

Oliver Skroch

Developing Business Application Systems

GABLER RESEARCH

Oliver Skroch

Developing Business
Application Systems
On the Specifi cation and Selection
of Software Components and Services

RESEARCH

Dissertation Universität Augsburg, 2009

 Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e;

detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

1st Edition 2010

All rights reserved

© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Editorial Offi ce: Ute Wrasmann | Britta Göhrisch-Radmacher

Gabler Verlag is a brand of Springer Fachmedien.

Springer Fachmedien is part of Springer Science+Business Media.

www.gabler.de

No part of this publication may be reproduced, stored in a retrieval system

or transmitted, in any form or by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without the prior written permission of the

copyright holder.

Registered and/or industrial names, trade names, trade descriptions etc. cited in this publica-

tion are part of the law for trade-mark protection and may not be used free in any form or by

any means even if this is not specifi cally marked.

 Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg

 Printed on acid-free paper

Printed in Germany

ISBN 978-3-8349-2350-9

Preface

The urge for a better, cheaper, and faster development and tailoring of application software

systems can be explained by their high importance: well-working infonnation processing is a

required precondition for the prosperity - or even for the mere survival- of many businesses

and institutions. Hence it is a highly warrantable and topical objective to significantly

irnprove software development by new technologies and methods, to increase quality and

benefits while at the same time decreasing lifecycle costs and project durations. Where,

however, are reasonable starting points for research activities that pursue these objectives?

Software reuse and in particular the closely related component- and service-orientation are

among the few fundamental approaches that show greatest promise. This book presents six

respective research articles.

The book is based on my cumulative doctoral thesis and I feel indebted to many people and

their support. I thank Prof. Dr. Klaus Turowski in the first place. He enabled my integration as

an external researcher at the Chair of Business Informatics and Systems Engineering,

Universität Augsburg, and he provided most valuable support in decisive situations. I give my

thanks to Prof. De. Robert Klein for the second opinion on my dissertation and to Prof. De.

Axel Tuma for presiding the disputation. I am grateful to my co-authors De. Sven Overhage

and Michael ProB for the good, successful, and pleasant team work on our research articles.

Finally, I am happy to acknowledge the support of many good and unnamed spirits both in

my private and professional world. You were always able 10 show understanding for my

research and you tolerated the vast amount of time and effort that I dedicated to science - you

only came second so often and although you have deserved to come first just as weil.

Augsburg, February 2010 Oliver Skroch

Contents

Preface v

Contents vii

List of figures xi

List of tables xiii

Abbreviations xv

Symbols xvii

Introduction 1

1.1 Motivation and challenges 1

1.2 Objectives and focal research questions 6

1.3 Classification and organization 9

References 13

II Strategic framework 15

ILRI A theory of software reuse strategies in ideal type stable and turbulent

market environments 17

1 Introduction and objectives l8

2 Basic software reuse options 20

2.1 Compositional reuse - building blocks 21

2.2 Generative reuse - solution patterns 21

3 Two ideal type market environments and their business strategy 22

3.l Traditional environments - defenders 23

3.1.1 Defensive internal improvernent strategies 23

3.1.2 Defenders' dilemma 24

3.2 Turbulent environments - prospectors 25

3.2.1 Prospective rapid adaptation strategies 25

3.2.2 Prospectors' dilemma 26

4 Supporting experience: projects from practice 27

4.1 Stable environment - fraud detection 27

4.2 Turbulent environment - software simulator 27

4.3 Hybrid environment - portal architecture 28

5 Concluding hypotheses, lirnitations and further steps 28

References 30

II.R2 Integration assessment ofan individually developed application vs. software

packages from the market - an experience report 33

1 Introduction and setting 34

2 Project approach and selected results 36

2.1 Functional comparison of available packages 37

2.2 Integration scenario case studies 39

viii Contents

3 Conclusion and remarIes 43

References 43

III Specification 45

IILR3 The importance ofrequirements speciflcations for successfullT projects 47

1 Requirernents speciflcations in the development process 48

2 Success factors 48

2.1 Systernatic approach 49

2.2 Detailed analysis and docwnentation 50

2.3 Realistic effort estimations 51

2.4 Integration ofmissing expertise 51

2.5 Coordination and alignment. 52

2.6 Joint and active organization 52

2.7 Efficient change management.. 53

3 Risks 53

3.1 Disputed and incomp1ete scope ofwork 54

3.2 Delay 55

3.3 Additional costs 55

3.4 Legal dispute 56

4 Future requirements 57

References 57

IILR4 A method to evaluate the suitability ofrequirements specifications for

offshore projects 59

1 Motivation 60

2 Background and related approaches 62

2.1 Outsourcing, offshoring, and application development based

on the division oflabor 62

2.2 The irnportance of requirements specifications for offshoring 63

2.3 Evaluation approaches fur requirements specifications 63

3 Conceptual basics 64

3.1 Specification quality 65

3.2 Compensation factors 66

4 Design ofthe evaluation method 68

4.1 Procedure for determining the specification quality 68

4.2 Procedure for determining the compensation options 69

4.3 Further refmement ofthe evaluation 70

5 Evaluation 71

5.1 Determination ofthe specification quality 71

5.2 Determination ofthe compensation possibilities and options

for action 73

Contents ix

5.3 Reception ofthe results 74

6 Conclusion 75

References 76

IV Selection 79

IV.R5 Optimal stopping for the run-time self-adaptation ofsoftware systems 81

I Introduction 82

2 Flexible software arcbitectures and matcbing schernes for self-adaptation 83

3 Optimal stopping in two self-adaptation scenarios 85

3.1 Limited number of run-time options 85

3.2 Limited run-time delay 86

4 Application and simulation 87

4.1 Limited number ofrun-time options 87

4.2 Lirnited run-time delay 88

5 Summary and conclusion 90

References 90

IV.R6 Reducing domain level scenarios to test component-based software 91

I Introduction 92

2 Basic assumptions and business modeL 93

3 Constructing linear scenarios 96

3.1 ARIval overview 96

3.2 Process t10w transformation and blocking 98

3.3 Example 102

4 Related work 106

5 Summary and conclusions 108

References 109

V Conclusions and outlook 113

V.I Conclusions 113

V.2 OUtlook 116

References 117

List of figures

I-I

1-2

ILRI-l

II.R2-1

II.R2-2

ILR2-3

III.R3-1

III.R3-2

III.R4-1

III.R4-2

IV.R5-1

IV.R5-2

IV.R6-1

IV.R6-2

IV.R6-3

IV.R6-4

IV.R6-5

IV.R6-6

IV.R6-7

IV.R6-8

"Tripie Constraint" I

Organization of this book 10

Strategie options in the muiti-path process model 19

Multi-path process model 35

Functional evaluation, available packages vs. individual solution 38

Seven case studies of software integration scenarios 40

Success factors fOT clear requirements specifications 49

Risks from unclear scope ofwork descriptions 54

Relation between the specification quality and implementation risks 65

Two-stage, qualitative evaluation process to determine qj 69

Component software architeeture exarnple 83

Possible matching schemes 84

Business model assumption 94

ARIval overview 96

Sequence blocking 99

Split transformation and blocking 100

Join transformation and blocking 101

Iteration transformation and blocking 101

Domain model excerpt 103

Behavioral specification artifact (OCL) 104

List of tables

lI.Rl-l

lI.RI-2

ILRI-3

III.R4-1

III.R4-2

III.R4-3

III.R4-4

IV.R5-1

IV.R5-2

IV.R6-1

IV.R6-2

IV.R6-3

Fundamental reuse strategies 20

Two ideal type market environments 23

Reuse options and market players 29

Process steps ofapplication development (simplified) 62

Compilation ofcompensating factors in offshore projects 67

Graphical representation ofexpected compensation efforts (exarnple) 70

Identified compensating factors and balancing effects 73

Results from simulation experiments for the "limited options" scenario 88

Results from simulation experiments for the "limited delay" scenario 89

Partitions and values 103

"Sunshine path" sequences 104

Related approaches 106

AbbreviatioDs

AHP

aka

ARlval

avg.

BGH

BSS

BU

CAPEX

CC

COTS

CR

CRM
CUA

doi

DSP

DP

DW

dept.

e. g.

EPC

exp.

GoBS

lCT

IDE

IN

IP

IS

ITU

ITU-T

MlS

NGN

OCL

OMG

OSS

PI to P9

PDP-6

Analytic Hierarchy Process

also known as

Abstraction, Reduction, Inclusion and Validation

average

Bundesgerichtshof
(Federal Court of Justice, Gennany)

Business Support System

Business Unit

Capital Expenditure

Call Center

Commercial Off-The-Shelf

Customer Representative

Customer Relationship Management

Cost-Utility Analysis

digital object identifier

Digital Signal Processing

Data Processing

Data Warehouse

department

exempli gratia

Event-driven Process Chain

experiment

Grundsätze ordnungsmäßiger DV-gestützter Buchfllhrungssysteme
(statutory regulations for electronic accounting systems in Germany)

Information and Communication Technology

integrated development environment

Intelligent Network

Internet Protocol

Information System

International Telecommunication Union

ITU - Telecommunication Standardization Sector

Management Information System

Next Generation Network

Object Constraint Language

Object Management Group

Operations Support System

phases from the multi-path process model

Programmed Data Processor 6

xvi

QoS

SEAA

SIG

spec.

TCO

TTCN

UDDl

UK

UML

UnSCom

val.

ver.

VoIP

Z

Quality of Service

Software Engineering and Advanced Applications

Special Interest Group

specification

Total Cost ofOwnership

Testing and Test Control Notation

Universal Description, Discovery and Integration

United Kingdom

Unified Modeling Language

Unified Specification of Components

validation

verification

Voice over IP

Zennelo-Fraenkel notation

Abbreviations

Symbols

<Xl

»

A

E

e
&

F

I

inf

In

max

o
n
p

sup

0'

T

converges to

empty set

infinity

much greater than

approximately equal

0' -algebra

expected value

Euler's number

arbitrarily small positive quantity

distribution function

indicator function

infimum

naturallogarithm

maximum
Landau notation

set ofall elementary events (sampie space)

probability measure

supremum

sigma-operator

c1ass of stopping mies

stopping rule

O. Skroch, Developing Business Application Systems,
DOI 10.1007/978-3-8349-8858-4_1,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

I Introduction

1.1 Motivation and chaUenges

"Better! Cheaper! Faster!" is a battle r;ry in today's economy that sounds across many lines of

businesses, from the investors' desks through executive management levels down to

operational projects (Brandon 2006, p. 4). The three cardinal challenges of this objective are

depicted in the structure of the "triple constraint" triangle illustrated in Figure I-I (Rosenau

1981, pp. 15-18). Some difficulties, however, arise from the dynamics of the "tripie

constraint", from the challenges associated with achieving all three dependent conditions

simultaneously: "Unfortunately, the TripIe Constraint is very difficult 10 satisfy because most

of what occurs during a project conspires 10 pull the performance below specification and 10

delay the project so it falls behind schedule, which makes it exceed the budget." (Rosenau

1981, p. 15).

Perfonnance

t
specification

.'

Cost

.'

,,,,,,,
.. : ;,"

".l,."

Time

F1gure I-I: "TrIpIe CODstraint". Cf. Roseoau (1981, p. 16).

While the "tripie constraint" explicates important aspects of the desire for better, cheaper, and

faster results, the ambition itself has reached IT development processes first among others

(Voas 2001, p. 96; Brandon 2006, pp. 4-6). This can be explained by the high importance of

IT in businesses and administrations. The so-called "business-IT alignment" - a elose and

mutual calibration of business objectives and IT capabilities - has become a necessary

prerequisite for competition and mere survival in many areas (Henderson & VenkatI'arnan

1993, p. 476; Teubner 2006, pp. 368f).

Looking at IT as a whole, we can distinguish between hardware and software. It has attracted

OUT attention for decades that the development of IT electronics and computing hardware

achieves extreme improvements in performance which can also be predicted quite reliably.

2 Introduction

Soon after the integrated circuit had been invented, Moore (1965, pp. 114-117) stated that the

complexity of these integrated circuits will double every or every second year at minimum

component costs. At that time, the opinion of the Intel co-founder Moore appeared too

fantastic to be true. Today, it is considered to be verified and is often referred to as Moore's

Law in the sense of a natural process.

In comparison, the development of software typically starts seemingly harmless and simple,

only to disappoint expectations later - expectations which were set accordingly high by

stakeholders benchmarking on hardware development. Software development is notorious for

delivering poor results, exploding budgets, and missed milestones (Brooks 1987, p.l0;

DeMarco 1997, pp. 1-6; Glass 2006, p.15). When the costs for software exceeded the

hardware costs for the first time in the 1960s, the term of a "software crisis" was coined.

Since then software development has been exposed to a particular criticism: it does not

achieve performance gains according to benchmarks set by the progress in electronics and

computing hardware (Naur & RandeIl 1969, pp. 13f, pp. 65ff; Dijkstra 1972, p. 866). Apart

from technical causes also reasons rooting in the planning and organizing of software

development have been discussed (Martin & Chang 1994, pp. 14f; Glass 1996, pp. 183f).

Chatzoglou (1997, p.627), for instance, underlines the "inadequate project management

caused by a lack of recognising and understanding what the real problems are in carrying out

software development."

Consequently, the desire for new technologies and management methods has emerged, with

the intention to stipulate significant improvements in the development of software and to

achieve productivity gains similar to the benchmarks from hardware development.

The three most significant performance improvements in the history of software development

are described by Brooks (1987, pp. 12f). By introducing higher programming languages in

the 1950s ("Fortran" from IBM), problems from the physical construction of a computer were

eliminated. Higher programming languages abstract software from the basic properties of a

computing machine, such as bit endians or registers. They pass for the greatest progress made

by now. By introducing multi user systems in the 1960s ("PDP-6" from DEC), problems from

the exclusive and sequential use of a computer were eliminated.. Several developers could

work "in parallel" via terminals on ODe computer and could compile and execute their code on

their own. By introducing integrated development environments (IDEs) in the 1970s

("Interlisp" from Xerox), problems from the integration of different tools into a tool chain

were eliminated. Developers had a predefined environment in which the source code was

transformed into executable software. Their "workbenches" included, for instance, editor,

library functions, compiler, linker, binder, and debugger.

Motivation and chal1enges

In this context, object-orientation (Dabl & Nygaard 1966; Meyer 1990; Rumbaugh et al.

1993) is an often discussed concept. Object-orientation allows to represent software on a

higher abstraction level. It is an important advantage that the additional, object-oriented

abstraction concepts enforce an even more systematic development. On the other hand,

object-orientation does not simplify the development, and the essential challenges in

developing software are not rooted in the representation of a solution, but in the solution

itself. Object-oriented methods, therefore, have not generated significant performance

improvements (Brooks 1987, p. 14; Potok, Vouk & Rindos 1999, p. 844; Glass 2005, p. 18).

The greatest productivity gains in software development have so far been related quite closely

to the implementation, and have considerably contributed to recognizing more c1early the

ensuing difficulties which are part of the character and essence of the discipline (Brooks 1987,

pp. llf):

• Extreme complexity. No two parts are equal in software above the source code level. If

they are, they are realized as the same component, the same object, the same module, the

same function and so on. In this way, software systems differ profoundly from other

existing systems. Moreover, software can take extremely many states. A software system

with 300 binary variables is regarded as smalI, but it can take 2300
(:::: 109<) states. These are

about one hundred billion times more system states than the number of atoms in the

observable universe, which is estimated in the range of 1079 today (Wikipedia 2009).

• Arbitrary conformance. Software systems, and in particular application systems in business

and administration, must conform to other human-made institutions, systems, products etc.

at their interfaces. These are arbitrarily defmed cultural artifacts that do not always follow

universal rules and laws that can be explained rationally. Trus is an important difference to

physics, for instance, where high complexity is an issue, too. However, when analyzing

"the other side of the interfaces" physics has an easier task because it encounters

unchanging laws ofnature.

• Constant changeability. In remarkable contrast to other technical systems, software is

regularly changed fundamentally also after having been placed into live operation.

Although the related high efforts and risks are understood and respected when changing

finalized and operating technical products in other domains, for instance, building

reconstructions, changing live software is deemed to be comparatively easy. One reason

might be that software is intangible, not physically touchable, and thus defies an intuitive

comprehension.

• Invisibility. Software systems caonot be visualized properly, because no simple spatial

correspondent is known for the reality of software. Visualization approaches, as weil as

description models without graphical notation, lead to multi-dimensional, mutually

depending levels of descriptions and diagrams. They raise challenging questions as to the

4 Introduction

dependencies and relations between the specified levels and the facts. Cf., for instance,

Overhage (2006, pp. 125-129) for further reading.

Essential difficulties in developing software go beyond its implementation. Parnas (1985,

pp. 1327f) describes fundamental differences between software engineering and other

engineering disciplines, and exposes reasons why software is unreliable in principle. The

argument starts from the basic difference between analog and discrete systems.

Analog systems have infinitely many states (examples include speakers, motors, or radiators).

Their behavior can be described adequately using continuous functions. Such systems are

items of traditional engineering domains, and the related mathematics of continuous functions

is weil understood. Within their operating range, analog systems cannot contain any "hidden

surprises": small input changes a1ways cause correspondingly small output changes. Hence,

reliable behavior of analog systems can be guaranteed by mathematical analysis and

description within the operating range, and by testing to ensure that the system operates

within the defined range. Discrete systems have a fmite number of stahle states. Their

behavior outside of the defined stable states is irrelevant. The earliest discrete systems, before

the modem computer, had so few states that they could be tested exhaustively and therefore

were fully understood without an analytical description (one example is railway signaling

control). The first discrete computer systems a1ready had extrernely many states, but were

made up of identically repeating copies of few subsystem types. Therefore, they could be

exhaustively tested and completely understood, too (an example is the semiconductor

memory). Hybrid systems consist of components that have a small number of discrete states

and, between the few different states, are described by continuous functions (one example is

the diode).

A decisive implication for any system planning and development ongmates from the

modeling of the system types. With analog systems, continuous mathematical functions are

available, but they cannot be applied to discrete system. For software systems we see that:

• different from traditionaI analog technology, they are discrete, therefore they can not be

described using continuous functions and the calculus - actually, there is no simple

mathematicalor logical description method known by now;

• different from computing hardware, their behavior can also not be mastered by full testing

("brote force"), because software systems have extremely many states and no repeating

structure, so exhaustive testing is prevented by the related efforts.

Parnas (1985, p. 1328) recognizes these conditions as "fundamental difference that will not

disappear with improved technology". They originate from the character ofsoftware and must

be considered in the development of software applications, when defining strategic targets,

when arranging tactical plans, and when realizing operational projects. Few fundamental

Motivation and chal1enges 5

approaches seem to appreciate these findings explicitly and thus clearly qualify for driving the

development ofapplication software significantly towards the "tripie constraint" vision:

• Education 0/ experts (Brooks 1987, p.18; Pamas 1985, p. 1328; Wissenschaftliche

Kommission Wirtschaftsinformatik 2003). Acting on the assumption that the differences

between outstanding work and average work are roughly one decimal power (not only) in

software development (Sackman, Erikson & Grant 1968, pp.5f; Boehm 1986, p.596),

maybe the single most prornising approach is to find, educate, support, and advance

motivated and able experts.

• Strategie software reuse (Biggerstaff & Richter 1987; Mili, Mili & Mili 1995; Rost 1997).

"Buy versus make" solution approaches aim at minimizing development tasks by reusing

ready-made (partial) solutions that are already available wherever this is possible. ODe

major challenge is the applicability of extemally sourced components in the own, different

context. Olle to the lack of commonly accepted standards in software engineering, among

other reasons, this applicability cannot simply be assumed today. Poulin (1997, p. 145)

therefore states, "to achieve real results, we must institutionalize reuse", and Mili, Mili and

Mili (1995, p. 529) even describe the concept of reuse as the only realistic solution path,

"That leaves us with software reuse as the only realistic, technically feasible solution: We

could reuse the processes and products of previous development efforts in order to develop

new applications."

• Component- and service-orientation. These solution approaches are based on the "divide

and conquer" principle. They aim at dividing a large task into ever smaller parts, until the

small parts can be solved independently and can then be put together again to make up a

!arge, loosely coupled overall solution. One major cha1lenge is to find the right parts

(components and services). In software engineering, this challenge is already known from

structured analysis (module demarcation) or from object-orientation (object identification)

and systematic, optimizing approaches are being discussed today. From the beginning,

component- und service-oriented approaches have been c10sely interlocked with reuse

concepts (Neighbors 1984, pp. 567f; Sametinger 1997, pp.9ff, pp. 67ft). Component

orientation (Wassermann & Gutz 1982; Szyperski 1998; Brown 2000) and service

orientation (Schulte & Natis 1996; Schulte 1996; Atkinson et al. 2002; Fröschle &

Reinheimer 2007) mainly differ in the reused item. Component-orientation reuses the

components themselves; service-orientation reuses services that are implemented by the

components.

Therefore, the book is motivated from the strategic framework of software reuse, by the

expected advantages of a component- and service-oriented software development approach. In

this context, the main part of the book presents research results that try to contribute to the

progress in developing software application systems.

6 Introduction

1.2 Objectives and focal research questions

Derived from the philosophy of science, the explanation and creation of the objects of

investigation can be regarded as the main tasks in business infonnatics; in addition, the

description and prediction can be named as supplementary tasks; particularly high

significance is attached to the creative task (Mertens et al. 2005, pp. 4f; Heinrich, Heinzl &

Roithmayr 2007, p.21). The creative task builds upon description, explanation, and

pred.iction, and aims at producing a desired target condition.

The objective of scientific investigations in business informatics can be described as

producing findings, theories, methods, and tools for "people-task-teehnology" systems and

infrastructures of information and communication in business and administration; the long

tenn goal is a reasonably full automation (Wissenschaftliche Kommission Wirtschaftsinfor

matik 1994, p. 81; Mertens et al. 2005, p.4; Heinrich, Heinzl & Roithmayr 2007, p. 16,

p.21). In business informatics, contributions that are relevant for practical application and

produce validated and verified findings are particularly desired and required

(Wissenschaftliche Kommission Wirtschaftsinformatik 1994, p. 81).

The research articles that are presented in the main part of this book pursue creative goals

with practical relevance. The contributions propose applicable scientific findings for the

practical advancement of real software development, and thus for the improvement of the

foundations for planning and realizing development tasks for application software systems.

The fol1owing specific research goals have been pursued and the respective focal research

questions examined:

Main part II. strategie framework. article Rl: A theory of software reuse strategies in ideal

type stable and turbulent market environments.

Reuse-driven software development exceeds the boundaries of traditional software

development projects by explicitly incorporating global markets into its value creation chain,

for example, in procurement and sales of reusable artifacts. Therefore, market conditions can

be considered when frarning Iong-term software reuse strategies. Research artic1e RI aims at

supporting and advancing the strategic definition of software reuse approaches by proposing a

theory of their preferences in ideal type market environments. The fol1owing focal research

questions are explored:

• Which fundamental reuse approaches are known?

• Which ideal type market conditions can be distinguished with respect to reuse-driven

application software development?

Objectives and focal research questions 7

Can strategic preferences be derived for certain reuse approaches from the market

environments and if so, which?

Main part 11, strategie framework, article R2: Integration assessment of an individually

developed application vs. software packages from the market - an experience report.

With many and very specific requirements for a highly complex business application system,

the basic decision in practice is often whether to either integrate the solution from

prefabricated products that are available on the market or rather 10 develop an individual

solution. Research article R2 aims at analyzing the strategy of individual development, as

compared to the procurement and integration of business components from the market.

Results from examinations in practical industry projects are presented and examined. The

following focal research questions are explored:

• How weil does an individually developed, large, and complex application system meet its

requirements?

• How weil by comparison are these same requirements met by a collection of software

packages from the market?

• Can the analysis of several "make-or-buy" reference projects provide findings relevant for

the general preference of individual development or procurement and if so, which?

Main part 111, speeijieation, article R3: The importance of requirements specifications for

successful IT projects.

Specif)ring requirements belongs to the most critical activities in software development. It has

always been a demanding challenge and gains a particularly central significance in modern,

divided development work. Research article R3 aims at presenting success factors for the

creation of high quality requirements specifications as derived from practical experience.

These factors can be seen as foundations for a tactical planning. The research article also

presents practical risks that can emerge from insufficient specifications. The following focal

research questions are explored:

• What is the significance of requirements specifications in real software development

practices?

• Which critical success factors can be identified that enable and irnprove the creation of

high quality requirements specifications in software development projects?

• What practical consequences can result from deficient scope of work descriptions,

especially with the division ofsoftware development work?

8 Introduction

Main part llL specification, article R4: A method to evaluate the suitability of requirements

specifications for offshore projects.

Today, globally divided application software development work typically includes offshore

parts in design and programming. The quality of the underlying requirements specifications is

especially important in such an offshore context. Research article R4 presents a method for

the evaluation of requi.rements specifications as to the offshore assignment of downstream

development steps, and employs the method in a large case study embedded into areal

industry project. Tbe following focal research questions are explored:

• How can requirements specifications be evaluated systematically for their suitability in

downstream offshore development steps?

• Which courses ofaction can possibly be derived from the results of such an evaluation?

• Wbat findings can be gained when actually performing such an evaluation in areal

context?

Main part IV, se/ection, article R5: Optimal stopping for the run-time self-adaptation of

software systems.

Already today, certain application systems ("mashups") use (Web-)services that are puhlicly

available on the Internet. In doing so, service calls at run time are opportunistically delegated

to services that are available on the open Internet. Choosing such an extemal service is an

operational challenge, since there can be vast amounts of available service candidates and the

Internet cannot be controlled. Research article R5 aims at improving the operational dynamic

selection of reusable (Web-)services by means of applied mathematical statistics. The

following focal research questions are explored:

• Wbat circumstances characterize the dynamic opportunistic run-time search for suitable

services on open platforms?

• Which assumptions must be made and which methods can be applied to irnprove the search

and the selection under those circumstances?

• What advantages can be expected?

Main part IV, se/ection, article R6: Reducing domain level scenarios to test component-based

software.

Contributions to software testing theory traditionally focus on formal and syntactical issues.

Testing software for its sernantic and pragmatic suitability in a business process - "higher

order" testing on the end-user side - has received comparatively little attention by now. This

difficult operational challenge has high practical relevance though. Research artic1e R6 aims

Objectives and focal research questions 9

at providing methodical support for selecting pragmatically suitable components and services

by proposing a method for early specification checks against business process models. The

following focal research questions are explored:

• How can it be checked if a software solution is suitable from the semantic and in particular

from the pragrnatic viewpoint, assuming an intended support and automation for an end-to

end business process?

• On what basis can such checks be carried out as early as possible in a reuse-driven

software development cycle?

• How can cornplex business process models be reduced to serve as a starting point for the

definition of "higher-order" test scenarios which can easily be interpreted?

1.3 Oassificatioo aod orgaoizatioo

Different proposals for the segmentation of the business informatics discipline into research

areas are being discussed today. Substantial segrnentation proposals include, next to the

philosophy of science-based approach, especially the business management-oriented approach

and the approach with regard to contents (Heinrich, Heinzl & Roithmayr 2007, pp. 21t).

For the classification of this book's contributions, initially the approach with regard to

contents is well-suited, since this approach strongly emphasizes creative research targets. On

the one hand, the contents of the research articles presented in this book have a strong

software engineering relation and therefore can be classified into the (reuse-driven)

deve/opment ofapp/ication software systems, which belongs to the central research topics in

business informatics (Alpar et al. 2008, pp. 287ff; Ferstl & Sinz 2008, pp. 457ff; Heinrich,

Heinzl & Roithmayr 2007, p.23; Mertens et al. 2005, pp. 153ff; Turowski 2003, pp.5f,

pp. 99ft). On the other band, the contents of the research articles can also be understood as

planning topics in the sense of creative and goal-oriented leadership with information

engineering relation, and then they can be classified as information management within

business informatics (Ferstl & Sinz 2008, pp. 433f; Hansen & Neumann 2009, p.240;

Heinrich & Lehner 2005, pp. 7t).

The business management-oriented perception - as weil as the general management science

typically structures tasks with regard to their strategical, tactical, or operational ranges of

consideration (Ferstl & Sinz 2008, p.79, pp. 438f; Hansen & Neumann 2009, p.242;

Heinrich & Lehner 2005, pp.22f; Heinrich, Heinzl & Roithmayr 2007, pp. 216t). This

business management-oriented structure determines the structure of the book's main part.

Figure 1-2 illustrates the organization ofthe book.

i fil *~ ~. • § c ... ~ ... ~

In
tr

o
d

u
c
ti

o
n

ICha
p

te
rI

:
In

tr
o

d
u

ct
io

n
1

0
m

ot
iv

at
io

n,
ch

a
lle

n
g

e
s

11
0

ob
je

cl
lv

es
,f
~1

11
0

cl
a

ss
lfi

ca
tio

n
,

11
re

se
ar

ch
q

u
e

st
io

n
s

o
rg

a
n

iz
a

tio
n

o
fl

h
e

b
o

o
k

M
a

ln
p

a
rt

C
h

a
p

te
r1

1:
S

tr
a

te
g

ic
fr

a
m

e
w

o
rk

\
C

h
a

p
te

r1
1I:

S
p

sc
if

ic
a

lio
n

C
h

a
p

te
rI

V
:

S
e

le
ct

io
n

of
u

n
d

a
m

e
n

ta
ls

of
tw

ar
e

re
us

e
~

o
lm

p
o

rt
a

n
ca

o
fl

'8
q

u
lr

a
-
~

oo
p

tim
iz

e
d

o
p

p
o

rt
u

n
ls

tie
~

a
p

p
ro

a
e

h
e

s
m

e
n

ls
sp

e
cl

flc
a

tio
n

s
a

n
d

d
yn

a
m

ie
se

le
ct

io
n

o
f

o
id

ea
lt

yp
e,

si
m

p
lif

ie
d

oc
ri

tic
al

su
cc

e
ss

fa
ct

or
s

se
rv

ic
es

o
n

o
p

e
n

ne
lw

or
1<

s
m

ar
1<

et
e

n
vi

ro
n

m
e

n
ts

:s
ta

bl
e

vs
.

fo
rt

h
e

ir
cr

ea
tio

n
oa

p
p

llc
a

tio
n

o
fo

pt
im

al
sl

o
p

p
ln

g
tu

rb
u

le
n

t
o

ris
ks

fr
om

In
su

ff
Jc

la
nt

sc
op

e
o

f
a

lg
o

ri
lh

m
s

o t
h

e
o

ry
o

fs
tr

at
eg

ie
p

re
fe

re
n

ce
s

w
or

1<
d

e
sc

ri
p

tio
n

s
o

lm
p

le
m

e
n

ta
tio

n
a

n
d

m
e

a
su

re
-

fo
rs

o
ft

w
a

re
re

u
se

m
e

n
to

la
d

va
n

ta
g

e
s

in
si

m
u

-
la

tio
n

e
xp

e
ri

m
e

n
ts

oa
n

a
ly

si
s

o
fr

eq
ul

re
m

en
ts
~

oa
m

et
ho

d
to

e
va

lu
a

te
th

e
~

o
re

d
u

ct
io

n
01

b
u

si
n

e
ss

~
co

ve
ra

ge
lh

ro
ug

h
in

d
iv

id
u

a
lly

su
ita

b
ili

ly
01

re
q

u
ir

e
m

e
n

ts
pr

oc
es

se
s

d
e

ve
lo

p
e

d
ap

pl
ic

at
io

n
so

ft
w

a
re

sp
e

ci
flc

a
tio

n
s

fo
ro

ff
sh

o
re

oe
xl

ra
ct

io
n

o
fe

n
d

-t
o

-e
n

d
oc

om
pa

ri
so

n
to

re
u

se
d

pr
oj

ac
ts

te
st

sc
e

n
a

ri
o

s
a

p
p

lic
a

tio
n

p
a

ck
a

g
e

s
fr

om
th

e
oc

o
m

p
e

n
sa

tio
n

o
p

tio
n

s
lo

r
o"

hi
gh

er
-<

>r
de

r"
ch

e
ck

s
m

ar
1<

et
d

e
flc

ie
n

ts
p

e
cl

flc
a

tio
o

s
(s

em
an

tic
s,

pr
ag

m
at

ic
s)

01
oa

n
a

ly
si

s
o

fs
ev

er
al

om
ak

e-
<>

r-
oa

n
a

ly
si

s
o

fa
la

rg
e

a
n

d
re

al
sp

e
cl

flc
a

tio
n

s
b

u
y"

re
fe

re
nc

e
pr

oj
ec

ts
w

o
ri

d
oa

se
st

u
d

y
o

e
xa

m
p

le
w

it
h

E
P

C
a

n
d

O
C

L

I
io

n
g

-t
e

n
n

ta
ct

ic
aJ

o
p

e
ra

tio
n

al

C
o

n
c
lu

s
lo

n
s

a
n

d
o

u
tl

o
o

k

ICha
p

te
rV

:
C

o
n

cl
u

si
o

n
s

1
0
co

n
cl

u
d

in
g

su
m

m
a

ry
a

n
d

va
lu

a
tio

n
01

11
0
fu

tu
re

pr
os

pe
ct

s
a

n
d

re
se

ar
ch

11
a

n
d

o
u

tl
o

o
k

re
se

ar
ch

re
su

lts
dl

l'8
ct

io
ns

"0
"0

a.
'"

a.
;

"0
-
l

::I
.

ca
~

g
~

So
::I

.
l:T

o
(
I)

0
al

:J
l:

JC
D

a:
~

ö
e:

2.
~

-6.
'"

"
'a

.'
g

a
.

