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Introduction 

The Area of Research and the Object of Investigation 

In this thesis we will investigate trading strategies in illiquid markets from a 

market microstructure perspective. Market microstructure is the academic 

term for the branch of financial economics that investigates trading and the 

organization of security markets, see, e.g., Harris (2002). 

Historically, exchanges evolved as a location, where those interested in buy­

ing or selling securities could meet physically to transact. Thus, traditionally 

security trading was organized on exchange floors, where so-called dealers 

arranged all trades and provided liquidity by quoting prices at which they 

were willing buy or sell. Consequently, the initial surge of the market mi­

crostructure literature focused predominantly on this type of market design, 

which is often referred to as quote-driven. 

Nowadays, the interest is shifting towards order-driven markets. Beginning 

with the Toronto Stock Exchange in the mid 1970s and increasing in fre­

quency and scope, this market structure has emerged as the preeminent form 

of security trading worldwide. In order-driven markets, exchanges arrange 

trades by matching public orders, often by employing automatic execution 

systems. 
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A major difference between a quote-driven and an order-driven market arises 

from the transparency pre- and post-trade. The pre-trade transparency con­

cerns the question whether the order book is visible to the keeper only, or 

whether it is open to the public. The post-trade transparency concerns the is­

sue whether the details of recent trades are immediately reported to the pub­

lic or not. Traditionally, most of the quote-driven markets were opaque, i.e. 

they offered only a low pre- and post-trade transparency, since the knowledge 

of the order flow could expose market makers to undue risk as they wanted 

to unwind positions. However, nowadays many order-driven markets, which 

are operated electronically, provide an order book that is completely or par­

tially open to the public. In this thesis we will investigate the question of 

how investors can exploit the pre-trade transparency in order to derive op­

timal trading strategies. By choosing a market or a hmit order, selecting a 

limit price, and by eventually specifying further contingencies under which 

circumstances the order should be executed, a market participant enjoys ac­

cess to a wide range of strategies that trade off execution certainty against 

the expected execution price. Specifically, we will address the following four 

issues: 

• Whether to break up orders. 

• How to time order submissions. 

• How to chose an reasonable limit. 

• Whether to restrict the display of limit orders. 

Our analysis will focus on large institutional investors (like insurance com­

panies or pension funds) whose transaction sizes in a single stock represent 

a significant fraction of this stock's daily trading volume. These are particu­

larly interesting, since acquiring or unwinding large positions in one security 

can incur significant costs which directly influence the return on the invest­

ment. 
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Imagine, for example a market order. Small market orders can usually be 

executed with little or no effect on prices and they pay one-half of the bid-

ask spread for the opportunity to immediately trade. However, large market 

orders are more difficult to execute than small ones as they run through 

the order book until they are completely filled. The effect of executing a 

market order on prices is called price impact. It increases with the volume 

of the market order. Often, the price impact is the most significant cost of 

trading a large order. Hence, a large trader who uses a market order pays 

significantly more for immediacy than a retail investor who just wants to 

trade a few shares. Note that the price impact of a certain market order 

depends crucially on current market conditions. Since market conditions 

change quickly and unpredictably, traders who will use market orders at 

some point in the future cannot be sure about the prices they will receive. 

We will introduce an innovative hquidity derivative that offers protection 

against varying price impacts for a certain period of time. 

Instead of using a market order, the large trader might want to employ a 

limit order. Investors who submit limit orders offer liquidity. Their orders 

give others the ability to trade when they want to trade. The originator of 

a limit order should keep in mind that displaying large orders in an open 

book may reveal his or her motives for trading. For small volumes, this fact 

may be negligible. However, institutional investors often break up large limit 

orders into smaller packages if they fear that showing their full sizes would 

cause the market to move away from them. 

Iceberg orders facilitate these trading practices by executing such business 

automatically in the order book. They allow market participants to submit 

an order with only a certain portion of the order publicly disclosed - just as 

the iceberg's peak is the only visible portion of a huge mass of ice. Once the 

disclosed volume of an iceberg order has received a complete fill, a new peak 

appears in the book, with the volume equal to the initially disclosed amount. 

This loop is repeated until the whole iceberg is completely satisfied. At this 

point you may already suspect that the use of iceberg orders also comes 

at a cost, otherwise everybody would use them exclusively instead of limit 
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orders and the order book would be completely opaque. In order to discover 

the differences between pure limit and iceberg orders one needs to consider 

the way orders are queued and processed in the order book. In almost any 

case this is governed by the price-time-priority rule. Price priority gives 

precedence to the lowest sell and the highest buy orders over all other orders 

stored on the same side of the book. Time priority means that among orders 

at the same price, the order placed earhest takes precedence. To control for 

time priority every order receives a time stamp when it appears in the book. 

This implies that a limit order enjoys a better overall time priority, as it has 

just one initial time stamp than an iceberg order where every peak is given 

a new time stamp when it shows up in the book. 

Note that a limit order is basically a special case of an iceberg order where 

the peak size coincides with the overall order volume. 

So far we have discussed the general area of research and we have presented 

the object of investigation: a large investor who is trading in an order-driven 

market that provides pre-trade access to order book data. Furthermore, we 

have introduced the basic order types available to the large trader: market, 

hmit, and iceberg orders. There follows a brief overview of issues that will 

be analyzed in the next three chapters. 

Outline of the Thesis 

In the first chapter we model the interaction between the trading activities 

of a large investor, the stock price, and hquidity. Our framework generalizes 

the constant hquidity model of Prey (2000), and an extension by Prey and 

Patie (2001), where hquidity is made a deterministic function of the stock 

price by introducing a stochastic hquidity factor. This innovation has two 

implications. Pirst, we can analyze trading strategies for the large investor 

that are affected by changes in market depth. Second, the sensitivity of stock 

prices to the trading strategy of the large investor can vary due to changes 

in liquidity. The main features of our model are demonstrated using Monte 



Introduction 

Carlo simulation for different scenarios. The flexibility of our framework 

is illustrated by an application that deals with the pricing of a liquidity 

derivative. The claim under consideration compensates a large investor who 

follows a stop loss strategy for the hquidity risk that is associated with a stop 

loss order. The payoff of this claim can be best described by comparing a 

stop loss strategy in different regimes of liquidity. 

If the market is perfectly liquid, as in the setup of Black and Scholes (1973), 

the investor will always receive the stop loss price for the asset. However, if 

the market becomes illiquid, the trader will receive a price less than the stop 

loss limit. If the degree of the illiquidity in the market does not change, as 

in Frey (2000), or can be interpreted as a function of the asset price, as in 

Frey and Patie (2001), this discount due to illiquidity is deterministic. This 

in turn means that the investor can adjust the stop loss limit in advance, 

so that he or she will always receive a deterministic amount for the assets. 

However, if order book depth is stochastic, the large investor faces hquidity 

risk. 

The hquidity derivative matures when the stock price falls below the stop 

loss limit for the first time and then pays the price difference between the 

asset price immediately before and after the execution of the stop loss order. 

The setup to price the liquidity derivative is calibrated for one example using 

real-world limit order book data to give an impression of the magnitude of 

the liquidity effect. A number of empirical studies provide strong evidence 

that investors care about liquidity risk, which implies that this type of risk 

is priced into asset returns. Since liquidity is a non-traded risk factor the 

market price of hquidity risk appears in the pricing formula of our hquidity 

derivative. Similar to models with stochastic volatility it has to be estimated 

from other traded instruments that are exposed to this source of risk. We 

present a pragmatic approach to determine the market price of liquidity risk 

from traded European put options. 

In the second chapter we will present a new pragmatic approach to determine 

optimal liquidation strategies if an investor uses market orders to unwind 

large security positions in an ilhquid market. To keep the setup tractable we 
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take a step backward and assume a deterministic relationship between the 

volume of a market order and the resulting price impact. Under the assump­

tion that the liquidation horizon is given exogenously, the investor maximizes 

an objective function that considers the expected liquidation revenues and 

the respective standard deviation. The basic structure of our setup is closely 

related to approaches proposed by Bertsimas and Lo (1998), Almgren and 

Chriss (2000), Hisata and Yamai (2000), and Dubil (2002). While these 

authors focus mainly on theoretical aspects with the intention of deriving 

closed-form solutions for special types of market impact functions, we will 

propose a framework that is able to capture important empirical phenomena 

in the stock market. Specifically, the model contains: 

• a U-shape for intraday stock market liquidity, 

• power price impact functions, 

• periods that allow the order book to be rebuilt, as boundary conditions 

for the time between subsequent trades. 

Furthermore, it allows us to incorporate fixed transaction costs, as fixed 

charges incurred by the exchange or opportunity costs for handling the trans­

actions in the front and back ofiices. The new model is very flexible since it 

allows for liquidation intervals of varying length and forgoes the assumption 

of a constant speed of trading. Examples with real-world order book data 

demonstrate how the setup can be implemented numerically and provide a 

deeper insight into relevant properties of the model. 

As already discussed briefly in the previous section, market participants with 

large orders to execute are often reluctant to expose these to an open order 

book in their entirety in order to avoid a potential adverse market impact. 

In these situations investors often use iceberg orders. 

In the third chapter we analyze the rationale for the use of this order type by 

assessing the costs and beneflts of this trading instrument. At least to our 

knowledge, this is the first analytical approach that allows the determination 
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of the optimal limit and the optimal peak size of an iceberg order. We assume 

that the investor who has to liquidate a large position in a stock within a 

finite time horizon follows a static strategy, i.e. once the limit and the peak 

size of the iceberg order are chosen, the trader sticks to this strategy over a 

fixed period. In our setup we will balance the relative advantage of hiding 

the actual order volume against the overall time priority of the iceberg order 

that deteriorates the smaller the peak size that is chosen. 

Note that unless an iceberg or a limit order is immediately executable, i.e. the 

limit is set so aggressively that it is actually a market order, the probability 

of receiving a complete fill within a finite time horizon is strictly smaller than 

one. We propose two different approaches to incorporate the execution risk 

into our model. The first one assumes that the investor is forced to trade the 

remaining shares with a market order if the iceberg order fails to receive a 

complete fill within the prespecified time horizon. This setup is referred to as 

the self-contained approach. The second framework considers the execution 

probability as a boundary condition, i.e. only those combinations of peak size 

and limit are admissible that ensure a certain execution probability within a 

prespecified time horizon. This model is referred to as the open approach. 

Once again we use a clinical order book data sample to explore important 

features of the model. 
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1 Modeling Feedback Effects with 

Stochastic Liquidity 

1.1 Introduction 

Aspects of market liquidity include the time involved in acquiring or liqui­

dating a position and the price impact of this action. In this chapter we focus 

on the second issue. For large institutional investors in particular, many of 

the existing pricing models are only of limited use since they assume per­

fectly elastic supply and demand functions for the asset under consideration. 

This assumption is often violated if the trading activity of a large investor 

accounts for a significant fraction of the overall turnover in an asset. In this 

case, ignoring liquidity issues can result in a serious underestimation of the 

risk that is inherent in a certain investment strategy. 

We present a framework that incorporates the liquidity risk arising for a large 

investor, whose trading volume cannot be absorbed by the market without 

a significant price change. Our model has two main ingredients. On the 

one hand, the stock price process is influenced by the trading activity of the 

large investor, whereas the impact of the trading strategy on the stock price 

is modeled using a stochastic liquidity (henceforth SL) factor. On the other 

hand, the stock price and the liquidity factor can have an impact on the 

trading strategy of the large investor. 
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In principle one could describe this scenario in two ways. First, one can 

build an equilibrium setup to explain the machinery of the market. Such an 

approach is sensible if one intends to analyze the motivation for trading or to 

investigate strategies that the large investor can use in order to exploit the 

power to move prices in a certain direction, see, e.g., Kyle (1985). However, 

for pricing purposes such complex frameworks are often unsuitable, as they 

are difficult to calibrate. In this chapter we follow a second approach by 

directly modehng the asset price dynamics that result if the large trader 

follows a certain trading strategy. We assume that the liquidity in the market 

is given exogenously. 

There is a growing theoretical literature that investigates the interaction of 

liquidity and trading strategies of large investors. Part of this literature 

considers optimal hquidation strategies for large portfolios. Dubil (2002), 

Hisata and Yamai (2000), Almgren and Chriss (2000), and Bertsimas and 

Lo (1998) are just a few examples. Another branch of this literature in­

vestigates how large traders can manipulate stock prices. Jarrow (1992), 

Allen and Gale (1992), and Schonbucher and Wilmott (2000) can be men­

tioned in this line. Recent research focuses more and more on the mod­

eling and hedging aspects that are introduced by illiquidity and the pres­

ence of one or more large traders. Cvitanic and Ma (1996), Cuoco and 

Cvitanic (1998), Sircar and Papanicolaou (1998), Frey (1998, 2000), Schon­

bucher and Wilmott (2000), Kampovsky and Trautmann (2000), Frey and 

Patie (2001), Liu and Yong (2004), and Bank and Baum (2002) are some 

prominent examples. 

Our approach generalizes both the model of Frey (2000), where hquidity is 

constant, and an extension by Frey and Patie (2001), where liquidity is a 

deterministic function of the stock price. Modehng liquidity as a stochastic 

factor first of all enables us to incorporate random changes in market depth. 

Furthermore, we can significantly generalize existing models by introducing 

the concept of liquidity feedback effects. The presence of liquidity feedback 

effects imphes that (i) trading strategies of large investors are affected by 
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the degree of illiquidity and (ii) the sensitivity of stock prices to the trading 

strategies of large investors can vary due to changes in hquidity. 

The objective of our model is to provide a large investor with a flexible 

framework that allows us to evaluate the liquidity risk associated with dif­

ferent types of trading strategies. We use a stop loss order as an example 

and analyze the effects of market liquidity for this type of trading strategy 

in detail. To get a flavor of the problem, imagine a pension fund. The fund 

management has to hmit the downside risk of the fund, and in order to do 

so, assume that it follows a simple stop loss strategy. When the price of the 

security falls below a certain level the position in this security is liquidated 

completely and immediately by placing a market order. If the market is 

perfectly hquid the fund will always receive the stop loss price for the asset. 

However, if the market becomes illiquid, the investor will receive a price less 

than the stop loss limit. If the degree of the ilhquidity in the market does not 

change or can be interpreted as a function of the asset price, this discount 

due to illiquidity is deterministic. This means that the investor can adjust 

the stop loss limit in advance, so that he or she will always receive a deter­

ministic amount for the assets. However, if order book depth is stochastic, a 

large investor faces liquidity risk. 

We propose a liquidity derivative compensating for this liquidity discount. 

We show how the setup can be calibrated with market data and present a 

simple and innovative approach to determine the market price of liquidity 

risk from the prices of traded European plain vanilla put options. 

The chapter is organized as follows: Section 1.2 summarizes the main ideas 

of Prey's model. Section 1.3 motivates the introduction of Hquidity as an 

autonomous source of risk. In a clinical study we show that modeling liquidity 

as a constant parameter or a deterministic function of the stock does not 

seem appropriate. Our general framework is presented in Section 1.4. In 

Section 1.5 we derive the effective dynamics for the underlying asset with 

SL. We use these results to compare the stock price dynamics in our SL 

model with the benchmark cases of geometric Brownian motion (as in the 

case of Black and Scholes (1973) (henceforth BS)) and constant liquidity (as 
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in Frey (2000)). In Section 1.6 we exemphfy the effects of SL by simulating 

sample paths of the asset price. Section 1.7 describes the general setup for 

a liquidity derivative, to illustrate how the SL model can be used to build 

pricing tools. The model is calibrated for an example using real-world limit 

order book data so that one gets an impression of the magnitude of the 

liquidity effect. Furthermore, we present an innovative approach to estimate 

the market price of liquidity risk from the prices of European put options. 

The chapter concludes in Section 1.8 with a brief summary and a discussion 

of issues for further research. 

1.2 The Deterministic Liquidity Model 

We now describe the setup proposed by Frey (2000). Assume there exists a 

risky asset S (the stock) and a risk-free investment earning a zero interest rate 

(the bond). There are no hquidity effects on the bond; only the underlying 

asset S is affected by this source of risk. Furthermore, there is a single large 

investor whose trading strategy influences the price process of the underlying 

asset. The risky asset follows the stochastic differential equation 

where (p denotes the trading strategy of the large investor, i.e. the number of 

stocks held by him or her. (j)'^ denotes the right-continuous version of (/>, and 

p > 0 is a constant liquidity parameter. An increase in p means a dechning 

hquidity in the market. For p = 0 the model represents the standard BS 

setup with zero drift. The quantity l/{pS) is called the market depth, i.e. 

the order size that moves the price by one unit. Furthermore, we need the 

assumption that pdc/)^ > — 1 in order to ensure non-negativity of the asset 

price. 

Frey (2000) discusses the impact of the trading strategy on the price process 

for the case of a smooth strategy (0 = 0(^,5) G C^'^)^ The partial deriv-

^C^'^ denotes the set of functions in two variables that are once continuously differen-

tiable in the first variable and twice continuously differentiable in the second variable. 
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atives of (f) are denoted by subscripts for ease of notation. This yields the 

effective dynamics for the underlying asset, 

dSt = b{t, S)dt + Sv{t, S)dWf, 

where 

1 - pS(l>s 

PS fj.,'^j. o2 2 

v{t,S) 

(̂*'") = l̂ Î l̂ ^n -̂̂ '̂ ^ 
assuming pS(j)s < 1. Note that volatility has changed from atoa/{l — pS(j)s) 

compared with a perfectly liquid market. 

As discussed in Frey (2000) there are two basic types of trading strategies: 

On the one hand, the large investor can use a positive feedback strategy, i.e. 

(t)s > 0. That means he or she buys the risky asset when the price is 

increasing, and he or she sells when the price is declining, thus reinforcing 

the effect of rising or falling prices. For example, in a standard BS model one 

would use such a strategy to duplicate a convex payoff like a long call. On 

the other hand, the large trader can employ a contrarian feedback strategy, 

i.e. (j)s < 0, which means buying stocks when prices drop and vice versa. 

This would be the strategy used to duplicate a concave payoff, like a short 

call. 

The basic model of Frey (2000) is extended in the paper of Frey and 

Patie (2001) by introducing a deterministic hquidity function p{S). The 

extension does not change the fundamental properties of the model, since 

liquidity is not an autonomous source of risk as it is perfectly correlated 

with the risky asset. 

1.3 Is Market Liquidity Indeed Stochastic? 

In this section we briefly discuss whether variations in liquidity can be ex­

plained empirically by variations in the asset price or whether they can be 
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represented as proposed in Frey and Patie (2001). If this approach does 

not work and if hquidity turns out not to be constant, we take this as an 

indication that hquidity should be modeled as an autonomous source of risk. 

