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Chapter 1
Introduction

One of the core building blocks in traditional economic theory is the equilibrium
concept (e.g., perfectly competitive equilibrium, monopolistically competitive equi-
librium, and informationally efficient equilibrium). Many of the classic equilibrium
concepts are derived or established on the basis of the rationality of the individual
participants in the sense that they are capable of maximizing their utility, or their
profits or forming rational expectation in such a way that a particular equilibrium
can be achieved at an aggregate level. For example, the perfectly competitive
equilibrium is described to be a market equilibrium outcome in an industry
with free entry and exit and completely mobile resources provided that all firms
are profit maximizers. Similarly, although Chamberlin and Robinson arrive at
monopolistically competitive equilibrium with different techniques, both of their
original arguments for deriving this equilibrium rely heavily on rationality and
purposive profit maximization. The notion of firms maximizing profits within a
monopolistic context has remained in modern analyses of monopolistic competition
(e.g., Spence (1976) and Hart 1985a,1985b). Also, an informationally efficient
equilibrium can be achieved in the Bayesian Rational Expectation Equilibrium
framework if traders are rational, in the sense that they maximize expected utility
and form rational expectations. This is shown by Grossman (1976, 1978), Radner
(1979), Hellwig (1980), Allen (1981), and Bray (1981). A new alternative approach
to the Bayesian Rational Expectation Equilibrium framework is Maximin Rational
Expectation Equilibrium (MREE), see Castro et al. (2011). This approach can be
used to examine market efficiency if market individual participants are rational and
able to solve the complex problem set up by MREE framework.

However, the individual’s rationality has been questioned from many angles. For
example, an individual participant may not be interested in pursuing maximization
of its profit. Even if it is, the individual may not be able to do so due to
the complex market environment, unknown information, and its computational
capability constraints. If we accept the view that the individual participants cannot
be rational, then, do we have to abandon all these equilibrium concepts? Is there any
way we could justify the existence of all these equilibria.

G.Y. Luo, Evolutionary Foundations of Equilibria in Irrational Markets, 1
Studies in Economic Theory 28, DOI 10.1007/978-1-4614-0712-6_1,
© Springer Science+Business Media, LLC 2012



2 1 Introduction

The Darwinian’s evolutionary idea of natural selection has been used in the
early literature (e.g., Alchian (1950), Enke (1951), Friedman (1953)) to validate
the profit maximization hypothesis or to justify the disappearance of noise traders
(or the dominance of informed traders). For example, as Penrose (1952, 11, pp. 812)
points out, “no matter what man’s motives are, the outcome is determined not by the
individual participants but by an environment beyond their control. Natural selection
is substituted for purposive profit-maximizing behavior just as in biology natural
selection replaced the concept of special creation of species”. Alchian (1950) writes,
“realized positive profits, not maximum profits, are the mark of success and viability.
It does not matter through what process of reasoning or motivation such success was
achieved. The fact of its accomplishment is sufficient. This is the criterion by which
the economic system selects survivors: those who realize positive profits are the
survivors; those who suffer losses disappear”. Enke (1951) presents more details on
how the market selection works. Enke (1951) says that “in the long run, however, if
firms are in active competition with one another rather than constituting a number
of isolated monopolies, natural selection will tend to permit the survival of only
those firms that either through good luck or great skill have managed, almost or
completely, to optimize their position and earn the normal profits necessary for
survival. In these instances the economist can make aggregate predictions as if each
and every firm knew how to secure maximum long-run profits”. In the financial
market, Friedman (1953) conjectured that noise traders gradually lose their wealth
to the informed traders through natural selection, the informed traders will come to
dominate the markets and drive the market to an informationally efficient outcome.

All these discussions by the early economists are descriptive in nature, Recently,
there are a large number of models built in the literature to further examine these
thoughts in a variety of contexts. Furthermore, in the literature using the natural
selection in the markets, few models focus on addressing the eventual occurrence
of the equilibrium at an aggregate level even though the individual participants are
total irrational.

This book gathers some of my own work in this area and intends to address at an
aggregate level the eventual occurrence of some of equilibrium outcomes through
economic natural selection in a totally irrational world.

There are eight chapters in the book. Chapter 2 examines whether the concept of
the perfectly competitive equilibrium would be valid if the firms are total irrational
in the industry in the sense that they cannot maximize or simply are not interested in
maximizing their profits. It is commonly known in any standard textbook that profit
maximization is the usual prerequisite for achievement of a perfectly competitive
equilibrium. This chapter presents an evolutionary model of an industry to show
analytically that with the market selection criterion of making nonnegative wealth
and with firms behaving totally irrationally, the industry evolves and converges
in probability to a perfectly competitive equilibrium. This is accomplished by
following the evolution of an industry through an infinite time horizon model where
firms’ outputs are chosen randomly by nature, entry occurs with no motivation and
exit occurs when a firm’s wealth becomes negative.
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Chapter 3 examines whether the monopolistically competitive equilibrium would
occur if the individual firms are not profit maximizers. In a product differentiated
industry, this chapter formulates an evolutionary dynamic model where there is
continuous entry of firms that randomly select their output levels on entry and
fix their output levels thereafter. Firms exit the industry if they fail to pass the
survival test of making nonnegative profits. Through the evolutionary process of
natural selection in the market, firms that make positive profits, survive; otherwise,
they disappear. This model proves that the industry converges in probability to
the monopolistically competitive equilibrium as the size of each firm becomes
infinitesimally small relative to the market, as the entry cost becomes sufficiently
small, and as time gets sufficiently large. Consequently, in the limit, the only
surviving firms are those producing at the tangency of the demand curve to the
average cost curve and no potential entrant can make a positive profit by entry.

Chapter 4 presents an evolutionary model of a futures market to justify the even-
tual occurrence of an informationally efficient equilibrium. In this dynamic futures
market, where the market participants know very little about their environment,
the market, itself, by serving as a selection process of information, promotes an
efficient aggregate outcome. Specifically, traders are assumed to merely act upon
their predetermined trading types (buyer or seller), their predetermined fractions of
wealth allocated for speculation and their inherent abilities to predict the spot price,
reflected in their distributions of prediction errors with respect to the spot price. This
model proves that the proportion of time that the futures price equals the spot price
converges to one with probability one.

Chapter 5 follows up by adding a random shock to the futures market to see
if the market is still informationally efficient. In this evolutionary model of a
commodity futures market, there is a continual inflow of unsophisticated traders
with predetermined distributions of prediction errors with respect to the fundamental
value of the spot price. The market acts as a selection process by constantly shifting
wealth from traders with less accurate information to those with more accurate
information. Consequently, with probability one, if the volatility of the underlying
spot market is sufficiently small, then the proportion of time, that the futures price is
sufficiently close to the fundamental value, converges to one. Furthermore, the width
of the interval containing the fundamental value, where the futures price eventually
lies, increases as the volatility of the underlying spot market increases.

Chapter 6 uses natural selection to examine the occurrence of informational
efficiency in a one-sided buyer auction market. Through the natural selection or
market selection in the market, this model reaches the similar conclusion to the
above. Specifically, each trader’s behavior is preprogrammed with its own inherent
and fixed probabilities of over-predicting, predicting correctly, and under-predicting
the fundamental value of the asset. If each buyer’s initial wealth is sufficiently
small relative to the market supply and if the variation in the asset’s random shock
is sufficiently small, then as time gets sufficiently large, the proportion of time,
that the asset price is arbitrarily close to the fundamental value, converges to one
with probability one. This is established under a weak restriction regarding traders’
behavior.
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Chapter 7 uses an evolutionary approach to explain the origin of money as
media of exchange in a primitive economy, where agents specialize in production
for the purpose of trading for their own consumption goods. A general class of
dynamics, which is consistent with Darwinian dynamics, is applied to the selection
of strategies. The model produces many of the well-known results regarding the
importance of intrinsic value and the proportion of agents specializing in different
goods. In addition, the model also shows the importance of initial trading strategies
and of the mutations of agents’ strategies in selecting equilibria.

Chapter 8 concludes the book and points out some directions of future research
in this area.
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Chapter 2
Evolution, Irrationality, and Perfectly
Competitive Equilibrium'

This chapter examines whether the concept of the perfectly competitive equilibrium
would be valid if the firms are totally irrational in the industry in the sense that
they cannot maximize or simply are not interested in maximizing their profits.
This chapter begins with the motivation of the issue. Then an evolutionary model
of an industry is constructed to prove analytically that the industry converges in
probability to perfect competition as firms gets infinitesimally small relative to the
market, as the fixed cost of entry gets sufficiently small and as time gets sufficiently
large. Furthermore, in the long run, the only survivors are those who produce at the
minimum efficient scale. No potential entrant can make a positive profit by entering
the industry.

This chapter is organized into five sections. The next section provides the
introduction. The framework of the model is described in the second section. The
results of the model can be found in the third section. The fourth section provides
some numerical examples to illustrate some of the results of the chapter. The last
section concludes the chapter.

2.1 Introduction

One can find the standard perfectly competitive model in any microeconomic
textbook. Although the perfectly competitive model is an ideal market structure,
it plays a fundamental role in modern economic theory. It is commonly found
in textbooks that, with free entry and exit and completely mobile resources, any
industry arrives at a perfectly competitive equilibrium, provided that all firms are
profit maximizers.

I'This chapter is based on my article published in the Journal of Economic Theory 67: 223250,
1995.

G.Y. Luo, Evolutionary Foundations of Equilibria in Irrational Markets, 5
Studies in Economic Theory 28, DOI 10.1007/978-1-4614-0712-6_2,
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6 2 Evolution, Irrationality, and Perfectly Competitive Equilibrium

As we trace back historically through the development of modern microeco-
nomics, it was not until Knight’s (1921) meticulous discussion in “Risk, Uncertainty
and Profit” that the concept of perfect competition as we know today received
a complete formulation. Within his characterization of perfect competition is
the fundamental premise of rationality: “the members of the society act with
complete ‘rationality’.”They “know what they want” and “seek it intelligently.”With
respect to their actions “nothing is capricious or experimental, everything is
deliberate”(Knight 1921, pp. 76-77). This is also very clear in the early writings
of Robinson (1933) where the idea of marginalism is critical. “The fundamental
assumption is that each individual acts in a sensible manner ” (p. 15) and “any
individual ... will always undertake an action which adds more to his gains than to
his losses”(p. 6).

The conventional perfectly competitive model includes the following character-
istics. A firm in a perfectly competitive market selects its output corresponding to
where marginal cost equals the market price. As long as profit opportunities exist,
firms continue to enter. Entry stops when all profit opportunities vanish. If firms
see their profits becoming negative they leave. In the long run, the remaining firms
produce at minimum efficient scale. There are three key “rationality ” ingredients
regarding choice in this conventional model. (1) Firms select a profit maximizing
output in response to market conditions (i.e., where marginal cost equals market
price), (2) firms choose whether to enter or stay out of the industry (in response to
observed profit opportunities), and (3) firms can choose when to leave (i.e., when
they see their potential profits becoming negative).

The profit maximization behavior, implied by “rationality”, however, has been
seriously attacked from several fronts.

One group of criticisms centers about alternative managerial goals. For exam-
ple, Baumol (1967) suggests the possibility of firms maximizing sales revenue.
Williamson (1963) suggests that firms maximize managers’ utilities. Cyert and
March (1963) suggest that when a firm faces conflicting objectives, it should
proceed sequentially to satisfy one objective at a time before considering the
fulfillment of others. Hence, in these criticisms profit maximization is replaced by
other managerial objectives.

Another group of criticisms focuses on the organizational complexity of a
firm and a business environment of continual dynamic uncertainty (e.g., Tintner
1941). Organizational complexity, often reflected by an elaborate vertical chain of
command within firms, potentially can lead to a great distortion of information,
both from the operator to the top manager and from the top management to the
operating levels. Given such complexity, it may be very difficult for a firm to
maximize profits. Furthermore, because at the operating level employees often
see little correlation between their individual actions and the amount of profits in
which they share, there may be little concern for profit maximization. In addition
to organizational complexity the environment of uncertainty is another obstacle
to profit maximization and rationality. Business decision making processes often
require predictions about future events. However, the decision makers are often
poorly informed about business conditions in general and most likely, they do
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not have a good knowledge about the probability of various departures from the
firms’ best guesses about the future. Decision makers are often restricted by their
forecasting capabilities and limited computational capacities [e.g., see the work of
Simon in (Simon 1976) and (1992)]. Consequently, it is not realistic to expect that
firms could accurately maximize profits.(Also see Scherer (1980, pp. 28-34) for a
further discussion of these issues.)

One reaction to such criticisms has been to abandon all rationality and motiva-
tion. Profit maximizing behavior no longer exists. Nevertheless, as Penrose (1952,
p. 810) paraphrases Alchian (1950), “to survive, firms must make profits. Hence
positive profits can be treated as the criterion of natural selection — the firms that
make profits are selected or ‘adopted’ by the environment, others are rejected and
disappear. This holds whether firms consciously try to make profits or not; even if
the actions of firms were completely random and determined only by chance, the
firms surviving, i.e., adopted by the environment, would be those that happened to
act appropriately and thus made profits. Hence, ‘individual motivation and foresight,
while sufficient are not necessary,’(Alchian 1950, p. 217).” As Penrose (1952,
p- 812) points out, “no matter what man’s motives are, the outcome is determined not
by the individual participants but by an environment beyond their control. Natural
selection is substituted for purposive profit-maximizing behavior just as in biology
natural selection replaced the concept of special creation of species.”

The intention of this chapter is to prove analytically in a precise complete model
that if firms’ outputs are determined randomly by nature, instead of arising from
profit maximization or the pursuit of any other goals, the industry will evolve into
a perfectly competitive state under conditions of free entry and exit. Basically,
this model begins with firms entering the industry exogenously. The behavior of
firms is modeled over a discrete time horizon. After entry the firms’ outputs are
determined randomly by nature. As long as these firms’ total profits are nonnegative
the firms continue to produce the same output. The firms could produce a small
amount or a large amount or an amount corresponding to the minimum efficient
scale. Whether they are successful and make a profit in the market is a matter
of chance. The firms’ abilities are bounded in the extreme. They are not able to
make profit maximization calculations and with the exception of exit, they do not
respond to market conditions. The model allows one firm to enter each time period,
no matter what the industry profits are. The exit flow is just the result of competition
or “struggle for existence” (Penrose 1952, p. 812). The market selection criterion is
that there must be nonnegative wealth in each period. Otherwise a firm exits.

Essentially, this chapter serves as a contrast to the conventional perfectly
competitive model. The industry still evolves into perfect competition even though
the profit maximizing behavior implied by rationality is replaced with (1) outputs
being randomly determined, (2) firms entering regardless of profit opportunities, and
(3) firms being involuntarily forced to exit as a result of market selection.

Two driving forces that produce the long-run perfectly competitive market
outcome are economic natural selection and competition. Here, competition means
continuous entry of various types of firms including firms that happen to produce
at or near the minimum efficient scale. Economic natural selection alone is not
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sufficient to generate the long-run perfectly competitive market outcome where all
the survivors are those who act as if they were profit maximizers. For example,
Blume and Easley (1992) use a dynamic general equilibrium model of an asset
market where wealth flows are permitted between traders. As time goes by, the
flow of wealth constantly redistributes market power among traders. They discover
that economic natural selection does not necessarily select for rational rules and
does not necessarily select against irrational rules. Their results are partly due to
the fact, that with no continuous entry of traders with all types of rules, not all
traders’ market power vanishes as time goes by; whereas, in this chapter, with
continuous entry of various types of firms, perfect competition arises where no firm
has market power. Competition among firms forces the market to select for firms
that happen to produce at or near the minimum efficient scale and to select against
firms that behave otherwise. The economic natural selection in conjunction with the
characteristics associated with competition lead to an equilibrium which generates
behavior observationally equivalent to profit maximization.

The results of this chapter indicate that, although each individual firm acts
irrationally, with the market selection process competition will lead to a long-run
perfectly competitive market outcome. This is much in the spirit of Gode and Sunder
(1993), who with a simulated experiment of double auction bidding show that, by
imposing a budget constraint (that all traders must settle their accounts), random
strategies lead to an allocative competitive equilibrium. This is also consistent with
the views of Patel, Zeckhauser, and Hendricks (1991) and Blume and Easley (1993)
who discuss how rational aggregate market outcomes can be achieved in financial
markets despite the irrational behavior of some participants.

2.2 The Model

Consider an industry in the economy where all the firms produce a single homoge-
neous good and the market prices for the input factors are constant. All the firms
enter the industry sequentially over a discrete infinite time horizon. Only one firm is
assumed to enter the industry in the beginning of time period ¢, where t = 1,2, .. ..
This firm’s output is determined by a random draw (q;) in the beginning of its
entry period ¢ on the interval A = [¢,q], where 0 < ¢ < ¢ < oo, according
to a continuous cumulative distribution function F(-). The output of the firm is
aq;, where the parameter ¢ > 0 (it will be seen in Lemma 2 that the shrinking
of « is analogous to making the firm’s output infintesimally small relative to the
market). These random draws are independent across the time periods. In other
words, ¢1,¢2,....qs»....qy,...(where ' > t) are independently and identically
distributed according to the continuous distribution function F(-).

In other words, denote all possible states of the world at the time period ¢ as
A = [q,q] with a typical element ¢,, where ¢, is the state of the world at time period
t. Only one state occurs at time period . {g;};>; is independently and identically
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o0
distributed according to F(-). Denote Q2 = [] A with a typical element = ¢ =
(41,92, - - .). Let I denote the product o-field on € and let Pr(-) denote the product
t

probability with marginal distribution F(-). Define Q' = [ A with typical element
i=1
o' =q"'=(q1,92,....q,) foreacht = 1,2, ....

This model adopts an extreme assumption with respect to irrationality. The firm
that enters at the time period t, producing «g,, will continue to produce ag, in all of
the following periods as long as it is still in the industry. That is , the firm’s output
is not responsive to market conditions.

A fixed cost is incurred upon entry. It is paid once and only once during the period
of entry. This cost of entry can be interpreted as including costs of building a plant
and installing equipment and any registration fees. This cost of entry is assumed
to be proportional to the firm’s output.That is, the total cost of entry for a firm
producing aq; is kag,, where k > 0, and therefore, this firm’s average cost during
the period of entry is k.

Each firm is assumed to have the same average variable cost function. The
reference average variable cost function (AC) is defined over A with the following
properties:

(a) AC : A — R4 and AC is continuous and differentiable
(b) There exists a ¢* in A such that

<0ifg, < g*
AC'(q:) | = 0if g, = q* .
> 0if g, > ¢*

(¢c) AC(q*) = c¢*.

To generate a family of average variable cost functions which shift in a parallel
way toward the origin as « shrinks, the following scaled down cost function [see
Novshek (1980) and Robson (1990)] is defined from the reference average cost
according to

AC,(q) = 4c (L),

Every firm faces this same average variable cost function AC,(-). The scaled
down cost function AC,(-) remains U-shaped like the reference average variable
cost function AC(-) curve and both functions achieve the same minimum average
variable cost (¢*) at output ¢* and ag* respectively, and more generally for
q: € [q,q] the average variable cost for a firm producing ag; are the same for
alla.

The industry is assumed to face the same inverse demand function each period.
Let Q; be the aggregate industry output produced in the time period ¢ and P; be the
output price faced by all firms in the time period ¢. The inverse demand function

D : Ry — Ry is defined by Q; = D(P;), D(:) is continuous and D’(-) < 0.
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The initial industry output and industry price satisfty Py = D~'(Q¢) > ¢*.2 The
determination of Q; and P, will be described in the following.

(a) The industry is assumed to begin with no firms. Hence, Qg = 03

(b) At the beginning of time period 1 a firm (called firm 1) enters producing aq; .
The industry output is Q1 = agq,. Correspondingly the price is P} = D~'(Q)).
Firm 1 will survive and continue to produce «g; in time period 2 as long as it makes
nonnegative profit during time period 1 (((P;1 — ACy(@q1) — k)aq1) > 0) which is
equivalent to P; > AC,(aq;) + k. To indicate this survival from time period 1 to
time period 2, one can define an indicator function as

1 1if P, — AC,(agq1) —k >0
P70l 0if P — AC,(egy) —k <0

The superscipt (1) of I indicates that the firm entered in time period 1 and the
subscript (1) indicates that the survival from time period 1 to period 2 is being
examined. In other words, if 11 = 1 then the firm survives from period 1 to period
2; otherwise, it exits at the end of period 1. In addition, firm 1’s per unit wealth
at the end of time period 1 is defined as W|! = P, — ACy(aq1) — k. Therefore,
the state of the industry at the end of time period 1 can be described as a vector

((Ilagqi, 1]W}),(0,0),....), which is an element of ]_[ (({0} U @A) x R).

(c) At the beginning of time period 2, another ﬁrm (called firm 2) enters,
producing ag,. The industry output is

0, = 1110“]1 + aqn

or
0,=01—X+aq

where X; = (1 — I)aq) represents the quantity of firm 1 exiting at the end of time
period 1 and the price is P, = D~'(Q>). Firm 1 survives at the end of time period 2
and continues to produce in the time period 3 as longas 11 = lor ) =] =1
where

2
1 1if Z [P, — ACy(xg))]—k =0
I, = =1 :

0 otherwise

2Given that the firm’s average cost is at least ¢*, if the industry price starts with a value of ¢*or
below ¢* then any firm will exit at the end of its entry period. This scenario is of no interest in
describing the evolution of an industry into perfect competition. That is, the industry price cannot
possibly converge to ¢*.

3Tn fact, the initial industry output will not affect the final results of this chapter. The initial value
of industry output (Q¢ = 0) has been adopted merely for convenience.
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If 1 21 1 11 = 0 then firm 1 exits by the end of time period 2. Putting this in words, it
says that firm 1 continues to produce «q; in time period 3 if both of the following
two conditions hold : (a) at the end of time period 1 firm 1’s profit made during
period 1 is nonnegative (i.e., (Pi — ACy(eq1) — k)agi) > 0 or I] = 1) and
(b) at the end of time period 2 firm 1’s total profits made during the past two time

2
periods are nonnegative (i.e., ( Y [P, — ACq(aq1)] — k)agy = 0or I, = 1). Let

=1 B
2
W)t = 3" [P, — ACy(aq)] — k. Firm 1’s per unit wealth at the end of time period
=1
2is W, if ]I} = 1. Firm 2 survives at the end of time period 2 and continues to
produce in time period 3 as long as /7 = 1 where

> _ ) LifP, — ACy(agz) —k > O

2 Ootherwise

That is, firm 2 continues to produce aq; in period 3 if firm 2’s profit made during
period 2 is nonnegative (i.e., (P,—AC, (aq2)—k)ag, > 0or I? = 1).IfI2 = 0 then
firm 2 exits at the end of time period 2. Firm 2’s per unit wealth at the end of time pe-
riod 2 is W;> = P, — ACy(aq2) — k. Therefore, the state of the industry at the end of
time period 2 is now defined as (1) I} aqy, I 1} W), (I}ag,, I3 W}), (0,0),....),

oo
which is an element of [] (({0} U aA) x R).
=1
This market selection process goes on. In general, at the beginning of time period

t, a firm (called firm t) enters producing a¢,. The industry output is

t—1 t—1

0 => (|17 )eqi | +eq

i=1 j=

or
0/ =01 — X1 +oagq,

where X;_; represents the quantity of the firms exiting at the end of time period
t—1% and the price is P, = D~'(Q,). Firm i (i=1,2,...,t) survives at the end of

=2
“In fact, X, = Z(l—] l)(]_[ I/ )otq] + (1= I/="ag,—;. where ] I/ indicates whether
i=j
the firm j , (where j 5 t—2.) remarns in the industry by the end of time period 7—2. If it does
=2 .
remain, then [| 7/ = 1.1 — I/_, indicates whether firm j exits at the end of time period ¢ —1. If
i=j

firm j exits at the end of time period t—1, then 1 — 1r | = 1. Therefore, (1 — 1, 1)( H I/ )ozq]
represents the quantity of firm j exiting the industry at the end of time perrod t—l and

Z 1 - I,/ D( ]_[ I/ )otq ;j represents the total quantity of firms 1,2,..., t—2 exiting at the end
i=j



12 2 Evolution, Irrationality, and Perfectly Competitive Equilibrium

1
time period ¢ and continues to produce in time period t+1 as long as [] / ;=1
j=i

where A
J
i Lif Z[RV_ACa(aqi)]_kzo
Ij = o .
0 otherwise
That is, firm i (i = 1,2,...,¢) continues to produce «g; in time period ¢ + 1 if

firm i’s total profits made from period i to j, forall j = i,i + 1,i +2,...,¢

J
are nonnegative (i.e., () [Py — ACy(@q;)] — k)ag; > 0 for all j = i,i +
s=i

1,i +2,...,¢, or I} = 1forall j = i,i+ 1,i+2,...,t). Firm i exits by
t t

the end of time period ¢ if [] I} = 0. Let W/ = 3 [Pr — ACu(agi)] — k.
j=i T=i

Firm i’s (where i = 1,2,...,f — 1) per unit wealth at the end of time period

tis Wi if [[1; = 1 and firm t's wealth at the end of time period 7 is
j=i
W/. Therefore, the state of the industry at the end of time period ¢ is a vector
1 1 1 1
(T Dagn (T IHW. (T Iege, (TTIWA). ... (Hf g, W), 0.0),
j= j= j= j=
....}. The set of possible states of the industry at time period ¢ is a subset of

o0

[T(({0} U @A) x R). Clearly, the state of the industry at time period ¢ depends
loniy on the state of the industry at time period #—1, not on the state of the industry
at time period 1,2, ..., — 2.

As can be seen, the industry price at time ¢ is a function of «,k and the
realizations of g, g2, ...,q,. This chapter is interested in whether the industry
evolves into perfect competition as time goes by, and as firm-size («) and the
entry cost (k) shrink. The perfectly competitive industry (see Novshek 1980) is
characterized by (1) the perfectly competitive price P* = ¢* and the corresponding
competitive output is Q* = D(P*), (2) all firms produce at minimum efficient
scale and (3) no potential entrants can make strictly positive profits by entry.

2.3 The Results

In this section, the main result is the Theorem which proves rigorously that the
industry converges in probability to perfect competition as firms gets infinitesimally
small relative to the market, as the cost of entry gets sufficiently small and as time

of time period t—1. (1 — I/=})eq,— represents the quantity of firm 7 —1 exiting at the end of time
period #—1.
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gets sufficiently large. The proof of the Theorem is directly established using the
results of Lemma 1 and Lemma 2. Lemma 1 sets up the lowest bound for the
industry price and Lemma 2 sets up a probabilistic upper bound for the industry
price after some time period.

Now this chapter begins with Lemma 1 which establishes a lowest bound for the
industry price. The intuition of Lemma 1 is straightforward. Essentially, it says the
following: Any firm that drives the price below ¢* + k in its entry period would
make per unit revenue below ¢* + k, which is less than its entry period’s per unit
cost of at least ¢* + k. Consequently, this firm makes a negative profit and exits
the industry at the end of its entry period. Hence, the lowest price occurs when the
price in the previous period is ¢* 4 k and when the firm with output ag enters the
industry. Therefore, the industry price cannot be lower than D~ (D(c* + k) + aq).

Lemma 1. For any given positive numbers o and k,
P, > D Y(D(c* + k) + ag), Vt.
Proof. Since D’(:) < 0 then
P, > D7N(D(c* + k) + ag), Ya >0,k > 0,1.
is equivalent to
0, < D(c* +k)+ag, Ya >0,k > 0,¢. (2.1)

Therefore, it is sufficient to show (2.1).
The proof begins by showing inductively

Qi1 —Xi—1 < D(c* +k), Vi>1,aa >0,k >0. 2.2)

(1) The base step:
Qo — Xo < D(c* +k). (2.3)
01— X1 < D(c* +k). 2.4)

Given Q¢ = 0, and Xy = 0, (2.3) is trivial.
To show (2.4), the following two cases are considered, case 1 : Q1 < D(c* + k)
andcase 2 : Q1 > D(c* + k).

Case 1: Since Q| < D(c¢* + k) and X > 0, then it follows that
01— X, <D(c* + k).

Case 2: Since D(c* + k) < Qy,and since D’(-) < O,then P, < ¢* + k. This
implies that the first firm with average cost of at least ¢* + k in the entry period
would make strictly negative profit. Hence, it has to leave the industry at the end
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of period 1. That is, X| = «gq;. Since Qo = 0, O = @g; and X| = «g;. then
01— X1 =aq1 —aq) < D(c* + k). That s,

01— X, <D(c" + k).

(2) The induction step:
Suppose for any r,
0, — X, < D(c* + k). 2.5)

then it needs to be shown that

OQr41— X1 < D(c™ + k). (2.6)

To show (2.6), the following two cases are considered, case 1’ : Q,4+1 < D(c* +
k) and case 2’ : Q,+1 > D(c* + k).

Case 1’: Since X, 41 > 0, then Q,4+; < D(c* + k) implies

Or+1— X1 < D(c™ + k).
Case2': Since D’(-) < O,then Q,4+1 > D(c* 4+ k) is equivalentto P, < c* + k.
This implies that the ( 4 1)st firm, with entry period’s average cost of at least ¢* +k,
would make a strictly negative profit. Hence, the (r 4 1)st firm leaves at the end of

time period r + 1.Thatis, X, +1 > aq,+1.
Therefore,

Qr+1 - Xr+1 = Qr - Xr + odqr+1 — Xr+1
=< Qr - X, (SiHCC agr+1 = Xr-H)
< D(c* 4 k), (by the inductive assumption (5) )

That is ,
Q41— Xr41 < D(c* + k).

(3) Conclusion: therefore,
Qi1 —Xi—1 < D(c* +k), Vi>1,aa>0,k>0.
Now when «¢; is added to both sides of (2.2), (2.2) becomes
Qi1 = Xi—1 + g, = D(c* + k) + ag,. 2.7
Since ¢, <¢q,and Q, = Q,— — X,—| + aq,, then (2.7) becomes
Q: < D(c* +k)+oaqg.

The proof of Lemma 1 is complete. |
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Thus, the lowest bound for the industry price has been established.

Now, the focus of the chapter turns to the determination of a probabilistic
upper bound for the industry price after a certain number of time periods. The
following Lemma specifically shows that for any given positive number €’ < k
with probability 1 there exists a time period after which the industry price cannot be
above D™!1(D(c* + k + €') — ag) when the firms get infinitesimally small relative
to the market. To identify precisely this upper bound in the following lemma, some
further notation needs to be developed.

Definition 1. Denote a firm with average variable cost lying in the interval [c*, ¢*+
€'] as an E-firm. Since AC,(-) is continuous, it therefore follows that E-firms’
outputs must lie in a subinterval around «g™* in the interval ¢ 4. Define

o — 1if ACy(aq,) € [c*,c* + €]
"7 1 0 otherwise

for t = 1,2,.... Since {q;};>1 is independently and identically distributed
according to F(-), {e;};>1 is independently and identically distributed. Denote

Pr(e; =1) =16
Pr(e, =0)=1-6.

Clearly, 6 > 0.5

Definition 2. Denote h;, fort =1,2,..., as

_1if Py = DN (D(c* +k +€)—agq)
" 7 | 0 otherwise ’

The proof of Lemma 2 focuses on showing that for any given ¢’ < k and for
sufficiently small firm-size (o) there exists a time period after which the price stays
below D~ (D(c* + k + €') — ag) with probability 1. The proof consists of two
steps. Step 1 shows that with ¢ < k and a sufficiently small firm-size («) the
price will always be greater than ¢* + €. This further implies that any E-firm
which makes a nonnegative profit in its entry period will always be able to make
nonnegative profits in all subsequent time periods. Consequently, this E-firm always
stays in the industry. Step 2 shows that with probability 1 the price stays above
D~Y(D(c* + k + €') — agq) only a finite number of time periods. This is equivalent
to showing that with probability O the number of time periods, after which the
price stays above D~!(D(c* + k + €') — aq), tends to infinity. This step is shown
by contradiction. Suppose that with some positive probability the number of time

STf the random draws q1,92s---,4q;, ... are from a discrete subset of the interval A, then this
discrete subset has to include the point ¢* and the discrete probability distribution over the discrete
subset has to place a strictly positive measure on ¢* in order to achieve similar results to this paper.
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periods, after which the price stays above D! (D (c*+k+¢€')—aq), tends to infinity.
Having this critical value D~ (D(c* + k + €’) — ag) guarantees that if any E-firm
enters in the time period, after which the price is above D~!(D(c* +k +€') — aq),
this E-firm will make nonnegative profit in its entry period. Step 1 implies that
this E-firm makes nonnegative profits in all subsequent periods. Therefore, this E-
firm never exits the industry. Furthermore, with the independence of {e;},;> it is
shown that with a strictly positive probability the number of such E-firms that never
exit the industry tends to infinity. Since all these E-firms produce a positive output,
consequently, this would cause the price to go below the lowest bound established
in Lemma 1, which is a contradiction.

Lemma 2. For any positive k, for all positive €' < k, there exists a positive @ such
that, forall @ < @,

Pr{3t(¢’, o, k,q) such that fort > t(:) P, < DY (D(c* +k +¢€) —ag)} =1
or Pr {tl_i)m P, < DY (D(c* +k+¢€)— aﬁ)} =1
o0

Proof. To show Lemma 2 it is sufficient to show that for any positive k and for any
€' < k, there exists a positive & such that, for all @ < @, with probability 1 there
exists only a finite number of time periods for which the price is greater than or
equalto D™H(D(c* + k + €') — ag).

This is proved in the following two steps.
Step 1: This step shows the following claim.

Claim 1. For any positive k and all positive € < k, there exists a positive & such
that @ < o implies that P, > ¢* + ¢/, fort = 1,2,....

Proof of Claim 1: For any k > 0 and all positive €’ < k, pick a positive & such that
D' (D(c*+k)+aq) =c*+€.°
Since D’(-) < 0, « < & implies that
D7N(D(c* + k) +ag) > c* +¢€. (2.8)
Lemma 1 implies that
P, > DY D(c* +k)+ag)  Va,k,t. (2.9)

Then (2.8) and (2.9) imply that

Since D’(-) < 0, if k < €’ then there does not exist a positive @ such that D~ (D(c* + k) +
@q) = c* + €. Therefore, it is necessary that k > ¢€’.
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P, >c*+¢€, fort =1,2,....

That is, for any positive k and all positive €’ < k, there exists a positive & such
that @ < o implies that P, > ¢* + ¢/, fort = 1,2,....

Step 2: Step 2 proves the following claim.

Claim 2. For any k > 0, for all positive €’ such that 0 < ¢ < k, and foro < &
(where « is defined in Step 1)

o0
Pr{th < oo} =1.
=1

Proof of Claim 2: Since

o0
Pr§2h,<oo

=1

+ Pr

o0
th = oo} =1,
=1

to show Claim 2, it is sufficient to show that

Pr { > b= oo§ =0. (2.10)
t=1

The following shows (2.10) by way of contradiction. Suppose that

o0
Prgzmzoo} =A>0.
=1

This implies that for any integer M, there exists an integer m > M, such that

m A’
Pr{Zh,zM} > >0. (2.11)
=1
m
Denote N(m) = Y h,.
=1
Now construct a collection of random variables {e;,,e;,,.... ¢, ..., €y, 1

where f, = min{¢ : h, = 1, t > t,_1}, and the initial point z, = 0.
t
Define’e;,, forn = 1,2,..., M, ..., N(m) as
~ 1 ife, =1aty,

ey = .
" 0 otherwise
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Since e, is independent of /1, (which is realized at time ¢t — 1) and {e,};>; are

independently and identically distributed, it follows that {e, },N=('f) are independently
and identically distributed and

Pr{e;, =1} =60 forn=1,2, ..., N(m)
Pr{e;, =0} =1—-0forn=1,2, ..., N(m)

N(m)
are iid., > ‘e;;, has a binomial distribution with parameters
i=1

N(m) and 0, for any integer £ < N(m),

N(m)

i=1

Since {e;, }

N(m)

N(m)
SIS T
j=E

i=1
N(m) N(m)
Since ) e, = Y ‘e, ,for N(m)=M

i=1 i=1

N(m)

M
Pr{ Y e, = EIN(m) = M} =y (;‘4) 67 (1 — gyM= 2.12)
j=E

i=1
As shown in the Appendix , for any integer £ < M

N(m)

M
Pr{ > e, = E|N(m) = M} > Pr{ Y e, = E[N(m) = M}. (2.13)

i=1 i=1
Equations (2.12) and (2.13) imply that

N(m)

M
Pr{ Y e, = EINGm) = M} =3 (;‘4) 67 (1— )M, (2.14)
j=E

i=1
M . .
Since ) (ﬁ”) 67(1 — )M~/ > 0, it is possible to pick a positive number 8 <
J=E

M . .

> (j” ) 67 (1 — 9)M~J, and together with (2.14), this implies that for any given
J=E
integer E there exist M > E and m such that

N(m)

M
Pr% Y e, = EINGm) > M} =3 (j”) 0I(1—M =B (2.15)
j=E

i=1
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m
Finally, since N(m) = )_ h, and using (2.11) and (2.15)

=1

N(m) N(m)

Pr% Ze,,. zE} zPr% Ze,i ZE,ih,zM
=1

i=1 i=1
N(m) m

|
=Pr(ze,,. zE|Zh,zM)Pr(éht2M)

i=1 =1

> (1)era —9)M—f} %

E

z

PN,

j=
A

=

v
|

Then for any integer E there exists an integer m such that

N(m)

Pr{Ze,,.zE} >%>O.

i=1

This in turn implies that

oo
Pr{ Ze,,. = oo} > 0.

i=1

This means that, with positive probability, the number of E-firms entering over the
time periods {¢ : P,—; > D™ (D(c* + k + €') — aq)} tends to infinity.

Now consider an E-firm entering the industry in the time period ¢ for which
Py > D7Y(D(c* + k + €') —ag) or h, = 1. This implies that Q,_; < D(c* +
k + €') —aq and since Q; = Q,—1 — X;—1 + aq;, where X;—; > 0and ¢; < ¢,

0, <D(c*+k+€)

or
P>c*+k+¢€

This E-firm makes per unit revenue P, which is greater than or equal to its per
unit cost which is no more than ¢* + k + €’ in its entry period ¢. Hence this E-firm
makes nonnegative profit in its entry period ¢. Claim 1 implies that Yk > 0 and for
all positive €’ < k, there exists a @ such that @ < o implies that P, > ¢* + €/, for
t =0,1,2,....This in turn implies that this E-firm makes per unit revenue , which is
greater than its per unit costs (P,4; > ¢*+¢€’, i = 1,2,...), in all time periods after
the entry period. Therefore, this E-firm always makes nonnegative profits after its
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entry and never exits the industry. Since all the E-firms have per unit costs no more
than ¢* + k + €' in their entry periods and per unit costs no more than ¢* + €’ in
any time period after entry, the same argument implies that all the E-firms entering
the industry over the time periods {¢ : P,y > D' (D(c* + k + €’) — ag)} or
{t : h, = 1} make nonnegative profits in all the time periods and never exit the
industry.

Therefore, the above has shown that with a positive probability the number of E-
firms (that never exit the industry) in the industry tends to infinity. Since each of the
E-firms produces a quantity of at least ag, with a positive probability the industry
output quantity must be driven eventually to a quantity greater than D(c* +k) +ag.
Since D’(-) < 0, then with a positive probability the price must be below the lowest
bound D' (D(c* + k) + ag). This is a contradiction of Lemma 1.

Therefore, Claim 2 has been proven. That is, for any k > 0, for all positive
€ < k,and for @ < @ (where « is defined in Step 1)

Pr{ih, <oo} = 1.

t=1

Claims 1 and 2 imply that for any given positive k and all positive €’ < k, there
o0

exists a positive @ such that for all « < @&, Pr{}_ h; < oo} = 1. This means that
=1
with probability 1 there is only a finite number of time periods for which the price

is greater than or equal to D' (D(c* + k + €’) — agq). This implies that eventually
the price will stay below D! (D(c* + k + €’) — ag) with probability 1.

Formally, for any given positive k and all positive €’ < k, there exists a positive
« such that, for all ¢ < @,

Pr[3 (€, o, k,q) suchthat fort>t(e' o, k,q) P,<D '(D(c*+k+€)—ag)] = 1.

The proof of Lemma 2 is complete. |

Remark. To make the firms’ outputs become infinitesimally small relative to the
market, the above proof shrinks « toward zero while fixing the market demand.
Another equivalent way to achieve this is to keep the firms’ outputs fixed but expand
the market demand toward infinity. [For a further detailed discussion, see Novshek
(1980).]

Having established the lowest bound and the probabilistic upper bound for the
industry price, the chapter now presents the main results in Theorem 1. Theorem 1
has three parts. The first part of Theorem 1 proves that the industry price converges
in probability to the perfectly competitive price P* as the firms get infinitesimally
small relative to the market, the cost of entry k gets sufficiently small and time gets
sufficiently large. Furthermore, the second part of Theorem 1 shows that in the limit

o0
the only firms existing in the industry (i € {€ : [] 1 ]K = 1}) are those with average
j=t
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cost equal to ¢* and the last part shows that in the limit there are no potential entrants
that can make strictly positive profits by entry.

Theorem 1. For any positive numbers € and n € (0, 1), there exist positive numbers
@ and k such that, for all« <@ and € <k < k (where € = D™'(D(P* +¢€) +
aﬁ) - C* - k )7

(1) there exists a time period t(€, n, o, k) such that, fort > t(e, n, o, k),
Pr{P* <P, <P*+e}>1—1

(2) Furthermore, there exists a time period T’ (n, €, «, k) after which, with proba-
bility of at least 1 — n all the remaining firms are those with average variable
cost lying in the interval [c*, c* + €].

More precisely, there exists a time period t'(n, €, &, k) such that, for t >

t
'(n,e,a,k)andi € {£: [] ]j‘f =1},
j=t

Pr{AC,(ag;) € [c*,c* + €]} > 1—n.

(3) with probability of at least 1 —n no firm with average variable cost lying outside
the interval [c¢*, c* + €] can make positive profit by entering after time period
t(n, €, a,k).

More precisely, for aq, where ACy(aq;) ¢ [c™,c* + €],

Pr{P, — (ACy(xgq;) + k) <0} > 1 —n.

Proof. Lemma 2 implies that for any given positive k and all positive ¢’ < k, there
exists a positive @ such that forall o < o

Pr[3t(€,a. k,q) suchthat fort > t(,a.k,q) P, < D™ (D(c*+k+€)—ag)] = 1.

Pick a k sucht_hatE > €.
Fore' <k <k,ua <ua,

D' D(c* +k+€)—ag) < DN (D(c* +k +€)—aQ). (2.16)
Define € as the following,
P*4+e=D'D(c*+k+¢)—aq) (2.17)

Given the relationship between € and €’ in (2.17), an arbitrarily small € can always
be produced by choosing an appropriately small €’.” Therefore, (2.16) can be
rewritten as the following:

7It can be easily shown that € > €’ + k.
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Fore' <k <k,a <a,
DYD(c* +k +€)—ag) < P* +e. (2.18)

where _
€ =D Y D(P* +¢)+aq) —c* —k (from (2.17)).

Using (2.18), Lemma 2 can be rewritten in the terms of € and P* as the following:
For any positive number € there exist positive numbers & and k such that for all
a <wande <k <k, (wheree’ = D' (D(P*+¢)+aq)—c*—k),

Pr{3t(¢,a, k,q) such thatfort > t(:) P, < P* +e¢} =1 (2.19)

Clearly, the time period t(-) depends on the random variable g, not on the
cumulative distribution function F(-). To be more practical and relevant to exper-
imentation it is of more interest in an ex ante sense to determine from what time
period and on, that the event P, > P* + ¢ occurs with a given probability. That
is, for any given 1 € (0, 1), one can always construct a time period t based on 5
(instead of ¢) such that from that time period and on

Pr{P, > P* + ¢} <.

Thelefore, for any positive numbers € and 7, € (0, 1), there exist positive numbers
o and k such that, forall < @ and €’ < k < k, (where €’ = DY D(P* +¢€) +
o q)—c*—k), there exists a time period 7(, €, @, k) such that, fort > (5, €, &, k)8

Pr{P, < P*+¢e}>1—n. (2.20)

Claim 1 of Lemma 2 implies that
Vk >0,Ve <kandforalla <,

P>c*+é€fort=1,2,.... (2.21)

Since P* = ¢*, and ¢ = D™ (D(P* + ¢) + @q) — ¢* — k, the above can be
restated in terms of € and P* as the following. B
Ve > 0, forall D™ (D(P* +¢€) +aq) —c* —k <kandforalla <@

P> P*fort =1,2,... (2.22)

Equations (2.20) and (2.22) imply that for any positive numbers € and 7 € (0, 1),
there exist positive numbers @ and k such that, foralla < @ and €’ < k < k, (where

8The transition from (2.19) to (2.20) is due to the fact that almost sure convergence implies
convergence in probability.
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€ = DTN (D(P*+¢€)+aq)—c* —k ), there exists a time period (7, €, @, k) such
that, fort > t(n, €, a, k),

Pr{P* <P, <P*+e}>1—1

!
(2) First of all, the set {£ : [] I j‘ = 1} is non-empty. This is true, because (2.21)
j=t

implies that E-firms, which enter when P; > ¢* + k + €, (where i < t), will make
nonnegative profits all the time periods and will never exit the industry.

Second, (2.19) states that for any positive number € there exist positive numbers
@ and k such that forallo < @ and €’ <k < k. (where ¢ = D™ (D(P* 4 ¢€) +
@g) —c* —k),

Pr{3t(e,a,k,q) such thatforz > t(:) P, < P* +¢e} =1

This implies that for any firm i’ entering the industry before time period
7(¢/,a, k, q) and with average variable cost lying outside the interval [¢*, c* + €],
where i’ < 7(-), with probability 1 there always exists a time period 7;/, by the end

tir
of which, firm i’ exits the industry (i.e., [] }/ = 0). The reason is as follows:
j=i

Since, with probability 1 P; is less than or equal to P* + € after time period 7(-),
the firm i’ with average cost lying outside the interval [¢* + €] makes a negative
profit after time period t(-). Since there is only a finite number of time periods
before time period 7(-), only a finite positive amount of wealth could have been
accumulated up to period 7(-). Therefore, there will exist a time period 7;; > 7(-)
where the negative profits accumulated after time period 7 (-) will offset any positive
profits accumulated before time period 7(-). This causes the total wealth of firm i’
to become negative. Therefore, firm i’ exits the industry.

Of course, for any firm i” entering the industry after time period 7(-), where
7(-) <i” and where ACy(ag;») ¢ [c*, c* + €] it will exit at the end of its entry time
period i”. That is, Iii,/,/ =0.

Define / = gai(){i}}. Therefore, with probability 1 for any ¢ > ¢’ and for all

1 T("
t
ie{l: ] If» = 1}, AC, (agq;) € [c¢*,c* + €]. That is, for any positive number ¢
j=t
there exist positive numbers & and k su_ch thatforallo < wande' <k < E, (where
€ =D (D(P*+¢e)+aq)—c*—k),

t
Pr{3¢’ such that for¢ > ¢', i € {£: l—[ I]‘f =1}, AC, (xg;) € [¢*,c* + €]} = 1.
j=t

Which further implies that the results of part (2). That is, for any positive numbers
€ and 1 € (0, 1), there exist positive numbers @ and k such that, for all « < @ and €’
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<k <k (wheree’ = D™Y(D(P* +¢€) +aq) —c* —k ), there exists a time period
t

/(n, €, &, k) such that, fort > t'(n,e,a,k)andi € {€: [] If =1},
j=t

Pr{AC,(ag;) € [¢*,c" + €]} > 1—n.