~
n
~

{
/
)
n

8
t1

l
,<

r
.n

r
.n

__

~
S
'
'
'
'

....
~
t
:
t
8
.
0
'
8

tr
s::

a
I
:
T

'.
~

_
.

CD
-

s»
(")

n
t:I

fi
j

(I
)

-
-

>
~

_
~

':
'l

g.
':S

.
-

§
8

~
~
~
ä
6
:
g
:
~
~

e
.
g
-
~
3
a
.
E
g
.
a
o

10
ft

~
CD

_
.

(I
)

~
f1

t-
+

)

l;l
'

13
p

l:l
::I

ll>
0

:::

~
'"

a.
o'

::l
-

p
;;s

g
.
~
"
0
7
~
'
8
l
l
>
~

o
~

-
n

..
..

..
....

Ei
:

B
§

::I
.

S-
8

6"
~

~
__

~
g.
~

"'g
::2

.
~

'"
~

0
e.

o
'
~

l:l
'

~
:
:
:
r
.
;
3
"

O
'
F
P
~

U
!
0
0
~
:
:
I

O
B

c::
e.

::;.
<

::l
g-

'""
0

o
_

.
t:l

ll>
c:

ll>
C

I
l
"
t
:
J

:
:
S

;
';

C
f
"
"
f
'g

9
:
~
o
S
f
t
a
n
:
:
l

;:::
ll

0
a

(J
Q

'"
_

.
ll>

a.
o

..r
l
J
S
~

g
~
a
:

~
O
'
-
O
'
g
g
,
~
g

o
..

.,
-g

....
<

"
o

t:
tt

,O
..

.
0

S
'
~

g
j;

"
~

a.
o

~
_

li
_

.
~

0
0

g
s
o

a
-

g
...

.
~

::
!l

"O
'"

""
'-

0
''
''

_.
-

So
!!l

.
"0

(J
Q

c
'"

g.
.O

0
0

g.
S·

..
'"

a
q

Ci
{I

)
8

§:
B
~

~
S

'
~

~
&

~
s

~
~

CD
2.

ft
~
.

S
·'

"0
ca

G,
9.

...
'T

l
e1

(I
)

Ö
()

oe.
CD

0
tI

J

In
::t

.
a.

'"
...

S
'

.
t;

.
~

0
!!:

"0
e-

O
Q

li
::

j
p

S
g

_.
•

~
0

n
....

.
rn

~
~

~
J'

l
:
.

er
8

'"
..

g-
'"

p
'"

_.
8

p
~

O
Q

.a

1
'"

0
0

,
..

.
a

...
a

0
!i

g
.

"
'
.
8
"
'
!
!
.
8
~

p
_

.
c
::

'
0

;:
I

f
"
t

(
I)

:
:
;
.

S
~

~
~
.

g
,ö

2
.a

.-
<

a
.(

i

ö J a. g

C1assification and organization 11

The tactical aspects (for which also other names are in use, such as administrative aspects)

concern the short and medium-tenn realization of strategic targets. Tactical aspects can be

subsumed, for instance, in a business, program or project planning. Strategic presets and

defaults are broken down into a structured set of single targets and tasks, and are put to work

to consequently fulfill the strategy. The main topic is the planning and control of the actual

process execution including, among other things, resource management, communication,

reporting, and escalation procedures.

Finally, operaliona/ methods and techniques concretely endorse the perfonning of single

development tasks in day to day business operations where details depend on the situation.

Tactieal parameters help to frame the operational scope of actions and establish a corridor of

options that provides c1earance and flexibility for operational decisions.

Developing application software systems is a complex activity that cannot be rnastered in one

sweep. Instead, the development is structured into a systematic process with consecutive

individual steps. The overall structure of such development processes is outlined in so-called

process models, which can be described as certain phase schemes that provide a structure for

the whole development action. By now, several process models have been discussed in theory

and used in practice. Synopses of established process models can, for example, be found in

the textbooks from Hansen and Neumann (2009, pp. 364-383) or Sametinger (1997, pp. 151

158), specifically for component- and service-oriented development, for example, in

Turowski (2003, pp. 112ft). Not least driven from the success of distributed open source

development projects - such as the Linux operating system or the Open Office application

package - established process models have been scrutinized and broadened as to their implicit

basic assumptions since Raymond (1998) at the latest. An important extension to established

process models towards component- and service-oriented construction principles has been

proposed with the multi-path process model (Ortner 1998, p. 332; Overhage 2006, p. 136).

The multi-path process model can be seen as a meta process model, it appears as an extension

and unification of existing process models aiming at strategie software reuse. In that, the

strategie framework from main part II of this book can be situated within the multi-path

model.

Process models are phase schemes that purport frame conditions for tactical planning and

decision making. In general and coarsely simplified, software development process models

proceed from Lasten (requirements) via Pflichten (architeeture, design) towards

implementation and (acceptance-)testing. The individual steps of the process models can be

(and usually are) iterative, distributed, and supported by accompanying measures, such as

quality assurance or project management. In one way or the other, the specification of

requirements is a central constituent in all important development process models. In fact,

requirernents specification is accepted to be an exceedingly critical step in the software

12 Introduction

development cycle (Alpar et al. 2008, p.294; Sommerville 2001, p.107). Requirements

specifications can even be seen as the single most basic and inevitable foundation for each

kind of a construction process, cf., for instance, Pahl et al. (2003, pp. 9t). The importance of

requirements specifications increases even more in component- and service-oriented

application software development approaches. These approaches propagate black box style

software reuse where dependencies between the reused elements are explicitly specified

(Garlan, Allen & Ockerbloom 1995, p. 25). High quality requirements specifications are

gaining further importance also from the increasing trend towards globally divided software

development work with offshore parts in downstream development steps of design and

implementation phases. From the piethora oftactical issues in the (reuse-driven) development

of component- and service-oriented application software systems, the tactical main part III of

this book, therefore, is concerned with specification.

Taking the customers' demand viewpoint in the component-based mission statement from

Turowski (2003, pp. 9-15), the intention is to procure already existing, extemal components

and services and reuse them in their own context. The identification and selection of

appropriate reusable components and services is one ofthe major challenges then. Therefore,

two different methods for the improvement of component and service selection are proposed

in the operational main part IV ofthis book.

Within the business informatics discipline, this book is in line with the mission statement of

component- and service-oriented development of application software systems (Turowski

2003, pp. 9-15) and with the process elements of respective construction methodologies

(Overhage & Turowski 2008, pp. 112t). Strategic software reuse, hand in band with

component- and service-oriented construction principles, is the starting point and background

theme of this book.

The research articles in the main part of this book are further organized according to the

business management-oriented distinction between strategical, tactical, and operational ranges

of sight. The long-term strategic framework of the main part follows the multi-path process

model of component- and service-oriented development. The tactically focused research

articles of the main part deal with specification as the central and critical part of the

development. The operationally focused research articles of the main part propose methods

for the improved selection of components and services from the demand viewpoint.

References

References

13

Alpar, P.; Grob, H.; Weimann, P.; Winter, R. (2008), Anwendungsorientierte Wirtschaftsinformatik: Strategische
Planung, Entwicklung und Nutzung von Informations- und Kammunikationssystemen, 5th edn, Vieweg,
Wiesbaden.

Atkinson, C.; Bunse, C.; Groß, H.; KOhne, T. (2002), "Towards a general component model for Web-basOO
applieations", Annals ofSoftware Engineering, 13 (I): 35-69.

Biggerstaff, T.; Richter, C. (1987), "Reusability frameworlc, assessment, and directions", IEEE Software, 4 (2):
41-49.

Boehm, B. (1986), Wirtschaft/k:he Software-Produktion, Fotkel, Wiesbaden.

Brandon, D. (2006), Project managementfor modern information systems, IRM Press, Hcrshey, USA.

Brooks, F. (1987), "No silver bullet: Essence and accidents of software engineering", IEEE Computer, 20 (4):
10-19.

Brown, A. (2000), Large-sca/e, component-based deve/opmenl, Prentiee Hall, Upper Saddle River, USA.

Chatzoglou, P. (1997), "Faetors affccting completion ofthe rcquircments capturc stage ofprojeets with different
charaeteristics", Informatlcn and Software Techn%g)!, 39 (9): 627-640.

DeMarco, T. (1997), Warum ist Software so leuer? Und andere MIse/ des Informalionszeitallers, Hanser,
Munieh.

DahI, 0.; Nygaard, K.. (1966), "SIMULA - an ALGOL-basOO simulation language", Communicalions of lhe
ACM, 9 (9): 671-678.

Dijkstra, E. (1972), "Tbe humble programmer", Communications ofthe ACM, 15 (10): 859-866.

Ferstl, 0.; Sinz, E. (2008), Grundlagen der Wirtschaftsinformatik, 6th edn, Oldenbourg, Munieh.

FröschJe, H.; Reinheimer, S. (OOs) (2007), "Serviceorientierte Architekturen", HMD - Praxis der Wirtschafts
informatik, 43 (253).

Garlan, D.; Allen, R.; OckerbloOln, J. (1995), "Architectural mismatch: Why reusc is so hard", IEEE Software,
12 (6): 17-26.

Glass, R. (1996), "Study supports existence of software crisis: Management issues appear to be prime causc",
Journal ofSystems and Software, 32 (3): 183·184.

Glass, R. (2005), '''Silver bullet' milestones in software history", Communicalions ofIhe ACM, 48 (8): 15-18.

Glass, R. (2006), "Looking into the challenges of complex IT projects", Communicalions ofthe ACM, 49 (11):
15-17.

Hansen, H.; Ncumann, G. (2009), Wirtschaftsinfonnalik I: Grundlagen und Anwendung, 10th edn, Lucius &
Lucius, Stuttgart.

Heinrich, L.; Heinzl, A.; Roithmayr, F. (2007), Wirtschaftsinfonnalik: Einführung und Grund/egung, 3'" edn,
Oldenbourg, Munieh.

Heinrich, L.; Lehner, F. (2005), Informationsmanagement, 8th edn, Oldenbourg, Munieh.

Henderson, J.; Venkatraman, N. (1993), "Strategie a1ignment: Leveraging information technology for
transforming organjzatiDos",lBMSystems Journal, 32 (1): 4-16.

Martin, R.; Chang, C. (1994), "How to solve the management crisis", IEEE Software, 11 (6): 14-15.

Mertcns, P.; Bodcndorf, F.; König, W.; Picot, A.; Schumann, M.; Hess, T. (2005), Grundzüge der
Wirlschaftslnformatik, 9th edn, Springer, Berlin.

Meyer, B. (1990), Objektorientierte Softwareentwicklung, Hanser, Munich.

Mili, H.; Mili, P.; Mili, A. (1995), "Reusing software: Issues and research directioos", IEEE Transactions on
Software Engineering, 21 (6): 528-562.

Moore, G. (1965), "Cramming more components onto integrated circuits", Electronk:s Magazine, 38 (8):
114-117.

14 Introduction

Naur, P.; Randell, B. (Hrsg.) (1969), Software engineering: Report on a conjerence sponsored by the NATO
Science Committee, NATO Scicntific Affairs Division, Brussels, Bclgium.

Neighbors, J. (1984), "Tbe draco approach to constructing software from reusable components", IEEE
Transaclions on Software Engineering, 10 (5):564-574.

Ortner, E. (1998), "Ein Multipfad-Vorgehensmodell ftIr die Entwicklung von Inforrnationssystemen - dargestellt
am Beispiel von Workflow-Management Anwendungen", WirlSchajlsinjorma/ik, 40 (4): 329-337.

Overhage, S. (2006), "Vereinheitlichte Spezifikation von Komponenten: Grundlagen, UnSCom Spezifikations
rahmen Wld Anwendung", Dissertation, Universität Augsburg, Augsburg.

Overhage, S.; Turowski, K. (2008), "lngeniewmäßigc Entwicklung von Komponenten, Services und Anwen
dungssystemen: Zum Aufbau einer Konstruktionslehre ftIr die (Wirtschafts-)Informatik", in Heinemann, E.
(cd), Anwendungsinjorma/ik: Die Zukunft des Enterprise Engineering, Nomos, Baden-Baden: 105-119.

Pahl, G.; Beitz, W.; Feldbusen, 1.; Grote, K. (2003), Konstroktionslehre: Grundlagen erfolgreicher Produkten/
wk:klung: Me/hoden und Anwendung, 5th edn, Springer, Berlin.

Parnas, D. (1985), "Software aspccts of strategic defensc systems", Communications of the ACM, (28) 12:
1326-1335.

POIOk, T.; Vouk, M.; Rindos, A. (1999), "Productivity analysis of object-oriented software developed in a
commercial environment", Software Practice und Experience, 29 (10): 833-847.

Poulin, 1. (1997), Measuring software reuse: Principles, practices, and economk: models, Addison Wesley,
Reading, USA.

Raymond, E. (1998), ''Tbe cathedra1 and the bazaar", First Monday, 3 (3).

Rosenau, M. (1981), SuccessjUl project management: A step-by-slep approach with praclical examples, Van
Nostrand Reinhold, New York, USA.

Rost, J. (1997), "Wiederverwendbare Software", WirlSchajlsinjormalik, 39 (4): 357-365.

Rumbaugh, J.; Blaha, M.; Premerlami, W.; Eddy, F.; Lorensen, W. (1993), Objektorientierles Modellieren und
Entwerfen, Hanser, Munich.

Sackman, R; Erikson, W.; Grant, E. (1968), "Exploratory experimental studies comparing online and omine
prograrnming performance", Communications ojIhe ACM, (11) I: 3-11.

Sametinger, J. (1997), Software engineering with reusable componenlS, Springer, Berlin.

Schulte, R. (1996), '''Service oriented' architectures, part 2", Gartner Research ID Number SPA-40I-069,
Gartner, Slamford, USA.

Schulte, R.; Natis, Y. (1996), '''Service oriented' architectures, part I", Gartner Research ID Number SPA·401
068, Gartner, Stamford, USA.

Sommerville, I. (2001), Software engineering, 6th edn, Pearson, Munich.

Szyperski, C. (1998), Component software: Beyond object-oriented programming, Addison Wesley, Harlow,
UK.

Teubner, A. (2006), "IT I business alignmenf', Wirtschaftsinformatik, 48 (5): 368-371.

Turowski, K. (2003), Fachkomponenlen: Komponentenbasierte betriebliche Anwendungssysleme, Shaker,
Aschen.

Voas, J. (2001), "Faster, better, and cheaper", IEEE Software, 18 (3): 96-97.

Wassermann, A.; Gutz, S. (1982), "Tbe future ofprogramming", Communk:ations ofthe ACM, 25 (3): 196-206.

Wikipedia (2009), "Observable universe", accessed on 17 Jul. 2009, http://en.wikipedia.orglwikilObservable_
universe.

Wissensehaftliche Konunission Wirtschaftsinfonnatik (1994), "Profil der Wirtschaftsinformatik", Wirtschafts
informatik, 36 (I): 80-81.

Wissensehaftliche Konunission Wirtschaftsinformatik (2003), Rahmenempfehlung fiJr die Universitätsausbil
dung in Wirtschaftsinformatik, Gesellschaft ftIr Informatik, Bonn.

11 Strategie framework

O. Skroch, Developing Business Application Systems,
DOI 10.1007/978-3-8349-8858-4_2,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

n.Rt A tbeory of software reuse strategies in ideal type stable and turbulent

market environments J

Inereasingly, information systems need to better support objeetives on the overall business

strategy level. Software reuse is a promising eoneept diseussed in development organizations

in this context, since it is one key issue in designing and delivering information systems and

software applieations. Reuse is a higher-level strategy with its scope reaching from beyond

projeet boundaries to global markets. Consequently, market eonditions ean be eonsidered in

software reuse management strategies.

With the ernergence ofmodem, turbulent "high-tech" market environments that eo-exist with

traditional, more stable business eonditions of the "old eeonomy", the following research

artieLe investigates these two different, ideal type market environments, their business

strategies, and related eompositional and generative software reuse options. It investigates

supporting experienee from three large projeets, builds theory, and eoneludes with two

hypotheses on strategie management preferences for software reuse.

Supporting the analysis, the experienees from three large practieal projects are presented.

Consequently, a respective long-term reuse theory is founded and forrnulated in two

hypotheses on strategie management preferenees for software reuse. According to that theory,

generative reuse is preferred rather in traditionaI stahle markets while eompositional reuse is

benefieial rather under turbulent market conditions.

1 Research article Rl: Skroch, 0.; Turowski, K. (2009), "A theory of software reuse strategies in ideal type
stable and turbulent market environments", Proceedings of the 15th Americas Conference on Information
Systems, Association for lnfonnation Systems, 6-9 Aug. 2009, San Francisco, USA: 272.
© Association for lnformation Systems, Atlanta, USA for the original contribution.

18 Strategie framework

1 Introduction and objectives

The paramount relevanee of IS (information systems) for today's businesses is being studied

since many years, and strategies to leverage aligned business value (Henderson &

Venkatraman 1993; Luftman, Papp & Brier 1999) from IS assets have become vital in many

markets. For software businesses it was even mentioned that "value ereation is the final

arbiter of success [...] In partieular, there is a deeper understanding of the role of strategy in

ereating value" (Boehm & Sullivan 2000).

Software reuse is an important and promising strategie approach pursued for applieations and

IS to stipulate, eontribute and align 10 business values. Reuse was recognized as a finaneial

investment (Barnes & Bollinger 1991) and the relative eosts of building IS from reuse, as

opposed 10 building them for reuse, have been studied (Favaro 1991). As mentioned by

Favaro (1996), value based principles for the management ofreuse in the enterprise advoeate

the maximization ofeeonomie value as governing objective. The idea that "business decisions

drive reuse" (poulin 1997) was pointed out. Management proeesses of reuse were

investigated, including the idea that reuse eoncepts evolve with increased investment and

experience (Jaeobson, Griss & Jonsson 1997). Strategie planning and metries ofreuse in large

eorporations were diseussed in detail (Lim 1998).

While reuse offers various options and advantages 1oday, one of the major remammg

ehallenges is "a deeper understanding of when to use partieular methods, based, for example,

on [.,,] business eontext" (Frakes & Kang 2005). This paper proposes a theory on this

subjeet. It investigates strategie reuse options in software businesses and their potential value

propositions in the eontext of two model type market environments with their eore strategies.

Strategie management options in software proeesses ean be explained in the multi-path

proeess model in Figure ILR1-l, based on Ortner (1998) and Overhage (2006). The model

proposes four strategy levels - individual solution, eomponent solution, off-the-shelf solution

and outsoureing. Two levels emphasize overall IS and applieations: off-the-shelf solution

implies the introduetion of COTS (eommereial off-the-shelf) applications, and outsoureing

aims at service level agreements with 3nl party suppliers. Foeus of this theory is on the two

deeper multi-path levels whieh relate to organizations eentered on software development

aspeets: individual solution and eomponent solution. We recognize that these two levels

imply different foeal points for reuse, and we apply a classie distinetion introdueed by

Biggerstaff and Riehter (1987) assoeiating generative reuse and compositional reuse with the

two levels.

With highly specifie features of an individual solution, foeus is on the design and

implementation ofthe new featuresfor reuse, e.g. in other projeets or on global markets. With

eommon features of a eomponent solution, foeus is on IS designfrom reusable eomponents,

A theory ofsoftware reuse strategies in ideal type stahle and turbulent marke! environments 19

e.g. from catalogues or, again, global markets. These two reuse options differ widely in terms

ofmanagement, applicability, and value contribution.

domaln

sttBteglc
development

options

compoeltlonal
reuse
('from' type)

generative
reuse
('fo~ type)

deflclency ._+!!:J operations~ rectlf1cation
(demand) (coverage)

--------+-------
outsourclng solution

--------+-------
off·the..helf solution

--------+-------
component solution

--------+-------
Individual solution

Flgure D.RI-I: Strstegle opdonslD tbe muld-psth proee5s model.

On the business strategy level, management needs (among other things) strong market

orientation for sustaining success. Market conditions purport business objectives; therefore

we examine two different, ideal type business conditions and their respective market player

strategies: defenders in traditional stable rnarkets of diminishing returns and prospeclors in

turbulent "high-tech" markets of increasing returns. We show that underlying competition

styles differ, drive distinct business goals and stipulate different entrepreneurial, managerial,

engineering and administrative decisions (Miles & Snow 1978; Arthur 1996). Therefore,

different value propositions are required, inc1uding specifically also software reuse

approaches.

Combining these considerations, we derive a theory of reuse options supporting business

strategies under the two market conditions. Sirnilar theory building approaches have recently

been taken e.g. to align IS architecture 10 business interaction patterns (Schlueter-Langdon

2003),10 manage IT-enabled decision support in turbulent environments (Carlsson & EI Sawy

2008), or to examine the contribution ofnetwork-based market environments to the domain of

information and communication technology (Rossignoli 2009).

20 Strategie framework

Development ofreasonable theory is a central activity in research and is traditionally based on

a combination of previous theory and literature, common sense and experience, e.g.

(Eisenhardt 1989; Yin 2003). Theory building, as research in its own right, precedes empirical

hypothesis testing. Accordingly, this paper takes first steps first and constructs theory from

the analysis of previously existing theories and literature, and from well-understood cases

from practical experience.

2 Basic software reuse options

Many definitions exist for the concept of software reuse. We give two examples only - "the

degree to which a software module or other work product can be used in more than one

computer prograrn or software system" (IEEE Standards Board 1990) and ''the process of

creating systems from existing software rather than building systems from scratch" (Krueger

1992) - and state that most reuse definitions implicitly suggest the intention to capitalize on

pre-existing assets and knowledge already acquired in the past.

A widely accepted taxonomy proposed already by Biggerstaff and Richter (1987)

distinguishes compositional reuse from generative reuse. This is so elementary that it can

repeatedly be found under other names, e.g. "reuse techniques" (Prieto-Dfaz 1993), or

"software reuse technical tools" (Lim 1998). Table Ir.Rl-l is based on Biggerstaff and

Richter (1987), provides an overview of compositional and generative reuse, and mentions

some of their characteristics.

Reuse Stra~gy

Reused Entity

Nature 0/Entity

Emphasis

Examples

Composltional

building blocks

atomic and immutable, passive

repositories (markets),
composition principles

elass library, Web service,
component

Generative

solution patterns

diffuse and malleable, active

generators,
processes

4th generation language, code
generator, design pattern

Table ILRI-I: Fundamental reuse strategies.

The compositional idea aims at directly reusing binary artifacts from repositories or markets

to put together large applications. The generative method "is based on the reuse of a

generation process" (Sametinger 1997) which is a higher level of abstraction and works

indirectly by generating, part1y automated, software from abstract patterns or models.

Business value creation from software reuse depends upon its field of adoption and the higher

ranking business objectives derived (among others) from market environments. Reuse can for

example reduce the time required to create or modify enterprise applications, providing

A theory ofsoftware reuse strategies in ideal type stahle and turbulent marke! environments 21

increased adaptation capabilities and shortened delivery timescales for the enterprise (Lim

1998). Or, combining individually programmed applications with COTS systems can lead to

optimized application portfolios, delivering higher quality with reduced lifecycle costs to the

enterprise (Orfali, Harkey & Edwards 1996). Therefore strategic management decisions on

reuse can make a difference and require consideration.

2.1 Compositional reuse - building blocks

In compositional reuse, prefabricated artifacts are reused to assemble large applications. The

vision is, eventually, to establish a software components industry. Trus concept can be traced

back to the 1960s (McIlroy 1969). Compositional reuse can be understood from the idea of

modularity in systems theory (Simon 1981) and software engineering (pamas 1972) arnong

others. By assembling modular compounds from smaller sub-compounds that can be designed

independently yet function together as a whole, traditional industries (e.g. electronics,

automotive) have experienced previously unknown levels of innovation and growth, e.g.

Baldwin and Clark (1999). Software businesses set out to follow such success stories through

reusable binary software components (Szyperski, Gruntz & Murer 2002). But buiJding IS

from compositional reuse remains difficult. While component trading has arrived on

(electronic) markets - e.g. for Web services, which can be seen as flavors of compositional

reuse (Atkinson et al. 2002) - it has not become mainstream practice yet. Among the reason

mentioned is the insufficient maturity ofthe software engineering discipline with its particular

absence ofcommonly accepted standards (Hahn & Turowski 2005).

An important managerial issue in compositional reuse is the black box type of access the

reusing party has to the component. Black box reuse employs existing assets in plug and play

style without modification, only on the basis of a specified behavior at the interfaces, e.g.

Brown (2000). Black box style reuse inevitably is restrained by the design that was chosen for

the implementation of the selected components. This design cannot be changed and if a

certain component behaves differently from specific design constraints in the overall IS then

its reuse adds no value, because it rnight be inefficient or even impossible to fit in this

particular component.

2.2 Generative reuse - solution patterns

Leading generative reuse approaches include scavenging, generative programrning, model

driven architecture and product-line engineering. In scavenging (Krueger 1992), fragments of

source code are copied. Generative prograrnming (Czamecki & Eisenecker 2000)

automatically creates software through configuration within a predefined solution space.

Model-driven architecture (Soley 2000) captures core software assets as platform-independent

22 Strategie framework

models and automatically derives the implementations. Product-Iine engineering (Weiss &

Lai 1999) groups IS development around families of products and manages commonalities

and variabilities.

Generative reuse works on a higher abstraction level as compared to compositional reuse, and

in particular it is independent from implementation. It can be explained from the fundamental

idea ofpattern abstractions. Alexander et al. (1977) first presented the pattern approach and

defined "pattern languages" as sets of abstract, well-proven solutions for reoccurring

problems which emerge as the related domain develops. The pattern idea was also embraced

in software businesses for reusing suitable solutions and concepts that have been worked out

and used successfully before. Patterns became widely accepted with object-oriented design

patterns (Gamma et a1. 1995) latest. Pattern abstractions have been identified, descrlbed and

used for many more aspects since then.

Significant managerial issues with generative reuse are its domain specific quality and the

operational difficulties with generators that synthesize software for a target IS. Patterns are

specific for a business, industry, market or domain. They alone lack the implementation

paragraph required for reuse. The generative reuse approach is therefore based on the reuse of

both a (formalized) pattern abstraction and a generative process (automatically) creating the

reused entity from this abstraction.

3 Two Ideal type market environments and tbelr business strategy

Two different model types of market environments can be distinguished as shown in

Table II.Rl-2: traditional stable markets of diminishing returns and turbulent markets of

increasing returns (Arthur 1996). The traditional view on markets as coordination

mechanisms describes development on substitutabLe resources. Players expand in perfect

competition until eventually a stable equilibrium is established that generates small

predictabLe margins with prices at the average production cost. But observations in modem

"high-tech" businesses reveal a different scenario with markets that develop on knowledge

with the first winning mover out of a turbulent uncertainty being able to lock the market into

an instable positive feedback loop thus generating large margins. Following Miles and Snow

(1978), typical players in these two environments can be characterized as defenders and

prospectors.

While real market conditions will rarely reflect one ofthese two ideal sides in full clarity, we

start with a "reductionist" view and acknowledge that both market environments represent

two aspects of reality that fundamentally differ in tbeir underlying economics, tbeir character

of competition, their entrepreneurial, managerial, engineering and administrative problems,

A theory ofsoftware reuse strategies in ideal type stahle and twbulenl markel environments 23

and their related business strategies. They present different challenges for software

management, and consequently for the issue of reuse strategies, 100.

Market Environment

Dynomics

Returns

Proce.ssing

Business Models

Competltive Drivers

Typical Player

Strategy

Tradltional

quitc stahle

diminishing

rcsources

mature, we1l establisbcd

risl< avoidance,
cost control,
quality assurancc

defender with inlemal foeus

constanl intcmal improvemenl at
lowrisk

Turbulent

highly dynamic

increasing

infonnation

cbanging,unprcccdcntcd

innovation,
time 10 marke!,
flexibility

prospector with external foeus

rapid adaptation 10 extcmal
cbangcs

Table ß.Rl-2: Two Ideal type market environments.

3.1 Traditional environments - defenders

Traditional markets reflect the 19th century Marshali view of economic machinery that

processes substitutable resources. Characteristics of such markets are established and steady

market shares in supply, together with noticeable preferences in demand. Most suppliers share

a common level of highly developed technologies, products and services. Collaboration is

weil established, markets "act" as coordination mechanisms and prices reach equilibrium at

the average cost of production, which is stable since it generates small predictable margins.

Often there are accepted quality standards, sometirnes even legally enforced, and de facto

pricing categories for products and services exist.

Agents that get ahead eventually face limitations from rising costs (e.g. resource shortage) or

falling profits (e.g. increased competition). This can be explained from the high maturity

levels that such businesses have passed through. Challenges from unforeseen iunovations are

unlikely and no strategic management issue, since no player is actually able to corner the

market. Stable market environments are associated with the "old economy" of diminishing

returns. A typical player in this environment is the defender organization that devotes primary

attention to improving the efficiency of its existing operations (Miles & Snow 1978).

3.1.1 Defensive internal improvement strategies

In businesses characterized by defensive internal improvement strategies, competitors can

hardly dislodge established players from their positions, and only major market shifts would

create actual opportunities or threats. Management perspectives therefore remain centered on

efficient and well-proven technologies. Defenders are managed towards maintaining stability

24 Strategie framework

and efficiency, while they are not prepared to face changes. Consequently, larger investtnents

are reasonable only for technoLogical problems that remain common and unsurprising for a

longer period (Miles & Snow 1978).

Business strategy is towards avoiding risks and perrnanently reducing costs at high and stable

quality levels. Management steadily improves the repeating processes and sustains slow but

continuous long-term improvement in small steps. This can be achieved by constant internal

optirnization and quality assurance, by planning and hierarchical control (Arthur 1996).

Under stable market conditions, 18 advance continuously, too. A process of successive

rnaturation has flnally resulted in grown and mature legacy applications and a weil practiced

business process routine. Both are weil aligned and efficiently support a stable business. IS

and software applications are regarded as a commodity, and the associated 1T processes have

become routine tasks, too. But there is small and steady market pressure to always slightly

improve competitiveness. Further enhancements on top of the already achieved levels are

therefore very sophisticated features above the estahlished standards.

