (x)− T (q)‖ + ‖T (q ′)‖
‖I (x)− I (q)‖ · ‖I (x)− I (q)‖

‖I (x)− I (q ′)‖
]

= lim
n→∞ sup

x∈C, ‖x‖>n, ‖I (x)‖>n

[{‖T (x)− T (q)‖
‖I (x)− I (q)‖ +

‖T (q ′)‖
‖I (x)− I (q)‖

}
· ‖I (x)− I (q)‖
‖I (x)− I (q ′)‖

]

< 1.

If I is the identity map on C , then T is said to be asymptotically contractive on C if,
for some q ∈ C ,

lim sup
x∈ C, ‖x‖→∞

‖T (x)− T (q)‖
‖x − q‖ < 1. (5.109)

It may be observed that the notion of asymptotically I -contractive map enables
us to extend to unbounded sets the result of [96, 246, 296] valid for I -nonexpansive
self-mappings on closed star-shaped bounded subsets of uniformly convex Banach
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spaces. Note that every convex subset of a Banach space is star-shaped but the
converse need not be true. For example, one may observe that C = {(x, 0) : x ∈
[0,∞)}⋃{(0, y) : y ∈ [0,∞)} is a star-shaped subset of R2 with respect to (0, 0),
but it is neither bounded nor convex. Define T, I : C → X by T (x, 0) = ( x

2 , 0), if
x ∈ [0, 1], T (x, 0) = (0, 0) if x > 1 and T (0, y) = (0, 0) if y ≥ 0; I (x, 0) = ( x

2 , 0),
if x ∈ [0, 1], I (x, 0) = (0, 0) if x > 1 and I (0, y) = (

y
2 , 0), if y ∈ [0, 1], I (0, y) =

(0, 0) if y > 1. Clearly, C is (I, T )-star-shaped with respect to q = (0, 0). Observe
that I (C) is bounded, closed and convex.

Recall that a mapping T is I -nonexpansive in C , if ‖T (x)− T (y)‖ � ‖I x −
I y‖ ∀x, y ∈ C.

Definition 5.62 Let X be a Banach space and let C be a subset of X . Let T, I : C →
X . Let C be an (I, T )-star-shaped subset of X with respect to some q ∈ C(or, briefly,
(I, T )-star-shaped). Then T is said to be radially asymptotically I-contractive with
respect to some q ∈ C in the sense that for any unit vector u in the asymptotic cone
(or horizon cone)

C∞ := lim sup
t→∞

t−1C := {v ∈ X : ∃(tn) →∞, (vn) → v, tnvn ∈ C ∀n ∈ N}

of C one has

lim sup
t→∞, q+tu∈C

‖T (q + tu)− T (q)‖
‖I (q + tu)− I (q)‖ < 1.

If I is the identity map on C , then the above inequality reduces to

lim sup
t→∞, q+tu∈C

1

t
‖T (q + tu)− T (q)‖ < 1.

In such case, T is said to be radially asymptotically contractive with respect to some
q ∈ C .

Recall that two mappings T : C → X and I : C → X are said to be weakly compat-
ible in C if T I (v) = I T (v) whenever T (v) = I (v) for some v in C . We now prove
the following variant of the main result of Jungck [296].

Proposition 5.8 Let C be a subset of a Banach space (X, ‖ · ‖)and let T, I : C → X
be two nonself-maps satisfying the inequality

‖T x − T y‖ � λ‖I x − I y‖ ∀x, y ∈ C, (5.110)

where 0 < λ < 1. If T (C) ⊂ I (C) and I (C) is closed, then T and I have a coinci-
dence point v in C. Further, if T and I are weakly compatible in C, then T and I
have a unique common fixed point.

Proof Let x0 ∈ C be arbitrary. Since T x0 ∈ I (C), there is some x1 ∈ C such that
I x1 = T x0. Then choose x2 ∈ C such that I x2 = T x1. In general, after having chosen
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xn ∈ C we choose xn+1 ∈ C such that I xn+1 = T xn . We now show that {I xn} is a
Cauchy sequence. From (5.110) we have

‖I xn − I xn+1‖ = ‖T xn−1 − T xn‖ � λ‖I xn−1 − I xn‖.

Repeating the above argument n-times, we get

‖I xn − I xn+1‖ � λ‖I xn−1 − I xn‖ � · · · � λn‖I x0 − I x1‖.

It then follows that, for any m > n,

‖I xn − I xm‖ � λn

1− λ
‖I x0 − I x1‖ → 0 as m > n →∞.

Thus, {I xn} is a Cauchy sequence. Since I (C) is closed in X and so complete, there
is some u ∈ I (C) such that

lim
n→∞ I xn = lim

n→∞ T xn−1 = u.

Since u ∈ I (C), there exists a v ∈ C such that I v = u. From (5.110) we get

‖T xn − T v‖ � λ‖I xn − I v‖.

Taking the limit as n →∞ we obtain

‖u − T v‖ � λ‖u − I v‖.

Hence, T v = u; i.e. v is a coincidence point of T and I . Since T and I are weakly
compatible, they commute at v. Using (5.110),

‖T I v − T v‖ � λ‖I 2v − I v‖ = λ‖I T v − T v‖ = λ‖T I v − T v‖,

which implies that T I v = T v = I v. It then follows that I v = T I v = I T v, and I v
is a common fixed point of T and I . The uniqueness of the common fixed point I v
follows from (5.110). �
Following essentially the same reasoning as in Propositions 10.1 and 10.2 in Goebel
and Kirk [247], we can easily prove the following Propositions 5.9 and 5.10, respec-
tively.

Proposition 5.9 Suppose C is a subset of a uniformly convex Banach space X and
suppose T : C → X and I : C → X are two nonself-maps such that mapping T is
I -nonexpansive in C and I (C) is bounded and convex. Then for {un}, {vn}, {zn} in
C and I zn = 1

2 (I un + I vn),

lim
n→∞‖I un − T un‖ = 0, lim

n→∞‖I vn − T vn‖ = 0 =⇒ lim
n→∞‖I zn − T zn‖ = 0.
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Proposition 5.10 Suppose C is a subset of a uniformly convex Banach space X
and suppose T : C → X and I : C → X are two nonself-maps such that T is I -
nonexpansive in C, I (C) is bounded, closed and convex and satisfy inf{‖I x − T x‖ :
x ∈ C} = 0. Then T and I have a coincidence point in C.

The following proposition is an easy consequence of Propositions 5.9 and 5.10.

Proposition 5.11 Let X be a uniformly convex Banach space, C a subset of X, T :
C → X and I : C → X be two nonself-maps such that mapping T is I -nonexpansive
in C, I (C) is bounded, closed and convex subset of X. Then the mapping f = I − T
is demiclosed on X.

In [472], Penot prove the following result.

Proposition 5.12 Let X be a uniformly convex Banach space and let C be a closed
and convex subset of X. Let T : C → X be a nonexpansive map which is asymptot-
ically contractive on C and such that T (C) ⊂ C. Then T has a fixed point.

In 2007, Pathak, Rhoades and Khan [462] extended and generalized the above result
of Penot [472] for a pair of maps in the following.

Theorem 5.114 Let X be a uniformly convex Banach space, C a subset of X. Let
T, I : C → X and assume that C an (I, T )-star-shaped subset of X. Let T be an I -
nonexpansive map which is asymptotically I -contractive in C and such that kT (C)+
(1− k)C ⊂ I (C) for any k ∈ [0, 1], I (C) is bounded, closed and convex and I is
continuous. Then T and I have a coincidence point x̄ in C. Further, if I 2 x̄ = I x̄ ,
and T and I are weakly compatible in C, then T and I have a unique common fixed
point.

Proof Let (tn) be a sequence in (0, 1) with limit 0 and let C be an (I, T )-star-shaped
subset of X with respect to some q ∈ C . For n ∈ N, define Tn : C → X by

Tn(x) := (1− tn)T (x)+ tn q (5.111)

so that, by the (I, T )-star-shaped property of C , Tn(x) ∈ I (C) for each x ∈ C . Since
T is I -nonexpansive, it follows that

‖Tn(x)− Tn(y)‖ = (1− tn)‖T (x)− T (y)‖
� (1− tn)‖I (x)− I (y)‖

i.e. Tn is I -contractive with rate (1− tn). Proposition 5.8 ensures that Tn and I have
a coincidence point xn ∈ C.

We shall show that the sequence (xn) is bounded. If this is not the case, taking
a subsequence if necessary, we may assume that (‖xn‖) →∞. Let α ∈ (0, 1) and
ρ > 0 be such that ‖T (x)− T (q)‖ � α‖I (x)− I (q)‖ for x ∈ C satisfying ‖x‖ ≥
ρ. Then, for sufficiently large n, we have
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‖xn‖ = ‖(1− tn)T (xn)+ tn q‖
� (1− tn)(α‖I (xn)− I (q)‖ + ‖T (q)‖)+ tn‖q‖.

Noting that I (C) is bounded, dividing both sides by ‖xn‖ and taking limits, we get
1 � α, a contradiction. Thus, (xn) and hence (T (xn)) is bounded, and

‖I (xn)− T (xn)‖ = tn‖q − T (xn)‖ → 0, as n →∞.

Since X is reflexive, taking a subsequence if necessary, we may assume that (xn)

has a weak limit, say, x̄ . Since I − T is demiclosed (i.e. its graph is sequentially
closed in the product of the weak topology with the norm topology), we get that
I (x̄)− T (x̄) = 0; i.e. x̄ is a coincidence point of I and T . Further, if I 2 x̄ = I x̄ , and
T and I weakly commute in C , we have

I x̄ = I 2 x̄ = I T x̄ = T I x̄

showing that I x̄ is a common fixed point of T and I . �

Observation

• One can add that the set of common fixed points is closed, convex and bounded.
The first two properties are proved in the usual way; the boundedness property
follows immediately from (5.108).

• The preceding result can also be deduced from the classical result of [96, 251, 326]
by applying it to the restriction of T to a sufficiently large ball in X . This direct
way can be deduced from the preceding proof. It also follows from the observation
that T is asymptotically I -contractive on C iff there exists some c ∈ (0, 1) and
r > 0 such that

||T (x)|| � c||I (x)|| ∀x ∈ C\rBX ,

whenever ‖x‖ → ∞ implies ‖I (x)‖ → ∞, where BX is the closed unit ball of
X , so that T (C ∩ rBX ) ⊂ I (C ∩ rBX ).

• If I is the identity map on C , then T is asymptotically contractive on C iff there
exists some c ∈ (0, 1) and an r > 0 such that

‖T (x)‖ � c‖x‖ ∀x ∈ C\rBX ,

where BX is the closed unit ball of X , so that T (C ∩ rBX ) ⊂ C ∩ rBX .

Definition 5.63 A subset C of a uniformly convex Banach space X is said to be
asymptotically I -compact if, for any sequence (xn) of C such that ‖x‖ → ∞ implies
‖I (x)‖ → ∞ and that (rn) := (‖I (xn)‖) →∞, the sequence (r−1

n I (xn)) has a con-
vergent subsequence. Locally compact convex sets and epigraphs of hypercoer-
cive functions T : C → X ; i.e. epi T = {(y, t) ∈ C × R : T (y) � t} with respect
to I : C → X are asymptotically I -compact in the sense that T (x)/‖I (x)‖ → ∞ as
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‖I (x)‖ → ∞. If I is the identity map on C , then C is called asymptotically compact
(see [473]).

We now compare the preceding result with Theorem 5.1 of [375]. There, C is
assumed to be asymptotically compact in the sense of [1, 377, 471, 531] (see also
[161, 470, 615]); i.e. for any sequence (xn) of C such that (rn) := (‖xn‖) →∞,

the sequence (r−1
n xn) has a convergent subsequence. Obviously this assumption is

satisfied in finite dimensions; but it is a rather restrictive assumption in infinite dimen-
sional spaces. However, locally compact convex sets and epigraphs of hypercoercive
functions (i.e. functions T such that T (x)/‖x‖ → ∞ as ‖x‖ → ∞) are asymptoti-
cally compact.

On the other hand, the asymptotic condition imposed on T in [376] is milder
than the one considered here. Our asymptotic condition is obviously satisfied if T
is asymptotically I -contractive on C . In fact, if T is I -nonexpansive, T is radi-
ally asymptotically I -contractive if and only if it is directionally asymptotically
I -contractive in the sense that for any unit vector u ∈ C∞ one has

lim sup
t→∞, v→u, q+tv∈C

‖T (q + tu)− T (q)‖
‖I (q + tu)− I (q)‖ < 1,

whenever ‖x‖ → ∞ implies ‖I (x)‖ → ∞ and one has the following relationships
with our assumption.

Lemma 5.14 Any asymptotic I -contraction T : C → X is a directional asymptotic
I -contraction. If C is asymptotically I -compact, the converse holds.

Proof The first part of the assertion is immediate. To prove the second part,
assume that T is not an asymptotic I -contraction; i.e. for any q ∈ C there exists
a sequence(xn) in C such that (‖xn‖) →∞ and limn t−1

n ‖T (xn)− T (q)‖ ≥ 1 for
tn := ‖I (xn)− I (q)‖. Since C is asymptotically I -compact, the sequence (un) :=
(t−1

n (I (xn)− I (q))) has a convergent subsequence with limit u ∈ C∞. Since limn t−1
n

‖T (xn)− T (q)‖ ≥ 1, T is not an asymptotic I -contraction.

For the case when I is the identity map on C , we recover Lemma 3 of Penot [472]
in the following.

Corollary 5.27 Any asymptotic contraction T : C → X is a directional asymptotic
contraction. If C is asymptotically compact, the converse holds.

It follows from Lemma 5.14 above that Theorem 5.1 of [376] is a direct consequence
of Theorem 5.114. We also observe that Corollary 3 of [472] (stated below) is an
immediate consequence of a corollary in [326].

Corollary 5.28 ([376]) Let X be a uniformly convex Banach space and let C be
a closed and convex subset of X. Let T : C → X be a nonexpansive map which is
radially asymptotically contractive on C and such that T (C) ⊂ C. Then T has a
fixed point.
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It may be remarked that the assumption of uniform convexity in Corollary 5.27 above
is not needed. It is sufficient to know that bounded, closed and convex sets have the
fixed point property for nonexpansive maps (see, for instance, Kirk [326]). We now
present a criterion in order that T be asymptotially I -contractive. It relies on the
following notion introduced in [471]. Here X is any normed linear space, and BX

denotes its closed unit ball.

Definition 5.64 A cone K of X is a firm (outer) asymptotic cone of a subset C of
X if for any ε > 0 there exists some r > 0 such that for any x ∈ C \ rBX one has
d(x, K ) < ε‖x‖.

We now introduce, in more general form, a variant of concepts due to Krasnoselski
[345].

Definition 5.65 Given a firm asymptotic cone K of a subset C of X , a positively
homogeneous mapping T∞ : K → X is said to be a firm (outer) asymptotic derivative
of T : C → X with respect to I : C → X if for any ε > 0, there exists a ρ > 0 such
that, for any x ∈ C \ ρBX , there exists a v ∈ K satisfying ‖x − v‖ < ε‖I (x)‖,

‖T (x)− T∞(v)‖ < ε‖I (x)‖.

If I is the identity map on C , T∞ : K → X is called a firm (outer) asymptotic
derivative of T : C → X.

Note that this condition is satisfied when T : C → X has a firm (or strong) asymptotic
derivative (or F-derivative at infinity) with respect to I : C → X in the sense that
there exists a continuous linear mapping T∞ : X → X such that

lim
r→∞ sup

x∈C\r BX

1

‖I (x)‖‖T (x)− T∞(x)‖ = 0.

The following criterion was established in ([345], Sect. 3.2.2).

Lemma 5.15 Suppose T : X → X is Gâteaux differentiable on X\rBX for some
r > 0 and there exists a continuous linear mapping A : X → X such that ‖T ′(x)−
A‖ → 0 as ‖x‖ → ∞. Then T has a firm (or strong) asymptotic derivative T∞ = A.

A weaker condition than the above is that of asymptotable.
Asymptotable map - A map T : C → X is said to be asymptotable if there exists
a positively homogeneous map T∞ : C∞ → X such that, for any u ∈ C∞, one has
t−1T (tv) → T∞(u) as (t, v) → (∞, u) with tv ∈ C (see [472]).

For asymptotable maps, the following criterion was established in [472].

Lemma 5.16 ([472]) If T : C → X is asymptotable and if C is asymptotically com-
pact, then T∞ is a firm asymptotic semiderivative of T .

We now state and prove the announced criterion for asymptotic I -contractiveness of
the mapping T .
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Proposition 5.13 Let K be a firm asymptotic cone of a subset C of X. Suppose T :
C → X has a firm asymptotic semiderivative T∞ : K → X with respect to I : C →
X, which is asymptotically I -contractive on K . Then T is asymptotic I -contractive
on C.

Proof From the observation following Definition 5.61, we can take q = 0 in that
definition applied to T∞ and K , so that there exists some c ∈ (0, 1) such that

‖T∞(v)‖ � c‖I (v)‖

for v ∈ K with sufficiently large norm. Since K is a cone and T∞ is positively
homogeneous, this relation is satisfied for any v ∈ K . Let c′ ∈ (c, 1) and let ε > 0
be such that c + 3ε < c′. Then, taking ρ > 0 associated with the ε in Definition
5.64, for any x ∈ C\ρBX we can pick a v ∈ K satisfying ‖x − v‖ < ε‖x‖, ‖T (x)−
T∞(v)‖ < ε‖I (x)‖, so that we get

‖T (x)− T (q)‖ = ‖T (x)− T∞(v)+ T∞(v)− T (q)‖

� ‖T (x)− T∞(v)‖ + ‖T∞(v)‖ + ‖T (q)‖

� ε‖I (x)‖ + ‖T∞(v)‖ + ‖T (q)‖

� ε‖I (x)‖ + c‖I (v)‖ + ‖T (q)‖

� 2ε‖I (x)‖ + c‖I (x)‖ + ‖T (q)‖

� (c + 2ε)‖I (x)− I (q)‖ + ‖T (q)‖ + (c + 2ε)‖I (q)‖

� (c + 3ε)‖I (x)− I (q)‖

� c′‖I (x)− I (q)‖

provided
ε‖I (x)− I (q)‖ ≥ ‖T (q)‖ + (c + 2ε)‖I (q)‖,

which occurs when ‖I (x)‖ ≥ ε−1(‖T (q)‖ + (c + 3ε)‖I (q)‖). �

Finally, combining Propositions 5.11 and 5.13 yields.

Theorem 5.115 Let X be a uniformly convex Banach space, C a nonempty subset
of X and T, I : C → X. Let C be an (I, T )-star-shaped subset of X and let K
be a firm asymptotic cone of C. Suppose that I (C) is bounded, closed and convex
and I is continuous. Let T be an I -nonexpansive map which has a firm asymptotic
semiderivative T∞ : K → X which is asymptotically I -contractive on K . Then T
and I have a coincidence point v in C. Further, if I 2v = I v, and T and I are weakly
compatible in C, then T and I have a unique common fixed point.
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If I is the identity map on C , we obtain the following result.

Corollary 5.29 ([472]) Let X be a uniformly convex Banach space and let C be a
closed and convex subset of X. Let K be a firm asymptotic cone of C. Let T : C → X
be a nonexpansive map which has a firm asymptotic semiderivative T∞ : K → X
which is asymptotically contractive on K . Then T has a fixed point.

Observation

• The result in Theorem 5.115 does not involve any compactness assumptions. How-
ever, such compactness assumption can be used as criteria ensuring its hypothesis,
according to Lemmas 5.14 and 5.15. These criteria clearly shows the links with
the results by Luc [376].

• The result of Theorem 5.115 can be extended to real-world nonconvex situations
or to more general spaces as in [94, 326, 331, 332, 469, 619]. We also refer the
interested reader to [161, 377, 470, 615] for the use of asymptotic compactness
in various fields.

5.5 Common Fixed Point Theorems

There appears in literature several generalizations of the famous Banach Contraction
Principle. One such generalization was given by Presic ([494, 496]) as follows.

Theorem 5.116 (Presic [496]) Let (X, d) be a metric space, k a positive integer,
T : Xk −→ X be a mapping satisfying the following condition:

d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1))

� q1.d(x1, x2)+ q2.d(x2, x3)+ · · · + qk .d(xk, xk+1) (5.112)

where x1, x2, . . . , xk+1 are arbitrary elements in X and q1, q2, . . . , qk are nonnega-
tive constants such that q1 + q2 + · · · + qk < 1. Then there exists some x ∈ X such
that x = T (x, x, . . . , x). Moreover if x1, x2, . . . , xk are arbitrary points in X and
for n ∈ N xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence {xn} is convergent and
lim xn = T (lim xn, lim xn, . . . , lim xn).

Note that for k = 1, the above theorem reduces to the well-known Banach
Contraction Principle. Č irič and Presic [145] generalizing the above theorem proved
the following:

Theorem 5.117 (Č irič and Presic [145]) Let (X, d) be a metric space, k a positive
integer, T : Xk −→ X be a mapping satisfying the following condition:

d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)) � λ.max{d(x1, x2), d(x2, x3), . . . , d(xk , xk+1)

(5.113)
where x1, x2, . . . , xk+1 are arbitrary elements in X and λ ∈ (0, 1). Then there exists
some x ∈ X such that x = T (x, x, . . . , x). Moreover if x1, x2, . . . , xk are arbitrary
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points in X and for n ∈ N xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence
< xn > is convergent and lim xn = T (lim xn, lim xn, . . . , lim xn). If in addition
T satisfies d(T (u, u, . . . , u), T (v, v, . . . , v)) < d(T (u, v)), for all u, v ∈ X. Then x
is the unique point satisfying x = T (x, x, · · · , x).

Definition 5.66 (George et al. [240]) Let (X, d) be a metric space, k a positive
integer, T : Xk → X and f : X → X be mappings.

(a) An element x ∈ X is said to be a coincidence point of f and T if and only
if f (x) = T (x, x, . . . , x). If x = f (x) = T (x, x, . . . , x) then we say that x is a
common f i xed point of f and T . If w = f (x) = T (x, x, . . . , x) then w is called
a point of coincidence of f and T .
(b) Mappings f and T are said to be commuting if and only if f (T (x, x, . . . , x)) =
T ( f x, f x, . . . , f x) for all x ∈ X.

(c) Mappings f and T are said to be weakly compatible if and only if they commute
at their coincidence points.

Remark 5.42 For k = 1, the above definitions reduce to the usual definition of com-
muting and weakly compatible mappings in a metric space.

The set of coincidence points of f and T is denoted by C( f, T ).

Lemma 5.17 (Pacurar [439]) Let X be a nonempty set, k a positive integer and
f : Xk → X, g : X → X two weakly compatible mappings. If f and g have a unique
point of coincidence y = f (x, x, . . . , x) = g(x), then y is the unique common fixed
point of f and g.

5.5.1 Common Fixed Point Theorems in b-Metric Spaces

In this section, we give a gentle proof of a generalized Č irič–Presic-type fixed point
theorem in b-metric space. To begin with, let us consider a function φ : Rk → R,
such that

1. φ is an increasing function, i.e.

x1 < y1, x2 < y2, . . . , xk < yk =⇒ φ(x1, x2, . . . , xk) < φ(y1, y2, . . . , yk).

2. φ(t, t, t, . . . , t) � t , for all t ∈ X.

3. φ is continuous in all variables.

Theorem 5.118 Let (X, d) be a b-metric space with s ≥ 1. For any positive integer
k, let f : Xk → X and g : X → X be mappings satisfying the following conditions:

f (Xk) ⊆ g(X) (5.114)

d( f (x1, x2, . . . , xk), f (x2, x3, . . . , xk+1))
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� λφ(d(gx1, gx2), d(gx2, gx3), d(gx3, gx4), . . . , d(gxk, gxk+1)) (5.115)

where x1, x2, . . . , xk+1 are arbitrary elements in X, λ ∈ (0, 1
sk )

g(X) is complete (5.116)

and
d( f (u, u, . . . , u), f (v, v, . . . , v)) < d(gu, gv), (5.117)

for all u, v ∈ X. Then f and g have a coincidence point, i.e. C( f, g) �= ∅. In
addition, if f and g are weakly compatible then f and g have a unique common
fixed point. Moreover, for any x1 ∈ X, the sequence {yn} defined by yn = g(xn) =
f (xn, xn+1, cdots, xn+k−1) converges to the common fixed point of f and g.

Proof For arbitrary x1, x2, . . . , xk in X let

R = max

(
d(gx1, gx2)

θ
,

d(gx2, gx3)

θ2
, · · · ,

d(gxk, f (x1, x2, . . . , xk))

θ k

)
(5.118)

exists in X , where θ = λ
1
k . By (5.113) we define sequence {yn} in g(X) as yn = gxn

for n = 1, 2, . . . , k and yn+k = g(xn+k) = f (xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . .

Let αn = d(yn, yn+1). By the method of mathematical induction, we will prove that

αn � Rθn ∀ n ∈ N. (5.119)

Clearly by the definition of R, (5.119) is true for n = 1, 2, . . . , k. Let the k inequali-
ties αn � Rθn, αn+1 � Rθn+1, · · · , αn+k−1 � Rθn+k−1 be the induction hypothesis.
Then we have

αn+k = d(yn+k, yn+k+1)

= d( f (xn, xn+1, . . . , xn+k−1), f (xn+1, xn+2, . . . , xn+k))

� λφ(d(gxn, gxn+1), d(gxn+1, gxn+2), c . . . , (gxn+k−1, gxn+k))

d(gxn, f (xn, xn, . . . , xn)), d(gxn+k, f (xn+k, xn+k, . . . , xn+k)

= λφ(αn, αn+1, . . . , αn+k−1)

� λφ(Rθn, Rθn+1, . . . , Rθn+k−1)

� λφ(Rθn, Rθn, . . . , Rθn)

� λRθn

= Rθn+k

Thus, inductive proof of (5.119) is complete. Now for n, p ∈ N, we have
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d(yn, yn+p) � sd(yn, yn+1)+ s2d(yn+1, yn+2)+ · · · + s p−1d(yn+p−1, yn+p),

� s Rθn + s2 Rθn+1 + · · · + s p−1 Rθn+p−1

� s Rθn(1+ sθ + s2θ2 + · · · )
= s Rθn

1− sθ
.

Hence, sequence {yn} is a Cauchy sequence in g(X) and since g(X) is complete,
there exists v, u ∈ X such that limn→∞yn = v = g(u).

d(gu, f (u, u, . . . , u)) � s[d(gu, yn+k )+ d(yn+k , f (u, u, . . . , u)]
= s[d(gu, yn+k ))+ d( f (xn , xn+1, . . . , xn+k−1), f (u, u, . . . , u)]
= sd(gu, yn+k )+ sd( f (xn , xn+1, . . . , xn+k−1), f (u, u, . . . , u))

� sd(gu, yn+k )+ s2d( f (u, u, . . . , u), f (u, u, . . . , xn))

+s3d( f (u, u, . . . , xn), f (u, u, . . . , xn , xn+1))

+ · · · + sk−1d( f (u, xn , . . . , xn+k−2), f (xn , xn+1, . . . , xn+k−1))

� sd(gu, yn+k )+ s2λφ{d(gu, gu), d(gu, gu), . . . , d(gu, gxn)}
+s3λφ{d(gu, gu), d(gu, gu), . . . , d(gu, gxn), d(gxn , gxn+1)} + · · ·
+sk−1λφ{d(gu, gxn), d(gxn , gxn+1), . . . , d(gxn+k−2, gxn+k−1)}.

= sd(gu, yn+k )+ s2λφ(0, 0, . . . , d(gu, gxn))

+s3λφ(0, 0, . . . , d(gu, gxn), d(gxn , gxn+1))+ · · ·
+sk−1λφ(d(gu, gxn), d(gxn , gxn+1), . . . , d(gxn+k−2, gxn+k−1)).

Taking the limit when n tends to infinity, we obtain d(gu, f (u, u, . . . , u)) � 0. Thus,
gu = f (u, u, u, . . . , u), i.e. C(g, f ) �= ∅. Thus, there exists v, u ∈ X such that
limn→∞yn = v = g(u) = f (u, u, u, . . . , u). Since g and f are weakly compatible,
g( f (u, u, . . . , u) = f (gu, gu, gu, . . . , gu). By (5.117) we have

d(ggu, gu) = d(g f (u, u, . . . , u), f (u, u, . . . , u))

= d( f (gu, gu, gu, . . . , gu), f (u, u, . . . , u))

< d(ggu, gu)

implies d(ggu, gu) = 0 and so ggu = gu. Hence, we have gu = ggu = g( f (u, u,

. . . , u)) = f (gu, gu, gu, · · · , gu), i.e. gu is a common fixed point of g and f ,
and limn→∞ yn = g(limn→∞ yn) = f (limn→∞ yn, limn→∞ yn, . . . , limn→∞ yn).
Now suppose x , y be two fixed points of g and f . Then

d(x, y) = d( f (x, x, x, . . . , x), f (y, y, y, . . . , y))

< d(gx, gy)

= d(x, y)

This implies x = y. Hence, the common fixed point is unique.
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Remark 5.43 Taking s = 1, g = I and φ(x1, x2, . . . , xk) = max{x1, x2, . . . , xk} in
Theorem 5.118, we obtain Theorem 5.117, i.e. the result of Č irič and Presic [145].

Remark 5.44 For λ ∈ (0, 1
sk+1 ), we can drop the condition (5.117) of Theorem 5.118.

In fact we have the following :

Theorem 5.119 Let (X, d) be a b-metric space with s ≥ 2. For any positive inte-
ger k, let f : Xk → X and g : X → X be mappings satisfying conditions (5.113),
(5.114) and (5.116) with λ ∈ (0, 1

sk+1 ). Then all conclusions of Theorem 5.117 hold.

Proof As proved in Theorem 5.118, there exists v, u ∈ X such that limn→∞yn = v =
g(u) = f (u, u, . . . , u), i.e. C(g, f ) �= ∅. Since g and f are weakly compatible,
g( f (u, u, . . . , u) = f (gu, gu, gu, · · · , gu). By (5.115) we have

d(ggu, gu) = d(g f (u, u, . . . , u), f (u, u, . . . , u))

= d( f (gu, gu, gu, . . . , gu), f (u, u, . . . , u))

� sd( f (gu, gu, gu, . . . , gu), f (gu, gu, . . . , gu, u))

+s2d( f (gu, gu, . . . , gu, u), f (gu, gu, . . . , u, u))

+ · · · + sk−1d( f (gu, gu, . . . , u, u), f (u, u, . . . , u))

+ sk−1d( f (gu, u, . . . , u, u), f (u, u, . . . , u))

� sλφ(d(ggu, ggu), . . . , d(ggu, ggu), d(ggu, gu))

+s2λφ(d(ggu, ggu), . . . , d(ggu, gu), d(gu, gu))

+ · · · + sk−1λφ(d(ggu, gu), . . . , d(gu, gu), d(gu, gu))

= sλφ(0, 0, 0, . . . , d(ggu, gu))+ s2λφ(0, 0, . . . , 0, d(ggu, gu), 0)

+ · · · + sk−1λφ(d(ggu, gu), 0, 0, . . . , 0)

= sλ[1+ s + s2 + s3 + · · · + sk−2 + sk−2]d(ggu, gu)

� sλ[1+ s + s2 + s3 + · · · + sk−2 + sk−1]d(ggu, gu)

= sλ
sk − 1

s − 1
d(ggu, gu).

sλ sk−1
s−1 < 1 implies d(ggu, gu) = 0 and so ggu = gu. Hence, we have gu = ggu =

g( f (u, u, . . . , u)) = f (gu, gu, gu, · · · , gu), i.e. gu is a common fixed point of g
and f , and limn→∞ yn = g(limn→∞ yn) = f (limn→∞ yn, limn→∞ yn, . . . ,

limn→∞ yn). Now suppose x , y be two fixed points of g and f . Then

d(x, y) = d( f (x, x, x, . . . , x), f (y, y, y, . . . , y))

� sd( f (x, x, . . . , x), f (x, x, . . . , x, y))+ s2d( f (x, x, . . . , x, y),

f (x, x, x, . . . , x, y, y))+ · · · + sk−1d( f (x, x, y, . . . , y), f (y, y, . . . , y))

+ sk−1d( f (x, y, y, . . . , y), f (y, y, . . . , y))
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� sλφ{d( f x, f x), d( f x, f x), . . . , d( f x, f y)} + s2λφ{d( f x, f x),

d( f x, f x), . . . , d( f x, f y), d( f y, f y)}
+ · · · + sk−1λφ{d( f x, f y), d( f y, f y), . . . , d( f y, f y)}.

= sλφ(0, 0, . . . , d( f x, f y))+ s2λφ(0, 0, . . . , d( f x, f y), 0)+ · · ·
+sk−1λφ(d( f x, f y), 0, 0, 0, . . . , 0)).

= λ[s + s2 + s3 + · · · + sk−1 + sk−1]d( f x, f y)

= sλ[1+ s + s2 + s3 + · · · + sk−2 + sk−2]d( f x, f y)

� sλ[1+ s + s2 + s3 + · · · + sk−2 + sk−1]d( f x, f y)

= sλ
sk − 1

s − 1
d( f x, f y).

= sλ
sk − 1

s − 1
d(x, y).

This implies x = y. Hence, the common fixed point is unique.

Example 5.47 Let X = R and d : X × X → X such that d(x, y) =| x − y |3 .Then,
d is a b-metric on X with s = 4. Let f : X2 → X and g : X → X be defined as fol-
lows:

f (x, y) = x2 + y2

13
+ 18

13
∀ (x, y) ∈ R2,

and
gx = x2 − 2 ∀ x ∈ R.

We will prove that f and g satisfy condition (5.115).

d( f (x, y), f (y, z)) = | f (x, y)− f (y, z) |3

=
∣∣∣ x

2 − z2

13

∣∣∣3 =
∣∣∣ x

2 − y2 + y2 − z2

13

∣∣∣3

� 4

(∣∣∣ x
2 − y2

13

∣∣∣3 +
∣∣∣ y2 − z2

13

∣∣∣3
)

= 4

133
[| x2 − y2 |3 + | y2 − z2 |3]

= 8

133

1

2
[| x2 − y2 |3 + | y2 − z2 |3]

� 8

133
Max{| x2 − y2 |3, | y2 − z2 |3}

= 8

133
Max{d(gx, gy), d(gy, gz)}
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Thus, f and g satisfy condition (5.115). with λ = 8
133 ∈ (0, 1

43 ). Clearly C( f, g) =
2, f and g commute at 2. Finally, 2 is the unique common fixed point of f and g. But f
and g do not satisfy condition (5.117) as at x = −1 and y = 1, d( f (x, x), f (y, y)) =
d( f (−1,−1), f (1, 1)) = d( 2

13 + 18
13 , 2

13 + 18
13 ) = 0 = d(−1,−1) = d(g(−1),

g(1)) = d(gx, gy).

5.5.2 Common Fixed Points of a Family of Mappings

In this section, we discuss common or simultaneous fixed points of a pair of mappings,
both single-valued and multivalued and common fixed points of a family of mappings.
Common fixed point - Let K be an arbitrary set and let F be a family of mappings
F : K → K . A point u ∈ K is called a common fixed point for the family if F(u) =
u for all F ∈ F .

The first result for families of mappings was proved by Markov in 1936. Kaku-
tani gave a direct proof of Markov’s theorem in 1938 and also proved a fixed point
theorem for groups of affine equicontinuous mappings. Ryll-Nardzewski obtained an
important extension of the results of Markov and Kakutani in 1966. Day [160] also
proved a more general theorem. For further work in this direction one can refer to
Greenleaf [256], Huff [280] and Mitchell [405]. For a commuting family of nonex-
pansive mappings, we shall refer the work of de Marr [165], Browder [106], Belluce
and Kirk [46] and Kuhfittig [350].

We begin with the following interesting problem posed by Isbel [285] in 1957:
if F is a family of commuting continuous self-mappings of [0, 1] then do there exist
common fixed point for F ? Boyce [74] and Huneke [281] independently answered
this question in the negative. The result is stated below:

There exist two commuting continuous self-mappings of [0, 1]without a com-
mon fixed point.

Definition 5.67 Let K be a convex subset of a normed linear space X and let F be
a self-mapping of K . F is said to be an affine mapping if

F(αx + (1− α)y) = αFx + (1− α)Fy

for all x, y ∈ K and 0 < α < 1.

First we state and prove Markov–Kakutani’s theorem. Markov [387] in 1936,
proved the following result by using Tychonoff’s theorem. We give the proof due to
Kakutani [302].

Theorem 5.120 Let K be a compact convex subset of a normed linear space X. Let
F be a commuting family of continuous affine mappings which map K into itself.
Then there exists a point u in K such that Fu = u for each F ∈ F .
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Proof Let n be a positive integer, and let Fn = n−1(I + F + · · · + Fn−1) where
F ∈ F . Let K be the family of all sets Fn(K ) for n � 1 and F ∈ F . Then each set
in K is convex and compact as F ∈ F is affine and continuous, and Fn(K ) ⊂ K .

Because Fn and Gm belonging to F commute, it follows that

FnGm(K ) ⊂ Fn(K ) ∩ Gm(K ), F, G ∈ F .

Thus, any finite subfamily of K has a nonvoid intersection. Hence, compactness of
K ∈ K implies that there is a u ∈ ∩{K : K ∈ K }.

If F ∈ F and Fu �= u, there is a neighbourhood V of the origin of X such
that Fu − u ∈ V . If n is an arbitrary positive integer, then there exists a v ∈ K
such that u = Fnv. Hence, Fu − u = n−1(Fn − 1)v ∈ V . As Fnv ∈ K , it follows
that n−1(K − K ) is not a subset of V for any positive integer n. But K − K =
φ(K × K ), where φ(x, y) = x − y. This shows that K − K is compact. We arrive
at a contradiction since a compact subset of a normed linear space is bounded. So
Fu = u for F ∈ F . �

Definition 5.68 A family of linear mapping on a normed linear space X is said to be
equicontinuous on a subset K of X if for every neighbourhood V of the origin in X ,
there is a neighbourhood U of the origin in X such that if x, y ∈ K and x − y ∈ U
then F(x − y) ∈ V for all F ∈ F . The same definition holds good for arbitrary
families of continuous mappings.

The following theorem was proved by Kakutani [302].

Theorem 5.121 Let K be a compact convex subset of a normed linear space X,
and let F be a group of affine mapping which is equicontinuous on K and such that
F(K ) ⊂ K for all F ∈ F . Then there exists a point u ∈ K such that Fu = u for all
F ∈ F .

Proof By Zorn’s lemma, K contains a minimal nonempty compact convex subset K1

such that F (K1)⊂K1. If K1 contains just one point, the assertion of the theorem is
proved. If this is not the case, the compact set K1 − K1 contains some point other than
the origin and, consequently, there exists a spherical ball or neighbourhood V1 centerd
at the origin such that V 1 does not contain K1 − K1. By the equicontinuity ofF on the
set K1, there exists a spherical ball or neighbourhood V1 centerd at the origin such that
V 1 does not contain K1 − K1. By the equicontinuity of F on the set K1, there exists
neighbourhoodU1 centerd at the origin such that x1 − x2 ∈ U1 whenever x1, x2 ∈ K1.

Then F (x1 − x2) ⊂ V1. Define U2 = co(FU1) = co{Fx : F ∈ F , x ∈ U1}. Since
F is a group FU2 = U2 and from continuity of F ∈ F we have FU 2 = U 2.

Setr = in f {a : a > 0, aU2⊃K1 − K1}, and U = rU2. It follows that for each t, 0 <

t < 1, the set K1 − K1 is not contained in (1− t)U , while K1 − K1⊃(1+ t)U. The
family of open sets { 1

2 U + x}, x ∈ K1 is a open covering of K1. From compactness
of K1, we select a finite subcovering of K1 as { 1

2 U + xi }, i = 1, 2, . . . , n and let
p = x1+x2+···+xn

n . If x is any point in K1, then xi − x ∈ 1
2 U for some i, 1 � i � n.

But xi − x ∈ (1+ t)U for 1 � i � n and t > 0. Thus, we have
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p ∈ 1

n

[
1

2
U + (n − 1)(1+ t)U

]
+ x .

Taking t = 1
4(n−1)

, we have p ∈ (1− 1
4n

)
U + x . We define

K2 = K1

⋂[ ⋂
x∈K1

{(
1− 1

4n

)
U + x

}]
.

The set K2 is nonempty, and since
(
1− 1

4n

)
U does not contain K1 − K1, K2 �= K1.

The closed set K2 is clearly convex. Moreover as F(αU + x) ⊂ αU + Fx for F ∈
F , x ∈ K1. Also it follows that F(K1) = K1 for F ∈ F , since F is a group and
F(K1) ⊂ K1. This implies that F K2 ⊂ K2, contradicting the minimality of K1, as
K2 is a proper subset of K1. �

We state an interesting extension of Kakutani’s fixed point theorem for families
of mappings, due to Ryll-Nardzewki [532].

Theorem 5.122 Let X be a Banach space and let K be a nonempty, convex and
weakly compact subset of X. Suppose S is a semigroup of mappings from K into
itself and S is noncontracting (or distal), i.e. for x �= y, 0 is not in the norm closure
of the set {Fx − Fy : F ∈ S}. Then there is a common fixed point for S.

Now we discuss common fixed points of families of nonlinear mappings which
are nonexpansive. The first result in this direction was obtained by de Marr in 1963.

Theorem 5.123 (de Marr [165]) Let K be a compact convex subset of a Banach
space X and let F be a family of commuting nonexpansive mappings of K into
itself. Then there is a common fixed point for the family.

For the proof, we need the following two lemmas stated without proof.

Lemma 5.18 Let K be a compact subset of a Banach space X. Let d = diam K and
suppose d > 0. Then there exists x ∈ co K such that sup{‖x − z‖ : z ∈ K } < d.

Lemma 5.19 Let K be a convex subset of a Banach space X. Let F : X → X be
a nonexpansive mapping. Suppose K is invariant under the mapping F and there
exists a compact subset C of K such that C = {Fx : x ∈ C} and is not a singleton
set. Then there exists a closed and convex set K1 such that K1 ∩ K is invariant under
F and C ∩ K ′

1 is nonempty (K ′
1 is the complement of K1).

Proof of Theorem 5.123. By Zorn’s lemma, K contains a minimal nonempty, compact
and convex subset K1 such that F (K1) ⊂ K1. Theorem is proved if K1 consists of a
single point. Now we show that if K1 contains at least two distinct elements, it leads
to a contradiction. Using Zorn’s lemma again, we find a nonempty compact subset K2

of K1 which is invariant under the mapping F ∈ F . We prove K2 = {Fx : x ∈ K2}
for each F in F . Suppose on the contrary there exists a mapping G ∈ F such that
G(K2) �= K2. G(K2) is compact since G is continuous. Let x be in G(K2). Then
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x = Gy for some y ∈ K2. By commutativity of F , we have LGy = GLy ∈ G(K2)

and thus L(G K2) ⊂ G(K2) for all L ∈ F . This clearly contradicts the minimality
of K2 and thus K2 = {Fx, x ∈ K2} for each F in F .

Suppose K2 has at least two points, otherwise the theorem is proved. Then
by Lemma 2 there exists a subset K2 such that K ′

2 ∩ K2 �= ∅. Then K3 ∩ K2 is
nonempty, compact and convex and not equal to K1 and invariant under F and this
leads to a contradiction. Thus, K1 reduces to a point, and this point is the common
fixed point of F .

The following two theorems were proved by Belluce and Kirk [46].

Theorem 5.124 Let K be a closed, bounded and convex subset of a Banach space
X. If F is a family of commuting nonexpansive mappings from K into itself and C
is a compact subset of K with the property that for all x ∈ K , C ∪ Fn x �= ∅, for
some F ∈ F , then F has a common fixed point in K .

Notice that Theorem 5.124 generalizes Theorem 5.123.

Theorem 5.125 Let K be a weakly compact and convex subset of a strictly convex
Banach space X. Suppose F is a family of commuting nonexpansive mappings of
K into K with the property that for each F ∈ F , the F-closure of K is nonempty.
Then F has a common fixed point in K .

The next theorem proved by Browder [96] is the nonlinear extension of
Markov–Kakutani’s theorem and an extension of Theorem 5.123.

Theorem 5.126 Let K be a closed, bounded and convex subset of a uniformly convex
Banach space and let F be a commuting family of nonexpansive mappings of K into
itself. Then the family F has a common fixed point.

We now consider a family of mappings which satisfy generalized Kannan–
Reich condition. We give the proof of the existence of common fixed point of a
pair of such setvalued mappings. This result is due to Bose and Mukerjee [66] and
contains Wong’s [608] result for single-valued mapppings.

Let (X, d) be a bounded metric space and let H denote the Hausdorff metric on
the space C L(X), the space of nonempty and closed subset of X . Let Fi , i = 1, 2,

be mappings from X into C L(X) satisfying the following condition:

H(F1(x), F2(y)) � a1d(x, F1(x))+ a2d(y, F2(y))+ a3d(y, F1(x))

+ a4d(x, F2(y))+ a5d(x, y) (5.120)

for any x, y ∈ X where a1, a2, a3, a4 and a5 are nonnegative numbers and a1 + a2 +
a3 + a4 + a5 < 1 and a1 = a2 or a3 = a4.

Theorem 5.127 Let (X, d) be a complete bounded metric space and let Fi : X →
C L(X), i = 1, 2 be multivalued mappings satisfying condition (5.120). Then F1 and
F2 have a common fixed point.
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Proof Let x0 ∈ X . Consider the sequence {xn} where

x2n+1 ∈ F1(x2n+2) and x2n+2 ∈ F2(x2n+1).

Assume H(F1(x0), F2(x1)) �= 0. For if it is zero, then F1 and F2 have a common
fixed point. Then by the definition if a number h > H(F1(x0), F2(x1)) there exists
x2 ∈ F2(x1) such that d(x1, x2) � h. Let

h = p−1 H(F1(x0), F2(x1)

where p = (a1 + a2 + a3 + a4 + a5)
1/2. Then

d(x1, x2) � p−1 H(F1(x0), F2(x1))

� p−1[a1d(x0, F1(x0))+ a2d(x1, F2(x1))+ a3d(x1, F1(x0))

+ a4d(x0, F2(x1))+ a5d(x0, x1)]
� p−1[a1d(x0, x1)+ a2d(x1, x2)+ a3d(x0, x1)+ a4d(x1, x2)+ a5d(x0, x1)].

That is d(x1, x2) � a1+a4+a5
p−a2−a4

d(x0, x1).

Proceeding in a similar manner, there exists x2 ∈ F1(x2) such that

d(x2, x3) � a2 + a3 + a5

p − a1 − a3
d(x1, x2).

We have 0 < r, s < 1 if a3 = a4 and 0 < rs < 1 when a1 = a2 or a3 = a4 where

r = a1 + a4 + a5

p − a2 − a4
and

a2 + a3 + a5

p − a1 − a3
.

Further
d(x2n+1, x2n+2) � (rs)nrd(x0, x1) and

d(x2n, x2n+1) � (rs)nd(x0, x1).

It is easily seen that the sequence {xn} is Cauchy and hence converges to some point
u ∈ X . Consider D(u, F2(u)). We have

D(u, F2(u)) � d(u, xn+1)+ d(xn+1, F2(u))

� d(u, Xn+1)+ H(F1(xn), F2(u)) (here n is taken to be even)

� d(u, xn+1)+ a1d(xn, xn+1)+ a2d(u, F2(u)+ a3d(u, xn+1)

+ a4d(xn, u)+ a4d(u, F2(u))+ a5d(xn, u).

Taking limit n →∞, we have
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D(u, F2(u)) � (a2 + a4)d(u, F2(u)), i.e. d(u, F2(u)) = 0.

Since F2(u) is closed we have u ∈ F2(u). Similarly it can be shown that
u ∈ F1(u). �

Remark 5.45 In the above theorem instead of a bounded complete metric space, we
can take any complete metric space with the following modification: F1 : (X, d) →
C B(X) where CB(X) denotes the space of bounded and closed subsets of X endowed
with the Hausdorff metric.

Corollary 5.30 Let (X, d) be a complete metric space and let Fi : X → X, i = 1, 2
be mappings satisfying the following condition:

d(F1(x), F2(y)) � a1d(x, F1(x))+ a2d(y, F2(y))+ a3d(y, F1(x))

+ a4d(x, F2(y))+ a5d(x, y)

for any x, y in X where a1, a2, a3, a4 and a5 are nonnegative numbers and a1 +
a2 + a3 + a4 + a5 < 1 and a1 = a2 or a3 = a4. Then F1 and F2 have a common
fixed point.

Corollary 5.31 Let (X, d) be a complete bounded metric space and let F : X →
C L(X) be multivalued mapping satisfying the following condition:

H(F(x), F(y)) � a1d(x, F(x))+ a2d(y, F(y))+ a3d(y, F(x))

+ a4d(x, F(y))+ a5d(x, y),

for any a, y ∈ X where a1, a2, a3, a4 and a5 are nonnegative numbers and a1 + a2 +
a3 + a4 + a5 < 1, a1 = a2 and a3 = a4. Then F has a fixed point.

The following theorem proved by Bose and Mukerjee [67] is a generalization
of a theorem of Iseki [286]. Here F is a single-valued mapping.

Theorem 5.128 Let {Fn} be a sequence of self-mappings of X such that

d(Fi x, Fj y) � a1d(Fi x, x)+ a2d(Fj y, y)+ a3d(Fi x, y)

+ a4d(Fi y, x)+ a5d(x, y) ( j > i)

for all x, y ∈ X where a1, a2, a3, a4 and a5 are nonnegative numbers and
5∑

k=1
ak < 1

and a3 = a4. Then the sequence {Fn} has a unique common fixed point.

The following common fixed point theorem was proved by Husain and Sehgal
[283], and later on it was improved upon by Singh and Meade [562] in a slightly
different form.
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Theorem 5.129 Let F and G be self-mappings of a metric space X. Suppose there
exists aφ : (R+)5 → R+ which is continuous and nondecreasing in each coordinate
variables and satisfies the relation φ(t, t, a1t, a2t, t) < t for t > 0, ai ∈ {0, 1, 2}
with a1 + a2 = 2. Let F and G satisfy

d(Fx, Fy) � φ[d(x, Fx), d(y, Gy), d(x, Gy), d(y, Fx), d(x, y)]

for all x, y ∈ X. Then there exists a unique u ∈ X such that Fu = u = Gu.

We now present an iteration scheme which converges strongly in one case and
weakly in another case to a common fixed point of a finite family of nonexpansive
mappings. These results were obtained by Kuhfittig [350] in 1981. We end this
section with another iteration scheme converging weakly in a more general setting
than Kuhfittig’s proved by Bose and Sahani [70].

Let K be a convex subset of a Banach space X . Suppose {Fi }ki=1 be a family
of nonexpansive mappings of K into itself. Define the following mappings:

U0 = I, the identity mapping.

For o < α < 1, let

Ur = (1− α)I + αFrUr−1, r = 1, 2, . . . , k.

Theorem 5.130 Let K be a compact convex subset of a strictly convex Banach space
X and {Fi }ki=1 be a finite family of nonexpansive self-mappings of K with a nonempty
set of common fixed points. Then for any x ∈ K , the sequence {U n

k x}∞n=1 converges
strongly to a common fixed point of {Fi }ki=1.

Theorem 5.131 If X is uniformly convex Banach space satisfying Opial’s condition
(in particular if X is a Hilbert space). Let K be a closed and convex subset ofX and
{Fi }ki=1 be a family of nonexpansive self-mappings of K with a nonempty set of
common fixed points, then for any x ∈ K , the sequence {U n

k x}∞n=1 converges weakly
to a common fixed point.

Remark 5.46 The proof of Theorem 5.130 is based on an iteration scheme for a
nonexpansive mapping by Edelstein [216] and the proof of Theorem 5.131 is based
on an approximation scheme for a nonexpansive mapping given by Opial [436].

Remark 5.47 If the family of mappings {Fi }ki=1 is commutative, then the set of
common fixed point of {Fi }ki=1 is nonempty by de Marr’s Theorem (Theorem 5.123).
Hence, in Theorem 5.130 if we take the family to be commutative, we can drop the
condition that the set of common fixed points by nonempty.

Remark 5.48 Suppose in Theorem 5.131, we assume further that K is bounded and
{Fi }ki=1 is commutative. Then by Browder’s theorem (Theorem 5.126), the set of
common fixed points of {Fi }ki=1 is nonempty since X is strictly convex and reflexive.
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Thus, we can drop the assumption that the set of common fixed points of Fi is
nonempty with the addition of aforementioned conditions (i.e. K is bounded and Fi

commutative.)

Theorem 5.132 Let K be a closed and convex subset of a uniformly convex Banach
space X with a Fréchet differentiable norm, {Fi }ki=1 a family of nonexpansive self-
mappings of K with a nonempty set of fixed points, and {cn} a real sequence such
that

(i) 0 � cn � 1,

(ii)
∞∑

n=1
cn(1− cn) = ∞.

If x1 ∈ K and xn+1 = (1− cn)xn + cn FkUk−1xn for n � 1, then {xn} converges
weakly to a common fixed of {Fi }ki=1.

Proof One can easily prove that U j and FjU j−1, j = 1, 2, . . . , k are nonexpansive
and map K into itself. Also it is easy to show that the families {U j }kj=1 and {Fj }kj=1
have the same set of common fixed points. Since FkUk−1 is a nonexpansive self-
mapping of K , the sequence {xn} defined in the theorem converges weakly to a fixed
point v of FkUk−1 by a theorem of Reich (Theorem 5.38). We shall next show that
v is a common fixed point of Fk and Uk−1(k � 2). To this end we first show that
Fk−1Uk−2v = v(k � 2). Suppose this is not so. Let

z = Uk−1v = (1− α)v + αFk−1Uk−2v.

Then z �= v. By hypothesis, there exists a point w such that

Fj w = w, j = 1, 2, . . . , k.

Since {Fj } and {U j } have the same common fixed points, it follows that

Fk−1Uk−2w = w.

By nonexpansiveness we have

‖Fk−1Uk−2v − w‖ � ‖v − w‖ (5.121)

and ‖Fk z − w‖ � ‖z − w‖.

Again Fk z = FkUk−1v = v.

Since uniformly convex Banach space is strictly convex, it follows that
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‖v − w‖ � ‖z − w‖ = ‖(1− α)v + αFk−1Uk−2v − w‖
= ‖(1− α)(v − w)+ α(Fk−1Uk−2v − w)‖
< max {‖v − w‖, ‖Fk−1Uk−2v − w‖}

which contradicts (5.121). Hence, Fk−1Uk−2v = v. As Uk−1 = (1− α)I + αFk−1

Uk−2, we have

Uk−1v = (1− α)v + αv = v and v = FkUk−1v = Fkv.

Thus, v is a common fixed point of Fk and Uk−1. Since Fk−1Uk−2v = v, we repeat the
above argument to show that Fk−2Uk−2v = v and consequently v must be a common
fixed point of Fk−1 and Uk−2. Continuing in this manner, we can prove that F1U0v = v
and that v is a common fixed point of F2 and that v is a common fixed point of F2

and U1. Hence, v is a common fixed point of {Fi }ki=1. �

Remark 5.49 Remark 5.48 is applicable to the above theorem.

As an application of the above theorem, we have the following: suppose we
have a system of equations of the form

x − Ti x = fi , i = 1, 2, . . . , k. (5.122)

where each Ti is a nonexpansive self-mapping of X and each fi is a given element
of X . Consider the family of mappings defined by

Fi x = fi + Ti x, i = 1, 2, . . . , k.

Then each Fi is a nonexpansive self-mapping of X . Also x is a solution of (5.122) if
and only if x is a common fixed point of {Fi }ki=1.

Observation

• Since the above theorem remains valid when K = X, the iteration scheme of the
theorem can be applied to obtain an approximate solution of the above system of
equations in a specified sense.

5.6 Sequences of Contractions, Generalized Contractions
and Fixed Points

We first pose the following question: Does the convergence of a sequence of mapping
{Fi } in a metric space to a mapping F imply the convergence of the sequence of
their fixed points to a fixed point of F? In this context, we consider two types of
convergence of mappings-
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(i) pointwise convergence,
(i i) uniform convergence.

The first theorem regarding the continuity of fixed points of contraction mappings was
proved by Bonsal [64]. Subsequently, Nadler, Jr. [417] obtained results concerning
sequence of contraction mappings and also gave an application suggested by Dorroh.
The behaviour of the fixed points of set-valued mappings has been considered by
Nadler, Jr. [416] and Markin [385, 386]. Both established conditions implying the
strong convergence of the fixed points of a sequence of set-valued contractions.
A similar result concerning the weak convergence of the fixed points of setvalued
nonexpansive mappings in a Banach space was obtained by Markin [386] who used
it to obtain a stability result for generalized differential equations.

Theorem 5.133 (Bonsal [64]) Let (X, d) be a complete metric space, and let T and
Tn(n = 1, 2, . . .) be contraction mappings of X into itself with the same Lipschitz
constat k < 1, and with fixed points u and un, respectively. Suppose that lim

n→∞ Tn x =
T x for every x ∈ X. Then lim

n→∞ un = u.

Proof From Theorem 5.1, we have

d(ur , T n
r x0) � kn

1− k
d(Tr x0, x0), x0 ∈ X.

Set n = 0 and x0 = u, then

d(ur , u) � 1

1− k
d(Tr u, u) = 1

1− k
d(Tr u, T u).

Since d(Tr u, T u) → 0 as r →∞, we have lim
r→∞ d(ur , u) = 0. �

Observation

• In the above theorem, all contraction mappins are assumed to have same Lipschitz
constant. This is rather a strong condition. The following two theorems of Nadler,
Jr. avoid such strong condition.

Theorem 5.134 Let (X, d) be a metric space, let Ti : X → X be a mapping with at
least one fixed point xi , for each i = 1, 2, . . . and let T0 : X → X be a contraction
mapping with fixed point x0. If the sequence {Ti } converges uniformly to T0, then the
sequence {xi } converges to x0.

Theorem 5.135 Let (X, d) be a locally compact metric space, let Ti : X → X be a
contraction mapping with fixed point xi for each i = 1, 2, . . . . Let T0 : X → X be a
contraction mapping with fixed point x0. If the sequence {Ti } is equicontinuous and
converges pointwise to T0, then the sequence {xi } converges to x0.
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Proof Let ε > 0 and assume that ε is sufficiently small such that Bε(x0) = {x ∈
X |d(x0, x) � ε} is a compact subset of X . Since {Ti } is an equicontinuous sequence of
functions converging pointwise to T0 and since Bε(x0) is compact, the sequence {Ti }
converges uniformly on Bε(x0) to T0. Choose N such that for i � N , d(Ti x, T0x) <

(1− α0)ε for all x ∈ Bε(x0) where α0 < 1 is a Lipschitz constant for T0. Then

d(Ti x, x0) � d(Ti x, T0x)+ d(T0x, T0x0)

< (1− α0)ε + α0d(x, x0)

� (1− α0)ε + α0ε = ε ∀ x ∈ Bε(x0) and i � N .

This proves that Ti maps Bε(x0) into itself. Letting Ti to be the restriction of Ti to
Bε(x0) for each i � N , we have each Ti to be a contraction mapping of Bε(x) into
itself. Since Bε(x0) is a complete metric space, Ti has a fixed point for each i � N .

From the definition of Ti and the fact that Ti has only one fixed point, it follows that
xi is the fixed point of Ti , i.e. xi ∈ Bε(x0) for i � N . This proves that the sequence
{xn} converges to x0 by Theorem 5.134. �

The following characterization of finite dimensional space was given by Nadler, Jr.
[417].

Theorem 5.136 A separable or a reflexive Banach space is finite dimensional if and
only if, whenever for a pointwise convergent sequence of contraction mappings, the
sequence of fixed point converges to the fixed point of the pointwise limit mapping.

We now give a theorem concerning multivalued contractions by Nadler, Jr. [416].

Theorem 5.137 Let (X, d) be a complete metric space, let Ti : X → K(X), the
space of all compact subsets of X, be a multivalued contraction mapping with fixed
point xi for each i = 1, 2, . . . and let T0 : X → K(X) be a multivalued contraction
mapping. Suppose any of the following holds:

(i) each of the mapping f1, f2, . . . has the same Lipschitz constant η < 1 and the
sequence {Ti } converges pointwise to T0;

(ii) the sequence {Ti } converges uniformly to T0:
(iii) the space (X, d) is locally compact and the sequence {Ti } converges pointwise

to T0.

Then there is a subsequence {x j } of {xi } such that {x j } converges to a fixed point of
T0.

To prove Theorem 5.137, we need the following lemma stated without proof.

Lemma 5.20 Let (X, d) be a metric space, let Ti : X → C B(X) be a multivalued
contraction mapping with fixed point xi for each i = 1, 2, . . . , and let T0 : X →
C B(X) be a multivalued contraction mapping. If the sequence {Ti } converges point-
wise to T0 and if {xi j } is a convergent subsequence of {xi }, then {xi j } converges to a
fixed point of T0.
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Proof of Theorem 5.137 For each i = 0, 1, 2, . . . we define T̂i : K(X) → K(X)

by

T̂i (A) =
⋃
a∈A

Ti (a) for all A ∈ K(X).

Then it is easy to show that T̂i is a contraction mapping (Nadler, Jr. [416]) and
therefore has a unique fixed point Ai ∈ K(X) for i = 0, 1, 2, · · · . We observe the
following:
(1) If the sequence {Ti } converges pointwise to T0 as assumed in (i) and (i i i), then
{Ti } converges uniformly on compact subsets of X to T0 (Rudin, [533], p. 156) and
hence, the sequence {T̂i } converges pointwise on K(X) to T̂i .

(2) If the sequence {Ti } converges uniformly to T0 as in (ii), then the sequence {T̂i }
converges uniformly on compact subsets of X to T0(Rudin, [533], p. 156) and hence,
the sequence {T̂ } converges pointwise on K(X) to T̂0. Then by Theorems 5.133 and
5.134, the sequence {Ai } converges to A0. Hence, S =⋃{Ai |i = 0, 1, 2, · · · 2, . . .}
is a compact subset of X .

By the iteration procedure of Banach (Lusternik and Sobolov [378], p. 40–42),
the sequence {T̂ n

i (xi )}∞n=1 converges to Ai and therefore it follows that xi ∈ Ai for
each i = 1, 2, . . . , since xi ,∈ T̂ n

i (xi ) for all n = 1, 2, . . .. Thus, {xi } is a sequence in
the compact set X . Hence, {xi } has a convergent subsequence {xi j }which, by Lemma
5.20, converges to a fixed point of T0.

Let A be a closed bounded subset of a Hilbert space H, d the metric of H, and
H the Hausdorff metric on the closed subsets of A generated by d. It is assumed that
the family of setvalued mappings Tk, k = 0, 1, . . . satisfies the following conditions:

(i) Tk(x) is a nonempty, closed and convex subset of A for each x ∈ A;
(i i) each Tk is a setvalued contraction, i.e. there is a η ∈ (0, 1) such that

H(Tk(x), Tk(y)) � ηd(x, y) for x, y ∈ A and k = 0, 1, 2, . . . ;

(i i i) lim
k→∞ H(Tk(x), T0(x)) = 0 uniformly for all x ∈ A.

Theorem 5.138 (Markin [385]) If the conditions (i) to (iii) as above are satisfied,
then the fixed point sets of the sequence {Tk}, k = 1, 2, 3, . . . converge to the fixed
point set of T0 in the Hausdorff metric.

Next theorem, also proved by Markin [386], deals with the weak convergence
of the fixed points of setvalued nonexpansive mappings in a Banach space.

Theorem 5.139 Let X be a strictly convex Banach space with a weakly continuous
duality map, and let B be a weakly compact convex subset of X. Suppose that {Ti } is
a sequence of nonexpansive mappings from X into Kc(X) (the space of nonempty,
compact and convex subsets of X) converging to T0 in the Hausdorff metric H and
leaving N invariant. If xi is a fixed point of Ti in B for i = 1, 2, . . . , and xi ⇀ x0,

then x0 is a fixed point of T0.
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Proof For any nonexpansive map T of X into Kc(X), the map I − Ti , i = 0, 1, 2, . . . ,

are J -monotone. Since xi is a fixed point of Ti , we have 0 ∈ (I − Ti )(xi ), i = 1, 2, . . .

By the J−monotonicity property, for any v ∈ X , there is a vi ∈ (I − Ti )(v) such that

(J (v − xi ), vi − 0) � 0, i = 1, 2, . . . (5.123)

The pointwise convergence of the sequence {Ti } implies that

lim
i→∞ H((I − Ti )(v), (I − T0)(v)) = 0 for any v ∈ X.

Since the sets (I − Ti )(v)) are compact for i = 0, 1, 2, . . . the set
∞⋃

i=0
(I − Ti )(v)

is also compact for v ∈ X (Castiang [132]) and the sequence {vi } can be assumed
convergent to a point v0 ∈ (I − T0)(v). Taking the limit in (5.123) we have

(J (v − x0), v0 − 0) � 0. (5.124)

Since the mapping I − T0 is J -monotone, the inequality (5.124) implies that 0 ∈
(I − T0)(x0). This proves that x0 is a fixed point of T0.

Definition 5.69 Let (X, d) be a complete metric space. A mapping T : X → X is
said to be of generalized Kannan–Reich type if

d(T x, T y) � a1d(T x, x)+ a2d(T y, y)+ a3d(T x, y)

+ a4d(T y, x)+ a5d(x, y) for all x, y ∈ X

where a′1s are nonnegative numbers such that
5∑

n=1
an < 1 (here a1 = a2 and a3 =

a4 by symmetry).

The following two theorems were proved by Bose and Mukherjee [67].

Theorem 5.140 Let {Tn} be a sequence of self-mappings of X having at least one
fixed point xn each and let {Tn} converge uniformly to T0, a mapping of generalized
Kannan–Reich type. Let x0 be the unique fixed point of T0. Then xn → x0.

Theorem 5.141 Let {Tn} be a sequence of mappings of generalized Kannan–Reich
type and let {Tn} converges pointwise to T , a generalized Kannan–Reich-type map-
ping. Let xn and x0 be fixed points of Tn and T , respectively. Then xn → x0.

The following theorem of Bose and Mukherjee [67] is a generalization of a theorem
of Wong [608] to multivalued mappings.

Theorem 5.142 Let {Tn} be a sequence of multivalued mappings of X into C B(X)

satisfying the following condition:
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H(Tn x, Tn y) � a1
nd(Tn x, x)+ a2

nd(Tn y, y)+ a3
nd(Tn x, y)

+ a4
nd(Tn y, x)+ a5

nd(x, y)

for all x, y ∈ X where a j
n � 0, j = 1, 2, 3, 4, 5 and

5∑
j=1

a j
n < 1.

Let a j
n → a j as n →∞ and

5∑
j=1

a j < 1. Let {Tn} converge to T0 pointwise and

let xn be the fixed point of Tn. If x0 is any cluster point of the sequence {xn}, then
x0 ∈ T0x0.

Proof Let xni → x0. For simplicity of notation, we write i in place of ni . Then

d(x0, T0x0) � d(x0, xi )+ d(xi , T0x0)

� d(x0, xi )+ H(Ti xi , T0x0) as xi ∈ Ti xi ,

� d(x0, xi )+ H(Ti xi , Ti x0)+ H(Ti x0, T0x0)

� d(x0, xi )+ a1
i d(Ti xi , xi )+ a2

i d(Ti x0, x0)+ a3
i d(Ti xi , x0)

+ a4
i d(Ti x0, xi )+ a5

i d(x0, xi )+ H(Ti x0, T0x0).

After some simplification, we have

(1− a2
i − a4

i )d(x0, T0x0) � (1+ a3
i + a4

i + a5
i )d(x0, xi )

+ (1+ a2
i + a4

i )H(Ti x0, T0x0).

Taking limit as i →∞, we have

(1− a2 − a4)d(x0, T0x0) = 0,

i.e. d(x0, T0x0) = 0 as 1− a2 − a4 �= 0.

Since T0x0 is closed, we have x0 ∈ T0x0.

Remark 5.50 In this case, a1
n = a2

n and a3
n = a4

n due to symmetry. Hence, each Tn

has a fixed point by Corollary 5.31.

We now state a theorem concerning sequences of mappings of Husain–Sehgal type
(refer Theorem 5.8).

Theorem 5.143 Let T and a sequence {Tn} be self-mappings of a complete metric
space X such that Tn → T uniformly. Suppose for each n � 1, Tn has a fixed point
xn and T is a mapping of Husain–Sehgal type. If u is the fixed point of T and sup
d(xn, u) < ∞, then xn → u.
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5.7 Fixed Point Theorems in Ordered Banach Spaces

In this section, we discuss methods developed for the investigation of various ques-
tions concerning positive solutions of operator equations.

We mainly deal with fixed point theorems developed by Krasnoselski [345].
Towards the end, we follow them up with fixed point theorems due to Leggett and
Williams [363], Amann [17] and Gatica and Smith [241]. Our choice of theorems
is motivated by their applications to differential and integral equations arising in
applied problems.

Definition 5.70 Let X be a real Banach space. A set K ⊂ X is called cone if the
following conditions hold good:

(i) the set K is closed;
(ii) if u, v ∈ K , then αu + βv ∈ K for all α, β � 0;

(iii) x,−x ∈ K ⇒ x = 0

From (i i) it is obvious that cone K is a convex set.
Solid cone - Cone K is called solid cone if it contains its interior points.
Reproducing cone - Cone K is called reproducing if x ∈ X has a representation
x = u − v, u, v ∈ K .

Notice that every solid cone is reproducing.

Definition 5.71 The linear space X is called partially ordered if, for certain pair of
points x, y ∈ X, the relation x � y is defined and it satisfies the following properties:

(i) x � y ⇒ t x � t y for t � 0 and t x � t y for t < 0;
(ii) x � y and y � x ⇒ x = y;

(iii) x1 � y1 and x2 � y2 ⇒ x1 + x2 � y1 + y2;
(iv) x � y and y � z ⇒ x � z.

In a Banach space X with a cone K , a partial order relation is introduced in the
following manner:

x � y if y − x ∈ K .

It can be easily seen that all the above properties are satisfied. The partial order
relation defined by K also satisfies the following property.
(v) One can pass to the limit in the inequalities. That is,

If ‖xn − x‖ → 0, ‖yn − y‖ → 0 and xn � yn (n = 1, 2, . . .), then x � y.

We note that K = {x ∈ X : x � 0}. The elements of

K̇ = K − {0} = {x ∈ X : x > 0}.

are called positive. If K has nonempty interior, we write x ' y iff y − x ∈ int K .
We write x � y iff y − x /∈ K .
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Ordered Banach space - A real Banach space X ordered by a cone K is called an
ordered Banach space and is denoted by (X, K ).
Order interval - For every pair x, y ∈ X, the set 〈x, y〉 = {z ∈ X; x � z � y} is
called the order interval or conical segment. It is nonempty if and only if x � y.

Order bounded - A subset D ⊂ X is called order bounded if D is contained in some
order interval.
Order convex - D is said to be order convex whenever x, y ∈ D implies 〈x, y〉 ⊂ D.

Order convex hull - For every subset D ⊂ X we define [D], the order convex hull
of D, to be the smallest order convex subset of X containing D, i.e. [D] = ∪{〈x, y〉 :
x, y ∈ D}.
Definition 5.72 Let F : X → X be a nonlinear operator. Then the operator

1. F is called called isotone or increasing if x � y ⇒ Fx � Fy.

2. F is called strictly increasing if x < y ⇒ Fx < Fy.

3. F is called strongly increasing if int K �= ∅ and if x < y ⇒ F(y)− F(x) ∈
int K .

Definition 5.73 A cone K is called normal if a δ > 0 exists such that ‖e1 + e2‖ � δ,

whenever e1, e2 ∈ K and ‖e1‖ = ‖e2‖ = 1. The cone of nonnegative functions in the
space C(or L p) is a normal cone.

The following theorem (refer Krasnoselski [345]) gives some important characteri-
zations of normal cones. A Banach space X ordered by a cone K is called an ordered
Banach space and is denoted by (X, K ).

Theorem 5.144 Let (X, K ) be an ordered Banach space. Then the following state-
ments are equivalent:

(i) K is normal;
(ii) every order interval is bounded;

(iii) there exists an equivalent increasing norm on X;
(iv) the order convex hull of every bounded set is bounded.

Definition 5.74 The space X is called regularly partially ordered if each bounded
monotonic sequence in it has a limit. A cone which generates a regular partial ordering
is called regular. Every regular cone is normal.

Example 5.48 Let X be a compact Hausdorff space. Let C(X) denote the Banach
space of all continuous real-valued functions on X with the sup norm. C(X) is
an ordered Banach space with the natural ordering. Its (positive) cone, denoted by
C+(X), is normal and had nonempty interior. The sup norm is monotone, and f is
an interior point of C+(X) if and only if f (x) > 0 for every x ∈ X.

Example 5.49 Let � be a Lebesgue measurable subset of Rn of positive measure.
Each of the Banach spaces L p(�) (real valued), 1 � p � ∞ is an ordered Banach
space with respect to the natural ordering and its cone is
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L p+(�) = { f ∈ L p(�) : f (x) � 0 for almost all x ∈ �}.

Notice that each L p+(�) is a normal cone since L p norm is monotone. We also
notice that each of the cones L p+(�), 1 � p < ∞, is generating but has empty
interior whereas L∞+(�) has nonempty interior.

Definition 5.75 A nonlinear operator F : X → X is said to be Fréchet differentiable
with respect to the cone K at x0 if there exists F ′(x0) ∈ L(X, X) such that

F(x0 + h)− F(x0) = F ′(x0)h + w(x0, h), h ∈ K

where

lim
h∈K ,‖h‖→0

‖w(x0, h)‖
‖h‖ = 0.

F ′(x0) is called the Fréchet derivative of F at x0 with respect to the cone K (or along
K ).

Definition 5.76 The function y(t) with values in X is differentiable at infinity if the
ratio (1/t)y(t) converges in norm to some element y′(∞) ∈ X as t →∞.

(i) The operator F is said to be differentiable at infinity in the direction h ∈ K if
the function y(t) = F(th) is differentiable at infinity. The operator F is said to
be differentiable at infinity if F is differentiable in all directions h ∈ X (h �= 0)

were the derivatives y′(∞) of the function y(t) = F(th) are representable in
the form y′(∞) = F ′(∞)h(h ∈ X) for some F ′(∞) ∈ L(X, X).

(ii) F is said to be differentiable at infinity in the cone if the preceding statement
holds for all h ∈ K (h �= 0), and F ′(∞) is called the derivative at infinity with
respect to the cone.

(iii) F ′(∞) is called asymptotic derivative of the operator F , and F is asymptotically
linear if

lim
R→∞ sup

‖x‖�R

‖Fx − F ′(∞)x‖
‖x‖ = 0. (5.125)

(iv) F ′(∞) is called asymptotic derivative with respect to the cone K , and F is said
to be asymptotically linear with respect to the cone K if (5.125) hold for all
x ∈ K .

Definition 5.77 A cone K is said to allow the plastering K1 if a cone K1 can be
found such that every nonzero element x0 ∈ K is an interior point of the cone K1

and, furthermore, it lies in the cone K1 together with the spherical ball of radius
b‖x0‖, where b does not depend on the element x0.

Definition 5.78 Let X be a Banach space with K as a cone.

1. The linear operator F : X → X is called positive if it maps the cone K into
itself. The linear positive operator is isotone.

2. The linear operator F is called strictly positive if F(K̇ ) ⊂ K̇ .
3. If K has nonempty interior, then F is called strongly positive if F(K̇ ) ⊂ intK .
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5.7.1 Existence of a Characteristic Vector

Let us assume that the linear operator T acts in the space X with the cone K and
leaves this cone invariant, i.e. T is a positive operator. We want to investigate the exis-
tence of characteristic vectors of the operator T belonging to K . These characteristic
vectors are called positive and corresponding characteristic values are nonnegative.
We remark that we do not call positive the characteristic values of the operator T if
the corresponding characteristic vectors are not in K , even if they are positive.

The following theorem is an illustration of the use of fixed point theorems.

Theorem 5.145 (Krasnoselski [345]) Let the linear positive operator T be contin-
uous which maps bounded subsets into compact sets. Let the relation

T pu � αu (α > 0) (5.126)

be satisfied for some nonzero element u such that −u /∈ K , u = v − w (v, w ∈ K )

and p is some natural number. Then the operator T has at least one characteristic
vector x0 in K :

T x0 = η0x0 (5.127)

where the positive characteristic number η0 satisfies the inequality

η0 � p
√

α. (5.128)

Proof The existence of a single characteristic vector x0(‖x0‖ = 1) for the operator
T in the cone K is shown. The operators Tn (n = 1, 2, 3, . . .) are defined as follows:

Tn x = T
(
x + v

n

)
∥∥T

(
x + v

n

)∥∥ (5.129)

x ∈ B = K ∩ B1 where B1 = {x : ‖x‖ � 1}.
Each Tn transforms B into itself and is continuous and maps bounded sets into

compact sets together with the operator T . Since T
(
x + v

n

)
� 1

n T v �= 0, we have∥∥T
(
x + v

n

)∥∥ > 0 for x ∈ B1. By Schauder’s theorem, every operator Tn has a fixed
point xn ∈ B. From Eq. (5.129), we have ‖xn‖ = 1. Writing

λn =
∥∥∥T

(
x + v

n

)∥∥∥
we get the equation

T
(

xn + v

n

)
= λn xn, n = 1, 2, 3, . . . . (5.130)
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The relations

xn � 1

λn
T xn, xn � 1

nλn
T v, n = 1, 2, . . . (5.131)

follow from (5.130). It follows from Eqs. (5.126) and (5.130) that

xn � 1

λ
p−1
n

T p−1xn = 1

λ
p
n

T p
(

xn + v

n

)
� 1

nλ
p
n

T pv � 1

nλ
p
n

T pu � α

nλ
p
n

u

(n = 1, 2, 3, . . .)

So, there exists a maximal βn > 0 such that xn � βnu. Furthermore, the relations

xn � 1

λ
p
n

T p
(

xn + v

n

)
� 1

λ
p
n

(
βn + 1

n

)
T pu � α

λ
p
n

(
βn + 1

n

)
u. (5.132)

follow from (5.126) and (5.132). Moreover, the maximality of numbers βn gives

α

λ
p
n

(
βn + 1

n

)
� βn (n = 1, 2, 3, . . .),

which is equivalent to the following inequality

λp
n � α + α

nβn
(n = 1, 2, 3, . . .). (5.133)

Because the operator T is compact, a subsequence of indices ni (i = 1, 2, . . .) can

be chosen such that the sequence T
[
xni +

(
v
ni

)]
strongly converges to some ele-

ment y∗. By (5.133), {λni } converges to some number λ0 which satisfies inequality
(5.128). Then the element {xni } converges in norm to the element x0 = 1

λ0
y∗. To

obtain (5.127), it is sufficient to take limit in the equation

T
(

xni +
v

ni

)
= λni xni (i = 1, 2, . . .).

The above theorem imposes two restrictions on T : condition (5.126) and T are
continuous and T maps bounded sets into compact sets. We state three theorems due
to Krasnoselski, without proofs, where these restrictions on T have been replaced
by assumption involving some properties of the space X and the cone K .

Definition 5.79 A linear positive operator T is uniformly positive operator if
‖T x‖ � b‖x‖(x ∈ K ) where b > 0.

Theorem 5.146 Let a continuous linear operator T be uniformly positive and trans-
forms bounded sets into compact sets. Then T has at least one positive characteristic
vector.
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Theorem 5.147 Let the space X be weakly complete and the unit sphere in X be
weakly compact. Let the cone K allow plastering. Then every linear operator T ,
leaving the cone K invariant, has at least one characteristic vector.

Theorem 5.148 Let the space X be weakly complete and the unit sphere in the space
X be weakly compact. Let the cone K be normal and the linear operator T satisfy
the condition

a(x)u0 � T x � ρa(x)u0 (x ∈ K )

where
a(x) � 0, ρ � 1. (5.134)

Then T has at least one positive characteristic vector.

We now study conditions under which the equation

T x = x (5.135)

with a positive nonlinear operator T has at least one nonzero solution x∗ in the cone
K . In majority of cases, T (0) = 0. Thus, it is a question of a second solution in the
cone K .

Theorem 5.149 Let an operator T , isotone on the segment 〈x0, u0〉 into itself, that
is

T x0 � x0 and T u0 � u0. (5.136)

Then for the existence on 〈x0, u0〉 of at least one fixed point x∗ for the operator T , it
suffices that any one of the following three conditions be satisfied:

(i) The cone K is regular, and the operator T is continuous;
(ii) the cone K is normal, and the operator T is continuous and transforms bounded

sets into compact sets;
(iii) the cone K is normal, the space X is weakly complete, the unit sphere in X is

weakly compact, and the operator T is weakly continuous.

Proof When condition (i) is satisfied, let us construct the iterative sequence {xn}
defined by

xn = T xn−1 (n = 1, 2, . . .). (5.137)

It follows from condition (5.136) and from isotone property of the operator T that
the sequence given by (5.137) is monotone and bounded:

x0 � x1 � x2 � · · · � xn � · · ·

xn � u0 (n = 0, 1, 2, . . .).

Since the cone K is regular, the sequence (5.137) converges in norm to some element
x∗ ∈ 〈x0, u0〉. Taking limit in (5.137) as n →∞, we obtain the equality T x∗ = x∗.
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If condition (i i) or (i i i) is satisfied, then statement of the theorem follows
from Schauder’s or Tychonoff’s fixed point theorem, respectively. Note that with
condition (ii) or condition (iii) holding, the fixed point x∗ of the operator T also can
be obtained as the limit of the sequence (5.137). In case (i i), convergence follows
from its compactness and in case (i i i), the sequence (5.137) converges weakly to
x∗.

Remark 5.51 Tychonoff’s fixed point theorem quoted above is the following: If a
weakly continuous operator T maps a weakly compact and weakly complete set C
into itself, then T has a fixed point in C .

The conditions of Theorem 5.149 do not guarantee the uniqueness of the fixed
point for the operator T on a conical segment 〈x0, u0〉. Following example illustrates
this.

Example 5.50 Let X be a one-dimensional space of real numbers, and K be a set of
nonnegative numbers. Let T be defined as

T x = x + sin x

2
(x � 0). (5.138)

This operator (a function) is isotone since the derivative is positive. Set x0 = π
2 , u0 =

7π
2 . Then inequalities (5.136) are satisfied. At the same time, the operator T has three

fixed points π, 2π and 3π on
[

π
2 , 7π

2

]
(Fig. 5.4).

Definition 5.80 Let Y be a nonempty subset of some ordered space X . A fixed point
x of a mapping T : Y → X is called a minimal (maximal) if every fixed point y of
T in Y satisfies x � y (y � x). There is at most one minimal (maximal) fixed point.

Fig. 5.4 Nonuniqueness of the fixed point for the operator T
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Theorem 5.150 (Amann [17]) Let (X, K ) be an ordered Banach space and let D
be an order convex subset of X. Suppose that F : D → X is increasing (isotone)
mapping which is continuous and maps every order interval in D into a relatively
compact set. If there exists y, ŷ ∈ D with y � ŷ such that y � F(y) and F(ŷ) � ŷ,
then F has a minimal fixed point x in (y + K ) ∩ D. Moreover, x � ŷ and x =
lim

k→∞ Fk(y), that is, the minimal fixed point can be computed by the iteration sequence

x0 = y, xk+1 = F(xk). Furthermore, the sequence {xk} is increasing.

Proof Since F is increasing, the mapping F maps the order interval 〈y, ŷ〉 into
itself. Hence, the sequence {xk} is well defined, and it is relatively compact since it
is contained in F〈y, ŷ〉. Hence, it has at least one limit point. It can be shown by
induction that the sequence {xk} is increasing. This implies that it has precisely one
limit point, say, x and the whole sequence converges to x . Since F is continuous, x
is a fixed point of F . If x is any fixed point in D such that x � y, then by replacing
ŷ by x in the above discussion, it follows that x � x . Thus x is the minimal fixed
point of F in (y + K ) ∩ D. It is of interest to note that the existence of minimal fixed
point is not claimed in D.

Corollary 5.32 Let (X, K ) be an ordered Banach space and let 〈y, ŷ〉 be a nonempty
order interval in X. Suppose that F : (〈y, ŷ〉) → X is an increasing (isotone) contin-
uous mapping with F(〈y, ŷ〉) relatively compact such that y � F(y) and F(ŷ) � ŷ.

Then F has a minimal fixed point x and a maximal fixed point x̂ .
Moreover, x = lim

k→∞ Fk(y) and X) = lim
k→∞ Fk(ŷ), and the sequences {Fk(y)}

and {Fk(ŷ)} are increasing and decreasing, respectively.

Proof The assertion about x follows from the above theorem. The assertion about
x̂ follows by applying the preceding theorem to the mapping F : 〈z, ẑ〉 → X where
G(x) = −F(−x), z = −ŷ and ẑ = −ŷ.

Corollary 5.33 Let (X, K ) be an ordered Banach space and let F : K → K be
increasing and continuous and maps any order interval into a relatively compact
set. Then F has a minimal fixed point x if and only if there exists ŷ ∈ K such that
F̂(y) � ŷ. In this case x � ŷ, and the sequence {Fk(0)} converges increasingly
towards x.

Proof If F has a minimal fixed point x , then F(x) � x . Since F(0) � 0, the converse
assertion is true by the above theorem.

Remark 5.52 The above results are true if K is normal and F is increasing, contin-
uous and if F maps bounded sets into compact sets.

Every order interval is bounded by Theorem 5.144. Thus F is continuous and
maps every order interval into relatively compact set.

Using the asymptotic behaviour of a mapping, the existence of fixed points of
the mapping can be derived as shown in the following theorems due to Amann [19]
stated without proof.
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Definition 5.81 Let Y be a nonempty set and X be an ordered set.

1. A mapping F̂ : Y → X is said to be a majorant of the mapping F : Y → X if
F(y) � F̂(y) for all y ∈ Y.

2. Minorants are defined by just reversing the inequality.

For, a linear operator F : X → X belonging to L(X), let

r(F) = lim
k→∞‖Fk‖1/k .

It is called the spectral radius of F .

Theorem 5.151 Let (X, K ) be an ordered Banach space with K having nonempty
interior. Let F : K → K be an increasing (isotone) mapping which is continuous on
order intervals and maps every order interval into relatively compact set and satisfies
F ′(0) = 0. Suppose that F has strongly positive Fréchet derivative F ′(0) at 0 such
that r(F ′(0)) > 1. Moreover, suppose that F has a continuous, asymptotically linear
majorant F̂ which maps bounded sets into compact sets such that r(F̂ ′(∞)) < 1.

Then F has at least one fixed point in the interior of the cone.

To ensure the existence of fixed point for nonisotone operators F which is
positive, we apply different fixed point principles and, in particular, Schauder’s and
Tychonoff’s principles, we assume that the operator F maps bounded sets into com-
pact sets and is continuous or (if the space X is weakly complete and the unit
sphere weakly compact) weakly continuous. The proof reduces to finding a con-
vex set C ⊂ X which remains invariant under the operator F . The conical segment
〈x0, u0〉, the intersections K0 ∩ 〈x0, u0〉 of the conical segment 〈x0, u0〉, with some
cone K0 ⊂ K , the intersection K (r) of the cone K with the sphere ‖x‖ � R and
so on, can appear as the set C . We discuss only two theorems of this type due to
Krasnoselski [345].

Theorem 5.152 Let the operator F, positive on the cone K , have a strong asymptotic
derivative F ′(∞) with respect to a cone where the spectrum of the linear operator
F ′(∞) lies in the circle |η| � ρ0, where ρ < 1. Then there exists at least one fixed
point for the operator F in the cone K if any one of the following conditions be
satisfied:

(i) the operator F is continuous and maps bounded sets into compact sets;
(ii) the space X is weakly complete, the unit sphere is weakly compact and the

operator F is weakly continuous.

Proof A norm ‖x‖0 can be introduced in X equivalent to the originally given one
such that ‖F ′(∞)‖0 = 1− η where η > 0. Also it can be shown that in the new
norm, the operator F satisfies the inequalities

‖Fx‖0 < ‖x‖0 (x ∈ K , ‖x‖0 � R)

where R is some positive number.
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(Notice that for a given ε0 > 0, there exists ρ0 > 0 such that

‖x‖0 = ‖Fx‖
ρ0 + ε0

+ ‖F2x‖
(ρ0 + ε0)2

+ · · · + ‖Fn0−1x‖
(ρ0 + ε0)n0−1

, x ∈ X

defines a norm.)
The above inequality implies that the operator F maps the intersection C of

the cone K with the sphere ‖x‖0 � R0 into itself, where

R0 = max
{

R, sup
x∈K ,‖x‖0�R

‖Fx‖0

}
.

This set C is bounded, convex and closed. The existence of a fixed point x0 of F in
C follows from Schauder’s principle for case (i) and from Tychonoff’s principle for
case (ii).

Theorem 5.153 Let the positive operator F(F(0) = 0) have a Fréchet derivative
F ′(0) and a asymptotic derivative F ′(∞) with respect to a cone. Let the spectrum
of the operator F ′(∞) lie in the circle |η| � ρ, where ρ < 1. Let the operator
F ′(0) have in K a characteristic vector h0 such that whenever F ′(0)h0 = η0h0, we
have η0 > 1. Then there exists a nonzero fixed point of F in K if the operatorF is
continuous and maps bounded sets into compact sets (or if the operator F is weakly
continuous, the space X is weakly complete, the unit sphere in X is weakly compact
and the cone K allows plastering).

Proof Define the operators Fn by the equality

Fn x =
{

Fx if x ∈ K , ‖x‖ � 1
n ,

Fx + ( 1
n − ‖x‖) h0 if x ∈ K , ‖x‖ � 1

n .

Each Fn is continuous and maps bounded sets into compact sets. They satisfy all the
conditions of Theorem 5.152 and hence, have fixed points in the cone K . We shall
show that the norms of these fixed points are greater than 1

n if 1
n is sufficient small.

Then the fixed points of the operator Fn will be nonzero fixed points of the operator
F , and this will prove the theorem. We assume that every operator Fn has a fixed
point whose norm does not exceed 1/n. We can then construct a sequence {xn} ⊂ K
such that

0 < ‖xn‖ � 1

n
(n = 1, 2, . . .) (5.139)

and Fxn +
(

1

n
− ‖xn‖

)
h0 = xn (n = 1, 2, . . .) (5.140)

Without loss of generality, we can assume that the sequence
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F ′(0)

(
xn

‖xn‖
)

(n = 1, 2, . . .)

converges in norm to some element z ∈ K . Rewriting Eq. (5.139) in the form

(
1

n‖xn‖ − 1

)
h0 = xn

‖xn‖ −
Fxn − F ′(0)xn

‖xn‖ − F ′(0)

(
xn

‖xn‖
)

, (5.141)

it follows that

‖h0‖ lim
n→∞

(
1

n‖xn‖ − 1

)
� 1+ ‖z‖.

Thus, without loss of generality, we can assume that the sequence { 1
n‖xn‖ − 1}∞n=1

converges to some number α which by virtue of (5.139) is nonnegative. Then, it
follows from (5.141) that the sequence { xn

‖xn‖ }∞n=1 converges in norm to some vector
u0 ∈ K where ‖u0‖ = 1. Taking limit in (5.141), we have

u0 = F ′(0)u0 + αh0. (5.142)

Notice that the number α is positive since F ′(0) does not have characteristic vectors in
K with a characteristic value equal to unity. Hence, a number t0 > 0 can be found such
that u0 � t0h0 and whenever u � th0, t � t0. At the same time, the inequality u0 �
F ′(0)(t0h0)+ αh0 = (η0t0 + α)h0 follows from (5.142), that is, u0 � th0, where
t = η0t0 + α > t0. This completes the proof as we have arrived at contradiction.

In the following result, we assume that the positive operator F has a Fréchet
derivative F ′(0) with respect to a cone and a asymptotic derivative F ′(∞) with
respect to a cone. Further, we assume that F is either continuous and maps bounded
sets into compact sets or weakly continuous. For the latter case, as usual, the space
X is weakly complete and weakly compact, and the cone K is plastered.

Theorem 5.154 Let the operator F ′(0) not have positive eigenvalues, exceeding or
equal to 1. Let the operator F ′(∞) have an eigenvector

g ∈ K ; F ′(∞)g = λ∞g,

where λ∞ > 1 and F ′(∞) does not have positive eigenvalues equal to 1. Then the
operator F has at least one nonzero fixed point in K .

Let F : 〈y, ŷ〉 → R be a continuous function on some nontrivial interval
〈y, ŷ〉 ⊂ R such that (F(y)− ŷ)(ŷ − F(ŷ)) > 0. Then by intermediate value theo-
rem, F has a fixed point in 〈y, ŷ〉. This face has been generalized by the theorem on
the compression of a cone and the theorem on the expansion of a cone, respectively.
One-dimensional version of both the theorems reduces to the above-mentioned result.
Compression and expansion of a cone are to be defined later.
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The following theorems are obtained by Amann [17] as straightforward gener-
alization of one-dimensional case to order intervals with certain additional conditions.

Theorem 5.155 Let (X, K ) be an ordered Banach space with K having nonempty
interior. Suppose that there exist found points in X.

y1 < ŷ1 < y2 < ŷ2

and a continuous, strongly increasing mapping F : 〈y1, ŷ2〉 → X with F(〈y1, ŷ2〉)
relatively compact such that

y1 � F(y1), F(ŷ1) < ŷ1, y2 < F(y2) and F(ŷ2) � ŷ2.

Then F has at least three distinct fixed points x, x1, s2 such that

y1 � x1 ' ŷ1, y2 ' x2 � ŷ2, and y2 � x � ŷ1.

The following corollary follows from Corollary 5.32 to Theorem 5.150.

Corollary 5.34 If the hypotheses of the above theorem be satisfied, then F has at
least three distinct fixed points x1, x2, x3 such that x1, x2, x3 such that x1 ' x2 ' x3.

Theorem 5.156 Let (X, K ) be an ordered Banach space with K having nonempty
interior. Suppose y < F(y) and let F : 〈y, ŷ〉 → X be a strongly increasing contin-
uous mapping with F(〈y, ŷ〉) relatively compact such that y < F(y) and F(ŷ) < ŷ.

Moreover, assume that the minimal fixed point x and the maximal fixed point x̂ are
distinct, and that F has strongly positive Fréchet derivatives at x and x̂. Then F has
at least three distinct fixed points provided

r(F ′(x)) �= 1 and r(F ′(x̂)) �= 1.

Definition 5.82 (Krasnoselski [345]) A mapping F : K → K of the cone K of an
ordered Banach space (X, K ) is said to be a compression of the cone if F(0) = 0
and if there exist numbers R > r > 0 such that

Fx � x, if x ∈ K , ‖x‖ � r and x �= 0 (5.143)

and, for all ε > 0,

(1+ ε)x � Fx if x ∈ K and ‖x‖ � R. (5.144)

Krasnoselski proved that if F is compression of the cone K and is positive, continuous
on K and maps bounded sets into compact sets, then F has at least one nonzero fixed
point x in K with r � ‖x‖ � R. This result remains valid when (5.143) and (5.144)
are replaced by the following weaker conditions:
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Fx � x if x ∈ K and ‖x‖ = r (5.145)

and for all ε > 0,

(1+ ε)x � Fx if x ∈ K and ‖x‖ = R. (5.146)

Leggett and Williams [363] have improved the above result by replacing (5.145) by
a weaker condition:

Fx � x if x ∈ K (u) and ‖x‖ = r, (5.147)

where u is a fixed element of K − {0} and

K (u) = {x ∈ K : αx � u for some positive member α}.

The theorem proved by them has wider applications and is even easier to apply in
situations where compression of the cone theorem is applicable.

For 0 < R � ∞, suppose K R denotes the subset of a cone K where

K R = {x ∈ K : ‖x‖ ≥ R}, 0 < R < ∞ and K∞ = K .

Theorem 5.157 (Leggett and William [363]) Let F : K R → K be a continuous
operator with F(0) = 0 and let F maps bounded sets into relatively compact sets,
and suppose the following conditions are satisfied:

For all ε > 0, (1+ ε)x � Fx for x ∈ K , ‖x‖ = R (5.148)

there exists a null sequence {un} in K R such that if xn ≥ un, n = 1, 2, 3, . . . and
xn → 0, there exists a subsequence {xnk } such that

Fxnk � xnk , k = 1, 2, 3, . . . (5.149)

Then F has a nonzero fixed point in K R .

Theorem 5.158 (Leggett and Williams [363]) Let F : K R → K be a continuous
operator with F(0) = 0 and let F maps bounded sets into relatively compact sets.
Suppose there exists a number r, 0 < r < R, and a vector u ∈ K − {0} such that

Fx � x if x ∈ K (u) and ‖x‖ = r. (5.150)

Assume further that for each ε > 0,

(1+ ε)x � Fx if x ∈ K and ‖x‖ = R. (5.151)
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Then F has a fixed point x in K with r � ‖x‖ � R.

Proof Suppose B : K R → K is defined as follows:

Bx =

⎧⎪⎨
⎪⎩

Fx if r � ‖x‖ � R

‖x‖r−1 F(r‖x‖−1x) if 0 < ‖x‖ < r

0 if x = 0.

It is easy to show that B is completely continuous on K R . Because Bx = Fx
for ‖x‖ = R, condition (5.148) of Theorem 5.157 is satisfied. We now show
that condition (5.149) of Theorem 5.158 is also satisfied. Suppose Bx = x and
x �= 0. If r � ‖x‖ � R, then x = Bx = Fx, and if 0 < ‖x‖ < r , then x = Bx =
‖x‖r−1 F(r‖x‖−1x) and this implies that F(y) = y, where y = r‖x‖−1x .

Assume that u ∈ K R and define a sequence {un} in K R by un = u jn, n =
1, 2, . . . and suppose xn is a null sequence with xn � un . For large n, ‖xn‖ < r
and thus Bxn = ‖xn‖r−1 F(r‖xn‖−1xn). Now r‖xn‖−1xn ∈ K (u) as xn ∈ K (u), and
r‖xn‖−1‖xn‖ = r , so that F(r‖xn‖−1xn) � (r‖xn‖−1xn). Therefore, Bxn = ‖xn =
‖xn‖r−1 F(r‖xn‖−1xn) � ‖xn‖r−1r‖xn‖−1xn = xn. This shows that the condition
(5.149) is satisfied. The result follows by Theorem 5.157.

We now present some multiple fixed point theorems obtained by Williams and
Leggett [607] which they applied to problems in chemical reactor theory.

Let C(�) denote the real Banach space (with usual sup norm) of real-valued
continuous functions on the compact set � ⊂ Rn, and let L∞(�) be the Banach space
(with the ess-sup norm) of almost every where b bounded, real-valued Legesgue
measurable functions on �. Let, for each positive number c,

〈0, c〉 = {x ∈ C(�) : 0 � x(t) � c, t ∈ �} and

〈0, c〉∞ = {x ∈ L∞(�) : 0 � x(t) � c, a.e. in �}.

Let F be a continuous mapping from 〈0, c〉∞ into C+(�), the set of nonnegative
functions in C(�) such that it maps 〈0, c〉∞ into a relatively compact subset of
C+(�).

Theorem 5.159 Let F be a continuous mapping of 〈0, c〉∞ into 〈0, c〉, with
F(〈0, c〉∞) relatively compact. Assume that there exist numbers a and b and a
nonempty and closed set �1 ⊂ � such that 0 < a < b � c;

|Fx(t)− Fx(s)| � b − a if x ∈ 〈0, c〉∞ and t, x ∈ �1, (5.152)

Fx(t) > a (respectively, Fx(t) � a), t ∈ �1 (5.153)

whenever x ∈ 〈0, c〉∞ and a � x(s) � b a.e.in �1. Then there exists x ∈ 〈0, c〉 such
that Fx = x and x(t) > a (respectively, x(t) � a) for each t ∈ �1.
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Proof Suppose the mapping B : 〈0, c〉 → 〈0, c〉∞ is defined as follows:

Bx(t) =
{

a if t ∈ �1 and x(t) < a,

x(t) otherwise.

Then we see that B is continuous, and the mapping T = F B is continuous from
〈0, c〉 into 〈0, c〉with T (〈0, c〉) relatively compact. Because 〈0, c〉 is closed, bounded
and convex, by Schauder’s fixed point theorem, there exists a fixed point x of T
Suppose there exists t0 ∈ �, such that x(t0) � a (respectively x(t0) < a). Then for
each s ∈ �1, we have

x(s)− x(t0) � |x(s)− x(t0)| � |F(Bx)(s)− F(Bx)(t0)| � |b − a|.

This implies that x(s) � x(t0)+ b − a � b. Hence, a � Bx(s) � b for each s ∈ �.
From (5.153), it follows that x(t0) = F(Bx)0(t0) > a (respectively, x(t0) � a), a
contradiction. Hence, x(t) > a (respectively, x(t) � a) for each t ∈ �1, Bx = x ,
which entails that Fx = x .

Theorem 5.160 Suppose in addition to the hypothesis of Theorem 5.159 (with
Fx(t) > a in (5.153)), there exists d, 0 < d < a, such that

F : 〈0, d〉∞ → {x ∈ 〈0, d〉 : ‖x‖ < d}. (5.154)

Then F has at least three fixed points 〈0, c〉.
Proof From condition (5.154) and by Schauder’s fixed point theorem, there exists a
fixed point x1 of F in 〈0, d〉. By Theorem 5.159, F also has a fixed point x2 ∈ 〈0, c〉
such that x2(t) > a for each t ∈ �1. Let B : 〈0, c〉∞ be defined by

Bx(t) =
{

b if t ∈ �1 and x(t) > b,

x(t) otherwise.

Then T � F B is a continuous self-mapping of 〈0, c〉 with T (〈0, c〉) relatively com-
pact in 〈0, c〉 such that it maps 〈0, d〉 into its interior in 〈0, c〉. Let Q = {x ∈ 〈0, c〉 :
x(t) � a for each t ∈ �1}. This is a closed, convex and bounded subset of C(�).

Moreover if x ∈ Q, then a � Bx(t) � b, t ∈ Q1. This together with (5.153) implies
that a < F(Bx)(t) for each t ∈ �1. Hence, T maps Q into its interior in 〈0, c〉. Then
by Theorem 2 of Amann ([18], p. 360), T has a fixed point x3 ∈ 〈0, c〉 − Q ∪ 〈0, d〉.
Since x3 /∈ Q, there exists t0 ∈ �1, such that x3(t0) < a. So for each t ∈ �1.

x3(t)− x3(t0) � |x3(t)− x3(t0)| = |F(Bx3)(t)− F(Bx3)(t0)| � ba,

implying that x3(t) � x3(t0)+ b − a < b. Hence, Bx3 = x3, and this implies that
Fx3 = x3. It is obvious that x1, x2, x3 are distinct.
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Theorem 5.161 Suppose F : 〈0, b〉∞ → C+(�) is continuous with F(〈0, b〉∞) rel-
atively compact and that there exist numbers a and d and a nonempty and closed
subset �1, of � such that 0 < d < a < b;

|Fx(t)− Fx(s)| � b − a if x ∈ 〈0, b〉∞ and t, s ∈ �1, Fx(t) > a, t ∈ �1;

if x ∈ 〈0, b〉∞ and a � x(s) a.e. s ∈ �1; F : 〈0, d〉∞ → {x ∈ 〈0, d〉 : ‖x‖ < d} and
Fx assumes its maximum on �1 if x ∈ 〈0, b〉∞. Then F has at least two fixed points
in 〈0, b〉.

We now intend to discuss few fixed point theorems proved by Gatica and
Smith [241] for continuous mappings which maps bounded subsets into precompact
subsets, defined in cones of real Banach spaces which are of interest in the study of
boundary value problems of ordinary differential equations and periodic solutions
of delay-integral equations.

Lemma 5.21 Let C be a compact subset of K with 0 ∈ C. Then 0 does not belong
to the closed and convex hull of C.

The following theorem is due to Gustafson and Schmitt [260].

Theorem 5.162 Let 0 < r < R be real numbers,

D = {x ∈ K : r � ‖x‖ � R}.

Let F : D → K be a continuous mapping which maps bounded subsets of D into
precompact subsets of K such that

(i) x ∈ D, ‖x‖ = R, Fx = ηx ⇒ η � 1;
(ii) x ∈ D, ‖x‖ = r, Fx = ηx ⇒ η � 1;

(iii) inf‖x‖=r
‖Fx‖ > 0.

Then F has a fixed point in D.

Let us observe the following theorem in which the boundary conditions (i) and
(ii) of Theorem 5.162 are reversed.

Theorem 5.163 Let 0 < r < R be real numbers, D = {x ∈ K : r � ‖x‖ � R},
and let F : D → K be a continuous mapping which maps bounded subsets of D
into precompact subsets of K such that

(i) x ∈ D, ‖x‖ = R, Fx = ηx ⇒ η � 1;
(ii) x ∈ D, ‖x‖ = r, Fx = ηx ⇒ η � 1;

(iii) inf‖x‖=R
‖Fx‖ > 0.

Then F has a fixed point in D.
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Proof Suppose first that 0 < r < 1 and R = 1/r. Define a mapping B : D → K by

Bx = ‖x‖2 F
(

x
‖x‖2

)
, x ∈ D. Then B is a continuous mapping which maps bounded

subsets of D into precompact subsets of K satisfying the conditions of the previous
theorem. Hence, B has a fixed point in D, which provides a fixed point for F .

Now suppose 0 < r < R be arbitrary and let D1 = {x ∈ K : 1
2 � ‖x‖ � 2}.

Define F1 : D1 → K by

F1x = 3‖x‖
2‖x‖(R − r)+ 4r − R

F

(
2‖x‖(R − r)+ 4r − R

3‖x‖
)

, x ∈ D1.

It can be seen that F1 satisfies all conditions so that the result of the first part of the
proof can be applied. Thus, F1 has a fixed point in D1 which in turn provides a fixed
point of F in D.

Remark 5.53 Turner [592] proved the above two theorems under the additional
assumption that the cone K is reproducing.

Theorem 5.164 Let F : K → K be a continuous mapping which maps bounded
subsets into precompact subsets and suppose that F satisfies the following conditions:
(i) there exists r > 0 and a continuous mapping B : {x ∈ K : ‖x‖ = r} → K which
maps bounded subsets into precompact subsets such that inf‖x‖=r

‖Bx‖ > 0 and the

equation
y = Fy + ηBy, 0 < η < ∞,

has no solutions of norm r in K .
(i i) there exists R > r such that the equation

z = ηFz, 0 < η < 1,

has no solution of norm R. Then F has fixed point u in K with r � ‖u‖ � R.

Theorem 5.165 Let F : K → K be a continuous operator which maps bounded
subsets into precompact subsets and which satisfies the following:

(i) there exist r > 0 and a continuous operator, which maps bounded subsets
into precompact subsets, B : {x ∈ K : ‖x‖ = r} → K such that ‖Bx‖ � r, x ∈
K , ‖x‖ = r, and x ∈ K , x = ηFx + (1− η)Bx, 0 < η < 1 ⇒ ‖x‖ �= r.

(ii) there exists R > r and a mapping, which maps bounded subsets into precompact
subsets, C : {x ∈ K : ‖x‖ = R} → K such that inf‖x‖=R ‖Cx‖ > 0, and z ∈
K , z = F Rz + ηCz, 0 < η < ∞⇒ ‖z‖ �= R.

Then F has a fixed point u ∈ K such that r � ‖u‖ � R.

The following theorem is a generalization of Theorem 5.153.

Theorem 5.166 Let F : K → K be a continuous mapping which maps bounded
subsets into precompact subsets, such that F(0) = 0 and F is Fréchet differentiable
at x = 0 in the direction of the cone. Assume further that F satisfies the conditions:
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(i) F ′(0), the Fréchet derivative of F at 0, has an eigenvector k ∈ K corresponding
to an eigenvalue η0 > 1, and 1 is not an eigenvalue of F ′(0) with a corresponding
eigenvector in K .

(ii) There exists R > 0 such that if x ∈ K , ‖x‖ =R, and Fx = μx then μ � 1.

Then F has a nonzero fixed point u ∈ K with ‖u‖ � R.

The following result is the multivalued analogue of Krasnoselski’s fixed point theo-
rem due to Agarwal and Regan [6] in a cone.

Let E = (E, ‖ · ‖) be a Banach space and C ⊆ E . For ρ > 0 let

�ρ = {x ∈ E : ‖x‖ < ρ} and ∂�ρ = {x ∈ E : ‖x‖ = ρ}.
Theorem 5.167 (Agarwal and Regan [6]) Let E = (E, ‖ · ‖) be a Banach space and
C ⊆ E a cone and let ‖ · ‖) be increasing with respect to C. Also r, R are constants
with 0 < r < R. Suppose A : �R

⋂
C → K (C)(here K (C) denotes the family of

nonempty, convex, compact subset of C) is an upper semicontinuous, compact map
and assumes one of the following conditions

(A) ‖y‖ � ‖x‖ for all y ∈ A(x) and x ∈ ∂�R ∩ C and ‖y‖ > ‖x‖ for all y ∈ A(x) and

x ∈ ∂�r ∩ C
or

(B) ‖y‖ > ‖x‖ for all y ∈ A(x) and x ∈ ∂�R ∩ C and ‖y‖ � ‖x‖ for all y ∈ A(x) and

x ∈ ∂�r ∩ C

hold. Then A has a fixed point in C ∩ (�R\�r ).

Remark 5.54 Fixed point theorems for condensing mapping and K set contractions
in ordered Banach spaces will be discussed in the next chapter.

5.7.2 Fixed Point Theorems in Partially Ordered Banach
Spaces

Unless otherwise mentioned, throughout this section that follows, let E denote a
partially ordered real normed linear space with an order relation ( and the norm
‖ · ‖. It is known that E is regular if {xn}n∈N is a nondecreasing (resp. nonincreasing)
sequence in E such that xn → x∗ as n →∞, then xn ( x∗ (resp. xn ) x∗) for all n ∈
N. Clearly, the partially ordered Banach space C(J,R) is regular and the conditions
guaranteeing the regularity of any partially ordered normed linear space E may be
found in Nieto and Lopez [423] and Heikkili and Lakshmikantham [269] and the
references therein.

We need the following definitions in the sequel.
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Definition 5.83 A mapping T : E → E is called isotone or nondecreasing if it pre-
serves the order relation (, that is, if x ( y implies T x ( T y for all x, y ∈ E .

Definition 5.84 An operator T on a normed linear space E into itself is called
compact if T (E) is a relatively compact subset of E . T is called totally bounded
if for any bounded subset S of E, T (S) is a relatively compact subset of E . If T is
continuous and totally bounded, then it is called completely continuous on E .

Definition 5.85 (Dhage [177]) A mapping T : E → E is called partially continuous
at a point a ∈ E if for ε > 0 there exists a δ > 0 such that ‖T x − T a‖ < ε whenever
x is comparable to a and ‖x − a‖ < δ. T is called partially continuous on E if it is
partially continuous at every point of it. It is clear that if T is partially continuous
on E , then it is continuous on every chain C contained in E . T is called partially
bounded if T (C) is bounded for every chain C in E . T is called uniformly partially
bounded if all chains T (C) in E are bounded by a unique constant.

Definition 5.86 (Dhage [177, 178]) An operator T on a partially normed linear
space E into itself is called partially compact if T (C) is a relatively compact subset
of E for all totally ordered sets or chains C in E . T is called partially totally bounded
if for any totally ordered and bounded subset C of E, T (C) is a relatively compact
subset of E . If T is partially continuous and partially totally bounded, then it is called
partially completely continuous on E .

Definition 5.87 (Dhage [178]) The order relation( and the metric d on a nonempty
set E are said to be compatible if {xn}n∈N is a monotone, that is, monotone nonde-
creasing or monotone nonincreasing sequence in E and if a subsequence {xnk }k∈N
of {xn}n∈Nconverges to x∗ implies that the whole sequence {xn}n∈N converges to
x∗. Similarly, given a partially ordered normed linear space (E,(, ‖ · ‖), the order
relation ( and the norm ‖ · ‖ are said to be compatible if ( and the metric d defined
through the norm ‖ · ‖ are compatible.

Clearly, the set R with usual order relation � and the norm defined by the
absolute value function has this property. Similarly, the space C(J,R) with usual
order relation � and the supremum norm ‖ · ‖ are compatible.

Definition 5.88 A mapping T : E → E is called D-set-Lipschitz if there exists a
continuous nondecreasing function ϕ : R+ → R+ such that

‖T x − T y‖ = ϕ(‖x − y‖)

for all x, y ∈ E , where ϕ(0) = 0. The function ϕ is sometimes called a D-function
of T on E .

Definition 5.89 (Dhage [177]) Let (E,(, ‖ · ‖) be a partially ordered normed linear
space. A mapping T : E → E is called partially nonlinear D-Lipschitz if there exists
a D-function ϕ : R+ → R+ such that
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‖T x − T y‖ = ϕ(‖x − y‖)

for all comparable elements x, y ∈ E . If ϕ(r) = kr, k > 0, then T is called a partially
Lipschitz with a Lipschitz constant k. If k < 1, T is called a partially contraction
with contraction constant k. Finally, T is called nonlinear D-contraction if it is a
nonlinear D-Lipschitz with ϕ(r) < r for r > 0.

Remark 5.55 If φ,ψ R+ → R+ are two D-functions, then i) φ + ψ , ii) λ φ, λ >

0 and iii) φ ◦ ψ are also D-functions on R+ and commonly used D-functions
are φ(r) = k r , φ(r) = L r

K+r , L > 0, K > 0, φ(r) = r − log(1+ r) and φ(r) =
log(1+ r) etc.

The following applicable hybrid fixed point theorem is proved in Dhage [177].

Theorem 5.168 (Dhage [177]) Let (E,(, ‖ · ‖) be a regular partially ordered com-
plete normed linear space such that the order relation( and the norm ‖ · ‖ in E are
compatible. Let P,Q : E → E be two nondecreasing operators such that

(a) P is partially bounded and partially nonlinear D-contraction,
(b) Q is partially continuous ad partially compact, and
(c) there exists an element x0 ∈ E such that x0 ( Px0 + Qx0.

Then the operator equation Px + Qx = x has a solution x∗ in E and the sequence
{xn}∞n=0 of successive iterations defined by xn+1 = Pxn + Qxn, n = 0, 1, . . . ., con-
verges monotonically to x∗.

We now introduce the following definition which plays a crucial role to deal
with our main result.

Definition 5.90 A mapping p : J × R→ R is said to be exponentially continuous
if for each λ > 0 and t ∈ J , p(t,x)

eλt is continuous for all x ∈ R.