From an economic point of view one may argue that investors have different 

motives for submitting orders to the stock market. On the one hand, there 

may be a close relationship between the trading activity and the dynamics of 

the stock prices, for example if investors follow feedback strategies or trade 

for speculative reasons. On the other hand, so-called noise traders buy and 

sell assets to invest cash not needed for consumption or to meet cash needs 

in unforeseen situations. Imagine that a lucky retail investor has won the 

national lottery and now wants to buy stocks, or that an insurance company 

has to sell shares after a major damaging event to compensate chents for 

losses suffered. Individual liquidity shocks that occur independently of the 

stock price dynamics induce stochastic changes in market liquidity. As a 

theoretical reference we can take, for example, Ericsson and Renault (2003). 

The authors explicitly model individual hquidity shocks to investors in a 

market for defaultable bonds and investigate optimal hquidation strategies 

if hquidity is stochastic. 

From an empirical perspective one can state that a growing branch of liter­

ature provides empirical evidence that market liquidity exhibits an intraday 

U-shaped or a J-shaped pattern, which is remarkably stable over time. A 

review of related literature can be found in Coughenour and Shastri (1999) 

or in Ranaldo (2000). For a discussion of a functional form that is able to 

reproduce an intraday U-shape pattern see, for example, Monch (2003). 

However, the intraday patterns can explain variations in market liquidity 

only to a certain extent, otherwise a time series of daily data should not 

exhibit any variations in market liquidity. We analyzed daily limit order 

book data collected at 12.00 a.m. for every trading day from January 3 to 

March 28, 2002 for Medion AG, which was one of the most heavily traded 

shares at Neuer Markt, the former market segment for growing technology 

companies at the German stock exchange up to spring 2003. Figure 1.1 shows 

a scatterplot for best bid prices S and percentage liquidity discounts p when 
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Fig. 1.1: Scatterplot for best bid prices 5 and percentage liquidity discounts p 
if 5,000 Medion shares are sold in a single trade (daily data collected 
at 12.00 a.m. GET for every trading day from January 3 to March 28, 
2002). The dotted line represents the fitted function as proposed by 
Frey and Patie (2001). The dark sohd line shows a fitted cubic sphne 
for 6 intervals (5 interior knots). The light solid line represents a fitted 
cubic spline for 10 intervals (9 interior knots). 

5,000 Medion shares are to be sold in a single trade. At first sight it is evident 

that daily liquidity discounts are not constant over time. Furthermore, one 

can state that there is no significant relationship between the stock price and 

the relative hquidity discounts. There is no clear pattern that would motivate 

a certain functional form between asset price and liquidity risk. For example, 

the fit of the function proposed in Frey and Patie (2001) given by 

p (S) = / o ^ s t • [1 - (5 - So)' {aJiSKSo) + a2lis>So})] 

provides an i?^ of only 0.03. The fitted function is plotted as a dotted fine 

in Figure 1.1. One may argue that other specifications of the function might 

better explain variations in market liquidity. However, even cubic splines 

that allow for a high degree of flexibility cannot adequately represent the 
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data. For example, for 6 intervals (5 interior knots) we obtain an R^ of 0.05, 

for 10 intervals (9 interior knots) the i?^ is 0.06. The calibrated spUnes are 

plotted as a dark and a light sohd line in Figure 1.1. Of course, one could 

increase the number of knots excessively to improve the fit of the underlying 

dataset. In the limit all data points may be taken as spline knots. In this 

case the sphne interpolates the data points. However, such a model is not 

robust concerning the time window of the sample data used for cahbration. 

Thus, its use would be questionable from an economic point of view. 

1.4 The Stochastic Liquidity Model 

In our model the underlying asset price process is assumed to follow the 

stochastic differential equation 

dSt = fitSt-dt + aSt-dWf + PtSt-d(l>t. (1.1) 

In order to be more general than Frey (2000) we relax the assumption of 

zero drift and interest rate. Furthermore, we now assume that the liquidity 

p follows a stochastic process with dynamics given by 

dpt = l3{t,p)dt + u{t,p)dWr (1.2) 

with the correlation specification 

dWf^dWf = jdt (1.3) 

A sensible choice for the stochastics of p could be a mean-reversion process 

with a natural long-run level of liquidity in the market. We further assume 

that the process stays strictly positive for po > 0. This restricts the choices 

for the volatility function v{t,p). For example, one might use functions of 

the type u{t, p) = C^/p, 

Rewriting the above dynamics using a Cholesky decomposition of the covari-

ance matrix of dSt and dpt we obtain 

dSt = iitSt-dt + aSt-dWt + ptSt-d(l>t (1.4) 

dpt = /?(^,p)dt + z/(^,;9)7dm + K ^ , p ) V r - ^ d m (1.5) 
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with a two-dimensional standard Brownian motion (Wt^Wt). We now as­

sume that 0 - the number of shares held by the large investor - does not 

only depend on S and t, as is the case in the model with deterministic liqui­

dity, but also on the SL factor p. The effects on the trading strategy are now 

twofold: First, (/> is influenced by changes in S. Second, (f) varies with chang­

ing liquidity. The impact of S' on 0 can be modeled by the two basic types 

of trading strategies. For a positive feedback strategy, 0 is an increasing 

function of S for all p; for a contrarian feedback strategy, (/) is a decreasing 

function of S for all p. To characterize the impact of p on (/> consider the 

following scenario. The more illiquid the market, the fewer shares the large 

trader will hold due to external or internal regulations, no matter whether 

a positive or contrarian feedback strategy is considered. Thus, a reasonable 

choice would be a decreasing absolute (f)-valne with respect to p (for all S). 

1.5 The Effective Price Process in the Stochastic 

Liquidity Model 

In this section we derive the effective price process for the SL model 

and analyze it in detail. Consider a smooth trading strategy 

(0 = (p{t,St,Pt) € C^'^'^)^. An application of Ito's formula leads to the 

following proposition. 

Proposition 1.1 (Dynamics of the State Variables) Suppose the trad­

ing strategy of the large trader is given by (f)(t^S^p) G C^'^'^. Then, under 

the assumption pS(f)s < 1 for any point in time, the solution to the system 

of stochastic differential equations (1-4) ^^^ i^-^) satisfies 

dSt = b{t,S,p)dt-^v{t,S,p)SdWt^v{t,S,p)SdWt (1.6) 

dpt = (3(t, p)dt + u{t, p)^dWt + u{t, p) y/l - ^^dWu (1.7) 

2^1,2,2 (denotes the set of functions in three variables that are once continuously differ-

entiable in the first variable and twice continuously differentiable in the second and third 

variable. 



18 1 Modeling Feedback Effects with Stochastic Liquidity 

where 

* ^ - ) = 1 3 7 ^ - ^ r ^ ^ < • • « ) 
p(f)piy 

vit.S^p) = y r : ^ - ^ ^ ^ ^ (1.9) 

b{t,S,p) 

1 - pS(l>s 
pS 

(j + ^t + P{pu t)(l>p + ^(pppiy'] (1.10) 
1 - pS(l)s 

+ ^(l>ssS'^{v'^ + v^) + z/5(?ip5 (7^ + \ / l - 7^^) 

The proof is given in Appendix 1.9.1. 

In the case oi p = 0 01 (/) = constant we are in the classical BS scenario with 

drift pt and constant volatility a. If p 7̂  0 and </> 7̂  0 the trading strategy 

of the large trader has an effect on the instantaneous volatilities v and v^ as 

well as on the total volatility and the correlation between the two processes. 

In the special case where liquidity has no impact on the strategy of the large 

trader, i.e. <pp = 0, we get close to the scenario of Frey (2000). Then, 

V and the second summand of v will vanish and feedback effects are only 

incorporated due to the term pScps- However, since p is stochastic in our 

model, the sensitivity of the stock price w.r.t. the trading activity of the 

large investor will now vary, in contrast to the deterministic liquidity model. 

The analysis is more complex for 0^ 7̂  0. We assume p > 0, in order to 

discuss how variations in liquidity influence the trading strategy of the large 

investor. Assume that when illiquidity increases, the large trader has to 

reduce the position in the stock. Thus, the investor sells shares if he or 

she has a long position, or he or she buys back shares if a short position is 

considered. In the first case, (/) is monotonically decreasing in p, starting with 

a positive (p. In the latter case, </> is monotonically increasing in p, starting 

with a negative (p. Thus, 0 is approaching zero in absolute value (i.e. the 

large investor has closed the position in the stock almost completely) as p 

tends to infinity. 

We assume a positive (/) in the following so that (j)p should be negative, no 

matter if a positive feedback or a contrarian trading strategy is considered. 
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From (1.8) we can see that the sign of v{t, 5, p) depends on 7. For 7 = 0 the 

value of V is the same as in the deterministic liquidity model. Nevertheless, 

in the SL model we have an additional volatility parameter v contributing 

to total volatility. The parameter v is negative since 0^ is negative. The 

instantaneous quadratic variation d[S] is given by (see Appendix 1.9.1) 

so that the total instantaneous volatility Vtot is equal to 

Vtot = Vv^-{-v^ = -^ %- . (1.11) 
1 - pbcps 

The instantaneous covariation of the two processes d[5, p] is given by 

d[S,p]t = Su (7^ + x/l - 7 '^) d^ 

Thus, the instantaneous correlation 77 equals 

d[S', p] _ ^v + ^/l - i^v 
jySVtotdt y/v^ + V^ 

_ iyp(j)p + 7(7 

yja'^ + z/2p202 ^ 2jaup(j)p 
(1.13) 

In order to compare the formal setup of Frey (2000) and Frey and Patie (2001) 

with the SL model, we analyze the volatility and correlation structure for 

different specifications of the respective liquidity-related parameters. An 

overview is given in Table 1.1. For p = 0 01 (j) = constant, respectively, 

we are in the standard BS model with drift /i, resulting in t? = 0 and v = a. 

The first additional feature is included in Frey's approach where liquidity is 

represented by a constant p (i.e. dp = 0) implying P = u = 0. This yields 

V = 0 and 

The correlation parameter rj must be zero in this scenario, since all terms 

containing the partial derivative (pp vanish (so that the dependence of the 

strategy on p is of no interest for the effective stock price dynamics). 
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Table 1.1: Liquidity-related parameters in different models. 

Model Vtot 

BS 

Frey 

Frey - Patie 

SL 

SL 

0 

1 

l-pS(l>s 
0 

0 

0 

1 l-pS(l>s 

O(uncorr.) i z ^ I ^ Vv^T¥ > v ^ ^ < 0 

^ 0 (corr) ^ ± ^ ^q=g^ V^PTW 
y/v'^+v^ 

Now we take a closer look at the model of Frey and Patie (2001), where p is 

a deterministic function of S. Therefore, the dynamics of p are only driven 

by the first component W of the two-dimensional Brownian motion, which 

imphes -D = 0 and 7 = 1 . Since (/> depends only on 5, the volatihty is the 

same as in the Frey setup. From (1.13) we can deduce that 77 = 1 in this 

case. Thus, the approach of Frey and Patie (2001) is a special case of our 

general framework with 7 = 1, allowing the coefficients in the dynamics of p 

to depend exphcitly on S. 

We now consider the SL model and start with the correlation structure. 

1.5.1 Impact on Correlation 

It is important to note that 7 = 0 does not imply that the increments of 

the effective stock price process and the liquidity process are uncorrelated, 
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as one can see in equation (1.13). In the SL setup the situation where 77 = 0 

cannot be obtained for a deterministic choice of 7. Even for 7 = 0, there is 

still some correlation rj between dS' and dp induced by ycx/)̂ : 

^ =-T=^=f=fe5 < 0-

The parameter rj is negative since (pp < 0. This term ultimately models 

liquidity feedback effects. It vanishes for a trading strategy independent of 

p, i.e. for (l)p = 0. The negative value of ry can be interpreted in the following 

way: If hquidity decreases over a longer period the trader will be forced 

to close the position, which will cause the stock price to drop. For 7 7̂  0 

the numerator of the correlation 77 in equation (1.13) carries an additional 

summand 7(7. For (f)p = 0 the correlation 77 between dS and dp is equal to 7, 

the correlation between the increments of the components of the Brownian 

motion. Thus, the difference between 7 and rj is an exclusive result of the 

liquidity feedback effect. 

Next, we discuss the impact of SL on volatility. 

1.5.2 Impact on Volatility 

First, consider the case 7 = 0. Then, v is the same as in the determinis­

tic liquidity model, but in our framework there is the additional volatility 

parameter 

The variable v incorporates the liquidity feedback effect. It contributes to 

total volatility if and only if the trading strategy depends on the liquidity 

parameter p. 

In this case total volatility increases, compared with the deterministic liqui­

dity model, and we obtain a total volatility of 

Vtot = 
A / O ^ + I ^ ^ P ^ 

1 - pS(t)s 
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Here we see a key result of our approach: For 7 = 0 the total volatility of 

the SL model is greater than the volatihty in the constant hquidity setup, no 

matter which strategy is used. 

For 7 7̂  0 the direction of the changes in total volatility (see equation (1.11)) 

depends on the sign of 7. The expression for v contains an additional sum-

mand describing the liquidity feedback effect, and v is reduced in absolute 

values due to 7 7̂  0 (see equations (1.8) and(1.9)). The total volatility in 

equation (1.11) is a decreasing function of 7, since 0^ < 0. Thus, even for 

7 < 0 the total volatility is greater than the volatility in Frey's deterministic 

hquidity setup (2000). Only for large positive values of 7 is it possible that 

the total volatihty is lower than the volatility in Frey's (2000) model. This 

will be the case if 

1 

2 ^ ' 
1 > 7 > wzM<l>pl (1-14) 

For a strategy 0 independent of p the total volatility in the SL model is equal 

to the volatility in the constant hquidity model, again reflecting the lack of 

the liquidity feedback effect in this case. 

Finally, we look at the two basic types of trading strategies with respect to S. 

1.5.2.1 Positive Feedback Strategy 

A positive feedback strategy, i.e. (j)s > 0, leads to 

The expression on the right-hand side is greater than or equal to a if and 

only if 

1 

2^" 
7 < i^i^p\<t>pl (1-15) 

Importantly, Vtot is greater than the BS volatility a for 7 < 0. This is similar 

to the result derived in Frey (2000). 
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1.5.2.2 Contrarian Feedback Strategy 

A contrarian feedback strategy (i.e. (j)s < 0) implies that the total volatility 

satisfies 

vtot < \j(y'^ + p^v'^(\P'p + 2-iaup4>p 

which is less or equal to a if and only if (1.14) holds. Thus, for non-positive 

values of 7 the instantaneous volatility in the SL model is not lower than 

the BS volatihty in this case. Note that this is opposite to the result in 

Frey's (2000) model. 

1.6 Numerical Results 

In order to visuahze the formal analysis of the previous section we present 

some simulation-based results. We compare a sample path of stock prices in 

the BS model with stock prices in the SL setting for both a positive and a 

contrarian feedback strategy. 

1.6.1 Parameter Specification 

In order to ensure non-negativity and stationary behavior of the liquidity 

process we specify the dynamics for p in equation (1.2) as a square-root 

process with a mean-reverting drift component (see Cox, IngersoU, and 

Ross (1985) (henceforth CIR)): 

(3{t,p) = i^{e-p), u{t,p) = Cy/p, 

To create paths of the underlying and the hquidity parameter, Monte Carlo 

simulation techniques are used. For a fixed realization of {Wt, Wt) we have 

used the dynamics of equations (1.4) and (1.5) for So = 80.0, a = 0.1 and 

1. with p = 0 in the BS setting and 
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2. for the SL setup: /̂  = 0.35, 9 = po = 0.05, ( = 0.2, 7 = 0.0. 

The stochastic processes are discretized using an Euler scheme with N = 4000 

steps and time intervals of length At = 1/360. 

Figure 1.2 shows the stock holdings of the large investor as a function of p 

and S for a positive (left graph) and a contrarian feedback strategy (right 

graph). 

1.5 1,5 

Fig. 1.2: Positive and contrarian feedback strategy. 

The shape of the functions can be explained by the following intuition. If 

liquidity drops, i.e. p increases, the large trader is forced to sell shares. 

Therefore, 0 is assumed to be monotonically decreasing in p for all S and for 

any feedback strategy, i.e. the derivative of 0 with respect to p is negative. 

It seems reasonable to assume that for very small and for very large values 

of p the absolute value of (/)p is small. In the first case, the asset still has a 

sufficient market depth. In the latter case, the large trader has already sold 

almost all of his holdings in the stock. Thus, in both scenarios, the large 

trader adjusts the position in the stock by only a small amount. 

In order to characterize the relationship between ^ and S we have to dis­

tinguish between the positive feedback and the contrarian feedback strategy. 

In the first (second) case, the large trader buys (sells) assets as the stock 

price increases and sells (buys) when the stock price dechnes. Thus, (/) is 

monotonically increasing (decreasing) in S for all p in the case of the posi­

tive (contrarian) feedback strategy. For very small and very large values of S 
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Fig. 1.3: Sample paths for the stock price in the BS model and the SL setup if 
the large trader follows a positive feedback strategy. 

the changes of the stock holdings of the large trader are negligible when the 

asset prices vary (similar to the relationship between p and 0). However, for 

asset prices in between, the absolute value of (j)s increases when S increases 

and a positive (contrarian) feedback strategy is considered. 

There are a variety of functional forms for (j) = 4^{S,p) that are able to 

reproduce those features described above. We use the incomplete gamma 

function to model this scenario. The exact functional form for 0(5', p) can 

be found in Appendix 1.9.2. 

1.6.2 Positive Feedback Strategy 

In Figure 1.3 we compare stock price paths generated by the BS model with 

those produced by our SL model in the case of a positive feedback strategy. 

As shown analytically in equation (1.15) one can see that for the given choice 

of parameters, the volatility of the stock price in the SL model is increased 

compared with BS. If the large investor follows a positive feedback strategy 
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in a bulhsh market, the stock price dynamics in the SL model exceed the 

corresponding stock prices in a BS world. Rising stock prices motivate the 

large investor to buy additional stocks, which will cause the stock price to 

grow even further in an illiquid market. One can notice the opposite effect 

for a decreasing S since in this case the large investor wants to get rid of the 

holdings, which will accelerate the decline in the stock price. 

The role of the liquidity parameter p is more subtle. In fact it can have two 

different imphcations: First, all else equal, the trader has to sell shares if they 

become more and more ilhquid. Second, if p is very high, the stock becomes 

more volatile so that a large trader who follows a positive feedback strat­

egy can cause the stock price to rise to tremendously high values in bullish 

markets. However, when illiquidity exceeds a certain threshold {p « 0.3 in 

Figure 1.3), the large trader is forced to close the position, and the market 

collapses. These features, which distinguish the SL model from the BS and 

the deterministic liquidity model, become evident around the time step 3,500 

in Figure 1.3. 

When p approaches zero the stock price in the SL model runs parallel to the 

stock price in the BS model, as one can observe around time step 500. 