_ (3) Part (1) of Theorem 1 implies that Ve, 7, there exist positive numbers & and
k such that, for all « < @ and €’ <k <k, there exists a time period 7 (¢, 1, o, k) such
that, fort > (€, n, o, k),

Pr{P, < P* +¢}>1—n.

Since P* + € < P*+e+k, Pr{P, < P*+¢} <Pr{P, < P*+e€+k}
Therefore,
Pr{P, < P*+e+k}>1—n.

If ACy(xq,) ¢ [c*,c* +¢€],then ACy(xgq,) > ¢*+€ = P*+eand Pr{P, < P*+
€ +k} <Pr{P;, < ACy(nq;) + k}. It then follows that, for ag, where AC,(xq;) ¢
[c*,c* + €],

Pr{P, < ACy(agq,) +k}>1—n.

Therefore, part (3) has been proven.
The proof of the Theorem is complete. |

Remark. Since D(-) is a continuous function, one can similarly show that the
industry quantity converges in probability to the perfectly competitive quantity Q*
as the firms get infinitesimally small relative to the market, the average fixed cost of
entry k gets sufficiently small and time gets sufficiently large.

2.4 Numerical Illustration

The last section of the chapter has shown theoretically that, as time gets large and
competition increases (¢ — 0 and the average cost of entry (k) gets small), the
price converges to the competitive price and all of the remaining firms produce at
minimum efficient scale. In practice, what would this convergence look like? In this
section, some numerical examples are provided to help better understand the results
of the chapter.

The following numerical illustrations examine an industry where

1. the consumer demand functionis Q; =4—P;, t=1,2,...,
2. the average variable cost function for all firms entering at time ¢ (where ¢t =
1,2,...)is

2
o
ACa(OlC]r) = (% - 1) + 2,
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(O8]

. the average entry cost is k = 0.025,

4. the g; are drawn according to a uniform distribution from the interval [.5, 1.5],
and

5. the level of competition and the size of the firm is represented by «. Firm ¢

produces «g;.

The first example illustrates how the distributions of price and surviving firms
shift as time goes by for an industry with a sufficient amount of competition
(reflected by small enough « and k). In this illustration ¢ = 0.009. For this model
P* = ¢* = 2. The « and k are chosen to ensure the existence of E-firms. In this
example E-firms have average variable costs lying in the interval [¢*, ¢* + €'] where
¢* = 2and ¢ = .01. Based on Lemma 1, the lower bound of the price should be
DY (D(c* + k) + ag) = 2.0115 and based on Lemma 2, the upper bound of the
price should be D' (D(c* + k + €’) — ag) = 2.0485.

Five hundred simulations are conducted with the above set of parameters. Each
simulation consists of the following: At time period ¢ (f = 1,2,...) g; is drawn
from the uniform distribution and firm #’s output is «g; as long as it remains in
the industry. By summing up the supply of all surviving firms the market price is
determined. At all time periods each firm’s cumulative wealth is computed. As soon
as a firm’s wealth becomes negative it leaves the industry. Each simulation follows
the industry from time period 1 to 10,000.

In Fig. 2.1, histograms are presented which illustrate the distribution of price
and surviving firms’ average variable costs at time periods 1,000 and 10,000. The
price histogram (Fig. 2.1a) shows that at time 1,000 there is a small fraction of
sample points (1.2%) which still lie outside the band [2.0115, 2.0485] (the interval
predicted in the theory above). By time period 10,000 all sample points lie inside
this band. Notice that at time 10,000 approximately 87% of the sample points
fall in the [2.0115, 2.0254) interval while at time period 1,000 57% of the price
sample points fall in the same interval. An analysis of the cost histogram (Fig. 2.1b)
shows that after 10,000 time periods all of the remaining firms in the industry have
average variable costs below the upper bound 2.0485. This is not true after 1,000
time periods (where about 20% of the firms still have average variable costs above
2.0485). By time period 10,000 approximately 83% of the firms are E-firms. This
contrasts with 54% at time period 1,000.

The second example is designed to illustrate the instability in the distribution of
price as time goes by for an industry without a sufficient amount of competition
(represented by a sufficiently large o (=.03)). The second example conducts 500
simulations, where a sufficiently large o (=.03) is chosen such that no firm can
make nonnegative profits in all time periods.” The price histograms are reported in
Fig. 2.2 for time periods 500, 5,000, and 10,000. Evidence of the large variability
in price movement is clear when a comparison is made between time periods 500

9With ¢/ = .01 and k = .025, for the existence of E-firms with average variable costs in [2, 2.01]
,o must be less than or equal to @ = .01.



26 2 Evolution, Irrationality, and Perfectly Competitive Equilibrium

50%

At 1000

& At 10000
30% .....................................................

40%

cent

5 20% e N
0.
10%;- -~~~ --m@ -5 . 28 B -®m. . ... . . ...

0%

o

100%

% At 1000
B At 10000
60% ....................................................

80% |- B

40% .....................................................

20% e et

Percent of Surviving Firms

Q
X

Surviving Firms' Costs

Fig. 2.1 Histograms (@« = 0.009 and K = 0.025), a comparison at times 1,000 and 10,000:
(a) price, and (b) surviving firms’ costs

and 5,000 and between time periods 500 and 10,000. Figure 2.2a shows that relative
to time period 5,000 the mean value of price is much closer to 2 at time period
500. Interestingly, the dispersion of prices at 5,000 is very small but its mean is
relatively large. Figure 2.2b shows that as time increases to 10,000 the distribution
of price reverts to looking like the distribution at time period 500. Clearly, the price
distribution does not appear to be very stable. Furthermore, at time periods 500 and
10, 000 a sizeable percentage (approximately 10%) of sample price points fall below
the long run competitive price, P* = 2.
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Fig. 2.2 Price histograms (¢ = 0.03 and K = 0.025), a comparison at times (a) 500 and 5,000,
and (b) 500 and 10,000

2.5 Conclusions

Although profit maximization is the usual prerequisite for achievement of a perfectly
competitive equilibrium, this chapter has proven that even if the firms behave
irrationally, the industry can arrive at the same perfectly competitive equilibrium.
This was accomplished by following the evolution of an industry through an infinite
time horizon model where firms randomly choose their outputs, continually enter
the market and leave when their wealth becomes negative.

In this partial equilibrium model, all the firms’ abilities are assumed to be
bounded in the extreme. They cannot adapt their behavior to the environment.
Presumably, if this assumption is relaxed, any amount of rationality which adds to
their abilities should only lead to speeding up the convergence process to a perfectly
competitive equilibrium. For example, if firms are allowed to adaptively adjust their
outputs from period to period through learning, searching or imitating, eventually
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these firms will resemble those producing at minimum efficient scale. Consequently,
the speed of convergence will be increased.

In conclusion, this chapter lends analytic support to earlier conjectures which
have attempted to explain economic events in term of biological evolution and
natural selection. That is, “the principle of conscious ‘adaptation’ by firms seeking
more profits” can be “replaced by a principle of ‘adoption’ of successful firms by
the environment. The survival of the ‘viable’ firms and the elimination of nonviable
ones” are “the result of ‘competition’.” [paraphrase of Alchian (1950) by Machans
(1978, p. 297)]. this chapter has proven that after abandoning the profit maximiza-
tion assumption, the industry converges in probability to a perfectly competitive
equilibrium as the firms get infinitesimally small relative to the market, as the entry
cost gets sufficiently small and as time gets sufficiently large. Consequently, the
surviving firms in the limit are those producing at minimum efficient scale and in
the limit any potential entrants can never make strictly positive profits by entry.

Appendix

Proposition 1.

N(m) M
Pr Ze,,. > E|N(m)>M ZPY{Z% 2E|N(m):M} .

i=1 i=1

Claim 1.

N(m) -
Pr Zet,- > E|N(m)>M zmrinPr§Zefi > E|N(m) = r} ,

i=1 i=1

where M <r < m.

Proof.

N(m)
Pri> e, > E|N(m)=M

i=1

N(m)
Pr{ > e, >E,&(N(m)=MorNm)=M+ 1lor...or N(m) =m)
i=1

Pr(N(m) =M or Nom) =M + 1or ...or N(m) = m)
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M
Pr% 42‘3[,- > E, N(m):M}

i=1

" Pr(N(m) = M) + Pr(N(m) = M + 1) + --- + Pr(N(m) = m)

M+1
Pr% > e, > E, N(m):M—i-l}

i=1

TP (NG = M) L Pr(Nm) = M+ 1)+ PrN ) =)
Pr{ %eti > E, N(m) =m}
i=1
+Pr(N(m) =M)+Pc(Nm)=M + 1)+ -+ Pr(N(m) = m)

m Pr(Xr:e,,. > E,N(m) = r)
i=1
_rgﬂ:l(

Pr(N(m) =r)

Pr(N(m) =r)
Pr(N(m) = M) +Pr(N(m) =M + 1) +---+ Pr(N(m) = m)

= [Pr(z e, = E|N(m) = r)b,} ,
r=M i=1
where
b — Pr(N(m) =r)
" Pr(N(m) = M) +Pr(N(m) = M + 1) + -+ + Pr(N(m) = m)

m r
andb, € [0,1]and > b, = 1,> minPr(}_ e, > E|N(m) =r).
r=M r i=1
Claim 2.

r+1

Pr{ Zet,- ZE|N(m)=r} <Pr% Zeti ZE|N(m):r+1}_

i=1 i=1

Proof. Since e, e, ..., e, are 1.i.d,

r+1 r

Pr{ Zef,- > E|N(m)=r + 1} :Pr{(Ze;i > E|N(m)=r).e, ., = 1}

=1 i=1

+Pr{(2€ti > E|N(m) = r),e,rJrl = 0}
i=1
+Pr{(Ze,i =FE—1|N(m) = r),e,rJrl = 1}

i=1
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=Pr{ Zeti 2E|N(m)=r}9+Pr{ Zeti > E|Nm)=r;(1—-10)

i=1 i=1

—i—Pr{ > e, = E—1|N(m):r}9

i=1

= Pr{ Y en = EIN(m) = r} + (p_) 05—y t'Fe

i=1

>Pr% Zeti > E|N(m)=r}.

i=1

Proof of Proposition : Using Claim 2,

m M
rn;iAI}Pr Ze,,.zE|N(m):r =Pr ZetizElN(m):M

i=1 i=1

Therefore, the Proposition is directly established by using Claim 1.
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Chapter 3
Evolution, Irrationality, and Monopolistically
Competitive Equilibrium'

The chapter presents an evolutionary model of a product differentiated industry
and proves that the monopolistically competitive equilibrium will arrive as a long
run outcome even though firms are totally irrational. In this evolutionary model,
firms are totally irrational in the sense that firms enter the industry regardless
of the existence of profits; firms’ outputs are randomly determined rather than
generated from profit maximization problems; and firms exit the industry if their
wealth is negative. The model concludes that the industry converges in probability
to the monopolistically competitive equilibrium as the size of each firm becomes
sufficiently small, as entry costs become sufficiently small and as time gets
sufficiently large. The firms that remain in the industry in the long run are those
producing output at the tangency of the demand curve to the average cost curve.
Furthermore, in the long run, no potential entrant can make a positive profit by
entry.

This chapter is organized into five sections. The introduction is provided in the
next section. The second section describes the model. The results can be found in
the third section. The fourth section presents numerical illustrations. The last section
concludes the chapter.

3.1 Introduction

In the late 1920s and early 1930s it became apparent that there were severe limita-
tions in conducting economic analysis using a framework of either pure competition
or pure monopoly. Consequently, economists began shifting their attention to middle
ground between monopoly and perfect competition. One of the most notable

I'This chapter is based on my article published in European Economic Review 53(5): 512-526,
2009.

G.Y. Luo, Evolutionary Foundations of Equilibria in Irrational Markets, 33
Studies in Economic Theory 28, DOI 10.1007/978-1-4614-0712-6_3,
© Springer Science+Business Media, LLC 2012



34 3 Evolution, Irrationality, and Monopolistically Competitive Equilibrium

achievements was Chamberlin’s (1933) blending of elements of perfect competition
and pure monopoly in a notion of “large group” monopolistic competition where
there are many competing firms producing similar but different commodities which
are not perfect substitutes. Because of the product differentiation each firm has a
certain degree of monopoly power (i.e., faces a downward-sloping demand curve).
The presence of a product group with free entry leads the industry to a long-run zero
profit situation of active firms. The corresponding output is where the firms’ demand
curves are tangent to their respective average cost curves. This same equilibrium
corresponds to where firms are long run profit maximizers. Furthermore, due to the
lack of perfect substitution among all products the equilibrium output is less than
the minimum efficient scale.

Coincident with Chamberlin’s publication was Robinson’s (1933) presentation of
this same equilibrium tangency. Although it may be argued [e.g., see Kaldor (1938)
and Triffin (1940)] that Chamberlin and Robinson arrive at this equilibrium with
different techniques, both of their original arguments for deriving this equilibrium
rely heavily on rationality and purposive profit maximization. Robinson (1933,
p. v) attempted to place monopolistic competition within the context of a general
theory of monopoly where “the individual firm will always arrange its affairs in
such a way as to make the largest profits that can be made” (Robinson 1933,
p. 6,). Chamberlin similarly characterizes individual firms as setting a price and
quantity “which will render the total profit a maximum” (Chamberlin 1933, p. 71).
Generally, the notion of firms maximizing profits within a monopolistic context has
also remained in modern analyses of monopolistic competition [e.g., Spence (1976)
and Hart (1985a,1985b).

The objection to firms behaving as profit maximizers comes from several sources.
First, there may be other maximization objectives such as maximizing sales subject
to a minimum profit constraint [see Baumol (1959)], or padding expenses in order to
increase managers’ utility [see Williamson (1964)]. Second, it is questionable that
the managers of firms have the information and computational ability to correctly
maximize profits [e.g., see Simon (1979)]. This is further compounded when firms
have some monopoly power. To properly optimize profits firms must have complete
knowledge of not only their own cost structures but also their demand curve; and in
the case of monopolistic competition the relevant demand curve must take account
of the constantly changing output of competitors [see Arrow? (1986, p. s391)]. An
individual firm’s demand curve is influenced by the production of other firms and
other firms’ production are in turn affected by its production. A third objection to
optimizing models is that firms just do not make any attempts to optimize [e.g.,
Andrews (1949), and Cyert and March (1963)]. Rather, rules-of-thumb are used for
production targets and price setting.

2As noted by Arrow (1986, p. s391), the knowledge requirements under a monopoly are very
demanding. “The demand curve is more complex than a price. It involves knowing about the
behavior of others. Measuring a demand curve is usually thought of as a job for an econometrician.
We have the curious situation that scientific analysis imputes scientific behavior to its subjects.”
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Hence, the underlying presumption of firms deliberately maximizing profits
remains questionable. However, it has been thought that the monopolistically
competitive result should not be so dependent on the assumption of rational profit
maximizing behavior. For example, with respect to the treatment of entry of new
firms, Chamberlin and Robinson both do not claim as much rationality. Robinson
(1933) did not necessarily see positive profits as a signal for entry of new firms. “The
abnormal profits are a symptom rather than a cause of situation in which new firms
will find it profitable to enter the trade” (Robinson, p. 92-93). Although originally
Chamberlin (1933) insisted that “entry profit will attract new competition to the
field” (Chamberlin, p. 96), later he (1957, p. 290) argued that the monopolistically
competitive equilibrium could occur when entrants flooded in irrationally, even
when profits disappear. And also Chamberlin, himself, later in justifying the theory
of monopolistic competition played down the role of his original marginal revenue
and marginal cost curves and the idea that profit maximizing was an exclusive
motive of the firm (see Kuenne (1987)).

Nevertheless, there remains the concern of how analytically robust are the
equilibrium results of monopolistic competition if the firms are not rational and
are not purposive profit maximizers.

This chapter, by using the evolutionary approach, is interested in showing
that even if firms’ output levels are determined at random, a monopolistically
competitive equilibrium can still evolve. Certainly, it has been shown [see Luo
(1995)] that for firms producing a homogeneous good, a perfectly competitive
equilibrium evolves regardless of the degree of rationality in choice of outputs.
However, it remains to be proven whether in the much more complex industrial
structure of product differentiation among firms who face interdependent but firm-
specific demand curves, irrational choices of outputs by firms lead to a stable
equilibrium.

In the spirit of Nelson and Winter (1982), with respect to their evolutionary
treatment of the firm, in this chapter, it is assumed that firms select their output levels
randomly on entry and routinize their own output levels at the fixed levels thereafter.
Using biological language, one may interpret the fixed level of each firm’s output
as its genotype. As in biology, success is rewarded and failure is punished. Here,
whether a firm succeeds or fails is indicated by whether that firm passes the survival
test of making nonnegative wealth in the market. In other words, if a firm makes a
nonnegative wealth, it survives; otherwise it disappears. Darwinian “survival of the
fittest” applies. However, for the selection of the fittest firms, just as in biology, the
theory of natural selection requires competition [e.g., see Enke (1951) and Penrose
(1952)]. In this chapter, competition takes the form of continuous entry of new
firms across time. Thus, whatever routines are adopted by firms, competition among
monopolistic competitors drives prices down, causing all but the fittest firms to make
negative wealth and to exit the market, and leaving in the market only surviving
firms that are lucky enough to produce at the tangency output. The surviving firms
are the ones that act like long-run profit-maximizers.

In contrast to earlier discussions of monopolistic competition, the evolutionary
approach focuses on the dynamics in arriving at the equilibrium. Whether it is
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in the early work of Chamberlin (1933) and Robinson (1933) or in the modern
treatment of monopolistic competition [e.g., Hart (1985a,1985b)], the concept of
time and the dynamics of arriving at an equilibrium are imprecisely described. But,
as noted by O’Brien (1985, p. 31) and Shackle (1967, p. 59), it is precisely the
dimension of time that is required to account for the competing away of profits as
entry occurs. In this chapter, as time goes by, new firms keep entering, and firms exit
whenever their wealth is negative. As a result, as time goes by the remaining firms’
demand curves are always shifting up and down. It is the evolutionary dynamic
process of natural selection leads to the equilibrium. Using the selection criterion
of nonnegative wealth, a monopolistically competitive market selects firms, whose
actions happen to be consistent with long-run profit maximization.?

In the literature there are oligopolistic dynamic models that allow for entry
and exit of firms. Some allow for full rationality on the part of firms in a non-
competitive setting and others allow for growth on the part of the firm relative
to the market. For example, Jovanovic (1982) in explaining the relative growth
rates of small versus large firms, describes a learning by firms about their own
efficiency as they maximize expected profits conditional on information received
each period. Amir and Lambson (2003) presented an infinite-horizon, stochastic
model of entry and exit with sunk costs and imperfect competition. In its subgame
perfect Nash equilibrium there is excessive entry and insufficient exit relative
to a social optimum. Ericson and Pakes (1995) provides a model of firm and
industry dynamics that allows for entry, exit, and firm-specific uncertainty arising
from investment in research and exploration-type processes. The chapter shows
the existence of a rational expectations, Markov-perfect equilibrium which can
generate various industry structures. Herings et al. (2005) presents an equilibrium
with market dominance in a simple two-firm model with neither entry barriers
nor sophisticated punishment strategies. The equilibrium induces an intertemporal
market division in which the two firms alternate as monopolists. In an evolutionary
context, allowing for technological heterogeneity, differential growth of individual
firms and turnover, Winter et al. (2003) analyses some general dynamic properties
of industries characterized by heterogeneous firms and continuing stochastic entry.
In contrast to the above oligopolistic dynamic models, this chapter examines firms
producing differentiated products in a competitive setting - that is, monopolistic
competition. Firms are atomistic relative to the market and there is unlimited entry
of non-rational firms with routinized production levels.

3Certainly, there are two possible extreme assumptions with respect to firms’ behavior. One is
complete rationality and the other is no rationality. Other behavioral traits such as adaptive behavior
would lie in between. The chapter abandons all rationality on the firms’ part to illustrate and
highlight the impact of a very irrational world on the long run aggregate market. Even when we
remove the plank of rationality and replace this with total irrationality, the traditional monopolistic
competition equilibrium emerges. This is very compelling and reinforces the idea that even without
rationality, natural selection forces lead to a monopolistically competitive equilibrium. Purposive
maximization of profits is not required. Undoubtedly, allowing adaptive behavior on the firm side
will also lead to convergence; however, the speed of convergence is faster.
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3.2 The Model

Consider monopolistic competition in a market, where firms produce nonhomo-
geneous products. These nonhomogeneous products are similar but not perfect
substitutes for one another. To characterize the dynamic process of monopolistic
competition, a discrete dynamic model is used and time is indexed by ?, where
t =1,2,.... Itis assumed that all firms enter the market sequentially over time. For
simplicity, only one firm is assumed to enter the market at time ¢, wheret = 1,2, ....
The firm that enters at time ¢ is labeled as firm 7 and produces good 7 at a production
level ag’, where « is a positive parameter and ¢’ is randomly taken from an interval
[¢,9], where 0 < ¢ < g < o0, according to a distribution function F(-), where
F(-) has full support on [g,g]. As long as firm ¢ remains in the market, it always
produces aq’. The « para?neter is a scale parameter, which reflects the size of the
firm relative to the overall market. This random selection of ¢’ and fixity of agq’
as long as the firm remains in the market, illustrates an irrationality with respect
to firms’ responses to market conditions. The firm is not purposively adjusting its
output each time period in response to changing market conditions (e.g., such as
prices).

There is an entry barrier in the industry. An entry cost must be incurred to
overcome this entry barrier upon each firm’s entry period. There is no such cost
in any subsequent time period. An example of the entry barrier is some fixed costs
associated with setting up the plant. The total entry cost for each firm is assumed to
be proportional to this firm’s output. The average entry cost for each firm is assumed
to be k, where k > 0. For example, firm ¢, producing good ¢ at the production level
aq', incurs a total entry cost of kag’ at its entry period ¢ and incurs no such cost in
any period afterward.

3.2.1 The Demand and Average Cost Functions

The market demand function for each product is assumed to be the same in each
time period. Specifically, consider firm i, where i = 1,2, ..., at time ¢, where t > i.
Denote the price for firm i’s product i at time 7 as P/ (ag'). The inverse market
demand function for product i at time ¢ is defined as

Pl(ag')y=A|1-b E (xq’) | —aaq’. (3.1)
JES—1
J#i

where A > 0,a > 0, b > 0, and S,_; is a set of firms, that have entered before or
in time period # — 1 and are producing in the market at time period # and Sy = ¢.
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Notice that the intercept of the demand function is reduced as a result of more firms
competing for the market. And also notice that the parameter b is the same across
all firms, which means that the presence of each firm’s product has equal effect on
the intercepts of the demand functions for all other firms’ products. This is basically
the symmetric demand curve used in the standard microeconomic textbook.

In addition, all firms are assumed to have the same average cost function. Define
a reference average cost function for all firms as C : [¢,q] — 94, where C()
is assumed to be continuous and C(-) has a negative first derivative and a positive
second derivative, i.e., C’(:) < 0 and C”(-) > 0;* furthermore, it is also assumed
that there exists a ¢* € [g¢, ¢] such that

C'(g*) = —a. (3.2)

Denote
c* = C(g"). (3.3)

Since the purpose of this chapter is to show the convergence of the industry
to a monopolistically competitive equilibrium where the size of each firm is
infinitesimally small relative to the market demand, it is necessary to transform the
reference average cost function of each firm as a function of the scale parameter (c)
while preserving the relevant properties of the original average cost function. This
o— transformation is an effective way of shrinking the scale of the firm relative
to the aggregate market demand (keeping the firms atomistic). This technique has
been used in chapters such as Novshek (1985), Robson (1990), and Luo (1995). The
shrinking of the scale parameter o toward zero represents increased competition
among firms.

Specifically, to generate a family of average cost functions, which shifts toward
the Y-axis as o shrinks toward zero and to preserve the same slope and the same
magnitude of the reference average cost function at the output level ¢* as « shrinks,
a scaled down average cost function is defined from the reference average cost
function as

Calg') = C(q—) +a(q— —q*) —a(q' - ag"). (3.4)
o o
Equation (3.4) can also be rewritten as

Cu(q') = C(q') +alq' — q*) —alaq' —ag™). 3.5)

If « = 1, the scaled down average cost function is the reference average cost
function. The following Proposition 1 formally states the property that at the point

4The average cost function could be U-shaped but the relevant part of the average cost curve for
this model is the downward sloping part of the average cost curve.
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of tangency between the firm’s average cost function and the slope of the firm’s
demand function, the average cost (¢*) and its slope (—a) remain invariant with
respect to . As well, it states that the convex average cost at output ag; lies above
the value corresponding to the point on the tangent line going through the point of
tangency (g™, c*).

Proposition 1. (1) For any given o, Cy(ag*) = C(q¢*) = c¢*.
3Ca(aq’) | = C(q") |
g’ i * dq’ i
‘ aq' =aq q'=q
(3) Calag') = c* +aalg* —q').

(2) Forany given «, = —a.

*

Proof. (1) Property (1) can be obtained by replacing ¢’ with ¢* in the definition of
C,(aq") and then applying (3.3).
(2) Totally differentiating both side of (3.5) results in the following equation,

dC,(aq") _ lac(h) a

: = : | +——a.
0@q")  ggizaqx @ 0q" g o
This together with (3.2) implies Property (2). _
(3) Since Cy(ag*) = c*, %Z?;) | = —aand 32((:5—;?()1]2’) > 0 it follows that
aqi =ag*
Colag') = c* +aalg™ —q"). m

Furthermore, the above «-transformation preserves relative per unit profits (or
relative profitability) across firms. This is demonstrated below. For i > 1, firm i’s
per unit profit at time period 7, where 7 > i, denoted as I1 (ag"), is calculated as

Pti(aqi)_ca(aqi) —k,ifi=t,

Oi(ag’)y = 17 . 3.6
((@q’) P/ (ag") — Colag’), ifi>t. (3-6)
Then, the following is true.
Proposition 2. For any firm i, where i = 1,2, ..., producing at time t, where
t >,
(1) the per unit profit for a firm producing at aq™ is maximized, i.e.,
Mi(ag') | = max TTi(ag"): 3.7)

gi=q* 4 €lg.q]

and furthermore,
(2) the difference between the per unit profit of firm i and the per unit profit of the
firm producing at ag™* is independent of «, specifically,

M(eq") —Meq) | =T(¢)=T¢) | foralla. (38

q'=q* q9'=q
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Proof. (1) Substitute (3.1) and (3.4) into (3.6). Then use the resulting equation and
take the first order and second order derivative of firm i ’s per unit profit with respect
to its output ag’ . Finally, apply property (2) and the assumption C”(-) > 0 to obtain
3.7).

(2) Consider the following two cases:

Case 1: i > t. Since

M (ag') — Mieg') | = [P} (@q) — Caleq))] - [P @q) | —@(aq*)},
q'=q* qi=q*
and since P/ (xq') | = P/(aq’) + aa(q’ —q%), it follows that
qi=q*
Mi(aq') - Mj(aq') | =-Culeg)+c*—aa(g —q*).  (39)
qi=q*

Using the definition of C,(ag’) and the equation

Pi(¢") | =P +ald —q"),
qi=q*

Equation (3.9) implies that

—C(¢") +c*—alq' —q%)

Mj(aq') — Mj(aq’) |
q9'=q

*

Pl(q")—C(qg") - [Pf(qi) N —C*}
q'=q*
= Mj(¢") —Tj(q") |

gl =q*

Case 2: i = t. The only difference from Case 1 is that firm i must pay a per unit
entry cost of k. However, the value o does not affect the per unit entry cost (k).
Therefore, the result can be obtained easily by following a similar approach to the
above. |

The above suggests that firms producing at ¢g™* have the largest per unit profits
at any time period. In fact, if the demand curve is tangent to the average cost
curve, firms producing at ag™* also have the largest profit among all firms. The
theory of monopolistic competition predicts that the tangent position for the demand
curve eventually occurs in the long run and all the remaining firms produce at
aq®. Therefore, in this chapter, firms, producing at «g™*, are mimicking the profit
maximizing behavior in the long run.
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3.2.2 The Dynamic Process of Monopolistic Competition

Firms enter the industry sequentially over time. A firm is forced to exit the industry
if its wealth is negative. This assumption serves as a market selection criterion.’
Now, the following describes the evolution of each firm’s product price along with
the entry and exit process in the industry.

1. At the initial time period, the industry is assumed to begin with no firms. This
assumption is used merely for convenience. It does not matter how many and
what types of firms are in the industry in the beginning of this evolutionary
process.

2. At the beginning of time period 1, only one firm (labeled as firm 1) enters
the industry, producing ag' of product 1. The price of product 1 at time 1
is Pl(ag") = A1 — Y (xq')) — aaq', where Sj is a set of firms that

€Sy
have entered before time period 1 and are producing in time period 1. By the
assumption in part (i), So = ¢. Hence, the price for product 1 of firm 1 is

P!(aq") = A —aaq'. The parameter A is assumed to be greater than or equal
to ¢* + k. This assumption is used to prevent all prices from originally being
below ¢* + k. Since if A < ¢* + k, then no as-if profit maximizing firm is able
to enter the industry and survive in any time period. Firm 1’s total entry cost is
kag' and its average cost is C,(ag'). It follows that firm 1°s profit at time 1 is
(P} (ag") — Co(aq") — k)ag'. Firm 1’s wealth at the end of time period 1 is
defined as W' = (P! (agq') — Co(agq') — k)ag'. Firm 1 continues to produce
aq' of product 1 at time 2 if W' > 0 and otherwise exits the industry at the end
of time 1.

3. At the beginning of time period 2, another firm (labeled as firm 2) enters the
industry, producing ag? of product 2. The price for product 2 at time 2 is
P}(ag®) = A(1=b Y (xq')) —aaq?, where S| is a set of firms, which entered

=

in time period 1 and are continuing to produce at time 2. Specifically, S; = {1 :
W > 0}. Firm 2’s total entry cost is kag? and its average cost is C,(2q?):
hence, firm 2’s profit at time 2 is (P} (ag*) — Cy(2q*) — k)ag?. Firm 2’s wealth
at the end of time period 2 is defined as W;* = (P} (aq?) — Col(ag®) — k)ag?.
Firm 2 continues to produce ag? of product 2 at time 3 if W22 > 0 and otherwise
exits at the end of its entry period 2.

If firm 1 is producing ag' of product 1 at time 2 (i.e., firm 1 has had a
nonnegative wealth at time 1), then firm 1 has survived period 1 and continues

>Using wealth as the selection criterion means that for a firm to survive, the firm upon entry must
cover its entry cost in addition to its variable costs. However, this condition could be relaxed to
allow for a firm to continue its operations as long as it recovers some part (say dk (for some
d < 1)) of its entry costs in addition to its variable cost, upon entry. This relaxation of the survival
condition on entry does not change the results of the chapter (as the only change in the proofs
would be that the wealth at the end of entry period would be modified to subtract off dk rather
than k).
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producing ag' of product 1 in the industry in time period 2. Firm 1’s wealth at
the end of time period 2 is defined as an accumulative profits up to the end of time
period 2. That is, W' = W'+ (P)(aq') — C4(agq'))ag'. Furthermore, firm 1
continues to produce aq' of product 1 at time 3 if firm 1’s wealth is nonnegative
at time 2 (i.e., Wz1 > 0) and otherwise, firm 1 exits at the end of time period 2.
4. This process goes on and on. In general, at the beginning of time #, one firm
(labeled as firm ¢) enters the industry, producing ag’ of product ¢. The price of
product 7 at time 7 is P/ (ag') = A1 —b Y (aq')) —aaq', where S,_; is a

i€S;—
set of firms, which entered before and in time period 7 — 1 and are still producing
attime t, ie., S—y = {i <t—1: W =0, W, >=0forall ¢ € (i,t — 1]},
where W/ = (P/(aq') — Co(aq') — k)aq' and W), = W)_| + (P)_,(aq") —

Co(ag'))aq' forall ¢’ € (i, ¢ — 1]. In other words, S, is a set of firms that have
survived all time periods up to the end of time period ¢ — 1 and remain in the
market at time 7. Firm #’s total entry cost is kag’ and its average cost is Cy(aq");
hence, firm ¢’s profit at time ¢ is (P} (ag") — Co(aq") —k)ag’. Firm t's wealth is
W! = (P (xq") — Cy(aq") —k)ag". Firm ¢ continues to produce ag’ of product
t attime ¢ + 1, if firm #’s wealth is nonnegative and otherwise firm 7 exits at the
end of time period 7.

If firm i, where i < t, has nonnegative wealth in all time periods before time
t, (ie., Wii >0, [’} > 0 forall ¢/ € (i,t — 1]), then firm i has survived all time
periods up to the end of time # — 1 and remains producing ag’ of product i in the
industry in time period ¢. Furthermore, firm i continues to produce ag’ of product
i at time period ¢ + 1 if firm 7 also has nonnegative wealth at time ¢ and otherwise,
firm 7 exits at the end of time period 7.

As can be seen, at time period ¢ the price for any one of the surviving firms in
that time period is a function of k, @ and ¢', ¢>, ..., q".

This chapter is interested in showing the convergence of the industry to the mo-
nopolistically competitive equilibrium even without purposive profit maximization.
The monopolistically competitive equilibrium is characterized by

1. all prices for all firms’ products are equal to ¢*,
2. all firms produce profit maximizing outputs, and
3. no potential entrant can make a positive profit by entry.

3.3 The Results

For the monopolistic competitive equilibrium to emerge, it needs competition in
terms of an infinite number of firms, which is satisfied by letting the scale of each
firm relative to the market shrink to zero; and furthermore, it also needs the entry
barrier to be reduced to zero. This section shows that as the size of each firm gets
infinitesimally small relative to the market, as the entry cost gets sufficiently small
and as time gets sufficiently large, all prices for all remaining firms converge to
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¢*; and consequently, in the limit, the only remaining firms are those that produce
at «g™ and furthermore, in the limit, no potential entrant firm can make a positive
profit by entry. This result is established in Theorem 1. Before showing the result
in Theorem 1, two lemmas are first proven. Lemma 1 establishes the lower bound
for all prices of all producing firms in all time periods and Lemma 2 establishes
the probabilistic upper bound for all prices of all producing firms after some time
period. Then Theorem 1 follows from the results in the two lemmas.

Lemma 1. For any given k, for any given positive €’ < %, there exists an ® such
that, for ¢ < o, at any time period t, wheret = 1,2, ..., for any firm i in the set
S = {Z} U Si—1,

Pl(ag') > c* +aa(q¢*—q') +€.

Proof. See Appendix A for the proof.

After establishing the lower bound for the price of each producing firm, the
following lemma establishes a probabilistic upper bound for the price of each
producing firm.

Lemma 2. With probability 1 the following occurs: for any given k and for any
given positive €’ < %, there exists an o, such that, for any o < o, there exists a time

period (€', q.k, ) such that, fort > t(€',q. k,a), foralli € S; = {t} U S,_,,
Pl(ag') < c* +aa(q*—q') +k + 2€.

Proof. See Appendix A for the proof.

By bringing together the results in Lemma 1 and 2, Theorem 1 shows that the
industry converges to the monopolistically competitive equilibrium. Specifically, it
shows that as the size of each firm relative to the market gets infinitesimally small,
as the entry cost gets sufficiently small, and as time gets sufficiently large, all prices
for all remaining firms in the industry converge to ¢*; consequently, in the limit, all
the surviving firms are those that happen to produce at the profit-maximizing output
ag*, and furthermore, no potential entrant firm can make a positive profit by entry.

Theorem 1. For any given positive numbers € and n € (0, 1), there exist positive
numbers o and k such that, for any o < « and for %6 < k < k, there exists a time
period T(€,n, o, k) such that, forall t > (€, n, o, k),

(i)

Pr(c* +aa (9" —q') < P/(aq') <c* +aa(¢* —q¢') + €, foralli € S,)
>1—n;

(ii) with probability of at least 1 — n, each of the remaining firms, say firm i, is the
one with the average cost lying in the interval [c* +aa(q* —q"), c* +aa(q* —
g +e).ie.,
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Pr(Colaq') € [¢* +aa(¢* —q').c* +aa(q* —q') +€). foralli € S;)
>1—mn;

(iii) with probability of at least 1 — 1, no new entrant firm, say firm t, with the
average cost lying outside the interval [c* +aa(q* —q"), c* +aa(qg* —q") +¢)
can make positive profit by entry. That is, for firm t, producing aq', where
Colag') ¢ [c* +aa(q™ —q').c* +aalg* —q") +€),

Pr(P/(aq') — Colag') —k < 0) > 1 —1.

Proof. See Appendix A for the proof.

Remark. Under monopolistic competition, firms are atomistic and produce similar
but different commodities which are not perfect substitutes. In this industry,
with market selection criterion of nonnegative wealth, the firms that happen to
produce at the profit maximizing output survive and others disappear. The long run
monopolistically competitive equilibrium evolves at a price corresponding to the
tangency of the demand curve and the average cost curve. In the model’s dynamic
framework shrinking o and k are merely ways of shrinking the scale of the firms
relative to the market (keeping the firms atomistic) and shrinking entry costs to zero,
respectively. As « and k get smaller and as time goes longer, the industry moves
closer to the monopolistic competitive equilibrium.

It should be mentioned that k and « have no time dimension. That is, as time goes
to infinity, firms continually enter the industry. The parameters k and «, however
small, are fixed. Another way of reading Theorem 1, is to say that for some given
k and «, however small, the firms’ prices eventually fall within a particular range
of monopolistically competitive price. And as & and k shrinks (making firms more
atomistic and reduce entry costs), the firms prices eventually move closer to the
point of tangency of the demand curve and the average cost function. The speed of
convergence and the range of the long run price are influenced by the size of k and
«. In addition, it is worth mentioning that in the process of shrinking « and &, k&
must be maintained to be sufficiently high relative to the scale parameter «. (This is
reflected in the lower bound, %6, for k.) Otherwise, the entry cost loses its role of
creating entry barriers to the industry.

3.4 Numerical Illustration

This section provides a numerical example to help better understand the results of
the chapter.

Let A =4,b=0.05a=0.1,and ¢’ = Un[0.25, 1.24]. The cost function is
chosen to be C(g') = 0.2(¢" — 1.25)> + 1.9875. This produces ¢* = 2 and ¢* = 1.
Moreover, let = 0.005 and k& = 0.02. For ¢’ = 0.005, the lower and upper bounds
for the firms’ prices are 2.00488 and 2.030375, respectively.
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Fig. 3.1 Price histogram. A comparison at times 2,000 and 15,000

With these parameters, the first set of five-hundred simulations are conducted to
illustrate how the distributions of prices and the average variable costs of surviving
firms shift as time goes by for an industry with a sufficient amount of competition
(reflected by small enough « and k). Each simulation follows the industry from
time period 1 to 15,000. The histograms are presented in Figs. 3.1 and 3.2, which
illustrate the distributions of prices and the surviving firms’ average variable costs
at time periods 2,000 and 15,000. The price histogram of Fig. 3.1 shows that at
time 2,000, there is almost zero percent firms’ prices lying in the interval of [2.011,
2.023). But, by the time period of 15,000, 99.4 percent firms’ prices lie in this
interval. At the same time, from Fig. 3.2, the percentage of surviving firms’ average
costs in the interval of [2.0, 2.011) increases from 31.87 at time 2,000 to 59.12 at
time period 15,000. All of this shows that the surviving firms are those whose prices
and average costs are closer to the tangency point with ¢* = 2.6

A second set of simulations are done to illustrate that as k and « are reduced
(entry costs are reduced and firms are more atomistic relative to the market demand),
the surviving firms’ prices concentrate more on an interval closer to the point of
tangency of the demand curve and the average cost function (at ¢* = 2). Another
five hundred simulations are conducted now with a slightly bigger o and k, where

6Tt should be noted that a part of the distribution of surviving firms’ average costs at time 15,000
lies to the right of the corresponding price distribution. With wealth being used as the selection
criterion, it may take a while for firms with higher average costs than current prices to leave the
industry.
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A Comparison at Times 2000 and 15000
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Fig. 3.2 Surviving firms’ average cost histogram. A comparison at times 2,000 and 15,000

Table 3.1 Percentage of prices in each interval

o = 0.005,k = 0.02 o = 0.009,k = 0.025

Time period Time period
Price 1,000 2,000 15,000 1,000 2,000 15,000
<1.999 0.00 0.00 0.00 0.00 0.00 0.00
[1.999, 2.0) 0.00 0.00 0.00 0.00 0.00 0.00
[2.0,2.011) 0.00 0.00 0.00 0.00 0.00 0.00
[2.011, 2.023) 0.00 0.00 99.40 0.00 1.84 2.85
[2.023, 2.034) 0.00 1.56 0.60 0.00 97.79 97.15
[2.034, 2.046) 0.00 39.25 0.00 0.00 0.04 0.00
[2.046, 2.055) 0.00 46.02 0.00 0.00 0.00 0.00
>2.055 100.00 13.17 0.00 100.00 0.00 0.00

a = 0.009and k = 0.025. The results are summarized in Table 3.1. Table 3.1 shows
that the percentage of firms’ prices lying in the interval [2.011,2.023) increases to
2.85 at time 15,000 from 1.84 at time 2,000. This compares with the percentage of
firms’ prices lying in the same interval being 99.4 by the time period of 15,000 in
the simulations with a smaller « and k, where ¢ = 0.005 and k = 0.02. As can be
seen that for a smaller « and k, the surviving firms’ prices concentrate more on an
interval closer to the tangency point.

However, it is also true that, for the convergence to occur, there must be a
sufficient amount of competition. Firms’ output sizes must be sufficiently small
relative to the entry cost. This is implied from the statement of Theorem 1 where
the k is bounded from below by %6. To verify this, another set of five hundred
simulations are conducted with a sufficiently large « relative to the entry cost, where
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Table 3.2 Percentage of prices in each interval for a sufficiently large « relative to the k(o =
0.25, k = 0.025)

Time period

Price 500 1,000 5,000 15,000
<1.999 25.41 24.86 20.98 23.95
[1.999, 2.0) 0.62 0.76 0.78 0.70
[2.0,2.011) 11.25 11.82 14.60 12.86
[2.011, 2.023) 14.53 14.37 15.11 14.17
[2.023, 2.034) 14.56 13.40 14.77 14.62
[2.034, 2.046) 12.20 12.84 12.55 12.01
[2.046, 2.055) 7.97 9.11 9.02 9.04
>2.055 13.46 12.84 12.19 12.65

a = 0.25 and k = 0.025.7 The resulting distribution of prices is summarized in
Table 3.2. As can be seen, the firms’ prices do not converge to a single price nor an
interval near the tangency point.?

3.5 Conclusions

From the earliest to the modern analyses of monopolistic competition, the under-
lying operating principle has been that firms are purposive profit maximizers and,
as long as profits are positive, firms deliberately enter and eventually all surviving
firms produce below minimum efficient scale where the demand curve is tangent to
the average cost function.

In keeping with the philosophy of Alchian (1950) this chapter has abandoned
“all individual rationality, motivation and foresight ... in order to concentrate
upon the ability of the environment to adopt ‘appropriate’ survivors, even in the
absence of any adaptive behavior” [(Alchian (1950, p. 214)]. A dynamic model
has been proposed which describes the evolution of a monopolistically competitive
equilibrium through time to the traditional long-run tangency equilibrium, where the
surviving firms happen to mimic the long-run profit maximizing behavior. Although
the result is consistent with that arrived at by Robinson (1933) and Chamberlin
(1933) on the basis of rational profit maximizing producers, the evolutionary
dynamics in this chapter are built on firms’ total irrationality in the sense that they
randomly choose their output levels, continually enter the market without motive
and are forced out of the market as a result of making negative wealth. This stands in
contrast with the traditional treatment of the dynamics of monopolistic competition,

7Since (3.25) suggests that o < k;b2§” with €/ = 0.005, k = 0.025 and with A = 4,b = 0.05

and ¢ = 1.75, this would mean that for convergence, o < 0.043.
8Due to the nonconvergence of price, many more firms with a greater variation of average costs,
are surviving at time period 15,000.
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where the discussion of dynamics is imprecise. (e.g., Robinson (1933), Chamberlin
(1933), and Hart 1985b). A further benefit of the evolutionary approach, as noted by
Alchian (1950) and Penrose (1952), is that it provides knowledge of what conditions
are required for survival and what characteristics of firms will be required for these
conditions of survival. The market environment, in which surviving firms exist, is
essential in determining which firms are the ultimate survivors. This assessment of
survival requisites can be done without understanding firms’ motivations.

In conclusion, this chapter has formulated a complete analytic model where
firms’ outputs levels are randomly determined and routinized, with sufficient
competition the monopolistically competitive equilibrium still evolves, where all
the surviving firms are those that act as if they were profit maximizers in the long
run. More precisely, the industry converges in probability to the monopolistically
competitive equilibrium as the size of each firm becomes sufficiently small, as entry
costs become sufficiently small and as time gets sufficiently large. The firms that
remain in the industry in the long run are those producing output at the tangency
of the demand curve to the average cost curve. Furthermore, in the long run, no
potential entrant can make a positive profit by entry.

In this chapter, the firms have the same average cost function and have sym-
metrical demand functions. Although these are the standard textbook assumptions
used in the discussion of monopolistic competition, one may wonder if the same
conclusion could be reached in a more general assumption setting, where the firms
are assumed to have their own and different demand and average cost functions. Luo
(2009) reexamines the evolutionary process of the industry where firms produce
differentiated products under these general assumptions. In her chapter, firms are
assumed to be totally irrational in the sense that firms enter the industry regardless
of the existence of profits; firms’ outputs are randomly determined rather than
generated from profit maximization problems; and firms exit the industry if their
wealth is negative. Luo (2009) concludes that without purposive profit maximization
assumption, monopolistic competition still evolves in the long run. The only long
run survivors are those that possess the most efficient technology, face the most
favorable market conditions, and produce at their profit maximizing outputs. Luo
(2009) along with the model presented in this chapter modifies and supports the
classic argument for the derivation of monopolistic competition.

Appendix A

Before proving Lemma 1, the following definition is first stated. This definition is
used in the proofs of Lemma 1 as well as Lemma 2.

Definition 1. Forr =1,2, ...,

| 1if P/ (aq") = Cyaq') + k

I' =
0 otherwise.

t
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Proof of Lemma 1: Before pursuing the proof, the following notation must be
introduced. Denote

Pr=A[1-b) (ag")|. fort =1.2.... (3.10)

i€s;

The following claim is first proven:

Claim. For any given k and for any given positive €’ < %, there exists an «; such
that for o < oy,

ﬁ,zc*—i—aaq*—i—k—e/, forallt=1,2,... (3.11)

This claim is shown by induction.

1. The base step: The claim is true for t = 1. For any given positive k and for any
given positive €’ < £ define a; such that

E/

— Abaq = €, =——
a1 =aa;q” —¢€', ora b7 +aq”

(3.12)

Since Py = A(1—bag'I). This together with (3.12)and ¢! < gand A > c¢*+k
implies that ﬁl > A— Abaq > c* +aaq* +k — €, fora < ay.