5.7.3 Weakly Contractive Mapping Theorems in Partially
Ordered Sets

In 1997, Alber and Guerre-Delabriere in [8] define weakly contractive maps. In this
paper, they confine their theorems to Hilbert spaces, but acknowledge that their results
are true, at least for uniformly smooth and uniformly convex Banach spaces. In [521]
Rhoades extends some results appearing in [8] to arbitrary Banach spaces. If X is
an arbitrary Banach space, then a self-map T of X satisfies the Banach contraction
principle if there exists a constant k satisfying 0 � k < 1 such that, for x, y ∈ X

‖T x − T y‖ � k‖x − y‖. (5.155)

As noted in the introduction of [8], inequality (5.155) can be written in the
form
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‖T x − T y‖ � ‖x − y‖ − q‖x − y‖. (5.156)

where k = 1− q with q ∈ (0, 1]. Therefore, the following definition of weakly con-
tractive maps due to Alber and Guerre-Delabriere [8] seems to be natural.
Weakly contractive mapping- A self-map T of X is weakly contractive if, for every
x, y ∈ X ,

‖T x − T y‖ � ‖x − y‖ − ψ(‖x − y‖) (5.157)

where ψ : [0,∞) → [0,∞) is continuous and nondecreasing function such that
they are positive on (0,∞), ψ(0) = 0 and limt→∞ ψ(t) = ∞. (Examples of such
functions are ψ(t) = at, a ∈ (0, 1), ψ(t) = t2

t+1 , ψ(t) = ln(t + 1).)
Now, let (X, d) be a metric space and f : X → X . f is said to be weakly

contractive if for x, y ∈ X

d( f x, f y) � d(x, y)− ψ(d(x, y))

where ψ : [0,∞) → [0,∞) satisfies the above-mentioned conditions.
Observe that weakly contractiveness implies continuity of the map f . Existence

of fixed point in partially ordered sets has been considered recently in [423] and the
references therein.

Notice that (5.155) can also be expressed as

‖T x − T y‖ � (1+ q)‖x − y‖ − (1− q)‖x − y‖. (5.158)

where k = 2q with q ∈ (0, 1
2 ). The extension of (5.158) in the context of Banach

spaces to weakly (ϕ − ψ)-contractive maps is a natural one. A self-map f of X is
said to be weakly (ϕ − ψ)-contractive of type (I) if, for every x, y ∈ X ,

d( f x, f y) � ϕ(d(x, y))− ψ(d(x, y)) (5.159)

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function and ψ :
[0,∞) → [0,∞) is a continuous and nonincreasing function satisfying the following
conditions:

(C1) ϕ(0)− ψ(0) = 0,
(C2) ϕ and ψ both are positive on (0,∞), and
(C3) ϕ(t)− ψ(t) < t for all t > 0.

Obviously, weakly (ϕ − ψ)-contractive mappings of type (I) are continuous.
A self-map f of X is said to be weakly (ϕ − ψ)-contractive of type (II) if, for

every x, y ∈ X , (5.159) holds, where ϕ,ψ : [0,∞) → [0,∞) are continuous and
nondecreasing functions satisfying the following conditions:

(D1) ϕ(0)− ψ(0) = 0,
(D2) ϕ and ψ both are positive on (0,∞), and
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(D3) ϕ(t)− ψ(qt) � (1− q)t and ϕ(qt)− ψ(0) � qt for all t > 0 and for some
q ∈ (0, 1).

Remark 5.56 Especially, when ϕ(t) = t for all t ≥ 0, our definition of weakly (ϕ −
ψ)-contractive of type (I)/type (II) mappings reduces to the definition of weakly
contractive mapping.

Definition 5.91 If (X,�) is a partially ordered set and f : X → X , we say that f
is monotone nondecreasing (nonincreasing) if

x, y ∈ X, x � y ⇒ f (x) � f (y) ( f (x) ≥ f (y)).

This definition coincides with the notion of a nondecreasing (nonincreasing) function
in the case where X = R and � (≥) represents the usual total order in R. In [521],
the following result was proved:

Theorem 5.169 Let (X, d) be a complete metric space, and f : X → X is a weakly
contractive map. Then f has a unique fixed point in X.

In 2009, Harjani and Sadarangani [267] proved the following result.

Theorem 5.170 Let (X,�) be a partially ordered set, and suppose that there exists
a metric d in X such that (X, d) is a complete metric space. Let f : X → X be a
continuous and nondecreasing mapping such that

d( f x, f y) � d(x, y)− ψ(d(x, y)) for x ≥ y (5.160)

where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing functions such that
it is positive on (0,∞), ψ(0) = 0 and limx→∞ ψ(x) = ∞. If there exists x0 ∈ X
with x0 � f (x0), then f has a fixed point.

It may be remarked that Theorem 5.170 does not guarantee the uniqueness of
the fixed point. This motivates us to improve the criteria on the space as well as on
the mapping to ensure the existence and uniqueness of fixed point of maps under
consideration.

In 2010, Rhoades et al. [522] extended and improved the above cited results, i.e.
Theorems 5.169 and 5.170 to weakly (ϕ − ψ)-contractive maps of type(I)/type(II) in
the context of ordered metric spaces under certain restriction on the domain of maps
which are extensions of those in [267, 521]. In the sequel, they applied their main
result to obtain solution of first-order periodic problem and studied the possibility
of optimally controlling the solution of ordinary differential equation via dynamic
programming.

We now present several fixed point theorems for weakly (ϕ − ψ)-contractive
mappings in a complete metric space endowed with a partial order. First, we shall
prove a fixed point result for weakly (ϕ − ψ)-contractive mapping of type (I).

Theorem 5.171 Let (X,�) be a partially ordered set and suppose that there exists
a metric d in X such that (X, d) is a complete metric space. Let f : X → X be a
continuous and nondecreasing mapping such that
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d( f x, f y) � ϕ(d(x, y))− ψ(d(x, y)) for x ≥ y (5.161)

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function and ψ :
[0,∞) → [0,∞) is a continuous and nonincreasing function satisfying the condi-
tions (C1)− (C3). If there exists x0 ∈ X with x0 � f (x0), then f has a fixed point.

Proof If x0 = f (x0), then the proof is finished. So we suppose that x0 < f (x0).
Since x0 < f (x0) and f is nondecreasing function, we obtain by induction that

x0 < f (x0) � f 2(x0) � f 3(x0) � f 4(x0) · · · � f n(x0) � f n+1(x0) � · · ·

Put xn+1 = f (xn) for each n ∈ N. Then for each n ∈ N, from (5.161) and, as xn and
xn+1 are comparable, we have

d(xn+1, xn) = d( f xn, f xn−1) � ϕ(d(xn, xn−1))− ψ(d(xn, xn−1)).

If there exists an n0 ∈ N such that d(xn0 , xn0−1) = 0 then xn0 = f (xn0−1) = xn0−1

and xn0−1 is a fixed point of T and the proof is finished.
On the other hand, suppose that d(xn+1, xn) �= 0 for all n ∈ N. Then taking

into account (5.161) and our assumptions about ϕ and ψ , we have

d(xn+1, xn) = d( f xn, f xn−1) � ϕ(d(xn, xn−1))− ψ(d(xn, xn−1)) < d(xn, xn−1).

Denoting d(xn+1, xn) by ρn we have

ρn � ϕ(ρn−1)− ψ(ρn−1) < ρn−1. (5.162)

Hence, {ρn} is a nonnegative nonincreasing sequence and hence possesses a limit,
say, ρ∗ such that ρ∗ ≥ 0. We claim that ρ∗ = 0.

Now, from (5.162), if ρ∗ > 0, taking limit when n →∞, we get

ρ∗ � ϕ(ρ∗)− ψ(ρ∗) � ρ∗.

Thus, we have
ρ∗ = ϕ(ρ∗)− ψ(ρ∗).

By (C3), for ρ∗ > 0 we obtain

ρ∗ = ϕ(ρ∗)− ψ(ρ∗) < ρ∗,

a contradiction. Therefore, ρ∗ = 0.
Now, we show that {xn} is a Cauchy sequence. Fix ε > 0. Since ρn =

d(xn+1, xn) → 0, there exists n0 ∈ N such that

d(xn0+1, xn0) � min
{ε

2
, ε − ϕ(ε)+ ψ(ε)

}
.
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We claim that f
(

B(xn0 , ε) ∩ {y ∈ X : y ≥ xn0}
)
⊂ B(xn0 , ε).

Let z ∈ B(xn0 , ε) ∩ {y ∈ X : y ≥ xn0}. Then there arises two cases:
Case 1. When 0 < d(z, xn0) � ε

2 . In this case, as z and xn0 are comparable, we have

d( f (z), xn0 ) � d( f (z), f (xn0 ))+ d( f (xn0 ), xn0 ) =
= d( f (z), f (xn0 ))+ d(xn0+1, xn0 )

� ϕ(d(z, xn0 ))− ψ(d(z, xn0 ))+ d(xn0+1, xn0 )

< d(z, xn0 )+ d(xn0+1, xn0 ) � ε

2
+ ε

2
= ε.

Case 2. When ε
2 < d(z, xn0) � ε. In this case, as z and xn0 are comparable and ϕ is

a nondecreasing function and ψ is a nonincreasing function, ϕ((d(z, xn0))) � ϕ(ε)

and ψ(d(z, xn0) ≥ ψ(ε), we have

d( f (z), xn0 ) � d( f (z), f (xn0 ))+ d( f (xn0 ), xn0 ) =
= d( f (z), f (xn0 ))+ d(xn0+1, xn0 )

� ϕ(d(z, xn0 ))− ψ(d(z, xn0 ))+ d(xn0+1, xn0 )

� ϕ(ε)− ψ(ε)+ d(xn0+1, xn0 )

� ϕ(ε)− ψ(ε)+ ε − ϕ(ε)+ ψ(ε) = ε.

This proves our claim.
Since xn0+1 ∈ B(xn0 , ε) ∩ {y ∈ X : y ≥ xn0}, our claim gives us that xn0+2 =

f (xn0+1) ∈ B(xn0 , ε) ∩ {y ∈ X : y ≥ xn0}. Repeating this process, it follows that
xn ∈ B(xn0 , ε) for all n ≥ n0. Since ε is arbitrary, {xn} is a Cauchy sequence.

As X is complete, there exists x∗ ∈ X such that limn→∞ xn = x∗. Again, since
ρn → 0 and f is continuous, it follows that x∗ is a fixed point of f . This completes
the proof. �

Theorem 5.172 Let (X,�) be a partially ordered set and suppose that there exists
a metric d in X such that (X, d) is a complete metric space. Let f : X → X be a
continuous and nondecreasing mapping such that

d( f x, f y) � ϕ(d(x, y))− ψ(d(x, y)) for x ≥ y (5.163)

where ϕ,ψ : [0,∞) → [0,∞) are continuous and nondecreasing functions satis-
fying the conditions (D1)-(D3). If there exists x0 ∈ X with x0 � f (x0), then f has a
fixed point.

Proof Following the proof of Theorem 5.171, we only have to check that {xn} is a
Cauchy sequence. Fix ε > 0. Since ρn = d(xn+1, xn) → 0 , there exists n0 ∈ N such
that

d(xn0+1, xn0) � min
{

q ε, (1− q)ε
}
.
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We claim that f
(

B(xn0 , ε) ∩ {y ∈ X : y ≥ xn0}
)
⊂ B(xn0 , ε).

Let z ∈ B(xn0 , ε) ∩ {y ∈ X : y ≥ xn0}. Then there arises two cases:
Case 1. When 0 < d(z, xn0) � q ε. In this case, as z and xn0 are comparable, we have

d( f (z), xn0) � d( f (z), f (xn0))+ d( f (xn0), xn0) = d( f (z), f (xn0))+ d(xn0+1, xn0)

� ϕ(d(z, xn0))− ψ(d(z, xn0))+ d(xn0+1, xn0)

� ϕ(q ε)− ψ(0)+ d(xn0+1, xn0)

� q ε + (1− q) ε + ε.

Case 2. When q ε < d(z, xn0) � ε. In this case, as z and xn0 are comparable and ϕ

is a nondecreasing function and ψ is a nonincreasing function, ϕ((d(z, xn0) � ϕ(ε)

and ψ(d(z, xn0)) ≥ ψ(ε), we have

d( f (z), xn0) � d( f (z), f (xn0))+ d( f (xn0), xn0) = d( f (z), f (xn0))+ d(xn0+1, xn0)

� ϕ(d(z, xn0))− ψ(d(z, xn0))+ d(xn0+1, xn0)

� ϕ(ε)− ψ(qε)++d(xn0+1, xn0)

� (1− q) ε + qε = ε.

This proves our claim. �

In what follows we prove that Theorem 5.171 is still valid for f not necessarily
continuous, assuming the following hypothesis in X (which appears in Theorem 1
of [423] and Theorem 3 of [267]) if {xn} is a nondecreasing sequence in X such that
xn → x then

xn � x for all n ∈ N (5.164)

Theorem 5.173 Let (X,�) be a partially ordered set and suppose that there exists
a metric d in X such that (X, d) is a complete metric space. Assume that X satisfies
(3.4). Let f : X → X be a nondecreasing mapping such that

d( f x, f y) � ϕ(d(x, y))− ψ(d(x, y)) for x ≥ y

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function and ψ :
[0,∞) → [0,∞) is a continuous and nonincreasing function satisfying the condi-
tions (C1)− (C3). If there exists x0 ∈ X with x0 � f (x0), then f has a fixed point.

Proof Following the proof of Theorem 5.171, we only have to check that f (z) = z.
In fact,

d( f (z), z) � d( f (z), f (xn))+ d( f (xn), z) �
� ϕ(d(z, xn))− ψ(d(z, xn))+ d(xn+1, z)

and taking limit as n →∞, d( f (z), z) � 0 and this proves that d( f (z), z) = 0 and
consequently f (z) = z.
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We now present an example where it can be appreciated that hypotheses in
Theorems 5.171 and 5.173 do not guarantee uniqueness of the fixed point. This
example appears in [423]. Let X = {(1, 0), (0, 1)} ⊂ R2 and consider the usual order

(x, y) � (z, t) ⇔ x � z and y � t.

Thus, (X,�) is a partially ordered set, whose different elements are not comparable.
Besides, (X, d) is a complete metric space considering d the Euclidean distance. Put
ϕ(t) = 2

3 (t + 1), ψ(t) = 2
3 for all t ∈ [0,∞). The identity map f (x, y) = (x, y)

is trivially continuous and nondecreasing since elements in X are only comparable
to themselves. Observe that conditions (5.161) and (C1)− (C3) of Theorem 5.171
are satisfied, i.e. f is a weakly (ϕ − ψ) -contractive mapping of type (I).

On the other hand, if we consider ϕ(t) = 2
3 t, ψ(t) = 1

3 t for all t ∈ [0,∞).

Then conditions (5.163) and (D1)-(D3) of Theorem 5.172 are satisfied, i.e. f is a
weakly (ϕ − ψ)-contractive mapping of type (II). To see this, let us take q = 1

2 .
Moreover, (1, 0) � f (1, 0) = (1, 0) and f has two fixed points in X .

Now there arises a natural question whether there is any sufficient condition
for the uniqueness of the fixed point in Theorems 5.171 and 5.173. The answer is
affirmative. The conditions are:

(SC1) for x, y ∈ X there exists a lower bound or an upper bound.
(SC2) X is such that if {xn} is a sequence in X whose consecutive terms are com-

parable, then there exists a subsequence {xni } of {xn} such that every term is
comparable to the limit x .

(SC3) f maps comparable elements to comparable elements, that is, for x, y ∈
X, x � y ⇒ f (x) � f (y) or f (x) � f (y).

In [423] it is proved that condition (SC1) is equivalent to: for x, y ∈ X there
exists a z ∈ X which is comparable to x and y.

It may be remarked that corresponding results for Theorems 5.171 and 5.173
pertaining to uniqueness of the fixed point under conditions (SC1)− (SC3) can be
obtained by applying similar arguments as in [267], so we omit the details.

Now we state the following theorems without proof which ensure the unique-
ness of fixed points in Theorems 5.171 and 5.173 respectively. An appropriate blend
of the proofs of Theorem 5.171 and [267, Theorem 4] works.

Theorem 5.174 Let (X,�) be a partially ordered set, C a chain in X and suppose
that there exists a metric d in C such that (C , d) is a complete metric space. Let
f : C → C be a nondecreasing mapping such that

d( f x, f y) � ϕ(d(x, y))− ψ(d(x, y)) for all x, y ∈ C (5.165)

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function and ψ :
[0,∞) → [0,∞) is a continuous and nonincreasing function satisfying the condi-
tions (C1)− (C3). If there exists x0 ∈ C with x0 � f (x0), then f has a unique fixed
point in C .
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Theorem 5.175 Let (X,�) be a partially ordered set, C a chain in X and suppose
that there exists a metric d in C such that (C , d) is a complete metric space. Let
f : C → C be a nondecreasing mapping such that

d( f x, f y) � ϕ(d(x, y))− ψ(d(x, y)) for all x, y ∈ C (5.166)

where ϕ,ψ : [0,∞) → [0,∞) are continuous and nondecreasing functions satisfy-
ing the conditions (D1)− (D3). If there exists x0 ∈ C with x0 � f (x0), then f has
a unique fixed point in C .

Example 5.51 Let X = R and let � denote usual order relation in R. Then (X,�)

be a partially ordered set. Put

C = {0} ∪ {±2−n : n ∈ N}

and let d be the usual metric on C . Define mapping f : C → C by

f x = 1

2
x for all x ∈ C .

It is obvious that C is a chain in X and it is complete. The map f is continu-
ous and nondecreasing. Put ϕ(t) = 2

3 t + 1
1+t , ψ(t) = 1

1+t for all t ∈ [0,∞). Then
conditions (C1)− (C3) are satisfied. Notice that (5.163) obviously holds. Moreover,
− 1

2 � f (− 1
2 ) = − 1

4 and f has a unique fixed point 0 in C . Besides, we notice that
the iterative sequence {xn} given by x0 = − 1

2 , x1 = f (− 1
2 ) = − 1

4 , x2 = f (− 1
4 ) =

− 1
8 , · · · is nondecreasing and converges to 0. Furthermore, we observe that each

xn � 0.

5.8 Fixed Point Theorems in Banach Algebra

It is well known that the important fixed point theorem due to Krasnoselski which
combines the metric fixed point theorem of Banach with the topological fixed point
theorem of Schauder in a Banach space has many applications to nonlinear integral
equations. Many results have been obtained to improve and weaken the hypotheses of
Krasnoselski’s fixed point theorem due to several authors and the references therein.
The study of the nonlinear integral equations in Banach algebras was initiated by
Dhage via fixed point theorems.

In this section, we present the concept of P-Lipschitzian maps which is appre-
ciably weaker than D-Lipschitzian maps and give the proof of some fixed point
theorems of Dhage under some weaker conditions.

We first recall the following. In 1969, Boyd and Wong [75] introduced, without
nomenclature, the concept of nonlinear contraction.
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Definition 5.92 A mapping T on a Banach space X with norm ‖.‖ is said to be
nonlinear contraction if it satisfies

‖T x − T y‖ � φ(‖x − y‖), for all x, y ∈ X, (5.167)

where φ is a real continuous function such that φ(r) < r , r > 0.

In 2003, Dhage [171] introduced the following:

Definition 5.93 A mapping T on a Banach space X is called D-Lipschitzian if there
exists a continuous and nondecreasing function φ : R+ −→ R+ such that

‖T x − T y‖ � φ(‖x − y‖), for all x, y ∈ X, (5.168)

where φ(0) = 0.

It is shown in Dhage [171] that every Lipschitzian mapping is D-Lipschitzian map,
but the converse may not be true.

Again, let X be a Banach space and T : X → X an operator. Then

1. T is called a compact operator if T (X) is a compact subset of X .
2. T is called totally bounded if for any bounded subset S of X , T (S) is a totally

bounded set of X .
3. T is called completely continuous if it is continuous and totally bounded.

Note that every compact operator is totally bounded, but the converse may not
be true, however, two notions are equivalent on a bounded subset of X .

The famous Krasnoselski [346] fixed point theorem states that:

Theorem 5.176 (Krasnoselski [346]) Let S be a closed, convex and bounded subset
of a Banach algebra X and let A, B : S −→ X be two operators such that

(a) A is a contraction;
(b) B is completely continuous; and
(c) Ax + By ∈ S, ∀ x, y ∈ S.

Then the operator equation
Ax + Bx = x (5.169)

has a solution in S.

It has been mentioned in Burton [126, Theorem 2] that hypothesis (c) of Theorem
5.176 is very strong and can be replaced with a mild one. Indeed, he proved the
following modification of Krasnoselski’s fixed-point theorem.

Theorem 5.177 (Burton [126]) Let S be a closed, convex and bounded subset of
a Banach algebra X and let A : X −→ X and B : S −→ X be two operators such
that

(a) A is a contraction;
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(b) B is completely continuous; and
(c) [x = Ax + By, for all y ∈ S] ⇒ x ∈ S.

Then the operator equation (5.169) has a solution.

In 2003, Dhage [171, Theorem 2.3] proved the following fixed point theorem.

Theorem 5.178 (Dhage [171]) Let S be a closed, convex and bounded subset of a
Banach algebra X and let A : X −→ X and B : S −→ X be two operators such
that

(a) A is D-Lipschitzian;
(b) (I/A)−1 exists on B(S), I being the identity operator on X;
(c) B is completely continuous; and
(d) x = Ax By ⇒ x ∈ S, ∀ y ∈ S.

Then the operator equation
Ax Bx = x, (5.170)

has a solution, whenever Mφ(r) < r, r > 0, where M = ‖B(S)‖.

In 2005, Dhage [173, Theorem 2.1] improved Theorem 5.178 in the following way:

Theorem 5.179 (Dhage [173]) Let S be a closed, convex and bounded subset of a
Banach algebra X and let A : X −→ X and B : S −→ X be two operators such
that

(a) A is D-Lipschitzian;
(b) B is completely continuous; and
(c) x = Ax By ⇒ x ∈ S, ∀ y ∈ S.

Then the operator equation (5.170) has a solution, whenever Mφ(r) < r, r > 0,
where M = B(S).

Notice that the proof of Theorems 5.178 and 5.179 does not realize the continuity of
the function φ involved in the definition of D-Lipschitzian maps. Therefore, it is of
interest to prove the improved version of these results under some weaker conditions.
Further, it may be remarked that Dhage ([169, 171, 173] and some references therein)
cites the following form of Boyd–Wong’s fixed point theorem.

Theorem 5.180 (Dhage [169]) Let T : X −→ X be a nonlinear contraction on a
Banach space X. Then T has a unique fixed point.

But the Boyd–Wong fixed point theorems in its original form are as follows:

Theorem 5.181 (Boyd–Wong [75]) Let (X, ρ) be a complete metric space, and let
T : X −→ X satisfies

ρ(T (x), T (y)) � ψ(ρ(x, y)), for all x, y ∈ X, (5.171)

where ψ : P −→ R+ is upper semicontinuous from right on P, and satisfies ψ(t) < t
for t ∈ P − {0}, where P = {ρ(x, y) : x, y ∈ X} and P denotes the closure of P.
Then T has a fixed point x0 ∈ X and T n(x) −→ x0, for each x ∈ X.
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Theorem 5.182 (Boyd–Wong [75]) Suppose that (X, ρ) is a completely metrically
convex metric space and that T : X −→ X satisfies

ρ(T (x), T (y)) � ψ(ρ(x, y)), for all x, y ∈ X, (5.172)

where ψ : P −→ R+ satisfies ψ(t) < t for t ∈ P − {0}, where P = {ρ(x, y) :
x, y ∈ X} and P denotes the closure of P. Then T has a fixed point x0 ∈ X and
T n(x) −→ x0, for each x ∈ X.

As observed by Boyd–Wong that for a metrically convex space, the condition of
semi continuity may be dropped. Since every Banach space is metrically convex, it
is just sufficient to consider only the second version of Boyd–Wong’s theorem, i.e.
Theorem 5.182 in the setting of Banach algebra, i.e. there is no need to take ψ to be
continuous as Dhage considered in his papers (see, for instance, [169, 171, 173]).

5.8.1 P-Lipschitzian Maps

We now introduce a new concept of P-Lipschitzian mapping which is weaker than
the concept of D- Lipschitzian mapping.

Definition 5.94 A mapping T on a Banach space X is called P-Lipschitzian if there
exists a nondecreasing function φ : R+ −→ R+ such that

‖T x − T y‖ � φ(‖x − y‖), for all x, y ∈ X. (5.173)

Sometimes we call the function φ a P function of T on X . Notice that every D-
Lipschitzian mapping is a P-Lipschitzian mapping, but the converse need not be
true. To see this, consider the following:

Example 5.52 Let X = R, f : X −→ X be defined by

f (x) =
{

sin x, forx ≥ 0,
1

1+|x | , forx < 0,

and let φ : R+ −→ R+ be defined by

φ(t) =
{

et , fort > 0;
2, fort = 0.

Now we consider the following two cases:

Case 1: When x ≥ 0,

| f x − f y| = | sin x − sin y| � |x − y| � e|x−y| � φ(|x − y|).



434 5 Fixed Point Theorems

Case 2: When x < 0,

| f x − f y| =
∣∣∣ 1

1+|x | − 1
1+|y|

∣∣∣ � |x − y| � e|x−y| � φ(|x − y|).

Thus, we conclude that ‖ f x − f y‖ � φ(‖x − y‖, ) ∀ x, y ∈ X .
We also observe that

1. φ is not continuous at t = 0,
2. φ is nondecreasing,
3. φ(0) �= 0.

Thus, f is a P-Lipschitzian mapping but not D-Lipschitzian. Hence, every D-
Lipschitzian mapping is P-Lipschitzian map, but the converse need not be true.

Remark 5.57 Note that from Definition 5.94 and Example 5.52, it is clear that the
reverse implications in the following diagram need not be true.

Contraction mappings =⇒ Lipschitzian mappings

⇓ ⇓
P-Lipschitzian mappings ⇐= D-Lipschitzian mappings

In 2012, by relaxing the hypothesis in the main theorem of Dhage [172], Pathak
and Deepmala [456] proved the following fixed point theorem involving three oper-
ators on a Banach algebra.

Theorem 5.183 Let S be a closed, convex and bounded subset of a Banach algebra
X and let A, C : X −→ X and B : S −→ X be three operators such that

(a) A and C are P-Lipschitzian with P function φA and φC ;
(b) B is completely continuous; and
(c) if x = Ax By + Cx then x ∈ S, ∀ y ∈ S.

Then the operator equation Ax Bx + Cx = x has a solution, whenever MφA(r)+
φC(r) < r, r > 0, where M = ‖B(S)‖.

Proof Let y ∈ S and define a mapping Ay : X −→ X by

Ay(x) = Ax By + Cx, for all x ∈ X.

Then we have

‖Ay x1 − Ay x2‖ � ‖Ax1 − Ax2‖‖By‖ + ‖Cx1 − Cx2‖
� MφA(‖x1 − x2‖)+ φC(‖x1 − x2‖), x1, x2 ∈ X.

This shows that Ay is a nonlinear contraction on X , since MφA(r)+ φC(r) < r, r >

0. Hence, by Theorem 5.176, there is a unique point x∗ ∈ X such that
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Ay(x∗) = Ax∗By + Cx∗ = x∗.

Therefore by (c), we have that x∗ ∈ S. Define a mapping N :S −→ S by N y = z,
where z ∈ X is the unique solution of the equation

z = AzBy + Cz, y ∈ S.

We show that N is continuous. Let {yn} be a sequence in S converging to a point y.
Since, S is closed, y ∈ S. Now

‖N yn − N y‖ = ‖AN (yn)Byn − AN (y)By‖ + ‖C(N yn)− C(N y)‖
� ‖AN (yn)Byn − AN (y)Byn‖ + ‖AN (y)Byn − AN (y)By‖
+‖C(N yn)− C(N y)‖

� ‖AN (yn)− AN (y)‖ ‖Byn‖ + ‖AN (y)‖ ‖Byn − By‖
+‖C(N yn)− C(N y)‖

� MφA(‖N yn − N y‖)+ ‖AN y‖ ‖Byn − By‖
+φC(‖N yn − N y‖).

Since, MφA(r)+ φC(r) < r, r > 0, there exists k ∈ (0, 1) such that MφA(r)+
φC(r) = kr and

‖N yn − N y‖ � k(‖N yn − N y‖)+ ‖AN y‖ ‖Byn − By‖.

Taking the limit superior as n −→∞ on both sides, we obtain

lim sup
n−→∞

‖N yn − N y‖ � k lim sup
n−→∞

(‖N yn − N y‖)+ ‖AN y‖ (lim sup
n−→∞

‖Byn − By‖).

This shows that limn ‖N yn − N y‖ = 0 and consequently N is continuous on
S. Next we show that N is a compact operator on S. Now for any z ∈ S we have

‖Az‖ � ‖Aa‖ + ‖Az − Aa‖ � ‖Aa‖ + α‖z − a‖ � c,

where c = ‖Aa‖ + diam(S) for some fixed a ∈ S.
Let ε > 0 be given. Since, B is completely continuous, B(S) is totally bounded.

Hence, there is a set Y = {y1, y2, . . . , yn} in S such that

B(S) ⊂
n⋃

i=1

Bδ(wi ),

where wi = B(yi ), δ =
(

1−(αM+β)

c

)
ε and Bδ(wi ) is an open ball in X centerd at wi

of radius δ. Therefore, for any y ∈ S we have a yk ∈ Y such that
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‖By − Byk‖ <

(
1− (αM + β)

c

)
ε.

Also, we have

‖N y − N yk‖ � ‖AzBy − Azk Byk‖ + ‖Cz − Czk‖
� ‖AzBy − Azk By‖ + ‖Azk By − Azk Byk‖ + ‖Cz − Czk‖
� ‖Az − Azk‖ ‖By‖ + ‖Azk‖ ‖By − Byk‖ + ‖Cz − Czk‖
� (αM + β)‖z − zk‖ + ‖Az‖ ‖By − Byk‖
� c

1−(αM+β)
‖By − Byk‖

< ε.

This is true for every y ∈ S and hence

N (S) ⊂
n⋃

i=1

Bε(zi ),

where zi = N (yi ). As a result, N (S) is totally bounded. Since N is continuous, it
is a compact operator on S. Now an application of Schauder’s fixed point theorem
yields that N has a fixed point in S. Then by the definition of N

x = N x = A(N x)Bx + C(N x) = Ax Bx + Cx,

and so, the operator equation x = Ax Bx + Cx has a solution in S. �

Similarly, we prove the following fixed point theorems involving two operators on
a Banach algebra relaxing the hypothesis of Dhage [171, Theorem 2.3] and Dhage
[173, Theorem 2.1], respectively.

Theorem 5.184 Let S be a closed, convex and bounded subset of a Banach algebra
X and let A : X −→ X and B : S −→ X be two operators such that

(a) A is P-Lipschitzian;
(b) (I/A)−1 exists on B(S), I being the identity operator on X;
(c) B is completely continuous; and
(d) x = Ax By ⇒ x ∈ S, ∀ y ∈ S.

Then the operator equation Ax By = x has a solution, whenever Mφ(r) < r, r > 0,
where M = ‖B(S)‖.

Proof Let y ∈ S and define a mapping Ay : X −→ X by

Ay(x) = Ax By, for all x ∈ X.

Then we have
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‖Ay x1 − Ay x2‖ � ‖Ax1 − Ax2‖‖By‖
� Mφ(‖x1 − x2‖), x1, x2 ∈ X.

Hence, by Theorem 5.176, there is a unique point x∗ ∈ X such that Ay(x∗) = x∗.
Remaining proof of the theorem is similar to the proof of Theorem 2.3 [171] and
Theorem 5.177. So we omit the details. �

Theorem 5.185 Let S be a closed, convex and bounded subset of a Banach algebra
X and let A : X −→ X and B : S −→ X be two operators such that

(a) A is P-Lipschitzian;
(b) B is completely continuous; and
(c) x = Ax By ⇒ x ∈ S, ∀ y ∈ S.

Then the operator equation Ax By = x has a solution, whenever Mφ(r) < r, r > 0,
where M = ‖B(S)‖.

Proof Let y ∈ S and define a mapping Ay : X −→ X by

Ay(x) = Ax By, for all x ∈ X.

Following Theorem 5.184, we can show that there is a unique point x∗ ∈ X such
that Ay(x∗) = x∗. The rest of the proof follows on the lines of the proof furnished
in Theorem 5.177 (See also Theorem 2.1 of Dhage [173]).

Remark 5.58 Since every Lipschitzian and D-Lipschitzian mappings are
P-Lipschitzian, we obtain the fixed point theorems studied in [171–173] as a par-
ticular case of Theorems 5.177, 5.184 and 5.185, which are useful to obtain the
solutions of some nonlinear differential and integral equations.

The following sufficient condition guarantees the hypothesis (c) of Theorem 5.177.

Proposition 5.14 Let S be a closed, convex and bounded subset of a Banach Algebra
X such that S = {y ∈ X : ‖y‖ � r} for some real number r > 0. Let A, C : X −→
X, B : S −→ S be two operators satisfying hypothesis (a)− (b) of Theorem 5.177.
Further, if

‖x‖ �
∥∥∥∥
(

I − C

A

)
x

∥∥∥∥ , (5.174)

for all x ∈ X, then x ∈ S.

Proof The proof follows on the lines of the proof of Proposition 2.1 of [171].

5.9 Lattice-Theoretic Fixed Point Theorems

In 1927, Knaster and Tarski proved a set-theoretical fixed point theorem by which
every function, on and to the family of all subsets of a set, which is increasing
under set-theoretical inclusion, has at least one fixed point; see [313], where some
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applications of this result in set theory (a generalization of the Cantor–Bernstein’s
theorem) and topology are also mentioned. A generalization of this result is the lattice-
theoretical fixed point theorem stated below as Theorem 5.180. The theorem in its
present form and its various applications and extensions were found by the author
in 1939 and discussed by him in a few public lectures in 1939–1942. (See, e.g. a
reference in the American Mathematical Monthly 49(1942), 402.) An essential part
of Theorem 5.180 was included in ([58], p. 54); however, the author was informed by
Professor Garrett Birkhoff that a proper historical reference to this result was omitted
by mistake.

Let A = 〈A,≤〉 be a complete lattice. We shall consider functions on A to A
and, more generally, on a subset B of A to another subset C of A. Such a function f
is called increasing if, for any elements x, y ∈ B, x ≤ y implies f (x) ≤ f (y). By a
fixed point of a function f we understand, of course, an element x of the domain of
f such that f (x) = x .

We now state below the lattice-theoretical fixed point theorem of Tarski without
proof.

Theorem 5.186 (Tarski [588]) Let

(i) A = 〈A,≤〉 be a complete lattice,
(ii) f be an increasing function on A to A

(iii) P be the set of all fixed points of f .

Then the set P is not empty, and the system (P,≤) is a complete lattice; in particular,
we have ⋃

P =
⋃

Ex [ f (x) ≥ x] ∈ P

and ⋂
P =

⋂
Ex [ f (x) ≥ x] ∈ P.

By Theorem 5.10, the existence of a fixed point for every increasing function is a
necessary condition for the completeness of a lattice. The question naturally arises
whether this condition is also sufficient. It has been shown that the answer to this
question is affirmative (Refer to A.C. Davis [157]).

A set F of functions is called commutative if

(i) all the functions of F have a common domain, say B, and the ranges of all
functions of F are subsets of B;
(i i) for any f, g ∈ F we have f g = g f , that is,

f (g(x)) = g( f (x)) for every x ∈ B.

Using this notion, Theorem 5.186 can be improved in the following way:

Theorem 5.187 (Generalized lattice-theoretical fixed point theorem) Let

(i) A = 〈A,≤〉 be a complete lattice,
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(ii) F be any commutative set of increasing functions on A to A
(iii) P be the set of all common fixed points of all the functions f ∈ F.

Then the set P is not empty and the system (P,≤) is a complete lattice; in particular,
we have ⋃

P =
⋃

Ex [ f (x) ≥ x for all f ∈ F] ∈ P

and ⋂
P =

⋂
Ex [ f (x) ≥ x for all f ∈ F] ∈ P.

5.9.1 Reflexivity and Perturbed Fixed Point Property for
Cascading Nonexpansive Maps in Banach Lattices

For the first time, James [291] investigated connections between spaces containing
good copies of �1 or c0 and the fixed point property. He proved that neither �1 nor
c0 is distortable. In his proof, he provided a tool which appeared to be useful in
considering the question of whether �1 or c0 could be renormed to have the fixed
point property. The proof shows that both spaces �1 and c0 admit fixed point-free
isometries on bounded, closed and convex sets and all renormings of �1 or c0 con-
tain almost isometric copies of �1 or c0, then perturbations of the isometries would
hopefully produce nonexpansive self-maps of bounded, closed and convex subsets
without fixed points in the renormed spaces.

James’s distortion theorems state that Banach spaces which contain isomorphic
copies of �1 (respectively, c0) contain almost isometric copies of �1 (respectively, c0)
(See also [199], [200]).

James’s distortion theorems A Banach space X contains an isomorphic copy of �1

if and only if, for every null sequence (εn) in (0, 1), there exists a sequence (xn)n∈N
in X such that

(1− εk)

∞∑
n=k

|tn| �
∥∥∥∥∥
∞∑

n=k

tn xn

∥∥∥∥∥ �
∞∑

n=k

|tn|

holds for all (tn) ∈ �1 and for all k ∈ N.

A Banach space X contains an isomorphic copy of c0 if and only if, for every
null sequence (εn) in (0, 1), there exists a sequence (xn)n∈N in X such that

(1− εk) sup
n�k

|tn| �
∥∥∥∥∥
∞∑

n=k

tn xn

∥∥∥∥∥ � sup
n�k

|tn|

holds for all (tn) ∈ c0 and for all k ∈ N.
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We now introduce the notion of cascading nonexpansive mapping. This new
class of mappings strictly includes nonexpansive mappings. Cascading nonexpansive
mappings are analogous to asymptotically nonexpansive mappings, but examples
show that neither of these two classes of mappings contain the other.

Let C be a bounded, closed and convex subset of a Banach space (X, ‖ · ‖).
Let T : C → C be a mapping. Let C0 := C and

C1 := co(T (C)) ⊆ C.

Clearly C1 is a bounded, closed and convex set in C . Let x ∈ C1. Then

T x ∈ T (C1) ⊆ T (C) ⊆ co(T (C)) = C1.

This means that T maps C1 into C1. Inductively, for all n ∈ N we define

Cn := co(T (Cn−1)) ⊆ Cn−1.

It follows that T maps Cn into Cn .

Definition 5.95 Let (X, ‖ · ‖) be a Banach space and C be a bounded, closed and
convex subset of X . Let T : C → C be a mapping and (Cn)n∈N be defined as above.
We say that T is cascading nonexpansive if there exists a sequence (kn)n∈N in [1,∞)

such that kn → 1, and for all n ∈ N, for all x, y ∈ Cn,

‖T x − T y‖ � kn‖x − y‖.

Note that every cascading nonexpansive mapping is norm-to-norm continuous;
and every nonexpansive map is cascading nonexpansive. Notice also that cascading
nonexpansive mappings arise naturally in Banach spaces (X, ‖ · ‖) that contain an
isomorphic copy of �1 or c0. We now furnish few examples of such spaces.

Example 5.53 (i) Banach spaces isomorphic to a nonreflexive Banach lattice, and
nonreflexive Banach spaces with an unconditional basis. (See, for example, Linden-
strauss and Tzafriri [372] 1.c.5 and [371] 1.c.12.)
(ii) Banach spaces isomorphic to a nonreflexive symmetrically normed ideal of oper-
ators on an infinite-dimensional Hilbert space. (See Peter Dodds and Lennard [192].)

Using Strong James’ Distortion Theorem for �1 and c0, we prove the following:

Theorem 5.188 Let (X, ‖ · ‖) be a Banach space that contains an isomorphic copy
of �1 or c0. Then there exists a bounded, closed and convex set C ⊆ X and an affine
cascading nonexpansive mapping T : C → C such that T is fixed point free.



5.9 Lattice-Theoretic Fixed Point Theorems 441

Proof We need to consider the following two cases:
Case 1. Suppose (X, ‖ · ‖)) contains an isomorphic copy of �1. By the Strong Jamess’
Distortion Theorem for �1 ([4], [5]), there exists a normalized sequence (x j ) j∈N in X
and a null sequence (εn)n∈N in (0, 1) such that for all n ∈ N, for all t = (t j ) j∈N ∈ c00,

(1− εn)

∞∑
j=n

|t j | �
∥∥∥∥∥∥
∞∑

j=n

t j x j

∥∥∥∥∥∥ �
∞∑

j=n

|t j |

Define the bounded, closed and convex subset C of X by

C := co{x j : j ∈ N} =
⎧⎨
⎩

∞∑
j=1

t j x j : each t j � 0 and
∞∑
j=1

t j = 1

⎫⎬
⎭ .

Further, we define T : C → C by

T

⎛
⎝ ∞∑

j=1

t j x j

⎞
⎠ =

∞∑
j=1

t j x j+1.

Then it is easy to see that the mapping T is affine and fixed point free. Induc-
tively, we see that for all n ∈ N, Cn := co(T (Cn−1)) = T (Cn−1) is given by

Cn =
⎧⎨
⎩

∞∑
j=n+1

t j x j : each t j � 0 and
∞∑

j=n+1

t j = 1

⎫⎬
⎭ .

Fix n ∈ N0 and fix x, y ∈ Cn. Hence, x =∑∞
j=n+1 t j x j and y =∑∞

j=n+1 s j x j ,

where each t j , s j � 0 and
∑∞

j=n+1 t j =∑∞
j=n+1 s j = 1. Take a j = t j − s j for all

j � n + 1. Then

‖x − y‖ =
∥∥∥∥∥∥

∞∑
j=n+1

a j x j

∥∥∥∥∥∥ � (1− εn+1)

∞∑
j=n+1

|a j |,

and because each ‖xk‖ = 1, it follows that

‖T x − T y‖ =
∥∥∥∥∥∥

∞∑
j=n+1

a j x j+1

∥∥∥∥∥∥ �
∞∑

j=n+1

|a j |

� 1

(1− εn+1)
‖x − y‖.

Consequently, T is cascading nonexpansive on C.
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Case 2. Suppose (X, ‖ · ‖)) contains an isomorphic copy of c0. By a strengthening
of the Strong James’ Distortion Theorem for c0 ([5], Theorem 8), there exists a
normalized sequence (x j ) j∈N in X and a null sequence (εn)n∈N in (0, 1) such that
for all n ∈ N, for all t = (t j ) j∈N ∈ c00,

max
j�n

|t j | �
∥∥∥∥∥∥
∞∑

j=n

t j x j

∥∥∥∥∥∥ � (1+ εn) max
j�n

|t j |

Define yk := x1 + x2 + · · · + xk, for all k ∈ N. Next we define the bounded, closed
and convex subset C of X by

C := co{yk : k ∈ N} =
⎧⎨
⎩

∞∑
j=1

t j x j : 1 = t1 � t2 · · · � tk → 0 as k →∞
⎫⎬
⎭ .

Also, we define the function T : C → C by

T

⎛
⎝ ∞∑

j=1

t j x j

⎞
⎠ = x1 +

∞∑
j=1

t j x j+1.

Clearly the mapping T is affine and fixed point free. Inductively, it follows that
for all n ∈ N, Cn := co(T (Cn−1)) = T (Cn−1) is given by

Cn =
⎧⎨
⎩

∞∑
j=1

t j x j : 1 = t1 = t2 · · · = tn+1 � tn+2 � · · · � tk → 0 as k →∞
⎫⎬
⎭ .

Fix n ∈ N0 and fix x, y ∈ Cn. So, x =∑∞
j=1 t j x j and y =∑∞

j=1 s j x j , where
1 = t1 = t2 · · · = tn+1 � tn+2 � · · · � tk → 0 as k →∞ and 1 = s1 = s2 · · · = sn+1

� sn+2 � · · · � sk → 0 as k →∞. Take a j = t j − s j for all j ∈ N. Then we see
that

‖x − y‖ =
∥∥∥∥∥∥

∞∑
j=n+2

a j x j

∥∥∥∥∥∥ � max
j�n+2

|a j |,

and



5.9 Lattice-Theoretic Fixed Point Theorems 443

‖T x − T y‖ =
∥∥∥∥∥∥
∞∑
j=1

a j x j+1

∥∥∥∥∥∥ =
∥∥∥∥∥∥

∞∑
j=n+2

a j x j+1

∥∥∥∥∥∥
=
∥∥∥∥∥

∞∑
k=n+3

ak−1xk

∥∥∥∥∥
� (1+ εn+3) max

k�n+3
|ak−1| = (1+ εn+3) max

k�n+2
|ak−1|

� (1+ εn+3)‖x − y‖.

From the above inequality we conclude that T is cascading nonexpansive on C.

Theorem 5.189 Let (X, ‖ · ‖) be a reflexive Banach space. Then there exists an
equivalent norm ‖ · ‖∼ on X such that for every bounded, closed and convex subset
C of X, for all ‖ · ‖∼-cascading nonexpansive mappings T : C → C, T has a fixed
point in C.

Proof Following Benavides [48], we find that there exists an equivalent norm ‖ · ‖∼
on X such that for every bounded, closed and convex subset K of X , for all ‖ · ‖∼-
nonexpansive mappings F : K → K , F has a fixed point in K . Fix an arbitrary
bounded, closed and convex subset C of X . Let T : C → C be a ‖ · ‖∼-cascading
nonexpansive mapping. As above, let C0 := C and Cn := co(T (Cn−1)), for all
n ∈ N. By hypothesis there exists a sequence (kn)n∈N in [1,∞) such that kn → 1,
and for all n ∈ N, for all x, y ∈ Cn ,

‖T x − T y‖∼ � kn‖x − y‖∼.

Because X is reflexive, C is weakly compact. By Zorn’s Lemma there exists a
nonempty, bounded, closed and convex set D ⊆ C such that D is a minimal invari-
ant set for T , that is, T (D) ⊆ D, and if E is a nonempty , bounded, closed and
convex subset of D with T (E) ⊆ E, then we must have E = D. It follows that
co(T (D)) = D. Let D0 := D and Dn := co(T (Dn−1), for all n ∈ N. Inductively,
we see that for all n ∈ N, D = Dn ⊆ Cn. Therefore, by our hypotheses on T , for all
x, y ∈ D, for all n ∈ N,

‖T x − T y‖∼ � kn‖x − y‖∼.

Letting n →∞ and noting the fact that limn→∞ kn = 1, for all x, y ∈ D, we obtain

‖T x − T y‖∼ � ‖x − y‖∼.

Hence, T is ‖ · ‖∼-nonexpansive on D. Finally, it follows by Benavides [48] that T
has a fixed point in D ⊆ C.
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Combining Theorems 5.188 and 5.189, we get the following “fixed point
property" characterization of reflexivity in Banach lattices, Banach spaces with an
unconditional basis, and symmetrically normed ideals of operators on an infinite-
dimensional Hilbert space.

In 2014, Lennard and Nezir [364] proved the following result that is stated
below without proof.

Theorem 5.190 Let (X, ‖ · ‖) be a Banach lattice, or a Banach space with an uncondi-
tional basis, or a symmetrically normed ideal of operators on an infinite-dimensional
Hilbert space. Then the following are equivalent.
(1) X is reflexive.
(2) There exists an equivalent norm ‖ · ‖∼ on X such that for all bounded, closed and
convex sets C ⊆ X and for all ‖ · ‖∼-cascading nonexpansive mappings
T : C → C, T has a fixed point in C.

Exercises

5.1 Define a contraction mapping and prove that every contraction mapping T
defined on a Banach space X into itself has a fixed point x̄ ∈ X .

5.2 Let X = [0, 1] be a metric space with the usual metric and T : X → X be
a mapping defined by T (x) = 1

13 (x3 + x2 + 1) for all x ∈ X . Prove that T is a
contraction mapping with Lipschitz constant α = 5

13 .
[Hint: For all x, y ∈ X , we have

|T x − T y| = 1

13

∣∣(x3 − y3)+ (x2 − y2)
∣∣

� 1

13

[∣∣(x − y)(x2 + xyy2)
∣∣+ |x − y| |x + y|]

� 1

13
[3 |x − y| + 2 |x − y|] = 5

13
|x − y|,

which shows that T is a contraction mapping with Lipschitz constant 5
13 .]

5.3 Let X = {x |x ∈ Q, x � 1} be a metric space with the usual metric and
T : X → X be defined by T x = x

2 + x−1 for all x ∈ X . Show that T is a contraction
mapping with Lipschitz constant α = 1

2 .

5.4 Let X = [1,∞) be a metric space with the usual metric and T : X → X be
defined by T x = 99

100 (x + 1
x )for all x ∈ X . Show that T is a contraction mapping

with Lipschitz constant α = 99
100 .

5.5 Let X = R be a metric space with the usual metric and T : X → X be a mapping
defined by T (x) = cos x for all x ∈ X . Show that the mapping T is not contraction
but contractive.

[Hint: For all x, y ∈ R, we have
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| cos x − cos y| =
∣∣∣∣2 sin

(
x − y

2

)
sin

(
x + y

2

)∣∣∣∣
= 2

∣∣∣∣sin

(
x − y

2

)∣∣∣∣
∣∣∣∣sin

(
x + y

2

)∣∣∣∣
� 2

∣∣∣∣sin

(
x − y

2

)∣∣∣∣
< 2

∣∣∣∣ x − y

2

∣∣∣∣ (since | sin θ | < |θ | for all θ �= 0)

= |x − y|,

which shows that T is not contraction but contractive.]

5.6 Let X = R be a metric space with the usual metric and T : X → X be a mapping
defined by T (x) = sin x for all x ∈ X . Show that the mapping T is contractive.

5.7 If T is a contraction mapping, show that for any positive integer n, T n is a
contraction mapping. However, if T n is a contraction for n > 1 then T need not be
a contraction.

5.8 Let X be a complete metric space and let T : X → X be a Kannan mapping.
Show that T has a unique fixed point in X . Show also that a Kannan mapping need
not be continuous.

5.9 Show that if T is a function from a nonempty and compact metric space X to
itself such that

d(T x, T y) < d(x, y) ∀ x, y ∈ X, x �= y,

then T has a unique fixed point.

5.10 Let (X, d) be an arbitrary metric space and T : X → X a mapping which
satisfies

d(T x, T y) < d(x, y) (x, y ∈ X)

whenever x �= y. Assume that for some x ∈ X , the iterated sequence {xn} defined
by xn = T n x has a subsequence which converges to u ∈ X . Show that u is a fixed
point of T .

5.11 Let (X, d) be a complete metric space and T : X → X a continuous mapping.
Assume also that there exist an integer n and a positive number k ∈ (0, 1

2 ) such that

d(T x, T y) � k
(
d(x, T nz)+ d(y, T nz)

) ∀x, y, z ∈ X.

Prove that T has a fixed point.

5.12 Let (X, d) be an arbitrary metric space and T : X → X a continuous mapping.
Assume that for some x ∈ X , the orbit {T n x} contains a convergent subsequence
{T ni x}. Show that if d(T ni x, T ni+1x) → 0, then T has a fixed point.
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5.13 Prove that every continuous map of a closed, bounded and convex set in Rn

into itself has a fixed point.

5.14 Prove that the unit ball K∞ =
{

x = {xi } ∈ �2

∣∣‖x‖2 =∑∞
i=1 x2

i � 1
}

in the

Hilbert space �2 is not a fixed point space.
[Hint: Show that T : K∞ → K∞ given by x = (x1, x2, . . .) %→ (

√
1− ‖x‖2,

x1, x2, . . .) is a continuous map without fixed points.]

5.15 Prove that the function f : R→ R defined by f (x) = 1
3 (x3 + 1) has three

fixed points α, β, γ , where −2 < α < −1, 0 < β < 1, 1 < γ < 2.

5.16 Let X be a complete metric space and T : X → X a contraction mapping
satisfying

d(T x, T y) � cd(x, y) ∀ x, y ∈ X and 0 < c < 1.

Prove that if x̄ is the unique fixed point of T , then

d(x̄, x) � 1

1− c
d(T x, x) ∀x ∈ X.

5.17 Let X be a Banach space, m ≥ 1, and let T be a continuous linear operator on
X such that ‖T m‖ < 1. Fix u ∈ X and define

�(v) = u + T v, v ∈ X.

(a) Show that �m is a contraction.
(b) Show that the equation v = u + T v has a unique solution v ∈ X.

5.18 Let U be an open bounded subset in a Banach space X with 0 ∈ U and F, G :
U → X be two contractive maps such that F |∂U = G|∂U . Show that

F(F) �= ∅ ⇐⇒ F(G) �= ∅.

5.19 Let T be a contraction mapping of a complete metric space X into itself and
S be another mapping of X into itself such that for all x ∈ X , and a suitable η > 0

d(T x, Sx) � η.

Using induction, show that for any x ∈ X ,

d(T m x, Sm x) � η
1− cm

1− c
(m = 1, 2, . . .).

5.20 Let (X, d) be a complete metric space and let T : X → K (X), where K (X)

is the class of all nonempty and compact subsets of X . Assume that there exists a
map ϕ : (0,∞) → [0, 1) such that
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∀t∈(0,∞)

{
lim sup

r→t+
ϕ(r) < 1

}

and
∀x,y∈X,x �=y

{
H(T x, T y) � ϕ(d(x, y)) d(x, y)

}
.

Then T has a fixed point.

5.21 Let (X, d) be a complete metric space and let T : X → C B(X). Assume that
there exists a map ϕ : (0,∞) → [0, 1) such that

∀t∈[0,∞)

{
lim sup

r→t+
ϕ(r) < 1

}

and
∀x,y∈X,x �=y

{
H(T x, T y) � ϕ(d(x, y)) d(x, y)

}
.

Then T has a fixed point.

5.22 Let (X, d) be a complete metric space, T : X → C B(X) a multivalued map
and L > 0, where CB(X) is the class of all nonempty, closed and bounded subsets
of X . Assume that

H(T x, T y) � ϕ(d(x, y))d(x, y)+ Ld(y, T x) ∀x, y ∈ X,

where ϕ is a function from [0,∞) into [0, 1) satisfying lim supr→t+ ϕ(r) < 1 for all
t ∈ [0,∞). Then there exists z ∈ X such that z ∈ T z.

5.23 Let (X, d) be a complete metric space and let T : X → C L(X), where C L(X)

is the class of all nonempty and closed subsets of X . Assume that the following con-
ditions hold:
(i) the map f : X → R defined by f (x) = d(x, T x), x ∈ X , is lower semicontinu-
ous;
(ii) there exist b ∈ (0, 1), I x

b =
{

y ∈ T x : bd(x, y) � d(x, T x)
}
, and ϕ : [0,∞) →

[0, b) such that

∀t∈[0,∞)

{
lim sup

r→t+
ϕ(r) < b

}

and
∀x∈X∃y∈I x

b

{
d(y, T y) � ϕ(d(x, y)) d(x, y)

}
.

Then T has a fixed point.
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5.24 Let X be an ordered Banach space, and T an increasing mapping of X into
itself. Let the ordering of X be such that every bounded and nonempty subset of X
has a supremum and infimum. Further, suppose that there exist u−, u+ ∈ X such that

u− � T u− � T u+ � u+.

Show that T has maximul and minimul fixed points umin, umax satisfying the relation

u− � umin � umax � u+.



Chapter 6
Degree Theory, k-Set Contractions and
Condensing Operators

A mathematical theory is not to be considered complete until
you have made it so clear that you can explain it to the first man
whom you meet on the street.

David Hilbert
Mathematics is an organ of knowledge and an infinite refinement
of language. It grows from the usual language and world of
intuition as does a plant from the soil, and its roots are the
numbers and simple geometrical intuitions. We do not know
which kind of content mathematics (as the only adequate
language) requires; we cannot imagine into what depths and
distances this spiritual eye (mathematics) will lead us.

Erich Kähler (1941)
It is by logic that we prove, but by intuition that we discover.

Henri Poincaré

The notion of “degree” of a map was first defined by Brouwer, who showed that the
degree is homotopy invariant, and used it to prove the Brouwer fixed point theorem.
Note that topological degree theory is a generalization of the winding number of a
curve in the complex plane. It is closely connected to fixed point theory, and can be
used to estimate the number of solutions of an equation. For a given equation, if one
solution of an equation is easily found, then degree theory can often be used to prove
existence of a second, nontrivial, solution.

Notice that there are different types of degree for different types of maps, say, for
example, for maps between Banach spaces, there is the Brouwer degree (Kronecker
characteristics, Poincare index) in Rn, and for compact mappings in normed spaces,
there is the Leray–Schauder degree.

In topology, the degree of a continuous mapping between two compact oriented
manifolds of the same dimension is a number that represents the number of times that
the domain manifold wraps around the range manifold under the mapping. The degree
is always an integer-valued characteristic assigned to a map, but may be positive or
negative depending on the orientations. The map should be reasonable in the sense
that it should satisfy the standard additivity, homotopy and normalization properties.

© Springer Nature Singapore Pte Ltd. 2018
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This means that the degree is an algebraic “count” of solutions to an operator equation
that is not affected by small perturbations or even larger deformations.

Observation

• In the finite dimensional case, the degree known under the names “Brouwer degree”
is well defined for continuous maps, while in the infinite dimensional spaces it is
defined for special classes of maps such as
(i) Leray–Schauder degree for compact fields,
(ii) Caccioppoli–Smale degree for smooth maps,
(iii) Nussbaum–Sadovskii degree for the condensing fields,
(iv) Browder–Petryshin–Skrypnik degree for monotone operators etc.

• The notion of degree allows to define an important topological characteristic of
a singular point of a vector field (i.e. a point where the field either vanishes or is
not defined). Namely, a degree of a vector field on a small sphere centered at an
isolated singular point is called an index of the point.

Notice that fixed point theorems and the local topological degree are closely
related. The topological methods give qualitative information only, that is, they do
not give any quantitative information. The topological degree theory has an important
advantage over the fixed point theory in the sense that it gives information about
the number of distinct solutions, continuous families of solutions and stability of
solutions. But for our purpose, the discussion will be restricted to the existence
of fixed points. First we deal with the local topological degree in n-dimensional
Euclidean space Rn. One encounters new situations when one tries to extend the
definition of the degree of a continuous mapping F from finite dimensional setting
to infinite dimensional setting. A large class of mappings for which the degree of
a mapping can be defined in infinite dimensional setting is the class of compact
operators. This is known as Leray–Schauder [365] degree theory. In Sect. 6.2, we
discuss Leray–Schauder degree for a completely continuous vector field. Section 6.3
deals with the Skrypnik degree for a pseudomonotone mapping while in Sect. 6.4 we
discuss the Browder–Petryshyn degree for A-proper mappings.

A generalization of Leray–Schauder degree has been given by Browder and Nuss-
baum [119]. But we shall discuss in Sect. 6.5, the generalized degree theory as
developed by Sadovskii [536], who extended the concept of degree to the class
of limit-compact operators. In Sect. 6.6, we discuss various notions of measure of
noncompactness along with some basic properties possesses by these notions and
present a generalization of Darbo’s fixed point theorem. Subsequently, we shall use
this theory in Sect. 6.7 to discuss k-set contractions and condensing mappings. In
this connection, for more recent results, especially for degree theory of more general
mappings of monotone type, refer to Browder [115].
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6.1 The Topological Degree

The concept of a local degree in n-dimensional Euclidean space, that is, of the degree
with respect to a neighbourhood of an isolated solution of the system fx = y, goes
back to Kronecker [349]. A detailed discussion of Kronecker’s index and some of its
application was given by Hadamard [263]. Brouwer [86] extended this local degree
to a degree in the large and used it as basis of many of his famous results. This
“global” degree is by nature a concept of combinatorial topology. In this connection,
one can refer Alexandroff and Hopf [9] and Cronin [152].

Definition 6.1 If f1 and f2 are continuous maps of the space X into the space Y , we
say that f1 is homotopic to f2 if there is a continuous map H : [0, 1] × X → Y such
that

H (0, x) = f1(x) and H (1, x) = f2(x) for each x ∈ X .

The map H is called a homotopy between f1 and f2. If f1 is homotopic to f2, we write
f1 � f2.

6.1.1 Axiomatic Definition of the Brouwer Degree in Rn

Throughout this section, let R denote the set of real numbers and let Rn = {x =
(x1, x2, . . . , xn) : xi ∈ R for i = 1, 2, . . . , n} be endowed with standard 2-norm |x| =( n∑

i=1
x2

i

) 1
2
. For subsets A ⊂ Rn we use the usual symbol A, ∂A to denote the closure

and the boundary of A, respectively. The open and the closed ball of center x0 and
radius r > 0 will be denoted by

Br(x0) = {x ∈ Rn : |x − x0| < r} = x0 + Br(O) and Br(x0) = Br(x0).

Unless otherwise stated, � is always an open bounded subset of Rn.
The Brouwer1 degree is a tool, which allows an answer to the following: Let � ⊂

Rn be open and bounded, and f : � → Rn a continuous function, and let y /∈ f (∂�),

the f -image of the boundary ∂� of �. Then we raise a natural question: Does a given
equation

f (x) = y

has a solution x ∈ �? More precisely, for each admissible triple ( f ,�, y) we asso-
ciate an integer deg( f ,�, y) such that

deg( f ,�, y) �= 0 ⇒ the existence of a solution x ∈ � of this equation f (x) = y.

1L. E. J. Brouwer was a Dutch mathematician and philosopher, who worked in topology, set theory,
measure theory and complex analysis. He was the founder of the mathematical philosophy of
intuitionism.
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Uniqueness of deg. The integer associated with deg( f ,�, y) is uniquely defined
by the following properties:

The first condition is concerned with the normalization property. If f is the identity
map, and y ∈ Rn, then the equation f (x) = y has a solution x ∈ � if and only if y ∈ �,
i.e.

(d1) deg(I ,�, y) =
{

1, for y ∈ �

0, for y /∈ �.

The second condition is a natural formulation of the desire that d should yield
information on the location of solutions. Suppose that f (x) = y has finitely many
solutions in �1

⋃
�2, where �1 and �2 are two disjoint open subsets of �, but it

has no solution in � \ (�1
⋃

�2). Then the number of solutions in � is the sum of
the numbers of solutions in �1 and �2. This condition suggests that d should be
additive in its argument �, i.e.

(d2) deg( f ,�, y) = d( f ,�1, y) + deg( f ,�2, y)

whenever �1 and �2 are two disjoint open subsets of �, such that y /∈ f (� \
(�1

⋃
�2)).

The third condition reflects the desire that for complicated f the number
deg( f ,�, y) can be calculated by deg(g,�, y), with simpler g, at least if f can
be continuously deformed into g such that at no stage of the deformation we get
solution on the boundary ∂�. This leads to the following condition

(d3) deg(H (t, ·),�, y(t)) is independent of t ∈ [0, 1]
whenever H : [0, 1] × � → Rn and y : [0, 1] → Rn are continuous and y(t) /∈ H (∂�)

for all t ∈ [0, 1].
Theorem 6.1 There exists a unique II-valued mapping d, which associates every
admissible triple ( f ,�, y), where � ⊂ Rn, f : � → Rn is continuous and y ∈ Rn \
f (∂�) an integer deg( f ,�, y), with the following property:

1. Existence: If deg( f ,�, y) �= 0, then there exist x ∈ � such that f (x) = y.
2. Normalization: deg(id ,�, y) = 1 if y ∈ �, deg(id ,�, y) = 0, if y /∈ �.

3. Homotopy invariance: Let H : [0, 1] × � → Rn be continuous and y /∈ H (t, ∂
�) for t ∈ [0, 1], then deg(H (t, ·),�, y) is independent from t.

4. Additivity: If
⋃m

i=1 �i ⊂ �,
⋃m

i=1 �i ⊂ �,�i is open, disjoint, y /∈ ⋃m
i=1

f (∂�i), then

deg( f ,�, y) =
m∑

i=1

deg( f ,�i, y).

5. If g : � → Rn is continuous and | f − g| < dist( y, f (∂�)), then

deg( f ,�, y) = deg(g,�, y).

6. If z ∈ Rn, |y − z| < dist( y, f (∂�)), then
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deg( f ,�, y) = deg( f ,�, z).

7. If g : � → Rn is continuous and f |∂� = g|∂�, then

deg( f ,�, y) = deg(g,�, y).

8. deg( f ,�, y) = deg( f (·) − y,�, 0).

9. Excision property: Let C be a closed subset of �, C �= � and y /∈ f (C), then

deg( f ,�, y) = deg( f ,� \ C, y).

10. Reduction property: Let m < n,� ⊂ Rn be open and bounded f : � → Rn

continuous, y ∈ Rm \ (I − f )(∂�). Then

deg(I − f ,�, y) = deg(I − f |�∩Rm ,� ∩ Rm, y).

Since Brouwer’s basic paper in 1912, many efforts have been made to define
the degree of a mapping by strictly analytic method without involving the concepts
of combinatorial topology. In this connection, one can see the works of Nagumo
[418], Heinz [270] and Schwartz [545]. However, we include here only the analytic
definition of the degree of a mapping.

Let f : � ⊂ Rn → Rn and y ∈ Rn be a given vector. It is of considerable interest
to know in advance the number of solutions of the system fx = y in some specified set
C ⊂ Rn. For example, we may be interested in the qualitative theory of the structure
of the real solutions of the system fx = y. We assume that f is continuous. We start
by defining an invariant which will be useful in classifying systems of the form
fx = 0 where f = ( f1(x1, . . . , xn), f2(x1, . . . , xn), · · · , fn(x1, . . . , xn)) and in giving
information about the structure of their real solutions. This invariant is known as the
degree of the map and is defined below.

Definition 6.2 We now set our objective to characterize all mappings

f : � ⊂ Rn → Rn, f = ( f1(x1, x2, . . . , xn), · · · , fn(x1, x2, . . . , xn)),

fi are continuous functions by an integer invariant called the degree of the mapping
F with the property that two functions that are “near” to each other in some sense
are assigned the same integer. To define this integer invariant, we proceed in the
following manner:

Let C(�) denote the set of continuous vector-valued functions defined on � ⊂ Rn

with the topology of uniform convergence, where � is a bounded open set in Rn. Let
C1(�) denote the subset of continuously differentiable vector-valued functions on
�. The idea is to have a measure of the number of solutions of f (x) = y in � by an
integer deg( f ,�, y) which depends continuously on both f and y. This integer is
called the degree of the mapping f relative to the point y and the set �. First of all
we define deg( f ,�, y) on a dense set of functions f in C(�) and on a dense set of
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points y ∈ �. Then we extend the definition to all points in � and all functions in
C(�) by a limiting process. It is assumed that f (x) = y has no solution for x ∈ ∂�.

The definition proceeds by counting the algebraic number of solutions of f (x) = y
in � in the following three steps:

(i) Suppose f ∈ C1(�) and the Jacobian determinant of F i.e.

det Jf (x) = det

(
∂fi
∂xj

)
,

does not vanish at any point x in the solution set {x : x ∈ �, f (x) = y}. Then we
define

deg( f ,�, y) =
∑

x∈f −1( y)

sgn det Jf (x), (6.1)

where deg( f ,�, y) = 0 if f −1( y) = ∅.
Notice that this number is a finite integer as the set f −1( y) is discrete by the

inverse function theorem and this discrete set has not limit point in the compact set
�.
(ii) To define deg( f ,�, y) for functions f ∈ C1(�) whose solution set contains
some x where the Jacobian determinant det Jf (x) = 0, we need the following special
case of Sard’s theorem, which is stated without proof (the interested reader can see
also Berger and Berger [53], p. 35).

Let � ⊂ Rn be an open subset. We will use ◦(|h|) to describe those expressions
which, roughly speaking, are of higher than first order in h as h → 0. We recall that
a function F : � → Rn is differentiable at x0 ∈ � if there is a matrix f ′(x0) such that
f (x0 + h) = f (x0) + f ′(x0)h + ◦(|h|), where x0 + h ∈ � and |◦(|h|)|

|h| tends to zero as
|h| → 0.

We use Ck(�) to denote the space of k-times continuously differentiable functions.
If f is differentiable at x0, we call Jf (x0) = detf

′
(x0) the Jacobian of f at x0. If Jf (x0) =

0, then x0 is said to be a critical point of f and we use Sf (�) = {x ∈ � : Jf (x) = 0}
to denote the set of critical points of f , in �. If f −1( y) ∩ Sf (�) = ∅, then y is said
to be a regular value of f . Otherwise, y is said to be a singular value of f .

Lemma 6.1 (Sard’s lemma) Let � ⊂ Rn be open and f ∈ C1(�), that is, f : � →
Rn is continuously differentiable function. Then μn( f (Sf (�))) = 0, where μn is the
n-dimensional Lebesgue measure.

Proof To begin the proof, we first need to know about Lebesgue measure μn is
that μn(J ) = ∏n

i=1(bi − ai) for the interval J = [a, b] ⊂ Rn and that M ⊂ Rn has
measure zero, i.e. μn(M ) = 0 if and only if to every ε > 0 there exists at most

countably many intervals Ji such that M ⊂ ∞∪
i=1

Ji and
∞∑

i=1
μn(Ji) � ε.

Then it is easy to see that at most countable union of sets of measure zero also
has measure zero.
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Since � is open, we can write � = ∞∪
i=1

Qi, where Qi is a cube for i = 1, 2, . . . .

We only need to show that μn( f (Sf (Q))) = 0 for a cube Q ⊂ �. In fact, let l be the
lateral length of Q. By the uniform continuity of f ′ on Q, for any given ε > 0, there
exists an integer m > 0 such that

| f ′(x) − f ′( y)| � ε

for all x, y ∈ Q with |x − y| �
√

nl
m . Therefore, we have

| f (x) − f ( y) − f ′( y)(x − y)| �
∫ 1

0
| f ′( y + t(x − y)) − f ′( y)||x − y|dt

� ε|x − y|

for all x, y ∈ Q with |x − y| �
√

nl
m . Let us decompose Q into r cubes, Qi, of diameter√

nl
m , i = 1, 2, . . . , r. Since l

m is the lateral length of Qi, we have r = mn. Now, sup-
pose that Qi ∩ Sf (�) �= ∅. Choosing y ∈ Qi ∩ Sf (�), we have f ( y + x) − f ( y) =
f ′( y)x + R( y, x) for all x ∈ Qi − y, where |R( y, x + y)| �

√
nl

m . Therefore, we have

f (Qi) = f ( y) + f ′( y)(Qi − y) + R( y, Qi).

But f ′( y) = 0, so f ′( y)(Qi − y) is contained in an (n − 1)-dimensional subspace of
Rn. Thus, μn( f ′( y)(Qi − y)) = 0, so we have

μn( f (Qi)) � 2nεn
(√

nl

m

)n
.

Obviously, f (Sf (Q)) ⊂ ∪r
i=1 f (Qi), so we have

μn( f (Sf (Q)) � r2nεn
(√

nl

m

)n = 2nεn(
√

nl)n.

By letting ε → 0+, we obtain μn( f (Sf (Q))) = 0. Therefore, μn( f (Sf (�))) = 0.
This completes the proof.

Now let y ∈ f (Sf (�)), then y can be approximated by points yi whose solution
sets contain only x at which det Jf (x) �= 0. So we define

deg( f ,�, y) = lim
i→∞ deg( f ,�, yi).

Observation

• This definition is justified since it can be shown that it is independent of the
approximating sequence {yi}, the limit exists and is finite.
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(iii) To extend the definition to all continuous functions f ∈ C(�), we use the
fact that C1(�) is dense in C(�). Let {fi} ⊂ C1(�) be such that fi → f uniformly in
�. Then we define

d( f ,�, y) = lim
i→∞ d( fi,�, y).

Observation

• It may be observe again that this definition is justified as it is independent of the
approximating sequence {fi} and a finite limit exists.

The following two lemmas stated without proof justify steps (i) and (iii) in the
above definition.

Lemma 6.2 Suppose (i) f ∈ C2(�) ∩ C(�); (ii) det Jf (x) �= 0 for x ∈ f −1( y) or
f −1(z) and (iii) f (x) �= y for x ∈ ∂�. Then whenever z is sufficiently near y, we have

deg( f ,�, z) = deg( f ,�, y).

Lemma 6.3 Suppose (i) f , g ∈ C1(�) ∪ C(�), (ii) det Jf (x) �= 0 for x ∈ f −1( y)
and (iii) f (x) �= y for x,∈ ∂�. Then whenever g is sufficiently close to f in C1 sense
(i.e. for ε sufficiently small, sup{| f − g| + ∑n

i=1 | fxi − gxi |} < ε) we have

deg(g,�, y) = deg( f ,�, y).

Here fxi denotes the partial derivative of f with respect to xi.

Remark 6.1 Justification of step (i) follows from Lemma 6.2 (extended to f ∈
C1(�)) and Lemma 6.3 by approximating a given function in C1(�) by an appro-
priate C2(�) function.

From Lemma 6.1 it follows that Lemma 6.3 holds without the hypothesis (ii). The
justification of step (iii) follows if Lemma 6.3 can be extended to function g close to
f in the sense (i.e. sup | f − g| < ε). This can be seen by a homotopy argument. Let

H (t, x) = tf + (1 − t)g for t ∈ [0, 1],

and suppose that H (x, t) �= y for x ∈ ∂�. Then we define

t ∼ t′ if deg(H (t, x),�, y) = deg(H (t′, x),�, y).

“∼” is an equivalence relation. Then the associated disjoint equivalence classes are
open in the space [0, 1]. Thus [0, 1] is a union of open sets, namely the open equiva-
lence classes. This contradicts the connectedness of [0, 1] unless there is exactly one
equivalence class. Hence 0 ∼ 1 and deg( f ,�, y) = deg(g,�, y).

Let f : � → Rn be a continuous mapping and f (x) = y has no solutions for x ∈
∂� where � is an arbitrary bounded open set in Rn. We state below a few basic
properties of the function deg( f ,�, y) with indication of proofs of these results.
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6.1.2 Invariance Properties

(a) Boundary value dependence: deg( f ,�, y) is uniquely determined by the
action of f on ∂�.

(b) Homotopy invariance: Suppose H (t, x) = y has no solution x ∈ ∂ � for any
t ∈ [0, 1] then deg(H (t, x),�, y) is a constant independent of t ∈ [0, 1] provided
H (t, x) is a continuous function of t and x.

(c) Continuity: deg( f ,�, y) is a continuous function of f ∈ C(�) (with respect
to uniform convergence) and y ∈ �.

(d) Poincare–Böhl: If the vectors f (x) − y and g(x) − y never point in oppo-
site directions for x ∈ ∂�, then deg( f ,�, y) = deg(g,�, y) provided each is
defined.

We now indicate the proofs of these properties. Notice that continuity is an immediate
consequence of the analytic definition of deg( f ,�, y). From this follows homotopy
invariance property. Because φ(t) = deg(H (t, x),�, y) is a continuous function of
t and φ(t) is integer valued, φ(t) must be a constant. Boundary value dependence
follows immediately by considering the homotopy

H (t, x) = tf (x) + (1 − t)f̃ (x)

where f = f̃ on ∂�. Similarly, property (d) follows by means of the homotopy

H (t, x) = t[f (x) − y] + (1 − t)[g(x) − y].

Some More Properties

(e) Domain decomposition: If {�i : 1 � i � m} is a finite collection of disjoint
open subsets of � and f (x) �= y for x ∈ (� \ ∪m

i=1�i), then

deg( f ,�, y) =
m∑

i=1

deg( f ,�i, y).

( f) Cartesian product formula: If y ∈ � ⊂ Rn, y′ ∈ �′ ⊂ Rm and f : � → Rn,

g : �′ → Rm, then

deg(( f , g), ( y, y′),� × �′) = deg( f ,�, y) × deg(g,�′, y′)

provided the right-hand side is defined.
(g) If f (x) �= y in �, then deg( f ,�, y) = 0.

(h) Odd mapping: Let � be a symmetric domain about the origin, and f (−x) =
−f (x) on ∂�, with f : � → Rn, and f (x) �= 0 on �, then deg( f ,�, 0) is an
odd integer.

(i) Excision: If M is a closed subset of � on which f (x) �= y, then
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deg( f ,�, y) = deg( f ,� \ M , y).

( j) Index theorem: If the solutions of f (x) = y are isolated on � and f (x) �= y on
∂�, then

deg( f ,�, y) =
∑

xi∈f −1( y)

d( f , Bε(xi), y),

where Bε(xi) = {x : |x − xi| < ε}. Here ε is sufficiently small so that xi is the
only solution of f (x) = y in Bε(xi) and is independent of ε.

(k) Borsuk–Ulam theorem: If f : Sn → Rn is a continuous mapping, then there is
a point x ∈ Sn such that f (x) = f (−x). Here Sn is the unit sphere in Rn+1 with
center at the origin.

For the proof of the above properties, the reader may refer to Berger and Berger [53].

6.1.3 Applications of the Brouwer Degree

The properties of the degree of a mapping provide interesting information concerning
the solutions of the system f (x) = y, f = ( f1, . . . , fn); y = ( y1, . . . , yn). Here fi(x)
are continuous real-valued functions in � and yi are real numbers. Some results are
given below.

Theorem 6.2 If deg( f ,�, y) �= 0, then f (x) = y has solutions in �.

Proof As deg( f ,�, y) �= 0, f (x) = y necessarily has solutions in � by excision
property discussed above.

Theorem 6.3 (Brouwer’s fixed point theorem) Let D ⊂ Rn be a nonempty compact
convex set and let f : D → D be a continuous mapping of D into itself. Then f has
a fixed point. The same is true if D is only homeomorphic to a compact convex set.

Proof Step 1: First we proof the result for a special case. Suppose that D =
Br(0), where Br(0) = {x ∈ Rn : |x| < r}. We may assume that f (x) �= x on ∂D
and deg(I − f , Br(0), 0) = 0, then we shall obtain a contradiction by showing that
d(I − f , Br(0), 0) = 1. Define H : [0, 1] × Br(0) → Br(0) by

H (t, x) = x − tf (x) ∀x ∈ Br(0) and t ∈ [0, 1].

Clearly, H is continuous and rewriting H (x, t) as H (t, x) = t(I − f )(x) + (1 − t)I(x)
we see that I − f is homotopic to I . We also observe that under the given hypothesis,
the homotopy H (t, x) = x − tf (x), t ∈ [0, 1] has no zero on ∂Br(0). To see this, we
observe that ‖ f ‖ � r and so

|H (t, x)| ≥ |x| − t| f (x)| ≥ (1 − t)r > 0
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in ∂Br(0) × [0, 1) and f (x) �= x for |x| = r. Thus, by homotopy invariance property,
we have

deg(I − f , D, 0) = deg(I − tf , Br(0), 0) = deg(I , Br(0), 0) = 1

and this proves existence of an x̄ ∈ Br(0) such that x̄ − f (x̄) = 0.

Step 2: We now consider the general case. So, let D be a compact and convex set.
By Theorem 5.68 we have a continuous extension f̃ : Rn → D of f with f (Rn) ⊂
cof (D) ⊂ D since

1
m∑

i=1
2−iϕ(x)

m∑
i=1

2−iϕ(x)f (ai)

is defined for m = m(x) being sufficiently large and belongs to co f (D). Now we
choose a ball Br(0) ⊃ D, and applying first step we can find a fixed point x̃ in Br(0).
But f̃ (x̃) ∈ D and therefore x̃ = f̃ (x̃) = f (x̃).

Step 3: Finally assume that D = h(D0) with D0 compact convex and h a homeo-
morphism. Then, by Step 2, the mapping h−1fh : D0 → D0 has a fixed point x0 and
therefore h−1fh(x0) = x0 yields

f (h(x0)) = h(x0) ∈ D.

That is, h(x0) is a fixed point of f in D. �

Theorem 6.4 Let f : Rn → Rn be a continuous mapping and 0 ∈ � ⊂ Rn with �

an open bounded subset. If ( f (x), x) > 0 for all x ∈ ∂�, then deg( f ,�, 0) = 1.

Proof Put H (t, x) = tx + (1 − t)f (x) for all (t, x) ∈ [0, 1] × �. Then applying the
same argument as in Theorem 6.3 we see that 0 /∈ H ([0, 1] × ∂�), and so we have

deg( f ,�, 0) = deg(I ,�, 0) = 1.

This completes the proof.

Example 6.1 Consider the system of ordinary differential equations

x′ = f (t, x(t)), t ∈ R, x ∈ Rn, (6.2)

where x′ = dx
dt and f : R × Rn → Rn is T -periodic, i.e. f (t + T , x) = f (t, x) for all

(t, x) ∈ R × Rn. So it is natural to look for T -periodic solutions. Suppose, for sim-
plicity, that f is continuous and that there is an open ball Br(0) ⊂ Rn such that the
initial value problems

x′(t) = f (t, x(t)), x(0) = y ∈ Br(0) (6.3)
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have a unique solution x(t, y) on [0,∞). Now, let Pty = x(t; y) and assume also that
the function f satisfies the boundary condition

( f (t, y), y) =
n∑

i=1

f (t, y)yi < 0 for t ∈ [0, T ] and |y| = r,

where | · | denotes the Euclidean norm in Rn. Then, we have

Pt : Br(0) → Br(0) for all t ∈ R+,

because
d

dt
|x(t)|2 = 2(x′(t), x(t)) = 2( f (t, x(t)), x(t)) < 0

if the solution x of (6.3) takes a value in ∂Br(0) at time t. Moreover, since (6.3) has
a unique solution, it is not hard to prove that Pt is continuous. Thus, by the Brouwer
fixed point theorem, PT has a fixed point yT in Br(0); that is, Eq. (6.2) has a solution
such that

x(0; yT ) = yT = x(T ; yT ).

Now, one may easily verify that u : [0,∞) → Rn, defined by

u(t) = x(t − kT ; yT ) on [kT , (k + 1)T ],

is a T -periodic solution of (6.3). The map PT is usually called the Poincare operator
of x′ = f (t, x(t)). The preceding discussion thus implies the following important
theorem, which relates the Brouwer fixed point theorem to the existence of periodic
solutions.

Theorem 6.5 The vector x(·, y) is a T-periodic solution if and only if y is a fixed
point of PT .

The next example shows that it is impossible to retract the whole unit ball con-
tinuously onto its boundary such that the boundary remains pointwise fixed.

Example 6.2 There is no continuous map f : B1(0) → ∂B1(0) such that f (x) = x
for all x ∈ ∂B1(0).

If the assumption is false, then we see that g = −f would have a fixed point x̄, by
Theorem 6.3, but this implies |x̄| = 1 and therefore x̄ = −f (x̄) = −x̄, which absurd.
Note that this result is in fact equivalent to Brouwer’s theorem for the ball. To this
end, suppose that the mapping f : B1(0) → B1(0) is continuous and has no fixed
point. Let g(x) be the point where the line segment from f (x) to x hits ∂B1(0), i.e.
g(x) = f (x) + t(x)(x − f (x)), and this yields

1 = |g(x)|2 = ( f (x) + t(x)(x − f (x)), f (x) + t(x)(x − f (x)))

= ( f (x), f (x)) + +2t(x)( f (x), x − f (x)) + t2(x)(x − f (x), x − f (x))
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Fig. 6.1 Nonexistence of
the retraction of the whole
unit ball continuously onto
its boundary

= | f (x)|22t(x)( f (x), x − f (x)) + t2(x)|x − f (x)|2,

where t(x) is the positive root of

t2(x)|x − f (x)|2 + 2t(x)( f (x), x − f (x)) + | f (x)|2 = 1.

Because t(x) is continuous, g would be such a retraction which does not exist by
assumption ( Fig. 6.1).

Theorem 6.6 Let 0 ∈ �, and let f : � → Rn be a continuous map such that

f (x) �= λx for all x ∈ ∂� and all λ > 1. (LS)

Then f has a fixed point x in �; that is, x = f (x) for some x ∈ �.

Proof Consider the homotopy H (t, x) = x − tf (x) for x ∈ � and t ∈ [0, 1]. We claim
that H (t, x) �= 0 for t ∈ [0, 1] and x ∈ ∂�. If not, there would exist t0 ∈ [0, 1] and
x0 ∈ ∂� such that H (t0, x0) = x0 − t0f (x0) = 0.

If t0 = 0 then x0 = 0, contradicting the fact that x0 ∈ ∂� and 0 ∈ �. If t0 ∈ (0, 1),
then x0 − t0f (x0) = 0 implies that f (x0) = (1/t0)x0 and 1/t0 > 1, in contradiction to
(LS). If t0 = 1, then f has a fixed point x0 ∈ ∂� and there is nothing to prove. Thus
we may assume that H (t, x) �= 0 for x ∈ ∂� and t ∈ [0, 1]. It follows from this and
homotopy invariance that

deg(I − f ,B, 0) = deg(I ,B, 0),

where B is the open unit ball in Rn. But deg(I ,B, 0) = 1, and therefore f has a fixed
point in �.

A simple application of Brouwer’s fixed point theorem is the following existence
principle for system of equations.

Proposition 6.1 Let B = Br(0) ⊂ Rn be the closed ball with radius r and gi : B →
R be continuous mappings, i = 1, 2, . . . , n. If for all x = (x1, x2, . . . , xn) ∈ Rn, |x| =
r

n∑
i=1

gi(x)xi � 0 (6.4)
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then the system of equations

gi(x) = 0, i = 1, 2, . . . , n (6.5)

has a solution x̂ with |x̂| � r.

Proof Suppose g(x) = (g1(x), g2(x), . . . , gn(x)) and assume that g(x) �= 0 for all
x ∈ B. Define

f (x) = − rg(r)

|g(x)| .

Then we see that f is a continuous map of the compact convex set B into itself.
Therefore, there exists a fixed point x̂ of f with |x̂| = | f (x̂| = r. Furthermore,

∑
gi(x̂)xi = −1

r
|g(x̂)|

∑
fi(x̂)xi

= −1

r
|g(x̂)|

∑
x2

i < 0.

This contradicts (6.4). Hence the Eq. (6.5) has a zero.

Surjective maps− We now show that a certain growth condition of f ∈ C(Rn)

implies f (Rn) = Rn. To this end, first consider f0(x) = Ax with a positive-definite
matric A. Because det A �= 0, f0 is surjective. We also have

( f0(x), x) � c|x|2 for some c > 0 and every x ∈ Rn,

where (·, ·) is the inner product in Rn and | · | = (·, ·)1/2 its Euclidean norm, and
therefore

( f (x), x)

|x| → ∞ as |x| → ∞.

This condition is sufficient for surjectivity in the nonlinear case too, since we can
prove the following.

Theorem 6.7 Let f : Rn → Rn be a continuous mapping. If lim|x|→∞
( f (x),x)

|x| = +∞,

then f (Rn) = Rn.

Proof For a given y ∈ Rn, let H (t, x) = tx + (1 − t)f (x) − y. At |x| = r we have

(H (t, x), x) = t(x, x) + (1 − t)( f (x), x) − y

= t|x|2 + (1 − t)( f (x), x) − y

� r[tr + (1 − t)
( f (x), x)

|x| − |y|
> 0
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for t ∈ [0, 1] and r > |y| being sufficiently large. Therefore, deg( f , Br(0), y) = 1
for such an r, i.e. f (x) = y has a solution in Br(0).

Theorem 6.8 (Invariance of a normal) Suppose that 0 ∈ � ⊂ Rn and that n is odd.
If f ∈ C(�) and 0 /∈ f (∂�), then there are y ∈ ∂� and λ �= 0 such that f ( y) = λy.

Proof Define the homotopies H (t, x) and K(t, x) by

H (t, x) = (1 − t)f (x) + tx,

K(t, x) = (1 − t)f (x) − tx,

where x ∈ � and t ∈ [0, 1]. If no y ∈ ∂� and λ > 0 can be found to satisfy
f ( y) = λy, then H (t, x) �= 0 and K(t, x) �= 0 for x ∈ ∂� and 0 < t � 1. Since
0 /∈ f (∂�), H (0, x) and K(0, x) are also nonzero for x ∈ ∂�. Hence homotopy invari-
ance applied to H (t, x), and K(t, x) respectively yields

deg( f ,�, 0) = deg(I , D, 0),

deg( f ,�, 0) = deg(−I , D, 0).

Now deg(I ,�, 0) = 1, and it is seen from the definition of the degree that

deg(−I ,�, 0) = (−1)n.

We thus have 1 = (−1)n, whence n is even, contrary to our hypothesis.

Observation

• The condition that n be odd is necessary for Theorem 6.8 to be true. To this end,
a counterexample may be given by the map of the unit disc D in R2 given in polar
coordinates by (r, θ) �→ (r, θ + r).

Recall that � is said to be symmetric with respect to the origin if � = −�, and
a map f on � is said to be odd if f (−x) = −f (x) on �.

Theorem 6.9 (Borsuk’s Theorem) Let � ⊂ Rn be open bounded and symmetric
with 0 ∈ �. If f ∈ C(�) is odd and 0 /∈ f (∂�), then deg( f ,�, 0) is odd.

Proof I. Without loss of generality, we may assume that f ∈ C1(�) with Jf (0) �= 0.
To see this, approximate f by a differentiable function g1 ∈ C1(�) and consider the
odd part g2 with g2(x) = 1

2 (g1(x) − g1(−x)). Choose δ which is not an eigenvalue

of g′
2(0). Then f̃ = g2 − δI is continuously differentiable, odd with Jf̃ (x) �= 0, and

| f − f̃ | = sup
x∈�

∣∣∣∣
1

2
( f (x) − g1(x)) − 1

2
( f (−x) − g1(−x) − δx

∣∣∣∣
� | f − g1| + δ diam �
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can be chosen sufficiently small, hence

deg( f ,�, 0) = deg(f̃ ,�, 0).

II. Let f ∈ C1(�) and Jf (0) �= 0. To prove the theorem, it suffices to show that there
is an odd g ∈ C1(�) sufficiently close to f such that 0 /∈ g(Sg), since then

deg( f ,�, 0) = deg(g,�, 0) = sgn Jg(0) + 2
∑

0 �=x∈g−1(0)

sgn Jg(x),

where the sum is even since g(x) = 0 iff g(−x) = 0 and Jg(·) is even.
III. Such a map g will be defined by induction as follows. Consider �k = {x ∈ � :
xi �= 0 for some i � k} and an odd ϕ ∈ C1(R) such that ϕ′(0) = 0 and ϕ(t) = 0 iff
t = 0.

We now consider f̃ (x) = f (x)
ϕ(x1)

on the open bounded �1 = {x ∈ � : xl �= 0}. By
quotient rule, we see that

f̃ ′(x) = ϕ(x1)f ′(x) − f (x)ϕ′(x)
ϕ(x1)2

= 1

ϕ(x1)
( f ′(x) − ϕ′(x) · f (x)

ϕ(x1)

= 1

ϕ(x1)
( f ′(x) − ϕ′(x1)f̃ (x)).

By Sard’s lemma, we find y1 /∈ f̃ (Sf̃ (�1)) with |y1| as small as necessary in the
sequel. Hence, 0 is a regular value for g1(x) = f (x) − ϕ(x1)y1 on �1, since g′

1(x) =
ϕ(x1)f̃ ′(x) for x ∈ �1 such that g1(x) = 0. Now, suppose that we have already an
odd gk ∈ C1(�) close to f on � such that 0 /∈ gk(Sgk (�k)) for some k < n. Then we
define gk+1(x) = gk(x) − ϕ(xk+1)yk+1 with |yk+1| small and such that 0 is a regular
value for gk+1 on {x ∈ � : xk+1 �= 0}.

Evidently, gk+1 ∈ C1(�) is odd and close to f on �. If x ∈ �k+1 and xk+1 = 0,
then x ∈ �k , gk+1(x) = gk(x) and g′

k+1(x) = g′
k(x), hence Jgk+1(x) �= 0, and there-

fore 0 /∈ gk+1f (Sgk+1). Thus, g = gn is odd, close to f on �, and such that 0 /∈
g(Sg(� \ {0})), since �n = � \ {0}. By the induction step, we also have g′(0) =
g′

1(0) = f ′(0), hence 0 /∈ g(Sg(�)).

Observation

• So far we have applied homotopy invariance of the degree as it stands. However,
we see that it is also useful to use the converse, namely if two maps f and g have
different degree then a certain H that connects f and g cannot be a homotopy.
Along these lines, we have the following theorem.

Theorem 6.10 (Hedgehog Theorem) Let � ⊂ Rn be open bounded with 0 ∈ � and
let f : ∂� → Rn \ {0} be continuous. Suppose also that the space dimension is odd.
Then there exist x ∈ ∂� and λ �= 0 such that f (x) = λx.
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Proof Without loss of generality, we may assume that f ∈ C(�), by Proposition 6.1.
Since n is odd, we have deg(−I ,�, 0) = −1. Now there arises two cases:

Case I. If deg( f ,�, 0) �= −1, then H (t, x) = (1 − t)f (x) − tx must have a zero
(t0, x0) ∈ (0, 1) × ∂�. Therefore, f (x0) = t0(1 − t0)−1x0.

Case II. If deg( f ,�, 0) = −1, then we apply the same argument to H (t, x) = (1 −
t)f (x) + tx.

Remark 6.2 Since the dimension in Theorem 6.10 is odd, it does not apply to Cn.
As a matter of fact, the rotation by π

2 of the unit sphere S in C = R2, i.e. f (x1, x2) =
(−x2, x1), is a simple counter example. Notice that the rotational matrix Rθ in R2 is
given by

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
.

Therefore,

R π
2
(x1, x2)

T =
(

cos π
2 − sin π

2
sin π

2 cos π
2

)(
x1

x2

)
=

(
0 −1
1 0

)(
x1

x2

)
=

(−x2

x1

)
.

In case � = B1(0) the theorem tells us that there is at least one normal such that f
changes at most its orientation. In other words, there is no continuous nonvanishing
tangent vector field on S = ∂B1(0), i.e. an f : S → Rn such that

f (x) �= 0 and ( f (x), x) = 0 on S.

In particular, n = 3 this means that hedgehog cannot be combed without leaving tufts
or whorls’. However, we note that f (x) = (x2,−x1, . . . , x2m,−x2m−1) is a nonvan-
ishing tangent vector field on S ⊂ R2m.

6.1.4 The Leray–Schauder Degree

We begin this section with Leray–Schauder lemma without proof which facilitates the
basic properties of the degree deg( f ,�, 0) used subsequently in the investigation
of properties of the degree of mappings in Banach spaces. In the sequel, Rn is n-
dimensional Euclidean space and � is a bounded open set in Rn. We consider a
continuous mapping f (x) = ( f1(x1, . . . , xn), · · · , fn(x1, . . . , xn) from the closure �

of the domain � to Rn.

Lemma 6.4 (Leray–Schauder [365]) Let f : � → Rn be a continuous mapping such
that

fn(x1, . . . , xn) = xn for (x1, x2, . . . , xn) ∈ �. (6.6)

Suppose that the condition
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f (x) �= 0 for x ∈ ∂� = � \ �

is fulfilled and that the intersection �′ = � ∩ {x : xn = 0} is nonempty Then

deg( f ,�, 0) = deg( f ′,�′, 0), (6.7)

where f ′ is the mapping of �′ into Rn−1 defined by the equality

f ′(x1, . . . , xn−1) = ( f1(x1, . . . , xn−1, 0), · · · , fn−1(x1, . . . , xn−1, 0)).

We now extend the definition of degree of a mapping to infinite dimensional
spaces. In this direction, we notice that there exists a continuous mapping of the unit
ball BX = {x : ‖x‖ � 1} of an infinite dimensional space X into itself without having
a fixed point. The following example illustrates the difficulty incurred in extending
the notion of Brouwer’s degree to infinite dimensional spaces.

Example 6.3 Let X = �2, the infinite dimensional Hilbert space. Let F be an operator
from BX into itself defined as follows:

Fx =
(√

1 − ‖x‖2, x1, x2, . . .
)

∀x ∈ BX .

Then we see that
(i) F is a continuous mapping as it is the sum of two continuous mappings:

Fx =
(√

1 − ‖x‖2, 0, 0, . . .
)

+
(

0, x1, x2, . . .
)
.

(ii) F maps BX into itself for if ‖x‖ � 1, then

‖ fx‖2 = 1 − ‖x‖2 +
∞∑

i=1

‖xi‖2 = 1.

Suppose F has a fixed point x̄. Since ‖ f x̄‖ = 1 we have ‖x̄‖ = 1. So

Fx̄ = (0, x̄1, x̄2, . . .) = (x̄1, x̄2, . . .).

This implies that x̄ = 0. But this contradicts the fact ‖x̄‖ = 1. Hence, F has no fixed
point on the unit ball BX = {x : ‖x‖ � 1}.

Thus the direct generalization of the Brouwer fixed point theorem is false. As
the proof of the Brouwer’s FPT is a consequence of the elementary properties of
the degree of a mapping, such a degree function cannot, in general, be defined for
the operator (I − F), where I is the identity operator. A large class of operators
for which Brouwer’s FPT is valid and for which the associated degree of mapping
(I − F) can be defined is the class of compact continuous operators. These operators
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were studied by Schauder in 1920. The degree of such operators I − F , where F is
continues and compact, i.e. compact perturbation of the identity operator, is known
as Leray–Schauder degree.

The following lemma is needed to define Leray–Schauder degree.

Lemma 6.5 Let F : � → Rn be a continuous mapping, where � is a bounded
domain in Rn+m, m > 0. Then deg(I − F,�, y) = deg(I − F,� ∩ Rn, y) for all
y ∈ Rn provided x − F(x) �= y for x ∈ ∂�.

Proof We prove the result for the case when F ∈ C1(�) and the jacobian determinant
in Rn+m of x − F(x) does not vanish at any solution of x − F(x) = y for y ∈ Rn, x ∈
�, where F(x) = ( f1(x), f2(x), . . . , fn(x), 0, . . . , 0.) By analytic definition of the
degree of a mapping we have

deg(I − F,�, y) =
∑

x−F(x)=y

sgn det (Jn+m(x))

=
∑

x−F(x)=y

sgn

(
Jn(x) 0

0 Im

)

=
∑

x−F(x)=y

sgn det(Jn(x))

= deg(I − F,� ∩ Rn, y),

where Im is the m × m identity matrix.

We now give the definition of Leray–Schauder degree with the help of Brouwer’s
degree and its various properties.

Theorem 6.11 Suppose � is any bounded open subset of a Banach space X which
meets every finite dimensional subspace of X in a bounded open set. Let Tx = y have
no solutions on ∂�, where T = I − F and F is a compact and continuous operator
defined on �. Then an integer-valued function deg(T ,�, y) can be defined satisfying
the properties discussed for the degree of a mapping in finite dimensional spaces.

Proof We first approximate the compact mapping F : � → X by a sequence {Fn}
of compact mappings with finite dimensional range defined by Fn : � → Xn, where
Xn is a finite dimensional subspace of X such that limn→∞ ‖ Fnx − Fx‖ = 0. Then
by Lemma 6.5, we compute the degrees of mappings Tn = I − Fn as

deg(I − Fn,�, y) = deg(I − Fn,� ∩ Xn, y) = deg(Tn,�n, y)

where �n is a finite dimensional bounded open subset of � and y ∈ Xn. Finally
deg(I − Fn,�, y) is defined as the limit of deg(Tn,�n, y) as n → ∞.

Observation
It can be shown that
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(1◦) deg(I − Fn,�n, y) is independent of both the finite dimensional subspace Xn

of X containing y and range of Fn with the help of Lemma 6.5.
(2◦) deg(I − F,�, y) is well defined by proving that the limit exists and is inde-

pendent of the approximating sequence {Fn}.
We discuss below how the properties of the degree are carried over to infinite

dimensional case for this class of mappings.

Theorem 6.12 If deg(I − F,�, y) �= 0, then there is an x ∈ � such that
x − Fx = y.

Proof Let {Fi} be a sequence of mappings with finite dimensional ranges such that
‖ Fix − Fx‖ � 1

i for x ∈ �, and let di be their associated degrees. Then for suffi-
ciently large i, di �= 0 because

deg(I − F,�, y) �= 0.

Hence by the finite dimensional property of degree, there is a point

xi ∈ � ∩ Xi satisfying xi − Fixi = y.

As F is compact and {xi} is bounded, {Fxi} has a convergent subsequence which we
again denote by {Fxi}. We have

‖xi − Fxi − y‖ � ‖ fxi − Fixi‖ + ‖xi − Fixi − y‖ � 1

i
.

As i → ∞, {xi} converges to an element x(say) and x satisfies x − Fx = y. This
completes the proof.

Corollary 6.1 (Leray–Schauder fixed point theorem) If deg(I − F,�, 0) �= 0, then
there is an x ∈ � such that x = Fx.

Theorem 6.13 (Homotopy Invariance) Let H (t, x) be a compact continuous homo-
topy mapping of [0, 1] × X → X . If � is bounded open set as in Theorem 6.11 and
x − H (t, x) �= y for x ∈ ∂� and t ∈ [0, 1], then

deg(x − H (t, x),�, y)

is constant for t ∈ [0, 1].
Proof By Theorem 1.37 H (t, x) can be approximated by finite dimensional mapping
uniformly, for t ∈ [0, 1]. Now the proof follows from the finite dimensional result
on homotopy invariance.

Theorem 6.14 (Schauder’s FPT) Let Br be an open ball containing the origin in
the Banach space X , and F a compact mapping of Br into itself. Then the equation
Fx = x has at least one solution.
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Proof The operator tF(x) is a compact mapping of [0, 1] × Br → Br. By the homo-
topy invariance property of the degree (refer to Theorem 6.13 above), we have

deg(x − tF(x), Br, 0) = deg(x, Br, 0) = 1

provided x − tF(x) �= 0 on ∂Br where t ∈ [0, 1]. So Fx = x has at least one solution.
For if x − Fx �= 0 on ∂Br, then

deg(x − F(x), Br, 0) = 1.

6.2 Degree Theory of Completely Continuous Vector Fields

The preceding section was devoted to the description of classical and up-to-date
results concerning the so-called homotopic theory of continuous mappings or vector
fields in Banach spaces. In this section, we are mainly concerned with the mapping
degree theory and the vector field rotation theory.

Notice that at the same time there exist two main variants of this theory. One
of them is based on the study of continuous mappings from one Banach space (or
manifold) into another. Another variant is based on the study of vector fields in
Banach spaces (or on Banach manifolds). As a matter of fact, both variants essentially
coincide.

So we begin with a natural question—Can we extend the mapping degree theory
and vector field rotation theory to continuous mappings and continuous vector fields
in infinite dimensional linear spaces, at least to continuous mappings and continuous
vector fields in Hilbert and Banach spaces? The answer to this question seems impos-
sible, for example, because there exists only one homotopy class of continuous vector
fields (mappings) which are defined on the closed unit ball of an infinite-dimensional
Banach space X , take their values in X and do not vanish on the unit sphere of X .

In this context, Leray and Schauder offered a simple construction for the rotation of
vector fields with completely continuous operators (indeed they considered mappings
of type � = I − A with completely continuous operators A) and obtained the main
properties of this rotation (degree). It turned out that

• the Leray–Schauder rotation (degree) for completely continuous vector fields was
completely analogous to the classical Brouwer–Hopf theory in finite dimensional
spaces and was its natural generalization.

• numerous applications were reduced just to the analysis of vector fields with com-
pletely continuous operators.

As a consequence, the middle of the twentieth century was the time of prosperity
and triumph for the Leray–Schauder theory, and now this constitutes an elegant and
rich branch of nonlinear analysis. So, our study on Leray–Schauder degree theory of
completely continuous vector field begins with the following definitions.
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Fig. 6.2 a Vector field
�(x, y) = (−x,−y) b Vector
field on a sphere S

Fig. 6.3 Vector field for the
differential equation
x′ = x, y′ = −y

Vector field − A vector field on a set M from some Banach space X into another
space Y is simply a mapping of M ⊆ X into Y (Fig. 6.2). Here one can visualize the
vector field � : M → Y as a vector with beginning at x ∈ M.

Example 6.4 Sketch the diagram of the vector field for the differential equation
x′ = x, y′ = −y.

Solution The diagram of the vector field for the given differential equation is as
shown in Fig. 6.2.

Completely continuous vector field− A vector field � on M ⊂ X is called com-
pletely continuous if it has a representation � = I − A, where I is the identity map-
ping and A is a compact and continuous (completely continuous) operator.

From the above definition, we infer that the class of completely continuous vector
fields coincides with the class of compact continuous perturbations of the identity
operator.

We now deal with completely continuous vector fields in X which are defined on
different sets from X . For what follows, assume that M is a subset of X , C(M) is
the family of all completely continuous vector fields defined on M.

Singular vector field− A vector field � ∈ C(M) is called nonsingular if � �= 0 on
M. The set N(�,M) of points from M at which � vanishes is called the zero set or
the singularity set of the vector field � on the set M.

Suppose � is a bounded open set in X . Denote by FLS(�) the family of completely
continuous vector fields which are defined on the closure � of the set � and are not
zero on the boundary ∂� of the set �.
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Homotopy− Two completely continuous vector fields �0,�2 ∈ FLS(�) are called
homotopic if there exists completely continuous operator A(x, t) defined on � ×
[0, 1] and taking in values in X , for which the following properties hold:

(i) x − A(x, 0) = �0x, x − A(x, 1) = �1x (x ∈ �),

(ii) x �= A(x, t) (x ∈ ∂�, t ∈ [0, 1]).
Observation

• The relation of the homotopy is an equivalence relation, and therefore any fam-
ily FLS(�) is a union of classes of completely continuous vector fields that are
mutually homotopic.

The set of all homotopies on the closure � of the set � is denoted by HLS(�).

6.2.1 The Leray–Schauder Degree for a Completely
Continuous Vector Field

The rotation of a completely continuous vector field− For the sake of simplicity,
we give the definition of the rotation of a vector field on the surface of the unit sphere
S of a Banach space X .

Suppose A is a completely continuous operator defined on S. Consider the vector
field � = I − A defined on S. This means that at every point x ∈ S, we are given the
vector �x = x − Ax. Because the operator A is completely continuous, this vector
field is completely continuous.

Suppose a completely continuous vector field � on S does not contain the null
vector. This entails that there exists an α > 0 such that ‖�x‖ > α for x ∈ S. Select a
finite dimensional space Xn in X which has the following property: For each x ∈ S,
every element Ax is at a distance less than or equal to α

3 from Xn.
Let us denote by Pn the operator (possibly a linear one) which projects the compact

set AS on Xn, i.e. Pn is such an operator that PnAS ⊂ Xn. Furthermore, assume that

‖PnAx − Ax‖ � α

2
(x ∈ S).

Let γ be the degree of the mapping,

Bx = x − PnAx

‖x − PnAx‖ (x ∈ Sn)

of the unit finite dimensional sphere Sn = Xn ∩ S upon itself.
We now observe the following facts:

(1◦) One can prove that the number γ does not depend on the selection of the
approximating space Xn nor on the choice of the projection operator Pn.
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(2◦) The number γ is the rotation of the completely continuous vector field � on S.
(3◦) In an entirely analogous manner, one defines the rotation of a field on the

boundary ∂� of an arbitrary open set � ⊂ X .

Remark 6.3 Leray and Schauder give the definition of the topological degree of
the mapping I − A of a closed region �. In this definition, it is assumed that the
completely continuous operator A is defined not only on ∂� but on the entire set
�. It follows that the topological degree of the mapping, as defined by Leray and
Schauder, coincides with the rotation of the field I − A on ∂�.

Notice that every completely continuous operator A, given on ∂�, can be extended
over � with the preservation of complete continuity of the operator. This fact leads
to the conclusion that the definition of the rotation of a vector field is no more general
than the topological degree of a mapping.

Thus, the concepts of the “topological degree of a mapping” and of “the rotation of
a completely continuous vector field” are entirely equivalent (see also Krasnosel’skiĭ
[346]).

If a completely continuous operator A is defined on � and has no fixed points
on ∂�, then the rotation γ (I − A,�) coincides with the Leray–Schauder degree of
I − A on � with respect to the origin, that is,

γ (I − A,�) = deg(I − A,�, 0).

Let � be a bounded open set in X . Denote by FBH(�) the family of continuous
vector fields which are defined on the closure � of the set � and are not zero on the
boundary ∂� of the set �.

For continuous vector fields, the following result is known as Poincaré–Bohl’s
theorem.

Theorem 6.15 Two continuous vector fields �0,�1 ∈ FBH(�) are homotopic if
at each x ∈ ∂� the vectors �0x and �1x do not point in opposite directions (in
particular, coincide). The condition about nonopposite directions can be written as
inequality

‖�0x − �1x‖ < ‖�0x‖ + ‖�1x‖ (x ∈ ∂�) (6.8)

or
(�0x,�1x) > −‖�0x‖‖�1x‖ (x ∈ ∂�) (6.9)

where ‖ · ‖ is the usual or a strictly convex norm in X , (·, ·) is the usual scalar product
in X .

In particular, the Poincaré–Bohl conditions hold if

‖�1x − �0x‖ < ‖�0x‖ (x ∈ ∂�); (6.10)

the corresponding theorem is known as the Rouché theorem.
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There exists a unique integer function, γ (�,�) = γLS(�,�) that is defined on
the union of all sets FLS(�) and has the following properties:

I. If �0 and �1 are two homotopic fields from FLS(�), then

γ (�,�) = γ (�,�).

II. If �1 and �2 are bounded open sets in X ,� ∈ FLS(�1) ∩ FLS(�2), and � does
not vanish on the set �1 ∩ �2, then

γ (�,�) = γ (�,�1) + γ (�,�2).

III. If �(x) = x − x0 and x0 ∈ �, then γ (�,�) = 1.

The function γ (·, ·) is called the rotation, and the value γ (�,�) of this function
is called the rotation (winding number or index) of the vector field � on the boundary
∂� of the set �.

Note that the rotation γ (�,�) is a function of the restriction of the field � on the
boundary ∂� of the set �, and the set � itself, rather than the boundaries of the set.
One knows such closed and bounded sets which are boundary of different bounded
open sets in X . The rotation of some vector field � which is defined on the union of
the closures of both (or more) of these bounded open sets with common boundary
can be different, depending on the set.

We also notice that the rotation γ (�,�) of the vector field � on the boundary ∂�

of the bounded open set � in essential depends on the values � on the boundary ∂�.
More precisely, if �0 = I − A0 and �1 = I − A, where A0 and A are completely
continuous operators, are two completely continuous vector fields defined on the
closure � of the set �, and their restrictions on ∂� are the same, then,

γ (�0,�) = γ (�1,�),

that is,
deg(I − A0,�, 0) = deg(I − A1,�, 0).

However, we see that this common rotation depends on the set � whose boundary
is ∂�; if there exist two or more such bounded open sets, the rotation γ (�,�) can
be different depending on the choice of �.

The main result of the homotopic and homological theory of continuous vector
fields is the proof of the existence and uniqueness theorem for the rotation of a
vector field. In this context, we observe that Hopf [276–278] not only gave the
proof of the existence and uniqueness for the rotation of vector fields, but obtained
such fundamental theoretical facts like the homotopic classification theorem and the
theorem on the connections between the rotation of a vector field and the essentiality
of its zero set.

Usually, the rotation is determined for nonsingular continuous vector fields which
are defined only on the boundary an of a bounded open set O but not on this set
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itself. Indeed, both approaches are equivalent. Due to the famous Tietze–Urysohn’s
theorem, every continuous mapping F : M → X defined on a closed subset M of
the space X can be extended to a continuous mapping F̃ defined on the whole space
X ; moreover, one can demand that the additional condition F̃x ∈ coF(M)(x ∈ X ) be
fulfilled. Owing to this fundamental result, any nonsingular continuous vector field �

defined on the boundary ∂� of a bounded open set �, is the restriction of continuous
vector fields �̃ defined on the closure �, of the set �, (and even on the whole space
X ); all these continuations �̃ are mutually homotopic (on �), and therefore have the
same rotation γ (�̃,�) coinciding, by definition, with the rotation γ (�,�).

6.2.1.1 The Main Theorems on Rotation of a Vector Field

As in the finite dimensional case, the properties I–III imply some simple and impor-
tant corollaries.

Theorem 6.16 Let � be a bounded open set in X . If a completely continuous vector
field � ∈ C(�) has no zeros in � then γ (�,�) = 0; in other words, if γ (�,�) �= 0
then � has at least one zero in �.

Theorem 6.17 Let � be a completely continuous vector field which is defined on
the union of the closures of two bounded open sets �1 and �2 and � ∈ FLS(�1) ∩
FLS(�2). Then

γ (�,�1) = γ (�,�2) (6.11)

provided that � is nonsingular on �1��2.

Index− Let � be a vector field from FBH(�) and N(�,�) the set of zeros of � in
�. Assume that N is an isolated subset of N(�,�) or, in other words, there exists
a neighbourhood O(N ) of N which does not meet N(�,�) \ N . Then the rotation
γ (�, O(N )) of � on the boundaries of all neighbourhoods O(N ) of N containing
no other points of N(�,�) is the same; this rotation is called the index of N and
denoted by ind(N ,�).

Theorem 6.18 Let � be a bounded domain in X , � ∈ FLS(�) a completely con-
tinuous vector field, and N(�,�) be a union of isolated subsets N1, N2, . . . , Ns.
Then

γ (�,�) =
s∑

i=1

ind(Ni,�). (6.12)

Isolated zero−A zero x0 ∈ N(�,�) is called isolated if there exists a neighbourhood
O(x0) of X which contains no other points from N(�,�).
Index of a zero− If x0 is an isolated zero of the vector field �, then the rotation
γ (�, B(x0, r)) of � is the same for all balls B(x0, r) with center x0 and sufficiently
small radius r; this common rotation is called the index of the zero x0 and denoted
by ind(x0,�) ( Fig. 6.4). If all points of N(�,�) are isolated, then any one of them
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Fig. 6.4 The origin is an isolated zero of the vector fields, and distinct indexes are counted as
shown in Fig. 6.4a–e

is a component of N(�,�), and N(�,�) is a finite set, say, {x0, . . . , xs}. Then the
following equality is true:

γ (�,�) = ind(x0,�) + · · · + ind(xs,�). (6.13)

6.2.2 Invariance Principles

It may be observed that when we deal with completely continuous vector fields in
infinite-dimensional Banach spaces X , there appears a crucially new problem. In
fact, we usually deal with operators that are defined by some analytical formulas,
but usually have no natural Banach space X in which these operators should be con-
sidered. The choice of the Banach space X in which the corresponding vector fields
� = I − A turn out to be completely continuous (and with other useful properties)
demands serious additional investigations. In any case it is difficult to expect that
such a choice is unique. But if the same vector field � = I − A is completely contin-
uous vector field in two different Banach spaces Xl and X2, there arises the essential
question on relations between all geometric characteristics of � in X1 and X2.

Suppose Xl and X2 are two Banach spaces embedded in some linear space X ,
and �1 and �2 are bounded open sets in Xl and X2, correspondingly. Assume that
� = I − A is a vector field that is defined on some set M ⊂ X ,�1,�2 ⊂ M and

A(�1) ⊂ X1, A(�2) ⊂ X2.