1.6.3 Contrarian Feedback Strategy 

In Figure 1.4 we contrast stock prices simulated in the BS model with those 

generated in the SL model in the case of a contrarian feedback strategy. 

In general, volatility is reduced compared with BS. However, there are also 

exceptions, as one can observe around time step 3,500. When the asset 

becomes very ilhquid the trading activities of the large trader can dominate 

the stock price dynamics and so have a destabilizing effect. Again, this is 

a unique feature of the SL setup that cannot be reproduced in the constant 

liquidity framework. 
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Fig. 1.4: Contrarian feedback strategy versus Black-Scholes. 

1.7 Application: Liquidity Derivative 

After having introduced the general framework of our model, we now present 

an apphcation that deals with the pricing of a Uquidity derivative on an 

underlying asset that is traded in an illiquid market. To ease the exposition 

we take a step backward and restrict the general framework so that the 

trading strategy of the large investor depends only on the asset price 5, 

not on liquidity p. The derivative under consideration compensates the large 

investor following a stop loss strategy for the liquidity discount if the stop loss 

order is executed. We provide an example of such a derivative, the pricing 

of which is based on our sample data from the German electronic Hmit order 

book XETRA for the technology company Medion. 

In contrast to retail investors whose individual trading volume is too small 

to affect prices adversely, large traders have to consider liquidity aspects be­

fore an investment is made. If the degree of illiquidity in a certain market is 

rapidly changing over time one may hesitate to invest substantial amounts, 

although the risk-reward profile of the investment per se might be promis-
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ing. A long position in the proposed hquidity derivative hedges against the 

hquidity risk and enables a large trader to act like a small retail investor. Cur­

rently such liquidity derivatives are not yet actively traded in the market. 

The lack of appropriate pricing tools and order book data needed for cali­

bration may partly explain this situation. However, as competition among 

electronic trading platforms sharpens, many exchanges might provide clients 

with real-time access to data on market liquidity. 

Trading strategies that limit the downside risk of a portfoHo and that depend 

only on the asset price are still heavily used by institutional investors. Con­

sidering a simple stop loss strategy, however, one might argue that a large 

trade in the stock market is usually broken up into smaller packages to min­

imize the adverse impact on the overall transaction price. We nevertheless 

focus on this apphcation since, despite its simplicity, it already incorporates a 

basic structure and can thus serve as a guideline to construct more elaborate 

pricing tools. 

1.7.1 Pricing Formulas 

Assume that 0 is a stop loss trading strategy. The random variable 

T := mi{t \St < S} denotes the stopping time when the underlying asset 

falls below a certain level S for the first time, implying Sr- = S. The initial 

price of the underlying asset is assumed to be Ŝo > S. Up to the hitting 

time r the large trader does not trade, and at r he or she sells all assets. 

Assuming a constant, positive initial value 0o > 0, this impHes 

d4>t = 
0 for i 7̂  r 

<Pt -'Pt = -(f>o for f = T 

and 

dSt = fiStdt + aStdWf 

dpt = Pit,p)dt + i^{t,p)dWf 
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for ^ < r . Equivalently, using the uncorrelated Brownian motion (VK, T^), 

this can be written as 

dSt = fiStdt + aStdWt 

dpt = P{t, p)dt + jiy{t, p)dWt + x/ l - -f^i^it, p)dWt 

for t < r . For derivative pricing we need the dynamics under a risk-neutral 

measure P. They are given by 

dSt = rStdt + aStdWt (1.16) 

dpt = /?*(^, p)dt + ju{t, p)dWt + u{t, p)^l - jMWt (1.17) 

for t < r , where /?* denotes the risk-adjusted hquidity drift. Using 

dWt = X[^^dt + dWt 

dWt = X[^^dt-\-dWf 

it holds as usual that Â  ^ = {p — r)/a^ while Â ^ can be chosen arbitrarily, 

so that we obtain 

(3*it,p) = (3{t,p) - ^u{t,p)!^—^- ^/T^Xi'l 
(7 

Since liquidity is not traded, the market is incomplete. This leads to one 

degree of freedom for the market price of liquidity risk, which cannot be 

eliminated in this setup. The market price of liquidity risk shows up in the 

difference between dynamics under P and under P. To fix the drift of the 

liquidity process under P a unique price of at least one derivative depending 

explicitly on liquidity is needed. We provide a theoretical discussion on how 

the market price of liquidity risk can be calculated from traded European 

options in Subsection 1.7.4. This approach represents a perfect analogy to a 

stochastic volatility model where the market price of volatility risk can only 

be computed from the prices of derivatives. 

Let us now come back to the stopping time r. By definition, the threshold 

is hit at r—. This yields a jump in the stock price at r given by Sr- = S 

and the reduced price at r: 

Sr = 5(1 - Pr-M = S{1 - Pr4>0), 
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assuming that p is a continuous function in r . We propose a derivative 

contract that compensates for the price difference between the reduced price 

at r and the threshold S by paying Spr(j)oI{T < T) at r for one unit of the 

underlying asset. 

To model a more reahstic scenario we additionally introduce a floor F > 0, 

which represents a deductible for the investor. This means that if the price 

discount due to illiquidity is less than or equal to F , the derivative pays 

nothing. Consequently, the contract would only compensate for a critical 

liquidity discount. Thus, the payoff at r for one unit of the underlying asset 

is 

Zr = max[(5(/)oPr - F ) / ( r < T); 0] 

= {S(t>oPr - F)I (T <T;Pr> J^] . 

The price of the contract is given by the following proposition: 

Proposition 1.2 Let r := mi{t\St < S}. Then the price at t = 0 of a 

derivative paying Z^ = max[(S'(/)oPr — F ) / ( r < T); 0] is given by 

'o = E[e-^-

= S<f>oE 

- Scj>o f 
Jo 

•z,] 

r" ("'-!;)'(̂ -̂ ^ "'"&). 
r e-^'(p-J-)g{t,p)dpdt, 

JF/S<J>O \ S4>o/ 
(1.18) 

where E denotes the expectation under the risk-neutral measure and g rep­

resents the joint (risk-neutral) density of r and Pr^ The parameter p < oo 

denotes some upper bound for the liquidity process. In general, the price 

of the derivative cannot be calculated explicitly, but for some special cases 

we are able to derive semi-closed-form solutions of (1.18). One of these is 

presented below, 

First of all, we need the distribution of the hitting time. From (1.16) we know 

that the process for 5 up to r under a risk-neutral measure P is a geometric 

Brownian motion such that the log of the process is an arithmetic Brownian 
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motion. The distribution of the first hitting time of a Brownian motion with 

drift is well-known (see, for example, Borodin and Salminen (1996)). In this 

scenario we need to know the distribution of the first hitting time of In 5, 

starting at In SQ > InS under a risk-neutral measure. This is given by 

The specification of the diffusion process for liquidity has remained arbitrary 

so far. In the following we consider some scenarios in which the price of the 

liquidity derivative can be calculated explicitly under certain assumptions on 

the hquidity process. 

If liquidity is constant or a random variable uncorrelated with the underlying 

asset, equation (1.18) simplifies to 

Zo = 500 ( E [p] - ^ ) E [e--^/(r < T)] 

= 500 (E[p] - X ^ ^ e-'-7.n5o,in5(i)di. 

If the Brownian motions exhibit zero correlation, i.e. 7 = 0, the hitting 

time r and the process p are independent. In this case we can calculate the 

expectation, taking the product of the corresponding risk-neutral densities, 

i.e. g(t,p) = f{i)ht{p)^ where ht denotes the risk-neutral density of the 

process p at time t, and we obtain 

Zo = 50oE [ e - > . / ( r < T)] 

= 500 r ( r (p- J - ) ht{p)dp) e-^*/i„5o,in5(i)di- (1-19) 

For F = 0 this simplifies to 

Zo = S4>oJ (Eb t ] ) e-^*/in5o,insWdi. (1.20) 

Now, we are free to choose an appropriate process for p. To our knowledge the 

question of which specification of the liquidity process is empirically adequate 

is still unanswered in the literature. 
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One may argue that a mean reversion process is a sensible choice, since there 

exists a natural level of liquidity in the market. Thus, we again assume a CIR 

process for liquidity given by the following specification of the risk-neutral 

parameters in equation (1.17): 

The asterisks denote risk-neutral parameters. For zero correlation the dy­

namics are given by 

dpt = K{6 — pt)dt -f- (y/pldWt under P and by 

dpt = K'{e'-pt)dt-\-C,/p'tdWtundevP 

with dWt = ^/ptXtdt + dWt. Here we set Xi = y/ptXt such that the hquidity 

process is again a CIR process after the change of measure. The parameters 

are then given by 

^* = /̂  + CA, 6' = —e. (1.21) 

In order to ensure a strictly positive liquidity path we have to impose the 

constraint 

(9* > ; ^ . (1.22) 

The risk-neutral probability density of p at t with initial value po is given by 

v9/2 
/i(t,p;Po)=ce-"-"(-j 1,(2 V^) 

where 

2K 
c = 

K*t 
U = CpQt 

V = cp 

2K*e 
Q = e 
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Zz denotes the modified Bessel function of the first kind of order z, i.e. 

My)-{^} l . r ( . + n + i)n!-

Note that if the fioor F is equal to zero the expectation of hquidity in equa­

tion (1.20) can be computed explicitly: 

E [pt] = poe-^'' + r (1 - e-'̂ **) . (1.23) 

Hence, equation (1.20) simplifies to 

Jo 

If one additionally assumes a zero market price of liquidity risk {9* = 9), 

then the price of the hquidity derivative does not depend on the volatility 

parameter of the liquidity process C- However, as soon as these restrictive 

assumptions are relaxed, for example by considering a non-zero market price 

of hquidity risk (A^ 7̂  0) or a non-hnear payoff function (F > 0), the volatility 

of the liquidity process has an impact on the price of the liquidity derivative. 

This property is shown below in Figures 1.6 and 1.7 in Subsection 1.7.2. 

1.7.2 Example 

As an example we use the limit order book data for Medion already intro­

duced in Section 1.3 to calibrate the stochastic processes for the best bid 

price and liquidity. For numerical reasons we multiply the liquidity para­

meter by 5,000. Thus, it can be interpreted as the relative price difference 

between the best bid price and the average execution price if a hypothetical 

market order of 5,000 shares is executed. 

Applying standard maximum likelihood estimation techniques and assuming 

a zero market price of liquidity risk, the following parameter estimates were 

obtained: 

a = 0.48 9* = 0.020188 

K* = 248.12 C = 3.1906347. 
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03.01.2002 28.03.2002 03.01.2002 28.03.2002 

Fig. 1.5: Best bid prices and percentage liquidity discounts if 5,000 Medion shares 
are sold in a single trade (daily data at 12.00 a.m. GET). 

The correlation between the best bid prices and the iUiquidity discounts in 

the sample is —0.0354. Thus, assuming a correlation of zero seems to be 

sensible. 

We assume that the derivative under consideration compensates for the price 

difference between the stop loss limit of €40.00 and the average execution 

price if a stop loss order of 5,000 shares is executed within the next month.^ 

Since the initial liquidity parameter po is scaled with 5,000 we have (J)Q — 1.0. 

Furthermore, we set ^o = 47.61, po = 0.05 and r = 0.05, and in the model 

with deterministic hquidity p = O"" = 0.020188. Now we are able to calculate 

prices for the liquidity derivative. In the model with constant hquidity one 

obtains a price of 0.465449, whereas in the model with SL the price for 

one derivative is 0.489582. Thus the price difference for one contract (in 

our example 5,000 derivatives) between the stochastic and the deterministic 

hquidity model would be € 120.67. 

1.7.3 Sensitivity Analysis 

How does variation in the parameters affect the results in the SL model? 

Recall that the parameters of the CIR process have to meet the constraint 

^* > C^/(2/^*) in order to ensure positivity of the hquidity process. When 

^For the sake of simplicity we assume that a stop loss order is executed if the best bid 

price falls to the stop loss limit for the first time. 
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4 0 . 0 1 400 

Fig. 1.6: Price of tlie liquidity derivative ZQ as a function of the parameters (, 0* 
(left) and C, «* (right). All other parameters are chosen in accordance 
with the example; we assume especially that F = 0 and X'^''^ = 0. While 
the dark patterned surfaces represent ZQ in the SL framework, the light 
surfaces represent ZQ in the constant liquidity setup. 

the boundary condition becomes binding, a reduction in K* or 6* implies 

a reduction in C, (for given 6* or K*). Thus, the choice of parameters is 

restricted. 

First we stay for a while in the slightly unrealistic world of the previous 

example and consider a contract that is linear in pj, i.e. F = 0, and assume 

a zero market price of liquidity risk. Figure 1.6 illustrates how the price 

of the derivative ZQ varies with either 9 and C for fixed K (left graph) or 

with K and C, for fixed 9 (right graph) such that inequality (1.22) is always 

satisfied. The value of the derivative in the SL framework is represented 

by the dark patterned surfaces. The light surfaces represent the derivative 

in the constant liquidity setup, which serves as a benchmark. Under the 

given assumptions F = 0 and Â ''̂  = 0, which imply 9* = 9, K* — n, the 

world is simple. Remember that in this case equation (1.19) simplifies to 

(1.20), where E[/9f] is given by (1.23). In the SL setup the price of the 

liquidity derivative Z^ is a linear increasing function of the long-term mean 6 

and an exponentially decreasing function of the mean reversion parameter K. 
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Fig. 1.7: Price of the liquidity derivative ZQ as a function of the parameters C, F 
(left) and C,, \^f' (right). All other parameters are chosen in accordance 
with the example. 

The volatility parameter ^ has no impact on the price of the derivative ZQ. 

Reconsidering the definition of E \p^ given by equation (1.23) one can state 

that the stochastic and the deterministic liquidity setup give almost identical 

results if p^ and Q* are close to p'̂ ""**- and if the product tCt is sufficiently 

large. 

If the assumptions of the previous examples are relaxed the volatility para­

meter (̂  has an impact on the price of the liquidity derivative ZQ. Figure 1.7 

shows the price of the derivative ZQ for combinations of C and F (left graph) 

and of C and Â ^̂  (right graph) for fixed K* and Q*. 

When the floor F is increased, the derivative becomes less expensive. In this 

case the contract pays out in fewer states of the world. However, the price 

reduction is less pronounced if the volatility parameter (" is large. To put it 

differently: an increase in C transfers weight to the tails of the distribution 

and raises the price of the derivative ZQ for a given positive F. 

Similar phenomena to those described above can be observed in a BS world. 

The price of a derivative that is linear in the asset price, for example a 

forward contract, is insensitive to the volatility of the underlying asset. On 

the other hand, volatility sensitivity of a plain vanilla European call option 
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is a positive function of the strike price, which coincides with the fact that 

the greater the floor F of the hquidity derivative, the higher the sensitivity 

of the price with respect to changes in volatihty. 

The parameter Â ^̂  influences the drift of the hquidity process under the 

risk-neutral measure. Additionally, if Â ^̂  ^ 0, the volatility parameter (" 

appears in the risk-neutral drift, see equation (1.21). If Â ^̂  > 0, an increase 

in C causes an increase in /̂ * and a reduction in ^*. Both aspects reduce the 

price of the derivative ZQ, The opposite eflFects can be observed for Â ^̂  < 0. 

1.7.4 Market Price of Liquidity Risk 

1.7.4.1 Overviev^ 

The recent literature provides strong evidence that investors care about li­

quidity risk, which imphes that this type of risk is priced into asset returns. 

For example, Acharya and Pedersen (2003) analyze daily return and volume 

data from 1962 until 1999 for all common shares listed on the NYSE and the 

AMEX. They corroborate the hypothesis that investors require a premium 

for a security that is illiquid when the market as a whole is illiquid and that 

investors are willing to pay a premium for a security that is liquid when 

stock returns are low. Moreover, they show that investors are willing to pay 

a premium for a security with a high return when the market is ilhquid. This 

is empirically supported by Pastor and Stambaugh (2002) who use monthly 

data for 34 years of common stocks traded on NYSE, AMEX, and NASDAQ. 

They find that stocks that are more sensitive to aggregated market liquidity 

have higher expected returns. A comprehensive review of theoretical and 

empirical approaches can be found in Pritsker (2002). 

From this perspective and with the results of Subsection 1.7.2 in mind it 

seems important to provide a reasonable approach to determine the market 

price of liquidity risk from traded instruments. As an example of such a 

traded claim we consider a plain vanilla European put option that gives the 
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holder the right to sell 0o units of the stock for the strike price X at maturity 

T. In the following we make four assumptions to simplify the explanation. 

Specifically, we suppose that: 

• the contract is settled via physical dehvery of the shares 

• the day of execution coincides with the day of delivery (note that in 

practice there may be some exchange trading days in between) 

• the short seller of the put liquidates the (f)Q units of the stock immedi­

ately upon exercise of the option 

• neither the long nor the short party trades the underlying asset before 

the maturity date of the option. 

The first assumption is met at many exchanges for equity options. The 

second and the third assumption are not critical and can be relaxed if a 

more general framework is desired. The last assumption ensures that for 

7 = 0 the underlying price process and the hquidity process are independent. 

Easing this restriction, for example by assuming that the short seller hedges 

the option in the stock market, results in more complex dynamics for the 

underlying asset as we have seen before when considering general trading 

strategies of a large investor. 

1.7.4,2 Intuition 

Assume that the holder of the put has to hquidate a long position in the 

underlying asset at a certain time T. For this purpose the investor can either 

sell the securities at the exchange or execute the put option and deliver the 

stocks to the short seller of the put. Since the market for the underlying 

asset is illiquid, the terminal payoff of the put is given by VT — max[X — 

^^( l — pT^^o), 0]. This can be explained as follows. 

The execution of the put is optimal if it provides higher revenues than the 

liquidation of the underlying asset in the market. In the latter case one 
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will receive 5^(1 — PTM due to the market illiquidity. Thus, it is optimal 

to exercise the put option if and only if X > 5 T ( 1 — PTM- If the put is 

exercised the short party faces a hquidity risk. Assume that the underlying 

asset is liquidated immediately after the execution of the put. Then the short 

seller has to bear a liquidity discount amounting to STPT4>Q' 

The story is similar to the liquidity derivative considered in the previous 

section for a floor F = 0. If the stop loss order is executed at r < T, the 

holder of the liquidity derivative would sell the underlying asset at the market 

for 5(1 — Pr^o) and receive the payoff of the derivative Spr(t>o. In total he 

or she would obtain Scpo. On the other hand, if an investor is hedged by the 

European put option, he or she has to deliver the shares to the short seller 

at T and receives X(j)o. 