Management generally prefers reuse to building software from scratch in such environments.

Generative reuse in particular provides more control and promises lower Iife cycle costs

through automation and generators. Patterns for reuse can be discovered (only) in stahle and

repeating processes. The more a certain domain evolves, the more patterns can be discovered.

Documented patterns represent domain speciflc, highly specialized improvement potential to

still deliver lower costs while not decreasing quality. In generative approaches, patterns and

models are explicitly documented and therefore can be tailored during the generative process,

too. The generative process also implicitly improves measurement and control of the

generated software quality.

The time and complexity ofrealizing generative reuse in particular includes the laborious and

difficult formalization of the underlying models and the building of software generators. This

can be acceptahle in this environment, as long as higher optimization levels are reached while

competition remains stahle, and a positive long-time return is assured.

3.1.2 Defenders' dilemma

Managing such defensive strategy faces an important dilemma: with increasing sophistication

ofbusinesses, 18, and application software, further improvement is attended by higher efforts

while at the same time marginal gains decline. Another incremental improvement might

always be found, but the increments become smaller, the related efforts grow, and beyond a

certain point negative returns might result - even with formal models and automation.

A theory ofsoftware reuse strategies in ideal type stahle and twbulenl markel environments 25

Compositional reuse seems no option here since it would assume, as aprerequisite, the

availability of suitable components that provide factual advantages. While it is very likely that

high quality prefabricated components exist in mature markets, it is unJikely that these will

provide any competitive edge. Their functionalities and qualities will be elose to established

de facto standards and therefore they will neither threat (respectively help) an established

player, nor will they provide true, unique advantages to newcomers.

In brief, the analysis of traditional business environments with defensive market players

suggests the theory that management follows low risk optimization strategies and considers

especially the generative reuse option.

3.2 Turbulent environments - prospfXtors

Turbulent markets are described from the outstanding performance of the "high-tech" sector

in the late 1990s (Gordon 2000). Such environments are characterized as ICT (information

and communication technology) driven (Klodt 2001). These markets are only loosely

regulated, highly complex and lUIstable, and face coordination challenges. New goods based

on intangible resources are created rapidly. They alter quicldy and lUIpredictably, and change

during 18 development. Market entry barriers are high: new technologies require significant

up-front engagement with the risk of an lUIcertain outeome.

These markets always change and players and collaborations rapidly ernerge and vanish. But

successful players can grow at high rates and realize excessive margins, since the markets

show "winner-takes-alJ" properties: the first successful mover is able to lock a market for the

own product or service. Turbulent markets spread, because of the increasing importanee of

intangible resources (information, knowledge, ete.), which in parallel becomes widely and

cheaply available (through software, on the Internet, etc.) (Boehm 2005). Most of their

dynamics can be explained in traditional terms and no new strategic textbooks are required

(porter 2001).

We associate turbulent markets with increasing returns environments (Katz & Shapiro 1985;

Eisner 2004). A typical player characteristic for this environment is the prospector

organization that embraces change and shows a strong concern for product and market

innovation (Miles & Snow 1978).

3.2.1 Prospective rapid adaptation strategies

In businesses characterized by prospective extemal adaptation strategies, players meet

changing conditions with own innovations, but TlUI the risk of overextending their resources.

Management focus is on technological flexibility to enable rapid responses, while maximum

26 Strategie framework

efficiency cannot develop. Prospectors are managed to maintain flexibility but may not

optimally utilize their resourees (Miles & Snow 1978).

Business strategy is towards rapid extemal adaptation, as unpredictable situations demand

reactivity and quick response from management. Prospectors are managed as mission-oriented

organizations which compete for tbe next winning business model or technology, and the

winner will take most. Hence it is imperative to enter tbe market first if possible, witb a new

business model and IS that work weil enough to support tbe new business and become widely

accepted (Artbur 1996).

The associated IS are completely new or even not existing yet. Moreover, in turbulent "high

tech" environments tbe IS are often expected to stipulate new business models or support new

business functions for the first time in tbe market. Such ideas permanently appear and vanish

and management has titde indication oftbeir longer term significance.

To still support tbe overall business strategy, tbe organization needs to be primarily managed

towards high flexibility. Flexibility in building IS originates in low developrnent efforts.

Compositional reuse reduces efforts and provides flexibility by assembling IS from ready-to

use components tbat are loosely "plugged" onto frameworks. Management can minimize

overall efforts through skillful demarcation of tbe domain and through covering demanded

features witb existing components where possible. Related IS might then start as component

tapestry, put togetber ad boc to satisfy the current business weil enough. In unstahle domain

parts, tbe IS adopts by exchanging components. In parts that become stahle the IS evolve into

persistent domain specific frameworks.

3.2.2 Prospectors' dilemma

Management encounters tbe main dilemma for prospectors: tbe IS Iife cycle is unknown

beforehand. Many ideas for new products and services are brought forward but tbeir

commercial prospects can hardly be predicted. Organizations need to be prepared to start over

from zero again and again, chasing new ideas as tbey appear. At the same time, if a business,

product or service survives, supporting IS that were quickly plugged together might have to

be sustained, possibly over a longer period of time, until they are eventually either replaced or

become properly institutionalized.

Generative reuse seems no option here since there is Iittle maturity in these continuously

changing environments and few if any patterns can be identified. A situation will rarely

reappear, and the successful reuse ofpattems is unlikely. Also the amount oftime and etTort

required to prepare and maintain formal models and generators opposes the business strategy.

A theory ofsoftware reuse strategies in ideal type stahle and twbulenl markel environments 27

In brief, the analysis of turbulent business environments with prospective market players

suggests the theory that management follows fast external adaptation strategies and favors

especially the compositional reuse option.

4 Supporting experience: projects from practice

We support OUT assumptions through three selected projects which we were involved in

between 2000 and 2005 (the reports bad to be made anonymous, which does not affect their

arguments). The experience provides valid substantiation for OUT suggestions. This is not

meant as empirical evidence to test OUT theory, which is a subsequent step after having

derived reasonahle hypotheses in the first place. But it is a core element in theory building, as

described e.g. by Eisenhardt (1989).

4. J Stahle environment - fraud detection

A multinational corporation was working in a holding-type structure with one head quarter

and several operative units on two continents. The head quarter received management reports

from all units in a central reporting database. This procedure was highly standardized, most

steps were automated. Certain reappearing irregularities in the figures were found manua1ly

and management suspected a new type offraud. A self-Ieaming fraud deteetion tool was used

as part of the IS since long on all reporting figures as part of the daily processes. This tool was

made individually for the firnt, but it failed to identify the new fraud type.

No functionality recognizing this specific irregularity was available as prefabricated solution.

No market demand for such highly specific feature existed, hence no supply either. The

feature was then implemented individually to enhance the existing IS, which could deal with a

whole new fraud c1ass afterwards. The implementation also used existing software automation

tools for generating code skeletons.

In this stahle environment, generative reuse worked well on a bespoke functionality, its

pattern abstraction, and the partly automated generation of software from that ahstraction.

Compositional reuse would have failed because no component existed for the highly specific

requirement.

4.2 Turbulent environment - software simulator

One of the leading diversified corporations world-wide acquired a base technology patent and

created a business case for it. The new technology had to be simulated by software first, to

prove that the technology works in principle and to c1ear the budget for a physical prototype.

28 Strategie framework

A number of simulation software product suites were available on the market. The actual

simulation requirernents were not fu11y understood and it was expected that they would

change during development. Coding from scratch was recognized as inevitable for most parts

ofthe simulation core. But for the general parts ofthe simulator, e.g. user interfaces, random

number generation, scenario logging and replay, etc., standard components could be found

and put together. Meanwhile, a11 specific new functionality was developed from scratch.

In this "high-tech" business situation, compositional reuse worked well 10 quickly deliver

unspecific functions, while coding from scratch was minimized to the new features.

Generative reuse would have failed because it is impossible to identify patterns and

implement a generative process for a solution that is unknown at development time.

4.3 Hybrid environment - portal architeeture

A !arge multinational publisher ran its print products business very successfu11y since

decades. Business was managed decentra11y, and each subsidiary bad own IS landscapes

consisting of COTS and a number of individually created tools. The situation was stable and

the IS worked nicely in the absence of !arger changes.

Following the shift in publishing markets towards digital content, new IS became necessary.

Prefabricated portal components available on the market were p1anned 10 encapsulate the

back-office legacy. Sma11 individually designed back-office amendments, mainly in the form

of adaptors, were 10 enable inter-operability. The implementation approach was 10 realize the

cbanges in one reference environment, and to reuse trus as blueprint in the other subsidiaries.

Market changes shaped a complicated hybrid situation with the traditional business still

running while an uncertain new business had 10 be realized. The target IS was based on

compositional reuse to provide new functionality for the new business lines, and generative

reuse to encapsulate legacy applications supporting the traditional businesses.

5 Concluding hypotheses, limitations and further steps

We investigated software reuse strategies and saw that there are two fundamental options for

organizations building software applications for !arge IS: compositional reuse based on

assembling prefabricated components, and generative reuse based on models, patterns and

generators. We also investigated two ideal type business conditions, stable and turbulent, each

with typical players, defenders and prospectors, with their typical business strategies.

Combining the concepts, we argued that generative reuse is more likely to yield value for

defenders in traditional stable environments where marginal gains are low and improvements

A theory ofsoftware reuse strategies in ideal type stahle and twbulent market environments 29

difficult to achieve. In contrast, we argued that compositional reuse is more Iikely to be useful

for prospectors in turbulent businesses because it is faster. We strengthened OUT argument

with experience from three selected projects, not as a test oftheory but as one step in building

reasonable theory in the first place. Essentially, we believe that successful software reuse

management delivers low risk improvements for defensive business strategies rather through

generative reuse concepts, and short time-to-market for prospective business strategies rather

through compositional reuse approaches.

We can state this as two hypotheses now:

• Generative reuse is an adequate strategie software reuse management option in traditionsI

stable markets characterized by defender organizations.

Compositional reuse is an adequate strategie software reuse management option in

turbulent dynamic markets characterized by prospector organizations.

Table ILRI-3 briefly sums up the synthesis of the hypotheses. Managerial implications

include the need to assess the type of market environment for tbe considered business,

product, or service, with their supporting IS. With the type of market environment as one

influence factor, management could then derive an unspecific preference for a software reuse

strategy option.

Market Phzyer Defeoder Prospector

Marker environment traditional turbulent

Strategie focus coostanl intemal improvemenl at rapid adaptatioo 10 extemal
lowrisk opportunitics and threats

IS anti software grOWD lcgacy systems, highly ad hoc I none, frameworks
applieations cvolved

Reuse objeclives well-underslOod and proven low developmeol efTons, being fast
patterns, improvemeol in small aod "good eoough"
incremeots

Dilemma declining cosl-benefit ratio unknown system life cycles

Preferred reuse straJegy generative compositional

Table II.Rl-3: Reuse optioos aod market playen.

Our theory is limited by the fact that real situations show highly complex, multifaeeted

markets, businesses, IS, and software applications, with a growing importance of increasing

returns effeets (Boehm 2005; Samavi, Yu & Topaloglou 2009). The model type market

environments - whieh we deliberately bad 10 assume 10 find a ''reduetionist'' starting point for

theory development - are only weak approximations of real market eonditions. Moreover,

there are other irnportant factors influencing strategie software reuse decisions apart from

market environments, whieh is also out of seope of the present theory. Further lirnitations

30 Strategie framework

come from the fact that real Iife management alternatives are seldom fully confined model

type options, and e.g. L10rens et al. (2006) reason about advantages of a holistic "incremental

software reuse" theory (without framing it concretely). Furthermore, as we saw in the hybrid

environment case, traditionallines ofbusiness can (and often do) exist 10gether with turbulent

businesses in ODe company. Management could e.g. separate out the domains, but OUT present

strategie hypotheses do not focus on related operational issues. The hypotheses are no broad

software reuse strategy guide, but a step towards recognizing adequate strategie reuse

preferences that suggest themselves in opposing market environments. Finally, OUT theory is

only constructed by now and not empirically COnflfDled yet. Main contribution of this work is

that we could constitute - by reasonably reducing considerations - two concrete hypotheses of

software reuse management sttategies in different market environments. This qualitative

theory building approach can now be expanded by a quantitative approach 10 challenge the

theory and 10 establish reconfinned ex-ante management strategy support as also ex-post

assessment frameworks that can help to approxirnate the diligence of software management

strategies.

References

Alcxander, c.; Ishikawa, s.; Silverstein, M.; Jacobson, M.; Fiksdah1-King, 1.; Angel, S. (1977), A pattern
language: Tawns. buildings. canstroction, Oxford University Press, New York, USA.

Arthur, B. (1996), "Increasing returns and the two worlds of business", Harvard Business Review, 74 (4):
100-109.

Atkinson, C.; Bunse, C.; Groß H.; KOhne, T. (2002), "Towards a general component model for Web·based
applications", Annals o/Software Engineering, 13 (I): 35-69.

Baldwin, C.; Clark, K.. (1999), Design rules valurne I: TM puwer 0/modularity, MIT Press, Cambridge, USA.

Barnes, B.; Bollinger, T. (1991), "Making reuse cost-effective", IEEE Software, 8 (I): 13-24.

Biggerstaff, T.; Richter, C. (1987), "Reusability framework, assessment, and directions", IEEE Software, 4 (2):
4149.

Boehm, B. (2005), "The future of software processes", Unijjling the software process spectrum: Proceedings 0/
the international software process workshop: Revised selected papers, Lecture Notes in Computer Science
3840, Springer, 25-27 May 2005, Beijing, China: 10-24.

Boehm, B.; Sullivan, K. (2000), "Software economies: A roadmap", Proceedlngs 0/ the 22"" international
con/erence on software engineering: Future 0/software engineering trock, ACM, 4-11 Jun. 2000, Limerick,
Ireland: 319-343.

Brown, A. (2000), Large-scale. componen/-based developmen/, Prentice Hall, Upper Saddle River, USA.

Carlsson, S.; EI Sawy, O. (2008), "Managing the five tensions of IT-enabled decision support in turbulent and
high-velocity environments", Information Systems and e-Business Management, 6 (3): 225-237.

Czarnecki, K..; Eisenecker, U. (2000), Generative programming: Methods, tools, and applications, Addison
Wesley, Boston, USA.

Eisenhardt, K.. (1989), "Building theories from esse study research", Academy 0/Management Review, 14 (4):
532-550.

Eisner, W. (2004), "Tbe 'new' economy: Complexity, coordination and a hybrid governance approach",
Interna/ional Journal 0/Sodal Economics, 31 (11/12): 1029-1049.

A theory ofsoftware reuse strategies in ideal type stahle and turbulent marke! environments 31

Favaro, J. (1991), "What price reusability? A case study", ACMSIG Ada - Ma Leiters, 11 (3): 115-124.

Favaro, J. (1996), "Value based principles for management of reuse in the enterprise", Proceedings 0/ the 41h

international con/erence on software reuse, IEEE Computer Society, 23·26 Apr. 1996, Orlende, USA:
221-222.

Frakes, W.; Kang, K. (2005), "Software reuse research: Status end future", IEEE Transactions on Software
Engineering, 31 (7): 529-536.

Gamma, E.; Helm, R.; Johnson, R.; V1issides, J. (1995), Design patterns: Elements 0/reusable object-oriented
software, Addison Wesley, Boston, USA.

Gorden, R. (2000), "Docs thc 'Ncw Economy' mcasure up 10 thc great inventions of thc past?", JoumaI of
Economic Perspectives, 14 (4): 49-74.

Hahn, H.; Turowski, K. (2005), "Modularity of thc softwarc industry: A modcl for thc usc of standards and
alternativc ceordination mcchanisrns", International Journal ofIT Standards and Standardization Research,
3 (2): 68-80.

Henderson, J.; Vcnkatrarnan, N. (1993), "Strategie alignmcnt: Lcvcraging information technology for
transfonning organizations", IBMSystems Journal, 32 (I): 4-16.

IEEE Standards Board (1990), IEEE standard glossary ofsoftware engineering terminology, IEEE, New Yorlc,
USA.

Jacobson, 1.; Griss, M.; Jonsson, P. (1997), Software reuse: Architecture, process and organizationfor business
success, ACM Press, New York, USA.

Katz, M.; Shapiro, C. (1985), "Network externalities, competition, and compatibility", American Economic
Review, 75 (3): 424-440.

KJodt, H. (2001), "The essence of the new economy", Kiel DisCIISsion Paper 375, Kiel Iostitule for World
Economics, Kiel.

Krocgcr, C. (1992), "Software reuse", ACMComputing Surveys, 24 (2): 131-183.

Lim, W. (1998), Monaging software reuse, Prentice Hall, Upper Saddle River, USA.

Luftman, J.; Papp, R.; Brier, T. (1999), "Enablers end inhibitors ofbusiness-IT alignrnent", Communications of
the Associationfor Information Systems, I: 11.

L1orens, J.; Fuentcs, J.; PriclO-Dfaz, R.; Astudillo, H. (2006), "Incremcntal software reusc", Reuse of off-the
shelf componenlS: Proceedings 0/ the <jlo international conference on software reuse, Lccture Notes in
Computer Science 4039, Springer, 11·14 Jun. 2006, Turin, ltaly: 386·389.

Mcllroy, M. (1969), "Mass produced software components", Software engineering: Report on a conference
sponsored by the NATO Science Committee, NATO Scientific Affairs Division, 7-11 Oel. 1968, Garmisch:
138·155.

Milcs, R.; Snow, C. (1978), Organizational strategy. structure, andprocess, McGraw Hili, New York, USA.

Orfa1i, R.; Harkey, D.; Edwards, J. (1996), The essential dislributed objects survival guide, Wi1ey, New York,
USA.

Ortner, E. (1998), "Ein Multipfad-Vorgehensmodell flir die Entwicklung von Informationssystemen - dargestellt
am Beispiel von Workl1ow-Management Anwendungen", WirlSchqflSinformatik, 40 (4): 329-337.

Overhage, S. (2006), "Vereinheitlichte Spezifikation von Komponenten: Grundlagen, UnSCom Spezifikations
rahmen und Anwendung", Dissertation, Universität Augsburg, Augsburg.

Parnas, D. (1972), "On the criteria 10 be used in decomposing systems inlO modules", Communications of the
ACM, 15 (12): 1053-1058.

Porter, M. (2001), "Strategy and the Internet", Harvard Business Review, 79 (2): 63-78.

Poulin, J. (1997), Measuring software reuse: Principles, practices, and economic models, Addison WesIey,
Reading, USA.

Prielo-Diaz, R. (1993), "Status report: Software reusability", IEEE Software, 10 (3): 61-66.

Rossignoli, C. (2009), "Tbe contribution of transaction cest thenry and other network-oriented techniques lo
digital markets", Information Systems and e-Buslness Management, 7 (I): 57-79.

32 Strategie framework

Samavi, R.; Yu, E.; Topaloglou, T. (2009), "Strategie reasoning about business models: a eonceptual modeling
approach", Information Systems and e-Business Management, 7 (2): 171-198.

Sametinger, J. (1997), Software engineering with reusable componenlS, Springer, Berlin.

Sehlueter-Langdon, C. (2003), "Information systems arehiteeture styles and business interaction patterns:
Toward theoretie correspondence", Information Systems and e-Business Management, 1 (3): 283-304.

Simon, H. (1981), The seiences ofthe artificial, MIT Press, Carnbridge, USA.

Soley, R. (2000), "Model driven arehiteeture: Objeet Management Group white paper", OMG, Needham, USA.

Szyperski, C.; Gruntz, D.; Murer, S. (2002), Component software: Beyond objecl-orienled programm/ng, 2nd

edn, Addison Wesley, London, UK.

Wciss, D.; Lai, C. (1999), Software producl-line engineering: A family-bosed software development process,
Addison Wesley, Reading, USA.

Yin, R. (2003), Cose study research: Design and melhods, 3rd edn, Sage, Thousand Oaks, USA.

O. Skroch, Developing Business Application Systems,
DOI 10.1007/978-3-8349-8858-4_3,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

n.R2 Integration assessment of an individually developed application vs. software

packages from tbe market - an experience report 1

The following research article presents the examination of the results from an IT strategy

project performed by a team of consultants from the software engineering sector for a large

client in the communications business. The client requirements sketched a highly integrated,

inter-organizational business support system. The examination of the project results focus on

the "make-or-buy" assessment of individual application software development, as compared

to alternative courses of action based on the reuse and integration of software packages and

components which are available on the market.

Two main fmdings are achieved in this paper. First, within twenty functional requirement

areas analyzed and compared, advantages could not be found for integrating individually

developed software, but for software purchased on the market instead. Second, a selection of

seven comparable case studies, despite of being relevant for the client's development and

integration scenario, have not conveyed a conclusive pieture pro or con individually

developed software - suggesting that further critical success factors exist.

2 Research article R2: Skroch, O. (2006), "Integration assessment of an individually developed application vs.
software packages from the market - an experience report", Integration. Informationslogistik und Architektur:
Proceedings DW 2006, Lecture Notes in Informatics P-90, Gesellschaft fllr Informatik, 21-22 Sep. 2006,
Friedrichshafen: 329-340.
© Gesellschaft für Informatik e.V., BonD, Germany for the original contribution.

34 Strategie framework

1 Introduction and setting

National monopolist providers still dominate fixed wire telecommunications landscapes in

many parts of this world. NevertheJess the overall picture started changing since some years,

with regulatory bodies promoting privatization and competition, and further players entering

the markets put pressure on the incumbents. This has been examined in a survey on the

implications ofEU (European Union) legislation on telecom providers in the new EU member

states (Ewers et al. 2004). Hence, especially communications suppliers that are still

monopolists in their markets today have started preparing for a competitive future, e.g.

Pyshkin (2003).

One of the core competitive assets in the supply of communications services are information

systems. Here, providers typically make the distinction between OSS (operation support

systems) and ass (business support systems). In most defmitions, OSS includes all systems

that are directly related to the telecom networks themselves and their technical processes,

such as network management or IN (intelligent network) platforms. ass, on the other side,

include the downstream applications less directly related 10 network technology and mainly

driven by business needs. Typical examples for BSS functionalities include billing, CRM

(customer relationship management), or order processing. The actual mapping of a system or

component can be ambiguous and is also subject 10 change with the NON (next generation

networks) trend or the spread of voice over IP (internet pro1Ocol), e.g. Skroch and Turowski

(2006). Further topical insight provide for example the lTU-T (International

Telecommunication Union - Telecommunication Standardization Sector) Recommendations

M Series.

Compared 10 OSS, the ass area is much less standardized - even very few accepted industry

standards exist. BSS functions are significantly more complex and intertwined, and are

expected 10 be very weil aligned 10 fully integrate the respective providers' businesses.

Furthermore, many parts of the ass in telecoms need to be high-availability and high

performance systems. Finally, many ass functions are subject to rapid, unexpected and

market-driven change, in particular as 10 the fast implementation of new marketing ideas. ass
suppliers providing respective carrier-grade software systems form a highIy fragmented

market, e.g. Frost and Sullivan (2003), and many telecom providers, especially the very large

ones, still have major parts of their ass individually developed. Traditional individual

software development, however, faces more and more constraints, and related considerations

continue in theory as well as in practice (Taubner 2005).

To master this software challenge, next 10 others the concept of compositional reuse

(Biggerstaff & Richter 1987) integrating prefabricated business components traded on

markets (Turowski 2003; Szyperski 1998) is pursued in theory and practice since long. It can

Integration assessment of an individually developed application vs. software packages from the market 35

be seen as complementary alternative to traditional approaches such as individual

development today. As early as in 1969 software components were proposed, with catalogues

of software parts that can be retrieved and composed to large applications, similar as

electronic parts (McIlroy 1969). Later it has even been stated that reuse is the "only realistic

approach" to meet the future software needs (MiIi, Mili & Mili 1995, p. 528).

Important differences in development and integration approaches, and specifically also

peculiarities of procured solutions, component solutions and individual solutions, can be

explained in the flexible multi-path process model in Figure II.R2-1. Four developrnent levels

are presented in the model. One or more of the levels can be chosen to satisfy an identified

requirement through information systems support.

applicatJon
domaln

appllc:atJon
development

large-scale
development

small-scale
development

identified
requirement

-------------
outsourcing

-------------
off-the-shelf solution

-------------
c:omponent solution

-------------

individual solution

satisfied
requirement

Figure ILR2-1: Multi-path process model. Becker and Overhage (2003, p. 19), based on Ortner (1998, p. 332).

Individual solution for component design means coding programs to implement the features

the so-called "small-scale development"; component solution for system design means that

features are covered by composing existing components into a respective configuration - the

so-called "large-scale development". Off-the-shelf solution means migrating to standard

applications and stabilizing them; outsourcing means defining service level agreements and

contracting 3nl party suppliers.

36 Strategie framework

In the experience report presented here, the client wanted to reoonsider a strategic IT decision

that can be explained as a choice for a development level in the multi-path process model. The

client was a very large national teleoommunications monopolist, and one of the leading full

service oommunications providers in the whole region. The client's firm was a multi-company

corporation and offered an extensive product and service portfolio including landline and

mobile voice communications, data oommunications including the Internet, oomplex and

custom made corporate solutions, call centers, software development, clearing house services,

sea cables and satellite operations, pay TV, smart card manufacturing, etc.

The mission of the client was to replace most parts of the existing home-grown BSS tapestry

with a fully integrated corporate wide (Le. inter-organizational) solution. To realize this, the

client started to individually develop respective software from scratch. This process

commenced about two years before the reported IT strategy consulting project. The mission

bad top level management attention at any time, but it still had repeatedly missed its deadlines

and had failed to deliver. The corporation fmally engaged the consultant to assess the ongoing

development, to create an alternative planning based on the integration of software produets

procured on the market, and finally to compare the running ''Make'' integration project with

"Buy" integration planning expected from the consultant.

2 Project approach and selected results

The client wanted the oonsultant to support a strategic IT decision regarding the integration of

the new BSS solution: oontinuation of the long running individual development mission that

had repeated1y failed to deliver, or switching to the integration of ready-made solutions

bought on the market. The client's core drivers for the intended BSS solution were, in order of

decreasing relevance: functionality, flexibility, risks, oost, and time to market.

The retrieval and generation of decision relevant information by the consultant was structured

in several work areas, among thern the following two whicb can be presented in more detail in

this paper:

• Functional comparison ofavailable packages.

• Integration scenario case studies.

The oonsulting was based on the information provided by the client for tbe ongoing

development and integration project creating a bespoke solution, and on the consultant's

expertise in integrating systems made from predefined parts.

Integration assessment of an individually developed application vs. software packages from the market 37

2. J Functional comparison 0/available packages

The consultant created a comparison between the functionalities provided by five packages

available on the market, and the functionalities of the intended individually developed

solution. Olle to the very broad scope of required functionality, the five market packages

chosen by the consultant each consisted of vendor package offers made up from a number of

each veodor's products plus further pre-selected compooeots plugged 00 top.

Basis for the functional evaluation were the client's extensive requirements specifications that

had been created to develop the intended bespoke solution from scratch. The classificatioo of

all requirements into 20 high level characteristics, or feature sets, were based on these

requiremeots specifications and were created by the consultaot together with the client. The

final feature sets covered quite the complete range ofbusiness support that a large full-service

communications provider needs. The consultaot's experience and some theoretic suggestions

from literature (Tarn & Tummala 2001) complernented the requirements where it was

necessary. To give an idea, the feature sets were for exarnple payments management,

workforce management, product and service management, etc.

The evaluation itself was based on a detailed questionnaire with roughly 1'200 single

assessment items which were derived directly from the feature sets. The assessment items

measured, within each feature set, if the requirements element io question was fulfilled by the

examined solution, or not. The positive items inside a predefmed feature set were counted and

the percentage against all items in the feature set was calculated. In Figure II.R2-2, this

overall percentage of fulfillment shown as distance from the center of the diagram, with the

20 feature sets shown as segments of the circle.

The survey was conducted by filling in the questionnaire for each of the five packages from

the market plus the individual solution, and this exarnination was done for each of the six

ana1yzed solutions aod for each feature set. In Figure II.R2-2, the result of this evaluation is

shown. The strong dashed line represents the functional scope of the individual development

and the five thin lines each represent the functional scope of one package that could be

procured on the market.

The largest differeoce between the best package from the market aod the individual solution

with a major discrepaocy of 36 percentage points difference (feature set no. 11) was in

disadvantage of the bespoke solution. The second largest difference (no. 18), with 22

percentage points from the leading market package, was again in disadvaotage of the

individual development. The third largest difference (no. 12), with 17 percentage points from

the leading market package, was again in disadvantage of the individual development. Out of

the 20 characteristics assessed, ten favoured one or the other package solution aod six

favoured the individual solution, with four draws. Depending on the actual metrics used for

38 Strategie framework

comparison, the result can look a little different but is always in favour of the packages from

the market.

... ·lnd.Sol.
_P1

-----+---- P2
-PS

-----k- P4

--P5

16

11

Figure II.R2·2: Functional evaluation, avaUable packages VI. individual solution.

6

Note that the individual solution initially was expected to cover a11 feature sets extremely

weIl, since the feature sets were defined from the original requirements that also drove the

development of this very solution. Note further that the five package solutions represented

functionality that was actually available, while the individual solution was an unfmished work

in progress at the time of the analysis, and the recorded functionality was the system's

intended functionality once development work was completed. Against initial expectations,

this comparison indicated that the functionality of software packages from products and

components available on the market had a better fit with the client's requirements than the

bespoke solution developed specifically for these requirements.

Discussing the results of this functional evaluation, the dient perceived the following core

topics as also influencing the decision:

Integration assessment of an individually developed application vs. software packages from the market 39

Complexity. "Components tend to be complex because they implement many features, or

because the features are difficult to implement properly, or both. Complexity arises from the

fact that a component vendor must convince us that it is better to buy the component than it is

to build it."

Dependency. "Producing high-quality implementations is an expensive and in business terms

risky undertaking. It is obvious, then, that component vendors strive to make us depend upon

their components to protect their revenues as we purchase software support and component

upgrades. Thus cornponents tend to be highly product-specific, and also the all-important task

ofintegrating different components becomes more difficult."

Hyper-competition. "In the component industry successful features are quickly copied by

competitors. This forces the original vendor to seek new ways to differentiate its component,

leading to a new round of innovation, and so forth. The hyper-competitive nature of the

component market made comrnercial software technology reach capabilities today that could

only be dreamed of only few years ago. However, such pace of innovation ensures that

whatever component competence we obtain is sure to become stale within surprisingly short

time. Component competence, then a key organizational asset, wastes rapidly in a hyper

competitive environment."

Double constraints. "A fully integrated system made from available components is

constrained twice: first by requirements of our end-users and second by capabilities of

available components. Today it is almost certainly hopeless to assume that somewhere in the

marketplace we find a collection of commercial products that happen to fit perfect1y with our

needs." This perception is interesting especially vs. the evidence ofthe functional evaluation.

Pragmatism. "Component evaluation has a new element of pragmatism. We assess requisite

functional capabilities that we need, but we also look at what else the component might do.

An unexpected and useful feature might lead us to reconsider the overall system design."

2.2 Integration scenario case studies

The consultant provided seven comparable case studies of renowned incumbents describing

their choice between "Make" or "Buy" based integration. The consultant selected the different

scenarios from references comparable with the client's situation.