If the operator A is completely continuous on �1 as an operator acting in Xl , as well
as on �2 as an operator acting in X2, we can try to find conditions implying the
coincidence of the rotations γ (I − A,�1) and γ (I − A,�2) on the boundaries of
the sets �1 and �2, correspondingly.

The first among these conditions is almost evident: the sets of fixed points of the
operator A in the closures of the open sets �1 and �2, correspondingly, in the spaces
Xl and X2 must coincide. In this case, we say that the sets �1 and �2 have a common
core for the operator A. But this condition is not sufficient. One can consider the vector
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field �x = x − (x − xn) with the operator Ax = x − xn as a completely continuous
vector field in any of the two Banach spaces X = R or X = C (the last is considered
as two-dimensional real linear space). The bounded open sets �1 = (−1, 1) ⊂ R

and �2 = x ∈ C : ‖x‖ < 1 ⊂ C have a common core for the operator A. However,
γ (�,�1) = 1−(−1)n

2 and γ (�,�2) = n.

Theorem 6.19 Let Xl and X2 be Banach spaces and �1 ⊂ Xl, �2 ⊂ X2 bounded
open sets with a common core for an operator A. Assume that the operator A is
completely continuous on �1 as an operator in Xl and on �2 as an operator in X2,
and one from the following conditions holds:

(a) The operator A is continuous on �1 and �2 as an operator from Xl to X2 and
from X2 to Xl, correspondingly.

(b) The norms of the spaces Xl and X2 are compatible, the operator A is locally
bounded on �1 and �2 as an operator from Xl to X2 and from X2 to Xl, corre-
spondingly, and compact on X2 ∩ �1 and X1 ∩ �2 as an operator from Xl to X2

and from X2 to Xl, correspondingly.
(c) The norms of the spaces Xl and X2 are compatible, and there exist convex and

compact sets S1 and S2 in Xl ∩ X2 for which

A(S1 ∩ �1) ⊂ S2, A(S2 ∩ �2) ⊂ S1

and x0 ∈ coAx0, Sj implies x0 ∈ Sj (j = 1, 2).

Then the equality
γ (�,�1) = γ (�,�2) (6.14)

holds true.

6.3 The Skrypnik Degree Theory

Skrypnik’s 1973 monograph [564] developed a new topological degree theory for
mappings of class α from a reflexive space X to its dual X ∗, and applied it to the
solvability of nonlinear elliptic PDEs of abstract and concrete nature.

Let X be a real Banach space, X ∗ its conjugate space and � a fundamental subspace
of X ∗ such that the unit ball of the space X is �-weakly compact (i.e. a compact set
in the �-weak topology). The simplest but main case is when X is a reflexive Banach
space and � = X ∗. Another important case is when X = Z∗, where Z is a Banach
space, and � = Z ⊆ X ∗∗.

Let us consider an operator � defined on a set M of the space X and taking its
values in the space X ∗. We need some definitions for such operators.

An operator � : M → X ∗ is said to satisfy the condition α(M) if each sequence
xn ∈ M which �-weakly converges to x0, and for which

lim sup
n→∞

〈�xn, xn − x0〉 � 0
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strongly converges to x0. Here and below 〈v, u〉 is a “scalar product”, i.e. the value
of the functional v ∈ X ∗ at the element u ∈ X .

An operator � : M → X ∗ is called demicontinuous if it maps each sequence xn

strongly converging to x0 into a sequence �xn�-weakly converging to �x0.
In what follows, FS(�) denotes the class of all demicontinuous vector fields �

defined on the closure � of a bounded open set � ⊆ X , taking their values in Y , not
vanishing on �, and satisfying the condition α(∂�).

Let U be an arbitrary finite dimensional subspace of the space X and B =
{u1, . . . , un} its arbitrary basis. Then we can consider the operator �(B) defined on
the set �(U ) = � ∩ U , taking its values in U and defined by the formula

�(B)u =
n∑

j=1

〈�u, uj〉uj (u ∈ U ). (6.15)

Now suppose that �, the closure of a bounded open set �, is contained in the set M,
the vector field � is defined on �, takes it values in �, is demicontinuous, has the
property α(∂�), where ∂� is the boundary of the set � and, at last, does not vanish
on ∂�. In this case, there exists a finite dimensional subspace U∗ such that for any
finite dimensional subspace U ⊇ U∗ and any basis B of the subspace U of the vector
field �(B) does not vanish on the boundary ∂�(U ) and the rotations γ (�(U ), �(U ))

and γ (�(U∗), �(U∗)) are the same. This common rotation γ (�(B), �(U )) is called the
rotation of the vector field � : � → X ∗ on the boundary ∂� of the set �.

The rotation γS(�,�) of vector fields from FS(�) possesses almost all main
properties I–III of “usual” rotations which were considered above. Of course, one
need to introduce the corresponding notion of homotopy.

Definition 6.3 Two demicontinuous vector fields �0 and �1 are called homotopic
if there exists a demicontinuous family of vector fields �(λ, x) defined on the set
[0, 1] × �, taking values from X ∗ and satisfying the following conditions:

�(λ, ·) ∈ α(∂�) (λ ∈ [0, 1])
�(0, x) = �0x, �(1, x) = �1x (x ∈ �)

�(λ, x) �= 0 (λ ∈ [0, 1], x ∈ ∂�)

Pseudomonotone operator− An operator � is called pseudomonotone if each
sequence xn ∈ M which �-weakly converges to x0, and for which the sequence
�xn for which

lim sup
n→∞

〈�xn, xn − x0〉 � 0 (6.16)

satisfies the condition
lim

n→∞〈�xn, xn − x0〉 = 0. (6.17)
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Observation

(i) For the class of demicontinuous vector fields with the property α0(∂�) in case
of a separable space X , one can give the definition of the rotation described in
detail above but using only sequences of finite dimensional subspaces Un whose
linear hulls are dense in Un.

(ii) For the class of pseudomonotone demicontinuous vector fields in case when
there exists a demicontinuous operator Q with the property α0(∂�) for which
〈Qx, x〉 > 0 (x �= 0) in X one can define the rotation, γ (�,�) of an original
vector field � on the boundary ∂� of a bounded set � as common rotation,
γ (εQ + �,�) for sufficiently small positive ε.

6.3.1 Degree of Mappings of Class α

Throughout this section, X stands for a real separable reflexive Banach space, and X ∗
for its dual. We denote the strong and weak convergence by → and ⇀, respectively; it
will be clear from the context in what space the convergence takes place. For arbitrary
elements u ∈ X and h ∈ X ∗, henceforth 〈h, u〉 denotes the action of the functional h
on the element u.

In the sequel, � is a bounded open subset of the space X and ∂� is its boundary.
We consider an operator A, in general nonlinear, defined on a subset M ⊂ X , with
values in X ∗.

Definition 6.4 We say that A satisfies the condition α0(M) if whenever {un} ⊂ M,
for which un ⇀ u, Aun ⇀ 0, and

lim sup
n→∞

〈Aun, un − u0〉 � 0 (6.18)

it follows that the sequence un converges strongly to u0.

Definition 6.5 Let M ⊂ �. We say that an operator A : � → X ∗ satisfies the condi-
tion α(M), if each sequence {un} ⊂ M converging weakly to some u0 and for which
(6.18) holds is in fact strongly convergent to u0.

Definition 6.6 For M ⊂ � we denote by A0(�,M) (respectively A(�,M) the set
of all bounded demicontinuous mappings A : � → X ∗ satisfying condition α0(M)
(respectively condition α(M)). When M = �, we write A0(�), A(�) instead of
A0(�,�), A(�,�).

We define Deg(A,�, 0)—the degree of a mapping A on the set � with respect to
the origin of the space X ∗—under the conditions:

(a) A ∈ A0(�,�);
(b) Au �= 0 for any element u ∈ �.

Let {vi}, i = 1, 2, . . . , be any complete system of the space X and suppose that
for every n the elements v1, . . . , vn are linear independent. Further, let Fn denote the
linear hull of the elements v1, . . . , vn.
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Let us define for every n = 1, 2, . . . the finite dimensional approximation An of
the mapping A in the following way:

Anu =
n∑

i=1

〈Au, vi〉vi for u ∈ �n, �n = � ∩ Fn. (6.19)

Theorem 6.20 Let A be an operator satisfying conditions (a), (b). Then there exists
N such that for n � N the following assertions hold:

(1) the equation Anu = 0 has no solutions belonging to ∂�n;
(2) the degree deg(An,�n, 0) of the mapping An on the set �n with respect to 0 ∈ Fn

is defined and independent of n.

Proof We proof the first assertion by contradiction. Assume that there is a sequence
uk ∈ ∂�nk such that nk → ∞ as k → ∞ and Ank uk = 0. We may consider that uk

converges weakly to some element u0 ∈ X . In addition, Ank uk = 0 implies the weak
convergence of Auk to zero. We show that uk converges strongly to u0 ∈ ∂� and
Au0 = 0. This suffices for the proof of (1) by virtue of assumption (b).

Let us select any subsequence wk ∈ Fnk such that wk → u0. Then

〈Auk , uk − u0〉 = 〈Auk , wk − u0〉 + 〈Auk , uk − wk〉.

The second term of the right-hand side vanishes by the assumption that Ank uk = 0
and uk − wk ∈ Fnk . The first term tends to zero as k → ∞ due to the boundedness
of the operator A and the choice of the subsequence wk . Thereby

lim
k→∞

〈Auk , uk − u0〉 = 0.

Hence, by virtue of the condition α0(∂�), we obtain the strong convergence of uk to
u0, which guarantees that u0 ∈ ∂� and Au0 = 0, a contradiction to assumption (b).
Thus, for sufficiently large n, we observe that the assertion (1) ensures that the degree
deg(An,�n, 0) of the finite dimensional mapping An is well defined.

We now prove the independence of deg(An,�n, 0) of n by using the auxiliary
mapping

Ãnu =
n−1∑
i=1

〈Au, vi〉vi + 〈hn, u〉vn

where hn is some element of the space X ∗ satisfying the conditions

〈hn, vi〉 = 0 for i < n, 〈hn, vn〉 = 1.

By the Leray–Schauder lemma, we infer that

deg(An−1,�n−1, 0) = deg(Ãn,�n, 0). (6.20)
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Notice that the right-hand side of (6.20) being defined for large n by virtue of (1).
We now prove the following equality

deg(Ãn,�n, 0) = deg(An,�n, 0). (6.21)

In order to prove (6.21), by virtue of the properties of the degree of finite dimensional
mappings, it suffices to establish that

[tAn + (1 − t)Ãn]u �= 0 for u ∈ ∂�n, t ∈ [0, 1]. (6.22)

We prove the assertion (6.22) by contradiction. Let us assume that there exist
sequences uk ∈ ∂�nk , tk ∈ [0, 1] such that

[tkAnk + (1 − tk)Ãnk ]u = 0 nk → ∞ as n → ∞. (6.23)

Thus, we have
〈Auk , vi〉 = 0 for � nk − 1,

tk〈Auk , vnk 〉 + (1 − tk)〈hnk , uk〉 = 0.

}
(6.24)

By (1) and (6.24) we obtain that Auk ⇀ 0 and for sufficiently large k the inequality
0 < tk < 1 is satisfied. We may assume that the sequence {uk} converges weakly to
some element ũ0 ∈ X and we choose a sequence w̃k such that w̃k ∈ Fnk−1, w̃k → ũ0.
Then

〈Auk , uk − ũ0〉 = 〈Auk , w̃k − ũ0〉 − 1 − tk
tk

〈hnk , uk〉2. (6.25)

Notice that the equality (6.25) is the consequence of the following two equalities
which are obtained on the basis of (6.24) and the choice of w̃k :

〈Auk , w̃k〉 = 0, 〈Auk , uk〉 = −1 − tk
tk

〈hnk , uk〉2.

The first term on the right-hand side of (6.25) tends to zero and hence, by virtue of
the condition α0(∂�), we deduce the strong convergence of uk to ũ0 ∈ ∂�. The first
equality in (6.24) yields Aũ0 = 0, which contradicts condition (b).

This establishes assertion (6.22), and together with it the equality (6.21). It follows
from (6.20) and (6.21) that the deg(An,�n, 0) is independent of n for sufficiently
large n; this concludes the proof of the theorem.

In view of Theorem 6.16, we infer that lim
n→∞ deg(An,�n, 0) exists and we denote

it by D{vi}.
Theorem 6.21 Suppose that the conditions (a), (b) are satisfied. Then the limit

D{vi} = lim
n→∞ deg(An,�n, 0) (6.26)
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does not depend on the choice of the sequence {vi}.
Proof It suffices to show that D{v′

i} = D{vi} for any other sequence {v′
i} having the

same properties as the sequence {vi}. Thus, we can assume that for each n, the system
v1, v2, . . . , vn, v′

1, v′
2, . . . , v′

n is linearly independent. Otherwise, an auxiliary system
{ṽi} can be constructed such that both the systems v1, v2, . . . , vn, ṽ1, ṽ2, . . . , ṽn and
ṽ1, ṽ2, . . . , ṽn, v′

1, v′
2, . . . , v′

n are linearly independent for any n, and the proof reduces
to establishing the equality D{vi} = D{v′

i}.
Let L2n be the linear space spanned by the elements v1, v2, . . . , vn, v′

1, v′
2, . . . , v′

n
and define for n = 1, 2, . . . the finite dimensional mapping

A2n,tu =
n∑

i=1

{〈Au, vi〉vi + [t〈Au, v′
i〉 + (1 − t)〈f (n)

i , u〉]v′
i}, (6.27)

where u ∈ L2n ∩ �, t ∈ [0, 1] and f (n)
i are elements of the space X ∗, satisfying the

conditions
〈f (n)

i , vj〉 = 0, ( f (n)
i , v′

j〉 = δij, i, j = 1, 2, . . . , n, (6.28)

δij being the Kronecker symbol equal to zero for i �= j and to 1 for i = j.
Now, by virtue of the definition of D{vi} and Theorem 6.20, the proof of Theorem

6.21 is reduced to establishing the equality

deg(An,�n, 0) = deg(A′
n,�

′
n, 0) (6.29)

for large n. Here A′
n and �′

n are determined by (6.19) in which vi is replaced by v′
i.

To prove the equality (6.29), it suffices to verify that, for large n,

A2n,tu �= 0 for u ∈ ∂(L2n ∩ �), t ∈ [0, 1]. (6.30)

In fact, by the virtue of the Leray–Schauder lemma, under the condition (6.30) we
have

deg(A2n,0, L2n ∩ �, 0) = deg(An,�n, 0). (6.31)

On the other hand, due to properties of the degree of finite dimensional mappings
and (6.30), we obtain

deg(A2n,0, L2n ∩ �, 0) = deg(A2n,1, L2n ∩ �, 0). (6.32)

By (6.31), (6.32), taking into account that in the definition of A2n,1 and L2n the
arguments vi and v′

i have a symmetric role, we derive (6.29). Hence, the proof of
Theorem 6.21 is reduced to the verification of (6.30).

We prove (6.30) by the contradiction, assuming that there are sequences ūk , t̄k
such that

A2nk ,t̄k ūk = 0, uk ∈ ∂(L2nk ∩ �), t̄k ∈ [0, 1], nk → ∞. (6.33)
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From this we have

〈Aūk , vi〉 = 0, i = 1, 2, . . . , nk ,

t̄k〈Aūk , v′
i〉 + (1 − t̄k)〈 f (nk )

i , ūk〉 = 0, i = 1, 2, . . . , nk .

}
(6.34)

It follows from Theorem 6.20 that 0 < t̄k < 1 for k large. We may consider that
ūk ⇀ u0, t̄k → t̄0, Aūk ⇀ 0. Select a sequence w̄k ∈ Fnk such that w̄k → ū0. Using
the formula

ūk =
nk∑

i=1

(c(k)
i vi + c̄(k)

i v′
i), c̄(k)

i = 〈f (nk )
i , ūk〉,

from (6.34) we obtain

〈Auk , ūk − ū0〉 = 〈Aūk , w̄k − ū0〉 +
nk∑

i=1

〈Aūk , v′
i〉〈f (nk )

i , ūk〉

= 〈Aūk , w̄k − ū0〉 − 1 − t̄k
t̄k

nk∑
i=1

〈f (nk )
i , ūk〉2.

Hence, we have
lim sup

k→∞
〈Auk , ūk − ū0〉 � 0,

and by virtue of condition α0(∂�), we deduce the strong convergence of ūk to ū0 ∈
∂�. The demicontinuity of the operator A implies Aū0 = 0, which contradicts the
assumption (b). This completes the proof of the theorem.

Theorems 6.19 and 6.20 justify the following definition.

Definition 6.7 For an operator A : � → X ∗, satisfying conditions (a), (b), by its
degree on the set � with respect to the point 0 ∈ X ∗, we mean the number
lim

n→∞ deg(An,�n, 0) where An,�n are determined in accordance with (6.19). This

degree is denoted by Deg(A,�, 0).

6.3.2 The Degree of a Pseudomonotone Mapping

In this section, we mainly discuss the degree of a pseudomonotone mapping in a
nonseparable space. Throughout this section, X is a real reflexive Banach space. We
denote by F(X ) the set of all finite dimensional subspaces of X . Let F ∈ F(X ) and
let dim F = λ. So, let v1, v2, . . . , vλ be a basis in F . We define the finite dimensional
mapping

AF (u) =
λ∑

i=1

〈Au, vi〉vi for u ∈ �F , �F = � ∩ F . (6.35)
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Theorem 6.22 Let A : � → X ∗ be a demicontinuous operator satisfying condition
α(∂�), where ∂� is the boundary of a bounded open set � ⊂ X , and Au �= 0 for
u ∈ ∂�. Then there exists a subspace F0 ∈ F(X ) such that any subspace F belonging
to F(X ) and containing F0 satisfies the properties:

(1) the equation AF(u) = 0 has no solution belonging to ∂�F ;
(2) deg(AF ,�F , 0) = deg(AF0 ,�F0 , 0), where deg is the degree of the finite-

dimensional mapping.

Proof Step I. Existence of F0. First we establish the existence of a subspace F0 ∈
F(X ) such that for F ⊃ F0, F ∈ F(X ), the set

ZF
F0

= {u ∈ ∂�F : 〈Au, u〉 � 0, 〈Au, v〉 = 0 for v ∈ F0}

is empty.
Suppose, on the contrary, that for any F0 ∈ F(X ) there is some F1 ∈ F(X ), F1 ⊃

F0, such that ZF
F0

�= ∅. Denote

GF0 =
⋃

F⊃F0

ZF
F0

and let G
(w)

F0
be the weak closure of GF0 . Then the system of sets {G(w)

F : F ∈ F(X )}
has the finite intersection property, and the reflexivity of the space X implies (see,
Dunford and Schwartz [209]) the existence of a u0 such that

u0 ∈
⋂

F∈F(X )

G
(w)

F . (6.36)

We now prove that u0 ∈ ∂� and Au0 = 0. This will contradict the conditions of
the theorem. Let w be an arbitrary element of X and take F0 ∈ F(X ) such that

u0 ∈ F0, w ∈ F0. By (6.36) we have u0 ∈ G
(w)

F0
and, therefore, there exists a sequence

un ∈ Z
Fn

F0
, Fn ⊃ F0, such that un ⇀ u0, un ∈ ∂�Fn , and

〈Aun, un〉 � 0, 〈Aun, u0〉 = 0, 〈Aun, w〉 = 0. (6.37)

It follows from (6.37), we infer that

〈Aun, un − u0〉 � 0.

Whence, by condition α(∂�), the sequence un converges strongly to u0. By the last
equality in (6.37) and the demicontinuity of the operator A, we obtain 〈Au0, w〉 = 0
and, as w is arbitrary, we derive Au0 = 0. This contradicts the conditions of the
theorem.
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In this way, we have proved the existence of a subspace F0 ∈ F(X ) such that
for any F ⊃ F0, F ∈ F(X ), the set ZF

F0
is empty. This subspace F0 satisfies the

requirements of the theorem.
Step II. Validation of assertions (1) and (2). The validity of the assertion (1)
for the selected F0 follows directly from the equality ZF

F0
= ∅. Let us prove the

second assertion. Let F ⊃ F0, F ∈ F(X ); we choose a basis in F of the form
v1, v2, . . . , vλ0 , w1, w2, . . . , wμ, where vi, i = 1, 2, . . . , λ0, is a basis in F0. We con-
sider on �F two mappings

AF(u) =
λ0∑

i=1

〈Au, vi〉vi +
μ∑

i=1

〈Aui, wi)wi〉,

ÃF(u) =
λ0∑

i=1

〈Au, vi〉vi +
μ∑

i=1

〈fi,F , u)wi〉

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.38)

where fi,F is an element in X ∗ satisfying the conditions: 〈fi,F , wj〉 = δij for j =
1, 2, . . . , μ, 〈fi,F , vk〉 = 0 for k = 1, 2, . . . , λ0; δtj is the Kronecker symbol.

By the Leray–Schauder lemma, we have deg(ÃF ,�F , 0) = deg(AF0 ,�F0 , 0) and,
therefore, to prove the theorem it suffices to verify that

tAF(u) + (1 − t)ÃF(u) �= 0 for u ∈ ∂�F , t ∈ [0, 1]. (6.39)

If (6.39) were not satisfied, then for some u0 ∈ ∂�F , t0 ∈ [0, 1], we would have

〈Au0, vi〉 = 0, i = 1, 2, . . . , λ0,

t0〈Au0, wi〉 + (1 − t0)〈fi,F , u0〉 = 0, i = l, 2, . . . , μ.

}
(6.40)

Due to the first already proved assertion of the theorem, we have t0 �= 0. Let u0 =∑λ0
i=0 aivi + ∑μ

j=1 bjwj and compute 〈Au0, u0〉 such that

〈Au0, u0〉 =
μ∑

j=1

〈Au0, wj〉 = − t0
1 − t0

〈fj,F , u0〉2 � 0. (6.41)

The existence of u0 satisfying (6.40), (6.41) contradicts to ZF
F0

= ∅. Thus (6.39)
holds, which proves the theorem.

Theorem 6.22 justifies the introduction of the following definition.

Definition 6.8 Let A : � → X ∗ be a demicontinuous operator satisfying condition
α(∂�), where ∂� is the boundary of a bounded open set � ⊂ X , and Au �= 0 for
u ∈ ∂�. Then, for a subspace F0 ∈ F(X ) such that any subspace F belonging to
F(X ) and containing F0 satisfying the properties (1) and (2) of Theorem 6.22, the
number

Deg(A,�, 0) = deg(AF0 ,�F0 , 0)



6.3 The Skrypnik Degree Theory 485

is called the degree of the mapping A on the set � with respect to the point 0 ∈ X ∗.

In what follows, X stands for a real nonseparable reflexive Banach space, and X ∗
for its dual. We denote the strong and weak convergence by → and ⇀, respectively; it
will be clear from the context in what space the convergence takes place. For arbitrary
elements u ∈ X and h ∈ X ∗, henceforth 〈h, u〉 denotes the action of the functional h
on the element u.

Let � be a bounded open set in X . Assume that on the space X there is an operator
A0 : X → X ∗, A0 ∈ A(∂�,�) the family A(∂�,�) was introduced by Definition
6.6. In the case of uniformly convex spaces X , X ∗, as the operator A0 we may take
the duality map, which will be outlined at the end of this section.

Let A : � → X ∗ be a demicontinuous pseudomonotone operator and suppose
that 0 /∈ A(∂�), where the bar denotes the strong closure and ∂� the boundary of
�. Under these conditions, we define the degree of the mapping A. Our assumptions
guarantee the validity of the inequality

‖Au‖X ∗ � δ0 for u ∈ ∂�

with a positive number δ0.
Let us introduce the mapping εA0 + A : � → X ∗. Set

M = sup
u∈�

‖A0u‖X ∗ .

If 0 < ε < δ0
M , then for the mapping εA0 + A, which satisfies all conditions of The-

orem 3.1, the degree
Deg(εA0 + A,�, 0) (6.42)

is defined. It is required to verify the condition α(∂�) for the operator εA0 + A. Let
un ∈ ∂� be a sequence such that un ⇀ u0 and

lim sup
n→∞

〈εA0un + Aun, un − u0〉 � 0. (6.43)

Passing, if necessary, to a subsequence, from (6.43) we obtain one of the inequalities

lim sup
n→∞

(A0un, un − u0) � 0, lim sup
n→∞

(Aun, un − u0) � 0. (6.44)

If the second inequality holds, then, by the pseudomonotonicity of the operator A,
we have lim

n→∞ (Aun, un − u0) = 0 which, together with (6.43), implies the validity of

the first inequality in (6.44). Thus, the first inequality in (6.44) is always true, and the
strong convergence of un to u0 is obtained from the condition α(∂�) for the operator
A0.

Similarly, as in the proof of Theorem 6.22, we can infer (see also the next section
regarding the properties of the degree of a mapping) that, for 0 < ε < δ

M , the degree
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defined by (6.42) does not depend on ε, so that the limit

lim
ε→0

Deg(εA0 + A,�, 0)

exists. One can prove that this limit does not depend on the choice of the mapping
A0. Thus, we can introduce the following concept.

Definition 6.9 For a demicontinuous pseudomonotone operator A with 0 /∈ A(∂�),
the number

Deg(A,�, 0) = lim
ε→0

Deg(εA0 + A,�, 0),

is called the degree of the mapping A on the set � with respect to the point 0 ∈ X ∗.
A0 ∈ A(�, ∂�) and Deg is the degree introduced by Definition 6.8.

6.4 The Browder–Petryshyn Degree Theory

In Sect. 6.1 we studied the Leray–Schauder degree theory which is, indeed, a very nat-
ural method to solve an infinite dimensional equation Tx = y. This method involves
an approximation technique in which we approximate the original equation by finite
dimensional equations. Notice also that the well-known Galerkin method has proved
to be a very efficient tool in finite dimensional approximation. In the 1960s, Browder
and Petryshyn systematically studied the finite dimensional method for a large class
of mappings, which they called A-proper mappings, and they developed a similar
theory to the Brouwer degree.

Let X and Y be two real separable Banach spaces, Xn and Yn be two sequences
of finite dimensional spaces, dim Xn = dim Yn and Pn : X → Xn and Qn : Y → Yn

be two sequences of (in general nonlinear) continuous operators. In this situation,
an approximation scheme for the pair of Banach spaces X and Y is said to be given.
Usually, the finite dimensional spaces Xn and Yn are subspaces of the spaces X and
Y , correspondingly, but in what follows it is natural to suppose that Xn = Yn(n =
1, 2, . . .).

6.4.1 A-Proper Mappings

We begin with the following definition.

Definition 6.10 Let X and Y be real separable Banach spaces.

(1) If there is a sequence of finite dimensional subspaces Xn ⊂ X and a sequence
{Pn} of linear projections Pn : X → Xn such that Pnx → x for all x ∈ X , then
we say that X has a projection scheme {Xn, Pn}.
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(2) If X and Y have projection schemes {Xn, Pn} and {Yn, Qn}, respectively, and dim
Xn = dim Yn for all positive integers n, then we call

∏ = {Xn, Pn; Yn, Qn} an
operator projection scheme.

Example 6.5 Suppose X = C[0, 1]. For n ∈ N, partition [0, 1] into n equal parts
and set 0 = t0 < t1 < t2 < · · · < tn = 1, where ti = i

n . Suppose Xn is the subspace
of all x ∈ X which are linear in every subinterval [ti, ti+1] and P : X → Xn be the
projection satisfying Pnx(ti) = x(ti) for i = 1, 2, . . . , n. Then we see that {Xn, Pn} is
a projection scheme for X .

Example 6.6 Let X be a Banach space with a Schauder basis {ei : i ∈ N}. For x =∑∞
i=1 αi(x)ei, let us define

Xn = span{e1, e2, . . . , en}, Pnx =
n∑

i=1

αi(x)ei.

Then one can readily see that {Xn, Pn} is a projection scheme.

Remark 6.4 In the case of a separable Hilbert space, we may choose an orthonormal
basis {ei : i ∈ N}, then the projection Pnx = ∑n

i=1 αi(x, ei)ei satisfies P∗
n = Pn and

‖Pn‖ = 1.

Example 6.7 Let X be a reflexive Banach space with a projection scheme {Xn, Pn}
such that

PnPm = Pmin{m,n} m, n ∈ N.

Then {P∗
nX ∗, P∗

n} is a projection scheme for X ∗.

Example 6.8 Let X and Y be Banach spaces. Let {en} be a Schauder basis of
X and {e′

n} be a Schauder basis of Y . Put Xn = span{e1, e2, . . . , en} and Yn =
span{e′

1, e′
2, . . . , e′

n}. For x = ∑∞
i=1 αiei and y = ∑∞

i=1 βie′
i, set

Pnx =
n∑

i=1

αiei and Qny =
n∑

i=1

βie
′
i.

Then we see that
∏ = {Xn, Pn; Yn, Qn} is an operator projection scheme.

Petryshyn offered the following definition.

Definition 6.11 Let X , Y be real Banach spaces and
∏ = {Xn, Pn; Yn, Qn} be an

operator projection scheme. Suppose that � is a bounded open set in X , then a vector
field (mapping) � : � ⊂ X → Y is called approximately proper or, for short, A-
proper (respectively, pseudo A-proper) with respect to

∏
if, for any bounded xm ∈

� ∩ Xm and Qm�xm → y, there exists a subsequence {xmk } such that xmk → x ∈ �

and �x = y, (respectively, there exists x ∈ D(�), such that �x = y). We denote by
A∏(�, Y ) the class of all A-proper mappings � : � → Y .
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Definition 6.12 Let X , Y be real Banach spaces and
∏ = {Xn, Pn; Yn, Qn} be an

operator projection scheme. Suppose that � is a bounded open set in X . A family of
mappings H (t, x) : [0, 1] × � → Y is called A-proper homotopy with respect to

∏
if

(1) for any bounded sequence {xm} in � ∩ Xm, tm → t0 and QmH (tm, xm) → y, there
exists a subsequence {xmk } of {xm} such that xmk → x ∈ � and H (t0, x) = y;

(2) QnH (t, x) : [0, 1] × � ∩ Xn → Yn is continuous for n = 1, 2, . . . .

6.4.2 Browder–Petryshyn’s Degree for A-Proper Mappings

In this section, we discuss mainly generalized degree for A-Proper mappings. In what
follows, let X , Y be real separable Banach spaces and

∏ = {Xn, Pn; Yn, Qn} be an
operator projection scheme. Let � ⊂ X be an open bounded subset and L be a dense

subspace of X with
∞⋃

n=1
Xn ⊂ L. We let �L = � ∩ L.

Lemma 6.6 Let � ∈ A∏(� ∩ L, Y ). Suppose that p /∈ �(� ∩ L). Then there exists
an integer n0 > 0 such that

Qnp /∈ Qn�(∂(� ∩ Xn)) for all n > n0.

Proof We proof the lemma by contradiction. So, assume that the assertion of the
lemma is false. Then there exists nk → ∞ and xnk ∈ ∂� ∩ Xnk such that Qnk p =
Qnk �xnk . Obviously, xnk ∈ ∂� ∩ L. Thus we have Qnk �xnk → p as k → ∞ and the A-
properness of � guarantees the existence of a subsequence {xnkl

}∞l=1 such that xnkl
→

x0 ∈ ∂� ∩ L, and �x0 = p, which is a contradiction. This completes the proof.

Definition 6.13 Let � ∈ A∏(� ∩ L, Y ). Suppose that p /∈ �(� ∩ L) and Qn� is
continuous. We define a generalized degree Deg(�,�, p) by

Deg(�,� ∩ L, p) = {l ∈ Z ∪ {±∞} : deg(Qnj �,� ∩ Xnj , Qnj p) → l

for some nj → ∞},

where Z is the set of all integers.

By Lemma 6.6, we know that there exists an integer n0 > 0 such that p /∈ Qn�(∂� ∩
Xn) and Qn� is continuous, so the Brouwer degree deg(Qn�,� ∩ Xn, Qnp) is well
defined for n > n0. Thus, Deg(�,� ∩ L, p) is nonempty and the definition is well
defined.

Theorem 6.23 Let � ∈ A∏(� ∩ L, Y ) and p /∈ �(� ∩ L). Then the generalized
degree has the following properties:

(1) If Deg(�,� ∩ L, p) �= {0}, then �x = p has a solution in � ∩ L;
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(2) If �i ⊂ � for i = 1, 2,�1 ∩ �2 = ∅; and p /∈ (� \ �1 ∪ �2) ∩ L, then

Deg(�,� ∩ L, p) ⊆ Deg(�,�1 ∩ L, p) + Deg(�,�2 ∩ L, p),

here we use the convention that +∞ + (−∞) = Z ∪ {±∞};
(3) If H (t, x) : [0, 1] × � ∩ L → Y is a A-proper homotopy and p /∈ H (t, x) for

all (t, x) ∈ [0, 1] × � ∩ L, then Deg(H (t, ·),� ∩ L, p) does not depend on t ∈
[0, 1];

(4) If 0 ∈ �,� is symmetric about 0,� : � ∩ L → Y is an odd A-proper mapping
and 0 /∈ �(∂� ∩ L), then Deg(�,� ∩ L, 0) contains no even numbers.

Proof (1) Suppose that Deg(�,� ∩ L, p) �= {0}, then there exists nk → ∞ such
that

deg(Qnk �,� ∩ Xnk , Qnk p) �= 0.

Thus, there exists xnk ∈ � ∩ L such that Qnk �xnk = Qnk p. Further, by the A-properness
of �, there is a subsequence {xnk j

} with xnk j
→ x0 ∈ � ∩ L and Tx0 = p.

(2) Because p /∈ (� \ �1 ∪ �2) ∩ L, there exists n0 > 0 such that Qnp /∈ (� \ �1 ∪
�2) ∩ Xn for all n > n0. Therefore, we have

deg(Qn�,�, p) = deg(Qn�,�1, p) + deg(Qn�,�2, p) for all n > n0.

Set l = lim
j→∞ deg(Qnj �,� ∩ Xnj , Qnj p), then we have

l = lim
j→∞[deg(Qnj �,�1 ∩ Xnj , Qnj p) + deg(Qnj �,�2 ∩ Xnj , Qnj p)].

Now there arises three cases:
Case I. If lim

j→∞ deg(Qnj �,�1 ∩ Xnj , Qnj p) and lim
j→∞ deg(Qnj �,�2 ∩ Xnj , Qnj p) are

both equal to +∞ or −∞, then l = +∞ or l = −∞ and so the conclusion holds.
Case II. If one of them equals to+∞ and the other one is −∞, then, by the convention,
we have l ∈ Z ∪ {±∞}.
Case III. If

lim sup
j→∞

|deg(Qnj �,�1 ∩ Xnj , Qnj p)| < +∞

and
lim sup

j→∞
|deg(Qnj �,�2 ∩ Xnj , Qnj p)| < +∞,

then the conclusion is obvious.
(3) We claim that there exists an integer n0 > 0 such that

Qnp /∈
⋃

t∈[0,1]
H (t, ∂� ∩ Xn) for all n > n0.
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Suppose the assertion is false. Then there exist nj → ∞, tj → t0, xnj ∈ ∂� ∩ Xnj

such that Qnj p = Qnj H (tj, xnj ). Therefore, {xnj } has a subsequence {x′
nj
} which con-

verges to x0 ∈ ∂� ∩ L and H (t0, x0) = p, which is a contradiction. Thus, the Brouwer
degree deg(QnH (t, ·),� ∩ Xn, Qnp) does not depend on t ∈ [0, 1] for n > n0, so
Deg(H (t, ·),� ∩ L, p) does not depend on t ∈ [0, 1].
(4) Because � ∩ Xn is symmetric about 0, by Borsuk’s theorem, we have

deg(Qn�,� ∩ Xn, 0) is odd for n sufficiently large.

Thus, Deg(�,� ∩ L, 0) contains no even numbers. This completes the proof.

6.5 The Sadovskii Degree of Limit-Compact Operators

In this section, we discuss the extension of degree theory to noncompact nonlinear
operators. The degree theory of limit-compact operators is based on the classical
theory of the degree of mappings I − F (with F compact and continuous) developed
by Leray and Schauder [365] as discussed earlier. A generalization of the Leray–
Schauder degree has been given by Browder and Nussbaum. Here we are giving the
generalized degree theory as developed by Sadovskii [536].

Now we describe a procedure by which one can construct for any operator F :
M → X that maps a subset M of a normed linear space X into X , a certain closed
convex set F∞(M), the so-called limit range of F . We observe the following:

(1◦) The limit range of F , i.e. the set F∞(M) necessarily contains all fixed points
of F .

(2◦) The behaviour of F on M ∩ F∞(M) can be shown to be decisive in certain
sense for F on the whole of M.

Using the concept of the limit range, we define the class of limit-compact opera-
tors. Frequently we need to consider not individual operators but families of operators,
i.e. F : � × M → X where � be an arbitrary set. For such an operator, we construct
a transfinite sequence of sets {Kα} in accordance with the formula
(a) K0 = coF(� × M)

(b) Kα = coF(� × (M ∩ Kα−1)) if α − 1 exists (6.45)

(c) Kα = ⋂
β<α

Kβ if α − 1 does not exist.

The sequence of sets Kα possesses some important properties that are given in the
following lemma.

Lemma 6.7 (a) Each of the sets Kα is closed and convex.
(b) F[� × (M ∩ Kα)] ⊆ Kα+1 .

(c) If η < α, then Kα ⊆ Kη.
(d) The sets Kα are invariant under F in the sense that F[� × (M ∩ Kα)] ⊆ Kα.
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(e) There exists an order number δ such that Kα = Kδ for α � δ.

Definition 6.14 The limit set Kα of the transfinite sequence (6.45) is called the
limit range of the operator F on the set � × M and is denoted by F∞(� × M).

The operator F : � × M → X is said to be limit-compact if its restriction to the
set � × [M ∩ F∞(� × M)] is a compact operator, that is, the set F[� × [M ∩
F∞(� × M))] is relatively compact. In particular, F is limit-compact on � × M if
F∞(� × M) = ∅,

Let K be a closed convex set and U an open (bounded) set in a normed linear space
X . We assume that K consists of more than one point and that K ∩ U �= ∅. By U K

and ∂UK we denote, respectively, the closure and boundary of the set UK = U ∩ K
in the relative topology of K .

Let F be a compact and continuous operator from UK → K having no fixed points
in ∂UK . Let deg(I − F, U K , 0) denote the degree of the operator I − F on U K with
respect to K . It is convenient to extend the definition of the degree deg(I − F, U K , 0)

to the case when U K is empty or consists of single element, taking it equal to zero
in the first case and to unity in the second.

Observation

• If deg(I − F, U K , 0) �= 0, then F has at least one fixed pint in UK .

Let D be a closed convex set in X with induced topology. Now we shall define the
degree of the operator I − F with a limit-compact F and state a theorem which plays
a crucial role in establishing the properties of this degree. Let F be a continuous
operator from U D to D, and let F be limit-compact with respect to U D. We assume
that F(x) �= x for x ∈ ∂U D. Our aim is to define an integral characteristic.

deg(I − F, U D, 0),

the so-called degree of the operator I − F on U D with respect to D.
We quote the following lemma without proof.

Lemma 6.8 The degree deg(I − F, U K , 0) where K = F∞(UD) is defined, that is,
the following conditions are satisfied.

(a) F(U K ) ⊆ K
(b) the operator F is compact on U K (i.e. the set F(U K ) is relatively compact),
(c) F does not have fixed point on ∂UK .

Definition 6.15 Under the above assumption, the degree deg(I − F, U K , 0) which
exists by virtue of the preceding lemma is called the degree of the operator I − F on
U R with respect to R and is denoted by deg(I − F, U R, 0).

Remark 6.5 Throughout this section on degree theory, we adopt the usual notation
instead of the rotation of the vector fields.
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The following theorem is of great importance in the subsequent development of
the degree theory.

Theorem 6.24 Suppose the conditions of Lemma 6.8 are satisfied. Let C be a closed
convex set in X satisfying the following conditions:

(a) K ⊆ C ⊆ D;
(b) the set F(U X ) is relatively compact;
(c) F(U C) ⊆ C.

Then deg(I − F, U D, 0) = deg(I − F, U C, 0).

By using the above theorem, properties of the degree of the operator I − F with
F limit-compact can be derived from corresponding properties of the operator I − F
where F is compact and continuous.

In other words, properties of the degree of the operator I − F where F is limit-
compact are similar to the properties of the degree of the operator I − F so restricted
that F is compact and continuous. However, there are some differences. Most impor-
tant among them is the fact that the number of limit-compact homotopies is relatively
small.

Theorem 6.25 If deg(I − F, U D, 0) �= 0, then F has at least one fixed point in UD.

Proof By definition, deg(I − F, U D, 0) = deg(I − F, U K , 0) where K = F∞
(UD). But deg(I − F, U K , 0) �= 0 implies that the operator F has a fixed point on
the set UK ⊆ UD.

Now we shall give a criterion for the degree to be nonvanishing, in particular, this
is criterion for the existence of a fixed point. We state the following theorem by
Sadovskii, without proof.

Theorem 6.26 Let D be a closed convex set in a normed linear space X and let F :
D → D be a limit-compact continuous operator. Suppose that one of the following
conditions is satisfied:

(a) F∞(D) �= ∅,
(b) D has a nonempty subset B such that coF(B) ⊇ B,

(c) D has a nonempty compact subset C such that F(C) ⊆ C,

(d) for some point x0 ∈ D, the set of points of the sequence {Fnx0 : n = 0, 1, 2, . . .}
is relatively compact in the space X ,

(e) the space X is reflexive, and the set D is nonvoid and bounded.

Then
deg(I − F, D, 0) = 1.

Remark 6.6 If for the open set U , the whole space X is chosen; then

UD = U D = D and deg(I − F, U D, 0) = deg(I − F, D, 0).
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6.6 Measures of Noncompactness

The concept of measure of noncompactness has played an important role in nonlinear
functional analysis, especially in the study of metric and topological fixed point
theory. It may be observed that several papers have been published on the existence
and behaviour of solutions of a wide class of nonlinear differential and integral
equations via measure of noncompactness.

We shall now discuss the k-set contractions, introduced by Kuratowski [351] and
Darbo [155] and the condensing operators (also called 1-set contraction) introduced
by Sadovskii [535]. “Contraction of sets” are operators whose application reduces a
certain numerical characteristic of the sets, known as a measure of noncompactness.
If a k-set contraction is applied to a set, it does not immediately become compact or
even necessarily have a smaller diameter, it merely becomes more compact (if k < 1)

than it was. Darbo utilized the Kuratowski measure of noncompactness. Sadovskii,
who considered condensing map first, used a different measure of noncompactness
called “ball measure of noncompactness” introduced by Gohberg, Goldenstein and
Markus [250], apparently unaware of Kuratowski’s measure of noncompactness.

The approach initiated by Kuratowski and Darbo was taken up again in 1967
by Ambrosetti [20, 21], Szufla [583], Furi and Vignoli [236], Nussbaum [428],
Petryshyn [476] and others, who in their turn did not know any of the works of
Soviet authors. Furi and Vignoli introduced the concept of condensing operator in a
metric space. Himmelberg, Porter and Van Vleck [275] introduced the condensing
multifunction.

In the following discussion, we shall only use Kuratowski2 measure of noncom-
pactness. Later on we shall discuss the relationship between Kuratowski measure of
noncompactness and ball measure of noncompactness.

Let X be a metric space. Recall that A ⊂ X is bounded if A is contained in some
ball. A bounded subset A of X said to be is relatively compact, if there exists for any
ε > 0 a finite covering of A by balls of radius ε and

diam(A) = sup{‖x − y‖ : x, y ∈ A}

is called the diameter of A.
For a nonempty subset A of X , we denote by X , coA and coA the closure, convex

hull and the convex closure of A, respectively. We denote the standard algebraic
operations on sets by the symbols λA = {λx : x ∈ A}, λ ∈ K and A + B = {x + y :
x ∈ A, y ∈ B}. Furthermore, the family of all bounded subsets of X is denoted by
B(X ).

Definition 6.16 Let X be a metric space and A a bounded subset of X . Then, the
function χ : B(X ) → R+ defined by

2Kazimierz Kuratowski (2 February 1896–18 June 1980) was a Polish mathematician and logician.
He was one of the leading representatives of the Warsaw School of Mathematics.
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χ(A) = inf{δ > 0 : A admits a finite cover by sets of diameter � δ}

is called the (Kuratowski) measure of noncompactness and the function β : B(X ) →
R+ defined by

β(A) = inf{ρ > 0 : A can be covered by finitely many balls of radius ρ}

is called the ball (Sadovskii) measure of noncompactness.

Observation

• χ(∅) = 0 because diam ∅ = 0.

• For A ∈ B(X ), we always have β(A) � χ(A) � 2β(A), but there exist A ∈ B(X ),
such that the strict inequality hold.

The properties of the Kuratowski measure of noncompactness are listed in the fol-
lowing proposition.

Proposition 6.2 Let X be a Banach space and A, B, Ai ∈ B(X ). Then

(1◦) χ(A) = 0 iff A is relatively compact.
(2◦) 0 � χ(A) � diamA.

(3◦) A ⊆ B ⇒ χ(A) � χ(B).

(4◦) χ(A) = χ(A);χ(λA) = |λ| χ(A), λ ∈ R.

(5◦) If Ai = Ai, Ai+1 ⊂ Ai, and lim χ(Ai) = 0, then A∞ = ∞∩
i=1

Ai �= ∅ and

χ(A∞) = 0.

(6◦) χ(A1 ∪ A2) = max{χ(A1), χ(A2)};χ(A1 + A2) � χ(A1) + χ(A2).
(7◦) χ(A) = χ(coA) = χ(coA).

(8◦) χ(Nε(A)) � χ(A) + 2ε, where Nε(A) = {x ∈ X : D(x, A) < ε}.
(9◦) χ(x + A) = χ(A) (i.e. χ is invariant under translation).

Proof (1◦) A is relatively compact iff for every ε > 0, there exists a finite covering
by balls of diameter ε.
(2◦) A can be covered by A with diam A, so the result follows.
(3◦) Every cover of B is a cover of A, it follows that χ(A) � χ(B).

(4◦) Since A ⊂ A, it follows that χ(A) � χ(A). But, if S1, S2, . . . , Sn is a cover of A,
i.e. A ⊂ ⋃n

i=1 Si, then A ⊂ ⋃n
i=1 Si with diam Si = diam Si, so χ(A) = χ(A).

For the second part, just note that diam(λA) = |λ| diam A.
(5◦) We have

Ai = Ai, Ai+1 ⊂ Ai ⇒ Ai is closed and A∞ ⊂ Ai, ∀i

⇒ χ(A∞) ⊂ χ(Ai) → 0 as i → ∞ and A∞ is closed.

We now show that A∞ �= ∅.

(6◦) Let A = A1 ∪ A2 and η = max{χ(A1), χ(A2)}. Then it follows from A1 ⊂ A
that χ(A1) � χ(A) and η � χ(A). Conversely, let for any given ε > 0 with given
coverings Aj ⊂ Sjk , j = 1, 2 with diamSjk � χ(Aj) + ε � η + ε. All of these Sjk

′s
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together form a covering of A, so that χ(A) � η + ε, i.e. χ(A) � η. Thus, we obtain
χ(A) = η, i.e. χ(A1 ∪ A2) = max{χ(A1), χ(A2)}.

For the second part, let S11, S12, . . . , S1m be a cover of A1, S21, S22, . . . , S2n a
cover of A2, then all sets {S1i + S2j : i = 1, 2, . . . , m; j = 1, 2, . . . , n} form a cover
of A1 + A2 and for i = 1, 2, . . . , m; j = 1, 2, . . . , n we have

diam(S1i + S2j) � diam S1i + diam S2j.

Thus, the result follows. The proof of the results (7◦)–(9◦) follows easily, so we omit
the details.

Note that the assertions (2◦)–(4◦) were established by Kuratowski [351] while (5◦)
and (6◦) were obtained by Darbo [155].

Assume that E is a Banach space with the norm ‖ · ‖, the family of all nonempty
and bounded subsets of E is denoted by ME and its subfamily consisting of all
relatively compact sets is denoted by NE . The following definition of measure of
noncompactness is introduced and studied by Banas and Goebel [35].

Definition 6.17 A mapping μ : ME → R+ = [0,∞) is said to be a measure of
noncompactness in E if it satisfies the following conditions:
1◦

∅ �= μ−1({0}) ⊂ NE .
2◦ μ(X̄ ) = μ(X ).

3◦ μ(coX ) = μ(X ).

4◦ X ⊂ Y ⇒ μ(X ) � μ( Y )

5◦ If (Xn) is a nested sequence of closed sets from ME such that limn→∞ μ(Xn) = 0,
then the intersection set X∞ = ⋂∞

n=1 Xn is nonempty.

The family μ−1({0}) described in 1◦ is called the kernel of the measure of noncom-
pactness μ and denoted by ker μ. Furthermore, we observe that the intersection set
X∞ from axiom 5◦ is a member of the kernel ker μ. As μ(X∞) � μ(Xn) for any n,
we have that μ(X∞) = 0. This yields that X∞ ∈ kerμ.

A measure μ of noncompactness is said to be sublinear if

6◦ μ(X1 + X2) � μ(X1) + μ(X2) for all X1, X2 ∈ ME , and
7◦ μ(λX ) � |λ|μ(X ) for all λ ∈ R and X ∈ ME .

The following well-known result of Schauder plays a key role in the topological fixed
point theory (cl. [4, 35, 246] and the references therein).

Theorem 6.27 (Schauder [542]) Let � be a nonempty, bounded, closed and convex
subset of a Banach space E. Then each continuous and compact map T : � → �

has at least one fixed point in the set �.

The generalization of Schauder’s fixed point which is called the Darbo fixed point
theorem is formulated below.
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Theorem 6.28 (Darbo [155]) Let � be a nonempty, bounded, closed and convex
subset of a Banach space E and let T : � → � be a continuous mapping. Assume
that there exists a constant k ∈ [0, 1) such that

μ(TX )) � k μ(X )

for any nonempty subset X of �, where μ is a measure of noncompactness defined
in E. Then T has a fixed point in the set �.

Next, a generalization of fixed point theorem of Darbo was proved by Dhage [175].
But first we recall the following useful definition introduced by Dhage [175].

Definition 6.18 A mapping T : X → X is called D-set-Lipschitz if there exists an
upper semicontinuous nondecreasing function ϕ : R+ → R+ such that μ(T (A)) �
ϕ(μ(A)) for all A ∈ B(X ) with T (A) ∈ B(X ), where ϕ(0) = 0. The function ϕ is
sometimes called a D-function of T on X . Especially when ϕ(r) = kr, k > 0, T is
called a k-set-Lipschitz mapping and if k < 1, then T is called a k-set contraction
on X . Further, if ϕ(r) < r for r > 0, then T is called a nonlinear D-set contraction
on X .

Remark 6.7 (Dhage [176]) If φ,ψ : R+ → R+ are two D-functions, then i)φ +
ψ, ii)λφ, λ > 0 and iii)φ ◦ ψ are also D-functions on R+, and commonly used D-
functions are ψ(r) = kr, ψ(r) = Lr

K+r , L > 0, K > 0, and ψ(r) = log(1 + r) etc. A
few details of D-functions appear in Dhage [176] and the references cited therein.

Lemma 6.9 (Dhage [175]) If ϕ is a D-function on R+ into itself with ϕ(r) < r for
r > 0, then limn→∞ ϕn(t) = 0 for all t ∈ [0,∞) and vice versa.

Using Lemma 6.9, Dhage [175] proved the following applicable measure theoretic
fixed point result.

Theorem 6.29 (Dhage [175]) Let C be a closed, convex and bounded subset of a
Banach space X and let T : C → C be a continuous and nonlinearD-set contraction.
Then T has a fixed point.

Remark 6.8 Let us denote by F(T ) the set of all fixed points of the operator T which
belong to C. It can be shown that the set F(T ) existing in Theorem 6.29 belongs to the
family ker μ. Indeed, if F(T ) /∈ ker μ, then μ(F(T )) > 0 and T (F(T )) = F(T ). Now
from nonlinear set contractivity, it follows that μ(T (F(T ))) � φ(μ(F(T ))) which
is a contradiction since φ(r) < r for r > 0. Hence, F(T ) ∈ ker μ. This particular
property of the measures has been used in the study of attractivity of solutions for
the nonlinear functional integral equation in question.

Recently, a generalization of fixed point theorem of Darbo was proved by Agha-
jani, Banas and Sabzali [5] as follows:
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Theorem 6.30 Let � be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : � → � be a continuous operator such that

ψ(μ(TX )) � ψ(μ(X )) − φ(μ(TX ))

for every nonempty subset X of �, where μ is an arbitrary measure of noncompact-
ness and φ,ψ : R+ → R+ are given functions such that ψ is continuous and φ is
lower semicontinuous on R+. Moreover, φ(0) = 0 and φ(t) > 0 for t > 0. Then T
has at least one fixed point in �.

Definition 6.19 Let R denote the class of those functions β : R+ → [0, 1) which
satisfies the condition

β(tn) → 1 implies tn → 0.

Clearly, β(t) = exp(−t2) and β(t) = ln(1+t)
t are examples of functions satisfying

condition of Definition 6.19.
Obviously, the identity mapping on R+ into itself also satisfies the requisite con-

ditions of Definition 6.19.
In 2015, Dhage, Dhage and Pathak [164] proved a generalization of Darbo’s fixed

point theorem and compliment of Theorem 6.29, formulated as follows:

Theorem 6.31 Let � be a nonempty, bounded, closed and convex subset of a Banach
space E, and let T : � → � be a continuous operator such that

ψ(μ(TX )) � ψ(μ(X )) − φ(β(μ(TX ))) (6.46)

for every nonempty subset X of � and each β ∈ R, where μ is an arbitrary measure
of noncompactness and φ : R+ → R+ is nondecreasing function such that φ is a
lower semicontinuous on R+ such that φ(0) = 0 and φ(t) > 0 for t > 0. Then T has
at least one fixed point in �.

Proof Define a sequence {�n} as �0 = � and �n = coT�n−1 for n = 1, 2, . . .. If
there exists a natural number n0 such that μ(�n0) = 0, then �n0 is compact. By Theo-
rem 6.28, T has a fixed point in �. Next, we assume that μ(�n0 ) > 0 for n = 1, 2, . . ..
Using (6.46), we get

ψ(μ(�n+1)) = ψ(μ(coT�n)) � ψ(μ(�n)) − φ(β(μ(�n+1))). (6.47)

Now, taking into account that �n+1 ⊂ �n, on the basis of axiom 2◦ of Definition
6.17, the sequence {μ(�n)} is nonincreasing and nonnegative. From this we infer
that μ(�n) → r when n → ∞, where r ≥ 0 is a nonnegative real number. Since β

is continuous, it follows that β(μ(�n)) → β(r) as n → ∞. Now, in view of (6.47)
we obtain

lim sup
n→∞

μ(�n+1) � lim sup
n→∞

μ(�n) − lim inf
n→∞ φ(μ(β(�n+1))).
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This yields r � r − lim infn→∞ φ(β(μ(�n+1))).Sinceφ is nondecreasing, we obtain
φ(r) � lim infn→∞ φ(β(μ(�n+1))) = 0. From this, in view of the fact that φ(0) = 0,
we deduce that β(μ(�n)) → 0 as n → ∞. By the definition of β we infer that
μ(�n) → 0 as n → ∞. Now, using axiom 6◦ of Definition 6.17 we derive that the set
�∞ = ⋂∞

n=1 �n is nonempty, closed, convex and �∞ ⊂ �. Notice that T (�∞) ⊂ �,
i.e. T maps �∞ into itself and �∞ ∈ kerμ. Now taking into account Schauder fixed
point principle (cf. Theorem 5.55), we infer that the operator T has a fixed point x
in the set �∞. Since �∞ ⊂ �, it follows that x ∈ �. This completes the proof.

Taking β : R+ → R+ to be an identity mapping on R+, then we obtain the following
fixed point result as a corollary with interesting consequences.

Corollary 6.2 Let � be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : � → � be a continuous operator satisfying the inequality

μ(TX )) � μ(X ) − φ(μ(X )) (6.48)

for every nonempty subset X of �, where μ is an arbitrary measure of noncompact-
ness and φ : R+ → R+ is a lower semicontinuous on R+ such that φ(0) = 0 and
φ(t) > 0 for t > 0. Then T has at least one fixed point in �.

When φ(r) = (1 − k)r, 0 � k < 1, Corollary 6.2 reduces to Theorem 6.28 above
due to Darbo [155]. Again, when μ(X ) > 0, then from condition (6.48), we obtain the
following Sadovskii’s fixed point theorem for condensing mappings characterized by
the inequality μ(TX ) < μ(X ). The mappings satisfying this contractive inequality
are called condensing mappings on Banach spaces.

Theorem 6.32 (Sadovskii [536]) Let � be a nonempty, bounded, closed and convex
subset of a Banach space E and let T : � → � be a continuous and condensing
mapping. Then T has at least one fixed point in �.

A slight variant of Theorem 6.30 can be formulated as given below.

Theorem 6.33 Let � be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : � → � be a continuous operator such that

μ(TX )) � μ(X ) − φ(μ(X )) (6.49)

for every nonempty subset X of �, where μ is an arbitrary measure of noncompact-
ness and φ : R+ → R+ is a nonincreasing lower semicontinuous function on R+
such that φ(0) = 0 and φ(t) > 0 for each t > 0. Then T has at least one fixed point
in �.

It has been shown in Banas and Goebel [35] that μ is a sublinear measure of noncom-
pactness in X . In what follows, denote by � the family of all functions ϕ : R+ → R+
being nondecreasing and upper semicontinuous on R+ and such that
(i) ϕ(t) < t for all t > 0;



6.6 Measures of Noncompactness 499

(ii) c = supt>0 k(t) < 1 where k(t) = ϕ(t)
t .

Notice that each ϕ ∈ � satisfies the following condition

lim
n→∞ ϕn(t) = 0 for any t > 0.

A function ϕ : R+ → R+ is said to be superadditive if the following condition holds:

ϕ(t) + ϕ(s) � ϕ(t + s) ∀ t, s ∈ R+.

Clearly, ϕ = ln(1 + t) and ϕ = t − ln(1 + t) for all t ∈ R+ are examples of super-
additive functions.

6.7 k-Set Contractions and Condensing Maps

Kuratowski also introduced the notion of a class of maps which are called k-set
contractions. Let X1 and X2 be metric spaces and T : X1 → X2 a continuous map.

Definition 6.20 T is said to be a k-set contractions if for every bounded set A ⊂
X1, T (A) is bounded and

χ2(T (A)) � kχ1(A),

where χi denotes the measure of noncompactness in Xi. If we consider a family of
operators, i.e. T : � × X1 → X2 where � is an arbitrary set, then T is said to be k-
set contraction if for any bounded set A ⊂ X1, T (� × A) is bounded and χ2[T (� ×
A)] � kχ1(A).

If T is a k-set contraction with k < 1, T is called a strict-set contraction. If for
every x ∈ X1, there exists a neighbourhood Nx of x such that T |Nx is a strict-set
contraction, then T is called a local strict-set contraction.

If for every bounded set A ⊂ X , such that χ(A) > 0, T (A) is bounded and
χ2(T (A)) < χ1(A), we say that T is a condensing map. Similarly we define a local
condensing map.

Example 6.9 Let X be a Banach space, U ⊂ X and K : U → X Lipschitz continuous
with Lipschitz constant k < 1. C : U → X is compact. Then T = K + C is a k-set
contraction. To this end, we observe the following:
Let B ⊂ U be a bounded set. Then T (B) ⊂ K(B) + C(B). This implies that

χ(T (B)) � χ(K(B)) + χ(C(B)) � kχ(B).

Observation

• Any strict-set contraction is a condensing map, but simple examples show that the
converse is false (Nussbaum [429]).
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• Every condensing map is a 1-set contraction.
• Every compact map is a 0-set contraction.

The following proposition holds for k-set contractions.

Proposition 6.3 (a) If Ti : D → X is a ki-set contraction, i = 1, 2, and T3 : T1(D)

→ X is a k3-set contraction, then (T1 + T2) : D → X is (k1 + k2)-set contrac-
tion, and T3T1; D → X is a k1k3-set contraction.

(b) T : D → X is compact iff T is 0-set contraction.
(c) If T : D → X is α-Lipschitzian, i.e.

‖Tx − Ty‖ � α‖x − y‖ for all x, y ∈ D,

then T is k-set contraction with k = α.

(d) If U : D → K is compact and H : D → X is α-Lipschitzian, then T = U + H
is a k-set contraction with k = α.

(e) If T : D → X is semicontractive type with constant k � 1 then T is k-set con-
traction.

Observation

• The assertions (a) to (d) follow from the definition of k-set contraction, and (e)
has been established by Nussbaum [429].

• If A is a closed and bounded subset of a Banach space X and T : A → X is a
condensing map, then I − T is a proper map, i.e. (I − T )−1 maps compact sets
into compact sets. This, in turn, implies that I − T takes closed sets to closed sets.

Using above results, Darbo [155] has proved the following fixed point theorem.

Theorem 6.34 (Darbo [155]) Let A be a closed, bounded convex subset of a Banach
space X and let T : A → A be a strict-set contraction. Then T has a fixed point.

The following extension of Darbo’s theorem was proved by Nussbaum [428, 429].

Theorem 6.35 (Nussbaum [428, 429]) Let A be a closed, bounded, convex subset
of a Banach space X such that int A is nonempty. Let T : A → X be a strict-set
contraction. Assume that for some x0 ∈ A, we have

tx0 + (1 − t)Tx �= x for all x ∈ ∂A and 0 < t � 1.

Then T has a fixed point.

In the following, we state two theorems giving conditions under which a condensing
operator turns out to be a limit-compact operator (Sadovskii [536]).

Proposition 6.4 Let A be a closed set in a normed linear space X and � a com-
pact topological space. Suppose that the continuous operator T : � × A → X is
condensing. Then T is limit-compact on � × A.
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Proposition 6.5 If a continuous operator T is condensing and carries a closed
convex set A into itself (T (� × A) ⊆ A where � is a compact topological space),
then T is limit-compact on � × A.

Now we state the fixed point theorem concerning a condensing operator. This was
proved by Sadovskii, and it contains many well-known fixed point theorems, such as
the Schauder’s theorem, Banach’s contraction theorem (under more stringent restric-
tion on the set), Krasnosel’skiĭ’s theorem, Darbo’s theorem, etc.

Theorem 6.36 Let A be a nonempty closed convex set in a normed linear space X .

Let T : A → A be a continuous condensing map. Then d(I − T , A, 0) = 1, i.e.T
has a fixed point.

Proof By Proposition 6.5, the operator T is limit-compact. We shall show that the
requirement of Theorem 6.26 is satisfied. Consider S = {T nx0 : n = 0, 1, 2, . . .},
where x0 is any point in A. Obviously, T (S) �= ∅ and S = T (S) ∪ {x0}. Therefore,
r(T (S)) = r(S). It then follows from the definition of the condensing operator that
the set S is compact and this shows that the condition (d) of the Theorem 6.26 is
satisfied. Hence, d(I − T , A, 0) �= 0, i.e. T has a fixed point. �

Corollary 6.3 (Schauder’s theorem) Let A be a nonempty closed convex subset of a
normed linear space X . Let T be a continuous mapping of A into a compact subset
of A. Then T has a fixed point in A.

Proof In this case, T is condensing as T is a 0-set contraction. This follows from
Proposition 6.3 (b). �

Corollary 6.4 (Banach’s contraction theorem with stringent condition on the set
(convexity)) Let A be a closed and convex subset of a normed linear space X and let
T be a contraction mapping from A into itself. Then T has a fixed point in A.

Proof It follows from Proposition 6.3 (c). �

Corollary 6.5 (Krasnosel’skiĭ’s theorem) Let A be a nonempty closed convex subset
of a normed linear space X . Let T be a continuous mapping of A into a compact
subset of X and let S be a contraction mapping from A into X , and let Tx + Sy ∈ A;
x, y ∈ A. Then there is a point u ∈ A such that Tu + Su = u.

Proof It follows from Proposition 6.3 (d).

Corollary 6.6 (Darbo’s theorem) Let A be a closed, bounded and convex subset of
a normed linear space X . Let T be a strict-set contraction from A into itself. Then T
has a fixed point in A.

Proof This follows easily since any strict-set contraction is condensing.

We now introduce a more general notion of measure of noncompactness.
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Definition 6.21 Let X be a normed linear space. Let F denote a subset of 2X

(generally bounded subsets) which together with every set A contains the set co A. Let
(B,�) be a partially ordered set. A measure of noncompactness in X is a function � :
F → B such that �(coA) = �(A) for any A ∈ F . A measure of noncompactness
is said to be monotonic if

A1 ⊆ A2 ⇒ �(A1) � �(A2).

Example 6.10 The measure of noncompactness � satisfying Proposition 6.3 with
X = C[a, b] is the following: (A is assumed to be bounded in our discussion).

�(A) = lim
δ→0

sup
x∈A

sup
0�τ�δ

‖x − xτ‖

where xτ is a shift of the function x(t) :

xτ (t) =
{

x(t + τ) if a � t � b − τ,

x(b) if b − τ � t � b.

This also defines a measure of noncompactness in the space Lp(a, b)(p � 1) where
xτ is taken as a shift of the function x or

xτ = 1

2τ

∫ i+τ

t−τ

x(s)ds

(the function x(t) is assumed to be continued to the interval [a − τ, b + τ ] by zero).

Let X be a Banach space with � as measure of noncompactness. A measure of
noncompactness on C([0, τ ], X ) is defined as

�C(A) = �(A[0,τ ])

where A[0,τ ] = {x(t) : x ∈ A, t ∈ [0, τ ]} and norm ‖x‖C = max{‖x(t)‖ : t ∈
[0, τ ]}. Let C1([0, τ ], X ) be the Banach space of continuously differentiable func-
tions x : [0, τ ] → X with norm

‖x‖C1 = ‖x‖C + ‖x′‖C .

Then a measure of noncompactness on C1[0, τ ], X ] is �C1 : FC1 → C[0, τ ], (range
of � can be an arbitrary partially order set) given by

�C1(A)(t) = �(A′
t) where A′

t = {x′(t) : x ∈ A}.
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Example 6.11 Various examples of condensing operators associated with differen-
tial equations have been studies by Ambrosetti [20, 21] and others. We give the one
discussed by Sadovskii [536].

Consider the Cauchy problem for an ordinary differential equation

x′ = f (t, x(t))

x(0) = 0 (6.50)

f is a real-valued function defined on [0, τ ] × R.

The problems (6.50) are equivalent to the integral equation

x(t) =
∫ t

0
f [s, x(s)]ds

which is written in operator from as KNx = x. Here N : C[0, τ ] → C[0, τ ] is given
by

(Nx)(t) = f [t, x(t)]

and K : C[0, τ ] → C[0, τ ] is given by

(Kx)(t) =
∫ t

0
x(s)ds.

The operator KN is condensing under some suitable condition. If α is a measure
of noncompactness in R, then it generates a measure of noncompactness in C[0, τ ]
as defined in Example 6.10. Under some suitable conditions, it has been shown by
Sadovskii [536] that KN is �C1 condensing. KN acts in both the spaces C([0, τ ],R)

and C1([0, τ ],R) and in both cases the set of its fixed points coincides with the set
of solutions of the problem (6.50).

The following notion of measure of noncompactness was introduced by Gohberg,
Goldenstein and Markus [250] and is called ball measure or Hausdorff measure of
noncompactness. Let X be a normed linear space, and let A be a bounded subset of
X . χX (A) is defined as

χX (A) = inf{d > 0|A can be covered by a finite number of balls with centers
in X and radius d , i.e. the set A has a finite d -mesh in X }.

One can show that χ has most of the properties of r- the Kuratowski measure
of noncompactness and in particular, Proposition 6.3 holds for χx. However, as has
been noted by Furi and Vignoli and Nussbaum χx do differ in one crucial way. If
A ⊂ B ⊂ X and B inherits its metric from X , then the measure of noncompactness
of A as a subset of B is the same as the measure of noncompactness of A as a subset
of X , and this is reflected in the notation. But, in general χB(A) need not be equal
to χX (A). For example, if x = {x ∈ X : ‖x‖ = 1} in an infinite dimensional Hilbert
space X , then χX (S) = √

2 while χX (S) = 1. If X is a Banach space and A any
subset of X , a trivial argument shows that
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χX (A) � r(A) � 2χX (A).

To say anything more precise, it seems necessary to know more about A or the Banach
space X . It is shown by Nussbaum that r(S) = 2. So in this case r(S) = 2χX (S).

As in the case of r, we have ball k-set contractions and ball-condensing mappings,
corresponding to χ . If in Propositions 6.3 and 6.4, D is taken to be X , then all of its
assertions remain valid for ball k-set contractions. In general, one cannot say much
about the precise relation between k-set contractions or ball k-set contractions or
between condensing and ball-condensing mappings. However, Nussbaum [429] in
his thesis, for T ∈ B(X , Y ) obtained a number of interesting results concerning the
relation between k-set contractions and ball k-set contraction.

Now we discuss some recent fixed point theorems concerning strict-set contrac-
tions, which leave the cone of an ordered Banach space invariant, proved by Cac and
Gatica [127]. In this connection, refer to the works of Amann [17], Martin [388] and
Potter [491].

Definition 6.22 Let α be any function which assigns to each bounded subset A of
a Banach space X a nonnegative real number α(A). α is said to be a generalized
measure of noncompactness on X if it satisfies the following:
For bounded subset A and B of X and λ real, we have

(i) α[co(A)] = α(A)

(ii) α(A + B) � α(A) + α(B)

(iii) α(λA) = |λ|α(A)

(iv) α(A ∪ B) = max{α(A), α(B)}
(v) There exist positive constants m, M such that mα(A) � α(A) � M α(A) for

every bounded subset A of X .

Let X and Y be Banach spaces with generalized measures of noncompactness αX

and αY , respectively. As before we define k−set contraction and strict-set contraction
using αX and αY instead of r1 and r2, respectively.

The following two theorems concerning strict-set contractions were proved by
Amann [19] using the degree theory for k-set contractions as developed by Nussbaum
[429] (generalization of Theorems 6.16 and 6.11 of Krasnoselskii [345]).

Theorem 6.37 Let X be an ordered Banach space with total cone K(X = K − K)

and let T : K → K be a strict-set contraction. Assume that

(a) T is asymptotically linear along K, that T (0) = 0 and that T is differentiable at
0 along K.

(b) T ′(0) does not have a positive eigenvector corresponding to an eigenvalue
greater than or equal to one and one is not an eigenvalue with correspond-
ing positive eigenvector of T ′(∞), but there exists λ∞ > 1 and v ∈ K, v �= 0
such that T ′(∞)v = λ∞v.

Then T has a fixed point u > 0.
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Proof The proof of this theorem follows from Theorem 5.154.

Theorem 6.38 The assertion of the above theorem remains valid if condition (b) is
replaced by the following:
(b′) T ′(∞) does not have a positive eigenvector corresponding to an eigenvalue
greater than or equal to one, and one is not an eigenvalue with corresponding
positive eigenvector for T ′(0), but there exists λ0 > 1 and v ∈ K, v �= 0 such that
T ′(0)y = λ0v.

We state and prove the following proposition which is needed for the proof of the
next theorem (Krasnoselskii [345], Lemma 4.5 has proved this lemma for compact
mappings T ).

Proposition 6.6 Let T be a strict-set contraction from Kr,R = {x ∈ K : r � ‖x‖ �
R, 0 � R} into K satisfying the conditions: Tx = v0(x ∈ K, ‖x‖ = r) and Tx =
u0(x ∈ K, ‖x‖ = R) where ‖v0‖ � r < R � ‖u0‖. Then the mapping T has at least
one fixed point in Kr,R.

Proof Consider only the nontrivial case ‖v0‖ < r < R < ‖u0‖. Let the mapping T
be extended to a mapping T1 : K0,‖u0‖ → K0,‖u0‖ as follows:

T1x =

⎧⎪⎨
⎪⎩

u0 if R = ‖x‖ � ‖u0‖
Tx if r � ‖x‖ � R

v0 if ‖x‖ � r.

T1 so defined is a strict-set contraction. Define A0 = K0,‖u0‖ and An+1 = co(T1(An)),

n � 0. Then An+1 ⊂ An for all n and lim
n→∞ α(An) = 0. Hence by Proposition 6.3(c),

C0 = ∞∩
n=1

An is a nonempty compact convex subset of K . Also note that T1(C0) ⊆ C0

and that u0, v0 ∈ C0. Define C1 = (C0 ∩ Kr,R) ∪ {x ∈ K : ‖x‖ = r or ‖x‖ = R} and
T2 : C1 → K by

T2x =

⎧⎪⎨
⎪⎩

u0 if ‖x‖ = R

Tx if x ∈ C0 ∩ Kr,R

v0 if ‖x‖ = r.

T2 is a compact continuous mapping with its range contained in C0. By Dugundji’s
extension theorem [207], we obtain a mapping T3 : Kr,R → C0 as an extension of
T2. Then T3 has a fixed point x0 ∈ Kr,R (by Lemma 6.5 of Krasnoselskii [345]). But
x0 belongs to C0 ∩ Kr,R and T3 coincides with F in C0 ∩ Kr,R by definition of T3.

Definition 6.23 Let T be a mapping from K into itself. T is called an expansion of
the cone K if T (0) = 0 and number r, R > 0 can be found such that for all ε > 0

Tx � (1 + ε)x, x ∈ K, ‖x‖ � r, x �= 0 (6.51)

and
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Tx � x, x ∈ K, ‖x‖ � R. (6.52)

Notice that Krasnoselskii has proved that if T is a compact compression or a
compact expansion of the cone K, then it has at least one nonzero fixed point in K .

Potter [491] has proved a similar result for a strict-set contraction and compression of
the cone. Cac and Gatica [127] has proved the same result for a strict-set contraction
and expansion of the cone K and this is presented below.

Theorem 6.39 Let T be a strict-set contraction and an expansion of the cone K .

Then T has at least one nonzero fixed point in K .

Proof Let k ∈ [0, 1] such that α[T (A)] � kα(A) for every bounded subset A of K .

Choose μ such that k + μ < 1. Let R∗ = R
k+μ

, 2δ = R∗ − R. Here r, R > 0 are as

given in (6.51) and (6.52). Define the mapping T : Kr/2,R∗ → K as follows.

T (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2‖x‖−r
r Fx, r

2 � ‖x‖ � r,

Tx, r � ‖x‖ � R,

‖x‖
R T

[
R

‖x‖x
]

+ (‖x‖ − R)h, R � ‖x‖ � R + δ,

‖x‖
R

R∗−‖x‖
δ

T
[

R
‖x‖x

]
+ δh, R + δ � ‖x‖ � R∗,

where h > 0 is chosen such that

δ‖h‖ > R∗ + R∗

R

[
sup

y∈K,‖y‖�R
‖Ty‖

]
. (6.53)

It can be shown that the mapping T : Kr/2,R∗ → K is a strict-set contraction. Moreover
Tx = 0 whenever ‖x‖ = r/2 and ‖Tx‖ = δ‖h‖ > R∗ whenever ‖x‖ = R∗. Hence by
Proposition 6.6, T has a fixed point u ∈ Kr/2,R∗ . Next it is claimed that r � ‖u‖ � R.

Then by the definition of T , u is a nonzero fixed point of T . We have ‖u‖ > r/2.

Suppose ‖u‖ < r. Then

T (u) =
(

r

2‖u‖ − r

)
T (u) =

[
1 + 2r − 2‖u‖

2‖u‖ − r

]
u.

Since 2r−2‖u‖
2‖u‖−r > 0, this violates (6.53). Suppose R � ‖u‖ � R + δ. Then

u = ‖u‖
R

T

(
R

‖u‖u

)
+ (‖u‖ − R) and T

(
R

‖u‖u

)
� R

‖u‖u

and this violates (6.52). Finally if we assume that r + δ � ‖u‖ � R∗, then we arrive
at a contradiction to (6.53).
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Finally we conclude this section by discussing some results concerning nonlinear
contractions obtained by Eisenfeld and Lashmikantham [219]. Consider the mapping
F from a metric space X into itself satisfying the condition

d(Tx, Ty) � ψ(d(x, y)), for all x, y ∈ X

where ψ is a mapping from R+ into itself. If ψ is a linear mapping ψx = kx, then the
T : X → X is said to be Lipschitz. Instead of choosing ψ to be a linear mapping from
the cone R+ into itself, they have taken ψ to be a nonlinear mapping from a cone
K of a Banach space into itself. This makes it possible to have greater flexibility
in the choice of ψ and to have the advantage of stronger convergence properties
and more accurate estimates. This comparison mapping ψ is positive (in the sense
that it takes values in a cone), isotone and has a unique fixed point which is the
zero element of the cone. For a regular cone (such as in LP, 1 � p < ∞), ψ has to
be upper semicontinuous from above (i.e. from the right). In case of normal cones
which are not regular (such as in C[0, 1]), ψ need to be completely continuous. The
complete continuity condition which is also employed by Krasnoselskii [345] may
be replaced by a weaker compactness type condition in terms of Kuratowski measure
of noncompactness with upper semicontinuity from the right.
Semimonotone norm− The norm in an ordered Banach space X is called semi-
monotone if for arbitrary

x, y ∈ K, x � y ⇒ ‖x‖ � N‖y‖

where the constant N does not depend on x and y.
Notice that a necessary and sufficient condition for the cone K to be normal is

that the norm is semimonotone.
Regular cone− A cone is said to be regular if each decreasing sequence {un}∞0
bounded from below (i.e. there is a v such that un � v, n � 0) is convergent. A
decreasing sequence u0 ≥ u1 ≥ u2 ≥ · · · in a space with a normal cone is convergent
if it has a convergent subsequence.

Definition 6.24 Following Proposition 6.3 (c), a mapping � of a complete metric
space (X , d) into itself is said to be quasi-compact if the sequence of measure of
noncompactness r(An) of closed sets An+1 = �An, n � 0, approaches zero.

Definition 6.25 A mapping � on a partially ordered set into itself is said to be upper
semicontinuous from the right if whenever

u0 � u1 � · · · and �u0 � �u1 � · · ·

are both monotonic convergent sequences and w = lim
n→∞ un is in the domain of �

then �w ≥ lim
n→∞ �un.

Proposition 6.7 Let � be a mapping from a partially ordered set into itself which is
isotone and upper semicontinuous from the right. Suppose the sequence of iterates
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un = �nu0, of an element u0, is decreasing and convergent to a vector u which lies
in the domain of �. Then u is a fixed point of �.

We need this for the proof of the following proposition.

Proposition 6.8 Let f be isotone and upper semicontinuous from the right from an
interval [0, a] of real numbers into itself such that f (x) = x if and only if x = 0. Let
� be a mapping from a complete metric space (X , d) into itself such that

r(�(A))) � f (r(A)) (6.54)

for every subset A of X . Then � is quasi-compact.

Proof Let An+1 = �(An), n � 0 and let Kn = r(An), n � 0. Then by condition
(6.54), Kn+1 � f (Kn), n � 0. Define tn+1 = f (tn), t0 = K0. Since f is isotone, it fol-
lows that kn � tn, n � 0 and {tn} is a decreasing sequence. Let lim

n→∞ tn = t∞. By

Proposition 6.8, t∞ is a fixed point of f and hence it is identically zero. This means
that kn converges to zero thereby proving the assertion.

Remark 6.9 If the mapping � in the above proposition is a strict-set contraction, the
� is quasi-compact as one can take f (x) = kx with k < 1.

Using Propositions 6.7 and 6.8, Eisenfeld and Lakshmikantham proved the fol-
lowing theorem which we state without proof.

Theorem 6.40 Let � be an isotone, upper semicontinuous mapping from a conical
segment 〈0, u0〉 into itself satisfying the following condition:
(c) Either � is quasi-compact and the cone is normal or the cone is regular (or
both). Then the sequence of iterates {�nu0} is decreasing and convergent to fixed
point w of �. Furthermore, v � � implies v � w. In particular, w is the maximal
fixed point of � in the segment 〈0, u0〉.
Definition 6.26 Let X be a set and let ρ be a mapping from X × X into a cone
K of a Banach space. The mapping ρ is said to be K-metric on X if the following
conditions are satisfied:

(i) ρ(x, y) = ρ( y, x),
(ii) ρ(x, y) = 0 iff x = y, and

(iii) ρ(x, y) � ρ(x, z) + ρ(z, y).

Cauchy sequence− A sequence {xn} in the K−metric space (X , ρ) is said to be
Cauchy if lim ρ(xn, xm) = 0.
Convergent sequence− A sequence {xn} in the K-metric space (X , ρ) is said to be
convergent if there is a x ∈ X such that lim

n→∞ ρ(xn, x) = 0.

Complete K-metric space− A K-metric space is complete if every Cauchy sequence
is convergent.
K-convergent sequence − A convergent sequence {xn} is said to be K-convergent to
x if there is sequence un → 0 in K such that ρ(xn, x) � un.
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The following two theorems of Eisenfeld and Lakshmikantham [219, 220]give
iterative schemes to obtain the fixed point.

Theorem 6.41 Let (X , ρ) be a complete K−metric space. Let � be an isotone,
upper semicontinuous ( from the right) mapping from the conical segment < 0, u0 >

into itself such that the condition (c) of Theorem 6.40 is satisfied. Suppose also that
0 is the unique fixed point of �. Let T be a mapping from X into itself such that

ρ(Tx, Ty) � u0, x, y ∈ X

and ρ(Tx, Ty) � �[ρ(x, y)] whenever ρ(x, y) � u0.

Then for any x0 ∈ X , the sequence of iterates xn = T nx0,K-converges to the unique
fixed point u of T .

Proof First, we prove that the sequence {xn} is Cauchy. Let m � n � 1. Since
ρ(xn, xm) = ρ(Txn−1, Txm−1) � u0, we have

ρ(xn+1, xm+1) � �[ρ(xn, xm)].

Similarly we have

ρ(xn+1, xm+1),� �n[ρ(Tx0, Txm−n)] � �nu0. (6.55)

By Theorem 6.40, �nu0 decreases to the fixed point 0 of �. Hence the sequence
{xn} is Cauchy. Let y = lim

n→∞ xn. By taking m → ∞ in the inequality (6.55), we

get ρ(xn+1, y) � �nu0. Thus the sequence {xn}, K-converges to y as ρ(xn+1, y) �
u0, ρ(Txn+1, Ty) � ρ(xn+1, y) � �n+1u0 → 0 as n → ∞. So ρ(xn+2, Ty) → 0,

thereby implying that y = Ty. Suppose z is also a fixed point of T , i.e. Tz = z.
Then

ρ( y, z) = ρ(Ty, Tz) � u0.

Soρ( y, z) � �[ρ( y, z)].By Theorem 6.40,ρ( y, z) � 0.This implies thatρ( y, z) =
0, i.e. y = z.

Next theorem is an improvement of the above theorem.

Theorem 6.42 Let (X , ρ) be a K-metric space and let � be an isotone mapping
from a segment < 0, u0 > into itself such that lim

n→∞ �nu0 → 0.

Suppose T is a closed mapping from a subset D of X into X such that

ρ(Tx, Ty) � �ρ(x, y), x, y ∈ D, ρ(x, y) � u0.

Suppose further that x0 ∈ D and xn = T nx ∈ D, n = 1, 2, . . . and that ρ(xn, x0) �
u0. Then {xn} K-converges to a fixed point of T .
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Exercises

6.1 Let � ⊂ R be an open interval with 0 ∈ � and let f (x) = αxn, α �= 0, then

deg( f ,�, 0) =
{

0, if n is even

sgn α, if n is odd.

6.2 Let f : R2 → R2 be defined by
(i) f (x, y) = x3 − 3xy2, (ii) f (x, y)n = −y3 + 3x2y.
Let O = (0, 0) and a = (1, 0); then show that deg( f , S2(O), a) = 3.

6.3 Prove that for m ∈ Z there exists � ⊂ R open and bounded and f ∈ C(�) with
0 /∈ f (∂�) so that deg( f ,�, 0) = m.

6.4 Let � ⊂ Rn be open bounded, f ∈ C(�), y ∈ C(�) and |g(x)| < | f (x)| on ∂�.
Show that deg( f + g,�, 0) = deg( f ,�, 0). For analytic functions, this result is
known as Rouche’s theorem.
[Hint: Use homotopy invariance. To achieve this, consider H (t, x) = t( f + g)(x) +
(1 − t)f (x), (t, x) ∈ [0, 1] × �.]

6.5 Let � = B1(0) ⊂ Rn, f ∈ C(�) and 0 /∈ f (�). Then there exist x, y ∈ ∂� and
λ > 0, μ < 0 such that f (x) = λx and f ( y) = μy, i.e. f has a positive and negative
eigenvalue, each with an eigenvector in ∂�.

6.6 Let � symmetric about 0 ∈ � ⊂ Rn. If f : � → Rn is a continuous function,
0 /∈ f (∂�), and

f (x)

| f (x)| �= f (−x)

| f (−x)| for all x ∈ ∂�,

then deg( f ,�, 0) is an odd number. This result is known as antipode theorem.

6.7 Let � ⊂ Rn be open, bounded, symmetric with 0 ∈ �. Let f : � → Rn be con-
tinuous such that for all λ ≥ 1 and x ∈ ∂�, f (x) �= 0, f (−x) − λf (x) �= 0. Then
prove that deg( f ,�, 0) is odd.

6.8 Let � ⊂ Rn be open, bounded, symmetric with 0 ∈ �. Let f : � → Rn be con-
tinuous and m < n. Then show that there exists an x ∈ ∂� such that f (x) = f (−x).
This result is known as Borsuk–Ulam’s theorem.

6.9 Let A be a real n × n matrix with det A �= 0 and f ∈ C(Rn) such that
|x − Af (x)| � α|x| + β on Rn for some x ∈ [0, 1) and β � 0. Then f (Rn) = Rn.

6.10 Let � = B1(0) ⊂ R2m+1, and f : ∂� → ∂� continuous. Then there exists an
x ∈ ∂� such that either x = f (x) or x = −f (x).

6.11 Let � ⊂ Rn be open, bounded and symmetric with respect to 0 ∈ � and
{A1, A2, . . . , Ap} be a covering of ∂� by closed sets Aj ⊂ ∂� such that Aj ∩ (−Aj) =
∅ for j = 1, 2, . . . , p. Then prove that p ≥ n + 1.



6.7 k-Set Contractions and Condensing Maps 511

6.12 Let BX be the unit ball in an infinite dimensional Banach space X . Then show
that the measure of noncompactness χ(BX ) = 2.

6.13 Let � ⊂ X be open, bounded and symmetric with respect to 0 ∈ � and T :
� → X compact and odd. Let Y ⊂ X be a proper linear subspace and (I − T )(�) ⊂
Y . Then prove that there exists a fixed point x0 ∈ ∂� of T .

6.14 Let � ⊂ X be open, bounded and symmetric with respect to 0 ∈ � and T :
� → X compact. Let (I − T )(�) ⊂ Y � X . Then prove that there is an x ∈ ∂� such
that

x − T (x) = −x − T (−x).

6.15 Let T : X → X be compact, and L : X → X compact and linear. If there exists
a λ ∈ R, such that for all x ∈ X , ‖x‖ = r we have

‖Tx − λLx‖ < ‖x − λLx‖,

then show that Deg(I − T , Br(0), 0) is odd.

6.16 Let X = c0 and T (x) = 1
3

∞∑
i=1

α3
i ei, for x =

∞∑
i=1

αiei ∈ c0 and {ei}i∈N the canon-

ical basis in c0; prove that T is A-proper but T ′( ei√
i
) is not.

6.17 Let X = c0 and Tx = −
∞∑

i=1

(
1 + 1

i

)
αiei for x =

∞∑
i=1

αiei ∈ c0 and {ei}i∈N the

basis in c0; prove that T is A-proper and deg(T , S1(0), 0) = {−1, 1}.



Chapter 7
Variational Methods and Optimization

As long as a branch of knowledge offers an abundant of
problems, it is full of vitality.

David Hilbert
Optimization is a cornerstone for the development of civilization.

Yuqi He

The purpose of this chapter is to give an introduction of variational methods and
optimization theory in a rather convincing manner along with results of nonlinear
analysis leading to an applied environment. So, we have chosen variational princi-
ples as the starting point of our discussion in the framework of Banach space the-
ory that leads to optimization with the observation that by applying the techniques
involved in variational methods and optimization one can deal with some real-world
problems that arise in nonlinear analysis. We initiate our discussion by presenting
some variational principles and their applications. The epicenter of our discussion
is the so-called Ekeland variational principle (in short, EVP). Indeed, we show that
EVP is equivalent to some other well-known results of nonlinear analysis, notably
Takahashi’s minimization theorem.

A remarkable discovery by Ekeland in 1972 laid down the foundation of the
variational principle. The variational principle provides an approximate minimizer
of a bounded below and lower semicontinuous function in a given neighbourhood
of a point. This principle is now well as Ekeland variational principle. Notably,
the localization property in EVP is very useful and explains the importance of the
result. It may also be observed that is among the most important results obtained in
nonlinear analysis. In fact, EVP appeared as one of the most useful tools to solve the
problems from optimization, dynamical systems, optimal control theory, game theory
nonlinear integral equations and some nonlinear real-world problems. In Sect. 7.1,
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we start our discussion with variational principle, while in Sect. 7.2 we discuss some
optimization problems.

In Sect. 7.3, we present several forms of Ekeland’s variational principle. We dis-
cuss equilibrium problem which is a unified model of several problems, namely mini-
mization problem, saddle point problem, Nash equilibrium problem, fixed point prob-
lem, complementarity problem, variational inequality problems. Section 7.4 deals
with mappings associated with variational inequality, while Sect. 7.5 initiated the
discussion on variational calculus by presenting some fundamental problems that
arise in applied sciences. In Sect. 7.6, we discuss in detail several variational meth-
ods with their applications in physical problems in applied environment. Finally, we
conclude the chapter in Sect. 7.7 by presenting variational formulation for linear and
nonlinear problems.

7.1 Variational Principles

Hartman and Stampacchia [268] proved the following:

Theorem 7.1 Let K be a compact convex subset in Rn and f : K → Rn be a
continuous mapping. Then, there exists x̄ ∈ K such that

〈 f (x̄), y − x̄〉 � 0 for all y ∈ K ,

where 〈·, ·〉 denotes the scalar product in Rn.

Ky Fan [227] proved the following theorem, which is called Fan’s best approximation
theorem:

Theorem 7.2 Let K be a nonempty compact convex set in a normed vector space
X. Then, for any continuous mapping f : K → X, there exists x̄ ∈ K such that

‖x̄ − f (x̄)‖ = min
y∈K

‖y − f (x̄)‖.

In particular, if f (K ) ⊂ K , then x̄ is a fixed point of f .

Theorems 7.1 and 7.2 play a very important role in nonlinear analysis, variational
inequality problems, complementarity problems, optimization problems, game the-
ory and others.

7.1.1 Equilibrium Problems

Let X be a normed vector space with the dual space X∗, K be nonempty convex
subset of X and F : K × K → R be a real-valued bifunction.
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In 1994, from the ideas of Theorems 7.1 and 7.2, Blum and Oettli [61] considered
the equilibrium problem (shortly, (EP)) as follows:

Find x̄ ∈ K such that (EP)

F(x̄, y) > 0 for all y ∈ K . (EP)

The equilibrium problem (EP) has some special cases as follows:

(I) Minimization problem. Minimization problem (shortly, (MP)) is the following:
Find x̄ ∈ K such that

ϕ(x̄) � ϕ(y) for all y ∈ K ,

where ϕ : K → R is a function. If we set F(x, y) = ϕ(y)− ϕ(x) for all x, y ∈ K ,
then the problem (MP) is equivalent to the problem (EP).

(II) Saddle point problem. Saddle point problem (shortly, (SPP)) is the following:
Find (x̄1, x̄2) ∈ K1 × K2 such that

L(x̄1, y2) � L(x̄1, x̄2) � L(y1, x̄2) for all (y1, y2) ∈ K1 × K2,

where L : K1 × K2 → R is a real-valued bifunction.
If we set K = K1 × K2 and define a bifunction F : K × K → R by

F((x1, x2), (y1, y2)) = L(y1, x2)− L(x1, y2) for all (x1, x2), (y1, y2) ∈ K1 × K2,

then the problem (SPP) coincides with the problem (EP).
Let I be a finite set (a set of players) and, for each i ∈ I, Ki be a strategy

set of i th player. Let K = ∑

i∈I
Ki and, for each player i ∈ I, ϕi : K → R =

loss function of the i th player depending on the strategies of all players. For any
x = (x1, x2, . . . , xn) ∈ K , define xi = (x1, x2, . . . , xi−1, xi+1, . . . , xn).

(III) Nash equilibrium problem. Nash equilibrium problem (shortly, (NEP)) is the
following:

Find x̄ ∈ K such that, for each i ∈ I,

ϕi (x̄) � ϕi (x̄ i , yi ) for all yi ∈ Ki .

If we define f (x, y) =
n∑

i=1
(ϕi (xi , yi ) − ϕi (x)), then the problem (NEP) is same as

the problem (EP).
Let K be a nonempty subset of an inner product space X and ϕ : K → K be a

mapping.

(IV) Fixed point problem. Fixed point problem (shortly, (FPP)) is the following:
Find x̄ ∈ K such that
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ϕ(x̄) = x̄ .

If set F(x, y) = 〈x − ϕ(x), y − xi 〉 for all x, y ∈ K , then x̄ is a solution of the
problem (FPP) if and only if x̄ is a solution of the problem (EP).

Let X be a normed vector space with the dual space X∗, K be nonempty closed
convex cone in X and

K ∗ = {x∗ ∈ X∗ : 〈x∗, yi 〉 � 0, ∀y ∈ K }

be a polar cone of K . Let ϕ : K → X∗ be a mapping.

(V) Complementarity problem. Let K = Rn+ and f : K → Rn be a mapping.
Complementarity problem (shortly, (CP)) is the following:

Find x̄ ∈ K such that

f (x̄) ∈ K , 〈 f (x̄), x̄〉 = 0.

Let K be a closed convex cone in Rn and f : K → Rn be a mapping. The nonlinear
complementarity problem (NCP) is the following:

Find x̄ ∈ K such that

f (x̄) ∈ K ∗, 〈 f (x̄), x̄〉 = 0,

where K ∗ = {y ∈ Rn : 〈y, x〉 � 0 for all x ∈ K } is the dual cone of K .
Geometrically, the nonlinear complementarity problem is to find a nonnegative

vector x̄ such that its image f (x̄) is also nonnegative and is orthogonal to x̄ .

(1) The problem (VIP) is equivalent to the problem (NCP).
(2) If set F(x, y) = 〈ϕ(x), y−x〉 for all x, y ∈ K , then the problems (VIP), (NCP)

and (EP) are equivalent.

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ ·‖ and K
be a nonempty closed convex subset of H. Let ϕ : K → R be a real-valued function,
f : H → H be a nonlinear mapping and F : K × K → R be a bifunction.

(VI) Generalized mixed equilibrium problem. Generalized mixed equilibrium
problem (shortly, (GMEP)) is the following:

Find x ∈ K such that

F(x, y)+ ϕ(y)− ϕ(x)+ 〈 f x, y − x〉 � 0 for all y ∈ K ,

which was studied by Peng and Yao in 2008.

Special Cases of (GMEP):

(1) If f = 0, then the (GMEP) becomes the following mixed equilibrium problem
(shortly, (MEP)):
Find x ∈ K such that
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F(x, y)+ ϕ(y)− ϕ(x) � 0 for all y ∈ K ,

which was studied by Ceng and Yao [134] in 2008.
(2) If ϕ = 0, then the (GMEP) becomes the following generalized equilibrium

problem (shortly, (GEP)):
Find x ∈ K such that

F(x, y)+ 〈 f x, y − x〉 � 0 for all y ∈ K ,

which was studied by Takahashi and Takahashi [586] in 2008.
(3) If ϕ = 0 and f = 0, then the (GMEP) becomes the following equilibrium

problem (shortly, (EP)):
Find x ∈ K such that

F(x, y) � 0 for all y ∈ K .

(4) If F(x, y) = 0 for all x, y ∈ K , then the (GMEP) become the following gener-
alized variational inequality problem (shortly, (GVIP)):
Find x ∈ K such that

ϕ(y)− ϕ(x)+ 〈 f x, y − x〉 � 0 for all y ∈ K .

(5) If ϕ = 0 and F(x, y) = 0 for all x, y ∈ K , then the (GMEP) becomes the
following variational inequality problem (shortly, (VIP)):
Find x ∈ K such that

〈 f x, y − x〉 � 0 for all y ∈ K .

(6) If f = 0 and F(x, y) = 0 for all x, y ∈ K , then the (GMEP) becomes the
following variational minimization problem (shortly, (MP)):
Find x ∈ K such that

ϕ(y)− ϕ(x) � 0, i.e. ϕ(y) � ϕ(x) for all y ∈ K .

Note that argminy∈K f (y) = {x ∈ K : f (x) � f (y)} is the set of the (MP).
Here “argmin” means “the minimizer of”. For example, x∗ = argmin{ f (x) : x ∈

K } means x∗ being the minimizer of the function f (x) on K ; i.e., x∗ is the solution
to the problem min{ f (x) : x ∈ K }.

7.1.2 Variational Inequalities and Optimization Problem

We first review some definitions: Given a continuous function f : Rn → Rn and
a closed subset K in Rn , the well-known finite dimensional variational inequality
problem [148, 231, 244, 566], denoted by VI(K , f ), is to find an element x̄ ∈ K
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such that
〈 f (x̄), x − x̄〉 ≥ 0 for all x ∈ K , (7.1)

where 〈·, ·〉 denotes the usual linear product in Rn .
Geometrically, the variational inequality (7.1) states that the vector f (x̄) must be

at a nonobtuse angle with all the feasible vectors emanating from x̄ . In other words,
the vector x̄ is a solution of VI(K, f) if and only if f (x̄) forms a nonobtuse angle
with every vector of the form x − x̄ , for all x ∈ K .

Proposition 7.1 Let f : Rn → Rn be a mapping. A vector x̄ ∈ Rn is a solution of
VI(K,f) if and only if f (x̄) = 0.

Proof Let f (x̄) = 0. Then, obviously, the inequality (7.1) holds with equality.
Conversely, suppose that x̄ satisfies the inequality (7.1). Then, by taking y = x̄− f (x̄)

in (7.1), we get
〈 f (x̄), x̄ − f (x̄)− x̄〉 = 〈 f (x̄),− f (x̄〉 � 0,

that is −‖ f (x̄)‖2 � 0, which implies that f (x̄) = 0.

Notice that both unconstrained and constrained optimization problems can be for-
mulated as a variational inequality problem. If F(x) is the gradient of a differentiable
function f : Rn → R, then the following result provides a relationship between an
optimization problem and a variational inequality problem.

Proposition 7.2 Let K be a nonempty convex subset of Rn and f : K → R be a
differentiable function. If x̄ is a solution of the following optimization problem

min
x∈K

f (x), (OP)

then x̄ is a solution of VIP with F = ∇ f .

Proof For any x ∈ K , define a function ϕ : [0, 1] → R by ϕ(t) = f (x̄ + t (x −
x̄)), for all t ∈ [0, 1]. Since ϕ(t) attains its minimum at t = 0, therefore, ϕ′(0) � 0,
that is

〈∇ f (x̄), x − x̄〉 � 0, for all x ∈ K . (VIP)

Hence, x̄ is a solution of VIP with F ≡ ∇ f .

7.1.3 Variational Inequalities and Fixed Point Problem

Let K be a nonempty subset of Rn and T : K → K be a mapping. The fixed point
problem (FPP) is to find x̄ ∈ K such that

T (x̄) = x̄ . (FPP)
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The following result provides a relationship between a variational inequality and a
fixed point problem.

Proposition 7.3 Let K be a nonempty subset of Rn and T : K → K be a mapping.
If the mapping f : K → K is defined by

f (x) = x − T (x), (7.1′)

then variational inequality problem (VIP) coincides with fixed point problem (FPP).

Proof Let x̄ ∈ K be a fixed point of the problem (FPP). Then, f (x̄) = 0, and thus,
x̄ solves (7.1) and (7.1′).

Conversely, suppose that x̄ solves (7.1) with f (x̄) = x̄ − T (x̄). Then, T (x̄) ∈ K ,
and letting x = T (x̄) in (7.1) gives −‖x̄ − T (x̄)‖2 � 0, that is x̄ = T (x̄).

7.2 Optimization Problem in Banach Spaces

Let X be a nonempty set. A function f : X → R ∪ {+∞} is said to be proper if
f (x) �= +∞ for all x ∈ X . The domain of f denoted by D( f ) is defined by

D( f ) = {x ∈ X : f (x) < +∞}.

Let X be a Banach space, K a nonempty subset of X , and let f : X → R∪{+∞}
a proper, lower semicontinuous function, which is bounded below. Then, it is well
known that the following constrained optimization problem (in short, COP)

inf
x∈K

f (x) (COP)

has a solution and that the solution set of COP is compact.

Problem. Let X be a Banach space, K ⊆ X a nonempty, noncompact set, and let
f : X → R ∪ {+∞} a proper, lower semicontinuous function, which is bounded
below. Then, the following optimization problem (in short, OP)

inf
x∈K

f (x) (OP)

or of the COP without compactness need not have a solution.
Now, there arises a natural question—Can we achieve the infimum of the OP or

of the COP without compactness? The answer is affirmative, but we need some kind
of coercivity assumption as well as convexity structure on K .

However, we notice that one can always obtain an approximately ε-solution; i.e.,
for a given ε > 0 and a point x0 ∈ X , we always have

inf
X

f � f (x0) � inf
X

f + ε,
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where inf
K

f = inf
x∈X

f (x).

To see this, let us consider the case when X = Rn . In such case, the situation can
be remedied by considering a suitable small perturbation of f . For simplicity, let us
assume that K = Rn, m = inf x∈X f (x), ε > 0. Suppose x0 ∈ X be such that

f (x0) � m + ε.

Consider the function
fε(x) = f (x)+ ε‖x − x0‖X .

Then, one can readily see that fε : Rn → R∪{+∞} is proper, lower semicontinuous,
and in addition, fε is weakly coercive, i.e.

fε(x) →+∞ as ‖x‖Rn →+∞.

By invoking the Weierstrass theorem, we infer that fε attains its infimum at a point
y ∈ Rn . Note that

‖y − x0‖Rn � 1.

Indeed, if ‖y − x0‖Rn > 1, then we have

fε(y) = f (y)+ ε‖y − x0‖Rn > f (y)+ ε � m + ε

� f (x0) = fε(x0) > fε(y),

a contradiction. Also
fε(y) � fε(x) ∀ x ∈ Rn,

hence
f (y)+ ε‖y − x0‖Rn � f (x)+ ε‖y − x0‖Rn ,

this implies that
f (y) � f (x)+ ε‖y − x‖Rn .

Thus, keeping in view the above argument we infer that for a given ε > 0 and x0 ∈ Rn

satisfying
f (x0) � inf

x∈X
f (x)+ ε,

that is x0 ∈ Rn is an ε-minimizer, we can find y ∈ Rn , such that ‖y− x0‖Rn � 1 and
the function

x �→ f (x)+ ε‖y − x‖Rn

attains its infimum at y ∈ Rn .
Notice that in the aforementioned analysis, we have used the Weierstrass theorem

as an analytic tool, which guarantees a minimizer for a proper, lower semicontin-
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uous function, which is bounded below. Remember that this is an essentially finite
dimensional situation, but in an infinite dimensional space this need not work. How-
ever, this work with extra conditions, such as the reflexivity of X and the weak
lower semicontinuity of the function. Notice that the above argument work, in gen-
eral, if we can reformulate the above principle as follows: suppose X is an infinite-
dimensional Banach space with norm ‖ · ‖X . Suppose x0 ∈ X is an ε-minimizer
of f : X → R ∪ {+∞}, which is proper, lower semicontinuous function, which is
bounded below, then a small Lipschitz perturbation of f attains a strict minimum at
a point y ∈ X , which is relatively close to x0 in the sense that ‖y − x0‖ � 1. This
entails that we can find a Lipschitz continuous function h0 : X → R with a small
Lipschitz constant, such that f + h0 attains a strict minimum at y ∈ X . Notice also
that the essence of the Ekeland variational principle and its extensions lies on the
fact that this principle can be formulated in the setting of any complete metric space.
As a consequence, this result becomes a viable, useful and effective tool to solve
various problems that arise in different areas of nonlinear analysis.

7.2.1 Convex Optimization Problems

Throughout this section, we assume that (X, ‖ · ‖) is a reflexive Banach space.

Definition 7.1 A functional f : X → R = R ∪ {+∞} is said to be coercive, if

f (v)→+∞ for ‖v‖X →+∞.

Theorem 7.3 (Solvability of unconstrained minimization problems) Suppose that
f : X → R ∪ {+∞}, f �= +∞ is a weakly semicontinuous, coercive functional.
Then, the unconstrained minimization problem

f (u) = inf
v∈X

f (v) (7.2)

admits a solution u ∈ X.

Proof Let α := infv∈X f (v) and assume that {vn}n∈N is a minimizing sequence, i.e.
f (vn) → α as n → ∞. Since α < +∞ and in view of the coercivity of f , the
sequence {vn}n∈N is bounded. Consequently, in view of Theorem 1.29, there exists
a subsequence vni and u ∈ X such that vni ⇀ u as i → ∞. The weak lower
semicontinuity of f implies

f (u) � inf
n∈N

f (vn) = α,

whence f (u) = α.
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Theorem 7.4 (Existence and Uniqueness) Suppose that f : X → R is a proper
convex, lower semicontinuous, coercive functional. Then, the unconstrained mini-
mization problem (7.2) has a solution u ∈ X. If f is strictly convex, then the solution
is unique.

Proof The existence follows from Theorem 7.3. For the proof of the uniqueness, let
u1 �= u2 be two different solutions. Then, there holds

f

(
1

2
(u1 + u2)

)

<
1

2
f (u1)+ 1

2
f (u2) = inf

v∈X
f (v),

which is a contradiction.

7.3 Ekeland Variational Principles

In this section, we present several forms of Ekeland’s variational principle. We
discuss equilibrium problem which is a unified model of several problems, namely
minimization problem, saddle point problem, Nash equilibrium problem, fixed point
problem, complementarity problem, variational inequality problems. The essence of
Ekeland’s variational principles lies on the fact that it guarantees the existence of ε-
solution optimization problem where neither compactness nor convexity assumption
on the underlying space is needed.

Theorem 7.5 (Ekeland’s variational principle-strong form) Let (X, d) be a complete
metric space and f : X → R∪ {+∞} a proper, lower semicontinuous and bounded
below function. Let ε > 0 and x0 ∈ X be given such that

f (x0) � inf
x∈X

f (x)+ ε.

Then, for a given λ > 0, there exists xλ ∈ X such that

(a) f (xλ) � f (x0);
(b) d(xλ, x0) � λ;
(c) f (xλ) < f (x)+ ε

λ
d(x, xλ) for all x ∈ X \ {xλ}.

Proof For the sake of convenience, let us set dλ(·, ·) = d(·, ·). Then, we see that dλ

is equivalent to d and (X, dλ) is complete.
On X , we define a relation � by

x � y if and only if f (x) � f (y)− εdλ(x, y).

Evidently, this order is (i) reflexive, i.e. for all x ∈ X, x � x ; (ii) antisymmetric,
i.e. for all x, y ∈ X, x � y and y � x imply x = y; (iii) transitive, i.e. for all
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x, y, z ∈ X, x � y and y � z imply x � z. So we conclude that the relation � is a
partial order.

Inductively, we define a sequence {Sn}n�1 of subsets of X as follows. Let us start
with x1 = x0 (x0 is the same as given in the statement of the theorem) and define

S1 = {x ∈ X : x � x1}; x2 ∈ S1 such that f (x2) � inf
S1

+ ε

23
,

S2 = {x ∈ X : x � x2}; x3 ∈ S2 such that f (x3) � inf
S2

+ ε

24
,

and inductively

Sn = {x ∈ X : x � xn}; xn+1 ∈ Sn such that f (xn+1) � inf
Sn

+ ε

2n+2
.

Since xn+1 � xn , we have that Sn ⊇ Sn+1 for n � 1. claim that Sn is closed.
Indeed, if {uk} ⊂ Sn with uk → u ∈ X as k → ∞. Then, u � xn and so

f (uk) � f (xn)− εdλ(uk, xn). Now taking limit and using the lower semicontinuity
of f , continuity of d and so the continuity of dλ, we conclude that u ∈ Sn . This
shows that Sn is closed.

Now, we show that the diameter of these sets Sn is diam (Sn) → 0 as n →∞. If
z ∈ Sn , we have that z � xn . Further, we observe that z ∈ Sn−1 and so

εdλ(z, xn) � f (xn)− f (z) � inf
x∈Sn−1

f (x)+ ε

2n+1
− f (z)

� f (z)+ ε

2n+1
− f (z) = ε

2n+1
for all z ∈ Sn,

which gives

dλ(z, xn) � 1

2n+1
for all z ∈ Sn.

Thus, for all z, z′ ∈ Sn , we have

dλ(z, z′) � dλ(z, xn)+ dλ(xn, z′) � 1

2n+1
+ 1

2n+1
= 1

2n
,

which gives diam Sn = sup{dλ(z, z′) : z, z′ ∈ Sn} � 1
2n and hence diam (Sn) →

0 as n → ∞. Because (X, dλ) is complete and {Sn} is a decreasing sequence of
closed sets, by Cantor’s theorem, we infer that

∞⋂

n=1

Sn = {xλ}.

We still need to show that this unique point x0 satisfies conditions (a)–(c).
Because xλ ∈ S1, we have
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xλ � x1 = x0 if and only if f (xλ) � f (x0)− εdλ(x0, xλ)

and so f (xλ) � f (x0). Hence (a) holds.
Also, we have

dλ(x0, xn) = dλ(x0, xn) �
n−1∑

i=1

dλ(xi , xi+1) �
n−1∑

i=1

2−i .

Taking limit as n → ∞, we obtain dλ(x0, xλ) � 1 and so d(x0, xλ) � λ, i.e. (b)
holds.

Finally to prove (c), suppose x �= xλ. Then, we see that x � xλ cannot be true
because otherwise x � xλ implies x � xn for all n � 1, hence

x ∈
∞⋂

n=1

Sn

which implies that x = xλ. So x � xλ, which means that

f (x) > f (xλ)− εdλ(x, xλ),

that is

f (x) > f (xλ)− ε

λ
d(x, xλ),

and hence (c) holds.

Observation

• Strong form of Ekeland variational principle says that for given ε, λ > 0 and x0

an ε-approximate solution of an optimization problem, there exists a new pointxλ

that is not worst than x0 belongs to a λ-neighbourhood of x0, and especially, xλ

satisfies inequality (c).
• If λ > 0 is large, then (b) provides little information on the whereabouts of xλï£¡,

while (c) tells us that xλ is close to being a global minimizer of f (·)+ ε
λ

d(·, xλ).
The opposite situation occurs when λ > 0 is small. Then, (b) implies that xλ is
close to x0, but the inequality in (c) gives us little information.

We can deduce from Theorem 7.5, so-called, the weak formulation of Ekeland’s
variational principle.

Corollary 7.1 (Ekeland’s variational principle-weak form) Let (X, d) be a complete
metric space and f : X → R ∪ {+∞} a proper, lower semicontinuous, bounded
from below functional. Then, for every ε > 0, we can find xε ∈ X, such that

(a) f (xε) � inf
x∈X

f (x)+ ε;
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(b) f (xε) < f (x)+ εd(x, xε) for all x ∈ X \ {xε}.
Corollary 7.2 Let (X, d) be a complete metric space and f : X → R ∪ {+∞}
a proper, lower semicontinuous function, which is bounded below, ε > 0 and x̄ =
x(ε) ∈ X satisfies

f (x̄) � inf
x∈X

f (x)+ ε.

Then, we can find xε ∈ X, such that

(a) f (xε) � f (x̄);
(b) d(xε, x̄) � √ε;
(c) f (xε) < f (x)+√εd(x, xε) for all x ∈ X \ {xε}.
If we put more structure on the space X , we can strengthen the conclusion of
Theorem 7.5.

Theorem 7.6 Let X be a Banach space and f : X → R a proper, lower semicon-
tinuous function, which is bounded below which is Gâteaux differentiable. Then, we
can find xε ∈ X, such that

f (xε) � inf
x∈X

f (x)+ ε and ‖ f ′(xε)‖X∗ � ε.

Proof By virtue of Corollary 7.1, we can find xε ∈ X , such that

f (xε) � inf
x∈X

f (x)+ ε and f (xε) < f (x)+ ε‖x − xε‖ for all x ∈ X.

Let h ∈ X and t > 0 be arbitrary. Set x = xε + th, then we obtain

f (xε)− f (xε + th)

t
� ε‖h‖X .

Passing to the limit as t → 0, we obtain

−( f ′(xε), h) � ε‖h‖X ∀h ∈ X,

so |( f ′(xε), h)| � ε‖h‖X and thus ‖ f ′(xε)‖X∗ � ε. This completes the proof.

Corollary 7.3 Suppose X is a Banach space and f : X → R is a lower semicon-
tinuous function, which is bounded below which is Gâteaux differentiable, then there
exists a sequence {xn}n∈N ⊆ X, such that

f (xn)↘ inf
x∈X

f (x) and f ′(xn)→ 0.

Remark 7.1 The above corollary asserts the existence of a minimizing sequence,
whose elements satisfy the first-order necessary conditions, up to any desired approx-
imation.
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Corollary 7.4 Suppose X is a Banach space and f : X → R is a lower semicon-
tinuous function, which is bounded below which is Gâteaux differentiable, then for
each minimizing sequence {yn}n∈N of f ( i.e. f (yn) ↘ inf x∈X f (x)), we can find
another minimizing sequence {xn}n∈N of f , such that:

(a) f (xn) � f (yn);
(b) ‖xn − yn‖X → 0;
(c) ‖ f ′(xn)‖X∗ → 0.

Aubin and Frankowska [26] established the following form of Ekeland’s varia-
tional principle which is equivalent to Theorem 7.5.

Theorem 7.7 (Ekeland’s variational principle-strong form) Let (X, d) be a complete
metric space and f : X → R∪ {+∞} a proper, lower semicontinuous and bounded
below functional. Let x0 ∈ D( f ) and ε > 0 be fixed. Then, there exists xε ∈ X such
that

(a) f (xε)− f (x0)+ εd(x0, xε) � 0;
(b) f (xε) < f (x)+ εd(x, xε) for all x ∈ X \ {xε}.

Notice that the property of Ekeland’s variational principle for proper but extended
real-valued lower semicontinuous and bounded below functions on a metric space
characterizes completeness of the metric space.

Theorem 7.8 (Converse of Ekeland’s variational principle) A metric space (X, d)

is complete if for every function f : X → R ∪ {+∞} which is proper, lower
semicontinuous and bounded below functional on X and for every given ε > 0,
there exists xε ∈ X such that

f (xε) � inf
x∈X

f (x)+ ε

and
f (xε) � f (x)+ εd(x, xε) for all x ∈ X.

