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Foreword

Mandelbrot and van Ness (1968) suggested fractional Brownian motion as a
parsimonious model for the dynamics of financial price data, which allows
for dependence between returns over time. Starting with Rogers (1997) there
is an ongoing dispute on the proper usage of fractional Brownian motion in
option pricing theory. Problems arise because fractional Brownian motion is
not a semimartingale and therefore “no arbitrage pricing” cannot be applied.
While this is consensus, the consequences are not as clear. The orthodox
interpretation is simply that fractional Brownian motion is an inadequate
candidate for a price process. However, as shown by Cheridito (2003) any
theoretical arbitrage opportunities disappear by assuming that market par-
ticipants cannot react instantaneously.

This is the point of departure of Rostek’s dissertation. He contributes to this
research in several respects: (i) He delivers a thorough introduction to frac-
tional integration calculus and uses the binomial approximation of fractional
Brownian motion to give the reader a first idea of this special market setting.
(ii) Similar to the classical work of Sethi and Lehoczky (1981) he compares
Wick-Itô and Stratonovich integration for the unrestricted fractional Brow-
nian case, obtaining deterministic option prices. This disproves in an elegant
way several option pricing formulæ under fractional Brownian motion in the
literature. (iii) If market prices move only slightly faster than any market par-
ticipant can react, we are left with an incomplete market setting. Again, but
now by a different reason, “no arbitrage pricing” cannot be applied. Based
on Rostek and Schöbel (2006), he shows carefully and in great detail for the
continuous as well as for the binomial setting that a risk preference based
approach may be the solution to the option valuation puzzle under fractional
Brownian motion.

I recommend this research monograph to everybody who is curious enough
to learn more about the fragile character of our prevailing valuation theory.

Tübingen, December 2008 Rainer Schöbel
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(I) indicates Itô meaning of the following differential equation
(S) indicates Stratonovich meaning of the following differential equation
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Chapter 1

Introduction

The vast majority of approaches towards option pricing deals with Brownian
motion as a source of randomness. The seminal articles by Black and Scholes
(1973) as well as by Merton (1973) crowned this evolution but did not con-
clude it by any means. Right up to today, the favorable properties and the
well-developed stochastic calculus of classical Brownian motion attract both
scientists and practitioners.

However, there was early evidence about some incompatibilities with regard
to real market data. Concerning the stochastic process of Brownian motion,
the main critique drawn from empiricism is at least two-fold:
On the one hand, real market distributions were shown to be not Gaussian
(see e.g. Fama (1965)). The debate of recent years has put a great deal of effort
on correcting this problem. Particularly the theory of Lévy processes allows
it to incorporate a wide range of distributions into financial models. However,
despite the large set of Lévy type stochastic processes, closed-form solutions
are still limited to specific cases of non-Gaussian distributions. For more
details about Lévy processes we refer the interested reader to the monograph
of Cont and Tankov (2004) who provide a distinguished starting point to the
topic.
On the other hand, the processes of observable market values seem to exhibit
serial correlation (see e.g. Lo and MacKinley (1988)). Much less endeavor has
been made to get a grip on this problem by factoring in aspects of persistence.
However, at least there is one stochastic process that has often been proposed
for mapping this kind of behavior: the very candidate is called fractional
Brownian motion.

There are several reasons why we concern ourselves with this stochastic pro-
cess. Fractional Brownian motion was originally introduced by Mandelbrot
and van Ness (1968). It is a Gaussian stochastic process that is able to eas-
ily capture long-range dependencies or persistence. Being furthermore self-
similar, its usage in financial models suggests itself. For reasons of parsimony,
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2 1 Introduction

we appreciate that fractional Brownian motion possesses only one additional
parameter, the so-called Hurst parameter, which lies between one and zero.
Over the range of parameter values, the process shows different shapes of
inter-temporal correlation. Particular interest arises from the fact that the
case of serial independence is included. Therefore, fractional Brownian mo-
tion is an extension of classical Brownian motion. Comparing the respective
results will both feed intuition and allow for a checking of plausibility.

The fundamental question of this thesis is whether and to what extent one
can draw parallels between the fractional and the classical Brownian motion
framework. More precisely: As fractional Brownian motion is an extension of
Brownian motion, is it also possible to extend the respective theory of option
pricing? Are the well-developed techniques of stochastic calculus transferable
to fractional Brownian motion? Will we be faced with conceptual problems?
Can we obtain closed-form solutions?

We will tackle all these problems step-by-step. Several times, we will switch
over from discrete to continuous time considerations and vice versa. The
reason for this is the following: Certainly, one could strictly separate the
respective discussions and treat the cases one by one. However, so doing and
starting with the continuous time case, we would miss the opportunity to
motivate the results by those of the more descriptive discrete time setting.
Turning the tables, if we discussed the discrete time framework first, we could
not check the approximation results by comparing them with their limit case.
By contrast, the alternating argumentation provides the best possible mutual
benefit of the two frameworks, and additionally enhances the readability of
the thesis.

In our preliminary Chap. 2, we will recall and present the most important
insights concerning fractional Brownian motion and the corresponding inte-
gration calculus. We will become acquainted with the typical characteristics
of the process. Concerning integration theory, we will get to know different
concepts. In particular, it will be the so-called Wick-based integration calcu-
lus that will provide us with fractional analogues to the fundamental results
of the well-known Itô calculus.
To get a first idea about the fractional Brownian market setting and the
appendant characteristics, we will deal in Chap. 3 with a binomial approxi-
mation of fractional Brownian motion. For reasons of illustration, we will
depict fractional binomial trees. These trees will not only enhance under-
standing of distributional aspects of fractional Brownian motion, they will
also indicate the main problem of fractional Brownian markets: In an unre-
stricted market setting, arbitrage opportunities can occur.
In Chap. 4 we will readdress ourselves with the continuous time case. The
problem of arbitrage will be thoroughly discussed. After presenting the sci-
entific debate of the history, we will clarify that the problem can be solved
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by restricting the set of feasible trading strategies. Motivated by the result
from the discrete time framework, we will provide an elegant proof as to
why a fractional Brownian market setting needs to be restricted. To this end,
we will harness the reasoning of Sethi and Lehoczky (1981) and translate it
into the fractional context. The result will be surprising at first glance but it
will reveal perfectly the incompatibility of fractional Brownian motion and
dynamical hedging. Consequently, we will renounce continuous tradability
which is sufficient to ensure absence of arbitrage. As a proximate way out,
we will suggest the transition to a risk preference based pricing approach.
Chapter 5 will form the core of this thesis and represents a further devel-
opment of a preceding joint work by Rostek and Schöbel (2006). Assuming
risk-neutral investors, we will price options in the continuous time fractional
Brownian market. We will focus on a two-time valuation by postulating that
the equilibrium condition we will introduce holds with respect to current
time t and maturity T . We will apply some useful results concerning condi-
tional expectation of fractional Brownian motion. Furthermore, we will state
and use a conditional version of the fractional Itô theorem. Provided with
these technical tools, we will be able to exploit the fundamental equilibrium
condition. In the sense of a total equilibrium, the equilibrium condition will
endogenously determine the drift of the underlying stock process. We will
derive a closed-form solution for the price of a European option written on a
stock that follows a fractional Brownian motion with arbitrary Hurst param-
eter H . Concerning the influence of the Hurst parameter H on the option
price, we will elaborate different effects which we will call narrowing effect
and maturity effect, respectively. Subsequently, we will consider the relation
between option price and time to maturity which will lead us to the term
structure of implied volatility. The latter will be a manifest result that clari-
fies the improvement our model yields.
By means of our derived results, we will be able to check how far appropriate
results can also be drawn from our binomial approximation. In Chap. 6, we
will therefore present the pricing approach from a discrete time vantage point.
Like in the continuous time setting, we will first concentrate on a two-time
valuation introducing a single equilibrium condition. We will address our-
selves both to a relative and to an absolute equilibrium approach. Motivated
by the ease and the traceability of the discrete time calculus, we will also
consider multi-time equilibrium approaches. We will consider two different
possibilities of stating the system of multi-time equilibrium conditions which
will lead to totally different results. We will show that these results are in
line with our understanding with respect to fractional Brownian motion.
We will finalize our dialectical consideration between discrete time and con-
tinuous time framework by making one further transition. In Sect. 6.4, we
will use the deeper insight provided by the discrete multi-time results. In par-
ticular, we will ask ourselves what will happen if continuous time analogues
of these multi-time equilibria are considered.



4 1 Introduction

The concluding chapter summarizes the stated results and grants an outlook
towards possible topics of further research.



Chapter 2

Fractional Integration Calculus

In order to model randomness in any stochastic model, one may do so by as-
serting a distribution of the random component. The somewhat more sophis-
ticated approach—especially when modeling dynamical issues—is defining a
suitable stochastic process. The overwhelming majority of treatable models
based on stochastic processes deals with classical Brownian motion as the
source of randomness. This is mainly due to the two main properties of this
process, which are its Gaussian character, on the one hand, and its lack of
serial correlation, on the other hand. However, though being easy to manage,
these features often do not map things as they truly are. Real time series
often fluctuate in a non-Gaussian fashion and/or are by all means serially
correlated. A great deal of research effort has been invested to get a grip on
the first problem; from the onset by introducing random jumps. Currently,
researchers suggest so-called alpha-stable processes which are a special group
of Levy processes. With the classical Brownian motion, these processes share
the property of self-similarity.
However, in the literature of financial mathematics, few extensions have been
proposed to overcome the assumption of independent increments for the
stochastic processes. The most popular model was introduced by Mandelbrot
and van Ness (1968). They hold true the Gaussian character of the process
but allow for dependence over the line of time. Figure 2.1 by Cont and Tankov
(2004) depicts the relations between important sets of stochastic processes.
We see that while the intersection of all three sets is classical Brownian mo-
tion, fractional Brownian motion is still Gaussian and self-similar but no
longer has independent increments.

From classical Brownian theory we learned that the transition from a de-
terministic framework to a stochastic one made it necessary to adjust the
pertinent theory of integration. First of all, the definition of convergence had
to be reconditioned in a mean square sense. Furthermore, the concept of a
new integration calculus had to allow for the occurrence of infinite variation
concerning the integrator. The celebrated solution to these problems was the
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6 2 Fractional Integration Calculus

Fig. 2.1 Relations between different groups of stochastic processes (according to Cont/
Tankov (2006))

approach to stochastic integration for semimartingales by Itô (1951), conse-
quently named Itô calculus.
It can be shown (see Rogers (1997), p. 3–4) that—except the case H = 1

2—
fractional Brownian motion is not a semimartingale. This rules out the appli-
cation of conventional integration theory. In other words, making the transi-
tion to the stochastic process of fractional Brownian motion, the Itô integra-
tion theory itself becomes obsolete.
Several suggestions have been made in the past to overcome these problems
and to extend the integration concept of Itô to a more general concept. This
chapter presents the most important ones. We start with the investigation of
the so-called Wick-based approach due to Duncan et al. (2000). It can be re-
garded as a milestone towards an integration theory with respect to fractional
Brownian motion as it demonstrates existing parallels to classical theory and
facilitates the development of a fractional Brownian market setup. Comparing
the Wick-based approach to the alternative concept of a fractional integral of
Stratonovich type, these advantages will become clear. We will briefly recall
the main results of the Wick calculus, including fractional versions of well-
known theorems. These findings culminate in a fractional Itô theorem which
was provided by Duncan et al. (2000).
Yet, the Wick-based approach in its original version by Duncan et al. (2000)
is limited to the persistent cases with Hurst parameters larger than one half.
The transition to the antipersistent case can only successfully be made by
means of another still more general integration concept, the S-transform
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approach by Bender (for an overview, see Bender (2003a)). We sketch the
basic idea of this approach. It can be viewed as seminal with respect to a
clean mathematical foundation of fractional integration theory.

The outline of this chapter is as follows. In the first section, we define frac-
tional Brownian motion and highlight important properties. We then inves-
tigate the role of the so-called Hurst parameter and see how persistence or
serial correlation comes into play. The remaining sections of the chapter will
demonstrate this in a technical way. We introduce approaches to a stochastic
calculus for fractional Brownian motion and present important parallels to
classical Brownian theory as a fractional Girsanov theorem or a fractional Itô
theorem.

2.1 The Stochastic Process of Fractional Brownian
Motion

We use the definition of fractional Brownian motion via its original presenta-
tion as a moving average of Brownian increments. We introduce the following
defining notation for this purpose:

(x)y
+ =

{
xy if x ≥ 0,
0 if x < 0.

For 0 < H < 1, fractional Brownian motion
{
BH

t , t ∈ R
}

is the stochastic
process defined by

BH
0 (ω) = 0 ∀ω ∈ Ω, (2.1)

BH
t (ω) = cH

[∫
R

(
(t− s)H− 1

2
+ − (−s)H− 1

2
+

)
dBs(ω)

]
, (2.2)

where {Bs, s ∈ R} is a two-sided Brownian motion, H is the so-called Hurst
parameter and

cH =

√
2HΓ (3

2 −H)
Γ (1

2 +H)Γ (2 − 2H)

is a normalizing constant. Note that for t > 0, BH
t can be rewritten by

BH
t = cH

[∫ 0

−∞

(
(t− s)H− 1

2 − (−s)H− 1
2

)
dBs +

∫ t

0

(t− s)H− 1
2 dBs

]
.

Choosing the special parameter value H = 1
2 , we obtain
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B
1
2
t = c 1

2

[∫ 0

−∞

(
(t− s)

1
2− 1

2 − (−s) 1
2− 1

2

)
dBs +

∫ t

0

(t− s)
1
2− 1

2 dBs

]

=
∫ t

0

dBs = Bt,

where c 1
2

=

√
2 · 1

2Γ (3
2 − 1

2 )
Γ (1

2 + 1
2 )Γ (2 − 2 · 1

2 )
= 1.

Obviously, B
1
2
t coincides with classical Brownian motion. On the other hand,

in the next section, the cases 0 < H < 1
2 and 1

2 < H < 1 will be identified with
the occurrence of antipersistence and persistence, respectively. Consequently,
fractional Brownian motion can be divided into three families exhibiting—
as we will see—quite different properties.

0 50 100 150 200 250 300
−6

−5

−4

−3

−2

−1

0

1

2

Time t

B
t0.

1

Fig. 2.2 Path of the fractional Brownian motion for H = 0.1

The Figs. 2.2–2.4 depict realizations of fractional Brownian motion. At first
glance, we notice that the higher the Hurst parameter, the rougher the cor-
responding path. Looking on the scale of the axis, we also recognize that
the smoother paths deviate considerably more from the zero mean. This is
emphasized by Fig. 2.5 where the different processes are plotted in the same
coordinate system. The next section will explain these phenomena in detail.
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Fig. 2.3 Path of the fractional Brownian motion for H = 0.5
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Fig. 2.4 Path of the fractional Brownian motion for H = 0.8
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−20

−10

0
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20
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B
t

H=0.5
H=0.1

H=0.8

H

Fig. 2.5 Paths of the fractional Brownian motion for different Hurst parameters

In most of the recent articles concerning fractional Brownian motion, the
stochastic process is not defined via its integral representation but—like clas-
sical Brownian motion—by its covariance properties. It can be shown, that
BH

t can also be represented as the unique, almost surely, continuous Gaussian
process satisfying the following conditions:

E(BH
t ) = 0 ∀ t ∈ R,

E(BH
t B

H
s ) =

1
2
[|t|2H + |s|2H − |t− s|2H

]
, ∀ t, s ∈ R.

To verify that fractional Brownian motion indeed satisfies the covariance
property above, we use a result concerning the expected value of products of
fractional integrals with deterministic integrands. Note that when restricting
ourselves to deterministic integrands only, no new integration theory has to
be developed. We just postulate that the integrand can be approximated
by a sequence of so-called simple functions

∑n
i=1 αiI[ti,ti+1] being piecewise

constant. For a sequence of partitions πn with |πn| → 0 of the interval [0, t],
the fractional integral with deterministic integrand can then be interpreted
in the following sense:∫ t

0

f(s) dBH
s := lim

n→∞

∑
πn

αi(BH
ti+1

−BH
ti

).



2.1 The Stochastic Process of Fractional Brownian Motion 11

Based on this definition, Gripenberg and Norros (1996) derive the following
result:

E

(∫
R

f(u)dBH
u

∫
R

g(v)dBH
v

)
= H(2H − 1)

∫ ∫
R2
f(u)g(v)|u− v|2H−2dudv.

(2.3)

For the proof of this equation, see Gripenberg and Norros (1996).

With f = I[0,t] and g = I[0,s], and if we assume for example t > s, we get

E
(
BH

t B
H
s

)
= E

(∫
R

I[0,t](u) dBH
u

∫
R

I[0,s](v) dBH
v

)

= H(2H − 1)
∫ s

0

∫ t

0

|u− v|2H−2 du dv

= H(2H − 1)
∫ s

0

(∫ v

0

(v − u)2H−2 du+
∫ t

v

(u − v)2H−2 du

)
dv

= H

∫ s

0

([−(v − u)2H−1
]v
0

+
[
(u− v)2H−1

]t
v

)
ds

= H

∫ s

0

(
v2H−1 + (t− v)2H−1

)
ds

=
1
2
[
v2H − (t− v)2H

]s
0

=
1
2
[
t2H + s2H − (t− s)2H

]
,

which finishes the proof of the statement.

Again, in the limit case H = 1
2 , the moment properties of classical Brownian

motion can be obtained, as we receive for t > s > 0

E

(
B

1
2
t B

1
2
s

)
=

1
2
[|t|1 + |s|1 − |t− s|1] =

1
2

[t+ s− (t− s)] = s = min(s, t).

As a further easy result, we get the variance of fractional Brownian motion

E
(
(BH

t )2
)

=
1
2
[|t|2H + |t|2H − |t− t|2H

]
= t2H ∀ t, s ∈ R.

From the covariance property, it follows that fractional Brownian motion itself
is not a stationary process. But like classical Brownian motion, fractional
Brownian motion does not reveal all its interesting properties until looking
at its increments. We therefore look at the fractional Brownian increment

ΔBH
t,s = BH

t −BH
s ,
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which has the following moment properties:

E(ΔBH
t,s) = E(BH

t −BH
s ) = E(BH

t ) − E(BH
s ) = 0, ∀ t, s ∈ R,

E
(
(ΔBH

t,s)
2
)

= E
(
(BH

t −BH
s )(BH

t −BH
s )

)
= E

(
(BH

t )2
)

+ E
(
(BH

s )2
)− 2E(BH

t B
H
s )

= t2H + s2H − 2 · 1
2
[|t|2H + |s|2H − |t− s|2H

]
= |t− s|2H ∀ t, s ∈ R.

Evidently, both the first and the second moment do not depend on the current
point in time but only on the length of the increment: that is, fractional
Brownian motion has stationary increments. However, in general, increments
of fractional Brownian motion are not independent like those of classical
Brownian motion. To see this, see the covariance of two non-overlapping
increments

E
(
ΔBH

t,sΔB
H
s,0

)
= E

(
(BH

t −BH
s )(BH

s −BH
0 )

)
= E(BH

t B
H
s ) − E(BH

t B
H
0 ) − E((BH

s )2) + E(BH
s B

H
0 )

=
1
2
[
t2H + s2H − (t− s)2H

]− s2H

=
1
2
[
t2H − s2H − (t− s)2H

]
.

Consequently, apart from the special caseH = 1
2 , the increments of fractional

Brownian motion are no longer independent, but are correlated. The degree
and the characteristics of this dependence will be examined in the following
section.

Another important property, which the general fractional Brownian motion
adopts from the special case of classical Brownian motion, is that of self-
similarity. Roughly speaking, this property describes the fact that no matter
which level of scale is chosen the process qualitatively looks the same. Recall
that this is just the idea that one associates when thinking of fractals. More
precisely, a stochastic process Xt is called self-similar with parameter a, if for
any constant c > 0, the processes Xct and caXt are identical in distribution.
To put it in another way, compressing or uncompressing the process by a
factor only changes the characteristics of the process up to a scaling of the
axis of ordinates.

Fractional Brownian motion processes are self-similar with parameterH , that
is, the Hurst parameter is also the self-similarity parameter (see Mandelbrot
and van Ness (1968)). In Fig. 2.6, the relatively flat, grey line depicts the
original process BH

t , whereas the darkest line is the compressed version of
BH

10t and the third line is the scaled process 10HBH
t . The similarities of the
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Fig. 2.6 Scaling properties of fractional Brownian motion (chosen parameter H = 0.8)

scaled and the compressed process are evident.

We have so far stated that fractional Brownian motion is a Gaussian process
with self-similar and stationary increments. We now take a look at the role
of the Hurst parameter H .

2.2 Serial Correlation: The Role of the Hurst Parameter

We mentioned above that the different ranges of possible Hurst parameters
divide the family of fractional Brownian motion into three groups that can
be distinguished by typical criteria. In particular, we will call processes with
Hurst parameter H smaller than one half antipersistent, those with H > 1

2
are called persistent. To get a first idea with regard to an explanation for
these labels, take a look at the fractional increment
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ΔBH(t) = BH
t+Δt −BH

t

= cH

∫ t+Δt

t

(t+Δt− s)H− 1
2 dBs

+ cH

∫ t

−∞

[
(t+Δt− s)H− 1

2 − (t− s)H− 1
2

]
dBs.

The first term contains the current innovation or shock, positively weighted
for any parameter 0 < H < 1. The second part of the sum is a moving
average over all historical shocks, however the sign of the weights depends
on the Hurst parameter: The weighting kernel is nothing else but an incre-
ment of the function f(x) = xH− 1

2 . For H < 1
2 this function is a hyperbola

and downward-sloping, yielding negative increments. Aside from the random
innovation in time t, the influence of the fractional increment for H < 1

2
always results in a reversal of the past evolution. On the other hand, in the
case 1

2 < H < 1, the weighting kernel is a radical function yielding positive
weights. Therefore, the fractional Brownian increment positively depends on
the generating Brownian motion, or more precisely on its historical incre-
ments. Clearly, in the case H = 1

2 , there is no influence from the historical
shocks whatsoever, as the classical Brownian increment is independent of the
past.

The increments of the different processes can also be characterized using
the according autocovariance properties. We briefly recall some definitions.
A stochastic process has short memory provided its autocovariance func-
tion declines at least exponentially when the lags are increased. Intermediate
memory exists whenever its autocovariance function only declines hyperboli-
cally but the infinite sum of all absolute values of autocovariances still exists.
If the latter condition is no longer fulfilled, one speaks of long memory (see
e.g. Barth (1996)). This implies the following rule if one wants to predict part
of the future by looking at the past: restricting observations to only the finite
past is feasible to the intermediate memory processes. With long memory
however, we do not use a finite past, as by definition, the influence of the
whole history must be taken into consideration.

If we examine the autocovariance function of the stationary process of discrete
increments ΔBH , for example for increments of length 1 and if we denote
the lag size with τ , we obtain the following result:
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γH(τ) = E [(BH(t+ τ) −BH(t+ τ − 1))(BH(t) −BH(t− 1))]
= E [BH(t+ τ)BH(t)] − E [BH(t+ τ)BH(t− 1)]

−E [BH(t+ τ − 1)BH(t)] + E [BH(t+ τ − 1)BH(t− 1)]

=
1
2
[
(t+ τ)2H + t2H − τ2H − (t− 1)2H + (τ + 1)2H − (t+ τ − 1)2H

− t2H − (t+ τ − 1)2H − t2H + (τ − 1)2H + (t+ τ − 1)2H

+ (t− 1)2H − τ2H
]

=
1
2
[
(τ + 1)2H − 2τ2H + (τ − 1)2H

]
.

Note that this term is also an approximation of the second derivative of
the function f(τ) = τ2H , it is the so-called central finite difference. In other
words, for large τ , the autocovariance function behaves like the second deriva-
tive

f ′′(τ) = 2H(2H − 1)τ2H−2.

Recalling some basics about the theory of infinite sums, it is easy to verify
that the infinite sum of values of the latter function only exists for expo-
nents smaller than minus one. Accordingly, the sum exists for H < 1

2 but
is unlimited for the case H > 1

2 . Using the terms above, we state that the
antipersistent fractional Brownian motion has intermediate memory, whereas
the persistent one has long memory.

These results can be further illustrated by plotting the autocovariance
functions for different Hurst parameters (see also Barth (1996), p. 55–57).
Figure 2.7 depicts the autocovariance function for lags between zero and ten
units of time. The selected Hurst parameters are larger than one half, that is
we first focus on persistence. All the curves are bounded by an upper and a
lower limiting curve. The upper boundary is the flat line of total persistence,
where the autocovariance between increments of any lag would equal one.
If one knows just one single realization of the process, the complete process
can be extrapolated, as no additional randomness remains. The lower bound-
ary for the persistent processes is the case of serial independence, where for
overlapping intervals (in this case: lags smaller than one unit of time) the au-
tocovariance equals the overlapping portion. Similarly, for non-overlapping
intervals the autocovariance is zero. Within these limits, a higher degree of
persistence implies a curve declining more slowly.
A depiction of the antipersistent case is illustrated by Fig. 2.8. Again, there
are two situations of particular significance: The already well-known serial
independent classical Brownian motion, on the one hand, and the limiting
case of an absolutely antipersistent process, on the other hand. The latter
would yield an autocovariance function that differs from zero in only two



16 2 Fractional Integration Calculus

0 2 4 6 8 10

0

0.25

0.5

0.75

1

Time lag τ

A
ut

oc
ov

ar
ia

nc
e 

fu
nc

tio
n 

γ H

H=0.5
H=0.6
H=0.7
H=0.8
H=0.9
H=0.99

Fig. 2.7 Autocovariance function of fractional Brownian motion for the case of persistence
(chosen parameters H = 0.5, H = 0.6, H = 0.7, H = 0.8, H = 0.9, H = 0.99)

cases, either when there is a total overlap between the two increments or in
the case of two neighboring increments of equal length. It therefore can be
interpreted as a linear combination of two Dirac–Delta functions. In Fig. 2.8,
where the reference intervals have a length of one unit of time, these two
cases occur when there is a zero lag or when the lag is equal to one unit
of time. For example, let the reference increment be BH(t) − BH(t − 1):
Aside from the identical increment, which yields the variance of one, there
are only two further correlated increments, which are BH(t+1)−BH(t) and
BH(t − 1) − BH(t − 2). These are the bordering intervals of same length,
where the covariance has the negative value of minus one half. To put it a
different way, in the case of total antipersistence, it is sufficient to know the
last increment of the process to predict the next increment. The future is
negatively correlated with this immediate past.

For the Hurst parameters symbolizing antipersistence and lying between zero
and one half, the shape of the autocovariance function can be described as
follows: The section of overlapping increments with lags smaller than one all
start with the unit variance. They then show a declining covariance until
the situation where both increments are next to each other. Moreover we
observe: The lower the degree of antipersistence, the lower the absolute value
of covariance for τ = 1 and the smoother the course of the curve between zero
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Fig. 2.8 Autocovariance function of fractional Brownian motion for the case of antiper-
sistence (chosen parameters H = 0.5, H = 0.25, H = 0.01)

and one. For the non-overlapping increments (τ > 1) all curves tend towards
zero as distance grows. In fact, with an increasing level of antipersistence,
the curves converge towards zero at a quicker rate.

Throughout this work we will focus on both the persistent case and the
antipersistent case, however, occasionally we will draw comparisons to the
classical Brownian theory.

2.3 The Wick-Based Approach to Fractional Integration

In the beginning of this chapter, we introduced the definition of a stochas-
tic integral with respect to fractional Brownian motion when the integrand is
deterministic. We required this integrand to be approximated by simple func-
tions being piecewise constant and multiplied the respective function value
with the discrete fractional Brownian increment. These Riemann sums con-
verge in the mean square sense to a random variable, which we define to be
the fractional integral. However, if the integrand is no longer deterministic
and for example of infinite variation, convergence in the mean square sense is
not necessarily given (see e.g. Gripenberg and Norros (1996), p. 4). In princi-
ple, there are two ways out of this issue. The first one is to modify the way the
Riemann sums are built and/or to change (and perhaps relax) the definition
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of convergence. We will focus on this possibility in the next section. A very
elegant solution following the first idea, is mainly due to Duncan et al. (2000),
which we will refer to from time to time. The main aspect of their approach
is easy to grasp: Replace ordinary multiplication within the Riemann sums
with a different multiplicative concept, called the Wick product which is de-
noted by the so-called diamond symbol �. However, if we want to understand
the characteristics of this Wick product—which will perhaps seem a little bit
peculiar at first glance—we need to introduce some mathematical notation
as well as some basic results of fractional white noise calculus (see e.g. Hu
and Øksendal (2003)).

Motivated by the already-stated results by Gripenberg and Norros (1996)
concerning fractional integrals with deterministic integrands, we introduce
the fractional kernel ϕ as a function ϕ : R

2 → R defined by

ϕ(s, t) = H(2H − 1)|s− t|2H−2.

Furthermore we endow the space of deterministic functions f : R → R with
the norm | · |2ϕ:

|f |2ϕ :=
∫ ∞

0

∫ ∞

0

f(s)f(t)ϕ(s, t) ds dt.

Actually, for the case H = 1
2 , the fractional kernel ϕ is the Dirac–Delta

function and we obtain

|f |21
2

:=
∫ ∞

0

f(t)2 dt.

For all other Hurst parameters, this norm can be interpreted as a blurred
version of the well-known norm of square integrability |.|2, integrating not
only over the bisector of R

2 but also factoring neighboring products into the
integration. Accordingly, the inner product 〈·, ·〉ϕ of two functions f and g
within the resulting Hilbert space L2

ϕ is

〈f, g〉ϕ :=
∫ ∞

0

∫ ∞

0

f(s)g(t)ϕ(s, t) ds dt.