Figure ILR2-3 shows the case studies, indicating the classification as developrnent or

procurement of software, a classification of the overall project success, and also the project

size (symbolic). Three ofthe described cases were "Make" integration scenarios (Al, A3, A6)

and four cases were "Buy" integration scenarios (Al, A4, A5, A7). Five of the projects

40 Strategie framework

reached the objectives (AI, A3, AS, A6, A7) and two did not (Al, A4). These case studies

were intended to support a concrete client in an actual decision. They do not bear any

statistical significance since they were no random sampIe but deliberately cbosen to matcb

with certain aspects of the client's situation. This means also that conclusions such as "bigger

projects tend to fail more often" should not be drawn from the case studies.

L..--- '-- --'

~ ~----~-----------------~-----_.._--------------I
I
I

i 8 @@
I
I
I

r-- I Objectives not reached

o
Objectives reached

GGG

Figure D.lU-3: Seven ease studies of software lntegradon scenarios.

AI had been chosen because the company bad a very high number of IT staff in relation to the

total number of employees. Al integrated an externally procured system for business

customers, introducing also the new business processes enabled by the new system in parallel.

The "Buy" decisions were gready based on the internal development units not being able to

realize the project within the necessary time frame. Tbe project succeeded but the original

timing could not be kept, mainly due to migration problems from unexpectedly low source

data quality and poor and missing documentation ofthe source systems.

Al had been chosen because the company had approximately the size ofthe client in terms of

employees and customers. The intended "Make" solution was based on the re-engineering and

functional extension of an existing and inherited proprietary system. In A2, the new system

went live at the deadline and worked successfully and error-free due to a sophisticated and

elaborate testing from the very beginning. However, the system initially did not deliver its full

functionality - in fact, significandy less functionality was available than in the old system

before, making users truly unhappy. The intended functionality could only be realized in a

number offollow-on releases.

A3 had been chosen because the intended individual solution was very similar to a part of the

client's existing IT structure. The solution was built on individually developed software added

Integration assessment of an individually developed application vs. software packages from the market 41

up with few small extemally procured and proprietary products. A3 objectives were mere

technical, not functional, including a massive performance improvement of bateh throughputs

and online response times, and A3 succeeded with a "Make" approach on a very 10w budget.

An extended plan of introducing at the same time functional extensions was blocked by IT

management due to limited development resources intemally and on supplier side.

A4 had been chosen because the company had a size and structure very similar to the client's.

The intended integration in A4 was pure "Buy" with a mixture of products bought from

different vendors. A4 tried to restructure the whole enterprise business procedures and

integrate the related systems in parallel. The plan failed, even with massive additional external

support. Transition and data migration took longer than ever expected. Essential knowledge

went to external resources and put A4 in long-term supplier dependencies.

A5 had been chosen because the company had ambitious targets and was located in a cultural

environment similar to the client's. Sixteen percent of the personnel were IT staff, and the

"Buy" decision replaced an outdated system not any more maintained by the vendor. AS

delivered technically, and in particular the project managed to migrate the legal master data

successfully. However, the TCO (total cost of ownership) quickly exceeded the initial

software life cycle plan.

A6 had been chosen because it is a successful example for revamping the enterprise business

procedures and at the same time integrating a new system that is able to handle the future

processes. Ten percent of the company's staff were IT employees, and the "Make" decision

included the plan for the software to be maintained and further developed also by extemal IT

staff. However, this case was a comparatively small company, not a full communications

portfolio provider as were the other examples.

A7 had been chosen because the company was in a very similar strategic and competitive

situation. The "Buy" integration replaced several de-central legacy systems on scattered

databases by one central software bought on the market. In parallel the IT organization

structure was consolidated, too. The in-house organizations that bad developed and

maintained the previous systems were set to support the new product. A7 succeeded within

the calculated CAPEX but exceeded the time frame by far - while the timing was not the top

priority for A7.

For the support ofthe client's decision, discussions ofthe presented cases revealed certain of

the client' s perceptions:

• "Design focus shifts towards fitting pieces together rather than defining internal structures

of single functions. No unit tests or inspections of packaged software, because it does not

come with source code."

42 Strategie framework

• "Interaction with vendors greatly inereases and oeeurs at different levels throughout a

projeet."

• "Proeurernent requires more teehnieal knowledge so it is not a pure administrative aetivity,

but technieal personnel are often not prepared to deal with proeurement issues."

• "Produet evaluation beeomes a eore activity - but developers are not always prepared for

it."

• "The amount of bought solutions drives different proeesses. A project that only uses one

!arge proeured package follows eompletely other proeesses as eompared to an integration

ofnumerous paekages that will eonstitute most ofthe resulting system."

Diseussing the case studies with the c1ient, pereeived advantages of "Buy" integration

deeisions were:

Flexibility: "There is usually some room to adjust requirements to fit the produets being

used." Programming: "Large portions of the system are eonstituted by a ready-made produet

and thus do not have to be written and debugged." Life cycle: "Possibly beeause of sehedule

pressure, 'Buy' integration projects seem to be completed more quiekly." Adherence to

schedules: ''There is a pereeption that sehedules are kept better in 'Buy' integration projects,

although this eannot be eonfumed empirieally." Vseful functionality: "Funetionality is

diseovered in a package that was useful, even though the project bad not originally planned to

use it."

Discussing the case studies with the client, perceived disadvantages of "Buy" integration

decisions were:

Knowledge: "Good or bad surprises having to do with the quality or functionality of a ready

made product." Communication: ''The vendor constituted one more party with whom

eommunieation ehannels had to be established and maintained." Dependencies: "Projeet

personnel had to rely on the vendor for a variety of rnainly technical issues." Negotiations:

"Technical personnel were not always prepared to deal with the business aspects of

purchasing and managing a software product."

Further to the described points, practically a11 projects show that the success of integration

depends mostly on the qua1ification of the involved people, on the actual project set-up and

the financial and managerial backing - taking into consideration local culture and principles.

Integration assessment of an individually developed application vs. software packages from the market 43

3 Conclusion and remarks

This experience report presented an extract from an lT strategy consulting in a situation that

was mission critical for the client. The client requested decision support with a very large

individual software development and integration project that had repeatedly failed to deliver.

The client requested to propose the alternative of procuring and integrating respective

software packages on the market, and to compare this altemative against the finalization of

the ongoing individual development and integration. Several work areas were part of the

consultation, and two of them were selected for this report and explained in more detail.

A functional comparison was made between the bespoke solution development and five

packages assembled from products and eomponents available on the market. Different from

expeetations, this eomparison favoured the integration of package solutions. Further

diseussions with the client on this topie, speeifieally on compositional reuse, revealed some

reluetanee of the client against the component idea for perceived reasons of eomplexity,

dependeney, hyper-eompetition, double eonstraints and pragmatism.

Case studies that were relevant in certain aspeets for the elient's deeision situation were

seleeted, described and diseussed with client management. On the bottom line, the cases

studies gave an ineonsistent pieture for the integration decision and it was eoncluded that

further key success faetors, other than the question wbether integration is driven by

development or by composition, bad a strong influence on the cases. The elient recognized

both pros and cons oftbe integration approaebes, as weil as tbe inconelusiveness ofrestrieting

the overall pieture to tbat question.

In tbe presented report, the eonsultant's task was restricted to the alternative of full paekage

integration only. Consequently, compositional solutions eould only indirectly be ineluded in

the decision support, namely as parts of full paekages. Otherwise, as visualized in

Figure II.R2-1, a combination oflarge-scale and small-scale development, also in the sense of

a ''make and buy" approach (Kurbel et al. 1994), migbt have been a promising idea to assess.

References

Becker, s.; Overhage, S. (2003), "Stücklistenbasiertes Komponenten-Konfigurationsmanagement", Tagungs
band 5. Workshop komponentenorientlerte betriebliche Arrwendungssysteme, Gesellschaft für Informatik, 25
26 Feh. 2003, Augshurg: 17-32.

Biggerstaff, T.; Richter, C. (1987), "Reusability framework, assessment, and directions", IEEE Software, 4 (2):
41-49.

Ewers, 1.; Jackel, T.; Janson, M.; Skroch, O. (2004), "The impact of EU liheralization on telecommunieation
service providers in EU applicant counlries", Detecon, Bonn.

Frost and Sullivan (2003), ''World comrnunieation hilling software market analysis", Frost and Sullivan, San
Jose, USA.

44 Strategie framework

Kurbel, K.; Rautenstrauch, C.; Opitz, B.; Scheuch, R. (1994), "From 'mak.e or buy' 10 'mak.e and buy': Tailoring
information systems through intcgration engineering", Journal ofDatabase Management, 5 (3): 18-30.

McIlroy, M. (1969), "Mass producOO software components", Software engineering: Report on a conference
spansared by the NATO Science Committee, NATO Scientific AfTairs Division, 7-11 Oc!. 1968, Garmisch:
138-155.

Mili, H.; MiIi, F.; MiJi, A. (1995), "Reusing software: Issues and research dircetions", IEEE Transacrwns on
Software Engineering, 21 (6): 528-562.

Ortner, E. (1998), "Ein Multipfad.Vorgehensmodell ftIr die Entwicklung von Informationssystemen - dargestellt
am Beispiel von Work:flow-Management Anwendungen", Wirtschqftsinfonnatik, 40 (4): 329-337.

Pysbkin, K. (2003), "Operator strategies and key performance indicator benchmarks", Analysys Research,
Carnbridge, UK.

Skroch, 0.; Turowski, K. (2006), "Technische Grundlagen von Voice over IP", in Büllesbach, A.; Büchner, W.
(OOs), IT doesn'/ malter!? - Aktuelle Herausforderungen des Technikrechts, Schriftenreihe Informations
teehnik und Recht der Deutschen Gesellschaft ftIr Recht und Informatik, Volwne 15, Otto Schmidt, Cologne:
17-32.

Szyperski, C. (1998), Component software: Beyond object-oriented programming, Addison Wesley, Harlow,
UK.

Taubner, D. (2005), "Software-Industria1isierung", Infonnatik Spektrum, 28 (4): 292-296.

Turowski, K. (2003), Fachkomponenten: Komponentenbasierle betriebliche Anwendungssysteme, Shaker,
Aschen.

Tarn, M.; Turnmala, R. (2001), "An application of the AHP in vendor selection of a telecommlDlications
system", Omega - The Interna/ional Journal 0/Management Scienee, 29 (2): 171-182.

III Specification

O. Skroch, Developing Business Application Systems,
DOI 10.1007/978-3-8349-8858-4_4,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

IIl.R3 The importance of requirements specifications for successfullT projects 3

Today, information technology not only shapes inevitable parts of daily life in modem

societies, but also counts for one of the most important success factors in business. By

strengtbening their own, unique selling propositions, enterprises can achieve particular

competitive advantages on the market. IT must support these individual propositions,

respectively enable them in the first place. In order to plan, procure, develop, and operate the

corresponding IT solutions in today's efficient and divided value creation processes, the exact

requirements for the solutions need to be specified as c1early as possible. All parties involved

in the divided work - including, for instance, the principal contractor, end-users, computing

centers, systems integrators or developers - profit from unarnbiguous and resilient

agreements, which reduce the numerous project risks along steadily globalizing value creation

chains.

Nonetheless, it is typical that irnportant aspects remain unexplained between the involved

parties in scope of work descriptions representing the technical contents of such (legal)

agreements. Substantial taetical advantages for competition are thus wasted - or are even

inverted when projects fai!. The following research article identifies success factors which

enable competitive advantages through high quality requirements specifications and scope of

work descriptions in daily business practices. The artic1e also illustrates risks associated with

neglecting specification issues, inc1uding the worst case, the legal dispute. The artic1e thus

covers topical interdisciplinary questions at the interface between business informatics and

law.

3 Research article R3: Pruß, M.; Skroch, O. (2010), "Die Bedeutung der Anforderungsspezifikation fiir
erfolgreiche IT-Projekte", HMD - Praxis der Wirlschaftstnformattk, 46 (272): 100-107.
© dpunkt.verlag, Heidelberg, Gennany for the original contribution.

48 SpeciflcatioD

1 Requirements spedfications in tbe development process

Systematic development processes start with requirements which are set by principals as the

decisive foundation and driver for further development activities. In divided value creation

chains these requirements must be communicated between the involved players. Therefore, it

needs to be clearly described first what exactly the issues are; in subsequent steps it becomes

possible 10 work out how they can be solved later. High quality requirements specifications

are needed 10 communicate the problem to be solved and drive the divided development work.

Ideally, we could think of these specifications as standardized documents. In divided

application software development work, such unambiguous specifications are a central

prerequisite for the successful composition of large solutions trom parts of diverse origin

(Grollius, Lonthoff & Ortner 2007, pp. 40-42). These clear requirements specifications set the

guaranteed properties of a desired solution in black box style "trom the outside", at the

interfaces between different system parts. Tbey can then be legally agreed upon as the scope

of work descriptions. Tbus they are possibly the single most irnportant key success factor in

modem IT development processes (Gsell, Overhage & Turowski 2008, pp. 47f).

However, in day-to-day IT development practices we can see that the significance of

requirements specifications bas not been fulJy recognized yet by many decision makers in

businesses or institutions. Tbe quality of requirements specifications, therefore, often has an

inferior role when developing, selecting, or introducing IT solutions. An examination of large

IT projects in public administration has, for instance, identified difficulties with the

specifications as one of the core problems; the largest of the investigated projects alone was

estimated 10 bave caused financiallosses of roughly five billion Euro, inclusive of opportunity

costs (Mertens 2009, p.44, p. 46). Sirnilar problems caused by specifications are regularly

discovered in enterprises of all sizes. Just recently, a medium-sized engineering company,

which produces tailor-made architectural glass wall units, purchased commercial off-the-shelf

business support software for the glass construction business without a detailed requirements

specification. Later it tumed out that the software package could not support any of the

specific work procedures required by the company for building their complex, individually

tailored glass wall units at all. The project led to a legal slugfest.

2 Success faetors

For the illustration of success factors for the creation of clear requirements specifications, we

initially distinguish between the involved parties. Tbe principal contrac1or in a typical IT

project deals with many different participants, such as product manufacturers, consultants,

systems integrators, quality assurance specialists, and others. Content-wise, the collaboration

between the participants is determined by the agreed scope of work descriptions with the

guaranteed system properties which emanate directly trom the requirernents specification. The

Tbe importance of requirements specificatiODS for successful IT projects 49

following chapter looks at practical success factors for the principal wben creating

requirements specifications (Figure III.R3-I).

Reallatlc .ffoIt .atlmatlona

Integration of mlaalng axpartl..

Figurc ID.R3-1: Succcss lacton for c1car requlremcDts Specl1lcatiODS.

2.1 Systematic approach

When preparing individually developed IT solutions, the development tasks thereby incurred

can be mastered only with systematic approacbes. Systematic tecbnical development proceeds

from requirements (Lasten) via design (Pflichten) towards realization and (acceptance-)

testing. Tbe single working phases and steps can be iterative, distributed, and complemented

by accompanying tasks such as quality assurance or project controlling. Approacbes that are

actually used in practice usually differ from the development process models suggested in

tbeory. They are, bowever, more successful if tbey are compliant with a systematic process.

All involved players sbould, therefore, know these systematic process models and their

meaning.

In particular when modeling requirements for software development, familiarity with semi

formal methods that are applied by experts from business informatics and software

engineering is necessary. Examples of such methods include, among many otbers, tbe Event

driven Process Chain (EPC) or the Unified Modeling Language (UML).

In daily business practice, IT staff is often assigned requirements specification tasks

irrespective of their actual qualification profiles. However, software development is quite

different from tasks such as computing center operations or IT management. The IT

department of a large specialized publisher, for example, cut down their own experts for

software projects who worked on job descriptions such as systems analysts, project managers,

etc. Hardly any internal knowledge of and experience with development tasks remained,

particularly not for the analysis and documentation of individual requirements. Nevertbeless,

so SpeciflcatioD

the IT department was still expected to produce respective deliverables - with Iittle success

though.

Configuration and parameterization for off-the-shelf software products initially must be

distinguished from individual application software development. In complex IT products,

however, parameter settings can become so chalJenging that this can only be controlled with

systematic, development-Iike approaches, too. When purchasing commercial products, it is

usually also necessary to make a choice from a nurnber of eligible product alternatives. Ad

hoc decisions will at best result in rare lucky strikes, but cannot systematically ensure a choice

that optirnally suits the actual requirements.

2.2 Detailed analysis and documentation

Once the central significance of his own requirements is recognized, this should motivate the

principal to pay close attention to these requirements and their detailed documentation. The

requirernents should be collected on a sufficient level of detail, ideally according to apreset

standard. Otherwise it can happen - as, for exarnple, was the case in a !arge hospital - that

engaged and trained people specify in great, nearly excessive detail while others work only

very superficially.

Requirements specifications should be kept as simple as possible - but not any simpler.

Experience shows that end-users often think that certain requirements, terms and definitions,

procedures, etc. - namely those with which they are especially familiar - go without saying

and do not specify them. Especially the behavior of currently used software tends to be

irnplicitly supposed as self-evident to others, without plainly formulating what this behavior

iso Experience has shown many cases with only one single requirement in the whole

specification: abiding the laws. Such a simplification is often nurtured by the false irnplicit

assurnption that the characteristics of currently used software would be agreed in the scope of

work without mentioning. However, the demand for accounting systems that conform to the

Iaws and regulations, for example, has lead to a market with many different products and

solutions that are all legally compliant. A certain product or solution is rendered more or less

suitable for one's own actual set ofrequirements by its individual differences.

Requirements specifications can finally put forth scope of work descriptions as legally

binding contractual agreements. These can become the technical basis for a legally relevant

acceptance testing, too. Therefore, a first approximation for the suitable level of detail in

scope ofwork descriptions is the possibility to create individual acceptance test cases. Ideally,

the scope of work description even qualifies autonomously for the creation of software

architecture and design, with minimum additional elicitation efforts in downstream

development steps.

The importance of requirements specificatiODS for successful IT projects

2.3 Realistic effort estimations

SI

Even a specification of only the most relevant requirements can consist of many thousand

single requirement items. The efforts which are associated with the creation of an individual

document of this type and size are regularly underestimated in practice. An interesting

example is an investment group which expected that all the requirements for the IT of a

nationwide operating enterprise with a staff of several thousands could be documented in a

legally binding way within three days.

Inappropriate evasion strategies must be avoided first and foremost. An often experienced

evasion maneuver is the uncritical confidence that principals put in their suppliers,

consultants, ete. Sometimes these agents suggest from a purely sales-related motivation to be

familiar with all the issues and to have individually suitable solutions already. Their argument

furtber reduces the principals' willingness to engage sufficiently in the identification of actual

own requirements. But experience clearly shows that the individuality of each situation,

enterprise, investment, or project issues ever new and unexpected challenges.

Another typical evasion maneuver is to request the creation of requirements specifications

from employees in addition to other full time daily business tasks. However, analyzing and

documenting individual requirements for development is a demanding and laborious work

whicb, among otber things, requires elose concentration and intensive communication.

Specifying requirements can bardly be successful when operated in a casual manner.

The high efforts associated with analyzing and documenting requirements are often

discouraging. However, requirements specifications must not be evaluated only from the costs

tbat are induced by their creation. With requirements speciflcations, as with any other

investment or engagement, reasonable decisions are substantiated more broadly. Therefore,

the benefits and value propositions of the requirements speciflcation must also be considered,

and the risks from the overall significance of the desired solution must be accounted for just

as weil. (DeMarco 1997, pp. 30-33).

2.4 Integration 0/missing expertise

In virtua11y a11 fields of engineering it is common practice to employ higbly qualified experts

when specifying requirements for complex products or comprehensive services which are

being developed. In !arger settings dedicated planning departments are routinely established.

As experience shows, these expert planners need to be higbly qualified. Apart from general

methodical competences and knowledge oftheir own tecbnical discipline (such as mecbanical

engineering or marketing), they also have to be specifically conversant with the target

business (such as the automotive industry).

52 SpeciflcatioD

The software development area is commonly recognized as very challenging, hence it all the

more needs well-grounded expertise and experience. Paradoxically, however, the involvernent

of professional specialists in software engineering is widely deemed to be less necessary as

compared to other well-establisbed engineering domains - although many players have asked

for more understanding and bigber professionalism for a long time.

2.5 Coordination and alignment

From all the single requirements that are specified in detail, one coherent and manageable

overall package needs to be compiled. This demands an adequate and coordinated

reconciliation between the stakeholders. Contradictions and gaps in the requirements bave to

be discovered and expensive requirements which generate Iittle value but high costs bave to

be identified so that informed decisions can be taken. For instance, a department from a

governmental institution of adult education demanded tbat their certifications should be made

tamper-proof by including micro-printed elements. In an a1ignment review it tumed out that

the benefits of this requirement could not justify its high costs, as special paper types and

printing equipment would be needed. Such exaggerated demands from certain stakeholders

need to be identitied and eliminated, otherwise they will appear in the scope of work

description.

From experience this coordination and alignment factor also provides a good occasion to

identify, based on the documented requirements, wrong or error-prone work procedures.

Suitable measures can be taken and business processes can thus explicitly be aligned with

requirements, or vice versa. This aspect is especially emphasized with the setup of service

oriented architectures.

Large requirements documents need to be consolidated to a well-aligned, coordinated, and

e1early arranged requirements catalogue also to better perfonn a possible tendering process

for correspondingly large projects and solutions later.

2.6 Joint and active organization

Even sufficient external expertise in requirements specification does not release the principals

from their e10se cooperation. The involved participants must create the requirements

specification as a team and collaborate e10sely and trustingly. External specialist usually do

not know the individual, internal peculiarities demanded for a tailor-made solution, and

internal partners and colleagues typically lack the profound technological and methodical

expertise. Their joint activities need to be managed in an active and supporting manner.

Otherwise, as experience has often shown, a11 kinds of surprises can appear at the end of this

The importance of requirements specificatiODS for successful IT projects S3

phase. However, it is the genuine and prime interest of all the involved players that a true

common understanding is achieved as to the expected scope of work and that this

understanding is unambiguously specified in a resilient and reviewable document.

A sad example is the mission-critical IT systems development project at a !arge infrastructure

supplier. After several project years, still no tangible results were delivered at all. A due

diligence was performed on the project and revealed that, among other things, no

requirements had been specified and no current project planning existed. A project culture had

emerged instead which made it nearly impossible to address or only mention any issues, or to

call in decisions.

2.7 Efficient change management

Change management procedures for a software development project are often legally agreed

upon in the related contracts. Such procedures, therefore, do not necessarily belong to the

critical success factors for requirements speciflcations in the narrow sense. However, as large

projects move on, it can become inevitable, even with high quality requirements

specifications, to change the scope of work that had originally been agreed upon. The more

the scope of work description is unclear and instable, the more debated points appear and

need to be discussed in the change management procedure. The change management clauses

which originally have been foreseen as fallback for exceptional cases only - can become the

standard mode of operation. As experience shows, sufficient resources are rarely planned for

such a situation, which puts considerable additional load on a project. It has led, in many

known cases, to the point where ongoing change management issues were preventing any

further progress of the whole development. From a practical viewpoint, such a situation can

hardly be brought to a successful or at least amicable outeome any more.

Therefore, the involvement of an unbiaSed professional who is accepted by all participants

should be considered in change management procedures with deficient or unclear

requirements specifications. This authority should be involved as early as possible as a

precaution to avoid further delay in a critical situation. The authority can be empowered as a

referee to take final decisions or can act as a mediator and make nonbinding proposals.

3 Risks

To illustrate the importance of high quality requirements specifications and unambiguous

scope of work descriptions it is especially helpful to portray the risks that can arise from

unclear, missing, or incomprehensible agreements (Figure III.R3-2).

S4 SpeciflcatioD

These risks do not arise in modem IT development projects only. In the complex and divided

development work in the information technology area, scope ofwork descriptions also occupy

a most central role. So their deficiencies strongly aggravate the associated risks. The

particular experiences with expert witness opinions at law courts show that players regularly

fail to draw operational consequences even after recognizing the significance of clear scope of

work descriptions in principle.

delay

)

/!

\0i
~\
\==-------=~\

dl.puted, Incomple"
.cope of work

unclear
.cope of wortt

de.crlptlon

L- -"'[L='==ad=d=ltI=o=n=a=1c=o=.=ts==~;),-I ../

Figurc DLR3-2: Risks from unc1car SCOPC of work dCSCriptiODS.

3.1 Disputed and incomp/ete scope ofwork

Principals who initially devoted only little attention to their own actual requirements often

have to recognize the absence of a true common understanding of the scope of work in the

further course of a development project. This can happen in different project phases,

depending on the process model chosen for the development. For conflicts identified early in

a development cycle, alternative courses of action can often easily be negotiated. The later the

differences are revealed in the course of the development, the more this becomes difficult

though. Practical experience shows that hoping to still keep project goals, to clarify disputed

issues, and to take missing decisions is often in vain at late development stages.

Experience also shows that principals keep on failing to recognize the significance of

preparing their own expressive acceptance tests to check the actually delivered scope ofwork

against the agreements. It is admittedly inefficient to prepare detailed acceptance test cases for

each single requirement. It seems inevitable though to safeguard each business-critical

requirement and to systematically prepare and execute respective acceptance test scenarios.

For the traceability in a possible (legal) dispute, acceptance test results should even be

reproducible to proof breaches in the delivered scope of work, or other identified defects,

without any doubt. In practice, however, principals again and again have confidence in their

agents even with regard to preparing and executing legally relevant acceptance tests. They

simply trust in having received a complete, stable, and suited solution. It is only during live

operation and with corresponding impacts that they learn about requirements that are not

actually covered and about deficiencies that still exist.

The importance of requirements specificatiODS for successful IT projects ss

A pleasant example is a communications network operator and service supplier who has

operated very successful until today. This player recognized the meaning of (acceptance)

testing for principals, consequently he look adequate care of the preparation of acceptance

tests and set up a test lab in time. Among the competitors, this player thus was the only one lo

fully succeed in developing and integrating his own enterprise-wide business and operations

support system. Nearly all the former competitors have vanished from the market today, and

one of them was ruined by the direct consequences of the failed attempt to develop a similar

solution.

3.2 Delay

Disputes about the scope of work usually cause considerable delays which emerge from the

time and resources that have to be a1located to related discussions and negotiations. The more

scope of work descriptions turn out to be ambiguous and instable, the more time and

resources are needed for subsequent debates.

Each party must review those parts of the requirements specifications and scope of work

descrlptions that are interpreted differently by the different players. When negotiating

amicable courses of action, proposed solutions and their consequences and alternatives have

lo be analyzed to assess if they are acceptable in each case. Buffer time for such processes

was hardly planned before. In practice most decisions, in particular those of larger impact,

also depend on certain individuals or institutions which are not a1ways available. All things

considered, delays ofunpredictable duration can result.

Moreover, many projects are tied into hard externaI deadlines and schedules. Changed legal

regulations, for instance, have to be implemented up to given deadlines. Other hard time

limits are set by market necessities, for instance, related to the Christmas business. Under

such circumstances, delay alone can lead lo final project failure.

3.3 Additional costs

Even if certain scope of work areas were specified unclearly, or were not specified at all, the

undocumented scope is usually required nonetheless. The missing specification parts then

must be created ex post and the whole development project has to be extended. The related,

additional efforts, though, have not been planned before. In practice, such efforts then corne at

unfavorable conditions as cornpared to efforts planned in advance and negotiated at the

beginning of the overall projecL Thus a pretended offer on easy terms can later still turn out

worse in comparison.

S6 SpeciflcatioD

Such cost explosions can be observed most c1early in certain very Iarge development projects

for correspondingly large principals, such as public administrations or global enterprises.

These players often decide with long-term ranges of consideration and invest out of

strategical, political, or similar concems. They often consider it better to somehow continue

instead of cancelling such a project. Hence such projects often need large raises in the budget

and much additional time. It is often realized only too late that even long-term targets, even

pursued with great dedication and resources all-out, still cannot be achieved if the intentions

have been underestimated from the beginning and have been planned and implemented in an

unprofessional manner.

3.4 Legal dispute

If no settlements can be reached either within the regulations of the agreed contracts or

through negotiations between the involved parties, then the last escalation level is a legal

dispute. This generates costs that have not been calcu1ated by anyone beforehand. Moreover,

the duration and result of a legal proceeding is hardly predictable, even with seemingly

obvious claims and positions in the beginning.

Law courts in Germany regularly refer to "Stand der Technik bei einem mittleren

Ausführungsstandard" (BGH 2003, p. I) or to "anerkannte Regeln der Technik:' (Bayerlein

2008, §16 marginal number 21) as the last way out of unclear scope of work descriptions.

This approach rnay be sufficient in engineering disciplines where commonly accepted norms,

regulations, and standards exist. However, the information technology area, and speciflcally

the software domain, suffers from an excess of competing standards and technologies which

exist in parallel but are neither commonly accepted nor generally used. In software

engineering, for instance, not even a commonly accepted construction theory has been

established by now. Tberefore, the "state of technology" or an "average implementation

standard" cannot be deflned objectively. The state oftechnology is barely determined for the

typical application areas and target domains in business informatics, too. Even the (lower)

"accepted technical mIes" can only be found in few and clearly separated target domains,

such as in financial accounting.

Therefore, at court expert witnesses norrnally deliver their opinion, based on their personal

experiences and market insights (Jäger et aI. 2003, pp. 140-142). To a great deal the courts'

sentences depend on these expert witnesses' opinions. As the expert witness is llObiased, his

opinion will hardly be in accordance with the beliefs of the disputing parties. The importance

of detailed and unequivocally interpreted requirements specifications will then become

obvious to all parties at the Iatest.

Tbe importance of requirements specifieations for successful IT projects

4 Future requirements

57

Critical success factors promote the creation of dear requirements specifications. Neglecting

these factors bears significant risks. In practice, specifying unambiguous requirements

notoriously fails. Consequently, scope of work descriptions are rarely understood and

interpreted in a comrnon way and thus are not legally resilient in divided development work.

The importance of resilient scope of work descriptions that do not bear any unpredictable

risks or legal issues as to their content further increases in two recent application software

technology trends: service-oriented architectures / component- and service-orientation, and

outsourcing / offshoring. Both approaches merely pennit explicit dependencies at the

interfaces between systems, applications, and organizations. These interfaces then must be

considered in a purely formal manner in inter-organizational and inter-cultural relations.

Virtually no assumptions can be made implicitly, and high quality, explicit requirements

specifications and unequivocal scope of work descriptions gain their exceptional focal

significance.

If the inevitable capacities for clearly specifying requirements are lacking, they have to be

built up in the long term, and/or external resources have to be involved. High quality

requirements specifications and contractually agreed, clear scope of work descriptions in the

information technology and software sectors can then stipulate significant competitive

advantages. This has been a matter of course for a long time already in similar, weil

established engineering disciplines.

References

Bayerlein, W. (2008), Praxishandbuch Sachverstlindigenrecht, 4lh edn, Beck, Munieh.

BGH (2003), Bundesgerichtshof, dccision of 16 Dee. 2003, X ZR 129/01, accesscd on 26 Jan. 2009,
http://www.bundesgeriehtshof.de.

DeMareo, T. (1997), Wanmz ist Software so teuer? Und andere Rätsel des Informationszeitalters, Hanser,
Munieh.

Grollius, T.; Lonthoff, J.; Ortner, E. (2007), "Softwareindustrialisierung durch Komponentenorientierung und
Arbeitsteilung", HMD - Praxis der Wirtschaftsinformatik, 43 (256): 37-45.

Gsell, S.; Overhage, S.; Turowski, K. (2008), "Unzureichende Leistungsbeschreibung bei der Softwareentwick
IWlg und die Rolle von Standardverträgen", in Möllers, T. (cd.), Standardisierung durch Markt und Recht,
Nomos, Baden-Baden: 23-48.

Jäger, K.; Lenzer, J.; Scheider, J.; Wißner, B. (2003), Begutachtung und rechtliche Bewertung von EDV
Mängeln. Wißner-Verlag, Augsburg.