7.3.1 Applications to Fixed Point Theorems

The Ekeland variational principle is a very powerful tool of nonlinear analysis. Below,
we show how the well-known results in fixed point theory such as Banach contrac-
tion principle and Caristi’s fixed point theorem can be derived from the Ekeland
variational principle. Subsequently, we show that the two results, namely Ekeland’s
variational inequality and Caristi’s fixed point theorem, are equivalent, in the sense
that the Ekeland variational principle can also be derived from Caristi’s fixed point
theorem. First, we state and prove Banach contraction principle followed by Caristi’s
fixed point theorem.
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Theorem 7.9 (Banach contraction principle) Let X be a complete metric space and
T : X → X be a contraction mapping. Then, T has a unique fixed point in X.

Proof Define the functional f by

f (x) := d(x, T (x)) for all x ∈ X.

Then, it readily follows that f is bounded below and continuous on X . Choose a
positive number ε such that 0 < ε < 1 − λ, where λ is the Lipschitz constant. By
Theorem 7.1, there exists xε ∈ X , depending on ε such that

f (xε) � f (x)+ εd(x, xε) for all x ∈ X.

Thus, we have

d(xε, T (xε)) � d(x, T (x))+ εd(x, xε) for all x ∈ X.

On putting x = T (xε) in the above inequality, we obtain

d(xε, T (xε)) � d(T (xε), T (T (xε))+ εd(xε, T (xε))

� λd(xε, T (xε)+ εd(xε, T (xε))

= (λ+ ε) d(T (xε), T (T (xε))+ εd(xε, T (xε)).

Suppose xε �= T (xε), then the above inequality gives 1 � λ+ ε, which contradicts
to our assumption that λ+ ε < 1. Thus, we have xε = T (xε). The uniqueness of xε

can be proved as in Theorem 5.1.

Theorem 7.10 (Caristi’s fixed point theorem) Let X be a complete metric space and
F : X → 2X \∅ be a multivalued mapping such that

d(x, y) � ϕ(x)− ϕ(y) for some y ∈ F(x) and all x ∈ X, (7.3)

where ϕ : X → R ∪ {+∞} is a proper, lower semicontinuous and bounded below
functional. Then, there exists x̄ ∈ X such that x̄ ∈ F(x̄) and ϕ(x̄) <∞.

Proof By virtue of Corollary 7.1 with ε = 1, we can find x̄ ∈ X such that

ϕ(x̄) < ϕ(x)+ d(x, x̄) for all x ∈ X \ {x̄}. (7.4)

We now claim that x̄ ∈ F(x̄). Suppose that this is not true. Then, for all y ∈ F(x̄),
we have that y �= x̄ . So, let y ∈ F(x̄) be as in (7.3). Then, (7.3) and (7.4) entail

d(y, x̄) � ϕ(x̄)− ϕ(y) and ϕ(x̄)− ϕ(y) < d(y, x̄)

which cannot hold simultaneously.
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Remark 7.2 We emphasize that on the multivalued function F no regularity condi-
tions were imposed except for (7.2), which is a mild restriction. Suppose that F has
compact values and

H(F(x), F(y)) � kd(x, y) ∀x, y ∈ X and with k ∈ (0, 1).

Here, H(·, ·) stands for the Hausdorff–Pompeu metric on the nonempty and closed
subsets of X . Then, we can apply Theorem 7.10 with

ϕ(x) = 1

1− k
d(x, F(x)).

Indeed, let y ∈ F(x) be such that d(x, F(x)) = d(x, y). Such an element exists
since F(x) is compact. Then, we have

(1− k)d(x, y) = d(x, F(x))− kd(x, y)

� d(x, F(x))− H(F(x), F(y))

� d(x, F(x))− d(y, F(y)),

and so
ϕ(y) � ϕ(x)− d(x, y).

Thus, the condition (7.2) is satisfied. Note that the resulting fixed point theorem is a
particular case of Nadler’s fixed point theorem (see Theorem 5.74). Of course, if F is
single valued, we recover the well-known Banach contraction principle (see Theorem
5.1). Notice also that Banach fixed point theorem contains much more information.

Park [442] obtained some equivalent formulations of Ekeland’s variational prin-
ciple as follows.

Theorem 7.11 Let (X, d) be a complete metric space and f : X → R ∪ {+∞} a
proper, lower semicontinuous and bounded below functional. Let ε > 0 and x0 ∈ X
be given such that

f (x0) � inf
x∈X

f (x)+ ε.

Then, the following statements are equivalent:

(a) For a given λ > 0, there exists x̄ ∈ S = Sλ(x0) such that f (x̄) � f (x0) and

f (x̄) < f (x)+ ε

λ
d(x, x̄) for all x ∈ X \ {x̄}.

(b) Let T : S → 2X be a set-valued map satisfying the following:

∀x ∈ S \ T (x), ∃y ∈ X \ {x} such that f (y) � f (x)− ε

λ
d(y, x).
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Then, T has a fixed point x̄ ∈ S, i.e. x̄ ∈ T (x̄) such that f (x̄) � f (x0).
(c) Let ϕ : S → X be a single-valued map such that

f (ϕ(x)) � f (x)− ε

λ
d(ϕ(x), x) for all x ∈ S.

Then, ϕ has a fixed point x̄ ∈ S such that f (x̄) � f (x0).
(d) Let T : S → 2X be a set-valued map such that for all X̄ ∈ S, T (x) �= ∅, and

for any y ∈ T (x), we have

f (y) � f (x)− ε

λ
d(y, x).

Then, T has a stationary point x̄ ∈ S, i.e. T (x̄) = {x̄} such that f (x̄) � f (x0).

Proof (a) ⇒ (b): By (a), there exists a point x̄ ∈ S such that

f (x̄) < f (x)+ ε

λ
d(x, x̄) for all x ∈ X \ {x̄}. (7.5)

Suppose, if possible, x̄ /∈ T (x̄), then by assumption, there exists a y �= x̄ such that

f (y) � f (x̄)− ε

λ
d(y, x̄).

By putting y = x in the above inequality and simplifying, we get

f (x̄) � f (x)+ ε

λ
d(x, x̄) for all x �= x̄,

a contradiction of (7.5).
(b) ⇒ (c): Let T : S ⇒ 2X be defined as follows:

T (x) = {ϕ(x)} for all x ∈ S.

Assume that for any x ∈ S, x �= ϕ(x). Otherwise, every point of S is a fixed point
of ϕ. This entails x ∈ S \ T (x). Further, we see that y = ϕ(x) ∈ X \ {x} satisfies

f (y) � f (x)− ε

λ
d(y, x).

Then, from (b), there exists x̄ ∈ T (x̄) = {ϕ(x̄)} such that f (x̄) � f (x0).
(c) ⇒ (d): By (c), one can readily see that any single-valued map ϕ on {T (x) : x ∈
S} has a fixed point. We now show that T has a stationary point in S. Suppose, on
the contrary, that T has no stationary point in S. Consider a map ϕ such that for any
x ∈ S,

x ∈ T (x) ⇒ ϕ(x) ∈ T (x) \ {x}.
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Then, such ϕ cannot have a fixed point, which is a contradiction.
(d) ⇒ (a): Define a set-valued map T : S → 2X by

T (x) = {y ∈ X : f (y) � f (x)− ε

λ
d(y, x).

Then, for all x ∈ S, T (x) �= ∅, and by (d), T has a stationary point x̄ which satisfies
condition (a).

7.3.2 Applications to Optimization

In this section, we present the following existence result established by Takahashi
[585] for a solution of an optimization problem without compactness and convexity
assumptions on the underlying space.

Theorem 7.12 (Takahashi’s minimization theorem) Let (X, d) be a complete metric
space and f : X → R∪ {+∞} a proper, lower semicontinuous and bounded below
functional. Suppose that, for each x0 ∈ X with inf

x∈X
f (x) < f (x0), there exists z ∈ X

such that z �= x0 and
f (z)+ d(x0, z) � f (x0).

Then, there exists x̄ ∈ X such that f (x̄) = inf
x∈X

f (x); that is, x̄ is a solution of

optimization problem.

Proof Suppose on the contrary that inf
x∈X

f (x) < f (y) for all y ∈ X and let x0 ∈ X

with f (x0) < +∞. Let us define inductively a sequence {xn} in X , starting with
x1 = x0, and suppose that xn ∈ X is known. Then, xn+1 ∈ Sn+1 such that

Sn+1 = {x ∈ X : f (x) � f (xn)− d(xn, x)}

and

f (xn+1) � 1

2

{
inf

x∈Sn+1

f (x)+ f (xn)
}
. (7.6)

We claim that {xn} is a Cauchy sequence. Indeed, if m > n, then

d(xn, xm) �
m−1∑

i=1

d(xi , xi+1)

�
m−1∑

i=1

[ f (xi )− f (xi+1)]

= f (xn)− f (xm). (7.7)
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Because { f (xn)} is a decreasing sequence and the function f is bounded below, there
exists ε > 0 such that

f (xn)− f (xm) < ε for all m > n.

Therefore, (7.7) yields
d(xn, xm) < ε for all m > n

and hence {xn} is a Cauchy sequence in X . Because X is a complete metric space,
there exists x̄ ∈ X such that xn → x̄ . Now letting m → ∞ in (7.7), the lower
semicontinuity of f and continuity of d imply that

d(xn, x̄) � f (xn)− lim
m→∞ f (xm) � f (xn)− f (x̄). (7.8)

Further, by hypothesis, there exists a z ∈ X such that z �= x̄ and

f (z)+ d(x̄, z) � f (x̄). (7.9)

Now (7.5) and (7.9) entail

f (z) � f (x̄)− d(x̄, z)

� f (x̄)− d(x̄, z)+ f (xn)− f (x̄)− d(xn, x̄)

= f (xn)− [d(xn, x̄)+ d(x̄, z)]
� f (xn)− d(xn, z).

It follows from the above inequality that z ∈ Sn+1 for all n ∈ N. Now using (7.6),
we obtain

2 f (xn+1)− f (xn) � inf
x∈Sn+1

f (x) � f (z).

Thus, we obtain

f (x̄) � lim
n→∞ f (xn) � f (z) � f (x̄)− d(x̄, z) < f (x̄)

which is a contradiction. Hence, we conclude that there exists x̄ ∈ X such that
f (x̄) = inf x∈X f (x).

Remark 7.3 Takahashi’s minimization theorem 7.12 and Ekeland’s variational prin-
ciple Theorem 7.7 are equivalent.

Proof We first prove Theorem 7.7 by using Theorem 7.12. Let

X0 = {x ∈ X : f (x) � f (x0)− εdλ(x0, x)}.
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Because x0 ∈ X0, X0 �= ∅. By lower semicontinuity of f and continuity of dλ, X0

is closed. Further, for each x ∈ X0,

εdλ(x0, x) � f (x0)− f (x) � f (x0)− inf
x∈X

f (x) � ε

and so dλ(x0, x) � 1. Thus, d(x0, x) � λ. We also have f (x) � f (x0). Finally,
we prove conclusion (c) of Theorem 7.7. Suppose, on the contrary, that for every
x ∈ X0, there exists y ∈ X such that y �= x and f (y) � f (x)− εdλ(y, x). Then we
have

εdλ(x0, y) � εdλ(x0, x)+ εdλ(x, y)

� f (x0)− f (x)+ f (x)− f (y)

= f (x0)− f (y).

This shows that y ∈ X0. Then, by Theorem 7.12, there exists x̄ ∈ X such that
f (x̄) = inf x∈X0 f (x). This contradicts our hypothesis that there exists y0 ∈ X0 with
f (y0) < f (x̄).

Now, we prove Theorem 7.9 by using Theorem 7.3. By Theorem 7.3, for any
given ε > 0 and λ = 1, there exists x̄ ∈ X such that

f (x̄) < f (x)+ εd(x, x̄) for all x ∈ X with x �= x̄ . (7.10)

We claim that f (x̄) = inf x∈X f (x).

Suppose, on the contrary, that there exists u ∈ X such that f (u) > inf x∈X f (x).

By hypothesis, there exists v ∈ X such that v �= u and

f (v)+ d(u, v) � f (u)

contradicting (7.10). Hence, we must have f (x̄) = inf
x∈X

f (x).

Remark 7.4 By using Theorem 7.12, Takahashi [585] also derived Caristi’s fixed
point theorem [129], Nadler’s fixed point theorem for set-valued map [416] and
Fan’s minimization theorem [227].

7.4 Mappings Associated with Variational Inequality

In this section, we prove sufficient conditions for the monotonicity of normal-fixed
point (in short, NFP) mappings associated with variational inequality problems over
a general closed convex set. Sufficient conditions for the strong monotonicity of its
perturbed version is also shown. These results include some well-known results in
the literature. Inspired by these results, we propose an appreciable iterative algorithm
for the variational inequality problem whose normal-fixed point map is monotone.
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Notice that it is more convenient to express the inequality (7.1) as

(x − x̄)T f (x̄) ≥ 0 for all x ∈ K . (7.11)

It is well known that the above problem can be reformulated as nonsmooth equations
such as the fixed point and normal equations. The fixed point equation is defined by

πα(x) = x − PK (x − α f (x)) = 0 (7.12)

and the normal equation is defined by

�α(x) = f (PK (x − α f (x)) = 0, (7.13)

where α > 0 is a positive scalar and PK (·) denotes the projection operator on the
convex set K , i.e.

PK (x) = arg min {‖z − x‖ : z ∈ K }.

We now introduce the normal-fixed point (or briefly, NFP) equation as follows:

	α(x) = f (PK ((1+ α)x − αPK (x − α f (x))))

+ α(PK (x − α f (x))− PK (x)) = 0. (7.14)

where α > 0 is a positive scalar and PK (·) denotes the Euclidean projection operator
on the convex set K . We call 	α the normal-fixed point (or, briefly, NFP) mapping.

Notice that the following is a well-known result about the projection operator
PK (·).
Lemma 7.1 Let K be a nonempty closed convex set in Rn. For any z ∈ Rn, we have

(x − PK (z))T (PK (z)− z) ≥ 0 ∀x ∈ K .

Proof If z ∈ K , then it must hold z = PK (z). As a consequence,

(x − PK (z))T (PK (z)− z) = 0 ∀x ∈ K .

If z /∈ K , then the direction PK (z)− z is perpendicular to the face of the convex set
K . So, it will make an acute angle θ with the direction of x − PK (z) as shown in
Fig. 7.1. Thus,

(x − PK (z))T (PK (z)− z) = 〈x − PK (z), PK (z)− z〉
= ‖x − PK (z)‖ ‖PK (z)− z‖ cos θ

≥ 0 ∀x ∈ K .

This completes the proof.
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Fig. 7.1 PK (z) is that point
of K for which
− π

2 � θ � π
2 for every x in

K

7.4.1 Normal Cone and Variational Inequalities

Let K be a nonempty subset of Rn and F : K → Rn be a mapping. Then, one can
easily see that the vector x̄ is a solution of VIP if and only if

0 ∈ F(x̄)+ NK (x̄),

where NK (x̄) is the normal cone to K at x̄ and is defined by

NK (x̄) =
{
{z ∈ Rn| for each x ∈ K , 〈z, x − x̄〉 ≤ 0}, if x̄ ∈ K ,

∅, if x̄ /∈ K .
(7.15)

Geometrically, a vector x̄ is a solution of VIP if and only if −F(x̄) ∈ NK (x̄) as
shown in the Fig. 7.2. Clearly, x̄ ∈ K is a solution of VIP if and only if

0 ∈ F(x̄)+ NK (x̄). (7.16)

The inclusion (7.16) is called a generalized equation.
A very common problem arising in equilibrium analysis (for α > 0) and opti-

mization problems (α = 1) is that of finding a point x such that

Fig. 7.2 The geometry of a
variational inequality
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f (PK ((1+ α)x − αPK (x − α f (x))))

+ α(PK (x − α f (x))− PK (x)) = 0, (7.17)

where α is a positive scalar.

Example 7.1 Let ψ be a C1 function on an open subset � of Rn containing a point
k0 of K . Then, a necessary condition for k0 to minimize ψ locally on K is that

0 ∈ dψ(k0)+ NK (k0),

where NK (k0) is the normal cone to K at k0.
If k0 satisfies (7.14) and if we put f = α dψ and x0 = k0 − dψ(k0), then we see

that PK (x0) = k0 and therefore k0 satisfies (7.13).

In what follows, ‖ · ‖ denotes the 2-norm (Euclidean norm) of vector in Rn . It is
easy to observe that x̄ solves VI(K , f ) if and only if πα(x̄) = 0. Indeed, if x̄ solves
VI(K , f ), we have

(x − x̄)T f (x̄) ≥ 0, ∀x ∈ K ,

which implies that the direction f (x̄) is perpendicular (at x̄) to the face of the convex
set K . Thus, for any given stepsize α > 0, the projection of the point y = x̄ −α f (x̄)

on K is x̄ ; that is, x̄ = PK (y); i.e.,

x̄ = PK (x̄ − α f (x̄)).

Thus, πα(x̄) = 0. So we assume that πα(x̄) = 0; i.e.,

x̄ = PK (x̄ − α f (x̄)).

Let y = x̄ −α f (x̄)). Then, the above equality implies that the projection of y on the
convex set K is equal to x̄ ; i.e., x̄ = PK (y). Therefore, by Lemma 7.1, we have

(x − PK (y))T (PK (y)− y) ≥ 0 ∀x ∈ K .

Since PK (y) = x̄ and y = x̄ − α f (x̄), the above inequality reduces to

(x − x̄)T (x̄ − (x̄ − α f (x̄))) ≥ 0 ∀x ∈ K .

Since α > 0, this inequality amounts to

(x − x̄)T f (x̄) ≥ 0 ∀x ∈ K .

Thus, x̄ is a solution of VI(K , f ).
Notice that if x̄ solves VI(K , f ), then x̄ − 1

α
f (x̄) is a solution to �α(x) = 0;

conversely, if �α(ū) = 0, then PK (ū) is a solution to VI(K , f ). On the other hand,
it turns out that if x̄ solves VI(K , f ) and πα(x̄) = 0, then x̄ − 1

α
f (x̄) is a solution to
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	α(x) = 0, and conversely, if πα(ū) = 0 and 	α(ū) = 0, then PK (ū) is a solution
to VI(K , f ).

Let S(πα) denote the solution set of πα(x). In view of above discussion and
the definition of normal-fixed point equation, we are well in a position to unify
partially the two equations, namely fixed point equation and normal equation as in
the following proposition.

Proposition 7.4 Suppose the solution set of normal-fixed point equation contains
the solution set of fixed point equation, then the solution set of the fixed point equation
is the solution set of normal equation.

Proof Let S(	α) ⊃ S(πα) �= ∅, and let ū be a zero solution of πα . Then, the
equation 	α(ū) = 0 reduces to �α(ū) = 0; that is, ū is also a zero solution of �α .

Suppose the solution set of the normal-fixed point equation contains the solution set
of normal equation. Now, there arises a natural question—Is the solution set of the
normal equation also the solution set of the fixed point equation?

One may conjecture that the answer to this problem must be negative.

Definition 7.2 A function f is said to be a P0(P)-function if for every pair (x, y)

with x �= y,
max
1≤i≤n

(x − y)i ( fi (x)− fi (y)) ≥ 0 (>). (7.18)

That is, for any x, y(x �= y), there exists at least one index i such that

(x − y)i ( fi (x)− fi (y)) ≥ 0 (>). (7.18′)

It can easily be verified, by using the technique of Ravindran and Gowda (Appendix,
p. 759 [500]) that our new class of function 	α has P0-property.

In the beginning of twenty-first century, several authors studied the P0-property
of fixed point and normal maps when K is a rectangular box in Rn , i.e. the cartesian
product of n one-dimensional intervals, for such a K , Ravindran and Gowda [500]
(respectively, Gowda and Tawhid [255]) showed that πα(x) (respectively �α(x)) is a
P0-function if f is. Notice that the monotone maps are very important special cases
of the class of P0-function. It is worth considering the following problem:

Problem. When are the mappings 	α monotone if K is a general closed convex set:

(i) Does monotonicity of f alone implies monotonicity of 	α?
(i i) Does monotonicity of f and πα implies monotonicity of 	α?
(i i i) Does monotonicity of f and �α implies monotonicity of 	α?
(iv) Does monotonicity of f , πα and �α implies monotonicity of 	α?

Intuitively, we may conjecture that the normal-fixed point map is monotone if either
the mapping(s) f or f and π or f and �α or f , πα and �α are monotone. However,
this conjecture is not true. The following exa+e shows that for a given α > 0 the
monotonicity of f in general does not imply the monotonicity of the normal-fixed
point map 	α(x).
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Example 7.2 Let K be a closed convex set given by

K = {x ∈ R3 : −∞ < x1, x2 <∞, x3 = 0}

and

f (x) =
⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2

x3

⎞

⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎝

−x2

x1

x3

⎞

⎟
⎟
⎟
⎟
⎠

.

For any x, y ∈ R3, we have that (x − y)T ( f (x)− f (y)) = (x3 − y3)
2 ≥ 0. Hence,

the function f is monotone on R3. We now show that for an arbitrary scalar α > 0
the normal-fixed point mapping is not monotone in R2. Indeed, let u = (0, 0, 0)T

and y = (1, α
2 , α2

3 )T . It is easy to verify that 	α(u) = (0, 0, 0)T and 	α(y) =
(−α

2 − α2 + α3

2 , 1− α2 − α3

2 , 0)T . Thus, we have

(u − y)T (	α(u)−	α(y)) = −α2 − α4

4
< 0,

which implies that 	α(·) is not monotone on R3.

The following example shows that for a given α > 0 the monotonicity of mappings
f and πα , in general, does not imply the monotonicity of the normal-fixed point map
	α .

Example 7.3 Let K be a closed convex set given by

K = {x ∈ R2 : −∞ < x1 <∞, x2 = 0}

and

f (x) =
(

0 −1
1 0

)(
x1

x2

)

=
(−x2

x1

)

.

For any x, y ∈ R2, we have that (x − y)T ( f (x)− f (y)) = 0. Hence, the function f
is monotone on R2. We now show that for an arbitrary scalar α > 0 the normal-fixed
point mapping is not monotone in R2. Indeed, let u = (0, 0)T and y = (−2α2, 1)T .
It is easy to verify that 	α(u) = (0, 0)T and 	α(y) = (α2,−3α2)T . Thus, we have

(u − y)T (	α(u)−	α(y)) = −6α2 < 0,

which implies that 	α(·) is not monotone on R2. However, it is interesting to note
that the fixed point mapping is monotone. It is easy to verify that πα(u) = (0, 0)T

and πα(y) = (−α, 1). Thus, we have

(u − y)T (πα(u)− πα(y)) = 2α3 + 1 > 0,
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which implies that πα(·) is monotone on R2.

The following example shows that for a given α > 0 the monotonicity of mappings
f and �α , in general, does not imply the monotonicity of the normal-fixed point map
	α .

Example 7.4 Let K be a closed convex set given by

K = {x ∈ R3 : −∞ < x2, x3 <∞, x1 = 0}

and

f (x) =
⎛

⎝
1 0 0
0 0 −1
0 1 0

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2

x3

⎞

⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎝

x1

−x3

x2

⎞

⎟
⎟
⎟
⎟
⎠

.

For any x, y ∈ R3, we have that (x − y)T ( f (x)− f (y)) = (x1 − y1)
2 ≥ 0. Hence,

the function f is monotone on R3. We now show that for an arbitrary scalar α > 0
the normal-fixed point mapping is not monotone in R3. Indeed, let u = (0, 0, 0)T

and y = (α2, α, 1)T . It is easy to verify that 	α(u) = (0, 0, 0)T and 	α(y) =
(0,−1+ α2 − α3, α − α2 − α3)T . Thus, we have

(u − y)T (	α(u)−	α(y)) = −α2 − α4 < 0,

which implies that 	α(·) is not monotone on R3. However, it is interesting to note
that the normal mapping is monotone. It is easy to verify that �α(u) = (0, 0, 0)T

and �α(y) = (α3,−1, α). Thus, we have

(u − y)T (�α(u)−�α(y)) = α5 > 0,

which implies that �α(·) is monotone on R3.

Our next example shows that monotonicity of mapping f , fixed point mapping πα and
normal mapping �α does not necessarily imply the monotonocity of normal-fixed
point mapping 	α .

Example 7.5 Let K be a closed convex set given by

K = {x ∈ R2 : −∞ < x1 <∞, x2 = 0}

and

f (x) =
(

0 1
−1 0

)
⎛

⎝
x1

x2

⎞

⎠ =
⎛

⎝
x2

−x1

⎞

⎠ .
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For any x, y ∈ R2, we have that (x− y)T ( f (x)− f (y)) = 0. Hence, the function
f is monotone on R2. We now show that for an arbitrary scalar α > 0 the normal-
fixed point mapping is not monotone in R2. Indeed, let u = (0, 0)T and y = ( α

2 , 1)T .
It is easy to verify that 	α(u) = (0, 0)T and 	α(y) = (−α2,−α2 − α

2 )T . Thus, we
have

(u − y)T (	α(u)−	α(y)) = −α3

2
− α2 − α

2
< 0,

which implies that 	α(·) is not monotone on Rn . However, it is interesting to note
that the fixed point and normal mappings are monotone. It is easy to verify that
πα(u) = (0, 0)T and πα(y) = (α, 1). Thus, we have

(u − y)T (πα(u)− πα(y)) = α2

2
+ 1 > 0,

which implies that πα(·) is monotone on Rn .
Again, we see that �α(u) = (0, 0)T and �α(y) = (0, α

2 )T . Thus, we have

(u − y)T (�α(u)−�α(y)) = α

2
> 0,

which implies that �α(·) is monotone on Rn .

From the above examples, we conclude that a certain condition stronger than the
monotonicity of f is required to guarantee the monotonicity of �α(x). One such
condition is the so called (K, θ )-projective-coercivity condition. We call f to be (K,
θ )-projective-coercive with modulus β > 0 on a set S ⊂ Rn containing a convex set
K if for any θ > 0 there exists a constant β > 0 such that

(x − y)T ((PK (wx,θ ))− ((PK (wy,θ ))) � θ‖x − y‖2

and

(x − y)T ( f (PK (wx,θ ))− f ((PK (wy,θ ))) � β[‖ f (x)− f (y)‖2 + θ‖x − y‖]2

for all x, y ∈ S and wx,θ = (1+θ)x−θ PK (x−θ f (x)), wy,θ = (1+θ)y−θ PK (y−
θ f (y)) ∈ S.

A special case of the (K , θ)-projective-coercive map is the θ -strongly projective-
monotone map with modulus c > 0 on a set S ⊂ Rn if there exists a constant c such
that c > θ > 0,

(x − y)T ((PK (wx,θ ))− ((PK (wy,θ ))) ≥ θ‖x − y‖2

(x − y)T ( f (PK (wx,θ ))− f ((PK (wy,θ ))) ≥ c‖x − y‖]2 for all x, y ∈ S.
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Especially, when S = K and θ = 0, (K , θ)-projective-coercivity condition reduces
to so-called cocoercivity condition on K . We recall that f is said to be cocoercive
with modulus β > 0 on a set S ⊂ Rn if there exists a constant β > 0 such that

(x − y)T ( f (x)− f (y) ≥ β‖x − y‖2 for all x, y ∈ S,

where

β = sup
{
γ > 0 : (x − y)T ( f (x)− f (y)) ≥ γ ‖ f (x)− f (y)‖2 for all x, y ∈ S

}
.

Evidently, such a scalar is unique and 0 < β <∞ provided that f is not a constant
mapping.

To solve some variational inequality problems, Bruck [125], Zhu and Marcotte
[624, 625] and many other researchers used cocoercivity condition. In the work of
Gabay [238], we find that this condition is used implicitly. In [621], Zhao and Li
also used the cocoercivity condition to study the strict feasibility of complementarity
problems. In [625], Zhu and Marcotte studied that in an affine case the cocoercivity
has a close relation to the property of positive semidefinite (psd)-plus matrices.

A special case of the cocoercive map is the strongly monotone and Lipschitzian
map. We recall that a mapping f is said to be strongly monotone with modulus c > 0
on the set S if there is a scalar c > 0 such that

(x − y)T ( f (x)− f (y) ≥ c‖x − y‖2 for all x, y ∈ S.

It is evident that any cocoercive map on the set S must be monotone and Lips-
chitz continuous (with constant L = 1

β
), but not necessarily strongly monotone (for

instance, the constant mapping) on the same set.
As a matter of fact, the aforementioned problem (P) is not completely unknown.

This end, we observe the following:

(1) Gabay [238] showed, but did not explicitly state, that by using the cocoercivity
condition implicitly and using properties of nonexpansive mappings, πα(x) and
�1/α(x) are monotone if the scalar α is chosen such that the map I − α f is
nonexpansive.

(2) Gabay [238] and Sibony [555] showed that πα(x) and �1/α(x) are monotone for
the strongly monotone map f if the scalar α is chosen such that the map I −α f
is contractive.

However, contrary to above observations, we notice that πα(x) and �α(x) are still
monotone (strongly monotone) even when α is chosen such that I − α f is not
nonexpansive (contractive). To illustrate this fact, let K = Rn+ and f (x) = x . Then,
we see that the function f is cocoercive with modulus β = 1. While I − α f is
not nonexpansive for α > 2, the map πα(x) remains monotone. This necessitates
to improve the result of Sibony [555] and Gabay [238]. In fact, we show that if
f is cocoercive (strongly monotone and Lipschitz continuous, respectively), the
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monotonicity (strong monotonicity respectively) of the maps πα(x) and �α(x) can be
ensured when lies in a large interval in which the map I−α f may not be nonexpansive
(contractive, respectively). The results derived in this section are not obtainable by
the proof based on the nonexpansiveness and contractiveness of maps.

In what follows, we use the standard concept “nonexpansive” map and “contrac-
tive” map in the literature to mean a Lipschitzian map with constant L = 1 and
L < 1, respectively.

The main purpose of this section is to introduce an application of the monotonicity
of 	α(x) (see, for instance, Sect. 7.4.2). This application is motivated by the globally
convergent inexact Newton method for the system of monotone equations proposed
by Solodov and Svaiter [565] and its modification proposed by Zhao and Li [621]
(See also [565, 567, 569, 622]).

In [623], Zhao and Li observed that their modified algorithms do not require
projection operations in the line-search step; however, their algorithms require the
composite of f and the projection operation PK to be nonexpansive. As a conse-
quence, the computational cost is significantly reduced. Inspiring from the techniques
of Zhao and Li [623], we propose a new modified Solodov and Svaiter method to
solve the monotone equation 	α(x) = 0.

7.4.1.1 Monotonicity of �α(x)

It is well known that if f is strongly monotone with modulus c > 0 and Lipschitz
continuous with constant L > 0, then I − α f is contractive when 0 < α < 2c

L2 (see,
for instance, Sibony [555] and Gabay [238]). Because PK is nonexpansive, this in
turn implies that πα(x) and �1/α(x) are both strongly monotone for 0 < α < 2c

L2 .

Notice also that if f is cocoercive with modulus > 0, then I−α f is nonexpansive
for 0 < α < 2, and thus, we can easily verify that πα(x) and �1/α(x) are monotone
for 0 < α < 2 (see Gabay [238], Theorem 6.2 therein).

In 2001, Zhao and Li [623] proved an improved version of the above-mentioned
results. They proved that

(i) when lies outside of the interval (0, 2c
L2 ), for instance, 2c

L2 ≤ α ≤ 4c
L2 , πα(x)

and �1/α(x) are still strongly monotone although I − α f , in this case, is not
contractive, and

(ii) when lies outside of the interval (0, 2β], for instance, 2β < α ≤ 4β, πα(x) and
�1/α(x) remain monotone although I − α f is not nonexpansive.

This new result on monotonicity (strong monotonicity) of πα(x) and �1/α(x) for
α > 2β(α ≥ 2c

L2 ) is not obtainable by using the nonexpansive (contractive) property
of I − α f . The reason is as follows: let f be cocoercive with modulus β > 0 on
the set S ⊆ Rn . We now verify that I − α f is nonexpansive on S if and only if
0 < α ≤ 2β. It is sufficient to show that if α > 0 is chosen such that I − α f is
nonexpansive on S, then we must have α ≤ 2β. In fact, if I − α f is nonexpansive,
then for any x, y in S we have
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‖x − y‖2 ≥ ‖(I − α f )(x)− (i − α f )(y)‖2

= ‖x − y‖2 − 2α(x − y)T ( f (x)− f (y))+ α2‖ f (x)− f (y)‖2,

which implies that

(x − y)T ( f (x)− f (y)) ≥ α

2
‖ f (x)− f (y)‖2.

By the definition of β, we deduce that α
2 ≤ β, the desired consequence. Similarly, let

f be strongly monotone with modulus c > 0 and Lipschitz continuous with constant
L > 0 on the set S, where

c = sup{γ > 0 : (x − y)T ( f (x)− f (y)) ≥ γ ‖ f (x)− f (y)‖2 for all x, y ∈ S}

and
L = sup{γ > 0 : ‖ f (x)− f (y)‖ ≤ γ ‖x − y‖2 for all x, y ∈ S}.

We can easily see that 0 < c < ∞ and L > 0 provided that S is not a single-point
set. It is also easy to show that I − α f is contractive if and only if 0 < α < 2c

L2 .

Because the map I − α f is not contractive (nonexpansive, respectively) for α ≥
2c
L2 (α > 2β, respectively), our result established in this section follows directly from
the proof of Sibony [555] and Gabay [238].

We now intend to improve the above-mentioned results. In fact, we prove suf-
ficient conditions for the monotonicity of normal-fixed point maps associated with
variational inequality problems over a general closed convex set. In the sequel, suffi-
cient conditions for the strong monotonicity of its perturbed version are also shown. It
may be observed that these results include some well-known results in the literature
as particular cases. More precisely, Pathak [452] proposed an appreciable modi-
fied Zhao and Li’s and Solodov and Svaiter’s iterative algorithm for the variational
inequality problem whose normal-fixed point map is monotone.

We also study the strong monotonicity of the perturbed normal-fixed point maps
defined by

	α,ε(x) = f (PK ((1+ α)x − αPK (x − α f (x))))

+ εPK ((1+ α)x − αPK (x − α f (x)))

+ α(PK (x − α f (x)))− PK (x)).

Further, when α = 1 and if f is a P0-function and K is a rectangular set, then Gowda
and Tawhid [255] showed that the perturbed mapping 	α,ε(x) is a P0-function. We
now intend to show a sufficient condition for the strong monotonicity of 	α,ε(x).
The following lemma is crucial in the proof of Theorem 7.13 stated below.
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Lemma 7.2 (i) For all x, y ∈ Rn,

(x − y)T (PK (x)− PK (y) ≤ ‖x − y‖]2.

(ii) For any α > 0, denote uz,α = z − α f (z) for all z ∈ Rn. Then

‖ux,α − uw,α‖2 ≤ ‖x − w‖2 + α2‖ f (x)− f (w)‖2.

(iii) For any α > 0 and vector b ∈ Rn, the following inequality holds for all v ∈ Rn:

α‖v‖2 + vT b ≥ −‖b‖
2

4α
.

Proof (i) By Schwarz inequality and the nonexpansive property of projection oper-
ator, we have

(x − y)T (PK (x)− PK (y) ≤ |(x − y)T (PK (x)− PK (y)|
≤ ‖x − y‖‖PK (x)− PK (y)‖
≤ ‖x − y‖2 for all x, y ∈ Rn.

(ii) By monotonicity of f , we have

‖ux,α − uw,α‖2 = ‖x − α f (x)− w− α f (w)‖2

= ‖x − w‖2 − α(x − w)T ( f (x)− f (w))+ α2‖ f (x)− f (w)‖2

≤ ‖x − w‖2 + α2‖ f (x)− f (w)‖2

for all x, w ∈ Rn.

This proves the result (ii).
(iii) Given α > 0 and b, v ∈ Rn, it is easy to check that the minimum value of
α‖v‖2 + vT b is −‖b‖2

4α
. This proves the result (iii).

We now state and prove the main result of this section.

Theorem 7.13 (Pathak [452]) Let K be an arbitrary closed convex set in Rn and
K ⊆ S ⊆ Rn. Let f : Rn → Rn be a function.

(i) if f is (K , α)-projective-coercive with modulus β > 0 on a set S ⊆ Rn contain-
ing a convex set K , then for any fixed scalar α with β > max{α + 1+ 1

4α
, α2

4 },
the normal-fixed point map 	α(x) given by (3) is monotone on the set S.

(ii) if f is α-strongly projective-coercive with modulus c > 0 on the set S ⊆ Rn and
f is Lipschitz continuous with constant L > 0, then for any two fixed scalars
α, ε satisfying c > α > 0 and ε > α(1+ αL2

4 )+ 1
4α

, the perturbed map 	α,ε(x)

is strongly monotone on the set S.
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(iii) if f is (K , α)-projective-coercive with modulus β > 0 on the set S ⊆ Rn, then
for any fixed scalar α with β > max{α + 1+ 1

4α
, α2

4 } and ε > 0 the perturbed
map 	α,ε(x) is monotone on the set S.

Proof Let α, ε be given two scalars such that α > ε ≥ 0. For any vector x, y in S,
using the notation of (3) and Lemma 7.1, we have

(x−y)T (	α,ε(x)−	α,ε(y))+ α2‖x − y‖2

= (x − y)T [ f (PK (ux,α))+ εPK (ux,α

+ αPK (ux,α)− αPK (x)− f (PK (uy,α))

− εPK (uy,α)− αPK (uy,α)− αPK (x)] + α2‖x − y‖2

≥ ε(x − y)T (PK (ux,α)− PK (uy,α))

+ (x − y)T ( f (PK (ux,α))− f (	K (uy,α)))

− 1

4
‖PK (ux,α)− PK (uy,α))‖2 − α‖x − y‖2. (7.19)

Let f be a (K , α)-projective-coercive with modulus β > 0 on a set S ⊆ Rn

containing a convex set K . Then, the inequality (7.19) gives

(x − y)T (	α,ε(x)−	α,ε(y))+ α2‖x − y‖2

≥ εα‖x − y‖2 + β[‖ f (x)− f (y)‖2

+ α‖x − y‖2] − 1

4
‖ux,α − uy,α‖2 − α‖x − y‖2

≥ [(β + ε)α − α]‖x − y‖2 + β‖ f (x)− f (y)‖2

− 1

4
[‖x − y‖2 + α2‖ f (x)− f (y)‖2]

=
[

(β + ε)α − α − 1

4

]

‖x − y‖2 +
(

β − α2

4

)

‖ f (x)− f (y)‖2. (7.20)

Setting ε = 0 in the above inequality (7.20), we have

(x − y)T (	α,ε(x)−	α,ε(y))

≥
[

βα − α2 − α − 1

4

]

‖x − y‖2|| +
(

β − α2

4

)

‖ f (x)− f (y)‖2.

For β > max{α + 1 + 1
4α

, α2

4 }, the right-hand side is nonnegative, and hence, the
map 	α is monotone on the set S. This proves the result (i).

Let β > max{α + 1 + 1
4α

, α2

4 } and ε > 0. Then, the inequality (7.20) can be
further written as
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(x − y)T (	α,ε(x)−	α,ε(y))

≥
[

(β + ε)α − α2 − α − 1

4

]

‖x − y‖2 +
(

β − α2

4

)

‖ f (x)− f (y)‖2.

Clearly, the right-hand side of the above inequality is nonnegative, and hence, the
perturbed map 	α,ε is monotone. Thus, the result (iii) is proved.

Let f be α-strongly projective-coercive with modulus c > 0 on a set S ⊆ Rn

containing a convex set K , and let f be Lipschitz continuous with constant L > 0.
Then, the inequality (7.20) gives

(x − y)T (	α,ε(x)−	α,ε(y))+ α2‖x − y‖2

≥ (εα + c − α)‖x − y‖2 − 1

4

[
‖x − y‖2 + α2‖ f (x)− f (y)‖2

]

=
(

εα + c − α − 1

4

)

‖x − y‖2 − α2

4
‖ f (x)− f (y)‖2

which yields

(x − y)T (	α,ε(x)−	α,ε(y))

≥ (εα + c − α2 − α)‖x − y‖2 − 1

4

[
‖x − y‖2 + α2‖ f (x)− f (y)‖2

]

≥
(

εα + c − α − 1

4
− α2 L2

4

)

‖x − y‖2.

Since c > α > 0 and ε > α(1+ αL2

4 )+ 1
4α

, it follows that εα+c−α− 1
4− α2 L2

4 > 0.
Hence, the perturbed map 	α,ε is strongly monotone. This proves (ii).

7.4.2 Application to Iterative Algorithm for VI(K, f )

Because the map 	α is monotone if the function f is (K , α)-projective-coercive with
modulus β > 0 and α lies in a certain interval, we can solve the (K , α)-projective-
coercive variational inequality problems via solving the system of monotone equation
	α . Recently, Solodov and Svaiter [565] proposed a class of inexact Newton method
for monotone equations as stated below. Let F(x) be a monotone mapping from Rn

into Rn .

Algorithm SS (see [565]). Choose any x0 ∈ Rn, t ∈ (0, 1), and λ ∈ (0, 1). Set
k := 0.

Inexact Newton step. Choose a psd matrix Gk . Choose μk > 0 and γk ∈ [0, 1).

Compute dk ∈ Rn such that
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0 = F(xk)+ (Gk + μk I )dk + ek,

where ‖ek‖ ≤ γkμk‖dk‖. Stop if dk = 0. Otherwise,

Line-search step. Find yk = xk + αkdk, where αk = tmk with mk the smallest
nonnegative integer such that

−F(xk + t kdk)T dk ≥ λ(1− γk)μk‖dk‖2.

Projection step. Compute

xk+1 = xk − F(yk)T (xk − yk)

‖F(yk)‖2
F(yk).

Set k := k + 1, and repeat.
In [565], Solodov and Svaiter pointed out that the above inexact Newton step is

motivated by the idea of the proximal point algorithm. Algorithm SS has an advan-
tage over other Newton methods in that the whole iteration sequence is globally
convergent to a solution of the system of equations, provided a solution exists, under
no assumption on other than continuity and monotonicity.

Setting F(x) = 	α , from Theorem 7.13 above and following the technique of
Theorem 2.1 in [565], we have the following result.

Theorem 7.14 Let f be a (K , α)-projective-coercive map with modulus β > 0.
Substitute F(x) in Algorithm SS by 	α(x), where β > max{α + 1 + 1

4α
, α2

4 }. If μk

is chosen such that C2 ≥ μk ≥ C1‖	α(xk)‖, where C1 and C2 are two constants,
then Algorithm SS converges to a solution of the variational inequality provided that
a solution exists.

While Algorithm SS can be used to solve the monotone equation 	α , each line-search
step needs to compute the value of 	α(xk+βmdk), which represents a major cost of
the algorithm in calculating projection operations. Hence, in general cases, Algorithm
SS has high computational cost per iteration when applied to solve 	α = 0. To
reduce this major computational burden, we propose the following algorithm which,
of course, needs nonexpansiveness of f ◦ PK and the evaluation of the function f
in line-search steps.

Algorithm 7.1 Let K be any closed convex subset of Rn . Assume that f ◦ PK is
nonexpansive. Choose x0 ∈ Rn, t ∈ (0, 1) and γ ∈ [0, 1]. Set k := 0.

Inexact Newton step. Choose a positive semidefinite matrix Gk . Choose μk > 0 and
γk ∈ [0, 1). Compute dk ∈ Rn such that

0 = 	α(xk)+ (Gk + μk I )dk + ek, (7.21)

where ‖ek‖ ≤ γkμk‖dk‖. Stop if dk = 0. Otherwise,
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Line-search step. Find yk = xk + skdk, where sk = tmk with mk the smallest
nonnegative integer and

‖ f (xk + t kdk)− f (xk)‖ ≤ (1− γ )μk − 2(1+ 4α)t k

4α
‖dk‖.

Projection step. Compute

xk+1 = xk − 	α(yk)T (xk − yk)

‖	α(yk)‖2
	α(yk). (7.22)

Set k := k + 1. Return.
The above algorithm has the following crucial property.

Lemma 7.3 Let 	α(x) be given as (7.14). At kth iteration, if mk is the smallest non-
negative integer such that (7.22) holds, then yk = xk + tmk dk satisfies the following
equation:

−πα(xk + tmk dk)T dk ≥ 1

2
(1− γ )μk‖dk‖2.

Proof By the definition of 	α(x), the nonexpansiveness of the projection operator,
and (7.22), we have

‖	α(xk + tmk dk)−	α(xk)‖ = ‖ f (PK ((1+ α)(xk + tmk dk)

− αPK ((xk + tmk dk)− α f (xk + tmk dk)))

+ α(PK ((xk + tmk dk)− α f (xk + tmk dk))

− PK ((xk + tmk dk))− f (PK ((1+ α)(xk)

− αPK ((xk)− α f (xk)))− α(PK ((xk)

− α f (xk))− PK (xk))‖
≤ (1+ 4α)tmk‖dk‖ + 2α‖ f (xk + tmk dk)− f (xk)‖
≤ 1

2
(1− γ )μk‖dk‖. (7.23)

Also,

−πα(xk + tmk dk)T dk = −[πα(xk + tmk dk)− πα(xk)]T dk − πα(xk)T dk

≥ −‖πα(xk + tmk dk)− πα(xk)‖ ‖dk‖ − πα(xk)T dk .

(7.24)

By (7.21) and positive semidefiniteness of G K , we have
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−πα(xk)T dk = (dk)T (Gk + μk I )dk + (ek)T dk

= μk(d
k)T dk + (dk)T Gkdk + (ek)T dk + (ek)T dk

≥ μk‖dk‖2 − γμk‖dk‖2

= (1− γ )μk‖dk‖2. (7.25)

Combining (7.23)–(7.25) yields

−πα(xk + tmk dk)T dk ≥ 1

2
(1− γ )μk‖dk‖2.

This completes the proof.

Using Lemma 7.3 and following the line of the proof of Theorem 2.1 in [565], it
is not difficult to prove the following convergence result.

Theorem 7.15 Let f : Rn → Rn be a continuous function such that there exists
a constant α > 0 such that 	α(x) defined by (7.14) is monotone. Choose Gk and
k such that ‖Gk‖ ≤ C ′ and μk = C‖	α(x)‖p, where C ′, C and p are three fixed
positive numbers and p ∈ (0, 1]. Then, the sequence {xk} generated by Algorithm
7.1 converges to a solution of variational inequality provided that solution exists.

Observation

• Algorithm 7.1 can solve the variational inequality whose fixed point mapping
	α(x) is monotone for some α > 0. Since the (K , α)-projective-coercive f
implies the monotonicity of the functions 	α(x) for suitable choices of the value of
α, Algorithm 7.1 can locate a solution of any solvable (K , α)-projective-coercive
variational inequality problem. This algorithm is an advantage over Algorithm SS
in that it does not carry out any projection operation in the line-search step; how-
ever, we need the composite of f and projection operation to be nonexpansive,
and hence, the computational cost is significantly reduced.

• In this section, we have shown some sufficient conditions for the monotonicity
(strong monotonicity) of the normal-fixed point (NFP) mappings associated with
the variational inequalities. This algorithm can be viewed as a modification of
Solodov and Svaiter’s and Zhao and Li’s method with significantly reduced com-
putational cost.

7.5 Variational Calculus

The calculus of variations has its origin in the generalization of the classical notion of
maxima or minima of function of a single variable or more variables. The history of
calculus of variations traced back to the year 1696 when Johann Bernoulli advanced
the problem of the brachistochrone (see, Elsgolts [222]). Notice that several physical
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laws can be deduced from concise mathematical principles to the effect that a certain
functional in a given process attains a maximum or minimum. In mechanics, we
have the principle of least action, the principle of conservation of momentum and
the principle of conservation of angular momentum. Likewise, we have Fermat’s
principle in optics and the principle of Castigliano in the theory of elasticity.

The aim of calculus of variations is to explore methods for finding the maximum
or minimum of a functional defined over a class of functions. As a matter of fact,
variable quantities called functionals play an important role in many problems arising
in analysis, mechanics, geometry, etc.

Functional—By a functional, we mean a quantity whose values are determined by
one or several functions. Thus, one might say that a functional is a kind of function,
where the independent variable is itself a function (or curve).

The following are examples of functionals:

Example 7.6 Let y(x) be an arbitrarily continuously differentiable function, defined
on the interval [a, b]. Then, the formula

I [y] =
∫ b

a
y′2(x) dx

defines a functional on the set of all such functions y(x).

Example 7.7 Let F(x, y, z) be a continuous function of three variables. Then, the
expression

I [y] =
∫ b

a
F[x, y(x), y′(x)] dx, (7.26)

where y(x) ranges over the set of all continuously differentiable functions defined
on the interval [a, b], which defines a functional. Some special cases of F(x, y, z)
are as folows:

(i) if F(x, y, z) = √1+ z2, then I [y] is the length of the curve y = y(x),
(i i) if F(x, y, z) = z2, then I [y] reduces to the case considered in Example 7.6.

We now indicate some typical examples of variational problems, by which we
mean problems involving the determination of maxima and minima of functionals.

1. Find the shortest plane curve joining two points A and B, i.e. find the curve
y = y(x) for which the functional

∫ b

a

√
1+ y′2dx

achieves its minimum. The curve in question turns out to be the straight-line
segment joining A and B.

2. Let A and B be two fixed points. Then, the time it takes a particle to slide under the
influence of gravity along some path joining A and B depends on the choice of the



550 7 Variational Methods and Optimization

path (curve) and hence is a functional. The curve such that the particle takes the
least time to go from A to B is called the brachistochrone. The brachistochrone
problem was posed by John Bernoulli in 1696 and played an important part in
the development of the calculus of variations. The problem was solved by John
Bernoulli, James Bernoulli, Newton and L’Hospital. The brachistochrone turns
out to be a cycloid, lying in the vertical plane and passing through A and B.

3. The following variational problem, called the isoperimetric problem, was solved
by Euler: among all closed curves of a given length I, find the curve enclosing
the greatest area. The required curve turns out to be a circle.

All of the above problems involve functionals which can be written in the form

∫ b

a
F(x, y, y′)dx .

Such functionals have a “localization property” consisting of the fact that if we
divide the curve y= y(x) into parts and calculate the value of the functional for each
part, the sum of the values of the functional for the separate parts equals the value
of the functional for the whole curve. It is just these functionals which are usually
considered in the calculus of variations. As an example of a “nonlocal functional”,
consider the expression

∫ b
a x

√
1+ y′2dx

∫ b
a

√
1+ y′2dx

which gives the abscissa of the center of mass of a curve y = y(x), a � x � b,
made out of some homogeneous material.

Definition 7.3 A functional I [y(x)] attains maximum on a curve y = y0(x), if the
value of I on any curve close to y = y0(x) does not exceed I [y0(x)]. This means
that

�I = I [y(x)] − I [y0(x)] � 0.

Further, if �I � 0 and �I = 0 only on y = y0(x), we say that the functional
I [y(x)] attains strict maximum on y = y0(x).

If �I = I [y(x)] − I [y0(x)] � 0 for all curves close to y = y0(x), then we say
that the functional I [y(x)] attains minimum on y = y0(x) and the strict minimum
is defined in the same way.

The following result easily follows from Definition 7.3, so we omit the details.

Theorem 7.16 If a functional I [y(x)] attains a maximum or minimum on y = y0(x),
where the domain of definition belongs to certain class, then at y = y0(x) we have

δ I = 0.
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7.5.1 Euler–Lagrange Equation

Let us examine the extremum of the functional

I [y(x)] =
∫ b

a
F(x, y, y′) dx (7.27)

subject to boundary conditions y(a) = y1 and y(b) = y2, where y1 and y2 are
prescribed at the fixed points a and b.

In this section, we derive the simplest and most basic result of the calculus of
variations; we solve the first problem of the calculus of variations. The problem is: we
seek a function y(x) from among a maximally inclusive comparison set of continuous
and twice differentiable but otherwise arbitrary functions Y (x) connecting given
endpoints, (a, y(a)) and (b, y(b)), that make a particular definite integral,

I [Y (x)] =
∫ b

a
F(x, Y (x), Y ′(x)) dx (7.28)

stationary. Here, the integrand F(x, Y, Y ′) is itself a continuous and thrice differen-
tiable function of x, Y, and Y ′. Our notation underlines the distinction between the
set of comparison functions Y (x) and the particular member y(x) which is actual or
true.

Because the integral I is not a function of one or even a countably infinite number
of discrete parameters, but is a function of a function, that is a functional or expression
which assigns a number to a function, a new method is required for finding the
extremizing function y(x). That new method is the “calculus of variations”.

To initiate the method, we parameterize Y (x) with ε and carefully choose ε so
that ε = 0 reduces the comparison function Y (x) to the true function y(x). Thus,
by construction, I (ε) realizes a stationary value when ε = 0, that is I ′(ε) = 0 when
ε = 0. We will exploit this property in determining the functional form of y(x).

First, construct the comparison functions Y (x) out of the supposed true or extrem-
izing function y(x) and another set of arbitrary functions η(x) scaled by the parameter
ε so that

Y (x) = y(x)+ εη(x). (7.29)

Because we limit the comparison set to continuous, twice differentiable functions
and y(x) is a special member of that set, the functions η(x) are also continuous and
twice differentiable. Then, we can differentiate equation (7.29) and arrive at

Y ′(x) = y′(x)+ εη′(x). (7.30)

Again, since the endpoints of all possible Y (x) are the same, that is Y (a) = y(a) = y1

and Y (b) = y(b) = y2,
η(a) = 0 and η(b) = 0. (7.31)
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Substituting expressions (7.29) and (7.30) for Y (x) and Y ′(x) into the integral
(7.28) yields

I (ε) =
∫ b

a
F(x, y(x)+ η(x), y′(x)+ η′(x)) dx . (7.32)

This I (ε) has the desired property: ε = 0 is a stationary value of I (ε), that is
I ′(ε) = 0 when ε = 0, because ε = 0 renders Y (x) = y(x) which by construction
makes the integral I stationary. Next, we differentiate I (ε) with respect to ε under
the integral sign of Eq. (7.32) and find that

I ′(ε) =
∫ b

a

[(
∂ F

∂Y

)

η(x)+
(

∂ F

∂Y ′

)

η′(x)

]

dx (7.33)

where we have remembered that Y = y + εη. Integrating the second term by parts
yields

I ′(ε) =
∫ b

a
η(x)

[(
∂ F

∂Y
− d

dx

(
∂ F

∂Y ′

)]

dx

+
(

∂ F

∂Y ′

)

η(x)

∣
∣
∣
b
−

(
∂ F

∂Y ′

)

η(x)

∣
∣
∣
a
. (7.34)

Since η(x) vanishes at the endpoints, the two surface terms,
(

∂ F
∂Y ′

)
η(x)

∥
∥
∥

b
and

(
∂ F
∂Y ′

)
η(x)

∥
∥
∥

a
, vanish and (7.34) reduces to

I ′(ε) =
∫ b

a
η(x)

[(
∂ F

∂Y
− d

dx

(
∂ F

∂Y ′

)]

dx . (7.35)

Finally, recall that I (ε) was constructed so that I ′(ε) = 0 when ε = 0 and also
that ε = 0 collapses Y (x) into y(x). Therefore, setting ε = 0 changes equation
(7.35) into ∫ b

a
η(x)

[(
∂ F

∂y
− d

dx

(
∂ F

∂y′

)]

dx = 0 . (7.36)

Now, the η(x) are quite arbitrary except for continuity, smoothness and vanishing
endpoint conditions; otherwise, η(x) may have many wiggles or none at all or it may
vanish over part of its range and be very large in the rest. Integral (7.36) can vanish
for each and every one of these diverse possibilities as required if and only if

∂ F

∂y
− d

dx

(
∂ F

∂y′

)

= 0. (7.37)
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Fig. 7.3 a True ray y(x), a possible ray from the comparison set Y (x), and the difference function
η(x); b A continuous function which is positive in an interval but vanishes outside

If this were not the case and ∂ F
∂y − d

dx

(
∂ F
∂y′

)
�= 0 for some values of x within a subin-

terval of the interval [x1, x2], then we could find a continuous, twice differentiable
function η(x) which vanished outside this subinterval but was positive wherever

∂ F

∂y
− d

dx

(
∂ F

∂y′

)

> 0

and negative whenever
∂ F

∂y
− d

dx

(
∂ F

∂y′

)

< 0,

thus contradicting the requirement (7.37). This argument establishes the fundamental
lemma of the calculus of variations. More precisely, we have the following (Fig. 7.3a):

Lemma 7.4 (Fundamental Lemma) Let �(x) be continuous in the closed interval
[a, b]. If for every continuous function η(x),

∫ b

a
�(x)η(x)dx = 0, (7.38)

then �(x) ≡ 0 on [a, b].
Proof Suppose, on the contrary, that �(x) �= 0 (positive, say) at a point x = x̄ in
a � x � b. By virtue of the continuity of �, it follows that �(x) �= 0 and maintain
positive sign in a small neighborhood x0 � x � x1 of the point x̄ . Because η is an
arbitrary continuous function, we might choose η(x) such that η(x) remains positive
in x0 � x � x1, but vanishes outside this interval. It then follows from (7.38) that
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∫ b

a
�(x)η(x)dx =

∫ x1

x0

�(x)η(x)dx > 0 (7.39)

since the product �(x)η(x) remains positive everywhere in [x0, x1]. This contradicts
(). Thus, our supposition �(x) �= 0 must be false and hence �(x) ≡ 0 on [a, b].

Equation (7.37), known as the Euler–Lagrange equation, is the formal solution
to the first problem of the calculus of variations. The integral curves of this equation
are known as extremals. Note that the functional (7.27) can attain an extremum only
on extremals. On expanding (7.37), we find that

Fy − Fxy′ − Fyy′ y
′ − Fy′ y′ y

′′ = 0 (7.37′)

which is, in general, a second-order differential equation in y(x). The two arbitrary
constants appearing in the solution y(x) are determined from the boundary conditions
y(x1) = y1 and y(x2) = y2.

7.5.2 Variational Problems for Functionals

In this section, we examine the extremum of the functional of the form

I [y(x)] =
∫ b

a
F(x, y1(x), y2(x), . . . , yn(x), y′1(x), y′2(x), . . . , y′n(x)) dx, (7.40)

where the functional F is differentiable three times w.r. to all its arguments.
To find the necessary conditions for the extremum of the functional (7.40), we

consider the following boundary conditions for y1(x), y2(x), . . . , yn(x) :

BC I : y1(a) = C1, y2(a) = C2, . . . , yn(a) = Cn

BC I I : y1(b) = C ′
1, y2(b) = C ′

2, . . . , yn(a) = C ′
n

where C1, C2, . . . , C ′
1, C ′

2, . . . are constant.
Let us vary only one of the functions yi (x) (i = 1, 2, . . . , n) and keep the others

fixed. Then, the functional I reduces to a functional dependent on, say, only one of
the functions yi (x). Thus, the function yi (x) having a continuous derivative must
satisfy Euler–Lagrange equation

Fyi −
d

dx
Fy′i = 0

where the boundary conditions on yi (x) at x = a and x = b are utilized from BC I
and BC II.
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Since this argument applies to any functions yi (x) (i = 1, 2, . . . , n), we obtain a
system of second-order differential equations:

Fyi −
d

dx
Fy′i = 0 (i = 1, 2, . . . , n). (7.41)

These define, in general, a 2n-parameter family of curves in the space and provide
the family of extremals for the given variational problem.

7.5.3 Isoperimetric Problem

Suppose we seek to find the curve among all closed curves of a given length that
encloses the greatest area. In such problems, it is necessary to a given integral

I =
∫ b

a
F(x, y, y′) dx (7.42)

maximum or minimum while keeping another integral

J =
∫ b

a
G(x, y, y′) dx (7.43)

constant, with one or more constraint, say for example J = α(constant). Such
problems are called isoperimetric problems and generally solved by the method
of Lagrange’s multiplier method. So, we take

I + λJ =
∫ b

a
(F + λG)(x, y, y′) dx =

∫ b

a
H(x, y, y′) dx, say

where H = F + λG.

Now, the condition for
∫ b

a
H(x, y, y′) dx to be extremum is

∂ H

∂y
− d

dx

(
∂ H

∂y′

)

= 0.

Next, we shall determine the values of constants of integration and λ by boundary
conditions and the given integral J .

Example 7.8 Find the extremal of the functional I =
∫ π

0
(y′2 − y2) dx under the

boundary conditions y(0) = 0, y(π) = 1 and subject to constraint
∫ π

0
y dx = 1.
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Solution. To maximize the integra I =
∫ π

0
(y′2 − y2) dx , we take F = y′2 − y2 and

G = y; therefore, we write

H = F + λG = y′2 − y2 + λy.

Now, H must satisfy Euler–Lagrange equation ∂ H
∂y − d

dx

(
∂ H
∂y′

)
= 0; therefore, we

have

λ− 2y − d

dx
(2y′) = 0;

this entails

y′′ + y = λ

2
.

Solving this second-order linear differential equation and applying boundary condi-
tions, we get

y = −1

2
cos x + C2 sin x + 1

2
.

Finally, the constraint condition
∫ π

0
y dx = 1 yields

y = 1

2
(1− cos x)+ 2− π

4
sin x .

7.5.4 Functionals Depending on Higher-Order Derivatives

Let us now consider the extremum of a functional of the form

I [y(x)] =
∫ b

a
F(x, y(x), y′(x), . . . , y(n)(x)) dx, (7.44)

where we assume F to be differentiable n + 2 times w.r.to all the arguments. The
boundary conditions are taken in the form

y(a) = y1, y′(a) = y′1, . . . , y(n−1)(a) = y(n−1)
1 , (7.45a)

y(b) = y2, y′(b) = y′2, . . . , y(n−1)(b) = y(n−1)
2 . (7.45b)

Invoking the fundamental lemma of calculus of variations, the function y = y(x)

which extremizes I satisfies

∂ F

∂y
− d

dx
Fy′ + d2

dx2
Fy′′ − · · · + (−1)n dn

dxn
Fy(n) = 0 (7.46)
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which is known as the Euler–Poisson equation.
Clearly, this is a differential equation of the order 2n, and hence, its solution

involves 2n arbitrary constants. These are found by using the 2n boundary conditions
(7.45a) and (7.45b).

7.5.5 Functionals Dependent on Functions of Several
Independent Variables

In the preceding sections, we have considered Euler’s equations in variational prob-
lems for determining extremals involves ordinary differential equations. We extend
this to the problem of determining the extrema of functionals involving multiple
integrals leading to one or more partial differential equations.

Let us consider the problem of finding an extremum of the functional

J [u(x, y)] =
∫∫

D

F(x, y, u, ux , uy) dxdy (7.47)

over a region of integration D by determining u which is continuous and has continu-
ous derivatives up to the second order and takes on prescribed values on the boundary
∂ D of D. Furthermore, we assume that F is thrice differentiable.

Invoking the fundamental lemma of calculus of variations, the function u =
u(x, y) which extremizes J satisfies

Fu − ∂

∂x
Fux −

∂

∂y
Fuy = 0. (7.48)

The extremizing function y is determined from the solution of the partial differential
equation (7.48) which is known as Euler–Ostrogradsky equation.

Notice that if the integrand of a functional J contains derivatives of order higher
than two, then by a straightforward extension of above analysis, we may derive a
modified Euler–Ostrogradsky equation for determining functionals. For example, if
the extremal functional is

J [u(x, y)] =
∫∫

D

F(x, y, u, ux , uy, uxx , uxy, uyy) dxdy,

then we get the equation for extremals as

Fu − ∂

∂x
Fux −

∂

∂y
Fuy +

∂2

∂x2
Fuxx +

∂2

∂x∂y
Fuxy +

∂2

∂y2
Fuyy = 0.
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7.5.6 Variational Theory of Eigenvalue Problems

In this section, we discuss applicability of variational theory to obtain bounds on
the eigenvalues of a Stürm–Liouville problem. Assume that P(x) and Q(x) are two
given functions, where Q is continuous and P is continuously differentiable on the
interval [a, b] and P(x) > 0 in [a, b]. Consider the quadratic functional

I [y(x)] =
∫ b

a
[P(x)y′2 + Q(x)y2] dx (SL)

subject to the boundary conditions

y(a) = 0, y(b) = 0. (BC)

For the extremum of I [y(x)], Euler’s equation gives

[P(x)y′(x)]′ − Q(x)y(x) = 0. (E)

To investigate the quadratic functional (SL) satisfying P(x) > 0, we consider the
values of the functional (SL) for the functions y(x) satisfying the constraint

∫ b

a
w(x)(y(x))2 dx = 1, (7.49)

where w(x), called weight function, is a continuous function satisfying the condition
w > 0 in [a, b]. By (7.49), we can see easily that the values of I [y] are bounded
below. Indeed, we have

I [y] � min
x∈[a,b](w(x))−1 Q(x).

Suppose y = y1(x) is the function satisfying the boundary conditions (BC) and the
normalizing condition (7.49) for which I [y] attains the minimum value given above.
Using the principle of Lagrange multipliers, it can be easily shown that y1(x) satisfies

[P(x)y′1(x)]′ − [Q(x)− λ1w(x)]y1(x) = 0, (7.50)

where λ1 is the Lagrange multiplier. We write the equation in the form

L[y1] = λ1w(x)y1, (7.51)

where the operator L is given by L[y] = −[P(x)y′(x)]′ + Q(x)y(x). Notice that L
is a linear operator in the corresponding function space. Equation (7.51) shows that
y1 is an eigenfunction corresponding to the eigenvalue λ1.

After having determined the function y1(x), we proceed to determine the function
y2(x) which minimize the functional (SL) satisfying the boundary conditions and
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the constraints ∫ b

a
wy2 dx = 1 and

∫ b

a
wyy1 dx = 0.

This function can again be found by the method of Lagrange multipliers to satisfy
the equation Ly2 = Cwy1 + λ2wy2. Now multiplying both sides of this equation by
y1 and integrating w.r.to x from a to b and using (7.51) and above constraints, we
obtain C = 0. Thus, we find that

Ly2 = λ2wy2

showing, thereby, that y2(x) is an eigenfunction of the operator L with eigenvalue
λ2. Hence, we have an infinite sequence y1(x), y2(x), y3(x), . . . of eigenfunctions
of L which satisfy the given boundary conditions.

Observation

• The infinite sequence of eigenfunctions y1(x), y2(x), y3(x), . . . are all mutually
orthogonal w.r.to the weight function w(x). All these functions satisfy the nor-
malized condition (7.49). Moreover, it is convenient to interpret these functions as
elements of Hilbert space L2[a, b] such that the operator L defined on the subspace
of functions satisfying the boundary conditions (BC) is self-adjoint.

• I [y1] � I [y2] � I [y3] � · · · and that the sequence I [yn] is infinitely large because
if we impose an additional constraint the class of functions under consideration
becomes narrower so that the minimum attained on this restricted class can only
increase.

To illustrate the eigenvalue problem as discussed above, let us consider the func-
tional

I [y] =
∫ l

0
y′2 dx

subject to the boundary conditions

y(0) = y(l) = 0

and the constraint (7.49) with w(x) ≡ 1. Then, (7.51) becomes y′′ + λy = 0, and
the eigenvalues and the normalized eigenfunctions are given by

yn(x) =
√

2

l
sin

nπx

l
, λn =

(nπ

l

)2
, n = 1, 2, 3, . . . .

Notice that the factor
√

2
l is the normalization constant introduced to make the norms

of the eigenfunctions equal to unity.
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7.5.7 Variational Principle of Least Action

Suppose there is a system of n particles of masses mi (i = 1, 2, . . . , n) located at
(xi , yi , zi )(i = 1, 2, . . . , n). Suppose the given system is conservative. According
to Hamiltonian principle of least action for a system of n particles,

∫ t2

t1

L dt =
∫ t2

t1

(T −U ) dt

is an extremum for the system for fixed terminal times where the kinetic energy T
is given by

T = 1

2

n∑

i=1

mi (ẋ2
i + ẏ2

i + ż2
i )

and the potential energyU is independent of time t . The Lagrangian L is the difference
between kinetic and potential energies, and the Hamiltonian H for this system is

H =
n∑

i=1

mi (ẋ2
i + ẏ2

i + ż2
i )− (T −U ) = T +U,

which does not involve t explicitly and is the total energy of the system. Therefore,
H remains constant throughout the motion. Hence, for a conservative dynamical
system, we find that T +U is constant along each extremal; that is, the total energy
of a conservative system does not change during the motion of the system. Thus, for
the given system of particles, Hamiltonian variational principle takes the form

δ

∫ t2

t1

(T −U ) dt = δ

∫ t2

t1

[2T − (T −U )] dt = 0.

This simple form, owing to δ(T +U ) = δ(constant) = 0, leads to

δ

∫ t2

t1

2T dt = 0, (7.52)

which is referred to as the variational principle of least action.

7.6 Variational Methods

The term “variational method” refers to a large collection of optimization methods.
In the classical sense, these methods involve finding the extremum of an integral
depending on an unknown function and its derivatives. There are a number of quali-
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tative features that are shared across variational formulation. The primary component
is an optimization problem. The problem of interest is either transformed into a vari-
ational problem or directly formulated as such based on a principle as in maximum
entropy estimation. The quantity to be optimized is typically an unknown function
which in simple cases may be reduced to a vector by taking function values at dis-
crete points. The solution to variational problem is often in terms of fixed point
equations that capture necessary condition for optimality. Mean field equations and
Euler–Lagrange equations are prime examples of fixed point equations. However, we
notice that this classical definition and accompanying calculus of variation no longer
adequately characterize modern variational methods. Modern variational approaches
have become indispensable tools in various fields such as control theory, optimiza-
tion, statistics, economics, as well as machine learning.

7.6.1 Rayleigh–Ritz Method

The essence of the Rayleigh–Ritz method lies on the fact that it tells us to forego
looking for an exact solution and to look instead for an approximate solution from
within a (well selected) finite set of functions. More explicitly, the basic idea of this
method is that the values of the functional I [x] are taken not on arbitrary admissible
curves but on linear combinations of the form

yn =
n∑

i=1

ci fi (x).

where c’s are constants and f1(x), f2(x), . . . , fn(x), . . . constitute a suitable set of
functions. The above linear combination should be admissible in the given variational
problem. This implies certain restrictions on the above sequence. On such linear
combinations, I [y(x)] reduces to a function ψ(c1, c2, . . . , cn) of the coefficients
c1, c2, . . . , cn that are determined from the system

∂ψ

∂ci
= 0 (i = 1, 2, . . . , n).

Passing to the limit as n →∞, if the limit exists, we get the solution of the variational
problem as

y =
∞∑

i=1

ci fi (x).

If we do not take the limit, then we obtain an approximate solution of the variational
problem (see, Myskis [415]).
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Notice that for the functions

y =
∞∑

i=1

ci fi (x).

to be admissible, they should satisfy the boundary conditions of the variational prob-
lem apart from satisfying the requirements of continuity or smoothness. If the bound-
ary conditions are linear and homogeneous, e.g. y(x1) = 0 = y(x2), then the easiest
way to choose Wi (x) is as follows:

fi (x) = (x − x1)(x − x2)ψi (x)

or some other functions satisfying

fi (x1) = fi (x2) = 0.

If the conditions are not homogeneous, e.g. y(x1) = y(x2), where at least one of
y1 and y2 are not zero, then we seek a solution of the form

yn =
n∑

i=1

ci fi (x)+ f0(x), (7.53)

where fi (x), i = 0, 1, 2, . . . are known as coordinate functions. The boundary con-
ditions are

f0(x1) = y1, f0(x2) = y2 fi (x1) = fi (x2) = 0 (7.54)

for i = 1, 2, . . . , n.
It is important to note that the collection of functions fi (x), i = 1, 2, . . . , n men-

tioned before may be regarded as a part of an infinite sequence { fn}∞n=1 of functions
fn which are linearly independent and complete in the functions y ∈ C1[x1, x2], say,
satisfying y(x1) = 0, y(x2) = 0. It may be readily shown the system of functions

fi = xi−1(x − x1)(x − x2), i = 1, 2, . . . (7.55)

or

fk(x) = sin
kπ(x − x1)

x2 − x1
, k = 1, 2, . . . (7.56)

is linearly independent and complete in C1[x1, x2].
Observation

1. If the Rayleigh–Ritz method is employed to determine the absolute minimum
of a functional, then the approximate value of the minimum of the functional is
obtained in excess, since the minimum of the functional on all admissible classes
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of curves cannot exceed the minimum of the same functional on a subclass of the
form

yn =
n∑

i=1

ci fi (x).

2. Using the same argument, we may say that if the Rayleigh–Ritz method is used
to obtain the maximum of the functional, then the approximate value of the max-
imum is obtained in defect.

Remark 7.5 The conditions for the convergence of the sequence mentioned above
by the Rayleigh–Ritz method and the determination of the speed of convergence for
some specific but frequently occurring functionals were worked out by N.M. Krylov
and N. Bololyubov (see, Elsgolts [222]).

Notice that the estimates made by Krylov and Bololyubov are so complicated that
they are impractical in concrete situations: for this reason, to test the accuracy of the
results obtained by Rayleigh–Ritz method, we ordinarily use the following procedure
(which is mathematically not rigorous but nevertheless sufficiently reliable). After
calculating yn(x) and yn+1(x), their values are compared at several values of the
interval [x1, x2]. If their values coincide with the limits of desired accuracy, then the
solution of the variational problem is taken as yn . But if these values do not agree at
several chosen points, we compute yn+2 and compare the values yn+1 and yn+2. This
process is repeated till the values of yn+k(x) and yn+k+1 agree within the limits of
desired accuracy.

Example 7.9 Find the extremum of the functional

I [y(x)] =
∫ 1

0

(
y′2 + y2

)
dx, y(0) = 0, y(1) = 1

using the Rayleigh–Ritz method.

Solution. It can be readily shown by solving the Euler equation that the exact solution
is

yex = sinh x

sinh 1
.

Using the above method, we put f0(x) = x in (7.53) and take fi (x) given by (7.55)
as the coordinate functions. We first take n = 1, which means that we seek an
approximate solution of the form

y = x + cx(1− x).

Substituting this in the given functional of the form

I = 11

30
c2 + 1

6
c + 4

3
.
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Equating d I
dc to zero, we find c = − 5

22 . Thus,

y1app. = x − 5

22
x(1− x). (7.57)

Next, for n = 2, we take the approximate solution as

y2app. = x + c1x(1− x)+ c2x2(1− x). (7.58)

Clearly, the functions x(1− x) and x2(1− x) are linearly independent.
Substituting (7.58) in the functional and equating to zero ∂ I

∂c1
and ∂ I

∂c2
, we get

11

15
c1 + 11

30
c2 + 1

6
= 0,

11

30
c1 + 2

7
c2 + 1

10
= 0.

Solving these equations, we get c1 = −0.1459, c2 = −0.1628. Hence, (7.58)
becomes

y2app. = 0.8541 x − 0.0169 x2 + 0.1628 x3. (7.59)

It would be instructive to compare the exact solution with the approximate solutions
(7.57) and (7.59). The following table gives the results of comparison between exact
solution and first/second approximated solution:

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
yex 0.000 0.085 0.171 0.259 0.349 0.443 0.541 0.645 0.755 0.874 1.0
y1app. 0.000 0.079 0.163 0.252 0.345 0.443 0.545 0.652 0.763 0.893 1.0
y2app. 0.000 0.085 0.171 0.259 0.349 0.443 0.541 0.645 0.755 0.874 1.0

Thus, we find that with a two-term approximation, the exact solution practically
coincides with the approximate solution.

Example 7.10 Minimize the integral

I [y] =
∫ l

−l

(∫ l

−l

y′(s)
x − s

ds

)

y(x)dx

subject to the constraint

J [y] =
∫ l

−l
y(x)dx = S = constant

and the boundary conditions y(l) = y(−l) = 0.
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Solution. This is an aerodynamic problem (see [415]) where the value of the func-
tional I [y] is proportional to the drag experienced by an aeroplane with a streamlined
wing of finite span 2l (the compressibility of the air and the frictional force being
neglected). The integral J [y] is the lift force, and y(x) gives the dependence of the
circulation of air flux round the wing of the aeroplane. Thus, the problem reduced
to the determination of the distribution of circulation along the wing so that the drag
of the aeroplane is minimum subject to a given lift force.

We introduce a change of the independent variable x = −l cos θ so that the ends
of the wing now correspond to θ = 0 and θ = π . We seek a solution in the form

y =
∞∑

j=1

c j sin jθ, (7.60)

which satisfies the boundary conditions y = 0 at θ = 0 and π corresponding to
y(−l) = y(l) = 0.

Substituting (7.60) in the equation of constraint J [y] = S, we get c1 = 2S/(πl).
Again, substitution of (7.60) in the expression for I [y] gives

I [y] =
∞∑

j=1

∞∑

k=1

c j ckk
∫ π

0

(∫ π

0

cos k	

cos 	 − cos θ

)

sin jθ sin θdθ. (7.61)

The inner integral is a singular integral for 0 < θ < π and evaluation of its principle
value gives π sin kθ

sin θ
. Finally, substitution of this value in (7.61) gives

I [y] = π2

2

∞∑

k=1

kc2
k .

Since c1 = 2S
πl and the other coefficients are arbitrary, it follows that I [y] attains its

least value when c2 = c3 = c4 = · · · = 0. This leads to

y = 2S

πl
sin θ = 2S

πl
·
√

l2 − x2, (7.62)

which gives the required distribution of circulation. It is easy to see that this distribu-
tion is obtained for a wing whose shape in the xy-plane is an ellipse with semiaxes
l and 2

πl .
The above example shows that in the Rayleigh–Ritz method, sometimes it is

possible to find the general formula for the coefficients ci in the representation (7.53)
and then pass to the limit for n →∞.

Example 7.11 Find the first eigenvalue of the problem

y′′(x)+ λ(1+ x2)(1+ x2)y = 0. y(−1) = y(1) = 0.
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Solution. Using the extremal definition of eigenvalues, we may employ the Rayleigh–
Ritz method to compute the eigenvalues of the above problem.

For the coordinate functions, choose fk(x) = 1− x2k, (k = 1, 2, . . .), which are
linearly independent and clearly satisfy the boundary conditions. Let us assume that

y(x) = c1(1− x2)+ c2(1− x4).

Then, we may pose the problem of extremizing the functional

I [y] =
∫ 1

−1
[y′2 − λ(1+2)y2]dx

whose Euler equation coincides with the above second-order differential equation.
Substitution of the above expression for y in I [y] yields

I = c2
1

(
8

3
− 128

105
λ

)

+ c1c2

(
16

5
− 64

45
λ

)

+ c2
2

(
32

7
− 5888

3465
λ

)

.

Now, equating ∂ I
∂c1

and ∂ I
∂c2

to zero and using the condition for nontrivial solution
yield the smallest value of λ as λ1 = 2.1775.

7.6.2 Galerkin Method

In the preceding section, we have seen the effectiveness of the Rayleigh–Ritz method
in solving variational problems. In fact, the Rayleigh–Ritz method gives rise to
the following scheme of solving a boundary value problem: for a given ordinary
differential equation subject to some boundary conditions, we construct a functional
whose Euler’s equation coincides with the given differential equation and then apply
the Rayleigh–Ritz method. Consider, for example, the differential equation

a(x)y′′ + b(x)y′ + c(x)y = f (x).

Let us multiply the equation by an arbitrary function μ(x) such that

−2P = aμ, − 2P ′ = bμ, 2Q = cμ, − R = f μ

hold. Then, the first two equations give P ′
P = b

a and μ = − 2
b P ′ = − 2

b
b
a P , i.e.

(log P)′ = b
a and μ = − 2

a P . Integrating the first equality, we obtain

P = exp

(∫ x

x0

b

a
dx

)

.
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The remaining two determine Q and R. With this choice of P , Q and R, it can be
readily shown that the required functional is of the form

I [y] =
∫

[
P(x)y′2 + Q(x)y2 + R(x)y

]
dx

between appropriate limits.
We now observe that there is another direct method known as Galerkin method,

named after its discoverer B.G. Galerkin, that can also be used to solve the boundary
value problems as described above. Note that this method can be applied to both
ordinary and partial differential equations irrespective of the case whether the given
ODE or PDE is linear or nonlinear. To see this, let us consider the equation

y′′ + p(x)y′ + q(x)y = f (x) (7.63a)

with the boundary conditions

y(x0) = 0, y(x1) = 0. (7.63b)

If the ODE (7.63a) is subject to the nonhomogeneous boundary conditions y(x0) =
y0, y(x1) = y1, then noting the fact that the equation of the straight line passing
through the points (x0, y0) and (x1, y1) is given by y − y0 = y1−y0

x1−x0
· (x − x0) one

can readily reduced to homogeneous conditions by the change of variables z =
y− y0− y1−y0

x1−x0
· (x− x0). Denote by L := d2

dx2 + p(x) d
dx +q(x), so that we can write

(7.63a) in the operator form as follows:

Ly = f (x). (7.64)

We now select a complete system of continuous linearly independent coordinate
functions {φn(x) : n ∈ N} which satisfy

φn(x0) = φn(x1) = 0 for n = 1, 2, . . . .

We now seek an approximate solution of the operator equation (7.64) of the form

yn =
n∑

i=1

ciφi (x).

Substituting yn in (7.63a) and choosing the coefficients ci so that L
( n∑

i=1

ciφi (x)
)
−

f (x) is orthogonal in the interval [x0, x1] to each of the functions φi (x), i =
1, 2, . . . , n, we get
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∫ x1

x0

[

L

(
n∑

i=1

ciφi (x)

)

− f (x)

]

φi (x)dx = 0 i = 1, 2, . . . , n. (7.65)

We now expect that yn tends to the exact solution

yex =
∞∑

i=1

ciφi (x) as n →∞.

This is due to the fact that if the series obtained convergence and admits term-wise
differentiation, then Lyex − f (x) is orthogonal in [x0, x1] to each function φi (x).
But since the system {φn(x)} is complete, it follows that Lyex − f (x) = 0. Clearly,
yex satisfies all the boundary conditions yex (x0) = yex (x1) = 0 since φi (x0) =
φi (x1) = 0. In actual computations, one restricts to only a finite number of coordinate
functions φi (x). In this case, however, condition of completeness is abandoned, but
the functions φi (x) are assumed to be linearly independent and consistent with the
boundary conditions

φi (x0) = φi (x1) = 0.

Observation

1. It is important to note that for Euler’s equations encountered in variational prob-
lems, Galerkin’s method described above coincides with Rayleigh–Ritz method.

2. It is interesting to note that Galerkin’s method is also applicable to many ordinary
and partial differential equations which are not Euler’s equations and appear
irrespective of variational problems.

To illustrate Galerkin’s method, we consider two specific fluid flow problems, but
first we present some basics of the fluid dynamics. The term fluid dynamics refers
to the science treating the study of fluids in motion.

Definition 7.4 Fluid is a substance that is capable of flowing and that changes its
shape at a steady rate when acted upon by a force tending to change its shape.
Fluids may be divided into two kinds: (i) liquids which are incompressible; i.e.,
there volumes do not change when the pressure changes and (ii) gases which are
compressible fluids suffering change in volume whenever the pressure changes.

Remark 7.6 Note that there is no sharp distinction between the three states of matter.
Furthermore, it is more convenient to treat the fluid as having continuous structure
so that at each point we can prescribe a unique velocity, a unique pressure, a unique
density, etc. Notice also that for a continuous or ideal fluid we can define a fluid
particle as the fluid contained within an infinitesimal volume whose size is so small
that it may be regarded as a geometrical point.

There are two types of forces on the fluid system, namely body forces and surface
forces. The force which is proportional to mass (or possibly the volume) of the body
on which it acts is called body force, while the force which acts on a surface element
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Fig. 7.4 Normal and
shearing stresses

and is proportional to the surface area is called surface force. Suppose that the fluid
element is enclosed by the surface S and P is an arbitrary point of S. Suppose d S is
the surface element around P , then one may notice that the surface force on d S is,
in general, not in the direction of normal at P to d S (see, for instance, Fig. 7.4). So,
the force may be resolved into two components, one normal and the other tangential
to the area d S.

Definition 7.5 The normal force per unit area is said to be the normal stress or
pressure, while the tangential force per unit area is said to be the tangential or
shearing stress.

A fluid possesses one of the two important characteristics: either viscous or non-
viscous. Note that viscosity is a property of the fluid which opposes the relative
motion between the two surfaces of the fluid that are moving at different veloci-
ties. More explicitly, viscosity means friction between the molecules of fluid. For
example, honey has a much higher viscosity than water.

Definition 7.6 A fluid is said to be viscous or real when normal and shearing stresses
exist. On the other hand, a fluid is said to be inviscid (nonviscous, frictionless) when
it does not exert any shearing stress, whether at rest or in motion. This means that
the pressure exerted by an inviscid fluid on any surface is always along the normal
to the surface at the point. Due to shearing stress, a viscous fluid produces resistance
to the body moving through it as well as between the particles of the fluid itself.

Observation

• It is quite interesting to observe that all fluids have positive viscosity and are
technically said to be viscous or viscid. Zero viscosity is observed only at very
low temperatures in superfluids.

• In common terms, however, a liquid is said to be viscous if its viscosity is sub-
stantially greater than that of water.

• It may be observed that air and water are treated inviscid fluid, whereas syrup and
lubricant oil are treated as viscous fluid.

Suppose fluid is flowing between two parallel plates AB and C D. The plate AB
is fixed, i.e. u = 0, while the plate C D is moving with uniform velocity u separated
by distance y. A resistance force F acts between two layers such that
(i) F ∝ du

dy (velocity gradient) (ii) F ∝ A,
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Fig. 7.5 Newton’s law of
viscosity

Fig. 7.6 Laminar and
turbulent flows

where A is the area of cross section of upper plate. It follows that

F ∝ A
du

dy
or F = μA

du

dy

where μ is called coefficient of viscosity and so

F

A
= μ

du

dy
, but

F

A
= T = shearing stress ⇒ T = μ

du

dy
.

If du
dy = 1, then T = μ; i.e., the friction force per unit area is equal to the coefficient

of viscosity required to produce unit velocity gradient. This is called Newton’s law
of viscosity (Figs. 7.5 and 7.6).

Definition 7.7 Fluids which obey Newton’s law of viscosity are known as
Newtonian fluids, otherwise non-Newtonian.

Observation

• In most common cases, the viscosity of non-Newtonian fluids is dependent
on shear force. However, we observe that some non-Newtonian fluids with
shear-independent viscosity still exhibit normal stress differences or other non-
Newtonian behaviour.

• Water, air and mercury are all Newtonian fluids, while paints, coaltar, ketchup,
blood, shampoo, custard, toothpaste and molten polymers are all non-Newtonian
fluids.

• The existence of shearing stresses and the condition of no-slip near solid walls
constitute the main difference between the perfect (nonviscous) and real (viscous)
fluids. Thus, for a perfect (or nonviscous) fluids, μ = 0.

Definition 7.8 The flow of a fluid when each particle of the fluid traces out a definite
curve and the curves traced out by any two different fluid particles do not intersect is
said to be laminar (or streamline). On the other hand, a flow in which fluid particle
does not trace out a definite curve and the curves traced out by fluid particles intersect
is said to be turbulent.



7.6 Variational Methods 571

Definition 7.9 The force on an object that resists its motion through a fluid is called
drag.
•When the fluid is a gas like air, it is called aerodynamic drag or air resistance.
•When the fluid is a liquid like water, it is called hydrodynamic drag.

Definition 7.10 The Reynolds number Re is defined as

Re = Inertia force

Viscous force

= Mass× Acceleration

Shear Stress× Cross sectional area

= Volume× Density× Velocity
Time

Shear stress× Cross sectional area

= Cross sectional area× Linear dimension× ρ × Velocity
Time

Shear stress× Cross sectional area

= (Velocity)2 × ρ

μ(du/dy)
= V 2ρ

μ(V/L)
= V Lρ

μ
= V L

v

where L and V denote the characteristic length and characteristic velocity, respec-
tively, so that velocity will be proportional to V and du

dy will be proportional to V
L .

Observation

• If for any flow problem Re is small, then we can ignore the inertia force, whereas
Re is larger than we can neglect the effect of the viscous force, and consequently,
the fluid may be treated as nonviscous fluid.

• When the viscous force is predominating force, Reynolds number must be the
same for dynamic similarity of two flows.

• It is experimentally shown that if the value of Reynolds number exceeds a critical
value the flow ceases to be laminar and the flow becomes turbulent. When Re <

2000, the flow is laminar.

Problem 1. In the first problem, Djukic [191] used this technique to solve the
presence of a uniform transverse magnetic field. To illustrate the problem, let us
consider the steady laminar two-dimensional stagnation point flow of a power-law
non-Newtonian electrically conducting fluid towards an infinite flat plate coincident
with X -axis, O being the stagnation point. Further, suppose that

(i) a uniform transverse magnetic field B acts along the Y -axis;
(i i) the fluid is incompressible and its apparent viscosity changes with the rate

of shear (power-law fluid). The external electric field is zero and the field due to
polarization of charges is negligible;

(i i i) the magnetic Reynolds number is assumed to be small so that induced mag-
netic field can also be neglected.
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Fig. 7.7 The steady laminar
two-dimensional stagnation
point flow of a power-law
non-Newtonian electrically
conducting fluid towards an
infinite flat plate

If (u, v) are the velocity components inside the boundary layer and V (x) is the
x-components of velocity outside the boundary layer, the steady two-dimensional
boundary layer equation is

u
∂u

∂x
+ v

∂u

∂y
= V

dV

dx
+ v

∂

∂y

[∣
∣
∣
∣
∂u

∂y

∣
∣
∣
∣

n−1

· ∂u

∂y

]

+ σ B2(V − u)/ρ, (7.66)

and the equation of continuity yields

∂u

∂x
+ ∂v

∂y
= 0. (7.67)

The boundary conditions are (Fig. 7.7)

u = v = 0 at y = 0

u → V (x) as y →∞. (7.68)

Here, k is the fluid consistency index and n is the power-law index. Further, υ, ρ and
σ denote the constant k

ρ
, the fluid density and the constant electrical conductivity of

the fluid, respectively. It is well known that for a plane stagnation flow,

V = ax,

where a is a constant.
We now seek similarly a solution of the system (7.66)–(7.68) by using similarity

transformations

η =
[

2a2−n

v(1+ n)

]1/(1+n)

· x (1−n)/(1+n) · y (7.69a)

u = V
d F(η)

dη
, (7.69b)
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where F(η) is to be determined.
Combining (7.66)–(7.69b), we obtain the following ordinary differential equation

for F(η):

(
d2 F

dη2

)n−1

· d3 F

dη3
+ F

d2 F

dη2
+ (1+ n)

2n

[

1−
(

d F

dη

)2

+ N

(

1− d F

dη

)]

= 0

(7.70)
subject to the boundary conditions

F = d F

dη
= 0 at η = 0, (7.71)

d F

dη
→ 1 as η →∞. (7.72)

In (7.70), N stands for the magnetic parameter σ B2/(aρ), which is constant.
To solve (7.70), we introduce the independent variable λ in place of η as

λ = d F

dη
. (7.73)

Then, (7.59) becomes

φ
d2φ

dλ2 −
1

n + 1

(
dφ

dλ

)2
− 2λφ − (1− λ2)

dφ

dλ
− N

[

(1− λ)
dφ

dλ
+ (n + 1)φ

]

= 0, (7.74)

where

φ =
(

2n

n + 1

)(
d2 F

dη2

)n+1

(7.75)

is the new dependent variable. The boundary conditions for (7.74) are obtained as
follows by using (7.70), (7.71) and (7.74), together with the condition of vanishing
shear stress at the boundary layer edge given by ∂u

∂y → 0 as y →∞;

dφ

dλ
= −(n + 1)(1+ N ) at λ = 0,

(7.76)

φ = 0 at λ = 1.

Further combining (7.74) and (7.75), we have the supplementary boundary conditions
for (7.74)

d2 F

dλ2
= (n + 1)N at λ = 0,

dφ

dλ
= 0 at λ = 1 (7.77)
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It is interesting to note that by the transformation (7.74), the infinite interval [0,∞]
for η is mapped into [0, 1] for λ.

To apply the Galerkin method, we seek an approximate solution of (7.74) in the
form

φ = (n + 1)

[

b(1− 4λ3 + 3λ4)+ 1

2
N (1− λ)2 + 1

3
(2− 3λ+ λ3)

]

, (7.78)

which satisfies the boundary conditions (7.76) and (7.77). Here, b is an unknown
constant. Substituting (7.78) in (7.74) and interesting the result with respect to λ

from λ = 0 to 1, we obtain an equation in b whose solution is

b = 7

48

{[

N + n + 6

4(n + 2)2
+ 4n(8+ 5N )

7(n + 2)

]1/2

−
[

N − n + 6

2(n + 2)

]}

(7.79)

Using (7.68), (7.69a), (7.75) and (7.78), the shear stress at the wall τ0 = [k( ∂u
∂y )n]y=0

is given in terms of shear stress coefficients C f (= τ0
ρV 2 ) as

C f = C(n, N )R−1/(n+1)
ex , (7.80)

where

C(n, N ) =
[

(n + 1)

(

b + 2

3
+ N

2

)

/n

]n/(n+1)

(7.81)

and Rex = V 2−n xn/v is the local Reynolds number.

Observation

• It is important to note that the index n appearing in the constitutive relation between
the shear stress and rate of strain within the framework of boundary layer approx-
imation given by

τxy = k
∣
∣
∣
∂u

∂y

∣
∣
∣
n−1 · ∂u

∂y

is positive. Notice also that n < 1 for a pseudo-plastic fluid (shear-thinning),
while n > 1 corresponds to dilatant field parameter N increases the shear stress
parameter C for a fixed n.

• It is also found that for the nonmagnetic case (N = 0), the values of C(n, N )

versus n obtained by the Galerkin method when compared with the corresponding
numerical solution by Schulman and Berkovsky [544] give very good agreement
for n < 1 although there is some error (<2.8%) for (n > 1). This lends credence
to the fact that the Galerkin method is a useful tool in handling highly nonlinear
differential equation such as (7.70).

Problem 2. In the second problem, the same method was used by Sengupta and
Gupta [550] who studied the stability of the flow of an electrically conducting liq-
uid of kinematic viscosity v and electrical conductivity σ in a channel formed by two
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vertical parallel plates separated by a distance D and placed on a turn table, which
is rotated with angular velocity � about a vertical axis taken as the z-axis. The shear
flow relative to the rotating frame is induced by a uniform pressure gradient P along
the channel (i.e. along the z-axis), and a uniform magnetic field H0 acts along the
y-axis taken normal to the plates, the x-axis being parallel to the plates in the hori-
zontal direction, the origin being taken in the mid-section of the channel. Neglecting
the induced magnetic field in the fluid of magnetic permeability μe′ , the linearized
perturbation equations for the dimensionless velocity components (u′, v′, w′) with
v′ = ∂	

∂z ,

w′ = ∂	

∂Y
, Y = y

D1
, Z = z

D1

	 = Re
{
ieikzh(Y )

}
, u′ = Re

{
eikzg(Y )

}

are

E(D2 − k2)g(Y )+
(

R0
dU

dY
− 1

)

kh(Y ) = 0,

E(D2 − K 2)2h(Y )− kg(Y ) = 0,

where U (y) is the basic velocity distribution, and k is the wave number of disturbance
and

D ≡ d

dY
, E = v

2�D2
1

, R0 = U0

2�D1
, U (Y ) = U (y)

U0

U0 = P M(cosh M − 1)

μ2
eσ H 2

0 sinh M
, M = μe H0 D1

2

(
σ

ρv

)1/2

.

The above differential equation with boundary condition h = Dh = g = 0 at Y = 1
2

was solved by the Galerkin method, and it is found that magnetic field exerts a strong
stabilizing influence on the flow. This study is of some importance in the stability
problem for a zonal flow.

7.6.3 Methods of Projection

Note that apart from the Rayleigh–Ritz method and Galerkin’s methods such as
of least squares, or collocation methods can be viewed in a more global setting as
projective methods.

In what follows, let (X, ‖ · ‖X ) and (Y, ‖ · ‖Y ) be two normed linear spaces.
Consider the equation

Ax = y, (7.82)
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where A maps X into Y . Let Xn be a finite dimensional (hence closed) subspace
of X such that Xn = span(φ1, φ2, . . . , φn). Then, a direct method for solving the
variational problem associated with (7.82) is simply a construction of a numerical
algorithm for finding a function

xn = c1φ1 + c2φ2 + · · · + cnφn

belonging to Xn which makes

‖ Axn − y ‖Y + ‖ xn − x ‖X

small. Solution by any one of the methods mentioned above is usually (but not
always) equivalent to projecting the solution or an approximate solution onto a finite
dimensional subspace of X (see, Prenter [495]).

In yet another general setting, an abstract variational problem can be stated as
follows: Let H be a Hilbert space and a(·, ·) : H × H → R be a bounded linear
functional. Further, let f : H → R be a bounded linear functional. Then, the problem
is to find an element x such that

a(x, y) = f (y) for all y ∈ H. (7.83)

It can be shown that in the above abstract setting, the variational problem has a unique
solution in view of the Lax1–Milgram lemma (see [360]) which we now discuss.

Lax–Milgram Lemma. If the bilinear form defined above is coercive in the sense
that there exists an α > 0 such that a(x, x) = α ‖ x ‖2 for every x ∈ H, then the
above variational problem has a unique solution.

Let us now consider an approximate problem corresponding to the variational
problem given by (7.83). Suppose H∗ is the space of bounded linear functionals on
H. Then, f ∈ H∗. Suppose that Hh is a finite dimensional subspace of H. Then,
an approximate problem corresponding to the above variational problem consists of
determination of a uh ∈ Hh such that

a(uh, vh) = f (vh) ∀vh ∈ Hh . (7.84)

By virtue of the Lax–Milgram lemma, the above equation has a unique solution if
a(x, y) is coercive.

Now, it can be shown that the solution of (7.84) is equivalent to the solution of
the matrix equation

AU = b, (7.85)

1Peter David Lax is a Hungarian-born American mathematician working in the areas of pure and
applied mathematics. He has made important contributions to integrable systems, fluid dynam-
ics and shock waves, solitonic physics, hyperbolic conservation laws, mathematical and scientific
computing, among other fields. Lax is listed as an ISI highly cited researcher.
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where the transpose of the matrix A, denoted AT , is AT = (
a(wi , w j )

)
i, j , where

Wi is basis of Hh , with i = 1, 2, . . . , n(h); j = 1, 2, . . . , n(h), n(h) being the
dimension of Hh . Further,

U = (
α1, α2, . . . , αn(h)

)
, b = (

f (w1), f (w2), . . . , f (wn(h))
)
.

This can be shown as follows: since {wi } is a basis of Hh and uh, vh ∈ Hh ,

uh =
nh∑

i=1

αi wi , vh =
nh∑

j=1

β j w j

where αi , β j ∈ R. Substituting these in (7.84), we get

a

⎛

⎝
nh∑

i=1

αi wi ,

nh∑

j=1

β j w j

⎞

⎠ = f

⎛

⎝
nh∑

j=1

β j w j

⎞

⎠ .

In view of the bilinearity of a(·, ·) and linearity of f , we obtain

nh∑

i=1

nh∑

j=1

αiβ j a(wi , w j ) =
nh∑

j=1

βi f (w j ).

Recalling the definitions of AT , U and b mentioned above, we find that

V T AU = V T b, (7.86)

where V = (β1, β2, . . . , βn(h)). Because (7.86) is true for all V ∈ Rn(h), we get the
relation (7.85), which is what we set out to prove.

Now, we can solve the matrix equation (7.85) by any one of the standard methods
such as Gauss’s method of elimination and Cholesky’s method. It may be noted that
for a coercive a(·, ·), A is positive definite. Further, A is symmetric if the bilinear
form is symmetric. Again, since a(·, ·) is coercive, A is invertible.

Notice that the choice of the basis functions {wi } is of crucial importance in
facilitating numerical computations. It is convenient to choose {wi } so that A becomes
a sparse matrix and the computing time is reasonably small.

7.6.4 Variational Inequalities

We have already seen by Lax–Milgram lemma that if H is a (real) Hilbert space and
a(·, ·) is a bounded coercive bilinear functional, then there exists a unique x ∈ H

such that
a(x, y) = f (y) ∀ y ∈ H (7.87)
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where f : H → R is a bounded linear functional. In particular, if a(·, ·) is also
symmetric, then the functional I : H → R defined by

I (y) = 1

2
a(y, y)− ( f, y) (7.88)

attains its minimum at x . Thus, (7.87) can be regarded as the Euler equation of
unconstrained variational problem.

However, if we consider a constrained variational problem, i.e., we minimize I
over a closed convex subset K of the Hilbert space H, then we get an inequality
instead of (7.87). This is known as a variational inequality [556]. We have the
following theorem.

Theorem 7.17 Let a(·, ·) be a bounded symmetric and coercive bilinear functional
on a Hilbert space H and K ⊂ H be a closed convex subset. Let f : H → R be a
bounded linear functional. Then, there exists a unique x ∈ H such that

a(x, y − x) ≥ ( f, y − x) ∀ y ∈ K (7.89)

To prove this, we consider

〈x, y〉 = a(x, y) ∀ x, y ∈ H.

Then, from the bilinearity and symmetry of a(·, ·), it follows that 〈x, y〉 is an inner
product for H. Let

|||x |||2 = 〈x, x〉 = a(x, x). (7.90)

Because a(·, ·) is bounded and coercive, we may write

α ‖ x ‖2� |||x |||2 � M ‖ x ‖2, α > 0, M > 0

and hence the new norm |||·||| is equivalent to the original one. Thus, H is also a
Hilbert space with respect to the new inner product. Now, by Riesz representation
theorem, we can find f̄ ∈ H such that for any y ∈ H,

a( f̄ , y) == 〈 f̄ , y〉 = ( f, y). (7.91)

We now consider

1

2

∣
∣
∣
∣
∣
∣y − f̄

∣
∣
∣
∣
∣
∣2 = 1

2
a(y − f̄ , y − f̄ )

= 1

2
a(y, y)− a(y, f̄ )+ 1

2
a( f̄ , f̄ )

= 1

2
a(y, y)− ( f, y)+ 1

2

∣
∣
∣
∣
∣
∣ f̄

∣
∣
∣
∣
∣
∣2

(7.92)
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= I (y)+ 1

2

∣
∣
∣
∣
∣
∣ f̄

∣
∣
∣
∣
∣
∣2

.

Because
∣
∣
∣
∣
∣
∣ f̄

∣
∣
∣
∣
∣
∣2

is a constant, minimizing I (y) over K is equivalent to minimizing
∣
∣
∣
∣
∣
∣y − f̄

∣
∣
∣
∣
∣
∣2

over K . Now, one of the classical results of functional analysis is the
minimization of the norm in a Hilbert space which is embodied in the following
result: let H be a real Hilbert space and K ⊂ H be a closed convex subset. Then,
there exists a unique y ∈ K such that

‖ x − y ‖= min
z∈K

‖ x − z ‖ . (7.93)

Further, y can be characterized by

y ∈ K , (x − z, z − y) ≤ 0 ∀ z ∈ K . (7.94)

Hence, using the above characteristic in our foregoing analysis, it follows from (7.92)
that

〈 f̄ − x, y − x〉 ≤ 0 for every y ∈ K

leading to a(x, y − x) ≥ ( f, y − x), which is what we set out to prove.
The symmetry condition on a(·, ·) in the above theorem due to Stampacchia [578]:

Let H be a Hilbert space and let a(·, ·) be a bounded coercive bilinear form on H.
Then, given f : H → R, a bounded linear functional, there exists a unique x ∈ K
(a closed convex subset of H) such that

a(x, y − x) ≥ ( f, y − x)

for every y ∈ K . Of course, in the case we will not be able to identify the problem
with one of minimization. Variational inequalities have enormous applications to the
study of free boundary problems (e.g. Stefan problems) in mechanics and physics.
However, we will not pursue this matter any further as it is beyond the scope of this
book. The interested reader will find a complete account of the theory and applications
of variational inequalities in Duvaut and Lions [210].

We now state without proof some of the fundamental inequalities which are useful
in applied problems:

I. Poincare’s inequality: Suppose � is a bounded open set in Rn and W 1,p(�) is
the Sobolev space of order 1 for 1 � p � ∞ with seminorm | · |1,p,�. Further,
suppose W 1,p

0 (�) is the closure of C∞
0 (�) in W 1,p(�), where C∞

0 (�) is the space
of infinitely differentiable functions with compact support in �. Then, there exists a
positive constant β = β(�, p) such that

|u|0,p,� � β|u|1,p,� for every u ∈ W 1,p
0 (�).
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The above inequality is known as Poincare’s inequality and is fundamental in studying
weak solutions of Dirichlet boundary value problems.

II. Korn’s inequality: Suppose � is a bounded open subset of R3 of class C1 and
V is the space (H 1(�))3, where H 1(�) is the Sobolev space W 1,2(�). If v ∈ V with
v = (v1, v2, v3) with

εi j (v) = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)

, 1 � i, j � 3,

then there exists a positive constant C depending only on � such that

∫

�

εi j (v)εi j (v)+
∫

vi vi � C‖v‖2
V

for every v ∈ V with ‖ · ‖V denoting the usual product norm on V .
The above inequality is known as Korn’s inequality (see, Komkov [341]), and it

plays an important role in the weak formulation of equation of linear elasticity.

III. Weyl’s inequality: Consider the problem

∫ ∞

−∞
y2 dx maximum,

∫ ∞

−∞
x2 y2 dx and

∫ ∞

−∞
y′2 dx given,

then its Euler’s equation is
y′′ + (a + bx2)y = 0,

which can be solved in terms of parabolic cylinder functions. This gives the varia-
tional basis for the following inequality

∫ ∞

0
f 2 dx < 2

(∫ ∞

0
x2 f 2 dx

)1/2 (∫ ∞

0
f ′2 dx

)1/2

unless f = Ae−Bx2
, A and B being constant.

The above inequality is known as Weyl’s inequality (see, Hardy et al. [265]), and
it is useful in mechanics.

IV. Garding’s inequality: Suppose Lu denotes the operator

Lu =
∑

0�|r |,|s|�m

(−1)r D|r |(ars(x)Dsu),

where u and x are vectors, D is the differential operator, and ars(x) are sufficiently
smooth. Further,

(a) L is strongly elliptic with a modulus of ellipticity independent of x in a
domain �;
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(b) the coefficients ars are bounded; i.e., there exists a positive constant C1 such
that |ars | < C1; and

(c) the highest order coefficients have a bounded modulus of continuity; i.e.,
there exists a positive constant C2 such that

|ars(x1)− ars(x2)| < C2|x1 − x2| for |r | = m and |s| = m

for all x1, x2 ∈ � and C2 is small in a neighborhood of the origin. Then, there
exist positive constants C3 and C4 such that

‖u‖2
m � C3 B(u, u)+ C4‖u‖2

0,

where ‖u‖0denotes the usual L2(�) norm of u(x) and B(u, v) is the bilinear form

B(u, v) =
∑

0�|r |,|s|�m

Dr v(ars Dsu).

The above inequality is known as Garding’s inequality (see, Komkov [341]) and
finds applications in the solution of elliptic partial differential equations.

7.6.5 Matrix Inversion

In this section, we discuss a well-known variational formulation of a matrix inversion
problem to find an estimation and subsequently derive finite element methods as a
variational solution to Poisson differential equation.

Suppose we are given an input vectors {x1, x2, . . . , xn}, xi ∈ Rd and correspond-
ing scalar output values {y1, y2, . . . , yn}. We intend to find the best linear predictor in

the form y = βT x =
d∑

i=1
βi xi , where β is the vector of parameters. More explicitly,

we will assume that fitting criterion is least squares. Notice that the least squares
optimal parameter setting β∗ is given by β∗ = C−1b, where

C =
n∑

i=1

xi xT
i , b =

n∑

i=1

yi xi . (7.95)

As we increase the dimension d of the input vector, evaluating β∗ = C−1b can
become more cumbersome. To ease this issue, we formulate a variational approach
to compute C−1b. Transformation of this problem into an optimization problem is
the starting point of variational problem.

Suppose that we knew the solution to the above problem; that is, we had already
evaluated β∗. We can then certainly optimize



582 7 Variational Methods and Optimization

I (β) = 1

2
(β∗ − β)T C(β∗ − β) (7.96)

with respect to β to find β∗. Here, distance measure is weighted with matrix C so
that deviations of β from β∗ count more in directions where input examples x vary
considerably.

Notice that this is variational formulation leading to β∗, but it is important to
realize that we could not yet evaluate I (β) without first computing β∗.

7.6.6 Finite Element Method

In this section, we shall describe a method known as finite element method for solving
the abstract variational problem in its approximate form (7.87), the method being
economical from computational point of view. With reference to application of the
above method to certain problems of elasticity, the matrix a(wi , w j ) and the vector
f (wi ) are often called the stiffness matrix and load vector, respectively.

Following Ciarlet (see, e.g., [556]), we now introduce the concept of a finite
element.

Finite element— Let K be a polyhedron in Rn , PK the space of polynomials with
dimension m and

∑
K a set of distribution (i.e. continuous linear functionals on D(�)

of cardinality m). The triplet (K , PK ,
∑

K ) is called a finite element if

∑

K

= {
Li ∈ D∗|i = 1, 2, . . . , m

}

is such that for given αi ∈ R, 1 � i � m, the system of equations

Li (p) = αi , 1 � i � m

admits of a unique solution p ∈ PK . The elements Li (i = 1, 2, . . . , m) are known
as degree of freedom of PK .

If K is 2-simplex, then (K , PK ,
∑

K ) is called a triangular finite element, and if
K is 3-simplex, then (K , PK ,

∑
K ) is known as tetrahedral.

Notice that many problems in physics can be reduced to solving differential equa-
tions. This includes, for example, finding the temperature distribution in material or
gauging material distribution. To this end, let us consider that one of the simplest
but nevertheless representative problems is the one-dimensional Poisson differential
equation:

− u′′ = f (x), ∀x ∈ [a, b] (7.97)

where u′′(x) is the second derivative of u(x) with respect to scalar argument x and
f (x) is the “source”. Assume that the solution u(x) represents deformation that
satisfies homogeneous boundary condition,
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u(a) = u(b). (7.98)

Note a number of techniques for solving this problem. The best known is perhaps
finite element method that can be viewed as variational method.

Notice also that finite element method is essentially a projection method [556]
concerned with the determination of a finite dimensional subspace Vh of H 1(�),
the Hilbert–Sobolev space of order 1 and �, an open subset of Rn with a smooth
boundary. This space is defined by

H 1(�) =
{

v ∈ L2(�) : ∂v

∂xi
∈ L2(�), 1 ≤ i ≤ n

}

.

where the derivatives ∂v(x1,x2,...,xn)

∂xi
are in the sense of distribution. This implies that

〈

v,
∂φ

∂xi

〉

= −
〈

∂v

∂xi
, φ

〉

,

where φ ∈ D(�), the space of infinitely differentiable functions with compact sup-
port in �. Further, L2(�) is the space square integrable functions in � in the Lebesgue
sense.

To find Vh of H 1(�), we first define a triangulation as follows:

Triangulation—Let � ⊂ R2 be a given polygonal domain. Recall that a finite
collection of triangles Th is called a triangulation if the following conditions are
satisfied:

(i) � = ⋃

K∈Th

K , where K denotes a triangle with boundary.

(i i) K
⋂

K1 = ∅ for K , K1 ∈ Th, K �= K1.
(i i i) K

⋂
K1 = a vector or a side. This means that if we consider two triangles,

their boundaries may have one vertex common or one side common.

We introduce P(K ) as a function space defined on K ∈ Th such that P(K ) ⊂
H 1(K ). Generally, P(K ) is taken as a space of polynomials of some degree. The
following result then holds.

Lemma 7.5 Let C(�) be the space of continuous real-valued functions on � and

Vh =
{

vh ∈ C0(�) | vh |K ∈ P(K ), K ∈ Th

}
,

where vh |K is the restriction of vh on K and P(K ) ⊂ H 1(K ). Then Vh ⊂ H 1(�).

Proof Suppose u ∈ Vh and vi is function defined on � such that vi |K = ∂u|K
∂xi

. Now
vi |K is well defined since u|K ⊂ H 1(K ). Further, from the definition of a Hilbert–
Sobolev space H 1(K ), it follows that vi ∈ L2(�) as vi = ∂u

∂xi
∈ L2(K ). The lemma

is thus established if we can show that
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vi = ∂u

∂xi
∈ D∗(�)

where D∗(�) is the dual space of D(�). This stems from the fact that ∂u
∂xi
∈ D∗(�)

implies that u ∈ H 1(�) and this in turns implies that Vh ∈ H 1(�).
For any φ ∈ D(�), we have

(vi , φ) =
∫

�

viφdx =
∑

K∈Th

∫

K
viφdx

=
∑

K∈Th

∫

K

∂

∂xi
u|K φdx

=
∑

K∈Th

[∫

�=∂K
u|K φKi d� −

∫

K
u|K ∂φ

∂xi
dx

]

(7.99)

by applying the generalized Green’s formula such that � is the boundary of K . If ηi

denotes the ith component of the outer normal at �, then

(vi , φ) = −
∫

�

u
∂φ

∂xi
dx +

∑

K∈Th

∫

�

u|K φηK
i d�. (7.100)

The second integral in (7.100) vanishes since if K1 and K2 are two adjacent triangles,
η

Ki
i = −η

K2
i . Thus

(vi , φ) = −
∫

�

u
∂φ

∂xi
dx =

(
∂u

∂xi
, φ

)

,

which shows that vi = ∂u
∂xi
∈ D∗(�). This completes the proof.

Example 7.12 We consider the Neumann boundary value problem

−∇2u + u = f in �, � ⊂ R2,
∂u

∂n
= 0 on the boundary �. (7.101)

The variational formulation for the above problem is as follows:

V = H 1(�), (7.102)

a(u, v) =
∫

�

{
2∑

i=1

∂u

∂xi
+ uv

}

dx (7.103)

=
∫

�

(∇u · ∇v + uv) dx, (7.104)

L(v) =
∫

�

f v dx . (7.105)
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An internal approximation of this problem is the following:

Vh =
{

vh ∈ C(�̄)|∀K ∈ Th, vh |K ∈ P1(K )
}

as already pointed out in the lemma of this section. We choose a basis for Vh as
follows:

wi (ai j ) = δi j , 1 ≤ j ≤ n(h), 1 ≤ j ≤ n(h),

where δi j is the Kronecker delta and a1, a2, . . . , an(h) are the vertices of the triangu-
lation Th . We then have for every vh ∈ Vh ,

vh =
n(h)∑

i=1

vh(ai )wi .