2. The induction step: Suppose that the claim is true for ¢ = r, i.e., for any given k
and for any given positive €’ < % there exists an ¢/; such that for o < ¢, at time
period r,

P,>c*+aaq* +k—¢. (3.13)

Now it needs to be shown that the claim is also true for t = r + 1, i.e., for the given

k, for the given €’ < % if @ < «y, then at time period r + 1,

Pri1 >c* +aag* +k—¢€. (3.14)
Using (3.10),
P,=4(1-0) (aq") |. (3.15)
ieS,
This further implies that
D Y r+1gyr+l i
Prpy=P,—Abag" ' IIH +4b Y (ag'). (3.16)
i€X, 4
i#r+1

where X, represents a set of firms that exit the industry at the end of time period
r + 1. Equation (3.16) further implies that
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P,s1 > P, — Abag 1L (3.17)

Now consider the following two cases:
Case 1: Suppose that ﬁ,.—Abotq”’lI,,rj_'ll—aozq’+1 > c*+aa (¢* — g +k—€'.
Then, (3.17) implies that

Pry1>c* +aag* +k—¢€.

That is, (3.14) holds.
Case 2: Suppose that

P, — Abag ' —aag™ < +aa (¢F —q" ) +k—€. (3.18)

Notice that

Pr’rll(aq"H) =A|1-b Z(aqi) —aaq". (3.19)

=

Using (3.15),

P, —Abozq’“lr’jfl1 —aog™ ' =A|1-b Z(aqi) —Abaq’“]r’jr"ll —aag .
ies,
(3.20)
Equations (3.19) and (3.20) imply that

Pl g — (ﬁ, — Abag I — aaq”’l) = Abaq T < Abag.
(3.21)
Since, using the definition of o in (3.12), Aba;g < €', it follows that for any
o <o,
Abaqg < €.

This further implies that for o < oy,
Pl (ag™) < P,— Abag I —ang™ + €. (3.22)

Using (3.18) and (3.22) and since any price on the demand curve which is tangent
to the average cost curve at ag* is no higher than C,(ag"™"), it follows that for
o <o,

Pl (eg™) < c* +a(¢*—q"") + k < Colag™") + k. (3.23)

Equation (3.23) implies that firm 4+ 1 makes a negative profit in its entry period.
Therefore, firm r 4+ 1 must exit the industry at the end of its entry period r 4 1. That
is, using Definition 1,
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which together with (3.13) further implies that for any o < ¢y,
Py >c* +aaq* +k—€.

Therefore, the claim holds. _
Now, at time period t = 1,2, ..., forany firmi € S, = {t} U §,—,

Pl(aq') = P,_) — (a — Ab) aq' — Abag'.
This together with the claim implies that for any @ < «;,

P/(aq') > c* +aaq* +k —€ — (a — Ab)aq' — Abaq'
>c*+aa(q* —q')+k—€ — Abag. (3.24)

Furthermore, with €’ < % there exists an o < «; such that for o < @,
k —€ — Abag > €. (3.25)

Therefore, (3.24)_implies that for any o < @, at time period ¢, where t = 1,2, ...,
forany firmi € S, = {t} U S,—1,
Plag") > c* +an(q*—q')+ €
Therefore, Lemma 1 follows. O
The following two definitions are used in the proof of Lemma 2.

Definition 2. Denote ¢ = (¢', 4>, ...).

Definition 3. For « and €’ as defined in Lemma 1, define M, fort = 1,2, ..., as

1if Cy(ag') € [c*,c* + €)
M[ = .
0 otherwise.

Notice that when M, = 1, ¢, <g™* (due to %Z?;) < 0). Since {q'},>; are inde-

pendently and identically distributed according to the function F(-), {M;},;>, are
also independently and identically distributed. Furthermore, since the distribution
function has support at ¢* and since C,(-) is continuous, there must exist a positive
number, say 6 € (0, 1), such that fort = 1,2, ...,
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Pr(M; =1)=6and Pr(M;, =0) =1-6.

In addition, a firm with its average cost lying the interval [c*, ¢* + €) is referred to
as a M-firm. For simplicity, denote a M-firm’s output as g™ .

Proof of Lemma 2: The proof begins by first proving the following Claim. The
result in Lemma 2 directly follows from the claim.

Claim. With probability 1, there are only a finite number of time periods, in which
P, is above c¢* + aag™ + k + €. Specifically,

Pr (Z hy < oo) =1, (3.26)

=2

where for any ¢ > 1, the random variable %, is defined to be 1 if at time # — 1, ﬁ,_l
is above ¢* + aag® + k + € for @ < @, where @ is defined in Lemma 1.

Proof of Claim: Since

Pr (Z h, < oo) + Pr (Z h, = oo) =1, (3.27)
=2 =2

to show (3.26), it is sufficient to show that

Pr (Z h, = oo) =0. (3.28)
=2

Equation (3.28) is shown by way of contradiction. Suppose (3.28) is not true, then
for some § > 0,

o0
Pr (Zh, = oo) > 6.
=2

This implies that for any given integer J > 0, there exists a positive integer m’ > J

m
such that for m > m’, and, for N(m) = Y_ h,,
(=2

Pr(N(m) > J) > g (3.29)

Now, construct a collection of random variables {ﬁ,l , ﬁtz, s ﬁtN(,n)}’ where, for
i=1,2,...,N@m),t; = mindft : hy = 1,t > t,_1,t) = 0} according to

Mf _ 1if M, = 1
0 otherwise.

i
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Since for i = 1,2,.., N(m), M, is independent of h, (which is realized at
t; — 1) and since {M,},> is independently and identically distributed, it follows
that { M, },NZ(T) is independently and identically distributed and furthermore, in each

time period, M; and M, have the same distribution function. This together with
Definition 3 further implies that,

Pr(M, =1)=6and Pr(M, =0)=1—0fori =1,2,..., N(m).
Since E(ﬁti) =0, Var(ﬁti) = 0(1 — ) and since 6 € (0, 1), it follows that

N(m) N(m)

oM, |<E(> M,]|. (3.30)

i=1 i=1

N(m) _

Denote Zygy = E ( > M ,,.) . Using Chebyshev’s inequality, for any given
i=1

positive integer x < Z (),

N(m) N(m)

Z M, <x|<Pr Z M, — ZNm)| = ZNm) — X
i=1 i=1

N(m) __
Var | Y. M,
<=t/

(Zyom — x)*
ZN(m)

(Z 5 (using (3.30))
N(m) — X

N(m) _ N(m) _
This together with the fact that Pr{ > M, <x| = 1 —Pr| Y M, >x

i=1 i=1
implies that

N(m)
Z N(m

Z M,>x]>1- __ ONm D —
i=1 (Zyom — x)

N(m)
(Znem—x)
positive integer x and for any given positive y < 1, there exists a positive integer
N, such that for N(m) > N,

Notice that as N (m) — 00, Z () — oo and > — 0. Hence, for any given

N(m)

Y M, >x|>1-y>0. (3.31)
i=1
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. N(m) N@m) __
Define 717, such that N(m) = N.Since > M, = Y M, using (3.31), it follows
i=1 i=1
that for m > m,

N(m)
Pr{Y M, >x|Nm)=r|>1-y forr=N. (3.32)

i=1
Using Proposition 3 in Appendix B, (3.32) also implies that

N(m)
Pr{> M, >x|Nm)=N|>1-y>0. (3.33)

i=1

SetJ = N in (3.29). Equation (3.29) means that for this given N, there exists a
positive m’ > N, such that for m > m’,

Pr(N(m) > N) > g (3.34)

Since for m > max(m’,m),

N(m) N(m)
Pr ZM,I. >x| >Pr ZM,,. >x,N(m)>N

i=1 i=1

N(m)
= Pr ZM,,.>x\N(m)2ﬁ Pr(N(m)zN)

i=1
) .
> (11— y)z, (using (3.33)and (3.34) ).

The above means that for any given positive integer x and for any given positive
y < 1, there exists an integer 7’ = max(m’, ) such that for m > m’,

N(m)
Pr ZM,,. >x|>(1-y)

i=1

)

— > 0.
2

This further implies that

Pr (Z M, = oo) > 0. (3.35)

i=1

This means that with a strictly positive probability the number of M-firms goes to
infinity.
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Now, if M,, = 1, then the firm that enters at time #;, where i, = 1, is a M-
firm. Consider this M-firm. When /,, = 1, this implies that, at time #; — 1, ﬁ,i_l >
c* + aag* + k + €. This together with the property that for an M firm ¢ < ¢*,
implies that

Pi(ag") | = P, —aag” > ¢* +aa (" —q")+k+e>=c*"+k+€.
q'i =qM

(3.36)
This means that this M-firm’s per unit revenue at its entry period P,i" (xg") |

qti =, qM
exceeds its per unit cost at its entry period, which is no more than ¢* +k +¢’. Hence,
this M-firm makes a strictly positive profit in its entry time period and it continues
to produce in time period #; + 1. Lemma 1 implies that for this k and €” and for any
o < o, this M-firm in any subsequent time periods has its product price greater than
per unit cost, which is no more than ¢* + ¢'. In other words, this M-firm makes a
strictly positive profit in any subsequent time period after its entry. Therefore, this
M-firm never exits the economy. Equation (3.35) implies that with a strictly positive
probability there is an infinite number of such M-firms in the economy. Since those
M-firms never exit the economy and since each individual M-firm produces at least
aq, the presence of the infinite number of such M-firms would drive the price for

each of all producing firms, say firm i, below ¢* + a« (q* —q ) + ¢’ with a strictly
positive probability. This contradicts the result in Lemma 1. Therefore, the Claim of
Lemma 2 must be true.

Since Pi(aq') = P,_; — (a — Ab)ag’ — Abag' and since from the proof of
Lemma 1, Abaq’ < Abag < €, (3.26) further implies that with probability 1 the
following occurs: for any given positive k and €/ < % and for any o < @, there must
exist a time period, say t(¢’, ¢, k, &), such that for all t > t(¢’, ¢, k, ), for all firms
iesS,,

P/ (aq") < c* +aaq* + k + € —(a — Ab)ag' — Abag'
<c*+aa(qg* —q') +k + € + Abag
<c*+aalg* —q')+k+2¢.0

Proof of Theorem 1: (i) Using Lemma 1 and Lemma 2, it follows that with
probability 1, the following occurs: for any given k, for any given positive €’ < £,
there exists an @ such that, for @ < @, there exists a time period (e, ¢, «, k) such

that, fort > (€, q,a, k),

¢*+aa(q*—q')+€ < Pl(ag') <c* +aa(q* —q¢') +k+2¢, foralli €S,.

(3.37)
Define k = 3¢/ and € = 5¢’. Restate (3.37) in terms of € and reduce the lower
bound to ¢* + aa (¢* —g¢') . That is, with probability 1, the following occurs: for

any given positive €, there exist positive numbers k and @ such that, for %6 <k <k

and for @ < @, there exists a time period (¢, ¢, o, k) such that, fort > t(e¢,q, o, k),
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*+aa(q*—q') <P/ (aq') <c* +aa(q"—q') +e foralli € S;. (3.38)

Since 7(e€, ¢, a, k) depends on the entire sample path ¢ = (¢',¢?, ...), and not on
the distribution function F(-), from which the ¢',¢?, ..., are drawn, perhaps, for
experimentation purposes, it is of more interest to know from what time period
and on that all the price for each of all the remaining firms, say firm i, is lying
outside the interval (c* + aa(g* —q'),c* + aa(q* — q") + €) with a certain given
probability. This can be done by applying the fact that almost sure convergence
implies convergence in probability. In other words, using (3.38), it follows that for
any positive numbers € and n € (0, 1), there exist positive numbers o and k such
that, for any @ < @ and for 2¢ < k < k, there exists a time period 7 (e, 1, @, k) such

5
that, for all t > (e, n, @, k),

Pr(c* +ao(¢* —q') <P/(aq') <c* +aa(¢* —q¢') + €, foralli € S;) >1-n.

Hence, the result in Part (i) is proven.

(ii) Consider any firm j € S,, where firm j's average cost Cy(ag’) ¢ [c* +
aa(q* — q’), ¢* + aa(g* — ¢’) + €). Since Co(ag’) = ¢* + aa(g* — q’)
(due to Property (3) of the average cost function), this means that Co(ag’) >
¢* + aa (¢* —¢’) + €. Given that for irm j € S, C S;, P/ (ag’) < ¢* +
aa (¢* — q’) + €, then firm j’s per unit profit P/ (ag’) — Co(2g’) < 0 and as a
result, firm j would exit the industry at the end of time period ¢. This together with
the result in Part (i) implies that for any positive numbers € and n € (0, 1), there
exist positive numbers & and k such that, for any « < @ and for %6 < k < k, there
exists a time period t (e, 1, &, k) such that, for all # > t(e, , @, k), with probability
of at least 1 — 7, at time period ¢, all the remaining firms, say firm i, must be the one
with its average cost lying in the interval [¢* +aa(g* —q'), c* + aa(q* —q') +¢€).
Hence, the result in part (ii) is proven.

(iii) Consider an entrant firm ¢, where its average cost C,(ag") lies outside the
interval [¢* + aa(q* —q"), c* +aa(q* —q") +€). Since ¢* + aa (¢* —q') +€ <
c¢*+aa (¢* — q") +k + € and furthermore since Pr(c* +aa(g* —¢') < P! (ag') <
c*+aa(q*—q')+e) <Pr(c*+aa(qg*—q') < P/(aq") < c*+aa(qg*—q")+k+e),
using the result in Part (i), it followg that for any positive numbers ¢ and 1 € (0, 12,
there exist positive numbers o and k such that, for any « < o and for 2¢ <k <k,

5
there exists a time period 7 (¢, 17, &, k) such that, for all t > (e, n, «, k),

Pr(c*4+aa(q*—q") < Pl(ag") <c*+aa(q*—q')+k+e)>1—n.
(3.39)

Since Cy(aq') ¢ [c¢* +aa(q* —q/).c* +aa(q* —q’) +€) and since by
Proposition 1 Cy(ag') > ¢* + aa(¢* —¢') implies that C,(ag’) > c* +
aa (¢* —q') + €, (3.39) further implies that for any positive numbers € and
n € (0,1), there exist positive numbers @ and k such that, for any ¢ < o
and for %6 < k < k, there exists a time period t(e, 7, o, k) such that, for all
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t > t(e,n, o, k),

Pr(P/(aq') — Colaqg') —k <0) >1—1.
The result in Part (iii) is proven. O
Appendix B

Proposition 3. If

N(m)
Pr{ Y M, >x|Nm)=r|>1-y forr =N, (3.40)
i=1
then
N(m) .
Pr{Y M, >x|Nm)=N |>1-y.
i=1
Proof.

i=1

N(m)
Pr (Z M, > x ‘N(m) > N)

N(m) _ —
Pr( > M, >x,(N(m)=N, or, N(m)=N + 1, or, ...,or, N(m) = m))
i=1

Pr (N(m) =N, or, N(m) =N + 1, or, ...,or, N(m) = m)

N(m)
Pr M, >x,Nm)=r
i=1

m
r=N

N Z Pr(N(m) =N, or, N(m) =N + 1, or, ...,or, N(m) = m)

N(m)
Pr{ > M, >x,Nm)=r
i=1

Pr(N(m) =r)

m
r=N

Pr(N(m)=r)
Pr(N(m)= N, or, N(m) = N + 1, or, ...,or, N(m) = m)



58 3 Evolution, Irrationality, and Monopolistically Competitive Equilibrium

m Pr(N(m) =r)
- _y)rgv Pr(N(m) =N, or, N(m) = N + 1, or, ...,or, N(m) = m)

x (using (3.40)) > (1 — y).
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Chapter 4
Evolution and Informationally Efficient
Equilibrium in a Commodity Futures Market'

This chapter presents an evolutionary model of a futures market to justify the
eventual occurrence of an informationally efficient equilibrium. While the literature
usually justifies informational efficiency in the context of rationality, here, in this
dynamic futures market, traders do not maximize their profits or utilities nor do
they form rational expectation about spot prices. Instead, they are preprogramed
with some predetermined behavioral traits (such as trading types (buyer or seller),
traders’ inherent abilities to predict the spot price). With the markets serving as a
selection process of information, it can be shown that the proportion of time that the
futures price equal to the spot price converges to one with probability one.

This chapter is organized into four sections. The framework of the model is
described in Sect. 4.2. Section 7.3 provides the results of the model. Section 7.4
concludes the chapter.

4.1 Introduction

Much financial economic theory has been developed to examine the informational
efficiency of markets. If traders are rational, in the sense that they maximize
expected utility and form rational expectations, then informational efficiency can
be achieved in the Bayesian Rational Expectation Equilibrium framework, as
shown by Grossman (1976, 1978), Radner (1979), Hellwig (1980), Allen (1981),
and Bray (1981). A new alternative approach to Bayesian Rational Expectation
Equilibrium framework is Maximin Rational Expectation Equilibrium [see Castro
et al. (2011)]. This approach can be used to examine market efficiency if market
individual participants are rational and able to solve the complex problem set up

I'This chapter is based on my article published in The Review of Financial Studies 11(3): 647-674,
1998.

G.Y. Luo, Evolutionary Foundations of Equilibria in Irrational Markets, 61
Studies in Economic Theory 28, DOI 10.1007/978-1-4614-0712-6_4,
© Springer Science+Business Media, LLC 2012
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by MREE framework. Instead of relying on rationality to justify market efficiency,
this chapter takes an evolutionary approach. An evolutionary model of natural
selection is offered. It produces a unique long run outcome: market efficiency.
The evolutionary approach abandons any rationality assumption by adopting a
framework where it is not possible for agents to learn about other traders or the
market environment; nor is it possible for agents to maximize particular objectives.
Agents’ behaviors are exogenously preprogramed.’ (Economic justifications for
moving away from assuming rationality on the part of agents (speculators) can
be found in Alchian (1950) and Tversky and Kahneman (1974)). By adopting this
extreme framework with such mechanical rules, we can emphasize the market’s
ability to promote market efficiency through the selection process. The market
rewards the speculator whose behavior happens to fit the market environment the
most, and takes wealth away from the speculator whose behavior happens to not fit
well with the market. Economic natural selection drives the market to a state where
informational efficiency arises.

The following economic modeling approach is analogous to the biological
approach where a variety of animals compete under a common environment for
food (or resources) and where natural selection selects only those who are most fit.
Here, there are speculators, with a variety of abilities to predict the future spot price,
who compete in the futures and spot market for wealth and where market selection
rewards only those who are most fit.

Consider an economy with a commodity spot and a futures market. The futures
market consists of both speculators and producers. Producers sell contracts in the
futures market to hedge against the risk in the spot market. Speculators enter the
futures market sequentially with an initial endowment of wealth Vj. Speculators
either buy futures contracts with the hope of selling at a higher spot market price
(acting as a buyer) or short sell futures contracts with the hope of buying at a lower
spot market price (acting as a seller). In addition, the fraction of wealth allocated
for speculative activity differs across speculators. Furthermore, the abilities to
predict the future spot price also differ across speculators. A speculator’s ability
to predict the future spot price is modeled as inherent and is characterized by the
distribution of his or her prediction error with respect to the future spot price.
A speculator’s prediction error represents the amount by which this speculator
overpredicts or underpredicts the spot price at that time period. Each speculator
is labeled according to his or her trading type (buyer or seller), his or her fraction
of wealth allocated for speculative activities, and his or her inherent probability
distribution of prediction error with respect to the spot price, which are all randomly
determined upon his or her entry period and are fixed thereafter.> In this chapter

’In the traditional rationality models agents make choices to maximize certain objectives. Here, in
this chapter, the evolutionary approach is deployed for the purpose of abandoning the rationality
of making choices. Instead the choice variables are exogenously prespecified.

3 Analogous to the biological term of genotype, the economic agent’s type is characterized by his or
her choice variable. The choice variable could be interpreted as arising from an agent maximizing
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the speculators are modeled as unsophisticated and they merely act upon their
predetermined trading type (buyer or seller), and a predetermined fraction of wealth
that they allocate on speculative activities, and their predetermined abilities to
predict the future spot price. All speculators are noise traders in the sense that
the distribution of each speculator’s prediction error generates a strictly positive
probability of overpredicting or underpredicting the spot price. In other words,
each trader has a strictly positive probability of acting upon noise as if it were
information. Nevertheless, some speculators have a higher probability of predicting
the future spot price than others. That is, some speculators are less noisy than others.

As more and more speculators enter the economy, at any point in time, whoever
acts upon better predictions makes profit at the expense of his or her trading coun-
terparts who act on less reliable predictions. For those buyers (sellers), who predict
exactly right the spot price with a low probability and overpredict (underpredict)
the spot price with a high probability, their wealth will be frequently reduced.
Consequently, their ability to influence the futures price will be overshadowed by
buyers (sellers) with a high probability of predicting exactly right the spot price and
a low probability of overpredicting (underpredicting) the spot price. Therefore, as
time goes by, with this natural selection of information caused by the reallocation of
wealth away from more noisy traders to less noisy traders and with an ongoing flow
of entering speculators, some of whom have better predictive ability than others, the
convergence of the futures price to the spot price eventually occurs.

This chapter is not alone in applying natural selection to examine market
behavior. Early papers which use the idea of natural selection to examine market
efficiency are Figlewski (1978) and Figlewski (1982). In Figlewski (1978), in
a pure speculation market with two representative traders with different quality
of information, traders with better information make profits at the expense of
those with less information. Figlewski (1982) extends the discussion to N traders.
However, efficiency cannot be obtained in the long run.* A fundamental reason for
the difference in results is that, unlike Figlewski (1978) and Figlewski (1982), this
chapter allows for sequential entry of traders with a wide diversity of predictive
abilities. This ongoing arrival of new agents, some of whom have better predictive
ability, prevents the economy from being stuck in an inefficient market equilibrium.

Among the few recent papers that have analytically explored this issue are Blume
and Easley (1992), Biais and Shadur (2000), and Luo (1995a). These papers illus-
trate that market selection will not necessarily lead to the elimination of noise or in-
efficiency. For example, Blume and Easley (1992), in a dynamic market with wealth
flows between traders, find that economic natural selection does not necessarily lead
to efficient markets. Similarly, Biais and Shadur (2000) arrive at the same conclu-

his or her own objective within his or her resource constraints, information constraints and his or
her ability constraints.

“In Figlewski (1982), informational efficiency is obtained in the long run only in the special case

when all traders have independent information. In contrast, this is not a required assumption in the
evolutionary model of this chapter.
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sions using Darwinian dynamics in a non-overlapping generations model of a risky
asset. In the above two papers the reason for the market’s departure from efficiency
is that, aside from not allowing traders to enter with better predictive abilities than
existing traders, traders’ behavior rules are modeled as being linked to their utility
functions. Since utility maximizing rules do not guarantee that traders have accurate
predictions, it follows that wealth may not be maximized. Therefore, traders with ra-
tional rules do not necessarily dominate the market in the long run. On the contrary,
traders with irrational rules may come to dominate the market. On the other hand,
Luo’s (1995a) examination of competition among firms shows that with sequential
entry of various types of firms over time, including those that happen to produce at
or near the minimum efficient scale, the market selects the most efficient firms.

4.2 The Model

Consider a dynamic economy with an industry producing one commodity. Discrete
time is indexed by ¢, t = 1,2,.... Itis assumed that the commodity is nonstorable
and cannot be carried to the next time period. There is a commodity futures market
and there is a spot market. The futures market opens at the beginning of each time
period and the spot market opens at the end of each time period. The participants in
the futures market consist of speculators and producers. It is assumed that the spot
price is determined at the beginning of each time period’. Nevertheless, the realized
spot price is unknown to each producer and to each speculator at the beginning
of each time period, and the spot price is only revealed to all producers and all
speculators at the end of each time period when the output is delivered to the spot
market. Therefore, the spot price is independent of the futures price in the futures
market.

At the beginning of each time period, each producer contracts a percentage of
their production in the futures market to hedge against the risk associated with an
unknown spot price. Producers’ aggregate contracts brought to the futures market at
the beginning of each time period are assumed to be drawn from an interval U =
(0, S] according to an arbitrarily given distribution, where 0 < S < 00.® Denote

5The justification for this assumption is as follows. For each of a large number of independent
producers the output level is randomly determined at the beginning of each time period. Since the
commodity is nonstorable, the total output of all producers must be delivered to the spot market at
the end of each time period and sold at a market clearing spot price. Since the individual output
levels of producers are determined in the beginning of each time period, the industry’s aggregate
output is also determined at the beginning of each time period. Given any exogenously specified
continuous demand schedule in the spot market, the spot price is determined at the beginning of
each time period.

%A more elaborate production model, which characterizes the costs of individual producers, could

be specified. This adds very little to the issues examined in this chapter, which focuses on the effect
of various speculators’ behavior on the futures market.
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producers’ aggregate contracts brought to the futures market at the beginning of
time period ¢ as S/ .

Since the commodity is nonstorable and cannot be carried to the next period, the
futures contract is a one-period contract. All payments among all futures market
participants are settled at the end of each time period after both the futures and the
spot markets close.” Each speculator’s wealth at the end of a time period is defined
as accumulated profits up to the end of that time period.

The futures contract size is perfectly divisible. The price of the commodity in
the spot market p; and the price of a futures contract p,f at time ¢ (where t =
1,2,...) are always quoted as nonnegative multiples (71) of a unit size d (> 0).
The spot price p; is randomly drawn at the beginning of time period ¢ (before the
futures market opens) from the set {d,d + 1,...,(m — 1)d, md}, where m > 1
is a positive integer, according to a distribution function. The futures price p,f is
merely the market clearing price in the commodity futures market and for any ¢, p,;f
is constrained to be greater than or equal to d. The determination of p,f is described
in Subsect. 4.2.3.

The following subsections provide further detailed descriptions of the model.

4.2.1 Speculators’ Types

Speculators enter the commodity futures and spot markets sequentially over time. At
the beginning of the time period #, where t = 1,2, ..., only one speculator (called
speculator ¢ ) is allowed to enter the futures and spot markets. The spot price at time
t is determined at the beginning of time period ¢, but it is unknown to all speculators
and all producers. At time s, where s > ¢, speculator ¢’s prediction or belief about
the spot price, denoted as b!, consists of the summation of the spot price p; and
a noise term v’ which characterizes the prediction error of speculator ¢ at time s.
That is,

by = ps + vy, (4.1)

as in Grossman (1976, 1978) and Hellwig (1980). It is assumed that v! €
{(—Nd,—(N—-1)d,...—2d,—d,0,d,2d,...(N—1)d, Nd}} where N and N are
both positive whole numbers. The smaller a prediction error is, the more accurate
is the information reflected in the prediction. It is assumed that v’ is independent of

"The producers honor their futures contracts sold at the beginning of each time period, by
transferring, at the end of the time period, to the buyers of the futures contracts the corresponding
revenue received in the spot market and in return the producers receive from the buyers the value
of these same contracts at the futures price previously agreed upon. The short sellers deliver to the
buyers their short sales valued at the spot price and receive from the buyers the value of the same
contracts at the previously agreed upon futures price.

8To prevent unrealistic negative predictions, the range of predictions sometimes may have to be
truncated if p; + v} < d. More precisely, b, = max[p, + vi,d].
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ps at time s. For a fixed ¢, the v! are assumed to be independently and identically
distributed across time s = ¢,¢ + 1, ... .2 Therefore, denote

0; = Pr(v! > 0), 05 =Pr(v! =0)and 6} = Pr(v! < 0)

where superscript ¢ indicates speculator ¢. It is assumed that the vector (61, 65, %)
is randomly taken in the beginning of time period ¢ from a set @ = {(6;, 6, 63) €
(0,1)* : 6; + 6, + 63 = 1} according to an arbitrarily given distribution with
its support being @. And furthermore, the vector (6], 65, 6}) is independent of
pi. The vector (6], 65, 05) describes the probability distribution of speculator #’s
overprediction, exact prediction, and underprediction. This probability distribution
characterizes speculator ¢'s predictive ability. Once speculator t’s predictive ability
(0}.05,0%) is determined in the beginning of his or her entry time period ¢, it is
fixed thereafter. One justification for modeling a speculator’s probability distribution
of prediction error being fixed through time is that speculators display systematic
biases due to cognitive errors (e.g., Tversky and Kahneman (1974)).

If the speculator is buying (short selling) at time s, b’ indicates the highest
(lowest) price that a speculator is willing to pay for (supply) a contract at time s.
Essentially, b! is speculator #’s reservation price at time s. The terms prediction,
belief, bid, and reservation bid are used interchangeably in the remainder of
the chapter. This way of modeling the speculator’s predictions reflects diverse
information among the speculators, diverse abilities to process the same information
among the speculators or diverse bidding strategies.'”

There are two further characterizations of speculators. First, speculator ¢ on entry
is endowed with one of the following two trading types:

1. Speculator ¢ participates only as a buyer at all times s > ¢. That is, speculator ¢
only buys contracts at a price no higher than his or her reservation bid ! at all
times s > t. Denote this type of speculator as z; = 1, where subscript ¢ indicates
speculator ?.

2. Speculator ¢ participates only as a short seller at all times s > ¢. That is,
speculator ¢ only sells contracts at a price no lower than his or her reservation
bid b! at all times s > ¢. Denote this type of speculator as z; = —1, where
subscript ¢ indicates speculator 7.

9This reflects the impossibility of speculators learning from other traders and learning from their
past experiences.

00ne can interpret the b’ as a signal that speculator ¢ receives at time s. The prediction error
vl is the noise that speculator ¢ brings into the market at time s. As long as b’ is not equal to p;
speculator ¢ is acting upon noise. Of course, given the differences in the distribution of speculators’
prediction errors, different speculators have different probabilities of acting upon noise. In this
paper no assumptions are made with respect to the type of the distribution of the prediction error.
(This stands in contrast to most papers including recent papers by Kyle and Wang (1997) and
Fischer and Verrecchia (1997).)
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Fig. 4.1 The timing of events

Therefore, speculator #’s trading type, represented by a random variable z;, is
randomly taken from a set {—1, 1} in the beginning of time period ¢ according to
an arbitrarily given discrete probability distribution with its support being {—1, 1}.
And furthermore, z; is independent of p, fort =1,2,....

The second further characterization is that each speculator spends a fraction of
his or her total wealth on speculative activity. This fraction could be viewed as a
reflection of a speculator’s inherent attitude toward risk. A smaller fraction indicates
more risk aversion. The remaining fraction of total wealth can be viewed as risk-
free and earns no return. This fraction is randomly determined in the beginning of
his or her entry period and fixed thereafter. Denote f; as speculator ¢’s fraction of
wealth allocated for speculative activities. f; is randomly taken from an interval
(0, 1] according to a distribution with its support being (0, 1] in the beginning of
time period . And furthermore, f; is independent of p, fort =1,2,....

It is assumed that the random vectors (0},05.0%), (z;) and (f;) are mutually
independent for a fixed t and the random vector (0}, 05,05, z,, f;) is independently
and identically distributed across speculatorst = 1,2,....

To summarize, on entry speculator ¢ is characterized by random draws, rep-
resented by the ordered vector (0], 65, 6%,z fi), where the first three elements
characterize the distribution of speculator ¢’s prediction error, the fourth element
describes speculator ¢’s trading type, and the last element describes the fraction
of wealth spent by speculator ¢ on speculative activity. Figure 4.1 shows the
timing of the above events. Since there is an ongoing entry of speculators with
characteristics (0], 65,05,z f;) randomly drawn from the supports of their dis-
tributions, collectively the speculators can be described as having a continuous
spectrum of characteristics. Since 6], 65, and 0] for all ¢ are strictly between 0 and
1, all speculators are noise traders. Nevertheless, some speculators with a higher
probability of predicting the spot price are less noisy than others with a lower
probability of predicting the spot price.
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4.2.2 Speculators in the Market Selection Process

Each speculator is assumed to be endowed with initial wealth V, where 0 < V) <
00, in the entry time period. The futures market is assumed to have no speculators
at time 0. After time O speculators enter sequentially. Denote speculator #’s wealth
at the end of time period s (where s > ) as VS’ and Vt’_ . = Vo. The futures market
will not open if there are only sellers in the futures market.

Speculator ¢’s prediction about the spot price (where t = 1,2,...) at time s
(where s > 1) is characterized by b!. If speculator ¢ is a buyer, speculator ¢ is
willing to buy contracts up to what his or her speculative wealth permits at a price
no higher than his or her prediction b!, at time s, where s > ¢. Therefore, for zf = 1

speculator ¢’s demand for futures contracts in time period s, denoted as ¢ (p; ) is!

Vt Vf . o~
(h @ ifpsfzbi—rd, wherer =1,2,..., R,

, ol +ad’ pl

t —

q,(p]) ﬁ it p/ = b,
ps )
0 if p/ > b'.

b —(R+1)d <0

b' —Rd > 0.

Figure 4.2 provides an example of this type of demand curve. If speculator ¢ is a
short seller, at time s, where s > ¢, speculator 7 is willing to sell contracts up to what
his or her speculative wealth permits at a price no lower than his or her prediction
b!. To ensure that short sellers honor their contracts, short sellers are constrained to

where R is characterized by

invest — of their total wealth.'? The reason is that if short sellers are allowed

m j—
to invest f; of their wealth and if the spot price exceeds twice the futures price then
short sellers would not be able to honor their contracts. Since the maximum loss
that a short seller would incur is when the spot price takes the highest value md and

L of the
-1

Therefore, for

the futures price takes the lowest value d, the constraints for investing —
m

total wealth by the short seller ensures no defaults on any contract.'?

Because of the discreteness of prices, when p\ < bl a buyer may not be able to spend all of his

or her speculative wealth (f; V/_,) if the supply of futures contracts lies between L:dk and f'—‘/—]-
w s

Thus, a step-like demand curve is used for any buyer.

12Ensuring no defaults can also be accomplished if the spot price is constrained such that it cannot

exceed twice that of the futures price. This latter assumption is similar to that used by Feiger

(1978). Either assumption leads to the same conclusions.

3More precisely, consider ¢! = —kﬁé—L (k > 0) (1’) where p; < md (2') and pX > d

(3’). To ensure that short sellers honor thelr transactions it is assumed that the speculative wealth
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Fig. 4.2 Speculators demands for contracts
z; = —1 speculator ¢’s demand for futures contracts in time period s, denoted as

¢i(p!). is'

0 if p/ <b',
1%
tenf ml—l _ﬁ%’o ifpf = by,
q_g(ps ) = pS
1 _ftVs[—l _ fstt—l

e f !
= , if py =bl+rd, wherer =1,2,....
: pf pf+d

A negative number of futures contracts indicates the quantity of short sales. See
Fig. 4.2 for a plot of such a demand curve. The above demand functions are similar
to those used by Feiger (1978).

Obviously, if a speculator’s wealth is zero then this speculator will not be able
to continue to participate in the markets in any of the future time periods, since this
speculator is not able to buy or sell any contracts in any of the future time periods. In
other words, if a speculator’s wealth is zero in one time period then this speculator
is considered to exit the economy at the end of that time period.

Vi = (ps — pf)qé + f£,V{_, = 0 (4). Therefore, with equations (1"), (2’), and (3'), equation
(4') is ensured when k < =—. Suppose this constraint is not imposed for short sellers and suppose
that k is set equal to one. Then in the extreme case of pAf = d and p; = md it would follow that

SV = (ps — p‘sf)qﬁ + fiV!_, < 0form > 2. This implies that the short seller is not able to
honor his or her contracts.

14For similar reasons described in footnote 10, a step-like demand curve is used for any seller.
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Therefore, at the end of time period s, where s > ¢, the wealth of speculator ¢ is

= (ps— p)at + VL,

4.2.3 The Futures Market Equilibrium

The futures market structure is the standard Walrasian mechanism. Denote the net
aggregate demand at time s as Q Sf psf . Hence,

o/ (r]) qu(ps)+qs(p)

Since, the spot price is at least d, to be consistent, the futures price is assumed to
be greater than or equal to d. Furthermore, this regulation prevents short-selling
at zero price which could cause unlimited defaults. Under the Walrasian market
structure, the futures market clearing price psf is set to fulfill the condition that the
net aggregate demand is greater than or equal to the aggregate number of contracts
offered for sale by producers. That is,

p! =max[max {p/ : 0/ (p/) = 8/} .4].

There may be multiple solutions to { psf : st (psf ) > sz } Choosing the equi-
librium solution with the highest futures price is arbitrary. Nevertheless, whatever
equilibrium is chosen, the results of the chapter are unchanged. Notice that in the
early time periods of the market process, if a buyer has not yet entered, then no
futures market transaction takes place. If a buyer has entered and if the producers’
supply in the futures market exceeds the speculators’ net demand at all positive
prices (usually occurring in the earlier time periods) then the futures market price is
regulated to be d, and the futures market demand is delivered to the buyer at price
d and the excess of the producers’ supply is returned to the producers (to be sold at
the end of the time period at the spot price).

The demand and supply orders made by speculators are executed as follows. At

time period s, at the futures market clearing price p{ ', Qf . ( p-f ) > S5 ! or p;f =d.

For the short sellers with reservation bids below or equal to the market clearing price
ps , their supply orders at the market clearing price ps are executed at the market
clearing price p‘f and their wealth is exhausted; for the buyers with reservation
bids above the market clearing prlce their demand orders at a price of d above
the market-clearing ps are filled at ps ; and the remaining supply in the market i 1s
allocated to buyers with reservation bids greater than the market clearing price ps
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Fig. 4.3 An example of future market equilibrium price. Two speculators in the futures market

and to all speculators with reservation bids equal to the market clearing price psf R
One example of a futures market equilibrium is shown in Fig. 4.3.

As can be seen, the futures price p[ will be a function of the realizations of
21,22, ..,2s; and f1, f2,..., fy; and v}; for all t+ < s and all k € [¢,s]; and
P, P2, - - ., Ps; and producers’ supplies s/ , Sif, . sz.

The purpose of this chapter is to show that with probability 1, the proportion of
time that the futures price equals the fundamental value (the spot price) converges
to one as time goes to infinity. In the limit, the futures price reflects only accurate
information about the spot price and ignores noise. Consequently, no individual
speculator can cause the futures price to systematically deviate away from the spot
price in the limit.

4.3 Convergence of Futures Market to Efficiency

This section shows that with the above market selection process, with probability
1, the proportion of time that the futures price equals the fundamental value (the
spot price) converges to one as time goes to infinity. This is established in Theorem
3. To show Theorem 3, first of all, the chapter shows that with probability 1, the
proportion of time that the futures price is below the spot price converges to zero as
time goes to infinity. This is proven in Theorem 1. Second, Theorem 2 shows that
with probability 1, the proportion of time that the futures price is above the spot

13The precise way that the remaining supply is allocated has no effect on the results of the chapter.
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price converges to zero as time goes to infinity. Finally, Theorem 3 is established by
using Theorems 1 and 2.6

The chapter begins by proving Theorem 1, which shows that with probability 1,
the proportion of time that the futures price is below the spot price converges to zero
as time goes to infinity. The intuition goes as follows. Suppose Theorem 1 is not true,
then with a strictly positive probability, there must exist a subsequence such that up
to any point of time on this subsequence, the proportion of time that the futures price
is below the spot price is bounded away from zero. Given the continuous spectrum of
speculators’ all possible characteristics, with probability one there is one buyer, say
buyer I, who enters the market with a fraction of wealth allocated for speculation
of at least WT—I and who predicts exactly right the spot price with a probability (6 )
sufficiently larger than the probability (911 ) of predicting above the spot price every
time period. That is, over an infinite period of time, eventually there will be entry
into the market by some buyer / who has a rather large probability of predicting
the spot price accurately and a rather low probability of overpredicting it. Since
short sellers always honor their contracts and since the spot price never goes below
d, buyer I's wealth is always positive. This prevents buyer I’s wealth from being
stuck at zero. Since buyer /I makes gains if he or she predicts exactly right the spot
price at a time period when the futures price is below the spot price and potentially
makes a loss if he or she overpredicts the spot price at a time period when the futures
price is above the spot price, the relative magnitudes of 921 and 911 , together with the
existence of the aforementioned subsequence, ensure that buyer /’s wealth grows
at least exponentially. (This growth of wealth comes from a constant redistribution
of wealth away from producers and relatively noisy traders. In other words, there
is a natural selection of information leading to this wealth redistribution, which
in turn causes exponential growth of buyer I’s wealth.) However, the total wealth
injected into the market and shared by all speculators in the market can only be
from producers’ losses or new entrants’ injections of new wealth. Producers’ losses
in each time period can be no more than (77 — 1)d S. The new entrant’s injection of
wealth is V} in each time period. Therefore, the total wealth of all speculators in the
market grows at most arithmetically. This contradicts the fact that buyer I’s wealth
grows at least exponentially with a strictly positive probability.

Before proving Theorem 1, an indicator variable for describing whether at time
t the futures price is below the spot price is defined.

Definition 1. Define random variables /;, wheret = 1,2, ..., as

16 Although the model of this chapter is formulated in a particular manner, the conclusions do not
rely on the range of trading types. The proof can be modified to provide the same conclusions if all
speculators are buying contracts in some time periods and in other time periods selling contracts
(see Luo 1995b). Furthermore, the results of the model would also hold with continuous rather
than discrete futures and spot prices.
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L) ritpl <p
! 0 otherwise.

Theorem 1. With probability 1, the proportion of time that the futures price is
below the spot price converges to zero as time goes to infinity. That is,

#{t <T: p;f < p[}
Pr< lim

T—o00 T

Proof. Using the [, notation, Theorem 1 can be restated as

=0|=1. 4.2)

This is shown by way of contradiction. Suppose (4.2) is not true, then with a strictly
positive probability, there exists an ¢ € (O, %] and there exists a subsequence
T:&
>k
Ti,T5,...,Ts,...such that for any s, k:Ti > 2¢p. This together with Proposition
1 in Appendix A implies that

lim Pr (3 abuyer I < s s.t. {zl = 1,(91,921) € O(ep), f1 zi} |G) > 0,

§—>00

4.3)
_ L(ﬁ+l>)
m In| ==
where ol <i < 1,@(60) = {(91,92) . 92 > 1—60,91 < @ (92—(1 —
€0))} and G represents the event that there exists an ¢, € (0, %] and there exists a
Ts
> Ik
subsequence 71, T, ..., T, ... such that for any s, k:Tl, > 2¢.

Notice that since short sellers always honor their contracts and since the spot
price never goes below d, the wealth of buyer / is always positive. (The importance
of buyer /’s wealth remaining positive in any time period is that if buyer /’s wealth
is zero in one time period, then buyer / will not be able to buy futures contracts in
any subsequent time period and his or her wealth will be zero in all subsequent time
periods.)

Proposition 2 in Appendix A uses the characteristics of buyer 7, (0, 61,01, z;,
f1), and uses (4.3) to show that the probability, that buyer I’s average wealth over
time on a subsequence 71, 73, ..., Ty, . .. is unbounded, is bounded away from zero.
That is, for any F > 0,

1
lim Pr (KTTL > F) > 0.

§—>00
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However, this contradicts the fact that the average wealth of any individual
speculator over time, including buyer /, must be strictly bounded from above by
a constant (m — 1)d S + V;. The reason is as follows. The new wealth at time ¢,
which could be injected into the futures market and which is potentially shared by
all speculators including buyer /, must be transferred from the producer or brought
in by the new entrant at time 7. The wealth which could come from the producers at
time ¢ is (p; — p,;f )S,f , which is bounded from above by (77 — 1)d S. The wealth
that a new entrant brings in is V{. Therefore, at time ¢ the total wealth that could be
injected into the futures market and is shared by existing speculators in the market
must be bounded from above by (777—1)d S + V. It follows that the aggregate wealth
of all speculators in the market at the end of time period 7 , where s = 1,2,...,
must be bounded from above by T ((m —1)dS + VO) . This further implies that the
average total wealth of all speculators over time at the end of time period 7, where
s = 1,2,..., must be bounded from above by (7 — 1)d§+ Vo. Hence, the average
wealth of any individual speculator over time, including buyer /, at the end of time
period Ty, where s = 1,2, ..., must be bounded from above by (7 — l)d§+ Vo.O

The following will show that with probability 1, the proportion of time that the
futures price equals the spot price converges to one as time goes to infinity. To show
that, given the result in Theorem 1, it needs to be shown that with probability 1, the
proportion of time that the futures price is above the spot price converges to zero as
time goes to infinity. This is proven in Theorem 2. The proof of Theorem 2 follows
exactly the same logic as the proof of Theorem 1.

Theorem 2, like Theorem 1, is shown by way of contradiction. Assuming that the
result of Theorem 2 is not true, one can show that with a strictly positive probability,
there exists an entering seller with certain characteristics. This seller never exits the
economy. Following the same logic, one can show that this seller’s average wealth
over time is unbounded with a positive probability, which produces a contradiction.

Theorem 2. With probability 1, the proportion of time that the futures price is
above the spot price converges to zero as time goes to infinity. That is,

#{t <T: p,;f > p[}
Pr| lim

T—00 T

Proof. See Appendix C for proof.

Finally, using Theorem 1 and Theorem 2, Theorem 3 can be established as
follows.

Theorem 3. With probability 1, the proportion of time that the futures price equals
the spot price converges to one as time goes to infinity. That is,
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#{tST:pthpt}
Pr| lim

=1]=11
T—00 T

Proof. Noticing that for any 7" > 1,

#{th:ptf<pt} #{tET:p;f=pt} #{f§T5Pif>Pt}
=1,
T * T * T

and using Theorem 1 and Theorem 2, Theorem 3 follows. O

The result of Theorem 3 suggests that in the limit, the futures price fully reflects
accurate information in the futures market. In the short run, the futures price reflects
all the beliefs of speculators, but in the long run, the futures price reflects only
accurate information and eliminates noise.

Furthermore, one can also show that each individual speculator’s logarithm of
wealth is infinitesimally small relative to the market aggregate of logarithms of
wealth. This is formally stated in Corollary 1.

Corollary 1. With probability 1, the ratio between the logarithm of wealth of
speculator t, t > 1, at the end of time period T (InV}) and the aggregate of

logarithms of wealth of all speculators at the end of time period T ( Z,{=1 In V{f )
converges to zero as T — oo. That is,

, In V}
Pr( lim [ ——T—|=0
T=oo \ Y i InVy

Proof. See Appendix D for the proof.

1.

4.4 Conclusions

This chapter shows that, due to natural selection, information efficiency can be
achieved even if the agents are not assumed to be rational. In the long run, the
impact of irrational traders on market prices becomes negligible. This is consistent
with the conjecture made by Friedman (1953) and in contrast with the assumptions
posited by Kyle and Wang (1997) or Fischer and Verrecchia (1997) (who appeal
to the psychology literature, e.g., Kahneman et al. (1982)). In this chapter each
speculator is assumed to be randomly endowed with its own trading type, its own
fraction of wealth allocated for speculation and its own inherent distribution of
prediction error with respect to the spot price. Those who act upon better predictions
accumulate wealth at the expense of trading counterparts acting on less reliable
predictions. With ongoing entry of such speculators into the economy over time,
the market selection process redistributes wealth constantly among the speculators.
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Consequently, this constant redistribution process causes the futures price to reflect
more accurate predictions with higher and higher weights as time goes by. In
the short run, the futures price merely aggregates all noise speculators’ beliefs or
predictions. In the long run, with probability 1, the proportion of time that the futures
price equals the spot price converges to one as time goes to infinity. In the limit, the
futures price reflects only accurate information and ignores noise. Furthermore, the
logarithm of each individual speculator’s wealth is infinitesimally small relative to
the market aggregate of logarithms of all speculators’ wealth.