Using this, we can rewrite (2.3) as follows:

E

(∫ ∞

0

f(s) dBH
s

∫ ∞

0

g(t) dBH
t

)
= 〈f, g〉ϕ.

Since our goal is to generalize the integration concept to stochastic inte-
grands, we first introduce the probability space (Ω,F, P ), where Ω is the set
of possible states, F is a σ-algebra on Ω and P is the probability measure.
We accept in the following all random variables X as integrands which are
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defined on this probability space and which satisfy

(E|X |p) 1
p <∞.

We denote the space of these p-integrable random variables by Lp. Duncan
et al. (2000) show that for any p ≥ 0, the random variables of Lp can be ap-
proximated with arbitrary exactness by linear combinations of so-called Wick
exponentials ε(f) that are defined via fractional integrals with deterministic
integrands f :

ε(f) := exp
(∫ ∞

0

f(t)dBH
t − 1

2
|f |2ϕ

)
, f ∈ L2

ϕ.

Note that such an exponential is of course a random variable. As the stochas-
tic integral

∫∞
0 f(t) dBH

t is normally distributed with zero mean and vari-
ance |f |2ϕ (see Gripenberg and Norros (1996), p. 4), exp

(∫∞
0 f(t dBH

t )
)

is
log-normally distributed with mean exp

(
1
2 |f |2ϕ

)
. Hence we get

E (ε(f)) = E

(
exp

(∫ ∞

0

f(t dBH
t )

))
exp

(
−1

2
|f |2ϕ

)

= exp
(

1
2
|f |2ϕ

)
exp

(
−1

2
|f |2ϕ

)
= 1.

Moreover, we have

ε(f)ε(g) = exp
(∫ ∞

0

f(s) dBH
s − 1

2

∫ ∞

0

∫ ∞

0

ϕ(u, v)f(u)f(v) dudv
)

× exp
(∫ ∞

0

g(s) dBH
s − 1

2

∫ ∞

0

∫ ∞

0

ϕ(u, v)g(u)g(v) dudv
)

= ε(f + g) exp
(∫ ∞

0

∫ ∞

0

ϕ(u, v)f(u)g(v) dudv
)

= ε(f + g)〈f, g〉ϕ,

and therefore

E (ε(f)ε(g)) = 〈f, g〉ϕ.

or

E
(
ε(f)2

)
= |f |2ϕ,

respectively.

Duncan et al. (2000) now define the Wick product implicitly on these Wick
exponentials by postulating that for two functions f, g ∈ L2

ϕ the following
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equation holds:

ε(f) � ε(g) = ε(f + g).

From this definition on, the Wick product can be extended to random vari-
ables in Lp. For an explicit definition of the Wick product based on a rep-
resentation using Hermite polynomials, see for example Hu and Øksendal
(2003). We stress that the Wick product of two random variables is only
defined as a multiplication of two complete random variables and cannot be
interpreted in a pathwise sense. In particular, if one knows nothing but the
realizations of two random variables F,G, that is F (ω) and G(ω), it will not
be possible to calculate (F � G)(ω). Another peculiarity that is worth men-
tioning stems from the same reason. The combination of ordinary products
and Wick products is not as easy as one might suggest. Actually, despite
each of them being associative on their own, it is not possible to change the
order of multiplication when products of both types are involved; that is, in
general, we have for F,G,H ∈ Lp (see Bender (2003a), p. 13):

(F �G) ·H 
= F � (G ·H) .

This non-compatibility will be focused on later when introducing the frac-
tional market setup.

As an immediate consequence of the above definitions and calculations, we
obtain the moment properties of a Wick product of two wick exponentials:

E (ε(f) � ε(g)) = E (ε(f + g)) = 1 = E (ε(f))E (ε(g))

E (ε(f) � ε(g))2 = E
(
(ε(f + g))2

)
= |f + g|2ϕ.

These results can be extended to Wick products of the form ε(f)�∫∞
0 g(t) dBH

t

(see Duncan et al. (2000), p. 588–590). They receive

E

(
ε(f) �

∫ ∞

0

g(t) dBH
t

)
= E (ε(f))E

(∫ ∞

0

g(t) dBH
t

)

E

(
ε(f) �

∫ ∞

0

g(t) dBH
t

)2

= exp(|f |2ϕ)
(
(〈f, g〉ϕ)2 + |g|2ϕ

)
.

They further show that this again can be generalized to the case when the
first factor is a random variable F in Lp (see also Holden et al. (1996), p. 83):

E

(
F �

∫ ∞

0

g(t) dBH
t

)
= E (F )E

(∫ ∞

0

g(t) dBH
t

)

E

(
F �

∫ ∞

0

g(t) dBH
t

)2

= E

((∫ ∞

0

DϕFs ds

)2

+ F 2|g|2ϕ
)
,
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where DϕF denotes a version of the Malliavin derivative of F (for an easy
approach to Malliavin calculus, see Øksendal (1996)).

If we now look at the Riemann sums S�(F, π) of Wick type with respect to
a partition π, that is

S�(F, π) :=
∑
i∈π

F (ti) �
(
BH

ti+1
−BH

ti

)
,

and if partitions become finer (|π| → 0), one defines the fractional integral of
Wick type as the limit of the according sequence of Riemann sums

∫ T

0

F (s) dBH
s := lim

|π|→0

∑
i∈π

F (ti) �
(
BH

ti+1
−BH

ti

)
.

Using some of the results above and introducing some regularity conditions
(see Duncan et al. (2000), p. 591) the moment properties of the fractional
integral of Wick type can be derived:

E

(∫ T

0

F (s) dBH
s

)
= lim

|π|→0
E

(∑
i∈π

F (ti) �
(
BH

ti+1
−BH

ti

))

= lim
|π|→0

E

(∑
i∈π

F (ti) �
∫ ti+1

ti

dBH
s

)

= lim
|π|→0

E

(∑
i∈π

F (ti)

)
E
(
BH

ti+1
−BH

ti

)
= 0

E

(∫ T

0

F (s) dBH
s

)2

= lim
|π|→0

E

(∑
i∈π

F (ti) �
∫ ti+1

ti

dBH
s

)

= E

⎛
⎝(∫ T

0

DϕFs ds

)2

+ |F |2ϕ

⎞
⎠ .

Due to the evident parallels to classical Brownian integration theory, the
latter property is called fractional Itô isometry. We further observe that the
fractional integral of Wick type has zero mean, which of course is a convenient
feature of the new integration theory. Actually, this is one of the main reasons
why Wick integrals are introduced in the financial context. We will see in the
next section that the integration concepts of pathwise and Stratonovich type
may be more intuitive and easier to deal with but that they cannot provide
this desirable zero-mean property.
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2.4 Pathwise and Stratonovich Integrals

Instead of using the Wick product as we suggested in the section above, it is
also possible to define an integration concept based on ordinary multiplica-
tion. However, in this case, the meaning of convergence has to be redefined.
Actually, there are two alternative ways on how convergence can be relaxed
from the mean square sense. Either one postulates pathwise convergence, that
is for any state of nature, i.e. path, the integral—then being deterministic—
converges in the Riemann–Stieltjes sense. The second alternative results if
the approximating sums are required to tend to their limit in probability.
Regarding the first concept, one has to ensure the pathwise Hölder continu-
ity of the integrand (see Zähle (1998)) and due to its defining property it is
called pathwise integration. The integral based on convergence in probability
is called fractional integral of Stratonovich type and allows for a wider class
of integrands. Recall that the classical Stratonovich integral with respect to
Brownian motion differs from the well-known Itô integral as the integrand is
always evaluated in the middle of an interval (see Stratonovich (1966)). In
this case, the integral becomes anticipating, whereas Itô integrals exploit the
left boundaries of the intervals. Lin (1995) introduced this integral for the
case H > 1

2 and chose for the Riemann sums the presentation

S(F, π) :=
∑
i∈π

F (ti)
(
BH

ti+1
−BH

ti

)
.

This means that the value of the integrand is always taken at the earliest
point of the interval. Surprisingly, this integral is nevertheless rather related
to the anticipating classical Stratonovich integral that uses the midpoints of
the intervals than to the classical Itô integral. Actually, it can be shown (see
Duncan et al. (2000), p. 595), that for the persistent case the parametrization
of the evaluation point does not matter. Yet, Bender (2003a) proves that if
one wants to extend the concept to the antipersistent domain, the integral
will converge if and only if the midpoint is chosen (see Bender (2003a), p. 79),
so we define the fractional integral of Stratonovich type

∫ T

0 F (s) δBH
s in the

following way:

∫ T

0

F (s) δBH
s := lim

|π→0|

∑
i∈π

F

(
ti+1 + ti

2

)(
BH

ti+1
−BH

ti

)
.

As the pathwise fractional integral and the fractional integral of Stratonovich
type share the most important properties, we consider—as done in most of the
literature—both concepts from now on as one single approach to fractional
integration using both terms equivalently.

Duncan et al. (2000) p. 592, proved that there is an easy link between the
fractional integral of Wick–Itô type and that of Stratonovich type:



2.4 Pathwise and Stratonovich Integrals 23∫ T

0

F (s) δBH
s =

∫ T

0

F (s) dBH
s +

∫ T

0

DϕFs ds.

The result includes again the term DϕF which is the fractional version of
the Malliavin derivative of the integrand. To get an idea of this derivative,
we recall a result by (Duncan et al. (2000) p. 588) concerning the frac-
tional Malliavin derivative of a fractional integral with deterministic inte-
grand

∫ T

0
f(s) dBH

s :

Dϕ

(∫ T

0

f(u) dBH
u

)
(s) =

∫ T

0

ϕ(u, s)f(u) du.

For example, the fractional Malliavin derivative of BH
s in time s is

Dϕ
(
BH

s

)
(s) = Dϕ

(∫ s

0

dBH
u

)
(s)

=
∫ s

0

ϕ(u, s) du

=
∫ s

0

H(2H − 1)|u− s|2H−2 du

= H | − s|2H−1.

For the special case H = 1
2 , we hence get the classical Malliavin derivative

D
(
BH

s

)
(s) := limH→ 1

2
Dϕ

(∫ s

0

dBH
u

)
(s)

= limH→ 1
2

(
H | − s|2H−1

)
=

1
2
.

Tables 2.1 and 2.2 summarize the different properties of the Itô integrations
approaches on the one hand and those of the integrals of Stratonovich type on
the other hand. Furthermore, the comparison with the case H = 1

2 illustrates
the parallels of the concepts.

The main reason why one prefers Itô integrals in the classical financial con-
text, is the non-anticipating character of the integral. To put it differently, the
anticipating property of the Stratonovich integral makes it less applicable for
a financial setting where one normally cannot predict the future. For the case
of integration with respect to classical Brownian motion, Sethi and Lehoczky
(1981) derived a very illustrative example, where this can lead to. More pre-
cisely, they reformulated the Black–Scholes setting using Stratonovich inte-
gration calculus and derived a formula for a European call option where no
randomness is left and the value of the option C(t, St) with strike K and
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H = 1
2

Classical Itô Integral Classical Stratonovich Integral

∫ T
0

F (s) dBs
∫ T
0

F (s) δBs

= =

lim
∑

F (ti)(Bti+1 − Bti ) lim
∑

F

(
ti+1+ti

2

)
(Bti+1 − B(ti)

))

limit of left point Riemann sums limit of midpoint Riemann sums
using ordinary multiplication using ordinary multiplication

martingale property no martingale property

Interrelation Between the Two Integrals

∫ T
0 F (s) dBs =

∫ T
0 F (s) δBs − ∫ T

0 DFs ds

Example:

∫ T
0 B(s) dBs = 1

2
B2

T − 1
2
T =

∫ T
0 B(s) δBs − ∫ T

0 DBs ds

Table 2.1 Comparison and relations between integrals of Itô type and of Stratonovich

type

maturity T reduces to

C(t, St) = max(St −Ke−r(T−t), 0).

The authors show however, that the problem can be solved, if—for reasons
of plausibility—the weighted stock position in the partial differential equa-
tion is interpreted as an Itô differential, that has to be transformed to the
Stratonovich notation. In Sect. 4.3 we will reconsider these results by Sethi
and Lehoczky (1981) and extend them to the fractional context. The results
there will look quite astonishing; moreover, some of the arguments used in
the classical case will be totally inverted and we will see that both integrals
yield some kind of predictability.

Within our fractional context, we have to state: As the integrator of frac-
tional Brownian motion is not a semi-martingale, neither the Stratonovich
nor the Wick–Itô integral can generate an integral that exhibits martingale
properties. Actually, this will be the reason why we will have to give up no
arbitrage valuation, because the available information now tells something
about the shape of future distribution. In combination with the possibility
to interact infinitely fast, these predictions can be exploited. Nevertheless, it
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H �= 1
2

Fractional Wick–Itô Integral Fractional Stratonovich Integral

∫ T
0

F (s) dBH
s

∫ T
0

F (s) δBH
s

= =

lim
∑

F (ti) �
(

BH
ti+1

− BH
ti

)
lim

∑
F

(
ti+1+ti

2

)(
BH

ti+1
− BH

ti

)

limit of left point Riemann sums limit of midpoint Riemann sums
using Wick multiplication using ordinary multiplication

integral has zero mean integral has mean �= 0

Interrelation Between the Two Integrals

∫ T
0 F (s) dBH

s =
∫ T
0 F (s) δBH

s − ∫ T
0 DϕFs ds

Example:

∫ T
0 BH(s) dBH

s = 1
2
(BH

T )2 − 1
2
T 2H =

∫ T
0 BH (s) δBH

s − ∫ T
0 DϕBH

s ds

Table 2.2 Comparison and relations between integrals of Wick–Itô type and of fractional

Stratonovich type

seems to be more plausible to have an integral that has at least zero mean,
that means, over all possible paths there occurs no systemic bias in the price
process. Another argument for the Wick–Itô approach is the formal compati-
bility with classical Brownian theory which will turn out in all its beauty in
Chap. 5 when we price options.

2.5 Some Important Results of the Wick Type
Fractional Integration Calculus

In the foregoing section we elaborated the advantages of the integration the-
ory based on the Wick product. We have already stated some first parallels
to the classical Itô calculus. In this section we present further important re-
sults, in particular, analogons to the central theorems of the Itô theory are
given. By name, we state fractional versions of the Girsanov theorem and
the Itô formula. We only provide the results and skip all proofs referring to
the relevant literature. For a summarizing discussion of the topic, see Bender
(2003a).
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The classical Girsanov theorem discusses the properties of classical Brown-
ian motion—or more generally classical Brownian integrals—under change of
measure. It gives the possibility of changing a Brownian motion with drift
into one without any drift. The same is possible in the fractional context.
Norros and Valkeila (1999) p. 13 et seq., proved that, if Xt is a fractional
Brownian motion with drift under the measure P , that is

Xt
∼= BH

t + at under P, (2.4)

then, there is a suitable measure P a so that

Xt
∼= BH

t under P a,

that is, Xt is a fractional Brownian motion without drift under the new
measure.

The change of measure is given via the Radon–Nikodym derivative

dP a

dP
= exp

(
−aMt − 1

2
a2〈M,M〉t

)
, (2.5)

where

Mt =
∫ t

0

c1s
1
2−H(t− s)

1
2−HdBH

s ,

and c1 =
[
2HΓ

(
3
2
−H

)
Γ

(
H +

1
2

)]−1

.

The process Mt is a martingale with independent increments, zero mean and
variance function

EM2
t = c22t

2−2H ,

where c2 =
cH

2H
√

2 − 2H
.

It is called the fundamental martingale. Using this, we can rewrite (2.5) of
the Radon–Nikodym derivative by

dP a

dP
= exp

(
−aMt − 1

2
a2c22t

2−2H

)
.

From this representation it is easy to see that for the case H = 1
2 we obtain

the well-known change of measure formula. The generalization of this drift
removal theorem from the simple fractional Brownian motion to fractional
integrals can also be done (see Bender (2003b), p. 973 et seq.). However, to
provide this, the notations and concepts of the more powerful S-transform
are needed, so we postpone the result to Sect. 2.6.
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The second outstanding result of the fractional integration calculus of Wick
type is the fractional Itô theorem, that is, a chain rule for processes based
on fractional Brownian motion. Recall that for the case of classical Brownian
motion, we have different chain rules, depending on which integral definition
we choose. In the case of Stratonovich integrals, the chain rule is identical
to the deterministic case. However, when choosing Itô integrals, a correction
terms occurs including the second derivative of the outer function with re-
spect to the random process. In fractional calculus, the parallels again are
highly visible. For the fractional Stratonovich integral, the chain rule still
resembles its deterministic origin. In contrast, the fractional Wick approach
also necessitates a correcting second derivative term. In its basic version, the
fractional Itô theorem is due to Duncan et al. (2000). Let F,G be stochastic
processes satisfying certain regularity conditions. For the stochastic process

Xt = X0 +
∫ t

0

Gu du+
∫ t

0

Fu dB
H
u ,

and a twice continuously differentiable function f : R
2 → R the process

f(t,Xt) satisfies the following equation:

f(t,Xt) = f(0, X0) +
∫ t

0

∂f

∂s
(s,Xs) ds+

∫ t

0

∂f

∂x
(s,Xs) ds

+
∫ t

0

∂f

∂x
(s,Xs)Fs dB

H
s +

∫ t

0

∂2f

∂x2
(s,Xs)FsD

ϕXs ds. (2.6)

As a special case, we obtain for Xt = BH
t and a not time-dependent function

g : R → R

f(BH
t ) = f(BH

0 ) +
∫ t

0

f ′(BH
s ) dBH

s +H

∫ t

0

s2H−1f ′′(BH
s ) ds. (2.7)

Once more, it can be easily verified that the limit case H = 1
2 yields the

well-known Itô formula.

As already mentioned above, it is important to stress the fact that the deriva-
tion of these formulae is only valid for the case of persistence but not for
H < 1

2 . Again, like for the Girsanov formula, the more general results for
all Hurst parameters rely on the S-transform approach that we will briefly
present in the following section.
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2.6 The S-Transform Approach

The presented approaches to fractional integration theory whether of Itô or
Stratonovich type all had one property in common: In the case of Hurst pa-
rameters smaller than one half—that is, as antipersistence occurs—there are
severe problems concerning the convergence of the Riemann sums. By means
of the S-transform approach introduced by Bender (2003b), both Wick–Itô
type and Stratonovich type integration can be extended to antipersistent
processes. In the following, we briefly present the basic idea of this concept.

First, we have to introduce some notation. For 1
2 < H < 1, the Riemann–

Liouville fractional integrals are defined by

I
H− 1

2− f(x) =
1

Γ (H − 1
2 )

∫ ∞

x

f(s)(s− x)H− 3
2 ds,

I
H− 1

2
+ f(x) =

1
Γ (H − 1

2 )

∫ x

−∞
f(s)(x− s)H− 3

2 ds.

These fractional integrals are nothing but normalized blurred versions of the
function f , either averaging over future or over past function values. For
H > 1

2 , the weights become smaller the greater the distance to the proper
argument of the function gets. On the other hand, the fractional derivative
of Marchaud’s type D−(H− 1

2 )
± of a function f is given by

D
−(H− 1

2 )
± f := lim

ε→0
− H − 1

2

Γ (H − 1
2 )

∫ ∞

ε

f(x) − f(x∓ t)
t

3
2−H

dt

= lim
ε→0

− H − 1
2

Γ (H − 1
2 )

∫ ∞

ε

f(x) − f(x∓ t)
t

tH− 1
2 dt.

Concerning the latter representation, we can also interpret this fractional
derivative as a weighted sum, this time averaging difference quotients, yield-
ing a blurred version of the first derivative of f . Based on these definitions,
the operators MH

± are defined by

MH
± f :=

⎧⎪⎨
⎪⎩
KHD

−(H− 1
2 )

± f 0 < H < 1
2 ,

f H = 1
2 ,

KHI
H− 1

2± f 1
2 < H < 1,

where

KH = Γ

(
H +

1
2

)√
2HΓ (3

2 −H)
Γ (H + 1

2 )Γ (2 − 2H)
.
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Note that the process of fractional Brownian motion can be represented using
this operator. Like the original representation by Mandelbrot and van Ness
(1968), it is a stochastic integral with respect to classical Brownian motion.
In particular, we have

BH
t =

∫
R

(
MH

− 1[0,t]

)
(s) dBs. (2.8)

The identity of these two representations is carried out in Bender (2003c).
Using the operators MH

± , one can formulate the useful fractional integration
by parts rule (see Bender (2003b), p. 960):∫

R

f(s)
(
MH

− g
)
(s) ds =

∫
R

(
MH

+ f
)
(s)g(s) ds. (2.9)

We now introduce the S-transform. The S-transform of a mean square in-
tegrable random variable F is the functional SF operating on deterministic
functions g and is fully characterized by the following defining equation:

SF (g) := E

(
F exp

(∫
R

g(s) dBs − 1
2
|g|2

))
.

For example, (Bender (2003b), p. 964) shows that the S-transform of a simple
Wiener integral

∫ b

a f(t) dBt is

S

(∫ b

a

f(t) dBt

)
(g) =

∫ b

a

f(t)g(t) dt. (2.10)

From there, we obtain as another easy result

S
(
BH

t

)
(g) = S

(∫ t

0

f(s) dBs

)
(g) =

∫ t

0

g(s) ds.

Furthermore, the S-transform of the classical Itô integral
∫ b

a
Xt dBt satisfies

S

(∫ b

a

Xt dBt

)
(g) =

∫ b

a

(SXt)(g)g(t) dt =
∫ b

a

S(Xt)(g)
d

dt
S(Bt)(g) dt.

As the S-transform is injective, it also can be taken to define the above
integrals. Drawing the conclusion by analogy, one can accordingly define the
fractional integral of Wick–Itô type

∫ b

a Xt dB
H
t to be the unique random

variable with S-transform

S

(∫ b

a

Xt dB
H
t

)
(g) =

∫ b

a

S(Xt)(g)
d

dt
S(BH

t )(g) dt. (2.11)
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If we recall (2.8) and apply the S-transform on the Wiener integral following
(2.10) as well as the fractional integration by parts rule (2.9), we receive

d

dt
S(BH

t )(g) =
d

dt
S

(∫
R

(
MH

− 1[0,t]

)
(s) dBs

)
(g)

=
d

dt

∫
R

MH
− 1[0,t](s)g(s) ds

=
d

dt

∫ t

0

(MH
+ g)(s) ds

= (MH
+ g)(t).

Hence, (2.11) can be reformulated and the fractional Itô integral is defined
to be the unique random variable with the following S-transform:

S

(∫ b

a

Xt dB
H
t

)
(g) =

∫ b

a

S(Xt)(g)(MH
+ g)(t) dt.

It can be shown (see Bender (2003a)) that this definition includes the Wick–
Riemann sum approach by Duncan et al. (2000) and allows in addition for
an extension to Hurst parameters smaller than one half. Based on this inte-
gral definition, we are able to generalize the results of Girsanov type and the
fractional Itô formula. In comparison with (2.4) and (2.5), a fractional inte-
gral with drift can—after a suitable change of measure—be rewritten as one
without drift. More precisely, if a random variable Y under the probability
measure P can be written as

Y =
∫

R

Xt dB
H
t +

∫
R

Xt

(
MH

+ f
)
(t) dt,

then, applying the change of measure with the Radon–Nikodym derivative

dP f

dP
= exp

(∫
R

f(s) dBs − 1
2
|f |2

)
,

Y can be represented as

Y =
∫

R

Xt dB̃
H
t ,

where B̃H
t again is a fractional Brownian motion, but now under the new

measure Pf .

Concerning the extensions of the fractional Itô formula that are possible due
to the S-transform approach, we stress one more time that the (2.6) and (2.7)
now can also be proven for the case H < 1

2 (see Bender (2003b), p. 976–979).
At the same place, alternative representations are given using the operators
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MH± . We pass on the formal specification and skip the details at this point in
time, but we will resume the S-transform later on and then sketch and seize
the basic steps of the proof, when we will need a conditional version of the
fractional Itô theorem.

As a final remark regarding the S-transform approach, we mention that the
concept of the S-transform can also be used in order to extend the fractional
integral of Stratonovich type to all values of the Hurst parameter. Roughly
speaking, for a sequence of partitions, (Bender (2003a), p. 72 et seq.) defines
the Stratonovich type Riemann sums to converge to a random variable X
if the respective S-transforms converge. The limit random variable is then
called the fractional integral of Stratonovich type.

Although it is important from a technical and substantiating point of view,
we will eclipse the S-transform approach within the following chapters and
sections as far as possible. Instead, we will concern ourselves with the more
intuitive Riemann sum approaches. With respect to the latter, the discrete
time considerations in the next chapter will deliver deeper insight.



Chapter 3

Fractional Binomial Trees

Binomial trees are discrete approximations of stochastic processes where at
every discrete point in time the process has two possibilities: it either moves
upwards or descends to a certain extent. Each alternative occurs with a cer-
tain probability adding up to 1. Consequently, two factors determine the
characteristics of the resulting discrete process: The probability distributions
of the single steps as well as the extent of the two possible shifts at each step.
The binomial tree approach for classical Brownian motion is well-developed
and leads to intuitive insights concerning the understanding of Brownian mo-
tion as the limit of an uncorrelated random walk. Cox et al. (1979) extended
the very setting and defined a binomial stock price model converging weakly
to the lognormal diffusion of geometric Brownian motion. Other processes
of several important continuous time models in finance have been modeled
successfully in a similar fashion (see e.g. Nelson and Ramaswamy (1990)).
Hence, one might expect that a comparable approach for fractional Brown-
ian motion should also be possible. However, as we will see in this chapter,
things are a little bit harder to work out. This is mainly due to the property
of serial correlation.

We recall that fractional Brownian motion BH
t with Hurst parameter H can

be regarded as a moving average of a two-sided classical Brownian motion
Bs (see Mandelbrot and van Ness (1968)):

BH
t = cH

[∫
R

(
(t− s)H− 1

2
+ − (−s)H− 1

2
+

)
dBs

]
, (3.1)

where cH is a normalizing constant.

The chapter proceeds in the following way: In Sect. 3.1 we briefly present
two different approaches of binomially approximating fractional Brownian
motion. We provide a deeper discussion of one of them, the finite memory
model by Sottinen (2001). In the subsequent chapter, we show in Sect. 3.2,
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how conditional moments can be recovered and calculated within the bino-
mial model by Sottinen (2001). In the fourth section of the chapter we will
broach the issue of modelling a multiplicative price process comparable to
that of Cox et al. (1979). In particular, we will show two ways of how to form
binomial models of geometric fractional Brownian motion. We proceed with
some remarks concerning arbitrage possibilities within the binomial setting.
In particular, we suggest a solution to the problem of pricing options in the
fractional binomial market. Finally, we conclude the chapter with a basic
example illustrating the main idea of this approach.

3.1 Binomial Approximation of an Arithmetic
Fractional Brownian Motion Process

By means of the central limit theorem, it is possible to approximate classical
Brownian motion by increasing the number of independently and identically
distributed random variables. Therefore, taking a binomial distribution for
these random variables, one receives the binomial tree for classical Brownian
motion (see Cox et al. (1979)). Moreover, there is no problem in extending
this construction to a two-sided Brownian motion: As the two sides are not
at all correlated, starting from 0, one can symmetrically evolve both sides of
the process and receives a process over the whole time line.

Looking at (3.1), it is obvious that fractional Brownian motion also relates
to an infinite past. Unfortunately, it is not promising to carry over the above
idea of a two-sided symmetric approximation if one wants to model fractional
Brownian motion by a binomial tree. The main reason for this is that for any
time t the moving average of the historic realizations has to be recalculated
completely, as the according weights depend on present time and therefore
change. So, in order to evolve BH

t , it is always necessary to factor the whole
history—also beyond null—into the calculation, hence an independent sym-
metric modeling is inadequate.

Dasgupta (1998) suggests a way out that is able to incorporate the influence
of an infinite past. For t ∈ [0, 1], the nth approximation of BH

t is defined
to be a weighted sum of 2n + n + 1 independently and identically binomial
random variables ξ(n)

i taking values ±1 with probability 1
2 each:

B
H(n)
t =

n∑
i=−2n

(
√
n

∫ i
n

i−1
n

f(t, s) ds

)
ξ
(n)
i , (3.2)

where
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f(t, s) = cH

(
(t− s)H− 1

2
+ − (−s)H− 1

2
+

)
(3.3)

is the weighting kernel of fractional Brownian motion as in (2.2).
Dasgupta (1998) proves that this process weakly converges to fractional
Brownian motion as n gets larger. However, there is one crucial drawback
within this approximation procedure. The effort of calculating appropriate
approximations is extremely high, as we obtain 22n+n+1 terminal values
within the nth step. Hence, for practical purposes this approach is not appli-
cable.

Obviously, there are some problems if one wants to model a process going
infinitely back to the past, in particular, when any future step depends on
the whole history. Instead, it is much more promising to model a process that
starts at a fixed point in time t = 0. Therefore, we recall a representation
of fractional Brownian motion as a finite Brownian integral which was given
by Norros and Valkeila (1999). They derive a finite interval representation of
fractional Brownian motion which reads as follows:

BH
t =

∫ t

0

z(t, s) dBs, (3.4)

where

z(t, s) = cH

[
t

s

H− 1
2

(t− s)H− 1
2 −

(
H − 1

2

)
s

1
2−H

∫ t

s

uH− 3
2 (u− s)H− 1

2 du

]
.