Although the payoff of the European put option and the liquidity derivative 

seem closely related to each other for X = S, there are still important dif­

ferences. The European put option matures at time T. Therefore, it may be 

a suitable instrument for an investor who has to liquidate stocks at a fixed 

point in time. In contrast to that, the liquidity derivative matures at the 

stopping time r < T^ when the stock price hits S for the first time. Con­

sidering this particular trading strategy a European put option would not 

provide a perfect hedge. Imagine, for example a situation where S is hit at 

time r <T^ but then the stock price rises again and we observe ST > S, In 

this case the put would not be exercised at T, although the stop loss order 

had been executed. Only for r = T (which is a zero probability event) would 

the investor be indifferent between the two claims. 

One may argue that an American put option better meets the needs of an 

investor with a stop loss strategy than a European put, since the American 

put option could be exercised at any stopping time r <T. However, early ex­

ecution of an American put option following this particular strategy does not 

have to be optimal. Hence, the American put option will be more expensive 

than the hquidity derivative. Thus, a long position in the hquidity derivative 

would be the cheapest way to hedge against the liquidity risk arising from a 

stop loss trading strategy. 
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1.7.4.3 Pricing a European Put on an Illiquid Stock 

This subsection proposes an innovative approach for the calculation of the 

market price of hquidity risk. The price of a European put option can be 

computed analytically in our framework. The put price is not unique and 

depends on the market price of liquidity risk, since the market is incomplete. 

Therefore equating the theoretical prices to the observed market prices allows 

us to extract the market price of hquidity risk. 

As before, the underlying asset follows a geometric Brownian motion with 

drift r under the risk-neutral measure. For the liquidity process we again con­

sider a CIR process. By fixing a risk-neutral measure P the pricing formula 

is given by 

Vt = e-^(^-^)E[max[X-5T(l-PT0o),O]] 

= e-<^-'^t [{X - 5 T ( 1 - P T ^ O ) ) / ( ^ > ST{1 - PT^O))] 

= e-'^^-'yXP{X > ST{1 - PTM) 

- e-'^^-'^E [ST{1 - PTMHX > ST{1 - PTM)] 

= e-'^^-'^XP{X > ST{1 - PTM) 

- e-'^^-'^E [STI{X > ST{1 - PTM)] 

+ e-'^^-'^E [STPT<I>OI{X > ST{1 - PTM)] • 

Let / and g denote the risk-neutral density of the asset price process and 

of the CIR process at T, respectively. The market price of liquidity risk 

is contained in the (risk-neutrally) adjusted parameters of the CIR density, 

compare Subsection 1.7.L In integral representation - assuming 7 = 0, i.e. 

independence of S and p - we obtain 

Vt = e-^^'^-'^X f fis)9{p)dsdp 
Jx>s{l-p<t>o) 

-e- ' -(^- ' ) / sf{s)g{p)dsdp 
Jx>sii-pM 

-e-^^'^-'Uo 

^-r(T-

/ spf{s)g{p)dsdp 
JX>S{1-P4>Q) 
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using the substitution z = s{l — pct)^) in the last step. In order to determine 

the market price of hquidity risk one has to find the root(s) of the equation 

1.8 Conclusion 

Criteria such as consistency with empirical phenomena, flexibility, and also 

computational aspects should be considered in the development of a liquidity 

model. We have presented a framework that we feel meets these requirements 

and has proved worthy of investigation. 

This chapter introduces a continuous-time model for an illiquid market, 

where the trading strategy of a large investor can move prices. The innov­

ative features of our setup include on the one hand, a time-varying market 

depth and on the other hand, the modeling of liquidity feedback effects. 

We have analyzed two basic types of trading strategies. For positive feedback 

strategies and non-positively correlated Brownian motions, volatility gener­

ally is increased compared with BS. For contrarian feedback strategies one 

can observe basically the opposite. The picture can change completely if the 

asset becomes highly illiquid and the asset price dynamics are dominated by 

the trading activities of the large investor. These features are discussed both 

analytically and on the basis of simulation results. 

Furthermore, an application of the general framework is proposed. We derive 

a closed-form expression for the price of a liquidity option, the payoff of 

which depends on the price difference between a stop loss hmit and the 

average execution price. Furthermore, a pragmatic way to determine the 

market price of liquidity risk from traded European plain vanilla put options 

is presented. 



42 1 Modeling Feedback Effects with Stochastic Liquidity 

Further research may focus on derivative pricing under the effective price 

processes or on the apphcation of hedging strategies from incomplete markets 

to this setting. An investigation of optimal liquidation strategies in the 

proposed framework also seems promising. 

1.9 Appendix 

1.9.1 Proof of Proposition 1.1 

Using Ito's lemma for (f){t^ 5, p) gives 

d(t) = Mt + 05d5 + 0pdp + (t)spd[S, p]t + - {(t)ssd[S]t + (j^ppiy^t) . 

Plugging this into equation (1.4) we get 

dSt = (a + p(t),iyj)StdWt + pcl^puSdWt + ptSt ({ptSt + (t>t)dt + (l)sdS 

+ ^pdp + v(j>spd[S, W]t + \ {(l>ssd[S]t + (t^ppv^dt) ) 

which in turn implies 

dSt = ^ _ ^ ( (a + p(j>pU^)StdWt + St [pc^pW^ - 7^) dWt 

-^pSi i^^(l>t + P{put)^p + \(t>ppiy^]dt 

+ ^cPssd[S]t + iycf>spd[S,W]t 

assuming ptSt4>s < 1- Using the trial solution 

dSt = b{t, St, pt)dt + v{t, St, Pt)StdWt + v{t, St, pt)StdWt 

and comparing coefficients leads to 

(̂̂ '--) = "t^ 
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b{t, S, p)dt 
pS 

1 - pS<ps 

pS 

1 - pS(t>s 

- + 4>t + P{put)(t>p + \4>pp^'' ] At 

+ \<t>ssA[S]t + y4>spA[S,W]t 

— + (j)t + li{put)4>p + -4>ppv'' 
P ^ 

, 1^ ^^(j'^ + p'p''4>l + 2^p(ju(l>p 

+ 2 ^ ^ ^ ^ {l-pS4>s? 

1 - pb(j)s J 

since 

and 

A[S]t = S\v' + v^)di 

^'('''t%T''^'^^ 
6.[S,p]t = Sui'yv + ^/T^v)dt 

1.9.2 Functional Form of 0(5, p) 

In order to incorporate the idea that (/> is a function of both S and p we 

choose a product approach by separating the strategy with respect to S and 

P-

A function that is able to model the features described in Section 1.6 is the 

incomplete gamma function, defined by 

r(x,z) = j ^ e'H^-^dt 

We read r{x, z) as a function of z for fixed x-values. It is monotonically 

decreasing to zero for 2: —> oo. The incomplete gamma function captures 

the dependency of the trading strategy with respect to p for fixed S. For 
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the contrarian feedback strategy the scenario is similar with respect to S 

for fixed p. Since the image is reversed for the positive feedback strategy 

the functional form has to be adjusted. Therefore we multiply the gamma 

function by —1 and then shift it to the positive quadrant. Thus, we choose 

the following representation for the dependency on p: 

x{p) = r(6i,cip), 

and for the dependence on S: 

( r(62,C25) (contrarian strategy), 

[ r(62) — r(62,C2S') (positive strategy). 

Consequently, the contrarian feedback strategy is given by 

r(S,p) = ar{h,cip)rib2,C2S), (1.24) 

whereas the positive feedback strategy is given by 

0+(5, p) = ar(6i, cip) [r(62) - r(62, C2S)], (1.25) 

where r (x) denotes the standard gamma function. For the simulation in 

Section 1.6 we use the following parameter constellation: 

61 = 2.1 62 = 6.0 

ci = 5.5 C2 = 0.05 a = -0.05. 
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2 Optimal Liquidation Strategies 

2.1 Introduction 

This chapter analyzes optimal liquidation strategies for large security hold­

ings. Order submission decisions are among the most important choices 

traders make. For many institutional investors (Uke insurance companies or 

pension funds) even a moderately sized position in a stock may represent a 

large fraction of this stock's daily trading volume. Liquidating such port-

foUos can incur significant costs that directly influence the return on the 

investment. 

Nevertheless, compared with other fields of research in financial engineering, 

little theoretical and empirical work has been done in this area. The lack of 

order book data, which are necessary to calibrate appropriate models, may 

be one crucial reason for this fact. However, the introduction of electronic 

order book systems at more and more stock markets around the world and the 

keen competition among the large trading platforms will probably induce the 

exchanges in the near future to provide customers with suitable information 

about the instant liquidity of the listed products. The model proposed in this 

chapter exploits this kind of information and proposes an optimal trading 

strategy for a large investor. 

The following sections focus on the case where a large trader has a positive 

initial investment in an asset and wants to close this position within a trad-
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ing window of one day (the analysis for a purchasing strategy is symmetric). 

For this purpose he or she can submit market orders basically continuously 

throughout the day. Thereby the trader has to balance different issues. Ob­

viously, the investor can Hquidate the portfolio all at once immediately after 

the opening of the stock exchange. In this case he or she has to bear virtually 

no market risk, since the entries in the order book are known with certainty. 

If there are fixed costs on each trade, such a strategy would also minimize 

transaction costs of this kind. However, selling large amounts aggressively 

against the orders in the book will presumably have a substantial price im­

pact and consequently lead to large liquidity discounts. Thus, the liquidation 

of a large portfolio is often broken up into smaller packages. Furthermore, it 

seems advisable to liquidate more in times when market liquidity is typically 

high (around noon) and less in periods where markets are usually illiquid (in 

the morning and before the close of the exchange). However, this procedure 

comes also at a cost. Forgoing the immediacy increases the market risk of the 

liquidation revenues. Additionally, as the number of trades increases fixed 

transaction costs, this component of total costs will increase as well. The 

model proposed in this chapter is a first approach to assess these different 

issues simultaneously in order to derive an optimal sales trajectory. 

There is a growing theoretical literature on optimal liquidation strategies 

for large portfohos. Bertsimas and Lo (1998), Almgren and Chriss (2000), 

Hisata and Yamai (2000), and Dubil (2002) are prominent examples. The 

character of those papers is mainly theoretical with the intention to derive 

closed or semi-closed form solutions for the optimal liquidation trajectories. 

As mentioned above, empirical work has been hampered until recently by the 

lack of order book data. The main ideas of these papers are briefly outlined 

in Section 2.2. 

This chapter focuses on a reahstic modehng of intraday Hquidity patterns 

and price impact functions for large transactions in markets, which are not 

perfectly liquid. Many empirical papers that investigate high-frequency or­

der book data or transaction prices (among others see Wood, Mclnish, and 

Ord (1985), Harris (1986), Jain and Joh (1988), Mclnish and Wood (1990), 
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Mclnish and Wood (1992), Kirchner and Schlag (1998), and Ranaldo (2000)) 

find that intraday time series of volatility, trading volume, order flow, and 

transaction costs follow a U-shape pattern, i.e. these variables start at a high 

value at the opening of the trading day, fall to lower levels over the day and 

then rise again towards the close of trading. 

The possible reasons for these intraday patterns are discussed controversially 

in the literature, and it seems they can be explained at least partly by the 

information flow through trades, resulting in progressively smaller adverse se­

lection costs as the day evolves (see Wei (1992), Hasbrouck (1991), Foster and 

Viswanathan (1993), Lin, Sanger, and Booth (1995)). The decrease in hqui-

dity before the overnight trading halt may reflect the cost of holding inventory 

over the upcoming nontrading period (see Amihud and Mendelson (1982), 

Bessembinder (1994), Lyons (1995), and Huang and Masulis (1999)). This 

chapter does not aim to provide yet another explanation, but rather takes 

these patterns as exogenous. 

A recent study conducted by Linnainmaa (2003) analyzes order book data for 

the 30 largest stocks traded at the Helsinki Exchanges. The author provides 

empirical evidence that institutional investors often demand liquidity and 

employ market orders more intensively than less sophisticated retail investors 

who may be classified as net suppliers of hquidity. 

Modeling and hedging aspects introduced by ilhquidity and the presence of 

one or more large traders are discussed by Cvitanic and Ma (1996), Cuoco 

and Cvitanic (1998), Sircar and Papanicolaou (1998), Frey (1998, 2000), 

Schonbucher and Wilmott (2000), Kampovsky and Trautmann (2000), Frey 

and Patie (2001), Liu and Yong (2004), Bank and Baum (2002), and Esser 

and Monch (2002). 

The study provided in this chapter is based on an approach similar to 

Frey's (2000) model with constant liquidity, but introduces a 

time-dependent factor to model the U-shape pattern. 

The rest of the chapter is organized as follows: Section 2.2 summarizes the 

key ideas of related papers. The dataset used throughout this chapter is 
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introduced in Section 2.3. The general framework is presented in Section 2.4. 

In Section 2.5 the modeling of the impact function is discussed. The proposed 

setup to determine the optimal sales trajectory is calibrated in Section 2.6 for 

one example to give an impression of the magnitude of the liquidity discounts 

and the hquidation intervals. The chapter concludes in Section 2.7 with a 

brief summary and a discussion of issues for further research. 

2.2 Related Literature 

Since research conducted by Bertsimas and Lo (1998), Almgren and 

Chriss (2000), Hisata and Yamai (2000), and Dubil (2002) is closely related 

to this chapter, the results of these studies are summarized briefly in this 

section. 

Bertsimas and Lo (1998), as well as Almgren and Chriss (2000), consider an 

optimization problem of an investor who has to liquidate a large position in 

a security within an exogenously given period of time, whereas Dubil (2002) 

solves for the optimal length of the period over which an investor should close 

a certain position in a stock. 

Bertsimas and Lo (1998) derive dynamic trading strategies using stochastic 

dynamic programming techniques that minimize the expected cost of pur­

chasing a large block of shares. The authors do not consider the volatility of 

costs for different trading strategies. They show that naive strategies of sell­

ing a constant number of shares in equally spaced time intervals are optimal 

only if the price impact is linear and permanent and if the stock prices follow 

an arithmetic random walk. The authors also consider alternative formu­

lations of the stock price dynamics and the impact function and show that 

optimal liquidation strategies vary through time and may depend on market 

conditions and the number of shares that remain to be liquidated. 

Almgren and Chriss (2000) incorporate the market risk associated with the 

hquidation of a position over a longer period by using a mean-variance ap­

proach. The authors construct the efficient frontier in the space of time-
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dependent liquidation strategies. They derive tractable analytical results 

for static strategies assuming an arithmetic random walk for the stock price 

and linear impact functions. Like Dubil (2002), they distinguish between 

a permanent and a temporary market impact, a concept that is discussed, 

for example in Holthausen, Leftwich, and Mayers (1987). The permanent 

price effect changes the equihbrium price due to the transaction of the large 

trader. The temporary impact is caused by an exhaustion of the hquidity 

supply when the market order of the large investor is executed. It does not 

influence the stock price in the next liquidation interval. 

Hisata and Yamai (2000) and Dubil (2002) extend the framework of Alm-

gren and Chriss (2000) in order to endogenize the final liquidation horizon. 

Both approaches consider the risk of a liquidation strategy in a Value-at-Risk 

(VaR) setup and assume a constant speed of trading. The two frameworks 

basically differ in the way they specify the dynamics of the asset price process 

and in the parameterization of the impact function, yet they derive similar 

results. In addition to the standard case, where the market impact is linear 

in trading volume, Hisata and Yamai (2000) provide closed-form solutions if 

the market impact is defined by a square root function. They also consider a 

stochastic market impact model and a portfolio model where the solution for 

the optimal hquidation horizon can be obtained numerically. Dubil (2002) 

assumes two parameterizations for the impact function: general power func­

tions uncorrelated with the share price, and linear functions correlated with 

the price process. The first choice of the impact functions allows for the 

derivation of closed-form solutions for certain specialized parameterizations, 

while the second formulation can model a feedback loop between price dislo­

cations and liquidity. 

The general setting of this chapter is similar to the approaches of Hisata 

and Yamai (2000) and Dubil (2002) as the overall time needed to complete 

the liquidation process is determined endogenously. However, the new model 

allows us additionally to specify an upper bound for the final liquidation 

horizon. The new framework forgoes the assumption of a constant speed 

of trading. This enables the investor to adapt the liquidation behavior to 
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varying levels of liquidity throughout the trading day. Furthermore, the new 

model considers explicitly the resiliency of the order book. 

2.3 Description of the Market and Dataset 

Important properties of the liquidation model proposed in this chapter will be 

illustrated by using real-world order book data from the German automated 

trading system XETRA. 

XETRA is an order-driven market where investors, by placing hmit orders, 

establish prices at which other participants can buy or sell shares. A trade 

takes place whenever a counterpart order hits the quotes. The system was in­

troduced in 1997 by the German Stock Exchange. At the time the data were 

collected, XETRA was open for trading from 9:00 a.m. to 8:00 p.m. The 

trading day starts with an opening auction, followed by continuous trading, 

which can be interrupted by one or several intraday auction(s). At the end 

of the day there is either a closing or an end-of-day auction. On XETRA, all 

of approximately 6,000 equities hsted on the Frankfurt Stock Exchange are 

tradable. The minimum trading volume is one share. Market participants 

can see all non-hidden entries on each side of the order book, but trading in 

XETRA is anonymous, i.e. market participants cannot identify the counter­

parts. On XETRA there are no dedicated providers of liquidity for blue chip 

stocks. For small and mid cap stocks, designated sponsors (banks and secu­

rity firms) are given incentives to provide sufficient liquidity by responding 

to a quote request within a fixed period of time. Floor trading with market 

makers on the Frankfurt Stock Exchange still takes place but loses more and 

more market share. In the blue chip segment merely every tenth share is still 

traded on the floor. 

Based on event histories for 61 trading days (January 03 - March 28, 2002), 

which were provided by the Trading Surveillance Office of the Deutsche Borse 

AG, order book sequences were reconstructed. Therefore, by starting from 

an initial state, each change in the order book depth caused by entry, filling, 



2.4 The Basic Setup 53 

cancelation or expiration of orders was considered as prescribed by the market 

model of XETRA. This allows us to estimate the price impact function of the 

hquidation model. Due to the huge amount of data only the blue chip share 

MAN is considered as a representative example of the stocks that are traded 

in XETRA. The MAN corporation is one of Europe's leading supphers of 

capital goods and systems in the fields of commercial vehicle construction, 

and mechanical and plant engineering. Over the sample period the daily 

turnover in MAN on XETRA ranged from 500,000 to 1,000,000 shares, and 

the order book depth from 80,000 to 150,000 shares. 

2.4 The Basic Setup 

This section introduces the basic model and provides the motivation for the 

key assumptions. 