Then, (7.102)–(7.105) is equivalent to determining the value of uh such that

a(uh, vh) = L(vh) ∀vh ∈ Vh . (7.106)

Since wi (i = 1, 2, . . . , n(h)) is a basis for Vh , the solution of (7.106) is taken as

uh =
n(h)∑

k=1

βkwk . (7.107)

Hence, βk are the solutions of the following linear system:

n(h)∑

k=1

a(wk, wl) = L(wl) for 1 � l � n(h) (7.108)

with

a(wk, wl) =
∑

K∈Th

∫

K

(
2∑

i=1

∂wk

∂xi

∂wl

∂xi
+ wkwl

)

dx (7.109)

L(wl) =
∑

K∈Th

∫

K
f (wl) dx . (7.110)

Hence, if we know the stiffness matrix a(wk, wl) and the load vector L(wl), βk can
be found from (7.108). Putting these values in (7.107), the solution of (7.106) can
be found.
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7.6.7 Trefftz Method

If the Euler–Ostrogradsky equation arising in the problem of extremum of a func-
tional depending on functions of two or more independent variables is linear and
homogeneous, but the domain of integration is bounded by a complex contour, the
Trefftz method (see [415]) proves very effective. We shall demonstrate this method
by considering the problem of finding a stationary value of the Dirichlet integral

I [u(x, y)] =
∫∫

D

[(
∂u

∂x

)2

+
(

∂u

∂y

)2
]

dxdy (7.111)

satisfying the boundary condition

u|� = f, (7.112)

where f is a given function on the boundary � of the domain D. This problem arises
in the solution of Laplace’s equation ∇2u = 0 in a domain D with the boundary
condition given above.

Let u0(x, y) be the unknown solution of the problem. We seek an approximate
solution of the form

uapp. =
n∑

k=1

ckuk(x, y), (7.113)

where uk are solutions of ∇2u = 0. If u0 were known, we could pose the problem
of finding the coefficients ck in such a way that uapp. minimizes the integral

I {uapp. − u0} =
∫∫

D

[(
∂uapp.

∂x
− ∂u0

∂x

)2

+
(

∂uapp.

∂y
− ∂u0

∂y

)2
]

dxdy. (7.114)

It appears natural to try to construct the approximate solution of the form (7.113)
that minimizes the functional (7.114). Equating the partial derivatives of the expres-
sion in (7.114) with respect to c j ( j = 1, 2, . . . , n), we get

n∑

k=1

∫∫

D

(
∂u j

∂x

∂uk

∂x
+ ∂u j

∂y

∂uk

∂y

)

ckdxdy =
∫∫

D

(
∂u j

∂x

∂u0

∂x
+ ∂u j

∂y

∂uo

∂y

)

dxdy

( j = 1, 2, . . . , n). (7.115)

But for any harmonic function v and an arbitrary function u, we have

∫∫

D

∇u · ∇vdxdy =
∫

�

u
∂v

∂n
d S.
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Using (7.112) and the above relation, we get from (7.112) the equation

n∑

k=1

(∫

�

∂u j

∂n
ukd�

)

ck =
∫

�

f
∂u j

∂n
d� ( j = 1, 2, . . . , n) (7.116)

which only involves the value of u0 on the boundary �. Thus, (7.116) can be used
when u0 is unknown in the domain D. When the values of ck determined from (7.116)
are substituted in (7.113), we obtain the same expression as if we have minimized the
integral (7.114) and thus determine an approximate solution of the original problem.

It should be noted that the method is also applicable when we have the boundary
condition ∂u

∂n

∥
∥

�
= f instead of (7.112). Numerical calculations reveal that the Trefftz

method is highly effective.

7.6.8 Kantorovich Method

While applying the Rayleigh–Ritz method to functional I [z(x1, x2, . . . , xn)] depend-
ing on the functions of several variables, the coordinate system of functions is chosen
as W1(x1, x2, . . . , xn), W2(x1, x2, . . . , xn), Wn(x1, x2, . . . , xn), . . . and an approxi-
mate solution is sought in the form

zm =
m∑

k=1

αk Wk(x1, x2, . . . , xn),

where α′ks are constants and W ′
ks are independent.

In Kantorovich method [222] also, one chooses the coordinate system of functions
as above, but the approximate solution is sought in the form

zm =
m∑

k=1

αk(xi )Wk(x1, x2, . . . , xn), (7.117)

where the coefficients αk(xi ) are unknown functions of one of the independent vari-
ables. On the class of functions of the type (7.117), the functional I [z] is trans-
formed into a functional of the form I [α1(xi ), α2(xi ), . . . , αm(xi )], which depends
on α1(xi ), α2(xi ), . . . , αm(xi ). These functions are then chosen so as to extremize
the functional I .

If we proceed to the limit as m → ∞, then subject to certain conditions one
can obtain an exact solution. But if such limit is not taken, then method will give
an approximate solution which is generally more accurate than that obtained by
Ritz method with the same coordinate functions and the same number of terms.
The greater precision of Kantorovich method stems from the fact that the class of
functions nut with constant α′ks. Thus, it is possible to find functions that approxi-
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mate better the solution of the variational problem than the functions from the class
αk Wk(x1, x2, . . . , xn), where the α′ks are constants.

Example 7.13 Find an approximate solution of Poisson’s equation

∂2z

∂x2
+ ∂2z

∂y2
= −1 in the rectangle D = {(x, y)| − a ≤ x ≤ a, − b ≤ y ≤ b}

with z = 0 on the boundary ∂ D of D.

Solution. It may be readily shown that Poisson’s equation is the Euler–Ostrogradsky
equation for the functional

I [z] =
∫∫ [(

∂z

∂x

)2

+
(

∂z

∂y

)2

− 2z

]

dxdy.

We seek an approximate solution in the form

z1(x, y) = (b2 − y2)α(x),

which clearly satisfies z1 = 0 on y = ±b. Substituting this in the expression for I ,
we get

I [z1] =
∫ a

−a

[
16

15
b5α

′2 + 8

3
b3α2 − 8

3
b3α

]

dx

whose Euler equation is

α′′(x)− 5α

2b2
= − 5

4b2
. (7.118)

Its solution satisfying α(−a) = α(a) = 0 is

α(x) = 1

2

⎛

⎝1−
cosh 2

√
5
2 · x

b

cosh 2

√
5
2 · a

b

⎞

⎠ .

Thus, the approximate solution is

z1(x, y) = b2 − y2

2

⎛

⎝1−
cosh 2

√
5
2 · x

b

cosh 2

√
5
2 · a

b

⎞

⎠ .

To obtain a more accurate solution, we may try a solution of the form

z2(x, y) = b2 − y2α1(x)+ b2 − y2α2(x).
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7.7 Variational Formulation for Linear and Nonlinear
Problems

There exist a multitude of problems in linear and nonlinear analysis which are escaped
from having solution. We intend to discuss such problems in some detail by trans-
forming them into variational formulation. Observe that during the last six decades,
research on heat and mass transfer in impinging flow led to a multitude of experimen-
tal data obtained by different methods involving different hydrodynamic, thermal or
material boundary conditions. However, we note that variational principles do not
exist for many heat and mass transfer problems that arise in engineering applications.
Coal gasification process involves the description of solid fuel conversion in fixed-
bed and entrained flow gasification reactors. Notice that the effect of gasification on
the dynamics and kinematics of immersed spherical and nonspherical solid particles
are two such examples.

In this section, we examine the question of the existence of a variational principle
in a more systematic way. In this context, we use the notions of Gâteaux derivatives
in order to be able to give a general treatment of variational formulation for nonlinear
differential equations.

To begin with, let us consider a vector field V and we ask the question: Can v be
derived from a potential? It is well known that if∇×v = 0, then v can be represented
as the gradient of a potential, i.e. v = ∇φ.

The aforementioned elementary concept in vector calculus tells us that if we
regard the Euler equation in a variational principle as the gradient of a functional,
analogous to a potential, then we should not expect every differential equation to
be derivable from a potential for the simple reason that every vector field cannot be
derived from a potential. In order to make these concepts clearer, we should define
the gradient of a functional and the derivative of a differential operator.

An equation (or a differential equation, to be more specific) is generally associated
with additional conditions which specify initial, boundary and regularity conditions,
as well as the functional class. The set formed by an equation and all additional
conditional conditions constitutes a problem. Every problem may be expressed in
the general form

P(u) = φv, (7.119)

where P denotes an operator which may be nonlinear. The set of elements u that
satisfies the given initial or boundary conditions and the given functional class is
called the domain of the operator and is denoted by D(P) which can be considered
as a subset of a vector space U . The set of elements v = P(v) constitutes the range
of P denoted by R(P). This is supposed to be embedded in another vector space V ,
and φv in (7.119) is the null element of V . Suppose

P ′uφ = lim
ε→0

P(u + εφ)− P(u)

ε
=

[ ∂

∂ε
P(u + εφ)

]

ε=0
(7.120)
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exists. The limit is defined by the topology of the V -space. Then, P ′uφ is called the
Gâteaux differential of the operator P in the direction φ, and P ′u is called the Gâteaux
derivative of the operator P . The subscript u means that the differentiation of the
operator is with respect to the argument u.

We now introduce a bilinear functional 〈u, v〉 that satisfies the following require-
ments:

(i) It must be real-valued even if U and V are vector spaces over the complex
number field.

(i i) It must be bilinear over the real number field.
(i i i) It must be nondegenerate. This entails

if 〈u0, v0〉 = 0 for every v ∈ V , then u0 = φu ;
if 〈v0, u〉 = 0 for every u ∈ U , then v0 = φv.

The real number s = 〈u, v〉 is called the scalar product of the elements v ∈ V and
u ∈ U . The V -space is called the dual or the conjugate of the U -space, and one
writes V = U ∗.

In practice, one can take the bilinear functional as follows. In many physical
problems, one can take the bilinear functional 〈v, u〉 as

〈v, u〉 =
∫

v(x) · u(x) d�, (7.121)

where � is a subset of Rn and x is a point of � with x = (x1, x2, . . . , xn). Here, v · u
is the scalar product, i.e. a scalar-valued function formed of two vector values or two
tensor-valued functions such as

∑

k

vk(x)uk(x) or
∑

h,k

vhk(x)uhk(x),

where the two tensors must have the same symmetry. Of course, a more general
bilinear functional can be constructed as follows: if A : U → U and B : V → V
are two linear invertible operators whose domains are the entire U− and V−spaces
respectively, then the bilinear functional is

〈v, u〉 =
∫

Bv(x).Au(x) d�.

Once a bilinear functional is introduced, it is natural to introduce a topology in both
the spaces such that the bilinear functional becomes continuous with respect to both
the arguments. Such a topology is said to be compatible with duality. To illustrate
this notion, one may observe the following example.

Example 7.14 Consider the operator P whose domain is that of differential functions
over [0, 1] which vanish at x = 0. Suppose the bilinear functional is the usual one
given by (7.121). We may choose D(P) = U = C1[0, 1] and R(P) = V = C[0, 1].
The topologies induced by the norms
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‖u‖ = max
x∈[0,1][|u(x)| + |u′(x)|]

‖v‖ = max
x∈[0,1] |v(x)|

are compatible with duality. To show this, we first note that the two spaces are
complete, and if ‖un − u0‖ < ε, then

|〈v, un〉 − 〈v, u0〉| = |〈v, un − u0〉|
=

∣
∣
∣

∫ 1

0
v(un − u0)dx

∣
∣
∣ ≤ (max |v|).ε.1

Since v is continuous and the interval is finite, the property follows. Once the conti-
nuity is ensured, if u belongs to a dense subset D of a linear space U , the condition
〈v0, u〉 = 0 for every u ∈ D assures that v0 is φv.

Gradient of a functional—The gradient of a functional is defined as follows: given
a functional F(u) such that

F(u) =
∫

L(u) dV, (7.122)

its Gâteaux differential in the direction φ is

lim
ε→0

F(u + εφ)− F(u)

ε
=

∫

lim
ε→0

L(u + εφ)− L(u)

ε
dV

=
∫

L ′uφ dV .

Now, the Gâteaux differential F ′uφ defined by the limit on the left-hand side depends
on u and φ. Integration by parts gives

F ′uφ =
∫

L ′uφ dV =
∫

φP(u) dV + boundary terms (7.123)

and the operator P(u) is called the gradient of the functional.
To see whether an operator P(u) is the gradient a functional, we should see

whether the path integral in (7.123) depends on the path of integration. Consider two
paths

I : u → u + εφ → u + εφ + v	,

I I : u → u + ε	 → u + v	 + εφ

where u, φ and 	 ∈ X and ε and v are constants.
If the path integral is independent of the path chosen, then the following equation

must hold:
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∫

P(u)εφdV +
∫

P(u + εφ)v	dV =
∫

v	 P(u)dV +
∫

P(u + v	)εφdV .

We can rearrange this equation as

∫ [
P(u + εφ)− P(u)

ε

]

	dV =
∫ [

P(u + v	)− P(u)

v

]

φdV .

When ε → 0 and v → 0, we have from above,

∫

	 P ′uφdV =
∫

φP ′u	dV . (7.124)

This implies that the operator P ′u is symmetric. The fact that (7.124) is the condition
for the existence of a functional having the operator P(u) as its gradient follows
from the following theorem given by Vainberg [597].

Theorem 7.18 Suppose that the following conditions are satisfied:

(i) P is an operator from a normed space X into its conjugate space X∗.
(ii) P has a linear Gâteaux differential D P(x, h) at every point of the open ball

Br (x0).
(iii) The bilinear functional (D P(x, h1), h2) is continuous in x for every point x in

Br (x0).

Then, in order that the operator P be potential in the ball Br (x0), it is necessary
and sufficient that the bilinear functional (D P(x, h1), h2) be symmetric for every x
in Br (x0), i.e.

(D P(x, h1), h2) = (D P(x, h2), h1) (7.125)

for every h1 and h2 in X and every x in D.

Equation (7.125) is just the symmetry condition (7.124). Provided that an operator
P(u) is the gradient of a functional, i.e.

P(u) = ∇F(u),

the functional F can be written as

F(u) =
∫

u
∫ 1

0
P(λu)dλdV . (7.126)

The variation of F(u) due to a variation δu in u is

δF =
∫

P(u)δudV .
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Clearly, if F is the functional arising in a variational principle, then P(u) = 0 is the
corresponding Euler equation. Consequently, the question as to whether a variational
principle exists for a given operator P depends on whether the operator has symmetric
Gâteaux differential expressed by the condition (7.124).

Example 7.15 Consider the following equation (see).

f (u; u, j , u, jk ) = 0. (7.127)

Solution. From (7.120), we have

P ′uφ =
[

∂

∂ε
f
(
u + εφ, u, j +εφ, jk

)
]

= ∂ f

∂u
φ + ∂ f

∂u, j
φ, j + ∂ f

∂u, jk
φ, jk . (7.128)

To test the symmetry requirement, we now integrate the following by parts

∫

	 P ′uφ dV =
∫

	

[
∂ f

∂u
φ + ∂ f

∂u, j
φ, j + ∂ f

∂u, jk
φ, jk

]

dV

=
∫

φ

{[
∂ f

∂u
−∇ j

(
∂ f

∂u, j

)

+ ∇k∇ j

(
∂ f

∂u, jk

)]

	

+
[

− ∂ f

∂u, j
+ 2∇k

(
∂ f

∂u, jk

)]

∇ j	

+ ∂ f

∂u, jk
∇k∇ j	

}

dV + boundary terms

=
∫

φP
′
u	dV + boundary terms. (7.129)

Equation (7.129) defines the Gâteaux derivative P
′
u , which may be regarded as the

adjoint to Pu . It should be noted that an adjoint is generally defined for a linear
operator, but the notion of an adjoint is also useful for nonlinear operators.

Suppose the nonlinear operator P has Gâteaux derivative P ′u which is not sym-
metric. We then defines its adjoint P∗(u, v) = P

′
v by (7.129). Hence, the boundary

value problem in a region D with boundary � given by

P(u) = f in D,

Bi (u) = 0 on �

admits of a variational principle δ I = 0 with

I (u, v) =
∫

D
[vP(u)− ug − v f ] dV .
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Here, the Euler equation are P(u) = f, P∗(u, v) = g. Now, using (7.128) and the
symmetry condition (7.124), we get

∫

φP
′
u	dV =

∫

φP ′u	dV =
∫

φ

[
∂ f

∂u
+ ∂ f

∂u, j
∇ j + ∂ f

∂u, jk
∇ j∇k

]

	dV .

Since this relation holds for arbitrary φ and 	, we must have

∂

∂u
− ∇ j

∂ f

∂u, j
+ ∇k∇ j

∂ f

∂u, jk
= ∂ f

∂u
,

− ∂ f

∂u, j
+ 2∇k

(
∂ f

∂u, jk

)

= ∂. f

∂u, j

These two equations are equivalent to

∂ f

∂u, j
− ∇k

(
∂ f

∂u, jk

)

= 0 (7.130)

and this is the required condition for (7.127) to be derivable from a potential.
We now recall the concept of Fréchet derivative (see [534]). Suppose X and Y

are Banach spaces, � into Y , and x ∈ �. If there exists A ∈ L(X, Y ) (the Banach
space of all bounded linear mapping of X into Y ) such that

lim
h→0

‖F(x + h)− F(x)− Ah‖
‖h‖ = 0.

then A is called the Fréchet derivative of F at x .

Observation

• It is well known that if a Fréchet differential exists, then so does a Gâteaux differ-
ential. Hence, if the operator has a symmetric Fréchet differential, then a variation
principle exists for (7.119).

• Many natural functionals which may encounter in the real-world problem may
not be bounded at all, neither from above nor from below. So we cannot look for
maxima or minima. Instead, we seek saddle points by a min-max argument. The
notion of Fréchet derivative plays an important role here. In this context, it may be
pertinent to recall from the Lax–Milgram lemma of Sect. 7.6.3 that if J (v) →+∞
when ‖ v ‖→ ∞ and is weakly lower semicontinuous, then J attains a global
minimum; i.e., we can find u ∈ V such that J (u) = limv∈V J (V ).

Let us consider now the problem of finding a nontrivial stationary point of a given
real C1 functional J defined in a Banach space X and state the following:
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7.7.1 Mountain Pass Lemma

Let J : X → R be a C1 functional. Further, let u0, u1 ∈ X, c0 ∈ R and R1 > 0 such
that

(i) ‖ u1 − u0 ‖> R1,

(i i) J (u0), J (u1) < c0 ≤ J (v) for all v such that ‖ v − u0 ‖= R1. Then, J has a
stationary value c ≥ c0 defined by

c = inf
p

max
u∈p

J (u).

Here, p represents any continuous path joining u0 to u1 in X . We take the maximum
J over p and then take the infimum with respect to all possible paths. Since every
such path must cross the sphere SR1(u0) =

{
v|‖v − u0‖ = R1

}
, where we have

J ≥ c0, we see that maxp J ≥ c0.
Now, we address a natural question—Why this lemma is called “mountain pass

lemma”? To know this, we take the following observation:

• Think of J as representing the height of land at a point u. Then, u0 is a point in a
valley U bounded by a mountain range ∂U which is the boundary ‖v−u0‖ = R1.
For any path p joining u0 to u1, maxp J represents how high we have to go on that
path. Taking the infimum then minimizes this. But, c is the height of the lowest
mountain range. When we are at that mountain pass, the earth is level, so that the
Fréchet derivative J ′ vanishes.

Although this result is intuitively obvious, it is false even in finite dimensions. For
example, in the complex plane, consider the nonnegative function

F(z) = |ez − 1|4.

Obviously, F achieves the minimum at 0 and 2π i. One can show that for small
r > 0,

F(z) ≥ c0 > 0 for |z| = r.

On the other hand, zero is the only critical value of F . Thus, F satisfies condition
(ii) of MPL above, but the conclusion of MPL does not hold (Fig. 7.8).

Now, in view of above example, there arises a natural question. How to validate
MPL? Notice that for the validity of MPL, we have to add an additional condition
to MPL. This is known as Palais–Smale condition (P S)c (a kind of compactness
condition) and is defined as follows:

• (P S)c: Any sequence ui in X for which F ′(u) → c and the Fréchet derivatives
F ′(ui) → 0 strongly in X∗ (the dual space of X ) has a strongly convergent
subsequence {ui j } in X .
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Fig. 7.8 Minima of the
complex-valued function
F(z) = |ez − 1|4 at 0 and
2π i

It may be noted that the Fréchet derivative F ′(u) of F at u represents a continuous
linear functional on X , i.e. an element in X∗. It may be shown that MPL formulation
above along with (P S)c gives the correct MPL.

If P is a linear operator, i.e. P = L , then

L ′uφ = lim
ε→0

L(u + εφ)− L(u)

ε
= Lφ

Consequently, L ′u = L and the symmetry condition (7.124) becomes

	LφdV =
∫

φL	 dV (7.131)

and the functional (7.126) then reduces to

F(u) = 1

2

∫

uLu dV . (7.132)

7.7.2 Variational Principles for Non-self-adjoint Equations

Let H be a Hilbert space and A be a continuous linear operator such that A : H → H

and y ∈ H. We introduce a functional fy on H by

fy(x) = (Ax, y).

Clearly, fy(x) is a linear functional, and for x ∈ H,

| fy(x) |=| (Ax, y) |≤‖ Ax ‖ · ‖ y ‖≤‖ A ‖ · ‖ y ‖ · ‖ x ‖ .

Thus, fy is bounded and so fy is a continuous linear functional defined everywhere
on H and ‖ fy ‖≤‖ A ‖ · ‖ y ‖. Hence, by the Riesz representation theorem (Rudin
[534]),

fy(x) = (x, y∗)
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for all x ∈ H such that y∗ ∈ H is uniquely determined by fy . Clearly, if y changes,
then y∗ also changes. So we introduce an operator A∗ such that

y∗ = A∗y.

Here, A∗ is defined everywhere on H, and its range is also in H. This operator A∗
is called the adjoint operator to A. From the above equations, we find that A and A∗
are connected by

(Ax, y) = (x, A∗y).

Now, we define a self-adjoint operator A∗ as follows: A continuous linear operator
A : H → H is called self-adjoint if A∗ = A.

Given a linear differential operator L , we define the adjoint as above. When
L = L∗, (7.131) holds and a variational principle exists with the functional given
by (7.132), provided the boundary conditions are appropriate. When L is not self-
adjoint, (7.131) does not hold. For such an operator, let the linear boundary value
problem be

Lu = f in V (7.133a)

with

Bi u = 0 on S (7.133b)

where S is the piece-wise smooth boundary of the domain V . For a linear boundary
value problem with a nonhomogeneous boundary condition given by

Lw = h in V

Bi w = gi on S. (7.134)

We assume that a function v can be found such that v satisfies Bi v = gi on S and
v can be extended into the region V . Then, it is clear that the function u given by
u = w− v satisfies (7.133a) and (7.133b).

A variational principle for a non-self-adjoint problem (7.133a) subject to (7.133b)
can be founded by a method closely related to the least squares method. This method
minimizes the mean square residual

J (u) =
∫

V
(Lu − f )2 dV (7.135)

among function satisfying Bi u = 0. The variation of J is given by
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δ I = 2
∫

V
(Lu − f )L δu dV

= 2
∫

δu(L∗Lu − L∗ f )dV + B(δu, Lu − f ) (7.136)

Thus, the Euler equation with the essential and the natural boundary conditions is
given by

L∗Lu = L∗ f in V (7.137a)

subject to

Bi u = 0, B∗j Lu = B∗j f on S. (7.137b)

Mikhlin [396] studied the conditions under which the solution of (7.137a) subject to
(7.137b) reduced to the solution of the problem (7.133a) subject to (7.133b). If the
system (7.133) admits of a solution and the inequality

(u, u) � K (Lu, Lu) (7.138)

holds, then the least square using (7.135) is equivalent to the variational method
applied to (7.137a) subject to (7.137b). When the adjoint problem is unique, i.e.
when the system

L∗v = 0 in V

Bi v = 0 on S (7.139)

has the trivial solution v = 0, then solving (7.137a) subject to (7.137b) is equivalent
to solving the problem (7.133a) subject to (7.133b). An equation similar to (7.137a)
is given by

Ax = f, A = T ∗T (7.140)

An equation of this type arises in a variety of problems in physics and mechanics.
Laplace’s equation, the biharmonic equation and the Lagrange–Germain equation
describing a static deflection of a thin plate are all of this type.

Let us consider a linear operator A mapping a subset DA of a Hilbert space H1 into
H1. We assume that A is positive definite, so that A = T ∗T . Further, the domains
of T are dense in H1, and hence, T ∗ is uniquely defined. Clearly, T and T ∗ are the
linear maps given by

T : DA ⊂ H1 → H2, T ∗ : H2 → H1.

Thus, (7.140) in the space H1 can be rewritten as a pair of equations
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T x = p in H2

T ∗ p = f in H1 (7.141)

The system (7.141) has been designated by Rall [499] as a Hamiltonian system.
Let us introduce a new Hilbert space H = H1

⊕
H2, such that every element h

on H is an ordered pair h = (x, p) with x in H1 and p in H2. We define the inner
product in H as follows:

{h1, h2} = (x1, x2)H1 + 〈p1, p2〉H2 ,

where (·)H1 and 〈·, ·〉H2 denote, respectively, the inner product in H1 and H2. Let
p̃ ∈ H2, x̃ ∈ H1, x ∈ H1 be arbitrary vectors and w̃ = (x̃, p̃) a vector in H. The
corresponding value of the functional L : H → R is given by

L(x, T x) = 〈T x̃, p̃〉 − 1

2
〈 p̃, p̃〉 − ( f, x̃). (7.142)

If the gradient Lw of the above functional is uniquely defined at w0 = (x0, p0) ∈ H,
then Eq. (7.141) are the necessary and sufficient conditions for the vanishing of Lw.
Thus, the functional has a critical point (or an extremum) at w0 if and only if these
equations are satisfied.

Further, in the context of complementary variational principle, the system (7.141)
has been designated by Noble (see [22]) as a Hamiltonian system. This can be easily
seen if one introduced the functional

w(x, p) = 1

2
〈p, p〉 + 〈 f, x〉, (7.143)

which can be regarded as the Hamiltonian such that the system (7.141) can be written
as

T x = Wp, T ∗ p = Wx . (7.144)

These are Hamilton’s canonical equations in the special case when

T = d

dt
, T ∗ = − d

dt
.

Here, x and p denote the vectors of generalized displacement and momenta, respec-
tively.

Let the Hamiltonian system (7.144) (with Hamiltonian H = W (x, p)) be satis-
fied at the critical point x = x̃, p = p̃. But if W (x, p) fails to be convex at some
neighborhood of p = p̃ for fixed x̃ (or vice versa), then we do not have an obvi-
ous way of formulating complementary variational principles ([22]), or deriving by
two-sided bounds on the value of the Lagrangian. A remedy for this was suggested
by Komkov ([341]) who pointed out that in such cases complementary variational
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principles could be formulated by altering the rules of multiplication of some vector-
valued functions. The appropriate algebra for such problems was shown by him to
be the quaternionic algebra of Hamilton. But we do not pursue it here because this
will take us too far from our discussion.

Further, standard technique introduce by Kato [319] is to write (7.140) in terms
of Lagrangian coordinates q, q̇ and t with the Lagrangian L(q, q̇, t) as

T ∗T q = f

and then rewrite it as a system of two equations as before:

T q = p(t), T ∗ p = f (q(t), t).

The Hamiltonian is similar to (7.142) and is given by

H = 1

2
〈p, p〉 + V (q, t),

∂V

∂q
= f (q, t).

The Legendre transformation is defined by the mapping

{q, Aq} → {q, p}

with

p = ∂L

∂(Aq)
, H = L − 〈Aq, p〉.

This establishes the duality between a Lagrangian and a Hamiltonian formulation.

Observation

1. If a linear operator is self-adjoint, then a variational be constructed by least
squares method as explained above.

2. For a nonlinear operator, a variational principle exists if the Gâteaux differential
of the operator is symmetric.

Examples of Variational Calculus

Example 7.16 Find the extremals of the functional I [y(x)] = ∫
x(dx2 + dy2)1/2.

Solution. The given functional is

I [y(x)] =
∫

x(dx2 + dy2)1/2 =
∫

x
√

1+ y′2 dx .

So F(x, y, y′) = x
√

1+ y′2, Fy = Fyy′ = 0, Fxy′ = y′√
1+y′2

and Fy′ y′ = x
(1+y′2)3/2 .

Hence, the Euler’s equation

Fy − Fxy′ − Fyy′ y
′ − Fy′ y′ y

′′ = 0
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reduces to
Fxy′ + Fy′ y′ y

′′ = 0

i.e., y′√
1+y′2

+ x
(1+y′2)3/2 y′′ = 0, i.e. xy′′ + y′(1+ y′2) = 0

Example 7.17 Find the extremal of the following functional

I [y(x)] =
∫ 1

0
(y′2 + y′ + 1) dx, y(0) = 1, y(1) = 2.

Solution. The given functional is

I [y(x)] =
∫ 1

0
(y′2 + y′ + 1) dx (7.145)

with the boundary conditions

y(0) = 1, y(1) = 2. (7.146)

Here, F(x, y, y′) = y′2 + y′ + 1, Fy = 0, Fy′ = 2y′ + 1.

Hence, Euler’s equation Fy − d
dx Fy′ = 0 becomes

0− d

dx
(2y′ + 1) = 0 , i.e.y′′ = 0.

Its solution is y = c1x + c2.

Applying the boundary conditions (7.146), we have

y(0) = c1 · 0+ c2 = 0; y(1) = c1 + c2 = 2,

which gives c1 = c2 = 1. Thus, the extremals are obtained on the straight line
y = x + 1.

Example 7.18 Prove that the extremals of the functional I [y(x)] =
∫ √

x(1+ y′2) dx

are parabolas.

Solution. Here, F(x, y, y′) = √
x(1+ y′2) which is independent of y. Therefore,

Euler’s equation Fy − d
dx Fy′ = 0 reduces to − d

dx

(
∂ F
∂y′

)
= 0 or ∂ F

∂y′ = constant = c,
say,
i.e. 1

2
√

x(1+y′2)
.x .2y′ = c

i.e.
√

x · y′√
1+y′2

= c or xy′2 = c2(1+ y′2)

i.e. y′2(x − c2) = c2 or y′ = c√
x−c2 or dy

dx = c√
x−c2 .

Integrating both sides w.r.to x, we obtain
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y = c
∫

dx√
x−c2 + c1

i.e. y = 2c
√

x − c2 + c1

or (y − c1)
2 = 4c2(x − c2),

which represents a family of parabolas. Thus, the extremals of the given functional
are parabolas.

Example 7.19 Derive the fundamental equation of quantum mechanics from a vari-
ational (Schrödinger equation [411]).

Solution. Suppose m is the mass of the particle whose motion is considered in a field
of potential energy V and h denotes the plank’s constant. We now define an operator
known as the Hamiltonian operator as follows:

H ≡ −k∇2 + V (x, y, z), (7.147)

where k = h2

8π2m and the Laplacian ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . We seek a wave function
	 (possibly complex) which extremizes the functional

∫∫∫

D

	∗(H	) dxdydz (7.148)

subject to the constraints

∫∫∫

D

	∗	 dxdydz = 1, (7.149)

where 	∗ is the complex conjugate of 	 and the integration is over a fixed domain
D of x, y and z.

We further assume that the admissible functions 	 and 	∗ either vanish at the
boundaries of the domain or take on same values and derivatives at corresponding
points on opposite boundaries. As a consequence,

∫∫∫

D

	∗∇2	dxdydz = −
∫∫∫

D

∇	∗ · ∇	dxdydz.

Introducing the Lagrange multiplier λ, we then find the extremum of the functional

∫∫∫

D

K dxdydz =
∫∫∫

D

[
k(	∗x 	x +	∗y 	y +	∗z 	z)+ V 	∗	 − λ	∗	

]
dxdydz.

The Euler equations are

∂K

∂	
− ∂

∂x

(
∂K

∂	x

)

− ∂

∂y

(
∂K

∂	y

)

− ∂

∂z

(
∂K

∂	z

)

= 0,
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∂K

∂	∗ −
∂

∂x

(
∂K

∂	∗
x

)

− ∂

∂y

(
∂K

∂	∗
y

)

− ∂

∂z

(
∂K

∂	∗
z

)

= 0,

which reduces to
− k∇2	 + V 	 = λ	 (7.150)

This may be written as
H	 = λ	.

If we multiply this by 	∗ and integrate over the domain of x, y, z, the left side
becomes the stationary integral (7.148), which is denoted by E . Hence, by (7.149),
we have λ = E .

Observe that for λ = E , (7.150) reduces to the Schrödinger equation. Note that
there is an interesting and important connection between Hamilton–Jacobi equation
for a classical system and the Schrödinger equation for a quantum mechanical system.
In fact, if we put the wave function 	 = e(i/h)S , where S is the action function of
the classical system, then the Schrödinger equation reduces to the Hamilton–Jacobi
equation provided S is much larger than Planck’s constant h, a universal constant of
nature. Notice that h = 6.626196× 10−27 erg s. Thus, in the limit of large values of
action and energy, the surfaces of constant phase for the wave function 	 reduce to
surface of constant action S for the corresponding classical system. In this case, wave
mechanics reduces to classical mechanics just as wave optics reduces to geometrical
optics in the limit of very small wavelengths.

Remark 7.7 It may be remarked that the Klein–Gordon equation

∇2	 − 1

c2

∂2	

∂t2
−

(mc

h

)2
	 = 0,

where c denotes the velocity of light, representing a possible wave equation for a rel-
ativistic particle (though it is not correct for an electron or proton) can be constructed
in the same manner from the Lagrange functions

L = − h2

2m

[

∇	∗ · ∇	 − 1

c2

(
∂	

∂t

)2

+
(mc

h

)2
	∗	

]

.

Exercises

7.1 Show that the functional I [y(x)] =
∫ x2

x1

(y2+x2 y′) dx assumes extreme values

on the straight line y = x .

7.2 Show that the extremal of the functional I [y(x)] =
∫ 1

0
(x sin y + cos y) dx,

y(0) = 0, y(1) = π
4 can be found on the curve y = tan−1 x .
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7.3 Find the curve on which the functional I [y(x)] =
∫ 2

1

x3

y′2 dx with y(1) =
1, y(2) = 4 can be extremized.

7.4 (Euler–Lagrange Equation) Find the function y(x), having boundary conditions
y(0) = 0 and y(1) = 1, that makes the integral

I =
∫ x2

x1

(
y′2 + yy′ + y2

)
dx

stationary.

7.5 Evaluate the functional I [y(x)] =
∫ log 2

0

(
e−x y′2 − ex y2

)
dx and find the

extremals.
[Hint: Use a substitution x = log u, y = v.]

7.6 (Minimum Surface) A curve y(x) in the xy-plane connecting the points (x1, y1)

and (x2, y2) is revolved around the y-axis and generates a surface of revolution with
area

A =
∫ x2

x1

2πx
√

1+ y′(x)2 dx .

Show that the curve y(x) which generates the surface of revolution with the least
area can be expressed in terms of the inverse hyperbolic cosine

y(x) = c1 cosh−1(x/c1)+ c2

where c1 and c2 are constants.

7.7 Find the function y(x) which connects the points y(0) = 0 and y(1) = 1 and
makes the integral

I [y(x)] =
∫ 1

0

[

y′2 − π2 y2

4

]

dx

stationary by solving the Euler–Lagrange equation.

7.8 Find the curve with fixed boundary points (x1, y1) and (x2, y2) such that its
rotation about x-axis gives rise to a surface of revolution of minimum surface area.

7.9 Show that the curve which extremizes the functional I =
∫ π/4

0

(
y′2−y2+x2

)
dx

under the conditions y(0) = 0, y′(0) = 1, y
(

π
4

)
= y′

(
π
4

)
= 1√

2
is y = sin x .

7.10 Find the plane curve of fixed perimeter and maximum area.
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7.11 Find a function y(x) for which
∫ 1

0
(x2 + y′2) dx is a stationary, given that

∫ 1

0
y2 dx = 2 with boundary conditions y(0) = 0, y(1) = 0.

7.12 Find the extremals of the isoperimetric problem I [y(x)] =
∫ x1

x0

y′2 dx given

that
∫ x1

x0

y dx = c, a constant.

7.13 Show that the shortest curve joining two fixed points is a straight line.

7.14 Show that the shortest line between any two points on a cylinder is a helix.

7.15 Determine the shape of a solid of revolution moving in a flow of gas with least
resistance.

7.16 (Euler’s problem on buckling) If a rod made up of homogeneous and isotropic
material with uniform cross section throughout its length is simply supported by a
longitudinal force P acting at the other end, it is then in either stable or unstable
equilibrium. This means that after a slight lateral bending, it will return to either its
equilibrium position or buckle, depending on whether the magnitude of P is less
than or greater than a certain critical value P0. Determine the buckling force P0.

7.17 Using variational theory, approximate the first eigenvalue of the problem∇2z+
λz = 0 with z = 0 on the boundary of the domain D, which is a circle of unit radius
with center at the origin.

7.18 Using variational theory, approximate the first eigenvalue of the Mathieu equa-
tion

y′′ + λ(2+ cos x)y = 0, y(0) = y(π) = 0.

7.19 Using the Rayleigh–Ritz method, find an approximate solution of the differ-
ential equation

y′′ + x2 y = x, y(0) = y(1) = 0.

Determine y2(x) and y3 and compare their values at the points x = 0.25, x = 0.5
and x = 0.75.

7.20 Using the Rayleigh–Ritz method, find an approximate solution of ∇2z = −1
inside the square S = {(x, y) ∈ R2 : −l � x � l,−l � y � l} which vanishes on
the boundary of the square S.

7.21 Using variational methods, establish the inequality

∫ ∞

0
(y2 − y′2 + y′′2) dx > 0
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unless y(x) = C exp
(
− 1

2 x
)

sin
(√

3
2 x − π

3

)
when there is equality. Assume that

y, y′′ ∈ L2(0,∞).

7.22 Let Q be the square
{
(x1, x2) ∈ R2 : 0 < x1 < 1, 0 < x2 < 1

}
. Using

variational methods, establish the inequality

∫

Q
f 2 dx � 1

2π2

∫

Q
|∇ f |2 dx

for every function f ∈ H 1
0 (Q) and the constant in the inequality is exact.

7.23 Let Q be the cube
{
(x1, x2, x3) ∈ R3 : 0 < x1 < 1, 0 < x2 < 1, 0 < x3 < 1

}
.

Using variational methods, establish the inequality

‖ f ‖2
L2

� 1

3π2
‖∇ f ‖2

L2

for every function f ∈ H 1
0 (Q).



Chapter 8
Applications of Monotone Operator
Theory

Mathematical research should be as broad and as original as
possible, with very long-range goals. We expect history to repeat
itself: we expect that the most profound and useful future
applications of mathematics cannot be predicted today, since
they will arise from mathematics yet to be discovered.

Arthur M. Jaffe (1984)
(Ordering the Universe: the Role of Mathematics)

We studied so far many nonlinear problems that arose naturally in mathematical
physics, differential topology and geometry of manifolds. In mathematical physics,
it arises in the problems of elasticity, Newtonian mechanics of particles, theory of gas
discharge and quantum fields, etc. In differential topology, it arises in smoothness of
surfaces, convex analysis, etc. In differential geometry, nonlinearity arises in study
of geodesics on manifolds, surface of constant curvatures, theory of automorphic
forms, etc.

In the most general setting, these problems can be described by a nonlinear bound-
ary value problems of the type given below. Suppose � is an open subset of Rn , m a
positive integer, and assume that the following conditions hold:

Au = 0 in �

Dαu = 0 in ∂�

}
(8.1)

where A is a quasi-linear differential operator of the form

Au =
∑
|α|�k

(−1)|α| Dα Aα(x, u, Du, D2u, . . . , Dku).

For each α, Aα is a function of x ∈ �, the function u on � and all derivatives of
u up to order k.
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There are basically two approaches to obtain the solvability of (8.1) direct and
indirect approaches.

• In the direct approach, one examines the operator theoretic analogue of (8.1),
directly in appropriate function spaces (mainly Sobolev spaces).

• In the indirect approach, (8.1) is converted into the equivalent integral equation of
the form

u(s) +
∫

�

K (s, t) f (t, u(t)dt = v(s) (8.2)

by means of Green’s function K (x, t), and then, functional analytic study is carried
out in appropriate function spaces (L p-spaces).

In this chapter, we deal with these and other aspects of nonlinear equations. In
Sect. 8.1, we deal with differential equations arising in boundary value problems.
In Sect. 8.2, we discuss integral equations in the most general setting. In Sect. 8.3,
we give computational schemes for the solvability of nonlinear equations. Finally,
we close the chapter in Sect. 8.4 by presenting strong convergence of proximal-type
algorithm for occasionally pseudomonotone operators in Hilbert spaces.

8.1 Ordinary Differential Equations

We start our discussion by considering two-point boundary value problem for ordi-
nary differential equation

u′′ = f (x, u(x)) for a.e. x ∈ [0, π ]
u(0) = u(π) = 0

}
(8.3)

where f : [0, π ] × R → R is a function satisfying Carathéodory conditions. To solve
the two-point BVP for ordinary differential equation (8.3), we follow operator the-
oretic approach as follows:

Let H = L2[0, π ], Eu = u′′ and [N f u](x) = f (x, u(x)), where D(E) is given
by

D(E) = {u ∈ H : u is absolutely continuous, u′, u′′ ∈ H; u(0) = u(π) = 0
}
.

Assume that f (x, u(x)) satisfies a growth condition

| f (x, u)| � a(x) + b|u|, a ∈ L2[0, π ], b > 0.

Then, we see that E is a demicontinuous operator from D(E) to H and N f a
bounded and continuous operator from H into itself. Moreover, (8.3) is equivalent
to the operator equation
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Eu = N f u (8.4)

in the space L2[0, π ]. Because the null space of E is trivial, (8.4) is equivalent to the
equation

u − E−1 N f u = 0

or
u + K N f u = 0, (8.5)

where K = −E−1. Equation (8.5) is a Hammerstein equation, which will be dis-
cussed in detail in the next section. However, we shall make use of the following
proposition which is to be proved later (in Sect. 8.2).

Proposition 8.1 Let X be a reflexive Banach space with dual X∗. Let K : X → X∗
be a bounded symmetric monotone operator and N : X∗ → X a demicontinuous
operator satisfying the condition

(u1 − u2, Nu1 − Nu2) � −p‖u1 − u2‖2, u1, u2 ∈ X∗ for some p � 0.

If ‖K‖p < 1, then the Hammerstein equation

u + K Nu = v

has a unique solution u. This solution u varies continuously with v.

We now come back to the original problem. To this end, we first observe
that the linear associated eigenvalue problem Eu = λu with boundary condition
u(0) = u(π) = 0 has a countable system of eigenvalues −n2, n = 1, 2, . . . with cor-
responding eigenfunctions {φn} forming a complete orthonormal set in L2[0, π ].
This implies that −E−1 has eigenvalues 1

n2 , n = 1, 2, . . . with eigenfunctions {φn}.
This gives us

(−E−1u, u) � 0 ∀u ∈ L2[0, π ] and ‖ − E−1u‖ � ‖u‖.

Finally, we use Proposition 8.1 to get the following theorem regarding the solv-
ability of (8.3).

Theorem 8.1 Let f : [0, π ] × R → R be a function satisfying Carathéodory con-
ditions such that

| f (x, u)| � a(x) + b|u|, a ∈ L2[0, π ], b > 0.
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Further, assume that there exists p � 0 such that the following condition holds

( f (x, u1) − f (x, u2))(u1 − u2) � −p(u1 − u2)
2 for all u1, u2 ∈ R.

If p < 1, then (8.3) has a unique solution.

The problem under consideration is of particular interest when E has a nontrivial
null space, the case which is often mentioned as the problem at resonance. In such
a case, (8.4) is decomposed into a system of two equations, one of which, usually
called the auxiliary equation, is in an infinite dimensional space and is often uniquely
solvable. The other one, called the bifurcation equation, lies in a finite dimensional
space. This method is called the alternative method and is essentially due to Cesari
[137]. We now discuss this method, starting with a result of Kannan [312].

Example 8.1 Let T = [0, l] and consider the following problem

−u′′(x) = λu(x)) for a.e. x ∈ T

u(0) = u(l) = 0.

}
(8.6)

We say that λ ∈ R is an eigenvalue of minus the scalar Laplacian operator with
Dirichlet boundary condition (−u′′, W 1,2

0 (T )), if (8.6) has a nontrivial solution
u ∈ W 1,2

0 (T ), which is called a corresponding eigenfunction. It is well known that
(8.6) has a sequence of eigenvalues 0 < λ1 � λ2 � · · · � λk → +∞ and the cor-
responding eigenfunctions {φn}n�1 ⊆ L2(T ) form an orthonormal basis of L2(T ).
More precisely, we have

λn =
(nπ

l

)2
and φn(x) =

√
2

l
sin
(nπx

l

)
, n ≥ 1.

Example 8.2 Let T = [0, l] and consider the following problem

−u′′(x) = λu(x)) for a.e. x ∈ T

u(0) = u(l), u′(0) = u′(l).

}
(8.7)

In this problem, we can say that there is an increasing sequence of eigenvalues
λ0 = 0 < λ1 � λ2 � · · · � λk → +∞ and the corresponding sequence of eigen-
functions {φn}n�1 ⊆ L2(T ) that form an orthonormal basis of L2(T ). In fact, we
have

λn =
(2nπ

l

)2
and φ0(x) = 1√

l
, φn(x) =

√
2

l
cos
(2nπx

l

)
, n ≥ 1.
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Example 8.3 Let T = [0, l] and consider the following problem

−u′′(x) = λu(x)) for a.e. x ∈ T

u(0) = u′(0), u(l) = u′(l).

}
(8.8)

In this problem, λ ∈ R is an eigenvalue of minus the scalar Laplacian operator
with Dirichlet boundary condition (−u′′, W 1,2

0 (T )), if (8.8) has a nontrivial solution
u ∈ W 1,2

0 (T ), which is called a corresponding eigenfunction. It is well known that
(8.8) has a sequence of eigenvalues 0 < λ1 � λ2 � · · · � λk → +∞ and the cor-
responding eigenfunctions {φn}n�1 ⊆ L2(T ) form an orthonormal basis of L2(T ).
More precisely, we have

λn =
(nπ

l

)2
and φn(x) =

√
n2π2 + l2

2l

[
sin
(nπx

l

)
+ nπ

l
cos
(nπx

l

)]
, n ≥ 1.

Example 8.4 Consider the eigenvalue problem

−u′′′ − λu′ = 0, u(0) = u′(0) = u′(1) = 0

which has infinitely many eigenvalues λn = (nπ)2, n = 1, 2, . . . . Each λn has a mul-

tiplicity of 1, and the corresponding eigenvectors {φn(x)} =
{√

2
nπ

(1 − cos(nπx))
}

form a complete orthonormal sequence in H k .

8.1.1 Nonlinear Differential Equations

First, we recall the following:
Let ϕ : R+ → R+ be continuous, and let T : X → X∗ be a mapping such that

(T x − T y, x − y) � ϕ(‖x − y‖) for all x, y ∈ X.

Then, T is called monotone if ϕ(t) = 0, strongly monotone if ϕ(t) = ct2 for some
c > 0 and firmly monotone if ϕ(0) = 0 and ϕ(t) > 0 when t > 0.

Notice that the importance of mappings of monotone type stems from the fact that
various classes of differential operators in divergence form give rise to equations
involving operators of monotone type acting in suitable Sobolev spaces to their
respective duals (see, e.g., [89, 482]). As a result, since 1960 this class of operators
has been extensively studied by many authors under the basic assumption that X is
reflexive (see [204, 564, 620]).

We now consider the nonlinear differential equation

u′′ = f (x, u(x))
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where u(x) = (u1(x), . . . , un(x)) and f is 2π -periodic in x satisfying Carathéodory
conditions.

Let H = L2[0, π ], Eu = u′′ and N f a bounded and continuous operator from H
into itself with D(E) given by

D(E) = {u ∈ H : u is absolutely continuous, u′, u′′ ∈ H; u(0) = u(2π), u′(0) = u′(2π)}.

The null space of E is nontrivial, and the linear associated eigenvalue problem

Eu + λu = 0

with boundary conditions u(0) = u(2π), u′(0) = u′(2π) has countable eigenval-
ues λn with corresponding eigenfunctions {φn} forming a complete orthonormal
system in L2[0, 2π ]. Also, we have λk � 0 and λk → ∞. Let P : L2[0, 2π ] → M
be the projection operator with M = [φ1, φ2, . . . , φm]. Let M1 = (I − P)M and
L : M1 → M1 be the linear operator defined by

Lu = −
∞∑

m+1

ciλ
−1
i φi for u =

∞∑
m+1

ciφi ∈ M1,

m being such that λm+1 > 0.

With these notations, we see that

L(I − P)Eu = (I − P)u, u ∈ D(E), (8.9)

E L(I − P)N f u = (I − P)N f u, u ∈ M1, (8.10)

P Eu = E Pu, u ∈ D(E). (8.11)

If u ∈ D(E) satisfies (8.4), then by applying L(I − P) and using (8.9) we obtain
(I − P)u = L(I − P)N f u, and thus, a solution u ∈ D(E) of (8.4) is also a solution
of

u − L(I − P)N f u = Pu. (8.12)

And if u is a solution of (8.12), by applying E to both sides of (8.12), we have (by
using (8.10) and (8.11))

Eu − (I − P)N f u = E Pu = P Eu or EU − N f u = P(Eu − N f u).

Thus, a solution of (8.12) is also a solution of (8.4) iff

P(Eu − N f u) = 0. (8.13)
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So we conclude that solvability of (8.4) is equivalent to the solvability of the system
of equations (8.12) and (8.13).

If now u∗ be any arbitrary element of M and if the equation

u − L(I − P)N f u = u∗ (8.14)

is uniquely solvable for such u∗ ∈ M, then the solution u is such that Pu = u∗ and
P Eu = E Pu = Du∗. Thus, Eq. (8.13) reduces to

P N f (I − L(I − P)N f )
−1u∗ − Eu∗ = 0. (8.15)

Hence, if Eq. (8.14) is uniquely solvable for each u∗ ∈ M, solving (8.4) is equivalent
to solving the system equations (8.14) and (8.15). Equations (8.14) and (8.15) are
called the auxiliary and bifurcation equations, respectively.

We now discuss the solvability of auxiliary and bifurcation equations. The auxil-
iary equation

u − L(I − P)N f u = u∗ (A)

is of Hammerstein type (8.5) where K = −L(I − P) and (K u, u) � λm+1‖K u‖2,

which gives

‖K u‖2 � 1

λm+1
|(K u, u)| � 1

λm+1
‖K u‖‖u‖

⇒ ‖K u‖ � 1

λm+1
‖u‖.

Using Proposition 8.1, we get the following proposition for the solvability of the
auxiliary equation(A).

Proposition 8.2 Suppose the Nemytskiĭ operator N f is defined by N f u(t) = f (t,
u(t)) be such that N : H → H is a demicontinuous. Further, assume that there
exist p, m > 0 such that for all u, v ∈ H, (N f u − N f v, u − v) � −p‖u − v‖2. If
p < λm+1, then the auxiliary equation (A) has a unique 2π -periodic solution in H

for each u∗ ∈ M. Further,[I − L(I − P)N f ]−1 is continuous and bounded.

We now use the theory of monotone operators to obtain the solvability of the bifur-
cation equation

P N f [I − L(I − P)N f ]−1u∗ − Eu∗ = 0. (8.16)

in the finite dimensional space M .

Proposition 8.3 Suppose the Nemytskiĭ operator N f is defined by N f u(t) =
f (t, u(t)) is such that N f is demicontinuous from H into itself. Further assume
the following:

(i) there exists λm < p < λm+1 such that for all u, v ∈ H.
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(N f u − N f v, u − v) � −p‖u − v‖2,

(ii) there exists q such that λm < q � p and for all u∗, v∗ ∈ M,

(N f u − N f v, u∗ − v∗) � −q‖u∗ − v∗‖2,

where u, v are the solutions of the auxiliary equation corresponding to u∗, v∗.

Then, the bifurcation equation (8.16) has a unique solution.

Proof Let T : M → M be the operator defined by

T = P N f [I − L(I − P)N f ]−1 − E .

Let u∗, v∗ be two elements of M and let u, v ∈ H such that

[I − L(I − P)N f ]−1u∗ = u, [I − L(I − P)N f ]−2v∗ = v.

Notice that such u, v exist, in view of our assumptions (i) and (ii) and Proposition 8.2.
Further, we see that

(T u∗ − T v∗, u∗ − v∗) = (Eu∗ − Ev∗, u∗ − v∗)
= −(P N f u − P N f v, u∗ − v∗)

= −λm‖u∗ − v∗‖2 − (N f u − N f v, u∗ − v∗)

= −λm‖u∗ − v∗‖2 + q‖u∗ − v∗‖2

= (q − λm)‖u∗ − v∗‖2.

Since q > λm, it follows that T is a strongly monotone operator, and hence, by
Theorem 4.24, we get that T u∗ = 0 has a unique solution. That is, the bifurcation
equation (8.16) has a unique solution.

Combining these two propositions, we obtain the following theorem for the solv-
ability of Eq. (8.4).

Theorem 8.2 Let the Nemytskiĭ operator defined by (N f u)(x) = f (x, u(x)) be such
that N f : H → H is demicontinuous. Further, assume the following:

(i) f is 2π -periodic in x,
(ii) there exist p, q, m such that m2 < q � p < (m + 1)2,

(iii) for all u, v ∈ H, (N f u − N f v, u − v) � −p‖u − v‖2,

(iv) for all u, v ∈ H, (N f u − N f v, u∗ − v∗) � −q‖u∗ − v∗‖2,

where u and v are the solutions of the auxiliary equation corresponding to u∗, v∗.
Then, Eq. (8.4) has a unique 2π periodic solution.

It may be of interest to consider the problem at resonance,
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Eu + λmu = N f u, (8.17)

where λm is any eigenvalue of the operator E . If E ′ = E + λm I, then by suitable
indexing, we can assume that λm < λm+1 and the eigenvalues of E ′ are

λ1 − λm � · · · � λm − λm = 0 < λm+1 − λm � · · · .

Let ε > 0 be any number, 0 < εCλ−1(λm+1 − λm), and take q = ε, p = λm+1 −
λm − ε. Then, (8.17) has a unique solution if we require for N f to satisfy

(N f u − N f v, u − v) � −p‖u − v‖2 for all u, v ∈ H

and
(N f u − N f v, u∗ − v∗) � −q‖u∗ − v∗‖2 for all u∗, v∗ ∈ M.

Finally, we use the same conventions as above.
We finally state a result due to Kannan [312] for a periodically perturbed conser-

vative system
u′′ + ∇G(u) = p(x),

where p(x) ∈ L2[0, 2π ] and is 2π -periodic in x and G in C2(Rn,R). This problem
can be treated as a case of perturbation at resonance with λm = 0.

Theorem 8.3 Let G ∈ C2(Rn,R) be such that for all a ∈ Rn,

M2 I < q I

(
∂2G(a)

∂ui∂u j

)
� pI < (M + 1)2 I

when M is an integer. Then, the nonlinear differential equation

u′′ + ∇G(u) = p(x)

has a unique 2π -periodic solution.

8.1.2 Variational Boundary Value Problem

We now discuss the solvability of variational boundary value problem corresponding
to a general quasi-linear partial differential equation

Au =
∑
|α|�k

(−1)|α| Dα Aα(x, Du, . . . , Dku) = 0.
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To help build ideas, we first draw analogy with the situation for linear equations.
Corresponding to the linear differential operator L given by

Lu =
∑
|α|�k

(−1)|α| Dα(aαβ(x)Dβu),

we define the Dirichlet form α(u, v) as

α(u, v) =
∑

|α|�k, |β|�k

∫
�

aαβ(x)Dβu(x)Dαv(x)dx .

Consider now the Dirichlet problem

Lu = f in �

Dαu = 0 on �, |α| � k − 1. (8.18)

If u and aαβ are sufficiently smooth, (8.18) is equivalent to the equation

α(u, v) = ( f, v) for all v ∈ C∞
0 (�). (8.19)

Hence to extend the meaning of the solution of the Dirichlet problem (8.18), it suffices
to assume that (8.19) is satisfied with the condition that u, v ∈ W k,2

0 (�).

We now define the principal part of L as

L ′ = (−1)k
∑

|α|=k, |β|=k

aαβ Dα+β(x)ξα+β

The uniform strong ellipticity of L is defined as follows: there exists a positive
constant c0 such that for all real ξ and all x ∈ �.

∑
|α|=k, |β|=k

aαβ(x)ξα+β � c0|ξ |2k .

Proposition 8.4 (Garding’s inequality) Let � be any open set and L be a uniformly
strongly elliptic operator. Assume that

(i) aαβ(x) is uniformly continuous on �, |α| = |β| = k,

(ii) aαβ(x) is bounded and measurable, |α| + |β| � 2k.

Then, there are constants r0 > 0 and λ0 > 0 such that

α(u, v) � r0c0‖u‖2
k,2 − λ0‖u‖2 for all u ∈ Ck

0 (�).
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Proposition 8.5 (Regularity theorem) Assume that

(i) � is a bounded subset of Rn with smooth boundary
(ii) L is a uniformly strongly elliptic operator whose coefficients are in C∞(�)

(iii) f ∈ C∞(�)

(iv) u ∈ W k,2(�) is a solution of (8.18).

Then, u can be modified on a set of measure zero so that u ∈ C∞(�). We now
assume that coefficient aαβ are bounded. Then, α(u, v) is a bounded bilinear form
in W k,2(�) and hence can be written as

α(u, v) = (T u, v) for all v in V = W k,2
0 (�),

where T is a bounded linear mapping on V . If we assume the strong form of the
Garding’s inequality

α(u, v) � c‖u‖2
k,2, u ∈ W k,2

0 (�), c > 0,

then T satisfies the condition

(T u, u) � c‖u‖2
k,2 for all u ∈ V = W k,2

0 (�).

Further, it follows by Lax-Milgram lemma that T u = f has a unique solution u in
V . So (8.18) has a unique solution u ∈ W k,2

0 (�). If f and aαβ are sufficiently smooth,
it follows by regularity theorem (Proposition8.5) that u actually belongs to C∞

0 (�)

(except on a set of measure zero). This motivates us to define a nonlinear Dirichlet
form α(u, v), corresponding to the quasi-linear elliptic operator A which is given
in the divergence form

Au =
∑
|α|�k

(−1)|α| Dα Aα

(
x, Du(x), . . . , Dku(x)

)
(8.20)

where for each α, A − α is a mapping of � × RSk to R. Corresponding to the repre-
sentation (8.19), we define the nonlinear Dirichlet form α(u, v) as

α(u, v) =
∑
|α|�k

∫
�

Aα

(
x, u(x), . . . , Dk

u(x)
)
Dαv(x) dx .

or α(u, v) =
∑
|α|�k

∫
�

Aα(x, ξku(x))Dαv(x) dx,

(8.21)
for all u, v in W k,p(�), where ξku(x) = {Dαu(x) : |x | � k

}
.
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Definition 8.1 Let V be a closed subspace of W k,p(�) with W k,P
0 (�) ⊂ V , and

let α(u, v) be a Dirichlet form as defined by (8.21). Let f ∈ V ∗. Then, u ∈ V is a
variational solution of the Dirichlet problem Au = f if

α(u, v) = ( f, v) for all v ∈ V . (8.22)

Eq. (8.22) together with the restriction that u lies in V has the force not only of
requiring that u should satisfy the partial differential equation Au = f but also of
imposing boundary condition upon u.

In the following, RSm is the vector space whose elements are ξ = {ξx : |x | � k}.
Then, A can be written as

Au =
∑
|α|�k

(−1)|α| Dα Aα(x, ξku(x)),

where ξu(x) = {Dαu(x) : |α| � k}.
Assumption (A)

(1) Each Aα(x, ξk) is measurable in x for fixed ξk in RSk and continuous in ξk ∈ RSk

for almost all x in �.
(2) There exists a real number p with 1 < p < ∞ such that for a given g ∈

Lq(�)(q = p/(p − 1)) and a constant c > 0, we have

|Aα(x, ξk)| � c|ξk |p−1 + g(x).

We now define operators Fα : W k,p → Lq and Gα : (L px)Sk → Lq by

[Fαu](x) = Aα(x, u(x)), u ∈ W k,p(�)

and [Gα]φ(x) = Aα(x, φ(x)), φ ∈ (L px)Sk ,

respectively. Here, (L px)Sk is the product space of L p, Sk times.
We have the following lemma.

Lemma 8.1 Suppose that each Aα satisfies Assumption (A). Then, the operator Fα

is a bounded continuous operator from W p
m to Lq .

Proof Let ju = {ξ(u)}, then Fα = Gαoj. Gα maps all of (L px)Sk into Lq . So by an
extension of Theorem 1.44, it follows that Gα is a bounded and continuous map from
(L px)Sk into Lq . As Fα is the composition of two continuous and bounded maps, it
following that Fα is a bounded and continuous map from W k,p to Lq .

Theorem 8.4 Let each Aα satisfies Assumption (A). Then, the Dirichlet form α(u, v)

satisfies the inequality
|α(u, v)| � g1(‖u‖k,p)‖v‖k,p,

where g1(r) is a function of the real variable r depending on ‖g‖.
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Proof We have

α(u, v) =
∑
|α|�k

∫
�

Aα(x, ξku(x))Dαv(x) dx .

Assumption (A) (1) gives

|α(u, v)| �
∑
|α|�k

∫
�

|Dαv(x)| [g(x) + c|ξu(x)|p−1
]

dx

�
∑
|α|�k

[‖Dαv‖] ‖g‖ + c‖u‖p−1
k,p

= ‖v‖k,p

[
‖g‖ + c‖u‖p−1

k,p

]
.

This proves the theorem. �

In view of this theorem, it follows that for a fixed a v ∈ W k,p, α(u, v) is a bounded
linear functional on V , and hence, by Riesz representation theorem, there exists
Fu ∈ V ∗ such that

α(u, v) = (Fu, v) for all v ∈ V .

Theorem 8.5 Under the hypothesis of the above theorem, the operator F is a
bounded demicontinuous operator from V to V ∗.

Proof By Theorem 8.4, we get

|(Fu, v)| � ‖v‖k,p

[
‖g‖ + c‖u‖p−1

k,p

]
,

for all v ∈ V and hence we get

‖Fu‖ � c‖u‖p−1
k,p + ‖g‖.

Let the map Fα : W k,p(�) → Lq(�) be as defined before. Then,

(Fun − Fu, v) =
∑
|α|�k

∫
�

(Fαun(x)) − Fαu(x))Dαv(x)dx .

Applying Hölder’s inequality, we get

|(Fun − Fu, v)| � ‖v‖k,p�|α| � k‖Fαun − Fαu‖q .

Suppose un → u in V . By Lemma 8.1, each Fα is a bounded continuous map from
W k,p to Lq and so ‖Fαu‖q → 0 for each α. Therefore, it follows from the above
inequality that (Fyn − Fu, v) → 0 for each v ∈ V , which proves the demicontinuity
of F .
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Assumption (B)

(1) For each x ∈ � and each pair ξk, ξ ′
k in RSk ,

�|α| � k
[
Aα(x, ξk) − Aα(x, ξ ′

k)
] [

ξα − ξ ′
k

]
� 0

(2) There exists a positive constant c0 > 0 and a function h in Lq(�) such that for
all ξk in RSk and all x in �

�|α| � k Aα(x, ξk)ξk � c0|ξk |p − h(x), 1 < p < ∞.

Theorem 8.6 Let A be a quasi-linear operator of type (8.20) satisfying assumptions
(A) and (B) on an open subset � of Rn. Let V be a closed subspace of W k,p(�) which
contains W k,p

0 (�). Then, for each f ∈ V ∗, Au = f has a variational solution u ∈ V .

Proof Let α(u, v) be the Dirichlet form defined by (8.21).Then, the solvability of
α(u, v) = ( f, v) is equivalent to the solvability of Fu = f, where F is a nonlinear
operator given by α(u, v) = (Fu, v). We have already shown that F is a demicon-
tinuous operator from V into V ∗. Further, we have

(Fu1 − Fu2, u1 − u2) = α(u1, u1 − u2) − α(u2, u1 − u2)

=
∫

�

�|α| � k [Aα(x, ξku1(x)) − Aα(x, ξku2(x))] × [ξk(u1(x)) − ξk(u2(x))] dx � 0,

in view of Assumption (B) (1). Also

(Fu, u) =
∫

�

�|α| � k [Aα(x, ξku(x))ξku(x)] dx

� c0

∫
�

|ξku(x)|pdx − ‖h‖Lq ‖u‖k,p

� c0‖u‖p
k,p − c1‖u‖k,p, c1 = ‖h‖Lq .

Because p > 1, it follows that

(Fu, u)

‖u‖k,p
� c0‖u‖p−1

,p − c1 → ∞ as ‖u‖k,p → ∞.

Thus, F is a demicontinuous, monotone, coercive mapping of V into V ∗, and hence,
it follows by Theorem 4.26 that Fu = f has a solution u ∈ V . This proves the
theorem. �
Remark 8.1 Assumption (B) replaces the strong ellipticity condition imposed in the
theory of linear elliptic problem. In particular, Assumption (B) (1) implies ellipticity
or monotonicity on differential operators Aα corresponding to all derivatives of order
less than or equal to k, not just the higher-order derivatives. By applying Sobolev
imbedding lemma, the ellipticity on the lower order derivatives could be eliminated
as we see in the following theorem.
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Assumption (C)

(i) If ξk = (ζk, ηk−1) is the division of ξk into its kth order components ζk and the
corresponding (k − 1)th order ηk−1, then for x in � and each ηk−1 ∈ RSk−1 ,

�|α| = m
[
Aα(x, ζk, ηm−1 − Aα(x, ζ ′

k, ηk−1)
] [

ζα − ζ ′
α

]
dx > 0, ζk �= ζ ′

k .

(ii) There exist constants c0 > 0 and c2 such that for all x and ξk

�|α| � k Aα(x, ξ)ξα � c0|ξ |p − c2.

Theorem 8.7 Let � be a bounded open subset of Rn wi smooth boundary and V
a closed subspace of W k,p(�) which contains W k,p

0 (�). Let A be a quasi-linear
elliptic operator of type (8.20) satisfying assumptions (A) and (C). Then, for each
f ∈ V ∗, Au = f has a variational solution u ∈ V .

Remark 8.2 The result of Theorem 8.7 holds true if Assumption (C)(ii) is replaced
by the following one:

Assumption (C)(i i)′:
∑
|α|=k

Aα(x, ζk, ηk−1ζα � c0|ζ |p − c1

∑
n−(n/p)�|β|�k−1

|ηβ |r , r < p − 1, c0 > 0.

Example 8.5 Consider the Dirichlet problem

∂

∂x1

(
b1(x)

∂u

∂x1

)
+ ∂

∂x2

(
b2(x)

∂u

∂x2

)
= f

(
x, u,

∂u

∂x1
,

∂u

∂x2

)
in � ⊆ R2

u = 0 on ∂�. (8.23)

In our earlier notation, this is equivalent to

Au = 0, u ∈ W 1,2
0 (�)

where

Au =
∑
|α|�1

(−1)|α| Dα Aα(x, ξu(x)),

A00(x, ξ0, ξ1, ξ2) = f (x, ξ0, ξ1, ξ2),

A01(x, ξ0, ξ1, ξ2) = b1(x)ξ1,

A10(x, ξ0, ξ1, ξ2) = b2(x)ξ2.

We assume that the function f satisfies the Carathéodory conditions and

| f (x, ξ0, ξ1, ξ2)| � b [|ξ0| + |ξ1| + |ξ2|] + g(x), b > 0, g ∈ L2,
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b1(x) � r, b2(x) � r, r > 0, b1, b2 ∈ L2.

It is easily seen that:

(i) Assumption (A) of the above theorem is trivially satisfied in view of our assump-
tions on f and b1 and b2,

(ii) Assumption (C) is also satisfied since

∑
|α|=1

[
Aα(x, ξ0, ξ1, ξ2) − Aα(x, ξ0, ξ

′
1, ξ

′
2)
]
(ξα − ξ ′

α)

= b1(x)(ξ1 − ξ ′
1)(ξ1 − ξ ′

1) + b2(x)(ξ2 − ξ ′
2)(ξ2 − ξ ′

2)

= b1(x)(ξ1 − ξ ′
1)

2 + b2(x)(ξ2 − ξ ′
2)

2 > 0;

and ∑
|α|=1

Aα(x, ξ0, ξ1, ξ2)ξα = b1(x)ξ1
2 + b2(x)ξ2

2 � r(ξ1
2 + ξ2

2).

As all conditions of Theorem 8.7 are satisfied, it follows that (8.23) has a varia-
tional solution u ∈ W 1,2

0 (�).

8.2 Integral Equations

In this section, we shall mainly be concerned with the integral equations of the
following type:

(1) Nonlinear Hammerstein integral equation

x(s) +
∫

�

k(s, t) f (t, x(t)) dt = y(s). (8.24)

(2) Nonlinear integral equation of mixed type involving sum of Hammerstein oper-
ator

x(s) +
∫

�

k1(s, t) f1(t, x(t)) dt +
∫

�

k2(s, t) f2(t, x(t))dt = y(s). (8.25)

(3) Generalized Hammerstein integral equation

x(s) +
∫

�

kx (s, t) f (t, x(t)) dt = y(s), (8.26)

where kx (s, t) is a kernel which is a function of the solution.
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(4) Urysohn’s integral equation

x(s) +
∫

�

k(s, t, x(t)) dt = y(s). (8.27)

Our approach is operator theoretic. That is, the problem of determining the solution
of the above equations is reduced to the problem of determining the solution of the
appropriate nonlinear operator equations.

8.2.1 Hammerstein Operator Equation

Consider the nonlinear Hammerstein integral equation:

x(s) +
∫

�

k(s, t) f (t, x(t))dt = y(s), (8.28)

where k is a function defined on � × � with values in R, f is a function defined on
� × R to R and is such that it satisfies Carathéodory conditions (refer Sect. 1.8.1)
and � is a measurable subset of Rn .

We now define the linear and nonlinear operators K and N f as follows:

[K x](s) =
∫

�

k(s, t)x(t)dt (8.29)

[N f x](s) = f (s, x(s)). (8.30)

Then, one can readily see that (8.28) is equivalent to the nonlinear operator equation

x + K N f x = y. (8.31)

The above equation is called Hammerstein operator equation. We shall obtain abstract
solvability theorem for (8.31) and then derive solvability results for (8.28). By suit-
ably redefining N f , one can assume that y = 0 in (8.31), and hence, we need consider
only the following operator equation

x + K N f x = 0. (8.32)

We divide the discussion on the above equation in two parts, one for noncompact
and the other K compact.
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8.2.1.1 K is Noncompact

The direct application of the theory of monotone operators dates back to Dolph-Minty
[195]. We state and prove their theorem as follows:

Theorem 8.8 Let H be a Hilbert space and N f : H → H be hemicontinuous and
monotone and K : H → H continuous and strongly monotone. Then, (8.31) has a
unique solution x for every y, and this solution x depends continuously on y and
satisfies the estimate

‖x‖ � 1

c
[‖K‖‖y‖]

where c is the constant of strong monotonicity.

Proof Let x1, x2 be such that

x1 + K N f x1 = y = x2 + K N f x2.

Then,

(
N f x1 − N f x2, x1 − x2

)+ (N f x1 − N f x2, K N f x1 − K N f x2
) = 0.

Strong monotonicity of K gives N f x1 = N f x2, which in turn implies that x1 = x2.

This proves the uniqueness.
We now prove the existence of solution. Since (K x, x) � c‖x‖2 for some c > 0,

it implies that K has bounded inverse K −1 and K −1 is strongly monotone. Hence,
K −1 + N f is strongly monotone, and so by Theorem 4.24, (K −1 + N f )x = K −1 y
has a solution x for every y ∈ H, and this solution depends continuously on y. Also,
strong monotonicity of K −1 gives the required estimate. �

Notice that in concrete cases K is the integral operator given by (8.29) and is there-
fore strongly monotone. Consequently, we can utmost make K monotone. Hence, for
application purpose we need to generalize the above theorem wherein only mono-
tonicity condition on K is imposed. We have such a theorem which is again due to
Dolph-Minty [195].

Theorem 8.9 Let K : H → H be linear, continuous and monotone and N f : H →
H be continuous, bounded and monotone. Further, let there exists M > 0 such that

(N f x, x) � 0 for ‖x‖ > M. (8.33)

Then the operator Eq. (8.32) has a solution.

Remark 8.3 The above two theorems also hold if the underlying space is a reflexive
Banach space.
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Example 8.6 We now apply the above theorem to concrete Hammerstein integral
equation

x(s) +
∫

�

k(s, t) f (t, x(t))dt = 0, (8.34)

where K and f are as defined before. We consider the following assumptions:

(1) k(s, t) is symmetric, positive semidefinite and Hilbert–Schmidt kernel.
(2) (a) f (s, x) is monotone increasing with respect to x and satisfies a growth

condition of the type

| f (s, x)| � a(s) + b|x |, b > 0, a ∈ L2(�).

(b) There exist constants a, b, M such that for all s ∈ �

f (s, x) > a + bx for x > M and

f (s, x) < −a + bx for x < −M.

As shown before, the above equation is equivalent to the operator equation

x + K N f x = 0,

where K and N f are as defined by (8.29) and (8.30). In view of assumptions (1) and
(2(a)), it follows that K is a bounded linear monotone operator from L2(�) into itself
(refer Examples 1.37 and 4.7) and N f is a continuous, bounded monotone operator
from L2(�) into itself (refer Example 4.2 and Theorem 2.5). Further, (2)(b) implies
that there exists a constant M > 0 such that (N f x, x) � 0 for ‖x‖ > M. As all the
conditions of Theorem 8.9 are satisfied, it follows that there exists a solution x of
the operator equation

x + K N f x = 0.

This in turn implies that there exists a solution x(s) ∈ L2(�) of (8.34).

Remark 8.4 One can get L p(�) solution of (8.34) by assuming weaker conditions
on K and f . We merely have to appeal to the theory of monotone operators on
Banach spaces. This will be clear in our subsequent theorems.

Definition 8.2 Let X be a Banach space with dual X∗ and K : X → X∗ be a bounded
linear monotone mapping. Then, K is said to be angle bounded with constant c � 0
if for all x1, x2 in X

|(K x1, x2) − (K x2, x1)| � 2c [(K x1, x1)(K x2, x2)]
1/2 .

K is angle bounded iff the numerical range of the complexified operator K lies in
the sector
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{
ξ ∈ C : | arg ξ | � tan−1 c <

π

2

}
.

Obviously, every symmetric bounded linear mapping is angle bounded with constant
x = 0.

This concept of angle boundedness was first introduced by Amann [13]. For some
sufficient conditions for angle boundedness of linear operators, refer Amann [14, 15].

As we shall see later, an essential tool in the proof of our main theorem is the
following auxiliary result (now known as splitting lemma), which is of interest by
itself.

Lemma 8.2 Let K : X → X∗ be a angle-bounded continuous monotone linear
mapping. Then, there exists a Hilbert space H, a continuous linear mapping S of X
into H with S∗ injective and a bounded skew symmetric linear mapping B of H such
that

(1) K = S∗(I + B)S
(2) ‖B‖ � c
(3) ‖S‖2 � ‖K‖
(4)

[
(I + B)−1h, h

]
H

� 1
[1+‖B‖2]‖h‖2

H.

This lemma is due to Browder and Gupta [117].

Theorem 8.10 Let K : X → X∗ be a monotone, angle-bounded continuous linear
mapping with constant of angle boundedness x � 0. Let N f be a hemicontinuous
mapping of X∗ into X such that for a given constant k

(
x1 − x2, N f x1 − N f x2

)
� −k‖x1 − x2‖2 for all x1, x2 ∈ X∗.

Suppose k(1 + c2)‖K‖ < 1, then there exists a unique solution x in X∗ of the
Hammerstein operator equation (8.32) and the solution x satisfies the estimate

‖x‖ � ‖K‖ (1+c2)‖N f (0)‖
[1−(1+c2)k‖K‖] .

Proof Consider the Hammerstein operator equation

x + K N f x = 0.

By splitting Lemma 8.1, we have K = S∗(I + B)S and so the above equation
becomes

x + S∗(I + B)SN f x = 0. (8.35)

Since S∗ is injective, there exists a unique h ∈ H such that x = S∗h and so (8.35)
becomes

S∗h + S∗(I + B)SN f S∗h = 0. (8.36)

Since S∗ is injective and (I + B) is invertible, the above equation is equivalent to
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T h = 0. (8.37)

where T = (I + B)−1 + SN f S∗. Using the above lemma, we obtain that

[T h1 − T h2, h1 − h2]H �
(

1

1 + x2
− k‖K‖

)
‖h1 − h2‖2

H

= c1‖h1 − h2‖2
H (8.38)

where

c1 =
[

1

1 + c
− k‖K‖

]
> 0.

Since T is a hemicontinuous, strongly monotone operator on H, it follows that there
exists a unique solution h of (8.37). This in turn implies that there exists a unique
solution x = S∗h of the Hammerstein equation (8.32). The estimate for x follows
from the strong monotonicity of T . �
If N f is given to be monotone, we get the following result.

Corollary 8.1 Let K : X → X∗ be monotone continuous, angle-bounded mapping
and N f : X∗ → X be hemicontinuous and monotone. Then, there exists a unique
solution of (8.32). This result was first obtained by Amann [13] with an additional
assumption that X∗ has a dense continuous linear imbedding in a Hilbert space.

Corollary 8.2 Let K : X → X∗ be a bounded linear mapping which is monotone
and symmetric. Suppose N f : X∗ → X is a hemicontinuous mapping such that for
a given k and all x1, x2 ∈ X∗.

(x1 − x2, N f x1 − N f x2) � −k‖x1 − x2‖2.

Let k‖K‖ < 1. Then, (8.32) has a unique solution.

This result was first obtained by Golomb [254] for X = L2(�) and Vainberg [597]
for X = L p(�).

As in Example 8.5, one can give an immediate application of the above theorem
to nonlinear Hammerstein integral equation with less restrictive conditions on the

nonlinear function f (s, x).
In the following, we give an application of the above theorem to nonlinear Volterra

integral equation of convolution type which occurs often in real-life problems.

Example 8.7 A nonlinear Volterra integral equation of convolution type is of the
form.

x(t) +
∫ t

0
k(t − τ) f (τ, x(τ )dτ = 0. (8.39)

Here, kernel k is a function from [0,∞) to R and f (t, x) is defined on [0,∞) × R

with values in R.
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In operator theoretic terms, (8.39) is equivalent to the Hammerstein equation

x + K N f x = 0

where the Nemytskiĭ operator N f is as defined before and K is the convolution
operator

[K x] (t) =
∫ t

0
k(t − τ)x(τ )dτ. (8.40)

Consider the following assumptions:

(1) K ∈ L p/2[0,∞) ∩ L1[0,∞) and its Fourier transform K (iw) is such that
ReK (iw) � 0 for all w, and there exists a constant c such that

|ImK (iw)| � cReK (iw) for all w. (8.41)

(2) f (t, x) satisfies a growth condition of the type

(a) | f (t, x)| =� a(t) + b|x |p−1, a ∈ Lq [0,∞), b > 0
(

1
p + 1

q = 1, p � 2
)

and is such that

(b)

[∫ ∞
0

( f (t, x1)) − f (t, x2(t))(x1(t) − x2(t))dt

]
� −K

(∫ ∞
0

|x1(t)|q dt

)2/q

for some constant K .

(3) K (1 + c2)‖K‖ < 1.

Because K ∈ L p/2[0,∞), it follows by Young’s inequality that K maps Lq [0,∞)

to L p[0,∞) boundedly (refer Sect. 1.8). We now show that K is monotone as an
operator from Lq [0,∞) to L p[0,∞). Since L2[0,∞) ∩ Lq [0,∞)(q � 2) is dense
in Lq [0,∞), it suffices to show that (K x, x) � 0 for x ∈ L2[0,∞) ∩ Lq [0,∞). Also
as K is the convolution operator defined by (8.40) and the kernel K (t) ∈ L1[0,∞), it
follows that K x ∈ L2[0,∞) for x ∈ L2[0,∞). Hence, (K x, x) is L2 inner product,
and hence, using Parseval’s equality , we have

(K x, x) = 1

π

∫ ∞

0
ReK (iw)|x(iw)|2dw � 0.

We now prove that in view of inequality (8.41) of Assumption (1), K is angle
bounded. For this, we use the equivalent criterion for angle boundedness : K is angle
bounded iff the numerical range N f (K ) of the complexified operator lies in the sector

= {τ ∈ C : 0 � | arg τ | � tan−1 c <
π

2
}.

N f (K ) is defined as
N f (K ) = {(K x, x) : ‖x‖ = 1}.
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As before

(K x, x) = 1

π

∫ ∞

0
K (iw)|x(iw)|2dw.

Now by using (8.41), we get

0 � | arg(K x, x)| � tan−1 c <
π

2
.

Further, assumptions 2(a), (b) imply that the Nemytskiĭ operator N f maps L p[0,∞)

to Lq [0,∞) and is such that

(x1 − x2, N f x1 − N f x2) � −k‖x1 − x2‖2

Applying Theorem 8.10, we claim that (8.39) has a unique solution x(t) ∈ L p[0,∞).

8.2.1.2 K is Compact

In a concrete case like Example 8.5, K is the integral operator generated by some
Hilbert–Schmidt kernel K (s, t) and hence is compact (refer Chap. 1, Sect. 1.8).

We now study the abstract Hammerstein operator equation (8.32) with this addi-
tional assumption of compactness on operator K . As we will see, one can now weaken
condition on N . A result in this direction was first obtained by Amann [16] which
we shall now prove.

Theorem 8.11 Let X be an arbitrary Banach space with dual X∗ and K : X → X∗
be monotone, compact and injective. Let Y be a closed subspace of X∗ such that
R(K ) ⊂ Y . Let N f : Y → X be continuous and bounded and assume that there
exists a constant ρ > 0 such that ‖x‖ � ρ implies that

(x, K −1x) + (x, N f x) > 0. (8.42)

Then, the Hammerstein operator equation (8.32) has at least one solution x in Y .
Moreover, every solution x satisfies ‖x‖ � ρ.

Proof Let x ∈ Y be any solution of the Hammerstein operator equation

x + K N f x = 0.

Then, x ∈ R(K ), and since K is injective, it satisfies the equation K −1x + N f x = 0.

This implies that (x, K −1x)) + (x, N f x) = 0 and hence ‖x‖ � ρ, in view of (8.42).
Denote by σ the positive real number defined by

σ = sup{‖N f x‖ : ‖x‖ � ρ, x ∈ Y }.

By the boundedness of N f ,this is finite.
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Define a mapping Ñ f : Y → X by

Ñ f x =
{

N f x, ‖N f x‖ � σ
σ N f x
‖N f x‖ , ‖N f x‖ > σ.

Ñ f is continuous and is such ‖Ñ f x‖ � σ for all x ∈ Y . Hence, the mapping K Ñ f :
Y → Y is continuous and compact and maps the ball Bδ(δ = ‖K‖σ) into itself.
Hence, by Schauder’s theorem, it has at least one fixed point x in Bδ . That is, there
exists x ∈ Y satisfying x + K Ñ f x = 0. Or equivalently K −1x + Ñ f x = 0. Assume
that ‖N f x‖ > σ . Then,

(x, K −1x) + σ

‖N f x‖ (x, N f x) = 0.

or ‖N f x‖
σ

(x, K −1x) + (x, N f x) = 0

or

(x, K −1x) + (x, N f x) =
(

1 − ‖N f x‖
σ

)
(x, K −1x) � 0.

This implies that ‖x‖ � σ, which is a contradiction. Therefore, Ñ f x = N f x , and
we have x + K N f x = 0. �

Remark 8.5 In the above theorem, one can omit the condition of injectivity on K .
Amann [16] has proved that for monotone K one can suitably define new operators
K̂ and N̂ and spaces X̂∗ X̂ such that new operator K̂ is injective and the solvability
of x + K N f x = 0 is equivalent to the solvability of x + K̂ N̂ x = 0. So we have the
following theorem.

Theorem 8.12 Let K : X → X∗ be monotone and compact. Let Y be a closed sub-
space of X∗ such that R(K ) ⊂ Y . Let N f : Y → X be continuous and bounded and
assume that there exists a constant ρ such that

(x, N f (x)) > 0 for ‖x‖ > ρ. (8.43)

Then, the Hammerstein equation (8.32) has a solution x in Y with ‖x‖ � ρ.

Equation (8.43) is called condition at infinity upon N f . This can be considerably
relaxed if K is restricted to the class of angle-bounded mappings. We have the
following theorem.

Theorem 8.13 Let K : X → X∗ be angle bounded and compact and Y be a closed
subspace of X∗ such that R(K ) ⊂ Y . Let N f : Y → X be continuous and bounded
and assume that there exists a function ϕ : R+ → R+ satisfying ϕ(ρ) = 0(ρ2) as
ρ → ∞ such that for all x ∈ R(K )
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(x, N f x) > −ϕ(‖x‖).

Then, the Hammerstein equation (8.32) has at least one solution in Y .

We now apply the above theorem to obtain a continuous solution of the nonlinear
Hammerstein integral equation.

Example 8.8 Consider again the nonlinear Hammerstein integral equation

x(s) +
∫

�

k(s, t) f (t, x(t))dt = 0.

Here, � is an arbitrary set, dt is a σ -additive, and σ -finite measure on a σ -algebra
of subsets of �, k : � × � → R is a kernel which defines a bounded linear integral
operator

K x(s) =
∫

�

k(s, t)x(t)dt

in the space L2 = L2(�) and the function x is unknown. Consider the following
assumptions:

(1) K (x, t) is a continuous symmetric Kernel with nonnegative eigenvalues.
(2) f : � × R → R is a Carathéodory function; i.e., f (·, u) is measurable on � for

all u ∈ R, and f (t, ·) is continuous on R, and there exists ρ � 0 such that for all
s ∈ �, |x | > ρ implies that x f (s, x) � 0. We define the linear integral operator
K and the nonlinear operator N f as before. Then, the above integral equation is
equivalent to

x + K N f x = 0.

Because K is continuous and � is bounded, the corresponding operator K maps
L1(�) boundedly into its dual L∞(�). By our Assumption (1), K : L2(�) → L2(�)

is monotone and symmetric (and hence angle bounded). Hence, the continuity of
K and the fact that L2(�) is dense in L1(�) imply that K is angle bounded as a
mapping from L1(�) to L∞(�). Also, by continuity assumption on f , it follows that
the Nemytskiĭ operator N maps L∞(�) continuously and boundedly into L1(�).

Finally, for x ∈ C(�), we have

(x, N f x) =
∫

�

x(s) f (x, x(s))ds

=
∫

{s∈�:|x(s)�ρ}
x(s) f (x, x(s))ds +

∫
{s∈�:|x(s)|�ρ}

x(s) f (x, x(s))ds

�
∫

{s∈�:|x(s)|�ρ}
x(s) f (x, x(s))ds

� −ρ max
|x |�ρ

| f (s, x)|
= −ϕ0.
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Hence, with ϕ(ρ) = ϕ0 for all ρ ∈ R+, all assumptions of the previous theorem
are satisfied. Hence, we have a continuous solution of the Hammerstein nonlinear
integral equation. For more results on Hammerstein operator equation, we refer to
Petryshyn and Fitzptrik [483], Browder [95], Brezis and Browder [80]. The concept
of pseudomotonicity is very effectively used in these papers.

8.2.2 Equations Involving Sum of Hammerstein Operators

Let us consider nonlinear integral equations of mixed type

u(s) +
∫

�

K1(s, t) f1(t, u(t))dt +
∫

�

K2(s, t) f2(t, u(t))dt = 0, (8.44)

where K1, K2 are kernel function defined on � × � with values in R and f1 f2 are
real-valued functions on � × R, satisfying Carathéodory conditions.

As before, we define linear operators K1, K2 and nonlinear operators N1, N2 as

[Ki u](s) =
∫

�

Ki (s, t)u(t)dt

[Ni u](s) = fi (s, u(s)), i = 1, 2.

Then, problem of solving (8.44) is reduced to the problem of solving the operator
equation

u + K1 N1u + K2 N2u = 0 (8.45)

in appropriate function spaces.
Equation (8.45) involves sum of the Hammerstein operators K1 N1 and K2 N2.

For the sake of generality, in this section we shall consider operator equation which
involves sum of n Hammerstein operators:

u +
n∑

j=1

K j N j u = 0. (8.46)

In order to apply the theory which we have developed so far, we define Banach space
X = X × X × · · · × X and for U = [u1, u2, . . . , un] ∈ X, the norm ‖ · ‖ on X as

‖U‖ =
√∑n

j=1
‖u j‖2.

We can similarly define X∗. Next, we define linear mapping and nonlinear mapping
K and N by

K (U ) = [K1u1, . . . , Knun] ∈ X∗
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and
N (U ) = [N1u, . . . , Nnu]

where

u =
n∑

j=1

u j , U = [u1, u2, . . . , un].

It can be seen easily that (8.46) is equivalent to the operator equation

U + K NU = 0. (8.47)

Equation (8.47) is now the standard Hammerstein operator equation in a new space,
and so one can make use of the theory developed before to obtain the existence
results. This approach was initiated by Browder [95] to tackle equations of the type
(8.46). We state his result.

Theorem 8.14 Let {K j }n
j=1 be a family of continuous monotone angle-bounded

operators from X to X∗ with the same constant c of angle boundedness and ‖K j‖ �
K0 for all i . Let {N j }n

j=1 be the corresponding family of nonlinear hemicontinuous
operators from X∗ to X satisfying a condition of the type

n∑
j=1

(ui − v j , N j u − N jv) � −k
n∑

j=1

‖u j − v j‖2 (8.48)

where k � 0 and

u =
n∑

j=1

u j , v =
n∑

j=1

vi .

If (1 + c2)K0k < 1, then (8.46) has a unique solution.

Observation

• It may be observed that condition (8.48), though a natural generalization of the
monotonicity condition, is rather hard to verify. The author (Joshi [292]) has
weakened this condition on the operators N1, N2, . . . , Nn by assuming additional
hypothesis of compactness on the linear operators K j . In the application of this
theory to the case where the K j are integral operators, this assumption of com-
pactness is a natural one. We now state this result.

Theorem 8.15 Let {K j }n
j=1 be a finite family of monotone compact angle-bounded

operators from a Banach space X to its dual X∗ with the same constant of angle
boundedness c � 0 and ‖K − j‖ � K0 for each i . Let {Ni }n

j=1 be a corresponding
family of hemicontinuous, bounded nonlinear operators from X∗ to X which satisfy
the following condition. For every n-tuple{u1, u2, . . . , un}



634 8 Applications of Monotone Operator Theory

n∑
j=1

(u1, Ni u) � −k
n∑

j=1

‖u j‖2
X∗ +

n∑
j=1

(u j , N j 0) (8.49)

where

u =
n∑

j=1

ui and k < (1 + c2)−1 K −1
0 .

Then, Eq. (8.46) has a solution in X∗.

Gupta [258] has generalized and simplified the above result. We will state and prove
his result. We need the following definition.

Definition 8.3 A bounded linear mapping K : X → X∗ is said to be quasi-monotone
if

uk = inf

{
(K u, u)

‖K u‖2
: u ∈ X, K u �= 0

}
> −∞.

We note that if K is angle bounded, then K is quasi-monotone with uk � 0.

Theorem 8.16 Let {K1, . . . , Kn} be a family of compact quasi-monotone linear

mappings from X into X∗. Let Y be a closed subspace of X∗ such that
n∪

i=1
R(Ki ) ⊂ Y.

Let {N1, . . . , Nn} be a corresponding family of bounded demicontinuous nonlinear
mapping from Y to X. Assume that there exists a function ϕ : R+ → R+ satisfying
lim

ρ→∞ ϕ(ρ)ρ−2 = 0 such that for some λ < μ = min{μk j : 1 � j � n} and for any

n-tuple {u1, u2, . . . , un} in Y with u =∑n
j=1 u j we have

n∑
j=1

(u j , N j u) + λ

n∑
j=1

‖u j‖2
X∗ � −ϕ

(√( n∑
j=1

‖u j‖2

))
. (8.50)

Then, (8.46) has at least one solution u in Y .

Proof We define X,X∗,K , N as before. Then, K : X → X∗ is a quasi-monotone
linear mapping with μ = inf{(KU, U )/‖KU‖2, KU �= 0} and N : X∗ → X is a
bounded demicontinuous mapping such that for any u = [u1, u2, . . . , un], we have

(U, N (U )) + λ‖U‖2 =
n∑

j=1

(u j , N j u) + λ

n∑
j=1

‖u j‖2

� −ϕ

(√( n∑
j=1

‖u j‖2

))
= −ϕ(‖U‖).

As observed before, the solvability of (8.46) is equivalent to the solvability of the
equation
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U + RNU = 0

in X. So it suffices to give a proof of the above theorem when n = 1, which we
now proceed to do. Since the mapping K1 N1 : Y → Y is a compact continuous
mapping, it suffices to show, by Leray–Schauder principle, that there is a ρ > 0
such (I + t K1 N − 1)(u) �= 0 for every t ∈ [0, 1] and u ∈ Y with ‖u‖X∗ = ρ, where
I denotes the identity mapping on Y . Now, let ρ > 0 such that

μ − λ − ϕ(ρ)ρ−2 > 0,

which exists since λ < μ and lim
ρ→∞ ϕ(ρ)ρ−2 = 0.

Further, we clearly see that u + t K1 N1u �= 0 for t = 0 and u ∈ Y with ‖u‖Y = ρ.

Suppose now that u + t K1 N1u = 0 for some t > 0 and u ∈ Y with ‖u‖X∗ = ρ. Then,
we have

0 = (u, N1u) + t (K1 N1u, N1u) � (u, N − 1u) + tμ‖K − 1N − 1u‖2

= (u, N1u) + 1

t
μ‖u‖2

� (μ − λϕ(ρ)ρ−2)ρ2 > 0,

a contradiction. Hence, we have u + t K1 N1u �= 0 for t ∈ [0, 1] and u ∈ Y with
‖u‖X∗ = ρ. �

Example 8.9 As a concrete application of the above theorem, we consider the fol-
lowing nonlinear integral equation which involves sum of Hammerstein operators

u(s) +
∫

�

n∑
j=1

K j (s, t) f j (t, u(t))dt = 0. (8.51)

Consider the following assumptions:

(1) � is bounded measurable subset of RN , and the family of kernels {K j }n
j=1 is

continuous as a mapping from � × � to R. Further, we assume that there exists
α > 0 such that for each j the corresponding integral operators K j satisfy the
condition (K j u, u) � α‖K j u‖2

L∞(�) for every u ∈ L1(�).

(2) The family { f j }n
j=1 of nonlinear functions is continuous from � × � into R

such that there exists a ρ > 0 satisfying
∑n

j=1 f j (t, u j )u j � 0 for any n-tuple
[u1, . . . , un] with u =∑n

j=1 u j , (
∑n

j=1 |u j |) � ρ and for every t ∈ �.
Under the assumptions (1) and (2), (8.51) has a continuous solution.
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8.2.3 Generalized Hammerstein Equation

A nonlinear integral equation of generalized Hammerstein type is of

u(s) +
∫

�

k(s, t, u) f (t, u(t))dt = v(s), (8.52)

where the kernel function k(s, t, u) is defined on � × � and is a function of the
solution u.

The integral equation of the type (8.52) was first studied by W. Petry [474–476]
and later by stuart [579, 580] and Leggett [361, 362]. More recently, they have been
investigated by Backwinkel-Schillings [28, 29] and Srikanth and Joshi [576].

In operator theoretic terms, one can easily observe that (8.52) is equivalent to the
operator equation

u + K (u)N f u = v, (8.53)

where each K (u) is the linear integral operator defined as before and N f is the
Nemytskiĭ operator.

In the following, we shall obtain existence results for operator equation of the
type (8.53). Without loss in generality, we may assume that v = 0. The basic idea
employed by Backwinkel-Schillings [29] is the following:

For a fixed u ∈ X, Eq. (8.53) is a Hammerstein equation, and hence, one can apply
known theorems to get a unique solution for such a kind equation. Denoting this by
T u, we have a mapping T : X → X given implicitly by

T u + K (u)N f T u = v.

Solvability of (8.53) would follow if we can show that T has a fixed point.

Theorem 8.17 Let X be a real reflexive Banach space, and for each u ∈ X, let
K (u) : X∗ → X be a linear angle-bounded operator with the same constant of angle
boundedness c � 0. Let the mapping u → K (u) be completely continuous from X
to L(X∗, X). Further, assume that there exists a constant r > 0 such that for each
u ∈ X we have‖K (u)‖ � r. Let N f : X → X∗ be a continuous bounded mapping
which satisfy the inequality

(u1 − u2, N f u1, N f u2) � −k‖u1 − u2‖2 for u1, u2 ∈ X,

where kr < (1 + c2). Then, the equation u + K (u)N f u = 0 has at least one solution
u in X.

One can, however, examine Eq. (8.53) directly without obtaining the solution for a
fixed u ∈ X. This method was adopted by Srikanth and Joshi [576] and has obtained
results more general than that of Backwinkel-Schilling [29].
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Theorem 8.18 Let X be a real reflexive Banach space with dual X∗. Let K (u) : X ∈
X∗ be a family of maps (not necessarily linear) and N f : X∗ → X be any nonlinear
map. Consider the following assumptions on the family {K (u)} and the map N f :

(i) If un ⇀ u in X∗ and vn ⇀ v in X, then
(a) K (un)vn ⇀ K (u)v

(b) lim inf
n→∞ (K (un)vn, vn − v) � 0.

(ii) N f is a one to one generalized pseudomonotone map from X∗ onto X with
N−1

f bounded.
(iii) There exist two real-valued functions c1 and c2 defined on R+ such that c1(r) +

c2(r) → ∞ as r → ∞ and for each u ∈ X∗
(a) (K (u)v, v) � c1(‖u‖)‖v‖ for all v ∈ X
(b) (N−1

f v, v) � c2(‖v‖)‖v‖ for all v ∈ X.
Then, (8.53) has a solution.

Proof Under the hypothesis of the above theorem, the solvability of the equation

u + K (u)N f u = 0 (8.54)

is equivalent to the solvability of the equation

K (N−1
f v)v + N−1

f v = 0, (8.55)

for some v in X . Define a map S : X → X∗ as follows:

S(v) = K (N−1
f v)v + N−1

f v.

S is well defined. We now claim that S is of type (M). Suppose vn ⇀ v in X and
Svn ⇀ g with lim sup

n→∞
(Svn,vn − v) � 0. This gives

lim sup
n→∞

(K (N−1
f vn)vn + N−1

f vn, vn − v) � 0.

Since vn ⇀ v and N−1
f is bounded,

{
N−1

f vn
}

has a weakly convergent subsequence

which we again denote by
{

N−1
f vn

}
. Let N−1

f vn ⇀ w in X∗. From Assumption

(i)(b), it now follows that lim sup
n→∞

(N−1
f vn, vn − v) � 0 and as N f is generalized

pseudomonotone so is N−1
f , and hence, we have N−1

f v = w. It now follows from
(i)(a) and the above proved fact that

K (N−1
f vn)vn + N−1

f vn ⇀ K (N−1
f v)v + N−1

f v.

By the uniqueness of limit, g = K (N−1
f v)v + N−1

f v. This is Sv = g. Also, since

N−1
f is bounded generalized pseudomonotone, it is demicontinuous, and hence, X
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is demicontinuous. This establishes that S is of type (M). Further, it is clear that S
is bounded. Also, from Assumption (iii), it is evident that S is coercive. That is,

(Sv, v)

‖v‖ → ∞ as ‖v‖ → ∞.

Thus, S satisfies all the requirements of Theorem 4.60, and hence, Sv = 0 has a
solution; i.e., (8.54) has a solution. �

In the following theorem, we can weaken the conditions on N f by imposing
slightly stronger conditions on the family {K (u)}.
Theorem 8.19 Let X be a real reflexive Banach space with dual X∗. Let K (u) :
X → X∗ be a family of bounded linear maps for each u ∈ X∗ and N f : X → X∗ be
a nonlinear map. Consider the following assumptions on the family {K (u)} and the
map N f :

(i) (a) (K (u)v, v) � 0 for all u ∈ X∗ and v ∈ X,

(b) sup
u∈X∗

‖K (u‖ � α, α > 0,

(c) un ⇀ u in X∗ ⇒ ‖K (un) − K (u)‖ → 0.

(i i) The map N f is bounded, demicontinuous and monotone.
(i i i) There exists a constant β such that

‖N f u‖ � β‖u‖ f or‖u‖ � r, where r > 0 and α(β + 1) � 4.

Then, the equation
u + K (u)N f u = 0

has a solution.

As an application of the above theorem, we consider the following example.

Example 8.10 Consider the following nonlinear differential equation

d

dt

[
a(t, u(t))

du(t)

dt

]
= f (t, u(t))

subject to boundary conditions : u(0) = u(1) = 0.

Consider the following assumptions:

(i) a : [0, 1] × R → R is continuous, and there exists a constant ε0 � 0 such that
a(t, y) > ε0 for all t, y ∈ [0, 1] × R.

(ii) f (t, y) : [0, 1] × R → R is continuous, and there exists positive constants
A1, A2 such that

| f (t, y)| � A1|y| + A2.

Further, for all t ∈ [0, 1] and all y1, y2, we have
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( f (t, y1) − f (t, y2)(y1 − y2) � 0.

Notice that the solvability of the above differential equation is equivalent to the
solvability of the generalized Hammerstein equation

u(t) +
∫ 1

0
K (s, t; u) f (s, u(s))ds = 0. (8.56)

where the kernel K (s, t; u) is given by the Green’s function

K (s, t; u) = 1∫ 1
0

dτ
a(τ,u(τ ))

{∫ t
0

dτ
a(τ,u(τ ))

∫ 1
s

dτ
a(τ,u(τ ))

, 0 � t � s � 1∫ s
0

dτ
a(τ,u(τ ))

∫ 1
t

dτ
a(τ,u(τ ))

, 0 � s � t � 1

Defining operators K (u) and N f as before, we can show that (8.56) is equivalent to
the following operator equation in L2[0, 1]

u + K (u)N f u = 0. (8.57)

Following Petry [479], it can be shown that family K (u) satisfies Assumption (c) of
the above theorem. Assumptions (i i) and (i i i) of the theorem are trivially satisfied
and hence (8.57) has a solution in L2[0, 1]. This proves the result.

8.2.4 Urysohn Equation

Urysohn’s integral equation is of the form

u(s) +
∫

�

K (s, t, u(t))dt = 0. (8.58)

Usually, one assumes that � is a measurable subset of Rn and that K (s, t, u) is
a function defined on � × � × R with values in R, and it satisfies the so-called
Carathéodory conditions. Urysohn’s equation has been discussed by Urysohn [594],
Kolomy [340] and others. Attempts have been made to apply the theory of monotone
operators to get existence theorem for (8.58). Our main aim is to use the theory of
abstract Hammerstein operators to obtain existence theorems for (8.58) with rather
simple conditions on the function K . For details, refer Joshi [293].

We define a linear operator K : L2(� × �) → L2(� × �) with range in L2(�)

and a nonlinear operator N : L2(�) → L2(� × �) as follows

[K u](s) =
∫

�

u(s, t)dt, (8.59)
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[Nu](s, t) = K (s, t, u(t)). (8.60)

In all our considerations in this section, � will be a set of finite measure in Rn and

L2(�) =
{

u :
∫

�

u2(t)dt < ∞
}

L2(� × �) =
{
v :
∫

�

∫
�

v2(s, t)ds dt < ∞
}

.

Observe that L2(�) is a closed subspace of L2(� × �).

Lemma 8.3 K is a continuous linear operator from L2(� × �) to L2(� × �) with
range L2(�).

One of the hypotheses on the existence theorem is the compactness of the operator
K N . In the following lemmas, sufficient conditions are given which ensure this.

Lemma 8.4 Let K satisfies the Carathéodory conditions and

|K (s, t, u)| � a(s, t) + b(s, t)|u| a, b ∈ L2(� × �), b(s, t) > 0, s, t ∈ �; u ∈ R.

Then, N is a continuous bounded operator from L2(�) to L2(� × �). This is similar
to what we have proved in Chap.2, Sect.2.1 (Theorem2.4).

We now define an operator U : L2(�) → L2(�) by

[U x](s) =
∫

�

K (s, t, x(t))dt. (8.61)

Obviously, we have U = K N . The operator U is called Urysohn operator and was
earlier defined in Chap. 1, Sect. 8.1.

We now restate Theorem 2.7 as our Lemma 8.5 given below.

Lemma 8.5 Under the conditions of Lemma 8.4, the Urysohn operator U is a con-
tinuous and compact mapping from L2(�) to L2(�).

Theorem 8.20 Assume that K (x, t, x) satisfies the Carathéodory conditions and
that the operators K and N are as defined in (8.59) and (8.60) and the map K N :
L2(�) → L2(�) is compact. Also, assume that sup|x |�σ |K (s, t, x)| is in L1(� × �)

where σ > 0 is such that

x K (s, t, x) � −c(s, t)|x |2 for |x | > σ (8.62)

c ∈ L2/(2−r) for some r � 2, c(s, t) � 0 for s, t ∈ �. If ρ0 is such that

σa(σ )ρ−2
0 + ‖c‖(μ(�))r/2ρr−2

0 < 1, (8.63)
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then the Urysohn’s equation (8.58) has a solution x in L2(�) such that ‖x‖ � ρ0.
Here, a(σ ) denotes the L1-norm of sup|x |�σ |K (s, t, x)|, ‖c‖ the L2/(2−r) norm of c,
‖x‖ the L2-norm of x.

Proof The assertion will follow from Theorem 8.13. We set X = L2(� × �) and
Y = L2(�), and then, (8.58) is equivalent to the operator equation

x + K N x = 0, (8.64)

where K and N are as defined before. By Lemma 8.3, K is a bounded linear operator
from X to X∗ with range Y . Furthermore, we have

(K x, x) =
∫

�

∫
�

x(s, t)dsdt
∫

�

x(s, τ )dτ

=
∫

�

ds

(∫
�

x(s, t)dt

)(∫
�

x(s, τ )dτ

)

=
∫

�

ds

(∫
�

x(s, t)dt

)2

� 0,

which implies that K is a monotone map from X to X∗. Also (K x, y) = (K y, x),
that is K is symmetric. Hence, K is angle bounded with the constant of angle
boundedness c = 0. Also using (8.62), we can show that

(x, N x) � ‖x‖r (μ(�))r/2‖c‖ − σa(σ ).

Since K and N satisfy all the conditions of Theorem 8.13, it follows that (8.64) has
a solution x in Y with ‖x‖ � ρo. This in turn implies that (8.58) has a solution x in
L2 satisfying ‖x‖ � ρ0. �
Remark 8.6 It may be remarked that the condition (8.63) is satisfied for all suffi-
ciently large ρ0 if either r < 2 or r = 2 and ‖c‖∞μ(�) < 1.

Corollary 8.3 Assume that K (s, t, x) satisfies the Carathéodory conditions and

|K (s, t, x)| � a(s, t) + b(s, t)|x | for x ∈ R

a, b ∈ L∞, b(s, t) > 0 for s, t ∈ �, ‖b‖∞μ(�) < 1.

Then, (8.58) has a solution x in L2.
Notice also that as a corollary of Theorem 8.20 we can obtain existence theorem

for the integral equation

x(s) +
∫

�

K (s, t) f1(t, x(t))dt +
∫

�

K2(s, t) f2(t, x(t))dt = 0,

which contains a sum of Hammerstein integral operators. For details, see Joshi [293].
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8.3 Solutions of Nonlinear Equations by Using
Computational Schemes

In this section, we give computational schemes for the solvability of Hammerstein
and generalized Hammerstein operator equations. As concrete application, we give
a computational scheme for the solvability of Chandrasekhar’s H -equation

u(s) = 1 + u(s)
∫ 1

0

s

s + t
�(t)u(t)dt,

occurring in heat radiative transfer.
We first prove the following result which gives iterative solution together with a

rate of convergence for the solution of Hammerstein operator equation

u + K Nu = w, (8.65)

by using Bruck’s Jr. iterative scheme (refer to Theorem 4.39).

Theorem 8.21 Let X be a reflexive Banach space and K : X → X∗ a symmetric
monotone bounded linear operator. Let N : X∗ → X be a nonlinear hemicontinuous
operator such that for some constant k

(u1 − u2, Nu1 − Nu2) � −k‖u1 − u2‖2
X∗ .

If k‖K‖ < 1, then (8.65) has a unique solution u and the sequence S∗vn + w, where
vn is defined by

vn+1 =
(

n

n + 1

)
vn −

(
1

n + 1

)
SN [S∗vn + w]

for any arbitrary initial choice of v1 in H converges to u. Further

∥∥S∗vn + w − u
∥∥ = 0(n−1/2).

Here, S : X → H is the linear operator splitting K through the Hilbert space H.

Proof As proved in the previous section, the solvability of (8.65) is equivalent to the
solvability of T v = 0 where T ;H → H is given by

T v = v + SN S∗(v + w).

We have already shown that T v = 0 has a unique solution. It is clear that T is of the
type 1 + T1 where T1 is a maximal monotone operator on H, and hence, by Theorem
4.39, it follows that the sequence
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vn+1 =
(

n

n + 1

)
vn −

(
1

n + 1

)
SN (S∗vn + w)

converges to the unique solution of T v = 0 with error estimate

‖vn − v‖ = 0(n−(1/2)).

Hence, the sequence {S∗vn + w} converges to the unique solution u of (8.65) with
the required error estimate.

We now pass on to the generalized Hammerstein equation. Let X be a reflexive
Banach space with {Xn, Pn} as a projection scheme. We shall give constructive results
regarding the solvability of the ‘exact’ equation

u + K (u)Nu = 0 (8.66)

as a weak or strong limit of solutions un ∈ Yn = (P∗
n X∗) of the approximate equation

un + Kn(un)Nnun = 0. (8.67)

Here, for each u ∈ X∗, K (u) : X → X∗ is a linear operator and N : X∗ → X is
a nonlinear operator. Kn(u) = P∗

n K (u)Pn maps the range Xn of Pn into Yn and
Nn = Pn N P∗

n maps Yn into Xn . �

Definition 8.4 Equation (8.66) is called strongly (weakly) approximately solvable
if (8.67) has a solution un ∈ Yn , and there exists a subsequence {unk } of {un} such
that unk → u in X∗. It follows that unk ⇀ u and u is a solution of (8.66).

In the following theorem, C denotes a closed and bounded set in X∗ containing
the origin with ∂C as its boundary.

Theorem 8.22 Let X be a real reflexive Banach space with dual X∗ and {Xn, Pn}
a projection scheme in X. Let for each u ∈ C, K (u) : X → X∗ be a bounded linear
operator and N : X∗ → X be a continuous and bounded nonlinear operator. Further,
we assume that the following hold:

(a) K (u) is compact and monotone for each u ∈ C,

(b) un ⇀ u in C implies that K (un)v → K (u)v for all v ∈ X,

(c) (u, Nu) > 0 for all u ∈ ∂C.

Then, (8.66) is strongly approximately solvable. If the solution of (8.66) is unique,
then the entire sequence {un} converges to the unique solution.

Proof Let Tnu = −Kn(u)Nnu. It is clear Tn is a continuous operator from Cn =
C ∩ Yn into Yn . Also, we claim that Tnu �= λu whenever λ > 1 and u ∈ ∂Cn. For, if
there exists u ∈ ∂Cn with Tnu = λu, we get

λ(u, Nu) + (Kn(u)Nnu, Nu) = 0.
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That is
λ(u, Nu) = −(K (u)Pn Nu, Pn Nu) � 0,

a contradiction to our Assumption (c). Hence, it follows by Leray–Schauder principle
that there exists un ∈ Cn ⊂ C such that un = Tnun. That is

un + Kn(un)Nnun = 0. (8.68)

Since {un} is a bounded sequence in a reflexive Banach space, there exists a subse-
quence {unk } of it which converges weakly to u0 ∈ C. Similarly boundedness of N
implies that there exists a subsequence of {Nunk } (which we again denote by {Nunk })
converging weakly to v. We claim that Pnk Nunk ⇀ v as K → ∞. For this, consider
(w, Pnk Nunk − v), where w ∈ X∗ is arbitrary. We have

(w, Pnk Nunk − v) = (w, Pnk Nunk − Pnk v + Pnk v − v)

= (P∗
nk

w, Nunk − v) + (w, Pnk v − v)

= (P∗
nk

w − w, Nunk − v) + (w, pnk v − v) + (w, Nunk − v)

� ‖P∗
nk

w − w‖‖Nunk − v‖ + (w, Nunk − v) + ‖w‖‖Pnk v − v‖
→ 0 as k → ∞.

We now consider K (u0)Pnk Nunk − K (unk )Pnk Nunk . Since K (unk )v → K (u0)v for
all v ∈ X (in view of Assumption (b)), it follows by uniform boundedness principal
that K (unk ) → K (u0) in operator norm and hence

‖K (u0)Pnk Nunk − K (unk )pnk Nunk ‖ � ‖K (u0) − K (unk )‖‖Pnk Nunk ‖ → 0 as k → ∞.

This in turn implies that

P∗
nk

K (u0)Pnk Nunk − P∗
nk

K (unk )Pnk Nunk → 0, (8.69)

as k → ∞. As Pnk Nunk ⇀ v, using the compactness of K (u0) we get

K (u0)Pnk Nunk → K (u0)v,

and hence, this in turn implies that

P∗
nk

K (u0)Pnk Nunk → K (u0)v. (8.70)

Now combining (8.68) and (8.69), we obtain

Knk (unk Nnk unk = P∗
nk

K (unk )Pnk Nunk

→ K (u0)v, as k → ∞.
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But (8.69) gives
unk = −Knk (unk )Nnk unk (8.71)

and hence unk is strongly convergent. That is unk → u0. Using the continuity
assumptions on N and K (u), we obtain NuNk → Nu0 = v and Knk (unk )Nnk unk →
K (u0)Nu0. So (8.71) gives

u0 + K (u0)Nu0 = 0,

thereby proving the strong approximate solvability of (8.66). If (8.66) has unique
solution, then it follows from the above proof that every subsequence of {un} has
in turn a subsequence which converges to the unique solution. This implies that the
entire sequence {un} converges to the unique solution. �

As a corollary of the above theorem, we obtain the main existence theorem of
Amann [13] along with approximate solvability (in a Banach space X with a projec-
tion scheme) for the Hammerstein operator equation

u + K Nu = 0. (8.72)

Corollary 8.4 Let X be a real reflexive Banach space with projection scheme. Let
K : X → X∗ be a compact, monotone, linear operator and N : X∗ → X a bounded,
continuous nonlinear operator. Further, we assume that there exists a constant R > 0
such that

(u, Nu) > 0 for ‖u‖ = R.

