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Introduction

This book is the second volume of a full and detailed course in the elements

of real and complex analysis that mathematical undergraduates may expect

to meet. Indeed, it was initially based on those parts of analysis that under-

graduates at Cambridge University meet, or used to meet, in their first two

years. There is however always a temptation to go a bit further, and this

is a temptation that I have not resisted. Thus I have included accounts of

Baire’s category theorem, and the Arzelà–Ascoli theorem, which are taught

in the third year, and the Mazur–Ulam theorem, which, as far as I know,

has never been taught. As a consequence, there are certain sections that can

be omitted on a first reading. These are indicated by asterisks.

Volume I was concerned with analysis on the real line. In Part Three,

the analysis is extended to a more general setting. We introduce and con-

sider metric and topological spaces, and normed spaces. In fact, metric and

metrizable spaces are sufficient for all subsequent needs, but many of the

properties that we investigate are topological properties, and it is well worth

understanding what this means. The study of topological spaces can degen-

erate into the construction of pathological examples; once again, temptation

is not resisted, and Section 11.6 contains a collection of these. This section

can be omitted at a first reading (and indeed at any subsequent reading).

Baire’s category theorem is proved in Section 12.6; it is remarkable that a

theorem with a rather easy proof can lead to so many strong conclusions,

but this is another section that can be omitted at a first reading. The notion

of compactness, which is a fundamental topological idea, is studied in some

detail. Tychonoff’s theorem on the compactness of the product of compact

spaces, which involves the axiom of choice, is too hard to include here: a

proof is given in Appendix D.

ix



x Introduction

In Part Four, we come back down to earth. The principal concern is the

differentiation and integration of functions of several variables. Differentia-

tion is interesting and reasonably straightforward, and we consider functions

defined on a normed space; this shows that the results do not depend on

any particular choice of coordinate system. Integration is another matter.

To begin with it seems that the ideas of Riemann integration developed

in Part Two carry over easily to higher dimensions, but serious prob-

lems arise as soon as a non-linear change of variables is considered. It is

however possible to establish results that suffice in a great number of con-

texts. For example, the change of variables results are used in Volume III,

where we introduce the Lebesgue measure, and the corresponding theory of

integration. These results on differentiation and integration are applied in

Chapter 19, where we consider subspaces of a Euclidean space which are

differential manifolds – subspaces which locally look like Euclidean space.

This volume requires the knowledge of some elementary results in linear

algebra; these are described and established in Appendix B.

The text includes plenty of exercises. Some are straightforward, some are

searching, and some contain results needed later. All help to develop an

understanding of the theory: do them!

I am extremely grateful to Zhuo Min ‘Harold’ Lim who read the proofs,

and found embarrassingly many errors. Any remaining errors are mine alone.

Corrections and further comments can be found on a web page on my

personal home page at www.dpmms.cam.ac.uk.

http://www.dpmms.cam.ac.uk
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11

Metric spaces and normed spaces

11.1 Metric spaces: examples

In Volume I, we established properties of real analysis, starting from the

properties of the ordered field R of real numbers. Although the fundamental

properties of R depend upon the order structure of R, most of the ideas and

results of the real analysis that we considered (such as the limit of a sequence,

or the continuity of a function) can be expressed in terms of the distance

d(x, y) = |x − y| defined in Section 3.1. The concept of distance occurs in

many other areas of analysis, and this is what we now investigate.

A metric space is a pair (X, d), where X is a set and d is a function

from the product X ×X to the set R+ of non-negative real numbers, which

satisfies

1. d(x, y) = d(y, x) for all x, y ∈ X (symmetry);

2. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (the triangle inequality);

3. d(x, y) = 0 if and only if x = y.

d is called a metric, and d(x, y) is the distance from x to y. The conditions

are very natural: the distance from x to y is the same as the distance from

y to x; the distance from x to y via z is at least as far as any more direct

route, and any two distinct points of X are a positive distance apart.

Let us give a few examples, to get us started.

Example 11.1.1 R, with the metric d(x, y) = |x − y|, is a metric space,

as is C, with the metric d(z, w) = |z − w|.

This was established in Volume I, in Propositions 3.1.2 and 3.7.2. These

metrics are called the usual metrics. If we consider R or C as a metric space,

without specifying the metric, we assume that we are considering the usual

metric.

303
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Example 11.1.2 The Euclidean metric.

We can extend the ideas of the previous example to higher dimensions.

We need an inequality.

Proposition 11.1.3 (Cauchy’s inequality) If x, y ∈ Rd then

d∑
j=1

xjyj ≤
⎛⎝ d∑

j=1

x2j

⎞⎠
1
2
⎛⎝ d∑

j=1

y2j

⎞⎠
1
2

.

Equality holds if and only if xiyj = xjyi for 1 ≤ i, j ≤ d.

Proof We give the proof given by Cauchy in 1821, using Lagrange’s

identity:⎛⎝ d∑
j=1

xjyj

⎞⎠2

+
∑

{(i,j):i<j}
(xiyj − xjyi)

2 =

⎛⎝ d∑
j=1

x2j

⎞⎠⎛⎝ d∑
j=1

y2j

⎞⎠ ,

which follows by expanding the terms. This clearly establishes the inequality,

and also shows that equality holds if and only if xiyj =xjyi for 1≤ i, j≤ d.

�

Corollary 11.1.4 If x, y ∈ Rd, let d(x, y) = (
∑d

j=1(xj − yj)
2)1/2. Then d

is a metric on Rd.

Proof Conditions (i) and (iii) are clearly satisfied. We must establish the

triangle inequality. First we use Cauchy’s inequality to show that if a, b ∈ R2,

then d(a+ b, 0) ≤ d(a, 0) + d(b, 0):

d(a+ b, 0)2 =

d∑
j=1

(aj + bj)
2

=

d∑
j=1

a2j + 2

d∑
j=1

ajbj +

d∑
j=1

b2j

≤ d(a, 0)2 + 2d(a, 0).d(b, 0) + d(b, 0)2 = (d(a, 0) + d(b, 0))2.

Note that it follows from the definitions that d is translation invariant:

d(a, b) = d(a + c, b + c). In particular, d(a, b) = d(a − b, 0). If x, y, z ∈ Rd,

set a = x− y and b = y − z, so that a+ b = x− z. Then

d(x, z) = d(a+ b, 0) ≤ d(a, 0) + d(b, 0) = d(x, y) + d(y, z).

�
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The metric d is called the Euclidean metric, or standard metric, on Rd.

When d = 2 or 3 it is the usual measure of distance.

We can also consider complex sequences.

Corollary 11.1.5 If z, w ∈ Cd, let d(z, w) = (
∑d

j=1 |zj − wj |2)1/2. Then
d is a metric on Cd.

Proof Again, conditions (i) and (iii) are clearly satisfied, and we must

establish the triangle inequality. First we show that if z, w ∈ Cd then

d(z + w, 0) ≤ d(z, 0) + d(w, 0): using the inequality of the previous corollary,

d(z + w, 0) =

⎛⎝ d∑
j=1

|zj + wj |2
⎞⎠1/2

≤
⎛⎝ d∑

j=1

(|zj |+ |wj |)2
⎞⎠1/2

≤
⎛⎝ d∑

j=1

|zj |2
⎞⎠1/2

+

⎛⎝ d∑
j=1

|wj |2
⎞⎠1/2

= d(z, 0) + d(w, 0).

Again d is translation invariant, so that d(r, s) = d(r − s, 0). If r, s, t ∈ Cd

let z = r − s and w = s− t, so that z + w = r − t and

d(r, t) = d(z + w, 0) ≤ d(z, 0) + d(w, 0) = d(r, s) + d(s, t).

�

The metric d is called the standard metric on Cd.

We shall study these metrics in more detail, later.

Example 11.1.6 The discrete metric.

Let X be any set. We define d(x, y) = 1 if x �= y and d(x, y) = 0 if x = y.

Then d is a metric on X, the discrete metric. If x ∈ X, there are no other

points of X close to x; this means, as we shall see, that analysis on X is

rather trivial.

Example 11.1.7 The subspace metric.

If (X, d) is a metric space, and Y is a subset of X, then the restriction of

d to Y × Y is a metric on Y . This metric is the subspace metric on Y , and

Y , with the subspace metric, is called a metric subspace of (X, d).

The subspace metric is a special case of the following. Suppose that (X, d)

is a metric space and that f is an injective mapping of a set Y into X. If we

set ρ(y, y′) = d(f(y), f(y′)) then it is immediately obvious that ρ is a metric

on Y . For example, we can give (−π/2, π/2) the usual metric, as a subset
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of R. The mapping j = tan−1 is a bijection of R onto (−π/2, π/2). Thus if

we set

ρ(y, y′) = |j(y)− j(y′)| = ∣∣tan−1(y)− tan−1(y′)
∣∣ ,

then ρ is a metric on R.

Example 11.1.8 A metric on the extended real line R.

We can extend the mapping j of the previous example to R by set-

ting j(−∞) = −π/2 and j(+∞) = −π/2. Then j is a bijection of

R onto [−π/2, π/2], and we can again define a metric on R by setting

ρ(y, y′) = |j(y)− j(y′)|. Thus

ρ(y,∞) = π/2− tan−1(y),

ρ(−∞, y) = tan−1(y) + π/2

and ρ(−∞,∞) = π.

Example 11.1.9 A metric on N = N ∪ {∞}.

Here is a similar construction. If n ∈ N, let f(n) = 1/n, and let

f(+∞) = 0. f is an injective map of N onto a closed and bounded subset

of R. Define ρ(x, x′) = |f(x)− f(x′)|. This defines a metric on N:

ρ(m,n) = |1/m− 1/n| and ρ(m,∞) = 1/m.

Example 11.1.10 The uniform metric.

There are many cases where we define a metric on a space of functions.

Here is the first and most important example. First we need some definitions.

Suppose that B is a non-empty subset of a metric space (X, d). The diameter

diam (B) of B is defined to be sup{d(b, b′) : b, b′ ∈ B}. The set B is bounded

if diam (B) < ∞. If f : S → (X, d) is a mapping and A is a non-empty

subset of S, we define the oscillation Ω(f,A) of f on A to be the diameter of

f(A): Ω(f,A) = sup{d(f(a), f(a′)) : a, a′ ∈ A}. The function f is bounded if

Ω(f, S) = diam (f(S)) < ∞.

Proposition 11.1.11 Let B(S,X) = BX(S) denote the set of all

bounded mappings f from a non-empty set S to a metric space (X, d). If

f, g ∈ BX(S), let d∞(f, g) = sup{d(f(s), g(s)) : s ∈ S}. Then d∞ is a

metric on BX(S).
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Proof First we show that d∞(f, g) is finite. Let s0 ∈ S. If s ∈ S then, by

the triangle inequality,

d(f(s), g(s)) ≤ d(f(s), f(s0)) + d(f(s0), g(s0)) + d(g(s0), g(s))

≤ Ω(f, S) + d(f(s0), g(s0)) + Ω(g, S).

Taking the supremum,

d∞(f, g) ≤ Ω(f, S) + d(f(s0), g(s0)) + Ω(g, S) < ∞.

Conditions (i) and (iii) are clearly satisfied, and it remains to establish the

triangle inequality. Suppose that f, g, h ∈ BX(S) and that s ∈ S. Then

d(f(s), h(s)) ≤ d(f(s), g(s)) + d(g(s), h(s)) ≤ d∞(f, g) + d∞(g, h).

Taking the supremum, d∞(f, h) ≤ d∞(f, g) + d∞(g, h). �

This metric is called the uniform metric.

Example 11.1.12 Pseudometrics.

We shall occasionally need to consider functions p for which the third

condition in the definition of a metric is replaced by the weaker condition

(3’) if x = y then p(x, y) = 0.

In other words, we allow distinct points to be zero p-distance apart. Such

a function is called a pseudometric. It is easy to relate a pseudometric to a

metric on a quotient space.

Proposition 11.1.13 Suppose that p is a pseudometric on a set X. The

relation on X defined by setting x ∼ y if d(x, y) = 0 is an equivalence relation

on X. Let q be the quotient mapping from X onto the quotient space X/ ∼.

Then there exists a metric d on X/ ∼ such that d(q(x), q(y)) = p(x, y) for

x, y ∈ X.

Proof The fact that ∼ is an equivalence relation on X is an immediate

consequence of the symmetry property and the triangle inequality. We need

a lemma, which will be useful elsewhere.

Lemma 11.1.14 Suppose that p is a pseudometric, or a metric, on a set

X, and that a, a′, b, b′ ∈ X. Then

|p(a, b) − p(a′, b′)| ≤ p(a, a′) + p(b, b′).

Proof Using the triangle inequality twice,

p(a, b) ≤ p(a, a′) + p(a′, b) ≤ p(a, a′) + p(a′, b′) + p(b′, b),
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so that

p(a, b)− p(a′, b′) ≤ p(a, a′) + p(b, b′).

Similarly

p(a′, b′)− p(a, b) ≤ p(a, a′) + p(b, b′),

which gives the result. �

We now return to the proof of the proposition. If a ∼ a′ and b ∼ b′

then it follows from the lemma that p(a, b) = p(a′, b′). Thus if we define

d(q(a), q(b)) = p(a, b), this is well-defined. Symmetry and the triangle

inequality for d now follow immediately from the corresponding proper-

ties of p. Finally if d(q(a), q(b)) = 0 then p(a, b) = 0, so that a ∼ b and

q(a) = q(b). �

We shall meet more examples of metric spaces later.

Exercises

11.1.1 If x, y ∈ [0, 2π), let d(x, y) = min(|x − y|, 2π − |x − y|). Show that

d is a metric on [0, 2π). Define f : [0, 2π) → R2 by setting f(x) =

(cos x, sinx). Let ρ(f(x), f(y)) = d(x, y). Show that ρ is a metric on

f([0, 2π)), the arc-length metric.

11.1.2 Suppose that p is a prime number. If r is a non-zero rational number,

it can be written uniquely as r = pv(r)s/t, where v(r) ∈ Z and s/t is

a fraction in lowest terms, with neither s nor t having p as a divisor.

Thus if p = 3 then v(6/7) = 1 and v(5/18) = −2. Let n(r) = p−v(r).

If r, r′ ∈ Q, set dp(r, r
′) = n(r − r′) for r �= r′ and dp(r, r

′) = 0 if

r = r′. Show that d is a metric on Q. This metric, the p-adic metric,

is useful in number theory, but we shall not consider it further.

11.1.3 As far as I know, the next example is just a curiosity. Consider Rd

with its usual metric d. If x = αy for some α ∈ R (that is, x and

y lie on a real straight line through the origin) set ρ(x, y) = d(x, y);

otherwise, set ρ(x, y) = d(x, 0) + d(0, y). Show that ρ is a metric

on Rd.

11.1.4 Let Pn be the power set of {1, . . . , n}; the set of subsets of {1, . . . , n}.
Let h(A,B) = |AΔB|, where AΔB is the symmetric difference of A

and B. Show that h is a metric on Pn (the Hamming metric).

11.1.5 Let P (N) be the set of subsets of N. If A and B are distinct subsets

of N, let d(A,B) = 2−j, where j = inf(AΔB), and let d(A,A) = 0.

Show that d is a metric on P (N) and that

d(A,C) ≤ max(d(A,B), d(B,C)) for A,B,C ∈ P (N).
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11.1.6 Let f be the real-valued function on the extended real line R defined

by f(x) = x/
√
1 + x2 if x ∈ R, f(+∞) = 1 and f(−∞) = −1. If

x, y ∈ R, let d(x, y) = |f(x) − f(y)|. Show that d is a metric on R.

Show that a sequence (xn)
∞
n=1 of real numbers converges to +∞ as

n → ∞ if and only if d(xn,+∞) → 0 as n → ∞.

11.2 Normed spaces

Many of the metric spaces that we shall consider are real or complex vector

spaces, and it is natural to consider metrics which relate to the algebraic

structure. We shall assume knowledge of the basic algebraic properties of vec-

tor spaces and linear mappings; these are described in Appendix B. Suppose

that E is a real or complex vector space. It is then natural to consider those

metrics d which are translation-invariant: that is, d(x + a, y + a) = d(x, y)

for all x, y, a ∈ E. Note that this implies that

d(x, y) = d(x− y, 0) = d(0, x− y) = d(−x,−y).

It is also natural to require that if we multiply by a scalar then the distance

is scaled in an appropriate way: d(λx, λy) = |λ|d(x, y) for all x, y ∈ E and

all scalars λ. It is easy to characterize such metrics.

A real-valued function x → ‖x‖ on a real or complex vector space E is a

norm if

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (p is subadditive),

2. ‖αx‖ = |α| ‖x‖ for every scalar α and

3. ‖x‖ = 0 if and only if x = 0,

for α a scalar and x, y vectors in E. (E, ‖.‖) is then called a normed space.

Note that ‖x‖ = ‖−x‖ and that ‖0‖ = ‖0.0‖ = 0 ‖0‖ = 0. A norm is

necessarily non-negative, since 0 = ‖0‖ ≤ ‖x‖+ ‖−x‖ = 2 ‖x‖.
A subset C of a real or complex vector space is convex if whenever x, y ∈ C

and 0 ≤ t ≤ 1 then (1 − t)x + ty ∈ C. A real-valued function on a convex

subset C of a real or complex vector space E is convex if whenever x, y ∈ C

and 0 ≤ t ≤ 1 then

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

Proposition 11.2.1 If ‖.‖ is a norm on a real or complex vector space E,

then ‖.‖ is a convex function on E.

Proof Suppose that x, y ∈ E and 0 ≤ t ≤ 1. Then

‖(1− t)x+ ty‖ ≤ ‖(1− t)x‖+ ‖ty‖ = (1− t) ‖x‖+ t ‖y‖ . �
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Corollary 11.2.2 The sets U = {x : ‖x‖ < 1} and B = {x : ‖x‖ ≤ 1} are

convex subsets of E.

Theorem 11.2.3 Suppose that d is a metric on a real or complex vector

space E. Then the following are equivalent:

(i) d is translation-invariant and satisfies d(λx, λy) = |λ|d(x, y) for all

x, y ∈ E and all scalars λ;

(ii) there exists a norm ‖.‖ on E such that d(x, y) = ‖x− y‖.
Proof If d is a translation-invariant metric with the desired scaling

properties, and we set ‖x‖ = d(x, 0), then ‖x‖ = 0 if and only if x = 0,

‖x+ y‖ = d(x+ y, 0) = d(x,−y) ≤ d(x, 0) + d(0,−y)

= d(x, 0) + d(y, 0) = ‖x‖+ ‖y‖ ,

and

‖λx‖ = d(λx, 0) = d(λx, λ0) = |λ|d(x, 0) = |λ| ‖x‖ .
Thus (i) implies (ii).

Conversely, suppose that ‖.‖ is a norm on E, and that we set d(x, y) =

‖x− y‖. First we show that d is a metric on E:

d(x, y) = ‖x− y‖ = ‖y − x‖ = d(y, x),

d(x, y) = 0 if and only if ‖x− y‖ = 0, if and only if x− y = 0, if and only if

x = y, and

d(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖
≤ ‖x− y‖+ ‖y − z‖ = d(x, y) + d(y, z),

so that the triangle inequality holds. Further,

d(x+ a, y + a) = ‖(x+ a)− (y + a)‖ = ‖x− y‖ = d(x, y)

so that d is translation invariant, and

d(λx, λy) = ‖λx− λy‖ = ‖λ(x− y)‖ = |λ| ‖x− y‖ = |λ|d(x, y).

Thus (ii) implies (i). �

A vector x in a normed space (E, ‖.‖) with ‖x‖ = 1 is called a unit vector.

If y is a non-zero vector in E, then y = λy1, where λ = ‖y‖ and y1 is the

unit vector y/ ‖y‖.
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Let us give some examples of norms.

Theorem 11.2.4 The function ‖x‖2 = (
∑d

j=1 x
2
j)

1/2 is a norm on Rd

(the Euclidean norm).

Proof Clearly ‖x‖2 = 0 if and only if x = 0 and ‖λx‖2 = |λ| ‖x‖2. Let d
be the Euclidean metric on Rd. Then, as in Corollary 11.1.4,

‖x+ y‖2 = d(x+ y, 0) ≤ d(x, 0) + d(y, 0) = ‖x‖2 + ‖y‖2 ,
so that ‖.‖2 is subadditive. �

In the same way, we have the following.

Theorem 11.2.5 The function ‖z‖2 = (
∑d

j=1 |zj |2)1/2 is a norm on Cd.

The norm ‖.‖2 on Cd is again called the Euclidean norm.

We shall generalize these two examples in the next section.

Suppose that (E, ‖.‖) is a normed space. Then, since

‖x− y‖ ≤ ‖x‖+ ‖y‖ and ‖y‖ ≤ ‖y − x‖+ ‖x‖ ,
a subset B of E is bounded if and only if sup{‖b‖ : b ∈ B} < ∞; we say

that B is norm bounded, or bounded in norm.

Thus if S is a set and (E, ‖.‖) is a normed space, then the set BE(S) =

{f : S → E : f(S) is bounded} is equal to the set {f : S → E : sup{‖f(s)‖ :

s ∈ S} < ∞}. Further, BE(S) is a vector space, when addition and scalar

multiplication are defined pointwise:

(f + g)(s) = f(s) + g(s) and (λf)(s) = λ(f(s)).

Arguing as in Proposition 11.1.11,

‖f‖∞ = d∞(f, 0) = sup{||f(s)|| : s ∈ S},
is a norm on BE(S), and d∞(f, g) = ‖f − g‖∞, for f, g ∈ BE(S). The norm

‖.‖∞ is called the uniform norm. We denote the normed space (BE(S), ‖.‖∞)

by l∞(S,E). When E = R or C, and the context is clear, we write

l∞(S) for l∞(S,R) or l∞(S,C). We denote l∞(N) (or l∞(Z+)) by l∞, and

l∞({1, . . . , d}) by ld∞.

As with pseudometrics, we occasionally need to consider functions on a

vector space which do not satisfy the third condition for a norm. A seminorm

p on a vector space E is a real-valued function which satisfied the first two

conditions for a norm, but not necessarily the third. Note that, as for a

norm, p(x) = p(−x), p(0) = 0 and p(x) ≥ 0 for all x ∈ E.
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Proposition 11.2.6 If p is a seminorm on a vector space E, then the set

{x ∈ E : p(x) = 0} is a linear subspace N of E.

Proof If λ is a scalar and x, y ∈ N then p(λx) = |λ|p(x) = 0 and

0 ≤ p(x+ y) ≤ p(x) + p(y) = 0. �

If p is a seminorm on a vector space E, then the function π(x, y) = p(x−y)

is a pseudometric on E. If ∼ is the equivalence relation which this defines,

then x ∼ y if and only if x − y ∈ N . Thus the quotient space E/ ∼ is the

quotient vector space E/N , and q is a linear mapping of E onto E/N . If we

set ‖q(x)‖ = p(x), then ‖.‖ is a norm on E/N which defines the metric of

Proposition 11.1.13.

Exercises

11.2.1 Suppose that f is a real-valued function on a convex subset C of a real

or complex vector space E. Show that the following are equivalent.

(a) f is a convex function on C.

(b) The set {(c, t) ∈ C ×R : f(c) < t} is a convex subset of E ×R.

(c) The set {(c, t) ∈ C ×R : f(c) ≤ t} is a convex subset of E ×R.

11.2.2 If x = (x1, . . . , xd) ∈ Rd, let ‖x‖1 =
∑d

j=1 |xj |. Show that ‖.‖1 is a

norm on Rd. The normed space (Rd, ‖.‖1) is denoted by ld1(R). Prove

a similar result in the complex case.

11.2.3 Let l1(R) denote the set of real sequences (an)
∞
n=1 for which

∑∞
n=1 |an|

is finite. Show that l1(R) is a real vector space (with the algebraic

operations defined pointwise) and that the function ‖a‖1 =
∑∞

n=1 |an|
is a norm on l1(R).

11.3 Inner-product spaces

In 1885, Hermann Schwarz gave another proof of Cauchy’s inequality, this

time for two-dimensional integrals. Schwarz’s proof is quite different from

Cauchy’s, and extends to a more general and more abstract setting. This

provides some important examples of normed spaces.

Suppose that V is a real vector space. An inner product on V is a real-

valued function (x, y) → 〈x, y〉 on V × V which satisfies the following:

(i) (bilinearity)

〈α1x1 + α2x2, y〉 = α1 〈x1, y〉+ α2 〈x2, y〉 ,
〈x, β1y1 + β2y2〉 = β1 〈x, y1〉+ β2 〈x, y2〉 ,

for all x, x1, x2, y, y1, y2 in V and all real α1, α2, β1, β2;
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(ii) (symmetry)

〈y, x〉 = 〈x, y〉 for all x, y in V ;

(iii) (positive definiteness)

〈x, x〉 > 0 for all non-zero x in V .

For example, if V = Rd, we define the usual inner product, by setting

〈z, w〉 = ∑d
i=1 ziwi for z = (zi), w = (wi).

A function which satisfies (i) and (ii) is called a symmetric bilinear form.

Similarly, an inner product on a complex vector space V is a function

(x, y) → 〈x, y〉 from V × V to the complex numbers C which satisfies the

following:

(i′) (sesquilinearity)

〈α1x1 + α2x2, y〉 = α1 〈x1, y〉+ α2 〈x2, y〉 ,
〈x, β1y1 + β2y2〉 = β1 〈x, y1〉+ β2 〈x, y2〉 ,

for all x, x1, x2, y, y1, y2 in V and all complex α1, α2, β1, β2 (note that com-

plex conjugation is applied to the second term; theoretical physicists do it

the other way round);

(ii′) (the Hermitian condition)

〈y, x〉 = 〈x, y〉 for all x, y in V ;

(iii′) (positive definiteness)

〈x, x〉 > 0 for all non-zero x in V .

A function which satisfies (i’) and (ii’) is called a Hermitian bilinear form.

Note that it follows from (ii’) that

〈x, y〉+ 〈y, x〉 = 2� 〈x, y〉 and 〈x, y〉 − 〈y, x〉 = 2i� 〈x, y〉 .
For example, if V = Cd, we define the usual inner product, by setting

〈z, w〉 =
∑d

i=1 ziwi for z = (zi), w = (wi). As another example, the space

C[a, b] of continuous (real or) complex functions on the closed interval [a, b]

is an inner-product space when the inner product is defined by

〈f, g〉 =
∫ b

a
f(x)g(x) dx.

A (real or) complex vector space V equipped with an inner product is

called an inner-product space. If x is a vector in V , we set ‖x‖ = 〈x, x〉 12 . We
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shall show that ‖.‖ is a norm on V . Certainly ‖x‖ = 0 if and only if x = 0,

and ‖λx‖ = |λ| ‖x‖.
In what follows, we shall consider the complex case: the real case is easier,

since we do not need to consider complex conjugation.

Proposition 11.3.1 (The Cauchy–Schwarz inequality) If x and y are

vectors in an inner-product space V then

| 〈x, y〉 | ≤ ‖x‖ . ‖y‖ ,

with equality if and only if x and y are linearly dependent.

Proof This depends upon the quadratic nature of the inner product. The

inequality is trivially true if 〈x, y〉 = 0. If ‖x‖ = 0, then x = 0 and 〈x, y〉 = 0,

so that the inequality is true, and the same holds if ‖y‖ = 0.

Otherwise, if λ ∈ C then

0 ≤ ‖x+ λy‖2 = 〈x+ λy, x+ λy〉
= 〈x, x〉+ λ 〈x, y〉+ λ 〈y, x〉+ |λ|2 〈y, y〉 .

Put

λ = − 〈x, y〉
| 〈x, y〉 | .

‖x‖
‖y‖ .

It follows that

0 ≤ ‖x‖2 − 2
| 〈x, y〉 |2
| 〈x, y〉 | .

‖x‖
‖y‖ +

‖x‖2
‖y‖2 ‖y‖2 = 2

(
‖x‖2 − | 〈x, y〉 |.‖x‖‖y‖

)
,

so that | 〈x, y〉 | ≤ ‖x‖ . ‖y‖.
If x = 0 or y = 0, then equality holds, and x and y are linearly dependent.

Otherwise, if equality holds, then ‖x+ λy‖ = 0, so that x+λy = 0, and x

and y are linearly dependent. Conversely, if x and y are linearly dependent,

then x = αy for some scalar α, and so

| 〈x, y〉 | = |α| ‖y‖2 = ‖x‖ . ‖y‖ .

�

Note that we obtain Cauchy’s inequality by applying this result to Rd or

Cd, with their usual inner products.

Corollary 11.3.2 ‖x+ y‖ ≤ ‖x‖+ ‖y‖, with equality if and only if either

y = 0 or x = αy, with α ≥ 0.
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Proof We have

‖x+ y‖2 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2

≤ ‖x‖2 + 2 ‖x‖ . ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

Equality holds if and only if � 〈x, y〉 = ‖x‖ . ‖y‖, which is equivalent to the

condition stated. �

Thus ‖.‖ is a norm on V .

Note also that the inner product is determined by the norm: in the real

case, we have the polarization formulae

〈x, y〉 = 1
2 (‖x+ y‖2 − ‖x‖2 − ‖y‖2) = 1

4(‖x+ y‖2 − ‖x− y‖2),

and in the complex case we have the polarization formula

〈x, y〉 = 1
4

⎛⎝ 3∑
j=0

ij
∥∥x+ ijy

∥∥2⎞⎠ .

We also have the following.

Proposition 11.3.3 (The parallelogram law) If x and y are vectors in an

inner-product space V , then

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Proof For

‖x+ y‖2 + ‖x− y‖2 = (〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉) +
+ (〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉)

= 2‖x‖2 + 2‖y‖2.

�

Many of the geometric and metric properties of inner-product spaces can

be expressed in terms of orthogonality. Vectors x and y in an inner-product

space V are said to be orthogonal if 〈x, y〉 = 0; if so, we write x⊥y. For real

spaces, this property can be expressed metrically, in terms of the norm.

Proposition 11.3.4 If x and y are vectors in a real inner-product space

V then x⊥y if and only if ‖x+ y‖2 = ‖x‖2 + ‖y‖2.
Proof For ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x, y〉. �
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On the other hand, if x is a vector in a complex inner-product space,

‖x+ ix‖2 = 2 ‖x‖2 = ‖x‖2 + ‖ix‖2, while 〈x, ix〉 = −i ‖x‖2.
If A is a subset of an inner-product space V , we set

A⊥ = {x ∈ V : 〈a, x〉 = 0 for all a ∈ A}.

We write x⊥ for {x}⊥. A⊥ is the annihilator of A: it has the following

properties.

Proposition 11.3.5 Suppose that A and B are subsets of an inner-product

space V .

1. A⊥ = {x ∈ V : 〈x, a〉 = 0 for all a ∈ A}.
2. A⊥ is a linear subspace of V .

3. If A ⊆ B then B⊥ ⊆ A⊥.
4. A ⊆ A⊥⊥.
5. A⊥ = A⊥⊥⊥.
6. A ∩ A⊥ = {0}.

Proof These all follow easily from the definitions. For example, to prove 5,

A⊥ ⊆ (A⊥)⊥⊥, by (iv), while (A⊥⊥)⊥ ⊆ A⊥, by (iii), since A ⊆ A⊥⊥. �

Suppose that x is a unit vector in V , and that z ∈ V . Let λ = 〈z, x〉 and
let y = z−λx. Then 〈y, x〉 = 〈z, x〉−〈z, x〉 〈x, x〉 = 0. Thus z = λx+y, where

λx ∈ span (x) and y ∈ x⊥. If z = μx+ w, with w ∈ x⊥, then 〈z, x〉 = μ, so

that μ = λ and w = y; the decomposition is unique.

Exercises

11.3.1 Let l2 denote the set of real sequences (an)
∞
n=1 for which

∑∞
n=1 |an|2

is finite. Show that l2 is a vector space (with the algebraic operations

defined pointwise), that if a, b ∈ l2 then
∑∞

n=1 anbn converges abso-

lutely, and that the function (a, b) → 〈a, b〉 = ∑∞
n=1 anbn is an inner

product on l2.

11.3.2 Establish corresponding results for complex sequences.

11.3.3 Let x, y and z be elements of a real inner-product space, such that

‖x− z‖ = ‖x− y‖+ ‖y − z‖. Show that there exists 0 ≤ λ ≤ 1 such

that y = (1− λ)x+ λz.

11.3.4 A pre-inner-product space is a vector space E with a symmetric bilin-

ear (Hermitian sesquilinear) form 〈., .〉 which is positive semi-definite:

〈x, x〉 ≥ 0 for all x ∈ E. Show that N = {x ∈ E : 〈x, x〉 = 0} is a
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linear subspace of E, and that if q : E → E/N is the quotient map-

ping then there exists an inner product 〈., .〉N on E/N such that

〈q(x), q(y)〉N = 〈x, y〉, for x, y ∈ E.

11.4 Euclidean and unitary spaces

We now restrict attention to finite-dimensional spaces; a finite-dimensional

real inner-product space is called a Euclidean space and a finite-dimensional

complex inner-product space is called a unitary space. Throughout this

section, V will denote a Euclidean or unitary space of dimension n. The

key idea is that of Gram–Schmidt orthonormalization.

Theorem 11.4.1 Suppose that (x1, . . . , xd) is a basis for a Euclidean

or unitary space V . Then there exists a basis (e1, . . . , ed) for V with the

following properties.

(i) ‖ej‖ = 1 for 1 ≤ j ≤ d and 〈ej , ei〉 = 0 for 1 ≤ i < j ≤ d.

(ii) If Wj = span (x1, . . . , xj), then Wj = span (e1, . . . , ej), for 1 ≤ j ≤ d.

Proof The proof is by an iterative construction. We set e1 = x1/ ‖x1‖.
Suppose that we have constructed e1, . . . , ej−1, satisfying the conclusions of

the theorem. Let fj = xj −
∑j−1

i=1 〈xj, ei〉 ei. Since xj �∈ Wj−1, fj �= 0. Let

ej = fj/ ‖fj‖. Then ‖ej‖ = 1, and

span (e1, . . . ej) = span (Wj−1, ej) = span (Wj−1, xj) = Wj .

Thus (e1, . . . , en) is a basis for Wj. If 1 ≤ k < j then

〈fj, ek〉 = 〈xj, ek〉 −
j−1∑
i=1

〈xj, ei〉 〈ei, ek〉 = 〈xj, ek〉 − 〈xj , ek〉 = 0,

so that 〈ej , ek〉 = 0. Thus (e1, . . . , ej) is a basis for Wj. In particular,

(e1, . . . , ed) is a basis for V with the required properties. �

The construction made in the proof is known as Gram–Schmidt orthonor-

malization. A basis (e1, . . . , ed) which satisfies condition (i) of the theorem is

called an orthonormal basis. More generally, if (e1, . . . , ek) is a sequence in an

inner-product space V which satisfies condition (i) (with k replacing d), then

(e1, . . . , ek) is called an orthonormal sequence. Note that if (e1, . . . , ek) is an

orthonormal sequence and
∑k

j=1 xjej = 0 then xi =
〈∑k

j=1 xjej , ei

〉
= 0

for 1 ≤ i ≤ k; an orthonormal sequence of vectors is linearly independent.
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If (e1, . . . , ed) is an orthonormal basis for V , and x =
∑d

j=1 xjej ∈ V then

〈x, ei〉 = xi for 1 ≤ i ≤ d, so that

x =

d∑
j=1

〈x, ej〉 ej .

Thus if x, y ∈ V then

〈x, y〉 =
d∑

j=1

〈x, ej〉 〈ej , y〉 =
d∑

j=1

〈x, ej〉 〈y, ej〉.

In particular,

‖x‖2 =
d∑

j=1

| 〈x, ej〉 |2.

Corollary 11.4.2 If W is a k-dimensional linear subspace of a Euclidean

or unitary space V then V = W⊕W⊥, and there exists an orthonormal basis

(e1, . . . , ed) of V such that (e1, . . . , ek) is a basis for W and (ek+1, . . . , ed) is

a basis for W⊥.

Proof Let (x1, . . . , xk) be a basis for W . Extend it to a basis

(x1, . . . , xd) for V , and apply Gram–Schmidt orthonormalization to obtain

an orthonormal basis (e1, . . . , ed) for V . Then (e1, . . . , ek) is an orthonor-

mal basis for W , and span (ek+1, . . . ed) ⊆ W⊥. On the other hand, if

x =
∑d

j=1 〈x, ej〉 ej ∈ W⊥ then 〈x, ej〉 = 0 for 1 ≤ j ≤ k, so that x =∑d
j=k+1 〈x, ej〉 ej ∈ span (ek+1, . . . ed). Thus (ek+1, . . . , ed) is an orthonormal

basis for W⊥. Since W ∩W⊥ = {0}, it follows that V = W ⊕W⊥. �

If x ∈ V we can write x uniquely as y + z, with y ∈ W and z ∈ W⊥. Let
us set PW (x) = y. PW is a linear mapping of V onto W , and P 2

W = PW . PW

is called the orthogonal projection of V onto W . Note that PW⊥ = I − PW .

Although it is easy, the next result is important. It shows that an ortho-

gonal projection is a ‘nearest point’ mapping; since it is linear, it relates the

linear structure to metric properties.

Proposition 11.4.3 If W is a linear subspace of a Euclidean or unitary

space V and x ∈ V then PW (x) is the nearest point in W to x, and is the

unique point in W with this property: ‖x− PW (x)‖ ≤ ‖x− w‖ for w ∈ W ,

and if ‖x− PW (x)‖ = ‖x− w‖ then w = PW (x).

Proof Let (e1, . . . , ed) be an orthonormal basis for V which satisfies the

conditions of Corollary 11.4.2. If x=
∑d

j=1 xjej ∈V and w=
∑k

j=1wjej ∈W
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then

‖x− w‖2 =
k∑

j=1

|xj − wj |2 +
d∑

j=k+1

|xj |2,

and this is minimized if and only if wj = xj for 1 ≤ j ≤ k, in which case

w = PW (x). �

We shall extend Corollary 11.4.2 and Proposition 11.4.3 to certain inner

product spaces in Section 14.3.

Exercise

11.4.1 Suppose that (x1, . . . , xn) is a basis for a Euclidean or unitary

space V , and that (e1, . . . , en) and (f1, . . . , fn) satisfy the conclu-

sions of Theorem 11.4.1. Show that there are scalars λ1, . . . , λn of

unit modulus such that fj = λjej for 1 ≤ j ≤ n.

11.5 Isometries

A mapping f from a metric space (X, d) to a metric space (Y, ρ) is an

isometry if it preserves distances: that is, if ρ(f(x), f(x′)) = d(x, x′) for all

x, x′ ∈ X.

If T is a linear mapping from a normed space (E, ‖.‖E) into a normed

space (F, ‖.‖F ) which is an isometry, then T is called a linear isometry. The

mapping T is an isometry if and only if ‖T (x)‖F = ‖x‖E for all x ∈ E. The

condition is necessary, since

‖T (x)‖F = ‖T (x)− T (0)‖F = ‖x− 0‖E = ‖x‖E .

It is sufficient, since

‖T (x)− T (y)‖F = ‖T (x− y)‖F = ‖x− y‖E .

An isometry preserves the metric geometry of (X, d). Let us give some

examples.

Example 11.5.1 An isometry of N̄ into R.

Let N̄ = N ∪ {∞} be given the metric ρ defined in Example 11.1.9 in

Section 11.1. Let f(n) = 1/n and let f(∞) = 0. Then f is an isometry of N̄

into R, with its usual metric.

Example 11.5.2 The mapping (x, y) → x+ iy is a linear isometry of R2

onto C, when C is considered as a real vector space.
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Example 11.5.3 The conjugation mapping.

The conjugation mapping z → z̄ is an isometry of C onto itself. It is a

linear mapping when C is considered as a real vector space, but is not linear

when C is considered as a complex vector space

Example 11.5.4 Rotations of R2.

Since

(x cos t− y sin t)2 + (x sin t+ y cos t)2 = x2 + y2,

the linear mapping rt from R2 → R2 defined by

rt(x, y) = (x cos t− y sin t, x sin t+ y cos t)

is a linear isometry of R2 onto R2. It is a rotation of R2. It is a bijection,

with inverse r−t.

Example 11.5.5 Translations of a normed space.

Suppose that (E, ‖.‖) is a normed space. If a ∈ E, let Ta(x) = x+ a; Ta

is a translation. It is an isometry of (E, ‖.‖) onto itself, since

‖Ta(x)− Ta(y)‖ = ‖(x+ a)− (y + a)‖ = ‖x− y‖ .

Example 11.5.6 If (E, ‖.‖) is a normed space, and λ is a scalar with

|λ| = 1 then the mapping x → λx is a linear isometry of E onto itself.

Example 11.5.7 A linear isometry of l21(R) onto l2∞(R).

If x, y ∈ R then max(|x+ y|, |x− y|) = |x|+ |y|. Thus the linear mapping

T : l21(R) → l2∞(R) defined by T ((x, y)) = (x + y, x − y) is an isometry of

l21(R) onto l2∞(R).

Example 11.5.8 Reflections of a real inner-product space.

Suppose that x is a non-zero vector in a real inner-product space V . If

z ∈ V , we can write z uniquely as z = λx+ y, where λ ∈ R and y ∈ x⊥. Let
ρx(z) = −λx+ y, so that ρx(x) = −x and ρx(z) = z if and only if z ∈ x⊥.
Then ρx is a linear mapping of V onto V , and is an involution: ρ2x is the

identity mapping. It is an isometry, since

‖ρx(z)‖2 = λ2 ‖x‖2 + ‖y‖2 = ‖z‖2 .

It is called the simple reflection in the direction x, with mirror x⊥.
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Suppose that x and y are distinct vectors in a real inner-product space

V , with ‖x‖ = ‖y‖. Then

〈x+ y, x− y〉 = 〈x, x〉 − 〈x, y〉+ 〈y, x〉 − 〈y, y〉 = ‖x‖2 − ‖y‖2 = 0,

so that (x+ y)⊥(x− y). Thus

ρx−y(x) = ρx−y(
1
2(x− y)) + ρx−y(

1
2 (x+ y)) = 1

2(y − x) + 1
2(x+ y) = y,

and ρx−y(y) = x.

Example 11.5.9 Linear isometries between inner-product spaces.

Proposition 11.5.10 Suppose that S : V → W is a linear mapping from

a real inner-product space V to a real inner-product space W . Then S is an

isometry if and only if 〈S(x), S(y)〉 = 〈x, y〉 for x, y ∈ V .

Proof If S is an isometry, then

〈S(x), S(y)〉 = 1
2(‖S(x)‖2 + ‖S(y)‖2 − ‖S(x)− S(y)‖2)

= 1
2(‖x‖2 + ‖y‖2 − ‖x− y‖2) = 〈x, y〉.

The condition is sufficient, since ‖S(x)‖ =
√〈x, x〉, �

Thus if (e1, . . . , ek) is an orthonormal sequence in V and S is an isometry

then (S(e1), . . . , S(ek)) is an orthonormal sequence in W .

Corollary 11.5.11 If (e1, . . . , ed) is an orthonormal basis for a Euclidean

space V and T is a linear mapping from V into an inner-product space W

then T is an isometry if and only if (T (e1), . . . , T (ed)) is an orthonormal

sequence in W .

Proof As we have just observed, the condition is necessary. If it is satisfied

and x =
∑d

j=1 xjej ∈ V then

‖T (x)‖2 =
∥∥∥∥∥∥

d∑
j=1

xjT (ej)

∥∥∥∥∥∥
2

=

d∑
j=1

x2j = ‖x‖2 .

�

If (e1, . . . , ek) is an orthonormal sequence in a real (or complex) inner-

product space V , then the mapping T from Rk (or Ck) into V defined by



322 Metric spaces and normed spaces

T (x) = T ((x1, . . . , xk)) =
∑k

j=1 xjej is an isometry, since

‖T (x)‖2 =
k∑

j=1

|xj |2 = ‖x‖ .

Any two Euclidean spaces of the same dimension are linearly isometric: if

V andW are Euclidean spaces of dimension k, then there exists a linear map-

ping of V onto W which is an isometry. Let (e1, . . . , ek) be an orthonormal

basis for V , and let (f1, . . . , fk) be an orthonormal basis for W . Let

J(x1e1 + · · · + xkek) = x1f1 + · · ·+ xkfk.

Then J is a linear isometry of V onto W .

Example 11.5.12 An isometry of a metric space (X, d) into l∞(X).

This example will be useful to us later. Let (X, d) be a metric space, with

X non-empty, and let l∞(X) = l∞(X,R) be the normed space of bounded

real-valued functions on X introduced in Section 11.2. Let x0 be an element

of X. If x ∈ X, let

fx(y) = d(x, y)− d(x0, y) for y ∈ X.

Since d(x0, y) ≤ d(x0, x) + d(x, y) and d(x, y) ≤ d(x0, x) + d(x0, y), by the

triangle inequality, it follows that |fx(y)| ≤ d(x0, x), so that fx ∈ l∞(X),

and ‖fx‖∞ ≤ d(x0, x). We claim that the mapping x → fx : X → l∞(X) is

an isometry. Since

fx(y)− fx′(y) = d(x, y)− d(x′, y) ≤ d(x, x′),

and fx′(y)− fx(y) = d(x′, y)− d(x, y) ≤ d(x, x′)

it follows that |fx(y) − fx′(y)| ≤ d(x, x′) for all y ∈ X. Hence

‖fx − fx′‖∞ ≤ d(x, x′). On the other hand,

fx(x
′)− fx′(x′) = d(x, x′)− d(x′, x′) = d(x, x′),

and so ‖fx − fx′‖∞ = d(x, x′).
Two metric spaces (X, d) and (Y, ρ) are said to be congruent if there is

an isometry of X onto Y . (They are said to be similar if there exists α > 0

and a mapping f of X onto Y such that ρ(f(x), f(x′)) = αd(x, x′).)
The composition of two isometries is an isometry, and the inverse of a

bijective isometry is an isometry. Thus the set of bijective isometries of a

metric space (X, d) onto itself forms a group under composition, the group

of metric symmetries of (X, d). This group gives valuable information about

the metric space.
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Exercises

Let ld1 denote Rd with norm ‖x‖1 =
∑d

j=1 |xj |.
11.5.1 If A ∈ Pd, let IA be its indicator function: IA(j) = 1 if j ∈ A and

IA(j) = 0 otherwise. Show that the mapping A → IA is an isometry

of Pd, with its Hamming metric, into ld1.

11.5.2 Let ej = (0, . . . 0, 1, 0, . . . 0), with 1 in the jth place.

(a) Show that if x is a unit vector in ld1 and if max(‖x+ y‖1,
‖x− y‖1) > 1 for all y �= 0 then x = ±ej for some 1 ≤ j ≤ d.

(b) Let f be an isometry of ld1 with f(0) = 0. Show that there exists

a permutation σ of {1, . . . , d} and a choice of signs (ε1, . . . , εd)

(that is, εj = ±1 for 1 ≤ j ≤ d) such that f(ej) = εjeσ(j),

f(−ej) = −εjeσ(j) for 1 ≤ j ≤ d.

(c) Show that f is linear, so that f(x) =
∑d

j=1 εjxjeσ(j) for x ∈ ld1 .

11.5.3 By considering vectors of the form (ε1, . . . , εd), where εj = ±1 for

1 ≤ j ≤ d, show that if a mapping f of ld∞ into itself is an isometry

and if f(0) = 0 then there exists a permutation σ of {1, . . . , d} and

a choice of signs (ε1, . . . , εd) (that is, εj = ±1 for 1 ≤ j ≤ d) such

that f(ej) = εjeσ(j), f(−ej) = −εjeσ(j) for 1 ≤ j ≤ d. Show that f is

linear.

11.6 *The Mazur–Ulam theorem*

(This section can be omitted on a first reading.)

Suppose that (E, ‖.‖E) and (F, ‖.‖F ) are real normed spaces and that

J : E → F is an isometry. Let L = T−J(0)◦J , where T−J(0) is the translation

of F mapping J(0) to 0. Thus L(x) = J(x)−J(0), so that L is an isometry of

E into F , with L(0) = 0. Our principal aim is to show that if L is surjective,

then it must be linear. This extends the results of Exercises 11.5.2 and 11.5.3

of the previous section.

Theorem 11.6.1 (The Mazur–Ulam theorem) If L : E → F is an isome-

try of a real normed space (E, ‖.‖E) onto a real normed space (F, ‖.‖F ) with
L(0) = 0, then L is a linear mapping.

In order to prove this, we introduce some ideas concerning the geometry

of metric spaces, of interest in their own right. First, suppose that x, y, z are

elements of a metric space. We say that y is between x and z if d(x, y) +

d(y, z) = d(x, z), and we say that y is halfway between x and z if d(x, y) =
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d(y, z) = 1
2d(x, z). We denote the set of points halfway between x and z by

H(x, z). The set H(x, z) may be

• empty, for example if (X, d) has the discrete metric,

• a singleton set, for example if (X, d) is the real line R, with the usual

metric, when H(x, z) = {1
2 (x+ z)},

• or may contain more than one point: let (X, d) = l2∞(R), x = (−1, 0), and

z = (1, 0); then H(x, z) = {(0, y) : −1 ≤ y ≤ 1}.
If (E, ‖.‖E) is a normed space, then 1

2 (x + z) ∈ H(x, z), but H(x, z) may

contain other points, as the last example shows. The set H(x, z) is always

bounded, since if y, y′ ∈ H(x, z) then d(y, y′) ≤ d(y, x) + d(x, y′) = d(x, z).

Suppose that A is a bounded subset of a metric space (X, d). Can we

find a special point in A which is the centre of A, in some metric sense?

In general, the answer must be ‘no’, since, for example, in a metric space

with the discrete metric, there is no obvious special point. In certain cases,

however, the answer is ‘yes’. First, let

κ(A) = {x ∈ A : d(x, y) ≤ 1
2diam (A) for all y ∈ A};

κ(A) is the central core of A. Again, κ(A) may be empty, may consist of one

point (which would then be the centre of A) or may consist of more than

one point; for example, if

A = {(x, y) ∈ l2∞(R) : −1 ≤ x ≤ 1,−1
2 ≤ y ≤ 1

2},
then κ(A) = {(0, y) : −1

2 ≤ y ≤ 1
2}. Note though that diam (κ(A)) ≤

1
2diamA. This suggests that we iterate the procedure: we set κ1(A) = κ(A),

and if κn(A) �= ∅ we set κn+1(A) = κ(κn(A)). There are then three possible

outcomes:

• κn(A) = ∅ for some n ∈ N;

• κn(A) �= ∅ for all n ∈ N, but ∩∞
n=1(κn(A)) = ∅;

• κn(A) �= ∅ for all n ∈ N, and ∩∞
n=1(κn(A)) �= ∅.

If either of the first two cases occurs, then A does not have a centre. In the

third case, diam ∩∞
n=1 (κn(A)) ≤ diamκn(A) ≤ diam (A)/2n, for all n ∈ N,

so that diam ∩∞
n=1 (κn(A)) = 0, and ∩∞

n=1κn(A) = {c(A)}, a singleton set.

Then we call c(A) the centre of A.

Let us give an example. A subset A of a real vector space E is

symmetric if A = −A: that is, if x ∈ A then −x ∈ A.

Proposition 11.6.2 If A is a bounded symmetric subset of a normed space

(E, ‖.‖) and if 0 ∈ A then 0 is the centre of A.
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Proof Let us consider κ(A). We show that κ(A) is symmetric and that

0 ∈ κ(A). First, if y ∈ κ(A) and x ∈ A then

d(−y, x) = ‖−y − x‖ = ‖y + x‖ = ‖y − (−x)‖ = d(y,−x) ≤ 1
2diam (A),

so that −y ∈ κ(A) and κ(A) is symmetric. Secondly, if x ∈ A then

d(x, 0) = ‖x‖ = 1
2 ‖2x‖ = 1

2 ‖x− (−x)‖ = 1
2d(x,−x) ≤ 1

2diam (A),

so that 0 ∈ κ(A). We can therefore iterate the procedure: κn(A) is

symmetric, and 0 ∈ κn(A), and so it follows that 0 is the centre of A. �

Corollary 11.6.3 If x, z ∈ E then 1
2 (x+ z) is the centre of H(x, z).

Proof First consider the case where z = −x. Then 0 ∈ H(x,−x), and if

y ∈ H(x,−x) then

‖(−y)− x‖ = ‖y − (−x)‖ = 1
2 ‖x− (−x)‖ = ‖x‖ .

Similarly, ‖(−y)− (−x)‖ = 1
2 ‖x− (−x)‖. Thus H(x,−x) is symmetric, and

0 is its centre. In the general case, let y = 1
2 (x+ z). Since translation is an

isometry,

H(x, z) = Ty(H(x− y, z − y)) = Ty(H(x− y,−(x− y))),

so that y = Ty(0) is the centre of H(x, z). �

The importance of this is that the centre is defined purely in terms of the

metric, and not in terms of the vector space structure of E.

Proof of Theorem 11.6.1. Note that if A is a bounded subset of E, with

centre c(A), then, since L is a surjective isometry, L(A) is a bounded subset

of F , with centre c(L(A)) = L(c(A)). If x, z ∈ E, then L(12(x + z)) =
1
2(L(x)+L(z)), since 1

2(x+z) is the centre ofH(x, z) and 1
2(L(x)+L(z)) is the

centre of H(L(x), L(z)). In particular, considering 2x and 0, L(x) = 1
2L(2x),

and considering 2x and 2z, L(x + z) = 1
2(L(2x) + L(2z)) = L(x) + L(z).

Thus L is additive.

From this, we deduce the fact that L(λx) = λL(x), for λ ∈ R and

x ∈ E, in a few easy stages. First, an easy induction argument shows that

L((n+1)x) = L(nx)+L(x) = nL(x)+L(x) = (n+1)L(x), for n ∈ N; thus the

result holds for λ ∈ Z+. Secondly, L(nx) + L(−nx) = L(0) = 0, so that the

result holds for λ ∈ Z. Thirdly, if m ∈ Z and n ∈ N then L((m/2n−1)x) =

2L((m/2n)x), so that L((m/2n)x) = 1
2L((m/2n−1)x), and another induction

argument shows that L((m/2n)x) = (m/2n)L(x). Thus the result holds for

all dyadic rationals (numbers of the form m/2n, with m ∈ Z and n ∈ N).
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Finally, suppose that λ ∈ R and that ε > 0. Then there exists a dyadic

rational r = m/2n such that |λ − r| < ε/2(‖x‖E + 1). Thus ‖λx− rx‖E =

|λ−r| ‖x‖E < ε/2. Since L is an isometry, ‖L(λx)− L(rx)‖F < ε/2, and also

‖rL(x)− λL(x)‖F = |λ− r| ‖L(x)‖F = |λ− r| ‖x‖E < ε/2.

Since L(rx) = rL(x),

‖L(λx)− λL(x)‖F
≤ ‖L(λx)− L(rx)‖F + ‖L(rx)− rL(x)‖F + ‖rL(x)− λL(x)‖F < ε.

Since this holds for all ε > 0, ‖L(λx)− λL(x)‖F = 0, and so L(λx) =

λL(x). �

The condition that L is surjective cannot be dropped. It follows from the

mean-value theorem that if x < y then there exists x < z < y such that

sinx− sin y = (x−y) cos z, so that | sinx− sin y| ≤ y−x. Thus the mapping

L : R → l2∞(R) defined by L(t) = (t, sin t) is an isometry of R into l2∞(R)

with L(0) = (0, 0) which is clearly not linear.

There is however one important circumstance in which the surjective

condition can be dropped. A normed space (E, ‖.‖E) is strictly convex if

whenever x, y ∈ E, ‖x‖E = ‖z‖E = 1 and x �= y then
∥∥1
2(x+ y)

∥∥ < 1.

Proposition 11.6.4 If (E, ‖.‖E) is strictly convex and x, z ∈ E then the

set H(x, z) of points halfway between x and z is the singleton set {1
2 (x+z)}.

Proof First consider the case where z = −x, and ‖x‖ = 1. If u ∈ H(x,−x)

then ‖x+ u‖ = ‖x− u‖ = ‖x‖ = 1. Since

x = 1
2 ((x+ u) + (x− u)),

it follows from strict convexity that u = 0, so that H(x,−x) = {0}. Then,
by scaling, H(x,−x) = {0}, for all x ∈ E. Finally, H(x, z) = {1

2 (x+ z)}, by
translation. �

Corollary 11.6.5 If L : E → F is an isometry of a real normed space

(E, ‖.‖E) into a strictly convex real normed space (F, ‖.‖F ) with L(0) = 0,

then L is a linear mapping, and (E, ‖.‖E) is also strictly convex.

Proof If x, z ∈ E, then 1
2(x + z) is the centre of H(x, z), and so

1
2 (L(x) + L(z)) must be the centre of H(L(x), L(z)) in L(E). But the

only possible centre of H(L(x), L(z)) in L(E) is 1
2(L(x) + L(z)). Thus

L(12 (x + z)) = 1
2 (L(x) + L(z)) and 1

2(L(x) + L(z)) ∈ L(E). An argu-

ment exactly like the one given in Theorem 11.6.1 then shows that

L(x+ z) = L(x) + L(z), and that L(λx) = λL(x), for all x ∈ E and λ ∈ R.
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Thus L is an isometric linear mapping of E onto a linear subspace of F .

Since a linear subspace of a strictly convex normed space is strictly convex,

it follows that (E, ‖.‖E) is strictly convex. �

Many important normed spaces are strictly convex, and indeed have

stronger metric convexity properties.

Proposition 11.6.6 An inner-product space E is strictly convex.

Proof This follows easily from the parallelogram law. If ‖x‖ = ‖y‖ = 1

and x �= y then it follows from the parallelogram law that

4 = 2(‖x‖2 + ‖y‖2) = ‖x+ y‖2 + ‖x− y‖2 ,

so that
∥∥1
2(x+ y)

∥∥2 = 1− 1
4 ‖x− y‖2 < 1, and

∥∥1
2 (x+ y)

∥∥ < 1. �

Corollary 11.6.7 If L : E → F is an isometry of a real normed space

(E, ‖.‖E) into a real inner-product space (F, ‖.‖F ) with L(0) = 0, then L is

a linear mapping, and (E, ‖.‖E) is also an inner-product space.

Exercise

11.6.1 Let J : R → l21(R) be defined as J(t) = 1
2(t − 1/(t2 + 1),

t + 1/(t2 + 1)). Show that J is an isometry. Why does this not

contradict the Mazur–Ulam theorem?

11.7 The orthogonal group Od

We now consider the group Od of linear isometries of Rd, with its Euclidean

metric; this is the orthogonal group, and its elements are called orthogonal

mappings. As an example, a simple reflection ρx in the direction x is an

orthogonal mapping. It follows from the polarization formula that a linear

mapping T is orthogonal if and only if 〈T (x), T (y)〉 = 〈x, y〉, for all x, y ∈ Rd.

Let (e1, . . . , ed) be the standard basis of Rd. It then follows that a linear

mapping S from Rd to itself is orthogonal if and only if (S(e1), . . . , S(ed))

is also an orthogonal basis for Rd.

This can be expressed in terms of the matrix representing S. If

S is represented by the matrix (sij) in the usual way (so that

S(ej) =
∑d

i=1 sijei for 1 ≤ j ≤ d), then S is orthogonal if and only if

d∑
i=1

s2ij = 1 for 1 ≤ j ≤ d, and

d∑
i=1

sijsik = 0 for 1 ≤ j < k ≤ d.
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Such a matrix is called an orthogonal matrix.

Theorem 11.7.1 Suppose that T ∈ Od. Then T can be written as the

product of at most d simple reflections.

Proof Let S = T − I. We prove the result by induction on the rank

r(S) of S. We show that if r(S) = r then T is the product of at most

r simple reflections. If r(S) = 0 then T = I, which is the product of no

simple reflections. Suppose that the result holds if r(S) ≤ r, where r < d.

Suppose that T ∈ Od and that r(S) = r + 1. Let N be the null-space of S:

N = {x ∈ Rd : T (x) = x}. By the rank-nullity formula, dim (N) = d−r−1.

Let x be a unit vector in N⊥, so that S(x) �= 0. We consider the simple

reflection ρS(x).

If y ∈ N then

〈y, S(x)〉 = 〈y, T (x)〉 − 〈y, x〉 = 〈T (y), T (x)〉 − 〈y, x〉 = 0,

so that ρS(x)(y) = y. Also

〈S(x), T (x) + x〉 = 〈T (x)− x, T (x) + x〉
= 〈T (x), T (x)〉 − 〈x, T (x)〉 + 〈T (x), x〉 − 〈x, x〉 = 0,

so that T (x) + x ∈ (S(x))⊥. Hence ρS(x)(T (x) + x) = T (x) + x. But

ρS(x)(T (x) − x) = −T (x) + x, and so ρS(x)(T (x)) = x. Let U = ρS(x) ◦ T .
Then U ∈ Od, U(x) = x and U(y) = y for y ∈ N . Let M = span (N,x), so

that dim (M) = d− r. Then (U − I)(z) = 0 for z ∈ M , and so r(U − I) ≤ r.

By the inductive hypothesis, U is the product of at most r simple reflections.

Since T = ρS(x) ◦U , T is the product of at most r+1 simple reflections. �

Here are some more easy examples. Suppose that σ is a permutation of

{1, . . . , n}. If x ∈ Rd let Tσ(x) = (xσ(1), . . . , xσ(d)). Then Tσ ∈ Od; it is a

permutation operator. Note that T−1
σ = Tσ−1 . Suppose that 0 ≤ t ≤ 2π. If

x ∈ Rd, let

Rt(x) = (x1 cos t− x2 sin t, x1 sin t+ x2 cos t, x3, . . . , xd).

Then Rt ∈ Od; it is an elementary rotation. Note that R−1
t = R2π−t.

Theorem 11.7.2 For d ≥ 2, let Gd be the subgroup of Od generated by

the permutation operators and the elementary rotations. Then Gd = Od.

Proof We leave this as an exercise for the reader. �
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Exercises

11.7.1 Let τi,j ∈ Σn be the permutation of {1, . . . , n} which transposes i and

j: τi,j(i) = j, τi,j(j) = i and τi,j(k) = k otherwise. Show that Σn is

generated by the transpositions {τ1,j : 2 ≤ j ≤ n}.
11.7.2 Suppose that T ∈ Od, and that r(T − I) = r. Show that T cannot be

written as the product of fewer than r simple reflections.

11.7.3 Interpret the equation 〈T (x) + x, T (x)− x〉 = 0 that occurs in

Theorem 11.7.1 geometrically.

11.7.4 Prove Theorem 11.7.2.
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Convergence, continuity and topology

12.1 Convergence of sequences in a metric space

We now turn to analysis on metric spaces. The definitions and results that

we shall consider are straightforward generalizations of the corresponding

definitions and results for the real line. The same is true of the proofs; in

most cases, they will be completely straightforward modifications of proofs

of results in Volume I. We shall however present the material in a slightly

different order.

Suppose that (X, d) is a metric space, that (an)
∞
n=1 is a sequence of ele-

ments of X, and that l ∈ X. We say that an converges to l, or tends to l,

as n tends to infinity, and write an → l as n → ∞, if whenever ε > 0 there

exists n0 (which usually depends on ε) such that d(an, l) < ε for n ≥ n0. In

other words, the real-valued sequence (d(an, l))
∞
n=1 tends to 0 as n → ∞.

Suppose that x ∈ X and ε > 0. The open ε-neighbourhood Nε(x) is defined

to be the set of all elements of X distant less than ε from x:

Nε(x) = {y ∈ X : d(y, x) < ε}.

We can express convergence in terms of open ε-neighbourhoods:

an → l as n → ∞ if and only if for each ε > 0 there exists n0 such that

an ∈ Nε(l) for n ≥ n0.

We have the following consequence of Lemma 11.1.14.

Proposition 12.1.1 If an → l and bn → m as n → ∞ then

d(an, bn) → d(l,m) as n → ∞.

330
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Proof For |d(an, bn)− d(l,m)| ≤ d(an, l) + d(bn,m), and

d(an, l) + d(bn,m) → 0 as n → ∞.

�

When they exist, limits are unique.

Corollary 12.1.2 If an → l as n → ∞ and an → m as n → ∞, then

l = m.

Proof Put bn = an. Then d(an, bn) = 0, so that d(l,m) = 0 and

l = m. �

A subsequence of a convergent sequence converges to the same limit.

Proposition 12.1.3 If an → l as n → ∞ and if (ank
)∞k=0 is a subsequence,

then ank
→ l as k → ∞.

Proof Given ε > 0 there exists N such that d(an, l) < ε for n ≥ N ,

and there exists k0 such that nk > N for k ≥ k0. Thus if k ≥ k0 then

d(ank
, l) < ε. �

Let us give two examples. First, suppose that

(x(n))∞n=0 = ((x
(n)
1 , . . . , x

(n)
d ))∞n=0

is a sequence in Rd, and that x = (x1, . . . , xd) ∈ Rd. We consider the

Euclidean norm ‖.‖2 and Euclidean metric on Rd. If 1 ≤ j ≤ d then |x(n)j −
xj| ≤

∥∥x(n) − x
∥∥
2
, so that if x(n) → x as n → ∞ then x

(n)
j → xj as n → ∞.

Conversely, suppose that x
(n)
j → xj as n → ∞ for 1 ≤ j ≤ d. Given ε > 0

and 1 ≤ j ≤ d there exists nj ∈ N such that |x(n)j − xj| < ε/
√
d for n ≥ nj.

Let N = max{nj : 1 ≤ j ≤ d}. If n ≥ N then

∥∥∥x(n) − x
∥∥∥2
2
=

d∑
j=1

|x(n)j − xj |2 ≤ ε2,

so that x(n) → x as n → ∞. Thus a sequence in Rd converges in

the Euclidean metric if and only if each sequence of coordinates con-

verges: convergence in the Euclidean metric is the same as coordinate-wise

convergence.

The second example is extremely important. Suppose that S is a set, that

(X, d) is a metric space, that (fn)
∞
n=0 is a sequence in the space BX(S)
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of bounded functions on S taking values in X, and that f ∈ BX(S). We

consider the uniform metric d∞ on BX(S). If s ∈ S, then

d(fn(s), f(s)) ≤ sup{d(fn(t), f(t)) : t ∈ S} = d∞(fn, f),

so that if fn → f in the uniform metric as n → ∞ then fn(x) → f(x) as

n → ∞: fn → f pointwise. But the convergence is stronger than that: given

ε > 0 there exists n0 such that

d∞(fn, f) = sup{|fn(s)− f(s)| : s ∈ S} < ε for n ≥ n0.

Thus there exists an n0 independent of s such that |fn(s) − f(s)| < ε for

all n ≥ n0 and all s ∈ S. We say that fn → f uniformly on X as n → ∞.

The distinction between uniform convergence and pointwise convergence is

most important. It is reassuring that the uniform convergence of bounded

functions can be characterized in terms of a metric (and in terms of a norm,

when X is a normed space).

It is however useful to have a slightly more general definition. Suppose

that (fn)
∞
n=1 is a sequence of functions on S, taking values in (X, d), and

that f is a function on S with values in X. Then we say that fn converges

uniformly on S to f as n → ∞ if supt∈S d(fn(t), f(t)) → 0 as n → ∞; in

other words, we do not restrict attention to functions bounded on S.

Let us give some easy but important results about uniform convergence.

We shall generalize them later.

Theorem 12.1.4 If (fn)
∞
n=1 is a sequence of continuous real-valued func-

tions on a subset A of R, and if fn converges uniformly on A to f as n → ∞,

then f is continuous.

Proof Suppose that t0 ∈ A and that ε > 0. There exists N ∈ N such that

|fn(t) − f(t)| < ε/3 for all t ∈ A and n ≥ N . Since fN is continuous at t0,

there exists δ > 0 such that if t ∈ A and |t− t0| < δ then |fN (t)− fN (t0)| <
ε/3. If t ∈ A and |t− t0| < δ then

|f(t)− f(t0)| ≤ |f(t)− fN (t)|+ |fN (t)− fN(t0)|+ |fN (t0)− f(t0)| < ε,

so that f is continuous at t0. �

Theorem 12.1.5 Suppose that (fn)
∞
n=1 is a sequence of Riemann inte-

grable functions on a bounded interval [a, b] and that fn → f uniformly.

Then f is Riemann integrable, and
∫ b
a fn(x) dx → ∫ b

a f(x) dx as n → ∞.

Proof We use the following criterion, established in Corollary 8.3.5 of

Volume I.
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Lemma 12.1.6 A bounded function f on an interval [a, b] is Rie-

mann integrable if and only if given ε > 0 there exists a dissection

D = {a = x0 < · · · < xk = b} of [a, b] and a partition G ∪ B of {1, . . . , k}
such that

Ω(f, Ij) ≤ ε for j ∈ G and
∑
j∈B

l(Ij) < ε,

where I1, . . . Ik are the intervals of the dissection, and

Ω(f, Ij) = sup
x,y∈Ij

|f(x)− f(y)|

is the oscillation of f on Ij .

First we show that f is bounded. There exists N ∈ N such that

d∞(f, fN ) < 1. If t ∈ [a, b] then

|f(t)| ≤ |f(t)− fN(t)|+ |fN (t)| ≤ 1 + sup
s∈[a,b]

|fN (s)|,

so that f is bounded.

Next we show that f is Riemann integrable. Suppose that ε > 0. There

exists M ∈ N such that d∞(f, fn) < ε/3 for n ≥ M . By the lemma, there

exists a dissection D = {a = x0 < · · · < xk = b} of [a, b] and a partition

G ∪B of {1, . . . , k} such that

Ω(fM , Ij) ≤ ε/3 for j ∈ G and
∑
j∈B

l(Ij) < ε,

where I1, . . . Ik are the intervals of the dissection. If j ∈ G and s, t ∈ Ij then

|f(s)− f(t)| ≤ |f(s)− fM(s)|+ |fM (s)− fM (t)|+ |fM (t)− f(t)| < ε,

so that Ω(f, Ij) ≤ ε. Thus f satisfies the conditions of the lemma and so it

is Riemann integrable. If n ≥ M then∣∣∣∣∫ b

a
f(t) dt−

∫ b

a
fn(t) dt

∣∣∣∣ ≤ ∫ b

a
|f(t)− fn(t)| dt ≤ ε(b− a),

so that
∫ b
a fn(t) dt →

∫ b
a f(t) dt as n → ∞. �

Corollary 12.1.7 Suppose that (fn)
∞
n=1 is a sequence of continuously dif-

ferentiable real-valued functions on an open interval (a, b) of R, and that the

sequence (f ′
n)

∞
n=1 of derivatives converges uniformly on (a, b) to g as n → ∞.

Suppose also that there exists c ∈ (a, b) such that fn(c) → l as n → ∞. Then
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there exists a continuously differentiable function f on (a, b) such that fn
converges uniformly on (a, b) to f as n → ∞, and such that f ′ = g.

Proof If t ∈ (a, b), let f(t) = l +
∫ t
c g(s) ds. Since g is continuous, by

Theorem 12.1.4, we can apply the fundamental theorem of calculus: f is

differentiable, with derivative g. Suppose that ε > 0. There exists N ∈ N

such that

|fn(c)− f(c)| < ε

2
and |f ′

n(s)− g(s)| < ε

2(b− a)

for n ≥ N and s ∈ (a, b). If t ∈ (a, b) then

f(t)− fn(t) = (f(c)− fn(c)) +

∫ t

c
(f ′

n(s)− g(s)) ds,

so that if n ≥ N then

|f(t)− fn(t)| ≤ |f(c)− fn(c)|+
∫ t

c
|f ′

n(s)− g(s)| ds

<
ε

2
+

|t− c|ε
2(b− a)

< ε,

so that fn converges uniformly on (a, b) to f as n → ∞. �

These proofs are rather easy. If we drop the continuity conditions, the

proofs are considerably harder.

Theorem 12.1.8 Suppose that (fn)
∞
n=1 is a sequence of differentiable real-

valued functions on a bounded open interval (a, b). Suppose that

(a) there exists c ∈ (a, b) such that fn(c) converges, to l say, as

n → ∞, and

(b) the sequence (f ′
n)

∞
n=1 of derivatives converges uniformly on (a, b) to a

function g.

Then there exists a continuous function f on (a, b) such that

(i) fn → f uniformly on (a, b), and

(ii) f is differentiable on (a, b), and f ′(x) = g(x) for all x ∈ (a, b).

Proof Suppose that ε > 0. There exists N ∈ N such that

|f ′
m(x)− f ′

n(x)| <
ε

4 + 2(b− a)
for x ∈ (a, b) and m,n ≥ N,

and |fm(c)− fn(c)| < ε/2 for m,n ≥ N . By the mean-value theorem,

|(fm(x)− fn(x))− (fm(c)− fn(c))| ≤ |x− c| sup
y∈[c,x]

|f ′
m(y)− f ′

n(y)| <
ε

2
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for m,n ≥ N , and so

|fm(x)− fn(x)| < ε for x ∈ (a, b) and m,n ≥ N.

Thus, for each x ∈ (a, b), (fm(x))∞m=1 is a Cauchy sequence, convergent to

f(x), say, and

|f(x)− fn(x)| ≤ ε for x ∈ (a, b) and n ≥ N :

fn → f uniformly on (a, b). Thus f is a continuous function on [a, b], by

Theorem 12.1.4.

Suppose that x ∈ (a, b), that h �= 0 and that x+ h ∈ (a, b). Let

dn(h) = fn(x+ h)− fn(x) for n ∈ N,

d(h) = f(x+ h)− f(x);

then dn(h) → d(h) as n → ∞. If m ≥ N then, by the mean-value theorem,

|dm(h)− dN (h)| ≤ |h| sup
y∈[x,x+h]

|f ′
m(y)− f ′

N (y)| < ε|h|/4,

so that

|(dm(h)− hf ′
m(x))− (dN (h)− hf ′

N (x))|
≤ |dm(h)− dN (h)|+ |h(f ′

m(x)− f ′
N (x))|

≤ ε|h|/4 + ε|h|/4 = ε|h|/2.
Letting m → ∞,

|(d(h) − hg(x)) − (dN (h)− hf ′
N (x))| ≤ ε|h|/2.

But there exists δ > 0 such that (x−δ, x+δ) ⊂ (a, b) and such that if |h| < δ

then

|dN (h)− hf ′
N (x)| = |fN (x+ h)− fN(x)− hf ′

N (x)| < ε|h|/2,
and so

|d(h) − hg(x)| = |f(x+ h)− f(x)− hg(x)| < ε|h| for |h| < δ.

Thus f is differentiable at x, with derivative g(x). �

In the case where d is a metric on a vector space E (and in particular,

when d is given by a norm), we can also consider the convergence of series.

Suppose that (an)
∞
n=0 is a sequence in E. Let sn =

∑n
j=0 aj , for n ∈ N, and

suppose that s ∈ E. Then the sum
∑∞

n=0 an converges to s if sn → s as

n → ∞.
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Exercises

12.1.1 Suppose that a set S is given the discrete metric d. Show that a

sequence (xn)
∞
n=1 converges to a point of S if and only if it is even-

tually constant; there exists N ∈ N such that xn = xN for all

n ≥ N .

12.1.2 Suppose that (xn)
∞
n=1 is a sequence in a metric space which has the

property that if (yk)
∞
k=1 = (xnk

)∞k=1 is a subsequence of (xn)
∞
n=1 then

there is a subsequence (zj)
∞
j=1 = (ykj

)∞j=1 of (yk)
∞
k=1 which converges

to x1. Show that xn → x1 as n → ∞.

12.1.3 Suppose that (xn)
∞
n=1 and (yn)

∞
n=1 are sequences in a normed space

and that α and β are scalars. Show that if
∑∞

n=1 xn converges to

s and
∑∞

n=1 yn converges to t then
∑∞

n=1(αxn + βyn) converges to

αs+ βt.

12.1.4 Suppose that
∑∞

n=1 xn is a convergent series in a normed space.

Show that ‖xn‖ → 0 as n → ∞.

12.1.5 Give an example of a sequence (fn)
∞
n=1 of continuous real-valued

functions on [0, 1] which converges pointwise to a continuous

function f on [0, 1], but which does not converge uniformly to f .

12.1.6 Give an example of a sequence (fn)
∞
n=1 of continuous real-valued

functions on [0, 1] which decreases pointwise to a bounded function

f on [0, 1], but which does not converge uniformly to f .

12.1.7 Give an example of a sequence (fn)
∞
n=1 of bounded continuous real-

valued functions on [0,∞) which decreases pointwise to a bounded

continuous function f on [0,∞), but which does not converge

uniformly to f .

12.1.8 Let h be the hat function:

h(t) =

⎧⎨⎩
2t if 0 ≤ t ≤ 1

2 ,

2− 2t if 1
2 ≤ t ≤ 1,

0 otherwise.

Let

hn(t) =

n∑
k=1

1

k

⎛⎝2k−1∑
j=1

h

(
2n

(
t− 2j − 1

2k

))⎞⎠ .

Sketch h1, h2 and h3. Show that hn converges pointwise to 0,

but that there exists no proper interval [c, d] in [0, 1] on which it

converges uniformly to 0.

12.1.9 Formulate versions of Theorems 12.1.8 and 12.1.5 for infinite sums

of functions.
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12.1.10 Show that Theorem 12.1.5 does not hold for improper integrals over

[0,∞).

12.2 Convergence and continuity of mappings

Suppose that A is a subset of a metric space (X, d). An element b of X is

called a limit point or accumulation point of A if whenever ε > 0 there exists

a ∈ A (which may depend upon ε) with 0 < d(a, b) < ε. Thus b is a limit

point of A if there are points of A, different from b, which are arbitrarily

close to b. An element a of A is an isolated point of A if it is not a limit

point of A; that is, there exists ε > 0 such that Nε(a) ∩A = {a}.
If a ∈ X and ε > 0 then the punctured ε-neighbourhood N∗

ε (a) of a is

defined as

N∗
ε (a) = {x ∈ X : 0 < d(x, a) < ε} = Nε(a) \ {a}.

Thus b is a limit point of A if and only if N∗
ε (b) ∩A �= ∅, for each ε > 0.

Suppose that (X, d) and (Y, ρ) are metric spaces and that f is a mapping

from a subset A of X into Y . Suppose that b is a limit point of A (which may

or may not be an element of A) and that l ∈ Y . We say that f(x) converges

to a limit l, or tends to l, as x tends to b if whenever ε > 0 there exists δ > 0

(which usually depends on ε) such that if x ∈ A and 0 < d(x, b) < δ, then

ρ(f(x), l) < ε. That is to say, as x gets close to b, f(x) gets close to l. Note

that in the case where b ∈ A, we do not consider the value of f(b), but only

the values of f at points nearby. We say that l is the limit of f as x tends

to b, write ‘f(x) → l as x → b’ and write l = limx→b f(x).

We can express the convergence of f in terms of punctured ε-neigh-

bourhoods; f(x) → l as x → b if and only if for each ε > 0 there exists δ > 0

such that if x ∈ A∩N∗
δ (b) then f(x) ∈ Nε(l) – that is, f(N∗

δ (b)∩A) ⊆ Nε(l).

Proposition 12.2.1 Suppose that f is a mapping from a subset A of a

metric space (X, d) into a metric space (Y, ρ), and that b is a limit point of A.

(i) If f(x) → l as x → b and f(x) → m as x → b, then l = m.

(ii) f(x) → l as x → b if and only if whenever (an)
∞
n=0 is a sequence in

A \ {b} which tends to b as n → ∞ then f(an) → l as n → ∞.

Proof (i) Suppose that ε > 0. There exists δ > 0 such that if

x ∈ N∗
δ (b) ∩ A then ρ(f(x), l) < ε and ρ(f(x),m) < ε. Since N∗

δ (b) ∩ A is

not empty, there exists x0 ∈ N∗
δ (b) ∩A. Then, using the triangle inequality,

ρ(l,m) ≤ ρ(l, f(x0)) + ρ(f(x0),m) < ε+ ε = 2ε.

Since this holds for all ε > 0, ρ(l,m) = 0 and l = m.
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(ii) Suppose that f(x) → l as x → b and that (an)
∞
n=0 is a sequence in

A \ {b} which tends to b as n → ∞. Given ε > 0, there exists δ > 0 such

that if x ∈ N∗
δ (b) ∩ A then ρ(f(x), l) < ε. There then exists n0 such that

d(an, b) < δ for n ≥ n0. Then ρ(f(an), l) < ε for n ≥ n0, so that f(an) → l

as n → ∞.

Suppose that f(x) does not converge to l as x → b. Then there exists

ε > 0 for which we can find no suitable δ > 0. Thus for each n ∈ N there

exists xn ∈ N∗
1/n(b) ∩ A with ρ(f(xn), l) ≥ ε. Then xn → b as n → ∞ and

f(xn) does not converge to l as n → ∞. �

Suppose now that f is a mapping from a metric space (X, d) into a metric

space (Y, ρ), and that a ∈ X. We say that f is continuous at a if whenever

ε > 0 there exists δ > 0 (which usually depends on ε) such that if d(x, a) < δ

then ρ(f(x), f(a)) < ε. That is to say, as x gets close to a, f(x) gets close

to f(a). If f is not continuous at a, we say that f has a discontinuity at a.

We can express the continuity of f in terms of ε-neighbourhoods; f is

continuous at a if and only if for each ε > 0 there exists δ > 0 such that

f(Nδ(x)) ⊆ Nε(f(a)).

Compare this definition with the definition of convergence. First, we only

consider functions defined on X. This is not a real restriction; suppose that

f is a mapping from a subset A of a metric space (X, d) into a metric space

(Y, ρ), and that a ∈ A. We say that f is continuous on A at a if f : A → Y

is continuous at a when A is given the subspace metric. Secondly, a need

not be a limit point of X. If it is a limit point, then f is continuous at a if

and only if f(x) → f(a) as x → a. If a is not a limit point, then there exists

δ > 0 such that Nδ(a) = {a}, so that if x ∈ Nδ(a) then f(x) = f(a), and f

is continuous at a.

We have the following immediate consequence of Proposition 12.2.1.

Proposition 12.2.2 Suppose that f is a mapping from a metric space

(X, d) into a metric space (Y, ρ), and that a ∈ X. Then f is continuous at

a if and only if whenever (an)
∞
n=0 is a sequence in X which tends to a as

n → ∞ then f(an) → f(a) as n → ∞.

Suppose that f is a real- or complex-valued function on a metric space

(X, d). Unless it is explicitly stated otherwise, when we consider convergence

and continuity properties of f , we give R or C its usual metric.

Theorem 12.2.3 Suppose that f and g are functions on a metric space

(X, d) taking values in a normed space (E, ‖.‖E), that λ is a scalar-valued

function on (X, d) and that a ∈ X.
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(i) If f is continuous at a then there exists δ > 0 such that f is bounded

on Nδ(a).

(ii) If f(a) = 0, f is continuous at a, and λ(x) is bounded on Nδ(a) for

some δ > 0, then λf is continuous at a.

(iii) If f and g are continuous at a then f + g is continuous at a.

(iv) If f and λ are continuous at a then λf is continuous at a.

(v) If λ(x) �= 0 for x ∈ X, and if λ is continuous at a, then 1/λ is

continuous at a.

Proof These results correspond closely to results for functions of a real

variable (Volume I, Theorem 6.3.1). We prove (i), (iv) and (v), and leave

the others as exercises for the reader.

(i) There exists δ > 0 such that ‖f(x)− f(a)‖E ≤ 1 for x ∈ Nδ(a). Then

‖f(x)‖E ≤ ‖f(x)− f(a)‖E + ‖f(a)‖E ≤ 1 + ‖f(a)‖E , for x ∈ Nδ(a).

(iv) Suppose that ε > 0. Let M = max(‖f(a)‖E , |λ(a)|), and let

η = min(ε/(2M + 1), 1). There exists δ > 0 such that if x ∈ Nδ(a)

then ‖(f(x)− f(a)‖E ≤ η and |λ(x) − λ(a)| < η. If x ∈ Nδ(a), then

‖f(x)‖E ≤ ‖f(x)− f(a)‖E + ‖f(a)‖E ≤ η +M , so that

‖λ(x)f(x)− λ(a)f(a)‖E = ‖(λ(x)− λ(a))f(x) + λ(a)(f(x)− f(a))‖E
≤ |λ(x)− λ(a)|. ‖f(x)‖E + |λ(a)|. ‖f(x)− f(a)‖E
≤ η(η +M) +Mη ≤ ε.

(v) Suppose that ε > 0. Let η = |λ(a)|2ε/2. There exists δ > 0 such

that |λ(x) − λ(a)| < max(|λ(a)|/2, η) for x ∈ Nδ(a). If x ∈ Nδ(a), then

|λ(x)| ≥ |λ(a)|/2, and so∣∣∣∣ 1

λ(x)
− 1

λ(a)

∣∣∣∣ = ∣∣∣∣λ(a)− λ(x)

λ(x)λ(a)

∣∣∣∣ ≤ 2η

|λ(a)|2 = ε.

�

Proposition 12.2.4 (The sandwich principle) Suppose that f , g and h are

real-valued functions on a metric space (X, d), and that there exists η > 0

such that f(x) ≤ g(x) ≤ h(x) for all x ∈ Nη(a), and that f(a) = g(a) =

h(a). If f and h are continuous at a, then so is g.
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Proof This follows easily from the fact that

|g(x)− g(a)| ≤ max(|f(x)− f(a)|, |h(x) − h(a)|).
�

Continuity behaves well under composition.

Theorem 12.2.5 Suppose that f is a mapping from a metric space (X, d)

into a metric space (Y, ρ) and that g is a mapping from Y into a metric

space (Z, σ). If f is continuous at a ∈ A and g is continuous at f(a), then

g ◦ f is continuous at a.

Proof Suppose that ε > 0. Then there exists η > 0 such that

g(Nη(f(a))) ⊆ Nε(g(f(a))).

Similarly there exists δ > 0 such that f(Nδ(a)) ⊆ Nη(f(a)). Then

g(f(Nδ(a))) ⊆ g(Nη(f(a))) ⊆ Nε(g(f(a))). �

This proof is almost trivial: the result has great theoretical importance

and practical usefulness.

Continuity is a local phenomenon. Nevertheless, there are many important

cases where f is continuous at every point of X. In this case we say that f

is continuous on X, or, more simply, that f is continuous. Let us give some

easy examples.

1. An isometry from a metric space (X, d) into a metric space (Y, ρ) is

continuous on X: given ε > 0, take δ = ε.

2. In particular, if A is a subset of a metric space (X, d) and A is given the

subspace metric, then the inclusion mapping i : A → X is continuous. If

f : (X, d) → (Y, ρ) is continuous, then so is the restriction f ◦ i : A → Y

of f to A.

3. More generally, if f is a mapping from a metric space (X, d) to a metric

space (Y, ρ) and if x ∈ X then f is a Lipschitz mapping, with constant K,

at x if ρ(f(x), f(x′)) ≤ Kd(x, x′) for all x′ ∈ X. If there exists K > 0 such

that ρ(f(x), f(x′)) ≤ Kd(x, x′), for all x, x′ ∈ X, then f is a Lipschitz

mapping on X, with constant K. A Lipschitz mapping at x is continuous

at x (given ε > 0, take δ = ε/K).

4. If f is a constant mapping from a metric space (X, d) into a metric space

(Y, ρ) – that is, f(x) = f(y) for any x, y ∈ X – then f is continuous:

given ε > 0, any δ > 0 will do.

5. If d is the discrete metric on a set X then every point of X is isolated,

and any mapping f : (X, d) → (Y, ρ) is continuous.
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6. Suppose that A is a non-empty subset of a metric space (X, d). If x ∈ X,

let d(x,A) = inf{d(x, a) : a ∈ A}. The mapping x → d(x,A) is a mapping

from X to R. We show that it is a Lipschitz mapping with constant 1,

and is therefore continuous. Suppose that x, y ∈ X. If ε > 0, there exists

a ∈ A with d(x, a) < d(x,A) + ε. Then

d(y,A) ≤ d(y, a) ≤ d(y, x) + d(x, a) < d(y, x) + d(x,A) + ε.

Since ε is arbitrary, d(y,A)−d(x,A) ≤ d(y, x). In the same way, d(x,A)−
d(y,A) ≤ d(x, y) = d(y, x), and so |d(x,A) − d(y,A)| ≤ d(x, y).