For the proof, we refer to Norros and Valkeila (1999). With this latter equa-
tion being available, it is easy to grasp the idea of Sottinen (2001). As the
fractional Brownian motion is now a weighted sum of Brownian increments
going finitely back to the past, he approximates the standard Brownian mo-
tion by a sum of discrete independently and identically distributed random
variables ξ(n)

i with zero mean and unit variance, that is

B
(n)
t :=

1√
n

[nt]∑
i=1

ξi(n), (3.5)

where in the n-th approximation step each unit time interval is divided into
n discrete steps and time t is rounded down onto the next n-th part by
replacing it by [nt]

n . The moments of this sum are



36 3 Fractional Binomial Trees

E
[
B

(n)
t

]
= E

⎡
⎣ 1√

n

[nt]∑
i=1

ξi(n)

⎤
⎦ =

1√
n

[nt]∑
i=1

E [ξi(n)] = 0,

Var
[
B

(n)
t

]
= E

⎡
⎢⎣
⎛
⎝ 1√

n

[nt]∑
i=1

ξi(n)

⎞
⎠

2
⎤
⎥⎦ =

1
n

[nt]∑
i=1

E
[
(ξi(n))2

]
=

[nt]
n

→ t,

so B(n)
t approximates standard Brownian motion.

The continuous time weighting kernel is adapted accordingly by averaging
over the respective time interval. We hence get

z(n)(t, s) := n

∫ s

s− 1
n

z

(
[nt]
n
, u

)
du. (3.6)

Putting these parts together, Sottinen (2001) uses the following discrete ap-
proximation of fractional Brownian motion:

B
H(n)
t :=

∫ t

0

z(n)(t, s)dW (n)
s =

[nt]∑
i=1

n

∫ i
n

i−1
n

z

(
[nt]
n
, u

)
du

1√
n
ξ
(n)
i . (3.7)
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Fig. 3.1 Four-step approximation of classical Brownian motion (H = 0.5) for time t = 1
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Note that for H = 1
2 , the weighting kernel z(t, s) in (3.6) equals one and we

get

B
1
2 (n)
t :=

∫ t

0

dW (n)
s =

[nt]∑
i=1

n

∫ i
n

i−1
n

du
1√
n
ξ
(n)
i =

[nt]∑
i=1

1√
n
ξ
(n)
i = B

(n)
t . (3.8)

Hence we obtain a binomial random walk that is a mere sum of uncorrelated
equally weighted random variables and which obviously approximates clas-
sical Brownian motion. Figure 3.1 depicts the according classical binomial
tree, being symmetric and showing equidistant nodes at each step.

For H ≥ 1
2 , Sottinen (2001) proves that the random walk of (3.7) indeed

converges weakly to fractional Brownian motion. The weak convergence is
proven by showing the identity of the moment properties as well as tightness
and uses a general result of convergence of random variables that is due
to Billingsley (1968). However, for the range of Hurst parameters standing
for antipersistence, the original result by Billingsley (1968) proving tightness
cannot be applied. Instead, a generalized version of the tightness criterion
is needed, derived by (Genest et al. (1996), p. 332). We leave out the quite
technical details and provide a not that rigorous, but all the more illustrative
proof.

As known from probability theory, a random variable converges weakly to
another random variable if their distribution functions converge pointwise
at any point where the function is continuous (see e.g. Ash (1972)). Equiv-
alently, a stochastic process—which is nothing else but a family of random
variables indexed by time t—converges to another process, if for any time t
the corresponding random variables converge. Hence, we have to look at the
shape of the distribution functions of BH

t on the one hand and BH(n)
t on the

other hand.

Figure 3.2 depicts the distribution functions of a four-step as well as of a
18-step approximation in comparison to the exact distribution function of
fractional Brownian motion at time t = 1. For a small number of steps the
character of the approximating distribution function is of a step function
kind, getting smoother the more steps are taken. Both for the antipersistent
and for the persistent parameter choice, the convergence is easy to identify.

Having ensured convergence, we can now evolve binomial trees by the proce-
dure mentioned above. The following figures depict the evolution of the bi-
nomial tress generated by the described random walk. Once more, we stress
the fact, that for H = 1

2 , we would get the classical, recombining binomial
tree. The situation for the cases where increments are correlated however
is vitally different. Looking at Figs. 3.3 and 3.4, we observe that both the
antipersistent tree and the persistent one are no longer recombining.
Additionally, though still being symmetric the outer branches are no longer
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Fig. 3.2 Distribution functions of a four-step and a 18-step approximation of fractional
Brownian motion for H = 0.1 (top) and H = 0.8 (bottom) in comparison to the exact
distribution function.

steady lines but feature kinks. Thereby, Fig. 3.3 describes a concave envelope.
This is due to the occurrence of antipersistence: The process always tends to
invert the direction of the past that was recently struck in. Hence, it exhibits
a kind of mean-reverting character. Additionally, the terminal nodes are no
longer equidistant.
Meanwhile, for the persistent case, we look at Fig. 3.4 and observe similar
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Fig. 3.3 Four-step approximation of fractional Brownian motion for time t = 1 and Hurst
parameter H = 0.1
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Fig. 3.4 Four-step approximation of fractional Brownian motion for time t = 1 and Hurst
parameter H = 0.8
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deviations from the standard case of the classical binomial tree. Again we
perceive lack of recombination and equidistance, however, the envelope now
shows a convex shape of nature. In this case, occurring persistence reinforces
the chosen path and intensifies deviations from the mean. We will rediscover
these phenomena when modeling the binomial price process in Sect. 3.3.

3.2 Binomial Approximation of the Conditional
Moments of Fractional Brownian Motion

The approximation of the process of fractional Brownian motion allows us
to proceed and also model conditional distributions of the process. In par-
ticular, we are interested in predicting the terminal value BH

t by using the
information of all steps up to a certain time t.

Recall the approximation procedure by Sottinen (2001) of BH
T discussed in

the preceding section, where we had

BH
T =

[nT ]∑
i=1

z(n)

(
T,

i

n

)
1√
n
ξ
(n)
i ,

with z(n)(T, i
n ) as the weighting kernel of the ith step and with n as the num-

ber of approximation steps within one unit of time. Recall the finite-interval
representation by Norros and Valkeila (1999) that underlies this approxima-
tion: It is evident that the conditional expectation of the process based on
information up to time t can also be represented as a finite-interval of clas-
sical Brownian motion. We just cut off the independent future part. More
formally, we obtain

E
[
BH

T |Ft

]
= E

[∫ T

0

z(T, s) dBs|Ft

]

=
∫ t

0

z(T, s) dBs + E

[∫ T

t

z(T, s) dBs|Ft

]

=
∫ t

0

z(T, s) dBs.

Hence we can extend the idea of Sottinen (2001) by approximating the
conditional expectation B̂H

T,t by

B̂H
T,t = E

[
BH

T |Ft

]
=

[nt]∑
i=1

z(n)

(
T,

i

n

)
1√
n
ξ
(n)
i ,
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that is, we use the same coefficients as for BH
T but only summing up to time

t. Like for the fractional Brownian motion itself, we can also plot the values
of this conditional expectation along its possible paths. More precisely, after
each step, we calculate for each node the conditional mean of BH

T given the
information up to this node. The outcome of this procedure is again some kind
of binomial tree which we call the conditional tree. The starting point of the
tree is the expectation ofBH

T conditional on time t = 0. As we do not have any
information at this point in time, this is of course equal to the unconditional
expectation of fractional Brownian motion, i.e. zero. On the other hand, at
all the terminal nodes of time t = T , the whole information is available and
B̂H

T,T is just equal to BH
T . So, the conditional tree is also a representation

of the evolution of fractional Brownian motion up to time T . However, the
nodes lying between zero and T now have a different meaning. While the
time t node of the unconditional tree converged to BH

t , the respective node
of the conditional tree converges to B̂H

T,t. Each node indicates the mean of
all terminal nodes descending from it.

Taking a look at Figs. 3.5 and 3.6, one recognizes that, regarding the outer
shape of the binomial trees, the characteristics of the persistent and the an-
tipersistent tree have interchanged. The conditional tree for Hurst parameters
H < 1

2 now shows a convex or dispersing envelope, whereas the parameters
larger than one half standing for persistence yield a concave or contracting
shape of the conditional tree. Though this seems to contradict the explana-
tions given in the preceding section, this is actually not the case at all. To
see why, we have to interpret the meaning of one path within the conditional
tree which is nothing but the random evolution of the prediction for the ter-
minal value. In the case of persistence, the first steps basically determine the
following ones. So, the leeway of the trajectory or the margin, respectively,
between to descending nodes is reduced after each additional step. Antiper-
sistence however ascribes the main importance concerning predictability to
the last step. The latter fundamentally determines the terminal value. In-
crements with a lag larger than one step are less important. The first steps
consequently do not tell much about the terminal distribution. Contrarily,
the influence of the last draw on the terminal value is the crucial one. Con-
sequently the margins increase along the tree.

Another distinctive feature between the conditional and the unconditional
tree is also worth mentioning: In the conditional tree, there is an easy link
between one node at an arbitrary step i and its immediate successors, as one
just has to add or subtract z(n)(T, i

n ) 1√
n
, whereas the preceding summands

remain unchanged. Note that this property is not given within the uncondi-
tional tree, where all the historic ups and downs have to be rescaled by new
coefficients.

Given the tree of conditional means, it might prove interesting to investigate
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Fig. 3.5 Four-step approximation of the conditional mean of fractional Brownian motion
for time T = 1 and Hurst parameter H = 0.1
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Fig. 3.6 Four-step approximation of the conditional mean of fractional Brownian motion
for time T = 1 and Hurst parameter H = 0.8
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the appropriate second moments. We hence look at the conditional variance
defined by

σ̂2
T,t = E

[(
BH

T − B̂H
T,t

)
|Ft

]2
.

Transforming this to our binomial model means measuring the deviations
of the terminal nodes BH

T around the time t node of the conditional tree.
For a sufficiently large number of discretization steps, the results we obtain
approximately equal the theoretical values of the according continuous time
setting (for a derivation of the continuous time reference values, see Sect. 5.2).
When comparing these results, one has to be aware of the differences that
occur due to the fact that we cut off history. Meanwhile, one can show for the
continuous time case that conditional variance within a certain prediction in-
terval is nearly totally influenced by the historic interval of equal length (see
Gripenberg and Norros (1996)). Consequently, we are able to ensure approx-
imately good results by adjusting the information interval in the required
manner.

Number of steps
Hurst parameter

n = 4 n = 8 n = 12 n = 16 n = ∞

t = 1
4
T

H = 0.1 0.6095 0.6352 0.6448 0.6513 0.6866
H = 0.3 0.8525 0.8432 0.8375 0.8336 0.7837
H = 0.5 0.2500 0.2500 0.2500 0.2500 0.2500
H = 0.7 0.5462 0.5726 0.5819 0.5868 0.6009
H = 0.9 0.2241 0.2473 0.2550 0.2589 0.2701

t = 1
2
T

H = 0.1 0.5007 0.5213 0.5328 0.5415 0.6014
H = 0.3 0.6568 0.6468 0.6409 0.6369 0.6012
H = 0.5 0.5000 0.5000 0.5000 0.5000 0.5000
H = 0.7 0.2906 0.3098 0.3167 0.3203 0.3316
H = 0.9 0.0907 0.1038 0.1082 0.1103 0.1167

t = 3
4
T

H = 0.1 0.3659 0.3930 0.4053 0.4129 0.5066
H = 0.3 0.4327 0.4269 0.4225 0.4193 0.3910
H = 0.5 0.2500 0.2500 0.2500 0.2500 0.2500
H = 0.7 0.0968 0.1088 0.1133 0.1157 0.1236
H = 0.9 0.0181 0.0248 0.0271 0.0282 0.0315

Table 3.1 Conditional variance σ̂
2(n)
t,1 of fractional Brownian motion for different points

in time t and different Hurst parameters H

Table 3.1 depicts the values of the conditional variances based on a different
number of approximating steps. The comparison with the continuous time
limit case (we refer the reader to Chap. 5 to see how the latter can be cal-
culated) shows that the speeds of convergence differ eminently. The speed
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depends both on the Hurst parameter and on the ratio between the lengths
of the observation and the prediction interval, respectively. Moreover, one
becomes aware of the fact that for a fixed number of steps there is a tradeoff
when choosing the ratio between the observation and the prediction window.
A more detailed expansion of the future distribution has to be paid by less
information about the past. For the parameters standing for persistence or
weak antipersistence, it seems to be favorable to have an information period
being at least as long as that of prediction. In the case of strong antiper-
sistence however—where as we recall only the most recent historic events
influence the future distribution—the main importance should be attached
to an exact mapping of the future distribution of the process.

Two more important mathematical features should be mentioned at this
point. On the one hand, the fact that the conditional and the unconditional
tree differ at all, has a crucial meaning: Evidently, the process of fractional
Brownian motion is no longer a martingale, otherwise the future prediction in
time t should equal the present value and both trees would coincide. On the
other hand, the prediction not only depends on the last, but on all historic
random realizations, so the process also is no longer Markovian. In Sect. 3.4,
we will investigate, how these properties affect the usage of fractional Brow-
nian motion in financial models.

3.3 Binomial Approximation of a Geometric Fractional
Price Process

We have introduced fractional Brownian motion as the source of randomness
in the discrete framework and got to know about some characteristic features.
We now keep this discrete time vantage point and have a look at geometric
fractional Brownian motion, which is the stochastic process St satisfying the
following differential equation:

dS(t) = μS(t)dt+ σS(t)dBH
t

where dBH
t is the increment of fractional Brownian motion.

From the preceding sections we already know that this differential equa-
tion does not yet determine all properties of the process as we can trans-
form this equation into an integral equation and then have to interpret the
stochastic fractional integral—either in the ordinary pathwise sense or in the
Wick sense.
We recover an analogy of this aspect in the discrete modelling of geometric
fractional Brownian motion. As in the well-known case of classical geometric
Brownian motion we generate a recursive multiplicative tree, starting with a
value S0 and introduce the recursion law
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Sn = Sn−1 • (1 + μn +Xn),

where • is either the ordinary product or a discretization of the Wick product
and Xn is an approximation of the fractional Brownian increment as in the
section before. For the reasons mentioned there, we restrict ourselves to the
approximation procedure by Sottinen (2001) when modeling Xn.
Let us first present the idea of the discrete Wick product. Following Holden
et al. (1996), any square-integrable random variable X that is defined on a
n-fold Cartesian product of {−1, 1} has a unique representation using inde-
pendently and identically distributed binary random variables ξi

X =
∑

A⊂{1,...,n}

(
X(A)

∏
i∈A

ξi

)
; X(A) ∈ R.

This is called the Walsh decomposition. Using this result, it is sufficient to
define the discrete Wick product of two products of an arbitrary subset of
ξi, i ∈ {1. . . . , n} and extending it to more general random variables using
their Walsh decomposition. According to this, we define the discrete Wick
product—denoted by �d—as follows (see Bender (2003a)):

∏
i∈A

ξi �d

∏
j∈B

ξj =

{∏
i∈A∪B ξi, if A ∩B = ∅

0, otherwise.

Verbalizing this definition we can say that the discrete Wick product vanishes
if the two factors have at least one generating random variable in common. If
none of the generators coincide, the wick product equals the ordinary prod-
uct. This property becomes crucial when investigating the construction of
discrete geometric fractional Brownian motion. We exemplify this with a
short calculation.

Recall the representation of Sottinen discussed above: Fractional Brownian
motion was approximated by the sum

BH
T =

[nT ]∑
i=1

z(n)

(
T,

i

n

)
1√
n
ξ
(n)
i =

[nT ]∑
i=1

k(n)(T, i)ξ(n)
i ,

where k(n)(T, i) = z(n)(T, i
n ) 1√

n
. We regard only two steps of recursion and

use the step size 1, that is t1 = 1, t2 = 2. Furthermore, we abstain from a
drift component μ. For sake of simplicity, we omit the superscript (n). Cor-
responding to Chap. 2, we have the following representation of the fractional
Brownian motion:

BH
0 = 0, BH

1 = k(1, 1)ξ1, BH
2 = k(2, 1)ξ1 + k(2, 2)ξ2.
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Therefore, the Brownian increments dBj = Bj −Bj−1 are

dBH
1 = k(1, 1)ξ1, dBH

2 = (k(2, 1) − k(1, 1))ξ1 + k(2, 2)ξ2.

With S0 = 1, the price process of the geometric fractional Brownian motion
in the pathwise sense, denoted by S(P )

t , develops as follows:

S
(P )
0 = 0

S
(P )
1 = S

(P )
0 (1 + dBH

1 ) = 1 + k(1, 1)ξ1,

S
(P )
2 = S

(P )
1 (1 + dBH

2 )
= (1 + k(1, 1)ξ1) (1 + (k(2, 1) − k(1, 1))ξ1 + k(2, 2)ξ2)
= 1 + k(2, 1)ξ1 + k(2, 2)ξ2 + k(1, 1)k(2, 2)ξ1ξ2

+k(1, 1)(k(2, 1)− k(1, 1))ξ21 .

Note that by construction, ξ21 is deterministic with value 1, so that the term
k(1, 1)(k(2, 1) − k(1, 1)) contributes to the drift of the process. This is the
analogy to the continuous time setting where the fractional integral in the
pathwise sense yields a non-zero expected value (see Sect. 2.4). In contrast,
when we look at the evolution of the geometric fractional Brownian motion
in the Wick sense, denoted by S(W )

t , we obtain

S
(W )
0 = 0,

S
(W )
1 = S

(W )
0 �d (1 + dBH

1 ) = 1 + k(1, 1)ξ1,

S
(W )
2 = S

(W )
1 �d (1 + dBH

2 )
= (1 + k(1, 1)ξ1) �d (1 + (k(2, 1) − k(1, 1))ξ1 + k(2, 2)ξ2)
= 1 + k(2, 1)ξ1 + k(2, 2)ξ2 + k(1, 1)k(2, 2)ξ1ξ2.

In this case, the Wick product eliminates the squared term by its definition
and the drift remains unchanged. We stress again the parallel to the continu-
ous framework where we received an expected value of zero for the fractional
integral in the Wick sense. Actually, this was the motivation for introducing
the stochastic integration calculus based on Wick products. Obviously, the
discretization of the concept reveals the same properties.

It is important to check whether this alternative way of multiplication fun-
damentally changes the basic properties of the process, i.e. the type of its
distribution. Comparing the corresponding binomial trees in Figs. 3.7–3.9,
plotted for four time steps without a drift component, we see that this is not
the case. Moreover, for any of the three qualitatively different cases of an-
tipersistence (H < 1

2 ), independence (H = 1
2 ) and persistence (H > 1

2 ), the
Wick binomial tree resembles that of ordinary multiplication. Thereby, we
observe features that correspond both to the preceding shapes of fractional
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Fig. 3.7 Binomial approximation of the geometric Brownian motion based on the Wick
product and on the ordinary product

Brownian motion and to the distributional properties of the respective con-
tinuous time processes. Again, antipersistence comes along with a concave
evolution of the variance over time whereas persistence generates a convex
border of the binomial tree. As in the section before, we obtain a recombining
tree only for the case H = 1

2 . Having stated approximative normality for the
fractional Brownian motion, one can observe—at least for the persistent and
for the independent case—the log-normality of geometric fractional Brownian
motion.

Nevertheless, even for such a small number of steps, distinctions appear. The
latter are clarified in Figs. 3.8 and 3.9 by the different shapes of the trees. The
dashed lines represent the Wick-product-based trees, whereas the solid lines
depict the trees using ordinary multiplication. Obviously, the Wick product
effectuates a correction of the values generated by pathwise multiplication,
yielding larger values for the antipersistent case and smaller values for pa-
rameters H > 1

2 . Against the background of the preceding chapter, these
differences are not at all surprising, but the exact analogon to the interrela-
tion between the two types of fractional integrals stated in Table 2.1.
Meanwhile, for the independent case, the binomial trees do not differ at all.
This is due to the fact that the Brownian increments dB

1
2
n are represented only

by ξn and do not depend on the preceding ξj, {j<n}. Therefore, no squared
terms occur in the recursion formula, so the Wick product and the ordinary
product yield the same results. This is again consistent with the according
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Fig. 3.8 Binomial approximation of the geometric fractional Brownian motion for the
antipersistent case of H = 0.1 based on the Wick product (dashed line) and on the ordinary
product (solid line)

proposition of the continuous time setting, where the fractional integral of
Wick type and the pathwise integral coincide for the case of serial indepen-
dence, that is for H = 1

2 .

The preceding considerations helped to impart intuition to what the process
of fractional Brownian motion looks like and by what key features it is consti-
tuted. However, the most important application of the well-known binomial
trees that model classical geometric Brownian motion, is, that by absence
of arbitrage one can also model prices of derivative assets. In the following
chapter, we will see that for Hurst parameters H 
= 1

2 , this possibility is no
longer given in the fractional framework, at least as long as one does not im-
pose further restrictions. Though this seems to be disillusioning concerning
a further use of fractional binomial trees, our modified discrete setting will
prove valuable when we introduce a preference based pricing approach. In
particular, the fact, that we can easily model conditional moments, will turn
out to be helpful.
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Fig. 3.9 Binomial approximation of the geometric fractional Brownian motion for the
persistent case of H = 0.8 based on the Wick product (dashed line) and on the ordinary
product (solid line)

3.4 Arbitrage in the Fractional Binomial Market Setting
and Its Exclusion

Within the preceding sections, we learned that if the fractional price process
is expanded using ordinary multiplication, the mean of the price process is
not equal to its starting value. this was true even if no deterministic trend
was given. Obviously, this seems to be at odds with our idea of a fair game, as
a systemic upward bias occurs and one should expect arbitrage possibilities.
Hence, the discrete Wick product was introduced and it was shown that the
resulting process accounts for that phenomenon and yields an unbiased mean
of the process. Yet, if one is interested in conditional statements, it turned out
that conditional expectation based on all available historic information does
not equal the present value of the process, or to put it differently, the martin-
gale property is not given. So, despite the improvement of an unconditionally
unbiased process, the game becomes unfair as soon as information about the
past can be exploited. Consequently, one should also expect arbitrage within
the Wick-product-based setup. Indeed, taking for example a look at Fig. 3.9,
one recognizes both for the ordinary product and the Wick-product-based
process one conspicuous peculiarity: Concerning the nodes before last, one
can see that—starting from the top node—both descending branches show
upward direction. That means, in absence of a riskless interest rate, a one-
step buy and hold strategy will always pay and promises a riskless gain.
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In the following, we will present explicit proofs for the existence of arbitrage
possibilities within the unrestricted setting. The results were provided by
Sottinen (2001) for ordinary multiplication and by Bender (2003a) for Wick
multiplication.

The binary model for geometric fractional Brownian motion was presented in
the preceding section as a multiplicative process using the ordinary product
or the Wick product, respectively. Again, the assets only change their value
at discrete points in time 0 = t0 < t1 < . . . < tn = T . The framework is
extended to a binary market model by additionally introducing a riskless as-
set, or bond A(n)

j , where the subscript j denotes the value at time tj and the
superscript n as in the sections before indicates the fineness of the approxi-
mation. Combined, we obtain the following setting consisting of the riskless
asset with dynamics

A
(n)
j = (1 + r(n))A(n)

j−1,

as well as the risky stock with dynamics

S
(n)
j =

(
1 + μ(n) +X

(n)
j

)
◦ S(n)

j−1,

where X(n)
j is the corresponding n-th approximation of the increment of frac-

tional Brownian motion, that is dBH
tj

and ◦ stands for the particular way, in
which multiplication is carried out. From the sections above, we derive that
this random variable X(n)

j is binary and has the following representation:

X
(n)
j = σ

(
B

H(n)
tj

−B
H(n)
tj−1

)
(3.9)

= σ
√
n

(
j∑

i=1

∫ i
n

i−1
n

z

(
j

n
, s

)
ds ξ

(n)
i −

j−1∑
m=1

∫ m
n

m−1
n

z

(
j − 1
n

, s

)
ds ξ(n)

m

)
.

Sottinen (2001) introduces the shorthand notations

k(j, i) := k(n)(j, i) =
√
n

∫ i
n

i−1
n

z

(
j

n
, s

)
ds

as well as

fj−1(ξ1, . . . , ξj−1) :=
j−1∑
i=1

(k(j, i) − k(j − 1, i))ξi

and rewrites (3.9) by

X
(n)
j = σ (k(j, j)ξj + fj−1(ξ1, . . . , ξj−1)) .
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For each step j, based on the knowledge of the complete past, there are only
two possible values of the binary random variable X(n)

j which are denoted by

d
(n)
j

(
for ξ(n)

j = −1
)

and u(n)
j

(
for ξ(n)

j = +1
)
.

We choose the interest rate r(n) and the drift rate μ(n) to be the n-th part
of the according constants of the respective continuous time setting. Then,
the discrete model converges to the continuous framework as n tends to in-
finity (see Sottinen (2001)). In the following, we will omit the superscript n,
wherever possible.

Concerning the absence of arbitrage possibilities, it is necessary to ensure,
that for any time step we have

Sn
j (ξj = −1)− Sn

j−1 < rSn
j−1 < Sn

j (ξj = +1) − Sn
j−1, (3.10)

that is, the return of the risky asset exceeds the riskless interest rate in the
case Xn

j = u
(n)
j and falls below the riskless rate in the case Xn

j = d
(n)
j .

We first address ourselves to the case where ordinary multiplication is used.
In this case, the increment Sn

j − Sn
j−1 can be rewritten:

Sn
j − Sn

j−1 = μSn
j−1 +Xn

j S
n
j−1.

Using this, (3.10) can be simplified and one gets the relation

dj < r − μ < uj . (3.11)

Evidently, the existence of arbitrage can be proven by one example contra-
dicting relation (3.11). For this purpose, (Sottinen (2001), p. 353) picks the
two special cases where the historical path either always moved upwards
or downwards, that is, he investigates the sequences (ξ1, ξ2, . . . , ξj−1) =
(±1,±1, . . . ,±1). The according inequalities (3.11) then can be rewritten
as follows:

σ (−k(j, j) + fj−1(±1, . . . ,±1)) < r − μ < σ (k(j, j) + fj−1(±1, . . . ,±1)) .

In order to prove arbitrage, it is necessary and sufficient that at least one
of these inequalities fails. Exploiting the symmetry of the two equations, the
problem can be reduced to the proof of

fj−1(1, . . . , 1) − k(j, j) ≥ 0. (3.12)

The latter inequality is verified to hold for all j larger than a critical step
number NH , only depending on the Hurst parameter and tending to infinity
as H approaches one half. The result can be derived by a series of quite tech-
nical arguments and is shown in (Sottinen (2001), p. 353 et seq.). The author
also provides an explicit arbitrage possibility: Suppose the difference r−μ to
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be negative and let the historic path up to step j > NH be strictly upwards
moving, that is (ξ1, ξ2, . . . , ξj−1) = (+1,+1, . . . ,+1). Hence we obtain

dj = fj−1(1, . . . , 1) − k(j, j),
uj = fj−1(1, . . . , 1) + k(j, j),

which are—as relation (3.12) holds—both nonnegative, and we obtain

r − μ < 0 ≤ dj < uj, (3.13)

so the fundamental no arbitrage relation (3.11) is violated. In this situation,
an investor will buy one stock at step j− 1 at the price Sj−1 and borrow the
same amount paying the riskless interest rate r. In the worst case, ξj equals
minus one and the stock moves what we call downwards and takes the value
Sj = Sj−1(1+μ+dj). But, taking a look at (3.13), μ+dj already exceeds the
riskless interest rate, so the riskless gain is guaranteed. If, on the other hand,
the difference r − μ is positive, one can—with positive probability—exploit
the path (ξ1, ξ2, . . . , ξj−1) = (−1,−1, . . . ,−1), by short-selling the stock and
investing in the riskless asset.

In the case of the setting based on the Wick product, the proof of an arbitrage
possibility is a little bit more complicated. Bender (2003a) shows that the
increment Sn

j − Sn
j−1 now satisfies:

Sn
j − Sn

j−1 = S0X
n
j +O

(
n−(1∧2H)

)
. (3.14)

In order to account for the term of an order that depends on N , the coeffi-
cients k(j, i) have to hold a stronger condition than (3.12) if arbitrage should
be possible. With

xn(j, i) =

{
kn(j, i) − kn(j − 1, i), if i < j

kn(j, j) , if i = j.

This condition can be formulated as follows: If there are lower bounds yl(j, i)
and upper bounds yu(j, i), both independent of n, so that

n−Hyl(j, i) ≤ |xn(j, i)| ≤ n−Hyu(j, i) (3.15)

and
j−1∑
i=1

yl(j, i) > yu(j, j), (3.16)

then there exists an arbitrage possibility in the market. Bender (2003a)
explicitly derives these upper and lower bounds to be
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yl(j, i) =

⎧⎨
⎩
CHσ

[
(j + 1 + i)H− 1

2 − (j − i)H− 1
2

]
, if i < j

CHσ
H+ 1

2
, if i = j.

and

yu(j, i) =

⎧⎨
⎩

CHσ
3
2−H

(
j

i−1

)H− 1
2
[
(j + 1 + i)H+ 1

2 − (j − i)H+ 1
2

]
, if i > 1

CHσ
3
2−H

j2H−1, if i = 1.

We now investigate the same state of nature as in the example by Sottinen
(2001) mentioned above. Suppose all preceding random draws ξi, i < j to
be positive. The question is, whether a realization ξj = −1 is able to make
the value of the stock move downwards or not. Inserting ξi = +1, i < n into
(3.14), one obtains

Sn
j − Sn

j−1 = S0

j−1∑
i=1

|xn(j, i)| + S0x
n(j, j)ξj +O

(
n−(1∧2H)

)

With the bounds defined above satisfying (3.15) and (3.16), this can be
further specified (see Bender (2003a), p. 140):

Sn
j − Sn

j−1 ≥ n−H

[
S0

j−1∑
i=1

yl(j, i) − S0yu(j, j)O
(
n−[(1−H)∧H]

)]

> 0,

for a sufficiently high level of fineness n. Consequently, even a negative
evolution in time step j (that is ξj = −1) cannot invert the upward trend.
Hence, a one-step buy-and-hold strategy will always yield a positive gain.
The described situation occurs with positive probability, as we are given a
finite number of states (paths). So, we have an arbitrage possibility also in
the binomial Wick-based setting.