Then, (8.72) has solution u satisfying ‖u‖ � R and is strongly approximately solv-
able.

One can weaken the condition of compactness on K (u) if we impose stronger
conditions on N, say for an example, N is a continuous and bounded operator of
type (M) or (S+).

Theorem 8.23 Let X be a real reflexive Banach space with a projection scheme
{Xn, Pn}. Let for each u ∈ C, K (u) : X → X∗ be a bounded linear operator and
N : X∗ → X a bounded, continuous nonlinear operator. Further, we assume that
the following hold:

(a) K (u) is monotone for each u ∈ C,

(b) un ⇀ u in C implies that K (un)v → K (u)v for all v ∈ X,

(c) (u, Nu) > 0 for all u ∈ ∂C.

Then, (8.66) is weakly approximately solvable if N is of type (M) and is strongly
approximately solvable if N is of type (S+). If the solution of (8.66) is unique, then
the entire sequence {un} converges to the unique solution.

Proof As in the previous theorem, Leray–Schauder principle gives a sequence
{un} ⊂ C ∩ Yn where un is a solution of the ‘approximate’ Eq. (8.67). Also, we
get a subsequence {unk } of {un} such that
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unk ⇀ u0 and Nunk ⇀ v

and
wnk = P∗

nk
K (u0)Pnk Nunk − Knk Nnk unk → 0 as k → ∞.

unk = −Knk (unk )Nnk unk = wnk − P∗
nk

K (u0)Pnk Nunk . (8.73)

As Pnk Nunk ⇀ v and K (u0) is a bounded linear operator and hence weakly continu-
ous, it follows that P∗

nk
K (u0)Pnk Nunk ⇀ K (u0)v. Since unk ⇀ u0 and wnk → 0

as k → ∞, the above equality gives u0 = −K (u0)v. Now consider limk(unk −
u0, Nunk ). We have

limk(unk − u0, Nunk ) = limk(wnk − u0, Nunk ) − limk(P∗
nk

K (u0)Pnk Nunk , Nunk )

+ (K (u0)v, v) − limk(K (u0)Pnk Nunk , Nunk ). (8.74)

Monotonicity of K (u0) gives

(K (u0)Pnk Nunk , Pnk Nunk ) = (K (u0)Pnk Nunk − K (u0)v, Pnk Nunk − v) − (K (u0)v, v)

+ (K (u0)v, Pnk Nunk ) + (K (u0)v, Pnk Nunk , v)

� −(K (u0)v, v) + (K (u0)v, Pnk Nunk + (K (u0)Pnk Nunk , v).

Since Pnk Nunk ⇀ v and K (u0)Pnk Nunk ⇀ K (u0)v, we get

limk(K (u0)Pnk Nunk , Pnk Nunk � −(K (u0)v, v) + (K (u0)v, v) + (K (u0)v, v)

= (K (u0)v, v).

Combining this inequality with (8.74), we get

limk(unk − u0, Nunk ) � (K (u0)v, v) − (K (u0)v, v) = 0.

First assume that N is of type (M). Since we have unk ⇀ u0 and Nunk ⇀ v and
limk(unk − u0, Nunk ) � 0, it follows that Nu0 = v. As u0 = −K (u0)v, we get u0 +
K (u0)Nu0 = 0. This gives weak approximate solvability of (8.66).

If N is of type (S+), using similar arguments one can show that unk → u0 and u0

is a solution of (8.66). The last conclusion of the theorem follows similarly.
We now obtain an approximate solvability result for the special case N = I . That

is, we give a constructive result regarding the existence of a solution of the “exact”
equation

u + K (u)u = w. (8.75)

as a strong limit of solutions un ∈ Xn of the approximate equation

un + Pn K (un)un = wn. (8.76)
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Here, {xn, Pn} is an approximation scheme in a Hilbert space X . �

In the following, K ∗ denotes the conjugate of the bounded linear operator K .

Theorem 8.24 Let X be a Hilbert space with an approximation scheme {xn, Pn}
and A a closed convex subset of X. Assume that for each u ∈ A, K (u) is a bounded
linear monotone operator satisfying the following condition:

(a) uk ⇀ u in A implies that K ∗(uk)v → K ∗(u)v for all v ∈ X.

Then, (8.75) is approximately strongly solvable.

Proof We first claim that K (u) : X → X is jointly weakly continuous. That is,
uk ⇀ u in A and vk ⇀ v in X imply that K (uk)vk ⇀ K (u)v. Consider (K (uk)vk −
K (u)v, x), x ∈ X. We have

(K (uk)vk − K (u)v, x) = (K (uk)vk − K (u)(vk), x) + (K (u)(v)k) − K (u)(v), x)

= (vk , K ∗(uk)x − K ∗(uk)x − K ∗(u)x) + (K (u)vk − K (u)v, x).

As k → ∞, the first term in the RHS of the above inequality goes to zero in view
of Assumption (a) and the second term goes to zero as K (u) is a continuous linear
operator and hence also weakly continuous. This proves our claim.

We now consider the approximate equation

un + Pn K (un) = wn.

Let T be the operator on Xn defined by

T u = u + Pn K (u)u − wn.

Defined a closed bounded set C as

C = {u ∈ A ∩ Xn; (w, u) � (u, u) � (w,w)}.

Then, T is a continuous operator on Xn such that

(T u, u) = (u, u) + (Pn K (u)u, u) − (wn, u)

� (u, u) − (w, u)

� 0, for u ∈ C.

Hence, it follows by Leray–Schauder principle that T u = 0 has a solution un ∈ C.

That is
un + Pn K (un)un = wn.

{un} is a bounded sequence in a Hilbert space, and hence, there exists a subsequence
of it which we again denote by {un} such that un ⇀ u. We claim that u is a solution
of (8.75). As un ⇀ u and wn ⇀ w, it suffices to show that Pn K (un)un ⇀ K (u)u as
n → ∞. Consider (Pn K (un)un − K (u)u, x), x ∈ X. We have
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(Pn K (u)n)un − K (u)u, x) = (Pn K (un)un − Pn K (u)u, x) + (Pn K (u)u − K (u)u, x)

= (K (un)un − K (u)u, x) + (K (un)un − K (u)u, Pn x − x)

+ (Pn K (u)u − K (u)u, x)

= (K (un)un − K (u)u, x) + ‖K (un)un − K (u)u‖ ‖Pn x − x‖
+ ‖Pn K (u)u − K (u)u‖ ‖x‖

→ 0 as n → ∞,

since K (un)un ⇀ K (u)u and Pn x → x .

This proves that (8.75) is approximately weakly solvable. We now show that {un}
actually converges strongly to u. For this it suffices to show that

lim sup
n

(un,un − u) � 0 as un ⇀ u.

As un = wn − Pn K (un)un, u = w − K (u)u, we have

(un, un − n) = (wn − w + u + K (u)u − Pn K (un)un,un − u)

= (wn − w, un − u) + (Pn K (un)u − Pn K (un)un,un)

− (Pn K (un)u − Pn K (u)u, un − u)

− (Pn K (u)u − K (u)u, un − u) + (u, un − u)

� ‖wn − w‖ ‖un − u‖ − (K (un)un − K (un)u, un − u)

− (K (un)un − K (un)u, u − Pnu)

+ ‖Pn K (u)u − K (u)u‖ ‖un − u‖ + (u, un − u)

� ‖wn − w‖ ‖un − u‖ + ‖K (un)un − K (un)u‖ ‖Pnu − u‖
+ ‖Pn K (u)u − K (u)u‖ ‖un − u‖ + (u, un − u)

in view of monotonicity of K (u), u ∈ A.

Taking lim sup of both sides, we get

lim sup
n→∞

(un,un − n) � lim
n→∞ ‖wn − w‖ ‖un − u‖ + lim

n→∞ ‖K (un)un − K (un)u‖×
‖Pnu − u‖ + lim

n→∞ ‖Pn K (u)u − K (u)u‖ ‖un − u‖
+ lim

n→∞(u, un − u)

→ 0 as n → ∞,

since Pnu → u for all u ∈ X and un ⇀ u. This proves our theorem. �
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As an application of our main result, we obtain an approximate solvability result
for nonlinear integral equations of the type

u(s) + u(s)
∫ 1

0
K (s, t)u(t)dt = w(s) (8.77)

in the space L2(0, 1].

Example 8.11 Assume that K (x, t) is Hilbert–Schmidt kernel. So eigenfunctions of
K form a complete orthonormal set in L2[0, 1]. Let e1, e2, . . . be eigenfunctions of K
with eigenvalues λ1, λ2, . . . . Define a sequence Xn of finite dimensional subspaces
of X = L2[0, 1] and linear projections Pn : X → Xn as follows:

Xn = [e1, e2, . . . , en], Pnu =
n∑

k=1

αkek, u =
∞∑

k=1

αkek .

Then, the approximate equation in the finite dimensional space Xn is given by

u(s) + Pn

[
u(s)

∫ 1

0
K (s, t)u(t)dt

]
= Pnw, (8.78)

where u =∑n
k=1 αkek .

Taking inner product with en , we get

(u, en) +
(

Pn

[
u(s)

∫ 1

0
K (s, t)u(t)dt

]
, en

)
= (Pnw, en),

which gives

αn +
(( n∑

k=1

αkek(s)
)( n∑

j=1

λ jα j e j (s)
)
, en

)
= βn, (8.79)

where

w =
∞∑

k=1

βkek .

writing r jkm for
∫ 1

0
ek(s)e j (s)en(s)ds in (8.79), we get an equivalent system of

nonlinear equations.

αn +
n∑

j=1

n∑
k=1

λkα jαkr jkn = βn, n � 1. (8.80)
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Thus, solvability of the approximate equation (8.79) is equivalent to the solvability
of (8.80). One can now use the known techniques to solve the nonlinear system given
by (8.80).

We have the following theorem giving the approximate solvability of (8.77).

Theorem 8.25 Suppose that

(a) K (s, t) � 0 a.e. on [0, 1] × [0, 1]
(b) ess sup

∫ 1

0
K 2(s, t)dt < ∞,

(c) w(s) � 0 a.e. on [0, 1].
Then, (8.77) is approximately strongly solvable in L2[0, 1].
Proof Let A = {u ∈ L2 : u(s) � 0 a.e. [0, 1]} and let

K (u)(v)(s) = v(s)
∫ 1

0
K (s, t)u(t)dt.

Then, for each u ∈ A, K (u) is a bounded linear operator on L2. For each u ∈ X and
uk ⇀ u in A, we have K ∗(uk)v → K ∗(u)v.

Also for each u ∈ A, we have

(K (u)v, v) =
∫ 1

0

(∫ 1

0
K (s, t)u(t)dt

)
v2(t)dt

� 0 for all v ∈ L2.

That is, K (u) is monotone for each u ∈ A. Thus, the family {K (u)}, u ∈ A of lin-
ear operators on X satisfies all conditions of Theorem 8.24, and hence, (8.77) is
approximately solvable. �

As a corollary of this theorem, we obtain an approximate solvability result for
Chandrasekhar’s H -equation

1 + u(s)
∫ 1

0

s

s + t
�(t)u(t)dt = u(s). (8.81)

Here, the known function �(t) is assumed to be nonnegative, bounded and measur-
able. Since Eq. (8.81) is not given in the standard form, we first state a lemma which
is useful in this direction. Refer Chandrasekhar [139] for a proof of this lemma.
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Lemma 8.6 Suppose that
∫ 1

0
�(t)dt � 1

2
and that u ∈ L2 is a positive solution of

the equation

u(s)

{
1 − 2

∫ 1

0
�(t)dt

}1/2

+ u(s)
∫ 1

0

t

s + t
�(t)u(t)dt = 1. (8.82)

Then
∫ 1

0
�(s)u(s)ds = 1 −

(
1 − 2

∫ 1

0
�(s)ds

)1/2

and u is also a solution of (8.81)

Equation (8.82) is now in the standard from (8.77) with

K (s, t) =
[

t

c(s + t)

]
�(t) and w(s) = 1

c
. (8.83)

Here, c =
(

1 − 2
∫ 1

0 �(s)ds
)−1/2

. Notice that without loss in generality we can

assume that
∫ 1

0
�(t)dt <

1

2
. As a result, one can tackle the case

∫ 1

0
�(t)dt = 1

2
as limiting case of the strict inequality. Thus, K and w given by (8.83) satisfy all the
requirements of Theorem 8.24, and hence, we get the following solvability result for
Chandrasekhar’s H -equation.

Theorem 8.26 Let
∫ 1

0
�(t)dt � 1

2
, then Chandrasekhar’s H-equation (8.81) is

approximately strongly solvable.

8.4 Strong Convergence of a Proximal-Type Algorithm

Let H be a real Hilbert space with inner product 〈·, ·〉, and let T : H → 2H be a
maximal monotone operator (or a multifunction) on H. We consider the classical
problem

find x ∈ H such that 0 ∈ T x . (8.84)

A wide variety of problems, such as optimization and related fields, min-max prob-
lems, complementarity problem and variational inequalities, fall within this general
framework. For example, if T is the subdifferential ∂ f of a proper lower semicontin-
uous convex function f : H → (−∞,∞), then T is a maximal monotone operator
and the equation 0 ∈ ∂ f (x) is reduced to f (x) = min { f (z) : z ∈ H}. One method
of solving 0 ∈ T x is the proximal point algorithm. Let I denote the identity oper-
ator on H. Rockafellar’s proximal point algorithm generates, for any starting point
x0 = x ∈ H, a sequence {xn} in H by the rule
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xn+1 = (I + rnT )−1xn, n = 0, 1, 2, . . . , (8.85)

where {rn} is a sequence of positive real numbers. Note that (8.85) is equivalent to

0 ∈ T xn+1 + 1

rn
(xn+1 − xn), n = 0, 1, 2, . . . .

This algorithm was first introduced by Martinet [389] and generally studied by Rock-
afellar [525] in the framework of a Hilbert space. Later, many authors studied the
convergence of (8.85) in a Hilbert space; see Brezis and Lions [81], Lions [373],
Passty [446], Güler [257], Solodov and Svaiter [567] and the references therein.
Rockafellar [525] proved that if T −10 �= ∅ and lim inf

n→∞ rn > 0, then the sequence

generated by (8.85) converges weakly to an element of T −10. Further, Rockafellar
[525] posed an open question of whether the sequence generated by (8.85) converges
strongly or not. This question was solved by Güler [257], who introduced an exam-
ple for which the sequence generated by (8.85) converges weakly but not strongly.
On the other hand, Kamimura and Takahashi [303, 304] and Solodov and Svaiter
[568] one decade ago modified the proximal point algorithm to generate a strongly
convergent sequence. Solodov and Svaiter [568] introduced the following algorithm:

x0 ∈ X,

0 = vn + 1

rn
(yn − xn), vn ∈ T xn,

Hn = {z ∈ X : 〈z − yn, vn〉 � 0},
Wn = {z ∈ X : 〈z − xn, x0 − xn〉 � 0},

xn+1 = PHn∩Wn x0, n = 0, 1, 2, . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.86)

Kamimura and Takahashi [305] extended Solodov and Svaiter’s result to more
general Banach spaces like the spaces L p(1 < p < ∞) by further modifying the
proximal point algorithm (8.86) in the following form in a smooth Banach space X :

x0 ∈ X,

0 = vn + 1

rn
((J2)yn − (J2)xn), vn ∈ T xn,

Hn = {z ∈ X : 〈z − yn, vn〉 � 0},
Wn = {z ∈ X : 〈z − xn, J2(x0) − J2(xn)〉 � 0},

Xn+1 = PHn∩Wn x0, n = 0, 1, 2, . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.87)

to generate a strongly convergent sequence. They proved that if T −10 �= ∅ and
lim inf

n→∞ rn > 0, then the sequence generated by (8.87) converges strongly to PT −10x0.

It is well known that the proximal point algorithm converges weakly to a zero of a
maximal monotone operator, but it fails to converge strongly. Then, in [568], Solodov
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and Svaiter introduced the new proximal-type algorithm to generate a strongly con-
vergent sequence and established a convergence property for the algorithm in Hilbert
spaces. Further, Kamimura and Takahashi [305] extended Solodov and Svaiter’s
result to more general Banach spaces and obtained strong convergence of a proximal-
type algorithm in Banach spaces.

In 2012, Pathak and Cho investigated strong convergence of the proximal point
algorithm in Hilbert spaces, and this study extended the results of Kamimura and
Takahashi.

We denote by L[x1, x2] the ray passing through x1, x2. Throughout this section,
unless otherwise stated, we assume that T : X → 2X∗

is a occasionally pseudomono-
tone maximal monotone operator. In this section, we study the following algorithm
in a smooth Banach Space X , which is an extension of (8.87):

x0 ∈ X,

0 = vn + 1

rn
(Jp(yn) − Jp(xn)), vn ∈ T xn,

Hn = {z ∈ X : 〈z − yn, vn〉 � 0},
Wn = {z ∈ X : 〈z − xn, Jp(xn) − Jp(xn)〉 � 0},

xn+1 = RHn∩Wn xn, n = 0, 1, 2, . . . ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.88)

where {rn} is a sequence of positive real numbers.
First, we investigate the condition under which the algorithm (8.88) is well defined.

Rockafellar [523] proved the following theorem.

Theorem 8.27 Let X be a reflexive, strictly convex and smooth Banach space, and
let T : X → 2X∗

be a monotone operator. Then, T is maximal if and only in R(Jp +
rT ) = X∗ for all r > 0.

By appropriate modification of arguments in the above theorem, we can prove the
following:

Theorem 8.28 Let X be a reflexive, strictly convex and smooth Banach space, and
let T : X → 2X∗

be an occasionally pseudomonotone operator. Then, T is maximal
if and only if R(Jp + rT ) = X∗ ∀ r > 0.

Using Theorem 8.28, we can show the following result.

Proposition 8.6 Let X be a reflexive, strictly convex and smooth Banach space. If
T −10 �= ∅, then the sequence generated by (8.88) is well defined.

Proof From the very definition, it is obvious that both Hn and Wn are closed convex
sets. Let w ∈ T −10. From Theorem 8.28, there exists (y0, v0) ∈ E × E∗ such that
0 = v0 + 1

r0
(Jp(y0) − Jp(x0)) and v0 ∈ T y0. Since T is occasionally pseudomono-

tone and 〈y0 − w, 0〉 = 0 ≥ 0, T w � 0, it implies that

〈y0 − w, v0〉 ≥ 0
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for some v0 ∈ T y0. It follows that w ∈ H0. On the other hand, it is clear that
w ∈ W0 = X . Then, w ∈ H0 ∩ W0, and therefore, x1 = RH0∩W0 x0 is well defined.
Suppose that w ∈ Hn−1 ∩ Wn−1 is well defined for some n ≥ 1.

Again by Theorem 8.28, we obtain (yn, vn) ∈ X × X � such that 0 = vn + 1
rn

(Jp(yn) − Jp(xn)) and vn ∈ T yn. Then, the occasionally pseudomonotonicity of T
and 〈yn − w, 0〉 = 0 ≥ 0, T w � 0 implies that 〈yn − w, vn〉 ≥ 0 for some vn ∈ T yn,
so w ∈ Hn . It follows from Proposition 2.5 that

〈w − xn, Jp(x0) − Jp(xn)〉 = 〈w − RHn−1∩Wn−1x0, Jp(x0) − Jp(RHn−1∩Wn−1x0)〉 � 0

which implies w ∈ Wn. Therefore, w ∈ Hn ∩ Wn , and hence, xn−1 = RHn∩Wn x0 is
well defined. Then, by induction, the sequence generated by (8.88) is well defined
for each nonnegative integer n. �

Remark 8.7 From the above proof, we obtain

T −10 ⊂ Hn ∩ Wn.

for each nonnegative integer n.

In 2012, Pathak and Cho [453] proved the following result.

Theorem 8.29 Let X be a reflexive, strictly convex and uniformly smooth Banach
space. If T −10 �= ∅, φ satisfies the condition (4.36) and {rn} ⊂ (0,∞) satisfies
lim inf

n→∞ rn > 0, then the sequence {xn} generated by (8.88) converges strongly to

RT −10x0.

Proof It follows from the definition of Wn+1 and Proposition 4.7 that xn+1 =
RWn+1 x0. Further, from x0 ∈ L(xn, RWn+1 x0) ∩ Wn−1 and Proposition 4.8, we have

�(xn, RWn+1 x0) + �(RWn+1 x0, x0) � �(xn, x0)

and hence
�(xn, xn+1) + �(xn+1, x0) � �(xn, x0). (8.89)

Since the sequence {�(xn, x0)} is monotone decreasing and bounded below by 0, it
follows that lim inf

n→∞ �(xn, x0) exists and, in particular, {�(xn, x0)} is bounded. Then,

by (4.37), {xn} is also bounded. This implies that there exists a subsequence {xni } of
{xn} such that xni ⇀ w for some w ∈ X . We shall show that w ∈ T −10. It follows
from (8.89) that �(xn, xn+1) → 0. On the other hand,
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�(RHn xn, xn) − �(yn, xn)

=‖ RHn xn ‖p −p〈RHn xn − xn, Jp(xn)〉− ‖ xn ‖p

+ ‖ RHn xn − xn ‖ − ‖ yn ‖p +p〈yn − xn, Jp(xn)〉+ ‖ xn ‖p − ‖ yn − xn ‖
=‖ RHn xn ‖p − ‖ yn ‖p +p〈yn − RHn xn, Jp(xn)〉+ ‖ RHn xn − yn ‖
� p〈RHn xn − yn, Jp(yn)〉 + p〈yn − RHn xn, Jp(xn)〉 + ‖RHn xn − yn‖
= p〈yn − RHn xn − yn, Jp(xn) − Jp(yn)〉 + ‖RHn xn − yn‖.

Since RHn xn ∈ Hn and 0 = vn + 1
rn

(Jp(yn) − Jp(xn)), it follows that 〈yn − RHn xn −
yn Jp(xn) − Jp(yn)〉 ≥ 0 and therefore that�(RHn xn, xn) ≥ �(yn, xn). Further, since
xn+1 ∈ Hn, we have �(xn+1, xn) ≥ �(RHn xn, xn) which yields

�(xn+1, xn) ≥ �(RHn xn, xn) ≥ �(yn, xn).

Then, it follows from �(xn, xn+1) → 0 that �(yn, xn) → 0. Consequently, by
Proposition 4.5, we have yn − xn → 0, which implies yni ⇀ w. Moreover, since
J is uniformly norm-to-norm continuous on bounded subsets and lim inf

n→∞ rn > 0, we

obtain

vn = − 1

rn
(Jp(yn) − Jp(xn)) → 0.

It follows from vn ∈ T yn, vn → 0 and yni ⇀ w that

lim
i,n→∞〈z − yni , vn〉 = 〈z − w, 0〉 = 0 for all z ∈ D(T ).

Then, occasionally pseudomonotonicity of T implies that 〈z − w, z′〉 = 0 for some
z′ ∈ T z. Therefore, from the maximality of T , we obtain w ∈ T −10. Let w∗ ∈
RT −10x0. Now, from xn+1 = RHn∩Wn x0 and w∗ ∈ T −10 ⊂ L(xn, RWn+1 x0) ∩ Hn ∩
Wn , we have

�(xn+1, x0) � �(w∗, x0).

Then

�(xn, w
∗) = �(xn, x0) + �(x0, w

∗) − p 〈xn, x0, Jp(w
∗) − Jp(x0)〉

+ ‖ xn − w∗ ‖ − ‖ xn − x0 ‖ − ‖ x0 − w∗ ‖
� �(w∗, x0) + �(x0, w

∗) − p 〈xn − x0, Jp(w
∗) − Jp(x0)〉

+ ‖ xn − w∗ ‖ − ‖ xn − x0 ‖ − ‖ x0 − w∗ ‖

which yields

lim sup
i→∞

�(xni , w
∗) � �(w∗, x0) + �(x0, w

∗) − p 〈w − x0, Jp(w
∗) − Jp(x0)〉

+ ‖ w − w∗ ‖ − ‖ w − x0 ‖ −‖x0 − w∗‖.
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Thus, from Proposition 4.7, we have

�(w∗, x0) + �(x0, w
∗) − p 〈w − x0, Jp(w

∗) − Jp(x0)〉+ ‖ w − w∗ ‖
− ‖ w − x0 ‖ − ‖ x0 − w∗ ‖

= p 〈w − w∗, Jp(x0) − Jp(w
∗)〉

� 0.

Then, we obtain lim sup
i→∞

�(xni , w
∗) � 0 and hence �(xni , w

∗) → 0. It follows from

Proposition 4.5 that xni → w∗. This means that the whole sequence {xn} generated
by (8.88) converges weakly to w∗ and that each weakly convergent subsequence of
{xn} converges strongly to w∗. Therefore, {xn} converges strongly to w∗ ∈ RT −10x0.
This completes the proof. �

An Application

Let f : X → (−∞,∞] be a proper convex lower semicontinuous function. Then,
the subdifferential ∂ f of f is defined by

∂ f (x) = {v ∈ X∗ : f (y) − f (x) ≥ 〈y − x, v〉, ∀ y ∈ X}

for all z ∈ X.

Using Theorem 8.29, we consider the problem of finding a minimizer of the function
f .

Theorem 8.30 Let X be reflexive, strictly convex, and uniformly smooth Banach
space, and let f : E → (−∞,∞]be a proper convex lower semicontinuous function.
Assume that {rn} ⊂ (0,∞) satisfies lim inf

n→∞ rn > 0 and let {xn} be the sequence

generated by

x0 ∈ X,

yn = argmin
z∈X

{ f (z) + 1

prn
‖z‖p − 1

rn
〈z, Jp(xn)〉},

0 = vn + 1

rn
(Jp(yn) − Jp(xn)), vn ∈ T xn,

Hn = {z ∈ X : 〈z − yn, vn〉 � 0},
Wn = {z ∈ X : 〈z − xn, Jp(xn)〉 � 0},

xn+1 = RHn∩Wn x0, n = 0, 1, 2, . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.90)

If (∂ f )−1 �= ∅, then {xn} converges strongly to the minimizer of f .
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Proof Since f : X → (−∞,∞] is a proper convex lower semicontinuous function,
by Rockafellar [529], the subdifferential ∂ f of f is a maximal monotone operator,
and so it is also maximal occasionally pseudomonotone operator. We also know that

yn = argmin
z∈X

{ f (z) + 1

prn
‖z‖p − 1

rn
〈z, Jp(xn)〉}

is equivalent to

1
rn

(Jp(z) − Jp(xn)) ∈ ∂ f (yn) for all z ∈ X.

This implies that

0 ∈ ∂ f (yn) + 1

rn
(Jp(yn) − Jp(xn)).

Thus, we have vn ∈ ∂ f (yn) such that 0 = vn + 1
rn

(Jp(yn) − Jp(xn)). Using Theorem
8.29, we get the conclusion. �

Exercises

8.1 Let X be a reflexive separable Banach space. Assume that T : X → X∗ (possi-
bly nonlinear) is bounded, pseudomonotone and coercive. Then, for arbitrary f ∈ X∗,
there exists a solution u ∈ X of equation

T (u) = f.

8.2 Let X be a reflexive separable Banach space. Assume that T : X → X∗ (possi-
bly nonlinear) is bounded, hemicontinuous, monotone and coercive. Then, for arbi-
trary f ∈ X∗, there exists a solution u ∈ X of equation

T (u) = f.

Further, if T is strictly monotone then show that the solution is unique.

8.3 Let V be a closed linear subspace of the Sobolev space W 1,p(�), contain-
ing W 1,p

0 (�)(1 < p < ∞,� ⊂ Rn is a bounded domain with sufficiently smooth
boundary). Further, suppose the operator T : V → V ∗ is given by

〈T (u), v〉 =
n∑

j=1

∫
�

a j (x, u(x), Du(x))D jv(x)dx

+
∫

�

a0(x, u(x), Du(x))v(x)dx, u, v ∈ V

(†)

where the function a j : � × Rn+1 → R satisfy conditions:
(A1) Assume that the functions a j : � × Rn+1 → R satisfy the Carathodory condi-
tions; i.e., for almost all (a.a.) fixed x ∈ �, the function ξ �→ a j (x, ξ), ξ ∈ Rn+1 is
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continuous and for each fixed ξ ∈ Rn+1, x �→ a j (x, ξ), x ∈ � is measurable.
(A2) Assume that there exist a constant c1 and a nonnegative function k1 ∈
Lq(�)( 1

p + 1
q = 1) such that for almost all x ∈ �, each ξ ∈ Rn+1

|a j (x, ξ)| � c1|ξ |p−1 + k1(x).

Show that T : V → V ∗ is bounded and hemicontinuous.

8.4 Let V be a closed linear subspace of the Sobolev space W 1,p(�), containing
W 1,p

0 (�)(1 < p < ∞,� ⊂ Rn is a bounded domain with sufficiently smooth bound-
ary). Further, suppose the operator T : V → V ∗ is given by (†), where the function
a j : � × Rn+1 → R satisfy the following condition:
(A3) Assume that for a.a. x ∈ �, all ξ, ξ ∗ ∈ Rn+1

n∑
j=0

[a j (x, ξ) − a j (x, ξ ∗)](ξ j − ξ ∗
j ) � 0.

Show that T given by (†) is monotone.

8.5 Assume that the functions a j satisfy (A1), for a.e. x ∈ �, the functions ξ �→
a j (x, ξ) are continuously differentiable and the matrix

(
∂a j (x, ξ)

∂ξk

)n

j,k=0

is positive semidefinite.

Show that T given by (†) is monotone.



Chapter 9
Applications of Fixed Point Theorems

The most painful thing about mathematics is how far away you
are from being able to use it after you have learned it.

James Newman

I cannot abstain from playing the role of an (often unwelcome)
intermediary in this drama between mathematics and physics,
which fertilize each other in the dark, and deny and misconstrue
one another when face to face.

Hermann Weyl (1928)

(In the preface of the first edition of Hermann Weyl’s book on
group theory and quantum mechanics)

Fixed point theory is a viable, productive, conclusive and useful to solve problems
of existence and uniqueness of solution of a differential equation or an integral equa-
tion. Moreover, it encompasses various facets of analysis and a fascinating subject
endowed with sophisticated tools with an enormous number of applications in var-
ious fields of mathematics. In this chapter, we intend to give some applications of
fixed point theorems to obtain existence theorems for nonlinear differential and inte-
gral equations. Our treatment includes some standard well-known results as well as
some recent ones. We have avoided an extensive discussion on this areas instead we
concentrate on a few important problems. As usual, in most cases, the differential
equations are transformed into an equivalent operator equations involving integral
operators, and then, appropriate fixed point theorems or degree theoretic methods
are invoked to prove the existence of desired solutions by recasting the operator
equations into fixed point equations.

For earlier works, one can consult Cronin [152] and Miranda [404] for general
references, and for recent work, see Browder [94] and Martin Jr. [388]. For appli-
cations to nonlinear integral equations, refer Krasnoselskii [344] who has dealt with
this work in detail in his book. For an exhaustive discussion on positive solutions of
operator equations, see Krasnoselskii [345] and Amann [17]. For a different approach
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to the existence problems in differential equations, refer to Cesari [137]. Nussbaum
[433] and Walther [604] deal with applications to functional differential equations,
and Gustafson [262] has dealt with nodal problems in differential equations. These
references have been cited to indicate the extent of the applications.

9.1 Application to Geometry of Banach Spaces

Let X be a metric space and D a nonempty subset of X. Let T be a mapping of
D into X , and let F(T ) be the set of all fixed points of T . For a given x0 ∈ D, the
sequence of iterate {xn} is determined by xn = T (xn−1) = T n(x0), n = 1, 2, 3, . . . .

Let ω = N ∪ {0}.
The concept of quasi-nonexpansive mapping was initiated by Tricomi in 1941 for

real functions. It was further studied by Diaz and Metcalf [187] and Doston [196,
198] for mappings in Banach spaces. Recently, this concept was given by Kirk [330]
in metric spaces as follows:

Definition 9.1 The mapping T is said to be quasi-nonexpansive if for each x ∈ D
and for every p ∈ F(T ), d(T (x), p) ≤ d(x, p). A mapping T is conditionally quasi-
nonexpansive if it is quasi-nonexpansive whenever F(T ) �= ∅.

Definition 9.2 (Pathak [451]) The mapping T is said to be locally quasi-
nonexpansive at p ∈ F(T ) w.r.t. a sequence {xn} if for all n ∈ ω, d(xn+1, p) ≤
d(xn, p).

Obviously, locally quasi-nonexpansiveness at p ∈ F(T ) ⇒ locally quasi-
nonexpansiveness at p ∈ F(T ) w.r.t. a sequence {xn}.
Supper drop− Let K = K (z, r) be a closed ball in a Banach space X . For a
sequence {xn}∞n=0 � K converging to x , we define lim

n→∞ Dn = SD(x, K ), where

D0 = co({x0} ∪ K ), and Dn+1 = co({xn} ∪ Dn) ∀n ∈ ω, and SD(x, K ) is called a
super drop.

Clearly, for a constant sequence {xn} ≡ {x} converging to x , we have Dn+1 =
Dn ∀n ∈ ω, so that D(x, K ) = co({x} ∪ K ) and is called a drop. Thus, the concept
of a drop is a special case of super drop. It is also clear that if y ∈ D(x, K ), then
D(y, K ) ⊂ D(x, K ), and if z = 0, then ‖y‖ � ‖x‖.
Theorem 9.1 (Danes̆) Let C be a closed subset of a Banach space X, let z ∈ X − C,
and let K = K (z, r) be a closed ball of radius r < d(z, C) = R. Let T : C → C be
any map such that T (c) ∈ C ∩ D(c, K ) for each c ∈ C. Then, for each x ∈ C, the
map T has a fixed point in C ∩ D(x, K ).

As a consequence of Theorem 9.1, we can easily obtain the following result.

Theorem 9.2 (Supporting drops theorem) Let C be a closed set in a Banach space
X, and z ∈ X − C a point with d(z, C) = R > 0. Then, for any r < R < ρ, there
is an x0 ∈ ∂C with
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‖z − x0‖ � ρ and C ∩ D(x0, K (z, r)) = {x0}.

The following lemmas are useful to prove the next result.

Lemma 9.1 Let T be locally quasi-nonexpansive at p ∈ F(T ) w.r.t. {xn}, and

lim
n→∞ d(xn,F(T )) = 0.

Then, {xn} is a Cauchy sequence.

Proof Since lim
n→∞ d(xn,F(T )) = 0, then for any given ε > 0, there exists n1 ∈ N

such that for each n ≥ n1, d(xn,F(T )) < ε
2 . So, there exists q ∈ F(T ) such that for

all n ≥ n1, d(xn, q) < ε
2 . Thus, for any m, n ≥ n1, we have that

d(xm, xn) ≤ d(xm, q) + d(xn, q) <
ε

2
+ ε

2
= ε, q ∈ F(T ).

Hence, {xn} is a Cauchy sequence. �

Theorem 9.3 (Pathak [451]) Let F(T ) be a nonempty closed set. Then,

(1) lim
n→∞ d(xn,F(T )) = 0 if {xn} converges to a point p in F(T );

(2) {xn} converges to a point in F(T ) if lim
n→∞ d(xn,F(T )) = 0 , T is locally quasi-

nonexpansive at p ∈ F(T ) w.r.t. {xn}, and X is complete.

Proof (1) Since F(T ) is closed, p ∈ F(T ) and the mapping x �→ d(x,F(T )) is
continuous, then

lim
n→∞ d(xn,F(T )) = d( lim

n→∞ xn,F(T )) = d(p,F(T )) = 0.

(2) From Lemma 9.1, {xn} is a Cauchy sequence. Since X is complete, then {xn}
converges to a point, say q, in X . Since F(T ) is closed, then 0 = lim

n→∞ d(xn,F(T )) =
d( lim

n→∞ xn,F(T )) = d(q,F(T )) implies that q ∈ F(T ). �

Recall that a function ϕ : X → R is called a lower semicontinuous whenever {x ∈
X : ϕ(x) ≤ α} is closed for each α ∈ R.

We now give some applications of Theorem 9.3 using Caristi’s fixed point theorem
to geometry of Banach Spaces.

Theorem 9.4 (Pathak [451]) Let C be a closed subset of a Banach space X, let
z ∈ X − C, and let K = K (z, r) be a closed ball of radius r < d(z, C) = R. Let x
be an arbitrary element of C, let {xn} be a sequence in C converging to x, and let
T : C → X be any continuous function defined implicitly by T (x) ∈ C ∩ SD(x, K )

for each x ∈ C in the sense that T (xn) ∈ C ∩ Dn for each n ∈ ω. Then,

(1) lim
n→∞ d(xn,F(T )) = 0 if {xn} converges to a point p in F(T );
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(2) {xn} converges to a point in F(T ) if lim
n→∞ d(xn,F(T )) = 0 , and T is locally

quasi-nonexpansive at p ∈ F(T ) w.r.t. {xn}.
Proof Without loss of generality, we may assume that z = 0. Let ‖x‖ = η ≥ R, and
let X = A ∩ SD(x, K ). Then, it is clear that T maps X into itself. For given y ∈ X
and a sequence {yn} converging to y, we shall estimate ‖y − T (y)‖ on X .

For given y ∈ X and the corresponding sequence {yn}, there is a sequence {bn} in X
with T (yn) = tbn + (1 − t)yn, 0 < t < 1. Now ‖T (yn)‖ ≤ t‖bn‖ + (1 − t)‖yn‖,
we have

t (‖yn‖ − ‖bn‖) ≤ ‖yn‖ − ‖T (yn)‖,

so because ‖yn‖ − ‖bn‖ ≥ R − η, we find that t ≤ ‖yn‖−‖T (yn)‖
R−η

. Thus ,

‖yn − T (yn)‖ ≤ t‖yn − bn‖ ≤ t (‖yn‖ + ‖bn‖) ≤ (η + r)

≤ η + r

R − r
(‖yn‖ − ‖T (yn)‖).

Define d(x, y) = ‖x − y‖ ∀x, y ∈ X and ϕ(y) = η+r
R−r ‖y‖ then X is complete

as a metric space and ϕ : X → R is a continuous function. So, ϕ is a lower-
semicontinuous function. Also, the above inequality takes the form

d(yn, T (yn)) ≤ ϕ(yn) − ϕ(T (yn)).

Proceeding to the limit as n → ∞, we obtain

d(y, T (y)) ≤ ϕ(y) − ϕ(T (y)),

for each y ∈ X . Therefore, applying Caristi’s fixed point theorem, we obtain that T
has a fixed point p = p(x) for each x ∈ C, i.e. F(T ) �= ∅. By continuity of T , F(T )

is closed. Hence, the conclusion follows from Theorem 9.3. �

Since drop is a special case of super drop, we have the following:

Corollary 9.1 Let C be a closed subset of a Banach space X, let z ∈ X − C, and
let K = K (z, r) be a closed ball of radius r < d(z, C) = R. Let x be an arbitrary
element of C, and let T : C → X be any (not necessarily continuous) function defined
implicitly by T (x) ∈ C ∩ D(x, K ) for each x ∈ C. Then,

(1) lim
n→∞ d(xn,F(T )) = 0 if {xn} converges to a point p in F(T );

(2) {xn} converges to a point in F(T ) if lim
n→∞ d(xn,F(T )) = 0 , and T is locally

quasi-nonexpansive at p ∈ F(T ) w.r.t. {xn}.
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9.2 Application to System of Linear Equations

In this section, we present an application of celebrated Banach contraction theorem
to find the solution of the following system of linear equations with n unknowns:

a11x1 + a12x2 + · · · + a1n xn = b1

a21x1 + a22x2 + · · · + a2n xn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · · + ann xn = bn.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9.1)

This system of linear equations (9.1) can be written as

x1 = (1 − a11)x1 − a12x2 − · · · − a1n xn + b1

x2 = −a21x1 + (1 − a22)x2 − a23x3 − · · · − a2n xn + b2

x3 = −a31x1 − a32x2 + (1 − a33)x3 − · · · − a3n xn + b3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn = −an1x1 − an2x2 − an3x3 − · · · + (1 − ann)xn + bn .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(9.2)

Letting αi j = −ai j + δi j , where

δi j =
{

1 for i = j

0 for i �= j.

Then, the system (9.2) is equivalent to the following system:

xi =
n∑

j=1

αi j x j + bi , i = 1, 2, 3, . . . , n. (9.3)

If x = (x1, x2, . . . , xn) ∈ Rn , b = (b1, b2, . . . , bn) ∈ Rn and A = (ai j )n×n a matrix,
i.e.

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·

an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, x = (x1, x2, . . . , xn)
T , b = (b1, b2, . . . , bn)

T ,

then the system (9.3) is equivalent to

x = x − Ax + b. (9.4)
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Thus, we see that finding the solution of the problem (9.4) is the problem of finding
fixed point of the transformation T : Rn → Rn defined by

T (x) = x − Ax + b. (9.5)

If T is a contraction mapping, then we can use Banach Contraction Theorem 5.1 and
obtain the unique solution of T (x) = x by the method of successive approximation.
Observe that, for x, y ∈ Rn ,

T x − T y = (x − Ax + b) − (y − T y + b) = (x − y) − (Ax − Ay)

= (x − y) − A(x − y) = (I − A)(x − y).

Theorem 9.5 Let X = Rn be a metric space with the metric d∞(x, y) = max1�i�n

|xi − yi |. If
∑n

j=1 |αi j | � α < 1 for all i = 1, 2, . . . , n, then the system of linear
equations (9.1) in n unknown has a unique solution.

Proof Since X = Rn is complete with respect to the metric d∞, it suffices to show
that the mapping T defined by (9.5) is a contraction. We have

d∞(T (x), T (y)) = max
1�i�n

∣
∣
∣

n∑

j=i

αi j (x j − y j )
∣
∣
∣ � max

1�i�n

n∑

j=i

|αi j ||x j − y j |

� max
1� j�n

|x j − y j |
⎛

⎝ max
1�i�n

n∑

j=i

|αi j |
⎞

⎠ = d∞(x, y)

⎛

⎝ max
1�i�n

n∑

j=i

|αi j |
⎞

⎠

� αd∞(x, y).

Thus, T is contraction mapping. Hence, by Banach’s contraction theorem 5.1, the
linear system (9.1) has a unique solution. �

We now demonstrate application of Brouwer’s fixed point theorem in theory of
matrices. To effect this, we need an example of continuous operator in Rn given by
a matrix.

Example 9.1 LetCn be the space of n-tuples of complex numbers. Let A = (ai j )m×n

be a matrix of order m × n. Define a map T : Cn → Cn by

T x = Ax, x ∈ Cn.

For any fixed i , the Cauchy–Schwarz inequality yields

∣
∣
∣

n∑

j=1

ai j (x j − y j )

∣
∣
∣ �

⎛

⎝
n∑

j=1

|ai j |2
⎞

⎠

1
2

‖x − y‖.

Hence,
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‖Ax − Ay‖ = ‖A(x − y)‖

� ‖A‖‖x − y‖ =
⎛

⎝
∑

i, j

|ai j |2
⎞

⎠

1
2

‖x − y‖

�
√

mnM‖x − y‖

where M is the modulus of the largest element of A. Hence, for any given ε > 0,
there exists a δ = ε

M

√
mn > 0, and for any x ∈ Cn ,

‖x − y‖ < δ ⇒ ‖Ax − Ay‖ < ε.

Thus, we see that the matrix operator A is uniformly continuous, and so it is contin-
uous.

The following result is an application of Brouwer’s fixed point theorem which is
important in many applied fields.

Theorem 9.6 (Perron–Frobenius) Let A = (ai j ) be an n × n matrix with strictly
positive entries. Then, A has a strictly positive eigenvalue.

Proof The matrix A = (ai j ) can be viewed as a linear transformation from Rn to
Rn . Notice that a positive matrix transforms vectors with positive components into
vectors with positive components. Geometrically, this works in the n-dimensional
analogue of the first quadrant. Notice also that the eigenvalue equation maps vectors
into multiples of themselves. Thus, it is reasonable, and when looking for eigenvector,
we have to consider only vectors with positive components. So, if we could disregard
the magnitude of the vector and concentrate on its direction then we could regard
eigenvector as a “fixed” vector under the transformation, in the sense that its direction
would be unchanged. We may therefore consider x

‖x‖ in place of x . This would allow
us to apply the operator to the n-dimensional analogue the positive quadrant of the
surface of the sphere. However, we notice that the surface of a sphere is not convex,
and so we use a plane rather than a surface of the sphere.

We now introduce the set

K =
{

x ∈ Rn :
n∑

i=1

xi = 1, xi � 0 for i = 1, 2, . . . , n

}

.

Clearly, the set K is compact and convex. Define

T x = Ax

||Ax ||1
where || · ||1 is the euclidean 1-norm. Notice that if x ∈ K , then all the entries of x
are nonnegative and at least one is strictly positive; hence, all the entries of Ax are
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strictly positive. Then, T is a continuous function mapping K into K , and therefore,

there exists x̄ ∈ K such that Ax̄ = λx̄ with λ = ||Ax̄ ||1 =
n∑

i=1
(Ax̄)i . �

Theorem 9.7 (Fundamental Theorem of Algebra) Let p(z) = a0 + a1z + · · · +
anzn be a complex polynomial of degree n ≥ 1. Then, there exists z0 ∈ C such that
p(z0) = 0.

Proof We begin with the identification of C with R2. Assume, without loss of gener-
ality, that an = 1. Suppose r = 2 + |a0| + |a1| + · · · + |an−1|. Now define the con-
tinuous function f : C → C as follows:

f (z) =
{

z − p(z)
r ei(1−n)θ , if |z| � 1,

z − p(z)
r zn−1 , if |z| > 1,

where z = ρeiθ with θ ∈ [0, 2π). Let us consider the compact and convex set C =
{z : |z| � r}. In order to apply the Brouwer fixed point theorem, we need to show
that f (C) ⊂ C . Indeed, if |z| � 1, we observe that

| f (z)| � |z| + |p(z)|
r

� 1 + 1 + |a0| + · · · + |an−1|
r

= 1 + r − 1

r
= 2 − 1

r
< 2 � r.

Further, if 1 < |z| � r , we have

| f (z)| �
∣
∣
∣z − p(z)

r zn−1

∣
∣
∣ =

∣
∣
∣z − z

r
− a0 + a1z + · · · + an−1zn−1

r zn−1

∣
∣
∣

� r − 1 + |a0| + · · · + |an−1|
r

� r − 1 + r − 2

r
= r − 2

r
< r.

It follows from the above inequalities that C is invariant for f . Hence, f has a fixed
point z0 ∈ C , which is clearly a root of p. This completes the proof. �

Remark 9.1 An alternative approach to prove Theorem 9.7 makes use of the concept
of topological degree (see, e.g., Munkres [414], Chap. 9).

9.2.1 Existence of Solutions of Nonlinear Matrix Equation

In this section, we have applied Theorem 5.118 due to Pathak et al. [458] to study
the existence of solutions of nonlinear matrix equation
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X = Q +
m∑

i=1

Ai X δi A∗
i , 0 <| δi |< 1 (9.6)

where Q is an n × n positive semidefinite matrix and A
′
i s are nonsingular n × n

matrices, or Q is an n × n positive definite matrix and A
′
i s are arbitrary n × n matrices

and positive definite solution X is sought. Here, A∗
i denote the conjugate transpose

of the matrix Ai . The existence and uniqueness of positive definite solutions and
numerical methods for finding a solution of (9.6) have recently been studied by
many authors (see [458] and the references therein). The Thompson metric on the
open convex cone P(N )(N ≥ 2), the set of all N × N Hermitian positive definite
matrices, is defined by

d(A, B) = max
{

log M(A/B), log M(B/A)
}

(9.7)

where M(A/B) = inf{λ > 0 : A � λB} = λmax(B−1/2 AB−1/2), the maximal eigen-
value of B−1/2 AB−1/2. Here, X � Y means that Y − X is positive semidefinite, and
X < Y means that Y − X is positive definite.

Thompson [589] has proved that P(N ) is a complete metric space with respect to
the Thompson metric d and d(A, B) = ‖ log(A−1/2 B A−1/2)‖, where ‖.‖ stands for
the spectral norm. The Thompson metric exists on any open normal convex cones of
real Banach spaces [426, 589], in particular the open convex cone of positive definite
operators of a Hilbert space. It is invariant under the matrix inversion and congruence
transformations:

d(A, B) = d(A−1, B−1) = d(M AM∗, M B M∗) (9.8)

for any nonsingular matrix M. One remarkable and useful result is the nonpositive
curvature property of the Thompson metric:

d(Xr , Y r ) � rd(X, Y ), r ∈ [0, 1]. (9.9)

By the invariant properties of the metric, we then have

d(M Xr M∗, MY r M∗) = |r |d(X, Y ), r ∈ [−1, 1] (9.10)

for any X, Y ∈ P(N ) and nonsingular matrix M. Proceeding as in Lim [369], we
prove the following:

Lemma 9.2 For any A1, A2, . . . , Ak ∈ P(N ), B1, B2, . . . , Bk ∈ P(N ), d(A1 + A2

+ · · · + Ak, B1 + B2 + · · · +, Bk) � max{d(A1, B1), d(A2, B2), . . . , d(Ak, Bk)}.
Proof Without loss of generality, we can assume that

d(A1, B1) � d(A2, B2) � · · · � d(Ak, Bk) = log r.
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Then,
B1 � r A1, B2 � r A2, . . . , Bk � r Ak

and
A1 � r B1, A2 � r B2, . . . , Ak � r Bk,

and thus,

B1 + A1 � r(A1 + B1), B2 + A2 � r(A2 + B2), . . . , Bk + Ak � r(Ak + Bk).

So, we have
A1 + A2 + · · · + Ak � r [B1 + B2 + · · · + Bk]

and
B1 + B2 + · · · + Bk � r [A1 + A2 + · · · + Ak].

Hence,

d(A1 + A2 + · · · + Ak, B1 + B2 + · · · + Bk)

� log r = d(Ak, Bk) = max{d(A1, B1), d(A2, B2), . . . , d(Ak, Bk)}.

This completes the proof.

For arbitrarily chosen positive definite matrices Xn−r , Xn−(r−1), . . . , Xn , consider
the iterative sequence of matrices, given by

Xn+1 = Q + A∗
1 Xα1

n−r A1 + A∗
2 Xα2

n−(r−1) A2 + · · · + A∗
r+1 Xαr+1

n Ar+1 (9.11)

α1, α2 . . . αr+1 are real numbers.

Theorem 9.8 Suppose that λ = max{|α1|, |α2|, . . . , |αr+1|} ∈ (0, 1)

(i) Equation (9.11) has a unique equilibrium point in P(N ); that is, there exist a
unique U ∈ P(N ) such that

U = Q + A∗
1Uα1 A1 + A∗

2Uα2 A2 + · · · + A∗
r+1Uαr+1 Ar+1 (9.12)

(ii) The iterative sequence {Xn} defined by (9.11) converges to a unique solution of
(9.6).

Proof Define the mapping f : P(N ) × P(N ) × P(N ) × · · · × P(N ) → P(N ) by

f (X1, X2, Xn−(r−2), . . . , Xk ) = Q + A∗
1 X

α1
1 A1 + A∗

2 X2)α2 A2 + · · · + A∗
r+1 X

αr+1
k Ar+1 (9.13)
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where X1, X2, . . . , Xk ∈ P(N ).

For all Xn−r , Xn−(r−1), Xn−(r−2), . . . , Xn+1 ∈ P(N ), we have

d( f (Xn−r , Xn−(r−1), Xn−(r−2), . . . , Xn), f (Xn−(r−1), Xn−(r−2), Xn−(r−2), . . . , Xn+1)

= d(Q + A∗
1 X

α1
n−r A1 + A∗

2 X
α2
n−(r−1)

A2 + · · · + A∗
r+1 X

αr+1
n Ar+1,

Q + A∗
2 X

α1
n−(r−1)

A2 + A∗
3 X

α3
n−(r−2)

A3 + · · · + A∗
r+2 X

αr+2
n+1 Ar+2

� d(A∗
1 X

α1
n−r A1 + A∗

2 X
α2
n−(r−1)

A2 + · · · + A∗
r+1 X

αr+1
n Ar+1,

A∗
2 X

α1
n−(r−1)

A2 + A∗
3 X

α3
n−(r−2)

A3 + · · · + A∗
r+2 X

αr+2
n+1 Ar+2

� max{d(A∗
1 X

α1
n−r A1, A∗

2 X
α1
n−(r−1)

A2), d(A∗
2 X

α2
n−(r−1)

A2, A∗
3 X

α3
n−(r−2)

A3),

· · · d(A∗
r+1 X

αr+1
n Ar+1, A∗

r+2 X
αr+2
n+1 Ar+2)

� max{|α1|d(Xn−r , Xn−(r−1)), |α2|d(Xn−(r−1), Xn−(r−2)), . . . , |αr+1|d(Xn , Xn+1)}
� max{|α1|, |α2|, . . . , |αr+1|} max {d(Xn−r , Xn−(r−1)), d(Xn−(r−1), Xn−(r−2)),

. . . , d(Xn , Xn+1)}
� λ max{d(Xn−r , Xn−(r−1)), d(Xn−(r−1), Xn−(r−2)), . . . , d(Xn , Xn+1)}. (9.14)

Further, for all Xn−r , Xn−(r−1), Xn−(r−2), . . . , Xn+1 ∈ P(N ). X, Y ∈ P(N ),we have

d( f (X, X, . . . , X), f (Y, Y, . . . , Y ))

= d(Q + A∗
1 Xα1 A1 + A∗

2 Xα2 A2 + · · · + A∗
r+1 Xαr+1 Ar+1,

Q + A∗
2Y α1 A2 + A∗

3Y α3 A3 + · · · + A∗
r+2Y αr+2 Ar+2

� d(A∗
1 Xα1 A1 + A∗

2 Xα2 A2 + · · · + A∗
r+1 Xαr+1 Ar+1,

A∗
2Y α1 A2 + A∗

3Y α3 A3 + · · · + A∗
r+2Y αr+2 Ar+2

� max{d(A∗
1 Xα1 A1, A∗

2Y α1 A2), d(A∗
2 Xα2 A2, A∗

3Y α3 A3),

. . . , d(A∗
r+1 Xαr+1 Ar+1, A∗

r+2Y αr+2 Ar+2)}
� max{|α1|d(X, Y ), |α2|d(X, Y ), . . . , |αr+1|d(X, Y )}
� max{|α1|, |α2|, . . . , |αr+1|} max{d(X, Y ), d(X, Y ), . . . , d(X, Y )}
� λ max {d(X, Y ), d(X, Y ), . . . , d(X, Y )}
< d(X, Y ).

Since λ ∈ (0, 1), (i) and (i i) follow immediately from Theorem 5.119 with s = 1
and g = I . This completes the proof.

Numerical Experiment Illustrating the Above Convergence Algorithm

Consider the nonlinear matrix equation

X = Q + A∗ X
1
2 A + B∗ X

1
3 B + C∗ X

1
4 C (9.15)
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where

A =
⎛

⎝
14/3 1/3 1/4
2/15 1/12 1/23
3/10 9/20 11/4

⎞

⎠ , B =
⎛

⎝
2/5 3/2 4/6

10/4 6/13 7/46
5/2 4/7 6/13

⎞

⎠ , C =
⎛

⎝
1/3 19/24 22/55

17/10 27/15 45/17
13/8 1/3 1/4

⎞

⎠ ,

and Q =
⎛

⎝
1 2 3
2 6 4
1 2 7

⎞

⎠ .

We define the iterative sequence {Xn} by

Xn+1 = Q + A∗ X
1
2
n−2 A + B∗ X

1
3
n−1 B + C∗ X

1
4
n C (9.16)

Let Rm(m ≥ 2) be the residual error at the iteration m that is

Rm =‖ Xm+1 − (Q + A∗ X
1
2
m+1 A + B∗ X

1
3
m+1 B + C∗ X

1
4
m+1C ‖

where ‖ · ‖ is the spectral norm. For initial values,

X0 =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠, X1 =
⎛

⎝
1 1 0
1 1 0
1 0 1

⎞

⎠ , X2 =
⎛

⎝
1 1 −1

−1 1 1
−1 1 1

⎞

⎠ ,

we computed the successive iterations and the error Rm using MATLAB and
found that after thirty five iterations the sequence given by (9.16) converges to

U = X35 =
⎛

⎝
639.1810 54.1681 107.3574

54.1285 44.7768 44.1469
104.3977 42.1095 112.5509

⎞

⎠ which is clearly a solution of (9.15).

The convergence history of the algorithm (9.16) is given in Fig. 9.1.

9.3 Application to Control Theory

In 2008, Pathak and Shahzad [464] studied the possibility of optimally controlling
the solution of the ordinary differential equation via dynamic programming.

Let A be a compact subset of Rm , and let for each given a ∈ A, Fa : Rn → Rn be
a strongly p-contraction mapping such that

Fa(x) = f(x, a) ∀x ∈ Rn,

where
f : Rn × A → Rn

is a given bounded, generalized Lipschitzian continuous function.
We will now study the possibility of optimally controlling the solution x(·) of the

ordinary differential equation
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Fig. 9.1 The convergence history of the algorithm

ẋ(s) = f (x(s), α(s)) (t < s < T )

x(t) = x .

}

(9.17)

Here, ˙= d
ds , T > 0 is a fixed terminal time, and x ∈ Rn is a given initial point,

taken on by our solution x(·) at the starting time t ≥ 0. At later times t < s < T,

x(·) evolves according to the ODE (9.17). The function α(·) appearing in (9.17) is a
control, that is , some appropriate scheme for adjusting parameters from the set A as
time evolves, thereby affecting the dynamics of the system modelled by (9.17). Let
us write

A = {α : [0, T ] → A | α(·) is measurable} (9.18)

to denote the set of admissible controls. Then, since

|f(x, a)| � C, |f(x, a) − f(y, a)| � C |x − y|1+δ (x, y ∈ Rn, a ∈ A) (9.19)

for some constant C, δ ≥ 0, we have

|Fa(x) − Fa
2(x))| � p(x)|x − Fa(x)| (9.20)

for all x in Rn , where p : Rn → [0, 1] is a function such that supx∈Rn p(x) = λ < 1.
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We see that for each control α(·) ∈ A, the ODE (9.17) has a unique, generalized
Lipschitzian continuous solution x(·) = xα(·)(·), existing on the time interval [t, T ]
and solving the ODE for a.e. time t < s < T . We call x(·) the response of the system
to the control α(·), and x(s) the state of the system at time s.

Our goal is to find control α∗(·) which optimally steers the system. In order
to define what “optimal” means, however, we must first introduce a cost criterion.
Given x ∈ Rn and 0 � t � T, let us define for each admissible control α(·) ∈ A the
corresponding cost

Cx,t [α(·)] :=
∫ T

t
h(x(s), α(s))ds + g(x(T )), (9.21)

where x(·) = xα(·)(·) solves the ODE (9.17) and

h : Rn × A → R, g : Rn → R

are given functions. We call h the running cost per unit time and g the terminal cost
and will henceforth assume

|Ha(x)|, |g(x)| � C (x ∈ Rn, a ∈ A)

|Ha(x) − H 2
a (x)| � p(x)|x − Ha(x)|, |g(x) − g2(x)| � p(x)|x − g(x)|

}

(9.22)
for some constant C , p : Rn → [0, 1] is a function such that supx∈Rn p(x) = λ < 1
and for each given a ∈ A, Ha : Rn → Rn is a strongly p-contraction mapping such
that

Ha(x) = h(x, a) ∀x ∈ Rn.

Given now x ∈ Rn and 0 � t � T, we would like to find if possible a control α∗(·)
which minimizes the cost functional (9.21) among all other admissible controls.

To investigate the above problem, we shall apply the method of dynamic pro-
gramming. We now turn our attention to the value function u(x, t) defined by

u(x, t) := inf
α(·)∈A

Cx,t [α(·)] (x ∈ Rn, 0 � t � T ). (9.23)

The plan is this: having defined u(x, t) as the least cost given, we start at the
position x at time t , and we want to study u as a function of x and t . We are therefore
embedding our given control problem (9.17), (9.21) into the larger class of all such
problems, as x and t vary. This idea then can be used to show that u solves a certain
Hamilton–Jacobi type PDE and finally to show conversely that a solution of this PDE
helps us to synthesize an optimal feedback control.

Let us fix x ∈ Rn, 0 � t � T . Following the technique of Evans [224], p. 553, we
can obtain the optimality conditions in the form given below:

For each ξ > 0 so small that t + ξ � T,
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u(x, t) := inf
α(·)∈A

{∫ t+ξ

t
h(x(s), α(s))ds + u(x(t + ξ), t + ξ)

}

, (9.24)

where x(·) = xα(·) solves the ODE (9.17) for the control α(·).

9.3.1 Variational Inequalities in Problems of Stochastic
Optimal Control

Belbas and Mayergoyz [43] applied fixed point methods to solve certain discrete
variational and quasi-variational inequalities. Note that variational inequalities arise
in optimal stochastic control [51] as well as in other problems in mathematical
physics, for examples deformation of elastic bodies stretched over solid obstacles,
elasto-plastic torsion [211]. We also notice that the iterative method for solutions of
discrete variational inequalities is very suitable for implementation on parallel com-
puters with single instruction, multiple-data architecture, particularly on massively
parallel processors.

In this section, we intend to show the existence of iterative solution of the two-
obstacle variational inequality that arises in certain stochastic optimal control prob-
lem. But, first, we introduce the following definitions:

M-matrix − A square matrix A is an M-matrix if and only if every off-diagonal
entry of A is nonpositive.

Variational inequality problem − The variational inequality problem is to find a
function u such that

max{Lu − f, u − φ} = 0 on �,

u = 0 on ∂�.

}

(9.25)

where � is a nonempty q-star-shaped open bounded subset of RN for some q ∈ �

with smooth boundary such that 0 ∈ cl(�), and L is an elliptic operator defined on
� by

L = −ai j (x)
∂2

∂xi∂x j
+ bi (x)

∂

∂xi
+ c(x).IN ,

where summation with respect to repeated indices is implied, c(x) ≥ 0, [ai j (x)] is
a strictly positive definite matrix, uniformly in x , for x ∈ �, f and φ are smooth
functions defined in � and φ satisfies the condition: φ(x) ≥ 0 for x ∈ ∂�.

The corresponding problem of stochastic optimal control can be described as
follows: L − cI is the generator of a diffusion process in RN , c is a discount factor,
f is the continuous cost, and φ represents the cost incurred by stopping the process.
The boundary condition “u = 0 on ∂�” expresses the fact that stopping takes place
either prior or at the time that the diffusion process exists from �.
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A problem related to (9.25) is the two-obstacle variational inequality. Given two
smooth functions φ and μ defined on cl(�) such that φ � μ in �,φ � 0 � μ on
∂�, the corresponding variational inequality is as follows:

max{min[Lu − f, u − φ), u − μ]} = 0 on �,

u = 0 on ∂�.

}

(9.26)

Note that the problem (9.26) arises in stochastic game theory.
Let A be an N -square matrix corresponding to the finite difference discretizations

of the operator L . We shall make the following assumptions about the matrix A:

Aii = 1,
∑

j : j �=i

Ai j > −1, Ai j < 0 for i �= j. (9.27)

Notice that “M-matrices” arising from the finite difference discretization of continu-
ous elliptic operators will have the property (9.27) under the appropriate conditions.

Let Q denote the set of all discretized vectors in � (see [601]). Let B = IN − A.
Then, the corresponding properties for the B-matrices are:

Bii = 0,
∑

j : j �=i

Bi j < 1, Bi j > 0 for i �= j. (9.28)

Let q = maxi
∑

j Bi j and A∗ be an N × N matrix such that A∗
i i = 1 − q and A∗

i j =
−q for i �= j . Then, we have B∗ = IN − A∗.

Now, we show the existence of iterative solutions of variational inequalities: con-
sider the following discrete variational inequalities mentioned above:

max[min{A(x − A∗.d(x, T x)) − f, x − A∗.d(x, T x) − φ}, x − A∗.d(x, T x) − μ] = 0,

(9.29)
where T is a mapping from RN into itself implicitly defined by

T x = min[max{Bx + A(1 − B∗)x .d(x, T x) + f,

(1 − B∗)x .d(x, T x) + φ}, (1 − B∗)x .d(x, T x) + μ] (9.30)

for all x ∈ cl(Q) such that the following conditions holds:

(i) for each x ∈ cl(Q), T x(= y) is a coincidence point of f and g, i.e. f y = gy for
y = T x ,

(i i)max
(

maxi {max j (1 − B∗
i j )x,max j (1 − B∗

i j )y},maxi {max j (Bi j )x,max j (Bi j )y}
)

� ϕ(d(x, y)) for all x, y ∈ cl(Q), where ϕ : (0,∞) → [0, 1
2 ) is a P-function, then

(9.30) is equivalent to the following fixed point problem:

∃ x ∈ cl(Q) such that f x = gx, x = T x (9.31)

that is, cl(Q) ∩ COP( f, g) ∩ F(T ) �= ∅.
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In two-person game, we determine the best strategies for each player on the basis
of maximin and minimax criterion of optimality. This criterion will be well stated as
follows: a player lists his/her worst possible outcomes, and then, he/she choose that
strategy which corresponds to the best of these worst outcomes. Here, the problem
(9.29) exhibits the situation in which two players are trying to control a diffusion
process; the first player is trying to maximize a cost functional, and the second player
is trying to minimize a similar functional. The first player is called the maximizing
player and the second one the minimizing player. Here, f represents the continuous
rate of cost for both players, φ is the stopping cost for the maximizing player, and
μ is the stopping cost for the minimizing player. This problem is fixed by inducting
the constrained conditions (i) and (i i) as stated above.

Theorem 9.9 Under the assumptions (9.27) and (9.28), a solution for (9.31) exists.

Proof Let (T y)i = max j (1 − B∗
i j )y.|y j − (T y) j | + μi for any y ∈ cl(Q) and any

i, j = 1, 2, . . . , N . Now, for any x ∈ cl(Q), since (T x)i � max j (1 − B∗
i j )x .|x j −

(T x) j | + μi , we have

(T x)i − (T y)i � max
j

(1 − B∗
i j )x .|x j − (T x) j | − max

j
(1 − B∗

i j )y.|y j − (T y) j |
� max{max

j
(1 − B∗

i j )x, max
j

(1 − B∗
i j )y}

· max
j

[|x j − (T x) j | + |y j − (T y) j |]
� ϕ(d(x, y))[d(x, T x) + d(y, T y)]
� ϕ(d(x, y))[d(x, T x) + d(y, T y)]. (9.32)

where ĥ, k̂ : RN → [0,∞) are some functions. If

(T y)i = max
{

Bi j |y j − T y j | + (1 − B∗
i j )y.|y j − T y j | + fi , (1 − B∗

i j ).|y j − T y j | + φi

}
,

i.e. if the maximizing player succeeds to maximize a cost functional in his/her strategy
which corresponds to the best of N worst outcomes from his/her list, then the game
would be one sided. In this situation, we introduce the one-sided operator:

T +x= max
{

B.d(x, T x) + A(1 − B∗)x .d(x, T x) + f, (1 − B∗)x .d(x, T x) + φ
}
.

Therefore, we have
(T y)i = (T +y)i .

Now, if (T x)i=Bi j |x j−T x j | + Ai j (1 − B∗
i j )x .|x j−T x j | + fi , then since (T y)i ≥

Bi j |y j − T y j | + Ai j (1 − B∗
i j )y.|y j − T y j | + fi ; by using (9.27), we have
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(T +x)i − (T +y)i � max
j

(Bi j )x .|x j − (T x) j | − max
j

(Bi j )y.|y j − (T y) j |
+ max

j
(1 − B∗

i j )x .|x j − (T x) j | − max
j

(1 − B∗
i j )y.|y j − (T y) j |

� max
i

{max
j

(Bi j )x, max
j

(Bi j )y}. max
j

[|x j − (T x) j | + |y j − (T y) j |],
max

i
{max

j
(1 − B∗

i j )x, max
j

(1 − B∗
i j )y}

· max
j

[|x j − (T x) j | + |y j − (T y) j |]

� max
(

max
i

{max
j

(1 − B∗
i j )x, max

j
(1 − B∗

i j )y},

max
i

{max
j

(Bi j )x, max
j

(Bi j )y}
)
.[d(x, T x) + d(y, T y)]

� ϕ(d(x, y))[d(x, T x) + d(y, T y)]. (9.33)

If (T x)i = (1 − B∗
i j )x .|xi − T xi | + φi then since (T y)i ≥ (1 − B∗

i j )y.|yi − T yi | +
φi , we have

(T x)i − (T y)i � max
j

(1 − B∗
i j )x .|x j − (T x) j | − max

j
(1 − B∗

i j )y.|y j − (T y) j |
� max{max

j
(1 − B∗

i j )x, max
j

(1 − B∗
i j )y}. max

j
[|x j − (T x) j | + |y j − (T y) j |]

� ϕ(d(x, y))[d(x, T x) + d(y, T y)]. (9.34)

Hence, from (9.32)–(9.34), we have

(T x)i − (T y)i � ϕ(d(x, y)) [d(x, T x) + d(y, T y)]. (9.35)

Since x and y are arbitrarily chosen, we have

(T y)i − (T x)i � ϕ(d(x, y)) [d(x, T x) + d(y, T y)]. (9.36)

Therefore, from (9.35) and (9.36), it follows that

|(T x)i − (T y)i | � ϕ(d(x, y)) [d(x, T x) + d(y, T y)]
� ϕ(d(x, y)) [d(x, T x) + d(y, T y)]
+ h̃( f y)(d( f y, T x) + k̃(gy)(d(gy, T x),

where ĥ, k̂ : RN → [0,∞) are some functions; that is,

d(T x, T y) � ϕ(d(x, y)) [d(x, T x) + d(y, T y)] + h̃( f y)(d( f y, T x) + k̃(gy)(d(gy, T x).

Hence, we see that the condition (b′
1) is satisfied. Therefore, Theorem 5.5.39′ ensures

the existence of a solution of (9.31). This completes the proof. �
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9.3.2 Game Theory and Nash Equilibria

Let us consider a game with n ≥ 2 players, under the assumption that the players
do not cooperate among themselves. In this game, each player pursues a strategy,
independence of the strategies of the other players. Let Sk denotes the set of all
possible strategies of the kth player. Now set S = S1 × S2 × · · · × Sn . An element
x ∈ S is called a strategy profile. There is a function f : S → Rn , denoted f (x) =
( f1(x), f2(x), . . . , fn(x)), that takes the players choice to the payoffs for each player.
If

n∑

k=1

fk(x) = 0, ∀x ∈ S

the game is said to be of zero-sum. The aim of each player is to minimize his loss,
or, equivalently, to maximize his gain.

Two-Person Zero-Sum Game

An abstract model of two-person zero-sum game consists of two players—player 1
and player 2. The game consists of series of rounds. In each round, player 1 has
a choice Ii from a list I = {I1, I2, . . . , Im} of possible m choices and player 2 has
a choice I I j from a list I I = {I I1, I I2, . . . , I In} of possible n choices. For each
k (k = 1, 2), let fk : I × I I → R be the loss function of the kth player. In two-
person zero-sum game, the benefit to one player is equal to the loss of the other
player.

In this game, the players determine the probability with which to play each choice.
Let xi be the probability that player 1 will play choice Ii , and let x = (x1, x2, . . . , xm)

be the associated probability vector. Similarly, let y = (y1, y2, . . . , yn) be the asso-
ciated probability vector for player 2. We shall refer to x as the strategy for player 1
and y as the strategy for player 2. Then, the space of all possible strategies for player
1 is

�m = {(x1, x2, . . . , xm) : x1 + x2 + · · · + xn = 1 and xi � 0 for all i},

which is called an m-simplex. Similarly, the space of all possible strategies for player
2 is �n .

Now we shall incorporate simple probability to understand what the long term, or
average, payoff to each player. The average payoff will be based on their strategies.
Let players 1 and 2 choose x and y as their respective strategies. In a given round,
suppose player 1 choose Ii and player 2 choose I I j , the payoff to player 1 will
be f1(Ii , I I j ). From statistical theory, over the long term, the percentage of rounds
that this will happen is pi j = xi y j . Summing over all possible pair of choices, the
expected payoff e1(x, y) for player 1 will be

e1(x, y) = xPyT =
m∑

i=1

n∑

j=1

xi y j f1(Ii , I I j ), where P = (pi j ).
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Similarly, the expected payoff for player 2 will be

e2(x, y) = xPyT =
m∑

i=1

n∑

j=1

xi y j f2(Ii , I I j ).

Here, one may notice that e1 and e2 are both continuous functions of (x, y).

Definition 9.3 A Nash equilibrium is a pair of strategies such that neither player can
improve their payoff if they alone change their strategy, i.e. a point (x∗, y∗) ∈ I × I I
such that

e1(x, y∗) � e1(x∗, y∗), for all x ∈ �m,

and
e2(x∗, y) � e2(x∗, y∗), for all y ∈ �n.

Consider the two-player zero-sum game as described above. Since the spaces of
all possible strategies for player 1 and player 2 are m-simplex �m and n-simplex �n ,
respectively, it follows that the space of all possible strategies is homeomorphic to
an (n + m)-dimensional disc. We now intend to define a continuous map that takes a
pair of strategies to a new pair such that fixed point of this map is Nash equilibria. In
this context, we use Brouwer’s fixed point theorem to prove the fundamental theorem
of Nash1 as follows:

Theorem 9.10 For a two-player zero-sum game, there exists a Nash equilibrium.

Proof First of all, we observe that the space of all pairs (x, y) of choices is S =
�m × �n, which is homeomorphic to an (m + n)-dimensional disc. Suppose (Ii )

denoted the strategy of playing only choice Ii by player 1, i.e. Ii is the probability
vector in �m that has 1 in the ith entry 0 in every other entry. Similarly, suppose
(I I j ) denotes the strategy of playing only I I j by player 2. For x, y ∈ S, let us define

ξi (x, y) = max{0, e1((Ii ), y) − e1(x, y)}, 1 � i � m.

Notice that ci (x, y) is the amount that player 1 would increase his expected payoff by
playing strategy Ii instead of x. Similarly, the amount that player 2 would increase
his expected payoff by playing strategy I I j instead of y is given by

η j (x, y) = max{0, e2(x, (I I j )) − e2(x, y)}, 1 � j � n.

1John Forbes Nash Jr. (June 13, 1928–May 23, 2015) was an American mathematician who made
fundamental contributions to game theory, differential geometry and the study of partial differential
equations. Nash’s work has provided insight into the factors that govern chance and decision-making
inside complex systems found in everyday life. John F. Nash Jr. shared the 1994 Nobel Memorial
Prize (the Sveriges Riksbank Prize) in Economic Sciences with game theorists Reinhard Selten and
John Harsanyi “for their pioneering analysis of equilibria in the theory of noncooperative games”.
In 2015, he also shared the Abel Prize with Louis Nirenberg for his work on nonlinear partial
differential equations.
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Notice also that ξi and η j are each continuous functions of (x, y).
Define the function g : S → S by g(x, y) = (x′, y), where

x
′
i = xi + ξi (x, y)

1 + ∑m
k=1 ξk(x, y)

, 1 � i � m, (9.37)

and

y
′
j = y j + η j (x, y)

1 + ∑n
l=1 ηl(x, y)

, 1 � j � n. (9.38)

Notice that x
′
i and y

′
j , being combination of continuous functions using sums, quo-

tients and compositions, are continuous functions. Hence, g is a continuous function.
Thus, by Brouwer’s fixed point theorem, we must have a fixed point. So, let this fixed
point be (u, v).

It is clear from Eqs. (9.37) and (9.38) that (x, y) is a fixed point of g, if ξi (x, y) = 0
and η j (x, y) = 0 for all i and j . We claim that this is true for every fixed point.

Notice that e1({Ii }, v) > e1(u, v) is not true for all i = 1, 2, . . . , m. For if, this is
true, then

e1(u, v) =
m∑

i=1

ui e1({Ii }, v) >

m∑

i=1

ui e1(u, v) = e1(u, v),

a contradiction. Therefore, for some i , ξi (u, v) = 0. Since (u, v) is a fixed point of
g for this i , using (9.37), we obtain

ui = ui + ξi (u, v)

1 + ∑m
k=1 ξk(u, v)

=⇒ ui = ui

1 + ∑m
k=1 ξk(u, v)

=⇒ 1 +
m∑

k=1

ξk(u, v) = 1 or 1 +
m∑

i=1

ξi (u, v) = 1

=⇒
m∑

i=1

ξi (u, v) = 0.

Therefore, ξi (u, v) = 0 for all i = 1, 2, . . . , m. Moreover,

e1(u, v) � e1({Ii }, v) for all i = 1, 2, . . . , m.

Since e1(u, v) =
m∑

i=1
ui e1({Ii }, v) and e1(x, v) =

m∑

i=1
xi e1({Ii }, v), we have

e1(u, v) � e1(x, v) for all x ∈ �m .
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Similarly, we have
e1(u, v) � e1(u, y) for all y ∈ �n.

Hence, we conclude that (u, v) is a Nash equilibrium. �

9.4 Application to Differential Equations

Nonlinear phenomena, which are modelled with nonlinear differential equations,
appear in different domains of physical sciences and engineering such as fluid dynam-
ics, aerodynamics, nonlinear control systems, electrical engineering [325]. Many
different methods have been developed for solving differential equations. However,
the solution of nonlinear differential equations is still challenging.

9.4.1 Picard–Lindelof Existence Theorem for Ordinary
Differential Equation

We begin with the following existence theorem for the ordinary differential equation
(Picard–Lindelof theorem). We first reduce the equation to Hammerstein operator
equation, and then, existence theorem is obtained as an easy application of Banach’s
contraction theorem.

Theorem 9.11 Let � denote an open set in R2, (t0, x0) ∈ �. Let f (t, x) be a real-
valued function defined and continuous in �, and let it satisfy the Lipschitz condition

| f (t, x1) − f (t, x2)| � M |x1 − x2|, (t, x1), (t, x2) ∈ �.

Then, there exists a τ > 0, and a unique function φ(t) continuous and differentiable
in [t0 − τ, t0 + τ ] such that

(i) ϕ(t0) = x0,

(ii) x(t) = ϕ(t) satisfies the differential equation

dx

dt
= f (t, x(t)) for t ∈ [t0 − τ, t0 + τ ]. (9.39)

Proof First, we prove that there exist an τ > 0 and a unique function ϕ(t) continuous
in [t0 − τ, t0 + τ ] such that

ϕ(t) = x0 +
∫ t

t0

f (s, ϕ(s)) ds, t0 − τ � t � t0 + τ
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and (t, ϕ(t)) ∈ �. Then, since f (t, ϕ(t)) is continuous, it follows that ϕ(t) is differ-
entiable in [t0 − τ, t0 + τ ] that satisfies (i) and (ii).

Let B denote a closed disc of center (t0, x0) with positive radius and contained in
the open set �. Let m denote the least upper bound of the continuous function | f |
on the compact set B. Let τ and δ be so chosen that 0 < τ < M−1, the rectangle
|t − t0| � τ, |x − x0| � δ is contained in B, and mτ < δ. Let E denote the set of all
continuous functions mapping [t0 − τ, t0 + τ ] into [x0 − δ, x0 + δ]. E is a closed
subset of the complete metric space C[t0 − τ, t0 + τ ] (with uniform norm) and is
therefore complete. We define a mapping Fϕ = ψ for ϕ ∈ E by

ψ(t) = x0 +
∫ t

t0

f (s, ϕ(s))ds.

Clearly ψ(t) is continuous in [t0 − τ, t0 + τ ]. Also

|ψ(t) − x0| =
∣
∣
∣
∣

∫ t

t0

f (s, ϕ(s))ds

∣
∣
∣
∣ � m|t − t0| < δ.

Thus, F maps E into itself. Also,

|Fϕ1 − Fϕ2| = |ψ2(t) − ψ(2)(t)|
=

∣
∣
∣
∣

∫ t

t0

[ f (s, ϕ1(s)) − f (s, ϕ2(s))]ds

∣
∣
∣
∣

� |t − t0|M sup
s∈[t0−τ,t0+τ,]

|ϕ1(s) − ϕ2(s)|

� τ M‖ϕ1 − ϕ2‖,

that is, ‖Fϕ1 − Fϕ2‖ � τ M‖ϕ1 − ϕ2‖
where τ M < 1. This shows that F is a contraction mapping in E . By Banach’s
contraction theorem, there exists a ϕ ∈ E such that Fϕ = ϕ, i.e.

ϕ(t) = x0 +
∫ t

t0

f (s, ϕ(s))ds.

This completes the proof. �

Remark 9.2 Here, Fϕ = x0 + K Nϕ, where K is an integral operator with Kernel
1 and N is the Nemytskiĭ operator.

For results on the continuation properties of the solution x(t, x0), refer to Cronin
[152] and Berger [52].

Theorem 9.12 If ϕn is the solution of the differential equation (9.39) with initial con-
dition ϕn(t0) = xn and {xn} is a real sequence converging to x0, then {ϕn} converges
to the solution ϕ of (9.39) with ϕ(t0) = x0 in E.
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Proof Let Fn be a mapping defined by

(Fnϕ)(t) = xn +
∫ t

t0

f (s, ϕ(s))ds, ϕ ∈ E, n = 1, 2, 3, . . . .

Then, |(Fnϕ)(t) − x0| � |xn − x0| + mτ < δ for n sufficiently large. Hence, Fn

maps E into itself for n sufficiently large. Also, the mappings Fn and F have the
same Lipschitz constant τ M < 1. Clearly, lim

n→∞ Fnψ = Fψ for each ψ ∈ E . Since

Fn is a contraction, there exists a unique fixed point ϕn of Fn . By Theorem 5.133,
we have lim

n→∞ ϕn = ϕ. �

9.4.2 Cauchy–Peano Existence Theorem for Ordinary
Differential Equation

Next, we prove the Cauchy–Peano existence theorem for ordinary differential equa-
tion

dx

dt
= f (t, x(t)), x(t0) = x0

with the help of Schauder’s fixed point theorem. Peano proved the existence of a
local solution, possibly nonunique, when f is continuous and bounded.

Theorem 9.13 If f is continuous on the rectangle R = {(t, x) : |t − t0| � a, |x −
x0| � b}, then there exists a solution ϕ(which is continuously differentiable) of the
differential equation

dx

dt
= f (t, x(t)) on |t − t0| � α

with the initial condition ϕ(t0) = x0.

Here, α = min
(
a, b

m

)
and m = max

(t,x)∈R
| f (t, x)|.

Proof Since f (t, x) is continuous on a neighbourhood of t0, x0), we can choose
τ > 0 such that f is continuous in the rectangle |t − t0| � τ and |x − x0| � mτ and
satisfies the inequality | f (t, x)| � m. Let E denote the Banach space C[t0 − τ, t0 +
τ ]. Let K be the subset of E consisting of all continuous mappings of [t0τ, t0 + τ ]
into [x0 − mτ, x0 + mτ ].

Clearly, K is abounded, closed and convex subset of E . Let F be the mapping
defined on K by

Fϕ(t) = x0 +
∫ t ′

t0

f (s, ϕ(s))ds, |t − t0| � τ.

Then, F(K ) ⊂ K . Also, F(K ) is an equicontinuous set since
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|(Fϕ)(t) − (Fϕ)(t ′)| �
∫ t

t
| f (s, ϕ(s))|ds � m|t − t ′| for all ϕ ∈ K .

As F(K ) is bounded, by Ascoli–Arzela theorem, F(K ) is contained in a compact
set. Therefore, by Schauder’s fixed point theorem (Theorem 5.55), F has a fixed
point ϕ in K , i.e.,

ϕ(t) = x0 +
∫ t ′

t0

f (s, ϕ(s))ds, |t − t0| � τ.

Obviously, ϕ is differentiable in {t : |t − t0| � τ } and provides a local solution x(t) =
ϕ(t) of the given differential equation. �

Theorem 9.14 Let � be an open subset of R2, (t0, x0) ∈ �, M > 0 a real number,
and let {mi } be a bounded sequence of strictly positive real numbers. For each
i = 0, 1, 2, . . . let fi (t, x) be a real-valued continuous function defined on � such
that

| fi (t, x)| � M for all (t, x) ∈ �,

and
| fi (t, x) − fi (t, y)| � mi |x − y| for all (t, x), (t, y) ∈ �.

Suppose that the sequence { fi } converges pointwise on � to f0. Let τ be such that
0 < miτ < 1 for all i = 0, 1, 2, . . . , and such that

W = {(t, x) : |t − t0| � τ and |x − x0| � Mτ } ⊂ �.

Then the sequence {ϕi } converges uniformly on I = [t0 − τ, t0 + τ ] to ϕ0 where for
each i = 0, 1, 2, . . . , ϕi is the unique solution on I of the initial value problem

dx

dt
= fi (t, x(t)), x(t0) = x0.

Proof Let E be the set of all real-valued functions defined on I with range lying in
[x0 − Mτ, x0 + Mτ ] and with Lipschitz constant less than or equal to M . Then, E ,
with supremum norm, is a compact metric space. For each i = 0, 1, 2, . . . and each
ϕ ∈ E, define Fi (ϕ) by

[Fi (ϕ)](t) = x0 +
∫ t

t0

fi (s, ϕ(s))ds.

Then, Fi is a contraction mapping from E into itself with Lipschitz constant less
than or equal to miτ. Consider

[Fi (ϕ)](t) − [F0(ϕ)](t) =
∫ t

t0

[ fi (s, ϕ(s)) − f0(s, ϕ(s))]ds
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for each ϕ ∈ E, t ∈ I, and i = 1, 2, . . .. Because the sequence of integrands con-
verges pointwise to zero and is uniformly bounded by 2M , by Lebesgue’s domi-
nated convergence theorem, the sequence of integrals converges to zero. Hence, the
sequence {Fi (ϕ)} converges pointwise on I to F0(ϕ); i.e., {Fi } converges pointwise
on E to F0. By Theorem 5.135, the sequence {ϕi } where ϕi is the unique fixed point
of Fi converges to the fixed point ϕ0 of F and these fixed points are the unique
solutions of the given initial value problems. �

9.4.3 Existence Theorem for First-Order Periodic Problem

In this section, we study existence of solution of first-order periodic problem.
Consider the space C(I ), the class of real-valued continuous functions defined on

I = [0, T ], endowed with the metric d given by

d(x, y) = sup{|x(t) − y(t)| : t ∈ I } for x, y ∈ C(I )

Clearly, (C(I ), d) is a complete metric space. Further, note that C(I ) can also be
equipped with a partial order given by

x, y ∈ C(I ), x � y ⇔ x(t) � y(t) for t ∈ I.

We now prove the existence of solution for the following first-order periodic problem

{
u′(t) = f (t, u(t)), t ∈ I = [0, T ]
u(0) = u(T ).

(9.40)

where T > 0 and f : I × R → R is a continuous function.

Definition 9.4 A lower solution for (9.40) is a function α ∈ C1(I ) such that

α′(t) � f (t, α(t)) for t ∈ I = [0, T ]
α(0) � α(T ).

Theorem 9.15 Let f : I × R → R be continuous, and suppose that there exist λ >

0, 0 < a < 1 such that for all x, y ∈ R with y ≥ x

0 � f (t, y) + λy − [ f (t, x) + λx] � λ

[

ln(y − x + 1) + (y − x)2

2(y − x + 1)

]

(9.41)

If a lower solution for first-order periodic problem (9.40) exists, then there exists a
unique solution of (9.40).

Proof The first-order periodic problem (9.40) can be written as
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u′(t) + λu(t) = f (t, u(t)) + λu(t), t ∈ I = [0, T ]
u(0) = u(T )

The above problem is equivalent to the integral equation

u(t) =
∫ T

0
G(t, s)[ f (s, u(s)) + λu(s)]ds

where G(t, s) is the green function given by

G(t, s) =
{

eλ(T +s−t)

eλT −1 if 0 � s < t � T
eλ(s−t)

eλT −1 if 0 � t < s � T

Define F : C(I ) → C(I ) by

(Fu)(t) =
∫ T

0
G(t, s)[ f (s, u(s)) + λu(s)]ds.

Clearly, u ∈ C1(I ) is a solution of (9.40) if u ∈ C(I ) is a fixed point of F .
By hypothesis (9.41) about f , the mapping F is nondecreasing and so, for u ≥ v,

we have
f (t, u) + λu ≥ f (t, v) + λv

which implies, using the fact that G(t, s) > 0 for (t, s) ∈ I × I , that

(Fu)(t) =
∫ T

0
G(t, s)[ f (s, u(s)) + λu(s)]ds

�
∫ T

0
G(t, s)[ f (s, v(s)) + λv(s)]ds = (Fv)(t)

for t ∈ I . For u � v, we have

d(Fu, Fv) = sup
t∈I

|(Fu)(t) − (Fv)(t)|

� sup
t∈I

∫ T

0
G(t, s)[ f (s, u(s)) + λu(s) − f (s, v(s)) − λv(s)]ds

� sup
t∈I

∫ T

0
G(t, s) · λ

[

ln
(
u(s) − v(s) + 1

) +
(
u(s) − v(s)

)2

2
(
u(s) − v(s) + 1

)

]

ds.

Put �(x) =
[

ln(x + 1) + x2

2(x+1)

]
. Obviously, � : [0,∞) → [0,∞) is nondecreas-

ing, positive in (0,∞)
(
�′(x) = 2x+1

(x+1)2

)
and u � v then
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[

ln
(
u(s) − v(s) + 1

) +
(
u(s) − v(s)

)2

2
(
u(s) − v(s) + 1

)

]

�
[

ln(‖u − v‖ + 1) + ‖u − v‖2

2(‖u − v‖ + 1)

]

.

Now considering the above inequality, we obtain

d(Fu, Fv) � sup
t∈I

∫ T

0
G(t, s) · λ

[

ln
(
u(s) − v(s) + 1

) +
(
u(s) − v(s)

)2

2
(
u(s) − v(s) + 1

)

]

ds

�
[

ln(‖u − v‖ + 1) + ‖u − v‖2

2(‖u − v‖ + 1)

]

· λ sup
t∈I

∫ T

0
G(t, s)ds

=
[

ln(‖u − v‖ + 1) + ‖u − v‖2

2(‖u − v‖ + 1)

]

·

λ sup
t∈I

1

eλT − 1

(
1

λ
eλ(T +s−t)

]t

0

+ 1

λ
eλ(s−t)

]T

t

)

=
[

ln(‖u − v‖ + 1) + ‖u − v‖2

2(‖u − v‖ + 1)

]

· λ
1

λ(eλT − 1)
(eλT − 1)

=
[

ln(‖u − v‖ + 1) + ‖u − v‖2 + 1

2(‖u − v‖ + 1)
− 1

2(‖u − v‖ + 1)

]

.

Thus, we have

d(Fu, Fv) �
[

ln(‖u − v‖ + 1) + ‖u − v‖2 + 1

2(‖u − v‖ + 1)
− 1

2(‖u − v‖ + 1)

]

.

Putϕ(x) = ln(x + 1) + x2+1
2(x+1)

, ψ(x) = 1
2(x+1)

. Clearly, both the functionsϕ,ψ :
[0,∞) → [0,∞) are continuous, ϕ is nondecreasing and ψ is nonincreasing for all
x ∈ (0,∞) and satisfying conditions (C1)–(C3).

Thus, from (9.41), for u � v, we obtain

d(Fu, Fv) � ϕ(d(u, v)) − ψ(d(u, v)).

Let α(t) be a lower solution of (9.40). Then, we will show that α � Fα. Now

α′(t) + λα(t) � f (t, α(t)) + λα(t) for t ∈ I

Multiplying by eλt , we get

(
α(t)eλt

)′
� [ f (t, α(t)) + λα(t)]eλt for t ∈ I

which on integration gives
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α(t)eλt � α(0) +
∫ t

0
[ f (s, α(s)) + λα(s)]eλsds for t ∈ I (9.42)

which implies that

α(0)eλT � α(T )eλT � α(0) +
∫ T

0
[ f (s, α(s)) + λα(s)]eλsds.

This gives

α(0) �
∫ T

0

eλs

eλT − 1
[ f (s, α(s)) + λα(s)] ds.

From this inequality and (9.42), we obtain

α(t)eλt �
∫ t

0

eλ(T +s)

eλT − 1
[ f (s, α(s)) + λα(s)] ds +

∫ T

t

eλs

eλT − 1
[ f (s, α(s)) + λα(s)] ds.

As a consequence, we have

α(t) �
∫ t

0

eλ(T +s−t)

eλT − 1
[ f (s, α(s)) + λα(s)] ds +

∫ T

t

eλ(s−t)

eλT − 1
[ f (s, α(s)) + λα(s)] ds.

Hence,

α(t) �
∫ T

0
G(t, s)[ f (s, α(s)) + λα(s)] ds = (Fα)(t) for t ∈ I.

Finally, Theorems 5.171 and 5.172 give that F has a unique fixed point. �

Remark 9.3 In the proof of Theorem 9.15, the unique solution of (9.41) can be
obtained as lim

n→∞ Fn(x), for every x ∈ C(I ). If we choose x(t) = α(t), then Fn(α)

is a monotone nondecreasing sequence uniformly convergent to the unique solution
of (9.40).

Remark 9.4 The condition (9.41) of Theorem 9.15 can be replaced by

0 � f (t, y) + λy − [ f (t, x) + λx] � λ�(y − x) for y � x

where � : [0,∞) → [0,∞) can be written by

�(x) = ϕ(x) − ψ(x)

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function and ψ :
[0,∞) → [0,∞) is a continuous and nonincreasing function satisfying conditions
(C1)–(C3). Examples of such functions are:
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(i) ϕ(x) = ln(x + 1) + x2+1
2(x+1)

and ψ(x) = 1
2(x+1)

(which appears in Theorem 9.15).
(i i) ϕ(x) = x

x2+1 + arctan x and ψ(x) = x
x2+1 .

In 2008, Pathak and Shahzad [464] studied the possibility of optimally control-
ling the solution of ordinary differential equation via dynamic programming. As an
application of our main result in Sect. 3, we continue our discussion to solve certain
problems in control theory in an ordered set. In what follows, we use the terminology
of Pathak and Shahzad [464] and Evans [224].

Let A be a compact subset of Rm , and let for each given a ∈ A, Fa : Rn → Rn be
a continuous and nondecreasing weakly (ϕ − ψ)-contractive mapping of type (I )
such that

Fa(x) = f(x, a) ∀x ∈ Rn,

where f : Rn × A → Rn is a given bounded, continuous and nondecreasing weakly
(ϕ − ψ)-contractive mapping of type (I ). Consider the usual order

(x1, x2, . . . , xn) � (y1, y2, . . . , yn) ⇔ xi � yi i = 1, 2, . . . , n.

Thus, (Rn,�) is a partially ordered set. Besides, (Rn, d) is a complete metric space
considering d(x, y) = |x − y| the Euclidean distance between x and y.

We will now study the possibility of optimally controlling the solution x(·) of the
ordinary differential equation

{
ẋ(s) = f (x(s), α(s)) (t < s < T )

x(t) = x .
(9.43)

Here, ˙= d
ds , T > 0 is a fixed terminal time, and x ∈ Rn is a given initial point,

taken on by our solution x(·) at the starting time t ≥ 0. At later times t < s < T, x(·)
evolves according to the ODE (9.43). The function α(·) appearing in (9.43) is a
control, that is , some appropriate scheme for adjusting parameters from the set A as
time evolves, thereby affecting the dynamics of the system modelled by (9.43). Let
us write

A = {α : [0, T ] → A | α(·) is measurable } (9.44)

to denote the set of admissible controls. Then, since

|f(x, a)| ≤ C, |f(x, a) − f(y, a)| � ϕ(|x − y|) − ψ(|x − y|) (x, y ∈ Rn, a ∈ A with x � y)

(9.45)
for some constants C, δ � 0, we have

|Fa(x) − Fa(y))| � ϕ(|x − y|) − ψ(|x − y|) (9.46)

for all x, y ∈ Rn with x � y, where ϕ : [0,∞) → [0,∞) is a continuous and non-
decreasing function and ψ : [0,∞) → [0,∞) is a continuous and nonincreasing
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function satisfying conditions (C1)–(C3). Suppose that there exists x0 ∈ X with
x0 � f (x0).

We see that for each control α(·) ∈ A, the ODE (9.43) has a unique, generalized
Lipschitzian continuous solution x(·) = xα(·)(·), existing on the time interval [t, T ]
and solving the ODE for a.e. time t < s < T . We call x(·) the response of the system
to the control α(·) , and x(s) the state of the system at time s.

Our goal is to find control α∗(·) which optimally steers the system. In order
to define what “optimal” means, however, we must first introduce a cost criterion.
Given x ∈ Rn and 0 � t � T, let us define for each admissible control α(·) ∈ A the
corresponding cost

Cx,t [α(·)] :=
∫ T

t
h(x(s), α(s))ds + g(x(T )), (9.47)

where x(·) = xα(·)(·) solves the ODE (9.43) and

h : Rn × A → R, g : Rn → R

are given functions. We call h the running cost per unit time and g the terminal cost
and will henceforth assume

⎧
⎪⎨

⎪⎩

|Ha(x)|, |g(x)| � C

|Ha(x) − Ha(y)| � ϕ(|x − y|) − ψ(|x − y|),
|g(x) − g(y)| � ϕ(|x − y|) − ψ(|x − y|) (x, y ∈ Rn, a ∈ A)

(9.48)

for some constant C , and for each given a ∈ A, Ha : Rn → Rn is a bounded, con-
tinuous and nondecreasing weakly (ϕ − ψ)-contractive mapping of type (I) defined
by

Ha(x) = h(x, a) ∀x ∈ Rn.

Given now x ∈ Rn and 0 � t � T, we would like to find if possible a control α∗(·)
which minimizes the cost functional (9.47) among all other admissible controls.

To investigate the above problem, we shall apply the method of dynamic pro-
gramming. We now turn our attention to the value function u(x, t) defined by

u(x, t) := inf
α(·)∈A

Cx,t [α(·)] (x ∈ Rn, 0 � t � T ). (9.49)

The plan is this: having defined u(x, t) as the least cost given, we start at the position
x at time t , and we want to study u as a function of x and t . We are therefore
embedding our given control problem (9.43), (9.47) into the larger class of all such
problems, as x and t vary. This idea then can be used to show that u solves a certain
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Hamilton–Jacobi type PDE and finally to show conversely that a solution of this PDE
helps us to synthesize an optimal feedback control.

Let us fix x ∈ Rn, 0 � t � T . Following the technique of Evans [224], p. 553, we
can obtain the optimality conditions in the form given below:

For each ξ > 0 so small that t + ξ � T,

u(x, t) := inf
α(·)∈A

{∫ t+ξ

t
h(x(s), α(s))ds + u(x(t + ξ), t + ξ)

}

, (9.50)

where x(·) = xα(·) solves the ODE (9.43) for the control α(·).

9.4.4 Existence of Periodic Solutions for Nonlinear
Equations of Evolution

We next consider the existence of periodic solutions for nonlinear equations of evo-
lution discussed by Browder [99]. Let H be a Hilbert space. Consider the time
dependent nonlinear equation of evolution in H given by

dx

dt
+ A(t)x = f (t, x) (9.51)

where A(t) is a family of closed linear operators in H and f maps R × H into H.
Let A(t) and f (t, x) be periodic in t with common period p > 0. We are interested
in the existence of solution x(t) of Eq. (9.51) for t � 0 with period p, an integer. We
make the following assumption.

Assumption I.

(a) For each t and each pair x and y in H,

Re( f (t, x) − f (t, y), x − y) � 0. (9.52)

(b) For each t and each x in D(A(t))

Re(A(t)x, x) � 0. (9.53)

We suppose that for each s in R, the homogeneous linear equation

dx

dt
+ A(t)x = 0 (t > s) (9.54)

has a solution x(t) for t > s for each choice of initial data x(s) = y in D(A(s)). We
set X (t, s)y = x(t). It follows easily from Assumption I(b) that ‖X (t, s)‖ � 1 for
each s < t.
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Definition 9.5 If x : R+ → H is continuous in the strong topology, x is said to be
a mild solution of Eq. (9.51) on R+ with initial value x(o) = x0, if and only if for
each t > 0,

x(t) = X (t, 0)x0 +
∫ t

0
X (t, s) f (s, x(s))ds. (9.55)

Assumption II. There exits a mild solution x of Eq. (9.51) on R+ for each initial
value x0 in H. Browder [99] has shown that Assumption II follows from Assumption
I and the following two conditions:

(a) f is continuous fromR+ × H into H and maps bounded set into bounded sets.
(b) D(A(t)) = w. independent of t in R+ : t → A(t) ∈ L (W,H) is of class C1

and D(A∗(t)) ⊂ W.

Notice that condition (b) has been weakened by Kato [322] in the following way:
[A(t) + λI ]−1 exists on H for λ > 0 and is strongly of class C1 in t on R+.

Theorem 9.16 Suppose that A(t) and f (t, x) satisfy Assumptions (I ) and (I I ) and
are periodic in t of period p > 0. Suppose further that there exists r > 0 such that
Re( f (t, x), x) < 0 for ‖x‖ = r and all t in [0, p]. Then, there exists and element x0

of H with ‖x0‖ < r such that the mild solution of

dx

dt
+ A(t)x = f (t, x), t > 0

with x(0) = x0, which is periodic with period p.

Proof Let F be the mapping of Br into H, which assigns to each x0 of Br , the value
at p of the mild solution x(t) of Eq. (9.51) with x(0) = x0, i.e.

Fx0 = x(p) = X (p, 0)x0 +
∫ p

0
X (p, s) f (s, x(s))ds.

Each fixed point of F then corresponds to a periodic solution of Eq. (9.51) with
period p. Since

1

2

d

dt

{
||x(t)‖2

}
= −Re(A(t)x(t), x(t)) + Re( f (t, x(t)), x(t))

� Re( f (t, x(t)), x(t)),

it follows that for any value of t in [0, p] for which ‖x(t)‖ = r, we have

d

dt
{‖x(t)‖2} < 0.

Hence, ‖x(p)‖ � r, and F maps Br into itself. If x0 and x1 are two elements of Br

and x0(t) and x1(t), the corresponding mild solutions, then we have



692 9 Applications of Fixed Point Theorems

1

2

d

dt

{
||x0(t) − x1(t))‖2

}
= −Re (A(t)[x0(t) − x1(t)], x0(t) − x1(t))

+ Re ( f (t, x0(t)) − f (t, x1(t)), x0(t) − x1(t))

� 0.

Hence, ‖x0(p) − x1(p)‖ � ‖x0(0) − x1(0)‖, i.e. ‖Fx0 − Fx1‖ � ‖x0 − x1‖.
Hence, by Theorem 5.25, F has a fixed point in Br and Eq. (9.51) has a periodic
solution.

Let us consider the following two point boundary value problem:

x ′′(t) = f (t, x(t), x ′(t)), 0 � t � T

x(0) = α and x(T ) = β.

The existence of a solution of this boundary value problem is discussed in Edward
[218] following an argument of Bass [40]. We briefly indicate the proof.

Here, f is assumed to be continuous and bounded on [0, T ] × R × R. Trans-
forming the above boundary value problem into an equivalent integral equation, we
get

x(t) = α + (β − α)t

T
−

∫ T

0
G(t, s) f (s, x(s), x ′(s))ds (9.56)

where G(t, x) =
{

s(T −t)
T , 0 � s �� T

t (T −s)
T , 0 � t � s � T

We take X = C1[0, T ] with norm ‖x‖ = sup
t∈[0,T ]

[|x(t)| + |x ′(t)|] and define F : X →
X by

(Fx)(t) = α + (β − α)t

T

∫ T

0
G(t, s) f (s, x(s), x ′(s))ds.

It can be shown that F is continuous and F(X) is relatively compact in X . Then, by
Theorem 5.59, a version of Schauder’s fixed point theorem, F has a fixed point in X
which precisely gives the desired solution of Eq. (9.56).

For the nonnegative solution of the above two point boundary value problem
where 0 � − f (t, u, v) � a + b0(t)u, 0 � t � T, u � 0, − ∞ < v < ∞, refer
to Krasnoselskii [345].

Gatica and Smith [241] considered the following boundary value problem:

x ′′ + f (t, x) = 0; x(0) = x(L) = 0, (9.57)

where x and f are vectors functions and f satisfies the condition:
(c) f : [0, L] × Rn+ → Rn+ is continuous and f (t, 0) = 0 where
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Rn+ = {x ∈ Rn : xi � 0, 1 � i � n}.

We look for a nontrivial solution of (9.54) in the cone K = {x : [0, L] → Rn+|x
satisfies the boundary condition of (9.54) is continuous and concave on [0, L]} in the
Banach space X = C[0, L].
Theorem 9.17 (Gatica and Smith [241]) Suppose the condition (c) holds and that
there exist numbers r and R, 0 � r < R such that

(i) x ′′ + f (t, x) � 0 has no C2 solutions x ∈ K , with ‖x‖∞ = r;
(ii) z′′ + f (t, z) � 0 has no C2 solutions z ∈ K , with ‖z‖∞ = R.

Then, Eq. (9.57) has a nonzero solution y ∈ K with r � ‖u‖∞ � R.

This is proved by applying Theorem 5.165 to the operator

(Fx)(t) =
∫ L

0
G(t, s) f (s, x(s))ds

where G(t, s) is the Green’s function for the boundary value problem.

Corollary 9.2 Suppose that the condition (c) holds and x and f are scalar-valued.
Suppose that there exist nonnegative continuous functions φ and ψ defined on [0, L]
and numbers r, R with 0 < r < R such that

(i) f (t, x) � φ(t)x, t ∈ [0, L], 0 � x � r and y′′ + φ(t)y = 0 is disconjugate on
[0, L] (if every solution y(t) �≡ 0 vanishes at most once on [0, L]).

(ii) f (t, x) � ψ(t)x, t ∈ [0, L], x � R and z′′ + ψ(t)z = 0 is conjugate on (0, L).

Then, the boundary value problem (9.57) has a nonzero solution y ∈ K with r �
‖y‖∞.

Theorem 9.18 Suppose that the condition (c) holds and x and f are scalar valued
such that the following are satisfied:

(i) y′′ + fx (t, 0)y = 0 is disconjugate on [0, L].
(ii) there exists an R > 0 such that z′′ + f (t, z) � 0 has no C2 solution z ∈ K with

‖z‖∞ = R.

Then, the boundary value problem (9.57) has a nonzero solution x ∈ K with ‖x‖∞ �
R.

Proof Define the operator F : K → K by

(Fx)(t) =
∫ L

0
G(t, s) f (x, x(s))ds.

The operator F is continuous and maps bounded subsets into precompact subsets.
Further, F(0) = 0, and F is Fréchet differentiable in the direction of the cone at 0
with
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F ′(0)h(t) =
∫ L

0
G(t, s) f x(s, 0)h(s)ds.

We use Theorem 5.165 by setting B ≡ 0 and Cx = h for all x ∈ {y ∈ K : ‖y‖ = R}
where h ∈ K ∩ C2[0, L] with ‖h‖ > R. First, we show that condition (i) of Theorem
5.165 is satisfied for all small values of r. Suppose this is not true. Then, using the fact
that F(0) = 0 and F is Fréchet differentiable at 0 with F ′′(0) compact (Krasnoselskii
[345]), it can be shown that there exist λ ∈ [1,∞) and u ∈ K with ‖u‖ = 1 such
that F ′(0)u = λu. Thus,

λu(t) =
∫ L

0
G(t, s) fx (s, 0)u(s)ds.

Differentiating this, we get

u′′(t) + λ fx (t, 0)u(t) = 0, (u(0) = u(L) = 0).

We have
λ−1 fx (t, 0) � fx (t, 0).

But if y′′ + fx (t, 0)y = 0 is disconjugate on [0, L], then by Sturm comparison the-
orem u′′ + λ−1 fx (t, 0)u = 0 must also be so. Since u �= 0, we arrive at a contradic-
tion. The condition (ii) of Theorem 5.165 can be shown to be satisfied. Hence the
result. �

9.4.5 Boundary Value Problems

We now discuss some boundary value problems occurring in chemical reactor theory
whose multiple solutions were obtained by Williams and Leggett2 [607] using the
fixed point theorems proved by them.

2In 1982, Williams and Leggett studied uniqueness and multiplicity of solutions for the boundary
value problem

βx ′′(t) − x ′(t) + p f (x(t)) = 0, 0 � t � 1, β > 0, p > 0,

βx ′(0) − x(0) = 0, x ′(1) = 0,

which arises in chemical reactor theory. The reaction rate f is given by

f (x) = (q − x) exp[−k/(1 + x)], k > 0, q > 0.

Uniqueness is shown for (1) sufficiently small p, (2) certain regions of p and sufficiently small
β, (3) large p and sufficiently large β and (4) fixed β and sufficiently large p. Regions of points
(β, p, q, k) are identified where there are at least three solutions. The combination of these results
gives an improved picture of the behaviour of the number of solutions as p and β vary. Read More:
L.R. Williams and W. Leggett, Unique and Multiple Solutions of a Family of Differential Equations
Modelling Chemical Reactions, SIAM J. Math. Anal., 13(1) (1982), 122–133.
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First, consider the boundary value problem

x ′′(t) + 1

t
x ′(t) + f (x(t)) = 0, 0 < t < 1 (9.58)

x ′(0) = x(1) = 0, (9.59)

where f is nonnegative and continuous.
The solutions of (9.58) with given boundary conditions (9.59) are the fixed points

of the operator F on C[0, 1] defined by

(Fx)(t) =
∫ 1

0
G(t, s) f (x(s))ds,

where G is the Green’s function of (9.58)–(9.59), given by

G(t, s) =
{

−s(ln s), 0 � t � s � 1,

−s(ln t), 0 � s � t � 1,

Moreover F maps L∞([0, 1]) into C[0, 1] and is continuous and maps L∞([0, 1])
into a relatively compact subset of C[0, 1]) (by Arzela–Ascoli theorem). Let �1 be
a nonempty closed subset of [0, 1] which is the solution to the max–min problem

min
t∈�1

∫

�1

G(t, s)ds = max
�0⊂�

min
t∈�0

∫

�0

G(t, s)ds, (9.60)

where � is a compact subset of [0, 1]. This choice of �1 satisfies the requirements
on F in condition (5.153) of Theorems 5.159 and 5.160. For the boundary value
problem (9.47) and (9.48) with bounded nondecreasing nonlinearities like f (x) =
β exp

(− 1
x+τ

)
β > 0, τ � 0, this is the optimal choice of �1.

In this case, solution of (9.49) is �1 = [0, e−1/2]. For fixed x, G(t, s) is a nonin-
creasing function of t satisfying the following inequalities:

∫ 1

0
G(t, s)ds �

∫ 1

0
G(0, s)ds = 1

4
, 0 � t � 1;

∫

ω1

G(t, s)ds � 1

4e
, t ∈ �1;

∫

[0,1]−�1

G(t, s)ds � e − 2

4e
, t ∈ �1

and
∫ 1

0
|G(t1,s) − G(t2,s)|ds �

∫ 1

0
|G(0, s) − G(1, s)|ds = 1

4e
; t1,t2 ∈ �1.
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Theorem 9.19 Suppose there exists nonnegative numbers a, b, c, d and m such that
0 < d < a < b � c :

0 � m � f (x) � 4e(b − a), 0 � x � c; (9.61)

f (x) > 4ea − (e − 2)m, a � x � b; (9.62)

f (x) < 4d, 0 � x � d; (9.63)

f (x) � 4c 0 � x � c. (9.64)

Then, the boundary value problem (9.58)–(9.59) has at least three solutions in 〈0, c〉.
Moreover, if f is not constant on any subinterval of [0, c], then (9.63) and (9.64)
may be replaced by conditions

f (x) � 4ea − (e − 2)m, a � x � b;

f (x) � 4d, 0 � x � d.

Proof Suppose that the condition (9.61)–(9.64) hold. If x ∈ 〈0, c〉∞ and t1, t2 ∈ �1,

then

|(Fx)(t1) − (Fx)(t2)| �
∫ 1

0
|G(t1, s) − G(t2, s)| f (x(s))ds

� 1

4e
(4e)(b − a) = b − a.

If x ∈ 〈0, c〉∞ and a � x(s) � b, for almost everywhere on �1,

(Fx)(t) =
∫ e−1/2

0
G(t, s) f (x(s))ds +

∫ 0

e−1/2
G(t, s) f (x(s))ds

� 1

4e
(4ea − (e − 2)m) +

(
e − 2

4e

)

m = a, t ∈ �1.

Also, if x ∈ 〈0, d〉∞, then

(Fx)(t) <
1

4
(4d) = d, 0 � t � 1,

and if x ∈ 〈0, c〉∞, then

(Fx)(t) � 1

4
(4c) = c, 0 � t � 1.



9.4 Application to Differential Equations 697

Therefore, F has at least three fixed points in 〈0, c〉 by Theorem 5.160. For the
proof of the last statement of the above theorem, refer to Williams and Leggett [607].

We present an application of Kakutani’s fixed point theorem to discuss the exis-
tence of solution of ordinary differential equation investigated by Lasota and Opial
[355].

Let the Euclidean norm be denoted by |x | for x ∈ Rn. Let C(�) be the space of
all continuous mappings of a fixed compact interval � ⊂ R into Rn with supremum
norm. (L p(�))n denotes its nth cartesian product of L p(�).

Let C F(X) denote the set of all closed convex nonempty subsets of X .
Strongly upper semicontinuous mapping − A mapping F : X → C F(Y ) where
X and Y are normed linear spaces is called strongly upper semicontinuous if for all
sequence {xi } ⊂ X, {yi } ⊂ Y, the conditions xi → x, yi → y and yi ∈ Fxi imply
y ∈ Fx .

Let the function f : � × Rn → C F(Rn) satisfy the following conditions:

(i) For every fixed x ∈ Rn , the function f (t, x) is measurable on �.

(ii) For every fixed t ∈ �, f (t, x) is strongly upper semicontinuous on Rn.

(iii) There are functions α, β ∈ L1(�) such that

| f (t, x)| � α(t) + β(t)|x |; (t, x,∈ � × Rn).

Given a function x ∈ (L∞(�))n , let F(x) denote the set of all measurable functions
y : � → Rn such that y ∈ f (t, x(t)) a.e. on �.

Consider a differential equation of the following type

x ′(t) ∈ A(t)x(t) + f (t, x(t)) (9.65)

with a condition Lx = r, where A(t) is a n × n matrix summable on �, r ∈ Rn, L
a linear continuous mapping of C(�) into Rn and f a mapping of � × Rn into
C F(Rn) satisfying conditions (i), (ii) and (iii). An absolutely continuous function
x ∈ C (n)(�) is said to be a solution of (9.54) if it is satisfied on � a.e. by x .

Theorem 9.20 If x(t) = 0 is a unique solution of the linear homogeneous problem
x ′(t) = A(t)x(t), Lx = 0, then there exists a positive number β0 depending on A(t)

and L such that for any function f (t, x) with
∫

�

β(t)dt � β0, the system (9.54) has

at least one solution for every r ∈ Rn.