7. In particular, if (E, ‖.‖) is a normed space, then the mapping x → ‖x‖ is

a Lipschitz mapping from E to R with constant 1. For ‖x‖ = d(x, {0}).
8. The function tan is a continuous bijection from (−π/2, π/2) onto R, when

both are given the usual metric, and the inverse mapping tan−1 is also

continuous. A bijective continuous mapping f from a metric space (X, d)

onto a metric space (Y, ρ) whose inverse is also continuous is called a

homeomorphism.

9. We can give Rd the Euclidean metric d2. We can also consider Rd as

B({1, 2, . . . , d}), and give it the uniform metric d∞. Then

d∞(x, y) = max
1≤j≤d

|xj − yj| ≤
⎛⎝ d∑

j=1

|xj − yj|2
⎞⎠1/2

= d2(x, y) ≤ d1/2d∞(x, y),

so that the identity mapping i : (Rd, d2) → (Rd, d∞) is a homeomor-

phism. If ρ1 and ρ2 are two metrics on a set X for which the identity

mapping i : (X, ρ1) → (X, ρ2) is a homeomorphism, then the metrics are

said to be equivalent. If, as in the present case, i and i−1 are Lipschitz

mappings, then the metrics are said to be Lipschitz equivalent.

10. Let C[0, 1] be the vector space of (real or) complex continuous functions

on [0, 1]. We can give C[0, 1] the uniform metric: d∞(f, g) = sup{|f(x)−
g(x)| : x ∈ [0, 1]}. We can also give it the metric defined by the inner

product: d2(f, g) = (
∫ 1
0 |f(x) − g(x)|2, dx)1/2. Since d2(f, g) ≤ d∞(f, g),

the identity mapping i : (C[0, 1], d∞) → (C[0, 1], d2) is a Lipschitz

mapping, with constant 1. On the other hand, if we set fn(x) = xn,

then ‖fn‖2 = d2(fn, 0) = 1/(2n + 1)1/2, so that d2(fn, 0) → 0 as

n → ∞, while ‖fn‖∞ = d∞(fn, 0) = 1, so that fn does not con-

verge to 0 in the uniform metric as n → ∞. Thus the inverse mapping

i−1 : (C[0, 1], d2) → (C[0, 1], d∞) is not continuous.

We have the following generalization of Theorem 12.1.4.
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Theorem 12.2.6 If (fn)
∞
n=1 is a sequence of continuous functions from a

metric space (X, d) into a metric space (Y, ρ) and if fn converges uniformly

on X to f as n → ∞, then f is continuous.

Proof Verify that a proof is given by making obvious notational changes

to the proof of Theorem 12.1.4. �

Exercises

12.2.1 Show that any two metrics on a finite set are Lipschitz equivalent.

12.2.2 Let (N, ρ) be the metric space defined in Example 11.1.9. Suppose

that (xn)
∞
n=1 is a sequence in a metric space (X, d), and that x ∈ X.

Set f(n) = xn, f(+∞) = x. Show that xn → x as n → ∞ if and only

if f : (N, ρ) → (X, d) is continuous.

12.2.3 Suppose that (X, d), (Y, ρ) and (Z, σ) are metric spaces, that f is

a continuous surjective mapping of (X, d) onto (Y, ρ) and that g :

(Y, ρ) → (Z, σ) is continuous. Show that if g ◦ f is a homeomorphism

of (X, d) onto (Z, σ) then f is a homeomorphism of (X, d) onto (Y, ρ)

and g is a homeomorphism of (Y, ρ) onto (Z, σ).

12.2.4 Show that the punctured unit sphere {x∈Rd : ‖x‖ =1} \
{(1, 0, . . . , 0)} of Rd, with its usual metric, is homeomorphic to Rd−1.

12.2.5 Give an example of three metric subspaces A, B and C of R such

that A ⊂ B ⊂ C, A and C are homeomorphic, and B and C are not

homeomorphic.

12.3 The topology of a metric space

This section contains many definitions: we start with a few.

Suppose that A is a subset of a metric space (X, d). Recall that a point

b ∈ X is a limit point, or accumulation point, of A if and only if N∗
ε (b)∩A �=

∅, for each ε > 0. We now make another definition, similar enough to be

confusing. An element b of X is called a closure point of A if Nε(b)∩A �= ∅,
for each ε > 0. That is to say, whenever ε > 0 there exists a ∈ A (which

may depend upon ε) with d(b, a) < ε. Thus b is a closure point of A if there

are points of A arbitrarily close to b. If b ∈ A, then b is a closure point of A,

since d(b, b) = 0 < ε for all ε > 0.

The set of limit points of A is called the derived set of A, and is denoted

by A′, and the set of closure points of A is called the closure of A, and is

denoted by A. A set A is perfect if A = A′ and is closed if A = A.

An element a of A is an isolated point of A if there exists ε > 0 such that

Nε(a) ∩ A = {a}.
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Proposition 12.3.1 Suppose that A is a subset of a metric space (X, d).

Let i(A) be the set of isolated points of A. Then A′ and i(A) are disjoint,

and A = A′ ∪ i(A).

Proof This follows immediately from the definitions. �

The set A is a subset of A, since each point of A is a closure point of A,

but any isolated point of A is not in A′. A set is perfect if and only if it is

closed, and has no isolated points.

We can characterize limit points and closure points of A in terms of

convergent sequences.

Proposition 12.3.2 Suppose that A is a subset of a metric space (X, d)

and that b ∈ X.

(i) b is a limit point of A if and only if there exists a sequence (aj)
∞
j=1 in

A \ {b} such that aj → b as j → ∞.

(ii) b is a closure point of A if and only if there exists a sequence (aj)
∞
j=1

in A such that aj → b as j → ∞.

Proof (i) Suppose that there exists a sequence (aj)
∞
j=0 in A\{b} such that

aj → b as j → ∞. Suppose that ε > 0. There exists j0 such that d(b, aj) < ε

for j ≥ j0. Then aj0 ∈ N∗
ε (b). Conversely, if b is a limit point of A then for

each j ∈ N there exists aj ∈ A \ {b} with 0 < d(b, aj) < 1/j. Then aj → b

as j → ∞.

(ii) The proof is exactly similar. �

Proposition 12.3.2 (ii) says that A is closed if and only if A is closed under

taking limits.

The closure of a bounded set is bounded.

Proposition 12.3.3 If A is a non-empty bounded subset of a metric space

(X, d), then diamA = diamA.

Proof Certainly diamA ≥ diamA. Suppose that ε > 0. If x, y ∈ A there

exist a, b ∈ A with d(x, a) < ε/2 and d(y, b) < ε/2. Then, by the triangle

inequality,

d(x, y) ≤ d(x, a) + d(a, b) + d(b, y) ≤ d(a, b) + ε ≤ diamA+ ε,

so that diamA ≤ diamA+ ε. Since ε is arbitrary, the result follows. �

A subset A of a metric space (X, d) is dense in X if A = X. For example,

the rationals are dense in R.
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Proposition 12.3.4 Suppose that A and B are subsets of X.

(i) If A ⊆ B then A ⊆ B.

(ii) A is closed.

(iii) A is the smallest closed set containing A: if C is closed and A ⊆ C

then A ⊆ C.

Proof (i) follows trivially from the definition of closure.

(ii) Suppose that b is a closure point of A and suppose that ε > 0. Then

there exists c ∈ A such that d(b, c) < ε/2, and there exists a ∈ A with

d(c, a) < ε/2. Thus d(b, a) < ε, by the triangle inequality, and so b ∈ A.

(iii) By (i), A ⊆ C = C. �

Suppose that Y is a metric subspace of a metric space (X, d). How are

the closed subsets of Y related to the closed subsets of X?

Theorem 12.3.5 Suppose that Y is a metric subspace of a metric space

(X, d) and that A ⊆ Y . Let A
Y

denote the closure of A in Y , and A
X

the

closure in X.

(i) A
Y
= A

X ∩ Y .

(ii) A is closed in Y if and only if there exists a closed set B in X such

that A = B ∩ Y .

Proof (i) Certainly A
Y ⊆ A

X
, so that A

Y ⊆ A
X ∩ Y . On the other hand,

if y ∈ A
X ∩ Y there exists a sequence (an)

∞
n=1 in A such that an → y as

n → ∞. Thus y ∈ A
Y
.

(ii) If A is closed in Y , then A = A
Y

= A
X ∩ Y , so that we can take

B = A
X
. Conversely if B is closed in X and A = B ∩ Y , then A

X ⊆ B, so

that A
Y
= A

X ∩ Y ⊆ B ∩ Y = A, and A is closed in Y . �

Here are some fundamental properties of the collection of closed subsets

of a metric space (X, d).

Proposition 12.3.6 (i) The empty set ∅ and X are closed.

(ii) If A is a set of closed subsets of X then ∩A∈AA is closed.

(iii) If {A1, . . . , An} is a finite set of closed subsets of X then ∪n
j=1Aj is

closed.

Proof (i) The empty set is closed, since there is nothing to go wrong, and

X is trivially closed.

(ii) Suppose that b is a closure point of ∩A∈AA, and that A ∈ A. If ε > 0

then there exists a ∈ ∩A∈AA with d(b, a) < ε. But then a ∈ A. Since this

holds for all ε > 0, b ∈ A = A. Since this holds for all A ∈ A, b ∈ ∩A∈AA,
and so ∩A∈AA is closed.
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(iii) Suppose that b �∈ ∪n
j=1Aj . Then for each j, b �∈ Aj = Aj , and

so there exists εj > 0 such that if d(b, c) < εj then c �∈ Aj . Let

ε = min{εj : 1 ≤ j ≤ n}. Then ε > 0 and if d(b, c) < ε then c �∈ ∪n
j=1Aj.

Thus b is not a closure point of ∪n
j=1Aj , and so ∪n

j=1Aj is closed. �

Here is an important example.

Theorem 12.3.7 Suppose that (X, d) and (Y, ρ) are metric spaces. Let

Cb(Y,X) denote the set of all bounded continuous mappings of Y into X.

Then Cb(Y,X) is a closed subset of the space BX(Y ) of all bounded mappings

of Y into X, when BX(Y ) is given the uniform metric d∞.

Proof If f is in the closure of Cb(Y,X), then, by Proposition 12.3.2 there

exists a sequence (fn)
∞
n=1 in Cb(Y,X) which converges uniformly to f . It

then follows from Theorem 12.2.6 that f is continuous. �

We now introduce some more definitions. Suppose that A is a subset of a

metric space (X, d).

• An element a of A is an interior point of A if there exists ε > 0 such that

Nε(a) ⊆ A. In other words, all the points sufficiently close to a are in A;

we can move a little way from a without leaving A.

• The interior A◦ of A is the set of interior points of A.

• A subset U of X is open if U = U◦. In other words U is open if and only

if whenever u ∈ U there exists ε > 0 such that if d(u, v) < ε then v ∈ U .

The collection of open subsets of (X, d) is called the topology of (X, d).

Proposition 12.3.8 If (X, d) is a metric space, if x ∈ X and if ε > 0

then the open ε-neighbourhood Nε(a) is open.

Proof Suppose that y ∈ Nε(x), so that d(y, x) < ε. Let δ = ε− d(y, x). If

z ∈ Nδ(y) then, by the triangle inequality,

d(z, x) ≤ d(z, y) + d(y, x) < δ + d(y, x) = ε,

so that Nδ(y) ⊆ Nε(x). �

If (E, ‖.‖) is a normed space then the ε-neighbourhood

Nε(0) = {x ∈ E : ‖x‖ < ε}

is called the open ε-ball; in particular, N1(0) = {x ∈ E : ‖x‖ < 1} is called

the open unit ball. The scaling property of the norm implies that Nε(0) =

εN1(0). Although a normed space has plenty of closed linear subspaces, it

has only one open linear subspace.
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Proposition 12.3.9 If F is an open linear subspace of a normed space

(E, ‖.‖) then F = E.

Proof Since F is a linear subspace, 0 ∈ F . Since F is open, there exists

ε > 0 such that Nε(0) ⊆ F . Suppose that x ∈ E \ {0}; let y = εx/(‖x‖+ 1).

Then 0 < ‖y‖ < ε, so that y ∈ Nε(0), and so y ∈ F . Since F is a linear

subspace of E, x = (‖x‖ + 1)y/ε ∈ F . This is true for all x ∈ E, so that

F = E. �

‘Interior’ and ‘closure’, ‘open’ and ‘closed’, are closely related, as the next

proposition shows.

Proposition 12.3.10 Suppose that A and B are subsets of a metric space

(X, d), and that C(A) = X \ A is the complement of A in X.

(i) If A ⊆ B then A◦ ⊆ B◦.
(ii) C(A◦) = C(A).

(iii) A is open if and only if C(A) is closed.

(iv) A◦ is open.

(v) A◦ is the largest open set contained in A: if U is open and U ⊆ A

then U ⊆ A◦.

Proof (i) follows directly from the definition.

(ii) If b �∈ A◦ then Nε(b) ∩ C(A) �= ∅ for all ε > 0, and so b ∈ C(A).

Conversely, if b ∈ C(A) then Nε(b) ∩ C(A) �= ∅ for all ε > 0, and so b �∈ A◦.
(iii) If A is open then C(A) = C(A◦) = C(A), by (ii), and so C(A) is

closed. If C(A) is closed then C(A◦) = C(A) = C(A), so that A◦ = A.

(iv) C(A◦) = C(A) is closed, so that A◦ is open, by (iii).

(v) By (i), U = U◦ ⊆ A◦. �

Corollary 12.3.11 Suppose that Y is a metric subspace of a metric space

(X, d) and that A ⊆ Y . Then A is open in Y if and only if there exists an

open set B in X such that A = B ∩ Y .

Proof Take complements. �

Corollary 12.3.12 (i) The empty set ∅ and X are open.

(ii) If A is a set of open subsets of X then ∪A∈AA is open.

(iii) If {A1, . . . , An} is a finite set of open subsets of X then ∩n
j=1Aj is

open.

Proof Take complements. �

Two final definitions: if A is a subset of a metric space (X, d) then the

frontier or boundary ∂A of A is the set A \A◦. Since ∂A = A∩C(A), ∂A is
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closed. x ∈ ∂A if and only if every open ε-neighbourhood of x contains an

element of A and an element of C(A).

A metric space is separable if it has a countable dense subset. Thus R,

with its usual metric, is a separable metric space.

There are interesting metric spaces which are not separable:

Proposition 12.3.13 If (X, d) is a metric space with at least two points

and if S is an infinite set, then the space BX(S) of bounded mappings from

S → X, with the uniform metric, is not separable.

Proof We use the fact that P (S) is uncountable; this was proved in Vol-

ume I, Corollary 2.3.10. Suppose that x0 and x1 are distinct points of X, and

let d = d(x0, x1). For each subset A of X, define the mapping fA : S → X

by setting

fA(s) = x1 if s ∈ A and fA(s) = x0 if x �∈ A.

Then fA is bounded. If A and B are distinct subsets of S, then there exists

s ∈ S such that s is in exactly one of A and B, and so d∞(fA, fB) = d.

Thus Nd/2(fA)∩Nd/2(fB) = ∅. Suppose that G is a dense subset of BX(S).

Let H = {g ∈ G : g ∈ Nd/2(fA) for some A ∈ P (X)}. If g ∈ H, then there

exists a unique A ∈ P (S) for which g ∈ Nd/2(fA): let this be c(g). Then c

is a mapping of H into P (S). It is surjective, since if A ∈ P (S) there exists

g ∈ G with d∞(g, fA) < d/2, by the density of G, so that c(g) = A. Since

P (S) is uncountable, so is H, and since H ⊆ G, G is uncountable. Thus

BX(S) is not separable. �

Exercises

12.3.1 Show that a finite subset of a metric space (X, d) is closed.

12.3.2 Suppose that (aj)
∞
j=1 is a sequence in a metric space (X, d) which

converges to a. Show that the set S = {aj : j ∈ N} ∪ {a} is closed.

12.3.3 Give an example of an open ε-neighbourhoodNε(x) in a metric space

(X, d) whose closure is not equal to Mε(x) = {y ∈ X : d(y, x) ≤ ε}.
12.3.4 Let (E, ‖.‖) be a normed space. Let U = {x ∈ E : ‖x‖ < 1}. Show

that U = {x ∈ E : ‖x‖ ≤ 1}.
12.3.5 Let D = {(i, j) : 1 ≤ i ≤ j ≤ d}. A real quadratic form on Rd is a

function of the form qa(x) =
∑

(i,j)∈D aijxixj, where a ∈ RD. It is

positive definite if qa(x) > 0 for all x �= 0. Show that

{a ∈ RD : qa is positive definite}

is open in RD.
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12.3.6 Give an example of two subsets A and B of R, for which there exist

continuous bijections f : A → B and g : B → A, but which are not

homeomorphic.

12.3.7 Show that the interior of the boundary of a subset of a metric space

is empty.

12.3.8 Suppose that (X, d) is a metric space and that a ∈ X. Show that

the following are equivalent

(i) a is an isolated point of (X, d).

(ii) {a} is open.

(iii) Any real-valued function on X is continuous at a.

(iv) If xn → a as n → ∞ then there exists N ∈ N such that xn = a

for n ≥ N .

12.3.9 Suppose that A is a subset of a normed space (E, ‖.‖), that x ∈ E

and that λ is a scalar. Show that x+A = x+A, that λA = λA and

that (x+A)◦ = x+A◦. Under what circumstances is (λA)◦ = λA◦?
Show that A and A◦ are convex if A is convex, and that −A = −A

and (−A)◦ = −A◦.
12.3.10 A collection B of open subsets of a metric space (X, d) is a base or

basis for the topology if every open subset of X is a union of sets

in B. Show that the collection of open intervals of R with rational

endpoints is a basis for the usual topology of R.

12.3.11 Suppose that (X, d) is a perfect metric space, and that S is a dense

subset of X. Show that if F is a finite subset of S then S \F is dense

in X. Show (using the axiom of dependent choice) that there exists

an infinite subset J of S such that S \ J is dense in X.

12.3.12 Show that a separable metric space has a countable basis for the

topology.

12.3.13 Show that a metric space with a countable basis for the topology is

separable.

12.3.14 Show that a metric subspace of a separable metric space is

separable.

12.3.15 Show that a set S, with the discrete metric, has a countable basis

for the topology if and only if it is countable.

12.3.16 Use the three preceding exercises to give another proof that if X is

infinite then B(X), with the uniform metric, is not separable.

12.3.17 Let c0 = {x ∈ l∞ : xn → 0 as n → ∞}. Show that c0 is a separable

closed linear subspace of l∞.

12.3.18 Suppose that U is a set of open subsets of a separable metric space,

any two of which are disjoint. Show that U is countable.

12.3.19 Suppose that f is a real-valued function on a metric space (X, d).

f has a strict local maximum at x if there exists ε > 0 such that if
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0 < d(x, y) < ε then f(y) < f(x). Show that if (X, d) is separa-

ble then the set of strict local maxima is countable. (Consider a

countable basis B for the topology, and consider the sets of B on

which f is bounded above, and attains its supremum at a unique

point).

12.3.20 Suppose that f is a mapping from a metric space (X, d) into a metric

space (Y, ρ). f has a removable discontinuity at a if a is a limit point

of X, if l = limx→a f(x) exists, and l �= f(a). Show that if (X, d) is

separable then f has only countably many removable discontinuities.

12.3.21 A metric d, which like the p-adic metric, satisfies

d(x, z) ≤ max(d(x, y), d(y, z)) for x, y, z ∈ X,

is called an ultrametric. Verify that the p-adic metric on Q is an

ultrametric.

12.3.22 Show that if one considers the three distances between three points

of an ultrametric space then either they are all equal or two are

equal, and greater than the third.

12.3.23 Show that an open ε-neighbourhood in an ultrametric space is

closed.

12.3.24 Suppose that Nε(x) is an open ε-neighbourhood in an ultrametric

space and that y ∈ Nε(x). Show that Nε(x) = Nε(y).

12.4 Topological properties of metric spaces

Recall that the topology of a metric space is the collection of open subsets.

Many, but by no means all, of the properties of a metric space (X, d) and of

mappings from (X, d) into a metric space (Y, ρ), can be defined in terms of

the topologies of (X, d) and (Y, ρ). These are called topological properties.

Thus

• convergent sequences;

• closure point, closure, closed set, dense set, separability;

• interior, frontier or boundary;

• limit point, isolated point, derived set, perfect set

are all topological notions. On the other hand, the notion of an

ε-neighbourhood is not a topological one. But if we define a neighbourhood

of a point x of a metric space (X, d) to be a set which contains Nε(x) for

some ε > 0, then the notion of neighbourhood is a topological one, since N

is a neighbourhood of x if and only if x is in the interior of N . A collection

N of subsets of X is called a base of neighbourhoods of x if each N ∈ N is

a neighbourhoood of x, and if each neighbourhood of x contains an element
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of N . Thus the ε-neighbourhoods of x form a base of neighbourhoods of x,

and the set {N1/n(x) : n ∈ N} is a countable base of neighbourhoods of

x. Let Mε(x) = {y ∈ X : d(y, x) ≤ ε}. Then Mε(x) is a neighbourhood of

x, since Nε(x) ⊆ Mε(x). The set Mε(x) is closed, and is called the closed

ε-neighbourhood of x. If 0 < η < ε then Mη(x) ⊆ Nε(x), so that the set

{Mε(x) : ε > 0} of closed neighbourhoods is also a base of neighbourhoods

of x.

Continuity is also a topological property. Let us make this explicit.

Theorem 12.4.1 Suppose that f is a mapping from a metric space (X, d)

into a metric space (Y, ρ) and that a ∈ X.

(a) f is continuous at a if and only if whenever N is a neighbourhood of

f(a) in Y then f−1(N) is a neighbourhood of a.

(b) The following are equivalent.

(i) f is continuous on X.

(ii) If U is an open subset of Y then f−1(U) is open in X.

(iii) If F is a closed subset of Y then f−1(F ) is closed in X.

(iv) If A is a subset of X then f(A) ⊆ f(A).

Proof (a) Suppose that f is continuous at a and thatN is a neighbourhood

of f(a). Then there exists ε > 0 such that Nε(f(a)) ⊆ N . Since f is contin-

uous at a there exists δ > 0 such that if d(x, a) < δ then ρ(f(x), f(a)) < ε.

This says thatNδ(a) ⊆ f−1(Nε(f(a))), so thatNδ(a) ⊆ f−1(N), and f−1(N)

is a neighbourhood of a.

Conversely, suppose the condition is satisfied. If ε > 0 then Nε(f(a)) is a

neighbourhood of f(a), and so f−1(Nε(f(a))) is a neighbourhood of a. Thus

there exists δ > 0 such that Nδ(a) ⊆ f−1(Nε(f(a))). Being interpreted, this

says that if d(x, a) < δ then ρ(f(x), f(a) < ε.

(b) Suppose that f is continuous on X, that U is open in Y and that

x ∈ f−1(U). Then f(x) ∈ U . Since U is open, there exists ε > 0 such that

Nε(f(x)) ⊆ U . Since f is continuous at x, there exists δ > 0 such that if

d(x′, x) < δ then ρ(f(x′), f(x)) < ε. Thus Nδ(x) ⊆ f−1(U), and so x is an

interior point of f−1(U). Since this holds for all x ∈ f−1(U), f−1(U) is open:

(i) implies (ii).

Conversely, suppose that (ii) holds. Suppose that a ∈ X and that N is

a neighbourhood of f(a). Then there exists ε > 0 such that Nε(f(a)) ⊆
N . Then a ∈ f−1(Nε(f(a))) ⊆ f−1(N), and f−1(Nε(f(a))) is open, by

hypothesis, so that f−1(N) is a neighbourhood of a. Thus f is continuous

at a. Since this is true for all a ∈ X, (ii) implies (i).

Since a set is open if and only if its complement is closed, and since

f−1(C(B)) = C(f−1(B)), (ii) and (iii) are equivalent.
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Suppose that (iii) holds, and that A ⊆ X. Then f(A) is closed in Y , and

so f−1(f(A)) is closed in X. But A ⊆ f−1(f(A)), and A is the smallest

closed set containing A, and so A ⊆ f−1(f(A)); that is, f(A) ⊆ f(A). Thus

(iii) implies (iv).

Suppose that (iv) holds, and that B is closed in Y . By hypothesis,

f(f−1(B)) ⊆ f(f−1(B)). But f(f−1(B)) ⊆ B, so that f(f−1(B)) ⊆ B = B.

Thus f(f−1(B)) ⊆ B, and so f−1(B) ⊆ f−1(B). Consequently f−1(B) =

f−1(B): f−1(B) is closed. Thus (iv) implies (iii). �

Corollary 12.4.2 Suppose that f is continuous on X and that A is a dense

subset of X. Then f(A) is dense in the metric subspace f(X) of (Y, ρ). In

particular, if X is separable, then so is f(X).

Proof For f(X) = f(A) ⊆ f(A). �

Corollary 12.4.3 Suppose that f is a bijective mapping f from a metric

space (X, d) onto a metric space (Y, ρ). The following are equivalent:

1. f is a homeomorphism.

2. U is open in (X, d) if and only if f(U) is open in (Y, ρ).

3. B is closed in (X, d) if and only if f(B) is closed in (Y, ρ).

4. f(A) = f(A) for every subset A of X.

Corollary 12.4.4 Suppose that f is a bijective mapping f from a metric

space (X, d) onto a metric space (Y, ρ). Then f is a homeomorphism if and

only if whenever (xn)
∞
n=1 is a sequence in X then xn → x in (X, d) as n → ∞

if and only if f(xn) → f(x) as n → ∞.

There are two points to notice about this theorem and its proof. The

first is that one needs facility at handling images and inverse images of sets.

The second and more important point is that the conditions, in terms of

open sets and closed sets, that we have given for a function to be continuous

involve the inverse images of sets in Y , and not the images of sets in X.

Exercises

12.4.1 We have defined topological notions or properties to be those that

can be defined in terms of the open sets of a metric space. Show that

a notion or property is topological if it can be defined in terms of

each of the following.

(a) The neighbourhoods of each point.

(b) The closed sets.

(c) The mapping which sends each subset of X to its closure.

(d) The mapping which sends each subset of X to its frontier.
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12.4.2 Suppose that f and g are continuous mappings from a metric space

(X, d) into a metric space (Y, ρ). Show that the set

{x ∈ X : f(x) = g(x)}

is closed in X.

12.4.3 Suppose that A is a non-empty subset of a metric space (X, d). If

x ∈ X let d(x,A) = inf{d(x, a) : a ∈ A}. Show that

A = {x ∈ X : d(x,A) = 0}.

12.4.4 Suppose that A and B are disjoint closed subsets of a metric space.

If x ∈ X let g(x) = d(x,A) + d(x,B). Show that g(x) is a continuous

strictly positive function on X. Let h(x) = d(x,A)/g(x). Show that

g is a continuous function on X which satisfies

• 0 ≤ h(x) ≤ 1, for x ∈ X;

• h(x) = 0, for x ∈ A;

• h(x) = 1, for x ∈ B.

This is easy. Its extension to certain topological spaces is Urysohn’s

lemma, which we shall prove later (Theorem 13.4.6); the proof is

much harder.



13

Topological spaces

13.1 Topological spaces

The results of the previous section show that many important results con-

cerning metric spaces depend only on the topology. We now generalize this,

by introducing the notion of a topological space. This is traditionally defined

in terms of open sets. A topological space is a set X, together with a

collection τ of subsets of X which satisfy:

• the empty set and X are in τ ;

• if O ⊆ τ then ∪O∈OO ∈ τ ;

• if O1 and O2 are in τ then O1 ∩O2 ∈ τ .

Then τ is the topology on X, and the sets in τ are called open sets. The

conditions say that the empty set and X are open, that the union of an

arbitrary collection of open sets is open, and that the intersection of finitely

many open sets is open.

The first example of a topological space is given by taking the open sets

of a metric space (X, d) for the topology on X; this is the metric space

topology on X. A topological space (X, τ) is said to be metrizable if there

is a metric d on X such that τ is the set of open sets of the metric space

(X, d).

Why do we make this definition? First, there are many important exam-

ples of topological spaces in various areas of mathematics, including not only

analysis but also logic, algebra and algebraic geometry, which are not given

by a metric. In fact, we shall not need any of these, but it is as well to know

that they exist. Secondly, metric spaces have a rich structure, and it is appro-

priate to develop topological properties of metric spaces in a purely topologi-

cal way – this helps us to appreciate the nature of these properties. Thirdly,

there are many examples of topological spaces with weird and wonderful

353
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properties, and it is entertaining to investigate them; we shall do this in

Section 13.6.

Starting from a topology τ on a set X, we can immediately set up the

machinery that has been defined for metric spaces. Suppose that x ∈ X and

that A is a subset of X. Here are the definitions.

• A subset N of X is a neighbourhood, or τ -neighbourhood, of x if there is

an open set O such that x ∈ O ⊆ N . The set of neighbourhoods of x is

denoted by Nx. A subset B of Nx is called a base of neighbourhoods of x

if whenever N ∈ Nx there exists B ∈ B with B ⊆ N .

• A subset M∗(x) of X is a punctured neighbourhood of x if there is a

neighbourhood M of x such that M∗(x) = M \ {x}.
• x is a limit point, or accumulation point, of A if M∗(x) ∩A �= ∅ for every

punctured neighbourhoodM∗(x) of x. The set of limit points of A is called

the derived set of A, and is denoted by A′. A is said to be perfect if A = A′.
• x is a closure point of A if N ∩A �= ∅ for every N ∈ Nx. The set of closure

points of A is called the closure of A, and is denoted by A. A is said to be

closed if A = A. A is said to be dense in X if A = X. (X, τ) is separable

if there is a countable subset C of X which is dense in X.

• x is an isolated point of A if there exists N ∈ Nx such that N ∩A = {x}. If
i(A) is the set of isolated points of A then A′∩i(A) = ∅ and A = A′∪i(A).

• x is an interior point of A if A ∈ Nx. The set of interior points of A is the

interior of A; it is denoted by A◦.
• The frontier, or boundary, ∂A is the set A \A◦.
• A subset B of a topology τ on a set X is a base for the topology if every

open set is the union of subsets in B.
• Suppose that (xn)

∞
n=1 is a sequence in X. Then xn → x as n → ∞ if for

each N ∈ Nx there exists n0 ∈ N such that xn ∈ N for all n ≥ n0.

• Suppose that f is a mapping from A into a topological space (Y, σ), that

b is a limit point of A, and that l ∈ Y . Then f(x) → l as x → b in A (in

words, f(x) tends to, or converges to, l as x tends to b in A) if whenever N

is a neighbourhood of l then there is a punctured neighbourhood M∗(x)
of b such that f(M∗(x) ∩A) ⊆ N .

• Suppose that f is a mapping from X into a topological space (Y, σ). Then

f(x) is continuous at x if, whenever N is a neighbourhood of f(x) then

f−1(N) is a neighbourhood of x. f is continuous on X (or, simply, is con-

tinuous), if it is continuous at each point of X. If τ1 and τ2 are topologies

on X and the identity mapping i : (X, τ1) → (X, τ2) is continuous, then

we say that τ1 is finer or stronger than τ2, and that τ2 is coarser or weaker

than τ1. This happens if and only if τ2 ⊆ τ1.
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• Suppose that f is a bijective mapping from X onto a topological space

(Y, σ). If f and f−1 are both continuous, then f is called a homeomorphism

of (X, τ) onto (Y, σ).

Before investigating the use of these definitions, let us give some examples

of topological spaces. The reader should verify that in each instance the

conditions for being a topology are satisfied.

1. If X is any set, let τ = {∅,X}. This is the indiscrete topology.

2. If X is any set, let τ = P (X), the set of all subsets of X. This is the

discrete topology. It is the metric space topology defined by the discrete

metric d, where d(x, y) = 1 if x �= y and d(x, x) = 0.

3. Suppose that Y is a subset of a topological space (X, τ). Then τY =

{O∩Y : O ∈ τ} is a topology on Y , called the subspace topology. (Y, τY ) is

then a topological subspace of (X, τ). Topological subspaces inherit many,

but not all, of the properties of the larger space.

4. Suppose that q is a mapping of a topological space (X, τ) onto a set S. The

collection {U ⊆ S : q−1(U) ∈ τ} of subsets of S is a topology on S, the

quotient topology. In many cases, it is very badly behaved, and quotient

topologies are a rich source of idiosyncracies and counterexamples.

5. If X is an infinite set, let τf be the collection of subsets of X with a finite

complement, together with the empty set. This is the cofinite topology.

6. If X is an uncountable set, let τσ be the collection of subsets of X

with a countable complement, together with the empty set. This is the

cocountable topology.

7. Let τ− = {∅} ∪ {(−∞, a) : a ∈ R} ∪ {R}. Then τ is a one-sided topology

on R; another is τ+ = {∅} ∪ {(a,∞) : a ∈ R} ∪ {R}.
8. Let P denote the vector space of complex polynomials in two variables.

If S is a subset of P , let

US = {(z1, z2) ∈ C2 : p(z1, z2) �= 0 for p ∈ S}.
Then it can be shown that the collection of sets {US : S ⊆ P} is a

topology on C2, the Zariski topology. This definition can be extended to

other settings in algebraic geometry and in ring theory, where it is an

important tool. (It does not have any clear use in analysis.)

We now establish some elementary results about topological spaces. In

many cases, the arguments are similar to those for the real line, or for metric

spaces, and the details are left to the reader.

Proposition 13.1.1 Suppose that B is a collection of subsets of a set X

which satisfies
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(i) If B1, B2 ∈ B then B1 ∩B2 ∈ B, and
(ii) ∪{B : B ∈ B} = X.

Then there is a unique topology τ on X for which B is a base.

Proof Let τ be the collection of unions of sets in B. Then the empty set

is in τ (the union of the empty set of subsets of B) and X ∈ τ , by (ii).

Clearly the union of sets in τ is in τ , and so it remains to show that finite

intersections of sets in τ are in τ . For this, it is sufficient to show that if

U = ∪C∈CC and V = ∪D∈DD are in τ (where C and D are subsets of B), then
U ∩ V ∈ τ . But this holds, since U ∩ V = ∪C∈C,D∈D(C ∩D), which is in τ .

It follows from the construction that τ is unique. For if σ is a topology on

X for which B is a base, then σ ⊆ τ , by the definition of a base, and τ ⊆ σ,

since the union of open sets is open. �

Let us give an example. The subsets [a, b) of R, where a < b, satisfy the

conditions of the proposition, and so define a topology, the right half-open

interval topology on R. Note that

(a, b) = ∪{[(1 − λ)a+ λb, b) : 0 < λ < 1},
so that (a, b) is open in this topology; from this it follows that the usual

topology on R is weaker than the right half-open interval topology.

Proposition 13.1.2 Suppose that A and B are subsets of a topological

space (X, d).

(i) If A ⊆ B then A ⊆ B.

(ii) A is closed.

(iii) A is the smallest closed set containing A: if C is closed and A ⊆ C

then A ⊆ C.

Proof (i) follows trivially from the definition of closure.

(ii) Suppose that b �∈ A. Then there exists a neighbourhood N of b such

that N ∩ A = ∅, and there exists an open set U such that b ∈ U ⊆ N . If

x ∈ U then x �∈ A, since U ∩A = ∅. Thus b is not in the closure of A. Since

this holds for all b �∈ A, A is the closure of A and A is closed.

(iii) By (i), A ⊆ C = C. �

Theorem 13.1.3 Suppose that (Y, τY ) is a topological subspace of a topo-

logical space (X, τ) and that A ⊆ Y . Let A
Y

denote the closure of A in Y ,

and A
X

the closure in X.

(i) A
Y
= A

X ∩ Y .

(ii) A is closed in Y if and only if there exists a closed set B in X such

that A = B ∩ Y .
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Proof (i) Certainly A
Y ⊆ A

X
, so that A

Y ⊆ A
X ∩ Y . On the other hand,

if y ∈ A
X ∩ Y and N is a τ -neighbourhood of y in X, then there exists an

open subset U in X such that y ∈ U ⊆ N , and U ∩ A �= ∅. Now U ∩ Y is a

τY open set, y ∈ U ∩Y and (U ∩Y )∩A = U ∩A is not empty. Thus y ∈ A
Y
.

(ii) If A is closed in Y , then A = A
Y

= A
X ∩ Y , so that we can take

B = A
X
. Conversely if B is closed in X and A = B ∩ Y , then A

X ⊆ B, so

that A
Y
= A

X ∩ Y ⊆ B ∩ Y = A, and A is closed in Y . �

Proposition 13.1.4 Suppose that A and B are subsets of a topological

space (X, d).

(i) If A ⊆ B then A◦ ⊆ B◦.
(ii) C(A◦) = C(A).

(iii) A is open if and only if C(A) is closed.

(iv) A◦ is open.

(v) A◦ is the largest open set contained in A: if U is open and U ⊆ A

then U ⊆ A◦.

Proof This follows by making obvious modifications to the proof of

Proposition 12.3.10. �

Thus, in the examples above, a subset F of (X, τf ) is closed if and only

if it is finite, or the whole space, and a subset F of (X, τσ) is closed if and

only if it is countable, or the whole space.

Proposition 13.1.5 Suppose that (X, τ) is a topological space, that x ∈
Xand that Nx is the collection of neighbourhoods of x. Then Nx is a filter:

that is

(i) each N ∈ Nx is non-empty;

(ii) if N1, N2 ∈ Nx then N1 ∩N2 ∈ Nx;

(iii) if N ∈ Nx and N ⊆ M then M ∈ Nx.

A subset O of X is open if and only if it is a neighbourhood of each of its

points.

Proof (i) Since x ∈ N , N is not empty.

(ii) There exist open sets O1 and O2 such that x ∈ O1 ⊆ N1 and x ∈
O2 ⊆ N2. Then O1 ∩O2 is open, and x ∈ O1 ∩O2 ⊆ N1 ∩N2.

(iii) This is trivial.

If O is open, then it follows from the definition of neighbourhood that

O is a neighbourhood of each of its points. Conversely, if the condition is

satisfied, then O = O◦, and so O is open. �
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The analogues of Theorem 12.2.3 and the sandwich principle also hold;

simple modifications to the proofs are needed, and the details are left to the

reader.

Composition also works well; the proof is easy, but the result is of

fundamental importance.

Theorem 13.1.6 Suppose that f is a mapping from a topological space

(X, τ) into a topological space (Y, ρ) and that g is a mapping from Y into a

topological space (Z, σ). If f is continuous at a ∈ X and g is continuous at

f(a), then g ◦ f is continuous at a.

Proof If N ∈ Ng(f(a)) then, since g is continuous at f(a), g−1(N) ∈ Nf(a),

and since f is continuous at a, f−1(g−1(N)) ∈ Na. The result follows, since

(g ◦ f)−1(N) = f−1(g−1(N)). �

The next result corresponds to Theorem 12.4.1. We give some details of

the proof, though the proof is essentially the same.

Theorem 13.1.7 Suppose that f is a mapping from a topological space

(X, τ) into a topological space (Y, σ). The following are equivalent.

(i) f is continuous on X.

(ii) If U is an open subset of Y then f−1(U) is open in X.

(iii) If F is a closed subset of Y then f−1(F ) is closed in X.

(iv) If A is a subset of X then f(A) ⊆ f(A).

Proof Suppose that f is continuous, that U is open in Y and that x ∈
f−1(U). Then f(x) ∈ U , and U ∈ Nf(x). Since f is continuous at x, f−1(U) ∈
Nx, and so x is an interior point of f−1(U). Since this holds for all x ∈
f−1(U), f−1(U) is open: (i) implies (ii).

Conversely, suppose that (ii) holds. Suppose that a ∈ X and that N is

a neighbourhood of f(a). Then there exists an open set U in Y such that

f(a) ∈ U ⊆ N . Then a ∈ f−1(U) ⊆ f−1(N), and f−1(U) is open, by

hypothesis, so that f−1(N) is a neighbourhood of a. Thus f is continuous

at a. Since this is true for all a ∈ X, (ii) implies (i).

Since a set is open if and only if its complement is closed, and since

f−1(C(B)) = C(f−1(B)), (ii) and (iii) are equivalent.

The proof of the equivalence of (iii) and (iv) is exactly the same as the

proof in Theorem 12.4.1. �

Corollary 13.1.8 Suppose that f is continuous and that A is a dense

subset of X. Then f(A) is dense in the topological subspace f(X) of (Y, ρ).

In particular, if X is separable, then so is f(X).
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Proof This follows from condition (iv). �

Corollary 13.1.9 Suppose that f is a bijective mapping f from a topo-

logical space (X, d) onto a topological space (Y, ρ). The following are

equivalent:

(i) f is a homeomorphism.

(ii) U is open in (X, d) if and only if f(U) is open in (Y, ρ).

(iii) B is closed in (X, d) if and only if f(B) is closed in (Y, ρ).

(iv) f(A) = f(A) for every subset A of X.

(v) f(A◦) = (f(A))◦ for every subset A of X.

What about sequences? We shall see that there are some positive results,

but that, in general, sequences are inadequate for the definition of topological

properties.

Proposition 13.1.10 Suppose that A is a subset of a topological space

(X, τ) and that b ∈ X.

(i) If there exists a sequence (aj)
∞
j=1 in A\{b} such that aj → b as j → ∞

then b is a limit point of A.

(ii) If there exists a sequence (aj)
∞
j=1 in A such that aj → b as j → ∞,

then b is a closure point of A.

The converses of (i) and (ii) are false.

Proof (i) If M∗(b) is a punctured neighbourhood of b then there exists

j0 ∈ N such that aj ∈ M∗(b) for j ≥ j0. Thus A ∩M∗(b) �= ∅, so that b is a

limit point of A.

The proof of (ii) is exactly similar.

We shall use the same example to show that the converses do not hold.

Suppose that X is an uncountable set, with the cocountable topology τσ
described above. Suppose that A is any uncountable proper subset of X. If

x ∈ X and if M∗(x) is any punctured neighbourhood of X, then A∩M∗(x)
is non-empty, so that A′ = A = X: every point of X is a limit point, and

therefore a closure point, of A. Suppose that aj ∈ A and that aj → b as

j → ∞. Then N = X \ {aj : aj �= b} is a neighbourhood of b, and so there

exists j0 such that aj ∈ N for j ≥ j0. Thus aj = b for j ≥ j0: the sequence

(aj)
∞
j=1 is eventually constant and b ∈ A. Thus if c �∈ A there is no sequence

in A which converges to c. �

Proposition 13.1.11 Suppose that (X, τ) and (Y, σ) are topological

spaces, that (aj)
∞
j=1 is a sequence in X which converges to a as j → ∞ and
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that f is a mapping from X to Y . If f is continuous at a then f(aj) → f(a)

as j → ∞. The converse is false.

Proof If N ∈ N (f(a)) then f−1(N) ∈ Na. There exists j0 ∈ N such that

aj ∈ f−1(N) for j ≥ j0. Thus f(aj) ∈ N for j ≥ j0: f(aj) → f(a) as j → ∞.

Let X be an uncountable set, let τσ be the cocountable topology on X

and let τ be the discrete topology. The identity mapping i from (X, τσ) into

(X, τ) has no points of continuity, but a sequence converges in (X, τσ) if and

only if it is eventually constant, in which case it converges in the discrete

topology. �

Exercises

13.1.1 Suppose that f is a mapping from a topological space (X, τ) to a

topological space (Y, σ), and that A and B are two closed subsets of

X whose union is X. Show that f is continuous on X if and only

if its restriction to A and its restriction to B are continuous. Is the

same true if ‘closed’ is replaced by ‘open’? What if A is open and B

is closed?

13.1.2 Give an example of a topology on N with the property that every

non-empty proper subset of N is either open or closed, but not both.

13.1.3 Let X be an infinite set, with the cofinite topology τf . What are

the convergent sequences? Show that a convergent sequence either

converges to one point of X or to every point of X.

13.1.4 Give an example of a continuous mapping f from a metric space

(X, d) to a metric space (Y, ρ) and a subset A of X for which f(A◦) �⊆
(f(A))◦, and an example for which f(A◦) �⊇ (f(A))◦.

13.1.5 Suppose that (X, τ) is a topological space and that (Y, d) is a metric

space. Let Cb(X,Y ) be the space of bounded continuous mappings

from X into Y . Show that Cb(X,Y ) is a closed subset of the space

(BY (X), d∞) of all bounded mappings fromX to Y , with the uniform

metric.

13.1.6 Verify that the collection of subsets {(−∞, a) : a ∈ R} of R, together

with ∅ and R, is a topology τ− on R.

A real-valued function on a topological space (X, τ) is said to be upper

semi-continuous at x if, given ε > 0 there exists a neighbourhood N

of x such that f(y) < f(x) + ε for y ∈ N . Show that f is upper

semi-continuous at x if and only if the mapping f : (X, τ) → (R, τ−)
is continuous at x.
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13.2 The product topology

Suppose that {(Xα, τα)}α∈A is a family of topological spaces. Is there a

sensible way of defining a topology on X =
∏

α∈AXα? In order to see how

to answer this question, let us consider a simple example. The space Rd

is the product of d copies of R. If x = (x1, . . . , xd), let πj(x) = xj , for

1 ≤ j ≤ d. The mapping πj : R
d → R is the jth coordinate projection. If we

give Rd and R their usual topologies, we notice four phenomena.

• Since |πj(x) − πj(y)| ≤ d(x, y) (where d is the Euclidean metric on Rd),

each of the mappings πj is continuous.

• For 1 ≤ j ≤ d let us denote the set {1, . . . , d} \ {j} by d \ {j}. Suppose
that y ∈ Rd\{j}. If x ∈ R let ky,j : R → Rd be defined by

(ky,j(x))j = x and (ky,j(x))i = yi for i ∈ d \ {j}.

Let

Cy,j = {x ∈ Rd : xi = yi for i ∈ d \ {j}};

Cy,j is called the cross-section of Rd at y and the mapping ky,j the cross-

section mapping. Then the mapping ky,j is an isometry of R onto Cy,j.

• Suppose that f : (X, τ) → Rd is a mapping from a topological space (X, τ)

into Rd. We can then write f(x) = (f1(x), . . . , fd(x)), where fj = πj ◦ f .
If f is continuous, then the composition fj = πj ◦f is continuous. But the

converse also holds. Suppose that each of the mappings fj is continuous,

that x ∈ X and ε > 0. Then for each j there exists a neighbourhood Nj

of x for which |fj(y)− fj(x)| < ε/
√
d for y ∈ Nj . Then N = ∩d

j=1Nj is a

kx,2 Cx,2

x

Figure 13.2. The cross-section Cx,2.
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neighbourhood of x, and if y ∈ N then

d(f(y), f(x)) =

⎛⎝ d∑
j=1

|fj(y)− fj(x)|2
⎞⎠

1
2

< ε,

so that f is continuous at x.

• On the other hand, suppose that f : Rd → (Y, σ) is a mapping from Rd to

a topological space (Y, σ), that x ∈ Rd and that 1 ≤ j ≤ d. Let x̂j(i) = xi
for i ∈ d \ {j}, so that x̂j ∈ Rd\{j}. If f is continuous, then the mapping

f ◦ kx̂j ,j : R → (Y, σ) is continuous, for 1 ≤ j ≤ n, but the converse need

not be true. For example, the real-valued function f on R2 defined by

f(0, 0) = 0 and f(x, y) = xy/(x2 + y2) is continuous at every point of R2

except (0, 0), but the mappings x → f(x, y′) : R → R and y → f(x′, y)
are continuous, for all x′ and y′. We need to distinguish these phenomena

carefully. We say that f : Rd → (Y, σ) is jointly continuous at x if it is

continuous, and say that it is separately continuous at x if the mapping

f ◦ kx̂j ,j from R to (Y, σ) is continuous at xj , for 1 ≤ j ≤ d.

We use these observations to motivate the definition of the product topol-

ogy on X =
∏

α∈AXα. We want to define a topology τ on X for which each

of the coordinate mappings πα : (X, τ) → (Xα, τα) is continuous. Thus we

require that if Uα is open in Xα then

π−1
α (Uα) = Uα ×

∏
β �=α

Xβ

is in τ . Since finite intersections of open sets are open, we also require that if

F is a finite subset of the index set A and Uα is open in Xα, for each α ∈ F ,

then ⋂
α∈F

π−1
α (Uα) =

∏
α∈F

Uα ×
∏

β∈A\F
Xβ

is in τ . We can take these as a basis for the topology we need.

Theorem 13.2.1 Suppose that {(Xα, τα)}α∈A is a family of topological

spaces, and that X =
∏

α∈AXα. Let B be the collection of sets of the

form
⋂

α∈F π−1
α (Uα), where F is a finite subset of A, πα is the coordinate

projection of X onto Xα and Uα is open in (Xα, τα).

(i) B is a base for a topology τ on X.

(ii) Each of the coordinate projections πα : (X, τ) → (Xα, τα) is

continuous.
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(iii) If (Y, σ) is a topological space and f : (Y, σ) → (X, τ) is a mapping,

then f is continuous if and only if each of the mappings πα ◦ f : (Y, σ) →
(Xα, τα) is continuous.

Further τ is the unique topology on X for which (ii) and (iii) hold.

Proof (i) Since X is the empty intersection of sets of the form π−1
α (Uα)

X ∈ B. Suppose that U = ∩α∈Fπ−1
α (Uα) and V = ∩β∈Gπ−1

β (Vβ) are in B.
Then

U ∩ V =
(∩α∈F\Gπ−1

α (Uα)
) ∩ (∩α∈F∩Gπ−1

α (Uα ∩ Vα)
) ∩ (

∩β∈G\Fπ−1
β (Vβ)

)
,

which is in B. Thus B is the base for a topology on X, by Proposition 13.1.1.

(ii) is a consequence of the definition of B (take F = {α}), and

shows that the condition in (iii) is necessary. On the other hand,

suppose that the conditions are satisfied. If y ∈ Y then the sets

{B ∈ B : f(y) ∈ B} form a base of τ -neighbourhoods of f(y). If y ∈ Y

and N = ∩α∈Fπ−1
α (Uα) is such a neighbourhood then

f−1(N) = ∩α∈F f−1(π−1
α (Uα)) = ∩α∈F (πα ◦ f)−1(Uα).

Since πα ◦ f is continuous, (πα ◦ f)−1(Uα) is a neighbourhood of y, and so

therefore is f−1(N). Thus f is continuous.

If σ is a topology on X for which (ii) and (iii) hold, then the sets in

B must be in σ, since the coordinate mappings are continuous, and so

τ ⊆ σ. On the other hand, consider the identity mapping i : (X, τ) → (X,σ).

Each of the mappings πα ◦ i : (X, τ) → (Xα, τα) is continuous, and so i is

continuous, by hypothesis. Thus if U ∈ σ then i−1(U) = U ∈ τ , and so

σ ⊆ τ . �

The topology τ of this theorem is called the product topology on X =∏
α∈A Xα.

Similar remarks apply about the need to distinguish between joint

continuity and separate continuity.

We also have a result concerning cross-sections. Suppose that β ∈ A and

that y ∈ ∏
A\{β} Xα. Let ky,β : Xβ → X be defined by

(ky,β(x))β = x and (ky,β(x))α = yα for α ∈ A \ {β}.

Let

Cy,β = {x ∈ X : xα = yα for α ∈ A \ {β}};
Cy,β is called the cross-section of X at y and ky,β the cross-section mapping.



364 Topological spaces

Corollary 13.2.2 If β ∈ A and y ∈ ∏
A\{β} Xα, the cross-section map-

ping ky,β is a homeomorphism of (Xβ , τβ) onto Cy,β, when Cy,β is given the

subspace topology.

Proof It follows from the definition of τ that ky,β is continuous. On the

other hand, k−1
y,β is the restriction of πβ to Cy,β. �

In particular, if ((X1, τ1), . . . , (Xn, τn)) is a finite product of topological

spaces, then the collection of sets U1×· · ·×Un, where Uj ∈ τj for 1 ≤ j ≤ n,

is a base for the product topology on
∏n

j=1Xj .

Similarly, if A = N, so that we have a product of an infinite sequence of

topological spaces, then the collection of sets U1 × · · · × Un ×∏∞
j=n+1Xj ,

where n ∈ N and Uj ∈ τj for 1 ≤ j ≤ n, is a base for the product topology

on
∏∞

j=1Xj .

Suppose that there is a topological space (X, τ) such that (Xα, τα) =

(X, τ) for each α in A. In this case, we can identify the product
∏

α∈AXα

with the space XA of all functions from A into X. In this case, the product

topology is referred to as the topology of pointwise convergence. Suppose

that b is a limit point of a subset C of a topological space (Y, σ), that f is a

mapping of C into XA, and that l ∈ XA. If c ∈ C, then f(c) is a function on

A taking values in X, which we denote by fc, and l is also a function on A

taking values in X. Then fc → l, in the topology of pointwise convergence,

as c → b if and only if fc(α) → l(α) in X as c → b, for each α ∈ A.

The product topology is a very weak topology. Consider the vector space

R[0,1] of all real-valued functions on [0, 1] with the topology of pointwise

convergence. This is a big set – it is bigger than R. Nevertheless, it is sep-

arable: let us show that the countable set of all polynomials with rational

coefficients is a dense subset. Suppose that f ∈ R[0,1] and that N is a neigh-

bourhood of f in the product topology. Then there exists a finite subset F

of [0, 1] and ε > 0 such that

{g ∈ R[0,1] : |g(t) − f(t)| < ε for t ∈ F} ⊆ N.

There exists a real polynomial p of degree |F | − 1 such that p(t) = f(t)

for t ∈ F , and there exists a polynomial q with rational coefficients, of the

same degree, such that |q(t)− p(t)| < ε for t ∈ F . Thus g ∈ N , so that the

countable set of all polynomials with rational coefficients is a dense subset

of R[0,1].

Here is another example. Give the two-point set {0, 1} the discrete topol-

ogy. Recall that a mapping f from a set X into {0, 1} is called an indicator

function. We write f = IA, where A = {x : f(x) = 1}, and call IA the indi-

cator function of A. The space {0, 1}X of all indicator functions on X, with
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the product topology, is called the Bernoulli space of X, and is denoted by

Ω(X). The space Ω(N), whose elements are sequences, taking values 0 or 1,

is called the Bernoulli sequence space. The mapping I : A → IA is a bijection

of the power set P (X) onto Ω(X). We can therefore define a topology on

P (X) by taking the collection {I−1(U) : U open in Ω(X)} as the topology

on P (X); we call this topology the Bernoulli topology. If A is a subset of X,

and F is a finite subset of X, let NF (A) = {B ⊆ X : B ∩F = A∩F}. Then
the collection {NF (A) : F a finite subset of X} forms a base of open neigh-

bourhoods for A in the Bernoulli topology. Some properties of the Bernoulli

space Ω([0, 1]) are investigated in the exercises.

Exercises

13.2.1 Suppose that (X1, τ1) and (X2, τ2) are topological spaces and that

A1 ⊆ X1 and A2 ⊆ X2. Show that if X1 × X2 is given the product

topology then

∂(A1 ×A2) = (∂A1 ×A2) ∪ (A1 × ∂A2).

13.2.2 Suppose that {(Xα, τα)}α∈A is a family of topological spaces, and that

A is the disjoint union of non-empty sets A1 and A2. Show that the

natural mapping from X =
∏

α∈A Xα onto
∏

α∈A1
Xα × ∏

α∈A2
Xα

is a homeomorphism, when each of the spaces is given its product

topology.

13.2.3 Define a partial order on the topologies on a set X by saying that

τ1 ≤ τ2 if τ1 ⊆ τ2. Suppose that τ1 and τ2 are topologies on X. Let

δ : X → X × X be the diagonal mapping defined as δ(x) = (x, x).

Let τ1× τ2 be the product topology on X×X, and let σ = {δ−1(U) :

U ∈ τ1× τ2}. Show that σ is a topology on X, and that it is the least

upper bound of τ1 and τ2. Show that τ1 and τ2 have a greatest lower

bound, and determine its elements. Thus the topologies on X form a

lattice.

13.2.4 Give P ([0, 1]) the Bernoulli topology.

(i) Show that P ([0, 1]) is separable. (Hint: consider step functions.)

(ii) Let An([0, 1]) be the collection of subsets of [0, 1] with exactly

n elements and let Bn([0, 1]) be the collection of subsets of

[0, 1] with at most n elements. Show that An([0, 1]) is a discrete

subspace of P ([0, 1]).

(iii) Show that Bn([0, 1]) is the closure of An([0, 1]).

(iv) Show that Bn([0, 1]) is not separable.
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13.3 Product metrics

What can we say about products of metric spaces? First we consider finite

products.

Proposition 13.3.1 Suppose that ((Xj , dj))
n
j=1 is a finite sequence of met-

ric spaces. Then there is a metric d on X =
∏n

j=1Xj such that the metric

space topology defined by d is the same as the product topology. Further, we

can choose d so that each of the cross-section mappings ky,j is an isome-

try, and so that the coordinate mappings πj are Lipschitz mappings, with

constant 1.

Proof There are many ways of doing this. The easiest is to consider a

norm ‖.‖ on Rn with the properties that if 0 ≤ aj ≤ bj for 1 ≤ j ≤ n then

‖(a1, . . . , an)‖ ≤ ‖(b1, . . . , bn)‖, and that ‖ej‖ = 1 for each unit vector ej in

Rn - we could, for example, take

‖x‖ =

⎧⎪⎪⎨⎪⎪⎩
‖x‖1 =

∑n
j=1 |xj |, or

‖x‖2 = (
∑n

j=1 |xj|2)1/2, or

‖x‖∞ = max{|xj | : 1 ≤ j ≤ n}.

We then set d(x, y) = ‖(d1(x1, y1), . . . , dn(xn, yn))‖. Then d is a metric on

X. Clearly, d(x, y) = d(y, x) and d(x, y) = 0 if and only if x = y; since

d(x, z) = ‖(d1(x1, z1), . . . , dn(xn, zn))‖
≤ ‖(d1(x1, y1) + d1(y1, z1), . . . , dn(xn, yn) + dn(yn, zn))‖
≤ ‖(d1(x1, y1), . . . , dn(xn, yn))‖+ ‖(d1(y1, z1), . . . , dn(yn, zn))‖
= d(x, y) + d(y, z),

the triangle inequality holds. If y ∈ ∏
n\{j}Xi and x, x′ ∈ Xj , then

d(ky,j(x), ky,j(x
′)) = ‖dj(x, x′)ej‖ = dj(x, x

′), so that the cross-section

mapping ky,j is an isometry.

If 1 ≤ j ≤ n and x, y ∈ X then

dj(πj(x), πj(y)) = ‖dj(πj(x), πj(y))ej‖ ≤ d(x, y),

so that the coordinate mappings are Lipschitz mappings with constant 1.

Finally, suppose that f is a mapping from a topological space (Y, σ) into X

for which each of the mappings fj = πj ◦ f is continuous, that y ∈ Y and

that ε > 0. For each j there exists a neighbourhood Nj of y such that if

z ∈ Nj then dj(fj(z), fj(y)) < ε/n. Let N = ∩n
j=1Nj ; N is a neighbourhood
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of y in Y . If z ∈ N then

d(f(z), f(y)) = ‖(d1(f1(z), f1(y)), . . . , dn(fn(z), fn(y)))‖
≤ ‖d1(f1(z), f1(y))e1‖+ · · · + ‖dn(fn(z), fn(y))en‖ < ε,

so that f is continuous. �

When (Xj , dj) is R, with its usual metric, the metric d is simply the

metric given by the norm ‖.‖.
A metric which satisfies the conclusions of this proposition is called a

product metric. Suppose that each of the spaces is a normed space, and

that the product metric is given by a norm. Then the norm is called a

product norm. For example, the Euclidean norm is a product norm on Rd =∏d
j=1(Xj , dj), where (Xj , dj) is R, with its usual metric, for 1 ≤ j ≤ d.

Here is another example.

Proposition 13.3.2 Suppose that (X, d) is a metric space. Then the real-

valued function (x, y) → d(x, y) on (X, d) × (X, d) is a Lipschitz mapping

with constant 2 when (X, d) × (X, d) is given a product metric ρ.

Proof By Lemma 11.1.14, |d(x, y)−d(x′, y′)| ≤ d(x, x′)+d(y, y′); the result
follows since

d(x, x′) ≤ ρ((x, y), (x′, y′)) and d(y, y′) ≤ ρ((x, y), (x′, y′)).

�

What is more interesting is that a result similar to Proposition 13.3.1

holds for countable infinite products of metric spaces.

Theorem 13.3.3 Suppose that ((Xj , dj))
∞
j=1 is a countably infinite

sequence of metric spaces. Then there is a metric ρ on X =
∏∞

j=1Xj such

that the metric space topology defined by ρ is the same as the product topol-

ogy. Further, we can choose ρ so that the cross-section mappings ky,j are

Lipschitz mappings, with constant 1.

Proof We need a preliminary result, of interest in its own right.

Lemma 13.3.4 Suppose that φ is a continuous increasing real-valued func-

tion on [0,∞) for which φ(t) = 0 if and only if t = 0, and for which the

function ψ on (0,∞) defined by ψ(t) = φ(t)/t is decreasing. If (X, d) is a

metric space, then the function ρ defined by ρ(x, y) = φ(d(x, y)) is a met-

ric on X equivalent to d. If ψ(t) ≤ K for all t ∈ (0,∞) then the identity

mapping (X, d) → (X, ρ) is a Lipschitz mapping with constant K.
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Proof First we show that ρ is a metric. Certainly, ρ(x, y) = 0 if and only

if x = y, and ρ(x, y) = ρ(y, x). Note that if a > 0 and b > 0 then

φ(a+ b) = (a+ b)ψ(a+ b) ≤ aψ(a) + bψ(b) = φ(a) + φ(b).

Now suppose that x, y, z ∈ X. Then

ρ(x, z) = φ(d(x, z)) ≤ φ(d(x, y) + d(y, z))

≤ φ(d(x, y)) + φ(d(y, z)) = ρ(x, y) + ρ(y, z).

Thus the triangle inequality holds.

Suppose that ε > 0. Since φ is continuous at 0, there exists δ > 0 such

that if 0 ≤ t ≤ δ then 0 ≤ φ(t) < ε. Thus if d(x, y) ≤ δ then ρ(x, y) ≤ ε, and

the identity mapping i : (X, d) → (X, ρ) is continuous. Conversely, if η > 0

and 0 ≤ φ(t) < φ(η) then 0 ≤ t < η. Thus if ρ(x, y) = φ(d(x, y)) < φ(η)

then d(x, y) < η and the identity mapping i : (X, ρ) → (X, d) is continuous.

If ψ is bounded by K, then φ(t) ≤ Kt and so ρ(x, y) ≤ Kd(x, y). �

In particular, if φ is bounded then ρ is a bounded metric on X. Popular

functions with this property are φc(t) = t/(1 + ct), and φc(t) = min(c, t),

where c > 0; 0 ≤ φc(t) ≤ c. In each case the corresponding function ψc is

bounded by 1, so that the Lipschitz constant can be taken to be 1.

We now return to the proof of Theorem 13.3.3. Again, there are

many ways of defining a suitable metric. For example, let (cj)
∞
j=1 be a

sequence of positive numbers for which
∑∞

j=1 cj < ∞ (for example, take

cj = 1/2j). For each j let ρj be a metric on Xj which is equiva-

lent to dj, which is bounded by cj , and for which the identity mapping

(Xj , dj) → (Xj , ρj) is a Lipschitz mapping, with Lipschitz constant 1. Define

a real-valued function ρ on X ×X by setting

ρ(x, y) =

∞∑
j=1

ρj(xj , yj).

The conditions that we have imposed show that this sum is finite. First, we

show that ρ is a metric on X. Clearly, d(x, y) = d(y, x), and d(x, y) = 0 if

and only if x = y. If x, y, z ∈ X then

ρ(x, z) =

∞∑
j=1

ρj(xj , zj) ≤
∞∑
j=1

(ρj(xj , yj) + ρj(yj , zj))

=

∞∑
j=1

ρj(xj , yj) +

∞∑
j=1

ρj(yj, zj) = ρ(x, y) + ρ(y, z),

so that the triangle inequality holds.
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Next, we show that the metric topology on X defined by ρ is the product

topology; we show that it satisfies the conditions of Theorem 13.2.1. If j ∈ N

and x, y ∈ X then ρj(πj(x), πj(y)) ≤ ρ(x, y), so that πj is continuous, and

(ii) is satisfied. Suppose that f is a mapping from a topological space (Y, σ)

into (X, ρ), and let fj = πj ◦ f . If f is continuous, then, since each mapping

πj is continuous, each of the mappings fj is continuous. On the other hand,

suppose that each of the mappings fj is continuous. Suppose that y ∈ Y

and that ε > 0. We must show that f−1(Nε(f(y))) is a neighbourhood

of y. There exists j0 such that
∑∞

j=j0+1 cj < ε/2. For 1 ≤ j ≤ j0, let

Uj = {x ∈ Xj : ρj(x, fj(y)) < ε/2j0}; Uj is an open neighbourhood of fj(y)

inXj . Let U = ∩1≤j≤j0f
−1
j (Uj). Since each of the mappings πj is continuous,

U is an open neighbourhood of y in (Y, σ). If z ∈ U then

ρ(f(z), f(y)) =

j0∑
j=1

ρj(fj(z), fj(y)) +

∞∑
j=j0+1

ρj(fj(z), fj(y))

≤
j0∑
j=1

ε/2j0 +

∞∑
j=j0+1

cj < ε,

so that U ⊆ f−1(Nε(f(y))), and f−1(Nε(f(y))) is a neighbourhood of y.

Finally, it follows from the construction that each of the cross-section

mappings ky,j is a Lipschitz mapping, with constant 1. �

A metric which satisfies the conditions of this theorem is called an infinite

product metric, or, simply, a product metric.

As examples, the metrics

ρ(x, y) =

∞∑
j=1

1

2j
dj(x, y)

1 + dj(x, y)
and σ(x, y) =

∞∑
j=1

min(dj(xj , yj), 1/2
j)

are frequently used.

Let us give three examples of countable products of metric spaces. We

can give the vector space RN of all real sequences the topology of pointwise

convergence. This is metrizable, and a suitable product metric is

d(x, y) =

∞∑
j=1

|xj − yj|
2j(1 + |xj − yj |) .

This is separable, since the countable set of sequences with rational terms,

all but finitely many of which are zero, is dense in RN.

Next, let H = [0, 1]N =
∏∞

j=1 Ij , where Ij = [0, 1] for j ∈ N, with

the product topology. Then H is a closed subset of RN. There are many
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product metrics which define the product topology on H. One such metric

is ρ(x, y) = (
∑∞

j=1 |xj − yj|2/j2)1/2. The mapping m : H → l2 defined by

m(x) = (xj/j)
∞
j=1 is then an isometry of H onto the subset H2 of the inner

product space l2 defined as

H2 = {x ∈ l2 : 0 ≤ xj ≤ 1/j for 1 ≤ j ≤ ∞}.

H2 is called the Hilbert cube;.

Thirdly, the Bernoulli sequence space Ω(N) can be considered as a closed

subset of H. One product metric which defines the topology on Ω(N) is

given by setting δ(x, y) = 2
∑∞

j=1 |xj −yj|/3j . With this metric, if x ∈ Ω(N)

then

N2/3j = {y ∈ Ω(N) : yi = xi for 1 ≤ i ≤ j}.
If x ∈ Ω(N), let s(x) = 2

∑∞
j=1 xj/3

j . Then s is an isometry of (Ω(N), δ)

onto Cantor’s ternary set. As we have seen, Ω(N) can be identified with

P (N), with the product topology, and so P (N), with the product topology,

is homeomorphic to Cantor’s ternary set.

Exercises

13.3.1 Suppose that (Xi, di)
j
i=1 is a finite sequence of metric spaces. If

x = (xi)
j
i=1 and y = (yi)

j
i=1 are in X =

∏j
i=1Xj let

ρ1(x, y) =

j∑
i=1

di(xi, yi) and ρ∞(x, y) = max
1≤i≤j

di(xi, yi).

Show that ρ1 and ρ∞ are product metrics on X and that if ρ is

any product metric on X, then ρ∞ ≤ ρ ≤ ρ1. Deduce that any two

product metrics on X are Lipschitz equivalent.

13.3.2 Let ω = RN be the vector space of all real sequences. Show that

there is no norm on ω which defines the product topology on ω.

13.4 Separation properties

If τ is the metric space topology of a metric space (X, d) then τ has certain

properties which other topologies do not possess. In this section and the

next, we shall introduce some of these properties.

If X is a set with the indiscrete topology, it is not possible to distinguish

between points topologically. In order to be able to do so, it is necessary to

introduce separation properties. We shall introduce five of them.
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• A topological space (X, τ) is a T1 space if each singleton set is closed.

• A topological space (X, τ) is a Hausdorff space if whenever x and y are

distinct points of X there exist disjoint open sets U and V such that

x ∈ U , y ∈ V .

• A topological space (X, τ) is regular if it is Hausdorff and whenever A is a

closed subset of X and x is an element of X which is not in A, then there

exist disjoint open sets U and V such that x ∈ U , A ⊆ V .

• A topological space (X, τ) is completely regular if it is Hausdorff and when-

ever A is a closed subset of X and x is an element of X which is not in A

then there exists a continuous function f : X → [0, 1] such that f(x) = 0

and f(a) = 1 for a ∈ A.

• A topological space (X, τ) is normal if it is Hausdorff and whenever A

and B are disjoint closed subsets of X then there exist disjoint open sets

U and V such that A ⊆ U , B ⊆ V .

Unfortunately, terminology varies from author to author; the issue is whether

or not the Hausdorff condition should be included in the last three defini-

tions. It is therefore sensible to be cautious, and, for example, to refer to

a ‘regular Hausdorff space’. As we shall see, the conditions are listed in

increasing order of restrictiveness.

It follows from the definition that a topological space (X, τ) is a T1 space

if whenever x and y are distinct points of X there exists an open set U such

that y ∈ U and x �∈ U , so that a Hausdorff space is a T1 space.

Proposition 13.4.1 In a Hausdorff space, limits are unique. Suppose that

f is a continuous mapping from a topological space (Y, σ) into a Hausdorff

topological space (X, τ), that b is a limit point of X and that f(x) → l as

x → b. Then l is unique.

Proof If f(x) → m as x → b, and l �= m then there exist disjoint open

sets U and V in X such that l ∈ U and m ∈ V . But then there exist

punctured neighbourhoods N∗
U (b) and N∗

V (b) of b such that f(N∗
U (b)) ⊆ U

and f(N∗
V (b)) ⊆ V . But this implies that N∗

U ∩ N∗
V = ∅, contradicting the

fact that b is a limit point of Y . �

In fact, the condition is also necessary (Exercise 13.4.1).

Proposition 13.4.2 A topological space (X, τ) is regular if and only if

it is Hausdorff, and each point has a base of neighbourhoods consisting of

closed sets.

Proof Suppose that (X, τ) is regular, that x ∈ X, and that N ∈ Nx.

There exists an open set O such that x ∈ O ⊆ N . Then X \O is closed, and
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x �∈ X \ O, and so there exist disjoint open sets U and V with x ∈ U and

X \O ⊆ V . Then

x ∈ U ⊆ X \ V ⊆ O ⊆ N,

so that X \V is a closed neighbourhood of x contained in N . Thus the closed

neighbourhoods of x form a base of neighbourhoods of x. The proof of the

converse is left as an exercise (Exercise 13.4.2). �

Proposition 13.4.3 A completely regular topological space (X, τ) is

regular.

Proof Suppose that A is a closed subset of X and that x �∈ A. Then there

exists a continuous mapping of X into [0, 1] with f(x) = 0 and f(a) = 1 for

a ∈ A. Let

U = {y ∈ X : f(y) < 1/2}, V = {y ∈ X : f(y) > 1/2}.
Then U and V are disjoint open subsets of X, and x ∈ U , A ⊆ V . �

Complete regularity has a different character to the other separation con-

ditions, since it involves real-valued functions; but a great deal of analysis

is concerned with continuous real-valued functions on a topological space.

Proposition 13.4.4 A topological space (X, τ) is completely regular if and

only if whenever x ∈ X, Bx is a base of neighbourhoods of x and B ∈ Bx

then there exists a continuous function f : X → [0, 1] such that f(x) = 0

and f(y) = 1 for y �∈ B.

Proof Suppose that (X, τ) is completely regular and that B is a basic

neighbourhood of a point x ∈ X. Then x ∈ B◦ ⊆ B, and X \ B◦ is closed,

and so there exists a continuous function f : X → [0, 1] such that f(x) = 0

and f(y) = 1 for y �∈ B◦. Thus f(y) = 1 for y �∈ B.

Conversely, suppose that the conditions are satisfied, that x ∈ X, that

A is a closed subset of X and that x �∈ A. Then there exists B ∈ Bx such

that B ∩A = ∅. There exists a continuous function f : X → [0, 1] such that

f(x) = 0 and f(y) = 1 for y �∈ B. Then f(a) = 1 for a ∈ A. �

It is easy to verify that a topological subspace of a T1 space (Hausdorff

space, regular space, completely regular space) is a T1 space (Hausdorff

space, regular space, completely regular space), and that a closed subspace

of a normal space is normal. As we shall see (Example 13.6.9), not every

subspace of a normal space is normal.

Proposition 13.4.5 If {(Xα, τα) : α ∈ A} is a family of T1 space (Haus-

dorff spaces, regular spaces, completely regular spaces) then the product
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X =
∏

α∈A Xα is a T1 space (Hausdorff space, regular space, completely

regular space) when it is given the product topology τ .

Proof Suppose x and y are distinct elements of X. There exists α ∈ A

such that xα �= yα. If (Xα, τα) is T1 then there exists Uα ∈ τα such that

xα ∈ Uα and yα �∈ Uα. Then U = π−1
α (Uα) is open in X and x ∈ U , y �∈ U ,

so that X is T1. An exactly similar argument shows that X is Hausdorff if

each of the spaces (Xα, τα) is Hausdorff.

Suppose next that each space (Xα, τα) is regular. If x ∈ X then each

xα has a base Bx,α of neighbourhoods consisting of closed sets. Then the

collection

{∩α∈Fπ−1
α (Nα(xα)) : F finite, Nα(xα) ∈ Bx,α}

of subsets of X is a base of neighbourhoods of x consisting of closed sets.

Thus (X, τ) is regular.

Finally, suppose that each (Xα, τα) is completely regular, and that

∩α∈Fπ−1
α (Nα(x)) is a basic neighbourhood of x. For each α ∈ F there exists

a continuous mapping fα : Xα → [0, 1] such that fα(xα) = 0 and fα(yα) = 1

for yα �∈ Nα(xα). Set f(x) = maxα∈F fα(πα(x)). Since each mapping fα ◦πα
is continuous on (X, τ), the function f is a continuous function on (X, τ).

Further, f(x) = 0, and f(y) = 1 if y �∈ ∩α∈Fπ−1
α (Nα(x)). Thus (X, τ) is

completely regular. �

We shall see (Example 13.6.11) that the product of two normal spaces

need not be normal.

A normal space is completely regular; this follows immediately from the

principal result of this section.

Theorem 13.4.6 (Urysohn’s lemma) If A and B are disjoint closed sub-

sets of a normal topological space (X, τ) then there exists a continuous

mapping f : X → [0, 1] such that f(a) = 0 for a ∈ A and f(b) = 1 for

b ∈ B.

Proof Let D be the set of dyadic rational numbers in [0, 1] - numbers

of the form p/2n with p and n in Z+, and p ≤ 2n. Using the axiom of

dependent choice, we define a family {Ud : d ∈ D} of open subsets of X

with the properties that

• if d1 < d2 then Ud1
⊆ Ud2

, and

• A ⊆ U0 and U1 = X \B.

We begin by setting U1 = X \ B. Since A and B are disjoint closed sets,

there exist disjoint open subsets V and W such that A ⊆ V and B ⊆ W .
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Then, since X \W is closed,

A ⊆ V ⊆ V ⊆ X \W ⊆ X \B = U1,

and so we can take U0 = V .

We now re-iterate this argument. Suppose that we have defined Ud for all

d which can be written in the form d = p/2m, with m ≤ n. Suppose that

d = (2k + 1)/2n+1. Let l = k/2n and let r = (k + 1)/2n. Then l < d < r,

and Ul and Ur have been defined. Since U l and X \ Ur are disjoint closed

sets, there exist disjoint open subsets V and W such that U l ⊆ V and

X \ Ur ⊆ W . Then, since X \W is closed,

U l ⊆ V ⊆ V ⊆ X \W ⊆ Ur.

We can therefore take Ud = V .

We now use this family to define the function f . If x ∈ B, we set f(x) = 1

and if x ∈ X \ B we set f(x) = inf{d ∈ D : x ∈ Ud}. Then 0 ≤ f(x) ≤ 1,

f(b) = 1 for b ∈ B, and, since A ⊆ U0, f(a) = 0 for a ∈ A. It remains to

show that f is continuous. For this we use the fact that D is dense in [0, 1].

First, suppose that 0 < α ≤ 1. Let Vα = ∪{Ud : d < α}. Vα is open; we

shall show that Vα = {x ∈ X : f(x) < α}. If f(x) < α there exists d ∈ D

with f(x) < d < α, and so x ∈ Ud ⊆ Vα. Thus {x ∈ X : f(x) < α} ⊆ Vα.

On the other hand, if x ∈ Vα then x ∈ Ud for some d < α, and so f(x) < α.

Thus Vα ⊆ {x ∈ X : f(x) < α}. Consequently, Vα = {x ∈ X : f(x) < α}.
Next, suppose that 0 ≤ β < 1. Let Wβ = ∪{X \ Ud : d > β}. Wβ is

open; we shall show that Wβ = {x ∈ X : f(x) > β}. If f(x) > β there

exists d ∈ D with β < d < f(x), and so x �∈ Ud. Thus x ∈ Wβ, and so

{x ∈ X : f(x) > β} ⊆ Wβ. On the other hand, if x ∈ Wβ then x ∈ X \ Ud

for some d > β. There exists e ∈ D with d < e < β. Then x ∈ X \ Ue, so

that f(x) ≥ e > d > β. Thus Wβ ⊆ {x ∈ X : f(x) > β}. Consequently,
Wβ = {x ∈ X : f(x) > β}

Thus if 0 ≤ β < α ≤ 1 then

{x ∈ X : β < f(x) < α} = Wβ ∩ Vα

is an open set; from this it follows that f is continuous. �

Note that Exercise 12.4.4 shows that this theorem holds for metric spaces.

If A and B are closed disjoint subsets of a metric space (X, d), and f is a

continuous mapping of X into [0, 1] for which f(a) = 0 for a ∈ A and f(b) =

1 for b ∈ B, then U = {x ∈ X : f(x) < 1/2} and V = {x ∈ X : f(x) > 1/2}
are disjoint open sets which separate A and B. Consequently, a metric space

is normal.



13.5 Countability properties 375

Exercises

13.4.1 Suppose that (X, τ) is a topological space with the property that

whenever f is a continuous mapping from a topological space (Y, σ)

into (X, τ), b is a limit point of Y , and f(x) → l as x → b, then l is

unique. Show that (X, τ) is Hausdorff.

13.4.2 Suppose that every point x in a Hausdorff topological space has a

base of neighbourhoods consisting of closed sets. Show that the space

is regular.

13.4.3 Suppose that f is a continuous mapping from a topological space

(X, τ) into a topological space (Y, σ). The graph Gf of f is the set

{(x, f(x)) : x ∈ X}. Show that if (Y, σ) is a T1 space then Gf is

closed in X ×Y , when X ×Y is given the product topology. Give an

example to show that the T1 condition cannot be dropped.

13.4.4 Suppose that (X, τ) is a topological space. Show that the following

are equivalent:

(a) (X, τ) is Hausdorff;

(b) the diagonal{(x, x) : x ∈ X} is closed in (X, τ)× (X, τ);

(c) whenever f and g are continuous mappings from a topological

space (Y, σ) into (X, τ), the set {y ∈Y : f(y)= g(y)} is closed

in Y .

13.4.5 Suppose that (X, τ) is not a Hausdorff space, and that y and z cannot

be separated by open sets. Let i : X → X be the identity mapping.

Show that i(x) → y and i(x) → z as x → y.

13.5 Countability properties

There are several countability properties that a topological space (X, τ)

might possess. We list the three most important of these:

• (X, τ) is first countable if each point has a countable base of neighbour-

hoods;

• (X, τ) is second countable if there is a countable base for the topology;

• (X, τ) is separable if there is a countable subset of X which is dense in X.

A metric space is first countable (the sequence (N1/n(x))
∞
n=1 is a countable

base of neighbourhoods of x) but need not be second countable (consider an

uncountable set with the discrete metric).

Here are some elementary consequences of the definitions.

Proposition 13.5.1 (i) A subspace of a first countable topological space

is first countable.
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(ii) A countable product of first countable topological spaces is first

countable.

(iii) A countable product of second countable spaces is second countable.

(iv) A countable product of separable topological spaces is separable.

(v) If f is a continuous mapping of a separable topological space (X, τ) into

a topological space (Y, σ) then f(X), with the subspace topology, is separable.

In particular, the quotient of a separable topological space is separable.

Proof (i), (ii) (iii) and (v) are easy consequences of the definitions, and

the details are left as exercises for the reader.

(iv) We give the proof for a countably infinite product; the proof for a

finite product is easier. Suppose that ((Xj , τj))
∞
j=1 is a sequence of separable

topological spaces, and that (X, τ) =
∏∞

j=1(Xj , τj). Let Cj be a countable

dense subset of Xj , for 1 ≤ j < ∞. If any Xj is empty, then the product is

empty, and therefore separable. Otherwise, choose yj ∈ Cj for 1 ≤ j < ∞.

We consider y = (yj)
∞
j=1 as a base point in the product. For 1 ≤ j < ∞, let

Aj = {x ∈ X : xi ∈ Ci for 1 ≤ i ≤ j, xi = yi for i > j}.

Then (Aj)
∞
j=1 is an increasing sequence of countable subsets of X. Let A =

∪∞
j=1Aj. A is countable; we show that it is dense in X. Suppose that x ∈ X

and that N ∈ Nx. Then there exists j0 ∈ N and neighbourhoods Nj ∈ Nxj

for 1 ≤ j ≤ j0 such that N ⊇ ∩j0
j=1π

−1
j (Nj). Since there exists a ∈ Aj0 such

that aj ∈ Nj for 1 ≤ j ≤ j0, N ∩A is not empty. �

Here are some results concerning first countability. The last three show

that in the presence of first countability, certain topological properties can

be expressed in terms of convergent sequences.

Proposition 13.5.2 Suppose that (X, τ) is a first countable topological

space, that A is a subset of X, and that x ∈ X.

(i) There is a decreasing sequence of neighbourhoods of x which is a base

of neighbourhoods of x.

(ii) The element x is a limit point of A if and only there is a sequence in

A \ {x} such that xn → x as n → ∞.

(iii) The element x is a closure point of A if and only if there is a sequence

in A such that xn → x as n → ∞.

(iv) If f is a mapping from X into a topological space (Y, σ) then f is

continuous at x if and only if whenever (xn)
∞
n=1 is a sequence in X for which

xn → x as n → ∞ then f(xn) → f(x).
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Proof (i) Suppose that (Nj)
∞
j=1 is a countable base of neighbourhoods

of x. Let Mj = ∩j
i=1Ni. Then (Mj)

∞
j=1 satisfies the requirements; it is a

decreasing base of neighbourhoods of x.

(ii) The condition is certainly sufficient. It is also necessary. Suppose

that x is a limit point of A. Let {Mk : k ∈ N} be a decreasing

countable base of neighbourhoods of x. For each k ∈ N there exists

xk ∈ (Mk \ {x}) ∩ A. If N ∈ Nx, there exists k such that Mk ⊆ N . Then

xn ∈ N \ {x} for n ≥ k, and so xn → x as n → ∞.

(iii) is proved in exactly the same way.

(iv) If f is continuous, then the condition is satisfied. Suppose that the

condition is satisfied, and that f is not continuous at x. Then there exists

a neighbourhood N of f(x) such that f−1(N) is not a neighbourhood of

x. Thus for each k ∈ N there exists xk ∈ Mk \ f−1(N). Then xk → x as

k → ∞, but f(xk) �∈ N for any k ∈ N, and so f(xk) �→ f(x) as k → ∞. �

Here are some results concerning second countability.

Proposition 13.5.3 (i) A second countable topological space (X, τ) is first

countable and separable.

(ii) A metric space (X, d) is second countable if and only if it is separable.

Proof (i) Suppose that (Uj)
∞
j=1 is a basis for τ . If x ∈ X then

{Uj : x ∈ Uj} is a base of neighbourhoods for x, and so X is first countable.

If Uj �= ∅, choose xj ∈ Uj. Then A = {xj : Uj �= ∅} is a countable subset

of X; we show that A is dense in X. If x ∈ X and N ∈ Nx, there exists a

basic open set Uj such that x ∈ Uj ⊆ N . Then xj ∈ A∩Uj ⊆ A∩N , so that

N ∩ A �= ∅.
(ii) By (i), we need only prove that a separable metric space (X, d) is

second countable. Let C be a countable dense subset of X. We shall show

that the countable set B = {N1/n(x) : n ∈ N : x ∈ C} is a base for the

topology. Suppose that U is open. Let V = ∪{B ∈ B : B ⊆ U}; V is an

open set contained in U . Suppose that x ∈ U ; then there exists ε > 0 such

that Nε(x) ∈ U . Choose n such that 1/n < ε/2. There exists c ∈ C such

that d(c, x) < 1/n. If y ∈ N1/n(c) then

d(y, x) ≤ d(y, c) + d(c, x) < 1/n + 1/n < ε,

so that y ∈ U . Thus x ∈ N1/n(c) ⊆ V . Thus U ⊆ V , and so U = V .

Consequently B is a base for the topology. �
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Corollary 13.5.4 A subspace of a separable metric space is separable.

Proof For it is a subspace of a second countable space, and so is second

countable. But a second countable space is separable. �

This result does not extend to topological spaces (Example 13.6.11).

We now prove two substantial theorems concerning second countable

topological spaces.

Theorem 13.5.5 A regular second countable topological space (X, τ) is

normal.

Proof Let B be a countable base for the topology. Suppose that C and

D are disjoint closed subsets of X. Let C = {U ∈ B : U ∩ C = ∅} and let

D = {U ∈ B : U ∩ D = ∅}; let V1, V2, . . . be an enumeration of C and let

W1,W2, . . . be an enumeration of D. For 1 ≤ j, k < ∞, let

Pj = Wj \
(

j⋃
i=1

V i

)
and Qk = Vk \

(
k⋃

i=1

W i

)
;

Pj and Qk are open. If j ≥ k then Pj∩Vk = ∅, and so Pj ∩Qk = ∅. Similarly,

Pj ∩ Qk = ∅ if k > j. Let P = ∪∞
j=1Pj , Q = ∪∞

k=1Qk. Then P and Q are

open and,

P ∩Q = ∪j,k∈N(Pj ∩Qk) = ∅.
If x ∈ C then, since (X, τ) is regular, there exists Wj ∈ D such that x ∈ Wj.

But x �∈ V i for 1 ≤ i ≤ j, and so x ∈ Pj ⊆ P . Since this holds for all x ∈ C,

C ⊆ P . Similarly, D ⊆ Q. Thus (X, τ) is normal. �

Recall that H is the set [0, 1]N =
∏∞

j=1 Ij , where Ij = [0, 1] for j ∈ N,

with the product topology.

Theorem 13.5.6 (Urysohn’s metrization theorem) A regular second

countable topological space (X, τ) is metrizable. There exists a homeomor-

phism f of (X, τ) onto a subspace f(X) of H.

Proof Since H is metrizable, and a subspace of a metrizable space is

metrizable, it is sufficient to prove the second statement. Let B be a

countable base for the topology. Let

S = {(U, V ) ∈ B × B : U ⊆ V }.
S is a countable set; let us enumerate it as (si)

∞
i=1.