Mertens, P. (2009), "Schwierigkeiten mit IT-Projekten der öffentlichen Verwaltung", informatik-Spektrum, 32
(1): 42-49.

O. Skroch, Developing Business Application Systems,
DOI 10.1007/978-3-8349-8858-4_5,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

III.R4 A metbod to evaluate tbe suitability of requirements specifications for

offsbore projects 4

Globally distributing the development of information systems across organizational, national,

and cultural borders increases the need for explicit understandings between the parties

involved. This especially sbarpens the focal significance of requirements speciflcations for

communicating tbe developrnent scope as explicitly as possible. 1be success of offsbore steps

in developing business application software therefore frequently depends on the quality of the

respective requirements speciflcations. Often enougb thougb, these specifications are not fully

suitable for an offsboring context. Tbe way in which their deficiencies are managed then

becornes a key issue.

Tbe following research article presents a rnethod to evaluate tbe suitability of requirernents

specifications for an offshore application software development project. Tbe method

considers eigbt quality criteria and also five potentially compensating factors to balance out

requirements specification deficiencies in the course of further development stages. The

application of the method is illustrated in a case study bosted in an industry-size, prolific

offsbore IS developrnent planning and decision support situation. In tbe study, we apply the

metbod to broadly assess tbe adequacy of offsboring approaches, supporting tbe top

management of agIobaI industry leader in tbe automotive business. Based on tbe method, we

evaluate requirements specifications as to their offsboring fitness. We also validate the

observations made in the study by monitoring and reviewing the application of the rnetbod

itself as weil as the evaluation results against the actual project progress later.

4 Research article R4: Overhage, S.; Skroch, 0.; Turowski, K. (2010), "A method 10 evaluate the suitability of
requirements specifications fOT offshore projects", Business & Information Systems Engineering, 2 (3): 155-164.
© Gabler Verlag, Wiesbaden, Germany for the original cootributioo.

60 SpeciflcatioD

1 Motivation

Assigning the development and operation of information processing functions to extemal

partners became a sustainable business model in 1963 at the latest, when the EDS company

agreed with the Blue Cross health insurance to completely take over their IT (Dibbem et al.

2004, pp. 7f). Contracting out parts of business application development to external service

providers has become a standard planning alternative today. For some time, the offshoring

approacb - outsourcing to low-wage areas that are envisaged to be far away and barely

regulated ("off shore") - bas been propagated in the course of globalization and bas become

the focus of considerations (Aspray, Mayadas & Vardi 2006, p. 6, p. 15; Kobitzsch, Rombach

& Feldmann 2001, pp. 78-80; Pryor & Keane 2004, pp. 11-13).

On the contracting side, there primarily is the expectation of reducing costs through wage and

price differentials between client and contractor areas. Aspray, Mayadas and Vardi (2006, pp.

6f) argue that economic theory as weil as anecdotal evidence show economic benefits for

clients and contractors. On the other band, additional costs resulting from offshoring parts of

the business application development are emphasized (Dibbem, Winkler & Heinzl 2008).

Overby (2003, p. 65), for example, estimates tbat up to ten percent of additional costs incur

for the necessary improvement of development processes only.

Today, offshoring is seen as a global mega trend (8oos et al. 2005, pp. 6f), and sucb

approacbes are now being pursued even for highly complex development projects. With the

global allocation of development work to various stakeholders based on division of labor, the

development task is directly subject to an inter-organizational and cross-cultural context

where implicit assumptions can hardly be made (Hofstede 2002; Vlaar, van Fenema & Tiwari

2008, pp. 227-229; Winkler, Dibbem & Heinzl 2007, p. 96). Especially in such a context,

necessary functions of an application system and required interfaces to other software

components can only be explicitly specified through precise, intersubjectively unarnbiguous

requirements specifications (Davis 1993). Therefore, requirements specifications constitute

the substantive basis of the division of labor, become contractually agreed specifications of

services (Gsell, Overhage & Turowski 2008, pp. 26-29; Overhage 2006, pp. 122-130), and are

therefore one of the most irnportant factors for offshore projects (Overby 2003, p. 65;

Sakthive12007, p. 70).

Although precise requirements specifications are crucial and their quality bas great influence

on the results of subcontracted steps of application development (Wehnnann & Gull 2006, p.

407, pp. 413f), it is observed in practice that they routinely remain unclear and thus may

create significant difference of opinion in regard to the agreed scope of services (Heindl &

Bill 2006, p. 21; Pruß & Skroch 2008; Vlaar, van Fenema & Tiwari 2008, p. 235). For a

decision on the offshoring of developments steps, it is therefore essential 10 assess the

A method to evaluate the suitability of requirements specifications for offshore projects 61

suitability of requirements specifications in advance, e.g., based on criteria that have to be

met. Despite the central importance of such an assessment, however, so rar there have been

hardly any efforts described 10 support this issue systematically and specifically with regard to

offshore projects.

In this paper, we present a method to systematically and rationally assess the suitability of

requirements specifications for the offshoring of development steps. Tbe approach is

characterized by two main features. First, the evaluation can be carried out without

reconsulting users from the departments - who represent the requirements as regards content

- for further clarification. In practice, such an approach would cause ongoing difficulties

because ofthe users' limited availability and their limited willingness 10 discuss already given

requirements again. Second, the approach's assessment also includes compensation

opportunities, which makes it possible to (1otally or partially) balance out specification

deficiencies in a particular offshore project - these then constitute critical success factors for

the offshore project to be carried out. For the preparation of appropriate sourcing activities,

the presented approach not only makes it possible to assess a specification in terms ofhigh or

low quality. Additionally, it becomes possible 10 highlight compensating options for tbe

responsible decision makers.

In developing the evaluation method, we followed the design-oriented approach of business

and information systems engineering (BISE), specifically the design science metbod (Hevner

et a1. 2004). Apart from the tbeoretical foundation and iterative improvement, the latter also

includes an explicit validation, wbich was primarily carried out in tbe context of a large case

study. Here, the developed method was used in a large development project for cus10m

software, providing decision support in tbe planning of the offshore parts of the project. Tbe

further presentation of the developed evaluation metbod is based on the design science cycle

wbich differentiates between tbe formulation of the problem, the solution concept, the

realization ofthe solution, and its validation as key steps (Takeda et a1. 1990).

Section 2 describes the theoretical background and related approaches for the assessment of

requirements specifications in order 10 highlight the existing research gap. Section 3 presents

tbe conceptual basis of tbe evaluation method before it is presented in detail in Section 4.

Section 5 includes a reflection of tbe performed case study as weil as a reception of tbe results

obtained. At tbe end of the contribution we discuss implications for science and practice as

weil as remaining research questions.

62 Speciflcation

2 Background and related approacbes

2.1 Outsourcing, offshoring, and app/ication development based on the division oflabor

The theoretical foundations of outsourcing have aJready been defined by Coase (1937, pp.

386-388) with bis question about the limits of a fIrm, which among others served as a

foundation for transaction cost economies. Along the value creation chain cost comparisons

must determine whether subtasks are carried out internally or externally. Erber and Sayed

Ahmed (2005, p. 100) distinguish offsboring, inshoring, nearshoring, and onshore for the

extemal processing. From the client's perspective, offshoring refers to the relocation of

subtasks in areas far outside the national borders, wbile inshoring describes the same

phenomenon from the contractor's perspective. In the case of nearshoring, client and

contractor are located in elose geographical proximity. Onshore means that both parties are

located in the same country. Processes based on the division of labor can also be reaJized for

business application development, wbich today generally is carried out starting from

conception and analysis to cover design and finally also implementation and acceptance. The

development can include iterative and distributed elements, and can be accompanied by

various quality assurance measures, as described e.g. by Hansen and Neumann (2009, pp.

364-383).

Step Con~tion Analysis Design Implcmcntation Acccptancc

Al/ocation onshore onshore on-Ioffshore on-Ioffshore onshore

Storting business goals feasible targets requirements design solution ready
Point speciflcation for acceptance

Core rcquiremcnts rcquiremcnts Arcbiteeturc, programming tesling
Activiry analysis analysis planning integration

Core high-level detailed design completed list ofdcfccts
Deliverable requirements, requirements documents, applicalion

feasibility detailed plans system

Table UI.R4-1: Process steps ofapplication development (simplified).

Table III.R4-1 summarizes these typical, successive steps of application development each

with their respective starting points, core activities, and results of the individual subtasks. At

the end of each process step, the results should be documented in order to be used in

subsequent steps. To emphasize the decision situation supported by the evaluation method,

additional assumptions are made about the preconceived a1location options of individual

development steps. Here, adecision on an offshore realization is envisaged for the design

and/or implernentation. Similar scenarios are also used by e.g. Boos et aI. (2005, p. 25),

Cusick and Prasad (2006, pp. 22f), or King and Torkzadeh (2008, pp. 209-212) for the

discussion of offshoring approaches.

A method to evaluate the suitability of requirements specifications for offshore projects

2.2 The importance ofrequirements specijications for offshoring

63

In their case study, Vlaar, van Fenema and Tiwari (2008, pp. 227-235) describe in detail the

misunderstandings that may occur between a client's team that is responsible for the

requirements analysis and the design, and an implementing team of the offshore contractor.

Vlaar, van Fenema and Tiwari (2008, p. 235) sununarize that "offshore tearn members could

onJy develop Iiteral understanding of the requirements" and thus point out how difficult it is

to acbieve an intersubjectively shared understanding of requirements in offshore projects.

They explain that problems particularly result from "knowledge and experience asymmetries"

as weil as from "complex, novel and instable tasks and requirements" (Vlaar, van Fenema &

Tiwari 2008, p. 242). From their argument that "requirements development is a fundamentally

human-oriented and socially mediated process in which understandings are socially

constructed" (Vlaar, van Fenema & Tiwari 2008, p. 239) it becomes clear that in the case of

the offshoring of development steps additional difficulties in the already complex process of

specifying requirements occur. "The ability to write clear specifications" is consequentially

identified by Overby (2003, p. 65) as a key factor in the outsourcing of development tasks.

Moreover, Wehrmann and Gull (2006, p. 407, pp. 413f) argue that uncertainties in the

requirements have a strongly negative impact on offshoring. In a study of distributed

development projects Heindl and Biffi (2006, p. 21) show that the higbest risks result from

"misinterpretation and unclear rationale of requirements". The quality of requirements

specifications is therefore an essential risk factor for offsbore projects (SakthiveI2007, p. 70).

2.3 Evaluation approachesfor requirements specijications

Although the assessment of the suitability of requirements specifications thus has a central

relevance for the decision on offshoring development steps, few methods have been described

by now which systematically support this task. In practice, the quality of !arge specification

documents is often ensured ad hoc, little systematically, and with high human efforts. Most

theoretical work, however, is devoted to the creation of formally correct specifications which

can hardly be applied in practice. Scheffczyk et al. (2004, pp. 2-8) describe a commercially

used method, which seeks to master this balancing act. Regarding the content, however, a

substantive assurance ofthe requirements' consistency cannot be found here.

From the realm of experiences in a multinational conglomerate, Berenbach and Borotto

(2006, pp. 448f) describe seven quality metrics used in UML (Unified Modeling Language)

modeling. However, these again only cover the formal correctness of requirements and state

nothing about their suitability as regards content. While in this approach every specification

needs to meet the previously defined formal requirements, such a view is not sufficient for

supporting adecision on an offshore project. In fact, a requirements specification in the terms

of the approach by Berenbach and Borotto (2006, p. 446) could be complete even though

64 SpeciflcatioD

requirements are nussmg (e.g. because they have not been modeled at all). For a

comprehensive statement on quality, this relatively simple, formal verification therefore has to

be supplemented by a more difficult validation as regards content.

Krogstie (1998, pp. 86-90) proposes an integrated framework for the quality assessment of

requirements specifications, building upon the author's previous work and referring to the

semiotic model by Morris (1970, pp. 13-42). The author shows that some of the classically

discussed quality attributes, such as uniqueness of a specification, involve the dilemma that

they can only be detennined when the domain 10 be modeled is intersubjectively understood

in a clear way already in advance (Krogstie 1998, p. 88, pp. 90f). This understanding,

however, is to be attained through the specification process that otherwise would only be of

documentary significance. In this way the quality framework addresses many quality

attributes, but it remains too abstract for the actual application.

Wehrmann and Gul1 (2006, p. 407) suggest a complex cost estimation approach for the

application development in offshore projects. They note that focusing on wage differences

provokes miscalculation and that cost advantages rather depend on high-quality product

requirements. In contrast, uncertainties of the requirements have a highly negative impact on

the expected cost advantage, which cannot be further quantified with their method however.

Dibbem, Winkler and Heinzl (2008, pp. 336-338) provide a model 10 explain costs in offshore

projects. While they classify specification costs as crucial in the way that they should be

included as ODe of five exogenous model variables, an evaluation of the suitability of a

requirements specification for an offshore project is again not supported by their explanatory

model.

Taking the mentioned works into account, in the next sections we describe, deploy, and

validate a method which makes it possible 10 systematical1y verify the quality of documented

requirements and their suitability for offshore development steps. The method intends to elose

the existing research gap and contribute to ensure that decisions about offshore projects can

be based on a more comprehensive foundation in practice.

3 ConceptuaI basics

Requirements that are documented in a specification form the basis of and constitute the

drivers for further development steps. They describe the functionality to be provided by an

application system under certain conditions in the most precise and implementation

independent form based on the "extemal1y" observable behavior ofthe application. Thus, they

iodieate what an application system performs without dwel1ing on how this is achieved

(Liskov and Berzins 1986).

A method to evaluate the suitability of requirements specifications for offshore projects 65

A declining specification qua/ity usually leads to a higher interpretability for a third party as

regards the content of the existing requirements. Hereby, direct implementation risks for the

offshoring of later development steps are generated (Figure III.R4-1) which can be

specifically balanced out by compensating factors. The lower the quality of the requirements

specification, the higher is the risk that the necessary compensation cannot be afforded in

subsequent development steps so that the quality of the implemented application system is

irnpaired.

~Risk

Figure ID.R4-1: Relation between tbe spedfication quality and Implementation rlskll.

Thus, in addition to the specification quality we also have to consider possible compensating

factors through which existing specification gaps can possibly be balanced out when assessing

the suitability of a requirements specification for an offshore project. Through such a

sophisticated evaluation an additional scope for action results when deciding on an offshore

project, which bears importance for practice. There, we can assume on the one hand just for

econornic reasons that complex requirements specifications cannot be arbitrarily improved

after a potentially negative assessment. On the other band, a development project has to

deliver on its scope in the given time whilst adhering to budget constraints. Therefore, the

method for the evaluation of requirements specifications proposed in this paper also explores

alternative measures which may achieve a compensation of specification deficiencies that no

longer can be overcome economically in an offshore project. Decision makers then can assess

whether and how the compensation effort of an offshore project makes sense in a situational

context despite existing specification deficits. However, the actions recommended as

compensating factors then constitute critical success factors.

3.1 Specification qua/ity

To assess how weil a requirements specification is suited for the outsourcing of developrnent

work we generally have to consider different quality criteria. After evaluating the relevant

literature, we used eight criteria for the evaluation method presented in this paper. These

criteria were already used by the authors to evaluate specification approaches for development

scenarios based on division oflabor (Overhage 2006; Overhage & Thomas 2005). Overall, the

following quality criteria ofrequirements specifications are to be assessed (Becker, Rosemann

& Schütte 1995, pp. 437-439; Brown 2000, pp. 102f; D'Souza & Wills 1999, p. 321; Davis

66 SpeciflcatioD

1993, pp. 181f; Hall 1990, pp. 16f; IEEE 1998, pp. 4-8; Liskov & Berzins 1986, p. 3;

Schienmann 1997, p. 26):

• qt consistency. Tbe specification is supposed to clarify the relations between their

individual components and to avoid contradictions between different parts of the

specification in particular.

• q2 adequacy. Tbe outside view ofthe software should be described with reasonable efforts

and at the same time in the highest possible precision - in particular, in a way tbat design

and implementation tasks can be carried out with tbe specifications.

• q3 feasibi/ity. Tbe specification should make use of notations established in practice that

can be used effectively by a11 parties involved in tbe development.

• q4 flexibility. Tbe specification should have a uniform and modular structure so tbat

requirements can be changed locally, ifnecessary.

• qs standardization. Tbe specification should comply witb mandatory, explicitly

documented standards and guidelines conceming form and content.

• q6 comprehensibility. Both tbe machine interpretability and tbe readability for people

should be given. This means that on the one hand formal notations witb precise syntax and

semantics should be used, which on the other hand should also be presented in an easily

understandable form witb additional comments.

• q7 completeness. All features of tbe application should be set in a way tbat makes it

possible to conduct further development work on this basis. Completeness is required

relatively, for example in terms ofsupport for each specified task.

• qs neutrality. Tbe specification should be independent of technologies and methods for the

further development (design, programrning, ete.).

To assess the above mentioned quality criteria in adecision situation tbey must be further

operationalized and supplemented by concretely measurable dimensions. This is dependent on

the context, such as for example on the specification methods. Tberefore, it genera11y has to

be performed according to situational peculiarities. As part of the case study discussed later,

this contribution shows how tbe criteria were actua11y used there. For more information on the

concrete terms oftbe above criteria the reader is referred to tbe relevant literature (IEEE 1998,

pp. 4-8; van Lamsweerde 2009, pp. 87-90, pp. 187-189).

3.2 Compensationfactors

Existing specification deficits may be compensated or at least controlled by specific measures

during the offshoring project. In order to detennine which compensating factors can be used

A method to evaluate the suitability of requirements specifications for offshore projects 67

specifically in such projects, we evaluated reviews and case studies on offshoring,

outsourcing, and distributed application developrnent. The analyzed works describe options

for action that allowed the compensation of specification deficits completely or in parts. The

relevant factors include the respective offshore partner's characteristics and possibilities of

cooperation, but also the contractual design of the project.

CompenslltWn

domain
knowledge

commurrU:aJion, leaming
language, and re/ationship
cu/ture

reliabilily contracting

BhaJ, Mayank ond
Murthy (2006)

Boos et al. (2005)

Corriveau (2007)

Davenport (2004)

Gefen, Wyss and
Lichtenstein (2008)

Heeks et al. (2001)

Kojima andKojima
(2007)

Lacily and WllIcocks
(2003)

MacGregor, Hsieh and
Kruchten (2005)

Moczadlo (2002)

Nevo, Wade and Cook
(2006)

Remus and Wlener
(2009)

Sakthtvel (2007)

Setamanil and Raffo
(2008)

Siakas, MaquISidis ond
Siakas (2006)

Steimle (2007)

Tsuji et al. (2007)

Vlaar, von Fenema and
Tiwan (2008)

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

Wada, Nakahigashi and
Tsuji (2007) X

Wink/er, Dibbern and
Heiml (2007)

x

x

x

x

x

x

x

Table llLR4-2: Compilation of compensating factors in orrsbore projects.

The options for action are sumrnarlzed in five compensating factors for decision makers in

offshore projects in Table III.R4-2. References that discuss all the collected compensating

68 SpeciflcatioD

faetors are highlighted. In the eontext of eaeh project therefore an investigation is necessary

whether a situational eompensation for speeification defieits seems attainable through the

observance of these compensating factors wben selecting an offshore partner. Tbe following

factors are to be analyzed:

• el domain knowfedge. To wbat extent does the offshore partner have in-depth experience

with similar requirements in general, and thus already possesses an implieit understanding

ofthe application domain?

• e2 communication, fanguage, and cufture. How easy or diffieult is the operational

eommunication between the offshore partners, in partieular direetly and personally?

• e3 feaming refationship. How mutually familiar are the respective partners with the people,

the business, and the processes of the counterparts?

• e4 reliability. What is the strategie interest or business model ofthe offsbore partners? How

qualitied and motivated are the operational teams?

• es contracting. How does the eontraet support detailing, elarifieation, and possible

amendment ofguaranteed charaeteristics in the eourse ofthe development projeet?

In most referenees, faetor e2 is not mentioned as a single faetor. However, it makes sense to

eonsider eonununication, language, and eulture in eontext as is done here (Christiansen 2007,

p. 25; Hofstede 2002).

4 Design of the evaluation method

Tbe quality eriteria and eompensating faetors form the basis for the rational evaluation

method, Le. a method that is transparent for the decision maker and is weIl founded in relation

to the approach. As a k.ey element we employ the eost-utility analysis approach that was

introdueed by Zangemeister (1976) for the multidimensional assessment and selection of

projeet altematives, and represents a proven metbod for deeision making today (Klein and

Scholl 2004, p. 87).

4.1 Procedure for determining the specification quality

To determine the quality of a requirements speeifieation we elassify tbis specifieation against

each of tbe eight eriteria presented qi (i = 1, ... , 8) on a four-stage rating seale. On tbe seale,

higher values express better suitability (Figure III.R4-2).

A method to evaluate the suitability of requirements specifications for offshore projects 69

Depending on the specifie project and the preferenees of decision makers, each quality

criterion can be optionally fitted with a weight gj (i = I, ... , 8). The overall assessment Q of

the specifieation is the calculated by

I 8 •
Q=- L,g,q, wlth qj E {1,2,3,4}. (ID.R4-1)

8 ,=)

Without an explicit definition ofweights, a11 criteria are rated with an equal weight during the
evaluation, thus g/ = lVi holds. In ease of an explieit weighting an appropriate normalization

ofg/ can be recommended, for exarnple such that L~=lg / = 8 .

The evaluation of the specification quality for each qj is carried out individually and

qualitativety by ctassification from the decision makers. Here, it is first determined whether

the specification quality is in the upper ("above average or better") or tower ("below average

or worse") range. Then the classification is refined and it is determined whether the

specification within the upper range is thoroughly rated as "good" or only as "above average".

Accordingly, one proceeds within the lower range, so that an overall range between I (worst)

and 4 (best) results (Figure IILR4-2).

Step 1 Step2 SCate (aggregated)

lower<
.. q,= 1 insufficient [1,00 ... 1,75)

Kmnge
. q,.2 below avemge [1,75 ... 2,50)

q,

upper< + q,.3 above avemge [2,50 ... 3,25)
mnge ++ q,=4 good [3,25 ... 4,00 I

Figure DI.R4·2: Two-stage, qualitative evaluation process 10 deJermine q..

Before the rating can be carried out, the specifications initially have 10 be analyzed by experts.

The variety of the quality criteria to be assessed on the one hand intends to ensure the

broadest possible analysis of specification documents. On the other hand, the evaluation

generates additional efforts that should be limited by approprlate analytical techniques (e.g.

sampling or clustering). One possible approach for this purpose is described later using the

exarnple case. The overall assessment which results from the application of the value analysis

describes the quality of the specification.

4.2 Procedure for determining the compensation options

If specification deficiencies have been identified, we individually and qualitatively analyze for

each ofthe impaired quality criteria q/ (i = I, ... , 8) whether a balancing effect kij E {O; I} can

be expected in the project situation through the previously described compensating factors eij

70 SpeciflcatioD

(j = I, ..., 5), (klj = 0 for no, kij = I for yes). Tbe balaneing effeets ofthe eompensating factors

in relation to the quality criteria is shown by the eompensation matrix

k
lS

]. . ·th
'. : W1

... kss

i = 1,...,8; j = 1,...,5; kjl E {O,I}. (III.R4-2)

-v -v
Tbe vertieal eompensation vectors k ll =(kJPk2p .. ·,ksl) to k/s =(kJs,k2S, .. ·,kss) indieate

whieh quality criteria are influenced by one eompensating faetor. Tbe horizontal
-H -H

eompensation veetors kJj = (kJl,kJ2, .. ·,kts) to kSj =(kSt,k82, .. ,kss) show what faetors

effeet a eompensation for one quality eriterion.

Qlla/ity SUCCC8S Factor
Crlteri4: e, el e3 e. es

qt +--l +--l
q2 +--l +--l +--l
q3 +--l
q. +--l
qs +--l +--l
q6

q, +--l
qs +--l

Table m.R4-3: Graphical representatlon of expected compensation efforts (example).

Starting point for the eompensation effort is the seareh for factors that at least partly enable

eompensating quality defieiencies in the requirements specifieation. Tbe proposed analysis

therefore focuses on the detennination of the vertieal compensation vectors. It pursues the

question of what compensating effect ean be e:xpeeted from the various faetors in the speeifie

projeet situation (Table III.R4-3). In the style of the min-max-prineiple, aceording to whieh

the maximum negative consequenees are to be minimized, we aim at a compensation

espeeially for the lowest-rated quality eriteria ofa requirements speeification.

4.3 Further refinement ofthe evaluation

In the proposed approach for assessing requirements specifieations, a lower quality measure

implies a lower suitability of a requirements speeifieation for the offshoring of development

steps. lt is also assumed that the suitability of a defieiency-afflieted specifieation is inereased

if effeetive compensating factors ean be identified. For the assessment of the suitability we

ean supplement the condensed measure, whieh has been deterrnined by the cost-utility

A method to evaluate the suitability of requirements specifications for offshore projects 71

analysis, by further analyses. Given the ordinal nature of the four-step scale, the measure

allows the classification of the specification quality (Figure IILR4-2). However, it is not

possible to make absolute statements and refer 10 specifications that are e.g. "twice as good"

in comparison to others. Furthermore, the condensed measure alone implies that poor ratings

ofa quality criterion may be balanced out by good ratings of another one.

Tbe further differentiation of the analysis may, for example, be performed using so caUed

radar charts (Bensberg 2008), where in particular the possible compensating factors are 10 be

integrated. Moreover, the assessment of individual criteria and their weights can be varied e.g.

in the course of a sensitivity analysis. Tbis allows an analysis to what extent the assessment

depends on the suitability of the input variables, and thus how stable the results are. For the

evaluation of the results of a cost-utility analysis as well as for supporting software tools,

literature provides further reference (Bensberg 2008; Klein and Scholl 2004, p. 47).

5 Evaluatiou

Tbe proposed evaluation method has been used in a case study that was hosted at a leading

cotporation in the automotive business. The suitability of extensive requirements

specifications (including around 700 UML use cases) for the offshoring of further

development steps had to be examined for one large development project. Tbe pUtpose of the

project was the development of an individually specified, complex and business-critical

application system for the support and automation of the group's global sales processes. Tbe

application system should, among other things, provide the customized configuration of

industrially produced technical capital goods and high quality consumer products for the

global market. In the large development project the budgeted nwnber of days of work for the

preparation ofrequirements specifications by the client's internal employees alone amounted

10 a figure in the middle four digits. At the beginning ofthe case study, the specification ofthe

requirements bad been completed. Tbe further project plan was 10 transfer large parts of the

design and implementation to an offshore partner. The assessment of the requirements

specifications began after the project management bad approved the use of the presented

evaluation method. The approach was conducted by an evaluation team inc1uding the authors

ofthis contribution and representatives of the project leaders.

5.1 Determination 0/the specijication quality

To determine the q/, in a first step all cross relations between the parts of the specification

were investigated for inconsistencies, contradictions, gaps, redundancies, lack of specification

parts, and missing or incorrect identifiers. In a second step this was followed by a detailed

examination of the requirements specifications' key parts which bad been identified as

72 SpeciflcatioD

"central" by the contracting body. For cost reasons, this investigation was partially restricted

to a representative part of the specifications using a Pareto analysis (also known as "ABC

analysis"). To implement the Pareto analysis, the previously analyzed cross relations were

evaluated to draw conclusions about the relationship between the various parts of the

specification. Tbe part of the requirements specification classified as representative included,

among others, 22 percent of the "centraI" use cases.

Tbe evaluation of the specification parts was initially carried out by a verification against

internal rules of the client and - where applicable - against formal roles, such as those of the

UML. In addition, a validation was carried out by determining the requirements details that

were missing to unequivocally work out a design. AJ1y scope for discretionary interpretation

that could not be removed by the requirements specifications was considered as a deficit here.

The results formed the basis for the determination ofq/ through a qualitative, consensus-based

classification on the scale (Figure IIJ.R4-2) by the evaluation tearn. Starting with the lowest

rated criteria the following assessments resulted (described in a very shortened way):

• ql consistency: I (--).-). A higher-Ievel specification structure to explain the relations

between parts ofthe specification was not available. The structure of the whole system was

not sufficiently clear.

• q2 adequacy: I (--).Due to the lad of precision of most of the requirements it was not

possible to create a design ofthe application without additional elicitation.

• q4j1exibi/ity: 1 (--).Tbe specification parts were heavily dependent on one another; these

dependencies were not weH described.

• q6 comprehensibility: 2 (-).Large parts ofthe requirements specification were modeled in a

semi-fonnal specification language (UML). However, the reference to complementary

naturallanguage parts ofthe specification remained blurred.

• q7 completeness: 2 (-).1t was noted that specification parts that are relevant for the further

development were described only incompletely or as placeholders.

• q3 feasibility: 3 (+).Tbe notations used in the analyzed parts of the specification are

commonly used in practice. Some techniques, however, were specific to the dient.

• qs standardization: 3 (+). In general, the explicit and implicit violations of standards and

guidelines were low in general.

• qs neutrality: 4 (++). The specification was described independently of technologies and

methods for further development.

The investigation ofthe requirements specification revealed a total calculative value of2.125

using (III.R4-1), and thus was below the average rating ofthe scale (Figure III.R4-2). In three

ofthe eight quality criteria, the specification was classified as inadequate.

A method to evaluate the suitability of requirements specifications for offshore projects

5.2 Determination ofthe eompensation possibi/ities and options for aetions

73

To assess the suitability of the requirements specification for the offshoring of further

development steps more comprehensively, possible compensating factors for the identified

specification deficiencies were examined and discussed.

By consensus, the evaluation team determined for each compensating factor whether this

factor can be expected to have a balancing effect, particularly on the characteristics classified

as inadequate in this specific development situation (Table III.R4-4).

SueeCS8 faetor

Qulllity crlterla e, e, e3
that has bee" domain coll1Jllllllication, Jeaming
assessed as low knowledge language and relationship

culture

q, consistent .-.J .-.J
q2 adequate .-.J .-.J
Q4jlexible .-.J .-.J

Table DLR4-4: Idenlified eompenssling Caeton and balanclng errects.

e.
reliability

es
contraeting

During the analysis, the following vertical compensation vectors were determined based on

the observations and recommendations (simplified description):

-v
• el domain knowledge: kll = (0,1, k3\>0, kS\,k6J ,k7p k8J). The unclear overall structure ofthe

specification can hardly be compensated by a good general understanding of the

application domain. However, development partners with better domain knowledge can

render single interpretable specification parts more precise, with relatively low risk. If

specification parts are not designed for changeability in advance, they can hardly be

adjusted by good domain knowledge alone.
-y

• e2 eommunieation, /anguage, and cu/lure: k12 = (l,I'~2,I,ks2,k62,k,2,k82)' The explicit

information about dependencies between parts of the specification should be supported by

good communication. A common language and smooth operational communication are

among the basic requirements for the further use of specifications with substantive

deficiencies. In the case of specifications that are difficult or laborious to change, the

solution identification for necessary modifications is simplified if the conflict cultures of

the involved partners are compatible.

-v
• e3 /earning relationship: k i3 = (l,l,k33,l,k'3,k63,k73,kg3)' Existing knowledge ofthe business

context through experiences from earlier collaborations between the involved parties

74 SpeciflcatioD

facilitates problem solving for insuffieiently eoneerted speeifieation parts. The experienee

eurve of the learning relationship simplifies tbe elarifieation of inaccurately specified

requirements. If partners are already familiar with mutual peculiarities and implieations,

even speeifieations tbat require high efforts for changing may be adapted with relative

effieiency.