Albeit the existence of arbitrage possibilities within the framework described
above seems disillusioning at first glance, the situation is not as bad as it
seems. The given examples all postulated that the investor can react as fast
as the market. This means, one can make transactions at each node of the
random path and thereby realize a one-step buy-and-hold strategy. Mean-
while, it might not seem to be too restrictive if one introduces a minimal
delay between two consecutive transactions of one and the same investor.
Given a multitude of investors, we assert that within this minimal processing
time, other investors do make transactions.
We forestall a result of the continuous time case of Chap. 4 where an anal-
ogous problem will occur. There, we will restrict the in the way that the
market still evolves continuously, whereas each single investor can only trade
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at discrete points in time. This modified framework where investors cannot
be as fast as the market is free of arbitrage. It is due to Cheridito (2003) and
will be recalled later on.
It is this basic idea that we also apply to our discrete setting. Putting it into
the framework of binomial trees, a single investor cannot catch two consec-
utive nodes: Even if he sells immediately after having bought an asset, he
would have missed a number of transaction nodes caused by the multitude
of investors. It can be shown that this assumption is already sufficient to
rule out arbitrage possibilities. More formally: Assume we have an arbitrage
possibility within a certain interval, as in the examples before, driven by an
extreme realization of the historic path. Then one can always introduce a
number of intra-interval nodes caused by the rest of the market, so that the
arbitrage opportunity vanishes. We do not give an explicit proof but provide
an illustrative example instead.

Figure 3.10 depicts a market where a single investor can only make transac-
tions at each time unit but not on the nodes in-between. The above picture
where no additional steps of other market participants lie in-between allows
for a one-step buy-and-hold arbitrage, buying the stock in time t = 3 and
selling it in t = 4. In the lower picture, an additional node of market transac-
tions is introduced that cannot be exploited by an investor buying the stock
in time t = 3. Consequently, the same strategy can yield a loss in t = 4 and
therefore no longer exhibits an arbitrage possibility. Note that the number of
additional nodes between two consecutive transactions of one investor being
necessary to exclude arbitrage depends on both the Hurst parameter and on
the amount of historic information that is available. Generally speaking, both
a higher level of persistence and more information about the past increase
the number of necessary steps.

In order to avoid misunderstandings, we stress once more the basic idea of
how arbitrage can be excluded. The binomial framework per se is already a
discrete framework: that is, transactions cannot be proceeded infinitely fast.
However, within the unrestricted setting each investor can at least be as fast
as the market: that is one can catch any change in value of the traded assets.
The additional restriction we impose, limits the relative speed of consecutive
transactions. Due to the multitude of market participants, investors cannot be
as fast as the market. So, existing arbitrage possibilities cannot be exploited,
or in other words, the respective strategies are not admissible.
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Fig. 3.10 Exclusion of arbitrage by restricting trading strategies. (Investor can only make
transactions at nodes on a dashed line.)



Chapter 4

Characteristics of the Fractional
Brownian Market: Arbitrage
and Its Exclusion

We have seen that fractional Brownian motion is a generalization of classical
Brownian motion and hence it is naturally closely related to the latter. More-
over, both models of randomness have important properties in common: first
of all their Gaussian character. However, the main difference is a crucial one:
For all Hurst parameters H 
= 1

2 , fractional Brownian motion exhibits serial
correlation implicating sort of a memory of the process. This information
about the past makes it in turn possible to say something about the future,
that is, predictability comes into play. We will see that this predictability
can imply arbitrage possibilities when we use fractional Brownian motion as
source of randomness in our market setup. However, one can impose restric-
tions to trading strategies by which arbitrage can be excluded.

For the discrete time binomial approach we could already observe the oc-
currence of arbitrage possibilities if trading strategies were not sufficiently
restricted (see Chap. 3). But also for the continuous time case, models using
fractional Brownian motion revealed some problems. It was Rogers (1997)
who made the case that fractional Brownian motion was an unsuitable can-
didate for usage in financial models: for all Hurst parameters H 
= 1

2 he
had derived existence of arbitrage possibilities in a fractional Bachelier type
model. However, his setting being linear and passing on the existence of a
drift, the question of generality concerning his results should need some fur-
ther investigation.

We now introduce the continuous time market setup which we want to focus
on. Based on the definition of fractional Brownian motion, we look at a
fractional Brownian market consisting of a riskless asset or bond At with
dynamics

dAt = rAt dt, (4.1)

as well as of a risky asset or stock St with dynamics

dSt = μSt dt+ σSt dB
H
t . (4.2)
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The process satisfying the latter equation is called geometric fractional Brow-
nian motion. Unless otherwise stated, the parameters r, μ and σ are assumed
to be constant, symbolizing the riskless interest rate as well as the drift and
the volatility of the stock. The mathematical interpretation of (4.2) depends
on the assumed integration theory, by name pathwise integration or Wick-
based integration, respectively.

In this chapter we investigate the characteristics of the fractional Brownian
market when it is based on the continuous stochastic process. In particular,
we discuss in Sect. 4.1 thoroughly the problem of arbitrage. Furthermore
we will present in Sect. 4.2 the diverse approaches that have been stressed
during the last few years to overcome the existence of arbitrage. We then
focus on the problem of dynamical completion showing regard to the specific
character of fractional Brownian motion. As a result, Sect. 4.4 will show that
the renouncement of continuous tradability combined with the transition to
a preference-based pricing poses a passable way to give a sensible meaning
to the problem of asset pricing in fractional Brownian markets.

4.1 Arbitrage in the Unrestricted Continuous Time
Setting

Following the debate of the history, we first address ourselves to a market
model based on pathwise integration. In the second part of this section we
proceed and consider the more challenging Wick product integration concept.
It will turn out that both concepts admit arbitrage as long as one does not
delimit the type of trading strategies an investor can realize.

4.1.1 Arbitrage in the Continuous Setting Using
Pathwise Integration

We know from the preceding chapters that fractional Brownian motion and
hence all processes driven by it are not semimartingales. Even worse, if (4.2) is
interpreted in the pathwise/Stratonovich sense, the corresponding stochastic
integral does not have zero expectation which already suggests the possibility
of riskless gains. These obvious shortcomings of a fractional Brownian market
model based on pathwise integration were primarily worked out by Shiryayev
(1998). Further examples of arbitrage are given by Dasgupta and Kallianpur
(2000) or Bender (2003a).

For reasons of simplicity, Shiryayev (1998) discusses a financial model where
the drift of the risky asset equals the interest rate of the riskless asset and
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the volatility equals one. That is, we have a bond following

dA(t) = rA(t)dt, (4.3)

and a stock following

dSt = rSt dt+ St δB
H
t . (4.4)

The definition of the stochastic integral the author uses is a bit different
to other definitions of pathwise integration (see Chap. 2). Substantially, it is
also a Riemann type limit using ordinary multiplication. The integration con-
cept can be embedded into the more general integration theory of fractional
Stratonovich integration (see Bender (2003a), p. 72–76). It is worth looking
at the crucial property of the stochastic integration calculus Shiryayev makes
use of: It is the chain rule (see Shiryayev (1998), p. 3) given by

F (T,BH
T ) = F (t, BH

t ) +
∫ T

t

∂F

∂s
ds+

∫ T

t

∂F

∂BH
s

δBH
s ,

or, respectively, formulated as differential equation

dF (s,BH
s ) =

∂F

∂s
ds+

∂F

∂BH
s

δBH
s .

From this, it follows immediately that the explicit equations of the basic
market assets have to be of the form

At = A0e
rt,

and

St = S0e
rt+BH

t .

From now one, the initial values A0 and S0 of the two basic assets are assumed
to be one. Let Xπ

t be the value of the portfolio based on the strategy πt =
(βt, γt), where βt and γt denote the current positions held in the bond or the
stock, respectively. Hence, this portfolio value is given by

Xπ
t = βtAt + γtSt, (4.5)

and the strategy is called self-financing, if

dXπ
t = βt dAt + γt dSt.

Now, the following dynamic strategy is considered:

βt = 1 − e2BH
t ,

γt = 2
(
eBH

t − 1
)
.

Inserting this into (4.5), one obtains
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Xπ
t =

(
1 − e2BH

t

)
ert + 2

(
eBH

t − 1
)
ert+BH

t

= ert
(
1 − e2BH

t + 2e2BH
t − 2eBH

t

)
(4.6)

= ert
(
eBH

t − 1
)2

.

Applying the chain rule to this, one gets

dXπ
t = rert

(
eBH

t − 1
)2

dt+ 2ert+BH
t

(
eBH

t − 1
)
δBH

t . (4.7)

Looking at the second term of the sum, we get

2ert+BH
t

(
eBH

t − 1
)
δBH

t = γtSt δB
H
t . (4.8)

The first term of this sum can be rewritten by

rert
(
eBH

t − 1
)2

dt = e2BH
t rert dt− 2rert+BH

t dt+ rert dt

= 2rert+BH
t dt

(
eBH

t − 1
)

+ rert dt
(
1 − e2BH

t

)
(4.9)

= γtStr dt+ βtrB dt.

Combining (4.7)–(4.9), we get

dXπ
t = γtSt

(
r dt+ δBH

t

)
+ βtrB dt

= βt dAt + γt dSt.

Hence, the strategy πt = (βt, γt) is self-financing. The initial capital needed
is Xπ

0 = 0. Looking at (4.6), the resulting portfolio value is always nonnega-
tive, more than this, it is almost surely positive. Consequently, the presented
strategy is an arbitrage strategy.
Note that Shiryayev (1998) considers only the case of H > 0.5. By use of the
generalized definition of pathwise integration by Bender (2003a), all results
hold true also in the antipersistent case.

4.1.2 Arbitrage in the Continuous Time Setting Using
Wick-Based Integration

As seen in the preceding subsection, the first results concerning financial mar-
ket models based on fractional Brownian motion looked rather disillusioning.
Nevertheless, it was still hoped to remedy the shortcomings of the suggested
market setting. The research interest in this field was re-encouraged by the
new insights in stochastic analysis mainly initiated by the work of Duncan
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et al. (2000). As introductorily mentioned in the preliminary chapter, they
provided a stochastic integration calculus with respect to fractional Brownian
motion that is based on the Wick product. This integration concept makes
it possible to draw parallels to the well-known Itô calculus. Actually, by the
work of Duncan et al. (2000) as well as the research outcome of the following
years, many of the useful tools applied in the classical Markovian case could
be translated to the fractional, Wick-calculus-based world. To name only the
most important results, we mention a fractional Itô theorem, a fractional
Girsanov theorem or a fractional Clark–Ocone formula (for a detailed survey
see Bender (2003a)). As a consequence, efforts at deriving no-arbitrage-based
valuation methods were reinforced. Of particular interest was one property
of this integration calculus: The unconditional expectation of the stochastic
integral

∫ T

t
σS(s)dBH

s equals zero. This feature was at least more promising
than the situation in the setup based on pathwise integration (see also the
discussion in Chap. 2).

Despite the innovative stochastic calculus, things did not really change for
the better. Already several years before, Delbaen and Schachermayer (1994)
had proved a more general result holding for the continuous market mod-
els: Irrespective of the choice of integration theory, a weak form of arbitrage
called free lunch with vanishing risk can only be excluded if and only if the
underlying stock price process S is a semimartingale. It is easy though to
verify that, due to their persistent character, processes driven by fractional
Brownian motion are not semimartingales (for a motivating access to this
topic, see also the discussion of the discrete framework in Chap. 3).
Perhaps, the existence of free lunch with vanishing risk might have been
accepted from a puristic and formal point of view in favor of the applicabil-
ity of a preference-free pricing approach using no arbitrage arguments. Yet,
Cheridito (2003) succeeded to construct explicit arbitrage strategies both in
the fractional Bachelier model and in the fractional Black–Scholes market no
matter which integration theory—pathwise or Wick-based calculus—is used.
The examples and results quoted by Cheridito (2003) must be regarded as
conceptual and formal refinements of those by Rogers (1997), smoothing out
the problems mentioned on the very spot.

Bender (2003a) gives a different proof which we will sketch in the following. It
is similar to the one by Shiryayev (1998) which we presented for the pathwise
integration case. Again, we have the familiar market setting with the bond
following

dAt = rAt dt, (4.10)

and the stock—in contrast to Shiryayev (1998) allowing for an arbitrary
constant drift μ and volatility σ—following

dSt = μSt dt+ σSt dB
H
t . (4.11)
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Now, the differential equation is interpreted in the Wick sense, yielding the
explicit representations

At = ert

and

St = S0 exp
(
μt− 1

2
σ2t2H + σBH

t

)
. (4.12)

The strategy πt = (βt, γt) of dynamic bond and stock positions that we are
interested in is defined by

βt = 1 − exp
(−2rt+ 2μt− σ2t2H + 2σBH

t

)
, (4.13)

γt = 2S−1
0

(
exp

(
−rt+ μt− 1

2
σ2t2H + σBH

t

)
− 1

)
. (4.14)

Like in the proof for pathwise integration in Subsect. 4.1.1, one can now
calculate the portfolio value V π

t = βtAt + γtSt and obtains a quadratic and
thereby strictly positive expression. Again, it is straightforward to prove that
the portfolio is furthermore self-financing and hence admits a riskless gain.
In other words, π is an arbitrage strategy. For the lengthy calculations, we
refer to (Bender (2003a), p. 145–146).

4.2 Diverse Approaches to Exclude Arbitrage

Several modifications of the fractional market setting have been suggested
to avoid the existence of arbitrage. In particular, the approaches by Hu and
Øksendal (2003) and by Elliott and van der Hoek (2003) initiated an intense
debate as to what extent the Wick product is suited for use in a financial con-
text. We reconstruct this discussion. In the following subsections, we present
further possibilities of how the absence of arbitrage can be ensured. By name,
these will be the introduction of market imperfections as well as modifications
of the underlying stochastic process.

4.2.1 Excluding Arbitrage by Extending the Wick
Product on Financial Concepts

Actually, the above-mentioned statements Delbaen and Schachermayer (1994),
Cheridito (2003) and Bender (2003a) hold true as long as the definitions of
the fundamental concepts as arbitrage, self-financing properties and admis-
sibility remain unchanged. Hence, concepts have been proposed to overcome
the existing difficulties by modification of the underlying definitions, among
them the approaches due to Hu and Øksendal (2003) and Elliott and van
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der Hoek (2003). They extend the idea of Wick calculus beyond integration
theory and change the definitions of the portfolio value and/or the property
of being self-financing, incorporating the Wick product. We examine these
approaches as well as the related literature and critique in the following more
closely. In order to be able to relate to the according discussion, we will
briefly recall the approach by Hu and Øksendal (2003). For comparison, we
will subsequently also sketch the main idea of the contemporaneous work of
Elliott and van der Hoek (2003).

Both Hu and Øksendal (2003) p. 24 et seq., and Elliott and van der Hoek
(2003) p. 320 et seq., deal with the fractional Brownian Black–Scholes market
defined by (4.10) and (4.11). The differential equation of the stock is again
interpreted in the Wick-based sense: that is, the stock price process has the
explicit representation of (4.12).
Now, the crucial innovation comes into play: In the article by Hu and
Øksendal (2003), the value process of the portfolio πt = (βt, γt) is assumed
to be given by the stochastic process

Zπ
t = βtAt + γt � St. (4.15)

Furthermore, the authors replace the definition of a portfolio to be self-
financing by the following property: A portfolio is said to be Wick self-
financing if its process satisfies

dZπ
t = βt dAt + γt � dSt (4.16)

:= βtrAt dt+ μγt � St dt+ σγt � St dB
H
t , (4.17)

where the stochastic differential is again interpreted in the Wick sense.
Solving (4.15) for βt, one obtains

βt =
Zπ

t − γt � St

At
. (4.18)

If π is self-financing, (4.17) holds and one can substitute βt by the preceding
expression. Hence, the authors get

dZπ
t = rZπ

t dt+ σγt � St

(
μ− r

σ
dt+ dBH

t

)
. (4.19)

Defining

B̃H
t :=

μ− r

σ
t+BH

t , (4.20)

and applying the fractional Girsanov theorem (see Sect. 2.5), (4.19) can be
rewritten once more by
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dZπ
t = rZπ

t dt+ σγt � St dB̃
H
t . (4.21)

Here, B̃H
t is a fractional Brownian motion under the new probability measure

which will be denoted by P̃H and which is determined by the Girsanov change
of measure. Hu and Øksendal (2003) proceed by multiplying both sides of
(4.21) by e−rt. From the fractional version of Itô’s Lemma we know that

d
(
e−rtZπ

t

)
= e−rt dZπ

t − re−rtZt dt.

Hence, integrating both sides from 0 to T , the authors receive

e−rTZπ
T = Zπ

0 +
∫ T

0

e−rtσγt � St dB̃
H
t .

Taking expectations on both sides with respect to the new measure P̃H, one
ends up with the following equation:

EP̃ H

[
e−rTZπ

T

]
= Z0, (4.22)

as the stochastic integral of Wick type has zero expectation. If the portfolio π
was an arbitrage, the portfolio value in time T should be nonnegative for all
states of nature. Moreover, it should be positive on a set of states with positive
probability under the real measure PH . As the measures are equivalent, this
would immediately imply that the expectation on the left side of (4.22) would
be positive. Then, Z0 would also have to be positive which contradicts the
condition of zero or negative initial investment. Therefore, π cannot be an
arbitrage strategy. Consequently, there is no strategy making a riskless gain
out of nothing: that is, the market setting excludes arbitrage.

Hu and Øksendal (2003) p. 26, furthermore succeed in showing that their kind
of fractional Black–Scholes market is complete, implying that the martingale
measure mentioned above is the only one. Pricing is then simply done by
taking expectations with respect to this unique measure and discounting
with the riskless interest rate. The formula the authors derive for a European
call option at time 0 with strike K and maturity T is the following:

CH
0 = S0N (d∗1) −Ke−rTN (d∗2) ,

where

d∗1 =
ln(S0

K ) + rT + 1
2σ

2T 2H

σTH
,

d∗2 =
ln(S0

K ) + rT − 1
2σ

2T 2H

σTH
.

Obviously, forH = 1
2 , one gets the well-known Black–Scholes pricing formula.
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The same result was subsequently derived by Elliott and van der Hoek (2003),
however their approach is a little bit different from that by Hu and Øksendal
(2003). While the definition of the portfolio value is still based on ordinary
multiplication, that is

Zπ
t = βtAt + γtSt, (4.23)

the self-financing condition is said to be satisfied by portfolios π, for which
the following property holds:

dZπ
t = βt dAt + γt �

(
μSt dt+ σWH

t dt
)
. (4.24)

Here, WH
t is the fractional analogue of white noise, called fractional white

noise. The corresponding fractional white noise calculus is also developed by
the authors (see Elliott and van der Hoek (2003), p. 309 et seqq.). Again, the
market becomes free of arbitrage and completeness can be shown. The option
pricing formula is a slight generalization of the formula of Hu and Øksendal
(2003) given above.

The conceptual innovation of extending the Wick product to the definitions
of value process and/or self-financing condition initiated an intense debate.
Before dwelling on it, we should mention a peculiarity inhering in the pricing
formula itself. Although the formula provided by Hu and Øksendal (2003)
looks quite promising at first glance, this is mainly due to the fact that it
prices the call option at the special point in time t = 0. However, if the
formula is generalized to an arbitrary current time t (as done in Necula
(2002) and Elliott and van der Hoek (2003)), the terms T 2H and TH are
replaced by the expressions

(
T 2H − t2H

)
and

(
TH − tH

)
respectively. This

is somehow irritating, as in this case, the option value not only depends on
time to maturity (T − t) (which would be the case if we had (T − t)2H), but
is up to the current point in time t. This makes it necessary to determine
the line of time absolutely and not only relatively and leaves the question
unanswerable of how this should be done.

From a pure mathematical point of view, the approaches by Hu and Øksendal
(2003) as well as by Elliott and van der Hoek (2003) are formally correct
and accurate. Actually, the encouraging result of a fractional Black–Scholes
market excluding arbitrage entailed further models based thereon (e.g. see
Necula (2002) or Benth (2003)). However, severe critique arose concerning
the economic meaning of Wick products that are used beyond pure integra-
tion theory. By name, one has to talk about the feasibility of Wick-based
definitions of fundamental economic concepts like the portfolio value process
and the property of being self-financing. The first ones to point at even-
tual problems of this kind were probably Sottinen and Valkeila (2003) who
doubted the suitability of the Wick self-financing property when being con-
cerned with economic questions. Bjork and Hult (2005) lately showed that
extending the Wick product to the definitions of the portfolio value and the
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self-financing property indeed yields peculiar results. The most striking of
them are highlighted in the following:

• The definition of the value process introduced by Hu and Øksendal (2003)
contradicts economic intuition: Even if one knows the current realization
of the stock process and the position held in stocks, this is not sufficient to
calculate the realization of the portfolio value. This is due to the fact that
the Wick product is a product of random variables that cannot be calcu-
lated pathwisely. Consequently, in order to be able to calculate the current
portfolio value at time t, it would be necessary to know the prospective
holdings for all possible states of nature at this point in time: that is,
also for those states of nature not being realized. This even leads to the
somehow strange situation that the value of a portfolio holding nothing
but a positive amount of a stock having a positive value, can nonetheless
be negative (see Bjork and Hult (2005)).

• The self-financing condition stated by Elliott and van der Hoek (2003) also
disagrees with the underlying economic meaning. It rules out strategies
from being self-financing that obviously satisfy the basic property that no
money is externally added or removed. Amongst others, simple buy-and-
hold strategies are excluded. The exclusion of these strategies yet is shown
to be necessary, as otherwise arbitrage possibilities would immediately
occur. Bjork and Hult (2005) create such an arbitrage strategy explicitly
(see Bjork and Hult (2005)).

It should be stressed that the critique by Bjork and Hult (2005) only ad-
dresses the extensions of the Wick product beyond the stochastic integral
of the price process. The Wick-based definition of the latter however is not
concerned and we will further use this integration concept for the reasons of
unbiased mean and formal conformity with the Itô calculus mentioned above.
Furthermore, it is worth mentioning that in another article, Øksendal sug-
gested an economic interpretation of the Wick-based portfolio value intro-
ducing so-called market observers (see Øksendal (2006)). The dynamics of
the process St are interpreted as the fundamental firm value. This firm value
has to be distinguished carefully from the observable market price. The latter
is assumed to be the outcome of a statistic test function applied to the dis-
tribution of the stochastic process. Likewise, the authors distinguish between
trading strategies as a stochastic process and portfolio holdings which again
are the result of the application of a statistic test function. The approach
stems from quantum mechanics and tries to justify the Wick product to be
the natural way of defining both stochastic integrals and the portfolio value
process. Per se, the approach is coherent, yet the setting appears to be quite
artificial (see e.g. Bender et al. (2006)).

Last but not least, we mention the recent work by Bender et al. (2006), who
summarized the approaches presented above from a unifying angle. They
show that all of the approaches can be viewed as restrictions of the class of
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trading strategies. The problem then turns into judging the feasibility of the
respective restrictions (see Bender et al. (2006)).

4.2.2 Regularization of Fractional Brownian Motion

Other approaches redefine the setting by modifying the stochastic stock pro-
cess. One of the suggested ways out is that of regularization, initiated by
Rogers (1997): The basic idea is to replace the weighting kernel ϕ(t) = (t)H− 1

2
+

of the integral representation of fractional Brownian motion by a related one.
The aim is, that the resulting stochastic process is close to fractional Brow-
nian motion but behaves somehow better and becomes a semimartingale. In
particular, it was aimed to preserve the main features like long-range de-
pendence, approximately model the same moment properties and meantime
smooth the behavior of the kernel for small arguments. The latter behavior
could be identified to be a crucial reason why fractional Brownian motion
cannot be a semimartingale. Rogers (1997) suggests the kernel

ϕ(t) = (a+ t2)
2H−1

4 ,

with a small constant a. The resulting process is a semimartingale.

Cheridito (2001a) instead proposes a regularization replacing the weighting
kernel in a small interval [0, b] partially by a linear function (see Cheridito
(2001a), p. 57 et seqq.). The author also broaches the issue of option pricing.
Though the chosen regularization implies the existence of a unique martin-
gale measure, the derived option prices heavily depend on the form of the
linear function. Furthermore, one cannot state a clear relation between the
chosen form of the kernel and the precision of the approximation of fractional
Brownian motion. In other words, the same precision can be achieved by two
different kernels yielding totally different option prices. So there seems to be
no indication which kernel and at the same time which price should be ideally
chosen (see Sottinen and Valkeila (2003), p. 14).

4.2.3 Mixed Fractional Brownian Motion

The approach of mixed fractional Brownian motion by Cheridito (2001b)
stems from a similar motivation. The idea again is to modify the stochastic
process of the stock price in order to get a semimartingale. The so-called
mixed model combines fractional Brownian motion with a classical Brownian
motion yielding the stock price dynamics
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dSt = μSt dt+ εSt dBt + σSt dB
H
t .

For Hurst parameters H ∈ (3
4 , 1), it is shown, that there is a unique martin-

gale measure, as long as the processes Bt and BH
t are independent. Clearly,

by this model one can approximate the stock process of geometric fractional
Brownian motion arbitrarily well choosing ε accordingly close to zero. Partic-
ularly, the combined process εBt + σBH

t is of course Gaussian and has zero
mean, while the covariance satisfies

Cov
(
εBt + σBH

t , εBs + σBH
s

)
= ε2 min(t, s) + Cov

(
BH

t , B
H
s

)
.

For a chosen value ε, one can price assets with respect to the unique martin-
gale measure Qε and gets (at current time t = 0)

C0(ε) = EQε

[
max

(
S0 exp

(
μT + σ(εBT +BH

T )
)− e−rTK, 0

)]
= BS (0, S0, σε) ,

where BS (0, S0, σε) denotes the Black–Scholes price of a call on a stock with
initial price S0 and volatility σε (see Cheridito (2001b)). We have a closer
look at the consequences of this result in Sect. 4.3.

4.2.4 Market Imperfections

A proximate solution to avoid the existence of arbitrage is the introduction of
market imperfections. Guasoni (2006) asserts proportional transaction costs.
He succeeds at proving the absence of arbitrage within the fractional Brown-
ian market (see Guasoni (2006), p. 577–580). However, the problem of option
pricing remains unsolved and we further do not address ourselves to this
approach.

An approach that we think more promising is the renouncement of continuous
tradability. If we state that a single investor cannot proceed two consecutive
transactions infinitesimally fast, the market becomes free of arbitrage (see
Cheridito (2003)). However, the market then is dynamically incomplete. In
the following sections we provide a detailed motivation of this restriction on
tradability.
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4.3 On the Non-compatibility of Fractional Brownian
Motion and Continuous Tradability

The result of the preceding section concerning the mixed model is most in-
teresting: As ε tends to zero, the mixed model approaches the fractional
Brownian motion market, but at the same time, the option price tends to

C∗
0 = lim

ε→0
BS (0, S0, σε) = max

(
S0 −Ke−rT , 0

)
, (4.25)

that is, all randomness is eliminated. Cheridito (2001b) verbally explains this
peculiarity by the possibility that traders can act infinitely fast and hence im-
mediately exploit the predictability of the fractional Brownian motion mixed
model. Thereby, they remove the random character by means of a suitable
trading strategy (see Cheridito (2001b)).

We give a calculative example that supports this conjecture by putting the
work of Sethi and Lehoczky (1981) into a fractional context. From this ex-
ample we will draw important consequences concerning the renouncement
of market completeness. Besides this, the respective notes present one more
illustration of the special character of fractional Brownian motion as a pro-
cess exhibiting predictability. We first recall the original findings of Sethi and
Lehoczky (1981).

4.3.1 Itô and Stratonovich Formulations of the
Classical Option Pricing Problem: The Work
of Sethi and Lehoczky (1981)

The central statements of Sethi and Lehoczky (1981) are the following: The
Black–Scholes option pricing formula can be derived both in a setting using
Itô integrals and in a Stratonovich framework, if all differentials are carefully
interpreted. The misinterpretation of the Stratonovich differential—or more
precisely, the inaccurate mixture of formulation, on the one hand, and in-
terpretation, on the other hand—however leads to a formula comparable to
(4.25) (see Sethi and Lehoczky (1981), p. 352).

To be more precise: in the article by Sethi and Lehoczky (1981), the au-
thors first start with the formulation of the problem in terms of Itô calculus.
For sake of facility, we only denote the arguments of the processes, when
introducing the latter or wherever needed to avoid misunderstandings. In
all differential equations, we leave out the arguments in brackets. The risky
process S(t) of geometric Brownian motion is given by
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(I) dS = μS dt+ σS dBt, (4.26)

where the letter I in brackets anteceding the equation indicates that the
equation is formulated in the Itô sense and Bt is classical Brownian motion.
Let C(t, S(t)) denote the value of a European call option at time t. Using
Itô’s lemma, we get the dynamics of this derivative to satisfy

(I) dC =
[
∂C

∂t
+ μ

∂C

∂S
S +

1
2
σ2 ∂

2C

∂S2

]
dt+ σ

∂C

∂S
S dBt. (4.27)

If one forms a dynamical portfolio R(t, St) consisting of

• one unit of the option C,
• a short position on ∂C

∂S units of the stock S and
• a debt of A(t, S) at the risk-free interest rate r,

this portfolio satisfies

(I) dR = dC − ∂C

∂S
dS −Ar dt

=
[
∂C

∂t
+ μ

∂C

∂S
S +

1
2
σ2 ∂

2C

∂S2
S2

]
dt+ σ

∂C

∂S
S dBt

−∂C
∂S

dS [μS dt+ σS dBt] −Ar dt.