If si = (Ui, Vi) ∈ S then by Urysohn’s lemma there exists a continuous

mapping fi : (X, τ) → [0, 1] such that fi(x) = 0 if x ∈ U i and fi(x) = 1

if x �∈ Vi. We can therefore define a mapping f : (X, τ) → H by setting

(f(x))i = fi(x). Since each of the mappings fi is continuous, f is continuous.
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We now use two very similar arguments to show first that f is injective

and secondly that f−1 : f(X) → X is continuous. Suppose that x �= z. Since

(X, τ) is a T1 space, there exists V ∈ B such that x ∈ V and z �∈ V and,

since (X, τ) is regular, there exists U ∈ B such that x ∈ U and U ⊆ V . Then

(U, V ) ∈ S; let (U, V ) = si. Then fi(x) = 0 and fi(z) = 1. Consequently

f(x) �= f(z).

It remains to show that f−1 is continuous. Suppose that x ∈ X and that

N ∈ Nx. There exists V ∈ B such that x ∈ V ⊆ N , and, since (X, τ) is

regular, there exists U ∈ B such that x ∈ U ⊆ U ⊆ V . Then (U, V ) ∈ S; let

(U, V ) = si. Then fi(x) = 0 and fi(z) = 1 if z �∈ N . Let M = {y ∈ H : yi <

1}. Then M is an open neighbourhood of f(x), and if y ∈ M ∩ f(X) then

f−1(y) ∈ N . Thus f−1 : f(X) → X is continuous. �

13.6 *Examples and counterexamples*

(This section can be omitted on a first reading.)

We now describe a collection of examples of topological spaces which

illustrate the connections between the various ideas that we have intro-

duced. The descriptions frequently include statements that need checking:

the reader should do so. First, quotients can behave badly.

Example 13.6.1 An equivalence relation ∼ on R for which the quotient

space is uncountable, and for which the quotient topology is the indiscrete

topology.

Define a relation ∼ on R by setting x ∼ y if x− y ∈ Q. This is clearly an

equivalence relation; let q : R → R/ ∼ be the quotient mapping. Each

equivalence class is countable, and so there must be uncountably many

equivalence classes. Suppose that U is a non-empty open set inR/ ∼, so that

q−1(U) is a non-empty open subset of R, and so contains an open interval

(a, b). If x ∈ R there exists r ∈ Q such that x− r ∈ (a, b), and so q(x) ∈ U .

Thus U = q(R) = R/ ∼.

Next we consider the relations between the various separation properties.

Example 13.6.2 A T1 space which is not Hausdorff.

Let X be an infinite set, and let τf be the cofinite topology on X. The

finite subsets are closed, so that (X, τf ) is a T1 space. If U = X \ F and

V = X \G are non-empty open sets then U ∩V = X \ (F ∪G) is non-empty.

Thus (X, τf ) is not Hausdorff.

Example 13.6.3 A quotient of a closed interval which is a T1 space but

not Hausdorff.
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q(0) q(1/2) = q (–1/2)

q(1)

q(–1)

Figure 13.6a. A T1 space that is not Hausdorff.

Define a partition of [−1, 1] by taking {−1}, {0}, {1} and {−t, t}, for
0 < t < 1, as the sets of the partition. (Fold the interval [−1, 1] over, and

stick corresponding points together, except for the points −1 and 1.) Let X

be the corresponding quotient space and let q : [−1, 1] → X be the quotient

mapping. Give [−1, 1] its usual topology, and give X the quotient topology

τq. Since the equivalence classes are closed in [−1, 1], X is a T1 space. On

the other hand, if U and V are open sets in X containing q(−1) and q(1)

respectively, then there exists ε > 0 such that

{(η,−η) : 1− ε < η < 1} ⊆ U ∩ V,

and so X is not Hausdorff.

Example 13.6.4 A separable first countable Hausdorff space which is not

regular.

Let X = R2, let L = {(x, y) ∈ R2 : x > 0, y = 0} and let P = (0, 0).

We define a topology τ ′ on X by saying that U is open if U \{P} is open

in R2 in the usual topology and if P ∈ U then there exists ε > 0 such that

Nε(P )\L ⊆ U . The reader should verify that this is indeed a topology. (X, τ ′)
is separable, since the countable set {(r, s) ∈ X : r, s ∈ Q} is dense in X,

and it is clearly first countable. Then τ ′ is a topology which is finer than the

usual topology, and so (X, τ ′) is Hausdorff. Since P �∈ L, L is closed. Suppose

that U and V are τ ′-open subsets of X with P ∈ U and L ⊆ V . Then there

exists ε > 0 such that Nε(P ) \ L ⊆ U . Then (ε/2, 0) ∈ L ⊆ V , and so there

exists δ > 0 such that Nδ((ε/2, 0)) ⊆ V . Since (Nε(P ) \ L) ∩Nδ((ε/2, 0)) is

not empty, U ∩ V is not empty. Thus (X, τ ′) is not regular.

Example 13.6.5 A quotient of the first countable space R which is

separable and normal, but not first countable.

We define an equivalence relation on R by setting x ∼ y if x = y or if

x and y are both integers; in other words, we identify all the integers. We

consider the quotient space R/ ∼, with the quotient topology. Let q : R →
R/ ∼ be the quotient mapping. Then R/ ∼ is separable. It is also normal.

Suppose that A and B are disjoint closed subsets of R/ ∼. Suppose first that

q(0) �∈ A∪B. Then q−1(A) and q−1(B) are disjoint closed sets in R\Z, and
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so there exist disjoint open subsets U and V in R\Z, such that q−1(A) ⊆ U

and q−1(B) ⊆ V . Then q(U) and q(V ) are open and disjoint in R/ ∼,

and A ⊆ q(U) and B ⊆ q(V ). Suppose secondly that q(0) ∈ A ∪ B, and

suppose, without loss of generality, that q(0) ∈ A. Then q−1(A) and q−1(B)

are disjoint closed sets in R, and Z ⊆ q−1(A). Then there exist disjoint open

subsets U and V in R, such that q−1(A) ⊆ U and q−1(B) ⊆ V . Then q(U)

and q(V ) are open and disjoint in R/ ∼, and A ⊆ q(U) and B ⊆ q(V ). Thus

R/ ∼ is normal.

Now suppose that (Nj)
∞
j=1 is a sequence of neighbourhoods of q(0) in

R/ ∼. Then for each j ∈ Z there exists 0 < εj < 1 such that (j−εj , j+εj) ⊆
q−1(Nj). Let M = (−∞, 1) ∪ (∪∞

j=1(j − εj/2, j + εj/2)). Then q(M) is a

neighbourhood of q(0) in R/ ∼, and Nj �⊆ q(M) for j ∈ Z. Thus (Nj)
∞
j=1 is

not a base of neighbourhoods of q(0), and so R/ ∼ is not first countable.

There exist topological spaces which are regular, but not completely

regular, but these are too complicated to describe here.1

Before describing the next few examples, we need to prove an easy but

important result about the usual topology on R. This is a special case of

Baire’s category theorem, which is proved in Section 14.7.

Theorem 13.6.6 (Osgood’s theorem) Suppose that (Un)
∞
n=1 is a sequence

of dense open subsets of R. Then ∩∞
n=1Un is dense in R.

Proof Suppose that (a0, b0) is an open interval in R. We must show that

(a0, b0)∩(∩∞
n=1Un) is not empty. Since U1 is dense in R, the set (a0, b0)∩U1 is

not empty. Since (a0, b0)∩U1 is open, there exists a non-empty open interval

(a1, b1) such that

(a1, b1) ⊆ [a1, b1] ⊆ (a0, b0) ∩ U1.

We now iterate the argument. Suppose we have defined non-empty open

intervals (aj , bj) such that

(aj , bj) ⊆ [aj , bj ] ⊆ (aj−1, bj−1) ∩ Uj ,

for 1 ≤ j < n. Then (an−1, bn−1)∩Un is a non-empty open set, and so there

exists a non-empty open interval (an, bn) such that

(an, bn) ⊆ [an, bn] ⊆ (an−1, bn−1) ∩ Un.

The sequence (an)
∞
n=0 is increasing, and is bounded above by bm, for each

m ∈ N, and so converges to a limit a. If n ∈ N then an < an+1 ≤ a ≤
bn+1 < bn, so that a ∈ (an, bn) ⊆ Un. Thus (a0, b0) ∩ (∩∞

n=1Un) �= ∅. �

1 See Example 90 in Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology,
Dover, 1995. This is a wonderful comprehensive collection of counterexamples.
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Corollary 13.6.7 Suppose that (Cn)
∞
n=1 is a sequence of subsets of R

whose union is R. Then there exist n ∈ N and a non-empty interval (c, d)

such that (c, d) ⊂ Cn.

Proof If not, each of the open sets Un = R \ Cn is dense in R, and

∩∞
n=1Un = ∅. �

In other words, Cn has a non-empty interior.

Example 13.6.8 (The Niemytzki space) A separable first countable

completely regular space (H, τ ′) which is not normal, and which has a

non-separable subspace.

Let H be the closed upper half-space H = {(x, y) ∈ R2 : y ≥ 0}, let L be

the real axis L = {(x, y) ∈ R2 : y = 0} and let U = H \L be the open upper

half-space. Let τ be the usual topology on H. If (x, 0) ∈ L and ε > 0 let

Dε(x) = {(u, v) ∈ U : (u− x)2 + (v − ε)2 < ε2}.
Dε(x) is the open disc with centre (x, ε) and radius ε, and L is the tangent to

Dε(x) at (x, 0). Let Mε(x) = {(x, 0)}∪Dε(x), and let Tε(x) be the boundary

of Dε(x) in U :

Tε(x) = {(u, v) ∈ U : (u− x)2 + (v − ε)2 = ε2}.
If (x, 0) ∈ L let Mx = {Mε(x) : ε > 0}, and let U = ∪(x,0)∈LMx. Let σ be

the collection of all unions of sets in U and let

τ ′ = {V ∪ S : V ∈ τ, S ∈ σ}.
The reader should verify that τ ′ is a topology; it is a topology on H finer

than the usual topology. The two subspace topologies on U are the same, but

if (x, 0) ∈ L then the sets in Mx form a base of τ ′-neighbourhoods of (x, 0).

Tε(x)

H

x L

Ttε (x)

Figure 13.6b. The Niemytzki space.
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(H, τ ′) is separable, since the countable set {(r, s) ∈ U : r, s ∈ Q} is

dense in H. It is first countable: for example, if (x, 0) ∈ L, the sequence

(M1/n(x))
∞
n=1 is a base of neighbourhoods of (x, 0).

(H, τ ′) is completely regular. Suppose that C is closed in H and that

z �∈ C. We consider two cases. First, suppose that z ∈ U . Then there exists

Nε(z) ⊆ U \C. Let f(y) = ‖y − z‖ /ε for y ∈ Nε(z), and f(y) = 1 otherwise.

Then f is continuous, f(z) = 0 and f(c) = 1 for c ∈ C. Secondly, suppose

that z = (x, 0) ∈ L. Then there exists ε > 0 such that Mε(x) ∩ C = ∅.
If w ∈ Dε(x), there exists a unique 0 < t < 1 such that w ∈ Ttε(x). Set

f(w) = t, set f(z) = 0, and set f(w) = 1 if w �∈ Mε(x). Let us show that

f is a continuous function on H. It is clearly continuous at every point of

H other than z; since {w : f(w) < t} = Mtε(x) for 0 < t < 1, f is also

continuous at z. Further, f(z) = 0 and f(c) = 1 for c ∈ C.

The subspace L has the discrete topology, since Mε(x)∩L = {(x, 0)}, for
ε > 0. Since L is uncountable, it is not separable. Further, it is closed in

(H, τ ′). Thus any subset of L is closed in H. In particular, the sets

A = {(x, 0) : x irrational} and B = {(q, 0) : q rational}
are disjoint closed subsets of H. We shall show that if V and W are open

sets in H such that A ⊆ V and B ⊆ W then V ∩W �= ∅, so that (H, τ ′) is
not normal.

For n ∈ N, let An = {x ∈ R : (x, 0) ∈ A and M1/n(x) ⊆ V }. Then
∪∞
n=1An = {x ∈ R : x irrational}. Hence

R = (∪∞
n=1An) ∪

⎛⎝⋃
q∈Q

{q}
⎞⎠ .

This is a countable union of sets, and so by Corollary 13.6.7, the closure

(in R, with its usual topology) of one of the sets contains an open interval

(c, d). This clearly cannot be one of the singleton sets {q}, and so there exists

n ∈ N such that An ⊇ (c, d). Suppose now that q ∈ Q ∩ (c, d). Then there

exists ε > 0 such that Mε(q) ⊆ W ; we can suppose that ε < 1/n. There

exists x ∈ An such that |x − q| < ε. Then (x, ε) ∈ Mε(q) ∩ M1/n(x). Since

Mε(q) ⊆ W and M1/n(x) ⊆ V , V ∩W �= ∅.
Example 13.6.9 A normal topological space with a subspace which is not

normal.

Add an extra point P to the Niemytzki space (H, τ ′) to obtain a larger set

H+, and define a topology τ+ in H+ by taking as open sets those subsets

V of H+ for which
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• V ∩H ∈ τ ′, and
• if P ∈ V then L \ V is finite.

Then (H, τ ′) is a topological subspace of (H+, τ+) which is not normal. The

τ+-closed neighbourhoods of P form a base of neighbourhoods of P (why?),

and so (H+, τ+) is regular.

Suppose that A and B are disjoint closed subsets of (H+, τ+). If C is a

closed subset of H+ for which C ∩ L is infinite, then P ∈ C. Thus either

A∩L is finite, or B ∩L is finite, or both; without loss of generality, suppose

that A∩L = F is finite. Since (H+, τ+) is regular, there exist disjoint open

subsets V1 and W1 such that F ⊆ V1 and B ⊆ W1. Now (B ∪ L) \ {P}
and A \ V1 are disjoint, and are closed in H in the usual topology, and so

there exist subsets V2 and W2 which are open in H in the usual topology

such that A \ V1 ⊆ V2 and (B ∪ L) \ {P} ⊆ W2. Then V = V1 ∪ V2 and

W = W1 ∩ (W2 ∪ {P}) are disjoint open subsets of (H+, τ+), and A ⊆ V ,

B ⊆ W . Thus (H+, τ+) is normal.

In fact, every completely regular space is homeomorphic to a subspace of

a normal space; this is too difficult to prove here.

Example 13.6.10 A first countable separable normal topological space

which is not second countable.

Let B be the collection of half-open half-closed intervals [a, b) in R. This

clearly satisfies the conditions for it to be the base for a topology τ ′ on R.

(R, τ ′) is separable, since the rationals are dense; it is first countable, since

the sets {[x, x+1/n) : n ∈ N} form a base of neighbourhoods of x. Suppose

that A and B are disjoint closed subsets of (R, τ ′). If a ∈ A there exists a

largest la in (a, a+ 1] such that [a, la)∩B = ∅; let U = ∪a∈A[a, la). Then U

is an open set containing A and disjoint from B. Similarly, if b ∈ B there

exists a largest mb in (b, b+1] such that [b,mb)∩A = ∅; let V = ∪b∈B [b,mb).

Then V is an open set containing B and disjoint from A. But if a ∈ A and

b ∈ B then [a, la) ∩ [b,mb) = ∅, and so U ∩ V = ∅; thus (R, τ ′) is normal.

Suppose that B′ is a base for the topology. For each x ∈ R there exists

Bx ∈ B′ such that x ∈ Bx ⊆ [x, x+ 1). But if x �= y then Bx �= By, so that

B′ cannot be countable: (X, τ ′) is not second countable.

Example 13.6.11 The product of two first countable separable normal

topological spaces which is not normal, and which has a non-separable

subspace.

Consider (X, τ) = (R, τ ′) × (R, τ ′), where (R, τ ′) is the space of the

previous example. Then the line L = {(x,−x) : x ∈ R} is closed, and its
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subspace topology is the discrete topology, so that L is not separable. All

of the subsets of L are closed in X; an argument just like the one for the

Niemytzki space shows that (X, τ) is not normal.

We can sum up some of our conclusions in a table. In the context of

topological spaces, this shows that the choice of the word ‘normal’ is clearly

not at all appropriate!

subspace quotient countable uncountable

product product

T1 Yes No Yes Yes

Hausdorff Yes No Yes Yes

Regular Yes No Yes Yes

Completely regular Yes No Yes Yes

Normal No No No No

First Countable Yes No Yes No

Second Countable No No Yes No

Separable No Yes Yes No

Exercises

13.6.1 Suppose that (xn)
∞
n=1 is a convergent sequence in the space of

Example 13.6.3. Show that it converges to one or two points.

13.6.2 In Example 13.6.4, characterize the sequences which converge to P .

13.6.3 In Example 13.6.5, characterize the sequences which converge to q(0).

13.6.4 Show that an example similar to the Niemytzki space can be obtained

by replacing the open sets Dε(x) by triangular regions, of a fixed

shape. Let 0 < α < 1. Let Rε(x) = {(u, v) ∈ U : |u−x| < ε, α|u−x| <
v < αε}, and replace the sets Dε(x) by the sets Rε(x).

13.6.5 Suppose that f is a bounded real-valued function on [0, 1] for which

f(x) > 0 for all x ∈ [0, 1]. Use Osgood’s theorem to show that the

upper integral
∫ 1
0 f(x) dx is strictly positive.

13.6.6 Show that the topology of Example 13.6.10 is finer than the usual

topology on R. Characterize the convergent sequences.
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Completeness

14.1 Completeness

The general principle of convergence played an essential role in the analysis

on R; similar ideas are just as important in analysis on a metric space. As

we shall see, these are not topological ideas.

The definitions are straightforward. Suppose that (X, d) is a metric space.

A sequence (xn)
∞
n=1 taking values in X is a Cauchy sequence if whenever

ε > 0 there exists n0 such that d(xm, xn) < ε for m,n ≥ n0.

Proposition 14.1.1 (i) A sequence (xn)
∞
n=1 in a metric space which

converges to a limit l is a Cauchy sequence.

(ii) If a Cauchy sequence (xn)
∞
n=1 in a metric space has a subsequence

(xnk
)∞k=1 which converges to l, then xn → l as n → ∞.

Proof (i) Given ε > 0 there exists n0 such that d(xn, l) < ε/2 for n ≥ n0. If

m,n ≥ n0 then d(xm, xn) ≤ d(xm, l)+d(l, xn) < ε, by the triangle inequality.

(ii) Given ε > 0 there exists N such that d(xm, xn) < ε/2 for m,n ≥ N ,

and there exists K with nK ≥ N such that d(xnk
, l) < ε/2 for k ≥ K. If

n ≥ nK then d(xn, l) ≤ d(xn, xnK
) + d(xnK

, l) < ε, again by the triangle

inequality, so that xn → l as n → ∞. �

A metric space (X, d) is complete if every Cauchy sequence in X is con-

vergent to a point in X. Thus the general principle of convergence says that

R, with the usual metric, is complete. Let us give some examples.

Theorem 14.1.2 A sequence (x(n))∞n=1 in Rd or Cd, with its usual met-

ric, is a Cauchy sequence if and only if each of the coordinate sequences

(x
(n)
j )∞n=1, for 1 ≤ j ≤ d, is a Cauchy sequence in R.

Rd and Cd, with their usual metrics, are complete.

386
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Proof If (x(n))∞n=1 is a Cauchy sequence in Rd (or Cd) and 1 ≤ j ≤ d,

then, since |x(m)
j −x

(n)
j | ≤ d2(x

(m), x(n)), the sequence (x(n))∞n=1 is a Cauchy

sequence in R (or C). Conversely, if each of the sequences (x
(n)
j )∞n=1, for

1 ≤ j ≤ d, is a Cauchy sequence, then there exists n0 such that

|x(m)
j − x

(n)
j | < ε/d1/2 for m,n ≥ n0 and 1 ≤ j ≤ d.

Thus d2(x
(m), x(n)) < ε for m,n ≥ n0, and (x(n))∞n=1 is a Cauchy sequence.

Thus if (x(n))∞n=1 is a Cauchy sequence then each of the sequences

(x
(n)
j )∞n=1 is a Cauchy sequence, and so converges to a limit xj , by the gen-

eral principle of convergence. Hence x(n) → x = (x1, . . . xd) as n → ∞: thus

Rd and Cd, with their usual metrics, are complete. �

Proposition 14.1.3 (i) A closed metric subspace A of a complete metric

space (X, d) is complete.

(ii) A complete metric subspace B of a metric space (X, d) is closed in X.

Proof (i) Suppose that (xn)
∞
n=1 is a Cauchy sequence in A. Then (xn)

∞
n=1

is a Cauchy sequence in X. Since (X, d) is complete, xn converges to an

element l in X as n → ∞. But A is closed, and so l ∈ A. Thus xn converges

to an element of A, and A is complete.

(ii) Let b be a closure point of B in X. Then there exists a sequence

(bn)
∞
n=1 in B which converges to b. Thus (bn)

∞
n=1 is a Cauchy sequence in B.

But B is complete, and so bn converges to a point l of B as n → ∞. By the

uniqueness of limits, b = l. Thus any closure point of B belongs to B, and

so B is closed. �

Many of the metric spaces that we shall consider are spaces of func-

tions. The next result, and its corollary, lie behind a great number of results

concerning such spaces.

Theorem 14.1.4 If S is a non-empty set and (Y, d) is a complete metric

space then the space BY (S) of bounded mappings of S into Y is complete

under the uniform metric d∞.

Proof The proof follows a pattern common to many proofs of complete-

ness. There are three steps. We start with a Cauchy sequence (fn)
∞
n=1. First

we identify what the limit f should be, secondly we verify that it is an

element of BY (S), and thirdly we prove that fn → f as n → ∞.

Suppose then that (fn)
∞
n=1 is a Cauchy sequence in (BY (S), d∞). If s ∈ S

then d(fm(s), fn(s)) ≤ d∞(fm, fn), and so (fn(s))
∞
n=1 is a Cauchy sequence

in Y . Since (Y, d) is complete, there exists f(s) ∈ Y such that fn(s) → f(s)



388 Completeness

as n → ∞. We claim that the function f : s → f(s) is in BY (X), and that

fn → f in the uniform metric.

Take ε = 1. There exists n0 such that d∞(fm, fn) < 1 for m,n ≥ n0,

and so if s ∈ S then d(fm(s), fn0
(s)) < 1 for m ≥ n0. By Proposition

13.3.2 (which we shall use repeatedly), d(fm(s), fn0
(s)) → d(f(s), fn0

(s)) as

m → ∞, and so d(f(s), fn0
(s)) ≤ 1. Thus if s, t ∈ S then

d(f(s), f(t)) ≤ d(f(s), fn0
(s)) + d(fn0

(s), fn0
(t)) + d(fn0

(t), f(t))

≤ diam (fn0
(S)) + 2,

so that f ∈ BY (S).

Finally we show that fn → f as n → ∞. Suppose that ε > 0. There

exists n1 such that d∞(fm, fn) < ε/2 for m,n ≥ n1, and so if s ∈ S

then d(fm(s), fn(s)) < ε/2 for m,n ≥ n1. Suppose that n ≥ n1. Since

d(fm(s), fn(s)) → d(f(s), fn(s)) as m → ∞, d(f(s), fn(s)) ≤ ε/2. Since this

holds for all s ∈ S, d∞(f, fn) ≤ ε/2 < ε. But this holds for all n ≥ n1, and

so fn → f as n → ∞. �

A Cauchy sequence in (BY (S), d∞) is called a uniform Cauchy sequence.

Corollary 14.1.5 (The general principle of uniform convergence) If (X, τ)

is a topological space and (Y, ρ) is a complete metric space, then the space

Cb(X,Y ) of bounded continuous mappings of X into Y is complete under

the uniform metric d∞; a uniformly Cauchy sequence (fn)
∞
n=1 of bounded

continuous functions converges uniformly to a bounded continuous function.

Proof For Cb(X,Y ) is closed in BY (X), by Theorem 12.3.7. �

The first important theoretical point to make is that completeness is not a

topological property. To see this, consider R and (−π/2, π/2), each with the

usual metric d. (R, d) is complete, by the general principle of convergence,

but ((−π/2, π/2), d) is not, since it is not closed in R. Now consider the

mapping j = tan−1 from R onto (−π/2, π/2). This is a homeomorphism; we

use it to define a new metric ρ on R, setting ρ(x, y) = |j(x)− j(y)|. Then j

is an isometry of (R, ρ) onto (−π/2, π/2), d), and so (R, ρ) is not complete.

But d and ρ are equivalent metrics, since j is a homeomorphism. Thus the

two metrics d and ρ define the same topology on R: but (R, d) is complete,

and (R, ρ) is not.

We need a stronger equivalence to preserve completeness. A mapping f

from a metric space (X, d) to a metric space (Y, ρ) is said to be uniformly

continuous if for each ε > 0 there exists δ > 0 such that if x, y ∈ X and

d(x, y) < δ then ρ(f(x), f(y)) < ε. The important feature of this definition
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is that while δ may depend upon ε (and usually does), it does not depend

upon x or y. A Lipschitz mapping is uniformly continuous, and a uniformly

continuous function is continuous. The real-valued function f(x) = x2 on R

is an example of a continuous function which is not uniformly continuous.

Proposition 14.1.6 Suppose that f is a uniformly continuous mapping

from a metric space (X, d) into a metric space (Y, ρ).

(i) If (xn)
∞
n=1 is a Cauchy sequence in X then (f(xn))

∞
n=1 is a Cauchy

sequence in Y .

(ii) Suppose that (gn) is a sequence of functions from a set S to X which

converges uniformly on S to a function g. Then f ◦ gn converges uniformly

on S to f ◦ g.
Proof The proof of (i), which follows almost immediately from the defini-

tions, is left as an exercise for the reader. The proof of (ii) is as easy. Given

ε > 0 there exists δ > 0 such that if d(x, x′) < δ then ρ(f(x), f(x′)) < ε.

There exists n0 ∈ N such that if n ≥ n0 then d(gn(s), g(s)) < δ for all s ∈ S.

Thus ρ(f(gn(s)), f(g(s))) < ε for n ≥ n0 and s ∈ S. �

A bijective mapping f from a metric space (X, d) onto a metric space

(Y, ρ) is a uniform homeomorphism if f and f−1 are both uniformly con-

tinuous. Two metrics d and d′ on a set X are uniformly equivalent if the

identity mapping i : (X, d) → (X, d′) is a uniform homeomorphism.

Corollary 14.1.7 If f is a uniform homeomorphism from a metric space

(X, d) onto a metric space (Y, ρ) then (X, d) is complete if and only if (Y, ρ)

is complete. If two metrics d and d′ on a set X are uniformly equivalent

then (X, d) is complete if and only if (X, d′) is complete.

As an important example, let us consider a product X =
∏∞

i=1(Xi, di) of

an infinite sequence of metric spaces. In Theorem 13.3.3 we constructed a

metric ρ on X for which the ρ-metric topology is the product topology, and

for which the cross-section mappings ky,j are Lipschitz mappings. Inspec-

tion of the construction shows that each of the coordinate mappings πj is

uniformly continuous. A metric d on X with all of these properties is called

an uniform product metric.

Corollary 14.1.8 Suppose that d is a uniform product metric on the prod-

uct X =
∏

i(Xi, di) of non-empty metric spaces (Xi, di). Then (X, d) is

complete if and only if each metric space (Xi, di) is complete.

Proof This result holds for finite and infinite products. Suppose first

that each metric space (Xi, di) is complete. Suppose that (x(n))∞n=1 is a
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Cauchy sequence in (X, d). For each i, the sequence (πi(x
(n)))∞n=1 is a Cauchy

sequence in (Xi, di), since the coordinate mapping πi is uniformly continu-

ous, and therefore converges to an element li of Xi. But this implies that

x(n) → l as n → ∞, where l = (li). Thus (X, d) is complete.

Conversely suppose that (X, d) is complete. Let (x
(n)
i )∞n=1 be a Cauchy

sequence in (Xi, di). Choose y ∈ ∏
j∈N,i �=j Xj . Since the cross-section

mapping ky,i is a Lipschitz mapping, it is uniformly continuous, and so

(ky,i(x
(n)
i ))∞n=1 is a Cauchy sequence in (X, d). Since (X, d) is complete,

ky,i(x
(n)
i ) converges to an element l of X as n→∞, Then x

(n)
i →πi(l) as

n → ∞, since πi is continuous and x
(n)
i = πi(ky,i(x

(n)
i )). Thus (Xi, di) is

complete. �

The next result provides a powerful test for completeness.

Proposition 14.1.9 Suppose that X is a subset of a complete metric space

(Y, ρ) and that d is a metric on X for which

(i) the inclusion mapping j : (X, d) → (Y, ρ) is uniformly continuous, and

(ii) for each x ∈ X and each ε > 0 the closed ε-neighbourhood

Mε(x) = {x′ ∈ X : d(x′, x) ≤ ε} of x in X is ρ-closed in Y .

Then (X, d) is complete.

Proof Suppose that (xn)
∞
n=1 is a Cauchy sequence in (X, d), and that

ε > 0. There exists n0 such that d(xm, xn) < ε/2 for m,n ≥ n0. Since j

is uniformly continuous, (xn)
∞
n=1 is a ρ-Cauchy sequence, and since (Y, ρ) is

complete, there exists y ∈ Y such that ρ(xn, y)→ 0 as n→∞. If m > n ≥ n0

then xm ∈ Mε/2(xn). SinceMε/2(xn) is ρ-closed, it follows that y ∈ Mε/2(xn).

Thus y ∈ X and d(xn, y) ≤ ε/2 < ε. Since this holds for all n ≥ n0, xn → y

as n → ∞. �

We shall give applications of this in Proposition 14.2.3 and Corollary

14.2.4.

Next we prove a fundamental extension result. This depends in an

essential way on the relation between uniform continuity and completeness.

Theorem 14.1.10 Suppose that A is a dense subset of a metric space

(X, d), and that f is a uniformly continuous mapping from A to a complete

metric space (Y, ρ). Then there is a unique continuous mapping f̃ from X

to Y which extends f : f̃(a) = f(a) for a ∈ A. Further, f̃ is uniformly

continuous. If f is a Lipschitz mapping with constant K then so is f̃ , and

if f is an isometry then so is f̃ .
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Proof Suppose that x ∈ X. There exists a sequence (an)
∞
n=1 in A such

that an→x as n→∞. Then (an)
∞
n=1 is a Cauchy sequence in A, and so

(f(an))
∞
n=1 is a Cauchy sequence in (Y, d). Since Y is complete f(an) con-

verges to some element y of Y . We show that y does not depend on the choice

of the approximating sequence (an)
∞
n=1. Suppose that a′n → x as n → ∞.

Then, as before, there exists y′ ∈ Y such that f(a′n) → y′ as n → ∞.

But then the sequence (a1, a
′
1, a2, a

′
2, . . .) converges to x, and the sequence

(f(a1), f(a
′
1), f(a2), f(a

′
2), . . .) converges in Y . The subsequences (f(an))

∞
n=1

and (f(a′n))∞n=1 must therefore converge to the same limit; thus y = y′. We

set f̃(x) to be the common limit. We have thus defined the mapping f̃ from

X to Y ; f̃ clearly extends f (consider constant sequences).

Next we show that f̃ is uniformly continuous. Suppose that ε > 0. There

exists δ > 0 such that if a, b ∈ A and d(a, b) < δ then ρ(f(a), f(b)) < ε.

Suppose that x, y ∈ X and that d(x, y) < δ. Let η = δ − d(x, y). There

exist sequences (an)
∞
n=1 and (bn)

∞
n=1 in A such that an → x and bn → y as

n → ∞, and so there exists n0 such that d(x, an) < η/2 and d(y, bn) < η/2

for n ≥ n0. By the triangle inequality,

d(an, bn) ≤ d(an, x) + d(x, y) + d(y, bn) < δ

for n ≥ n0, and so ρ(f(an), f(bn)) < ε for n ≥ n0. Since f(an) → f̃(x) and

f(bn) → f̃(y), it follows from Proposition 13.3.2 that ρ(f̃(x), f̃(y)) ≤ ε.

There is only one continuous extension. For if f̃ and f are two con-

tinuous extensions then {x∈X : f̃(x)= f(x)} is a closed subset of X

(Exercise 10.4.2) which contains A, and so contains A = X.

If x, y ∈ X there exist sequences (an)
∞
n=1 and (bn)

∞
n=1 in A such that

an → x and bn → y as n → ∞. Since f̃ is continuous,

f(an) = f̃(an) → f̃(x) and f(bn) = f̃(bn) → f̃(y) as n → ∞.

Thus ρ(f̃(x), f̃(y)) = limn→∞ ρ(f(an), f(bn)), by Proposition 13.3.2. Thus

if f is a Lipschitz mapping with constant K, then

ρ(f̃(x), f̃(y)) ≤ K lim
n→∞ d(an, bn) = Kd(x, y),

so that f̃ is also a Lipschitz mapping with constant K. Similarly, if f is an

isometry then ρ(f̃(x), f̃(y)) = limn→∞ d(an, bn) = d(x, y), so that f̃ is an

isometry. �

We can characterize completeness in terms of sequences of sets.
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Theorem 14.1.11 Suppose that (X, d) is a metric space. The following

are equivalent.

(i) (X, d) is complete.

(ii) If (An)
∞
n=1 is a decreasing sequence of non-empty closed subsets of X

for which diam (An) → 0 as n → ∞ then ∩∞
n=1An is non-empty.

If so, then ∩∞
n=1An is a singleton set {a} and if an ∈ An for each n then

an → a as n → ∞.

Proof Suppose first that (X, d) is complete, and that (An)
∞
n=1 is a decreas-

ing sequence of non-empty subsets of X for which diamAn → 0 as n → ∞.

Pick an ∈ An for each n ∈ N. We shall show that (an)
∞
n=1 is a Cauchy

sequence. Suppose that ε > 0. There exists n0 such that diam (An) < ε for

n ≥ n0. If m > n ≥ n0 then am ∈ An, so that d(am, an) < ε. Thus (an)
∞
n=1

is a Cauchy sequence; since (X, d) is complete, it converges to an element

a of X. Suppose that n ∈ N. Since am ∈ An for m ≥ n, and since An is

closed, a ∈ An. Thus a ∈ ∩∞
n=1An. Further, diam (∩∞

n=1An) ≤ diamAm for

each m ∈ N, so that diam (∩∞
n=1An) = 0. Thus A = {a}.

Conversely, suppose that (ii) holds and that (xn) is a Cauchy sequence

in (X, d). Let Tn = {xn, xn+1, . . .}: (Tn)
∞
n=1 is the tail sequence. Since (xn)

is a Cauchy sequence, diam (Tn) → 0 as n → ∞. Let Fn = Tn. (Fn)
∞
n=1 is

a decreasing sequence of non-empty closed sets, and diam (Fn) = diam (Tn)

(Proposition 12.3.3), so that diam (Fn) → 0 as n → ∞. Thus ∩∞
n=1Fn is

non-empty. Suppose that x ∈ ∩∞
n=1Fn. Since x ∈ Fn for each n, d(x, xn) ≤

diamFn, and so d(x, xn) → 0 as n → ∞. Thus xn → x as n → ∞, and

(X, d) is complete. �

Corollary 14.1.12 Suppose that (Aε)0<ε≤ε0 is a family of non-empty

closed sets of a complete metric space (X, d), with Aε ⊆ Aε′ for 0 < ε <

ε′ ≤ ε0. If diamAε → 0 as ε → 0 then ∩0<ε≤ε0Aε is non-empty, and is a

singleton set.

Proof ∩0<ε≤ε0Aε = ∩∞
n=1Bn, where Bn = Aε0/n. �

Although completeness is not a topological property, it has topological

consequences. It is therefore of interest to know when there is an equivalent

complete metric on a metric space. A metric space (X, d) is said to be

topologically complete if there is an equivalent metric ρ on X for which

(X, ρ) is complete. We use uniform product metrics to provide information

about this.

A subset of a topological space (X, τ) is a Gδ set if it is the intersection

of a sequence of open sets (and is an Fσ set if it is the union of a sequence

of closed sets). If (X, τ) is T1 space, then the complement of a countable set
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is a Gδ set. Thus the set of irrational numbers in R is a Gδ subset of R and

the set of transcendental numbers in C is a Gδ subset of C. The following

theorem is therefore quite surprising.

Theorem 14.1.13 Suppose that (X, d) is a complete metric space, and

that A is a Gδ subset of X. Then the metric subspace A is topologically

complete.

Proof First suppose that A is open. If A = X, we can take ρ = d. Oth-

erwise, let X × R have a uniform product metric σ. Then (X × R, σ) is

complete. Consider the injective mapping f from A to X × R defined by

f(a) = (a, 1/d(a,C(A)). Since d(a,C(A)) > 0 for a ∈ A, this is well-defined.

Since the mapping a → 1/d(a,C(A)) is continuous on A, f is continuous.

We show that f(A) is closed in X ×R. Suppose that

f(an) → y = (x, λ) ∈ X ×R as n → ∞,

so that an → x and 1/d(an, C(A)) → λ as n → ∞. Since

|d(am, C(A)) − d(an, C(A))| ≤ d(am, an),

the sequence (d(an, C(A)))∞n=1 is bounded, so that 1/d(an, C(A)) does

not tend to 0 as n→∞. Thus λ �=0, and d(an, C(A))→ 1/λ. Since

d(an, C(A)) → d(x,C(A)), it follows that d(x,C(A)) = 1/λ, and so x ∈ A.

Consequently f(an) → f(x) as n → ∞, so that f(A) is closed in X × R,

and (f(A), σ) is complete. The mapping f : (A, d) → (X ×R, σ) is continu-

ous, and the inverse mapping f−1 : f(A) → A is a Lipschitz mapping with

constant 1, since d(a, a′) ≤ σ(f(a), f(a′)), so that f is a homeomorphism of

(A, d) onto (f(A), σ). Thus if we define ρ(a, a′) = σ(f(a), f(a′)) then ρ is a

complete metric on A equivalent to d.

Next, suppose that A = ∩∞
j=1Uj is a Gδ set. For each j there is a metric σj

on Uj , equivalent to the restriction of d to Uj , under which Uj is complete.

Let U =
∏∞

j=1(Uj , σj), and let σ be a uniform product metric on U . Then

(U, σ) is complete. If a ∈ A, let ij : A → Uj be the inclusion map and let

i : A → U be defined as i(a) = (ij(a))
∞
j=1. Then i is a continuous injective

map of (A, d) into (U, σ). We show that i(A) is closed in U . Suppose that

i(an) → u as n → ∞ Then, for each j ∈ N, ij(an) → uj as n → ∞. Since

the metric σj on Uj is equivalent to the metric d, d(an, uj) → 0 as n → ∞.

Since this is true for each j, there exists l in X such that uj = l for each

j ∈ N. Thus l ∈ ∩∞
n=1Uj = A, and u = i(l). Thus i(A) is closed in (U, σ),

and so (i(A), σ) is complete. If i(an) → i(a) in (i(A), σ), then i1(an) → i1(a)

in (U1, σ1) as n → ∞. But d and σ1 are equivalent on U1, and so an → a in
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(A, d). Thus i−1 : (i(A), σ) → (A, d) is continuous, and i is a homeomorphism

of (A, d) onto (i(A), σ). Thus if we define ρ(a, a′) = σ(i(a), i(a′)) then ρ is a

complete metric on A equivalent to d. �

Exercises

14.1.1 Give an example of a bijection j from a metric space (X, d) onto a

metric space (Y, ρ) which is uniformly continuous, while j−1 is not

continuous.

14.1.2 Give an example of a bijection j from a metric space (X, d) onto

a metric space (Y, ρ) which is uniformly continuous, while j−1 is

continuous, but not uniformly continuous.

14.1.3 Suppose that f is a differentiable function on R. Show that f is

uniformly continuous if the derivative f ′ is a bounded function on

R. Does the converse hold?

14.1.4 Suppose that Y is a dense subset of a metric space (X, d) and that

any Cauchy sequence in Y converges to an element of X. Show that

(X, d) is complete.

14.1.5 Define a metric ρ on N by setting ρ(m,n) = |1/m − 1/n|. Suppose
that (xn)

∞
n=1 is a sequence in a metric space (X, d). Set f(n) = xn.

Show that (xn)
∞
n=1 is a Cauchy sequence if and only if f : (N, ρ) →

(X, d) is uniformly continuous.

14.1.6 Suppose that f is a continuous bijection from a complete metric

space (X, d) onto a metric space (Y, ρ) and that f−1 is uniformly

continuous. Show that (Y, ρ) is complete.

14.1.7 If x ∈ X =
∏∞

j=1{0, 1}j , let f(x) = 2
∑∞

j=1 xj/3
j . Show that f is a

uniform homeomorphism of X onto Cantor’s ternary set.

14.1.8 The set {0, 1} becomes an abelian group when we define 0 + 0 =

1 + 1 = 0, 0 + 0 = 0 + 1 = 1. Use this to define an abelian group

structure on X =
∏∞

j=1{0, 1}j . Show that the mapping (x, y) →
x+y : X×X → X is jointly uniformly continuous. What about the

mapping x → −x?

14.1.9 Suppose that (X, d) is a metric space which is not complete. Show

that there is an unbounded continuous real-valued function on X,

and a bounded continuous real-valued function on X which is not

uniformly continuous.

14.1.10 Suppose that (xn)
∞
n=1 is a sequence in an ultrametric space (X, d) for

which d(xn, xn+1) → 0 as n → ∞. Show that (xn)
∞
n=1 is a Cauchy

sequence.
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14.2 Banach spaces

A normed space (E, ‖.‖) which is complete under the metric defined by

the norm is called a Banach space, after the Polish mathematician, Stefan

Banach. Similarly, an inner-product space which is complete under the met-

ric defined by the inner-product norm is called a Hilbert space, after the

German mathematician, David Hilbert.

Proposition 14.2.1 If (E, ‖.‖) is a Banach space then the normed space

(BE(S), ‖.‖∞) of bounded functions on S taking values in E is a Banach

space.

Proof This is an immediate corollary of Theorem 14.1.4. �

In particular, the spaces (BR(S), ‖.‖∞) and (BC(S), ‖.‖∞) of bounded

real-valued functions and bounded complex-valued functions on S are

Banach spaces.

Proposition 14.2.2 If (X, τ) is a topological space and (E, ‖.‖) is a

Banach space then (Cb(X,E), ‖.‖∞) is a Banach space.

Proof This is a special case of the general principle of uniform conver-

gence. �

Proposition 14.2.3 Suppose that (F, ‖.‖F ) is a Banach space, and that E

is a linear subspace of F equipped with a norm ‖.‖E for which the inclusion

mapping (E, ‖.‖E) → (F, ‖.‖F ) is continuous. If the closed unit ball BE =

{x ∈ E : ‖x‖E ≤ 1} is closed in (F, ‖.‖F ) then (E, ‖.‖E) is a Banach space.

Proof The inclusion mapping is uniformly continuous, and Mε(x) = x +

εBE is closed in (F, ‖.‖F ), since translation and multiplication by non-zero

scalars are homeomorphisms. The result therefore follows from Proposition

14.1.9. �

Corollary 14.2.4 The space (l1, ‖.‖1) is a Banach space and the space

(l2, ‖.‖2) is a Hilbert space.

Proof We give the proof for l2: the proof for l1 is exactly similar. l2 is a

linear subspace of the Banach space (l∞, ‖.‖∞), and the inclusion mapping

(l2, ‖.‖2) → (l∞, ‖.‖∞) is continuous, since ‖x‖∞ ≤ ‖x‖2 for x ∈ l2. It is

therefore sufficient to show that Bl2 is closed in (l∞, ‖.‖∞). Suppose that

(x(n))∞n=1 is a sequence in Bl2 which converges uniformly to x ∈ l∞. Then
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x
(n)
j → xj as n → ∞, for each j ∈ N, and so if k ∈ N then

k∑
j=1

|xj|2 = lim
n→∞

k∑
j=1

|x(n)j |2 ≤ 1.

Since this holds for all k ∈ N,
∑∞

j=1 |xj |2 ≤ 1, so that x ∈ Bl2 . �

As we shall see, there are many other applications of Proposition 14.2.3.

We can consider infinite series in a normed space, and these can be used

as a test for completeness. A series
∑∞

j=0 aj in a normed space (E, ‖.‖) is

said to converge absolutely if
∑∞

j=0 ‖aj‖ converges.

Proposition 14.2.5 Suppose that (aj)
∞
j=1 is a sequence in a Banach space

(E, ‖.‖) for which
∑∞

j=0 aj converges absolutely. Then
∑∞

j=0 aj converges,

and
∥∥∥∑∞

j=0 aj

∥∥∥ ≤ ∑∞
j=0 ‖aj‖.

Conversely, if every absolutely convergent series in a normed space

(E, ‖.‖) converges then (E, ‖.‖) is complete.

Proof Suppose that ε > 0. There exists n0 such that if n>m≥n0 then∑n
j=m+1 ‖aj‖ <ε. Let sn =

∑n
j=1 aj. By the triangle inequality, if n > m ≥

n0 then

‖sn − sm‖ = ‖am+1 + · · ·+ an‖ ≤
n∑

j=m+1

‖aj‖ < ε,

so that (sn) is a Cauchy sequence in (E, ‖.‖). Since (E, ‖.‖) is complete,

there exists s ∈ E such that sn → s as n → ∞; that is,
∑∞

j=1 aj = s. Since

the function x → ‖x‖ is continuous on E,∥∥∥∥∥∥
∞∑
j=0

aj

∥∥∥∥∥∥ = lim
n→∞ ‖sn‖ ≤ lim

n→∞

n∑
j=1

‖aj‖ =

∞∑
j=1

‖aj‖ .

Conversely, suppose that every absolutely convergent series in (E, ‖.‖)
converges. Let (xn)

∞
n=1 be a Cauchy sequence in (E, ‖.‖). There exists a

strictly increasing sequence (nj)
∞
j=1 in N such that if n > m ≥ nj then

‖xn − xm‖ < 1/2j . Let a1 = xn1
, and let aj = xnj

− xnj−1
for j > 1. Then

‖aj‖ < 1/2j−1 for j > 1 and so
∑∞

j=1 ‖aj‖ <∞. Thus
∑∞

j=1 aj converges, to

s say. But
∑k

j=1 aj =xnk
, and so xnk

→ s as n→∞. Thus xn→ s as n → ∞,

by Proposition 14.1.1, and so (E, ‖.‖) is complete. �

As special cases, we have the following corollaries.
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Corollary 14.2.6 (Cauchy’s test for Banach spaces) The series∑∞
j=1 aj converges if lim supj→∞ ‖aj‖1/j < 1 and it does not converge if

lim supj→∞ ‖aj‖1/j > 1.

Corollary 14.2.7 (D’Alembert’s ratio test for Banach spaces) Sup-

pose that aj �= 0 for all j. If lim supj→∞ ‖aj+1‖ / ‖aj‖ < 1 then
∑∞

j=1 aj
converges. If lim supj→∞ ‖aj+1‖ / ‖aj‖ > 1 then

∑∞
j=1 aj does not converge.

Corollary 14.2.8 (Weierstrass’ uniform M test) Suppose that (X, τ) is

a topological space, that (E, ‖.‖) is a Banach space and that (fj)
∞
j=1 is

a sequence in (Cb(X,E), ‖.‖∞). If ‖fj‖∞ ≤ Mj for each j ∈ N, and∑∞
j=1Mj < ∞, then the series

∑∞
j=1 fj(x) converges uniformly to a bounded

continuous function on X.

When the conditions of this corollary are met, we say that the series∑∞
j=1 fj(x) converges absolutely uniformly on X.

The following special case is particularly useful.

Corollary 14.2.9 Suppose that, for each j ∈ N, (f
(n)
j )∞n=1 is a sequence

in a Banach space (E, ‖.‖) which converges to an element lj of E, that∥∥∥f (n)
j

∥∥∥ ≤ Mj for each n ∈ N and each j ∈ N, and that
∑∞

j=1Mj < ∞.

Then the series
∑∞

j=1 f
(n)
j converges uniformly on N to a sequence (sn)

∞
n=1

in E, the series
∑∞

j=1 lj converges to an element s∞ of E, and sn → s∞ as

n → ∞.

Proof Let N̄ = N ∪ {∞} with the metric d(m,n)= |1/m− 1/n|,
d(n,+∞) = 1/n. Let gj(n) = f

(n)
j , for n ∈ N, and let gj(∞) = lj . Then

gj ∈ Cb(N̄, E), and ‖gj‖∞ ≤ Mj . Thus
∑∞

j=1 gj converges uniformly to an

element s of Cb(N̄, E); this gives the result. (It is as easy to prove the result

directly.) �

There is also a test for products.

Corollary 14.2.10 (Weierstrass’ uniform M -test for products) Sup-

pose that (X, τ) is a topological space and that (fj)
∞
j=1 is a sequence in

(Cb(X,R), ‖.‖∞). If ‖fj‖∞ ≤ Mj for each j ∈ N, and
∑∞

j=1Mj < ∞,

then the infinite product
∏∞

j=1(1 + fj(x)) converges uniformly to a bounded

continuous function on X.
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Proof Since Mj → 0 as j → ∞ there exists N ∈ N such that Mj ≤ 1/2

for j ≥ N . We use the mean-value theorem. If |t| ≤ 1/2, then

0 <
d

dt
log(1 + t) ≤ 2, so that | log(1 + fj(x))| ≤ 2|fj(x)| ≤ 2Mj

for j ≥ N and x ∈ X. Thus
∑∞

j=N+1 log(1+fj(x)) converges absolutely and

uniformly to a bounded continuous function g(x). The exponential func-

tion exp has a bounded derivative on [−‖g‖∞ , ‖g‖∞], and so is uniformly

continuous on [−‖g‖∞ , ‖g‖∞]. It therefore follows that
∏∞

j=N+1(1 + fj(x))

converges uniformly to eg(x). Finally,
∏∞

j=1(1 + fj(x)) converges uniformly

to (
∏N

j=1(1 + fj(x)))e
g(x). �

Exercises

14.2.1 Suppose that (E, ‖.‖) is a real normed space. Show that the mapping

(x, y) → x + y : E × E → E is uniformly continuous, but that the

mapping (λ, x) → λx : R× E → E is continuous, but not uniformly

continuous.

14.2.2 (Hardy’s test) (a) Suppose that (aj)
∞
j=0 is a null sequence of real or

complex numbers for which
∑∞

j=0 |aj−aj+1| < ∞ and that (bj)
∞
j=0 is a

sequence in a Banach space (E, ‖.‖) for which the sequence of partial

sums (
∑n

j=0 bj)
∞
n=0 is bounded. Show that

∑∞
j=0 ajbj converges.

(b) Suppose that (aj)
∞
j=0 is a null sequence of real or complex num-

bers for which the sequence of partial sums (
∑n

j=0 aj)
∞
n=0 is bounded

and that (bj)
∞
j=0 is a sequence in a Banach space (E, ‖.‖) for which∑∞

j=0 ‖bj − bj+1‖ < ∞. Show that
∑∞

j=0 ajbj converges.

14.2.3 (Hardy’s uniform test) Suppose that (aj)
∞
j=0 is a sequence in the real

or complex Banach space (B(S), ‖.‖∞) for which

∞∑
j=0

‖aj − aj+1‖∞ < ∞

and that (bj)
∞
j=0 is a null sequence in B(S) for which the sequence

of partial sums (
∑n

j=0 bj)
∞
n=0 is bounded. Show that

∑∞
j=0 ajbj

converges uniformly.

14.2.4 (Dirichlet’s test) Suppose that (aj)
∞
j=0 is a decreasing null sequence

of positive numbers and that (bj)
∞
j=0 is a sequence in a Banach

space (E, ‖.‖) for which the sequence of partial sums (
∑n

j=0 bj)
∞
n=0

is bounded. Show that
∑∞

j=0 ajbj converges, to s say. Show further
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that if

sm =

m∑
j=0

ajbj and M = sup
n

∥∥∥∥∥∥
n∑

j=0

bj

∥∥∥∥∥∥
then ‖s− sm‖ ≤ 2am+1M .

14.2.5 (Abel’s test) Suppose that (aj)
∞
j=0 is a decreasing sequence of positive

numbers and that (bj)
∞
j=0 is a sequence in a Banach space (E, ‖.‖)

for which
∑∞

j=0 bj converges. Show that
∑∞

j=0 ajbj converges.

14.2.6 This exercise and the next one give two classical applications of Weier-

strass’ uniform M -test. Formulae such as these go back to Euler. Let

Pk(0) = 1 and

Pk(j) =

(
1− 1

2k + 1

)(
1− 2

2k + 1

)
· · ·

(
1− 2j

2k + 1

)
,

for 1 ≤ j ≤ k. Show that

1

2i

((
1 +

iθ

2k + 1

)2k+1

−
(
1− iθ

2k + 1

)2k+1
)

=

k∑
j=0

(−1)j

(2j + 1)!
Pk(j)θ

2j+1.

Let X = {0} ∪ {1/(2k + 1) : k ∈ N} ⊆ R. Let

fj(0) =
(−1)j

(2j + 1)!
θ2j+1,

fj

(
1

2k + 1

)
=

(−1)j

(2j + 1)!
Pk(j)θ

2j+1 for 0 ≤ j ≤ k,

= 0 for j > k.

(a) Show that fj is a continuous function on X.

(b) Show that ‖fj‖∞ = |θ|2j+1/(2j + 1)!.

(c) Use Weierstrass’ uniform M -test to show that

1

2i

((
1 +

iθ

2k + 1

)2k+1

−
(
1− iθ

2k + 1

)2k+1
)

→ sin θ

as k → ∞.
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14.2.7 Let

fj(y) =

⎧⎪⎪⎨⎪⎪⎩
1

π2j2 for y = 0,

y2
(
1 + cos 2jyπ

1− cos 2jyπ

)
= y2

(
1 + cos 2jyπ

2 sin2 jyπ

)
for 0 < y ≤ 1/2j,

0 for 1/2j < y ≤ 1.

(a) Show that fj ∈ C[0, 1].

(b) Show that ‖fj‖∞ ≤ 1/2πj2. (Use the inequality sin θ ≥ 2θ/π for

0 ≤ θ ≤ π/2.)

(c) Use Weierstrass’ uniform M -test to show that


π/y�∑
j=1

y2
(
1 + cos 2jyπ

1− cos 2jyπ

)
→

∞∑
j=1

1

j2π2

as y ↘ 0.

14.2.8 Give a direct proof of Corollary 14.2.9.

14.3 Linear operators

When we consider linear mappings between normed spaces, then continuity

and uniform continuity are the same. Indeed, we can say more.

Theorem 14.3.1 Suppose that (E1, ‖.‖1) and (E2, ‖.‖2) are normed spaces

and that T is a linear mapping from E1 to E2. The following are equivalent:

(i) K = sup{‖Tx‖2 : ‖x‖1 ≤ 1} < ∞;

(ii) there exists C ∈ R such that ‖Tx‖2 ≤ C ‖x‖1, for all x in E1;

(iii) T is Lipschitz;

(iv) T is uniformly continuous on E1;

(v) T is continuous on E1;

(vi) T is continuous at 0.

Proof (i) implies (ii): (ii) is trivially satisfied if x = 0. Otherwise, let

x1 = x/ ‖x‖1. Then

‖T (x)‖2 = ‖T (‖x‖1 x1)‖2 = ‖‖x‖1 T (x1)‖2 = ‖x‖1 ‖T (x1)‖2 ≤ K ‖x‖1 .

(ii) implies (iii): ‖T (x1)− T (x2)‖2 = ‖T (x1 − x2)‖2 ≤ C ‖x1 − x2‖1 .
Obviously (iii) implies (iv), (iv) implies (v) and (v) implies (vi).
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(vi) implies (i): There exists δ > 0 such that if ‖x‖1 ≤ δ then ‖T (x)‖2 ≤ 1.

If ‖x‖1 ≤ 1 then ‖δx‖1 ≤ δ, so that

‖T (x)‖2 =
∥∥δ−1T (δx)

∥∥
2
= δ−1 ‖T (δx)‖2 ≤ δ−1.

�

We denote the set of continuous linear mappings from V1 to V2 by

L(V1, V2). We write L(V ) for L(V, V ). A continuous linear mapping from

V1 to V2 is also called a bounded linear mapping, or a linear operator; a

continuous linear mapping from V to itself is called an operator on V .

Two norms ‖.‖1 and ‖.‖2 on a vector space E are equivalent if the

corresponding metrics are equivalent.

Corollary 14.3.2 If ‖.‖1 and ‖.‖2 are equivalent norms on a vector space

E then (E, ‖.‖1) is a Banach space if and only if (E, ‖.‖2) is.
Proof For they are uniformly equivalent, and so the result follows from

Corollary 14.1.7. �

We have the following extension theorem.

Theorem 14.3.3 Suppose that F is a dense linear subspace of a normed

space (E, ‖.‖E), and that T is a continuous linear mapping from F to a

Banach space (G, ‖.‖G). Then there is a unique continuous linear mapping

T̃ from E to G which extends T : T̃ (y) = T (y) for y ∈ F . If T is an isometry

then so is T̃ .

Proof By Theorem 14.3.1, T is uniformly continuous, and so by Theorem

14.1.10 there is a unique continuous extension T̃ , which is an isometry if T

is. We must show that T̃ is linear. Suppose that x, y ∈ E and that α, β are

scalars. There exist sequences (xn)
∞
n=1 and (yn)

∞
n=1 in F such that xn → x

and yn → y as n → ∞. Then αxn + βyn → αx+ βy as n → ∞, and so

T̃ (αx+ βy) = lim
n→∞ T̃ (αxn + βyn) = lim

n→∞T (αxn + βyn)

= lim
n→∞(αT (xn) + βT (yn)) = α lim

n→∞T (xn) + β lim
n→∞T (yn)

= α lim
n→∞ T̃ (xn) + β lim

n→∞ T̃ (yn) = αT̃ (x) + βT̃ (y).

�

Theorem 14.3.4 (i) L(V1, V2) is a linear subspace of the vector space of

all linear mappings from V1 to V2.
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(ii) If T ∈ L(V1, V2), set ‖T‖ = sup{‖T (x)‖2 : ‖x‖1 ≤ 1}. Then ‖T‖ is a

norm on L(V1, V2), the operator norm.

(iii) If T ∈ L(V1, V2), and x ∈ V1 then ‖T (x)‖2 ≤ ‖T‖ . ‖x‖1.
Proof. (i): We use condition (i) of Theorem 14.3.1. Suppose that

S, T ∈ L(V1, V2) and that α is a scalar. Then

sup{‖(αT )(x)‖2 : ‖x‖1 ≤ 1} = |α| sup{‖T (x)‖2 : ‖x‖1 ≤ 1},

so that αT ∈ L(V1, V2) and

sup{‖(S + T )(x)‖2 : ‖x‖1 ≤ 1}
≤ sup{‖S(x)‖2 : ‖x‖1 ≤ 1}+ sup{‖T (x)‖2 : ‖x‖1 ≤ 1},

so that S + T ∈ L(V1, V2).

(ii): If ‖T‖ = 0, then T (x) = 0 for x with ‖x‖ ≤ 1, and so T (x) = 0 for all

x: thus T = 0. ‖αT‖ = |α| ‖T‖ and ‖S + T‖ ≤ ‖S‖ + ‖T‖, by the equation

and inequality that we have established to prove (i).

(iii): This is true if x = 0. Otherwise, let y = x/ ‖x‖1. Then ‖y‖1 = 1, so

that

‖T (x)‖2 = ‖T (‖x‖1 y)‖2 = ‖x‖1 ‖T (y)‖2 ≤ ‖T‖ ‖x‖1 .
Theorem 14.3.5 If (E1, ‖.‖1) is a normed space and (E2, ‖.‖2) is a

Banach space then L(E1, E2) is a Banach space under the operator norm.

Proof The proof is like the proof of Theorem 14.1.4. Let (Tn) be a Cauchy

sequence in L(E1, E2). First we identify what the limit must be. Since, for

each x ∈ E1, ‖Tn(x)− Tm(x)‖2 ≤ ‖Tn − Tm‖ ‖x‖1, (Tn(x)) is a Cauchy

sequence in E2, which converges, by the completeness of E2, to T (x), say.

Secondly, we show that T is a linear mapping from E1 to E2. This follows,

since

T (αx+ βy)− αT (x)− βT (y) = lim
n→∞(Tn(αx+ βy)− αTn(x)− βTn(y)) = 0,

for all x, y ∈ E1 and all scalars α, β. Thirdly we show that T is continuous.

There exists N such that ‖Tn − Tm‖ ≤ 1, for m,n ≥ N . Then

‖(T − TN )(x)‖2 = lim
n→∞ ‖(Tn − TN )(x)‖2 ≤ ‖x‖1 ,

for each x ∈ E1, so that T − TN ∈ L(E1, E2). Since L(E1, E2) is a vector

space, T = (T − TN ) + TN ∈ L(E1, E2). Finally we show that Tn → T .

Given ε > 0 there exists M such that ‖Tn − Tm‖ ≤ ε, for m,n ≥ M . Then
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if m ≥ M , and x ∈ E1,

‖(T − Tm)(x)‖2 = lim
n→∞ ‖(Tn − Tm)(x)‖2 ≤ ε ‖x‖1 ,

so that ‖T − Tm‖ ≤ ε. �

A linear functional on a vector space V is a linear mapping from V into

the underlying scalar field. The vector space of continuous linear functionals

on a normed space (E, ‖.‖) is called the dual space E′; it is given the dual

norm ‖φ‖′ = {sup |φ(x)| : ‖x‖ ≤ 1}. This is simply the operator norm from

(E, ‖.‖) into the scalars.

Corollary 14.3.6 The dual space (E′, ‖.‖′) of a normed space (E, ‖.‖) is

a Banach space.

Let us consider one important example. We need a definition. A mapping

T from a complex vector space E into a complex vector space F is conjugate

linear if

T (x+ y) = T (x) + T (y) and T (αx) = αT (x) for x, y ∈ E,α ∈ C.

Theorem 14.3.7 (The Fréchet–Riesz representation theorem) Suppose

that H is a real or complex Hilbert space. If x, y ∈ H, let ly(x) = 〈x, y〉.
Then ly ∈ H ′, and the mapping l : H → H ′ is an isometry of H onto H ′. It
is linear if H is real and is conjugate linear if H is complex.

Proof We consider the complex case: the real case is easier. The function

ly is a linear mapping of H into C. Since

|ly(x)| = | 〈x, y〉 | ≤ ‖x‖ . ‖y‖ ,
ly ∈ H ′ and ‖ly‖′ ≤ ‖y‖. If y �= 0 then ly(y/ ‖y‖) = ‖y‖, so that ‖ly‖′ ≥ ‖y‖.
Thus ‖ly‖′ = ‖y‖. Clearly ly1+y2

= ly1
+ ly2

, so that ‖ly2
− ly1

‖′ = ‖y1 − y2‖,
for y1, y2 ∈ H: l is an isometry of H into H ′. Since

lαy(x) = 〈x, αy〉 = α 〈x, y〉 = αly(x),

l is conjugate linear.

The important part of the proof is the proof that l is surjective: every

continuous linear functional φ on H is represented in terms of the inner

product; there exists y ∈ H such that φ(x) = 〈x, y〉 for all x ∈ H.

If φ = 0, then φ = l0. Otherwise, by scaling, we can suppose that ‖φ‖′ = 1.

First we show that there is a unique y in the closed unit ball B ofH such that

φ(y) = 1. We use Theorem 14.1.11. Let An = {x ∈ B : �φ(x) ≥ 1 − 1/n}.
Since ‖φ‖′ = 1 = supx∈B |φ(x)|, An is non-empty, and clearly (An)

∞
n=1 is
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a decreasing sequence of closed sets. Suppose that x1, x2 ∈ An. By the

parallelogram law,

‖x1 + x2‖2 + ‖x1 − x2‖2 = 2(‖x1‖2 + ‖x2‖2) ≤ 4.

Since �φ(x1+x2) = �φ(x1)+�φ(x2) ≥ 2(1−1/n), ‖x1 + x2‖ ≥ 2(1−1/n).

It follows from this that

‖x1 − x2‖2 ≤ 4− 4(1− 1/n)2 = 8/n− 4/n2 ≤ 8/n.

Thus diam (An) → 0 as n → ∞, so that ∩n∈NAn is a singleton y. Then y is

the unique element of B for which φ(y) = 1.

We now show that φ(x) = 〈x, y〉 for all x ∈ H. Let w = x−〈x, y〉 y. Then
〈w, y〉 = 0, so that w is orthogonal to y. Suppose that φ(w) = reiθ �= 0. If

t > 0 then

1 + 2rt+ r2t2 = (φ(y + e−iθtw))2 ≤
∥∥∥y + e−iθtw

∥∥∥2 = 1 + t2 ‖w‖2 ,

so that 2r ≤ t(‖w‖2 − r2). Since this holds for all positive t, ‖w‖2 > r2. Set

t = r/(‖w‖2 − r2): then 2r ≤ r, giving a contradiction. Thus φ(w) = 0: that

is,

φ(x) = φ(w) + 〈x, y〉φ(y) = 〈x, y〉 .
�

This has the following consequence.

Theorem 14.3.8 Suppose that H and K are Hilbert spaces and that T ∈
L(H,K). Then there exists a unique S ∈ L(K,H) such that

〈T (x), y〉 = 〈x, S(y)〉 for all x ∈ H, y ∈ K.

Further, ‖S‖ = ‖T‖.

Proof Suppose that y ∈ K. Then the mapping x → 〈T (x), y〉 is a contin-

uous linear functional, and so there exists a unique element, S(y) say, in H

such that 〈T (x), y〉 = 〈x, S(y)〉.Then

〈x, S(y1 + y2)〉 = 〈T (x), y1 + y2〉 = 〈T (x), y1〉+ 〈T (x), y2〉
= 〈x, S(y1)〉+ 〈x, S(y2)〉 ,
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so that S(y1 + y2) = S(y1) + S(y2), and

〈x, S(αy)〉 = 〈T (x), αy〉 = α 〈T (x), y〉 = α 〈x, S(y)〉 = 〈x, αS(y)〉 ,
so that S(αy) = αS(y); S is a linear mapping.

If y ∈ K then

‖S(y)‖2 = 〈S(y), S(y)〉 = 〈TS(y), y〉 ≤ ‖T‖ . ‖S(y)‖ . ‖y‖ ,
so that ‖S(y)‖ ≤ ‖T‖ . ‖y‖. Thus S is continuous, and ‖S‖ ≤ ‖T‖. Similarly,

if x ∈ H then

‖T (x)‖2 = 〈T (x), T (x)〉 = 〈x, ST (x)〉 ≤ ‖S‖ . ‖T (x)‖ . ‖x‖ ,
so that ‖T (x)‖ ≤ ‖S‖ ‖x‖, and ‖T‖ ≤ ‖S‖. Hence‖S‖ = ‖T‖. �

S is the adjoint of T . If H and K are real, then S is denoted by T ′, and
if H and K are complex, then S is denoted by T ∗.

Exercises

14.3.1 Suppose that (E, ‖.‖E), (F, ‖.‖F ) and (G, ‖.‖G) are normed spaces

and that B is a bilinear mapping from E×F into G. Show that B is

continuous if and only if there exists M ≥ 0 such that ‖B(x, y)‖G ≤
M ‖x‖E ‖y‖F for all (x, y) ∈ E × F .

14.3.2 Suppose that (E, ‖.‖E), (F, ‖.‖F ) and (G, ‖.‖G) are normed spaces.

If T ∈ L(E,L(F,G)), and x ∈ E, y ∈ F , let j(T )(x, y) = (T (x))(y).

Show that j(T ) is a continuous bilinear mapping from E×F into G.

Show that j is a bijective linear mapping of L(E,L(F,G)) onto the

vector space B(E,F ;G) of continuous bilinear mappings from E×F

into G. If b ∈ B(E,F ;G), let

‖b‖ = sup{‖b(x, y)‖G : ‖x‖E ≤ 1, ‖y‖F ≤ 1}.
Show that this is a norm on B(E,F ;G), and that with this norm the

mapping j is an isometry. Deduce that if G is a Banach space, then

so is B(E,F ;G).

14.3.3 Suppose that E and F are Euclidean spaces, with orthonormal bases

(e1, . . . , em) and (f1, . . . , fn) and that T ∈ L(E,F ) is represented by

a matrix (tij) with respect to these bases. What matrix represents

the adjoint T ′?
14.3.4 If x ∈ l2, let R(x)1 = 0 and (R(x))n = xn−1 for n > 1: R is the right

shift on l2. What is R′? Show that R′R is the identity on l2. What is

RR′?
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14.3.5 If H is a Hilbert space and T ∈ L(H), then T is unitary (in the

complex case) or orthogonal (in the real case), if it is an isometry

of H onto itself. Show that T is unitary (orthogonal) if and only if

TT ∗ = T ∗T = I (TT ′ = T ′T = I).

14.3.6 Suppose that K is a closed linear subspace of a Hilbert space H.

(i) Show that if x ∈ H then there is a unique point P (x) in K such

that ‖x− P (x)‖ = inf{‖y − x‖ : y ∈ K}.
(ii) Show that P (x) is the unique point in K with x− P (x) ∈ K⊥.
(iii) Show that the mapping x → P (x) is linear and that P is

continuous, with ‖P‖ ≤ 1. When is ‖P‖ less than 1?

P is the orthogonal projection of H onto K.

(iv) Show that P = P ∗ (P = P ′) and that H = K ⊕K⊥.
[Compare this with the construction in Proposition 11.4.3, when

H is finite-dimensional.]

14.3.7 Suppose that φ is a non-zero continuous linear functional on a Hilbert

space H, and that φ(x0) = 1. Let N be the null-space of φ, and let

P be the orthogonal projection of H onto N . Let z0 = x0 − P (x0).

Show that φ(z0) = 1 and that φ(x) = 〈x, z0〉 / ‖z0‖2, for x ∈ H.

(This gives another proof of the Fréchet–Riesz representation

theorem.)

14.4 *Tietze’s extension theorem*

(This section can be omitted on a first reading.)

As an application of the results of the two previous sections, we prove

Tietze’s extension theorem. We need a preliminary result, of interest in its

own right.

Theorem 14.4.1 Suppose that (E1, ‖.‖1) is a Banach space and that

(E2, ‖.‖2) is a normed space; let their closed unit balls be B1 and B2, respec-

tively. Suppose that T ∈ L(E1, E2) and that there exist 0 < t < 1 and ε > 0

such that εB2 ⊆ (1− t)T (B1) + tεB2 - that is, if y ∈ εB2 there exist x ∈ B1

and z ∈ εB2 such that y = (1− t)T (x) + tz. Then the following hold:

(i) εB2 ⊆ T (B1);

(ii) T is surjective;

(iii) If U is open in E1 then T (U) is open in E2;

(iv) (E2, ‖.‖2) is a Banach space.

Proof (i) Suppose that z0 ∈ εB2. Then there exist x1 ∈ B1 and z1 ∈ εB2

such that z0 = (1−t)T (x1)+tz1; iterating this, there exist sequences (xn)
∞
n=1
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in B1 and (zn)
∞
n=1 in εB2 such that zn = (1− t)T (xn+1) + tzn+1, for n ∈ N.

Thus

z0 = (1− t)T (x1) + (1− t)T (tx2) + · · ·+ (1− t)T (tnxn+1) + tn+1zn+1

= (1− t)T (x1 + tx2 + · · ·+ tnxn+1) + tn+1zn+1.

Since ∞∑
n=1

∥∥tn−1xn
∥∥ =

∞∑
n=1

tn−1 ‖xn‖ ≤
∞∑
n=1

tn−1 = 1/(1 − t),∑∞
n=1 t

n−1xn converges absolutely to an element x of E1, and

‖x‖ ≤ 1/(1 − t). Since tn+1zn+1 → 0 as n → ∞, it follows that z0 =

(1− t)T (x) = T ((1− t)x). Since ‖(1− t)x‖ = (1− t) ‖x‖ ≤ 1, z0 ∈ T (B1).

(ii) T (E1) = T (∪∞
n=1nB1) = ∪∞

n=1nT (B1) ⊇ ∪∞
n=1nεB2 = E2.

(iii) Suppose that y = T (x) ∈ T (U). There exists δ > 0 such thatMδ(x) =

x + δB1 ⊆ U . We show that y + εδB2 ⊆ T (U), so that T (U) is open. If

z = y + w ∈ y + εδB2 then there exists v ∈ δB1 such that w = T (v). Thus

z = T (x) + T (v) = T (x+ v) ∈ T (x+ δB1) ⊆ T (U).

Hence y + εδB2 ⊆ T (U).

(iv) In order to show that (E2, ‖.‖2) is a Banach space, we use Propo-

sition 14.2.5. By homogeneity, if y ∈ E2 there exists x ∈ E1 with

‖x‖1 ≤ ‖y‖2 /ε for which T (x) = y. Suppose that (yn)
∞
n=1 is a sequence

in E2 with
∑∞

n=1 ‖yn‖2 < ∞. For each n ∈ N there exists xn ∈ E1 with

‖xn‖1 ≤ ‖yn‖2 /ε such that T (xn) = yn. Thus
∑∞

n=1 ‖xn‖1 < ∞. Since

(E1, ‖.‖1) is a Banach space,
∑∞

n=1 xn converges in E1, to s, say. Since T

is continuous,
∑∞

n=1 yn =
∑∞

n=1 T (xn) = T (s). Thus (E2, ‖, ‖2) is a Banach

space, by Proposition 14.2.5. �

Corollary 14.4.2 Suppose that (E1, ‖.‖1) is a Banach space, that

(E2, ‖.‖2) is a normed space and that T ∈ L(E1, E2). Suppose that there

exists η > 0 such that T (B1) ⊃ ηB2. If U is open in E1 then T (U) is open

in E2.

Proof Since T (B1) ⊂ T (B1) + (η/2)B2, it follows that ηB2 ⊆ T (B1) +

(η/2)B2. Set ε = η/2 and t = 1/2; then εB2 ⊆ (1− t)T (B1) + tεB2, and the

result follows from the theorem. �

Theorem 14.4.3 (Tietze’s extension theorem) Suppose that f is a

bounded continuous real-valued function on a closed subset A of a normal

topological space (X, τ). Let

M = sup{f(a) : a ∈ A}, m = inf{f(a) : a ∈ A}.
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Then there exists a continuous real-valued function g on X such that g(a) =

f(a) for a ∈ A, and m ≤ g(x) ≤ M for x ∈ X.

Proof The result is obviously true if f is constant. Otherwise, by consid-

ering f − (M + m)/2, we can suppose that m = −M , and by considering

f/ ‖f‖, we can suppose that M = 1 and m = −1. Let R be the restriction

mapping from Cb(X) → Cb(A); R(f) = f|A. We show that R satisfies the

conditions of Theorem 14.4.1, with t = 2/3 and ε = 1. Let

B = {a ∈ A : f(a) ≥ 1/3} and C = {a ∈ A : f(a) ≤ −1/3}.
Then B and C are disjoint closed subsets of X, and so by Urysohn’s lemma

there exists g ∈ Cb(X) with ‖g‖∞ ≤ 1/3 such that g(b) = 1/3 for b ∈ B and

g(c) = −1/3 for c ∈ C. Then

0 ≤ f(x)− g(x) ≤ 2/3, for x ∈ B,

0 > f(x)− g(x) ≥ −2/3, for x ∈ C,

|f(x)− g(x)| ≤ |f(x)|+ |g(x)| ≤ 2/3 for x ∈ A \ (B ∪ C).

Thus ‖f −R(g)‖∞ ≤ 2/3. Let us set p = 3g and q = (3/2)(f − R(g)).

Then ‖p‖∞ ≤ 1, ‖q‖∞ ≤ 1 and f = (1/3)R(p) + (2/3)q. Consequently, if

f ∈ Cb(A) there exists g ∈ Cb(X) with R(g) = f and ‖g‖∞ = ‖f‖∞.

�

We can drop the requirement that f is bounded.

Corollary 14.4.4 (i) If m < f(x) < M there exists a continuous function

g on X such that R(g) = f and such that m < g(x) < M for x ∈ X.

(ii) If F is a continuous function on A then there exists a continuous

function G on X such that G(a) = F (a) for a ∈ A.

Proof (i) Again, we can suppose that M = −m = 1. There exists h ∈
Cb(X) such that R(h) = f and ‖h‖∞ ≤ 1. Let D = {x ∈ X : |h(x)| = 1}.
Then D is a closed subset of X disjoint from A. By Urysohn’s Lemma, there

exists k ∈ Cb(X) with 0 ≤ k ≤ 1 for which k(a) = 1 for a ∈ A and k(d) = 0

for d ∈ D. Then g = h.k has the required properties.

(ii) Let f = tan−1 ◦F , Then f ∈ Cb(A) and −π/2 < f(a) < π/2 for a ∈ A.

By (i), there exists g ∈ Cb(X) with R(g) = f and −π/2 < g(x) < π/2 for

x ∈ X. Let G = tan ◦g. �

14.5 The completion of metric and normed spaces

Starting with the field Q of rational numbers, we constructed the field R of

real numbers. This fills up the gaps in the rationals – any Cauchy sequence
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converges – but does so in an efficient way, since any real number is the limit

of a sequence of rational numbers.

We can do the same for any metric space. A completion of a metric space

(X, d) is a complete metric space (X̂, d̂), together with an isometric mapping

j of X onto a dense subset j(X) of X̂. We have the following fundamental

theorem.

Theorem 14.5.1 Any metric space (X, d) has a completion. The com-

pletion is essentially unique: if ((X̂, d̂), j) and ((X̄, d̄), j′) are completions

of (X, d) then there is a unique isometry k of (X̂, d̂) onto (X̄, d̄) such that

j′ = k ◦ j.
Proof We give two proofs of the existence of a completion. The first is

short, but quite artificial. We have shown in Example 11.5.12 that there is an

isometry j of (X, d) into (B(X), ‖.‖∞), and have shown that (B(X), ‖.‖∞)

is a Banach space. We therefore take X̂ to be the closure j(X) of j(X)

in B(X), and take d̂ to be the subspace metric. Then (X̂, d̂) is complete

(Proposition 14.1.3) and j(X) is dense in (X̂, d̂).

The second proof is longer but more natural, and is useful when we con-

sider normed spaces. If (an)
∞
n=1 is a Cauchy sequence in X then j(an) must

converge to a unique element of the completion, so that (an)
∞
n=1 determines

an element of the completion. In general, however, there are many Cauchy

sequences which determine this element. We therefore define the elements

of the completion of (X, d) to be equivalence classes of Cauchy sequences

in X.

Let Y be the set of all Cauchy sequences in (X, d). Suppose that a =

(an)
∞
n=1 and b = (bn)

∞
n=1 are in Y . If ε > 0 then there exists n0 ∈ N such

that d(am, an) < ε/2 and d(bm, bn) < ε/2 for m,n ≥ n0. It follows from

Proposition 13.3.2 that

|d(am, bm)− d(an, bn)| ≤ d(am, an) + d(bm, bn) < ε, for m,n ≥ n0.

Thus (d(an, bn))
∞
n=1 is a Cauchy sequence of real numbers, which converges,

by the general principle of convergence, to a limit p(a, b). Clearly p(a, b) =

p(b, a), and

p(a, c) = lim
n→∞ d(an, cn)

≤ lim
n→∞ d(an, bn) + lim

n→∞ d(bn, cn) = p(a, b) + p(b, c),

so that p is a pseudometric on Y . We now apply Proposition 11.1.13: there

exists an equivalence relation ∼ on Y and a metric d̂ on the quotient space
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Y/ ∼ (which we denote by X̂) such that the quotient mapping q : Y → X̂

satisfies d̂(q(a), q(b)) = p(a, b), for a, b ∈ Y .

Next we define the mapping j : X → X̂. If x ∈ X, let xn = x for all n ∈ N;

the constant sequence c(x) = (xn)
∞
n=1 is certainly a Cauchy sequence. We

set j(x) = q(c(x)). If x, x′ ∈ X then

p(c(x), c(x′)) = lim
n→∞ d(xn, yn) = d(x, y),

so that d̂(j(x), j(y)) = d(x, y), and so j is an isometry of (X, d) into (X̂, d̂).

We now show that j(X) is dense in (X̂, d̂). Suppose that x̂∈ X̂

and that x̂= q(a) where a=(an)
∞
n=1 ∈Y . If N ∈N then p(a, c(aN )) =

limn→∞ d(an, aN ) → 0 as N → ∞. Thus d̂(x̂, j(aN )) → 0 as N → ∞,

so that j(X) is dense in (X̂, d̂).

The metric space (X̂, d̂), together with the isometry j, will be the

completion of (X, d).

We now come to the crux of the proof, and show that (X̂, d̂) is complete.

Suppose that (x̂(k))∞k=1 is a Cauchy sequence in (X̂, d̂). Since j(X) is dense

in (X̂, d̂), there exist xk ∈ X with d̂(x̂(k), j(xk)) < 1/k, for k ∈ N. Then

|d̂(j(xk), j(xl))− d̂(x̂(k), x̂(l))| ≤ 1/k + 1/l,

so that (j(xk))
∞
k=1 is a Cauchy sequence in (X̂, d̂). Since j is an isom-

etry, (xk)
∞
k=1 is a Cauchy sequence in (X, d). Let x̂= q((xk)

∞
k=1). Then

d̂(j(xl), x̂)= limk→∞ d(xl, xk) and so d̂(j(xl), x̂) → 0 as l → ∞, since

(xk)
∞
k=1 is a Cauchy sequence. Thus j(xl) → x̂ as l → ∞. Consequently

d̂(x̂(l), x̂) ≤ d̂(x̂(l), j(xl)) + d̂(j(xl), x̂) ≤ 1/l + d̂(j(xl), x̂) → 0

as l → ∞. Thus x̂l → x̂ as l → ∞.

Finally, we show that the completion is essentially unique. The mapping

j′ ◦j−1 is an isometry from j(X) into (X̄, d̄), and so is uniformly continuous.

By Theorem 14.1.10, there is a unique continuous extension k : (X̂, d̂) →
(X̄, d̄), and k is an isometry. k(X̂) is therefore complete, and so is closed

in X̄. But j′(X) ⊆ k(X̂), and j′(X) is dense in X̄ , and so k(X̂) = X̄: k is

surjective. �

Because of the essential uniqueness of completion, we usually talk about

the completion of a metric space, and consider X as a dense subset of its

completion (just as we consider the field Q of rational numbers as a subfield

of the field R of real numbers).

There is a corresponding result for normed spaces.
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Theorem 14.5.2 Suppose that (E, ‖.‖) is a normed space. There exists a

Banach space (Ê, ‖.‖ )̂, and an isometric linear mapping j : E → Ê such

that j(E) is a dense linear subspace of Ê. (Ê, ‖.‖ )̂ is the completion of E.

It is essentially unique: if ((Ē, ‖.‖ )̄, j′) is another completion then there is

a unique linear isometry k of (Ê, ‖.‖ )̂ onto (Ē, ‖.‖ )̄ such that j′ = k ◦ j.
Proof Consider the second construction of Theorem 14.5.1, using Cauchy

sequences. The space Y of Cauchy sequences has a natural vector space

structure: define

(an)
∞
n=1 + (bn)

∞
n=1 = (an + bn)

∞
n=1, λ(an)

∞
n=1 = (λan)

∞
n=1,

verifying that the sum and scalar product are in Y . The pseudometric p

is given by the seminorm π, where π(a) = p(a, 0) = limn→∞ ‖an‖. The

equivalence class q(0) to which 0 belongs is

N = {(an)∞n=1 : an → 0 as n → ∞},

which is a linear subspace of Y . Further, q(a) = a + N , so that Ê is the

quotient vector space E/N , and j is a linear mapping of E into Ê. If we

set ‖x̂‖ˆ = d̂(x̂, 0̂), then ‖.‖ˆ is a norm on Ê which defines d̂, and under

which Ê is a Banach space. The facts that j is an isometry and that j(E) is

dense on Ê come from Theorem 14.5.1, as does the existence of an isometry

k : Ê → Ē. It remains to show that k is linear. If x̂, ŷ ∈ Ê, there exist

sequences (xn)
∞
n=1 and (yn)

∞
n=1 in E such that j(xn) → x̂ and j(yn) → ŷ

as n → ∞. Then j(xn + yn) → x̂ + ŷ, and so, using the continuity of j, j′

and k,

k(x̂) + k(ŷ) = k( lim
n→∞ j(xn)) + k( lim

n→∞ j(yn)) = lim
n→∞ j′(xn) + lim

n→∞ j′(yn)

= lim
n→∞(j′(xn) + j′(yn)) = lim

n→∞(j′(xn + yn))

= k( lim
n→∞(j(xn + yn))) = k(x̂+ ŷ).

Scalar multiplication is treated in a similar way. �

Again, we consider (E, ‖.‖) as a dense linear subspace of its completion

(Ê, ‖.‖ )̂.

Exercise

14.5.1 Define the notion of a convergent sequence in Q and a Cauchy

sequence in Q, using rational numbers, rather than real numbers.
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Show how the second proof of Theorem 14.5.1 can be used to con-

struct the completion Q̂ of Q. Show that Q̂ is an ordered field, and

that every non-empty subset of Q̂ which is bounded above has a least

upper bound.

[This is another way of constructing R from Q.]

14.6 The contraction mapping theorem

If f is a mapping of a set X into itself, then an element x of X is a fixed point

of f if f(x) = x. As we shall see, fixed points frequently have interesting

properties.

A mapping f : (X, d) → (X, d) of a metric space into itself is a contraction

mapping of (X, d) if there exists 0 ≤ K < 1 such that d(f(x), f(y)) ≤
Kd(x, y) for all x, y ∈ X; that is, f is a Lipschitz mapping with constant

strictly less than 1. The fact that the constant K is strictly less than 1 is of

fundamental importance.

Theorem 14.6.1 (The contraction mapping theorem) If f is a contraction

mapping of a non-empty complete metric space (X, d) then f has a unique

fixed point x∞.

Proof Let K be the Lipschitz constant of f . Let x0 be any point of

X. Define the sequence (xn)
∞
n=0 recursively by setting xn+1= f(xn). Thus

xn = fn(x0), and

d(xn, xn+1) ≤ Kd(xn−1, xn) ≤ K2d(xn−2, xn−1) ≤ · · · ≤ Knd(x0, x1).

We show that (xn)
∞
n=0 is a Cauchy sequence. Suppose that ε> 0. There exists

n0 ∈N such that Kn< (1−K)ε/(d(x0, x1)+ 1) for n≥n0. If n>m≥n0

then

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

≤ Kmd(x0, x1) +Km+1d(x0, x1) + · · ·+Kn−1d(x0, x1)

≤ Kmd(x0, x1)/(1 −K) < ε.

Since (X, d) is complete, there exists x∞ ∈X such that xn→x∞ as n→∞.

Since f is continuous, xn+1 = f(xn)→ f(x∞) as n→∞, and so x∞ = f(x∞):

x∞ is a fixed point of f . If y is any fixed point of f then d(y, x∞) =

d(f(y), f(x∞)) ≤ Kd(y, x∞); hence d(y, x∞) = 0, and y = x∞; x∞ is the

unique fixed point of f . �
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Three points are worth making about this proof. First, we start with any

point x0 of X, and obtain a sequence which converges to the unique fixed

point x∞; further, d(x0, x∞) ≤ d(x0, x1)/(1 −K). Secondly, d(xn+1, x∞) =

d(f(xn), f(x∞)) ≤ Kd(xn, x∞), so that d(xn, x∞) ≤ Knd(x0, x∞); the con-

vergence is exponentially fast. Thirdly, the condition that d(f(x), f(y)) <

d(x, y) for x �= y is not sufficient for f to have a fixed point. The func-

tion f(x) = x + e−x : [0,∞) → [0,∞) does not have a fixed point,

but satisfies the condition; if 0 ≤ y < x < ∞ then, by the mean-value

theorem, f(x) − f(y) = (1 − e−c)(x − y) for some x < c < y, so that

|f(x)− f(y)| < |x− y|.
Corollary 14.6.2 Suppose that g is a mapping from X to X which

commutes with f : f ◦ g = g ◦ f . Then x∞ is a fixed point of g.

Proof f(g(x∞)) = g(f(x∞)) = g(x∞); g(x∞) is a fixed point of f , and so

g(x∞) = x∞. �

We can strengthen the contraction mapping in the following way.

Corollary 14.6.3 Suppose that h : (X, d) → (Xd) is a mapping of a com-

plete metric space into itself, and suppose that hk is a contraction mapping

for some k ∈ N. Then h has a unique fixed point.