-y
• e4 re/iabi/ity: k14:=: (0,l,k34,I,ks4,k64,kwk84)' Operational eollaboration and strategie ties

between the partners have little influenee on tbe degree of coordination between

speeifieation parts. A high degree of reliability between the partners, however, makes it

possible to better adjust inaeeuracies in the requirements speeifieation. In the ease of a

strategieally eommitted management and an operationally reliable interaction between the

development team members, changes to poorly modifiable speeifieations beeome more

feasible.
-y

• es contracting: kls = (0,1,k3s,l,kss,k6s,k7s,kss) . It does not seem plausible that speeifieation

parts should be better coordinated as a result of a flexible contraet. However, the

appropriate eontraet design is a precondition of being prepared for dealing witb impreeise

or unstable speeifieations and of effectively handling such situations externally. Good

eontracts ean show possible solutions especially for those specifieations that can only be

modified witb high expense.

In detennining tbe compensation veetors partieularly the possible balaneing effeets for tbe

mostly affeeted quality eriteria were examined, following tbe min-rnax prineiple. The analysis

yielded an overall eritieal assessment ofthe suitability ofthe requirements speeifieation for an

offshoring of later development stages. To support decisions in favor of an offshore projeet, it

was reeomrnended to pay attention to the feasibility of tbe above described compensating

factors when seleeting partners and designing tbe projeet.

5.3 Reception ofthe results

The client deeided to implement an offshore project, waived a targeted implementation of

eompensatory measures but, given tbe evaluation results, limited tbe offshoring rate to a

maximum of 40 percent of tbe project. After some time, we were able to analyze tbe projeet's

progress and survey the client on the projeet results as well as on his assessment of the

evaluation method during a retrospeetive interview.

The part of the projeet that has been condueted offshore was referred to as problematie. About

25 percent of the developed funetionality had to be redeveloped eompletely; another 25 to 50

percent had to be partially revised. Overall, less than half of tbe offshore developments

remained without rework. One reason given was tbe missing familiarity of the eontractor witb

A method to evaluate the suitability of requirements specifications for offshore projects 75

the individual peculiarities on the client side. Since neither in-depth knowlOOge of the

application domain existed nor common experience from previous projeets was available, the

contraetor could only compensate existing specification deficits at great expense. The unclear

contract design in terms of compensation for deficits also 100 to discussions about who should

bear the responsibility for problems in dealing with requirements speeifications.

The offshore quota in the correetion of defects and in change requests was reduced to zero in

the later project. The entire offshore rate for the whole project finally was below 10 percent.

The client estimatOO an unspeeific "offshoring advantage" of only 10-15 percent on the

bottom line. The client further statOO that offshoring on the basis of poor requirements

speeifications works with Iargely standard.ized and generally known features and processes at

best - but is badly suited for the implementation of individual and higbly specific features as

in the examined project. The method we used to evaluate the requirements speeifications, and

our analyzed compensation factors, were generally appraised by the client as "all together

correct and relevant". The evaluation results and predictions could also be verified in detail by

the actual course of the projeet, specifically tbrough analyzing the issues that occurred as a

consequence of negleeting the compensation measures. These concrete results from the

evaluation method and the compensation recommendations were assertively confinned as

correet by the client also in the retrospective interview.

6 Conc1usion

With the growing importanee of offshoring as a deeision option even for higbly complex

application development projects, the quality of requirements specifications has evolvOO to a

centra1 determinant. In this contribution we therefore described a method to evaluate the

quality of requirements speeifications systematically, comprehensively with regard to several

criteria, and in a rational process. In addition, compensating factors were includOO into the

analysis to achieve a better control or even a reetification of speeification deficits during the

course of the projeet. The evaluation method does not require a renewOO involvement of the

user. In the case study, the assessment also accountOO for only about four percent ofthe total

expense which the dient had estimated for the design and irnplementation on the basis of a

function point analysis.

The presented research results have irnplications for both science and practice. For practice,

the developOO approach provides an immediately deployable, efficient way to constitute a

better foundation for p1anning decisions for an offshoring projeet depending on the quality of

available requirements documents. From a scientific point of view, the presented approach

c1osOO the research gap conceming decision support approaches for the p1anning of offshore

projects for application development. To acbieve a more comprehensive decision support in

76 Speeifleation

the planning of offshore projects, we particularly have to research further infIuencing factors.

The method described in this paper presents a first step which was developed in tenns of a

design science approach and which has been iteratively improved. We focused on the quality

of requirements specifications and specific compensating factors with a balancing effect on

specification deficits.

The presented method itself is subject to further research to be carried out in further iterations

of the design science cycle. On the one hand, focus is on the development of an algoritlunic

process to systematically derive the weights of the single quality criteria during the

assessment based on the preferences of decision makers. The Analytic Hierarchy Process

(AHP) serves as the basis for this purpose. On the other band, we plan to develop best

practices and guidelines for the applieation of the presented method through further case

studies in collaboration with practice partners. In this way, we intend to further improve the

desired offshore decision support.

References

Aspray, w.; Mayadas, F.; Vardi, M. (eds) (2006), "GlobaJization and ofTshoring of software: A report of the
ACM job migration task force: The executive summary, fmdings, and overview of a comprehensive ACM
report on the offshoring of software worldwide", ACM, New York, USA.

Beeker, J.; Rosemann, M.; Schlttte, R. (1995), "Grundsätze ordnungsgemäßer Model1ierung",
Wirtschajlsinfonnatik, 37 (5): 435-445.

Bensberg, F. (200g), "Nutzwertanalyse", in Kurbel, K.; Beeker, J.; Gronau, N.; Sinz, E.; SuhI, L. (eds) (2008),
Enzyklopädie der Wirtsehaftsinformatik - OnIine-Lexikon, Oldenbourg. Munieh.

Bcrcnbach, B.; Borotto, G. (2006), "Metries for model driven requinements development", Proceedings of the
2~ intemational conference on software engineering, ACM, 20-28 May 2006, Sbanghai, China: 445-451.

Bhat, I.; Mayank, G.; Murthy, S. (2006), "Overcoming rcquircments engineering ehallenges: Lessons from
offsbore outsourcing", IEEE Software, 23 (5): 38--44.

Boos, E.; lesalnieks, I.; KeUer, F.; MoezadIo, R.; Rathgeb, K..; Rohlfes, M.; Schmidt, C.; Stimmer, I. (2005),
Leitfaden O./fthoring, Bundesverband Informationswirtscbaft, Telekommunikation und neue Medien e.V.,
Berlin.

Brown, A. (2000), Large-scale, component-baseddevelopment, Prentice HaU, Upper Saddle River, USA.

Christiansen, H. (2007), "Meeting tbe ebaUenge of communication in offsbore software deveJopment",
Proceedings of the first intemational conference on software engineering approaches for o./fthore and
outsourced development, Lecture Notes in Computer Seienee 4716, Springer, 5-7 Feb. 2007, Zurieb,
Switzerland: 19-26.

Coase. R. (1937), "The nature ofthe finn", Economica, 4 (16): 386--405.

Corriveau, I. (2007), "Testable requirements for offsbore outsourcing", Proceedings of the first Intematlonal
conference on software engineering approaches for o./fthore and outsourced development, Leeture Notes in
Computer Seience 4716, Springer, 5-7 Feb. 2007, Zurieb, Switzerland: 27-43.

Cusiek, I.; Prasad, A. (2006), "A pmetieal management and engineering approacb to offsbore collaboration",
IEEE Software, 23 (5): 20-29.

D'Souza, D.; Wills, A. (1999), Objects. components. and frameworks with UML: The catalysis approach,
Addison Wesley, Upper Saddle River, USA.

A method to evaluate the suitability of requirements specifications for offshore projects 77

DavenpOl1, T. (2004), "What stays and what goes? Sourcing processes and jobs in the global economy",
Offshore oursourcing - risks ond rewards: Symposium conclusions paper, CFO Publishing, 17 Jun. 2004,
New Vork, USA: 3-4.

Davis, A. (1993), Software requirements: Objects,fimctions, ond stores, Prcnticc Hall, Englcwood Cliffs, USA.

Dibbern, J.; Goles, T.; Hirschheim, R.; Jayatilaka, B. (2004), "Information systems outsourcing: A survey and
analysis ofthe literature", The DA TA BASE/or Advonces in In/omation Systems, 35 (4): 6·102.

Dibbern, J.; Winkler, J.; Heinzl, A. (2008), "Explaining variations in client extra costs between software projects
offshored to Indian, MlS Quarterly, 32 (2): 333·366.

Erbcr, G.; Sayed-Ahmed, A. (2008), "Offshorc outsourcing: A global shift in the prescnt IT industry",
Intereconomk:s, 40 (2): 100-112.

Gefen, D.; Wyss, S.; Lichtenstein, Y. (2008), "Business familiarity as risk mitigation in software dcvelopment
outsourcing contracts", MlS Quarterly, 32 (3): 531-551.

Gsell, B.; Overhage, S.; Turowski, K. (2008), "Unzureichende Leistungsbeschreibung bei der Softwareentwick
lung und die Rolle von Standardvertrllgen", in Möllers, T. (cd), Stondardisierung durch Marla und Recht,
Nomos, Baden-Baden: 23-48.

Hall, A. (1990), "Seven myths offonnsl methods",1EEE Software, 7 (5): 11-19.

Hansen, H.; Neumann, G. (2009), Wirtschoftsin/ormatik I: Grundlagen und Anwendung, 101h edn, Lucius &
Lucius, Stuttgart.

Hecks, R.; Krishna, S.; Nicholson, B.; Sabay, S. (2001), "Synching or sinking: Global software outsourcing
relationships", IEEE Software, 18 (2): 54-60.

Heind!, M.; Biffl, S. (2006), "Risk management with enhanced tracing of rcquirements rationale in highly
distributed projects", Proceedings 0/ the 2006 international workshop on global software development /or
the practitioner, ACM, Shanghai, China: 20-26.

Hevner, A.; March, S.; Park, J.; Ram, S. (2004), "Design science in infonnation systems research", MlS
Quarterly, 28 (1): 75-105.

Hofstede, G. (2002), Culture's consequences: Comparing values, behaviors, institutions, and orgonizations
across nations, 2n4 edn, Sage, Thousand Oaks, USA.

IEEE (1998), IEEE recommended practicefor software requirements specifications: IEEE standard 830-1998,
IEEE, New York, USA.

King, W.; Torkzadeh, G. (2008), "Information systems offshoring: Research status and issues", MlS Quarterly,
32 (2): 205-225.

Klein, R.; Scholl, A. (2004), Plonung und Entscheidung: Konzepte, Modelle und Methoden einer modemen
betriebswirtschaftlichen Entscheidungsonalyse, Vablen, Munieh.

Kobitzsch, W.; Rombach, D.; FeJdmann, R. (2001), "Outsourcing in lndia", IEEE Software, 18 (2): 78-86.

Kojima, S.; Kojima, M. (2007), "Making IT offshoring work for the Japanese industries", Proceedings 0/ the
first intemotional con/erence on software engineering approaches/or offshore ond outsourced development,
Lecture Notes in Computer Science 4716, Springer, 5-7 Feb. 2007, Zurich, Switzerland: 67-82.

Krogstie, J. (1998), "Integrating the understanding of quality in requirements specifications and conceptual
modeJing", ACMSIGSOFT Software Engineering Notes, 23 (I): 86-91.

van Lamsweerde, A. (2009), Requirements engineering: From system goals to UML models to software
specifications, Wiley, Hoboken, USA.

Liskov, B.; Berzins, V. (1986), "An appraisal of program specifications", in Gehani, N.; McGettrick, A. (eds),
Software specification techniques, Addison Wesley, Wokingham, UK: 3-24.

MacGregor, E.; Hsieh, Y.; Kruchten, P. (2005), "Cultura1 patterns in software process mishaps: Incidents in
global projects", ACMSJGSOFT Software Engineering Notes, 30 (4): 1-5.

Moczadlo, R. (2002), "Chancen und Risiken des Offshore-Development: Empirische Analyse der Erfahrunge
deutscher Unternehmen", accessed on 14 Jul. 2009, http://www.competence-site.de.

Morris, C. (1970), Foundation 0/the theory 0/signs, University of Chicago Press, Chicago, USA.

78 Speciflcation

Nevo, S.; Wade, M.; Coole, W. (2006), "An examination of the Irade-off between intemal and extemal IT
capabilities", Journal ofStraJe~ Information Systems, 16 (I): 5-23.

Overby, S. (2003), "Offshore outsourcing the money: Moving jobs overseas can be a much more expensive
proposition than you may !hink", CIO, 16 (22): 60-66.

Overhage, S. (2006), "Vereinheitlichte Spezifikation von Komponenten: Grundlagen, UnSCom
Spezifikationsrahmen und Anwendung", Dissertation, Universität Augsburg, Augsburg.

Overhsge, S.; Thomas, P. (2005), "WS-Specification: Ein Spezifikationsrahmen zur Beschreibung von Web
Services auf Basis des UDDI-Standards", eEconomy, eGovernment, eSociety: Proceedings
Wirtschajlsinfonnatik 2005, Physica, 23-25 Feb. 2005, Bamberg: 1539-1558.

Pruß, M.; Skroch, O. (2008), "Kritische Defizite bei der Leistungsvereinbarung in Softwareverträgen: Ein
Bericht aus der Praxis", in Möllers, T. (ed.), Vielfalt und Einheil: Wirtschaf/liche und rechtlkhe
Rahmenbedingungen von Standardbildung, Nomos, Baden-Baden: 263-278.

Pryor, B.; Keane, B. (2004), "Criticsl success faclors in outsourcing", OjJshore oursourcing - risks and rewards:
Symposium conc1usions paper, CFO Publishing, 17 Jun. 2004, New York, USA: 11-13.

Rcmus, U.; Wiener, M. (2009), "Critical succcss factors for managing offshorc software deveJopmcnt projecls",
Journal ofGloballnfonnatkJn Technology Management, 12 (1): 6-29.

Sakthivcl, S. (2007), "Managing risk in offshore systems devclopment", Communications of the ACM, 50 (4):
69-75.

Scheffczyk, 1; Stutz, C.; Borghoff, U.; Siedersleben, J. (2004), "Formale Konsistenzsicherung in informellen
Software-SpczifLkationcn",lnfonnatik Forschung und Entwicklung, 19 (1): 17-29.

Schienmann, B. (1997), Objektorientierter Fachentwwf: Ein tenninologiebasierter AnsatzfiJr die Konstruktion
von Anwendungssystemen, Teubner, Stuttgart.

Setamanit, S.; RalTo, D. (2008), "Identifying key success factors far globally distributed software projects using
simulation: A esse study", Proceedings ofthe international conference on software processes, Lecture NOlCS
in Computer Sciencc 5007, Springer, 10-11 May 2008, Leipzig: 320-332.

Siakas, K.; Maoutsidis, D.; Siakas, E. (2006), "Trust facilitating good software outsourcing relationships",
Proceedings ofthe 13th European conference on software process improvement, Lecture NOlCS in Computer
Science 4257, Springcr, 11-13 Oct2006, Jocnsuu, Fin1and: 171-182.

Steimle, T. (2007), Softwareentwicklung im OjJsharing: ErfolgsfaktorenfiJr die Praxis, Springer, Heidelberg.

Takeda, H.; Veerkamp, P.; Tomiyama, T.; Yoshikawa, H. (2007), "Modeling design processes", Al Magazine,
11 (4): 37-48.

Tsuji, H.; Sakurai, A.; Yoshida, K.; Tiwana, A.; Bush, A. (2007), "Qucstionnaire-based risk sssessment scheme
for Jspanese offshore software oUlsourcing", Proceedings of the first inlernaJional conference on software
engineering approaches for ojJshare and outsourced development, Lecture Notes in Computer Science 4716,
Springer, 5-7 Feb. 2007, Zurich, Switzerland: 114-127.

Vlaar, P.; van Fenema, P.; Tiwari, V. (2008), "Cocrealing understanding and value in distributed work: How
members of onsite and offshore vendor teams give, make, dernand and break sense", MIS Quarterly, 32 (2):
227-255.

Wads, Y.; Nakahigashi, D.; Tsuji, H. (2007), "An evaluation method for offshore software development by
structural equation modeling", Proceedings of the first international conference on software engineering
approachesfor ojJshore and outsourced development, Lecture Notes in Computer Science 4716, Springer, 5
7 Feb. 2007, Zurich, Switzerland: 128-140.

Wehrmann, A.; Gull, D. (2006), "Ein COCOMO-basierter Ansatz zur Enlscheidungsunterstützung beim
Offshoring von Softwareentwicklungsprojekten", Wirtschaftsinfonnatik, 48 (6): 407-417.

Winkler, J.; Dibbem, J.; Heinzl, A. (2007), "Der Einfluß kultureller Unterschiede beim IT-Offshoring:
Ergebnisse aus Fallstudien zu deutsch-indischen Anwendungsenlwickungsprojekten", Wirtschaftsinfonnatik,
49 (2): 95-103.

Zangemeister, C. (1976), Nutzwertanalyse In der ~stemtechnik - Eine Methodik zur muItidimensionalen
Bewertung und Auswahl von ProjektalternaJiven, 4 edn, Wittemann, Munieh.

IV Selection

O. Skroch, Developing Business Application Systems,
DOI 10.1007/978-3-8349-8858-4_6,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

IV.RS Optimal stopping for the run-time self-adaptation of software systems 5

Advanced software systems can reconfigure themselves at run-time by choosing between

alternative options for performing certain functions. Such options can be built into the

systems, but are also externally available on open and uncontrolled platforms. Main examples

are Web services and mashups on the Internet today.

The following research article shows how run-time software self-adaptation with uncontrolled

external options can be optimized by stopping theory, yielding the best possible lower

probability bound for choosing an optimal option. The article presents two application

scenarios and derives the respective, efficient optirnization a1gorithms. The theory is

confirmed by simulating examples for both scenarios where the improvement over an

assumed closed software system is measured.

S Research article R5: Skroch, 0.; Turowski, K. (2010), ''Optimal stopping far the run-time self-adaptation of
software systems", Journal 0/Information & Optimizatlon Sciences, 31 (I): 147-157.
© TARU Publications, New Delhi, India for the original contribution.

82 Selection

1 Introduction

Flexible software systems are based on the concept of modularity. They can be constructed

through component-based and service-oriented software engineering approaches. These

approaches promote the reuse of software that has already been made available before.

Ideally, a larger application can be build by identifying already existing, suitable components

or services first, and then composing the parts into a loosely coupled, larger system. The

resulting targer software system jointly perfonns all operations required, while mutual

dependencies between its parts are fully explicit (Achennann & Nierstrasz 2005; Parnas 1972;

Szyperski, Grunz & Murer 2002).

Selecting suitable components and services is one decisive step in composing such software

systems. In component-based and service-oriented approaches, suitable components and

services can be identified by searching through software repositories or electronic markets. It

can be done at build-time when designing and implementing the application. This leads 10 a

c10sed software architecture where all components and services are internal parts of the !arger

system. Closed systems can already provide internal run-time self-adaptation capabilities. One

example are VoIP (Voice over Internet Protocol) clients which can seleet, from a nomber of

codec options integrated at build-time, one suitable codec according 10 actual data rates

rneasured at run-time.

Advanced software architectures can perfonn parts oftbeir functionality also through external

components or services that were not integrated into the software. Such external components

or services could be unknown at build-time, but on open and uncontrolled software platforms

they may beeome available in !arge nombers later at run-time. Prominent examples on the

Internet are Web services in general (Atkinson et al. 2002) and service mashups in particular

(Bernstein & Haas 2008; Gamble & Gamble 2008).

Exhaustive run-time search for better service options is impossible on huge open platforms

such as the Internet. Anonymous, independent services from distributed open platforms are

unknown and can not be controlled either. At first glance, searching under these conditions

seemingly can be improved with heuristics only. Still we propose an exact algorithmic

optirnization for self-adaptation processes under these conditions: 10 determine the best

moment when to stop a search for further service options. From stopping theory, we derive

and simulate efficient algorithms that implement a search strategy with the best possible lower

probability bound for choosing an optimal self-adaptation option.

The rest of the paper is structured as folIows. Chapter 2 explains the required background and

states assurnptions made. Chapter 3 lines out two different run-time self-adaptation scenarios

and presents the applicable stopping theory for both scenarios. Chapter 4 applies the theory to

both scenarios, derives actual algorithms, and presents results from two extended simulation

Optimal stopping fOT the nm-time self-adaptation of software systems 83

examples, where advantages over a corresponding static software system are measured.

Chapter 5 summarizes and concludes the paper.

2 Flexible software arcbitectures and matcbing scbemes for self-adaptation

Figure lV.RS-I illustrates in an example how services are supplied and requested through

service interfaces in component software system architectures. The two decisive principles are

composition and delegation. A requested service interface can be composed with a supplied

service interface, to combine into aggregated components. Service interfaces can be delegated

to other service interfaces of the same type, to hand over processing. Supplied service

interfaces are available from other components or even from open platforms.

J: ••••••••

~ component ~-' ~~I
-{

requested
service

Interface

-0
supplied
service

Interface

------*
delegation composition

<-----~

alternative
composition

Flgurc IV.R5-1: Component software arcbitcctnrc cxamplc. Based on Shaw and Garlan (1996).

Composition implies to match supplied interfaces with requested interfaces. Figure lV.RS-2

suggests a classification of the possible schemes for matching supplied service options in

existing compositions. The set of n supplied service options from externaI, uncontrolJed

platfonns can be large. The set ofm compositions from within the e10sed software can also be

large, but n » m.

• The choice scherne compares one composition - a requested service with its supplied

service - against the alternative composition of this same requested service with one

different supplied service option. lt is the elementary decision whether the present

composition or the alternative composition is better. This scheme is also the basic

consideration for the other schemes.

• The a1location scheme checks one particular service option for many oe all compositions.

Allocation can be seen as a repetition of choice, trying one supplied option in all

compositions.

84 Selection

• The search scheme checks many supplied service options for one particular composition.

Search can be seen as a repetition of choice, trying one composition with all supplied

options.

The screening scheme checks many or all compositions with many supplied service

options each. Screening is the most general approach and can be seen as allocation with

search.

n»m

..--.,, ,
i Open Platform i
i n extemal options i

Closed System
mintemal

compositions

Cholce
1 composition : 1 option

Allocatlon
m compositions : 1 option

Search
1 composition : n options

Screening
m compositions : n options

F1gure IV.R5-2: Posslble matchiDg scbemes.

Run-time software self-adaptation aims at dynamically re-composing services. Service

options supplied at run-time via open platfonns are assumed to fit function wise, but may

differ in other ways such as quality, cost, etc. For a given composition it is possible to

improve such non-functional system features by selecting a best supplied service option and

by adapting the system accordingly (it can be assumed that the set of supplied options is never

empty, ifwe consider the internal service supply as fallback ifno externaioption is chosen).

Run-time software self-adaptation is triggered by the adapting system itself. Sefore a

requested service interface calls the supplied interface at run-time, the system looks for

extemally supplied options and decides wbether to re-compose this service call. This implies

matehing operations from the search scheme and excludes the allocation scheme. 1t can be

assumed that the utility function is to choose the best available option, and that the actual

values for the comparison can be detennined by the system. The related computing can be

done, for example, in an adaptation component that orchestrates and monitors the re

compositions.

Independent services from open software platforms cannot be controlled. One consequence is

that any supplied service can be unavailable or changed in the next moment. This implies that

the final decision whether to choose a certain service must be made straightforward.

Consequently, for the search scherne it is not possible to memorize a supplied service option

and, after further unsuccessful search, get back and use this service option.

Optimal stopping fOT the nm-time self-adaptation of software systems 85

Software self-adaptation can be performance critical. With n and m both large and n » m, the

screening scherne is not feasible for nm-time matching operations (screening is relevant at

build-time rather). But even the search scheme on open platforms already requires efficient

calculation methods with a large number ofavailable service options n.

3 Optimal stopping in two self-adaptation scenarios

We examine two simple scenarios that avoid exhaustive search and generally enable the

application of nm-time self-adaptation with uncontrolled externaioptions in the described

situation. Firstly, either one limits the number of options to be considered from the many

available options. Or, secondly, one allows only a maximum run-time delay. Stopping theory

can be used in both scenarios to optimize the run-time software self-adaptation process by

determining the best point to stop the search for further alternative options.

Stopping problems are a well known research topic in mathematical statistics. A general

solution approach to OUT problem c1ass can be found already in (Lindley 1961) and within the

framework of stopping Markov chains in (Dynkin & Juschkewitsch 1969). Comrnon

strategies for optimal stopping under considerations suitable for the two scenarios are

described in (Bruss 1984) and (Bruss 2000).

3.1 Limited number ofrun-time options

The first scenario limits the number of alternative options n which can be considered for self

adaptation. This means that the self-adaptation process evaluates supplied service options at

most up to this limited number, and the limit is predefllled.

With a predefined, limited number of unknown and independent options, let
1,,12'''',1. E{O; I} be independent indicator functions defined on a probability space

(n, A, P). An index k is called a success if Ik = I. The indicators are observed in sequence

1,,12'''' It is possible to stop at any ofthern but it is not possible to recall any preceding.

Let T be the c1ass of stopping rules t' so that {r = k} E o{Il,12, .. . ,1k) which represents the

sigma-algebra generated by the indicator sequence. The optimal stopping rule r· E T
maximizes the probability ofthe event I, = 1 and I Nl = I N2 = ... = I. = 0 .

Now let Pi = E(Ij) be the probabilities for the independent indicators. Let qj := 1-Pj and the

so-called odds rj := Pj / q)' The optimal rule .. for stopping on the last success is to stop on

the OOt index (if any) k with Ik = I and k ~ s where

86 Selection

(N.R5-1)

Rule (N.R5-I) is intuitive. The optimal strategy is 10 add up the odds rn + 'n-l +...

("backwards") until this surn becomes equal to or greater than one, at index s, and then to stop

at the first index k::: s with a success. In other words, it is optimal to stop as soon as the

expected number of future successes becomes equal 10 or less than one. Then, the value

(probability for the best choice) is l/e, given by

V(n) = TI qJ ~>J = Q, (n)R, (n)
J=$ J=$

This is the odds theorem ofoptimal stopping, proven in (Bruss 2000).

3.2 Limited run-time delay

(N.R5-2)

The second scenario defines a maximum tength for the time frame that can be used for a self

adaptation call at run-time, wbile the nurnber of supplied service options is not known or

cannot reasonably be predefined (except that it is known that there are many options).

Then, with a distribution function F(z) on the real time interval [O;tm..], let ZI, Z2, ... be

independent random variables (each with a continuous distribution function F) where ZA is the

arrival time ofoption k. Let N be a non-negative integer random variable independent of all Zk

so that N represents the unknown total number of supplied options. With N = n, each arrival
order (1),(2), ... ,(n) is equally likely. Since the best service option needs to be selected, it

only makes sense 10 accept an option that is better tban alt previous ODes, and alt previous

ODes must have been evaluated.

The waiting time x is defined as the time up 10 which all options are evaluated without

accepting, while the value of the leading option is remembered. The first leading option after

time x is accepted, if there is one, and all options are refused, if there is none. This is called

the x-strategy.

For any distribution with P(N) 0) > 0 there exists a waiting time x' maximizing the success

probability fur the x-strategy. Moreover, for all & > 0 there is an integer m where n::: m

implies

.[1 I] I '{I I}x E --&;- where -=mf x F(x)=-
eF eF eF e

(N.B5-3)

Optimal stopping for the nm-time self-adaptation of software systems 87

Rule (IV.R5-3) is the only waiting time policy with the asymptotically best possible success

probability 2: l/e, regardless of the distribution of N. This is the l/e law of optimal stopping,

proven in (BTUSS 1984).

4 Application and simulation

Optimal stopping can be applied to optimize the run-time self-adaptation of software systems

searching for options on open platforms. No literature was found describing this application,

except for the authors' previous research (Skroch & Turowski 2007).

4.1 Limited number 01run-time options

The odds theorem (Sruss 2000) can be applied to optimize the fIrst scenario of run-time

software self-adaptation. Let the best alternative option show up atj and let the stopping index
be s. The best service option will therefore be selected only if j > s , and only if the "second

best" service option beforejappears at i with i ~ s , which happens in s out ofj-I cases. Each

pennutation of the trial sequence is equally likely. So the probability for the best service

option at positionj is II n and the probability for the second best service option among the
first s is s l(j -I). The probability p. that the best service option is selected summarizes (over

all j=s+l,s+2, ... ,n) the probability for the best service option at position j times the

probability for the "second best" service option arnong the fIrst s:

. (I s) s.-1 IP=L -- =-L-
, jt n j -I n j... j

(IV.R5-4)

(IV.R5-4) yields R,=I/(n-I)+I/(n-2)+ ... stopped at R,=1. At the optimum, i.e. the

stopping indexs, as n~CXl it can be recognized that sln~l/e and also V,(n)~lle. The

value Ile (::::: 0.368) is a typical lower bound well-known from the classical best choice

problem. See also Lindley (1961), STUSS (2000).

The implemented algorithm therefore matches service options with the internal composition

and rejects all options, while memorizing the value of the best option yet. After a proportion

of nie of the options has passed, the next leading option is chosen, if there is one. Otherwise

no alternative choice is made and the original composition remains in place. Since n is

predefined in this first scenario, nie is a constant.

The algorithm is effident. Additional time complexity is O(n) in the worst case, linear on the

number of evaluated options, because for each evaluated option, one single comparison is

made against the previously best option. In the best case aleading option appears immed.iately

88 Selection

after nIe, adding constant complexity only. Additional space complexity is constant even in

the worst case, because at any time only one value (the best yet) is stored.

For this first "limited options" scenario, an example was simulated with Web services

offering currency exchange rates of different age. 1t can be assumed that more recent

exchange rates are better.

Exp. Avg. quallty Best was selected

I 879.3 0.29

2 879.3 0.33

3 894.5 0.38

4 906.3 0.29

5 867.6 0.32

Avg. 885.4 0.32

Table IV.RS-I: Results from simulation experiments for tbe "Umited options" scenario.

In the simulation experiments, uniformly distributed quality values between 0 (worst) and 999

(best) were randomly assigned to the compositions with external service options. The intemal

composition was given an assumed fIxed value of 700. These assumptions simplify the

simulation without loss of generality as to our intended experimental demonstration. The

proposed optimization method does not require any particular quality measurement function,

except that it has to produce at least nrdinal results for the matching operation.

Five experiments with 100 self-adaptatinns in each run were sirnulated. The limit n was set to

1000 service options. Table IV.R5-1 shows results from the first simulation.

With a predefined number of evaluated options, the run-time self-adaptation example with

optimal stopping outperformed the assurned closed software system by 167.6 to 206.3 quality

points. The average irnprovement was 185.4 points, or 26.5 percent, over al1 fIve "limited

options" experiments together. The best available service was actual1y selected in 32 percent

ofthe self-adaptation trials (where the theoretical pred.iction is 36.8 percent).

4.2 Limited run-time delay

The l/e Iaw (Bruss 1984) Can be applied to optimize the second scenario ofrun-time software

self-adaptation. With many suitable service options available on open platforms, a uniform

distribution over time is assumed for service discovery.

Take x = F(z), z E [O;t",.,J with a continunus time scale x between 0 and 1 and with each

Xk = F(Zk) uniform on [0; 1]. A stopped search ends optimal if the best service option (I)

Optimal stopping fOT the nm-time self-adaptation of software systems 89

arrives in] x; I] before allother service options arriving in] x; I] which are better than the

best ofthose which arrived in] 0; x]. From the k+1 best options the option (k +I) arrives in

] 0; x] and the k best ones in] x; 1] with probability x(I-4. Since (I) arrives before

(2), ... ,(k) with probability l/k one obtains the success probability:

• I .-1 1 1
p,,(x) = x2:-(I-xf= x2:-(l-xf+-(I-x) withn:::2

.=1 k <=1 k n
(IV.R5-5)

The sum tenn of (lV.R5-5) contains the Taylor expansion of -ln(x). As n~ 00 one obtains
P"(x)~ -x In(x) which has a unique maximum at x = I I e. The value l/e (:::: 0.368) is the

(asymptotically) best possible lower bound. See also Lindley (1961), Sruss (1984).