The stochastic part vanishes and if one adjusts the position A dynamically
by

(I) A(t, S) =
(
∂C

∂t
+

1
2
σ2S2∂

2C

∂S2

)
/r,

one gets dR = 0. Obviously, the portfolio does not yield any return, hence
its value itself must also be zero. Exploiting this, leads to the well-known
differential equation

(I)
1
2
σ2 ∂

2C

∂S2
S2 + r

∂C

∂S
S +

∂C

∂t
− rC = 0, (4.28)

which has to be solved with respect to the boundary conditions

C(t, 0) = 0, ∀t ∈ [0, T ] (4.29)
and C(T, S(T )) = max[S(T ) −K, 0]. (4.30)

One obtains the classical Black–Scholes pricing formula.

We know from Sect. 2.5 that there is an easy link between the Itô integral and
the Stratonovich integral. If one wants to describe the same market setting
in terms of Stratonovich calculus, the equation of the basic risky asset has
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to be rewritten and (4.26) turns into the following (see Sethi and Lehoczky
(1981), p. 351):

(S) dS =
(
μ− 1

2
σ2

)
S dt+ σS dBt, (4.31)

where the letter S in brackets anteceding the equation indicates that the
equation is formulated in the Stratonovich sense. Instead of Itô’s lemma,
we now apply the classical chain rule when deriving the dynamics of the
derivative C(t, S). We get

(S) dC =
[
∂C

∂t
+
(
μ− 1

2
σ2

)
∂C

∂S
S

]
dt+ σ

∂C

∂S
S dBt. (4.32)

Forming the same portfolio R as above with

(S) dR = dC − ∂C

∂S
dS −Ar dt, (4.33)

and inserting (4.31) and (4.32), yields

(S) dR =
[
∂C

∂t
+
(
μ− 1

2
σ2

)
∂C

∂S
S

]
dt+ σ

∂C

∂S
S dBt

−∂C
∂S

[(
μ− 1

2
σ2

)
S dt+ σS dBt

]
−Ar dt.

Again, the portfolio is locally riskless. In order to remove also the determin-
istic part, one has to set

(S) A(t, S) =
∂C

∂t
/r.

With this, the value of the portfolio must also equal zero and Sethi and
Lehoczky (1981) receive the following partial differential equation:

(S) r
∂C

∂S
S +

∂C

∂t
− rC = 0.

Solving this with respect to the boundary conditions (4.29) and (4.30), the
authors obtain

(S) C(t, S(t)) = max[S(t) −Ke−r(T−t), 0]. (4.34)

This result looks surprising at first glance. The option value in time t
is nothing but the difference between the current value of the stock and
the discounted strike price or—if the latter difference is negative—at least
zero. Apparently, in case of this interpretation of integration calculus, the
randomness of the contract can be eliminated by a continuously-adapting
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hedging strategy. This hedging strategy exploits the predictability that may
come into play when using Stratonovich integrals.

However, the problem can be solved by having a closer look at the derivation
of the preceding formula. Sethi and Lehoczky (1981) show that if one has
to decide whether to take Stratonovich or Itô integrals one has to take into
account the respective implied economic meaning. In the upper example, it
is crucial to give the correct interpretation concerning the dynamics of the
process ∂C

∂S S. In the case of classical Brownian motion, if formulated in terms
of the Itô calculus, we call this product Y (t, S(t)) and it can be described by

(I) dY =
∂C

∂S
(t, S(t)) (S(t+ dt) − S(t)) .

If the same process is denoted in Stratonovich formulation, we call it
Z(t, S(t)) and it has to be interpreted as follows:

(S) dZ =
∂C

∂S

(
t,
S(t) + S(t+ dt)

2

)
(S(t+ dt) − S(t))

Note that these two equations describe different processes. The usage of the
latter concept would assume that investors can adapt their portfolio holdings
∂C
∂S at the midpoint of an interval, but stand to benefit from the increment
of the total interval. To rule out this sort of clairvoyance of investors, the Itô
interpretation is the only feasible one. In this case, investors can only fix their
portfolio holdings at the starting point of the incremental interval. However,
if one wants to make use of a Stratonovich notation of dY (I), it is possible
to translate the respective Itô term into this very notation and one obtains
(see Sethi and Lehoczky (1981), p. 354):

(S) dY =
∂C

∂S
S − 1

2
σ2 ∂

2C

∂S2
dt

=
[
∂C

∂S
μS − 1

2
σ2 ∂

2C

∂S2
− 1

2
σ2 ∂C

∂S
S

]
dt+ σ

∂C

∂S
S dBt.

Comparing this with dZ, we get aware of the additional term − 1
2σ

2 ∂2C
∂S2 dt.

Inserting for the unspecified term ∂C
∂S S in (4.33) the correct interpretation

dY (S), the portfolio value turns into

(S) dR =
[
∂C

∂t
+
(
μ− 1

2
σ2

)
∂C

∂S
S

]
dt+ σ

∂C

∂S
S dBt

−∂C
∂S

[(
μ− 1

2
σ2

)
S dt+ σS dBt

]
+

1
2
σ2 ∂

2C

∂S2
dt−Ar dt.

Following the same steps as before, we now get
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(S) A(t, S) =
[
∂C

∂t
+

1
2
σ2 ∂

2C

∂S2

]
/r,

and obtain the partial differential equation (4.28) which is the well-known
result of Black, Scholes and Merton. Consequently, also for the option value
we receive the familiar Black–Scholes pricing formula.

Let us summarize the main contribution of Sethi and Lehoczky (1981): For
the interpretation of economic aspects like a trading strategy or a portfo-
lio holding, a midpoint evaluation of Stratonovich type implies the ability
to look into the future. Trading strategies could then be adjusted to the
available information: To put it differently, at the time the trading strategy
is fixed, the investor could anticipate parts of the evolution of the asset in
question and thereby eliminate uncertainty. The resulting option pricing for-
mula (4.34) accounts for this loss of randomness. Consequently, concerning
the interpretation of the crucial terms, there is only one correct integration
concept, the Itô calculus. However, it is always possible to translate an Itô
type integral into Stratonovich notation. Hence, it is possible to formulate
the option pricing problem both in terms of Itô and Stratonovich calculus.
Once the very differentials are correctly interpreted, the chosen notation will
not change the outcome of the calculations problem: Both notations yield the
well-known option pricing formula.

4.3.2 Wick–Itô and Stratonovich Formulations of the
Fractional Option Pricing Problem

We now reconsider the problem in a fractional context. In terms of Wick–Itô
integration calculus, the stock price S(t) exhibits the well-known dynamics
of geometric fractional Brownian motion

(W ) dS = μS dt+ σS dBH
t (4.35)

The same trajectories are obtained by the following process written in
Stratonovich notation:

(S) dS =
(
μ−Hσ2t2H−1

)
S dt+ σS dBH

t . (4.36)

The letters in brackets anteceding the equations stand for Wick–Itô or for
fractional Stratonovich integration, respectively. Irrespective of the chosen
integration concept, the time continuous riskless interest rate is r.

We first look at the Stratonovich case. When calculating the dynamics of a
call option C(t, St), we hence have to apply the chain rule and get
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(S) dC =
∂C

∂t
dt+

∂C

∂S
dS

=
(
∂C

∂t
+
∂C

∂S
(μ−Hσ2t2H−1)S

)
dt+

∂C

∂S
σS dBH

t . (4.37)

Like Sethi and Lehoczky (1981) we consider a portfolio R(t, St) consisting of

• one unit of the option C,
• a short position on ∂C

∂S units of the stock S and
• a debt of A(t, S) at the risk-free interest rate r.

With Y (t, S) = ∂C
∂S S, the corresponding dynamics of the portfolio R are

(S) dR = dC − dY −Ar dt. (4.38)

In the classical Brownian setting, it was crucial to ascribe the correct meaning
to dY . In particular, it was important to avoid a midpoint evaluation that
contradicts economic intuition (see Sethi and Lehoczky (1981)). Here, the
specific character of the fractional setting comes into play: For H 
= 1

2 , the
fractional Stratonovich integral is independent of the point the evaluation
of the integrand takes place (see Duncan et al. (2000)). Hence, the desired
interpretation

dY =
∂C

∂S
(t, S(t))[S(t+ dt) − S(t)]

is already of Stratonovich type and necessitates no further translation.
Consequently, no additional term occurs and one can simply write

(S) dY =
∂C

∂S
dS. (4.39)

Inserting (4.37) and (4.39) into (4.38), one gets

(S) dR =
(
∂C

∂t
+
∂C

∂S
(μ−Hσ2t2H−1)S

)
dt+

∂C

∂S
σS dBH

t

− ∂C

∂S

(
(μ−Hσ2t2H−1)S dt+ σS dBH

t

)−Ar dt

=
(
∂C

∂t
−Ar

)
dt. (4.40)

The portfolio therefore is locally riskless. With

A(t, S) =
∂C

∂t
/r,

we get a local return of zero. One can conclude that in this case the value of
the portfolio also has to be zero yielding
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C − ∂C

∂S
S −A = 0,

or, respectively

∂C

∂t
− rC − rS

∂C

∂S
= 0.

In combination with the boundary conditions for the European call option,
one gets the solution

C(t, S(t)) = max
(
S(t) −Ke−r(T−t), 0

)
,

which is the deterministic solution of (4.34).

We now address ourselves to the case of Wick-based integration characterized
by (4.35). With regard to the dynamics of the call option C(t, St), we apply
the fractional Itô formula of Duncan et al. (2000) and obtain

(W ) dC =
∂C

∂t
dt+

∂C

∂S
μS dt+

∂C

∂S
σS dBH

t +
∂2C

∂S2
σ2S2(t2H−1) dt. (4.41)

To make the notation clearer, we rewrite the third term of the right hand
side by

(W )
∂C

∂S
σS dBH

t =
(
∂C

∂S
σS

)
� dBH

t . (4.42)

We consider the same portfolio R as before. With Y (t, S) = ∂C
∂S S, the corres-

ponding dynamics of the portfolio R are

(W ) dR = dC − dY −Br dt. (4.43)

Again, we have to take a closer look at the process Y and its dynamics.
We have

(W ) dY =
∂C

∂S
dS

=
∂C

∂S
μS dt+

∂C

∂S
σS dBH

t . (4.44)

The second part of the term has to be interpreted with care. Necula (2002)
proposes to take

∂C

∂S
σS dBH

t =
(
∂C

∂S
Sσ

)
� dBH

t ,
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which leads to a very promising differential equation (see Necula (2002),
p. 15 et seq.). Using the according boundary conditions of the European call,
the resulting formula equals the results of Elliott and van der Hoek (2003)
as well as Hu and Øksendal (2003) mentioned above. Actually, the way of
interpreting dY used by Necula (2002) corresponds to the modified definition
of the portfolio using Wick products chosen by Hu and Øksendal (2003)
(see Sect. 4.2). However, a correct economic interpretation of dY should use
ordinary multiplication between the portfolio holding on the one hand and
the asset value on the other hand, that is

(W )
∂C

∂S
σS dBH

t =
∂C

∂S

(
σS � dBH

t

)
. (4.45)

Taking into account the relations between Wick products and ordinary prod-
ucts, we have

(W )
∂C

∂S

(
σS � dBH

t

)
=
(
∂C

∂S
σS

)
� dBH

t +
∂2C

∂S2
σ2S2(t2H−1) dt. (4.46)

If we combine (4.42)–(4.46), we receive the portfolio dynamics

(W ) dR =
∂C

∂t
dt+

∂C

∂S
μS dt+

(
∂C

∂S
σS

)
� dBH

t +
∂2C

∂S2
σ2S2(t2H−1) dt

−
(
∂C

∂S
μS dt+

(
∂C

∂S
σS

)
� dBH

t +
∂2C

∂S2
σ2S2(t2H−1) dt

)
−Ar dt

=
(
∂C

∂t
−Ar

)
dt.

Again, the portfolio return is deterministic. Choosing as above

A(t, S) =
∂C

∂t
/r,

its return vanishes. Hence, the portfolio value should also equal zero, implying

(W )
∂C

∂t
− rC − rS

∂C

∂S
= 0.

Consequently, the Wick–Itô notation of the problem yields the same solution
as in the Stratonovich setting before, where we got (4.34). Recall, that this
solution was also obtained in the previous section when discussing the limit
case of the mixed fractional model by Cheridito (2001b).

Obviously, the example of Sethi and Lehoczky (1981) has been inverted in
the fractional framework. The proper treatment of the differentials leads for
both integration concepts to the deterministic solution, the non-deterministic
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solution of Necula (2002) is only due to a misleading interpretation of the
differential dY . To put it differently: In the classical Brownian model, there
is no predictability no matter which integration calculus is used. On the
other hand, in the fractional model, predictions are always possible. Again
the choice of integration calculus does not affect the result. By allowing for
dynamic and infinitely-fast adapting strategies (in other words, assuming
continuous tradability), the predictive nature of fractional Brownian motion
can be exploited and uncertainty can be eliminated. Most plausibly, in a
world like this, option values are equal to their discounted inner value.

4.4 Renouncement of Continuous Tradability, Exclusion
of Arbitrage and Transition to Preference-Based
Pricing

The given example is one more indication that fractional Brownian markets
exhibit strange features if dynamical completeness of the market is assumed.
The proximate consequence of giving up this market completeness will now
be further pursued.

Cheridito (2003) takes into account the problems arising in fractional Brow-
nian markets if one allows for continuous tradability and hence proposes a
modification of the framework: He shows, that—when postulating the exis-
tence of an arbitrarily small minimal amount of time that must lie between
two consecutive transactions—all kinds of arbitrage opportunities can be ex-
cluded (see Cheridito (2003), p. 549 et seq.). This is exactly the same argu-
ment we applied in the discrete time setting of binomial trees. Again, the
central assertion is that traders can be arbitrarily fast, yet, not as fast as
the market. Giving up continuous tradability, we thus obtain a reasonable
financial model where no arbitrage occurs.

While this assumption of non-continuous trading strategies does not seem to
be too restrictive when thinking of real financial markets, it entails one prob-
lem: Though having excluded arbitrage, the traditional no arbitrage option
pricing approaches continue to fail, as now the possibility of a continuous
adjustment of the replicating portfolio is no longer given. Dynamical hedging
and replication methods are no longer available to derive prices of derivative
assets. The consequence to which one may come, is to abstain from this kind
of setting (see Bender et al. (2006)).

However, there are still other ways to derive prices in a financial market
that is free of arbitrage. From the mathematical point of view, no arbitrage
ensures the existence of an equivalent pricing measure. Yet, in lack of com-
pleteness of the market, this measure is not unique. The valuation problem
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therefore reduces to finding the most plausible one. On the other hand, eco-
nomic theory provides us with equilibrium theory. From this point of view,
the task is to find a suitable equilibrium condition. However, in both cases
we will have to leave the world of preference-free pricing and introduce risk
preferences instead. In the following chapter, we will seize the second of these
two possibilities and focus on an equilibrium pricing approach.



Chapter 5

Risk Preference-Based Option Pricing
in a Continuous Time Fractional
Brownian Market

5.1 Motivation and Setup of the Model

After the success of risk-neutral valuation in the Markovian models by Black,
Scholes and Merton (see Black and Scholes (1973), Merton (1973)), it was
aspired to extend the famous option pricing formula for use in a fractional
context. In the course of the last few years however, it turned out that no
arbitrage pricing methods could not be sensibly applied within the fractional
market model (see e.g. Rogers (1997) and Bjork and Hult (2005)).

In this chapter which further develops a preceding joint article of Rostek and
Schöbel (2006), we look at a market where randomness is driven by fractional
Brownian motion. While the price process evolves continuously, we will as-
sume that a single investor faces certain restrictions concerning the speed of
his transactions. In the sense of Cheridito (2003), we introduce a minimal
amount of time—which can be arbitrarily small—between two consecutive
transactions by one and the same investor. The idea behind this is that the
great multitude of investors in the market ensures that there are other trans-
actions in-between. In other words, this assumption restricts a single investor
from being as fast as the market as a whole which evolves continuously. This
restriction is sufficient to exclude arbitrage in the fractional Brownian market
(see Cheridito (2003)).

Note that, as we give up on continuous tradability, the well-known no arbi-
trage pricing approach based on dynamical hedging arguments is unsuitable
within this modified framework. This problem is solved the most naturally
by introducing risk preferences (see Brennan (1979)). Concerning these risk
preferences, the market has to satisfy a basic equilibrium condition which
we will investigate. In the special case of risk-neutral investors, the option
pricing problem will prove to be the calculation of the discounted conditional
mean of the relevant payoff.

S. Rostek, Option Pricing in Fractional Brownian Markets.

Lecture Notes in Economics and Mathematical Systems.
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Further advantages of a transition to a preference based pricing approach
will turn out to be the following: The use of conditional expectation in its
traditional sense will make it possible to demonstrate the problems arising
in valuation models when dealing with path-dependent processes. Moreover,
advances in stochastic analysis will be used to plausibly illustrate the features
of fractional Brownian motion and to make fractional option pricing compa-
rable to the classical Brownian model. In particular, the consequences of the
existence of long-range dependence on option pricing should be clarified.

Throughout this chapter, we assume a fractional Brownian market where we
have two basic assets, a bond without any risk

At = A0 exp(rt),

as well as a risky stock

St = S0 exp
(
μt− σ2t2H + σBH

t

)
. (5.1)

The coefficients r, μ, σ are assumed to be constants symbolizing the riskless
interest rate, the drift of the stock and its volatility, respectively.

Concerning the stochastic calculus of fractional Brownian motion, Duncan
et al. (2000) introduced a fractional Itô theorem. Due to its importance, we
briefly recall this theorem here in a generalized version. If St is a geometric
fractional Brownian motion as above and if F (t, St) is once continuously
differentiable with respect to t and twice with respect to St, then under
additional regularity conditions one gets (see Bender (2003a)):

F (T, ST ) = F (t, St) +
∫ T

t

∂

∂s
F (s, Ss) ds+

∫ T

t

∂

∂x
F (s, Ss)μSs ds

+ σ

∫ T

t

∂

∂x
F (s, Ss)Ss dB

H
s +Hσ2

∫ T

t

s2H−1 ∂
2

∂x2
F (s, Ss)S2

s ds.

(5.2)

Note that for the limit H → 1
2 the formula looks quite familiar to us, as we

obtain

F (T, ST ) = F (t, St) +
∫ T

t

∂

∂s
F (s, Ss) ds+

∫ T

t

∂

∂x
F (s, Ss)μSs ds

+ σ

∫ T

t

∂

∂x
F (s, Ss)Ss dBs +

1
2
σ2

∫ T

t

∂2

∂x2
F (s, Ss)S2

s ds ,

(5.3)

which is the classical Itô theorem. From (5.2), it is easy to verify a fractional
version of the so-called Doléans–Dade identity: Take F (t, St) = St and apply
formula (5.2). This yields
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ST = St +
∫ T

t

μSs ds+
∫ T

t

σSs dB
H
s .

Consequently, we can also describe the two basic assets by differential equa-
tions, the riskless asset satisfying

dAt = rAt dt,

and the risky asset following

dSt = μSt dt+ σSt dB
H
t .

Obviously, the model shown is a generalization of the seminal model by Black,
Scholes and Merton (see Black and Scholes (1973), Merton (1973)). The only
difference is that the diffusion term of classical Brownian motion is substi-
tuted by fractional Brownian motion including the classical case for H = 1

2 .

The rest of the chapter is organized as follows: In Sect. 5.2 we describe the
conditionality of distributional forecasts, in particular, we will recall and in-
terpret the results by Gripenberg and Norros (1996) and Nuzman and Poor
(2000). Subsequently, as one of our central mathematical tools, a conditional
fractional Itô theorem is derived. Section 5.3 will be devoted to this. Further-
more, we will focus in Sect. 5.4 on the risk preference based option pricing
approach exemplified by the assumption of risk-neutral market participants.
Particular focus on a two-time model will be made, whereby the equilibrium
condition we introduce only takes into account present time t and maturity
T . We will derive pricing formulae as well as further results and interpret
them. Based on this, we stress the parallels between option pricing with geo-
metric fractional Brownian motion and the classical Black–Scholes diffusion
as underlying process, respectively.

5.2 The Conditional Distribution of Fractional
Brownian Motion

5.2.1 Prediction Based on an Infinite Knowledge
About the Past

In the first part of this section we focus on the distribution of fractional
Brownian motion given all information concerning the history of the path.
In particular, we look at E[BH

T |FH
t ], T > t, where FH

t = σ(BH
s , s ≤ t) is the

σ-field generated by all BH
s , s ≤ t. In the first instance, E[BH

T |FH
t ], T > t is

a random variable, a coarsening of BH
T , yielding in each case the expected

value over all ω ∈ Ω having the same path on (−∞, t]. Knowing this kind
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of equivalence class [ω1]t = {ω ∈ Ω|BH
s (ω) = BH

s (ω1), ∀s ∈ (−∞, t]} from
past observation, we will be able to conclude that the distribution of future
realizations is again normal. Furthermore, we will be able to specify the dis-
tribution by use of the available information. We will observe an adjustment
of the expected value as well as a variance reduction.

In the first step, we provide a representation formula for conditional expecta-
tion. Let BH

s , s ∈ R be a fractional Brownian motion with 0 < H < 1. Then,
for each T > t > 0, the conditional expectation of BH

T based on FH
t can be

represented by:

B̂H
T,t = E

[
BH

T |FH
t

]
= BH

t + (T − t)H+ 1
2

∫ t

−∞
g(T, t, s) ds, (5.4)

where

g(T, t, s) =
sin(π(H − 1

2 ))(BH
s −BH

t )

π(t− s)H+ 1
2 (T − s)

. (5.5)

The result is due to Nuzman and Poor (2000) and is an extension of the result
by Gripenberg and Norros (1996) who proved the theorem for the case t = 0.
Note that for technical reasons we translated the formula of Nuzman and
Poor (2000) into the original notation of Gripenberg and Norros (1996). The
proof uses both the self-similarity and the Gaussian character of fractional
Brownianmotion. For H > 1

2 , an alternative representation can be given:

B̂H
T,t = E

[
BH

T |FH
t

]
= BH

t +
∫ t

−∞
g(T − t, s− t)dBH

s , (5.6)

where

g(v, w) =
sin(π(H − 1

2 ))
π

(−w)−H+ 1
2

∫ v

0

xH− 1
2

x− w
dx (5.7)

=
sin(π(H − 1

2 ))
π

(
1

H − 1
2

(−w
v

)−H+ 1
2

− βv/(v−w)

(
H − 1

2
,
3
2
−H

))
,

and β·(·, ·) is the incomplete Beta function. In both representations the con-
ditional expectation of fractional Brownian motion consists of two parts. The
first part is the current value of the process. In the case of a martingale this
would already be the best prediction of the future, and indeed one can easily
verify that forH = 1

2 the second part vanishes. For all other Hurst parameters
however, one gets an additional random term accounting for the historical
evolution of the process. In the first representation (5.6) the randomness is
hidden in the integrand g(T, t, s). Although, at first glance, the second rep-
resentation (5.7) looks more complicated, it is better suited to feed intuition.
Here, the randomness stems from the integrator. To be more precise, the



5.2 The Conditional Distribution of Fractional Brownian Motion 83

integration is done with respect to all historical fractional increments dBH
s ,

from minus infinity to the current point in time. Hence, the additional term
is calculated along the observed part of the path.
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Fig. 5.1 Shape of the weighting kernel g of the conditional mean for H = 0.8

We take a closer look at the function g(T, t, s). From the representation (5.7),
one can see that the relation between the weighting kernel g and time to
maturity τ = T −t, is of order H− 1

2 . This implies a concave relation between
τ and the conditional mean for the persistent case (see Fig. 5.1). Accordingly,
one obtains a convex curve in the case of antipersistence. Concerning the
distance of historic increments to current time, Fig. 5.1 illustrates that the
most recent realizations have the greatest influence on the conditional mean.
This is also true for the antipersistent case.

Let us for an instance fix current time t. We define equivalence classes by
grouping paths ω1, ω2, . . . having identical trajectories up to time t into one
class [ω1]t. This means, although we cannot totally identify a particular path,
we can at least determine its equivalence class by observing the historical part
of the path.
For prediction purposes we are interested in the conditional distribution
of BH

T within its observed equivalence class. Let ω1 be a representative
of this equivalence class. The conditional distribution of BH

T based on the
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observation [ω1]t is normal with the following moments:

E[BH
T |FH

t ](ω1) = BH
t (ω1) +

∫ t

−∞
g(T, t, s)(ω1) ds := BH

t (ω1) + μ̂T,t,

(5.8)

Var
[
BH

T |FH
t

]
(ω1) = E

[(
BH

T − B̂H
T,t

)2

|FH
t

]
(ω1) = ρH(T − t)2H := σ̂2

T,t,

(5.9)

with

ρH =
sin(π(H − 1

2 ))
π(H − 1

2 )
Γ (3

2 −H)2

Γ (2 − 2H)
.

We give a proof of this result. The normality of the conditional distribution is
an immediate consequence of the Gaussian character of the process BH

t . It is
well known that Gaussian processes like multivariate normal distributions as-
sure the normality of all kinds of conditional densities. Intuitively, the mean
of the conditional distribution should be defined by

∫
ω∈[ω1]t

BH
T (ω)dP̂ (ω),

where P̂ (ω) = P (ω)
P ([ω1]t)

is the conditional probability of ω. The characteriza-
tion of the conditional mean given above then easily follows from (5.4)–(5.5)
and the fact that the conditional expectation by definition satisfies:∫

ω∈[ω1]t

BH
T (ω)dP (ω) =

∫
ω∈[ω1]t

B̂H
T (ω)dP (ω),

as [ω1]t ∈ FH
t . B̂H

T being constant on [ω1]t we can rewrite this by∫
ω∈[ω1]t

BH
T (ω)dP (ω) = B̂H

T (ω1)P ([ω1]t),

or, solving for B̂H
T ,

B̂H
T (ω1) =

∫
ω∈[ω1]t

BH
T (ω)d

(
P (ω)

P ([ω1]t)

)
=
∫

ω∈[ω1]t

BH
T (ω)dP̂ (ω).

Respectively, the conditional variance should be defined by

σ̂2
T,t =

∫
ω∈[ω1]t

[
BH

T (ω) − B̂H
T (ω)

]2
dP̂ (ω),

which can be rewritten—applying the same argument as above—by

σ̂2
T,t = E

[
(BH

T − B̂H
T (ω1))2|FH

t

]
(ω1).

But B̂H
T is the orthogonal projection of BH

T on the span of {BH
s , s ≤ t}.

So, the co-projection (BH
T − B̂H

T ) or ((BH
T − BH

t ) − μ̂T,t), respectively, as
well as the squared terms are orthogonal to and therefore independent of
{BH

s , s ≤ t}. Hence, the conditional expectation E
[
(BH

T − B̂H
T (ω1))2|FH

t

]
is
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non-random. Consequently, we can omit the argument ω1 in the following,
add expectation operators and write:

σ̂2
T,t = E

[
(BH

T − B̂H
T )2|FH

t

]
= E

(
E
[
((BH

T −BH
t ) − μ̂T,t)2|FH

t

])
= E

(
E
[
(BH

T −BH
t )2|FH

t

]− 2E
[
(BH

T − BH
t )μ̂T,t|FH

t

]
+ E

[
μ̂2

T,t|FH
t

])
= E(BH

T −BH
t )2 − 2E(μ̂T,t)2 + E(μ̂T,t)2 = E(BH

T −BH
t )2 − E(μ̂T,t)2.

We now look at

E(μ̂T,t)2 = E

(∫ t

−∞
g ((T − t), (s− t)) dBH

s

)2

=
∫ t

−∞

∫ t

−∞
g ((T − t), (v − t)) g ((T − t), (w − t))φH(v, w)dvdw

=
∫ ∞

0

∫ ∞

0

g ((T − t), (−x)) g ((T − t), (−y))φH(x, y)dxdy

= (T − t)2H(1 − ρH),

where φH(a, b) = H(2H−1)|a−b|2H−2 and where we used Proposition 2.2 of
Gripenberg and Norros (1996) and then substituted x = t0−v and y = t0−w.
The correctness of the last equality is carried out in the proof of Corollary 3.2
of Gripenberg and Norros (1996) where we refer to for more details.
With that and

E((BH
T −BH

t )2) = E(BH
T )2 − 2E(BH

T B
H
t ) + E(BH

t )2

= T 2H − (T 2H + t2H − (T − t)2H) + t2H = (T − t)2H ,

we get

σ̂2
T,t = (T − t)2H − (T − t)2H(1 − ρH) = ρH(T − t)2H ,

which completes the proof.

Obviously, the conditional second moment only depends on the forecasting
horizon τ = T − t and the Hurst parameter H , but not on the realized
path. The representation of the conditional variance consists of two factors,
where ρH only depends on the Hurst parameter. Figure 5.2 depicts its shape.
The curve is always between zero and one, that is, the unconditional variance
(T − t)2H is reduced by ρH . For H = 1

2 , the factor is maximally large, namely
it equals one. In this case, there is no difference between unconditional and
conditional variance, as history plays no role in the classical Brownian motion
based setting. Another interesting issue can be observed if H tends to one. In
the case of total persistence the future can be extrapolated exactly by know-
ing the historical data. Hence uncertainty vanishes and the factor ρH and
consequently also the conditional variance tend towards zero. On the other
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hand, the maximal level of antipersistence (as H → 0) does not eliminate all
randomness. Historic information only halves the variance.
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The second factor of σ̂2
T,t is the unconditional variance (T−t)2H . The relation

between time to maturity and the variance hence can either exhibit a convex
or a concave shape, depending on the Hurst parameter H (see Fig. 5.3). For
H = 1

2 , the variance increases linearly with time to maturity.