Proof Let f = hk. Then f has a unique fixed point x∞. As f ◦h = h◦f =

fk+1, x∞ is a fixed point of h. If y is a fixed point of h then f(y) = hk(y) = y,

so that y = x∞; x∞ is the unique fixed point of f . �

Suppose that (X, d) and (Y, ρ) are metric spaces and that f : X×Y → Y

is continuous. Can we solve the equation y = f(x, y) for each x ∈ X? In

other words, is there a function φ : X → Y such that φ(x) = f(x, φ(x)) for

each x ∈ X? If so, is it unique? Is it continuous?

Our first application of the contraction mapping theorem gives sufficient

conditions for these questions to have a positive answer. It can be thought

of as a contraction mapping theorem with a continuous parameter.

Theorem 14.6.4 (The Lipschitz implicit function theorem) Suppose

that (X, d) is a metric space, that (Y, ρ) is a complete metric space

and that f :X ×Y →Y is continuous. If there exists 0<K < 1 such that

ρ(f(x, y), f(x, y′)) ≤ Kρ(y, y′) for all x ∈ X and y, y′ ∈ Y then there exists

a unique mapping φ : X → Y such that φ(x) = f(x, φ(x)) for each x ∈ X.

Further, φ is continuous.

Proof The proof of existence and uniqueness follows easily from the con-

traction mapping theorem. If x ∈ X then the mapping fx : Y → Y defined
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by fx(y) = f(x, y) is a contraction mapping, which has a unique fixed point

φ(x). Then f(x, φ(x)) = fx(φ(x)) = φ(x).

It remains to show that φ is continuous. Suppose that x ∈ X and that

ε > 0. There exists δ > 0 such that if d(x, z) < δ then

ρ(φ(x), f(z, φ(x))) = ρ(f(x, φ(x)), f(z, φ(x))) < (1−K)ε.

If d(x, z) < δ, then

ρ(φ(x), φ(z)) ≤ ρ(φ(x), f(z, φ(x)) + ρ(f(z, φ(x)), f(z, φ(z)))

≤ (1−K)ε+Kρ(φ(x), φ(z)),

so that ρ(φ(x), φ(z)) ≤ ε. �

Our next application, which uses Corollary 14.6.3, gives a proof of

the existence and uniqueness of solutions of certain ordinary differential

equations.

Theorem 14.6.5 Suppose that M ≥ 0 and that L ≥ 0. Suppose that H is

a continuous real-valued function on the triangle

T = {(x, y) ∈ R2 : 0 ≤ x ≤ b, |y| ≤ Mx},

that |H(x, y)| ≤ M and that |H(x, y) − H(x, y′)| ≤ L|y − y′|, for (x, y) ∈
T and (x, y′) ∈ T . Then there exists a unique continuously differentiable

function f on [0, b] such that f(0) = 0, (x, f(x)) ∈ T for x ∈ [0, b] and

df

dx
(x) = H(x, f(x)) for all x ∈ [0, b].

Proof If f is any solution, then

|f(x)| = |f(x)− f(0)| = |
∫ x

0
H(t, f(t))dt| ≤

∫ x

0
|H(t, f(t))|dt ≤ Mx,

for 0 ≤ x ≤ b, so that the graph of f is contained in T . The second condition

is a Lipschitz condition, which is needed to enable us to use the contraction

mapping theorem.

First let us observe that the fundamental theorem of calculus shows that

solving this differential equation is equivalent to solving an integral equation.

If f is a solution, then, as above,

f(x) = f(x)− f(0) =

∫ x

0
f ′(t) dt =

∫ x

0
H(t, f(t)) dt for all x ∈ [0, b].
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Conversely, if f is a continuous function which satisfies this integral equation,

then f(0) = 0 and the function J(f)(x) =
∫ x
0 H(t, f(t)) dt is differentiable,

with continuous derivative H(x, f(x)). Thus f ′(x) = H(x, f(x)) for x ∈
[0, b].

Let X = {g ∈ C[0, b] : |g(x)| ≤ Mx for x ∈ [0, b]}. X is a closed subset

of the Banach space (C[0, b], ‖.‖∞), and so is a complete metric space under

the metric defined by the norm. We define a mapping J : X → C[0, b] by

setting

J(g)(x) =

∫ x

0
H(t, g(t)) dt, for x ∈ [0, b].

Then J(g) is a continuous function on [0, b] and

|J(g)(x)| ≤
∫ x

0
M dt = Mx,

so that J(g) ∈ X. We now show by induction that, for each n ∈ Z+,

|Jn(g)(x) − Jn(h)(x)| ≤ Lnxn

n!
‖g − h‖∞ , for g, h ∈ X and 0 ≤ x ≤ b.

The result is certainly true for n = 0. Suppose that it is true for n. Then

|Jn+1(g)(x) − Jn+1(h)(x)| ≤
∫ x

0
|H(t, Jn(g)(t)) −H(t, Jn(h)(t))| dt

≤
∫ x

0
L|Jn(g)(t) − Jn(h)(t)| dt

≤
∫ x

0

Ln+1

n!
‖g − h‖∞ tn dt

=
Ln+1xn+1

(n+ 1)!
‖g − h‖∞ .

Thus

‖Jn(g)− Jn(h)‖∞ ≤ Lnbn

n!
‖g − h‖∞ .

Now Lnbn/n! → 0 as n → ∞, and so there exists k ∈ N such that

Lkbk/k!< 1. Thus Jk is a contraction mapping of X. We apply Corollary

14.6.3. J has a unique fixed point f , and f is the unique solution of the

integral equation. �

The next application of the contraction mapping theorem is an inverse

function theorem.
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Theorem 14.6.6 (The Lipschitz inverse function theorem) Suppose that

U is an open subset of a Banach space (E, ‖.‖) and that g : U → E is a

Lipschitz mapping with constant K < 1. Let f(x) = x + g(x). If the closed

neighbourhood Mε(x) of x is contained in U then

M(1−K)ε(f(x)) ⊆ f(Mε(x)) ⊆ M(1+K)ε(f(x)).

The mapping f is a homeomorphism of U onto f(U), f−1 is a Lipschitz

mapping with constant 1/(1 −K), and f(U) is an open subset of E.

Proof Since x− y = (f(x)− f(y))− (g(x)− g(y))

‖x− y‖ ≤ ‖f(x)− f(y)‖+ ‖g(x) − g(y)‖ ≤ ‖f(x)− f(y)‖+K ‖x− y‖ ,

so that ‖f(x)− f(y)‖ ≥ (1 − K) ‖x− y‖. Thus f is one-one, and f−1 is a

Lipschitz mapping with constant 1/(1 −K).

Suppose that x ∈ U and that the closed neighbourhoodMε(x) is contained

in U . Then

‖f(x)− f(y)‖ ≤ ‖x− y‖+ ‖g(x) − g(y)‖ ≤ (1 +K) ‖x− y‖ ,

so that f(Mε(x)) ⊆ M(1+K)ε(f(x)).

Suppose that y ∈ M(1−K)ε(f(x)). Let h(z) = y − g(z), for z ∈ Mε(x). We

shall show that h is a contraction mapping of Mε(x). First, if z ∈ Mε(x)

then

‖h(z)− x‖ = ‖y − x− g(z)‖ = ‖y − f(x) + g(x)− g(z)‖
≤ ‖y − f(x)‖+ ‖g(x) − g(z)‖ ≤ (1−K)ε+Kε = ε,

so that h(Mε(x)) ⊆ Mε(x). Secondly,

‖h(z) − h(w)‖ = ‖g(z)− g(w)‖ ≤ K ‖z − w‖ ,

so that h is a contraction mapping of Mε(x). Since Mε(x) is closed, it is

complete, and so h has a unique fixed point v. Then v = y − g(v), so that

y = f(v) ∈ f(Mε(x)). Thus M(1−K)ε(f(x)) ⊆ f(Mε(x)). Consequently, f(U)

is an open subset of E. �

We shall use this theorem later to prove a differentiable inverse function

theorem (Theorem 17.4.1).

We can apply this result to linear operators on (E, ‖.‖). In this case,

however, it is more natural to proceed directly. Suppose that S, T ∈ L(E).
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Then the composed map S ◦ T ∈ L(E). Further,

‖S ◦ T‖ = sup{‖S(T (x))‖ : ‖x‖ ≤ 1}
≤ ‖S‖ sup{‖T (x)‖ : ‖x‖ ≤ 1} = ‖S‖ . ‖T‖ .

We set T 0 = I. Then ‖T n‖ ≤ ‖T‖n for all n ∈ Z+. We use this inequality

to prove the following.

Theorem 14.6.7 Suppose that (E, ‖.‖) is a Banach space, that T ∈ L(E)

and that
∥∥T k

∥∥ < 1 for some k ∈ N. Then
∑∞

n=0 T
n converges absolutely

in L(E). If S =
∑∞

n=0 T
n then (I − T )S = S(I − T ) = I, so that I − T is

invertible, with inverse S.

Proof Since
∥∥T nk

∥∥ ≤ ∥∥T k
∥∥n for n ∈ N,

∑∞
n=0

∥∥T nk
∥∥ < ∞. Thus

∞∑
n=0

‖T n‖ =

k−1∑
j=0

∞∑
n=0

∥∥∥T jT nk
∥∥∥ ≤

k−1∑
j=0

∞∑
n=0

∥∥T j
∥∥ .∥∥∥T nk

∥∥∥
=

⎛⎝k−1∑
j=0

∥∥T j
∥∥⎞⎠( ∞∑

n=0

∥∥∥T nk
∥∥∥) < ∞,

and so
∑∞

n=0 T
n converges absolutely in A, to S, say. In particular, T n → 0

as n → ∞. Let Sn =
∑n

j=0 T
j. Then

(I − T )Sn = Sn(I − T ) = I − T n+1 → I as n → ∞.

But (I − T )Sn → (I − T )S and Sn(I − T ) → S(I − T ) as n → ∞, and so

(I − T )S = S(I − T ) = I. �

Corollary 14.6.8 If ‖T‖ < I then I − T is invertible, and∥∥(I − T )−1
∥∥ < 1/(1 − ‖T‖).

Proof We can take k = 1. Then

‖S‖ ≤
∞∑
n=0

‖T n‖ ≤
∞∑
n=0

‖T‖n =
1

1− ‖T‖ .

�

The series
∑∞

n=0 T
n is called the Neumann series.
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Corollary 14.6.9 Let GL(E) be the set of invertible elements of L(E).

Then GL(E) is an open subset of L(E), and the mapping S → S−1 is a

homeomorphism of GL(E) onto itself.

The set GL(E) is a group under composition. It is called the general linear

group.

Proof Suppose that S ∈GL(E). Let α=
∥∥S−1

∥∥−1
. Suppose that

‖U‖ <α/2. Then
∥∥US−1

∥∥ ≤ ‖U‖ /α < 1
2 , so that I + US−1 is invertible

and
∥∥(I + US−1)−1

∥∥ < 2. Then S + U = (I + US−1)S is invertible, with

inverse S−1(I+US−1)−1, so that GL(E) is an open subset of L(E). Further,∥∥(S + U)−1
∥∥ ≤ ∥∥S−1

∥∥ .∥∥(I + US−1)−1
∥∥ < 2/α. Now (S + U)−1 − S−1 =

−(S + U)−1US−1, so that∥∥(S + U)−1 − S−1
∥∥ ≤ 2 ‖U‖ /α2,

and (S +U)−1 → S−1 as U → 0. Thus the mapping S → S−1 is continuous

on GL(E). Since (S−1)−1 = S, it follows that the mapping S → S−1 is a

homeomorphism of GL(E) onto itself. �

Corollary 14.6.10 Suppose that E and F are Euclidean spaces and that

1 ≤ k ≤ d = dimF . The set Lk(E,F ) of linear mappings in L(E,F ) of rank

greater than or equal to k is an open subset of L(E,F ). In particular, the set

Ld(E,F ) of surjective mappings in L(E,F ) is an open subset of L(E,F ).

Proof Suppose that T ∈ Lk(E,F ). Let N be the null-space of T , let

E1 = N⊥, and let j : E1 → E be the inclusion mapping. Let F1 = T (E) =

T (E1) and let P : F → F1 be the orthogonal projection of F onto F1. Then

T1 = P ◦ T ◦ j is a linear isomorphism of E1 onto F1. Let δ = 1/
∥∥T−1

1

∥∥. If
S1 ∈ L(E1, F1) and ‖S1 − T1‖ < δ then

∥∥T−1
1 ◦ S1 − I

∥∥ < 1, so that T−1
1 S1 ∈

GL(E1). Hence S1 is a linear isomorphism of E1 onto F1. If S ∈L(E,F ) and

‖S − T‖ < δ then ‖(P ◦ S ◦ j)− T1‖ < δ, so that P ◦ S ◦ j is a linear

isomorphism of E1 onto F1, and therefore has rank k. Thus rank(S) ≥
rank(P ◦ S ◦ j) ≥ k. �

Let us apply Theorem 14.6.7 to some linear integral equations. First sup-

pose that K is a bounded uniformly continuous real-valued function on the

square [a, b] × [a, b], that g ∈ C([a, b]) and that λ is a parameter in R. We

seek a solution f ∈ C([a, b]) to the Fredholm integral equation

f(x) = g(x) + λ

∫ b

a
K(x, y)f(y) dy for x ∈ [a, b].



14.6 The contraction mapping theorem 419

K is the kernel of the equation. K defines an element of L(C([a, b])): if

f ∈ C([a, b]) let

TK(f)(x) =

∫ b

a
K(x, y)f(y) dy for x ∈ [a, b].

First we show that TK(f) ∈ C([a, b]). Suppose that ε > 0. Let η =

ε/(b− a)(‖f‖∞ + 1). There exists δ > 0 such that

|K(x, y)−K(x′, y′)| < η if |x− x′| < δ and |y − y′| < δ.

If |x− x′| < δ then

|TK(f)(x)− TK(f)(x′)| ≤
∫ b

a
|K(x, y)−K(x′, y)||f(y)| dy

≤ η ‖f‖∞ (b− a) < ε.

Thus TK(f) is continuous on [a, b].

Further

|TK(f)(x)| ≤
∫ b

a
|K(x, y)f(y)| dy ≤ (b− a) ‖K‖∞ ‖f‖∞ ,

where ‖K‖∞ = sup{|K(x, y)| : (x, y) ∈ [a, b] × [a, b]}. Consequently TK ∈
L(C([a, b])), and ‖TK‖ ≤ (b − a) ‖K‖∞. Thus if |λ|(b − a) ‖K‖∞ < 1 then

‖λTK‖ < 1, and so the continuous linear operator I − λTK is invertible.

Thus for each g ∈ C([a, b]) there exists a unique f ∈ C([a, b]) such that

(I − λTK)f = g; the Fredholm integral equation has a unique solution if

|λ| ‖TK‖ < 1.

Next, we consider the Volterra integral equation

f(x) = g(x) + λ

∫ x

a
K(x, y)f(y) dy for x ∈ [a, b],

where K is a bounded uniformly continuous function on the triangle T =

{(x, y) : a ≤ y ≤ x ≤ b}. If f ∈ C([a, b]) let

VK(f)(x) =

∫ x

a
K(x, y)f(y) dy for x ∈ [a, b].

Again, VK(f) ∈ C([a, b]). We claim that

|V n
K(f)(x)| ≤ (x− a)n

n!
‖K‖n∞ ‖f‖∞ for x ∈ [a, b] and n ∈ Z+,
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where ‖K‖∞ = sup{|K(x, y)| : (x, y) ∈ T}. We prove this by induction. The

result is certainly true when n = 0. Suppose that it holds for n. Then

|V n+1
K (f)(x)| =

∣∣∣∣∫ x

a
K(x, y)V n

K(f)(y) dy

∣∣∣∣ ≤ ∫ x

a
|K(x, y)V n

K(f)(y)| dy

≤ ‖K‖∞
∫ x

a
|V n

K(f)(y)| dy ≤ ‖K‖n+1
∞

n!
‖f‖∞

∫ x

a
(y − a)n dy

=
(x− a)n+1

(n+ 1)!
‖K‖n+1

∞ ‖f‖∞ .

In particular, ‖V n
K‖ ≤ (b− a)n ‖K‖n∞ /n!, and so |λ|n ‖V n

K‖ → 0 as n → ∞.

Thus |λ|n ‖V n
K‖ < 1 for large enough n, and so 1 − λVK is invertible for all

λ ∈ R; the Fredholm integral equation has a unique solution, for all λ ∈ R.

A concluding remark: as we shall see in the next chapter, it is enough to

assume that the kernels in the Fredholm and Volterra equations are contin-

uous, since this implies that they are bounded and uniformly continuous.

Exercises

14.6.1 Give an example of a surjective contraction mapping f on an

incomplete metric space (X, d) with no fixed point.

14.6.2 Suppose that f, g are contractions of a complete metric space (X, d).

Show that there exists unique points x0 and y0 in X such that x0 =

g(y0) and y0 = f(x0).

14.6.3 Suppose that h ∈ C([a, b]). If f ∈ C([a, b]), let lh(f) =∫ b
a f(x)h(x) dx. Show that if C([a, b]) is given the uniform norm then

lh is a continuous linear functional, and ‖lh‖′ =
∫ b
a |h(x)| dx. [Consider

approximating sums to the integral.]

14.6.4 Suppose that K is the kernel of a Fredholm operator on C([a, b]).

Show that ‖TK‖ = sup{∫ b
a |K(x, y)| dy : x ∈ [a, b]}.

14.6.5 Verify that if f ∈ C([a, b]) then VK(f) is continuous.

14.7 *Baire’s category theorem*

(This section can be omitted on a first reading.)

We now prove Baire’s category theorem, which is a straightforward

extension of Osgood’s theorem to complete metric spaces.

Theorem 14.7.1 (Baire’s category theorem) If (Un) is a sequence of dense

open subsets of a complete metric space (X, d) then ∩∞
n=1Un is dense in X.
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Proof Suppose that V is a non-empty open subset of X. We must show

that V ∩ (∩∞
n=1Un) is not empty. Since U1 is dense in X, there exists c1 ∈

V ∩ U1. Since V ∩ U1 is open, there exists 0 < ε1 ≤ 1/2 such that

Nε1(c1) ⊆ Mε1(c1) ⊆ V ∩ U1.

We now iterate the argument; for each n ∈ N there exist

cn ∈ Nεn−1
(cn−1) ∩ Un and 0 < εn < 1/2n

such that

Nεn(cn) ⊆ Mεn(cn) ⊆ Nεn−1
(cn−1) ∩ Un.

The sequence (Nεn(cn))
∞
n=1 is decreasing, so that if m, p ≥ n then

cm ∈ Mεn(cn) and cp ∈ Mεn(cn), so that

d(cm, cp) ≤ d(cm, cn) + d(cn, cp) < 2/2n;

thus (cn)
∞
n=1 is a Cauchy sequence in (X, d). Since (X, d) is complete, it

converges to an element c of X. Suppose that n ∈ N. Since cm ∈ Mεn(cn)

for m ≥ n and since Mεn(cn) is closed, c ∈ Mεn(cn) ⊆ Un. Thus c ∈ ∩∞
n=1Un.

Further, c ∈ Mε1(c1) ⊆ V , and so c ∈ V . �

Note that the proof uses the axiom of dependent choice. This cannot be

avoided: if Baire’s category theorem is true for all complete metric spaces

then the axiom of dependent choice must hold (Exercise 14.7.4). On the

other hand, the theorem can be proved for separable complete metric spaces

without using the axiom of dependent choice (Exercise 14.7.5).

The following corollary is particularly useful.

Corollary 14.7.2 Suppose that (Cn)
∞
n=1 is a sequence of closed subsets of

a complete metric space (X, d) whose union is X. Then there exists n such

that Cn has a non-empty interior.

Proof Let Un = X \ Cn. Then (Un)
∞
n=1 is a sequence of open sets and

∩∞
n=1Un is empty, and so is certainly not dense in X. Thus there exists Un

which is not dense in X; that is Cn has a non-empty interior. �

It is sometimes useful to have a local version of this corollary. This depends

upon the important observation that the hypotheses and conclusions of the

theorem are topological ones, so that Baire’s category theorem applies to

topologically complete metric spaces; in particular, by Theorem 14.1.13, it

applies to open subsets of complete metric spaces, and to Gδ subsets of

complete metric spaces.
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Corollary 14.7.3 Suppose that (Cn)
∞
n=1 is a sequence of closed subsets of

a complete metric space (X, d) whose union contains a non-empty open set

W . Then there exists n such that Cn ∩W has a non-empty interior.

Proof The sets Cn∩W are closed subsets of W whose union is W , and so

there exists n and a non-empty open subset V of W such that V ⊆ Cn ∩W .

Since W is open in X, it follows that V is open in X. �

Baire proved his theorem (for Rn) independently of Osgood. It was

included in his doctoral thesis, published in 1899. Why is the word ‘cat-

egory’ used? This is a matter of terminology. A subset A of a topological

space is said to be nowhere dense if its closure has an empty interior. It is

said to be of the first category in X if it is the union of a sequence of nowhere

dense sets, and is said to be of the second category in X if it is not of the first

category in X. Thus Corollary 14.7.2 states that a complete metric space is

of the second category in itself.

Let us now turn to some applications of the theorem.

Proposition 14.7.4 Suppose that F is a set of continuous mappings from

a complete metric space (X, d) into a metric space (Y, ρ), with the prop-

erty that F (x) = {f(x) : f ∈ F} is bounded, for each x ∈ X. Then there

exists a non-empty open subset U of X and a positive number K such that

diam (F (x)) ≤ K for each x ∈ U .

Proof If f, g ∈ F then the function x → ρ(f(x), g(x)) is continuous on X

and so the set {x ∈ X : ρ(f(x), g(x)) ≤ n} is closed. Consequently the set

Cn = {x ∈ X : diam (F (x)) ≤ n}
= ∩f,g∈F{x ∈ X : ρ(f(x), g(x)) ≤ n}

is closed. By hypothesis, X = ∪∞
n=1Cn, and so there exists n such that Cn

has a non-empty interior. �

The corresponding result for continuous linear mappings is more useful.

Theorem 14.7.5 (The principle of uniform boundedness) Suppose that A

is a set of continuous linear mappings from a Banach space (E, ‖.‖E) into

a normed space (F, ‖.‖F ) with the property that A(x) = {T (x) : T ∈ A} is

bounded, for each x ∈ E. Then sup{‖T‖ : T ∈ A} is finite.

Proof Let Cn = {x ∈ E : sup{‖T (x)‖ : T ∈ A} ≤ n}. Then (Cn)
∞
n=1 is

a sequence of closed sets whose union is E, and so there exists n such that
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Cn has a non-empty interior. Thus there exists x0 ∈ E and ε > 0 such that

Mε(x0) ⊆ Cn. Let K = 1/ε. If T ∈ A and ‖x‖E ≤ 1 then

‖T (x)‖F = K ‖T (εx)‖F = K ‖T (x0 + εx)− T (x0)‖F
≤ K(‖T (x0 + εx)‖F + ‖T (x0)‖F ) ≤ 2Kn,

so that ‖T‖ ≤ 2Kn. �

The contrapositive is equally useful.

Theorem 14.7.6 (The principle of condensation of singularities) Suppose

that D is an unbounded set of continuous linear mappings from a Banach

space (E, ‖.‖E) into a normed space (F, ‖.‖F ). If x ∈ E, let D(x) = {T (x) :
T ∈ D}.Then H = {x ∈ E : D(x) is unbounded} is of the second category

in E.

Proof For each n ∈ N, the set Gn = {x ∈ E : supT∈D ‖T (x)‖ ≤ n} is a

closed nowhere dense subset of E, so that ∪n∈NGn is of the first category in

E. By Baire’s category theorem, H cannot be of the first category in E. �

The principle of uniform boundedness has the following consequence.

Theorem 14.7.7 (The Banach–Steinhaus theorem) Suppose that (Tn)
∞
n=1

is a sequence of continuous linear mappings from a Banach space (E, ‖.‖E)
into a normed space (F, ‖.‖F ), and that Tn(x) converges, to T (x), say, as

n → ∞, for each x ∈ E. Then T is a continuous linear mapping from E

into F .

Proof The mapping T is certainly linear. For each x ∈ X, the set

{Tn(x) : n ∈ N} is bounded. By the principle of uniform boundedness,

there exists K such that ‖Tn‖ ≤ K for all n ∈ N. If x ∈ E then

‖T (x)‖F = limn→∞ ‖Tn(x)‖F ≤ K ‖x‖E, so that T is continuous. �

(Terminology varies; many authors call the principle of uniform bound-

edness the Banach–Steinhaus theorem.)

We now combine the Baire category theorem with Corollary 14.4.2 to

prove some of the most powerful results of Banach space theory.

Theorem 14.7.8 (The open mapping theorem) Suppose that T is a sur-

jective continuous linear mapping of a Banach space (E, ‖.‖E) onto a Banach

space (F, ‖.‖F ). If U is open in E then T (U) is open in F .

Proof Let BE be the unit ball in E, BF the unit ball in F . Let An =

T (nBE), for n ∈ N. Then An = nA1, A1 is convex (Corollary 11.2.2) and

A1 = −A1 . Now F = T (∪∞
n=1nBE) = ∪∞

n=1T (nBE) ⊆ ∪∞
n=1An so that
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F = ∪∞
n=1An. By Baire’s category theorem there exists n so that An has a

non-empty interior. Since the mapping y → y/n is a homeomorphism of F ,

A1 has a non-empty interior. Thus there exist y0 ∈ A1 and ε > 0 such that

Mε(y0) ⊆ A1. If ‖y‖F ≤ ε then y0+y ∈ A1 and y0−y ∈ A1. Since A1 = −A1,

−y0 + y ∈ A1, and since A1 is convex y = 1
2((y0 + y) + (−y0 + y)) ∈ A1, so

that A1 = T (BE) ⊃ εBF . The result now follows from Corollary 14.4.2. �

Corollary 14.7.9 (The isomorphism theorem) If T is a bijective con-

tinuous linear mapping of a Banach space (E, ‖.‖E) onto a Banach space

(F, ‖.‖F ), then T−1 is continuous, so that T is a homeomorphism.

Recall that a continuous mapping from a topological space to a T1

topological space has a closed graph.

Corollary 14.7.10 (The closed graph theorem) If T is a linear mapping

of a Banach space (E, ‖.‖E) into a Banach space (F, ‖.‖F ) which has a closed

graph, then T is continuous.

Proof The graph GT of T is a closed linear subspace of the Banach

space (E, ‖.‖E) × (F, ‖.‖F ), and so is a Banach space, under the norm

‖(x, T (x))‖ = ‖x‖E + ‖T (x)‖F . If (x, T (x)) ∈ GT let R((x, T (x))) = T (x)

and let L((x, T (x)))= x. R is a norm-decreasing linear mapping of GT into

F , and is therefore continuous. L is a bijective norm-decreasing linear map-

ping of the Banach space GT onto the Banach space E; it is continuous, and

so L−1 is continuous, by the isomorphism theorem. Thus T = R ◦ L−1 is

continuous. �

This theorem says the following. Suppose that T is a linear mapping of

a Banach space (E, ‖.‖E) into a Banach space (F, ‖.‖F ) with the property

that whenever (xn)
∞
n=1 is a sequence in E for which xn → x and T (xn) → y

as n → ∞, then T (xn) → T (x) as n → ∞. Then if (xn)
∞
n=1 is a sequence in

E for which xn → x as n → ∞, then T (xn) → T (x) as n → ∞. The gain

may appear to be slight, but this is a powerful theorem.

The general principle of convergence ensures that the uniform limit of

continuous functions is continuous, but the same is not true for functions

which are the pointwise limit of continuous functions. On the other hand, as

we shall see, not every function on a complete metric space is the pointwise

limit of continuous functions. Baire used his category theorem to establish

properties of such limits.

We shall restrict attention to real-valued functions defined on a complete

metric space (X, d); the results extend easily to functions taking values in

a separable metric space. Suppose that f is a function on X. Recall that
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if A is a subset of X the the oscillation Ω(f,A) of f on A is defined as

Ω(f,A) = sup{|f(x) − f(y)| : x, y ∈ A}. If x ∈ X and δ > 0, we set

Ωδ(f)(x) = Ω(f,Nδ(x)). Then Ωδ(f)(x) is an increasing function of δ taking

values in [0,∞]. We set Ω(f)(x) = inf{Ωδ(f)(x) : δ > 0}. Then it is easy to

see that f is continuous at x if and only if Ω(f)(x) = 0.

Proposition 14.7.11 If f is a real-valued function on a metric space

(X, d) and ε > 0 then the set Uε = {x ∈ X : Ω(f)(x) < ε} is open in (X, d).

Proof Suppose that x ∈ Uε. There exists δ > 0 such that Ωδ(f)(x) < ε. If

y ∈ Nδ(x), there exists η > 0 such that Nη(y) ⊆ Nδ(x). Then

Ω(f)(y) ≤ Ωη(f)(y) ≤ Ωδ(f)(x) < ε,

so that y ∈ Uε. Thus Nδ(x) ⊆ Uε, and Uε is open. �

Corollary 14.7.12 Suppose that f is a real-valued function on a complete

metric space (X, d) for which the set Uε = {x ∈ X : Ω(f)(x) < ε} is dense

in X, for each ε > 0. Then the set C of points of continuity of f is dense in

(X, d).

Proof For C = ∩∞
n=1U1/n, and so the result follows from Baire’s category

theorem. �

Theorem 14.7.13 Suppose that f is the pointwise limit of a sequence

(fn)
∞
n=1 of continuous functions on a complete metric space (X, d). Then

the set C of points of continuity of f is dense in (X, d).

Proof We show that the conditions of Corollary 14.7.12 are satisfied. Sup-

pose that ε > 0. If j ∈ Z let aj = jε/4 and let bj = aj + ε/2, so that

R = ∪j∈Z(aj , bj). Suppose that V is a non-empty open subset of X. Recall

(Theorem 14.1.13) that V is topologically complete; there is a complete

metric on V which defines the subspace topology of V . Let

An,j = {x ∈ V : fm(x) ∈ [aj , bj ] for m ≥ n}
= ∩m≥n{x ∈ V : fm(x) ∈ [aj , bj ]}.

Then An,j is a closed subset of V , and V = ∪{An,j : n ∈ N, j ∈ Z}. Note
that if x ∈ An,j then f(x) ∈ [aj , bj ]. By Baire’s category theorem, there exist

n, j such that An,j has a non-empty interior in V . Since V is open in X,

An,j has a non-empty interior in X. Thus there exist x ∈ V and η > 0 such

that Nη(x) ⊆ An,j. Then Ω(f)(x) ≤ Ωη(f)(x) ≤ ε/2 < ε, so that x ∈ V ∩Uε,

and Uε is dense in (X, d). �
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In fact, we can say more.

Proposition 14.7.14 Suppose that f is a real-valued function on a com-

plete metric space (X, d) and that the set C of points of continuity of f is

dense in (X, d). Then the set D of points of discontinuity of f is of the first

category in X.

Proof For D = ∪∞
n=1Bn, where Bn = {x ∈ X : Ω(f)(x) ≥ 1/n}, and each

Bn is closed and nowhere dense. �

Corollary 14.7.15 If (X, d) has no isolated points, then C is uncountable.

Proof If not, then C is the union of countably many singleton sets, each

of which is nowhere dense. Thus X = ∪∞
n=1Bn ∪C is the countable union of

closed nowhere dense sets, giving a contradiction. �

We end this section with a remarkable result of the Catalan mathemati-

cian Ferran Sunyer y Balaguer.

Theorem 14.7.16 Suppose that f is an infinitely differentiable function

on (0, 1) with the property that for each x ∈ (0, 1) there exists n ∈ Z+ such

that f (n)(x) = 0. Then f is a polynomial function.

Proof Let An = {x ∈ (0, 1) : f (n)(x) = 0}, and let En be the interior of

An. Let E = ∪∞
n=0En, and let F = (0, 1) \ E. Since each An is closed and

since if [a, b] ⊆ (0, 1) then [a, b] = ∪∞
n=0(An ∩ [a, b]), it follows from Baire’s

category theorem that E is dense in (0, 1). In particular, there exists n ∈ N

such that En is not empty. Note that if m > n then f (m)(x) = 0 for x ∈ En,

so that En ⊆ Em. Note also that, by continuity, f (m)(x) = 0 for x ∈ En.

We shall show that there exists n such that En = (0, 1). Suppose not. If

Em �= ∅ then Em is the union of countably many disjoint open intervals, the

constituent intervals of Em.

Now E is open, and is the union of countably many disjoint non-empty

open intervals, the constituent intervals of E. Suppose that I is one of them,

and that x ∈ I. Then there exists a least m ∈ Z+ for which x ∈ Em, and x

is in a constituent interval Im of Em. Then Im ⊆ I. We show that Im = I.

If not, one of the endpoints of Im is in I. Without loss of generality, we can

suppose that it is a right-hand endpoint b. Since the sequence (En)
∞
n=1 is

increasing, and b �∈ Em, there exists a least integer p > m such that b ∈ Ep.
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Since Im ⊆ Em ⊆ Ep−1, it follows that b is a right-hand endpoint of a

constituent interval of Ep−1. Consequently, f
p−1(b) = 0. Since Ep is open,

there exists c > b such that (b, c) ⊆ Ep. If x ∈ (b, c) then

f (p−1)(x) = f (p−1)(b) +

∫ x

b
f (p)(t) dt = 0,

so that (b, c) ⊆ Ep−1. Consequently b ∈ Ep−1, contradicting the minimality

of p. Thus Im = I. Consequently, the constituent intervals of Em+1 are either

constituent intervals of Em, or are intervals disjoint from Em.

The set F = (0, 1) \E is a closed nowhere-dense subset of (0, 1). It is also

a perfect subset of (0, 1). For if b were an isolated point of F there would be

two disjoint open intervals in E with b as end-point. Thus there would exist

(a, b) ⊆ Em and (b, c) ⊆ En, for some 0 ≤ a < b < c ≤ 1 and m,n ∈ N. But

then b ∈ (a, c) ⊆ Emax(m,n) ⊆ E, giving a contradiction.

We now apply Baire’s category theorem again, this time to the sequence

(An∩F )∞n=1 of closed subsets of F . It follows from Baire’s category theorem

that there exist n ∈ N, x ∈ F and η > 0 such that Nη(x) ∩ F ⊆ An. If

y ∈ Nη(x)∩F , y is not an isolated point of F , and so there exists a sequence

(yj)
∞
j=1 in (Nη(x) ∩ F ) \ {y} which converges to y. Consequently

f (n+1)(y) = lim
j→∞

f (n)(yj)− f (n)(y)

yj − y
= 0.

Thus Nη(x) ∩ F ⊆ An+1. Iterating the argument, Nη(x) ∩ F ⊆ ∪p≥nAp.

Suppose now that z ∈ Nη(x) ∩ E. Then z is in one of the constituent

intervals I of E and one of its end-points, b say, is in Nη ∩ F . We can

suppose, without loss of generality, that b < z. Further, there is a least

integer p such that I is a constituent interval of Ep. Suppose, if possible,

that p > n. Then, arguing as above, if w ∈ I then

f (p−1)(w) = f (p−1)(b) +

∫ w

b
f (p)(t) dt = 0,

so that I is a constituent interval of Ep−1, contradicting the minimality of

p. Thus p ≤ n, so that z ∈ En. Hence Nη(x) ⊆ En, contradicting the fact

that x ∈ F . �

Corollary 14.7.17 Suppose that f is an infinitely differentiable function

on R with the property that for each x ∈ R there exists n ∈ Z+ such that

f (n)(x) = 0. Then f is a polynomial function.
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Proof For f is a polynomial function on each bounded open interval of

R, and two polynomial functions which are equal on an interval must be

defined by the same polynomial. �

Exercises

14.7.1 Use Baire’s category theorem to show that a perfect subset of a

complete metric space is uncountable.

14.7.2 Show that the real line is not the union of a set of proper non-trivial

disjoint open intervals.

14.7.3 Let Gn be the set of functions f in C([0, 1]) for which there exists

0 ≤ x ≤ 1 for which |f(x)− f(y)| ≤ n|x− y| for all y ∈ [0, 1]. Show

that Gn is a closed subset of C([0, 1]). Show that Gn is nowhere

dense. Deduce that the set of continuous functions on [0, 1] which

are nowhere differentiable is of the second category in C([0, 1]).

14.7.4 This exercise shows that if Baire’s category theorem is true, then

the axiom of dependent choice must hold. Suppose that X is a non-

empty set, and that φ is a mapping fromX into the set of non-empty

subsets of X. Let Xn = X for n ∈ Z+, and let P =
∏∞

n=0 Xn.

Give each Xn the discrete metric, and give P a uniform product

metric d.

(a) Show that (P, d) is a complete metric space.

(b) If n ∈ Z+, let Vn = {f ∈ P : there exists k > n with fk ∈ φ(fn)}.
Show that Vn is open and dense in (P, d).

(c) If Baire’s category theorem is true, there exists f ∈ ∩∞
n=0Vn.

If n ∈ Z+, let j(n) = inf{k : k > n, fk ∈ φn}. Use recursion

to show there exists an increasing sequence (cn)
∞
n=0 such that

c0 = 0 and f(cn+1) ∈ φcn for n ∈ N+.

(d) Show that the axiom of dependent choice holds.

14.7.5 Suppose that (X, d) is a separable complete metric space. Prove

Baire’s category theorem for (X, d) without using the axiom of

dependent choice. Let S = {s1, s2, . . .} be a countable dense sub-

set of (X, d), and let r1, r2, . . . be an enumeration of the positive

rational numbers. Show that at each stage there is a least j(n) such

that if cn = sj(n) then cn ∈ Nεn−1
(cn−1) ∩ Un ∩ S, and a least k(n)

such that if εn = rk(n) then

Nεn(cn) ⊆ Mεn(cn) ⊆ Nεn−1
(cn−1) ∩ Un.

In particular, Osgood’s theorem does not need the axiom of

dependent choice.
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14.7.6 Suppose that f is a continuous function on T. The n-th Fourier

coefficient f̂n of f is defined as

f̂n =
1

2π

∫ π

−π
e−intf(eit) dt.

Let

Sn(f)(t) =

n∑
j=−n

f̂je
ijt.

In Volume I, Section 9.5, we constructed an example of a continu-

ous function on T whose Fourier series is unbounded at 0. In this

exercise, we show that the set of functions for which this is true is

of the second category in C(T).

(a) Show that

Sn(f)(0) =
1

2π

∫ π

−π
Dn(t)f(e

it) dt,

where

Dn(0) = 2n + 1 and Dn(t) =

n∑
j=−n

eijt =
sin(n+ 1

2 )t

sin t/2
otherwise.

(b) If 0 ≤ t ≤ π, let fn(e
it) = sin(n + 1

2)t, and if −π ≤ t ≤ 0, let

fn(e
it) = − sin(n+ 1

2)t. Let tj = jπ/(2n + 1). Show that

Sn(fn)(0) =
1

π

2n+1∑
j=1

∫ tj

tj−1

sin2(n+ 1
2 )t

sin t/2
dt

≥ 1

π

2n+1∑
j=1

2

tj

∫ tj

tj−1

sin2(n+ 1
2)t dt =

1

π

2n+1∑
j=1

1

j
.

(c) Let φn(f) = Sn(f)(0). Deduce that (φn)
∞
n=0 is a sequence of

continuous linear functionals on C(T) which is unbounded in

norm.

(d) Use the principle of condensation of singularities to show

that the set of functions f in C(T) for which the sequence

(Sn(f)(0))
∞
n=1 is unbounded is of the second category in C(T).

14.7.7 Suppose that T is a linear mapping of a normed space (E, ‖.‖E)
into a normed space (F, ‖.‖F ). Show that T has a closed graph if

and only whenever xn → 0 in E and T (xn) → y in F then y = 0.
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14.7.8 Suppose that T is a linear mapping from a Hilbert space H into

itself for which 〈T (x), y〉 = 〈x, T (y)〉 for all x, y ∈ H. Show that T

is continuous.

14.7.9 Let ω be the vector space of all real sequences, and let φ be the

linear subspace of all sequences with finitely many non-zero terms. A

Banach sequence space (E, ‖.‖E) is a Banach space (E, ‖.‖E), where
E is a linear subspace of ω which contains φ with the property

that if (x(n))∞n=1 is a sequence in E for which
∥∥x(n)∥∥ → 0 as n→∞

then x
(n)
j → 0 as n→∞ for each j ∈N. Show that if (E, ‖.‖E) and

(F, ‖.‖F ) are Banach sequence spaces and E ⊆ F then the inclusion

mapping E → F is continuous.

14.7.10 Suppose that ‖.‖ is a complete norm on the space Cb(X) of bounded

continuous real-valued functions on a topological space (X, τ) with

the property that if ‖fn‖ → 0 as n → ∞ then fn(x) → 0 as n → ∞
for each x ∈ X. Show that the norm ‖.‖ is equivalent to the uniform

norm ‖.‖∞.

14.7.11 Give an example of a norm ‖.‖ on C([0, 1]) with the property that

if ‖fn‖ → 0 as n → ∞ then fn(x) → 0 as n → ∞ for each x ∈ [0, 1]

which is not equivalent to the uniform norm ‖.‖∞.
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Compactness

15.1 Compact topological spaces

Two of the most powerful results that we met when considering functions of

a real variable were the Bolzano–Weierstrass theorem and the Heine–Borel

theorem. Both of these involve topological properties, and we now consider

these properties for topological spaces. We shall see that they give rise to

three distinct concepts; in Section 15.4, we shall see that these three are the

same for metric spaces.

We begin with compactness; this is the most important of the three

properties. It is related to the Heine–Borel theorem, and the definition is

essentially the same as for subsets of the real line. If A is a subset of a set

X and B is a set of subsets of X then we say that B covers A, or that B
is a cover of A, if A ⊆ ∪B∈BB. A subset C of B is a subcover if it covers

A. A cover B is finite if the set B has finitely many members. If (X, τ) is

a topological space, then a cover B is open if each B ∈ B is an open set.

A topological space (X, τ) is compact if every open cover of X has a finite

subcover. A subset A of a topological space (X, τ) is compact if it is com-

pact, with the subspace topology. If U is a subset of A which is open in the

subspace topology, there exists an open subset V of X such that U = V ∩A,

and so A is a compact subset of X if and only if every cover of A by open

subsets of X has a finite subcover.

The Heine–Borel theorem states that a subset of R is compact if and only

if it is closed and bounded.

We can formulate the definition of compactness in terms of closed sets:

this version is quite as useful as the ‘open sets’ version. Recall that a set

F of subsets of a set X has the finite intersection property if whenever

{F1, . . . , Fn} is a finite subset of F then ∩n
j=1Fj is non-empty.

431
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Theorem 15.1.1 A topological space (X, τ) is compact if and only if when-

ever F is a set of closed subsets of X with the finite intersection property

then the total intersection ∩F∈FF is non-empty.

Proof This is just a matter of taking complements. Suppose that

∩F∈FF = ∅. Then {C(F ) : F ∈ F} is an open cover of X, and so there

is a finite subcover {C(F1), · · · , C(Fn)}. Thus

X = C(F1) ∪ . . . ∪ C(Fn) = C(F1 ∩ . . . ∩ Fn),

so that F1 ∩ . . . ∩ Fn = ∅, contradicting the finite intersection property.

The converse is as easy, and is left to the reader as an exercise. �

We have the following ‘local’ corollary.

Corollary 15.1.2 Suppose that C is a set of closed subsets of a compact

topological space (X, τ) and that ∩C∈CC is contained in an open set U . Then

there exists a finite subset F of C such that ∩C∈FC ⊆ U .

Proof Let C1 = C ∪ {X \U}. Then C1 is a set of closed subsets of X, and

∩C∈C1
C = ∅, and so C1 fails to have the finite intersection property. There

exists a finite subset F of C such that (∩C∈FC) ∩ (X \ U) = ∅: that is,

∩C∈FC ⊆ U . �

Proposition 15.1.3 Suppose that (X, τ) is a topological space and that A

is a subset of X.

(i) If (X, τ) is compact and A is closed, then A is compact.

(ii) If (X, τ) is Hausdorff and A is compact, then A is closed.

(iii) If (X, τ) is compact and Hausdorff then it is normal.

Proof (i) Suppose that F is a set of closed subsets of A with the finite

intersection property. Since A is closed, the sets in F are closed in X. Since

(X, τ) is compact, ∩{C : C ∈ F} is not empty.

(ii) Suppose that x �∈ A. We shall show that there are disjoint open sets

U and V with A ⊆ U and x ∈ V . For each a ∈ A there exist disjoint open

subsets Ua and Va of X with a ∈ Ua and x ∈ Va. The sets {Ua : a ∈ A}
form an open cover of A, and so there is a finite subset F of A such that

{Ua : a ∈ F} is a finite subcover of A. Then U = ∪{Ua : a ∈ F} and

V = ∩{Va : a ∈ F} are disjoint open sets, and A ⊆ U , x ∈ V . Thus x �∈ Ā,

so that A = Ā, and A is closed.

(iii) Suppose that A and B are disjoint closed subsets of X. We repeat

the argument used in (ii). For each b ∈ B, there exist disjoint open subsets

Ub and Vb of X with A ⊆ Ub and b ∈ Vb. The sets {Vb : b ∈ B} form an open
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cover of B, and so there is a finite subset G of B such that {Vb : b ∈ G} is

a finite subcover of B. Then U = ∩{Ub : b ∈ G} and V = ∪{Vb : b ∈ G} are

disjoint open sets, and A ⊆ U , B ⊆ V . �

Compact spaces which are not Hausdorff are less well behaved. For exam-

ple, if X is an infinite set with the cofinite topology τf then (X, τf ) is

compact, and so are all of its subsets. Some authors include the Hausdorff

property in their definition of compactness, and we shall concentrate our

attention on such spaces.

Proposition 15.1.4 Suppose that f is a continuous mapping from a topo-

logical space (X, τ) into a topological space (Y, σ). If A is a compact subset

of X then f(A) is a compact subset of Y .

Proof Suppose that U is an open cover of f(A). If U ∈ U then f−1(U) is

open, since f is continuous. Thus {f−1(U) : U ∈ U} is an open cover of A.

Since A is compact, there is a finite subcover {f−1(U1), . . . , f
−1(Un)}. Then

{U1, . . . , Un} is a finite subcover of f(A). �

Corollary 15.1.5 Suppose that f is a continuous real-valued function on a

compact space (X, τ). Then f is bounded on A, and attains its bounds: there

exist y ∈ X with f(y) = supx∈X f(x) and z ∈ X with f(z) = infx∈X f(x).

Proof For f(X) is a compact subset of R, and so is bounded and closed,

by Theorem 5.4.4 of Volume I. �

Proposition 15.1.6 Suppose that f is a continuous mapping from a com-

pact topological space (X, τ) onto a Hausdorff topological space (Y, σ), and

that g is a mapping from (Y, σ) into a topological space (Z, ρ). Then g is

continuous if and only if g ◦ f is continuous.

Proof If g is continuous then certainly g ◦ f is continuous. Conversely,

suppose that g ◦ f is continuous. Suppose that C is a closed subset of Z.

Then (g ◦ f)−1(C) is closed in X, and is therefore compact, by Proposition

15.1.3 (i). Thus g−1(C) = f((g◦f)−1(C)) is compact, by Proposition 15.1.4,

and is therefore closed, by Proposition 15.1.3 (ii). Thus g is continuous. �

Corollary 15.1.7 If f is a continuous bijection from a compact topo-

logical space (X, τ) onto a Hausdorff topological space (Y, σ), then f is a

homeomorphism.

Proof Take g = f−1. �

The topology of a compact Hausdorff space has a certain minimal

property.
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Corollary 15.1.8 Suppose that (X, τ) is a compact Hausdorff space, and

that σ is a Hausdorff topology on X which is coarser than τ . Then σ = τ .

Proof Apply the corollary to the continuous identity mapping from (X, τ)

to (X,σ). �

Theorem 15.1.9 The product of finitely many compact spaces is compact.

Proof A standard induction argument shows that it is enough to prove

that the product of two compact spaces (X, τ) and (Y, σ) is compact. Sup-

pose that U is an open cover of X × Y . If P = (x, y) ∈ X × Y , there exists

UP ∈ U with P ∈ UP . Since UP is open, there exist open neighbourhoods

VP of x and WP of y such that VP ×WP ⊆ UP . It is then clearly sufficient

to show that finitely many of the sets VP ×WP cover X × Y .

Suppose that x ∈ X. The cross-section Cx = {(x, y) : y ∈ Y } is home-

omorphic to Y , and is therefore compact. It is covered by the collection

{V(x,y) × W(x,y) : y ∈ Y } of open sets, and is therefore covered by a finite

subset {V(x,yj) × W(x,yj) : 1 ≤ j ≤ n}. Let Qx = ∩n
j=1V(x,yj). Then Qx is

an open neighbourhood of x, and Qx × Y ⊆ ∪n
j=1V(x,yj) ×W(x,yj). The sets

{Qx : x ∈ X} cover X. Since (X, τ) is compact, there is a finite subcover

{Qx1
, . . . , Qxn

}. Then the sets {Qx1
× Y, . . . , Qxn

× Y } cover X × Y . Since

each of then is covered by finitely many sets VP ×WP , X × Y is covered by

finitely many sets VP ×WP . �

Corollary 15.1.10 A subset A of Rd or Cd is compact if and only if it

is closed and bounded.

The proof of Theorem 15.1.9 is rather awkward, and only deals with the

product of finitely many spaces. In fact, a careful use of the axiom of choice

can be used to prove the following.

Theorem 15.1.11 (Tychonoff’s theorem) If (Xα, τα)α∈A is a family of

compact topological spaces, then
∏

α∈AXα is compact in the product topology.

In particular, P (X), with the Bernoulli topology, is compact.

To prove this, ‘sequences’ are replaced by ‘filters’. This involves introduc-

ing a fair amount of machinery. A proof is given in Appendix D.

Exercises

15.1.1 Show that the union of finitely many compact subsets of a topological

space is compact.

15.1.2 Show that the intersection of a collection of compact subsets of a

Hausdorff topological space is compact.
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15.1.3 Give an example of two compact subsets of a T1 topological space

whose intersection is not compact.

15.1.4 Suppose that (X1, τ1) and (X2, τ2) are Hausdorff topological spaces

and that (X2, τ2) is compact. Show that if A is a closed subset of

X1 ×X2 then π1(A) is closed in (X1, τ1).

15.1.5 Suppose that f is a mapping from a topological space (X1, τ1) into a

compact topological space (X2, τ2) whose graph Gf is a closed subset

ofX1×X2. Show that f is continuous. Can the condition that (X2, d2)

is compact be dropped?

15.1.6 Suppose that G is a closed subgroup of (Rd,+) which does not con-

tain a line (if x ∈ Rd \ {0}, then lx = {αx : α ∈ R} is not contained

in G). Suppose that x ∈ Sd−1 = {x ∈ Rd : ‖x‖ = 1}. By consid-

ering lx ∩ G, show that there exist r > 0 and ε > 0 such that if

y ∈ Nε(x) ∩ Sd−1 and 0 < α < r, then αy �∈ G. Use the compactness

of Sd−1 to show that G is a discrete subset of Rn.

15.1.7 Let Bn([0, 1]) be the collection of subsets of [0, 1] with at most n

elements. Show (without appealing to Tychonoff’s theorem) that

Bn([0, 1]) is a compact subset of P ([0, 1]), with the Bernoulli topology.

(Hint: induction on n.)

15.2 Sequentially compact topological spaces

We now make a definition inspired by the Bolzano–Weierstrass theorem.

We say that a topological space (X, τ) is sequentially compact if whenever

(xn)
∞
n=1 is a sequence in X then there exists a subsequence (xnk

)∞k=1 and an

element x ∈ X such that xnk
→ x as k → ∞. We say that a subset A of

X is sequentially compact, if it is sequentially compact, with the subspace

topology: if (an)
∞
n=1 is a sequence in A then there exists a subsequence

(ank
)∞k=1 and an element a ∈ A such that ank

→ a as k → ∞.

Thus the Bolzano–Weierstrass theorem implies that a subset of R is

sequentially compact if and only if it is closed and bounded; that is, if and

only if it is compact.

Proposition 15.2.1 Suppose that (X, τ) is a sequentially compact topo-

logical space.

(i) A closed subset A of X is sequentially compact.

(ii) If f is a continuous mapping of (X, τ) into a topological space (Y, σ)

then f(X) is sequentially compact.
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Proof (i) Suppose that (an)
∞
n=1 is a sequence in A. There is a subsequence

(ank
)∞k=1 and an element x∈X such that ank

→x as k→∞. Since A is closed,

x ∈ A.

(ii) Suppose that (yn)
∞
n=1 is a sequence in f(X). For each n ∈ N there

exists xn ∈ X such that f(xn) = yn. Then there exist a subsequence (xnk
)∞k=1

and an element x ∈ X such that xnk
→ x as k → ∞. Then ynk

= f(xnk
) →

f(x) as k → ∞. �

Theorem 15.2.2 Suppose that (X, τ) is a finite product
∏n

j=1(Xj , τj) or

a countably infinite product
∏∞

j=1(Xj , τj) of sequentially compact topological

spaces. Then (X, τ) is sequentially compact.

Proof We consider the countably infinite case: the finite case is easier. We

use a diagonal argument, as in the proof of the Bolzano–Weierstrass theo-

rem. Suppose that (x(n))∞n=1 is a sequence in X. There exists a subsequence

(y(1k))∞k=1 and an element y1 of X1 such that y
(1k)
1 → y1 as k → ∞. Induc-

tively, for each j ∈ N we can find a subsequence (y(jk))∞k=1 of (y(j−1,k))∞k=1

and an element yj of such that y
(jk)
j → yj as k→∞. Then (y(kk))∞k=1 is a

subsequence of (x(n))∞n=1, and y
(kk)
j → yj as k → ∞, for each j ∈ N. Thus if

we set y = (yj)
∞
j=1 then y(kk) → y in (X, τ) as k → ∞. �

Corollary 15.2.3 The Hilbert cube is sequentially compact.

Let us give two examples, related to these results.

Example 15.2.4 An uncountable product of sequentially compact topo-

logical spaces which is compact, but not sequentially compact.

Let S be the Bernoulli sequence space Ω(N); S is the set of all

sequences taking the values 0 and 1, and is an uncountable set. Let

X = Ω(S), with the product topology. Then (X, τ) is compact, by

Tychonoff’s theorem. We show that (X, τ) is not sequentially compact. For

n ∈ N and s ∈ S let x
(n)
s = sn. Then (x(n))∞n=1 is a sequence in (X, τ). We

shall show that it has no convergent subsequences. Suppose that (x(nk))∞n=1

is a subsequence. Define an element s of S by setting snk
= 1 if k is even,

and setting sn = 0 otherwise. Then x
(nk)
s takes each of the values 0 and 1

infinitely often, and so does not converge.

Example 15.2.5 A sequentially compact subset C of a Hausdorff topo-

logical space (X, τ) which is not closed, and is therefore not compact.
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Take (X, τ) the space of the preceding example; it is a Hausdorff space.

Let

C = {x ∈ X : {s ∈ S : xs = 1} is countable}.
C is a dense proper subset of X, and so is not closed. Suppose that (x(n))∞n=1

is a sequence in C. For n ∈ N, let Sn= {s∈S :x
(n)
s =1} and let S∞= ∪∞

n=1

Sn. Then S∞ is countable, and if s ∈ S \ S∞ then x
(n)
s = 0 for all n ∈ N.

A diagonal argument just like that of Theorem 15.2.2 shows that there is a

subsequence (x(nk))∞k=1 such that x
(nk)
s converges, to ls, say, as k → ∞, for

each s ∈ S∞. Thus if we set ls = 0 for s ∈ S \ S∞ then l ∈ C and xnk
→ l

as k → ∞.

We now introduce a topological property that is rather weaker than

sequential compactness. We need a definition. If (xn) is a sequence in a

topological space (X, τ), and x ∈ X, then x is a limit point of the sequence

if whenever N is a neighbourhood of x and n ∈ N, there exists m ≥ n

such that xm ∈ N. A topological space (X, τ) is countably compact if every

sequence in (X, τ) has a limit point.

Proposition 15.2.6 A sequentially compact topological space (X, τ) is

countably compact.

Proof Suppose that (x(n))∞n=1 is a sequence in X. There exists x ∈ X and

a subsequence (x(nk))∞k=1 which converges to x. Then x is a limit point of

the sequence (x(n))∞n=1. �

Proposition 15.2.7 Suppose that (X, τ) is a countably compact topologi-

cal space.

(i) A closed subset A of X is countably compact.

(ii) If f is a continuous mapping of (X, τ) into a topological space (Y, σ)

then f(X) is countably compact.

Proof The proof is very similar to the proof of Proposition 15.2.1, and the

details are left to the reader. �

Proposition 15.2.8 A first countable topological space (X, τ) is sequen-

tially compact if and only if it is countably compact.

Proof It is enough to show that if (X, τ) is countably compact, then it

is sequentially compact. Suppose that (xn)
∞
n=1 is a sequence in X. It has a

limit point l, and l has a decreasing base of neighbourhoods (Bk)
∞
k=1. There

then exists a subsequence (xnk
)∞k=1 such that xnk

∈ Bk for k ∈ N. Then

xnk
→ l as k → ∞, so that (X, τ) is sequentially compact. �
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What is the relationship between compactness and countable compact-

ness?

Proposition 15.2.9 A topological space (X, τ) is countably compact if

and only if every cover of X by a sequence (On)
∞
n=1 of open sets has a finite

subcover.

Proof Suppose that (On)
∞
n=1 is an open cover of X, and that there is no

finite subcover. Then for each n there exists xn ∈ X \ (∪n
j=1Oj). We show

that the sequence (xn)
∞
n=1 has no limit point in X, so that (X, τ) is not

countably compact. If x ∈ X, then x ∈ On for some n ∈ N, so that On is an

open neighbourhood of x. Since xj �∈ On for j ≥ n, it follows that x is not

a limit point of the sequence (xn)
∞
n=1. Thus the condition is necessary.

Conversely, suppose that every cover of X by a sequence (On)
∞
n=1 of open

sets has a finite subcover. Taking complements, this implies that if (Fn)
∞
n=1 is

a sequence of closed sets with the finite intersection property then ∩∞
n=1Fn �=

∅. Suppose that (xn)
∞
n=1 is a sequence in X. Let Tn = {xj : j ≥ n}, and let

Fn = T̄n. Then (Fn)
∞
n=1 is a decreasing sequence of non-empty closed sets,

and so has the finite intersection property. Thus there exists x ∈ ∩∞
n=1Fn. If

n ∈ N and N ∈ Nx, then N ∩ Tn �= ∅, so that there exists m ≥ n such that

xm ∈ N : x is a limit point of the sequence (xn)
∞
n=1. �

Corollary 15.2.10 If (Un)
∞
n=1 is an increasing sequence of open subsets

of a countably compact topological space (X, τ) whose union is X, then there

exists n0 ∈ N such that Un0
= X.

Corollary 15.2.11 A compact topological space is countably compact.

In fact, countable compactness is sufficient for many problems concerning

sequences of functions, as the next result shows. Recall that a sequence of

continuous real-valued functions on a closed interval which converges point-

wise to a continuous function need not converge uniformly. Things improve

if the convergence is monotone.

Theorem 15.2.12 (Dini’s theorem) Suppose that (fn)
∞
n=1 is an increasing

sequence of continuous real-valued functions on a countably compact topo-

logical space (X, τ) which converges pointwise to a continuous function f .

Then fn → f uniformly as n → ∞.

Proof Suppose that ε > 0. Let Un = {x ∈ X : fn(x) > f(x) − ε}.
Since the function f − fn is continuous, Un is open. (Un)

∞
n=1 is an increas-

ing sequence, and ∪n∈NUn = X, since fn(x) → f(x) for each x ∈ X;

{Un : n ∈ N} is an open cover of X. Since (Un)
∞
n=1 is an increasing sequence,
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there exists n0 ∈ N such that Un0
= X (Corollary 15.2.10). If n ≥ n0 and

x ∈ X then

0 ≤ f(x)− fn(x) ≤ f(x)− fn0
(x) < ε,

so that ‖f − fn‖∞ ≤ ε; fn → f uniformly as n → ∞. �

15.3 Totally bounded metric spaces

We now consider what happens when we restrict attention to metric spaces.

We need to introduce one further idea. If (X, d) is an unbounded metric

space then the function d′(x, y) = min(d(x, y), 1) is a metric on X which

is uniformly equivalent to d, and X is bounded under this metric. Thus

boundedness is not a uniform property. We introduce a stronger boundedness

property that is preserved under uniform homeomorphisms. Suppose that

ε > 0. A subset F of a metric space (X, d) is an ε-net if ∪x∈FNε(x) = X;

every point of X is within ε of a point of F . (X, d) is totally bounded, or

precompact, (the two names are used equally frequently, but we shall prefer

the former) if, for every ε > 0, there exists a finite ε-net; X can be covered

by finitely many open neighbourhoods of radius ε. In other terms, (X, d) is

totally bounded if and only if, for every ε > 0, X is the union of finitely

many subsets of diameter at most ε. A subset A of X is totally bounded if it

is totally bounded with the subset metric. This concept is not a topological

one. For example, the subset (−π/2, π/2) is clearly totally bounded under

the usual metric, but is not totally bounded under the metric ρ(x, y) =

| tan x − tan y|, since tan defines an isometry of ((−π/2, π/2), ρ) onto R,

with its usual metric, and the latter is certainly not totally bounded.

Proposition 15.3.1 A totally bounded subset A of a metric space (X, d)

is bounded.

Proof Take ε = 1. There exists a finite subset F of A such that A ⊆
∪x∈FN1(x). If y1, y2 ∈ A then there exist x1, x2 ∈ F such that y1 ∈ N1(x1)

and y2 ∈ N2(x2). By the triangle inequality,

d(y1, y2) ≤ d(y1, x1) + d(x1, x2) + d(x2, y2) ≤ diam (F ) + 2,

so that A is bounded. �

Boundedness is not a uniform property, but total boundedness is.

Proposition 15.3.2 Suppose that A is a totally bounded subset of a metric

space (X, d) and that f is a uniformly continuous mapping of (X, d) into a

metric space (Y, ρ). Then f(A) is a totally bounded subset of (Y, ρ).
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Proof Suppose that ε > 0. Then there exists δ > 0 such that if d(x, y) < δ

then ρ(f(x), f(y)) < ε. Let F be a finite δ-net in A. Then f(F ) is a finite

ε-net in f(A). �

Corollary 15.3.3 If d and d′ are uniformly equivalent metrics on X, then

(X, d) is totally bounded if and only if (X, d′) is.

Proposition 15.3.4 A totally bounded metric space (X, d) is second

countable, and is therefore separable.

Proof For each n ∈ N there exists a finite 1/n-net Fn in X. Let

Un = {N1/n(x) : x ∈ Fn} and let U = ∪n∈NUn. Then U is a count-

able collection of open subsets of X. Let us show that it is a base for

the topology. Suppose that O is an open subset of X and that x ∈ X.

There exists δ > 0 such that Nδ(x) ⊆ O. Choose n so that 1/n < δ.

Then there exists Ux = N1/2n(y) ∈ U2n such that x ∈ Ux. If z ∈ Ux then

d(z, x) ≤ d(z, y) + d(y, x) < 1/n so that z ∈ O. Thus x ∈ Ux ⊆ O, so that

O = ∪{U ∈ U : U ⊆ O}, and U is a base for the topology. �

Proposition 15.3.5 Suppose that S is a dense totally bounded metric

subspace of a metric space (X, d). Then (X, d) is totally bounded.

Proof Suppose that ε > 0. There exists a finite subset F of S such that

S = ∪{Nε/2 ∩S : f ∈ F}. If x ∈ X there exists s ∈ S with d(x, s) < ε/2 and

there exists f ∈ F with d(s, f) < ε/2. Thus d(x, f) < ε, and F is a finite

ε-net in X. �

Corollary 15.3.6 A metric space (X, d) is totally bounded if and only if

its completion is totally bounded.

Total boundedness can be characterized in terms of Cauchy sequences.

Theorem 15.3.7 A metric space (X, d) is totally bounded if and only if

every sequence in X has a Cauchy subsequence.

Proof Suppose first that (X, d) is totally bounded, and that (xn)
∞
n=1 is

a sequence in X. We use a diagonal argument to obtain a Cauchy subse-

quence. There exists a finite cover {A1, . . . , Ak} of X by sets of diameter at

most 1. By the pigeonhole principle, there exists j such that xn ∈ Aj for

infinitely many n. That is, there exists a subsequence (y1,n)
∞
n=1 of (xn)

∞
n=1

such that d(y1,m, y1,n) ≤ 1 for m,n ∈ N. Repeating the argument, there

exists a subsequence (y2,n)
∞
n=1 of (y1,n)

∞
n=1 such that d(y2,m, y2,n) ≤ 1/2

for m,n ∈ N, and, iterating the argument, for each j there exists a
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subsequence (yj+1,n)
∞
n=1 of (yj,n)

∞
n=1 such that d(yj+1,m, yj+1,n) ≤ 1/(j + 1)

for m,n∈N. The sequence (yj,j)
∞
j=1 is then a Cauchy subsequence of

(xn)
∞
n=1.

Suppose next that (X, d) is not totally bounded; there exists ε > 0 such

that there is no finite ε-net in X. Choose x1 ∈ X. Then Nε(x1) �= X, and so

there exists x2 ∈ X with d(x1, x2) ≥ ε. Iterating this argument, there exists

a sequence (xn)
∞
n=1 such that for each n ∈ N, xn+1 �∈ ∪n

j=1Nε(xj). Thus

if m �= n then d(xm, xn) ≥ ε, and so the sequence (xn)
∞
n=1 has no Cauchy

subsequence. �

Exercise

15.3.1 Show that a subset A of a metric space (X, d) is totally bounded if

and only if whenever ε > 0 there exists a finite subset G of X such

that A ⊆ ∪x∈GNε(x).

15.4 Compact metric spaces

Things work extremely well for metric spaces.

Theorem 15.4.1 Suppose that (X, d) is a metric space. The following are

equivalent:

(i) (X, d) is compact;

(ii) (X, d) is sequentially compact;

(iii) (X, d) is countably compact;

(iv) (X, d) is complete and totally bounded.

Proof We have seen that (i) implies (iii) (Corollary 15.2.11), and that (ii)

and (iii) are equivalent (Proposition 15.2.8).

Let us show that (ii) and (iv) are equivalent. Suppose first that (X, d)

is sequentially compact, and suppose that (xn)
∞
n=1 is a Cauchy sequence

in X. Then (xn)
∞
n=1 has a convergent subsequence, and so by Proposition

14.1.1 (xn)
∞
n=1 is convergent. Thus (X, d) is complete. Since every sequence

has a convergent subsequence, which is a Cauchy subsequence, (X, d) is

totally bounded, by Theorem 15.3.7. Conversely, suppose that (X, d) is

complete and totally bounded, and that (xn)
∞
n=1 is a sequence in X. Since

(X, d) is totally bounded, there is a Cauchy subsequence (xnk
)∞k=1, and this

subsequence converges, since (X, d) is complete.

Finally let us show that (ii) and (iv) imply that (X, d) is compact. We

need a lemma, of interest in its own right.
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Lemma 15.4.2 If O is an open cover of a countably compact metric space

(X, d), there exists δ > 0 such that for each x ∈ X there exists O ∈ O for

which Nδ(x) ⊆ O.

Proof Suppose not. Then for each n ∈ N there exists xn ∈ X for which

N1/n(xn) is not contained in any O ∈ O. Let x be a limit point of the

sequence (xn)
∞
n=1. Then x ∈ O, for some O ∈ O. Since O is open, there exists

ε > 0 such that Nε(x) ⊆ O. Since x is a limit point of the sequence, there

exists n > 2/ε such that xn ∈ Nε(x). If y ∈ N1/n(xn), then d(y, xn) < ε/2, so

that d(y, x) ≤ d(y, xn) + d(xn, x)< ε. Hence N1/n(xn)⊆Nε(x) ⊆ O, giving

a contradiction. �

A number δ which satisfies the conclusion of the lemma is called a Lebesgue

number of the cover.

Suppose now that O is an open cover of (X, d). Let δ > 0 be a Lebesgue

number of the cover. Since (X, d) is totally bounded, there exists a finite

δ-net F in X. For each x ∈ F there exists Ox ∈ O such that Nδ(x) ⊆ Ox.

Then X = ∪x∈FNδ(x) = ∪x∈FOx, so that {Ox : x ∈ F} is a finite subcover

of X. �

Note that neither of the conditions of (iv) is a topological condition, but

that together they are equivalent to topological conditions.

Let us bring some earlier results together.

Corollary 15.4.3 A compact metric space is second countable, and is

therefore separable.

Proof Proposition 15.3.4. �

Corollary 15.4.4 The completion of a totally bounded metric space is

compact.

Proof Proposition 15.3.5. �

This explains the terminology ‘precompact’.

Corollary 15.4.5 A finite or countably infinite product of compact metric

spaces, with a product metric, is a compact metric space.

Proof Theorem 15.2.2. �

Corollary 15.4.6 The Hilbert cube and the Bernoulli sequence space Ω(N)

are compact.

Proof Corollary 15.4.5. �
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We can characterize compactness in terms of the Hilbert cube, and in

terms of the Bernoulli sequence space.

Corollary 15.4.7 A metric space (X, d) is compact if and only if it is

homeomorphic to a closed subspace of the Hilbert cube.

Proof If (X, d) is compact, it is second countable (Corollary 15.4.3), and

therefore there is a homeomorphism f of X onto a metric subspace f(X) of

the Hilbert cube, by Urysohn’s metrization theorem (Theorem 13.5.6). But

f(X) is compact, and so it is a closed subset of the Hilbert cube. Conversely,

if (X, d) is homeomorphic to a closed subspace of the Hilbert cube, it must

be compact. �

Theorem 15.4.8 A metric space is compact if and only if there is a

continuous surjective mapping of the Bernoulli sequence space Ω(N) onto X.

Proof Since Ω(N) is compact, the condition is sufficient.

Suppose that (X, d) is compact. We give Ω(N) the product metric

ρ(y, z) =
∑∞

j=1 |yj − xj|/3j . If y ∈ Ω(N) and j ∈ N , let Cj(y) = N1/3j (y).

Then

Cj(y) = {z ∈ Ω(N) : zi = yi for 1 ≤ i ≤ j}.
Such a set is called a j-cylinder set. Let Cj be the set of j-cylinder sets:

|Cj | = 2j .

We now show that there is a strictly increasing sequence (sk)
∞
k=1 in N,

and a sequence (fk : Csk → X)∞k=1 of mappings, such that

(i) fk(Csk) is a 1/2k-net in (X, d), and

(ii) if y ∈ Ω(N) then d(fk(Csk(y)), fk+1(Csk+1
(y))) ≤ 1/2k.

We first define s1 and f1. There exists a finite 1/2-net F1 in (X, d). Choose

s1 so that 2s1 ≥ |F1|. Since |Cs1 | = 2s1 , there is a surjective mapping of Cs1
onto F1.

Suppose now that s1, . . . , sk and f1, . . . fk have been defined. For each

C ∈ Csk there is a 1/2k+1-net Fk+1(C) in N1/2k(fk(C)). Choose nk+1 > nk

so that

2nk+1 ≥ max{|Fk+1(C)| : C ∈ Csk}.
Let sk+1= sk + nk+1, and let Ck+1(C) be the set of sk+1-cylinder sets con-

tained in C: there are 2nk+1 of them. There is therefore a surjective mapping

fk+1,C from Ck+1(C) onto Fk+1(C). Letting C vary, and combining the map-

pings fk+1,C , we obtain a mapping of Csk+1
into (X, d) which satisfies (i)

and (ii).
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If y ∈ Ω(N) and k ∈ N, let gk(y) = fk(Csk(y)). Then each gk is a

continuous mapping of Ω(N) into (X, d), and d(gk(y), gk+1(y)) ≤ 1/2k. Thus

if k < l then d(gk(y), gl(y)) ≤ 2/2k. It therefore follows from the general

principle of uniform convergence that the mappings gk converge uniformly

to a continuous function g mapping Ω(N) to (X, d), and that d(g(y), gk(y)) ≤
2/2k for y ∈ Ω(N) and k ∈ N.

It remains to show that g is surjective. Since Ω(N) is compact, g(Ω(N)) is

compact, and is therefore closed in X. It is therefore sufficient to show that

g(Ω(N)) is dense in X. Suppose that x ∈ X and that ε > 0. There exists

k such that 1/2k < ε/3, and there exists y ∈ Ω(N) such that d(x, gk(y)) <

1/2k . Thus d(x, g(y)) ≤ d(x, gk(y)) + d(gk(y), g(y)) ≤ 3/2k < ε. �

Corollary 15.4.9 A metric space is compact if and only if there is a

continuous surjective mapping of the Cantor set C onto X.

Proof For the Cantor set is homeomorphic to Ω(N). �

The next result is particularly important.

Theorem 15.4.10 If f is a continuous map from a compact metric space

(X, d) into a metric space (Y, ρ) then f is uniformly continuous.

Proof Suppose not. Then there exists ε> 0 for which we can find no suit-

able δ > 0. Thus for each n ∈ N there exist xn, x
′
n in X with d(xn, x

′
n) < 1/n

and ρ(f(xn), f(x
′
n)) ≥ ε. By sequential compactness there exists a sub-

sequence (xnk
)∞k=1 which converges to an element x∈X as k→∞. Since

d(xnk
, x′nk

)→ 0 as k→∞, x′nk
→x, as well. Since f is continuous at x,

f(xnk
)→ f(x) and f(x′nk

)→ f(x) as k→∞, so that ρ(f(xnk
), f(x′nk

)) → 0 as

k → ∞. As ρ(f(xnk
), f(x′nk

)) ≥ ε for all k ∈ N, we have a contradiction. �

Isometries of compact metric spaces behave well.

Theorem 15.4.11 Suppose that f is an isometry of a compact metric

space into itself. Then f is surjective.

Proof Suppose not. Then f(X) is a proper closed subset of X. Suppose

that x ∈ X \f(X), and let δ = d(x, f(X)). If n ∈ N then fn(x) ∈ f(X), and

so d(fn(x), x) ≥ δ. Since d is an isometry, if k ∈ N then d(fn+k(x), fk(x)) =

d(fk(fn(x)), fk(x)) ≥ δ, so that the sequence (fn(x))∞n=1 has no convergent

subsequence. �
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Exercises

15.4.1 Suppose that A and B are disjoint subsets of a metric space (X, d),

and that A is compact and B is closed. Show that

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} > 0.

15.4.2 Suppose that (X, d) is a compact metric space. Let

C = {x ∈ X : x has a countable neighbourhood}

Show that C is an open subset of X and that P = X \ C is perfect.

By considering sets Pn = {x ∈ X : d(x, P ) < 1/n}, or otherwise,

show that C is countable: X is the union of a countable set and a

perfect set.

15.4.3 Suppose that (X, d) is a compact metric space, and that (fn)
∞
n=0 is

a sequence of continuous functions from (X, d) into a metric space

(Y, ρ), with the property that d(fn(x), f0(x)) is a decreasing null

sequence, for each x ∈ X. Show that fn converges uniformly to f0 as

n → ∞. (This generalizes Dini’s theorem.)

15.4.4 Give an example of a sequence (Un)
∞
n=1 of open subsets of R whose

union contains the rationals and whose complement is infinite.

15.4.5 Show that an open cover of a separable metric space has a countable

subcover. (The previous exercise shows that some care is needed.)

15.4.6 Suppose that (X, d) is a compact metric space, and that f is a map-

ping of X into itself which satisfies d(f(x), f(y)) ≥ d(x, y) for all

x, y ∈ X. By considering the sequence ((fn(x), fn(y)))∞n=1 in X ×X,

show that if x, y ∈ X and ε > 0 then there exists n ∈ N such that

d(x, fn(x)) < ε and d(y, fn(y)) < ε . Show that f is an isometry, and

give another proof that f is surjective.

15.5 Compact subsets of C(K)

Suppose that (K, d) is a compact topological space. Let C(K) denote the

(real or complex) vector space of continuous (real or complex) functions on

K. If f ∈ C(K) then f(K) is compact, and is therefore closed and bounded.

Thus C(K) = Cb(K), and C(K) is a Banach space under the uniform norm

‖f‖∞ = sup{|f(x)| : x ∈ K}. What are the compact subsets of C(K)? Since

C(K) is complete, a subset of C(K) is compact if and only if it is closed

and totally bounded, and so it is enough to characterize the totally bounded

subsets of C(K).
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In order to do this, we need another definition. Suppose that (X, τ) is a

topological space, that (Y, d) is a metric space, and that x ∈ X. A set A of

mappings from (X, τ) to (Y, d) is equicontinuous at x if, given ε > 0, there

exists N ∈ Nx such that d(a(x), a(y)) < ε for all a ∈ A and y ∈ N . The set

A is equicontinuous on X if it is equicontinuous at each point of X.

Theorem 15.5.1 (The Arzelà–Ascoli theorem) Suppose that (K, τ) is

a compact topological space, that (C(K), ‖.‖∞) is the (real or complex)

Banach space of continuous (real or complex) functions on K and that

A ⊆ C(K). Then A is totally bounded if and only if A is bounded in norm

and equicontinuous on K.

Proof Suppose that A is totally bounded. Then A is bounded, by Propo-

sition 15.3.1. Let us show that A is equicontinuous. Suppose that x ∈ K and

that ε > 0. There exists a finite ε/3-net F in A. For each f ∈ F there exists

Nf ∈ Nx such that if y ∈ Nf then |f(x) − f(y)| < ε/3. Let N = ∩f∈FNf :

N is a neighbourhood of x. Now if a ∈ A there exists f ∈ F such that

‖a− f‖∞ < ε/3. Thus if y ∈ N then

|a(x)− a(y)| ≤ |a(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− a(y)|
≤ ε/3 + ε/3 + ε/3 = ε.

Since this holds for all a ∈ A, A is equicontinuous at x.

Conversely, suppose that A is bounded and equicontinuous. Suppose

that ε> 0. If x∈K, there exists N(x) in Nx such that if y ∈N(x) then

|a(x)− a(y)|< ε/4 for all a ∈ A. Since (K, τ) is compact, there exists a

finite subset Y = {y1, . . . yn} of K such that K = ∪n
m=1N(ym). We use

Y to define a linear mapping of C(K) into Rn (or Cn): if f ∈C(K), we

set T (f)= (f(y1), . . . f(yn)). We give Rn (or Cn) the supremum norm;

‖(x1, . . . , xn)‖∞ = max{|xm| : 1 ≤ m ≤ n}. Then

‖T (f)‖∞ = sup
1≤m≤n

|f(xm)| ≤ ‖f‖∞ ,

so that T (A) is bounded in Rn (or Cn). It is therefore totally bounded, by

Theorem 15.1.10, and so there exists a finite subset F of A such that T (F ) is

an ε/4-net in T (A). We shall show that F is an ε-net in A, so that A is totally

bounded. If a∈A there exists f ∈F such that ‖(T (a)− T (f)‖∞ <ε/4; that

is, |a(ym)− f(ym)|<ε/4 for 1 ≤ m ≤ n. If x ∈ K there exists ym such that

x ∈ N(ym); then |a(x) − a(ym)| < ε/4 and |f(x) − f(ym)|<ε/4. Putting
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these inequalities together,

|a(x)− f(x)| ≤ |a(x)− a(ym)|+ |a(ym)− f(ym)|+ |f(ym)− f(x)|
≤ ε/4 + ε/4 + ε/4 = 3ε/4.

Since this holds for all x ∈ K, ‖a− f‖∞ ≤ 3ε/4 < ε, and a ∈ Nε(f). Thus

F is an ε-net in A. �

Corollary 15.5.2 A is compact if and only if it is closed, bounded and

equicontinuous on K.

It is possible to characterize the compact subsets of C(K) locally.

Suppose that (X, τ) is a topological space and that Y is a subset of

X. The restriction mapping πY from Cb(X) to Cb(Y ) is defined by set-

ting πY (f)(y) = f(y), for y ∈ Y . πY is a norm-decreasing linear mapping

from (Cb(X), ‖.‖∞) to (Cb(Y ), ‖.‖∞), and so is continuous.

Theorem 15.5.3 Suppose that M1, . . . ,Mn are closed subsets of a com-

pact topological space (K, τ) and that K = ∪n
j=1Mj. Then a subset A of

(C(K), ‖.‖∞) is compact if and only if πMj
(A) is compact in (C(Mj), ‖.‖∞)

for 1 ≤ j ≤ n.

Proof If A is compact, then πMj
(A) is compact, for 1 ≤ j ≤ n, since the

mappings πMj
are continuous.

Conversely, suppose the condition is satisfied. Give the product space∏n
j=1C(Mj) the norm

‖(f1, . . . , fn)‖∞ = max
1≤j≤n

‖fj‖∞ .

If f ∈ C(K), let π(f) = (πM1
(f), . . . , πM1

(f)). Then

‖π(f)‖∞ = max
1≤j≤n

∥∥πMj
(f)

∥∥
∞ = max

1≤j≤n
( sup
x∈Mj

|f(x)|) = ‖f‖∞ .

Thus π is an isometric linear mapping of (C(K), ‖.‖∞) into∏n
j=1(C(Mj), ‖.‖∞). In particular, π(C(K)) is closed in

∏n
j=1C(Mj).

It follows from Corollary 15.4.5 that
∏n

j=1 πMj
(A) is compact in∏n

j=1(C(Mj), ‖.‖∞). Since π(A) = (
∏n

j=1 πMj
(A))∩π(C(K)), it follows that

π(A) is compact. Since π is an isometry, A is compact. �

Exercises

15.5.1 Suppose that (fn)
∞
n=1 is an equicontinuous sequence of mappings

from a topological space (X, τ) into a metric space (Y, σ), and that
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fn(x) converges pointwise to f(x) for each x in X. Show that f is

continuous.

15.5.2 Suppose that (fn)
∞
n=1 is an equicontinuous sequence of mappings from

a topological space (X, τ) into a complete metric space (Y, σ), and

that fn(d) converges to f(d) for each d in a dense subset D of X.

Show that fn(x) converges in Y for each x ∈ X.

15.5.3 Suppose that (K, τ) is a compact topological space and that (fn)
∞
n=1

is an equicontinuous sequence in C(K), which converges pointwise to

a function f . Show that fn converges uniformly to f .

15.5.4 Suppose that (fn)
∞
n=1 is an increasing sequence of continuous real-

valued functions on a compact topological space (X, τ) which con-

verges pointwise to a continuous function f . Show that the sequence

(fn)
∞
n=1 is totally bounded in C(K). Use this to give another proof

of Dini’s theorem (for functions on a compact topological space).

15.5.5 Suppose that (X, d) and (Y, ρ) are metric spaces. A set A of mappings

from (X, d) to (Y, ρ) is uniformly equicontinuous if, given ε > 0, there

exists δ > 0 such that if d(x1, x2) < δ then ρ(a(x1), a(x2)) < ε, for

all a ∈ A. Thus each a ∈ A is uniformly continuous, and we can

control all the elements of A simultaneously. Suppose that (X, d) is

compact. Show that an equicontinuous set of mappings A from X to

Y is uniformly equicontinuous.

15.5.6 Suppose that A ⊆ C[0, 1] is equicontinuous and that {a(x) : a ∈ A}
is bounded, for some x ∈ [0, 1]. Show that A is bounded in norm, and

is therefore totally bounded.

15.5.7 Prove the following vector-valued version of the Arzelà–Ascoli theo-

rem. Suppose that (K, τ) is a compact topological space, that (E, ‖.‖)
is a normed space and that A is a subset of C(K;E), ‖.‖∞), the (real

or complex) normed space of continuous functions on K taking values

in E. Show that A is totally bounded if and only if A is bounded,

{a(x) : a ∈ A} is totally bounded in E for each x ∈ K, and A is

equicontinuous on K.

15.6 *The Hausdorff metric*

(This section can be omitted on a first reading.)

We now give an example of an interesting class of metric spaces. Suppose

that (X, d) is a metric space. If A is a non-empty subset of (X, d), the open

ε-neighbourhood Nε(A) is defined to be

Nε(A) = {x ∈ X : d(x,A) < ε} = ∪x∈ANε(x);
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since Nε(A) is the union of open sets, it is open. Since d(x,A) = d(x,A),

it follows that Nε(A) = Nε(A). For this reason, we concentrate on the non-

empty closed subsets of X. Let Con(X) be the set of non-empty bounded

closed subsets of (X, d); Con(X) is the configuration space of X.

Theorem 15.6.1 Suppose that Con(X) is the configuration space of a

metric space (X, d). If A,B ∈ Con(X)and x ∈ X, let

dH(A,B) = sup
x∈X

|d(x,A) − d(x,B)|.

(i) Let e(A,B) = supa∈A d(a,B). Then

dH(A,B) = max(e(A,B), e(B,A)) < ∞.

(ii) dH is a metric on Con(X).

(iii) dH(A,B) = inf{ε > 0 : A ⊆ Nε(B) and B ⊆ Nε(A)}.
Proof (i) First, e(A,B) = supa∈A d(a,B) − supa∈A d(a,A) ≤ dH(A,B),

and similarly, e(B,A) ≤ dH(A,B), so that

max(e(A,B), e(B,A)) ≤ dH(A,B).

Conversely, suppose that x ∈ X and that ε > 0. There exists b ∈ B such

that d(x, b) < d(x,B) + ε/2 and there exists a ∈ A such that d(b, a) <

d(b,A) + ε/2. Then

d(x,A) ≤ d(x, a) ≤ d(x, b) + d(b, a) ≤ d(x,B) + d(b,A) + ε

≤ d(x,B) + e(B,A) + ε.

Since ε > 0 is arbitrary,

d(x,A) − d(x,B) ≤ e(B,A) ≤ diam (A ∪B) < ∞,

and similarly d(x,B)− d(x,A) ≤ e(A,B) < ∞. Thus

dH(A,B) ≤ max(e(A,B), e(A,B)).

(ii) Clearly dH(A,B) = dH(B,A) and dH(A,A) = 0. Suppose that A �= B;

without loss of generality we can suppose that A \B �= ∅. If a ∈ A \B then

dH(A,B) ≥ d(a,B)− d(a,A) = d(a,B) > 0.

If x ∈ X, and A,B,C ∈ Con(X) then

|d(x,A) − d(x,C)| ≤ |d(x,A) − d(x,B)|+ |d(x,B)− d(x,C)|
≤ dH(A,B) + dH(B,C);
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thus dH(A,C) ≤ dH(A,B) + dH(B,C), and so dH is a metric on Con(X).

(iii) This follows immediately from (i). �

The metric dH is the Hausdorff metric on Con(X); it measures how far

apart A and B are.

Let Conn(X) denote the set of subsets of X with n elements; Conn(X)

is the n-point configuration space of X. Let ConF (X) = ∪∞
n=1Conn(X);

ConF (X) is the finite configuration space of X.

Proposition 15.6.2 A closed bounded subset A of (X, d) is totally bounded

if and only if it is in the closure of ConF (X).

Proof If A is totally bounded and ε > 0 there exists a finite subset F such

that A ⊆ ∪x∈FNε(x). Thus e(A,F ) ≤ ε. But we can clearly suppose, by

discarding terms if necessary, that Nε(x) ∩A �= ∅, for each x ∈ F , and then

e(F,A) < ε; consequently dH(A,F ) < ε, and A is in the closure of ConF (X).

Conversely, suppose that A is in the closure of ConF (X), and that ε > 0.

Then there exists a finite set F such that dH(A,F ) < ε. Thus A ⊆ Nε(F ),

and A is totally bounded. �

The mapping iH : x → {x} : (X, d) → (Con(X), dH ) is an isometry;

further, Con1(X) = iH(X) is a closed subset of (xH , dH), since if A ∈
Con(X) has two distinct points a and a′ then

e(A, {b}) ≥ max(d(a, b), d(a′, b)) ≥ d(a, a′)/2,

by the triangle inequality. Note also that if Y is a closed subset of (X, d)

then the natural inclusion: (Con(Y ), dH ) → (Con(X), dH ) is an isometry.

Properties of (X, d) are reflected in properties of (Con(X), dH ).