The large trader holds (j)o units of a security, which have to be liquidated 

before time T*. The variable T denotes the actual time needed to sell the 

initial position 00 completely if the investor follows a certain strategy. Con­

sequently a strategy is admissible if T < T*. The period from time ô = 0 to 

time T is divided into n intervals r̂  = U+i — U, whereas z = 0 , . . . , n — 1, so 

that 

n - l 

T = tn = Y,^i. 
i=0 

In contrast to Almgren and Chriss (2000) and Dubil (2002), the intervals 

can have different length, but at the end of each interval the large trader 

liquidates some positive amount of shares A<pti > 0, so that 

i-l 

Acpti <(t>o-J2 ^^^j i = 1,..., n 

and 

i = i 

J]A0, , =00. 
i=l 
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To obtain comparable flexibility one could alternatively assume equally 

spaced time intervals (as is done, for example in Almgren and 

Chriss (2000)) and allow the investor not to trade in some intervals. In this 

case, in order to model a representative set of liquidation trajectories 

attainable in practice, the length of the time intervals has to be sufiiciently 

small. However, for r ^^ 0 such an assumption blows up the optimization 

problem, since for every time interval one has to determine the optimal 

quantity the investor should trade. 

Similarly to Prey (2000), it is supposed that the dynamics of the asset price 

process St follow the stochastic differential equation: 

dSt = aSt-dWt-St-d^^, (2.1) 

where St- = lim St and d t̂"̂  denotes the price impact of the investor's trad-
syt 

ing strategy. In this setup the stock holdings of the large investor vary dis­

cretely. Therefore, the jumps caused by the trading activity will be denoted 

by A^+ := ^+ - %. 
To model the price impact A^^, a product approach is used: 

SO that the price impact depends both on the trade size Acpt and on the time 

of day i, which is measured in minutes since the opening of the exchange. 

The stock price immediately before and after the jump i can be written as 

St, = [l-p {AM d {ti)] St,- = li St,-, (2.2) 

where j^ := 1 - p (A^^.) 'i? (U). 

The stock price after the trade must not be confused with the average price 

per unit 5̂ * realized by the large investor who liquidates A(/)t. stocks at time 

ti. The average price per unit St. is bounded by 

Su- > SI > St, 
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Fig. 2.1: Stock prices immediately before and after a jump due to liquidation by 
the large trader. 

and can be calculated as 

^̂* = -^ j {l-p{u)^{U))S,-Au 

^J Piu)du 
0 

^ _ o 
Sti — ^i Sti, (2.3) 

where Si := 7TT-T77-T~- Figure 2.1 shows this setup. 

Furthermore, suppose that there are also fixed transaction costs of k per 

trade. While variable transaction costs could easily be introduced by an 

additional multiphcative factor in equation (2.3) and would not significantly 

influence the choice of the optimal trading trajectory, fixed transaction costs 
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certainly do. For example, assume that the objective function of the large 

investor considers only the expected net liquidation value, EG, given by 

n 

EG = -nk-^Yl ^^^i ^^ ^^^i' (2-4) 
i=l 

For A; = 0 and a sensible definition of p, i.e. for dp/d(j) > 0 and d^p/dcj) > 0, 

one gets an optimal sales trajectory with n —̂  oo and A(/)̂  - ^ 0 . If A: > 0, 

the investor has to balance, on the one hand, the advantage of trading 

small amounts that cause only a small price impact and, on the other hand, 

the overall fixed transaction costs, increasing in the number of trading 

intervals. At this point the question may arise, which costs can be assumed 

to represent fixed transaction costs? Clearly, fixed brokerage fees and any 

fixed charges incurred by the exchange belong to this category. However, 

more important in daily life are the opportunity costs for handling the 

transactions in the front and back offices. These costs do not depend on 

trading volume, but predominantly on the number of transactions. 

For the sake of simplicity, the risk-reward trade-off is modeled via the 

expected net liquidation value EG and the respective standard deviation 

STD (G). The large trader then maximizes the objective function with a as 

the degree of risk aversion 

m a x [ E G - a S T D ( G ) ] (2.5) 

by choosing the optimal sales trajectory {r^, A(/)ti,^}*. 

Propos i t ion 2.1 (Expecta t ion and s t anda rd deviat ion of t h e net liq­

uidat ion value) Suppose the stock prices satisfy the stochastic differential 

equation (2.1). Then the expected value and the standard deviation of the net 

liquidation value G are given by 

n i 

EG = -nk + St, Y, ^<PtA n ^i (2.6) 
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and 

n 

var(G) = 5 ] ( A 0 , , 5 , f v a r ( 5 , J (2.7) 

n 

i<j 

where 

coy{StAj) = Si [exp {a\U - to)) - l] f l 7^ H ^t-

The proof is given in Appendix 2.8. 

In the proposed model, G is not exactly normally distributed, especially 

for small n. However, to keep the problem handy for demonstration, the 

higher moments of the distribution will not be considered in the objective 

function (2.5). A moderate number of liquidation intervals is sufficient to 

justify the approximation of the distribution of G by a Gaussian. This will 

be demonstrated by a simulation study in Section 2.6.3. 

2.5 Modeling the Impact Function 

The framework proposed in this chapter incorporates distinctive features in 

order to model stock market liquidity in a sensible way. Specifically, the 

model contains: 

• a U-shape for intraday stock market liquidity, 

• power price impact functions, 

• periods that allow the order book to be rebuilt, as boundary conditions 

for the time intervals between subsequent trades. 

The relevance of these issues will be discussed briefly in this section. 



58 2 Optimal Liquidation Strategies 
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Fig. 2.2: Relative liquidity discounts for sell market orders (averages over 61 trad­
ing days) as a function of the time of day. Quantities: 10,000 (20,000, 
30,000) MAN shares. 

2.5.1 U-shape of Stock Market Liquidity 

In the dataset used for the implementation of the proposed model one can 

clearly identify a U-shape pattern in the relative Hquidity discount ^ over the 

trading day (see Figure 2.2). This phenomenon is typical for stocks traded 

on XETRA. The relative liquidity discount is the difference between the best 

bid price and the average execution price per unit of a hypothetical market 

order, divided by the best bid price. 

From the opening at 9:00 a.m. to 11:00 a.m. there is a sharp decline in 

the hquidity discount. From 11:00 a.m. to 5:00 p.m. it moves in a narrow 

range at a low level. A significant reaction of the liquidity discount to the 

stock market opening at 3:30 p.m. in New York cannot be identified. From 

5:00 p.m. the average hquidity discount rises fast and remains at a high level 

from 6:00 p.m. to 8:00 p.m., when the stock exchange closes. 

Why is it important to consider the U-shape pattern in an intraday liquida­

tion model? Obviously, if the investor is not too impatient, he or she should 

liquidate more in periods of high liquidity (around noon) than in situations 
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of low liquidity (immediately after the opening and before the closing of the 

exchange). 

A functional form that is able to model this U-shape pattern is given by i? (f) 

with 

^(t)= J L + _:L_ (2.8) 
^^ ^ + e g-t ^ ^ 

Here f measures the time in minutes elapsed after the opening of the exchange 

and d,e^ f^ and g are positive parameters with e < i^^^ < g. The variable 

^max denotes the time in minutes between the opening and the close of the 

exchange. 

2.5.2 Power Price Impact Function 

The dotted line in Figure 2.3 shows the relative price impact (averaged over 

61 trading days) at noon as a function of the trading volume for the dataset 

under consideration. It is apparent that a linear approximation (dashed hne) 

of this function provides only a poor fit. 

Exponential and power functions seem more suitable to model this relation­

ship. For numerical convenience a simple power function is employed in the 

following: 

p{A(t)t) = aA(t)l a > 0 . (2.9) 

As one can see in Figure 2.3, this function fits the data very well. 

2.5.3 The Resiliency of the Order Book 

The introduction of a deterministic relationship between the price impact p 

and the trade size A0 implies that between two transactions the large trader 

has to allow the market to rebuild the order book completely. Ignoring this 

boundary condition in the optimization problem can result in misleading 

conclusions. Imagine a situation where the completion of a sell market order 
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20,000 40,000 60,000 80,000 100,000 

Fig. 2.3: Relative liquidity discounts at noon (averages over 61 trading days) as 
a function of the number of MAN shares to be liquidated. Dotted line: 
raw data. Dashed line: linear fit. Solid line: fitted power function. 

by the large investor completely clears the order book on the bid side. Then 

the large trader has to wait until the bid side of the order book has recovered 

before he or she can sell another package of shares. Also in less extreme 

situations, if the market order of the large investor absorbs the order book 

depth only partly, being too impatient between subsequent transactions will 

result in deteriorating path-dependent hquidity discounts. 

To operationalize this idea, two assumptions are made in the following. The 

order book is considered completely rebuilt after a transaction by the large 

investor as soon as: 

• the bid-ask spread has again narrowed to the level immediately before 

the last transaction of the large investor, and 

• the same volume that was traded by the large investor can be traded 

with the same or a smaller liquidity discount compared with the one 

the large trader had to bear in the previous transaction. 

Instead of using the resiliency of the order book as a boundary condition 

for the length of the trading intervals, one could also separate the price im-
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pact p (A0^) into a permanent and a temporary component, as proposed by 

Almgren and Chriss (2000), Hisata and Yamai (2000), and Dubil (2002). 

However, if market orders are observed very frequently in the dataset avail­

able to calibrate the model, the permanent and the temporary component 

may be difficult to separate, especially if the temporary price impacts of 

different market orders overlap. 

2.6 Numerical Results 

The model described above was implemented using the MAN dataset for 

61 trading days. We focus our analysis on continuous trading and do not 

consider intraday auctions. The results are presented below. 

2.6.1 Parameter Specification 

Assume that i in equation (2.8) measures the time in minutes elapsed after 

9:00 a.m. The parameter values for the functions d (t) and p (A(/> )̂, obtained 

via least-squares estimation, are shown in Table 2.1. 

The proposed functional form is able to model the empirical data quite well 

{R\dj — 0.964). Figure 2.4 shows the surface of the fitted function. 

In order to estimate the minimum time that has to elapse between subse­

quent trades, all large market sell orders (order volume > 1,000 shares) in 

the sample were grouped into seven intervals, assuming that the time the 

market needs to recover is independent of the time of day. Table 2.2 and 

Figure 2.5 show the average r^^^ (measured in minutes) for every interval. 

Although the relationship between A0 and r^^^ seems to be shghtly concave 

empirically, r^^^ is modeled as a hnear function of A^^ in order to avoid 

nonlinear constraints in the optimization problem: 

Tr'' = pAcl>i. (2.10) 

The estimation of the parameter /? in equation (2.10) via least squares yields 

an estimate of /3 = 0.00098 and an i?^ of 0.83. If accuracy is crucial and 
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Table 2.1: Estimated parameters for the functions d {t) and p{/S.(j)t). 

a 

b 

d 

e 

f 

g 

Estimate 

0.42322 

1.45806 

4.22391 *10-^ 

17.68900 

2.34585 *10-6 

837.27800 

Asymp. SE 

1.34534 *10-i2 

0.00911 

4.24458 *10-^ 

0.29029 
2.35274 *10-^ 

3.13531 

i-statistics 

3.14583 *10" 

159.995 

9.95129 

60.93590 

9.97072 

267.04800 

0 
09:00 

60,000 

20:00 

Fig. 2.4: The fitted surface p (A0t) d {i), 
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Table 2.2: Average time r"̂ "̂ in minutes required for recovery of the order book 
after the execution of a large market order. 

1,000 <A(t>< 2,000 

2,000 < A^ < 3,000 

3,000 <A(j)< 4,000 

4,000 <A(p< 5,000 

5,000 < A^ < 10,000 

10,000 <A(t>< 15,000 

15,000 < A^ < 25,000 

Midpoint of interval 

1,500 

2,500 

3,500 

4,500 

7,500 

12,500 

20,000 

^min 

2.3263 

3.0703 

4.3802 

5.3110 

11.0917 

14.5073 

16.1208 

^i 

5,000 10,000 15,000 20,000 

Fig. 2.5: The resiliency of the order book. Fitted function to model the time in 
minutes to be elapsed between subsequent trades. 
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computational time is cheap, one should define r^^^ as a nonlinear function, 

which may provide a higher i?^. 

For the estimation of the volatility parameter in the stock price dynamics 

given in equation (2.1) best bid quotes, collected at intervals of 15 minutes 

from 9:00 a.m. to 8:00 p.m., were used and 15-minute returns for the best 

bid price were computed. Overnight price changes were not taken into con­

sideration. The estimation for the volatility parameter yields a = 0.7. Fur­

thermore, So is set to €28.55 which is the closing price on March 28, 2002, 

the last day of the sample period. 

2.6.2 Numerical Examples 

For the first example, suppose that the large trader does not care about the 

risk of the liquidation revenues {a = 0). Consequently, the investor will 

choose the sales trajectory that maximizes the expected liquidation value. 

Furthermore, assume that the investor has to liquidate 50,000 MAN shares 

within one trading day (approximately 5-10% of daily turnover) and that 

each transaction incurs fixed costs of €50.00. To solve the optimization 

problem, the sequential quadratic programming algorithm e04ucc of the NAG 

C Library was used. It is designed to minimize an arbitrary smooth function 

subject to simple bounds on the variables, linear constraints, and smooth 

nonlinear constraints. To find the optimal sales trajectory, the following 

problem was solved for each n — 1 , . . . , n^^^: 

max JbG 
{n,A0i} 

S.t. Acpt, 

Ti 

To 
n - 1 

En 

> 

= 

> 
> 

< 

0 

00 

PMu 
0 

T*. 
i=0 
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1,421,000 
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20 40 60 n 

Fig. 2.6: Expected liquidation revenues as a function of n for optimal ri and A(/)f.. 

Then, the optimal n* that provides the highest value of the objective func­

tion was identified. Figure 2.6 illustrates the result. The optimal sales tra­

jectory comprises 23 intervals and provides an expected liquidation value 

of € 1,423,734.72. Reducing or increasing the number of intervals decreases 

the expected liquidation revenues, for example by €2,686.81 or 0.2% if the 

portfolio is otherwise optimally hquidated in three steps. Selling the whole 

amount of 50,000 shares all at once at the opening of the exchange reduces 

the expected liquidation revenues by € 15,944.72 or 1.1% to € 1,407,740.00. 

Figure 2.7 summarizes the optimal strategy. The investor should start the 

liquidation process at 12:40 p.m. and then increase the packages that are sold 

step by step as market liquidity is improving. The hnear constraint (2.10) 

controlhng the time needed to rebuild the order book is binding in almost 

all cases, so that the length of the liquidation intervals is increasing as well. 

At this point the question may arise of why the amounts the large investor 

should liquidate in each interval are strictly increasing. If the large trader 

considers only the expected hquidation value and if one observes an intraday 

U-shape pattern in hquidity discounts, one may expect an inverse U-shape 

pattern in the liquidation amounts. However, each transaction of the large 
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Fig. 2.7: Fitted function to model the time in minutes that should elapse between 
subsequent trades. 

trader has a negative price impact that adversely influences the liquidation 

revenues of the following liquidation intervals. Taking this into consideration, 

the large trader should liquidate a substantial part of the overall position in 

the last interval, since the resulting negative price impact of this transaction 

no longer affects his or her liquidation revenues. In the example this seems 

to be the dominant effect also, since the slope of the intraday liquidity curve 

is flat around noon. 

To compare this example with other parameterizations, the duration D of 

the liquidation process is calculated. It is defined as 

D 
A4)t, , , A(/)t , , , Ac!)* 

^4>t.^ 
(2.11) 

It identifies the average weighted time needed to liquidate the position and 

must not be confused with the overall time needed to complete the liquidation 

process. The latter measure does not weight the intervals with the respective 
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Fig. 2.8: Expected liquidation revenues for 00 = 20,000 (left scale) and (/)o = 
70,000 (right scale) shares as a function of n, if n and A^^. are optimally 
chosen. 

liquidation volume, it just sums them up. In the example one obtains D = 

4h, 3min, 12sec. Thus, if the large trader does not care about the risk of the 

liquidation value (a = 0), he or she should sell the portfolio around noon, 

when market hquidity is comparatively high. Later on, one can see that the 

durations of the optimal hquidation strategies decUne as the investor becomes 

more risk averse. 

In the next example the initial stock holdings 00 are varied. Figure 2.8 shows 

the results. As a rule of thumb one can state that the larger 0o, the more often 

the investor should trade. In the case where 0o = 20,000 the portfoHo should 

be liquidated in five packages. If 0o = 70,000, the investor should trade 41 

times in order to realize the highest expected liquidation value. Compared 

with the first example, the duration of the hquidation process changes only 

slightly to D = 3h, 58min, 49sec for 0o = 20,000 and to Ẑ  = 4h, 6min, 16sec 

for 00 = 70,000. 
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Fig. 2.9: Expected liquidation revenues for k = 20, k = 50, and A; = 70 as a 
function of n, if Ti and Acpa are optimally chosen (0o = 20,000). 

The amount of fixed transaction costs influences the optimal number of trad­

ing intervals as well. Figure 2.9 provides an insight into this issue. Assume 

for this example that the initial stock holdings are (po = 20,000. If fixed 

transaction costs are increasing, the optimal number of intervals decreases. 

For fc = 20, the optimal strategy consists of 9 intervals, for fc = 50, of 

5 intervals, and for k = 70, of only 4 intervals. Again, the duration of 

the liquidation process is quite insensitive to a change of fixed transaction 

costs. For k = 20, k = 50, and k = 70, one obtains D = 3h, 59min, 07sec, 

D = 3h, 58min, 49sec, and D = 3h, 58min, 40sec respectively. 

In the last example the parameter a is varied. Figure 2.10 corroborates the 

initial guess that the portfolio should be hquidated in smaller packages if the 

aversion towards risk increases. An investor who trades more often reduces 

the price risk of the Hquidation process, since the probabihty of observing a 

low stock price at a single point in time is higher than the joint probability of 

observing low stock prices several times a day. For a = 0.0, 0.25, 0.5, and 1.0 

the optimal number of trading intervals is given by 23, 35, 37, and 48, respec­

tively. The impact of the parameter a on the liquidation strategy becomes 

apparent in more detail if the duration of the liquidation process is investi-
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Fig. 2.11: Duration of the liquidation process as a function of a, if TJ and A^t^ 
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gated. Figure 2.11 illustrates this result. The more a increases, the more 

impatient the investor becomes and the earher the portfoho should be sold. 

Two cost components reduce the expected Uquidation value in this case. 

First, fixed transaction costs are rising, since the investor trades more of­

ten. Second, the trader has to accept higher liquidity discounts due to the 

U-shape of intraday market liquidity. 

For the examples presented above it was assumed that the large investor 

solves for the optimal trading strategy at the beginning of the trading day. 

However, this assumption is not critical and can easily be relaxed by adjusting 

the parameters e and g in equation (2.8) if the decision on how to liquidate 

the portfolio has to be made at another point in time. 