Recall that while the conditional variance only depends on H and time to
maturity, the conditional mean is really path-dependent and has to be calcu-
lated by means of (5.4) and (5.5) which entails evaluating the past. However,
it seems to be quite difficult to make observations into an infinite past. In the
rest of this chapter we focus on a finite observation interval.

5.2.2 Prediction Based on a Partial Knowledge About
the Past

For practical purposes it is desirable to make predictions that are based on
only a part of the past and to go back only to a finite point in time t − a.
That is, we restrict ourselves to a finite observation interval of length a and
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focus on the distribution of BH
T conditional on FH

t,a = σ(BH
s , t− a ≤ s ≤ t),

which is the σ-field generated by all BH
s , t− a ≤ s ≤ t.

We state the according result concerning this kind of conditional expectation
which we denote by B̂H

T,t,a. For all 0 < H < 1 and all T, t, a > 0, the
conditional expectation of BH

T based on FH
t,a can be represented as follows

(Nuzman and Poor (2000)):

B̂H
T,t,a = E[BH

T |FH
t,a] =

∫ t

t−a

ga(T − t, t− s)BH
s ds, (5.10)

where

ga(x, y) = a−1
(y
a

)−H− 1
2
(
1 − y

a

)−H− 1
2

(5.11)

×
[(

1
2
−H

)
βx/(x+1)

(
H +

1
2
, 1−2H

)
+
xH+ 1

2 (1 + x)H− 1
2 (1 − y/a)

x+ y/a

]
.

Again, we can derive statements concerning the conditional distribution of
fractional Brownian motion, in this instance based on limited knowledge
about the past. The latter is expressed by the restriction to the equivalence
class [ω1]at = {ω ∈ Ω|BH

s (ω) = BH
s (ω1), ∀t− a ≤ s ≤ t}: The conditional dis-

tribution of BH
T based on the observation [ω1]at is normal with the following
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moments:

μ̂T,t,a = E[BH
T |FH

t,a](ω1) =
∫ t

t−a

ga(T − t, t− s)BH
s (ω1) ds, (5.12)

σ̂2
T,t,a = Var

[
BH

T |FH
t,a

]
(ω1) := E

[
(BH

T − B̂H
T,t,a)2|FH

t,a

]
(ω1)

= (T − t)2H(1 − ρH,a), (5.13)

with

ρH,a := 1 −H

∫ a
T−t

0

g a
T−t

(1,−s) ((1 + s)2H−1 − s2H−1
)
ds.

For H > 1
2 , there is again a more accessible representation of the conditional

mean (see Gripenberg and Norros (1996)):

B̂H
T,t,a = BH

t +
∫ t

t−a

g∗a(T − t, t− s)dBH
s , (5.14)

where

g∗a(u, v) =
sin(π(H − 1

2 ))
π

(−v)−H+ 1
2 (a+ v)−H+ 1

2

∫ u

0

xH− 1
2 (x+ a)H− 1

2

x− v
dx.

Formula (5.14) shows that the prediction formula—like in the case of infi-
nite information—consists of the current value plus a correction term that
is calculated by an integral over the observation interval. The proofs of the
formulae (5.10)–(5.14) can be seen in Nuzman and Poor (2000) for the rep-
resentation of the conditional mean and in Gripenberg and Norros (1996) for
the result concerning the conditional variance. In order to avoid irritations,
we adapted the results to our notation of the previous sections.

It is worth noting what happens if the observation interval becomes as large
as the interval to be predicted, that is a → (T − t). Gripenberg and Norros
(1996) demonstrated that in this case ρH,a tends to ρH or σ̂2

T,t,a to σ̂2
T,t respec-

tively. So, concerning the variance, a limited historical observation interval
is justified. Contrarily, the influence of additionally observed historical incre-
ments on the conditional mean will not vanish. However, recalling Fig. 5.1,
this influence is strictly decreasing and can be roughly estimated. Hence, it is
possible to focus on a limited historic interval when evaluating the informa-
tion of the past. The results drawn from this finite observation will not differ
too much from those that can be received taking an unlimited vantage point.
Nevertheless, it turns out to be more comfortable to consider the theoretical
case of unlimited information and we will focus thereon in the following.
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5.3 A Conditional Fractional Itô Theorem

Having investigated the conditional properties of arithmetic fractional Brow-
nian motion, we will now also consider the geometric price process St from
a conditional point of view. For that purpose we introduce the notation of
the conditional process Ŝs = Ss|[ω1]t. That is, we restrict the process to a
part of the probability space (Ω,A, P ), namely to the space generated by the
equivalence class [ω1]t, which is ([ω1]t, σ([ω1]t), P̂ ). The probability measure
equals the conditional probability P̂ so that for any processX the accordance
of Ê(X̂T ) and E[XT |FH

t ](ω1) immediately follows.

We further look at the dynamics of ln(ŜT ) applying a conditional version of
the fractional Itô theorem of (5.2):
For s > t, let B̂H

s be the conditional process of fractional Brownian motion
as above. For F (s, B̂H

s ) once continuously differentiable with respect to s and
twice with respect to B̂H

s , we obtain under certain regularity conditions:

F (T, B̂H
T ) = F (t, B̂H

t ) +
∫ T

t

∂

∂s
F (s, B̂H

s ) ds

+
∫ T

t

∂

∂x
F (s, B̂H

s )B̂H
s dB̂H

s

+ ρHH

∫ T

t

(s− t)2H−1 ∂
2

∂x2
F (s, B̂H

s )
(
B̂H

s

)2

ds.

(5.15)

As the process of geometric fractional Brownian motion St is a function of
time t and fractional Brownian motion BH

t , one can extend the relation of
(5.15) replacing F (t, B̂H

t ) by F (t, h(t, B̂H
t )) with

h(t, B̂H
t ) := S0 exp

(
μt− 1

2
σ2t2H + σ̂BH

t

)
.

One obtains a conditional fractional Itô theorem for functions of geometric
fractional Brownian motion:

F (T, ŜT ) = F (t, Ŝt) +
∫ T

t

∂

∂s
F (s, Ŝs) ds

+
∫ T

t

μ(s)
∂

∂x
F (s, Ŝs)Ŝs ds+ σ

∫ T

t

∂

∂x
F (s, Ŝs)Ŝs dB̂

H
s

+ ρHHσ
2

∫ T

t

(s− t)2H−1 ∂
2

∂x2
F (s, Ŝs)Ŝ2

s ds.

(5.16)

We sketch the derivation of (5.15) modifying the proof for the unconditional
theorem of Bender (2003a). The idea is to show that the left hand side and
the right-hand side have identical S-transforms. We recall some results related
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to the S-transform approach (for details, see Sect. 2.6). For 0 < H < 1, the
Riemann–Liouville fractional integrals were defined by

I
H− 1

2− f(x) =
1

Γ (H − 1
2 )

∫ ∞

x

f(s)(s− x)H− 1
2 ds,

I
H− 1

2
+ f(x) =

1
Γ (H − 1

2 )

∫ x

−∞
f(s)(x− s)H− 1

2 ds,

while the operators MH
± were defined by

MH
± f = KHI

H− 1
2± f,

where KH = Γ

(
H +

1
2

)√
2HΓ (3

2 −H)
Γ (H + 1

2 )Γ (2 − 2H)
.

The S-Transform SF of the stochastic integral F =
∫ b

a
Xt dB

H
t is the unique

functional satisfying

SF (η) = S

(∫ b

a

Xt dB
H
t

)
(η) =

∫ b

a

S(Xt)(η)(MH
+ η)(t) dt := EQη (F ),

where Qη is a measure that is defined by its Radon–Nikodym derivative with
respect to the original measure P :

dQη

dP
= exp

(∫
R

η(u) dBu − 1
2

∫
R

η(u)2 du
)
.

We also recall the fractional Girsanov formula: It states that if BH
s is a

fractional Brownian motion with respect to the measure P , then B̆H
s , defined

via

B̆H
s = BH

s −
∫ s

0

MH
+ η(u) du,

is a fractional Brownian motion with respect to Qf .

Using this formula and applying the results concerning conditional moments
of Sect. 5.2, we obtain the distribution of the [ω1]t - restricted process B̂H

T

with respect to Qη to be normal with mean

μQη = m̆T,t +
∫ t

0

MH
+ η(s) ds

and variance

σ2
Qη

= ρH(T − t)2H ,
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where

m̆T,t = B̆H
t +

∫ t

−∞
g(T − t, s− t) dB̆H

s (ω1)

is the conditional mean of the fractional Brownian motion B̆H
s and B̆s is the

generating Brownian motion of B̆H
s as in Sect. 5.2.

We now readdress ourselves to the proof of (5.15). For this purpose, we
investigate the S-transform of F (s, B̂H

s ). Modifying theorem 1.2.8 of Bender
(2003a), we receive

S(F (s, B̂H
s )) =

∫
R

F (s, u+ μQη )k(σ2
Qη
, u) du, (5.17)

where k(s, x) = 1√
2πs

exp(−x2

2sx ) is the so-called heat kernel. Differentiating
both sides with respect to t, one obtains

d

ds
S(F (s, B̂H

s ))(η) =
∫

R

∂

∂s
F (s, u+ μQη )k(σQη , u) du

+MH
+ η(s)

∫
R

∂

∂x
F (s, u+ μQη )k(σQη , u) du (5.18)

+
∫

R

F (s, u+ μQη )
d

ds
k(σQη , u) du.

Applying again theorem 1.2.8 of Bender (2003a), the first part on the right
hand side equals S

(
∂
∂sF (s, B̂H

s )
)

(η), while the second expression becomes

(MH
+ η)(s)S

(
∂
∂xF (s, B̂H

s )
)

(η). The third term can be rewritten using the

fact that the function k satisfies the heat conduction equation ∂
∂sk = 1

2
∂2

∂xk.
Using this and integrating by parts yields∫

R

F (s, x)
d

ds
k(σQη , u) du =

(∫
R

F (s, x)
∂2

∂x2
k(σQη , u) du

)
1
2
d

ds
(σQη)

=
([
F (s, x)

∂

∂x
k(σQη , u)

]
R

−
∫

R

∂

∂x
F (s, x)

∂

∂x
k(σQη , u)

)
1
2
d

ds
(σQη)

=

([
F (s, x)k(σQη , u)

(
−u
s

)]
R

−
[
∂

∂x
F (s, x)k(σQη , u)

]
R

+
∫

R

∂2

∂x2
F (s, x)k(σQη , u)

)
1
2
d

ds
(σQη ).
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Note that by inserting ±∞, the first two terms equal zero. The last term can
be reformulated using (5.17) and we obtain:∫

R

F (s, u+ μQη )
d

ds
k(σQη , u) du =

1
2
d

ds
(σQη )S

(
∂2

∂x2
F (s, B̂H

s )
)

(η).

Hence, we can rewrite (5.18):

d

ds
S(F (s, B̂H

s ))(η) = S

(
∂

∂s
F (s, B̂H

s )
)

(η) + (MH
+ η)(s)S

(
∂

∂x
F (s, B̂H

s )
)

(η)

+
1
2
d

ds
(σQη )S

(
∂2

∂x2
F (s, B̂H

s )
)

(η).

Integrating from t to T and rearranging the terms, we finally receive

S(F (T, B̂H
T ))(η) = S(F (t, B̂H

T ))(η) + S

(∫ T

t

∂

∂s
F (s, B̂H

s ) ds

)
(η)

+S

(∫ T

t

∂

∂x
F (s, B̂H

s ) dB̂H
s

)
(η)

+S

(
ρHH

∫ T

t

(s− t)2H−1 ∂
2

∂x2
F (s, B̂H

s ) ds

)
(η),

where we used the definition of the S-transform to replace the expression∫ T

t (MH
+ η)(s)S

(
∂
∂xF (s, B̂H

s )
)

(η) ds by S
(∫ T

t
∂
∂xF (s, B̂H

s ) dB̂H
s

)
(η). Conse-

quently, both sides of (5.15) have identical S-transforms and the result is
proven.

In the following section, relation (5.16) will turn out to be very useful when
pricing options in a fractional Brownian market.

5.4 Fractional European Option Prices

In this section, we are interested in the price at time t of a European call on
S with maturity T and strike K.

As mentioned above, we assume the existence of a minimal period of time
lying between two consecutive transactions. This assumption limits us with
regard to the feasibility of pricing approaches based on no arbitrage argu-
ments with a continuously adjusted replicating portfolio. Therefore, it seems
to be natural to focus on preference based equilibrium pricing approaches.
We do this in a very simple but all the more illustrative way, assuming
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risk-neutral investors, yet possessing and using information about the past.
Hence, we consider the discounted conditional expected value of a contingent
claim based on the observation of [ω1]t:

CT,H(t) = e−r(T−t)E
[
max(ST −K)|FH

t

]
(5.19)

Typically, the pricing problem is solved defining a suitable measure under
which expectations are taken. In the fractional Brownian market, we are faced
with incompleteness. Probabilistic theory demonstrates that in this case the
pricing measure is no longer unique. Unlike in the case of the complete Black–
Scholes market, the choice of measure has to be motivated by arguments
based on the assumed risk preferences of the investors. For example, Sottinen
and Valkeila (2003) suggest using the measure QSV satisfying

EQ(SV )

[
e−r(T−t)ST

]
= St,

which they call the average risk neutral measure. It focuses on an equilibrium
with respect to present time t and maturity T . Under this measure, the value
of the stock in time T is on average unbiased. This measure has the advantage
that it neither depends on the realized path nor on maturity T . On the other
hand—as expectations are unconditional—, this equilibrium condition does
not exploit the available information that can be taken from history.

Our pricing approach is the following: Concerning the equilibrium condition,
we take on the idea of focusing on a two-time approach. However, we make
two crucial modifications: Firstly, we account for the path-dependence of
fractional Brownian motion by making the transition to an equilibrium con-
dition based on conditional expectation. Additionally, we will not achieve the
equilibrium by changing measure. Instead, we use the equilibrium condition
to endogenously determine the unique constant drift rate of the underlying
stock process. The implied logic of this is that in a world where all investors
are risk-neutral, the basic asset cannot be of an arbitrary shape, but has to
be in equilibrium itself.

For an observed history FH
t and a fix maturity T , we postulate that the

discounted conditional expected value of the stock in time T equals its current
value St:

E
[
e−r(T−t)ST |FH

t

]
= St. (5.20)

Note that this equation still holds under the physical measure. The equilib-
rium is brought about by an adjustment of the drift μ. There is a unique
constant equilibrium drift rate which ensures (5.20) to hold. Note that—
taking the vantage point of a risk-neutral investor—this equation indeed is
in line with our fundamental understanding of equilibrium: The individuum



94 5 Risk Preference-Based Option Pricing in a Fractional Brownian Market

should be indifferent between buying the stock and holding the amount St of
the riskless asset. That is, under the physical measure, conditional expecta-
tion should equal the certainty equivalent, or more formally

E
[
ST |FH

t

]
= Ste

r(T−t), (5.21)

which of course is the same as (5.20). Consequently, in a market that provides
such an equilibrium, the basic pricing equation (5.19) is also to be interpreted
with respect to the physical measure.

To exploit (5.21), we have to consider the conditional distribution of ST

given [ω1]t = {ω ∈ Ω|BH
s (ω) = BH

s (ω1), ∀s ∈ (−∞, t]}. We further look at
the conditional process Ŝt and apply the conditional version of the fractional
Itô theorem (5.16) derived in the preceding section. With F (s, Ŝs) = ln Ŝs

we have

ln
(
ŜT

)
= ln Ŝt + μ(T − t) − 1

2
ρHσ

2(T − t)2H + σ(B̂H
T − B̂H

t )

The first three terms being deterministic at time t, we obtain the distribution
of ln

(
ŜT

)
by application of the results of Sect. 5.2 concerning the conditional

moments of fractional Brownian motion (see eqs. (5.8)–(5.9)). We deduce that
the logarithm of the conditional process ŜT is normally distributed with the
following moments:

m = Ê
(
ln
(
ŜT

))
= E

[
ln
(
ŜT

)
|FH

t

]
(ω1) (5.22)

= lnSt + μ(T − t) − 1
2
ρHσ

2(T − t)2H + σμ̂T,t

v = Ê
(
ln(ŜT ) −m

)2

= E
[
(ln

(
ŜT

)
−m)2|FH

t

]
(ω1) (5.23)

= ρHσ
2(T − t)2H

where μ̂T,t and ρH are as in Sect. 5.2.
We further state that, ln(ŜT ) beingN(m, v) distributed on ([ω1]t, σ([ω1]t), P̂ ),
ŜT must be log-normally distributed thereon with moments

M = exp
(
m+

1
2
v

)
= Ste

μ(T−t)+σμ̂T,t ,

V = exp(2m+ 2v) − exp(2m+ v) = S2
t e

2μ(T−t)
(
eρHσ2(T−t)2H − 1

)
.

But the mean M of the conditional process Ŝt equals the conditional mean
of the process St. Hence we obtain

E
[
ST |FH

t

]
= M = Ste

μ(T−t)+σμ̂T,t . (5.24)



5.4 Fractional European Option Prices 95

Now we can exploit (5.21). Let

ST = St +
∫ T

t

μ̄Ss ds+
∫ T

t

σSs dB
H
s

be the representation of the stock price process, where μ̄ is the adjusted drift
rate. Using (5.24) and inserting into (5.21) we get

Ste
μ̄(T−t)+σμ̂T,t = Ste

r(T−t),

or

μ̄(T − t) = r(T − t) − σμ̂T,t. (5.25)

The latter equation can be interpreted in the following way: The adjusted
drift μ̄(T − t) is split up into two parts. The first part equals the return
one would receive from the riskless asset. In the Markovian case of classical
Brownian motion that would already be all: the drift is shifted to equal the
riskless return. However, in the case of a fractional Brownian market, there is
an additional correction accounting for the evolution of the past. More pre-
cisely, we have an historically induced shift −σμ̂T,t of the distribution. This
means, a positive prediction for the random process of fractional Brownian
motion results in a downward correction of the adjusted drift rate.
Note that this is not at all counter-intuitive. We explain the adjustment by
three steps. Ex ante, investors have a first crude idea about the deterministic
drift rate. In the first step of the adjustment, the investors extrapolate the
positive evolution of the path into a positive adjustment of stock’s future dis-
tribution. Next, they compare their predictions with the given current value
of the stock and observe a mispricing. In our case, the discounted conditional
expectation of the stock would exceed its current value. In the third step,
investors react and update their expectations concerning the deterministic
drift component which they obviously overestimated. In the given case, a
downward correction of the deterministic drift results.
Summarizing we state the following relationship: the more promising the pre-
diction of ST due to the observation of the past, the more evident the mis-
pricing of the (generally accepted) stock, and—for equilibrium reasons—the
stronger the downward adjustment of the deterministic drift rate.

Combining relation (5.25) with (5.22) and (5.23) we obtain the conditional
moments of ln(ST ) to be

m = lnSt + r(T − t) − 1
2
ρHσ

2(T − t)2H , (5.26)

v = ρHσ
2(T − t)2H . (5.27)



96 5 Risk Preference-Based Option Pricing in a Fractional Brownian Market

The associated density of the conditional process ŜT —which naturally is the
conditional density of ST based on the observation [ω1]t—is as follows:

f(x)|[ω1]t =
1

x
√

2πv
e−

1
2

(lnx−m)2

v I[x>0].

The well-known calculations lead to the following presentation for the price
of the European call:

CT,H(t) = e−r(T−t)EQ(T,t)

[
max(ST −K)|FH

t

]
(5.28)

= Ste
m+ 1

2 v−r(T−t)N(d1) −Ke−r(T−t)N(d2), (5.29)

where

dH
1 =

m+ v − lnK√
v

, (5.30)

dH
2 =

m− lnK√
v

= d1 −
√
v. (5.31)

Inserting the terms for m and v of (5.26) and (5.27), we obtain the pricing
formula for the fractional European call. The price of a fractional European
call with strike K and maturity T valued by a risk-neutral investor is given
by the following formula:

CT,H(t) = StN(dH
1 ) −Ke−r(T−t)N(dH

2 ), (5.32)

where

dH
1 =

ln
(

St

K

)
+ r(T − t) + 1

2ρHσ
2(T − t)2H

√
ρHσ(T − t)H

,

dH
2 =

ln
(

S0
K

)
+ r(T − t) − 1

2ρHσ
2(T − t)2H

√
ρHσ(T − t)H

= dH
1 −√

ρHσ(T − t)H .

Following the same arguments as in the derivation of (5.32), we receive the
price of the appropriate European put:

PT,H(t) = Ke−r(T−t)N(−dH
2 ) − StN(−dH

1 ). (5.33)

For geometric Brownian motion, the put–call–parity pulls together the prices
of options with the same underlying and contract parameters. Obviously, also
in the fractional context, this fundamental relationship between call price, put
price and stock price holds, as we have

CT,H(t) − PT,H(t) = St −Ke−r(T−t), (5.34)
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that is, we have a fractional put–call–parity. The proof is straightforward
inserting the formulae (5.32) and (5.33) into (5.34).

Before investigating the obtained formulae more closely, we take a look at the
special case of independent increments, as H = 1

2 . We know from Sect. 5.2
that in this case the information-based shift μT,t is zero and the variance
reduction factor ρ 1

2
equals one. Hence, the conditional moments are

EQ(T,t)

[
B

1
2
t |F

1
2
t

]
= Bt,

VarQ(T,t)

[
B

1
2
T |FH

t

]
= (T − t),

which are the well-known results of classical Brownian motion where the
usage of historical information does not effectuate the distribution of the
future.
Furthermore, we get for the equilibrium condition that the drift μ of the stock
price process equals the riskless interest rate r. Using this, the conditional
moments of the normally distributed log-price process are

m = lnSt +
(
r − 1

2
σ2

)
(T − t),

v = σ2(T − t),

which again are identical to the unconditional moments. Inserting these spe-
cial values into (5.29), (5.30) and (5.31), the classical Black–Scholes option
pricing formula is received. On the other hand, the accordance can also be
seen immediately when looking at the fractional pricing formulae and re-
placing ρH and H by 1 and 1

2 respectively. Hence, the derived formulae are
compatible extensions of the Black–Scholes option pricing formulae yielding
the familiar result for the classical case.

We take a first look at the values of the fractional European options for dif-
ferent Hurst parameters H . Apparently, in the cases displayed in Fig. 5.4
and 5.5, an increasing Hurst parameter comes along with a decrease of the
option value. One is tempted to argue that persistence reduces uncertainty
whereas antipersistence increases the latter. For a short time to maturity
(T−t), the described interrelation is perfectly true. However, generally speak-
ing, this is only half the truth. For larger values of (T − t), a second effect
comes into play which is based on the exponential shape of the unconditional
variance function. A detailed examination of this phenomenon will be the
subject of the following Sect. 5.5.

It is also possible to formally calculate partial derivatives of the option prices
with respect to the parameters of the contract. These fractional Greeks should
be interpreted with care. In our non-continuous setting, the partial derivatives
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Table 5.1 The fractional Greeks

ΔH = ∂CH
∂S

N(dH
1 )

ΓH = ∂2CH
∂S2

ϕ(dH
1 )

St
√

ρH σ(T−t)H

ΘH = ∂CH
∂T

H
Stϕ(dH

1 )
√

ρHσ

(T−t)1−H + rKe−r(T−t)N(dH
2 )

�H = ∂CH
∂r

K(T − t)e−r(T−t)N(dH
2 ) − (T − t)StN(dH

1 )

ΛH = ∂CH
∂σ

Stϕ(dH
1 )

√
ρH(T − t)H

can be considered as sensitivities concerning modifications of the initial pa-
rameters. However they are not suitable for hedging purposes. In particular,
a partial derivative with respect to current time t is not sensible. A dynamic
delta hedging as in the world of geometric Brownian motion is no longer
possible in our modified framework as it would imply arbitrage possibilities.
However, a sensitivity with respect to the date of expiration T can be derived
without any problems. Table 5.1 gives an overview of the partial derivatives
of the call price formula, the so-called fractional Greeks.

The proof of the formulae is straightforward. We stress the fact that as H →
1
2 , (T − t)H becomes

√
T − t, ρH tends to 1 and dH

1 becomes d1 and the
well-known pa rameters of the Markovian case are obtained. So again, the
fractional solution in the limit also yields the results of classical Brownian
theory.

5.5 The Influence of the Hurst Parameter

The preceding results confirm the high degree of transferability of the classical
concepts into the fractional framework. However, an aspect of additional
interest arises from the consideration of the partial derivative with respect to
the Hurst parameter H, which will be denoted by η. To get an ex ante idea
of what we examine, recall that the Hurst parameter indicates the process-
immanent level of persistence. While H = 1

2 ensures independent increments
and hence a Markovian process, values of H deviating from H = 1

2 exhibit a
certain extent of dependence. The question is, in which manner the occurrence
of dependence influences the price of the fractional call.
We thus differentiate (5.32) with respect to H and get
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η =
∂C

∂H
= Stϕ(dH

1 )
∂dH

1

∂H
−Ke−r(T−t)ϕ(dH

2 )
∂dH

2

∂H

= Stϕ(dH
1 )
∂
(√
ρHσ(T − t)H

)
∂H

= Stϕ(dH
1 )
∂
√
vT

∂H
,

(5.35)

where we introduced the notation vT = σ2ρH(T − t)2H . We first look at ∂ρH

∂H
and differentiate the nominator n(H) = sin(π(H − 1

2 ))Γ (3
2 − H)2 and the

denominator d(H) = π(H − 1
2 )Γ (2 − 2H) of ρH separately. For that pur-

pose, note that Γ ′(x) = Γ (x)ψ0(x) where ψ0 denotes the digamma function.
We get

∂n

∂H
= π cos

(
π

(
H − 1

2

))(
Γ

(
3
2
−H

))2

− sin
(
π

(
H − 1

2

))
2Γ

(
3
2
−H

)
Γ

(
3
2
−H

)
ψ0

(
3
2
−H

)

=
(
Γ

(
3
2
−H

))2

sin
(
π

(
H − 1

2

))

×
[
π cot

(
π

(
H − 1

2

))
− 2ψ0

(
3
2
−H

)]
,

∂d

∂H
= πΓ (2 − 2H) − 2π

(
H − 1

2

)
Γ (2 − 2H)ψ0(2 − 2H)

= πΓ (2 − 2H) [1 − (2H − 1)ψ0(2 − 2H)] .

Using the quotient rule, we obtain

∂ρH

∂H
= ρH

[
π cot

(
π

(
H − 1

2

))
− 2ψ0

(
3
2
−H

)
− 1
H − 1

2

+ 2ψ0(2 − 2H)
]
.

We further make use of the following properties of the digamma function
(see Abramowitz and Stegun (1972), Section 6.3):

π cot(πx) = ψ0(1 − x) − ψ0(x),

ψ0(x+ 1) = ψ0(x) +
1
x
,

ψ0(2x) =
1
2

(
ψ0(x) + ψ0

(
x+

1
2

)
+ 2 ln 2

)
.

Thus we can write
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∂ρH

∂H
= ρH

(
ψ0

(
3
2
−H

)
− ψ0

(
H − 1

2

)
− 2ψ0

(
3
2
−H

)

+ψ0(1 −H) + ψ0

(
3
2
−H

)
+ 2 ln 2

)

= ρH

(
ψ0(1 −H) − ψ0

(
H − 1

2

)
− 1
H − 1

2

+ 2 ln 2
)

= ρH

(
ψ0(1 −H) − ψ0

(
H +

1
2

)
+ 2 ln 2

)
.

Putting these parts together, we can calculate the inner derivative ∂vT

∂H :

∂vT

∂H
=
∂σ2ρH(T − t)2H

∂H

= σ2

(
ρHψ0(1 −H) − ψ0

(
H +

1
2

)

+ 2 ln 2(T − t)2H + ρH2 ln(T − t)(T − t)2H

)

= ρHσ
2(T − t)2H

(
ψ0(1 −H) − ψ0

(
H +

1
2

)
+ 2 ln 2 + 2 ln(T − t)

)

= vT

(
ψ0(1 −H) − ψ0

(
H +

1
2

)
+ 2 ln 2 + 2 ln(T − t)

)
. (5.36)

Note that the digamma function ψ0(x) for x > 0 is strictly monotonic increas-
ing but concave, the negative axis of ordinates being vertical asymptote as x
tends to zero (see Fig. 5.6). Therefore, the difference ψ0(1−H)−ψ0(H + 1

2 )
is strictly monotonic decreasing for 0 < H < 1, and its maximum is received
for H → 0. For parameters H < 1

4 , the difference is positive whereas for
larger values of H it becomes negative. In this case we get

lim
H→0

[
ψ0

(
H +

1
2

)
− ψ0(1 −H)

]
= ψ0(1) − ψ0

(
1
2

)
= 2 ln 2 + γ − γ = 2 ln 2,

where γ denotes the Euler–Mascheroni constant.

Summarizing, we can state the following results, denoting by τ the time to
maturity, that is τ = T − t: The partial derivative of the fractional call price
C with respect to the Hurst parameter H is given by

η = Stϕ(dH
1 )

1
2
√
vT
vT

(
ψ0(1 −H) − ψ0

(
H +

1
2

)
+ 2 ln 2 + 2 ln(T − t)

)

= Stϕ(dH
1 )

√
ρHσ(T − t)H

(
ψ0(1 −H) − ψ0(H + 1

2 ) + 2 ln 2 + 2 ln(T − t)
)

2
.
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Fig. 5.6 The digamma function on R+

Concerning the sign of this sensitivity, one can easily show that we have two
qualitatively different cases:

• For a fix τ ≤ 1
4 , it holds:

∂C

∂H
(H) < 0, ∀ 0 < H < 1.