Theorem 15.6.3 Suppose that (X, d) is a bounded metric space. The

following are equivalent.

(i) (X, d) is totally bounded.

(ii) (Con(X), dH ) is totally bounded.

(iii) (Con(X), dH ) is separable.

Proof Suppose that (X, d) is totally bounded, and suppose that ε > 0.

Then there exists a finite subset F of X such that X = Nε(F ). Suppose

that A ∈ Con(X). Let FA = {x ∈ F : Nε(x) ∩ A �= ∅}. Then FA is not

empty, and dH(A,FA) < ε. Thus if C(F ) is the collection of the 2|F | − 1

non-empty subsets of F then Con(X) = Nε(C(F )). Thus (i) implies (ii).

Since (X, d) is isometric to a subset of (Con(X), dH ), (ii) implies (i).

Since a totally bounded metric space is separable, (ii) implies (iii). Sup-

pose that (X, d) is not totally bounded. Then, as in Theorem 15.3.7, there
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exists ε> 0 such that there is no finite ε-net in (X, d), and there therefore

exists an infinite sequence (xn)
∞
n=1 such that d(xm, xn) ≥ ε for m �= n.

Let S= {xn :n∈N}, with the subspace metric. Then any subset of S is

closed in (X, d), and if A and B are distinct non-empty subsets of S then

dH(A,B) ≥ ε. Since there are uncountably many such sets, (Con(X), dH ) is

not separable. Thus (iii) implies (i). �

Theorem 15.6.4 If (X, d) is a metric space, (Con(X), dH ) is complete if

and only if (X, d) is complete.

Proof The condition is necessary, since (X, d) is isometric to a closed

metric subspace of (Con(X), dH ). Suppose that (X, d) is complete,

and that (An)
∞
n=1 is a Cauchy sequence in (Con(X), dH ). By Propo-

sition 14.1.1, it is enough to show that (An)
∞
n=1 has a convergent

subsequence. There exists a subsequence (Bk)
∞
k=1=(Ank

)∞k=1 such that

dH(Bk, Bk+1) < 1/2k, for k ∈ N. We shall show that the sequence (Bk)
∞
k=1

converges.

Let B = ∩∞
k=1M2/2k(Bk), where Mε(A) = {x ∈ X : d(x,A) ≤ ε}. Since

the mapping x → d(x,A) is continuous, Mε(A) is closed, and so B is closed.

Further, B ⊆ N3/2k(Bk), for k ∈ N. We show that B is non-empty, and that

Bk ⊆ N3/2k(B), for each k ∈ N. Suppose that k ∈ N and that xk ∈ Bk.

First, for 1 ≤ l < k there exists xl ∈ Bl with d(xl, xk) ≤ 2/2l. Secondly, an

inductive argument shows that for each l > k there exists xl ∈ Bl such that

d(xl−1, xl) ≤ 1/2l−1. If k ≤ l < m then

d(xl, xm) ≤
m∑

j=l+1

d(xj−1, xj) ≤
m∑

j=l+1

1

2j−1
<

2

2l
,

so that (xl)
∞
l=1 is a Cauchy sequence in (X, d). Let x = liml→∞ xl. Then

d(xl, x) ≤ 2/2l for l ≥ k, and

d(xl, x) ≤ d(xl, xk) + d(xk, x) ≤ 1/2l + 2/2k ≤ 2/2l

for 1 ≤ l < k. Thus x ∈ B, and so B is not empty. Further, xk ∈ N3/2k(x) ⊆
N3/2k(B); this holds for any xk ∈ Bk, and so Bk ⊆ N3/2k(B). Hence

dH(B,Bk) ≤ 3/2k, and so Bk → B as k → ∞. �

Combining this with Theorem 15.6.3, we have the following.

Corollary 15.6.5 If (X, d) is a metric space, (Con(X), dH ) is compact if

and only if (X, d) is compact.
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Exercises

15.6.1 Suppose that (X, d) is a metric space.

(a) Let Dn(X) = ∪n
j=1Conj(X). Show that Dn(X) is closed in

(Con(X), dH ) and give an example to show that Conn(X) need

not be closed.

(b) Let ρ be a product metric on the product Xn. Show that the

mapping s : (Xn, ρ) → (Con(X), dH ) defined by

s(x1, . . . , xn) = {x1, . . . , xn}
is continuous, and that s(Xn) = Dn(X). What is s−1(Cn(X))?.

(c) Define a relation on Xn by setting x ∼ y if there is a permu-

tation σ ∈ Σn such that yj = xσ(j) for 1 ≤ j ≤ n. Show that

this is an equivalence relation. Let Wn(X) be the quotient space

of equivalence classes; Wn(X) is the n-point weighted configu-

ration space of X. Define a function dW on Wn(X) × Wn(X)

by setting dW (a, b) = inf{ρ(x, y) : x ∈ a, y ∈ b}. Show that

this is a metric on Wn(X), and that the quotient mapping

q : (Xn, ρ) → (Wn(X), dW ) is continuous.

(d) Show that there is a unique mapping s̃ : Wn(x) → Dn(X) such

that s = s̃ ◦ q, and show that s̃ : (Wn(x), dW ) → (Dn(X), dH ) is

continuous.

15.6.2 Suppose that (X, d) is a complete metric space and that F is a

finite set of contraction mappings of (X, d). If A ∈ Con(X), let

U(A) = ∪{T (A) : T ∈ F}. Show that U is a contraction mapping of

(Con(X), dH ).

Show that there is a unique A ∈ Con(X) for which A = ∪{T (A) :
T ∈ F}, and that if B ∈ Con(X) then Un(B) → A as n → ∞. A is

called the attractor of F .

Let X = [0, 1], Suppose that 0 ≤ α, β < 1. If x ∈ [0, 1], let Lα(x) =

αx and let Rβ(x) = 1− βx. What is the attractor of {Lα, Rβ} when

α = β = 1/3? What is the attractor when α = β = 0? What is

the attractor when 0 < α + β < 1? What is the attractor when

1 ≤ α+ β < 2?

15.7 Locally compact topological spaces

The Bolzano–Weierstrass and Heine–Borel theorems are useful in proving

results in analysis on R, even though R is not compact. Every point in R

has a compact neighbourhood, and R is the union of an increasing sequence
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([−n, n])∞n=1 of compact sets. We can consider topological spaces for which

similar phenomena hold. A topological space space (X, d) is said to be locally

compact if each point x of X has a base of neighbourhoods consisting of

compact sets: if U is open and x ∈ U then there exist an open set V and

a compact set K such that x ∈ V ⊆ K ⊆ U . Thus R is locally compact.

So are Rd and Cd, with product metrics. More generally, if (X1, d1) and

(X2, d2) are locally compact, then so is X1×X2, with the product topology.

A compact Hausdorff topological space is locally compact. Any set X, with

the discrete topology, is locally compact.

As usual, we shall concentrate attention on Hausdorff spaces.

Proposition 15.7.1 A Hausdorff topological space (X, τ) is locally com-

pact if and only if each point has a compact neighbourhood.

Proof The condition is certainly necessary. Suppose that it is satisfied,

that x ∈ X and that K is a compact neighbourhood of x. Let V be the

interior of K, so that x ∈ V ⊆ K. Suppose that U is an open neighbourhood

of x in X. Then U ∩V is an open neighbourhood of x in K, for the subspace

topology. Since K is compact and Hausdorff, it is normal, and so there exist

a subset W of K, open in the subspace topology, and a subset L of K, closed

in the subspace topology, such that x ∈ W ⊆ L ⊆ U∩V . Since K is compact

and Hausdorff, L is compact. Since W is open in K there exists an open

subset Y of X such that W = Y ∩K. But then W ⊆ Y ∩ V ⊆ Y ∩K = W ,

so that W = Y ∩ V is open in X and x ∈ W ⊆ L ⊆ U ; (X, τ) is locally

compact. �

Corollary 15.7.2 Suppose that Y is a subspace of a locally compact

Hausdorff topological space (X, τ).

(i) If Y is closed, then Y is locally compact.

(ii) If Y is open, then Y is locally compact.

Proof (i) If y ∈ Y and M is a compact neighbourhood of y in X, then

M ∩ Y is a compact neighbourhood of y in Y .

(ii) If y ∈ Y then Y is an open neighbourhood of y in X, and so there

exists a compact neighbourhood K of y in X with K ⊆ Y . Then K = K∩Y

is a compact neighbourhood of y in Y . �

Proposition 15.7.3 If (X, τ) is a Hausdorff topological space and Y is a

dense subspace of X which is locally compact in the subspace topology then

Y is an open subset of X.

Proof Suppose that y ∈ Y . There exists an open subset U of Y and a

compact subset K of Y such that y ∈ U ⊆ K. Let W = X \K. There exists
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an open subset V of X such that U = V ∩Y . We show that V ∩W is empty.

Since K is compact and X is Hausdorff, K is closed in X, and so V ∩W is

open in X. Suppose that V ∩W is not empty. Since Y is dense in X, there

exists z ∈ Y ∩(V ∩W ) = U ∩W . But U ∩W ⊆ K∩W = ∅. Thus V ∩W = ∅,
so that V ⊆ K. Thus U = V ∩K = V , and U is open in X. Thus Y is open

in X. �

Theorem 15.7.4 Suppose that (X, τ) is a topological space. There exists

a compact topological space space (X∞, τ∞), a point x∞ of X∞ (the point

at infinity) and a homeomorphism j of (X, τ) onto the subspace X∞ \ {x∞}
of X∞.

Proof We adjoin a point x∞ to X, and set X∞ = X ∪ {x∞}. We define a

topology τ∞ on X∞ by saying that U ∈ τ∞ if

• U ∩X ∈ τ , and

• if x∞ ∈ U then X \ U is compact.

Let us verify that this defines a topology. First, ∅ and X∞ are in τ∞.

Suppose that U1, U2 ∈ τ∞. Then U1 ∩ U2 ∩ X ∈ τ ; if x∞ ∈ U1 ∩ U2 then

x∞ ∈ U1 and x∞ ∈ U2, so that X \ U1 and X \ U2 are compact, and

X \ (U1 ∩U2) = (X \U1)∪ (X \U2) is compact. Thus finite intersections of

sets in τ∞ are in τ∞. Finally suppose that U ⊆ τ∞. Let W = ∪U∈UU . Then

W ∩X = ∪U∈U(U ∩X) ∈ τ . If x∞ ∈ W then there exists U0 ∈ U such that

x∞ ∈ U0. Then X \W = (X \U0)∩ (∩U∈U (X \U)). Since X \U0 is compact

and ∩U∈U(X \U) is closed, X \W is compact. Thus arbitrary unions of sets

in τ∞ are in τ∞, and τ∞ is a topology.

Next we show that (X∞, τ∞) is compact. Suppose that U is an open cover

of X∞. There exists U0 ∈ U such that x∞ ∈ U0, so that X \ U0 is compact.

Finitely many elements U1, . . . , Un of U cover X \ U0, and so U0, U1, . . . Un

cover X.

The natural inclusion mapping j : (X, τ) → (X∞, τ∞) clearly defines a

homeomorphism of (X, τ) onto the subspace X∞ \ {x∞}. �

A compactification of a topological space (X, τ) is a compact topological

space (X̃, τ̃), together with a homeomorphism j of (X, τ) onto a dense sub-

space of (X̃, τ̃ ). The space (X∞, τ∞) is called the one-point compactification

of (X, τ).

The one point compactification is only really useful when it is Hausdorff.

When does this happen?
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Theorem 15.7.5 The one point compactification (X∞, τ∞) of a topolog-

ical space (X, τ) is Hausdorff if and only if (X, τ) is locally compact and

Hausdorff.

Proof If (X∞, τ∞) is Hausdorff, then (X, τ) is Hausdorff. Further,

(X∞, τ∞) is regular, and so is locally compact. If x ∈ X then a subset

N of X is a neighbourhood of x in X if and only if it is a neighbourhood of

x in X∞, and so (X, τ) is locally compact.

Conversely, suppose that (X, τ) is locally compact and Hausdorff. First,

suppose that x and y are distinct points ofX. Then, since (X, τ) is Hausdorff,

then there are disjoint open sets U and V in τ such that x ∈ U and y ∈ V .

Since U, V ∈ τ∞, they separate x and y in (X∞, τ∞). Secondly, suppose that

x ∈ X. Since (X, τ) is locally compact, there exist an open set W and a

compact set K in (X, τ) such that x ∈ W ⊆ K. Since (X, τ) is Hausdorff,

K is closed, and so X∞ \ K ∈ τ∞. Thus W and X∞ \ K separate x and

x∞. �

What can we say about the compact subsets of a locally compact space?

Proposition 15.7.6 Suppose that K is a compact subset of a locally com-

pact space (X, τ). Then there exists an open set U and a compact set L such

that K ⊆ U ⊆ L.

Proof For each x ∈ K there exists an open set Ux and a compact set Lx

such that x ∈ Ux ⊆ Lx. Then {Ux : x ∈ K} is an open cover of K, which

has a finite subcover {Ux : x ∈ F}. Take U = ∪x∈FUx and L = ∪x∈FLx. �

A topological space (X, τ) is σ-compact if there is a sequence (Kn)
∞
n=1 of

compact subsets of X such that X = ∪∞
n=1Kn. If so, let Jn = ∪n

j=1Kj; then

(Jn)
∞
n=1 is an increasing sequence of compact subsets of X whose union is X.

Corollary 15.7.7 If (X, τ) is a σ-compact locally compact topological

space then X = ∪∞
n=1Ln, where (Ln)

∞
n=1 is an increasing sequence of com-

pact sets, with Ln contained in the interior L◦
n+1 of Ln+1, for n ∈ N. If K

is a compact subset of X then K ⊆ Ln, for some n ∈ N.

Proof We construct the sequence (Ln)
∞
n=1 inductively. Suppose that X =

∪∞
n=1Kn, where the sets Kn are compact. Set L1 = K1. Having constructed

Ln there is an open set Un+1 and a compact subset Ln+1 such that Ln∪Kn ⊆
Un+1 ⊆ Ln+1. If K is compact, it is covered by the increasing sequence

(L◦
n)

∞
n=1 of open sets, so that K ⊆ L◦

n ⊆ Ln, for some n. �
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A sequence (Ln)
∞
n=1 of compact subsets of a σ-compact locally com-

pact space (X, τ) which satisfies the conclusions of this corollary is called a

fundamental sequence of compact sets.

What can we say about metrizable locally compact spaces?

Theorem 15.7.8 Suppose that (X, τ) is a metrizable locally compact

topological space. The following are equivalent.

(i) (X, τ) is separable.

(ii) (X, τ) is σ-compact.

(iii) (X, τ) is second countable.

(iv) The one-point compactification (X∞, τ∞) of (X, τ) is metrizable.

(v) (X, τ) is homeomorphic to an open subset of a compact metric space.

Proof Let d be a metric on X which defines the topology τ .

Suppose that (i) holds. Let (xr)
∞
r=1 be a dense sequence of elements of X.

For each r let

Cr = {n ∈ N : M1/n(xr) = {x ∈ X : d(x, xr) ≤ 1/n} is compact}.

We shall show that X = ∪∞
r=1

(∪n∈Cr
M1/n(xr)

)
, so that (ii) holds. Suppose

that x ∈ X. There exists n such that M1/n(x) is compact. There exists xr
such that d(x, xr) ≤ 1/2n. Then M1/2n(xr) ⊆ M1/n(x), and so 2n ∈ Cr.

Since x ∈ M1/2n(xr), X = ∪∞
r=1

(∪n∈Cr
M1/n(xr)

)
.

Suppose that (ii) holds. By Corollary 15.7.7, there exists an increasing

sequence of compact sets (Kn) with Kn ⊆ K◦
n+1 ⊆ Kn+1, for which X =

∪∞
n=1Kn. Each Kn is second countable, and so therefore is each K◦

n. Let Un

be a countable basis for the topology of K◦
n. Suppose that U is a non-empty

open subset of X. Then U ∩ K◦
n is the union of countably many subsets

in Un, and so U = ∪∞
n=1(U ∩ K◦

n) is the union of countably many sets in

U = ∪∞
n=1Un; U is a countable basis for the topology of (X, τ). Thus (iii)

holds.

Since a second countable space is separable, (i), (ii) and (iii) are equiva-

lent. Suppose that they hold. Let the sequence (Kn)
∞
n=1 and U be as in the

previous paragraph. Then U ∪ {X∞ \Kn : n ∈ N} is a countable basis for

the topology τ∞. Thus (X∞, τ∞) is metrizable, by Urysohn’s metrization

theorem: (iv) holds.

Since (X, τ) is homeomorphic to an open subset of (X∞, τ∞), (iv) implies

(v), and (v) implies (i), since a compact metric space is separable (Corollary

15.4.3), and a subspace of a separable metric space is separable (Corollary

13.5.4). �
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Exercises

15.7.1 Construct a two-point compactification of R, and a compactification

of R2 which is homeomorphic to the closed disc {(x, y) ∈ R2 : x2 +

y2 ≤ 1}.
15.7.2 Give an example of a countable product of locally compact spaces

which is not locally compact.

15.7.3 Suppose that (X, d) is a separable metric space. Show that (X, d) is

locally compact if and only if there is continuous mapping of C \{0}
(where C is Cantor’s ternary set) onto X.

15.7.4 Let X = {x ∈ H2 : supj∈N |xj/j| < 1}, with the subspace metric.

Show that X is the union of an increasing sequence of compact sets,

but is not locally compact.

15.7.5 Show that the intersection of two locally compact topological sub-

spaces of a topological space is locally compact.

15.7.6 Give an example of two locally compact subsets of R whose union is

not locally compact.

15.7.7 Give an example of a separable locally compact metric space which

is not complete.

15.7.8 Show that if (X, d) is a separable locally compact metric space then

there is an equivalent metric ρ on X such that (X, ρ) is complete.

15.7.9 Suppose that (X, d) is a separable locally compact metric space. Use

the metric d to construct a metric d∞ on the one-point compactifica-

tion X∞ which defines the topology τ∞, avoiding the use of Urysohn’s

metrization theorem.

15.8 Local uniform convergence

Suppose that (X, τ) is a σ-compact locally compact topological space, and

that (E, ‖.‖) is a Banach space. Let C(X,E) denote the space of continuous

functions on X taking values in E. (An important example is the case where

X is an open subset of the complex plane C, and E = C, and it is good

to keep this example in mind.) Functions in C(X,E) need not be bounded,

and uniform convergence is too strong for many purposes. If (fk)
∞
k=1 is a

sequence in C(X,E) and f ∈ C(X,E) then we say that fk converges to f

uniformly on compact sets, or locally uniformly, as k → ∞ if fk(x) → f(x)

uniformly on K, for each compact subset K of X. Let us show that this

convergence can be defined by a suitable metric topology on C(X,E). Let

(Ln)
∞
n=1 be a fundamental sequence of compact subsets of X.
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If K is a compact subset of X, let πK : C(X,E) → C(K,E) be the

restriction mapping (so that πK(f) = f|K), and let πn = πLn
. If m ≤ n let

πm,n be the restriction mapping from C(Ln, E) to C(Lm, E). If f ∈ C(X,E),

let π(f) = (πn(f))
∞
n=1; π is an injective linear mapping of C(X,E) into the

product space
∏∞

n=1 C(Ln, E). We give each space C(Ln, E) its uniform

norm, and we give the product
∏∞

n=1C(Ln, E) the product topology τ ,

defined by a suitable complete product metric ρ.

Proposition 15.8.1 With the notation above, π(C(X,E)) is a closed

linear subspace of
∏∞

n=1C(Ln, E).

Proof The mapping π is linear, and so π(C(X,E)) is a linear subspace of∏∞
n=1C(Ln, E). If m ≤ p then

Gm,p = {(g, h) ∈ C(Lm, E) × C(Lp, E) : πm,p(h) = g}
is the graph of the continuous mapping πm,p, and is therefore a closed linear

subspace of C(Lm, E)× C(Lp, E). Consequently

Hm,p = {(gn)∞n=1 ∈
∞∏
n=1

C(Ln, E) : πm,p(gp) = gm}

is a closed linear subspace of
∏∞

n=1 C(Ln, E). Since

π(C(X,E)) = ∩∞
m=1 (∩p≥mHm,p) ,

π(C(X,E)) is a closed subset of
∏∞

n=1C(Ln, E). �

Let us set d(f, g) = ρ(π(f), π(g)). Then d is a complete metric on C(X,E);

for example, as in Section 13.3, we can take

d(f, g) =

∞∑
n=1

supx∈Ln
‖f(x)− g(x)‖

2n(1 + supx∈Ln
‖f(x)− g(x)‖)

or d(f, g) =

∞∑
n=1

min(2−n, sup
x∈Ln

‖f(x)− g(x)‖).

We call the corresponding topology on C(K,E) the topology of local

uniform convergence.

Proposition 15.8.2 Suppose that (X, τ) is a σ-compact locally compact

topological space, and that (E, ‖.‖) is a Banach space. Let (Ln)
∞
n=1 be a

fundamental sequence of compact subsets of X. Suppose that (fk)
∞
k=1 is a

sequence in C(X,E), and that f ∈ C(X,E). The following are equivalent.



15.8 Local uniform convergence 459

(i) fk(x) → f(x) uniformly on compact sets, as k → ∞.

(ii) fk(x) → f(x) uniformly on each Ln, as k → ∞.

(iii) For each x ∈ X there exists a compact neighbourhood Nx of x such

that fk(x) → f(x) uniformly on Nx.

(iv) fk(x) → f(x) in the topology of local uniform convergence.

Proof Certainly (i) implies (ii) and (ii) implies (iii), since if x ∈ X then

there exists n ∈ N such that x ∈ L◦
n, so that Ln is a compact neighbourhood

of x. If (iii) holds and if K is a compact subset of X, then for each x ∈ K

there exists a compact neighbourhood Nx of x such that fk(x) → f(x)

uniformly on Nx. The collection of sets {N◦
x : x ∈ K} is then an open cover

of K, and so there is a finite subcover {N◦
x : x ∈ F}. Since fk → f uniformly

on ∪x∈FNx, it follows that fk → f uniformly on K. Thus (iii) implies (i).

Finally, the properties of the product topology imply that (ii) and (iv) are

equivalent. �

Theorem 15.8.3 (The general principle of local uniform convergence)

Suppose that E is a Banach space and that (X, τ) is a σ-compact locally

compact topological space. With the terminology as above, if (fk)
∞
k=1 is a

sequence in C(X,E) then fk converges locally uniformly to a function f in

C(X,E) if and only if (πn(fk))
∞
k=1 is a Cauchy sequence in (C(Ln, E), ‖.‖∞),

for each n ∈ N.

Proof This follows immediately from the facts that convergent sequences

are Cauchy sequences, and that the spaces (C(Ln, E), ‖.‖∞) are complete.

�

We can characterize compact subsets of C(X,E). A subset A of C(X,E)

is locally uniformly bounded if πK(A) is bounded in (C(K,E), ‖.‖∞), for each

compact subset K of X.

Theorem 15.8.4 (The local Arzelà–Ascoli theorem) Suppose that (X, τ)

is a σ-compact locally compact topological space and that d is a complete

metric on C(X) defining the topology of local uniform convergence. A closed

subset A of C(X) is compact if and only if it is locally uniformly bounded

and is equicontinuous at each point of X.

Proof Of course we use the Arzelà–Ascoli theorem. Let (Ln)
∞
n=1 be a fun-

damental sequence of compact subsets of X, and for each n let πn : C(X) →
C(Ln) be the restriction mapping.

If A is compact, then πn(A) is compact, and is therefore uniformly

bounded on Ln, for each n ∈ N; thus A is locally uniformly bounded. If
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x ∈ X and if x ∈ L◦
n then πn(A) is equicontinuous in C(Ln). Since x is an

interior point of Ln, it follows that A is equicontinuous at x.

Conversely, suppose that the conditions are satisfied. We show that A is

sequentially compact. Suppose that (fk)
∞
k=1 is a sequence in A. The con-

ditions imply that πn(A) is totally bounded in C(Ln), for each n ∈ N.

A diagonal argument, then show that there exists a subsequence (fkj
)∞j=1

such that (πn(fkj
))∞j=1 is a Cauchy sequence in (C(Ln), ‖.‖∞), for each

n ∈ N. Since (C(Ln), ‖.‖∞) is complete, it therefore follows that, for

each n ∈ N, (πn(fkj
))∞j=1 converges in norm to an element f (n), say, of

C(Ln). Since f (n)(x) = f (m)(x) for m < n and x ∈ Lm, there exists

a function f on X such that f(x) = f (n)(x) for x ∈ Ln, for each

n ∈ N. If x ∈ X then x ∈ L◦
n for some n, from which it follows that

f ∈ C(X). Thus (fkj
)∞j=1 converges locally uniformly to f . Since A is closed,

f ∈ A. �

Exercise

15.8.1 Suppose that (X, τ) is a σ-compact locally compact topological space,

and that (E, ‖.‖) is a Banach space. Let (Ln)
∞
n=1 be a fundamental

sequence of compact subsets of X. Suppose that A ⊆ C(X,E). Show

that the following are equivalent.

(i) A is locally uniformly bounded.

(ii) πn(A) is bounded in C(Ln, E), ‖.‖∞), for each n ∈ N.

(iii) For each x ∈ X there exists a compact neighbourhood Nx of x

such that πNx
(A) is bounded in C(Nx, E), ‖.‖∞).

15.9 Finite-dimensional normed spaces

Suppose that (E, ‖.‖) is a normed space. When is E locally compact? Since

the mappings x → x + a : E → E and x → λx : E → E (λ �= 0) are

homeomorphisms, (E, ‖.‖) is locally compact if and only if the closed unit

ball BE = {x ∈ E : ‖x‖ ≤ 1} is compact.

The space Rd, with its usual Euclidean norm, is locally compact. We also

have the following easy result.

Proposition 15.9.1 Any linear operator T from Rd, with its usual

Euclidean norm, into a normed space (E, ‖.‖) is continuous.
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Proof If x = (x1, . . . , xd) = x1e1 + · · · xded ∈ Rd then, using the triangle

inequality and the Cauchy–Schwarz inequality,

‖T (x)‖ = ‖x1T (e1) + · · · xdT (ed)‖ ≤ |x1|. ‖T (e1)‖+ · · ·+ |xd|. ‖T (ed)‖

≤
⎛⎝ d∑

j=1

‖T (ej)‖2
⎞⎠1/2⎛⎝ d∑

j=1

|xj |2
⎞⎠1/2

= K ‖x‖2 ,

where K = (
∑d

j=1 ‖T (ej)‖2)1/2. �

Theorem 15.9.2 Any two norms on a finite-dimensional normed space

E are equivalent.

Proof Since a finite-dimensional complex normed space of dimension d

can be considered as a real normed space of dimension 2d, we can suppose

without loss of generality that E is a real vector space.

Let (f1, . . . , fd) be a basis for E. Define a bijective linear mapping

T : Rd → E by setting T (x) =
∑d

j=1 xjfj, and define ‖T (x)‖2 = ‖x‖,
where ‖.‖ is the Euclidean norm on Rd. Then ‖.‖2 is a norm on E,

and T is an isometry of Rd onto (E, ‖.‖2). Since Rd is locally com-

pact, and complete, so also is (E, ‖.‖2). It is sufficient to show that any

norm ‖.‖1 on E is equivalent to ‖.‖2. By Proposition 15.9.1, the iden-

tity mapping (E, ‖.‖2) → (E, ‖.‖1) is continuous. Thus the function f :

(E, ‖.‖2) → R defined by f(x) = ‖x‖1 is continuous on (E, ‖.‖2). The set

S = {x ∈ E : ‖x‖2 = 1} is compact, and so f attains its minimum on S at a

point s0 of S. Since s0 �= 0, m = f(s0) > 0. Thus if ‖x‖2 = 1 then ‖x‖1 ≥ m.

We now use a standard homogeneity argument. If x ∈ E and x �= 0, then

x/ ‖x‖2 ∈ S, and so ∥∥∥∥ x

‖x‖2

∥∥∥∥
1

=
‖x‖1
‖x‖2

≥ m.

Thus ‖x‖2 ≤ ‖x‖1 /m for all x ∈ E, so that the identity mapping (E, ‖.‖1) →
(E, ‖.‖2) is continuous. �

Corollary 15.9.3 (i) Any finite-dimensional normed space is locally

compact, and complete.

(ii) Any linear operator from a finite-dimensional normed space into a

normed space is continuous.

(iii) Any finite-dimensional subspace of a normed space (E, ‖.‖) is closed
in E.
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Theorem 15.9.4 Any locally compact normed space (E, ‖.‖) is finite-

dimensional.

Proof Since BE is compact, it is totally bounded. There therefore exists

a finite subset F of BE such that

BE ⊆ F +BE/2 = {f + x : f ∈ F, ‖x‖ ≤ 1/2}.
Let G be the linear span of F . G is a finite-dimensional linear subspace

of E; we shall show that G = E. Now BE ⊆ G + BE/2, and so BE ⊆
G+ (G+BE/2)/2 = G+BE/4. Iterating this argument, we see that BE ⊆
G+BE/2

n, for n ∈ N. Thus if x ∈ BE and n ∈ N, there exists gn ∈ G such

that ‖x− gn‖ ≤ 1/2n. Hence gn → x as n → ∞, and so, since G is closed in

E, x ∈ G = G. Consequently, BE ⊆ G, and so E = span (BE) ⊆ G. �

Exercises

15.9.1 Suppose that F is a proper closed linear subspace of a normed space

(E, ‖.‖). Suppose that y ∈ E \ F and that 0 < ε < 1. There exists

f ∈ F such that ‖y − f‖ < d(y, F )/(1− ε). Let x = (y− f)/ ‖y − f‖.
Show that ‖x‖ = 1 and that d(x, F ) > 1− ε.

15.9.2 Suppose that F is a finite-dimensional linear subspace of a normed

space (E, ‖.‖) and that y ∈ E \ F . Show that there exists f ∈ F

such that ‖y − f‖ = d(y, F ). Show that there exists x ∈ E with

‖x‖ = d(x, F ) = 1.

15.9.3 Suppose that (E, ‖.‖) is an infinite-dimensional normed space. Show

that there exists a sequence (xn)
∞
n=1 of unit vectors in E with

‖xj − xk‖ ≥ 1 for j, k ∈ N with j �= k. Give another proof that

(E, ‖.‖) is not locally compact.

15.9.4 If x ∈ l∞, let φ(x) =
∑∞

n=1 xn/2
n, and let H = {x ∈ l∞ : φ(x) = 1}.

Let H0 = H ∩ c0.

(a) Show that φ : l∞ → R is a continuous linear mapping.

(b) Show that H is closed in l∞.

(c) Show that there exists a unique h ∈ H such that d∞(0, h) =

d∞(0,H).

(d) Show that H0 is closed in c0.

(e) Show that there is no element h0 of H0 such that d∞(0, h0) =

d∞(0,H0).

15.9.5 Suppose that F is a closed linear subspace of a normed space (E, ‖.‖)
and that y ∈ E \ F . Let G = span (F, y). Suppose that z ∈ G and

that fn + λnb → z as n → ∞. Suppose that (λn)
∞
n=1 does not con-

verge. Show that there is ε > 0 and a subsequence (λnk
)∞k=1 such that
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|λnk+1
−λnk

| ≥ ε. Show that (ank+1
−ank

)/(λnk
−λnk+1

) → y as n → ∞,

giving a contradiction. Show that if λn → λ as n → ∞ then z ∈ G.

Deduce that G is closed. Deduce that if D is a finite-dimensional

subspace of E then F +D is closed.
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Connectedness

16.1 Connectedness

In Section 5.3 of Volume I we introduced the notion of connectedness of sub-

sets of the real line, and showed that a non-empty subset of R is connected if

and only if it is an interval. The notion extends easily to topological spaces.

A topological space splits if X = F1 ∪F2, where F1 and F2 are disjoint non-

empty closed subsets of (X, τ). The decomposition X = F1∪F2 is a splitting

of X. If X does not split, it is connected. A subset A of (X, τ) is connected if

it is connected as a topological subspace of (X, τ). If X = F1 ∪F2 is a split-

ting, then F1 = C(F2) and F2 = C(F1) are open sets, and soX is the disjoint

union of two non-empty sets which are both open and closed; conversely if

U is a non-empty proper open and closed subset of X, X = U ∪ (X \ U) is

a splitting of (X, τ). Thus (X, τ) is connected if and only if X and ∅ are the

only subsets of X which are both open and closed.

Proposition 16.1.1 Suppose that A is a connected subset of a topological

space (X, τ) and that X = F1 ∪ F2 is a splitting of X. Then either A ⊆ F1

or A ⊆ F2.

Proof The sets A∩F1 and A∩F2 are disjoint open and closed subsets of

A whose union is A; one of them must be empty and the other one be equal

to A. �

Proposition 16.1.2 Suppose that (X, τ) and (Y, σ) are topological spaces

and that f : (X, τ) → (Y, σ) is continuous. If (X, τ) is connected, then so is

the topological subspace f(X) of Y .

Proof If f(X) = F1∪F2 is a splitting of f(X) then X = f−1(F1)∪f−1(F2)

is a splitting of X. �

464
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Connectedness can be characterized in terms of continuous mappings.

Let D2 be the two point set {0, 1}, with the discrete topology. Then D2 =

{0} ∪ {1} is a splitting of D2.

Corollary 16.1.3 A topological space (X, τ) is connected if and only if

there is no continuous surjective mapping of (X, τ) onto D2.

Proof The proposition shows that the condition is necessary. On the other

hand, if X = F0 ∪ F1 is a splitting of X, and if x ∈ Fi, let f(x) = i. Then f

is a continuous surjection of X onto D2. �

We also have an intermediate value theorem.

Corollary 16.1.4 (The intermediate value theorem) Suppose that f :

(X, τ) → R is a continuous real-valued function on a connected topologi-

cal space (X, τ), and that f(x) < v < f(x′) (where x, x′ ∈ X). Then there

exists y ∈ X such that f(y) = v.

Proof f(X) is a connected subset of R, and so it is an interval. Since

f(x), f(x′) ∈ f(X) and f(x) < v < f(x′), it follows that v ∈ f(X). �

Let us consider the connected subsets of a topological space (X, τ)

Proposition 16.1.5 Suppose that A is a set of connected subsets of a

topological space (X, τ) and that ∩A∈AA �= ∅.Then B = ∪A∈AA is connected.

Proof Let c be an element of ∩A∈AA. Suppose that F is an open and closed

subset of B. We must show that either F = B or that F = ∅. Suppose first
that c ∈ F . If A ∈ A, then F ∩A is a non-empty open and closed subset of

A. Since A is connected, A = F ∩ A ⊆ F . Since this holds for all A ∈ A,

B ⊆ F , so that F = B. Secondly, suppose that c �∈ F . If A ∈ A, then

F ∩ A is a open and closed subset of A which is not equal to A. Since A is

connected, F ∩ A = ∅. Since this holds for all A ∈ A, F ∩ B = ∅, so that

F = ∅. �

As an example, consider the open unit ball UE = {x ∈ E : ‖x‖ < 1} of

a normed space. If x ∈ UE , let fx : [0, 1] → UE be defined by f(t) = tx.

Then fx is continuous, so that fx([0, 1]) is connected. Since 0 ∈ fx([0, 1]) for

all x ∈ UE, the set UE = ∪{fx([0, 1]) : x ∈ UE} is connected. It follows, by

translation and scaling, that Nε(x) is connected, for each x ∈ E and ε > 0.

Proposition 16.1.6 Suppose that A is a dense connected subset of a

topological space (X, τ). Then (X, τ) is connected.



466 Connectedness

Proof Suppose that F is a non-empty open and closed subset of X. Since

F is open and A is dense in X, F ∩A �= ∅. But F ∩A is open and closed in

A, and so F ∩A = A, since A is connected. Thus A ⊆ F . Since F is closed

in X, X = A ⊆ F , and so F = X. �

Corollary 16.1.7 Suppose that A is a connected subset of a topological

space (X, τ) and that A ⊂ B ⊂ A. Then B is connected.

Proof A is a dense subset of the subspace B of (X, τ). �

Theorem 16.1.8 If (Xα, τα)α∈A is a family of connected topological

spaces, then the topological product X =
∏

α∈A(Xα, τα) is connected.

Proof Suppose that G is a non-empty open and closed subset of X, and

that x ∈ G. We shall show that if y ∈ X then y ∈ G, so that G = X,

and X is connected. Suppose that β ∈ A. The cross-section Cx,β = {z ∈
X : zα = xα for α �= β} is homeomorphic to (Xβ , τβ), and is therefore

connected. G ∩ Cx,β is an open and closed subset of Cx,β containing x, and

so G ∩ Cx,β = Cx,β. In particular, let w(β)(β) = yβ and w(β)(α) = xα for

α �= β; then w(β) ∈ G. Iterating this argument, if F is a finite subset of A,

let wF (β) = yβ for β ∈ F and wF (α) = xα for α �∈ F . Then wF ∈ G. Now

suppose that N is a neighbourhood of y. Then there exists a finite subset F

of N such that N ⊇ {z ∈ X : zβ = yβ for β ∈ F}. In particular, wF ∈ N ,

so that N ∩G �= ∅. Thus y ∈ G. Since G is closed, y ∈ G. �

We now consider the collection of connected subsets of a topological space

(X, τ). We define a relation on X by setting a ∼ b if there is a connected

subset A of (X, τ) which contains a and b. This is clearly symmetric and

reflexive (take A = {a}), and is also transitive, by Proposition 16.1.5, and

so it is an equivalence relation on X. The equivalence classes are called the

connected components of (X, τ).

Proposition 16.1.9 Suppose that E is a connected component of a

topological space (X, τ), and that x ∈ E. Let

Gx = ∪{F ⊆ X : x ∈ F and F is connected}.

Then E = Gx.

Proof If y ∈ E then there exists a connected subset F of X such that

{x, y} ⊆ F , and so y ∈ Gx; thus E ⊆ Gx. On the other hand, Gx is

connected, by Proposition 16.1.5, and so Gx ⊆ E. �

Corollary 16.1.10 A connected component E of a topological space (X, τ)

is closed and connected, and is a maximal connected subset of (X, τ).
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Proof E is connected, since Gx is connected. Since E is connected, E ⊆
Gx = E, and so E is closed. If F is a connected subset containing E then

F ⊆ Gx, and so F = E; E is a maximal connected subset of (X, τ). �

Corollary 16.1.11 If X = G ∪H is a splitting of X, then either E ⊆ G

or E ⊆ H.

Example 16.1.12 Two distinct connected components of a Hausdorff

topological space which cannot be separated by a splitting.

We construct an example in R2. For n ∈ N let Cn be the circle {(x, y) :
x2 + y2 = n/(n+ 1)}, let W = ∪∞

n=1Cn and let

X = {(1, 0)} ∪ {(−1, 0)} ∪W.

Then the circles Cn are connected components in X, and so therefore are the

singleton sets {(1, 0)} and {(−1, 0)}. Suppose that G is an open and closed

subset of W which contains (1, 0). Since G is open, there exists n0 such that

(n/(n+1, 0)) ∈ G for n ≥ n0. Since each Cn is connected, Cn ⊆ G for n ≥ n0,

and so (−n/(n+1), 0) ∈ G for n ≥ n0. Since G is closed, (−1, 0) ∈ G. Thus

if F1 ∪ F2 is a splitting of X, the two connected components {(1, 0)} and

{(−1, 0)} must either both be in F1 or both be in F2.

Things work better for compact Hausdorff spaces. We need a preliminary

lemma.

Lemma 16.1.13 Suppose that G is a set of open and closed subsets of a

compact Hausdorff space (X, τ), and that J = ∩G∈GG. If J1∪J2 is a splitting

of J , then there is a splitting F1 ∪ F2 of X, with J1 ⊆ F1 and J2 ⊆ F2.

Proof The sets J1 and J2 are disjoint closed subsets of X, and (X, τ) is

normal, and so there exist disjoint open subsets U1 and U2 ofX with J1 ⊆ U1

and J2 ⊆ U2. The open sets U1, U2 and {X \ G;G ∈ G} cover X, and so

there is a finite subcover U1, U2,X \G1, . . . ,X \Gn. Let F1 = U1∩ (∩n
j=1Gj)

and F2 = U2 ∪ (∪n
j=1(X \Gj)). Then F1 ∪ F2 = X, F1 and F2 are open and

disjoint, J1 ⊆ F1 and J2 ⊆ F2. �

Theorem 16.1.14 If C and D are distinct connected components of a

compact Hausdorff space (X, τ), there exists a splitting G ∪H with C ⊆ G

and D ⊆ H.

Proof Let G = {G : G is open and closed, and C ⊆ G}, and let J = ∩G∈G
G. First we show that J is connected. Suppose not, and suppose that J =

J1 ∪ J2 is a splitting of J . By Lemma 16.1.13, there exists a splitting X =

F1 ∪F2 of X with J1 ⊆ F1 and J2 ⊆ F2. But C is connected, and so C ⊆ F1
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or C ⊆ F2. Suppose, without loss of generality, that C ⊆ F1. Then F1 ∈ G,
so that J ⊆ F1. Thus J2 ⊆ F1 ∩ F2 = ∅, giving a contradiction.

Thus J is connected. But C ⊆ J and C is a maximal connected subset of

X, and so C = J . Suppose that d ∈ D. Then there exists G ∈ G such that

d �∈ G. Since H = X \ G is open and closed and D is connected, D ⊆ H.

Thus the splitting X = G ∪H has the required properties. �

When are connected components open? A topological space is locally con-

nected if for each a ∈ X and each N ∈ Na there exists a connected M ∈ Na

with M ⊆ N ; that is, each point of X has a base of neighbourhoods con-

sisting of connected sets. For example, a normed space is locally connected,

since if x ∈ E then the sets {Nε(x) : ε > 0} form a base of neighbourhoods of

x consisting of connected sets. An open subset of a locally connected space

is clearly locally connected.

Proposition 16.1.15 If (X, τ) is a locally connected topological space then

the connected components of X are open and closed.

Proof Suppose that E is a connected component of X. E is closed, by

Corollary 16.1.10. If a ∈ E, there exists a connected neighbourhood N of a.

Since E is the maximal connected subset of X containing a, N ⊆ E. Thus

a ∈ E◦. Since this holds for all a ∈ E, E is open. �

Thus the connected components form a partition of X into connected

open and closed sets.

Corollary 16.1.16 If U is an open subset of a normed space (E, ‖.‖),
then the connected components of U are open subsets of E.

Corollary 16.1.17 If (X, τ) is a compact locally connected topological

space then there are only finitely many connected components.

Proof For the connected components of X form an open cover of X. �

Corollary 16.1.18 If (X, τ) is a separable locally connected topological

space then there are only countably many connected components.

Proof Let D be a countable dense subset of X. If d ∈ D let Cd be the

connected component to which d belongs. If C is a connected component,

then C ∩D is not empty, and so the mapping d → Cd is a surjection from

the countable set D onto the set of connected components. �

In particular, and this will be very important later, an open subset of C

is the countable union of disjoint open connected sets.
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Proposition 16.1.19 If (X, τ) =
∏n

i=1(Xn, τn) is a finite product of

locally connected topological spaces then (X, τ) is locally connected.

Proof If x ∈ X then the sets

{N = N1 × · · · ×Nn : Nj is a connected neighbourhood of xj}

form a base of neighbourhoods of x consisting of connected sets. �

On the other hand, an infinite product of locally connected topological

spaces need not be locally connected. If Xn = {0, 1}, with the discrete

topology, for all n ∈ N, then Xn is locally connected, while the connected

components of (X, τ) =
∏∞

n=1(Xn, τn) are the singleton sets. But we have

the following.

Proposition 16.1.20 If (X, τ) =
∏

α∈A(Xα, τα) is a product of connected

locally connected topological spaces then (X, τ) is locally connected.

Proof This is left as an exercise for the reader. �

Exercises

16.1.1 A point x in a connected topological space (X, τ) is a splitting point

of X if the topological subspace X \{x} is not connected. Determine

the splitting points of the spaces (0, 1), (0, 1], [0, 1] and [0, 1]× [0, 1].

Show that no two of them are homeomorphic.

16.1.2 Show that there is no continuous injective map from R2 into R.

16.1.3 Suppose that A is a closed subset of [0, 1] × [0, 1] for which each

cross-section A ∩ ({x} × [0, 1]) is a non-empty interval. Show that

there exists 0 ≤ x ≤ 1 such that (x, x) ∈ A.

16.1.4 Suppose that A is a set of non-empty subsets of a set S. A is linked

if whenever A,B ∈ A then there exists a finite sequence (A0, . . . An)

such that A0 = A, An = B and Aj−1 ∩Aj �= ∅ for 1 ≤ j ≤ n. Show

that if A is a linked set of connected subsets of a topological space

(X, τ) then ∪A∈AA is connected.

16.1.5 Suppose that (X, d) is a compact metric space for which Nε(x) =

Mε(x) for each x ∈ X and ε > 0. Show that the sets Nε(x) and

Mε(x) are connected, for each x ∈ X and ε > 0. In particular,

(X, d) is connected and locally connected.

16.1.6 A metric space (X, d) is well-linked if whenever a, a′ ∈ X and ε > 0

there exists a finite sequence (aj)
n
j=0 in X with a0 = a, an = a′ and

d(aj−1, aj) < ε for 1 ≤ j ≤ n.

(a) Show that a connected metric space is well-linked.
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(b) Give an example of a well-linked metric space which is not

connected.

(c) Show that a compact well-linked metric space is connected.

16.1.7 Show that a countable Hausdorff topological space with more than

one point is not connected.

16.1.8 Prove Proposition 16.1.20.

16.1.9 Suppose that the compact metric space (X, d) has the property

that if x, y ∈ X then there exists z ∈ X with d(x, z) = d(y, z) =

d(x, y)/2. Show that (X, d) is connected.

16.1.10 Suppose that (Cn)
∞
n=1 is a decreasing sequence of closed connected

subsets of a compact topological space. Show that ∩∞
n=1Cn is

connected.

16.1.11 Give an example in R2 of a decreasing sequence (Cn)
∞
n=1 of closed

connected sets whose intersection is not connected.

16.2 Paths and tracks

Suppose that (X, τ) is a Hausdorff topological space. Let us consider the set

CX([a, b]) of continuous mappings from the closed interval [a, b] into (X, τ).

An element f of CX([a, b]) is called a path in X. f(a) is the initial point of

the path, and f(b) is its final point, and f is a path from a to b. The image

f([a, b]) is called the track from f(a) to f(b), and is denoted by [f ]. It is a

compact connected subset of (X, d). It can be helpful, if not mathematical,

to think of the interval [a, b] as a time interval; we start at time a at f(a);

f(t) denotes the point of the track that we have reached by time t, and we

reach f(b) at time b. We may retrace our footsteps, or cross the path at a

point that we have reached before, and, as we shall see, many other strange

things can happen. A path is closed if f(a) = f(b); we return to our starting

point.

Before going any further, let us give a word of warning: there is consid-

erable variation in terminology. Different authors use words such as ‘path’,

‘track’, ‘curve’ and ‘arc’ with a variety of different meanings.

As a simple example, if a and b are elements in a normed space (E, ‖.‖)
then the linear path σ(a, b) : [0, 1] → E from a to b is defined as σ(a, b)(t) =

(1− t)a+ tb, for t ∈ [0, 1]; its track is denoted by [a, b], and is called the line

segment from a to b.

We can juxtapose two paths to obtain a new path: if f : [a, b] → X and

g : [c, d] → X are paths, and f(b) = g(c) we define f ∨ g to be the path

from [a, b + (d − c)] into X defined by f ∨ g(x) = f(x) for x ∈ [a, b] and
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f ∨ g(x) = g(x+ (c− b)) for x ∈ [b, b+ (d− c)]. Thus f ∨ g has initial point

f(a) and final point g(d), and [f ∨ g] = [f ] ∪ [g].

The juxtaposition of finitely many linear paths is called a piecewise-linear

or polygonal path. If γ = σ(v0, v1)∨. . .∨σ(vk−1, vk) is a polygonal path, then

the points v0, v1, . . . , vk are called the vertices of γ, and the line segments

[vj−1, vj ] are called the edges of γ. A polygonal path γ in Rd is called a

rectilinear path if its edges are parallel to the axes: that is, if 1 ≤ j ≤ k then

all but one of the coordinates of vj−1 and vj are the same. A polygonal path

in Rd is called a dyadic path if each coordinate of each vertex is a dyadic

rational number. Dyadic rectilinear paths will be very useful, since we can

apply counting arguments to sets of dyadic rectilinear paths.

We can reverse a path. If f : [a, b]→X is a path, we set f←(t) = f(a+b−t)

for t ∈ [a, b]. Then f← is a path, the reverse of f , with initial point f(b) and

final point f(a), and with [f←] = [f ].

We can define an equivalence relation on paths. If f : [a, b] → X and

g : [c, d] → X are paths, we say that f and g are similar paths, or equivalent

paths, if there exists a homeomorphism φ : [c, d] → [a, b] such that φ(c) = a,

φ(d) = b and g = f ◦ φ. It is easy to see that this is an equivalence relation.

Recall that φ : [c, d] → [a, b] with φ(c) = a and φ(b) = d is a homeomorphism

if and only if it is a strictly increasing continuous function. Similar paths

have the same track, and if g(s) = f ◦ φ, we can think of t = φ(s) as a

change of variables or reparametrization. For example, if f : [a, b] → X is

a path, and we set g(t) = f((1 − t)a + tb) for t ∈ [0, 1] then g : [0, 1] → X

is a path equivalent to f . Again, if f : [0, 1] → X is a path, and we set

g(t) = f(t2) for t ∈ [0, 1] then g : [0, 1] → X is a path equivalent to

f . For many purposes, equivalent paths play the same role, and we shall

frequently identify equivalent paths. Thus it is often convenient to consider

paths defined on [0, 1] or [0, 2π].

We can change the initial point of a closed path. Suppose that f : [a, b] →
X is a closed path and that s ∈ [a, b]. Define fs : [a, b] → X by setting

fs(t) = f(s− a+ t) for a ≤ t ≤ a+ b− s,

and fs(t) = f(t+ s− b) for a+ b− s ≤ t ≤ b.

Then fs is a closed path with initial point f(s) and with the same track as

f . Two closed paths f : [a, b] → X and g : [c, d] → X are similar closed

paths if there exists s ∈ [a, b] such that fs and g are similar paths.

A path f : [a, b] → (X, τ) is simple if f is an injective mapping from [a, b]

into X. A simple path is sometimes called an arc. In this case, since [a, b]

is compact and (X, τ) is Hausdorff, f is a homeomorphism of [a, b] onto the
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track [f ]. Suppose that f : [a, b] → X and g : [c, d] → X are simple paths

with the same track, and with the same initial points and final points. Let

f−1 : [f ] → [a, b] be the inverse mapping, and let γ = f−1 ◦ g. Then γ is a

homeomorphism of [a, b] onto [c, d] with γ(a) = c and γ(b) = d, and so f

and g are equivalent.

A simple closed path f : [a, b] → X is a closed path whose restriction

to [a, b) is injective. Thus a simple closed path is not a simple path, since

f(a) = f(b), but otherwise f takes different values at different points of [a, b].

For example, the mapping κ : [0, 2π] → R2 defined by κ(t) = (cos t, sin t) is a

simple closed path, with track the unit circle T = {(x, y) ∈ R2 : ‖(x, y)‖ =

1}. More generally, if w = (x, y) ∈ R2 and r > 0, then the circular path

κr(w) is defined as

κr(w)(t) = (x+ r cos t, y + r sin t) for t ∈ [0, 2π];

we denote its track by Tr(w). Suppose that f : [0, 2π] → X is a simple

closed path. Let h = f ◦κ−1. Then h is a homeomorphism of T onto [f ]; the

track of a simple closed path is homeomorphic to the unit circle.

In order to illustrate the nature of paths, let us establish some approxi-

mation results that we shall need later.

Theorem 16.2.1 Suppose that γ : [0, 1] → U is a path from a to b in an

open subset U of a normed space (E, ‖.‖E), and that δ > 0. Then there is a

polygonal path β : [0, 1] → U from a to b with |β(t)− γ(t)| < δ for t ∈ [0, 1].

Proof Since [γ] is compact, we can suppose, by taking a smaller value of

δ if necessary, that Nδ([γ]) = ∪{Nδ(z) : z ∈ [γ]} ⊆ U . Since γ is uniformly

continuous on [0, 1] there exist 0 = t0 < t1 < · · · < tk = 1 such that

|γ(t) − γ(tj)| < δ/2 for t ∈ [tj−1, tj], for 1 ≤ j ≤ k. We consider the

polygonal path with vertices t0, . . . , tk. Let

β = σ(γ(t0), γ(t1)) ∨ σ(γ(t1), γ(t2)) ∨ . . . σ(γ(tk−1), γ(tk)),

parametrized so that β(tj) = γ(tj) for 0 ≤ j ≤ k. Then [β] ⊆ U , since

[γ(tj−1), γ(tj)] ⊆ Nδ(tj) ⊆ U . If tj−1 ≤ t ≤ tj then

‖β(t)− γ(t)‖E ≤ ‖β(t)− β(tj)‖E + ‖γ(tj)− γ(t)‖E < δ.

�

Corollary 16.2.2 If E = Rd, then β can be chosen as a rectilinear path.

Proof Replace each of the paths σ(γ(tj−1), γ(tj)) by the juxtaposition of

finitely many linear paths, each parallel to an axis. �
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Corollary 16.2.3 Suppose that γ : [0, 1] → U is a path in an open subset

U of Rd and that δ > 0. Then there is a dyadic rectilinear path β : [0, 1] → U

with |β(t) − γ(t)| < δ for t ∈ [0, 1].

Proof Approximate the vertices of the path of the previous corollary by

vertices each of whose coordinates is a dyadic rational number. �

16.3 Path-connectedness

A topological space (X, τ) is path-connected if for each x, y ∈ X there is a

path from x to y.

Proposition 16.3.1 If (X, τ) is a path-connected topological space then

(X, τ) is connected.

Proof Suppose that F is a non-empty open and closed subset of X, and

that x ∈ F . If y ∈ X there exists a path from x to y. Let T be its track.

Then x ∈ T and T is connected, and so T ⊆ F . But y ∈ T , and so y ∈ F .

This holds for all y ∈ X, and so F = X; X is connected. �

Example 16.3.2 A connected compact subset of the plane R2 which is

not path-connected.

Let

I = {(0, y) : −1 ≤ y ≤ 1}, J = {(x, sin(1/x)) : 0 < x ≤ 1}, K = I ∪ J.

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

–1

1

y

J

I

Figure 16.3. A connected set which is not path-connected.
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The mapping (x, sin(1/x)) → x is a homeomorphism of J onto (0, 1],

so that J is connected. K is the closure of J , so that K is compact

and connected. We show that K is not path-connected. Suppose that

f : [a, b] → K is a path from (0, 0) to (1, sin 1) and set f(t) = (g(t), h(t)). Let

S = sup{s ∈ [a, b] : g(s) = 0}. By continuity, g(s) = 0, and so a ≤ s < b.

Using the intermediate value theorem inductively, we can find a decreasing

sequence (tn)
∞
n=0 in [s, b] such that g(tn) = 2/π(2n+1). Let T = limn→∞ tn.

Then h(tn) = sin((2n + 1)π/2) = (−1)n, so that h(tn) does not converge

to h(T ) as n → ∞, contradicting the continuity of h. Note also that J is

path-connected, but that J = K is not.

Nevertheless, as we shall see, path connectedness provides a valuable test

for connectedness. For example, a normed space (E, ‖.‖) is path-connected,
and therefore connected: if x, y ∈ E, let f(t) = (1 − t)x + ty, for t ∈ [0, 1].

Here the track is the line segment [x, y].

We can also partition a topological space into path-connected compo-

nents. For this, we need the following.

Proposition 16.3.3 Suppose that (X, τ) is a topological space. Define a

relation ∼ on X by setting x ∼ y if there exists a path in X from x to y.

Then ∼ is an equivalence relation on X.

Proof If x ∈ X, let f(t) = x for x ∈ [0, 1]. Then f is a path from x to x,

and so x ∼ x.

If f : [a, b] → X is a path from x to y, the reverse path f← is a path from

y to x. Thus if x ∼ y then y ∼ x.

If f is a path from x to y and g is a path from y to z then the juxtaposition

f ∨ g is a path from x → z. Thus if x ∼ y and y ∼ z then x ∼ z. �

The equivalence classes are called the path-connected components of X.

They are maximal path-connected subsets ofX. Path-connected components

need not be closed. If K is the example that we have given of a connected

space that is not path-connected, then the path-connected components are

I, which is closed, and J , which is not.

We can also define local path connectedness. A topological space is locally

path-connected if for each x ∈ X and each M ∈ Nx there exists N ∈ Nx such

that N ⊆ M and N is path connected; that is, each point of X has a base of

neighbourhoods consisting of path-connected sets. Of course, a locally path-

connected space is locally connected, and its path-connected components

are connected. An open subset U of a normed space (E, ‖, ‖) is locally path-

connected; if x ∈ U and Nε(x) ⊆ U then Nε(x) is path-connected.
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Proposition 16.3.4 If (X, τ) is a locally path-connected topological space,

then the path-connected components are open and closed.

Proof Suppose that E is a path-connected component of X and that x ∈
E. Let N be a path-connected neighbourhood of X. Then x ∈ N◦ ⊆ N ⊆ E,

and so E is open. The complement of E is the union of path-connected

components, and therefore it is open. Thus E is closed. �

Corollary 16.3.5 A locally path-connected space is connected if and only

if it is path-connected.

In particular an open subset of a normed space, or of C, is connected if

and only if it is path-connected.

Results concerning the path-connectedness of product spaces are easier

to prove than the corresponding ones for connectedness.

Theorem 16.3.6 If (X, τ) =
∏

α∈A(Xα, τα) is the product of path-

connected topological spaces (Xα, τα) then (X, τ) is path-connected.

Proof Suppose that x, y ∈ X. Then for each α ∈ A there exists a path

fα : [0, 1] → X from xα to yα. Let f(t) = (fα(t))α∈A. Then f is a path from

x to y. �

Corollary 16.3.7 If (X, τ) is a finite product of locally path-connected

topological spaces then (X, τ) is locally path-connected.

The example (the infinite product of two-point sets) that we gave for local

connectedness shows that this result does not extend to infinite products.

Exercises

16.3.1 Suppose that (X, d) is a path-connected metric space. Show that the

set F (X) of finite non-empty subsets of X, with the Hausdorff metric,

is path-connected.

16.3.2 Suppose that (X, d) is a path-connected locally path-connected com-

pact metric space. Show that the configuration space C(X), with the

Hausdorff metric, is path-connected.

16.4 *Hilbert’s path*

(This section can be omitted on a first reading.)

The definition of a path, and its track, are very straightforward and nat-

ural. Paths are however not at all straightfoward. In 1890, Peano gave an
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example of a path in the plane whose track is the unit square [0, 1] × [0, 1].

We shall construct a path, Hilbert’s path, with the same track; this was

described by Hilbert in 1891.

We start with the unit square [0, 1]× [0, 1], which we list as S
(0)
1 . It can be

divided into a set Q1 of four squares with side-length 1/2, namely [0, 1/2]×
[0, 1/2], [0, 1/2]×[1/2, 1], [1/2, 1]×[0, 1/2] and [1/2, 1]×[1/2, 1]. We can divide

each of these squares into four smaller squares, and iterate the procedure.

Thus at the nth level we have a set Qn of 4n squares of side-length 1/2n.

Note that there is a natural parity on Qn; if S = [(j − 1)/2n, j/2n] × [(k −
1)/2n, k/2n], we say that S has odd parity if j + k is odd, and even parity if

j+k is even. If we colour the squares with odd parity white, and those with

even parity black, then we have a checker-board colouring. Note that if two

squares in Qn share a common side, then they have different parities.

We shall show that there is a unique listing (S
(n)
j )4

n

j=1 of Qn for n ∈ N

such that

(i) x0 = (0, 0) ∈ S
(n)
1 and x1 = (1, 0) ∈ S

(n)
4n ;

(ii) S
(n)
j and S

(n)
j+1 share a common side, for 1 ≤ j < 4n;

(iii) S
(n)
j = S

(n+1)
4j−3 ∪ S

(n+1)
4j−2 ∪ S

(n+1)
4j−1 ∪ S

(n+1)
4j for 1 ≤ j ≤ 4n;

for all n ∈ N. Note that if we have such a listing, then S
(n)
j has odd parity

if j is even, and even parity if j is odd.

To show this, note, by considering possible cases, that if we divide a square

S into a set Q of four squares with equal side-length, and if T ∈ Q and e is

a side of S, then there is a unique listing (Tj)
4
j=1 of Q so that consecutive

terms have a common side and so that T1 = T and T4 ∩ e �= ∅.
We begin by listing Q1: we set

S
(1)
1 = [0, 1/2] × [0, 1/2],

S
(1)
2 = [0, 1/2] × [1/2, 1],

S
(1)
3 = [1/2, 1] × [1/2, 1],

S
(1)
4 = [1/2, 1] × [0, 1/2].

This satisfies the conditions, and is the only listing that does so.

Suppose that Qn has been listed. Let e
(n)
j be the common side of S

(n)
j

and S
(n)
j+1, for 1 ≤ j < 4n. We list the four elements of Qn+1 contained

in S
(n)
1 so that consecutive terms have a common side and so that x0 ∈
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S
(n+1)
1 and S

(n+1)
4 ∩ e

(n)
1 �= ∅; this listing is unique. We then set S

(n+1)
5

to be the element of S
(n)
2 which has a side in common with S

(n+1)
4 , and

iterate. We continue in this way until we reach S
(n+1)
4n+1−3, which is contained

in S
(n)
4n ; up to here the listing is unique. Now S

(n+1)
4n+1−3 has even parity, and

[1 − 1/2n+1, 1] × [0, 1/2n+1], the element of Qn+1 to which x1 belongs, has

odd parity, and so we can complete the listing to satisfy the conditions, and

in a unique way.

We now use these listings to define approximations hn to Hilbert’s path.

Let x
(n)
0 = x0, let x

(n)
j be the centre of the square S

(n)
j , for 1 ≤ j ≤ 4n and

let x
(n)
4n+1 = x1. Let

t0 = 0, let tj = (j − 1/2)/4n for 1 ≤ j ≤ 4n, and let t4n+1 = 1.

Then set

hn((1− λ)tj + λtj+1) = (1− λ)x
(n)
j + λx

(n)
j+1

for 0 ≤ λ ≤ 1 and 0 ≤ j ≤ 4n. Then hn is a simple path from x0 to x1
which spends equal time 1/4n in each of the squares of Qn in turn. Because

of condition (iii), if (j − 1)/4n ≤ t ≤ j/4n then hn(t) ∈ S
(n)
j and also

hm(t) ∈ S
(n)
j for all m ≥ n.

(0,0) (1,0)

(1,1)(0,1)

Figure 16.4. The paths H3 and H4.
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Thus ‖hn(t)− hm(t)‖2 ≤ √
2/2n. Since this holds for all t ∈ [0, 1],

‖hn − hm‖∞ ≤ √
2/2n, and (hn)

∞
n=1 is a Cauchy sequence in CR2([0, 1]).

Since CR2([0, 1]) is a Banach space, the uniform limit h is a path from x0
to x1. We must show that [h] = [0, 1] × [0, 1]. If not, then, since [h] is a

closed subset of [0, 1]× [0, 1], its complement is a non-empty open subset of

[0, 1] × [0, 1], and this contains a closed square S
(n)
j , for some j and n. But

if (j − 1)/4n ≤ t ≤ j/4n then hm(t) ∈ S
(n)
j for m ≥ n. As hm(t) → h(t) as

m → ∞, it follows that h(t) ∈ S
(n)
j , giving a contradiction.

Hilbert’s path has a great deal of self-similarity. For example, the mapping

c : (x, y) → (y/2, x/2) maps [0, 1]×[0, 1] onto [0, 1/2]×[0, 1/2], and c(f(t)) =

f(t/4) for 0 ≤ t ≤ 1. Similarly if b(x, y) = (x/2, (y + 1)/2) then b(f(t)) =

f((t+ 1)/4).

The examples of Peano and Hilbert overturned many intuitions about

dimension: a two-dimensional object can be the continuous image of a one-

dimensional one. But the consequence of this was the development of a

rich theory of dimension. One other conclusion that should be drawn from

this example is that the notion of continuity is not a straightforward one;

the sketches that we make when we consider continuous functions are quite

untypical of what can happen.

Hilbert’s path is interesting because of its explicit construction and its self-

similarity properties. In the next section, we shall establish a more general

result.

Exercise

16.4.1 Construct a Hilbert path in R3, and in Rd for d ∈ N.

16.5 *More space-filling paths*

(This section can be omitted on a first reading.)

We now show that many compact metric spaces are the tracks of

continuous paths.

We can express the local path-connectedness of a compact metric space

in a uniform way.

Theorem 16.5.1 Suppose that (X, d) is a compact metric space. Then

(X, d) is locally path-connected if and only if, given ε > 0, there exists η > 0

such that if d(x, y) < η there exists a path f : [0, 1] → X from x to y such

that d(f(s), f(t)) < ε for 0 ≤ s < t ≤ 1.
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Proof The proof is a standard compactness proof. Suppose that (X, d)

is locally path-connected and that ε > 0. For each a ∈ X there exists

δ(a) > 0 and a path-connected set Ca such that Nδ(a)(a) ⊆ Ca ⊆ Nε/2(x).

Thus if b, c ∈ Nδ(a)(a) then there is a path f : [0, 1] → X from b to c

with d(f(s), f(t)) < ε for 0 ≤ s < t ≤ 1. The sets Nδ(a)/2(a) form an

open cover of X, and so there is a finite subcover {Nδ(a)/2(a) : a ∈ F}. Let
η = min{δ(a)/2 : a ∈ F}. If d(x, y) < η then there exists a ∈ F such that

x ∈ Nδ(a)/2(a), and so y ∈ Nδ(a)(a). Thus there is a path from x to y with

the required properties.

Conversely, suppose that the condition is satisfied, and that Nε(x) is a

neighbourhood of x in X, and let η satisfy the condition. Let Cε(x) be

the set of points y in X for which there is a path f : [0, 1] → X from

x to y for which d(f(s), f(t)) < ε for 0 ≤ s < t ≤ 1. Any such path is

contained in Nε(x) (take s = 0), so that Cε(x) ⊆ Nε(x), and the condition

implies that Nη(x) ⊆ Cε(x). Since Cε(x) is clearly path connected, the sets

{Cε(x) : ε > 0} form a base of path-connected neighbourhoods of x. �

Corollary 16.5.2 If (X, d) is a locally path-connected compact metric

space there exists an increasing real-valued function h on (0,diamX], for

which h(u) → 0 as u ↘ 0, such that if x, y ∈ X there exists a path

f : [0, 1] → X from x to y for which d(f(s), f(t)) ≤ h(d(x, y)) for

0 ≤ s < t ≤ 1.

Proof If x, y ∈ X, let P (x, y) be the set of paths from x to y. Let r(x, y) =

inf{diam ([p]) : p ∈ P (x, y)}; then d(x, y) ≤ r(x, y) ≤ diam (X). If 0 <

u < diam (X) let h(u) = 2 sup{r(x, y) : d(x, y) ≤ u}. Then the theorem

implies that h(u) → 0 as u ↘ 0, and the construction ensures that the other

requirements of the corollary are satisfied. �

Theorem 16.5.3 Suppose that (X, d) is a locally path-connected compact

metric space. Then there exists a path in X whose track is X.

Proof Let h be a function satisfying the conditions of Corollary 16.5.2.

By Corollary 15.4.9, there exists a continuous surjective mapping f from the

Cantor set C ontoX. We extend this to a continuous mapping f̃ : [0, 1] → X.

Suppose that (c, d) is a connected component of [0, 1] \ C. There is a path

γ : [c, d] → X from f(c) to f(d) such that

d(γ(s), γ(t)) ≤ h(d(f(c), f(d))) for c ≤ s < t ≤ d.

We define f̃(s) = γ(s) for s ∈ (c, d).

The function f̃ maps [0, 1] ontoX; it remains to show that f̃ is continuous.

If s ∈ [0, 1]\C then f̃ is continuous at s, since the path γ is continuous at s.



480 Connectedness

We must show that f̃ is continuous at each point t of C. This takes just a

little care. It is enough to show that f̃ is continuous on the right on [0, 1) and

continuous on the left on (0, 1], and it is clearly sufficient to show the former.

If t is the left-hand end-point of a connected component of [0, 1]\C, then f̃ is

continuous on the right at t. Otherwise, suppose that ε > 0. Then there exists

δ > 0 such that h(u) < ε/2 for 0 < u < δ. Since f is continuous on C, there

exists 0 < η ≤ δ such that t+ η < 1 and |f̃(r)− f̃(t)| = |f(r)− f(t)| < ε/2

for r ∈ (t, t + η) ∩ C. Since t is not the left-hand end-point of a connected

component of [0, 1] \ C, there exists t′ ∈ (t, t + η) ∩ C. If t < s < t′ then
either s ∈ C, in which case |f̃(s)− f̃(t)| < ε/2, or s ∈ [0, 1] \C. In the latter

case, there is a connected component (c, d) of [0, 1] \ C for which s ∈ (c, d).

But then (c, d) ⊆ (t, t′), so that d − c < δ, and |f̃(s) − f̃(c)| < ε/2. Thus

|f̃(s)− f̃(t)| < ε for t < s < t′; f is continuous on the right at t. �

Corollary 16.5.4 Suppose that K is a compact convex subset of a normed

space (E, ‖.‖). Then there exists a path in K whose track is K.

Proof If k1, k2 ∈ K then the line segment [k1, k2] is contained in K, and

so K is locally path-connected. �

16.6 Rectifiable paths

In Part Five, we turn to the problem of integrating a function along a path.

We have however seen that paths like Hilbert’s path can behave very badly.

We must therefore consider a more restricted class of paths.

The trouble with Hilbert’s path and other space-filling paths is that they

have infinite length. Let us make this explicit. If γ : [a, b] → (X, d) is a path,

its length l(γ) = l[a,b](γ) is defined as

l(γ) = sup

⎧⎨⎩
n∑

j=1

d(γ(tj−1), γ(tj)) : a = t0 < t1 < . . . tn = b, n ∈ N

⎫⎬⎭ .

It is possible that l[a,b](γ) = ∞; as a simple example, if γ(0) = (0, 0) and

γ(t) = (t, t sinπ/t) for 0 < t ≤ 1 then γ : [0, 1] → R2 is a simple path from

(0, 0) to (1, 0) in R2 of infinite length. Hilbert’s path h has infinite length,

since if n ∈ N then the approximation hn has length 2n + (
√
2− 1)/2n, and

l(h) ≥ l(hn) for all n.

A path of finite length is called a rectifiable path.

Proposition 16.6.1 Suppose that γ : [a, b] → (X, d) is a path.

(i) l[a,b](γ) ≥ d(a, b).
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(ii) l[a,b](γ
←) = l[a,b](γ).

(iii) If a < c < b then the restrictions of γ to [a, c] and to [c, b] are both

paths, and l[a,c](γ) + l[c,b](γ) = l[a,b](γ).

(iv) If β : [c, e] → (X, d) is a path similar to γ then l[c,e](β) = l[a,b](γ).

Proof All these results follow immediately from the definitions. �

As a cautionary example, consider the norm ‖(x1, x2)‖∞ = max(|x1|, |x2|)
on R2. Let a = (0, 0), b = (1, 0) and c = (2, 1), and let γ be the path

σ(a, b) ∨ σ(b, c). Then l[a,c](γ) = 2 = ‖c− a‖, although γ is not a linear

path. This phenomenon cannot occur in Euclidean spaces, or indeed in an

inner product space.

Proposition 16.6.2 Suppose that γ : [a, b] → V is a simple path in a real

inner product space (V, 〈., .〉) for which l[a,b](γ) = ‖γ(b)− γ(a)‖. Then γ is

similar to the linear path σ(γ(a), γ(b)).

“A straight line is the shortest distance between two points” (Thomas

Carlyle).

Proof If the result is not true then there exists a < c < b for which
c−a and b− c are not linearly dependent. Then, using the Cauchy–Schwarz
inequality,

‖γ(b)− γ(a)‖2 = ‖(γ(c)− γ(a)) + (γ(b)− γ(c))‖2

= ‖γ(c)− γ(a)‖2 + ‖γ(b)− γ(c)‖2 + 2 〈γ(c)− γ(a), γ(b)− γ(c)〉
< ‖γ(c)− γ(a)‖2 + ‖γ(b)− γ(c)‖2 + 2 ‖γ(c)− γ(a)‖ ‖γ(b)− γ(c)‖
= (‖γ(c)− γ(a)‖+ ‖γ(b)− γ(c)‖)2 ≤ (l[a,b](γ))

2,

giving a contradiction. �

It is convenient to use path length to parametrize a rectifiable path.

Proposition 16.6.3 Suppose that γ : [a, b] → (X, d) is a rectifiable path.

Let l(a) = 0, and let l(t) = l[a,t](γ), for t ∈ (a, b]. Then l is a continuous

increasing function on [a, b].

Proof If a < s < t ≤ b then l(t) = l(s) + l[s,t](γ) ≥ l(s), so that l is an

increasing function on [a, b].

We shall show that if a ≤ t < b then l is continuous on the right at t;

the proof of left continuity is exactly similar. Suppose that ε > 0. Recall

that l(t+) = inf{l(s) : s > t}. There exists δ > 0 with t + δ ≤ b such

that d(γ(s), γ(t)) < ε/3 and l(s) < l(t+) + ε/3 for t < s < t + δ. Thus if
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t < s < r < t+δ then l[s,r](γ) = l(r)− l(s) < ε/3. Suppose that t < s < t+δ.

There exist t = t0 < t1 < . . . tn = s such that

n∑
j=1

d(γ(tj−1), γ(tj)) > l[t,s] − ε/3 = l(s)− l(t)− ε/3.

Then

l(s)− l(t) < d(γ(t0), γ(t1)) +

n∑
j=2

d(γ(tj−1), γ(tj)) + ε/3

≤ d(γ(t0), γ(t1)) + l[t1,s](γ) + ε/3

≤ ε/3 + (l(s)− l(t1)) + ε/3 ≤ ε.

�

Proposition 16.6.4 Suppose that γ : [a, b] → (X, d) is a rectifiable path.

Then there exists an equivalent path β : [0, l[a,b](γ)] → [γ] such that l[0,s](β) =

s, for 0 < s ≤ l[a,b](γ).

Proof Let l(a) = 0 and let l(t) = l[a,t](γ), for t ∈ (a, b]. Then l is a

continuous increasing function on [a, b], and l([a, b]) = [0, l(b)]. Suppose that

0 ≤ t ≤ l(b). Let It = l−1({t}). Then It is a (possibly degenerate) closed

interval containing t. Suppose that It is not degenerate, and that r, s ∈ It
with r < s. Then l(s) = l(r) + l[r,s](γ) = l(r), so that l[r,s](γ) = 0. Since

d(γ(r), γ(s)) ≤ l[r,s](γ), it follows that γ(r) = γ(s). Thus if we set β(t) = γ(s)

for some s ∈ It, then β is properly defined, and γ = β ◦ l. Since γ and l are

continuous, it follows from Proposition 15.1.6 that β is continuous. Clearly

[β] = [γ], and l[0,t](β) = t, for t ∈ [0, l(b)]. �

This path is called the path-length parametrization of γ. Its use simplifies

many problems involving paths. Let α(t) = β(t/l(γ)) for 0 ≤ t ≤ 1; the path

α : [0, 1] → X is the normalized path-length parametrization.

Note that if γ is a simple rectifiable path, then the function l(t) = l[a,t](γ)

is strictly increasing on (a, b], and the mapping l is a homeomorphism of [a, b]

onto [0, l(b)]. In this case, the proof is much easier; simply set β = γ ◦ l−1.

Exercise

16.6.1 Show that the function ρ(x, y) =
√|x− y| on [0, 1] is a metric on

[0, 1] which is uniformly equivalent to the usual metric. Let γ(t) = t

for t ∈ [0, 1]. Is γ a rectifiable path in ([0, 1], ρ)?
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Differentiating functions of a vector variable

17.1 Differentiating functions of a vector variable

In Part Two, we considered continuity and limiting properties of real-

valued functions of a real variable – functions defined on a subset of R.

In Part Three we extended these ideas to functions between metric spaces,

or between topological spaces. In particular, these results apply to functions

of several real variables – functions defined on a subset of Rd.

We now turn to differentiation. This involves linearity: we therefore con-

sider functions defined on a subset U of a real normed space (E, ‖.‖E) taking
values in a real normed space (F, ‖.‖F ). In fact, our principal concern will

be with functions of several real variables (functions defined on an open

subset of Rd), but it is worth proceeding in a more general way. First, this

illustrates more clearly the basic ideas that lie behind the theory. Secondly,

even in the case where we consider functions defined on a finite-dimensional

Euclidean space, there are advantages in proceeding in a coordinate free

way; not only is the notation simpler, but also the results are seen to be

independent of any particular choice of coordinates.

Recall (Volume I, Section 7.1) that a real-valued function f defined on an

open interval I is differentiable at a point a of I if and only if there exists a

real number f ′(a) such that if

r(h) = f(a+ h)− f(a)− f ′(a)h

for all non-zero h in I − a = {x ∈ R : x + a ∈ I}, then r(h)/|h| → 0 as

h → 0; that is, r(h) = o(|h|). Let us set Dfa(x) = f ′(a)x, for x ∈ R. Then

Dfa is a linear mapping from R into R and

f(a+ h) = f(a) +Dfa(h) + r(h)

485
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for all h ∈ I − a = {x ∈ R : x+ a ∈ I}. Thus f is differentiable at a if and

only if we can write f as the sum of a constant (the value at a), a linear term

Dfa(h), and a small order term r(h). From this point of view, differentiation

is a matter of linear approximation.

These ideas extend naturally to vector-valued functions of a vector vari-

able. Suppose that f is a function defined on an open subset U of a real

normed space (E, ‖.‖E), taking values in a real normed space (F, ‖.‖F ), and
that a ∈ U . We say that f is differentiable at a, with derivative Dfa, if there

is a continuous linear operator Dfa ∈ L(E,F ) such that if

r(h) = f(a+ h)− f(a)−Dfa(h)

for all non-zero h ∈ U − a = {x ∈ E : x + a ∈ U}, then r(h)/ ‖h‖ → 0 as

h → 0. Again, we express f as the the sum of a constant (the value at a), a

linear term Dfa(h), and a small order term r(h).

Note that we require Dfa to be a continuous linear mapping; this con-

dition is automatically satisfied if E is finite-dimensional, since any linear

operator from a finite-dimensional normed space into a normed space is con-

tinuous (Corollary 15.9.3). Note also that the conditions remain the same

if we replace the norm on E and the norm on F by equivalent norms. In

particular, when E is finite-dimensional then we can use any norm on E

(and similarly for F ), since any two norms on a finite-dimensional space are

equivalent (Theorem 15.9.2).

Let us consider three special cases. First, when E = R, we set f ′(a) =

Dfa(1), so that

f(a+ h) = f(a) + hf ′(a) + r(h) for all h ∈ U − a = {x ∈ E : x+ a ∈ U};

f ′(a) is an element of F , while Dfa is a linear mapping from R into F . Note

that if ‖Dfa‖ is the operator norm of Dfa, then

‖Dfa‖ = sup{‖Dfa(h)‖F : |h| ≤ 1} =
∥∥f ′(a)

∥∥
F
.

Secondly, suppose that H is a real Hilbert space, and that F = R. In this

case, Dfa is a continuous linear functional on H. By the Fréchet-Riesz rep-

resentation theorem (Theorem 14.3.7), linear functionals can be expressed

in terms of the inner product; there exists an element ∇fa of H such that

Dfa(h) = 〈∇fa, h〉. The vector ∇fa is called the gradient of f at a. The sym-

bol ∇ was introduced by Hamilton, and named ‘nabla’ by Maxwell; ‘nabla’ is

the Greek word for a Hebrew harp. Nowadays, it is usually more prosaically

called ‘grad’.
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Thirdly, suppose that f = (f1, . . . , fn) is a mapping from an

open subset U of a normed space (E, ‖.‖E) into a finite product

(F1, ‖.‖F1
) × · · · × (Fn, ‖.‖Fn

) of normed spaces. Then f is differentiable

at a point a of E if and only if fj is differentiable at a for each 1 ≤ j ≤ n;

if so, then Dfa = ((Df1)a, . . . , (Dfn)a).

If f is differentiable at every point of U , we say that f is differentiable

on U . If so, then a → Dfa is a mapping from U to the normed space

(L(E,F ), ‖.‖) of continuous linear mappings from E into F . We say that

f is continuously differentiable at a if this mapping is continuous at a, and

that f is continuously differentiable on U if it is continuously differentiable

at each point of U .

As a first example, if T ∈ L(E,F ) then T (a+ h) = T (a) + T (h) for all a

and h in E, so that T is differentiable at every point of E, and DTa = T .

We now have the following elementary results.

Proposition 17.1.1 Suppose that f and g are functions defined on an

open subset U of a normed space (E, ‖.‖E), taking values in a normed space

(F, ‖.‖F ), that a ∈ U , and that f and g are differentiable at a.

(i) Dfa is uniquely determined.

(ii) If ε > 0, there exists δ > 0 such that Nδ(a) ⊆ U and such that

‖f(a+ h)− f(a)‖F ≤ (‖Dfa‖+ ε) ‖h‖E for ‖h‖E < δ.

(iii) f is continuous at a.

(iv) If λ, μ ∈ R then λf+μg is differentiable at a, with derivative λDfa+

μDga.

Proof (i) Suppose that T1, T2 ∈ L(E,F ) and that

f(a+ h) = f(a) + T1(h) + s1(h) = f(a) + T2(h) + s2(h) for h ∈ U − a,

where s1(h)/ ‖h‖E → 0 and s2(h)/ ‖h‖E → 0 as h → 0. Suppose that x is a

non-zero element of E. Let y = T1(x)− T2(x). Since

y

‖x‖E
=

T1(λx)− T2(λx)

‖λx‖E
= −s1(λx)− s2(λx)

‖λx‖E
→ 0

as λ → 0, y = 0. Since this holds for all non-zero x in E, T1 = T2.

(ii) Let f(x + h) = f(x) + Dfa(h) + r(h). There exists δ > 0 such that

Nδ(a) ⊆ U and such that ‖r(h)‖F ≤ ε‖h‖E for ‖h‖E < δ. Then

‖f(a+ h)− f(a)‖F = ‖Dfa(h) + r(h)‖F ≤ ‖Dfa(h)‖F + ‖r(h)‖F
≤ ‖Dfa‖‖h‖E + ε‖h‖E = (‖Dfa‖+ ε)‖h‖E .
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(iii) Suppose that ε > 0. Let δ satisfy the conclusions of (ii), and let

η = δε/(δ + 1)(‖Dfa‖+ ε). If ‖h‖E < η then ‖h‖E < δ, so that

‖f(a+ h)− f(a)‖F ≤ (‖Dfa‖+ ε) ‖h‖E < ε.

(iv) As easy as in the real scalar case. �

Theorem 17.1.2 (The chain rule) Suppose that U is an open subset of a

normed space (E, ‖.‖E), that f is a function defined on U , taking values in a

normed space (F, ‖.‖F ), and that f is differentiable at a point a of U . Suppose

that V is an open set of F containing f(U) and that k is a function defined

on V , taking values in a normed space (G, ‖.‖G), and differentiable at f(a).

Then the function k ◦ f is differentiable at a, with derivative Dkf(a) ◦Dfa.

Proof Let us set b = f(a), and suppose that

f(a+ h) = f(a) +Dfa(h) + r(h).

First we simplify the problem, by showing that we can replace k by a function

j for which Djb = 0. Let j(y) = k(y) −Dkb(y), for y ∈ V . By Proposition

17.1.1, j is differentiable at b, and Djb(y) = Dkb(y)−Dkb(y) = 0.

Since Dkb is linear,

Dkb(f(a+ h)) = Dkb(f(a)) +Dkb(Dfa(h)) +Dkb(r(h)).

But ‖Dkb(r(h))‖G ≤ ‖Dkb‖ ‖r(h)‖F , so that Dkb(r(h))/ ‖h‖E → 0 as h →
0. Thus Dkb ◦ f is differentiable at a, with derivative Dkb ◦ Dfa. Since

(k ◦ f)(x) = (j ◦ f)(x) + (Dkb ◦ f)(x), it is therefore sufficient to show that

j ◦ f is differentiable at a, with derivative 0. In other words, we must show

that ‖j(f(a+ h))− j(f(a))‖G / ‖h‖E → 0 as h → 0.

Suppose that ε > 0. Let L = ‖Dfa‖ + ε. By Proposition 17.1.1 (ii),

there exist δ > 0 such that Nδ(a) ⊆ U and ‖f(a+ h)− f(a)‖F ≤ L ‖h‖E
for ‖h‖E < δ. Since j is differentiable at b, there exists η > 0 such that

Nη(b) ⊆ V and

‖j(b + l)− j(b)‖G < ε‖l‖F /L, for ‖l‖F < η.

If ‖h‖E < min(δ, η/L) then ‖f(a+h)− f(a)‖F < η. Set l = f(a+h)− f(a);

then b+ l = f(a+ h), so that

‖j(f(a + h)) − j(f(a))‖G < ε‖f(a+ h)− f(a)‖F /L < ε‖h‖E .

Since this holds for all ε > 0, the result follows. �
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Corollary 17.1.3 If f is continuously differentiable on U and k is con-

tinuously differentiable on V then k ◦ f is continuously differentiable on U .

Proof For the functions x → Dkf(x) and x → Dfx are continuous, and

the composition of two continuous functions is continuous. �

Let us give some examples.

Example 17.1.4 The derivative of a bilinear mapping.

Suppose that (E, ‖.‖E), (F, ‖.‖F ) and (G, ‖.‖G) are normed spaces, and

that ‖.‖ is a product norm on E×F . Suppose that B is a continuous bilinear

mapping from the product E × F into G. Then

B((x, y) + (h, k)) = B(x, y) +B(h, y) +B(x, k) +B(h, k),

and ‖B(h, k)‖G ≤ ‖B‖∞ ‖h‖E ‖k‖F ≤ ‖B‖∞ . ‖(h, k)‖2, where ‖B‖∞ =

sup{‖B(x, y)‖G : ‖x‖E ≤ 1, ‖y‖F ≤ 1} (see Exercises 14.3.1 and 14.3.2),

so that ‖B(h, k)‖G / ‖(h, k)‖ → 0 as (h, k) → 0. Thus B is differentiable at

each point of E × F , and DB(x,y)(h, k) = B(h, y) +B(x, k).

Example 17.1.5 The derivative of the norm of a real inner-product space.

Suppose that E is a real inner-product space. Let N(x) = ‖x‖. Can we

differentiate N on E? If x ∈ E \ {0} let lx(λ) = λx. Then ‖lx(λ)‖ = |λ| ‖x‖,
so that the mapping N ◦ lx is not differentiable at 0. Consequently N is not

differentiable at 0.

Suppose on the other hand that x �= 0. We write N as a product of

mappings, consider each factor separately, and use the chain rule. We write

N(x) = (S ◦P ◦J)(x), where J : E \{0} → E×E is defined as J(x) = (x, x),

P : E ×E → R is the inner product map P (x, y) = 〈x, y〉 and S : (0,∞) →
(0,∞) is the square root map S(x) =

√
x. Then S(P (J(x))) = ‖x‖, and

DJx = J, since J is linear,

DP(x,y)(h, k) = 〈h, y〉 + 〈x, k〉 , by the previous example,

and DSx(h) = h/2
√
x.

By the chain rule, N is differentiable at x and

DNx(h) = DSP (J(x))DPJ(x)DJx(h) = DSP (J(x))DPJ(x)(h, h)

= DSP (J(x))(2 〈x, h〉) =
〈x, h〉
‖x‖ .

Thus N is differentiable at each point of E \ {0}.
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Example 17.1.6 The derivative of the mapping J : U → U−1 from

GL(E) to itself.