The respective algorithm therefore matches service options with the internal composition and

rejects all options, while memorizing the value of the best option yet. With a uniform

distribution of service discovery events, as soon as a proportion of tle of the predefined time

frarne has passed the next leading service option is chosen, if there is one. Otherwise no

alternative choice is made and the original composition remains in place. Since t is predefined

in this second scenario, tle is a constant.

The algorithm is again efficient. Additional time complexity is constant even in the worst

case, because the maximum length of the time frame t is preset. Additional space cornplexity

is also constant even in the worst case, because at any time only one value (the best yet) is

stored.

For this second "limited delay" scenario, simulation examples were conducted with settings

according to the "limited options" case. In the "limited delay" simulation five experiments

were conducted with 500 self-adaptations each, 1000 supplied service options were available

for each self-adaptation, and the maximum run-time delay t was set to 200 milliseconds.

Table IV.R5-2 shows results from the second simulation.

&p. Avg. quality Best was selccted

1 874.0 0.376

2 877.2 0.364

3 870.3 0.354

4 856.7 0.294

5 872.0 0.350

Avg. 870.0 0.348

Table IV.R5-2: Results from simulation experiments for the "limited delay" scenario.

On a predefmed maximum delay of the matching operation, the run-time self-adaptation

example with optimal stopping performed 156.7 to 177.2 quality points better than the

90 Selection

assumed closed software system. The average improvement was 170.0 points, or 24.3 percent,

over a11 five "limited delay" runs together. The best available service was actually selected in

34,8 percent ofthe service calls (where the theoretical prediction is 36.8 percent).

5 Summary and conclusion

Stopping theory has been used to optimize the run-time self-adaptation of advanced, dynamic

software systems in two scenarios. One scenario predefined the maximum number of options

at run-time. The other scenario predefmed the maximum run-time delay. For both scenarios,

suitable stopping theory was applied and efficient algorithms were derived. Simulation

experiments sbowed that dynamic software systems with run-time self-adaptation and optimal

stopping outperform a corresponding static software system.

A major driver for the applicability of tbe results is the increasing use of open p1atforms for

distributed, service-oriented systems and mashups. Important application areas already

include grid computing, distributed multimedia, mobile computing, and self-healing software.

With few cbanges, the results are applicable also for the run-time self-adaptation of software

systems to dynarnically changing requirements.

References

Achermann, F.; Nierstrasz, O. (2005), "A calculus for reasoning about software composition", Theoretical
Computer Science, 331 (2-3): 367-396.

Atkinson, C.; Bunse, C.; Groß, H.; Kilhne, T. (2002), ''Towards a general component model for Web-based
applications", Annals ofSoftware Engineering, 13 (I): 35-69.

Bernstein, P.; Haas, L. (2008), "Information integration in the enterprise", Communications oflhe ACM, 51 (9):
72-79.

Bruss, T. (1984), "A unified approach to a class ofbest choice problems with an unknown number of options",
The Annals ofProbability, 12 (3): 882-889.

Bruss, T. (2000), "Sum the odds to one and stop", The Annals ofProbabillty, 28 (3): 1384-1391.

Dynkin, E.; luschkewitsch, A. (1969), Sätze undAufgaben über Markoffsehe Prozesse, Springer, Heidelberg.

Gamble, T.; Gamble, R. (2008), "Monoliths 10 mashups: Increasing opportunistic assets", IEEE Software, 25 (6):
71-79.

Lindley, D. (1961), "Dynanric programming and decision theory", Applied Statist/es, 10 (1): 39-51.

Pamas, D. (1972), "On the criteria 10 be used in decomposing systems into modules", Communicalions of lhe
ACM, 15 (12): 1053-1058.

Shaw, M.; Garlan, D. (1996), Software architeclure: Perspeclives on an emerging discipline, Prentice Hall,
Upper Saddle River, USA.

Skroch, 0.; Turowski, K.. (2007), "lmproving service selection in component-based architectures with optimal
stopping", Proceedings of the 34'" Euromicro conference on software engineering and advanced
applicatlons, IEEE Computer Society, 28-31 Aug. 2007, Lübeck: 39-46.

Szyperski, C.; Gruntz, D.; Murer, S. (2002), Componenr software: Beyond objecl-orienled programming, 2""
edn, Addison Wesley, London, UK..

O. Skroch, Developing Business Application Systems,
DOI 10.1007/978-3-8349-8858-4_7,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

IV.R6 Reducing domain level scenarios to test component-based software 6

Higher-order black box software tests can be used for checking independent end-user domain

requirements. This has become an issue of increasing importance with compositional reuse of

software artifacts. The following research article elaborates on a method for deriving testable

scenarios directly from a customer domain model by abstraction, reduction, and inclusion for

critical coverage. The resulting linear (Le., non-brancbing) scenarios can be extended to serve

as references or oracles for testing the specifications of components and services offered by

suppliers.

The article presents tbe proposed rnetbod in an overview and elaborates on the domain

reduction step witbin tbe process for tbe generation of testable scenarios from a domain

model. An example is provided wbicb is non-fictitious on tbe domain side. Advantages oftbe

metbod are an underlying clear business model, test oracles that are independent from the

software development process, and validation results tbat can be generated early in the

development cycle, possibly before tbe software itself is available.

• Research article R6: Skroch, 0.; Turowski, K. (2007), "Reducing domain level scenarios to test component
based software", Journal ofSoftware, 2 (5): 64-73.
© Academy Publisher, Oulu, Finland for the original contribution.

92 Selection

1 Introduction

Software engineering is in the process of evolving from a craft to an industry and reuse is one

decisive element that supports and propels this evolution. Reuse has even been described as

"the only realistic approach" (Mili, Mili & Mili 1995, p. 529) to meet the needs of a software

industry. Recently, further increasing needs for reuse have been listed among the top trends

that will influence future software processes (Boehm 2005).

Compositional reuse is one of the fundamental software reuse technologies (Biggerstaff &

Richter 1987). The approacb is to reuse executable artifacts wbich are found in repositories,

and compose them in10 larger applications (Szyperski, Gruntz & Murer 2002). Compositional

reuse of black box business components is part of the overall concept of component-based

business applications, where business components are described by multi-layered and semi

formal specifications, implement services from a business domain, and are envisaged to be

traded on markets (Turowski 2003). Such compositional reuse includes

• building software for reuse, by creating self contained, marketable, fully described black

box artifacts on the supply side,

• building software from reuse, by composing larger applications from these executable

stand-alone artifacts on the demand side, and

• trading the associated software artifacts or components on a market (possibly an internal

market within a corporation).

In this environment, the demand side - cus10mers and end-users of component software

looks for useful software components and does not want to access source code but restricts 10

a black box view. The demand side focus therefore is on "higher-order" (Myers 1979,

pp. 103ft) compliance of domain level pragmatics and semantics, while mere formal and

syntactical compliance is often perceived as technical precondition in the responsibility of the

supply side.

Software component reuse with parts that can be looked up in catalogues and can then be

integrated into large applications similar to electronic parts has been proposed already since

long (Mcllroy 1968). But non-trivial problems still complicate broad compositional software

reuse in theory and in practice 1oday. Among the problems on the demand side is the

evaluation of available components against their more complex end-user domain

requirements: assuming that an offered component complies syntactically, it still needs 10 be

tested if its pragmatics and semantics are useful for a specific domain automation purpose.

In traditional engineering disciplines, the importance of testing is weil acknowledged because

of a long history of experiences. In software engineering it is on the one hand known that

Reducing domain level scenarios lO leSt component-based software 93

software is fundamentally less reliable than traditional engineering products (parnas 200 I)

and that building software will probably always be hard (Brooks 1987). On the other hand the

well-known notion of"good-enough software" (Yourdon 1995, p. 79) shows that we have to

deal with a pragmatic view on quality aspects of software, in particular with large enterprise

applications.

But also good enough software development can profit from testing, especially with

enterprise-sized systems if errors are found efficiently and early in the development process.

Firstly, it was shown that the effort for error correction grows markedly when the error is

detected later. Secondly, the earlier errors are detected the more rectiflcation alternatives are

available. Thirdly, studies in science and projects in industry indicate that tesling takes more

than fifty percent of the effort even with non-safety critical software.

Software testing is even more irnportant whenever prefabricated items such as components

are reused. Firstly, a single component rnade for reuse must be more thoroughly tested than a

component made to be used once because it is reused in combinations unknown at the time of

development. Secondly, a system based on a configuration of multiple black box components

from different suppliers must be more thoroughJy tested as compared to large pre-integrated

products. Cf. (Meyer 2003).

The distinction between technology based supplier testing and domain based customer testing

is widely acknowledged, in particular with component-based software (Weyuker 1998; Oao,

Tsao & Wu 2003). Recently, an approach was proposed specifically for component validation

tesling on the domain level of the demand side (Skroch 2007). lt is based on testable scenarios

which are independently derived from an end-user domain and become checked against reuse

specifications from suppliers.

The rest of the paper presents and elaborates the method and is structured as folIows. Section

two of the paper sets out basic assumptions and presents the underlying business model.

Section three introduces the approach in an overview, elaborates on the process reduction

through an abstracted business domain, and finally applies the method in a small example,

non-fictitious on the domain side. Section four elaborates on the current state ofthe art and on

existing solutions, and delimits the contributions of the method. Section five summarizes and

concludes this paper.

2 Basic assumptIons and business model

Dynamics and pragmatism of real life businesses demand good enough software which is

useful to the customer, and therefore support a focus on higher-order domain tests. SO OUT

approach is based on the fundamental assumption that the final arbiter of software success is

94 Selection

only the customer to whom the component software is useful or not. This most central

assumption was stated a1ready in 1979: "A software error is present when the program does

not do what its end user reasonab/y expects it to do." (Myers 1979, p. 103).

The end-user domain is the area of intended application for the component-based software.

While it usually lacks a fully formal definition or model, we still assume that customer test

references from the application domain prevail over test oracles created with mere supplier

knowledge from within the component software technology. Higher-order testing on the

domain level, without the intention to change or reengineer components or their

specifications, initially has as a goal to validate the suppliers' software for reuse and control

on the demand side. The argument of assertive and independent consideration of the

ontological dornain and the supporting technologies can be founded in 'P (psi) theory (Dietz

2006).

From an end-user's domain point of view, it is favorable to test higher-order requirernents

independently and as early as possible. This supports the identification and assessment of

components, if possible at best before the executable software itself is available. The

necessary validation knowledge consists of testable business requirements that predefme what

the right software solution is supposed to do, and it needs to be constructed.

Our construction approach is embedded into a clear business model assumption derived from

the vision of industrialized compositional reuse for software engineering, which has been

described in detail in (Turowski 2003). Figure IV.R6-1, notation "e3-value" (Gordijn &

Akkennans 2001), introduces the underlying business model assumption with the three actors:

component supply, component demand and component market.

demand

--
..........................~...specification

--

money

market

supply

... ' , : ... : ... ~;eclfication

requlrements -::::-,'
""',,,

Figure IV.R6-1: Business model assumption.

In the business model, suppliers create components for an anonymous market to satisty an

assumed demand or requirement on that market. These requirements can typically be acquired

Reducing domain level scenarios lO leSt component-based software 95

from discussions with individual clients but also could very weil be entrepreneurial market

assumptions. Software components offered to cover the requirements are technically mature

and suppliers keep their source code undisclosed. They completely speciry their components

in black box style by fully defining the interfaces to convey the components' contracts (what

the components do) but without disclosing their irnplementation details (how the components

work) (Meyer 1992). Specifications achieving this are multi-Iayered and semi-formal today.

Respective specification approaches are proposed e.g. in (Overhage 2006; Ackermann et a1.

2002) where contract levels and facts to be specified describe the external view onto the

component for reuse. These component specifications can serve as black box description for

reuse and are put into publicly available component specification Iibraries.

Component software users on the demand side want support and automation for their

requirements and search a wide variety of Iibrary components for the right software. The

available components are found as specifications e.g. on the Internet. These semi-formal,

multi-Iayered component reuse specifications represent the candidates offered by suppliers for

domain testing. Customers query the black box functional specifications with specific

predefined criteria, retrieve matches, and then evaluate the retrieved specifications in detail.

Both retrieval and evaluation imply a comparison Le. a test between reference features

demanded and specification candidates offered.

Compositional reuse acknowledges the industrial segregation between a supply side offering

components for reuse and a demand side requiring software buHt from reused and properly

orchestrated parts. Such industry-style compositional reuse apparently requires advances to

established software engineering methods, which also includes the testing stage. An important

challenge for black box reuse at this point is bow to derive reasonable specification retrieval

and evaluation criteria, and that means: how to validate testable end-user domain

requirements against supplier specifications.

The associated testing may be classified as specification based or prograrn based, and

specification based testing can be divided into state based testing and black box testing

(Vincenzi et al. 2003). The component paradigm of the described business model assumes

that components are tested on the basis of their specifications, and restrict OUT approach to

black box testing. lt is acknowledged that good overall testing will be comprehensive and will

employ a set of complementary methods in practice. It is also acknowledged that testing alone

can not irnprove the quality of software, but early and expressive test results can improve

decisions.

96 Selection

3 Constructing linear scenarios

3.1 ARlvaloverview

A precondition for the validation of requirements is that these requirements are statOO in

testable terms. Figure IV.R6-2, notation "activity diagram" (Object Management Group

2005), gives an overview on the ARIval (abstraction, rOOuction, inclusion, validation) method

(Skroch 2007), where domain level scenarios are used 10 validate aspects of multi-layerOO

component reuse specifications, if possible showing that the specified software works for the

higher-order domain requirements.

I

V
Parütion
Elements

I

V
CrItlcal

Saquances

Domain Model (Assumed)
Requirements

Black Box
Specification

Figure IV.R6-2: ARlval overvtew.

To construct testable business requirements on the customer side, OUT flrst starting point is the

observation that also for testing higher-order domain functionality, only a small subset ofthe

full domain is actually relevant for the end-users' intendOO automation with distinct effects on

utilizOO system behavior.

The second starting point is the observation that some kind of domain model is usually

available on the customer side, in many cases through prosaic business rules and process

descriptions as semi formal or informal models, e.g. activity diagram, event-driven process

chain, Petri net, etc. Full or partial automation is required for the model, or parts of it, from

ready-made software components.

Relevant parts of the model environment are first abstracted based on the well-known

equivalence partitioning and boundary value analysis, which is describOO and used for

program testing since the late 1970s (Myers 1979). This results in domain partition elements

Reducing domain level scenarios lO leSt component-based software 97

which are a discrete representation of the original continuous domain, with one representative

element per partition.

The abstracted elements are then reduced, by identifying reasonable and critical sequences.

Complexity of typical requirements in real settings will lead to very many possible sequences

at this point and prevent an exhaustive testing. This means that with each possible sequence of

steps that requires automation on the domain side, and with the corresponding sequence of

equivalence classes, a small number of critical sequences need to be selected from the very

!arge number ofall possibilities.

Selection criteria are domain centric and corne from outside of the software engineering

process. They include dornain workflow and value flow considerations e.g. on frequency,

criticality, financial or other risk, external visibility, etc. instead of software centric objectives

such as coverage of all control statements in the source code. Furthermore, the sequences

must not contain branching but make up linear paths in order to avoid quantitative evaluation

problems during actual testing (cf. state explosion). To achieve this, a critical sequence with

branches becomes de-branched until we have a number oflinear sequences instead.

The abstraeted and reduced domain part then contains value representatives in sequences,

with each sequence linear and deemed critical by the customer for the intended application.

An inclusion will use the critical linear sequences to build scenarios, both within a domain

part and across a number of different related domain parts, to cover the critical paths in their

context as full business transaction flows. These scenarios must again not contain branching

but make up linear paths. This can be guaranteed by constructing them accordingly, Le.

instead of a branching scenario we include two or more branch-free scenarios, until all

resulting scenarios are linear at the end.

The method provides the possibility to re-iterate the reduction step, e.g. if certain sequences

are found missing ODe Can go back and establish them to be available for the construction of

the respective end-to-end scenario. In this way each linear scenario is deliberately and

consciously included into the validation step, or not. Inclusion criteria, again, are dornain

centric and are derived from considerations rooting in domain ontology instead of software

technology, as described.

Finally, the actual testing will numerically check applicable parts of the reuse specifications

from the supply side using all forrnally defined and branch-free critical validation scenarios as

test cases.

Three basic coverage measures can be defined. Two start from the abstracted domain, which

is an equivalent of the original dornain. Reduction coverage measures the abstraeted domain

98 Selection

against reduced sequences requirements. Inclusion coverage measures reduced sequences

against included scenarios. The third measure starts from the set of scenarios. Validation

coverage measures a scenario's expected results against the actual validation success. The

measures could be plain and weighted. The weighted coverage would seale on numeric scores

given for each reduction criteria, inclusion criteria and scenario, e.g. by using a simple

ranking.

Beneficiaries of the method are mainly customers and end-users in the presented business

model. The ARNal method supports them in evaluating the many component specifications

from repositories on the basis of their testable requirements, independently derived from their

ontological domain, and before actual software is available.

3.2 Processflow transformation and b/ocldng

Through data abstraction, based on equivalence partitioning and boundary value analysis, we

prepared a discrete data domain which is an equivalent representation of the complete and

continuous original data domain. We now aim at the identification of an incomplete set of

branch-free critical sequences through this abstracted, discrete domain model.

At the core is the reduction of the process domain. The approach is a double reduction: first,

transformation and block building on process scheme level, and then numerical (de-)seleetion

on the level ofprocess instances (or, test sequences) in the sirnplified scheme. In this way, we

deliberately resign from completeness twice. In other words, we first seleet the critical scheme

parts from the overall process flow that need testing coverage. This leads to a simplified

process scheme. The seleeted scheme parts that are deemed critical by the customer are at the

same time numerically unfolded according to the abstracted domain model (i.e. all possible

"traces" are Iisted that can be derived from the business rules). Now we can seleet a small

number out of all possible numerical sequences tbrough this sirnplified domain process

scheme. The result is a small critical subset out of the very !arge set of all possible paths

tbrough the abstracted domain model.

Criteria to be used are based on aware stakeholder priority decisions, e.g. on business

criticality of different process scheme parts and of different "traces" tbrough the sirnplified

model. This could be measured e.g. in terms of monetary value flow per path. If e.g. in a

process scheme half of the revenues are generated within a certain small subset of maybe ten

percent of the full scheme, and the other half of the revenue generation happens tbroughout

the remaining ninety percent of the scheme, then apparently the smaller subset of the scheme

is probably more irnportant for the end-user testing. In this sirnplified exarnple we could even

already calculate a very simple priority value from the figures. The further elaboration of

underlying stakeholder criteria would lead away from the scope ofthis paper. At this point we

Reducing domain level scenarios lO leSt component-based software 99

just need to take the diligent assumption that we are able to prioritize process scheme parts

and process instances according to their business value.

From computability theory we can derive the fundamental process flow constructs

"sequence", "join" and "split" selection (joining pre-conditions, splitting post-conditions, also

known as "selection") and "iteration", which are also described and used as starting point for

workflow patterns definitions (van der Aalst et al. 2003). Process flow patterns use constructs

ranging from these simple elements up to cornplex processing primitives. For each of the

three basic constructs, we take world1ow patterns from van der Aalst et al. (2003) and show

how transformation and block building works for the basic construct; the notation used in the

figures is UML activity diagram (Object Management Group 2005). The full domain process

flow can then be treated iteratively by treating the single basic constructs.

e-Bl>(----\. >(-2--} >(-·-;--~··!···>(-~--~·4_
" nn .1 ...n ·nu. __._..' ·......_n __n..')

r:.----., ,.----, r---.. .----
~: 1 ~.>! 2 H+: 3 f····>(4 4-

\ ... -.._ .._ ... ~' _- ..----.~I \ / '._-.. .'

F1gure IV.R6-3: Sequence blocldDg,

A sequence of process steps as shown in Figure IV.R6-3 is found in the basic workflow

pattern "sequence". 1t reflects the fundamental notion of an activity that is enabled after the

completion of the preceding activity, and a common interpretation for the pattern is

irnplication or causality.

As a linear sequence trus basic construct is already in the fonn of our intended result, and we

can - without further transfonnation - readily fonn a block unit by using any continuous

subsequence ofit; in Figure IV.R6-3, the second line shows a block buHt from the maximum

subsequence, the third line shows an alternative block building. Each block can then be

(de-)selected as a whole unit. This means that numerical test, and as a consequence also

oracles, will be set at the block boundaries only; in line three of Figure IV.R6-3 before

activity 1 and after activity 2, and before activity 3 and after activity 4, but not, say, after

activity 1. This irnplies that even when including the block unit, there will be no consideration

of block intemals. In the reduced, sirnp1ified process scheme, the interna1 structure of the

block is hidden.

A spUt se1ection of the activities flow into multiple activities as shown in Figure IV.R6-4 is

found in the basic world1ow patterns "XOR-split" and "AND-split". The patterns reflect the

100 Selection

essential notion of branching activities. A common interpretation for the XOR-split or switch

pattern shown on the upper left side of the figure is decision. A common interpretation for the

AND-split or fork pattern shown on the upper right side ofthe figure is paral1el processing.

....-:------. .-------,
~1':'''''~2;~

\ .. _---------_.,' '. .. _---------_.'

~,·-············Ll-····~·····, I

, " • j.......... -........-/ ---- -_.'

F1gurc IV.R6-4: SpHt transformation and blocldng.

(---.~ ..-- \ ..-- \
~ 1 1·..>1 2 '->1, 3 H4

l) .) ,.. -.-.--:!J

~.- ~- l·~(··;···'~: ..>j~··;··-·~
'. ,.1 ._~....~ ' .. _..-.-_oA-"~

For both split types, we transforrn the process scheme into a simpler scheme for blocking as

shown in Figure lV.R6-4. On a binary XOR switch, as wel1 as on a binary AND fork, two

blocks encompass the construct, one block for each of the two subsequent steps within the

scheme part. Splits with more than two following steps can be hand1ed accordingly and result

in more than two blocks. The internal block structures become hidden 00 the simplified

scheme level. Numerical selectioo of the single "traces" in a subsequeot step is less cornplex

aod establishes linear paths. Note that the coocurrency aspect of the AND-split disappears,

which seerns appropriate for the inteoded testing against reuse specifications aod without

executable software.

Ajoin selection of the activities flow from multiple activities as shown in Figure lV.R6-5 is

found in the basic workflow patterns "XOR-join" aod "AND-join". It reflects the essential

notion ofrnerging activities. A common interpretation for the XOR-join pattern shown on the

upper left side of the figure is trigger. A common interpretation for the AND-join pattern

shown on the upper right side ofthe figure is synchronization.

For both join types, we transforrn the process scheme into a simpler scheme for blocking as

shown in Figure lV.R6-5. On a binary XOR trigger, as weil as on a binary AND

syncbronization, two blocks eocompass the whole coostruct, one block for each of the two

preceding steps within the scheme coostructs. Joins with more thao two preceding steps cao

be haodled accordingly and lead to more than two blocks. Again the internal block structures

become hidden to the llOfolding in the numerical reduction, when we select the "traces" in a

subsequent step. Note also here that the syncbrooization aspect of the AND-join disappears,

Reducing domain level scenarios lO leSt component-based software 101

which again seems appropriate for the intended testing against reuse specifications and

without executable software.

(..----- --'-", ,~ \'
~1l-···~3m4..._----------) "._-- .._)

f:.---.-------.. ,.,---~

~ 2).....>[3 ~
......__~..t. \. ~~l

Figure IV.R6-5: Joln transformation and b1ocklng.

(. --. .--"'~'- _._--~, " .. /
~1 f·>j 2 !"':;J;3

, j \ I I
~ ... -----_ .." ... _-----.... ..~-----_/

~;--------.... ;~----- .., ..-"-~-
~2i">i f..:>i3~, I, t, ;J""'--

._---~ '-._--~_... ""----_....

An iteration in the activities flow as shown in Figure IV.R6-6 is found in the structural

workflow pattern "arbitrary cycles". lt reflects the notion of activities that can be done

repeatedly. A common interpretation for repeated activities patterns is loop.

e----{ 1

~
2 ~

l'

---tC X 2 ~

.-fC r(r

.--+C r(pe p(2 ~

Figure IV.R6-6: Iteration transformation and b1ocking.

For an iteration construct in areal workflow, we transfonn the process scheme into a simpler

scheme for bloc.king. We use the same approach as with the other constructs and unfold the

iteration primitive into single linear paths. The number of possible paths is determined by the

business mIes ("loop conditions"). The number can be large, even in a non-theoretical

workflow, even with an abstracted data domain and single value representatives per

equivalence class (as produced from the preceding abstraction step).

Dur approach is to bundle equivalence classes for iterations so that as many "traces" through

the loop as possible fall into the same equivalence category. We start at the general and

\02 Selection

known approach to leave out sub-paths from the transformed iteration that are passed more

tban k times. We argue for our validation purposes tbat a sub-patb tbat is inc1uded in a related

larger patb needs to be looked at only once, and so we set k = t (tbe example given later

demonstrates tbe application oftbe idea). Togetber witb tbe iterative sequence blocking in our

approach, we still have tbe possibility to explicitly include also sub-patbs tbat were identified

as business critical witbin tbe loop, if tbey are included in a targer path (as suggested in the

second and tbird line in Figure IV.R6-6). So we established a basis for selecting the critical

passes tbat are needed for inc1usion as validation scenarios.

Note tbat for our higher-order testing of reuse specifications we can omit unsolvable cases

from information theory (cf. e.g. halting problem).

With the transformation and blocking procedures we can construct patbs through the

abstracted dornain tbat are (i) part of the domain under consideration, (ii) critical for the

customer and (iii) linear, witbout branches and without cycles. We call such a path a

"Sunshine Path". Sunshine Paths can be serialized by construction, because tbey are a linear

sequence of process steps, or transactions, which produce the same result as in tbe originating

graph, if they were completely selected. They now go into the inc1usion step as building

blocks for end-to-end validation scenarios.

3.3 Example

The example is non-fictitious on tbe domain side and is taken from a large company's

business rules and processes for the creation of credit items. Figure IV.R6-7 shows one

function out ofthe process diagram and the relevant business rules for the "authorization level

ok?" process step. A credit item has been recorded by an agent oftbe company at this stage.

Now it needs formal release. Everyone involved in tbe process belongs unarnbiguously to a

certain role, and all roles have limits for releasing (rel) a recorded credit item depending on its

amount. Iftbe credit amount is above the role's limit, it is not released by the role but instead

subrnitted (sub) to the next superior role. Above a certain amount, any credit needs release by

two different authorized roles (rel-s, rel). The two highest roles are entitIed to release all

credits. In the described process, credits tbat shall not be released remain in an undefined, or

subrnitted, state.

Abstraction maps tbe original domain model onto an equivalent domain model witb defmed

discrete partitions and distinct value representatives per partition. The example results in

seven partitions shown in Table IV.R6-1 together with their values. Ifthe analyzed customer

domain section does not define any observable behavior, e.g. for partition PI in this example,

then tests cannot be derived from tbis part oftbe domain model.

Reducing domain level scenarios lO leSt component-based software 103

A cred~ ~em is released if its net amount is
below the authorization threshold of the role.
Cred~ ~ems above IIm~s are submitted lO
the next superior role. In regions wlthout
Regional Coordinator, an Admin Cred~

Dept. from the head quarter steps In.
Sterling from 500.- cred~ items need release
from !Wo authorized roles.

,

~~----Gor ----~~~, ,, ,

F1gure IV.R6-7: Domaln model enerpL

ROLE

CC
CR
Regional Coordinator
Admin Cred~ Dept.
ManagerBU
ManagerMS

Director F
DirectorS

THRESHOLD
(EUR)

< 50.-
< 250.
< 1'000.
< 1'000.
< 5'000.-
>= 1'000.- and
< 5'000.-
>= 5'000.-
>= 5'000.-

Further simplification of the scbeme and its business rules by transformation and blocking is

not necessary in the simple example. Reduction can readily identify the ''traces'' or, data

sequences tbat are critical and reasonable for testing from tbe full set of possible sequences,

from an end-user validation point ofview.

Partition

P, =]-«J; 0]

P1 = [0; 50[

PJ = [50; 250[

P, = [250; 500[

Value

ll2=25

Partition

P, = [500; 1000[

P6 = [1000; 5000[

P, = [5000; trJ[

Value

es = 500

e,= 5000

Table IV.R6-1: Partitions and valne8.

We restriet to demonstrating positive test sequences here, negative test sequences work

according to the same principle. The iteration on the example can be reduced from an end

user's business perspective to sequences starting at the least empowered call center (ce) role,

which will subsequently cover also superior roles with suitable partition values (Le. no

explicit check for k > I in a first approach).

This reduction results in Table IV.R6-2 listing ten Sunshine Path sequences, tbe building

blocks for critical business scenarios through the domain seetion. These sequences are now

eligible for inclusion, also witb critical sequences from other, interconnected domain parts, to

build end-to-end branch-free business scenarios. The approach to connect sequences is the

same as it was shown for the steps within a domain part. Joining two scenarios becomes

104 Selection

possible by using the preceding scenario's output as the subsequent scenario's inpUt.

Inclusion criteria, again, are fully domain centric.

Role cca er rc acd mbn mms df ds

SI C2 rel

S, C)sub C) rel

SJ c.sub c. sub c. rel

S. c.sub c. sub c. rel

SJ ej sub ej sub ej rel-s ej rel

Sa cjsub Cj sub Cj rel-s Cj rci

S, Ca sub C6 sub Ca sub Ca rcl-s Ca rel

Sa ea sub C6sub ea sub ea rel-s ea rel

S9 C7 sub C7 sub C7 sub C7 sub C7 rel-s C7 rel

S/O C7 sub C7 sub C7sub C7 sub C7 rel-s C7rel

Table IV.R6-2: "Sunsblne patb" sequences.

To demonstrate how we check a specification artifact on the basis of the sequences from

Table IV.R6-2, it is assumed that a software provider has specified and offered a fictitious

Comparator software component. Next to other levels and facts, the behavior of this software

artifact is described in OCL (Object Constraint Language) from Object Management Group

(2006), and a checkGE service ("greater or equal") is defined according to Figure IV.R6-8. It

is also specified for the Comparator component, on the respective Iayer of a multi-level reuse

specification, that a limits relation maps a value to an actor.

context comparator::checkGE(val:Real, act:String) :Boolean
pre:

(oclIsUndefined(val)=false
and
(oclIsUndefined(act)=false
and
self.limits->exists(actor:String I actor=act)

post:
if self.limits->select(actor:String I acor:act) .value >= val
then result=true -- greater or equal
else result~false - not (greater or equal)
endif

Figure IV.R6-8: Behavioral specification artifact (OCL).

To check the behavior specified in Figure IV.R6-8 against customer requirements given as

critical sequences, the constraints from the supplier's specification are now numerically

compared with one ore more branch-free scenarios. As described, such a scenario can be one

path through several subsequent critical customer sequences from interrelated domain parts

that are assembled and validated together.

Reducing domain level scenarios lO leSt component-based software 105

We assurne in this example that OUf customer includes one single Sunshine Path, S4 from

Table IV.R6-2. So we can restrict OUf exarnple to demonstrate this single sequence. In natural

language, S4 follows a recorded credit item of 250.- from a region without regional

coordinator role. The credit item is (i) beyond the credit authorization limit of the call center

role and therefore submitted to the customer representative role. It is (ii) beyond the credit

authorization limit of the customer representative role and therefore submitted to the

administrator credit department role. It is (iii) within the credit authorization limit of the

administrator cred.it department role and released. Validation of this sequence is done by

systematically walking through the OCL constraints from Figure IV.R6-8.