• For a fix τ > 1
4 , there exists a critical Hurst parameter 0 < H̄ < 1, so that:

∂C

∂H
(H̄) = 0,

∂C

∂H
(H) > 0, ∀ 0 < H < H̄,

∂C

∂H
(H) < 0, ∀ H̄ < H < 1.

The second case can be further specified:

• For 1
4 < τ < 1, it follows that H̄ and consequently the maximum of the

call value lie in the antipersistent area.
• For τ = 1, the critical Hurst parameter is H̄ = 0.5. So the case of serial

independence yields the highest call price.
• For τ > 1, the parameter H̄ and therefore the maximal call value lie in

the persistent area.
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The results are immediate consequences of the preceding observations as well
as of the properties of the natural logarithm. For example, one can prove the
strict negativity of η for τ < 1

4 as follows:

η = Stϕ(dH
1 )

√
ρHσ(T − t)H

(
ψ0(1 −H) − ψ0(H + 1

2 ) + 2 ln 2 + 2 ln(T − t)
)

2

< Stϕ(dH
1 )

√
ρHσ(T − t)H

(
2 ln 2 + 2 ln 2 + 2 ln(1

4 )
)

2
= 0.

Figs. 5.7–5.9 illustrate these characteristics graphically, showing the relation
between the Hurst parameter H and the call price for a fix initial price St.
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Fig. 5.7 Maturity effect on the relation between the price of the fractional European call
and Hurst parameter H for maturity T = 0.25 (chosen parameters: r = 0.02, S = 100,
K = 100, σ = 0.2)

In order to be able to explain this phenomenon, we recall that according to
(5.36) the main effect arises from the product ρHσ

2τ2H , which is the variance
vT of the normal distribution of the conditional logarithmic stock price. But,
with increasing H, the factors of vT generate converse effects.

Tracking the factor ρH over the range of possible parameters, it starts for
H → 0 with 0.5, then increases as antipersistence decreases, takes it maxi-
mum 1 for serial independence as H = 0.5 and—with an increasing level of
persistence—finally decreases again (see Fig. 5.2). Besides the case H = 1

2 ,
the factor ρH is smaller than one, hence ρH concentrates the distribution,
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Fig. 5.8 Maturity effect on the relation between the price of the fractional European call
and Hurst parameter H for maturity T = 0.75 (chosen parameters: r = 0.02, S = 100,
K = 100, σ = 0.2)
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Fig. 5.9 Maturity effect on the relation between the price of the fractional European
call and Hurst parameter H for maturity T = 5 (chosen parameters: r = 0.02, S = 100,
K = 100, σ = 0.2)
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what we from now on call the narrowing effect.
On the other hand, the behaviour of the term τ2H depends on the value of
τ (see Fig. 5.3). A higher Hurst parameter implies a higher exponent. For
τ > 1, this higher exponent enlarges the unconditional variance τ2H whereas
for τ < 1—meaning short time horizons—small Hurst parameters increase
the variance. This is in line with our basic understanding of fractional Brow-
nian motion: The higher the level of persistence, the smoother the paths—
which means little variance in the short run—and the larger are the cyclical
long-time deviations from the mean. Increasing antipersistence however im-
plies rougher paths fluctuating more closely around the mean which yields an
increasing variance on short horizons and a decreasing variance on long hori-
zons. The particular effect of τ2H is an unconditional effect. It is not related
to any information about the past and is also valid for the unconditional
variance. It is further referred to as the power effect.

Thus, the resulting effect also depends on the scale of τ . We first consider
nearby distributional forecasts (τ < 1). In the persistent parameter domain,
the total effect is clear: Both effects reduce the variance as H increases. Con-
cerning antipersistence we observe that for τ smaller than 1

4 , the power effect
totally dominates the narrowing effect, yielding a strictly decreasing variance
(see Fig. 5.7). For 1

4 < τ < 1 however, there is always a range of antipersistent
parameters 0 < H < H̄ < 1

2 , where the positive narrowing effect dominates
the negative power effect. For antipersistent parameters larger than H̄ , the
power effect is the outweighting one (see Fig. 5.8).
If we consider larger time horizons with τ > 1, it is the antipersistent domain
that yields uniqueness of the total effect: Both the narrowing effect and the
power effect enlarge the variance as H increases between zero and one half.
For the case of persistence, starting from H = 0.5, first the power effect is
the controlling one, but only up to a critical value H̄ . From here on, the high
degree of persistence and thereby predictability outbalances the increase of
unconditional variance and reduces the conditional variance (see Fig. 5.9).
Summarizing, we can state that the relation between the Hurst parameter
H and the price of a European call generally exhibits a hump-shaped curve.
The larger the maturity τ , the larger is the critical value H̄ . For very small
maturities τ < 1

4 , H̄ equals zero and the hump degenerates to a decreasing
line.

A brief look at the limit of the call price as H tends to 1 stresses the above
observations and confirms our intuition with regard to fractional Brownian
motion. With an increasing Hurst parameter, we obtain an increasing level of
dependence: that is, the future price of the underlying becomes less volatile or
uncertain. In the limit we distinguish between two cases. For S > e−r(T−t)K,
dH
1 and dH

2 tend to infinity and for the call price we actually receive the dif-
ference between the initial stock price and the discounted strike price. On the
other hand, if we have S < e−r(T−t)K, dH

1 and dH
2 tend to −∞, and the call
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price tends to zero. So in the case of perfect dependence, either the contract
value is zero right from the beginning or we get a simple forward contract
under certainty.

5.6 The Influence of Maturity and the Term Structure
of Volatility

The preceding section showed that time to maturity τ matters concerning
the effects of serial correlation. In particular, the relation between Hurst pa-
rameter H and call price C was qualitatively mainly influenced by this time
to expiration. The next proximate step is to investigate the characteristics of
the call price when depicted over τ . Figures 5.10–5.12 accomplish this, the
upper picture gives the antipersistent case, the lower one stands for persis-
tence. The picture in the middle is the case of the classical Brownian motion
model where increments are serially uncorrelated. In all three cases, the three
qualitatively different types of moneyness are specified. Note that for the case
H = 0.5, this kind of picture was already provided by Cox and Rubinstein
(1985).
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Fig. 5.10 Value of the European call option over time to maturity for H = 0.1 and
different types of moneyness (chosen parameters: r = 0.02, S = 100, σ = 0.2)
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Fig. 5.11 Value of the European call option over time to maturity for H = 0.5 and
different types of moneyness (chosen parameters: r = 0.02, S = 100, σ = 0.2)
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Fig. 5.12 Value of the European call option over time to maturity for H = 0.8 and
different types of moneyness (chosen parameters: r = 0.02, S = 100, σ = 0.2)
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The two effects by which the Hurst parameter affects the call price were the
narrowing effect and the power effect. While the first one is driven by the
constant conditionality factor ρH , the latter one exerts its influence via the
unconditional part of the variance (T − t)2H . It is therefore time-dependent
and can be rediscovered in Fig. 5.12: We now compare the pictures of the
persistent and antipersistent case respectively with the one discussed by Cox
and Rubinstein (1985) taking the independent case H = 0.5 as a starting
point. In this case, the curve for the in-the-money call is concavely shaped,
for the at-the-money and out-of-the-money calls, we observe slightly S-shaped
curves. For H < 1

2 , the relation between time to maturity and the variance
now is no longer linear but a concave one. Consequently—as the call price
is driven by the extent of uncertainty—the three lines in the Figs. 5.10–5.12
become more concave as we introduce antipersistence. For the same reason,
we get a more convex character (in the sense of less concavity or a stronger S-
shape respectively) for the case of persistence as the latter implies a convexly
shaped relation between time to maturity and uncertainty of the contract.
Comparing for example only the curves of the options being at-the-money,
we consequently observe the following: With decreasing time to maturity, the
loss of the option value is most striking in the case of antipersistence, whereas
in the case of persistence it is less pronounced than in the classical case.
Figure 5.13 displays the three-dimensional relation between Hurst parameter,
time to maturity and the value of a at-the-money call. A sectional view being
parallel to the maturity axis produces pictures of the type of the Figs. 5.10–
5.12, whereas a sectional view parallel to the axis of Hurst parameters would
be of the kind of the Figs. 5.7–5.9.

The preceding pictures give only a crude and imprecise impression of the fact
that something new comes into play. Though the curves of the call value over
maturity change, there seems to be no fundamental innovation when curves
become more concave or convex. However, it is exactly the behavior with
respect to the dimension of time that exhibits new desirable properties. This
will become clear when looking at the so-called term structure of volatility
which depicts the implied Black–Scholes volatilities over time to maturity.

One of the properties of the classical option pricing models by Black and Sc-
holes (1973) and Merton (1973), that is often criticized, is the fact, that real
market prices of derivatives do not—as stated by these models—imply con-
stant volatility over time and moneyness. Instead, when taking real prices as
given and calculating backwards the model-implied volatilities, one obtains
so called volatility smiles or volatility smirks (see e.g. Derman and Kani
(1994) or Dupire (1994)). Many alternative models have been proposed that
are able to account for this phenomenon like models with time-dependent
or stochastic volatility. The usual testing procedure is to calculate the im-
plied Black–Scholes volatilities of option prices derived by the new model and
check whether the model is able to yield smiles and smirks similar to those
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Fig. 5.13 Value of the European call option over time to maturity and Hurst parameter
H (chosen parameters: r = 0.02, S = 100, K = 100, σ = 0.2)

observed for real market data. However, most of the models that are able
to generate the desired volatility curves over time to maturity need numeric
methods when calculating the implied Black–Scholes volatility.

As an advantage of our model, numerical techniques are not necessary in
our case. Instead, the implied volatility can be derived analytically. The frac-
tional model only replaces the classical variance σ(T − t) by the conditional
fractional variance σρH(T − t)2H . So, the implied Black–Scholes volatility σ̃
has to satisfy the following equation:

σ̃(T − t) = σρH(T − t)2H ,

which leads to

σ̃ = σρH(T − t)2H−1.

Obviously, there is no dependence of the implied volatility on moneyness.
Hence, one obtains only flat lines with respect to this dimension. Actually,
the shape of the implied volatility over time to maturity is much more inter-
esting. The relation is fully described by the exponent (2H − 1) yielding root
functions for the persistent case and hyperbolas for Hurst parameters smaller
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than one half. Figure 5.14 depicts the implied term structure of volatility for
different Hurst parameters.
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Fig. 5.14 Implied Black–Scholes volatility for different Hurst parameters over time to
maturity (chosen parameters: r = 0.02, S = 100, K = 100, σ = 0.2)

The shape of the curves agree with our previous considerations. In the case
of antipersistence, fractional Brownian motion induces a high level of uncer-
tainty in the very short run, where its paths heavily fluctuate. In the long run
however, the mean-reverting character leads to less uncertainty than classical
Brownian motion. On the other hand, if we address ourselves to persistence,
we have smoother paths and consequently less uncertainty in the short run,
whereas the long-range dependent character reinforces deviations from the
mean and implies an increase of uncertainty compared to the classical case.
With regard to empirical relevance, Hurst parameters H > 1

2 are usually
found to be more adequate (see e.g. Lo and MacKinley (1988) or Willinger
et al. (1999)). We stress that the concave term structure of volatility that
in this case results from our model, can be refound in a different framework
of current interest: the option pricing model by Carr and Wu (2003) who
assume stocks to be driven by a finite moment log-stable process.



Chapter 6

Risk Preference-Based Option Pricing
in the Fractional Binomial Setting

In this chapter, we take on the setting presented in Chap. 3. There, we showed
that binomial trees can be used to approximate the process of geometric
fractional Brownian motion. The framework is free of arbitrage if investors
are restricted to trade only on certain nodes.

Concerning the valuation of derivatives, the classical binomial approach ap-
plies the idea of backward calculation. Starting from the terminal nodes, it
is possible to go backwards step by step, relating two posterior nodes to one
antecedent and using no arbitrage arguments. Within our modified setting,
we are faced with the obvious problem that a step-by-step procedure is no
longer possible as we could not adopt absence of arbitrage on this minimal
time scale. On the other hand, if we leave the minimal time scale and only
look at intervals where we can ensure absence of arbitrage, the way backwards
is not unique: If the arbitrage-free interval is divided into n steps, we have to
relate 2n subsequent nodes to only one prior node.

As we will assert risk-neutrality of the market participants, one could have
the idea of simply taking expectations. From this vantage point, assets should
be valued by their conditional mean. However, the inconsiderate usage of this
kind of valuation ignores the fact that one of the two basic assets—the risky
one—is not a martingale. Hence, its discounted conditional expected value
in time t generally does not equal its current value. Per se, this does not
cause any problem as long as predictability cannot be exploited. For our
basic setting with two assets, this was ensured by our restricted framework
which we introduced in Chap. 3. However, if one coonsiders a further asset
being related to the stock, it is not reasonable to apply a pricing rule that
does not hold for the basic risky asset. Doing so, one obtains a disequilibrium
between derivative and underlying. We give a short example to see that such
a partial disequilibrium leads to an arbitrage possibility.

S. Rostek, Option Pricing in Fractional Brownian Markets.

Lecture Notes in Economics and Mathematical Systems.
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Fig. 6.1 Evolution of a persistent geometric Brownian motion (underlying stock) and
terminal payoffs of a call option for a specific historic path under the physical measure
(chosen values: H = 0.8, S0 = 100, μ = 0, σ = 0.2, K = 100, r = 0)

Figure 6.1 shows the evolution of a stock following a geometric fractional
Brownian motion with Hurst parameter H = 0.8. For reasons of simplicity
we choose the riskless interest rate to be zero. The history up to time t = 1 is
known and the future distribution is influenced by this history. The physical
measure is the one under which each upwards or downwards step occurs
with the probability of one half. Evidently, under this physical measure, the
conditional mean of the terminal stock value does not equal its current value.
We look at a European call option with maturity in T = 2 and strikeK = 100.
In Fig. 6.1, the respective terminal payoffs are given in brackets. If we priced
the option by its conditional expected terminal payoff, we would get the
option price

Ĉ0.8
1,2 = E [C2|F1] =

1
4

(38.57 + 20.57 + 9.56 + 0) = 17.18.

It is however easy to show, that this valuation leaves space for an arbitrage
opportunity. Consider the following portfolio R of an investor held from time
t = 1 until T = 2:

• a short position of one unit of the call option, initial value Ĉ0.8
1,2 = 17.18,

• a long position of one unit of the stock, initial value 1 ∗ S1 = 100,
• a short position of the riskless bond with total value of 90 monetary units.
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Consequently, buying the portfolio R in time t = 1 yields a net cash flow of
17.18 − 1 ∗ 100 + 90 = 7.18, which is positive. On the other hand, in time
T = 2, we have four possible states of nature which we number serially and
denote in brackets. The particular payoffs of the liquidation of the portfolio
R then are:

R(1) = −38.57 + 138.57 − 90 = 10,
R(2) = −20.57 + 120.57 − 90 = 10,
R(3) = −9.56 + 109.56 − 90 = 10,
R(4) = 0 + 93.95 − 90 = 3.95.

In all four cases, the portfolio yields a non-negative value. Hence, an arbitrage
opportunity is given if this kind of pricing procedure is applied.

Obviously, both the idea of backward calculation by building replicating port-
folios for each node and the mere calculation of conditional expectation are
inappropriate methods for pricing purposes in the fractional binomial con-
text. Instead, we will now concentrate on equilibrium pricing. In principle,
there are two possible ways to solve the partial disequilibrium. The following
sections will deal with these two possibilities, a total equilibrium approach
on the one hand and a relative equilibrium approach on the other hand. In
the limit, both approaches will yield the same result, however, the respective
motivations will be quite different.

The rest of the chapter is organized as follows: We will start with an ana-
logue to the two-time pricing approach that we introduced for the continuous
time case in the preceding chapter. In the next section, we will consider an
alternative way of two-time valuation using a change of measure. We proceed
by extending our equilibrium to all tradable points in time introducing so-
called multi-time equilibria. In particular, we will investigate two possibilities
how this can be done. Throughout the chapter, we will accompany all of our
considerations with some examples.

6.1 The Two-Time Total Equilibrium Approach

The first possibility how to solve the problem of disequilibrium mentioned
above, is to force the market to be in a total equilibrium. In this case, the
process of the underlying asset is assumed to have a certain design which
ensures it to be in equilibrium itself. The implied logic is the following: In
a world where in time t all investors are risk-neutral, the basic risky asset
cannot have an arbitrary drift μ, but there is only one possible constant drift.
The latter is path-dependent and equilibrates the stock price over the period
of interest. Therefore, it is quasi endogenous. With this drift, the discounted
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conditional expectation of the stock value in T equals its current value in
time t. The risk-neutral investors then price all derivatives that are based on
the stock also by their discounted conditional mean.

To be more precise, from current time t until maturity T , the process S has
to have the unique constant drift rate μadj under which it satisfies

E [ST |Ft] = St (1 + r/n)(T−t)n . (6.1)

Note that this is exactly the same idea we applied in the preceding chapter for
the continuous time setting. Due to the complexity of the Wick product, the
endogenous equilibrium drift can in general only be calculated numerically.
Furthermore, it depends on the number of approximation steps.
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Fig. 6.2 Evolution of a persistent geometric Brownian motion (underlying stock) and
terminal payoffs of a call option for a specific history after adjusting a path-dependent
drift component (chosen values: H = 0.8, S0 = 100, σ = 0.2, K = 100, r = 0)

Figure 6.2 exemplifies the described procedure graphically: For a given his-
torical path up to time t = 1, one chooses a constant drift component so
that the remaining random distribution satisfies E [S2|F1] = S1. The value
of the adjusted drift rate μadj as well as the resulting stock prices are given
in the picture. As the measure remains unchanged, the calculation of option
prices is quite easy. In the example depicted in Fig. 6.2, we obtain for a Euro-
pean call option valued in time t = 1 and maturing in T = 2 the discounted
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conditional mean:

C0.8
tot (1, 2) = E [C2|F1] =

1
4

(19.8044 + 4.2442 + 0 + 0) = 6.0122.

It can be easily shown that this price does not allow for an arbitrage. We
now take a look at what happens if one refines the partition of the time
intervals. From the theoretical point of view, the result is clear: As seen in
Chap. 3, with an increasing number of steps, the binomial distribution of the
discrete arithmetic Brownian motion converges to the normal distribution
of its continuous time counterpart. Accordingly, the discrete geometric bino-
mial process exhibits a lognormal limit distribution. By the adjustment of the
drift, the discounted conditional mean equals the current value whereas the
conditional variance remains unchanged. Consequently, the price of the call
option in the discrete time model should tend to the result that we obtained
for continuous time in Sect. 5.4. For different levels of fineness and varying
Hurst parameters, the option values can be seen in Table 6.1. Concerning
the persistent parameter domain, the respective price of the call seems to
converge to the value of the continuous case. The latter can be calculated
by putting the respective parameters into formula (5.32) of Sect. 5.4. For
the antipersistent values of H one would also presume convergence, how-
ever, the prices seem to be overestimated. The speed and preciseness of the
convergence mainly depends on the quality of the approximation concern-
ing the conditional variance which we investigated in Sect. 3.3. Ibidem, the
problem occurred that in our finite-memory approach we only allow for a
limited history whereas the continuous time framework assumes an infinite
history. This difference matters most for Hurst parameters standing for slight
antipersistence, that is, in a range from 0.3 to 0.4 (see Sect. 3.3).
Note that the choice of an adjustment by a constant drift parameter over the

Table 6.1 Prices of a European call option for varying Hurst parameters H and different
numbers n of approximating steps per unit of time, (chosen parameters: t = 1, T = 2,
St = 100, σ = 0.2, r = 0, K = 100)

CH
tot(1, 2) n = 2 n = 4 n = 6 n = 8 n = ∞

H = 0.2 7.8890 7.8045 7.7094 7.6453 7.4363

H = 0.4 7.7713 7.9841 8.0147 8.0149 7.8892

H = 0.6 7.3646 7.6327 7.7301 7.7809 7.8629

H = 0.8 6.0122 6.5521 6.5708 6.6281 6.6663

whole interval (t, T ) can be viewed as focusing on only the two most important
points in time t and T . This is analogous to the equilibrium condition we
introduced in the continuous time framework and the reason why we named it
two-time approach. The in-between values do not display equilibrium values.
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More precisely we do not have E [Ss|F1] = S1 for points in time 1 < s < 2.
We will readdress ourselves to this problem later on.

6.2 The Two-Time Relative Equilibrium Approach

The idea of an endogenously-adjusted drift that compensates for the histor-
ical trend caused by persistence might seem artificial. However, it is nothing
but the consequence of postulating that any tradable asset has to be in equi-
librium itself. Meanwhile, there is another possibility left to equilibrate the
market: We still assume risk-neutral investors and introduce an equilibrium
condition taking the vantage point of a relative pricing approach. One regards
the price of the basic asset or underlying as given without wondering for a
moment how it came about. All other assets that are related to the under-
lying have to be in a relative equilibrium and their prices are derived from
the accepted basic price. The information of this given stock value is used
to update the probability measure and so the problem of asset pricing turns
into the calculation of a conditional mean. More precisely, we will no longer
use the physical measure, but an equivalent one, that takes into account the
difference between current value of the underlying and its conditional mean.
To summarize this outline, assets are valued by their expected value of the
terminal payoff—conditioned on all available information about the past and
put into a relative equilibrium to the given value of the underlying.

For any pair of current time t and maturity T , we define the conditional
average risk neutral measure Qt,T to be the measure satisfying

EQt,T [ST |Ft] = St (1 + r/n)(T−t)n . (6.2)

This measure is not necessarily unique. It is known from financial theory that
absence of arbitrage ensures existence of an equivalent measure. Furthermore,
uniqueness follows market completeness (see e.g. Musiela and Rutkowski
(2005), p. 63–75). In lack of completeness we have to impose further con-
ditions in order to be able to identify a unique measure. Recall that we
introduced the price process as a discrete version of a geometric fractional
Brownian motion with constant drift μ. It is natural to postulate that under
the new measure Qt,T , the stock also follows a geometric fractional Brownian
motion. This requirement is expressed by the attribute ’equivalent’. However,
there is at least still one open question which is the specification of the drift
under the new measure. One could either restrain it to be constant, or, in-
stead, allow for a time-varying drift, being deterministic or even stochastic.
In the present case, the equivalent measure is unique if and only if we confine
ourselves to a constant drift. In all other cases, the number of degrees of
freedom exceeds the number of equilibrium conditions which we reduced to
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one by focusing on a two-time valuation.

In order to derive the new measure, we first calculate the equilibrating drift
μ̄. The calculation is the same as in the section of the total equilibrium and
in general it can only be done using numerical methods. The difference to the
procedure before is that this time the drift parameter is interpreted to display
the deterministic behavior of the process under the equivalent measure, not
of the physical one. Moreover, looking at the dynamics of the process Ss from
t to T , we obtain under the new measure Qt,T :

Sj = Sj−1 �
(
1 + μ̄/n+ σ/n

(
B

H(n)
j −B

H(n)
j−1

))
(6.3)

Consequently, for this time interval, the logarithm of the stock price under
Qt,T follows the arithmetic process

lnSj = lnSj−1 + μ̄/n+ σ/n
(
B

H(n)
j −B

H(n)
j−1

)
(6.4)

We now want to determine the measure Qt,T explicitly. In particular, we are
looking for transition probabilities which ensure that the stock price process
satisfies the dynamics of (6.3) and (6.4). For this purpose we recall the con-
struction of the binomial process. In Sect. 3.2, we introduced the binomial
approximation of an arithmetic fractional Brownian motion without drift.
We used independent binomial random variables ξi taking the values ±1
with probability 1

2 each. The n-th approximation of the fractional Brownian
motion in time t, that divided each unit time interval into n steps, was then
given by equation (3.7):

BH(n)
s :=

∫ s

0

z(n)(s, u)dW (n)
u =

[ns]∑
i=1

n

∫ i
n

i−1
n

z

(
[ns]
n
, v

)
dv

1√
n
ξ
(n)
i .

For the interval [t, T ], we now change the probabilities of the realizations of
the ξi. Instead of 1

2 each, we define for nt < i ≤ nT the i-th binomial random
variable ξi to take the value +1 with probability

pi =
1
2

⎛
⎜⎝1 +

μ̄− 1
2σ

2(T − t)2H−1

n
√
n
∫ i

n
i−1

n

z
(

[nT ]
n , u

)
du

⎞
⎟⎠ , (6.5)

and the value −1 with probability

1 − pi =
1
2

⎛
⎜⎝1 − μ̄− 1

2σ
2(T − t)2H−1

n
√
n
∫ i

n
i−1

n

z
(

[nT ]
n , u

)
du

⎞
⎟⎠ . (6.6)
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Under this measure, for nt < i ≤ nT the random variables ξi have the
(uncentered) moments

E [ξi] =
μ̄− 1

2σ
2(T − t)2H−1

n
√
n
∫ i

n
i−1

n

z
(

[nT ]
n , v

)
dv
,

E
[
ξ2i
]

= 1.

Note that the ξi are no longer identically distributed but still independent.
Accordingly, if the history up to time t is known, we get for the n-th approxi-
mation BH(n)

T of BH
T the conditional mean

E
[
B

H(n)
T |Ft

]
= B

H(n)
t +

[nT ]∑
i=nt+1

n

∫ i
n

i−1
n

z

(
[nT ]

n
, v

)
du

1√
n

μ̄ − 1
2
σ2(T − t)2H−1

n
√

n
∫ i

n
i−1

n

z
(

[nT ]
n

, v
)

dv

= B
H(n)
t +

[nT ]∑
i=nt+1

μ̄ − 1
2
σ2(T − t)2H−1

n

= B
H(n)
t + μ̄(T − t) − 1

2
σ2(T − t)2H

and the conditional second moment

E

[(
BH

T,(n)|Ft

)2
]

=
[nT ]∑

i=nt+1

(
n

∫ i
n

i−1
n

z

(
[nT ]
n

, u

)
du

1√
n

)2

n→∞−→ ρH(T − t)2H .

The proof of the second moment relation is the same as in the case without
drift (see Sect. 3.2), because the second moments of the ξi did not change.
Summarizing, with the adjusted probabilities, the binomial process above ap-
proximates an arithmetic fractional Brownian motion with drift μ̄− 1

2σ
2t2H−1.

Consequently, it describes the desired process of equation (6.4). The respec-
tive geometric process has drift μ̄ and therefore fulfils equation (6.3).

Obviously, relations (6.5) and (6.6) uniquely define the measure Qt,T , under
which the original tree yields the constant equilibrium drift μ̄ and condition
(6.2) is satisfied. Although we have in our example two different probabilities
p1 and p2, there is still only one degree of freedom which is the equilibrating
drift μ̂ and which determines the transition probabilities. Furthermore, ab-
sence of arbitrage ensures that the derived transition probabilities lie between
zero and one. In Fig. 6.3, the original tree of fractional Brownian motion is en-
dowed with these equilibrating probabilities which we calculated numerically.

Note that, in our example, the adjustment of the transition probabilities
exhibits the direction we would have expected. As the original distribution
under the physical measure in Fig. 6.1 was heavily biased upwards, the
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Fig. 6.3 Evolution of a persistent geometric Brownian motion (underlying stock) and ter-
minal payoffs of a call option for a specific historic path with adjusted measure Qt,T (chosen
values: H = 0.8, S0 = 100, μ = 0, σ = 0.2, K = 70, r = 0)

equivalent measure has to account for this bias and puts less weight on the
upwards steps. Under the new measure, asset prices can be derived by calcu-
lating their discounted conditional expected payoff. The European call option
with strikeK = 100 and maturity T = 2 then has the following value in t = 1:

C0.8
rel (1, 2) = EQ1,2 [C2|F1] = 0.2299 ∗ 0.0451 ∗ 38.5718

+ 0.2299 ∗ 0.9549 ∗ 20.5741
+ 0.7701 ∗ 0.0451 ∗ 9.5635
+ 0.7701 ∗ 0.9549 ∗ 0

= 5.2475.

Having a look at the respective value of the total equilibrium approach
C0.8

rel (1, 2) in the preceding section, the difference is obvious. The partial
equilibrium approach seems to be much farer from the limit value than that
calculated above. However, if we make the partition over time more fine,
the method of adjusting the measure also yields a good approximation. The
call prices also seem to converge—at least for the parameters standing for
persistence—to the value of the continuous time case (see Table 6.2).

The valuation by simply taking expectations is possible as—like in the clas-
sical Brownian case—the change of measure adjusts the drift. In the case of
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Table 6.2 Prices of a European call option for varying Hurst parameters H and different
numbers n of approximating steps per unit of time, (chosen parameters: t = 1, T = 2,
St = 100, σ = 0.2, r = 0, K = 100)

CH
rel(1, 2) n = 2 n = 4 n = 6 n = 8 n = ∞

H = 0.2 7.9041 7.8038 7.7447 7.6513 7.4363

H = 0.4 7.8113 7.9457 7.9793 7.9994 7.8892

H = 0.6 7.3930 7.6473 7.7299 7.7388 7.8629

H = 0.8 5.2475 6.5126 6.5477 6.5826 6.6663

fractional Brownian motion, we have two different types of drift components:
the deterministic drift component and a path-dependent drift component
which is due to the peculiarity of the fractional market and results from the
memory of the process. By introducing the equivalent measure, the distri-
bution is shifted in a way so that the stock price has the equilibrium drift
rate μ̄. The sum of this deterministic drift μ̄ and of the path-dependent drift
component equals the riskless interest rate.