Suppose that U is in the general linear group GL(E) of a Banach space

E. Since GL(E) is an open subset of L(E), there exists δ > 0 such that

Nδ(U) ⊆ GL(E). Suppose that 0 < ‖T‖ < δ. Since T = (U + T ) − U , it

follows that (U + T )−1TU−1 = U−1 − (U + T )−1, and so

(U + T )−1 = U−1 − U−1TU−1 + r(T ),

where r(T ) = (U−1 − (U + T )−1)TU−1. Thus

‖r(T )‖ ≤ ∥∥U−1 − (U + T )−1
∥∥ . ‖T‖ .∥∥U−1

∥∥ .
Since (U + T )−1 → U−1 as T → 0, it follows that r(T )/ ‖T‖ → 0 as T → 0.

Thus J is differentiable at U , and DJU (T ) = −U−1TU−1. Consequently, J

is continuously differentiable on GL(E).

Exercises

17.1.1 Find the points of Rd at which the norms ‖x‖1 =
∑d

j=1 |xj| and
‖x‖∞ = max{|xj | : 1 ≤ j ≤ d} are differentiable, and determine the

derivatives at these points.

17.1.2 Suppose that E is a real inner product space. Let ρ(x) = x/ ‖x‖, for
x ∈ E \ {0}. Show that ρ is differentiable and that

Dρx(h) =
h

‖x‖ − 〈x, h〉 x
‖x‖3 .

Verify that 〈Dρx(h), x〉 = 0. Explain the geometric reason for this.

17.1.3 Suppose that (E, ‖.‖E) is a normed space. If T ∈ L(E), let s(T ) =

T 2. Show that s is a differentiable mapping L(F )→L(F ), and that

DsT (S) = ST + TS.

Show that if n ∈ N then the mapping p(n) : L(E)→L(E) defined by

p(n)(T ) = T n is differentiable, and determine its derivative.

17.1.4 Let Md(R) be the vector space of d× d real matrices. Show that the

mapping T → detT : Md(R) → R is differentiable. Show that if I is

the identity matrix then D detI(S) = tr(S) (where tr(S) =
∑d

j=1 sjj
is the trace of S). Show that if T is invertible then D detT (S) =

detT (tr(T−1S)).

17.1.5 Suppose that f :U →F is a mapping from an open subset U of

a normed space (E, ‖.‖E) into a normed space (F, ‖.‖F ) which is
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differentiable at a point a of U , and suppose that there exists

T ∈L(F,E) such that x = TDfa(x), for all x ∈ E. Show that there

exists δ > 0 such that Nδ(a) ⊆ U , and such that if x ∈ Nδ(a) then

f(x) �= f(a).

Does there necessarily exist δ > 0 such that Nδ(a) ⊆ U , and such

that if x, y ∈ Nδ(a) then f(x) �= f(y)?

17.2 The mean-value inequality

The mean-value theorem is a powerful result for real-valued functions on

a closed interval in R. We cannot hope for an equivalent result for vector-

valued functions. For example, let f : [0, 2π] → R2 be defined by setting

f(t) = (cos t, sin t) for t ∈ [0, 2π]. Then f(0) = f(2π) = (1, 0), while f ′(t) =
(− sin t, cos t) �= (0, 0) for any t, so that there exists no t in [0, 2π] for which

f(2π)− f(0) = 2πf ′(t). We can however prove an inequality, known as the

mean-value inequality, which is extremely useful. First we consider functions

in a closed interval.

Theorem 17.2.1 Suppose that f : I → F is a path from a closed interval

[a, b] in R into a normed space (F, ‖.‖F ) which is differentiable at each point

of (a, b). Then

‖f(b)− f(a)‖F ≤ (b− a) sup{∥∥f ′(c)
∥∥
F
: c ∈ [a, b]}.

Proof Let M = sup{‖f ′(c)‖F : c ∈ [a, b]}. If M = ∞ there is nothing to

prove. Otherwise, suppose that a < a′ < b′ < b and that ε > 0. We shall

show that ‖f(b′)− f(a′)‖F ≤ (b′ − a′)(M + ε). Then since ε is arbitrary,

‖f(b′)− f(a′)‖F ≤ (b−a)M . Since f is continuous at a and b, and since the

mapping x → ‖x‖ is continuous, it follows that ‖f(b)− f(a)‖F ≤ (b− a)M .

Let B = {t ∈ [a′, b′] : ‖f(t)− f(a′)‖F ≤ (t − a′)(M + ε)}. Since the

function t → ‖f(t)− f(a′)‖F − (t− a′)(M + ε) is continuous on [a′, b′], B is

a non-empty closed subset of [a′, b′]. Let c = sup B. If c < b′, it follows from
Proposition 17.1.1 (ii) that there exists c < d < b′ such that

‖f(d)− f(c)‖F ≤ (d− c)(
∥∥f ′(c)

∥∥
F
+ ε) ≤ (d− c)(M + ε).

But then∥∥f(d)− f(a′)
∥∥
F
≤ ‖f(d)− f(c)‖F +

∥∥f(c)− f(a′)
∥∥
F

≤ (d− c)(M + ε) + (c− a′)(M + ε) = (d− a′)(M + ε).
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Thus d ∈ B, giving a contradiction. Thus c = b′. But B is closed, and so

b′ ∈ B; thus ‖f(b′)− f(a′)‖F ≤ (b′ − a′)(M + ε). �

We now extend this result to functions of a vector variable.

Theorem 17.2.2 (The mean-value inequality) Suppose that f : U → F is

a continuous function from an open subset U of a normed space (E, ‖.‖E)
into a normed space (F, ‖.‖F ). Suppose that the closed segment [a, b] is con-

tained in U , and that f is differentiable at each point of the open segment

(a, b). Then

‖f(b)− f(a)‖F ≤ ‖b− a‖E sup{‖Dfc‖ : c ∈ (a, b)}.

Proof This follows from the chain rule. Let l(t) = (1−t)a+tb. Then f ◦l is
continuous on [0, 1] and differentiable on (0, 1), and (f ◦l)′(t) = Dfl(t)(b−a),

by the chain rule. Thus

‖f(b)− f(a)‖F ≤ sup{∥∥(f ◦ l)′(t)∥∥
F
: t ∈ (0, 1)}

= sup{‖Dfc(b− a)‖F : c ∈ (a, b)}
≤ ‖b− a‖E sup{‖Dfc‖ : c ∈ (a, b)}.

�

Corollary 17.2.3 Suppose that f : U → F is a continuous function from

a non-empty open connected subset U of a normed space (E, ‖.‖E) into a

normed space (F, ‖.‖F ), that f is differentiable at each point of U and that

Dfa = 0 for all a ∈ U . Then f is a constant.

Proof Let x0 be an arbitrary element of U , and let

C = {x ∈ U : f(x) = f(x0)}. On the one hand, C is a closed subset of

U , since f is continuous. On the other hand, if c ∈ C, there exists δ > 0

such that Nδ(c) ⊆ U . If d ∈ Nδ(c) the closed segment [c, d] is contained in U ,

and so ‖f(d)− f(c)‖ = 0, by the theorem. Thus d ∈ C, and so Nδ(c) ⊆ C.

Hence C is open; since U is connected, C = U . �

Corollary 17.2.4 Suppose that G : U → L(E,F ) is a continuous function

from a non-empty connected open subset U of a normed space (E, ‖.‖E) into
L(E,F ), where F is a normed space (F, ‖.‖F ). If f1 and f2 are any two

solutions of the partial differential equation Dfx = G(x), for x ∈ U , then

f1 − f2 is a constant function.

Proof For D(f1 − f2) = 0. �
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Corollary 17.2.5 Suppose that f : U → F is a continuous function from a

non-empty convex open subset U of a normed space (E, ‖.‖E) into a normed

space (F, ‖.‖F ), that f is differentiable at each point of U and that ‖Dfa‖ ≤
M for all a ∈ U . Then f is a Lipschitz function on U , with constant M .

Proof For if a, b ∈ U then [a, b] ⊆ U , so that ‖f(b)− f(a)‖ ≤ M ‖b− a‖.
�

The following form of the mean-value inequality is also useful.

Corollary 17.2.6 Suppose that f :U →F is a continuous function from

an open subset U of a normed space (E, ‖.‖E) into a normed space (F, ‖.‖F ).
Suppose that the closed segment [a, b] is contained in U , and that f is

differentiable at each point of the open segment (a, b). If T ∈ L(E,F ) then

‖f(b)− f(a)− T (b− a)‖ ≤ ‖b− a‖ sup{‖Dfc − T‖ : c ∈ (a, b)}.

Proof Let g(x) = f(x) − T (x). Then g is differentiable, with derivative

Dfx − T , for x ∈ (a, b). Apply the mean-value value inequality to g. �

The mean-value inequality allows us to obtain a more general version of

Theorem 12.1.8.

Theorem 17.2.7 Suppose that (fn)
∞
n=1 is a sequence of differentiable real-

valued functions on a bounded open convex subset U of a normed space

(E, ‖.‖E), taking values in a Banach space (F, ‖.‖F ). Suppose that

(i) there exists c ∈ U such that fn(c) converges, to f(c) say, as n → ∞,

and

(ii) the sequence (Dfn)
∞
n=1 of derivatives converges in the operator norm

uniformly on U to a function g from U to L(E,F ).

Then there exists a function f : U → F such that fn → f uniformly on

U . Further, f is differentiable on U , and Df(x) = g(x) for all x ∈ U .

Proof This follows by making straightforward changes to the proof of

Theorem 12.1.8; the details are left as a worthwhile exercise for the

reader. �

Important examples of rectifiable paths are given by piecewise continu-

ously differentiable paths. Suppose that (E, ‖.‖) is a Banach space. A path

γ : [a, b] → E is continuously differentiable if it is differentiable on [a, b] (with

one-sided derivatives at a and b), with derivative γ′ continuous on [a, b]. A

piecewise continuously differentiable path, is a juxtaposition of finitely many

continuously differentiable paths.
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Theorem 17.2.8 If (E, ‖.‖) is a Banach space and γ is a piecewise

continuously differentiable path in E then γ is rectifiable, and l[a,b](γ) =∫ b
a ‖γ′(t)‖ dt.

Proof It is clearly sufficient to consider the case where γ is continuously

differentiable. Then γ′ is bounded on [a, b]; let M = supt∈[a,b] ‖γ′(t)‖. Sup-
pose that ε > 0. Let η = ε/4(b − a). Since γ′ is uniformly continuous on

[a, b], there exists δ > 0 such that if s, t ∈ [a, b] and |s − t| < δ then

‖γ′(s)− γ′(t)‖ < η.

Suppose that

a = t0 < t1 < · · · < tn = b, with tj − tj−1 < δ for 1 ≤ j ≤ n.

By Corollary 17.2.6∥∥γ(tj)− γ(tj−1)− (tj − tj−1)γ
′(tj−1)

∥∥ ≤ η(tj − tj−1),

for 1 ≤ j ≤ n. Then ‖γ(tj)− γ(tj−1)‖ ≤ (M + η)(tj − tj−1), so that

n∑
j=1

‖γ(tj)− γ(tj−1)‖ ≤ (M + η)(b− a),

and γ is rectifiable.

Now ‖γ′(t)− γ′(tj−1)‖ < η for t ∈ [tj−1, tj], so that∣∣∣∣∣
∫ tj

tj−1

∥∥γ′(t)∥∥ dt− (tj − tj−1)
∥∥γ′(tj−1)

∥∥∣∣∣∣∣ ≤ η(tj − tj−1),

and so ∣∣∣∣∣
∫ tj

tj−1

∥∥γ′(t)∥∥ dt− ‖γ(tj)− γ(tj−1)‖
∣∣∣∣∣ ≤ 2η(tj − tj−1),

Adding, we see that∣∣∣∣∣∣
∫ b

a

∥∥γ′(t)∥∥ dt−
n∑

j−1

‖γ(tj)− γ(tj−1)‖
∣∣∣∣∣∣ ≤ 2η(b − a) = ε/2

and so ∣∣∣∣∫ b

a

∥∥γ′(t)∥∥ dt− l[a,b](γ)

∣∣∣∣ < ε.

Since ε is arbitrary, the result follows. �
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Corollary 17.2.9 If l(t) = l[a,t](γ) then l is piecewise differentiable on

[a, b] and l′(t) = ‖γ′(t)‖.
Corollary 17.2.10 If β is the path-length parametrization of γ then β

is a piecewise continuously differentiable path, and ‖β′(t)‖ = 1 (suitably

interpreted at points of juxtaposition).

Proof For β = γ ◦ l−1. �

Corollary 17.2.11 If δ : [0, d] → E is a continuously differentiable

parametrization of γ and ‖δ′(t)‖ = 1 for t ∈ [0, d], then δ is the path-length

parametrization of γ.

Proof For l(t) =
∫ t
0 ‖δ′(s)‖ ds = t. �

As an example, the circular path κr(w) in R2 is differentiable,

and (κr(w))
′(t) = (−r sin t, r cos t), so that ‖(κr(w))′(t)‖ = r, and

l[0,2π](κr(w)) = 2πr.

Recall that a path is piecewise-linear, or polygonal, if it is the juxtaposition

of finitely many linear paths. We can approximate a rectifiable path in a

Banach space by a piecewise-linear path, without increasing path-length.

Proposition 17.2.12 Suppose that γ : [a, b] → U is a rectifiable path in

an open subset U of a Banach space (E, ‖.‖), and that ε > 0. Then there

exists a piecewise-linear path δ : [a, b] → U such that ‖δ(t) − γ(t)‖ ≤ ε for

t ∈ [a, b], and l[a,b](δ) ≤ l[a,b](γ).

Proof Since [γ] is compact and since γ is uniformly continuous on [a, b]

there exists η > 0 such that if s, t ∈ [a, b] and |s− t| < η then Nε(γ(t)) ⊆ U

and ‖γ(s)− γ(t)‖ < ε/2.

Let a = t0 < t1 < · · · < tk = b be a dissection of [a, b] with tj − tj−1 < η

for 1 ≤ j ≤ k.

If t = (1− λ)tj−1 + λtj ∈ [tj−1, tj ], let δ(t) = (1− λ)γ(tj−1) + λγ(tj).

Since δ(t) = γ(tj−1) + λ(γ(tj)− γ(tj−1)), δ(t) ∈ U , and

‖δ(t)− γ(t)‖ ≤ ‖δ(t)− γ(tj−1)‖+ ‖γ(t)− γ(tj−1)‖ < ε.

Also, l[a,b](δ) =
∑k

j=1 ‖γ(tj)− γ(tj−1)‖ ≤ l[a,b](γ). �

Exercises

17.2.1 We have used a connectedness argument to prove the mean-value

inequality. It can also be proved using a compactness argument. With

the notation introduced in Theorem 17.2.1, show that there exist
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a′ = t0 < t1 < · · · < tk = b′ such that

‖f(tj)− f(tj−1)‖F ≤ (tj − tj−1)(M + ε) for 1 ≤ j ≤ k,

and deduce the mean-value inequality.

17.2.2 Give the details of the proof of Theorem 17.2.7.

17.2.3 [The Newton–Raphson method] Suppose that f is a differentiable

mapping from an open neighbourhood Nt(x0) of a point x0 of a

Banach space (E, ‖.‖E) into a normed space (F, ‖.‖F ), and that there

exists s > 0 such that

• ‖f(x0)‖F ≤ t/2s;

• if x, y ∈ Nt(x0) then ‖Dfx −Dfy‖ ≤ 1/2s; and

• if x ∈ Nt(x0) then there exists Jx ∈ L(F,E) with ‖Jx‖ ≤ s such

that Jx ◦ Dfx = Dfx ◦ Jx = I, where I is the identity mapping

on E.

Define (xn) by setting xn = xn−1 − Jx(f(xn−1)), for n ∈ N. Use

Corollary 17.2.6 to show that

‖xn − xn−1‖E ≤ t/2n and ‖f(xn)‖F ≤ t/2n+1s.

Show that (xn) converges to a point x∞ of Nt(x0), that f(x∞) = 0

and that x∞ is the only point in Nt(x0) with this property.

17.2.4 Suppose that γ is a rectifiable path in R2. Show that, given ε > 0

there is a finite set of closed rectangles whose union contains the track

[γ], and has area less than ε. Deduce that the interior of [γ] is empty.

Deduce that a space-filling path in R2 is not rectifiable.

17.2.5 Suppose that f is a function defined on a connected open subset U of

a normed space (E, ‖.‖E) taking values in a normed space (F, ‖.‖F ),
and that ‖f(x)− f(y)‖F ≤ K ‖x− y‖αE , for x, y ∈ U , where K > 0

and α > 1. Show that f is constant.

17.3 Partial and directional derivatives

The derivative of a vector-valued function of a vector variable is a linear

operator. It is desirable, where possible, to express it in simpler terms. Sup-

pose first that (E, ‖.‖E) =
∏n

j=1(Ej , ‖.‖j) is the product of normed spaces

(Ej , ‖.‖j), and that f : U → F is a function from an open subset U of E into

a normed space (F, ‖.‖F ). We can vary each variable separately. If hj ∈ Ej ,

let ij(hj) = h̃j = (0, . . . , 0, hj , 0, . . . , 0), where hj occurs in the jth place. If
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a ∈ U let

ka,j(hj) = a+ ij(hj) = (a1, . . . , aj−1, aj + hj , aj+1, . . . an).

Then ka,j is differentiable at every point of Ej, and Dka,j = ij . Also

(ka,j)
−1(U) is an open subset of Ej, containing 0. If the mapping f ◦ ka,j :

(ka,j)
−1(U) → F is differentiable at 0, we denote its derivative by Djfa; this

is the jth partial derivative of f at a, and is an element of L(Ej , F ).

If E = Rd, we set

Djfa(1) = (∂f/∂xj)(a) =
∂f

∂xj
(a).

Then
∂f

∂xj
(a) ∈ F and Djfa(λ) = λ

∂f

∂xj
(a).

Suppose that f is differentiable at a. Then

f(ka,j(hj)) = f(a+ h̃j) = f(a) +Dfa(h̃j) + r(hj)

= f(ka,j(0)) +Dfa(h̃j) + r(hj),

so that the jth partial derivative Djfa exists, for 1 ≤ j ≤ d, and Djfa(hj) =

Dfa(h̃j), for hj ∈ Ej . Further, if h = (hj)
d
j=1 then

Dfa(h) =

d∑
j=1

Dfa(h̃j) =

d∑
j=1

Djfa(hj).

In particular, if E = Rd and F = Rk, and f = (f1, . . . , fk) then

fi(a+ h) = fi(a) +

d∑
j=1

hj
∂fi
∂xj

(a) + ri(h).

where (∂fi/∂xj)(a) ∈ R: the derivative Dfa ∈ L(Rd,Rk) is represented by

the k × d real matrix (∂fi/∂xj(a)).

When E = Rd and F = R, then

∇fa =

(
∂f

∂x1
(a), . . . ,

∂f

∂xd
(a)

)
.

In the special case where d = k, we shall need to know when the lin-

ear operator Dfa : Rd → Rd is invertible. This is the case if and only if

the determinant of the matrix (∂fi/∂xj(a))
d, d
i=1,j=1 is non-zero (Appendix B,
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Corollary B.3.2). This determinant is called the Jacobian of f at a, and is

denoted by

Jf (a) or
∂(f1, . . . , fd)

∂(x1, . . . , xd)
(a).

We can also consider directional derivatives. Suppose that f is a mapping

from an open subset U of a normed space (E, ‖.‖E) into a normed space

(F, ‖.‖F ). Suppose that y ∈ E and that y �= 0. There exists ε > 0 such that

the interval [a, a + εy) is contained in U . We say that f has a directional

derivative in the direction y if there exists an element f ′
y(a) of F such that if

ry(λ) = f(a+ λy)− f(a)− λf ′
y(a), for 0 < λ < ε,

then ry(λ)/λ → 0 as λ → 0. The vector f ′
y(a) is then the directional

derivative in the direction y.

If f is differentiable at a, then it has directional derivatives in all direc-

tions, and f ′
y(a) = Dfa(y), for y �= 0. In the appropriate case, it also has

partial derivatives. The converse statements are not true, as the following

simple example shows. Let

f(x, y) =
x3y

x4 + y2
for (x, y) �= (0, 0) and let f(0, 0) = 0.

Then the reader should verify the following statements:

• f is a continuous real-valued function on R2;

• f is differentiable at every (a, b) �= (0, 0), and the mapping (a, b) → Df(a,b)
is continuous and bounded on R2\{(0, 0)} (use the chain rule, rather than

elaborate calculations);

• f has partial derivatives at (0, 0) and

∂f

∂x1
(0, 0) =

∂f

∂x2
(0, 0) = 0;

• f has directional derivatives in all directions at (0, 0), all equal to 0.

On the other hand, f is not differentiable at 0. If it were, the derivative

would have to be 0, and so f(x, y)/ ‖(x, y)‖ would tend to 0 as (x, y) → 0.

But f(t, t2) = t/2 for all t ∈ R \ {0}, and so this is not the case.

This is inconvenient, to say the least. For example, if we are investigating

the differentiability of a function defined on an open subset of Rd, the first

step will be to find out whether or not partial derivatives exist. If they do,
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can we use them to tell whether the function is differentiable or not? The

next theorem gives an extremely useful test.

Theorem 17.3.1 Suppose that (E, ‖.‖E)=E1 ×E2 is the product of

normed spaces (E1, ‖.‖1) and (E2, ‖.‖2) and that f :U →F is a function

from an open subset U of E into a normed space (F, ‖.‖F ). Suppose that

D1fa exists at a and that D2fx exists for all x in a neighbourhood Nθ(a) of

a, and is continuous at a. Then f is differentiable at a.

Proof If a+ h ∈ U , let

r(h1, h2) = f(a+ h)− f(a)−D1fa(h1)−D2fa(h2).

We must show that r(h)/ ‖h‖E → 0 as h→ 0. Now D1r0 = 0, D2r0 = 0 and

D2r is continuous at 0. Suppose that ε > 0. There exists 0 < δ < θ such

that

‖r(h1, 0)‖F ≤ ε ‖h‖E /2 and ‖D2rh‖ = ‖D2fa+h −D2fa‖ < ε/2 for ‖h‖E < δ.

By the mean-value inequality, if ‖h‖E < δ then

‖r(h1, h2)− r(h1, 0)‖F ≤ ‖h2‖2 sup{
∥∥D2r(h1,λh2)

∥∥ : 0 ≤ λ ≤ 1}
< ε ‖h‖E /2,

and so

‖r(h)‖F ≤ ‖r(h1, 0)‖F + ‖r(h1, h2)− r(h1, 0)‖F < ε ‖h‖E .

�

Corollary 17.3.2 Suppose that (E, ‖.‖E) =
∏n

j=1(Ej , ‖.‖j) is a product

of normed spaces (Ej , ‖.‖j) and that f : U → F is a function from an open

subset U of E into a normed space (F, ‖.‖F ). Suppose that all the partial

derivatives (∂f/∂xj)(b) exist, for all b in a neighbourhood of a, and are

continuous at a. Then f is differentiable at a.

Proof A simple inductive argument. �

Exercises

17.3.1 Let g be a real-valued function on the unit sphere Sd−1. Let k(0) = 0

and let k(x) = ‖x‖2 .g(x/ ‖x‖), for x �= 0. Show that k has directional

derivatives in all directions at 0. Give examples to show that k need

not be continuous, and to show that k can be continuous, but not

differentiable at 0.
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17.3.2 Suppose that (E, ‖.‖E) is a normed space and that f : E × E →
(F, ‖.‖F ) is a differentiable mapping. If c ∈ E, let gc(x) = f(x, c−x).

Show that gc : E → F is differentiable, and determine its derivative.

Suppose that D1f = −D2f . Show that there is a differentiable

function k : E → F such that f(x, y) = k(x− y).

17.4 The inverse mapping theorem

We have seen in Volume I, Propositions 6.4.4 and 6.4.5 that a continuous

function f on an open interval (a, b) of R is injective and has a continuous

inverse if and only if it is strictly monotonic. A sufficient condition for this

is that f is differentiable on (a, b), and that f ′(x) �= 0 for all x ∈ (a, b)

(Volume I, Corollary 7.3.3). Thus if f ′(a) �= 0 and f ′ is continuous at a then

there is a neighbourhood Nε(a) such that f is a homeomorphism of Nε(a)

onto f(Nε(a)). (The condition that f ′ is continuous cannot be dropped: see
Exercise 7.5.9. in Volume I.)

We now prove a corresponding result for vector valued functions. If

f : W → F is a mapping from an open subsetW of a Banach space (E, ‖.‖E)
into a Banach space (F, ‖.‖F ) which is differentiable at a point a of W , we

say that Dfa is invertible if Dfa is a bijection of E onto F . By the isomor-

phism theorem (Corollary 14.7.9), Df−1
a is a continuous linear mapping, so

that Dfa is an isomorphism of (E, ‖.‖E) onto (F, ‖.‖F ). (Df−1
a is trivially

continuous when E and F are finite-dimensional.)

Theorem 17.4.1 (The differentiable inverse mapping theorem) Suppose

that f :W →F is a differentiable mapping from an open subset W of a

Banach space (E, ‖.‖E) into a Banach space (F, ‖.‖F ), and that a ∈ W .

Suppose that the derivative Dfx is continuous at a and that Dfa is invert-

ible. Then there is a neighbourhood Nθ(a) such that f(Nθ(a)) is open in F ,

f : Nθ(a)→ f(Nθ(a)) is a homeomorphism, and the inverse mapping f−1 is

differentiable at f(a), with derivative (Dfa)
−1.

Proof The proof uses the Lipschitz inverse function theorem (Theorem

14.6.6). The first step is to simplify the problem. Let V = W − a, and let

g(x) = f(x+a)−f(a). Then g(0) = 0 andDgx = Dfx+a; the mapping g from

V to E is differentiable, and the mapping Dg :V →L(E,F ) is continuous at

0. Now let k = Df−1
a ◦ g = Dg−1

0 ◦ g. Then
• k(0) = 0,

• k : V → E is differentiable,
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• the mapping x → Dkx is continuous at 0, and

• Dk0 = I.

We prove the result for the function k. Then since f(x) = g(x− a)+ f(a) =

Dfa(k(x− a)) + f(a), the result follows for f .

We denote the open ball {x : ‖x‖E <α} with radius α by Uα. Let j(x) =

k(x) − x, so that Dj0 = 0. Since the mapping x → Djx is continuous at 0,

there exists a ball Uθ such that ‖Djx‖ < 1/2 for x ∈ Uθ. If x, y ∈ Uθ then

[x, y] ⊆ Uθ, so that

M = sup
{∥∥Dj(1−t)x+ty

∥∥ : 0 ≤ t ≤ 1
} ≤ 1/2.

Hence, by the mean-value inequality,

‖j(x)− j(y)‖E ≤ M ‖x− y‖E ≤ ‖x− y‖E /2;

thus j is a Lipschitz mapping on Nθ(a), with constant 1/2. It therefore

follows from the Lipschitz inverse function theorem that k(Uθ) is open and

that k is a homeomorphism of Uθ onto k(Uθ).

It remains to show that k−1 : k(Uθ)→Uθ is differentiable at 0, with deriva-

tive I. Suppose that 0< ε≤ 1. There exists 0 < δ ≤ θ such that if h ∈ Uδ

then ‖j(h)‖E < ε ‖h‖E /2. Since k−1 : k(Uθ) → Uθ is continuous, and since

k(Uθ) is an open neighbourhood of 0, there exists η > 0 such that Uη ⊆ k(Uθ)

and k−1(Uη) ⊆ Uδ.

Suppose that ‖y‖ ≤ η. Let k−1(y)= y+ s(y). We shall show that

‖s(y)‖E < ε ‖y‖E, so that k−1 is differentiable at 0, with derivative I. First,

‖y + s(y)‖E =
∥∥k−1(y)

∥∥
E
< δ, so that

‖j(y + s(y))‖E < ε ‖y + s(y)‖E /2.

Next,

y = k(k−1(y)) = k(y + s(y)) = y + s(y) + j(y + s(y)),

so that s(y) = −j(y + s(y)). Thus

‖s(y)‖E = ‖j(y + s(y))‖E ≤ ε ‖y + s(y)‖E /2 ≤ ε ‖y‖E /2 + ε ‖s(y)‖E /2;

since ε < 1, ‖s(y)‖E ≤ ε ‖y‖E . �

Note that if the conditions of the theorem are satisfied then Dfa is a

linear isomorphism of (E, ‖.‖E) onto (F, ‖.‖F ). In practice, the theorem is

usually applied when (E, ‖.‖E) = (F, ‖.‖F ).
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Corollary 17.4.2 Suppose that f is a continuously differentiable function

on W and that Dfx is invertible, for each x ∈ W . If V is an open subset of

W then f(V ) is open in F .

Proof This follows immediately from the theorem. �

Corollary 17.4.3 Suppose that f is a continuously differentiable function

on W and that Dfx is invertible, for each x ∈ W . If f is injective then f

is a homeomorphism of W onto f(W ), f−1 is continuously differentiable on

f(W ) and Df−1
f(x) = (Dfx)

−1, for x ∈ W .

Proof The mapping f−1 is differentiable at each point of f(W ):

we must show that Df−1 is continuous on f(W ). But the mapping

y → Df−1
y is the composition of the mapping y → f−1(y) : f(W ) → W ,

the mapping w → Dfw : W → GL(E) and the mapping J : U → U−1 :

GL(E) → GL(E), each of which is continuous. �

A mapping f which satisfies the conditions of this corollary is called a

diffeomorphism of W onto f(W ).

17.5 The implicit function theorem

We have an implicit function theorem for differentiable functions.

Theorem 17.5.1 (The implicit function theorem) Suppose that

(E1, ‖.‖1), (E2, ‖.‖2) and (F, ‖.‖F ) are normed spaces, that (E2, ‖.‖2) and

(F, ‖.‖F ) are complete and that f is a differentiable mapping from an open

subset U of E1 × E2 into F . Suppose that a = (a1, a2) ∈ U , that the partial

derivative D2fa : E2 → F is invertible, and that the mapping x → Dfx is

continuous at a. Then there is a neighbourhood N of a1 in E1 and a unique

mapping φ : N → E2 such that

1. φ is continuous;

2. the cross-section N × {a2} is contained in U ;

3. (x, φ(x)) ∈ U for x ∈ N ;

4. f(x, φ(x)) = f(a1, a2) for x ∈ N ;

5. φ is differentiable at a1, and Dφa1
= −(D2fa)

−1D1fa.

Thus the theorem says that there is a neighbourhood of a1 on which there

is a unique solution to the equation f(x, y) = f(a1, a2), that the solution

is continuous in the neighbourhood, and that the solution is differentiable

at a1.
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a1

(a, ϕ (a))

N × {a2}

(a1, a2)

U

Figure 17.5. The implicit function theorem.

Proof As with the inverse function theorem, we simplify the problem. Let

V = U−a, and let g(x1, x2) = f(x1+a1, x2+a2)−f(a1, a2), for (x1, x2) ∈ V .

Let k = (D2f
−1
a ) ◦ g. Then k maps V into E2, and

• k(0) = 0,

• k : V → E2 is differentiable,

• the mapping x → Dkx is continuous at 0, and

• D2k0 = I.

We set T = D1k0 = (D2f
−1
a ) ◦D1fa, and set

j(x1, x2) = k(x1, x2)− x2, r(x1, x2) = k(x1, x2)− T (x1)− x2.

We give E1 × E2 the norm ‖(x1, x2)‖ = ‖x1‖1 + ‖x2‖2. Let K = 2 ‖T‖+ 1.

Since r is continuously differentiable at 0, and Dr0 = 0, there exists δ > 0

such that Nδ(0) ⊆ V and ‖Drx‖ ≤ 1/2 for x ∈ Nδ(0). By Corollary 17.2.5,

‖r(x)− r(y)‖2 ≤ 1
2 ‖x− y‖ for x, y ∈ Nδ(0). Let η = δ/K.

Let X1 = {x1 ∈ E1 : ‖x1‖1 < η} and let X2 = {x2 ∈ E2 : ‖x2‖2 < δ}. It
follows from the inequality above that if x1 ∈ X1 and x2, x

′
2 ∈ X2 then∥∥j(x1, x2)− j(x1, x

′
2)
∥∥
2
=
∥∥r(x1, x2)− r(x1, x

′
2)
∥∥
2
≤ 1

2

∥∥x2 − x′2
∥∥
2
.

It now follows from the Lipschitz implicit function theorem (Theorem

14.6.4) that there exists a unique continuous function ψ : X1 → Y such that

j(x1, ψ(x1)) = ψ(x1) for x1 ∈ X1. Thus k(x1, ψ(x1)) = 0 for x1 ∈ X1, and

ψ is the unique function with this property.
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Next we show that ψ is differentiable at 0, with derivative −T . If x1 ∈ X1,

let s(x1) = r(x1, ψ(x1)). Then

ψ(x1) = −T (x1)− s(x1).

Thus

‖ψ(x1)‖2 ≤ ‖T‖ ‖x1‖1 + 1
2(‖x1‖1 + ‖ψ(x1)‖2) = (K/2) ‖x1‖1 + 1

2 ‖ψ(x1)‖2 ;

hence ‖ψ(x1)‖2 ≤ K ‖x1‖1, and ‖(x1, ψ(x1))‖ ≤ (K+1) ‖x1‖1. Consequently
s(x1)/ ‖x1‖1 → 0 as x1 → 0, and ψ is differentiable at 0, with derivative −T .

Finally, it follows that if we set

N = X1 + a1 and φ(x) = a2 + ψ(x− a1) for x ∈ N,

then N and φ satisfy the requirements of the theorem. �

17.6 Higher derivatives

Suppose that f : U → F is a mapping from an open subset U of a normed

space (E, ‖.‖E) into a normed space (F, ‖.‖F ) which is differentiable on U .

Then Df is a mapping from U into L(E,F ). We consider the case where

the mapping Df is differentiable at a point a of U . If Df is differentiable at

a ∈ U then we denote its derivative byD(Df)a, and say that f is twice differ-

entiable at a. The linear operator D(Df)a is an element of L(E,L(E,F )); if

h ∈ E then D(Df)a(h) ∈ L(E,F ). Thus if k ∈ E then (D(Df)a(h))(k) ∈ F .

We have seen (Exercise 14.3.2) that there is a natural isometric isomorphism

j of L(E,L(E,F )) onto the normed space B(E,E;F ) of continuous bilinear

mappings from E×E into F . We denote the bilinear mapping j(D(Df)a) by

D2fa. Thus D
2fa(h, k) = (D(Df)a(h))(k). The mapping D2fa is the second

derivative of f at a.

Example 17.6.1 The second derivative of the mapping J : U → U−1

from GL(E) to itself.

Suppose that U is in the general linear group GL(E) of a Banach space

E. Since GL(E) is an open subset of L(E), there exists δ > 0 such that

Nδ(U) ⊆ GL(E). Suppose that 0 < ‖T‖ < δ, and suppose that S ∈ L(E).

Then

DJU+T (S)−DJU (S) = −(U + T )−1S(U + T )−1 + U−1SU−1.
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Since (U + T )−1 = U−1 − U−1TU−1 + r(T ), where r(T ) = o(‖T‖),

DJU+T (S)−DJU (S) =

−(U−1 − U−1TU−1)S(U−1 − U−1TU−1) + U−1SU−1 + sS(T ),

where sS(T ) = −r(T )S(U + T )−1 − (U + T )−1Sr(T ) = o(‖T‖). Now

−(U−1 − U−1TU−1)S(U−1 − U−1TU−1) + U−1SU−1 =

U−1TU−1SU−1 + U−1SU−1TU−1 − U−1TU−1SU−1TU−1.

But U−1TU−1SU−1TU−1 = o(‖T‖), so that J is twice differentiable, and

D2J(T, S) = U−1TU−1SU−1 + U−1SU−1TU−1.

This second derivative is symmetric in S and T . This is an important

general property.

Theorem 17.6.2 Suppose that f : U → F is a mapping from an open

subset U of a normed space (E, ‖.‖E) into a normed space (F, ‖.‖F ) which

is differentiable on U , and twice differentiable at a ∈ U . Then D2fa(h, k) =

D2fa(k, h) for all (h, k) ∈ E × E.

Proof Before beginning the proof, let us see why this is a result that we

should expect. For small h, the difference Δfa(h) = f(a+h)−f(a) is a good

approximation to Dfa(h), and so for small h and k the second difference

Δ2fa(h, k) = Δ(Δfa(h))(k) is a good approximation to D2fa(h, k). But

Δ2fa(h, k) = f(a+ h+ k)− f(a+ h)− f(a+ k) + f(a)

is symmetric in h and k, and so we can expect D2fa(h, k) to have the same

property. As we shall see, the proof is quite complicated.

Suppose that ε > 0. There exists δ > 0 such that Nδ(a) ⊆ U and

‖Dfa+x −Dfa − (D(Dfa))(x)‖ ≤ ε ‖x‖E , for ‖x‖E < δ.

That is, ∥∥Dfa+x(y)−Dfa(y)− (D2fa)(x, y))
∥∥
F
≤ ε ‖x‖E ‖y‖E ,

for ‖x‖E < δ and y ∈ E. First suppose that ‖h‖E < δ/4 and ‖k‖E < δ/4.

Let

g(t) = Δfa+th(k) = f(a+ th+ k)− f(a+ th), for t ∈ (−2, 2),
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so that g is a differentiable mapping from (−2, 2) to F . By the chain rule,

g′(t) = Dfa+th+k(h)−Dfa+th(h). Since∥∥Dfa+th+k(h)−Dfa(h) −D2fa(th+ k, h)
∥∥
F
≤ ε ‖th+ k‖E ‖h‖E

and
∥∥Dfa+th(h)−Dfa(h)−D2fa(th, h)

∥∥
F
≤ ε ‖th‖E ‖h‖E ,

it follows from the triangle inequality that if −1 ≤ t ≤ 1 then∥∥Dfa+th+k −Dfa+th −D2fa(k, h)
∥∥
F
≤ 2ε(‖h‖E + ‖k‖E) ‖h‖E ;

that is, ∥∥g′(t)−D2fa(k, h)
∥∥
F
≤ 2ε(‖h‖E + ‖k‖E) ‖h‖E . (∗)

Thus∥∥g′(t)− g′(0)
∥∥
F
≤ ∥∥g′(t)−D2fa(k, h)

∥∥
F
+
∥∥g′(0) −D2fa(k, h)

∥∥
F

≤ 4ε(‖h‖E + ‖k‖E) ‖h‖E .

Applying the mean-value inequality of Corollary 17.2.6,∥∥g(1) − g(0) − g′(0)
∥∥
F
≤ sup{∥∥g′(t)− g′(0)

∥∥
F
: 0 ≤ t ≤ 1}

≤ 4ε(‖h‖E + ‖k‖E) ‖h‖E ,

and so ∥∥g(1) − g(0) −D2fa(k, h)
∥∥
F

≤ ∥∥g(1) − g(0) − g′(0)
∥∥
F
+
∥∥g′(0)−D2fa(k, h)

∥∥
F

≤ 6ε(‖h‖E + ‖k‖E) ‖h‖E ,

by (∗). But

g(1) − g(0) = f(a+ h+ k)− f(a+ h)− f(a+ k) + f(a) = Δ2fa(h, k),

and this is symmetric in h and k. Exchanging h and k, we see that∥∥g(1) − g(0) −D2fa(h, k)
∥∥
F
≤ sup{∥∥g′(t)− g′(0)

∥∥ : 0 ≤ t ≤ 1}
≤ 6ε(‖h‖E + ‖k‖E) ‖k‖E ,

so that
∥∥D2fa(k, h) −D2fa(h, k)

∥∥
F
≤ 6ε(‖h‖E + ‖k‖E)2.

So far, we have only proved this inequality for small h and k. The following

simple scaling argument shows that it holds in general. Suppose that h and



17.6 Higher derivatives 507

k are arbitrary members of E. There exists λ > 0 such that ‖λh‖E < δ/4

and ‖λk‖E < δ/4. Then∥∥D2fa(k, h) −D2fa(h, k)
∥∥
F
=
∥∥D2fa(λk, λh) −D2fa(λh, λk)

∥∥
F
/λ2

≤ 6ε(‖λh‖E + ‖λk‖E)2/λ2

= 6ε(‖h‖E + ‖k‖E)2.

But ε is arbitrary, and so D2fa(h, k) = D2fa(k, h). �

Note that if f is twice differentiable at a then D2f(h, k) = Dh(Dkf)a,

whereDh and Dk are directional derivatives in the directions h and k respec-

tively. Thus Dh(Dkf)a = Dk(Dhfa). In particular, if E = Rd and f is twice

differentiable at a then

D2fa(ei, ej) =
∂

∂xi

(
∂f

∂xj

)
(a) =

∂2f

∂xi∂xj
(a),

so that

D2fa(h, k) =

d∑
i=1

d∑
j=1

hikj
∂2f

∂xi∂xj
(a),

where
∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a) for 1 ≤ i, j ≤ d.

The results that we have established depend in an essential way upon the

fact that f is twice differentiable at a. The existence of second directional

and partial derivatives does not imply the symmetry result of the theorem.

Let

f(0, 0) = 0, and f(x, y) =
xy(x2 − y2)

x2 + y2
for (x, y) �= (0, 0).

The reader should verify the following:

• f is continuous and differentiable at every point of R2;

• Df is continuous and differentiable at every point of R2 \ {(0, 0)};
• ∂2f

∂x1∂x2
(0, 0) = − ∂2f

∂x2∂x1
(0, 0) = −1.

There are further examples of bad behaviour, and rather specialized posi-

tive results, some of which are included in the exercises, but we shall not

investigate this further.

We can also consider higher derivatives. Suppose that f is a mapping from

an open subset U of a normed space (E, ‖.‖E) into a normed space (F, ‖.‖F )
which is (k − 1)-times differentiable on U and is k-times differentiable at
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a. Let Mk(E,F ) denote the space of continuous k-linear mappings from

Ek into F . Then we can consider Dkfa as a k-linear mapping from Ek

into F : D(Dk−1f)a ∈ L(E,Mk−1(E,F )), and D(Dk−1fa)(h1)(h2, . . . , hk) =

Dkfa(h1, . . . , hk). A function which is k-times continuously differentiable is

called a C(k)-function. A function which is infinitely differentiable (a C(k)-

function, for each k ∈ N) is called a smooth function.

Theorem 17.6.3 Suppose that U is an open subset of a normed space

(E, ‖.‖E), that f is a C(k)-function defined on U , taking values in a normed

space (F, ‖.‖F ), that V is an open set of F containing f(U) and that g is a

C(k)-function defined on V , taking values in a normed space (G, ‖.‖G). Then
the function g ◦ f is a C(k)-function on U .

Proof The proof is by induction on k. The result is true for k = 1, by

Corollary 17.1.3. Suppose that it holds for k − 1 and that f and g are

C(k)-functions. The function x → Dfx is a C(k−1)-function on U , and, by

the inductive hypothesis, the function x → Dgf(x) is a C(k−1)-function on

U . By the inductive hypothesis again, the function x → Dgf(x) ◦ Dfx is a

C(k−1)-function on U : that is to say, g ◦ f is a C(k)-function on U . �

Corollary 17.6.4 If f and g are smooth, then so is g ◦ f .
Corollary 17.6.5 The inversion mapping J : GL(E) → GL(E) is a

smooth mapping.

Proof We need a preliminary lemma.

Lemma 17.6.6 Suppose that (E, ‖.‖E) is a normed space. Let B : L(E) →
L(E) be defined as B(S)(T ) = −STS. Then B is a smooth function.

Proof For (DBS(H))(T ) = −HTS − STH, and

(D2BS(H,K))(T ) = −HTK −KTH,

so that D3B = 0. �

We now prove the corollary. The proof is by induction on k. The map-

ping J is continuously differentiable. Suppose that it is a C(k−1)-function.

Since DJ = B ◦ J , the derivative DJ is a C(k−1)-function; that is, J is a

C(k)-function. �

We also have the following result.

Theorem 17.6.7 Suppose that f : W → F is a diffeomorphism from

an open subset W of a Banach space (E, ‖.‖E) onto a subset f(W ) of a
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Banach space (F, ‖.‖F ) , and that f is a C(k)-function. Then f−1 is also a

C(k)-function.

Proof Since (E, ‖.‖E) and (F, ‖.‖F ) are isomorphic Banach spaces, we

can suppose that E = F . The proof is again by induction on k. Suppose

that the result holds for k − 1, and that f is a C(k)-function. Then the

mapping f−1 : f(W ) → W is a C(k−1)-function, by hypothesis, the function

Df : U → GL(E) is a C(k−1)-function, and the inversion function J :

GL(E) → GL(E) is a smooth function, and so, applying Theorem 17.6.3, it

follows that the mapping y → (Dff−1(y))
−1 is a C(k−1)-function. Thus f−1

is a C(k)-function. �

A diffeomorphism which is a C(k)-function is called a C(k)-diffeomorphism,

and a diffeomorphism which is a smooth function is called a smooth

diffeomorphism.

We have the following symmetry result.

Theorem 17.6.8 Suppose that f is a mapping from an open subset

U of a normed space (E, ‖.‖E) into a normed space (F, ‖.‖F ) which is

(k− 1)-times differentiable on U and is k-times differentiable at a. If σ is a

permutation of {1, . . . , k}, then Dkfa(h1, . . . , hk) = Dk(hσ(1), . . . , hσ(k)).

Proof The proof is by induction on k. It is trivially true if k = 1, and it is

true when k = 2, by Theorem 17.6.2. Suppose that it is true for j < k, and

that f is (k − 1)-times differentiable on U and is k-times differentiable at

a. Let G be the set of permutations of {1, . . . , k} for which equality holds.

Then G is a subgroup of the group Σk of permutations of {1, . . . , k}. Let
H = {σ ∈ Σk : σ(1) = 1}, and let τi,j denote the permutation which

transposes i and j. If σ ∈ H then by the inductive hypothesis

Dkfa(h1, . . . , hk) = D(Dk−1fa(h2, . . . , hk))(h1)

= D(Dk−1fa(hσ(2), . . . , hσ(k)))(hσ(1))

= Dk(hσ(1), . . . , hσ(k)),

so that H ⊆ G. In particular, τi,j ∈ G if neither i nor j is equal to 1. On the

other hand, by Theorem 17.6.2,

Dkfa(h1, . . . , hk) = D2(Dk−2fa(h3, . . . , hk))(h1, h2)

= D2(Dk−2fa(h3, . . . , hk))(h2, h1)

= Dkfa(h2, h1, h3, . . . hk),
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so that τ1,2 ∈ G. Thus τ1,j = τ2,jτ1,2τ2,j ∈ G. Since any permutation can be

written as a product of such transpositions (Exercise 11.7.1), it follows that

G = Σk. �

If h ∈ E, let hj = (h, . . . , h) ∈ Ej . Since the directional derivative of f

in the direction h is Dfa(h), it follows that the jth directional derivative in

the direction h is Djfa(h
j).

We can also establish a version of Taylor’s theorem. We prove it for Hilbert

spaces. A corresponding result holds for Banach spaces, but this needs the

Hahn–Banach theorem, whose proof is beyond the scope of this book

Theorem 17.6.9 Suppose that f is a k-times differentiable mapping from

an open subset U of a normed space (E, ‖.‖E) into a Hilbert space (F, ‖.‖F ),
and suppose that the segment [a, a + h] is contained in U . Suppose that

sup{∥∥Dkfa+th

∥∥ : 0 ≤ t ≤ 1} = M < ∞. Then

f(a+ h) = f(a) +

k−1∑
j=1

Djfa(h
j)

j!
+ rk(h),

where ‖rk(h)‖F ≤ M ‖h‖kE /k!.

Proof We reduce this to the scalar result. If rk(h) = 0, there is nothing to

prove. Otherwise, there exists an open interval I in R containing [0, 1] such

that a + th ∈ U for t ∈ I. Let φ = rk(h)/ ‖rk(h)‖F , so that ‖φ‖F = 1 and

〈rk(h), φ〉 = ‖rk(h)‖F .
Then the mapping g : I → R defined by g(t) = 〈f(a+ th), φ〉 is k-times

differentiable. By the chain rule, (djg/dxj)(t) =
〈
Djfa+th(h

j), φ
〉
, and so by

Taylor’s theorem

〈f(a+ h), φ〉 = g(1) = 〈f(a), φ〉+
k−1∑
j=1

〈
Djfa(h

j), φ
〉

j!
+

1

k!

dkg

dxk
(c)

for some 0 < c < 1. Thus

‖rk(h)‖F = 〈rk(h), φ〉 =
〈
Dkfa+ch(h

k)/k!, φ
〉

≤
∥∥Dkfa+ch

∥∥ ‖h‖kE
k!

≤ M ‖h‖kE
k!

.

�
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Let us consider the case where E = Rd. Then the jth term in the Taylor

expansion is

1

j!
Djfa(h

j) =
1

j!

d∑
i1=1

· · ·
d∑

ij=1

hi1 . . . hij
∂

∂xi1
· · · ∂

∂xij
f(a).

Using the symmetry established in Theorem 17.6.9 and gathering terms

together, we see that

1

j!
Djfa(h

j) =
∑

j1+···+jd=j

hj11 . . . hjdd
j1! . . . jd!

∂j1

∂xj11
· · · ∂jd

∂xjdd
fa.

Exercises

17.6.1 There exists a continuous real-valued function g on R which is not

differentiable at any point. Let h(x) =
∫ x
0 g(t) dt. Use h to obtain a

continuous function f on R2 such that

(a) f is continuously differentiable at every point of R2;

(b) ∂f/∂x2 is continuously differentiable at every point of R2;

(c) ∂2f/∂x1∂x2 exists at every point of R2, and is continuous on R2;

(d) ∂2f/∂x2∂x1 does not exist at any point of R2.

17.6.2 Suppose that f is a real-valued function defined on an open subset

U of R2, and that ∂f/∂x1 and ∂2f/∂x2∂x1 exist at every point of

U . Suppose that the closed rectangle R = [a, a + h] × [b, b + k] is

contained in U . By considering the function g(t) = Δf(a+th,b)((0, k))

and applying the mean-value theorem twice, show that there exists

(u, v) in the interior of R for which

hk
∂2f

∂x2∂x1
(u, v) = Δ2fa((h, 0), (0, k))

= f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b).

17.6.3 Suppose that f is a real-valued function on an open subset U of R2,

and that ∂f/∂x1, ∂f/∂x2 and ∂2f/∂x2∂x1 exist at every point of

U , and that ∂2f/∂x2∂x1 is continuous at (a, b). Suppose that ε > 0.

Show the following.

(a) There exists δ > 0 such that Nδ(a, b) ⊆ U and∣∣∣∣∣Δ2f(a,b)((h, 0), (0, k))

hk
− ∂2f

∂x2∂x1
(a, b)

∣∣∣∣∣ < ε,

for 0 < |h| < δ/2, 0 < |k| < δ/2.
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(b) If 0 < |h| < δ then∣∣∣∣1h
(

∂f

∂x2
(a+ h, b) − ∂f

∂x2
(a, b)

)
− ∂2f

∂x2∂x1
(a, b)

∣∣∣∣ ≤ ε.

(c) ∂2f/∂x1∂x2(a, b) exists, and is equal to ∂2f/∂x2∂x1(a, b).

17.6.4 Suppose that (E, ‖.‖E) is a Banach space. Show that if J is the

mapping U → U−1 of GL(E) to GL(E), then

DkJU (T1, . . . Tk) = (−1)k
∑
σ∈Σk

U−1Tσ(1)U
−1 . . . U−1Tσ(k)U

−1.
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Integrating functions of several variables

18.1 Elementary vector-valued integrals

We now consider the problem of integrating vector-valued functions of

several variables. We begin by considering dissections, step functions and

elementary integrals, as in the case of real-valued functions of a single vari-

able. A cell C inRd is a subset of Rd of the form I1×· · ·×Id, where I1, . . . , Id
are intervals (open, closed, or neither) in R. Thus a one-dimensional cell is

an interval and a two-dimensional cell is a rectangle. The d-dimensional

volume or content vd(C) is defined to be vd(C) =
∏d

j=1 l(Ij).

Suppose that C = I1 × · · · × Id is a compact cell, and suppose that

Dj = {aj = xj,0 < xj,1 < · · · < xj,kj
= bj} is a dissection of Ij , for

1 ≤ j ≤ d, with constituent intervals Ij,1, . . . , Ij,kj
. Then D = D1 × · · · ×Dd

is a dissection of C. The collection of cells

{I1,i1 × · · · × Id,id : 1 ≤ ij ≤ kj , 1 ≤ j ≤ d}

is then the set of constituent cells of the dissection D. We list them as

C1, . . . , Ck, where k = k1 . . . kd, and we denote the indicator function of Cj

by χj. The mesh size δ(D) of a dissection D is the maximum diameter of a

constituent cell.

We order the dissections of C by inclusion: we say that D′ refines D, and

write D ≤ D′, if D′
j refines Dj , for 1 ≤ j ≤ d, This is a partial order on the

set Δ of all dissections of C, and Δ is a lattice:

D ∨D′ = (D1 ∪D′
1)× · · · × (Dd ∪D′

d) and D ∧D′ = D ∩D′.

Δ has a least element, with one cell {C}, but has no greatest element.

Suppose now that C is a compact cell in Rd, that D is a dissection of C,

with constituent cells C1, . . . , Ck, and that (F, ‖.‖) is a Banach space. We

513
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denote by SF (C,D) the set of all F -valued functions of the form

f(x) =

k∑
j=1

fjχj(x), where fj ∈ F for 1 ≤ j ≤ k.

The elements of SF (C,D) are F -valued step functions on C.

We define the elementary integral
∫
C f(x) dx of a step function f =∑k

j=1 fjχj in SF (C,D) to be
∑k

j=1 fjvd(Cj). As in the real-valued case it is

necessary, and straightforward, to show that this is well-defined.

Proposition 18.1.1 Suppose that f and g are step functions and that c

is a scalar. Then f + g and cf are step functions, and

(i)
∫
C(f(x) + g(x)) dx =

∫
C f(x) dx+

∫
C g(x) dx

(ii)
∫
C cf(x) dx = c

∫
C f(x) dx.

Proof The proofs are the same as the proofs of the corresponding results

in the real-valued one-dimensional case. �

Thus the set SF (C) of F -valued step functions on C is a linear subspace

of the space BF (C) of all bounded F -valued functions on C.

If f is an F -valued step functions on C then ‖f‖ is a real-valued step

function on C.

Proposition 18.1.2 Suppose that f ∈ SF (C). Then∥∥∥∥∫
C
f(x) dx

∥∥∥∥ ≤
∫
C
‖f(x)‖ dx.

The function
∫ b
a ‖f(x)‖ dx is a norm on SF (C).

Proof By the triangle inequality,∥∥∥∥∫
C
f(x) dx

∥∥∥∥ ≤
k∑

j=1

‖fj‖ vd(Cj) =

∫
C
‖f(x)‖ dx.

Clearly
∫
C ‖cf(x)‖ dx = |c| ∫C ‖f(x)‖ dx, and

∫
C ‖f(x)‖ dx = 0 if and only

if f = 0. If f, g ∈ SF (C) there exists a dissection D such that

f =

k∑
j=1

fjχj and g =

k∑
j=1

gjχj.
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Then∫
C
‖f(x) + g(x)‖ dx =

k∑
j=1

‖fj + gj‖ vd(Cj) ≤
k∑

j=1

(‖fj‖+ ‖gj‖)vd(Cj)

=

∫
C
‖f(x)‖ dx+

∫
C
‖g(x)‖ dx.

�

Exercise

18.1.1 Show that the elementary integral of a step function is well-defined.

18.2 Integrating functions of several variables

We now consider the Riemann integral of a real-valued function of sev-

eral variables. We follow the procedure for integrating functions of a single

variable very closely, and we therefore omit many of the details.

Suppose that f is a bounded real-valued function defined on a compact

cell C in Rd. We define the upper and lower integrals of f :∫
C
f(x) dx = inf

{∫
C
g(x) dx : g a step function, g ≥ f

}
∫
C
f(x) dx = sup

{∫
C
h(x) dx : h a step function, h ≤ f

}
.

The function f is Riemann integrable if the upper and lower integrals are

equal; if so, the common value is the Riemann integral of f .

Recall that if f is a function on a set S taking values in a metric space

(X, d), and A is a subset ofX then the oscillation Ω(f,A) of f on A is defined

to be sup{d(f(a), f(b)) : a, b ∈ A}; when f is real-valued then Ω(f,A) =

sup{|f(a) − f(b)| : a, b ∈ A}, and when f takes values in a Banach space

(F, ‖.‖) then Ω(f,A) = sup{‖f(a)− f(b)‖ : a, b ∈ A}.
Theorem 18.2.1 Suppose that f is a bounded real-valued function on a

compact cell C in Rd. The following are equivalent.

(i) f is Riemann integrable.

(ii) Whenever ε > 0 there exists a dissection D of C with constituent cells

C1, . . . , Ck such that
k∑

j=1

Ω(f,Cj)vd(Cj) < ε.
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Proof Suppose that f is Riemann integrable and that ε > 0. There exist

step functions g and h on C such that h ≤ f ≤ g and∫
C
g(x)dx −

∫
C
f(x) dx < ε/2 and

∫
C
f(x)dx−

∫
C
h(x) dx < ε/2,

so that
∫
C(g(x)−h(x)) dx < ε. Let D be a dissection of C, with constituent

cells C1, . . . , Ck, such that g and h are constant on each Cj . Then Ω(f,Cj) ≤
g(x) − h(x) for x ∈ Cj for 1 ≤ j ≤ k, and so

k∑
j=1

Ω(f,Cj)vd(Cj) ≤
∫
C
(g(x) − h(x)) dx < ε.

Thus (i) implies (ii).

Conversely, if D is a dissection of C with constituent cells C1, . . . , Ck for

which
∑k

j=1Ω(f,Cj)vd(Cj) < ε, let

g =

k∑
j=1

sup{f(x) : x ∈ Cj}χj and h =

k∑
j=1

inf{f(x) : x ∈ Cj}χj .

Then g and h are step functions with h ≤ f ≤ g, and∫
C
g(x) dx −

∫
C
h(x) dx =

k∑
j=1

Ω(f,Cj)vd(Cj) < ε,

so that (ii) implies (i). �

Corollary 18.2.2 If f is a continuous real-valued function on a compact

cell C in Rd, then f is Riemann integrable.

Proof Suppose that ε > 0. Since f is continuous and C is compact, f is

uniformly continuous on C, and so there exists δ > 0 such that if ‖x− y‖ < δ

then |f(x)− f(y)| < ε/vd(C). Let D be any dissection of C with mesh-size

less than δ. If cj is any constituent cell, then Ω(f,Cj) < ε/vd(C), and so

k∑
j=1

Ω(f,Cj)vd(Cj) <
ε

vd(C)

k∑
j=1

vd(Cj) = ε.

�

Similarly, we have the following elementary results. The proofs are the

same as the proofs for real-valued functions of a single variable, and details

are left to the reader.
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Theorem 18.2.3 Suppose that f and g are Riemann integrable functions

on a compact cell C in Rd.

(i) If c ∈ R then f + g and cf are Riemann integrable, and∫
C
(f(x) + g(x)) dx =

∫
C
f(x) dx+

∫
C
g(x) dx,∫

C
cf(x) dx = c

∫
C
f(x) dx.

(ii) If f(x) ≤ g(x) for all x ∈ C then
∫
C f(x) dx ≤ ∫

C g(x) dx.

(iii) If f takes values in [−R,R] and φ is a continuous real-valued function

on [−R,R] then φ ◦ f is Riemann integrable.

(iv) The functions f+, f−, |f |, f2 and fg are Riemann integrable.

(v)
∣∣∫

C f(x) dx
∣∣ ≤ ∫

C |f(x)| dx.

Exercise

18.2.1 Suppose that f is a real-valued function on [0, 1] × [0, 1], that the

mappings x → f(x, y) are increasing for each y ∈ [0, 1], and that the

mappings y → f(x, y) are increasing for each x ∈ [0, 1]. Show that

f is Riemann integrable. Extend this result to functions on compact

cells in Rd.

18.3 Integrating vector-valued functions

We now consider the problem of integrating vector-valued functions defined

on a compact cell in Rd. Suppose that f : C → (F, ‖.‖) is a function on a

compact cell C in Rd taking values in a bounded subset of a Banach space

(F, ‖.‖). Since in general there is no order on F , we cannot use upper and

lower integrals to determine when f is Riemann integrable, and to define the

Riemann integral. Instead, we start with the characterization of Riemann

integrability given in Theorem 18.2.1 (i). We say that f is Riemann integrable

if, whenever ε > 0, there exists a dissection D of C, with constituent cells

C1, . . . , Ck, such that
∑k

j=1 vd(Cj)Ω(f,Cj) < ε.

Before defining the integral, we need to establish some fundamental

properties of Riemann integrable functions.

Theorem 18.3.1 Suppose that f is a function on a compact cell C in Rd

taking values in a bounded subset of a Banach space F . The following are

equivalent.
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(i) The function f is Riemann integrable.

(ii) Whenever ε > 0 there exists a dissection D of C with constituent cells

C1, . . . , Ck and a partition G ∪B of {1, . . . , k} such that

Ω(f,Cj) < ε for j ∈ G, and
∑
j∈B

vd(Cj) < ε.

(iii) The real-valued function ‖f − g‖ is Riemann integrable, for each step

function. If ε > 0, then there exists a step function g on C for which

inf

{∫
C
‖f(x)− g(x)‖ dx : g a step function

}
= 0.

Proof Suppose that (i) holds and that ε > 0. There exists a dissection D

of C with constituent cells C1, . . . , Ck such that

k∑
j=1

Ω(f,Cj)vd(Cj) < ε2.

Let G = {j : Ω(f,Cj) < ε} and let B = {j : Ω(f,Cj) ≥ ε}. Then

ε

⎛⎝∑
j∈B

vd(Cj)

⎞⎠ ≤
k∑

j=1

Ω(f,Cj)vd(Cj) < ε2,

so that (ii) holds.

Suppose that (ii) is satisfied, and that ε > 0. Let

η = ε/(vd(C) + Ω(f,C)).

There exists a dissection D of C with constituent cells C1, . . . , Ck such that

the condition holds, for η. Then

k∑
j=1

Ω(f,Cj)vd(Cj)

=
∑
j∈G

Ω(f,Cj)vd(Cj) +
∑
j∈B

Ω(f,Cj)vd(Cj)

≤ (sup
j∈G

Ω(f,Cj))
∑
j∈G

vd(Cj) + Ω(f,C)
∑
j∈B

vd(Cj)

< ηvd(C) + ηΩ(f,C) = ε.

Thus (ii) implies (i).
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Suppose that f is Riemann integrable, that g is a step function and that

ε > 0. There exists a dissection D of C, with constituent cells C1, . . . , Ck,

for which
∑k

j=1 vd(Cj)Ω(f,Cj) < ε, and for which g is constant on each Cj.

If x, y ∈ Cj then

|‖f(x)− g(x)‖ − ‖f(y)− g(y)‖| ≤ ‖f(x)− f(y)‖ ,

so that Ω(‖f − g‖ , Cj) ≤ Ω(f,Cj). Hence
∑k

j=1 vd(Cj)Ω(‖f − g‖ , Cj) < ε,

and so ‖f − g‖ is Riemann integrable, by Theorem 18.2.1 (i). Now choose

yj ∈ Cj , for 1≤ j≤ k, and let g be the step function g=
∑k

j=1 f(yj)χj . Then

‖f(x)− g(x)‖ ≤ Ω(f,Cj) for x ∈ Cj , so that

∫
C
‖f(x)− g(x)‖ dx =

k∑
j=1

(∫
Cj

‖f(x)− g(x)‖ dx

)

≤
k∑

j=1

vd(Cj)Ω(f,Cj) < ε.

Thus (i) implies (iii).

Conversely, suppose that (iii) holds, that ε > 0 and that g is a step

function for which
∫
C ‖f(x)− g(x)‖ < ε/2. There exists a dissection D of

C, with constituent cells C1, . . . , Ck, for which

k∑
j=1

vd(Cj)

(
sup
x∈Cj

‖f(x)− g(x)‖
)

< ε/2,

and for which g is constant on each Cj. If y, z ∈ Cj then

‖f(y)− f(z)‖ ≤ 2

(
sup
x∈Cj

‖f(x)− g(x)‖
)
,

so that
∑k

j=1 vd(Cj)Ω(f,Cj) < ε. Thus f is Riemann integrable, and (iii)

implies (i). �

We are now ready to define the Riemann integral of a Riemann integrable

function. Suppose that f is a Riemann integrable function on a compact cell

C. For each ε > 0, let

Aε(f) =

{
g : g a step function on C,

∫
C
‖f(x)− g(x)‖ dx < ε

}
,
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and let Jε = {∫C g(x) dx : g ∈ Aε(f)}. Then Aε(f) is non-empty, and Jε is a

non-empty subset of F . If g, h ∈ Aε(f) then∥∥∥∥∫
C
g(x) dx −

∫
C
h(x) dx

∥∥∥∥
≤
∫
C
‖g(x) − h(x)‖ dx

≤
∫
C
‖f(x)− g(x)‖ dx+

∫
C
‖f(x)− h(x)‖ dx < 2ε.

Thus Jε has diameter at most 2ε, and so therefore has its closure J ε. It

now follows from Corollary 14.1.12 that the intersection ∩{J ε : ε > 0} is a

singleton set {I}. We define I to be the Riemann integral
∫
C f(x) dx of f .

Note that if g ∈ Aε(f), then∥∥∥∥I − ∫
C
g(x) dx

∥∥∥∥ ≤ diam (Jε) ≤ 2ε.

Corollary 18.3.2 If f is a Riemann integrable function on C then

there exists a sequence (fn)
∞
n=1 of step functions on C for which∫

C ‖f(x)− fn(x)‖ dx → 0 as n → ∞, and, for any such sequence,∫
C fn(x) dx → ∫

C f(x) dx as n → ∞.

Proof Pick fn ∈ A1/n. �

We have the following fundamental inequality.

Theorem 18.3.3 (The mean-value inequality for integrals) Suppose that

f is a Riemann integrable function on a compact cell taking values in a

Banach space (F, ‖.‖). Then∥∥∥∥∫
C
f(x) dx

∥∥∥∥ ≤
∫
C
‖f(x)‖ dx.

Proof Suppose that ε > 0. Then there exists a step function g such that∫
C ‖f(x)− g(x)‖ dx < ε/3. By the remark above,∥∥∥∥∫

C
f(x) dx−

∫
C
g(x) dx

∥∥∥∥ ≤ 2ε/3.
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Thus, applying Proposition 18.1.2,∥∥∥∥∫
C
f(x) dx

∥∥∥∥ ≤
∥∥∥∥∫

C
g(x) dx

∥∥∥∥ + 2ε/3

≤
∫
C
‖g(x)‖ dx+ 2ε/3

≤
∫
C
‖f(x)‖ dx+

∫
C
‖f(x)− g(x)‖ dx+ 2ε/3

≤
∫
C
‖f(x)‖ dx+ ε.

Since ε is arbitrary, the result follows. �

Corollary 18.3.2 enables us to establish standard properties of the

Riemann integral.

Proposition 18.3.4 Suppose that f and g are Riemann integrable func-

tions on a compact cell C taking values in a Banach space (F, ‖.‖), that h
is a real-valued Riemann integrable function on C and that α ∈ R.

(i) The functions f + g and αf are Riemann integrable and∫
C
f(x) + g(x) dx =

∫
C
f(x) dx+

∫
C
g(x) dx,

∫
C
αf(x) = α

∫
C
f(x) dx.

(ii) The function hf is Riemann integrable.

(iii) Suppose that φ : f(C) → (G, ‖.‖G) is a uniformly continuous map-

ping from the image f(C) of C into a Banach space G. Then φ◦f is Riemann

integrable.

Proof That f + g and hf are Riemann integrable follows from the facts

(which the reader should verify) that

Ω(f + g,A) ≤ Ω(f,A) + Ω(g,A)

and Ω(hf,A) ≤ Ω(h,A) ‖f‖∞ + ‖h‖∞Ω(f,A),

and the definition.

There exist sequences (fn)
∞
n=1 and (gn)

∞
n=1 of step functions such that∫

C ‖f(x)− fn(x)‖ dx → 0 and
∫
C ‖g(x)− gn(x)‖ dx → 0 as n → ∞. Then∫

C
‖(f(x) + g(x)) − (fn(x) + gn(x))‖ dx ≤∫

C
‖f(x)− fn(x)‖ dx+

∫
C
‖g(x) − gn(x)‖ dx,
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so that ∫
C
‖(f(x) + g(x))− (fn(x) + gn(x))‖ dx → 0 as n → ∞,

and so ∫
C
f(x) + g(x) dx =

∫
C
f(x) dx+

∫
C
g(x) dx.

The proof of the result for scalar multiplication is even easier.

(iii) Suppose that ε > 0. There exists δ > 0 such that if ‖f(x)− f(y)‖F <

δ, then ‖φ(f(x))− φ(f(y))‖G < ε. By Theorem 18.3.1, there exists a dis-

section D of C with constituent cells C1, . . . , Ck and a partition G ∪ B of

{1, . . . , k} such that

Ω(f,Cj) < δ for j ∈ G, and
∑
j∈B

vd(Cj) < ε.

Then Ω(φ◦f,Cj) < ε for j ∈ G, so that, by Theorem 18.3.1, φ◦f is Riemann

integrable. �

The uniform limit of Riemann integrable functions is Riemann integrable.

Theorem 18.3.5 Suppose that (fn)
∞
n=1 is a sequence of Riemann inte-

grable functions on a compact cell C, taking values in a Banach space

(F, ‖.‖), which converges uniformly to f . Then f is Riemann integrable,

and ∫
C
fn(x) dx →

∫
C
f(x) dx as n → ∞.

Proof Suppose that ε > 0. There exists N such that

‖f − fn‖∞ = sup{‖f(x)− fn(x)‖ : x ∈ C} < ε/4vd(C)

for n ≥ N , and there exists a dissection D of C with constituent cells

C1, . . . , Ck such that
∑k

j=1 vd(Cj)Ω(fN , Cj) < ε/2. Then Ω(f,Cj) ≤
Ω(fN , Cj) + 2 ‖f − fN‖∞, so that

k∑
j=1

vd(Cj)Ω(f,Cj) ≤
k∑

j=1

vd(Cj) (Ω(fN , Cj) + 2 ‖f − fN‖∞)

< ε/2 + 2vd(C) ‖f − fN‖∞ < ε.

Thus f is Riemann integrable.

Suppose now that n ≥ N . Then∥∥∥∥∫
C
f(x) dx−

∫
C
fn(x) dx

∥∥∥∥ ≤
∫
C
‖f(x)− fn(x)‖ dx ≤ ε/4,
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so that ∫
C
fn(x) dx →

∫
C
f(x) dx as n → ∞.

�

Riemann integrability can also be characterized, and the integral calcu-

lated, using dissections with decreasing mesh size. See Exercise 1.

So far, then, everything appears to be very straightforward. In fact, there

are very real technical difficulties. These arise in the following circumstances.

(i) We frequently wish to integrate functions over more general bounded

subsets of Rd than cells.

(ii) We would like to evaluate integrals by repeatedly calculating one-

dimensional integrals. For example, if f is a Riemann integrable function on

C0 = [0, 1] × [0, 1] can we calculate∫
C0

f(x1, x2) dx as a repeated integral

∫ 1

0

(∫ 1

0
f(x1, x2) dx2

)
dx1?

(iii) Can we establish a ‘change of variables’ formula of general applica-

bility? If U and V are bounded open sets, and φ : U → V is a continuously

differentiable homeomorphism, can we show that∫
V
f(x) dx =

∫
U
f(φ(y))|Jφ(y)| dy ?

As far as (i) is concerned, a bounded subset A of a compact cell C is

said to be Jordan measurable if its characteristic function IA is Riemann

integrable. If so, the Riemann integral of IA is called the Jordan content

or volume of A, and is denoted by vd(A), or v(A). Clearly a cell is Jordan

measurable, and the definition of its content as an integral agrees with the

definition at the beginning of this section. On the other hand, we have seen

that the indicator function of a fat Cantor set is not Riemann integrable,

and so a fat Cantor set is not Jordan measurable.

If A is a Jordan measurable subset of a compact cell C, with indicator

function IA, and f is a Riemann integrable function on C, then it follows

from Proposition 18.3.4 (ii) that fIA is Riemann integrable; we define∫
A
f(x) dx =

∫
C
f(x)IA(x) dx.

As for (ii), let

A = {(x, y) ∈ [0, 1] × [0, 1] : y is rational if x = 1/2}.
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Then A is a Jordan measurable subset of [0, 1] × [0, 1], but
∫ 1
0 IA(1/2, y) dy

is not defined.

As for (iii), we shall see in Section 18.4 that it can happen that U is

Jordan measurable, but V is not.

These difficulties suggest that we need a more sophisticated theory of inte-

gration, and the Lebesgue integral, which is studied in Volume III, provides

such a theory. The Riemann integral is however adequate for the integra-

tion of continuous functions. Further, the change of variables results that

we obtain in Section 18.7 are essential for corresponding change of variable

results in the Lebesgue integral setting.

As with functions of a scalar variable, we can define improper integrals,

but some care is needed; for example, if f is defined on Rd, it is natural to

consider limits such as

lim
R→∞

∫
‖x‖

2
≤R

f(x) dx and lim
R→∞

∫
‖x‖∞≤R

f(x) dx,

and it is relatively easy to give examples where the limits exist and are

different. Similar remarks apply to Cauchy principal value integrals. In each

case, it is necessary to make explicit the limiting procedure that is used.

Exercises

18.3.1 Suppose that f is a function on a compact cell C in Rd taking values

in a bounded subset of a Banach space (F, ‖.‖). Suppose that (Dr)
∞
r=1

is a sequence of dissections of C whose mesh-sizes tend to 0, and that

Cr,1, . . . , Cr,kr
are the constituent cells of Dr. Show that f is Riemann

integrable if and only if there exists J ∈ F such that if yr,j ∈ Cr,j for

1 ≤ j ≤ kr and r ∈ N then

kr∑
j=1

f(yr,j)vd(Cr,j) → J as r → ∞.

[Hint: If D′ is a dissection of C, with constituent cells C ′
1, . . . , C

′
k,

let Tr be the set of constituent cells of Dr which are not contained in

one of the cells C ′
j. Show that∑
{vd(Cr,j) : Cr,j ∈ Tr} → 0 as r → ∞.]

18.3.2 [The fundamental theorem of calculus for vector-valued

functions] Suppose that f is a Riemann integrable function on [a, b],

taking values in a Banach space (E, ‖.‖).
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(i) Show that if a < c < b then f is Riemann integrable on [a, b] if

and only if it is Riemann integrable on [a, c] and [c, b], and if so

then
∫ b
a f(x) dx =

∫ c
a f(x) dx+

∫ b
c f(x) dx.

(ii) Set F (t) =
∫ t
a f(x) dx, for a ≤ t ≤ b. Show that F is continuous

on [a, b].

(iii) Show that If f is continuous at t then F is differentiable at t, and

F ′(t) = f(t). (If t = a or b, then F has a one-sided derivative.)

(iv) Suppose that f is differentiable on [a, b] (with one-sided deriva-

tives at a and b). Show that if f ′ is Riemann integrable then

f(x) = f(a) +
∫ x
a f ′(t) dt for a ≤ x ≤ b.

18.3.3 Suppose that f and g are Riemann integrable functions on a cell C in

Rd, taking values in L(E), where (E, ‖.‖) is a Banach space and L(E)

is given the operator norm. Show that f ◦ g and g ◦ f are Riemann

integrable. Is
∫
C f(x) ◦ g(x) dx =

∫
C g(x) ◦ f(x) dx?

18.3.4 Construct a continuous real valued function f on R2 for which

lim
R→∞

∫
‖x‖

2
≤R

f(x) dx = 0

and for which

lim
R→∞

∫
‖x‖∞≤R

f(x) dx does not exist.

18.4 Repeated integration

To begin with, let us consider a continuous function f defined on a compact

cell C = I1 × · · · × Id in Rd, taking values in a Banach space (F, ‖.‖). Let
C̃ = I1 × · · · × Id−1, so that C = C̃ × Id. Denote a point x = (x1, . . . , xd) in

Rd by (x̃, t), where x̃ = (x1, . . . , xd−1) and t = xd.

Theorem 18.4.1 Let f be a continuous function from a compact cell C =

I1 × · · · × Id in Rd into a Banach space (F, ‖.‖). With the notation above,

if x̃ ∈ Cd−1 let φ(x̃) =
∫
Id
f(x̃, t) dt. Then φ is a continuous function on C̃,

and ∫
C
f(x) dx =

∫
˜C
φ(x̃) dx̃ =

∫
˜C

(∫
Id

f(x̃, t) dt

)
dx̃.

Proof We use the fact that f is uniformly continuous on C. Given ε > 0

there exists δ > 0 such that if x, y ∈ C and d(x, y) < δ then ‖f(x)− f(y)‖ <
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ε/l(Id). Thus if d(x̃, ỹ) < δ then ‖f(x̃, t)− f(ỹ, t)‖ < ε/l(Id), and so

‖φ(x̃)− φ(ỹ)‖ =

∥∥∥∥∫
Id

f(x̃, t)− f(ỹ, t) dt

∥∥∥∥
≤
∫
Id

‖f(x̃, t)− f(ỹ, t)‖ dt ≤ ε.

Thus φ is continuous on C̃.

Further, there exists a step function g on C such that ‖f(x)− g(x)‖ ≤
ε/2vd(C) for x ∈ C. Let ψ(x̃) =

∫
Id
g(x̃, t) dt, for x̃ ∈ C̃. Then∥∥∥∥∫

C
f(x) dx−

∫
C
g(x) dx

∥∥∥∥ ≤
∫
C
‖f(x)− g(x)‖ dx ≤ ε/2,

and ∥∥∥∥φ(x̃)− ∫
Id

g(x̃, t) dt

∥∥∥∥ ≤
∫
Id

‖f(x̃, t)− g(x̃, t)‖ dt ≤ εl(Id)

2vd(C)
,

so that ∥∥∥∥∫
˜C
φ(x̃) dx̃−

∫
˜C
ψ(x̃) dx̃

∥∥∥∥ ≤ ε/2.

But
∫
C g(x) dx =

∫
˜C ψ(x̃) dx̃ and so∥∥∥∥∫

C
f(x) dx−

∫
˜C
φ(x̃) dx̃

∥∥∥∥ ≤ ε.

Since ε is arbitrary, the result follows.

�

Corollary 18.4.2∫
C
f(x) dx =

∫
I1

(∫
I2

. . .

(∫
Id

f(x1, . . . , xd) dxd

)
. . . dx2

)
dx1.

Thus we can evaluate the integral by repeatedly evaluating one dimen-

sional integrals. Further, if σ ∈ Σn is a permutation of {1, . . . , d} then we

could integrate with respect first to xσ(d), then xσ(d−1), and so on, and obtain

the same result.

Corollary 18.4.3 If σ ∈ Σd then∫
I1

(∫
I2

. . .

(∫
Id

f(x1, . . . , xd) dxd

)
. . . dx2

)
dx1 =∫

Iσ(1)

(∫
Iσ(2)

. . .

(∫
Iσ(d)

f(x1, . . . , xd) dxσ(d)

)
. . . dxσ(2)

)
dxσ(1).
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For example, if B(x, y) is the beta function
∫ 1
0 tx−1(1− t)y−1 dt then∫ Y

1

(∫ X

1
B(x, y) dx

)
dy =

∫ Y

1

(∫ X

1

(∫ 1

0
tx−1(1− t)y−1 dt

)
dx

)
dy

=

∫ 1

0

(∫ X

1
tx−1 dx

)(∫ Y

1
(1− t)y−1 dy

)
dt

=

∫ 1

0

(1− tX−1)(1− (1− t)Y−1)

(log t)(log(1− t))
dt.

We can also justify the ‘quick and easy’ proof of Theorem 9.4.4 of Volume

I. The argument there now shows that if f and g are continuous 2π-periodic

functions then the Fourier coefficients satisfy (̂f � g)n = f̂nĝn. This result

extends easily to locally Riemann integrable 2π-periodic functions f and g.

Let M = max(‖f‖∞ , ‖g‖∞). If 0 < ε ≤ 1, there exist continuous 2π-periodic

functions f ′ and g′ with∫ 2π

0
|f(t)− f ′(t)| dt < ε/4(M + 1) and

∫ 2π

0
|f(t)− f ′(t)| dt < ε/4(M + 1).

Then

|(̂f � g)n − (̂f ′ � g′)n| < ε/2 and |f̂nĝn − f̂ ′
nĝ

′
n| < ε/2,

so that |(̂f � g)n − f̂nĝn| < ε. Since ε is arbitrary, the result follows.

These results can be applied to continuous functions on Rd of compact

support: that is, functions which take the value 0 outside a bounded set.

Frequently, though, we wish to consider improper integrals. As we have

seen when we considered products of series, difficulties arise when conver-

gence depends upon cancellation. For this reason, we restrict attention to

the simplest case, where we integrate non-negative continuous real-valued

functions.

Suppose then that C = I1×· · ·×Id is the product of open intervals (which

may be semi-infinite, or infinite), and that f is a non-negative continuous

real-valued function on C. We then define the improper Riemann integral as∫
C
f(x) dx = sup

{∫
K
f(x) dx : K a compact cell, K ⊆ C

}
.

The resulting integral can then be finite or infinite. We continue with the

notation introduced at the beginning of the section.

Theorem 18.4.4 Suppose that f is a non-negative continuous real-valued

function on C = I1 × · · · × Id. For x̃ ∈ C̃, let φ(x̃) =
∫
Id
f(x̃, t) dt. Suppose
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that φ(x̃) < ∞ for each x̃ ∈ C̃, and that φ is a continuous function on C̃.

Then ∫
C
f(x) dx =

∫
˜C
φ(x̃) dx̃ =

∫
˜C

(∫
Id

f(x̃, t) dt

)
dx̃.

Proof If K = J1 × · · · × Jd is a compact cell contained in C then∫
K
f(x) dx =

∫
˜K

(∫
Jd

f(x̃, t) dt

)
dx̃ ≤

∫
˜K

(∫
Id

f(x̃, t) dt

)
dx̃

=

∫
˜K
φ(x̃) dx̃ ≤

∫
˜C
φ(x̃) dx̃.

Consequently ∫
C
f(x) dx ≤

∫
˜C
φ(x̃) dx̃.

On the other hand, if M <
∫
˜C φ(x̃) dx̃, there exists a compact cell K̃

contained in C̃ such that ∫
˜C
φ(x̃) dx̃ > M.

Let (Lj)
∞
j=1 be an increasing sequence of compact intervals contained in Id

whose union is Id, and let φj(x̃) =
∫
Lj

f(x̃, t) dt. Then each φj is a continuous

function on K̃, and φj increases pointwise to the continuous function φ.

It therefore follows from Dini’s theorem (Theorem 15.2.12) that φj → φ

uniformly on K̃, as j → ∞, and so∫
˜K
φj(x̃) dx̃ →

∫
˜K
φ(x̃) dx̃ as j → ∞.

Thus there exists j ∈ N such that∫
˜K×Lj

f(x) dx =

∫
˜K
φj(x̃) dx̃ > M.

Hence
∫
C f(x) dx > M . Since this holds for all M <

∫
˜C φ(x̃) dx̃, it follows

that ∫
C
f(x) dx ≥

∫
˜C
φ(x̃) dx̃.

Thus we have equality. �

Thus
∫∞
1 (

∫∞
1 B(x, y) dx) dy =

∫ 1
0 1/(log t log(1− t)) dt.

With a little care, this result can be used in cases where f is not positive.

Let us give an example.
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Example 18.4.5
∫∞
0 sinx/x dx = π/2.

Proof Suppose that K > 0. If x > 0 then 1/x =
∫∞
0 e−xt dt, and so∫ K

0

sinx

x
dx =

∫ K

0
sinx

(∫ ∞

0
e−xt dt

)
dx.

Although sin is not a positive function, we can divide the interval [0,K]

into finitely many intervals, on each of which sin is either non-negative or

non-positive, and apply the previous theorem to each of them. Thus∫ K

0
sinx

(∫ ∞

0
e−xt dt

)
dx =

∫ ∞

0

(∫ K

0
e−xt sinx dx

)
dt.

Integrating the inner integral by parts twice,∫ K

0
e−xt sinx dx = [−e−xt cos x]K0 − t

∫ K

0
e−xt cos x dx

= 1− e−Kt cosK − t[e−xt sinx]K0 − t2
∫ K

0
e−xt sinx dx

= 1− e−Kt(cosK + t sinK)− t2
∫ K

0
e−xt sinx dx.

so that ∫ K

0
e−xt sinx dx =

1

1 + t2
+RK(t),

where RK(t) = −e−Kt(cosK + t sinK)/(1 + t2). Since

| cosK + t sinK| ≤ 1 + t ≤ 2(1 + t2),

|RK(t)| ≤ 2e−Kt, and so
∫∞
0 RK(t) dt → 0 as K → ∞. Consequently∫ ∞

0

sinx

x
dx = lim

K→∞

∫ K

0

sinx

x
dx =

∫ ∞

0

dt

1 + t2
=

π

2
.

�

Exercises

18.4.1 Suppose that f is a real-valued Riemann integrable function on a

compact cell C in Rd and that g is a Riemann integrable function on

a compact cell D in Re. Show that the function (x, y) → f(x)g(y) is

Riemann integrable on C ×D and that, with the obvious notation,∫
C×D

f(x)g(y) d(x, y) =

(∫
C
f(x) dx

)(∫
D
g(y) dy

)
.



530 Integrating functions of several variables

18.4.2 Give an example of a sequence of continuous real-valued functions on

[0, 1] which increases pointwise to a bounded function on [0, 1] which

is not Riemann integrable.

18.4.3 Let

P = {(m/p, n/p) ∈ [0, 1] × [0, 1] : p a prime, m,n ∈ N}.
Show that P is dense in [0, 1] × [0, 1], and that∫ 1

0

(∫ 1

0
IP (x, y) dy

)
dx =

∫ 1

0

(∫ 1

0
IP (x, y) dx

)
dy.

Is IP a Riemann integrable function on [0, 1] × [0, 1]?

18.5 Jordan content

We now investigate some of the properties of Jordan measurable subsets

of Rd.

Suppose that A is a subset of a compact cell C and that D is a dissection

of C, with constituent cells C1, . . . , Ck. We partition the cells of the partition

into three: we set D = J(A) ∪K(A) ∪ L(A), where

J(A) = {Cj : Cj ⊆ A}
K(A) = {Cj : Cj ∩A �= ∅ and Cj ∩ (C \ A) �= ∅}
L(A) = {Cj : Cj ∩A = ∅}.

Thus J(A) is the set of cells contained in A, K(A) is the set of cells which

contain points of A and points not in A, and L(A) is the set of cells disjoint

from A.

Theorem 18.5.1 A bounded subset A of a compact cell C in Rd is Jordan

measurable if and only if given ε > 0 there exists a dissection D of C, with

constituent cells C1, . . . , Ck, such that∑
{vd(Cj) : Cj ∈ K(A)} < ε.

Let

vd(A) = inf

⎧⎨⎩ ∑
Cj∈J(A)∪K(A)

vd(Cj) : D a dissection of C

⎫⎬⎭ ,

vd(A) = sup

⎧⎨⎩ ∑
Cj∈J(A)

vd(C) : D a dissection of C

⎫⎬⎭ .
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Then A is Jordan measurable if and only if vd(A) = vd(A). If so, then

vd(A) = vd(A) = vd(A).

Proof Let IA be the indicator function of A. If Cj is a constituent cell in

a dissection D, then Ω(IA, Cj) = 0 if Cj ∈ J(A) ∪ L(A), and Ω(IA, Cj) = 1

if Cj ∈ K(A). Thus∑
Cj∈D

vd(C)Ω(IA, Cj) =
∑

Cj∈K(A)

vd(Cj),

so that A is Jordan measurable if and only if given ε > 0 there exists a

dissection D of C such that
∑{vd(Cj) : Cj ∈ K(A)} < ε. Similarly vd(A) is

the upper integral of IA, and vd(A) is the lower integral of IA; the remaining

results follow from this. �

Corollary 18.5.2 A is Jordan measurable if (and only if) for each ε > 0

there are Jordan measurable subsets B1 and B2 of C, with B1 ⊆ A ⊆ B2,

such that vd(B2) < vd(B1) + ε.