2.6.3 The Distribution of Liquidation Revenues 

In order to get an impression of the distribution of the liquidation value and 

to justify the implicit assumption of normally distributed liquidation reve­

nues, 1,000,000 outcomes of the liquidation value G are simulated. For this 

purpose the stochastic process given in equation (2.1) is discretized using an 

Euler scheme. The parameter a in the objective function is set to 1.64 and 

it is assumed that the large investor follows the optimal trading strategy to 

hquidate 0o = 50,000 MAN shares with k = 50. Thus, the value of the objec­

tive function can be interpreted as the lower 5% quantile of the liquidation 

value, if G was normally distributed. For the given choice of parameters the 

optimization yields n* = 47, EG = 1,419,672.98, and STD(G) = 5,458.01. 

Figure 2.12 shows the results. For the simulated hquidation value G the gray 

line shows the approximated density obtained by applying standard kernel 

estimation procedures. The black dots represent the estimated Gaussian 

density function for fi = 1,419,672.98 and a = 5,458.01. Obviously, the 

differences between the two distributions are negligible. The hypothesis that 

the two distributions are different is tested via the Kolmogorov-Smirnov test, 

and the null cannot be rejected at the 5% level. Comparing the lower 5% 

quantile of the simulated distribution 1,410,729.35 with the optimal value of 
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Fig. 2.12: The gray Hne shows the approximated density of the simulated liquida­
tion value for 00 = 50,000, k = 50, and a = 1.64. The black dots repre­
sent some values of the Gaussian density function for /x = 1,419,672.98 
and a = 5,458.01, the parameter values that were obtained for the 
optimal liquidation strategy. 

the objective function 1,410,695.36 one can state that the downside risk of 

the strategy is slightly overestimated if the value of the objective function 

is interpreted as a value of risk. However, for most practical purposes this 

difference is negligible and the model seems well suited for VaR calculations. 

2.7 Conclusion and Issues for Further Research 

This chapter operationalizes the concept of intraday market liquidity pat­

terns in the determination of optimal Hquidation strategies for large security 

holdings. Innovative features of this setup include the explicit modeling of 

an intraday U-shape pattern, the consideration of the resihency of the or­

der book through a time constraint in the objective function of the large 
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investor, and the introduction of a permanent price impact function that 

fits empirical order book data very well. The proposed model is far more 

flexible than other approaches suggested in the literature, as it allows for liq­

uidation intervals of varying length and relaxes the assumption of a constant 

speed of trading. Due to the formulation of the objective function the model 

is especially suited for VaR-regulated institutions, which want to extend the 

short-term management of market risk by an exogenous hquidity factor. The 

implementation of the model with real-world order book data shows that the 

model is computationally tractable and able to provide intuitively reasonable 

results. 

A sensitivity analysis shows that if the number of initial stock holdings is 

increased, the optimal number of hquidation intervals will also rise. If fixed 

transaction costs are reduced, the large investor obtains more flexibility and 

the optimal number of liquidation intervals increases. By varying the agent's 

preference towards risk it becomes apparent that the investor can use the 

flexibility to limit the risk of the liquidation revenues if he or she trades 

more often. Additionally, if the trader becomes more risk averse, increas­

ing liquidity discounts due to an earlier liquidation of the portfolio have to 

be balanced against the risk of the liquidation value. One can observe a 

decreasing duration of the liquidation process in this situation. 

In contrast to the papers by Almgren and Chriss (2000), Hisata and Ya-

mai (2000), and Dubil (2002) the price impact is not separated into a perma­

nent and a temporary component. Instead it is assumed that the whole price 

impact is permanent and influences the liquidation revenues in the following 

hquidation intervals. The reason for this rather strong assumption is the lack 

of an appropriate procedure to separate the permanent and the temporary 

impact empirically from electronic order book data. Existing approaches 

(e.g. the one suggested by Holthausen, Leftwich, and Mayers (1987)) that 

split the price impact into a permanent and a temporary component assume 

that the temporary price impact lasts for a certain period of time, for ex­

ample until the end of the trading day. This deflnition may be acceptable 

for very large transactions. However, for medium-sized trades that occur 
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more frequently, further research toward a comprehensive method has to be 

conducted, so that one can separate overlapping temporary price impacts 

resulting from different transactions. 

When applying the proposed framework one should be aware that the only 

source of randomness modeled in this setup is the stock price. Both the 

market depth and the time needed for recovery of the order book are assumed 

to be deterministic, while in practice one may recognize significant variations 

of these variables through time. Further research should therefore focus on 

extensions of the approach presented in this chapter, e.g. along the lines of 

the stochastic hquidity model proposed by Esser and Monch (2002). 

2.8 Appendix: Derivation of EG and var (G) 

A simple way to compute the expectation is to use an iterative decomposition 

of the path of 5, given the new starting point after a jump downwards. Using 

(2.2) one can write 5^. as 

= 7i Su_, exp [-l/2a\U - U-i) + a{Wu - m , _ J ] 

since Sf.- is log-normally distributed. Iterating this procedure yields 

St, = 7 i - - - 7 i 5 t o e x p [ - l / 2 a 2 [ ( t , - i , _ i ) + . . . + ( i i - i o ) ] ] 

exp \a{Wt, - Wu_,) + . . . + G{Wt, - VK,J] 

= 71 • • • 7i St, exp [-l /2a2(ii - t^)\ exp [a(W,, - Wt,_,)] 

. . . e x p K W t , - H ^ ^ J ] . (2.12) 

This yields the following expectation value using the independence 

of the increments of the Brownian motion and the fact that 

Eexp(crWt) = exp(0.5cr2^): 

E5t, = 7i---Ti'S'to-
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Plugging this into (2.4) one gets 
n 

EG = -nk + Y^ A4>t, 5i 71 • • • 7i St,. 
i=l 

Using (2.3) the variance of G can be written and decomposed as follows: 

var(G) = yax( J2^(l>u Si sA 
n 

= ^(A0,,<5,fvar(5,J 
i=l 

n 

+ 2 J2 ^<t>u Si ̂ <t>t, Sj cov {St,, St,). 
i<j 

Thus, all that remains is the computation of variances and covariances. Based 

on the relationships 

var(5tj - ESl-{EStf 

coY{St„St,) = E(5t,5,.) - (E5tJ(E5, . ) 

it suffices to compute ^S^. and E(S't.5'tj.). Based on (2.12), the second mo­

ment can be written as 

si = ^l..^fSlexp[-a\U-to)]exp[2a{Wt,-Wt,_,)] 

...exv[2a{Wt,-Wt,)]. 

By using 'Eexp{2aWt) = exp{2a'^t) one gets 

ESl= ^l..^fSlexp[a'iU-to)], 

implying 

var(5,J = ^l..j^Sl{exp[a\U-to)]-l). 

The covariance terms can be calculated in an analogous fashion. Since 

StA, = sl^l...^hi+i---ii 

exp[-l/2a2(ti - to)] exv[-l/2a'^{tj - io)] 

exp[2a(W^t, - Wt,_,)]... exp[2a(W^,, - Wt,)] 

exp[a(W,. - Wt,_,)].. .exp[a(iy,,^, - Wt,)] 
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one obtains 

exp[-l/2a^{U - to)] exp[-l/2a^{tj - to)] 

exp[2a\ti - to)] exp[l/2a\tj - ti)] 

= Stoli . . . ihi+i "'I3 exp[a^(^^ - to)]. 

So, the covariance can be written as 

C0Y{StA,) = 7? . •. 7 ' 7i+i. . • 7i '̂ 'o (e^P i^^i^i - ^0)] - 1). 
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3 The Navigation of an Iceberg: 

The Optimal Use of Hidden Orders 

3.1 Introduction 

The rapid development in technology over the last couple of years has per­

mitted many stock exchanges to transfer trading from open outcry markets, 

where market makers or specialists act as intermediaries, to screen-based 

electronic markets. Typically, electronic trading platforms provide market 

participants with information on an anonymous open order book during con­

tinuous trading in real time. Usually the hmits, the accumulated order vol­

umes of each limit, and the number of orders in the book at each limit are 

displayed, so that traders can assess the altering order flow and the market 

liquidity. 

What does the existence of an open order book imply for investment firms 

who want to submit limit orders, the total volume of which is large relative to 

others in the market? No doubt, exposing large limit orders in an open order 

book may reveal the investor's motives for trading and may raise suspicion 

that the originator of the large order has access to private information about 

the true value of the security under consideration. Consequently, other mar­

ket participants change their own order submission strategy, which in turn 

lowers the probability that the large order will be executed at the prespec-
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ified limit. The investment firm then has to choose a less favorable limit if 

it wants to increase the probability of execution and thus suffers losses from 

the indirect adverse price impact of its large exposure in the order book. 

A possible solution is not to submit one large limit order but to split the 

order into several smaller hmit orders, which are submitted over time. For 

this reason many electronic trading platforms introduced so-called iceberg 

orders. Euronext, the Toronto Stock Exchange, the London Stock Exchange 

(with its order-driven services SETS, SETSmm, and lOB), and XETRA are 

just some prominent examples. Iceberg orders allow market participants to 

submit orders with only a certain portion of the order publicly disclosed. 

The metaphor alludes to the fact that in nature an iceberg's biggest part 

floats unobservable under the water. Only one-ninth of the mass of ice is 

seen above the water surface. 

An iceberg order is specified by its mandatory limit, its overall volume, and 

a peak volume. The peak is the visible part of the iceberg order and is 

introduced into the order book with the original time stamp of the iceberg 

order according to price/time priority. As soon as the disclosed volume of 

an iceberg order has received a complete fill and a hidden volume is still 

available, a new peak is entered into the book with a new time stamp. The 

new peak behaves in an identical manner to a conventional limit order. From 

this point of view a pure limit order is basically a special case of an iceberg 

order where the peak volume coincides with the total order volume. 

However, it is important to note that iceberg orders exhibit a less favorable 

time priority compared with pure limit orders. After the peak of an iceberg 

order is completely matched, all visible limit orders at the same limit that 

were entered before the new peak is displayed take priority, i.e. they must 

have received a complete fill before the new peak comes to execution. 

When submitting an iceberg order to the market, several issues have to be 

considered. Imagine, for example, that the management of a mutual fund has 

to close a large position in a single stock within one trading day. Using an 

iceberg order with only a small peak size allows it to minimize the adverse 

informational impact of disclosing the actual order volume. However, the 
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smaller the peak size the less favorable the time priority of the overall order. 

Thus, choosing a peak size that is too small seems suboptimal. Such a 

strategy would significantly lengthen the time to complete execution or would 

make a complete fill unlikely. Moreover, the fund managers have to choose 

a reasonable limit for the order. If the limit is too low, one may miss some 

trade opportunities, i.e. one would give away the chance to participate in 

raising stock prices. Otherwise, if the limit is too ambitious, the order is 

unlikely to receive a complete fill. 

In this chapter this tradeoff is modeled analytically in a continuous time 

setup where a large position in a single stock is to be liquidated within a 

finite trading window.^ We assume that the investor uses an iceberg order 

and follows a static strategy, i.e. once the limit and the peak size of the 

iceberg order are chosen, the trader sticks to this strategy over a fixed period. 

We then determine the optimal peak size and the optimal order limit by 

maximizing the expected payoff of the liquidation strategy under certain 

assumptions concerning the execution risk of the iceberg order. Note that 

a pure limit order would be also an admissible solution to our optimization 

problem. 

Unless an iceberg sell order is immediately executable, i.e. the hmit is so low 

that it is actually a market sell order, the probabihty of receiving a complete 

fill within a finite time horizon is strictly smaller than one. In principle at 

least two alternative approaches would be able to incorporate execution risk 

into a liquidation model. 

First, one may assume that the investor is forced to trade the remaining 

shares with a market order if the iceberg order fails to receive complete 

execution. We call this setup the self-contained approach. Market orders 

are executed immediately. They use hquidity from the book until they are 

completely filled. Consequently the investor has to bear a hquidity discount, 

so that he or she gets penalized for every share that could not be sold via 

the iceberg order. However, in our opinion such a rigorous assumption may 

^The analysis for a purchasing strategy is symmetric. 
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not always be justified in practice, especially if the remaining order volume 

under consideration cannot be absorbed by the market without a significant 

price change. 

In this case, investors typically follow an adaptive strategy, i.e. they review 

their orders frequently and adjust them if the market moves away from the 

prespecified order limit. For this reason we also propose a different approach 

that considers the execution probability as a boundary condition, i.e. only 

those combinations of peak size and limit are admissible that ensure a certain 

execution probability within a prespecified time horizon. We call this model 

the open approach. 

Compared with the first one the latter framework is rather flexible and does 

not require any assumption concerning the liquidation of the unexecuted part 

of the iceberg order. To get a flavor of the concept, imagine, for example an 

investor who wants to liquidate a large position, say, within one week. At the 

end of each trading day the investor inspects the state of the iceberg order 

and, if necessary, adjusts the limit or the peak size to reach the target.^ 

The open approach can assist the investor in this procedure. It deals with 

the optimal combination of order limit and peak size that maximizes the 

expected hquidation revenues in the case of complete execution, given that 

the probability to receive a complete flll exceeds a certain level, for example 

40% within one trading day. If the order remains partially or completely 

unexecuted by the end of the first day, the investor may wish to rerun the 

optimization at the second day and thereby increase the execution proba­

bility, let's say, to 60% and so on. If a substantial part of the order is still 

unexecuted on the last day of the week, the investor will probably choose 

a minimum execution probability that is close to one. In principle one can 

also specify a utility function for the investor to model the trade-off between 

^Note that at some exchanges unexecuted iceberg orders are deleted automatically by 

the system at the end of each trading day and must be resubmitted if desired by the 

investor on the next trading day. In this case a daily adjustment of order limit and peak 

size seems very plausible. 



3.1 Introduction 83 

expected payoffs and execution risk. However, in order to keep the problem 

tractable for exposition we will not address this issue in this chapter. 

We present a theoretical framework for both the open and the self-contained 

approach. Although the underlying assumptions of the latter model are cer­

tainly questionable from an empirical point of view we believe that its basic 

structure may serve as a guideline to build more sophisticated models, for 

example by implementing an individual penalty function for the unexecuted 

part of the iceberg order that meets the specific requirements of the investor 

under consideration. The numerical analysis that illustrates the theoretical 

part will focus on the open approach. 

The technical design of the model can be summarized as follows: During 

continuous trading a transaction takes place if an order becomes executable 

against orders on the other side of the book. Thus, for an iceberg sell order 

that is stored on the ask side of the book the dynamics of the best bid price 

are of special interest. We model the best bid price as a stochastic process 

in continuous time and assume a constant best bid size. If the stochastic 

process hits the limit of the iceberg order a transaction is executed and the 

stochastic process jumps back to the next lower limit. Whether the peak 

of the iceberg order or another sell order at the same limit is processed at 

this event depends on the relative time priority of the orders. If new orders 

with the same limit as the iceberg order are submitted continuously to the 

book the time priority of the iceberg order deteriorates compared with a pure 

limit order. The smaller the peak size of the iceberg order, the more often 

the limit must be hit such that the iceberg order receives a complete fill. 

On the other hand, a smaller peak size lowers the adverse informational 

impact of showing the actual order volume in an open book. We model the 

drift of the stock price process as a function of the visible order imbalance. 

When the peak size of an iceberg order enters the book the visible order 

imbalance changes. We define the order imbalance as the total visible order 

volume (in number of shares) stored on the bid side of the order book divided 

by the total visible order volume stored on the bid side and on the ask 

side of the order book. We exemplify empirically, using order book data, 
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that current variations in the visible order book imbalance are positively 

correlated with future returns. Thus, the higher the peak size of an iceberg 

sell order, the smaller the order imbalance and the smaller the expected 

returns in the next time intervals. Consequently, a higher peak size results 

in a smaller probabihty that the stock price process will reach the prespecified 

limit within the given time horizon. 

In total, one can observe two opposite effects if the peak size of an iceberg 

sell order is reduced in our model: 

• The drift of the stochastic process is reduced to a smaller extent when 

the order enters the book. 

• The number of times the limit must be hit in order to process the 

iceberg order completely increases. 

While the first effect is beneficial for the originator of the iceberg order, the 

latter is not. The proposed framework weights these effects and identifies the 

optimal combination of peak size and order hmit. 

The rest of the chapter is organized as follows: Section 3.2 briefly reviews 

the related literature. The dataset used to exemplify the theoretical ideas 

throughout this chapter is described in Section 3.3. Section 3.4 introduces 

the theoretical setup for both the self-contained and the open approach. In 

Section 3.5 we exphcitly model the drift as a function of the order imbalance. 

The open approach to determine the optimal combination of order limit and 

peak size is calibrated with a clinical order book data sample in Section 3.6 so 

that one can get an impression of the optimal strategies for different scenarios. 

The chapter concludes in Section 3.7 with a brief summary and a discussion 

of issues for further research. 
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3.2 Related Literature 

A number of empirical studies shed light upon the use of hidden orders^ and 

the associated motives of traders. 

Aitken, Brown, and Walter (1996) state that approximately 6% of orders 

accounting for 28% of shares traded at the Australian Stock Automated 

Trading System (SEATS) were undisclosed in 1993. Aitken, Berkman, and 

Mak (2001) find that undisclosed limit orders are used to reduce the option 

value of limit orders. This follows the intuition that hmit orders can become 

mispriced when new public information arrives. Some authors, for example 

Copeland and Galai (1983), therefore characterize limit buy (sell) orders as 

free put (call) options to other market participants. Pardo and Pascual (2003) 

use six months of hmit order book and transaction data on 36 stocks from 

the Spanish Stock Exchange (SSE) and report that 26% of all trades (20% 

of all non-aggressive trades and 42% of all aggressive trades)^ involve hidden 

volume. They provide evidence that liquidity suppliers use iceberg orders to 

mitigate adverse selection costs if new information is released to the market, 

and that hidden orders temporarily increase the aggressiveness of traders 

when revealed to the public. D'Hondt, De Winne, and Frangois-Heude (2003) 

investigate data for six CAC40 stocks traded at Euronext and show that 30% 

of the depth is hidden in the whole book. The authors highlight that hidden 

orders are more frequently canceled than usual orders, that iceberg orders are 

less likely to be totally filled and that the limit of hidden orders is modified 

more often than that of pure limit orders. 

The modeling of optimal liquidation strategies attracts more and more atten­

tion by researchers. Bertsimas and Lo (1998), Almgren and Chriss (2000), 

Hisata and Yamai (2000), Dubil (2002), and Monch (2003) investigate hqui-

^Note that at some exchanges the expression "hidden order" is reserved exclusively 

for orders that are completely invisible to other market participants. However, as it is 

common practice in the literature that is related to this chapter we use it as a synonym 

for an iceberg order. 