Appendix A

Proposition 1. If, with a strictly positive probability, there exists an €y € (O, %] and
T:X
2l

a subsequence Ty, T, ..., Ty, ... such that for all s, "=TL > 2¢g, then

lim Pr (aabuyerl <5 st {z, = 1.(60!.6}) € O(co). f; zi} G ) >0,

§—>00

_ In 7/7(mm+1)
where# <i< 1,@(60)={(91,92)29221—60,91 < N ) (92—(1—

m(*F)

€0))}, and G represents the event, that there exists an €y € (0, %] and a subsequence

T\'
>

T\, T, ..., Ty, ...suchthat for all s, ":T‘ > 2¢.

|

Proof. 1f, with a strictly positive probability, there exists an €y € (O, l] and a

2
subsequence 71, 15, ..., Ty, ... such that for all s,

T,

> I

k=1

> 2eo, 4.4)

N
then, define a random variable R, fort = 1,2,..., as

lifz = 1,(0}.05) € O(e). fi zi
0 otherwise,

=

where Wil < f < 1land O(e) = {(01.6)) : 6, = 1 — .0 <

ln(—) (02 — (1 — €))}-

m
n(*7)
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Since the random vectors (6], 63, 63), (z;), and (f;) are mutually independent for
a fixed ¢ and the random vector (6], 65, 05,z f;) is independently and identically
distributed across speculators t = 1,2, ..., it follows that { R, },> is independently
and identically distributed. Therefore, Pr(R, = 1) = Pr(zz = 1,(0{.05) €
O(eo), fi = f) = Pr(z, = 1) Pr((6], 0) € O(e)) Pr(f; = f). Notice that since z
has support at 1, (6], 65) has support over ©(eo) and f; has support over the interval
(0, 1], it follows that Pr(R, = 1) > 0, for all ¢. This further implies that

o0
Y Pr(R =1)=o00
t=1

and using The Second Borel Cantelli Lemma (see Billingsley (1986, p. 83)),
o0
Pr (Z R, = oo) =1
=1

lim Pr (there exists a buyer, say buyer I, I <s, s.t. Ry =1) = 1. 4.5)

5§—>00

This further implies that

Equations (4.4) and (4.5) imply that

lim Pr(3buyer 1,1 < s,s.t. Ry =1|G) > 0,
§—>00

where G represents the event, that there exists an €, € (O, l] and a subsequence

2
TV
>k

Ti,T»,...,T,,...such that for all s, k:Tls > 2¢.

Proposition 1 follows. |

The following definitions are used in all the following propositions.
Define my and ay, fork = 1,2, ..., as

e — Vif pl = pi . _ ) Vit p > p
0 otherwise 0 otherwise.

Proposition 2. If

lim Pr(aabuyerl <ssit. {z, =1.(6].0]) € O(e). f1 > f}|G) >0,
(4.6)

f(m+l)
where <i < 1,0(e0) = {(61,60;) : 0, > 1 —¢0,0, < ( ) B, —(1—

1(N+1)

€0))} and G represents the event that there exists an €y € (0 5] and there exists

m+1
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Ty
>
a subsequence T, 15, ..., Ty, ... such that for any s, k=TL > 2e, then for any

F >0,

. Vi
lim Pr(% > F) > 0.
5§—>00 s
Proof. Before the proof begins, some notation is needed. Define another two
indicator variables x/ and g/, where k > I, for buyer / as

I lifv,€>0 I 1ifv,f=0
70 otherwise; K71 0 otherwise.

Consider buyer /. Buyer /’s wealth at the end of time period 7 is VTIS and

S+
m

6] >1—¢oand 0] < Q (67 — (1 —e€)). (4.7)
In (H)
f
Since the prediction error v,f are independently and identically distributed across
time (k), xlg are independently and identically distributed across time periods (k)

and glg are independently and identically distributed across time periods (k), using
the strong law of large numbers, it follows that

Ty Ty
XX 2 8
k= — 60l a.s.and =L
Ty —1+1

In VO

— — 0.
T, —1+1

m —)921 a.s. and

This together with (4.7) implies that if

lim Pr (Elabuyerl <ssit. {z, =1,(01.0]) € Oco). f1 > f} |G) >0,

§—>00 -_—
In ( L(W:rl))
m _ . _ m _ _
where T <i < 1,@(60) = {(91,92) 10, > 1—¢€p,6) < ln(ﬁ‘;rl (92 (1
€0))} and G represents the event that there exists an ¢y € (O, %] and there exists
Ts
> Ik
a subsequence 71, 75, ..., Ty, ... such that for any s, "=T1 > 2¢p, then for some

positive A > 0,
for £ = (EI abuyer I <s s.1. {zl = 1,(91,921) € O(e), f1 > i} N G),
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1
. k;g" f(m+ 1) In Vo
ImPr| | ————(1—¢y) | In| =—— +
5—00 T, —1 +1 m T, —1+1
T.\'
2 x
= A
+ In|= >AE | =1 (4.8)
T, —1+1 N +1
Now, Notice that
Ty Ty
doxl = (arx]). 4.9)
k=1 k=1
In addition, since
Ts T T Ty
> (gh) =D el =D (megl) = D (axgi)
k=1 k=1 k=1 k=1
Ty Ty Ty
z Zg;ﬁ _ka_zak
k=1 k=1 k=1
T& TA
=Y G- (Li—=T+D)+ Y I
k=1 k=1
T& 1 T\'
kZ 8k kZ Ik
=1 =1
= 1| (T;—1+1),
Ay T e ey Bl AR
T T Ts 1—1
3 >l >k >k
if S = 26 then it follows that #=rr = (5= - 5 | () >
1—1
PP
2eg — k:Tl\v (r—TM) > ¢y (for a sufficiently large s). Therefore, for a
sufficiently large s,
T.\' I
T kz 8k
Lhel) > | 22—+ e -1 | (T, =1 +1). 4.10
D (hgt) = | =gy T [@-1+D (4.10)

k=1 ’
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Notice that In (%ﬂ) < 0 and In (@) > 0. Hence, (4.8), (4.9) and (4.10)
imply that

T\v T.\'
" (agx! leg!l _

' kgl( k k) i kg]( kgk) i(m+ 1)
lim Pr In| = + In —
§—>00 T, — 1 +1 N +1 T, — 1 +1 m

In V
_ % SalE] =1
T,—1+1

This together with (4.6) imply that

Ty T
apx! leg!l _
. kgl( k k) i k;[( kgk) i(m+1)
lim Pr In| = + In —
§—>00 T, —1+1 N +1 Ty, —1+1 m
an()
7 > 0. 4.11
Iy ) ~ ‘1D

Now, the following uses (4.11) to show that for any F* > 0,

Vi
Iim Pr{ = > F | > 0.
§—>00 T.

s

Consider buyer /s wealth at time period k. If @z = 1 and x; = 1 then p,{ > pr
VI
and b} > pj, which further implies that g; < fl—])f_l Hence, buyer I potentially

k
makes a loss (a negative profit) at time period k. At the end of time period £ buyer
I's wealth is

Ji
vi=vl, +4 (Pk = p,{) >V, (1 + (Pk - p{) =
Py

Pk f
&g)ﬁW4z(ﬁ:T)w+ (4.12)

If [ = 1 and glg = 1 then p]{ < pr and b,f = pi, which further implies that

I Ji VkI—l fIVkI—l

G\ T
pi + d P

%

:| . Hence, buyer I makes a gain (a positive profit) at time
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period k. At the end of time period k buyer I’s wealth is

: N VL
Vi=vili+ (o=l )al > Vil + (= pl ) S50
pi +d
fivel AL S m+1)
>Vl +d (# > [Vl +d == — VL.
(4.13)
Therefore, buyer I’s wealth at the end of time period k is
p (L N\ LDy
Vi>|=—— - Vi_,. 4.14
¢ (N + 1) ( m ) o 1
Using (4.14), one can show inductively that
S @) g 1) (el
7 JooNE T 1) s
’ N +1 m

Taking the logarithm of both sides of (4.15), it follows that

3

% f & fm+1)
Z (akxi) In (W:— 1) + Z (lkg{)In (#) +Inl

k=1 k=1

In VTIx >

which further implies that

anYZS
_— >
T,—1+1
! i( )1 . +§:(1 1 Lo+l +1In ¥
T—1+1 & % H(NH) £ kB n( m ) nror

Together with (4.11), this implies that

InV}/
lim Pr{ ——— > 4] >0.
oo \T, =T +1

Therefore,
lim Pr(V} >exp((Ty — 1 +1)1)) > 0.
§—>00 $
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Since lim w = hm {Aexp((Ts — I + 1) 1)} = o0, it follows that for

§—>00
any F > 0,
lim P VTIX 0
s—1>120 r T e u
Appendix B

Proposition 3. Ifwith a strictly positive probability, there exists an €, € (O, %] and
T:X
Z ax

a subsequence Ty, T, ..., Ty, ... such that for all s, > 260, then

lim Pr(EIasellerI I'<s.stdzy =—1,(00.6]') € ©'(e)). f1/<f}|G)

§—>00

»
where 0 < F < 1,0/(e)) = {(62.60) : 6 > 1—¢)). b < — (m(z) ) (6r—(1—€))}
f

and G’ represents the event, that there exists an €, € (0, %] and a subsequence
TV

Zak

T\, T,, ..., Ts,...such that for all s, > 260

Proof. This proposition uses exactly the same logic as Proposition 1. For the ease
of notation and description of the proof, redefine R, as follows. Define a random
variable R/, wheret = 1,2,..., as

R = | Lifa=—1.(65.0) € O'(c)). /i < f
! 0 otherwise,
S
In ( +1) 6 —
1“(1 7 )
(1 —€())}. The proof can be done by following through the proof of Proposition 1
after changing some notation. In the proof of Proposition 1, replace /; with a; and
replace R; with R]. As a result, replace z; = 1, (6], 6}) € O(e) and f; > f with
= —1,(65,0}) € ®(e)) and f; < f, respectively. Replace “buyer /" with “seller
I’ Replace I with I’ and replace G with G'. Replace “z, has support at 1” with z;
has support at —1". O

where 0 < f < 1 and O'(e)) = {(62.03) : 6, > 1 —¢).05 <

Proposition 4. If

lim Pr(EIasellerI <ssit. {11/ =—1.(0/. 01y e @'(e). frr > f} ek ) >0,
(4.16)

s
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o I
where 0 < f< 1,0'(e)) = {(62,63) : 0, > 1 —¢€),6; < 1('( )1)(92 —-(1-

€,))} and G' represents the event that there exists an €, € (0, 2] and there exists
[

2 ak
k=1
a subsequence Ty, Ty, ..., Ty, ... such that for any s, T.

F >0,

> 2¢, then for any

7

. Vi
lim Pr (% > F) >

§—>00 s

Proof. The proof is identical to the proof of Proposition 2 of Appendix A with the

following changes. Replace “buyer I” with “seller I’,” replace I with I’. Inside the

definition of xlg , replace vlg > 0 with v,f/ < 0, and replace xlg with x,f/ Replace

f(m+1) frr
I I with ol G - T ()
0, and 0] with 6, and 05 , respectively. Replace 1 (W +1) with 1’"( 1 ) and
A -7
replace € with €. Replace z; = 1,(91,921) € O(e), f1 > iand G with z;» =
—1, (61, 6! ) e ®'(¢}), fir < f and G’, respectively. Replace the definition of
f » ©(€) and G with the definition of f, ®'(ej) and G’ which are defined in
A (m+1)

Proposition 3 of Appendlx B. Furthermore, Wf is replaced with 1 — f and ==

is replaced with ,2 = + 1. I} are replaced with ay and ay is replaced with /.

The paragraph starts with the sentence “Consider buyer I’s wealth at time period
k” and ending with equatlon number (4. 13) is replaced with the following:

Now, if /[, = 1 and xk = 1 then pk < pr and b’ < pr, which further

Y k 1
(m—1)
m pf

implies that g ,f —— . Hence, short seller I’ potentially makes a loss

(a negative profit) at time period k. At the end of time period k the wealth of short
seller I’ is

’ ’ ’ f]’ Pk f]’ 4
Vi =Vl +q (Pk - Pk) (1 + |:m_ w1 v,
k

(e 75 (7 ) wl) e

=(U—-fVvl, =a-Hvl,

A%

Ifay = 1 and glg/ = 1 then p,{ > pi and blg/ = p, which further implies that

gl = — |:f1/VkI—/1 frvil,
kT T 7

pl ol +d

profit) at time period k. At the end of time period k, the wealth of short seller ” is

) . Hence, short seller /” makes a gain (a positive



84 4 Evolution and Informationally Efficient Equilibrium in a Commodity Futures Market

’ ’ / f[/ Pk fl’ ’
V! =Vkl—1+(l’k—l’1{)‘1/€ > <1+[ﬁ_FM—1 vl
k
frr m o fr C (S ,
E(H[m—l_ st m—1)) =gt Ve O
Appendix C

The Proof of Theorem 2: The proof is identical to the proof of Theorem 1 with the
following changes: /; and /; are replaced with a, and ay, respectively. Replace €
with €. Replace “Proposition 1 in Appendix A” with “ by Proposition 3 in Appendix
B” and as a result, replace “buyer I with “seller I’,” replace I with I’ and replace
i = 15 (917921) € ®(60)7 f[ > i and G with iy = _17(91/5931/) € ®/(6(/))7
fir < f and G’ respectively. Replace the definition of f , ©(e), and G with the
definition of f, ®'(¢}), and G’ which are defined in Proposition 3 of Appendix B.

’

Replace (0],6],601,z;. f1) with (911/, 01,61 zp, f[/) )

Replace the paragraph beginning with “Notice that since ...” with “Notice that
since the fraction of wealth of short seller I’ spent on speculation is strictly less
than 1, the wealth of short seller I’ is always positive. (The importance of short
seller 1”’s wealth remaining positive in any time period, is that if short seller 1”’s
wealth is zero in one time period, then short seller I’ will not be able to sell futures
contracts in any subsequent time period and his or her wealth will be zero in all
subsequent time periods.)” Replace the words “Proposition 2 in Appendix A” with
“Proposition 4 in Appendix B.” O

Appendix D

The Proof of Corollary 1: Iffort > 1,

) In V}
Pr Thm T =0)=1 4.17)
—00
and if there exists a u < +o0 such that
T k
_.InV
Pr (Tlim sup (%) < u) -1, (4.18)
—00

then the result in Corollary 1 directly follows from the above equations. Now the
following will show that (4.17) and (4.18) are true.

The Proof of Equation (4.17): Consider speculator #’s wealth at the end of time
period k. (i.e., V).
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If m; = 1, then p,{ = pi. Hence,
ka = Vk’_l. (4.19)

If a; = 1, then p]{ > pi. Since V! = V/_| + q;(pr — p,{), using buyer ¢’s or
seller #’s demand schedule, one can show that

Dk 1 Dk
B < (et (-2

Py

This further implies that

1 1
_—Vt_ < Vt < (1 + _—) Vt_ . (420
N +1 k—1 k -1 k—1 )

If [, = 1, then p,{ < pk. Since V] = V/_, + q;.(pr — p,{), using buyer ¢’s or
seller #’s demand schedule, one can show that

(L= Vi, <V < (1 + p—’;) Vi
Dk
This further implies that
A=V, <Vi<Q+mV,_,. (4.21)

Therefore, (4.19), (4.20), and (4.21) imply that at time k,

1\“ 1\
(1— f)l (N—+1) Vi <V < (1 + ﬁ) (A +m V. (4.22)

Using (4.22), one can show inductively that

T T

2 ak

I T
Y 1\ Z % 1\ = S
(1- fy=" (N—H)k_t Vo< Vp < (1 + ﬁ)k_t (1 +my=" V.

Since f; < 1, (1 — f;) > 0, the above equation further implies that

T T T
/ a
’;’kl(l f)+k2=:’fak1 ! +an°<1nVTt<k=’k1 g
n — n|— n e
T ! T N +1 T T T m—1
T
I
P In Vs

+

In(1 +m) + ——.
n(l +m) + T
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In V()
T

Since lim (

. ) = 0, using Theorem 1 and Theorem 2, the above equation implies
—>00
that

. InV}
Pr{ lim =0)=1.
T—00 T

The Proof of Equation (4.18): Consider the aggregate wealth of all speculators at
T

the end of time period T, (i.e., Y V7’f ). Since the aggregate wealth either comes
k=1
from the initial wealth each speculator brings into the market or the gains or losses

all speculators have made from the producers up to the end of time period 7. That is,

T T
YV TVe+ X (S{ (= p))
k=1 k=1

T T

Since I + my + ax = 1, the above equation implies that

T T . . T . .
rv p3 (S¢ (e = pD)kk) P> (8¢ (e = pymi)
=1 =1 =1
=V,
T 0+ T + T
T . .
> (8{ (e~ p)ar)
+= . (4.23)

T

If [y = 1, then p]{ < pi; which further implies that
0< 8/ (p— pl) <S0md - d). (4.24)
If m; = 1, then p,{ = pi; hence
S{(pe—p]) =0. (4.25)
If a, = 1, then p,{ > pi; hence
S(d —md) < S/ (p— p) <0. (4.26)

Therefore, using (4.24), (4.25), and (4.26), (4.23) implies that

T T ' T
Z aj Z VT Z lk
Vo +S(d —md)k% < k‘lT < Vo + S(md —a’)k‘T1 :
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T
>V
Pr| lim | = =V | =1 4.27)
T—00 T

Since one can always redenominate wealth in units such that V, < 1, without loss
of generality, assume that V) < 1. Since

T T
smvf (2
k=1 <In k=1 7
T T
using (4.27), (4.18) follows, where u = In V. O
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Chapter 5
Natural Selection, Random Shocks, and Market
Efficiency in a Futures Market'

This chapter adds a random shock to the futures market to see if an informationally
efficient equilibrium would still occur. In this chapter, the prices are modeled as
continuous variables and traders can buy or sell with a single submission of their
quotes. The conclusion is that,with probability one, if the volatility of the underlying
spot market is sufficiently small, then the proportion of time that the futures price
is sufficiently close to the fundamental value converges to one. However, the
interval containing the fundamental value, where the futures price eventually lies,
is influenced by the underlying volatility generated from the spot market. In other
words, the accuracy of the information for which the market can eventually select,
depends on the volatility generated from the random shock in the spot market.
The more volatile the spot market, the more noisy is the information that gets
selected for. As a result, the futures market moves further away from informational
efficiency. Numerical examples are used to illustrate the cause of the convergence
and how the wealth is redistributed among traders.

This chapter is organized into five sections. The next section describes the
commodity futures market. Traders’ predetermined behavior rules are defined in
the third section. The results of the model are provided in the fourth section along
with numerical illustrations. The last section concludes the chapter.

5.1 Introduction

A financial market is informationally efficient if the market price fully reflects all
available information. In economics and finance traditional methodology usually
explains the occurrence of informational efficiency in terms of actions of rational

I'This chapter is based on my article published in the Journal of Futures Markets 21(6): 489-516,
2001.

G.Y. Luo, Evolutionary Foundations of Equilibria in Irrational Markets, 89
Studies in Economic Theory 28, DOI 10.1007/978-1-4614-0712-6_5,
© Springer Science+Business Media, LLC 2012
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agents. However, Patel et al. (1991) suggested that if the market has a sufficient
degree of ability to transfer wealth among traders, this is sufficient to generate an
informationally efficient market, regardless of whether traders are rational or not.
Here, the biological term “natural selection” takes the form of transferring wealth
from less fit traders to more fit ones in the market. This natural selection force in the
market promotes an efficient outcome regardless of the rationality of traders.

The idea that markets work even when participants know very little about their
environment or about other participants, was recognized by Hayek (1945) who
marveled at the market price as an economizer of information despite “how little
individual participants need to know” (p. 527).2 Nevertheless, Hayek was never
clear about how this evolved. It would seem that there must be an “invisible
hand” process which leads the market to an efficient outcome. That is, there is
an efficiency “pattern” that evolves not by conscious design but “instead through
the (decentralized) interaction of agents having no such overall pattern in mind”
(Nozick 1994, p. 314). For this efficiency pattern to occur in a market with diverse
information, the market must serve as a natural selection device that screens out
noisy information and only selects for accurate information.

How the market specifically works as a selection or filtering process in promoting
an efficient outcome is illustrated in this chapter by through constructing a dynamic
model of a commodity futures market. To illustrate the role of the market as a
selection process, it is important that such a model allows for the transfer of wealth
among traders and the accumulation of wealth across time. On the one hand, in the
“oral tradition” of economics, it is sometimes argued that agents with inaccurate
information may be driven, via bankruptcy, from the market by “natural forces”
(Camerer 1987, p. 982) arising from the presence of more informed agents. On the
other hand, there is the frequently provided counterargument that a constant inflow
of new poorly informed traders is enough to disrupt any possible market filtering
of information.? Therefore, to fully test the idea of natural selection in promoting
market efficiency, it is also important that such a model allows for a continual inflow
of traders with diverse noisy information signals.

There have been a few studies which examine the relationship between market
efficiency and natural selection through wealth distribution. They include Feiger
(1978), Figlewski (1978, 1982), and Luo (1998). Feiger’s explanation of how an
efficient equilibrium can evolve through wealth redistribution relies upon traders’
rational expectations and uninformed traders learning from market prices to uncover
information. Figlewski (1978, 1982) also explored the role of wealth redistribution
in determining efficiency in the context of a speculative market with a finite
number of traders endowed with differing quality of information. He assumed
that traders maximize their utility and have the ability to make posterior updates
of predictions from information gathered in the market. Figlewski (1982) showed

2This issue is also examined in an experimental context in Smith (1982).

3See Camerer (1987) for a list of arguments (and counterarguments) used to defend economic
theories from the criticism that markets are not rational.
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that informational efficiency occurs in the long run only in the special situation
where all traders have independent information. In a more recent paper, Luo (1998)
examined the role of natural selection with respect to market efficiency, in the
context of a futures market with discrete prices. Her paper makes a departure from
the above papers in that for the attainment of informational efficiency through
natural selection, no rationality is required on the part of traders.

This chapter is different from the aforementioned rationality approaches. Unlike
Feiger (1978) and Figlewski (1978, 1982), in order to isolate the role of the market
as a filtering process, in this chapter [like Luo (1998)], there is no requirement
for rationality on the part of traders. Here traders are not maximizing particular
objectives, nor are they receiving feedback from market prices or other traders’
behavior. Traders merely act upon some predetermined or inherent behavior rules
(described in detail in the next section). This chapter adopts an evolutionary
approach of natural selection over these predetermined behavior rules. Unlike
Figlewski (1982), informational efficiency can be obtained without the assumption
that traders have independent information. One assumption of Figlewski (1978,
1982) that is critical in preventing informational efficiency is the idea that there
is a fixed number of traders. In contrast, this chapter allows for an ongoing entry
of new traders, with diverse prediction abilities. This chapter extends Luo (1998)
to allow for continuous prices and traders who both buy and sell. Simulations
are conducted to follow wealth redistribution among traders as the futures price
converges to the fundamental value. Moreover, unlike Luo (1998), this chapter, by
adding a random shock to the fundamental value in determining the spot price, is
able to investigate the relationship between the degree of volatility in the spot market
and the extent of convergence of the futures price to the fundamental value. While
this relationship was explored through simulation by Figlewski (1978), this chapter
is able to characterize this dependence analytically.

To illustrate the idea of natural selection in promoting market efficiency, this
chapter presents a simple and straightforward model. The model is briefly described
as follows. Consider a commodity futures market. The commodity is assumed to
be nonstorable and must be sold in the spot market at the end of each time period.
Correspondingly, the futures contracts are one-period in length. Traders enter the
market sequentially over time at the beginning of each time period. Traders are
engaged in buying or selling contracts to make speculative profits. The spot price
consists of the fundamental value plus a random shock to the spot market. The
fundamental value is determined in the beginning of each time period before the
futures market opens, but is unknown to all market participants. The random shock
is realized in the spot market at the end of each time period. In each time period,
each trader’s prediction about the fundamental value together with trader’s wealth
provides this trader’s demand function for contracts. Each trader’s wealth in each
time period is defined to be the accumulated profits up to that time period. The
futures market is a Walrasian market structure. Each time period, the futures price
is the futures market clearing price which equates the aggregate net demand for
contracts with the supply of contracts from producers in that time period.
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To isolate the role of the market as a selection or filtering process, it is
assumed that all traders are unsophisticated in the sense that traders do not adjust
their behavior in response to other participants on the basis of their past market
experiences. However, it is generally recognized that traders have access to a wide
disparity of information. Thus, traders may have information signals with different
degrees of reliability. This can be translated into differing abilities of traders in
predicting the fundamental value of the spot price.* Specifically, upon the entry
of each trader, each trader is endowed with an initial amount of wealth and a
probability distribution of the prediction error with respect to the fundamental value.
The endowment of the probability distribution is trader specific and it is fixed in all
subsequent time periods. These probability distributions describe differing abilities
of traders in predicting the fundamental value of the spot price and they reflect the
diverse noisy information among traders. One trader is more informed (or possesses
less noisy information and more accurate information) than another if this trader’s
probability distribution generates a higher probability of predicting arbitrarily close
to the fundamental value than another trader’s distribution does.

To easily convey the idea about how the market functions as a filtering process,
an intuitive explanation begins with a model with no random shock to the spot
market. In this model, traders with better predictions make gains at the expense
of their trading counterparts. Therefore, traders with more accurate information
tend to accumulate more wealth asymptotically than the traders with less accurate
information. As a result, the predictions coming from traders with more accurate
information get reflected into the futures price with a greater weight than the
predictions from those traders with less accurate information. Over time, traders
are constantly entering the market. Some of these traders are not well informed and
some are very well informed. If, in each time period, there is a positive probability
that the entering trader possesses more accurate information than any previously
entering traders, the filtering process would constantly shift wealth from traders
with less accurate information to traders with more accurate information. Thus,
the filtering process eventually screens out less accurate information and selects
for more accurate information. The futures price will be eventually driven to the
fundamental value.

However, with the presence of the random shock to the spot market, the above
story still works but with less precision. The more volatile the spot market is, the
more noisy the information is for which the filtering process selects. As a result,
the deviation of the futures market from informational efficiency gets larger. In
other words, the width of the interval containing the fundamental value, where
the futures price eventually lies, increases as the volatility of the underlying spot

“4Furthermore, even if traders have access to the same information, they may disagree on its correct
interpretation and may have differing abilities in processing the same information. Of course, this
would further add to differing abilities of traders in predicting the fundamental value of the spot
price. This would also be consistent with views of bounded rationality [e.g., Simon (1959, 1986)
and Vriend (1996)].
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market increases.’ This latter result is distinctive and reinforces some earlier similar
findings of Figlewski (1978). It is worth noting, however, that Figlewski (1978) in
his seminal paper had to rely on simulations to illustrate this point; whereas, in this
chapter, this result is achieved in a rigorous analytical way as part of a more general
theorem.

One of the key ingredients for the functioning of natural selection in this futures
market, is each trader’s wealth constraint affecting the trader’s demand and supply
of futures contracts. The role of a wealth or budget constraint in producing an
efficient outcomes is noted by Becker (1962) who argued that market rationality
can result from agents’ random choices being subject to budget constraints. Later
on, Gode and Sunder (1993, 1997) built upon this idea and used experiments to
demonstrate that allocative efficiency can be achieved even with zero-intelligence
traders and the imposition of a budget constraint where no trader is allowed to sell
below their costs or buy above their values. This chapter similarly finds that random
or pervasive irrational behavior on the part of individual traders can coexist with a
rational aggregate market. In the case of the aforementioned papers of Gode and
Sunder, aggregate market rationality takes the form of allocative efficiency whereas
here aggregate market rationality shows itself in long run informational efficiency.
Nevertheless, there is one key difference between these two sets of models. In
Gode and Sunder’s allocative efficiency conclusions, the evolutionary idea of natural
selection plays no role, whereas here there is a natural selection through time due
to a constant reallocation of wealth away from traders with poor information and
toward traders with the better information.

5.2 Commodity Futures Market

Consider a dynamic model of a commodity futures market. Time is discrete and
indexed by 7, where t = 1,2,.... The commodity is nonstorable and must be
sold at the end of each time period. Hence, futures contracts are one-period in
length. The futures market opens at the beginning of each time period. The futures
market closes after all transactions in the futures market are completed. Traders
participate in the futures market by buying or selling contracts. The aggregate supply
of futures contracts from producers attime ¢, ¢ = 1,2, ..., denoted as S;, is randomly
determined each time period from an interval [0, S| according to a given probability
distribution.® After the futures market closes, the spot market opens at the end of

SA similar descriptive story behind the above selection process can be found in Cootner (1967).
Another market selection process for producers in an industry is formulated in Luo (1995) where
efficient firms are selected for and a perfectly competitive market arises in the long run.

To be consistent with the evolutionary framework, producers are also assumed to be irrational in
the sense that producers have no understanding of the implication of the past futures prices and
have no knowledge of the present futures price.
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each time period. The spot price in each time period is determined in the spot
market. The spot price consists of the fundamental value of the spot market and
a random shock to the spot market (coming from either the consumers’ demand or
the producers’ supply in the spot market). That is, the spot price at time period ¢,
denoted by P;, is modeled as

Pi=Z +w,

where Z, represents the fundamental value of the spot market at time period ¢. Z,
is determined at the beginning of time period ¢ before traders purchase or sell their
contracts, but Z; is unknown to all the market participants. It is assumed that {Z i1
is a random sequence taking values in an interval [Z, Z], where 0 < Z < Z < oo.
w; 1s a random shock to the spot market at time period ¢ and w;, is realized at the end
of time period . {w };> is assumed to be an i.7.d. random sequence taking values
in an interval [, w], where w > 0. @, has a symmetric density with E (w;) = 0.
To prevent the spot price being negative, it is assumed that 0 <Z.’

It is assumed that the random shock at time 7, w;, is independent of the
fundamental value Z;, fors = 1,2, ..., and is independent of the aggregate supply
of contracts from the producers S;, fort = 1,2, ....

Traders are assumed to enter the market sequentially over time and participate
with previously entered traders for the purpose of making speculative profits. At the
beginning of time period #, where t = 1,2, ..., a single trader (called trader ) is
allowed to enter the market and this trader will continue to participate in all future
time periods. The fundamental value at time ¢ (Z;) is determined before trader ¢
enters the market, but unknown to all the market participants entering up to time
period 7. The timing of events for the model is illustrated in Fig. 5.1.

Each trader is assumed to be endowed with an initial wealth 1§ upon this trader’s
entry. Trader ¢’s prediction or belief about the fundamental value at time s, where
s > t, denoted by b, indicates that trader ¢ is willing to buy the number of contracts
at a price no higher than b’ up to whatever the trader’s wealth permits and sell the
number of contracts at a price no lower than b} up to whatever the trader’s wealth
permits him or her to honor.

Specifically, denote trader ¢'s wealth at the end of time period s, where s >
t, as V’ and V’ . = Vo. Denote the futures price at time s as P , where s =
1,2,.. leen trader ¢’s prediction at time s, (where s > t), b’, trader t's demand

"This decomposition of the spot price is consistent with many economic stories. One of such
stories is as follows. The output level of each of a very large number of producers is determined
(although unknown to other producers) at the beginning of the time period and the total output of
all producers is delivered and sold in the spot market at the end of the time period. The intersection
of a prespecified consumers’ demand curve (determined at the beginning of the time period)
with the producers’ aggregate supply in the spot market determines the underlying spot price (or
fundamental value, Z,), although unknown to all participants, at the beginning of the time period.
However, if a random shock is added to the consumers’ demand or the producers’ supply at the end
of each time period, then this spot price (P, ) at the end of the time period becomes P, = Z; + w;.
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The fundamental value
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Fig. 5.1 The timing of events

t
for contracts at time period s is % if Psf < b’ On the other hand, if Psf > bl

trader ¢ short sells contracts. Since the highest spot price is Z + , to ensure each
trader honors his or her contracts when he or she is selling contracts, the supply of
contracts from each trader is constrained such that this trader has enough money to
cover his or her loss. Therefore, if Psf > b!, the demand for contracts at time period

. V! . .
s, where s > t,1s —ﬁ. To summarize, trader ¢'s demand for contracts at time
W—1ry

period s, where s > ¢, is

Vl
N if P/ < b
Py
Vi, v e f
q.(P)) = TPl 5 o7 T AR = b! (5.1)
w—P B
Vt
—_S—_lf. if Psf > b§
Z + w — P

An illustrative demand curve is in Fig. 5.2.

All payments among all participants in the futures market are settled at the end
of each time period. Those who bought futures contracts must pay for the contracts
at the futures price and in exchange receive payments for these contracts, valued
at the spot price. Similarly, those who sold short futures contracts must pay for the
contracts at the spot price and in exchange receive payments for these contracts,
valued at the futures price. Hence, trader ¢’s profit at the end of time period s is

(Py — r/ )¢’ and so trader t’s wealth at the end of time period s is

81n the following it is assumed that traders actively use all of their wealth for speculation. However,
even if traders withdraw for consumption a constant fraction of their wealth each time period, the
results of the chapter remain the same.
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Fig. 5.2 Trader ts demand

for contracts at time s
—————————————— Z+m

bt

Vst = Vst—l + (PS - Pvf)qf

The futures price at time s, Psf ,’ is the futures market clearing price, determined
by the following equality of the aggregate net demand from traders with the
aggregate supply of the producers,

> qlp)) =S.. (5.2)

=1

The solution, Ps‘f , to the above equation is unique because of the shape of the
demand function and the vertical supply from producers. All transactions are
executed at the futures market clearing price. If the maximum number of contracts
demanded by traders at the futures market clearing price exceeds the number
of contracts supplied by producers and if there are traders whose predictions
coincide with the futures market clearing price, the remaining supply could be
allocated among those traders proportionately to their wealth. Nevertheless, how
the remaining supply is allocated does not affect the results of the chapter.

In fact, the above futures market mechanism is a Walrasian market. It is evident
that the more wealth a trader has, the more contracts that this trader demands.
Consequently, the more influence this trader’s prediction has over the futures price.

5.3 Traders’ Predetermined Behavior Rules

Given that the intention is to illustrate how the market functions as a filtering
process that screens out traders with less accurate information and selects for traders
with more accurate information, the role of the market needs to be isolated and
highlighted. Therefore, with respect to modeling traders’ predictions, the guiding
principle is to model traders’ behavior as unsophisticated. That is, traders will be
modeled as unresponsive to other participants’ behavior and the futures market
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environment.’ To incorporate information about the fundamental value into the
traders’ predictions, one way of modeling traders’ predictions is to assume that
each trader’s prediction errors with respect to the fundamental value obey his or her
own inherent or preprogramed stationary distribution. This probability distribution
function characterizes each trader’s ability to predict the fundamental value and it
reflects the accuracy level of the information this trader possesses. Different traders
may have different abilities in predicting the fundamental value or different accuracy
levels of information. As a result, different traders’ prediction errors may have
different probability distribution functions. This way of modeling a trader’s ability
is analogous to how the performance of a machine is measured by the probability
distribution of its precision in meeting particular standards. Keeping each trader’s
distribution of prediction errors fixed through time is consistent with traders having
systematical prediction biases.

Specifically, let b’ denote trader ¢’s prediction about the fundamental value
at time period s, where s > ¢, and let b, = Z; + u!, where i is trader t's
prediction error with respect to the fundamental value at time s.'° The ul, may
be correlated across traders. (This contrasts with Figlewski (1978, 1982) where
to achieve informational efficiency in the long run, the u} must be independent
across traders.) It is assumed that trader #’s prediction error at time s, (s > t),
ul, is independent of Z; and for all s > ¢, u! € [—u,u]. To ensure that the
highest prediction does not exceed the highest spot price and the lowest prediction
is positive, it is assumed that u < w. It is also assumed that for each 7, u/, obeys the
same probability distribution for all s > 7. Hence, define a vector for trader ¢, where
t = 1,2, ..., as follows: for any given ¢’ > 0,

0 = Pr (u’Y > e’), ) =Pr (—e’ <u < e’) and 65 = Pr (u’Y < —e’).

The variables 6], 65, and 0} define the probability of overpredicting, predicting
correctly and underpredicting the fundamental value for trader ¢, respectively.
This vector (0], 6}, 6}) characterizes trader ¢’s probability distribution of his or
her prediction error with respect to the fundamental value, which reflects trader
t’s ability to predict the fundamental value.!! Upon the beginning of trader ’s
entry period, trader ¢’s vector (9{, 92’) is randomly taken from a set {(0,6,) €
(0,1) x (0,1) : 6; + 6, < 1} and 65 = 1 — 6] — 5. Trader ¢’s vector (0], 05, 05)
is determined in the beginning of time period ¢ and it is fixed in any subsequent
time period. This means that there is no adaptive learning or any strategic usage of
any information from the markets or other markets’ participants among all traders.

90f course, traders with more sophisticated behavior could be added to the model, but this would
make it more difficult in isolating the filtering role of the market.

19This modeling of predictions is the same as Grossman (1976, 1978), Figlewski (1978, 1982), and
Hellwig (1980).

"No assumptions are made with respect to the type of distribution of the prediction error. This
contrasts with most papers including Figlewski (1978, 1982), where normality is assumed.
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Trader ¢ acts upon his or her vector (8], 6, 6}) each time period. In other words,
in each time period, trader ¢’s prediction error is generated from his or her vector;
hence, his or her prediction is determined. Given a trader’s prediction at time s, this
trader’s demand for the number of contracts at time s is characterized by (5.1).

The sequence of traders’ vectors {(9{ , 9%)} i>1 is independently and identically
distributed according to the distribution function F(-) across traders ¢t = 1,2,....

Furthermore, it is assumed that in each time period there is a positive prob-
ability that an entering trader has an arbitrarily high probability of predicting
arbitrarily close to the fundamental value. That is, for any given small positive ¢,

f dF(el,ez) > 0.
1—e<br<l1

In addition, it is also assumed that the random shock at time s, (s > 1), wy, is
independent of all traders’ prediction errors at all time periods, ug,, where s’ >t >
1.

The futures price at time s, Psf , is the futures market clearing price at time s,
which is determined by (5.2). As can be seen the futures price Psf is a function of
S1.82, S Z1 2y o, 2 01, ), e, 01 Uy U, ol for all £ < 53 and V.

5.4 Numerical Examples and Results

To see how the futures price moves over time in this market, a set of simulations is
now conducted. Fort = 1,2, ..., define 6] = Pr(u! > 0.10), 65 = Pr(—0.10 < u} <
0.10), and 6} = Pr(u} < —0.10). The vector (6}, 05, 6;) characterizes trader ¢’s
probability distribution of his or her prediction error with respect to the fundamental
value.

Consider a futures market with a random shock, w;, where s > 1, is a random
draw from an interval (—w,®) = (-3, 3) according to a symmetric doubly trun-
cated normal distribution where the density function is o~z (%) [2<I> (g) — 1]_1 ,
with parameter 0 and B = 2.999. Z (:) is the unit normal probability density
function and ®(-) is the corresponding cumulative distribution function.'> As o
goes up (down), the variation in random shock also goes up (down). Other detailed
characteristics of the market are described by (1), (2), (3), and (4) in Appendix A.

First, with 0 = 5.0, 100 simulations are conducted and the market is followed
from time period 1 to 3,000. The histogram in Fig. 5.3a shows that at time period
500, on average across 100 simulations, the percentages of time that |Psf —Z| >
0.10 and |Psf — Z,| < 0.025 are 40% and 16%, respectively. By time period 3, 000,
on average across 100 simulations, the percentage of time that |Psf —Zs| = 0.10
has decreased to 28% whereas the percentages of time that |Psf — Zs| < 0.025 has
increased to 19%. That is, as time goes by there is a lower proportion of time that

12The truncation keeps the upper bound of the spot price P, from exceeding the highest bid 10.
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Fig. 5.3 Histogram of |P\:f - Z,| as a percentage of times: (a) w, obeys a truncated normal
distribution ¢ = 5, (b) w, obeys a truncated normal distribution 0 = 1.5, and (¢) No random

shock to the economy

| Psf —Z,| is greater than 0.10 and there is a higher proportion of time that | Psf —Z|
is less than 0.025.

However, if the variation in the random shock gets smaller, does the futures price
move closer to the fundamental value?

Now, a smaller variance in the random shock is chosen to conduct the second set
of simulations. With all other aspects of the model remaining identical, 0 = 5.0
is reduced to 0 = 1.5. and 100 simulations are conducted and the market is
followed from time 1 to 3,000. The histogram of the absolute deviation of the futures
price from the fundamental value as a percentage of times is shown in Fig. 5.3b.
Figure 5.3b shows the clustering of the futures price about the fundamental values,
as time goes by. Furthermore, by time period 3,000, on average across 100
simulations, the percentages of time that |Psf —Z,| > 0.10 and |Psf —Z| < 0.025
are 21% and 22%, respectively. This shows that, in comparison to the simulations
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with 0 = 5.0, with 0 = 1.5, there is a larger proportion of time that |Psf —Zs| <
0.025.

Now suppose that no random shock is assumed in the spot market (i.e., w, = 0
fort = 1,2,...). A third set of simulations is conducted with the model described
by the four assumptions in Appendix A along with no random shock assumption.
Again, 100 simulations are conducted and the market is followed from time 1 to
3,000.

As expected, with no random shocks, convergence is much faster. The histogram
of Fig. 5.3c shows that by time period 3, 000, on average across 100 simulations,
the percentages of time that |Psf — Zs| = 0.10 and |Psf — Zg| < 0.025 are 4%
and 37%, respectively. This shows that with no random shock, in comparison to the
previous simulations with random shocks, there is an even larger proportion of time
that | P/ — Z,| < 0.025.

This provides good evidence that the smaller the volatility of the random shock
to the spot market is, the higher the proportion of time that the futures price lies in a
small interval containing the fundamental value, as time increases. This is precisely
stated in the following theorem.

Theorem 1. With probability 1 the following occurs: for any given positive ¢,
there exists a positive number k(€) such that, for the i.i.d. random shock sequence
{w }1>1 withIn Z — E(In(Z + w,))< k(€) and for any given positive €' > 0, there
exists a time period T'(¢, €) such that for T > T’ (€', €),

#{z <7:pP € [Z,—E,Z,f+e]}
T

>1—¢€.

Proof. See Appendix B for the proof. O

As shown in the appendix, the term In Z — E(In(Z + «y)) is a function of
all the moments of the random shock w,. This term reflects the volatility of the
random shock w;. For example, if the random shock is normally distributed, the
term In Z — E(In( Z + w;)) is an increasing function of the variance of the random
shock w,. Hence, Theorem 1 essentially says that, if the volatility of the random
shock is sufficiently small, then the proportion of time, that the futures price is
sufficiently close to the fundamental value of the spot price, converges to one with
probability one. Theorem 1 also indicates that the smaller is the volatility of the
random shock, the smaller is the width of the interval (containing the fundamental
value), in which the futures price eventually lies with probability 1. This further
suggests that if there is no random shock in any time period, then with probability
1, the width of the above interval is arbitrarily small. This is stated formally in the
following corollary, which can be established directly from the above theorem.'3

BThis corollary is the same as Theorem 1 in Luo (1998) except the prices in this chapter are
continuous.
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Table 5.1 Distribution of the proportion of wealth by trader-types
Trader-types (9;) At time 1,000 At time 2,000 At time 3,000

0-0.50 0.378 0.331 0.203
0.50-0.75 0.314 0.291 0.229
0.75-0.90 0.228 0.228 0.229
0.90-0.95 0.045 0.083 0.156
0.95-1.00 0.035 0.067 0.182

Corollary 1. If w, = 0 for all t, then with probability 1 for any given €,€ > 0,
there exists a time period T* (€', €) such that for T > T*(€, €),

#{t <7:pP/ ¢ [z,—e,z,+e]}
T

>1—¢€.

While the convergence of the futures price is rigorously proven in Appendix B,
the intuitive reason for convergence deserves further examination. In other words,
what is the cause of the convergence of the futures price? For the purpose of
dealing with this question, a trader is said to be more informed or possess more
accurate information or less noisy information than others if this trader has a higher
probability of predicting arbitrarily close to the fundamental value than others do.
Since there is no learning or strategic behavior by participants in this model such
that traders possessing less accurate information become the ones possessing more
accurate information, the occurrence of convergence must be due to the constant
redistribution of wealth among all traders. This constant redistribution process must
be in favor of traders with a higher probability of predicting arbitrarily close to the
fundamental value. That is, the proportion of wealth owned by traders with more
accurate information increases relative to the proportion of the wealth owned by
traders with less accurate information. Consequently, the more informed traders
have more influence over the futures price than the less informed traders. It is the
economic natural selection or the filtering process that screens out traders with less
accurate information and selects for more accurate information.

To look at this issue, the distribution of wealth by trader-types, described by 65,
is examined for the above simulation model with 0 = 1.5 assumptions (1), (2),
(3), and (4) in Appendix A. The distribution of the proportion of the wealth across
all trader-types at time periods 1,000, 2,000, and 3,000 is shown in Table 5.1. The
corresponding distribution of all trader-types, (here characterized by 6} ) at time
periods 1,000, 2,000, and 3,000 is in Table 5.2.

As seen in Table 5.1, the proportion of the wealth owned by traders with 65 lying
in an interval [0.95,1.00) increases to 18.2% at time period 3,000 from 3.5% at time
1,000. In the meantime, the proportion of wealth owned by traders with 6} lying
in an interval (0,0.50) decreases to 20.3% at time 3,000 from 37.8% at time 1,000.
From Table 5.2, it can be seen that the proportion of traders with 6} lying in an
interval [0.95,1.00) is relatively stable at about 0.05% over time. Both tables suggest
that over time, more and more wealth is shifted to the traders with more accurate
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Table 5.2 Distribution of trader-types
Trader-types (95) At time 1,000 At time 2,000 At time 3,000

0-0.50 0.8270 0.8363 0.8327
0.50-0.75 0.1552 0.1456 0.1487
0.75-0.90 0.0159 0.0161 0.0164
0.90-0.95 0.0015 0.0015 0.0016
0.95-1.00 0.0005 0.0005 0.0005

information from the traders with less accurate information as more traders with
more accurate information enter the economy. This redistribution of wealth process
goes on and on; eventually, the group of traders with 6] arbitrarily close to 1 comes
to dominate the markets and drives the futures price toward the fundamental value.

5.5 Conclusions

In the above, the idea that the market functions as a filtering process of information,
promoting an efficient outcome, has been illustrated by using a dynamic model of a
commodity futures market. To emphasize the concept of natural selection, the model
allows for the continual inflow of traders with a wide spectrum of noisy information
signals, the transfer of wealth among traders and accumulation of wealth across
time.

To highlight the role of the market as a selection process of information, rather
than the strategic moves of participants, traders are modeled as not being responsive
to past market experiences. The model recognizes that traders’ predictions reflect a
wide disparity of information. Each trader is endowed with a probability distribution
of the prediction error with respect to the fundamental value. Since in each time
period there is a positive probability that a trader enters with a higher probability of
predicting arbitrarily close to the fundamental value than any previously entered
traders, over time as more traders enter the markets, if the volatility of the
random shock is sufficiently small, then the proportion of time, the futures price
is sufficiently close to the fundamental value of the spot price, converges to one.
Nevertheless, the interval containing the fundamental value, where the futures price
eventually lies, is influenced by the underlying volatility generated from the spot
market. In other words, the accuracy of the information for which the market can
eventually select, depends on the volatility generated from the random shock in the
spot market. The more volatile the spot market, the more noisy is the information
that gets selected for. As a result, the futures market moves further away from
informational efficiency.

The explanation for the cause of the convergence of the futures price to the
fundamental value, which is also supported by the simulations, is rather intuitive.
That is, the market, as a filtering process, constantly shifts wealth from traders with
less accurate information to traders with more accurate information. Over time as



Appendix B 103

more traders enter the market with more accurate information, eventually, the traders
with an arbitrarily high probability of predicting the fundamental value come to
dominate the markets and drive the futures price toward the fundamental value of
the spot market.