The following example is given by Lasota and Opial [355].

Example 9.2 Consider the problem

x ′(t) ∈ f (t, x(t)), xi (ti ) = ri (ti ∈ �, ri ∈ R, i = 1, 2, . . . , n)

The corresponding homogeneous problem
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x ′(t) = 0, xi (ti ) = 0, i = 1, 2, . . . , n

has a unique solution x(t) = 0. Hence, by Theorem 9.20

Lx = (x1(t1), . . . , xn(tn))

gives the existence of at least one solution of this problem for arbitrary sequence

(r1, . . . , rn), provided f satisfies the required condition with β0 =
∫

�

β(t)dt suffi-

ciently small (β0 < 1).

We briefly dwell upon the Dirichlet boundary value problem, to indicate the use
of fixed point method or degree theoretic method in partial differential equations.

Let � be a bounded domain inRn with smooth boundary ∂�. Let f : � × R → R

be a locally Hölder continuous function. Consider the nonlinear elliptic boundary
value problem:

− �u = f (x, u) in � (9.66)

u = 0 on ∂�.

By a solution, we mean a classical solution u ∈ C2(�) ∩ C(�) satisfying (9.66).
There is a standard method of reducing problem (9.66) to an equivalent fixed

point equation in an appropriate function space by using the Green’s function for the
differential operator subject to given boundary condition. More explicitly, (9.66) is
transformed into a nonlinear integral equation of Hammerstein type

u(x) =
∫

�

G(x, y) f (y, u(y)) dy, x ∈ �. (9.67)

This integral equation can be considered as a fixed point equation in various function
spaces like L p(�), 1 < p < ∞, C(�) or C1(�). Due to regularity properties of
Green’s function, (9.67) can be shown to be equivalent to (9.66). Also, the nonlinear
operator defined as

[F(u)](x) =
∫

�

G(x, y) f (y, u(y)) dy (9.68)

is a completely continuous mapping of some Banach space of functions on �. Con-
sequently, the boundary value problem (9.66) is equivalent to the fixed point equation
u = Fu, and hence, nontrivial existence results can be derived by fixed point theory
or by degree theoretic methods. As an illustration, consider the following example
given by Berger [52].

Example 9.3 Let us consider the existence of the positive solutions of the following
Dirichlet problem defined on a bounded domain � ⊂ Rn:
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�u + λ2 f (x, u) = 0, f (x, u) � a > 0 for u � 0 (9.69)

u = 0 on ∂�

and f (x, u) is nondecreasing in u for fixed x and that f (x, u) � g(x)u for u � 0.

It is proved that there is a finite number λ0 > 0 such that for λ < λ0, (9.69) has at
least one positive solution, while for λ > λ0, it has no positive solution.

First, one can show that (9.69) has a positive solution for some λ. The equivalent
integral equation is given by

u(x) = λ2
∫

�

G(x, y) f (y, u(y)) dy.

Since the Green’s function G(x, y) > 0 in � and is integrable over �, for u � 0,

there is a constant c > 0 with

Fu =
∫

�

G(x, y) f (y, u(y)) dy � a
∫

�

G(x, y)dy = c.

Then, F is a continuous and compact mapping of the positive cone C(�) into
itself. Define T u = Fu/‖Fu‖. Then, T is a continuous compact mapping from the
closed bounded and convex set B+ = {u : u � 0, ‖u‖ � 1} into ∂ B+ = {u : u � 0,

‖u‖ = 1}. By Schauder’s fixed point theorem, T has a fixed point u∗ ∈ ∂ B+ and this
u∗ is a solution of (9.69) with λ2 = 1

‖Fu∗‖ .
Next, it is shown that if (9.69) has a positive solution u0 for λ0 > 0, then (9.69)

has a positive solution for all λ ∈ (0, λ0]. Let

Fλu(x) = λ2
∫

�

G(x, y) f (y, u(y))dy.

Then, for any λ ∈ (0, λ0], Fλ maps the closed and convex bounded set �0 = {u : 0 �
u � u0, u ∈ C(�)} into itself. Since f (x, u) is nondecreasing in u and G(x, y) > 0
in �, for u ∈ �0, we have

f (x, 0) � f (x, u) � f (x, u0)

and
∫

�

G f (x, 0) �
∫

�

G f (x, u) �
∫

�

G f (x, u0).

Hence, for λ ∈ (0, λ0] and u ∈ �0, 0 < Fλ(0) � Fλ(u) � Fλ(u0) = u0, i.e. Fλ(u) ∈
�0. As Fλ is continuous and compact, Schauder’s fixed point theorem (Theorem 5.55)
implies that Fλ has a fixed point uλ in �0; that is , uλ is a solution of (9.69). It can
be shown that, for sufficiently large λ, (9.69) has no positive solution.

By means of pointwise definition of the ordering ≤, the Banach space C(�)

becomes an ordered Banach space and the increasing map F in (9.68) preserves the
ordering. This additional information leads to fixed point theorems which are better
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than the results valid for completely continuous operators. It is shown by Amann
[17] that in the case of an increasing or isotone mapping, it is sufficient to verify
only that F maps two points of a closed bounded and convex set C into itself in
order to guarantee the existence of a fixed point. For application of Schauder’s fixed
point theorem, it is necessary to verify that F maps all of C into itself and this is
definitely not so easy. Though the condition that f (x, ·) : R → R is increasing is
rather restrictive, we can replace it by a regularity hypothesis.

For an abstract formulation, consider the ordered Banach space C1
0(�) = {u ∈

C1(�) : u = 0 on ∂�}. The positive cone of C1
0(�) has nonempty interior. Because

F is a strongly increasing mapping, one can work in the interior of the cone; that
is, one can consider the fixed point equation (9.67) in an open set. Hence, one can
employ the method of calculus. However, C1

0(�) has serious drawbacks because
the ordering and the topology of this space are not well related. More precisely, the
positive cone of this space is not normal and this implies that the order intervals
〈u, v〉 in this space are not bounded.

But there is another choice of the underlying ordered Banach space for tackling
fixed point equations (9.67) which combines the good properties of the natural order-
ing of C(�) with the good properties of the mapping F in C1

0(�). For details, refer to
Amann [17]. For another approach to partial differential equations, see Cesari [137].

9.4.6 Approximation of Solution of Nonlinear Hybrid
Ordinary Differential Equations

Suppose a closed and bounded interval J = [t0, t0 + a], of the real line R for some
t0, a ∈ R with t0 ≥ 0, a > 0 be given. Consider in the function space C(J,R) of
continuous real-valued functions defined on J. Let us define a norm ‖ · ‖ and the
order relation � in C(J,R) by ‖x‖ = supt∈J |x(t)| and x � y ⇔ x(t) � y(t) for
all t ∈ J , respectively. Then, we see that C(J,R) is a Banach space with respect
to above supremum norm and also partially ordered w.r.t. the above partially order
relation � . Furthermore, it is known that the partially ordered Banach space C(J,R)

has some nice properties w.r.t. the above order relation in it.
Consider the following initial value problem (in short IVP) of first-order ordinary

nonlinear hybrid differential equation, (in short HDE)

x ′(t) = f (t, x(t)) + g(t, x(t)),

x(t0) = x0 ∈ R, (9.70)

for all t ∈ J, where f, g : J × R → R are continuous functions.
The HDE (9.70) is considered in the function space C(J,R) and is well known

in the literature and discussed at length for existence as well as other aspects of the
solutions (see, for instance, Krasnoselskii [344], Burton [126], Dhage [174] and the
references therein). The HDE (9.70) is a hybrid differential equation with a linear
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perturbation of first type and can be tackled with the hybrid fixed point theory (cf.
Dhage [174]). The existence theorems proved via classical fixed point theorems on the
lines of Krasnoselskii [344] require the condition that the nonlinearities involved in
(9.70) satisfy strong Lipschitz and compactness type conditions and do not yield any
algorithm to determine the numerical solutions. Recently, Dhage et al. [180] proved
the existence of the solutions of HDE (9.70) under weaker partially continuity and
partially compactness type conditions.

In what follows, suppose E denotes a partially ordered real normed linear space
with an order relation � and the norm ‖ · ‖. Recall that E is regular if {xn}n∈N is a
nondecreasing (resp. nonincreasing) sequence in E such that xn → x∗ as n → ∞,
then xn � x∗ (resp. xn � x∗) for all n ∈ N.

Observation

• The partially ordered Banach space C(J,R) is regular,
• The conditions guaranteeing the regularity of any partially ordered normed linear

space E may be found in Nieto and Lopez [423] and Heikkili and Lakshmikantham
[269] and the references therein.

Assume the following set of assumptions in what follows:

(H1) Functions f, g : J × R → R are continuous.
(A1) There exist a D-function ϕ and a constants λ > 0 such that

0 � [p(t, x) − p(t, y)] � eλtϕ(x − y), for all t ∈ J and x, y ∈ R, x ≥ y.

(A2) There exists a constant K > 0 such that |p(t, x)| � K for all t ∈ J and x ∈ R.

(B1) There exist constants L , M > 0 such that | f̃ (t, x)| � L and |g̃(t, x)| � M for
all t ∈ J and x ∈ R.

(B2) Functions f̃ (t, x) and g̃(t, x) are nondecreasing in x for all t ∈ J.

(B3) The HDE (9.70) has a lower solution u ∈ C(J,R).

Consider the IVP of the HDE

x ′(t) + λx(t) = μe−λt p(t, x(t)) + f̃ (t, x(t)) + g̃(t, x(t))

x(t0) = x0 ∈ R, (9.71)

for all t ∈ J , where f̃ , g̃ : J × R → R, f̃ (t, x) = f (t, x) + λx and g̃(t, x) =
g(t, x) − μe−λt p(t, x), λ > 0, μ > 0 with μ � λ

1−e−a .

Lemma 9.3 Suppose that hypotheses (H1), (A2) and (B1) hold. Then, a function
u ∈ C(J,R) is a solution of the HDE (9.71) if and only if it is a solution of the
nonlinear integral equation,

x(t) = x0e−λ(t−t0) + μe−λt
∫ t

t0
p(s, x(s)) ds + e−λt

∫ t

t0
eλs [ f̃ (s, x(s)) + g̃(s, x(s))] ds

for all t ∈ J .
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We now prove the existence of solutions of HDE (9.70) under new hypotheses
for its redesigned structure.

Theorem 9.21 Assume that hypotheses (H1), (A1) − (A2)and(B1) − (B3) hold.
Then, the HDE (9.71) has a solution x∗ defined on J and the sequence {xn}, n =
0, 1, 2, . . . of successive approximations defined by

xn+1(t) = x0e−λ(t−t0) + μe−λt
∫ t

t0
p(s, xn(s)) ds + e−λt

∫ t

t0
eλs [ f̃ (s, xn(s)) + g̃(s, xn(s))] ds

(9.72)
where x0 = u converges monotonically to x∗.

Proof Set E = C(J,R) and define two operators P and Q on E by

P(x(t)) = x0e−λ(t−t0) + μe−λt
∫ t

t0

p(s, x(s)) ds, t ∈ J, (9.73)

and

Q(x(t)) = e−λt
∫ t

t0

eλs[ f̃ (s, xn(s)) + g̃(s, xn(s))] ds, t ∈ J. (9.74)

From the continuity of the integral, it follows that P and Q define the maps
P,Q : E → E . Now by Lemma 9.3, the HDE (9.71) is equivalent to the operator
equation Px(t) + Qx(t) = x(t), t ∈ J. We shall show that the operators P and Q

satisfy all the conditions of Theorem 5.168. This is achieved in the series of following
steps.

Step I: P and Q are nondecreasing on E . Let x, y ∈ E be such that x ≥ y. Then,
by hypothesis (A1), we obtain

P(x(t)) = x0e−λ(t−t0) + μe−λt
∫ t

t0
p(s, x(s)) ds

= x0e−λ(t−t0) + μe−λt
∫ t

t0
[p(s, x(s)) − p(s, y(s)] ds + μe−λt

∫ t

t0
p(s, y(s)) ds

≥ x0e−λ(t−t0) + μe−λt
∫ t

t0
p(s, y(s)) ds = P(y(t)), (9.75)

for all t ∈ J. This shows that P is nondecreasing operator on E into E . Similarly,
using hypothesis (B2), it is shown that Q is also nondecreasing on E into itself.
Thus, P and Q are nondecreasing operators on E into itself.

Step II: P is partially bounded and partially contraction on E . Let x ∈ E be
arbitrary. Then, by (A2),

|P(x(t))| � |x0e−λ(t−t0)| + μ|e−λt |
∫ t

t0

|p(s, x(s))| ds

� |x0| + μ

∫ t0+a

t0

K ds = |x0| + μK a,
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for all t ∈ J. Taking supremum over t , we obtain ‖Px‖ � |x0| + μK a, and so, P is
bounded. This further implies that P is partially bounded on E . Next, let x, y ∈ E
be such that x ≥ y. Then,

|P(x(t)) − P(y(t))| = μ

∣
∣
∣
∣e

−λt
∫ t

t0

[p(s, x(s)) − p(s, y(s))] ds

∣
∣
∣
∣

� e−λt

1 − e−a

∫ t

t0

λeλsϕ(x(s) − y(s)) ds

� e−λt

1 − e−a

∫ t

t0

d

ds
(eλs)ϕ(|x(s) − y(s)|) ds

� ϕ(‖x − y‖),

for all t ∈ J. Taking supremum over t , we obtain ‖Px − Py‖ � ϕ(‖x − y‖), for all
x, y ∈ E with x ≥ y. Hence, P is a partially nonlinear D-contraction on E which
further implies that P is a partially continuous on E .

Step III: Q is partially continuous on E . Let {xn}n∈N be a sequence in a chain C
such that xn → x as n → ∞. Then, by dominated convergence theorem, we have

lim
n→∞ Qxn(t) = lim

n→∞ e−λt
∫ t

t0

eλs

[

f̃ (s, xn(s)) + g̃(s, xn(s))

]

ds

= e−λt
∫ t

t0

eλs lim
n→∞

[

f̃ (s, xn(s)) + g̃(s, xn(s))

]

ds

= e−λt
∫ t

t0

eλs

[

lim
n→∞ f̃ (s, xn(s)) + lim

n→∞ g̃(s, xn(s))

]

ds

= e−λt
∫ t

t0

eλs

[

f̃ (s, x(s)) + g̃(s, x(s))

]

ds = Qx(t),

for all t ∈ J. This shows that Qxn converges monotonically to Qx pointwise on J .
Next, we will show that {Qxn}n∈N is an equicontinuous sequence of functions in

E . Let t1, t2 ∈ J with t1 < t2. Then,

|Qxn(t2) − Qxn(t1)| =
∣
∣
∣
∣e

−λt2

∫ t2

t0

eλs[ f̃ (s, xn(s)) + g̃(s, xn(s))] ds

− e−λt1

∫ t1

t0

eλs[ f̃ (s, xn(s)) + g̃(s, xn(s))] ds

∣
∣
∣
∣

�
∣
∣
∣
∣

(
e−λt2 − e−λt1

)
∫ t1

t0

eλs[ f̃ (s, xn(s)) + g̃(s, xn(s))] ds

∣
∣
∣
∣

+
∣
∣
∣
∣e

−λt2

∫ t2

t1

eλs[ f̃ (s, xn(s)) + g̃(s, xn(s))] ds

∣
∣
∣
∣

→ 0 as t2 − t1 → 0
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uniformly for all n ∈ N. This shows that the convergence Qxn → Qx is uniform, and
hence, Q is partially continuous on E .

Step IV: Q is partially compact operator on E . Let C be an arbitrary chain in E .

We show that Q(C) is a uniformly bounded and equicontinuous set in E . First, we
show that Q(C) is uniformly bounded. Let y ∈ Q(C) be any element. Then, there is
an element x ∈ C be such that y = Qx . Now, by hypothesis (B1),

|y(t)| = |Qx(t)|
=

∣
∣
∣
∣e

−λt
∫ t

t0

eλs[ f̃ (s, x(s)) + g̃(s, x(s))] ds

∣
∣
∣
∣

�
∫ t

t0

eλs[| f̃ (s, x(s))| + |g̃(s, x(s))|] ds

�
∫ t0+a

t0

eλ(t0+a)[L + M] ds � eλ(t0+a)[L + M]a

for all t ∈ J. Taking supremum over t, we obtain ‖y‖ = ‖Qx‖ � r for all y ∈ Q(C).

Hence, Q(C) is a uniformly bounded subset of E . Next, we will show that Q(C) is
an equicontinuous set in E . Let t1, t2 ∈ J with t1 < t2. Then, for any y ∈ Q(C), one
has

|y(t2) − y(t1)| = |Qx(t2) − Qx(t1)|
=

∣
∣
∣
∣e

−λt2

∫ t2

t0

eλs[ f̃ (s, x(s)) + g̃(s, x(s))] ds

− e−λt1

∫ t1

t0

eλs[ f̃ (s, x(s)) + g̃(s, x(s))] ds

∣
∣
∣
∣

�
∣
∣
∣
∣

(
e−λt2 − e−λt1

)
∫ t1

t0

eλs[ f̃ (s, x(s)) + g̃(s, x(s))] ds

∣
∣
∣
∣

+
∣
∣
∣
∣e

−λt2

∫ t2

t1

eλs[ f̃ (s, x(s)) + g̃(s, x(s))] ds

∣
∣
∣
∣

→ 0 as t2 − t1 → 0

uniformly for all y ∈ Q(C). Hence, Q(C) is an equicontinuous subset of E . Now,
Q(C) is a uniformly bounded and equicontinuous set of functions in E, so it is
compact. Consequently, Q is a partially compact operator on E into itself.

Step V: u satisfies the operator inequality u � Pu + Qu. By hypothesis (B3), the
HDE (9.70) has a lower solution u defined on J . Then, we have

u′(t) � f (t, u(t)) + g(t, u(t))

u(t0) � u0 ∈ R, (9.76)
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for all t ∈ J . Adding λu(t) on both sides of the first inequality in (9.76), whereas
the term e−λt p(t, u(t)) is added and subtracted in the right-hand side of (9.76), we
obtain

u′(t) + λu(t) � μe−λt p(t, u(t)) + f (t, u(t)) + λu(t)

+ g(t, u(t)) − μe−λt p(t, u(t)), t ∈ J

i.e.

u′(t) + λu(t) � μe−λt p(t, u(t)) + f̃ (t, u(t)) + g̃(t, u(t)), t ∈ J (9.77)

Again, multiplying the above inequality (9.77) by eλt , we obtain

(

eλt u(t)

)′
� μp(t, u(t)) + eλt [ f̃ (t, u(t)) + g̃(t, u(t))], t ∈ J. (9.78)

A direct integration of (9.78) from t0 to t yields

u(t) � u0e−λ(t−t0) + μe−λt
∫ t

t0

p(s, u(s)) ds

+ e−λt
∫ t

t0

eλs[ f̃ (s, u(s)) + g̃(s, u(s))] ds, (9.79)

for all t ∈ J. From definitions of the operators P and Q, it follows that u(t) � Pu(t) +
Qu(t), for all t ∈ J. Hence, u � Pu + Qu. Thus, P and Q satisfy all the conditions of
Theorem 5.168, and we apply it to conclude that the operator equation Px + Qx = x
has a solution. Consequently, the integral equation and the HDE (9.70) has a solution
x∗ defined on J. Furthermore, the sequence {xn}∞n=0 of successive approximations
defined by (9.71) converges monotonically to x∗. This completes the proof.

Example 9.4 Given a closed and bounded interval J = [0, 1], consider the IVP of
HDE,

x ′(t) = 1
1−e−a

|x(t)|
1+|x(t)| + tan−1 |x(t)|

2 − x(t) + tan−1 x(t),

x(0) = 1 ∈ R,

}

(9.80)

for all t ∈ J. Here, f (t, x) = tan−1 |x |
2 − x , f̃ (t, x) = |x |

1+|x | , g(t, x) = tan−1 x +
1

1−e−a
|x |

1+|x | = tan−1 x + e−t

1−e−a et |x |
1+|x | , p(t, x) = et |x |

1+|x | , λ = 1, μ = 1
1−e−a and

g̃(t, x) = tan−1 x .

We observe the following:
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(i) The hypotheses (H1) satisfied, since f and g are real-valued continuous func-
tions on J × R.

(ii) There exists an exponentially continuous mapping p : J × R → R defined by
p(t, x) = et |x |

1+|x | and a D-function ϕ : R+ → R+ defined by ϕ(t) = t
1+t such

that

0 � [p(t, x) − p(t, y)] = et
( |x |

1 + |x | − |y|
1 + |y|

)

= et
( |x | − |y|

1 + |x | + |y| + |x ||y|
)

� et
( |x | − |y|

1 + ||x | − |y||
)

� et
( |x − y|

1 + |x − y|
)

= etϕ(t).

Hence, the function f satisfies the hypothesis (A1) with λ = 1.
(iii) There exists a constant K = e1 > 0 such that |p(t, x)| = et |x |

1+|x | � K for all
t ∈ J = [0, 1] and x ∈ R, and so the hypotheses (A2) is satisfied.

(iv) The functions f̃ (t, x) = tan−1 |x |
2 and g̃(t, x) = tan−1 x are bounded on J × R

with bounds L and M , respectively, with L = M = π . Thus, the hypotheses
(B1) is satisfied.

(v) Clearly, the functions f̃ (t, x) and g̃(t, x) are nondecreasing in x for all t ∈ J =
[0, 1], and thus, hypotheses (B2) is satisfied.

(vi) Finally, the HDE (9.70) has a lower solution u = e−1 defined on J = [0, 1].
Thus, all hypotheses of theorem (9.50) are satisfied. Hence, we apply Theorem
9.21 and conclude that the HDE (9.71) has a solution x∗ defined on J and the
sequence {xn}∞n=0 defined by

xn+1(t) = x0e−t + μe−t
∫ t

0
p(s, xn(s)) ds + e−t

∫ t

0
es [ f̃ (s, xn(s)) + g̃(s, xn(s))] ds

(9.81)
where x0 = e−1 converges monotonically to x∗.

9.5 Application to Nonlinear Integral Equations

In this section, to illustrate our Theorem 5.183, we consider the following example
of nonlinear integral equation.

Example 9.5 Given a closed and bounded interval J = [0, 1] in R, the set of all real
numbers, consider the nonlinear integral equation (in short NIE)

x(t) = p(t, x(t)) + q(t, x(t))

(

λ(t) +
∫ t

0
f (s, x(s))ds

)

, (9.82)

for all t ∈ J , where λ : J −→ R, f : J × R −→ R are continuous and p : J ×
R −→ R is given by
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p(t, x) = 2

3
x,

q : J × R −→ R is given by

q(t, x) =
{ 1

3(1+x)
, i f x ≥ 0;

1
6 , i f x < 0.

By the solution of the integral equation (9.82), we mean a continuous function x :
J −→ R that satisfies (9.82) on J . Let X = C(J,R) be a Banach algebra of all
continuous real-valued functions on J with the norm

‖x‖ = sup
t∈J

|x(t)|. (9.83)

We now intend to obtain the solution of (9.82). To effect this, under some suitable
conditions, suppose that the function f satisfies the following condition:

| f (t, x)| � 1 − ‖λ‖, ‖λ‖ < 1, (9.84)

for all t ∈ J and x ∈ R.
Define a subset S of X by

S = {y ∈ X : ‖y‖ � 1}. (9.85)

Consider two mappings A, B : X −→ X defined by

Ax(t) = q(t, x(t)), t ∈ J. (9.86)

Bx(t) = λ(t) +
∫ t

0
f (s, x(s))ds, t ∈ J. (9.87)

Cx(t) = p(t, x(t)), t ∈ J. (9.88)

We shall show that operators A, B and C satisfies all the conditions of Theorem 5.183.
First, we show that A is a Lipschitzian map on X . Let x, y ∈ X . Then,

|Ax(t) − Ay(t)| = |q(t, x(t)) − q(t, y(t))|
� 1

3
‖x − y‖,

which shows that A is a Lipschitzian map. Similarly, C is a Lipschitzian map.
Now, it is an easy exercise to prove that B is completely continuous on S. We

show that B : S −→ S. Let x ∈ S. Then, by (9.84) and (9.87),
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|Bx(t)| =
∣
∣
∣
∣λ(t) +

∫ t

0
f (t, x(t))ds

∣
∣
∣
∣

� |λ(t)| +
∫ t

0
| f (t, x(t))|ds

< |λ(t)| +
∫ t

0
(1 − ‖λ‖)ds.

Since Bx ∈ C(J,R), there is a point t∗ ∈ J such that

‖Bx‖ = |Bx(t∗)| = max
t∈J

|Bx(t)|

Therefore, we have

‖Bx‖ = |Bx(t∗)| < |λ(t∗)| +
∫ t∗

0
(1 − ‖λ‖)ds � ‖λ‖ +

∫ 1

0
(1 − ‖λ‖)ds = 1,

i.e. ‖Bx‖ < 1. As a result, B : S −→ S. Finally, we show that condition (5.174) of
Proposition 5.14 holds. Now, for any x ∈ X , we have

∥
∥
∥
∥

(
I − C

A

)

(x)

∥
∥
∥
∥ = sup

t∈J

∣
∣
∣
∣
x(t) − Cx(t)

Ax(t)

∣
∣
∣
∣ ≥ ‖x‖.

Thus, operators A, B and C satisfy all the conditions of Theorem 5.183. Hence, the
integral equation (9.82) has a solution on J .

9.5.1 Nonlinear Integral Equations Involving Urysohn’s
Operator and Hammerstein Integral Operator

Next, we discuss some applications to nonlinear integral equations involving
Urysohn’s operator or its particular case, Hammerstein integral operator. For an
exhaustive treatment, refer to Krasnoselskii [344, 345]. Our selection is motivated
by the desire to show the applications of fixed point theorems. We have discussed
some recent results obtained by Joshi and Srikanth [294], Leggett and Williams [363]
and Gatica and Smith [241].

Let I be an interval of the real axis, and let X denote the vector apace of bounded,
continuous and complex-valued functions on I . X is a complete metric space induced
by the norm ‖x‖ = sup

t∈I
|x(t)|. Let f : I × I × C → C be a given function. Assumed

that function s �→ f (t, s, x(s)) is integrable over I , while the function

t �→
∫

I
f (t, s, x(s))ds
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is bounded and continuous on I . Choosing any element y of X , define a map U of
X into itself as

[U (x)](t) =
∫

I
f (t, s, x(s))ds + y(t). (9.89)

A fixed point of U is the solution x ∈ X of the nonlinear integral equation

x(t) =
∫

I
f (t, s, x(s))ds + y(t). (9.90)

Under suitable conditions, U or U n (for suitable n) will be a contraction map on X .
The existence of a unique solution in X will follow from the contraction mapping

theorem or its corollary.

Example 9.6 Suppose f satisfies an inequality of the form

| f (t, s, ξ) − f (t, s, η)| � F(t, s)|ξ − η|

Then, for x1, x2 ∈ X, we have

‖U x1 − U x2‖ � k‖x1 − x2‖

where k = sup
t∈I

{∫

I
F(t, s) ds

}

.

If k < 1, the operator U is a contraction map.
Similarly, the existence and uniqueness of a solution in X of the equation

x(t) = λ

∫

I
f (t, x, x(s))ds + y(t)

for any given y ∈ X are assured provided λ is small enough to make

kλ < 1.

If f takes the form f (t, x, ξ) = K (t, x)ξ, then we get linear nonhomogeneous
Fredholm integral equation. Volterra integral equation is a particular case of
Fredholm integral equation.

Example 9.7 Let us consider the nonlinear integral equation

x(t) = λ

∫ t

a
f (t, s, x(s))ds + y(t) (9.91)

where y is continuous on [a, b] and f (t, s, ξ) is continuous in the region [a, b] ×
[a, b] × [a, b] and satisfies the Lipschitz condition

| f (t, s, ξ) − f (i, s, η)| � M |ξ − η|
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The classical Volterra integral equation is obtained by taking f (t, s, ξ) = K (t, s)ξ,

with K continuous in [a, b]. Let X = C[a, b], and U be the mapping of X into itself
defined by

(U x)(t) = λ

∫ t

a
f (t, s, x(s))ds + y(t), x ∈ X, a � t � b.

Given x1, x2 ∈ X, we can prove by induction that

|(U n x1)(t) − (U n x2)(t)| � 1

n! |λ|n Mn‖x1 − x2‖(t − a)n, a � t � b.

Then,

‖U n x1 − U n x2‖ � 1

n! |λ|n Mn(b − a)n‖x1 − x2‖.

Thus, all U n and in particular U are continuous, and for n sufficiently large, we
see that 1

n! |λ|n Mn(b − a)n < 1. Moreover, U n is a contraction mapping for n large.
Hence, by Corollary 5.1, we have a unique x ∈ X such that U x = x, i.e. x is the
required unique solution of the Eq. (9.91).

Consider the Urysohn operator

[U x](t) =
∫

�

f (t, s, x(s)) ds (9.92)

discussed earlier. There are suitable criteria for the existence of Fréchet derivative
of the Urysohn operator and the positivity of the operator when it acts on the cone
K of nonnegative functions in the space L p (1 < p < ∞). We assume that U is
continuous as an operator acting on the space L p, and it maps bounded subsets into
compact subsets. Let the function

g(t, s, ξ) = 1

ξ
f (t, s, ξ)

approach uniformly with respect to t, s ∈ � to some function V (t, s) (t, s ∈ �) as
ξ → ∞, where the integral operator

(V x)(t) =
∫

�

V (t, s)x(s) ds

acts in a corresponding space. This operator V turns out to be a strong asymptotic
derivative with respect to the cone K of the Urysohn operator.

The following theorem deals with the existence of nonnegative solution of a
nonlinear homogeneous integral equation involving Urysohn operator.
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Theorem 9.22 Let the Urysohn operator U be defined and continuous on the cone K
of nonnegative function of L p and maps bounded subsets into compact subsets. Let the
operator U have a strong asymptotic derivative U ′(∞) with respect to a cone where
[U ′(∞)x](t) = ∫

�
V (t, s)x(s) ds. Also assume that f (t, s, ξ) � 0(t, s ∈ �, ξ �

0). Then, the nonlinear integral equation

x(t) =
∫

�

f (t, s, x(s)) ds

has at least one nonnegative solution if the operator V (generated by V (t, s)) has
positive characteristic values greater than or equal to 1.

Proof The cone K is invariant under the mapping U . In view of the fact that
f (t, s, ξ) � 0, it follows that the kernel V (t, s) is nonnegative and the operator
U ′(∞) is a linear, positive, continuous and compact operator acting on L p. Now the
result follows by Theorem 5.146. �

Remark 9.5 A simpler condition for the existence of a nonnegative solution for the
above integral equation is as follows:

0 � f (t, s, ξ) � a + bξ ; t, s,∈ �, ξ � 0,

where a � 0 and b × μ(�) < 1.

Theorem 9.23 Let f (t, s, 0) = 0, (t, s ∈ �), f (t, s, ξ) � 0(t, s ∈ �, ξ � 0). Let
U be continuous on the cone K of nonnegative functions of L p and maps bounded
subsets into compact subsets and U has a strong asymptotic derivative

U ′(∞)x(t) =
∫

�

V (t, s)x(s) ds

with respect to a cone and a Fréchet derivative U ′(0) with respect to a cone at
the point 0, where U ′(0)x(t) = ∫

�
W (t, x)x(s) ds where W (t, s) = fξ (t, s, 0). The

functions V (t, s) and W (t, s) are nonnegative and assume that the linear integral
operators U ′(∞) and U ′(0) have a unique normalized eigenvector each in the cone
K . Let λ0 and λ∞ denote the greatest positive eigenvalue of the operators U ′(0) and
U ′(∞), respectively. Then, the nonlinear integral equation

x(t) =
∫

�

f (t, sx(s)) ds

has at least one nonnegative nonzero solution if either λ0 < 1 < λ∞ or λ∞ < 1 < λ0.

Proof If follows from Theorems 5.147 and 5.148. �

Now we discuss the solution of the equation of the type
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x = K1 N1x + K2 N2x + f

that is, more specifically the existence and uniqueness of solution of integral equations
of the following type:

x(t) = f (t) +
∫ t

0
k1(t, s)g(s, x(s)) ds +

∫ ∞

0
k2(t, s)h(s, x(s)) ds, (9.93)

where x, f, g and h are vectors with n components and k1 and k2 are n × n matrices.
Notice that equations of the type (9.93) arise naturally in the study of boundary

value problems on the infinite half line. The following theorems were proved by
Miller, Nohel and Wong [398].

For simplicity, all functions considered are assumed to be continuous. Let | · |
denote any appropriate matrix norm, and let BC[0,∞) be the collection of all
bounded continuous functions from [0,∞) into a finite dimensional Euclidean space,
with sup norm defined by ‖φ‖ = sup

t�0
|φ(t)|.

Theorem 9.24 Let the following conditions hold:

(i) sup
t�0

∫ t

0
|k1(t, s)|ds � K1 < ∞,

(ii) sup
t�0

∫ ∞

0
|k2(t, s)|ds � K2 < ∞;

(iii) g(t, 0) = h(t, 0) = 0;
(iv) for each r > 0, there exists δ > 0 such that

|g(t, x) − g(t, y)| � r |x − y| (9.94)

for all |x |, |y| � δ and uniformly in t;
(v) for each ξ > 0, there exists η > 0 such that

|h(t, x) − h(t, y)| � ξ |x − y| (9.95)

for all |x |, |y| � η and uniformly in t; and

(vi) for all t,
∫ ∞

0
|k2(t, s) − k2(t + α, s)|ds → 0 as |α| → 0.

Then, there exists a positive number r0 such that to any r ∈ [0, r0], there corresponds
a δ > 0 such that whenever ‖ f ‖ < δ, there exists a unique solution φ of (9.93) on
0 � t < ∞ satisfying ‖φ‖ � r.

Proof Fix ξ � 0 such that ξ K2 < 1. By (iii) and (v) choose η > 0 such that for
|x | � η, we have |h(t, x)| � ξ |x | uniformly in t . Let r = (1 − ξ K2)/2K1 and choose
δ > 0 such that (9.94) holds for all |x |, |y| � δ uniformly in t . Let r0 = min(η, δ).

Define operators S and T on Br as follows:
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Sφ(t) = f (t) +
∫ t

0
k1(t, s)g(s, φ(s))ds,

T φ(t) =
∫ ∞

0
k2(t, s)h(s, φ(s))ds.

For any r ∈ (0, r0], we first show that there exists δ > 0 such that Sx + T y ∈ Br for
all x, y ∈ Br provided ‖ f ‖ � δ. For all t � 0, we have

|Sx(t) + T y(t)| � | f (t)| + r‖x‖
∫ i

0
|K1(t, s)|ds + ‖y‖

∫ ∞

0
|k2(t, s)|ds,

� δ + r

2
(1 − ξ K2) + rξ K2 � r

provided that δ � (1 − ξ K2)r/2. By (9.94) it can be shown that S is a contraction
on Br . Similarly, by (ii) and (vi), it can be shown that T is compact and continuous.
Hence, by Krasnoselskii’s theorem (Theorem 5.61), equation (9.93) has a solution
in Br .

To prove the uniqueness of the solution in Br , let x(t) and y(t) be two distinct
solution of (9.93) and let w(t) = x(t) − y(t). By Eqs. (9.94) and (9.95), we have

|w(t)| � r
∫ t

0
|k1(t, s)||w(s)|ds + η

∫ ∞

0
|k2(t, s)||w(s)|ds

� r K1‖w‖ + ηK2‖w‖
= 1

2
(1 + ξ K2)‖w‖ < ‖w‖.

Taking the supremum over all t in the above estimate, we obtain a contradiction. �

Remark 9.6 In Eq. (9.93), instead of f (t), we can take f (t, x(t)). Then, the proof
will go through with the following assumption in addition to a few modified condi-
tions:

For each μ > 0, there exists a λ such that | f (t, x(t)) − f (t, y(t))| � μ|x(t) −
y(t)| for all |x |, |y| � λ and uniformly in t .

Theorem 9.25 Consider the integral equation

x(t) = f (t, x(t)) +
∫ t

0
k1(t, s)g(s, x(s))ds +

∫ ∞

0
k2(t, s)h(s, x(s))ds. (9.96)

Let S and T be operators from BC[0,∞) into itself as defined below:

Sx(t) =
∫ t

0
k1(t, s)x(s)ds and T x(t) =

∫ ∞

0
k2(t, s)x(s)ds
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Let the following conditions hold:

(i) |g(t, x(t)) − g(t, y(t))| � λ|x(t) − y(t)| for all x(t), y(t) ∈ Br and λ � 0 a
constant;

(ii) |h(t, x(t)) − h(t, y(t))| � ξ |x(t) − y(t)| for all x(t), y(t) ∈ Br

(iii) | f (t, x(t)) − f (t, y(t))| � r |x(t) − y(t)| for all x(t), y(t) ∈ Br and r � 0 a
constant.

(iv) k1(t, s) and k2(t, s) are such that S and T are continuous operators from
BC[0,∞) into itself.

Then, there exists a unique solution of (9.96) provided K1λ + K2ξ + r < 1 and
| f (t, x(t0) + K1|g(t, 0)| + K2|h(t, o)| � r(1 − λK1 − ξ K2) where K1 and K2 are
norms of S and T , respectively.

Proof Let us define operators U and V from Br into BC[0,∞) as follows:

(U x)(t) = f (t, x(t)) +
∫ t

0
k1(t, x)g(s, x(s))

and

(V x)(t) =
∫ ∞

0
k2(t, s)h(s, x(s))ds t � 0.

BC[0,∞) is a Banach space. We show that (U + V ) maps Br into itself and is a
contraction.

|(U x)(t) + (V x)(t)| � | f (t, x(t))| + K1|g(t, x(t))| + K2|h(t, x(t))|. (9.97)

We have the following inequalities:

|g(t, x(t))| � |g(t, x(t)) − g(t, 0)| + |g(t, 0)|

� λ|x(t, 0| + |g(t, 0)|. (9.98)

Similarly,
|h(t, x(t))| � ξ |x(t)| + |h(t, 0)|. (9.99)

From (9.97)–(9.99), we have

|(U x)(t) + (V x)(t)| � f (t, x(t))| + λK1|x(t)| + K1|g(t, 0)| + K2|x(t)| + K2|h(t, 0)|.

Since by assumption

| f (t, x(t))| + K1|g(t, 0)| + K2|h(t, 0)| � (1 − λK1 − ξ K2),

we have
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|(U x)(t) + (V x)(t)| � r(1 − λK1 − ξ K2) + K1λr + K2ξr = r.

Thus, (U x)(t) + (V x)(t) ∈ Br . Also,

|(U x)(t) + (V x)(t) − (U x)(t) − (V y)(t)|
� r |x(t) − y(t)| + λK1|x(t) − y(t)| + ξ K2|x(t) − y(t)|
= (r + λK1 + ξ K2)|x(t) − y(t)|.

Since (r + λK1 + ξ K2) < 1, we have that U + V is a contraction on Br , and there-
fore by Banach’s contraction Theorem (Theorem 5.1), there exists a unique solution
of (9.96). �

In Chap. 8, we have discussed the solvability of generalized Hammerstein equation

x + Kx N x = y, (9.100)

in a Banach space X , where for each x ∈ X, Kx : X → X∗ is a linear operator and
N : X∗ → X is a nonlinear operator. In this section, we consider equation of the type

x + Kx x = y, (9.101)

which is a special case of (9.100) for N = I . The operator Eq. (9.101) includes
nonlinear integral equation of form

x(s) + x(s)
∫ 1

0
K (s, t)x(t)dt = y(t). (9.102)

Here, for each x ∈ X, the linear operator Kx : X → X is defined as

[Kx u](s) = u(s)
∫ 1

0
K (s, t)x(t)dt,

with suitable assumptions on the kernel K (s, t). These type of equations have been
considered by Stuart [579, 580] and Leggett [361, 362] and more recently by Joshi
and Srikanth [294].

We shall mainly present the results of Joshi and Srikanth wherein an abstract
result is obtained in operator theoretic setting, and then, it is applied to get an exis-
tence theorem for nonlinear integral equation of the form (9.102). This result is then
subsequently used to get the solvability of Chandrasekhar’s H -equation

1 + x(s)
∫ 1

0

s

s + t
x(t)�(t)dt = x(s). (9.103)

Notice that equations of the type (9.103) occur in the theory of radiative that transfer
in semi-infinite atmosphere (refer Chandrasekhar [139]) and hence its importance.
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We now state and prove the result which uses a fixed point theorem of Himmelberg
for multivalued mappings.

Theorem 9.26 Let X be a separable reflexive Banach space and C a closed convex
subset of X. Suppose that for each x ∈ C, we have a map ϕx : X → Y, Y a normed
space, such that the following hold:

(i) xn ⇀ x in C and un ⇀ u in X implies that ϕxn (un) ⇀ ϕx (u).
(ii) For each x ∈ C, the set Cx = {u ∈ X : ϕx (u) = 0} is a nonempty, convex set

and intersects C ∩ Br (for some fixed r) in a nonempty set. Then, the equation
ϕx (x) = 0 has a solution in C.

Proof Define a map F : C ∩ Br → 2C∩Br by

Fx = {u ∈ C ∩ Br : ϕx (u) = 0} for each x ∈ X.

It may be observe that for each x ∈ C ∩ Br , Fx is a nonempty convex set. Further,
for each x, Fx is a close set in the weak topology of X . For, if un ⇀ u, with un ∈ Fx ,
then φx (un) ⇀ ϕ(u) implies that ϕx (u) = 0 since each ϕx (un) = 0. Hence, u ∈ Fx .

We now show that F is upper semicontinuous when C ∩ Br is equipped with the
weak topology.

To show this, we shall require a lemma of Himmelberg [273] which states as
follows:

Himmelberg’s Lemma. A mapping F : K → 2K1 , where K and K1 are compact
sets, is upper semicontinuous iff G(F) is closed in K × K1.

Because A ∩ Br is weakly compact in X, it suffices to show that if [xn, un] ∈ G(F)

and [xn, un] ⇀ [x, u], then [x, u] ∈ G(F). Since xn ⇀ x and un ⇀ u, we have
from (i) that ϕxn (un) ⇀ φx (u). Since un ∈ Fsn, ϕxn (un) = 0, and hence, ϕx (u) = 0
or u ∈ Fx . Thus, F : C ∩ Br ⇀ C ∩ Br is an upper semicontinuous multifunction
such that Fx is weakly closed and convex for each x ∈ C ∩ Br . Since F satisfies all
the conditions of Theorem 5.71, our result follows. �

As an application, we get the following result for nonlinear integral equation of
the form (9.101):

Theorem 9.27 Suppose that

(i) K (s, t) � 0 a.e. on [0, 1] × [0, 1]
(ii) ess sup

∫ 1

0
K 2(s, t)dt < ∞

(iii) y(s) � 0 a.e. on [0, 1].
Then, (9.101) has a solution x ∈ L2[0, 1] such that 0 � x(s) � y(s) a.e. on [0, 1].

Proof Let C = {x ∈ L2 : x(s) ≥ 0 a.e. on [0, 1]}, and let

[Kx u](s) = u(s)
∫ 1

0
K (s, t)x(t)dt.
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Then, for each x ∈ C, Kx is a bounded linear operator on L2 (by condition (ii)). We
now prove that if xn ⇀ x in C and un ⇀ u in L2, then Kxn (u) → Kx (u) in L2[0, 1].
First, we note that if xn ⇀ x in C , then Kxn (u) → Kx (u). For

[K xn(u)](s) = u(s)
∫ 1

0
K (s, t)xn(t)dt =

∫ 1

0
Ku(s, t)xn(t)dt

where Ku(s, t) = u(s)K (s, t). Since Ku(s, t) is a Hilbert–Schmidt kernel, we have
the corresponding integral operator completely continuous and hence Kxn (u) →
Kx (u). Consider (Kxn (u)n) − Kx (u), w) for some arbitrary w ∈ L2.

(Kxn (un) − Kx (u), w) = (Kxn (un) − Kx (un) − Kx (un)w) + (Kx (un) − Kx (u), w)

=
∫ 1

0
w(s)un(s)

(∫ 1

0
K (s, t)(xn(t) − x(t))dt

)

ds

+
∫ 1

0
w(s)(un(s) − u(s))

(∫ 1

0
K (s, t)x(t)dt

)

ds

=
∫ 1

0
(un(s)

(∫ 1

0
Kw(s, t)(sn(t) − s(t))dt

)

ds

+
∫ 1

0
(un(s) − u(s))

(∫ 1

0
Kw(s, t)x(t)dt

)

ds

Since
∫ 1

0
Kw(s, t)xn(t)dt →

∫ 1

0
Kw(s, t)x(t)dt and {un} is a bounded sequence,

we have that

∫ 1

0
un(s)

(∫ 1

0
Kw(s, t)(xn(t) − x(t))dt

)

ds → 0.

Also, since ∫ 1

0
Kw(s, t)x(t) dt ∈ L2 and un ⇀ u

we have ∫ 1

0
(un(s) − u(s))

(∫ 1

0
Kw(s, t)x(t)dt

)

ds → 0.

Hence, (K xn(un) − Kx (u), w) → 0 which implies that K xn(un) ⇀ Kx (u) as xn ⇀

x and un ⇀ u.

Now set ϕx (u) = Kx (u) + u − y for x ∈ C. For each x ∈ C,

∫ 1

0
K (s, t)x(t)dt �

0 and so

u(s) = y(s)

1 +
∫ 1

0
K (s, t)x(t)dt
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is the only solution of ϕx (u) = 0 and 0 � u(s) � y(s). By setting r = ‖y‖, we see
that the hypothesis of Theorem 9.26 is satisfied and hence the result. �

As a corollary, we obtain the following solvability result for Chandrasekhar’s
H -equation (9.103).

Theorem 9.28 Equation (9.102) has a solution in L2[0, 1] iff
∫ 1

0
λ(s)ds � 1

2 . More-

over, all solutions of (9.102) are greater than or equal to unity a.e. on [0, 1].
One can now extend the theory to the following nonlinear integral equation

x(s) − x(s)
∫ 1

0
K (s, t) f (t, x(t))dt = w(s). (9.104)

This has earlier been considered by Leggett [361]. By application of the fixed point
theorem of Krasnoselskii (Theorem 5.149) in a cone, we get the positive solutions
of (9.104) for w(s) � 0.

9.5.2 Mathematical Modelling of Spread of Certain
Infectious Diseases and Single Species Population
Growth

I. Mathematical Modelling of Spread of Certain Infectious Diseases

We begin with the following definitions.

Species− A group of closely related organisms that are very similar to each other and
are usually capable of interbreeding and producing fertile offspring is called species.
Population− A population is the number of all the organisms of the same group
or species, which live in a particular geographical area and have the capability of
interbreeding.
Infective− A member of the host population is classified as infective if the member
has been infected and is infectious.

Leggett and Williams [363] applied Theorem 5.158 to the nonlinear integral equa-
tion

x(t) = Ax(t) =
∫ t

t−τ

f (s, x(s))ds (9.105)

to prove the existence of nonzero solution.
This equation can be interpreted as a model for the spread of certain infectious

diseases whose periodic contract rate varies seasonally. Here,
• x(t) represents the proportion of infectives in the population at time t ,
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• f (t, x(t)) is the proportion of infectives per unit time ( f (t, 0) = 0), and
• τ is the length of time an individual remains infectious.

Let R = (−∞,∞), R+ = [0,∞), τ and w be positive constants, and let the
following conditions concerning f and a be satisfied:

(1) The function f (t, x) is continuous from R × R+ into R+.

(2) For each t ∈ R and x ≥ 0, f (t, x) = f (t + w, x) and f (t, 0) = 0.

(3) There exists R > 0 such that f (t, x) � R
τ

for all (t, x) ∈ [0, w] × [0, R].
(4) For each t, a(t) = limx→0

f (t,x)

x , and for each k ∈ (0, 1), there exists εk > 0
such that f (t, x) � ka(t)x, t ∈ R, 0 � x � εk,

Theorem 9.29 Suppose conditions (1)–(4) hold good. Let N be the smallest integer
such that w

N � τ
2 . For j = 0, 1, . . . , N , set

I j =
[

j − 1

N
w,

j

N
w

]

.

If
N∏

j=1

[∫

I j

a(s)ds

]

> 1, then Eq. (9.105) has a nonzero solution.

Proof Let X be the Banach space of continuous real-valued functions on R with
supremum norm which are w-periodic. Let K be the cone of nonnegative functions
in X . Let A be the operator from K into itself defined by

Ax(t) =
∫ t

t−τ

f (x, x(s))ds.

By Arzela–Ascoli theorem, A is completely continuous. For x ∈ K R

Ax(t) �
∫ t

t−τ

R

τ
ds = R.

This shows that A maps K R into itself. Let u(t) = 1, and choose k < 1 such that

kN

⎛

⎝
N∏

j=1

∫

I j

a(s)ds

⎞

⎠ > 1.

Choose r < R sufficiently small such that f (t, x) ≥ ka(t)x, t ∈ R, 0 � x � r.
Assume that for some x ∈ K (u) with ‖x‖ = r, Ax � x . For 1 � j � N and t ∈
I j , I j1 is a subset of [t − τ, t]. Hence,
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∫

I j

a(t)x(t) ≥
∫

I j

a(t)Ax(t)dt ≥
∫

I j

a(t)

(∫

I j−1

f (s, x(s))ds

)

dt

> k

(∫

I j

a(t)dt

)(∫

I j−1

a(s)x(s)ds

)

.

Thus,

∫

IN

a(t)x(t)dt ≥ k N

⎛

⎝
N∏

j=1

∫

I j

a(s)ds

⎞

⎠

(∫

I0

a(t)x(t)dt

)

= k N

⎛

⎝
N∏

j=1

∫

I j

a(s)ds

⎞

⎠

(∫

IN

a(t)x(t)dt

)

.

We arrive at a contradiction since

k N
N∏

j=1

∫

I j

a(s)ds > 1 and
∫

IN

a(t)x(t)dt �= 0.

Therefore, Ax � x . Since all the conditions of Theorem 5.158 are satisfied, A has a
nonzero fixed point y ∈ K R . �

II. Mathematical Modelling of Single Species Population Growth

We now discuss below two applications given by Gatica and Smith involving the
existence of nonzero solutions of integral equations. But first, we have the following
definition.

Species− Species is a set of animals or plants in which the members have similar
characteristics to each other and can breed with each other.

Notice that a population becomes a species when it accumulates so many genetic
differences that it becomes reproductively isolated from its sister populations.

The following nonlinear integral equation modelling a single species population
growth was proposed by Swick [582]

x(t) =
∫ L

0
K (L − s)h(t, x(t − L − ξ + s))ds. (9.106)

The assumptions made on functions appearing in (9.106) are the following:

(1) L > 0, L � ζ � 0. In Swick’s model, L is the maximum lifetime of an individual
and ζ is the delay between conception and birth.

(2) h : R × R+ is continuous, h(t, 0) = 0, and h(t, x) > 0 for x > 0.

(3) K : [0, L] → (0,∞) is continuous.
(4) h(t + p, x) = h(t, x) for all t, x ∈ R × R+, for some positive number p.
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(5) There exists a positive number r such that h(t, x) ≥ x
k0

for 0 � x � r and 0 �

t � p where k0 =
∫ L

0
K (u)du.

(6) Either (a) there exists R > 0 such that

h(t, x) � R

k0
for (t, x) ∈ [0, p] × [0, R] or

(b) lim
x→∞

h(t,x)

x = 0 uniformly in t .

Theorem 9.30 Suppose conditions (1)–(6) hold, then the nonlinear integral equa-
tion (9.106) has a positive p-periodic solution defined on R.

Proof Let X be the Banach space of p-periodic continuous function with supremum
norm: ‖x‖ = sup

0�t�p
|x(t). Let K denote the cone of nonnegative functions in X . Let

the mapping F on K be defined by

(Fx)(t) =
∫ L

0
K (L − s)h(t, x(t − L − ζ + s))ds.

The mapping F maps K into itself and is continuous and maps bounded sets into
precompact set. It is shown that conditions (i) and (ii) of Theorem 5.164 are satisfied
and hence the assertion of the theorem follows by Theorem 5.164. We show further
that the solution is positive.

Let r be the positive number given in (5), and let

B : {x ∈ K : ‖x‖ = r} → K

be given by (Bx)(t) = 1 for all t ∈ R. Suppose y is a solution of y = Fy + λBy, 0 <

λ < ∞ with ‖y‖ = r. Then, by (5), we have

y(t) �
∫ L

0
K (L − s)(y(t − L − ζ + s))/k0ds + λ � inf

t∈R
y(t) + λ.

This is a contradiction as λ > 0. So y = Fy + λBy has no solution in B. This implies
that conditions (i) of Theorem 5.164 is satisfied.

For condition (ii) of Theorem 5.164, let R be as given in (6)(a). Suppose z ∈ K
with ‖z‖ = R and z satisfies Fz = λz for some positive λ, then by (6)(a) we have

λz(t) =
∫ L

0
K (L − s)h(t, x(t − L − ζ + s))ds

∫ L

0
K (L − s)

R

k0
ds � R.

For some t ∈ R, z(t) = R, so λ � 1, thereby proving condition (i i) of Theorem
5.164.
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To show that x(t) > 0 for t ∈ R, assume that x(t0) = 0 for some t0 ∈ R. Then,

∫ i

0
K (L − s)h(t0, x(t0 − L − ζ + s))ds = 0.

By (2) and (3), x(t) = 0 for t ∈ [t0 − L − ζ, t0 − ζ ]. As L ≥ ζ, t0 − L ∈ [t0 − L −
ζ, t0 − ζ ], we have x(t0 − L) = 0. This implies that x(t) = 0 for t ∈ [t0 − 2L −
ζ, t0 − L − ζ ] as before. Continuing this way, it can be shown that x(t) = 0 for
t � t0 − ζ. Then, by periodicity we get x(t) = 0, a contradiction. �

9.5.3 Local Attractivity Results for Generalized Nonlinear
Functional-Integral Equations

Assume that E = BC(R+,R), and let � be a subset of E . Let Q : E → E be an
operator, and consider the operator equation in E ,

Qx(t) = x(t) for all t ∈ R+. (9.107)

In this section, we consider the following generalized nonlinear functional-integral
equation (in short GNFIE)

x(t) = F

(

t, x(θ(t)), u(t, x(α(t))),
∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)

,

(9.108)
for t ∈ R+, where u : R+ × R → R, f, g : R+ × R+ × R → R, F : R+ × R × R ×
R × R → R and α, β, γ, θ, σ, η : R+ → R+ are continuous functions.

Definition 9.6 We say that solutions of the Eq. (9.107) are locally attractive if there
exists a closed ball B[x0, r0] in the space BC(R+,R) for some x0 ∈ BC(R+,R)

such that for arbitrary solutions x = x(t) and y = y(t) of Eq. (9.107) belonging to
B[x0, r0] ∩ �, we have

lim
t→∞(x(t) − y(t)) = 0. (9.109)

The functional-integral equation (9.108) is “general” in the sense that it includes
several classes of known integral equations discussed in the literature. See Dhage and
Lakshmikantham [182], Dhage et al. [179], Dhage and Ntouyas [183], Krasnoselskii
[345], Väth [602], Dhage [174, 175] and the references therein. We now intend to
obtain the solutions of GNFIE (9.105) in the space BC(R+,R) of all bounded and
continuous realvalued functions on R+.

Let X = BC(R+,R) be the space of all continuous and bounded functions on R+
and define a norm ‖ · ‖ in X by

‖x‖ = sup{|x(t)| : t ≥ 0}.
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Clearly, X is a Banach space with this supremum norm. Let us fix a bounded
subset A of X and a positive real number L . For any x ∈ A and ε ≥ 0, denote by
ωL(x, ε), the modulus of continuity of x on the interval [0, L] defined by

ωL(x, ε) = sup{|x(t) − x(s)| : t, s ∈ [0, L], |t − s| � ε}.
Moreover, let

ωL(A, ε) = sup{ωL(x, ε) : x ∈ A},
ωL

0 (A) = lim
ε−→0

ωL(A, ε),

ω0(A) = lim
L−→∞ ωL

0 (A).

By A(t), we mean a set in R defined by A(t) = {x(t)|x ∈ A} for t ∈ R+. We
denote diam (A(t)) = sup{|x(t) − y(t)| : x, y ∈ A}. Finally, we define a function μ

on Pbd(X) by the formula

μ(A) = ω0(A) + lim sup
t−→∞

diam(A(t)). (9.110)

It has been shown in [35] that μ is a sublinear measure of noncompactness in X .
Let X = BC(R+,R) be the space of all continuous and bounded functions on R+

and define a norm ‖.‖ in X by

‖x‖ = sup{|x(t)| : t ≥ 0}.
Clearly X is a Banach space with this norm. We define a measure of non compactness
in X as follows. Let us fix a bounded subset A of X and a positive real number L .
For any x ∈ A and ε ≥ 0, denote by ωL(x, ε), the modulus of continuity of x on the
interval [0, L] defined by

ωL(x, ε) = sup{|x(t) − x(s)| : t, s ∈ [0, L], |t − s| � ε}.
Moreover, let

ωL(A, ε) = sup{ωT (x, ε) : x ∈ A},
ωL

0 (A) = lim
ε−→0

ωL(A, ε),

ω0(A) = lim
L−→∞ ωL

0 (A).

By A(t) we mean a set inR defined by A(t) = {x(t)|x ∈ A} for t ∈ R+. We denote
diam (A(t)) = sup{|x(t) − y(t)| : x, y ∈ A}. Let us denote the set of all bounded
subsets of X by B(X). Finally we define a function μ on B(X) by the formula

μ(A) = ω0(A) + lim sup
t−→∞

diam(A(t)) (9.111)

We consider with the following set of assumptions in what follows.
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(H0) The functions α, β, γ, θ, σ, η : R+ −→ R+ are continuous functions and
θ(t) ≥ t and α(t) ≥ t for all t ∈ R+.

(H1) There exists a function D-function ϕ and the constant Li , i = 1, 2, 3 such
that

|F(t, x, x1, x2, x3) − F(t, y, y1, y2, y3)| � ϕ(|x − y|) +
3∑

i=1

Li |x − i − yi |

for all t ∈ R+ and x, y, xi , yi ∈ R, i = 1, 2, 3. Moreover, the map t → F(t,
0, 0, 0, 0) is bounded with F0 = sup

t≥0
|F(t, 0, 0, 0, 0)|.

(H2) There exists a function D-function ϕ1 and a continuous function k1 ∈
BC(R+,R+) such that

|u(t, x) − u(t, y)| � k1(t)ϕ1(|x − y|)

for all t ∈ R+. Moreover, sup
t≥0

k1(t) = K1.

(H3) The function t → u(t, 0) = u0(t) is bounded, and C0 = sup
t≥0

|u(t, 0)|.
(H4) The function f : R+ × R+ × R −→ R is continuous, and there exist a con-

tinuous function q : R+ × R+ −→ R+ and a D-function ϕ2 as defined in (H1)

such that

| f (t, s, x) − f (t, s, y)| � q(t, s))ϕ2(|x − y|)

for any t, s ∈ R+, x, y ∈ R. Moreover, lim
t→∞

∫ β(t)

0
q(t, s) ds = 0.

(H5) The function f0 : R+ −→ R+ defined by f0(t) =
∫ β(t)

0
| f (t, s, 0)|ds is

bounded with C1 = sup
t≥0

f0(t).

(H6) g : R+ × R+ × R → R is a continuous function, and there exist continuous
functions a, b : R+ → R+ such that

|g(t, s, x)| � a(t)b(s)

for t, s ∈ R+ such that s � t , and x ∈ R. Moreover, lim
t→∞ a(t)

∫ σ(t)

0
b(s)ds = 0.

Remark 9.7 Because the hypotheses (H4) and (H6) are held, we have that the func-
tions

k2(t) =
∫ β(t)

0
q(t, s)ds and v(t) = a(t)

∫ σ(t)

0
b(s)ds

are bounded on R+ and the positive numbers
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K2 = sup
t≥0

∫ β(t)

0
q(t, s)ds and V = sup

t≥0
v(t)

exist.

Theorem 9.31 Assume that the hypotheses (H0) through (H6) hold. Suppose that

ϕ(r) + L1 K1ϕ1(r) < r, r > 0, (9.112)

and there exists a positive solution r0 of the inequality

ϕ(r) + L1 K1ϕ1(r) + L2 K2ϕ2(r) + q � r, (9.113)

where q is the constant defined by the equality

q = {L1C0 + L2C1 + L3V + F0}.

Then, the functional nonlinear integral equation (9.108) has a solution, and the
solutions are uniformly locally attractive on R+.

Proof Consider the operator T defined on the space BC(R+,R) by the formula

(T x)(t) == F

(

t, x(θ(t)), u(t, x(α(t))),
∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)

,

for t ∈ R+.
We shall show that the map T satisfies all the conditions of Theorem 9.31 on X .

Step I: First, we show that T defines a mapping T : X −→ X . Since all the functions
involved in (9.108) are continuous, T x is continuous on R+ for each x ∈ X . Hence,
T x is mapping from X into itself. As θ(R+) ⊆ R+, we have maxt≥0 |x(θ(t))| �
maxt≥0 |x(t)|. On the other hand, hypotheses (H0)–(H5) imply that

|T x(t)|

=
∣
∣
∣
∣
∣
F

(

t, x(θ(t)), u(t, x(α(t))),
∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)∣
∣
∣
∣
∣

�
∣
∣
∣F

(

t, x(θ(t)), u(t, x(α(t))),
∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)

− F(t, 0, 0, 0, 0)

∣
∣
∣ + |F(t, 0, 0, 0, 0)|

� ϕ(|x(θ(t))|) + L1|u(t, x(α(t)))| + L2

∣
∣
∣

∫ β(t)

0
f (t, s, x(γ (s)))ds

∣
∣
∣

+ L3

∣
∣
∣

∫ σ(t)

0
g(t, s, x(η(s)))ds

∣
∣
∣ + |F(t, 0, 0, 0, 0)|

� ϕ(|x(θ(t))|) + L1|u(t, x(α(t))) − u(t, 0)| + L1|u(t, 0)|
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+ L2

∫ β(t)

0
| f (t, s, x(γ (s))) − f (t, s, 0)|ds + L2

∫ β(t)

0
| f (t, s, 0)|ds

+ L3

∣
∣
∣

∫ σ(t)

0
g(t, s, x(η(s)))ds

∣
∣
∣ + F0

� ϕ(|x(θ(t))|) + L1k1(t)ϕ1(|x(α(t))|) + L1|u(t, 0)|

+ L2

∫ β(t)

0
q(t, s)ϕ2(|x(γ (s))|)ds + L2C1 + L3a(t)

∫ σ(t)

0
b(s)ds + F0

� ϕ(‖x‖) + L1k1(t)ϕ1(‖x‖) + L1C0 + L2

∫ β(t)

0
q(t, s)ϕ2(‖x‖)ds + L2C1 + L3v(t) + F0

ϕ(‖x‖) + L1 K1ϕ1(‖x‖) + L2 K2ϕ2(‖x‖) + L1C0 + L2C1 + L3V + F0 (9.114)

for all t ∈ R+. From (9.114), we deduce that T x ∈ X .
Step II: From (9.114), it follows that

‖T x‖ � ϕ(r) + L1 K1ϕ1(r) + +L2 K2ϕ2(r) + q � r. (9.115)

Now consider the closed ball B[0, r0] ⊂ C[0, L] in X centered at origin of radius r0.
Then, T defines a mapping T : B[0, r0] → B[0, r0]. We show that T is continuous
on B[0, r0]. Let ε > 0 be given, and let x, y ∈ B[0, r0] be such that ‖x − y‖ � ε.
Then, by hypotheses (H0)–(H5)

|T x(t) − T y(t)|

�
∣
∣
∣F

(
t, x(θ(t)), u(t, x(α(t))),

∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)

− F
(

t, y(θ(t)), u(t, y(α(t))),
∫ β(t)

0
f (t, s, y(γ (s)))ds,

∫ σ(t)

0
g(t, s, y(η(s)))ds

)∣
∣
∣

� ϕ(|x(θ(t)) − y(θ(t))|) + L1k1(t)ϕ1(|x(α(t)) − y(α(t))|)

+ L2

∣
∣
∣

∫ β(t)

0
f (t, s, x(γ (s)))ds −

∫ β(t)

0
f (t, s, y(γ (s)))ds

∣
∣
∣

+ L3

∣
∣
∣

∫ σ(t)

0
g(t, s, x(η(s)))ds −

∫ σ(t)

0
g(t, s, y(η(s)))ds

∣
∣
∣

� ϕ(|x(θ(t)) − y(θ(t))|) + L1k1(t)ϕ1(|x(α(t)) − y(α(t))|)

+ L2

∫ β(t)

0
| f (t, s, x(γ (s))) − f (t, s, y(γ (s)))|ds

+ L3

∫ σ(t)

0
|g(t, s, x(η(s))) − g(t, s, y(η(s)))|ds

� ϕ(|x(θ(t)) − y(θ(t))|) + L1k1(t)ϕ1(|x(α(t)) − y(α(t))|)

+ L2

∫ β(t)

0
q(t, s)ϕ2(|x(γ (s))) − y(γ (s)))|ds + L3a(t)

∫ σ(t)

0
b(s)ds

� ϕ(‖x − y‖) + L1 K1ϕ1(‖x − y‖) + L2 K2ϕ2(‖x − y‖) + L3v(t)

� ϕ(ε) + L1 K1ϕ1(ε) + L2 K2ϕ2(ε) + L3v(t)

� (1 + L1 K1 + L2 K2)ε + L3v(t). (9.116)
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Since v(t) → 0 as t → ∞, there exists L > 0 such that v(t) � ε, ∀t > L . Thus, if
t > L , then from (9.116) we have that

|T x(t) − T y(t)| � (1 + L1 K1 + L2 K2 + L3)ε. (9.117)

If t < L , then define a function ω = ω(ε) by the formula

ω(ε) = sup{|g(t, s, x) − g(t, s, y)| : t, s ∈ [0, L], x, y ∈ [−r0, r0], |x − y| � ε}.
(9.118)

Now g(t, s, x) is continuous and hence uniformly continuous on [0, L] × [0, L] ×
[−r0, r0]. As a result, we have ω(ε) → 0 as ε → 0. Therefore, from (9.116),

|T x(t) − T y(t)| � (1 + L1 K1 + L2 K2)ε + L3ω(ε)

for all t ∈ R+. Hence, it follows that

‖T x − T y‖ � max{(1 + L1 K1 + L2 K2 + L3)ε, (1 + L1 K1 + L2 K2)ε + L3ω(ε)}
→ 0 as ε → 0.

Hence, T is a continuous mapping from B[0, r0] into itself.

Step III: Here, we show that T is a nonlinear set contraction on B[0, r0] in the sense
of inequality (9.116). This will be done in the following two cases:
Case I: Let A ⊂ B[0, r0] be nonempty. Further, fix the number L > 0 and ε > 0.
Since the functions f and g are continuous on compact [0, L] × [0, L] × [−r0, r0],
there are constants D2 > 0 and D3 > 0 such that | f (t, s, x)| � D2 and |g(t, s, x)| �
D3 for all t, s ∈ [0, L] and x ∈ [−r0, r0]. Then, choosing t, τ ∈ [0, L] such that
|t − τ | � ε and taking into account our hypotheses, we obtain

|T x(t) − T x(τ )|

�
∣
∣
∣F

(

t, x(θ(t)), u(t, x(α(t))),
∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)

− F

(

τ, x(θ(τ )), u(τ, x(α(τ))),

∫ β(τ)

0
f (τ, s, y(γ (s)))ds,

∫ σ(τ)

0
g(τ, s, y(η(s)))ds

)
∣
∣
∣

� ϕ(|x(θ(t)) − x(θ(τ ))|) + L1|u(t, x(α(t))) − u(t, x(α(τ)))|

+ L2

∣
∣
∣

∫ β(t)

0
f (t, s, x(γ (s)))ds −

∫ β(τ)

0
f (τ, s, x(γ (s)))ds

∣
∣
∣

+ L3

∣
∣
∣

∫ σ(t)

0
g(t, s, x(η(s)))ds −

∫ σ(τ)

0
g(τ, s, x(η(s)))ds

∣
∣
∣

� ϕ(|x(θ(t)) − x(θ(τ ))|) + L1|u(t, x(α(t))) − u(t, x(α(τ)))|

+ L2

∣
∣
∣

∫ β(t)

0
f (t, s, x(γ (s)))ds −

∫ β(t)

0
f (τ, s, x(γ (s)))ds

∣
∣
∣

+ L2

∣
∣
∣

∫ β(t)

0
f (τ, s, x(γ (s)))ds −

∫ β(τ)

0
f (τ, s, x(γ (s)))ds

∣
∣
∣
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+ L3

∣
∣
∣

∫ σ(t)

0
g(t, s, x(η(s)))ds −

∫ σ(t)

0
g(τ, s, x(η(s)))ds

∣
∣
∣

+ L3

∣
∣
∣

∫ σ(t)

0
g(τ, s, x(η(s)))ds −

∫ σ(τ)

0
g(τ, s, x(η(s)))ds

∣
∣
∣

� ϕ(|x(θ(t)) − x(θ(τ ))|) + L1|u(t, x(α(t))) − u(t, x(α(τ)))|

+ L2

∫ β(t)

0
| f (t, s, x(γ (s))) − f (τ, s, x(γ (s)))|ds + L2

∣
∣
∣

∫ β(t)

β(τ )

f (τ, s, x(γ (s)))ds
∣
∣
∣

+ L3

∫ σ(t)

0
|g(t, s, x(η(s))) − g(τ, s, x(η(s)))|ds + L3

∣
∣
∣

∫ σ(t)

σ (τ )

g(τ, s, x(η(s)))ds
∣
∣
∣

� ϕ(|x(θ(t)) − x(θ(τ ))|) + L1ω
L (u, ε) + L2βLωL ( f, ε) + L2 D2ω

L (β, ε)

+ L3σLωL (g, ε) + L3 D3ω
L (σ, ε),

where

βL = sup{β(t) : t ∈ [0, L]},
σL = sup{σ(t) : t ∈ [0, L]},

ωL(β, ε) = sup{|β(t) − β(τ)| : t, τ ∈ [0, L], |t − τ | � ε},
ωL(σ, ε) = sup{|σ(t) − σ(τ)| : t, τ ∈ [0, L], |t − τ | � ε},

and

ωL(u, ε) = sup{|u(t, x) − u(τ, x)| : t, τ ∈ [0, L], |t − τ | � ε, |x | � r0},
ωL( f, ε) = sup{| f (t, s, x) − f (τ, s, x)| : t, τ ∈ [0, L], |t − τ | � ε, |x | � r0},
ωL(g, ε) = sup{|g(t, s, x) − g(τ, s, x)| : t, τ ∈ [0, L], |t − τ | � ε, |x | � r0}.

The above inequality further implies that

ωL(T x, ε) � ϕ(ωL(x, ε)) + L1ω
L(u, ε) + L2βLωL( f, ε) + L2 D2ω

L(β, ε)

+ L3σLωL(g, ε) + L3 D3ω
L(σ, ε). (9.119)

Since by hypotheses, the functions β, σ, ϕ, u and f, g are continuous, respectively,
on [0, L], [0, L] × [−r0, r0] and [0, L] × [0, L] × [−r0, r0], we infer that they are
uniformly continuous there. Hence, we deduce that ϕ(ωL(x, ε)) → 0, ωL(u, ε) →
0, ωL(β, ε) → 0, ωL(σ, ε) → 0, ωL( f, ε) → 0, ωL(g, ε) → 0 as ε → 0. Hence,
from the above estimate (9.119), we obtain

ωL
0 (T (A)) = 0,

and consequently,
ω0(T (A)) = 0. (9.120)
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Case II: Now for any x, y ∈ A, one has

|T x(t) − T y(t)|

�
∣
∣
∣F

(

t, x(θ(t)), u(t, x(α(t))),
∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)

− F

(

t, y(θ(t)), u(t, y(α(t))),
∫ β(t)

0
f (t, s, y(γ (s)))ds,

∫ σ(t)

0
g(t, s, y(η(s)))ds

)
∣
∣
∣

� ϕ(|x(θ(t)) − y(θ(t))|) + L1k1(t)ϕ1(|x(α(t)) − y(α(t))|)

+ L2

∣
∣
∣

∫ β(t)

0
f (t, s, x(γ (s)))ds −

∫ β(t)

0
f (t, s, y(γ (s)))ds

∣
∣
∣

+ L3

∣
∣
∣

∫ σ(t)

0
g(t, s, x(η(s)))ds −

∫ σ(t)

0
g(t, s, y(η(s)))ds

∣
∣
∣

� ϕ(|x(θ(t)) − y(θ(t))|) + L1k1(t)ϕ1(|x(α(t)) − y(α(t))|)

+ L2

∫ β(t)

0
| f (t, s, x(γ (s))) − f (t, s, y(γ (s)))|ds

+ L3

∫ σ(t)

0
|g(t, s, x(η(s))) − g(t, s, y(η(s)))|ds

� ϕ(|x(θ(t)) − y(θ(t))|) + L1k1(t)ϕ1(|x(α(t)) − y(α(t))|)

+ L2

∫ β(t)

0
q(t, s)ϕ2(|x(γ (s))) − y(γ (s)))|ds + 2L3a(t)

∫ σ(t)

0
b(s)ds

� ϕ(diam(A(θ(t)))) + L1k1(t)ϕ1(diamA(α(t)))

+ L2

∫ β(t)

0
q(t, s)ϕ2(diam(A(γ (β(s)))))ds + 2L3v(t)

� ϕ(diam(A(θ(t)))) + L1k1(t)ϕ1(diamA(α(t)))

+ L2

∫ β(t)

0
q(t, s)ϕ2(diam(A))ds + 2L3v(t)

for all t ∈ R+. Further, we also notice that A ⊂ B[0, r0] implies diam(A) � 2r0.
Again, since θ(t) ≥ t and α(t) ≥ t , we have that diam(A(θ(t)) � diam(A(t)) for all
t ∈ R+. Therefore, as a result of above inequality, we obtain

diam(T (A(t))) � ϕ(diam(A(t)) + L1k1(t)ϕ1(diamA((t)))

+ L2

∫ β(t)

0
q(t, s)ϕ2(2r0)ds + 2L3v(t) (9.121)

for all t ∈ R+. Taking the limit superior in the above inequality yields



730 9 Applications of Fixed Point Theorems

lim sup
t→∞

diam(T (A(t))) � lim sup
t→∞

ϕ(diam(A(t))) + L1 K1 lim sup
t→∞

ϕ1(diam(A(t)))

+ L2ϕ2(2r0) lim sup
t→∞

∫ β(t)

0
q(t, s)ds + 2L3 lim sup

t→∞
v(t)

� lim sup
t→∞

ϕ(diam(A(t))) + L1 K1 lim sup
t→∞

ϕ1(diam(A(t)))

� ϕ(lim sup
t→∞

diam(A(t))) + L1 K1ϕ1(diam(A(t)))

� ψ(lim sup
t→∞

diam(A(t))) (9.122)

where ψ is again a D-function in view of Remark 6.5 defined by ψ(r) = ϕ(r) +
L1 K1ϕ1(r) and ψ(r) < r for r > 0.

Now from inequality (9.120) and (9.122), it follows that

μ(T (A)) = ω0(T (A)) + lim sup
t→∞

diam(T (A(t)))

� ψ(0 + lim sup
t→∞

diam(A(t)))

� ψ(ω0(A) + lim sup
t→∞

diam(A(t)))

� ψ(μ(A)), (9.123)

where μ is the measure of noncompactness defined in the space BC(R+,R). This
shows that T is a nonlinear D-set contraction on B[0, r ] in the sense of Definition
6.18. Thus, the map T satisfies all the conditions of Theorem 6.29 with C = B[0, r ],
and an application of it yields that T has a fixed point in B[0, r ]. This further by
definition of T which implies that the GNFIE (9.108) has a solution in B[0, r ].
Moreover, taking into account that the image of B[0, r ] under the operator T is
again contained in the ball B[0, r ], we infer that the set F(T ) of all fixed points of T
is contained in B[0, r ]. If the set F(T ) contains all solutions of the Eq. (9.108), then
we conclude from Remark 9.7 that the set F(T ) belongs to the family ker μ.

Now, taking into account the description of sets belonging to ker μ, we deduce that
all solutions of the Eq. (9.108) are uniformly locally attractive on R+. This completes
the proof. �

Special Cases

As mentioned earlier, the GNFIE (9.108) is more general in the literature on the
theory of nonlinear integral equations and includes other several classes of well-
known nonlinear integral equations. Below, we list some of our main observations
in this direction.

1. Let us define the function F as

F(t, x1, x2, x3, x4) = q(t) + x3 + x4,
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then the GNFIE (9.108) reduces to the following nonlinear function integral equa-
tion (NFIE),

x(t) = q(t) +
∫ β(t)

0
f (t, s, x(γ (s)))ds +

∫ σ(t)

0
g(t, s, x(η(s)))ds, (9.124)

for all t ∈ R+. NFIE (9.124) has been studied in Dhage [175] and includes the
well-known Volterra, Fredholm as well as integral equations of mixed type as
special ases by choosing the functions β and σ appropriately.

2. On taking σ(t) = ∞ for all t ∈ R+ and

F(t, x1, x2, x3, x4) = f (t, x1, x3, x4),

we obtain the following integral equation studied in Agarwal et al. [3],

x(t) = f

(

t, x(θ(t)),
∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ ∞

0
g(t, s, x(η(s)))ds

)

,

(9.125)
which again includes other several classes of known integral equations as special
cases (cf. Agarwal et al. [2] and the references therein).

3. On taking F(t, x1, x2, x3, x4) = f (t, x2, x4), we obtain the following nonlinear
integral equation,

x(t) = f

(

t, u(t, x(α(t))),
∫ σ(t)

0
g(t, s, x(η(s)))ds

)

, (9.126)

for all t ∈ R+. The nonlinear integral equation (9.126) has been studied in Dhage
and Lakshmikantham [182] for the global existence and attractivity results for
the solutions defined on R+.

4. When F(t, x1, x2, x3, x4) = p(t, x1) + x2x4, where p : R+ × R → R is a con-
tinuous function, then the GNFIE (9.108) reduces to the following nonlinear
quadratic functional-integral equation,

x(t) = p(t, x(qθ(t)) + [u(t, x(α(t)))]
(∫ σ(t)

0
g(t, s, x(η(s)))ds

)

(9.127)

for all t ∈ R+. The quadratic integral equation (9.127) again includes several
other classes of quadratic integral equations as the special cases given in Dhage
et al. [179], Dhage and Ntouyas [184] and the references cited therein.

5. On taking F(t, x1, x2, x3, x4) = x1 + p(x3, x4), where p : R × R → R is a con-
tinuous function, we obtain the following functional-integral equation recently
studied in Dhage et al. [181],
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x(t)=u(t, x(α(t)))+p

(∫ β(t)

0
f (t, s, x(γ (s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)

,

(9.128)
which further yields the functional-integral equation

x(t) = u(t, x(α(t))) +
∫ σ(t)

0
g(t, s, x(η(s)))ds, (9.129)

for all t ∈ R+ provided p(x3, x4) = x4. The integral equation (9.128) is discussed
in Banas and Dhage [34] and Aghajani et al. [5] for existence and asymptotic
stability of the solutions.

We now furnish an example to validate all the hypotheses of Theorem 9.31 above.

Example 9.8 We consider the following nonlinear functional-integral equation

x(t) = 15

16
ln(1 + |x(t2 + 1)|) + 3

4

(
1 + t

6 + 7t2
ln(1 + 1

2
|x(t + 1)|

)

+ 2

5

∫ t
t2+1

0

1

(1 + t)

1

1 + s
ln

(

1 + 1

3
|x(s2 + 1)|

)

ds

+ 7

3

∫ t
t3+1

0
t3 exp(−t5)

1

(1 + s2)

| cos x(s2 + 3)|
1 + | sin x(s2 + 3)|ds (9.130)

for all t, s ∈ R+.
Let

F(t, x, x1, x2, x3) = 15

16
ln(1 + |x |) + 3

4
x1 + 2

5
x2 + 7

3
x3,

ϕ(t) = 15

16
ln(1 + t), ϕ1(t) = ln

(

1 + 1

2
t

)

, ϕ2(t) = ln

(

1 + 1

3
t

)

,

θ(t) = t2 + 1, α(t) = t + 1, γ (s) = s2 + 1, η(s) = s2 + 3, β(t) = t

t2 + 1
, σ (t) = t

t3 + 1

u(t, x) = 1 + t

6 + 7t2
ln

(

1 + 1

2
|x(t)|

)

, v(t) = t3 exp(−t5), b(s) = 1

1 + s2

for all t, s ∈ R+, and

f (t, s, x(γ (s))) = 1

(1 + t)(1 + s)
ln

(

1 + 1

3
|x(s2 + 1)|

)

g(t, s, x(η(s)) = t3 exp(−t5)
1

1 + s2

| cos x(s2 + 3)|
1 + | sin x(s2 + 3)|
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for all t, s ∈ R+ and x ∈ R. Notice that:

(i) The functions θ, η and u are obviously continuous. Thus, (H0) is satisfied.
(ii) Since u(t, x) = 1+t

6+7t2 ln(1 + |x(t)|/3), we have that

|u(t, x) − u(t, y)| = 1 + t

6 + 7t2
ln

1 + |x |/3

1 + |y|/3

= 1 + t

6 + 7t2
ln

(

1 + |x |/3 − |y|/3

1 + |y|/3

)

� 1 + t

6 + 7t2
ln(1 + |x − y|/3)

= c(t)ϕ(|x(t)| − |y(t)|), where c(t) = 1 + t

6 + 7t2
.

Thus, we have c0 = supt≥0 c(t) = supt≥0
1+t

6+7t2 = 1
6 > 0; i.e., (H1) is satisfied

with ϕ(r) = ln(1 + r/3), we see that ϕ(r) < r for r > 0. Obviously, the func-
tion ϕ is nondecreasing and upper semicontinuous on R+.

(iii) For arbitrary but fixed x, y ∈ R such that |x | ≥ |y| and for t > 0, we obtain

| f (t, s, x) − f (t, s, y)| = 1

3(1 + t) arctan(t)

1

1 + s2 ln
1 + |x |/3

1 + |y|/3

� 1

3(1 + t) arctan(t)

1

1 + s2 ln

(

1 + |x |/3 − |y|/3

1 + |y|/3

)

<
1

3(1 + t) arctan(t)

1

1 + s2 ln(1 + |x − y|/3)

= 1

3(1 + t) arctan(t)

1

1 + s2 ϕ(|x − y|)

= q(t, s) ϕ(|x − y|), where q(t, s) = 1

3(1 + t) arctan(t)

1

1 + s2 .

The case is similar when |y| ≥ |x |. Furthermore, we obtain

c1 = sup
t≥0

∫ t

0
q(t, s)ds = sup

t≥0

1

3(1 + t) arctan(t)

∫ t

0

1

1 + s2
ds = 1

3
.

Hence, (H2) is satisfied.
(iv) (H3) is satisfied since limt→∞

∫ t
0 q(t, s)ds = limt→∞ 1

3(1+t) = 0 and c2 =
supt≥0 F(t) = supt≥0

∫ t
0 f (t, s, 0)ds = 0.

(v) (H4) is satisfied since the function g acts continuously from the set R+ × R+ ×
R into R. Moreover, we have

|g(t, s, x)| � t3 exp(−t5)
1

1 + s
= v(t)b(s)

for all t, s ∈ R+ and x ∈ R, then we can see that condition (v) is satisfied.
Indeed, we have
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lim
t→∞ v(t)

∫ a

0
b(s)ds = lim

t→∞ t3 exp(−t5)

∫ a

0

1

1 + s
ds = ln(1 + a) lim

t→∞ t3 exp(−t5) = 0.

(v) The function F : R+ −→ R defined by F(t) = ∫ t
0 | f (t, s, 0)|ds = 0 is

bounded with c2 = supt≥0 F(t) = 0.

(vi) Let us consider the following equality

q = sup

{

c2 + |u(t, 0)| + v(t)
∫ a

0
b(s)ds : t ≥ 0

}

.

Then, we obtain

q = sup

{

c2 + |u(t, 0)| + v(t)
∫ a

0
b(s)ds : t ≥ 0

}

= ln(1 + a) sup
t≥0

t3 exp(−t5) ≈ 0.223 ln(1 + a).

(vi) Let us consider the inequality

(1 + c0 + c1)ϕ(r) + q � r.

For the case a = 1, we have

(

1 + 1

6
+ 1

3

)

ln(1 + r) + 0.223 ln(2) � r i.e., (1.5) ln(1 + r) + 0.154 � r.

It is easily seen that each number r > 0.7 satisfies the above inequality. Thus, as
the number r0, we can take r0 = 0.7. Note that this estimate of r0 can be improved.

Thus, the functions α, β, γ, θ, σ, η, ϕ, ϕ1, ϕ2, u, f and g involved in (9.108) sat-
isfy all the conditions of Theorem 9.31, and hence, the GNFIE (9.108) has at least one
solution in the space BC(R+,R), and the solutions are locally uniformly ultimately
attractive on R+ located in the ball B[0, 0.7].

9.5.4 Existence of Solutions for Nonlinear
Functional-Integral Equations in Banach Algebra

In this section, using the technique of measure of noncompactness in Banach algebra,
we present an existence theorem for a nonlinear integral equation which contains as
particular cases a large number of integral and functional equations considered in
nonlinear analysis.

It is well known that the differential and integral equations that arise in many phys-
ical problems are mostly nonlinear and fixed point theory that provides a powerful
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tool for obtaining the solutions of such equations which otherwise are difficult to
solve by other ordinary methods. In this paper, we consider the solvability of certain
functional-integral equation which contains as particular cases a lot of integral and
functional-integral equations, those are applicable in many branches on nonlinear
analysis. The authors consider the following functional-integral equation:

x(t) =
(

u(t, x(t)) + f
(
t,
∫ t

0
p(t, s, x(s))ds, x(α(t))

)
)·

g

(

t,
∫ a

0
q(t, s, x(s))ds, x(β(t))

)

,

(9.131)

for t ∈ [0, a].
The main tool used in our result is a fixed point theorem which satisfies the Darbo

condition with respect to a measure of noncompactness in the Banach algebra of
continuous functions in the interval [0, a]. First, we introduce some preliminaries
and use them to proof Theorem 9.33. Finally, we prove some examples that verify
the application of this kind of nonlinear functional-integral equations.

Now let us assume that � is a nonempty subset of a Banach space E and S : � →
E is a continuous operator transforming bounded subsets of � to bounded ones.
Moreover, let μ be a regular measure of noncompactness in E .

Definition 9.7 (Banas and Goebel [35]) We say that S satisfies the Darbo condition
with a constant k with respect to measure μ provided

μ(SX) � kμ(X),

for each X ∈ m E such that X ⊂ �.
If k < 1, then S is called a contraction with respect to μ.

In the sequel, we will work in the space C[a, b] consisting of all real functions
defined and continuous on the interval [a, b]. The space C[a, b] is equipped with the
standard norm

‖x‖ = sup{|x(t)| : t ∈ [0, a]}.

Obviously, the space C[a, b] has also the structure of Banach algebra.
In our considerations, we will use a regular measure of noncompactness defined

in [36] (cf also [35]).
In order to recall the definitions of that measure let us fix a set X ∈ mC[a,b]. For

x ∈ X and for a given ε > 0 denote by ω(x, ε) the modulus of continuity of x , i.e.,

ω(x, ε) = sup{|x(t) − x(s)| : t, s ∈ [a, b], |t − s| � ε}.

Further, put
ω(X, ε) = sup{ω(x, ε) : x ∈ X},

ω0(X) = lim
ε→0

w(X, ε). (∗)
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It may be shown in [36] that ω0(X) is a regular measure of noncompactness in
C[a, b].

For our purpose, we will need the following theorem [36].

Theorem 9.32 Assume that � is a nonempty, bounded, convex and closed subset of
C[a, b] and the operators P and T transform continuously the set � into C[a, b] in
such a way that P(�) and T (�) are bounded. Moreover, assume that the operator
S = P.T transform � into itself. If the operators P and T satisfy on the set �

the Darbo condition with the constant k1 and k2, respectively, then the operator S
satisfies the Darbo condition on � with the constant

‖P(�)‖k2 + ‖T (�)‖k1.

Particularly, if ‖P(�)‖k2 + ‖T (�)‖k1 < 1, then S is a contraction with respect to
the measure ω0 and has at least one fixed point in the set �.

In 2013, Deepmala and Pathak [162] studied the solvability of the nonlinear
functional-integral equation (9.124) for x ∈ C[a, b]. Indeed, they formulated the
assumptions under which Eq. (9.131) will be investigated. Namely, they assume the
following hypothesis.

(H1) The function u : [0, a] × R → R, f, g : [0, a] × R × R → R are continuous
and there exists constants l, m ≥ 0 such that

|u(t, 0)| � l, | f (t, 0, x)| � m, |g(t, 0, x)| � m.

(H2) There exists the continuous functions a1, a2, a3, a4, a5 : [0, a] → [0, a] such
that

|u(t, x1) − u(t, x2)| � a1(t)|x1 − x2|,
| f (t, y1, x1) − f (t, y2, x2)| � a2(t)|y1 − y2| + a3(t)|x1 − x2|,
|g(t, y1, x1) − g(t, y2, x2)| � a4(t)|y1 − y2| + a5(t)|x1 − x2|,

for all t ∈ [0, a] and x1, x2, y1, y2 ∈ R.
(H3) The functions p = p(t, s, x) and q = q(t, s, x) act continuously form the set

[0, a] × [0, a] × R into R and the functions α(t) and β(t) transform continuously
the interval [0, a] into itself.

(H4) There exists a non negative constant k such that

max{a1(t), a2(t), a3(t), a4(t), a5(t)} � k.

(H5) (sub-linearity condition) There exists constant α and β such that

|p(t, s, x)| � α + β|x |, |q(t, s, x)| � α + β|x |.

(H6) 4γ η < 1 and aβ ≥ 1, for γ = k + kaβ and η = kaα + l + m.
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The following result is obtained by using the above hypothesis.

Theorem 9.33 Under the assumptions (H1)–(H6) Eq. (9.131) has at least one solu-
tion in the Banach algebra C = C[0, a].
Proof Let us consider the operators F and G defined on the Banach algebra C by
the formula

(Fx)(t) = u(t, x(t)) + f

(

t,
∫ t

0
p(t, s, x(s))ds, x(α(t))

)

,

(Gx)(t) = g

(

t,
∫ a

0
q(t, s, x(s))ds, x(β(t))

)

,

for t ∈ [0, a].
From assumptions (H1) and (H3), it follows that F and G transform the algebra

C into itself.
Further, let us define the operator T on the algebra C by putting

T x = (Fx).(Gx)

Obviously, T transform C into itself.
Now, let us fix x ∈ C . Then, using our assumptions for t ∈ [0, a], we get

|(T x)(t)| = |(Fx)(t)| · |(Gx)(t)|
=

∣
∣
∣
∣u(t, x(t)) + f

(

t,
∫ t

0
p(t, s, x(s))ds, x(α(t))

)∣
∣
∣
∣ .

∣
∣
∣
∣g

(

t,
∫ a

0
q(t, s, x(s))ds, x(β(t))

)∣
∣
∣
∣

�
(

|u(t, x(t)) − u(t, 0)| + |u(t, 0)|

+
∣
∣
∣
∣ f

(

t,
∫ t

0
p(t, s, x(s))ds, x(α(t))

)

− f (t, 0, x(α(t)))

∣
∣
∣
∣

+ | f (t, 0, x(α(t)))|
)

.

(∣
∣
∣
∣g

(

t,
∫ a

0
q(t, s, x(s))ds, x(β(t))

)

− g (t, 0, x(β(t)))

∣
∣
∣
∣

+ |g (t, 0, x(β(t)))|
)

�
(

a1(t)|x(t)| + l + a2(t)

∣
∣
∣
∣

∫ t

0
p(t, s, x)ds

∣
∣
∣
∣ + m

)

(

a4(t)

∣
∣
∣
∣

∫ a

0
q(t, s, x)ds

∣
∣
∣
∣ + m

)

� (k|x(t)| + l + ka(α + β|x(t)|) + m)(ka(α + β|x(t)|) + m)

� ((k + kaβ)‖x‖ + kaα + l + m)2
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Let γ = k + kaβ and η = kaα + l + m, then from the above estimate, it follows
easily that

‖Fx‖ � γ ‖x‖ + η (9.132)

‖Gx‖ � γ ‖x‖ + η (9.133)

‖T x‖ � (γ ‖x‖ + η)2. (9.134)

for x ∈ C[0, a].
From (9.134), we deduce that the operator T maps the ball Br ⊂ C[0, a] into

itself for r1 � r � r2, where

r1 = (1 − 2γ η) − √
1 − 4γ η

2γ 2
, r2 = (1 − 2γ η) + √

1 − 4γ η

2γ 2
.

Also, from estimate (9.132) and (9.133), we obtain

‖F Br‖ � γ r + η (9.135)

‖G Br‖ � γ r + η. (9.136)

Next, we show that the operator F is continuous on the ball Br . To do this, fix ε > 0
and take arbitrary x, y ∈ Br such that ‖x − y‖ � ε. Then, for t ∈ [0, a], we get

|(Fx)(t) − (Fy)(t)| =
∣
∣
∣
∣u(t, x(t)) + f

(

t,
∫ t

0
p(t, s, x(s))ds, x(α(t))

)

− u(t, y(t)) − f

(

t,
∫ t

0
p(t, s, y(s))ds, y(α(t))

) ∣
∣
∣
∣

� a1(t)|x(t) − y(t)| +
∣
∣
∣
∣ f

(

t,
∫ t

0
p(t, s, x(s))ds, x(α(t))

)

− f

(

t,
∫ t

0
p(t, s, x(s))ds, y(α(t))

)

+ f

(

t,
∫ t

0
p(t, s, x(s))ds, y(α(t))

)

− f

(

t,
∫ t

0
p(t, s, y(s))ds, y(α(t))

) ∣
∣
∣
∣

� a1(t)|x(t) − y(t)| + a3(t)|x(α(t)) − y(α(t))| +
a2(t)

∣
∣
∣
∣

∫ t

0
p(t, s, x(s))ds −

∫ t

0
p(t, s, x(s))ds

∣
∣
∣
∣

� 2k‖x − y‖ + k a ω(p, ε),

whereω(p, ε) = sup{|p(t, s, x) − p(t, s, y)| : t, s ∈ [0, a]; x, y ∈ [−r, r ]; ‖x − y‖
� ε}.

Since, we know that p = p(t, s, x) is uniformly continuous on the bounded subset
[0, a] × [0, a] × [−r, r ], we infer that ω(p, ε) → 0 as ε → 0. Thus, the operator F
is continuous on Br . Similarly, one can easily show that G is continuous on Br , and
consequently, we deduce that T is continuous on Br .
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Now, we show that the operators F and G satisfy the Darbo condition with respect
to the measure ω0 as defined in (∗), in the ball Br . Take a nonempty subset X of
Br and x ∈ X , then for a fixed ε > 0 and t1, t2 ∈ [0, a] such that without loss of
generality, we may assume that t1 � t2 and t2 − t1 � ε, and we obtain

|(Fx)(t2) − (Fx)(t1)| =
∣
∣
∣
∣u(t2, x(t2)) + f

(

t2,
∫ t2

0
p(t2, s, x(s))ds, x(α(t2))

)

−u(t1, x(t1)) + f

(

t1,
∫ t1

0
p(t1, s, x(s))ds, x(α(t1))

) ∣
∣
∣
∣

� |u(t2, x(t2)) − u(t2, x(t1))| + |u(t2, x(t1)) − u(t1, x(t1))|
+
∣
∣
∣
∣ f

(

t2,
∫ t2

0
p(t2, s, x(s))ds, x(α(t2))

)

− f

(

t2,
∫ t1

0
p(t1, s, x(s))ds, x(α(t2))

) ∣
∣
∣
∣

+
∣
∣
∣
∣ f

(

t2,
∫ t1

0
p(t1, s, x(s))ds, x(α(t2))

)

− f

(

t1,
∫ t1

0
p(t1, s, x(s))ds, x(α(t1))

) ∣
∣
∣
∣

� a1(t)|x(t2) − x(t1)| + |u(t2, x(t1)) − u(t1, x(t1))|
a2(t)

∣
∣
∣
∣

∫ t2

0
p(t2, s, x(s))ds −

∫ t1

0
p(t1, s, x(s))ds

∣
∣
∣
∣

+
∣
∣
∣
∣ f

(

t2,
∫ t1

0
p(t1, s, x(s))ds, x(α(t2))

)

− f

(

t1,
∫ t1

0
p(t1, s, x(s))ds, x(α(t2))

) ∣
∣
∣
∣

+
∣
∣
∣
∣ f

(

t1,
∫ t1

0
p(t1, s, x(s))ds, x(α(t2))

)

− f

(

t1,
∫ t1

0
p(t1, s, x(s))ds, x(α(t1))

) ∣
∣
∣
∣ (9.137)

For simplicity, we define the following notations

ωu(ε, .) = sup{|u(t, x) − u(t ′, x)| : t, t ′ ∈ [0, a]; |t − t ′| � ε; x ∈ [−r, r ]}
ωp(ε, ., .) = sup{|p(t, s, x) − p(t ′, s, x)| : t, t ′ ∈ [0, a]; |t − t ′| � ε; x ∈ [−r, r ]}
ω f (ε, ., .) = sup{| f (t, y, x)− f (t ′, y, x)| : t, t ′∈[0, a]; |t−t ′|�ε; x ∈ [−r, r ], y∈[−k′a, k′a]}

k′ = sup{|p(t, s, x)| : t, s ∈ [0, a]; x ∈ [−r, r ]}

Then, using relation (9.137), we obtain the following

|(Fx)(t2) − (Fx)(t1)| � 2k|x(α(t2)) − x(α(t1))| + ωu(ε, .) + k[ωp(ε, ., .).a + k′ε] + ω f (ε, ., .)
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This yields the following estimate

ω(Fx, ε) � 2kω(x, ω(α, ε)) + ωu(ε, .) + k[ωp(ε, ., .).a + k ′ε] + ω f (ε, ., .)

In view of our assumption, we infer that the functions u = u(t, x) and f = f (t, y, x)

are uniformly continuous on [0, a] × R and [0, a] × R × R. Hence, we deduce that
ωu(ε, .) → 0, ωp(ε, ., .) → 0, ω f (ε, ., .) → 0 as ε → 0. Thus,

ω0(F X) � 2kω0(X) (9.138)

Similarly,
ω0(G X) � 2kω0(X) (9.139)

Finally, from (9.135), (9.136), (9.138) and (9.139) and Theorem 9.32, we infer that
the operator T satisfies the Darbo condition on Br with respect to the measure ω0

with constant (γ r + η) 2k + (γ r + η) 2k. Also, we have

(γ r + η) 2k + (γ r + η) 2k = 4k(γ r + η) = 4k(γ r1 + η)

= 4k

(

γ

(
(1 − 2γ η) − √

1 − 4γ η

2γ 2

)

+ η

)

= 4k

(
1 − √

1 − 4γ η

2γ

)

< 1.

Hence, the operator T is a contraction on Br with respect to ω0. Thus, by applying
Theorem 9.32, we get that T has at least one fixed point in Br . Consequently, the
nonlinear functional-integral equation (9.131) has at least one solution in Br . This
completes the proof. �

Special Cases

We now give some examples of classical integral and functional equations considered
in applied part of nonlinear analysis which are particular cases of the equation (9.131).

1. If g(t, y, x) = 1, then Eq. (9.131) is in the following form which studied in [380].

x(t) =
(

u(t, x(t)) + f

(

t,
∫ t

0
p(t, s, x(s))ds, x(α(t))

))

. (9.140)

2. For u(t, x) = 0, we obtain the following nonlinear functional-integral equation
studied in [38, 379].

x(t)= f

(

t,
∫ t

0
p(t, s, x(s))ds, x(α(t))

)

g

(

t,
∫ a

0
q(t, s, x(s))ds, x(β(t))

)

.

(9.141)
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3. f (t, y, x) = y and g(t, y, x) = 1, then we get the following functional-integral
equation studied in [37].

x(t) = u(t, x(t)) +
∫ t

0
p(t, s, x(s))ds. (9.142)

4. If u(t, x) = 0, g(t, y, x) = 1 and f (t, y, x) = u(t, x)y, then Eq. (9.132) has the
following form as in the paper [381].

x(t) = u(t, x(t))
∫ t

0
p(t, s, x(s))ds. (9.143)

5. If u(t, x) = 0, g(t, y, x) = 1 and f (t, y, x) = a(t) + y, then we get following
well known nonlinear Volterra integral equation

x(t) = a(t) +
∫ t

0
p(t, s, x(s))ds. (9.144)

6. If u(t, x) = 0, f (t, y, x) = 1 and g(t, y, x) = b(t) + y, then we obtain Urysohn
integral equation

x(t) = b(t) +
∫ a

0
q(t, s, x(s))ds. (9.145)

7. If u(t, x) = 0, f (t, y, x) = a(t) + y and g(t, y, x) = y, then Eq. (9.131) has the
form examined in the paper [170].

x(t) = a(t)
∫ a

0
q(t, s, x(s))ds +

(∫ t

0
p(t, s, x(s))ds

)(∫ a

0
q(t, s, x(s))ds

)

.

(9.146)

8. If u(t, x) = 0, f (t, y, x) = 1, g(t, y, x) = 1 + xy and q(t, s, x(s)) = t
t+s ϕ(s)

x(s), β(t) = t , where ϕ(s) is an even polynomial in s (we may properly call ϕ(s)
the characteristic function in terms of which x is defined; however, we notice that
in physical applications of FIE (9.147) below certain restrictions are necessary,
such as

∫ 1
0 ϕ(s)ds � 1

2 , but from the point of view of pure mathematics restrictions
of this type are not essential), then Eq. (9.131) has the form

x(t) = 1 + x(t)
∫ a

0

t

t + s
ϕ(s)x(s)ds. (9.147)

The above equation is the famous quadratic integral equation [139] of Chan-
drasekhar type and was considered in many papers.

On the other hand, Eq. (9.131) covers also the well-known functional equation of the
first order having the form
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x(t) = f1(t, x(α(t))).

For this, it is sufficient to put g(t, y, x) = 1, u(t, x) = 0 and f (t, y, x) = f1(t, x).
Now, we present an example of functional-integral equation, and consequently,

see the existence of its solutions by using Theorem 9.33.

Example 9.9 Consider the following nonlinear functional-integral equation:

x(t) =
(

1

5
sin

(
t

4

)

+ 1

4

∫ t

0
ts cos(x(s))ds

)

.

(
1

3

∫ 1

0
t sin

(
sx(s)

1 + x(s)

)

ds

)

,

(9.148)
for t ∈ [0, 1].

Let us take u : [0, 1] → R, f, g : [0, 1] × R × R → R and p, q : [0, 1] × [0, 1]
× R → R, and comparing (9.148) with (9.131), we get

u(t, x(t)) = 1

5
sin

(
t

4

)

, f (t, y1, x) = 1

4
y1, g(t, y2, x) = t

3
y2,

p(t, s, x) = ts cos(x(s)), q(t, s, x) = sin

(
sx(s)

1 + x(s)

)

.

It is easy to prove that these functions are continuous and satisfy the hypothesis
(H2) with a1 = a3 = a5 = 0, a2 = 1

4 , a4 = 1
3 . In this case, k = max

{
0, 1

3 , 1
4

} = 1
3 .

Moreover,

|u(t, 0)| � 1

5
, | f (t, 0, x)| = 0, |g(t, 0, x)| = 0,

|p(t, s, x)| � 0 + 1 |x(t)|, |q(t, s, x)| � 0 + 1 |x(t)|.

It is observed that α = 0, β = 1 and l = 1
5 , m = 0, a = 1, aβ = 1 ≥ 1 and aβ = 1.

Also,

4γ η = 4(k + kaβ)(kaα + l + m) = 4

(
2

3

)

.

(
1

5

)

= 8

15
< 1.

Hence, all the hypothesis from (H1)–(H6) are satisfied. Applying the result obtained
in Theorem 9.33, we deduce that Eq. (9.131) has at least one solution in Banach
algebra C[0, 1].

9.6 Application to Abstract Volterra Integrodifferential
Equations

Since the classical work of Volterra, the theory of linear and nonlinear Volterra
equations has played an important role in the applications of mathematics in various
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disciplines. In the last 40 years, interest has also extended to “abstract” Volterra
equations. Here, the term “abstract” means that one considers a generalization of the
classical equation in one of the following senses:

1. The functions take values in Banach spaces (usually of infinite dimension), or
2. One considers general operator equations in which the operators are assumed to

have certain “Volterra-typical” properties.

In this section, we find the common mild solution of abstract Volterra integrodif-
ferential equations of the type (see Theorem 9.34):

u′(t) + Au(t) = f (t, u(t)) +
∫ t

t0

g

(

t, s, u(s),
∫ t

t0

K1(s, τ, u(τ ))dτ

)

ds

+
∫ t

t0

h

(

t, s, u(s),
∫ ∞

t0

K2(s, τ, u(τ ))dτ

)

ds (9.149)

u′(t) + Au(t) = f̄ (t, u(t)) +
∫ t

t0

ḡ

(

t, s, u(s)),
∫ t

t0

K 1(s, τ, u(τ ))dτ

)

ds

+
∫ t

t0

h̄

(

t, s, u(s),
∫ ∞

t0

K 2(s, τ, u(τ ))dτ

)

ds (9.150)

where −A is the infinitesimal generator of C0-semigroup {T (t)|t ≥ 0} of bounded
linear operators on a Banach space B with norm ‖ · ‖, f, f̄ ∈ C(R+ × B, B), g, ḡ,

h, h̄ ∈ C(R+ × R+ × B × B, B), K1, K̄1, K2, K 2 ∈ C(R+ × R+ × B, B) and R+
= (0,∞).

In the sequel, we extend Theorem 9.34 to the study of the common mild solution
of (9.149) and of the infinite family of integrodifferential equations (see Theorem
9.35):

u′(t) + Au(t) = f j (t, u(t)) +
∫ t

t0

g j

(

t, s, u(s)),
∫ t

t0

K1 j (s, τ, u(τ ))dτ

)

ds

+
∫ t

t0

h j

(

t, s, u(s),
∫ ∞

t0

K2 j (s, τ, u(τ ))dτ

)

ds (9.151)

where f j , g j , K1 j and K2 j ( j = 1, 2, . . .) play the roles of f̄ , ḡ, K 1 and K 2 of
(9.150).

It may be mentioned that equations of the type (9.149) arise naturally in study
of initial value problems on the infinite half line. Moreover, many problems arising
in various branches of physics and in other areas of mathematical sciences find
themselves incorporated in the abstract formulation (9.149) (see, for instance, [44,
388, 397]). Existence, uniqueness and other properties of the solution of several
forms of (9.149) using various assumptions and different methods have been studied,
among others, by Barbu [39], Fitzgibbon [233], Hussain [282], Martin, Jr. [388],
Miller [397], Miller, Nohel and Wong [590], Sinestrari [559], Singh [560], Shuart
[580], Travis and Webb [590], Vainberg [599] and Webb [606].
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In this section, we study on existence and uniqueness of the common solution
of the Eqs. (9.149) and (9.150). To prove the existence of a common solution of
Eqs. (9.149) and (9.150), we utilize a fixed point theorem of Yen [613] for two
contractive type operators (see Lemma 9.4). On the other hand, the uniqueness of
the solution is established using a result of Pachpatte [438] (see Lemma 9.5). In the
sequel, some results of Singh [560] and Hussain [282] are obtained as a particular
case of our results (see Corollaries 9.3–9.5).The proof of Theorem 9.35 is prefaced
by a special case of fixed point theorem of Hussain and Sehgal [283] (see Lemma
9.6) and Lemma 9.5.

Throughout in this section, B stands for a Banach space with norm ‖ · ‖ and −A
for the infinitesimal generator of C0 - semigroup of operators {T (t), t ≥ 0} on B. A
family {T (t) : t ∈ R+} of bounded operators from B into B is a C0-semigroup if:

i. T (0) = I the identity operator and T (t + s) = T (t)T (s) for all t, s � 0
ii. T (·) is strongly continuous in t ∈ R+
iii. ‖ T (t) ‖≤ Meωt for some M ≥ 0, real ω and t ∈ R+ ([398])
For the sake of brevity, we assume that

H(T, t0, f, g, h, K1, K2) = T (t − t0)u0 +
∫ t

t0
T (t − s) f (s, u(s))ds

+
∫ t

t0
T (t − s)

(∫ s

t0
g
(
s, τ, u(τ ),

∫ t

t0
K1(τ, ξ, u(ξ))dξ

)
dτ

)

ds

+
∫ t

t0
T (t − s)

(∫ s

t0
h
(
s, τ, u(τ ),

∫ ∞

t0
K2(τ, ξ, u(ξ))dξ

)
dτ

)

ds.

A continuous u(t) is a mild solution of (9.149) if:

u(t) = H(T, t0, f, h, K1, K2).

Moreover, a continuous u(t) is a common mild solution of (9.149) and of (9.150) if

H(T, t0, f, h, K1, K2) = u(t) = H(T, t0, f̄ , h̄, K 1, K 2).

We use the following assumptions in our first theorem. For all t, s in (t0,∞) and
xi , yi in B, i = 1, 2, let nonnegative numbers Li , i = 1, 2, 3, 4, 5, 6, 7 exist, such
that

A1. ‖ K1(t, s, y1) − K 1(t, s, y2) ‖� L1 ‖ y1 − y2 ‖
A2. sup

t≥t0

∫ ∞

t0

‖ K2(t, s, y1) − K 2(t, s, y2) ‖� L2 ‖ y1 − y2 ‖
A3. ‖ g(t, s, x1, y1) − ḡ(t, s, x2, y2) ‖� L3 ‖ x1 − x2 ‖ +L4 ‖ y1 − y2 ‖
A4. ‖ h(t, s, x1, y1) − h̄(t, s, x2, y2) ‖� L5 ‖ x1 − x2 ‖ +L6 ‖ y1 − y2 ‖
A5. ‖ f (t, x1) − f̄ (t, x2) ‖� L7 ‖ x1 − x2 ‖
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In the proof of Theorem 9.34, we require the lemmas stated below. The following
fixed point theorem is essentially given by Yen [613] (see also Hussain and Sehgal
[283] Corollary 2 and Rhoades [519] Theorem 14).

Lemma 9.4 Let T1 and T2 be maps on a complete metric space X. If there exist a
positive integer m and positive number k < 1 such that

d(T m
1 x, T m

2 y) � kd(x, y) for all x, y ∈ X,

then T1 and T2 have a unique common fixed point.

The following lemma, due to Pachpatte [438], plays the key role in proving the
uniqueness of the common mild solution of (9.149) and (9.150) and the Lipschitz
continuity of certain maps.

Lemma 9.5 Let x(t), a(t), b(t) and c(t) be real-valued nonnegative continuous
functions defined on R, for which the inequality

x(t) � x0 +
∫ t

0
a(s)x(s)ds

+
∫ t

0
a(s)

(∫ s

0
b(r)x(r)dr

)

ds +
∫ s

0
a(s)

(∫ s

0
b(r)

(∫ r

0
c(z)x(z)dz

)

dr

)

ds

holds for all t in R+, where x0 is a nonnegative constant. Then,

x(t) � x0

(

1 +
∫ t

0
a(s) exp

(∫ s

0
a(r)dr

){

1 +
∫ s

0
b(r) exp

(∫ r

0
(b(z) + c(z))dz

)

dr

}

ds

)

.

Theorem 9.34 (Pathak [448]) Suppose that A1–A5 are satisfied. Then, for u0 in B,
the initial value problems (9.149) and (9.150) have a unique common mild solution
u(t) in C([t0, t1) for t � t0, where t1 is arbitrarily fixed, with t1 > t0. Moreover, the
map u0 → u from B into C([t0, t1], B) is Lipschitz continuous.

Proof Let C = C([t0, t1], B). Define the norm ‖ · ‖C in C as ‖ u ‖C= max
p∈[t0,t1]

‖
u(t) ‖ . Then, ‖ · ‖C is a Banach space. Let F, F : C → C be such that

(Fu)(t) = H(T, t0, f, g, h, K1, K2) t0 � t < ∞ (9.152)

(Fu)(t) = H(T, t0, f̄ , ḡ, h̄, K 1, K 2) t0 � t < ∞ (9.153)

Evidently, a common solution of Eqs. (9.149) and (9.150) is also a common fixed
point of the operators F and F .

Let M be an upper bound of ‖ T (t − s) ‖ on [t0, t1]. Evidently, M = M if ω ≤ 0
and M = M exp(ωt1) if ω > 0 (See iii.).
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‖ (Fu)(t) − (Fv)(t) ‖�
∫ t

t0
M L7 ‖ u(s) − v(s) ‖ ds

+
∫ t

t0
M

∫ s

t0
(L5 + L6 L2) ‖ u(τ ) − v(τ) ‖ dτds

+
∫ t

t0
M

∫ s

t0

[

L3 ‖ u(τ ) − v(τ) ‖ +L4

∫ τ

t0
L1 ‖ u(ξ) − v(ξ) ‖ dξ

]

dτds

� M L7 ‖ u − v ‖C (t − t0)

+ M(L3 + L5 + L6 L2) ‖ u − v ‖C
(t − t0)2

2
+ M L4 L1 ‖ u − v ‖C

(t − t0)3

6

= M(t − t0)

[{

L7 + L3
(t − t0)

2
+ L4 L1

(t − t0)2

6

}

+ (L5 + L6 L2)
(t − t0)

2

]

‖ u − v ‖C

= Mα

[{

L7 + L3
α

2
+ L4 L1

α2

6

}

+ (L5 + L6 L2)
α

2

]

‖ u − v ‖C

where α = t − t0.
Repeating this process again, we have

‖ (F2u)(t) − (F
2

u)(t) ‖�
∫ t

t0
M L7 ‖ (Fu)(s) − (Fu)(s) ‖ ds

+
∫ t

t0
M

∫ s

t0

[

L3 ‖ (Fu)(τ ) − (Fu)(τ ) ‖ +L4

∫ τ

t0
L1 ‖ (Fu)(ξ) − (Fv)(ξ) ‖ dξ

]

dτds

+
∫ t

t0
M

∫ s

t0
(L5 + L6 L2) ‖ (Fu)(τ ) − (Fv)(τ ) ‖ dτds

� M
2

2

[

L7

∫ t

t0

{

2L7(s − t0) + (L3 + L5 + L6 L2)(s − t0)2 + L4 L1
(s − t0)3

3

}

ds

+ (L3 + L5 + L6 L2)

∫ t

t0

∫ s

t0

{

2L7(τ − t0) + (L3 + L5 + L6 L2)(τ − t0)2 + L4 L1
(τ − t0)3

3

}

dτds

+ L4 L1

∫ t

t0

∫ s

t0

∫ τ

t0

{

2L7(ξ − t0) + (L3 + L5 + L6 L2)(ξ − t0)2 + L4 L1
(ξ − t0)3

3

}

dξdτds

]

‖ u − v ‖C

= M
2

2

[

L7

{

L7(t − t0)2 + (L3 + L5 + L6 L2)
(t − t0)3

3
+ L4 L1

(t − t0)4

12

}

+ (L3 + L5 + L6 L2)

{

L7
(t − t0)3

3
+ (L3 + L5 + L6 L2)

(t − t0)4

12
+ L4 L1

(t − t0)5

60

}

+L4 L1

{

L7
(t − t0)4

12
+ (L3 + L5 + L6 L2)

(t − t0)5

60
+ L4 L1

(t − t0)6

360

}]

‖ u − v ‖C

= α2 M
2

2

[

L7

{

L7 + (L3 + L5 + L6 L2)
α

3
+ L4 L1

α2

12
+ L4 L1

α3

60

}

+L4 L1

{

L7
α2

12
+ (L3 + L5 + L6 L2)

α3

60
+ L4 L1

α4

360

}]

‖ u − v ‖C

= α2 M
2

2

[{

L2
7 + L2

3
α2

12
+ L2

4 L2
1

α4

360
+ L7 L3

α

3
+ L7 L4 L1

α2

6
+ L3 L4 L1

α3

60

}

+
(

L7
1

3
+ L3

α

12
+ L4 L1

α2

60

)

(L5 + L6 L2)α + (L5 + L6 L2)2 α2

12

]

‖ u − v ‖C
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� α2 M
2

2

[{

L2
7 + L2

3
α2

4
+ L2

4 L2
1

α4

360
+ L7 L3α + L7 L4 L1

α2

3
+ L3 L4 L1

α3

6

}

+2

(

L7 + L3
α

2
+ L4 L1

α2

6

)

(L5 + L6 L2)
α

2
+ (L5 + L6 L2)2 α2

4

]

‖ u − v ‖C

= α2

2! M
2
[{

L7 + L3
α

2
+ L4 L1

α2

6

}

+ (L5 + L6 L2)
α

2

]2

‖ u − v ‖C .