The quantities vd(A) and vd(A) are called the outer and inner Jordan

contents of A.

Thus a bounded set is Jordan measurable if it can be approximated from

the outside and the inside by finite unions of cells, whose contents converge

to a common value. This notion of approximating content, in two or three

dimensions, by considering simple figures, goes back to the ancient Greeks.

(The transition to Lebesgue measure is made by approximating by open sets

(on the outside) and compact sets (on the inside).)

Since the sum and product of two real-valued Riemann integrable func-

tions are Riemann integrable, it follows that the intersection and union of

two Jordan measurable sets A and B are Jordan measurable, and that

vd(A ∪B) + vd(A ∩B) = vd(A) + vd(B).

Similarly A\B is Jordan measurable, and vd(A\B) = vd(A)−vd(A∩B). It

is easy to see that if A is Jordan measurable, then so is a translate A+ x =

{a + x : a ∈ A}, and that vd(A + x) = vd(A). Similarly, if λ > 0 then the

dilate λA = {λa : a ∈ A} is Jordan measurable, and vd(λA) = λdvd(A).

The notion of Jordan content makes the idea of the integral as the ‘area

under the curve’ explicit.

Theorem 18.5.3 Suppose that f is a bounded non-negative real-valued

function defined on a compact cell C in Rd. Let

Af = {(x, y) ∈ C ×R : 0 ≤ y ≤ f(x)}.
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Then f is Riemann integrable if and only if Af is a Jordan measurable subset

of Rd ×R = Rd+1. If so, then
∫
C f(x) dx = vd+1(Af ).

Proof The result is certainly true if f is a step function.

Suppose that f is Riemann integrable, and that ε > 0. There exist step

functions g and h with 0 ≤ g ≤ f ≤ h such that
∫
C(h(x) − g(x)) dx < ε.

Then Ag and Ah are Jordan measurable, and

vd+1(Ah) =

∫
C
h(x) dx ≤

∫
C
g(x) dx + ε = vd+1(Ag) + ε.

Since Ag ⊆ Af ⊆ Ah, it follows that Af is Jordan measurable. Since

vd+1(Ag) ≤ vd+1(Af ) ≤ vd+1(Ah) and
∫
C g(x) dx ≤ ∫

C f(x) dx ≤ ∫
C h(x) dx,

it also follows that
∫
C f(x) dx = vd+1(Af ).

The converse is proved in a similar way. Suppose that D is a dissection

of C × [0,M ]. If x ∈ C, let Ix = {(x, t) : 0 ≤ t ≤ M}, and let

Jx(Af ) = {Cj ∈ J(Af ) : Cj ∩ Ix �= ∅},
Kx(Af ) = {Cj ∈ K(Af ) : Cj ∩ Ix �= ∅}.

Let mD(x) = 0 if Jx(Af ) = ∅, and let

mD(x) = sup{t : (x, t) ∈ Cj , Cj ∈ Jx(Af )} otherwise;

similarly, let MD(x) = 0 if Jx(Af ) ∪Kx(Af ) = ∅, and let

MD(x) = sup{t : (x, t) ∈ Cj , Cj ∈ Jx(Af ) ∪Kx(Af )} otherwise.

Then mD ≤ f ≤ MD. It follows that if the condition is satisfied then f is

Riemann integrable and
∫
C f(x) dx = vd+1(Af ).

�

A similar result holds if we consider the set

Uf = {(x, y) ∈ C ×R : 0 < y < f(x)}.
Let us show that there is a useful class of Jordan measurable sets. A

convex body in Rd is a convex subset with a non-empty interior.

Proposition 18.5.4 A bounded convex body A in Rd is Jordan measur-

able.

Proof We need the following easy result about convex sets.

Lemma 18.5.5 If A is a convex subset of a vector space V and λ > 0

then (1 + λ)A = A+ λA.
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Proof If A is any subset of V ,

(1 + λ)A = {a+ λa : a ∈ A} ⊆ {a+ λb : a, b ∈ A} = A+ λA;

we need to establish the converse inclusion, when A is convex. If x = a+λb ∈
A+ λA then

y =
1

1 + λ
a+

λ

1 + λ
b ∈ A,

and so x = (1 + λ)y ∈ (1 + λ)A. �

Let us now prove Proposition 18.5.4. Without loss of generality, we can

suppose that 0 is an interior point of A, so that there exists η > 0 such that

Nη(0) ⊆ A. Suppose that C is a compact cell containing A and that ε > 0.

Let δ = εη. Then

A+Nδ(0) ⊆ A+ εA = (1 + ε)A,

so that if x �∈ (1 + ε)A then d(x,A) ≥ δ. Thus if D is a dissection of C

with mesh size less than δ, and D = J(A) ∪ K(A) ∪ L(A), as above, then

∪Cj∈K(A)Cj ⊆ (1 + ε)A. Consequently

vd(A) ≤ vd((1 + ε)A) = (1 + ε)dvd(A).

Since ε is arbitrary, vd(A) = vd(A), and A is Jordan measurable. �

Exercises

18.5.1 Suppose that f and g are Riemann integrable functions defined on

a compact cell C in Rd, taking values in [a, b], and that f ≤ g.

Let A = {(x, y) ∈ C × [a, b] : f(x) ≤ y ≤ g(x)}. Suppose that h

is a continuous function on C × [a, b]. Show that hIA is Riemann

integrable and that∫
A
f(w) dw =

∫
C

(∫ g(x)

f(x)
h(x, y) dy

)
dx.

Does a similar result hold for Riemann integrable functions h?

18.5.2 Show that a bounded subset A of Rd is Jordan measurable if and

only if its boundary ∂A has outer content 0.

18.5.3 Suppose that f and g are Riemann integrable real-valued functions

on a cell C in Rd, and that g is non-negative. Show that there exists

c ∈ R, with

inf{f(x) : x ∈ C} ≤ c ≤ sup{f(x) : x ∈ C},
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such that
∫
C f(x)g(x) dx = c

∫
C g(x) dx.

18.5.4 Suppose that C is a compact convex body in Rd. Show that C is

homeomorphic to the closed unit ball in Rd.

18.5.5 Use induction, and repeated integrals, to calculate the volume of the

unit ball Bd = {x ∈ Rd : ‖x‖2 ≤ 1} in Rd. How does vd(Bd) behave

as d → ∞?

18.5.6 Let Ed = {x ∈ Bd : |x1| ≤ 1/
√
d} be an equatorial strip in Bd. Show

that vd(Ed)/vd(Bd) converges to a non-zero limit as d → ∞.

18.6 Linear change of variables

In this section and Section 18.8, we consider ‘change of variables’. We begin

by establishing a ‘change of variables’ formula for linear mappings. The

problem here is that the notion of a cell depends upon the coordinates

in Rd.

We therefore need to appeal to some elementary plane geometry and to

the structure of the general linear group GLd, the group of invertible lin-

ear mappings of Rd. We consider some simple elements of GLd. A scaling

operator D is an element of GLd defined by an invertible diagonal matrix

diag(λ1, . . . , λd), so that D(x) = (λ1x1, . . . , λdxd). An elementary shear

operator R is an element of GLd defined by an elementary shear matrix:

a matrix T of the form I + αEij , where i �= j and Eij is the matrix

with (Eij)ij = 1, and with all other entries zero. Thus if T (x) = y then

yi = xi + αxj , and yk = xk for all other indices.

Theorem 18.6.1 If T ∈ GLd then T can be written as PDQ, where D is

a scaling operator, and each of P and Q is the product of a finite number of

elementary shear operators.

This theorem is proved in Appendix B (Theorem B.2.3).

Proposition 18.6.2 Suppose that T is an invertible linear mapping of Rd

onto itself and that C is a cell in Rd. Then T (C) is Jordan measurable, and

vd(T (C)) = |detT |.vd(C).

Proof Since T (C) is a convex body, it is Jordan measurable. Since

det(ST ) = detS.detT it is sufficient, by Theorem 18.6.1, to prove the result

for scaling operators and for elementary shear operators.

If T = diag(λ1, . . . , λd) then T (C) is a cell and

vd(T (C)) = |λ1 . . . λd|.vd(C) = |detT |.vd(C),
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Figure 18.6. A cell and a sheared cell.

so that the result holds for scaling operators. It remains to show that the

result also holds when T = I + αEij is an elementary shear operator. Since

the translate of a cell is a cell with the same content, it is sufficient to

consider the case where C = [0, 1]d.

We consider the case where α > 0; the proof for α < 0 is similar. Since

detT = 1, setting

ei = D, ei + ej = E, ej = F , T (ei + ej) = E′ and T (ej) = F ′,

vd(T (C)) = v2(ODE′F ′) = v2(ODEF ′) + v2(DE′E)

= v2(ODEF ′) + v2(OF ′F ) = v2(ODEF ) = |detT |vd(C).

�

Corollary 18.6.3 T−1(C) is Jordan measurable, and

vd(C) = |detT |.vd(T−1(C)).

Proof For det(T−1) = 1/det T . �

Corollary 18.6.4 If A is a Jordan measurable subset of Rd, then T (A)

is a Jordan measurable subset of Rd, and vd(T (A)) = |detT |vd(A).

Proof The result is true if A is the finite disjoint union of cells. If

ε > 0 there exist two such sets B1 and B2 with B1 ⊆ A ⊆ B2, and

with vd(B2) < vd(B1) + ε/|detT |. Then T (B1) ⊆ T (A) ⊆ T (B2) and

vd(T (B2)) < vd(T (B1))+ ε. Hence T (A) is Jordan measurable, by Corollary

18.5.2, and it follows that vd(T (A)) = |detT |vd(A). �
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Corollary 18.6.5 If f is a real-valued Riemann integrable function on

T (A), then f ◦ T is a Riemann integrable function on A, and∫
T (A)

f(x) dx = |detT |
∫
A
f(T (x)) dx.

Proof If (x, t) ∈ Rd ×R, let T̃ (x, t) = (T (x), t). Then det T̃ = detT , and

so the result follows by applying Theorem 18.5.3. �

We shall extend these results to a non-linear change of variables in Section

18.8.

18.7 Integrating functions on Euclidean space

The results of the previous section allow us to integrate functions defined

on a subset of Euclidean space, when there is no coordinate system in place.

We introduce coordinates, use them to define the integral, and then show

that this does not depend on the choice of coordinates.

Suppose then that E is a d-dimensional Euclidean space, and that

(e1, . . . , ed) and (e′1, . . . , e
′
d) are two orthonormal bases for E. If x ∈ Rd,

we set L(x) =
∑d

j=1 xjej and L′(x) =
∑d

j=1 xje
′
j . L and L′ are linear isome-

tries of Rd onto E, U = L−1 ◦ L′ is an orthogonal mapping on Rd, and

|detU | = 1.

Suppose now that B is a bounded subset of E. We say that B is Jordan

measurable if L−1(B) is a Jordan measurable subset of Rd, and set vd(B) =

vd(L
−1(B)). Since L−1(B) = U(L′−1(B)), it follows from Corollary 18.6.4

that these definitions do not depend upon the choice of basis. Similarly, if

f is a real-valued function on B, we say that f is Riemann integrable if

f ◦ L is Riemann integrable on L−1(B), and define the Riemann integral∫
B f(x) dvd(x) ∫

B
f(x) dvd(x) =

∫
L−1(B)

f(L(x)) dx.

Again these definitions do not depend upon the choice of basis, this time by

Corollary 18.6.5.

Finally, suppose that f is a function taking values in an e-dimensional

Euclidean space F . Suppose that (g1, . . . , ge) is an orthonormal basis for

F . We can then write f(x) =
∑e

j=1 fj(x)gj . We say that f is Riemann

integrable if f1, . . . , fe are and we set∫
B
f(x) dvd(x) =

e∑
j=1

(∫
B
fj(x) dvd(x)

)
gj .
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This time, it is the linearity of the integral that ensures that this does not

depend upon the choice of basis.

Exercise

18.7.1 What happens if we use bases of E which are not orthonormal? What

happens if we use bases of F which are not orthonormal?

18.8 Change of variables

We now consider a more general change of variables.

Suppose that C(ε) is a fat Cantor subset of [0, 1]. If x ∈ [0, 1], let

f(x) = 2 − IC(ε)(x), so that f(x) = 1 if x ∈ C(ε) and f(x) = 2 other-

wise. Let Uf = {(x, y) ∈ (0, 1) × (0, 2) : 0 < y < f(x)}. Then Uf is an

open subset of R2 which is not Jordan measurable. Further Uf is connected,

and its complement is also connected. It therefore follows from the Rie-

mann mapping theorem (which we shall prove in Volume III), that there

is a smooth diffeomorphism φ of the open unit square (0, 1) × (0, 1) onto

Uf . This clearly has bad consequences for ‘change of variables’ results. In

fact, the bad behaviour results from bad behaviour of φ near the boundary

of (0, 1) × (0, 1). If we avoid this possibility, then, as we shall see, we can

obtain some positive results.

First, we consider what happens to compact cells.

Theorem 18.8.1 Suppose that φ : U → V is a diffeomorphism from an

open subset U of Rd onto an open subset V of Rd, and that Dφx is invertible,

for each x ∈ U . If C is a compact cell contained in U then φ(C) is Jordan

measurable, and vd(φ(C)) =
∫
C |Jφ(x)| dx, where Jφ is the Jacobian of φ.

Proof The idea of the proof is to find a fine enough dissection of C such

that we can approximate φ linearly on the constituent cells, and to use the

estimates in the Lipschitz inverse function theorem to obtain good approx-

imations. Since we are working with cells, it is convenient to work with the

supremum norm on Rd: ‖x‖∞ = max{|xj | : 1 ≤ j ≤ d}, and with the

corresponding operator norm on L(Rd).

Since φ(C) is a compact subset of the open set V , there exists θ > 0 such

that the compact set K = {y ∈ Rd : d(y, φ(C)) ≤ θ} is contained in V .

Suppose that 0 < ε < 1. Choose 0 < η < ε such that

1− ε < (1− η)d < (1 + η)d < 1 + ε.
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The mappings Jφ and Dφ are uniformly continuous on C and, by Corollary

14.6.9, Dφ−1 is uniformly continuous on K. There therefore exist 1 ≤ M <

∞ such that

‖Dφ(x)‖ ≤ M, for x ∈ C, and
∥∥Dφ−1(y)

∥∥ ≤ M, for y ∈ K,

and 0 < δ < θ such that

|Jφ(x)− Jφ(x
′)| < η/vd(C), for x, x′ ∈ C,

∥∥x− x′
∥∥ < δ,∥∥Dφ(x)−Dφ(x′)

∥∥ < η/2M, for x, x′ ∈ C,
∥∥x− x′

∥∥ < δ,

and
∥∥Dφ−1(y)−Dφ−1(y′)

∥∥ < η/2M, for y, y′ ∈ K,
∥∥y − y′

∥∥ < δ.

Suppose now that D is a dissection with mesh size less than δ, with

constituent cells C1, . . . , Ck, with midpoints x1, . . . , xk. Let Sj = Dφxj
, for

1 ≤ j ≤ k.

Let us consider a particular cell Cj. By translating U and V , we can

suppose that xj = 0 and that φ(xj) = 0. If h ∈ Cj let ψ(h) = S−1
j (φ(h)).

We show that

(1− η)Cj ⊆ ψ(Cj) ⊆ (1 + η)Cj .

By Corollary 17.2.6, if h, k ∈ Cj , then

‖φ(h) − φ(k) −Dφ0(h− k)‖ ≤ ‖h− k‖ sup{‖Dφl −Dφ0‖ : l ∈ [h, k]}
≤ (η/M) ‖h− k‖ .

If h ∈ Cj, let χ(h) = ψ(h) − h. Then

‖χ(h)− χ(k)‖ = ‖ψ(h) − ψ(k)− (h− k)‖
≤ M ‖φ(h) − φ(k)−Dφ0(h− k)‖ ≤ δ ‖h− k‖ .

Thus χ is a Lipschitz function on Cj , with Lipschitz constant η. It therefore

follows from the Lipschitz inverse function theorem (Theorem 14.6.6) that

(1− η)Cj ⊆ ψ(Cj) ⊆ (1 + η)Cj .

Consequently,

(1− η)Sj(Cj) ⊆ φ(Cj) ⊆ (1 + η)Sj(Cj).

We use these inclusions to estimate the upper and lower Jordan contents of

φ(C). First,

vd(φ(Cj)) ≤ vd((1 + η)Sj(Cj)) ≤ (1 + ε)|Jφ(xj)|vd(Cj),
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and ∣∣∣∣∣
∫
Cj

|Jφ(x)| dx− |Jφ(xj)|vd(Cj)

∣∣∣∣∣ < εvd(Cj)/vd(C).

Thus

vd(φ(C)) ≤
k∑

j=1

vd(φ(Cj))

≤
k∑

j=1

(1 + ε)|Jφ(xj)|vd(Cj) ≤ (1 + ε)

∫
C
|Jφ(x)| dx+ ε.

Secondly,

vd(φ(Cj)) ≥ vd(Sj((1− η)Cj)) ≥ (1 − ε)|Jφ(xj)|vd(Cj),

so that

vd(φ(C)) ≥
k∑

j=1

vd(Sj((1− η)Cj)) ≥ (1− ε)

k∑
j=1

|Jφ(xj)|vd(Cj)

≥ (1− ε)

∫
C
|Jφ(x)| dx − ε.

Since ε is arbitrary, it follows that φ(C) is Jordan measurable, and that

vd(φ(C)) =
∫
C |Jφ(x)| dx. �

This result can extended to more general sets.

Corollary 18.8.2 Suppose that B is a Jordan measurable subset of U

contained in a compact subset K of U . Then φ(B) is Jordan measurable,

and

vd(φ(B)) =

∫
B
|Jφ(x)|dx.

Proof Let L = sup{|Jφ(x)| : x ∈ K}. First suppose that B is a cell.

Suppose that ε > 0. There exists a compact cell C ′ contained in B such that

vd(C
′) > vd(B)− ε/L = vd(B)− ε/L. Then

vd(φ(B))− vd(φ(C
′)) =

∫
B
|Jφ(x)| dx−

∫
C′

|Jφ(x)| dx < ε;

since ε is arbitrary, φ(B) is Jordan measurable, and vd(φ(B)) =
∫
B |Jφ(x)|dx.

In the general case, if ε > 0 there exists a finite collection of disjoint cells

J(B) ∪K(B) such that

∪{C : C ∈ J(B)} ⊆ B ⊆ ∪{C : C ∈ J(B) ∪K(B)},
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for which vd(∪{C : C ∈ K(B)}) < ε/L. Then

vd(φ(∪{C : C ∈ J(B)})) > vd(φ(∪{C : C ∈ J(B) ∪K(B)}))− ε,

so that φ(B) is Jordan measurable, and it follows that vd(φ(B)) =∫
B |Jφ(x)|dx. �

We now obtain a change of variables result for Riemann integrable

functions.

Theorem 18.8.3 Suppose that φ : U → V is a diffeomorphism from an

open subset U of Rd onto an open subset V of Rd, and that Dφx is invertible,

for each x ∈ U . Suppose that K is a compact subset of U , that B is a Jordan

measurable subset of K and that f is a Riemann integrable mapping from

φ(B) into Re. Then f ◦ φ is Riemann integrable, and∫
φ(B)

f(y) dy =

∫
B
f(φ(x))|Jφ(x)| dx.

Proof We use Theorem 18.5.3. By considering the coordinates of f , we

can suppose that f is real-valued, and by considering f+ and f−, we can

suppose that f is non-negative. Let M = ‖f‖∞ + 1, let

Ũ = U × (−M,M) and Ṽ = V × (−M,M),

and let φ̃(x, t) = (φ(x), t) for (x, t) ∈ Ũ . Then φ̃ : Ũ → Ṽ is a diffeomorphism

from Ũ onto Ṽ , and Dφ̃(x,t)(h, s) = (Dφx(h), s), so that Dφ̃x is invertible,

for each x ∈ U . Further, J
˜φ(x, t) = Jφ(x), and φ̃(Af◦φ) = Af . Since f is

Riemann integrable, the set Af is Jordan measurable. Applying Corollary

18.8.2 to the mapping φ̃−1, it follows that Af◦φ is Jordan measurable. Thus

f ◦ φ is Riemann integrable, and∫
φ(B)

f(y) dy = vd+1(Af ) =

∫
Af◦φ

|J
˜φ
(x, t)| d(x, t)

=

∫
B

(∫ f(φ(x))

0
dt

)
|Jφ(x)| dx =

∫
B
f(φ(x))|Jφ(x)| dx.

�

In many cases, the integral can be extended to the whole of U , as the

following example shows.

Proposition 18.8.4
∫∞
0 e−t2/2 dt =

√
π
2 .
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Proof We use polar coordinates. Let U = (0,∞) × (0, π/2), and let

φ(r, θ) = (r cos θ, r sin θ). Then φ is a continuously differentiable homeo-

morphism of U onto the quadrant V = (0,∞) × (0,∞) and

Dφ(r,θ) =

[
cos θ sin θ

−r sin θ r cos θ

]
, so that Jφ(r, θ) = r.

Set f(y1, y2) = e−y2
1/2e−y2

2/2 for y = (y1, y2) ∈ V , so that f(φ(r, θ)) = e−r2/2.

Let Uε,R = [ε,R]× [ε, π/2− ε] for 0 < ε < π/4 < R < ∞. Then

(

∫ ∞

0
e−t2/2 dt)2 = lim

ε→0,R→∞

∫
φ(Uε,R)

f(y) dy

= lim
ε→0,R→∞

∫
Uε,R

e−r2/2r dr dθ

= lim
ε→0,R→∞

(π/2− 2ε)(e−ε2/2 − e−R2/2) = π/2.

�

Exercises

18.8.1 Let f(x, y) = (1/2π)e−(x2+y2)/2. Let Dr = {x, y) ∈ R2 : x2 + y2 ≤
r2} and let Bs = {(x, y) ∈ R2;x ≤ sy}. Calculate∫

Dr

f(x, y) d(x, y),

∫
Bs

f(x, y) d(x, y) and

∫
Dr∩Bs

f(x, y) d(x, y).

18.8.2 Let Q = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}. Let f(x, y) = e−(x+y), for

(x, y) ∈ Q. Let

Ar = {(x, y) ∈ Q : x+ y ≤ r}, Bs = {(x, y) ∈ R2;x ≤ sy}.

Calculate∫
Ar

f(x, y) d(x, y),

∫
Bs

f(x, y) d(x, y) and

∫
Ar∩Bs

f(x, y) d(x, y).

18.8.3 Explain (or find out) the probabilistic significance of these results.

18.8.4 Let U = (0,∞) × (0, π) × (−π, π). If (r, θ, φ) ∈ U , let

Js(r, θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ).

Show that Js is a homeomorphism of U onto R3 \ H, where H is

the half-plane {(x, y, z) : x ≤ 0, y = 0}, and illustrate this with a
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sketch. Show that the Jacobian of Js is

∂(x, y, z)

∂(r, θ, φ)
= r2 sin θ.

The coordinates (r, θ, φ) are the spherical polar coordinates; r is

the radius, θ is the inclination angle, and φ is the azimuth.

18.8.5 Use spherical polar coordinates to calculate the volume of the set

(described in spherical polar coordinates) {Js(r, θ, φ) : r3 ≤ sin θ}.
18.8.6 Let V = (0,∞) × (−π, π) × R. If (ρ, φ, z) ∈ V let Jc(ρ, θ, z) =

(ρ cosφ, ρ sin φ, z). Show that Jc is a homeomorphism of U onto R3\
H, where H is the half-plane {(x, y, z) : x ≤ 0, y = 0}, and illustrate

this with a sketch. Show that the Jacobian of Jc is

∂(x, y, z)

∂(ρ, φ, z)
= ρ.

The coordinates (ρ, φ, z) are the cylindrical polar coordinates; ρ is

the radius (notice that this not the same as the radius in spherical

polar coordinates), φ is the azimuth and z is the altitude.

18.8.7 Use cylindrical polar coordinates to calculate the volume of the set

(described in cylindrical polar coordinates)

Jc = {(ρ, φ, z) : ρ ≤ z cosφ/2, 0 ≤ z ≤ 1}.
18.8.8 Let P = (−1/2, 0) and Q = (1/2, 0). Let

s = s(x, y) = d((x, y), P ), t = t(x, y) = d((x, y), Q),

u = u(x, y) = s+ t, v = v(x, y) = s− t,

for (x, y) ∈ R2. Show that the mapping (x, y) → (u(x, y), v(x, y)) is

a homeomorphism of the upper half space H+ = {(x, y) : y > 0}
onto (1,∞) × (0, 1). Show that

∂(u, v)

∂(x, y)
= −2y

st
.

Calculate ∫
H+

ye−(s+t)

st
d(x, y).

18.8.9 Let P = (0, 0,−1/2) and Q = (0, 0, 1/2). Let

s = s(x, y, z) = d((x, y, z), P ), t = t(x, y, z) = d((x, y, z), Q),

u = u(x, y, z) = s+ t, v = v(x, y, z) = s− t,
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for (x, y, z) ∈ R3. Calculate

∂(u, v, φ)

∂(x, y, z)

where φ is the azimuth. [Use cylindrical polar coordinates, and the

chain rule.] Show that∫
R3

e−(s+t)

st
d(x, y, z) = 2π/e.

18.8.10 Prove a version of Theorem 18.8.3 for continuous functions taking

values in a Banach space.

18.9 Differentiation under the integral sign

Suppose that A is a compact Jordan measurable subset of Rd and that (a, b)

is an interval in R. Suppose that f is a function on A× (a, b) taking values

in a Banach space (F, ‖.‖), that the mapping x → f(x, t) from A to F is

Riemann integrable for each t ∈ (a, b), and that the mapping t → f(x, t)

from (a, b) to F is differentiable for each x ∈ A. Let F (t) =
∫
A f(x, t) dx.

When is F a differentiable function of t? If it is, then when is

dF

dt
=

d

dt

(∫
A
f(x, t) dx

)
=

∫
A

∂f

∂t
(x, t) dx?

In other words, when can we change the order of integration and differenti-

ation? We give just one positive result, where we impose strong conditions

on f ; it is however suitable for many purposes.

Theorem 18.9.1 Suppose that A is a compact Jordan measurable subset

of Rd and that (a, b) is an interval in R. Suppose that f is a continuous

function on A × (a, b) taking values in a Banach space (F, ‖.‖), and that

the partial derivative (∂f/∂t)(x, t) exists at every point of A× (a, b) and is

a continuous function on A × (a, b). Let F (t) =
∫
A f(x, t) dx. Then F is a

continuously differentiable function on (a, b), and

dF

dt
=

d

dt

(∫
A
f(x, t) dx

)
=

∫
A

∂f

∂t
(x, t) dx.

Proof We use Corollary 17.2.6. Suppose that a < t < b and that [t −
η, t + η] ⊂ (a, b). Suppose that ε > 0. Then ∂f/∂t is uniformly continuous
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on A × [t − η, t + η] and so there exists 0 < δ < η such that if x ∈ A,

u, v ∈ [t− η, t+ η] and |u− v| < δ then

‖(∂f/∂t)(x, u) − (∂f/∂t)(x, v)‖ < ε/vd(A).

If x ∈ A and t− δ < s < t+ δ then by Corollary 17.2.6∥∥∥∥f(x, s)− f(x, t)− (s− t)
∂f

∂t
(x, t)

∥∥∥∥ ≤ |s− t| sup
u∈[s,t]

∥∥∥∥∂f∂t (x, u) − ∂f

∂t
(x, t)

∥∥∥∥
≤ |s− t|ε/vd(A).

Integrating,∥∥∥∥F (s)− F (t)− (s− t)

∫
A

∂f

∂t
(x, t) dx

∥∥∥∥
≤
∫
A

∥∥∥∥f(x, s)− f(x, t)− (s− t)
∂f

∂t
(x, t)

∥∥∥∥ dx ≤ ε|s− t|,

which shows that F is differentiable at t, with derivative
∫
A(∂f/∂t)(x, t) dx.

The continuity of the derivative then follows from the uniform continuity of

∂f/∂t on A× [t− η, t+ η]. �

Exercises

18.9.1 Suppose that f and g are continuous functions on R for which∫
R |f(x)| dx < ∞ and

∫
R |g(x)| dx < ∞. Let

H(t) =

∫
At

f(x)g(y) d(x, y), where At = {(x, y) ∈ R2 : x+ y ≤ t}.

Show that H is differentiable, and that H ′(t) =
∫
R f(t− x)g(x) dx.

18.9.2 Suppose that f and g are continuous non-negative functions on R of

compact support. Let

K(s) =

∫
Bs

f(x)g(y) d(x, y), where Bs = {(x, y) ∈ R2 : x ≤ sy}.

Show that K is differentiable, and that K ′(s) =
∫
R xf(sx)g(x) dx.

18.9.3 Suppose that f(x, y) = (1/π)e−(x2+y2)/2, and that

F (s) =

∫
Bs

f(x, y) d(x, y), where Bs = {(x, y) ∈ R2 : x > 0, y ≤ sx}.

Show that F is differentiable, and that F ′(s) = π/(1 + s2).
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Differential manifolds in Euclidean space

19.1 Differential manifolds in Euclidean space

A manifold is a topological space which is locally like Euclidean space: each

point has an open neighbourhood which is homeomorphic to an open subset

of a Euclidean space. A differential manifold is one for which the home-

omorphisms can be taken to be diffeomorphisms. We consider differential

manifolds which are subspaces of Euclidean space.

Recall that a diffeomorphism f of an open subset W of a Euclidean space

E onto a subset f(W ) of a Euclidean space F is a bijection of W onto

f(W ) which is continuously differentiable, and has the property that the

derivative Dfx is invertible, for each x ∈ W . If so, then f(W ) is open in

F , and the mapping f−1 : f(W ) → W is also a diffeomorphism. Further

dimE = dimF , and Dfx has rank dimE, for each x ∈ E. We split this

definition into two parts.

First, suppose that W is an open subset of a Euclidean space Ed of dimen-

sion d, and that j is a continuously differentiable injective mapping ofW onto

a subset j(W ) of a Euclidean space Fd+n of dimension d+ n, where n ≥ 0.

Then j is an immersion if the rank of Djx is equal to d, for each x ∈ W ;

that is, if Djx is an injective linear mapping of E into F , for each x ∈ W . If

j is k-times continuously differentiable, we say that j is a C(k)-immersion,

and if j is a smooth mapping, we say that j is a smooth immersion.

Secondly, suppose that U is an open subset of a Euclidean space Ed+n of

dimension d + n, where n > 0, and that g is a continuously differentiable

mapping of U onto a subset g(U) of a Euclidean space F of dimension n.

Then g is a submersion of rank n if the rank of Dgx is n, for all x ∈ U . Thus

Dgx is surjective, and the null-space of Dgx has dimension d, for all x ∈ U . If

g is k-times continuously differentiable, we say that g is a C(k)-submersion,

and if g is a smooth mapping, we say that g is a smooth submersion.

545
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We use submersions to define the notion of a d-dimensional manifold

M which is a subspace of a Euclidean space Ed+n of dimension d + n. A

non-empty subset M of Ed+n is a d-dimensional differential manifold if for

each x in M there exists an open neighbourhood Ux of x in Ed+n, and a

submersion gx : Ux → F of rank n such that

M ∩ Ux = {y ∈ Ux : gx(y) = 0};
locally, M is the null set of a submersion. As we shall see, the fact that the

definition is a local one influences the way in which we establish properties

of M . The manifold M is a C(k)-manifold if each gx can be taken to be a

C(k)-submersion, and is a smooth manifold if each gx can be taken to be

smooth. Differential manifolds are frequently called differentiable manifolds.

If d + n = 3 and n = 1, then M is a two-dimensional surface in a three-

dimensional Euclidean space. More generally, if n = 1, then M is called a

hypersurface in Ed+1. In this case, we simply require that Dgx �= 0 for each

x ∈ U .

Here are three easy, but important, examples.

Example 19.1.1 The unit sphere.

Let Ed+1 be a (d+1)-dimensional Euclidean space, and let U = Ed+1\{0}.
If x ∈ U , let g(x) = ‖x‖2 − 1. Then Dgx(h) = 2 〈x, h〉, so that Dgx �= 0 for

x ∈ U . Thus g is a submersion, and the unit sphere

Sd = {x ∈ U : g(x) = 0} = {x ∈ Ed+1 : ‖x‖ = 1}
is a d-dimensional differential manifold in Ed+1. Since g is smooth, Sd is a

smooth hypersurface in Ed+1.

Example 19.1.2 The graph of a differentiable function.

Suppose that f is a continuously differentiable function defined on an

open subset U of a d-dimensional Euclidean space Ed, taking values in an

n-dimensional Euclidean space En. Let g(x, y) = f(x)−y, for (x, y) ∈ U×En.

Then Dg(x,y) = (Dfx,−I), so that Dg(x,y) is a linear mapping from Ed×En

into En, with rank n. Thus

Gf = {(x, f(x)) : x ∈ U} = {(x, y) : g(x, y) = 0}
is a d-dimensional differential manifold in U × En.

For the next example, we need the notion of a self-adjoint operator.

Suppose that E is a d-dimensional Euclidean space and that T ∈ L(E).

Recall that the transpose T ′ of T is the unique element of L(E) for which
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〈T (x), y〉 = 〈x, T ′(y)〉, for all x, y ∈ E. T is self-adjoint if T = T ′. For exam-

ple, if P is an orthogonal projection of E onto a linear subspace F , and if

x, y ∈ E then

〈P (x), y〉 = 〈P (x), P (y)〉 = 〈x, P (y)〉 ,
so that P is self-adjoint. If (e1, . . . , ed) is an orthonormal basis for E, and

if T is represented by the matrix (tij), then T is self-adjoint if and only if

tij = tji for 1 ≤ i, j ≤ d. Hence the set Lsa of self-adjoint linear operators

on E is a linear subspace of L(E) of dimension d(d+ 1)/2.

Example 19.1.3 The orthogonal group and special orthogonal group.

Suppose that E is a d-dimensional Euclidean space, and that U = GL(E)

is the group of invertible elements of L(E). U is an open subset of the

d2-dimensional vector space L(E). Let g(A) = A′A−I, for A ∈ U . Then g(A)

is self-adjoint, g is a smooth mapping from U into Lsa(E) and DgA(T ) =

A′T + T ′A. Suppose that S ∈ Lsa(E). Let T = 1
2A

′−1S. Then

DgA(T ) =
1
2A

′A′−1S + 1
2SA

−1A = S,

so that DgA is a surjective linear mapping from L(E) onto Lsa(E). Thus

the orthogonal group O(E) = {A ∈ U : g(A) = 0} is a smooth manifold of

dimension d(d− 1)/2. O(E) is not connected; if g+ is the restriction of g to

the open subset U+ = {A ∈ GL(E) : detA > 0} of L(E), then the special

orthogonal group SO(E) is equal to {A ∈ U+ : g+(A) = 0}, and is also a

smooth connected manifold.

Exercises

19.1.1 Suppose that E is a differential manifold. Let E1 = E ×R, and let

E0 = E × {0}. If α > 0, let fα(x) = ‖x‖α sin(1/ ‖x‖), for x ∈ E, and

let Gα be the graph of fα.

(a) Is G2 a differential manifold in E1?

(b) Is G3 a differential manifold in E1?

(c) Is G3 ∩E0 a differential manifold in E0?

(d) Is G3 ∩ (E0 \ {0}) a differential manifold in E0 \ {0}?
19.1.2 Which of the following are manifolds in R2?

(a) {(x, y) : y2 = x2 − x4}.
(b) {(sin t, sin 2t) : 0 < t < π}.

19.1.3 A real-valued function f on Rd is m-homogeneous if f(tx) = tmf(x)

for all x ∈ Rd and all t > 0. Suppose that f is continuously dif-

ferentiable and m-homogeneous and that c ∈ R \ {0}. Show that if
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{x ∈ Rd : f(x) = c} is not empty then it is a differential manifold in

Rd. What is its dimension?

19.1.4 If E is a Euclidean group then the special linear group SL(E) is the

set {T ∈ GL(E) : detT = 1}. Show that SL(E) is a manifold in

L(E). What is its dimension?

19.2 Tangent vectors

A curve in a Euclidean space E is a continuously differentiable mapping δ

from an interval I in R into E (with a one-sided derivative at an end-point of

I), and its track [δ] is the image of δ. I does not need to be a closed interval,

but if I is a closed interval [a, b], then δ is a continuously differentiable path

from δ(a) to δ(b) (and we call δ a curve from δ(a) to δ(b)). A curve is simple

if δ is injective. If δ is a curve which is a simple closed path, we call δ a

simple closed curve. A curve δ : I → E is steady if ‖δ′(t)‖ = 1, for each

t ∈ I.

Suppose that M is a differential manifold in a Euclidean space E, and

that x ∈ M . A vector h in E is a tangent vector to M at x if there exists

an open interval (−δ, δ) in R and a curve ψx : (−δ, δ) → E taking values in

M , such that ψx(0) = x and ψ′
x(0) = h. Let θx(t) = x+ th, for t ∈ (−δ, δ).

Then h is a tangent vector to M at x if and only if ‖ψx(t)− θx(t)‖ = o(|t|).
This definition does not involve submersions. The set of tangent vectors

to M at x can be characterized in terms of submersions.

Theorem 19.2.1 Suppose that M is a d-dimensional differential manifold

in a Euclidean space E, that x ∈ M , that Ux is a neighbourhood of x in E

and that g : Ux → F is a submersion for which

M ∩ Ux = {y ∈ Ux : g(y) = 0}.

If h ∈ E then h is a tangent vector to M at x if and only if Dgx(h) = 0.

Proof Suppose first that h is a tangent vector to M at x, and that ψ :

(−δ, δ) → M satisfies the conditions of the definition. If t ∈ (−δ, δ), then

g(ψ(t)) = 0 for t ∈ (−δ, δ), and so, using the chain rule,

Dgx(h) = Dgx(ψ
′(0)) = (g ◦ ψ)′(0) = 0.

The converse is harder to prove. Let us set Tx = {h ∈ E : Dgx(h) = 0}:
Tx is the null-space of Dgx. Let Px be the orthogonal projection of E onto

Tx. Let Qx = I−Px, and let Nx = Qx(E); Nx is the orthogonal complement

of Tx. If y ∈ Nx and Dgx(y) = 0 then y ∈ Tx ∩ Nx = {0}, so that y = 0.
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Thus the restriction of Dgx to Nx is an injective linear map of Nx into F .

Since dimNx = rank(Dgx) = dimF , the restriction of Dgx to Nx is a linear

isomorphism of Nx onto F .

We now define a mapping g̃ from Ux to Tx × F by setting g̃(y) =

(Px(y − x), g(y)). The mapping g̃ is continuously differentiable, and Dg̃x =

(Px,Dgx). Suppose that (h, k) ∈ Tx×F . Since g is a submersion, there exists

y ∈ E such that Dgx(y) = k. Let z = Qx(y) + h. Since h− Px(y) ∈ Tx,

Dg̃x(z) = (Px(h),Dgx(y + (h− Px(y)))) = (h,Dgx(y)) = (h, k).

Thus Dg̃x is a linear isomorphism of E onto Tx ×F . Since g̃ is continuously

differentiable, we can suppose, by replacing Ux by a smaller neighbourhood

if necessary, that Dg̃ is invertible at each point of Ux. Applying Corollary

17.4.3, it follows that g̃ is a diffeomorphism of Ux onto the open subset g̃(Ux)

of Tx × F .

Let Ψ : g̃(Ux) → Ux be the inverse mapping. If h ∈ Tx, there exists

δ > 0 such that (th, 0) ∈ g̃(Ux) for |t| < δ. Let ψ(t) = Ψ(th, 0). Then

ψ(0) = x. Since g̃(ψ(t)) = (th, 0), it follows that g(ψ(t)) = 0, so that

ψ(t) ∈ M . Further, ψ′(0) = DΨ(0,0)(h, 0) = (Dg̃x)
−1(h, 0). Since h ∈ Tx

and Dgx(h) = 0, it follows that Dg̃x(h) = (Px(h),Dgx(h)) = (h, 0). Thus

ψ′(0) = h. �

Corollary 19.2.2 The set Tx of tangent vectors to M at x is a d-

dimensional linear subspace of E, which depends neither on the choices of

ψ in the definition of tangent vector, nor on the choice of the submersion g

used to define M in a neighbourhood of x.

The vector space Tx is called the tangent space of M at x, and the space

Nx is called the normal space of M at x. Continuing with the notation of the

theorem, if y ∈ M ∩Ux, let φ(y) = φx(y) = Px(y−x). Then g̃(y) = (φ(y), 0),

so that φ is a homeomorphism of M ∩Ux onto an open subset of the tangent

space Tx. The pair (Ux, φ) is called a chart of M near x. If (e1, . . . , ed)

is an orthonormal basis for Tx, and φ(y) = φ1(y)e1 + · · · + φd(y)ed, then

(φ1, . . . , φd) are local coordinates forM in Ux, or a parametrization ofM∩Ux.

The inverse mapping ψ = φ−1
x : φ(Ux) → Ux is an immersion.

For example, if M = Sn−1 = {x ∈ E : g(x) = ‖x‖2 = 1} is the unit

sphere in an n-dimensional space and if x ∈ M then Dgx(h) = 2 〈x, h〉, and
so Tx = x⊥, the space of vectors orthogonal to x, and Nx = span (x).

Corollary 19.2.3 Suppose that V is an open subset of a Euclidean space

F , that f : V → E is a continuously differentiable mapping and that f(V ) ⊆
M . Then Dfx(F ) ⊆ Tf(x) for each x ∈ F .
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Proof Suppose that Uf(x) is an open neighbourhood of f(x) and that

g : Uf(x) → G is a submersion for which

M ∩ Uf(x) = {y ∈ Uf(x) : g(y) = 0}.

Let Vx = f−1(Uf(x)). Then g(f(y)) = 0 for y ∈ Vx, and so D(g ◦ f)x =

Dgf(x) ◦Dfx = 0. Thus Dfx(F ) ⊆ Tf(x). �

Corollary 19.2.4 If ε > 0 there exists δ > 0 such that if y ∈ M and

‖y − x‖ < δ, then ‖(y − x)− φx(y)‖ < ε ‖φx(y)‖ ≤ ε ‖y − x‖.

Proof The theorem shows that Dψ0 is the identity mapping on Tx. If

v ∈ φx(Ux), let θ(v) = ψ(v) − v. Then θ maps φx(Ux) into E, θ(0) = x and

Dθ0 = 0. Since Dθ is continuous at 0, there exists δ > 0 such that if ‖v‖ < δ

then ‖Dθv‖ < ε/2. If ‖y − x‖ < δ then

‖φx(y)‖ ≤ ‖Px‖ . ‖y − x‖ = ‖y − x‖ < δ,

so that

‖(y − x)− φ(y)‖ = ‖ψ(φx(y)) − φx(y)− x‖
= ‖θ(φx(y))− θ(0)‖ ≤ ε ‖φ(y)‖ .

by the mean value inequality. �

Corollary 19.2.5 If ε > 0 there exists δ > 0 such that if y ∈ M and

‖y − x‖ < δ, then ‖φx(y)‖ ≤ ‖y − x‖ ≤ (1 + ε) ‖φx(y)‖.

Proof For

‖φx(y)‖ ≤ ‖y − x‖ ≤ ‖(y − x− φx(y)) + φx(y)‖
≤ ‖y − x− φx(y)‖ + ‖φx(y)‖ ≤ (1 + ε) ‖φx(y)‖ .

�

Theorem 19.2.6 Suppose that M is a d-dimensional differential manifold

in a Euclidean space E, and that (Ux, φx) and (Uy, φy) are two charts. If

Ux ∩Uy �= ∅ then φy ◦φ−1
x : φx(Ux ∩Uy) → φy(Ux ∩Uy) is a diffeomorphism,

which is a C(k)-diffeomorphism if M is a C(k)-differential manifold, and is

smooth if M is a smooth manifold.
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Proof This follows directly from the corresponding properties of the

mappings g̃ and g̃−1 defined in the preceding theorem. �

These results lead to the notion of an abstract differential manifold. This

is a Hausdorff topological space (M, τ) with the property that there is a set

C = {(U, φ)} of charts, where

• the sets U are open subsets of M which cover M ,

• if (U, φ) ∈ C, then φ is a homeomorphism of U onto an open subset φ(U)

of Rd,

• if (U, φ) and (V, ψ) are charts and U ∩V �= ∅ then the restriction of ψ◦φ−1

to φ(U ∩ V ) is a diffeomorphism of φ(U ∩ V ) onto ψ(U ∩ V ).

Such a manifold M has a much weaker structure than a differential manifold

which is a subspace of a Euclidean space (for example, there is no natural

metric on M), but the study of these manifolds is the concern of differen-

tial geometry.1 We restrict our attention to differential manifolds which are

subspaces of Euclidean spaces.

Example 19.2.7 The tangent bundle of a C(2)-differential manifold in a

Euclidean space.

Suppose that M is a d-dimensional C(2)-differential manifold in a

Euclidean space E. We define the tangent bundle T (M) of M to be the

subset {(x, v) : x ∈ M,v ∈ Tx} of E × E. Let us show that T (M) is a

2d-dimensional differential manifold in E×E. Suppose that x ∈ M , that Ux

is an open neighhbourhood of x in E and that g : Ux → F is a submersion

for which M ∩ Ux = {y ∈ Ux : g(y) = 0}. Define G : Ux × E → F × F by

setting G(y, v) = (g(y),Dgy(v)). Then

T (M) ∩ (Ux × E) = {(y, v) : G((y, v)) = 0}.

We must show that G is a submersion. G is continuously differentiable, and

the matrix of partial derivatives is[
Dgy 0

D2gy(v, ·) Dgy

]
.

Since Dgy has rank d, DG(y,v) has rank 2d, and so G is a submersion.

We have used submersions to define differential manifolds in a Euclidean

space. We can also use immersions to do this.

1 For a good introduction, see Dennis Barden and Charles Thomas, An Introduction to Differential
Manifolds, Imperial College Press, 2003.
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Theorem 19.2.8 Suppose that M is a subset of an n-dimensional

Euclidean space E with the property that for each x ∈ M there is an open

neighbourhood U of x in E and an immersion j from an open subset V

of a d-dimensional Euclidean space F , with j(V ) = M ∩ U . Then M is a

d-dimensional differential manifold in E.

Proof Suppose that x ∈ M . Let z = j−1(x) and let K be the orthogonal

complement in E of Djz(F ): K is an (n− d)-dimensional subspace of E, so

that dim (F ×K) = n. Define j̃ : V ×K → E by setting j̃(y,w) = j(y) +w.

Then j̃ is continuously differentiable, and Dj̃ = (Dj, J), where J : K → E is

the inclusion mapping. Then rank(Dj̃z) = n, and so, by the inverse mapping

theorem, there is a neighbourhood W of x contained in U such that j̃ is a

diffeomorphism of j̃−1(W ) onto W . Let g̃ = (f, g) be the inverse mapping.

Then g is a submersion of V into W . Further, g(y) = 0 if and only if g̃(y) =

(f(y), 0), which happens if and only if y = j̃(g(y)) = j(f(y)) ∈ M ∩ W .

Thus M is a differential manifold. �

If the immersions are C(k)-immersions, then M is a C(k) differential

manifold, and if the immersions are smooth then M is a smooth manifold.

Exercise

19.2.1 Suppose that M is a d-dimensional C(2)-differential manifold in a

Euclidean space E. The unit sphere bundle S(M) is defined to be

S(M) = {(x, v) ∈ T (M) : ‖v‖ = 1}. Show that S(M) is a 2d − 1

differential manifold in E × E.

19.3 One-dimensional differential manifolds

The simplest examples of differential manifolds are the one-dimensional ones.

In the next theorem, we classify the connected one-dimensional manifolds

contained in a Euclidean space. The results are hardly unexpected, but the

proofs require some care, and illustrate the use of the results concerning

paths that have been established earlier.

Theorem 19.3.1 Suppose that M is a connected one-dimensional mani-

fold in an open subset U of an open subset U of a Euclidean space E. There

are two possibilities.

First, M is a compact subset of U and there exists a steady simple closed

curve γ in U such that M = [γ], the track of γ.
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Secondly, M is not a compact subset of U , and there exists an open inter-

val I in R and a steady simple curve β : I → U such that M = [β], so that

β is a homeomorphism of I onto M .

Proof We prove a series of lemmas.

Lemma 19.3.2 Suppose that x ∈ M . There exists an open neighbourhood

Wx of x in E and a chart χx : Wx ∩M → Tx such that χx(Wx ∩M) is an

interval (−h, h) in Tx. If y ∈ (Wx ∩M) \ {x} there exists a unique simple

steady path β : [0, L] → M from x to y.

Proof There exist a neighbourhood Ux of x in E and a chart φx : Ux ∩M

to the one-dimensional tangent space Tx. Since φx(Ux ∩M) is open in Tx,

there exists an interval (−h, h) ⊆ φx(Ux ∩ M). Let Wx = φ−1
x (−h, h) and

let χx be the restriction of φx to Wx ∩M . Let γ(t) = tφx(y) for 0 ≤ t ≤ 1.

Then χ−1
x ◦ γ is a simple curve in M from x to y; let β be its path-length

parametrization. By Corollary 17.2.10, ‖β′(t)‖ = 1; thus β is a steady curve.

It follows from Corollary 17.2.11 that β is unique. �

We have the following uniqueness result.

Lemma 19.3.3 Suppose that β1 : [0, L] → M and β2 : [0, L] → M are

two steady curves in M for which β1(0) = β2(0) and β′
1(0) = β′

2(0). Then

β1 = β2.

Proof Let

G = {t ∈ [0, L] : β1(s) = β2(s) and β′
1(s) = β′

2(s) for 0 ≤ s ≤ t}.

Since the functions under consideration are continuous, G is a closed interval

[0, g] in [0, L]. It follows easily from Lemma 19.3.2 that G is also an open

subset of [0, L]; since [0, L] is connected, G = [0, L]. �

We now define a relation ∼ on M by setting x ∼ y if there exists a steady

curve δ : I → M for which x, y ∈ [δ].

Lemma 19.3.4 The relation ∼ is an equivalence relation.

Proof Clearly x ∼ x, and x ∼ y if and only if y ∼ x. Suppose that x ∼ y

and y ∼ z, so that there exist a steady curve δ1 : [0, L1] → M from x to

y, and a steady curve δ2 : [0, L2] → M from y to z. If δ′2(0) = δ′1(L1) then

δ1 ∨ δ2 is a steady curve in M from x to z. Otherwise, δ′2(0) = −δ′1(L1).

Suppose that L1 ≥ L2. Let δ←1 : [0, L2] → M be the reversal of δ2. Then

it follows from Lemma 19.3.3 that δ←1 (t) = δ2(t) for 0 ≤ t ≤ L2. Thus
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z = δ←1 (L2) = δ1(L1 − L2) ∈ [δ1], so that x ∼ z. A similar argument shows

that if L1 ≤ L2 then x ∈ [δ2], so that x ∼ z. �

Lemma 19.3.5 If x, y ∈ M then x ∼ y.

Proof It follows from Lemma 19.3.2 that each equivalence class is open in

M . Since M is connected, M is the unique equivalence class. �

We now complete the proof of the theorem. Choose x0 ∈ M and choose

a unit tangent vector h0 in Tx0
. Let

I = {t ∈ R : there exists a steady curve δ : [0, t] → M

with δ(0) = x0 and δ′(0) = h0}.

(Here we allow t to be negative, or zero.) It follows from Lemma 19.3.2 that

I is an open interval, from Lemma 19.3.3 that there exists a steady curve

δ : I → M with δ(0) = x0 and δ′(0) = h0 and from Lemma 19.3.5 that

[δ] = M .

There are now two possibilities. First, δ is a simple curve. In this case, the

second possibility holds. Secondly, there exist s, t ∈ I, with s < t such that

δ(s) = δ(t). It then follows from Lemma 19.3.3 that if s+ u, t+ u ∈ I then

δ(s+u) = δ(t+u). Thus δ is periodic, and I = R. Let t0 be the fundamental

period of δ: the least positive number for which δ(t0) = δ(t0+t) for all t ∈ R

(see Volume I, Section 6.3, Exercise 1). Then δ : [0, t0] → M is a steady

closed curve in M , with [δ] = M . Finally, δ : [0, t0] → M is a simple closed

curve, for if there exist 0 ≤ s < t ≤ t0 with t− s < t0 for which δ(s) = δ(t),

then it follows from Lemma 19.3.3 that t− s is a period of δ, contradicting

the minimality of t0. �

The leftmost trefoil in Figure 19.3a represents the track of a closed curve

in the plane. It is not a manifold, since the curve intersects itself. The other

two trefoils represent the track of curves in a three-dimensional space E.

They are both manifolds, and are diffeomorphic to each other. On the other

hand, there is no homeomorphism of E onto itself, mapping one manifold

Figure 19.3a. Three trefoils.
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Figure 19.3b. The Klein bottle.

onto the other, since one curve is knotted and the other is not (we shall not

prove this).

Similar phenomena happen in higher dimensions. The Klein bottle illus-

trated in Figure 19.3b is not a manifold in three-dimensional space E, since

it is self-intersecting. In fact, there is no manifold in a three-dimensional

space which is homeomorphic to it, since it is a one-sided surface. On the

other hand, it can be represented as a manifold in a four-dimensional space:

take the fourth dimension to be time, start at time 0 at the circle of self-

intersection, and proceed outwards in both directions, reaching the circle of

intersection again at time 1.

Exercise

19.3.1 Give an example of a one-dimensional manifold in the plane with

infinitely many connected components. Can there be uncountably

many connected components?

19.4 Lagrange multipliers

We begin with a result which corresponds to Rolle’s theorem. We need some

definitions.

Suppose that f is a real-valued function on a topological space (X, τ),

and that x ∈ X. Then f has a local maximum (strict local maximum) if

there is a neighbourhood V of x for which f(y) ≤ f(x) (f(y) < f(x)) for

y ∈ V \ {x}. Local minima and strict local minima are defined similarly.

Suppose that f is a differentiable function on an open subset U of a

normed space (E, ‖.‖) and that x ∈ U . Then x is a stationary point of f if

Dfx = 0.
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Proposition 19.4.1 Suppose that f is a differentiable function on an open

subset of a normed space (E, ‖.‖) and that f has a local maximum or local

minimum at x. Then x is a stationary point of f .

Proof Suppose that f has a local maximum at x, and that V is a neigh-

bourhood of x for which f(y) ≤ f(x) for y ∈ V . If h ∈ E, there exists δ > 0

such that x+ th ∈ V for |t| < δ. Then

Dfx(h) = lim
t↘0

f(x+ th)− f(x)

t
≤ 0

and Dfx(h) = lim
t↗0

f(x+ th)− f(x)

t
≥ 0,

so that Dfx(h) = 0. This holds for all h ∈ E, and so Dfx = 0. The proof

for a local minimum is exactly similar. �

It is important to note that the converse is not true. For example the

function f(x) = x3 on R has a stationary point at 0, but is strictly mono-

tonic, and the function f(x, y) = xy on R2 has a stationary point at (0, 0),

but takes positive, negative and zero values in any neighbourhood of (0, 0).

Suppose now that M is a differential manifold in an open subset U of

a Euclidean space E, and that f is a continuously differentiable function

on U . We consider the restriction of f to M . Suppose that x ∈ M . Then

f has a constrained local maximum (constrained strict local maximum) if

there is a neighbourhood V of x for which f(y) ≤ f(x)(f(y) < f(x)) for

y ∈ M ∩ (V \ {x}). Constrained local minima and constrained strict local

minima are defined similarly.

Recall that we use the gradient ∇fx to describe the derivative of f at

x: ∇fx ∈ E and Dfx(h) = 〈h,∇fx〉. Now E is the orthogonal direct sum

E = Tx⊕Nx, where Tx is the tangent space at x and Nx is the normal space

at x. We write

∇fx = ∇T fx +∇Nfx, with ∇T fx ∈ Tx and ∇Nfx ∈ Nx :

∇T fx is the tangential gradient and ∇Nfx is the normal gradient of f at x.

We say that f has a constrained stationary point at x if ∇T fx = 0.

Proposition 19.4.2 Suppose that M is a differential manifold in an open

subset U of a Euclidean space E, that f is a continuously differentiable

function on U and that x ∈ M . If f has a constrained local maximum or

minimum at x then f has a constrained stationary point at x.
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Proof Suppose that h ∈ Tx. Then there exists δ > 0 and a curve ψx :

(−δ, δ) → M such that ψx(0) = x and ψ′
x(0) = h. Then f ◦ ψx has a local

maximum or minimum at 0, so that, by the chain rule,

〈h,∇T fx〉 = 〈h,∇fx〉 = Dfx(h) = Dfx(ψ
′(0)) = D(f ◦ ψx) = 0.

�

Of course, ∇Nfx need not vanish. Indeed, if Ux is a neighbourhood of x

in U and g : Ux → F is a submersion for which

M ∩ Ux = {y ∈ Ux : g(y) = 0},

then trivially every point y of M ∩ Ux is both a constrained local maxi-

mum and a constrained local minimum of g, and is therefore a constrained

stationary point of g, while∇Ngy is a linear isomorphism of Ny ontoDgy(E).

Theorem 19.4.3 Suppose that M is a differential manifold in an open

subset U of a Euclidean space E, that f is a continuously differentiable real-

valued function on U and that x ∈ M . Suppose that Ux is a neighbourhood

of x in U and g : Ux → F is a submersion for which M ∩ Ux = {y ∈ Ux :

g(y) = 0}. If f has a constrained local maximum or minimum at x, then

there exists a unique φ in F for which ∇(f − 〈φ, g〉)x = 0.

Proof Since Dgx is a linear isomorphism of Nx onto F , (Dg′x) is a linear

isomorphism of F onto Nx. Thus there exists a unique φ ∈ F such that

(Dg′x(φ)) = ∇Nfx, and so

〈h,∇Nfx〉 = 〈φ,Dgx(h)〉 for all h ∈ Nx.

But if h ∈ Nx then

〈φ,Dgx(h)〉 = D(〈φ, g〉)x(h) = 〈h,∇N (〈φ, g〉)x〉 ,

and so ∇N (f−〈φ, g〉)x = 0. Since ∇T (f−〈φ, g〉)x = ∇Tfx−∇T (〈φ, g〉)x = 0

it follows that ∇(f − 〈φ, g〉)x = 0.

Finally, the proof shows that φ is unique. �

Corollary 19.4.4 If F = Rk, and g = (g1, . . . , gk), then there exist unique

λ1, . . . , λk in R such that ∇(f −∑k
j=1 λjgj) = 0.

The quantities λ1, . . . , λk are called Lagrange multipliers. Lagrangian mul-

tipliers provide a powerful tool for finding constrained local maxima and

minima, as the following examples and Exercises 6 and 7 show.
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Example 19.4.5 Diagonalizing a real quadratic form.

A quadratic form Q on a real vector space E is a real-valued function

on E for which there exists a symmetric bilinear form b on E for which

Q(x) = b(x, x), for all x ∈ E. Suppose that E is a Euclidean space. Then

since Q(x+ h) = Q(x) + 2b(x, h) + b(h, h), and since b(h, h) = o(‖h‖), Q is

continuously differentiable, and DQx(h) = 2b(x, h).

Theorem 19.4.6 Suppose that Q is a real quadratic form on a

d-dimensional Euclidean space E, defined by a symmetric bilinear function

b. Then there exist an orthonormal basis (e1, . . . , ed) of E and real numbers

λ1 ≥ λ2 ≥ · · · ≥ λd such that

Q(x) = λ1x
2
1 + · · ·+ λdx

2
d for all x = x1e1 + · · ·+ xded ∈ E.

Proof The proof is by induction on d. The result holds if d = 1. Suppose

that it holds for d − 1, and that Q is a quadratic form on a d-dimensional

Euclidean space E. Let Sd−1 be the unit sphere

Sd−1 = {x ∈ E : g(x) = ‖x‖2 = 1}.

Since Q is a continuous function on E and Sd−1 is compact, Q attains its

maximum on Sd−1 at a point e1 of Sd−1. The tangent space Te1 to Sd−1 is

e⊥1 . Thus 2b(e1, h) = DQe1(h) = 0, for h ∈ e⊥1 . Consequently, if x = x1e1+h,

with h ∈ e⊥1 , then Q(x) = λ1x
2
1 +Q(h), where λ1 = Q(e1).

We now apply the inductive hypothesis to the (d − 1)-dimensional space

e⊥1 : there exists an orthonormal basis (e2, . . . , ed) of e⊥ and real numbers

λ2 ≥ · · · ≥ λd such that

Q(y) = λ2y
2
2 + · · ·+ λdy

2
d for all y = y2e2 + · · ·+ yded ∈ e⊥1 .

Then (e1, . . . , ed) is an orthonormal basis of E. Since λ1 is the supremum

of Q on Sd−1, λ1 ≥ λ2 ≥ · · · ≥ λd and

Q(x) = λ1x
2
1 + · · ·+ λdx

2
d for all x = x1e1 + · · ·+ xded ∈ E.

�

We can use this to say more about the relationship between local maxima

and minima and stationary points. Suppose that f is a twice continuously

differentiable function on an open subset U of a d-dimensional Euclidean

space E, and that x is a stationary point of f . Then, for small h in E,

f(x+ h) = f(x) +D2fx(h, h) + r(h),
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where r(h) = o(‖h‖2). The mapping Q(h) = D2fx(h, h) is a quadratic form

on E, and so there exist an orthonormal basis (e1, . . . , ed) of E and real

numbers λ1 ≥ λ2 ≥ · · · ≥ λd such that

D2fx(h, h) = λ1h
2
1 + · · ·+ λdh

2
d for all h = h1e1 + · · · + hded ∈ E.

There are now five possibilities.

1. λj > 0 for 1 ≤ j ≤ d. Then f has a strict local minimum at x.

2. λj ≥ 0 for 1 ≤ j ≤ d and λd = 0. Then f can have a strict local minimum

at x (consider the function x21 + x42 on R2 near (0, 0)), a local minimum

which is not strict (consider the function x21 on R2 near (0, 0)) or can

take positive and negative values in any neighbourhood of x (consider

the function x21 − x42 on R2 near (0, 0)).

3. λ1 > 0 and λd < 0. Then f takes positive and negative values in any

neighbourhood of x. In this case x is called a saddle point of f : consid-

eration of the graph of the function f(x1, x2) = x21 − x22 explains this

terminology.

4. λj ≤ 0 for 1 ≤ j ≤ d and λ1 = 0. As case 2.

5. λj < 0 for 1 ≤ j ≤ d. As case 1.

Similar results hold for constrained stationary points.

Figure 19.4a. A saddle point.

Example 19.4.7 Maximum entropy.

Suppose that P is a probability defined on a set {x1, . . . , xn} of n points,

and that P(xj) = pj (so that pj ≥ 0 and p1 + · · · + pn = 1). Suppose that

f is a continuous strictly concave function on [0, 1] which is continuously

differentiable on (0, 1). For what choice ofP is F =
∑n

j=1 f(pj) a maximum?.

First note that if we set h(t) = f(t) − f(0) then
∑n

j=1 h(pj) = F − nf(0),

and so we can suppose that f(0) = 0.
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Consider the function F (x) =
∑n

j=1 f(xj) on U = (0, 1)n, the function

g(x) = x1 + · · · + xn, and the manifold M = {x ∈ U : g(x) = 1}. Suppose
that p ∈ M is a constrained stationary point of F . By Corollary 19.4.4 there

exists λ ∈ R such that ∇(F − λg)p = 0. That is,

f ′(pj) =
∂F

∂xj
(p) = λ for 1 ≤ j ≤ n.

Thus f ′(pi) = f ′(pj) for 1 ≤ i, j ≤ n. Since f is strictly concave, f ′ is strictly
monotonic, and so pi = pj for 1 ≤ i, j ≤ n. Thus p = (1/n, . . . , 1/n), P is

the uniform distribution on {x1, . . . , xn} and F (x) = nf(1/n). It is easy to

verify that this is a constrained local maximum.

We need to verify that this is the maximal value onM . But if y ∈ ∂M , and

yj �= 0 for k values of j, then the same argument shows that
∑n

j=1 f(yj) ≤
kf(1/k), and kf(1/k) < nf(1/n), since f is strictly concave.

If P is a probability measure on {x1, . . . , xn}, then the Shannon entropy

of P is defined as −∑n
j=1 pj log2 pj (where log2 is the logarithm to base 2:

log2(t) = log t/ log 2, and 0. log2 0 = 0). It follows that the maximum entropy

occurs when P is the uniform distribution.

Example 19.4.8 The reflection of light.

One of the properties of light is that, in a homogeneous medium, it travels

in straight lines. Suppose that M is a closed (d− 1)-dimensional differential

manifold in a d-dimensional Euclidean space E, and that P and Q are points

in E for which the line segment [P,Q] is disjoint from M . What is the

shortest path from P to Q which includes a point of M? This is a question

which can be solved using a Lagrange multiplier, but not quite in the way

that might be expected. Let us give a concrete example.

Let U = {x∈R3 : x1> 0, x2 > 0} and consider the two-dimensional differ-

ential manifold M = {x ∈ U : f(x) = x1x2 = 3
√
2} (the ‘mirror’) in U .

Let P = (−1, 0, 0) and Q = (1, 0, 0). What is the shortest path from P to Q

which includes a point ofM? We need some results from Euclidean geometry.

Suppose that a > 1. Then the set Ea = {x ∈ R3 : ‖x− P‖+ ‖x−Q‖ = 2a}
is the ellipsoid

{x ∈ R3 : g(x) =
x21
a2

+
x22 + x23
a2 − 1

− 1 = 0},

which is a compact two-dimensional differential manifold in R3. (See

Exercise 19.4.4.) Where does the function f attain its constrained maximum

on Ea ∩U? By Corollary 19.4.4, if x is a constrained stationary point, there
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exists a unique λ in R such that ∇(f − λg)x = 0. That is,

x2 − 2λx1
a2

= 0, x1 − 2λx2
a2 − 1

= 0,
2λx3
a2 − 1

= 0.

Thus

x3 = 0 and x1x2 =
2λx21
a2

=
2λx22
a2 − 1

,

so that
x21
a2

=
x22

a2 − 1
=

1

2
and x21x

2
2 =

a2(a2 − 1)

4
.

We require x to be a point of M . This happens if a = 3, from which it

follows that

x1 = 3
√
2/2, x2 = 2 and x3 = 0,

and the length of the path is 6. Note that we do not need to calculate λ.

–2–3 3–1 0

P Q

1 2 x

–3

–2

–1

1

2

y

3

4 x1x2 = 3�2

x1
2

9

x2

8
+ =1

Figure 19.4b. Reflection in a hyperbolic mirror.

Why are the multipliers called Lagrange multipliers? During the sec-

ond half of the eighteenth century, the Piedmontese mathematician Joseph

Lagrange developed a new formulation of Newtonian mechanics. Sup-

pose that we are considering an ensemble of N particles P1, . . . PN , with

masses m1, . . . mN . In the Newtonian formulation, we consider the positions
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x1, . . . xN , and consider the second-order equations

d2

dt2
(mjxj) = Fj , where Fj is the force on Pj .

The positions x1, . . . , xN are represented as a point in R3N , each particle

having three coordinates. One of Lagrange’s insights was that it is help-

ful to consider the particles’ velocities, and their coordinates, on an equal

footing. Thus each particle is represented by six coordinates, with three

for its position and three for its velocity. Another coordinate is needed

for time. Thus the configuration is in R6N+1 = X × W × T , with basis

(e1, . . . , e3N , f1, . . . , f3N , h), where the jth particle has

position x(j) = x3j−2e3j−2 + x3j−1e3j−1 + x3je3j

and velocity v(j) = v3j−2f3j−2 + v3j−1f3j−1 + v3jf3j,

and h is the unit vector in the time direction. It follows from Newton’s laws

that if there are no constraints on the variables then the equations of motion

are given by

∂L

∂xj
=

d

dt

(
∂L

∂vj

)
and vj =

dxj
dt

for 1 ≤ j ≤ N,

where L is the Lagrangian, defined as L(x, v, t) = T (x, v, t) − V (x, v, t),

where T (x, v, t) = 1
2

∑N
j=1mjv

2
j is the kinetic energy of the ensemble, and

V (x, v, t) is its potential energy. We consider these equations in an open

subset U = UX × UW × I of R6N+1.

Let J : X → W be the linear isomorphism of X onto W defined by

J(ej) = fj for 1 ≤ j ≤ N . We can then write the equations of motion in

terms of the gradients ∇X in X and ∇W in W . They become the equation

J(∇XL) =
d

dt
(∇WL).

There may however be constraints of various kinds (for example, the

distance between two particles may remain constant). We consider only

holonomic constraints, which only involve the positions of the particles, but

neither their velocities nor time, and which are given by a submersion g of

UX into a Euclidean space F . Thus MX = {x ∈ UX : g(x) = 0} is a manifold

in UX , and M = MX × UW × I is a manifold in R6N+1. If x ∈ MX , let Tx

be the tangent space at x, let ∇Tx
be the corresponding gradient in Tx, and

let Jx be the restriction of J to Tx. Then the equation of motion becomes

Jx(∇Tx
L) =

d

dt
(∇WL).
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Then, arguing as in Theorem 19.4.3, there exists a unique φx ∈ F such that

Jx(∇X(L− 〈φx, g〉)) = d

dt
(∇WL).

Suppose that F = Rk, that g = (g1, . . . , gk) and that φx = (λ1, . . . , λk).

Then the equations of motion become

∂L

∂xj
=

d

dt
(
∂L

∂vj
) +

k∑
i=1

λi
∂gi
∂xj

for 1 ≤ j ≤ N.

The Lagrange multipliers may vary with time, but their time derivatives do

not enter into the equations. Let us give a simple example.

Example 19.4.9 The pendulum in three dimensions.

Suppose that a single particle, of mass m, is attached by a light rod of

length l to a fixed point, which we take to be the origin in R3, and swings

freely, under the influence of gravity. We take rectilinear coordinates, with x3
in the vertical direction. Then T (x, v) = 1

2m(v21 + v22 + v23), V (x, v) = mgx3
and the constraint g is given by x21 + x22 + x23 = l2. The equations of motion

then become

−m
dv1
dt

= 2λx1,

−m
dv2
dt

= 2λx2,

−mg −m
dv3
dt

= 2λx3.

In fact there are solutions for which v3 = 0, so that x3 is constant. Then

λ = −mg/2x3, so that λ is constant. We require mg < 2λl so that −l <

x3 < 0. Let ω =
√

2λ/m. Then a solution is given by x1 = A cosωt and

x2 = A sinωt, where A2 = l2 − x23.

Exercises

19.4.1 Suppose that T is a self-adjoint linear operator on a d-dimensional

Euclidean space E. Show that there exists an orthonormal basis

(e1, . . . ed) and real numbers λ1 ≥ λ2 ≥ . . . ≥ λd such that T (ej) =

λjej for 1 ≤ j ≤ d.

19.4.2 A linear operator on a complex inner product space F is self-adjoint

if 〈T (x), y〉 = 〈x, T (y)〉 for x, y ∈ F . Suppose that T is a self-adjoint

linear operator on a d-dimensional complex inner product space F .
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Show that 〈T (x), x〉 is real, for all x ∈ F . Show that there exist an

orthonormal basis (e1, . . . ed) and real numbers λ1 ≥ λ2 ≥ . . . ≥ λd

such that T (ej) = λjej for 1 ≤ j ≤ d.

19.4.3 Let Π be the plane {x ∈ R3 : 2
√
2x1/3 + x2 = 4}. Let P = (1, 0, 0),

Q = (−1, 0, 0). Determine the minimum of

{‖x− P‖+ ‖x−Q‖ : x ∈ Π}.
What is the geometric significance of your result?

19.4.4 Let P = (1, 0, 0), Q = (−1, 0, 0). Suppose that a > 1. Let

Πa2 = {(a2, x2, x3) : x2, x3 ∈ R} and

Π−a2 = {(−a2, x2, x3) : x2, x3 ∈ R}.
Determine the sets of points

{x ∈ R3 : a ‖x− P‖ = d(x,Πa2)} and

{x ∈ R3 : a ‖x−Q‖ = d(x,Π−a2)}.
Deduce that

{x ∈ R3 : ‖x− P‖+ ‖x−Q‖ = 2a} = {x ∈ R3 :
x21
a2

+
x22 + x23
a2 − 1

= 1}.

19.4.5 By considering the tension T in the light rod, establish the circu-

lar movement of a pendulum as described above, using Newtonian

methods. How are T and the Lagrangian multiplier λ related?

19.4.6 Suppose that p, q > 0 and that 1/p+ 1/q = 1.

(i) Let Sq = {x ∈ Rd :
∑d

j=1 |xj |q = 1}. Show that Mq is a compact

differential manifold in Rd.

(ii) Suppose that aj ≥ 0 for 1 ≤ j ≤ d. Let f(x) =
∑d

j=1 ajxj.

Use a Lagrange multiplier to find the point x ∈ Sq at which f

attains its constrained maximum on Sq, and find the constrained

maximum.

(iii) Deduce Hölder’s inequality

d∑
j=1

|ajbj| ≤
⎛⎝ d∑

j=1

|aj|p
⎞⎠1/p

.

⎛⎝ d∑
j=1

|bj |q
⎞⎠1/q

,

and show that⎛⎝ d∑
j=1

|aj|p
⎞⎠1/p

= sup

⎧⎨⎩
∣∣∣∣∣∣

d∑
j=1

ajbj

∣∣∣∣∣∣ :
d∑

j=1

|xj|q ≤ 1

⎫⎬⎭ .
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(iv) Deduce Minkowski’s inequality:⎛⎝ d∑
j=1

|aj + bj |p
⎞⎠1/p

≤
⎛⎝ d∑

j=1

|aj |d
⎞⎠1/p

+

⎛⎝ d∑
j=1

|aj |p
⎞⎠1/p

.

19.4.7 Suppose that p1, . . . , pd are positive numbers for which
∑d

j=1 1/pj = 1.

(i) Show that

A = {x ∈ Rd :

d∑
j=1

|xj |pj

pj
= 1}

is a compact differential manifold in Rd.

(ii) Let p(x) =
∏d

j=1 xj . Use a Lagrange multiplier to find the point

x ∈ A at which p attains its constrained maximum on Sq, and

find the constrained maximum.

(iii) Establish the generalized arithmetic mean-geometric mean

inequality: if aj ≥ 0 for 1 ≤ j ≤ d, then

a
1/p1

1 . . . a
1/pd

d ≤
d∑

j=1

ajpj.

.

19.4.8 If R is the point of M in Example 19.4.8 for which the path PRQ has

minimal length, show that PR and QR make the same angle with

vectors normal to M at R. (Consider a reflection in the tangent space

at R.)

19.5 Smooth partitions of unity

The definition of a differential manifold is a local one. When we turn to inte-

gration, we need to combine local results. For this, we use smooth partitions

of unity.

Suppose that K is a compact non-empty subset of a Euclidean space E,

and that {U1, . . . , Uk} is a finite open cover of K. A smooth partition of

unity subordinate to the cover is

• an open subset V such that K ⊆ V ⊆ ∪k
j=1Uj ,

• a sequence (Lj)
k
j=1 of compact sets, such that Lj ⊆ Uj for 1 ≤ j ≤ k, and

V ⊆ ∪k
j=1Lj , and
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Figure 19.5a. Partition of unity.

• a sequence (fj)
k
j=1 of smooth non-negative functions on V such that

fj(x) = 0 for x ∈ V \ Lj, and such that
∑k

j=1 fj(x) = 1 for x ∈ V .

Theorem 19.5.1 If K is a compact non-empty subset of a d-dimensional

Euclidean space E and {U1, . . . , Uk} is an open cover of K, there exists a

smooth partition of unity subordinate to the cover.

Proof We break the proof into several steps. Let U = ∪k
j=1Uj .

Lemma 19.5.2 Suppose that x ∈ Uj . There exists a compact subset Lx of

Uj and a non-negative smooth function hx on U such that hx(x) > 0 and

such that hx(y) = 0 for y ∈ U \ Lx.

Proof Let (e1, . . . , ed) be an orthonormal basis for E. There exists δ > 0

such that Lx = {y ∈ E : |yi − xi| ≤ δ for 1 ≤ i ≤ d} ⊆ Uj . If y ∈ U and

1 ≤ j ≤ k, let

hi,x(y) =

{
exp(−1/(δ2 − |yi − xi|2)) for |yi − xi| < δ,

0 otherwise.

As in Volume I, Section 7.6, hi,x is a smooth function on U . Let hx =∏d
i=1 hi,x. Then Lx and hx satisfy the requirements of the lemma. �

Lemma 19.5.3 There exist compact sets {Kj : 1 ≤ j ≤ k} such that

Kj ⊆ K ∩ Uj for 1 ≤ j ≤ k and such that K = ∪k
j=1Kj .

Proof Since K is bounded, we can suppose that each Uj is bounded. Let

Uj,n = {y ∈ Uj : d(y,E \ Uj) > 1/n}.
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Figure 19.5b. A bump function in one dimension.

Then Uj,n ⊆ Uj , each sequence (Uj,n)
∞
n=1 is increasing, and the sets {Uj,n :

1 ≤ j ≤ k, n ∈ N} form an open cover of K. There therefore exists N ∈ N

such that K ⊆ ∪k
j=1Uj,N . Let Kj = K ∩ Uj,N . Then {Kj : 1 ≤ j ≤ k}

satisfies the requirements of the lemma. �

Lemma 19.5.4 For each 1 ≤ j ≤ k there exists a compact set Lj such

that Kj ⊆ Lj ⊆ Uj and a smooth non-negative function hj on U such that

hj(x) > 0 for x ∈ Kj and hj(y) = 0 for y ∈ U \ Lj .

Proof For each x in Kj there exist a compact set Lx and a smooth non-

negative function hx on U which satisfy the conditions of Lemma 19.5.2. Let

Ux = {y ∈ U : hx(y) > 0}. Then Ux ⊆ Lx, and {Ux : x ∈ Kj} is an open

cover of Kj . There exists a finite subcover {Ux : x ∈ Fj}. Let Lj = ∪x∈Fj
Lx

and let hj =
∑

x∈F hx. Then Lj and hj satisfy the requirements of the

lemma. �

We now complete the proof of the theorem. Let h =
∑k

j=1 hj , and let

V = {y ∈ U : h(y) > 0}. Then V is an open set, and K ⊆ V ⊆ U . Let

fj(y) = hj(y)/h(y), for y ∈ V . Then (V , (Lj)
k
j=1, (fj)

k
j=1) is a partition of

unity subordinate to the cover. �

Suppose that K is a compact non-empty subset of a Euclidean space E,

that {U1, . . . , Uk} is a finite open cover of K and that (V, (Lj)
k
j=1, (fj)

k
j=1) is

a smooth partition of unity subordinate to the cover. Suppose further that

F is a Euclidean space and that, for each 1 ≤ j ≤ k, gj is a function from

Uj to F . We then define
∑k

j=1 fjgj : V → F by setting

k∑
j=1

fjgj(y) =
∑

{fj(y)gj(y) : y ∈ V ∩ Uj}.
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In other words, we set (fjgj)(y) = 0 if fj(y) = 0. Then the function∑k
j=1 fjgj is continuous (continuously differentiable, smooth) if each of the

functions gj is.

Exercise

19.5.1 Suppose that E is a Euclidean space and that δ > 0. Let

h(y) =

{
exp(−1/(δ2 − ‖y‖2)) for ‖y‖ < δ,

0 otherwise.

Show that h is a non-negative smooth function on E. Identify the set

{y : h(y) > 0}.

19.6 Integration over hypersurfaces

We now turn to integration. We restrict attention to a special case; through-

out this section, we suppose that M is a connected compact d-dimensional

hypersurface in a (d + 1)-dimensional Euclidean space E. We need one

topological property of such hypersurfaces, which we state without proof.

Theorem 19.6.1 (The Jordan–Brouwer separation theorem) Suppose

that M is a connected compact d-dimensional hypersurface in a (d + 1)-

dimensional Euclidean space E. Then the open set E \M has two connected

components: one, out[M], the outside of M , is unbounded, and the other,

in[M ], the inside of M , is bounded.

When d = 1, so that M is the track of a simple closed curve in a two-

dimensional Euclidean space, this is a special case of the Jordan curve

theorem, which is proved in Volume III.

If M is a connected compact d-dimensional hypersurface and x ∈ M then

the normal space Nx is one-dimensional, and so there are two elements n+
x

and n−
x in Nx of norm 1. We choose n+

x so that x + λn+
x is outside M for

small positive values of λ; then x+λn−
x is inside M for small positive values

of λ.

Theorem 19.6.1 has the following useful consequence.

Theorem 19.6.2 Suppose that M is a connected compact hypersurface

in a Euclidean space E. There exists an open set W containing M , and a

submersion g : W → R such that M = {y ∈ W : g(y) = 0}.
Proof Since M is compact, there exist a finite open cover {U1, . . . , Uk} of

M by open subsets of E and submersions gj : Uj → R such that M ∩ Uj =
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{y ∈ Uj : gj(y) = 0}. We can also suppose that M ∩Uj is a connected subset

of M , for each j. If x ∈ M ∩ Uj , let

λj(x) =
〈
(∇gj)x, n

+
x

〉
=

∂gj

∂n+
x
(x).

Then λj is a continuous function on M∩Uj, which does not take the value 0.

Replacing gj by −gj if necessary, we can therefore suppose that λj(x) > 0 for

all x ∈ M ∩Uj. There exists a smooth partition of unity (V, (Lj)
k
j=1, (fj)

k
j=1)

subordinate to the cover. Let g =
∑k

j=1 fjgj . Then M = {y ∈ V : g(y) = 0}.
If x ∈ M , there exists i such that x ∈ M ∩ Ui and fi(x) > 0. Then

〈∇gx, n
+
x

〉
=

k∑
j=1

fj(x)λj(x) ≥ fi(x)λi(x) > 0.

Thus ∇g is non-zero on M . Let W = {y ∈ V : ∇gy �= 0}. Then W is an open

subset of V containing M , and the restriction of g to W is a submersion. �

We now consider integration. First, let us describe the notation that will

be used. If f is a Riemann integrable function on an open subset U of E, we

denote the integral by
∫
U f(y) dvd+1(y). On the other hand, the integral of

a function g on M will be denoted by
∫
M g(x) dσd(x): thus dvd+1 represents

a (hyper)volume integral and dσd represents a (hyper)surface integral.

We begin locally. Suppose that x ∈ M . Take an orthonormal basis

(e1, . . . , ed+1) for E, where (e1, . . . , ed) is an orthonormal basis for Tx, and

ed+1 = n+
x . We shall consider cells in E defined in terms of this basis. There

exists δ > 0 such that if Ux is the cell

{y ∈ E : |yj − xj | < δ for 1 ≤ j ≤ d+ 1}
and φx(y) = Px(y − x) for y ∈ M then

• (Ux, φx) is a chart near x,

•
∥∥n+

y − n+
x

∥∥ < 1
2 for y ∈ M ∩ Ux, so that

〈
n+
y , n

+
x

〉
> 1

2 , and

• ‖(y − x)− φx(y)‖ ≤ ‖φx(y)‖ for y ∈ M ∩Ux (this is possible by Corollary

19.2.4).

Let ψ : φx(Ux) → M ∩ Ux be the inverse mapping, and let

Vx = {v ∈ Tx : |vj| < δ for 1 ≤ j ≤ d}.
It follows from the third condition that if y ∈ M ∩ Ux then

|yd+1 − xd+1| = ‖(y − x)− φx(y)‖ < max{|yj − xj | : 1 ≤ j ≤ d},
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and it follows easily from this that φx(Ux) = Vx.

We call such a cell Ux a well-behaved neighbourhood of x.

Suppose now that 0 < α < δ, that

Lx = {y ∈ E : |yj − xj | ≤ α for 1 ≤ j ≤ d+ 1},
and that g is a continuous function on M which vanishes on M \Lx. Suppose

that y ∈ M ∩ Lx and let φx(y) = v. We now choose a new orthonormal

basis (f1, . . . , fd+1) such that (f1, . . . , fd) is an orthonormal basis for Tx,

fd+1 = ed+1 = n+
x and n+

y ∈ span {fd, fd+1}. Suppose that h is a unit

vector in Tx. There exists η > 0 such that v + th ∈ Vx for |t| < η. Then

ψ(v+ th) ∈ M for |t| < η, and so Dψv(h) ∈ Ty. Thus the restriction of Dψv

to Tx is a linear mapping from Tx to Ty, and so the Jacobian Jψv is defined.

We now define∫
M∩Ux

g(y) dσd(y) to be

∫
Vx

g(ψ(v))|Jψv | dvd(v).

Let us determine the value of |Jψv|. Let C = I1 × · · · × Id be a cell in Tx,

defined in terms of the new basis (f1, . . . , fd+1). Then Dψv(C) is a cell in Ty

with sides of lengths l(I1), . . . l(Id−1), l(Id)/
〈
n+
y , n

+
x

〉
(see Figure 19.6), and

so |Jψv | = 1/
〈
n+
y , n

+
x

〉
. Thus∫

M∩Ux

g(y) dσd(y) =

∫
Vx

g(ψ(v))〈
n+
ψ(v), n

+
x

〉 dvd(v).

It is now a straightforward matter to use a smooth partition of unity

to define the integral of a continuous function g on M . The well-behaved

neighbourhoods Ux of points x of M form an open cover of M , and so

there is a finite subcover {Ux1
, . . . , Uxk

}. Let (V, (Li)
k
i=1, (fi)

k
i=1) be a smooth

y

x

O �

n+
x

n+
y

Figure 19.6. Change of variables.
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partition of unity subordinate to the cover. We then define∫
M

g(y) dσd(y) to be

k∑
i=1

(∫
M∩Uxi

fi(y)g(y) dσd(y)

)
.

In particular, we write σd(M) for
∫
M dσd(y), and write ωd for σd(S

d),

where Sd is the unit sphere in a (d+ 1)-dimensional Euclidean space.

It does however remain to show that the integral does not depend on the

finite subcover, nor on the choice of smooth partition of unity. This is again

a fairly straightforward matter. The details are indicated in the exercises

below.

Exercises

We consider the setting described above.

19.6.1 Suppose that z ∈ M ∩ Ux. Show that
〈
n+
y , n

+
z

〉
> 1

2 for y ∈ M ∩ Ux.

Show that if we follow the procedure above, projecting onto Tz rather

than Tx, then∫
M∩Ux

g(y) dσd(y) =

∫
Vz

g(ψz(v))|(Jψz)v| dvd(v).

19.6.2 Suppose that {Wx1
, . . . ,Wxk

} is a finite cover of Lx by open cells and

that (V, (Li)
k
i=1, (fi)

k
i=1) is a smooth partition of unity subordinate

to the cover. Show that∫
M∩Ux

g(y) dσd(y) =

k∑
i=1

(∫
M∩Wxi

fi(y)g(y) dσd(y)

)
.

19.6.3 Suppose that {Wx1
, . . . ,Wxl

} is a finite cover of M by open cells

with the properties described above and that (V, (Li)
k
i=1, (fi)

k
i=1) is

a smooth partition of unity subordinate to the cover. By considering

the open cover {Ui ∩ Wj : 1 ≤ i ≤ k, 1 ≤ j ≤ l}, and using the

previous exercises, show that
∫
M g(y) dσd(y) does not depend on the

choice of cover or the choice of smooth partition of unity.

19.6.4 The following extended exercise shows how to establish a change of

variables formula, in the simplest, but most useful, case. We con-

sider the unit ball Bd and the unit sphere Sd−1 in a d-dimensional

Euclidean space E. Let Ar be the annulus {x : r ≤ ‖x‖ ≤ 1}, for
0 < r < 1. Suppose that f is a continuous real-valued function on

Sd−1 and that g is a continuous function on Bd. Let f̃(rω) = f(ω)

for 0 < r ≤ 1 and ω ∈ Sd−1.
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(a) Show that f̃ is a continuous function on Bd \ {0}.
(b) Show that

(1− rd)

∫
Sd−1

f(ω) dσd−1(ω) =

∫
Ar

f̃(x) dvd(x).