Appendix A

1. The fundamental value of the spot price at time s (z;), where s = 1,2, ..., is
assumed to have a uniform distribution with its support [Z, Z] = [3,7].

2. The supply of contracts brought to the futures market by the producers at
time 7, S;, is randomly drawn from the interval (3,7) according to a uniform
distribution. This random draw of S; is independent of the fundamental value
Zg, foralls > 1.

3. Each trader on entry is endowed with initial wealth 7, = 0.001.

Finally, all traders’ predictions are modeled as being taken from a given
distribution each time period. That is,

4. Fort = 1,2, ..., (6], 63,6;) is drawn randomly and independently according to
a uniform distribution from a cube defined by {(61, 65, 65) € (0,1) x (0,1)x
(0,1) : 61 + 6, + 63 = 1}. Trader ¢’s prediction error in each time period is
randomly and independently generated from the vector (6], 65, 63) and trader ¢’s
prediction error at time s, (s > ¢), u’, € [-3, 3].

Appendix B

The purpose of this appendix is to provide a sketch of the proof of the result in
Theorem 1. The result in Theorem 1 is proven by way of contradiction. Roughly
speaking, if the result is not true, or in other words, if the futures price stays
infinitely often away from the arbitrarily small interval containing the fundamental
value, then there would exist a trader, say trader I, with a sufficiently large 921
or sufficiently small 911 and 931 such that this trader’s wealth grows exponentially
over time and eventually this trader’s average wealth over time explores to infinity.
This contradicts the fact that the average total wealth in the market over time is
bounded from above by a constant. Due to the complexity and the length of the
proof, the proof is broken into two lemmas and one theorem. Lemma 1 shows the
existence of such a trader with sufficiently large 921 or sufficiently small 911 and 931 .
Lemma 2 derives the lower bound for any trader’s average logarithm wealth over
time. This lower bound is made use of by the proof of Theorem 1 to show that
under its contrapositive, the wealth for trader I presented in Lemma 1 would grow
exponentially. What follows begins with a sketch of the proof of Lemma 1, followed
by Proposition 1, which is required by Lemma 2. This is followed by a sketch of the
proof of Lemma 2. The proof of Theorem 1 makes use of these two lemmas.
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Lemma 1. Forany given § > 0 and for any given € > 0,

1 z Z
Pr (3 trader I such that (6] — 1+ =8| 1In (= + 6/ In{ ==
2 7Z—¢ Z+u
+9311n(_w ), +9211n(L)—E>0
Z+w w+¢€

for some positive € < € and some positive k) =1.

Proof. This proof is done under the assumption that (6}, 65, 6}) is independently
and identically distributed across time ¢ = 1,2, ..., along with the second Borel
Cantelli Lemma (see Billingsley (1995, p. 83)). The details of the proof are available
from the author upon request. |

Proposition 1. Let {X,},>1 be a random sequence with a finite expectation E(X;)
and | X,| < My, where M, is a finite positive number. Let Y,, wheret = 1,2,...,
be a random variable with |Y;| < M,, where M is a finite positive number. If X, is
independent of Y1, Y, ..., Y;, then for any given € > 0,

T T
> (XY Y (ME(X)
lim Pr||=! - = <el|=1.
T—00 T T
Proof. The proof is available from the author upon request. |

To establish Lemma 2 below, the following definitions are needed.

Definition 1. For any given positive € and €’ (¢’ < ¢), to describe the position of
the futures price relative to the fundamental value plus €, or minus €, or plus €, or
minus €', define lx, ai, my, My, and m;, where k = 1,2,..., as

Lit P/ > Zy + ¢
0 otherwise,

1if P/ < Z —e
0 otherwise,

1if Zy +€ <P/ < Zi +¢
0 otherwise,

lif Zy —' <P/ <Zy+¢  _
m
0 otherwise,

mj =

and

. f
m, — 1if Zy —e < P} <Z;—¢€

0 otherwise.
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Definition 2. For any given ¢’ > 0, to describe the position of trader ¢’s (where
t = 1,2,..,) prediction error relative to —e¢’ and €’, define x}, g; and y}, where
k > t, as follows:

1iful > € 1if —€ <ul <¢€
t k k
xl = _

lifu! < —€
= . and y; = k
0 otherwise,

"] 0 otherwise.

B

10 otherwise, g

Definition 3. Trader ¢ (where t = 1,2, ...,) is referred to as a buyer at time period
k if trader ¢ is purchasing contracts at time period k, (which occurs whenever b} >

Pkf ); trader 7 is referred to as a seller at time period k if trader ¢ is selling contracts
at time period k, (which occurs whenever blfC < PIJ ); trader ¢ is referred to as a
marginal buyer if trader ¢ is actually purchasing contracts when b}, = Pkf ;trader 7 is

referred to as a marginal seller if trader 7 is actually selling contracts when b, = Pkf .
To describe whether trader ¢ at one time period participates as a buyer, a seller, a
marginal buyer or a marginal seller, define four random variables B ,z, M ,ﬁ, N, ,é, and
Si. where k > t, as

vitop > P/ Y 1ifbp =Pl .qi >0

r_
0 otherwise, 0 otherwise,

i = ) Lifb = Pl.q <0
0 otherwise,
and define S{ = 1— B, — M| — N/.

Lemma 2. Consider trader t's wealth at time T, where t = 1,2, ..., for any given
€ > 0and for any € € (0, ¢),

T T
l t _ t
In V. L (et aog; ( 7 ) PR ( z )
7

lim Pr > — + In —
T—00 T—-1+1 T—-1+1 7 —¢€ T—1t+1 Z+u
T T
> vk 2. 8k
k=t

+ k= In @ + In @
T—1t+1 Z+ow T—1t+1 w+ €
+(E(1n(£+a)k))—an))= 1.

Proof. There are five steps to the proof. Step 1 defines precisely the formula for
trader t’s wealth at time 7 (V).
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" P\ (Zro—P P\
vi=T13{=F — L=+ re—r
|\ Z+ow-—P P

— Fy
VA — P

R Vi, (53)
Z+w-—P;

where Cy = g (Ix + my, +my By) + xj (Ix +my + my + (ax +mi)By) + yi (I +
mk)Bltc’
Dy = g (ar +my +my S)) + yi (ak +mx +my + (I +my ) Sp) + x; (ar +my) Sy,
Hy = gimi M + y (Ix + m )M + x; (ar + mi )M}, and
F, = g]tcmkNlé + yltc(lk + mk)Nlé + x}c(ak + mk)Nlé

By taking logarithms of both sides of ( 5.3 ), setting V', = Vp, and making use

In VT

of the concavity of the function In(-), Step 2 establishes a lower bound for T

T
lntV4T-1 Z T=i+1 t+1 % > ((Ck + Hiri) In (ﬁ_k};))

T
+> ((Dk + Firf)In (—LZ:’” L )) +In Vo} )
k=t

w—Pk

As can be seen in the above, there are three components to this lower bound, two
of which are random. Steps 3 and 4 determine probabilistic lower bound for the
first two random components of this lower bound. This is done by using a Taylor
expansion of In(Py) = In(Zg 4+wy) and In(Z + 0 — P) = In(Z + 0 — (Zg +wy))
and Proposition 1 to produce the following two equations.

4 Py a t Z
x ((ck + Herg)ln (3)) X (st nZ))
>

lim Pr —
7550 T—1+1 T—i+1
r Z I Z
X (xmitn(E) X (ghme (B + M (n(zEo))
=t =t
* o T—i+l * T—i+1
> (¥ Gk + ) (B + M) ()
k=t —
* ) T—1+1
> ((Ck + Hyrie) (EIn(Z + o) —InZ))
k=t
+ =1.

T—1t+1
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and
r ’ Z+w—Pr L t Z4+o—Z
w— Ly w—L
Iy
Tt T—1+1 ~ T—1+1
T T
> (imiIn(5%7)) X (gime (S + riN) In(5¢7))
+k=t + k=t
T—t+1 T—t+1
T
Y (v +m)(S{+rNDIn(2))
= Z+w
+ T—t+1
T
> ((Dk + Fery) (E(In(w — wx)) — Inw))
k=t
. = 1.

T—-t+1

Step 5 substitutes these two probabilistic lower bounds into the lower bound of

Tli:/il and simplifies it to give the results of Lemma 2. The details of the proof are

available from the author upon request. |

The Proof of Theorem 1: This is shown by way of contradiction. Suppose that
Theorem 1 is not true, then with a strictly positive probability the following occurs:
there exists an €, such that, for all E/, it is possible to find an i.i.d . random sequence
{wr}ks1, withInZ — E (In(Z + wy)) < E/, for which there exists a §o > 0 and a
#{kﬁnT:P{¢[Zk—eo,Zk+50]} -

nr

subsequence ny,ny, ..., Ar, ..., such that for all T > 1,
89. Since Lemma 1 implies that for this §o > 0 and for this €y > 0,

1 Z
Pr | 3 trader I such that, (921 -1+ —80) In| =
2 Z — €0

z _
+ﬂm( = )+%m(_” )+%m( ”,)—k>a
Z+u Z+w o+ €

for some positive €, < € and some positive E) =1. 5.4)

and using the notation in definitions 1, 2, and 3 after replacing € , €’ with ¢y and 66
respectively in the definitions 1, 2, and 3, the above statement can be restated as the
following:

With a strictly positive probability the following occurs: there exists an €; such

that, for all El, it is possible to find an i.i.d. random sequence {wy}r>1, With
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InZ — E(In(Z + ay)) < E/, for which there exists a §o > 0 and a subsequence
niy,Nna,..,nr,...,suchthat forall 7 > 1,

nr
> Uk + ax)
k=1

nr

> §p > 0. (5.5)

Consider trader /. The following shows that trader /’s wealth grows exponentially
whereas the aggregate wealth can only grow arithmetically. This is a contradiction.

Because trader I ’s prediction error u,ﬁ is independently and identically distributed
across time k, the Strong Law of Large Number implies that with probability 1, as
T — oo,

nr nr nr
gl xf Vi
k=1 1 k=1 1 k=1 1
_ 0, —— 0;, and — 0. 5.6
nr—1+1 P oap—141 UM T ©.6)
Furthermore, noticing that,
nr nr
Y (e +agd) =D (e +a) (1 - yi —x)))
k=1 k=1
nr
> ) (e +a)—(1—g)
k=1
nr nr
> (ke + ax) gl
k=1 k=1

:(l’lT—I+1)

—1]. 6.7
nT—I+1+nT—I+1 7

Therefore, (5.4), (5.6), and (5.7) imply that

nr T
(U + an)gy) = > xf
. k=1 Z’ k=I 2:
Pr lim ———— |In| = + In
T—o0 nr—1+1 Z —¢€o nr—1+1 Z+u
a 1 0 1
> Vi > 8k

k=1 () k=1 @
+ In| = + In
nr—1+1 (Z+w) nr—1+1 (w+€6)
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nr

/ _
kg](k'Fak) 1 ( ~ )
n

nT_I+1 7—60

Z
+9111n( — )+9311n(_w )+9211n( @ /)
Z+u Z+w w + €

where A denotes the event that there exists trader 7/, such that (921 -1+
7 7 ) w e ..
%80) ln(?io) + 6] IH(E) +61 ln(7—+w) +61 ln(m) —k > 0, for some positive

> |6 -1+

A) =1, (56.8)

€, < € and some positive k.

nr
) o2 (ktag)
Since if ’ZIT > 8o, thenas T — oo,

nr
> Uk + ax)
k=1

— > —§p. 5.9
nT—I+1>20 (5-9)

Applying Bayes rule to (5.5) and (5.8), and using (5.9), it follows that

nr T
> (I +ar)g)) = > xf
. =1 z k=1 Z
Pr lim _— — =+ In
T—o0 nr—1+1 Z — ¢ nr—1+1 Z+u
a 1 L 1
Z Vi Z 8k

k=1 (] k=1
In{ = 1
+nT—I+1 n(Z+w)+nT—I+l n(a)
Z

1 Z
0 — 1+ =8| In| =—— 011
>(2 +20)H(Z_€0)+ 1 H(Z+M
+e;1n(_L)+e;m(L,)
Z+w o+ €,

where E represents the following event: with a strictly positive probability the

)
)

(A,E)) =1, (5.10)

following occurs: there exists an €y such that for all E/, it is possible to find an i.i.d.
random sequence {wy }k>1, Withln Z — E (In(Z + wy)) < E/, for which there exists

nr
> (k+ap)
ado > 0 and a subsequence ny,ny, ..., nr, ..., such that for all T, ’@T > §o.
Furthermore, noticing that for trader I, there exists some positive A > 0, such

that,
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1 V4 z
(921 -1+ 580) In (7_60) + 911 ln(Z:—u) + 931 In (73)_0))

w —
66)—k>/\. (5.11)

110

011
+2n(w

Equations (5.10) and (5.11) imply that

nr T
I I
kg{((lk +ai)g;) 1 ( VA ) kgl Xj ( z )
n + In Z

Pr| lim =
T—00 npr—1+1 Z — ¢ nr—1+1 +u
Lo Lo
Zyk o ng © _
k=1 In(= +K=t In ) —k>A| (4, E)| =1.
nr—1+1 7 +w nr—1+1 w + €

(5.12)

Equation (5.12) further implies that

nr

/ ! _
' k=1((k +ar)gy) ~ ( z )
Pr| lim In = + In
7z — €0 nr — 1 +1 Z—f‘ u

T—00 nr—1+1

L 1 L 1
> Vi w > 8 o B
+—=L  _m(= +—=L ) —k > i[>0, 5.13)
nr—1+1 7Z +w np—1+1 o + €

Lemma 2 implies that for trader / at time nr, for this €y, and for 66 € (0, ¢),

v, kg{((lk + ar)gl) ( - )

lim Pr
T—o0 npr—1+1 nr—1+1
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nr I
> 8k

k=1I w
1 E(In(Z —InZ)| =1 5.14
() + Bz + o) —2) 6.14)

Equations (5.13) and (5.14) imply that for any i.i.d. random shock sequence
V!
nr

{wptk=1 with InZ — E(In(Z + o)) < k., Tlim Pr (nr——H-l > A) > 0. This
—>00

further implies that for any given F > 0, for any i.i.d. random shock sequence
{o =1 with (In Z — E(n(Z + wy))) < k.

. v,
lim Pr| —X— > F | >0, (5.15)
T—o0 nr—1+1

However, since the maximum amount of wealth, which is injected into the market
each time period, is bounded from above by a constant (E (7 + w) + Vo); the
average wealth (across time) of all the traders is bounded from above by this
constant. This contradicts (5.15).00
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Chapter 6
Evolution, Noise Traders, and Market Efficiency
in a One-Sided Auction Market!'

This chapter builds an evolutionary model of one-sided buyer auction market to
examine if the informational efficiency would still occur as a long run outcome.
Here, each trader’s behavior is preprogramed with its own inherent and fixed
probabilities of overpredicting, predicting correctly, and underpredicting the fun-
damental value of the asset. This chapter shows that, if each buyer’s initial wealth
is sufficiently small relative to the market supply and if the variation in the
asset’s random shock is sufficiently small, then as time gets sufficiently large, the
proportion of time, that the asset price is arbitrarily close to the fundamental value,
converges to one with probability one.

This chapter is organized into four sections. Section 6.2 outlines the model. The
results can be found in Sect. 6.3. Section 6.4 summarizes and concludes the chapter.

6.1 Introduction

Traditionally, in the literature, the derivation of an informationally efficient market
has tended to rely on the presence of traders’ rational expectations, strategic usage
of market information, or adaptive learning behavior where noise traders gradually
become informed traders. However, due to individuals’ limited ability to process
and manage complex information, the assumption of rationality is challenged. This
further calls into question the achievement of market efficiency. On the other hand,
there is Friedman’s 1953 well-known conjecture that, because noise traders will
sooner or later lose money to the informed traders, the informed traders will come
to dominate the market and drive the asset price toward the fundamental value. An
intuitively appealing aspect of Friedman’s conjecture is the idea of natural selection
among traders.

IThis chapter is based on my article published in the Journal of Financial Markets, 6, 163-197,
2003.

G.Y. Luo, Evolutionary Foundations of Equilibria in Irrational Markets, 113
Studies in Economic Theory 28, DOI 10.1007/978-1-4614-0712-6_6,
© Springer Science+Business Media, LLC 2012
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The idea of abandoning rationality on the part of traders is consistent with a
growing literature in behavioral economics and finance. The behavioral approach
focuses on the behavior patterns drawn from psychological theory (e.g., Kahneman
et al. (1982)). Often judgmental decisions are based on cognitive rules of thumb
used to simplify the decision-making process. Using such rules to assess uncertain
events and make predictions, often leads to systematic errors or biases. In the context
of a one-sided auction, such systematic errors take the form of consistent patterns
of predicting biases, which are captured by the probabilities of overpredicting
and underpredicting the asset value; these predicting probabilities become the
key to modeling traders’ behavior. In this chapter it is assumed that traders are
rather unsophisticated and each trader consistently overpredicts or underpredicts
with some fixed probabilities. In an evolutionary sense, each trader is genetically
preprogrammed with its own inherent and fixed probabilities of overpredicting,
underpredicting, and predicting correctly the asset value. Since a trader has a
positive probability of overpredicting or underpredicting the asset value, the trader
has a positive probability of acting upon noise as if it were information. Therefore,
in this sense, traders are called noise traders in this chapter.

Within the context of a double-sided auction, Luo (1998, 2001) shows that
with no requirement of traders’ rationality such as rational expectations and
adaptive learning, natural selection among traders through redistribution of wealth
is sufficient to cause the convergence to an informationally efficient market. It is
noteworthy, however, that in the context of a double-sided auction, the allowance
for short sales implies that the supply of the asset is virtually elastic. While the
majority of financial markets adopts a double-sided auction market, there is a
significant number of markets which are essentially one-sided auction markets with
a perfectly inelastic supply. A key distinction between a one-sided and a double-
sided auction market is that traders in a double-sided auction market are allowed to
short sell. In a one-sided auction market, short sales are not possible because of the
lack of a secondary market. The absence of secondary markets often occurs in the
sale of short-term commercial paper, municipal notes, non-negotiable certificates
of deposit and private placements and sometimes occurs in markets for bonds
(e.g., Japanese corporate bonds).?> Other examples of one-sided auctions include
the leasing of mineral rights, the leasing of oil drilling permits and the leasing of
timber rights.?> The recent emergence of internet online purchasing provides some
other interesting examples.

There are three purposes of this chapter. The first purpose is to show that the
market mechanism of a one-sided auction, itself, can promote an efficient outcome
through natural selection. To this end, this chapter adopts the idea of natural

2Sometimes, secondary markets do exist for commercial paper and private placements. But usually
the transaction costs of setting up these markets have proven to be prohibitive.

30ther examples of auctions, where there is a fixed supply of an asset and no short sales, can

be found in both the theoretical and experimental economics literature (e.g., Wilson (1979) and
Forsythe et al. (1982)).
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selection and formulates an evolutionary model of a one-sided buyer’s auction
market. It shows that even without a rationality assumption like rational expectations
or adaptive learning and even when each trader merely acts upon its own inherent
and fixed probabilities of overpredicting, predicting correctly, and underpredicting
the asset value, an informationally efficient market can occur. This stands in contrast
with the conventional literature which states that an efficient outcome is promoted
through rational expectations or adaptive behavior on the part of market participants
(e.g., Grossman (1976, 1978), Radner (1979), Hellwig (1980), Allen and Yannelis
(2001),* and Castro et al. (2011)).

A second purpose of this chapter is to identify, in the context of this evolutionary
approach, an alternative less restrictive condition for achievement of an efficient
outcome in the one-sided auction market other than the one used in the double-
sided auction market. For convergence to occur in the context of a double auction,
Luo (1998, 2001) requires that in each time period there is a positive probability that
the entering trader has an arbitrarily high probability of predicting the fundamental
value correctly. Furthermore, within the context of a double auction the allowance
for short sales implies that the supply of contracts is elastic. In contrast, in this
chapter, the supply of the asset is perfectly inelastic and the market is a one-sided
buyer auction. For convergence to occur, a less restrictive condition is that there is
a positive probability in each time period that the entering trader has an arbitrarily
low probability of overpredicting the fundamental value and has a probability, of
predicting arbitrarily close to the fundamental value, being bounded away from zero
by a positive number. This result is very intuitive. If traders who overpredict with
a low probability (implying a small number of upward biases) are characterized as
being relatively risk averse (in a behavioral finance sense (e.g., Sitkin and Pablo
(1992)), for convergence to occur, it is sufficient that there are enough traders
with a sufficient degree of risk aversion. The importance of the presence of these
risk averse traders in the natural selection process leading to market efficiency,
is consistent with Barrow (1992) and Olsen (1998) who see decision attributes
that exhibit aversion to negative impacts (here caused by overpredicting) as having
evolutionary value in selecting the long run outcome.

Nevertheless, to obtain convergence to efficiency, competition among traders is
needed. That is, in a one-sided auction market where the market supply is perfectly
inelastic, competition means that each trader’s initial wealth must be sufficiently
small relative to the fixed market supply. However, it is remarkable that even when
there is a perfectly inelastic supply of the asset and even when the number of traders
increases over time, with each entering trader coming in with a finite amount of
wealth, the price can be eventually assured to remain in a small interval containing
the fundamental value.

A third purpose of this chapter is to quantify the extent to which a variation in
movement of the underlying asset’s liquidation value around the fundamental value

4Allen and Yannelis (2001) present a comprehensive discussions on various rational equilibrium
outcomes in various differential information economies.
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influences the extent of convergence of the asset price to the fundamental value.
This chapter, like Luo (2001), accounts for a random shock around the fundamental
value. This chapter shows that, the bigger is the variation in the random shock
about the fundamental value, the bigger is the variation of the asset price about
the fundamental value.

The evolutionary approach in this chapter stands in contrast with recent literature
which has analytically studied the impact of noise traders on the market price
within the context of rational models. For example, De Long et al. (1990) study
an overlapping generation model, where an informed trader and a noise trader both
maximize their expected utilities. They find that the noise trader can cause the
market price to deviate systematically away from its fundamental value.’ For the
convergence of the asset price to the fundamental value, rationality models (where
utility or profit maximization occurs) sometimes rely on learning and imitation
to make uninformed traders become more informed. For example, Grossman
(1978) allows investors to acquire information about past distributions of prices
which in turn produces more informed investors. This has also been explored in
the experimental laboratory market. Plott and Sunder (1982) show that constant
replication allows a learning by traders which resembles a rational expectations
equilibrium.

Related literature in applying an evolutionary approach to examining market
behavior are Blume and Easley (1992), Biais and Shadur (2000), and Luo (1995).
Blume and Easley (1992) study a dynamic model of an asset market with a finite
number of traders with different investment rules. They find that the market can
select for an irrational rule and the market may not be efficient. Biais and Shadur
(2000) apply Darwinian dynamics to the selection of the number of informed
traders and noise traders based on their payoffs. They find that noise traders can
persist in the long run. The results in the above two papers have illustrated that
the natural selection in the market alone is not sufficient to generate an efficient
market outcome. Luo (1995) further shows that natural selection, in conjunction
with competition in the market, is sufficient to lead the market to select the most
efficient firms (those producing at or near the minimum efficient scale) and as a
result the market price converges to the perfectly competitive price.

This chapter shows analytically that the market can reach an efficient market
outcome with the presence of irrational noise traders. The coexistence of market
efficiency and participants’ irrationality has also been illustrated in some recent
experimental literature as well. For example, Gode and Sunder (1993) design a
series of experiments to examine a double auction market where traders submit bids
and offers randomly. They find that allocation efficiency in the double auction can
be generated from individual participants’ irrationality. Bosch and Sunder (2000)
design a similar series of experiments to examine multimarket double auctions. They
reach the same conclusion.

STheir results are partly due to the difference in the utility functions of both types of traders, the
absence of wealth accumulation and the absence of wealth flows between the two types of traders.
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6.2 The Model

Consider a conventional dynamic asset market where a market maker supplies one
unit of a one-period risky asset each time period. Time is indexed by 7, where t =
1,2, .... The asset market opens each time period. Traders can only buy shares of
the asset from the market maker at the market clearing asset price. Denote the market
clearing price at time s as p,, where s = 1,2, .... No short selling is possible in this
framework. Hence, all traders are buyers. In the following sections, the terms traders
and buyers are used interchangeably. The risky asset is liquidated after the asset
market closes at the end of each time period.® Denote v; as the liquidation value of
the risky asset at the end of time period ¢. It is assumed that v, = z; exp(w,), where
z; represents the fundamental liquidation value of the asset at time 7 and determined
in the beginning of time ¢ and where w; is a random shock to the economy and
realized at the end of each time period z. It is assumed that the sequence {z;},> is
a random sequence taking values from an interval [z,z], where 0 < z < 7 < oo.
The sequence {w;},> is assumed to be a i.i.d random sequence taking values from
an interval [—w, w], where 0 < w < 00, 0 <w < oo and E (w;) = 0 for all ¢. It is
assumed that w;, wheret = 1,2, ..., is independent of z;, where s > 1.

6.2.1 Traders’ Prediction Errors

Traders enter the market sequentially over time. At the beginning of time period ¢,
wheret = 1,2, ..., the fundamental value z, is determined, but it is unknown to all
market participants. At the beginning of time period ¢ after the fundamental value
Z; is determined, only one trader (called trader ¢) is allowed to enter the market
and participate along with previously entered traders in the asset market. Trader
¢t has a prediction (or belief) about the fundamental liquidation value each time
period. Denote trader ¢’s prediction (or belief) about the fundamental liquidation
value at time s as b!, where s > ¢. Define trader ¢’s prediction error with respect

to the fundamental liquidation value at time s (s > ¢) as u. = bl — z,.7 It is
assumed that ', is independent of zy, where s’ > 1, and for all s > t,u’ €
[—u,u), 8 and furthermore, for trader t = 1,2,..., u' is independently and

This one-sided buyer market with one unit of an asset being supplied each time period is also used
in Blume and Easley (1992).

"This specification of beliefs or predictions is consistent with Grossman (1976, 1978), Figlewski
(1978), and Hellwig (1980).

8For negative predictions not to occur, the lower bound for predictions is constrained to zero. That
is b = max [z, + u.,0].



118 6 Evolution, Noise Traders, and Market Efficiency in a One-Sided Auction Market

The timing of events
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where superscript ¢ indicates buyer ¢. In other words, the variables 0}, 65, and 0} are
trader #’s probabilities of overpredicting, predicting correctly, and underpredicting
the fundamental value. It is assumed that trader ¢’s prediction error distribution
characteristics (6], 65) are randomly taken from the set ©® ={(6;,6,) € (0,1) x
(0,1) : 6, + 6, < 1} according to a given distribution function F(-) in the
beginning of this trader’s entry period and 6 = 1 — 6] — 605. Once trader ¢’s
vector (61,6}, 6}) is determined in the beginning of trader ¢’s entry period, it is
fixed thereafter in any subsequent time period. Figure 6.1 shows the timing of the
above events.

The closer to zero a prediction error is, the more accurate the information is
reflected in the prediction. This way of modeling the trader’s beliefs reflects the fact
that different traders may receive different signals about the fundamental value of
the asset; or that, even though they receive the same signal, they may have different
abilities to process the same information. From a behavioral finance perspective,
the prediction error can be interpreted as a judgmental bias in the decision-making
process. Based on the psychology literature, this judgmental bias tends to be
displayed in a systematic pattern through time (see Tversky and Khaneman (1974)
and Proposition 2 regarding inertia of Sitkin and Pablo (1992)). For this reason,
a trader’s probabilities of overpredicting, predicting correctly, and underpredicting
is modeled as being fixed through time. In contrast to some of the literature
(e.g., Grossman (1976, 1978), Figlewski (1978), and Hellwig (1980)), no precise
assumptions are made about the shape of the distribution of the prediction error or
the mean or variance of the prediction error.
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Trader #’s prediction or belief at time s, where s > 7, is generated from trader
t’s prediction error probability distribution characterized by the vector (6], 63, 63).
Trader ¢’s prediction or belief b’ at time s is this trader’s reservation price or bid,
indicating that trader ¢ is willing to buy the number of shares of the asset that his or
her wealth permits at a price no higher than b’ at time s. For this reason, the words
prediction and bid are used interchangeably.

Here, there is no strategic interaction or learning among traders taking place.
Traders merely act upon their predetermined probabilities of overpredicting, pre-
dicting correctly, and underpredicting the fundamental value. Using biological
language, one may think of the vector (0], 65, 65) as trader ¢’s phenotype. This
way of modeling traders’ behavior isolates the impact of the market selection on
traders’ wealth dynamics and highlights the role that market selection plays in
promoting long run market efficiency. Since each trader has a positive probability
to underpredict or overpredict the fundamental liquidation value, each trader has a
strictly positive probability of acting upon noise as if it were information.

For the simplicity, the following assumptions are used in this chapter.

It is assumed that {(0],0})};>1 is independently and identically distributed
according to the distribution function F(-) across traderst = 1,2,.. ..

It is also assumed that trader i’s prediction error at time s, ué, wheres >1 > 1,
is independent of trader j’s prediction error at time s, ui,, where s’ > j > 1 and
J#iL

Furthermore, it is assumed that the random shock at times, ws, where s > 1, is
independent of trader t’s prediction error at time s', u.,, where s' > t > 1.

Finally, define all the possible states of the world at time period ¢, where ¢ > 1,
as Q; = [—u,u]' x[z,Z] X [~w, ®] with a typical element § = (u!,u?,...,ul, 2, ;).

[e.e]
& is the state of the world at time z. Denote 2 = [] €2,. Let J denote the product

t=1

o-field on © and let Pr(-) denote the product probability. The probability space is
t

(2,3,Pr(). Let Q" = [] Q; fort > 1. Then the typical element in the set ' is
(513523"'751‘)- i=1

6.2.2 Traders’ Wealth Dynamics in the Market Process

Each trader is assumed to have initial endowment of wealth V[ in his or her
entry time period. Each trader’s wealth at the end of a time period is defined as
accumulated profits up to the end of that time period. Denote trader ¢’s wealth at

the end of time period s (where s > ¢t > 1) as V] and V| = Vo2 If trader ¢’s

9Alternatively, one can assume different initial endowments of wealth for all traders. However,
the same results with respect to convergence of the asset price will hold, provided that the initial
endowment of wealth for all entering traders is bounded from above.
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This demand function implies that if the asset price is below trader ¢’s prediction,
this trader is willing to purchase the number of shares that this trader’s wealth
permits; if the asset price is above trader #’s prediction, this trader is not willing
to purchase any share of the asset; if the asset price is equal to trader #’s prediction,
this trader is indifferent in purchasing any number of share lying between O and

Zil}. Figure 6.2 plots a trader’s demand curve.

"A trader is said to be active at one time period if the trader has actually purchased
any shares at that time period. Therefore, if ¢/ > 0 then trader ¢ is active in the time
period s. If ¢/ = 0 then trader ¢ is not active at time period s. A trader’s profit at the
end of time period s is (vs — ps)q’. Hence, at the end of time period s, the wealth of
trader ¢ is"! V! = V' | + (v; — py)g.."?

N s

1For simplicity it is assumed that each trader potentially invests all of his or her wealth in each
period. The results of this chapter would still hold if each trader spends only a fraction of his or
her total wealth on trading activity. A smaller fraction could reflect more risk aversion on the part
of the trader.

!t is apparent that, given the demand function, any trader’s wealth can never be negative. This is
due to the fact that each trader begins with a positive level of initial wealth and short sales are not
allowed.

12A related paper which examines the relationship between accuracy of agents’ predictions, wealth
accumulation and the convergence of prices to the true value, is Sandroni (2000).
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6.2.3 The Asset Market Equilibrium

The asset market mechanism is organized as a one-sided auction market structure.
The asset price is merely a Walrasian market clearing price. The asset market is
assumed to have no traders at time 0. After time O traders enter sequentially. Since

the traders’ aggregate demand for the asset at time s is Z (q ( ps)) and since the
market supply of the asset in each tlme period is 1 unit, the market clearing price at
time s is the solution to the equation Z (qs ( p;)) = 1.

Clearly, the solution to the above equatlon is unique due to the shape of the
traders’ demand functions and the vertical supply function of the asset from the
market maker.

All transactions are executed at the market clearing price. Traders with reserva-
tion bids or predictions above p; will exhaust their wealth at time s. If the number
of shares of the asset demanded at the market clearing price exceeds the total supply
of the asset; and if there are traders whose reservation bids or predictions coincide
with the market clearing price, the market maker allocates the supply of the asset
among those traders proportionately to their wealth at the market clearing price.'?
Therefore, all traders with reservation bids equal to p; at time s may not exhaust all
of their wealth.

As can be seen, the asset price pj is a function of the realizations of zj, z, .. ., Zs;
and w1, wy, ..., w,; and u}, ub, ... ul, forall# < s;and Vy. Hence, over time, the
asset price follows a very complicated stochastic process.

In this one-sided auction market, the market serves as a selection process that
evaluates all the traders with different prediction error distribution characteristics,
rewarding traders who place good bids with gains (more wealth) and punishing
traders who place bad bids with losses (less wealth). The more wealth a trader has,
the more influence this trader has over the asset price. All traders impact the asset
price through their predictions and the wealth they possess.

This chapter now uses the above evolutionary model of an asset market, to
examine the relationship between the asset price and the fundamental value. In this
exploration, one assumption is made about the distribution function F'(-) from which
(0}.05.,0%) for all ¢ are drawn. This assumption says that in each time period there
is a positive probability that an entering trader has an arbitrarily low probability of
overpredicting the fundamental value and has a probability, of predicting arbitrarily
close to the fundamental value, being bounded away from zero by a positive number.
Since this assumption characterizes the distribution of traders’ thetas ((6, 65, 6%)

3That is, for trader ¢ where b = p;, ¢! = = _vf’ {1 - > 4 :| where A, = {t' | b > p,}
1 €Ay
€My
and M, = {t’ | b’ = p,}. It would not alter the results if any alternative method of allocating

shares of the asset is used in this situation.
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for all ¢), this assumption is referred to as the 6—Assumption in the remainder of
the chapter. More precisely, # —Assumption: For any given small positive 1 and 7/,

f dF(91, 92) > 0.
0<0;<n,

0>n'

This is not a very demanding assumption. It merely says that with a positive
probability (this probability could be extremely small), in each time period, the
entering trader overpredicts less often (as a result, making losses less often) than
any of previously entered traders. Note that the #—Assumption does not mean
that all entering traders must overpredict less often than any of previously entered
traders. The key phrase in this assumption is “there is a positive probability”
(this probability could be very small) that the entering trader in each time period
overpredicts less often than any of previously entered traders.'*

Since in this one-sided auction, losses are possibly realized when overbidding
occurs, traders who overpredict with a sufficiently small probability can be viewed
as avoiding risk of making losses due to placing a high weight on negative outcomes;
hence, in the behavioral sense, such traders can be referred to as relatively risk averse
(see Schneider and Lopes (1986) and Sitkin and Pablo (1992)). For this reason, one
may interpret this assumption as an allowance for the entry of a sufficient number
of buyers with a sufficient degree of risk aversion, who have a positive probability
(however small) of bidding arbitrarily close to the fundamental value.

6.3 Convergence of the Asset Price to the Fundamental Value

This section shows analytically that with probability 1, if each trader’s initial wealth
is sufficiently small relative to the market asset supply and if the variation in the
random shock is sufficiently small, then as time gets large, the proportion of time,
that the asset price lying in an arbitrarily small interval, containing the fundamental
value, converges to 1. This is shown in Theorem 3.

Before Theorem 3 is proven, two theorems are needed. Theorem 1 shows that
the proportion of time, that the asset price is below the fundamental value by at
least a small positive number €, converges to zero with probability 1. Theorem 2
shows that if each trader’s initial wealth is sufficiently small relative to the market
asset supply and if the variation in the random shock to the economy is sufficiently
small, then as time gets sufficiently large, the proportion of time, that the asset price
is above the fundamental value by at least a small positive number €, converges to
zero with probability 1. Theorem 3 follows directly from Theorem 1 and Theorem 2.
The result in Theorem 3 further suggests that in the limit, each individual trader’s

14In fact, there can be a positive probability of traders with other types of predictive behavior. For
example, such trader types could enter with prediction behavior that imitates past successful traders
(e.g., Lettau (1997)). Nevertheless, as long as the 8 —Assumption holds, the presence of these types
of traders would not disrupt convergence.
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demand must be infinitesimally small relative to the market supply. This is formally
established in Corollary 1.

For the establishment of the result in Theorem 1, the 6 —Assumption plays a
critical role. It allows enough “better buyers” to enter the market over time and
eventually those “better buyers” prevent the asset price from staying below the
fundamental value very often. The “better buyers” here refer to the buyers who enter
the market with a sufficiently low probability of overpredicting the fundamental
value and with some positive probability (which may be very small) of predicting
arbitrarily close to the fundamental value.

Theorem 1.

Pr (for any given € > 0, there exists a time period Ty,

such that for T > Ty, MT’Q’_G} < 6) =1.

Proof. See Appendix A for the proof. O

After obtaining the result in Theorem 1, Theorem 2 shows that with probability
1 the following occurs: if each trader’s initial wealth is sufficiently small relative to
the market asset supply and if the variation in the random shock to the economy is
sufficiently small, then as time gets sufficiently large, the proportion of time, that
the asset price is above the fundamental value, converges to zero.

The intuition of the result in Theorem 2 is best explained as follows. Start by
supposing that there is no random shock to the risky asset each time period. Then
the liquidation value is the same as the fundamental value. In this case, buyers make
a gain if the asset price is below the fundamental value and buyers make a loss
if the asset price is above the fundamental price. Therefore, the average (across
time) aggregate wealth of all buyers is bounded from above by term (1), the average
maximum gains across the number of time periods when the asset price is below the
fundamental value, minus term (2), the average minimum loss across the number
of time periods when the asset price is above the fundamental value, plus term (3),
the initial wealth V. Now suppose that there is a random shock each time period.
Then the liquidation value differs from the fundamental value. If the random shock
is positive (negative) at time #, (/ > 1) then the liquidation value is above the
fundamental value at time ¢ and furthermore all buyers make an additional gain
(loss) from the difference between the liquidation value and the fundamental value
v; — z; at time ¢ as a result of the presence of the random shock. Therefore, the
average (across time) aggregate wealth of all buyers is bounded from above by the
average aggregate gains of all buyers coming from the positive random shock in
addition to the above three terms describing the situation without the random shock.

Furthermore, the aggregate wealth of all buyers is always positive. Hence, we
can rearrange the above to show that the proportion of time that the asset price is
above the fundamental value is bounded from above by the summation of three
terms: the first term, which is a positive constant multiplied by the proportion of
time that the asset price is below the fundamental value; the second term, which is
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a product of the variation in the random shock (given that the shock is positive) and
the proportion of time that the random shock is positive; and a third term, which
is Vp. Theorem 1 says that, with probability one, the proportion of time, that the
asset price is below the fundamental value, goes to zero as time gets large. As
well, if the variation in the random shock is sufficiently small and the initial wealth
is sufficiently small, then the proportion of time that the asset price is above the
fundamental value can be made arbitrarily small, with probability one.'> Hence, the
result of Theorem 2 holds.

Theorem 2. With probability 1, the following occurs: for any given € > 0, there
exists a positive k and a positive Vo such that, if E ((exp(w;) — 1)|w, > 0) < k
and if Vo <V, there exists a time period T,, such that for all T > T,

#{t <T:p >z +¢€}
T

< €.

Proof. See Appendix A for the proof. O

Theorem 3 brings together the results of the above two theorems and shows that
for any e-interval containing z;, [z, —€, 7, + €], for a sufficiently small endowment of
traders’ initial wealth and for a sufficiently small amount of variation in the random
shock, with probability one, the proportion of times that the asset price falls within
this e-interval containing the fundamental value z;, [z; — €, z; + €], converges to one
as time gets large.

Theorem 3. With probability 1, the following occurs: for any given € > 0, there
exists a positive k and a positive V such that, if E ((exp(w,) — 1)|w; > 0) < k
and if Vp < VO, there exists a time period T*, such that for all T > T*,

#U<T:p €lzy—e.z +e€|}

> 1—2e.
T
Proof. See Appendix A for the proof. |
Remark 1. The proof of Theorem 1 makes use of a set of buyers {¢,%, ..., t,...}

with their prediction errors distribution satisfying the following conditions 6095"

1n(

COHdlthIlS are satisfied if 9 is allowed to be arbitrarily close to zero provided that
92”‘ > ¢ (the 6— Assumptlon). (Of course, the constant number ¢ does not have to
be very close to 1, instead, it can be a extremely small positive number.) This set of
buyers play a determining role in driving the convergence result. The model deals
with a one-sided, rather than a two-sided auction. With a relatively small variation in
the random shock, buyers do not make any loss by underpredicting the fundamental
value. This is due to buyers being inactive if the asset price is above the fundamental

) +6f ln( M) > 0 and 0y > c for some positive €y and ¢ < 1. These

5The variation in random shock here refers to E ((exp(w;) — 1)| @, > 0).
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value. Buyers could make losses by overpredicting the fundamental value if the asset
price is above the fundamental value. From a behavioral finance perspective, one
can interpret traders with low probability of overpredicting the fundamental value
(implying a small number of upward biases) as relatively risk averse. For this reason,
the 6—Assumption merely allows for the entry of a sufficient number of buyers with
a sufficient degree of risk aversion and with a positive probability (however small)
of bidding arbitrarily close to the fundamental value. The presence of this group of
buyers provides the driving force for the long run convergence.

Remark 2. For the results to be achieved it is important that the competition among
the buyers gets stronger as time increases. The model helps to achieve this by letting
buyers with different characteristics of their prediction error distributions enter the
market sequentially over time. As a result, the number of buyers increases to infinity
as time goes to infinity.

Another ingredient of perfectly competitive markets is that each individual buyer
is sufficiently small relative to the market or that each individual buyer’s demand
is initially sufficiently small relative to the market supply. In this model, where
the initial wealth V|, characterizes the size of the entering buyer relative to the
market, a smaller Vj represents less market power of entering traders and greater
competition in the market. Technically, if the initial wealth 1} is too large then in
each time period the entering trader will cause the asset price to deviate away from
its fundamental value with some positive probability.

Remark 3. Theorem 3 states that for a given e-distance, for a sufficiently small
and a sufficiently small variation in the random shock, with probability one, the
proportion of time, that the deviation between the asset price and the fundamental
value lies within this e-distance, converges to one as time gets large. An empirical
implication is, that for a given V), with a smaller variation in the random shock,
there exists a corresponding smaller €;-distance, for which, with probability one, the
proportion of time, that the deviation between the asset price and the fundamental
value lies within this smaller €;-distance, converges to one as time gets large. This
is consistent with the price of a more risky asset fluctuating in a wider range than
the price of a less risky asset and the safe asset earning the certain return.

Nevertheless, it is remarkable that even though the number of traders increases
over time, with each trader entering the market with a finite amount of wealth
Vo and with a perfectly inelastic supply of the asset, the price can eventually be
assured never to explode outside a certain interval. Furthermore, for a given level
of variation in random shock, the smaller is the initial Vj of an entering trader, the
smaller is the interval in which the asset price lies.

The result of Theorem 3 indicates that in the limit no individual buyer can influ-
ence the asset price. Otherwise, the long-run equilibrium would be destroyed. This
further implies that the demand from each individual buyer must be infinitesimally
small relative to the asset market supply in the limit. In other words, each individual
buyer’s wealth must be infinitesimally small relative to the aggregate wealth of all
the buyers in the limit. The following corollary formally presents the results.
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Corollary 1. With probability 1, the following occurs: for any given € > 0, there
exists a positive k and a positive Vo such that, if E ((exp(w,) — 1)|w; > 0) < k
and if Vy < 70, there exists a time period T' such that for all T > T’, the ratio
between buyer t’s (t = 1,2,...) wealth at the end of time period T (V}.) and the

T
aggregate wealth of all the buyers at the end of time period T (Z VT’) is less than
=1

€ (ie. TV% <é).
> Vi
=1

Proof. See Appendix A for the proof. |

6.4 Conclusions

This chapter uses an evolutionary idea of natural selection to examine the conver-
gence of the asset price to its fundamental value in a one-sided auction market
where traders are modeled as unsophisticated. Traders cannot learn or strategically
use any information from the market or other participants and they merely act
upon their preprogramed behavior rules, which reflect their inherent noisiness.
Specifically, in this dynamic asset market, the market supplies one unit of a one
period risky asset each time period. Traders enter the market sequentially over
time. The liquidation value of the asset is the product of the fundamental value
of the asset and the exponential of a random shock. The fundamental value of
the asset is determined in the beginning of each time period, but unknown to any
market participants. The random shock is realized at the end of each time period.
Each trader’s behavior is exogenously preprogrammed instead of endogenously
derived from some optimization problem. In other words, each trader’s behavior is
characterized by his or her predetermined probabilities of overpredicting, predicting
correctly, and underpredicting the fundamental liquidation value. Each trader’s
prediction in each time period is generated from a probability distribution described
by his or her predetermined probabilities of overprediction, exact prediction and
underprediction with respect to the fundamental liquidation value.

The asset market is a one-sided auction market. The market serves as a selection
process which evaluates all the traders with different prediction error distributions,
rewarding the traders who place good bids and taking money away from the traders
who place bad bids. Over time this process gradually places more weight on the
accurate information into the asset price and places less weight on noise into the
asset price. Eventually the asset price only reflects the accurate information and
eliminates noise. Informational efficiency occurs in the long run.

More precisely, as long as at any point in time there is a positive probability that
the entering trader has an arbitrarily low probability of overpredicting the funda-
mental value and has a probability, of predicting arbitrarily close to the fundamental
value, being bounded away from zero by a positive number, the following is true.
With probability 1, if each trader’s initial wealth is sufficiently small relative to
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the market supply and if the variation of the random shock is sufficiently small,
then as time gets sufficiently large, the proportion of time, that the asset price
is arbitrarily close to the fundamental value, converges to 1. In the limit, each
individual’s demand for the risky asset is infinitesimally small relative to the market
supply. Consequently, no individual can influence the asset price.

In this one-sided auction market, losses are possibly incurred when overbidding
occurs. From a behavioral finance perspective, one can interpret traders with low
probability of overpredicting the fundamental value (implying a small number of
upward biases) as relatively risk averse. For this reason, one may also interpret the
6—Assumption as an allowance for the entry of a sufficient number of buyers with
a sufficient degree of risk aversion and with a positive probability (however small)
of bidding arbitrarily close to the fundamental value. The presence of this group of
buyers provides the driving force for the long run convergence.

Finally, the variation in the random shock about the fundamental value influences
the extent to which efficiency occurs. The bigger is the variation in the random shock
about the fundamental value, the bigger are the deviations of the asset price from
the fundamental value.

Appendix C provides some numerical illustrations to help better understand the
results.

Appendix A

This appendix consists of proofs for the results in Theorem 1, 2, 3, and Corollary 1.
The proof in Theorem 1 makes use of the results in Lemma 1, Lemma 3, and
Proposition 1 in Appendix B.

The Proof of Theorem 1: Define buyer t’s pseudo-price at time s, denoted by p!,

s
where s > ¢, ¢t > 1, as the solution to the equation Z q£ (pf) = 1. That is,
i=1,i#t

buyer #’s pseudo-price at time s, p’, would be the market clearing price at time s if
buyer ¢ were not in the market. In other words, it would be the market clearing price
which would occur without the demand from buyer 7.