Further, continuing this process (n − 2) times, it can be seen that

‖ (Fnu)(t) − (F
n
v)(t) ‖�

(
αn

n!
)

M
n
[

L7 + L3
α

2
+ L4 L1

α2

6
+ (L5 + L6 L2)

α

2

]n

‖ u − v ‖C .

Therefore, ‖ Fnu − F
n
v ‖C≤ k ‖ u − v ‖C where

k = 1

n! (αM)n

[

L7 + L3
ᾱ

2
+ L4 L1

α2

6
+ (L5 + L6L2)

α

2

]n

since when we take the maximum with respect to t , α = t − t0 becomes α = t1 − t0
For sufficiently large n, we can make k < 1, and so all the hypothesis of Lemma

9.4 are satisfied. Consequently, there exists a unique u in C such that

(Fu)(t) = u(t) = (Fu)(t).

Moreover, this unique common fixed point is a common mild solution of (9.149)
and (9.150).

In order to show that (9.149) and (9.150) have exactly one common mild solution,
we assume that v is another common mild solution of (9.149) and (9.150) with
v(t0) = v0.

Suppose L = max{Li | i = 1, 2, 3, 4, 5, 6, 7}. Then,

‖ u(t) − v(t) ‖=‖ (Fu)(t) − (Fv)(t) ‖≤ M ‖ u0 − v0 ‖ +
∫ t

t0
M L ‖ u(s) − v(s) ‖ ds

+
∫ t

t0

∫ s

t0
M L

[
‖ u(τ ) − v(τ) ‖ +

∫ τ

t0
L ‖ u(ξ) − v(ξ) ‖ dξ

]
dτds

+
∫ t

t0

∫ s

t0
M L

[
‖ u(τ ) + v(τ) ‖ +

∫ ∞

t0
L ‖ u(ξ) − v(ξ) ‖ dξ

]
dτds.

Now Lemma 9.5 yields ‖ u(t) − v(t) ‖≤ M ‖ u0 − v0 ‖ R(t) where:

2R(t) =
[

1 +
∫ t

t0

M L exp

(∫ s

t0

M Ldτ

){

1 +
∫ s

t0

exp

(∫ τ

t0

2[1 + L]dξ

)

dτ

}

ds

]

+
[

1 +
∫ t

t0

M L exp

(∫ s

t0

M̄ Ldτ

){

1 +
∫ s

t0

exp[2(1 + L)dτ

}

ds

]
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Hence, ‖ u − v ‖c≤ M ‖ u0 − v0 ‖ R, where R = max{R(t), t ∈ [t0, t1]}.
By induction, we can prove that

‖ u − v ‖C≤
(

M R
)n

n! ‖ u0 − v0 ‖

which tends to zero as n → ∞. This yields the unique common mild solution, and
the Lipschitz continuity of the map u0 → u . This completes the proof.

The following results easily follow from Theorem 9.34.

Corollary 9.3 ([560]) Suppose that A1, A3, A5 and h = h̄ = 0 with K2 = K 2 are
satisfied. Then, for u0 in B, the initial value problems (9.149) and (9.150) have a
unique common mild solution u in C([t0, t1], B) is Lipschitz continuous.

Corollary 9.4 ([44]) Suppose that A1 with K1 = K 1, A3 with g = ḡ and L3 =
L4, A5 with f = f̄ and h = h̄ = 0 with K2 = K 2 are satisfied. Then, for u0 ∈ B,
the initial value problem (9.149) has a unique mild solution u ∈ C([t0, t1], B) for
t � t0 such that t0 � t � t1. Moreover, the map u0 → u from B into C([t0, t1], B) is
Lipschitz continuous.

Remark 9.8 Fitzgibbon [233] and Webb [606] have studied certain special forms of
(9.149) by using different assumptions and methods.

Our next theorem is prefaced by the following result, which is a special case of the
fixed point theorem of Hussain and Sehgal [283] (Corollary 2) and Rhoades [519]
(Theorem 20).

Lemma 9.6 Let T and Ti , i = 1, 2, . . . be maps on a metric space X. If there exist
positive integers mi and positive numbers ki < 1, i = 1, 2, . . . such that

d(T m x, T mi
i y) � ki d(x, y) for all x, y ∈ X,

then there exists a unique element u in X such that T u = u = Ti u.

We use the following assumptions in Theorem 9.35 (see also A1–A5).

For all t, s in [t0,∞) and xq , yq in B, q = 1, 2, let nonnegative numbers Li j , i =
1, 2, 3, 4, 5, 6, 7, j = 1, 2, 3, . . . exist, such that

B1. ‖ K1(t, s, y1) − Ki j (t, s, y2) ‖� Li j ‖ y1 − y2 ‖
B2. sup

t�t0

∫ ∞

t0

‖ K2(t, s, y1) − K2 j (t, s, y2) ‖ ds � L2 j ‖ y1 − y2 ‖

B3. ‖ g(t, s, x1, y1) − g j (t, s, x1, y2) ‖� L3 j ‖ x1 − x2 ‖ +L4 j ‖ y1 − y2 ‖
B4. ‖ h(t, s, x1, y1) − h j (t, s, x2, y2) ‖� L5 j ‖ x1 − x2 ‖ +L6 j ‖ y1 − y2 ‖
B5. ‖ f (t, x1) − f j (t, x2) ‖� L7 j ‖ x1 − x2 ‖ .



9.6 Application to Abstract Volterra Integrodifferential Equations 749

Theorem 9.35 Suppose that B1–B5 are satisfied for each j = 1, 2, . . . . Then, for
u0 in B, the initial value problems (9.149) and (9.151) have a unique common mild
solution u in C([t0, t1], B). Moreover, the map u0 → u from B into C([t0, t1], B) is
Lipschitz continuous.

Proof Let C and Fj : C → C, j = 1, 2, . . . be such that

(Fj u)(t) = H(T, t0, f j , g j , h j , K1 j , K2 j ) t0 ≤ t ≤ ∞. (9.154)

Then, a common solution of (9.152) and (9.154) is a common fixed point of the
operators F and Fj , j = 1, 2, . . . . It can be seen that for each j ∈ {1, 2, . . .}, we get

(Fj u)(t) = H(T, t0, f j , g j , h j , K1 j , K2 j ) t0 ≤ t ≤ ∞.

Then, a common solution of (9.152) and (9.154) is a common fixed point of the
operators F and f j , j = 1, 2, . . . . It can be seen that for each j ∈ {1, 2, . . . .}, we
get

‖ Fnu − Fn
j v ‖C≤ k j ‖ u − v ‖C

where

k j = 1

n! (ᾱM)n

[

L7 j + L3 j
ᾱ

2
+ L4 j L1 j

ᾱ2

6
+ (L5 j + L6 j L2 j )

ᾱ

2

]n

.

For sufficiently large n, we can make k j < 1. Consequently, Lemma 9.6 guarantees
the existence of a unique u in C such that Fu = u = Fj u for any j = 1, 2, . . . .

The rest of the proof is similar to that given in the proof of Theorem 9.34.

Remark 9.9 Since Lemma 9.6 is true for F and an uncountable family of maps, it
follows that Theorem 9.35 is true for (9.149) and an uncountable family of integrod-
ifferential equations of type (9.151).

It may be considered that the following result easily follows from Theorem 9.35.

Corollary 9.5 ([560]) Suppose that B1, B3, B5 and h = h j = 0, K2 = K2 j are sat-
isfied for each j = 1, 2, . . . . Then, for u0 in B, the initial value problems (9.149)
and (9.151) have a unique common mild solution u in C([t0, t1], B) for t � t0 such
that t0 � t � t1. Moreover, the map u0 → u from B into C([t0, t1], B) is Lipschitz
continuous.

9.7 Application to Surjectivity Theorems

In this section, we introduce a new class of mappings which is known as locally
λ-strongly φ-accretive mappings, where λ and φ have special meanings. Notice that
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this class of mappings constitutes a generalization of the well-known monotone
mappings, accretive mappings and strongly φ-accretive mappings. In the sequel,
using Caristi–Kirk’s fixed point theorem, we extend the results of Park and Park
[443], Browder [114] and Ray [502] to locally λ-strongly φ-accretive mappings.
Finally, we seek to present the notion of generalized directional contractor which
generalizes the classical notion of directional contractor introduced by Altman in
his fundamental paper [12] and prove a surjectivity theorem which is used to solve
certain functional equations in Banach spaces.

Let X and Y be Banach spaces. Throughout, B(x, r) = {w ∈ E : ‖w − x‖ � r}
will denote a closed ball in a Banach space E (where E = X or E = Y in this case).

Recall that the duality mapping J from X into 2X∗
is given by

J (x) = {
j ∈ X∗ : 〈x, j〉 = ‖x‖2 = ‖ j‖2

}
(x ∈ X)

where 〈·, ·〉 denotes the duality pairing. It is well known that J is single valued in
case X is strictly convex, and it is uniformly continuous on bounded subsets of X
whenever X∗ is uniformly convex.

As a generalization of φ-accretive operator, the following definition was intro-
duced by Pathak and Mishra [461].

Definition 9.8 A Lipschitzian mapping P : X → Y with Lipschitzian constant M
is said to be locally λ-strongly φ-accretive if for each y ∈ Y and r > 0, there exist
constants λ, c with c/2M > λ ≥ 0 such that: if ‖Px − y‖ � r and j ∈ J , the duality
map on Y , then for all u ∈ X sufficiently near to x ,

〈Pu − Px, φ(u − x) + λM−1 j (Pu − Px)〉 ≥ c‖u − x‖2. (9.155)

Observation

1. A 0-strongly φ-accretive mapping P : X → Y is strongly φ-accretive as defined
in [1].

The proof of the next result is prefaced by the following Lemma of Park and Park
[8].

Lemma 9.7 For any y ∈ Y, y∗ ∈ J (y), and ε > 0, there exists an h ∈ X such that
‖h‖ ≥ 1 and

∥
∥φ(h) − y∗‖y‖−1

∥
∥ < ε.

Notice that for any y∗ ∈ J (y) ∈ 2Y ∗
, we have

‖y‖2 � ‖z‖2 − 2〈z − y, y∗〉 for any z ∈ Y. (9.156)

Theorem 9.36 Let X and Y be Banach spaces and P : X → Y a locally Lipschitzian
and locally λ-strongly φ-accretive mapping. If the duality mapping J of Y is strongly
upper semicontinuous and P(X) is closed, then P(X) = Y .
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Proof As P(X) is closed, to prove the theorem it is just sufficient to show that P(X)

is open. It is well known that J (y) �= ∅ for each y ∈ Y , so we can choose y∗ ∈ J (y).
For a given x0 ∈ X , choose ε1 > 0 so small that P is Lipschitzian with constant M
on B(x0, 2ε1). Choose λ > 0 and ε2 > 0 so that (9.155) holds on B(Px0, 2Mε1)

whenever ‖u − x0‖ � 2ε2; set

ε = min{ε1, ε2} and r = min{cε/(1 +
√

1 + 4cλM−1), Mε}.

Now it suffices to show that B(Px0, r) ⊂ P(X). To this end, suppose y ∈ B(Px0, r)

and y /∈ P(X). It follows that dist (y, P(X)) > 0. Let d = dist (y, P(X)), and let
D = {x ∈ B(x0, ε) : ‖y − Px‖ � r}. Clearly, x0 ∈ D so that D is nonempty. More-
over, D is closed. Therefore, D is complete. For any x ∈ D, by Lemma 9.7, there
exists h ∈ X such that ‖h‖ ≥ 1 and

〈φ(h), (y − Px)∗‖y − Px‖−1〉 � (c/2M − λ). (9.157)

Set xt = x + th, t > 0. By (9.155), for t sufficiently small, we have

〈Pxt − Px, φ(xt − x) + λM−1 j (Pxt − Px)〉 ≥ c‖xt − x‖2.

Thus,

〈Pxt − Px, φ(xt − x)〉 ≥ c‖xt − x‖2 − λM−1〈Pxt − Px, j (Pxt − Px)〉
≥ c‖xt − x‖2 − λM−1‖Pxt − Px‖‖ j (Pxt − Px)‖

or 〈Pxt − Px, φ(h)〉 ≥ ct‖h‖2 − λM−1t−1‖Pxt − Px‖‖ j (Pxt − Px)‖
≥ ct‖h‖2 − λ‖h‖‖Pxt − Px‖
≥ ct‖h‖ − λ‖Pxt − Px‖
≥ (c/M − λ)‖Pxt − Px‖

As P is locally Lipschitzian, we have for x, xt ∈ B(x0, 2ε1)

‖Pxt − Px‖ � M‖xt − x‖.

Applying (9.157), we have

〈Pxt − Px, (y − Px)∗〉 = 〈Pxt − Px, ‖y − Px‖ φ(h) − ‖y − Px‖ φ(h), (y − Px)∗〉
≥ (c/M − λ)‖Pxt − Px‖ ‖y − Px‖

− (c/2M − λ)‖Pxt − Px‖ ‖y − Px‖
≥ (c/2M)‖Pxt − Px‖ ‖y − Px‖ . (9.158)

From (9.156) and (9.158), we have
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‖y − Pxt‖2 � ‖y − Px‖2 − 2〈Pxt − Px, (y − Pxt )
∗〉

= ‖y − Px‖2 − 2〈Pxt − Px, (y − Px)∗ − (y − Px)∗ + (y − Pxt )
∗〉

= ‖y − Px‖2 − 2〈Pxt − Px, (y − Px)∗〉
+ 2〈Pxt − Px, (y − Px)∗ − (y − Pxt )

∗〉
� ‖y − Px‖2 − 2〈Pxt − Px, (y − Px)∗〉

+ 2‖Pxt − Px‖‖(y − Px)∗ − (y − Pxt )
∗‖

� ‖y − Px‖2 − (cd/M)‖Pxt − Px‖
+ 2‖Pxt − Px‖‖(y − Px)∗ − (y − Pxt )

∗‖

Since y − Pxt → y − Px as t → 0 and J is strongly u.s.c., we may select t > 0 so
small that ‖(y − Px)∗ − (y − Pxt )

∗‖ � (cd/2M). Then, it follows that

‖y − Pxt‖2 � ‖y − Px‖2 − (cd/2M)‖Pxt − Px‖.

Recall that for sufficiently small t , we have

〈Pxt − Px, φ(xt − x)〉 ≥ c‖xt − x‖2 − λM−1‖Pxt − Px‖‖ j (Pxt − Px)‖.

This yields

‖xt − x‖ � 1 + √
1 + 4cλM−1

2c
‖Pxt − Px‖.

So
[c2d/M(1 +

√
1 + 4cλM−1)]‖xt − x‖ � ‖y − Px‖2 − ‖y − Pxt‖2.

Thus, we find that ‖y−Px‖2−‖y−Pxt‖2 ≥ 0. Hence, ‖y − Pxt‖ � ‖y − Px‖ � r
and xt ∈ B(x0, 2ε).

Notice that xt ∈ B(x0, 2ε) and ‖y − Pxt‖ � r imply

‖xt − x‖ � 1 + √
1 + 4cλM−1

2c
‖Pxt − Px‖

� 1 + √
1 + 4cλM−1

2c
(‖Pxt − y‖ + ‖y − Px0‖)

� r
1 + √

1 + 4cλM−1

c
� ε.

Let ψ(x) = [M(1 + √
1 + 4cλM−1)/c2d]‖y − Px‖2 and define g : D → D such

that gx = xt . Then,
‖x − gx‖ � ψ(x) − ψ(gx).

Observe that D being closed subset of X , it is complete. Since ψ is the continuous
map from the complete metric space D into nonnegative reals, by Caristi–Kirk’s
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fixed point theorem g has a fixed point in D. Note that ‖xt − x‖ = t‖h‖ �= 0; this is
a contradiction. �

Observation

• Theorem 9.36 generalizes results of Park and Park [443] and hence those of
Browder [114] and Ray [502].

• Geometrical structures of Y ∗ in Theorem 9.34 are not required as opposed to [114]
and [502].

Example 9.10 Let X = Y = R. Then, Y ∗ = R∗ = R. Define φ : X → Y ∗ implicitly
which satisfy conditions

(i) φ(X) is dense in Y ∗,
(ii) for each x ∈ X and each α ≥ 0,

‖φ(x)‖ � ‖x‖, ‖φ(αx)‖ = α‖φ(x)‖.

and P : X → Y explicitly by

Px = 2c

1 + √
1 + 4cλM−1

x + β ∀x ∈ X, β ∈ R.

Notice that the condition

〈Pu − Px, φ(u − x) + λM−1 j (Pu − Px)〉 ≥ c‖u − x‖2

for all u ∈ X sufficiently near to x yields

‖u − x‖ � 1 + √
1 + 4cλM−1

2c
‖Pu − Px‖. (9.159)

Indeed, for all u ∈ X sufficiently near to x ,

〈Pu − Px, φ(u − x) + λM−1 j (Pu − Px)〉 ≥ c‖u − x‖2

implies that

〈Pu − Px, φ(u − x)〉 + 〈Pu − Px, λM−1 j (Pu − Px)〉 ≥ c‖u − x‖2,

i.e.,

c‖u − x‖2 � ‖Pu − Px‖‖φ(u − x)‖ + λM−1‖Pu − Px‖‖ j (Pu − Px)‖,

i.e.,
c‖u − x‖2 � ‖Pu − Px‖‖u − x‖ + λM−1‖Pu − Px‖2.
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By solving the above quadratic in d = ‖u−x‖
‖Pu−Px‖ , we can easily find (9.158). Clearly,

P satisfies the above condition for all x ∈ X and all u ∈ X sufficiently near to x . By
definition of P , it is evident that P(X) = Y .

9.7.1 Generalized Directional Contractor and Its Application

In this section, we establish a surjectivity theorem for some nonlinear operators by
using the notion of generalized directional contractor. In the sequel, we apply our
result to obtain solution of certain functional equations.

Altman’s fundamental paper [12] contains very useful notion of directional con-
tractor as given below:

Let X and Y be two Banach spaces. Let P : D(P) ⊆ X → Y be a nonlinear
operator from a linear subspace D(P) of X to Y , �(x) : Y → D(P) a bounded lin-
ear operator associated with x ∈ D(P). Suppose there exists a positive number q =
q(P) < 1 such that for any x ∈ D(P) and y ∈ Y , there exist ε = ε(x, y) ∈ (0, 1]
satisfying

‖P(x + ε�(x)y) − Px − εy‖ � q ε ‖y‖. (9.160)

Then, �(x) is called a directional contractor for P at x ∈ D(P) and � : D(P) ⊂
X → L(Y, X) is called a directional contractor for P , where L(Y, X) denotes the
set of all linear continuous maps of Y into X . If there exists a constant B(> 0) such
that ‖�(x)‖ � B for all x ∈ D(P), then � is called a bounded directional contractor
for P .

We now introduce the concept of generalized contractor as follows:

Definition 9.9 Let X and Y be two Banach spaces. Let P : D(P) ⊂ X → Y be
a nonlinear operator from a linear subspace D(P) of X to Y , �(x) : Y → D(P)

a bounded linear operator associated with x ∈ D(P). Suppose there exists a pos-
itive number q = q(P) < 1 such that for any x ∈ D(P) and y ∈ Y , there exist
ε = ε(x, y) ∈ (0, 1] and a nonincreasing function c : [0,∞) → (0, q−1/2) satisfy-
ing

‖P(x + ε�(x)y) − Px − εy‖ � q ε c(‖x‖)‖y‖. (9.161)

Then, �(x) is called a generalized directional contractor for P at x ∈ D(P), and � :
D(P) ⊂ X → L(Y, X) is called a generalized directional contractor for P , where
L(Y, X) denotes the set of all linear continuous maps of Y into X . If there exists a
constant B(> 0) such that ‖�(x)‖ � B for all x ∈ D(P), then � is called a bounded
generalized directional contractor for P . It follows from the above definition that
�(x)y = 0 implies y = 0; i.e., �(x) is injective.

Notice that every generalized directional contractor is a directional contractor and
an inverse Gâuteaux derivative is a directional contractor. Moreover, P : D(P) ⊆



9.7 Application to Surjectivity Theorems 755

X → Y is said to have closed graph if xn → x , xn ∈ D(P) and Pxn → y imply
x ∈ D(P) and y = Px .

By applying the ideas of Ray and Walker [503], we are now ready to prove a
surjectivity theorem for generalized directional contractor.

Theorem 9.37 Let X and Y be two Banach spaces. A nonlinear map P : D(P) ⊂
X → Y which has closed graph and a bounded generalized directional contractor
� is surjective.

Proof Define a metric ρ on D(P) by

ρ(x, y) = max{‖x − y‖, (1 + q1/2)−1‖Px − Py‖}.

As D(P) has closed graph, (D(P), ρ) is a complete metric space. Suppose w /∈
R(P) (the range of P). For any x ∈ D(P), we set y = w − Px . Since P has a
bounded generalized directional contractor �, we have, for some 0 < ε(x, y) � 1,

‖P(x + ε�(x)y) − Px − εy‖ � q ε c(‖x‖)‖y‖. (9.162)

Set ε�(x)y = h. Then, we have

‖h‖ = ‖ε�(x)y‖ � εB‖y‖ = εB‖w − Px‖. (9.163)

From (9.162), we have

‖P(x + h) − w + (1 − ε)(w − Px)‖ � q ε c(‖x‖)‖w − Px‖

which yields

‖P(x + h) − w‖ − (1 − ε)‖w − Px‖ � q ε c(‖x‖)‖w − Px‖.

Therefore, we have

ε‖w − Px‖ − q ε c(‖x‖)‖w − Px‖ � ‖w − Px‖ − ‖w − P(x + h)‖

i.e.,

ε(1 − q c(‖x‖))‖w − Px‖ � ‖w − Px‖ − ‖w − P(x + h)‖. (9.164)

Again, from (9.162), we have

‖P(x + h) − Px‖ − ε‖w − Px‖ � q ε c(‖x‖)‖w − Px‖

which yields
‖P(x + h) − Px‖ � ε(1 + q c(‖x‖))‖w − Px‖. (9.165)
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From (9.164) and (9.165), we have

‖P(x + h) − Px‖ �
(

1 + q c(‖x‖)
)(

1 − q c(‖x‖)
)−1

(‖w − Px‖ − ‖w − P(x + h)‖)

�
(

1 + q1/2
)(

1 − q1/2
)−1

(‖w − Px‖ − ‖w − P(x + h)‖).

Using (9.163) again, we have

‖h‖ � εB‖w − Px‖
� B

(
1 − q c(‖x‖)

)−1
(‖w − Px‖ − ‖w − P(x + h)‖)

� B
(

1 − q1/2
)−1

(‖w − Px‖ − ‖w − P(x + h)‖).

Let a = max(B, 1) and ϕ(x) = a
(

1 − q1/2
)−1‖w − Px‖. Then, ϕ is continuous

with respect to metric ρ. Therefore, if we set f x = x + h, then f x �= x . Indeed, if
h = 0, then from (9.161), we have

ε‖y‖ � qε c(‖x‖)‖y‖ � q1/2ε ‖y‖ < ε ‖y‖.

But sincew /∈ R(P), y = Px − w �= 0.Therefore, f x �= x andρ(x, f x) � ϕ(x) −
ϕ( f x). This is a contradiction to Caristi–Kirk’s fixed point theorem. Hence we con-
clude that w ∈ R(P). �

Let X and Y be two Banach spaces. Let P : D(P) ⊂ X → Y , and let x ∈ X .
We now consider a special class of generalized directional contractors. Let �(x)(P)

be a set of generalized directional contractors for P at x ∈ D(P) called class (S) if
there exist a positive number q = q(P) < 1, a constant B > 0 and a nonincreasing
function c : [0,∞) → (0, q−1/2) with the following property:

For each y ∈ �(x)(P), there exist a positive number ε = ε(x, y) � 1 and an
element x̄ ∈ D(P) such that

(S1) ‖Px̄ − Px − εy‖ � qεc(‖x‖)‖y‖ and
(S2) ‖x̄ − x‖ � εB‖y‖.

Now we apply the above results to obtain the solution of certain functional equa-
tions.

Theorem 9.38 Let X and Y be two Banach spaces. Let P : D(P) ⊂ X → Y has
closed graph. For x ∈ D(P), let �(x)(P) denote the class (S). Suppose that y0 is
such that for each x ∈ D(P), the element y0 − Px belongs to the closure of the set
�(x)(P) defined by (S1) and (S2). Then, the equation Px − y0 = 0, x ∈ D(P) has
a solution.

Proof Suppose, if possible, Px − y0 = 0, x ∈ D(P) has no solution. Set y = y0 −
Px �= 0, then by hypothesis y ∈ �(x)(P). So we can choose y′ in �(x)(P) and a
α > 0 such that ‖y − y′‖ � α‖y‖. Note that α < 1 and does not depend on x .
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Since y′ ∈ �(x)(P), there exists x̄ such that

‖Px̄ − Px − εy′‖ � qε c(‖x‖)‖y′‖. (9.166)

From the above inequality (9.166), we have

‖Px̄ − y0 + y0 − Px − εy′‖ � qε c(‖x‖)‖y′‖.
As y = y0 − Px , we obtain

‖Px̄ − y0 + y − εy′‖ � qε c(‖x‖)‖y′‖. (9.167)

Choose q ′ > 0 such that q < q ′ < 1. After having chosen q ′, we may choose α > 0
sufficiently small such that (α + 1) ≤ qq ′. Since ‖y − y′‖ ≤ α‖y‖, we have ‖y′‖ �
(1 + α)‖y‖. From this and (9.167), we have

‖Px̄ − y0 + y − εy′‖ � q ′ε c(‖x‖)‖y‖.

On the other hand, we have

(‖Px̄ − y0 + (1 − ε)y‖ − ‖Px̄ − y0 + y − εy′‖) � ε ‖y − y′‖ � ε α ‖y‖.

Hence from (9.167) and the above inequalities, we have

‖Px̄ − y0 + (1 − ε)y‖ − ε α ‖y‖ � q ′ε c(‖x‖)‖y‖.

From this, we have

‖Px̄ − y0‖ − (1 − ε)‖y‖ − ε α ‖y‖ � q ′ε c(‖x‖)‖y‖.

Therefore, we obtain

ε(1 − q ′c(‖x‖) − α)‖y‖ � ‖y‖ − ‖Px̄ − y0‖

which implies
ε(1 − q ′q−1/2 − α)‖y‖ � ‖y‖ − ‖Px̄ − y0‖.

If we choose α > 0 so that β = 1 − q ′q−1/2 − α > 0, then we obtain

ε β‖y0 − Px‖ � ‖Px − y0‖ − ‖Px̄ − y0‖. (9.168)

But from (9.166), we have

‖Px̄ − Px‖ � ε(qc(‖x‖) + 1)‖y′‖
� ε(qc(‖x‖) + 1)(α + 1)‖y‖

or ‖Px̄ − Px‖ � ε(q1/2 + 1)(α + 1)‖y0 − Px‖.
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Using (9.168), the above inequality yields

‖Px̄ − Px‖ � (q1/2 + 1)(α + 1)β−1(‖Px − y0‖ − ‖Px̄ − y0‖).

Since ‖x̄ − x‖ � εB‖y′‖ � εB(α + 1)‖y‖ = εB(α + 1)‖y0 − Px‖ we have

‖x̄ − x‖ � B(α + 1)β−1(‖Px − y0‖ − ‖Px̄ − y0‖).

We now define a metric ρ on D(P) by

ρ(x, y) = max{‖x − y‖, (1 + q1/2)−1‖Px − Py‖}.

Set f x = x̄ . Since y′ �= 0(α < 1), we have x �= x̄ . Take a = {B, 1} and set ϕ(x) =
a(α + 1)β−1‖Px − y0‖. Then,

ρ(x, f x) � ϕ(x) − ϕ( f x).

This is a contradiction to Caristi–Kirk’s fixed point theorem. Hence, we conclude
that Px − y0 = 0, x ∈ D(P) has a solution. �

9.8 Application to Simultaneous Complementarity
Problems

The study of complementarity problems came into existence in the early sixties of
twentieth century. Since then, a variety of problems, in particular the explicit comple-
mentarity problems and the implicit complementarity problems, were discussed and
studied by many researchers. It is fairly well known fact that the complementarity
problems have got a wide range of applications in the areas such as optimization
theory, engineering, structural mechanics, theory of elasticity, lubrication theory,
economics, variational calculus, equilibrium theory on networks, stochastic optimal
control. For more details of these applications, one may refer to [149, 150, 153, 193,
194, 284, 316, 382, 383, 412, 440, 441].

Let 〈E, E∗〉 be a dual system of locally convex spaces and let K be a closed
convex cone in E . Let K ∗ be the dual of K , i.e.,

K ∗ = {
u ∈ E∗ : 〈x, u〉 � 0 for all x ∈ E

}
.

Let f : K → E∗ and g : K → E be mappings. The explicit complementarity prob-
lem and the implicit complementarity problem are as follows, respectively:

E.C.P: Find x0 in K such that f (x0) ∈ K ∗ and

〈x0, f (x0)〉 = 0,
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I.C.P: Find x0 in K such that f (x0) ∈ K ∗, g(x0) ∈ K and

〈g(x0), f (x0)〉 = 0.

For more details of these problems, the reader may refer to [49, 50, 193, 194,
316, 412, 440, 441].

For mappings f1, f2 : K → E∗ and g : K → E , we consider the simultaneous
explicit complementarity problem and implicit complementarity problem as follows:

S.E.C.P( f1, f2, K ) : Find x0 in K such that f1(x0) ∈ K ∗, f2(x0) ∈ K ∗ and

〈x0, f n
1 (x0)〉 = 0 and 〈x0, f n

2 (x0)〉 = 0,

S.I.C.P( f1, f2, g, K ) : Find x0 in K such that f1(x0) ∈ K ∗, f2(x0) ∈ K ∗, g(x0) ∈
K and

〈g(x0), f n
1 (x0)〉 = 0 and 〈g(x0), f n

2 (x0)〉 = 0.

Remark 9.10 For f1 = f2 and n = 1, the problem S.E.C.P( f1, f2, K ) contains
E.C.P as a particular case.

Remark 9.11 For f1 = f2 and n = 1, the problem S.I.C.P( f1, f2, K ) contains I.C.P
as a particular case.

Remark 9.12 If we take n = 1 and g(x0) = x0 − m(x0), where m is a point to point
mapping from E into itself, then the problem S.I.C.P( f1, f2, g, K ) reduces to the
problem of finding x0 in K such that f1(x0) ∈ K ∗, f2(x0) ∈ K ∗ and

〈x0 − m(x0), f1(x0)〉 = 0 and 〈x0 − m(x0), f2(x0)〉 = 0.

We note that the strongly nonlinear quasi-complementarity problem discussed in
Siddiqi and Ansari [557] is a particular case of the above problem.

Remark 9.13 If we take n = 1 and g is the identity mapping on K , then the problem
S.I.C.P( f1, f2, g, K ) reduces to the problem of finding x0 in K such that f1(x0) ∈
K ∗, f2(x0) ∈ K ∗ and

〈x0, f1(x0)〉 = 0 and 〈x0, f2(x0)〉 = 0.

We note that a particular case of the above problem has been discussed and studied
by Noor [424, 425].

In what follows, let (H, 〈·, ·〉) be a Hilbert space and K a closed convex cone
in H. Suppose D is a subset of H and f1, f2, g : D → H are mappings. In 1996,
Pathak et al. [457] considered the following simultaneous implicit complementarity
problem:
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S.I.C.P : Find x0 in D such that g(x0) ∈ K , f1(x0) ∈ K ∗, f2(x0) ∈ K ∗,

〈g(x0), f n
1 (x0)〉 = 0 and 〈g(x0), f n

2 (x0)〉 = 0.

Definition 9.10 Let D be a subset of H, and consider the mappings f1, f2, g : D →
H. We say that f1 and f2 are pairwise n-Lipschitz mappings with respect to g if there
exists some β > 0 such that

‖ f n
1 (x) − f n

2 (y)‖ � β · ‖g(x) − g(y)‖

for all x, y in D.

In 1996, Pathak et al. [457] introduced the following:

Definition 9.11 Let D be a subset ofH and consider the mappings f1, f2, g : D → H.
We say that f1 and f2 are pairwise n-strongly monotone mappings with respect to g
if there exists some a > 0 such that

〈 f n
1 (x) − f n

2 (y), g(x) − g(y)〉 � a · ‖g(x) − g(y)‖

for all x, y in D.

Theorem 9.39 (Pathak et al. [457]) Let H be a Hilbert space and K a closed convex
cone in H. If, for a subset D of H the mappings f1, f2, g : D → H satisfy the
following:

(1) f1 and f2 are pairwise n-strongly monotone with respect to g,
(2) f1 and f2 are pairwise n-Lipschitz with respect to g,
(3) there exists a real number r > 0 such that

r · β2 < 2a <
1

r
+ r · β2

where a and β are as in Definitions 9.10 and 9.11, respectively,
(4) K ⊆ g(D),

then the problem S.I.C.P is solvable. Moreover, if g is one to one, then the problem
S.I.C.P has a unique solution in D.

Proof Using (4), we consider the mappings h1, h2 : K → H defined by

h1(u) = f1(x) and h2(u) = f2(x),

where x is an arbitrary element of g−1(u) and u ∈ K . Since f1 and f2 are pairwise
n-strongly monotone and n-Lipschitz with respect to g, h1 and h2 will have the
following properties:
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(5) 〈hn
1(u) − hn

2(v), u − v〉 � a · ‖u − v‖2,

(6) ‖hn
1(u) − hn

2(v)‖ � β · ‖u − v‖.
We now see that the problem S.I.C.P is equivalent to the following complementarity
problem:

Find u in K such that h1(u) ∈ K ∗, h2(u) ∈ K ∗,

〈u, hn
1(u)〉 = 0 and 〈u, hn

2(u)〉 = 0.

From Proposition 1.22, we see that the above problem has a solution if and only if
the mappings T1, T2 : K → H defined by

T n
1 (u) = PK (u − r · hn

1(u)) and T n
2 (u) = PK (u − r · hn

2(u)),

respectively, where r is the real number defined in (3), which has a common fixed
point in K . In fact, we have

‖T n
1 (u) − T n

2 (v)‖2 = ‖PK (u − r · hn
1(u)) − PK (v − r · hn

2(v))‖2

� ‖u − r · hn
1(u) − (v − r · hn

2(v))‖
= ‖u − v − r · (hn

1(u) − hn
2(v))‖

� ‖u − v‖2 − 2r · 〈u − v, hn
1(u) − hn

2(v)〉 + r2 · ‖hn
1(u) − hn

2(v)‖2

� ‖u − v‖2 − 2r · a‖u − v‖2 + r2 · β2 · ‖u − v‖2

= (1 − 2r · a + r2 · β2) · ‖u − v‖2

or
‖T n

1 (u) − T n
2 (v)‖ < θ · ‖u − v‖,

where θ = (1 − 2r · a + r2 · β2)1/2. By assumption (3) and noting the facts that
every Hilbert space is a completely metrically convex metric space is a complete
metrically convex metric space and every metrically convex space is locally convex,
we have that T1 and T2 satisfy all the assumptions of Lemma 9.4. Hence, T1 and T2

have a unique common fixed point in K . This completes the proof.

Exercises

9.1 Use Banach’s fixed point theorem to show that

x1 = 1

3
x1 − 1

4
x2 + 1

4
x3 − 1

x2 = −1

2
x1 + 1

5
x2 + 1

4
x3 + 2

x3 = 1

5
x1 − 1

3
x2 + 1

4
x3 − 2

has a unique solution.
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9.2 Show that the initial value problem

{
du
dt = u

1
2 t ≥ 0,

u(0) = 0

has more than one solution.

9.3 Show that the solutions of the initial value problem

dx

dt
= |x |1/2, x(0) = 0

are x1(t) = 0 and x2(t) = t |t |
4 . Does this contradicts Picard’s theorem? Find other

solutions.

9.4 Show that an initial value problem given by

d2x

dt2
= f (t, x), x(t0) = x0, x ′(t0) = x1

involving a second-order differential equation can be transform into a Volterra inte-
gral equation.

9.5 Consider the Volterra integral equation

f (t) = g(t) +
∫ t

0
K (t, s) f (s)ds, a � t � b,

where K is continuous on [a, b] × [a, b]. Show that the equation has a unique solution
f ∈ C[a, b] for each fixed g ∈ C[a, b].
9.6 Consider the Fredholm integral equation

f (t) = g(t) + λ

∫ 1

0
K (t, s) f (s)ds,

where g ∈ L2[0, 1] and K ∈ L2([0, 1] × [0, 1]). Prove that if g = 0 implies f = 0,
then there exists a unique solution of the equation for any g ∈ L2[0, 1].
9.7 Consider the nonlinear integral equation

v(t) = x(t) − λ

∫ b

a
K (t, s, x(s))ds,

where v and K are continuous on [a, b] and [a, b] × [a, b] × R, respectively, and K
satisfies on [a, b] × [a, b] a Lipschitz condition of the form
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|K (t, s, u1) − K (t, s, u2)| � c|w1 − w2|.

Then, show that

|λ| <
1

c(b − a)
.

9.8 Approximate numerical solutions of f (x) = 0. To find approximate numeri-
cal solutions of f (x) = 0, we may convert the equation in the form x = g(x), choose
an initial value x0 and compute

xn = g(xn−1) , n = 1, 2, . . . .

Suppose that g is continuously differentiable on some interval J = [x0 − r, x0 + r ]
and satisfies |g′(x)| � c < 1 on J and

|g(x0) − x0| < (1 − c)r.

Suppose that x = g(x) has a unique solution x on J , the iterative sequence {xn}
converges to that solution and the error estimates are:

(i) |x − xn| < cnr
(i i) |x − xn| � c

1−c |xn − xn−1|.
9.9 Newton’s method. Let f be real-valued and twice continuously differentiable
on an interval [a, b]. Let x̂ be a simple zero of f in [a, b]. Show that Newton’s
method defined by

xn+1 = g(xn), g(xn) = xn − f (xn)

f ′(xn)

is a contraction in some neighbourhood of x̂ so that the iterative sequence converges
to x̂ for any x0 sufficiently close to x̂ .



Chapter 10
Applications of Fixed Point Theorems for
Multifunction to Integral Inclusions

The most vitally characteristic fact about mathematics, in my
opinion, is its quite peculiar relationship to the natural sciences,
or, more generally, to any science which interprets experience
on a higher more than on a purely descriptive level....

John von Neumann (1947)
Science will not light the lamp in a person whose soul has no
fuel.

Meichel de Montaigne
When I was a boy of 14 my father was so ignorant I could hardly
stand to have the old man around. But when I got to be 21, I was
astonished at how much the old man had learned in 7years.

Mark Twain

Dynamical systems described by differential equations with continuous right-hand
sides were the areas of vigorous steady in the later half of the twentieth century in
applied mathematics, in particular, in the study of viscous fluid motion in a porous
medium, propagation of light in an optically nonhomogeneous medium, determining
the shape of a solid of revolution moving in a flow of gas with least resistance, etc.
Euler’s equation plays a key role in dealing with the existence of the solution of
such problems. On the other hand, Filippov [232] has developed a solution concept
for differential equations with a discontinuous right-hand side. In practice, such
dynamical systems do arise and require analysis. Examples of such systems are
mechanical systems with Coulomb friction modelled as a force proportional to the
sign of a velocity, systems whose control laws have discontinuities.
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10.1 Continuous Solution for Nonlinear Integral Inclusions

In this section, we present new results which guarantee that the Fredhlom integral
inclusion

y(t) ∈
∫ T

0
k(t, s)[a(s)g(s, y(s)) + f̃ (s, y(s), y′(s))]ds a.e. t ∈ [0, T ], (10.1)

having a finite derivative at each s ∈ [0, T ] has a positive solution y ∈ L p[0, T ], 1 �
p < ∞, or has a nonnegative solution y ∈ C[0, T ].

Throughout this section, R+ and R denote the set [0,∞) and the set of real
numbers, respectively, T > 0 is fixed, a : [0, T ] → R+, k : [0, T ] × [0, T ] → R,
g : [0, T ] × R → 2R, f : [0, T ] × R → 2R and f̃ : [0, T ] × R+ × R → 2R, here 2R

denotes the family of nonempty subsets of R.
Our results in this section are motivated by the multivalued analogue of Kras-

noselski’s fixed point theorem due to Agarwal and O’Regan [6] in a cone.
Let E = (E, ‖ · ‖) be a Banach space and C ⊆ E . For ρ > 0 let

�ρ = {x ∈ E : ‖x‖ < ρ} and ∂�ρ = {x ∈ E : ‖x‖ = ρ}.

10.1.1 L p[0, T ] Solutions

Here, we discuss Fredholm nonlinear integral inclusion

y(t) ∈
∫ T

0
k(t, s)[a(s)g(s, y(s)) + f̃ (s, y(s), y′(s))]ds a.e. t ∈ [0, T ], (10.2)

having a finite derivatives at each s ∈ [0, T ], where a : [0, T ] → R+, k : [0, T ] ×
[0, T ] → R, g : [0, T ] × R → K (R) and f̃ : [0, T ] × R+ × R → K (R).

At this juncture, it is desirable to introduce generalized multivalued Nemytskiĭ
operator.

Definition 10.1 A multivalued operator N λ

g, f̃
is called generalized Nemytskiĭ oper-

ator if ∃ λ > 0 such that for each p : 1 � p < ∞,

N λ

g, f̃
u =

{
y ∈ L p[0, T ] : y(t) ∈ a(t)g(t, u(t)) + f̃ (t, u(t), u′(t)) a.e. t ∈ [0, T ]

and sup
t∈[0,T ]

|u′| � λ
}
.

Remark 10.1 In particular, when nonlinear function f̃ (t, u(t), u′(t)) is independent
of derivative, we assume a(t)g(t, u(t)) + f̃ (t, u(t), u′(t)) = f (t, u(t)) and denote
N λ

g, f̃
u by N f u. Then
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N f u = {y ∈ L p[0, T ] : y(t) ∈ f (t, u(t)) a.e. t ∈ [0, T ]}.

The multivalued operator N f is called Nemytskiĭ operator.

Now, we intend to know what conditions one requires on a, k, g and f̃ in order
that the inclusion (10.1) has a positive solution y ∈ L p[0, T ], where 1 � p < ∞.
Here by a positive solution y, we mean y(t) > 0 for a.e. t ∈ [0, T ]. Throughout this
subsection, ‖ · ‖q denotes the usual norm on Lq for 1 � q � ∞.

Theorem 10.1 (Pathak [450]) Let a : [0, T ] → R+, k : [0, T ] × [0, T ] → R, g :
[0, T ] × R → K (R) and f̃ : [0, T ] × R+ × R → K (R) and assume the following
conditions hold:

the map u 	−→ a(t)g(t, u) + f̃ (t, u, u′) is upper semicontinuous for a.e. t ∈ [0, T ];
(10.3)

the graph of ag + f̃ belongs to the σ -field L ⊗ B(R × R) (10.4)

(here L denotes the Lebesgue σ -field on [0, T ] and B(R × R) = B(R) ⊗ B(R)

is the σ Borel field in R × R);

∃p2, 1 � p2 < ∞, a1 ∈ L p2 [0, T ] and a2, a3 > 0 are constants, with

|a(t)g(t, y) + f̃ (t, y, y′)| = sup{|z| : z ∈ a(t)g(t, y) + f̃ (t, y, y′)}
� M ′

(
a1(t) + a2|y| p

p2 + a3T − 1
p2 |y′| p

p2

)
,

for a.e. t ∈ [0, T ] for all y, y′ ∈ R, where M ′ is as defined in (10.7) below;
(10.5)

(t, s) 	−→ k(t, s) is measurable; (10.6)

s 	−→ a(s) is continuous and satisfy the uniform Hölder’s continuity condition in
the with the exponent ρ; i.e., there exists a positive number b such that

|a(s1) − a(s2)| � b(|s1 − s2|ρ) (10.7)

for all s1, s2 ∈ [0, T ] and |a(s)| ≤ 2bT + |a(0)| = M ′ for all s ∈ [0, T ], 0 < ρ � 1
and M ′ > 0;

∃0 < M � 1, k1 ∈ L p[0, T ], k2 ∈ L p1 [0, T ], here
1

p1
+ 1

p2
= 1, such that

0 < k1(t), k2(t) and a. e. t ∈ [0, T ] and Mk1(t)k2(s) � k(t, s) � k1(t)k2(s)

a.e. t ∈ [0, T ], a.e. s ∈ [0, T ]; (10.8)
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for a. e. t ∈ [0, T ] and all y ∈ (0,∞), y′ ∈ [−λ, λ], u > 0

for all u ∈ a(t)g(t, y) + f̃ (t, y, y′) (10.9)

∃q ∈ L p2 [0, T ], ψ : R+ → R+, ψ(u) > 0 for u > 0, is continuous and non-

decreasing with u and θ : R → R+, θ(u) > 0 for u > 0, is continuous and

nonincreasing (10.10)

for a.e. t ∈ [0, T ] and y > 0, y′ ∈ [−λ, λ], u ≥ b(τ )q(t)ψ(y)θ(|y′|)
for all u ∈ a(t)g(t, y) + f̃ (t, y, y′); (10.11)

∃ α > 0 with 1 <
α

2
p2−1

p2 M ′‖k1‖p‖k2‖p1

(
‖a1‖p2

p2 + 2p2−1([a2]p2α p + [a3]p2λp)
) 1

p2

(10.12)
and

∃β > 0, β = α with with 1 >
β

M‖b‖p‖k1‖p
∫ T

0 k2(s)q(s)ψ(γ (s)β) ds
, (10.13)

where

γ (t) = M
k1(t)

‖k1‖p
. (10.14)

Then, (10.1) has at least one positive solution y ∈ L p[0, T ] and either
(A) 0 < α < ‖y‖p < β and y(t) ≥ γ (t)α a.e. t ∈ [0, T ] if α < β

or
(B) 0 < β < ‖y‖p < α and y(t) ≥ γ (t)β a.e. t ∈ [0, T ] if β < α

holds.

Proof Let E = (L p[0, T ], ‖ · ‖p) and for some λ > 0,

C = {y ∈ L p[0, T ] : y(t) ≥ γ (t)‖y‖p a.e. t ∈ [0, T ] }.

It can easily be shown that C ⊆ E is a cone. Further, let A = K ◦ N λ

g, f̃
: C → 2E ,

where the linear integral (single-valued) operator K is given by

K y(t) =
∫ T

0
k(t, s)y(s) ds,
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where y(s) ∈ a(s)g(s, u(s)) + f̃ (s, u(s), u′(s)) a.e. s ∈ [0, T ], sup
s∈[0,T ]

|u′| � λ and

N λ

g, f̃
is the generalized Nemytskiĭ operator. Then, the nonlinear integral inclusion

(10.1) can be expressed as

y ∈ Ay, for some y ∈ L p[0, T ] (10.1′)

Thus, the problem of finding the solution of nonlinear integral equation (10.1) is
reduced into finding fixed point of multivalued operator A.

Notice that A is well defined since if x ∈ C then (10.3)–(10.5) and using the
technique of [133], it guarantees that N λ

g, f̃
x = ∅. Now we show that A : C → 2C .

To see this let x ∈ C and y ∈ Ax . Then, there exists a v ∈ N λ

g, f̃
x with

y(t) =
∫ T

0
k(t, s)v(s) ds for a.e. t ∈ [0, T ].

Now

|y(t)|p � |k1(t)|p
( ∫ T

0
k2(s)v(s) ds

)p
for a.e. t ∈ [0, T ]

so

‖y‖p � ‖k1‖p

∫ T

0
k2(s)v(s) ds. (10.15)

Now combining (10.15) with (10.8) gives

y(t) ≥ M
∫ T

0
k1(t)k2(s)v(s) ds ≥ M

k1(t)

‖k1‖p
‖y‖p = γ (t)‖y‖p for a.e. t ∈ [0, T ].

It follows that y ∈ C . Hence, A : C → 2C . Also notice [4, 133, 394] guarantees that

A : C → 2C is upper semicontinuous. (10.16)

Note also that [168, 235, 271]( pp. 47 − 49) implies K : L p2 [0, T ] → L p[0, T ]
is completely continuous, and Ng, f̃ : L p[0, T ] → 2L p2 [0,T ] maps bounded sets into
bounded sets. Consequently,

A : C → K (C) is completely continuous. (10.17)

Let

�α = {y ∈ L p[0, T ] : ‖y‖p < α} and �β = {y ∈ L p[0, T ] : ‖y‖p < β}.

Without loss of generality, we may assume that β < α (a similar argument holds if
α < β). It is immediate from (10.16) and (10.17) that
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A : C ∩ �α → K (C) is upper semicontinuous and compact.

Next, if we show that

‖y‖p < ‖x‖p for all y ∈ Ax and x ∈ C ∩ ∂�α. (10.18)

and
‖y‖p > ‖x‖p for all y ∈ Ax and x ∈ C ∩ ∂�β. (10.19)

are true, then Theorem 5.167 guarantees that the operator A has a fixed point in
C ∩ (�α\�β). This in turn implies that (10.1) has at least one solution y ∈ L p[0, T ]
with β � ‖y‖p � α, y(t) ≥ α(t)β for a.e. t ∈ [0, T ].

Suppose x ∈ C ∩ ∂�α such that sup
t∈[0,T ]

|x ′(t)| � λ, so ‖x‖p = α and y ∈ Ax .

Then, for each t ∈ [0, T ], it is easy to observe that there exists a v ∈ N λ

g, f̃
x with

y(t) =
∫ T

0
k(t, s)v(s) ds for a.e. t ∈ [0, T ]

� M ′
∫ T

0
k(t, s)

[
|a1(s)| + a2|x(s)|

p
p2 + a3T

− 1
p2 |x ′(s)|

p
p2

]
ds for a.e. t ∈ [0, T ].

Now (10.5) and (10.8) guarantee that

|y(t)| � M ′k1(t)
∫ T

0
k2(s)

[
|a1(s)| + a2|x(s)| p

p2 + a3T
− 1

p2 |x ′(s)| p
p2

]
ds for a.e. t ∈ [0, T ].

This together with (10.11) yields

‖y(t)‖p

� M ′‖k1‖p ‖k2‖p1

( ∫ T

0

[
|a1(s)| + a2|x(s)| p

p2 + a3T
− 1

p2 |x ′(s)| p
p2

]p2
ds

) 1
p2

� M ′‖k1‖p ‖k2‖p1

( ∫ T

0
2p2−1

[
|a1(s)|p2 +

(
a2|x(s)| p

p2 + a3T
− 1

p2 |x ′(s)| p
p2

)p2
]

ds
) 1

p2

� 2
p2−1

p2 M ′‖k1‖p ‖k2‖p1

(
‖a1‖p2

p2 + 2p2−1
∫ T

0
([a2]p2 |x(s)|p + [a3]p2 T −1|x ′(s)|p)ds

) 1
p2

� 2
p2−1

p2 M ′‖k1‖p ‖k2‖p1

(
‖a1‖p2

p2 + 2p2−1([a2]p2α p + [a3]p2λp)
) 1

p2

< α = ‖x‖p

and so (10.18) is satisfied.
Now suppose x ∈ C ∩ ∂�β such that sup

t∈[0,T ]
|x ′(t)| � λ, so ‖x‖p = β and x(t) ≥

b(t)β for a.e. t ∈ [0, T ], and y ∈ Ax . Then, there exists a v ∈ N λ

g, f̃
x with
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y(t) =
∫ T

0
k(t, s)v(s) ds for a.e. t ∈ [0, T ].

Notice (10.11) guarantees that for each t ∈ [0, T ], v(s) ≥ q(s)ψ(x(s))θ(|x ′(s)|) for
a.e. s ∈ [0, T ] and this together with (10.8) yields

|y(t)| ≥ Mk1(t)
∫ T

0
k2(s)q(s)ψ(x(s))θ(|x ′(s)|) ds for a.e. t ∈ [0, T ].

This together with (10.13) yields

‖y‖p ≥ M‖k1‖p ‖k2‖p1

∫ T

0
q(s)ψ(x(s))θ(|x ′(s)|) ds

≥ M‖k1‖p ‖k2‖p1

∫ T

0
q(s)ψ(b(s)β)θ(λ) ds

> β = ‖x‖p

and so (10.19) is satisfied. To obtain the required conclusion, we now apply
Theorem 5.167.

Remark 10.2 If nonlinear function f̃ (t, u(t), u′(t)) is independent of derivative, then
in view of Remark 10.1 we observe that Theorem 2.1 of Agarwal et al. [4] can be
derived from our Theorem 10.1.

10.1.2 C[0, T ] Solutions

In this section, we discuss the Fredholm nonlinear integral inclusion

y(t) ∈
∫ T

0
k(t, s)[a(t, s)g(t, y(s)) + f̃ (t, s, y(s))]ds a.e. t ∈ [0, T ], (10.20)

having finite derivative at each s ∈ [0, T ], where a : [0, T ] × [0, T ] → R+, k :
[0, T ] × [0, T ] → R, g : [0, T ] × R → K (R) and f̃ : [0, T ] × [0, T ] × R →
K (R). We will use Theorem 5.167 to establish the existence of a nonnegative solution
y ∈ C[0, T ] to (10.20) under less stringent conditions than the conditions as used
in Theorem 10.1. Note that C[0, T ] ⊂ L p[0, T ] for each p : 1 � p < ∞. Let | · |0
denote the usual norm on C[0, T ], i.e. |u|0 = sup[0,T ] |u(t)| for u ∈ C[0, T ].
Theorem 10.2 (Pathak [450]) Let 1 ≤ p < ∞ and q, 1 < q � ∞, the conjugate to
p, a : [0, T ] × [0, T ] → R+, k : [0, T ] × [0, T ] → R, g : [0, T ] × R → K (R) and
f̃ : [0, T ] × [0, T ] × R → K (R) and assume the following conditions hold:

for each t ∈ [0, T ], the map s 	→ k(t, s) is measurable; (10.21)
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sup
t∈[0,T ]

( ∫ T

0
|k(t, s)|q ds

) 1
q

< ∞; (10.22)

∫ T

0
|k(t ′, s) − k(t, s)|q ds → 0 as t → t ′, for each t ′ ∈ [0, T ]; (10.23)

for each t ∈ [0, T ], k(t, s) ≥ 0 for a.e. s ∈ [0, T ]; (10.24)

for each measurable u : [0, T ] → R, the map t 	→ a(t)g(t, u(t))

+ f̃ (t, u(t), u′(t)) has measurable single-valued selections; (10.25)

for a.e. t ∈ [0, T ], the map u 	→ a(t)g(t, u)) + f̃ (t, u, u′)) is upper semicontinuous;
(10.26)

for each r > 0, ∃ξr ∈ L p[0, T ] with |a(t)g(t, y)) + f (t, y, y′))| � M ′ξr

for a.e. t ∈ [0, T ] and every y, y′ ∈ R, with |y| � r and |y′| � λ for some λ > 0;
(10.27)

for a.e. t ∈ [0, T ] and all y ∈ (0,∞), y′ ∈ [−λ, λ], u > 0 for all u ∈ a(t)g(t, y) + f̃ (t, y, y′);
(10.28)

∃ξ ∈ Lq [0, T ] with k(t, s) � ξ(s) for t ∈ [0, T ]; (10.29)

∃δ, ε, 0 � δ < ε � T and M, 0 < M < 1, with k(t, s) ≥ Mξ(s) for t ∈ [δ, ε];
(10.30)

∃h ∈ L p[0, T ] with h : [0, T ] → (0,∞), w ≥ 0 continuous and nondecreasing on
(10.31)

(0,∞) and η : [0, λ] → R+is continuous and nondecreasing with

|a(t)g(t, y) + f̃ (t, y, y′)| � M ′h(t)w(y)η(|y′|) (10.32)

for a.e. t ∈ [0, T ] and all y ∈ (0,∞), y′ ∈ [−λ, λ];

∃τ ∈ L p[δ, ε] with τ > 0 a.e. on [δ, ε] and with for a.e. t ∈ [δ, ε], y ∈ (0, ∞) and

y′ ∈ [−λ, λ], and θ : R → R+, θ(u) > 0 for u > 0, is continuous and nonincreasing

u ≥ τ(t)w(y)θ(|y′|) for all u ∈ a(t)g(t, y) + f̃ (t, y, y′); (10.33)

∃ α > 0 with 1 <
α

M ′w(α)η(λ) sup
t∈[0,T ]

∫ T
0 k(t, s)h(s) ds

(10.34)
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and

∃β > 0, β = α with with 1 >
β

w(Mβ)θ(λ)
∫ ε

δ
τ (s)k(σ, s) ds

, (10.35)

where σ ∈ [0, T ] is such that

∫ ε

δ

η(s)k(σ, s) ds = sup
t∈[0,T ]

∫ ε

δ

τ (s)k(t, s) ds. (10.36)

Then, (10.20) has at least one positive solution y ∈ C[0, T ] and either

(A) 0 < α < |y|0 < β and y(t) ≥ M ′′α a.e. t ∈ [0, T ] if α < β

or
(B) 0 < β < |y|0 < α and y(t) ≥ M ′′β a.e. t ∈ [δ, ε] if β < α holds.

Proof Let E = (C[0, T ], ‖ · ‖0) and

C = {y ∈ C[0, T ] : y(t) ≥ 0 and min
t∈[δ,ε] y(t) ≥ M‖y‖0}.

Also, let A = K N λ

g, f̃
: C → 2E , where K : L p[0, T ] → C[0, T ] and N λ

g, f̃
:

C[0, T ] → 2L p[0,T ] are given by

K y(t) =
∫ T

0
k(t, s)y(s) ds,

where y(s) ∈ a(s)g(s, u(s)) + f̃ (s, u(s), u′(s)) a.e. s ∈ [0, T ], sup
s∈[0,T ]

|u′| � λ and

N λ

g, f̃
is the generalized Nemytskij operator.

Notice that A is well defined since if x ∈ C then [166, 235] guarantee that N λ

g, f̃
x =

∅. Now, we show that A : C → 2C . To see this let x ∈ C and y ∈ Ax . Then, for each
t ∈ [0, T ], there exists a v ∈ N λ

g, f̃
x with

y(t) =
∫ T

0
k(t, s)v(s) ds f or t ∈ [0, T ].

This together with (10.29) yields

|y(t)| �
∫ T

0
ξ(s)v(s) ds f or t ∈ [0, T ]

and so

|y|0 �
∫ T

0
ξ(s)v(s) ds. (10.37)
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On the other hand, (10.30) and (10.31) yields

min
t∈[δ,ε] y(t) = min

t∈[δ,ε]

∫ T

0
k(t, s)v(s) ds ≥ M

∫ T

0
ξ(s)v(s) ds ≥ M |y|0.

As a consequence, y ∈ C . Thus, A : C → 2C . A standard result from the literature
[235, 504–506] guarantees that

A : C → K (C) is upper semicontinuous and completely continuous. (10.38)

Let

�α = {u ∈ C[0, T ] : |u|0 < α} and �β = {u ∈ C[0, T ] : |u|0 < β},

and, for some λ > 0, let max
s∈[0,T ] |u

′| � λ.

Assume that β < α (a similar argument holds if α < β). If we show

|y|0 < |x |0 for all y ∈ Ax and x ∈ C ∩ ∂�α (10.39)

and
|y|0 > |x |0 for all y ∈ Ax and x ∈ C ∩ ∂�β (10.40)

are true, then Theorem 5.167 guarantees the result.
Suppose x ∈ C ∩ ∂�α , so |x |0 = α, sup

t∈[0,T ]
|x ′(t)| � λ and y ∈ Ax . Then there

exists v ∈ N λ

g, f̃
x with

y(t) =
∫ T

0
k(t, s)v(s) ds f or t ∈ [0, T ].

Now (10.31) implies that for t ∈ [0, T ] we have

|y(t)| � M ′
∫ T

0
k(t, s)h(s)w(x(s))η(|x ′(s)|) ds � w(|x |0)η(λ)

∫ T

0
k(t, s)h(s) ds

� M ′w(α)η(λ) sup
t∈[0,T ]

∫ T

0
k(t, s)h(s) ds.

This together with (10.33) yields

|y|0 � M ′w(α)η(λ) sup
t∈[0,T ]

∫ T

0
k(t, s)h(s) ds < α = |x |0,

so (10.38) holds.
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Next suppose that x ∈ C ∩ ∂�β , so |x |0 = β, sup
t∈[0,T ]

|x ′(t)| � λ and Mβ � x(t) �

β for t ∈ [δ, ε], and y ∈ Ax . Then, there exists v ∈ N f x with

y(t) =
∫ T

0
k(t, s)v(s) ds f or t ∈ [0, T ].

Notice (10.33) and (10.35) imply

y(σ ) =
∫ T

0
k(σ, s)v(s) ds ≥

∫ ε

δ

k(σ, s)v(s) ds

≥
∫ ε

δ

k(σ, s)τ (s)w(x(s))θ(|x ′(s)|) ds ≥ w(Mβ)θ(λ)

∫ ε

δ

k(σ, s)τ (s) ds

> β = |x |0.

Thus, |y|0 > |x |0, so (10.39) holds. To obtain the required conclusion, we now apply
Theorem 5.167.

Remark 10.3 If nonlinear function f̃ (t, u(t), u′(t)) is independent of derivative, then
in view of Remark 10.1 we observe that Theorem 3.1 of Agarwal et al. [4] can be
derived from our Theorem 10.2.

10.2 Existence Theorem for Nonconvex Hammerstein Type
Integral Inclusions

Let 0 < T < ∞, I := [0, T ] and L (I ) denote the σ -algebra of all Lebesgue mea-
surable subsets of I . Let E be a real separable Banach space with the norm ‖ · ‖. Let
P(E) denote the family of all nonempty subsets of E and B(E) the family of all
Borel subsets of E .

In what follows, as usual, we denote by C(I, E) the Banach space of all continuous
functions x(·) : I → E endowed with the norm ‖x(·)‖C = supt∈I ‖x(t)‖. Consider
the following integral equation

x(t) = λ(t) +
∫ T

0
k(t, s) g(t, s, u(s)) ds on [0, T ]. (10.41)

Here, λ, k and g are given functions, where λ(·) : I → E is a function with Banach
space value, k : I × I → R+=[0,∞) is a positive real single-valued function, while
g : I × I × E → E is a map. Let p ∈ [1,∞), q ∈ [1,∞), and let r ∈ [1,∞) be the
conjugate exponent of q, that is 1/q + 1/r = 1. Let ‖ · ‖p denote the p-norm of the
space L p(I, E) and is defined by
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‖u‖p = (

∫ T

0
‖u(s)‖pds)1/p for all u ∈ L p(I, E).

Consider the Nemitskiĭ operator associated to g, p, q and G : L p(I, E) → Lq(I, E)

given by
G(u) == g(t, s, u(s)) a.e. on I.

Consider the linear integral operator of kernel k, S : Lq(I, E) → L p(I, E) given by

S(u) = λ(t) +
∫ T

0
k(t, s)u(s)ds a.e. on I.

Thus, the Hammerstein type integral equation (10.41) is transformed into the form

x = SG(u), u ∈ L p(I, E) a.e. on I (10.41′)

u(t) ∈ F(t, V (x)(t)) a.e. (I := [0, T ]), (10.42)

where V : C(I, E) → C(I, E) is a given mapping. In the sequel, we also use the
following: for any x ∈ E , λ ∈ C(I, E), σ ∈ L p(I, E), we define the set-valued maps
Mλ,σ (t) := F(t, V (xσ,λ)(t)), t ∈ I, Tλ(σ ) := {ψ(·) ∈ L p(I, E) : ψ(t) ∈ Mλ,σ (t)
a.e. (I )}.
In order to study problem (10.41) and (10.42), we introduce the following assumption.

Hypothesis 10.1 Let F(·, ·) : I × E → P(E) be a set-valued map with nonempty
closed values that verify:

(H1) The function k : I × I → R+ satisfies that k(t, ·) ∈ Lr (I ), and t →
‖k(t, ·)‖r ∈ L p(I ).

(H2) The set-valued map F(·, ·) is L (I ) ⊗ B(E) measurable.
(H3) There exists L(·) ∈ L1(I,R+) such that, for almost all t ∈ I, F(t, ·) is L(t)-

Lipschitz in the sense that

H+(F(t, x), F(t, y)) � L(t) ‖x − y‖ (C1)

for all x, y in E , and Tλ(·) satisfies the condition: for any σ ∈ L p(I, E), σ1 ∈
Tλ(σ ) and any given ε > 0, there exists σ2 ∈ Tλ(σ1) such that

‖σ1 − σ2‖p � H+(Tλ(σ ), Tλ(σ1)) + ε. (C2)

(H4) The mappings k : I × I → R+, g : I × I × E → E are continuous, V :
C(I, E) → C(I, E)

and there exist the constants M1, M2, M3 > 0 such that

‖g(t, s, u1) − g(t, s, u2)‖q � M1‖u1 − u2‖p, ∀u1, u2 ∈ E,



10.2 Existence Theorem for Nonconvex Hammerstein Type Integral Inclusions 777

‖V (x1)(t) − V (x2)(t)‖ � M2‖x1(t) − x2(t)‖, ∀t ∈ I,∀x1, x2 ∈ C(I, E),

and ‖k(t, s)‖r � M3 ∀ t, s ∈ I.

Note that the system (10.41) and (10.42) encompasses a large variety of differ-
ential inclusions and control systems including those defined by partial differential
equations.

Assume that U be an open bounded subset of Rn (or Y , a subset of E homeo-
morphic to Rn) and UT = (0, T ] × U for some fixed T > 0. We say that the partial
differential operator ∂

∂t + L is parabolic if there exists a constant θ > 0 such that

n∑
i, j=1

ai j (t, x)ξiξ j ≥ θ |ξ |2 for all (t, x) ∈ UT , ξ ∈ Rn.

The letter L denotes for each time t a second-order partial differential operator,
having either the divergence form

Lu = −
n∑

i, j=1

(ai j (t, x)uxi )x j +
n∑

i=1

bi (t, x)uxi + c(t, x)u

or else the nondivergence form

Lu = −
n∑

i, j=1

ai j (t, x)uxi x j +
n∑

i=1

bi (t, x)uxi + c(t, x)u,

for given coefficients ai j , bi , c (i, j = 1, 2, . . . , n).
A family{G(t) : t ∈ R+} of bounded linear operators from X into E is a C0-

semigroup (also called linear semigroup of class (C0)) on X if

(i) G(0) = the identity operator, and G(t + s) = G(t)G(s) ∀ t, s ≥ 0;
(i i) G(·) is strongly continuous in t ∈ R+;
(i i i) ‖G(t)‖ � Meωt for some M > 0, real ω and t ∈ R+.

Example 10.1 Set k(t, τ )g(t, τ, u) = G(t − τ)u,�(x) = x, λ(t) = G(t)x0 where
{G(t)}t≥0 is a C0-semigroup with an infinitesimal generator A. Then, a solution of
system (10.41) and (10.42) represents a mild solution of

x ′(t) ∈ Ax(t) + F(t, x(t)), x(0) = x0. (10.43)

In particular, this problem includes control systems governed by parabolic partial
differential equations as a special case. When A = 0, the relation (10.43) reduces to
classical differential inclusions

x ′(t) ∈ F(t, x(t)), x(0) = x0. (10.44)
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Denote

�(u)(t) =
∫ T

0
k(t, τ )g(t, τ, u(τ )) dτ, t ∈ I. (10.45)

Then, the integral inclusion system (10.41) and (10.42) reduces to the form

x(t) = λ(t) + �(u)(t) a.e. (I ), (S)

which may be written in more “compact” form as

u(t) ∈ F(t, V (λ + �(u))(t)) a.e. (I ).

Now, we recall the following:

Definition 10.2 A pair of functions (x, u) is called a solution pair of integral inclu-
sion system (S), if x(·) ∈ C(I, E), u(·) ∈ L p(I, E) and satisfy relation (S).

For our further discussion, we denote by S(λ) the solution set of (10.41) and (10.42).
Notice that the integral operator in (10.45) plays a key role in the proofs of our main
results.

For given α ∈ R, we denote by L p(I, E) the Banach space of all Bochner inte-
grable functions u(·) : I → E endowed with the norm

‖u(·)‖p =
( ∫ T

0
e−αM1 M2 M3m(t)‖u(t)‖p dt

) 1
p
,

where m(t) = ∫ t
0 L(s) ds, t ∈ I . For our further discussion, we denote L = m(T ).

Theorem 10.3 (Pathak and Shahzad [465]) Let Hypothesis 10.1 be satisfied, let
λ(·, ·), μ(·, ·) ∈ C(I × E, E) and let v(·) ∈ L p(I, E) be such that

d(v(t), F(t,�(y)(t)) � p(t) a.e. (I ),

where p(·) ∈ L p(I,R+) and y(t) = μ(t, v(t)) + �(v)(t), ∀t ∈ I.
Then, for every α > 1, there exists x(·) ∈ S(λ) such that for every t ∈ I

‖x(t) − y(t)‖ � ‖λ − μ‖C + M1 M3eαM1 M2 M3 L
[ 1

α
1

2p (α
1

2p − 1)M
1
p

1 M
1
p

3

‖λ − μ‖C

+ α
1

2p

α
1

2p − 1

( ∫ T

0
e−αM1 M2 M3m(t) p(t)dt

) 1
p
]p

.

Proof For λ ∈ C(I, E) and u ∈ L p(I, E), define

xu,λ(t) = λ(t) +
∫ T

0
k(t, s) g(t, s, u(s)) ds, t ∈ I.
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Let us consider that λ ∈ C(I, E), σ ∈ L p(I, E) and define the set-valued maps

Mλ,σ (t) := F(t, V (xσ,λ)(t)), t ∈ I, (10.46)

Tλ(σ ) := {ψ(·) ∈ L p(I, E) : ψ(t) ∈ Mλ,σ (t) a.e. (I )}. (10.47)

Further, in view of condition (C2) of Hypothesis 10.1 (H3), Tλ(·) satisfies the condi-
tion: for any σ ∈ L p(I, E), σ1 ∈ Tλ(σ ) and any given ε > 0, there exists σ2 ∈ Tλ(σ1)

such that
‖σ1 − σ2‖p � H+(Tλ(σ ), Tλ(σ1)) + ε. (10.48)

Now, we claim that Tλ(σ ) is nonempty, bounded and closed for every σ ∈
L p(I, E).

It is well known that the set-valued map Mλ,σ (·) is measurable. For example
the map t → Mλ,σ (t) can be approximated by step functions and so we can apply
Theorem III. 40 in [131]. As the values of F are closed, with the measurable selection
theorem we infer that Mλ,σ (·) is nonempty.

Further, we note that the set Tλ(σ ) is bounded and closed. Indeed, if ψn ∈ Tλ(·)
and ‖ψn − ψ‖p → 0, then there exists a subsequence ψnk such that ψnk (t) → ψ(t)
for a.e. t ∈ I and we find that ψ ∈ Tλ(σ ).

Let σ1, σ2 ∈ L p(I, E) be given. Let ψ1 ∈ Tλ(σ1) and let δ > 0. Consider the
following set-valued map:

G (t) := Mλ,σ2(t) ∩
{

z ∈ E : ‖ψ1(t) − z‖p � M1 M2 M3 L(t)
∫ T

0
‖σ1(s) − σ2(s)‖p ds + δ

}
.

By (10.48), it follows that

d(ψ1(t), Mλ,σ2 (t)) � H+(
F(t, V (xσ1,λ)(t)), F(t, V (xσ2,λ)(t))

)
+ ε

� L(t)‖V (xσ1,λ)(t)) − V (xσ2,λ)(t))‖ + ε

� M2L(t)‖xσ1,λ(t) − xσ2,λ(t)‖ + ε

� M2L(t)
∫ T

0
‖k(t, s)‖r ‖g(t, s, x1(s)) ds − g(t, s, x2(s))‖q ds + ε

� M1 M2 M3L(t)
∫ T

0
‖σ1(s) − σ2(s)‖pds + ε.

Since ε is arbitrary, letting ε → 0, we deduce that G (·) is nonempty bounded and has
closed values. Further, according to Proposition III.4 in [131], G (·) is measurable.

Let ψ2(·) be a measurable selector of G (·). It follows that ψ2 ∈ Tλ(σ2) and

‖ψ1 − ψ2‖p
p =

∫ T

0
e−αM1 M2 M3m(t)‖ψ1(t) − ψ2(t)‖pdt

�
∫ T

0
e−αM1 M2 M3m(t)(M1 M2 M3L(t)

∫ T

0
‖σ1(s) − σ2(s)‖pds)dt
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+ δ

∫ T

0
e−αM1 M2 M3m(t)dt

� 1

α
‖σ1 − σ2‖p

p + δ

∫ T

0
e−αM1 M2 M3m(t)dt.

Since δ is arbitrary, so letting δ → 0 we deduce from the above inequality that

‖ψ1 − ψ2‖p
p � 1

α
‖σ1 − σ2‖p

p

i.e.

‖ψ1 − ψ2‖p � 1

α
1
p

‖σ1 − σ2‖p.

This yields

d(ψ1, Tλ(σ2)) � 1

α
1
p

‖σ1 − σ2‖p.

Thus, we have

ρ(Tλ(σ1), Tλ(σ2)) = sup
ψ1∈Tλ(σ1)

d(ψ1, Tλ(σ2)) � 1

α
1
p

‖σ1 − σ2‖p. (10.49)

Now replacing σ1(·) with σ2(·) and arguing as above, we obtain

ρ(Tλ(σ2), Tλ(σ1)) � 1

α
1
p

‖σ1 − σ2‖p. (10.50)

Now adding (10.49) and (10.50) and dividing by 2, we obtain

H+(Tλ(σ1), Tλ(σ2)) � 1

α
1
p

‖σ1 − σ2‖p

� 1

α
1
p

max{‖σ1 − σ2‖p, d(σ1, Tλ(σ1)), d(σ2, Tλ(σ2)),

[d(σ1, Tλ(σ2)) + d(σ2, Tλ(σ1))]/2}.

Hence, we conclude that Tλ(·) is an H+-type multivalued weak contractive mapping
on L p(I, E). Next, we consider the following set-valued maps

F̃(t, x) := F(t, x) + p(t),

M̃λ,σ (t) := F̃(t, φ(xσ,λ)(t)), t ∈ I,

T̃λ(σ ) := {ψ(·) ∈ L p(I, E);ψ(t) ∈ M̃λ,σ (t) a.e. (I )}.

It is obvious that F̃(·, ·) satisfies Hypothesis 10.1.
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Let φ ∈ Tλ(σ ), δ > 0 and define

G1(t) := M̃λ,σ (t) ∩
{

z ∈ X : ‖φ(t) − z‖p � M2 L(t)‖λ − μ‖p
C + p(t) + δ

}
.

Using the same argument as used for the set-valued map G (·), we deduce that
G1(·) is measurable with nonempty closed values.

Next, we prove the following estimate:

H+(Tλ(σ ), T̃μ(σ )) � 1

α
1
p M

1
p

1 M
1
p

3

‖λ − μ‖C +
( ∫ T

0
e−αM1 M2 M3m(t) p(t)dt

) 1
p
.

(10.51)
Let ψ(·) ∈ Tμ(σ ). Then

‖φ − ψ‖p
p �

∫ T

0
e−αM1 M2 M3m(t)‖φ(t) − ψ(t)‖pdt

�
∫ T

0
e−αM1 M2 M3m(t)[M2 L(t)‖λ − μ‖p

C + p(t) + δ]dt

� ‖λ − μ‖p
C

∫ T

0
e−αM1 M2 M3m(t)M2 L(t)dt

+
∫ T

0
e−αM1 M2 M3m(t) p(t)dt + δ

∫ T

0
e−αM1 M2 M3m(t)dt

� 1

αM1 M3
‖λ − μ‖p

C +
∫ T

0
e−αM1 M2 M3m(t) p(t)dt

+ δ

∫ T

0
e−αM1 M2 M3m(t)dt.

Since δ is arbitrary, so letting δ → 0 we deduce from the above inequality that

‖φ − ψ‖p
p � 1

αM1 M3
‖λ − μ‖p

C +
∫ T

0
e−αM1 M2 M3m(t) p(t)dt.

Thus, by taking 1
p th power on both sides of the above inequality breaking the right-

hand side, one obtains (9.51).
Now applying Proposition 5.6 we obtain

H+(Fix(Tλ), Fix(T̃μ)) � 1

α
1

2p (α
1

2p − 1)M
1
p

1 M
1
p

3

‖λ − μ‖C

+ α
1

2p

α
1

2p − 1

( ∫ T

0
e−αM1 M2 M3m(t) p(t)dt

) 1
p
.
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Since v(·) ∈ Fix(T̃μ), it follows that there exists u(·) ∈ Fix(Tμ) such that

‖v − u‖p � 1

α
1

2p (α
1

2p − 1)M
1
p

1 M
1
p

3

‖λ − μ‖C + α
1

2p

α
1

2p − 1

( ∫ T

0
e−αM1 M2 M3m(t) p(t)dt

) 1
p
.

(10.52)
We define

x(t) = λ(t) +
∫ T

0
k(t, s) g(t, s, u(s)) ds.

Then one has the following inequality:

‖x(t) − y(t)‖ � ‖λ(t) − μ(t)‖ + M1 M3

∫ T

0
‖u(s) − v(s)‖p ds

� ‖λ − μ‖C + M1 M3eαM1 M2 M3 L‖u − v‖p
p.

Combining the last inequality with (10.52), we obtain

‖x(t) − y(t)‖ � ‖λ − μ‖C + M1 M3eαM1 M2 M3 L
[ 1

α
1

2p (α
1

2p − 1)M
1
p

1 M
1
p

3

‖λ − μ‖C

+ α
1

2p

α
1

2p − 1

( ∫ T

0
e−αM1 M2 M3m(t) p(t)dt

) 1
p
]p

.

This completes the proof.

10.3 Filippov Type Existence Theorem for Integral
Inclusions

In this section, we shall consider a nonconvex integral inclusion and prove a Filippov
type existence theorem by using an appropriate norm on the space of selection of the
multifunction and a H+-type contraction for set-valued maps.

Let I := [0, T ], T > 0 andL (I )denote theσ -algebra of all Lebesgue measurable
subsets of I . Let X be a real separable Banach space with the norm ‖ · ‖. Let P(X)

denote the family of all nonempty subsets of X and B(X) the family of all Borel
subsets of X .

Throughout this section, let C(I, X) denote the Banach space of all continuous
functions x( · ) : I → X endowed with the norm ‖x( · )‖C = sup

t∈I
‖x(t)‖. Consider

the following integral inclusion

x(t) = λ(t) +
∫ t

0
[a(t, s) g(t, u(s)) + f (t, s, u(s))] ds (10.53)
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u(t) ∈ F(t, V (x)(t)) a.e. (I := [0, T ]), (10.54)

whereλ( · ) : I → X , g( · , · ) : I × X → X , F( · , · ) : I × X → P(X), f ( · , · , · )
: I × I × X → X , V : C(I, X) → C(I, X), a( · , · ) : I × I → R = (−∞,∞) are
given mappings.

In order to study problem (10.53) and (10.54), we introduce the following assump-
tion.

Hypothesis 10.2 Let F( · , · ) : I × X → P(X) be a set-valued map with
nonempty closed values that verify:

(H1) The set-valued map F( · , · ) is L (I ) ⊗ B(X) measurable.
(H2) There exists L( · ) ∈ L1(I,R+) such that, for almost all t ∈ I, F(t, · ) is

L(t)-Lipschitz in the sense that

(C1) H+(F(t, x), F(t, y)) � L(t) ‖x − y‖ for all x, y in X
and for any x, y ∈ X, w ∈ F(t, x) and ε > 0, there exists z ∈ F(t, y) such
that:

(C2) ‖w − z‖ � H+(F(t, x), F(t, y)) + ε

and Tλ( · ) satisfies the condition: for any σ ∈ L1(I, E), σ1 ∈ Tλ(σ ) and any
given ε > 0 there exists σ2 ∈ Tλ(σ1) such that:

(C3) ‖σ1 − σ2‖1 � H+(T(σ ), Tλ(σ1)) + ε for almost all t ∈ I.

(H3) The mappings f : I × I × X → X , g, λ : I × X → X are continuous,
V : C(I, X) → C(I, X) and there exist the constants M1, M2, M3, M4 > 0 such
that

‖ f (t, s, u1) − f (t, s, u2)‖ � M1‖u1 − u2‖, for all u1, u2 ∈ X,

‖g(s, u1) − g(s, u2)‖ � M2‖u1 − u2‖, for all u1, u2 ∈ X,

‖V (x1)(t) − V (x2)(t)‖ � M3‖x1(t) − x2(t)‖, for all t ∈ I, and all x1, x2 ∈ C(I, X).

(H4) Let a : I × I → R be continuous and satisfy the uniform Hölder’s continuity
condition in the first and second arguments with the exponent ρ; i.e. there exists
a positive number b such that

|a(t1, s1) − a(t2, s2)| � b(|t1 − t2|ρ + |s1 − s2|ρ)

for all t1, t2, s1, s2 ∈ I and |a(t, s)| � 2bT + |a(0, 0)| = M4 for all t, s ∈ I and
0 < ρ � 1.

Note that the system (10.53) and (10.54) encompasses a large variety of differ-
ential inclusions and control systems including those defined by partial differential
equations.

Assume that U be an open bounded subset of Rn (or Y , a subset of X homeo-
morphic to Rn) and UT = U × (0, T ] for some fixed T > 0. We say that the partial
differential operator ∂

∂t + L is parabolic if there exists a constant θ > 0 such that
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n∑
i, j=1

ai j (x, t)ξiξ j ≥ θ |ξ |2

for all (x, t) ∈ UT , ξ ∈ Rn . The letter L denotes for each time t a second-order partial
differential operator, having either the divergence form

Lu = −
n∑

i, j=1

(ai j (x, t)uxi )x j +
n∑

i=1

bi (x, t)uxi + C(x, t)u

or else the nondivergence form

Lu = −
n∑

i, j=1

ai j (x, t)uxi x j +
n∑

i=1

bi (x, t)uxi + C(x, t)u,

for given coefficients ai j , bi , c (i, j = 1, . . . , n).

Example 10.2 Set f (t, τ, u) = G(t − τ)u, g(τ, u(τ )) = 0, V (x) = x , λ(t) =
G(t)x0 where {G(t)}t≥0 is a C0-semigroup with an infinitesimal generator A. Then,
a solution of system (10.53) and (10.54) represents a mild solution of

x ′(t) ∈ Ax(t) + F(t, x(t)), x(0) = x0. (10.55)

In particular, this problem includes control systems governed by parabolic partial
differential equations as a special case. When A = 0, the relation (10.55) reduces to
classical differential inclusions

x ′(t) ∈ F(t, x(t)), x(0) = x0. (10.56)

Denote

�(u)(t) =
∫ t

0
[a(t, τ )g(τ, u(τ )) + f (t, τ, u(τ ))] dτ, t ∈ I. (10.57)

Then, the integral inclusion system (10.53) and (10.54) reduces to the form

x(t) = λ(t) + �(u)(t), u(t) ∈ F(t, V (x)(t)) a.e. (I ), (10.58)

which may be written in more compact form as

u(t) ∈ F(t, V (λ + �(u))(t)) a.e.(I ).

Now, we recall the following:
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Definition 10.3 A pair of functions (x, u) is called a solution pair of integral inclu-
sion system (10.58), if x( · ) ∈ C(I, X), u( · ) ∈ L1(I, X) and satisfy relation (10.46).

For our further discussion, we denote by S(λ) the solution set of (10.53) and
(10.54).

Notice that the integral operator in (10.57) plays a key role in the proofs of our
main results.

For given α ∈ Rwe denote by L1(I, X) the Banach space of all Bochner integrable
functions u( · ) : I → X endowed with the norm

‖u(·)‖1 =
∫ T

0
e−α(M4 M2+M1)M3m(t)‖u(t)‖ dt,

where m(t) = ∫ t
0 L(s) ds, t ∈ I .

Theorem 10.4 (Pathak and Shahzad [466]) Let Hypothesis (10.2) be satisfied,
λ( · , · ), μ( · , · ) ∈ C(I × X, X) and let u( · ) ∈ L1(I, X) be such that

d(v(t), F(t, V (y)(t)) � p(t) a.e.(I ),

where p( · ) ∈ L1(I,R+) and y(t) = μ(t, u(t)) + �(u)(t), for all t ∈ I . Then for
every α > 1, 0 < h < 1, there exist ν ∈ N and x( · ) ∈ S(λ) such that, for every
t ∈ I ,

‖x(t) − y(t)‖ � ‖λ − μ‖C

[
1 + eα(M4 M2+M1)M3m(T )

√
α(

√
α − 1)

]

+
√

α

(
√

α − 1)
(M4 M2 + M1)e

α(M4 M2+M1)M3m(T )

∫ T

0
e−α(M4 M2+M1)M3m(t) p(t) dt.

Proof For λ ∈ C(I, X) and u ∈ L1(I, X), define

xu,λ(t) = λ(t) +
∫ t

0
[a(t, s) g(t, u(s)) + f (t, s, u(s))] ds.

Let us consider that λ ∈ C(I, X), σ ∈ L1(I, X) and define the set-valued maps

Mλ,σ (t) := F(t, V (xσ,λ)(t)), t ∈ I, (10.59)

Tλ(σ ) := {ψ( · ) ∈ L1(I, X); ψ(t) ∈ Mλ, σ (t) a.e. (I )}. (10.60)

Now, we claim that Tλ(σ ) is nonempty and closed for every σ ∈ L1(I, X).
It is well known that the set-valued map Mλ,σ ( · ) is measurable. For example,

the map t → F(t, V (xσ,λ)(t) can be approximated by step functions and so we can
apply Theorem III.40 in [131]. As the values of F are closed, with the measurable
selection theorem we infer that Mλ,σ ( · ) is nonempty.
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Further, we note that the set Tλ(σ ) is closed. Indeed, if ψn ∈ Tλ( · ) and ‖ψn −
ψ‖1 → 0, then there exists a subsequence ψnk such that ψnk (t) → ψ(t) for almost
every t ∈ I and we find that ψ ∈ Tλ(σ ).

Let σ1, σ2 ∈ L1(I, X) be given. Assume, without loss of generality, that

0 < ρ(F(t, V (xσ1,λ)(t)), F(t, V (xσ2,λ)(t)))

� ρ(F(t, V (xσ2,λ)(t)), F(t, V (xσ1,λ)(t))).

Let w1 ∈ Tλ(σ1) and let δ > 0. Consider the following set-valued map:

G (t) := Mλ,σ2(t)

⋂{
z ∈ X : ‖ψ1(t) − z‖ � M1 M3L(t)

∫ t

0
‖σ1(s) − σ2(s)‖ ds + δ

}
.

Since

d(ψ1, Mλ,σ2(t)) � ρ(F(t, V (xσ1,λ)(t)), F(t, V (xσ2,λ)(t)))

� 1

2
[ρ(F(t, V (xσ1,λ)(t)), F(t, V (xσ2,λ)(t)))

+ ρ(F(t, V (xσ2,λ)(t)), F(t, V (xσ1,λ)(t))]
= H+(F(t, V (xσ1,λ)(t)), F(t, V (xσ2,λ)(t)))

� L(t)‖V (xσ1,λ)(t)) − V (xσ2,λ)(t))‖
� M3L(t)‖xσ1,λ(t) − xσ2,λ(t)‖
� M3L(t)[

∫ t

0
|a(t, s)|‖g(t, σ1(s)) − g(t, σ2(s))‖ ds

+
∫ t

0
‖ f (t, s, σ1(s)) − f (t, s, σ2(s))‖ ds]

� M3L(t)

[
(M4 M2 + M1)

∫ t

0
‖σ1(s) − σ2(s)‖ ds

]
,

we deduce that G ( · ) has nonempty closed values. Further, according to Proposi-
tion III.4 in [131], G ( · ) is measurable.

Let ψ2( · ) be a measurable selector of G ( · ). It follows that ψ2 ∈ Tλ(σ2) and

‖ψ1 − ψ2‖1 =
∫ T

0
e−√

α(M4 M2+M1)M3m(t)‖ψ1(t) − ψ2(t) ‖dt

�
∫ T

0
e−√

α(M4 M2+M1)M3m(t)M3L(t)

[
(M4 M2 + M1)

∫ t

0
‖σ1(s) − σ2(s)‖ ds

]
dt

+ δ

∫ T

0
e−√

α(M4 M2+M1)M3m(t) dt

� 1√
α

‖σ1 − σ2‖1 + δ

∫ T

0
e−√

α(M4 M2+M1)M3m(t) dt.
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Since δ is arbitrary, so letting δ → 0 we deduce from the above inequality that

d(ψ1, Tλ(σ2)) � 1√
α

‖σ1 − σ2‖1.

Now replacing σ1( · ) with σ2( · ), we obtain

H+(Tλ(σ1), Tλ(σ2)) � 1√
α

‖σ1 − σ2‖1.

Hence, we conclude that Tλ( · ) is a contraction on L1(I, X).
Next, we consider the following set-valued maps

F̃(t, x) := F(t, x) + p(t),

M̃λ,σ (t) := F̃(t, V (xσ,λ)(t)), t ∈ I,

T̃λ(σ ) := {ψ( · ) ∈ L1(I, X); ψ(t) ∈ M̃λ,σ (t)a.e. (I )}.

It is obvious that F̃( · , · ) satisfies Hypothesis 10.2.
Let φ ∈ Tλ(σ ), δ > 0 and define

G1(t) := M̃λ,σ (t) ∩ {z ∈ X : ‖φ(t) − z‖ � M3L(t)‖λ − μ‖C + p(t) + δ}.

Using the same argument as used for the set-valued map G ( · ), we deduce that
G1( · ) is measurable with nonempty closed values.

Next, we prove the following estimate:

H+(Tλ(σ ), T̃μ(σ )) � 1√
α(M4 M2 + M1)

‖λ − μ‖C

+
∫ T

0
e−√

α(M4 M2+M1)M3m(t) p(t) dt.

Let ψ( · ) ∈ Tμ(σ ). Then

‖φ − ψ‖1 �
∫ T

0
e−√

α(M4 M2+M1)M3m(t)‖φ(t) − ψ(t)‖ dt

�
∫ T

0
e−√

α(M4 M2+M1)M3m(t)[M3L(t)‖λ − μ‖C + p(t) + δ] dt

=‖λ − μ‖C

∫ T

0
e−√

α(M4 M2+M1)M3m(t)M3L(t) dt

+
∫ T

0
e−√

α(M4 M2+M1)M3m(t) p(t) dt
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+ δ

∫ T

0
e−√

α(M4 M2+M1)M3m(t) dt

� 1√
α(M4 M2 + M1)

‖λ − μ‖C +
∫ T

0
e−√

α(M4 M2+M1)M3m(t) p(t) dt

+ δ

∫ T

0
e−√

α(M4 M2+M1)M3m(t) dt.

As δ is arbitrary, so letting δ → 0 we deduce from the above inequality that

‖φ − ψ‖1 � 1√
α(M4 M2 + M1)

‖λ − μ‖C +
∫ T

0
e−√

α(M4 M2+M1)M3m(t) p(t) dt.

Now applying Proposition 5.6, we obtain

H+(Fix(Tλ), Fix(T̃μ)) � 1

(
√

α − 1)(M4 M2 + M1)
‖λ − μ‖C

+
√

α√
α − 1

∫ T

0
e−α(M4 M2+M1)M3m(t) p(t) dt.

Since v( · ) ∈ Fix(T̃μ), there exists u( · ) ∈ Fix(Tμ) such that

‖v − u‖1 � 1√
α(

√
α − 1)(M4 M2 + M1)

‖λ − μ‖C

+
√

α√
α − 1

∫ T

0
e−α(M4 M2+M1)M3m(t) p(t) dt.

We define

x = λ(t) +
∫ t

0
[a(t, s)g(t, u(s)) + f (t, s, u(s))] ds.

Then one has the following inequality:

‖x(t) − y(t)‖ � ‖λ(t) − μ(t)‖ + (M4 M2 + M1)

∫ t

0
‖u(s) − v(s)‖ ds

� ‖λ − μ‖C + (M4 M2 + M1)e
α(M4 M2+M1)M3m(T )‖u − v‖1.

Combining the last inequality with (10.59), we obtain

‖x(t) − y(t)‖
� ‖λ − μ‖C

[
1 + eα(M4 M2+M1)M3m(T )

√
α(

√
α − 1)

]
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+
√

α

(
√

α − 1)
(M4 M2 + M1)e

α(M4 M2+M1)M3m(T )

∫ T

0
e−α(M4 M2+M1)M3m(t) p(t) dt.

This completes the proof.

Remark 10.4 (a) If a(t, τ ) ≡ 0, Theorem 10.4 yields the result in [136] obtained
for mild solutions of the semilinear differential inclusion (10.55).
(b) If a(t, τ ) = 0, f (t, τ, u) = G (t − τ)u, V (x) = x , λ(t) = G (t)x0 where
{G (t)}t≥0 is a C0-semigroup with an infinitesimal generator A, Theorem 10.4 yields
the result in [135] obtained for mild solutions of the semilinear differential inclu-
sion (10.55).

Exercises

10.1 Let the following integral inclusion be given:

x(t) = λ(t) +
∫ t

0
f (t, s, u(s))ds, (1)

u(t) ∈ F(t, V (x)(t)), a.e. (I := [0, T ]), (2)

where T > 0, I : [0, T ], λ(·) : I → Rn, F(·, ·) : I × X → P(X), f (·, ·, ·) : I ×
I × X → X, V : C(I, X) → C(I, X) are given mappings, X is a separable Banach
space and P(X) is the class of all nonempty subsets of X .

Let F(·, ·) : I × X → P(X) be a set-valued map with nonempty closed values
that verify:

(i) The set-valued map F(·, ·) is L (I )
⊕

B(X) measurable.
(i i) There exists L(·) ∈ L1(I,R+) such that, for almost all t ∈ I, F(t, ·) is L(t)-

Lipschitz in the sense that

H(F(t, x), F(t, y)) � L(t)‖x − y‖ ∀x, y ∈ X,

where H is the Hausdorff generalized metric on P(X) defined by

H(A, B) = max{ρ(A, B), ρ(B, A)}, ρ(A, B) = sup{d(a, B); a ∈ A}.

(i i i) The mapping f : I × I × X → X is continuous, V : C(I, X) → C(I, X)

and there exist the constants M1, M2 > 0 such that

‖ f (t, s, u1) − f (t, s, u2)‖ = M1‖u1 − u2‖, ∀u1, u2 ∈ X,

‖V (x1)(t) − V (x2)(t)‖ = M2‖x1(t) − x2(t)‖, ∀t ∈ I, ∀x1, x2 ∈ C(I, X).

Let λ(·), μ(·) ∈ C(I, X) and let v(·) ∈ L1(I, X) be such that

d(v(t), F(t, V (y)(t)) � p(t) a.e. (I ),
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where p(·) ∈ L1(I,R+) and y(t) = μ(t) + �(v)(t),∀t ∈ I, where

�(u)(t) =
∫ t

0
f (t, τ, u(τ )dτ, t ∈ I.

Then prove that for every α > 1 and for every ε > 0, there exists x(·) ∈ S(λ), the
solution set of (1)-(2) such that for every t ∈ I

‖x(t) − y(t)‖ � α

α − 1
eαM1 M2m(T )

[
‖λ − μ‖C + M1

∫ T

0
e−αM1 M2m(t) p(t)dt

]
+ ε.

10.2 Let the following boundary value problem for fourth-order differential inclu-
sion be given:

L4x(t) + a(t)x(t) ∈ F(t, x(t)) a.e. ([0, T ]), (3)

Li x(0) = Li x(T ), i = 0, 1, 2, 3, (4)

where

L0x(t) = a0(t)x(t), Li x(t) = ai (t)(Li−1x(t))′, i = 1, 2, 3,

L4x(t) = (a3(t)(a2(t)(a1(t)(a0(t)x(t))′)′)′)′,

a(·), ai (·) : [0, T ] → R are continuous mappings such that

a0(t) ≡ 1, a(t) � 0, ai (t) > 0, i = 1, 2, t ∈ [0, T ], a1(t) ≡ a3(t)

and F(·, ·) : [0, T ] × R → P(R) is a set-valued map. Suppose also that the follow-
ing conditions hold:

(i) F(·, ·) : I × R → P(R) has nonempty closed values and for every x ∈ R,

F(·, x) is measurable.
(i i) There exists L(·) ∈ L1(I,R+) such that for almost all t ∈ I, F(t, ·) is L(t)-

Lipschitz in the sense that

H(F(t, x), F(t, y)) � L(t)|x − y| ∀x, y ∈ R.

(i i i) d(0, F(t, 0)) � L(t) a.e. (I ).

Denote L0 := ∫ 1
0 L(s)ds.

Assume that G0 L0 < 1. Let y(·) ∈ AC3(I,R) be such that Li y(0) = Li y(T ), i =
0, 1, 2, 3 and there exists q(·) ∈ L1(I,R+) with

d(L4 y(t) + a(t)y(t), F(t, y(t))) � q(t), a.e. (I ).

Then prove that for every ε > 0, there exists x(.) a solution of problem (10.3) and
(10.4) satisfying for all t ∈ I
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|x(t) − y(t)| = G0

1 − G0 L0

∫ T

0
q(t)dt + ε.

10.3 Assume that conditions (i), (ii) of 10.2 are satisfied and G0 L0 < 1. Let
y(·) ∈ AC3(I,R) be such that Li y(0) = Li y(T ), i = 0, 1, 2, 3 and there exists
q(·) ∈ L1(I,R+) with d(L4 y(t) + a(t)y(t), F(t, y(t))) = q(t), a.e. (I ). Then
prove that there exists x(.) a solution of the BVP for fourth-order differential inclu-
sion (10.3) and (10.4) satisfying for all t ∈ I

|x(t) − y(t)| = G0

1 − G0 L0

∫ T

0
q(t)dt.



Appendix A
Basic Definitions

A.1 Basic Inequalities

Lemma A.1.1 Let a, b ∈ R+ and 0 < p � 1. Then,

(a + b)p � a p + bp.

Lemma A.1.2 Let a, b ∈ R+ and 2 � p < ∞. Then, we have the following inequal-
ities:

(a) a p + bp � (a2 + b2)p/2,

(b) (a2 + b2)p/2 � 2(p−1)/2(a p + bp).

Proof It is easy to observe that both the inequalities hold if either a or b is zero. So,
we prove the Lemma for a �= 0 and b �= 0.

(a) For a, b > 0, we have

a2

a2 + b2
� 1 and

b2

a2 + b2
� 1.

It follows that

a p

(a2 + b2)p/2
+ bp

(a2 + b2)p/2
=

(
a2

a2 + b2

)p/2

+
(

b2

a2 + b2

)p/2

� a2

a2 + b2
+ b2

a2 + b2
(since p/2 ≥ 1)

= 1.

(b) For p = 2, the inequality is obvious. So, we assume that p > 2, i.e., p/2 > 1.
Set α = p/2 and β = α/(α − 1) = p/(p − 2). Then, 1

α
+ 1

β
= 1. By Hölder’s

© Springer Nature Singapore Pte Ltd. 2018
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inequality, we obtain

a2 + b2 = a2 · 1 + b2 · 1 �
(
(a2)α + (b2)α

)1/α (
(1)β + (1)β

)1/β

= 2(p−2)/p(a p + bq)2/p,

which implies that
(a2 + b2)p/2 � 2(p−1)/2(a p + bp).

Lemma A.1.3 (Minkowski inequality) If p ≥ 1, then for any complex numbers
a1, a2, . . . , an; b1, b2, . . . , bn we have the following inequality:

(
n∑

i=1

|ai + bi |
)1/p

�
(

n∑
i=1

|ai |p

)1/p

+
(

n∑
i=1

|bi |p

)1/p

.

Lemma A.1.4 (Hölder inequality) If p > 1 and q is defined by 1
p + 1

q = 1, then for
any complex numbers a1, a2, . . . , an; b1, b2, . . . , bn we have the following inequal-
ity:

n∑
i=1

|ai bi | �
(

n∑
i=1

|ai |p

)1/p (
n∑

i=1

|bi |q
)1/q

.

An extension of Minkowski’s inequality:

Lemma A.1.5 (Minkowski inequality) If 1 � p < ∞ and if x = {xi }, y = {yi } ∈
�p, then x + y = {xi + yi } ∈ �p and

( ∞∑
i=1

|xi + yi |p

)1/p

�
( ∞∑

i=1

|xi |p

)1/p

+
( ∞∑

i=1

|yi |p

)1/p

.

An extension of Hölder’s inequality:

Lemma A.1.6 (Hölder inequality) If 1 � p < ∞, q is conjugate to p, x = {xi } ∈
�p and y = {yi } ∈ �q , then {x1 y1, x2 y2, . . .} ∈ �1 and

∞∑
i=1

|xi yi | �
( ∞∑

i=1

|xi |p

)1/p ( ∞∑
i=1

|yi |q
)1/q

.

The above inequality with p = q = 2 gives the Cauchy–Schwarz inequality:

( ∞∑
i=1

|xi yi |
)2

�
( ∞∑

i=1

|xi |2
)( ∞∑

i=1

|yi |2
)

.
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A.2 Integral Formula

∫ t

a

∫ t

a
· · ·

∫ t

a
f (x) (dx)n = 1

(n − 1)!
∫ t

a
(t − x)(n−1) f (x) dx .

A.3 Green’s Theorem

If φ,ψ are both single-valued and continuously differentiable scalar point functions
such that ∇φ and ∇ψ are also continuously differentiable, then

∫
V

∇φ · ∇ψ dV = −
∫

V
φ∇2ψ dV −

∫
S
φ

∂ψ

∂n
d S

= −
∫

V
ψ∇2φ dV −

∫
S
ψ

∂φ

∂n
d S

where S is a closed surface bounding any simple connected region, δn is an element
of the normal at any point on the boundary drawn into region considered, and V is
the volume enclosed by S.
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n-simplex − InRn , a (non-degenerate) n-simplex is the convex hull K of n + 1 points
a j = (a1 j , a2 j , . . . , anj ) ∈ Rn , which are known as the vertices of the n-simplex such
that the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1 n+1

a21 a22 · · · a2 n+1

· · · · · · · · · · · ·

an1 an2 · · · an n+1

1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is regular; i.e., n + 1 points a j are not contained in a hyperplane. In other words, K
is said to be an n-simplex if

K =
{

x =
n+1∑
j=1

λ j a j | 0 � λ j � 1,

n+1∑
j=1

λ j = 1
}
.

Particular cases:
• a 2-simplex is a triangle.
• a 3-simplex is a tetrahedron.

Positive semidefinite matrix − A symmetric matrix A ∈ SRn×n is called positive
semidefinite if xT Ax � 0 for all x ∈ Rn and is called positive definite if xT Ax > 0
for all nonzero x ∈ Rn . The set of positive semidefinite matrices is denoted Sn+, and
the set of positive definite matrices is denoted by Sn++.

Some characterizations of positive semidefinite matrices.
The following statements are equivalent:

• The symmetric matrix A is positive semidefinite.

© Springer Nature Singapore Pte Ltd. 2018
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• All eigenvalues of A are nonnegative.
• All the principal minors of A are nonnegative.
• There exists B such that A = BT B.

Let (X, d) be a metric space.

Definition B.1 The point p belongs to the lower limit Lin→∞ An of a sequence (An)

of subsets of (X, d), if every open ball with center p intersects all the An from a
sufficiently great index n onward.

Definition B.2 The point p belongs to the upper limit Lsn→∞ An of a sequence (An)

of subsets of (X, d), if every open ball with center p intersects an infinite set of the
terms An.

Definition B.3 The sequence (An) of subsets of (X, d) is said to be convergent to
A, if Lin→∞ An = A = Lsn→∞ An. We then write A = Limn→∞ An.



Appendix C
Solutions

Problems of Chapter 7

7.3 y = x2.

7.4 y(x) = sinh x
sinh 1 .

7.5 y(x) = C1 cos(ex ) + C2 sin(ex ).

7.7 y(x) = sin πx
2 .

7.8 y(x) = C1 cosh x−C2
C1

, where the constants C1 and C2 are determined from the
given boundary conditions that the given curve passes through the points (x1, y1)

and (x2, y2).

7.10 (x − a)2 + (y − b)2 = λ2 which is a circle.

7.11 y = ±2 sin mπx , where m is an integer.

7.12 y = λx2 + ax + b, where λ, a, b determined from the isometric and boundary
conditions.

7.15 Total resistance experienced by the body is F = 4πρν2
∫ l

0 y′3 y dx . From this,
constitute a variational problem with conditions y(0) = 0, y(l) = R. The shape of
the solid of revolution is y(x) = R( x

l )
3/4.

7.16 P0 = π2

l2 E I , where l = effective length, E = modulus of elasticity and I =
minimum area moment of inertia of the cross section of the rod.

7.17 λ1 = 6 with z1 = α(x2 + y2 − 1).

7.18 λ1 = 0.493.

© Springer Nature Singapore Pte Ltd. 2018
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7.19 Seeking the solution of the form

y2(x) = x(x − 1)(α1 + α2x), y3(x) = x(x1)(βx + β3x2),

we finds that α1 = 0.1708, α2 = 0.1744;β1 = 0.1705, β2 = 0.1760, β2 = 0.0018.
The values of y2 and y3 agree at the specified points to within 0.0001.

7.20 Seek the solution of the form z = α(x2 − l2)(y2 − l2). Then, it is found that
α = 5

16l2 .
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Altman’s theorem, 306
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Asymptotically regular mapping, 292
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Borsuk–Ulam theorem, 458
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Cauchy-Schwarz inequality, 35
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function, 155
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Demicontinuous mapping, 224
Demicontinuous operator, 608
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form, 616
problem, 616
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Excision, 457
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Fourier transform, 179
Fréchat metric, 5

Fréchet derivative, 129, 135, 138, 711
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H
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Hahn–Banach theorem for
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normed linear space, 44
real linear space, 44
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Hammerstein operator, 1, 84, 132
Hammerstein operator equation, 629, 645
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Hemibounded, 185
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strongly monotone operator, 196
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Hilbert–Schmidt kernel, 629, 649, 717
Hilbert space, 37, 179, 647
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I
Index theorem, 458
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Isotone or increasing operator, 405

J
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K
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Leray–Schauder principle, 635, 644, 647
Limit-compact operator, 491
Linear

functional, 38
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integral operator, 71
monotone operator, 226
operator, 37

Linear mapping, 507
Linear operator, 715
Linear positive operator, 406
Linear space, 14

C[a, b], 22, 25
L p[a, b] 1 � p < ∞, 22
L∞[a, b], 22
�1, 19
�p, 1 � p < ∞, 25
�p, 1 < p < ∞, 19
�∞, 20, 25
C, 25
R, 25

Lipschitz condition, 9, 709
Lipschitz constant, 9, 236, 288, 303, 339,

400, 682, 683
Lipschitz continuous, 234
Locally bounded operator, 184, 186, 192
Locally contractive mapping

(ε, k)-uniformally, 244
Locally convex topological vector space, 29,

302
Locally convex topology, 29
Locally uniformly convex space, 113
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Local solution, 683
Lower semicontinuous function, 155, 160
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Markov’s theorem, 390
Maximal
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Minimal element, 3
Minkowski functional, 307
Minkowski inequality, 794
Minorant of a mapping, 412
Modulus of convexity, 115, 279, 286, 294
Monotone operator, 177, 187
Multifunction, 311
Multilinear mapping, 50
Multivalued

contraction mapping, 313, 319, 329, 400
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operator, 219

Multivalued mapping, 311, 395
Multivalued operator, 187
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Nondiametral point, 280
Nonexpansive mapping, 231, 275, 276, 285,

304, 330, 337
Nonlinear

Hammerstein integral equation, 627, 631
hemicontinuous operator, 642
operator, 38
Volterra integral equation of convolution

type, 627
Nonlinear equation

of evolution, 690
Nonlinear integral equation

of Hammerstein type, 698
Nonlinear mapping, 507
Nonlinear operator, 643, 715
Norm, 18
Normal cone, 405, 508
Normal structure, 278
Norm convergence, 52
Normed linear space, 18, 313
Normed space, 18, 24, 26

C1[a, b], 26
P[a, b], 26

Norm functional, 153
Norm topology, 18

O
Odd mapping, 457
Open unit ball, 23
Opial’s condition, 292, 331, 396
Orbit

of a multifunction, 330
Ordered Banach space, 232, 405

P
Parallelogram law, 35
Parseval’s equality, 179, 628
Partially ordered

linear space , 404
Partially ordered set, 2, 277, 507
Partial order relation, 2
Perturbation theorem, 198
P-integrable function, 22
Polarization identity, 35
Positive definite matrix, 797
Positive definite operator, 76
Positive element, 404
Positive semidefinite matrix, 797

Positive semidefinite operator, 76, 154, 183,
213

Precompact, 58
Precompact set, 721
Product of normed spaces, 27
Proper function, 153
Pseudocontractive mapping, 289
Pseudomonotone mapping, 224
PS-solvable equation, 202
P-summable sequence, 19

Q
Quadratic functional, 154
Quasi-compact mapping, 507
Quasi-linear elliptic operator, 617

R
Real

Banach space, 178
Hilbert space, 160

Reflexive Banach space, 68, 164, 197, 198,
200, 201, 277

Reflexive space, 51, 112
Regular cone, 405, 507, 508
Regularly partially ordered space, 405
Regular orbit, 330
Regular sequence, 335
Relatively compact set, 59, 67, 189, 303
Rellich’s lemma, 89
Retraction mapping, 235
Rothe’s condition, 306

S
Sard’s theorem, 454
Schauder basis, 30
Schauder’s fixed point theorem, 231, 302,

692
Schauder system, 31
Schauder’s theorem, 307
Schur property, 55
Schur’s lemma, 57
Self adjoint

linear operator, 179
Self-adjoint operator, 76
Semiconvex mapping, 337
Semimonotone norm, 507
Seminorm, 28
Seminormed space, 29
Separable

Hilbert space, 202
metric space, 31
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normed space, 32
Sequence space

�∞, 20
c, 20
c0, 20
c00, 20

Sequentially compact, 59
Setvalued

mapping, 339, 401
nonexpansive mapping, 401

Sign function, 123
Singlevalued

monotone operator, 197
Smooth Banach space, 164
Smoothly reflexive space, 191
Smulian’s theorem, 195
Sobolev imbedding lemma, 620
Sobolev space, 88, 608
Space

L p , 608, 710
Species, 720
Spectral radius, 412
Spectral theorem, 179
Star-center, 331
Strictly

convex function, 152
convex space, 104, 112
increasing operator, 405

Strict-set contraction, 506
Strict-set contraction mapping, 508
Strong

convergence, 52
topology, 691

Strongly
differentiable norm, 113
elliptic operator, 90
hemicontinuous operator, 140
increasing operator, 405
monotone operator, 226
upper semicontinuous, 697

Strongly positive operator, 76
Subdifferential, 158

of convex functional, 129
of the norm functional, 160

Subgradient, 157, 159
of a function, 157

Sublinear functional, 44
Summable sequence, 19
Supnorm, 405
Support function, 154
Supremum, 2
Supremum norm, 697
Surjectivity theorem, 215

Symmetric operator, 76

T
Tangent hyperplane, 117
Taylor’s theorem, 129, 146
Topological space, 12
Topological vector space, 29
Topology, 11
Totally bounded, 58
Trajectory, 339
Trajectory (or orbit), 339
Tychonoff fixed point theorem, 277
Tychonoff’s Theorem, 390
Type (M) operator, 224, 226
Type S+ mapping, 224
Type S+ operator, 219

U
Uniform boundedness principle, 41
Uniform convexity of norm, 110
Uniformly convex Banach space, 278, 280,

285, 291, 304
Uniformly convex space, 110
Uniformly positive operator, 408
Uniformly smooth Banach space, 164
Uniformly strongly

differentiable norm, 113
Uniform norm, 681
Unit sphere, 23
Upper semicontinuity

from the right, 507
Upper semicontinuous, 716

multifunction, 716
from the right, 507

Upper semicontinuous function
for a multivalued mapping, 312

Urysohn operator, 1, 85, 711
Usual metric, 5

V
Virtually convex set, 189
Volterra integral equation

of convolution type, 627
Volterra integral operator

of convolution type, 179

W
Weak

Cauchy sequence, 52
topology, 52, 188, 716
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Weak entropy
of a function, 339

Weak Opial’s condition, 293
Weak topology, 153
Weak* topology, 189, 192
Weakly

almost
convergent sequence, 285

closed, 52
closed set, 716
compact, 53
complete, 52
continuous operator, 65

convergent, 52
convergent sequence, 54
differentiable norm, 113
dissipative mapping, 339
inward mapping, 288, 334, 338
lower semicontinuous functional, 226

Weierstrass approximation theorem, 10, 32
Weierstrass theorem, 10

Z
Zorn’s lemma, 3, 201, 259, 261, 280, 392
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