In step (i) the first two preconditions hold: val is 250.- and act is cca. The third precondition

also holds: once the rnapping table is set up with role descriptions and thresholds from the

domain model, then cca will be found in the limits relation. If the preconditions hold as

descnbed, the specification's postcondition wiJI evaluate (50 >= 250) and return false. The

work flow can identify this with the meaning that the cred.it item is not released, and return to

the "authorization level ok?" function with a "credit itern submitted" state.

In step (ii) the first two preconditions bold: val is 250 and act is er. As in the previous step

the third precondition also holds for er. If the preconditions hold as described, the

specification's postcondition will evaluate (250 >= 250) and return true. The work flow can

identify this with the meaning that the credit item is released, and continue to further parts of

the domain model with a "credit item released" state.

In step (iii) the first two preconditions hold: val is 250 and act is acd. As in the previous

steps the third precondition also holds for acd. If the preconditions hold as described, the

specification's posteondition will evaluate (1000 >= 250) and return true. The work flow can

identify this with the meaning that the credit item is released, and continue to further parts of

the domain model with a "cred.it item released" state.

Thus, on the bottom line, validation of the Comparator component vs. 84 using ARIval

revealed a problem. While steps (i) and (iii) can be performed correctly by the specified

software, in step (ii) the Comparator component fails check vs. the business mIes. In the

domain model and its critical sequence 84, the credit item of 250.- is not released by a

customer representative but instead submitted to be checked by the superior role. In the

Comparator component, the validation shows that the credit item of250.- is actually released

by the customer representative role, which is inconsistent with the requirements from the

domain model.

Possible consequences of this result could include looking for a checkG service ("greater") of

the Comparator component, or changing the business mIes slightly, or others. In any case the

small but on the domain side non-fictitious validation exarnple has shown that the proposed

106 Selection

method gives an early hint at the necessity of a respective, aware decision and provides

tangible support for it, without using any actual software.

4 Related work

Component software testing theory has become a !arge area of scientific research (Vincenzi et

al. 2003). Important existing approaches with relation to our method have been selected and

are shown in Table N.R6-3 to demarcate original contributions ofthe method.

Approach
Component
(Program)
verification

Composltion Conlen
(Architecture) (Doma1n)
ver. & val. validation

Built-in test techn%gy X

Fonna/mefflo~ X
Scrnario-Imode/-based testing (X)
Specification motching X

Tobu/ar notation X

Test I composition /anguages (X)
Test input data samp/ing X

Test output oracles X

This approach (ARlval)

Iablc IV.R6·3: Rclatcd approachcs.

(X)
(X)

X

(X)

(X)

(X)
X

X

Lines in Table IV.R6-3 list the examined approaches which are further described below.

Columns list three abstraction levels: component, composition and context. On component

level formal program verification of single components with their interfaces is typical

research focus. On composition level research from formal and less formal areas deals with

architectures of several integrated components. On context level research focus is on the

requirernents side and less formal, concerned with system architectures in their sodo

technical domain and business context. The availability of an approach for different

abstraction levels is indicated in the cells. Our method's research contributions on the domain

level or context level are: embedding into a clear business model, independent domain based

test oracles, and early domain level testing before software is available. The analyzed existing

approaches don't seem to cover this.

Built-in test technologies. Built-in technologies for self-testing software components, in

analogy to built-in tests from integrated circuits, have extensively been researched, e.g. in the

ComponenH project of the European Union (Edler & Hömstein 2003). Built-in tests come

within the component, e.g. as additional test services, and are not intended to represent

independent customer specific automation requirernents but basic technical checks. Tests built

into the component by their vendors are complementary to our domain centric axiom.

Reducing domain level scenarios lO leSt component-based software 107

Formal methods. Especially in formal model checking, plenty ofverification approaches ("are

we building the software right?") are discussed, among them the interesting domain reduction

abstraction (Cboi & Heimdahl 2003). Tbe method proposed here transfers some of the ideas

10 the domain validation ("are we building the right software?") viewpoint. But fully formal

approaches for real components are prevented by computational effort with real systems in

practice, decidability problems from computer theory, the absence of complete formal

specifications, and the lack of a justifying business case or public interest. Also, formal

verification can still be wrong. Formal verification methods provide valuable insight but in a

practical sense don't apply to OUT complex domain level validation.

Scenario based and model based testing. Scenarios can be seen as special entities within the

more general notion of a model. In model based testing, test references are generated from a

model of the actual system. Many model based test approaches build upon the UML (Unified

Modeling Language) 1oday, and derive test references from UML diagrams (Offutt &

Abdurazik 1999; Briand & Labiche 2002). Test references in existing approaches are built

from artifacts within the component software development - models, design scenarios, etc.

and not from independent and unknown cus10mer requirements as proposed bere. Few if any

approaches have yet addressed these model independency issues and its test implications, as

does OUT method on the domain validation side.

Specification matching. Existing approaches are based on fully formal language

specifications, focus strongly on technical aspects, and are restricted 10 the matching of

relatively simple functions (Moormann Zaremski & Wing 1997; Yellin & Strom 1997). Semi

formal matehing methods from Iibrary science have also been described since long (Prie1o

Dfaz & Freeman 1987; Penix & Alexander 1999), and discussions exist 10 au10matically

extract classification attributes from natural language descriptions (Maarek, Berry & Kaiser

1991). Further investigations include in particular relaxations of exact matching, and also

contextual refinement theory (Fidge 2002). Discussions started only recently that focus on

more complex business domain perspectives for compatibility considerations ofmulti-Iayered

specifications (Zaha 2004). Our method goes beyond formal technical aspects and aims at

checking specifications vs. higher-order requirements represented by domain level scenarios.

Tabular notation. This approach aims at representing requirernents fully formal by using a

comprehensible, mathematically precise tabular notation of predicate logic for partial

functions (pamas 1993). Domain requirements are successively translated into this tabular

form, with promising first practical results (Baber et al. 2005). Tabular notation seems very

formal for "good enough" testing as intended in OUT method.

Test and composition languages. Similar 10 well known specification languages such as Z or

OCL, special languages for testing and for composition have been proposed. One example on

108 Selection

the testing side is TTCN-3 for test execution (Grabowski et al. 2003). An example on the

composition side is the Piccola calculus for fonnal component composition (Achermann &

Nierstrasz 2005). Test languages make implicit assumptions on their domains and their

intended use, and bave proven successfuJ for testing software in their respective target areas.

Arcbitectural composition languages are fonnal and powernIl but don't seem suitable for

defining and evaluating actual test scenarios. Our method suggests a generic, widely

applicable domain validation method without actual software but based on reuse

specifications.

Test input data sampling. Exhaustive testing on all possible inputs is infeasible in general and

inappropriate in particular for large real life enterprise applications. Hence an incomplete but

appropriate test has 10 be determined. Existing approaches achieve this by sarnpling a domain

ofthe input data according to fault bypotheses i.e. assumptions about wbich aspects or entities

are error prone, allowing the test to reveal as many failures as possible with a minimum effort

(Beizer 1995). In our methocl, tests are generated not from fault hypotheses within the

technological software system or its specification or models, but instead independently from

the actual customer's on1ological domain and its automation requirements which are unknown

to, and detached from, the component software technology provider.

Test output orac/es. The test oracle question (Turing 1939; Weyuker 1982) relates to outputs

produced by a test: if the actual results differ from the expected results, did a proper test run

produce wrong results revealing a software error, or were the expected results and/or the

testing and/or basic assumptions wrong in the first place? Particular test outputs need careful

analysis if the oracle grounds on the same model as the software (Pretschner & Philipps

2005). Related issues can be observed in the controversial discussions of N-version

prograrnming in the 1980s. Sophisticated approacbes sucb as e.g. (Hummel & Atkinson 2005)

exist today. Our method instead sets priority 10 tests created independently from a software

user, to deliver the independent oracle and the final judgment about an expected feature of a

reused component.

5 Summary and conclusions

Compositional reuse for industry style software production is an important approach pursued

10 master tbe ever increasing demands on software intensive systems. Testing black box

software components from !arge repositories for their suitability to be reused in an actual end

user situation is arnong tbe problems tbat complicate tbis approach. The associated validation

activities are supported by the ARIval method, offering to tbe component demand side a

domain centric component validation approach. The approach has some core advantages: it is

derived from a clear business model assumption, sources test oracles from business domain

Reducing domain level scenarios lO lest component-based software 109

requirements independent from the tecbnological development process, and produces tangible

results early, before the executable software is available, on the basis of suppliers' reuse

specifications.

We demonstrated the principle in an example which is non-fictitious on the domain side. By

constructing critical scenarios via abstraction, reduction and inclusion from a domain model,

we obtain branch-free Sunshine Paths of automation sequences deemed validation critical on

the domain level of the demand side. These scenarios represent references against which

relevant levels from multi-dimensional supplier black box specifications can be checked very

early in the compositional development process, and with oracles that are independent from

this development process.

With our approach we support early and independent higher-order black box component

software testing on the demand side in industrialized software processes. This can benefit

software component customers through earlier and better testing within further decomposed

division of work as required for industrialized software engineering processes.

References

Acbermann, F.; Nierstrasz, O. (2005), "A calculus for reasoning about software composition", Theoretlcal
Computer Science, 331 (2-3): 367-396.

Ackermann, J.; Brinkop, F.; Conrad, S.; Fenke, P.; Frick, A.; Glistau, E.; Jaekel, H.; Kot1ar, 0.; Loos, P.; Mrech,
H.; Ortner, E.; Raape, U.; Overhage, S.; Sahm, S.; Schmietendorf, A.; Teschke, T.; Turowski, K. (2002),
"Standardized Specification ofBusiness Components", Gesellschaft ftlr Informatik, Augsburg.

Baber, R.; Parnas, D.; Vilkomir, S.; Harrison, P.; O'Connor, T. (2005), "Disciplined methods of software
specification: A csse study", Proceedings ofthe intematlonal symposium on information technology: Coding
and computing, lEEE Computer Society, 4-6 Apr. 2006, Las Vegas, USA: 428-437.

Beizer, B. (1995), Black-box testing: Techniques for functional testing of software and systems, Wiley, New
York, USA.

Biggerstaff, T.; Richter, C. (1987), "Reusability framework, sssessmenl, and directions", IEEE Software, 4 (2):
41-49.

Boebm, B. (2005), ''Tbe future of software processes", UnifYing the software process spectrum: Proceedings of
the intemational software process workshop: Revised selected papers, Lecture Notes in Computer Scienee
3840, Springer, 25-27 May 2005, Beijing, China: 10-24.

Briand, L.; Labiche, Y. (2002), "A UML-based approach lO system testing", Joumal ofSoftware and Systems
Modeling, I (1): 10-42.

Brooks, F. (1987), "No silver bullet: Essence and accidents of software engineering", IEEE Computer, 20 (4):
10-19.

Choi, Y.; Heimdahl, M. (2003), "Model checking software requirement specificatioos using domain reduction
abstractioo", Proceedings of the 18'" IEEE international conference on automated software engineering,
IEEE Computer Society, 6-10 Oc!. 2003, Montreal, Canada: 314-317.

Dietz, J. (2006), Enterprise ontology: Theory and methodology, Springer, Berlin.

Edler, R; HörDstein, J. (2003), Component+ final report 1.1., accessed on 12 Oc!. 2005, http://www.
component-plus.org/pdflreportslFinaJ report 1.I.pdf.

110 Selection

Fidge, C. (2002), "Contextual malChing of software library components", Proceedings 01 the 9th Asia-Pacific
software engineering conlerence, IEEE Computer Socicty, 4-6 Dcc. 2002, Gold Coasl, Australia: 297-306.

Gao, J.; Tsao, H.; Wu, Y. (2003), Testing and quality assurancelor component-based software, Artech House,
Boston, USA.

Gordijn, J.; Akkermans, H. (2001), "Designing and evaluating e-business models", IEEE Intelligent Systems, 16
(4): 11-17.

Grabowski, J.; Hogrefe, D.; Rethy, G.; Schieferdecker, 1.; Wiles, A.; Willcock, C. (2003), "An introduction to
the testing and lest control notation (TTCN-3)", Computer Networks, 42 (3): 375-403.

Hummcl, 0.; Atkinson, C. (2005), "Automatcd harvesling of test oracles for reliability tesling", Proceedings 01
the 29th annual international computer software and applicaticns conlerence, IEEE Computer Society, 25-28
Jul. 2005, Edinburgb, UK: 196-202.

Maarek, Y.; Berry, D.; Kaiser, G. (1991), "An information retrieva1 approach for automatically construcling
software Iibraries", IEEE Transactions on Software Engineering, 17 (8): 800-813.

McJlroy, M. (1969), "Mass produced software components", Software engineering: Repon on a conlerence
sponsored by the NATO Science Commitlee, NATO Scientific Affairs Division, 7-11 Oc!. 1968, Garmisch:
138-155.

Meyer, B. (1992), "App1ying 'design by contract"', IEEE Computer, 25 (10): 40-51.

Meyer, B. (2003), "The grand challenge of trusted components", Proceedings 01 the 25th international
conlerence on software engineering, IEEE Computer Society, 3-10 May 2003, Port1and, USA: 660-667.

Mili, H.; MiJi, F.; Mili, A. (1995), "Reusing software: Issues and research directions", IEEE Transactions on
Software Engineering, 21 (6): 528-562.

Moormann Zaremsld, A.; Wing, J. (1997), "Specification matehing of software components", ACM Transactions
on Software Engineeringand Methodology, 6 (4): 333-369.

Mycrs, G. (1979), The ano/software testing, Wiley, NewYork, USA.

Object Management Group (2005), Unificd modeling language: Superstructure version 2.0, accesscd on 31 Mar.
2006, http://www.omg.org/does/forma1l05-07-04.pdf.

Object Management Group (2006), UML 2.0. OCL specification, accesscd on 24 Oe!. 2006, http://www.omg.
org/cgi-bin/apps/doc?fonnaIl06-Q5-01.pdf.

Offutt, J.; Abdurazik, A. (1999), "Generating tests from UML specifications", The Unified Modellng Language
Beyond the Standard: Proceedings 01 the r International Con/erence, Lecture Notes in Computer Science
1723, Springer, 28-30 Oc!. 1999, Fort Co1lins, USA: 416429.

Overhage, S. (2006), "Vereinheitlichte Spezifikation von Komponenten: Grundlagen, UnSCom Spezifikations
rahmen und Anwendung", Dissertation, Universität Augsburg, Augsburg.

Parnas, D. (1993), "Predicate logic for software engineering", IEEE Transactions on Software Engineering, 19
(9): 856-862.

Parnas, D. (2001), "Software aspects of strategic defense systems", in Hoffinan, D.; Weiss, D. (eds), Software
fimdamentals: Collectedpapers by David L. Pornas, Addison Wesley, Boston, USA: 497-518.

Penix, J.; Alexander, P. (1999), "Efficient specification-bascd component retrievaI", Automated Software
Engineering, 6 (2): 139-170.

Pretscbner, A.; Philipps, J. (2005), "Methodo1ogica1 issues in model-bascd lesling", in Broy, M.; Jonsson, B.;
Katoen, J.; Leucker, M.; Pretschner, A. (eds), Model-based testing 01reactive systems: Advanced lectures,
Lecture Noles in Computer Science 3472, Springer, Berlin: 281-291.

Prieto-Diaz, R.; Freeman, P. (1987), "Classifying software for reusability", IEEE Software, 4 (I): 6-16.

Skroch, O. (2007), "Validation of component-bascd software with a customer centric domain level approach",
Proceedings 0/the 14th annuailEEE international conlerence and workshop on the engineering 01computer
basedsystems, IEEE Computer Society, 26-29 Mar. 2007, Tucson, USA: 459-466.

Szyperski, C.; Gruntz, D.; Murer, S. (2002), Component software: Beyond object-oriented programmlng, 2""
edn, Addison Wesley, London, UK.

Reducing domain level scenarios 10 test component-basOO software 111

Turing, A. (1939), "Systems of logic based on ordinals", Proceedings olthe London Mathematical Society, s2
45 (1): 161-228.

Turowski, K. (2003), Fachlcomponenten: Komponentenbasierte betriebliche Arrwendungssysteme, Shaker,
Aachen.

van der Aalst, W.; ler HofslOOe, A.; Kiepuszewski, B.; Barros, A. (2003), "Workflow patterns", Distributed and
Parallel Databases, 14 (I): 5-51.

Vineenzi, A.; Maldonado, J.; Delamaro, M.; SpOlO, E.; Wong, W. (2003), "Componenl-basOO software: An
overview of lesting", in Cechich, A.; Piattini, M.; Vallecillo, A. (OOs), Component-based software quality:
Methods and techniques, Lecture Notes in Computer Scienee 2693, Springer, Berlin: 99-127.

Weyuker, E. (1982), "On lesting non-testable programs", The Computer Journal, 25 (4): 465-470.

Weyuker, E. (1998), "Testing eomponenl-based software: A eautionary tale", IEEE Software, 15 (5): 54-59.

YeUin, D.; Strom, R. (1997), "Proloeol specifications and componenl adaplors", ACM Transactions on
Programming Languages and Systems, 19 (2): 292-333.

Yourdon, E. (1995), "When good enough software is best", IEEE Software, 12 (3): 79-81.

Zaha, J. (2004), "AulOmated eompatibility tests for business related aspects of software eomponents", On the
move to meaningful Internet systems: Workshop proceedings, Lecture Notes in Computer Scienee 3292,
Springer, 25-29 OclOber 2004, Agia Napa, Cyprus: 834-841.

O. Skroch, Developing Business Application Systems,
DOI 10.1007/978-3-8349-8858-4_8,
© Gabler Verlag | Springer Fachmedien Wiesbaden GmbH 2010

V Conclusions and outlook

V.I Conclusions

The research articles presented in tbis book have discussed business informatics issues within

the component- and service-oriented mission statement for the development of application

software systems (Turowski 2003, pp. 9-15). The main topie was the arrangement of

application software development from different perspectives. Aiming at an end-to-end

eonsideration within the framework of strategie software reuse (long-term), the artieles

eovered different aspects of the specifieation (taetieal) and the selection (operational) of

eomponents and services.

The first two artieles dealt with basie strategie conditions of software reuse, both starting from

the multi-path process model (Ortner 1998, p. 332; Overhage 2006, p. 136).

In research article RI, two basie software reuse strategies could be distinguisbed,

eompositional and generative reuse. Also, two ideal type market environments could be

deseribed, stable markets ofthe "old eeonomy" and turbulent "high-teeh" market eonditions.

Supported by the analysis ofexperiences from three development projeets with software reuse

ineluded, a new theory for preferenees of reuse approaches according to market environments

eould be buHt. Two eoncrete and justified hypotheses were formulated and ean be eheeked

empirically. So the researeh objectives eould be reaehed. To enable the formulation of the

hypotheses, a "reduetionist" approach was taken and narrowing assumptions were made. The

deseribed market eonditions are quite idealized, as weIJ as the strategie decision alternatives

assumed by the theory. The strategies are related to one single market environment and not to

several different environments and influences at the same time. Further factors other than

market conditions also have an impact on software reuse approaches. While reasonable

hypotheses were buHt, they do not serve as a strategie software reuse guideline yet, but as an

initial step towards the rational identifieation of strategie preferenees for reuse principles in

relation to prevalent market environments.

In research artiele R2, the well-known "make-or-buy" issue in software development was

examined in a large reference projeet. In literature, projects of tbis kind and size have rarely

been examined and described so e10se to reality. In the reference project, it was analyzed in

detail how weil requirements for a complex, intra- and inter-organizational applieation system

are covered by an individually developed solution. In a second step, and on the same level of

detail, this was eompared 10 the requirernents coverage aehieved by a eombination of

eommereial software packages offered for reuse and integration on the market. Experiences

from other large projeets with sirnilarities 10 the reference projeet were examined additionally.

The eomparison of requirements eoverage between the two different development strategies

114 Conclusions and outiook

in the reference project favored the reuse and integration approach. The examination of

further projects did not convey an unambiguous picture though. Hence the research objectives

could partly be reacbed. The findings suggest that there are other critical success factors apart

from the question of development or procurement. Tbe self-evident option of a combined

"mak.e-and-buy" strategy could not be examined either, since the regarded projects were

planoed and operated without this alternative. Finally, it is unIikely that the exarnined projects

constitute a fully representative sarnple.

Two articles on taetical aspects were concentrated on specification as a particularly

cha1lenging task which at the same time is maybe the single most important part in the

component- and service-oriented software development cycle (Alpar et al. 2008, p.294;

Somrnerville 2001, p. 107).

Research article R3 illustrated the central role of requirements specifications and the derived

scope of work descriptions for the daily practice of divided software development work.

Critical success factors were then identified which promote the practical creation of high

quality requirements specifications. Moreover, risks were figured out that can arise from

unclear scope of work descriptions, including the most unfavorable outeome, a legal dispute.

This assertively interdisciplinary notion at the interface between business informatics and law

is a novelty, and the research objectives could be reached. The findings, however, are based

on the valuations and opinions of few experts wbo are very experienced both on the

theoretical side and in practice.

Research article R4 presented a method proposing an approach for the systematic evaluation

of the suitability of requirements specifications in downstrearn offshore development steps

and its application in a large case study. The practical applicability of the proposed approach

was demonstrated by its smooth execution in the real industry context of the study. The

evaluations and predictions from the approacb were validated against the actual further course

of the development project in the studied case. So one step was made towards a new,

systematic method for respective planning and decision support based on requirements

specifications in offshore development situations, and the research objectives could be

reached. The empirical confirmation rests upon a single case study. The studied case was

large, real, and relevant, and it is straightforward to apply the proposed approach in further

case studies and projects. The universal validity of the approach has not yet been confirmed

though.

The final two artic1es were concerned with the operational choice of services, as seen from the

demand perspective within the mission statement of the component- and service-oriented

development ofapplication software systems (Turowski 2003, pp. 9-15).

ConcJusions 115

In research article RS, the characteristics of an opportunistic ad hoc search for suitable and

eligible (Web-)services on the Internet were determined. A method was proposed to improve

this searcb and the related service selection. Results from tbeories of optimal stopping in

mathematical statistics were applied in two scenarios for self-adapting service-oriented

systems. Stopping algorithms which correspond to the application scenarios were deduced

and implemented. In simulation experiments, the operational advantages of an open, dynamic

system with service selection strategies supported from optimal stopping were measured and

confumed against a closed, static system. So the research objectives could be reached. A basic

assumption is the availability of several functionally equivalent services on the Internet, all of

them eligible to perfonn a certain subtask within a component- and service-oriented overall

system; not all experts sbare this assumption today. The method also implements

improvements to a process which needs to consider semantic and pragmatic criteria for searcb

and selection. Wbile the underlying issues are among the intensely discussed research

questions, no fmal or satisfactory solution bas been found by now.

In research article R6, a method was proposed to decompose business processes into single

non-branching scenarios, to use the linear scenarios as skeletons for the definition of end-te

end test scenarios; and to check the operational suitability of reusabLe components and

services based on their specifications against the scenarios. An example was presented where

an actual EPC excerpt is reduced to linear scenarios, which are converted into independent

test oracles and used as a reference to check an OCL specification artifact. Tbis early "bigber

order" testing with oracles that are independent from the development process is an important

and often neglected advantage. Tbe possibility to quantifY test coverage measures from the set

of linear end-to-end scenarios is another. So the research objectives could partly be reached.

Limitations include the systematic reduction of business process models to non-branching

scenarios, which depends on the Ianguage used for the business process model. Using

specifications as independent test oracLes also depends on the degree of formality and the

detail level of the specification. Tbe universal applicability of the method has not been finally

discussed.

In summary, the main part of this book presented research results in six articles on the

specification and selection of components and services within the strategic, long-tenn

approach of reuse-driven development for component- and service-oriented application

software systems.

116

V.2 Outlook

Conclusions and outiook

Four from six research articles presented in the main part of this book have reached their

research objectives, the other two research articles (R2, R6) have reached them at least partly.

Interesting future research can tie in with the findings from each research article.

In research article Rl, two hypotheses on strategic software reuse preferences in relation to

market conditions have been buHt. Future research could further refine and advance these

hypotheses. Finally, the hypotheses will need an empirical examination, which might be

difficult to perform though.

In research article R2, strategic advantages of software reuse, as compared to individually

developed software, could be confirmed by means of the detailed examination of a large

reference project. The analysis of further projects hearing similarities to this reference project

did not clearly direct for or against software reuse any more. Future research could tie in with

this second finding and, for instance, aim at isolating other critical success factors that have

not been identified.

In research article R3, the importance of requirements specifications in divided software

development work was illustrated. Critical success factors for crearing requirements

specifications were highlighted. Risks from neglecting them were portrayed, with a specific

focus on interdisciplinary risks at the interface between business informatics and law. The

article is based on valuations and opinions of experts. Future research could complement the

findings with an analysis of related literature. The outstanding significance of requirements

specifications in two topical research directions - component- and service-oriented software

and offshore software development - could also be examined more deeply in this context.

In research article R4, a large requirements specification was examined in a case study by

applying a theoretically well-founded method proposed to evaluate a specification's

suitability in an offshore development situation. The case study was performed in an industry

context and yielded positive research results. Interesting future research can tie in with these

results in several directions. One possible research direction is to provide further empirical

checks by applying the method in a controlled way in other practical cases and, when

indicated, adjust the method accordingly. Another possible research direction is to further

advance and refme the method analytically, e.g. by providing a fully formal description.

In research article RS, the dynamic search and selection of appropriate (Web-)services on the

Internet was improved in two scenarios by deducing and applying algorithms from optimal

stopping theories. Assumptions include stahle requirements and the opportunistic search for

the best possible service. Without loss ofgenerality, service discovery events were assumed to

be uniformly distributed. Future research could work on the determination of empirical

Outlook 117

distribution functions. The method could also be examined for its applicability in situations

with several optimization criteria and goal conflicts, such as service quality against costs of

service invocation. Another interesting future research direction would be to extend the

method and make it applicable to systems that dynamically adapt to functionally instable

requirements. Future research could benefit from the simulation components which were

implemented for this research and which are easily adaptable, effective, and reusable.

In research article R6, non-branching paths were extracted from a business process model,

end-to-end test scenarios were defined from these paths, and specifications of reusable

software components were checked against these scenarios. Interesting research questions can

be derived from these results. Future research could aim at identifying the preconditions to be

met so that a business process model can be reduced to linear paths in the sense of the

method. Theoretical barriers, for instance, from computational complexity, should then be

considered together with pragmatic assumptions and empirical investigations about sizes and

types of business process models that actually exist. Future research could also describe in

more detail how linear paths through a business process model can be transformed to end-to

end test scenarios, including in particular the defmition and generation of test data. Future

research could also aim at defining the preconditions that must be met by specifications

before they can serve as test oracles. Finally, the definition ofmetrics to measure the coverage

of"higher-order" tests is also an interesting research direction with major practical relevance.

Beyond future research demands that directly tie in with the individual articles that were

presented in the main part of this book, it can be stated that the creative exercise of

application software development in component- and service-oriented concepts has by far not

been examined completely yet. As it was demonstrated also in this book. it is a research

direction which stipulates warrantable expectations for findings and advances that strengthen

competitiveness in practice and help to sustain a scientifically challenging and prolific field of

research within business informatics also in the future.

References

Alpar, P.; Grob, H.; Weimann, P.; Winter, R. (2008), Arrwendungsorientierte Wirtschajlsinformatik: Strategische
Planung. Entwicklung und Nutzung von Informations- und Kommunikationssystemen, 5th edn, Vieweg,
Wiesbaden.

Ortner, E. (1998), "Ein Multipfad-Vorgehensmodell für die Entwicklung von Informationssystemen - dargestellt
am Beispiel von Wor1d1ow-Management Anwendungen", Wirtschqftsinformatik, 40 (4): 329-337.

Overhage, S. (2006), "Vereinheitlichte Spezifikation von Komponenten: Grundlagen, UnSCom Spezifikations
rahmen und Anwendung", Dissertation, Universität Augsburg, Augsburg.

Sommerville, I. (2001), Software engineering, 6th edn, Pearson, Munich.

Turowski, K. (2003), Fachkomponenten: Komponentenbasierte betriebliche Arrwendungssysteme, Shaker,
Aachen.

	Preface
	Contents
	List of figures
	List of tables
	AbbreviatioDs
	Symbols
	I Introduction
	1.1 Motivation and chaUenges
	1.2 Objectives and focal research questions
	1.3 Oassificatioo aod orgaoizatioo
	References

	II Strategie framework
	II.R1 A tbeory of software reuse strategies in ideal type stable and turbulentmarket environments J
	1 Introduction and objectives
	2 Basic software reuse options
	2.1 Compositional reuse - building blocks
	2.2 Generative reuse - solution patterns

	3 Two Ideal type market environments and tbelr business strategy
	3.1 Traditional environments - defenders
	3.1.1 Defensive internal improvement strategies
	3.1.2 Defenders' dilemma

	3.2 Turbulent environments - prospfXtors
	3.2.1 Prospective rapid adaptation strategies
	3.2.2 Prospectors' dilemma

	4 Supporting experience: projects from practice
	4.1 Stahle environment - fraud detection
	4.2 Turbulent environment - software simulator
	4.3 Hybrid environment - portal architeeture

	5 Concluding hypotheses, limitations and further steps
	References

	II.R2 Integration assessment of an individually developed application vs. softwarepackages from tbe market - an experience report 1
	1 Introduction and setting
	2 Project approach and selected results
	2.1 Functional comparison 0/available packages
	2.2 Integration scenario case studies

	3 Conclusion and remarks
	References

	III Specification
	IIl.R3 The importance of requirements specifications for successfullT projects 3
	1 Requirements spedfications in tbe development process
	2 Success faetors
	2.1 Systematic approach
	2.2 Detailed analysis and documentation
	2.3 Realistic effort estimations
	2.4 Integration 0/missing expertise
	2.5 Coordination and alignment
	2.6 Joint and active organization
	2.7 Efficient change management

	3 Risks
	3.1 Disputed and incomp/ete scope ofwork
	3.2 Delay
	3.3 Additional costs
	3.4 Legal dispute

	4 Future requirements
	References

	III.R4 A metbod to evaluate tbe suitability of requirements specifications foroffsbore projects 4
	1 Motivation
	2 Background and related approacbes
	2.1 Outsourcing, offshoring, and app/ication development based on the division oflabor
	2.2 The importance ofrequirements specijications for offshoring
	2.3 Evaluation approachesfor requirements specijications

	3 ConceptuaI basics
	3.1 Specification qua/ity
	3.2 Compensationfactors

	4 Design of the evaluation method
	4.1 Procedure for determining the specification quality
	4.2 Procedure for determining the compensation options
	4.3 Further refinement ofthe evaluation

	5 Evaluatiou
	5.1 Determination 0/the specijication quality
	5.2 Determination ofthe eompensation possibi/ities and options for aetions
	5.3 Reception ofthe results

	6 Conc1usion
	References

	IV Selection
	IV.RS Optimal stopping for the run-time self-adaptation of software systems 5
	1 Introduction
	2 Flexible software arcbitectures and matcbing scbemes for self-adaptation
	3 Optimal stopping in two self-adaptation scenarios
	3.1 Limited number ofrun-time options
	3.2 Limited run-time delay

	4 Application and simulation
	4.1 Limited number 01run-time options
	4.2 Limited run-time delay

	5 Summary and conclusion
	References

	IV.R6 Reducing domain level scenarios to test component-based software 6
	1 Introduction
	2 Basic assumptIons and business model
	3 Constructing linear scenarios
	3.1 ARlvaloverview
	3.2 Processflow transformation and b/ocldng
	3.3 Example

	4 Related work
	5 Summary and conclusions
	References

	V Conclusions and outlook
	V.I Conclusions
	V.2 Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