Also define an indicator variable at time s for buyer ¢, denoted as lb’,, where
s > t,t > 1, to describe the position of buyer t’s pseudo price (pﬁ,) relative to
the fundamental value z, at time s. Specifically, for any given € > 0,

po_ 1Pl <zi—e
§ 0 otherwise.

Notice that if at any time s, the pseudo-price of any buyer is above z; — € then
the asset price is above z; — €. Use an indicator variable / 5= 0 to describe whether
the pseudo-price of any buyer is above z; — €; otherwise /; = 1. Specifically, for
s>t t>1,
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The following shows that,

. s=1
Pr| 1 =0]=1. 6.1
T 1m T ( )

Define [ to indicate whether the asset price is below z; — € at time s, where s > 1.
That is,

« _Jlifpy<zi—e€

S 7| 0 otherwise.

If [7 = 1 then the asset price at time s is below z; — €. Taking out any buyer’s
demand for the asset from the market demand function at time s means that the
pseudo-price of that buyer is at least below z; — €. That is, /; = 1 implies that
II'=1forallt =1,2,...,5 orl; = 1. This further implies that,

T T
L X
S? 5“?. (6.2)

If (6.1) is true, then (6.1) and (6.2) imply that:

Pr| lim

Therefore, Theorem 1 follows.

Now, the following proves that (6.1) is true. Before the proof of (6.1), some
definitions of indicator variables are required. At time s = 1,2, ..., [; is defined to
indicate whether the asset price is below z; — %6 .

iy if py <z — %€
710 otherwise.

Define another random variable g’ to describe whether buyer ¢’s prediction at time

s is between z; — %6 and z; — %e. Specifically, define gg, wheres >t andt > 1, as

, 1 if —2e<u! <—1Le
— 3 s 3
& =

0 otherwise.
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Now, (6.1) is shown by way of contradiction. Suppose not, then

Pr | there exist a €y > 0 and a subsequence ny,na,...,nr...,
. 6.3)
> s
such thatforall 7 = 1,2, ..., STT >¢ | >0.

Lemma 1 in Appendix B implies that for this €y and €; and for some positive
c<l1,

Pr (there exists an infinite number of buyers in the set O (¢g, €,¢)) =1, (6.4)

where ®(eg, €,¢) = {buyer? : €0} ln(#) + 6] In(
3
o) = 1}.
Now, consider buyer # in the set ®(eo, €, ¢). Since buyer ¢’s pseudo-price at time
i, p!, is a function of z1,22,...,2; and @, ®s, ..., w;—1; and uj,uj.H,...,u{, for
t # j <i;and since buyer ¢’s prediction error u§ is independent of z;, 22, . .., z;; and

)>0,05>c,0] +0) +

z
Ztu

w1, @, ..., wj—1; and uj-,uj.ﬂ, ..ul for j <iandj # 1; it follows that buyer
t’s prediction error is independent of his or her past and current pseudo-prices, that
is, gl is independent of I, for all i < s. Therefore, using Proposition 1 in Appendix
B and using (6.4), it follows that,

nr nr

> (Lgl)  E@) Xl
lim Pr =t > *=L_ 11 € O(ep,€e.0) | =1. (6.5)
T—o0 nr—t+1 nr—t—+1

Using Bayes rule, (6.4) and (6.5) imply that

nr nr
) B L

1 forall t € O(eg,€,¢) | = 1. (6.6)

lim Pr >
T—o0 nr—t—+1 nr—t

T~

2y
s=1

Since > ¢, for all T , implies that, for sufficiently large 7" and for r €

nr

>l _
B(€p, €, ), n;:—tt+l > ¢ (due to /! > [); and since E(gl) = 05, applying Bayes
rule to (6.3) and (6.6), it follows that,
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5 (ig!)

lim Pr| 25— > 6!, forallr € O(eg, e, ¢)| H(eo) | =1, (6.7)
T—00 nr—t+ 1

where H(€p) denotes the event that there exist a ¢ > 0 and a subsequence

T~

2 ls
ni,ny,....nr,...suchthat *=— > ¢ forall T = 1,2,...
Since buyer t € O(ep, €, ¢), it follows that ] > c. This together with (6.7) also
implies that there exists a further subsequence n',n),...,n.,... of the sequence

niy,ny,...,nr,...,such that (see (Durrett, 1991, P. 40, (6.2) THEOREM))

nr
Y (Lg)
Pr| lim inf | == > ¢oc, forallt € O(eg,e,¢)| H(ep) | = 1. (6.8)
T—o00 nyp—t+1

In addition, using Lemma 3 in Appendix B, it follows that for this €y, €; and for
some positive number ¢ < 1,

nr
> (ligil)
Pr| lim |&=— | =0, forallt € B(ep,€,¢) | = 1. (6.9)
T—oo | nyr —t +1

Again, applying Bayes rule to (6.3) and (6.9), it follows that for this €y and for
some positive number ¢ < 1,

30 (I'g'L,)

Pr| lim | &=—— | =0, forallz € O(ep. e, ¢)| H(eo) | = 1. (6.10)
T—00 nr —t + 1

The intuition behind (6.10) is that if /! g’/; = 1, then one can show that buyer
¢t makes a positive expected profit at time s. If (6.10) is not true, then one can construct a
contradiction by showing that with positive probability that the wealth of buyer  who is in the
set O (€, €, c) would grow exponentially while the wealth, coming from the initial
endowment of buyers and coming from the market maker, is injected into the market
arithmetically.
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Applying Bayes rule to (6.10) and (6.8), it follows that,

P li f— > , forallt € ®O(ep, €, ,
T TLII;OIH P €oc, fora (€0, €,0)
nr
Y (ligils)
lim | &= =0, forallt € O(eg,€,¢) ¢ | H(ep) | = 1. (6.11)

T—oo| np—t+1

Since for buyer t € O(€g, €,¢),t < n’T

S (gl S (Iglh) S (Igh(1— 1)
s=t s=t s=t
”T—H'l ’T—t+1+ np—t+1

and using (6.11), it follows that,

nr
S (gl (1—1,))
Pr Tli_)n;Oinf Y=En——t+1) > €oc, forallt € O(eg,€,c)| H(ep) | = 1.
(6.12)

Now, the remaining part of the proof consists of two steps. Step 1 shows that
(using (6.12)) with positive probability, (1 —/,) Y. (g%{!) is unbounded from
t€O(€p,€,¢)
t<s
above as s — 00. As a result, step 2 shows that with a positive probability the

expected total profits of the number of buyers equal to Y (gl/!) tends to

t€0(€p,€,0)
1<s

infinity as s — oo. This contradicts the fact that the total p_roﬁts earned by all
buyers in any one time period must be bounded from above. Therefore, (6.1) must
be true.

Step 1: One observation that can be drawn from (6.12) is that (1 — I;) > (gill)

must be unbounded as s — oo. That is, ! e(")t(iosf )

Pr (for any given M > 0, there exists a s’ such that, for some s > s’,

=i Y (géli)zM‘(H(eo),Dz))zl, (6.13)

1€O(€p.€.c)
1<s
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where D, denotes the event that lim inf|{ =—F———
T—00 (nT—f-H)
O (e, €, ¢). Otherwise, there would be a contradiction. The contradiction can be

seen from the following analysis. Suppose that (6.13) is not true, then

I‘I/T
(S;t(lfgm—m)

) > ¢oc, for all t €

Pr (there exists a positive number, say B > 0, such that,

(1=1) Z (gil!) < B, foralls

1E€O(€p.€.)
1<s

(H(eo),Dz)) >0. (6.14)

Using (6.12) and (6.14), it follows that,

X

,and

3B > 0, s.t. forall s, (1 —1) Z (gl <B

1E€O(€p.€.)
I<s

"
for all sufficiently large 7, Z (IL(1=1))g) > eoc (np —1 + 1),

s=t

forall 1 € O(ep, €,¢) and t < n’r ¢ |H(e) | > 0. (6.15)

Since O (e, €, ¢) g)ntains an infinite number of buyers, select the first N buyers,
ti,t, ..., ty, where N > % from the set ©(eg, €,¢). If (1 —1,) Y. (gill) <

1€O(eg,€,c)
t<s
B, for all s then for n%, > t3,
ny
Sla- > ()] = B (6.16)
s=1 k=12...N,
Whereflvgk and'g'gk fork =1,2,...,andfors = 1,2, ..., are defined as

ol —
s and &s =

~ Ik ifs >t
if s <.

i _ oifs >t
0 ifs <. 0

nr
If 3 (Ik(1—1)gk) > €oc (nfy — tr + 1), for all sufficiently large 7" and for
S=l)
all fx < n’, then
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’

N n
ZXT: (I%(1 = 15)g%) > €oc

(1 + 1)

o

w-
Il

1

(np —ty +1). (6.17)

=

> €pC

S

/
T

Since HXT: ((l—ls) 3 (Nsl”‘) = g: Z (I%(1—1I5)g"), and using
s=1 k=1s=t,

k=12,..N,
(6.4), (6.15), (6.16), and (6.17), it follows that
(60))

— ) Bn,
Pr{ N < lim =
T—oo \ €oc (ny — ty + 1) coc

This further implies that
— B
Pr (N < —) > 0.
€oC

This contradicts the fact that N > == Therefore, (6.13) must be true.
Now, (6.13) implies that

Pr | for any given M > 0, there exists a s’ such that, for some s > s,

-1 > (EH=M]|>o. (6.18)
t€O(€p,€,¢)
1<s
The intuition for Step 1 is as follows. Consider the infinite number of buyers in
the set © (eo, €, ¢) . For each one of the buyers in the set, in order for the proportion
of time that /[(1 — I;)g! = 1 to be bounded from below, then the total number

of times, that the joint event of /! = 1 for every buyer ¢ and g/ = 1 for every
buyer ¢ whenever /; = 0, must go to infinity as s — oo, which in turn implies that
(I—=1) > (gi])is unbounded from above as s — oo.
€O (eq,€, c)
t<s

Step 2: However, the following shows that if (1 — ;) >~ (g!l!) is unbounded

t€O(€p,€,0)
I<s

from above as s — o0, then there exists a time period at which the expected total
profits of a finite number of buyers in the set ® (e, €, ¢) exceeds the total profits that
could be possibly made by all the buyers in any one time period. This is illustrated
in the following analysis. Since both the liquidation value and the asset price are
bounded and since the supply of the asset each time period is 1 unit, the maximum
profits that all the buyers could possibly make in any one time period is bounded
from above by zZexp(w).
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3(Zexp(w))

Equation (6.18) implies that for M = o

3 (zexp(w))

Pr| 3s’s.t. forsomes > s', (1 —1) Z (gl > 0.
t€0(ep,€,c) Eg
I<s
(6.19)

Since @(60,_6 , ¢) contains an infinite number of buyers, select M buyers, t{ , té, o
t’ﬁ, where M > 2_135 from the set ®(ey, €, ¢). Hence, (6.4) and (6.19) imply that

€0

_ 3(z w
Pr (Eis’ such that, for some s > §’,3 {t{ By t’ﬁ} , where M > (ZLP(W)),
€q

M

.. (gﬁfls’f — 1, =1, gV = 1) when 1— 1, = 1) > 0. (6.20)

’ ’

Since at time period s, if gi" =1, l;‘" = land (1 — ;) = 1, then buyer #; bids
in the interval [z, — %6, 25 — %6] while the pseudo price of buyer ; is below z; — €
and the asset price is in the region [z; — %6, s — %6]. This implies that buyer #; must
be active and purchases at least a minimum quantity of shares of the asset (¢) which

’

. . . !
occurs in the extreme case where buyer ¢, ’s pseudo-price at time s, pf = z, — €

and the asset price at time s is p; = z; — 5€. (It can be shown thatg = 1 — ;_21 J)
= -3

Therefore, if fork = 1,2,.... M, g;" =1, l;" =1land (1 —1I) =1, then

7
I

M«

q¢ = Mgq (6.21)
k=1
and
> ! ! (6.22)
s — Ps = Zs — g — T€ | = —C€. .
Zs— P Z Z 3 3

Now consider the total expected profits of M buyers with (gi‘ IV =1, gl =1,
ot

o gL = 1) when 1 —[; = 1. Denote Dj as a set of buyers {t],1}, .. .,t/ﬁ},

/ /

where M > 3(2%5@), such that (gé‘lstl =1, g§21§2 =1,..., géﬁl;ﬁ = 1) when
1 —1I; = 1. Using (6.21),
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El(vs— PS)ZCIS 2 E (vs — ps)

keDs3

N

>

qE( — Ds)

=

6_6_1. (6.23)

W | =

The second to last inequality is due to Ev; > Ezg, (using v; = z; exp (wy) and

using Jensen’s inequality). The last inequality is due to (6.22).
Using the definition of M and (6.23), it follows that

M
E|l(=p) Y qf | > zexp@). (6.24)

keDs

However, the maximum amount of total profits that could be earned by all the
buyers in the market in any one time period is bounded from above by Zexp(®).
This contradicts (6.24). Therefore, (6.1) must be true. O

The Proof of Theorem 2: Consider the aggregate wealth of all the buyers at the end
of time period 7, which equals the aggregate gains that all the buyers have made
up to time period 7" minus the aggregate losses that all the buyers have made up to
time period 7 plus the aggregate initial wealth of all the buyers in the asset market
at time 7'. That is,

X:: }= ((vk—pk) (qu))+élfo

=1

k
(vk —pe) + Z Vo (since Zq,’{ = 1)
=1

Il
™M= 1M~ 1M~

(Vk — ) + Z(Zk — i) + Z Vo. (6.25)

To describe the position of p, relative to z;, define three indicator random variables

@t,/l\t anda,, fort = 1,2,..., as follows: for any given € > 0,
%: 1 llefptfzt-’_e T: 1 lfpt<zl‘
! 0 otherwise, ! 0 otherwise,
S 1 ifp, >z +¢€
"7 10 otherwise.
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Notice that,l\, +a, + m, = 1 for any ¢. Equation (6.25) can be rewritten as the
following:

T T T T
YVE Y e—z) YUz —p) D @z — pr))
=1 — k=1 + k=1 + k=1
T T T T
T o~
kZ (Mx (zx — pi))
=1
V. 6.26
+ T + W ( )
Since when mix = 1, zx <px < zx + €, it follows that
T
> (@ — pr)) < 0. (6.27)
k=1

Since when [/ = 1, px < zx and furthermore, zx — px < z. Therefore,

T T
> (k(z = pe) <2 Ik (6.28)
k=1 k=1

Since when @y = 1, pi > z; + € and furthermore, zx — p; < —e. Therefore,

T

T
Y @z — pr) < —€ Y a. (6.29)
k=1

k=1

Using (6.27), (6.28), and (6.29), (6.26) becomes

T T T T

> Vi >k > ax > (v — zk)

R = B = = + V. (6.30)
T — T T T

Since the asset price is strictly above zero and since all the buyers have initial
T
endowments of wealth, it follows that for any 7, )V} > 0. This together with

=1
(6.30) implies that

T T T
> dk ol 2k — ) iy
k=1 0

—. 6.31
T + eT + € ( )
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T T
> (vi—zx) > (zx (exp(wr)—1)) 1if >0
Since == = = , and denoting I, -9 = 1L Ok

follows that

0 otherwise’

T

T
k2=:1(Vk —2) k2=:1 (Z(eXP(wk) - 1)Iwk>0) #lk - o > 0}

<
T = #k i > 0} T

(6.32)

Since {wx }x>1 is ai.i.d random sequence, using the Strong Law of Large Numbers,
it follows that with probability 1, as T — oo,

T
kgl (z(exp(wi) — 1)1y >0) ik oy > 0}

YT T — ZE ((exp(wr) — D] wr > 0) Pr(wy > 0).

(6.33)

Since 0 < Pr(w; > 0) < 1, (6.32) and (6.33) imply that with probability 1 the following

occurs: for any given € > 0, there exists a positive k such that for any i.i.d random
shock sequence {wy }x>1 with E ((exp(wx) — 1)| wx > 0) <k,

T
> (vk — k) 2
. k=1 T
0~ <
Tll)moo T <zk < 3 (6.34)
The result in Theorem 1 implies that,
Z /l\k &2
. k=1
Pr| 1 <—1|=1 6.35
r TLH;O T 3z ( )

Set Vo < é This together with (6.31), (6.34) and (6.35) implies that with
probability 1 the following occurs: for any given € > 0, there exist a positive k
and a positive V such that, if £ ((exp(w;) — 1)|w; > 0) < k andif V) < V, there

T o~

> ak
exists a time period 75, such that for all 7 > T, ":} < €. Therefore, the result in

Theorem 2 follows. O
The Proof of Theorem 3: Notice that forany 7' > 1,

#{tST:p[<Z[—€}+#{[§T:p[>Zt+€}
T T

#{t <T:p €z —€,2z +e€|}
+ T =

1.
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Therefore, using the results in Theorem 1 and Theorem 2 and letting 7* =
max{Ti, T»}, Theorem 3 follows from the above equation. O

The Proof of Corollary 1: Consider buyer t’s average wealth across time at the end
of time period 7.

T
Vo+ X (v — pi)gp)

Vi k=t

T _ 6.36

T T (6.36)
Define two indicator random variablesTt anda;, fort = 1,2,..., as follows:

7‘; _ 1 if Dt <.Z[ and ’E[t _ 1 if Dt z.Z[
0 otherwise, 0 otherwise.

Notice thatTf +a, = 1 for any ¢. Using the above definitions, (6.36) becomes

T T

v X (Boe—pogy) X @ - pog)

Ir _ k=t 4 k=t + =2, (6.37)
T T T T

Since, whenTk = l attime k, vy — pr = zxexp(wg) — pr < zexp(w), this
together with 0 < g; < 1 implies that

T T
> (Tetk = pogt) <zexp@) Y. (6.38)
k=t k=t

Since, whena@, = 1, vy — pr = zrexp(wy) — pr < zexp(wr) — zx < zZ(exp
(w) — 1), this together with 0 < ¢; < 1 implies that

T T
> @ (v — pgp) < Zexp@) —1) Y . (6.39)

k=t k=t

Using (6.38) and (6.39), (6.37) becomes

T T~
! > Lk > ax

?T < Zexp(@) =— + Z(exp(@) — 1) 0

+ T (6.40)

The result in Theorem 1 implies that, for any given € > 0,

T
zexp(@) Y- Ik
Pr| lim k=t

€
< — =
Jim. ~ o=t (6.41)
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The result in Theorem 2 implies that

Pr| Ve >0, 3k > 0and V, > 0 such that, if E((exp(w;) — )|, > 0) <k

T~
> Gk

k=t

<nl=1

and if Vo < Vo, 3Ty, s.t. for T > T;, Z(exp(@) — 1) 3

(6.42)

Notice that Tlim ? < %VO. This together with (6.40), (6.41), and (6.42) implies
—00
that

r(Ve > 0, 3k > 0 and IV, > 0 such that, i exp(w;) — 1)|w, > 0) < k
P(v 0, 3k > 0 and 3V > 0 such that, it E( (exp(w,) — 1)@ > 0) <k

and if Vo < Vo, 373, sitfor T > Ts, o < eV) = 1.

(6.43)
Now consider all the buyers’ average wealth across times up to the end of time

k
period T Using (6.36) and since ) ¢; = 1, it follows that

=1

T

M~

T
Ve X Vot > (vk— i)
=1 _ k=1 k=1 (6.44)
T T
SinceTk +ar = 1, (6.44) becomes
T T T
Vi X (Tk(vk - Pk)) > @ (v — pr))
= k=l + &=t + V. (6.45)

T T T

SinceTk = 1 implies that z;z > pi and vy — pr > (exp(wx) — 1)z > (exp
(—w) — 1)z, and since @; = 1 implies that vy — px > Zexp(—w) — (Z + u), using
(6.45), it follows that

T — T
X v >l 2 @
T 2 (exp(-w) — D7) S+ Gexp(—e) — E 4 1) T + Vo (646)
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Given that (exp(—w) — 1)7 < 0, Theorem 1 implies that with probability 1 the
following occurs: for any € > 0 and for any Vj,

T
>k .
dim | ((exp(-w) — 1)2) ":; = —5%. (6.47)

Given that Zexp(—w) — (z + u) < 0, the result in Theorem 2 implies that with
probability 1 the following occurs: for any € > 0, there exista k > Oanda Vo > 0
such that, if E((exp(wr) —1)|w; > 0) <k andif Vy <V,

> ak .
lim | Gexp(—w) — G+ u) =t— | = —Z14. (6.48)
T—o00 T 2

Therefore (6.46), (6.47), and (6.48) imply that with probability 1 the fol-
lowing occurs: for any € > 0, there exist a k > 0 and a Vo > 0 such that, if
E((exp(wr) — )| w, > 0) <k andif V) <V,

T
>V
. t=1
Tan;o T > —eVy + W (6.49)

Using (6.43) and (6.49), it follows that with probability 1 the following occurs:
for any € > 0, there exista k > 0 and a Vo > 0 such that, if E((exp(wx) — 1)
w; > 0) <kandif V) <V,

fim | | o < (6.50)
T—o00 T (1 — E)V ' .

> Vi ’

=1 r

Lete' = (1;)’ Corollary 1 follows from (6.50). O
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Appendix B

This appendix consists of three lemmas and one proposition. Lemmas 1 and 2 are
used to established Lemma 3. Proposition 1, Lemmas 1 and 3 are used to prove
Theorem 1. Proposition 1 is also used to prove Lemma 2.

Proposition 1. Let {X,},>1 be a random sequence with a finite expectation E(X;)
and | X;| < My, where M| is a finite positive number. Let Y;, wheret = 1,2,...,
be a random variable with |Y,| < My, where M, is a finite positive number. If X, is
independent of Y1, Y, ..., Y;, then for any given € > 0,

T T

Y (X Y)Y (VEX))
lim Pr| |= — = <el|=1.
T—00 T T

Proof. Let X; = E(X;)+¢. Since {X,},> is a random sequence with E(X;) < oo
and | X;| < M,, it follows that {¢},;>; is a random sequence with E¢, = 0 and
le/] < My < oo. Therefore, forall t = 1,2,...,

T T T
;(Xth) ;(YIE(Xt)) > (&)

= - + = — 6.51)

T
> (aY)
Consider the last term in the above equation = 7 Since X, is independent of

Y:, € is independent of Y;, and it follows that

T T
Z: (Y1) Z: (E(e)E(Y1))

E - ==l - =0. (6.52)

Notice that
T T
Z (Y1) > (Var(e, 1)) 2 T T
= =l 5 2. 2 (E(@YieY) — E(@Y) E(eY,)).

t=1 s>t

Var

T - T2

(6.53)



142 6  Evolution, Noise Traders, and Market Efficiency in a One-Sided Auction Market

Since X is independentof Y1, ..., Y, € is also independentof Y, ..., ¥;. Given
Ee¢, = 0for any ¢, it follows that the last term in the above equation is equal to zero.
That is,

T T
2 (Blaie ) — E@)EY) = 0. (659
=1 s>t

Since |€;| < M| < oo andsince |Y;| < M, < oo, it follows that Var(e, Y;) < M3,
where M3 is a finite positive number. Therefore,

T
TL Z (Var(e, Y;)) < %M3. (6.55)

Equations (6.53), (6.54) and (6.55) imply that

T
Z (Y1)

Var T —0as T — oo. (6.56)

Given (6.52) and (6.56), using Markov’s Theorem, see (Gnedenko, 1962,
pp- 232), it follows that for any given € > 0,

T
Z (Gth)
. =1 _
TILr%oPr —T <e| =1 (6.57)
Using (6.51) and (6.57), Proposition 1 follows. |

Lemma 1. For any given §,€ > 0 and for some positive ¢ < 1,

Pr (There exists an infinite number of buyers in theset ©(8,€,c)) = 1,

where ©(8, €,c) = {buyert : 565 ln(

2) + 01 In () > 0,64 = c. 0} + 65 +

0f = 1}.
Proof. As noted in the text, {(f{,65)},_, is independently and identically dis-
tributed. Hence, define a random variable R, where t = 1,2, ..., as the following:

for any given arbitrarily small §,¢ > 0 and some positive ¢ < 1,

R — 1 if buyert € ®(6,¢€,¢)
"o otherwise,
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where ©(8,¢,¢) = {buyert : 895111( z

i—%e

)+ oin(E) > 0.6 = c.0) +

0+ 0 = 1} # (. It follows that {R, = 1}, is also a i.i.d. random sequence.
If the distribution function F(-) satisfies the 6—Assumption, then Pr (R, = 1)

Pr(buyert € ©(8,€,¢)) = / dF(6,,6,) > 0, for any t, where D =
ln(;) 86,460, D>0,
) Therefore, Orze

o(7) N
> Pr(R =1) =oc. (6.58)
t=1

Using (6.58) and the Second Borel Cantelli Lemma, see (Billingsley, 1995,
pp- 83),

Pr (Z R, = oo) =1. (6.59)
t=1

Equation (6.59) further implies that for any given arbitrarily small §,¢ > 0 and
some positive ¢ < 1,

Pr (There exists an infinite number of buyers in the set ®(6, €,¢)) = 1.

Lemma 1 follows. O

Lemma 2. Consider buyer t’s wealth at time period T, V., and show that for any
given € > 0,

T
In V! 2 (hgili) z
lim Pr r__ s k=t In
T—oo | T—t+1~" T—t+1 7—2e

T
2 X
k=t

<
+ In{—— )+ 2% | =1.
T—t+1 (Z—I—u) T—t+1

Proof. Consider buyer ¢’s wealth at time period k, where k > ¢, t = 1,2,...,
Vi =V + (v — po)gg. (6.60)

If buyer ¢’s prediction at time k coincides with the asset price, then buyer 7 is

referred to as a marginal trader. In this case, buyer ¢’s wealth may not be fully used

up. Hence g, € (O, %] . Denote q; = ry (%) , where r; € (0, 1]. Clearly, ry
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is independent of the random shock w; for all i > k. For the sake of the following

discussion, define an indicator random variable M, ,ﬁ for k > t to describe whether
buyer ¢ at time k is a marginal trader. That is,

M = 1 if b;{ = Pk

k 0 otherwise.

Define another random variable H ,é, where k > ¢, to describe whether buyer 7 is
active at time k, that is,
H = 1 ifg, >0
0 otherwise.

Define random variables x,’{ and y,’;, where k > ¢, to describe the position of buyer
t’s prediction error relative to —%e or —%6 at time k. That is, for any given € > 0,

1 iful > —1e

0 otherwise.

. %1 if ul <—Ze

Vi = 3

. and x. =
0 otherwise, k %

Finally, define two random variables m and a;, where k > 1, as the following:

1 if pr > z

" 1 ifze—3e < pe <%
k= .
0 otherwise.

: and a; =
0 otherwise, k %
In addition to the above notation, the notation (i.e., [, g,’( and [ ,i) defined in the
proof of Theorem 1 is also used here.

Consider the following mutually exclusive cases where buyer ¢ is a nonmarginal
trader at time k, i.e., b}, > py:

1. [y = 1and g} = | meaning that p; < zx — %6 and —%6 <uj < —%6;

2. lx = land x; = 1 meaning that p; < z; — %e and uj > —%6;

3.k =1,y =1, (1 —=M]) =1and H = 1 meaning that p, < z; — %e;
uj( < —%e; and buyer ¢ is active at time k;

4. ar =1,x;, =1,(1 — M) = 1and H = 1 meaning that p; > zx; u} > —%e;
and buyer 7 is active at time k;

5.mp=1,x;, =1,(1 — M) =1and H] = 1 meaning that z; — %e <pr < zk:
uf{ > —%e; and buyer 7 is active at time k;

6. mp =1,g, =1,(1 —M])=1and H] = 1 meaning that z; — %6 <pr < z;:
—%6 < uj( < —%6; and buyer ¢ is active at time k.

In conclusion, for b,’( > pi, buyer ¢ uses all of his or her wealth at time

period k. ie., g = % Using (6.60), it follows that, if b} > py,

Vi '
Vit

(6.61)

ghlkFxp e+ HL =MDy i+ HEA=M{)x}ax +H (1=M{)xjmi+H{ (1=M}) g m
k

Pk
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10.

Consider the following mutually exclusive cases where buyer ¢ is a marginal
trader at time k, i.e., b}, = pi:

. Iy =1,y, =1, M{ = 1 meaning that p; < zx — %6; u, < —2¢; and buyer ¢

3
is a marginal trader at time k;

ap = 1,x}, =1, M = 1 meaning that p; > zx: u} > —%6; and buyer 7 is a
marginal trader at time k;

my = 1, x;, = 1, M{ = 1 meaning that z; — 6 <pk < z:ul > —36 and
buyer ¢ is a marginal trader at time k;

my =1, g} =1, M{ = 1 meaning that z; — 6 <pr < z; —26 <uj
and buyer 7 is a marginal trader at time k.

IA

1.
_56,

In conclusion for b, = pi, buyer t may not use up all of his or her wealth,

hence, ¢, = rk— where ;. € (0, 1]. Using (6.60), it follows that, if b}, = p,

" M,ﬁy}{lk+M1€x,iuk+M,£x;€mk+M,£g,’(mk
th = (1 — Iy + 1y (p )) th—l' (6.62)
k

Therefore, at the end of time period k, bringing together (6.61) and (6.62)

produces

Vi (V gLl Fx 4+ HE (1= ML)y, e+ H (1= M) ag + HY (1=M{)x,my + H (1—M[) g my,
k= Pk)

" My le+M{xpa+M]ximg+M] gl mi
° (1 —Tr + rk (—)) th—l'
Pk

One can show inductively that

=L

)g,ilk-l—\' Ik-l—Hk(l Mk)y lk+Hk(l Mk)\'kuk+Hk(1 Mk)kak-l—Hk(l Mk)gkmk

Pk

" M,ﬁy;{lk+M,€x}€ak+M1£x1’€mk+M1£gf€mk
t
k

O(I—rk—i—rk

Let th_l = W, take the logarithm of both sides, and divide by 7" — ¢ + 1

2 a

> ([ehle + b + HE(L— M)y}

T—t+1 —z+1 o

+H{ (1 — M{)xar + H{(1 — M{)x;mx + H{.(1 — M{)g,m]In (ﬁ))
Pk
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T
+ Z [ (M{yilc + Mixjax + M{xjm + M{gimy)

k=t
Vk
X In (1 —rr 4+ 1 (—)):| +In V)
Pk
Furthermore, since In(+) is concave, In (1 —rr + 1y (ﬁ)) >(1—r)In(1) +
Pk

rr In (v—k) =rrln (v—k) , it follows that
Pk Pk

k=t
T
Aoy = 3 ([t + H{Q = MY+ H( = M{)ximy
k=t
where +H{ (1 — M)gimi]In (;_'L))
T
+3 [(M,gy,gzk + M{xpmg + M{gimi) riIn (p—’;)] ;
k=t t » , T ey )
s k2=:; [Hk(l M)xar In (m)] * 1;, [kakakr" In (Pk)] :
(6.63)

Now, the convergence of A7, A>7 and A7 are shown respectively in Steps 1, 2
and 3.

Step 1: Since the asset price at time k, py, is a function of z1,2,...,2; and
1,0, ..., 0—1; and uj, uy ..., u;, forall t < k: and since wy is independent
of 21,22, ..., zk; and Wy, @y, ..., wp—1: and uf, ) |, ... uf, forall t < k; it follows

that ey is independent of pj. This further implies that wy is independent of g and
l;, forall t <i < k. This together with Inv; = Inz; + wy, and Proposition 1 in
Appendix B implies that

M=~

(ghlk (Inzg —In pr) + ay))
Air

T—t+1 T—t+1

»
I
2

M~

T
(g4 1x (Inzx —In py)) kX_: (8L E ()

i bability. (6.64
— i + A in probability. ( )

a~
1l
a
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Since [; = 1implies that p; < zk—§e,lnzk—ln pr > In(—%4-) > In(=%-) > 0.
Zk-gé Z-gé

Therefore, this together with E(wx) = 0, implies that (6.64) becomes

Air XT: (g’t‘lk In (2—26))

lim Pr > k=t
T—00 T—t+1 T—1t+1

1. (6.65)

Step 2: For the same reasons as outlined at the beginning of Step 1, the random
shock at time k, wy, is independent of M/, y!.x!. gt l;,m;, r;, H' for all t <
i < k. This together with Inv; = Inz; + wi and Proposition 1 in Appendix B
implies that,

Asr 1

T—t+1 T—t+1

M‘*}

([xile + Hg(U = M)yl + Hi (1 = Mp)xmy

»
I

t
+H (1 — M) gimi + M{yjlxri + M{xmgri + M} gimgry]
X (Inzx — In pg + wy))

1
%—
T—-t+1

™~

([xple + H{(L = M) yple + HE(1 — M)x;my

»
I

t
+ H{(1 — M) gimi + M yiliri + M{x;mirg +M,§g,t{mkrk]
x (Inzx —In py + E(wy))) in probability. (6.66)

Now, since E(wy) = 0, and since the equation /; = 1 or my = 1 implies that
Pr < z, it follows that if [, = 1 or my = 1, then Inz;z — In p;y > 0. Therefore,
(6.66) becomes

A
lim Pr (L > 0) = 1. (6.67)
T—00 T—t+1
Step 3: Similarly, since Invy = Inzx + wr and since wy is independent of

H! ,M! x!,a;,and r; forallt <i <k, using Proposition 1 in Appendix B,

M~

4 {(HL(1 = M{)xtar + M{xiarre) (Inzx —In pp) + E(wx))}
3T K

—
T—1+1 T—1+1
X in probability. (6.68)

~
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Since a = 1 implies py > z, it follows that if ¢ = 1, then 0 > In() >

In (=); and furthermore, H; (1 — M{)xjarx + M|xiaxry < x| and E(wi) = 0.

Therefore, this together with (6.68) implies that

M~

) i ()}
lim Pr 3T k

>
T—o0 T—-t+1" T—-t+1

-

=1. (6.69)

Using (6.63), (6.65), (6.67), and (6.69), it follows that

T —
oy st () Fxin )+
lim Pr r > X -1
T—00 T—1t+1 T—t+1
(6.70)
Since g!lx > gilxl}. using (6.70), Lemma 2 follows. O

Lemma 3. For any given §,¢ > 0, for some positive number ¢ < 1 and for any
subsequence ny,ny, ..., A7, ...,

nr

2 (gl

Pr| lim | =—— | =0, forallt € ©6,¢,¢c) | =1,
T—oo | np—t+1

where ©(6, €, ¢) is defined in Lemma 1. That is,

@(S,G,C)nguyert:(?@éln(_ < )+9{1n(_g )
7— %€ Z+u

>0, 0} >c, 9{+9§+9§=1}.

W

Proof. Lemma 1 implies that for any given §, € > 0 and for some positive ¢ < 1,

Pr (there exists an infinite number of buyers in the set ®(8,¢€,¢)) =1, (6.71)

where ©(8, €, ¢) = {buyer : §6;In (7_22 ) +0{1In(=7) >0, 65 = c. 0] + 0 +
I—3¢€ Tu
0, = 1}.
Now, consider buyer ¢ in the set (4, €, ¢). If the following equation is true,
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& t
2 (leils)
Pr lim | & =0t € ©@,¢e,c) | =1, (6.72)
T—oo | n —1t + 1
then using Bayes rule, (6.71) and (6.72) implies that
= t
> (Lesls)
Pr| lim | & =0, forallt € ©(8,¢,¢) | = 1.
T—oo | n —1t + 1

Therefore, Lemma 3 follows. Now, the following proves (6.72). The proof is shown
by way of contradiction. Suppose not, then

0

Pr (there exista 8y > 0 and a further subsequence ny,n;,....np, ...

of the subsequence ny, n,,

., nr,..., such that,

ng
> (Ligily)
“—OT’_t - 8001, forall T > 1|t € O(8,¢,¢) | > & (6.73)

Lemma 2 implies that for buyer t € ©(4, €, ¢) and at time period n7y.,

Vl n[}
In V', 2( L) . > x| .
lim Pr| — - > =5 In — |+ ln(_‘)
T—o0 r—t+1 " np—t+1 7— 3¢ nyp—t+1 Z+u
InV;
$|ze®(8ec) —1.
T—t

(6.74)

te®(,e,c)

Consider buyerr € O(6, €, ¢). Since {u’};>, is ai.i.d. random sequence, {x!}s>;
is a i.i.d. random sequence. The Strong Law of Large numbers implies that given

— 0! as T — oo with probability 1 (6.75)
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Equations (6.73), (6.74), and (6.75) imply that

ann’O - .
lim Pr{ ——"— >86; In| —5— +9f1n(_ = )
T—oo  \np—t+1 7—3€ Z+u

t e @(8,6,6)) > 0.

(6.76)
Since t € ©(8,€,¢) implies that for some positive A, 865 In (;_726) + 6]
In (=) > A, this together with (6.76) implies that o
In Vn’()
lim Pr O—T > At €0(,¢e,¢)] >0.
T—00 nyp—t+1
This together with (6.71) further implies that for any given F > 0,
Vnt()
lim Pr{— > F | >0, (6.77)
T—00 nT

However, since the aggregate profits of all the buyers in any one time period is
bounded from above, the average total wealth of all the buyers across time is also
bounded from above. It follows that the average total wealth of any one buyer across
time is bounded from above. This contradicts (6.77).

Therefore, (6.72) must be true. O

Appendix C

The purpose of Appendix C is to add some numerical evidence to highlight the
importance of the 6—Assumption in the convergence of the asset price to its
fundamental value. Four sets of simulations are conducted. They illustrate: (a) If
all traders are too noisy in the sense that all traders have too high of a probability
of overpredicting and underpredicting the asset’s fundamental value, convergence
does not seem to occur. (b) A sufficient condition for convergence is that in each
time period there is a positive probability that an entering trader has an arbitrarily
high probability of predicting arbitrarily close to the fundamental value. In other
words, if for any given arbitrarily small n > 0, Pr(65 € (1 —n, 1)) > 0 for all
t > 1, then convergence does occurs. It is also shown that if the variation in the
random shock is smaller, the convergence band is smaller. (c) Another sufficient
condition (but weaker than that described in (b)) for convergence is that there is a
positive probability in each time period that the entering trader has an arbitrarily
low probability of overpredicting the fundamental value and has a probability, of
predicting arbitrarily close to the fundamental value, being bounded away from
zero by a positive number. That is, for any given arbitrarily small positive 1 and
n', Pr(6f € (0,n),6, >n') > 0forallt > 1. Note that both conditions described in
(b) and (c) satisfy the 6—Assumption described in the text.
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All of the following numerical illustrations share the following characteristics:

1. The fundamental value of the asset at time s (z;), where s = 1,2, ..., is assumed
to have a uniform distribution with its support [z,z] = [3,7].

2. Fort > 1, trader t’s prediction errors u§ are randomly drawn from an interval
[-3. 3] according to (6], 63, 63), where 6] = Pr(u’ > 0), 65 = Pr(—0.10 < u! <
0), and 0} = Pr(u} < —0.10).

3. All traders on entry are endowed with their initial wealth 1 = 0.001.

C.1 Failure of Convergence with Too Noisy Traders

The proportion of time, that the asset price is arbitrarily close to the fundamental

value, does not converge to one if all traders are too noisy, in the sense that all traders

have a sufficiently higher probability of overpredicting the fundamental value. To

illustrate this, in the first set of simulations, together with characteristics (1), (2),

and (3), all traders’ prediction errors are assumed to have a uniform distribution
1

with its support [-3,3] and 0] = 0 = 6} = 3 forall # > 1. The random shock

w; has a symmetric doubly truncated normal distribution where the density function
of w; is 071 Z (%) [2@ (£) — 1] where o = 0.1000, B = 0.356, Z () is the
unit normal probability density function and @(-) is the corresponding cumulative
distribution function. The truncation keeps the upper bound of v; from exceeding
the highest bid 10. 100 simulations are conducted and the market is followed from
time period 1 to 3000. Figure 6.3 shows the proportion of time that the absolute
deviation between the asset price and the fundamental value lies in the intervals /; =
[(i—1)x0.025,ix0.025) fori = 1,2,3,4; Is = [0.10,0.50); /¢ = [0.50, 1.00) and
I; = [1.0, 00) up to time periods 500, 1500, and 3000. Figure 6.3 shows no sign
of convergence. The proportion of time that | p; — z4| lies in the various intervals
is relatively stable across time periods 500, 1500, and 3000; in particular, by time
period 3000, 88% of the time |ps; — z,| > 0.10.

It is clear that convergence does not occur if traders are too noisy. The entry of
a large number of traders together with the law of large numbers is not sufficient to
guarantee convergence.

C.2 Convergence when the Probability of Predicting the
Fundamental Value is Allowed to be Arbitrarily Close to 1

The second set of simulations is conducted under the assumption that, with a positive
probability, the entering trader has an arbitrarily high probability of predicting
arbitrarily close to the fundamental value. That is, for any given small n > 0,
Pr(6; € (1 —n,1)) > O0forallz > 1.
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Histogram of [P, -Z| as a percentage of times:
04=6%=06'=1/3 for all t

50% 1

40% 1

@ up to period 500
W up to period 1500
Oup to period 3000

30% 1

20% 1

1000 4

0%

0-0.025
0.025-0.05
0.05-0.075

0.075-0.1
0.1-0.5
0.5-1
>1

Fig. 6.3 Histogram of | P; — Z| as a percentage of times: 0] = 0 = 65 = 1/3 for all ¢

The vector (6], 85, 8%), which characterizes trader ¢’s probability distribution of
his or her prediction error, is drawn randomly according to a uniform distribution
from a plane defined by {(60;, 6,, 63) € (0,1) x (0,1)x (0,1) : 6; + 6, + 65 = 1}.

1. The random shock w, obeys a symmetric doubly truncated normal distribution
where its density functionis 07'Z (%) [2@ (£) — 1]_1 where 0 = 0.1000 and

B = 0.356.
One hundred simulations are conducted and the market is followed from time
period 1 to 3000. Figure 6.4a indicates that the proportion of time, that the asset
price is closer to the fundamental value of the asset, gets larger as time gets larger.

At time period 500, on average across 100 simulations, =500 py 2 |20100

500
0.30 and s=300:lp—a|<0025} — 9 2> By time period 3000, on average across

50
#{s<3000:| ps—2,[>0.10 #{5=<3000:| py—z,|<0.025
100 simulations, 4= Ips s20100 — 13 and #= |3’(’)SOOZS'< b = 0.45.

2. However, if E ((exp(w;)) - 1 |w, > 0) gets larger, the convergence band gets
wider. To illustrate this, a uniform density of w, is chosen, where w, €
[—.356, .356]. Given this density, £(w;) = 0 and Var(w,;) = 0.1689813. This
compares with a variance of 0.0099497 for the density of w, described in (i)
when o = 0.1000. The corresponding histogram for this larger variance is in
Fig. 6.4b. Here the convergence is not as tight. By time period 3000, on average
across 100 simulations, #{S53000:3|6’65 u|<0108 _ ()79, This compares with 87%
observed in Fig. 6.4a.
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a b
Histogram of |Pg-Zglas a percentage of times: Histogram of |[Pg-Z| as a percentage of times:
o obeys a truncated normal with variance 0.01 g obeys a uniform distribution with variance 0.169
50.0% 50%
40.0% 40%
30.0% ®up to period 500 300, Bup to period 500
O up to period 3000 .
20.0% 20% Oup to period 3000
10.0% 10%
0%
0.0% — —_ =
iTg e s 2 T % 88853 347
=] < T T '\ S s 2 &2 I 3
S 4 S &8 Z ° 2 8 & 5§ S
S a wh oS < S S I
S = 3 s S
s o

Fig. 6.4 Histogram of | Py — Z,| as a percentage of times: (a) w, obeys a truncated normal with
variance 0.01; (b) @, obeys a uniform distribution with variance 0.169

C.3 Convergence when the Probability of Predicting
the Fundamental Value is Constrained to be Less
than a Number Below 1

The fourth set of simulations is conducted under the assumption that for any given
small positive n and ', Pr(6] € (0,7),65 > n') > 0, forall r > 1. That is, if for all
traders the probability of predicting correctly the fundamental value is constrained
to be positive but less than a number below 1; and if with a positive probability in
each time period a trader, with an arbitrarily low probability of overpredicting the
fundamental value, is allowed to enter the market, then convergence can still occur.
To illustrate this, a set of 100 simulations is conducted, where the random shock w;,
has a truncated symmetric normal distribution with 0 = 0.10 and B = 0.356 (like
that specified in C.2(i)), and there is the constraint 6, < 0.2, for all buyers ¢ > 1. 95
is drawn according to a uniform distribution from (0,0.2]. (6], 6}) are then drawn
according to a uniform distribution from a set {(6;,63) € (0,1 — 65) x (0,1 —
0}). 0] + 65 = 1 —6;}. This does allow for the entry of a trader with the probability
of overpredicting ( 6]) the fundamental value (z;) being arbitrarily close to zero.
Here, as shown in Fig. 6.5, there is a sign of convergence. By time period 3000,
on average across 100 simulations, #{S53000:3‘g&;zf‘<0'10} = 0.57, which compares
with a value of 0.33 at time 500. Nevertheless, convergence is not as fast as in the
simulations where no upper bound is placed on 6, for all ¢ > 1.1

16For the simulations, as T grows, the computer (c.p.u.) time to complete the simulations grows

in proportion to 72. To conduct 100 simulations in a reasonable length of c.p.u. time, T was

constrained to be 3000. However, for five simulations the time was extended to 5000. By time
. . . #{s=5000: | ps—z| <0.10} .

period 5000, on average across five simulations, - 5500 = = 0.64. This shows further

convergence.
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Chapter 7
The Evolution of Money as a Medium
of Exchange in a Primitive Economy!

This chapter uses an evolutionary approach to explain the origin of money as media
of exchange in a primitive economy, where agents specialize in production for the
purpose of trading for their own consumption goods. A general class of dynamics
(consistent with Darwinian dynamics) is applied to the selection of strategies.
The model produces many of the well-known results regarding the importance
of intrinsic value and the proportion of agents specializing in different goods. In
addition, the model also shows the importance of initial trading strategies and of the
mutations of agents’ strategies in selecting equilibria.

The chapter begins by discussing the framework of the model in Sect. 7.2.
Section 7.3 describes how the strategies evolve over time and the selection of
equilibria. Section 7.4 examines the role of the mutation hypothesis in selecting
equilibria and Sect. 7.5 concludes the chapter.

we can only come fully to understand the origin of money by learning to view the
establishment of the social procedure, with which we are dealing, as the spontaneous
outcome, the unpremeditated resultant, of particular, individual efforts of the members of a
society, who have little by little worked their way to a discrimination of the different degrees
of saleableness in commodities.  ...... Karl Menger (1892)

7.1 Introduction

Although a lot of recent literature has addressed the existence of money, few
papers [with the exception of Jones (1976), Oh (1989), Marimon et al. (1990),
Wright (1995), and Renero (1998)] analytically address the dynamic selection
process that leads to an equilibrium. In this chapter a model is constructed which
uses an evolutionary process for explaining the emergence of media of exchange.

I'This chapter is based on my article published in the Journal of Economic Dynamics & Control
23: 415-458, 1999.