^A buyer- or seller-initiated trade is defined as aggressive if it consumes, at least, the 

best quote on the opposite side of the book. 
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dation strategies for large security positions if market orders are employed as 

trading instruments. The papers differ from each other mainly in the defini­

tion of the stock price dynamics, the modehng of the price impact function, 

and whether the final time horizon is given exogenously or modeled endoge-

nously. 

Compared with market orders, the analysis of optimal liquidation strategies 

for hmit orders is more complex. While the former are matched immediately 

(provided a sufficient market depth) the execution probability of the latter or­

der type depends critically on the respective limit. Wald and Horrigan (2001) 

estimate a probit model that characterizes the execution probabihty depend­

ing on a number of variables as the order limit, subsequent realized returns, 

the bid-ask spread and so on. Lo, MacKinlay, and Zhang (2002) compare 

empirically three different approaches to determine the execution probabihty 

of limit orders using order book data for the 100 largest stocks in the S&P 

500 from August 1994 to August 1995. First, they model the execution of a 

limit order as the first passage time of a geometric Brownian motion to the 

limit price and find that the predictive power of this setup is only moder­

ate. The first passage time model suffers from important shortcomings. It 

neither considers the time priority, the order size, a potential adverse impact 

of reveahng large limit orders in the book nor does it distinguish between 

time-to-first-fill and time-to-completion. As mentioned above, these limi­

tations are eased in the framework proposed in this chapter. Second, the 

authors consider first-passage times determined by historical time series of 

transaction data. As this approach also ignores the time priority and cur­

rent market conditions it is not able to represent actual limit order execution 

times adequately. Finally, the article proposes an econometric model of limit 

order execution times based on survival analysis and actual limit order data. 

This empirical approach is a reduced form model as it leaves open which 

mechanism actually causes the execution of a limit order. The model uses 

eight explanatory variables that are updated in real time to capture current 

market conditions and three explanatory variables that are updated monthly 

to model differences across stocks. The authors make some assumptions that 
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may not always be justified empirically to keep the framework tractable. 

For example the authors assume time-independent covariates. Nevertheless, 

the empirical framework is able to predict actual limit order executions very 

well. However, the model requires a continuous update with order book data. 

Thus, it may be only of limited use if such data are not available in real time. 

The intention of our framework is closely related to that of Lo, MacKinlay, 

and Zhang (2002) although we use a structural approach to model exphcitly 

the functionality of the order book. Both approaches focus on the modeling 

of the execution probability of limit or, in our case, more generally, iceberg 

orders. In our approach this probability is obtained endogenously and in 

the parametric model of Lo, MacKinlay, and Zhang (2002) the form of the 

probability density function is specified exogenously. While Lo, MacKinlay, 

and Zhang (2002) just present a framework to estimate the time-to-first-fill 

and the time-to-complete execution of a limit order, our approach is more 

flexible as it is able to capture every state of partial execution. Furthermore, 

we extend the analysis to the identification of optimal liquidation strategies 

for different scenarios. 

Cho and Nelling (2000) estimate the execution probabihty of a limit order 

conditional on order-specific variables and other variables that capture gen­

eral market conditions using quote data for 144 NYSE stocks from November 

1990 to January 1991. The authors observe that the longer a limit order is 

outstanding, the less likely it is to receive a complete fill. Furthermore, they 

find that the execution probability is low when the limit price is far away 

from the current quote, when the order volume is high, when spreads are 

narrow, and when volatility is low. 

The hypothesis that the order imbalance is a proxy for the execution proba­

bility of hmit orders and influences the order submission strategy of investors 

is supported by many authors. Chordia and Subrahmanyam (2002) analyze 

time series of daily order imbalances and individual stock returns for the 

period 1988-98 using a comprehensive sample of NYSE stocks. They flnd 

that lagged imbalances bear a positive predictive relation to current day 

returns. Furthermore, they observe that daily imbalances are positively au-
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tocorrelated. Ranaldo (2004) uses data of 15 stocks quoted on the Swiss 

Stock Exchange. He finds that orders are submitted more (less) aggressively 

when the outstanding order volume on the same (opposite) side of the book 

is large. Furthermore, he observes that buyers are more concerned about 

the opposite side of the book, while sellers are more concerned about their 

own side. Parlour (1998) presents a dynamic setup of an order book, where 

investors anticipate that the own order placement strategy influences the 

following order flow and where the execution probability of limit orders is 

modeled endogenously. 

3.3 Description of the Market and Dataset 

The functionality of the liquidation model proposed in this chapter will be 

illustrated by using the order book data sample for the company MAN that 

was introduced in Section 2.3. 

In this dataset we counted 786 iceberg sell orders, 140,948 pure limit sell 

orders, and 4,130 market sell orders. At first sight the hidden part of the 

order book seems tiny. However, analyzing the average volume of each trad­

ing instrument more deeply changes this impression shghtly. Iceberg orders 

exhibit an average volume of 16,037 shares, whereas pure limit and market 

orders just have an average order volume of 964 and 1,069 shares. Due to this 

fact, hidden orders represent a remarkable proportion of 8.24% of the overall 

volume on the ask side of our sample order book. Pure limit sell orders and 

market sell orders provide 88.87% and 2.89% of the hquidity on the ask side. 

Figure 3.1 shows the spectrum of the observed initial volumes of all hidden sell 

orders. In Figures 3.2 and 3.3 we address the issue of how market participants 

choose the limit and the peak size in practice. Obviously there exists a strong 

preference to specify a peak size that corresponds to a tenth of the overall 

order volume, as one can see in Figure 3.2. Roughly 37% of all market 

participants follow such a strategy. To investigate the diff'erence between 

the chosen limit and the current best bid price at the time of submission 
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Fig. 3 .1 : Absolute frequencies of order volumes of all observed iceberg sell orders 
in the sample. 
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Fig . 3.2: Ratio of initial order volume to peak size of all different iceberg sell 
orders in the sample. 
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we consider only the 702 iceberg sell orders that entered the book during 

continuous trading. Figure 3.3 shows that the majority of market participants 

set the limit between 5 and 15 cents above the best bid price. Note that the 

average bid-ask spread in our sample is 7 cents and the average midprice 

€26.91. 
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Fig. 3.3: Absolute price difference between the chosen limit and the current best 
bid price at time of entry of all observed iceberg sell orders in the sample 
entered during continuous trading. 

With respect to the success of the observed trading strategies, Table 3.1 

delivers an insight into the empirical execution probability of hidden orders. 

Less than 18% of all iceberg sell orders were executed completely. Almost 

30% of all iceberg orders received a partial fill before expiry or cancelation by 

the investor. The majority (52%) of all hidden sell orders were canceled or 

expired completely unexecuted. Looking at the median of the observed time 

between entry and complete execution or deletion one can state that market 

participants check the state of their orders frequently and cancel them if 

prices move away from the limit. 
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Table 3.1: Execution or deletion of iceberg sell orders in the order book sample. 

Completely 

executed 

Partially 

executed 

Completely 

unexecuted 

Number 

of iceberg 

sell orders 

139 

231 

416 

Average ratio of 

executed to initial 

volume; median in 

parentheses 

100.00% (100.00%) 

32.44% (28.00%) 

0.00% (0.00%) 

Average time between 

entry and complete 

execution or deletion 

(hh:mm:ss); median in 

parentheses 

00:40:48 (00:10:46) 

00:50:04 (00:09:29) 

03:32:43 (00:09:45) 

3.4 The Basic Setup 

3.4.1 General Idea and Dynamics 

This section introduces the basic concepts and provides the motivation for 

the assumptions that have been made. Assume that the large investor holds 

(po shares that should be liquidated before time T. For this purpose the trader 

submits an iceberg sell order that is stored on the ask side of the order book. 

The investor assigns a peak size 0p and a limit S to the iceberg order. The 

latter is strictly higher than the initial best bid price 5*0 such that the first 

proportion of the order is not immediately executable. 

The best bid price St is modeled by a kind of jump-diffusion process. For 

St < S it follows a geometric Brownian motion: 

dSt = fiSt dt + aSt dWt with 5o < S. (3.1) 

Throughout this section the drift /i is assumed to be a constant. In Section 3.5 

we ease this restriction and model the drift as a function of the chosen peak 

size. 
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When the process hits the hmit of the iceberg order, i.e. St- = 5, a small 

downward jump to the next order book entry on the bid side occurs such 

that St = {I — e) S. For sake of simplicity the jump size is modeled as a 

constant throughout this chapter. Figure 3.4 illustrates the general setting 

described so far. 

( l - ^ ) S 

Fig. 3.4: If the best bid price St hits the limit of the iceberg order 5, a small 
downward jump to the next limit on the bid side, i.e. to {! — €)§, 
occurs. 

Each time the limit S is hit by the best bid price a transaction is executed. 

The transaction size (ps is assumed to be constant over time. Furthermore, 

we assume that whenever a new tranche of the iceberg order enters the book 

a fixed volume (/)« of other sell orders that exhibit a better time priority 

is already stored at the same limit. These orders must be matched before 

the current peak of the iceberg order becomes executable. Thus, one can 

observe the following sequence of newly displayed order quantities over time: 

(/)a,(/!>p,(/>a,0p, and so on. Table 3,2 summarizes the notation that is used 

throughout the rest of this chapter. 
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Table 3.2: Notation used in the proposed Uquidation model. 

Variable 

(po 

0p(< M 
(t>a 

(t>s 

Meaning 

Total number of shares that have to be liq­

uidated by the large investor before time T 

Assigned peak size to the iceberg order 

Volume of other sell orders at limit S that is 

already stored on the ask side when a fresh 

peak enters the order book 

Total transaction volume that is processed 

each time the limit is hit 

The objective of the investor is the identification of the optimal combination 

of peak size (j)p and limit S. The time horizon is T, and the investor is 

interested in the expected payoff of his or her hquidation strategy. To deal 

with execution risk, we consider two alternative approaches. In the open 

approach^ the investor chooses a lower bound P* for the probability that the 

submitted iceberg order receives a complete fill up to time T. For the self-

contained approach we assume that if the iceberg order is not completely 

executed before time T, the large investor submits a market order to sell 

the remaining part of the shares. Consequently, the trader has to bear a 

significant liquidity discount, denoted by * • S'T, where "if ̂  e. Thus, the 

investor will receive (1 — ^ ) S'r for each of the remaining shares. It seems 

reasonable to model ^ as a function of the number of shares that are sold by 

submitting a market order at T. 

The remaining part of this section is dedicated to the derivation of the for­

mulas necessary to implement the open and the self-contained approach. Ob­

viously, the liquidation value depends on the actual number of times the 

best bid price hits the prespecified limit of the iceberg order, which in turn 

is a random variable in the proposed setup. Thus, in Subsection 3.4.2 we 

introduce formulas to compute the executed volume of the iceberg order con-
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ditional on the event that the hmit is hit a certain number of times. In 

Subsection 3.4.3 we calculate the probability that the limit is hit a certain 

number of times. Furthermore, in this subsection we present the objective 

function of the investor for both the open and the self-contained approach. 

3.4.2 Execution of the Iceberg Order 

The number of times n* the limit S must be hit by the best bid price such 

that the iceberg order is completely satisfied is given by 

n = 
(0o/0p)0a + 00 )(H-<^a/ 

0s 

The brackets [.] are called upper Gaussian brackets, with 

\x] = min {z eZ : z > x} and Z as the set of integers. Note that n* • 0s 

corresponds to the total order volume that is matched after n* transactions, 

whereas 0o shares originate from the iceberg order and (0o/0p)0a shares from 

other orders. 

After the limit is hit n times the number of executed shares of the iceberg 

order is given by 

h (n) - mm < max (t>p 

n0< 

n(j)s 

,(pa + 0p_ 

? - 0a ("l 

5 

+ 
7105-

.0a + 0p. )] 
where [x} = max {z e Z : z < x}. As long as n < n* the first element of the 

max-expression is larger than the second if other sell orders at the same limit 

exhibit a better time priority than the current peak of the iceberg order. If 

the current peak of the iceberg order takes time priority over other sell orders 

at the same limit, the second term in the max-expression is larger than the 

first. 

The outstanding order volume of the iceberg order after the n-th hit of the 

limit is then equal to 

00 - /i (n) . 
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3.4.3 Liquidation Value 

Armed with the results of the previous section one can now calculate the 

liquidation value conditional on the event that the limit is hit a certain 

number of times. Let M denote the number of times the limit is hit before 

time T. If M > n*, the liquidation value G is given by G = (J)QS^ since the 

iceberg order is completely executed at time T. The open approach simply 

maximizes this expression by solving the following optimization problem: 

max 00 S 

s,t P* < P ( M > n * ) 

So < S 

In contrast to the open approach^ which focuses on the case of full execution, 

the self-contained approach considers also those states of the world where 

M < n*. In this setup, if M = n, the trader receives h (n) S for the executed 

part of the iceberg order and [(J)Q — h (n)] [1 — "if {(l)o — h (n))] ST for the re­

maining part that is liquidated using a market order at time T. Given the 

realizations of M and ST the liquidation value can be calculated by 

GM=n = h{n)S+[<l>o-h (n)] [1 -> * (0o - /i (n))] ST^ 

However, at time to, both M and ST are random variables. Thus, in order to 

derive the expected liquidation value one has to weight all possible realiza­

tions of the liquidation value CM by their probabilities, whereas ST depends 

on the realization of M. Thus, the expected liquidation value can be written 

as 

EG = J ^ P ( M = n) X 
=0 

h{n)S+ [00 - h (n)] [1 - * (0o - /i (n))] x 

E(S'T|M = n) 

n=0 

{ 
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= P ( M = 0 ) ( / ) O - [ 1 - * ( ( / ) O ) ] E ( S T | M = 0) 

n * - l ^ 

+ 5 ^ P ( M = n) I h{n)S-^[(j)o-h{n)] x 
n = l '-

[l-^{(j)o-h (n))] E {ST\ M = n)\ 

+ P ( M > n * ) (00 5 ) . 

For the self-contained approach we need to solve the following optimization 

problem: 

max EG 

s,t. So < S 

(j)p < (pQ. 

It remains to calculate the following quantities: 

• P (M = 0) 

• P (M = n), forn = 1 , . . . , n * - l 

• P (M > n*) 

• E{ST\M = 0) 

• E ( S ' r | M = n ) , f o r n = : l , . . . , n * - l . 

For this purpose we must compute the distributions of the hitting times, 

denoted by ^j, z = 1 , . . . , n. The time periods between two successive hitting 

times will be denoted by r̂  := U — ti_i, z = 2 , . . . , n and we will let ri = h. 

The distribution of ri can be calculated as follows: Since the process for 

the best bid price St up to ri follows a geometric Brownian motion, see 

equation (3.1), the logarithm of the process is an arithmetic Brownian motion 

d (In St) = (/x - ^72) dt + adWt. 

Note that if an arithmetic Brownian motion has a negative drift, i.e. when 

fi < (7^/2 in our model, then ri has a defective density function whose integral 
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over [0, oo) is less than one, see, e.g., Karhn and Taylor (1975), p. 362. Thus, 

the probability that the limit will never{\) be reached is positive. Specifically, 

the probability for the event {ri < oc} is given by 

f 1 for // > a72 
(n < oo) - I ^^^ ^_^^^ ^^^^^^ 1̂  _ ay2\/a^] for /x < ^2/2. * 

The distribution of the first hitting time of In 5, starting at In SQ < In 5, 

conditional on the event {TI < oo}, is given by 

Taking the product of (3.2) and (3.3) we can write the unconditional (defec­

tive) density of ri as 

/o.iW = / o , i W P ( n < o o ) 

At Ti the process independently restarts at 5(1 — e), following again a geo­

metric Brownian motion. To derive the (defective) density of the first hitting 

time after the restart (denoted by T2 = t2 — ti) we just need to replace In 6*0 

by In [5(1 — e)] in equation (3.4) if we assume a constant drift ^. Thus, for 

n* >2 one can write 

- In (1 - e) f - [- In (1 - 5) - (M - ^ 7 2 ) tf \ 

Since 2̂ can be decomposed into the sum of the two independent random 

variables ri and r2, i.e. 2̂ = J2i=i'^ij the (defective) density /o,2 of 2̂ is 

simply the convolution of the corresponding (defective) densities, given by 

Jo 
/0,2(t) = (/0,1 ^ / l ,2) (0 '•= / /0,l(^ - ^)/l,2(^)du. 

Jo 

One can proceed by iterating this methodology: At r ,̂ i > 2 the process 

independently restarts at 5(1 — e) following a geometric Brownian motion. 

Thus, the distribution of t^ = ^^1=1 ^i ^^ given by 

/ 0 , n ( 0 = ( /0 ,n - l ^ fn-l,n){t) = (/o,l ^ / l ,2 ^ • • • ^ / n - l , n ) (^). (3 .6) 
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Now, we are able to derive the corresponding probabihties by rewriting the 

number of hits in terms of hitting times. Since the events 

{M = n} and {{tn < T) A (t^+i > T)} 

are identical, the desired probability for (M > 1) can be written as 

P{M = n) = P( ( i„ < T) A (i„+i > T)) 

= P{t„<T)-P{tn+i<T) 

= f / o .n ( t )d i - f fo,„+iit)dt. 
Jo Jo 

The probability for the event that the limit is not hit before T is given by 

P (M = 0) = P (ti > T) 

T 

= 1- J fo,l{t)dt 

0 

The probability for a complete fill of the iceberg order before T can be com­

puted via 

P (M > n*) = P {tn^ < T) 

T 

= J hn*{t) dt 

Now the expected liquidation value, conditional on the event that the limit 

is hit n times before time T, can be calculated. To simphfy the explana­

tion, assume for a moment that the hitting times are deterministic. This 

assumption will be relaxed later. In this case the expression 

E ( S ' r | M = n) 
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is equal to 

E , max (Su) < S 
tn<U<T^ 

= Et„(^exp[ln(5r/5tJ]5,„ 

CHS/Stn) I 
J —Q 

exp(s) St„9 s 

^max^[ ln (5„ /5 , J ]< ln(5 /5 t„ ) 

^m^^iHSJSa < l n ( 5 A J , n ] ds, 

since the n-th hit occurs at tn and the process independently restarts at tn 

following a geometric Brownian motion conditional on the event that the 

threshold S is not hit within the time interval from ^̂  to T. 

One may notice that this scenario is similar to the evaluation of knock-out 

barrier options (see, e.g., Zhang (1998), pp. 203-259). The formula for the 

conditional density g of In {Sr/St^) is given in Appendix 3.8. 