When comparing this with the procedure known from classical Brownian the-
ory, one notes a strong similarity. There, the price process is a semimartingale
and the equivalent measure removes the drift and makes it equal to the risk-
less rate. In our setting, this is not sufficient as one has to account for the
path-dependence of fractional Brownian motion which implies one additional
component. The ’target drift rate’ is therefore not r but the presented term
μ̄ which includes both the riskless interest rate and the trend evolving from
the historical path.
From the conceptual point of view, things are one-to-one comparable. How-
ever, there are technical differences: The prediction part (or path-dependent
drift) in the fractional framework depends on both the available information
(or current time t) and the prediction horizon (that is, maturity T ). Conse-
quently, the equilibrium drift μ̄ and likewise the equilibrium measure have to
be redetermined for each new pair t and T . This is a crucial difference to the
classical theory, where the equivalent measure does not depend on current
time t or maturity T .

Two further problems stem from the same fact: On the one hand, a measure
that satisfies the equilibrium condition (6.2) for a pair of points in time
(t, T ), will in general not fulfill the respective condition for other points in
time (s, S). To put it differently, even under the new measure, the process is
not a martingale. On the other hand, if one introduces additional degrees of
freedom by allowing for a non-constant drift, the measure Qt,T is no longer
uniquely determined by means of (6.2). We will show that these two problems
are closely related to each other.
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6.3 Multi-Time Equilibrium Approaches

While in the preceding sections we stressed the difference between the total
and the relative equilibrium approach, we now state the following: Albeit the
approaches differ heavily concerning their motivation and interpretation, the
calculus is more or less identical. In both cases, the equilibrium condition is
used to derive a certain drift component that equilibrates the process. In the
total equilibrium this is done with respect to the physical measure, whereas
in the relative equilibrium the drift adjustment is caught by the transition
to the equivalent measure. The mere calculation is however the same, and as
seen above, in the limit, both approaches lead to the same result. We will now
focus on problems that do not depend on the choice of equilibrium stated. For
sake of simplicity, we will forbear from writing out both cases in full. Unless
stated differently, the following verbalizations hold for both vantage points.
Whenever it is necessary to denote formulae, we will choose the notation of
the total equilibrium approach.

Evidently, for the two-time equilibrium approaches, the in-between stock val-
ues Ss for t < s < T do not represent equilibrium values: We postulated
the equilibrium condition to hold only for the pair of points in time t and
T . As long as we focus on European options and additionally abstain from
in-between tradability, this will cause no problem. Though, for example a
sensible valuation of American options should not be possible under these
circumstances.

If we weaken the assumption that the equilibrating drift has to be constant,
we are provided with additional possibilities to impose equilibrium conditions
for in-between points in time. We will first investigate the possibilities arising
from a deterministic specification of the drift and then proceed and allow for
a path-dependent equilibrium drift.

6.3.1 Multi-Time Equilibria with Respect to Current
Time t

If we allow the adjusted drift to be deterministic, the number of degrees of
freedom equals the number of steps N1 = (T − t)n lying between t and T ,
where n is the number of steps per unit of time. Besides the fundamental
equilibrium condition (6.2), it is hence possible, to satisfy N1 − 1 further
equilibrium conditions. In principle, for all discrete t < s < T , one could
therefore add the equilibrium conditions

E [Ss|Ft] = Ss (1 + r/n)(s−t)n
. (6.7)
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However, it suffices to require condition (6.7) to hold for all nodes on the
tradable grid of the binomial tree. Note that the tradable grid was defined
by the very nodes between which the time interval is sufficiently large so that
arbitrage possibilities cannot occur. The nodes lying on not admissible time
scales need not fulfill (6.7). Consequently, on each minimal tradable time
interval again, we can choose the drift to be piecewise constant. If we have k
steps between two tradable nodes, the total number of equilibrium conditions
is N2 = N1/k. Hence, we also get N2 different drift adjustments.

Figure 6.4 displays the described procedure for the case t = 1, T = 2 and
r = 0. The first picture shows the process before adjusting the equilibrating
drift rates. The chosen number of in-between steps is N1 = 4, the number
k that ensures absence of arbitrage is 2, which yields N2 = 4/2 = 2. The
resulting equilibrium conditions are

E [S1,5|F1] = S1 (6.8)
E [S2|F1] = S1. (6.9)

The deterministic endogenous drift rates are denoted by μ1−1.5
adj for the time

interval [1, 1.5] and μ1.5−2
adj for the time interval [1.5, 2]. They are uniquely

determined by the equilibrium conditions (6.8) and (6.9). The respective
values are given in the second picture of Fig. 6.4, where the adjusted binomial
tree is depicted.

Note that, according to equation (6.9), the basic equilibrium condition of the
two-time equilibrium approach is still satisfied. As long as a deterministic
drift rate is chosen, the transition from constancy to time-variability of the
endogenous drift does not change the distribution of the terminal values. All
terminal nodes are shifted by the same amount. The main innovation of the
multi-time approach is the way how the adjustment is proportioned over the
interval [t, T ]. Consequently, the valuation of a European option should not
change vitally and the comparison of Table 6.3 with the Tables 6.1 and 6.2
shows that this is indeed true.

By means of the additional equilibrium conditions, it is now possible to price
American options. These options can be exercised at all states of nature and
points in time lying on the tradable grid. In the example of Fig. 6.4, there
is one possibility of early exercise at t∗ = 1.5. Like the valuation of Amer-
ican options in the classical context, we now decide backwards whether the
investor should hold or carry out the option. That is, the investor compares
the payoff of an immediate exercise with the expected payoff in case he keeps
the option. Again, we take the example of a call option with strike price
K = 100. For each of the four nodes at time t∗ = 1.5 in the lower picture
of Fig. 6.4 (denoted by the superscripts uu, ud, du, dd respectively), we can
easily calculate the value of an instantaneous exercise
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stock) and terminal payoffs of a call option for a specific historic path before and af-
ter adjusting a deterministic drift rate (chosen parameters: H = 0.8, S1 = 100, r = 0,
σ = 0.2)
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Table 6.3 Prices of a European call option for varying Hurst parameters H and different
numbers n of approximating steps per unit of time, derived by a multi-time equilibrium
with respect to current time t (chosen parameters: t = 1, T = 2, St = 100, σ = 0.2, r = 0,
K = 100, k = 2)

CH
mult(1, 2) n = 2 n = 4 n = 6 n = 8 n = ∞

H = 0.2 7.8890 7.8045 7.7270 7.6453 7.4363

H = 0.4 7.7713 7.9841 8.0270 8.0149 7.8892

H = 0.6 7.3646 7.6327 7.7251 7.7767 7.8629

H = 0.8 6.5469 6.5339 6.5708 6.5693 6.6663

Cuu
ex (1.5) = max[111.90− 100, 0] = 11.90,
Cud

ex (1.5) = max[102.70− 100, 0] = 2.70,
Cdu

ex (1.5) = max[96.92− 100, 0] = 0,
Cdd

ex (1.5) = max[88.49− 100, 0] = 0.

The according values of holding the option are calculated by the conditional
means of the terminal option payoffs:

Cuu
hold(1.5) = E

[
max[S(2) − 100, 0]|Fuu

1,5

]
=

1
4

(33.21 + 22.50 + 15.90 + 6.06)

= 19.42,

Cud
hold(1.5) = E

[
max[S(2) − 100, 0]|Fuu

1,5

]
=

1
4

(12.53 + 3.23 + 0 + 0)

= 3.94,

Cdu
hold(1.5) = E

[
max[S(2) − 100, 0]|Fuu

1,5

]
=

1
4

(9.81 + 0.79 + 0 + 0)

= 2.65,

Cdd
hold(1.5) = E

[
max[S(2) − 100, 0]|Fuu

1,5

]
=

1
4

(0 + 0 + 0 + 0)

= 0.

Obviously, in all four states of nature, the option right of early exercise is not
made use of. Consequently, we get the values of the American option at time
t∗ = 1.5:

Cuu
am(1.5) = 19.42,

Cud
am(1.5) = 3.94,

Cdu
am(1.5) = 2.65,

Cdd
am(1.5) = 0.
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Going one further step backwards, we compare for the one possible state of
nature in time t = 1 the value of an early exercise

Cex(1) = max[100 − 100, 0] = 0,

which is zero, as the option is at-the-money, whereas the value of holding the
option is

Chold(1) = E [Cam(1.5)|F1] =
1
4

(19.42 + 3.94 + 2.65 + 0) = 6.50.

Therefore, we obtain

Cam(1) = 6.50.

This value is quite close to that of the European option, which comes as no
surprise: In our example, the right of premature exercise does not generate
an additional value, as it is always favorable to keep the option.

Summarizing we state: If we introduce the possibility of a deterministic time-
varying drift, the stock price can be put into equilibrium at all tradable points
in time, related to the current stock value St. However, this does not imply
that when relating two in-between points in time to each other, the respective
stock values are in equilibrium. More precisely, by lack of the Markov property
of the process, this will indeed not be the case.

6.3.2 Local Multi-Time Equilibria

Even more opportunities arise if we allow for a path-dependent equilibrium
drift. It is then possible to impose local equilibrium conditions: We stipulate
that for each pair of subsequent points in time the respective stock prices
have to be in equilibrium. The condition needs to hold for all possible (and
admissible) states of nature, that is, all nodes of the tradable grid. For the ex-
ample in the upper picture of Fig. 6.4, we would hence introduce the following
equilibrium conditions

E [S1,5|F1] = S1,

E
[
S2|Fuu

1,5

]
= Suu

1.5,

E
[
S2|Fud

1,5

]
= Sud

1.5,

E
[
S2|Fdu

1,5

]
= Sdu

1.5,

E
[
S2|Fdd

1,5

]
= Sdd

1.5,

(6.10)
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where the superscripts describe the historical path of the process, e.g. ud
standing for an upward movement followed by a downward step. By these
conditions, the binomial tree is divided into five non-overlapping partial trees.
On each partial tree, it is therefore possible to determine an endogenous
drift rate so that the respective equilibrium condition is fulfilled. Within the
respective part of the tree, the drift rate is chosen to be constant, implying
uniqueness of the adjustment. With N2 + 1 = N1/k + 1 tradable points in
time, we obtain the number of tradable nodes to be the sum of N2 + 1 terms

N3 = 20 + 2k + 22k + . . .+ 2N2k =
1 − 2N1+k

1 − 2k
,

and the number of equilibrium conditions is

N4 = 20 + 2k + 22k + . . .+ 2(N2−1)k = N3 − 2N2k =
1 − 2N1

1 − 2k
.

In the example above, we had N1 = 4 steps, k = 2 as the fineness of the
tradable grid,N2+1 = 3 tradable points in time, N3 = 21 tradable nodes and
N4 = 5 equilibrium conditions which were given by the system of equations
(6.10).

One special case is worth mentioning: If k = 1, and all nodes of the binomial
grid are tradable, the drift rate varies from each node to the next one. Most
interestingly, in this case, the resulting drift-adjusted binomial tree is even
recombining.

Although the idea of a path-dependent drift component might be appealing
at first glance, there is at least one evident drawback of this concept. The
introduction of a stochastic or path-dependent drift rate, changes the second
moment of the distribution of the process. To see why and how, we fix the
tradable grid to be the points in time t = t0, t1, t2, . . . , tN2 = T and discretize
the in-between intervals by further non-tradable nodes. Then, conditioned on
time tj−1, the logarithm of the stock price at the next tradable node ln

(
Stj

)
tends to a normally-distributed random variable with conditional moments

mj = E
[
ln
(
Stj

) |Ftj−1

]
= lnStj−1 + r(tj − tj−1) − 1

2
ρHσ

2 (tj − tj−1)
2H ,

vj = E
[(

ln
(
Stj

)− E
[
ln
(
Stj

) |Ftj−1

])2 |Ftj−1

]
= ρHσ

2 (tj − tj−1)
2H

.

This results from the properties of the binomial approximation (see Chap. 3)
and the conditional fractional Itô theorem of Sect. 5.3.

We now assume the tradable grid to be equidistant, that is, for each j =
1, . . . , N2 we have tj − tj−1 = T−t

N2
. Applying the law of iterated expecta-

tion, we obtain the distribution of ln (ST ) conditioned on the information
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available at time t:

mT,t = E [ln (ST ) |Ft]
= E

[
E
[
. . . E

[
E
[
ln (ST ) |FtN2−1

] |FtN2−2

] | . . .] |Ft

]
= lnSt +

N2∑
j=1

r(tj − tj−1) − 1
2
ρHσ

2 (tj − tj−1)
2H

= lnSt + r(T − t) − 1
2
ρHσ

2(T − t)2HN1−2H
2 ,

vT,t = E
[
(ln (ST ) −mT,t)

2 |Ft

]
= E

[
E
[
. . . E

[
E
[
(ln (ST ) −mT,t)

2 |FtN2−1

]
|FtN2−2

]
| . . .

]
|Ft

]

=
N2∑
j=1

ρHσ
2 (tj − tj−1)

2H

= ρHσ
2(T − t)2HN1−2H

2 .

The distribution of ST conditioned on the information available at time t is
then lognormal with the following moments:

MT,t = E [ST |Ft]

= exp
(
mT,t +

1
2
vT,t

)
= Ste

r(T−t),

VT,t = E
[
(ST −MT,t)

2 |Ft

]
= exp (2mT,t + 2vT,t) − exp (2mT,t + vT,t)

= S2
t e

2r(T−t)
[
eρHσ2(T−t)2HN1−2H

2 − 1
]
.

Let us take a look at what happens, ifN2, i.e. the fineness of the tradable grid,
increases. Recall that for any finite time interval between two tradable points
in time—no matter how small—one can exclude arbitrage on the tradable grid
by refining it, adding a number of non-tradable in-between steps. However,
despite the absence of arbitrage, for N2 → ∞ and H > 1

2 the uncertainty of
the model disappears:

lim
N2→∞

VT,t = lim
N2→∞

(
S2

t e
2r(T−t)

[
eρHσ2(T−t)2HN1−2H

2 − 1
])

= 0.

Consequently, the terminal value of the underlying approaches a deterministic
value: It is current value of the stock, compounded with the riskless interest
rate. To put it differently, the risky asset coincides with the riskless one.
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In search of an explanation, we recall the variance properties of fractional
Brownian motion for short time intervals of length τ . We showed that the
variance equals τ2H . Consequently, for the persistent parameter domain, we
have less randomness in the short run than for the classical case. In the multi-
time equilibrium approach, we now imposed restrictions on the behavior of
the process applying equilibrium conditions on intervals of decreasing length.
Depending on the randomness of the process, this evokes different results.
Roughly speaking: While geometric Brownian motion can be forced to be-
come a martingale without losing its randomness, the same restrictions are
too strong for the persistent price process and all randomness is eliminated.

6.4 Deeper Insights Provided by Discretization: The
Continuous Time Case Reconsidered

In Chap. 3 we considered discrete versions of the fractional Black–Scholes
market setting. The relation between the discrete two-time equilibrium ap-
proach and the continuous two-time model of Chap. 3 is obvious: With an
increasing number of in-between steps, the discrete pricing formula approxi-
mates the continuous one. As both models focus on a two-time equilibrium,
the convergence is simply due to the respective convergence of the basic pro-
cesses, i.e., the fact that the market model converges.

Note that the main incentive of choosing a two-time access to the continuous
time model was to provide an easy approach ensuring absence of arbitrage.
The two-time focus had the following advantage: It allowed us to concentrate
on the characteristics of fractional Brownian motion and the impact of per-
sistence on option pricing. However, it was not obvious at first glance why
the respective calculations should not be possible for other specifications of
the equilibrium conditions.

Recall that also for the discrete multi-time approaches we observed a sort of
convergence when refining the scale of the time axis. Driven by this insight,
we now turn the tables: We pose the proximate question whether there are
also continuous time analogues to these cases and how they look like. In other
words, we investigate multi-time equilibrium approaches from a continuous
time vantage point.

Concerning the discrete multi-time approaches, we differentiated between
the multi-time equilibrium related to current time t and the local multi-time
equilibrium. Both concepts led to uniqueness of the so-called equilibrium
drift rates. The first approach again ensured convergence to the continuous
time pricing formula which we called the fractional Black–Scholes pricing for-
mula. Contrarily, the local equilibrium approach eliminated uncertainty and
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yielded the ‘deterministic’ pricing formula which we already obtained when
discussing aspects of predictability and arbitrage in Chap. 4.

In the first concept, equilibrium conditions were postulated to hold with
respect to current time t. As a reminder, for all discrete t < s < T , we
introduced the equilibrium conditions

E [Ss|Ft] = Ss (1 + r/n)(s−t)n
. (6.11)

This implied a deterministic specification of the equilibrium drift taking piece-
wise constant values between two tradable nodes. The approach turned out
to be an extension as well as a refinement of the two-time equilibrium making
possible, for example, the valuation of American options. Like in the two-time
approach, the European option formula tends to the fractional Black–Scholes
formula if the tradable grid gets finer.
If we transfer this idea to the continuous setting, we get an infinite number
of equilibrium conditions of the form

E
[
e−r(s−t)Ss|FH

t

]
= St, ∀s ∈ [t, T ]. (6.12)

Note that, although consecutive transactions are imposed to have a minimal
time interval in-between, it is still necessary to postulate the equilibrium for
the infinite amount of points in time. This is due to the fact that ex ante
no point in time can be excluded from trade. Restrictions not occur until
an investor proceeds his first transaction. Then, of course, he is faced with
a certain waiting period or delay. In our system of equilibrium conditions,
current time t is fixed, whereas s takes all values between t and maturity
T . Hence, this system of conditions does not turn the stock process into a
martingale: The condition will not hold for an arbitrary combination of points
in time s1, s2 with t < s1, s2 < T .
We now apply the same idea as in the discrete consideration before. In order
to satisfy the whole system of equilibrium conditions, we allow for a time-
varying, but deterministic equilibrium drift. In this case, the fractional Itô
theorem still holds, and the same calculations as in Chap. 5 lead to the
following system of conditions for the equilibrium drift rate μ̄:∫ s

t

μ̄u du = r(s − t) − σμ̂s,t, ∀s ∈ [t, T ], (6.13)

where μ̂s,t is the conditional mean of BH
s based on information in time t.

This equation implicitly determines the process of the equilibrium drift μ̄u.
Meanwhile, like the term μ̄(T − t) in the continuous two-time approach, the
term

∫ s

t
μ̄u du vanishes, as soon as we insert it into the conditional moments

of the stock price process. Consequently, the formulae (5.26) and (5.27) of
the conditional mean m and the conditional variance v do not change and
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the option pricing formula also remains unchanged.

Finally, we consider the continuous time analogy to the local multi-time equi-
librium concept. In our discrete time framework, the idea was to introduce
equilibrium conditions for each pair of consecutive tradable nodes. The tran-
sition to the continuous time point of view results in the following system of
equilibrium conditions:

E
[
e−r δSs+δ|FH

s (ω)
]

= Ss, ∀s ∈ [t, T ), ω ∈ Ω. (6.14)

The parameter δ denotes the—once chosen—minimal amount of time be-
tween two consecutive transactions which we need to exclude arbitrage (see
Sect. 4.4). Like in the case looked at before, we need to fulfill this condition
for all points in time. More than this, the conditions also need to hold for
all states of nature which are possible at the respective points in time. The
equilibrium drift for the next time step then depends on the historical path.
Hence, like in the discrete local equilibrium setting, we have to allow for a
stochastic or path-dependent specification of the equilibrium drift rate.
If one wants to apply the respective steps of our continuous time model and
tries to exploit the system of equilibrium conditions, one becomes aware of
the fact that the fractional Itô theorem is no longer applicable: The theorem
does not hold if we state a time-dependent and state-dependent drift rate
taking values conditional on the realized path. In particular, we are not able
to derive a formula comparable to (6.13) which would enable us to eliminate
the drift like in the other two cases we discussed before. As a straightforward
consequence, also the derivation of the fractional Black–Scholes type option
pricing formula no longer holds. Contrariwise, the discrete setting clarified
that the state-dependent mean correction on decreasing time scales affects
the distribution of the process and leads to a process without any uncertainty
where option values are nothing but their discounted inner value.

We summarize the considerations of this chapter: Concerning the calcula-
tions of the option pricing problem in Sect. 5.4, there is only one crucial
step that is needed to exploit the system of equilibrium conditions, which is
the fractional Itô theorem. The different specifications of this equilibrating
system (two-time, multi-time with respect to t, local multi-time) necessitate
different specifications of the equilibrium drift (constant, deterministic, path-
dependent). The first case is our basic model and applying the fractional Itô
theorem for a constant drift is trouble-free. Also the deterministic case did
not cause any problems: The theorem and as a consequence also the pricing
formula still hold. For the third case, however, the theorem and the further
calculations of our basic model cannot be applied. Moreover, the parallel
to the respective discrete time model clarifies: The equilibration of the pro-
cess on the very small time scale by a path-dependent drift instantaneously
counterbalances the stochastic of the process and thereby eliminates it.



Chapter 7

Conclusion

This thesis dealt with the suitability of the stochastic process of fractional
Brownian motion when modeling randomness in financial market settings.

In the preliminary Chap. 2 we pointed out why fractional Brownian motion
could be an interesting candidate for financial models. We showed that it com-
bines the possibility to capture serial correlation of a stochastic process with
a good analytical treatability for still being Gaussian. As only one additional
parameter was introduced, fractional Brownian motion turned out to be a
parsimonious extension of classical Brownian motion. The range of this so-
called Hurst parameter H could be divided into three cases. For 0 < H < 1

2 ,
we observed anti-persistent behavior, for 1

2 < H < 1 persistence occurred.
When H equalled 1

2 , we obtained the classical Brownian case. This prop-
erty allowed for an easy benchmark concerning all the results that should
be derived throughout the rest of the thesis: The new, generalized result of
the fractional Brownian world should always include the corresponding well-
known result of classical Brownian motion.
Further parallels between fractional and classical settings were stressed con-
cerning integration calculus. Both the Stratonovich and the Itô calculus of
Brownian integration theory, found its equivalents in the fractional context.
We highlighted the basic idea as well as the main results of fractional inte-
gration calculus including some technicalities. Most importantly, we recalled
a fractional version of the classical Itô theorem which had been recently pro-
vided by Duncan et al. (2000).

In Chap. 3, we considered a discretization of fractional Brownian motion
by a binomial process. Based on the work of Sottinen (2001) who had pro-
vided a discrete approximation of arithmetic fractional Brownian motion, we
visualized the procedure by depicting binomial trees. Moreover, we investi-
gated the conditional properties of the binomial fractional Brownian motion
and thereby emphasized the influence of the historic path on the future dis-
tribution. We proceeded and looked at a fractional binomial price process
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represented by a binomial version of a geometric fractional Brownian mo-
tion. By visualization of these processes, we could get a first impression of
the key problem being immanent in financial models based on fractional
Brownian motion. Due to its path-dependence, some paths of the binomial
tree led to situations where at a certain node (which is a state of nature at a
certain point in time) both subsequent nodes yielded a payoff that exceeded
the return of the riskless asset. Applying a simple one-step buy-and-hold
strategy, this again offered the possibility of a riskless gain without initial
capital, i.e. an arbitrage. The solution to the problem that excluded arbi-
trage, was the following: Market participants were assumed to be subject to
restrictions concerning the speed of adapting their trading strategy, or more
simply: A single investor cannot be as fast the market. Hence, we fixed a
small time interval that investors cannot go below, but continued to refine
the discretization of the process. The in-between evolution of the stock then
provided a sufficient degree of volatility and made arbitrage strategies impos-
sible. This ensured the reasonability of discrete time financial models based
on a binomial fractional Brownian motion.

In the following chapter, we readdressed ourselves to the continuous time pro-
cess of fractional Brownian motion. Stimulated by the insights of the binomial
setting, we investigated in Chap. 4 a financial market setting consisting of a
riskless asset as well as a risky one driven by a geometric fractional Brownian
motion. We first recalled the debate of the history: The first theoretical re-
sults by Delbaen and Schachermayer (1994) as well as by Rogers (1997) had
suggested a categorical rejection of fractional market models for reasons of
arbitrage. Though the introduction of Wick–Itô calculus had inspired some
promising results (Hu and Øksendal (2003) and Elliott and van der Hoek
(2003)), Bjork and Hult (2005) had shown that their implied assumptions
were economically meaningless.
We then worked out that as long as the possibility of continuous tradability
exists, the predictability of fractional Brownian motion always eliminates ran-
domness from option pricing. We stated a fractional inversion of the work of
Sethi and Lehoczky (1981): They had shown for the classical case that—if ap-
plied sensibly—both Stratonovich and Itô calculus lead to the Black–Scholes
pricing formula for a European call option. Contrariwise, we showed that
the correct usage and interpretation of both pathwise and Wick–Itô calculus
does not lead to an option pricing formula à la Black–Scholes but to a for-
mula where the price is nothing but the maximum of the discounted inner
value and zero. On the one hand, our considerations provided another ex-
ample concerning the importance of the correct interpretation of integration
concepts as disregarding them leads to results like those by Hu and Øksendal
(2003). On the other hand, we drew the following conclusion: In order to en-
sure a reasonable pricing and absence of arbitrage in the fractional Brownian
market model, we had to restrict trading strategies to be non-continuous.
This was the logical counterpart to the phenomenon we had observed in the
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discrete time setting. Furthermore, it was perfectly in line with similar find-
ings received by Cheridito (2003).

Albeit the restriction to non-continuous trading strategies ensured absence
of arbitrage, the non-continuity still ruled out the common arbitrage pricing
approach based on dynamic hedging. In Chap. 5 we suggested a preference
based pricing approach which allowed us to renounce continuous tradability
and to focus on two points in time, which were the present and maturity.
An equilibrium condition relating these two points in time was exploited. It
postulated that—as we asserted well-informed and risk-neutral investors—
the conditional expected payoff of the underlying should equal the respective
certainty equivalent.
This approach made it necessary to evaluate the historical information from
the path of the stock price process, i.e. we introduced the conditional dis-
tribution of fractional Brownian motion. By means of this, we derived that
there can only be one unique constant drift rate of the underlying for which
the desired equilibrium is given. This drift rate was composed of two parts:
the riskless interest rate plus a correction accounting for the evolution of the
historical path.
We went on to price European options by their conditional expected pay-
off. The derived formulae draw their attractiveness from the fact that the
fractional pricing model includes the traditional Markovian case of classi-
cal Brownian motion. So, the existing parallels enhanced the understanding
of fractional option pricing. Moreover the analysis of the partial derivative
with respect to the Hurst parameter made it possible to point out the frac-
tional particularities of the formulae. By name, these were the variance-based
narrowing and power effects which accorded with the economic intuition con-
cerning the idea of persistence and antipersistence. The analysis of the term
structure of implied volatilities showed that our model yielded non-flat curves
that could be derived analytically. Therefore, it is in principle suited to ex-
plain real market phenomena like volatility smirks over time to maturity.

In our next step we translated the continuous time pricing model into the
discrete time binomial setting that we had introduced before. We started
Chap. 6 by focusing on a two-time equilibrium. For the latter, we presented
the idea of relative pricing, where equilibrium is realized by a change of mea-
sure as well as that of absolute pricing, where equilibrium is achieved by an
drift adjustment of the underlying. Both led to the same option prices. With
an increasing level of discretization, the option prices again tended to the
value given by the continuous time pricing formula.
Motivated amongst other things by the desire to price also American op-
tions, we expanded the points of equilibrium onto the whole tradable grid.
Concerning these multi-time equilibrium approaches, we discussed only the
idea of absolute pricing. We differentiated between two of these multi-time
approaches: In the first approach, equilibrium was postulated to hold for each
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tradable node when relating it to current time t. The second one which we
called local multi-time equilibrium, introduced equilibrium relations for each
multiple consisting of one node and its immediate successors on the tradable
grid. While the first concept also yielded convergence to the continuous time
pricing formula, we proved that the postulation of a local multi-time equilib-
rium eliminated the uncertainty of the underlying process. The option value
then tended to the maximum of the discounted inner value and zero.

Finally, in Sect. 6.4, we factored the new insights into a reconsideration of the
continuous time model and brought up the question of whether equivalents of
the multi-time approaches could also be constructed in the continuous frame-
work. We emphasized the strong relation between the design of the equilib-
rium condition, on the one hand, and the shape of the resulting equilibrium
drift, on the other hand. The latter however turned out to play a crucial role
if one wants to adopt the discrete time procedure in the continuous setting.
The local multi-time equilibrium implied a stochastic equilibrium drift rate
which made the application of the fractional Itô theorem impossible. The
other two approaches led to a constant or deterministic drift, respectively, so
the theorem could be applied.

On the whole, the nature of fractional Brownian motion brings about a reduc-
tion of short-run uncertainty when comparing it with the classical Brownian
approach. Although predictability can lead to arbitrage possibilities or elim-
inate randomness, the problem can be solved in an incomplete framework
by applying risk preference based pricing approaches based on suitable equi-
librium arguments. Based on these important conceptual results, the main
achievement of this thesis is a most tangible one: The closed form pricing
formulae for European options in the continuous time fractional Brownian
market.

The results in this thesis were derived under the assumption of risk-neutral
investors. Further research could deal with different assumptions concerning
risk preferences. The basic idea should be to introduce a different kind of
equilibrium condition accounting for the respective certainty equivalent.
Furthermore, one could discuss financial models where the underlying follows
combined processes that include fractional Brownian motion as one building
block such as a fractional Lévy motion (see e.g. Huillet (1999)).

We conclude with the statement that fractional Brownian motion is by no
means an absurd candidate for financial models. As soon as one stops cling-
ing to dynamical completeness, fractional Brownian motion offers convenient
properties: One can parsimoniously introduce serial correlation into financial
models and nevertheless get closed-form solutions that are easy to handle
and in line with economic intuition.
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