G.Y. Luo, Evolutionary Foundations of Equilibria in Irrational Markets, 157
Studies in Economic Theory 28, DOI 10.1007/978-1-4614-0712-6_7,
© Springer Science+Business Media, LLC 2012
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Unlike agents in the papers of Jones (1976) and Oh (1989), this model does not have
a selection mechanism where agents explicitly gather information or take account of
the probabilities that a randomly encountered individual would wish to buy or sell
a particular good. Strategies do not arise from rational agents maximizing expected
utility (as in Kiyotaki and Wright (1989) and Renero (1998)) nor from the agents
being artificially intelligent (using some global search algorithm to search in a space
of possible decision rules, as in Marimon et al. (1990)). In addition, this model is
distinct from that of Wright (1995) which places the rational agents of the Kiyotaki
and Wright (1989) model in an evolutionary framework which endogenizes agent
types. As Wright (1995, p. 205) suggests in his conclusions, “it may be more natural
or interesting to apply the evolutionary approach to trading strategies rather than (or
in addition to) the choice of (agent) types”. This is the direction pursued in this
chapter. Here an evolutionary model of trading strategies is proposed where agents
behave with bounded rationality and follow very primitive rules of adaptation.? At
the population level, these rules produce strategy dynamics, which are consistent
with Darwinian dynamics.

Even though agents in this model are not very rational, with respect to the
selection of media of exchange, the model produces many of the well-known
results of Kiyotaki and Wright (1989) and Wright (1995) regarding the importance
of intrinsic value and the proportion of agents specializing in different goods. In
addition, the model also shows the importance of initial trading strategies and of the
mutations of agents’ strategies in selecting equilibria. Different initial points can
lead the economy to different equilibria.> While varying the proportion of agents
specializing in different goods tends to increase the number of stable equilibria,
increasing the size of some of the mutation rates tends to narrow down the number of
stable equilibria. Furthermore, for sufficiently large mutation rates, the fundamental
equilibrium is the only equilibrium that can be selected, regardless of the initial
trading strategies and the proportion of agents specializing in different goods.

In the late eighteenth century, Adam Smith (1776) advanced the idea that
production specialization is the driving force for a medium of exchange to occur.
Because of production specialization, each individual producer may not consume
whatever he or she produces and will want to consume other producers’ goods.
To do this, trade would have to occur. Without a central market auctioneer, some
producers may engage in direct trade for their consumption goods, while others
would engage in indirect trade and hold the traded commodities for further trades at
a later time for their consumption goods.

2The editor has drawn my attention to another related paper written recently by Sethi (1999) which
analyzes the Kiyotaki-Wright model using an evolutionary game theoretic framework.

3Within the context of a dynamic programing model where the expected discounted utility
is maximized by traders, Renero (1998) also finds that initial conditions matter; however,
his conclusions, unlike those of this chapter, are that many of the conventional equilibria
found in the literature (e.g., Kiyotaki and Wright (1989), Aiyagari and Wallace (1991)) are
not stable.
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Menger (1892) provided an additional theory of “saleableness” to explain the
origin of money. People’s willingness to accept a certain commodity depends on
beliefs about the same willingness on the part of other traders. Among the factors
that limit commodities’ saleableness, Menger included such intrinsic values of
commodities as “the degree to which goods lend themselves to transport,” and “the
cost of storing them” (pp. 246-247). A critical element in Menger’s discussion
is seeing the evolution of money as a learning process that takes place over
generations of individuals. As part of this process, he sees “practice and habit”
(p- 249) and the imitation of successful traders contributing to the evolution of
money. This view is later reinforced by Einzig (1966, p. 15): “primitive man is not
a rationally calculating being...His progress toward the adoption of money...is very
often unconscious.” But “at a comparatively advanced stage...primitive communities
(are) able...to imitate each other’s currencies and to learn by the achievements and
mistakes of their ancestors or neighbours.”

To summarize the above, what matter in the evolution of money are the desire to
acquire a consumption good produced by someone else, the commodities’ intrinsic
values (such as storability), extrinsic beliefs about the willingness on the part
of other traders to accept certain commodities, and the evolutionary process of
imitating successful traders. The following model reflects these views by extending
the model of Kiyotaki and Wright (1989) to include dynamic processes of learning
from an evolutionary perspective. All agents begin with given initial strategies.
These initial trading strategies may be based on the agents’ extrinsic beliefs and
may have their origins in social customs, and most probably do not arise from
any optimal planning. In a sense, agents are born with these strategies. Through
time agents tend to imitate strategies which are more successful at the margin than
other strategies. In other words, “there is no better method of enlightening anyone
about his economic interests than that he perceive the economic success of those
who use the right means to secure their own” (Menger 1892, p. 249). As a result
of this natural imitation of successful strategies, uniform strategies may gradually
evolve on a population basis. In turn, this produces a particular set of media of
exchange. Nevertheless, a key contribution of the evolutionary perspective is that it
recognizes the limited ability of agents to optimally respond to their environment.
Agents through simple imitation are myopic: they may not react by immediately
imitating successful strategies and sometimes they may even play an arbitrary
strategy regardless of its suitability.

Similar to the conclusions of Kiyotaki and Wright (1989), this chapter shows that
the intrinsic value of a commodity (here characterized by storability) is a critical
determinant of the media of exchange. However, when the discussion moves away
from Kiyotaki and Wright (1989) stationary environment of equal proportions of ra-
tional agents, and instead applies a class of dynamics consistent with Darwinian dy-
namics to the selection of strategies, this chapter provides some additional insights.
In addition to intrinsic values, the other principle ideas that matter in determining
media of exchange are the proportion of agents specializing in different products
(which determines the probability of meeting and ultimately affects the saleableness
of commodities)(also noted by Wright (1995)), agents’ initial trading strategies, and
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the probability of agents playing arbitrary strategies. As a result, in addition to the
equilibria found in Kiyotaki and Wright (1989), and Wright (1995), more equilibria
are found. Moreover, within the context of the evolutionary approach of this chapter,
a method is provided for computing the basins of attraction for various equilibria
(see Theorem 1 and Lemmas 1 and 2 of Appendix A). It is worth noting that these
basins of attraction can be computed for a very general class of dynamics without
knowledge of the specific functional form of the dynamic process.

The evolutionary model can produce many equilibria which correspond to one
medium of exchange, two media of exchange, or three media of exchange.* While
very small mutation rates do not disrupt any of the asymptotically stable equilibria,
with sufficiently large mutation rates, the number of the asymptotically stable
equilibria can be reduced to one unique equilibrium — the fundamental equilibrium,
where the most storable good serves as the medium of exchange. In other words, if
mutation rates are sufficiently large that each agent, regardless of his or her relative
success in consuming, is more likely to switch to trading for the more storable
good with someone who does not have the agent’s consumption good, then the
economy converges to the fundamental equilibrium, This is true regardless of where
the economy starts (i.e., where the initial trading strategies are) and regardless of the
proportion of agents specializing in different goods.

7.2 Framework

7.2.1 Physical Environment

There are three types of infinitely-lived agents in the economy. Agents of type
i consume good i and produce good i + 1 (modulo 3).°> (Fiat money can also
serve as a medium of exchange in this model; but, for simplicity of analysis, this
chapter focuses on commodity money.) There is a continuum of agents of type i
(i = 1,2,3). The proportion of agents of type i in the economy is denoted by P;,
where P; + P>+ P; = 1.1tis assumed that P; is fixed over time. Time is indexed by
dayr,t = 0,1,2,.... At the beginning of each day, each agent produces one unit
of his or her production good for the purpose of trade. All goods perish at the end
of each day. If, by the end of the day, an agent has acquired his or her consumption
good, consumption occurs at the end of the day. Within each day there are two

4The coexistence of more than one commodity serving as a medium of exchange is well
documented (e.g., cattle, goats, and cloth of the Wabena of Tanganyika Territory in Africa in the
early twentieth century; tobacco and sugar in seventeenth century North America; and wadmal
(spun from the fleece of the sheep) and fish in fifteenth century Iceland (Quiggin 1949).

SJust as Aiyagari and Wallace (1991) generalize the Kiyotaki-Wright model to N goods, the

following model can be generalized to N commodities and N agents. Further discussion of this
generalization is provided later.
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trading sessions: the morning trading session and the afternoon trading session. In
each trading session, all agents are randomly matched in pairs and trade bilaterally.
At the end of each day, each agent decides on his or her trading strategy for the
following day. These decisions are based on information regarding prior success of
other agents of the same type and this information can be obtained from random
pairwise matching of agents of the same type at the end of each day.®

7.2.2 The Trading Sessions

Trade only occurs if both agents are willing to trade. Trade takes the form of a one-
to-one swap. Clearly, since in this framework no two agents produce goods which
are mutually acceptable consumption goods for each other, in the morning session
there is a lack of double coincidence of wants in this bilateral trading process. In
this framework, it is assumed that each agent only trades if he or she can potentially
benefit from trade. Therefore, in the afternoon of each day an agent trades only for
his or her own consumption good.” It is assumed that all agents, including agents
successful in the morning, participate in the afternoon. However, in the afternoon,
if any agent happens to meet an agent who was successful in acquiring his or her
consumption good in the morning, no trade occurs.®

Since all agents trade for only their own consumption goods in the afternoon
trading session, based on their trading strategies used in the morning trading session,
each type of agent is further classified. Agents of type i, where i = 1,2, 3, consist
of i(1) and i(2) subtype agents where i (1) is the agent subtype who trades only
for his or her own consumption in the morning and i (2) is the agent subtype who
trades for any good in the morning trading session. There is a continuum of agents
of subtype i (1) and of agents of subtype i (2). For example, if agent 3(1) meets agent

5The model is basically that of Kiyotaki and Wright (1989) with two differences: all goods are
perishable and trade occurs over the two trading sessions (the morning and afternoon). The above
assumptions considerably reduce the complexity of calculating the distribution of agents’ holdings
over time and thus the computation of equilibria.

"This assumption prevents trade from occurring in the afternoon session when only one party wants
to trade. This assumption can be justified if any trade incurs an arbitrarily small transaction cost,
this paper’s results would remain basically unchanged. Nevertheless, it is interesting to consider an
alternative model where the framework remains the same, but traders make trades in the afternoon
as long as one party wants to trade. In this case, it is easy to show that, in terms of the notation of the
. . Pl Pliy(s)

latter part of this section, - =
i) i(1)

equilibrium where the most storable good is the unique medium of exchange.

for all ¢, and the economy converges to the fundamental

8This assumption is reflected in the following probability calculations. The framework could be
altered by not allowing successful morning traders to participate in the afternoon. While the essence
of the results would remain the same, the following probability calculations would have to be
slightly altered.
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Table 7.1 Proportions of agent-pairs in the morning session

Paired agents Proportion of paired agents Trade Notes
2

i(1). i(1) (P, Pl(l)) No
i(1), i(2) 2(P;)* Py Py, No
i(1), (i + (1) 2P Piy Ply Pl No
i(1), (i + 1) 2P Pip 1 Piy P11y No
i(1). (=) 2P; Piy Py Py No
i, (— 1)) 2P P PI(I)P(, He Yes (i — DI +1]*
i(2),1(2) (P)*P o Pl No
i), (i + (1) 2P Piy 1 Plyy Pl Yes iQfi —1]
1(2), (l + 1)(2) 2P Pi+1Pl(2)P(,+1)(2) Yes 1(2)[1 - 1]
i(2). (i —1)(1) 2P; P Ploy Pl No
i2), (i — 1)) 2P P Pl Pl Yes (=D +1]
(i + (1), (G + D(1) (Piy1)? PUH)“)PUH)“) No
@+ D), ( +DH®) 2(Pit1)* Py Pl No
@+ D), ¢ —D() 2Pi41 Pi1 Py Pl—n No
@+ D), @ —D(©2) 2P 1 Pici Py Plimiyo) No
i+ 1D®2), (i +1(Q2) (P,+1) P(1+1)(2)P(1+1)(2) No
(i +1)@). (i —1)(1) 2P Pisi Ply o) Pl Yes (i + D]
(i + 1), ( —1)(Q2) 2Pi41 Pi1 P4y Pi—n) Yes (i + DL
@ =), @ —1)(1) (Pi—1)? P(, vy Pi—na) No
(i — D). (=D 2(Pi—1)* Py Pi— 1y No
@—D@), (i —D®2) (Pi—1)*Pi— 1y Pli—1y) No

Sum = 1

*(@{@ — 1)(2)[i + 1] indicates that agent (i — 1)(2) is holding good i + 1 as a result of the morning
session

2(2) in the morning, trade will take place since agent 3(1) wishes to exchange good
1 for good 3 with agent 2(2), who wishes to give agent 3(1) good 3 for good 1; and
then agent 2(2) carries good 1 to the afternoon hoping to meet an agent 1 who was
unable to trade in the morning trading session. The proportions of agents of type i at
time 7 who are i (1) and i (2) are denoted as P! /(1) and P! | (2)» Tespectively. Therefore,
Pl(l) + P! i) = 1 This further implies that the proportions of agents at time ¢ who
are i(1) and i (2) are equal to P; Pl(l) and P; P/ 2 respectively.

In the morning trading session, all agents are matched randomly in pairs. In day
t,fori = 1,2,3 and k = 1,2, the proportion of agent pairs Corresponding to
agent i (k) matching with another agent i (k) is (P;)%( ’/‘(k))2 = (P,(k)) where

F;(k) = P Pi(k). The proportion of agent pairs in day ¢ corresponding to agent

i (k) matching with agent i’(k’), where i # i’ and k # k', is 2F§(k)?§,(k/) for
"= 1,2,3 and k,k’ = 1,2. All the proportions of agent pairs sum to 1. See
Table 7.1 for more detail.
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Therefore, the proportion of the total population which consists of i (2) subtype
agents who are successful in acquiring their own consumption goods in the morning
of day ¢ is

—t —1
PioyPi—1))- (7.1)

The proportion of the population, which contains i (2) subtype agents who are
successful in acquiring their own consumption goods in the afternoon of day ¢,
consists of the following two cases:

Case 1: The proportion of the total population which consists of untraded i (2)
agents from the morning session who meet, in the afternoon session, traded
(i + 1)(2) agents from the morning session holding good i, is

—1 1 - 1 —_—t 1 —t — — —
(Pf(2>Pi<1)+ PigyPip+ Pi<2)P<f—1)(1>)(P(i—1><1)P<f+1><2)+P<f—1)(2>P(i+1)(2>)
— — =t —
= (PiPi<2> + Pi(2>P<i—1><1>) Pic1P i 41))-

Case 2: The proportion of the total population which consists of traded i (2) agents
from the morning session who meet, in the afternoon trading session, untraded i — 1
agents from the morning session, is

—t =t —t =t —t =t " —i 2

(Pf(2>P(i+1)(1> + Pi(Z)P(m)(z)) (Pf(nP(f—l)(l) T PigPi-no t (P<f—1)(1>)
—1 — 1 2 — —1 — —1

2P ipmPi-net (?a—l)e)) TPy irnm HPi-vaParno

— — — 5
= Piy1 Py (PfP(i—n(l) + Pict Py + (Pic1) )

Therefore, the proportion of the total population which consists of i (2) subtype
agents who are successful in acquiring their own consumption goods in the
afternoon session of day ¢ is

—1 - 1 —1 —1
(PPl + Pl o) PorPlasner + P Proy
—1 —1 2
X (PiP(i—l)(l) + Pf—lP(i+l)(1) =+ (Pj_l) ) (72)
Thus, adding expressions (7.1) and (7.2) indicates that the proportion of the total

population which is made up of i (2) subtype agents who are successful in acquiring
their own consumption goods by the end of day t, denoted by Pi’(z) (s), s

— =t — —t =t —t
Ploy(s) = PioyPi—iyo) + (PiPi(Z) + Pi(Z)P(i—l)(l)) PiiP 1

—t —t —t
+ Pit1 P (P"P(i—l)(l) + PPy t+ (Pi—l)z)‘ (7.3)
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Similarly, the proportion of the total population which is made up of i (1) subtype
agents who are successful in acquiring their own consumption goods in the morning
session of day ¢ is

1 =1
Py P i1y (7.4)

The proportion of the total population which contains i (1) subtype agents who
are successful in acquiring their own consumption goods in the afternoon session of
day ¢ is the proportion of the total population which contains untraded i (1) agents
from the morning session who meet, in the afternoon session, traded (i + 1)(2)
agents from the morning session holding good i. That is,

—t \2 =t —t —r =t —r  —t —r =t
((Pim) T PinPio+ PiyPi-noy t PipyParno + Pi<1>P<i+1><2>)

— — 2 —t  —t —
x (Pi—lP(i—H)(Z)) = ((Pi(l)) +PioPio+ PiPi-nm + Pi(l)Pf+1)
—
XPi—lP(i.H)(z)- (75)

Therefore, the proportion of the total population which consists of i (1) subtype
agents who are successful in acquiring their own consumption goods by the end of
day ¢, denoted by Pi’(l)(s), is the summation of (7.4) and (7.5). That is,

—t  —t — —t  —t — —
Ploy(s) = Pioy Pu—ne) + (PiPi<1> Py Pi-no t Pi<1>Pi+1) PictP i 41y
(7.6)

Therefore, the probability that agent i (k) is successful in acquiring his or her

) ) . Pl () .
own consumption good in day ¢ is F“,‘—)Y, fori =1,2,3andk = 1,2.
i(k)
Each agent, whether successful or unsuccessful in acquiring his or her consump-

tion good at the end of day 7, is allowed to continue to produce one unit of his or
her production good for trade in day ¢ + 1.

The above has described the setting for the trading which takes place within a
day and summarized the success of agents at the end of each day. The purpose of
the next two sections is to describe how trading strategies may evolve from day
to day.

7.3 Evolution of Strategies

There are many possible learning or imitation micro stories regarding agents’
adaptive behavior from day to day. In this chapter, the intention is to concentrate on
fairly primitive rules of adaptation. Very little sophistication is presumed on the part
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of agents. Section 7.3.1 provides an example based on micro behavior of imitation
by agents. Here, through random sampling from the same population, imitation of
successful agents occurs. There are other variants of imitation, some of which are
driven by dissatisfaction (e.g., Bjornerstedt and Weibull (1996)) and some of which
take the form of imitating only successful agents (Weibull 1995). This motivates a
more general class of dynamics described in Sect. 7.3.2. Under this general class of
dynamics, the equilibria selection results are described in Sect. 7.3.3.

7.3.1 Example 1: Random Sampling Among
the Same Population

This example describes a very basic type of imitation on the part of agents. Suppose,
at the end of time period ¢ (¢t > 0), each agent of each population is allowed to
randomly meet another agent in the same population. If this agent meets a successful
agent of another subtype in the same population he or she will use this successful
agent’s strategy in day ¢ + 1 with some probability; otherwise, this agent will play
the same strategy in day ¢ + 1 as in day ¢. Specifically, consider agent i (k), where
i = 1,2,3and k = 1,2. At the end of day ¢ agent i (k) randomly meets an
i —type agent in the population i. If this i —type agent is a successful agent of another
subtype i(k’), where k' # k, then agent i (k) imitates and plays the strategy of
agent i (k) with probability A;y), where A;x) € [0,1], in day ¢ + 1; otherwise
agent i (k) will play the same strategy in day ¢ + 1. The size of A, is positively
correlated with the willingness of agent i (k) to switch from strategy i (k) to i (k').
This willingness could be based on many factors such as agents’ abilities to change,
or their perceptions about the characteristics of the commodities. In this chapter, the
characteristic of interest is the storability of commodities carried from the morning
session to the afternoon session.”

Notice that A; () is a model parameter and reflects relative storability among commodities. More
precisely, the A; ) is a function of relative storability and does not depend on time. The justification
for this is as follows. Since the behavior of agents i (1) and i (2) differs only with respect to meeting
agent type i + 1 in the morning and since in the afternoon both subtypes of agents behave the same
in that they only trade for their own consumption goods, it follows that an alternative way of
viewing agents’ subtypes in the morning of each day is to see agent i as deciding on whether,
in the event of meeting agent i + 1 in the morning (which occurs with a constant probability of
P;1 ), he or she will trade with agent i + 1 (i.e., choose strategy i(2)) or will not trade with agent
i +1 (i.e., choose strategy i(1)). Suppose such factors as inertia and portability, that may influence
Aik), are set aside and A; ) is hypothesized to be only a function of storability. Since the expected
storage costs, conditional on not meeting agent i + 1, incurred by agents i(1) and i(2) are identical,
what only matters in determining the A;, (the probability of switching strategies) is the relative
storage costs incurred as a result of meeting i + 1. Suppose good i costs ¢; to store from morning
to afternoon. In the event of meeting agent i + 1, agent i (1) would not trade and would only incur
a storage cost of ¢; 4 in storing good i + 1 until the afternoon. Agent 7 (2) would trade with i + 1
and would incur a storage cost of ¢; _; until the afternoon. Therefore, A; ), the probability of agent
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Therefore, the dynamic equations of motion describing the above process are as
follows:

Ploys) Piy)(s)
D Pl (P’ . fori=1,2,3, (1.7)

1
Pzt(z) = P/ + Piyriay

where Pl(l)k,(l) D is the proportion of i agents ﬂowmg from the i (1) subpop-

D5 is the proportlon of i agents
flowing from the i (2) subpopulation to the i (1) subpopulatlon 1(2) (s) and ,(1)(s)
are defined in (7.3) and (7.6), respectively.

Notice that agent i (2) possibly engages in indirect trade for good i —1 (where i —1
is not the consumption good of agent i (2)) in the morning and carries commodity
i — 1 to the afternoon. If commodity i — 1 is perceived by agent i to be less (more)
storable relative to good i + 1, A;(2) will be relatively big (small) in comparison to
Aiq). For example, if commodity 1 is the most storable good then the probability
of agent 2(1) imitating the strategy of the successful agent 2(2) is higher than the
probability of agent 2(2) imitating the strategy of the successful agent 2(1). That is,
Aoy > o).

The above example illustrates an evolution of strategies which moves in the
direction of strategies where agents have the highest probability of being successful
in acquiring their own consumption goods. This motivates the following general
class of dynamics.

ulation to the i (2) subpopulatlon and P/ (2)/\,(2)

7.3.2 The General Class of Dynamics

Definition 7.1. Define a class of dynamics F for this economy which can be
described by the system of equations of motion

Pt~ Ploy = f, (P{Q), Pl P;(Z);A) fori =1,2,3,
where 1 = (1), A1), A2 A2y, A3y Asy)s fi() 20,11 = [=1,1], and fi ()

has the following properties:

) f; ( | (2), 2(2), P:f(z); A) is continuous in the first three arguments,
2) f( I 2(2),P3f(2);/1) = 0 for P,’ ) € {0,1}, i=1,2,3,and

.. x<2)(‘) z(l)()
3) fi(P! {o Paoy P3(2),/\) > 0 ifand only if WS > T for P/, € (0,1).

i switching from strategy k to k’ (k # k'), is a parameter which is an increasing function of
(=DF(cim1 = cit1).
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In fact, in Example 1, fi (P{,), Py P A) = Plylion—5— ey ©) — Plphie)
’(” ©) . It is easy to show that each f; in the example satisfies the three properties
outhned in Definition 1. Moreover, the above general class of dynamics encom-
passes replicator dynamics (Taylor and Jonker 1978) in addition to many types
of selection dynamics coming from adaptation by myopic imitation (see Weibull
(1995) for a survey of such models). For more detail on how some of these other
dynamics relate to this money framework and to this general class of dynamics, see
Luo (1995).10

In the above dynamics F, property (2) simply says that the above difference
equations have fixed points (or steady states), which correspond to all combinations
of pure strategies. (With a slight alteration to the above dynamics F, there may
be mixed strategies that are also equilibria, but for the purpose of illustrating the
relevance of the evolutionary approach in determining media of exchange the focus
will be on the pure strategy steady states.'!) Property (3) describes the fact that
the fitter strategies should increase relative to the less fit strategies. In a given time
period, the fitter strategy in a population is the strategy which yields the higher
discounted percentage (discounted by the storability parameter) of agents successful
in acquiring their own consumption goods. For example, within population i, if
the discounted percentage of those i (2) agents who play successfully (in acquiring
their own consumption goods by the end of the day) is higher than the discounted
percentage of those i (1) agents who play successfully, strategy i (2) is considered
to be the fittest of the two strategies; and, in the next time period, the fraction of i
agents who play strategy i(2) should increase. In other words, “strategies that are
‘good’ replies to the distribution of actions chosen by the current population™ are
“played by a larger fraction of the population in the next period.” (Mailath 1992,
p- 259). This essentially is the underlying idea of Darwinian dynamics.

107f, instead, an alternative dynamic, the best reply dynamic (see Kandori et al. (1993)) is applied
to the selection of strategies, then not all combinations of pure strategies would be steady states.
However, all of the asymptotically stable equilibria in this paper are the same asymptotically
stable equilibria under the best reply dynamic. Furthermore, the open balls characterized in
all propositions of this paper would also support the respective asymptotically stable equilibria
under the best reply dynamic. Property (i), as outlined in the definition of the basin of attraction
in Theorem 1 of Appendix A, indicates that for all points in the basin of attraction, the
strategy corresponding to the respective asymptotically stable equilibrium is the strategy with
the higher relative payoff. But this precisely describes a basin of attraction for the corresponding
asymptotically stable equilibrium of the best reply dynamic model (since in the best reply dynamic
model players play the strategy with the higher relative payoff).

T have also explored an extension of the model which allows for mixed strategy equilibria.
Definition 1 would have to be altered slightly. In addition to properties (1), (2), and (3), an
additional property is added: f; (P} 2 Paay Piys ) =0if l,(‘z(f; (:()2) _ )”(,1()11,) ("()1 for Pf, € (0, 1),
and for i = 1,2,3. Mixed strategy equilibria only exist under specific restrictions on the
parameters. For example, the equilibrium (x, 1,0) for 0 < x < 1 identified by Kehoe et al.
(1993) exists only if 2(P; + P3) = ;1—:?: For this reason, this paper focuses only on pure strategy
equilibria.
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The parameter vector (P;, P,, P3) characterizes the distribution of agent types
specializing in different production-consumption activities and is also the prob-
ability distribution of each agent meeting each population; and the parameter
vector (A12), A11), A2¢2), A21), A32), A3(1)) characterizes the relative storability of
commodities perceived by all agents. Define the parameter vector of the economy
as (P1, P2, P3; A12). A1y, A22)s Aaqiys As), Asry). For a given parameter vector
of the economy, the state of the economy at time t is defined by an ordered triple
(P{Q), Pzt(z)v P:f(z))v where (P{Q), Pzt(z)s P3’(2)) €{(a,b,c):a €l0,1],b €[0,1],
¢ € [0, 1]}. An equilibrium of the economy is defined to be a fixed point (or a steady
state) under the dynamics F.

As noted, in the dynamics F, all pure strategy vectors (1,0, 0), (0, 1, 0), (0,0, 1),
(1,1,0), (0,1,1), (1,0,1), (1,1, 1), and (0, 0, 0) constitute equilibria. These are the
equilibria of concern in this chapter. For a fixed point (k1, k2, k3), if k; = 1 for some
i =1,2,3, then commodity i — I is a medium of exchange. In other words agent i
trades for any good in the morning and trades only for his or her own consumption
good in the afternoon. If k; = 0 for some i = 1,2, 3, then agent i only trades for
his or her consumption good in both trading sessions.

Among all these equilibria, which equilibrium can be selected under dynamics
F in the long run needs to be addressed. This motivates the following definition.

For a given parameter vector of the economy, if there exists an open ball
containing an equilibrium point such that, for any initial point ( Plo(z), P20(2)’ P30(2) )
in this open ball, the state of the economy converges to this equilibrium under
the dynamics F, then this equilibrium is said to be supported by this open ball
or the initial points in this ball. Such an equilibrium is asymptotically stable (see
Luenberger (1979) for further discussion).

The initial trading strategies can be interpreted as the initial extrinsic beliefs.
This initial extrinsic beliefs may have no rational basis and may only be due to
some inherent social traditions. The perceived relative storability of commodities
by different types of agents, as represented by A;x) need not reflect the actual
relative storability of commodities. However, as long as all agents perceive the
relative storability of commodities in the same way, there are three possible models
which classify the relative storability of commodities relative to the agent types.
Everything else is simply a relabeling. The first model coincides with all agents
perceiving good 1 as the most storable good, good 3 as the least storable good,
and good 2 as less storable than good 1, but more storable than good 3. This is
represented by: 12y > A1), A2y > A22), A3 > Asza). The second model
coincides with all goods perceived as being equally storable: A;(1y = A1(2). A1) =
A22), A3(1) = A3(2). The third model coincides with all agents perceiving good 1 as
the most storable good, good 2 as the least storable good, and good 3 as less storable
than good 1, but more storable than good 2. This is represented by Aj1y > Aj(2),
Ay > Aa2). A32) > Aszqr). The first and third model are analogous to Kiyotaki and
Wright’s (1989) Models A and B, respectively.

To facilitate comparisons with Kiyotaki and Wright (1989) and other similar
papers, it is appropriate to distinguish between a fundamental and a speculative
equilibrium. The storage cost is the intrinsic value of the commodity and it is
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“fundamental.” If agents only look at the “fundamentals” — the storability; they will
always trade in the morning for a more storable good relative to a less storable good,
unless the latter good is his or her own consumption good. If, in an equilibrium,
everyone trades in the morning according to these fundamentals, the equilibrium is
referred to as fundamental. If, in an equilibrium, some agents are trading a more
storable good for a less storable good, not because they wish to consume it, but
because they believe that they can use the less storable good to trade for their own
consumption goods in the afternoon, the equilibrium is referred to as speculative.
In the first storability model, the fundamental equilibrium is the one where the most
storable good 1 serves as a unique medium of exchange; and in the third storability
model, the fundamental equilibrium is the one where the two most storable goods
(3 and 1) serve as media of exchange. Except the equilibrium (0,0,0), where no
medium of exchange is required, in each of the storability models, all the remaining
equilibria are speculative.

7.3.3 Egquilibria Selection

As just noted, for a given parameter vector of the economy, whether an equilibrium
is asymptotically stable, depends on whether or not there exists an open ball con-
taining this equilibrium such that for any distribution of initial trading strategies in
the open ball, the state of economy converges to this equilibrium under dynamics F.
There are many ways of illustrating this dependency. One way, which makes it easier
for comparison with related literature, is to classify the economy on the basis of the
three storability models and to make a further subclassification which distinguishes
between economies with equal proportions of agent types (i.e., assumption of
Kiyotaki and Wright’s (1989) P = P, = P3) and economies with unequal
proportions of agent types (i.e., not all Py, P>, and P3 are equal). For the purpose
of brevity, the third storability model where good 1 is the most storable good and
good 2 is the least storable good will not be discussed in this chapter (see Luo (1995)
for such discussion).

In the first subsection below, the discussion focuses on the first storability model
where good 1 is the most storable good and good 3 is the least storable good.
The second subsection below examines the second storability model where no
differences in the storability of commodities are assumed. Each of two subsec-
tions focuses on two propositions, one corresponding to economies with equal
proportions of agent types and the other to economies with unequal proportions
of agent types. Each of the propositions identifies asymptotically stable equilibria
and a corresponding set of possible starting points which leads the economy to
converge to these respective equilibria under some parameter vectors of the econ-
omy. Where it is possible, equilibria which are not asymptotically stable are also
identified.
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7.3.3.1 Unequal Storability Among Commodities

In this section, it is assumed that good 1 costs least to store, and good 3 costs most
to store, and the storage cost of good 2 is between those of goods 1 and 3. This is
referred to as the first storability model, characterized by A12) > A1(1). A2(1) > A2(2).
and A32) > Azq). This model is analogous to Model A in Kiyotaki and Wright
(1989). Kiyotaki and Wright (1989) finds that both the fundamental equilibrium and
the speculative equilibrium exist under different restrictions on the relative storage
costs, the size of the discount factor and the size of the net utility from consumption
and production. This is done within a stationary environment where representative
and rational agents are assumed and the proportions of agent types are equal.

Within this section, the intention is to explore in the evolutionary model the
implications of relaxing the assumption of equal proportions of agent types to
include unequal proportions of agent types. This section begins by examining this
model in the case of equal proportions of agent types. Proposition 7.1 shows that
in this model, under equal proportions of agent types, the fundamental equilibrium
(0,1, 0), where the most storable good is the unique medium of exchange, can be
supported by a set of initial trading strategies for some parameter values of the
economy; and also, the speculative equilibrium (1, 1, 0), where the least storable and
the most storable goods serve as media of exchange, can be supported by a set of
initial trading strategies for some parameter values of the economy. Both of these are
analogous to the results of Kiyotaki and Wright (1989). Furthermore, Proposition
7.1 shows that under equal proportions of agent types, another speculative equilib-
rium (0, 1, 1), in which the two most storable goods are media of exchange, can also
be supported by a set of initial trading strategies for some parameter values of the
economy. This result is distinct from that of Kiyotaki and Wright (1989). Wright
(1995), using the search theoretic framework of Kiyotaki and Wright (1989), but
allowing for unequal proportions of agent types, finds the two equilibria of Kiyotaki
and Wright (1989) and one other equilibrium, where the good which is the second
least costly to store is the unique medium of exchange.

Within the current evolutionary framework, Proposition 7.2 illustrates that once
the proportions of agent types are allowed to differ, all equilibria can be shown
to be asymptotically stable, with the exception of two equilibria: one in which
the least storable good serves as the only medium of exchange, and the other in
which no medium of exchange is necessary. There is even an asymptotically stable
equilibrium where the most storable good is not the medium of exchange, but the
other two less storable commodities are the media of exchange (i.e., (1,0, 1)).

The following begins by examining this model under equal proportions of agent
types.

Equal Proportions of Agent Types: P, = P, = P; = % Assuming equal
proportions of agent types, Proposition 7.1 characterizes all the corner equilibrium
points.

For the first storability model (where Ai2) > Aiq1), A2y > Az(2), and A30) >
A3m)); and given P; = 1 fori =1,2,3,
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Proposition 7.1.  with condition (j) stated below, there exists an open ball B;
such that if the initial strategies lie in B; then the state of the economy converges
to equilibrium j, where for j = 1,2,3 the equilibria are (0,1,0), (1,1,0) and
(0, 1, 1), respectively;

.. c 4 he U e
Condition (1): 3 < Ay and 9 < SN
. R alii}
Condition (2): 7 < A"
tion (3): 2 < 2w
Condition (3) 11 A32) "

II. (1) there exists no initial point such that the economy converges to (1,0,0),
(0,0,1), (1,0, 1) and (0,0, 0);
(2) the remaining equilibrium (1,1, 1) is not asymptotically stable under the
specific dynamics in Example 1.

Proof. See Appendix B.

One interesting observation about Proposition 7.1 is that there exist some com-
mon parameter values of the economy under which different initial points support
different equilibrium points. For example, consider the parameter vector of the econ-
omy ® = (P, P2, P3: A1), My, A22), Aaqr)s A3 Az) = (355, 4100 A1)
Az(z),kz(l),13(2),13(1)). Using the definition of the open balls B, B,, and B3 of
Appendix B, it can be shown that with two different initial trading strategies, each
sufficiently close to its respective equilibrium, (1, 1,0) or (0, 1, 1), each equilib-
rium is asymptotically stable under particular common parameter vectors of the
economy.

Notice that a methodology for computing the open balls (basins of attraction)
for Proposition 7.1 and all of the following propositions is provided in Theorem 1
and Lemmas 1 and 2 of Appendix A.'> These basins of attraction can be computed
without detailed knowledge about the specific functional form of the dynamics.

Proposition 7.1 indicates that any equilibrium, where population 2 plays strategy
2(1), is not asymptotically stable under the equal proportions of agent types in
this model. The reason is that any agent in population 2 has a higher probability
(discounted by the storability parameter) of being successful in acquiring the
consumption good by playing strategy 2(2) than by playing strategy 2(1), regardless
of what populations 1 and 2 do. In other words, the evolutionary pressure in this
economy pushes agents in population 2 away from playing strategy 2(1) and toward
playing strategy 2(2). However, as will be seen below, if unequal proportions of
agent types are allowed, some of those equilibria can be supported by some initial
strategies.

12If the focus is not in finding basins of attraction (described by the open balls B;) and the interest
is only in determining the asymptotic stability of equilibria, for asymptotic stability, one only has
to show that the equilibrium is a strict Nash equilibrium.
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Unequal Proportions of Agent-Types: Not All P, P,, and P; are Equal Under
the assumption of unequal proportions of agent types, the following proposition
finds more equilibria that are asymptotically stable.

For the first storability model (where Aj2) > A1y, A2y > Az2) and Az >
A31)); and given that not all Py, P, and P;3 are equal,

Proposition 7.2. With condition (] ) stated below, there exists an open ball B j such
that if the initial strategies lie in B, then the state of the economy converges to
equilibrium j, where for j = 1,2,3,4,5,6, the equilibria are (0,1,0), (1,1,0),
(0,1,1), (0,0,1), (1,0, 1), and (1, 1, 1), respectively;

Condition (1): P + P < M and 1 + Py(P) + P3) < t—ﬁi

47 . 1(2) 14 P1(P2+ P3) )»3(2)
Condition (2): 2(Py + P3) > and RGP < T

o 1+ P (P +P l A A
Condition (3): TEApTrs < l;;f; 2(Pi+P2) > 222 and 1+ Py(Pi+Py) > 7220

Condition (4): 1+ P3(P, + Ps) < ii—f; and 2(P, + P )) < ;z—g;

Condition (5): 14 Py(Py+ Py) > 10 EBUAEE) 20 445 (py 4 py) > 220,

Ay’ 1+ P3(Pr+Ps) a0y A3(1)
. L 1P+ ) 1(1) 1+ P3(P,+P3) Ay 1+ P (P1+P3) A3(1)
Condition (6): 1+ P2 (P1+P3) r@)’ 1+P3(P1+P2) 12(2) and 1+ P (P2+P3) A32) "

IL. if Py > Ps then there exists no initial point such that the economy converges
to the remaining equilibrium points (1,0,0) and (0,0,0); furthermore, the
equilibria (1,0, 0) and (0,0, 0) are not asymptotically stable under the specific
dynamics in Example 1.

Proof. See Appendix B.

In comparison with the results in Proposition 7.1, some interesting observations
about Proposition 7.2 are made:

1. The three asymptotically stable equilibria under equal proportions of agent types
characterized in Proposition 7.1 are also asymptotically stable under unequal
proportions of agent types. However, as Proposition 7.2 I(1), I(2) and I(3) in
Appendix B show, the respective open ball which supports each equilibrium point
is a function of the proportions of agent types.

2. The proportion of agent types is one of the important factors in determining
which equilibrium evolves.

(i) For example, under equal proportions of agent types, the fundamental
equilibrium (0, 1, 0) is supported by some initial trading strategies. However,
under unequal proportions of agent types, from the same set of initial
strategies, a speculative equilibrium can evolve. For example, consider these
parameters: 11(1) = 0.02, /Xl(Z) = 0.70, 12(1) = 0.80, 12(2) = 0.20,

M) = 058, Ayp = 080, P, = 0.03. PY, = 0.95, and P,
1

0.09. With an equal distribution of agent types, P = P, = Pz = 3>
and the initial point (Pl(z), on(z), Pf(z)) = (0.03,0.95,0.09), under F, the
economy converges to the fundamental equilibrium, (0, 1, 0). However, for
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(i)

(a)

(b)

()

the same set of parameters A;x) (i = 1,2,3;k = 1,2) and the same initial
values (Plo(z), on(z)v P3(2)) (0.03,0.95,0.09), the economy converges to
the speculative equilibrium (0, 1, 1) if (P, P2, P3) = (0.475,0.475,0.05).
The importance of unequal proportions of agent types can also be seen from
the fact that, in addition to the asymptotically stable equilibrium points
under equal proportions of agent types characterized in Proposition 7.1,
more equilibrium points (i.e., (0,0,1), (1,0,1), and (1,1,1)) are sup-
ported by some initial strategies under unequal proportions of agent types.
The following provides some detailed characterizations of each of such
equilibria.

The equilibrium (0,0, 1), where good 2 is the medium of exchange, is
not asymptotically stable under the assumption of equal proportions of
agent types characterized in Proposition 7.1, but is asymptotically stable
under the assumption of unequal proportions of agent types characterized
in Proposition 7.2 (see Appendix B, Proposition 7.2 1(4)). Good 2 can be the
medium of exchange if the economy (Plo(z), P20(2)’ P30(2)) is sufficiently close

t0(0,0,1) and 1 + P5(P> + P;) < *“2) and 2(P, + P») < t(f)

Where there are unequal proportlons of agent types, it is possible that the
most storable good does not serve as one of the media of exchange, and
instead the two least storable goods serve as the media of exchange (see
Appendix B, Proposition 7.2 I(5)). Good 1 not serving as the medium of

exchange in equilibrium could be caused by the situation where Plo(z) and

P30(2) are both sufficiently close to 1 and P; < Ps. In this case (see gf > of
Appendix B) the discounted probability (discounted by the storability pa-
rameter) of agent 2(1) being successful in acquiring his or her consumption
good in the afternoon is higher than the discounted probability of agent 2(2)
being successful in the afternoon. (Both agents 2(1) and 2(2) have the same
discounted probability of being successful in the morning.) Furthermore, the

less storable that good 2 is relative to good 1 (the bigger the ratio 3(2)) the

smaller P; must be for (1,0, 1) to be supported.
All commodities can serve as the media of exchange under the following

conditions. For a given i'i; < 1, if P, is sufficiently smaller than P;, the

discounted probability of agent 1(2) being successful in acquiring his or
her consumption good is higher than the discounted probability of agent

6

1(1) being successful (see gf}2 of Appendix B). Eventually, population 1

/\3(1) . .
=1 < 1,1if Pjis
/13(2) ) 1

sufficiently smaller than P, , eventually population 3 is dominated by 3(2)

is dominated by 1(2) agents. Similarly, for a given

agents (see gf ¢ of Appendix B). In population 2, for strategy 2(2) to become
the unanimously played strategy, good 3 must be sufficiently costly to store
relative to good 1 for a given initial proportion of 1(2) and 3(2) agents (see

gf ¢ of Appendix B).
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(d) Given Ay1) > Ay and P; > P; the discounted probability of agent 2(2)
being successful in acquiring his or her own consumption good is always
greater than that of agent 2(1) being successful in any time period. Therefore,
subtype agent 2(2) will eventually take over population 2 and the economy
cannot possibly converge to any one of the equilibria (1, 0, 0) and (0, 0, 0)
(see Appendix B Proposition 7.2 11(i)).

3. Another important factor in determining which equilibrium evolves is the
position of the initial trading strategies. Different initial strategies can lead
the economy to different equilibria under the same parameter vectors of the
economy. For example, consider a parameter vector (Pi, P2, P3;A1(2), A101),

. . 2
A2y, Aa1ys A3 A3(1)), characterized by the following: sty < e
1+(Pi+P)Ps 1 A2 1+ P (Ps+P) A32) :
TP+ PP, 2B +P) 12(2)’and P (Pt P) ~ Ty 1+ P (P2+ Py). Given

this parameter vector, Proposition 7.2 (see Appendix B Proposition 7.2 I(2) and
1(3)) guarantees that a starting point (PJj,), Py, Py, that is sufficiently close
to one of the equilibrium points (1, 1, 0) or (0, 1, 1) can support either (1, 1, 0) or
(0,1, 1), respectively.

The intrinsic value of commodities is another important factor in determining
which equilibrium point will evolve. This is best illustrated by comparing the above
results with the results in the equal storability model in the following section.

7.3.3.2 Equal Storability Among Commodities

The purpose of this section is to stress the importance of varying intrinsic values.
In contrast to the unequal storability assumed in Subsect. 7.3.3.1, in this subsection,
no differences in storability perceived by agents are assumed. This is referred to
as the second storability model, characterized by A1y = Ai2). A2y = A2,
and A3q) = A3@). Proposition 7.3 below shows that in this model the only
asymptotically stable equilibrium under equal proportions of agent types is the
one where all commodities are the media of exchange. However, Proposition 7.4
below shows that with unequal proportions of agent types, the equilibria where
two goods serve as media of exchange are asymptotically stable. Both propositions
illustrate that without having unequal intrinsic values (storability), a unique medium
of exchange is not asymptotically stable under Example 1. The following subsection
begins by examining this model under equal proportions of agent types.

Equal Proportions of Agent Types: P, = P, = P; = % Assuming equal
proportions of agent types the following proposition finds that only one equilibrium
is asymptotically stable.

Proposition 7.3. For the second storability model (where Aoy = Aiq) fori =

1,2,3) and given that Py = P, = P3 = %, with any starting point other than any

of the fixed points, the state of the economy convergesto (1,1,1).
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Proof. See Appendix B.

Since goods are equally storable and since each agent has an equal probability of
meeting an agent from each population, agent i (2) always has a higher probability
of acquiring his or her consumption good than agent i (1), for all i. As a result,
(1,1, 1) evolves from any initial trading strategies other than any of the fixed points.

Unequal Proportions of Agent Types: Not All P, P, and P; are Equal

Proposition 7.4. Ifnot all Py, P,, and P are equal, then the equilibria, where two
goods serve as the media of exchange, are asymptotically stable.
For the second storability model (where A;1) = Ai) fori =1,2,3),
TR < | and SEGE
there exists an open ball B j such that if an initial strategies lie in B j» then the
state of the economy converges to equilibrium j, where for j = 1,2,3, the
equilibria are (1,1,0), (0,1, 1), and (1,0, 1), respectively;
II. the remaining equilibria, (1,0,0), (0,1,0), (0,0,1), (1,1,1), and (0,0,0), are not
asymptotically stable under the specific dynamics of Example 1.

Proof. See Appendix B.

<1,

1 With Z(Pj_l + Pj) > 1,

Using Appendix B, the open ball B ;j in Proposition 7.4 (I) is

{(Plys Play. Pllsy) €101 0,11 % [0 1] Py + Py PGy
> Pj1 P+ Pimi PG_yy) > Pimi PGy P Pligy > P
0 0

As noted above, for j = 1,2,3,if P;4; is sufficiently small, the probability of
agent j(2) being successful in acquiring his or her consumption good is always
greater than the probability of agent j(1) being successful. With a sufficiently low
initial P((}_l )(2) the probability of agent (j + 1)(2) being successful in acquiring his
or her consumption good is always greater than the probability of agent (j + 1)(1)
being successful. Furthermore, if, for a given initial point (Pl0 , P20 , P;J), Pjyqis
sufficiently low relative to P;, and if the initial proportions PJQ 2) and P((} +1)(2) are
sufficiently close to 1, then the probability of agent (; — 1)(1) being successful
in acquiring his or her consumption good is greater than the probability of agent
(j — 1)(2) being successful. All of the above contribute to the economy converging
to the equilibrium where goods j and j — 1 serve as the media of exchange.

7.4 Mutation

In this section, the concept of mutation is added to the above model. This is done for
two reasons. The first is to capture a randomness in imitation. In addition to imitating
other successful agents, agents may sometimes imitate unsuccessful agents. The



176 7 The Evolution of Money as a Medium of Exchange...

second reason is that adding the element of mutation provides a method for selecting
a smaller number of more plausible equilibria from several equilibria which may
occur in an economy without mutation. This latter principle, illustrated in Kandori
et al. (1993) and based on the earlier work of Foster and Young (1990), asserts that
in the presence of multiple evolutionary stable strategies some equilibria are more
likely to emerge than others when there are continual mutations. Specifically, the
approach for selecting a unique equilibrium (see Kandori et al. 1993, pp. 53-54)
is to select the equilibrium which requires the largest mutation rate for moving the
dynamic system toward the basin of attraction containing this equilibrium. Below,
Proposition 7.6 shows that with sufficiently large mutation rates, the number of
asymptotically stable equilibria can be reduced to only one.