However, for M = n > 1, t^ is in fact a random variable. Thus, we 

need to consider the distribution of tn, conditional on the event 

{tn ^ T /\ tn+i > T}. Due to the independence and identical 

distributions of r̂  for i > 2 this conditional density is given by 

r^'{t)dt := P ( t , E ( t , t + d t ) | r n + i > T - t ) 

P((tn e (t,^ + dt)) A (rn+i > T - O) 

P(rn+i >T-t) 
fo,n{t)F(Tn^i>T-t)dt 

P ( ( ^ n < T ) A ( ^ n + l > T ) ) 

/ o , n ( 0 ( l - IQ~^ fn,n+l{s)dsj dt 

JQ /0 ,n(^) du - J^ /o ,n+l (^) du 

Armed with this result we are able to write the conditional expectation of 

ST as 

'E{ST\M = n) 

= J r^^{t)Et(^ r^^^(OE, ( 5 T | max {Su) < S ] dt 
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I 
T / o , n W ( l - / o ^ V n , n + l ( 5 ) d 5 ) 

0 /o / o , n ( ^ ) d ^ - / o /o,n+l(^)d^/ 

j exp(5) St X 

g { 5| m^ax^[ln(5J5,)] < ln(5/5,) , n ) ds dt. (3.7) 

Note that the integral with respect to t in equation (3.7) has a singularity at 

the upper end point of the integration range. Thus, for numerical integration 

one should use a quadrature routine that can handle functions with end-point 

singularities.^ 

Conditional on the event that the limit is not hit before T, the conditional 

expectation of ST simplifies to 

E ( S ' r | M = 0) 
n\n{S/So) / _ \ 

= / exp(5) ^0^ 5| max [ln(5^/S'o)] < ln(S'/5o), n = 0 ds. 
J-oo \ 0<^<^ / 

The general setup of the alternative approaches is summarized in the follow­

ing two propositions: 

Proposition 3.1 The open approach to determine the optimal combina­

tion of the peak size and the limit of an iceberg order can be represented by 

the following optimization problem: 

max 00 S 
{4>j>.s] 

T 
S.t P* < / /o ,n*(t)dt 

0_ 

So < S 

where P* is given exogenously. 

^For example, imsl_d_int_fen_sing from the IMSL C-Library is such a routine. 
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Proposition 3.2 The self-contained approach to determine the optimal 

combination of the peak size and the limit of an iceberg order can be repre­

sented by the following optimization problem: 

max EG 

s.t. So < S 

where EG is given by 

oo 

EG = J^P(M = n)x 
n=0 

{/i (n) S+[(l)o-h (n)] [1 - ^ {<Po - h (n))] E {ST\ M = n)} 

T 1 

• - J fo,i{t)dt\ <̂o • [1 - *(<^o)] E{ST\ M = 0) 

0 J 
'^*-l r pT pT 1 

Y, / kn(t)At- j /o,n+lWdd X 

[h{n)S-^[(l)o-h (n)] {1 - * [00 - /̂  (n)]}E ( 5 T | M = n) } 

T 

+ 

+ )dt (poS, 

and E {ST\ M = 0) and E {ST\ M = n) for n>l are given by 

E{ST\M = 0) 

Hs/So) 

I exp(s) Sog[s\ m ^ [ln(S'„/S'o)] < ln(5/S'o), n = 0 ) ds 

E {ST\ M = n) 

T /o,n(i) ( l - JQ~* /„,„+! (s)dsj 

L 0 /o / 0 , n ( ' ? ^ ) d i i - / Q / o , n + l ( ^ ) d t i 

ln(5/5t,) 

/ 
exp(s) 5(5 ( si m^J,\n{SJSt)] < HS/St), n ) ds At. 
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3.5 Modeling of the Drift Component 

Up to now the drift of the best bid price has been assumed to be a constant. 

This section completes the theoretical framework by modeling explicitly the 

impact of the peak size on the drift following the intuition that the disclosure 

of large order volumes has an adverse market impact. For this purpose we 

will model the drift fit ^s a function of the order imbalance Bt. 

Similar to Brown (1997) we define the imbalance Bt of the order book as 

the number of shares displayed on the bid side divided by the sum of shares 

displayed on the bid side and the ask side. The imbalance coefficient is 

bounded by 1 (if no orders are stored on the ask side of the book) and by 0 

(if the bid side is empty). The parameter is 0.5 if the ask volume equals the 

bid volume. Whenever a new peak shows up in the order book the displayed 

ask volume increases, which in turn reduces Bt. 

To keep the setup tractable for exposition, we assume the following simplified 

scenario: The best bid price exhibits a zero drift //̂  = /i = 0 prior to the 

submission of the iceberg order {t < to). Furthermore, suppose that Bt = B 

for t <to. 

As soon as the iceberg order is submitted to the market the symmetry of 

the order book starts varying. Suppose that each variation in the displayed 

volume of the iceberg order (pdp influences the order book symmetry. The 

displayed volume of other orders remains constant over time. Thus, we are 

able to model the imbalance as a function of the displayed volume of the 

iceberg order only: 

where the parameters c (and d) denote the number of shares displayed on 

the bid side (on the bid side and the ask side) before the submission of the 

iceberg order. 

The displayed volume (pdp is equal to (f)p whenever a new peak is submitted 

to the order book. When the peak of the iceberg order receives a complete 
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or partial fill the parameter (l)dp will be reduced. In our setup the displayed 

volume (pdp depends on the number of times the limit was already hit. It can 

be calculated as 

,(n) 

I min 00 — /i(n), 

^p - {̂ ^̂  [{A - [A\) (̂ «+̂ p) - ^- o]} 

0 

if n < n* 

else. 

If the displayed volume of submitted orders has some information content to 

the market, one would expect a positive relationship between past levels of 

Bt and future returns. We define /i„ by the recursion 

Â n+i = IJ^n-^P' {Btn+i - Bt^) forn > 0 

with the initial value 

/̂ o /2 + / 3 . ( 5 , , - 5 ) 

such that 

A/x„ - f3ABt, (3.9) 

Figure 3.5 illustrates this idea. Before time to the drift fit is equal to the 

long-term mean pt. At time to the first peak of the iceberg order appears in 

the book and the drift fit is reduced. At times ^3, ^4, ^5, and tQ the first 

peak of the iceberg order receives partial fills, which goes along with small 

upward jumps in the drift fif At time t^ the first peak becomes completely 

filled and the second peak appears in the order book, which again causes a 

downward jump in the drift fif At time t* the iceberg order is completely 

filled and the drift fit reverts towards its long-term mean p,. 
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^t 

to t3 t4 tste t7 tio til ti2 ti3 tn* 

Fig. 3.5: Example for the alternating drift component in our model. 

Note that /in is a deterministic function of the random variable n in our 

framework. Thus, we can rewrite equation (3.4) for the case where the drift 

depends on the displayed peak size: 

/o,i (t) 
In (S/So) 

exp • 
[ l n ( 5 / 5 o ) - ( M o - a V 2 ) ^ ] ^ 

(3.10) 

For the subsequent hitting times after the restart we get 

- l n ( l - e ) 
fn-l,n \i) 

Ty/2^ 

exp 
[ - ln ( l - £ ) - ( / i „ - i - aV2) t f 

2aH (3.11) 

This completes the introduction of the theoretical framework. We now turn 

to the numerical implementation of the open approach. 
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3.6 Numerical Results 

To exemplify the formal analysis of the previous section the open approach 

is implemented using the MAN dataset for 61 trading days. The results are 

presented in the following. 

3.6.1 Parameter Specification 

Table 3.3: Estimated parameters for the MAN dataset for 61 trading days. 

(t>s 

(pa 

e 

c 

d 

Average volume of all 

transactions 

Average displayed vol­

ume of all best ask quotes 

Average relative price dif­

ference between the best 

and the second best bid 

price 

Average number of shares 

displayed on the bid side 

of the book 

Average number of shares 

displayed on the bid side 

and on the ask side of the 

book 

No. of obs. 

40,888 

158,607 

57,290 

36,661 

36,661 

Mean 

868.2 

1,554.4 

0.00090724 

166,465.87 

291,657.18 

Std. dev. 

1,257.4 

1,752.0 

0.00105471 

57,495.87 

84,722.34 

To implement the model a number of parameters need to be calibrated with 

order book data. Table 3.3 summarizes the results for our clinical sample. To 

estimate the parameters (/>5, (/J ,̂ and e we consider all observed transactions, 
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and best and second best ask quotes with equal weights. For the cahbration 

of the parameters c and d we use the order book data collected at intervals 

of 1 minute from 9:30 a.m. to 7:30 p.m. To estimate the parameter P we 

regress 60-minutes-ahead returns on changes of the order imbalance during 

the past 60 minutes, minute by minute. For this purpose we use best bid 

quotes and order book data collected at intervals of 1 minute from 9:30 a.m. 

to 7:30 p.m. We do not consider overnight returns for our analysis. 

Table 3.4 reports the results. 

Table 3.4: Estimated regression coefficient for equation (3.9). 

(3 60-minute fore­

cast intervals 

No. of obs. 

29,341 

Estimate 

116.647882 

t-statistic 

22.45 

For the calibration of the volatility parameter we use best bid quotes collected 

at intervals of 15 minutes from 9:00 a.m. to 8:00 p.m. and do not consider 

overnight price changes. The estimation for the volatility parameter yields 

a = 0.7. Furthermore, we set 5*0 = €28.55, which is the closing price at 

March 28, 2002, the last day of our sample period. 

3.6.2 Numerical Implementation 

The computation of /o,n(0 requires the calculation of an n-th iterated con­

volution given by equation (3.6). In order to obtain /o,n(0 ^^^ needs to 

calculate (n — l)-dimensional integrals. To the best of our knowledge, closed 

form expressions are not available. Thus, we apply numerical approxima­

tions to these integrals. Employing conventional quadrature algorithms or 

Monte Carlo methods to compute high-dimensional integrals is very time 

consuming and thus not suitable for the dimensions under consideration in 
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our framework. Therefore, we use interpolating cubic splines 5o,n for n > 2 

to approximate the convolutions in the following way: 

/o,n (t) ^ «5o,n (t) , 

such that 

So , n ( 4 ) = / 5 o , n - l ( 4 - U)fn-l,n{u) dw « / o , n ( 4 ) , 
Jo 

where tk denotes the equally spaced spline knots. 

Alternatively, one can also invert the Laplace transform of the density func­

tion.^ The Laplace transform for the (defective) density function of the first 

hitting time ri is well known (see, e.g., Karlin and Taylor, p. 362), and is 

given by 

In (5/5o) 
E exp (—ATI ) = exp 

r i n ^ 

M o - y j +2a2A- (/̂ o - y 

As the following sequences of hitting times r̂  for i > 2 are identically dis­

tributed their Laplace transform is given by 

Eexp(—Ar^) = exp { -
ln[5/5(l-e)] 

Mi-i - Y I + 2<7̂ -̂  ( " ' - -T ) }• 

The Laplace transform of the sum of the independent hitting times 

tn = YA=I ^i is equal to the product of the corresponding exponential 

functions: 

Eexp(—A^n) = exp {-
ln(5/5o) 

^Numerical routines that do this job pretty fast are, for example, 

imsl_d_inverse_laplace from the IMSL C-Library or C06LAF/C06LBF from the 

Nag Fortran-Library. 
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y ^ r ^ Y 2 f ^ ^ 2 ^ - (MO - ^2/2) 

^ / - l n ( l - £ ) 

i=2 

l^i^i - G-^jif + 2a2A - (//,_i - ^ 7 2 ) } 
3.6.3 Numerical Examples 

For the first example, suppose that the investor wants to liquidate 10,000 

MAN shares (approximately 1-2% of daily turnover) within 10 hours. As­

sume, furthermore, that (/)p has to be a multiple of 1,000 shares. 

Euro 

1.0 

Fig. 3.6: Optimal limit 5 as a function of the probability P* that the iceberg order 
receives a complete fill. Other parameters: T = 10 hours, 0o = 10,000 
MAN shares. 

Figure 3.6 represents the optimal hmit 5 as a function of the probability P* 

that the iceberg order receives a complete fill. For P* < 59%, the optimal 

limit is a monotonic decreasing function of P*. The optimal peak size remains 

at a constant level of 8,000 shares and is thus insensitive to changes of P*. 

Smaller or higher peak sizes reduce the value of the objective function, for 
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S in Euro 

29.50 

29.25 

29.00 

28.75 

So=28.55 

T in h 
0 10 20 30 40 50 60 70 80 90 100 

Fig. 3.7: Optimal limit 5 as a function of the final time horizon T. Other para­
meters: P* = 50%, 00 = 10,000 MAN shares. 

example by approx. 1% if P* = 30% and (j)p = 1,000 shares. If the limit is set 

to €28.56, i.e. the smallest possible value in this example, the probability 

to observe a complete execution is still less than 60%. 

The optimal peak size is significantly higher than peak sizes that were ob­

served empirically in Section 3.3. Two reasons may explain the difference. 

First, one may argue that the model systematically underestimates the nega­

tive price impact of displaying a large order volume in the book. There are 

good reasons to believe that a variation of the order imbalance within en­

tries close to the best quotes has a stronger impact on future returns than 

changes of the order imbalance caused by an entry of an order that possesses 

a more unfavorable price priority than the majority of other orders already 

stored in the book. A redefinition of the order imbalance by weighting or­

der book entries differently, depending on their price priority, might solve 

this problem. Second, one may argue that market participants overestimate 

the informational impact of revealing large orders in an open book. The 

empirical exploration of these issues is left for further research. 
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8,000 

7,000 

6,000 

5,000 \ 

4,000 

3,000 

2,000 

1,000 

0 T in h 
10 20 30 40 50 60 70 90 100 

Fig. 3.8: Optimal peak size (/)p as a function of the final time horizon T. Other 
parameters: P* = 50%, (t)o = 10,000 MAN shares. 

In the next example we investigate the relationship between the final time 

horizon T and the optimal combination of limit and peak size. We set 

P* = 50% and (/)o = 10,000 shares. Figures 3.7 and 3.8 report the re­

sults, If T < 6 hours, then the probabihty of receiving a complete fill is less 

than 50%, no matter which hmit is assigned to the order. If T > 6 hours 

we can observe two beneficial effects for the originator of the iceberg order. 

First, as the final time horizon increases, the optimal order hmit increases as 

well. Second, a longer time horizon allows for a reduction of the peak size. 

However, (j)p is not strictly monotonic decreasing in T. Instead we observe a 

step function. For T < 46 hours a peak size of 8,000 shares is optimal, for 

T > 46 the optimal peak size is 4,000 shares. 

In the last example (see Figures 3.9 and 3.10) we analyze the relationship 

between the initial position 0o and the optimal pairs of 0^ and S. We set 

p* = 25% and T = 100 hours. Figure 3.9 corroborates the hypothesis 

that if more shares have to be hquidated within the same period of time 

the limit has to be lowered to keep the execution probability at the same 

level Furthermore, an increase in (/)o tends to result in higher peak sizes, 
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Euro 

000 20,000 30,000 40,000 50,000 60,000 

Fig. 3.9; Optimal limit 5 as a function of (pQ. Other parameters: P* = 25%, 
T = 100 hours. 
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Fig. 3.10: Optimal peak size (t)p as a function of 
P* = 25%, T = 100 hours. 

Other parameters: 

as we can observe in Figure 3.10. However, in some cases the optimal peak 

size decreases if the initial position is raised. At the first moment this may 

seem somehow counterintuitive. The main reason for this phenomenon can 
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be found in the discrete setup of the order execution process. Whenever 

the hmit S is hit, a fixed transaction size ^s is processed. At the n*-th hit 

the last part of the iceberg order, which is given by (/)o — h{n* — 1), becomes 

executable. However, if 0o — h{rC — 1) <^ 0^ a small reduction in 0^ would not 

change n* but would increase the drift component /Xt and thus the probability 

that in < T. 

3.7 Summary and Conclusion 

This chapter introduces a setup that allows the determination of the optimal 

combination of limit and peak size of an iceberg order, given a large position 

in a security that should be hquidated within a finite time horizon. The 

framework balances the direct advantage of a large peak size that leads to a 

better time priority of an iceberg order and the adverse informational impact 

of revealing large order volumes in an open order book. Furthermore, it 

assesses the tradeoff between the order limit and the execution probability 

of the iceberg order. We have presented two approaches to incorporate the 

execution risk of an iceberg order. The so-called self-contained approach 

assumes that the unexecuted part is liquidated by a market order. The 

open approach is far more flexible as it does not require any assumption 

concerning the liquidation of the unexecuted part. It identifies the optimal 

combination of limit and peak size, given a minimum probabihty of complete 

order execution. Using real-world order book data we illustrate how the open 

approach can be implemented and explore major properties of the model by 

modifying input parameters. 

To our knowledge, this framework is the first analytical approach that inves­

tigates the tradeoff between limit and peak size of an iceberg order, on the 

one hand, and the resulting execution probability, on the other. This chapter 

is written in search of a stylized model that is able to illustrate the interac­

tion between observable market variables and order specific parameters that 

are important to analyze iceberg orders as a trading instrument. 
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The modeling of the best bid price by a Brownian motion or the assump­

tion of constant parameters for order imbalance, transaction size, order flow 

and the price difference between the best and the second best price are, 

of course, approximations as the standard deviations in Table 3.3 clearly 

indicate. These simplifications allow us to keep the number of stochastic 

variables to the minimum required to illustrate the discussed trade-off in a 

simple way. Further research may focus on introducing more freedom from 

determinism by modeling more sources of risk, for example, in a simulation-

based approach and comparing the empirical performance of the different 

models. Furthermore, although certainly challenging from a technical point 

of view, the investigation of dynamic approaches seems highly relevant from 

an empirical perspective, since many market participants pursue dynamic 

instead of static limit-setting strategies as shown in Table 3.1 in Section 3.3. 

3.8 Appendix: Conditional Density g of In {ST/StJ 

The conditional density g of In {Sr/Str,) is given by 

g(s\ max \n{SJ St J < ln{S/StJ,n) 
\ tn<U<T / 

^(Jt {s, In {S/St^)) 

P (In (^ma^^SJ St„)< In {S/St„) 

where 

iPt (x, y) = (1/a) exp [ {n* - a''ji) x/a^ 

- (M* - a 7 2 ) ' (T - t„)/2a^ 1 <5 {x/a, y/a). 

5{x,y) v{x{T-tnr"^) 

-^{{x-2y){T-U)-"^)] [T-tn) -1 /2 

and 

p ( ^ l n ( ^ ^ m a x ^ 5 „ / 5 , „ ^ < In (5/5t„) 
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= ^ A n ( ^ / g O - ( / i * - a V 2 ) ( T - ^ 0 

a^{T - tn) J 

- exp [2 (/x* - ay2) In {S/St^)/a^] x 

$ 
a^{T - tn) 

where (p (z) denotes the standard normal density function and $ {z) the stan­

dard normal cumulative distribution function. If the drift is a constant, as 

assumed in Section 3.4, set //* = fj,. If the drift is modeled as a time-

dependent variable, as proposed in Section 3.5, replace /i* by fitn- For the 

derivation of the respective formulas, see, e.g., Harrison (1990), pp. 1-16. 
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