(c) Suppose that ε > 0. Show that there exist 0 = r0 < · · · < rk = 1

and a function h on Bd \ {0} such that

(i) the function hj(ω) = h(rjω) is continuous on Sd−1, for 1 ≤
j ≤ k,

(ii) h(tω) = h(rjω) for ω ∈ Sd−1 and rj−1 < t ≤ rj , for 1 ≤ j ≤
k, and

(iii) |h(x)− g(x)| < ε for x ∈ Bd \ {0}.
(d) Show that∫

Ar

g(x) dvd(x) =

∫ 1

r

(
rd−1

∫
Sd−1

f(sω) dσd−1(ω)

)
ds.

(e) ∫
Bd

g(x) dvd(x) =

∫ 1

0

(
rd−1

∫
Sd−1

f(sω) dσd−1(ω)

)
ds.

19.6.5 Use the previous exercise to calculate ωd.

19.6.6 Suppose that U is a bounded convex open neighbourhood of 0 in a

d-dimensional Euclidean space E, that M = ∂U is a (d − 1)-

dimensional differential manifold such that for each x ∈ M , 〈x, n+
x 〉 >

0. Suppose that f is a continuous real-valued function on U and that

g is a continuous real-valued function on U .

(a) Show that for each ω ∈ Sd−1 there exists a unique rω > 0 such

that xω = rω.ω ∈ M . Let f̃(ω) = f(xω). (Note that rω = ‖xω‖.)
(b) Show that∫

M
f(x) dσd−1(x) =

∫
Sd−1

‖xω‖d f̃(ω)〈
xω, n

+
xω

〉 dσd−1(x).

(c) Obtain a formula for
∫
U g(x) dvd(x) corresponding to the formula

in Exercise 19.6.4.

19.7 The divergence theorem

Suppose that U is an open subset of a Euclidean space E. A vector field F

on U is a continuously differentiable mapping from U into E. For example,
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if f is a C(2) function on U , then the gradient mapping ∇f is a vector

field. If F is a vector field on U for which there exists a C(2) function f , for

which F = ∇f , then F is called a conservative vector field, and f is a scalar

potential for F . Another important example occurs in R3. Suppose that U

is an open subset of R3 and that f = (f1, f2, f3) is a C(2) vector field on

U . Let

(∇× f)(x) =

(
∂f3
∂x2

(x)− ∂f2
∂x3

(x),
∂f1
∂x3

(x)− ∂f3
∂x1

(x),
∂f2
∂x1

(x)− ∂f1
∂x2

(x)

)
.

Then∇×f is a vector field, the curl of f , on U . Compare this with the cross-

product of two vectors defined in Appendix C. Such vector fields occur in

mathematical physics, in electromagnetic theory, in gravitation and in fluid

dynamics. We consider curl further in Section 19.9.

If F is a vector field on an open subset U of a Euclidean space E and

x ∈ U , then DFx is a linear mapping of E into itself, and DF is a continuous

mapping of U into L(E). We define the divergence ∇.F (x) at x to be the

trace of DFx. If (e1, . . . , ed) is a basis for E, and if F (x) =
∑d

i=1 fi(x)ei,

then DF is represented by the matrix (∂fi/∂xj), so that

∇.F (x) =

d∑
i=1

∂fi
∂xi

(x).

It is important to note that this formula does not depend upon the choice of

basis (and that the basis need not be an orthonormal basis), since the trace

does not depend on the choice of basis. (See Appendix B.5.) A vector field

F is said to be solenoidal if ∇.F = 0. For example, if f is a C(2) function

on U then

∇.(∇× f)(x) =

(
∂2f3
∂x1x2

(x)− ∂2f2
∂x1x3

(x)

)
+

(
∂2f1
∂x2x3

(x)− ∂2f3
∂x2x1

(x)

)
+

(
∂2f2
∂x3x1

(x)− ∂2f1
∂x3x2

(x)

)
= 0,

so that ∇× f is solenoidal.

Suppose that f is a C(2) function on U . Let F = ∇f . Then f is harmonic

if F is solenoidal; that is, if ∇.(∇f) = 0. We write ∇2f for ∇.(∇f): ∇2f is
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the Laplacian of f . If (e1, . . . , ed) is an orthonormal basis for E, then

∇2f(x) =

d∑
i=1

∂2f

∂x2i
(x).

Let us give two examples which we shall need later.

Example 19.7.1 Suppose that E is a d-dimensional Euclidean space and

that α ∈ R.

(i) Let ψα(x) = ‖x‖2−α, for x ∈ E \ {0}. Then

∇ψα(x) = (2− α)
x

‖x‖α and ∇2ψα(x) =
(2− α)(d − α)

‖x‖α .

(ii) Let φ(x) = log ‖x‖ for x ∈ E \ {0}. Then

∇φ(x) =
x

‖x‖2 and ∇2(x) =
d− 2

‖x‖2 .

These are easy calculations. If (e1, . . . , ed) is an orthonormal basis for E

and x =
∑d

i=1 xiei then ψα(x) = (x21 + · · ·+ x2d)
1−α/2, so that

∂ψα

∂xi
(x) = (2− α)

xi
‖x‖α and ∇ψα = (2− α)

x

‖x‖α .

Further,
∂2ψ

∂x2i
(x) = (2− α)

(
1

‖x‖α − α
x2i

‖x‖α+2

)
.

Adding, ∇2ψα(x) = (2− α)(d − α) ‖x‖−α.

The calculations for (ii) are left as an exercise for the reader.

In particular, the function x/ ‖x‖d on E \ {0} is solenoidal. If d = 2 then

φ is harmonic, and if d > 2 then ψd is harmonic.

We shall consider these ideas further in the next section. First, we

prove the divergence theorem, which is a multi-dimensional version of the

fundamental theorem of calculus.

Theorem 19.7.2 (The divergence theorem) Suppose that V is a connected

bounded open subset of a (d+1)-dimensional Euclidean space E whose bound-

ary M is a finite disjoint union of connected hypersurfaces M1, . . . ,Mk and

that F is a vector field defined on an open set U containing V . Let B = V ,

and let ∫
M

〈
F (x), n+

x

〉
dσd(x) =

k∑
j=1

(∫
Mj

〈
F (x), n+

x

〉
dσd(x)

)
,
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where n+
x is the normal at x in the direction out of V . Then∫

B
∇.F (y)dvd+1(y) =

∫
M

〈
F (x), n+

x

〉
dσd(x).

Proof Note that we need to show that B is Jordan measurable, so that the

first integral makes sense. This will emerge during the proof of the theorem.

We use a smooth partition of unity. For each x ∈ M there exists a well-

behaved neighbourhood Ux of x, and for each y inside M there exists an

open cell Cy such that Cy ⊆ in[M ]. Together, these sets form an open cover

of B; since B is compact, there exists a finite subcover

(Ux1
, . . . , Uxk

, Cyk+1
, . . . , Cyl

) = (V1, . . . Vl) say.

We consider a smooth partition of unity (V, (L1, . . . , Ll), (f1, . . . fl)) subor-

dinate to the cover. Then∫
B
∇.F (y)dvd+1(y) =

l∑
j=1

∫
Vj

fj(y)∇.F (y)dvd+1(y)

and ∫
M

〈
F (x), n+

x

〉
dσd(x) =

k∑
j=1

∫
M∩Uxj

〈
fj(x)F (x), n+

x

〉
dσd(x).

Now let us set Gj = fjF . Since fj(y) = 0 for y �∈ Lj, we consider Gj as a

function on E, setting Gj(y) = 0 for y �∈ Lj . Then

∇.Gj(y) = 〈(∇fj)(y), F (y)〉 + fj(y)∇.F (y)

so that
l∑

j=1

∇.Gj =

〈
l∑

i=1

∇fj, F

〉
+

⎛⎝ l∑
j=1

fj

⎞⎠∇.F = ∇.F,

since
∑l

j=1 fj = 1 and
∑l

j=1∇fj = ∇1 = 0. It is therefore sufficient to show

that ∫
B∩Uxj

∇.Gj(y) dvd+1(y) =

∫
M∩Uxj

〈
Gj(x), n

+
x

〉
dσd(x)

for 1 ≤ j ≤ k, and that∫
Cyj

∇.Gj(y) dvd+1(y) dy = 0,

for k + 1 ≤ j ≤ l.
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We deal with the second set of equations first. By taking a suitable

orthonormal basis of E, we can suppose that

Vj = {w ∈ E : |wi − (yj)i| < δ for 1 ≤ i ≤ d+ 1}
and Lj = {w ∈ E : |wi − (yj)i| ≤ α for 1 ≤ i ≤ d+ 1}.

Let Gj = (g1, . . . gd+1). Then∫ (yj)i+δ

(yj)i−δ

∂gi
∂xi

(w) dwi =

gi(w1, . . . , (yj)i + α, . . . , wd+1)− gi(w1, . . . , (yj)i − α, . . . , wd+1) = 0;

integrating with respect to the other variables, we see that∫
Cyj

∂gi
∂xi

(y) dvd+1(y) = 0.

Adding, it follows that ∫
Cyj

∇.Gj(y) dvd+1(y) = 0.

We now turn to the first set of equations. To simplify the notation, we

can suppose that xj = 0. We drop the suffix j; we denote Uxj
by U , Lxj

by

L, the tangent space Txj
by T , the orthogonal projection onto T by P , the

restriction of P to M ∩U by φ, and the inverse mapping of φ(M ∩ U) onto

M ∩ U by ψ.

It follows from Theorem 18.5.3 that B ∩U is Jordan measurable, so that

the volume integral over B ∩U exists. Since U is a well-behaved neighbour-

hood of 0, there is an orthonormal basis (e1, . . . , ed+1), where (e1, . . . , ed)

is an orthonormal basis for Txj
and ed+1 =n+

xj
. We write Gj(y) = G(y) =∑d+1

i=1 gi(y)ei. Then

∫
B∩U

∇.G(y) dvd+1(y) =

d+1∑
i=1

∫
B∩U

∂gi
∂xi

(y) dvd+1(y)

and ∫
M∩U

〈
G(x), n+

x

〉
dσd(x) =

d+1∑
i=1

∫
M∩U

gi(x)
〈
ei, n

+
x

〉
dσd(x).
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It is therefore sufficient to show that∫
B∩U

∂gi
∂xi

(y) dvd+1(y) =

∫
M∩U

gi(x)
〈
ei, n

+
x

〉
dσd(x)

for 1 ≤ i ≤ d+ 1.

We make a (non-linear) change of variables. If y ∈ U , let χ(y) = ψ(P (y))

and let θ(y) = χ(y)− P (y). If y = z + λed+1, with z ∈ T , then

θ(y) = θ(z) = ψ(z) − z ∈ span (ed+1).

From this it follows that

∂θd+1

∂xd+1
= 0 and

∂θi
∂xj

= 0 for 1 ≤ i ≤ d, 1 ≤ j ≤ d+ 1.

Now let S(y) = y − θ(y). Then S(M ∩ U) ⊆ T , S is a diffeomorphism of

B ∩ U onto S(B ∩ U) and S(B ∩ U) ⊆ T × (−2δ, 0). Further, it follows

from the equations above that the Jacobian J(S) = 1. Let R be the inverse

mapping from S(U) onto U . It is then sufficient to show that

∫
T×[−2δ,0]

∂gi
∂xi

(R(y)) dvd+1(y) =

∫
T
gi(ψ(w))

〈
ei, n

+
ψ(w)

〉
〈
ed+1, n

+
ψ(w)

〉 dσd(w).

for 1 ≤ i ≤ d+ 1.

First, let us consider the case where i = d+ 1. Then∫
T×[−2δ,0]

∂gd+1

∂xd+1
(R(y)) dvd+1(y) =∫

T

(∫ 0

−2δ

∂gd+1

∂xd+1
(R(y)) dyd+1

)
dy1, . . . , dyd

=

∫
T
gd+1(ψ(w)) dσd(w)

=

∫
T
gd+1(ψ(w))

〈
ed+1, n

+
ψ(w)

〉
〈
ed+1, n

+
ψ(w)

〉 dσd(w).

Next suppose that 1 ≤ i ≤ d. Without loss of generality, we can suppose

that i = d. First we fix all the variables yk with 1 ≤ k < d. Suppose that

yk = ak for 1 ≤ k < d. If y ∈ U , we set y = (a, s, t) and set w = (a, s, 0). Let

Π be the plane

{y ∈ E : yk = ak for 1 ≤ k < d},
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and let Ũ = U ∩Π, M̃ = (M ∩ U) ∩Π, B̃ = (B ∩ U) ∩Π. Then

M̃ = {(a, s, t) : t = 〈ψ(s), ed+1〉} and B̃ ⊆ {(a, s, t) : t ≤ ψ(s)}.

0δ

−δ

−δ δ

−δ −2δ

R (u,s,t)

(a,s,t)
t

δ0

λd+1

λd

Figure 19.7. The divergence theorem.

Suppose that y = (a, s, t) ∈ S(B̃). Let Ŭ = {(s, t) : (a, s, t) ∈ S(Ũ)}.
If y = (a, s, t) ∈ S(Ũ), let h(s, t) = gd(R(y)), and if (s, t) ∈ R2 \ Ŭ let

h(s, t) = 0. Then the partition of unity properties imply that h is continu-

ously differentiable, and that h(δ, t) = h(−δ, t) = 0 for t ∈ R. If (s, t) ∈ Ŭ ,

then
∂h

∂s
(s, t) =

∂gd
∂s

(R(y)) +
∂gd
∂t

(R(y))
∂R

∂s
(y).

Now let n+
ψ(w) =

∑d+1
k=1 λk(s)ek, where λk(s) =

〈
ek, n

+
ψ(w)

〉
. Since U is a

well-behaved neighbourhood of 0, λd+1(s) >
1
2 .

Let (u, v) be the unit tangent vector to the curve (s, h(s, t)), with u > 0.

Then (0, u, v) is in the tangent space of R(T ) at R(y). But this is the same

as the tangent space of M at ψ(w), and so
〈
(0, u, v), n+

ψ(w)

〉
= 0; that is,

uλd(s) + vλd+1(s) = 0, and so ∂R/∂s(y) = −λd/λd+1. Now∫ δ

−δ

∂h

∂s
(s, t) ds = h(δ, t) − h(−δ, t) = 0,

so that ∫ δ

−δ

∂gd
∂s

(R(a, s, t)) ds =

∫ δ

−δ

λd(s)

λd+1(s)

∂gd
∂t

(R(a, s, t)) ds.
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Integrating with respect to t, and changing the order of integration,∫ 0

−2δ

(∫ δ

−δ

∂gd
∂s

(R(a, s, t)) ds

)
dt =

∫ δ

−δ

λd(s)

λd+1(s)
gd(ψ(a, s, 0)) ds

=

∫ δ

−δ

〈
ed, n

+
(a,s,0)

〉
〈
ed+1, n

+
(a,s,0)

〉gd(ψ(a, s, 0)) ds.
Integrating over the remaining variables,

∫
S(B∩U)

∂gd
∂xd

(y) dvd+1(y) =

∫
T
gd(ψ(w))

〈
ed, n

+
ψ(w)

〉
〈
ed+1, n

+
ψ(w)

〉 dσd(w).

�

There are many consequences of the divergence theorem.

Corollary 19.7.3 Suppose that M is a d-dimensional connected compact

hypersurface in a (d+1)-dimensional Euclidean space E, that B = in[M ] =

M ∪ in[M ] and that F is a vector field defined on an open set U containing

B. Then ∫
B
∇.F (y)dvd+1(y) =

∫
M

〈
F (x), n+

x

〉
dσd(x).

Proof This is a consequence of the Jordan–Brouwer separation theorem:

M is the boundary of in(M). �

Corollary 19.7.4 If f is a C(2)-function defined on U then∫
B
∇2f(y)dvd+1(y) =

∫
M

∂f

∂n+
x
(x) dσd(x).

Proof Apply the theorem to ∇f . �

Corollary 19.7.5 (d+ 1)vd+1(B) =
∫
M 〈x, n+

x 〉 dσd(x).
Proof Take F (x) = x. Then ∇.F = d+ 1. �

Corollary 19.7.6 (d+ 1)vd+1(Br(y)) = rσd(Sr(y)) = rdωd.

Proof For 〈x− y, n+
x 〉 = r. �

Corollary 19.7.7 If y0 ∈ V then∫
M

〈x, n+
x 〉

‖x− y0‖d+1
dσd(x) = ωd.
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If y0 ∈ E \ V then ∫
M

〈x− y0, n
+
x 〉

‖x− y0‖d+1
dσd = 0.

Proof If y0 ∈ E \V then (y− y0)/ ‖y − y0‖d+1 is solenoidal on V , and the

result follows from the divergence theorem.

If y0 ∈ V , there exists r0 > 0 such that if 0 < r < r0 then Br(y0) ⊆ V .

For such r, let Vr = V \ Br(y0), so that ∂Vr = M ∪ Sr(y0). Since

(y − y0)/ ‖y − y0‖d+1 is solenoidal on Vr, it follows that∫
M

〈x− y0, n
+
x 〉

‖x− y0‖d+1
dσd(x) = −

∫
Sr(y0)

〈x− y0, n
+
x 〉

‖x− y0‖d+1
dσd(x).

Bearing in mind that in this equation n+
x is pointing towards y0 on Sr(y0),

so that 〈x− y0, n
+
x 〉 = −‖x− y0‖, it follows that

−
∫
Sr(y0)

〈x− y0, n
+
x 〉

‖x− y0‖d+1
dσd(x) =

1

rd
σd(Sr(y0)) = ωd

�

Corollary 19.7.8 If y0 ∈ V then

d+ 1

r

(
1

σd(Sr(y0))

∫
Sr(y0)

〈
F (x), n+

x

〉
dσd(x)

)
→ ∇.F (y)

as r ↘ 0.

Proof There exists r0 such that Br(y0) ⊆ V for 0 < r < r0. Applying the

divergence theorem to the open ball Nr(y0), and using Corollary 19.7.6,

1

vd+1(Br(y0))

∫
Br(y0)

∇.F (y)dvd+1(y)

=
(d+ 1)

rσd(Sr(y0))

(∫
Sr(y0)

〈
F (x), n+

x

〉
dσd(x)

)
.

But
1

vd+1(Br(y0))

∫
Br(y0)

∇.F (y)dvd+1(y) → ∇.F (y0) as r ↘ 0,

and so the result follows. �
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Note that

1

σd(Sr(y0))

∫
Sr(y0)

〈
F (x), n+

x

〉
dσd(x) =

1

rdωd

∫
Sr(y0)

〈
F (x), n+

x

〉
dσd(x)

is the average value of 〈F (x), n+
x 〉 on Sr(y0).

Corollary 19.7.9 (Green’s formulae) Suppose that f and g are C(2)

functions on U . Then∫
M

f(x)
∂g

∂n+
x
(x) dσd(x) =

∫
B

(
〈∇f(y),∇g(y)〉+ f(y)∇2g(y)

)
dvd+1(y),

and ∫
M

(
f(x)

∂g

∂n+
x
(x)− g(x)

∂f

∂n+
x
(x)

)
dσd(x)

=

∫
B

(
f(y)∇2g(y) − g(y)∇2f(y)

)
dvd+1(y).

Proof Apply the theorem to H = f∇g and K = f∇g − g∇f :

∇.H = 〈∇f,∇g〉+ f∇2g and ∇.K = f∇2g − g∇2f.

�

Corollary 19.7.10 If U is an open subset of R3 with boundary M con-

sisting of a finite disjoint union of 2-manifolds, and if f is a C(2)-function

defined on an open set U containing B then∫
M

〈
(∇× f)(x), n+

x

〉
dσ2(x) = 0.

Proof Apply the theorem to the solenoidal vector field ∇× f . �

Exercises

19.7.1 Establish the formulae in Example 19.7.1 (ii).

19.7.2 Suppose that G is a vector field on an open set U and that f is a

continuously differentiable function on U . Show that

∇(fG) = 〈∇f,G〉+ f(∇.G).

19.7.3 Suppose that f is a C(2) function on an open subset U of R3. Show

that ∇× (∇f) = 0.
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19.7.4 Suppose that F is a vector field on an open subset of R3 for which

there exists a vector field A (a vector potential) such that F = ∇×A.

Show that F is solenoidal.

19.8 Harmonic functions

In the previous sections, we considered functions defined on an open sub-

space U of a (d + 1)-dimensional Euclidean space, and hypersurfaces of

dimension d. In this section we change the dimension by 1; we consider

functions defined on an open subset U of a d-dimensional space.

Recall that a real-valued function f defined on an open subset U of a

Euclidean space E is harmonic if it is twice continuously differentiable, and

∇2f = 0.

Harmonic functions have good averaging properties. Let us introduce

some notation. If x ∈ Sr(x0) we denote by nx the unit normal vector in

the direction away from x0. If 0 < s < r we denote by As,r(x0) the annular

set {x ∈ E : s ≤ ‖x− x0‖ ≤ r}: it has boundary Ss(x0) ∪ Sr(x0).

Proposition 19.8.1 If f is a harmonic function on an open subset U of

a d-dimensional Euclidean space E and Br(x0) ⊆ U then∫
Sr(x0)

∂f

∂nx
(x) dσ(x) = 0.

Proof Apply the divergence theorem to ∇f . �

Theorem 19.8.2 Suppose that f is harmonic on an open subset U of a

d-dimensional Euclidean space E and that Br(x0) ⊆ U . Then

f(x0) =
1

σd−1(Sr(x0))

∫
Sr(x0)

f(x) dσd−1(x)

=
1

rd−1ωd−1

∫
Sr(x0)

f(x) dσd−1(x).

Proof We deal with the case where d > 2; the proof for d = 2 is essentially

the same. Let 0 < s < r. Applying Green’s formula to f and ψd(x− x0) =

‖x− x0‖2−d,

0 =

∫
As,r

ψd(y − x0)∇2f(y)− f(y)∇2ψd(y) dvd(y)

= Ir − Is,
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where

Ir =

∫
Sr(x0)

(
ψd(x− x0)

∂f

∂nx
(x)− f(x)

∂ψd

∂nx
(x− x0)

)
dσd−1(x)

=
1

rd−1

∫
Sr(x0)

(
r
∂f

∂nx
(x)− (2− d)f(x)

)
dσd−1(x)

=
d− 2

rd−1

∫
Sr(x0)

f(x) dσd−1(x),

using Proposition 19.8.1 and the equation

∂ψd

∂nx
= 〈∇ψd, nx〉 = (2− d)r

rd
=

2− d

rd−1
.

Similarly.

Is =

∫
Ss(x0)

(
ψd(x− x0)

∂f

∂nx
(x)− f(x)

∂ψd

∂nx
(x− x0)

)
dσd−1(x)

=
d− 2

sd−1

∫
Ss(x0)

f(x) dσd−1(x).

Since Is → (d− 2)f(x0)σd−1(S
d−1) as s ↘ 0, the result follows. �

This theorem has the following consequence.

Theorem 19.8.3 Suppose that f is a non-constant harmonic function on

a connected open subset U of a d-dimensional Euclidean space E. Then f

has no local maximum or minimum.

Proof Suppose that f has a local maximum at y0 and that f(y0) = a. Let

F = {y ∈ U : f(y) = a}. Since f is continuous, F is a closed subset of U .

We show that F is open. Suppose that y ∈ F . There exists r > 0 such that

Br(y) ⊆ U . Suppose that z ∈ Br(y) and that ‖z − y‖ = s ≤ r. Then f(y)

is the average value of f on Ss(y). Since f is continuous and f(y) ≥ f(w)

for w ∈ Ss(y), it follows that f(w) = f(y) for all w ∈ Ss(y). In particular,

f(z) = f(y) = a. Thus Br(y) ⊆ F , and so F is open. Since U is connected,

F = U , and f is constant. �
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We now consider the simplest form of the Dirichlet problem: if f is a

continuous function on the unit sphere Sd−1 in Rd, is there a continuous

function u on the closed unit ball Bd which is harmonic on the open unit

ball Ud and is equal to f on Sd−1? For this, we need the Poisson kernel.

This is defined as

Px(y) =
1− ‖y‖2

ωd−1 ‖y − x‖d for x ∈ Sd−1, y ∈ Ud.

Note that Px(0) = 1/ωd−1.

Proposition 19.8.4 Px(y) is a harmonic function of y in Ud.

Proof We prove this by a direct calculation. Let v(y) = 1 − ‖y‖2 and let

w(y) = 1/ ‖x− y‖d. Then
∂v

∂yi
(y) = −2yi,

∇2v(y) = −2d,

∂w

∂yi
(y) =

−d(yi − xi)

‖y − x‖d+2

∂2w

∂y2i
(y) =

−d

‖y − x‖d+2
+

d(d+ 2)(yi − xi)
2

‖y − x‖d+4

and ∇2w(y) =
−d2

‖y − x‖d+2
+

d(d+ 2)

‖y − x‖d+2
=

2d

‖y − x‖d+2
.

Hence

ωd−1∇2Px(y) = w(y)∇2v(y) + 2 〈∇v(y),∇w(y)〉 + v(y)∇2w(y)

=
−2d

‖y − x‖d +
4d 〈y, y − x〉
‖y − x‖d+2

+
2d(1 − ‖y‖2)
‖y − x‖d+2

=
2d

‖y − x‖d+2

(
−‖y − x‖2 + 2 〈y, y − x〉+ (1− ‖y‖2)

)
= 0.

�

Theorem 19.8.5 (i) Px(y) > 0 for x ∈ Sd−1, y ∈ Ud.

(ii) If x ∈ Sd−1 and δ > 0 then Px(rz) → 0 uniformly on {z ∈ Sd−1 :

‖z − x‖ > δ} as r ↗ 1.

(iii)
∫
Sd−1 Px(y) dσd−1(x) = 1 for y ∈ Ud.
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Proof (i) and (ii) follow from inspection of the definition of the Poisson

kernel. Suppose that y ∈ U , and that y = rz, with z ∈ Sd−1. Since Px(y) is

a harmonic function of y,

1 = ωd−1Pz(0) =

∫
Sd−1

Pz(rx) dσd−1(x).

But ‖rx− z‖ = ‖x− rz‖, so that Pz(rx) = Px(rz) = Px(y), and so

1 =

∫
Sd−1

Px(y) dσd−1(x).

�

Theorem 19.8.6 (Solution of the Dirichlet problem) Suppose that f is a

continuous function on the unit sphere Sd−1 in Rd. There exists a continuous

function u on the closed unit ball Bd which is harmonic on the open unit

ball Ud and is equal to f on Sd−1.

Proof Let

u(y) =

{ ∫
Sd−1 f(x)Px(y) dσd−1(x) for y ∈ U,

f(x) for x ∈ Sd−1.

Differentiating twice under the integral sign, we see that

∇2u(y) =

∫
Sd−1

f(x)∇2Px(y) dσd−1(x) = 0, for y ∈ U,

so that u is harmonic. It remains to show that u is continuous on B. It is

certainly continuous on U . Let ur(x) = u(rx) for x ∈ Sd−1 and 0 < r < 1.

Since each ur is continuous, it is sufficient, by the general principal of uniform

convergence, to show that ur → f uniformly on Sd−1. Suppose that ε > 0.

Since Sd−1 is compact, f is uniformly continuous on Sd−1, and so there

exists δ > 0 such that if ‖z − x‖ < δ then |f(z)− f(x)| < ε/3. By Theorem

19.8.5 there exists 0 < r0 < 1 such that |Px(rz)| < ε/(3 ‖f‖∞ ωd−1) for

r0 < r < 1 and ‖z − x‖ ≥ δ. If x ∈ Sd−1 and r0 < r < 1 then, using the

results of Theorem 19.8.5,

|f(x)− ur(x)| =
∣∣∣∣∫

Sd−1

(f(x)− f(z))Pz(rx) dσd−1(z)

∣∣∣∣
≤
∫
‖z−x‖<δ

|f(x)− f(z)|Pz(rx) dσd−1(z)

+

∫
‖z−x‖≥δ

(|f(x)|+ |f(z)|)Prx(z) dσd−1(z)

≤ ε/3 + 2ε/3 = ε.

�
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Of course, we can prove a corresponding result for every ball Br(x).

We now have a converse to Theorem 19.8.2.

Theorem 19.8.7 Suppose that f is a continuous function on an open

subset U of a Euclidean space E with the property that for every x0 ∈ U and

ε > 0 there exists 0 < r < ε such that Br(x0) ⊆ U and

f(x0) =
1

σd−1(Sr(x0))

∫
Sr(x0)

f(x) dσd−1(x) (�)

Then f is harmonic on U .

Proof Suppose that x0 ∈ U , and let r > 0 be chosen so that Br(x0) ⊆ U

and (�) holds. Let u be the solution to the Dirichlet problem for Br(x0),

and let v = f −u. Then v(x) = 0 for x ∈ Sr(x0), and, since harmonicity is a

local property, it is sufficient to show that v(y) = 0 for y ∈ Br(x0). Suppose

not, and suppose that v(x) > 0 for some x ∈ Br(x0). Let a = sup{v(y) :

y ∈ Br(x0)}, and let F = {y ∈ Br(x0) : f(y) = a}. Since Br(x0) is compact,

F is a non-empty closed set in Br(x0), and F ∩ Sr(x0) is empty. Similarly,

there exists y0 ∈ F such that ‖y0 − x0‖ = s = sup{‖y − x0‖ : y ∈ F}, and
0 ≤ s < r. By hypothesis, there exists 0 < t < r− s such that (�) holds. But

then

a = v(y0) =
1

σd−1(St(y0))

∫
St(x0)

v(x) dσd−1(x),

which is not possible, since v(x) ≤ a for x ∈ St(y0), and there are points x

in St(y0) for which v(x) < a. �

Note that the condition on f does not involve derivatives, but ensures

that f is twice continuously differentiable.

Corollary 19.8.8 A harmonic function f on U is infinitely differentiable.

Proof Take an orthonormal basis (e1, . . . , ed) for E. An inductive argu-

ment shows that it is sufficient to show that ∂f/∂xj is harmonic, for

1 ≤ j ≤ d. Suppose that x0 ∈ U and that Br(x0) ⊆ U . Then

f(x0) =
1

σd−1(Sr(x0))

∫
Sr(x0)

f(x) dσd−1(x),

by Theorem 19.8.2. Differentiating under the integral sign,

∂f

∂xj
(x0) =

1

σd−1(Sr(x0))

∫
Sr(x0)

∂f

∂xj
(x) dσd−1(x),

and so ∂f/∂xj is harmonic. �
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Corollary 19.8.9 Suppose that (fn)
∞
n=1 is a sequence of harmonic func-

tions on U which converges locally uniformly to a function f . Then f is

harmonic.

Proof For if Br(x0) ⊆ U then, using Theorem 19.8.2,

f(x0) = lim
n→∞ fn(x0)

= lim
n→∞

1

σd−1(Sr(x0))

∫
Sr(x0)

fn(x) dσd−1(x)

=
1

σd−1(Sr(x0))

∫
Sr(x0)

( lim
n→∞ fn(x)) dσd−1(x)

=
1

σd−1(Sr(x0))

∫
Sr(x0)

f(x) dσd−1(x),

and so the result follows from Theorem 19.8.7. �

We shall consider harmonic functions further in Volume III.

Exercises

19.8.1 What are the harmonic functions on an open interval of the real line?

19.8.2 Suppose that f and f2 are harmonic on an open connected subset of

Rd. Show that f is constant.

19.8.3 Suppose that f is a harmonic function on an open subset U of a

d-dimensional Euclidean space E. Show that if Br(x) ⊆ U then

f(x) =
1

vd(Br(x))

∫
Br(x)

f(y) dVd(y). (∗)

Show conversely that if f is continuous on U , and that if (∗) holds

for all Br(x) contained in U , then f is harmonic.

19.9 Curl

We now study the operator ‘curl’ in more detail. This requires knowl-

edge of the material in Appendix C. Throughout this section, we suppose

that F = (f1, f2, f3) is a vector field defined on an open subset V

of R3.

Proposition 19.9.1 Suppose that v is a unit vector in R3. Then

〈∇ × F, v〉 = ∇.(F × v).
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Proof If τ(1) = 2, τ(2) = 3 and τ(3) = 1, then ετ = 1. Hence

〈∇ × F, v〉 =
〈∑

σ∈Σ3

εσ
∂fσ(3)

∂xσ(2)
eσ(1), v

〉
=

∑
σ∈Σ3

εσ
∂fσ(3)

∂xσ(2)
vσ(1)

=
∑
σ∈Σ3

εσ
∂fσ(2)

∂xσ(1)
vσ(3) = ∇.(F × v).

�

This clearly corresponds to properties of the scalar triple product.

We now apply the divergence theorem.

Theorem 19.9.2 Suppose that U is an open subset of R3 with B =

U ⊆ V , and with boundary M consisting of a finite disjoint union of

2-manifolds.Then∫
B
(∇× F )(y) dv3(y) = −

∫
M
(F (x) × n+

x ) dσ2(x).

Proof Let v be a unit vector in R3. Using the preceding proposition and

the divergence theorem,〈∫
B
(∇× F )(y) dv3(y), v

〉
=

∫
B
〈(∇× F )(y), v〉 dv3(y)

=

∫
B
∇.(F (y)× v) dv3(y)

=

∫
M

〈
F (x)× v, n+

x

〉
dσ2(x)

= −
∫
M

〈
F (x)× n+

x , v
〉
dσ2(x)

= −
〈∫

M
(F (x) × n+

x ) dσ2(x), v

〉
.

This holds for all unit vectors v, and so the result follows. �

Suppose that x0 ∈ V . We apply the theorem to balls Br(x0) ⊆ V . Suppose

that Br(x0) ⊆ V and that G is a continuous vector field on V . We set

Ar(G)(x0) =
1

v3(Br(x0))

∫
Br(x0)

G(y) dv3(y) =
3

4πr3

∫
Br(x0)

G(y) dv3(y),

ar(G)(x0) =
1

σ2(Sr(x0))

∫
Sr(x0)

G(x) dσ2(x) =
1

4πr2

∫
Sr(x0)

G(x) dσ2(x).
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Ar(G) is the average value of G on the ball Br(x0) and ar(G) is the average

value of G on the sphere Sr(x0).

Corollary 19.9.3 −3ar(F × n+
x )(x0)/r → (∇× F )(x0) as r → 0.

Proof For Ar(∇× F )(x0) = −3ar(F × n+
x )(x0)/r and Ar(∇ × F )(x0) →

(∇× F )(x0) as r → 0. �

This expresses ∇× F as a limit of volume integrals.

It is more informative to express the components of ∇ × F as a limit

of planar line integrals. In order to simplify notation, let us suppose that

x0 = 0, and let us consider the component of ∇× F in the e3 direction. By

Proposition 19.9.1,

〈∇ × F, e3〉 = ∇.(F × e3) = ∇.(f2e1 − f1e2) =
∂f2
∂x1

− ∂f1
∂x2

.

If y = y1e1+y2e2 ∈ U∩e⊥3 , letG(y) = f2(y)e1−f1(y)e2. The two-dimensional

divergence of G in the plane satisfies ∇.G = 〈∇ × F, e3〉. Suppose that

Nr0(0) ⊆ U . If 0 < r < r0, let γr : [0, 2π] → E be the circular path γr(s) =

r(cos s e1+sin s e2) in U∩e⊥3 , and let Br be the disc {w : w ∈ e⊥3 , ‖w‖ ≤ r}. If
γr(s) ∈ [γr], then n+

γr(s)
= cos(s) e1+sin(s) e2. Applying the two-dimensional

divergence theorem, it follows that∫
Br

〈(∇× F )(y), e3〉 dv2(y) =
∫
Br

∇.G(y) dv2(y)

= r

∫ 2π

0
(f2(γr(s))− f1(γr(s))) ds.

Now γ′r(s) = r(− sin s e1+cos s e2), and the unit tangent t(γr(s)) at γr(s) is

− sin s e1 + cos s e2, so that∫
Br

〈(∇× F )(y), e3〉 dv2(y) =
∫ 2π

0

〈
F (γr(s)), γ

′
r(s)

〉
ds

= r

∫ 2π

0
〈F (γr(s)), t(γr(s))〉 ds.

Theorem 19.9.4

〈(∇× F )(0), e3〉 = lim
r→0

1

πr2

∫ 2π

0

〈
F (γr(s)), γ

′
r(s)

〉
ds

= lim
r→0

1

πr

∫ 2π

0
〈F (γr(s)), t(γ(s))〉 ds.
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Proof For

Ar =
1

πr2

∫
Br

〈(∇× F )(y), e3〉 dv2(y) → 〈(∇× F )(0), e3〉

as r → 0. �

Exercise

19.9.1 Suppose that F and G are vector fields on an open set U in R3 and

that f is a continuously differentiable function on U .

(i) Show that ∇× (fG) = ∇f ×G+ f(∇.G).

(ii) Let

G.∇ = g1
∂

∂x1
+ g2

∂

∂x2
+ g3

∂

∂x3
.

Show that ∇× (F ×G) = (∇.G)F − (∇.F )G + (G.∇)F − (F.∇)G.



Appendix B

Linear algebra

B.1 Finite-dimensional vector spaces

We are concerned with real vector spaces, but the results extend readily to

complex vector spaces, as well. We describe briefly the ideas and results that

we need1.

Let K denote either the field R of real numbers or the field C of complex

numbers. A vector space E over K is an abelian additive group (E,+),

together with a mapping (scalar multiplication) (λ, x) → λx of K × E into

E which satisfies

• 1.x = x,

• (λ+ μ)x = λx+ μx,

• λ(μx) = (λμ)x,

• λ(x+ y) = λx+ λy,

for λ, μ ∈ K and x, y ∈ E. The elements of E are called vectors and the

elements of K are called scalars.

It then follows that 0.x = 0 and λ.0 = 0 for x ∈ E and λ ∈ K. (Note

that the same symbol 0 is used for the additive identity element in E and

the zero element in K.)

A non-empty subset F of a vector space E is a linear subspace if it is

a subgroup of E and if λx ∈ F whenever λ ∈ K and x ∈ F . A linear

subspace is then a vector space, with the operations inherited from E. If A

is a subset of E then the intersection of all the linear subspaces containing

A is a linear subspace, the subspace span (A) spanned by A. If A is empty,

1 For a fuller account, see, for example, Alan F. Beardon, Algebra and Geometry, Cambridge
University Press, 2005.
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then EA = {0}; otherwise

EA = {λ1a1 + · · · + λnan : n ∈ N, λi ∈ K,ai ∈ A for 1 ≤ i ≤ n}.

A subset B of E is linearly independent if whenever b1, . . . , bk are distinct

elements of B and λ1, . . . , λk are scalars for which

λ1b1 + · · · + λkbk = 0

then λ1 = · · · = λk = 0. A subset B of E which is linearly independent and

which spans E is called a basis for E.

A vector space E is finite-dimensional if it is spanned by a finite set,

Every finite-dimensional vector space E has a basis.

Proposition B.1.1 If A is a linearly independent subset of E contained

in a finite subset C of E which spans E then there is a basis B for E with

A ⊆ B ⊆ C.

Proof Consider a maximal linearly independent subset of C which

contains A, or a minimal spanning subset of C which contains A. �

Corollary B.1.2 Every finite-dimensional space E has a basis.

Proof Take A = ∅, C a finite spanning set. �

When we list a basis as (b1, . . . bd), we shall always suppose that the

elements are distinct.

Proposition B.1.3 If B = (b1, . . . , bd) is a basis for E, then any element

x of E can be written uniquely as x = x1b1 + · · · + xdbd (where x1, . . . , xd
are scalars).

Proof Since B spans E, x can be written as x = x1b1 + · · · + xdbd. If

x = x′1b1 + · · · + x′dbd then (x1 − x′1)b1 + · · · + (xd − x′d)bd = 0, so that

xi − x′i = 0 for 1 ≤ i ≤ d, by linear independence. �

Proposition B.1.4 If B = (b1, . . . , bk) and C = (c1, . . . .cl) are finite bases

for E then k = l.

Proof For 1 ≤ i ≤ k we can write bi =
∑l

j=1 γjicj , and for 1 ≤ j ≤ l we

can write cj =
∑k

m=1 βmjbm. Then

bi =

l∑
j=1

γji(

k∑
m=1

βmjbm) =

k∑
m=1

⎛⎝ l∑
j=1

βmjγji

⎞⎠ bm.
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Since (b1, . . . , bk) is a basis, the expression for bi is unique, and so

1 =
∑l

j=1 βijγji. Consequently, k =
∑k

i=1(
∑l

j=1 βijγji). Similarly, l =∑l
j=1(

∑k
i=1 γjiβij), and so k = l. �

Corollary B.1.5 If B = {b1, . . . , bd} is a basis for E, and A is a linearly

independent subset of E then A is a finite set, and |A| ≤ |B|.
Proof Suppose that F is a finite subset of A. By Proposition B.1.1, there

exists a finite basis G of E with F ⊆ G ⊆ F ∪ B. Then |F | ≤ |G| = |B|.
Since this holds for all finite subsets of A, A is finite, and |A| ≤ |B|. �

Thus any two bases have the same number of elements; this number is

the dimension dimE of E. If dimE = d, we say that E is d-dimensional.

Corollary B.1.6 If C is a spanning subset of a k-dimensional vector space

E and |C| = k then C is a basis for E.

Proof For C contains a subset B which is a basis, and |B| = k = |C|, so
that C = B. �

As an example, let E = Kd, the product of d copies of K, with addition

defined coordinatewise, and with scalar multiplication

λ(x1, . . . , xd) = (λx1, . . . , λxd).

Let ej = (0, . . . , 0, 1, 0, . . . , 0), with 1 in the jth position. Then Kd is a vector

space, and (e1, . . . , ed) is a basis for Kd, the standard basis. As another

example, let Md,k = Md,k(K) denote the set of all K-valued functions on

{1, . . . , d} × {1, . . . , k}. Md,k becomes a vector space over K when addition

and scalar multiplication are defined coordinatewise. The elements of Md,k

are called matrices. We denote the matrix taking the value 1 at (i, j) and

0 elsewhere by Eij . Then the set of matrices {Eij : 1 ≤ i ≤ d, 1 ≤ j ≤ k}
forms a basis for Md,k, so that Md,k has dimension dk. A matrix t in Md,k

is denoted by an array ⎡⎢⎣ t11 . . . t1k
...

. . .
...

td1 . . . tdk

⎤⎥⎦ .

If 1 ≤ i ≤ d and 1 ≤ j ≤ k, let

ri = [ti1, . . . , tik] and let cj =

⎡⎢⎣ t1j
...

tdj

⎤⎥⎦ .

ri is the ith row of t and cj is the jth column of t.
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We denote Md,d by Md: Md is the vector space of square matrices. We

define the identity matrix I to be I =
∑d

j=1Ejj.

B.2 Linear mappings and matrices

A mapping T : E → F , where E and F are vector spaces over the same field

K, is linear if

T (x+ y) = T (x) + T (y) and T (λx) = λT (x) for all λ ∈ K,x, y ∈ E.

The image T (E) is a linear subspace of F and the null-space N(T ) = {x ∈
E : T (x) = 0} is a linear subspace of E. If E is finite-dimensional, then the

dimension of T (E) is the rank of T and the dimension of N(T ) is the nullity

n(T ) of T .

Theorem B.2.1 (The rank-nullity formula) If T : E → F is a linear

mapping and if E is finite-dimensional then

rank(T ) + n(T ) = dimE.

Proof Let B be a basis for E. Then T (B) spans T (E), and so T (E) is

finite-dimensional. Let (y1, . . . , yr) be a basis for T (E) and let (x1, . . . , xn)

be a basis for N(T ). For each 1 ≤ j ≤ r there exists zj ∈ E such that

T (zj) = yj. We show that (z1, . . . , zr, x1, . . . , xn) is a basis for E, so that

rank(T ) + n(T ) = dimE.

Suppose that x ∈ E and that T (x) = λ1y1 + · · · + λryr. Let v = λ1z1 +

· · · + λrzr. Then T (v) = T (x), so that

u = x− v ∈ N(T ) = span (x1, . . . , xn).

Thus x = u + v ∈ span (z1, . . . , zr, x1, . . . , xn), and (z1, . . . , zr, x1, . . . , xn)

spans E. If

x = (λ1z1 + · · · + λrzr) + (μ1x1 + · · · + μnxn) = 0

then T (x) = λ1y1 + · · · + λryr = 0, so that λi = 0 for 1 ≤ i ≤ r,

and x = μ1x1 + · · · + μnxn = 0. Hence μj = 0 for 1 ≤ j ≤ n. Thus

(z1, . . . , zr, x1, . . . , xn) is linearly independent. �

A bijective linear mapping J : E → F is called an isomorphism. A linear

mapping J : E → F is an isomorphism if and only if J(E) = F and

N(J) = {0}. If J is an isomorphism, then dimE = dimF . For example, if

(f1, . . . , fd) is a basis for F then the linear mapping J : Kd → F defined by

J(λ1, . . . , λd) = λ1f1 + · · ·+ λdfd is an isomorphism of Kd onto F .
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The set L(E,F ) of linear mappings from E to F is a vector space, when

we define

(S + T )(x) = S(x) + T (x) and (λS)(x) = λ(S(x))

for S, T ∈ L(E,F ), x ∈ E, λ ∈ K. If T ∈ L(E,F ) and S ∈ L(F,G) then the

composition ST = S ◦T is in L(E,G). We write L(E) for L(E,E); elements

of L(E) are called endomorphisms of E.

An element T of L(E,F ) is invertible if there exists an element T−1 ∈
L(F,E), the inverse of T , such that T−1 ◦ T = IE, the identity on E, and

T ◦ T−1 = IF , the identity mapping on F . T is invertible if and only if it is

a linear isomorphism of E onto F .

The set of invertible elements of L(E) is a group under composition,

with identity element IE . It is called the general linear group GL(E). When

E = Kd, it is denoted by GLd(K). It follows from the rank-nullity formula

that if T ∈ L(E), then T is invertible if and only if it has a left inverse, and

if and only if it has a right inverse.

Suppose that E and F are finite-dimensional vector spaces over K, and

that (e1, . . . , ek) is a basis for E, (f1, . . . , fd) a basis for F and that T ∈
L(E,F ). Let T (ej) =

∑d
i=1 tijfi.

If x =

k∑
j=1

xjej then T (x) =

d∑
i=1

⎛⎝ k∑
j=1

tijxj

⎞⎠ fi. (∗)

Proposition B.2.2 The mapping T → (tij) is then an isomorphism of

L(E,F ) onto Md,k, so that dimL(E,F ) = dk = dimE.dimF .

Proof The mapping T → (tij) is clearly linear and injective. On the other

hand, if (tij) ∈ Md,k then the formula (∗) defines an element T ∈ L(E,F )

whose image is (tij), and so the mapping is also surjective. �

We say that T is represented by the matrix (tij). If (g1, . . . , gl) is a basis for

G, and S ∈ L(F,G) is represented by the matrix (shi) then the product R =

ST ∈ L(E,G) is represented by the matrix (rhj), where rhj =
∑d

i=1 shitij.

This expression defines matrix multiplication.

A matrix t in Md is invertible if the element T ∈ L(Kd) which it defines

is invertible. This is so if and only if there is a matrix t−1 in Md such that

tt−1 = t−1t = I. The matrix t−1 is then unique: it is the inverse of t.

As an example, suppose that (e1, . . . , ed) and (f1, . . . , fd) are bases of

E. Then the identity mapping I : (E, (f1, . . . , fd)) → (E, (e1, . . . , ed)) is

represented by a matrix b. I is invertible, and so therefore is b. Then b−1

represents the mapping I : (E, (e1, . . . , ed)) → (E, (f1, . . . , fd)). Suppose
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now that T ∈ L(E) and that T is represented by the matrix t with respect

to the basis (e1, . . . , ed) . Then, considering the composite mapping

(E, (f1, . . . , fd))
I→ (E, (e1, . . . , ed))

T→ (E, (e1, . . . , ed))
I→ (E, (f1, . . . , fd)),

we see that T is represented by the matrix b−1tb with respect to the basis

(f1, . . . , fd).

If T ∈ L(Kd) and T is represented by the matrix t = (tij), then t can be

written as a finite product of matrices of a particularly simple form.

A matrix of the form I + λEij, where λ is a scalar and i �= j, is called an

elementary shear matrix. Such a matrix is invertible, with inverse I − λEij .

The corresponding element of L(Kd) is called an elementary shear operator.

The matrix product (I + λEij)t is the matrix obtained by adding λ times

the jth row of t to the ith row, and leaving the other rows unchanged.

This multiplication is call a row operation. Similarly, the matrix product

t(I + λEij) is the matrix obtained by adding λ times the ith column of t to

the jth column, and leaving the other rows unchanged. This multiplication

is call a column operation.

A matrix of the form λ1E11 + · · · + λdEdd, where λ1, . . . .λd are scalars,

is called a diagonal matrix and is denoted by diag(λ1, · · ·λd). If it is invert-

ible, the corresponding element of L(Kd) is called a scaling operator. The

matrix product diag(λ1, · · · λd)t is obtained by multiplying the ith row of t

by λi, for 1 ≤ i ≤ d, and the matrix product tdiag(λ1, · · · λd) is obtained

by multiplying the jth column of t by λj, for 1 ≤ j ≤ d. The matrix

diag(λ1, · · · λd) is invertible if and only if each λj is non-zero, and the inverse

is then diag(λ−1
1 , · · · λ−1

d ).

Theorem B.2.3 If t ∈ Md then t = pλq, where p and q are finite products

of elementary shear matrices, and λ is a diagonal matrix.

Proof We show that there exist finite products p̃ and q̃ for which p̃tq̃ = d,

a diagonal matrix. Then p̃ and q̃ are invertible, their inverses p and q are

finite products of elementary shear operations, and t = pdq.

If t = 0 there is nothing to prove. Otherwise, by using a row operation

and a column operation if necessary, we obtain a matrix t′ for which t′11 �= 0.

By using row operations and column operations, we obtain a matrix t′′ for
which t′′1j = 0 and t′′i1 = 0 for 2 ≤ i, j ≤ d. Now repeat the procedure, to

obtain a matrix t′′′ for which t′′′ij = 0 for i = 1, 2, for j = 1, 2 and i �= j, and

then iterate. �
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B.3 Determinants

If σ ∈ Σd, the group of permutations of the set {1, . . . , d}, we define the

signature εσ to be

εσ =
∏

1≤i<j≤d

(
σ(j) − σ(i)

j − i

)
.

Then εσ = ±1. If σ, τ ∈ Σd then

εστ =
∏

1≤i<j≤d

(
σ(τ(j)) − σ(τ(i))

j − i

)

=
∏

1≤i<j≤d

(
σ(τ(j)) − σ(τ(i))

τ(j) − τ(i)

) ∏
1≤i<j≤d

(
τ(j) − τ(i)

j − i

)
= εσ.ετ .

Thus the mapping σ → εσ is a homomorphism of the group Σd into the

multiplicative group D2 = {1,−1}. The kernel

Ad = {σ ∈ Σd : εσ = 1}

is the alternating group. If σ is a transposition, then εσ = −1. Any permuta-

tion can be written (in many ways) as a product of transpositions; it follows

that the number of transpositions is always even if εσ = 1 and is always odd

if εσ = −1.

Suppose now that t ∈ Md,d. The determinant det t is defined as

det t =
∑
σ∈Σd

εσt1,σ(1) . . . td,σ(d).

Note that, since εσ = εσ−1 ,

det t =
∑
σ∈Σd

εσtσ−1(1),1 . . . tσ−1(d),d =
∑
σ∈Σd

εσtσ(1),1 . . . tσ(d),d.

Here are some basic properties of the determinant function.

Theorem B.3.1 Suppose that t, u ∈ Md,d, that λ = diag(λ1, . . . , λd) is a

diagonal matrix and that s = I + μEij is an elementary shear matrix.

(i) detλ = λ1 . . . λd and det tλ = det t.detλ.

(ii) If t has two equal columns, then det t = 0.

(iii) det s = 1 and det ts = det t.

(iv) det tu = det t.det u.
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Proof (i) It follows from the definition that detλ = λ1 . . . λd.

det tλ =
∑
σ∈Σd

εσt1,σ(1)λσ(1) . . . td,σ(d)λσ(d)

= λ1 . . . λd

∑
σ∈Σd

εσt1,σ(1) . . . td,σ(d) = det t.detλ.

(ii) Suppose that the kth and the lth columns are equal. Let τ be the

transposition (k, l) ; then tij = tiτ(j), for 1 ≤ i, j ≤ d. Then

det t =
∑
σ∈Ad

εσt1,σ(1) . . . td,σ(d) +
∑
σ∈Ad

ετσt1,τ(σ(1)) . . . td,τ(σ(d))

=
∑
σ∈Ad

εσt1,σ(1) . . . td,σ(d) + ετ
∑
σ∈Ad

εσt1,σ(1) . . . td,σ(d) = 0.

(iii) It follows from the definition that det s = 1.

det ts =
∑
σ∈Σd

εσtσ(1),1 . . . (tσ(j),j + μtσ(j),i) . . . td,σ(d)

= det t+ μ
∑
σ∈Σd

εσtσ(1),1 . . . tσ(i),i . . . tσ(j),i . . . tσ(d),d = det t,

since the second sum is the determinant of a matrix with two equal columns.

(iv) By Theorem B.2.3, we can write u = pλq where p and q are products

of elementary shear matrices, and λ is a diagonal matrix. Then

det u = det pλq = det pλ = det p.detλ = detλ

and

det tu = det tpλq = det tpλ = det tp.detλ = det t.detu.

�

The determinant determines whether or not a matrix is invertible.

Corollary B.3.2 A matrix u in Md,d is invertible if and only if its

determinant is non-zero.

Proof By Theorem B.2.3, u = pλq, where p and q are products of ele-

mentary shear matrices and λ = diag(λ1, . . . , λd) is a diagonal matrix. Thus

det u = det p.detλdet q = detλ = λ1 . . . λd. Since elementary shear matri-

ces are invertible, u is invertible if and only if d is. But d is invertible if and

only if λ1 . . . λd �= 0. �
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If u is invertible then u.u−1 = I, so that 1 = det I = det u.u−1 =

detu.det u−1, and detu−1 = (det u)−1.

Suppose now that T is an endomorphism of E which is represented by a

matrix t with respect to a basis (e1, . . . , ed) and by a matrix s with respect to

a basis (f1, . . . , fd). Then there is an invertible matrix b such that s = b−1tb,

and so det s = det b−1.det t.det b = det t. This means that we can define the

determinant detT of the endomorphism T to be det t: the definition does

not depend on the choice of basis.

B.4 Cramer’s rule

Suppose that u ∈ Md,d is invertible. How can we calculate its inverse?

Suppose that 1 ≤ i, j ≤ d. Define the matrix u(i,j) ∈ Md,d by setting

u
(i,j)
kl =

⎧⎨⎩
1 if k = i and l = j,

0 if k �= i and l = j,

ukl otherwise.

The matrix u(i,j) is obtained by changing the terms in the jth column of u.

Thus

u(i,j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 · · · u1,j−1 0 u1,j+1 · · · u1d
...

. . .
...

...
...

. . .
...

ui−1,1 · · · ui−1,j−1 0 ui−1,j+1 · · · ui−1,d

ui,1 · · · ui,j−1 1 ui,j+1 · · · ui,d
ui+1,1 · · · ui+1,j−1 0 ui+1,j+1 · · · ui+1,d

...
. . .

...
...

...
. . .

...

ud1 · · · ud,j−1 0 ud,j+1 · · · udd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let Uji = detu(i,j). Note the change in the order of the coefficients. The

matrix U is called the adjugate of the matrix u. It follows from the definition

of the determinant that detu =
∑d

i=1 Ujiuij. On the other hand, if j �= k,

replace the jth column of u by the kth, to give the matrix u[j,k]. Then u[j,k]

has two columns equal, so that

detu[j,k] =

d∑
i=1

Ujiuik = 0.

Thus U.u = (detu)I, and so u−1 = (1/det u)U . This formula is known as

Cramer’s rule.
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Let us give one explicit example.

Example B.4.1 Suppose that u is in SO(3), the group of orthogonal

matrices with determinant 1. Then

u−1 = U =

⎡⎣ u22u33 − u23u32 u13u32 − u12u33 u12u23 − u13u22
u23u31 − u21u33 u11u33 − u13u31 u13u21 − u11u23
u21u32 − u22u31 u12u31 − u11u32 u11u22 − u12u21

⎤⎦

B.5 The trace

If t ∈ Md, we define the trace tr(t) of t to be the sum of the diagonal terms:

tr(t) =
∑d

i=1 tii. If s, t ∈ Md then

tr(st) =

d∑
i=1

⎛⎝ d∑
j=1

sijtji

⎞⎠ =

d∑
j=1

(
d∑

i=1

tjisij

)
= tr(ts).

Suppose now that T is an endomorphism of E which is represented by a

matrix t with respect to a basis (e1, . . . , ed) and by a matrix s with respect to

a basis (f1, . . . , fd). Then there is an invertible matrix b such that s = b−1tb,

and so tr(s) = tr(b−1tb) = tr(tbb−1) = tr(t). This means that we can define

the trace tr(T ) of the endomorphism T to be tr(t): the definition does not

depend on the choice of basis.



Appendix C

Exterior algebras and the cross product

C.1 Exterior algebras

Suppose that E is a real vector space. An element of E, a vector, can be

considered to have magnitude and direction. In the same way, if x and y are

two vectors in E then they somehow relate to an area in span (x, y). If we

wish to make this more specific, we certainly require that the area should be

zero if and only if x and y are linearly dependent. A similar remark applies

to higher dimensions. We wish to develop these ideas algebraically.

A finite-dimensional (associative) real algebra (A, ◦) is a finite-dimensional

real vector space equipped with a law of composition: that is, a mapping

(multiplication) (a, b) → a ◦ b from A×A into A which satisfies

• (a ◦ b) ◦ c = a ◦ (b ◦ c) (associativity),
• a ◦ (b+ c) = a ◦ b+ a ◦ c,
• (a+ b) ◦ c = a ◦ c+ b ◦ c,
• λ(a ◦ b) = (λa) ◦ b = a ◦ (λb),

for λ ∈ R and a, b, c ∈ A. (As usual, multiplication is carried out before

addition).

An algebra A is unital if there exists 1 ∈ A, the identity element, such

that 1 ◦ a = a ◦ 1 = a for all a ∈ A. For example, Md(R) and Md(C) are

unital algebras. Both R and C can be considered as finite-dimensional real

algebras: R has real dimension 1 and C has real dimension 2.

Suppose now that E is a finite-dimensional real vector space. An exterior

algebra for E is a unital algebra (
∧∗(E),∧), together with an injective linear

mapping j : E → ∧∗(E) with the following properties.

(†) j(x1) ∧ · · · ∧ j(xk) = 0 if and only if x1, . . . , xk are linearly dependent

elements in E.
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(‡) j(E) generates
∧∗(E): any element of

∧∗(E) can be written as a linear

combination of the identity and products of the form j(x1) ∧ · · · ∧ j(xk).

We identify E and j(E), and so we write x for j(x).

Proposition C.1.1 If (
∧∗(E),∧)is an exterior algebra for E and x, y ∈ E

then x∧y = −y∧x. More generally, if x1, . . . xk ∈ E and σ is a permutation

of {1, . . . , k}, then

xσ(1) ∧ · · · ∧ xσ(k) = εσx1 ∧ · · · ∧ xk.

Proof For

0 = (x+ y) ∧ (x+ y) = x ∧ x+ x ∧ y + y ∧ x+ y ∧ y = x ∧ y + y ∧ x.

The second statement follows from this, since σ can be written as a product

of transpositions which transpose two adjacent elements of {1, . . . , k}. �

This shows first that any area that x∧ y might represent is a signed area,

so that the value may be positive or negative, and secondly that the order

of the terms in a product is all-important.

We must show that an exterior algebra exists, and that it is essen-

tially unique. It is possible to define the exterior algebra in a coordinate

free way, but it is probably simpler to use a basis (e1, . . . ed) of E. We

set Ω = {1, . . . , d}. We consider a 2d-dimensional space
∧∗(E) with basis

{eA : A ⊂ Ω} indexed by the subsets of E; thus an element x of
∧∗(E)

can be written uniquely as x =
∑

A⊆Ω xAeA. We define the mapping j

by setting j(
∑d

i=1 xiei) =
∑d

i=1 xie{i}, and define multiplication in in the

following way.

• e∅ is the identity element of
∧∗(E);

• If A ∩B �= ∅, then eA ∧ eB = 0;

• If A and B are disjoint, and if A ∪B = C, then we can write

A = {i1 < . . . < i|A|}
B = {j1 < . . . < j|B|}
C = {k1 < . . . < k|C|}.

Here the order of the terms is all-important. If A,B ⊆ Ω, we denote the

sequence (i1, . . . , i|A|, j1, . . . , j|B|), by A#B. Let σ be the permutation of

C which arranges the sequence A#B in increasing order. We define eA∧eB
to be εσeC .
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• We extend multiplication by linearity. If x =
∑

A⊆Ω xAeA and y =∑
B⊆Ω yBeB , then

x ∧ y =
∑

{xAyBeA ∧ eB : A,B ⊆ Ω}.
First we show that this multiplication is associative. Suppose that A, B,

C are subsets of Ω. If A, B and C are not pairwise disjoint, it is easy to see,

be considering various cases, that (eA∧eB)∧eC = 0 and eA∧ (eB ∧eC) = 0.

Suppose that A, B and C are pairwise disjoint, and thatD = A∪B∪C. Then

(eA∧eB)∧eC = εσeD, where σ is the permutation obtained by first arranging

A#B in increasing order, and then arranging (A∪B)#C in increasing order.

Similarly eA ∧ (eB ∧ eC) = ετeD, where τ is the permutation obtained by

first arranging B#C in increasing order, and then arranging A#(B ∪C) in

increasing order. Clearly σ = τ , so that (eA∧eB)∧eC = eA∧ (eB ∧eC). The

associativity of multiplication follows from this:
∧∗(E) is a unital algebra.

Next we show that condition (†) is satisfied. First suppose that x1, . . . , xk
are not linearly independent. Then there exist λ1, . . . , λk, not all zero, such

that
∑k

j=1 λjxj = 0. Without loss of generality, λk �= 0. Then

0 = x1 ∧ · · · ∧ xk−1 ∧ (

k∑
j=1

λjxj) = λk(x1 ∧ · · · ∧ xk),

so that x1 ∧ · · · ∧ xk = 0.

Secondly, suppose that x1, . . . , xk are linearly independent. By Proposi-

tion B.1.1, there exist xk+1, . . . , xd, so that (x1, . . . , xd) is a basis for E. Let

xj =
∑d

i=1 xijei. Expanding the terms in the product, we see that

x1 ∧ · · · ∧ xd =

(∑
σ∈Σd

εσxσ(1),1 . . . xσ(d),d

)
eΩ = (detX)eΩ,

where X is the matrix (xij). But X is the matrix of the endomorphism

T ∈ L(E) which maps ej to xj , for 1 ≤ j ≤ d. This is invertible, and so

detX �= 0. Thus x1 ∧ · · · ∧ xd �= 0, and so x1 ∧ · · · ∧ xk �= 0

Finally it follows from the construction that the condition (‡) is satisfied.
It is easy to see that the exterior algebra is essentially unique. Suppose

that (F,∧′) is an exterior algebra for E, with mapping j′ : E → F . If

A = {i1 < . . . < i|A|} ⊆ Ω, let π(eA) = j′(ei1) ∧′ · · · ∧′ j′(ei|A|). Then

it follows from (†) that π(eA) �= 0, and from the construction of
∧∗(E)

that π(eA) ∧′ π(eB) = π(eA ∧ eB). Thus π extends to an injective algebra

homomorphism of
∧∗(E) into F . Finally, condition (‡) ensures that π is

surjective.
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As a result, we refer to ‘the exterior algebra’
∧∗(E) of E, rather than ‘an

exterior algebra’.

The exterior algebra
∧∗(E) is a graded algebra; we can write

∧ ∗(E) = R.1⊕ E ⊕ (E ∧ E)⊕ · · · ⊕
∧

k(E)⊕ · · · ⊕
∧

d(E),

where
∧k(E) = span {x1 ∧ · · · ∧ xk : x1, . . . xk ∈ E}. That is to say, if

y ∈ ∧ ∗(E) then y can be written uniquely as y = y0.1 +
∑d

k=1 yk, where

yk ∈ ∧k(E) for 1 ≤ k ≤ d.

If (e1, . . . , ed) is a basis for E as above, then expanding the products, it

follows that
∧k(E) = span {eA : |A| = k}, so that

∧k(E) has dimension(d
k

)
. In particular,

∧d(E) is one-dimensional, and in this setting, is the span

of eΩ; eΩ is called the unit volume element. As we have seen, if we consider

a different basis (f1, . . . , fd), then fΩ = (detT )eΩ, where T is the linear

mapping which sends ej to fj, for 1 ≤ j ≤ d. In particular, if E is a Euclidean

space and (e1, . . . , ed) and (f1, . . . , fd) are orthonormal bases, then fΩ = eΩ
if T ∈ SO(E), and fΩ = −eΩ otherwise. In the former case, the bases have

the same chirality, or handedness, and in the latter, opposite chirality, or

handedness.

Exercise

C.1.1 The elements of E ∧ E are called bivectors, and elements of the form

x∧y are called simple bivectors. Suppose that (e1, . . . e4) is a basis for

a four-dimensional space E. Calculate

(e1 ∧ e2 + e3 ∧ e4) ∧ (e1 ∧ e2 + e3 ∧ e4),

and conclude that e1 ∧ e2 + e3 ∧ e4 is a bivector, but not a simple

bivector.

C.2 The cross product

We now restrict attention to the case where E is a three-dimensional

Euclidean space, with orthonormal basis (e1, e2, e3). Then
∧ ∗(E) is an

eight-dimensional unital algebra, and∧ ∗(E) = R.1 ⊕E ⊕ (E ∧ E)⊕R.eΩ.

Let f1 = e2 ∧ e3, f2 = e3 ∧ e1 and f3 = e1 ∧ e2. Then (f1, f2, f3) is a basis

for E ∧ E. If u = u1e1 + u2e2 + u3e3 and v = v1e1 + v2e2 + v3e3 then

u ∧ v = (u2v3 − u3v2)f1 + (u3v1 − u1v3)f2 + (u1v2 − u2v1)f3.



C.2 The cross product 605

Proposition C.2.1 Every element of E ∧E is a simple bivector.

Proof Suppose that y = y1f1 + y2f2 + y3f3 ∈ E ∧ E. If y1 = 0 then

y = e1 ∧ (y3e2 − y2e3), and if y1 �= 0 then

y = (y2e1 − y1e2) ∧ (y3e1 − y1e3)/y1.

�

Suppose that x, y, z ∈ E. Then x∧ y ∧ z = v(x, y, z)eΩ, where v(x, y, z) is

the signed volume of the parallelepiped defined by x, y and z. Let φy,z(x) =

v(x, y, z). Then φy,z is a linear functional on E. By the Fréchet-Riesz rep-

resentation theorem (Theorem 14.3.7), there exists a unique element of E,

which we denote by y × z, such that

v(x, y, z) = φy,z(x) = 〈x, y × z〉 .
The vector y × z is called the cross product of y and z. Since 〈y, y × z〉 =

y ∧ y ∧ z = 0 and 〈z, y × z〉 = z ∧ y ∧ z = 0, y × z is a vector which is

orthogonal to span (y, z).

The quantity 〈x, y × z〉 is called the scalar triple product of x, y and z.

Since x ∧ y ∧ z = 〈x, y × z〉 eΩ,
〈x, y × z〉 = 〈y, z × x〉 = 〈z, x× y〉 = detT,

where T is the endomorphism of E which maps e1 to x, e2 to y and e3 to z.

The mapping (y, z) → y×z is a bilinear mapping of E×E onto E, which

satisfies y × z = −z × y. Similarly, the mapping y ∧ z → y × z is a bijective

linear mapping of E ∧E onto E.

It is important to note that the cross product is not an associative product.

For example, e1×(e1×e2) = e1×e3 = −e2, while (e1×e1)×e2 = 0×e2 = 0.

Let us consider the cross product in more detail. Suppose that x, y, z ∈ E.

If y and z are linearly dependent, then y×z = 0. Otherwise, let g1 = y/ ‖y‖,
let w = z − 〈z, g1〉 g1 and let g2 = w/ ‖w‖. Then y × z = y × w, and g1 and

g2 are orthogonal unit vectors. Let g3 be the unit vector orthogonal to g1
and g2 for which g1 ∧ g2 ∧ g3 = eΩ. Then

〈g1, g1 × g2〉 = 0, 〈g2, g1 × g2〉 = 0 and 〈g3, g1 × g2〉 = 1,

so that g1 × g2 = g3. Consequently,

y × z = y × w = (‖y‖ . ‖w‖)g1 × g2 = (‖y‖ . ‖w‖)g3.
Now

‖w‖2 = ‖z‖2 − 2 〈z, g1〉2 + 〈z, g1〉2 = ‖z‖2 − 〈z, y〉2 / ‖y‖2 ,
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and so

‖y × z‖2 = ‖y‖2 ‖z‖2 − 〈z, y〉2

What can we say about the vector triple product x× (y × z)?

Proposition C.2.2 Suppose that x, y, z ∈ E.

(i) x× (y × z) = 〈x, z〉 y − 〈x, y〉 z.
(ii) x× (y × z) + y × (z × x) + z × (x× y) = 0.

Proof (i) If y and z are linearly dependent, both sides of the equation are

zero. Otherwise, let us use the notation above. Since

x = 〈x, g1〉 g1 + 〈x, g2〉 g2 + 〈x, g3〉 g3,

x× (y × z) = (‖y‖ . ‖w‖)(〈x, g1〉 (g1 × g3) + 〈x, g2〉 (g2 × g3))

= (‖y‖ . ‖w‖)(−〈x, g1〉 g2 + 〈x, g2〉 g1)
= −〈x, y〉w + 〈x,w〉 y.

But

−〈x, y〉w = −〈x, y〉 z + 〈x, y〉 〈z, g1〉 g1
and 〈x,w〉 y = 〈x, z〉 y − 〈z, g1〉 〈x, g1〉 y = 〈x, z〉 y − 〈z, g1〉 〈x, y〉 g1.

Adding, we obtain the result.

(ii) follows by adding the formulae for each of the three terms. �
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Tychonoff’s theorem

We prove Tychonoff’s theorem, that the topological product of compact

topological spaces is compact. The key idea is that of a filter. This generalizes

the notion of a sequence in a way which allows the axiom of choice to be

applied easily.

A collection F of subsets of a set S is a filter if

F1 if F ∈ F and G ⊇ F then G ∈ F ,

F2 if F ∈ F and G ∈ F then F ∩G ∈ F ,

F3 ∅ �∈ F .

Here are three examples.

• If A is a non-empty subset of S then {F : A ⊆ F} is a filter.

• Suppose that (X, τ) is a topological space, and that x ∈ X. The collection

Nx of neighbourhoods of x is a filter.

• If (sn) is a sequence in S then

{F : there exists N such that sn ∈ F for n ≥ N}

is a filter.

Filters can be ordered. We say that G refines F , and write G ≥ F , if

G ⊇ F .

We now consider a topological space (X, τ). We say that a filter F con-

verges to a limit x (and write F → x) if F refines Nx. Clearly if G refines F
and F → x then G → x.

The Hausdorff property can be characterized in terms of convergent filters.

Proposition D.0.6 (X, τ) is Hausdorff if and only if whenever F → x

and F → y then x = y.
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Proof If (X, τ) is Hausdorff, if F → x, and if x �= y then there exist

disjoint open sets U and V with x ∈ U and y ∈ V . Since U ∈ Nx, U ∈ F .

But then V �∈ F , since U∩V = ∅. Thus F does not refine Ny, and so F �→ y.

Conversely if (X, τ) is not Hausdorff there exist distinct x and y such that

if U ∈ Nx and V ∈ Ny then U ∩ V is not empty. Let

F = {F : F ⊇ U ∩ V for some U ∈ Nx and V ∈ Ny}.

Then F is a filter which converges to both x and y. �

We say that x is adherent to a filter F if x ∈ F for each F ∈ F .

Proposition D.0.7 If F → x then x is adherent to F .

Proof For if F ∈ F and N ∈ Nx then N ∈ F and so F ∩ N ∈ F . Thus

F ∩N is not empty, and so x ∈ F . �

Proposition D.0.8 If x is adherent to F then there is a refinement G
such that G → x.

Proof Let

G = {G : G ⊇ F ∩N for some F ∈ F , N ∈ Nx}.

G is a filter which refines both F and Nx. �

Suppose that S and T are sets, and that f is a mapping from S to T . If

F is a filter on S the image filter f(F) on T is defined by

f(F) = {H ⊆ T : f−1(H) ∈ F}.

It is easy to check that this is a filter.

Proposition D.0.9 Suppose that X and Y are topological spaces, that f

is a mapping from X to Y and that x ∈ X. Then f is continuous at x if

and only if whenever F → x then f(F) → f(x).

Proof If f is continuous at x and F → x then if N ∈ Nf(x) then f−1(N) ∈
Nx ⊆ F , so that N ∈ f(F). Thus f(F) refines Nf(x) and f(F) → f(x).

Conversely if the condition is satisfied, then since Nx → x, f(Nx) → f(x),

so that if N ∈ Nf(x) then N ∈ f(Nx), and so f−1(N) ∈ Nx. Thus f is

continuous at x. �

Proposition D.0.10 A topological space (X, τ) is compact if and only if

every filter on X has an adherent point.
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Proof Suppose that (X, τ) is compact, and that F is a filter on X. The

collection of closed sets {F : F ∈ F} has the finite intersection property, and

so has a non-empty intersection. Any point of the intersection is adherent

to F .

Conversely, suppose that the condition is satisfied, and that C is a collec-

tion of closed sets with the finite intersection property. Let D be the set of

finite intersections of sets in C and let

F = {F : F ⊇ D, for some D ∈ D}.

F is a filter: if x is an adherent point then

x ∈ ∩{C : C ∈ C} = ∩{C : C ∈ C}.

�

Proposition D.0.11 A topological space (X, τ) is compact if and only if

every filter on X has a convergent refinement.

Proof Propositions D.0.7, D.0.8 and D.0.10. �

Compare this with the Bolzano–Weierstrass theorem.

Recall that if (Xα)α∈A is a family of topological spaces, we give the prod-

uct
∏

α∈AXα the product topology, taking as basis of open sets the sets of

the form ∩n
i=1π

−1
ai

(Oαi
), where Oαi

is open in Xαi
. This means that N ∈ Nx

if and only if N ⊇ ∩n
i=1π

−1
αi

(Nαi
), where Nαi

∈ Nπαi
(x) for some α1, . . . , αn

in A.

Proposition D.0.12 Suppose that F is a filter on
∏

α∈AXα. Then F → x

if and only if πα(F) → πα(x) for each α ∈ A.

Proof If F → x, then πα(F) → πα(x), since πα is continuous. Con-

versely suppose that πα(F) → πα(x), for each α. Then if N ∈ Nx,

N ⊇ ∩n
i=1π

−1
αi

(Nαi
), for suitable n, αi and Nαi

. But Nαi
∈ παi

(F), since

παi
(F) → παi

(x), and so π−1
αi

(Nαi
) ∈ F . Thus N ∈ F , and so F → x. �

One major virtue of filters is that they allow the axiom of choice, in

the form of Zorn’s Lemma, to be applied easily. The filters on a set S are

ordered by refinement. If C is a chain of filters refining F then {G : G ∈
G for some G ∈ C} is a filter which is an upper bound for C. Thus by Zorn’s

Lemma, every filter has a maximal refinement. A maximal filter is called an

ultrafilter.

Proposition D.0.13 Every filter has an ultrafilter refinement.
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Proposition D.0.14 If U is an ultrafilter on S and A ⊆ S then exactly

one of A and C(A) is in U . Conversely if F is a filter on S with the property

that if A ⊆ S then either A ∈ F or C(A) ∈ F then F is an ultrafilter.

Proof Since A ∩ C(A) = ∅, at most one of A and C(A) can belong to U .
Suppose that A ∩ U is non-empty, for each U ∈ U . Then the sets {V : V ⊇
A∩U for some U ∈ U} form a filter which refines U , and so is equal to U , by
maximality. Thus A ∈ U . Otherwise, there exists U0 ∈ U such that A ∩ U0

is empty. Then C(A) ⊇ U0, so that C(A) ∈ U .
Conversely, let G be a refinement of F , and suppose that G ∈ G. If C(G) ∈

F , then C(G) ∈ G, giving a contradiction. So G ∈ F , and F is maximal. �

Proposition D.0.15 If U is an ultrafilter on S and f is a mapping from

S to T then f(U) is an ultrafilter on T .

Proof If B ⊆ T then f−1(C(B)) = C(f−1(B)), so that either f−1(B) ∈ U
or f−1(C(B)) ∈ U . Thus either B or C(B) is in f(U). �

Proposition D.0.16 A topological space (X, τ) is compact if and only if

every ultrafilter on X converges.

Proof If (X, τ) is compact and U is an ultrafilter on X, then U has a

convergent refinement, by Proposition D.0.11. But any refinement of U is U
itself.

Conversely, if the condition is satisfied, and F is a filter on X, then

F has an ultrafilter refinement, by Proposition D.0.13. This converges, by

hypothesis, and so (X, τ) is compact, by Proposition D.0.11. �

Theorem D.0.17 (Tychonoff’s theorem) If (Xα, τα)α∈A is a family of

compact topological spaces, then
∏

α∈AXα is compact in the product topology.

Proof Let U be an ultrafilter on
∏

α∈A Xα. Then for each α, πα(U) is an
ultrafilter on Xα, and so it converges, to xα, say. Let x = (xα), so that

xα = πα(x). Then U → x in the product topology, by Proposition D.0.12.

This gives the result. �

Exercises

D.0.1 Suppose that F is a filter on S, and that f is a mapping from S to

T . When is {f(F ) : F ∈ F} a filter?

D.0.2 Let (xn) be a sequence in a topological space (X, τ), and let F be the

filter {A : there exists N such that xn ∈ A for all n ≥ N}. Show that

xn → x if and only if F → x.
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D.0.3 A collection B of non-empty subsets of S is a filter base if whenever

B1, B2 ∈ B then there exists B3 ∈ B with B3 ⊆ B1 ∩B2. Show that

F = {F : F ⊇ B for some B ∈ B}

is a filter.

D.0.4 A filter base B is free if ∩{B : B ∈ B} = ∅. Characterize compactness

in terms of the non-existence of certain free filter bases.

D.0.5 Suppose that for each x in a set X there is given a filter Nx with the

following properties:

(a) x ∈ N for each N ∈ Nx;

(b) if N ∈ Nx there exists M ∈ Nx with M ⊂ N such that M ∈ Ny

for each y ∈ M .

Show that the collection of sets {U : U ∈ Ny for all y ∈ U} is a

topology on X and that the filters Nx are the neighbourhood filters

for this topology.
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in a topological space, 354

derivative, 486
directional, 496–500, 507
higher, 507
partial, 496–500, 507
second, 504

derived set, 342, 349, 354
determinant, 597
diameter, 306
diffeomorphism, 502, 545
differentiable, 486

continuously, 487
differential manifold, 545, 546
differentiation, 485

under the integral sign, 543
dimension, 593
Dini’s theorem, 438, 448, 528
Dirichlet problem, 585
disc, open, 382
discontinuity, 338
dissection, 513
distance, 303, 481
divergence, 573
divergence theorem, 572–582
dual space, 403
dyadic rational number, 325, 373

edge, 471
endomorphism, 595
entropy

Shannon, 560
equicontinuous, 446

uniformly, 448
Euclidean metric, 386, 387
Euclidean space, 317
Euler, L., 399
exterior algebra, 601–604

Fσ set, 392
filter, 357, 607

base, 611
free, 611

final point, 470
finite intersection property, 431, 609
finite-dimensional, 592
first category, 422
first countable, 375, 380, 384
fixed point, 412
frontier, 346, 349, 354
function

C(k), 508
convex, 309
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harmonic, 573, 582–587
Lipschitz, 493

fundamental sequence of compact sets, 456
fundamental theorem

of calculus
vector-valued, 524

Gδ set, 392
general principle of convergence

in R, 386
local uniform, 459
uniform, 388, 395

grad, 486
gradient, 486

normal, 556
tangential, 556

Gram–Schmidt orthonormalization,
317

graph, 375
group

alternating, 597
general linear, 418, 534, 595
orthogonal, 327
permutation, 597

Hahn–Banach theorem, 510
Hausdorff space, 371, 379, 380, 607
Heine–Borel theorem, 431, 452
Hermitian, 313
Hermitian bilinear form, 313
Hilbert cube, 370, 436, 442
Hilbert space, 395
Hilbert, D., 395
homeomorphism, 341, 355

uniform, 389
hypersurface, 546

image, 594
immersion, 545

C(k), 545
smooth, 545

implicit function theorem
diffentiable, 502
Lipschitz, 413, 503

inclination angle, 542
indicator function, 364
initial point, 470
inner product, 312

usual, 313
inner-product space, 313
inside, 568
integral

Cauchy principal value, 524
elementary, 513
improper, 527
Lebesgue, 524
repeated, 525
Riemann

of several variables, 517–525
integral equation, 414

Fredholm, 418
Volterra, 419

interior, interior point, 349
in a metric space, 345
in a topological space, 354

intermediate value theorem,
465
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inverse function theorem

Lipschitz, 416, 537
inverse image, 351
inverse mapping theorem

differentiable, 500
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involution, 320
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in a metric space, 337, 342,
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linear, 319
isomorphism

linear, 594
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Jacobian, 498
Jordan content, 523, 530–534
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Jordan measurable, 523, 530
Jordan–Brouwer separation theorem,
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Lagrange multipliers, 557
Lagrange’s identity, 304
Lagrangian, 562
Laplacian, 574
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limit

in a metric space, 337
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limit point, 337, 342, 349
in a metric space, 337, 342
in a topological space, 354, 360, 371

line segment, 470
linear functional, 403
linear operator, 400
linear subspace, 591
linearly independent, 317, 592
linked, 469
local coordinates, 549
local maximum, 555

constrained, 556
constrained strict, 556
strict, 555
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local minimum

constrained, 556
constrained strict, 556
strict, 555

locally compact, 453
locally connected, 468
locally path-connected, 479

manifold
C(k), 546
differential, 545
smooth, 546

map, mapping
bilinear, 489
linear, 309, 594

bounded, 401
Lipschitz, 340, 389
orthogonal, 327
restriction, 447

matrix, 497, 593
diagonal, 596
elementary shear, 596
invertible, 595
orthogonal, 328
square, 594

maximal
connected subset, 468
path-connected subset, 474

maximum
strict local, 348

Maxwell, J.C., 486
Mazur–Ulam theorem, ix, 323
mean-value inequality, 491–496

for integrals, 520
mesh size, 513, 523
metric, 303

p-adic, 308
arc-length, 308
discrete, 305
equivalent, 341
Euclidean, 304, 305
Hamming, 308
Hausdorff, 448, 450
infinite product, 369
Lipschitz equivalent, 341
product, 367
standard, 305
subspace, 305, 340
uniform, 307, 332, 345
uniform product, 389, 393
uniformly equivalent, 389
usual, 303

metric space, 303
congruent, 322
similar, 322

metric subspace, 305
metric symmetry, 322

metrizable, 353
mirror, 320
multiplication, 601

matrix, 595

nabla, 486
neighbourhood

in a metric space, 349
closed ε-neighbourhood, 350
open, 330
punctured ε-neighbourhood,

337
in a topological space, 354, 607

punctured, 354
well-behaved, 570

net, ε-net, 439
Neumann series, 417
Newton–Raphson method, 496
Niemytzki space, 382
norm, 309

dual, 403
equivalent, 401
Euclidean, 311
operator, 402
product, 367
uniform, 311

norm bounded, 311
normal, 371, 383, 384, 432
normal space, 549
normed space, 309

finite-dimensional, 460
nowhere dense, 422
null-space, 328, 594
nullity, 594

open ε-ball, 345
open ε-neighbourhood, 345
open mapping theorem, 423
open set

in a metric space, 345
in a topological space, 353

open unit ball, 345
operator

elementary shear, 534, 596
scaling, 534, 596
self-adjoint, 546

order
partial, 365, 513

ordinary differential equation,
414

orthogonal, 315
orthogonal projection, 318
orthonormal

basis, 317
sequence, 317

oscillation, 306, 425, 515
Osgood’s theorem, 381, 385
outside, 568
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parallelogram law, 315
parametrization, 549

path-length, 495
parametrization, path-length, 482,

495
normalized, 482

parity, 476
odd, even, 476

partial order, 365, 513
partition of unity, smooth, 565
path, 470

circular, 472
closed, 470
continuously differentiable, 493
dyadic, 471
equivalent, 471
Hilbert’s, 476–478, 480
linear, 470
piecewise continuously differentiable,

493
piecewise linear, or polygonal, 471,

495
rectifiable, 480
rectilinear, 471
similar, 471
similar closed, 471
simple, 471
simple closed, 472
space-filling, 478

path-connected, 473
locally, 474

path-connected component, 474
Peano, 475
perfect set

in a metric space, 342, 349
in a topological space, 354

point at infinity, 454
Poisson kernel, 584
polarization formula, 315
positive definite, 313
positive semi-definite, 316
pre-inner-product space, 316
precompact, 439
principle of condensation of singularities,

423
principle of uniform boundedness,

422
projection

orthogonal, 406
pseudometric, 307, 311

quadratic form, 558
quotient vector space, 312

radius, 542
rank, 328, 594
rank-nullity formula, 328, 594
refine, 513, 607

reflection
simple, 320

regular, 371, 380
removable discontinuity, 349
reparametrization, 471
reverse, 471
Riemann integral, x, 515–517
right shift, 405
Rolle’s theortem, 555
rotation, 320

elementary, 328
row, 593
row operation, 596

saddle point, 559
sandwich principle, 339
scalar, 591
scalar multiplication, 591
scalar potential, 573
scalar triple product, 605
Schwarz, H.A., 312
second category, 422
second countable, 375, 384, 442
self-adjoint, 547
seminorm, 311
separable, 347, 349, 354, 375, 380,

384, 442
separation properties,

370–375
sesquilinearity, 313
signature, 597
span, 591
special linear group, 548
sphere, unit, 342, 499, 546
spherical polar coordinates, 542
split, 464
splitting, 464
splitting point, 469
stationary point, 555

constrained, 556
step function, 514
subadditive, 309
subcover, 431
submersion, 545

C(k), 545
smooth , 545

Sunyer y Balaguer, F., 426
symmetric, 316, 324
symmetric bilinear form, 313
symmetric difference, 308
symmetry, 313

T1 space, 371, 379
tail sequence, 392
tangent, 382
tangent bundle, 551
tangent space, 549
tangent vector, 548
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tend, 330, 337, 354
test

Abel’s
for Banach spaces, 399

Cauchy’s
for Banach spaces, 396

D’Alembert’s ratio
for Banach spaces, 397

Dirichlet’s
for Banach spaces, 398

Hardy’s
for Banach spaces, 398
uniform, 398

Weierstrass’ uniform M , 397, 399
for products, 397

Tietze’s extension theorem, 406, 407
topological space, 353

subspace, 355
topologically complete, 392
topology, 349

Bernoulli, 365
coarser or weaker, 354
cocountable, 355
cofinite, 355, 379, 433
discrete, 355
finer or stronger, 354
indiscrete, 355
metric space, 353
of a metric space, 345
of local uniform convergence, 458
of pointwise convergence, 364
one-sided, 355
product, 363
quotient, 355

right half-open interval, 356
subspace, 355
Zariski, 355

totally bounded, 439
trace, 600
track, 473
translation, 320
translation-invariant, 309
transpose, 546
triangle inequality, 303
Tychonoff’s theorem, ix, 607, 610

ultrafilter, 609
ultrametric, 349
unit sphere bundle, 552
unit vector, 310
unit volume element, 604
unitary space, 317
upper semi-continuous, 360
Urysohn’s lemma, 352, 373, 408
Urysohn’s metrization theorem,

378, 443

vector, 591
vector derivative, 589
vector field, 572

conservative, 573
solenoidal, 573

vector space, 591
vector triple product, 606
vertex, 471
volume, 513

well-linked, 469
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