The following is an example which incorporates the idea of mutation.
Example 1a: Random Sampling Among The Same Population With Mutation
Example 1 captured the hypothesis that with some positive probability, agents
imitate the successful strategies. This is now combined with the introduction of
mutation rates to reflect the idea that agents imitate strategies regardless of the
success of these strategies. Suppose at the end of day ¢, + = 1,2, ..., agent i (k)
randomly meets another agent in the population 7; if this agent is an agent of subtype
i(k’), where k’ # k, then agent i (k) mimics and plays the strategy of agent i (k')
with probability u; k) (4ix) € (0,1)) in day 7 + 1 if agent i (k) is unsuccessful, and
plays the strategy of agent i (k") with probability ;) + Ai k) (i) +Ai) € (0, 1))
in day ¢t + 1 if agent i (k) is successful; otherwise, agent i (k) will continue to play
the same strategy in day 7 +1 as in day ¢. In other words, there is a base mutation rate
Wiy which plays a role regardless of the success of the encountered strategy, and
an incremental imitation rate A;) which plays a role only in the case of meeting
a successful agent.!> The sizes of p;x) and A;) can be related to the intrinsic
characteristic of the commodities, here defined to be storability. If an i —type agent’s
production good (i + 1) is more storable than the indirect traded good (i — 1),
Hi@) > iy and Aj2) > Ajq); otherwise, iy = Wiy and A1y = Ai().

The resulting dynamic equations of motion for Example 1a, are as follows: for
i=1,2,3,

BIn the above, mutations produce mistakes in the sense that the imitation is irrational. An
alternative interpretation of ;) is that it represents noise in imitation. The more extensive the
noise in the information structure regarding the success of the mimiced agent, the higher would
be i) relative to ;). Agents imitate others, regardless of the success of others. Another
type of mistake would occur if agents arbitrarily moved away from steady states (i.e., arbitrary
perturbations of the steady state). However, as noted by Weibull (1995), this type of mutation in
the form of small perturbations is indirectly taken care of by the way of dynamic stability criteria.
By the definition of asymptotic stability, such arbitrarily small movements imply that the economy
returns to the steady state. However, with such perturbations away from an asymptotically unstable
equilibrium or very large perturbations away from any equilibrium, the economy could evolve into
another steady state.
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pt (s) (S)
) Fin®
P35l = Ploy + Play (i) + i) lT = Pioy (i) + Aie) IP
; 1
P! (5) Pi)(s)
Lo i)
+ Pl | Pioy = —p— | = Plowe | Pl ——p— |
P P
P\ (s) Piy(s)
ie. P{3! = Ploy+ Plpyhiny—p5— P, ~ Pighie P Fioytio P

- i(Z)Mi(Z)Pi(l)‘

7.4.1 The General Class of Dynamics

A more general class of dynamics encompassing mutation is defined as follows.
Definition 7.2. A class of dynamics F’ for this economy is described by the system
of equations of motion

P35 = Ploy = [ (Pl Py, Piyi A ), fori =1,2,3,
where, A = (A12), 2101): 2220, A21), 4320 A1), 0 =(12)s R1qys H2(2)s Ko
W3@2)s 43(1)), and £/ (-) has the following properties:'*

L. f! (Pl’(z), Pzt(zy 3f(2); A, i) is continuous in the first three arguments,
2. f(Pl(Z), 2(2), 3(2),/1 w) —OforP(z) €{0,1},i =1,2,3, and
3. f (Pl(z), 2(2), 3(2), A, ) > 0if and only if

14In a model of N goods and N agents, where agent i consumes only good i and produces only
good i + 1 (modulo N), one could specify s/ as the probability that agent i is willing to trade his
or her production good for j where j 7 i and j # i + 1, when agent i meets an agent holding
good j.
Suppose traders only play pure strategies. That is, s; € {0,1}. If s/ = 0 then agent i is
not willing to trade for consumption good ;. Agent i is willing to trade for commodity j when
J

s{ = 1. The proportion of agent i choosing s; = 1 at time ¢ could be referred to as P/ i) and

the proportion of agent i choosing sj = 0 could be referred to as P/, (- One could further define

u, as the probability of agent i imitating strategy s7 regardless of the success of s/ and A/ as the
mcremental probability of agent i imitating a successful strategy s; . Furthermore, the s1zes of A’

and p/ could be modeled as a function of the degree of storability. That is A’ > A/ and p! > u!
if commodity j is more storable than commodity j’. The number of dynamrc equations of motion
would then equal to N X (N — 2). Thus, the model becomes more intricate as N goes beyond 3.
While the number of possible asymptotically stable equilbria undoubtedly grows, similar to the
conclusions of this paper, increasing the size of the mutation rates further selects a reduced set of
long run equilibria.
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Pit(Z)(s) Mi(1) - Pit(l)(s) Hi(2)

— — for P/, € (0,1).
LePiy  Awkie T LaPi, Aokie e

Example la is a special case of F’ where

£ (Plt(Z)’ Pzt(z)v sz(z)?)h M)

Pl () Pl ()

im\s
= it(l)ki(l)—l — Ployli —p + Poytiqy Ploy = Ployiti) Py
1 1

If w = 0, the dynamics F’ is the same as the dynamics F (described in the
previous section). Under the dynamics F’, properties (1) and (2) are the same
as the corresponding properties under the dynamics F and property (3) is more
general than property (3) under the dynamics F. Property (3) indicates that, subject
to mutation flows across strategies, fitter strategies should increase relative to less fit
strategies. Under the dynamics F’, the parameter vector of this mutation economy
becomes (Py, P,, P3; A, ) and the equilibria of the economy are the fixed points
under the dynamics F’, which are the same as the ones under the dynamics F.

7.4.2 Equilibria Selection with Mutation

In this subsection, the implications of adding mutation rates into the model are
explored under the dynamics F’. Proposition 7.5 below shows that for sufficiently
small mutation rates, the results in Propositions 7.1, 7.2, 7.3, and 7.4 continue to
hold. Thus, the previous results seem robust. However, suppose the mutation rates
become sufficiently large that each agent, regardless of the success of agent subtypes
in acquiring the desired consumption goods, has a higher probability of switching
to a subtype who trades for a more storable good in the event of meeting another
agent who does not have the desired consumption good. Then, with any initial
strategy other than any of the fixed points, the economy will converge to a unique
fundamental equilibrium (0, 1, 0), where the most storable good (good 1) serves as
a unique medium of exchange. This is seen in Proposition 7.6. The following begins
with Proposition 7.5.

Proposition 7.5. Under the dynamics F’', there exists an € > 0 such that, if j;x) <
€ fori =1,2,3and k = 1,2, then the results in Propositions 7.1,7.2,7.3, and 7.4
still hold.

Proof. See Appendix C.

The above proposition suggests that the introduction of small mutation rates into
the dynamics F’ changes the open ball by a very small amount, and it does not
change the number of asymptotically stable equilibria in economies discussed in
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the previous section. The number of asymptotically stable equilibria remains the
same. This is not surprising, given the existence of the previously defined basins of
attraction which support asymptotically stable equilibria in previous propositions.
By the definition of asymptotic stability, such small perturbations, however they are
caused, do not upset the convergence of the economy to the steady state. However, if
the mutation rates become so large that each agent, regardless of the success of agent
subtypes in acquiring the desired consumption good, has a higher probability of
switching to a subtype who trades for a more storable good, in the event of meeting
another agent who does not have the desired consumption good, the number of
asymptotically stable equilibria is reduced to one. That is, if p;2) > Aiqy + (i)
fori = 1,3 and pr1) > Az + H22), then the economy converges to a unique
fundamental equilibrium (0, 1, 0) regardless of the initial strategies and regardless
of the proportions of agent types.'> This is formally stated as follows.

Proposition 7.6. In the first storability model, where A1y > A1y, A2y > A22)
and /\3(2) > /\3(1), if/Li(z) > /\,’(1) +Mi(1),f0}’i =1,3 and M1y > /\2(2) +M2(2), then
with any starting point other than any of the fixed points, the state of the economy
under the dynamics F' converges to a unique fundamental equilibrium (0, 1,0),
where the most storable good (good 1) serves as a unique medium of exchange.

Proof. See Appendix D.

The intuition for the convergence of the economy to the fundamental equilibrium
(0, 1,0) is straightforward. It essentially says that if each agent, regardless of the
success of agent subtypes in consumption, pays more attention to the fundamentals
(the storability) in the sense that he or she is more likely to switch to trading for
the more storable good if he or she meets an agent whose production good is not
his or her consumption good, then only the fundamental equilibrium evolves from
any initial strategies other than any of the fixed points.'® Specifically, the condition
says that in population i, where i = 1, 3, agents of subtype i (2) have a sufficiently
high probability of mutating into subtype i (1) relative to the probability of agents of
subtype i (1) mutating into i (2); and in population 2, agents of subtype 2(1) have a
sufficiently high probability of mutating into subtype 2(2) relative to the probability
of agents of subtype 2(2) mutating into subtype 2(1). This means that good 1 is
perceived by all agents of all types as the most storable good, and furthermore, that
each agent is more likely to switch to trading for a more storable good with an
encountered agent whose production good is not his or her consumption good. As

131t should be noted that if agents make large enough mistakes, under different restrictions with
respect to mutation and storability parameters, the system could move from one basin of attraction
to another. Nevertheless, Proposition 7.6 focuses on the set of restrictions under which mutation
rates become sufficiently large to produce a unique fundamental equilibrium.

16If we interpret the y; ) as representing noise in imitation and since all agents perceive the relative
storability of commodities in the same way, then Proposition 7.6 could be loosely interpreted
as saying: “If agents know very little about what other agents are doing, then the fundamental
equilibrium is the most likely to occur.”
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time goes by, under the dynamics F’, the economy will eventually be populated
with agents of subtype i (1) in population i for i = 1,3 and with agents of subtype
2(2) in population 2; and consequently, good 1 will emerge as a unique medium of
exchange.

7.5 Conclusions

This evolutionary model illustrates how media of exchange evolve in a primitive
economy. In this framework, agents specialize in production for the purpose of
trading for their own consumption goods. They meet randomly in pairs and trade
bilaterally. It is assumed that agents begin with given initial trading strategies. On
a population basis, the evolution of agents’ strategies is consistent with Darwinian
dynamics. In turn, this is consistent with micro stories of individual agents following
very simple rules of imitation. Strategies evolve gradually. As time goes by, agents
myopically imitate the more successful strategies and eventually, in each population,
one strategy may be observed. Even though the unconcerted efforts of individuals
are directed toward the pursuit of very myopic strategies, an equilibrium evolves
producing generally accepted media of exchange.

This evolutionary approach is distinct from recent literature. Agents are pre-
sumed to be unsophisticated and a general class of dynamics, which is compatible
with Darwinian dynamics, is applied to the selection of strategies. Some may argue
that the evolutionary approach is extreme in its adoption of the bounded rationality
hypothesis. On the other hand, if some of the well-known results primarily sup-
ported under models of rationality are now generated by an evolutionary model, the
robustness of those results is further enhanced. By using the evolutionary approach,
this chapter is able to highlight some of the key factors which determine the media
of exchange. Similar to Kiyotaki and Wright (1989), it is found that the relative
intrinsic value (here storability) of commodities is a critical determinant. Similar to
Wright (1995), this chapter also finds that the proportion of agents specializing in
different production-consumption activities is an important determining factor. In
addition, the agents’ initial trading strategies also matter in the determination of the
media of exchange. Nevertheless, the chapter shows that the importance of these
initial strategies, in terms of determining which equilibrium will evolve, may be
reduced by the introduction of mutation. If the extent of random play, expressed by
mutation rates, is linked to the storability of commodities, then when these mutation
rates get sufficiently large, starting with any initial strategy other than any of the
fixed points, the economy converges to a unique equilibrium — the fundamental
equilibrium.

An advantage of evolutionary analysis is that it allows the analysis of the model
outside of the steady state equilibria; and furthermore, it allows a selection of
equilibria based on stability. However, the selection of long run equilibria under
the dynamics F’ does depend on the size of storability parameters, the proportions
of agent types, the initial strategies, and the mutation rates.



7.5 Conclusions 181

The importance of having different intrinsic values in commodities can be seen
by comparing the results of Propositions 7.3 and 7.1 (where in both propositions
the proportions of agent types are equal) and the results of Propositions 7.4 and
7.2 (where in both propositions not all of the proportions of agent types are equal).
In Proposition 7.1, where differences in storability are assumed, the most storable
good can serve as the unique medium of exchange. In contrast, in Proposition 7.3,
where there are no differences in storability, a unique medium of exchange cannot
occur. Proposition 7.2 shows that among the equilibria that are asymptotically
stable, the most storable good can serve as a unique medium of exchange and the
second most storable good can serve as a unique medium of exchange. However, in
Proposition 7.4, where there are no differences in storability, an equilibrium with a
unique medium of exchange is not asymptotically stable in Example 1.

Similar to Wright (1995), the relaxation of the assumption about equal distribu-
tion of agents who specialize in different consumption-production activities leads
to other equilibria not found in Kiyotaki and Wright (1989). This evolutionary
model further emphasizes this result. In comparing the results of Proposition 7.2
with Proposition 7.1 and Proposition 7.4 with Proposition 7.3, with the relaxation
of equal proportions of agent types, the number of asymptotically stable equilibria
is increased.

The importance of initial extrinsic beliefs, as reflected by agents’ initial trading
strategies, is clearly evident. Given the same parameter vector of the economy,
different starting points may lead the economy to different equilibria.

The introduction of sufficiently small mutation rates changes the open balls by
a very small amount in comparison to economies without mutation, and leaves the
asymptotic nature of the equilibria virtually unchanged. Therefore, with sufficiently
small mutation rates, the initial trading strategies still matter in the sense that an
initial starting point can still put the dynamic system on an equilibrium path toward
one of the many steady states. However, if the mutation rates become so large that
each agent, regardless of the success of agent subtypes in acquiring the desired
consumption good, has a higher probability of switching to a subtype who trades
for a more storable good in the event of meeting another agent who does not have
the desired consumption good, then the economy converges to a unique equilibrium
— the fundamental equilibrium, where the most storable good serves as a unique
medium of exchange.

In conclusion, this evolutionary approach has offered further insights on the
evolution of money. Nevertheless, other illuminations from this approach may be
possible. Although it is beyond the scope of this chapter, it is hoped that this
evolutionary approach offers a framework for such future research topics as the
inclusion of fiat money, varying the number of agents, allowing for some presence
of double coincidence of wants, and the introduction of credit, stores or banks. Also,
it would be interesting to explore whether or not any of the specific dynamic models
encompassed within the general class of dynamics show any cyclical paths.
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Appendix A

The following theorem is used in the proof of propositions in Appendix B.
Theorem 7.1. Under the dynamics F’, described by the system of equations of

motion

Pt~ Ply = f! (P{(z),P;(Z),P;(z);A, M) fori =1,2.3  (7.8)

(! () having the properties defined in Definition 1'), if a fixed point

(Pl"zz), P;Ez)v P;Ez)) = (ky, k2, k3) for ki, ko, k3 € {0, 1} is contained in the ball B
defined by

B = {(Play. Plloy: Pliy) € [0.11x [0.1] x [0.1] : 7 ( Plls). Py Piy))
<0,i =123},

where for i=1,2,3, gB()) : Ri — R is characterized by the following two
properties:

(1) ifforanyt =1,2,... giB(PI’(z), P}y, Py <0 for P, € (0, 1) implies that

fors; = { —1ifk; =0 5 |: Pl (s) L0 ]

Lifki =1 APy Mok

t
o5 Pi(l)(s) + Mi(2)
APy Aiwhie)

and
(2) forj =1,2,3,

gl ()

!
an ()

§; <0,

then for every initial point (Plo(z), on(z), Pz?(z)) in the ball B, the state of the
econonty must converge to the fixed point ( PT(z)’P;(z)’P;(z) ).

Proof. The proof consists of two steps.

Step I: Show that for any (Plo(z), on(z)v P30(2)) € B, and for

—1lifk; =0
lifk; =1

>
Il

Jforanyr =1,2,...,
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(i) & P/3) > 8 Pl fori =1,2,3;and

SN oB(pttl pt+l pr+l B —
(i) g; (Plt(2) , Pzt(z) , P3t(2)) =g (Plt(z)’ PJo. sz(z)) <0,fori =1,2,3.
(Remark: Condition (ii) means that the path of the dynamic system described by

equation (7.8) remains in B forz > 0.)

Proof of Step I: Since (Plo(z), P20(2)’ P30(2)) € B, property (1) implies that under the
dynamics F’, fort = 0, §; Pil(z) > §; Pi(zz) fori = 1,2,3. Since Pi(zz) increases to
Pil(z) if 6; = 1 and decreases if 6; = —1, and with property (2) this implies that for
t=1, giB (Pll(z), le(z), P31(2)) < giB (Plo(z), on(z)’ P30(2)) < 0, fori = 1,2,3. Using
property (1) this in turn implies that

Pil(Z)(s) Mi(1) o5 Pil(l)(s) i)

8i — —
MioPi  AmAio) P, Amkio

fori =1,2,3,

which implies under F’ that §; Piz(z) > §; Pil(z) fori = 1,2,3. In general, one can

show inductively that for any (Plo(z), P20(2)’ P30(2)) € B, and for

—lifk; =0

% = lifk; =1

Jforanytr =0,1,2,...,

(i) & P35 > 8 Pl fori =1,2,3;and

i) g2 (P55 Piy)) < g (Pl Piay Pipy) <0, fori =1,2,3.

Step II: Under the dynamics F’, for every initial point (Plo(z), on(z)v P30(2)) in the
ball B the state of the economy must converge to the fixed point (Pl"zz), Py P;EZ))‘

Proof of Step 1I: Consider the function V(-) : [0,1] x [0,1] x [0,1] — RT

2 2 2
Since forany ¢t = 1,2, ...,

() V(ki, k2, k3) = 0; and

(ii) V(Plt(Z), P2t(2)7 P3t(2)) > 0 for all (P{(z), Pzt(z)’ P3’(2)) € B and (Pf(z)’ Pzt(z)’
P3t(2)) # (ki, ko, k3); and

iii) StepIh h that fi PO PO PO B.fors: = —1 lfkl =0

(iii) Step I has shown that for any ( 12 Py 3(2)) € B, ford; = itk 1

8 P3| > 8 Py foralli =1,2,3, then it follows that

4 (Pf<J§>l’ Py, Pstéf) =V (Plt<2>v Py, P3t<2>) : (7.9)
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where the inequality (7.9) is strict for (P, Py, P3) # (k1. k2, k).
Therefore, V(-) is a strict Liapunov function for f;'(-) (in Definition 1’) at the

fixed point (Pl"zz), Pz"‘(z), P;Zz)) on the ball B.

Given the existence of the strict Liapunov function V(-), given that f/() is
continuous, and given that every solution of equation (7.8) remains in B (by
condition (ii) of Step I) then by Corollary 4.1 of Kelley and Peterson (1991), for
any starting point in the ball B, the state of the economy (Py,, Py . P5,)) must

converge to the fixed point (Pl*(z), Py, P;;Z)).

The following two lemmas provide two methods for constructing the gZ(-)
function which satisfies the two properties in Theorem 1.
Lemma 7.1. Consider a fixed point v = (ky,ky, k3) for ki, ky, k3 € {0,1}, and

—1ifk; =0
define §; = % Lifk, = 1

a) ifk; = 1 and if there exists S|

, where j €{1,2,3}. Fori =1,2,3,

and R;f(z) such that

(€]
P! (S) Mi2 aS'tl ()
S?l(sz,PZ’Z,sz)z l(l)_ @ , where i) §; <0,
forj =1,2,3,
and
P! (S) Mi1 oR! 2 ()
R?Z(sz,PZ’Z,Pg"Z)f 1(2)_ i) , where ‘@ §; =0,
e 0 Pl M) IPjo)
forj =1,2,3,
then
1 if Ry, () > 1) () forall (Pl Piy. Pl
g’() = and all 1
Sy () — Rj () otherwise
satisfies properties (1) and (2) of Theorem I;
b) ifk; = 0 and if there exists S,.’(z) () and Rl?(l)(') such that
Plo®) 95,
Sl (Pl Pl Pl = — 2= 4 T yhere — 2225, <0,
@RI T2 T3 Ai(z)PE(z) AimAie) aP;(Z)

forj =1,2,3,
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and
Piy(s) i R, ()
R (Pl Py Pi) < A 1275 >0,
M 12 722 732 i(l)P,t'(l) AiyAi) 8P;(2) J
forj = 1,2.3,
then
. if RL () > S () forall (Pm), Pl p;(z))
ng ()= andall ¢

S,.’(z)(') — Rl?(l)(') otherwise

satisfies properties (1) and (2) of Theorem 1.

Proof of Part a): Since for i € {1,2,3}, g”(-) < 0 implies that S/, (-) < R}, (")
for any ¢, which further implies that

Pio® o || Po® e
A Pia A0k AwPiqy Moo ]

property (1) of Theorem 1 holds.
Since for j = 1,2, 3,

2 0-5 if R, () > S, () forall (P{(Z),P;(Z), P;(z))
ag}’;t 8 = and all ¢
](2) BSI(I)( ) . 3R;(2) () . .
T 8 — P 8, otherwise

505

property (2) of Theorem 1 holds.
Proof of Part b) can be done similarly.
Lemma 7.2. Consider a fixed point v = (ky, k, k3) for ki, kz, k3 € {0, 1},

and defines; = ) MK =0 e € 41,23}, Fori = 1,2,3,
1 lfkj =1
a) if ki = 1 and ’(” < 1 and pipy > iy and if there exists K!(-),
—t
z(l)() and N, (2)() S”Ch that Kt(Plt(z)’Pzt(z)’P;(z)) > Py + (P +

()
P(i—l)(l))Pi—lp(i+1)(2)’ where 5 <0, forj =1,2,3; Ml(l)(Pl’(Z),sz(z),

1(1)()

—
P3t(2)) > Pit1Pici P g where aPt—() ;i =<

<0,forj=1,2,3;
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a”sza)(Pl(zv 20 Pi) = P (P Py + Piet P + (P 1))

where aP't“)(S >0,for j =1,2,3,

then By = M) + KO i) — i) i
l NipO) +Ki()  LigNip() e

satisfies properties (1) and (2) of Theorem I;
b) ifki = 0 and M < land piqy > i) and if there exists K{(-), M, () and
— —
(l)() such that KI(PI(Z)’ 2(2)° P3t(2)) > P(i—l)(z) + (Pl + P(i—l)(l)) Pi—l
Py 1)) Where ﬁsj <0.forj =1,2,3;

b~ -~ 2
Moy (Pl Pl Pl = Pit (PP + Pt Pl + (Pie)? ),

! (+) .
i(2) — .
T §; = 0, for j = 1,2,3; and Nit(l)(Plt(Z)’P2t(2)’P?f(2)) =

-1 BN,'t(])(') .
P,-+1P,-_1P(l-+1)(2), where ng >0,forj =1,2,3,

where

then gB() — Mit(z)(') T Klt ) [/’Li(l) - Mi(Z)] _ /\,‘(2)
l Niy () + Ki () L Nip ) gy

satisfies properties (1) and (2) of Theorem 1.

iy (5) —t —t —t
Proof of Parta): Since ::1) = P(i—l)(2)+(Pi + Py + Pi+l) Pi1 P 412
P} ) () —t —t —t —t
and T Pine + (Pi + P(i—l)(l)) PiciP 1)) + Pis (PiP(i—l)(l)+

- .
Pt Pl + (Pion)?) it follows that,

®
i) -t -t —t
[P,“)P:} . (i) —mi] _ Miy+ Py + (Pi + P(f—l)m) Pic1P 41

) Ploy®) | P 4P P
[Piz’;l} /L(z>[ ‘2’;] Nioy+ Py + (P + Plcyn) P Plasney

i2) (2)

[Mim - Mf(l)]

+
AiNfy)
_ M, + K] N (1) — i)
Nio) + K| Ai@)Nf 2
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Since fori € {1, 2,3}, giB (+) < 0, the above equation further implies that

3]
Pl P N (i) — mi] - Aiqn) <1
Aew] " TEae] Ao
Pl Pi 1@ | Bl P
it follows that Property (1) of Theorem 1 holds.
Property (2) of Theorem 1 follows since for j = 1,2, 3,

agf(-)& _ M, ' 1 B aNf(Z)& M, + K; n [1i2) — i ]
opPt ) apt U N!, +K' 9Pl "’ 2 2
o T Mt | (e k) e ()
t t
N oK/ ' Nioy — My, <0
P, 2=
o (Vi )

Proof of Part b) can be done similarly.

Appendix B

For all of this appendix, when Lemmas 1 and 2 are used, u;x) = 0 Vi, k.

Proof of Proposition 7.1: 1. For the first three equilibria, to derive the open balls of
attraction, use Theorem 1 of Appendix A. The open ball B;, fori = 1,2,3, is

{(Play Pl Plloy) € 011 % [0.11x 10,11 : g (Pl Pl Pl

<0,j = 1,2,3},where

. 4 )»1(2) B _ . . .
(1) with 3 < o) g = Sf(z)(') - R’l(l), which is constructed using Lemma 1

LPly b+ P % (24Pl ) P
¢ N — 3530 T ¢ 2 3m)2 . By _ ¢t A
where SI(Z)( )= e and Rl(l) =%, & = Sz(l)()
‘ Lo . ' %Plt(z)"'%Pst(z)
Ry (+), which is constructed using Lemma 1 where Sz(l)(') = and

5 (1Pl +Ply)

. A B .
Ry () = = tand with - < 722, g3 = S1,,() — Ry, which

)L3(1) > 83

1 1 1
1+ 4 (14 Py ) Ploy+ 3 (24 Piy))
A32)

A2(2)

is constructed using Lemma 1 where Sé(z)(') =

1 pt

lp
r _ 35,
and R3(1) = T
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s 3 Moy By Mg O+KIO) Ay
(2) with 1< T g = —Nf(z) OFK0 T which is constructed using Lemma
_ 1 2 _ .
2 where Ki() = 3P5, + 5. M{;)() = 5 and Nj, () = =1+ Py

gfz = Szf(l)(~) — R;Q) (+), which is constructed using Lemma 1 where Sé(l)(~) =

1,1 ' '
§+ﬁ(2+P1(1))P3(2) t 3 1(2)+27(1+ 3(1)) By __

Aa) and R (2)() - o) and g3° = S3(2)() 3(1)’
14+ Z(1+P + 55 P!

3 27( 2(1)) 27 11(1) and

which is constructed using Lemma 1 where Sg(z)(') =

A32)
P + 5 P/
t _ 2(2) 12) .
R?’(l) - /13(1) ’
3) g = S{)() = R}, which is constructed using Lemma 1 where S|, (-) =
11 2 pt 1 pt P 2 o
7 +35 P31y t37 P, 1Pl +2P
2727730 12772 ¢ _ 3 T2720) . By _ ot N pt ] .
A nd Rl(l) - A1) 1 8 = SZ(])() Rz(z)(), which
is constructed using Lemma 1 where S} () = 3oty and R, () =
£ 20T e 20\ =
(1+Pf(1))717(1+P3t(2)) . 9 A1) B; MSI(I)(')+K§() sy )
%20 pand with 7 < 3% g3° = Mo OFR0 X’ which

is constructed using Lemma 2 where Ki(.) = % + % (1 + Pzt(n) Pl’(z),
(1)() =37 1(2) and N3(2)() = 27(1 + P (1))

II(1). This is shogn by contradiction. Suppose that there exists an initial point,
say (P(l)(z), Pg(z), Pg(z)), that leads the economy through a path (P’l(z), Py
P,),s, o (1,0, 1) or (1,0,0), (0, 0.1) and (0.0,0). Then P4ty > Py, for

some ¢. It follows that under dynamics F,

Plo(s)  PL.(s)
20) > 2(2; , for some ¢.

APy APy

That is,

1

1~ o~
P+ 24+ PY )P )
12(1) ( 12) 7( 1(1)) 3(2)

1 I~,
/12(2) ( Pl + (1 + P1(1))P3(2) + (1 + P 1) T P3(1)))
(7.10)

However, since A1) > A2, ﬁm < ﬁ, and since %Ptl(Z) + 217(1

1(1))P 2T 1 P[3(2) 1Pt(z)"‘27(1+P1(1))P3(2)+27+ ; Pt(1)+ P3(1),
equation (7. 10) cannot be possibly true.

II(2). Consider the fixed point (1,1, 1). One of the eigenvalues of the Jacobian

evaluated at (1,1,1) for the Example 1 is 1 + %(Al(z) — Aiy) > 1 (due

to A12) > Ai1y). Therefore (1,1,1) in Example 1 is not asymptotically stable.
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Proof of Proposition 7.2: 1. For the first six equilibria, to derive the open balls of
attraction, use Theorem 1 of Appendix A. The open ball B;, fori = 1,2, 3, is

(1)

(@)

3)

{(Plo(2)’ Pz(z)’ P3(2)) €[0,1] x [0,1] x [0,1] : g,’ (Pl(z)’ on(z)v P?f)(z))

<0,j = 1,2,3}, where

. A B L .
with P| + P; < #ﬁ:, gfl = S{Q)(.) - Ri(l), which is constructed using
P3P3’(2)+(P1+P3)P2P3+P3P2(P3+P1+P2P2’(1)) and R!

A1) 1 =

Lemma 1 where S, () =

(Pi+Po+ Py P;(l))PZPZf(Z)& .

3

N Al
@ = S1)(’) = Rj) (), which is constructed using Lemma 1 where S5, (1) =

Pi(Plyy+ PPl ) . PLPs(Pi+ PPl + P3Pl ) )

T and R (2)() = o ;and with 1 + Pj(P; +
) . .

P3) < Azﬁ: g0 = = 8} () = Ry ,), which is constructed using Lemma | where

g _ Pr+(Ps+Pr 2(1))P1Pf(2)P2+P1Pz(Pz+P3P2’(1)+P1) nd R — PPy,
30() = 10 3 T A

. )L(z) ,EZ _ Mlt(l)(')‘{'K{() 11(1)
with2(Pr+ Py) > 3.0, 817 = NipO+KO ~ hiey
Lemma 2 where K{(.) = P3P;, + (P1 + P3)P2Ps. M{)() = (P,)? Ps

and N, () = PyPs(Ps + PiP},): &5° = S3,)() — Rh,) (), which is

, which is constructed using

Pi+(Py+P3+P P, ) P3Pl Py
constructed using Lemma 1 where S’ (1)() ( Azmlm) @ and
PPl +Ps P (PP Pl ) A 5
t . 12 3/ . 1+ P (Pr+P3) 3(2) B,
Rz(z)() 220 ; and with P (Pi+Py) = 231 8 =

832 () — Rj;, which is constructed using Lemma 1 where S5, () =

Pat(Ps+Pa Py ) PLPa+ PP (Pa PPy + PP ) PPl +(Ps+P) PPl Py

t
A3(2) and R3(1) A3(1) ’
1+ P, (P +P3) 11(2) — Qt ()_ pt . .
with TFR(PEP) < T gl = Sl(Z)() Rl(l)’ which is constructed using

Pz+(P1+P3P3(1))P2P3+P2P;(P3+P1 Pl P2 2(1))

I —
Lemma 1 where 51(2)() = o and
P}P +(P1+P2)P2P P} A B
T 32) 20) 20) 3o gt
Ry = P ; with 2(Py + Pp) > T 82 = Sy () —
R! hich i d using L 1 where S} _ Altatr) d
52 (), which is constructed using Lemma 1 where S5 ;) (-) = o0 an

(P2+P1 Pl(l))P;Pz(z)Pl 1P P (P1 +P2P1(1))

2(2)() = T2 ;and with 1 4+ P (P + P>) >
m B3 _ Mgt(l)(')'i‘Kﬁ(») /1}(1)
To) g3 = —Né(z)(')+1<§(.) T , which is constructed using Lemma 2 where

Ké() = P, + (P3 + P2P2(l))P1Plt(2)P2’ 3(1)() (P]) P2P1(2) and
Ny () = PyP2(Py+ PrP):
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. A B, L
with 1 + P3(Py + P3) < Al—f; g = Slt(z)() 1(1), which is constructed
) Py+(Pi+PsPL Y Py Pl Py+ Py Py Ps+P Pl +P,
using Lemma 1 where S|, () = ( fw) 2(2;“2) ( )
_ PPy haa Ba _ MigO+KIO  a
and Rl(l) IO with 2(Py + P) < Lo 82 T Ny OFKO Ty

which is constructed using Lemma 2 where K}(.) = P, P{(z) +(P, + Py) P3Py,

My, () = P3P (Pl + P+ P3P3’(1)) and Nj, () = (P5)* P}, Py: and
gf“ = % - 13—:”, which is constructed using Lemma 2 where
Ki() = PPy, + (Py+ Po) PPl Po, My () = (P1)’ PP, and
Né(z)(') - P1P2(P2 + P3P2(1) + Pl 1(1))

. M) Bs _ M{y+Ki0 Ay
with 1 + P>(P, + P3) > T 81 = N K0~ T’ which is constructed

using Lemma 2 where K{(-) = P; + (P + P3P3(1))P2 2(2)P3, Ml(l) =

_ 14 P3(PL+Py) A
(Pz) 2(2)P3 and Nlt(Z) = P2P3(P3 + PZPZ(I))’ with —1+P§(P;+P§) < ﬁ,

I+ K5 . . .
ng = % - t—if;, which is constructed using Lemma 2 where
2(1) 2\
K() = Pi+(P> + PrP)) P3P My, () = P3Py (P + PPl + P3P3t(1))

t A3 Bs _ M§(1)(')+K§(-)_
and Nz(l)() = (P3)? P3(2)P1,andw1th 2(Py+P3) > T 8 = Ny OF K0
A3y

0 , which is constructed using Lemma 2 where Ki(.) = Psz’(z) + (P + Pp)
P1P2, 3(1)() = (P1)2P2 and Ng(z)() = P1Py(P,+ P; 2(1))7

t t
I+Py(PitPy) o hiy By _ Mg tKiO  hgy
with - BPTP) < o 81 = NipTK0 ~ hio)” which is constructed using

Lemma 2 where K{(-) = P; + (P + P3P3(1))P2P3, Ml(l) = (P»)*P; and

r 2. 1+ P3(Py+P3) bay B _ :
N1(2) = P,(P3)~; with TP EP) < o)’ &' =S (1)() 2(2)(.), which

Pi+(Pa+Ps+ Py Pl ) PPy
A1)

. ~

h B+ o A o Be

is constructed using Lemma 1 where Sé(l)(-) = and

, _ PlP1(2)+P2P3P3(2)P1+P3(P1)

Ry () = T2 and with 5575 15 o 83 T
M§(1)(')+K§() /1}(1)
N§(2)(')+K§() )‘3(2)
(P3 + PZPZ(I))Pl P, 3(1)(-) = (P1)2P2 and N§(2)(') = Pl(Pz)z.

which is constructed using Lemma 2 where K{(.) = P, +

IT (i). The first part is shown by contradiction. Suppose that there exists an initial

point, say (Pl(z), Pz(z)v 3(2)) that leads the economy through a path
(Pl(Z)’ 22)° 3(2)),21 to (1,0,0) and (0,0,0). Then the following must be
true:

Ptzm > Pz(l), for some ¢.
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Under dynamics F,

() Pl (s)
2(1) 2(2; , for some ¢.

12(1)P2(1) AZ(Z)PIZ(Z)

That is,

AZ() [PlPl(z)+(P2+P1P1(1)+P3)P1P3P3(2)]

1
> — PPl + (P + PPy ) P PP
M) 12) 1(1) 32)

+ (PP Py, + PP P, + (PO?) Ps]. (7D

1

o and since P, > P;, Equation

However, since A1) > A2, #(1) <
(7.11) cannot be possibly true.

(i) In Example 1, one of the eigenvalues of the Jacobian evaluated at (1, 0, 0)
isl+ (lz(l) — Az(z))Pl + lz(l)Pl P3(P; + P3). Since lz(l) > Az(z), at least
one of the eigenvalues in Example 1 is greater than one. Therefore, (1,0, 0)
is not asymptotically stable.

In Example 1, one of the eigenvalues of the Jacobian evaluated at (0,0, 0) is
1 + A1y P2 Ps. Therefore, in Example 1, (0, 0, 0) is not asymptotically stable.

Proof of Proposition 7.3: Since A;1y = A;2) and since for t = 1,2,3, ..., for
€ (0,1), Pl Pl 717P5i+1>(2)—217(1+P(3+1)<1)+P<ti—1>(1))
1(2) (1)?(1 A Pl Ai(1)

i i(1) i(2)4i(2)
that Pi(JZF) > Pi(z) Vit Withky =k, =k; =1and B = [0,1] x [0, 1] x [0, 1], the

proof in Step II of Theorem 1 in Appendix A applies here.

< 0, it follows

Proof of Proposition 7.4:

I. The open balls B ; (j = 1,2,3 (modulo 3)) are constructed using Lemma 2 and
Theorem 1 of Appendix A where with 2(P;_; + P;) > 1, g?f is constructed
using Mf ) = (Pj4+1)*Pj—1, Nl = (Pj—i + P;P{;_ ) Pi+1Pj—i and

r _ p! i WP —1(Pj—1+Pi 1)
K» = P(j 1)(2) + (P + P] I)Pj 1P'+1, Wlth l_,’_}/)] 1(}1+ijﬁ-l) 1 gj+1

is constructed using M(,+1)(1) = (Pj—1)? P] oy Pis N(j+1)(2) (P +
P]—IP(j—l)(l))Pj P;_; and KAJrl = P, + (Pj+1 + Pj(l))P P(j ) and

.y 1+P; (P41 +Pi—1)
with FP (PP ) < 1, g] | is constructed using M(j “He) = = (Pj41 +

P] 1P G+1)(1) + P]P](l))P PJ—H, Nj - = (P ) P(z)P]-H and Kj—l =
Pjpi+ (Pj-1 + P(j+1)(1))P]+1PJ'
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II. In all examples, without loss of generality, set A;)y = Airg)y = 1 for all

i,i' k.k'.

Consider the dynamics under Example 1. (1,0,0) is not asymptotically stable
since one of eigenvalue of the Jacobian is 1 + P; P;(P; + P3) > 1. (0,1,0) is not
asymptotically stable since one of eigenvalue of the Jacobian is 1+ P, P,(P,+ P,) >
1. (0,0,1) is not asymptotically stable since one of eigenvalues of the Jacobian is
14 P, P3(P, + P3) > 1.(0,0,0) is not asymptotically stable since one of eigenvalue
of the Jacobian is 1 + Py P; > 1. (1,1,1) is not asymptotically stable since the
eigenvalues of the Jacobian are 1 + Py P3(P; — Py),1 + Py P,(P; — P,), and
1 + P, P;(P, — P3) and for any given set of values of Py, P,, and Ps, at least
one of the eigenvalues is greater than 1.

Appendix C

Proof of Proposition 7.5: Consider the g, for which g;/ < 0 for X; = B;,B;
and Ej, and i = 1,2,3, found in the proof of Proposition 7.1, 7.2, and 7.4 in
Appendix B. It follows that there exits an € > 0, such that if u;x) < €, for all

C _ X mw—man| X lmw—man|
i=12,3andk =1,2,theng;’ + Tk, <Oand g’ + PRy G < 0.
Hence, the same principles described in the proofs of Proposition 7.1, 7.2, and 7.4

can be used to construct the open balls. Specifically, the open ball X j» where
= X, .
X; = {(Ply Pllay. Poy) € 10117 : & (Plly). Plloys Piay) < 0. i = 1,23},

is constructed as follows.

I(i). For the results in Part I of Proposition 7.1 to hold under dynamics F', X; =
B; for j =1,2,3:(1) glfl — gfh + Moz ngl - gfl + @7 004

J ¢ A(1)A1(2) A2(1)A2(2)
By _ B H3()—H32) . ) By, _ B K1) —HK11) By, _ B H22) —M2(1)
83 & + A31)A32) 12 g 81 M@ Nj )’ 8> &> Az
B, By K3 —H3Q) . B; Bs mMm—me B3 B3
and = ST 50) . (3 = —
83 8 T Az () & g+ i 82 & +
Ha2)—H2(1)
e and
M)

g2 = g 4 BT (i) The proofs for the remaining results in Propo-
A3(2)N3(2)(')

sition 7.1 under dynamics F’ can be done similarly to that of Proposition
7.1
II(i). For the results in Part I of Proposition 7.2 to hold under dynamics F', X; =

E] fOrj — 1,2,3,4,5,6,(1)g?1 — ngl_'_/'Ll(l)_Ml(Z) gZEl — g231+/"2(2)_//v2(1)

- At ? Aayrae)
B B H3()—H32) . B, B> K1) —H1(1) B B>
and = =L 0. (D = 2@ =13 =
§3 8t Lok ) & &7+ M@V ()’ &2 &+
Ha2)—H2(1) B> B, H3)—H3(2) . B3 Bs Kim—H1@ B3
——=—— and = £ 3@ = Hi—He) —
A2(1yA2(2) 83 8 T A31mA3e) () & gt Tinhi 82
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TI(G).

Iv.

B3 | 2@~ Ha B3 By | 13@)=H3() . B, By | M()—HIQ)
+ and = + 4 4 B~ he
&2 Aa()Aa@) &3 &3 A3 Ny ()’ @ g &1 LA

By __ By Ha(h—H2(2) By __ By M3 —H3(1) . Bs __ Bs

= ————== and = == (5 =

& &+ EYANG! 83 g8 + TN () (5) g, g +
mi@e—Hiy Bs __ _Bs H2()—H2(2) Bs _ _Bs H32)—H3(1) .

e = === and = —=——=: and (6

M(z)Nf(z)(')’ & &+ Az(l)Nzt(l)(') 83 8" + 13(2)N3t(2)(')’ (©)
B Be , Mm@~ Be B | M@~k Bs Bs | ma@—H30)

— = —= U and = TN EAT

81 g+ TN () & &t T 83 &+ T3 N, ()

(ii) The proofs for the remaining results in Proposition 7.2 under dynamics

F’ can be done similarly to that of Proposition 7.2;

For the results in Part I of Proposition 7.4 to hold under dynamics F’, X; =

D . . B B A1)~ H1(1) B ’51 H2(2)—Ha(1)
B;forj =1,2,3;(1 ' = Py = = + N
J J ’ ( ) &1 81 M(z)Nf(z)(') &> &> 12(2)N2t(2)(')

B B M3 =H3@) . B B> M=t B B,
and = 2 = T =

&3 & + ANy ()’ 2 & st Ty Niy (> 82 &+
H22)—H2(1) B3 B, H32)—H3(1) . B3 B, Hi@)—H1(1) B3
—_— and = —_— 3 = —_— =
AZ(Z)Nzt(z)(') 83 &3 + 13(2)1\/;(2)(.)’( )gl 81 + AI(Z)Nf(z)(')’ &>

ng H2()—H2(2) H32)—H13(1)
2 A2(1)1V2t(1)(') 13(2)N§(2)(')

results in Proposition 7.4 under dynamics F’ can be done similarly to that of
Proposition 7.4.

Proving the result in Proposition 7.3 under dynamics F’ : since A i) = Ai@)
and since fort =1,2,3, ..., Pit(z) € (0, 1), there exists an € > 0, such that if

and g3§3 =g) + The proofs for the remaining

1 t 1 t t

Pit(l)(s) _ Pit(Z)(S) i@~ Hi) ﬁP(i+1)(2)_f(1+P(i+l)(l)+P(ifl)(l))+
)L,'(I)F;(l) ki(z)?lt-(z) )‘i(l)ki(Z) )‘i(l)

M@0 < (), This further implies that P/T! > P! V¢ Withk, = k, =
AiAi) i(2) i(2)

k3 = 1land B = [0, 1] x [0, 1] x [0, 1], the proof in Step II of Theorem 1 in
Appendix A applies here.

Hik) < €, then

Appendix D

Proof of Proposition 7.6: Consider the equilibrium (0, 1, 0) Since,

and if p;2) > Aiqy + Wiq, then it follows that for i = 1, 3,

t o
Pi(z)(“) Mi(1)
/1,'(2)?;(2) Al'(l))‘i(z)

t t
P (s) " Kio)  __ Hie) and Pio)(s) " Kiy 1
LwPigy  Aiwkie) T Mokie) kP, Mmoo T Ao
Mi(1)

+ —+~—fori =1,3
AimAi)

P it(l)(s) Hi(2)
Ai(l)?ﬁ(l) Ai(l)li(z)

for all (Plt(zy P} P_,f(z)). Also, since
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t t
Py, (5) Moy Me and PZ(I)(S) H22)
Mo Pay  mhe) T Aamrie) 0Py, A

- L _ e
T Ay A

. . Pl (s) Pl (s)
and if > Ao + , then it follows that —22- Ha) 21)°
Mty 202) T MH2(2) ooy | R0R2@ o o)
M t t t . . — .
Tondag, forall (P{o). Pj o). Piy)). Therefore, there exists a unique open ball B' with
E~4

g? = diq) + iy — i) < 0fori = 1,3 and ng = A + M2 — M2y <0,
and, with Theorem 1, the equilibrium (0, 1, 0) is the only stable equilibrium.
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Chapter 8
Conclusions

In responding to the challenge of justifying the existence of equilibria after aban-
doning individual market participants’ rationality, this book has presented a series
of analytical models applying the Darwinian evolutionary idea of natural selection
to the markets to examine the occurrence of the perfectly competitive equilibrium,
monopolistically competitive equilibrium, and informationally efficient equilibrium
in various contexts. The model in Chap. 2 concludes that the perfectly competitive
equilibrium can be achieved without assuming that firms are purposively maximiz-
ing their profits. The model in Chap. 3 proves that the monopolistically competitive
equilibrium can emerge as a long run aggregate market outcome even if firms are
totally irrational. Both models in Chaps. 2 and 3 assume that firms are totally
irrational in the sense that firms enter the industry regardless of the existence of
profits; firms’ outputs are randomly determined rather than generated from profit
maximization problems; and firms exit the industry if their wealth is negative.

The models in Chaps. 4, 5, and 6 shows that an informationally efficient
equilibrium can also be achieved in the futures market or one-sided buyer auction
market after removing the individual market participants’ rationality. In these
models, the market force serves as a natural selection process, that constantly shifts
the wealth over times from traders with less accurate information to traders with
more accurate information. In other words, the market selects against noise and
selects for more accurate information.

One extension would be to examine the impact on market efficiency of con-
servative traders who are behaving conservatively in their trading activities to
avoid potential losses. Till date, the consensus in the literature has been that the
presence of informed traders is necessary for achieving informationally efficient
equilibrium. However, Luo (2011) proves that without such informed traders,
the presence of conservative traders is sufficient for market efficiency to occur.
Specifically the model uses an evolutionary idea of natural selection in the context
of a futures market. Traders act on their own predetermined trading characteristics
in their trading activities. This includes a wide spectrum of trading behavior ranging
from very aggressive behavior to very conservative behavior. This model shows
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theoretically, that even without informed traders, as long as there is the presence of
a sufficient number of conservative traders, with probability one, the proportion of
time, that the futures price is arbitrarily close to the spot price, converges to one.
The presence of conservative traders plays a critical role in driving the futures price
to the spot price.

Chapter 7 uses an evolutionary approach to explain the origin of money as media
of exchange in a primitive economy, where agents specialize in production for the
purpose of trading for their own consumption of goods.

In all evolutionary models in this book, the market aggregate rationality is
established in the long run even though the individual market participants are
irrational. The natural selection in the markets works to promote efficient outcomes.

The models presented here shed some lights on the validation of the concepts
of the perfectly competitive equilibrium, monopolistically competitive equilibrium,
and informationally efficient equilibrium. Undoubtedly, there are still a lot of other
equilibria that need to be examined after abandoning the rationality of individual
market participants.
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